|
import os
|
|
import torch
|
|
from torch.utils.data import Dataset, DataLoader
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
import json
|
|
import openmesh as om
|
|
import pdb
|
|
from utils import *
|
|
|
|
class BiCarDataset(Dataset):
|
|
def __init__(self, dataset_folder,input_size=512):
|
|
self.dataset_folder = dataset_folder
|
|
self.data_index_list = os.listdir(dataset_folder)
|
|
self.input_size = input_size
|
|
|
|
def __getitem__(self, index):
|
|
instance_index = self.data_index_list[index]
|
|
instance_folder = os.path.join(self.dataset_folder,instance_index)
|
|
input_kps= np.zeros(1)
|
|
|
|
|
|
|
|
|
|
|
|
image = Image.open(os.path.join(instance_folder,'image','raw_image.jpeg')).convert('RGB')
|
|
polygon,kps,bbox = readjson(os.path.join(instance_folder,'image','annotation.json'))
|
|
mask = polygon2seg(image,polygon)
|
|
input_image,input_mask,input_kps = reshape_image_and_anno(image,mask,kps,bbox,self.input_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
beta = np.load(os.path.join(instance_folder,'params','beta.npy'))[:100]
|
|
theta = np.load(os.path.join(instance_folder,'params','pose.npy')).reshape(3,24)
|
|
|
|
|
|
|
|
tmesh = om.read_polymesh(os.path.join(instance_folder,'tpose','m.obj'))
|
|
tbody_points = tmesh.points()
|
|
tbody_uv = cv2.imread(os.path.join(instance_folder,'tpose','m.BMP'))
|
|
|
|
pmesh = om.read_polymesh(os.path.join(instance_folder,'pose','m.obj'))
|
|
pbody_points = pmesh.points()
|
|
pbody_uv = cv2.imread(os.path.join(instance_folder,'pose','m.BMP'))
|
|
|
|
|
|
return {'input_image':input_image,
|
|
'input_mask':input_mask,
|
|
'input_kps':input_kps,
|
|
|
|
'beta':beta,
|
|
'theta':theta,
|
|
'Tbody_points':tbody_points,
|
|
'Tbody_uv':tbody_uv,
|
|
'Pbody_points':pbody_points,
|
|
'Pbody_uv':pbody_uv
|
|
}
|
|
|
|
def __len__(self):
|
|
return len(self.data_index_list)
|
|
|
|
dataset = BiCarDataset('./3DBiCar')
|
|
batch_size = 2
|
|
dataset.__getitem__(1)
|
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
for batch in dataloader:
|
|
for item in batch:
|
|
print(item,batch[item].shape)
|
|
break
|
|
|