RaBit / 3DBiCar.py
jasongzy's picture
Upload
e5a65c7
import os
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import cv2
from PIL import Image
import json
import openmesh as om
import pdb
from utils import *
class BiCarDataset(Dataset):
def __init__(self, dataset_folder,input_size=512):
self.dataset_folder = dataset_folder
self.data_index_list = os.listdir(dataset_folder)
self.input_size = input_size
def __getitem__(self, index):
instance_index = self.data_index_list[index]
instance_folder = os.path.join(self.dataset_folder,instance_index)
input_kps= np.zeros(1)
# image/mask/annotation
#processed images and mask
#input_image = cv2.imread(os.path.join(instance_folder,'image','image_reshape512.jpeg'))
#input_mask = cv2.imread(os.path.join(instance_folder,'image','mask512.png'))
#processed image in dataloader
image = Image.open(os.path.join(instance_folder,'image','raw_image.jpeg')).convert('RGB')
polygon,kps,bbox = readjson(os.path.join(instance_folder,'image','annotation.json'))
mask = polygon2seg(image,polygon)
input_image,input_mask,input_kps = reshape_image_and_anno(image,mask,kps,bbox,self.input_size)
# this two function can be used to visualize
#utils.show_seg(nimage,nmask)
#utils.show_kps(nimage,nkps)
#params: shape and pose
beta = np.load(os.path.join(instance_folder,'params','beta.npy'))[:100]
theta = np.load(os.path.join(instance_folder,'params','pose.npy')).reshape(3,24)
#mesh: Here we only read points and uvmap of body only.
#Tbody: T-pose body; Pbody: Posed body.
tmesh = om.read_polymesh(os.path.join(instance_folder,'tpose','m.obj'))
tbody_points = tmesh.points()
tbody_uv = cv2.imread(os.path.join(instance_folder,'tpose','m.BMP'))
pmesh = om.read_polymesh(os.path.join(instance_folder,'pose','m.obj'))
pbody_points = pmesh.points()
pbody_uv = cv2.imread(os.path.join(instance_folder,'pose','m.BMP'))
return {'input_image':input_image,
'input_mask':input_mask,
'input_kps':input_kps,
#'json_annotation':annotation,
'beta':beta,
'theta':theta,
'Tbody_points':tbody_points,
'Tbody_uv':tbody_uv,
'Pbody_points':pbody_points,
'Pbody_uv':pbody_uv
}
def __len__(self):
return len(self.data_index_list)
dataset = BiCarDataset('./3DBiCar')
batch_size = 2
dataset.__getitem__(1)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
for batch in dataloader:
for item in batch:
print(item,batch[item].shape)
break