Datasets:
Languages:
English
Size:
10K<n<100K
File size: 4,023 Bytes
9f356c7 d583a77 b81749a d583a77 8d72b47 d583a77 8d72b47 d583a77 8d72b47 d583a77 0b8ac77 e846eac f62a17c 0b8ac77 f62a17c e846eac 0b8ac77 e846eac 7ae852e d583a77 784f684 d583a77 9f356c7 d583a77 ae9e759 d583a77 7ae852e d583a77 7ae852e 395e0e5 c62b2d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import os
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Unsplash Lite Dataset 1.2.0 Photos},
author={Unsplash},
year={2022}
}
"""
_DESCRIPTION = """\
This is a dataset that streams photos data from the Unsplash 25K servers.
"""
_HOMEPAGE = "https://github.com/unsplash/datasets/"
_LICENSE = ""
_URL = "https://unsplash.com/data/lite/latest"
class Unsplash(datasets.GeneratorBasedBuilder):
"""The Unsplash 25K dataset for photos"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'photo_id': datasets.Value("string"),
'photo_url': datasets.Value("string"),
'photo_image_url': datasets.Value("string"),
'photo_submitted_at': datasets.Value("string"),
'photo_featured': datasets.Value("string"),
'photo_width': datasets.Value("int32"),
'photo_height': datasets.Value("int32"),
'photo_aspect_ratio': datasets.Value("float32"),
'photo_description': datasets.Value("string"),
'photographer_username': datasets.Value("string"),
'photographer_first_name': datasets.Value("string"),
'photographer_last_name': datasets.Value("string"),
'exif_camera_make': datasets.Value("string"),
'exif_camera_model': datasets.Value("string"),
'exif_iso': datasets.Value("string"),
'exif_aperture_value': datasets.Value("string"),
'exif_focal_length': datasets.Value("string"),
'exif_exposure_time': datasets.Value("string"),
'photo_location_name': datasets.Value("string"),
'photo_location_latitude': datasets.Value("string"),
'photo_location_longitude': datasets.Value("string"),
'photo_location_country': datasets.Value("string"),
'photo_location_city': datasets.Value("string"),
'stats_views': datasets.Value("int32"),
'stats_downloads': datasets.Value("int32"),
'ai_description': datasets.Value("string"),
'ai_primary_landmark_name': datasets.Value("string"),
'ai_primary_landmark_latitude': datasets.Value("string"),
'ai_primary_landmark_longitude': datasets.Value("string"),
'ai_primary_landmark_confidence': datasets.Value("string"),
'blur_hash': datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/unsplash/datasets/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
new_url = dl_manager.download_and_extract(_URL)
# remove extra files
for file in os.listdir(new_url):
if os.path.isfile(new_url+"/"+file):
if file != 'photos.tsv000':
os.remove(new_url+'/'+file)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(new_url, "photos.tsv000")}
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
with open(filepath, "r") as f:
id_ = 0
for line in f:
if id_ == 0:
cols = line.strip().split("\t")
id_ += 1
else:
values = line.strip().split("\t")
if len(values) != len(cols):
values.extend(['']*(len(cols)-len(values)))
yield id_, {cols[i]: values[i] for i in range(len(cols))}
id_ += 1 |