jackkuo commited on
Commit
fd221eb
·
verified ·
1 Parent(s): eb43ba1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NFLT4oBgHgl3EQfCi71/content/2301.11976v1.pdf +3 -0
  2. -NFLT4oBgHgl3EQfCi71/vector_store/index.pkl +3 -0
  3. .gitattributes +54 -0
  4. 09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf +0 -0
  5. 09AzT4oBgHgl3EQfRfsM/content/tmp_files/2301.01215v1.pdf.txt +241 -0
  6. 09AzT4oBgHgl3EQfRfsM/content/tmp_files/load_file.txt +144 -0
  7. 29FIT4oBgHgl3EQf5SvC/vector_store/index.pkl +3 -0
  8. 2NE2T4oBgHgl3EQf5ggG/content/tmp_files/2301.04190v1.pdf.txt +2677 -0
  9. 2NE2T4oBgHgl3EQf5ggG/content/tmp_files/load_file.txt +0 -0
  10. 2NE2T4oBgHgl3EQfjAcm/content/2301.03963v1.pdf +3 -0
  11. 2dAzT4oBgHgl3EQfe_zq/content/tmp_files/2301.01447v1.pdf.txt +0 -0
  12. 2dAzT4oBgHgl3EQfe_zq/content/tmp_files/load_file.txt +0 -0
  13. 39AzT4oBgHgl3EQfuv0b/content/tmp_files/2301.01694v1.pdf.txt +2456 -0
  14. 39AzT4oBgHgl3EQfuv0b/content/tmp_files/load_file.txt +0 -0
  15. 5dAzT4oBgHgl3EQffvz_/content/tmp_files/2301.01459v1.pdf.txt +1963 -0
  16. 5dAzT4oBgHgl3EQffvz_/content/tmp_files/load_file.txt +0 -0
  17. 5dE0T4oBgHgl3EQfegDz/content/2301.02393v1.pdf +3 -0
  18. 5dE1T4oBgHgl3EQfBAJm/vector_store/index.faiss +3 -0
  19. 5dE2T4oBgHgl3EQfkQdW/content/tmp_files/2301.03976v1.pdf.txt +1392 -0
  20. 5dE2T4oBgHgl3EQfkQdW/content/tmp_files/load_file.txt +0 -0
  21. 5tE0T4oBgHgl3EQfvwEb/content/2301.02621v1.pdf +3 -0
  22. 5tE0T4oBgHgl3EQfvwEb/vector_store/index.pkl +3 -0
  23. 5tE4T4oBgHgl3EQf1g0M/content/2301.05290v1.pdf +3 -0
  24. 5tE4T4oBgHgl3EQf1g0M/vector_store/index.faiss +3 -0
  25. 5tE4T4oBgHgl3EQf1g0M/vector_store/index.pkl +3 -0
  26. 6dE1T4oBgHgl3EQfTQOX/content/2301.03076v1.pdf +3 -0
  27. 6dE1T4oBgHgl3EQfTQOX/vector_store/index.faiss +3 -0
  28. 6dE1T4oBgHgl3EQfTQOX/vector_store/index.pkl +3 -0
  29. 7tE4T4oBgHgl3EQfCgsd/content/tmp_files/2301.04860v1.pdf.txt +1059 -0
  30. 7tE4T4oBgHgl3EQfCgsd/content/tmp_files/load_file.txt +0 -0
  31. 8NE0T4oBgHgl3EQffgAo/content/tmp_files/2301.02404v1.pdf.txt +2401 -0
  32. 8NE0T4oBgHgl3EQffgAo/content/tmp_files/load_file.txt +0 -0
  33. 8dAzT4oBgHgl3EQfE_q4/content/tmp_files/2301.01004v1.pdf.txt +307 -0
  34. 8dAzT4oBgHgl3EQfE_q4/content/tmp_files/load_file.txt +303 -0
  35. A9E3T4oBgHgl3EQfswtu/content/tmp_files/2301.04670v1.pdf.txt +0 -0
  36. A9E3T4oBgHgl3EQfswtu/content/tmp_files/load_file.txt +0 -0
  37. ANAzT4oBgHgl3EQfhf3F/content/tmp_files/2301.01486v1.pdf.txt +2233 -0
  38. ANAzT4oBgHgl3EQfhf3F/content/tmp_files/load_file.txt +0 -0
  39. AtAzT4oBgHgl3EQfhv1C/content/2301.01488v1.pdf +3 -0
  40. AtAzT4oBgHgl3EQfhv1C/vector_store/index.faiss +3 -0
  41. AtAzT4oBgHgl3EQfv_4W/content/2301.01714v1.pdf +3 -0
  42. AtAzT4oBgHgl3EQfv_4W/vector_store/index.pkl +3 -0
  43. BdFKT4oBgHgl3EQfXC6p/content/tmp_files/2301.11793v1.pdf.txt +792 -0
  44. BdFKT4oBgHgl3EQfXC6p/content/tmp_files/load_file.txt +314 -0
  45. BtAyT4oBgHgl3EQf4PqZ/vector_store/index.faiss +3 -0
  46. E9E1T4oBgHgl3EQfqgWQ/content/2301.03344v1.pdf +3 -0
  47. E9E1T4oBgHgl3EQfqgWQ/vector_store/index.faiss +3 -0
  48. ENE2T4oBgHgl3EQfogjY/content/tmp_files/load_file.txt +0 -0
  49. EtE1T4oBgHgl3EQf-gZN/vector_store/index.pkl +3 -0
  50. FNAzT4oBgHgl3EQfUPz_/vector_store/index.pkl +3 -0
-NFLT4oBgHgl3EQfCi71/content/2301.11976v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3371932b019d9068dc686efabd358690b6a8209c45d030945e5ef9a007ea34d
3
+ size 197256
-NFLT4oBgHgl3EQfCi71/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dac84c6544ae11df04bcba403635b745eea6a7102ff532238d3149d97c7b715
3
+ size 102995
.gitattributes CHANGED
@@ -7839,3 +7839,57 @@ ZNFRT4oBgHgl3EQfPjcf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
7839
  LNFRT4oBgHgl3EQf1jiU/content/2301.13657v1.pdf filter=lfs diff=lfs merge=lfs -text
7840
  Plough[[:space:]]Knowledge[[:space:]]Ocean[[:space:]]Intro/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7841
  m9E_T4oBgHgl3EQf7Ry5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7839
  LNFRT4oBgHgl3EQf1jiU/content/2301.13657v1.pdf filter=lfs diff=lfs merge=lfs -text
7840
  Plough[[:space:]]Knowledge[[:space:]]Ocean[[:space:]]Intro/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7841
  m9E_T4oBgHgl3EQf7Ry5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7842
+ n9FKT4oBgHgl3EQfFy0J/content/2301.11721v1.pdf filter=lfs diff=lfs merge=lfs -text
7843
+ GNAzT4oBgHgl3EQfHPvT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7844
+ ZNE2T4oBgHgl3EQfZQdS/content/2301.03862v1.pdf filter=lfs diff=lfs merge=lfs -text
7845
+ ttAzT4oBgHgl3EQfBfrk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7846
+ mNE2T4oBgHgl3EQfeQdZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7847
+ ztFJT4oBgHgl3EQfjCwq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7848
+ wtAzT4oBgHgl3EQfCPrg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7849
+ JdE1T4oBgHgl3EQfsAXy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7850
+ mdE2T4oBgHgl3EQfJQZR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7851
+ qtFRT4oBgHgl3EQfezdF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7852
+ 5tE4T4oBgHgl3EQf1g0M/content/2301.05290v1.pdf filter=lfs diff=lfs merge=lfs -text
7853
+ p9E4T4oBgHgl3EQfvg1C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7854
+ 5dE1T4oBgHgl3EQfBAJm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7855
+ i9FQT4oBgHgl3EQflDYi/content/2301.13360v1.pdf filter=lfs diff=lfs merge=lfs -text
7856
+ o9FKT4oBgHgl3EQfGS3Z/content/2301.11725v1.pdf filter=lfs diff=lfs merge=lfs -text
7857
+ MNFLT4oBgHgl3EQfMy8Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7858
+ SdAyT4oBgHgl3EQfVPfZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7859
+ udE2T4oBgHgl3EQf2Qhr/content/2301.04159v1.pdf filter=lfs diff=lfs merge=lfs -text
7860
+ X9E0T4oBgHgl3EQfWQAZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7861
+ i9FQT4oBgHgl3EQflDYi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7862
+ BtAyT4oBgHgl3EQf4PqZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7863
+ l9E4T4oBgHgl3EQftw0Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7864
+ 5tE0T4oBgHgl3EQfvwEb/content/2301.02621v1.pdf filter=lfs diff=lfs merge=lfs -text
7865
+ 6dE1T4oBgHgl3EQfTQOX/content/2301.03076v1.pdf filter=lfs diff=lfs merge=lfs -text
7866
+ zdE3T4oBgHgl3EQfmgot/content/2301.04616v1.pdf filter=lfs diff=lfs merge=lfs -text
7867
+ udE2T4oBgHgl3EQf2Qhr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7868
+ n9FKT4oBgHgl3EQfFy0J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7869
+ K9A0T4oBgHgl3EQfC_82/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7870
+ MNFLT4oBgHgl3EQfMy8Y/content/2301.12017v1.pdf filter=lfs diff=lfs merge=lfs -text
7871
+ 2NE2T4oBgHgl3EQfjAcm/content/2301.03963v1.pdf filter=lfs diff=lfs merge=lfs -text
7872
+ ZNE2T4oBgHgl3EQfZQdS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7873
+ bNFLT4oBgHgl3EQfXy8v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7874
+ _dFKT4oBgHgl3EQfUy2I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7875
+ otFPT4oBgHgl3EQf6zWU/content/2301.13202v1.pdf filter=lfs diff=lfs merge=lfs -text
7876
+ 5tE4T4oBgHgl3EQf1g0M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7877
+ 6dE1T4oBgHgl3EQfTQOX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7878
+ LNFRT4oBgHgl3EQf1jiU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7879
+ odFKT4oBgHgl3EQfFy38/content/2301.11723v1.pdf filter=lfs diff=lfs merge=lfs -text
7880
+ E9E1T4oBgHgl3EQfqgWQ/content/2301.03344v1.pdf filter=lfs diff=lfs merge=lfs -text
7881
+ _dE2T4oBgHgl3EQfmgfK/content/2301.04000v1.pdf filter=lfs diff=lfs merge=lfs -text
7882
+ FtE0T4oBgHgl3EQfzQIy/content/2301.02669v1.pdf filter=lfs diff=lfs merge=lfs -text
7883
+ 5dE0T4oBgHgl3EQfegDz/content/2301.02393v1.pdf filter=lfs diff=lfs merge=lfs -text
7884
+ MNE3T4oBgHgl3EQfwQsY/content/2301.04700v1.pdf filter=lfs diff=lfs merge=lfs -text
7885
+ FtE0T4oBgHgl3EQfzQIy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7886
+ E9E1T4oBgHgl3EQfqgWQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7887
+ R9AzT4oBgHgl3EQf0f4J/content/2301.01783v1.pdf filter=lfs diff=lfs merge=lfs -text
7888
+ -NFLT4oBgHgl3EQfCi71/content/2301.11976v1.pdf filter=lfs diff=lfs merge=lfs -text
7889
+ AtAzT4oBgHgl3EQfhv1C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7890
+ JtE5T4oBgHgl3EQfXg-b/content/2301.05567v1.pdf filter=lfs diff=lfs merge=lfs -text
7891
+ xdFRT4oBgHgl3EQfhzcF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7892
+ JdE1T4oBgHgl3EQfsAXy/content/2301.03362v1.pdf filter=lfs diff=lfs merge=lfs -text
7893
+ JtE5T4oBgHgl3EQfXg-b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7894
+ AtAzT4oBgHgl3EQfv_4W/content/2301.01714v1.pdf filter=lfs diff=lfs merge=lfs -text
7895
+ AtAzT4oBgHgl3EQfhv1C/content/2301.01488v1.pdf filter=lfs diff=lfs merge=lfs -text
09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf ADDED
Binary file (79.9 kB). View file
 
09AzT4oBgHgl3EQfRfsM/content/tmp_files/2301.01215v1.pdf.txt ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01215v1 [quant-ph] 3 Jan 2023
2
+ Comment on ’The operational foundations of
3
+ PT-symmetric and quasi-Hermitian quantum theory’
4
+ Miloslav Znojil
5
+ Nuclear Physics Institute ASCR, Hlavn´ı 130, 250 68 ˇReˇz, Czech Republic
6
+ e-mail: [email protected]
7
+ Abstract
8
+ In J. Phys. A: Math. Theor. 55 (2022) 244003, Alase et al wrote that “the constraint of quasi-
9
+ Hermiticity on observables” is not “sufficient to extend the standard quantum theory” because
10
+ “such a system is equivalent to a standard quantum system.” Three addenda elucidating the
11
+ current state of the art are found necessary. The first one concerns the project: In the related
12
+ literature the original “aim of extending standard quantum theory” has already been abandoned
13
+ shortly after its formulation. The second comment concerns the method, viz., the study in “the
14
+ framework of general probabilistic theories” (GPT). It is noticed that a few other, mathematically
15
+ consistent GPT-like theories are available. The authors do not mention, in particular, the progress
16
+ achieved, under the quasi-Hermiticity constraint, in the approach using the effect algebras. We
17
+ add that this approach already found its advanced realistic applications in the quasi-Hermitian
18
+ models using the unbounded operators of observables acting in the infinite-dimensional Hilbert
19
+ spaces. Thirdly, the “intriguing open question” about “what possible constraints, if any, could
20
+ lead to such a meaningful extension” (in the future) is given an immediate tentative answer: The
21
+ possibility is advocated that the desirable constraint could really be just the quasi-Hermiticity of
22
+ the observables, provided only that one has in mind its recently developed non-stationary version.
23
+ 1
24
+
25
+ 1
26
+ Introduction
27
+ As a part of issue “Foundational Structures in Quantum Theory” the paper “The operational
28
+ foundations of PT-symmetric and quasi-Hermitian quantum theory” by Abhijeet Alase, Salini
29
+ Karuvade and Carlo Maria Scandolo [1] fitted very well the scope of the volume. In a rigorous
30
+ mathematical style it offered the readers an interesting material confirming the compatibility
31
+ between the three recent conceptual innovations of quantum theory. Still, we believe that the
32
+ authors’ coverage of the subject deserves a few addenda, mainly because in loc. cit., the deeply
33
+ satisfactory nature of the mathematical analysis seems to be accompanied by a perceivably less
34
+ careful presentation of its implications in the context of the theoretical quantum physics.
35
+ 2
36
+ The absence of extensions of standard quantum theory
37
+ Our first addendum is motivated by the last sentence of the abstract in [1]. It states that “our
38
+ results show that neither PT-symmetry nor quasi-Hermiticity constraints are sufficient to extend
39
+ standard quantum theory consistently”.
40
+ Indeed, it is rather unfortunate that this statement
41
+ diverts attention from the very interesting main mathematical message of the paper (viz. from the
42
+ rigorous confirmation of compatibility between the three alternative versions of quantum theory)
43
+ to its much less satisfactory physical contextualization. The impression is further strengthened by
44
+ the last paragraph of the whole text where we read that “in conclusion, neither PT-symmetry nor
45
+ quasi-Hermiticity of observables leads to an extension of standard quantum mechanics.” Certainly,
46
+ non-specialists could be mislead to interpret such a conclusion wrongly, as a disproof of usefulness
47
+ of what is usually called PT-symmetric quantum theory (PTQT, an approach which is briefly
48
+ reviewed in section 2.1 of loc. cit.) or of the so called quasi-Hermitian quantum theory (QHQT,
49
+ cf. its compact review in the subsequent section 2.2 of loc. cit.). The misunderstanding seems
50
+ completed by the combination of the very first sentence of the abstract with the very last sentence
51
+ of the text: At the beginning of the Abstract we are told that “PT-symmetric quantum theory
52
+ was originally proposed with the aim of extending standard quantum theory” (which is not too
53
+ relevant at present), while the final question reads “what possible constraints, if any, could lead
54
+ to such a meaningful extension” [1].
55
+ The main weakness of such a “theory-extension” motivation and of the “physical” framing of
56
+ paper [1] is that the original purpose of “relaxing the Hermiticity constraint on Hamiltonians”
57
+ (as proposed, by Bender with Boettcher, in their enormously influential letter [2]) was almost
58
+ immediately shown overambitious and unfulfilled (see, e.g., the Mostafazadeh’s 2010 very mathe-
59
+ matical and detailed criticism and explanation “that neither PT-symmetry nor quasi-Hermiticity
60
+ constraints are sufficient to extend standard quantum theory” [3]). Thus, the authors of [1] only
61
+ come with their “aim to answer the question of whether a consistent physical theory with PT-
62
+ symmetric observables extends standard quantum theory” too late. For more than twelve years
63
+ the answer is known to be negative [4].
64
+ 3
65
+ A comment on the method
66
+ Naturally, nobody claims that the PTQT itself is not useful. Nobody could also deny the relevance
67
+ and the novelty of the mathematical results presented in paper [1]. It is only a pity that its authors
68
+ did not better emphasize how well their analysis fits the subject of the special issue, especially
69
+ 2
70
+
71
+ due to their innovative turn of attention to the so called general probabilistic theories (GPT, cf.
72
+ their compact outline in section 2.3 of [1]).
73
+ Paradoxically, in the GPT context one immediately identifies the second weakness of the paper.
74
+ It lies in a surprisingly short list of the GPT-approach-representing references. In the paper the
75
+ list just incorporates the eight newer papers [5] - [12] (all of them published after the year 2000)
76
+ plus a single older, Foulis-coauthored 1970 paper [13]. Not quite expectedly, the list of references
77
+ does not contain any Gudder’s results – after all, paper [1] is a part of the special issue which is
78
+ explicitly declared to honor his contribution to the field. Thus, one would expect, for example,
79
+ a reference to his later review papers [14, 15] where he formulated one of the key GPT-related
80
+ mathematical theses that “a physical system S under experimental investigation and governed by a
81
+ scientific theory (which may be subject to modification in the light of new experimental evidence)
82
+ is represented by a CB-effect algebra”. An equally unexpected gap in the references also concerns
83
+ the absence of the Foulis’ pioneering, effect-algebras introducing 1994 paper with Bennet [16], or
84
+ his comparatively recent review [17]. Indeed, both of these papers sought and offered operational
85
+ foundations and gained insight into the GPT-motivating relationship between quantum theory
86
+ and classical probability theory (this was emphasized also in [5], etc).
87
+ What is an even worse omission is that the list of references does not contain any other subject-
88
+ related studies like, e.g., paper [18] in which the predecessors of the present authors considered,
89
+ explicitly, the PTQT-GPT relationship, having reconfirmed that “from the standpoint of (gen-
90
+ eralized) effect algebra theory both representations of our quantum system coincide”. Similarly,
91
+ the QHQT-GPT relationship may be found studied in paper [19] in which the mathematically
92
+ fairly advanced analysis incorporated even the fairly realistic quantum models using unbounded
93
+ operators. Indeed, the rate of the progress is striking, especially when one recalls just a few years
94
+ younger report [14] in which the “separable complex Hilbert space” is assumed to be just “of
95
+ dimension 1 or more”.
96
+ 4
97
+ New and promising non-stationary constraints
98
+ At present, it makes sense to accept the fact that in spite of the robust nature of the existing “stan-
99
+ dard” formulations of quantum theory and, in particular, of the quantum mechanics of unitary
100
+ systems, there still exist differences in the practical applicability of their various specific imple-
101
+ mentations. The motivation of the diversity is that ”no [particular] formulation produces a royal
102
+ road to quantum mechanics” [20]. In some sense this implies that the concept of the “extension”
103
+ of the existing quantum theory is vague. The apparently minor technical differences between the
104
+ current alternative formulations of quantum mechanics (as sampled, in [20], on elementary level)
105
+ could happen to lead to “decisive extensions” in the future.
106
+ A good illustrative example can be provided even within the current stationary forms of QHQT.
107
+ Indeed, even in this framework the formalism can really be declared equivalent to its standard
108
+ textbook form. Still, the equivalence can be confirmed only under certain fairly detailed and
109
+ specific mathematical assumptions (cf. [21]). These assumptions are, even in the abstract context
110
+ of functional analysis, far from trivial [22]. Paradoxically, even the popular physical quantum
111
+ models of Bender and Boettcher [2] have been later found not to belong to the “admissible”,
112
+ QHQT-compatible class (see, e.g., [23, 24] for the corresponding subtle details). Thus, in spite
113
+ of their manifest and unbroken PT-symmetry, even these originally proposed benchmark models
114
+ still wait for a “meaningful extension” of their fully consistent GPT interpretation.
115
+ In our third, last addendum we are now prepared to reopen the vague but important question
116
+ 3
117
+
118
+ of what the words of “extension” of the “standard” quantum theory could, or do, really mean.
119
+ On one side, it is known and widely accepted that the various existing formulations of quantum
120
+ theory “differ dramatically in mathematical and conceptual overview, yet each one makes identical
121
+ predictions for all experimental results” [20]. On the other side, such a rigidity of the theory is
122
+ far from satisfactory. For example, a suitable future amendment of quantum theory would be
123
+ necessary for a still absent clarification of the concept of quantum gravity [25].
124
+ For the sake of brevity let us skip here the discussion of the parallel questions concerning
125
+ the PT-symmetric quantum models. This being said we believe that even the QHQT formalism
126
+ itself did not say its last word yet. Indeed, our optimism concerning its potential “theory exten-
127
+ sion status” is based on the recent fundamental clarifications of its scope and structure. First of
128
+ all, it became clear that in the QHQT descriptions of unitary systems it is sufficient to distin-
129
+ guish just between their representations in the “generalized Schr¨odinger picture” (GSP, stationary
130
+ and best presented, by our opinion, in reviews [21, 26] and [3]) and in its non-stationary “non-
131
+ Hermitian interaction picture” alternative (NIP, [27, 28]). Using this terminology one immediately
132
+ reveals that the QHQT-related considerations of paper [1] just cover the GSP approach. In other
133
+ words, the physical inner-product metric (denoted by symbol η) is perceived there as strictly
134
+ time-independent. This means that in the GSP language one can easily identify the (stationary)
135
+ generator G of the evolution of the wave functions with the (“observable-energy”) Hamiltonian H
136
+ (which has real spectrum and is, by assumption, η−quasi-Hermitian).
137
+ The situation becomes different after the extension of the QHQT approach to the non-stationary,
138
+ NIP dynamical regime. In this case we will denote the inner-product metric by another dedicated
139
+ symbol Θ = Θ(t) as introduced in the first description of NIP in [29]. What is important is that
140
+ the observable-energy operator H = H(t) will get split in the sum of the two auxiliary operators
141
+ G(t) and Σ(t). As long as they are both neither observable nor Θ-quasi-Hermitian in general,
142
+ we will exclusively assign the name of the Hamiltonian to the instantaneous energy operator H
143
+ (with real spectrum), adding a word of warning that a different, less consequent terminology is
144
+ often used by some other authors (see, e.g., [30, 31]). Even though neither the spectrum of G(t)
145
+ nor the spectrum of Σ(t) is real in general, the introduction of these operators endows the NIP
146
+ formalism with an additional flexibility, capable, as we believe, of opening the new horizons in the
147
+ contemporary quantum physics: In the context of relativistic quantum mechanics, for example,
148
+ such a hypothetical “theory-extension” possibility has been discussed, in detail, in [27]. For the
149
+ purposes of a potentially new approach to the problem of the unitary-evolution models of quantum
150
+ phase transitions in many-body context, the formalism has slightly been adapted in [32]. Last but
151
+ not least, our very recent paper [28] has been devoted to the possible use of the NIP evolution
152
+ equations in a Wheeler-DeWitt-equation-based schematic model of Big Bang in the context of
153
+ quantum gravity and cosmology. In this spirit, therefore, certain sufficiently realistic NIP-based
154
+ models could easily happen to acquire an “extended quantum mechanics” status, perhaps, in the
155
+ nearest future.
156
+ 5
157
+ Conclusions
158
+ The key subject discussed in paper [1] was the question of the possible extension of the scope of
159
+ quantum theory in general, and of the realization of such an ambitious project, in the respective
160
+ PTQT and QHQT theoretical frameworks, in particular. In our present commentary we reminded
161
+ the readers, marginally, of the existence of several older, comparably sceptical conclusions as
162
+ available in the related literature (see section 2 for details). In section 3 we then added a few
163
+ 4
164
+
165
+ similar broader-context-emphasizing remarks on the mathematical, GPT-related aspects of the
166
+ results of [1]. Still, the core of our present message (as presented in the longest section 4) concerned
167
+ physics. We pointed out that at present, the question of the possible extension of the scope of
168
+ the standard quantum theory should be considered open even in the narrower PTQT and QHQT
169
+ frameworks.
170
+ In support of the latter statement we mentioned that
171
+ • even for the stationary and, apparently, most elementary PTQT potentials (sampled, say, by
172
+ the most popular V (x) = ix3), the widespread initial optimism and intuitive “nothing new”
173
+ understanding of their physical meaning and mathematical background have both recently
174
+ been shattered by their more rigorous mathematical analysis;
175
+ • one can hardly say “nothing new” even in a mathematically much better understood station-
176
+ ary QHQT alias GSP framework where, typically, the use of certain stronger assumptions
177
+ enables one to circumvent the obstacles revealed by rigorous mathematics. Indeed, even in
178
+ the GSP framework one can search for an entirely new physics. Typically, a non-standard
179
+ phenomenology becomes described by the QHQT models in an infinitesimally small vicinity
180
+ of the so called exceptional points: Paper [33] offers an illustrative sample of the quantum
181
+ systems which cannot be described by the standard quantum theory;
182
+ • in fact, our return to optimism and expectation that the QHQT may be a “fundamentally
183
+ innovative” theory found its most explicit formulation in section 4. Briefly we exposed there
184
+ an enormous growth of the flexibility of the QHQT approach after its ultimate non-stationary
185
+ NIP generalization. In some sense, the emphasis put upon the deeply promising conceptual
186
+ nature of such a flexibility can be read as the deepest core of our present comment and
187
+ message.
188
+ Data availability statement
189
+ No new data were created or analysed in this study.
190
+ ORCID iD
191
+ https://orcid.org/0000-0001-6076-0093
192
+ 5
193
+
194
+ References
195
+ [1] Alase A, Karuvade S and Scandolo C M 2022 J. Phys. A: Math. Theor. 55 244003
196
+ [2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 - 5246
197
+ [3] Mostafazadeh A 2010 Int. J. Geom. Methods Mod. Phys. 07 1191 - 1306
198
+ [4] Znojil M 2015 Non-Self-Adjoint Operators in Quantum Physics: Ideas, People, and Trends
199
+ (New York:Wiley) ch 1 pp 7 - 58
200
+ [5] Hardy L 2001 Quantum theory from five reasonable axioms (arXiv:quant-ph/0101012)
201
+ [6] Barrett J 2007 Phys Rev A 75 032304
202
+ [7] Chiribella G, D’Ariano G M and Perinotti P 2010 Phys Rev A 81 062348
203
+ [8] Hardy L 2011 Foliable Operational Structures for General Probabilistic Theories (Cambridge:
204
+ Cambridge University Press) pp 409 - 442
205
+ [9] Barnum H and Wilce A 2011 Electron. Notes Theor. Comput. Sci. 270 3 - 15
206
+ [10] Janotta P and Hinrichsen H 2014 J. Phys. A: Math. Theor. 47 323001
207
+ [11] Barnum H and Wilce A 2016 Post-Classical Probability Theory (Berlin: Springer) pp 367.420
208
+ [12] Scandolo C M 2018 Information-theoretic foundations of thermodynamics in general proba-
209
+ bilistic theories. PhD Thesis, University of Oxford
210
+ [13] Randall C H and Foulis D J 1970 Am Math Mon 77 363 - 374
211
+ [14] Gudder S P 2004 Rep Math Phys 54 93 - 114
212
+ [15] Gudder S P 2006 Demonstratio Math 39 43 - 54
213
+ [16] Foulis D J and Bennett M K 1994 Found Phys 24 1331 - 1352
214
+ [17] Foulis D J 2007 Rep Math Phys 60 329 - 346
215
+ [18] Paseka J 2011 Int J Theor Phys 50 1198 - 1205
216
+ [19] Paseka J, Pulmannova S and Riecanova Z 2013 Int J Theor Phys 52 1994 - 2000
217
+ [20] Styer D F et al 2002 Am J Phys 70 288 - 297
218
+ [21] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann Phys 213 74 - 101
219
+ [22] Dieudonne J 1961 Proc Int Symp Lin Spaces (Pergamon, Oxford, 1961), pp. 115 - 122
220
+ [23] Siegl P and Krejˇciˇr´ık D 2012 Phys Rev D 86 121702(R)
221
+ Krejˇciˇr´ık D, Siegl P, Tater M and Viola J 2015 J Math Phys 56 103513
222
+ 6
223
+
224
+ [24] Guenther U and Frank Stefani F 2019 IR-truncated PT -symmetric ix3 model and its asymp-
225
+ totic spectral scaling graph. arXiv 1901.08526
226
+ Semor´adov´a I and Siegl P 2022 SIAM J. Math. Anal. 54 5064 - 5101
227
+ [25] Rovelli C 2004 Quantum Gravity (Cambridge University Press, Cambridge, UK)
228
+ [26] Bender C M 2007 Rep Prog Phys 70 947 - 1118
229
+ [27] Znojil M 2017 Ann Phys (NY) 385 162 - 179
230
+ [28] Znojil M 2022 Universe 8 385
231
+ [29] Znojil M 2008 Phys Rev D 78 085003
232
+ Znojil M 2009 SIGMA 5 001
233
+ [30] Fring A and Moussa M H Y 2016 Phys Rev A 93 042114
234
+ [31] B´ıla H 2009 e-print arXiv: 0902.0474
235
+ Gong J-B and Wang Q-H 2013 J Phys A Math Theor 46 485302
236
+ Amaouche N, Sekhri M, Zerimeche R, Maamache M and Liang J-Q 2022 eprint:
237
+ arXiv:2207.02477 (quant-ph)
238
+ [32] Bishop R F and Znojil M 2020 Eur Phys J Plus 135 374
239
+ [33] Znojil M 2022 Mathematics 10 3721
240
+ 7
241
+
09AzT4oBgHgl3EQfRfsM/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf,len=143
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
3
+ page_content='01215v1 [quant-ph] 3 Jan 2023 Comment on ’The operational foundations of PT-symmetric and quasi-Hermitian quantum theory’ Miloslav Znojil Nuclear Physics Institute ASCR, Hlavn´ı 130, 250 68 ˇReˇz, Czech Republic e-mail: znojil@ujf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
4
+ page_content='cas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
5
+ page_content='cz Abstract In J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
6
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
7
+ page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
8
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
9
+ page_content=' 55 (2022) 244003, Alase et al wrote that “the constraint of quasi- Hermiticity on observables” is not “sufficient to extend the standard quantum theory” because “such a system is equivalent to a standard quantum system.” Three addenda elucidating the current state of the art are found necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
10
+ page_content=' The first one concerns the project: In the related literature the original “aim of extending standard quantum theory” has already been abandoned shortly after its formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
11
+ page_content=' The second comment concerns the method, viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
12
+ page_content=', the study in “the framework of general probabilistic theories” (GPT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
13
+ page_content=' It is noticed that a few other, mathematically consistent GPT-like theories are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
14
+ page_content=' The authors do not mention, in particular, the progress achieved, under the quasi-Hermiticity constraint, in the approach using the effect algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
15
+ page_content=' We add that this approach already found its advanced realistic applications in the quasi-Hermitian models using the unbounded operators of observables acting in the infinite-dimensional Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
16
+ page_content=' Thirdly, the “intriguing open question” about “what possible constraints, if any, could lead to such a meaningful extension” (in the future) is given an immediate tentative answer: The possibility is advocated that the desirable constraint could really be just the quasi-Hermiticity of the observables, provided only that one has in mind its recently developed non-stationary version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
17
+ page_content=' 1 1 Introduction As a part of issue “Foundational Structures in Quantum Theory” the paper “The operational foundations of PT-symmetric and quasi-Hermitian quantum theory” by Abhijeet Alase, Salini Karuvade and Carlo Maria Scandolo [1] fitted very well the scope of the volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
18
+ page_content=' In a rigorous mathematical style it offered the readers an interesting material confirming the compatibility between the three recent conceptual innovations of quantum theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
19
+ page_content=' Still, we believe that the authors’ coverage of the subject deserves a few addenda, mainly because in loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
20
+ page_content=' cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
21
+ page_content=', the deeply satisfactory nature of the mathematical analysis seems to be accompanied by a perceivably less careful presentation of its implications in the context of the theoretical quantum physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
22
+ page_content=' 2 The absence of extensions of standard quantum theory Our first addendum is motivated by the last sentence of the abstract in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
23
+ page_content=' It states that “our results show that neither PT-symmetry nor quasi-Hermiticity constraints are sufficient to extend standard quantum theory consistently”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
24
+ page_content=' Indeed, it is rather unfortunate that this statement diverts attention from the very interesting main mathematical message of the paper (viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
25
+ page_content=' from the rigorous confirmation of compatibility between the three alternative versions of quantum theory) to its much less satisfactory physical contextualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
26
+ page_content=' The impression is further strengthened by the last paragraph of the whole text where we read that “in conclusion, neither PT-symmetry nor quasi-Hermiticity of observables leads to an extension of standard quantum mechanics.” Certainly, non-specialists could be mislead to interpret such a conclusion wrongly, as a disproof of usefulness of what is usually called PT-symmetric quantum theory (PTQT, an approach which is briefly reviewed in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
27
+ page_content='1 of loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
28
+ page_content=' cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
29
+ page_content=') or of the so called quasi-Hermitian quantum theory (QHQT, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
30
+ page_content=' its compact review in the subsequent section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
31
+ page_content='2 of loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
32
+ page_content=' cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
33
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
34
+ page_content=' The misunderstanding seems completed by the combination of the very first sentence of the abstract with the very last sentence of the text: At the beginning of the Abstract we are told that “PT-symmetric quantum theory was originally proposed with the aim of extending standard quantum theory” (which is not too relevant at present), while the final question reads “what possible constraints, if any, could lead to such a meaningful extension” [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
35
+ page_content=' The main weakness of such a “theory-extension” motivation and of the “physical” framing of paper [1] is that the original purpose of “relaxing the Hermiticity constraint on Hamiltonians” (as proposed, by Bender with Boettcher, in their enormously influential letter [2]) was almost immediately shown overambitious and unfulfilled (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
36
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
37
+ page_content=', the Mostafazadeh’s 2010 very mathe- matical and detailed criticism and explanation “that neither PT-symmetry nor quasi-Hermiticity constraints are sufficient to extend standard quantum theory” [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
38
+ page_content=' Thus, the authors of [1] only come with their “aim to answer the question of whether a consistent physical theory with PT- symmetric observables extends standard quantum theory” too late.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
39
+ page_content=' For more than twelve years the answer is known to be negative [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
40
+ page_content=' 3 A comment on the method Naturally, nobody claims that the PTQT itself is not useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
41
+ page_content=' Nobody could also deny the relevance and the novelty of the mathematical results presented in paper [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
42
+ page_content=' It is only a pity that its authors did not better emphasize how well their analysis fits the subject of the special issue, especially 2 due to their innovative turn of attention to the so called general probabilistic theories (GPT, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
43
+ page_content=' their compact outline in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
44
+ page_content='3 of [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
45
+ page_content=' Paradoxically, in the GPT context one immediately identifies the second weakness of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
46
+ page_content=' It lies in a surprisingly short list of the GPT-approach-representing references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
47
+ page_content=' In the paper the list just incorporates the eight newer papers [5] - [12] (all of them published after the year 2000) plus a single older, Foulis-coauthored 1970 paper [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
48
+ page_content=' Not quite expectedly, the list of references does not contain any Gudder’s results – after all, paper [1] is a part of the special issue which is explicitly declared to honor his contribution to the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
49
+ page_content=' Thus, one would expect, for example, a reference to his later review papers [14, 15] where he formulated one of the key GPT-related mathematical theses that “a physical system S under experimental investigation and governed by a scientific theory (which may be subject to modification in the light of new experimental evidence) is represented by a CB-effect algebra”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
50
+ page_content=' An equally unexpected gap in the references also concerns the absence of the Foulis’ pioneering, effect-algebras introducing 1994 paper with Bennet [16], or his comparatively recent review [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
51
+ page_content=' Indeed, both of these papers sought and offered operational foundations and gained insight into the GPT-motivating relationship between quantum theory and classical probability theory (this was emphasized also in [5], etc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
52
+ page_content=' What is an even worse omission is that the list of references does not contain any other subject- related studies like, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
53
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
54
+ page_content=', paper [18] in which the predecessors of the present authors considered, explicitly, the PTQT-GPT relationship, having reconfirmed that “from the standpoint of (gen- eralized) effect algebra theory both representations of our quantum system coincide”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
55
+ page_content=' Similarly, the QHQT-GPT relationship may be found studied in paper [19] in which the mathematically fairly advanced analysis incorporated even the fairly realistic quantum models using unbounded operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
56
+ page_content=' Indeed, the rate of the progress is striking, especially when one recalls just a few years younger report [14] in which the “separable complex Hilbert space” is assumed to be just “of dimension 1 or more”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
57
+ page_content=' 4 New and promising non-stationary constraints At present, it makes sense to accept the fact that in spite of the robust nature of the existing “stan- dard” formulations of quantum theory and, in particular, of the quantum mechanics of unitary systems, there still exist differences in the practical applicability of their various specific imple- mentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
58
+ page_content=' The motivation of the diversity is that ”no [particular] formulation produces a royal road to quantum mechanics” [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
59
+ page_content=' In some sense this implies that the concept of the “extension” of the existing quantum theory is vague.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
60
+ page_content=' The apparently minor technical differences between the current alternative formulations of quantum mechanics (as sampled, in [20], on elementary level) could happen to lead to “decisive extensions” in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
61
+ page_content=' A good illustrative example can be provided even within the current stationary forms of QHQT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
62
+ page_content=' Indeed, even in this framework the formalism can really be declared equivalent to its standard textbook form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
63
+ page_content=' Still, the equivalence can be confirmed only under certain fairly detailed and specific mathematical assumptions (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
64
+ page_content=' [21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
65
+ page_content=' These assumptions are, even in the abstract context of functional analysis, far from trivial [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
66
+ page_content=' Paradoxically, even the popular physical quantum models of Bender and Boettcher [2] have been later found not to belong to the “admissible”, QHQT-compatible class (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
67
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
68
+ page_content=', [23, 24] for the corresponding subtle details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
69
+ page_content=' Thus, in spite of their manifest and unbroken PT-symmetry, even these originally proposed benchmark models still wait for a “meaningful extension” of their fully consistent GPT interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
70
+ page_content=' In our third, last addendum we are now prepared to reopen the vague but important question 3 of what the words of “extension” of the “standard” quantum theory could, or do, really mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
71
+ page_content=' On one side, it is known and widely accepted that the various existing formulations of quantum theory “differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results” [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
72
+ page_content=' On the other side, such a rigidity of the theory is far from satisfactory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
73
+ page_content=' For example, a suitable future amendment of quantum theory would be necessary for a still absent clarification of the concept of quantum gravity [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
74
+ page_content=' For the sake of brevity let us skip here the discussion of the parallel questions concerning the PT-symmetric quantum models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
75
+ page_content=' This being said we believe that even the QHQT formalism itself did not say its last word yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
76
+ page_content=' Indeed, our optimism concerning its potential “theory exten- sion status” is based on the recent fundamental clarifications of its scope and structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
77
+ page_content=' First of all, it became clear that in the QHQT descriptions of unitary systems it is sufficient to distin- guish just between their representations in the “generalized Schr¨odinger picture” (GSP, stationary and best presented, by our opinion, in reviews [21, 26] and [3]) and in its non-stationary “non- Hermitian interaction picture” alternative (NIP, [27, 28]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
78
+ page_content=' Using this terminology one immediately reveals that the QHQT-related considerations of paper [1] just cover the GSP approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
79
+ page_content=' In other words, the physical inner-product metric (denoted by symbol η) is perceived there as strictly time-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
80
+ page_content=' This means that in the GSP language one can easily identify the (stationary) generator G of the evolution of the wave functions with the (“observable-energy”) Hamiltonian H (which has real spectrum and is, by assumption, η−quasi-Hermitian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
81
+ page_content=' The situation becomes different after the extension of the QHQT approach to the non-stationary, NIP dynamical regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
82
+ page_content=' In this case we will denote the inner-product metric by another dedicated symbol Θ = Θ(t) as introduced in the first description of NIP in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
83
+ page_content=' What is important is that the observable-energy operator H = H(t) will get split in the sum of the two auxiliary operators G(t) and Σ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
84
+ page_content=' As long as they are both neither observable nor Θ-quasi-Hermitian in general, we will exclusively assign the name of the Hamiltonian to the instantaneous energy operator H (with real spectrum), adding a word of warning that a different, less consequent terminology is often used by some other authors (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
85
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
86
+ page_content=', [30, 31]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
87
+ page_content=' Even though neither the spectrum of G(t) nor the spectrum of Σ(t) is real in general, the introduction of these operators endows the NIP formalism with an additional flexibility, capable, as we believe, of opening the new horizons in the contemporary quantum physics: In the context of relativistic quantum mechanics, for example, such a hypothetical “theory-extension” possibility has been discussed, in detail, in [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
88
+ page_content=' For the purposes of a potentially new approach to the problem of the unitary-evolution models of quantum phase transitions in many-body context, the formalism has slightly been adapted in [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
89
+ page_content=' Last but not least, our very recent paper [28] has been devoted to the possible use of the NIP evolution equations in a Wheeler-DeWitt-equation-based schematic model of Big Bang in the context of quantum gravity and cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
90
+ page_content=' In this spirit, therefore, certain sufficiently realistic NIP-based models could easily happen to acquire an “extended quantum mechanics” status, perhaps, in the nearest future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
91
+ page_content=' 5 Conclusions The key subject discussed in paper [1] was the question of the possible extension of the scope of quantum theory in general, and of the realization of such an ambitious project, in the respective PTQT and QHQT theoretical frameworks, in particular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
92
+ page_content=' In our present commentary we reminded the readers, marginally, of the existence of several older, comparably sceptical conclusions as available in the related literature (see section 2 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
93
+ page_content=' In section 3 we then added a few 4 similar broader-context-emphasizing remarks on the mathematical, GPT-related aspects of the results of [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
94
+ page_content=' Still, the core of our present message (as presented in the longest section 4) concerned physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
95
+ page_content=' We pointed out that at present, the question of the possible extension of the scope of the standard quantum theory should be considered open even in the narrower PTQT and QHQT frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
96
+ page_content=' In support of the latter statement we mentioned that even for the stationary and, apparently, most elementary PTQT potentials (sampled, say, by the most popular V (x) = ix3), the widespread initial optimism and intuitive “nothing new” understanding of their physical meaning and mathematical background have both recently been shattered by their more rigorous mathematical analysis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
97
+ page_content=' one can hardly say “nothing new” even in a mathematically much better understood station- ary QHQT alias GSP framework where, typically, the use of certain stronger assumptions enables one to circumvent the obstacles revealed by rigorous mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
98
+ page_content=' Indeed, even in the GSP framework one can search for an entirely new physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
99
+ page_content=' Typically, a non-standard phenomenology becomes described by the QHQT models in an infinitesimally small vicinity of the so called exceptional points: Paper [33] offers an illustrative sample of the quantum systems which cannot be described by the standard quantum theory;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
100
+ page_content=' in fact, our return to optimism and expectation that the QHQT may be a “fundamentally innovative” theory found its most explicit formulation in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
101
+ page_content=' Briefly we exposed there an enormous growth of the flexibility of the QHQT approach after its ultimate non-stationary NIP generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
102
+ page_content=' In some sense, the emphasis put upon the deeply promising conceptual nature of such a flexibility can be read as the deepest core of our present comment and message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
103
+ page_content=' Data availability statement No new data were created or analysed in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
104
+ page_content=' ORCID iD https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
105
+ page_content='org/0000-0001-6076-0093 5 References [1] Alase A, Karuvade S and Scandolo C M 2022 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
106
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
107
+ page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
108
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
109
+ page_content=' 55 244003 [2] Bender C M and Boettcher S 1998 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
110
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
111
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
112
+ page_content=' 80 5243 - 5246 [3] Mostafazadeh A 2010 Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
113
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
114
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
115
+ page_content=' Methods Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
116
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
117
+ page_content=' 07 1191 - 1306 [4] Znojil M 2015 Non-Self-Adjoint Operators in Quantum Physics: Ideas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
118
+ page_content=' People,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
119
+ page_content=' and Trends (New York:Wiley) ch 1 pp 7 - 58 [5] Hardy L 2001 Quantum theory from five reasonable axioms (arXiv:quant-ph/0101012) [6] Barrett J 2007 Phys Rev A 75 032304 [7] Chiribella G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
120
+ page_content=' D’Ariano G M and Perinotti P 2010 Phys Rev A 81 062348 [8] Hardy L 2011 Foliable Operational Structures for General Probabilistic Theories (Cambridge: Cambridge University Press) pp 409 - 442 [9] Barnum H and Wilce A 2011 Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
121
+ page_content=' Notes Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
122
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
123
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
124
+ page_content=' 270 3 - 15 [10] Janotta P and Hinrichsen H 2014 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
125
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
126
+ page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
127
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
128
+ page_content=' 47 323001 [11] Barnum H and Wilce A 2016 Post-Classical Probability Theory (Berlin: Springer) pp 367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
129
+ page_content='420 [12] Scandolo C M 2018 Information-theoretic foundations of thermodynamics in general proba- bilistic theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
130
+ page_content=' PhD Thesis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
131
+ page_content=' University of Oxford [13] Randall C H and Foulis D J 1970 Am Math Mon 77 363 - 374 [14] Gudder S P 2004 Rep Math Phys 54 93 - 114 [15] Gudder S P 2006 Demonstratio Math 39 43 - 54 [16] Foulis D J and Bennett M K 1994 Found Phys 24 1331 - 1352 [17] Foulis D J 2007 Rep Math Phys 60 329 - 346 [18] Paseka J 2011 Int J Theor Phys 50 1198 - 1205 [19] Paseka J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
132
+ page_content=' Pulmannova S and Riecanova Z 2013 Int J Theor Phys 52 1994 - 2000 [20] Styer D F et al 2002 Am J Phys 70 288 - 297 [21] Scholtz F G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
133
+ page_content=' Geyer H B and Hahne F J W 1992 Ann Phys 213 74 - 101 [22] Dieudonne J 1961 Proc Int Symp Lin Spaces (Pergamon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
134
+ page_content=' Oxford,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
135
+ page_content=' 1961),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
136
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
137
+ page_content=' 115 - 122 [23] Siegl P and Krejˇciˇr´ık D 2012 Phys Rev D 86 121702(R) Krejˇciˇr´ık D, Siegl P, Tater M and Viola J 2015 J Math Phys 56 103513 6 [24] Guenther U and Frank Stefani F 2019 IR-truncated PT -symmetric ix3 model and its asymp- totic spectral scaling graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
138
+ page_content=' arXiv 1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
139
+ page_content='08526 Semor´adov´a I and Siegl P 2022 SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
140
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
141
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
142
+ page_content=' 54 5064 - 5101 [25] Rovelli C 2004 Quantum Gravity (Cambridge University Press, Cambridge, UK) [26] Bender C M 2007 Rep Prog Phys 70 947 - 1118 [27] Znojil M 2017 Ann Phys (NY) 385 162 - 179 [28] Znojil M 2022 Universe 8 385 [29] Znojil M 2008 Phys Rev D 78 085003 Znojil M 2009 SIGMA 5 001 [30] Fring A and Moussa M H Y 2016 Phys Rev A 93 042114 [31] B´ıla H 2009 e-print arXiv: 0902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
143
+ page_content='0474 Gong J-B and Wang Q-H 2013 J Phys A Math Theor 46 485302 Amaouche N, Sekhri M, Zerimeche R, Maamache M and Liang J-Q 2022 eprint: arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
144
+ page_content='02477 (quant-ph) [32] Bishop R F and Znojil M 2020 Eur Phys J Plus 135 374 [33] Znojil M 2022 Mathematics 10 3721 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09AzT4oBgHgl3EQfRfsM/content/2301.01215v1.pdf'}
29FIT4oBgHgl3EQf5SvC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca2d915f19303542eaa6cd7adedbc7854c2ddb7d2ab92fc7f90a62d34baaa7e7
3
+ size 153492
2NE2T4oBgHgl3EQf5ggG/content/tmp_files/2301.04190v1.pdf.txt ADDED
@@ -0,0 +1,2677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04190v1 [math.DG] 10 Jan 2023
2
+ NOTES ON HARMONIC MAPS
3
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
4
+ This is set of notes prepared for the Summer School on non-Abelian Hodge theory
5
+ in Abbaye de Saint-Jacut de la Mer June, 6-19, 2022.
6
+ Table of Contents
7
+ Lecture 1: Harmonic Maps Between Riemannian Manifolds
8
+ p. 2
9
+ Lecture 2: Existence and regularity
10
+ p. 9
11
+ Lecture 3: Pluriharmonic Maps and the Siu-Sampson Formula p. 16
12
+ Lecture 4: Donaldson Corlette Theorem
13
+ p. 30
14
+ Date: June 2022.
15
+ GD supported in part by NSF DMS-2105226, CM supported in part by NSF DMS-2005406. We
16
+ would like to thank Yitong Sun for carefully reading this document and making useful suggestions to
17
+ improve the exposition of this paper.
18
+ 1
19
+
20
+ 2
21
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
22
+ 1. Harmonic Maps Between Riemannian manifolds
23
+ 1.1. Introduction: Basics. In this section, we define energy of maps between Rie-
24
+ mannian manifolds, harmonic maps, and the first and second variation formulas after
25
+ the pioneering work of Eells-Sampson [ES]. A good reference is also [J].
26
+ 1.2. The energy of maps. Let (M, g), (N, h) be Riemannian manifolds. Let f :
27
+ M → N be a smooth map which induces a map df : TM → TN
28
+ df
29
+ � ∂
30
+ ∂xα
31
+ � ����
32
+ p
33
+ = ∂f i
34
+ ∂xα
35
+
36
+ ∂yi
37
+ ����
38
+ f(p)
39
+ where (xα) (resp. (yi)) are the local coordinates of M (resp. N).
40
+ The map f also induces a vector bundle f ∗TN over M. Let ∇ be a connection on
41
+ f ∗TN inherited from the Levi-Civita connection on TN. Then ∇ induces an exterior
42
+ derivative
43
+ d∇ : C∞((ΛpT ∗M) ⊗ f ∗TN) → C∞((Λp+1T ∗M) ⊗ f ∗TN).
44
+ We view df as a section
45
+ df ∈ C∞(T ∗M ⊗ f ∗TN) = Ω1(f ∗TN).
46
+ Using the notation
47
+
48
+ ∂f i := ∂
49
+ ∂yi ◦ f ∈ C∞
50
+ loc(M, f ∗TN),
51
+ we have
52
+ df = ∂f i
53
+ ∂xα dxα ⊗ ∂
54
+ ∂f i .
55
+ Let (gαβ) (resp. (hij)) be the expression of the Riemannian metric g of M (resp. h
56
+ of N) with respect to local coordinates (xα) (resp. (yi)).
57
+ Definition 1.1. Set
58
+ e(f) := 1
59
+ 2|df|2 = 1
60
+ 2
61
+ ∂f i
62
+ ∂xα
63
+ ∂f j
64
+ ∂xβ gαβhij ◦ f.
65
+ The energy of f is
66
+ E(f) :=
67
+
68
+ M
69
+ e(f) ⋆ 1 = 1
70
+ 2
71
+
72
+ M
73
+ gαβ(x)hij(f(x)) ∂f i
74
+ ∂xα
75
+ ∂f j
76
+ ∂xβ
77
+
78
+ g(x) dx1 ∧ · · · ∧ dxn.
79
+ Here, recall that the Hodge star operator ⋆ : ΛkTM → Λn−kTM, is the unique linear
80
+ operator such that for all α, β ∈ ΛkV ,
81
+ α ∧ ⋆β = g(α, β) ⋆ 1.
82
+
83
+ NOTES ON HARMONIC MAPS
84
+ 3
85
+ Lemma 1.2. Let f = (ft) be a smooth one-parameter family of C∞ maps
86
+ f : M × (−ǫ, ǫ) → N,
87
+ f(x, t) = ft(x).
88
+ Then
89
+ ∇∂f
90
+ ∂t = ∇∂/∂tdf
91
+ where f = ft and
92
+ ∂f
93
+ ∂t = ∂f i
94
+ ∂t
95
+
96
+ ∂f i ∈ C∞(f ∗TN).
97
+ Proof. Both ∇ ∂f
98
+ ∂t = ∇∂/∂xα ∂f
99
+ ∂t dxα and ∇∂/∂tdf = ∇∂/∂t
100
+ ∂f
101
+ ∂xαdxα are 1-forms with values
102
+ in f ∗TN. Here,
103
+ ∂f
104
+ ∂xα = ∂f j
105
+ ∂xα
106
+
107
+ ∂f j ∈ C∞(f ∗TN).
108
+ Consider f as a map f : M × (−ǫ, ǫ) → N. Since
109
+
110
+ f∗
111
+ � ∂
112
+ ∂t
113
+
114
+ , f∗
115
+ � ∂
116
+ ∂xα
117
+ ��
118
+ = f∗
119
+ � ∂
120
+ ∂t,
121
+
122
+ ∂xα
123
+
124
+ = 0
125
+ and ∇ is torsion-free,
126
+ ∇∂/∂xα ∂f
127
+ ∂t =
128
+
129
+ ∇f∗(
130
+
131
+ ∂xα)f∗
132
+ � ∂
133
+ ∂t
134
+ ��
135
+ ◦ f =
136
+
137
+ ∇f∗( ∂f
138
+ ∂t )f∗
139
+ � ∂
140
+ ∂xα
141
+ ��
142
+ ◦ f = ∇∂/∂tdf( ∂
143
+ ∂xα)
144
+ which proves the equality.
145
+
146
+ Corollary 1.3 (First Variation Formula). For (ft) as above,
147
+ d
148
+ dtE(ft) =
149
+
150
+ M
151
+
152
+ ∇∂f
153
+ ∂t , df
154
+
155
+ ⋆ 1.
156
+ Proof. We compute
157
+ d
158
+ dtE(ft) = 1
159
+ 2
160
+
161
+ M
162
+ d
163
+ dt ⟨df, df⟩ ⋆ 1
164
+ =
165
+
166
+ M
167
+
168
+ ∇∂/∂tdf, df
169
+
170
+ ⋆ 1
171
+ =
172
+
173
+ M
174
+
175
+ ∇∂f
176
+ ∂t , df
177
+
178
+ ⋆ 1.
179
+
180
+ Corollary 1.4. The critical points f of the functional E satisfy
181
+
182
+ M
183
+ ⟨∇ψ, df⟩ ⋆ 1 = 0,
184
+ ∀ψ ∈ C∞(f ∗TN).
185
+ (1.1)
186
+ By taking ψ compactly supported away from ∂M, we obtain the Euler Lagrange equation
187
+ of E,
188
+ τ(f) := −d⋆
189
+ ∇df = ⋆d∇ ⋆ df = 0.
190
+ (1.2)
191
+
192
+ 4
193
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
194
+ Here, ∇ is the pullback of the Levi-Civita connection on f ∗(TN).
195
+ Proof. Let ft be a family of maps with
196
+ d
197
+ dt
198
+ ����
199
+ t=0
200
+ ft = ψ ∈ C∞(f ∗TN).
201
+ Taking ψ compactly supported and integrating by parts,
202
+ d
203
+ dt
204
+ ����
205
+ t=0
206
+ E(ft) =
207
+
208
+ M
209
+ ⟨ψ, −τf⟩ ⋆ 1 = 0
210
+ which holds for every ψ ∈ C∞
211
+ c (f ∗TM) iff τf = 0.
212
+
213
+ Definition 1.5. A smooth map f : M → N satisfying d⋆
214
+ ∇df = 0 is called a harmonic
215
+ map.
216
+ 1.3. Harmonic map equations in local coordinates. First define
217
+ ω
218
+ � ∂
219
+ ∂yi
220
+
221
+ := Γi
222
+ jkdyk ⊗ ∂
223
+ ∂yj ,
224
+ where Γi
225
+ jk are Christoffel symbols on N and set
226
+ ˜ω := ω ◦ f =
227
+
228
+ Γk
229
+ ijdyk ⊗ ∂
230
+ ∂yj
231
+
232
+ ◦ f = (Γj
233
+ ik ◦ f)∂f k
234
+ ∂xβ dxβ ⊗ ∂
235
+ ∂f j .
236
+ Then d∇ = d + ˜ω and
237
+ d⋆
238
+ ∇df = − ⋆ d∇ ⋆ df
239
+ = − ⋆ (d + ˜ω)
240
+
241
+ ⋆df i ⊗ ∂
242
+ ∂f i
243
+
244
+ = −(⋆d ⋆ df i) ∂
245
+ ∂f i − (−1)m−1 ⋆
246
+
247
+ ⋆df i ⊗ ˜ω
248
+ � ∂
249
+ ∂f i
250
+ ��
251
+ = −∆f i
252
+
253
+ ∂f i − (−1)m−1 ⋆
254
+ � ∂f i
255
+ ∂xα ⋆ dxα ∧ (Γj
256
+ ik ◦ f)∂f k
257
+ ∂xβ dxβ ⊗ ∂
258
+ ∂f j
259
+
260
+ = −∆f i
261
+
262
+ ∂f i − (−1)m−1
263
+ � ∂f i
264
+ ∂xα
265
+ ∂f k
266
+ ∂xβ Γj
267
+ ik ◦ f ��� (⋆dxα ∧ dxβ) ⊗
268
+
269
+ ∂f j
270
+
271
+ = −
272
+
273
+ ∆f k + gαβ ∂f i
274
+ ∂xα
275
+ ∂f j
276
+ ∂xβ Γk
277
+ ij ◦ f
278
+ � ∂
279
+ ∂f k .
280
+ Thus the harmonic map equation is
281
+ ∆f k + gαβ ∂f i
282
+ ∂xα
283
+ ∂f j
284
+ ∂xβ Γk
285
+ ij ◦ f = 0.
286
+ (1.3)
287
+ Examples 1.6.
288
+ (1) Suppose N = R, then the harmonic map equation reduces to ∆f = 0; i.e. f is a
289
+ harmonic function on M.
290
+
291
+ NOTES ON HARMONIC MAPS
292
+ 5
293
+ (2) Suppose M = S1. Then
294
+ E(f) = 1
295
+ 2
296
+ � 2π
297
+ 0
298
+ | ˙f(t)|dt
299
+ and the critical points of E(f) are geodesics. We can also see this from the harmonic
300
+ maps equation. Since S1 is 1-dimensional we can take gαβ = δαβ. Then
301
+ ∂2f k
302
+ ∂t2 + Γk
303
+ ij
304
+ ∂f i
305
+ ∂xα
306
+ ∂f j
307
+ ∂xβ = 0.
308
+ This is the geodesic equation.
309
+ (3) We’ll show later that holomorphic maps between K¨ahler manifolds are harmonic
310
+ (cf. Remark 3.3).
311
+ 1.4. The Dirichlet and Neumann problems. If M has non-empty boundary (N
312
+ is without boundary) there are two different boundary value problems to consider:
313
+ • Dirichlet problem: Minimize E in a fixed homotopy class of maps from M to
314
+ N relative to the boundary of M. This is equivalent to considering compactly
315
+ supported variations ψ.
316
+ • Neumann problem: Minimize E in a fixed free homotopy class of maps from
317
+ M to N, in other words no restriction on the type of variations.
318
+ 1.5. The second variation. The Riemannian tensor
319
+ RN : TN × TN × TN → TN
320
+ induces and operator
321
+ RN : f ∗TN × f ∗TN × f ∗TN → f ∗TN
322
+ in the natural way.
323
+ Lemma 1.7. Let ft : M → N, and let V be a vector field along ft. Then
324
+ ∇∂/∂t∇V = ∇∇∂/∂tV − RN
325
+
326
+ df, ∂f
327
+ ∂t
328
+
329
+ V.
330
+ Proof. Both
331
+ ∇∂/∂t∇V − ∇∇∂/∂tV
332
+ =
333
+
334
+ ∇∂/∂t∇∂/∂xαV − ∇∂/∂xα∇∂/∂tV
335
+
336
+ dxα
337
+ =
338
+ ��
339
+ ∇f∗(∂/∂t)∇f∗(∂/∂xα)V − ∇f∗(∂/∂xα)∇f∗(∂/∂t)
340
+
341
+ f∗V
342
+
343
+ ◦ f dxα
344
+ and
345
+ RN
346
+
347
+ df, ∂f
348
+ ∂t
349
+
350
+ V =
351
+
352
+ RN
353
+
354
+ f∗
355
+ � ∂
356
+ ∂xα
357
+
358
+ , f∗
359
+ � ∂
360
+ ∂t
361
+ ��
362
+ f∗(V )
363
+
364
+ ◦ f dxα
365
+ are 1−forms on M with values in f ∗TN. Thus, assertion follows from the definition
366
+ of the Riemannian tensor RN.
367
+
368
+
369
+ 6
370
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
371
+ Theorem 1.8 (Second Variation Formula). One has
372
+ d2
373
+ dt2E(ft) = ||∇∂f
374
+ ∂t ||2 −
375
+
376
+ M
377
+
378
+ RN
379
+
380
+ df, ∂f
381
+ ∂t
382
+ � ∂f
383
+ ∂t , df
384
+
385
+ ⋆ 1 +
386
+
387
+ M
388
+
389
+ ∇∂/∂t
390
+ ∂f
391
+ ∂t , τf
392
+
393
+ ⋆ 1.
394
+ Proof. We compute
395
+ d2
396
+ dt2E(ft) =
397
+
398
+ M
399
+ d
400
+ dt
401
+
402
+ ∇∂f
403
+ ∂t , df
404
+
405
+ ⋆ 1
406
+ =
407
+
408
+ M
409
+ ��
410
+ ∇∂/∂t∇∂f
411
+ ∂t , df
412
+
413
+ +
414
+
415
+ ∇∂f
416
+ ∂t , ∇∂/∂tdf
417
+ ��
418
+ ⋆ 1
419
+ =
420
+
421
+ M
422
+ ��
423
+ ∇∇∂/∂t
424
+ ∂f
425
+ ∂t , df
426
+
427
+
428
+
429
+ RN
430
+
431
+ df, ∂f
432
+ ∂t
433
+ � ∂f
434
+ ∂t , df
435
+
436
+ + ||∇∂f
437
+ ∂t ||2
438
+
439
+ ⋆ 1.
440
+
441
+ 2. Existence and regularity
442
+ 2.1. Introduction: Non-positive curvature. In this section, we examine the role
443
+ of non-positive curvature of the target metric on harmonic maps. We show uniqueness
444
+ and discuss regularity. We also study the equivariant problem and prove existence of
445
+ equivariant harmonic maps into non-positively curved metric spaces. Some references
446
+ are [S], [KS1], [KS2] and [GS].
447
+ 2.2. Second variation formula and non-positive curvature. The following are
448
+ corollaries of Theorem 1.8.
449
+ Corollary 2.1. If N has ≤ 0 sectional curvature and ft is a geodesic interpolation,
450
+ then E(ft) is convex.
451
+ Proof. In the second variation formula the last term vanishes and the others are ≥
452
+ 0.
453
+
454
+ Corollary 2.2. Let f, φ : M → N be homotopic with f|∂M = φ|∂M. If N has ≤ 0
455
+ sectional curvature and f is harmonic, then
456
+ E(f) ≤ E(φ).
457
+ Proof. Let ft be a geodesic homotopy between f, φ, thus f0 = f, f1 = φ.
458
+ Then
459
+ E(t) = E(ft) is convex, and E′(0) = 0. So E(1) ≥ E(0), hence E(φ) ≥ E(f).
460
+
461
+ Corollary 2.3. If f0, f1 : M → N are homotopic harmonic maps with f0|∂M = f1|∂M
462
+ and N has ≤ 0 sectional curvature, then:
463
+ (1) If ∂M is nonempty, then f0 = f1.
464
+ (2) If ∂M is empty, F is a geodesic homotopy between f0, f1 and N has sectional
465
+ curvature < 0 at one point p in the image of F, then either f0 = f1 or the rank
466
+ of f0 is ≤ 1.
467
+
468
+ NOTES ON HARMONIC MAPS
469
+ 7
470
+ Proof. (1) Let ft be a geodesic homotopy between f0, f1, E(t) = E(ft). Then E is
471
+ convex. Since E′(0) = E′(1) = 0, we conclude E′(t) = 0 = E′′(t). By Theorem 1.8,
472
+ ∇∂F
473
+ ∂t = 0
474
+ and
475
+
476
+ RN
477
+
478
+ df, ∂f
479
+ ∂t
480
+ � ∂f
481
+ ∂t , df
482
+
483
+ = 0.
484
+ Thus,
485
+
486
+ ∂xα||∂F
487
+ ∂t ||2 = 2
488
+
489
+ ∇∂/∂xα ∂F
490
+ ∂t , ∂F
491
+ ∂t
492
+
493
+ = 0
494
+ which implies that ||∂F/∂t|| is constant.
495
+ But ∂F/∂t = 0 on ∂M, so ∂F/∂t = 0
496
+ everywhere if ∂M is nonempty and hence f0 = f1.
497
+ (2) If ||∂F/∂t|| = 0, then f0 = f1. Otherwise, ∂F/∂t ̸= 0 for every x, t. The negative
498
+ sectional curvature at p implies df is parallel to ∂F/∂t at p and therefore everywhere.
499
+ Thus, the image of df has dimension ≤ 1.
500
+
501
+ 2.3. The Weitzenb¨ock formula.
502
+ Theorem 2.4. Let f : M → N be a harmonic map and (eα) an orthonormal frame
503
+ for TM. Then
504
+ ∆e(f) = |∇df|2 + 1
505
+ 2
506
+
507
+ df(RicM(eα)), df(eα)
508
+
509
+ − 1
510
+ 2
511
+
512
+ RN(df(eα), df(eβ))df(eβ), df(eα)
513
+
514
+ .
515
+ Proof. Expanding out the Laplacian with respect to local coordinates, the harmonic
516
+ map equation (1.3) is
517
+ gαβf i
518
+ /αβ − gαβ MΓη
519
+ αβf i
520
+ /η + gαβ NΓi
521
+ kℓ ◦ ff k
522
+ /αf ℓ
523
+ /β = 0.
524
+ We use normal coordinates at x ∈ M and f(x) = y. Thus, the metric tensors (gαβ)
525
+ and (hij) are Euclidean up to first order at x and y respectively. Differentiating,
526
+ f i
527
+ /ααε = MΓη
528
+ αα/εf i
529
+ /η − NΓi
530
+ kℓ/mf m
531
+ /εf k
532
+ /αf ℓ
533
+
534
+ = 1
535
+ 2(gαη/αε + gαη/αε − gαα/ηε)f i
536
+
537
+ − 1
538
+ 2(hki/ℓm + hℓi/km − hkℓ/im)f m
539
+ /εf k
540
+ /αf ℓ
541
+ /α.
542
+ Furthermore,
543
+ gαβ
544
+ /ǫǫ = −gαβ/ǫǫ
545
+ and
546
+ △hij(f(x)) = hij/klf k
547
+ /ǫf k
548
+ /ǫ.
549
+
550
+ 8
551
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
552
+ Thus,
553
+
554
+ �1
555
+ 2gαβhij ◦ ff i
556
+ /αf j
557
+
558
+
559
+ =
560
+ 1
561
+ √g
562
+
563
+ ∂xσ
564
+ �√ggστ ∂
565
+ ∂xτ
566
+ �1
567
+ 2gαβhij ◦ ff i
568
+ /αf j
569
+
570
+ ��
571
+ = f i
572
+ /ασf i
573
+ /ασ − 1
574
+ 2(gαβ/σσ + gσσ/αβ − gσα/σβ − gσα/σβ)f i
575
+ /αf i
576
+
577
+ + 1
578
+ 2(hij/kℓ + hkℓ/ji − hik/jℓ − hjℓ/ik)f i
579
+ /αf j
580
+ /αf k
581
+ /σf ℓ
582
+
583
+ = f i
584
+ /ασf i
585
+ /ασ + 1
586
+ 2RicM
587
+ αβf i
588
+ /αf j
589
+ /β − 1
590
+ 2RN
591
+ ikjℓf i
592
+ /αf j
593
+ /αf k
594
+ /σf ℓ
595
+ /σ.
596
+
597
+ Here,
598
+ RicM
599
+ αβ = gδǫRM
600
+ αδβǫ
601
+ is the Ricci tensor.
602
+ 2.4. Regularity. Assume N has ≤ 0 sectional curvature. Then from the Weitzenb¨ock
603
+ formula,
604
+ ∆e(f) ≥ −Ce(f)
605
+ (2.1)
606
+ where C depends only on the geometry of M.
607
+ Theorem 2.5. If f : M → N is harmonic, and N has ≤ 0 sectional curvature, then
608
+ |f|C2+α
609
+ loc ≤ c
610
+ where c > 0 depends on E(f) and the geometries of M, N.
611
+ Proof. By (2.1) and Moser iteration,
612
+ sup
613
+ Br(p)
614
+ e(f) ≤ c
615
+
616
+ B2r(p)
617
+ e(f) ⋆ 1 = E(f)
618
+ (2.2)
619
+ where c only depends on the geometry and r. Now the right-hand side of (2.1) is
620
+ C0-bounded. So by elliptic regularity, fi is C1+α-bounded. But then the right-hand
621
+ side of (2.1) is Cα-bounded, so fi is C2+α-bounded.
622
+
623
+ Corollary 2.6. If f : M → N is harmonic, and N has ≤ 0 sectional curvature, then
624
+ f ∈ C∞(M, N).
625
+ Proof. Keep bootstrapping with (2.1).
626
+
627
+ Theorem 2.7. If f : M → N is a harmonic map, M is compact with Ricci curvature
628
+ ≥ 0 and N has sectional curvature ≤ 0, then f is totally geodesic.
629
+
630
+ NOTES ON HARMONIC MAPS
631
+ 9
632
+ Proof. Since
633
+ 0 =
634
+
635
+ M
636
+ △e(f) ⋆ 1 =
637
+
638
+ M
639
+
640
+ |∇df|2 + 1
641
+ 2
642
+
643
+ df(RicM(eα)), df(eα)
644
+
645
+ −1
646
+ 2
647
+
648
+ RN(df(eα), df(eβ))df(eβ), df(eα)
649
+ ��
650
+ ⋆ 1,
651
+ and each of the terms on the right hand side is non-negative, we have
652
+ ∇df = 0.
653
+
654
+ 2.5. Non-positive curvature in a metric space. A complete metric space (X, d)
655
+ is called an NPC space if the following conditions are satisfied:
656
+ (i) The space (X, d) is a length (or geodesic) space. That is, for any two points P
657
+ and Q in X, there exists a rectifiable curve c so that the length of c is equal to d(P, Q)
658
+ (which we will sometimes denote by dP Q for simplicity). We call such distance realizing
659
+ curves geodesics.
660
+ (ii) For any geodesic triangle with vertices P, R, Q ∈ X, let c : [0, l] → X be the
661
+ arclength parameterized geodesic from Q to R and let Qt = c(tl). Then
662
+ d2
663
+ P Qt ≤ (1 − t)d2
664
+ P Q + td2
665
+ P R − t(1 − t)d2
666
+ QR.
667
+ (2.3)
668
+ (iii) Condition (ii) implies the quadralateral comparison inequalities (cf. [KS1, Corol-
669
+ lary 2.1.3])
670
+ d2
671
+ PtQt ≤ (1 − t)d2
672
+ P Q + td2
673
+ RS − t(1 − t)(dSP − dQR)2
674
+ (2.4)
675
+ d2
676
+ QtP + d2
677
+ Q1−tS ≤ d2
678
+ P Q + d2
679
+ RS − td2
680
+ QR − 2tdSPdQR + 2t2d2
681
+ QR
682
+ (2.5)
683
+ Example 2.8. The main examples we will be considering are Riemannian manifolds
684
+ of non-positive curvature and (locally compact) Euclidean buildings.
685
+ Example 2.9. Let (X, d) be an NPC space, P ∈ X and M be a compact Riemannian
686
+ manifold. Let Y = L2(M, X) be a set of maps f : M → X such that
687
+
688
+ M
689
+ d2(f, P) ⋆ 1 < ∞.
690
+ Define a distance function dY on Y by setting
691
+ d2
692
+ Y (f0, f1) =
693
+
694
+ M
695
+ d2(f0(x), f1(x)) ⋆ 1.
696
+ Then (Y, dY ) is an NPC space (cf. [KS1, Lemma 2.1.2]) where the geodesic between
697
+ f0 and f1 is the geodesic interpolation map ft(x) = (1 − t)f0(x) + tf1(x).
698
+
699
+ 10
700
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
701
+ 2.6. Local existence. We solve the Dirichlet problem for a smooth Riemannian do-
702
+ main B ⊂ M. We will motivate the construction by first considering the case X = R
703
+ (cf. [KS1, Section 2.2]). Fix φ ∈ H1(B, X) and consider the space
704
+ H1
705
+ φ(B, X) = {f ∈ H1(B, X) : f − φ ∈ H1
706
+ 0(B, X)}
707
+ Let
708
+ E0 = inf{E(f) : f ∈ H1
709
+ φ(B, X)}.
710
+ By the parallelogram identity
711
+ 2
712
+
713
+ B
714
+ |df + v
715
+ 2
716
+ |2 ⋆ 1 + 2
717
+
718
+ B
719
+ |df − v
720
+ 2
721
+ |2 ⋆ 1 =
722
+
723
+ B
724
+ |df|2 ⋆ 1 +
725
+
726
+ B
727
+ |dv|2 ⋆ 1
728
+ Take a minimizing sequence fi and apply the previous equality for f = fi, v = fj.
729
+ This implies that
730
+ 2
731
+
732
+ B
733
+ |dfi − fj
734
+ 2
735
+ |2 ⋆ 1
736
+ =
737
+
738
+ B
739
+ |dfi|2 ⋆ 1 +
740
+
741
+ B
742
+ |dfj|2 ⋆ 1 − 2
743
+
744
+ B
745
+ |dfi + fj
746
+ 2
747
+ |2 ⋆ 1
748
+
749
+ 2E0 + 2ǫi − 2E0 = 2ǫi.
750
+ Hence
751
+ lim
752
+
753
+ B
754
+ |dfi − fj
755
+ 2
756
+ |2 ⋆ 1 = 0.
757
+ (2.6)
758
+ By the Poincare inequality
759
+ lim
760
+
761
+ B
762
+ |fi − fj
763
+ 2
764
+ |2 ⋆ 1 = 0
765
+ (2.7)
766
+ hence
767
+ lim
768
+ i→∞ fi = f in H1
769
+ φ(B, X) and E(f) = E0.
770
+ Now assume X is an NPC space. Korevaar-Schoen [KS1] showed that the energy
771
+ density makes sense by taking difference quotients. For the purpose of these lectures,
772
+ if X is a locally finite Euclidean building, then we can locally isometricaly embed it
773
+ in a Euclidean space of high dimension. Then, we can define the energy density of the
774
+ map to the building equal to the energy density of the map considered as a map to the
775
+ Euclidean space. In fact, this was the original point of view taken in [GS]. The more
776
+ general theory developed later in [KS1] and [KS2].
777
+ With this, we argue as above replacing the parallelogram identity by the quadrilat-
778
+ eral inequality. Indeed, for f, v ∈ H1
779
+ φ(B, X), define w(x) = (1 − t)f(x) + tv(x). Then
780
+ (2.4) with t = 1
781
+ 2 implies
782
+ 2d2(w(x), w(y)) ≤ d2(f(x), f(y)) + d2(v(x), v(y)) − 1
783
+ 2(d(f(y), v(y)) − d(f(x), v(x))2
784
+ which then implies
785
+ 2Ew ≤ Ef + Ev − 1
786
+ 2
787
+
788
+ B
789
+ |∇d(f, v)|2 ⋆ 1
790
+
791
+ NOTES ON HARMONIC MAPS
792
+ 11
793
+ Take a minimizing sequence fi and apply the previous inequality with f = fi and
794
+ v = vi to conclude (cf. (2.6))
795
+ lim
796
+ i,j→∞
797
+
798
+ B
799
+ |∇d(fi, fj)|2 ⋆ 1 → 0.
800
+ By the Poincare inequality, fi is a Cauchy sequence in (Y, dY ) and converges to a map
801
+ which is minimizing by the lower semicontinuity of energy [KS1, Theorem 1.6.1].
802
+ 2.7. Basic Regularity result of Gromov-Schoen and Korevaar-Schoen. This
803
+ is the analogue of (2.2) without using the PDE.
804
+ Theorem 2.10. If f ∈ H1(B, X) is a harmonic map, then f is locally Lipschitz. More
805
+ precisely, for any B′ ⊂⊂ B, there exists a constant C only depending on the metric on
806
+ B′ and the distance of B′ to ∂B such that
807
+ sup
808
+ B′ |df|2 ≤ c
809
+
810
+ B
811
+ |df|2 ⋆ 1.
812
+ 2.8. Equivariant maps. Let ρ : π1(M) → Isom(X) be a homomorphism. A map
813
+ v : ˜
814
+ M → X
815
+ is called a ρ-equivariant map, if
816
+ v(γx) = ρ(γ)v(x).
817
+ Since |dv|2 is π1(M)-invariant, it descends to a function on M. Define:
818
+ E(v) =
819
+
820
+ M
821
+ |dv|2 ⋆ 1.
822
+ If v descends to a map to M/ρ(π1(M)) this agrees with our previous definition.
823
+ 2.9. Existence of ρ-equivariant locally Lipschitz maps. Let (M, ν) be a proba-
824
+ bility space, X an NPC-space and f ∈ L2(M, X).
825
+ Lemma 2.11. There exists a unique point Qf,ν that minimizes the integral
826
+ If,ν(Q) :=
827
+
828
+ M
829
+ d2(f(m), Q)dν(m) ∀Q ∈ X.
830
+ We call Qf,ν the center of mass.
831
+ Proof. Let {Qi} be a minimizing sequence and let Qij = 1
832
+ 2Qi + 1
833
+ 2Qj. By (2.3) with
834
+ t = 1
835
+ 2,
836
+ d2(f(x), Qij) ≤ 1
837
+ 2d2(f(x), Qi) + 1
838
+ 2d2(f(x), Qj) − 1
839
+ 4d2(Qi, Qj).
840
+ Integrating, we obtain
841
+ If,ν(Qij) ≤ 1
842
+ 2If,ν(Qi) + 1
843
+ 2If,ν(Qj) − 1
844
+ 2d2(Qi, Qj).
845
+
846
+ 12
847
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
848
+ Thus, d2(Qi, Qj) is a Cauchy sequence. We conclude that any minimizing sequence is
849
+ a Cauchy sequence and converges to a minimizing element.
850
+
851
+ Lemma 2.12. There exists a locally Lipschitz ρ-equivariant map ˜f : ˜
852
+ M → X. If X is
853
+ smooth, then ˜f can be chosen to be smooth.
854
+ Proof. Let Q0 := Qf,µ0 (resp. Q1 := Qf,µ1) be the center of mass for the function f ∈
855
+ L2(M, X) and the probability space (M, µ0) (resp. (M, µ1)). Let Qt = (1−t)Q0+tQ1.
856
+ By the minimizing property of Q0 and Q1,
857
+
858
+ d2(f, Q0) + d2(f, Q1) dµ0
859
+ =
860
+
861
+ d2(f, Q0)dµ0 +
862
+
863
+ d2(f, Q1)dµ1 +
864
+
865
+ d2(f, Q1)(dµ0 − dµ1)
866
+
867
+ 2
868
+
869
+ d2(f, Q1/2) dµ0 +
870
+ � �
871
+ d2(f, Q1) − d2(f, Q1/2)
872
+
873
+ (dµ0 − dµ1)
874
+
875
+
876
+ d2(f, Q0) + d2(f, Q1) − 1
877
+ 4d2(Q0, Q1) dµ0
878
+ +
879
+ � �
880
+ d2(f, Q1) − d2(f, Q1/2)
881
+
882
+ (dµ0 − dµ1).
883
+ The last inequality is by triangle comparison. Consequently,
884
+ d2(Q0, Q1) ≤ 4
885
+ � �
886
+ d2(f, Q1) − d2(f, Q 1
887
+ 2)
888
+
889
+ (dµ0 − dµ1).
890
+ (2.8)
891
+ For each x ∈ ˜
892
+ M, let
893
+ dµx = dvol
894
+ B1(x)
895
+ V (x)
896
+ ,
897
+ V (x) = vol(B1(x)).
898
+ where vol = ⋆1 is the volume form of ˜
899
+ M. Since µx is only dependent on the metric of
900
+ M, x �→ µx is invariant under the isometric action of π1(M). Furthermore,
901
+
902
+ |dµx0 − dµx1| =
903
+ � ����
904
+ 1
905
+ V (x0)χB1(x0) −
906
+ 1
907
+ V (x0)χB1(x0)
908
+ ���� ⋆ 1
909
+ ≤ Cρ(x0, x1)
910
+ where ρ denotes the distance function on M.
911
+ Let M0 be a fundamental domain. Let f(M0) = P and extend equivariantly to
912
+ f : ˜
913
+ M → X. For simplicity, assume M0 is compact. Then there exists a constant L
914
+ such that
915
+ d(f(x0), f(x1)) ≤ L whenever ρ(x0, x1) < 2.
916
+ Thus, for ρ(x0, x1) < 1 and in the support of |dµx0 − dµx1|,
917
+ d2(f, Q1) − d2(f, Q1/2) ≤ d2(f, Q1) + d2(f, Qt) ≤ 2L2.
918
+
919
+ NOTES ON HARMONIC MAPS
920
+ 13
921
+ Define
922
+ ˜f : ˜
923
+ M → X,
924
+ ˜f(x) = Qf,µx
925
+ The π1(M)-invariance of µx and the ρ-equivariance of f imply the ρ-equivariance of ˜f.
926
+ Apply (2.8) with M = M, µ0 = µx0 and µ1 = µx1 to obtain
927
+ d2( ˜f(x0), ˜f(x1)) ≤ 2L2
928
+
929
+ |dµx0 − dµx1| ≤ 2L2Cρ(x0, x1).
930
+
931
+ 2.10. The boundary at infinity. A good reference is [BH]. Suppose X is an NPC-
932
+ space. Two geodesic rays c, c′ : [0, ∞) → X are said to be asymptotic if there exists a
933
+ constant K such that d(c(t), c′(t)) < K for all t > 0. The set ∂X of boundary points
934
+ of X (which we shall also call the points at infinity) is the set of equivalence classes
935
+ of geodesic rays, two geodesic rays being equivalent if and only if they are asymptotic.
936
+ We denote ¯X = X ∪ ∂X. Notice that the images of two asymptotic geodesic rays
937
+ under any isometry of X are again asymptotic geodesic rays, and hence any isometry
938
+ extends to give a bijection of ¯X. The next proposition is [BH, Proposition 8.2].
939
+ Proposition 2.13. If X is an NPC-space and c : [0, ∞) → X is a geodesic ray starting
940
+ from P, then for every point P1 ∈ X there is a unique geodesic ray which starts from
941
+ P1 and is asymptotic to c.
942
+ The topology of ¯X is defined as follows: A sequence of points Pi converges to a point
943
+ P ∗ ∈ ∂X if and only if the geodesics joining P0 to Pi converge (uniformly on compact
944
+ subsets) to the geodesic ray that starts from P0 and belongs to the class of P ∗.
945
+ Example 2.14. If X is a complete n-dimensional Riemannian manifold of non-positive
946
+ sectional curvature, then ∂X is homeomorphic to Sn−1. Indeed, given a base point
947
+ P0, we can obtain a homeomorphism by considering the map which associates to each
948
+ unit vector V tangent to X at P0 the class of the geodesic ray c starting at P0 with
949
+ velocity vector V. In particular, if X is the n-dimensional hyperbolic space, then ¯X is
950
+ homeomorphic to the n-dimensional ball in Rn. If X is a locally compact Euclidean
951
+ building, then ∂X is a compact spherical building (cf. [KL, Proposition 4.2.1]).
952
+ Lemma 2.15. If Pi is a sequence in X with lim Pi = P ∗ ∈ ∂X and if Qi is another
953
+ sequence in X with d(Pi, Qi) ≤ C independently of i, then lim Qi = P ∗.
954
+ Proof. Fix P0 ∈ X. Let γ : [0, ∞) → ∞ be an arclength parameterized geodesic ray
955
+ in the equivalence class P ∗ with γ(0) = P0. Let ti = d(P0, Pi) (resp. τi = d(P0, Qi))
956
+ and let γi : [0, ti] → X (resp. ˆγi : [0, τi] → X) be the arclength parameterized geodesic
957
+ segment connecting P0 and Pi (resp. Qi). By the triangle inequality,
958
+ d(ˆγi(ti), ˆγi(τi)) = |ti − τi| = |d(P0, Pi) − d(P0, Qi)| ≤ d(Pi, Qi) ≤ C.
959
+
960
+ 14
961
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
962
+ Thus, assuming t ≤ ti ≤ τi, the NPC condition implies
963
+ d(ˆγi(t), γi(t)) ≤ t
964
+ ti
965
+ d(ˆγi(ti), γi(ti)) ≤ t
966
+ ti
967
+
968
+ d(ˆγi(ti), ˆγi(τi)) + d(ˆγi(τi), γi(ti))
969
+
970
+ ≤ 2Ct
971
+ ti
972
+ .
973
+ Similarly, assuming t ≤ τi < ti,
974
+ d(ˆγi(t), γi(t)) ≤ 2Ct
975
+ τi
976
+ .
977
+ Thus, for t ≤ min{ti, τi},
978
+ d(ˆγi(t), γ(t)) ≤ d(ˆγi(t), γi(t)) + d(γi(t), γ(t)) ≤
979
+ 2Ct
980
+ max{ti, τi} + d(γi(t), γ(t)).
981
+ Fix T0 > ∞.
982
+ The assumption that lim Pi = P ∗ implies that ti, τi → ∞ and the
983
+ geodesics γi converge uniformly to γ in [0, T0]. Thus, ˆγi also converge uniformly to γ
984
+ in [0, T0].
985
+
986
+ Lemma 2.16. The stabilizer of a point at infinity is contained in a parabolic subgroup.
987
+ So if the image of ρ is Zariski dense it cannot fix a point at infinity.
988
+ 2.11. Global existence result. We prove existence of equivariant harmonic maps
989
+ [GS, Theorem 7.1].
990
+ Theorem 2.17. Let X be a locally compact NPC space. Assume that the image of ρ
991
+ doesn’t fix a point in ∂X and that there exists a Lipschitz equivariant map v : ˜
992
+ M → X
993
+ with finite energy. Then there is a Lipschitz equivariant map f of least energy and the
994
+ restriction of f to a small ball about any point is minimizing.
995
+ Proof. Let E0 denote the infimum of the energy taken over all Lipschitz equivariant
996
+ maps. Let vi be a sequence of Lipschitz equivariant maps with E(vi) → E0. Let B be
997
+ a ball in ˜
998
+ M such that γ(B) ∩ B = ∅ for all γ ∈ π1(M). We may then construct a new
999
+ minimizing sequence ¯vi, by replacing vi with the solution to the Dirichlet problem on
1000
+ each γ(B). Clearly ¯vi is also a minimizing sequence.
1001
+ On a compact subset of B, the sequence ¯vi is uniformly Lipschitz by Theorem 2.10.
1002
+ It follows that a subsequence of ¯vi converges uniformly on compact subsets of B to
1003
+ a map into ¯X which either maps into X or maps to a single point P ∗ ∈ ∂X. We
1004
+ exclude the second possibility as follows. Let x0 ∈
1005
+ ˜
1006
+ M be the center of the chosen
1007
+ ball B.
1008
+ Let C be any smooth embedded curve from x0 to γ(x0).
1009
+ An elementary
1010
+ argument using Fubini’s theorem shows that C may be chosen so that the energy of
1011
+ the restriction of each map ¯vi to C is uniformly bounded. Therefore the length of
1012
+ the curve ¯vi(C) is uniformly bounded, and in particular d(vi(x0), ρ(γ)vi((x0)) ≤ C.
1013
+ Lemma 2.15 implies lim ρ(γ)vi(x0) = P ∗, and hence ρ(γ)P ∗ = P ∗ for all γ. This is
1014
+ a contradiction. Therefore we may assume that ¯vi converges uniformly on compact
1015
+ subsets of B.
1016
+
1017
+ NOTES ON HARMONIC MAPS
1018
+ 15
1019
+ From (2.6) as before, we have�
1020
+ K
1021
+ |∇d(¯vi, ¯vj)|2 ⋆ 1 → 0
1022
+ for any compact set K ⊂ ˜
1023
+ M. Since ¯vi converges uniformly on compact subsets of B,
1024
+ the function d(¯vi, v) is uniformly bounded there. It then follows from Poincare type
1025
+ inequalities that
1026
+
1027
+ K
1028
+ d(¯vi, ¯vj)2 ⋆ 1 → 0.
1029
+ In particular, the sequence ¯vi → f which is a minimizer by lower semicontinuity of
1030
+ energy. The local minimizing property of f follows. This completes the proof.
1031
+
1032
+
1033
+ 16
1034
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1035
+ 3. Pluriharmonic maps and the Siu-Sampson Formula
1036
+ 3.1. Introduction: Bochner methods for harmonic maps. In this section, we
1037
+ discuss the Bochner formulas of Siu [Siu] and Sampson [Sa]. Our exposition closely
1038
+ follows the approach of [LY]. We also present a variation of these formulas inspired
1039
+ by the work of Mochizuki [M]. Lastly, we sketch the existence of pluriharmonic maps
1040
+ into Euclidean buildings.
1041
+ 3.2. Pluriharmonic maps from K¨ahler manifolds to Riemannian manifolds.
1042
+ Let (M, ω, J) be a K¨ahler manifold along with its K¨ahler form and complex structure.
1043
+ Let
1044
+ TM ⊗ C = T (1,0)M ⊕ T (0,1)M
1045
+ be its complexified tangent bundle decomposed into the ±√−1-eigenspaces of J. We
1046
+ can decompose v ∈ TM ⊗ C into
1047
+ v = v1,0 + v0,1 where v1,0 = 1
1048
+ 2(v −
1049
+
1050
+ −1Jv), v0,1 = 1
1051
+ 2(v +
1052
+
1053
+ −1Jv).
1054
+ The cotangent space T ∗M has a complex structure still denoted J defined by Jα =
1055
+ α ◦ J. Accordingly, we have an analogous decomposition
1056
+ T ∗M ⊗ C = T ∗(1,0)M ⊕ T ∗(0,1)M.
1057
+ Let (N, h) be a Riemannian manifold and TN ⊗ C its complexified tangent bundle.
1058
+ For a smooth map f : M → N, let
1059
+ E := f ∗(TN ⊗ C).
1060
+ (3.1)
1061
+ Extending complex linearly, df : TM → TN gives rise to a map df : TM ⊗ C →
1062
+ TN ⊗ C. Denote by Ωp,q(E), the space of E-valued (p, q)-forms. Define
1063
+ d′f := 1
1064
+ 2(df −
1065
+
1066
+ −1 df ◦ J) ∈ Ω1,0(E),
1067
+ d′′f := 1
1068
+ 2(df +
1069
+
1070
+ −1 df ◦ J) ∈ Ω0,1(E).
1071
+ We have that
1072
+ df = d′f + d′′f
1073
+ Jdf = df ◦ J = −
1074
+
1075
+ −1 (d′f − d′′f).
1076
+ For local coordinates (yi) of N, let
1077
+
1078
+ ∂fi =
1079
+
1080
+ ∂yi ◦ f. Then
1081
+ d′f = d′f i ∂
1082
+ ∂f i
1083
+ d′′f = d′′f i ∂
1084
+ ∂f i
1085
+ d′f = d′′f
1086
+ d′′f = d′f.
1087
+ Similarly, we can decompose the pullback of the Levi-Civita connection (cf. Section 1)
1088
+ as
1089
+ ∇ = ∇′ + ∇′′
1090
+ where
1091
+ ∇′ : C∞(E) → Ω1,0(E),
1092
+ ∇′′ : C∞(E) → Ω0,1(E).
1093
+
1094
+ NOTES ON HARMONIC MAPS
1095
+ 17
1096
+ In turn, ∇′ and ∇′′ induce differential operators
1097
+ d′
1098
+ E : Ωp,q(E) → Ωp+1,q(E),
1099
+ d′′
1100
+ E : Ωp,q(E) → Ωp,q+1(E)
1101
+ where
1102
+ d′
1103
+ E(φ ⊗ s)
1104
+ =
1105
+ d′φ ⊗ s + (−1)p+qφ ⊗ ∇′
1106
+ Es
1107
+ d′′
1108
+ E(φ ⊗ s)
1109
+ =
1110
+ d′′φ ⊗ s + (−1)p+qφ ⊗ ∇′′
1111
+ Es.
1112
+ A straightforward calculation implies that
1113
+ d′
1114
+ Ed′′f = −d′′
1115
+ Ed′f,
1116
+ d′
1117
+ Ed′f = 0,
1118
+ d′′
1119
+ Ed′′f = 0.
1120
+ (3.2)
1121
+ Lemma 3.1.
1122
+ τ(f) = 2i ⋆
1123
+ � ωn−1
1124
+ (n − 1)! ∧ d′
1125
+ Ed′′f
1126
+
1127
+ .
1128
+ Proof. We claim
1129
+ ⋆α =
1130
+ ωn−1
1131
+ (n − 1)! ∧ Jα,
1132
+ ∀α ∈ Ω1(M, R).
1133
+ To check the claim, use normal coordinates (zi = xi + √−1yi) at a point x ∈ M. For
1134
+ α = dxi or α = dyi, we have
1135
+ dxi ∧
1136
+ ωn−1
1137
+ (n − 1)! ∧ Jdxi = dxi ∧ dyi ∧
1138
+ ωn−1
1139
+ (n − 1)! =
1140
+ √−1
1141
+ 2
1142
+ dzi ∧ d¯zi ∧
1143
+ ωn−1
1144
+ (n − 1)! = ωn
1145
+ n!
1146
+ and
1147
+ dyi ∧
1148
+ ωn−1
1149
+ (n − 1)! ∧ Jdyi = −dyi ∧ dxi ∧
1150
+ ωn−1
1151
+ (n − 1)! =
1152
+ √−1
1153
+ 2
1154
+ dzi ∧ d¯zi ∧
1155
+ ωn−1
1156
+ (n − 1)! = ωn
1157
+ n! .
1158
+ The claim follows by linearity.
1159
+ Next, note that
1160
+ Jd′f
1161
+ =
1162
+ 1
1163
+ 2(df ◦ J +
1164
+
1165
+ −1df) =
1166
+ √−1
1167
+ 2
1168
+ (df −
1169
+
1170
+ −1df ◦ J) =
1171
+
1172
+ −1d′f
1173
+ Jd′′f
1174
+ =
1175
+ 1
1176
+ 2(df ◦ J −
1177
+
1178
+ −1df) =
1179
+ √−1
1180
+ 2
1181
+ (df +
1182
+
1183
+ −1df ◦ J) = −
1184
+
1185
+ −1d′′f,
1186
+
1187
+ 18
1188
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1189
+ which implies Jdf = Jd′f + Jd′′f = √−1(d′f − d′′f). Applying the claim for α = df,
1190
+ we use the fact that dω = 0 to obtain
1191
+ τ(f)
1192
+ =
1193
+ −d⋆
1194
+ ∇df
1195
+ =
1196
+ ⋆d∇(⋆df)
1197
+ =
1198
+ ⋆d∇
1199
+ � ωn−1
1200
+ (n − 1)! ∧ Jdf
1201
+
1202
+ =
1203
+ ⋆d∇
1204
+ � ωn−1
1205
+ (n − 1)! ∧ (
1206
+
1207
+ −1(d′f − d′′f))
1208
+
1209
+ =
1210
+
1211
+
1212
+ −1 ⋆
1213
+ � ωn−1
1214
+ (n − 1)! ∧ (d′
1215
+ Ed′′f − d′′
1216
+ Ed′f)
1217
+
1218
+ =
1219
+ −2
1220
+
1221
+ −1 ⋆
1222
+ � ωn−1
1223
+ (n − 1)! ∧ d′
1224
+ Ed′′f
1225
+
1226
+ .
1227
+
1228
+ Definition 3.2. f is called pluriharmonic d′
1229
+ Ed′′f = 0.
1230
+ Remark 3.3. Lemma 3.1 implies
1231
+ pluriharmonic =⇒ harmonic.
1232
+ Note that holomorphic maps between K¨ahler manifolds are pluriharmonic, and thus
1233
+ harmonic.
1234
+ 3.3. Sampson’s Bochner formula.
1235
+ Theorem 3.4 (Sampson’s Bochner formula, [Sa]). For a harmonic map f : M → N
1236
+ from a K¨ahler manifold (M, g) to a Riemannian manifold (N, h),
1237
+ d′d′′{d′′f, d′′f} ∧
1238
+ ωn−2
1239
+ (n − 2)!
1240
+ =
1241
+ 4
1242
+
1243
+ |d′
1244
+ Ed′′f|2 + Q0
1245
+ � ωn
1246
+ n!
1247
+ where {·, ·} is given in Definition 3.5 below and
1248
+ Q0 = −2gα¯δgγ ¯βRijkl
1249
+ ∂f i
1250
+ ∂zα
1251
+ ∂f k
1252
+ ∂¯zβ
1253
+ ∂f j
1254
+ ∂zγ
1255
+ ∂f l
1256
+ ∂¯zδ
1257
+ in local coordinates (zα) of M and (yi) of N.
1258
+ Proof. Combine Lemma 3.6, Lemma 3.8 and Lemma 3.20 below.
1259
+
1260
+ Definition 3.5. Let {si} be a local frame of E. For
1261
+ ψ = ψi ⊗ si ∈ Ωp,q(E) and ξ = ξi ⊗ si ∈ Ωp′,q′(E)
1262
+ we set
1263
+ {ψ, ξ} = ⟨si, sj⟩ψi ∧ ¯ξj ∈ Ωp+q′,q+p′
1264
+ where ⟨·, ·⟩ is the complex-linear extention of the Riemannian metric on E.
1265
+
1266
+ NOTES ON HARMONIC MAPS
1267
+ 19
1268
+ Lemma 3.6. For any smooth map f : M → N from a K¨ahler manifold to a Riemann-
1269
+ ian manifold, we have
1270
+ d′d′′{d′′f, d′′f} ∧
1271
+ ωn−2
1272
+ (n − 2)! =
1273
+
1274
+ −{d′
1275
+ Ed′′f, d′
1276
+ Ed′′f} + {d′′f, R(1,1)
1277
+ E
1278
+ (d′′f)}
1279
+
1280
+
1281
+ ωn−2
1282
+ (n − 2)!
1283
+ where
1284
+ R(1,1)
1285
+ E
1286
+ = (d′
1287
+ Ed′′
1288
+ E + d′′
1289
+ Ed′
1290
+ E)
1291
+ is the (1, 1)-part of the curvature RE = d2
1292
+ E.
1293
+ Proof. Repeatedly using the fact that d′′
1294
+ Ed′′f = 0 (cf. (3.2)),
1295
+ d′d′′{d′′f, d′′f}
1296
+ =
1297
+ −{d′
1298
+ Ed′′f, d′
1299
+ Ed′′f} + {d′′f, d′′
1300
+ Ed′
1301
+ Ed′′f}
1302
+ =
1303
+ −{d′
1304
+ Ed′′f, d′
1305
+ Ed′′f} + {d′′f, (d′′
1306
+ Ed′
1307
+ E + d′
1308
+ Ed′′
1309
+ E + d′′
1310
+ E
1311
+ 2)d′′f}.
1312
+ Since {d′′f, d′
1313
+ Ed′
1314
+ Ed′′f} ∧ ωn−2
1315
+ (n−2)! is an (n − 1, n + 1)-form and hence zero for dimensional
1316
+ reasons, we can complete the square to obtain
1317
+ d′d′′{d′′f, d′′f} ∧
1318
+ ωn−2
1319
+ (n − 2)!
1320
+ =
1321
+
1322
+ −{d′
1323
+ Ed′′f, d′
1324
+ Ed′′f} + {d′′f, (d′
1325
+ E + d′′
1326
+ E)2d′′f}
1327
+
1328
+
1329
+ ωn−2
1330
+ (n − 2)!
1331
+ =
1332
+
1333
+ −{d′
1334
+ Ed′′f, d′
1335
+ Ed′′f} + {d′′f, R(1,1)
1336
+ E
1337
+ (d′′f)}
1338
+
1339
+
1340
+ ωn−2
1341
+ (n − 2)!
1342
+ which proves the first equation.
1343
+
1344
+ Lemma 3.7. For any E-valued (1, 1)-form φ on M,
1345
+ −{φ, φ} ∧
1346
+ ωn−2
1347
+ (n − 2)! = 4(|φ|2 − |Traceωφ|2)ωn
1348
+ n! .
1349
+ Proof. Let (zp) be normal coordinates at x ∈ M and let φp¯qdzp ∧ d¯zq. At x,
1350
+ ωn
1351
+ n! =
1352
+ �√−1
1353
+ 2
1354
+ �2 ��
1355
+ p
1356
+ dzp ∧ d¯zp
1357
+ �2
1358
+
1359
+ ωn−2
1360
+ (n − 2)!.
1361
+ For p, q such that p ̸= q,
1362
+ s ̸= p or t ̸= q ⇒ dzp ∧ d¯zq ∧ d¯zs ∧ dzt ∧
1363
+ ��
1364
+ j
1365
+ dzj ∧ d¯zj
1366
+ �n−2
1367
+ = 0.
1368
+ For p = q,
1369
+ s ̸= t ⇒ dzp ∧ d¯zq ∧ d¯zs ∧ dzt ∧
1370
+ ��
1371
+ j
1372
+ dzj ∧ d¯zj
1373
+ �n−2
1374
+ = 0.
1375
+
1376
+ 20
1377
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1378
+ Furthermore,
1379
+ φp¯qφp¯qdzp ∧ d¯zq ∧ d¯zp ∧ dzq
1380
+ =
1381
+ φp¯qφp¯qdzp ∧ d¯zp ∧ dzq ∧ d¯zq
1382
+ φp¯pφq¯qdzp ∧ d¯zp ∧ d¯zq ∧ dzq
1383
+ =
1384
+ −φp¯pφq¯qdzp ∧ d¯zp ∧ dzq ∧ d¯zq.
1385
+ Thus,
1386
+ �√−1
1387
+ 2
1388
+ �2
1389
+ {φ, φ} ∧
1390
+ ωn−2
1391
+ (n − 2)!
1392
+ =
1393
+ �√−1
1394
+ 2
1395
+ �2 � �
1396
+ p,q,s,t
1397
+ φp¯qφs¯tdzp ∧ d¯zq ∧ d¯zs ∧ dzt
1398
+
1399
+
1400
+ ωn−2
1401
+ (n − 2)!
1402
+ =
1403
+
1404
+ p̸=q
1405
+
1406
+ |φp¯q|2 − φp¯pφq¯q
1407
+ � ωn
1408
+ n!
1409
+ =
1410
+
1411
+ p,q
1412
+
1413
+ |φp¯q|2 − φp¯pφq¯q
1414
+ � ωn
1415
+ n!
1416
+ =
1417
+
1418
+ |φ|2 − |traceωφ|2� ωn
1419
+ n! .
1420
+
1421
+ Lemma 3.8. For any harmonic map f : M → N from a K¨ahler manifold to a
1422
+ Riemannian manifold, we have
1423
+ −{d′
1424
+ Ed′′f, d′
1425
+ Ed′′f} ∧
1426
+ ωn−2
1427
+ (n − 2)!
1428
+ =
1429
+ 4 |d′
1430
+ Ed′′f|2 ωn
1431
+ n! .
1432
+ Proof. We apply Lemma 3.7 with φ = d′
1433
+ Ed′′f. Since f is harmonic, Trωd′
1434
+ Ed′′f = 0 by
1435
+ Lemma 3.1.
1436
+
1437
+ Lemma 3.9. For a harmonic map f : M → N from a K¨ahler manifold to a Hermitian-
1438
+ negative Riemannian manifold, we have
1439
+ {d′′f, R(1,1)
1440
+ E
1441
+ (d′′f)} ∧
1442
+ ωn−2
1443
+ (n − 2)! = −2 Rijkld′f i ∧ d′′f k ∧ d′f j ∧ d′′f l ∧ ωn
1444
+ n!
1445
+ where R(1,1)
1446
+ E
1447
+ is defined in Lemma 3.6.
1448
+ Proof. Let (zα) (resp. (yi)) be normal coordinates at a point x ∈ M (resp. f(x) ∈ N).
1449
+ Then
1450
+
1451
+
1452
+ ∂¯zγ ∇
1453
+
1454
+ ∂zβ
1455
+
1456
+ ∂f j
1457
+ =
1458
+
1459
+
1460
+ ∂¯zγ
1461
+ �∂f k
1462
+ ∂zβ ∇
1463
+
1464
+ ∂fk
1465
+
1466
+ ∂f j
1467
+
1468
+ =
1469
+ ∂f k
1470
+ ∂zβ
1471
+ ∂f l
1472
+ ∂¯zγ ∇
1473
+
1474
+ ∂fl ∇
1475
+
1476
+ ∂fk
1477
+
1478
+ ∂f j
1479
+
1480
+ NOTES ON HARMONIC MAPS
1481
+ 21
1482
+ and
1483
+ d′′
1484
+ Ed′
1485
+ Ed′′f
1486
+ =
1487
+ d′′
1488
+ Ed′
1489
+ E
1490
+ �∂f j
1491
+ ∂¯zα d¯zα ⊗ ∂
1492
+ ∂f j
1493
+
1494
+ =
1495
+ d′′d′
1496
+ �∂f j
1497
+ ∂¯zα d¯zα
1498
+
1499
+ ⊗ ∂
1500
+ ∂f j − ∂f j
1501
+ ∂¯zα d¯zα ∧ d¯zγ ∧ dzβ ⊗ ∇
1502
+
1503
+ ∂¯zγ ∇
1504
+
1505
+ ∂zβ
1506
+
1507
+ ∂f j
1508
+ =
1509
+ d′′d′
1510
+ �∂f j
1511
+ ∂¯zα d¯zα
1512
+
1513
+ ⊗ ∂
1514
+ ∂f j + ∂f j
1515
+ ∂¯zα
1516
+ ∂f k
1517
+ ∂zβ
1518
+ ∂f l
1519
+ ∂¯zγ d¯zα ∧ dzβ ∧ d¯zγ ⊗ ∇
1520
+
1521
+ ∂fl ∇
1522
+
1523
+ ∂fk
1524
+
1525
+ ∂f j .
1526
+ Similarly,
1527
+ d′
1528
+ Ed′′
1529
+ Ed′′f
1530
+ =
1531
+ d′d′′
1532
+ �∂f j
1533
+ ∂¯zα d¯zα
1534
+
1535
+ ⊗ ∂
1536
+ ∂f j − ∂f j
1537
+ ∂¯zα
1538
+ ∂f k
1539
+ ∂zβ
1540
+ ∂f l
1541
+ ∂¯zγ d¯zα ∧ dzβ ∧ d¯zγ ⊗ ∇
1542
+
1543
+ ∂fk ∇
1544
+
1545
+ ∂fl
1546
+
1547
+ ∂f j .
1548
+ Combining the above two equalities,
1549
+ R(1,1)
1550
+ E
1551
+ (d′′f)
1552
+ =
1553
+ ∂f j
1554
+ ∂¯zα
1555
+ ∂f k
1556
+ ∂zβ
1557
+ ∂f l
1558
+ ∂¯zγ d¯zα ∧ dzβ ∧ d¯zγ ⊗ Rs
1559
+ jkl
1560
+
1561
+ ∂f s.
1562
+ We compute
1563
+ {d′′f, R(1,1)
1564
+ E
1565
+ (d′′f)}
1566
+ =
1567
+ Rijkl
1568
+ ∂f i
1569
+ ∂¯zδ
1570
+ ∂f j
1571
+ ∂zα
1572
+ ∂f k
1573
+ ∂¯zβ
1574
+ ∂f l
1575
+ ∂zγ d¯zδ ∧ dzα ∧ d¯zβ ∧ dzγ
1576
+ =
1577
+ Rjilk
1578
+ ∂f j
1579
+ ∂zα
1580
+ ∂f i
1581
+ ∂¯zδ
1582
+ ∂f l
1583
+ ∂zγ
1584
+ ∂f k
1585
+ ∂¯zβ dzα ∧ d¯zδ ∧ dzγ ∧ d¯zβ
1586
+ =
1587
+ (−Rjlki + Rjkli)∂f j
1588
+ ∂zα
1589
+ ∂f i
1590
+ ∂¯zδ
1591
+ ∂f l
1592
+ ∂zγ
1593
+ ∂f k
1594
+ ∂¯zβ dzα ∧ d¯zδ ∧ dzγ ∧ d¯zβ.
1595
+ Since
1596
+ Rjkli
1597
+ ∂f j
1598
+ ∂zα
1599
+ ∂f i
1600
+ ∂¯zδ
1601
+ ∂f l
1602
+ ∂zγ
1603
+ ∂f k
1604
+ ∂¯zβ dzα ∧ d¯zδ ∧ dzγ ∧ d¯zβ ∧
1605
+ ωn−2
1606
+ (n − 2)!
1607
+ =
1608
+ Rjkli
1609
+ ∂f j
1610
+ ∂zα
1611
+ ∂f i
1612
+ ∂¯zδ
1613
+ ∂f l
1614
+ ∂zγ
1615
+ ∂f k
1616
+ ∂¯zβ dzα ∧ d¯zα ∧ dzβ ∧ d¯zβ ∧
1617
+ ωn−2
1618
+ (n − 2)!
1619
+ +Rjkli
1620
+ ∂f j
1621
+ ∂zα
1622
+ ∂f i
1623
+ ∂¯zδ
1624
+ ∂f l
1625
+ ∂zγ
1626
+ ∂f k
1627
+ ∂¯zβ dzα ∧ d¯zβ ∧ dzβ ∧ d¯zα ∧
1628
+ ωn−2
1629
+ (n − 2)!
1630
+ =
1631
+ 0,
1632
+
1633
+ 22
1634
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1635
+ we obtain
1636
+ {d′′f, R(1,1)
1637
+ E
1638
+ (d′′f)} ∧
1639
+ ωn−2
1640
+ (n − 2)!
1641
+ =
1642
+ −Rjlki
1643
+ ∂f j
1644
+ ∂zα
1645
+ ∂f i
1646
+ ∂¯zα
1647
+ ∂f l
1648
+ ∂zβ
1649
+ ∂f k
1650
+ ∂¯zβ dzα ∧ d¯zα ∧ dzβ ∧ d¯zβ ∧
1651
+ ωn−2
1652
+ (n − 2)!
1653
+ −Rjlki
1654
+ ∂f j
1655
+ ∂zα
1656
+ ∂f i
1657
+ ∂¯zβ
1658
+ ∂f l
1659
+ ∂zβ
1660
+ ∂f k
1661
+ ∂¯zα dzα ∧ d¯zβ ∧ dzβ ∧ d¯zα ∧
1662
+ ωn−2
1663
+ (n − 2)!
1664
+ =
1665
+ −2Rjlki
1666
+ ∂f j
1667
+ ∂zα
1668
+ ∂f i
1669
+ ∂¯zα
1670
+ ∂f l
1671
+ ∂zβ
1672
+ ∂f k
1673
+ ∂¯zβ dzα ∧ d¯zα ∧ dzβ ∧ d¯zβ ∧
1674
+ ωn−2
1675
+ (n − 2)!
1676
+ =
1677
+ −2Rjlkid′f j ∧ d′′f i ∧ d′f l ∧ d′′f k ∧
1678
+ ωn−2
1679
+ (n − 2)!.
1680
+
1681
+ Definition 3.10. A Riemannian manifold N is said to be Hermitian-negative (resp.
1682
+ strongly Hermitian negative) if
1683
+ RijklAi¯lAj¯k ≤ 0 (resp. < 0)
1684
+ for any Hermitian semi-positive matrix A =
1685
+
1686
+ Ai¯l�
1687
+ .
1688
+ Remark 3.11. Locally symmetric spaces whose irreducible local factors are all non-
1689
+ compact or Euclidean type are Hermitian negative (cf. [Sa, Theorem 2]).
1690
+ Theorem 3.12 (Sampson). If f : M → N is a harmonic map from a K¨ahler manifold
1691
+ into a Hermitian negative Riemannian manifold, then f is pluriharmonic.
1692
+ Proof. Integrate Sampson’s Bochner formula over M. Applying Stoke’s theorem results
1693
+ in the left hand side being 0. The two terms on the right hand side are non-negative
1694
+ pointwise, hence they must be identically equal to 0. In particular, d′
1695
+ Ed′′f = 0; i.e. f
1696
+ is is pluriharmonic.
1697
+
1698
+ 3.4. Maps between K¨ahler manifolds. Let f : M → N be a smooth map between
1699
+ K¨ahler manifolds. By decomposing
1700
+ TN ⊗ C = T (1,0)N ⊕ T (0,1)N
1701
+ we get the decomposition of E := f −1(TN ⊗ C) as
1702
+ E = E′ ⊕ E′′ where E′ := f −1(T (1,0)N),
1703
+ E′′ := f −1(T (0,1)N).
1704
+ Denote by Ωp,q(E), Ωp,q(E′) and Ωp,q(E′′) the space of E-, E′- and E′′-valued (p, q)-
1705
+ forms respectively. If (wi) are local holomorphic coordinates in N, then { ∂
1706
+ ∂fi :=
1707
+
1708
+ ∂wi ◦
1709
+ f,
1710
+
1711
+ ∂ ¯fi :=
1712
+
1713
+ ∂ ¯wi ◦ f} is a local frame of E. If d′f, d′f ′ are as in Section 3.2, then
1714
+ d′f = ∂f + ∂ ¯f,
1715
+ d′′f = ¯∂f + ¯∂ ¯f,
1716
+ df = d′f + d′′f = ∂f + ∂ ¯f + ¯∂f + ¯∂ ¯f.
1717
+
1718
+ NOTES ON HARMONIC MAPS
1719
+ 23
1720
+ where
1721
+ ∂f = ∂f i ∂
1722
+ ∂f i
1723
+ ¯∂f = ¯∂f i ∂
1724
+ ∂f i
1725
+ ∂ ¯f = ∂ ¯f i ∂
1726
+ ∂ ¯f i
1727
+ ¯∂ ¯f = ¯∂ ¯f i ∂
1728
+ ∂ ¯f i
1729
+ ∂f = ¯∂ ¯f
1730
+ ¯∂f = ∂ ¯f.
1731
+ Analogously, d∇ = d′
1732
+ E + d′′
1733
+ E is decomposed into the induced operators ∂E′, ¯∂E′, ∂E′′,
1734
+ ¯∂E′′.
1735
+ A straightforward calculation yields
1736
+ ∂E′ ¯∂f = −¯∂E′∂f
1737
+ ∂E′′ ¯∂ ¯f = −¯∂E′′∂ ¯f
1738
+ (3.3)
1739
+ ∂E′∂f = 0
1740
+ ¯∂E′ ¯∂f = 0
1741
+ ∂E′′∂ ¯f = 0
1742
+ ¯∂E′′ ¯∂ ¯f = 0.
1743
+ (3.4)
1744
+ For any map f : M → N between K¨ahler manifolds, we have
1745
+ ��∂E′′ ¯∂ ¯f
1746
+ ��2 =
1747
+ ��¯∂E′′∂ ¯f
1748
+ ��2 =
1749
+ ��∂E′ ¯∂f
1750
+ ��2 .
1751
+ (3.5)
1752
+ Indeed, the left equality follows from (3.3) and the right from the fact that conjugation
1753
+ is an isometry.
1754
+ 3.5. Siu’s curvature.
1755
+ Definition 3.13. Let N be a K¨ahler manifold and R its complexified curvature tensor.
1756
+ We say N has negative (resp. non-positive) complex sectional curvature, if
1757
+ R(V, ¯W, W, ¯V ) < 0 (resp. ≤ 0) ∀V, W ∈ TNC.
1758
+ In [Siu], Siu introduced the following notion of negative curvature. Recall that for
1759
+ local holomorphic coordinates (wi) of a K¨ahler manifold N, the curvature tensor is of
1760
+ type (1,1) and is given explicitly by
1761
+ Ri¯jk¯l = − ∂2hi¯j
1762
+ ∂wk∂ ¯wl + hp¯q ∂hk¯q
1763
+ ∂wi
1764
+ ∂hp¯l
1765
+ ∂ ¯wj
1766
+ where h is the K¨ahler metric on N. We say N has strongly negative (resp. strongly
1767
+ semi-negative) curvature if
1768
+ Ri¯jk¯l(AiBj − CiDj)(AlBk − ClDk) < 0 (resp. ≤ 0).
1769
+ for arbitrary complex numbers Ai, Bi, Ci, Di when AiBj − CiDj ̸= 0 for at least one
1770
+ pair of indices (i, j).
1771
+ Remark 3.14. A K¨ahler manifold N is strongly semi-negative if and only if it has
1772
+ non-positive complex sectional curvature (cf. [LSY, Theorem 4.4]).
1773
+
1774
+ 24
1775
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1776
+ Lemma 3.15. Let N be a K¨ahler manifold with K¨ahler form ω and of strongly semi-
1777
+ negative curvature. Let M be another K¨ahler manifold and f : M → N be a smooth
1778
+ map. If Q : M → R is defined by setting
1779
+ Qωn
1780
+ n! = −Ri¯jk¯l ¯∂f i ∧ ∂ ¯f j ∧ ∂f k ∧ ¯∂ ¯f l ∧
1781
+ ωn−2
1782
+ (n − 2)!,
1783
+ then Q ≥ 0.
1784
+ Proof. At a point with normal coordinates in the domain
1785
+ Ri¯jk¯l ¯∂f i ∧ ∂f j ∧ ∂f k ∧ ¯∂ f l ∧
1786
+ ωn−2
1787
+ (n − 2)!
1788
+ =
1789
+
1790
+ α,β
1791
+ (
1792
+
1793
+ −1)n−2Ri¯jk¯l
1794
+
1795
+ −∂¯αf i∂αf j∂βf k∂¯βf l + ∂¯αf i∂βf j∂αf k∂¯βf l
1796
+ +∂¯βf i∂αf j∂βf k∂¯αf l − ∂¯βf i∂βf j∂αf k∂¯αf l
1797
+
1798
+ ∧ (∧γ(dzγ ∧ d¯zγ))
1799
+ =
1800
+ 4
1801
+
1802
+ α,β
1803
+ Ri¯jk¯l
1804
+
1805
+ (∂¯αf i)(∂βf l) − (∂¯βf i)(∂αf l)
1806
+ � �
1807
+ (∂¯αf j)(∂βf k) − (∂¯βf j)(∂αf k)
1808
+ �ωn
1809
+ n!
1810
+ =
1811
+ 4
1812
+
1813
+ α,β
1814
+ Ri¯jk¯l
1815
+
1816
+ (∂¯αf i)(∂βf j) − (∂¯βf i)(∂αf j)
1817
+ � �
1818
+ (∂¯αf l)(∂βf k) − (∂¯βf l)(∂αf k)
1819
+ �ωn
1820
+ n!
1821
+
1822
+ 0.
1823
+ The last equality is because Rı¯jk¯l = Ri¯lk¯l, and the last inequality is because of the
1824
+ assumption that N has strong semi-negative curvature.
1825
+
1826
+ 3.6. Siu’s Bochner Formula.
1827
+ Theorem 3.16 (Siu-Bochner formula, [Siu] Proposition 2). For a harmonic map f :
1828
+ M → N between K¨ahler manifolds,
1829
+ ∂ ¯∂{¯∂f, ¯∂f} ∧
1830
+ ωn−2
1831
+ (n − 2)!
1832
+ =
1833
+
1834
+ 4
1835
+ ��∂E′ ¯∂f
1836
+ ��2 + Q
1837
+ � ωn
1838
+ n! .
1839
+ Proof. Combine Lemma 3.15, Lemma 3.17, Lemma 3.18 and Corollary 3.20 below.
1840
+
1841
+ The curvature operators of E′ and E′′ are RE′ = −(∂E′ + ¯∂E′)2 and RE′′ = −(∂E′′ +
1842
+ ¯∂E′′)2 respectively.
1843
+ Lemma 3.17. For any smooth map f : M → N between K¨ahler manifolds, we have
1844
+ ∂ ¯∂{¯∂f, ¯∂f} ∧
1845
+ ωn−2
1846
+ (n − 2)! =
1847
+
1848
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} − {¯∂f, RE′(¯∂f)}
1849
+
1850
+
1851
+ ωn−2
1852
+ (n − 2)!
1853
+ and
1854
+ ∂ ¯∂{¯∂ ¯f, ¯∂ ¯f} ∧
1855
+ ωn−2
1856
+ (n − 2)! =
1857
+
1858
+ −{∂E′′ ¯∂ ¯f, ∂E′′ ¯∂ ¯f} − {¯∂ ¯f, RE′′(¯∂ ¯f)}
1859
+
1860
+
1861
+ ωn−2
1862
+ (n − 2)!.
1863
+
1864
+ NOTES ON HARMONIC MAPS
1865
+ 25
1866
+ Proof. By setting ψ = ξ = ¯∂f ∈ Ω0,1(E′) in (3.5) and repeatedly using the fact that
1867
+ ¯∂E′ ¯∂f = 0 (cf. (3.3)),
1868
+ ∂ ¯∂{¯∂f, ¯∂f}
1869
+ =
1870
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} + {¯∂f, ¯∂E′∂E′ ¯∂f}
1871
+ =
1872
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} + {¯∂f, (¯∂E′∂E′ + ∂E′ ¯∂E′ + ¯∂2
1873
+ E′)¯∂f}.
1874
+ Since {¯∂f, ∂2
1875
+ E′ ¯∂f} ∧
1876
+ ωn−2
1877
+ (n−2)! is an (n − 1, n + 1)-form and hence zero for dimensional
1878
+ reasons, we can complete the square to obtain
1879
+ ∂ ¯∂{¯∂f, ¯∂f} ∧
1880
+ ωn−2
1881
+ (n − 2)!
1882
+ =
1883
+
1884
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} + {¯∂f, (∂E′ + ¯∂E′)2 ¯∂f}
1885
+
1886
+
1887
+ ωn−2
1888
+ (n − 2)!
1889
+ =
1890
+
1891
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} − {¯∂f, RE′(¯∂f)}
1892
+
1893
+
1894
+ ωn−2
1895
+ (n − 2)!
1896
+ which proves the first equation. The second equation follows by setting ψ = ξ = ¯∂ ¯f ∈
1897
+ Ω0,1(E′′) in (3.5) and following exactly the same computation.
1898
+
1899
+ Lemma 3.18. For any harmonic map f : M → N between K¨ahler manifolds, we have
1900
+ −{∂E′ ¯∂f, ∂E′ ¯∂f} ∧
1901
+ ωn−2
1902
+ (n − 2)!
1903
+ =
1904
+ 4
1905
+ ��∂E′ ¯∂f
1906
+ ��2 ωn
1907
+ n!
1908
+ −{∂E′′ ¯∂ ¯f, ∂E′′ ¯∂ ¯f} ∧
1909
+ ωn−2
1910
+ (n − 2)!
1911
+ =
1912
+ 4
1913
+ ��∂E′′ ¯∂ ¯f
1914
+ ��2 ωn
1915
+ n! .
1916
+ Proof. Apply Lemma 3.7 with φ = ∂E′ ¯∂f (resp. φ = ∂E′′ ¯∂ ¯f). Since f is harmonic,
1917
+ Trω∂E′ ¯∂f = 0 and Trω∂E′′ ¯∂ ¯f = 0 by Lemma 3.1.
1918
+
1919
+ Lemma 3.19. For any smooth map f : M → N between K¨ahler manifolds, we have
1920
+ {¯∂f, RE′(¯∂f)} = Ri¯jk¯l ¯∂f i ∧ ∂ ¯f j ∧ ∂f k ∧ ¯∂ ¯f l = {¯∂ ¯f, RE′′(¯∂ ¯f)}.
1921
+ Proof. Using normal coordinates, we compute
1922
+ {¯∂f, RE′(¯∂f)}
1923
+ =
1924
+ {¯∂f i ∂
1925
+ ∂f i , RE′(¯∂f j ∂
1926
+ ∂f j )}
1927
+ =
1928
+ {¯∂f i ∂
1929
+ ∂f i , ¯∂f j ∧ RE′( ∂
1930
+ ∂f j )}
1931
+ =
1932
+ {¯∂f i ∂
1933
+ ∂f i , ¯∂f j ∧ Rs
1934
+ jk¯l∂f k ∧ ∂f l ∂
1935
+ ∂f s }
1936
+ =
1937
+ Ri¯j¯kl ¯∂f i ∧ ∂ ¯f j ∧ ¯∂ ¯f k ∧ ∂f l
1938
+ =
1939
+ Ri¯jk¯l ¯∂f i ∧ ∂ ¯f j ∧ ∂f k ∧ ¯∂ ¯f l
1940
+
1941
+ 26
1942
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
1943
+ which proves the first equality. The second equality is proved similarly:
1944
+ {¯∂ ¯f, RE′′(¯∂ ¯f)}
1945
+ =
1946
+ {¯∂ ¯f i ∂
1947
+ ∂ ¯f i , RE′′(¯∂ ¯f j ∂
1948
+ ∂ ¯f j )}
1949
+ =
1950
+ {¯∂ ¯f i ∂
1951
+ ∂ ¯f i , ¯∂ ¯f j ∧ RE′′( ∂
1952
+ ∂ ¯f j )}
1953
+ =
1954
+ {¯∂ ¯f i ∂
1955
+ ∂ ¯f i , ¯∂ ¯f j ∧ R¯s
1956
+ ¯j¯kl∂ ¯f k ∧ ¯∂f l ∂
1957
+ ∂ ¯f s }
1958
+ =
1959
+ R¯ijk¯l ¯∂ ¯f i ∧ ∂f j ∧ ¯∂f k ∧ ∂ ¯f l
1960
+ =
1961
+ Rj¯ik¯l∂f j ∧ ¯∂ ¯f i ∧ ¯∂f k ∧ ∂ ¯f l
1962
+ =
1963
+ Ri¯jk¯l∂f i ∧ ¯∂ ¯f j ∧ ¯∂f k ∧ ∂ ¯f l
1964
+ =
1965
+ Ri¯jk¯l ¯∂f i ∧ ∂ ¯f j ∧ ∂f k ∧ ¯∂ ¯f l.
1966
+
1967
+ Corollary 3.20. For any smooth map f : M → N between K¨ahler manifolds, we have
1968
+ −{¯∂f, RE′(¯∂f)} ∧
1969
+ ωn−2
1970
+ (n − 2)! = Qωn
1971
+ n! .
1972
+ Proof. Combine Lemma 3.19 with the definition of Q given in Lemma 3.15.
1973
+
1974
+ Theorem 3.21. Suppose M and N are compact K¨ahler manifolds and the curvature
1975
+ of N is strongly semi-negative. If f : M → N is a harmonic map, then f is plurihar-
1976
+ monic. If, in addition, the curvature of N is strongly negative and the rankRdf ≥ 3 at
1977
+ some point of M, then f is either holomorphic or conjugate holomorphic.
1978
+ Proof. Integrate Siu’s Bochner formula over M. Applying Stoke’s theorem results in
1979
+ the left hand side being 0. The two terms on the right hand side are non-negative
1980
+ pointwise, hence they must be identically equal to 0. In particular, ∂E′ ¯∂f = 0; i.e. f
1981
+ is is pluriharmonic. If the rank is ≥ 3 at some point x, ¯∂f = 0 in some neighborhood
1982
+ of x by the definition of Q. Hence ¯∂f = 0 in all of M.
1983
+
1984
+ 3.7. Variations of the Siu and Sampson Formulas. The following is a variation
1985
+ of the Sampson’s Bochner Formula. For harmonic metrics, this is due to Mochizuki
1986
+ (cf. [M, Proposition 21.42]).
1987
+ Theorem 3.22. For a harmonic map f : M → N from a K¨ahler manifold to a
1988
+ Riemannian manifold,
1989
+ d{d′
1990
+ Ed′f, d′′f − d′f} ∧
1991
+ ωn−2
1992
+ (n − 2)!
1993
+ =
1994
+ 8
1995
+
1996
+ |d′
1997
+ Ed′′f|2 + Q0
1998
+
1999
+ ∧ ωn
2000
+ n! .
2001
+ Proof. The key observation is that, since d′{d′
2002
+ Ed′′f, d′′f} ∧
2003
+ ωn−2
2004
+ (n−2)! is an (n + 1, n − 1)-
2005
+ form and d′′{d′
2006
+ Ed′′f, d′f} ∧
2007
+ ωn−2
2008
+ (n−2)! is an (n − 1, n + 1)-form, these two forms are both
2009
+
2010
+ NOTES ON HARMONIC MAPS
2011
+ 27
2012
+ identically equal to zero. Thus,
2013
+ d′{d′
2014
+ Ed′′f, d′f − d′′f} ∧
2015
+ ωn−2
2016
+ (n − 2)!
2017
+ =
2018
+ d′{d′
2019
+ Ed′′f, d′f} ∧
2020
+ ωn−2
2021
+ (n − 2)!
2022
+ =
2023
+ −d′{d′′
2024
+ Ed′f, d′f} ∧
2025
+ ��n−2
2026
+ (n − 2)!
2027
+ (by (3.2)).
2028
+ =
2029
+ −d′d′′{d′f, d′f} ∧
2030
+ ωn−2
2031
+ (n − 2)!
2032
+ =
2033
+ d′d′′{d′′f, d′′f} ∧
2034
+ ωn−2
2035
+ (n − 2)!
2036
+ (3.6)
2037
+ d′′{d′
2038
+ Ed′′f, d′f − d′′f} ∧
2039
+ ωn−2
2040
+ (n − 2)!
2041
+ =
2042
+ −d′′{d′
2043
+ Ed′′f, d′′f} ∧
2044
+ ωn−2
2045
+ (n − 2)!
2046
+ =
2047
+ −d′′d′{d′′f, d′′f} ∧
2048
+ ωn−2
2049
+ (n − 2)!
2050
+ =
2051
+ d′d′′{d′′f, d′′f} ∧
2052
+ ωn−2
2053
+ (n − 2)!.
2054
+ (3.7)
2055
+ Thus,
2056
+ d{d′′
2057
+ Ed′f, d′′f − d′f} ∧
2058
+ ωn−2
2059
+ (n − 2)!
2060
+ =
2061
+ d{d′
2062
+ Ed′′f, d′f − d′′f} ∧
2063
+ ωn−2
2064
+ (n − 2)!
2065
+ (by (3.2))
2066
+ =
2067
+ (d′ + d′′){d′
2068
+ Ed′′f, d′f − d′′f} ∧
2069
+ ωn−2
2070
+ (n − 2)!
2071
+ =
2072
+ 2d′d′′{d′′f, d′′f} ∧
2073
+ ωn−2
2074
+ (n − 2)! (by (3.6) and (3.7)).
2075
+ Thus, the asserted identity follows from Theorem 3.4.
2076
+
2077
+ By applying a similar proof as Theorem 3.23, we obtain a variation of the Siu’s
2078
+ Bochner formula.
2079
+ Theorem 3.23. For a harmonic map f : M → X between K¨ahler manifolds,
2080
+ d{¯∂E′∂f, ¯∂f − ∂f} ∧
2081
+ ωn−2
2082
+ (n − 2)!
2083
+ =
2084
+
2085
+ 8
2086
+ ��∂E′ ¯∂f
2087
+ ��2 + 2Q
2088
+
2089
+ ∧ ωn
2090
+ n! .
2091
+ Proof. As in the proof of Theorem 3.22, ∂{∂E′ ¯∂f, ¯∂f} ∧
2092
+ ωn−2
2093
+ (n−2)! = 0 = ¯∂{∂E′ ¯∂f, ∂f} ∧
2094
+ ωn−2
2095
+ (n−2)! and hence
2096
+ ∂{∂E′ ¯∂f, ∂f − ¯∂f} ∧
2097
+ ωn−2
2098
+ (n − 2)!
2099
+ =
2100
+ ∂ ¯∂{¯∂ ¯f, ¯∂ ¯f} ∧
2101
+ ωn−2
2102
+ (n − 2)!,
2103
+ ¯∂{∂E′ ¯∂f, ∂f − ¯∂f} ∧
2104
+ ωn−2
2105
+ (n − 2)!
2106
+ =
2107
+ ∂ ¯∂{¯∂f, ¯∂f} ∧
2108
+ ωn−2
2109
+ (n − 2)!.
2110
+
2111
+ 28
2112
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
2113
+ Consequently,
2114
+ d{¯∂E′∂f, ¯∂f − ∂f} ∧
2115
+ ωn−2
2116
+ (n − 2)!
2117
+ =
2118
+ d{∂E′ ¯∂f, ∂f − ¯∂f} ∧
2119
+ ωn−2
2120
+ (n − 2)!
2121
+ =
2122
+ (∂ + ¯∂){∂E′ ¯∂f, ∂f − ¯∂f} ∧
2123
+ ωn−2
2124
+ (n − 2)!
2125
+ =
2126
+
2127
+ ∂ ¯∂{¯∂f, ¯∂f} + ∂ ¯∂{¯∂ ¯f, ¯∂ ¯f}
2128
+
2129
+
2130
+ ωn−2
2131
+ (n − 2)!.
2132
+ The asserted identity follows from Theorem 3.16.
2133
+
2134
+ 3.8. Pluriharmonic maps into Euclidean buildings.
2135
+ Theorem 3.24. Let M be a compact K¨ahler manifold and ∆(G) be the Bruhat-Tits
2136
+ building associated to a semisimple algebraic group G defined over a non-Archimedean
2137
+ local field K. For any Zariski dense representation of ρ : π1(X) → G(K), there exists
2138
+ a ρ-equivariant, locally Lipschitz pluriharmonic map f : ˜
2139
+ M → ∆(G) from the universal
2140
+ cover ˜
2141
+ M.
2142
+ Definition 3.25. A Euclidean building of dimension n is a piecewise Euclidean sim-
2143
+ plicial complex ∆ such that:
2144
+ • ∆ is the union of a collection A of subcomplexes A, called apartments, such
2145
+ that the intrinsic metric dA on A makes (A, dA) isometric to the Euclidean
2146
+ space Rn and induces the given Euclidean metric on each simplex.
2147
+ • Given two apartments A and A′ containing both simplices S and S′, there
2148
+ is a simplicial isometry from (A, dA) to (A′, dA′) which leaves both S and S′
2149
+ pointwise fixed.
2150
+ • ∆ is locally finite.
2151
+ Definition 3.26. A point x0 is said to be a regular point of a harmonic map f, if there
2152
+ exists r > 0 such that f(Br(x0)) of x is contained in an apartment of ∆. A singular
2153
+ point of f is a point of Ω that is not a regular point. The regular (resp. singular) set
2154
+ R(f) (resp. S(u)) of f is the set of all regular (resp. singular) points of f.
2155
+ Example 3.27. Consider a measured foliation defined by the quadratic differential
2156
+ zdz2 on C. The leaves of the horizontal foliation define a 3-pod T and the transverse
2157
+ measure gives T a distance function d making (T, d) into a NPC space. The projection
2158
+ along the vertical foliation u : C → T is a harmonic map.
2159
+ The leaf containing 0
2160
+ is a non-manifold point of T. Let K = u−1(0). Then K is also a 3-pod. On the
2161
+ other hand, every point of K besides 0 has a neighborhood mapping into an isometric
2162
+ copy of R and S(0) = {0}. In particular, the singular set is of Hausdorff codimension
2163
+ 2. Similarly one can construct harmonic maps to other homogeneous trees by taking
2164
+ quadratic differentials of higher order.
2165
+
2166
+ NOTES ON HARMONIC MAPS
2167
+ 29
2168
+ The next two theorems are proved in [GS].
2169
+ Theorem 3.28. The singular set S(f) of a harmonic map f : M → ∆ is a closed set
2170
+ of Hausdorff codimension ≥ 2.
2171
+ Theorem 3.29. Let f : M → ∆ be as in Theorem 3.28. There exists a sequence of
2172
+ smooth functions ψi with ψi ≡ 0 in a neighborhood of S(u), 0 ≤ ψi ≤ 1 and ψi(x) → 1
2173
+ for all x ∈ S(u) such that
2174
+ lim
2175
+ i→∞
2176
+
2177
+ M
2178
+ |∇∇u||∇ψi| dµ = 0.
2179
+ By Theorem 3.28, Siu’s or Sampson’s Bochner formula holds at a.e. x ∈ ˜
2180
+ M. We
2181
+ now follow the proof of Theorem 3.21 where integration by parts can be justified using
2182
+ Theorem 3.28 and Theorem 3.29.
2183
+
2184
+ 30
2185
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
2186
+ 4. Donaldson Corlette theorem
2187
+ 4.1. Introduction: Higgs bundles via harmonic maps. In this lecture, we prove
2188
+ the theorem of Donaldson and Corlette relating harmonic maps to symmetric spaces
2189
+ of non-compact type and flat connections.
2190
+ We do it explicitly for SL(n, C).
2191
+ This
2192
+ correspondence is very well known and there are many excellent references to consult.
2193
+ Given the interest of the audience in this subject, we decided to give all the details of
2194
+ the proof explicitly. See also [Do], [Co] and the expositional paper [Li].
2195
+ 4.2. The flat vector bundle associated to a representation. Let ρ : π1(M) →
2196
+ G = SL(n, C) be a homomorphism and
2197
+ E = ˜
2198
+ M ×ρ Cn → M
2199
+ be the associated flat vector bundle. Let H denote the space of positive definite self-
2200
+ adjoint matrices of determinant one. For g ∈ SL(n, C), define an action Ag on the
2201
+ space of (n × n)-matrices Mn×n(C) by
2202
+ Ag(h) = g−1∗hg−1.
2203
+ (4.1)
2204
+ Note that H is invariant under Ag and hence it defines an action on H.
2205
+ A ρ-equivariant map h : ˜
2206
+ M → H defines a hermitian metric on E by first defining
2207
+ H(s, t) = ¯stht
2208
+ (4.2)
2209
+ on the universal cover ˜
2210
+ M × Cn and descending to a metric on E by equivariance.
2211
+ Given the flat vector bundle (E, d) defined by ρ and the Hermitian metric H defined
2212
+ by a ρ-equivariant map, we define θ ∈ Ω1(M, End(E)) by the formula
2213
+ H(θs, t) = 1/2 (H(ds, t) + H(s, dt) − dH(s, t))
2214
+ (4.3)
2215
+ and D by the formula
2216
+ d = D + θ.
2217
+ (4.4)
2218
+ Formulas (4.3) and (4.4) immediately imply that
2219
+ H(θs, t) = H(s, θt)
2220
+ (4.5)
2221
+ and
2222
+ H(Ds, t) + H(s, Dt)
2223
+ =
2224
+ H(ds, t) − H(θs, t) + H(s, dt) − H(s, θt)
2225
+ =
2226
+ dH(s, t).
2227
+ (4.6)
2228
+ In other words, D is a Hermitian connection on (E, H).
2229
+ We claim
2230
+ θ = −1
2231
+ 2h−1dh.
2232
+ (4.7)
2233
+
2234
+ NOTES ON HARMONIC MAPS
2235
+ 31
2236
+ To see (4.7), compute
2237
+ dH(s, t)
2238
+ =
2239
+ d¯sth t + ¯stdh t + ¯sth dt
2240
+ =
2241
+ H(ds, t) + ¯stdh t + H(s, dt)
2242
+ =
2243
+ H(Ds, t) + H(θs, t) + ¯stdh t + H(s, Dt) + H(s, θt)
2244
+ =
2245
+ dH(s, t) + H(θs, t) + H(s, h−1dh t) + H(s, θt).
2246
+ Thus,
2247
+ H(θs, t) = H(s, θt) = −1/2H(s, h−1dh t)
2248
+ and (4.7) follows.
2249
+ Let End0(E) denote the space of trace-less endomorphisms of E. We claim that D
2250
+ is a SL(n, C)-connection and θ ∈ End0(E). By (4.4) and since d is traceless, it suffices
2251
+ to show that θ is traceless. Indeed, since G/K is a Cartan-Hadamard space, we can
2252
+ write h = eu over a simply connected region U in M (or passing to the universal cover)
2253
+ where u(x) ∈ p for all x ∈ U. Thus,
2254
+ θ = h−1dh = du
2255
+ is traceless since u is traceless.
2256
+ As connections on End0(E),
2257
+ D = d + 1
2258
+ 2
2259
+
2260
+ h−1dh, ·
2261
+
2262
+ .
2263
+ (4.8)
2264
+ We apply harmonic map theory to prove:
2265
+ Theorem 4.1. Given an irreducible representation ρ : π1(M) → SL(n, C), there exists
2266
+ a ρ-equivariant map h : ˜
2267
+ M → H such that for the Hermitian metric H, Hermitian
2268
+ connection D on End0(E) and θ ∈ Ω1(M, End0(E)) defined by (4.2), (4.3) and (4.4)
2269
+ respectively,
2270
+ d⋆
2271
+ Dθ = 0.
2272
+ (4.9)
2273
+ The proof of Theorem 4.1 is given several steps: (1) Choose h to be a harmonic map
2274
+ (cf. Section 4.3). (2) Show that the Hermitian connection D is related to the Levi-
2275
+ Civita connection on H (cf. Section 4.4). (3) Show that the harmonic map equation
2276
+ for h is equivalent to (4.9) (cf. Section 4.5).
2277
+ 4.3. The equivariant map h is harmonic. The first step in the proof of Theorem 4.1
2278
+ is to choose the map h of Theorem 4.1 as a harmonic map into (H, gH) where the metric
2279
+ is given by
2280
+ gH(X, Y ) = n
2281
+ 2 trace(h−1Xh−1Y ) for X, Y ∈ ThH.
2282
+ Definition 4.2. We call h or H a harmonic metric.
2283
+
2284
+ 32
2285
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
2286
+ For G = SL(n, C), K = SU(n), let sl(n) = k ⊕ p be the Cartan decomposition and
2287
+ B(X, Y ) = 2n trace(XY )
2288
+ be the Killing form on sl(n). The inner product is positive definite on p.
2289
+ Let Lg : G/K → G/K be left multiplication and define a metric gG/K on G/K by
2290
+ metrically identifying
2291
+ dLg−1 : TgKG/K → TeKG/K = p.
2292
+ (4.10)
2293
+ This defines (G/K, gG/K) as a symmetric space of non-compact type.
2294
+ Lemma 4.3. The map
2295
+ Ψ : G/K
2296
+ �→
2297
+ H
2298
+ gK
2299
+ �→
2300
+ g−1∗g−1 = h
2301
+ identifies (G/K, gG/K) isometrically with (H, gH) as G-spaces.
2302
+ Proof. First, Ψ is equivariant with respect to the action Lg on G/K and the action Ag
2303
+ on H. Indeed,
2304
+ Ψ ◦ Lg(g1K) = Ψ(gg1K) = (gg1)−1∗(gg1)−1 = g−1∗(g−1∗
2305
+ 1
2306
+ g−1
2307
+ 1 )g−1
2308
+ = g−1∗Ψ(g1K)g−1 = Ag ◦ Ψ(g1K).
2309
+ Second, Ψ is an isometry. Since the metric gG/K is defined by (4.10), we need to show
2310
+ that with h = g−1∗g−1 ∈ H,
2311
+ d(Lg−1)gK ◦ d(Ψ−1)h = d
2312
+
2313
+ (Ψ ◦ Lg)−1�
2314
+ h : ThH → TeKG/K = p
2315
+ is an isometry. This is a straightforward calculation: Let t �→ gt be a path in G/K with
2316
+ g0 = eK and ˙g0 ∈ TeKG/K (where dot indicates the t-derivative). For ˙g ∈ TeKG/K,
2317
+ since ˙g0 is self-adjoint,
2318
+ (dΨ)e(˙g0) = d
2319
+ dt
2320
+ ���
2321
+ t=0(g−1∗
2322
+ t
2323
+ g−1
2324
+ t ) = −˙g∗
2325
+ 0 − ˙g0 = −2˙g0.
2326
+ (4.11)
2327
+ For X ∈ ThH,
2328
+ d
2329
+
2330
+ (Ψ ◦ Lg)−1�
2331
+ h(X)
2332
+ =
2333
+ d
2334
+
2335
+ (Ag ◦ Ψ)−1�
2336
+ h(X) = d(Ψ−1 ◦ Ag−1)h(X)
2337
+ =
2338
+ d(Ψ−1 ◦ Ag−1)g−1∗g−1(X) = (dΨe)−1 ◦ (dAg−1)g−1∗g−1(X)
2339
+ =
2340
+ (dΨ−1)e(g∗Xg) = −1
2341
+ 2g∗Xg
2342
+ =
2343
+ −1
2344
+ 2Adg−1(gg∗X) = −1
2345
+ 2Adg−1(h−1X).
2346
+
2347
+ NOTES ON HARMONIC MAPS
2348
+ 33
2349
+ Here we used (4.11) in the third to last equality.
2350
+ Using this formula and the Ad-
2351
+ invariance of the Killing form, we have for X, Y ∈ ThH
2352
+ B
2353
+
2354
+ d
2355
+
2356
+ (Ψ ◦ Lg)−1�
2357
+ h(X), d
2358
+
2359
+ (Ψ ◦ Lg)−1�
2360
+ h(Y )
2361
+
2362
+ = 1
2363
+ 4B(h−1X, h−1Y )
2364
+ = n
2365
+ 2trace(h−1Xh−1Y )
2366
+ = gH(X, Y ).
2367
+
2368
+ By Theorem 2.17, there exists a ρ-equivariant harmonic map f : ˜
2369
+ M → G/K. In
2370
+ view of the Lemma 4.3, we identify G/K with H and obtain a ρ-equivariant harmonic
2371
+ map
2372
+ h = f −1∗f −1 : ˜
2373
+ M → H,
2374
+ d⋆
2375
+ ∇dh = 0
2376
+ where ∇ is the pullback to h∗TH of the Levi-Civita connection of (H, gH).
2377
+ 4.4. The hermitian connection D and the Levi-Civita connection on (H, gH).
2378
+ Recall that H ⊂ SL(n, C) is the space of positive definite, self-adjoint matrices of
2379
+ determinant one and consider the map
2380
+ Ph : ThH → Ph(ThH) ⊂ sl(n),
2381
+ X �→ h−1X
2382
+ whose image Ph(ThH) consists of matrices self-adjoint with respect to h. Indeed,
2383
+ (h−1X)∗h = h−1(h−1X)∗h = h−1X.
2384
+ Extending this map complex linearly induces an isomorphism
2385
+ P C
2386
+ h : ThHC
2387
+ ≃−→ sl(n)
2388
+ which defines a global isomorphism
2389
+ P C : THC ≃−→ H × sl(n).
2390
+ (4.12)
2391
+ The trivial connection d on H × sl(n) pulls back by the isomorphism P C to a flat
2392
+ connection ¯∇ on THC; i.e.
2393
+ ¯∇XY
2394
+ ���
2395
+ h = P C−1 ◦ dX ◦ P C(Y )
2396
+ ���
2397
+ h.
2398
+ We next compute the formula for ¯∇ with respect to the coordinates that identify the
2399
+ space of (n × n)-matrices Mn×n(C) with Rn2. Let t �→ ht be a curve in H with h0 = h
2400
+ and ˙h0 = X(h). We have
2401
+ dX(P C(Y )) = d
2402
+ dt
2403
+ ���
2404
+ t=0
2405
+
2406
+ h−1
2407
+ t
2408
+ Y (ht)
2409
+
2410
+ = h−1 d
2411
+ dt
2412
+ ���
2413
+ t=0Y (ht) − h−1 ˙h0h−1 Y (h0).
2414
+
2415
+ 34
2416
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
2417
+ Using the embedding H ֒→ Mn×n(C), we express ht = (hij
2418
+ t ). Furthermore, we can ex-
2419
+ press X = Xij∂ij and Y = Y kl∂kl with respect to the coordinate basis (∂ij). Extending
2420
+ Y = Y kl∂kl as a vector field on Mn×n(C), we apply the chain rule to obtain
2421
+ d
2422
+ dt
2423
+ ���
2424
+ t=0Y (ht) = d
2425
+ dt
2426
+ ���
2427
+ t=0Y kl(ht)∂kl =
2428
+
2429
+ ∂ijY kl���
2430
+ h
2431
+ ˙hij
2432
+ 0
2433
+
2434
+ ∂kl =
2435
+
2436
+ Xij∂ijY kl� ���
2437
+ h ∂kl = ∂Y
2438
+ ∂X
2439
+ ���
2440
+ h.
2441
+ (4.13)
2442
+ Thus, the formula for the flat connection at the point h ∈ H is
2443
+ ¯∇XY = ∂Y
2444
+ ∂X − Xh−1Y.
2445
+ The Levi-Civita connection on TH, denoted by ∇ and extended complex linearly to
2446
+ THC, is given at h ∈ H by the formula
2447
+ ∇XY = ∂Y
2448
+ ∂X − 1
2449
+ 2
2450
+
2451
+ Xh−1Y + Y h−1X
2452
+
2453
+ .
2454
+ Indeed:
2455
+ (i) ∇ is torsion free: First, for a function f defined near h,
2456
+ � ∂Y
2457
+ ∂X − ∂X
2458
+ ∂Y
2459
+
2460
+ f
2461
+ =
2462
+ (Xij∂ijY kl)∂klf − (Y kl∂klXij)∂ijf
2463
+ =
2464
+ (Xij∂ijY kl)∂klf + XijY kl∂ij∂klf − (Y kl∂klXij)∂ijf − Y klXij∂kl∂ijf
2465
+ =
2466
+ X(Y f) − Y (Xf) = [X, Y ]f.
2467
+ Thus,
2468
+ ∇XY − ∇Y X
2469
+ =
2470
+ � ∂Y
2471
+ ∂X − 1
2472
+ 2(Xh−1Y + Y h−1X)
2473
+
2474
+
2475
+ �∂X
2476
+ ∂Y − 1
2477
+ 2(Y h−1X + Xh−1Y )
2478
+
2479
+ =
2480
+ ∂Y
2481
+ ∂X − ∂X
2482
+ ∂Y = [X, Y ].
2483
+ (ii) ∇ is metric compatible: Using the path t �→ ht given above and using (4.13),
2484
+ XgH(Y, Z)
2485
+ =
2486
+ n
2487
+ 2trace
2488
+ � ∂
2489
+ ∂t
2490
+ ���
2491
+ t=0
2492
+
2493
+ h−1
2494
+ t Y (ht)h−1
2495
+ t Z(ht)
2496
+ ��
2497
+ =
2498
+ n
2499
+ 2trace
2500
+ ��
2501
+ h−1 ∂Y
2502
+ ∂X − h−1Xh−1Y
2503
+
2504
+ h−1Z + h−1Y
2505
+
2506
+ h−1 ∂Z
2507
+ ∂X − h−1Xh−1Z
2508
+ ��
2509
+ =
2510
+ n
2511
+ 2trace
2512
+
2513
+ h−1
2514
+ � ∂Y
2515
+ ∂X − 1
2516
+ 2
2517
+
2518
+ Xh−1Y + Y h−1X
2519
+ ��
2520
+ h−1Z
2521
+
2522
+ +n
2523
+ 2trace
2524
+
2525
+ h−1Y h−1
2526
+ � ∂Z
2527
+ ∂X − 1
2528
+ 2(Xh−1Z + Zh−1X)
2529
+ ��
2530
+ =
2531
+ gH(∇XY, Z) + gH(Y, ∇XZ).
2532
+
2533
+ NOTES ON HARMONIC MAPS
2534
+ 35
2535
+ The difference of the flat connection ¯∇ and the Levi-Civita connection ∇ on THC is
2536
+ � ¯∇XY − ∇XY
2537
+
2538
+ = 1
2539
+ 2
2540
+
2541
+ Y h−1X − Xh−1Y
2542
+
2543
+ = −1
2544
+ 2h
2545
+
2546
+ h−1X, h−1Y
2547
+
2548
+ .
2549
+ (4.14)
2550
+ Let ˆ∇ = P C◦∇◦P C−1 denote the pullback to H×sl(n) of the Levi-Civita connection
2551
+ ∇ on THC via (4.12). Then the corresponding formula to (4.14) for the difference
2552
+ between the flat connection d and ˆ∇ on H × sl(n) → H is
2553
+ dX − ˆ∇X = −1
2554
+ 2
2555
+
2556
+ h−1X, ·
2557
+
2558
+ .
2559
+ (4.15)
2560
+ The bundle H × sl(n) pulls back by h : ˜
2561
+ M → H to the trivial SL(n, C)-bundle h∗(H ×
2562
+ sl(n)) on the universal cover ˜
2563
+ M.
2564
+ h∗(H × sl(n))
2565
+ H × sl(n)
2566
+ ˜
2567
+ M
2568
+ H
2569
+ h
2570
+ From (4.15), the difference of the flat connection d and the pullback h∗ ˆ∇ is given by
2571
+ the formula
2572
+ dV − (h∗ ˆ∇)V = −1
2573
+ 2
2574
+
2575
+ h−1dh(V ), ·
2576
+
2577
+ .
2578
+ (4.16)
2579
+ Next, the pullback to ˜
2580
+ M of the endormorphism bundle End0(E) is isomorphic to
2581
+ the trivial bundle.
2582
+ Taking the quotient by the induced action from ρ, End0(E) ≃
2583
+ h∗(H ×ρ sl(n)) → M and the connection h∗ ˆ∇ induces a connection on End0(E) (which
2584
+ we also call ˆ∇).
2585
+ From (4.16), we have
2586
+ ˆ∇ = d + 1
2587
+ 2
2588
+
2589
+ h−1dh, ·
2590
+
2591
+ .
2592
+ Hence,
2593
+ ˆ∇ = D
2594
+ by (4.8). In other words, D is the connection on End0(E) induced by the Levi-Civita
2595
+ connection on T CH.
2596
+ 4.5. Completion of the proof of Theorem 4.1. The bundle isomorphism P C−1 of
2597
+ (4.12) induces a bundle isomorphism (still denoted by P C−1)
2598
+ h∗(H ×ρ sl(n))
2599
+
2600
+ h∗(THC) → M
2601
+ φ
2602
+ �→
2603
+ hφ.
2604
+ Also,
2605
+ ˆ∇ = P C ◦ ∇ ◦ P C−1.
2606
+ (4.17)
2607
+
2608
+ 36
2609
+ GEORGIOS DASKALOPOULOS AND CHIKAKO MESE
2610
+ In particular, since
2611
+ θ = −1
2612
+ 2h−1dh ∈ Ω1(M, End0(E)) ≃ Ω1(M, h∗(H ×ρ sl(n))),
2613
+ we have
2614
+ P C−1θ = hθ = −1
2615
+ 2dh ∈ Ω1(M, h∗(THC)).
2616
+ (4.18)
2617
+ Theorem 4.1 follows from the the following implications:
2618
+ h is harmonic
2619
+
2620
+ 0 = −1
2621
+ 2d∗
2622
+ ∇dh = d∗
2623
+ ∇hθ = d∗
2624
+ ∇P C−1θ
2625
+ by (4.18)
2626
+
2627
+ 0 = P Cd∗
2628
+ ∇P C−1θ = d∗
2629
+ ˆ∇θ = d∗
2630
+
2631
+ by (4.4) and (4.17).
2632
+ References
2633
+ [BH]
2634
+ M. R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer-Verlag,
2635
+ Berlin (1999).
2636
+ [Co]
2637
+ K. Corlette. Flat G-bundles with canonical metrics. J. Differential Geom. 28 (1988) 361-382.
2638
+ [Do]
2639
+ S. Donaldson. Twisted harmonic maps and the self-duality equations. Proc. London
2640
+ Math. Soc. 55 (1987) 127-131.
2641
+ [ES]
2642
+ J. Eells and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math.
2643
+ 86 (1964) 109-160.
2644
+ [GS]
2645
+ M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for
2646
+ lattices in groups of rank one. Publ. Math. IHES 76 (1992) 165-246.
2647
+ [J]
2648
+ J. Jost. Nonlinear Methods in Riemannian and K¨ahlerian Geometry. Birkh¨auser Verlag 1988.
2649
+ [KL]
2650
+ B. Kleiner and B. Lieb. Rigidity of quasi-isometries for symmetric spaces and Euclidean build-
2651
+ ings. Publications mathematiques de I.H.E.S, tome 86 (1997), 115-197.
2652
+ [KS1]
2653
+ N. Korevaar and R. Schoen. Global existence theorems for harmonic maps to non-locally com-
2654
+ pact spaces. Comm. Anal. Geom. 5 (1997) 213-266.
2655
+ [KS2]
2656
+ N. Korevaar and R. Schoen. Global existence theorem for harmonic maps to non-locally com-
2657
+ pact spaces. Comm. Anal. Geom. 5 (1997), 333-387.
2658
+ [Li]
2659
+ Q. Li. An Introduction to Higgs Bundles via Harmonic Maps. SIGMA 15 (2019).
2660
+ [LSY] K. Liu, X. Sun, X. Yang and ST. Yau.Curvatures of moduli space of curves and applications.
2661
+ Asian J. of Math. Vol. 21, No. 5, (2017) 841-854.
2662
+ [LY]
2663
+ K. Liu and X. Yang. Hermitian harmonic maps and non-degenerate curvatures. Mathematical
2664
+ Research Letters 21 (2014) 831-862.
2665
+ [M]
2666
+ T. Mochizuki. Asymptotic behaviour of tame harmonic bundles and an application to pure
2667
+ twistor D-modules. Memoirs of the AMS 185 (2007).
2668
+ [Sa]
2669
+ J. H. Sampson. Harmonic maps in K¨ahler geometry. Harmonic mappings and minimal im-
2670
+ mersions, 193–205, Lecture Notes in Math., 1161, Springer, Berlin, 1985.
2671
+ [S]
2672
+ R. Schoen. Analytic Aspects of the Harmonic Map Problem. Seminar on Nonlinear Partial
2673
+ Differential Equations, 1984, MSRI Publications book series, Volume 2.
2674
+ [Siu]
2675
+ Y.-T. Siu. The complex analyticity of harmonic maps and the strong rigidity of compact K¨ahler
2676
+ manifolds. Ann. of Math. 112 (1980) 73-111.
2677
+
2NE2T4oBgHgl3EQf5ggG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE2T4oBgHgl3EQfjAcm/content/2301.03963v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d197903cadc80534ac1f3ff52f9b37e9ba48afb79984657d534a0e5950c3ba
3
+ size 5207905
2dAzT4oBgHgl3EQfe_zq/content/tmp_files/2301.01447v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dAzT4oBgHgl3EQfe_zq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39AzT4oBgHgl3EQfuv0b/content/tmp_files/2301.01694v1.pdf.txt ADDED
@@ -0,0 +1,2456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 5, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX63
3
+ Diagnosing limb asymmetries in hot and ultra-hot Jupiters with high-resolution transmission
4
+ spectroscopy
5
+ Arjun B. Savel
6
+ ,1, 2 Eliza M.-R. Kempton
7
+ ,2 Emily Rauscher
8
+ ,3 Thaddeus D. Komacek
9
+ ,2
10
+ Jacob L. Bean
11
+ ,4 Matej Malik
12
+ ,2 and Isaac Malsky
13
+ 3
14
+ 1Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
15
+ 2Astronomy Department, University of Maryland, College Park, 4296 Stadium Dr., College Park, MD 207842 USA
16
+ 3Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
17
+ 4Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637, USA
18
+ Submitted to ApJ
19
+ Abstract
20
+ Due to their likely tidally synchronized nature, (ultra)hot Jupiter atmospheres should experience
21
+ strongly spatially heterogeneous instellation. The large irradiation contrast and resulting atmospheric
22
+ circulation induce temperature and chemical gradients that can produce asymmetries across the eastern
23
+ and western limbs of these atmospheres during transit. By observing an (ultra)hot Jupiter’s transmis-
24
+ sion spectrum at high spectral resolution, these asymmetries can be recovered—namely through net
25
+ Doppler shifts originating from the exoplanet’s atmosphere yielded by cross-correlation analysis. Given
26
+ the range of mechanisms at play, identifying the underlying cause of observed asymmetry is nontrivial.
27
+ In this work, we explore sources and diagnostics of asymmetries in high-resolution cross-correlation
28
+ spectroscopy of hot and ultra-hot Jupiters using both parameterized and self-consistent atmospheric
29
+ models. If an asymmetry is observed, we find that it can be difficult to attribute it to equilibrium
30
+ chemistry gradients because many other processes can produce asymmetries. Identifying a molecule
31
+ that is chemically stable over the temperature range of a planetary atmosphere can help establish a
32
+ “baseline” to disentangle the various potential causes of limb asymmetries observed in other species.
33
+ We identify CO as an ideal molecule, given its stability over nearly the entirety of the ultra-hot Jupiter
34
+ temperature range. Furthermore, we find that if limb asymmetry is due to morning terminator clouds,
35
+ blueshifts for a number of species should decrease during transit. Finally, by comparing our forward
36
+ models to Kesseli et al. (2022), we demonstrate that binning high-resolution spectra into two phase
37
+ bins provides a desirable trade-off between maintaining signal to noise and resolving asymmetries.
38
+ Keywords: Exoplanet atmospheric composition (2021) — Radiative transfer simulations (1967) — High
39
+ resolution spectroscopy (2096) — Hot Jupiters (753)
40
+ 1. INTRODUCTION
41
+ Exoplanet atmospheres vary spatially.
42
+ This is es-
43
+ pecially the case for tidally locked exoplanets, which
44
+ feature permanent daysides and permanent nightsides;
45
+ such strong gradients in instellation in turn drive strong
46
+ latitudinal and longitudinal variations in atmospheric
47
+ temperature, dynamics, and chemistry (e.g., Showman
48
+ & Guillot 2002; Cooper & Showman 2005; Harrington
49
+ Corresponding author: Arjun B. Savel
50
51
+ et al. 2006; Cho et al. 2008; Menou & Rauscher 2009;
52
+ Showman et al. 2009; Rauscher & Menou 2010; Perna
53
+ et al. 2012; Mayne et al. 2014; Demory et al. 2016; Fro-
54
+ mang et al. 2016; Kataria et al. 2016; Parmentier et al.
55
+ 2018; Zhang & Showman 2018; Kreidberg et al. 2019;
56
+ Komacek et al. 2019; Tan & Komacek 2019; Parmentier
57
+ et al. 2021; Roman et al. 2021).
58
+ The spatial variations in exoplanet atmospheres have
59
+ increasingly observable ramifications. Even with the in-
60
+ sight gained from modeling exoplanet atmospheres as
61
+ one-dimensional objects (e.g., Madhusudhan & Seager
62
+ 2009; Crossfield & Kreidberg 2017; Yan et al. 2019;
63
+ arXiv:2301.01694v1 [astro-ph.EP] 4 Jan 2023
64
+
65
+ ID2
66
+ Savel et al.
67
+ Benneke et al. 2019), a substantial and growing liter-
68
+ ature demonstrates that upcoming JWST (Beichman
69
+ et al. 2014) data will require consideration of 3D pro-
70
+ cesses for accurate interpretation of exoplanet atmo-
71
+ spheric data (Feng et al. 2016; Blecic et al. 2017; Caldas
72
+ et al. 2019; Lacy & Burrows 2020; MacDonald et al.
73
+ 2020; Pluriel et al. 2020; Espinoza & Jones 2021; Pluriel
74
+ et al. 2022; MacDonald & Lewis 2022; Welbanks &
75
+ Madhusudhan 2022). Perhaps more urgently, ground-
76
+ based high-resolution (R ≥ 15, 000) cross-correlation
77
+ spectroscopy (HRCCS; for a review, see Birkby 2018)
78
+ datasets already show signs of significant multidimen-
79
+ sionality (Flowers et al. 2019; Beltz et al. 2020; Gandhi
80
+ et al. 2022; Herman et al. 2022; van Sluijs et al. 2022).
81
+ In transit geometry, HRCCS is similar to the more
82
+ traditional transmission spectroscopy technique (e.g.,
83
+ Charbonneau et al. 2002).
84
+ Both methods leverage
85
+ the idea that, as an exoplanet passes between its host
86
+ star and an observer, stellar light is attenuated on a
87
+ wavelength-dependent basis as it passes through the up-
88
+ per layers of the planet’s atmosphere. But with HRCCS,
89
+ the planetary absorption spectrum is buried in the stel-
90
+ lar and telluric noise. Therefore, models of planetary ab-
91
+ sorption often cannot be directly compared to HRCCS
92
+ data.1
93
+ However, by leveraging cross-correlation tech-
94
+ niques, researchers can combine the signal from the
95
+ many planetary absorption lines resolved at high resolu-
96
+ tion to yield a combined, statistically significant signal
97
+ (e.g., Snellen et al. 2010).
98
+ The resolving of individual spectral lines allows for
99
+ more than just binary detection/non-detection of plane-
100
+ tary absorption: crucially, the Doppler shifts of plan-
101
+ etary absorption lines are recoverable.
102
+ The Doppler
103
+ shifting of planetary lines due to the planet’s orbital
104
+ motion is in fact central for extracting the planetary
105
+ signal with cross-correlation techniques, as the stellar
106
+ and telluric lines are comparatively static. Specifically,
107
+ a template spectrum is chosen to model the planetary
108
+ absorption signal, and it is cross-correlated against the
109
+ combined planet, star, and telluric signal by Doppler
110
+ shifting the template at varying velocities and multiply-
111
+ ing the shifted template against the combined observed
112
+ signal. The resulting cross-correlation function (CCF, a
113
+ function of Doppler-shifted velocity) is maximized at the
114
+ Doppler shift where the template best matches the com-
115
+ bined observed signal—that is, at the Doppler shift of
116
+ the planet signal in the observed combined data. Again,
117
+ 1 There are a few notable exceptions in the high-resolution spec-
118
+ troscopy literature in which planetary absorption is strong
119
+ enough (and data quality high enough) that individual planetary
120
+ absorption lines can be analyzed; e.g., Tabernero et al. (2021).
121
+ this method requires that the planet’s spectral lines
122
+ move across a spectrograph’s pixels during observations,
123
+ with the stellar and telluric lines largely remaining on
124
+ the same pixel (or being easily detrended in time). With
125
+ current instruments, this assumption is certainly justi-
126
+ fied for tidally locked ultra-hot Jupiters, which tend to
127
+ have high orbital velocities (e.g., Fortney et al. 2021).
128
+ With the planetary signal identified, further Doppler
129
+ shifting and line broadening that is not associated with
130
+ planetary orbital motion, telluric lines, or stellar lines is
131
+ attributable to the 3D manifestations of planetary ro-
132
+ tation and winds (Kempton & Rauscher 2012; Show-
133
+ man et al. 2013; Kempton et al. 2014; Brogi et al. 2016;
134
+ Ehrenreich et al. 2020). Thus, the multidimensionality
135
+ of exoplanetary atmospheres is imprinted on HRCCS
136
+ data.
137
+ Recent years have seen the intrinsic 3-dimensionality
138
+ of these objects be uniquely constrained with transit
139
+ HRCCS results. Observational studies such as Louden
140
+ & Wheatley (2015), Ehrenreich et al. (2020), and Kesseli
141
+ et al. (2022) have isolated signals from the morning
142
+ and evening limbs of planetary atmospheres, unveiling
143
+ Doppler shifts of multiple chemical species at multiple
144
+ points in transit—and hence over multiple longitudi-
145
+ nal slices. Such studies have revealed asymmetries in
146
+ the probed Doppler velocity field (i.e., changes in the
147
+ Doppler shift of the CCF maximum as a function of
148
+ orbital phase), which are often attributed to physical
149
+ asymmetries in the atmosphere.
150
+ However, as reviewed in Section 2, an asymmetric sig-
151
+ nal in HRCCS can arise from a combination of different
152
+ classes of mechanisms: 1) chemistry, 2) clouds, 3) dy-
153
+ namics, 4) orbital properties, and 5) thermal structure.
154
+ Disentangling these effects is not a straightforward pro-
155
+ cess.
156
+ This may especially be the case if transmission
157
+ spectra must be stacked together to achieve a higher
158
+ signal-to-noise ratio (SNR), thereby smearing phase in-
159
+ formation.
160
+ In this work, we aim to explore the general question
161
+ of asymmetry in exoplanet atmospheres, with particu-
162
+ lar focus on its manifestations in high-resolution trans-
163
+ mission spectroscopy. Section 2 examines what drives
164
+ asymmetry in exoplanet atmospheres; we here define a
165
+ metric that quantifies limb-to-limb asymmetry. In Sec-
166
+ tion 3, we elaborate on diagnostics of specific mecha-
167
+ nisms that may drive such asymmetries. This section
168
+ additionally emphasizes how these diagnostics may be
169
+ used to support or falsify compelling “toy models” mo-
170
+ tivated by the drivers described in Section 2. Finally,
171
+ we summarize our results in Section 4.
172
+ 2. SELECTED DRIVERS
173
+
174
+ Diagnosing limb asymmetries in transmission
175
+ 3
176
+ Table 1. Example drivers of phase asymmetries of ultra-hot Jupiters
177
+ Mechanism
178
+ Proposed diagnostic
179
+ Selected work(s)
180
+ Escaping atmosphere
181
+ H Lyman-α transit duration
182
+ Owen et al. (2023)
183
+ Very deep, e.g., Ca II lines
184
+ Fossati et al. (2013)
185
+ Strong vertical winds
186
+ Seidel et al. (2021)
187
+ Very broadened, e.g., Na I lines
188
+ Hoeijmakers et al. (2020)
189
+ Large diff. between (Na) doublet lines
190
+ Hoeijmakers et al. (2020)
191
+ Strong H-α absorption
192
+ Wyttenbach et al. (2020)
193
+ Blueshifting CCF w/ phaseP
194
+ Bourrier et al. (2020)
195
+ Excess He absorption (10830˚A)
196
+ Oklopˇci´c & Hirata (2018), Spake et al. (2018)
197
+ Compare Doppler shifts of ions w/ different masses
198
+ This work
199
+ Scale height difference
200
+ Blueshifting CCF w/ phase
201
+ Kempton & Rauscher (2012)
202
+ Strongly varying CO Doppler shift w/ phase
203
+ Wardenier et al. (2021), this work
204
+ H2 dissoc./recomb.
205
+ Small phase curve amplitude
206
+ Mansfield et al. (2020)
207
+ High continuum/muted spectrum from H−
208
+ Arcangeli et al. (2018)
209
+ Weak drag state
210
+ Blueshifted CCF
211
+ Wardenier et al. (2021), Savel et al. (2022)
212
+ Large phase curve offset
213
+ May & Komacek et al. (2021)
214
+ Cold interior
215
+ Blueshifted CCF
216
+ Savel et al. (2022)
217
+ Large phase curve amplitude
218
+ May & Komacek et al. (2021)
219
+ Cold nightside
220
+ May & Komacek et al. (2021)
221
+ Superrotating jet
222
+ CCF FWHM exceeding solid-body rotation
223
+ Brogi et al. (2016)
224
+ Phase curve offset
225
+ Knutson et al. (2007)
226
+ Day-night winds
227
+ Blueshifted CCF
228
+ Snellen et al. (2010)
229
+ Equilibrium chemistry
230
+ Limb-to-limb abundance discrepancy
231
+ This work
232
+ Compare chemical, dynamical timescales
233
+ Showman et al. (2013)
234
+ Photochemistry
235
+ Disequilibrium abundance of species
236
+ Tsai et al. (2017)
237
+ Increase in product, decrease in parent w/ phaseP
238
+ Future work
239
+ Condensation
240
+ Model with GCM
241
+ Wardenier et al. (2021), Savel et al. (2022)
242
+ Strongly blueshifting CCF w/ phase
243
+ Ehrenreich et al. (2020)
244
+ Eccentricity
245
+ All lines similarly Doppler shifted
246
+ Montalto et al. (2011), Savel et al. (2022)
247
+ Independent orbital constraints
248
+ Montalto et al. (2011)
249
+ Clouds
250
+ All species become less blueshifted w/ phase
251
+ This work
252
+ Blueshifted CCF
253
+ Savel et al. (2022)
254
+ Lines absent in low resolution present at high resolution
255
+ Kempton et al. (2014), Hood et al. (2020)
256
+ Comparing CCFs of water bands
257
+ Pino et al. (2018)
258
+ Lorentz forces
259
+ Reduced hotspot offset
260
+ Beltz et al. (2021)
261
+ Increased phase curve amplitude
262
+ Beltz et al. (2021)
263
+ Westward hotspot offset
264
+ Hindle et al. (2021)
265
+ Spatially varying winds
266
+ Variable Doppler shift over phase
267
+ Kempton & Rauscher (2012)
268
+ Compare ingress / egress Doppler shifts
269
+ Kempton & Rauscher (2012)
270
+ Compare Doppler shifts of different-strength lines
271
+ Kempton & Rauscher (2012)
272
+ Tidal deformation/lag
273
+ Blueshifting CCF over phaseP
274
+ Future work
275
+ Light curve fitting
276
+ Akinsanmi et al. (2019)
277
+ T-dependent opacity
278
+ Blueshifting CCF over phase
279
+ Wardenier et al. (2021)
280
+ Note—Tests with a “P” superscript have been proposed but not explicitly modeled.
281
+
282
+ 4
283
+ Savel et al.
284
+ There exist a number of potential drivers of asymme-
285
+ try in high-resolution transmission spectroscopy.
286
+ But
287
+ what are the relative strengths of these drivers?
288
+ Previous works have considered the effects of conden-
289
+ sation, longitude-dependent winds, and orbital eccen-
290
+ tricity in producing such asymmetries (Wardenier et al.
291
+ 2021; Savel et al. 2022). Table 1 includes these and a
292
+ number of other potential drivers of asymmetry (along
293
+ with potential diagnostics; Section 3).
294
+ While many
295
+ drivers are listed in Table 1, we consider in this work the
296
+ relative strengths of two potentially first-order effects:
297
+ the “scale height effect” and differences in equilibrium
298
+ chemistry abundance across the limbs of the planet. Be-
299
+ ing both temperature-dependent effects, the distinction
300
+ between the two is particularly subtle from an observa-
301
+ tional perspective, and hence interesting from a theoret-
302
+ ical perspective.
303
+ The scale height effect is due to the larger scale height
304
+ in hotter regions (e.g., Miller-Ricci et al. 2008), such that
305
+ they are “puffed up” and cover more solid angle on the
306
+ sky. These hotter regions therefore contribute more to
307
+ the observed net Doppler signal in HRCCS. The scale
308
+ height effect is seen in Kempton & Rauscher (2012) as
309
+ a slight, increasing blueshift over transit and as slight
310
+ ingress/egress differences. The effect there is not as dra-
311
+ matic as in planets with larger east–west limb asymme-
312
+ try, such as WASP-76b (West et al. 2016; Wardenier
313
+ et al. 2021; Savel et al. 2022).
314
+ With respect to equilibrium chemistry: because of the
315
+ strong day–night contrasts in (ultra)hot Jupiter atmo-
316
+ spheres, there exist strong spatial variations in temper-
317
+ ature. The day–night contrasts result in east–west con-
318
+ trasts because the equatorial jet advects hot gas ahead
319
+ of the substellar point to the evening limb and relatively
320
+ cold gas from the antistellar point to the morning limb.
321
+ Furthermore, as the planet rotates on its spin axis dur-
322
+ ing transit, the hotter side of the planet progressively ro-
323
+ tates into view, exacerbating these differences at egress.
324
+ Ignoring all disequilibrium processes and scale height
325
+ differences, there should therefore exist strong spatial
326
+ variations in gas-phase atmospheric composition; at a
327
+ given bulk composition, equilibrium chemistry implies
328
+ variations in chemistry solely as a function of temper-
329
+ ature and pressure. It is expected that asymmetries in
330
+ transmission could hence vary as a function of temper-
331
+ ature due to differences in chemistry alone.
332
+ Chemical gradients are invoked to explain a number
333
+ of observational datasets (e.g., Ehrenreich et al. 2020;
334
+ Kesseli & Snellen 2021). However, other temperature-
335
+ dependent effects, such as the scale height effect, may
336
+ instead be driving observed asymmetries. With this dis-
337
+ tinction in mind, it is prudent to consider the difference
338
+ in strength between these two effects and whether one
339
+ considerably outweighs the other.
340
+ 2.1. Asymmetry metric
341
+ To quantify the asymmetry of chemical abundance in
342
+ a planetary atmosphere, we construct a west–east asym-
343
+ metry metric, AWE:
344
+ AW E = 1
345
+ C
346
+
347
+ west
348
+ log10
349
+ ��
350
+ nα(T, P) dl
351
+
352
+ dΩ
353
+ − 1
354
+ C
355
+
356
+ east
357
+ log10
358
+ � �
359
+ nα(T, P) dl
360
+
361
+ dΩ,
362
+ (1)
363
+ where, for species α, n is the number density in an atmo-
364
+ spheric cell, dΩ is the solid angle subtended by a given
365
+ sky-projected radius–latitude cell, and there are C total
366
+ cells per limb. By equilibrium chemistry, n is a func-
367
+ tion solely of temperature T and pressure P within a
368
+ given cell in the modeled 3D atmosphere. For each 2D
369
+ sky-projected radius–latitude cell, dl is integrated along
370
+ the line of sight through the planet’s 3D modeled atmo-
371
+ sphere. This metric takes into account regions of the
372
+ planet outside the terminator (which impacts transmis-
373
+ sion spectra even at low resolution; e.g., Caldas et al.
374
+ 2019, Wardenier et al. 2022) by ray-striking through a
375
+ 3D atmosphere.
376
+ AWE essentially reduces to the difference in mean (log)
377
+ abundance between the two limbs.
378
+ The sign of this
379
+ quantity encodes information about the asymmetry, as
380
+ well: positive AWE implies that the western limb is more
381
+ abundant in a species, whereas negative AWE implies
382
+ that the eastern limb is more abundant in a species.
383
+ 2.2. Model atmospheres
384
+ As of yet, we have remained agnostic to the model
385
+ that generates the temperature–pressure structure and
386
+ defines the grid cells for an AWE calculation. Some of
387
+ the most complex and physics-rich descriptions of 3D
388
+ exoplanet temperature–pressure structures are given by
389
+ general circulation models (GCMs; e.g., Showman et al.
390
+ 2009). In this study, however, we seek to gain intuition
391
+ for the basic scaling of asymmetry with planetary tem-
392
+ perature (which drives the scale height and equilibrium
393
+ chemistry gradients), and the added physical complexity
394
+ of GCMs could add “noise” to this “signal”—it would
395
+ be difficult to isolate the effect of increasing planetary
396
+ temperature alone. Furthermore, we here consider un-
397
+ physical situations in order to determine the magnitude
398
+ of the resulting difference with the correct physics. Fi-
399
+ nally, GCMs are very computationally expensive to run
400
+ and have a number of free parameters to tune, and we
401
+ here aim to explore a nontrivial grid of models over a
402
+ representative range of parameter space.
403
+
404
+ Diagnosing limb asymmetries in transmission
405
+ 5
406
+ We opt for a simple, parameterized approach instead
407
+ of pursuing a full GCM description of our atmospheres
408
+ for this specific experiment.
409
+ Our model atmospheres
410
+ have two parameters: a normalized east–west contrast
411
+ ˜∆T = (Teast − Twest)/Teast and an equilibrium temper-
412
+ ature Teq. A normalized east–west contrast is a natural
413
+ choice over an absolute east–west contrast for this work;
414
+ namely, it prevents negative temperatures at low Teq,
415
+ and it has physical meaning motivated by dynamical
416
+ theory (e.g., Tan & Komacek 2019). In these models, the
417
+ choice of ˜∆T also uniquely enforces the east-west tem-
418
+ perature differences. The limb-to-limb difference cannot
419
+ exceed the day–night difference; based on the GCMs of
420
+ Tan & Komacek (2019) and a set of phase curve ob-
421
+ servations (Parmentier & Crossfield 2018), we do not
422
+ expect a day–night contrast to exceed 0.6, so we hold
423
+ our east–west contrast below this value.
424
+ Hence, we here sweep our parameterized atmospheric
425
+ models in ˜∆T from 0.1–0.6, in addition to sweeping in
426
+ Teq from 1000 K – 4000 K. Each atmosphere is charac-
427
+ terized by two isothermal temperature–pressure profiles.
428
+ Defining
429
+ Teast = Teq + ∆T/2
430
+ Twest = Teq − ∆T/2
431
+ (2)
432
+ and noting that ∆T = Teast−Twest, it therefore follows
433
+ that
434
+ Teast =
435
+ Teq
436
+ 1 − ˜∆T/2
437
+ Twest =
438
+ Teq
439
+ 1 + ˜∆T/2
440
+ .
441
+ (3)
442
+ With the substellar longitude at 0◦, all cells with a
443
+ longitude φ < 180◦—the warmer evening limb—are as-
444
+ signed temperature Teast.
445
+ Conversely, all cells with a
446
+ longitude φ > 180◦—the cooler morning limb—are as-
447
+ signed temperature Twest. Pressures in the atmosphere
448
+ run as low as 1 µbar, as one of the benefits of HRCCS
449
+ is that it can probe low pressures such as these (e.g.,
450
+ Kempton et al. 2014; Gandhi et al. 2020; Hood et al.
451
+ 2020). The bottom of the atmosphere is set at 0.5 bar;
452
+ our previous 3D forward models run in Savel et al. (2022)
453
+ across the optical and near-infrared indicate that for our
454
+ test case of WASP-76b (West et al. 2016), this region
455
+ is the deepest that can be probed given the expected
456
+ continuum opacity. The parameterized modeled atmo-
457
+ spheres in this study have no set wind fields, as in our
458
+ models (motivated by and assuming chemical equilib-
459
+ rium), winds do not control AWE—only the chemical
460
+ abundance of a given cell does.
461
+ We calculate AWE to assess the relative strength of the
462
+ scale height and equilibrium chemistry effects. To infer
463
+ the strength of the scale height e���ect, we construct pairs
464
+ of model atmospheres. In each pair, one atmosphere is
465
+ constructed self-consistently: pressure falls off per hy-
466
+ drostatic equilibrium, with the scale height set by the
467
+ temperature on either limb. For the models here, we
468
+ hold composition constant across both limbs, thereby
469
+ holding µ constant at 2.36 (appropriate for a solar-
470
+ composition gas dominated by molecular H2; Kempton
471
+ & Rauscher 2012). See Section 2.4 for a discussion of this
472
+ caveat. The other atmosphere in the pair is constructed
473
+ on the same pressure grid as the western limb at all lon-
474
+ gitudes. That is, the eastern limb is not simulated as
475
+ inflated compared to the western limb—removing the
476
+ scale height effect from the projected model atmosphere
477
+ in transmission.
478
+ 2.3. Equilibrium chemistry
479
+ To calculate the number densities of our species in
480
+ each modeled atmospheric cell (nα), we construct a grid
481
+ in temperature–pressure space using the FastChem equi-
482
+ librium chemistry code (Stock et al. 2018) and interpo-
483
+ late the grid based on local atmospheric cell temper-
484
+ ature and pressure.
485
+ We initialize the code with solar
486
+ abundances from Lodders (2003). Our chemistry code
487
+ does not explicitly include any condensation or cloud-
488
+ formation processes.
489
+ Even disregarding questions of species detectability in
490
+ HRCCS data, it is worth considering that not all species
491
+ with FastChem thermochemical data have freely avail-
492
+ able opacity data. With this constraint in mind, we re-
493
+ strict our AWE molecule calculations to molecules with
494
+ opacity data available on ExoMol,2 a popular opacity
495
+ database for exoplanet atmosphere modeling.
496
+ 2.4. Asymmetry metric: application
497
+ We calculate AWE for our grid of parameterized at-
498
+ mospheres. Disregarding the scale height effect, we find
499
+ that positive ions tend to form preferentially on the
500
+ hotter limb of our models at an equilibrium tempera-
501
+ ture of 2200 K (Figure 1). This is expected, as ther-
502
+ mal ionization should increase the abundance of positive
503
+ ions at higher temperatures. Furthermore, larger east–
504
+ west temperature asymmetries lead to larger abundance
505
+ asymmetries.
506
+ Including the scale height effect increases the asymme-
507
+ try for neutral atoms and molecules, as can be seen by
508
+ comparing the right-hand sides of Figures 1–2. Further-
509
+ more, there is more homogeneity across the AWE values
510
+ 2 https://www.exomol.com/
511
+
512
+ 6
513
+ Savel et al.
514
+ (a)
515
+ (b)
516
+ Figure 1. Asymmetry (as defined in Equation 1) of all chemical species considered in this study in our parameterized at-
517
+ mospheres at an equilibrium temperature of 2200 K. These models do not self-consistently inflate the hotter limb of the
518
+ parameterized model (i.e., they do not observe the “scale height effect”). The shading of each species represents the normalized
519
+ temperature difference, ˜∆T, across the two limbs of our parameterized atmospheres; the lightest boxes have ˜∆T = 0.1, whereas
520
+ the darkest have ˜∆T = 0.6. For illustrative purposes, we color in green tick marks for species with detections noted in Guillot
521
+ et al. (2022) (and including the recent CO2 detection; Ahrer et al. 2022). We also draw a vertical line denoting 0 asymmetry.
522
+ Without taking the scale height effect into account, positive ions form much more predominantly on the warmer limb (i.e., have
523
+ negative asymmetry) than other species and reach the greatest asymmetry values.
524
+ across positive ions, negative ions, neutral atoms, and
525
+ neutral molecules (Figure 2). In particular, while higher
526
+ ˜∆T still implies higher absolute asymmetry in neutral
527
+ species, the scale height effect makes it such that the
528
+ warmer limb almost always has higher projected asym-
529
+ metry.
530
+ It is therefore clear that the scale height effect strongly
531
+ tamps down genuine variation in species abundance due
532
+ to equilibrium chemistry. However, the fact that inter-
533
+ species variation in asymmetry remains implies that this
534
+ variation in abundance is not completely washed out by
535
+ the scale height effect; if the scale height effect truly and
536
+ fully dominated, all species would have the same AWE
537
+ value.
538
+ When considering individual species more closely, we
539
+ find that certain species are particularly differentially
540
+ affected by the scale height effect.
541
+ For example, Fig-
542
+ ure 3 shows that there is a stark difference in whether
543
+ the scale height effect is included for Fe. However, this
544
+ is not as much the case for, e.g., Sr II. The meaning be-
545
+ hind this result is evident in the equilibrium abundance
546
+ calculations of Fe and Sr II: Fe is less sensitive to tem-
547
+
548
+ = 2200K, scaled=False
549
+ JS
550
+ Rb
551
+ Ge
552
+ Ga
553
+ Sc -
554
+ Ca
555
+ Li -
556
+ Zn
557
+ V-
558
+ Ti
559
+ si -
560
+ s
561
+ p-
562
+ 0
563
+ -IN
564
+ Na
565
+ N-
566
+ K
567
+ H-
568
+ Fe
569
+ Cu
570
+ Cr :
571
+ Co
572
+ CI -
573
+ C
574
+ Al -
575
+ Zr IIII
576
+ YIII
577
+ Sr III
578
+ Rb IlI
579
+ Ge llI
580
+ Ga IlI
581
+ Zn III
582
+ Cu llI
583
+ Ni III
584
+ Co IIII
585
+ Fe IIII
586
+ Mn III
587
+ Cr IIII
588
+ VII
589
+ Ti II
590
+ Sc III
591
+ S
592
+ Ca II
593
+ e
594
+ KII
595
+ Ar IIII
596
+ Positive-ions
597
+ CI II
598
+ ads
599
+ S III
600
+ Negative ions
601
+ P III
602
+ Si III
603
+ Al II
604
+ Mg IIII
605
+ Na III
606
+ Nelll
607
+ F III
608
+ O I=I
609
+ N III
610
+ C III
611
+ Li I
612
+ Rb II
613
+ Ge ll
614
+ Ga lI
615
+ Li II
616
+ Zn II
617
+ Si lI
618
+ s II
619
+ PII
620
+ Ni lI
621
+ Ne ll
622
+ Na II
623
+ NII
624
+ Mg II
625
+ KII
626
+ He lI
627
+ H3O lI
628
+ H2 II
629
+ HO II
630
+ HII
631
+ F II
632
+ Cu II
633
+ Co II
634
+ CI II
635
+ C II
636
+ Ar II
637
+ AIlII
638
+ ScllI
639
+ YII
640
+ Sr II
641
+ Zr II
642
+ VII
643
+ CrlI
644
+ Mn II
645
+ Call
646
+ Ti lI
647
+ Fel
648
+ -102
649
+ -101
650
+ -100
651
+ 100
652
+ 101
653
+ AsymmetryTeg = 2200K, scaled=False
654
+ sis
655
+ PS
656
+ SO3
657
+ SiO2
658
+ SO2
659
+ 02
660
+ sio
661
+ PO
662
+ N20
663
+ N2
664
+ NS
665
+ PN
666
+ NO
667
+ SiH2
668
+ H202
669
+ TiH
670
+ HSi
671
+ SH
672
+ HP
673
+ NiH
674
+ NaH
675
+ HNO3
676
+ HN
677
+ MgH
678
+ HKO
679
+ FeH
680
+ PF3
681
+ NaF
682
+ FMg
683
+ HF
684
+ CrH
685
+ CINa
686
+ CIK
687
+ CIH
688
+ Cao
689
+ CaH
690
+ CaF
691
+ C2H4
692
+ C2
693
+ CS
694
+ CP
695
+ COS
696
+ CN
697
+ CH3
698
+ S
699
+ CH20
700
+ e
701
+ CH
702
+ AIO
703
+ AlH
704
+ AIF
705
+ AICI
706
+ OH
707
+ ov
708
+ S
709
+ O!!
710
+ PH3
711
+ NH3
712
+ H2S
713
+ H20
714
+ CO2
715
+ CO
716
+ CH4
717
+ C2 H2
718
+ H2
719
+ Zn
720
+ s
721
+ P
722
+ Ne
723
+ N
724
+ Ge
725
+ F
726
+ Cl
727
+ Ar
728
+ Co
729
+ Al
730
+ Z
731
+ Sc
732
+ Y
733
+ Sr
734
+ Rb
735
+ Ga
736
+ Cu
737
+ IS
738
+ 0
739
+ Li
740
+ Mn
741
+ Ni
742
+ Cr
743
+ c
744
+ IL
745
+ Ca
746
+ Neutral atoms
747
+ Mg
748
+ Fe
749
+ Na
750
+ Neutral molecules
751
+ He
752
+ H
753
+ -102
754
+ -101
755
+ -100
756
+ 100
757
+ 101
758
+ 0
759
+ AsymmetryDiagnosing limb asymmetries in transmission
760
+ 7
761
+ (a)
762
+ (b)
763
+ Figure 2. Similar to Figure 1, but now including the scale height effect (inflating the hotter limb in our parameterized models).
764
+ Now, all species have asymmetries that favor the hotter limb (negative asymmetry)—simply because the hotter limb subtends
765
+ more solid angle on the sky. However, there still exists inter-species variability in asymmetry, implying that the scale height
766
+ effect does not entirely swamp genuine differences in equilibrium chemistry across limbs. Furthermore, negative ions still have
767
+ larger asymmetries than positive ions or neutral species.
768
+ perature variations than Sr II. This result is expected,
769
+ as the onset of Sr II is determined by the temperature
770
+ at which Sr I can be effectively ionized. This is gen-
771
+ erally the case for positive ions—the temperature effect
772
+ on chemical abundance wins out over the scale height ef-
773
+ fect, as seen by the left-hand sides of Figures 1–2. Physi-
774
+ cally, this behavior is because the Saha equation is more
775
+ strongly dependent on temperature than most chemical
776
+ equilibrium reaction rates.
777
+ The results of this experiment indicate that the most
778
+ temperature-sensitive species are strongly influenced by
779
+ both abundance changes and scale height differences.
780
+ Conversely, to isolate the scale height effect, it would be
781
+ therefore useful to consider a species with very weakly
782
+ temperature-dependent abundance; in this case, if a
783
+ strong asymmetry were detected, it could be attributed
784
+ to a scale height effect (or other non-equilibrium chem-
785
+ istry or physics). We explore this idea further in Sec-
786
+ tion 3.
787
+ Note that this approach, aside from its simplified
788
+ temperature–pressure structure, does not account for a
789
+ variety of physics. Namely, it does not include the ef-
790
+ fects of hydrogen dissociation and recombination that
791
+ occurs in the ultra-hot Jupiter regime (Tan & Komacek
792
+ 2019). Inclusion of this physics would serve to decrease
793
+ the mean molecular weight in the atmosphere, increasing
794
+ the scale height for the hotter, eastern limb, thereby am-
795
+ plifying the observed asymmetry. Additionally, at the
796
+
797
+ = 2200K, scaled=True
798
+ Zr -
799
+ Sr
800
+ Rb
801
+ Ge
802
+ Ga
803
+ Sc -
804
+ Ca
805
+ Li -
806
+ Zn
807
+ V-
808
+ Ti
809
+ Si -
810
+ s
811
+ p-
812
+ 0
813
+ -IN
814
+ Na
815
+ N-
816
+ K
817
+ H-
818
+ Fe
819
+ F .
820
+ no
821
+ Cr:
822
+ Co
823
+ CI -
824
+ c
825
+ Al -
826
+ Zr IIII
827
+ Y III
828
+ Sr III!
829
+ Rb II
830
+ Ge llI
831
+ Ga IlI
832
+ Zn III
833
+ Cu llI
834
+ Ni III
835
+ Co IIII
836
+ Fe IIII
837
+ Mn IIII
838
+ Cr III
839
+ VII
840
+ Ti II
841
+ Sc III
842
+ S
843
+ Ca llI
844
+ e
845
+ KIII
846
+ Ar IIII
847
+ Positive-ions
848
+ CI IIII
849
+ S III
850
+ PIII
851
+ Negative ions
852
+ Si III
853
+ Al III
854
+ Mg IIII
855
+ Na II
856
+ Ne III
857
+ FII
858
+ o II
859
+ NIII
860
+ C II
861
+ Li lII
862
+ Rb II
863
+ Ge ll
864
+ Ga lI
865
+ LilI
866
+ Zn II
867
+ Si lI
868
+ sII
869
+ PII
870
+ Ni lI
871
+ Ne lI
872
+ Na llI
873
+ NII
874
+ Mg II
875
+ KII
876
+ He lI
877
+ H3O II
878
+ H2 II
879
+ HO II
880
+ H II
881
+ F II
882
+ Cu lI
883
+ Co II
884
+ CI II
885
+ C II
886
+ Ar II
887
+ AIlII
888
+ ScllI
889
+ YII
890
+ SrlI
891
+ ZrlI
892
+ viII
893
+ CrlI
894
+ Mn II
895
+ Ca lI
896
+ Ti II
897
+ Fe ll
898
+ -102
899
+ -100
900
+ 100
901
+ 101
902
+ -101
903
+ 0
904
+ Asymmetry= 2200K, scaled=True
905
+ sis
906
+ PS
907
+ SO3
908
+ SiO2
909
+ Neutralatoms
910
+ SO2
911
+ 02
912
+ Neutral-molecules
913
+ sio
914
+ PO
915
+ N20
916
+ N2
917
+ NS
918
+ PN
919
+ NO
920
+ SiH2
921
+ H202
922
+ TiH
923
+ HSi
924
+ SH
925
+ HP
926
+ NiH
927
+ NaH
928
+ HNO3
929
+ NH
930
+ H6W
931
+ HKO
932
+ FeH
933
+ PF3
934
+ NaF
935
+ FMg
936
+ HF
937
+ CrH
938
+ CINa
939
+ CIK
940
+ CIH
941
+ Cao
942
+ CaH
943
+ CaF
944
+ C2H4
945
+ C2
946
+ cs
947
+ CP
948
+ COS
949
+ CN
950
+ CH3
951
+ S
952
+ CH20
953
+ CH
954
+ AIO
955
+ AlH
956
+ Speo
957
+ AIF
958
+ AICI
959
+ HO
960
+ ov
961
+ S
962
+ O!!
963
+ PH3
964
+ NH3
965
+ H2S
966
+ H20
967
+ CO2
968
+ co
969
+ CH4
970
+ C2 H2
971
+ H2 1
972
+ Zn
973
+ s
974
+ P
975
+ Ne
976
+ N
977
+ Ge
978
+ F
979
+ C1
980
+ Co
981
+ Al
982
+ Z
983
+ Sc
984
+ Y
985
+ Sr
986
+ Rb
987
+ Ga
988
+ Cu
989
+ Si
990
+ 0
991
+ Li
992
+ Mn
993
+ Ni
994
+ Cr
995
+ c
996
+ V
997
+ IL
998
+ Ca
999
+ Mg
1000
+ Na
1001
+ K
1002
+ He
1003
+ H
1004
+ -102
1005
+ 100
1006
+ -101
1007
+ 101
1008
+ -100
1009
+ 0
1010
+ Asymmetry8
1011
+ Savel et al.
1012
+ Figure 3. Asymmetry (per Equation 1) for Sr II, Fe, H2O, and CO in our parameterized atmospheres. Our grid sweeps over
1013
+ equilibrium equilibrium temperature and normalized temperature difference across limbs, and includes models that observe the
1014
+ scale height effect (circles) and do not (squares). We find that species with strong temperature-dependent abundances (e.g.,
1015
+ Sr II) are less dominated by the scale height effect than species with weaker temperature-dependent abundances.
1016
+ lower-temperature end, we did not include the effects of
1017
+ certain species being sequestered into clouds (e.g., sili-
1018
+ cate clouds). We will model the Doppler shift impact
1019
+ of optically thick clouds in Section 3.1.2. Finally, our
1020
+ approach does not include disequilibrium effects (e.g.,
1021
+ vertical / horizontal mixing) that may alter asymme-
1022
+ tries. Therefore, the results shown here motivate asym-
1023
+ metries due to equilibrium chemistry alone, which we
1024
+ expect to be a first-order driver of asymmetry; disequi-
1025
+ librium chemistry is not expected to be significant in the
1026
+ ultrahot Jupiter regime (e.g., Tsai et al. 2021).
1027
+ We further did not include the effect of temperature-
1028
+ and pressure-dependent opacities.
1029
+ At the spectrum
1030
+ level, a temperature asymmetry would be exaggerated
1031
+ by the fact that, e.g,. Fe absorbs more on the hotter
1032
+ limb than the colder limb because its opacity increases
1033
+ with temperature. This would mean that the detected
1034
+ net Doppler shift is even more strongly weighted to the
1035
+ hotter limb.
1036
+ Despite these limitations in our modeling, the trends
1037
+ listed above should hold to first order and provide intu-
1038
+ ition about the relative strengths of two potential drivers
1039
+ of asymmetry in exoplanet atmospheres.
1040
+ Broadly, it
1041
+ holds that the scale height effect appears to dominate in
1042
+ general, but relative differences in abundances of species
1043
+ as a function of temperature still matter. Given the lim-
1044
+
1045
+ Al
1046
+ CO
1047
+ 0.6
1048
+ 101.
1049
+ No scale height effect
1050
+ 101.
1051
+ · Scale height effect
1052
+ least
1053
+
1054
+
1055
+ 0.5
1056
+
1057
+
1058
+ 0
1059
+ 0
1060
+
1061
+
1062
+
1063
+
1064
+ C
1065
+
1066
+
1067
+ 0.4
1068
+ O
1069
+ 0
1070
+ -101.
1071
+ -101.
1072
+ 1000
1073
+ 2000
1074
+ 3000
1075
+ 1000
1076
+ 2000
1077
+ 3000
1078
+ T
1079
+ H20
1080
+ SrlII
1081
+ 101
1082
+ 101.
1083
+ 0.3
1084
+
1085
+
1086
+ least
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+ -0
1093
+ 0
1094
+ Iwest
1095
+
1096
+ 0.2
1097
+
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+ 08
1105
+ 口O
1106
+ 0000
1107
+ :
1108
+ DO
1109
+ 00
1110
+ 000
1111
+ -101.
1112
+ -101.
1113
+ 0.1
1114
+ 1000
1115
+ 2000
1116
+ 3000
1117
+ 1000
1118
+ 2000
1119
+ 3000
1120
+ (K)
1121
+ Teq (K)
1122
+ 2Diagnosing limb asymmetries in transmission
1123
+ 9
1124
+ itations of simple models, we will move on to more self-
1125
+ consistent atmospheric modeling in the following sec-
1126
+ tions.
1127
+ 3. SELECTED DIAGNOSTICS
1128
+ 3.1. Diagnostics for specific mechanisms
1129
+ Per Section 2, even differentiating between two drivers
1130
+ of asymmetry in exoplanet atmospheres is nontrivial.
1131
+ Drivers can compete to varying degrees to produce a
1132
+ similar result: an asymmetric trend in net Doppler shifts
1133
+ in HRCCS.
1134
+ However,
1135
+ by exploiting nuances in the HRCCS
1136
+ Doppler shift signal and by independent means, it may
1137
+ be possible to disentangle even drivers that produce sim-
1138
+ ilar effects. Table 1 lists example drivers of asymmetries
1139
+ in HRCCS and how they might be diagnosed. The asso-
1140
+ ciated works listed in the table may not directly propose
1141
+ these diagnostics, but at minimum they provide founda-
1142
+ tional material for them.
1143
+ Of course, exhibiting a single diagnostic does not not
1144
+ mean that a given physical mechanism is in play. Other
1145
+ mechanisms could surely be present, and uniquely con-
1146
+ straining a single mechanism as dominant would require
1147
+ ruling out the others, as well. For instance, both day–
1148
+ night winds and morning limb condensation could result
1149
+ in a net blueshifted CCF. But if, for example, a night-
1150
+ side temperature were derived from a phase curve that
1151
+ was far too hot for any known condensate to form, then
1152
+ day–night winds would be much preferred to conden-
1153
+ sation as a physical solution. Together, collections of
1154
+ diagnostics are hence able to test the dominance of in-
1155
+ dividual mechanisms.
1156
+ In the following sections, we explore a few tests for
1157
+ specific physical mechanisms of asymmetry: using CO
1158
+ as a baseline molecule to identify the scale height effect
1159
+ and tracking the blueshifts of multiple species to identify
1160
+ the presence of clouds. We furthermore evaluate the ef-
1161
+ fectiveness of diagnostics that may be used to evaluate
1162
+ a number of different mechanisms: averaging HRCCS
1163
+ data into two phase bins and using finely phase-resolved
1164
+ HRCCS data. We additionally show how these diagnos-
1165
+ tics can further motivate or rule out “toy models” that
1166
+ at first may appear convincing.
1167
+ 3.1.1. CO as a baseline molecule
1168
+ We have demonstrated (Section 2.4) that species
1169
+ with strongly temperature-dependent abundances are
1170
+ the least susceptible to the scale height effect.
1171
+ Con-
1172
+ versely, observing a species with very weak temperature-
1173
+ dependent abundance could indicate whether the scale
1174
+ height effect is in play.
1175
+ Figure 4. Volume mixing ratio of CO as a function of pres-
1176
+ sure and temperature as calculated by FastChem. Overplot-
1177
+ ted are the onset of ultra-hot Jupiters (as defined by their
1178
+ dayside temperature; Parmentier et al. 2018), the CO/CH4
1179
+ equivalency curve from Visscher (2012) as a function of pres-
1180
+ sure, the Fe condensation curve from Mbarek & Kemp-
1181
+ ton (2016), and 1D temperature–pressure profiles for a hot
1182
+ Jupiter (WASP-39b) and an ultra-hot Jupiter (WASP-18b)
1183
+ as computed with HELIOS (Malik et al. 2017). Both the con-
1184
+ densation curve and the equivalency curve are computed at
1185
+ solar metallicity. Considering the regime of ultra-hot Jupiter
1186
+ atmospheres, CO is a relatively stable chemical species.
1187
+ Consider CO. In Figure 3, its AWE values are clustered
1188
+ around 0 without the scale height effect, with relatively
1189
+ weak dependence on ˜∆T. However, CO’s AWE values
1190
+ are strongly negative when the scale height effect is in-
1191
+ cluded. We propose using CO as a tracer of the scale
1192
+ height (and other chemistry-unrelated) effects.
1193
+ As shown in Figure 4, the abundance of CO is
1194
+ relatively stable between 1000 K and 3500 K. Beltz
1195
+ et al. (2022) note that this stability holds over the
1196
+ temperature–pressure range of the observable atmo-
1197
+ sphere of the ultra-hot Jupiter WASP-76 b.
1198
+ Indeed,
1199
+ this feature remains true over the general temperature–
1200
+ pressure range of ultra-hot Jupiters. For illustrative pur-
1201
+ poses, we calculate the 1D temperature–pressure pro-
1202
+ files of a hot Jupiter (WASP-39b; Faedi et al. 2011) and
1203
+ an ultra-hot Jupiter (WASP-18b; Hellier et al. 2009).
1204
+ These profiles, calculated with the HELIOS 1D radiative-
1205
+ convective model (with full heat redistribution), indi-
1206
+ cate that the observable atmosphere for these planets is
1207
+ largely within a region of near-constant CO mixing ratio.
1208
+ The stability of CO is due to three factors: its strong
1209
+ chemical bonding, its lack of participation in gas-phase
1210
+ chemical reactions, and its lack of condensation.
1211
+
1212
+ 10-6
1213
+ -3
1214
+ Ultra-hot Jupiter
1215
+ dayside onset
1216
+ -4
1217
+ CO/CH4 equivalency
1218
+ 10-5
1219
+ Fe condensation
1220
+ -5
1221
+ WASP-18 b 1D profile
1222
+ Pressure (bars)
1223
+ WASP-39 b 1D profile
1224
+ -6
1225
+ 10-4
1226
+ (xp) 0x
1227
+ -7
1228
+ 10-31
1229
+ -8
1230
+ -9
1231
+ 10-21
1232
+ -10
1233
+ 10-1
1234
+ -11
1235
+ -12
1236
+ 100
1237
+ 1000
1238
+ 2000
1239
+ 3000
1240
+ 4000
1241
+ 5000
1242
+ Temperature
1243
+ (K)10
1244
+ Savel et al.
1245
+ Since the strong triple bond of CO makes it diffi-
1246
+ cult to thermally dissociate, CO remains stable at tem-
1247
+ peratures that would dissociate molecules with weaker
1248
+ bonds, such as H2O (Parmentier et al. 2018), which
1249
+ has two single bonds.
1250
+ Beyond roughly 3500 K, even
1251
+ the triple bond becomes susceptible to thermal dissocia-
1252
+ tion; hence, the few exoplanets with significant portions
1253
+ of their atmosphere hotter than this temperature (e.g.,
1254
+ KELT-9b, with Teq ≈ 4050 K; Gaudi et al. 2017) would
1255
+ likely exhibit spatial variation in CO abundance. Most
1256
+ ultra-hot Jupiters, though, should fall shy of this regime.
1257
+ Furthermore, the high photoionization threshold of CO
1258
+ (relative to, e.g., H2O; Heays et al. 2017) means that
1259
+ it is not commonly photodissociated (Van Dishoeck &
1260
+ Black 1988).
1261
+ Even when it is photodissociated, recy-
1262
+ clying pathways exist in hot Jupiters that can replenish
1263
+ CO abundance, keeping it near equilibrium abundance
1264
+ even inclusive of photochemistry (Moses et al. 2011).
1265
+ Hence, the assumption of non-dissociation of CO is rea-
1266
+ sonably justified across much of the ultra-hot Jupiter
1267
+ population.
1268
+ Additionally, CO does not commonly participate in
1269
+ thermochemical reactions and is the dominant car-
1270
+ bon carrier in our temperature–pressure range of inter-
1271
+ est. While at lower temperatures the dominant carbon
1272
+ carrier becomes CH4, the ultra-hot Jupiter regime is
1273
+ squarely beyond the CO/CH4 equivalency curve (Fig-
1274
+ ure 4; Visscher 2012). Therefore, even aside from ther-
1275
+ mal dissociation, CO should not participate in gas-phase
1276
+ thermochemistry that would alter its abundance.
1277
+ Finally, CO does not form any high-temperature con-
1278
+ densates expected in ultra-hot Jupiter atmospheres.
1279
+ The condensation temperature of CO (≈80 K at 1 bar;
1280
+ Lide 2006; Fray & Schmitt 2009) is far below the
1281
+ temperature–pressure range of ultra-hot Jupiters. This
1282
+ quality makes CO a less complicated tracer of, e.g., at-
1283
+ mospheric dynamics than species that do condense in
1284
+ this region of parameter space, such as Fe, Mg, or Mn
1285
+ (Mbarek & Kempton 2016). Therefore, while the calcu-
1286
+ lations of Figure 4 do not include gas-phase condensa-
1287
+ tion, the resultant spatial constancy of CO should still
1288
+ be robust even when condensation is considered. CO
1289
+ is thus a more straightforward molecule to model than
1290
+ other, condensing species, as it does not participate in
1291
+ the complex microphysics of condensation and cloud for-
1292
+ mation (see, e.g., Gao et al. 2021).
1293
+ Beyond its spatial uniformity, there are further obser-
1294
+ vational reasons that CO is an appealing species to tar-
1295
+ get. Namely, CO has very strong spectroscopic bands
1296
+ placed across the infrared wavelength range (e.g., Li
1297
+ et al. 2015) that do not overlap with other strong ab-
1298
+ sorbers and are relatively well understood (Li et al.
1299
+ 2015).
1300
+ Additionally, the high cosmic abundance of C
1301
+ and O (Lodders 2003) means that, unlike many of the
1302
+ species in the previous section, CO is readily detectable
1303
+ (and has been become a standard detection in HRCCS;
1304
+ Snellen et al. 2010; de Kok et al. 2013; Rodler et al.
1305
+ 2013; Brogi et al. 2014, 2016; Flowers et al. 2019; Gia-
1306
+ cobbe et al. 2021; Line et al. 2021; Pelletier et al. 2021;
1307
+ Zhang et al. 2021; Guilluy et al. 2022; van Sluijs et al.
1308
+ 2022).
1309
+ Given its stability and observational advantage, we
1310
+ propose that CO can be used as a faithful tracer of the
1311
+ atmosphere—whether it is inflated in some regions, what
1312
+ its wind profile is, whether regions are blocked by clouds,
1313
+ etc. In turn, CO may then be leveraged to better mo-
1314
+ tivate sources of asymmetry that affect other species.
1315
+ While other species with low AWE in Figure 1 (e.g., He,
1316
+ Fe, MgH, Rb II) would also appear to be good candi-
1317
+ dates for baseline species, these species are either largely
1318
+ spectroscopically inactive, have variable abundance over
1319
+ broader temperature–pressure ranges, or can condense.
1320
+ A caveat to the above is that while CO is a faithful longi-
1321
+ tudinal tracer, it is not an unbiased radial tracer (as seen
1322
+ in Figure 4). As with all chemical species, CO has its
1323
+ own balance between deep and strong lines that depends
1324
+ on the waveband considered (see, e.g., Section 3.3.1).
1325
+ Therefore, the net CO Doppler signal does not uniformly
1326
+ weight the wind profile across all altitudes. Again, this
1327
+ is a bias inherent to all chemical species.
1328
+ 3.1.2. A decreasing blueshift test for clouds
1329
+ As noted in Table 1, clouds may introduce strong
1330
+ asymmetry into HRCCS data.
1331
+ Savel et al. (2022)
1332
+ demonstrated that gray, optically thick clouds produce
1333
+ stronger blueshifts in the Doppler shift signal of WASP-
1334
+ 76b than the blueshifts in clear models, also changing
1335
+ the trend of Doppler shift with phase.
1336
+ But, again as
1337
+ shown in Table 1, these changes at the Doppler shift
1338
+ level are not sufficient to uniquely identify clouds as the
1339
+ driver of an observed asymmetry. Combinations of ob-
1340
+ servable quantities that would uniquely identify clouds
1341
+ as the source of observed HRCCS asymmetry are there-
1342
+ fore necessary.
1343
+ To devise such a test, we investigate in this work a
1344
+ limiting-case cloudy model. As in Savel et al. (2022),
1345
+ we construct gray, optically thick, post-processed clouds
1346
+ in our 3D ray-striking code. We here make another as-
1347
+ sumption, though: that the clouds are confined to the
1348
+ cooler, morning limb, as opposed to having a distribu-
1349
+ tion dictated by a specific species’ condensation curve.
1350
+ This distribution is based on planetary longitude (be-
1351
+ tween longitudes of 180◦ and 360◦). This approach is
1352
+ motivated by the results of Roman et al. (2021), who
1353
+
1354
+ Diagnosing limb asymmetries in transmission
1355
+ 11
1356
+ found that a subset of cloudy GCMs exhibited a cloud
1357
+ distribution strongly favoring the western limb.3
1358
+ Our
1359
+ approach benefits from providing limiting-case intuition
1360
+ for how cloudiness affects Doppler shift signals while
1361
+ avoiding the complex questions of how clouds form and
1362
+ which species contribute the most opacity (Gao et al.
1363
+ 2021; Gao & Powell 2021).
1364
+ Briefly, our modeling methodology is as follows:
1365
+ 1. Double-gray, two-stream GCM. GCMs such as this
1366
+ one solve the primitive equations of meteorology,
1367
+ which are a reduced form of the Navier-Stokes
1368
+ equations solved on a spherical, rotating sphere
1369
+ with a set of simplifying assumptions.4 The out-
1370
+ put of these models is temperature, pressure, and
1371
+ wind velocity as a function of latitude, longitude,
1372
+ and altitude. We use the GCM that was shown
1373
+ to best fit the Ehrenreich et al. (2020) WASP-76b
1374
+ data in Savel et al. (2022).
1375
+ 2. Equilibrium chemistry with FastChem. As in Sec-
1376
+ tion 2.3, we interpolate a model grid of chem-
1377
+ istry to determine local abundances of a number
1378
+ of chemical species as determined by temperature
1379
+ and pressure conditions of the GCM output.
1380
+ 3. Ray-striking radiative transfer.
1381
+ Using a code
1382
+ modified from Kempton & Rauscher (2012) (as
1383
+ detailed in Savel et al. 2022), we compute the
1384
+ high-resolution absorption spectrum of our plan-
1385
+ etary atmosphere by calculating the net absorp-
1386
+ tion of stellar light along lines of sight through
1387
+ our GCM output. This absorption is calculated
1388
+ inclusive of net motions along the lines of sight
1389
+ from atmospheric winds and rotation, inducing
1390
+ Doppler shifts relative to that of a static atmo-
1391
+ sphere’s spectrum. Limb-darkening is calculated
1392
+ with a quadratic limb-darkening law in the observ-
1393
+ able planetary atmosphere and with the batman
1394
+ code (Kreidberg 2015) for the portion of the star
1395
+ blocked by the optically thick planetary interior.
1396
+ Given its increasing utility as a benchmark planet for
1397
+ HRCCS studies (e.g., Ehrenreich et al. 2020; Kesseli &
1398
+ 3 These GCMs produced clouds on a temperature–pressure basis,
1399
+ and did not model clouds as tracers.
1400
+ Therefore, they do not
1401
+ capture potential disequilibrium cloud transport (e.g., as done in
1402
+ Komacek et al. 2022), which may alter the degree of patchiness
1403
+ within the cloud deck.
1404
+ 4 These assumptions are 1) local hydrostatic equilibrium, such that
1405
+ vertical motions are caused purely by the convergence and di-
1406
+ vergence of horizontal flow, 2) the “traditional approximation,”
1407
+ which removes the vertical coordinate from the Coriolis effect,
1408
+ and 3) a thin atmosphere.
1409
+ Figure 5. Atmospheric Doppler shifts, which should remain
1410
+ in the HRCCS signal after the orbital motion is subtracted,
1411
+ as a function of orbital phase for our forward models. Shown
1412
+ are representative species that span Doppler shifts and are
1413
+ noted as potentially observable by Kesseli et al. (2022): Fe,
1414
+ Sr II, and Sc. Cloud-free models are represented with solid
1415
+ lines, whereas models with fully cloudy morning limbs are
1416
+ represented with dashed lines. The first half of transit (RV1)
1417
+ and second half of transit (RV2) Doppler shifts for Fe from
1418
+ Kesseli et al. (2022) are overplotted as horizontal lines, with
1419
+ width determined by observational errors. Our cloudy mod-
1420
+ els are much more strongly blueshifted than their cloud-free
1421
+ counterparts, become less blueshifted over transit, and do
1422
+ not have significant CCF peaks at early phases.
1423
+ Snellen 2021; Landman et al. 2021; Seidel et al. 2021;
1424
+ Wardenier et al. 2021; Kesseli et al. 2022; S´anchez-L´opez
1425
+ et al. 2022), we model the ultra-hot Jupiter WASP-76b
1426
+ (West et al. 2016). We calculate 25 spectra inclusive of
1427
+ Doppler effects equally spaced in phase from the begin-
1428
+ ning to end of transit. For our cross-correlation tem-
1429
+ plate, T , we use a model that does not include Doppler
1430
+ effects.
1431
+ We then cross-correlate our template against our cal-
1432
+ culated spectrum, y:
1433
+ c(v) =
1434
+ N
1435
+
1436
+ i=0
1437
+ yi(λ)Ti(v, λ),
1438
+ (4)
1439
+ where the mask or template is Doppler-shifted by ve-
1440
+ locity v and interpolated onto the wavelength grid, λ,
1441
+ of y for summing. Our CCF is computed on a grid of
1442
+ velocities from −250 km s−1 and 250 km s−1 with a step
1443
+ of 1 km s−1. The final net planet-frame Doppler shift is
1444
+ calculated by fitting a Gaussian to the peak of the CCF.
1445
+ The results of our experiment are shown in Figure 5.
1446
+ When we allow clouds to extend over the entire morn-
1447
+ ing limb, note that all species become less blueshifted
1448
+ over time. Because the limb that is rotating away from
1449
+ the observer (the “receding limb”) is entirely blocked off
1450
+ by clouds, there is no wavelength-dependent absorption
1451
+
1452
+ 2
1453
+ Kesseli+22 Fe RVi
1454
+ Sc
1455
+ Kesseli+22 Fe RV2
1456
+ Sr plus
1457
+ Planet-frame RV (km/s)
1458
+ 0
1459
+ Fe
1460
+ -2
1461
+ 6
1462
+ 8
1463
+ 一10
1464
+ 12
1465
+ -15
1466
+ -10
1467
+ -5
1468
+ 0
1469
+ 5
1470
+ 10
1471
+ 15
1472
+ Phase (degrees)12
1473
+ Savel et al.
1474
+ for that limb. Therefore, the contribution of redshift-
1475
+ ing from solid-body rotation on the receding limb is not
1476
+ present—the only Doppler shift contributions are from
1477
+ evening limb rotation and evening limb winds, which are
1478
+ generally in the same direction as the rotation. Hence,
1479
+ there are much stronger blueshifts at earlier phases than
1480
+ in the clear models.
1481
+ However, at later phases, the non-cloudy regions of the
1482
+ atmosphere rotate into the receding limb, thereby con-
1483
+ tributing some rotational redshift to the net Doppler
1484
+ shift signal.5
1485
+ At the earliest phases, the cloudy mod-
1486
+ els do not have enough wavelength-dependent absorp-
1487
+ tion to produce a significant CCF peak.
1488
+ Notably, all
1489
+ species follow this trend, as the blocking of clouds as
1490
+ modeled here is wavelength-independent and altitude-
1491
+ independent.
1492
+ This behavior is shown in Figure 5 for
1493
+ Fe, Sc, and Sr II—all species identified in Kesseli et al.
1494
+ (2022) has having high potential observability for ultra-
1495
+ hot Jupiters.
1496
+ From Figure 5, it is also apparent that the cloud-
1497
+ driven trend of decreasing blueshift in phase is not
1498
+ matched by the observations of Kesseli et al. (2022).
1499
+ As found in Savel et al. (2022) in comparison to the
1500
+ Ehrenreich et al. (2020) data, while the absolute magni-
1501
+ tude of the cloudy model’s Doppler shift better match
1502
+ the data than the clear model’s, the cloudy model trend
1503
+ over Doppler shift is not matched by the data. In sum,
1504
+ this limiting-case model of opaque, morning limb clouds
1505
+ does not appear to be a first-order effect driving ex-
1506
+ isting observational trends.
1507
+ This does not necessarily
1508
+ mean that clouds are not the driving factor behind limb
1509
+ asymmetries; it may simply be that a more physically
1510
+ motivated model for partial cloud coverage of the limb
1511
+ could fit the available data better.
1512
+ Also of note in Figure 5 is that the egress signatures
1513
+ of the clear and cloudy models are quite distinct. Near a
1514
+ phase of roughly 14 degrees, the clear model produces a
1515
+ sharp change in Doppler shift for all species as the lead-
1516
+ ing (rotationally redshifted) limb begins to leave the stel-
1517
+ lar disk. This sharply blueshifting behavior continues to
1518
+ the end of egress, until the last sliver of the trailing (rota-
1519
+ tionally blueshifted) limb has left the stellar disk as well.
1520
+ In the cloudy case, however, the leading limb leaving the
1521
+ stellar disk has no effect, as it is fully cloudy. While this
1522
+ effect is evident in these models, it may be less evident
1523
+ 5 The degree of rotation during transit varies as a function of
1524
+ semimajor axis and host star radius, and hence from planet to
1525
+ planet. While we only model WASP-76b, other planets also have
1526
+ large (e.g., compared to the angles probed by transmission spec-
1527
+ troscopy) rotations during transit (Wardenier et al. 2022).
1528
+ in observations, which naturally cannot finely sample
1529
+ ingress and egress phases.
1530
+ 3.2. Phase bins
1531
+ We have thus far examined drivers of asymmetry and
1532
+ potential diagnostics of specific mechanisms. Next, we
1533
+ will evaluate a few HRCCS data types to determine how
1534
+ robust they are and their potential ability to constrain
1535
+ a number of different physical mechanisms that give rise
1536
+ to HRCCS asymmetry.
1537
+ The first of these data types is HRCCS Doppler shifts
1538
+ that are binned in phase.
1539
+ A substantial fraction of
1540
+ HRCCS studies present detections and Doppler shifts
1541
+ integrated over the entirety of transit (e.g., Giacobbe
1542
+ et al. 2021). This approach maximizes detection SNR,
1543
+ which may be necessary for a given set of observations
1544
+ (e.g., because of a low-resolution spectrograph, small
1545
+ telescope aperture, faint star, low species abundance,
1546
+ low number of absorption lines, or weak intrinsic ab-
1547
+ sorption line strengths). While it is possible to reveal
1548
+ aspects of limb asymmetry with this approach, espe-
1549
+ cially when comparing detections of multiple species to
1550
+ one another, phase-resolving the transit (and observing
1551
+ isolated ingresses and egresses when possible) will cer-
1552
+ tainly give a more direct probe of east–west asymme-
1553
+ tries. Binning HRCCS data in phase across transit may
1554
+ provide a desirable balance between revealing asymme-
1555
+ try and maintaining high SNR.
1556
+ We seek to address this question by phase-binning
1557
+ modeled Doppler shifts to examine its biases with re-
1558
+ spect to the underlying model. We follow this experi-
1559
+ ment with a comparison to the phase-binned observa-
1560
+ tions of Kesseli et al. (2022).
1561
+ 3.2.1. Theoretical phase binning
1562
+ We average our phase-resolved calculations into two
1563
+ bins: the first and second half of transit.
1564
+ Once our
1565
+ CCFs are calculated we average them in phase to ef-
1566
+ fectively reduce our data to two single bins: the first
1567
+ half of transit and the second half of transit. We make
1568
+ versions of these two half-transit bins that include or
1569
+ exclude the ingress and egress phases (when the planet
1570
+ is only partially occulting the star).
1571
+ Motivated by recent detections in the near-infrared
1572
+ (Landman et al. 2021; S´anchez-L´opez et al. 2022), we
1573
+ search for absorption from various molecules6 in our
1574
+ models, focusing on the CARMENES (Quirrenbach
1575
+ et al. 2014) wavelength range and resolution for direct
1576
+ 6 We use the MoLLIST (Brooke et al. 2016), POKAZATEL
1577
+ (Polyansky et al. 2018), and Li2015 (Li et al. 2015) linelists for
1578
+ OH, H2O, and CO, respectively.
1579
+
1580
+ Diagnosing limb asymmetries in transmission
1581
+ 13
1582
+ Figure 6. Single-species (OH, CO, H2O, HCN) 3D forward-
1583
+ modeled spectra of WASP-76b. These spectra are simulated
1584
+ over the CARMENES waveband and resolution.
1585
+ Doppler
1586
+ effects are not included in these spectra, which are modeled
1587
+ at center of transit. H2O is the dominant absorber in this
1588
+ bandpass, followed by OH. HCN exhibits no spectral features
1589
+ above the continuum for WASP-76b in this bandpass.
1590
+ comparison against observational results using that in-
1591
+ strument. Of these molecules, we find that OH, H2O,
1592
+ and CO produce significant absorption over the mod-
1593
+ eled wavelength range, with OH and H2O producing the
1594
+ strongest features (Figure 6). We find that HCN does
1595
+ not produce any noticeable absorption under the as-
1596
+ sumption of chemical equilibrium and solar composition,
1597
+ implying either more exotic chemistry for WASP-76b’s
1598
+ atmosphere (i.e., photochemistry or non-solar abun-
1599
+ dances; Moses et al. 2012), or that the detection of
1600
+ HCN in this atmosphere (S´anchez-L´opez et al. 2022)
1601
+ was spurious (perhaps due to the nature of the HCN
1602
+ opacity function; Zhang et al. 2020). We furthermore
1603
+ find a moderate (≈ 4 km s−1) increase in blueshift for
1604
+ our modeled H2O.
1605
+ While this increase in blueshift is
1606
+ commensurate with the increase in blueshift described
1607
+ for H2O in S´anchez-L´opez et al. (2022), we are once
1608
+ again unable to match the high reported velocities (here
1609
+ -14.3 km s−1) with our self-consistent forward models.
1610
+ Figure 7 shows the results of this experiment. As the
1611
+ error for each phase bin, we take the average error of
1612
+ phase bins from Kesseli et al. (2022) (1.55 km s−1). We
1613
+ define the two phase bins as inconsistent if the peak of
1614
+ their respective CCFs are inconsistent at 2σ.
1615
+ We find that excluding ingress and egress phases can
1616
+ strongly reduce the difference in derived Doppler shift
1617
+ between phase bins. Furthermore, we find that, as ex-
1618
+ pected from Kempton & Rauscher (2012), differences
1619
+ between bins are maximized when just considering the
1620
+ ingress and egress phases.7
1621
+ While higher-order drivers of asymmetry are clearly
1622
+ not detectable with phase bins (e.g,. at what longitude
1623
+ condensation may begin to play a role; Wardenier et al.
1624
+ 2021), certain drivers of asymmetry are accessible with
1625
+ this method. For example, ignoring for now the exact
1626
+ details of error budgets, all species in Figure 7 clearly
1627
+ blueshift over the course of transit. This provides poten-
1628
+ tial evidence for, among other things, a spatially vary-
1629
+ ing wind field, condensation, optically thick clouds, or a
1630
+ scale height effect. Furthermore, per the results of Sec-
1631
+ tion 3.1.1 the detection of CO’s blueshifting indicates
1632
+ that something besides equilibrium chemistry is driv-
1633
+ ing at least some of the asymmetry in the atmosphere.
1634
+ These underlying models are cloud-free, so these results
1635
+ imply sensitivity to, e.g., the scale height effect.
1636
+ 3.2.2. Comparison to Kesseli et al. (2022)
1637
+ With our models calculated, we can now explore the
1638
+ ability of phase-resolved spectra to confront toy mod-
1639
+ els by comparing the models to observations. A prime
1640
+ observational work that made use of phase binning is
1641
+ Kesseli et al. (2022); there, the authors search for asym-
1642
+ metries in two phase bins for a wide variety of species,
1643
+ motivated by the strength of those species’ opacity func-
1644
+ tions in the data’s wavelength range.
1645
+ To consider a toy model: based on previous studies
1646
+ (Ehrenreich et al. 2020; Tabernero et al. 2021; Savel
1647
+ et al. 2022), it appears that Ca II does not follow the
1648
+ Fe-like Doppler shift trend first observed by Ehrenreich
1649
+ et al. (2020). Rather, it appears that Ca II, with its
1650
+ strong opacity and resultant deep lines, may be probing
1651
+ a non-hydrostatic region of the atmosphere (Casasayas-
1652
+ Barris et al. 2021; Deibert et al. 2021; Tabernero et al.
1653
+ 2021). This region of the atmosphere cannot be cap-
1654
+ tured by the models of this work and Savel et al. (2022).
1655
+ Without a model of atmospheric escape, it seems dif-
1656
+ ficult to elevate the above picture beyond “toy model”
1657
+ status. However, by phase-resolving multiple species, a
1658
+ clearer picture can emerge.
1659
+ For our comparison with Kesseli et al. (2022), we use
1660
+ the same line lists as in that study: the National In-
1661
+ stitute of Standards and Technology (NIST; Kramida
1662
+ et al. 2019) line lists. It is crucial to use the same line
1663
+ 7 We would expect that binning with fewer spectra (just includ-
1664
+ ing the ingress phases) would increase the associated error on
1665
+ Doppler shift at each bin. However, the point of this exercise is to
1666
+ illustrate the magnitude of ingress/egress Doppler shift discrep-
1667
+ ancy; observational strategies such as stacking multiple transits
1668
+ could reduce errors in practice and make these differences dis-
1669
+ cernible.
1670
+
1671
+ H20
1672
+ CO
1673
+ 1.375
1674
+ HO
1675
+ HCN
1676
+ 1.350
1677
+ Transit depth (%)
1678
+ 1.325
1679
+ 1.300
1680
+ 1.275
1681
+ 1.250
1682
+ 1.225
1683
+ 1.200
1684
+ 1.0
1685
+ 1.1
1686
+ 1.2
1687
+ 1.3
1688
+ 1.4
1689
+ 1.5
1690
+ 1.6
1691
+ 1.7
1692
+ Wavelength (microns)14
1693
+ Savel et al.
1694
+ Figure 7. CCFs of individual species averaged over two phase bins. Each column corresponds to different species (OH, CO,
1695
+ H2O), and each row corresponds to different bin selection: without including ingress and egress, including the full transit, and
1696
+ only including ingress and egress. Central bars between the CCFs are colored blue if the difference between the CCFs is greater
1697
+ than optimal Doppler shift errors (1.55 km/s, in black; Kesseli et al. 2022); otherwise, they are colored red. In our models, CO
1698
+ only displays detectable CCF differences when only including ingress and egress. The SNR in each plot refers to the difference
1699
+ between the two phase bins’ CCF peaks relative to the optimal Doppler shift errors.
1700
+ lists for comparisons of HRCCS studies—different line
1701
+ list databases can contain vastly discrepant numbers of
1702
+ line transition, which greatly affects the resultant opac-
1703
+ ity function (see, for instance, Figure 11 of Grimm et al.
1704
+ 2021).
1705
+ The results of our comparison with the species de-
1706
+ tected in Kesseli et al. (2022) are shown in Figure 8. As
1707
+ in Savel et al. (2022), these baseline models—no clouds,
1708
+ no condensation, no orbital eccentricity—cannot fully
1709
+ explain the Doppler shifts of Fe observed in WASP-
1710
+ 76b.
1711
+ However, the comparison across multiple differ-
1712
+ ent species provides further constraints. Figure 8 shows
1713
+ that Fe, V, Cr, Ca II, and Sr II are strongly discrepant
1714
+ from our models for at least one half of transit, whereas
1715
+ Na, Mg, Mn, and Ni are reasonably well described by
1716
+ our models for both the first and second half of transit.
1717
+ Furthermore, Fe, V, and Cr all have stronger blueshifts
1718
+ in the second phase bin than in our models. The similar
1719
+
1720
+ CO, no ingress / egress
1721
+ OH, no ingress / egress
1722
+ H2O, no ingress / egress
1723
+ 1.4 -
1724
+ 2nd half peak: i
1725
+ 1st half peak:
1726
+ 2nd half peak: i
1727
+ 1st half peak:
1728
+ 2nd half peak:i!
1729
+ 1st half peak:
1730
+ -3.52 km s-1
1731
+ -1.3 km s-1
1732
+ -5.41 km s-1
1733
+ -3.15 km s-1
1734
+ -5.93 km s-1
1735
+ -3.73 km s-1
1736
+ 1.2
1737
+ SNR: 1.4
1738
+ SNR: 1.5
1739
+ SNR: 1.4
1740
+ 1.0
1741
+ 0.8
1742
+ 3333333333
1743
+ 8 0.6
1744
+ 0.4 -
1745
+ 0.2
1746
+ CO, full transit
1747
+ H20, full transit
1748
+ OH, full transit
1749
+ 2nd half peak:
1750
+ 1st half peak:
1751
+ 2nd half peak:!
1752
+ 1st half peak:
1753
+ 2nd half peak:
1754
+ 1.4 -
1755
+ 1st half peak:
1756
+ -3.73 km s-
1757
+ -0.38 km s-1
1758
+ -6.08 km s-
1759
+ -2.27 km s-1
1760
+ -6.23 km s-1
1761
+ -2.81 km s-1
1762
+ 1.2 -
1763
+ 0
1764
+ SNR: 2.2
1765
+ SNR: 2.5
1766
+ SNR: 2.2
1767
+ 1.0 -
1768
+ 0.8
1769
+ CF
1770
+ 0 0.6
1771
+ 0.4 -
1772
+ 0.2
1773
+ CO, only ingress / egress
1774
+ OH, only ingress / egress
1775
+ H2O, only ingress / egress
1776
+ 2nd half peak:i
1777
+ 1.4
1778
+ 1st half peak:
1779
+ 2nd half peakl
1780
+ 1st half peak:
1781
+ 2nd half peakl
1782
+ 1st half peak:
1783
+ -6.28 km s-1
1784
+ 4.27 km s-1
1785
+ -8.04 km s-1T
1786
+ 2.24 km s-1
1787
+ -7.98 km s-1T
1788
+ 1.65 km s-1
1789
+ 1.2
1790
+
1791
+ SNR: 6.8
1792
+ SNR: 6.6
1793
+ SNR: 6.2
1794
+ 0.8
1795
+ CF
1796
+ 8 0.6 -
1797
+ 0.4
1798
+ 0.2
1799
+ -40
1800
+ 20
1801
+ 0
1802
+ 20
1803
+ 40
1804
+ -40
1805
+ 20
1806
+ 0
1807
+ 20
1808
+ 40
1809
+ -40
1810
+ 20
1811
+ 0
1812
+ 20
1813
+ 40
1814
+ Velocity (km/s)
1815
+ Velocity (km/s)
1816
+ Velocity (km/s)Diagnosing limb asymmetries in transmission
1817
+ 15
1818
+ Figure 8. The net Doppler shifts of Kesseli et al. (2022) (error bars) as compared to this work’s models (crosses). The first
1819
+ phase bin is drawn thinner than the second phase bin; observed phase bins are connected by a dotted line for visibility’s sake.
1820
+ The species are ordered and colored by total observed detection SNR. Rows without crosses correspond to species that we could
1821
+ not recover via cross-correlation in our models. Our models are able to explain some species (e.g., Na), fail to explain others
1822
+ (e.g., Cr) and fail to detect yet others (e.g,. K).
1823
+ level of disagreement between Fe, V, and Cr implies that
1824
+ they share a common driver of asymmetry. This result
1825
+ in turn implies that whatever driver affects them affects
1826
+ the regions in which these species form similarly — be
1827
+ it clouds, condensation, etc.
1828
+ To bridge the toy models presented in Section 2.3 to
1829
+ our Kesseli et al. (2022) comparison, we compute a set
1830
+ of high-resolution spectra exactly as above, but with
1831
+ the same altitude grid at all latitudes and longitudes
1832
+ in an effort to effectively turn off the scale height ef-
1833
+ fect while maintaining chemical limb inhomogeneities.
1834
+ Post-processing this (self-inconsistent) model yields less
1835
+ than half the Doppler shift asymmetry as compared to
1836
+ our self-consistent models.
1837
+ This experiment confirms
1838
+ the intuition that the scale height effect is a first-order
1839
+ asymmetry effect.
1840
+ Finally, we consider the Ca II toy model previously de-
1841
+ scribed. Certain lightweight and/or ionized species may
1842
+ be entrained in an outflow, as indicated by some pre-
1843
+ vious observations (e.g., Tabernero et al. 2021) of very
1844
+ deep absorption lines in transmission that must extend
1845
+ very high up in altitude. The differential behavior of the
1846
+ Ca II and Sr II Doppler shifts lends more credence to
1847
+ this hypothesis.
1848
+ In sum, by taking advantage of phase-binned spectra,
1849
+ it is possible to better identify drivers of HRCCS asym-
1850
+ metry. Additionally, our predictions in Figure 8 indi-
1851
+ cate that most species should have roughly the same
1852
+ Doppler shift patterns. In stark contrast, observations
1853
+ reveal much larger variations in velocity across different
1854
+ species. While some interpretation may be due to spuri-
1855
+ ous detections, physics that is not included in our model
1856
+ (e.g., outflows, condensation) may be playing a driving
1857
+ role.
1858
+ 3.3. Full phase-resolved spectra
1859
+ Currently, the most information-rich diagnostic avail-
1860
+ able to probe asymmetry in HRCCS is phase-resolved
1861
+ cross-correlation functions (e.g., Ehrenreich et al. 2020;
1862
+ Borsa et al. 2021)—that is, net Doppler shifts associated
1863
+ with the absorption spectrum evaluated over multiple
1864
+ points in transit. With these data, one should be able
1865
+ to directly constrain longitudinally dependent drivers of
1866
+ asymmetry, providing the best chance of disentangling
1867
+ the physical mechanisms outlined in Section 2. But how
1868
+ far can we push these data?
1869
+ 3.3.1. Example: probing physics in the NIR
1870
+ To explore this question, we take as an example a
1871
+ three-species (OH, H2O, and CO) near-infrared (NIR)
1872
+ dataset over a CARMENES-like waveband as in Sec-
1873
+ tion 3.2.
1874
+ Figure 9 shows the Doppler shifts of these
1875
+
1876
+ -14
1877
+ Sr+
1878
+ Ni
1879
+ Kesseli+22 SNR of species detection
1880
+ Co
1881
+ Model, first bin
1882
+ 12
1883
+ Fe
1884
+ Model, second bin
1885
+ Kesseli+22,
1886
+ Mn
1887
+ first bin
1888
+ Kesseli+22,
1889
+ 10
1890
+ cies
1891
+ Cr
1892
+ second bin
1893
+ V
1894
+ d
1895
+ S'Ca+
1896
+ 8
1897
+ K
1898
+ Mg
1899
+ Na
1900
+ 6
1901
+ Li
1902
+ H
1903
+ -15
1904
+ -10
1905
+ -5
1906
+ 0
1907
+ 5
1908
+ 10
1909
+ Planet-frame Doppler shift (km/s)16
1910
+ Savel et al.
1911
+ Figure 9. Modeled phase-resolved Doppler shifts for select NIR-absorbing species, with representative error bars (Ehrenreich
1912
+ et al. 2020) drawn on. We find that OH and H2O have distinct Doppler signatures from CO; however, OH and H2O have Doppler
1913
+ shifts that are indistinguishable from one another with current best-case error bars (e.g., Ehrenreich et al. 2020). Considering
1914
+ CO as a “baseline species” here allows one to better understand how H2O and OH may change through the atmosphere.
1915
+ species as a function of phase, produced for single species
1916
+ at a time as in Section 3.2, but without any averaging.
1917
+ Without considering any data, a compelling toy model
1918
+ would be as follows: H2O is thermally dissociated on
1919
+ the hotter, approaching limb, so it preferentially exists
1920
+ on the receding limb. OH is a product of H2O photodis-
1921
+ sociation, so it forms preferentially on the approaching
1922
+ limb. CO is constant everywhere; therefore, CO should
1923
+ not experience much of a trend in Doppler shift, OH
1924
+ should be more blueshifted than CO, and H2O should
1925
+ be more redshifted than CO.
1926
+ We shall see, however, that additional, complicating
1927
+ physics is revealed by fully phase-resolved spectra. For
1928
+ our models, the relevant underlying physics is as follows:
1929
+ 1. Altitude-dependent winds: H2O lines are more
1930
+ strongly blueshifted than CO lines at all phases
1931
+ because the H2O line cores over the wavelength
1932
+ range of the CARMENES bandpass more predom-
1933
+ inantly form at higher altitudes. At high altitudes,
1934
+ the atmospheric flow switches from dominantly ro-
1935
+ tational (via an eastward equatorial jet) to dom-
1936
+ inantly divergent (via day–night winds) (Ham-
1937
+ mond & Lewis 2021). This result is the opposite of
1938
+ what would be expected from the above-described
1939
+ toy model, revealing the shortcomings of simple
1940
+ models and how they can sometimes mislead us.
1941
+ 2. Equilibrium chemistry: H2O and CO are less
1942
+ blueshifted than OH because OH preferentially
1943
+ forms on the approaching, blueshifted limb of the
1944
+ planet. OH being more blueshifted than the other
1945
+ molecules is in agreement with the predictions of
1946
+ the toy model.
1947
+ 3. Equilibrium chemistry: The relationship be-
1948
+ tween H2O and OH changes as a function of phase
1949
+ because the ratio OH/H2O increases a function of
1950
+ temperature, and hotter regions of the planet ro-
1951
+ tate into view over transit.
1952
+ This finding is also
1953
+ qualitatively in agreement with the toy model.
1954
+ However, per Figure 9, this effect is unfortunately
1955
+ not likely to be observable given the error bars in
1956
+ current data sets.
1957
+ Now the question remains: Can we observe in real
1958
+ data the trends matching these model explanations? As
1959
+ a simple experiment, we can apply error bars representa-
1960
+ tive of the best observing nights on the best instrument
1961
+ with the most observable chemical species (roughly 2
1962
+ km/s, as drawn as vertical error bars in Figure 8; Ehren-
1963
+ reich et al. 2020) and determine whether these trends are
1964
+ still detectable. With our errorbars now applied to our
1965
+ simulated data, only the first explanation—that H2O
1966
+ forms at higher altitudes than CO—can fully be ad-
1967
+ dressed, assuming that Doppler shifts for both species
1968
+
1969
+ CO
1970
+ OH
1971
+ - H20
1972
+ 5.0
1973
+ Planet-frame RV (km/s)
1974
+ 2.5
1975
+ 0.0
1976
+ -2.5
1977
+ -5.0
1978
+ 7.5
1979
+ -10.0
1980
+ 12.5
1981
+ -15
1982
+ -10
1983
+ 5
1984
+ 5
1985
+ 10
1986
+ 15
1987
+ Phase (degrees)Diagnosing limb asymmetries in transmission
1988
+ 17
1989
+ (a)
1990
+ (b)
1991
+ Figure 10. Results of an investigation into anomalous Ca II blueshift between different model runs. In panel (a), it can be
1992
+ seen that forward models that include absorption due to Sc opacity yield a larger Ca II blueshift than models that lack Sc (Fe
1993
+ Doppler shift is included for comparison). Panel (b) illustrates the cause of this anomalous blueshift: a Sc line overlapping one
1994
+ line in the optical Ca II doublet. These results imply that overlapping line profiles can subtly contaminate calculated Doppler
1995
+ shifts.
1996
+ can be obtained. The second explanation can only be
1997
+ partially addressed—we can still determine that CO is
1998
+ less blueshifted than OH.
1999
+ 3.3.2. Warning: blending of Doppler shifts
2000
+ The disentangling of physics in Section 3.3.1 rests on
2001
+ a fundamental assumption: that each cross-correlation
2002
+ template directly tracks only a single species. Indeed,
2003
+ one of the promises of HRCCS is the ability to uniquely
2004
+ constrain individual species’ abundance; with individual
2005
+ line profiles resolved, different species should be readily
2006
+ identifiable from one another in cross-correlation space
2007
+ (e.g., Brogi & Line 2019). Furthermore, our noiseless
2008
+ models should be even less susceptible to degeneracies
2009
+ between different species’ spectral manifestations.
2010
+ Panel (a) of Figure 10 seems to contradict the notion
2011
+ of complete line profile independence across species. For
2012
+ models run in Savel et al. (2022), Sc was excluded. Mo-
2013
+ tivated by the search for atoms in Kesseli et al. (2022),
2014
+ however, we included Sc in this work’s models.
2015
+ Sur-
2016
+ prisingly, we found a subsequent significant difference in
2017
+ the Doppler shifts recovered from our cross-correlation
2018
+ analysis in our Sc-inclusive models.
2019
+ Panel (b) of Figure 10 reveals the source of the dis-
2020
+ crepancy. In the optical, Ca II opacity is dominated by
2021
+ a doublet; one of the lines in this doublet partially over-
2022
+ laps with a strong, narrow Sc line. When both species
2023
+ combined in a forward model, the Sc line produces ab-
2024
+ sorption just blueward of this Ca II line’s core; hence,
2025
+ the cross-correlation of the Ca II template yields a spuri-
2026
+ ous blueshift. There did exist other modeling differences
2027
+ between the two spectra (e.g., the Savel et al. (2022)
2028
+ models included TiO and VO), but none of these differ-
2029
+ ences strongly impacted the Doppler shift of Ca II.
2030
+ Because Ca II in the optical has only two strong lines,
2031
+ it is particularly susceptible to this type of error. All it
2032
+ takes is one slight overlap with another species near a
2033
+ Ca II doublet core, and the Ca II Doppler signal can be
2034
+ significantly biased. Species with forests of lines (e.g.,
2035
+ Fe in the optical) should hence be more robust to chance
2036
+ overlaps with other species’ lines.
2037
+ To guard against this error for species with few lines,
2038
+ we recommend cross-correlating templates against one
2039
+ another to get a first-order sense for the extent of species
2040
+ overlap in Doppler space.
2041
+ Furthermore, we recom-
2042
+ mend performing these analyses on HRCCS with com-
2043
+ bined species models, as opposed to single-species mod-
2044
+ els. This approach could involve a retrieval framework
2045
+ (Brogi & Line 2019; Gandhi et al. 2019; Gibson et al.
2046
+ 2020), which couples a statistical sampler to an atmo-
2047
+ spheric forward model to determine the exoplanet spec-
2048
+ trum that best fits the data, inclusive of multiple chem-
2049
+ ical species at once.
2050
+ 4. CONCLUSION
2051
+ The past few years have yielded asymmetric Doppler
2052
+ signals from exoplanet atmospheres as a function of
2053
+ phase.
2054
+ Compelling “toy models” notwithstanding, a
2055
+ number of physical processes can drive these asymme-
2056
+ tries, and it can be difficult to uniquely constrain the
2057
+ cause of an asymmetry.
2058
+ In this study, we determine that if an asymmetry is
2059
+ observed:
2060
+ 1. It may be due to a scale height difference across
2061
+ the atmosphere, not a chemistry difference across
2062
+
2063
+ 2
2064
+ Ca+ with Sc
2065
+ Fe
2066
+ Ca+
2067
+ Planet-frame RV (km/s)
2068
+ 0
2069
+ -2
2070
+ -6
2071
+ -8
2072
+ -1015
2073
+ -10
2074
+ -5
2075
+ 0
2076
+ 5
2077
+ 10
2078
+ 15
2079
+ Phase (degrees)Sc
2080
+ 1.40
2081
+ Ca+ template
2082
+ (%)
2083
+ ransit depth (
2084
+ 1.35
2085
+ 1.30
2086
+ 1.25
2087
+ 1.20
2088
+ 0.3931
2089
+ 0.3932 0.3933 0.3934 0.3935 0.3936 0.3937 0.3938
2090
+ Wavelength (microns)18
2091
+ Savel et al.
2092
+ the atmosphere. Comparing a signal of a species in
2093
+ HRCCS to a baseline species that is guaranteed to
2094
+ be chemically stable over the atmosphere can bet-
2095
+ ter motivate whether the asymmetry could be due
2096
+ to chemistry. CO is an excellent baseline species
2097
+ for ultra-hot Jupiters, as it is stable over these
2098
+ planets’ expected temperature–pressure space, has
2099
+ many spectral lines in the near-infrared accessible
2100
+ to ground-based spectrographs, and has been de-
2101
+ tected in numerous studies.
2102
+ 2. The asymmetry can be highly informative even if
2103
+ it is binned in phase, especially if multiple species
2104
+ are considered. For instance, much larger Doppler
2105
+ shifts (both blue and red) of certain species rela-
2106
+ tive to the predictions of hydrostatic GCMs can
2107
+ be used as evidence for outflowing material.
2108
+ 3. The asymmetry may be boosted by including
2109
+ (and perhaps only considering) ingress and egress
2110
+ phases. Ingress and egress spectra are the the gold
2111
+ standard for asymmetric signals so long as the sig-
2112
+ nal to noise is high enough.
2113
+ 4. The asymmetry may be influenced by line con-
2114
+ fusion between species, even at high resolution.
2115
+ Species with very few lines (e.g., a single doublet)
2116
+ in the observed waveband are especially suscep-
2117
+ tible to contamination by other species in cross-
2118
+ correlation analysis, and they should be carefully
2119
+ checked against theoretical models for possible
2120
+ contaminating opacity sources.
2121
+ 5. If all species exhibit a similar asymmetry—
2122
+ especially if they all become less blueshifted over
2123
+ the course of transit—the asymmetry may be due
2124
+ to a large-scale effect, such as clouds blanketing
2125
+ the cooler limb.
2126
+ 6. Per our comparison of near-infrared absorbers in
2127
+ the CARMENES waveband, the toy model pre-
2128
+ dictions of the H2O Doppler shift relative to CO
2129
+ was inaccurate, as it did not include information
2130
+ about the vertical coordinate. With H2O lines on
2131
+ average probing higher in the atmosphere than CO
2132
+ in this waveband, they probed a different part of
2133
+ the flow, departing from expectations of the toy
2134
+ model.
2135
+ By aiming to systematically understand even just a
2136
+ few drivers of asymmetry, this work has made it clear
2137
+ that HRCCS—already arguably abstract given its gen-
2138
+ eral inability to produce visible planetary spectra—has
2139
+ yet more nuance to uncover. As data quality continues
2140
+ to increase, it will become increasingly necessary to un-
2141
+ derstand the relationships between higher-order physical
2142
+ effects.
2143
+ ACKNOWLEDGMENTS
2144
+ A.B.S., E.M.-R.K., and E.R. acknowledge funding
2145
+ from the Heising-Simons Foundation.
2146
+ We thank Michael Zhang for a thoughtful conversa-
2147
+ tion on the cross-correlation signature of HCN. We also
2148
+ thank Anusha Pai Asnodkar for a robust discussion of
2149
+ degeneracies in HRCCS tests. Finally, we thank Serena
2150
+ Cronin for providing useful insight into applications of
2151
+ CO detections in extragalactic astronomy.
2152
+ The authors acknowledge the University of Maryland
2153
+ supercomputing resources (http://hpcc.umd.edu) made
2154
+ available for conducting the research reported in this
2155
+ paper.
2156
+ This research has made use of NASA’s Astrophysics
2157
+ Data System Bibliographic Services.
2158
+ Software:
2159
+ astropy (Price-Whelan et al. 2018),
2160
+ batman (Kreidberg 2015), FastChem (Stock et al. 2018),
2161
+ IPython (P´erez & Granger 2007), HELIOS-K (Grimm
2162
+ et al. 2021), HELIOS (Malik et al. 2017), Matplotlib
2163
+ (Hunter 2007), NumPy (Harris et al. 2020), Numba (Lam
2164
+ et al. 2015), pandas (McKinney 2010), SciPy (Virtanen
2165
+ et al. 2020), tqdm (da Costa-Luis 2019)
2166
+ REFERENCES
2167
+ Ahrer, E.-M., Alderson, L., Batalha, N. M., et al. 2022,
2168
+ arXiv preprint arXiv:2208.11692
2169
+ Akinsanmi, B., Barros, S., Santos, N., et al. 2019,
2170
+ Astronomy & Astrophysics, 621, A117
2171
+ Arcangeli, J., D´esert, J.-M., Line, M. R., et al. 2018, The
2172
+ Astrophysical Journal Letters, 855, L30
2173
+ Beichman, C., Benneke, B., Knutson, H., et al. 2014,
2174
+ Publications of the Astronomical Society of the Pacific,
2175
+ 126, 1134
2176
+ Beltz, H., Rauscher, E., Brogi, M., & Kempton, E. M.-R.
2177
+ 2020, The Astronomical Journal, 161, 1
2178
+ Beltz, H., Rauscher, E., Kempton, E. M. R., et al. 2022,
2179
+ AJ, 164, 140, doi: 10.3847/1538-3881/ac897b
2180
+
2181
+ Diagnosing limb asymmetries in transmission
2182
+ 19
2183
+ Beltz, H., Rauscher, E., Roman, M. T., & Guilliat, A. 2021,
2184
+ The Astronomical Journal, 163, 35
2185
+ Benneke, B., Wong, I., Piaulet, C., et al. 2019, The
2186
+ Astrophysical Journal Letters, 887, L14
2187
+ Birkby, J. L. 2018, arXiv preprint arXiv:1806.04617
2188
+ Blecic, J., Dobbs-Dixon, I., & Greene, T. 2017, The
2189
+ Astrophysical Journal, 848, 127
2190
+ Borsa, F., Allart, R., Casasayas-Barris, N., et al. 2021,
2191
+ Astronomy & Astrophysics, 645, A24
2192
+ Bourrier, V., Ehrenreich, D., Lendl, M., et al. 2020,
2193
+ Astronomy & Astrophysics, 635, A205
2194
+ Brogi, M., De Kok, R., Albrecht, S., et al. 2016, The
2195
+ Astrophysical Journal, 817, 106
2196
+ Brogi, M., De Kok, R., Birkby, J., Schwarz, H., & Snellen,
2197
+ I. 2014, Astronomy & Astrophysics, 565, A124
2198
+ Brogi, M., & Line, M. R. 2019, The Astronomical Journal,
2199
+ 157, 114
2200
+ Brooke, J. S., Bernath, P. F., Western, C. M., et al. 2016,
2201
+ Journal of Quantitative Spectroscopy and Radiative
2202
+ Transfer, 168, 142
2203
+ Caldas, A., Leconte, J., Selsis, F., et al. 2019, Astronomy &
2204
+ Astrophysics, 623, A161
2205
+ Casasayas-Barris, N., Orell-Miquel, J., Stangret, M., et al.
2206
+ 2021, A&A, 654, A163,
2207
+ doi: 10.1051/0004-6361/202141669
2208
+ Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland,
2209
+ R. L. 2002, The Astrophysical Journal, 568, 377
2210
+ Cho, J. Y., Menou, K., Hansen, B. M., & Seager, S. 2008,
2211
+ The Astrophysical Journal, 675, 817
2212
+ Cooper, C. S., & Showman, A. P. 2005, The Astrophysical
2213
+ Journal, 629, L45
2214
+ Crossfield, I. J., & Kreidberg, L. 2017, The Astronomical
2215
+ Journal, 154, 261
2216
+ da Costa-Luis, C. 2019, Journal of Open Source Software,
2217
+ 4, 1277
2218
+ de Kok, R. J., Brogi, M., Snellen, I. A., et al. 2013,
2219
+ Astronomy & Astrophysics, 554, A82
2220
+ Deibert, E. K., de Mooij, E. J., Jayawardhana, R., et al.
2221
+ 2021, The Astrophysical Journal Letters, 919, L15
2222
+ Demory, B.-O., Gillon, M., De Wit, J., et al. 2016, Nature,
2223
+ 532, 207
2224
+ Ehrenreich, D., Lovis, C., Allart, R., et al. 2020, Nature,
2225
+ 580, 597
2226
+ Espinoza, N., & Jones, K. 2021, The Astronomical Journal,
2227
+ 162, 165
2228
+ Faedi, F., Barros, S. C., Anderson, D. R., et al. 2011,
2229
+ Astronomy & Astrophysics, 531, A40
2230
+ Feng, Y. K., Line, M. R., Fortney, J. J., et al. 2016, The
2231
+ Astrophysical Journal, 829, 52
2232
+ Flowers, E., Brogi, M., Rauscher, E., Kempton, E. M.-R., &
2233
+ Chiavassa, A. 2019, The Astronomical Journal, 157, 209
2234
+ Fortney, J. J., Dawson, R. I., & Komacek, T. D. 2021,
2235
+ Journal of Geophysical Research: Planets, 126,
2236
+ e2020JE006629
2237
+ Fossati, L., Ayres, T., Haswell, C., et al. 2013, The
2238
+ Astrophysical Journal Letters, 766, L20
2239
+ Fray, N., & Schmitt, B. 2009, Planetary and Space Science,
2240
+ 57, 2053
2241
+ Fromang, S., Leconte, J., & Heng, K. 2016, Astronomy &
2242
+ Astrophysics, 591, A144
2243
+ Gandhi, S., Brogi, M., & Webb, R. K. 2020, Monthly
2244
+ Notices of the Royal Astronomical Society, 498, 194
2245
+ Gandhi, S., Kesseli, A., Snellen, I., et al. 2022, Monthly
2246
+ Notices of the Royal Astronomical Society
2247
+ Gandhi, S., Madhusudhan, N., Hawker, G., & Piette, A.
2248
+ 2019, The Astronomical Journal, 158, 228
2249
+ Gao, P., & Powell, D. 2021, The Astrophysical Journal
2250
+ Letters, 918, L7
2251
+ Gao, P., Wakeford, H. R., Moran, S. E., & Parmentier, V.
2252
+ 2021, Aerosols in exoplanet atmospheres, Wiley Online
2253
+ Library
2254
+ Gaudi, B. S., Stassun, K. G., Collins, K. A., et al. 2017,
2255
+ Nature, 546, 514
2256
+ Giacobbe, P., Brogi, M., Gandhi, S., et al. 2021, Nature,
2257
+ 592, 205
2258
+ Gibson, N. P., Merritt, S., Nugroho, S. K., et al. 2020,
2259
+ Monthly Notices of the Royal Astronomical Society, 493,
2260
+ 2215
2261
+ Grimm, S. L., Malik, M., Kitzmann, D., et al. 2021, The
2262
+ Astrophysical Journal Supplement Series, 253, 30
2263
+ Guillot, T., Fletcher, L. N., Helled, R., et al. 2022, arXiv
2264
+ preprint arXiv:2205.04100
2265
+ Guilluy, G., Giacobbe, P., Carleo, I., et al. 2022, Astronomy
2266
+ & Astrophysics, 665, A104
2267
+ Hammond, M., & Lewis, N. T. 2021, Proceedings of the
2268
+ National Academy of Sciences, 118, e2022705118
2269
+ Harrington, J., Hansen, B. M., Luszcz, S. H., et al. 2006,
2270
+ Science, 314, 623
2271
+ Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2272
+ 2020, Nature, 585, 357–362,
2273
+ doi: 10.1038/s41586-020-2649-2
2274
+ Heays, A., Bosman, AD, v., & Van Dishoeck, E. 2017,
2275
+ Astronomy & Astrophysics, 602, A105
2276
+ Hellier, C., Anderson, D., Cameron, A. C., et al. 2009,
2277
+ Nature, 460, 1098
2278
+ Herman, M. K., de Mooij, E. J., Nugroho, S. K., Gibson,
2279
+ N. P., & Jayawardhana, R. 2022, The Astronomical
2280
+ Journal, 163, 248
2281
+
2282
+ 20
2283
+ Savel et al.
2284
+ Hindle, A., Bushby, P., & Rogers, T. 2021, The
2285
+ Astrophysical Journal, 922, 176
2286
+ Hoeijmakers, H. J., Seidel, J. V., Pino, L., et al. 2020,
2287
+ Astronomy & Astrophysics, 641, A123
2288
+ Hood, C. E., Fortney, J. J., Line, M. R., et al. 2020, The
2289
+ Astronomical Journal, 160, 198
2290
+ Hunter, J. D. 2007, Computing in science & engineering, 9,
2291
+ 90
2292
+ Kataria, T., Sing, D. K., Lewis, N. K., et al. 2016, The
2293
+ Astrophysical Journal, 821, 9
2294
+ Kempton, E. M.-R., Perna, R., & Heng, K. 2014, The
2295
+ Astrophysical Journal, 795, 24
2296
+ Kempton, E. M.-R., & Rauscher, E. 2012, The
2297
+ Astrophysical Journal, 751, 117
2298
+ Kesseli, A. Y., & Snellen, I. 2021, The Astrophysical
2299
+ Journal Letters, 908, L17
2300
+ Kesseli, A. Y., Snellen, I., Casasayas-Barris, N., Molli`ere,
2301
+ P., & S´anchez-L´opez, A. 2022, The Astronomical
2302
+ Journal, 163, 107
2303
+ Knutson, H. A., Charbonneau, D., Allen, L. E., et al. 2007,
2304
+ Nature, 447, 183
2305
+ Komacek, T. D., Showman, A. P., & Parmentier, V. 2019,
2306
+ The Astrophysical Journal, 881, 152
2307
+ Komacek, T. D., Tan, X., Gao, P., & Lee, E. K. H. 2022,
2308
+ ApJ, 934, 79, doi: 10.3847/1538-4357/ac7723
2309
+ Kramida, A., Olsen, K., & Ralchenko, Y. 2019, National
2310
+ Institute of Standards and Technology, US Department
2311
+ of Commerce
2312
+ Kreidberg, L. 2015, Publications of the Astronomical
2313
+ Society of the Pacific, 127, 1161
2314
+ Kreidberg, L., Koll, D. D., Morley, C., et al. 2019, Nature,
2315
+ 573, 87
2316
+ Lacy, B. I., & Burrows, A. 2020, The Astrophysical
2317
+ Journal, 905, 131
2318
+ Lam, S. K., Pitrou, A., & Seibert, S. 2015, in Proceedings
2319
+ of the Second Workshop on the LLVM Compiler
2320
+ Infrastructure in HPC, 1–6
2321
+ Landman, R., S´anchez-L´opez, A., Molli`ere, P., et al. 2021,
2322
+ A&A, 656, A119, doi: 10.1051/0004-6361/202141696
2323
+ Li, G., Gordon, I. E., Rothman, L. S., et al. 2015, The
2324
+ Astrophysical Journal Supplement Series, 216, 15
2325
+ Lide, D. R. 2006, CRC Handbook of Chemistry and
2326
+ Physics, ; Lide, DR, Ed, CRC Press: Boca Raton, Fla
2327
+ Line, M. R., Brogi, M., Bean, J. L., et al. 2021, Nature,
2328
+ 598, 580
2329
+ Lodders, K. 2003, The Astrophysical Journal, 591, 1220
2330
+ Louden, T., & Wheatley, P. J. 2015, The Astrophysical
2331
+ Journal Letters, 814, L24
2332
+ MacDonald, R. J., Goyal, J. M., & Lewis, N. K. 2020, The
2333
+ Astrophysical Journal Letters, 893, L43
2334
+ MacDonald, R. J., & Lewis, N. K. 2022, The Astrophysical
2335
+ Journal, 929, 20
2336
+ Madhusudhan, N., & Seager, S. 2009, The Astrophysical
2337
+ Journal, 707, 24
2338
+ Malik, M., Grosheintz, L., Mendon¸ca, J. M., et al. 2017,
2339
+ The astronomical journal, 153, 56
2340
+ Mansfield, M., Bean, J. L., Stevenson, K. B., et al. 2020,
2341
+ The Astrophysical Journal Letters, 888, L15
2342
+ May, E. M., Komacek, T. D., Stevenson, K. B., et al. 2021,
2343
+ The Astronomical Journal, 162, 158
2344
+ Mayne, N. J., Baraffe, I., Acreman, D. M., et al. 2014,
2345
+ Astronomy & Astrophysics, 561, A1
2346
+ Mbarek, R., & Kempton, E. M.-R. 2016, The Astrophysical
2347
+ Journal, 827, 121
2348
+ McKinney, W. 2010, in Proceedings of the 9th Python in
2349
+ Science Conference, ed. St´efan van der Walt & Jarrod
2350
+ Millman, 56 – 61, doi: 10.25080/Majora-92bf1922-00a
2351
+ Menou, K., & Rauscher, E. 2009, The Astrophysical
2352
+ Journal, 700, 887
2353
+ Miller-Ricci, E., Seager, S., & Sasselov, D. 2008, The
2354
+ Astrophysical Journal, 690, 1056
2355
+ Montalto, M., Santos, N., Boisse, I., et al. 2011, Astronomy
2356
+ & Astrophysics, 528, L17
2357
+ Moses, J., Madhusudhan, N., Visscher, C., & Freedman, R.
2358
+ 2012, The Astrophysical Journal, 763, 25
2359
+ Moses, J. I., Visscher, C., Fortney, J. J., et al. 2011, The
2360
+ Astrophysical Journal, 737, 15
2361
+ Oklopˇci´c, A., & Hirata, C. M. 2018, The Astrophysical
2362
+ Journal Letters, 855, L11
2363
+ Owen, J. E., Murray-Clay, R. A., Schreyer, E., et al. 2023,
2364
+ Monthly Notices of the Royal Astronomical Society, 518,
2365
+ 4357
2366
+ Parmentier, V., & Crossfield, I. J. 2018, Handbook of
2367
+ exoplanets, 116
2368
+ Parmentier, V., Showman, A. P., & Fortney, J. J. 2021,
2369
+ Monthly Notices of the Royal Astronomical Society, 501,
2370
+ 78
2371
+ Parmentier, V., Line, M. R., Bean, J. L., et al. 2018,
2372
+ Astronomy & Astrophysics, 617, A110
2373
+ Pelletier, S., Benneke, B., Darveau-Bernier, A., et al. 2021,
2374
+ The Astronomical Journal, 162, 73
2375
+ P´erez, F., & Granger, B. E. 2007, Computing in Science &
2376
+ Engineering, 9, 21
2377
+ Perna, R., Heng, K., & Pont, F. 2012, The Astrophysical
2378
+ Journal, 751, 59
2379
+ Pino, L., Ehrenreich, D., Allart, R., et al. 2018, Astronomy
2380
+ & Astrophysics, 619, A3
2381
+ Pluriel, W., Leconte, J., Parmentier, V., et al. 2022, A&A,
2382
+ 658, A42, doi: 10.1051/0004-6361/202141943
2383
+
2384
+ Diagnosing limb asymmetries in transmission
2385
+ 21
2386
+ Pluriel, W., Zingales, T., Leconte, J., & Parmentier, V.
2387
+ 2020, Astronomy & Astrophysics, 636, A66
2388
+ Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., et al.
2389
+ 2018, Monthly Notices of the Royal Astronomical
2390
+ Society, 480, 2597
2391
+ Price-Whelan, A. M., Sip˝ocz, B. M., G¨unther, H. M., et al.
2392
+ 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
2393
+ Quirrenbach, A., Amado, P., Caballero, J., et al. 2014, in
2394
+ Ground-based and airborne instrumentation for
2395
+ astronomy V, Vol. 9147, SPIE, 531–542
2396
+ Rauscher, E., & Menou, K. 2010, The Astrophysical
2397
+ Journal, 714, 1334
2398
+ Rodler, F., K¨urster, M., & Barnes, J. R. 2013, Monthly
2399
+ Notices of the Royal Astronomical Society, 432, 1980
2400
+ Roman, M. T., Kempton, E. M.-R., Rauscher, E., et al.
2401
+ 2021, The Astrophysical Journal, 908, 101
2402
+ S´anchez-L´opez, A., Landman, R., Molli`ere, P., et al. 2022,
2403
+ Astronomy & Astrophysics, 661, A78
2404
+ Savel, A. B., Kempton, E. M.-R., Malik, M., et al. 2022,
2405
+ The Astrophysical Journal, 926, 85
2406
+ Seidel, J., Ehrenreich, D., Allart, R., et al. 2021, Astronomy
2407
+ & Astrophysics, 653, A73
2408
+ Showman, A., & Guillot, T. 2002, Astronomy &
2409
+ Astrophysics, 385, 166
2410
+ Showman, A. P., Fortney, J. J., Lewis, N. K., & Shabram,
2411
+ M. 2013, The Astrophysical Journal, 762, 24
2412
+ Showman, A. P., Fortney, J. J., Lian, Y., et al. 2009, The
2413
+ Astrophysical Journal, 699, 564
2414
+ Snellen, I. A., De Kok, R. J., De Mooij, E. J., & Albrecht,
2415
+ S. 2010, Nature, 465, 1049
2416
+ Spake, J. J., Sing, D. K., Evans, T. M., et al. 2018, Nature,
2417
+ 557, 68
2418
+ Stock, J. W., Kitzmann, D., Patzer, A. B. C., & Sedlmayr,
2419
+ E. 2018, Monthly Notices of the Royal Astronomical
2420
+ Society, 479, 865
2421
+ Tabernero, H., Osorio, M. Z., Allart, R., et al. 2021,
2422
+ Astronomy & Astrophysics, 646, A158
2423
+ Tan, X., & Komacek, T. D. 2019, The Astrophysical
2424
+ Journal, 886, 26
2425
+ Tsai, S.-M., Lyons, J. R., Grosheintz, L., et al. 2017, The
2426
+ Astrophysical Journal Supplement Series, 228, 20
2427
+ Tsai, S.-M., Malik, M., Kitzmann, D., et al. 2021, The
2428
+ Astrophysical Journal, 923, 264
2429
+ Van Dishoeck, E. F., & Black, J. H. 1988, The
2430
+ Astrophysical Journal, 334, 771
2431
+ van Sluijs, L., Birkby, J. L., Lothringer, J., et al. 2022,
2432
+ arXiv preprint arXiv:2203.13234
2433
+ Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
2434
+ Nature methods, 17, 261
2435
+ Visscher, C. 2012, The Astrophysical Journal, 757, 5
2436
+ Wardenier, J. P., Parmentier, V., & Lee, E. K. 2022,
2437
+ Monthly Notices of the Royal Astronomical Society, 510,
2438
+ 620
2439
+ Wardenier, J. P., Parmentier, V., Lee, E. K., Line, M. R., &
2440
+ Gharib-Nezhad, E. 2021, Monthly Notices of the Royal
2441
+ Astronomical Society, 506, 1258
2442
+ Welbanks, L., & Madhusudhan, N. 2022, The Astrophysical
2443
+ Journal, 933, 79
2444
+ West, R., Hellier, C., Almenara, J.-M., et al. 2016,
2445
+ Astronomy & Astrophysics, 585, A126
2446
+ Wyttenbach, A., Molli`ere, P., Ehrenreich, D., et al. 2020,
2447
+ Astronomy & Astrophysics, 638, A87
2448
+ Yan, F., Casasayas-Barris, N., Molaverdikhani, K., et al.
2449
+ 2019, Astronomy & Astrophysics, 632, A69
2450
+ Zhang, M., Chachan, Y., Kempton, E. M.-R., Knutson,
2451
+ H. A., et al. 2020, The Astrophysical Journal, 899, 27
2452
+ Zhang, X., & Showman, A. P. 2018, The Astrophysical
2453
+ Journal, 866, 2
2454
+ Zhang, Y., Snellen, I. A. G., & Molli`ere, P. 2021, A&A,
2455
+ 656, A76, doi: 10.1051/0004-6361/202141502
2456
+
39AzT4oBgHgl3EQfuv0b/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dAzT4oBgHgl3EQffvz_/content/tmp_files/2301.01459v1.pdf.txt ADDED
@@ -0,0 +1,1963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Modeling the Central Supermassive Black Holes Mass of Quasars via LSTM Approach
2
+ Seyed Sajad Tabasi,1, 2, ∗ Reyhaneh Vojoudi Salmani,3, 2, † Pouriya Khaliliyan,3, 2, ‡ and Javad T. Firouzjaee3, 2, 4, §
3
+ 1Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran
4
+ 2PDAT Laboratory, Department of Physics, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
5
+ 3Department of Physics, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran
6
+ 4 School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
7
+ One of the fundamental questions about quasars is related to their central supermassive black
8
+ holes. The reason for the existence of these black holes with such a huge mass is still unclear and
9
+ various models have been proposed to explain them. However, there is still no comprehensive ex-
10
+ planation that is accepted by the community. The only thing we are sure of is that these black
11
+ holes were not created by the collapse of giant stars, nor by the accretion of matter around them.
12
+ Moreover, another important question is the mass distribution of these black holes over time. Ob-
13
+ servations have shown that if we go back through redshift, we see black holes with more masses,
14
+ and after passing the peak of star formation redshift, this procedure decreases. Nevertheless, the
15
+ exact redshift of this peak is still controversial. In this paper, with the help of deep learning and the
16
+ LSTM algorithm, we tried to find a suitable model for the mass of central black holes of quasars over
17
+ time by considering QuasarNET data. Our model was built with these data reported from redshift
18
+ 3 to 7 and for two redshift intervals 0 to 3 and 7 to 10, it predicted the mass of the quasar’s central
19
+ supermassive black holes. We have also tested our model for the specified intervals with observed
20
+ data from central black holes and discussed the results.
21
+ Keywords:
22
+ Quasars, Supermassive Black Holes, Sloan Digital Sky Survey, QuasarNET Data Set, Deep
23
+ Learning, and LSTM Model
24
+ I.
25
+ INTRODUCTION
26
+ In recent years, the study of the high-redshift(z > 6)
27
+ quasars was a direct probe to explore the Universe at
28
+ the age less than 1 Gyr after the Big Bang. These early
29
+ forming quasars are essential to studying the early growth
30
+ of supermassive black holes (SMBHs) [1].
31
+ By detecting the reverberation between the variations
32
+ of broad emission lines and the continuum we can deter-
33
+ mine SMBHs mass in quasars [2]. Until now, the time lag
34
+ of Hβ emission lines has been confirmed and measured
35
+ only in ∼100 quasars [3].
36
+ The continuum and line emission from luminous
37
+ quasars which are one of the most luminous objects, over
38
+ a large wavelength range can be characterized by sev-
39
+ eral leading parts.
40
+ The broad emission line region [4]
41
+ the optical-to-ultraviolet continuum emission, which is
42
+ explained by a standard accretion disk extending down
43
+ to the innermost stable circular orbit [5], X-ray emission
44
+ with a power-law spectrum produced by inverse Compton
45
+ scattering of photons from the accretion disk of relativis-
46
+ tic electrons in the hot corona [6], and a soft X-ray ex-
47
+ cess [7]. Spectroscopic observations from optical to near-
48
+ infrared of these quasars suggest that such SMBHs are
49
+ already established when the universe is only 700Myr
50
+ old [8].
51
+ To explain the existence of these SMBHs, many theo-
52
+ ∗Electronic address: [email protected]
53
+ †Electronic address: [email protected]
54
+ ‡Electronic address: [email protected]
55
+ §Electronic address: fi[email protected]
56
+ retical models have been proposed like using primordial
57
+ density seeds [9–11] and appealing a super-Eddington ac-
58
+ cretion process [12].
59
+ To utilize the spectroscopic observational data in phys-
60
+ ical studies, we need an exact classification and redshift
61
+ determination of astrophysical objects. Along the way,
62
+ the Sloan Digital Sky Survey Catalogue 16th Data Re-
63
+ lease Quasar Only(SDSS-DR16Q) [13], consists of two
64
+ files, being the quasar-only main catalog of 750414 en-
65
+ tries which contains sooner visually confirmed quasars
66
+ SDSS-I/II/III, and a 1440615-row “superset” of SDSS-
67
+ IV/eBOSS quasar object classifications.
68
+ The DR16Q catalogs present multiple redshifts per ob-
69
+ ject that are available, including the neural automated
70
+ QuasarNET [14] redshift which is claimed > 99% ef-
71
+ ficiency and > 99% accuracy, that rests on garnering
72
+ deeper insights into this triumvirate connection by co-
73
+ locating and analyzing observational data and simulated
74
+ data. Meanwhile, the enormous increase in computing
75
+ power over the last decades has allowed the application
76
+ of acquired statistical methods in the analysis of big and
77
+ complex data sets.
78
+ Using previously-fed data has brought huge opportuni-
79
+ ties for astronomers to develop intelligent tools and inter-
80
+ faces, utilizing pipeline classifiers, machine learning(ML),
81
+ and deep learning(DL) methods, to deal with data sets
82
+ and extract novel information with possible predictions
83
+ and estimate the relevant confidence which the behavior
84
+ new data will have.
85
+ In astronomy and astrophysics, ML [15, 16] and DL
86
+ [17, 18] have been used in a broad range of subjects(e.g.
87
+ quasars and other types of sources), such as redshift de-
88
+ termination [19, 20], morphological classification and ref-
89
+ erences therein [21, 22], source selection and classifica-
90
+ arXiv:2301.01459v1 [astro-ph.GA] 4 Jan 2023
91
+
92
+ 2
93
+ tion [23–25], image and spectral reconstruction [26], and
94
+ more.
95
+ ML methods for obtaining redshift estimation for
96
+ quasars are becoming progressively crucial in the epoch of
97
+ rich data astronomy. Redshift measurements of quasars
98
+ are important as they can enable quasar population
99
+ studies, and provide insight into the star formation
100
+ rate(SFR), the luminosity function(LF), and the density
101
+ rate evolution [27].
102
+ In this work, we have used DL to model the mass of
103
+ quasars’ central SMBH as a function of their redshift.
104
+ Firstly, Sec.
105
+ II is dedicated to the available observa-
106
+ tional data and evidence on quasars. The estimation of
107
+ a quasar’s central SMBH mass is discussed in detail in
108
+ Sec. III. Furthermore, in Sec. IV, the mass evolution
109
+ of these black holes(BHs) is investigated. Sec. V is the
110
+ comparison between two newborn research platforms,
111
+ QuasarNET and FNET, and the reasons behind using
112
+ QuasarNET for our model are explained. Additionally,
113
+ we use two correction methods which are explained in
114
+ Sec.
115
+ VI. A detailed explanation of our DL model can
116
+ be found in Sec.
117
+ VII to X. In Sec.
118
+ VII we introduce
119
+ Long short-term memory(LSTM) which is the recurrent
120
+ neural network(RNN) that we build our model based
121
+ on.
122
+ We explain the chosen optimization function and
123
+ its validation loss in Sec.
124
+ VIII which is shown in
125
+ multiple figures. Sec. IX presents the topology design
126
+ of our model and finally, the comparison of the model
127
+ predictions with other data sets is discussed in Sec. X.
128
+ II.
129
+ OBSERVATIONAL EVIDENCE AND DATA
130
+ The most comprehensive observed quasi-stellar ob-
131
+ jects(QSOs) spectra to date are cataloged in the SDSS-
132
+ IV. SDSS has been operative since 2000 and catalogs of
133
+ quasars have been produced and made available since
134
+ 2002. In addition to producing images, it performs spec-
135
+ troscopic surveys across a large area of the sky. We can
136
+ get about one million galaxies and 10,000 quasars spectra
137
+ from the survey images of the sky, which are obtained
138
+ by a 2.5m telescope equipped with a large format mo-
139
+ saic Charge-coupled device(CCD) camera, and two dig-
140
+ ital spectrographs. As part of its calibration, the SDSS
141
+ uses observations of the US Naval Observatory’s 1m tele-
142
+ scope to calibrate its photometry, and an array of astro-
143
+ metric CCDs control its astrometry [28].
144
+ The SDSS provides data necessary to study the large-
145
+ scale structure of the universe.
146
+ As far as the obser-
147
+ vatory’s limit allows, the imaging survey should detect
148
+ ∼ 5 × 107 galaxies, ∼ 106 quasars, and ∼ 8 × 107 stars.
149
+ By using photometric redshifts and angular correlation
150
+ functions, these photometric data allow studies of large-
151
+ scale structures that go beyond spectroscopic analysis.
152
+ Quasars can provide information on the structure at even
153
+ larger scales [28].
154
+ The SDSS-DR16Q contains 750,414 quasars, with the
155
+ automated redshift range 1 ≤ z ≤ 7.1. The number of
156
+ sources reaches its maximum around z ≈ 2.5 and at ear-
157
+ lier epochs i.e. higher redshifts, they are comparatively
158
+ rare [29]. However, there is a problem with the SDSS-
159
+ DR16Q catalog. It contains non quasar sources due to
160
+ pipeline classification errors and incorrect redshift esti-
161
+ mations [13].
162
+ For example, in a search for undeclared
163
+ quasars, the SDSS-DR16Q main quasars are found to
164
+ contain 81 entries that are not quasars. It must there-
165
+ fore be noted that the pipeline catalog is not an adequate
166
+ training samples for quasars because many objects with
167
+ z ≥ 6 as well as significant fractions of these objects at
168
+ z ≥ 4, may not be quasars or not quasars at the given
169
+ redshifts due to incorrect pipeline classifications [29].
170
+ III.
171
+ MASS ESTIMATION OF QUASARS’
172
+ CENTRAL SMBH
173
+ In terms of fundamental parameters of quasars, one
174
+ can mention the central SMBH mass and structure, along
175
+ with the ratio of the accretion rate to the Eddington
176
+ accretion rate [30].
177
+ The central SMBH mass can be measured via the gas
178
+ or stellar dynamics [30] from optical or ultraviolet(UV)
179
+ spectroscopy using empirical relations [31]. The broad
180
+ emission line region(BLR) probably provides the best
181
+ probe of these characteristics [32].
182
+ The size of BLRs
183
+ can be determined by reverberation mapping(RM) [33],
184
+ which is a measuring technique in astrophysics. RM pro-
185
+ vides invaluable information about the kinematic and
186
+ ionization distribution of the gas using the time lag be-
187
+ tween emission line and continuum variations [32].
188
+ Assuming that gravity dominates the dynamics of the
189
+ BLR and the virial relationship between time lag and line
190
+ width exists, the BH mass can be estimated as [34]
191
+ MBH = fcτv2
192
+ G
193
+ ,
194
+ (1)
195
+ where τ is the mean time delay for the region of inter-
196
+ est, v is the velocity of the gas in that region, c is the
197
+ speed of light, G is the gravitational constant, and f is a
198
+ scaling factor of order unity that depends on the detailed
199
+ geometry and kinematics of the line-emitting region.
200
+ The worth mentioning point is that the virial relation-
201
+ ship claims a virialized system with individual clouds
202
+ moving in their Keplerian orbits. This leads to the pro-
203
+ portionality of mean cloud velocity and emissivity radius
204
+ [35]
205
+ v ∝ rBLR
206
+ 1
207
+ 2 ,
208
+ (2)
209
+ where rBLR is the emissivity radius.
210
+ In the absence of RM, the quasar continuum luminosity
211
+ is sufficient to estimate the BLR. With RM estimations,
212
+ the best-fitting RBLR − λLλ relations were derived for
213
+ quasars at monochromatic luminosity in both 3000 and
214
+ 5100 ˚A rest-frames as follows [37]
215
+
216
+ 3
217
+ RBLR = (18.5 ± 6.6)[λL3000/1037W]
218
+ (0.32±0.14),
219
+ (3)
220
+ RBLR = (26.4 ± 4.4)[λL5100/1037W]
221
+ (0.61±0.10).
222
+ (4)
223
+ Here, L is the luminosity measured at a wavelength λ.
224
+ In Eq. 1, an intrinsic Keplerian velocity of a broad-line
225
+ gas is related to the full width at half maximum (FWHM)
226
+ of a chosen broad emission line by the geometric factor
227
+ f as
228
+ VBLR = f × FWHM,
229
+ (5)
230
+ In other words, it is the width of a spectrum curve
231
+ measured between those points on the y-axis which are
232
+ half of the maximum amplitude.
233
+ As the geometry of the BLR in radio-quiet quasars is
234
+ currently unknown, it is generally agreed that f =
235
+
236
+ 3/2,
237
+ which is appropriate for randomly oriented orbits of the
238
+ BLR gas.
239
+ However, FWHM measurements for broad
240
+ emission lines in radio-loud quasars indicate a disc-like
241
+ geometry [38].
242
+ Given the similarity between the opti-
243
+ cal emission-line spectra of radio-loud and radio-quiet
244
+ quasars, it is not unreasonable to consider the possibil-
245
+ ity that BLRs of radio-quiet quasars that dominate the
246
+ SDSS data can follow the same equation as well [36]
247
+ VBLR = FWHM
248
+ (2 sin i) .
249
+ (6)
250
+ Here, i represents the angle between the line of sight
251
+ and the axis of the disc.
252
+ Our virial BH mass estimators are derived by substi-
253
+ tuting the calibrations of the RBLR–λLλ relations into
254
+ Eq. 1 and determining VBLR using MgII or Hβ [37].
255
+ Based on the L5100 which is the monochromatic lu-
256
+ minosity at rest-frame 5100 ˚A and the Hβ line, a more
257
+ specific expression to calculate the mass of a BH can be
258
+ written as [39]
259
+ MBH(Hβ) = 1.05 × 108(
260
+ L5100
261
+ 1046ergs−1 )0.65
262
+ (7)
263
+ × [FWHM(Hβ)
264
+ 103kms−1
265
+ ]2M⊙,
266
+ where MBH(Hβ) represents BH mass by considering
267
+ Hβ line, FWHM(Hβ) is the full width at half maximum
268
+ of Hβ line, and M⊙ is the solar mass.
269
+ Large spectroscopic surveys like the SDSS observe
270
+ both broad Hβ and MgII lines.
271
+ Therefore, one can
272
+ be calibrated against the other and based on L3000 and
273
+ MgIIλ2798 line width, a similar expression can be de-
274
+ rived as [35]
275
+ MBH(MgIIλ2798) = 8.9 × 107(
276
+ L3000
277
+ 1046ergs−1 )0.58
278
+ (8)
279
+ × [FWHM(MgIIλ2798)
280
+ 103kms−1
281
+ ]2M⊙,
282
+ where MBH(MgIIλ2798) represents BH mass by con-
283
+ sidering Hβ line, and FWHM(MgIIλ2798) is the full
284
+ width at half maximum of MgII line.
285
+ Based on empirical estimation of f ≃ 1.1 for the Hβ
286
+ line, we can now write more specific expressions to calcu-
287
+ late MBH for several emission lines like MgII as follows
288
+ [39]
289
+ MBH
290
+ M⊙
291
+ = 4.7(λL5100
292
+ 1037W )
293
+ 0.61
294
+ [FWHM(Hβ)
295
+ kms−1
296
+ ]
297
+ 2
298
+ ,
299
+ (9)
300
+ MBH
301
+ M⊙
302
+ = 3.2(λL3200
303
+ 1037W )
304
+ 0.62
305
+ [FWHM(MgII)
306
+ kms−1
307
+ ]
308
+ 2
309
+ . (10)
310
+ Besides, it is well-known that the relationship between
311
+ stellar velocity dispersion and BH mass can be written
312
+ as [39]
313
+ log(MBH
314
+ M⊙
315
+ ) = 4.38 × log(
316
+ σ∗
317
+ 200kms−1 ) + 8.49,
318
+ (11)
319
+ where σ∗ is the stellar velocity dispersion.
320
+ Furthermore, to estimate the mass of a BH, observa-
321
+ tions in the local universe reveal the existence of a corre-
322
+ lation between the central SMBH mass and the bulge of
323
+ the host galaxies [40].
324
+ log(MBH
325
+ M⊙
326
+ ) = α + βlog(MBulge,∗
327
+ 1011M⊙
328
+ ),
329
+ (12)
330
+ where MBulge,∗ is the bulge stellar mass and the best-
331
+ fit of α and β should be
332
+ α = 7.93 ± 0.061; β = 1.15 ± 0.075.
333
+ (13)
334
+ IV.
335
+ MASS EVOLUTION OF QUASARS’
336
+ CENTRAL SMBH
337
+ As studying the cosmic history of compact cosmolog-
338
+ ical objects is so crucial to track the history line of the
339
+ universe in a much bigger structure, we are so curious
340
+ about the evolution of SMBHs mass. In the presence of
341
+ a SMBH, there are obvious links between the physical
342
+ properties and those of its host. Due to high redshifts
343
+ that many quasars have, they are ideal to be studied to
344
+ recognize BH evolution through time back to the early
345
+ universe [41].
346
+ According to the modelling of spectra from the SDSS
347
+ first data release, the virial mass of BHs for 12698 quasars
348
+
349
+ 4
350
+ in the redshift interval 0.1 ≤ z ≤ 2.1 is estimated.
351
+ There is entirely consistent evidence to suggest that the
352
+ BH mass of SDSS quasars lies in 107M⊙ ≤ MBH ≤
353
+ 3 × 109M⊙. The local BH mass function for early-type
354
+ galaxies using the MBH − σ and MBH − Lbulge correla-
355
+ tions(Eq. 11 and Eq. 12) are also estimated. In addition,
356
+ by comparing the number density of active BHs at z ≈ 2
357
+ with the local mass density of inactive ones, a lower limit
358
+ is set on the lifetime of quasars, which confirms that the
359
+ bulk of BHs with mass ≥ 108.5M⊙ are situated in place
360
+ by z ≈ 2 [36].
361
+ There are several different ideas on the central SMBH
362
+ mass evolution through time in literature. Based on the
363
+ effective flux limit along with the role of the quasar con-
364
+ tinuum luminosity, most studies agree that the SMBH
365
+ mass increases as a function of redshift, namely most low
366
+ mass SMBHs can be found in the late universe(e.g. step-
367
+ ping down from ≈ 109M⊙ at z ≈ 2.0 to ≈ 108M⊙ at
368
+ z ≈ 0.2). Considering Eq. 9 and Eq. 10, redshift does
369
+ not alter the mean FWHM and it can be roughly consid-
370
+ ered to be constant. Therefore, the mean virial mass of
371
+ the SMBH should be increased as [Lλ]0.6 [36].
372
+ Quasars undergo important cosmic evolution accord-
373
+ ing to optical, X-ray, and bolometric LFs. Interestingly,
374
+ based on predictions of [42] using an extended version of
375
+ the galaxy formation model, GALFORM code, quasars
376
+ evolution will be influenced by different physical pro-
377
+ cesses such as the accretion mode and the obscuration
378
+ prescription. Observational data have also reported sim-
379
+ ilar trends [43].
380
+ Furthermore, SMBHs grow exponentially during a pe-
381
+ riod in which accretion governs their mass evolution.
382
+ When z ≳ 5, the growth of a SMBH in a quasar is as
383
+ follows [44]
384
+ MBH(t) = MBH(t0)etτ,
385
+ (14)
386
+ τ ≃ 0.4Gyr
387
+ η
388
+ 1 − η
389
+ 1
390
+ µ,
391
+ (15)
392
+ µ ≡
393
+ L
394
+ LEdd
395
+ × factive,
396
+ (16)
397
+ where MBH(t0) is the initial mass of BH i.e. the seed’s
398
+ mass, η is the radiative efficiency(see [45] for reported
399
+ values of η for several objects), L is the luminosity of the
400
+ quasar, LEdd is the luminosity at Eddington limit, factive
401
+ is the duty cycle, and µ is a constant which is determined
402
+ as a combination of L/LEdd and factive. Therefore, it is
403
+ possible to calculate the growth of the BH easily as
404
+ log MBH(z) = log MBH(z0)
405
+ (17)
406
+ + log[exp (R(1 − η
407
+ η
408
+ )zd),
409
+ η ≡
410
+ Lbol
411
+ ˙Mc2 ,
412
+ (18)
413
+ zd ≡ (1 + z)−3/2 − (1 + z0)−3/2.
414
+ (19)
415
+ In above equations, MBH(z0) is the mass of BHs’ seed
416
+ and R is a constant that is defined as follows
417
+ R ≡ 0.4Gyr
418
+ µ
419
+ ,
420
+ (20)
421
+ R =
422
+
423
+
424
+
425
+
426
+
427
+ 3.79322,
428
+ µ = 0.1
429
+ 18.9661,
430
+ µ = 0.5
431
+ 37.9322,
432
+ µ = 1.0.
433
+ (21)
434
+ V.
435
+ QUASARNET AND FNET
436
+ To investigate the mass evolution even more precisely,
437
+ QuasarNET and FNET are the two available research
438
+ platforms. Using ML, QuasarNET makes deployment of
439
+ data-driven modelling techniques possible by combining
440
+ and co-locating large observational data sets of quasars,
441
+ the high-redshift luminous population of accreting BHs,
442
+ at z ≥ 3 alongside simulated data spanning the same
443
+ cosmic epochs. The main quasar population data source
444
+ of QuasarNET is NASA Extra-galactic Database(NED)
445
+ which contains quasars retrieved from several indepen-
446
+ dent optical surveys, principally the magnitude-limited
447
+ SDSS. There is no comparison between quasars from
448
+ SDSS and those from other surveys when it comes to
449
+ spectra and photometry [46].
450
+ NED contains all quasars in principle, but some are
451
+ missing because their photometric redshifts were incor-
452
+ rectly assigned. Photometric redshift estimation meth-
453
+ ods suffer from degeneracy, a well-known limitation of
454
+ current photometric redshift determination methods [47].
455
+ QuasarNET fills in the missing sources by analyzing the
456
+ published catalogues from all surveys. It expands to in-
457
+ clude additional parameters used to derive BHs mass, in-
458
+ stead of archiving only the reported masses. It contains
459
+ 136 quasars’ features, such as the position, redshift, lu-
460
+ minosity, mass, line width, and Eddington ratio.
461
+ Two observationally determined functions are used as
462
+ constraints in theoretical models to describe the assembly
463
+ history of the BHs population across time: the BH mass
464
+ function and the Quasar Luminosity Function(QLF). As
465
+ a statistical measurement of the combined distribution
466
+ of BHs mass through redshifts, the BH mass function
467
+ encodes the mass growth history. Similar to the QLF,
468
+ which reflects their accretion history, the BH mass func-
469
+ tion is a statistical measurement of the distribution of
470
+ quasars’ luminosities through redshift [46].
471
+ On the other hand, by using DL, to study quasars in
472
+ the SDSS-DR16Q of eBOSS on a wide range of signal-
473
+ to-noise(SNR) ratios, there is a 1-dimensional convolu-
474
+ tional neural network(CNN) with a residual neural net-
475
+ work(ResNet) structure, named FNet. With its 24 con-
476
+ volutional layers and ResNet structure, which has dif-
477
+ ferent kernel sizes of 500, 200, and 15, FNET can use
478
+ a self-learning process to identify ”local” and ”global”
479
+ patterns in the entire sample of spectra [29].
480
+
481
+ 5
482
+ Although FNET seems to be similar to the recently
483
+ adopted CNN-based redshift estimator and classifier, i.e.
484
+ QuasarNET [14], their hidden layer implementations are
485
+ distinct.
486
+ The redshift estimation in FNET is done based on re-
487
+ lating the hidden pattern which lies in flux to a spe-
488
+ cific redshift, not using any information about emis-
489
+ sion/absorption lines, while QuasarNET follows the tra-
490
+ ditional redshift estimation procedure using the identified
491
+ emission lines in spectra. This makes FNET to outper-
492
+ form QuasarNET for some complex spectra(insufficient
493
+ lines, high noise, etc.) by recognizing the global pattern.
494
+ Moreover, FNET provides similar accuracy to Quasar-
495
+ NET, but it is applicable for a wider range of SDSS spec-
496
+ tra, especially for those missing the clear emission lines
497
+ exploited by QuasarNET. In more detail, from a statis-
498
+ tical point of view, FNET is capable to infer accurate
499
+ redshifts even for low SNRs or incomplete spectra.
500
+ It
501
+ predicts the redshift of 5,190 quasars with 91.6 % accu-
502
+ racy, while QuasarNET fails to estimate [29].
503
+ It is important to know that the FNET vs. Quasar-
504
+ NET comes out on top in redshift prediction, but its
505
+ lack of quasars’ central SMBH mass information makes
506
+ QuasarNET the preferred option for some studies like
507
+ this work. However, if in the future SMBHs mass will be
508
+ estimated by using redshifts from FNET approach, our
509
+ study can be done again to achieve more accurate results.
510
+ VI.
511
+ FLUX AND VOLUME-LIMITED SAMPLES
512
+ Observations are affected by flux as we move to higher
513
+ redshifts and more distant objects.
514
+ This is why some
515
+ objects are not included in data sets. We suppose that
516
+ they are not even present because their low flux makes
517
+ them very difficult or in some cases impossible to observe.
518
+ This will influence the results of any model that is built
519
+ on a set of objects. To remove this bias, we must first
520
+ correct the data set.
521
+ Two correction methods can be put into use to build
522
+ a corrected data set and check if the result is solid or if
523
+ the correction can end up with a huge deviation from the
524
+ first result.
525
+ Using the friends-of-friends algorithm, quasars can be
526
+ linked into systems with a specific neighbourhood radius,
527
+ called linking length(LL). The size of the group can be
528
+ determined based on the choice of LL or more generally
529
+ on its scaling law. LL is parameterized upon a scaling
530
+ law as [48]
531
+ LL
532
+ LL0
533
+ = 1 + a arctan( z
534
+ z∗
535
+ ),
536
+ (22)
537
+ where a = 1.00, z∗ = 0.050 and LL0 is the value of LL
538
+ at initial redshift.
539
+ Setting a limit for absolute magnitude is needed for
540
+ creating volume-limited samples and all less luminous
541
+ FIG. 1: The total number of objects available in the
542
+ QuasarNET data set is 37648. As a result of data correction
543
+ methods, 34403 objects were removed (red dots). The accepted
544
+ data are the final flux and volume-limited samples, made of 3245
545
+ Objects(blue dots).
546
+ quasars have to be excluded from the data set.
547
+ Flux-
548
+ limited samples, on the other hand, are formed from
549
+ dozens of cylinders containing quasars.
550
+ Flux-limited
551
+ samples can be made with both constant and varying
552
+ LL. The constant LL0 is set as [48]
553
+ LL0 = 250[kms−1],
554
+ (23)
555
+ LL0 = 0.25[h−1Mpc].
556
+ (24)
557
+ Following the extraction of the necessary columns and
558
+ rejecting duplicate quasars from the data set, there is
559
+ only one step left, which is verifying if the quasars are
560
+ within the volume of cylinders generated by the LLs.
561
+ To do so first we generate a cylinder, then by using the
562
+ distance between quasars and comparing this distance
563
+ with the volume of the cylinder, we consider a quasar
564
+ to be an accepted object if it is located in the cylinder.
565
+ The distance can be easily obtained from the redshift
566
+ difference between them in the data set. This algorithm
567
+ should be repeated as a loop for each quasar.
568
+ As a result of applying the correction methods that are
569
+ described, we end up with 3246 objects to work with, in-
570
+ stead of 37648 objects that are available in QuasarNET.
571
+ In FIG. 1 accepted and rejected quasars’ central SMBH
572
+ of SDSS-DR16Q in terms of their redshift are illustrated.
573
+ VII.
574
+ LONG SHORT-TERM MEMORY
575
+ LSTM is one of the most powerful RNN that is used in
576
+ DL and artificial intelligence [49]. The RNN is a dynamic
577
+ system in which there is an internal state at each step of
578
+ the classification process [50, 51]. The circular connec-
579
+ tions between neurons at the higher and lower layers, as
580
+ well as the possibility of self-feedback, are responsible for
581
+ this. These feedback connections enable RNNs to propa-
582
+ gate data from earlier events to current processing steps.
583
+ Thus, RNNs build a memory of time series events.
584
+ A standard RNN is not capable of bridging more than
585
+ 5 to 10 time steps. It is because back-propagated error
586
+ signals either grow or shrink with every time step [49]. As
587
+
588
+ Removed Data
589
+ 11.0
590
+ Accepted Data
591
+ 10.5
592
+ 10.0
593
+ log(MBH / M。)
594
+ 9.5
595
+ 9.0
596
+ 8.5
597
+ 8.0
598
+ 7.5
599
+ 3
600
+ 5
601
+ 6
602
+ 76
603
+ a result, the error typically blows up or disappears over a
604
+ long period of time [52, 53]. When error signals are blown
605
+ up, the result is oscillating weights, while vanishing er-
606
+ rors mean learning takes too long or does not work at all.
607
+ It is possible to solve the vanishing error problem by us-
608
+ ing a gradient-based approach known as LSTM [53–56].
609
+ More than 1,000 discrete time steps can be bridged us-
610
+ ing LSTM. LSTM uses constant error carousels(CECs),
611
+ which enforce a constant error flow within special cells.
612
+ Cell accessibility is handled by multiplicative gate
613
+ units, which learn when to grant access to cells [49]. Us-
614
+ ing a multiplicative input gate unit, memory contents
615
+ stored in j are protected from irrelevant inputs. We also
616
+ introduce a multiplicative output gate unit that protects
617
+ other units from being perturbed by currently irrelevant
618
+ memory contents stored in j [57]. Considering distinct
619
+ time steps t= 1, 2, etc., an individual step includes for-
620
+ ward and backward passes which are the update of all
621
+ units and calculation of error signals for all weights, re-
622
+ spectively. The Input yin and output yout gate activation
623
+ are computed as [54]
624
+ netoutj(t) =
625
+
626
+ m
627
+ ωoutjmym(t − 1), youtj(t)
628
+ (25)
629
+ = foutj(netoutj(t)),
630
+ netinj(t) =
631
+
632
+ m
633
+ ωinjmym(t − 1), yinj(t)
634
+ (26)
635
+ = finj(netinj(t)).
636
+ Here, netinj and netout are the input and output gate
637
+ activation, j indices are memory blocks, ωlm is the weight
638
+ on the connection from unit m to l. Index m ranges over
639
+ all source units, as specified by the network topology. For
640
+ gates, f is a logistic sigmoid in the range of [0, 1].
641
+ Furthermore, there are adaptive gates, which learn to
642
+ reset memory blocks once their contents are out of date
643
+ and therefore, useless. Like the activation of the other
644
+ gates(Eq. 25 and Eq. 26), the forget gate activation yφ
645
+ is calculated as
646
+ netφj(t) =
647
+
648
+ m
649
+ ωφjmym(t − 1), yφj(t)
650
+ (27)
651
+ = fφj(netφj(t)),
652
+ where netφj is the input from the network to the forget
653
+ gate.
654
+ The logistic sigmoid with range [0, 1] is used as
655
+ squashing function fφj and weighted by the hyperbolic
656
+ tangent function which has the overall task of memory
657
+ correction [54]. The forget gate stores all the 1 outputs
658
+ while forgetting all the 0 outputs. Finally, LSTM can be
659
+ written as [58]
660
+ it = σ(Wxixt + Whiht−1 + Wcict−1),
661
+ (28)
662
+ ft = σ(Wxfxt + Whfht−1 + Wcfct−1),
663
+ (29)
664
+ ot = σ(Wxoxt + Whoht−1 + Wcoct−1),
665
+ (30)
666
+ ht = ot ⊙ tanh(ct).
667
+ (31)
668
+ Here, it , ft, and ot are input gate, forget gate and
669
+ output gate of LSTM, ht represents LSTM output, σ is
670
+ LSTM logistic function, ⊙ denotes element-wise product,
671
+ W is the weight metric components, x is the input data
672
+ in time t, and c is LSTM memory cells.
673
+ In our application of LSTM, the forget gate and in-
674
+ put gate share the same parameters, but are computed
675
+ as ft = 1 − it. Note that bias terms are omitted in the
676
+ above equations, but they are applied by default. A lin-
677
+ ear dependence between LSTM memory cells(ct) and its
678
+ past(ct−1) are introduced as
679
+ ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcxt−1).
680
+ (32)
681
+ VIII.
682
+ HYPERPARAMETER SELECTION
683
+ Hyperparameter selection in neural networks is repre-
684
+ sented by optimization functions. Therefore, specifying
685
+ hyperparameters such as the type of optimization func-
686
+ tion, learning rate, number of neurons in each layer, num-
687
+ ber of epochs, and validation are very important. Adam,
688
+ Stochastic gradient descent(SGD), RMSProp, AdaDelta,
689
+ and Ftrl are used as optimization functions.
690
+ We have considered about 20% of the learning data as
691
+ validation data. To determine the quality of the model,
692
+ we determine the loss. The cost function that we have
693
+ considered for the network is mean squared error(MSE).
694
+ The number of epochs for the network learning process
695
+ is equal to 50 and the batch size is equal to 25. Results
696
+ of the cost function values for each learning process with
697
+ different optimization functions and a learning rate of
698
+ 0.0005 are shown in FIG. 2.
699
+ The results related to the loss value for learning and
700
+ testing data with different optimization functions are
701
+ reported in the TABLE I.
702
+ IX.
703
+ DATA AND NETWORK TOPOLOGY
704
+ Using QuasarNET data we predict the SMBHs mass
705
+ with the help of their redshift.
706
+ We use 3245 data for
707
+ modelling, 2596 data for the network learning process,
708
+ and 649 data for testing the network result. Data have a
709
+ redshift range of 3 to 7. In the first step, data are sorted
710
+ in ascending order of their redshifts. The reason is that
711
+
712
+ 7
713
+ (a)
714
+ (b)
715
+ (c)
716
+ (d)
717
+ (e)
718
+ FIG. 2: (a) shows model evaluation for SGD optimization
719
+ function. Optimization function loss is illustrated by the blue line
720
+ and orange lines represent validation loss. (b) is the model
721
+ evaluation using RMSProp whose optimization function loss and
722
+ validation loss are shown in blue and orange. (c) illustrates the
723
+ Adam model evaluation by comparing the Optimization function
724
+ loss(blue line) and validation loss(orange line). The model
725
+ evaluation for Ftel is shown in (d). loss of the optimization
726
+ function is represented by the blue line and the validation
727
+ function loss is shown by the orange line. (e) shows model
728
+ evaluation for the AdaDelta optimization function. Optimization
729
+ function loss is illustrated by the blue line and orange lines
730
+ represent validation loss.
731
+ Optimization functions
732
+ Train data MSE
733
+ Test data MSE
734
+ SGD
735
+ 0.38
736
+ 0.39
737
+ RMSProp
738
+ 0.37
739
+ 0.38
740
+ Adam
741
+ 0.23
742
+ 0.23
743
+ AdaDelta
744
+ 0.22
745
+ 0.23
746
+ Ftrl
747
+ 0.26
748
+ 0.27
749
+ TABLE I: This table shows the result of algorithm evaluation
750
+ by SGD, RMSProp, Adam, Ftrl and AdaDelta optimization
751
+ functions.
752
+ redshift is a time series and LSTM has a recurrent archi-
753
+ tecture which creates memory through time. Then, the
754
+ learning and testing data are separated in chronological
755
+ order.
756
+ The network topology can be described by an LSTM
757
+ layer as the dynamic layer of the network, a drop-out
758
+ layer to prevent over-fitting, 3 dense layers as static lay-
759
+ ers, and the output of the network which is printed by the
760
+ last dense layer. We use the hyperbolic tangent which is
761
+ an active function for the LSTM layer and the first dense.
762
+ Because the hyperbolic tangent is a non-linear function
763
+ with a symmetric range. It is a suitable option to control
764
+ sudden changes when they are in chronological order. For
765
+ the second dense, we use the rectified linear unit(ReLU),
766
+ to transfer the magnitude of the positive value to the
767
+ next layer. For the third dense, which outputs the net-
768
+ work as a continuous number, we use a linear function.
769
+ TABLE II shows the network structure based on the hy-
770
+ perparameters of the network.
771
+ Layers
772
+ Neurons
773
+ Computational Parameters
774
+ Inputs
775
+ -
776
+ -
777
+ LSTM
778
+ (None,256)
779
+ 264192
780
+ Dropout
781
+ (None,256)
782
+ 0
783
+ Dense
784
+ (None,512)
785
+ 131584
786
+ Dense
787
+ (None,256)
788
+ 131328
789
+ Dense
790
+ (None,1)
791
+ 257
792
+ Total Computational Parameters
793
+ 527361
794
+ Trainable Computational Parameters
795
+ 527361
796
+ Non-Trainable Computational Parameter
797
+ 0
798
+ TABLE II: This table illustrates the network topology which
799
+ includes each layer along with neurons and computational
800
+ parameters.
801
+ One of the main challenges that always exists in ML
802
+ and DL is the issue of transparency.
803
+ Transparency is
804
+ a dynamic issue and solving this problem is different for
805
+ each task. There is no specific method to solve this prob-
806
+ lem. Many factors such as the design of an interpretable
807
+ learning experience, the fundamental determination of
808
+
809
+ SGD LoSS
810
+ 1.4
811
+ SGD Validation Loss
812
+ 1.2
813
+ 1.0
814
+ SS0
815
+ 0.8
816
+ 0.6
817
+ 0.4
818
+ 0.2
819
+ 0
820
+ 10
821
+ 20
822
+ GE
823
+ 40
824
+ 50
825
+ EpochsRMSProp Loss
826
+ 1.0
827
+ RMSProp ValidationLoss
828
+ 0.8:
829
+ SS0
830
+ 0.6
831
+ 0.4
832
+ 0.2
833
+ 0
834
+ 10
835
+ 20
836
+ GE
837
+ 40
838
+ 50
839
+ Epochs0.27
840
+ Adam Loss
841
+ Adam Validation Loss
842
+ 0.26
843
+ 0.25
844
+ SSO
845
+ 0.24
846
+ 0.23
847
+ 0.22
848
+ 0
849
+ 10
850
+ 20
851
+ 30
852
+ 40
853
+ 50
854
+ EpochsFtel Loss
855
+ 70
856
+ Ftrl Validation Loss
857
+ 09
858
+ 50
859
+ 40
860
+ 30
861
+ 20 :
862
+ 10
863
+ 0
864
+ 10
865
+ 20
866
+ E
867
+ 40
868
+ 50
869
+ Epochs0.30
870
+ AdaDelta Loss
871
+ AdaDelta Validation Loss
872
+ 0.28
873
+ 0.26
874
+ 0.24
875
+ 0.22
876
+ 0.20
877
+ 10
878
+ 20
879
+ CE
880
+ 40
881
+ 50
882
+ Epochs8
883
+ FIG. 3: Model built using flux and volume-limited samples.
884
+ Corrected QuasarNET data are plotted with blue dots. The black
885
+ line represents our LSTM model best-fit. In addition, red dotted
886
+ lines represent our models that include 95 percent of all data.
887
+ hyperparameters by the task, the observance of the prin-
888
+ ciples of feature selection, and the determination of the
889
+ appropriate number of data based on characteristics can
890
+ allow us to have a transparent model.
891
+ Transparency in the structure of algorithms is also
892
+ noteworthy.
893
+ In this paper, we investigate the trans-
894
+ parency of the model built by the designed network.
895
+ Trained data are also based on redshifts from 3 to 7.
896
+ With the help of the built model, SMBHs mass at 0 <
897
+ z < 3 and 7 < z < 10 are then predicted.
898
+ We can see the predicted changes of SMBHs mass
899
+ through redshift in FIG. 3 based on our built model with
900
+ its 95 percent confidence level. FIG. 4 compares the lin-
901
+ ear best-fit with our LSTM model best-fit both before
902
+ and after applying correction methods. It can clearly be
903
+ seen that stated correcting methods change our model
904
+ significantly.
905
+ X.
906
+ COMPARING WITH OTHER DATA
907
+ Using corrected flux and volume-limited samples of
908
+ QuasarNET data, we build a DL model for quasars’ cen-
909
+ tral SMBH mass. By applying correction methods, only
910
+ ≃ 8.62% of QuasarNET data is accepted to use for mod-
911
+ elling. FIG. 1 shows the accepted data along with the
912
+ removed data.
913
+ Moreover, FIG. 3 illustrated our model whose best-
914
+ fit contains 95 percent of corrected data samples. The
915
+ model shows that SMBHs mass increases in 0 < z < 4.72
916
+ and reaches its peak at z ≃ 4.72. The mass then falls
917
+ exponentially with increasing redshift at z > 4.72.
918
+ It
919
+ should be noted that our model yields a different result
920
+ than what is shown in other recent works like [44], where
921
+ the peak is z < 4. Nevertheless, in some studies which
922
+ attempt to show quasars’ central SMBHs mass evolution,
923
+ Eq. 14 is used that does not include any peaks(e.g. see
924
+ [59]).
925
+ The model is then evaluated by using different data
926
+ sets which are available in multiple tables. We use the
927
+ results of the long-term spectroscopic monitoring of 15
928
+ PG quasars that have relatively strong Fe II emission to
929
+ generate TABLE III [60]. Moreover, TABLE IV shows
930
+ (a)
931
+ (b)
932
+ FIG. 4: (a) compares our model with the linear best-fit. Blue
933
+ dots indicate train data, the LSTM model prediction is showed
934
+ the colour red, and the orange line is the linear best-fit. (b)
935
+ illustrates our model and compares it with linear best-fit based on
936
+ flux and volume-limited samples. Train data is shown as blue
937
+ dots, LSTM model prediction as red, and linear best-fit as an
938
+ orange line.
939
+ (a)
940
+ (b)
941
+ FIG. 5: (a) shows the examination of our model using multiple
942
+ data sets in the redshift range of 0 < z < 7. An overview of the
943
+ utilized data can be found in TABLE III and IV. (b) is also the
944
+ model examination at 3 < z < 10 whose data is available in
945
+ TABLE V and VI.
946
+
947
+ 11
948
+ LSTM Model Best-fit
949
+ 95% CI
950
+ QuasarNET Data
951
+ 10
952
+ +
953
+ C. Hu et al. (2021)
954
+ M. Vestegaard et al. (2005)
955
+ 9
956
+ log(MBH / Mo)
957
+ 7
958
+ 6
959
+ 0
960
+ 1
961
+ 2
962
+ 3
963
+ 4
964
+ 5
965
+ 611
966
+ LSTM Model Best-fit
967
+ 95% CI
968
+ QuasarNETData
969
+ Y.Aggarwal (2022)
970
+ 10
971
+ J.Yang et al. (2021)
972
+ 9
973
+ g(MBH / M。)
974
+ 60
975
+ 8
976
+ 7
977
+ 6
978
+ 3
979
+ 4
980
+ 5
981
+ 6
982
+ 8
983
+ 9
984
+ 1011
985
+ LSTM Model Best-fit
986
+ 95% CI
987
+ QuasarNET Data
988
+ 10-
989
+ log(
990
+ 8 -
991
+ 7 -
992
+ 6
993
+ 0
994
+ 1
995
+ 2
996
+ 3
997
+ 5
998
+ 6
999
+ 711.0:
1000
+ TrainData
1001
+ LSTM Model Prediction
1002
+ Linear Best-Fit
1003
+ 10.5
1004
+ 10.0
1005
+ log(M_bh)
1006
+ 9.5
1007
+ 0'6
1008
+ B.5
1009
+ 7.5
1010
+ 3.0
1011
+ 3.5
1012
+ 4.0
1013
+ 4.5
1014
+ 5.0
1015
+ 5.5
1016
+ 6.0
1017
+ 6.5
1018
+ 7.0Trained Data
1019
+ LSTM Model Best-fit
1020
+ 10.5
1021
+ Linear Best-fit
1022
+ .
1023
+ 10.0
1024
+ log(MBH / Mo)
1025
+ 9.5
1026
+ 9.0
1027
+ 8.5
1028
+ 8.0
1029
+ 3.0
1030
+ 3.5
1031
+ 4.0
1032
+ 4.5
1033
+ 5.0
1034
+ 5.5
1035
+ 6.0
1036
+ 6.59
1037
+ relatively nearby quasars with redshifts obtained from
1038
+ the NED and central SMBHs mass determined through
1039
+ multi-epoch spectrophotometry and RM [61]. A list of
1040
+ 69 high-redshift quasars is also available in TABLE V
1041
+ and TABLE VI. For each quasar, the most accurate es-
1042
+ timation of its central SMBH mass using Mg II emis-
1043
+ sion lines along with its uncertainty is shown [62, 63].
1044
+ While the model matches observational data quite well at
1045
+ 3 < z < 10, there is a minor deviation at lower redshifts,
1046
+ i.e. 0 < z < 3. The comparison between our model pre-
1047
+ dictions and the observational data for both low-redshift
1048
+ and high-redshift quasars can be seen in FIG. 5.
1049
+ In addition to gas being sucked into SMBHs, there is
1050
+ an alternative process that turns them into stars. There
1051
+ has been a comparison of SMBH accretion rate and SFR
1052
+ on a galactic scale in several observational studies [64–
1053
+ 67].
1054
+ In our next work, we will address the SFR and its
1055
+ effects on the model.
1056
+ Thus, it is possible to fix the
1057
+ minor deviation between the model and observations.
1058
+ Further, there are more data available for lower redshift
1059
+ quasars, compared to higher ones, whose reasons should
1060
+ be studied and may have an impact on the final results
1061
+ of our model.
1062
+ XI.
1063
+ CONCLUSIONS
1064
+ The question of how the SMBHs that have been ob-
1065
+ served in the universe came into being is one of the
1066
+ biggest questions in cosmology. In recent years, it has
1067
+ been established that stellar BHs cannot accrete mass,
1068
+ resulting in such BHs. If we want to consider these BHs
1069
+ as stellar BHs that have reached such incredible mass due
1070
+ to accretion, the age of the universe should have been
1071
+ much longer than it is. On the other hand, it is impossi-
1072
+ ble for a star to form a SMBH as a result of its collapse.
1073
+ In addition, there is another idea that states that these
1074
+ BHs are actually primordial BHs. Although this idea is
1075
+ very controversial, it has not been rejected yet. There
1076
+ are even hopes to prove such a thing.
1077
+ One of the most interesting surveys available for
1078
+ quasars is the SDSS. In this paper, we have used SDSS-
1079
+ DR16Q. In particular, we have taken advantage of the
1080
+ QuasarNET research platform. QuasarNET specifically
1081
+ has focused on the study of SMBHs.
1082
+ Although 37648
1083
+ data in redshifts between 3 and 7 have been reported in
1084
+ it, these data need accurate corrections to be used. These
1085
+ corrections are flux and volume-limited, which makes the
1086
+ right conditions to work on SMBHs over time for training
1087
+ the machine. After applying these corrections, 3246 data
1088
+ remained and 34403 data were removed. In FIG. 1 we
1089
+ have plotted accepted and removed data after correcting
1090
+ them.
1091
+ Considering the remaining 3246 data of the mass of
1092
+ BHs in the center of quasars at redshifts between 3 and
1093
+ 7, we have modeled them over time with the help of the
1094
+ LSTM RNN. We have elaborated details of our used DL
1095
+ approach in several sections.
1096
+ The model we have pre-
1097
+ sented with the help of QuasarNET data tries to predict
1098
+ the mass of the central massive BHs of quasars at red-
1099
+ shifts between 0 and 10.
1100
+ Firstly, in FIG. 4, we have compared our prediction
1101
+ with the linear best-fit of QuasarNET data before and
1102
+ after correcting data. Then, we illustrated the best-fit
1103
+ and a band that 95 percent of the QuasarNET data is
1104
+ within 2 standard deviations of the mean for our model
1105
+ in redshifts 0 to 10.
1106
+ Eventually, we should have compared our model with
1107
+ other observational data at redshifts between 0 and 3
1108
+ and also 7 and 10. This will enable us to see whether our
1109
+ model works or not. We have used four data sets for this
1110
+ comparison. Two of them are related to redshifts 0 to 3
1111
+ and the other two are related to redshifts 7 to 10. FIG. 5
1112
+ demonstrates two redshift ranges, 0 to 7 and 3 to 10. As
1113
+ it is evident, at redshifts higher than 7, our model has a
1114
+ very good description of the data and can make a reliable
1115
+ prediction, but at redshifts below 3, it seems that there
1116
+ is a slight deviation.
1117
+ This deviation can be due to not considering other pa-
1118
+ rameters describing quasars. We have only used the esti-
1119
+ mation of the mass of the central SMBHs of quasars and
1120
+ their redshift in QuasarNET data. However, data such as
1121
+ the Eddington ratio and bolometric luminosity are also
1122
+ available and can be used for subsequent modeling.
1123
+ Another thing that can improve the model is to con-
1124
+ sider star formation with the help of other observational
1125
+ data sets. Accurately obtaining the time of star forma-
1126
+ tion causes the redshift of the peak of the model we ob-
1127
+ tained to change to lower redshifts. This issue makes our
1128
+ model predict more massive central SMBHs at redshifts
1129
+ below 3, and as a result, it fits better with other data.
1130
+ Finally, we must state that this effort to model SMBHs
1131
+ at high redshifts will help us to find out when and how
1132
+ they have been formed and their role in the formation
1133
+ of the structures.
1134
+ Furthermore, if the process of their
1135
+ growth through the accretion and merger of primordial
1136
+ BHs is also studied in future works, it will probably yield
1137
+ interesting results. Because by going back through time,
1138
+ the initial masses of these central SMBHs can be exam-
1139
+ ined.
1140
+ Acknowledgement
1141
+ Authors thank Shant Baghram for the great discus-
1142
+ sions that helped us to model and correct the Quasar-
1143
+ NET data and Rahim Moradi for helpful discussion.
1144
+ Data availability
1145
+ The catalogue underlying this paper is available in
1146
+ the Sloan Digital Sky Survey Quasar catalogue: 16th
1147
+
1148
+ 10
1149
+ data release (DR16Q) at https://www.sdss.org/dr16/
1150
+ algorithms/qsocatalog/ [13].
1151
+ The data that support the findings of this study
1152
+ are
1153
+ openly
1154
+ available
1155
+ at
1156
+ https://www.kaggle.com/
1157
+ datasets/quasarnet/quasarnet,
1158
+ reference
1159
+ number
1160
+ [68].
1161
+ [1] Inayoshi, Kohei, Eli Visbal, and Zolt´an Haiman. ”The
1162
+ assembly of the first massive black holes.” arXiv preprint
1163
+ arXiv:1911.05791 (2019).
1164
+ [2] Blandford, R. D., and C. F. McKee. ”Reverberation map-
1165
+ ping of the emission line regions of Seyfert galaxies and
1166
+ quasars.” The Astrophysical Journal 255 (1982): 419-
1167
+ 439.
1168
+ [3] Du, Pu, and Jian-Min Wang. ”The radius–luminosity re-
1169
+ lationship depends on optical spectra in active galactic
1170
+ nuclei.” The Astrophysical Journal 886.1 (2019): 42.
1171
+ [4] Antonucci, Robert. ”Unified models for active galactic
1172
+ nuclei and quasars.” Annual review of astronomy and
1173
+ astrophysics 31 (1993): 473-521.
1174
+ [5] Shields, G. A. ”Thermal continuum from accretion disks
1175
+ in quasars.” Nature 272.5655 (1978): 706-708.
1176
+ [6] Svensson, Roland, and Andrzej A. Zdziarski. ”Black hole
1177
+ accretion disks with coronae.” The Astrophysical Journal
1178
+ 436 (1994): 599-606.
1179
+ [7] Arnaud, K. A., et al. ”EXOSAT observations of a strong
1180
+ soft X-ray excess in MKN 841.” Monthly Notices of the
1181
+ Royal Astronomical Society 217.1 (1985): 105-113.
1182
+ [8] Yang, Jinyi, et al. ”P¯oniu¯a ‘ena: A Luminous z= 7.5
1183
+ Quasar Hosting a 1.5 Billion Solar Mass Black Hole.”
1184
+ The Astrophysical Journal Letters 897.1 (2020): L14.
1185
+ [9] Wise, John H., et al. ”Formation of massive black holes in
1186
+ rapidly growing pre-galactic gas clouds.” Nature 566.7742
1187
+ (2019): 85-88.
1188
+ [10] Kroupa, Pavel, et al. ”Very high redshift quasars and the
1189
+ rapid emergence of supermassive black holes.” Monthly
1190
+ Notices of the Royal Astronomical Society 498.4 (2020):
1191
+ 5652-5683.
1192
+ [11] Bernal, Jos´e Luis, et al. ”Signatures of primordial black
1193
+ holes as seeds of supermassive black holes.” Journal of
1194
+ Cosmology and Astroparticle Physics 2018.05 (2018):
1195
+ 017.
1196
+ [12] Volonteri, Marta, Joseph Silk, and Guillaume Dubus.
1197
+ ”The case for supercritical accretion onto massive black
1198
+ holes at high redshift.” The Astrophysical Journal 804.2
1199
+ (2015): 148.
1200
+ [13] Lyke, Brad W., et al. ”The Sloan Digital Sky Survey
1201
+ Quasar Catalog: Sixteenth Data Release.” The Astro-
1202
+ physical Journal Supplement Series 250.1 (2020): 8.
1203
+ [14] Busca, Nicolas, and Christophe Balland. ”QuasarNET:
1204
+ Human-level spectral classification and redshifting with
1205
+ Deep Neural Networks.” arXiv preprint arXiv:1808.09955
1206
+ (2018).
1207
+ [15] Ball, Nicholas M., and Robert J. Brunner. ”Data min-
1208
+ ing and machine learning in astronomy.” International
1209
+ Journal of Modern Physics D 19.07 (2010): 1049-1106.
1210
+ [16] Baron, Dalya. ”Machine learning in astronomy: A prac-
1211
+ tical overview.” arXiv preprint arXiv:1904.07248 (2019).
1212
+ [17] Allen,
1213
+ Gabrielle,
1214
+ et
1215
+ al.
1216
+ ”Deep
1217
+ learning
1218
+ for
1219
+ multi-
1220
+ messenger astrophysics: A gateway for discovery in the
1221
+ big data era.” arXiv preprint arXiv:1902.00522 (2019).
1222
+ [18] Meher, Saroj K., and Ganapati Panda. ”Deep learning in
1223
+ astronomy: a tutorial perspective.” The European Phys-
1224
+ ical Journal Special Topics 230.10 (2021): 2285-2317.
1225
+ [19] Nakoneczny, S. J., et al. ”Photometric selection and red-
1226
+ shifts for quasars in the Kilo-Degree Survey Data Release
1227
+ 4.” Astronomy and Astrophysics 649 (2021): A81.
1228
+ [20] Wenzl, Lukas, et al. ”Random forests as a viable method
1229
+ to select and discover high-redshift quasars.” The Astro-
1230
+ nomical Journal 162.2 (2021): 72.
1231
+ [21] Burhanudin, U. F., et al. ”Light-curve classification with
1232
+ recurrent neural networks for GOTO: dealing with imbal-
1233
+ anced data.” Monthly Notices of the Royal Astronomical
1234
+ Society 505.3 (2021): 4345-4361.
1235
+ [22] Vardoulaki, E., et al. ”FR-type radio sources at 3
1236
+ GHz VLA-COSMOS: Relation to physical properties and
1237
+ large-scale environment.” Astronomy and Astrophysics
1238
+ 648 (2021): A102.
1239
+ [23] Wang, Cunshi, et al. ”J-PLUS: Support vector machine
1240
+ applied to STAR-GALAXY-QSO classification.” Astron-
1241
+ omy and Astrophysics 659 (2022): A144.
1242
+ [24] Xiao, H. B., et al. ”Efficient Fermi source identification
1243
+ with machine learning methods.” Astronomy and Com-
1244
+ puting 32 (2020): 100387.
1245
+ [25] Parkinson, PM Saz, et al. ”Classification and ranking of
1246
+ Fermi LAT gamma-ray sources from the 3FGL catalog
1247
+ using machine learning techniques.” The Astrophysical
1248
+ Journal 820.1 (2016): 8.
1249
+ [26] Li, Yin, et al. ”AI-assisted superresolution cosmological
1250
+ simulations.” Proceedings of the National Academy of
1251
+ Sciences 118.19 (2021): e2022038118.
1252
+ [27] Narendra, Aditya, et al. ”Predicting the redshift of
1253
+ gamma-ray loud quasars using Supervised Machine
1254
+ Learning:
1255
+ Part 2.” arXiv preprint arXiv:2201.05374
1256
+ (2022).
1257
+ [28] York, Donald G., et al. ”The sloan digital sky survey:
1258
+ Technical summary.” The Astronomical Journal 120.3
1259
+ (2000): 1579.
1260
+ [29] Rastegarnia, F., et al. ”Deep learning in searching the
1261
+ spectroscopic redshift of quasars.” Monthly Notices of
1262
+ the Royal Astronomical Society 511.3 (2022): 4490-4499.
1263
+ [30] Xie, G.-Z., Chen, L.-E., Xie, Z.-H., Ma, L., and Zhou,
1264
+ S.-B. (2005). Agn black hole masses and methods to esti-
1265
+ mate the mass. Publications of the Astronomical Society
1266
+ of Japan, 57(1):183–186.
1267
+ [31] Vestergaard, Marianne. ”Determining central black hole
1268
+ masses in distant active galaxies.” The Astrophysical
1269
+ Journal 571.2 (2002): 733.
1270
+ [32] Wandel, A., B. M. Peterson, and M. A. Malkan. ”Cen-
1271
+ tral masses and broad-line region sizes of active galac-
1272
+ tic nuclei. I. Comparing the photoionization and rever-
1273
+ beration techniques.” The Astrophysical Journal 526.2
1274
+ (1999): 579.
1275
+ [33] Rodriguez-Pascual, P. M., et al. ”Steps toward determi-
1276
+ nation of the size and structure of the broad-Line region
1277
+ in active galactic nuclei. IX. Ultraviolet observations of
1278
+ fairall 9.” The Astrophysical Journal Supplement Series
1279
+
1280
+ 11
1281
+ 110.1 (1997): 9.
1282
+ [34] Bentz, Misty C., et al. ”The Lick AGN monitoring
1283
+ project: Broad-line region radii and black hole masses
1284
+ from reverberation mapping of Hβ.” The Astrophysical
1285
+ Journal 705.1 (2009): 199.
1286
+ [35] Netzer, Hagai. The physics and evolution of active galac-
1287
+ tic nuclei. Cambridge university press, 2013.
1288
+ [36] McLure, Ross J., and James S. Dunlop. ”The cosmo-
1289
+ logical evolution of quasar black hole masses.” Monthly
1290
+ Notices of the Royal Astronomical Society 352.4 (2004):
1291
+ 1390-1404.
1292
+ [37] McLure, Ross J., and Matt J. Jarvis. ”Measuring the
1293
+ black hole masses of high-redshift quasars.” Monthly No-
1294
+ tices of the Royal Astronomical Society 337.1 (2002):
1295
+ 109-116.
1296
+ [38] Wills, B. J, and I. W. A. Browne. ”Relativistic beaming
1297
+ and quasar emission lines.” The Astrophysical Journal
1298
+ 302 (1986): 56-63.
1299
+ [39] Koss, Michael, et al. ”BAT AGN spectroscopic survey.
1300
+ I. Spectral measurements, derived quantities, and AGN
1301
+ demographics.” The Astrophysical Journal 850.1 (2017):
1302
+ 74.
1303
+ [40] Schutte, Zachary, Amy E. Reines, and Jenny E. Greene.
1304
+ ”The black hole–bulge mass relation including dwarf
1305
+ galaxies hosting active galactic nuclei.” The Astrophysi-
1306
+ cal Journal 887.2 (2019): 245.
1307
+ [41] Willott, Chris J., et al. ”Eddington-limited accretion and
1308
+ the black hole mass function at redshift 6.” The Astro-
1309
+ nomical Journal 140.2 (2010): 546.
1310
+ [42] Fanidakis, N., et al. ”The evolution of active galactic
1311
+ nuclei across cosmic time: what is downsizing?.” Monthly
1312
+ Notices of the Royal Astronomical Society 419.4 (2012):
1313
+ 2797-2820.
1314
+ [43] Hopkins, Philip F., Gordon T. Richards, and Lars Hern-
1315
+ quist. ”An observational determination of the bolometric
1316
+ quasar luminosity function.” The Astrophysical Journal
1317
+ 654.2 (2007): 731.
1318
+ [44] Trakhtenbrot, Benny. ”What do observations tell us
1319
+ about the highest-redshift supermassive black holes?.”
1320
+ Proceedings of the International Astronomical Union
1321
+ 15.S356 (2019): 261-275.
1322
+ [45] Trakhtenbrot, Benny, Marta Volonteri, and Priyamvada
1323
+ Natarajan. ”On the accretion rates and radiative efficien-
1324
+ cies of the highest-redshift quasars.” The Astrophysical
1325
+ Journal Letters 836.1 (2017): L1.
1326
+ [46] Natarajan, Priyamvada, et al. ”QuasarNet: A new re-
1327
+ search platform for the data-driven investigation of black
1328
+ holes.” arXiv preprint arXiv:2103.13932 (2021).
1329
+ [47] Salvato, Mara, Olivier Ilbert, and Ben Hoyle. ”The many
1330
+ flavours of photometric redshifts.” Nature Astronomy 3.3
1331
+ (2019): 212-222.
1332
+ [48] Tago, E., et al. ”Groups of galaxies in the SDSS Data
1333
+ Release 7-Flux-and volume-limited samples.” Astronomy
1334
+ and Astrophysics 514 (2010): A102.
1335
+ lags.” The Astrophysical Journal 856.1 (2018): 6.
1336
+ [49] Staudemeyer,
1337
+ Ralf C.,
1338
+ and Eric Rothstein Morris.
1339
+ ”Understanding LSTM–a tutorial into long short-term
1340
+ memory recurrent neural networks.” arXiv preprint
1341
+ arXiv:1909.09586 (2019).
1342
+ [50] Williams, Ronald J., and David Zipser. Gradient-based
1343
+ learning algorithms for recurrent connectionist networks.
1344
+ Boston, MA: College of Computer Science, Northeastern
1345
+ University, 1990.
1346
+ [51] Werbos, Paul J. ”Backpropagation through time: what
1347
+ it does and how to do it.” Proceedings of the IEEE 78.10
1348
+ (1990): 1550-1560.
1349
+ [52] Bengio, Yoshua, Patrice Simard, and Paolo Frasconi.
1350
+ ”Learning long-term dependencies with gradient descent
1351
+ is difficult.” IEEE transactions on neural networks 5.2
1352
+ (1994): 157-166.
1353
+ [53] Hochreiter, Sepp, and J¨urgen Schmidhuber. ”LSTM can
1354
+ solve hard long time lag problems.” Advances in neural
1355
+ information processing systems 9 (1996).
1356
+ [54] Gers, Felix A., J¨urgen Schmidhuber, and Fred Cummins.
1357
+ ”Learning to forget: Continual prediction with LSTM.”
1358
+ Neural computation 12.10 (2000): 2451-2471.
1359
+ [55] Gers,
1360
+ Felix A.,
1361
+ Nicol N. Schraudolph,
1362
+ and J¨urgen
1363
+ Schmidhuber. ”Learning precise timing with LSTM re-
1364
+ current networks.” Journal of machine learning research
1365
+ 3.Aug (2002): 115-143.
1366
+ [56] Hochreiter, Sepp, and J¨urgen Schmidhuber. ”Long short-
1367
+ term memory.” Neural computation 9.8 (1997): 1735-
1368
+ 1780.
1369
+ [57] Graves, Alex. ”Long short-term memory.” Supervised se-
1370
+ quence labelling with recurrent neural networks (2012):
1371
+ 37-45.
1372
+ [58] Yao,
1373
+ Kaisheng,
1374
+ et al. ”Depth-gated LSTM.” arXiv
1375
+ preprint arXiv:1508.03790 (2015).
1376
+ [59] Banados, Eduardo, et al. ”An 800 million solar mass
1377
+ black hole in a significantly neutral universe at redshift
1378
+ 7.5.” arXiv preprint arXiv:1712.01860 (2017).
1379
+ [60] Hu, Chen, et al. ”Supermassive Black Holes with High
1380
+ Accretion Rates in Active Galactic Nuclei. XII. Reverber-
1381
+ ation Mapping Results for 15 PG Quasars from a Long-
1382
+ duration High-cadence Campaign.” The Astrophysical
1383
+ Journal Supplement Series 253.1 (2021): 20.
1384
+ [61] Vestergaard, P., L. Rejnmark, and L. Mosekilde. ”Rela-
1385
+ tive fracture risk in patients with diabetes mellitus, and
1386
+ the impact of insulin and oral antidiabetic medication on
1387
+ relative fracture risk.” Diabetologia 48.7 (2005): 1292-
1388
+ 1299.
1389
+ [62] Aggarwal, Yash. ”New insights into the origins and
1390
+ growth of seeds of supermassive black holes.”
1391
+ [63] Yang, Jinyi, et al. ”Probing Early Supermassive Black
1392
+ Hole Growth and Quasar Evolution with Near-infrared
1393
+ Spectroscopy of 37 Reionization-era Quasars at 6.3 z
1394
+ 7.64.” The Astrophysical Journal 923.2 (2021): 262.
1395
+ [64] Netzer, Hagai, et al. ”Spitzer quasar and ULIRG evo-
1396
+ lution study (QUEST). II. The spectral energy distribu-
1397
+ tions of palomar-green quasars.” The Astrophysical Jour-
1398
+ nal 666.2 (2007): 806.
1399
+ [65] Wild, Vivienne, et al. ”Bursty stellar populations and ob-
1400
+ scured active galactic nuclei in galaxy bulges.” Monthly
1401
+ Notices of the Royal Astronomical Society 381.2 (2007):
1402
+ 543-572.
1403
+ [66] Wild, Vivienne, Timothy Heckman, and St´ephane Char-
1404
+ lot. ”Timing the starburst–AGN connection.” Monthly
1405
+ Notices of the Royal Astronomical Society 405.2 (2010):
1406
+ 933-947.
1407
+ [67] Rosario, D. J., et al. ”The mean star formation rate
1408
+ of X-ray selected active galaxies and its evolution from
1409
+ z 2.5: results from PEP-Herschel.” Astronomy and As-
1410
+ trophysics 545 (2012): A45.
1411
+ [68] QuasarNet
1412
+ (2022).
1413
+ QuasarNet
1414
+ [Dataset].
1415
+ https://www.kaggle.com/datasets/quasarnet/quasarnet
1416
+ [69] Wang, Feige, et al. ”A luminous quasar at redshift 7.642.”
1417
+ The Astrophysical Journal Letters 907.1 (2021): L1.
1418
+ a redshift of 7.5, Nature 553 473 (2017)
1419
+
1420
+ 12
1421
+ [70] Mortlock, Daniel J., et al. ”A luminous quasar at a red-
1422
+ shift of z= 7.085.” Nature 474.7353 (2011): 616-619.
1423
+ [71] Matsuoka, Yoshiki, et al. ”Discovery of the First Low-
1424
+ luminosity Quasar at z¿ 7.” The Astrophysical Journal
1425
+ Letters 872.1 (2019): L2.
1426
+ [72] Wang, Feige, et al. ”The discovery of a luminous broad
1427
+ absorption line quasar at a redshift of 7.02.” The Astro-
1428
+ physical Journal Letters 869.1 (2018): L9.
1429
+ [73] Wang, Feige, et al. ”A Significantly Neutral Intergalactic
1430
+ Medium Around the Luminous z 7 Quasar J0252–0503.”
1431
+ The Astrophysical Journal 896.1 (2020): 23.
1432
+ [74] B.P. Venemans et al., Discovery of Three z 6.5 Quasars
1433
+ in the VISTA Kilo-Degree Infrared Galaxy (VIKING)
1434
+ Survey, ApJ 779 24 (2013)
1435
+ [75] Reed, Sophie L., et al. ”Three new VHS–DES quasars at
1436
+ 6.7¡ z¡ 6.9 and emission line properties at z¿ 6.5.” Monthly
1437
+ Notices of the Royal Astronomical Society 487.2 (2019):
1438
+ 1874-1885.
1439
+ [76] Matsuoka, Yoshiki, et al. ”SUBARU HIGH-z EXPLO-
1440
+ RATION OF LOW-LUMINOSITY QUASARS (SHEL-
1441
+ LQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT
1442
+ GALAXIES.” The Astrophysical Journal 828.1 (2016):
1443
+ 26.
1444
+ [77] Mazzucchelli, C., et al. ”Physical properties of 15 quasars
1445
+ .” The Astrophysical Journal 849.2 (2017): 91.
1446
+ [78] Eilers, Anna-Christina, et al. ”Detecting and character-
1447
+ izing young quasars. I. Systemic redshifts and proximity
1448
+ zone measurements.” The Astrophysical Journal 900.1
1449
+ (2020): 37.
1450
+ [79] Onoue, Masafusa, et al. ”No Redshift Evolution in the
1451
+ Broad-line-region Metallicity up to z= 7.54: Deep Near-
1452
+ infrared Spectroscopy of ULAS J1342+ 0928.” The As-
1453
+ trophysical Journal 898.2 (2020): 105.
1454
+ [80] Mortlock, D. J., et al. ”Discovery of a redshift 6.13 quasar
1455
+ in the UKIRT infrared deep sky survey.” Astronomy and
1456
+ Astrophysics 505.1 (2009): 97-104.
1457
+
1458
+ 13
1459
+ Object
1460
+ Redshift
1461
+ MBH(×107M⊙)
1462
+ PG 0003+199
1463
+ 0.0259
1464
+ 0.50+0.18
1465
+ −0.18
1466
+ PG 0804+761
1467
+ 0.1005
1468
+ 4.14+0.91
1469
+ −0.98
1470
+ PG 0838+770
1471
+ 0.1316
1472
+ 2.89+1.01
1473
+ −1.13
1474
+ PG 1115+407
1475
+ 0.1542
1476
+ 7.76+2.23
1477
+ −1.95
1478
+ PG 1322+659
1479
+ 0.1678
1480
+ 3.35+1.92
1481
+ −0.71
1482
+ PG 1402+261
1483
+ 0.1643
1484
+ 3.41+1.28
1485
+ −1.51
1486
+ PG 1404+226
1487
+ 0.0972
1488
+ 0.68+0.14
1489
+ −0.23
1490
+ PG 1415+451
1491
+ 0.1132
1492
+ 1.75+0.36
1493
+ −0.32
1494
+ PG 1440+356
1495
+ 0.0770
1496
+ 1.49+0.49
1497
+ −0.55
1498
+ PG 1448+273
1499
+ 0.0646
1500
+ 1.01+0.38
1501
+ −0.23
1502
+ PG 1519+226
1503
+ 0.1351
1504
+ 4.87+0.49
1505
+ −0.86
1506
+ PG 1535+547
1507
+ 0.0385
1508
+ 1.55+0.84
1509
+ −0.82
1510
+ PG 1552+085
1511
+ 0.1187
1512
+ 1.30+0.68
1513
+ −0.65
1514
+ PG 1617+175
1515
+ 0.1144
1516
+ 4.79+2.94
1517
+ −2.83
1518
+ PG 1626+554
1519
+ 0.1316
1520
+ 19.17+2.98
1521
+ −2.73
1522
+ TABLE III: This table contains 15 low redshift quasars at z < 1 with their central SMBH mass reported in [60].
1523
+ Object
1524
+ Redshift
1525
+ log(M/M⊙) (Hβ, rms)
1526
+ Mrk 335
1527
+ 0.02578
1528
+ 7.152+0.101
1529
+ −0.131
1530
+ PG 0026+129
1531
+ 0.14200
1532
+ 8.594+0.095
1533
+ −0.122
1534
+ PG 0052+251
1535
+ 0.15500
1536
+ 8.567+0.081
1537
+ −0.100
1538
+ Fairall 9
1539
+ 0.04702
1540
+ 8.407+0.086
1541
+ −0.108
1542
+ Mrk 590
1543
+ 0.02638
1544
+ 7.677+0.063
1545
+ −0.074
1546
+ 3C 120
1547
+ 0.03301
1548
+ 7.744+0.195
1549
+ −0.226
1550
+ Ark 120
1551
+ 0.03230
1552
+ 8.176+0.052
1553
+ −0.059
1554
+ PG 0804+761
1555
+ 0.10000
1556
+ 8.841+0.049
1557
+ −0.055
1558
+ PG 0844+349
1559
+ 0.06400
1560
+ 7.966+0.150
1561
+ −0.231
1562
+ Mrk 110
1563
+ 0.03529
1564
+ 7.400+0.094
1565
+ −0.121
1566
+ PG 0953+414
1567
+ 0.23410
1568
+ 8.441+0.084
1569
+ −0.104
1570
+ NGC 3783
1571
+ 0.00973
1572
+ 7.474+0.072
1573
+ −0.087
1574
+ NGC 4151
1575
+ 0.00332
1576
+ 7.124+0.129
1577
+ −0.184
1578
+ PG 1226+023
1579
+ 0.15830
1580
+ 8.947+0.083
1581
+ −0.103
1582
+ PG 1229+204
1583
+ 0.06301
1584
+ 7.865+0.171
1585
+ −0.285
1586
+ PG 1307+085
1587
+ 0.15500
1588
+ 8.643+0.107
1589
+ −0.142
1590
+ Mrk 279
1591
+ 0.03045
1592
+ 7.543+0.102
1593
+ −0.133
1594
+ PG 1411+442
1595
+ 0.08960
1596
+ 8.646+0.124
1597
+ −0.174
1598
+ NGC 5548
1599
+ 0.01717
1600
+ 7.827+0.017
1601
+ −0.017
1602
+ PG 1426+015
1603
+ 0.08647
1604
+ 9.113+0.113
1605
+ −0.153
1606
+ Mrk 817
1607
+ 0.03145
1608
+ 7.694+0.063
1609
+ −0.074
1610
+ PG 1613+658
1611
+ 0.12900
1612
+ 8.446+0.165
1613
+ −0.270
1614
+ PG 1617+175
1615
+ 0.11240
1616
+ 8.774+0.019
1617
+ −0.115
1618
+ PG 1700+518
1619
+ 0.29200
1620
+ 8.893+0.091
1621
+ −0.103
1622
+ 3C 390.3
1623
+ 0.05610
1624
+ 8.458+0.087
1625
+ −0.110
1626
+ Mrk 509
1627
+ 0.03440
1628
+ 8.115+0.035
1629
+ −0.038
1630
+ PG 2130+099
1631
+ 0.06298
1632
+ 8.660+0.049
1633
+ −0.056
1634
+ NGC 7469
1635
+ 0.01632
1636
+ 7.086+0.047
1637
+ −0.053
1638
+ TABLE IV: This table contains 28 low redshift quasars at z < 1 with their central SMBH mass from [61].
1639
+
1640
+ 14
1641
+ Object
1642
+ Redshift
1643
+ MBH(×109M⊙)
1644
+ Refence
1645
+ J0313-1806
1646
+ 7.64
1647
+ 0.16+0.4
1648
+ −0.4
1649
+ [69]
1650
+ ULAS J1342+0928
1651
+ 7.541
1652
+ 0.91+0.13
1653
+ −0.14
1654
+ [59]
1655
+ J100758.264+211529.207
1656
+ 7.52
1657
+ 1.5+0.2
1658
+ −0.2
1659
+ [8]
1660
+ ULAS J1120+0641
1661
+ 7.085
1662
+ 2.0+1.5
1663
+ −0.7
1664
+ [70]
1665
+ J124353.93+010038.5
1666
+ 7.07
1667
+ 0.33+0.2
1668
+ −0.2
1669
+ [71]
1670
+ J0038-1527
1671
+ 7.021
1672
+ 1.33+0.25
1673
+ −0.25
1674
+ [72]
1675
+ DES J025216.64–050331.8
1676
+ 7
1677
+ 1.39+0.16
1678
+ −0.16
1679
+ [73]
1680
+ ULAS J2348-3054
1681
+ 6.886
1682
+ 2.1+0.5
1683
+ −0.5
1684
+ [74]
1685
+ VDES J0020-3653
1686
+ 6.834
1687
+ 1.67+0.32
1688
+ −0.32
1689
+ [75]
1690
+ PSO J172.3556+18.7734
1691
+ 6.823
1692
+ 3.7+1.3
1693
+ −1.0
1694
+ [74]
1695
+ ULAS J0109-3047
1696
+ 6.745
1697
+ 1.0+0.1
1698
+ −0.1
1699
+ [74]
1700
+ HSC J1205-0000
1701
+ 6.73
1702
+ 1.15+0.39
1703
+ −0.39
1704
+ [75]
1705
+ VDES J0244-5008
1706
+ 6.724
1707
+ 3.7+1.3
1708
+ −1.0
1709
+ [74]
1710
+ PSO J338.2298
1711
+ 6.658
1712
+ 3.7+1.3
1713
+ −1.0
1714
+ [74]
1715
+ ULAS J0305-3150
1716
+ 6.604
1717
+ 1.0+0.1
1718
+ −0.1
1719
+ [74]
1720
+ PSO J323.1382
1721
+ 6.592
1722
+ 1.39+0.32
1723
+ −0.51
1724
+ [77]
1725
+ PSO J231.6575
1726
+ 6.587
1727
+ 3.05+0.44
1728
+ −2.24
1729
+ [77]
1730
+ PSO J036.5078
1731
+ 6.527
1732
+ 3+0.92
1733
+ −0.77
1734
+ [77]
1735
+ V DESJ0224 − 4711
1736
+ 6.526
1737
+ 2.12+0.42
1738
+ −0.42
1739
+ [75]
1740
+ PSOJ167.6415
1741
+ 6.508
1742
+ 0.3+0.008
1743
+ −0.012
1744
+ [74]
1745
+ PSOJ261 + 19
1746
+ 6.483
1747
+ 0.67+0.21
1748
+ −0.21
1749
+ [78]
1750
+ PSOJ247.2970
1751
+ 6.476
1752
+ 5.2+0.22
1753
+ −0.25
1754
+ [77]
1755
+ PSOJ011 + 09
1756
+ 6.458
1757
+ 1.2+0.51
1758
+ −0.51
1759
+ [78]
1760
+ CFHQSJ0210 − 0456
1761
+ 6.438
1762
+ 0.08+0.055
1763
+ −0.04
1764
+ [41]
1765
+ CFHQSJ2329 − 0301
1766
+ 6.417
1767
+ 2.5+0.4
1768
+ −0.4
1769
+ [41]
1770
+ HSCJ0859 + 0022
1771
+ 6.388
1772
+ 0.038+0.001
1773
+ −0.0018
1774
+ [76]
1775
+ HSCJ2239 + 0207
1776
+ 6.245
1777
+ 1.1+3
1778
+ −2
1779
+ [77]
1780
+ V DESJ0330–4025
1781
+ 6.239
1782
+ 5.87+0.89
1783
+ −0.89
1784
+ [78]
1785
+ V DESJ0323–4701
1786
+ 6.238
1787
+ 0.55+0.126
1788
+ −0.126
1789
+ [78]
1790
+ PSOJ359–06
1791
+ 6.164
1792
+ 1.66+0.21
1793
+ −0.21
1794
+ [78]
1795
+ CFHQSJ0221 − 0802
1796
+ 6.161
1797
+ 0.7+0.75
1798
+ −0.47
1799
+ [41]
1800
+ HSCJ1208 − 0200
1801
+ 6.144
1802
+ 0.71+0.24
1803
+ −0.52
1804
+ [79]
1805
+ ULASJ1319 + 0950
1806
+ 6.13
1807
+ 2.7+0.6
1808
+ −0.6
1809
+ [80]
1810
+ CFHQSJ1509 − 1749
1811
+ 6.121
1812
+ 3.0+0.3
1813
+ −0.3
1814
+ [41]
1815
+ PSOJ239–07
1816
+ 6.114
1817
+ 3.63+0.2
1818
+ −0.2
1819
+ [78]
1820
+ HSCJ2216 − 0016
1821
+ 6.109
1822
+ 0.7+0.14
1823
+ −0.23
1824
+ [79]
1825
+ CFHQSJ2100 − 1715
1826
+ 6.087
1827
+ 3.37+0.64
1828
+ −0.64
1829
+ [41]
1830
+ PSOJ158–14
1831
+ 6.057
1832
+ 2.15+0.25
1833
+ −0.25
1834
+ [78]
1835
+ CFHQSJ1641 + 3755
1836
+ 6.047
1837
+ 0.24+0.1
1838
+ −0.8
1839
+ [41]
1840
+ CFHQSJ0055 + 0146
1841
+ 5.983
1842
+ 0.24+0.9
1843
+ −0.7
1844
+ [41]
1845
+ PSOJ056–16
1846
+ 5.975
1847
+ 0.75+0.007
1848
+ −0.007
1849
+ [78]
1850
+ TABLE V: This table contains 41 high-redshift quasars at z > 5 with their central SMBH mass from different
1851
+ references which are identified in the fourth column.
1852
+
1853
+ 15
1854
+ Object
1855
+ Redshift
1856
+ MBH(×109M⊙)
1857
+ J002429.77+391319.0
1858
+ 6.620 ± 0.004
1859
+ 0.27 ± 0.02
1860
+ J003836.10-152723.6
1861
+ 6.999 ± 0.001
1862
+ 1.36 ± 0.05
1863
+ J004533.57+090156.9
1864
+ 6.441 ± 0.004
1865
+ 0.63 ± 0.02
1866
+ J021847.04+000715.2
1867
+ 6.766 ± 0.004
1868
+ 0.61 ± 0.07
1869
+ J024655.90-521949.9
1870
+ 6.86 ± 0.02
1871
+ 1.05 ± 0.37
1872
+ J025216.64-050331.8
1873
+ 6.99 ± 0.02
1874
+ 1.28 ± 0.09
1875
+ J031343.84-180636.4
1876
+ 7.611 ± 0.004
1877
+ 1.61 ± 0.40
1878
+ J031941.66-100846.0
1879
+ 6.816 ± 0.004
1880
+ 0.40 ± 0.03
1881
+ J041128.63-090749.8
1882
+ 6.827 ± 0.006
1883
+ 0.95 ± 0.09
1884
+ J043947.08+163415.7
1885
+ 6.519 ± 0.003
1886
+ 0.63 ± 0.02
1887
+ J052559.68-240623.0
1888
+ 6.543 ± 002
1889
+ 0.002 0.29±
1890
+ J070626.39+292105.5
1891
+ 6.5925 ± 0.0004
1892
+ 2.11 ± 0.04
1893
+ J082931.97+411740.4
1894
+ 6.384 ± 0.004
1895
+ 1.40 ± 0.16
1896
+ J083737.84+492900.4
1897
+ 6.773 ± 0.007
1898
+ 0.71 ± 0.18
1899
+ J083946.88+390011.5
1900
+ 6.702 ± 0.001
1901
+ 0.81 ± 0.02
1902
+ J091054.53-041406.8
1903
+ 6.9046 �� 0.0003
1904
+ 0.671 ± 0.003
1905
+ J092120.56+000722.9
1906
+ 6.610 ± 0.003
1907
+ 0.41 ± 0.03
1908
+ J092347.12+040254.4
1909
+ 6.719 ± 0.005
1910
+ 0.26 ± 0.01
1911
+ J092359.00+075349.1
1912
+ 6.5654 ± 0.0002
1913
+ 1.77 ± 0.02
1914
+ J100758.26+211529.2
1915
+ 6.682 ± 0.002
1916
+ 0.49 ± 0.15
1917
+ J105807.72+293041.7
1918
+ 7.48 ± 0.01
1919
+ 1.43 ± 0.22
1920
+ J110421.59+213428.8
1921
+ 6.585 ± 0.005
1922
+ 0.54 ± 0.03
1923
+ J112001.48+064124.3
1924
+ 6.766 ± 0.005
1925
+ 1.69 ± 0.15
1926
+ J112925.34+184624.2
1927
+ 7.070 ± 0.003
1928
+ 1.35 ± 0.04
1929
+ J113508.93+501133.0
1930
+ 6.824 ± 0.001
1931
+ 0.29 ± 0.02
1932
+ J121627.58+451910.7
1933
+ 6.579 ± 0.001
1934
+ 1.49 ± 0.05
1935
+ J131608.14+102832.8
1936
+ 6.648 ± 0.003
1937
+ 0.61 ± 0.20
1938
+ J134208.10+092838.6
1939
+ 7.51 ± 0.01
1940
+ 0.81 ± 0.18
1941
+ J153532.87+194320.1
1942
+ 6.370 ± 0.001
1943
+ 3.53 ± 0.33
1944
+ J172408.74+190143.0
1945
+ 6.480 ± 0.001
1946
+ 0.67 ± 0.08
1947
+ J200241.59-301321.7
1948
+ 6.673 ± 0.001
1949
+ 1.62 ± 0.27
1950
+ J210219.22-145854.0
1951
+ 6.652 ± 0.003
1952
+ 0.74 ± 0.11
1953
+ J221100.60-632055.8
1954
+ 6.83 ± 0.01
1955
+ 0.55 ± 0.24
1956
+ J223255.15+293032.0
1957
+ 6.655 ± 0.003
1958
+ 3.06 ± 0.36
1959
+ J233807.03+214358.2
1960
+ 6.565 ± 0.009
1961
+ 0.56 ± 0.03
1962
+ TABLE VI: This table contains 35 high-redshift quasars at z > 6 with their central SMBH mass from [63].
1963
+
5dAzT4oBgHgl3EQffvz_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE0T4oBgHgl3EQfegDz/content/2301.02393v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82d958f4aca2ffa47b0f232867d5007c09abe355dbdf20039e2147f25dc289aa
3
+ size 4796050
5dE1T4oBgHgl3EQfBAJm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eee05b479da4dc12e7283f28994e2fdb5487c52ddac4d6960a06f76ae0b2614f
3
+ size 4325421
5dE2T4oBgHgl3EQfkQdW/content/tmp_files/2301.03976v1.pdf.txt ADDED
@@ -0,0 +1,1392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Semi-Supervised Learning with Pseudo-Negative Labels for Image
2
+ Classification
3
+ Hao Xua, Hui Xiaoa, Huazheng Haoa, Li Donga, Xiaojie Qiub and Chengbin Penga,∗
4
+ aNingbo University, Ningbo, China
5
+ bZhejiang Keyongtai Automation Technology Co., Ltd., Ningbo, China
6
+ A R T I C L E I N F O
7
+ Keywords:
8
+ Semi-Supervised Learning
9
+ Image Classification
10
+ Mutual Learning
11
+ A B S T R A C T
12
+ Semi-supervised learning frameworks usually adopt mutual learning approaches with multiple
13
+ submodels to learn from different perspectives. To avoid transferring erroneous pseudo labels between
14
+ these submodels, a high threshold is usually used to filter out a large number of low-confidence
15
+ predictions for unlabeled data. However, such filtering can not fully exploit unlabeled data with
16
+ low prediction confidence. To overcome this problem, in this work, we propose a mutual learning
17
+ framework based on pseudo-negative labels. Negative labels are those that a corresponding data item
18
+ does not belong. In each iteration, one submodel generates pseudo-negative labels for each data item,
19
+ and the other submodel learns from these labels. The role of the two submodels exchanges after
20
+ each iteration until convergence. By reducing the prediction probability on pseudo-negative labels,
21
+ the dual model can improve its prediction ability. We also propose a mechanism to select a few
22
+ pseudo-negative labels to feed into submodels. In the experiments, our framework achieves state-of-
23
+ the-art results on several main benchmarks. Specifically, with our framework, the error rates of the
24
+ 13-layer CNN model are 9.35% and 7.94% for CIFAR-10 with 1000 and 4000 labels, respectively.
25
+ In addition, for the non-augmented MNIST with only 20 labels, the error rate is 0.81% by our
26
+ framework, which is much smaller than that of other approaches. Our approach also demonstrates
27
+ a significant performance improvement in domain adaptation.
28
+ 1. Introduction
29
+ Deep learning is widely used in many areas, and the
30
+ performance of deep learning models [10] heavily relies on
31
+ the amount of training data. However, in many real-world
32
+ scenarios [16, 24, 5, 37], labeled data are often limited, and
33
+ the annotation for unlabeled data can usually be expensive.
34
+ In such cases, a semi-supervised learning framework can be
35
+ adopted.
36
+ Semi-supervised learning frameworks include generative-
37
+ based models [18], graph-based models [25], consistency-
38
+ based regularization [20, 33, 27, 2, 35, 15, 4], self-training
39
+ with pseudo-labels [8, 32], and so on.
40
+ Among them, self-training methods can expand the
41
+ training set by producing pseudo labels for unlabeled data
42
+ to improve the model performance. Nevertheless, single
43
+ models are not robust to noisy data. Inspired by DML [40],
44
+ a natural idea is to simultaneously train two independently
45
+ initialized models, and predictions of one submodel can be
46
+ used as the learning target for the other submodel.
47
+ To avoid transferring erroneous predictions to each other
48
+ and alleviate parameter coupling between submodels in the
49
+ early stages of training, a dual student framework [15] is
50
+ proposed.
51
+ It prevents the mutual transfer of erroneous knowledge
52
+ by only passing high-confidence predictions to the other
53
+ learning model. However, such a mechanism can waste a
54
+ large amount of unlabeled data during training.
55
+ ∗Corresponding author
56
+ [email protected] (C. Peng)
57
+ ORCID(s):
58
+ Figure 1: The dual model on the left side represents general
59
+ mutual learning, i.e., the models pass strong information
60
+ to each other such as information about the category with
61
+ the highest prediction probability. The dual model near the
62
+ right side exchanges weak information between each other,
63
+ indicating which category the data does not belong to.
64
+ To address these problems, we propose a new semi-
65
+ supervised classification framework based on dual pseudo-
66
+ negative label learning. This framework comprises two
67
+ submodels, and each submodel generates pseudo-negative
68
+ labels as learning targets for the other submodel. Each sub-
69
+ model also provides pseudo-negative labels on augmented
70
+ data for self-training. The difference between our frame-
71
+ work and general mutual learning is shown in Figure 1. We
72
+ also propose a selection mechanism to identify the most
73
+ representative pseudo-negative labels for the other model.
74
+ The main contributions can be summarized as follows:
75
+ • We propose a Dual Negative Label Learning (DNLL)
76
+ framework, which not only improves the utiliza-
77
+ tion of unlabeled data but also significantly reduces
78
+ model parameter coupling compared to general mu-
79
+ tual learning methods.
80
+ Xu.eal: Preprint submitted to Elsevier
81
+ Page 1 of 10
82
+ arXiv:2301.03976v1 [cs.CV] 10 Jan 2023
83
+
84
+ aM1
85
+ M1'
86
+ Dog
87
+ Not Cat
88
+ Not Bird
89
+ M2
90
+ Unlabeled Data
91
+ M2'• We propose a selection mechanism to help select
92
+ representative pseudo-negative labels and prove the
93
+ effectiveness of this approach theoretically.
94
+ • We demonstrate the effectiveness of the proposed
95
+ method experimentally on different benchmarks.
96
+ 2. Related Work
97
+ 2.1. Data Augmentation
98
+ Data augmentation plays a key role in model training,
99
+ which is widely used in classification or segmentation. Data
100
+ augmentation is used to expand the training set by applying
101
+ random perturbations to improve algorithm performance
102
+ and robustness. Simple augmentation methods include ran-
103
+ dom flips, horizontal or vertical transitions, geometric trans-
104
+ formations, changing the contrast of images, and so on.
105
+ There are also complex operations. Mixup randomly selects
106
+ two images and mixes them by a random proportion to
107
+ expand the data set. The Cutout method replaces randomly
108
+ selected image pixel values with zeros while leaving the
109
+ labels unchanged [7]. In order to maximize the effect of data
110
+ augmentation, strategies combining a range of augmentation
111
+ techniques are proposed, such as AutoAugmentation [38],
112
+ RandAugmentation [6], etc. We also employ data augmen-
113
+ tation methods similar to other semi-supervised learning
114
+ frameworks [2, 1].
115
+ 2.2. Semi-Supervised Learning
116
+ Semi-supervised learning has received a lot of attention
117
+ in recent years. The main task of semi-supervised learn-
118
+ ing is to utilize labeled and unlabeled data to train algo-
119
+ rithms. Many approaches based on consistency regularity,
120
+ Pi-Model, Temporal Ensembling Model [20], Mean Teacher
121
+ [33], Dual Student [15], and so on. Later, a series of holistic
122
+ analysis methods, such as MixMatch [2], ReMixMatch
123
+ [1], FixMatch [32], have been proposed. Alternatively, in
124
+ DMT, inconsistency between two models has also been
125
+ used to exploit the correctness of pseudo-labels [9]. In this
126
+ work, we propose an efficient semi-supervised classification
127
+ framework with dual negative label learning.
128
+ 2.3. Learning with Noisy Labels
129
+ In this case, models are trained with correctly labeled
130
+ data and mistakenly labeled data. For example, based on
131
+ the recent memory effect of a neural network, co-teaching
132
+ [11] trains two models simultaneously, and each model can
133
+ help the other one to filter out samples with large losses.
134
+ Kim et al. [17] proposes a negative learning method for
135
+ training convolutional neural networks with noisy data. This
136
+ method provides feedback for input images about classes
137
+ to that they do not belong. In this work, we propose to
138
+ use low-confidence pseudo-labels as noisy labels for further
139
+ learning.
140
+ 2.4. Learning from Complementary Labels
141
+ A category corresponding to the complementary label is
142
+ that a data item does not belong. Due to difficulties in col-
143
+ lecting labeled data, complementary-label learning is used
144
+ in fully supervised learning methods [14] and noisy-label
145
+ learning methods [17]. Complementary labels can be gen-
146
+ erated based on noisy labels [14, 17]. In our method, com-
147
+ plementary labels are generated based on model-generated
148
+ pseudo labels.
149
+ 3. Methodology
150
+ 3.1. Problem Definition
151
+ In traditional multi-model frameworks, learning models
152
+ under-fitted in the early stage of training are likely to pass
153
+ erroneous pseudo-labels to other models. Such errors can
154
+ be accumulated and need to be filtered out. In addition,
155
+ consistency loss on the same erroneous pseudo-labels can
156
+ also lead the multi-model framework to degenerate into a
157
+ self-training model.
158
+ Therefore, in this section, we propose a multi-model
159
+ semi-supervised learning framework to improve the utiliza-
160
+ tion of unlabeled data and alleviate degeneration. We first
161
+ describe the novel mutual learning framework called Dual
162
+ Negative Label Learning. That detailed framework is shown
163
+ in Figure 2, and then proposes an effective selection mech-
164
+ anism for choosing representative pseudo-negative labels.
165
+ In semi-supervised learning (SSL), the goal is to train a
166
+ model by utilizing a small amount of labeled data and a large
167
+ amount of unlabeled data. Formally, we define a training set
168
+ 퐷 consisting of labeled data 퐷푙={(푋푖, 푌푖
169
+ ) ; 푖 ∈ (1, ..., 푁)
170
+ }
171
+ and unlabeled data 퐷푢={(푋푗
172
+ ) ; 푗 ∈ (1, ..., 푀)
173
+ }, and we use
174
+ a dual model to allow each submodel learning from the
175
+ other. The label 푌푖 of the 푖-th data item is a one-hot vector.
176
+ 3.2. Supervised Learning
177
+ In supervised learning, labeled data are augmented by
178
+ different weak augmentations for different submodels.
179
+ 푋(1)
180
+
181
+ =퐴(1)
182
+ 푤 (푋푖),
183
+ (1)
184
+ 푋(2)
185
+
186
+ =퐴(2)
187
+ 푤 (푋푖).
188
+ (2)
189
+ where 퐴(1)
190
+ 푤 , 퐴(2)
191
+ 푤 denote different weak augmentation opera-
192
+ tions and 푋(1)
193
+ 푖 , 푋(2)
194
+
195
+ denote weakly augmented data sets.
196
+ We use the cross-entropy (CE) function for the super-
197
+ vised loss. In classification tasks, the image-level CE loss is
198
+ as follows:
199
+ 퐻(푌 , ̂푌 ) = −
200
+
201
+
202
+ 푌푖푙표푔( ̂푌푖)
203
+ (3)
204
+ where ̂푌 is the predicted label, and 푌 is the ground truth.
205
+ The supervised losses of the two submodels are as
206
+ follows:
207
+ 퓁(1)
208
+ 푠푢푝 = 퐻(푓휃(푋(1)
209
+ 푖 ), 푌푖),
210
+ (4)
211
+ 퓁(2)
212
+ 푠푢푝 = 퐻(푓휑(푋(2)
213
+ 푖 ), 푌푖).
214
+ (5)
215
+ where 푓휃 and 푓휑 represent the operations of two submodels
216
+ respectively, and 휃 and 휑 represent parameters correspond-
217
+ ing submodels.
218
+ Xu.eal: Preprint submitted to Elsevier
219
+ Page 2 of 10
220
+
221
+ Figure 2: Overview of the DNLL framework. We use a small amount of labeled data and a large amount of unlabeled data
222
+ to train a dual model. Each submodel within the dual model has the same structure and is initialized independently. For each
223
+ labeled data, weak augmentations such as random cropping and random flipping are applied. A cross-entropy function is
224
+ used to calculate the supervised loss. For each unlabeled data, besides weak augmentations, strong augmentations such as
225
+ color jittering are applied. Each submodel generates pseudo-negative labels based on predictions of weakly augmented data,
226
+ and these labels are used to teach the other submodels when predicting strongly augmented data.
227
+ 3.3. Unsupervised Learning
228
+ 3.3.1. Dual pseudo-negative label Learning
229
+ Most unsupervised learning parts in semi-supervised
230
+ learning frameworks are realized by allowing each sub-
231
+ model to learn with pseudo-positive labels from other sub-
232
+ models. To avoid model degeneration and error accumula-
233
+ tion in this process, we propose a novel dual negative label
234
+ learning approach. In this approach, each submodel teaches
235
+ the other that a given data item should not belong to a
236
+ certain category. It allows model diversity and can reduce
237
+ transferring of erroneous information.
238
+ Pseudo-negative labels, namely, the labels that a corre-
239
+ sponding data item does not belong to, are generated by
240
+ taking complementary labels of the predicted label by a
241
+ submodel. In our approach, we also select a few pseudo-
242
+ negative labels as representative pseudo-negative labels.
243
+ For data item 푗, its pseudo label ̂푌푗 and its representative
244
+ pseudo-negative label 푌 푐
245
+ 푗 are randomly selected from all the
246
+ candidates with equal probability (EP) as follows:
247
+ ̂푌푗 = 푓(푋푗),
248
+ (6)
249
+ 푌 푐
250
+ 푗 ∈ 푧(푓(푋푗), 푚),
251
+ (7)
252
+ where 푚 is one by default, and 푧 is defined as follows:
253
+ 푧(푓(푋푗), 푚) ={푣|푣 ∈ {0, 1}퐾,
254
+
255
+
256
+ 푣푖 = 푚,
257
+ and 푣[arg max ̂푌푗] ≠ 1}.
258
+ (8)
259
+ Here, 퐾 is the number of categories, and {0, 1}퐾 represents
260
+ a vector of length 퐾 with elements equal to zero or one. To
261
+ increase the convergence rate, we can allow each submodel
262
+ to generate multiple representative pseudo-negative labels
263
+ for each weakly augmented data item for the other submodel
264
+ to learn. Thus, 푚 can also be positive integers larger than one
265
+ and less than 퐾.
266
+ By teaching each other with pseudo-negative labels
267
+ only, we reduce the coupling between submodels. The loss
268
+ function can be written as follows:
269
+ 퐿( ̂푌 , 푌 푐) = −
270
+
271
+
272
+ 푌 푐
273
+ 푖 log(1 − ̂푌푖)
274
+ (9)
275
+ where ̂푌 denotes the predictions from one submodel and 푌 푐
276
+ is the representative pseudo-negative labels from the other
277
+ submodel.
278
+ We also use weak and strong data augmentations for un-
279
+ labeled data to improve the generalization ability of the dual
280
+ model. The weak augmentations can be random cropping,
281
+ random flipping, or simply outputting the original images.
282
+ The strong augmentation operations can be color dithering
283
+ or noise perturbations. Usually, predictions for weakly aug-
284
+ mented data by a submodel will be more accurate than that
285
+ for strongly augmented data. Thus, in our framework, the
286
+ predictions of weakly augmented data by one submodel are
287
+ used for generating pseudo-negative labels. We use these
288
+ labels as learning targets for the other submodel feed by
289
+ strongly augmented images. The augmentation process can
290
+ be written as follows:
291
+ 푋(푤)
292
+
293
+ =퐴푤(푋푗),
294
+ (10)
295
+ 푋(푠)
296
+
297
+ =퐴푠(푋푗),
298
+ (11)
299
+ where 퐴푤 and 퐴푠 denote the weak and strong augmentation
300
+ operations, respectively. 푋(푤)
301
+
302
+ and 푋(푠)
303
+
304
+ denote the weakly
305
+ Xu.eal: Preprint submitted to Elsevier
306
+ Page 3 of 10
307
+
308
+ Weak Augmentations
309
+ Labeled Prediction
310
+ Supervised Loss
311
+ Labeled Data
312
+ Unlabeled Prediction
313
+ Pseudo Label
314
+ Pseudo-Negative Labe
315
+ Net A
316
+ .....
317
+ Unsupervised Loss
318
+ GT
319
+ Unlabeled Data
320
+ NetB
321
+ Pseudo Label
322
+ Pseudo-Negative Labe
323
+ Supervised Loss
324
+ Strong Augmentations
325
+ Labeled Predictionand strongly augmented data items. Consequently, we have
326
+ 푌 푐1 ∈ 푧(푓휃(푋(푤)
327
+
328
+ ), 푚),
329
+ (12)
330
+ 푌 푐2 ∈ 푧(푓휑(푋(푤)
331
+
332
+ ), 푚).
333
+ (13)
334
+ Therefore, the loss of learning between submodels is as
335
+ follows:
336
+ 퓁(1)
337
+ 푐푟표푠푠 = 퐿(푓휃(푋(푠)
338
+ 푗 ), 푌 푐2),
339
+ (14)
340
+ 퓁(2)
341
+ 푐푟표푠푠 = 퐿(푓휑(푋(푠)
342
+ 푗 ), 푌 푐1).
343
+ (15)
344
+ To further utilize the augmented data, we also developed
345
+ a self-learning approach. In this approach, the generated
346
+ pseudo-negative labels with weakly augmented data are also
347
+ used by the same submodel to feed strong augmented data.
348
+ The loss function can be written as follows:
349
+ 퓁(1)
350
+ 푠푒푙푓 = 퐿(푓휃(푋(푠)
351
+ 푗 ), 푌 푐1),
352
+ (16)
353
+ 퓁(2)
354
+ 푠푒푙푓 = 퐿(푓휑(푋(푠)
355
+ 푗 ), 푌 푐2).
356
+ (17)
357
+ The unsupervised loss of the dual model is a combina-
358
+ tion of the previous loss functions:
359
+ 퓁(1)
360
+ 푢푛푠푢푝 = 퓁(1)
361
+ 푐표푟푠푠 + 퓁(1)
362
+ 푠푒푙푓,
363
+ (18)
364
+ 퓁(2)
365
+ 푢푛푠푢푝 = 퓁(2)
366
+ 푐표푟푠푠 + 퓁(2)
367
+ 푠푒푙푓.
368
+ (19)
369
+ The final total loss of the dual model in the DNLL is a
370
+ combination of the supervised loss and the unsupervised
371
+ one, as follows:
372
+ 퓁(1) = 퓁(1)
373
+ 푠푢푝 + 휆퓁(1)
374
+ 푢푛푠푢푝,
375
+ (20)
376
+ 퓁(2) = 퓁(2)
377
+ 푠푢푝 + 휆퓁(2)
378
+ 푢푛푠푢푝,
379
+ (21)
380
+ where 휆 is a hyperparameter to balance the supervised
381
+ loss item and the unsupervised loss item. The complete
382
+ algorithm is shown in Algorithm 1.
383
+ From this pseudo code, we can see that the running
384
+ time is proportional to the size of the input data. If the
385
+ size of unlabeled data, 푀, is much larger than that of the
386
+ labeled data, 푁, which usually happens in semi-supervised
387
+ learning, the running time is approximately proportional to
388
+ the size of the unlabeled data. Thus, the time complexity is
389
+ 푂(푀).
390
+ 3.3.2. Error Perception Mechanism for Selecting
391
+ Pseudo-Negative Labels
392
+ In the above section, for an unlabeled data item, a rep-
393
+ resentative pseudo-negative label is randomly selected from
394
+ all the candidates with equal probability. To incorporate the
395
+ performance of each submodel in different categories, we
396
+ propose an Error Perception Mechanism (EPM).
397
+ In this approach, for a given data item, if a submodel is
398
+ prone to misclassify it into the other category, the pseudo-
399
+ negative label generated by the other submodel should
400
+ include that misclassified category. Therefore, we compute
401
+ the probability of misclassification for each category of each
402
+ Figure 3: The generating process of pseudo-negative labels.
403
+ For an unlabeled data item, a submodel makes a prediction
404
+ to generate a pseudo label (3 in this example) and then
405
+ randomly selects two pseudo-negative labels according to
406
+ 푅 of the other submodel.
407
+ submodel using labeled data. Formally, for a submodel, we
408
+ define a vector 푃푟푘 for category 푘 with its 푖-th element
409
+ defined as follows:
410
+ 푃푟푘[푖] =
411
+ {∑푁푘
412
+ 푗=1 푝푖푗,
413
+ 푖 ≠ 푘
414
+ 0
415
+ 푖 = 푘
416
+ (22)
417
+ where 푁푘 denotes the total number of data with category
418
+ 푘 being misclassified into category 푖, and 푝푖푗 represents the
419
+ confidence that the 푗-th misclassified sample belongs to the
420
+ 푖-th category. We may also use EMA to update 푃푟푘 for
421
+ stability.
422
+ It is then normalized with a softmax function.
423
+ 푅푘 = 푆표푓푡푚푎푥(푃푟푘).
424
+ (23)
425
+ We use superscripts to represent submodels, so 푅(1)
426
+ 푘 and 푅(2)
427
+
428
+ are misclassification probabilities for the first and the second
429
+ submodels. An example of the 푅푘-based pseudo-negative
430
+ label generation process is shown in Figure 3.
431
+ Therefore, when computing 퓁2
432
+ 푐푟표푠푠, we sample 푌 푐1 from
433
+ 푧(푓휃(푋(푤)
434
+
435
+ ), 푚) such that the probability that 푌 푐2
436
+ 푗 [푘] = 1
437
+ is proportional to 푅(2)
438
+ 푘 . A similar approach applies when
439
+ computing 퓁1
440
+ 푐푟표푠푠.
441
+ 3.4. Theoretical Analysis
442
+ First, we demonstrate that in the mutual learning frame-
443
+ work based on a dual model, passing pseudo-negative labels
444
+ between submodels is less likely to have error accumulation
445
+ than that of passing pseudo labels, especially at the early
446
+ stages of training.
447
+ Theorem 3.1. The error rate (ER) for transferring pseudo-
448
+ negative labels from one submodel to the other is expected
449
+ to be
450
+
451
+ 퐾−1 of the ER when transferring pseudo labels, where
452
+ 푚 is the number of selected pseudo-negative labels and 퐾 is
453
+ the number of categories for each data item.
454
+ Proof. Without loss of generality, we define that the pre-
455
+ diction accuracy of one submodel is 푞 for unlabeled data.
456
+ Xu.eal: Preprint submitted to Elsevier
457
+ Page 4 of 10
458
+
459
+ 0.26
460
+ 0.12
461
+ 0.10
462
+ 0.17
463
+ 0.07
464
+ 0.05
465
+ 0.03
466
+ 0.09
467
+ 0.11
468
+ 2
469
+ 3
470
+ 4
471
+ 5
472
+ 6
473
+ 7
474
+ 8
475
+ 0
476
+ 9
477
+ R for category 3 of Submodel B
478
+ 2
479
+ Pseudo label by SubmodeI A
480
+ Pseudo-negative labels for Submodel BAlgorithm 1 Pseudo code for the training process of DNLL.
481
+ Input:The labeled dataset 퐷푙={(푋푖, 푌푖
482
+ ) ; 푖 ∈ (1, ..., 푁)
483
+ }
484
+ and the unlabeled dataset 퐷푢={(푋푗
485
+ ) ; 푗 ∈ (1, ..., 푀)
486
+ }.
487
+ The two submodels are 푓휃 and 푓휑.
488
+ 1: for each epoch do
489
+ 2:
490
+ for each batch do
491
+ 3:
492
+ (휒푙, 푌푙) ∶ select a batch of data from 퐷푙
493
+ 4:
494
+ (휒푢) ∶ select a batch of data from 퐷푢
495
+ 5:
496
+ 휒(1)
497
+
498
+ = 퐴(1)
499
+ 푤 (휒푙)
500
+ 6:
501
+ 휒(2)
502
+
503
+ = 퐴(2)
504
+ 푤 (휒푙)
505
+ 7:
506
+ 휒(푤)
507
+
508
+ = 퐴푤(휒푢)
509
+ 8:
510
+ 휒(푠)
511
+
512
+ = 퐴푠(휒푢)
513
+ 9:
514
+ 퓁(1)
515
+ 푠푢푝 = 퐻(푓휃(휒(1)
516
+ 푙 ), 푌푙)
517
+ 10:
518
+ 퓁(2)
519
+ 푠푢푝 = 퐻(푓휑(휒(2)
520
+ 푙 ), 푌푙)
521
+ 11:
522
+ 푌 푐1 ∈ 푧(푓휃(휒(푤)
523
+
524
+ ), 푚)
525
+ 12:
526
+ 푌 푐2 ∈ 푧(푓휑(휒(푤)
527
+
528
+ ), 푚)
529
+ 13:
530
+ 퓁(1)
531
+ 푢푛푠푢푝 = 퐿(푓휃(휒(푠)
532
+ 푢 ), 푌 푐2)
533
+ 14:
534
+ 퓁(2)
535
+ 푢푛푠푢푝 = 퐿(푓휑(휒(푠)
536
+ 푢 ), 푌 푐1)
537
+ 15:
538
+ 푓휃 = arg min푓휃(퓁(1)
539
+ 푠푢푝 + 휆퓁(1)
540
+ 푢푛푠푢푝)
541
+ 16:
542
+ 푓휑 = arg min푓휑(퓁(2)
543
+ 푠푢푝 + 휆퓁(2)
544
+ 푢푛푠푢푝)
545
+ 17:
546
+ end for
547
+ 18: end for
548
+ return 푓휃, 푓휑
549
+ Therefore, when transferring pseudo labels, the probability
550
+ that that submodel provides correct learning targets to the
551
+ other is 푞.
552
+ When transferring 푚 pseudo-negative labels, if the sub-
553
+ model predicts correctly, it transfers correct negative labels.
554
+ If the submodel predicts mistakenly, the chance of providing
555
+ correct negative labels is
556
+ 퐶푚
557
+ 퐾−2
558
+ 퐶푚
559
+ 퐾−1
560
+ ,
561
+ (24)
562
+ where 퐶푚
563
+ 퐾−1 denotes the total number of combinations of
564
+ selecting 푚 pseudo-negative labels from all the 퐾 − 1
565
+ pseudo-negative labels, and 퐶푚
566
+ 퐾−2 denotes the number of
567
+ combinations of selecting 푚 pseudo-negative labels from
568
+ 퐾 − 2 truly negative labels. 퐾 − 2 is obtained by taking
569
+ all the 퐾 categories except two categories corresponding to
570
+ one pseudo label and one ground-truth label. Therefore, the
571
+ probability of providing the correct learning target is
572
+ 푞 + (1 − 푞)
573
+ 퐶푚
574
+ 퐾−2
575
+ 퐶푚
576
+ 퐾−1
577
+ = 1 − (1 − 푞)푚
578
+ 퐾 − 1 .
579
+ (25)
580
+ Therefore, the error rate of transferring pseudo-negative
581
+ labels is
582
+ 1 − (1 − (1 − 푞)푚
583
+ 퐾 − 1 ) = (1 − 푞)
584
+
585
+ 퐾 − 1.
586
+ (26)
587
+ As the error rate of transferring pseudo labels is 1 − 푞, the
588
+ error rate of transferring pseudo-negative labels is
589
+
590
+ 퐾−1 of
591
+ that of transferring pseudo labels. Therefore, transferring
592
+ pseudo labels can provide a better learning target, and a
593
+ smaller 푚 and a larger 퐾 can further reduce the error
594
+ accumulation.
595
+ For two submodels with the same structure, when they
596
+ are converged to be the same, they can no longer be used for
597
+ semi-supervised learning. We need to avoid such scenarios,
598
+ especially in the early training stages. In the unsupervised
599
+ learning part, we demonstrate that when transferring knowl-
600
+ edge with pseudo-negative labels, it is unlikely to have two
601
+ submodels degenerate into the same.
602
+ Theorem 3.2. When transferring representative pseudo-
603
+ negative labels randomly, the probability that two submod-
604
+ els are optimized for different objectives is 1 −
605
+
606
+ 2휋푚
607
+ 푒퐾 ( 푚
608
+ 퐾 )푚
609
+ approximately, where 푚 is the number of representative
610
+ pseudo-negative labels and 퐾 is the number of categories.
611
+ Proof. Without loss of generality, we assume that two sub-
612
+ models produce the same prediction with probability 푞 and
613
+ when they produce the same pseudo labels, the probability
614
+ that the two submodels can produce the same representative
615
+ pseudo-negative labels is
616
+ 1
617
+ 퐶푚
618
+ 퐾−1
619
+ .
620
+ (27)
621
+ Similarly, the probability that two submodels produce dif-
622
+ ferent predictions is 1 − 푞, and when they produce different
623
+ predictions, the probability that they produce the same
624
+ pseudo labels is
625
+ 1
626
+ 퐶푚
627
+ 퐾−2
628
+ .
629
+ (28)
630
+ Thus, the probability that the two submodels transfer-
631
+ ring the same representative pseudo-negative label is
632
+
633
+ 퐶푚
634
+ 퐾−1
635
+ + 1 − 푞
636
+ 퐶푚
637
+ 퐾−2
638
+ (29)
639
+ =푚!(퐾 − 2 − 푚)!(퐾 − 1 − 푞푚)
640
+ (퐾 − 1)!
641
+ (30)
642
+ ≈(퐾 − 1 − 푞푚)×
643
+
644
+ 2휋푚( 푚
645
+ 푒 )푚√
646
+ 2휋(퐾 − 2 − 푚)( 퐾−2−푚
647
+
648
+ )퐾−2−푚
649
+
650
+ 2휋(퐾 − 1)( 퐾−1
651
+ 푒 )퐾−1
652
+ (31)
653
+
654
+
655
+ 2휋푚
656
+ 푒퐾
657
+ ( 푚
658
+ 퐾 )푚
659
+ (32)
660
+ where the approximation in Eq. (31) is obtained by the Stir-
661
+ ling’s approximation, and that in Eq. (32) is by considering
662
+ 퐾 >> 푚.
663
+ 4. Experiments
664
+ In this section, we first introduce benchmarks used
665
+ in experiments and briefly describe the details of the ex-
666
+ periments. Then we compare DNLL with other methods.
667
+ Xu.eal: Preprint submitted to Elsevier
668
+ Page 5 of 10
669
+
670
+ Finally, we evaluate the efficiency of DNLL from different
671
+ perspectives.
672
+ 4.1. Benchmark datasets
673
+ In the classification task, we use the public bench-
674
+ mark datasets CIFAR-10 [19], SVHN [28], and MNIST as
675
+ many others. The CIFAR-10 dataset includes 50000 training
676
+ images and 10000 test images, and the total number of
677
+ categories is ten. We randomly select 500 images for each
678
+ category as the validation set. The total number of categories
679
+ of SVHN Dataset is ten, in which the training set contains
680
+ 73257 images and the test set contains 26032 images. We
681
+ also randomly select 500 images for each category as the
682
+ validation set. The MNIST dataset includes 60000 training
683
+ images and 10000 test images, and the total number of
684
+ categories also is ten. We randomly select 50 images for
685
+ each category as the validation set.
686
+ 4.2. Implementation Details
687
+ Our approach is implemented on Pytorch. For the train-
688
+ ing stage, the following configurations are used. The learn-
689
+ ing rate is 0.03, and the weight decay is 5 × 10−4. The
690
+ momentum is 0.9. We use the cosine annealing technique
691
+ with batch size 256. We report performances on the test
692
+ set averaged from three runnings. For dual models, we use
693
+ WideResNet-28-2 (WRN-28-2)[39] and 13-layer CNN as
694
+ other approaches [2, 15].
695
+ We use data augmentation techniques in our experi-
696
+ ments. The data augmentation operation for each data set
697
+ is performed exactly following its corresponding literature
698
+ for fairness. Specifically, for the MNIST dataset, we do
699
+ not change the input data [25]. For the CIFAR-10 dataset,
700
+ when using the 13-layer CNN as the model [15], we make
701
+ the original image as a weakly augmented version and the
702
+ noise-processed image as a strongly augmented version.
703
+ When using WideResNet-28-2 as the model [9], the weak
704
+ augmentation operations we used include random cropping
705
+ and random flipping, and the strong augmentation operation
706
+ is random color jittering. For the SVHN dataset [20], we
707
+ only use the horizontal translation as the strong augmenta-
708
+ tion operation and the original image as the weakly aug-
709
+ mented version.
710
+ 4.3. Comparison on Benchmarks
711
+ In experiments with the CIFAR-10 dataset, we randomly
712
+ select 1K, 2K, and 4K data items, respectively, as labeled
713
+ data and the rest as unlabeled data.
714
+ We compare our method with others: Π model, Tempo-
715
+ ral Ensembling [20], VAT[27] and Mean Teacher [33] based
716
+ on consistency regularization; Π+STNG [25], LP+SSDL
717
+ and LP-SSDL-MT [13] based on graph methods; Filtering
718
+ CCL, Temperature CCL [23], TSSDL, TSSDL-MT [31] and
719
+ TNAR-VAE [36] based on mean-teacher frameworks; Cur-
720
+ riculum Labeling (CL) [3] based self-training; MixMatch
721
+ [2] based on strong hybrid method. We also compare our ap-
722
+ proach with others based on dual models: Deep Co-Training
723
+ (DCT) [29], Dual student(DS) [15], Mutual Learning of
724
+ Complementary Networks(CCN) [34] and Dynamic Mutual
725
+ Table 1
726
+ Accuracy on the Test Set of CIFAR-10 with the 13-layer CNN
727
+ as the backbone.
728
+ Method
729
+ 1K
730
+ 2K
731
+ 4K
732
+ Π model†
733
+ 68.35
734
+ 82.43
735
+ 87.64
736
+ Temporal ensembling†
737
+ 76.69
738
+ 84.36
739
+ 87.84
740
+ Mean Teacher
741
+ 81.78
742
+ 85.67
743
+ 88.59
744
+ Π+SNTG†
745
+ 78.77
746
+ 85.35
747
+ 88.64
748
+ LP-SSDL†
749
+ 77.98
750
+ 84.34
751
+ 87.31
752
+ LP-SSDL-MT†
753
+ 83.07
754
+ 86.78
755
+ 89.39
756
+ Filtering CCL†
757
+ 81.78
758
+ 85.67
759
+ 88.59
760
+ Temperature CCL†
761
+ 83.01
762
+ 87.43
763
+ 89.37
764
+ TSSDL†
765
+ 78.87
766
+ 85.35
767
+ 89.10
768
+ TSSDL-MT†
769
+ 81.59
770
+ 86.46
771
+ 90.70
772
+ TNAR-VAE†
773
+ -
774
+ -
775
+ 91.15
776
+ DCT
777
+ -
778
+ -
779
+ 90.97
780
+ Dual Student
781
+ 85.83
782
+ 89.28
783
+ 91.11
784
+ CCN
785
+ 87.95
786
+ 89.63
787
+ 91.2
788
+ DNLL (Ours)
789
+ 87.87
790
+ 90.65
791
+ 92.06
792
+ Table 2
793
+ Accuracy on the Test Set of CIFAR-10 with the WRN-28-2 as
794
+ the backbone.
795
+ Method
796
+ 1K
797
+ 4K
798
+ VAT†
799
+ 81.36
800
+ 88.95
801
+ Mean Teacher†
802
+ 82.68
803
+ 89.64
804
+ CL
805
+ 90.61
806
+ 94.02
807
+ MixMatch
808
+ 92.25
809
+ 93.76
810
+ DMT
811
+ 91.51
812
+ 94.21
813
+ DNLL (Ours)
814
+ 92.03
815
+ 94.29
816
+ Training (DMT) [9]. The symbol † indicates that the results
817
+ are reported in [4] and [12]. The symbol ’-’ indicates that
818
+ the corresponding results have not been reported in this
819
+ literature.
820
+ From Table 1 and Table 2, we can find that our method
821
+ performs relatively well with 1k labels and outperforms all
822
+ the other methods in other cases. From Table 1, the accuracy
823
+ of our approach ranges between 87.87% and 92.06%, which
824
+ outperforms most of the other methods using the dual
825
+ model, i.e., DCT, Dual Student, and CCN. From Table 2,
826
+ the MixMatch is 0.53% lower than our approach at the
827
+ accuracy with 4K labels. The DMT is 0.41% and 0.08%
828
+ lower than our approach at the accuracy with 1K and 4K
829
+ labels, respectively. Figure 4 demonstrates the performance
830
+ of DNLL during the training process on the test set. As the
831
+ epoch number increases, the training accuracy increases.
832
+ In the SVHN dataset, 1K and 4K items are also ran-
833
+ domly selected as labeled data. We compare our method
834
+ with others as follows: Π model [20], Pseudo-Labeling [21],
835
+ VAT [27] and Mean Teacher [33]. The symbol † indicates
836
+ that the results are reported in [12]. All the approaches
837
+ use WideResNet-28-2 as the backbone model. As shown in
838
+ Table 3, our method outperforms all the other approaches.
839
+ Xu.eal: Preprint submitted to Elsevier
840
+ Page 6 of 10
841
+
842
+ Table 3
843
+ Accuracy on the Test Set of SVHN with the WRN-28-2 as the
844
+ backbone.
845
+ Method
846
+ 1K
847
+ 4K
848
+ Pseudo-Labeling
849
+ 90.06
850
+ -
851
+ Π model
852
+ 92.46
853
+ -
854
+ VAT†
855
+ 94.02
856
+ 95.80
857
+ Mean Teacher†
858
+ 96.25
859
+ 96.61
860
+ DNLL (Ours)
861
+ 96.41
862
+ 96.84
863
+ Table 4
864
+ Accuracy on the Test Set of MNIST with the 13-layer CNN
865
+ as the backbone.
866
+ Method
867
+ 20
868
+ 50
869
+ 100
870
+ ImprovedGAN†
871
+ 83.23
872
+ 97.79
873
+ 99.07
874
+ Triple GAN†
875
+ 95.19
876
+ 98.44
877
+ 99.09
878
+ Π model†
879
+ 93.68
880
+ 98.98
881
+ 99.11
882
+ Π + SNTG†
883
+ 98.64
884
+ 99.06
885
+ 93.34
886
+ DNLL (Ours)
887
+ 99.19
888
+ 99.32
889
+ 99.54
890
+ Figure 4: Performance of DNLL on the test set during
891
+ training with the CIFAR-10 dataset of 1000 and 4000 labeled
892
+ data.
893
+ For the MNIST dataset, 20, 50, and 100 data items are
894
+ randomly selected as labeled data. We compare the DNLL
895
+ with other semi-supervised methods, i.e., ImprovedGAN
896
+ [30], Triple GAN [22], Π model [20] and Π + STNG [25].
897
+ The symbol † indicates that the results are reported in [25].
898
+ All the above methods use the 13-layer CNN as the model.
899
+ As shown in Table 4, the DNLL outperforms the other
900
+ approaches.
901
+ 4.4. Sensitivity Analysis
902
+ We conduct a sensitivity analysis on the CIFAR-10
903
+ dataset with 4K labeled data items to analyze the relation-
904
+ ship between representative pseudo-negative label number
905
+ 푚 and the accuracy of the model under different selection
906
+ mechanisms that were introduced in the methodology sec-
907
+ tion: Equal Probability (EP) vs. Error Perception Mech-
908
+ anism (EPM). As the number of representative pseudo-
909
+ negative labels tends to be less than half of the total number
910
+ Table 5
911
+ Accuracy under different choices of 푚 and different selection
912
+ mechanisms for representative pseudo-negative labels.
913
+ Selection Method
914
+ 푚 = 1
915
+ 푚 = 2
916
+ 푚 = 3
917
+ 푚 = 4
918
+ EP
919
+ 92.9
920
+ 93.76
921
+ 94.01
922
+ 93.78
923
+ EPM
924
+ 93.12
925
+ 93.84
926
+ 94.29
927
+ 93.77
928
+ Table 6
929
+ Comparison of the performance of mutual learning (ML) and
930
+ self-learning (SL) with DNLL.
931
+ Method
932
+ 4k labels
933
+ SL w/o EPM
934
+ 92.78
935
+ SL
936
+ 93.03
937
+ ML w/o EPM
938
+ 94.01
939
+ ML
940
+ 94.29
941
+ of categories, here we compare with 푚 ≤ 4. From Table. 5,
942
+ we can find that generally, the error perception mechanism
943
+ performs better than selecting with equal probability, and
944
+ moderately increasing 푚 is helpful to increase the perfor-
945
+ mance. When 푚 is too large, for example, close to half of
946
+ the total number of categories, pseudo labels are likely to be
947
+ selected, and the performance can be undermined.
948
+ 4.5. Comparison with variants of DNLL
949
+ In this part, we demonstrate that using mutual learning
950
+ framework in DNLL is more efficient compared to a self-
951
+ learning framework. We compare the performance of these
952
+ two learning frameworks. We can see from Table. 6 that the
953
+ mutual learning framework under the dual model is better.
954
+ This is mainly because erroneous information can be filtered
955
+ out by each other with different capabilities, avoiding the
956
+ accumulation of errors.
957
+ 4.6. Visualization of embeddings
958
+ We conduct experiments on MNIST with 20 labels
959
+ without augmentation [25]. We visualize the embeddings of
960
+ DNLL and a fully supervised learning method, respectively,
961
+ on testing data under the same settings. We use t-SNE [26]
962
+ to project the representations of the last hidden layer into
963
+ two dimensions. Figure 5 shows the results. Each point
964
+ corresponds to an item in the testing set, and different
965
+ ground-truth classes are encoded with different colors. It
966
+ demonstrates that the representations obtained from DNLL
967
+ can better identify each class in the embedding space.
968
+ 4.7. Generalizability of DNLL
969
+ To verify the generalizability of DNLL, we combine the
970
+ ideology of DNLL method with the Dual Student method
971
+ and the Mean Teacher method. For Dual Student, we use
972
+ DNLL on the unstable samples discarded by the Dual
973
+ Student. As can be observed from the left side of Figure 6,
974
+ our approach can take advantage of the discarded unlabeled
975
+ data, which in turn improves the overall performance. In
976
+ addition, we combine DNLL with Mean Teacher to use all
977
+ Xu.eal: Preprint submitted to Elsevier
978
+ Page 7 of 10
979
+
980
+ Training process of CIFAl-10 with 1k/4k labels
981
+ 90
982
+ 80
983
+ Accurary(%)
984
+ 70
985
+ 60
986
+ ModelA with 1klabels
987
+ Model B with 1k labels
988
+ Model A with 4k labels
989
+ Model B with 4k labels
990
+ 50
991
+ 0
992
+ 100
993
+ 200
994
+ 300
995
+ 400
996
+ 500
997
+ 600
998
+ 700
999
+ EpochFigure 5: The t-SNE plot of the last hidden layer on the test
1000
+ data of MNIST with 20 labels: the baseline model (left) and
1001
+ our model (right). Our model can learn more discriminative
1002
+ representation.
1003
+ the unlabeled data together. From the right side of Figure 6,
1004
+ we can see that DNLL contributes significantly to the overall
1005
+ performance improvement. These experiments demonstrate
1006
+ that DNLL can be used in combination with other semi-
1007
+ supervised methods to jointly improve model performance.
1008
+ Figure 6: The left side of the above figure shows the iteration
1009
+ process of combining DNLL and Dual Student. The right side
1010
+ shows the training process of combining DNLL and Mean
1011
+ Teacher.
1012
+ 4.8. Domain Adaptation using DNLL
1013
+ Figure 7: Test curves of domain adaptation from USPS to
1014
+ MNIST versus the number of epochs. The DNLL avoids
1015
+ overfitting and improves the result remarkably.
1016
+ Domain adaptation is the closely related to semi-supervised
1017
+ learning. It aims at knowledge transfer from the source
1018
+ Table 7
1019
+ The execution time (seconds) of DNLL and other competitive
1020
+ methods such as Mean Teacher (MT) and Dual Student
1021
+ (DS).
1022
+ MT
1023
+ DS
1024
+ DNLL
1025
+ Train iteration time
1026
+ 0.072
1027
+ 0.145
1028
+ 0.143
1029
+ Inference iteration time
1030
+ 0.0183
1031
+ 0.0189
1032
+ 0.0184
1033
+ domain to the target domain. Zhan et al. [15] propose Dual
1034
+ Student method to overcome the shortcomings of Mean
1035
+ Teacher and demonstrate the effectiveness of a dual model
1036
+ in domain adaptation tasks. In this section, we use DNLL for
1037
+ adapting digital pattern recognition from USPS to MNIST.
1038
+ We use USPS as the source domain and MNIST as the target
1039
+ domain and show that the DNLL has advantages over the
1040
+ Dual Student and Mean Teacher.
1041
+ USPS and MNIST are both grayscale hand-written digi-
1042
+ tal datasets, the difference is that the image size is 16x16 for
1043
+ USPS and 28x28 for MNIST. The training set of USPS con-
1044
+ tains 7291 images, and the training set of MNIST contains
1045
+ 60,000 images. And the test set for the experiments uses
1046
+ the MNIST test set containing 10,000 images. We compare
1047
+ DNLL with Dual Student, Mean Teacher, fully supervised
1048
+ learning for the source domain and fully supervised learning
1049
+ for the target domain with 7k balanced labels. Following
1050
+ experiment settings in Dual Student [15], we use cubic
1051
+ spline interpolation to match the resolution between the
1052
+ two dataset images and employ a 3-layer CNN [15] as the
1053
+ backbone, with random noise for data augmentation.
1054
+ Figure 7 shows the test accuracy versus the number
1055
+ of epochs. We can see that as the number of epochs in-
1056
+ creases, overfitting occurs in both Mean Teacher and the
1057
+ fully supervised learning for the source domain. From this
1058
+ figure, we can see that DNLL not only avoids the overfitting
1059
+ phenomenon but also is superior to Dual Student, and its
1060
+ performance is very close to that of the target domain
1061
+ supervision.
1062
+ 4.9. Execution time of DNLL
1063
+ In this section, we conduct experiments to investigate
1064
+ the execution time of DNLL. We report the average time
1065
+ for each iteration during training and testing. We evaluate
1066
+ the execution time with the CIFAR-10 dataset using 4000
1067
+ randomly selected training samples as labeled data. The
1068
+ batch size is set to 100. The number of both labeled and
1069
+ unlabeled data in a batch is 50. We compare DNLL with
1070
+ Mean Teacher and Dual Student in the same settings in
1071
+ terms of execution time. The experiment is performed on a
1072
+ GTX 3060 GPU with Pytorch-1.10.2 software toolkit. The
1073
+ system memory is 64 GB, and the CPU is Intel Core i5-
1074
+ 11400F. The experimental results are shown in Table 7 and
1075
+ Figure 8.
1076
+ From Table 7 and Figure 8, we can see that Mean
1077
+ Teacher takes the shortest training time but produces the
1078
+ lowest testing accuracy on the testing set. As both DNLL
1079
+ Xu.eal: Preprint submitted to Elsevier
1080
+ Page 8 of 10
1081
+
1082
+ 100
1083
+ 90
1084
+ 80
1085
+ Accurary(%)
1086
+ 70
1087
+ 60
1088
+ 50
1089
+ MNIST Supervised
1090
+ 40
1091
+ DNLL
1092
+ DS
1093
+ MT
1094
+ 30
1095
+ USPS Supervised
1096
+ 20
1097
+ 40
1098
+ 60
1099
+ 80
1100
+ 100
1101
+ 0
1102
+ Epoch80
1103
+ DS
1104
+ DS+DNLL
1105
+ 75
1106
+ 70
1107
+ Accurary(%)
1108
+ 65
1109
+ 60
1110
+ 55
1111
+ 0
1112
+ 20
1113
+ 40
1114
+ 60
1115
+ 80
1116
+ 100
1117
+ EpochMT
1118
+ MT+DNLL
1119
+ 75
1120
+ 70
1121
+ Accurary(%)
1122
+ 65
1123
+ 60
1124
+ 55
1125
+ 0
1126
+ 20
1127
+ 40
1128
+ 60
1129
+ 80
1130
+ 100
1131
+ Epochand Dual Student use a dual model structure, the train
1132
+ time for each iteration is approximately twice that of Mean
1133
+ Teacher, but both have higher accuracy. The training time
1134
+ of DNLL and Dual Student are similar, but the performance
1135
+ of DNLL is higher than that of Dual Student. The average
1136
+ testing time of each iteration is shown in Table 7. Due to
1137
+ the similarity in model architectures, the testing time of all
1138
+ methods is similar.
1139
+ Figure 8: The training time (seconds) for each iteration and
1140
+ the testing accuracies of DNLL, Mean Teacher and Dual
1141
+ Student.
1142
+ 5. Discussions
1143
+ Our approach has several advantages over existing semi-
1144
+ supervised algorithms. Firstly, in semi-supervised learning,
1145
+ our approach outperforms state-of-the-art approaches on
1146
+ benchmarks. Secondly, the unsupervised learning part of
1147
+ our methods can easily be used as add-ons for other semi-
1148
+ supervised learning methods to improve their performance.
1149
+ Finally, our approach fits domain adaptation tasks as well.
1150
+ We discuss the differences between DNLL and other meth-
1151
+ ods that use a dual model.
1152
+ Mean Teacher (MT): MT [33] has been proposed to
1153
+ improve the temporal-ensembling model [20]. The frame-
1154
+ work of MT consists of a student model and a teacher
1155
+ model. The student model is trained by perturbing the input
1156
+ data. The output of the student model is trained to be
1157
+ consistent with the output of the teacher model. Different
1158
+ from DNLL, in MT, the teacher model is only updated
1159
+ by EMA. Thus, the predictions between the teacher model
1160
+ and the student model converge to be the same relatively
1161
+ fast during training. In addition, submodels in DNLL can
1162
+ generate pseudo-negative labels to help each other filter
1163
+ out erroneous information, while the student model and the
1164
+ teacher model in MT cannot.
1165
+ Dual Student (DS): DS [15] has been proposed to im-
1166
+ prove MT. DS trains two submodels online simultaneously
1167
+ with different initialization parameters in order to avoid
1168
+ coupling between the two models in the early training
1169
+ stages. To transfer reliable knowledge, submodels in DS fil-
1170
+ ter unlabeled data with low prediction confidences or inter-
1171
+ submodel consistency. This can lead to an underutilization
1172
+ of a significant amount of unlabeled data. On the other
1173
+ hand, in DNLL, most of the unlabeled data can be used
1174
+ in the training process, and the transferring of erroneous
1175
+ information is also reduced by using pseudo-negative labels.
1176
+ Mutual Learning of Complementary Networks: This
1177
+ method proposes a complementary correction network
1178
+ (CCN) [34] based on Deep Mutual Learning (DML) [40].
1179
+ This method simultaneously trains three submodels, in-
1180
+ cluding two submodels with the same structure and one
1181
+ CCN. The CCN takes the output from one submodel and
1182
+ the intermediate features extracted by another submodel as
1183
+ input and is trained with labeled data only. This network
1184
+ is then used to correct predictions by submodels. The
1185
+ prediction is then used as pseudo-labels for one of the
1186
+ submodels. The performance of the CCN can significantly
1187
+ determine the quality of the pseudo label, which in turn
1188
+ affects the training of the underlying submodel. On the other
1189
+ hand, DNLL is trained in a much simpler and more effective
1190
+ way.
1191
+ Dynamic Mutual Training (DMT): DMT [9] uses a
1192
+ weighted loss to control the selection of unlabeled data
1193
+ items so that data items with inconsistent predictions by
1194
+ submodels are filtered in the loss calculation. In addition,
1195
+ this method uses a course learning strategy in which unla-
1196
+ beled data are gradually used in the training process rather
1197
+ than used as a whole from the beginning. Compared with
1198
+ DNLL, this method also suffers from the underutilization
1199
+ of unlabeled data, and it is also time-consuming to train
1200
+ repetitively during course learning.
1201
+ 6. Conclusion
1202
+ The paper analyzes submodel degeneration and under-
1203
+ utilization problems suffered from traditional mutual learn-
1204
+ ing approaches. To address these problems, we propose a
1205
+ novel mutual learning method for semi-supervised learning.
1206
+ Submodels in this approach provide each other with pseudo-
1207
+ negative labels instead of traditional pseudo labels. It can
1208
+ reduce error accumulation and promote unlabeled data uti-
1209
+ lization and is justified theoretically and experimentally. We
1210
+ also propose the error perception mechanism to help select
1211
+ efficient pseudo-negative labels. This framework can also be
1212
+ useful in different tasks.
1213
+ Acknowledgements
1214
+ This work was supported by the Natural Science Foun-
1215
+ dation of Zhejiang Province (NO. LGG20F020011), Ningbo
1216
+ Science and Technology Innovation Project (No. 2022Z075),
1217
+ and Open Fund by Ningbo Institute of Materials Technology
1218
+ & Engineering, the Chinese Academy of Sciences.
1219
+ References
1220
+ [1] Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang,
1221
+ H., Raffel, C., 2019a. Remixmatch: Semi-supervised learning with
1222
+ Xu.eal: Preprint submitted to Elsevier
1223
+ Page 9 of 10
1224
+
1225
+ 93
1226
+ Mean Teacher
1227
+ Dual Student
1228
+ 92
1229
+ DNLL
1230
+ DNLL
1231
+ 91
1232
+ Dual Student
1233
+ 90
1234
+ Accurary(%)
1235
+ 89
1236
+ Mean Teacher
1237
+ 88
1238
+ 87
1239
+ 86
1240
+ 85
1241
+ 0.06
1242
+ 0.08
1243
+ 0.10
1244
+ 0.12
1245
+ 0.14
1246
+ 0.16
1247
+ train iteration time(seconds)distribution alignment and augmentation anchoring. arXiv preprint
1248
+ arXiv:1911.09785 .
1249
+ [2] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A.,
1250
+ Raffel, C.A., 2019b.
1251
+ Mixmatch: A holistic approach to semi-
1252
+ supervised learning.
1253
+ Advances in Neural Information Processing
1254
+ Systems 32.
1255
+ [3] Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V., 2020. Curriculum
1256
+ labeling: Revisiting pseudo-labeling for semi-supervised learning.
1257
+ arXiv preprint arXiv:2001.06001 .
1258
+ [4] Chen, J., Yang, M., Gao, G., 2020.
1259
+ Semi-supervised dual-branch
1260
+ network for image classification. Knowledge-Based Systems 197,
1261
+ 105837.
1262
+ [5] Chen, K., Yao, L., Zhang, D., Wang, X., Chang, X., Nie, F., 2019. A
1263
+ semisupervised recurrent convolutional attention model for human
1264
+ activity recognition.
1265
+ IEEE Transactions on Neural Networks and
1266
+ Learning Systems 31, 1747–1756.
1267
+ [6] Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V., 2020. Randaugment:
1268
+ Practical automated data augmentation with a reduced search space,
1269
+ in: Proceedings of the IEEE/CVF Conference on Computer Vision
1270
+ and Pattern Recognition Workshops, pp. 702–703.
1271
+ [7] DeVries, T., Taylor, G.W., 2017. Improved regularization of convolu-
1272
+ tional neural networks with cutout. arXiv preprint arXiv:1708.04552
1273
+ .
1274
+ [8] Feng, Z., Zhou, Q., Cheng, G., Tan, X., Shi, J., Ma, L., 2020.
1275
+ Semi-supervised semantic segmentation via dynamic self-training
1276
+ and classbalanced curriculum. arXiv preprint arXiv:2004.08514 1,
1277
+ 5.
1278
+ [9] Feng, Z., Zhou, Q., Gu, Q., Tan, X., Cheng, G., Lu, X., Shi, J., Ma, L.,
1279
+ 2022. Dmt: Dynamic mutual training for semi-supervised learning.
1280
+ Pattern Recognition , 108777.
1281
+ [10] Gao, W., Wu, M., Lam, S.K., Xia, Q., Zou, J., 2022. Decoupled self-
1282
+ supervised label augmentation for fully-supervised image classifica-
1283
+ tion. Knowledge-Based Systems 235, 107605.
1284
+ [11] Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I.,
1285
+ Sugiyama, M., 2018. Co-teaching: Robust training of deep neural
1286
+ networks with extremely noisy labels. Advances in Neural Informa-
1287
+ tion Processing Systems 31.
1288
+ [12] Hu, Z., Yang, Z., Hu, X., Nevatia, R., 2021. Simple: Similar pseudo
1289
+ label exploitation for semi-supervised classification, in: Proceedings
1290
+ of the IEEE/CVF Conference on Computer Vision and Pattern
1291
+ Recognition, pp. 15099–15108.
1292
+ [13] Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label propagation
1293
+ for deep semi-supervised learning, in: Proceedings of the IEEE/CVF
1294
+ Conference on Computer Vision and Pattern Recognition, pp. 5070–
1295
+ 5079.
1296
+ [14] Ishida, T., Niu, G., Hu, W., Sugiyama, M., 2017.
1297
+ Learning from
1298
+ complementary labels. Advances in Neural Information Processing
1299
+ Systems 30.
1300
+ [15] Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W., 2019. Dual student:
1301
+ Breaking the limits of the teacher in semi-supervised learning, in:
1302
+ Proceedings of the IEEE/CVF International Conference on Computer
1303
+ Vision, pp. 6728–6736.
1304
+ [16] Khaki, S., Pham, H., Han, Y., Kuhl, A., Kent, W., Wang, L.,
1305
+ 2021. Deepcorn: A semi-supervised deep learning method for high-
1306
+ throughput image-based corn kernel counting and yield estimation.
1307
+ Knowledge-Based Systems 218, 106874.
1308
+ [17] Kim, Y., Yim, J., Yun, J., Kim, J., 2019.
1309
+ Nlnl: Negative learning
1310
+ for noisy labels, in: Proceedings of the IEEE/CVF International
1311
+ Conference on Computer Vision, pp. 101–110.
1312
+ [18] Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M., 2014. Semi-
1313
+ supervised learning with deep generative models, in: Advances in
1314
+ Neural Information Processing Systems, pp. 3581–3589.
1315
+ [19] Krizhevsky, A., Hinton, G., et al., 2009. Learning multiple layers of
1316
+ features from tiny images .
1317
+ [20] Laine, S., Aila, T., 2016. Temporal ensembling for semi-supervised
1318
+ learning. arXiv preprint arXiv:1610.02242 .
1319
+ [21] Lee, D.H., et al., 2013. Pseudo-label: The simple and efficient semi-
1320
+ supervised learning method for deep neural networks, in: Workshop
1321
+ on Challenges in Representation Learning, ICML, p. 896.
1322
+ [22] Li, C., Xu, T., Zhu, J., Zhang, B., 2017. Triple generative adversarial
1323
+ nets. Advances in Neural Information Processing Systems 30.
1324
+ [23] Li, Y., Liu, L., Tan, R.T., 2019. Certainty-driven consistency loss for
1325
+ semi-supervised learning .
1326
+ [24] Luo, M., Chang, X., Nie, L., Yang, Y., Hauptmann, A.G., Zheng, Q.,
1327
+ 2017. An adaptive semisupervised feature analysis for video semantic
1328
+ recognition. IEEE Transactions on Cybernetics 48, 648–660.
1329
+ [25] Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B., 2018. Smooth neighbors
1330
+ on teacher graphs for semi-supervised learning, in: Proceedings of
1331
+ the IEEE Conference on Computer Vision and Pattern Recognition,
1332
+ pp. 8896–8905.
1333
+ [26] Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-sne.
1334
+ Journal of Machine Learning Research 9.
1335
+ [27] Miyato, T., Maeda, S.i., Koyama, M., Ishii, S., 2018.
1336
+ Virtual
1337
+ adversarial training: a regularization method for supervised and semi-
1338
+ supervised learning.
1339
+ IEEE Transactions on Pattern Analysis and
1340
+ Machine Intelligence 41, 1979–1993.
1341
+ [28] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.,
1342
+ 2011. Reading digits in natural images with unsupervised feature
1343
+ learning .
1344
+ [29] Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A., 2018.
1345
+ Deep
1346
+ co-training for semi-supervised image recognition, in: Proceedings of
1347
+ the European Conference on Computer Vision (ECCV), pp. 135–152.
1348
+ [30] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A.,
1349
+ Chen, X., 2016. Improved techniques for training gans. Advances in
1350
+ Neural Information Processing Systems 29.
1351
+ [31] Shi, W., Gong, Y., Ding, C., Tao, Z.M., Zheng, N., 2018. Transductive
1352
+ semi-supervised deep learning using min-max features, in: Proceed-
1353
+ ings of the European Conference on Computer Vision (ECCV), pp.
1354
+ 299–315.
1355
+ [32] Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D.,
1356
+ Kurakin, A., Zhang, H., Raffel, C., 2020.
1357
+ Fixmatch: Simplifying
1358
+ semi-supervised learning with consistency and confidence.
1359
+ arXiv
1360
+ preprint arXiv:2001.07685 .
1361
+ [33] Tarvainen, A., Valpola, H., 2017. Mean teachers are better role mod-
1362
+ els: Weight-averaged consistency targets improve semi-supervised
1363
+ deep learning results. Advances in Neural Information Processing
1364
+ Systems 30.
1365
+ [34] Wu, S., Li, J., Liu, C., Yu, Z., Wong, H.S., 2019. Mutual learning
1366
+ of complementary networks via residual correction for improving
1367
+ semi-supervised classification, in: Proceedings of the IEEE/CVF
1368
+ Conference on Computer Vision and Pattern Recognition, pp. 6500–
1369
+ 6509.
1370
+ [35] Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q., 2020. Unsupervised
1371
+ data augmentation for consistency training.
1372
+ Advances in Neural
1373
+ Information Processing Systems 33, 6256–6268.
1374
+ [36] Yu, B., Wu, J., Ma, J., Zhu, Z., 2019. Tangent-normal adversarial
1375
+ regularization for semi-supervised learning, in: Proceedings of the
1376
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1377
+ pp. 10676–10684.
1378
+ [37] Yu, E., Sun, J., Li, J., Chang, X., Han, X.H., Hauptmann, A.G., 2018.
1379
+ Adaptive semi-supervised feature selection for cross-modal retrieval.
1380
+ IEEE Transactions on Multimedia 21, 1276–1288.
1381
+ [38] Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y., 2019. Cutmix:
1382
+ Regularization strategy to train strong classifiers with localizable
1383
+ features, in: Proceedings of the IEEE/CVF International Conference
1384
+ on Computer Vision, pp. 6023–6032.
1385
+ [39] Zagoruyko, S., Komodakis, N., 2016. Wide residual networks. arXiv
1386
+ preprint arXiv:1605.07146 .
1387
+ [40] Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H., 2018. Deep mutual
1388
+ learning, in: Proceedings of the IEEE Conference on Computer
1389
+ Vision and Pattern Recognition, pp. 4320–4328.
1390
+ Xu.eal: Preprint submitted to Elsevier
1391
+ Page 10 of 10
1392
+
5dE2T4oBgHgl3EQfkQdW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tE0T4oBgHgl3EQfvwEb/content/2301.02621v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e64857abc9d52bc4de3465d0058814f07487ca68f3441b91fffab3fba385363
3
+ size 754967
5tE0T4oBgHgl3EQfvwEb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96ed696f5c2ad85a420d22e7d952f22f3347b9695362b1a7a1ee0bfd6ce1982
3
+ size 130597
5tE4T4oBgHgl3EQf1g0M/content/2301.05290v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7dfe6e54aaf9d9c527e16c198355c9a745ea054f894121d175118db06a47ef
3
+ size 851754
5tE4T4oBgHgl3EQf1g0M/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a01098725d7069a0d810cf93acd1eb9c4ac7c19684c940d14ba2c5b512341497
3
+ size 3932205
5tE4T4oBgHgl3EQf1g0M/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d773d602659a776f67e206f16430363bed00556bc2d1146102d122a675daaf8
3
+ size 137663
6dE1T4oBgHgl3EQfTQOX/content/2301.03076v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6010a0279f2813a9f503cf8a06c4579efd6ade470fa82352cfe70986eb1e43cb
3
+ size 640082
6dE1T4oBgHgl3EQfTQOX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccbe2e9a05eb43fbcfec9e1ff5d03d1c520796a446fea7cebdf1ea2b8f6678ea
3
+ size 1638445
6dE1T4oBgHgl3EQfTQOX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884231cb1e140f3edd3bf3488bc64b2e4842d67180061acdbdb0e41d448546a9
3
+ size 54194
7tE4T4oBgHgl3EQfCgsd/content/tmp_files/2301.04860v1.pdf.txt ADDED
@@ -0,0 +1,1059 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ JOURNAL OF LATEX CLASS FILES, 2019
2
+ 1
3
+ Edge Preserving Implicit Surface
4
+ Representation of Point Clouds
5
+ Xiaogang Wang, Yuhang Cheng, Liang Wang, Jiangbo Lu, Senior Member, IEEE , Kai Xu, Senior
6
+ Member, IEEE , Guoqiang Xiao
7
+ Abstract— Learning implicit surface directly from raw data recently has become a very attractive representation method for 3D
8
+ reconstruction tasks due to its excellent performance. However, as the raw data quality deteriorates, the implicit functions often lead
9
+ to unsatisfactory reconstruction results. To this end, we propose a novel edge-preserving implicit surface reconstruction method, which
10
+ mainly consists of a differentiable Laplican regularizer and a dynamic edge sampling strategy. Among them, the differential Laplican
11
+ regularizer can effectively alleviate the implicit surface unsmoothness caused by the point cloud quality deteriorates; Meanwhile, in order
12
+ to reduce the excessive smoothing at the edge regions of implicit suface, we proposed a dynamic edge extract strategy for sampling near
13
+ the sharp edge of point cloud, which can effectively avoid the Laplacian regularizer from smoothing all regions. Finally, we combine them
14
+ with a simple regularization term for robust implicit surface reconstruction. Compared with the state-of-the-art methods, experimental
15
+ results show that our method significantly improves the quality of 3D reconstruction results. Moreover, we demonstrate through several
16
+ experiments that our method can be conveniently and effectively applied to some point cloud analysis tasks, including point cloud edge
17
+ feature extraction, normal estimation,etc.
18
+ Index Terms—Implicit surface representation, Differential Laplacian regularizer, Dynamic edge sampling, Point cloud, Geometric
19
+ modeling, Shape analysis.
20
+ !
21
+ 1
22
+ INTRODUCTION
23
+ Recently, Implicit Neural Representations (INRs) has gained made
24
+ great strides in the field of 3D reconstruction [1]–[8]. In contrast
25
+ to traditional explicit representations such as point clouds
26
+ [9],
27
+ voxels [10], [11] and mesh
28
+ [12]–[15], implicit neural repre-
29
+ sentations represent surface function primarily through neural
30
+ networks, providing higher quality, flexibility, and fidelity without
31
+ discretization errors, and significantly save amounts of storage
32
+ space to store high-quality results.
33
+ However, most of these methods need ground truth data as
34
+ supervision [1]–[3], which have difficulty in generalizing well to
35
+ unseen shapes that are dissimilar to the training samples. Recently,
36
+ some methods [16]–[20] have been proposed to reconstruct im-
37
+ plicit neural representations directly from raw data (point clouds,
38
+ triangle soups, unoriented meshes, etc.). Compared to data-driven
39
+ approaches, building implicit neural representations directly from
40
+ raw data is obviously more appealing. Generally speaking, the
41
+ core idea of such methods is to impose explicit/implicit regularity
42
+ constraints to reduce reliance on dataset. SAL [18] proposed a
43
+ unsigned regression loss to a given unsigned distance function
44
+ to raw data, which can produce signed solutions of implicit
45
+ functions. Specifically, starting from raw data (e.g., point clouds,
46
+ real scanned grids, etc.), implicit neural representations learn in a
47
+ self-supervised manner and can be trained reliably relying only
48
+ on raw input data by minimizing unsigned regression. Subse-
49
+ quently, SALD
50
+ [17], a generalized version of SAL
51
+ [18] was
52
+ proposed, which can obtain higher quality reconstruction results
53
+
54
+ Xiaogang Wang, Yuhang Cheng, Liang Wang and Guoqiang Xiao are
55
+ with College of Computer and Information Science, Southwest University,
56
+ China.
57
+
58
+ Jiangbo Lu is with the SmartMore Co., Ltd.
59
+
60
+ Kai Xu is with the National University of Defense Technology, China.
61
+ Fig. 1: Effect of edge preserving differential Laplacian regularizer.
62
+ (b) are the optimization results of the edge preserving differential
63
+ Laplacian regularizer which is incorporated into the state-of-the-
64
+ art methods IGR [19] . (a) and (c) are the results of IGR and
65
+ Ground truth respectively.
66
+ arXiv:2301.04860v1 [cs.CV] 12 Jan 2023
67
+
68
+ (a) IGR
69
+ (b) Our
70
+ (c) GTJOURNAL OF LATEX CLASS FILES, 2019
71
+ 2
72
+ by incorporating an explicit gradient constraint on SAL. Gropp et
73
+ al. [19] proposed a novel implicit geometric regularization (IGR)
74
+ method to directly learn an implicit neural representation from
75
+ raw data and achieved surprising results. Different from SAL [18]
76
+ and SALD [17], IGR only relies on implicit regularization con-
77
+ straints, without the need for a unsigned distance function. More
78
+ specifically, IGR proposes an implicit geometric regularization,
79
+ which amounts to solving a particular Eikonal boundary value
80
+ problem that constrains the norm of spatial gradients to be 1
81
+ almost everywhere. Yet, when the normal information cannot be
82
+ available and the number of input points is not dense enough,
83
+ the above algorithms often lead to unsatisfactory reconstruction
84
+ results (See Figure 1(a)).
85
+ We observed that the main reason for the unsatisfactory re-
86
+ construction results is that the implicit function needs to fit the
87
+ input point cloud as much as possible, and the noise information
88
+ in the point cloud tends to cause the implicit surface to be very
89
+ unsmooth. In other words, the main reason for this phenomenon is
90
+ the inconsistency of normal in the local region of the reconstructed
91
+ surface. Therefore, it is an intuitive idea to keep the local normal
92
+ of the surface consistent as much as possible; Meanwhile, it
93
+ should be noted that not all regions are restricted in their normal
94
+ consistency, for example, obviously sharp edges often exist in the
95
+ surface (as shown in Figure 1). In the reconstruction process,
96
+ we hope that this part of the area will not be overly smoothed.
97
+ Therefore, The edge preserving local normal consistency is more
98
+ accurate for implicit surface representation .
99
+ In view of the above problem, it can be visually viewed
100
+ as a standard Laplacian minimization problem; Meanwhile, we
101
+ can also use the Laplacian operator to identify the edge region
102
+ effectively, which has achieved good results in many image
103
+ processing tasks. Therefore, in other words, we can design an
104
+ intuitive Laplacian regularization, which can effectively improve
105
+ the quality of reconstruction results.
106
+ However, in this task, the raw data type we consider is point
107
+ cloud data, and the difference method cannot be directly used to
108
+ approximate high-order derivatives, mainly because point cloud
109
+ data does not have a clear topological relationship like mesh
110
+ or image. If the algorithm similar to KNN is used, the nearest
111
+ neighbor points searched cannot guarantee the correct topology
112
+ structure (as shown in Figure 3), especially when the point cloud
113
+ is not dense and the normal are not available , such wrong nearest
114
+ neighbor results will easily lead to the anti-optimization results (as
115
+ shown in Figure 4(a)).
116
+ Recently, there is growing interest in differentiable optimiza-
117
+ tion of implicit neural representations that enable differential
118
+ nature as supervision in learning frameworks
119
+ [3], [19], [21]–
120
+ [25]. The advantage of differentiable implicit neural represen-
121
+ tations is that it can directly solve the higher derivative of the
122
+ input signal instead of discretization approximation, which greatly
123
+ improves its optimization performance and application range.
124
+ Thanks to the analytically-differentiable nature of implicit neural
125
+ representation, we can easily design a differentiable Laplacian
126
+ regularizer. Meanwhile, the differentiable Laplacian regularizer
127
+ can be easily and intuitively incorporated into implicit neural
128
+ surface representations (as shown in Figure 1). We show that it
129
+ significantly improve the quality of 3D reconstruction. Meanwhile,
130
+ in order to facilitate qualitative and quantitative comparisons in
131
+ this paper, unless otherwise stated, in this paper, all experimental
132
+ results are obtained by incorporating them into IGR
133
+ [19]. We
134
+ carefully evaluate its performance through a series of ablation
135
+ studies. Meanwhile, we demonstrate through several experiments
136
+ that our method can be conveniently and effectively applied to
137
+ some point cloud analysis tasks, including point cloud edge feature
138
+ extraction, normal estimation, etc.
139
+ In summary, we make the following contributions: In this pa-
140
+ per, we use the infinite differentiability property of implicit neural
141
+ representation to propose a novel edge-preserving implicit surface
142
+ reconstruction method, which mainly consists of a differentiable
143
+ Laplican regularizer and a dynamic edge sampling strategy. 1),
144
+ Among them, the differential Laplican regularizer can effectively
145
+ alleviate the implicit surface unsmoothness caused by the point
146
+ cloud quality deteriorates; 2), Meanwhile, in order to reduce
147
+ the excessive smoothing at the edge regions of implicit suface,
148
+ we proposed a dynamic edge extract strategy for sampling near
149
+ the sharp edge of point cloud, which can effectively avoid the
150
+ Laplacian regularizer from smoothing all regions.
151
+ 2
152
+ RELATED WORK
153
+ 2.1
154
+ Data-driven based Implicit surface reconstruction
155
+ 3D surface reconstruction from raw data has gained significant
156
+ research progress in recent year, benefiting from the advances in
157
+ machine learning techniques
158
+ [1]–[8]. Early studies
159
+ [26]–[28]
160
+ most utilize predefined geometric priors (such as local linearity
161
+ and smoothness) towards specific tasks. These geometric priors
162
+ often encode statistical properties of raw data and are designed
163
+ to be optimized, such as poisson equation
164
+ [28], [29], radius
165
+ basis function [26], moving least squares [27]. Recently, implicit
166
+ neural representation has gained significant research progress for
167
+ geometry reconstruction
168
+ [1]–[3], [6], [7], [16], [30]–[34] and
169
+ object representation [3], [23], [35]–[45] due to their simplicity
170
+ and excellent performance, which learn an approximate implicit
171
+ function with multi-layer perceptron (MLP). Compared to the
172
+ traditional continuous and discrete representations (grid, point
173
+ cloud and voxel), implicit neural representations have many poten-
174
+ tial benefits, which can provide higher modeling quality without
175
+ discretization errors, flexibility and fidelity, and save storage
176
+ space. However, most of these methods need ground truth data
177
+ as supervision [1]–[3], which have difficulty in generalizing well
178
+ to unseen shapes that are dissimilar to the training samples.
179
+ In addition, there are hybridization-based methods [46]–[50]
180
+ that combine data-driven priors with optimization strategy that can
181
+ achieve state-of-the-art performance. However, the above methods
182
+ also require additional ground truth data as supervision, which
183
+ seriously limits their applicability.
184
+ 2.2
185
+ Sign Agnostic Implicit surface reconstruction
186
+ Recently, some methods [17]–[20] have been proposed to re-
187
+ construct implicit neural representations directly from raw data.
188
+ Compared to big data-driven approaches, building implicit neural
189
+ representations directly from raw data is obviously more appeal-
190
+ ing. These methods can avoid the need for a large number of
191
+ ground truth signed distance representation of training data as
192
+ supervision. SAL
193
+ [18] introduces a sign agnostic regression
194
+ loss to a given unsigned distance function to raw data, which
195
+ is the signed version of unsigned distance function. Meanwhile,
196
+ that avoids the use of surface normals by properly initializing
197
+ implicit decoder networks so that they can only produce signed
198
+ solutions of implicit functions using unsigned distance function.
199
+ Subsequently, SALD
200
+ [17], a generalized version of SAL
201
+ [18]
202
+
203
+ JOURNAL OF LATEX CLASS FILES, 2019
204
+ 3
205
+ was proposed, which can obtain higher quality reconstruction
206
+ results by incorporating an explicit gradient constraint on SAL.
207
+ Similarly, in this paper, our approach also uses implicit neural
208
+ representation to estimate level set functions directly from raw
209
+ data. The major difference is that our proposed regularization
210
+ terms are directly based on differentiable implicit optimization,
211
+ and does not explicitly enforce some regularization on the zero
212
+ level set, such constraints, when the normal information cannot be
213
+ available and the number of input point cloud is not dense enough,
214
+ the implicit neural representation often lead to unsatisfactory
215
+ reconstruction results.
216
+ 2.3
217
+ Differentiable implicit neural representation
218
+ Compared with general implicit neural representation, differen-
219
+ tiable implicit neural representation has the advantage that it
220
+ can directly use various properties of differential geometry in-
221
+ stead of discretization approximation, which can lead to more
222
+ stable solutions in many optimization problems. Recently, there is
223
+ growing interest in differentiable optimization of implicit neural
224
+ representation that enable differential nature as supervision in
225
+ learning frameworks [3], [19], [21], [21]–[25]. General numerical
226
+ optimization often uses the discrete approximation of differential
227
+ geometry, for example, finite difference method is often used to
228
+ enhance the smoothness between adjacent samples in space. But
229
+ thanks to the analytically-differentiable nature of implicit neural
230
+ representation, differentiable implicit neural representations can
231
+ make direct use of many properties in differential geometry, such
232
+ as gradients [19], [21], [23], curvatures [24], and the solution of
233
+ partial differential equations [22], [25]. Recently, Gropp et al. [19]
234
+ proposed to use the differentiable implicit neural representation
235
+ to directly reconstruct surface from raw data. More specifically,
236
+ it proposes an implicit regularization constraint, which amounts
237
+ to solving a particular Eikonal boundary value problem that
238
+ constrains the norm of spatial gradients to be 1 almost everywhere.
239
+ Similarly, Sitzmann et al. [21] uses the proposed a differentiable
240
+ periodic activation functions to represent signed distance fields
241
+ in a fully-differentiable manner. Both of these works [19], [21]
242
+ , however, when the normal information cannot be available and
243
+ the number of input points is not dense enough, often lead to
244
+ unsatisfactory reconstruction results. In this paper, our work is also
245
+ based on the differentiability of implicit neural representations
246
+ to optimize implicit level set function estimated directly from
247
+ the input point cloud. Specifically, we designed an implicit dif-
248
+ ferentiable Laplacian regularizer, which effectively alleviated the
249
+ problem of unsatisfactory reconstruction results caused by direct
250
+ fitting of input point cloud by implicit neural function.
251
+ 3
252
+ METHOD
253
+ We present a differentiable laplacian regularizer for neural implicit
254
+ representation directly from input point cloud without normal
255
+ supervision. Note that our differential Laplacian regularizer can
256
+ be incorporated into any implicit neural representation, such as
257
+ IGR [19],SAL [18],SALD [17]. In this paper, unless otherwise
258
+ noted, we incorporate it in the IGR, which use level sets of neural
259
+ network to represent 3D shape (Sec. 3.1). More specifically, IGR
260
+ proposes an implicit geometric regularization, which amounts to
261
+ solving a particular Eikonal boundary value problem that con-
262
+ strains the norm of spatial gradients to be 1 almost everywhere.
263
+ Yet, when the normal information cannot be available and the
264
+ number of input points is not dense enough, IGR often lead
265
+ Fig. 2: Illustrations of the local normal consistency.
266
+ to unsatisfactory reconstruction results (See Figure 1(a)). We
267
+ observed that the main reason for the unsatisfactory reconstruction
268
+ results is that the implicit function needs to fit the input point cloud
269
+ as much as possible, and the noise information in the point cloud
270
+ tends to cause the implicit surface to be very unsmooth.
271
+ To
272
+ overcome
273
+ this
274
+ problem,
275
+ we
276
+ use
277
+ the
278
+ analytically-
279
+ differentiable nature of implicit neural representation, to propose
280
+ a differential Laplacian regularizer, which can effectively alleviate
281
+ the unsatisfactory reconstruction results (Sec. 3.2). Meanwhile, in
282
+ order to reduce the excessive smoothing at the edge regions of
283
+ 3D shape (such as man-made shapes), a dynamic edge extraction
284
+ strategy (Sec. 3.2) is introduced for sampling near the sharp edge
285
+ of input point cloud, which can effectively avoid the Laplacian
286
+ regularizer from smoothing all regions, so as to effectively im-
287
+ prove the quality of reconstruction results while maintaining the
288
+ edge.
289
+ 3.1
290
+ Background
291
+ A neural implicit representations is a continuous function that
292
+ approximate the signed distance function. The underlying surface
293
+ of 3D shape is implicitly represented by the zero level set of this
294
+ function,
295
+ fθ(x) = 0, ∀x ∈ X.
296
+ (1)
297
+ where θ indicates the parameters to be learned and X indicates the
298
+ set of input point cloud. In general, one parameterize this function
299
+ using a multi-layer perceptron (MLP). Meanwhile, in order to
300
+ conveniently use the analytically-differentiable (such as, gradi-
301
+ ents,etc.) nature of implicit neural representation, recent works
302
+ [19], [21] usually replace the commonly used ReLU activation
303
+ function with a non-linear differentiable activation functions, thus
304
+ transforming MLP into a continuous and infinitely differentiable
305
+ function.
306
+ In IGR, the training is done by minimizing the loss that
307
+ encourages f to vanish on X:
308
+ Lvanish =
309
+ 1
310
+ N(X)
311
+
312
+ x∈X
313
+ |fθ(x)|
314
+ (2)
315
+ where N(X) is the number of point set X, | • | indicates abso-
316
+ lute value. if the input point cloud includes normal information
317
+ ngt(x), the corresponding loss function can be designed to make
318
+ the predicted normal (the differentiable gradient ▽fθ(x) of the
319
+ implicit function) as close as possible to the ground truth normal
320
+ ngt(x):
321
+ Lnormal =
322
+ 1
323
+ N(X)
324
+
325
+ x∈X
326
+ ||▽fθ(x) − ngt(x)||2
327
+ (3)
328
+ In addition to the above two intuitive fitting loss terms, IGR
329
+ [19] based on the Eikonal partial differential equation presents
330
+ an additional loss (Eikonal loss), which is equivalent to solve
331
+
332
+ (b)
333
+ a
334
+ CJOURNAL OF LATEX CLASS FILES, 2019
335
+ 4
336
+ Fig. 3: Illustrations of two different N nearest neighbors of non-
337
+ topological preservation (b) and topological preservation (c) for
338
+ geometric structure (a).
339
+ boundary value problems of a particular Eikonal that constrains
340
+ the norm of spatial gradients ▽fθ(x) to be 1 almost everywhere:
341
+ Leikonal =
342
+ 1
343
+ N(X)
344
+
345
+ x∈X
346
+ (||▽fθ(x)||2 − 1)2
347
+ (4)
348
+ Note that, in our approach, we do not consider normal infor-
349
+ mation as supervision, so we will not consider Lnormal term in
350
+ all subsequent experiments. More specifically, our approach builds
351
+ upon the above two items Lvanish and Leikonal.
352
+ 3.2
353
+ Differentiable laplace regularization
354
+ Neighborhood normal consistency. A high-quality result can be
355
+ generated based on the above two terms (Lvanish and Leikonal)
356
+ when the input point data is large enough, however, when the
357
+ normal information cannot be available and the number of input
358
+ points is not dense enough, often lead to unsatisfactory reconstruc-
359
+ tion results (See Figure 1(a)).
360
+ We observed that the main reason for the unsatisfactory re-
361
+ construction results is that the implicit function needs to fit the
362
+ input point cloud as much as possible, and the noise information
363
+ in the point cloud tends to cause the implicit surface to be
364
+ very unsmooth. More specifically, the optimization results are
365
+ not guaranteed to provide a high-quality reconstruction result,
366
+ which is intuitively reflected by the possibility that the normal
367
+ of reconstruction result is inconsistent in the neighborhood.
368
+ From another perspective, it is well known that 3D shapes
369
+ tend to be piecewise smooth, that is, flat surfaces are more
370
+ likely than high-frequency structures [51]. For this purpose, we
371
+ incorporate this prior into implicit neural function by encouraging
372
+ the geometric smoothness of the reconstructed results. Therefore,
373
+ an intuitive solution is to constrain the consistency of the neighbor-
374
+ hood normal of the reconstruction results (as shown in Figure 2):
375
+ Lneibor =
376
+
377
+ x∈X
378
+
379
+ xi∈nei(x)
380
+ ||▽fθ(x) − ▽fθ(xi)||2
381
+ (5)
382
+ where nei(x) indicates the neighbor point set of point x.
383
+ However, in this paper, the raw data type we consider is point
384
+ cloud data, which does not have a clear topological structure
385
+ like mesh or voxels. If the algorithm similar to KNN is used,
386
+ the nearest neighbor points searched cannot guarantee that they
387
+ maintain the correct topology structure, especially when the point
388
+ cloud is not dense and the normal are not available, as shown in
389
+ Figure 3(b) where the three points P4, P5 and P6 do not meet the
390
+ nearest neighbor result of N = 5 under the maintenance of the
391
+ topology structure, and the correct set of nearest neighbor points
392
+ Fig. 4: The comparison of Lneibor (a) and Llaplacian (b).
393
+ should be {P1, P2, P3, P8, P9}. Moreover, it is difficult to get a
394
+ reasonable value for this parameter nei(x) in practice. As shown
395
+ in Figure 4, we can easily see that the wrong reconstructed results,
396
+ which is mainly caused by the above reasons.
397
+ Differentiable Laplacian regularizer. In fact, the above con-
398
+ straint Lneibor is mainly used to constrain the normal consistency
399
+ in the local domain, which can be easily interpreted as a discrete
400
+ Laplace operator. The Laplacian operator △f is a second-order
401
+ differential operator in n-dimensional euclidean space, defined as
402
+ the divergence (▽ · f) of the gradient (▽f). Thanks to the infinite
403
+ differentiability of implicit neural representation, we can design a
404
+ simple but effective differentiable Laplacian regularizer:
405
+ Llaplacian =
406
+
407
+ x∈X
408
+ △fθ(x)2
409
+ (6)
410
+ where △fθ(x) indicates the differentiable Laplace operator of
411
+ point x.
412
+ As shown in Figure 4(b), compared with the explicit regular-
413
+ ization constraint Lneibor based on the nearest neighbor normal
414
+ consistency, the differentiable Laplacian regularizer can obtain
415
+ more stable results without introducing hyperparameter nearest
416
+ neighbors N.
417
+ 3.3
418
+ Dynamic edge sampling
419
+ However, while the differentiable Laplacian regularizer restricts
420
+ the normal consistency, it also brings a new problem: It imposes
421
+ undifferentiated constraints on all 3D regions, even in the sharp-
422
+ edge regions, as shown in Figure 6. As we know, complex 3D
423
+ shapes are generally constructed by multiple piecewise smooth
424
+ surfaces, which may not be differentiable at the joints, and are
425
+ more likely to form sharp edges. Therefore, in essence, a complex
426
+ 3D shape (piecewise smooth model with sharp edges) cannot
427
+ be accurately represented by an implicit function, because it is
428
+ obviously not differentiable at sharp edges, so if it is forced to be
429
+ represented by an implicit function, especially only sparse point
430
+ sets without normal information are used as supervision, it is easy
431
+ to form an overly smooth reconstruction at the sharp edges (as
432
+ shown in Figure 6).
433
+ The most intuitive solution is to implicitly represent each
434
+ piecewise smooth surface separately, but this is difficult to do in
435
+ practice because it first requires the segmentation of the input point
436
+ set, which is difficult to do accurately in unsupervised conditions.
437
+ Therefore, we propose a novel dynamic edge sampling
438
+ strategy to effectively extract sharp edge regions in the training
439
+
440
+ P
441
+ p
442
+ P
443
+ 3
444
+ 2
445
+ p
446
+ p
447
+ 4
448
+ 4
449
+ P
450
+ p
451
+ D
452
+ P
453
+ 5
454
+ 5
455
+ P
456
+ P
457
+ 9
458
+ 6
459
+ P8
460
+ p,
461
+ P
462
+ P,
463
+ D
464
+ 8
465
+ (a)
466
+ (b)
467
+ (c)(a) KNN=9
468
+ (b) Our
469
+ (c) GTJOURNAL OF LATEX CLASS FILES, 2019
470
+ 5
471
+ Fig. 5: Statistics of Laplacian operators |△fθ(x)| and edge thresh-
472
+ old τ selection.
473
+ process. In theory, the remaining regions not only satisfy the
474
+ differentiable property, but also conform to the normal consistency
475
+ constraint, which can effectively avoid the indifference smoothing
476
+ of all regions, including the edge regions, of the laplace regular-
477
+ izer.
478
+ Specifically, for each point p in the input point set, we may
479
+ quickly determine whether it is an edge point according to its
480
+ differentiable Laplacian operator △fθ(x). Essentially, Laplacian
481
+ is mainly used to describe the rate of change of gradient, and
482
+ is often used for edge detection in image processing. From the
483
+ perspective of differential geometry, it is used to describe the
484
+ change rate of spatial position normal. Therefore, the larger the
485
+ laplacian of the point, the stronger the possibility that the point is
486
+ an edge point. We threshold the Laplacian |△fθ(x)| < τ to obtain
487
+ a corresponding set of non-edge points X′. According to statistics
488
+ (as shown in Figure 5), we set the parameter τ = 20 throughout
489
+ our experiments. This operation is performed before the back-
490
+ propagation of each iteration, therefore, we call it dynamic edge
491
+ sampling.
492
+ Llaplacian =
493
+
494
+ x∈X′
495
+ △fθ(x)2
496
+ (7)
497
+ where X′ indicates the non-edge subset of the input point cloud
498
+ X. Finally, we optimize the total loss:
499
+ Ltotal = Lvanish + λ1Leikonal + λ2Llaplacian
500
+ (8)
501
+ In which, we set λ1 = 0.1 and λ2 = 0.001 throughout our
502
+ experiments.
503
+ 4
504
+ DETAILS, RESULTS AND EVALUATIONS
505
+ 4.1
506
+ Implementation details
507
+ Data preparation. To facilitate quantitative evaluation of our
508
+ method on multiple tasks, including reconstruction , edge ex-
509
+ traction and normal estimation, we selected 100 3D shapes with
510
+ rich geometric topologies to construct the evaluation dataset (See
511
+ Figure 8) from ABC dataset [52], which provides more than 1
512
+ million standard 3D CAD models with multiple types of standard
513
+ CAD format files. In addition to 3D geometry and normal informa-
514
+ tion, the geometric edges information mentioned above does not
515
+ provide us explicitly. To this end, we have developed a tool that,
516
+ Fig. 6: The comparison of with (b) and without Dynamic Edge
517
+ Sampling (DES) (a).
518
+ for each 3D shape, can quickly and easily extract the geometric
519
+ edge information from the multiple CAD files, thus fully meeting
520
+ the needs of our method for multi-task quantitative evaluation.
521
+ Point sampling. For each model, we sample it into a point
522
+ cloud containing 16, 384 points by uniform point sampling.
523
+ Meanwhile, in order to simulate the real point cloud noise, we
524
+ added Gaussian noise with mean µ = 0 and standard devia-
525
+ tion δ = 0.005 to each sampling point. In each case, except
526
+ where otherwise stated, the network is trained on the noisy data
527
+ throughout our experiments. A few metrics on point cloud multi-
528
+ tasks accuracy are defined to support quantitative evaluation of our
529
+ approach; see the following subsections for details.
530
+ 4.2
531
+ Metrics
532
+ In our experiments, both qualitative and quantitative evaluations
533
+ are provided. We evaluate our approach via ablation studies
534
+ (Section 4.6), comparisons to state-of-the-art methods for 3D
535
+ reconstruction (Section 4.3) , edge detection (Section 4.4) and
536
+ normal estimation (Section 4.5). For the quantitative assessment of
537
+ the 3D reconstruction results, we used the two-sided Chamfer dC
538
+ and Hausdorff distances dH introduced by [19]. For the evaluation
539
+ of the normal estimation, we use the angle dangle between the
540
+ predicted normal and the groudtruth normal as the metric. To
541
+ evaluate edge detection, we measure precision/recall and the
542
+ IoU between predictions and ground truth, while to evaluate the
543
+ geometric accuracy of the reconstructed edges, we employ the
544
+ Edge Chamfer Distance (ECD) introduced by [1].
545
+ 4.3
546
+ Reconstruction
547
+ Comparison with IGR [19]. To facilitate a fair comparison with
548
+ IGR [19], our network architecture is consistent with IGR [19]. In
549
+ all experiments, we used the default training procedure specified
550
+ in IGR to train our network, except that we did not use normal
551
+ information in the training and set iterations to 10000. We set the
552
+ loss parameters (see equation (8)) λ2 = 0.1 and λ3 = 0.001
553
+ throughout our experiments. Qualitative and quantitative experi-
554
+ ments are reported in Table 1 and Figure 7 we can also see that
555
+ the performance of our method is significantly better.
556
+ Comparison with state-of-the-art methods SAL [18] and
557
+ SALD [17]. In addition to IGR [19], our method is also compared
558
+ with SAL [18] and SALD [17], two state-of-the-art sign agnostic
559
+ learning based methods from raw data. The results shown in
560
+ Table 1(row 1 and 2) are inferior to those of our method. As shown
561
+ in Figure 7, the results demonstrate the significant advantage of
562
+
563
+ 4096
564
+ 8192
565
+ 300
566
+ 16384
567
+ 250
568
+ abs(Laplacian)
569
+ 200
570
+ 150
571
+ 100
572
+ 50
573
+ 0
574
+ 0
575
+ 2500
576
+ 5000
577
+ 7500
578
+ 10000
579
+ 12500
580
+ 15000
581
+ Points(a) Our (w/o DES
582
+ (b) Our
583
+ (c) GTJOURNAL OF LATEX CLASS FILES, 2019
584
+ 6
585
+ Fig. 7: Qualitative comparison with state-of-the-art methods IGR [19], SAL [18] and SALD [17].
586
+ Fig. 8: An overview of multi-task evaluation dataset.
587
+ dC
588
+ dH
589
+ Mean
590
+ Median
591
+ Mean
592
+ Median
593
+ SAL [18]
594
+ 0.019
595
+ 0.016
596
+ 0.094
597
+ 0.050
598
+ SALD [17]
599
+ 0.016
600
+ 0.015
601
+ 0.053
602
+ 0.042
603
+ IGR [19]
604
+ 0.028
605
+ 0.011
606
+ 0.111
607
+ 0.034
608
+ Our (Llaplace)
609
+ 0.017
610
+ 0.009
611
+ 0.068
612
+ 0.026
613
+ Our (Llaplace + DES)
614
+ 0.007
615
+ 0.007
616
+ 0.021
617
+ 0.021
618
+ TABLE 1: A quantitative comparison of our method and ablation
619
+ against IGR [19], SAL [18] and SALD
620
+ [17] on multi-task
621
+ evaluation dataset.
622
+ our approach, due to the fact that differential Laplacian regularizer
623
+ can effectively alleviate the unsatisfactory reconstruction results.
624
+ 4.4
625
+ Edge recognition
626
+ Specifically, for each point p in the input point set, we may quickly
627
+ determine whether it is an edge point according to its differentiable
628
+ laplace operator △fθ(x) . Essentially, laplace operator is mainly
629
+ used to describe the rate of change of gradient, and is often used
630
+ for edge detection in image processing. From the perspective of
631
+ differential geometry, it is used to describe the change rate of
632
+ spatial position normal. Therefore, the larger the laplace operator
633
+ of the point, the stronger the possibility that the point is an edge
634
+ point. We threshold the laplace operator |△fθ(x)| > τ to obtain a
635
+ corresponding set of non-edge points Xedge. We set the parameter
636
+ τ = 20 throughout our experiments, as shown in Figure 10.
637
+ In addition to IGR [19], we also choose two representative
638
+ classical non-learning based methods: Voronoi Covariance Mea-
639
+ sure (VCM) [53], and Edge-Aware Resampling (EAR) [54], as
640
+ both have been adopted in the point-set processing routines of the
641
+ well known CGAL library. As reported in Table 4, our method
642
+ completely outperforms these classical methods, This is mainly
643
+ because we use the differentiable Laplacian operator of each
644
+ sampling point as the metric, which can be approximate to the
645
+ average curvature in the implicit surface representation. Note that,
646
+ there are a large number of high-quality edge detection methods
647
+ based on data-driven. We do not use these methods as references
648
+ here, mainly because ours is a self-supervised learning approach.
649
+ 4.5
650
+ Normal estimation
651
+ Essentially, an implicitly represented MLP with softplus activation
652
+ funtion represents a differentiable Signed Distance Functions d =
653
+ fθ(x). According to the properties of differential geometry, the
654
+ gradient operator of each point on the implicit surface fθ(x) = 0
655
+ can be regarded as the normal vector of the current point x.
656
+ Therefore, after the training, for each point in the input point
657
+ cloud, we can directly calculate the gradient operator ▽fθ(x) of
658
+ the differentiable function fθ(x) at the current point x, that is, the
659
+ normal vector of the current point x. The experimental results are
660
+ reported in Table 1. The comparison results demonstrate how our
661
+ method achieves significantly better performance; as immediately
662
+ quantified by the fact that dangle is larger than the one reported
663
+ for our method.
664
+
665
+ (b) IGR
666
+ (c) SAL
667
+ (a) Input
668
+ (d) SALD
669
+ (e) Our
670
+ (f) GT(a) Point cloud
671
+ (b) Normal
672
+ (c) EdgeJOURNAL OF LATEX CLASS FILES, 2019
673
+ 7
674
+ Fig. 9: Visualization normal estimation of differential Laplacian regularizer (c) and dynamic edge sampling strategy (d).
675
+ Fig. 10: Visualization edge recognition of differential Laplacian regularizer (c) and dynamic edge sampling strategy (d).
676
+ dC
677
+ dH
678
+ Mean
679
+ Median
680
+ Mean
681
+ Median
682
+ X = 0.010
683
+ 0.0102
684
+ 0.0108
685
+ 0.0509
686
+ 0.0543
687
+ X = 0.005
688
+ 0.0069
689
+ 0.0069
690
+ 0.0206
691
+ 0.0209
692
+ X = 0.000
693
+ 0.0055
694
+ 0.0057
695
+ 0.0148
696
+ 0.0153
697
+ D = 4, 096
698
+ 0.0075
699
+ 0.0075
700
+ 0.0350
701
+ 0.0328
702
+ D = 8, 192
703
+ 0.0071
704
+ 0.0072
705
+ 0.0352
706
+ 0.0269
707
+ D = 16, 384
708
+ 0.0069
709
+ 0.0069
710
+ 0.0206
711
+ 0.0209
712
+ TABLE 2: Algorithm performance with respect to noise X and
713
+ sampling density D.
714
+ 4.6
715
+ Analysis of parameters and networks
716
+ Effect of noise. We stress test Laplacian regularizer by increasing
717
+ the level of noise. Specifically, we randomly add a Gaussian noise
718
+ whose mean is 0 and variance is X to each sampling point on
719
+ the surface of the 3D shape, where we tested four values of
720
+ X = {0, 0.005, 0.01, 0.02}. In each case, the implicit neural
721
+ surface was trained with the noise-added data. Table 2 shows
722
+ the quantitative results. As we can observe that, the Laplacian
723
+ regularizer, even when trained with noisy data, can still out-
724
+ perform these state-of-the-art methods [17]–[19] when they are
725
+ tested on point cloud with 0.005 noise.
726
+ Effect of density. We also train our method on point clouds
727
+ at a reduced density. Specifically, for each 3D shape, we sam-
728
+ pled a different number D of points to verify whether our
729
+ network could handle the sparser point clouds, where D =
730
+
731
+ (c) +Liaplacian
732
+ (a) Input
733
+ (b) IGR
734
+ (e) GT(c) +Liaplacian
735
+ (a) Input
736
+ (b) IGR
737
+ (e) GTJOURNAL OF LATEX CLASS FILES, 2019
738
+ 8
739
+ Fig. 11: Effect of edge preserving differential Laplacian regu-
740
+ larizer. (b) are the optimization results of the edge preserving
741
+ differential Laplacian regularizer which is incorporated into the
742
+ state-of-the-art method SALD [17]. (a) and (c) are the results of
743
+ SALD and Ground truth respectively.
744
+ dC
745
+ dH
746
+ dangle
747
+ IGR [19]
748
+ 0.028
749
+ 0.111
750
+ 0.514
751
+ Our (+Llaplacian)
752
+ 0.017
753
+ 0.068
754
+ 0.274
755
+ Our (+Llaplacian + DES)
756
+ 0.009
757
+ 0.036
758
+ 0.133
759
+ TABLE 3: Ablation studies – We evaluate the quantitative per-
760
+ formance of our method with/without components Llaplacian and
761
+ dynamic edge sampling (DES).
762
+ {4, 096, 8, 192, 16, 384}. (Results in Table 2 reveal a similar
763
+ trend as from the previous stress test. Namely, our network, when
764
+ trained on sparser point clouds, can still outperform these state-of-
765
+ the-art methods [17]–[19] when they are tested on or trained on
766
+ data at full resolution (16,384 points).
767
+ Effect of Llaplacian. To evaluate the effectiveness of loss
768
+ Llaplacian, We incorporate this into another state-of-the-art
769
+ method, SALD [17], This qualitative result is shown in Figure 11,
770
+ we can find that, compared with the original algorithm, the re-
771
+ construction quality can be effectively improved by incorporating
772
+ Laplacian. This is mainly because the differentiable Laplacian reg-
773
+ ularizer can effectively alleviate the unsatisfactory reconstruction
774
+ results.
775
+ Dynamic edge sampling. We evaluate the effect of dynamic
776
+ edge sampling strategy on reconstruction quality. We experiment
777
+ with the dynamic edge sampling, while keeping all other
778
+ parameters the same. From Table 1 and Figure 7 and 12 , we can
779
+ see that at the sharp edges, we can effectively improve the quality
780
+ of modeling compared with state-of-the-art methods (Table 1
781
+ (rows 1 3)) and the baseline method without dynamic edge
782
+ sampling, this is largely due to thedynamic edge sampling
783
+ strategy for sampling near the sharp edge of input point cloud,
784
+ which can effectively avoid the regularizer from smoothing all
785
+ regions.
786
+ ECD
787
+ IoU
788
+ Precision
789
+ Recall
790
+ VCM [53]
791
+ 0.0017
792
+ 0.1925
793
+ 0.2238
794
+ 0.5998
795
+ EAR [54]
796
+ 0.0071
797
+ 0.1146
798
+ 0.2399
799
+ 0.1933
800
+ IGR [19]
801
+ 0.0063
802
+ 0.0880
803
+ 0.0958
804
+ 0.5620
805
+ Our
806
+ 0.0015
807
+ 0.2375
808
+ 0.2665
809
+ 0.6934
810
+ TABLE 4: Comparison state-of-the-art edge recognition tech-
811
+ niques - VCM [53], EAR [54], and IGR [19].
812
+ 5
813
+ CONCLUSION AND LIMITATION
814
+ We present a differential Laplacian regularizer for neural implicit
815
+ representation directly from input point cloud without normal
816
+ supervision. More specifically, we use the infinite differentiability
817
+ property of implicit neural representation to propose a differen-
818
+ tiable Laplacian regularizer, which can effectively alleviate the
819
+ unsatisfactory reconstruction results. Meanwhile, we propose a
820
+ dynamic edge sampling strategy for sampling near the sharp
821
+ edge of input point cloud, which can effectively avoid the Lapla-
822
+ cian regularizer from smoothing all regions, so as to effectively
823
+ improve the quality of reconstruction results while maintaining
824
+ the edge. Moreover, the differentiable Laplacian regularizer can
825
+ be easily and intuitively incorporated into implicit neural sur-
826
+ face representations. We carefully evaluate its generation quality
827
+ through a series of ablation studies, which show that our method
828
+ significantly improve the quality of 3D reconstruction. In addition
829
+ to 3D reconstruction, our method can also be conveniently applied
830
+ to other point cloud analysis tasks, including edge extraction and
831
+ normal estimation, etc.
832
+ Limitation. Our approach has a few limitations, which point
833
+ out the directions of future study. Some representative failure cases
834
+ are shown in Figure 13. First, our method is prone to problems
835
+ in the reconstruction of ultra-thin geometric structures, probably
836
+ because the point cloud data is noisy, resulting in the geometric
837
+ structure has been completely destroyed. Second, Our method
838
+ for extremely detailed structure may be overlooked, resulting in
839
+ incorrect reconstruction results.
840
+ ACKNOWLEDGEMENT
841
+ We thank the anonymous reviewers for their valuable comments.
842
+ This work was supported in part by Natural Science Foundation
843
+ of China (62102328), and Fundamental Research Funds for the
844
+ Central Universities (SWU120076).
845
+ REFERENCES
846
+ [1]
847
+ Z. Chen and H. Zhang, “Learning implicit fields for generative shape
848
+ modeling,” in Proceedings of the IEEE/CVF Conference on Computer
849
+ Vision and Pattern Recognition, 2019, pp. 5939–5948.
850
+ [2]
851
+ L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
852
+ “Occupancy networks: Learning 3d reconstruction in function space,” in
853
+ Proceedings of the IEEE/CVF conference on computer vision and pattern
854
+ recognition, 2019, pp. 4460–4470.
855
+ [3]
856
+ J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
857
+ “Deepsdf: Learning continuous signed distance functions for shape
858
+ representation,” in Proceedings of the IEEE/CVF conference on computer
859
+ vision and pattern recognition, 2019, pp. 165–174.
860
+ [4]
861
+ J. Chibane, T. Alldieck, and G. Pons-Moll, “Implicit functions in feature
862
+ space for 3d shape reconstruction and completion,” in Proceedings of
863
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
864
+ 2020, pp. 6970–6981.
865
+ [5]
866
+ P. Erler, P. Guerrero, S. Ohrhallinger, N. J. Mitra, and M. Wimmer,
867
+ “Points2surf learning implicit surfaces from point clouds,” in European
868
+ Conference on Computer Vision.
869
+ Springer, 2020, pp. 108–124.
870
+
871
+ + DES
872
+ (a) SALD
873
+ (c) GTJOURNAL OF LATEX CLASS FILES, 2019
874
+ 9
875
+ Fig. 12: Visualization examples of differential Laplacian regularizer (c) and dynamic edge sampling strategy (d).
876
+ Fig. 13: Failure cases.
877
+ [6]
878
+ S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Con-
879
+ volutional occupancy networks,” in European Conference on Computer
880
+ Vision.
881
+ Springer, 2020, pp. 523–540.
882
+ [7]
883
+ S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li,
884
+ “Pifu: Pixel-aligned implicit function for high-resolution clothed human
885
+ digitization,” in Proceedings of the IEEE/CVF International Conference
886
+ on Computer Vision, 2019, pp. 2304–2314.
887
+ [8]
888
+ Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann, “Disn: Deep
889
+ implicit surface network for high-quality single-view 3d reconstruction,”
890
+ Advances in Neural Information Processing Systems, vol. 32, 2019.
891
+ [9]
892
+ H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d
893
+ object reconstruction from a single image,” in Proceedings of the IEEE
894
+ conference on computer vision and pattern recognition, 2017, pp. 605–
895
+ 613.
896
+ [10] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A
897
+ unified approach for single and multi-view 3d object reconstruction,” in
898
+ European conference on computer vision.
899
+ Springer, 2016, pp. 628–644.
900
+ [11] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a
901
+ probabilistic latent space of object shapes via 3d generative-adversarial
902
+ modeling,” Advances in neural information processing systems, vol. 29,
903
+ 2016.
904
+ [12] T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry, “Atlasnet: A
905
+ papier-mˆach´e approach to learning 3d surface generation. arxiv 2018,”
906
+ arXiv preprint arXiv:1802.05384, 1802.
907
+ [13] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in
908
+ Proceedings of the IEEE conference on computer vision and pattern
909
+ recognition, 2018, pp. 3907–3916.
910
+ [14] J. Tang, X. Han, J. Pan, K. Jia, and X. Tong, “A skeleton-bridged deep
911
+ learning approach for generating meshes of complex topologies from
912
+ single rgb images,” in Proceedings of the ieee/cvf conference on computer
913
+ vision and pattern recognition, 2019, pp. 4541–4550.
914
+ [15] J. Tang, X. Han, M. Tan, X. Tong, and K. Jia, “Skeletonnet: A topology-
915
+ preserving solution for learning mesh reconstruction of object surfaces
916
+ from rgb images,” IEEE transactions on pattern analysis and machine
917
+ intelligence, 2021.
918
+ [16] M. Atzmon, N. Haim, L. Yariv, O. Israelov, H. Maron, and Y. Lipman,
919
+ “Controlling neural level sets,” Advances in Neural Information Process-
920
+ ing Systems, vol. 32, 2019.
921
+ [17] M. Atzmon and Y. Lipman, “Sald: Sign agnostic learning with deriva-
922
+ tives,” arXiv preprint arXiv:2006.05400, 2020.
923
+ [18] ——, “Sal: Sign agnostic learning of shapes from raw data,” 2020, pp.
924
+ 2565–2574.
925
+ [19] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Im-
926
+ plicit geometric regularization for learning shapes,” arXiv preprint
927
+ arXiv:2002.10099, 2020.
928
+ [20] W. Zhao, J. Lei, Y. Wen, J. Zhang, and K. Jia, “Sign-agnostic implicit
929
+ learning of surface self-similarities for shape modeling and reconstruc-
930
+ tion from raw point clouds,” in Proceedings of the IEEE/CVF Conference
931
+ on Computer Vision and Pattern Recognition, 2021, pp. 10 256–10 265.
932
+ [21] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Im-
933
+ plicit neural representations with periodic activation functions,” Advances
934
+ in Neural Information Processing Systems, vol. 33, pp. 7462–7473, 2020.
935
+ [22] H. Chen, R. Wu, E. Grinspun, C. Zheng, and P. Y. Chen, “Implicit
936
+ neural spatial representations for time-dependent pdes,” arXiv preprint
937
+ arXiv:2210.00124, 2022.
938
+ [23] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of neural
939
+ implicit surfaces,” Advances in Neural Information Processing Systems,
940
+ vol. 34, pp. 4805–4815, 2021.
941
+ [24] T. Ehret, R. Mar´ı, and G. Facciolo, “Nerf, meet differential geometry!”
942
+ arXiv preprint arXiv:2206.14938, 2022.
943
+ [25] J. Zehnder, Y. Li, S. Coros, and B. Thomaszewski, “Ntopo: Mesh-free
944
+ topology optimization using implicit neural representations,” Advances
945
+ in Neural Information Processing Systems, vol. 34, pp. 10 368–10 381,
946
+ 2021.
947
+ [26] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
948
+ McCallum, and T. R. Evans, “Reconstruction and representation of 3d
949
+ objects with radial basis functions,” in Proceedings of the 28th annual
950
+ conference on Computer graphics and interactive techniques, 2001, pp.
951
+ 67–76.
952
+ [27] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
953
+ “Computing and rendering point set surfaces,” IEEE Transactions on
954
+ visualization and computer graphics, vol. 9, no. 1, pp. 3–15, 2003.
955
+ [28] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
956
+
957
+ (a) Input
958
+ (b) IGR
959
+ (e) GTa
960
+ bJOURNAL OF LATEX CLASS FILES, 2019
961
+ 10
962
+ tion,” in Proceedings of the fourth Eurographics symposium on Geometry
963
+ processing, vol. 7, 2006.
964
+ [29] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
965
+ ACM Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.
966
+ [30] K. Genova, F. Cole, D. Vlasic, A. Sarna, W. T. Freeman, and
967
+ T. Funkhouser, “Learning shape templates with structured implicit func-
968
+ tions,” in Proceedings of the IEEE/CVF International Conference on
969
+ Computer Vision, 2019, pp. 7154–7164.
970
+ [31] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Occupancy
971
+ flow: 4d reconstruction by learning particle dynamics,” in Proceedings
972
+ of the IEEE/CVF international conference on computer vision, 2019, pp.
973
+ 5379–5389.
974
+ [32] M. Oechsle, S. Peng, and A. Geiger, “Unisurf: Unifying neural implicit
975
+ surfaces and radiance fields for multi-view reconstruction,” in Proceed-
976
+ ings of the IEEE/CVF International Conference on Computer Vision,
977
+ 2021, pp. 5589–5599.
978
+ [33] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan,
979
+ U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let
980
+ networks learn high frequency functions in low dimensional domains,”
981
+ Advances in Neural Information Processing Systems, vol. 33, pp. 7537–
982
+ 7547, 2020.
983
+ [34] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus:
984
+ Learning neural implicit surfaces by volume rendering for multi-view
985
+ reconstruction,” arXiv preprint arXiv:2106.10689, 2021.
986
+ [35] V. Sitzmann, M. Zollh¨ofer, and G. Wetzstein, “Scene representation
987
+ networks: Continuous 3d-structure-aware neural scene representations,”
988
+ Advances in Neural Information Processing Systems, vol. 32, 2019.
989
+ [36] A. Bergman, P. Kellnhofer, and G. Wetzstein, “Fast training of neural
990
+ lumigraph representations using meta learning,” Advances in Neural
991
+ Information Processing Systems, vol. 34, pp. 172–186, 2021.
992
+ [37] J. Chibane, A. Bansal, V. Lazova, and G. Pons-Moll, “Stereo radiance
993
+ fields (srf): Learning view synthesis for sparse views of novel scenes,”
994
+ in Proceedings of the IEEE/CVF Conference on Computer Vision and
995
+ Pattern Recognition, 2021, pp. 7911–7920.
996
+ [38] C. Gao, Y. Shih, W.-S. Lai, C.-K. Liang, and J.-B. Huang, “Portrait neural
997
+ radiance fields from a single image,” arXiv preprint arXiv:2012.05903,
998
+ 2020.
999
+ [39] Y. Jiang, D. Ji, Z. Han, and M. Zwicker, “Sdfdiff: Differentiable render-
1000
+ ing of signed distance fields for 3d shape optimization,” in Proceedings
1001
+ of the IEEE/CVF conference on computer vision and pattern recognition,
1002
+ 2020, pp. 1251–1261.
1003
+ [40] P. Kellnhofer, L. C. Jebe, A. Jones, R. Spicer, K. Pulli, and G. Wetzstein,
1004
+ “Neural lumigraph rendering,” in Proceedings of the IEEE/CVF Confer-
1005
+ ence on Computer Vision and Pattern Recognition, 2021, pp. 4287–4297.
1006
+ [41] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural
1007
+ sparse voxel fields,” Advances in Neural Information Processing Systems,
1008
+ vol. 33, pp. 15 651–15 663, 2020.
1009
+ [49] M. Yang, Y. Wen, W. Chen, Y. Chen, and K. Jia, “Deep optimized
1010
+ priors for 3d shape modeling and reconstruction,” in Proceedings of
1011
+ [42] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Doso-
1012
+ vitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields
1013
+ for unconstrained photo collections,” in Proceedings of the IEEE/CVF
1014
+ Conference on Computer Vision and Pattern Recognition, 2021, pp.
1015
+ 7210–7219.
1016
+ [43] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
1017
+ and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
1018
+ synthesis,” arXiv preprint arXiv:2003.08934, 2020.
1019
+ [44] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Differentiable
1020
+ volumetric rendering: Learning implicit 3d representations without 3d
1021
+ supervision,” in Proceedings of the IEEE/CVF Conference on Computer
1022
+ Vision and Pattern Recognition, 2020, pp. 3504–3515.
1023
+ [45] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and
1024
+ Y. Lipman, “Multiview neural surface reconstruction by disentangling
1025
+ geometry and appearance,” Advances in Neural Information Processing
1026
+ Systems, vol. 33, pp. 2492–2502, 2020.
1027
+ [46] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser et al.,
1028
+ “Local implicit grid representations for 3d scenes,” in Proceedings of
1029
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1030
+ 2020, pp. 6001–6010.
1031
+ [47] E. Tretschk, A. Tewari, V. Golyanik, M. Zollh¨ofer, C. Stoll, and
1032
+ C. Theobalt, “Patchnets: Patch-based generalizable deep implicit 3d
1033
+ shape representations,” in European Conference on Computer Vision.
1034
+ Springer, 2020, pp. 293–309.
1035
+ [48] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove,
1036
+ and R. Newcombe, “Deep local shapes: Learning local sdf priors for
1037
+ detailed 3d reconstruction,” in European Conference on Computer Vision.
1038
+ Springer, 2020, pp. 608–625.
1039
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1040
+ 2021, pp. 3269–3278.
1041
+ [50] J. Tang, J. Lei, D. Xu, F. Ma, K. Jia, and L. Zhang, “Sa-convonet:
1042
+ Sign-agnostic optimization of convolutional occupancy networks,” in
1043
+ Proceedings of the IEEE/CVF International Conference on Computer
1044
+ Vision, 2021, pp. 6504–6513.
1045
+ [51] J. Huang, A. B. Lee, and D. Mumford, “Statistics of range images,” in
1046
+ Proceedings IEEE Conference on Computer Vision and Pattern Recogni-
1047
+ tion. CVPR 2000 (Cat. No. PR00662), vol. 1.
1048
+ IEEE, 2000, pp. 324–331.
1049
+ [52] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
1050
+ M. Alexa, D. Zorin, and D. Panozzo, “Abc: A big cad model dataset for
1051
+ geometric deep learning,” in The IEEE Conference on Computer Vision
1052
+ and Pattern Recognition (CVPR), June 2019.
1053
+ [53] Q. M´erigot, M. Ovsjanikov, and L. J. Guibas, “Voronoi-based curvature
1054
+ and feature estimation from point clouds,” IEEE Transactions on Visual-
1055
+ ization and Computer Graphics, vol. 17, no. 6, pp. 743–756, 2010.
1056
+ [54] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang,
1057
+ “Edge-aware point set resampling,” ACM transactions on graphics
1058
+ (TOG), vol. 32, no. 1, pp. 1–12, 2013.
1059
+
7tE4T4oBgHgl3EQfCgsd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE0T4oBgHgl3EQffgAo/content/tmp_files/2301.02404v1.pdf.txt ADDED
@@ -0,0 +1,2401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multiplicative topological semimetals
2
+ Adipta Pal,1, 2 Joe H. Winter,1, 2, 3 and Ashley M. Cook1, 2
3
+ 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Strasse 40, 01187 Dresden, Germany
4
+ 2Max Planck Institute for the Physics of Complex Systems, N¨othnitzer Strasse 38, 01187 Dresden, Germany
5
+ 3SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
6
+ Exhaustive study of topological semimetal phases of matter in equilibriated electonic systems and myriad
7
+ extensions has built upon the foundations laid by earlier introduction and study of the Weyl semimetal, with
8
+ broad applications in topologically-protected quantum computing, spintronics, and optical devices. We extend
9
+ recent introduction of multiplicative topological phases to find previously-overlooked topological semimetal
10
+ phases of electronic systems in equilibrium, with minimal symmetry-protection. We show these multiplicative
11
+ topological semimetal phases exhibit rich and distinctive bulk-boundary correspondence and response signatures
12
+ that greatly expand understanding of consequences of topology in condensed matter settings, such as the limits
13
+ on Fermi arc connectivity and structure, and transport signatures such as the chiral anomaly. Our work therefore
14
+ lays the foundation for extensive future study of multiplicative topological semimetal phases.
15
+ I
16
+ Introduction
17
+ Topological semimetals are a vast family1,2 of topological
18
+ phases of matter studied in great depth experimentally3–11 in
19
+ the search for table-top, quasiparticle realizations of high-
20
+ energy physics12. At the simplest level, the topological de-
21
+ generacies of band structures in these topological semimetal
22
+ phases are realized quite generically if either time-reversal
23
+ symmetry13 or inversion symmetry14 are broken.
24
+ This is
25
+ the requirement for two-fold topological degeneracies char-
26
+ acteristic of the Weyl semimetal phase, although it is desire-
27
+ able to realize such degeneracies in the vicinity of the Fermi
28
+ level15,16, with minimal contributions to the Fermi surface
29
+ from other electronic states. In such cases, the key signa-
30
+ tures of Weyl semimetals are especially prominent, includ-
31
+ ing the distinguishing Fermi arc surface states17–20, and trans-
32
+ port signatures associated with the chiral anomaly21–27. Such
33
+ isolation of Weyl nodes in the vicinity of the Fermi level is
34
+ also facilitated—and the physics of topological semimetals
35
+ enriched—by systematic study of these topological phases in
36
+ compounds with wide-ranging phenomena, including super-
37
+ conductivity, strong spin-orbit coupling, and strong correla-
38
+ tions28–34. Much progress has also been made in identifying
39
+ other topological semimetals with more complex topological
40
+ degeneracies2,35–37 in electronic band structures, protected by
41
+ a large set of crystalline point group symmetries in combi-
42
+ nation with additional anti-unitary symmetries such as time-
43
+ reversal.
44
+ The present work returns to the foundations of topologi-
45
+ cal semimetal studies by introducing previously-unidentified
46
+ topological semimetal phases of matter of electronic systems
47
+ in equilibrium, which may then be generalized in the same
48
+ manner as outlined above. We do so by studying the first topo-
49
+ logical semimetal realizations of multiplicative topological
50
+ phases, a recently-identified set of topological phases of mat-
51
+ ter described by Bloch Hamiltonians in an infinitely-large, pe-
52
+ riodic bulk, which are symmetry-protected tensor products of
53
+ “parent” Bloch Hamiltonians. These multiplicative topolog-
54
+ ical semimetal (MTSM) phases are therefore straightforward
55
+ constructions described by tensor products of Weyl semimetal
56
+ Bloch Hamiltonians, yet exhibit rich phenomena distinct from
57
+ all other known topological semimetals.
58
+ We first review the Weyl semimetal phase and its canonical
59
+ models. We then construct the first examples of multiplicative
60
+ topological semimetal phases using these past results. The
61
+ multiplicative topological semimetals are then first character-
62
+ ized in the bulk, and their bulk-boundary correspondence es-
63
+ tablished.
64
+ II
65
+ Review of the Weyl semimetal phase and suitable
66
+ models for constructing multiplicative phases
67
+ The Weyl semimetal is a topologically non-trivial phase
68
+ of matter characterized by topologically-protected, doubly-
69
+ degenerate and linearly-dispersing band crossings in the Bril-
70
+ louin zone38. That is, these band-crossings, known as Weyl
71
+ points or nodes, cannot be removed from the electronic struc-
72
+ ture through smooth deformations of the Hamiltonian, but
73
+ rather only through mutual annihilation of the Weyl nodes, by
74
+ bringing two nodes of opposite topological charge to the same
75
+ point in the Brillouin zone to gap out these band-touchings.
76
+ When the Fermi level intersects only the Weyl nodes of this
77
+ semimetal phase, their low-energy physics dominates, yield-
78
+ ing a variety of intensely-studied exotic phenomena of interest
79
+ for applications. At the simplest level, the Weyl nodes serve
80
+ as quasiparticle, table-top realizations of Weyl fermions pre-
81
+ dicted in high-energy physics. However, they are also a start-
82
+ ing point in going well beyond high-energy physics, by tilting
83
+ the Weyl cone to realize a type-II Weyl semimetal phase39,
84
+ in which the low-energy physics of the Weyl nodes is not
85
+ Lorentz-invariant.
86
+ Weyl semimetal phases can be realized in effectively non-
87
+ interacting systems where certain discrete symmetries are bro-
88
+ ken rather than respected, in contrast to many other effectively
89
+ non-interacting topological phases.
90
+ They may be derived
91
+ through symmetry-breaking starting from the Dirac semimetal
92
+ state40,41, for instance, (which could be topologically-robust
93
+ or fine-tuned) by breaking either time-reversal symmetry T or
94
+ inversion symmetry I, which pulls the two Weyl nodes com-
95
+ prising the Dirac node away from one another in momentum-
96
+ space42. This phase, characterized by Weyl nodes in the Bril-
97
+ louin zone, is topologically stable so long as Weyl nodes of
98
+ opposite topological charge do not annihilate one another43.
99
+ I-breaking Weyl semimetal phases are of tremendous ex-
100
+ arXiv:2301.02404v1 [cond-mat.mes-hall] 6 Jan 2023
101
+
102
+ 2
103
+ perimental interest, but are described by Bloch Hamiltonian
104
+ models with four bands at minimum. A more natural starting
105
+ point in deriving multiplicative topological semimetal phases
106
+ is instead to use the minimal Weyl semimetal Bloch Hamil-
107
+ tonian achieved by breaking T , which possesses only two
108
+ bands. Such two-band models for the Weyl semimetal cor-
109
+ respond to the non-trivial homotopy group π3(S2) and, sim-
110
+ ilarly to the two-band Chern and Hopf insulators44 and the
111
+ two-band Kitaev chain model 45, may be combined using
112
+ known constructions to form a multiplicative counterpart of
113
+ the Weyl semimetal phase, the multiplicative Weyl semimetal
114
+ phase (MWSM).
115
+ We therefore consider a well-established two-band Bloch
116
+ Hamiltonian previously used in study of Weyl nodes, with
117
+ various instances of this model serving as the parents of the
118
+ MWSM.
119
+ HW SM(k) =t1 sin kxτ x + t2 sin kyτ y
120
+ + t3(2 + γ − cos kx − cos ky − cos kz)τ z.
121
+ (1)
122
+ where the τ j (j = x, y, z) are the Pauli matrices in the orbital
123
+ basis. The two band spectrum,
124
+ E(k) = ±
125
+
126
+ t2
127
+ 1 sin2 kx + t2
128
+ 2 sin2 ky + ϵ(k)2,
129
+ ϵ(k) = t3(2 + γ − cos kx − cos ky − cos kz),
130
+ (2)
131
+ has two gapless nodes at k = (0, 0, ±k0), for cos k0 = γ. We
132
+ refer to these as the Weyl nodes. The equation of motion for
133
+ Bloch electrons in the k-space in the presence of Berry curva-
134
+ ture is represented by ˙r = vk + ˙k×F(k). For the equation of
135
+ motion to remain invariant under T -symmetry, one must have
136
+ the equality, F(k) = −F(−k). The breaking of T -symmetry,
137
+ then involves a minimum of two Weyl nodes with opposite
138
+ Berry curvature at opposite momenta. Therefore, close to the
139
+ Weyl nodes, we have,
140
+ H±(k) = ±t1kxτ x + t2kyτ y ± t3 sin k0kzτ z,
141
+ (3)
142
+ which in turn corresponds to the Berry curvatures,
143
+ F±(k)|0,0,±k0 = ±
144
+ t1t2t3 sin k0
145
+ 2[t1k2x + t2k2y + (t3 sin k0)2k2z]3/2 (kx, ky, kz).
146
+ (4)
147
+ The Chern number of the lower-energy band for the range,
148
+ kx = 0, ky = 0 and kz ∈ (−k0, k0) is C = ±1 depend-
149
+ ing on the direction of the magnetic field corresponding to the
150
+ monopoles at the two Weyl points. The Weyl nodes are in-
151
+ volved with exotic boundary states at surfaces perpendicular
152
+ to the z-axis, called the Fermi Arc surface states. For the case
153
+ where the surfaces are open in the x-direction, the surface dis-
154
+ persion is given by,
155
+ E(ky) = ±t2 sin ky,
156
+ (5)
157
+ and the arc-states,
158
+ Ψ(x, ky, kz) = e+ikyy+ikzz(e−λ1x − e−λ2x) 1
159
+
160
+ 2
161
+
162
+ 1
163
+ ±i
164
+
165
+ .
166
+ In the k-space, this includes all contours cos ky + cos kz >
167
+ 1 + cos k0.
168
+ III
169
+ Multiplicative Weyl Semimetal (MWSM) in the bulk
170
+ A protocol for constructing the child Hamiltonian for the
171
+ MWSM, Hc derived from Hp1 and Hp2 as first reported in
172
+ Cook and Moore46, is given as follows. Given two two-band
173
+ Bloch Hamiltonians Hp1 and Hp2 written in a general form,
174
+ with momentum-dependence suppressed, as
175
+ Hp1 =
176
+
177
+ a b
178
+ c d
179
+
180
+ ;
181
+ Hp2 =
182
+
183
+ α β
184
+ γ δ
185
+
186
+ ,
187
+ (6)
188
+ the multiplicative child Bloch Hamiltonian constructed
189
+ from these two parents can be written as Hc
190
+ 12, where
191
+ Hc
192
+ 12 =
193
+
194
+
195
+
196
+
197
+ −aγ
198
+
199
+ −bγ
200
+ −aβ
201
+
202
+ −bβ
203
+
204
+
205
+ −cγ
206
+
207
+ −dγ
208
+ −cβ
209
+
210
+ −dβ
211
+
212
+
213
+
214
+ � .
215
+ (7)
216
+ Expressing the two-band parent Bloch Hamiltonians
217
+ Hp1(k) and Hp2(k) more compactly as the following,
218
+ Hp1(k) = d1(k) · τ;
219
+ Hp2(k) = d2(k) · σ,
220
+ (8)
221
+ where d1(k) and d2(k) are momentum-dependent, three-
222
+ component vectors of scalar functions, and each of σ and τ is
223
+ the vector of Pauli matrices, the multiplicative child Hamilto-
224
+ nian may more compactly be written as,
225
+ Hc
226
+ 12(k) = (d11, d21, d31) · τ ⊗ (−d12, d22, −d32) · σ, (9)
227
+ to highlight the tensor product structure of the child Hamil-
228
+ tonian, which can be symmetry-protected as discussed in ear-
229
+ lier work by Cook and Moore on multiplicative topological
230
+ phases, and therefore can describe phases of matter, even in
231
+ the presence of additional bands46.
232
+ The tensor-product structure guarantees that the energy
233
+ spectrum of the child Hamiltonian is a product of the energy
234
+ spectrum of Hp1(k), Ep1(k), and of Hp2(k), Ep2(k), respec-
235
+ tively,
236
+ Ec
237
+ 12(k) = ±Ep1(k)Ep2(k).
238
+ (10)
239
+ This implies that bands of the child Hamiltonian dispersion
240
+ are at least doubly degenerate everywhere in the bulk Bril-
241
+ louin zone.
242
+ We will consider two cases in this work: (1) the Weyl
243
+ node separation of each parent is along one axis in the Bril-
244
+ louin zone, and (2) the axis along which Weyl nodes are
245
+ separated in one parent is perpendicular to the axis along
246
+ which Weyl nodes are separated in the other parent. Spectral
247
+ and magneto-transport properties differ significantly between
248
+ these two cases, as we will show, demonstrating the richness
249
+ of MTSM phases of matter.
250
+ A
251
+ Multiplicative Weyl Semimetal - parallel axis par-
252
+ ents
253
+ The construction of the MWSM for both parents along the
254
+ same axis is derived from two parent WSMs. As an example,
255
+
256
+ 3
257
+ we consider the following parents and the resulting child:
258
+ Hp1(k) =t11 sin kxτ x + t21 sin kyτ y
259
+ + t31(2 + γ1 − cos kx − cos ky − cos kz)τ z,
260
+ (11a)
261
+ Hp2(k) =t12 sin kxσx + t22 sin kyσy
262
+ + t32(2 + γ2 − cos kx − cos ky − cos kz)σz,
263
+ (11b)
264
+ Hc(k) =[t11 sin kxτ x + t21 sin kyτ y
265
+ + t31(2 + γ1 − cos kx − cos ky − cos kz)τ z]
266
+ ⊗ [−t12 sin kxσx + t22 sin kyσy
267
+ − t32(2 + γ2 − cos kx − cos ky − cos kz)σz].
268
+ (11c)
269
+ Each parent Hamiltonian realizes Weyl nodes at k
270
+ =
271
+
272
+ 0, 0, cos−1 γi
273
+
274
+ when −1 < γi < 1, (i = 1, 2). Examples of
275
+ such topologically non-trivial dispersion are shown in Fig. 1
276
+ (a) and (b), respectively.
277
+ /2 0
278
+ /2
279
+ 1
280
+ 0
281
+ 1
282
+ E(k)
283
+ (a) WSM parent 1
284
+ /2 0
285
+ /2
286
+ momentum kz
287
+ 1
288
+ 0
289
+ 1
290
+ E(k)
291
+ (b) WSM parent 2
292
+ /2
293
+ 0
294
+ /2
295
+ momentum kz
296
+ 1.0
297
+ 0.5
298
+ 0.0
299
+ 0.5
300
+ 1.0
301
+ E(k)
302
+ (c) MWSM parallel child
303
+ band 1
304
+ band 2
305
+ band 3
306
+ band 4
307
+ FIG. 1: Dispersion E(k) for (a) WSM Parent Hamiltonian
308
+ with γ1 = 0.5 along kz and t11 = t21 = t31 = 1, (b) WSM
309
+ Parent Hamiltonian with γ2 = −0.5 along kz and
310
+ t12 = t22 = t32 = 1, and (c) the resulting MWSM parallel
311
+ Child Hamiltonian along kz.
312
+ From these parent Hamiltonian dispersions, we can find the
313
+ dispersion of the child. As given in Eq. 10, the bulk spectrum
314
+ is doubly degenerate and determined by the spectra of the par-
315
+ ent 1, Ep1(k), and parent 2, Ep2(k), respectively, which take
316
+ the following forms:
317
+ Ep1(k) = [t2
318
+ 11 sin2 kx + t2
319
+ 21 sin2 ky + ϵ1(k)2]1/2,
320
+ Ep2(k) = [t2
321
+ 12 sin2 kx + t2
322
+ 22 sin2 ky + ϵ2(k)2]1/2,
323
+ (12)
324
+ where ϵ1/2(k) = t31/2(2 + γ1/2 − cos kx − cos ky − cos kz).
325
+ For the sake of convenience, we refer to the MWSM with
326
+ Weyl node separation for each parent along the same axis in
327
+ the Brillouin zone (as in the case of parents given by Eq. 22a
328
+ and Eq. 22b) as MWSM||. For the MWSM|| bulk spectrum
329
+ given by Eq. 10 and Eq. 12, gapless points occur at the po-
330
+ sitions in the Brillouin zone where gapless points are present
331
+ for the parent systems. As γ1 and γ2 control separation of the
332
+ Weyl nodes in the Brillouin zone for the parents, they play a
333
+ major role in determining the number of nodes, the location
334
+ of the nodes, and the polynomial order of the nodes in the
335
+ Brillouin zone for the child. When γ1 = γ2, for instance, we
336
+ have two gapless points but the dispersion near the nodes is
337
+ quadratic. In contrast, for γ1 ̸= γ2 as for parents depicted
338
+ in Fig. 1 (a) and (b), the child MWSM|| has four nodes, and
339
+ bands disperse linearly in the vicinity of the nodes, as shown
340
+ in Fig. 1 (c). Each node is four-fold degenerate.
341
+ While such degeneracy naively suggests Dirac nodes or
342
+ Weyl nodes of higher charge, the multiplicative nodes are dis-
343
+ tinct in a number of ways. To examine this difference, we look
344
+ at the child Hamiltonian in the vicinity of each multiplicative
345
+ node for the case −1 < γ1 ̸= γ2 < 1. From the tensor product
346
+ structure, it easy to check that ∂E±
347
+ ∂ki = const. which implies
348
+ that the dispersion is linear at each of the gapless nodes of the
349
+ MWSM. Therefore the possibility of a higher order Weyl node
350
+ is nullified. The position of each of the multiplicative nodes
351
+ are determined by the nodes in the respective parents. We re-
352
+ fer to (0, 0, ±k01) as the Weyl node positions derived from
353
+ the first parent, and (0, 0, ±k02) as the Weyl node positions
354
+ derived from the second parent. Here γi = cos k0i, (i = 1, 2).
355
+ If the gapless point is (0, 0, k02), then we define MWSM|| in
356
+ the vicinity as Hc
357
+ ||,2, and,
358
+ Hc
359
+ ||,2 = t31(γ1−γ2)τ z(−t12kxσx+t22kyσy−t32 sin k02¯kz,2σz),
360
+ (13)
361
+ where ¯kz,2 = (kz − k02). Surprisingly, this looks like a Dirac
362
+ semimetal Hamiltonian, whose Dirac node has been shifted in
363
+ k-space. Since it is no longer at the origin, the time-reversal
364
+ symmetry is broken. For the other node, γ1 = cos k01 for
365
+ (0, 0, k01), we define the multiplicative Hamiltonian in the
366
+ vicinity as Hc
367
+ ||,1, so that,
368
+ Hc
369
+ ||,1 = (t11kxτ x+t21kyτ y+t31 sin k01¯kz,1τ z)t32(γ1−γ2)σz,
370
+ (14)
371
+ where ¯kz,1d = (kz − k01) and contains off-diagonal terms for
372
+ the block Hamiltonian. But again, it is possible to perform
373
+ a similarity transformation on this Hamiltonian, in the form
374
+ U = R−1
375
+ τ (θ, φ) ⊗ Rσ(θ, φ), so that we get another ‘shifted’
376
+ Dirac semimetal type Hamiltonian,
377
+ ¯Hc
378
+ ||,1 = t32(γ1−γ2)τ z(t11kxσx+t21kyσy+t31 sin k01¯kz,1σz).
379
+ (15)
380
+ Again, the shift from the origin breaks the time-reversal sym-
381
+ metry of the original Dirac semimetal. It is therefore appropri-
382
+ ate to refer to the MWSM|| as possessing degeneracies con-
383
+ sisting of Weyl nodes, rather than possessing Dirac nodes, and
384
+ exhibit strikingly different physics as a result.
385
+ B
386
+ MWSM - perpendicular axis parents
387
+ Before characterizing bulk-boundary correspondence and
388
+ transport signatures of MTSMs, we explore further richness
389
+ of multiplicative constructions by considering cases where
390
+
391
+ 4
392
+ parent Weyl nodes are separated along orthogonal axes in k-
393
+ space. As a specific case, we choose parent Hamiltonians such
394
+ that the first parent has Weyl node separation along the y-axis,
395
+ while the second one has Weyl node separation along the z-
396
+ axis,
397
+ Hp1(k) =t11 sin kxτ x + t21 sin kzτ y
398
+ + t31(2 + γ1 −
399
+
400
+ i
401
+ cos ki)τ z,
402
+ (16a)
403
+ Hp2(k) =t12 sin kxσx + t22 sin kyσy
404
+ + t32(2 + γ2 −
405
+
406
+ i
407
+ cos ki)σz.
408
+ (16b)
409
+ Again the bulk spectrum is derived from the tensor product
410
+ structure,
411
+ Ep1(k) = [t2
412
+ 11 sin2 kx + t2
413
+ 21 sin2 kz + ϵ2
414
+ 1(k)]1/2,
415
+ Ep2(k) = [t2
416
+ 12 sin2 kx + t2
417
+ 22 sin2 ky + ϵ2
418
+ 2(k)]1/2,
419
+ Ec
420
+ ⊥k = ±Ep1(k)Ep2(k),
421
+ (17)
422
+ where ϵ1/2(k) = t31/32(2+γ1/2 −cos kx −cos ky −cos kz).
423
+ Examples of parent and child dispersion in this case are shown
424
+ in Fig. 2 for the values, γ1 = 0.5 and γ2 = −0.5.
425
+ We gain greater understanding of the multiplicative struc-
426
+ ture in this case by examining the low-energy expansion of
427
+ the Child Hamiltonian in the vicinity of its nodes. Taylor ex-
428
+ panding up to linear order around the point, (0, k0,1, 0) for
429
+ γ1 = cos k0,1, one gets,
430
+ Hc
431
+ ⊥,1(k) =(t11kxτ x + t21kzτ y + t31 sin k0,1¯ky,1τ z)
432
+ ⊗ (t22 sin k0,1σy − t32(γ2 − γ1)σz).
433
+ (18)
434
+ Similarly, expanding around (0, 0, k0,2) for γ2 = cos k0,2, we
435
+ get,
436
+ Hc
437
+ ⊥,2(k) =(t21 sin k0,2τ y + t31(γ1 − γ2)τ z)
438
+ ⊗ (−t12kxσx + t22kyσy − t32 sin k0,2¯kz,2σz).
439
+ (19)
440
+ One notices that Hc
441
+ ⊥,2(k) is equivalent to a DSM when
442
+ γ1 = γ2.
443
+ C
444
+ Discrete Symmetries of the MWSM
445
+ The discrete symmetries satisfied by the parent WSMs include
446
+ invariance under particle-hole conjugation given by P = σxκ,
447
+ such that the Hamiltonian satisfies,
448
+ σxH∗
449
+ 1/2(k)σx = −H1/2(−k),
450
+ and invariance under spatial inversion given by I = σz, such
451
+ that the Hamiltonian satisfies,
452
+ σzH1/2(k)σz = H1/2(−k).
453
+ The MWSM|| or ⊥ child systems are instead invariant un-
454
+ der time reversal given by T = iτ xσxκ corresponding to the
455
+ transformation,
456
+ τ xσxH∗
457
+ c(k)τ xσx = Hc(−k).
458
+ ky
459
+ 1
460
+ 0
461
+ 1
462
+ E
463
+ (a)
464
+ kz
465
+ 1
466
+ 0
467
+ 1
468
+ E
469
+ (b)
470
+ (0, 0, 0)
471
+ (0, 0, )
472
+ (0, , )
473
+ (0, , 0)
474
+ (0, 0, 0)
475
+ (0, , )
476
+ k
477
+ 7.5
478
+ 5.0
479
+ 2.5
480
+ 0.0
481
+ 2.5
482
+ 5.0
483
+ 7.5
484
+ E
485
+ (f)
486
+ ky
487
+ 0
488
+ kz
489
+ 0
490
+ E
491
+ 5
492
+ 0
493
+ 5
494
+ (e)
495
+ kz
496
+ 0.5
497
+ 0.0
498
+ 0.5
499
+ E
500
+ (c)
501
+ /20
502
+ /2
503
+ ky
504
+ 0.5
505
+ 0.0
506
+ 0.5
507
+ E
508
+ (d)
509
+ FIG. 2: Dispersion E(k) (t11 = t12 = 1, t21 = t22 = 1,
510
+ t31 = t32 = 1) for (a) WSM Parent Hamiltonian with
511
+ γ1 = 0.5 along ky, (b) WSM Parent Hamiltonian with
512
+ γ2 = −0.5 along kz and the resulting MWSM perpendicular
513
+ Child Hamiltonian along (c) kz and (d) kz. The energy
514
+ dispersion plotted along both ky and kz is shown in (e) and
515
+ the dispersion along a high-symmetry path in the first
516
+ quadrant of the two-dimensional (2d) BZ is shown in (f).
517
+ Inversion symmetry relates the nodes in the first quadrant to
518
+ those in the other quadrants, giving rise to four gapless nodes
519
+ in the 2d BZ.
520
+ They are also invariant under spatial inversion given by I =
521
+ τ zσz, corresponding to the transformation,
522
+ τ zσzHc(k)τ zσz = Hc(−k).
523
+ The MWSM should then satisfy the symmetry, T I, which
524
+ may also protect the Dirac semi-metal phase. Indeed, in some
525
+ cases, the Dirac Hamiltonian for the MWSM near the nodes
526
+ is reminiscent of the corresponding low-energy Hamiltonian
527
+ for a Dirac semi-metal. This invariance of the multiplicative
528
+ bulk Hamiltonian under products of transformations, which
529
+ leave each parent Hamiltonian invariant, is expected given the
530
+ multiplicative dependence of the child on the parents.
531
+
532
+ 5
533
+ D
534
+ Bulk characterization of topology with Wilson loops
535
+ As calculated in Supplementary section S1, the Berry connec-
536
+ tion for the MWSM is given as
537
+ A = (A1,kx − A2,kx, A1,ky − A2,ky, A1,kz − A2,kz), (20)
538
+ where Aj,l = (i ⟨+j| ∂l |+j⟩ , i ⟨−j| ∂l |−j⟩).
539
+ Using this
540
+ expression for the Berry connection, we compute Wilson
541
+ loops and associated Wannier spectra by integrating over kx
542
+ for a given ky, as detailed in Alexandradinata et al47.
543
+ In
544
+ the parallel case illustrated in Fig. 3(a), the Wannier spectra
545
+ derived from Wilson loop calculations show that only in
546
+ regions where only one of the parent phases is non-trivial do
547
+ we get non-trivial Wannier spectra distinguished by π values
548
+ for Wannier charge centers. However, the Wannier spectra in
549
+ the region where each parent is topological appears trivial,
550
+ given the dependence of child Wannier spectra on parent
551
+ Wannier spectra distinctive of multiplicative topological
552
+ phases. We have referred to a pair of Weyl nodes of equal
553
+ and opposite topological charge as a ‘dipole’. We observe,
554
+ that the orientation of this dipole due to the two constituent
555
+ parents is important, as anti-parallel dipoles, as depicted
556
+ in Fig.
557
+ 3(b), show non-trivial Wilson loop eigenvalues in
558
+ a region in the 2d BZ where neither of the parent systems
559
+ have non-trivial topological character. Analogous results for
560
+ the MWSM⊥ are shown in Fig. 4, although the Wannier
561
+ spectrum structure is far richer than in the parallel case.
562
+ /2 0
563
+ /2
564
+ kz
565
+ /2
566
+ 0
567
+ /2
568
+ ky
569
+ (a)WSM 1 x
570
+ /2 0
571
+ /2
572
+ kz
573
+ /2
574
+ 0
575
+ /2
576
+ ky
577
+ (b)WSM 2 x
578
+ /2 0
579
+ /2
580
+ kz
581
+ /2
582
+ 0
583
+ /2
584
+ ky
585
+ (c)MWSM pll
586
+ /2 0
587
+ /2
588
+ kz
589
+ /2
590
+ 0
591
+ /2
592
+ ky
593
+ (d)MWSM pll
594
+ 0.25
595
+ 0.00
596
+ 0.25
597
+ x
598
+ 0.25
599
+ 0.00
600
+ 0.25
601
+ x
602
+ 0.50
603
+ 0.25
604
+ 0.00
605
+ 0.25
606
+ 0.50
607
+ x, 1
608
+ 0.50
609
+ 0.25
610
+ 0.00
611
+ 0.25
612
+ 0.50
613
+ x, 2
614
+ (a) Each parent has Weyl node ‘dipole’ oriented in +ˆz direction.
615
+ /2
616
+ 0
617
+ /2
618
+ kz
619
+ /2
620
+ 0
621
+ /2
622
+ ky
623
+ (a)WSM 1 x
624
+ /2
625
+ 0
626
+ /2
627
+ kz
628
+ /2
629
+ 0
630
+ /2
631
+ ky
632
+ (b)WSM 2 x
633
+ /2
634
+ 0
635
+ /2
636
+ kz
637
+ /2
638
+ 0
639
+ /2
640
+ ky
641
+ (c)MWSM pll
642
+ /2
643
+ 0
644
+ /2
645
+ kz
646
+ /2
647
+ 0
648
+ /2
649
+ ky
650
+ (d)MWSM pll
651
+ 0.25
652
+ 0.00
653
+ 0.25
654
+ x
655
+ 0.25
656
+ 0.00
657
+ 0.25
658
+ x
659
+ 0.50
660
+ 0.25
661
+ 0.00
662
+ 0.25
663
+ 0.50
664
+ x, 1
665
+ 0.50
666
+ 0.25
667
+ 0.00
668
+ 0.25
669
+ 0.50
670
+ x, 2
671
+ (b) Parent 1 with dipole oriented along +ˆz direction and parent 2
672
+ with dipole oriented in −ˆz direction.
673
+ FIG. 3: Wannier spectra in MWSM parallel for two filled
674
+ bands derived from Wilson loop around kx for parent 1 with
675
+ γ1 = −0.5 and parent 2 with γ2 = 0.5. The upper row (a)
676
+ and the lower row (b) have opposite orientation of the Weyl
677
+ node ’dipole’ for parent 2. Corresponding Wannier spectra of
678
+ the MWSM for the lowest-energy and second-lowest in
679
+ energy occupied bands is shown in (c) and (d), respectively.
680
+
681
+ 6
682
+ /2 0
683
+ /2
684
+ kz
685
+ /2
686
+ 0
687
+ /2
688
+ ky
689
+ (a)WSM 1 x
690
+ /2 0
691
+ /2
692
+ kz
693
+ /2
694
+ 0
695
+ /2
696
+ ky
697
+ (b)WSM 2 x
698
+ /2 0
699
+ /2
700
+ kz
701
+ /2
702
+ 0
703
+ /2
704
+ ky
705
+ (c)MWSM perp
706
+ /2 0
707
+ /2
708
+ kz
709
+ /2
710
+ 0
711
+ /2
712
+ ky
713
+ (d)MWSM perp
714
+ 0.25
715
+ 0.00
716
+ 0.25
717
+ x
718
+ 0.25
719
+ 0.00
720
+ 0.25
721
+ x
722
+ 0.50
723
+ 0.25
724
+ 0.00
725
+ 0.25
726
+ 0.50
727
+ x, 1
728
+ 0.50
729
+ 0.25
730
+ 0.00
731
+ 0.25
732
+ 0.50
733
+ x, 2
734
+ (a) Parent 1 has Weyl node ‘dipole’ oriented along +ˆy direction and
735
+ parent 2 along −ˆz direction.
736
+ /2 0
737
+ /2
738
+ kz
739
+ /2
740
+ 0
741
+ /2
742
+ ky
743
+ (a)WSM 1 x
744
+ /2 0
745
+ /2
746
+ kz
747
+ /2
748
+ 0
749
+ /2
750
+ ky
751
+ (b)WSM 2 x
752
+ /2 0
753
+ /2
754
+ kz
755
+ /2
756
+ 0
757
+ /2
758
+ ky
759
+ (c)MWSM perp
760
+ /2 0
761
+ /2
762
+ kz
763
+ /2
764
+ 0
765
+ /2
766
+ ky
767
+ (d)MWSM perp
768
+ 0.25
769
+ 0.00
770
+ 0.25
771
+ x
772
+ 0.25
773
+ 0.00
774
+ 0.25
775
+ x
776
+ 0.50
777
+ 0.25
778
+ 0.00
779
+ 0.25
780
+ 0.50
781
+ x, 1
782
+ 0.50
783
+ 0.25
784
+ 0.00
785
+ 0.25
786
+ 0.50
787
+ x, 2
788
+ (b) Parent 1 has Weyl node ’dipole’ oriented in +haty direction and
789
+ parent 2 Weyl node dipole oriented in −ˆz direction.
790
+ FIG. 4: Wannier spectra in MWSM perpendicular for two
791
+ filled bands derived from Wilson loop around kx for parent 1
792
+ with γ1 = −0.5 and parent 2 with γ2 = 0.5. The upper row
793
+ (a) and the lower row (b) have opposite orientation of the
794
+ Weyl node ’dipole’ for parent 2. Corresponding Wannier
795
+ spectra of the MWSM for the lowest-energy and
796
+ second-lowest in energy occupied bands is shown in (c) and
797
+ (d), respectively.
798
+ IV
799
+ MWSM with open-boundary conditions–
800
+ 1
801
+ Slab spectra of MWSM:
802
+ An important aspect of WSM physics is its distinctive
803
+ bulk-boundary correspondence:
804
+ Weyl nodes in the three-
805
+ dimensional bulk Brillouin zone serve as termination points of
806
+ topologically-protected boundary states known as Fermi arcs
807
+ when projected to a slab Brillouin zone corresponding to open
808
+ boundary conditions in one direction. We expect analogous
809
+ topologically-protected surface states in MTSMs and explore
810
+ possible realizations of these Fermi arc states in this section.
811
+ One might expect that the tensor product structure of the
812
+ multiplicative phases is visible in the surface spectrum of the
813
+ MWSM. Numerical simulations show that this is the case. For
814
+ the parent WSMs, the surface spectra is given as, E(ky) ∼
815
+ sin(ky)(Fig. 5(a) and (b) and Fig.
816
+ 6 2nd row) for nodes
817
+ along the z-axis and open boundaries along the x-direction
818
+ and E(kz) ∼ sin(kz)(Fig. 6 1st row) for nodes along the
819
+ y-axis and open boundaries along the x-direction.
820
+ Indeed,
821
+ corresponding surface spectra of child Hamiltonians depend
822
+ on these surface spectra in a multiplicative way.
823
+ Numeri-
824
+ cal simulation from Fig. 5 (c) shows that, for MWSM||, the
825
+ slab spectra disperses as E(ky) ∼ sin2(ky) for two parents
826
+ each with surface spectrum E(ky) ∼ sin(ky). In contrast,
827
+ Fig. 6 (c) shows that the surface spectrum instead disperses
828
+ as E(ky, kz) ∼ sin(ky) sin(kz) for MWSM⊥ when one par-
829
+ ent has the former surface spectrum and the other has the lat-
830
+ ter. We also show, for the case of each parent surface spec-
831
+ trum along kz, which exhibits flat bands between the two
832
+ Weyl nodes (Fig. 5(a) and (b)) corresponds to flat bands be-
833
+ tween all four gapless points in the MWSM parallel system
834
+ (Fig. 5(c)). However, fitting sin2(ky) curves to each of the
835
+ parallel and perpendicular MWSM spectra reveals that, except
836
+ in special cases when γ1 = γ2 where the fit is exact, the slab
837
+ spectra does not disperse as sin2(ky) and instead exhibits kz-
838
+ dependence. One can check this by comparing E vs. ky slab
839
+ spectra in the range −min(k0,1, k0,2) < kz < min(k0,1, k0,2)
840
+ and min(k0,1, k0,2) < kx < max(k0,1, k0,2). The spectra ap-
841
+ pears linear near zero in the latter case.
842
+ 2
843
+ Stability of surface states of MWSM
844
+ For the MWSM|| system, the low-energy expansion about
845
+ a node is reminiscent of a Dirac node, and it is therefore
846
+ possible to break apart the four-fold degeneracy at each
847
+ of the nodes by introducing an external magnetic field.
848
+ We introduce minimal coupling, ky → ky − eBx for the
849
+ MWSM|| to simulate the effect of applied magnetic field
850
+ on the spectral density of the Fermi arc surface states. We
851
+ observe that the Fermi arcs split but are not destroyed by the
852
+ applied field as in the case of the DSM.
853
+ 3
854
+ Fermi Arcs for the MWSM as a stack of MCIs:
855
+ WSMs can be interpreted as a set of Chern insula-
856
+ tors(CIs),
857
+ each
858
+ defined
859
+ in
860
+ a
861
+ 2d
862
+ submanifold
863
+ of
864
+ the
865
+ 3d BZ of the WSM (e.g.,
866
+ each kx-ky
867
+ plane) for a
868
+ given value of kz, yielding a stack of CIs in the kz-
869
+ direction.
870
+ The Weyl nodes then correspond to topological
871
+
872
+ 7
873
+ /2
874
+ 0
875
+ /2
876
+ ky
877
+ 2
878
+ 1
879
+ 0
880
+ 1
881
+ 2
882
+ E
883
+ (e)MWSM ||
884
+ /2
885
+ 0
886
+ /2
887
+ ky
888
+ 2
889
+ 1
890
+ 0
891
+ 1
892
+ 2
893
+ E
894
+ (f)MWSM ||
895
+ /2
896
+ 0
897
+ /2
898
+ kz
899
+ 2
900
+ 1
901
+ 0
902
+ 1
903
+ 2
904
+ E
905
+ (f)MWSM ||
906
+ /2
907
+ 0
908
+ /2
909
+ ky
910
+ 2
911
+ 0
912
+ 2
913
+ E
914
+ (a)Parent 1
915
+ /2
916
+ 0
917
+ /2
918
+ kz
919
+ 2
920
+ 0
921
+ 2
922
+ E
923
+ (b)Parent 1
924
+ /2
925
+ 0
926
+ /2
927
+ ky
928
+ 2
929
+ 0
930
+ 2
931
+ E
932
+ (c)Parent 2
933
+ /2
934
+ 0
935
+ /2
936
+ kz
937
+ 2
938
+ 0
939
+ 2
940
+ E
941
+ (d)Parent 2
942
+ FIG. 5: Finite slab spectra(in x-direction, Lx = 80) along ky
943
+ (kz = 0) and kz(ky = 0) respectively for (a,b) WSM with
944
+ γ1 = −0.5, (c,d) WSM with γ2 = 0.5. In (e,f) the slab
945
+ spectra(Lx = 80) E vs. ky for the MWSM|| child created
946
+ from the above two parents for kz = 0 and kz = π
947
+ 2
948
+ respectively. (g) shows the slab spectra E vs. kz at ky = 0
949
+ for the same MWSM|| child system.
950
+ phase
951
+ transitions—corresponding
952
+ to
953
+ gap-closings—in
954
+ the stack between intervals in kz
955
+ with topologically-
956
+ distinct CIs.
957
+ Specifically,
958
+ we use the SCZ model48,
959
+ /2 0
960
+ /2
961
+ kz
962
+ 2.5
963
+ 0.0
964
+ 2.5
965
+ E
966
+ (a) WSM parent 1 x
967
+ /2 0
968
+ /2
969
+ kz
970
+ 2
971
+ 0
972
+ 2
973
+ E
974
+ (b) WSM parent 2
975
+ /2 0
976
+ /2
977
+ kz
978
+ 2
979
+ 0
980
+ 2
981
+ E
982
+ = (c) MWSM perp. child
983
+ /2 0
984
+ /2
985
+ ky
986
+ 2.5
987
+ 0.0
988
+ 2.5
989
+ E
990
+ /2 0
991
+ /2
992
+ ky
993
+ 2
994
+ 0
995
+ 2
996
+ E
997
+ /2 0
998
+ /2
999
+ ky
1000
+ 2
1001
+ 0
1002
+ 2
1003
+ E
1004
+ /2 0
1005
+ /2
1006
+ kz
1007
+ 2.5
1008
+ 0.0
1009
+ 2.5
1010
+ E
1011
+ /2 0
1012
+ /2
1013
+ ky
1014
+ 2
1015
+ 0
1016
+ 2
1017
+ E
1018
+ /2 0
1019
+ /2
1020
+ (kz + ky)
1021
+ 2
1022
+ 0
1023
+ 2
1024
+ E
1025
+ FIG. 6: Finite slab spectra (in x direction, Nx = 80) with the
1026
+ constituent parent Hamiltonians - WSM parent Hamiltonian
1027
+ 1 with γ1 = 0.5 and Weyl nodes along the ky-direction is
1028
+ shown along column (a), WSM parent Hamiltonian 2 with
1029
+ γ = −0.5 with Weyl nodes along the kz-direction along
1030
+ column (b) and the MWSM perpendicular child Hamiltonian
1031
+ along column (c). It is apparent how the surface spectra along
1032
+ kz(for ky = 0) and ky(for kz = 0) combine multiplicatively
1033
+ to create the surface spectra for the MWSM perpendicular
1034
+ system. The lowest diagram along column (c) especially
1035
+ shows the spectra along the diagonal kz + ky direction where
1036
+ the component spectra sin(kz) and sin(ky) have combined to
1037
+ produce sin(kz) sin(ky) as the leading term.
1038
+ HCI = B(2+M −cos kx −cos ky)σz +sin kxσx +sin kyσy
1039
+ in particle-hole space. In the WSM, the mass term is given
1040
+ as M = γ − cos kz. Here, for the range, −1 < γ < 1,
1041
+ kz ∈ [− cos−1 γ, cos−1 γ]. The Fermi arcs we observe in the
1042
+ 2d BZ defined in the ky − kz for open boundary conditions in
1043
+ the x-direction are projections of the chiral edge states of the
1044
+ slices of the corresponding CIs in the stack.
1045
+ The multiplicative counterpart of a Chern insulator was
1046
+ introduced recently by Cook and Moore46 as Multiplicative
1047
+ Chern Insulators(MCIs). Here, one must notice that the MCI
1048
+ has two mass terms derived from each of the parent systems,
1049
+ one from each of the parent systems. Hence, there exists more
1050
+ than one way to stack the MCIs in the kz direction. Either
1051
+ parent mass term can be kz-dependent, for instance, or both
1052
+ can be. Here, we have attached the momentum dependence
1053
+ to both the mass terms, so that the difference in parent mass
1054
+ parameters remains constant. We then characterize the multi-
1055
+ plicative Fermi arc states by opening boundary conditions in
1056
+ the x- and y-directions, and plotting the probability density for
1057
+
1058
+ 8
1059
+ the sum of 40 eigenstates nearest in energy to zero in Fig. 7
1060
+ for kz = 0 (a 2D submanifold of the BZ realizing an MCI) and
1061
+ kz = π
1062
+ 2 (a 2D submanifold of the BZ that is topologically triv-
1063
+ ial). For the former case shown in Fig. 7(a) and (b), the proba-
1064
+ bility density in the corresponding child is localized at sites at
1065
+ the boundary, but also at the sites adjacent to these sites. For
1066
+ the latter case, parent 1 has edge states and parent 2 does not
1067
+ as shown in Fig. 7(d) and (e). The resultant child probability
1068
+ density shows low-energy states localize only at the boundary
1069
+ sites as shown in Fig. 7(f). This localization behavior is sim-
1070
+ ilar to that of the multiplicative Kitaev chain presented in a
1071
+ second work by the present authors, where, if each parent is
1072
+ topological, edge states are localized at lattice sites right at the
1073
+ edge, but also at sites adjacent to these sites. We expect such
1074
+ localization to protect the edge states from backscattering to
1075
+ some extent, which we will explore in future work.
1076
+ 4
1077
+ Boundary states disconnected from bulk states—
1078
+ The MCI introduced by Cook and Moore46 can exhibit topo-
1079
+ logically robust yet floating edge states, which are separated
1080
+ from the bulk by a finite energy gap. MTSMs constructed
1081
+ from MCIs can inherit this exotic boundary state connectivity,
1082
+ displaying boundary states disconnected from the bulk band
1083
+ structure.
1084
+ To realize such a MWSM, we first note when edge states
1085
+ are disconnected from bulk states for the case of the MCI:
1086
+ HCI,p1(k) =B1(2 + M1 − cos kx − cos ky)τ z
1087
+ + sin kxτ x + sin kyτ y,
1088
+ (21a)
1089
+ HCI,p2(k) =B2(2 + M2 − cos kx − cos ky)σz
1090
+ + sin kxσx + sin kyσy,
1091
+ (21b)
1092
+ HMCI,c(k) =[B1(2 + M1 − cos kx − cos ky)τ z
1093
+ + sin kxτ x + sin kyτ y]
1094
+ ⊗ [−B2(2 + M2 − cos kx − cos ky)σz
1095
+ − sin kxσx + sin kyσy],
1096
+ (21c)
1097
+ the range of parameters over which this is possible is M1 ∈
1098
+ [−4, −2] and M2 ∈ [−2, 0] which corresponds to Chern num-
1099
+ bers C = +1 and C = −1 respectively. We therefore con-
1100
+ struct a MWSM for which the Weyl nodes of one parent WSM
1101
+ are separated in k-space by a stack of Chern insulators, each
1102
+ with total Chern number C = +1, and the Weyl nodes of the
1103
+ other parent are separated by a stack of Chern insulators, each
1104
+ with total Chern number C = −1. Comparing Eqn. (22a)
1105
+ with (21a) and Eqn. (22b) with (21b), it is clear that, for each
1106
+ Chern insulator in the stack, the following mapping holds,
1107
+ Mi = γi − cos kz, i ∈ {1, 2}, and i labeling the parent. From
1108
+ this mapping, it is not possible to have M2 ∈ (−4, −2) while
1109
+ γi ∈ (−1, 1), i ∈ {1, 2}. We therefore generalize the map-
1110
+ ping to the following form, Mi = γi − ri cos kz, i ∈ {1, 2},
1111
+ so that the parents and the child Hamiltonian for the MWSM
1112
+ parallel are,
1113
+ Hp1(k) =t11 sin kxτ x + t21 sin kyτ y
1114
+ + t31(2 + γ1 − cos kx − cos ky − r1 cos kz)τ z,
1115
+ (22a)
1116
+ Hp2(k) =t12 sin kxσx + t22 sin kyσy
1117
+ + t32(2 + γ2 − cos kx − cos ky − r2 cos kz)σz,
1118
+ (22b)
1119
+ Hc(k) =[t11 sin kxτ x + t21 sin kyτ y
1120
+ + t31(2 + γ1 − cos kx − cos ky − r1 cos kz)τ z]
1121
+ ⊗ [−t12 sin kxσx + t22 sin kyσy
1122
+ − t32(2 + γ2 − cos kx − cos ky − r2 cos kz)σz].
1123
+ (22c)
1124
+ To construct one parent with Chern number of this stack
1125
+ non-trivial and opposite in sign to the Chern number of the
1126
+ stack in the other parent, we first introduce some terminology.
1127
+ We refer to the region between Weyl nodes including kz = 0
1128
+ as regular Weyl region (RWR) and the region including kz =
1129
+ ±π as the irregular Weyl region (IWR). The existence of Weyl
1130
+ nodes requires |r1,2| ≥ 1 for |γ1,2| < 1. It is then possible to
1131
+ realize a RWR with negative Chern number by varying r1,2,
1132
+ so that γ1,2 − r1,2 cos kz ∈ (−4, −2). These RWRs—one of
1133
+ each parent system—must then occur over the same interval in
1134
+ kz, however, to realize topological floating surface states. We
1135
+ set γ2 = 0 and r2 = 3, which means we have C = −1 for the
1136
+ range [− cos−1( 2
1137
+ 3), cos−1( 2
1138
+ 3)] when M2 = γ2 − r2 cos kz ∈
1139
+ [−3, −2]. Then we must have γ1 = cos π
1140
+ 3 = 0.5 and r1 = 1
1141
+ so that in the region kz ∈ [− cos−1( 2
1142
+ 3), cos−1( 2
1143
+ 3)], we have
1144
+ the same kind of MCI with edge states gapped from the bulk
1145
+ as described in Cook and Moore46. These results are shown in
1146
+ Fig. 8.
1147
+ The MWSM⊥ case of topologically robust yet floating
1148
+ Fermi arc surface states is constructed similarly, and we de-
1149
+ fer thorough investigation of this case to later work.
1150
+ V
1151
+ Effect of Magnetic field on MWSM and Chiral
1152
+ anomaly
1153
+ We now investigate response signatures of MTSMs.
1154
+ As
1155
+ we consider MWSMs here, which may be constructed from
1156
+ WSM parent systems, we focus in particular on the question
1157
+ of whether there is a multiplicative generalization of the chi-
1158
+ ral anomaly, one of the most important signatures of Weyl
1159
+ semimetals: application of non-orthogonal electric and mag-
1160
+ netic fields can pump electrons between Weyl nodes of oppo-
1161
+ site chirality49. More specifically, applying an external mag-
1162
+ netic field parallel to the axis along which Weyl nodes are
1163
+ separated in k-space yields a single chiral Landau level near
1164
+ each of the Weyl nodes. In Weyl semimetals, this suppresses
1165
+ backscattering of electrons with opposite chirality, manifest-
1166
+ ing as a negative magnetoresistance (MR). Weyl semimetals
1167
+
1168
+ 9
1169
+ FIG. 7: Probability densities of superposition of 40 edge state eigenvectors in a 30 × 30(Lx × Ly) square lattice at kz = 0 and
1170
+ kz = π
1171
+ 2 for (a, d) Parent WSM 1 (γ1 = −0.5), (b, e) Parent WSM 2(γ2 = 0.5) and (c, f) MWSM || child (γ1 = −0.5 and
1172
+ γ2 = 0.5) respectively. At kz = 0, both the parent systems are topological as seen from a visible edge state which results in
1173
+ localization at both the edge and second last edge sites in the MWSM || child system. When kz = π
1174
+ 2 , the parent 1 is still
1175
+ topological but the parent 2 is trivial as seen from the absence of edge states which results in localization only at the edge sites
1176
+ of the MWSM || child system.
1177
+ therefore serve as condensed matter platforms for study of the
1178
+ chiral anomaly, also known as Adler-Bell-Jackiw anomaly, as-
1179
+ sociated with the Standard Model of particle physics50. When
1180
+ the external magnetic field is instead oriented perpendicular to
1181
+ the k-space axis along which Weyl nodes are separated, semi-
1182
+ classical calculations indicate the presence of quantum oscil-
1183
+ lations in the density of states51, observable in magnetization,
1184
+ magnetic torque, and MR measurements50.
1185
+ To study the effects of external fields on the MWSM,
1186
+ we first derive the Landau level structure for the the Weyl
1187
+ semimetal in the cases of external magnetic fields applied par-
1188
+ allel and perpendicular to the Weyl node axis. We can then
1189
+ draw parallels between these results and their generalizations
1190
+ in the case of the MWSM.
1191
+ A
1192
+ Chiral anomaly in WSM
1193
+ To study the chiral anomaly in a WSM, we consider a par-
1194
+ ticular Bloch Hamiltonian HW SM(k) characterizing a Weyl
1195
+ semimetal phase and its expansion around the kz-axis, i.e.
1196
+ k → (0, 0, kz) (up to 2nd order in kx and ky),
1197
+ HW SM(k) =t(2 + γ − cos kx − cos ky − cos kz)σz
1198
+ + t′ sin kyσy + t′ sin kxσx,
1199
+ ≈t(Q + 1
1200
+ 2(k2
1201
+ x + k2
1202
+ y))σz + t′kyσy + t′kxσx,
1203
+ (23)
1204
+ where Q = γ − cos kz. Applying the magnetic field, B =
1205
+ Bˆz along the Weyl node axis, Peierls substitution changes the
1206
+ momenta in the following way, kx → k′
1207
+ x = kx, ky → k′
1208
+ y =
1209
+ ky + eBx, and kz → k′
1210
+ z = kz. The position-momentum
1211
+ commutator, implies, [k′
1212
+ y, k′
1213
+ x] = ieB, so that, it is possible to
1214
+ define bosonic ladder operators,
1215
+ a = k′
1216
+ x − ik′
1217
+ y
1218
+
1219
+ 2eB
1220
+ ;
1221
+ a† = k′
1222
+ x + ik′
1223
+ y
1224
+
1225
+ 2eB
1226
+ ;
1227
+ [a, a†] = 1.
1228
+ (24)
1229
+
1230
+ 10
1231
+ /2
1232
+ 0
1233
+ /2
1234
+ ky
1235
+ 4
1236
+ 2
1237
+ 0
1238
+ 2
1239
+ 4
1240
+ E
1241
+ (e)MWSM ||
1242
+ /2
1243
+ 0
1244
+ /2
1245
+ kz
1246
+ 4
1247
+ 2
1248
+ 0
1249
+ 2
1250
+ 4
1251
+ E
1252
+ (f)MWSM ||
1253
+ /2
1254
+ 0
1255
+ /2
1256
+ ky
1257
+ 2.5
1258
+ 0.0
1259
+ 2.5
1260
+ E
1261
+ (a)Parent 1
1262
+ /2
1263
+ 0
1264
+ /2
1265
+ kz
1266
+ 2.5
1267
+ 0.0
1268
+ 2.5
1269
+ E
1270
+ (b)Parent 1
1271
+ /2
1272
+ 0
1273
+ /2
1274
+ ky
1275
+ 2.5
1276
+ 0.0
1277
+ 2.5
1278
+ E
1279
+ (c)Parent 2
1280
+ /2
1281
+ 0
1282
+ /2
1283
+ kz
1284
+ 2.5
1285
+ 0.0
1286
+ 2.5
1287
+ E
1288
+ (d)Parent 2
1289
+ FIG. 8: Slab spectra along ky (subfigure a) and kz (subfigure
1290
+ b) for WSM parent 1 with γ1 = 0, r1 = 3, and slab spectra
1291
+ along ky (subfigure c) and kz (subfigure d) for WSM parent 2
1292
+ with γ2 = 2/3, r2 = 1, respectively. Corresponding slab
1293
+ spectra for the MWSM|| with t11 = t12 = 1, t21 = t22 = 1,
1294
+ t31 = t32 = 1 along (e) ky and (f) kz, respectively, with
1295
+ edges separate from the bulk slab spectra along ky.
1296
+ Applying Eqn.S18, after substituting k → k′, we get the fol-
1297
+ lowing system which looks similar to the polariton conserving
1298
+ Jaynes-Cummings Hamiltonian,
1299
+ HW SM(k′) ≈ t(Q+eB(a†a+1
1300
+ 2))σz+t′√
1301
+ 2eB(aσ++a†σ−),
1302
+ (25)
1303
+ where σ± =
1304
+ 1
1305
+ 2(σx ± iσy) are the spin ladder operators in
1306
+ the basis {|+⟩ , |−⟩} of σz (σz |±⟩ = ± |±⟩). The ground
1307
+ state from the above Hamiltonian is given by the eigenvec-
1308
+ tor, |ψLLL⟩ = |0; −⟩ (states denoted as |n; s⟩ where n is the
1309
+ bosonic number and s is the spin direction), which leads to the
1310
+ lowest Landau level energy,
1311
+ ELLL = −t(Q + 1
1312
+ 2eB).
1313
+ (26)
1314
+ Near each of the Weyl nodes, it is easy to observe that |ψLLL⟩
1315
+ is chiral as shown in Fig. 9. The other Landau levels can be
1316
+ derived by restricting to the two dimensional disjoint spaces,
1317
+ {|n, −⟩ , |n − 1, +⟩}, parametrized by the bosonic number, n
1318
+ so that in each such basis, the Hamiltonian is,
1319
+ H(kz, n) = −teB
1320
+ 2 σ0 −t(Q+eBn)σz +t′√
1321
+ 2eBnσx. (27)
1322
+ The energy for the other Landau levels parametrized by n =
1323
+ 1, 2, ... is given by the eigenvalues of Eqn. 27,
1324
+ EnLL = −teB
1325
+ 2
1326
+ ±
1327
+
1328
+ t2(Q + eBn)2 + 2t′2eBn.
1329
+ (28)
1330
+ We have illustrated the analytically calculated Landau levels
1331
+ in Fig. 9 and compared them to numerical calculations of Lan-
1332
+ dau levels. The numerical computation involves plotting the
1333
+ bands for the Peierls substituted Weyl semimetal with periodic
1334
+ boundary conditions, say in the x-direction, and subjected to
1335
+ magnetic field in integer multiples of 2π
1336
+ L , where L is the size of
1337
+ the lattice in the x-direction. We observe that the chiral Lan-
1338
+ dau level from both analytical and numerical methods overlap,
1339
+ with an approximate overlap of the other Landau levels since
1340
+ we only considered till second order in kx and ky.
1341
+ Next we consider the case when the magnetic field is di-
1342
+ rected perpendicular to the Weyl node axis, say B = Bˆy.
1343
+ Expanding the first line of Eqn. 23 around the Weyl node,
1344
+ k = (0, 0, k0 = cos−1 γ) of positive chirality, and setting
1345
+ t = t′ = 1, we get,
1346
+ HW SM(k) ≈ sin k0(kz − k0)σz + kyσy + kxσx,
1347
+ =⇒ H′
1348
+ W SM(k) ≈ − kyσz + kxσx + sin k0(kz − k0)σy,
1349
+ (29)
1350
+ where in the second line we have rotated the Hamiltonian to
1351
+ a new basis via, σx → σz and σx → −σx. In the presence
1352
+ of mentioned magnetic field perpendicular to the Weyl node
1353
+ axis, the Peierls substitution is applied as kx → k′
1354
+ x = kx,
1355
+ ky → k′
1356
+ y = ky and kz → k′
1357
+ z = kz − eBx. The commuta-
1358
+ tion relation, [kx, sin k0(kz − k0 − eBx)] = ieB sin k0, then
1359
+ constructs the bosonic ladder operators,
1360
+ b = kz − k0 − eBx − ikx
1361
+ √2eB sin k0
1362
+ ;
1363
+ b† = kz − k0 − eBx + ikx
1364
+ √2eB sin k0
1365
+ .
1366
+ (30)
1367
+
1368
+ 11
1369
+ 2
1370
+ 0
1371
+ 2
1372
+ kz
1373
+ 4
1374
+ 2
1375
+ 0
1376
+ 2
1377
+ 4
1378
+ E
1379
+ Numerical
1380
+ Analytical
1381
+ Chiral LLL(numerical)
1382
+ Chiral LLL(analytical)
1383
+ 2
1384
+ 0
1385
+ 2
1386
+ ky
1387
+ 4
1388
+ 2
1389
+ 0
1390
+ 2
1391
+ 4
1392
+ E
1393
+ Numerical
1394
+ Analytical(near WN)
1395
+ Chiral LLL(numerical)
1396
+ Chiral LLL(analytical near WN)
1397
+ FIG. 9: Landau Levels for the two-band Weyl Semimetal
1398
+ calculated analytically from Eqn. 25 and numerically, with
1399
+ t = 1 = t′, γ = 0 and B = 2π
1400
+ 51 ˆz(upper) and
1401
+ B = 2π
1402
+ 51 ˆy(lower). The (black) bands indicate the numerically
1403
+ calculated Landau levels and the (red) bands for the
1404
+ analytically calculated Landau levels for n = 1, 2, ..., 19. The
1405
+ (blue) band and the dotted (magenta) band is the Lowest
1406
+ Landau Level(LLL) calculated numerically and analytically,
1407
+ and is responsible for the Chiral anomaly in the upper figure
1408
+ and Weyl orbits in the lower figure.
1409
+ The system in Eqn. 29 then changes to,
1410
+ HW SM(k′) ≈ −kyσz +
1411
+
1412
+ 2eB sin k0(bσ+ + b†σ−). (31)
1413
+ Similar
1414
+ to
1415
+ the
1416
+ previous
1417
+ case,
1418
+ it
1419
+ is
1420
+ possible
1421
+ to
1422
+ re-
1423
+ solve the Hamiltonian into the subspaces spanned by
1424
+ {|n, −⟩ , |n − 1, +⟩}, where n is the eigenvalue of the num-
1425
+ ber operator, b†b. We get two chiral lowest Landau levels with
1426
+ energies, E = ±ky in the bulk, which are responsible for the
1427
+ chiral anomaly50.
1428
+ B
1429
+ Chiral anomaly in the MWSM
1430
+ We now study the response of the MWSM to external fields
1431
+ for comparison with the signatures of the chiral anomaly in the
1432
+ WSM reviewed in the previous section. We treat the MWSM
1433
+ parallel and perpendicular cases separately, given the expected
1434
+ sensitivity of the response to orientation of the axes of node
1435
+ separation relative to the orientation of the external fields.
1436
+ 1
1437
+ Landau levels in the MWSM parallel system:
1438
+ In Sec. III A we have derived the Dirac Hamiltonian for the
1439
+ MWSM|| in the vicinity of each of its two nodes, (0, 0, k01)
1440
+ and (0, 0, k02) derived respectively from each of its two par-
1441
+ ents.
1442
+ Hc
1443
+ ||,1(k) =(t′
1444
+ 1kxτ x + t′
1445
+ 1kyτ y
1446
+ + t1 sin k01¯kz,1τ z)t2(γ1 − γ2)σz,
1447
+ Hc
1448
+ ||,2(k) =t1(γ1 − γ2)τ z(−t′
1449
+ 2kxσx + t′
1450
+ 2kyσy
1451
+ − t2 sin k02¯kz,2σz)
1452
+ In this section, we will only consider cases where γ1 ̸= γ2. To
1453
+ investigate the response to external fields for the MWSM||, we
1454
+ consider the effect of magnetic field along the Weyl node axis,
1455
+ i.e., B = Bˆz. We use the exact Peierls substitution in Eqn.
1456
+ S18, so that the two expressions above transform as follows,
1457
+ Hc
1458
+ ||,1(k′) =t2(γ1 − γ2)(t1 sin k01¯kz,1τ z
1459
+ + t′
1460
+ 1
1461
+
1462
+ 2eB(aτ + + a†τ −))σz,
1463
+ Hc
1464
+ ||,2(k′) =t1(γ1 − γ2)τ z(−t2 sin k01¯kz,2σz
1465
+ − t′
1466
+ 2
1467
+
1468
+ 2eB(aσ− + a†σ+)).
1469
+ (32)
1470
+ Here τ ± =
1471
+ 1
1472
+ 2(τ x ± iτ y) and σ± =
1473
+ 1
1474
+ 2(σx ± iσy) are the
1475
+ pseudo-spin ladder operators in the τ and σ spaces. The low-
1476
+ est Landau levels from the above two expressions are given
1477
+ below,
1478
+ Hc
1479
+ ||,1 →E1,LLL = ±(γ1 − γ2)t1t2 sin k01¯kz,1,
1480
+ |ψ1,LLL⟩ = |0; −, ±⟩ ,
1481
+ Hc
1482
+ ||,2 →E2,LLL = ∓(γ1 − γ2)t2t2 sin k02¯kz,2,
1483
+ |ψ2,LLL⟩ = |0; ±, +⟩ .
1484
+ (33)
1485
+ One may notice that the eigenvector |0; −, +⟩ occurs in the
1486
+ vicinity of each node.
1487
+ Therefore, we calculate its energy
1488
+ eigenvalue if one expands the MWSM parallel system in the
1489
+ vicinity of the kz axis. The details of the calculation can be
1490
+ found in the Supplementary Materials S3. We find the energy
1491
+ is given as,
1492
+ E|0;−,+⟩ = (Q1Q2 + 1
1493
+ 2eB(Q1 + Q2)).
1494
+ (34)
1495
+ We show that this expression is consistent with the numer-
1496
+ ically calculated Landau levels in Fig. 10.
1497
+ The other chi-
1498
+ ral Landau level consistent with the other two eigenvectors,
1499
+ |0; −, −⟩ and |0; +, +⟩ near their respective Weyl nodes ap-
1500
+ pears distinct from |0; −, +⟩ away from the Weyl nodes.
1501
+
1502
+ 12
1503
+ /2
1504
+ 0
1505
+ /2
1506
+ kz
1507
+ 0.6
1508
+ 0.4
1509
+ 0.2
1510
+ 0.0
1511
+ 0.2
1512
+ 0.4
1513
+ 0.6
1514
+ E
1515
+ (a)Landau Levels for B = Bz in MWSM pll
1516
+ /2
1517
+ 0
1518
+ /2
1519
+ ky
1520
+ 0.6
1521
+ 0.4
1522
+ 0.2
1523
+ 0.0
1524
+ 0.2
1525
+ 0.4
1526
+ 0.6
1527
+ E
1528
+ (b)Landau Levels for B = By in MWSM pll
1529
+ FIG. 10: The Landau Levels for the MWSM parallel
1530
+ Hamiltonian with γ1 = −0.5, γ2 = 0.5,
1531
+ t1 = t′
1532
+ 1 = t2 = t′
1533
+ 2 = 1 and B = 2π
1534
+ 80 . (a) and (b) show the
1535
+ Landau levels for the magnetic field along the Weyl axis and
1536
+ perpendicular to the Weyl axis (at Weyl node (0, 0, π
1537
+ 3 )
1538
+ respectively. The (red) bands refer to the lowest Landau
1539
+ levels and the (black) bands form the bulk Landau levels.
1540
+ In Fig. 10, for certain values of γ1 and γ2, it appears, at
1541
+ first glance, as if there are two separate, chiral Landau lev-
1542
+ els corresponding to |0; −, −⟩ and |1; , −, −⟩ respectively. All
1543
+ four Weyl nodes are connected by each of these LLLs, how-
1544
+ ever, and the two LLLs in combination furthermore account
1545
+ for each chirality at each node. Although this is reminiscent of
1546
+ the Dirac semimetal, there is potentially a distinction in char-
1547
+ acter between the chiralities at each node. If each parent cor-
1548
+ responds to a particular degree of freedom, for instance, and
1549
+ these dofs are physically distinct from one another in some
1550
+ sense, such as one parent corresponding to a two-fold valley
1551
+ dof, and the other corresponding to a two-fold layer dof, the
1552
+ chiral anomalies are inequivalent and do not compensate one
1553
+ another as they would for a Dirac semimetal.
1554
+ The two apparently ’separated’ LLLs seem to only scatter
1555
+ between the Weyl nodes derived from their respective parents,
1556
+ i.e.
1557
+ intra-parent scattering.
1558
+ Upon closer inspection, how-
1559
+ ever, we see the intersection point between two apparently
1560
+ separated Landau levels is actually a very small gap.
1561
+ We
1562
+ have verified in Supplementary Sec. S3, that the gap is fi-
1563
+ nite in analytical calculations performed to second order in
1564
+ momenta. The gap is an emergent feature of the multiplica-
1565
+ tive chiral anomaly, with the single LLL reducing to |0; −, −⟩
1566
+ and |0; +, +⟩ at nodes associated with a particular parent. We
1567
+ therefore interpret the multiplicative chiral anomaly as ex-
1568
+ hibiting parent-graded features as well as emergent features
1569
+ not associated with either individual parent. This is reminis-
1570
+ cent of the topologically robust floating bands of the multi-
1571
+ plicative Chern insulator46.
1572
+ 2
1573
+ Landau levels in the MWSM perpendicular system:
1574
+ In Sec. III B, we had shown the linear expansion of the
1575
+ MWSM⊥ Bloch Hamiltonian near each of the nodes corre-
1576
+ sponding to one parent with Weyl nodes separated along the
1577
+ ky axis and the other parent with Weyl nodes separated along
1578
+ the kz axis in Eqn. 18 and 19. Without loss of generality, we
1579
+ consider, t31 = t32 = t21 = t22 = 1 = t11 = t12. There
1580
+ exists three separate cases one needs to check - (i) magnetic
1581
+ field along the Weyl axis of the first parent, B = Bˆy, (ii) mag-
1582
+ netic field along the Weyl axis of the second parent, B = Bˆz,
1583
+ and (iii) magnetic field perpendicular to the Weyl axis of both
1584
+ parents, B = Bˆx.
1585
+ • Case 1 (B = Bˆy) : Substituting, kx → k′
1586
+ x = kx+eBz,
1587
+ and using the bosonic ladder operators, a⊥,y = kz−ik′
1588
+ x
1589
+
1590
+ 2eB ,
1591
+ a†
1592
+ ⊥,y = kz+ik′
1593
+ x
1594
+
1595
+ 2eB , we have, from Eqn. 18,
1596
+ H⊥,1(k′) =(sin k0,1(ky − k0,1)τ z +
1597
+
1598
+ 2eB(a⊥,yτ + + a†
1599
+ ⊥,yτ −)
1600
+ ⊗ (sin k0,1σy + (γ1 − γ2)σz).
1601
+ (35)
1602
+ For the expression from Eqn.
1603
+ 19, we instead con-
1604
+ sider the following bosonic ladder operators, ˜a⊥,y =
1605
+ ˜
1606
+ kz−ik′
1607
+ x
1608
+
1609
+ 2eB sin k0,2 and ˜a†
1610
+ ⊥,y =
1611
+ ˜
1612
+ kz+ik′
1613
+ x
1614
+
1615
+ 2eB sin k0,2 , which gives us,
1616
+ H⊥,2(k′) =(sin k0,2τ y + (γ1 − γ2)τ z)
1617
+ ⊗ (kyσy −
1618
+
1619
+ 2eB sin k0,2(˜a⊥,yσ+
1620
+ y + ˜a†
1621
+ ⊥,yσ−
1622
+ y )).
1623
+ (36)
1624
+ It is easy to find the lowest Landau level energies in
1625
+ the vicinity of each node. From Eqn. 35 and 36, we
1626
+ respectively have the LLL energies,
1627
+ Ey,1,LLL = ±
1628
+
1629
+ sin2 k0,1 + (γ1 − γ2)2 sin k0,1(ky − k0,1),
1630
+ Ey,2,LLL = ±
1631
+
1632
+ sin2 k0,2 + (γ1 − γ2)2ky.
1633
+ (37)
1634
+ We then find two ky-dependent chiral LLLs connecting
1635
+ the nodes of the first parent, while we have two chiral
1636
+ LLLs at ky = 0 due to the second parent, as shown in
1637
+ Fig. 11 (a). The following result was expected if one
1638
+ considers the Landau levels for the parents for different
1639
+
1640
+ 13
1641
+ directions of the magnetic field discussed in the previ-
1642
+ ous subsection. For the MWSM perpendicular case, the
1643
+ incident magnetic field in this case is both parallel to
1644
+ the Weyl axis of parent 1 and perpendicular to the Weyl
1645
+ axis of parent 2, so that we get both kinds of Landau
1646
+ levels simultaneously.
1647
+ • Case 2 (B = Bˆz): This produces results similar to Case
1648
+ 1, as shown in Fig. 11 (b). A similar calculation gives
1649
+ us the lowest Landau level energies,
1650
+ Ez,1,LLL = ±
1651
+
1652
+ sin2 k0,1 + (γ1 − γ2)2kz,
1653
+ Ez,2,LLL = ±
1654
+
1655
+ sin2 k0,2 + (γ1 − γ2)2 sin k0,2(kz − k0,2).
1656
+ (38)
1657
+ VI
1658
+ Discussion and Conclusion
1659
+ In this work, we have introduced the previously-unidentified
1660
+ multiplicative topological semimetal phases of matter, distin-
1661
+ guished by Bloch Hamiltonians with a symmetry-protected
1662
+ tensor product structure. Parent Bloch Hamiltonians, with ei-
1663
+ ther one or both of the parents being topologically non-trivial,
1664
+ may then be combined in the tensor product to realize mul-
1665
+ tiplicative topological semimetal phases inheriting topology
1666
+ from the parent states.
1667
+ We consider foundational examples of multiplicative topo-
1668
+ logical semimetals, with Bloch Hamiltonians constructed as
1669
+ tensor products of two-band Bloch Hamiltonians, each char-
1670
+ acterizing a Weyl semimetal phase. These multiplicative topo-
1671
+ logical semimetal phases are protected by a combination of
1672
+ symmetries of class DIII at the level of the child, and each
1673
+ parent Bloch Hamiltonian in class D. Given the great vari-
1674
+ ety of exotic crystalline point group symmetries considered to
1675
+ protect most recently-identified topological semimetal phases,
1676
+ it is remarkable that the symmetry-protection of these multi-
1677
+ plicative semimetal phases is relatively simple, and suggests
1678
+ many additional multiplicative semimetal phases may be iden-
1679
+ tified by enforcing these many other symmetries on parent
1680
+ Bloch Hamiltonians.
1681
+ We first characterize multiplicative topological semimetal
1682
+ phases in the bulk, showing the bulk spectrum of the child
1683
+ Bloch Hamiltonian depends in a multiplicative way on the
1684
+ spectra of the parent Bloch Hamiltonians: each eigenvalue of
1685
+ the child, at a given point in k-space, is a product of eigen-
1686
+ values, one from each parent. We furthermore consider two
1687
+ different constructions of the multiplicative Weyl semimetal,
1688
+ either for the case of each parent having a pair of Weyl nodes
1689
+ separated along the same axis in k-space (parallel construc-
1690
+ tion), or along perpendicular axes in k-space (perpendicu-
1691
+ lar construction). For either construction, the multiplicative
1692
+ symmetry-protected structure can then naturally yield nodal
1693
+ degeneracies reminiscent of Dirac nodes or higher-charge
1694
+ Weyl nodes. However, the multiplicative degeneracies are dis-
1695
+ tinguished from these more familiar quasiparticles by distinc-
1696
+ tive Wannier spectra signatures in the bulk, and exotic bulk-
1697
+ boundary correspondence. Importantly, bulk characterization
1698
+ /2
1699
+ 0
1700
+ /2
1701
+ ky
1702
+ 0.6
1703
+ 0.4
1704
+ 0.2
1705
+ 0.0
1706
+ 0.2
1707
+ 0.4
1708
+ 0.6
1709
+ E
1710
+ (a)Landau Levels for B = By in MWSM perp
1711
+ /2
1712
+ 0
1713
+ /2
1714
+ kz
1715
+ 0.6
1716
+ 0.4
1717
+ 0.2
1718
+ 0.0
1719
+ 0.2
1720
+ 0.4
1721
+ 0.6
1722
+ E
1723
+ (b)Landau Levels for B = Bz in MWSM perp
1724
+ FIG. 11: Landau levels for the MWSM perpendicular system
1725
+ with γ1 = −0.5 and γ2 = 0.5 representing separation of
1726
+ Weyl nodes along the ky and kz direction respectively. We
1727
+ show two cases, (a) when magnetic field is along the
1728
+ y-direction and (b) when magnetic field is along the
1729
+ z-direction. Red lines indicate the chiral Landau levels. since
1730
+ the magnetic field is paralle to one Weyl node separation and
1731
+ perpendicular to another Weyl node separation, the above
1732
+ behaviour is expected.
1733
+ by Wannier spectra reveals a complex dependence of Berry
1734
+ connection in the child Bloch Hamiltonian on Berry connec-
1735
+ tion of each parent Bloch Hamiltonian, depending on whether
1736
+ the parents are constructed with Weyl nodes separated along
1737
+ the same axis in momentum-space (parallel) or not (perpen-
1738
+ dicular). Additionally, the connectivity of Fermi arc surface
1739
+ states for the multiplicative Weyl semimetal is far more com-
1740
+ plex than in standard Dirac or Weyl semimetals, reflecting the
1741
+ underlying dependence of the child topology on the topology
1742
+ of the parents. An especially interesting example is the re-
1743
+ alization of topologically-protected—yet floating—boundary
1744
+ states.
1745
+ Response signatures of the multiplicative Weyl semimetal
1746
+
1747
+ 14
1748
+ also inherit response signatures of the parents, with the po-
1749
+ tential for emergent phenomena beyond that of either parent
1750
+ individually. Here, we consider the multiplicative analog of
1751
+ one of the defining response signatures of the Weyl semimetal,
1752
+ the chiral anomaly, finding instead multiple co-existing chiral
1753
+ anomalies graded by the parent degrees of freedom, as well as
1754
+ emergent features in the Landau level structure not inherited
1755
+ from a particular parent. In the case of parents correspond-
1756
+ ing to effectively the same degree of freedom, the response
1757
+ reduces to a signature reminiscent of a Dirac semimetal. This
1758
+ brings up the possibility of controlled manipulation of partic-
1759
+ ular properties of an electronic system similar to spintronics.
1760
+ Future work will characterize other signatures of multi-
1761
+ plicative topological semimetals anticipated given the exten-
1762
+ sive characterization of Weyl and Dirac semimetals, particu-
1763
+ larly optical and non-linear responses given the tremendous
1764
+ interest in the bulk photovoltaic effect in Weyl semimetals, as
1765
+ well as symmetry-protection of more exotic topological quasi-
1766
+ particles, such as multiplicative generalizations of multifold
1767
+ fermions or nodal lines. Given the immense body of work
1768
+ on topological semimetals and the surprising consequences
1769
+ of multiplicative topology for bulk-boundary correspondence,
1770
+ nodal band structure, and Berry phase structure, our intro-
1771
+ duction of previously-unidentified multiplicative topological
1772
+ semimetals into the literature lays the foundation for consid-
1773
+ erable future theoretical and experimental study, which will
1774
+ greatly expand and deepen our understanding of topological
1775
+ semimetal phases.
1776
+ Acknowledgements - We gratefully acknowledge help-
1777
+ ful discussions with J. E. Moore, I. A. Day, D. Varjas and
1778
+ R. Calderon.
1779
+ Correspondence
1780
+ -
1781
+ Correspondence
1782
+ and
1783
+ requests
1784
+ for materials should be addressed to A.M.C. (email:
1785
1786
+ 1 Alexey A. Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng
1787
+ Wu, Matthias Troyer, Xi Dai, and B. Andrei Bernevig, “Type-II
1788
+ Weyl semimetals,” Nature 527, 495–498 (2015).
1789
+ 2 Barry Bradlyn, Jennifer Cano, Zhijun Wang, M. G. Vergniory,
1790
+ C. Felser,
1791
+ R. J. Cava,
1792
+ and B. Andrei Bernevig, “Be-
1793
+ yond dirac and weyl fermions:
1794
+ Unconventional quasiparti-
1795
+ cles in conventional crystals,” Science 353, aaf5037 (2016),
1796
+ https://www.science.org/doi/pdf/10.1126/science.aaf5037.
1797
+ 3 Shin-Ming Huang, Su-Yang Xu, Ilya Belopolski, Chi-Cheng Lee,
1798
+ Guoqing Chang, BaoKai Wang, Nasser Alidoust, Guang Bian,
1799
+ Madhab Neupane, Chenglong Zhang, Shuang Jia, Arun Bansil,
1800
+ Hsin Lin,
1801
+ and M. Zahid Hasan, “A Weyl Fermion semimetal
1802
+ with surface Fermi arcs in the transition metal monopnictide TaAs
1803
+ class,” Nature Communications 6, 7373 (2015).
1804
+ 4 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma,
1805
+ P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
1806
+ T. Qian, and H. Ding, “Experimental discovery of weyl semimetal
1807
+ taas,” Phys. Rev. X 5, 031013 (2015).
1808
+ 5 B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang,
1809
+ L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov,
1810
+ J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, “Ob-
1811
+ servation of Weyl nodes in TaAs,” Nature Physics 11, 724–727
1812
+ (2015).
1813
+ 6 Su-Yang Xu, Nasser Alidoust, Ilya Belopolski, Zhujun Yuan,
1814
+ Guang Bian, Tay-Rong Chang, Hao Zheng, Vladimir N. Strocov,
1815
+ Daniel S. Sanchez, Guoqing Chang, Chenglong Zhang, Daixi-
1816
+ ang Mou, Yun Wu, Lunan Huang, Chi-Cheng Lee, Shin-Ming
1817
+ Huang, BaoKai Wang, Arun Bansil, Horng-Tay Jeng, Titus Neu-
1818
+ pert, Adam Kaminski, Hsin Lin, Shuang Jia, and M. Zahid Hasan,
1819
+ “Discovery of a Weyl fermion state with Fermi arcs in niobium ar-
1820
+ senide,” Nature Physics 11, 748–754 (2015).
1821
+ 7 Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neu-
1822
+ pane, Guang Bian, Chenglong Zhang, Raman Sankar, Guoqing
1823
+ Chang, Zhujun Yuan, Chi-Cheng Lee, Shin-Ming Huang, Hao
1824
+ Zheng, Jie Ma, Daniel S. Sanchez, BaoKai Wang, Arun Ban-
1825
+ sil, Fangcheng Chou, Pavel P. Shibayev, Hsin Lin, Shuang Jia,
1826
+ and M. Zahid Hasan, “Discovery of a weyl fermion semimetal
1827
+ and topological fermi arcs,” Science 349, 613–617 (2015),
1828
+ https://www.science.org/doi/pdf/10.1126/science.aaa9297.
1829
+ 8 Sergey Borisenko, Quinn Gibson, Danil Evtushinsky, Volodymyr
1830
+ Zabolotnyy, Bernd B¨uchner, and Robert J. Cava, “Experimental
1831
+ realization of a three-dimensional dirac semimetal,” Phys. Rev.
1832
+ Lett. 113, 027603 (2014).
1833
+ 9 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng,
1834
+ D. Prabhakaran, S-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch,
1835
+ Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L.
1836
+ Chen, “A stable three-dimensional topological Dirac semimetal
1837
+ Cd3As2,” Nature Materials 13, 677–681 (2014).
1838
+ 10 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prab-
1839
+ hakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and
1840
+ Y. L. Chen, “Discovery of a three-dimensional topological dirac
1841
+ semimetal, na¡sub¿3¡/sub¿bi,” Science 343, 864–867 (2014),
1842
+ https://www.science.org/doi/pdf/10.1126/science.1245085.
1843
+ 11 Madhab Neupane, Su-Yang Xu, Raman Sankar, Nasser Ali-
1844
+ doust, Guang Bian, Chang Liu, Ilya Belopolski, Tay-Rong Chang,
1845
+ Horng-Tay Jeng, Hsin Lin, Arun Bansil, Fangcheng Chou, and
1846
+ M. Zahid Hasan, “Observation of a three-dimensional topological
1847
+ Dirac semimetal phase in high-mobility Cd3As2,” Nature Com-
1848
+ munications 5, 3786 (2014).
1849
+ 12 Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y.
1850
+ Savrasov, “Topological semimetal and fermi-arc surface states in
1851
+ the electronic structure of pyrochlore iridates,” Phys. Rev. B 83,
1852
+ 205101 (2011).
1853
+ 13 A. A. Burkov and Leon Balents, “Weyl semimetal in a topological
1854
+ insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
1855
+ 14 G´abor B. Hal´asz and Leon Balents, “Time-reversal invariant re-
1856
+ alization of the weyl semimetal phase,” Phys. Rev. B 85, 035103
1857
+ (2012).
1858
+ 15 N. P. Armitage, E. J. Mele, and Ashvin Vishwanath, “Weyl and
1859
+ dirac semimetals in three-dimensional solids,” Rev. Mod. Phys.
1860
+ 90, 015001 (2018).
1861
+ 16 Yan Sun, Shu-Chun Wu, Mazhar N. Ali, Claudia Felser,
1862
+ and
1863
+ Binghai Yan, “Prediction of weyl semimetal in orthorhombic
1864
+ mote2,” Phys. Rev. B 92, 161107 (2015).
1865
+ 17 Yuval Baum, Erez Berg, S. A. Parameswaran, and Ady Stern,
1866
+ “Current at a distance and resonant transparency in weyl semimet-
1867
+ als,” Phys. Rev. X 5, 041046 (2015).
1868
+ 18 Andrew C Potter, Itamar Kimchi,
1869
+ and Ashvin Vishwanath,
1870
+ “Quantum oscillations from surface fermi arcs in weyl and dirac
1871
+ semimetals,” Nature communications 5, 1–6 (2014).
1872
+ 19 Andr´as Gyenis, Hiroyuki Inoue, Sangjun Jeon, Brian B Zhou,
1873
+ Benjamin E Feldman, Zhijun Wang, Jian Li, Shan Jiang, Quinn D
1874
+
1875
+ 15
1876
+ Gibson, Satya K Kushwaha, Jason W Krizan, Ni Ni, Robert J
1877
+ Cava, B Andrei Bernevig, and Ali Yazdani, “Imaging electronic
1878
+ states on topological semimetals using scanning tunneling mi-
1879
+ croscopy,” New Journal of Physics 18, 105003 (2016).
1880
+ 20 Rajib Batabyal,
1881
+ Noam Morali,
1882
+ Nurit Avraham,
1883
+ Yan Sun,
1884
+ Marcus
1885
+ Schmidt,
1886
+ Claudia
1887
+ Felser,
1888
+ Ady
1889
+ Stern,
1890
+ Binghai
1891
+ Yan,
1892
+ and Haim Beidenkopf, “Visualizing weakly bound
1893
+ surface
1894
+ fermi
1895
+ arcs
1896
+ and
1897
+ their
1898
+ correspondence
1899
+ to
1900
+ bulk
1901
+ weyl
1902
+ fermions,”
1903
+ Science
1904
+ Advances
1905
+ 2,
1906
+ e1600709
1907
+ (2016),
1908
+ https://www.science.org/doi/pdf/10.1126/sciadv.1600709.
1909
+ 21 H.B. Nielsen and Masao Ninomiya, “The adler-bell-jackiw
1910
+ anomaly and weyl fermions in a crystal,” Physics Letters B 130,
1911
+ 389–396 (1983).
1912
+ 22 D. T. Son and B. Z. Spivak, “Chiral anomaly and classical nega-
1913
+ tive magnetoresistance of weyl metals,” Phys. Rev. B 88, 104412
1914
+ (2013).
1915
+ 23 S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and
1916
+ A. Vishwanath, “Probing the chiral anomaly with nonlocal trans-
1917
+ port in three-dimensional topological semimetals,” Phys. Rev. X
1918
+ 4, 031035 (2014).
1919
+ 24 Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang, Dong
1920
+ Chen, Zhanhai Yang, Hui Liang, Mianqi Xue, Hongming Weng,
1921
+ Zhong Fang, Xi Dai,
1922
+ and Genfu Chen, “Observation of the
1923
+ chiral-anomaly-induced negative magnetoresistance in 3d weyl
1924
+ semimetal taas,” Phys. Rev. X 5, 031023 (2015).
1925
+ 25 Cheng-Long Zhang, Su-Yang Xu, Ilya Belopolski, Zhujun Yuan,
1926
+ Ziquan Lin, Bingbing Tong, Guang Bian, Nasser Alidoust,
1927
+ Chi-Cheng Lee, Shin-Ming Huang, Tay-Rong Chang, Guoqing
1928
+ Chang, Chuang-Han Hsu, Horng-Tay Jeng, Madhab Neupane,
1929
+ Daniel S. Sanchez, Hao Zheng, Junfeng Wang, Hsin Lin, Chi
1930
+ Zhang, Hai-Zhou Lu, Shun-Qing Shen, Titus Neupert, M. Za-
1931
+ hid Hasan, and Shuang Jia, “Signatures of the Adler–Bell–Jackiw
1932
+ chiral anomaly in a Weyl fermion semimetal,” Nature Communi-
1933
+ cations 7, 10735 (2016).
1934
+ 26 Chandra Shekhar, Ajaya K. Nayak, Yan Sun, Marcus Schmidt,
1935
+ Michael Nicklas, Inge Leermakers, Uli Zeitler, Yurii Skourski,
1936
+ Jochen Wosnitza, Zhongkai Liu, Yulin Chen, Walter Schnelle,
1937
+ Horst Borrmann, Yuri Grin, Claudia Felser,
1938
+ and Binghai Yan,
1939
+ “Extremely large magnetoresistance and ultrahigh mobility in the
1940
+ topological Weyl semimetal candidate NbP,” Nature Physics 11,
1941
+ 645–649 (2015).
1942
+ 27 Frank Arnold, Chandra Shekhar, Shu-Chun Wu, Yan Sun, Ri-
1943
+ cardo Donizeth dos Reis, Nitesh Kumar, Marcel Naumann,
1944
+ Mukkattu O. Ajeesh, Marcus Schmidt, Adolfo G. Grushin,
1945
+ Jens H. Bardarson, Michael Baenitz, Dmitry Sokolov, Horst Bor-
1946
+ rmann, Michael Nicklas, Claudia Felser, Elena Hassinger, and
1947
+ Binghai Yan, “Negative magnetoresistance without well-defined
1948
+ chirality in the Weyl semimetal TaP,” Nature Communications 7,
1949
+ 11615 (2016).
1950
+ 28 Tanja Graf, Claudia Felser, and Stuart S.P. Parkin, “Simple rules
1951
+ for the understanding of heusler compounds,” Progress in Solid
1952
+ State Chemistry 39, 1–50 (2011).
1953
+ 29 N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope,
1954
+ and
1955
+ J. Paglione, “Superconductivity in the topological semimetal
1956
+ yptbi,” Phys. Rev. B 84, 220504 (2011).
1957
+ 30 F. F. Tafti, Takenori Fujii, A. Juneau-Fecteau, S. Ren´e de Cotret,
1958
+ N. Doiron-Leyraud, Atsushi Asamitsu,
1959
+ and Louis Taillefer,
1960
+ “Superconductivity in the noncentrosymmetric half-heusler com-
1961
+ pound luptbi: A candidate for topological superconductivity,”
1962
+ Phys. Rev. B 87, 184504 (2013).
1963
+ 31 Y. Pan, A. M. Nikitin, T. V. Bay, Y. K. Huang, C. Paulsen, B. H.
1964
+ Yan, and A. de Visser, “Superconductivity and magnetic order
1965
+ in the noncentrosymmetric half-heusler compound erpdbi,” Euro-
1966
+ physics Letters 104, 27001 (2013).
1967
+ 32 Yasuyuki Nakajima, Rongwei Hu, Kevin Kirshenbaum, Alex
1968
+ Hughes, Paul Syers, Xiangfeng Wang, Kefeng Wang, Renx-
1969
+ iong Wang, Shanta R. Saha, Daniel Pratt, Jeffrey W. Lynn,
1970
+ and Johnpierre Paglione, “Topological ¡i¿r¡/i¿pdbi half-heusler
1971
+ semimetals:
1972
+ A new family of noncentrosymmetric mag-
1973
+ netic superconductors,” Science Advances 1, e1500242 (2015),
1974
+ https://www.science.org/doi/pdf/10.1126/sciadv.1500242.
1975
+ 33 Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F.
1976
+ Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la
1977
+ Torre, P. Visani, and C. L. Seaman, “Massive electron state in
1978
+ ybbipt,” Phys. Rev. Lett. 67, 3310–3313 (1991).
1979
+ 34 Jason K. Kawasaki, Abhishek Sharan, Linda I. M. Johans-
1980
+ son, Martin Hjort, Rainer Timm, Balasubramanian Thiagara-
1981
+ jan, Brian D. Schultz, Anders Mikkelsen, Anderson Janotti,
1982
+ and Chris J. Palmstrøm, “A simple electron counting model for
1983
+ half-heusler surfaces,” Science Advances 4, eaar5832 (2018),
1984
+ https://www.science.org/doi/pdf/10.1126/sciadv.aar5832.
1985
+ 35 Shuichi Murakami, “Phase transition between the quantum spin
1986
+ hall and insulator phases in 3d: emergence of a topological gap-
1987
+ less phase,” New Journal of Physics 9, 356 (2007).
1988
+ 36 Zhijun Wang, Yan Sun, Xing-Qiu Chen, Cesare Franchini, Gang
1989
+ Xu, Hongming Weng, Xi Dai, and Zhong Fang, “Dirac semimetal
1990
+ and topological phase transitions in A3bi (a = Na, k, rb),” Phys.
1991
+ Rev. B 85, 195320 (2012).
1992
+ 37 S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and
1993
+ A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev.
1994
+ Lett. 108, 140405 (2012).
1995
+ 38 Xiangang Wan, Ari M Turner, Ashvin Vishwanath, and Sergey Y
1996
+ Savrasov, “Topological semimetal and fermi-arc surface states in
1997
+ the electronic structure of pyrochlore iridates,” Physical Review B
1998
+ 83, 205101 (2011).
1999
+ 39 Alexey A Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng
2000
+ Wu, Matthias Troyer, Xi Dai, and B Andrei Bernevig, “Type-ii
2001
+ weyl semimetals,” Nature 527, 495–498 (2015).
2002
+ 40 Zhijun Wang, Yan Sun, Xing-Qiu Chen, Cesare Franchini, Gang
2003
+ Xu, Hongming Weng, Xi Dai, and Zhong Fang, “Dirac semimetal
2004
+ and topological phase transitions in a 3 bi (a= na, k, rb),” Physical
2005
+ Review B 85, 195320 (2012).
2006
+ 41 Steve M Young, Saad Zaheer, Jeffrey CY Teo, Charles L Kane,
2007
+ Eugene J Mele, and Andrew M Rappe, “Dirac semimetal in three
2008
+ dimensions,” Physical review letters 108, 140405 (2012).
2009
+ 42 AA Zyuzin, Si Wu, and AA Burkov, “Weyl semimetal with bro-
2010
+ ken time reversal and inversion symmetries,” Physical Review B
2011
+ 85, 165110 (2012).
2012
+ 43 Takahiro Morimoto and Akira Furusaki, “Weyl and dirac
2013
+ semimetals with z 2 topological charge,” Physical Review B 89,
2014
+ 235127 (2014).
2015
+ 44 Joel E. Moore, Ying Ran, and Xiao-Gang Wen, “Topological sur-
2016
+ face states in three-dimensional magnetic insulators,” Phys. Rev.
2017
+ Lett. 101, 186805 (2008).
2018
+ 45 A Yu Kitaev, “Unpaired Majorana fermions in quantum wires,”
2019
+ Physics-Uspekhi 44, 131–136 (2001).
2020
+ 46 Ashley M. Cook and Joel E. Moore, “Multiplicative topological
2021
+ phases,” Communications Physics 5, 262 (2022).
2022
+ 47 A. Alexandradinata, Xi Dai, and B. Andrei Bernevig, “Wilson-
2023
+ loop characterization of inversion-symmetric topological insula-
2024
+ tors,” Phys. Rev. B 89, 155114 (2014).
2025
+ 48 Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang, “Topolog-
2026
+ ical quantization of the spin hall effect in two-dimensional param-
2027
+ agnetic semiconductors,” Physical Review B 74, 085308 (2006).
2028
+ 49 Shuang Jia, Su-Yang Xu, and M. Zahid Hasan, “Weyl semimet-
2029
+ als, Fermi arcs and chiral anomalies,” Nature Materials 15, 1140–
2030
+ 1144 (2016).
2031
+ 50 Binghai Yan and Claudia Felser, “Topological materials: Weyl
2032
+
2033
+ 16
2034
+ semimetals,” Annual Review of Condensed Matter Physics
2035
+ 8, 337–354 (2017), https://doi.org/10.1146/annurev-conmatphys-
2036
+ 031016-025458.
2037
+ 51 Andrew C. Potter, Itamar Kimchi,
2038
+ and Ashvin Vishwanath,
2039
+ “Quantum oscillations from surface Fermi arcs in Weyl and Dirac
2040
+ semimetals,” Nature Communications 5, 5161 (2014).
2041
+ 52 Yifei Guan, Adrien Bouhon, and Oleg V Yazyev, “Landau levels
2042
+ of the euler class topology,” Physical Review Research 4, 023188
2043
+ (2022).
2044
+
2045
+ 17
2046
+ Supplemental material for “Multiplicative topological semimetals”
2047
+ Adipta Pal1,2, Joe H. Winter1,2,3, and Ashley M. Cook1,2,∗
2048
+ 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Strasse 40, 01187 Dresden, Germany
2049
+ 2Max Planck Institute for the Physics of Complex Systems, N¨othnitzer Strasse 38, 01187 Dresden, Germany
2050
+ 3SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
2051
+ ∗Electronic address: [email protected]
2052
+ S1
2053
+ Wilson loops for multiplicative Weyl semi-metal:
2054
+ Labelling the parent Hamiltonians as Hp1 = (d1x, d1y, d1z) · τ and Hp2 = (d2x, d2y, d2z) · σ, with eigenvectors, {|+1⟩ |−1⟩}
2055
+ and {|+2⟩ , |−2⟩} respectively, the child Hamiltonian is given by Hc = Hp1 ⊗ H′
2056
+ p2, where H′
2057
+ p2 = (−d2x, d2y, −d2z) · σ. The
2058
+ ground state subspace of the child Hamiltonian is then spanned by, {|+1⟩ |−2⟩′ , |−1⟩ |+2⟩′} = {|+1⟩ |+2⟩, |−1⟩ |−2⟩}, where
2059
+ |ψ⟩ denotes complex conjugation and ’ denotes an eigenstate of H′
2060
+ p2. The non-abelian Berry connection is then given as follows:
2061
+ Aµ =i
2062
+
2063
+ ⟨+1, +2| ∂µ |+1, +2⟩
2064
+ ⟨−1, −2| ∂µ |−1, −2⟩
2065
+
2066
+ = i
2067
+
2068
+ ⟨+1| ∂µ |+1⟩
2069
+ ⟨−1| ∂µ |−1⟩
2070
+
2071
+ + i
2072
+
2073
+ ⟨+2|∂µ|+2⟩
2074
+ ⟨−2|∂µ|−2⟩
2075
+
2076
+ ,
2077
+ =
2078
+ �A+
2079
+ 1,µ − A+
2080
+ 2,µ
2081
+ A−
2082
+ 1,µ − A−
2083
+ 2,µ
2084
+
2085
+ ,
2086
+ (S1)
2087
+ where Al
2088
+ j,µ = i ⟨lj| ∂µ |lj⟩. For Berry connection around a loop in the Brillouin zone, the values of µ are {kx, ky, kz} for a 3d
2089
+ Brillouin Zone. This clearly shows the difference between the parallel multiplicative phases and the perpendicular multiplicative
2090
+ phases. For a 1d BZ, as shown in past work46, the connection for parallel MKC is A = (A1,kx − A2,kx, 0, 0), while for
2091
+ the perpendicular MKC it is, A = (A1,kx, −A2,ky, 0). For 2d or 3d parent systems, it then becomes very straightforward to
2092
+ extrapolate this trend such that the Berry connection looks qualitatively like the combination of the parallel and perpendicular
2093
+ MKC connections based on which directions the parents have in common. This is particularly interesting for the case of parallel
2094
+ and perpendicular Multiplicative Chern Insulators(MCIs), where parent CIs are each defined over a 2d BZ, and the parents can
2095
+ share one or two axes. We illustrate the MCI parallel with two parent CIs on the x-y plane. The resultant Berry connection is
2096
+ then A = (A1,kx − A2,kx, A1,ky − A2,ky, 0). The MCI perpendicular on the other hand is constructed with one parent in the x-y
2097
+ plane and another in the x-z plane. The resulting Berry connection is then, A = (A1,kx − A2,kx, A1,ky, −A2,kz). The MWSM,
2098
+ on the other hand, is a 3d system, so we instead consider parent Weyl nodes separated along parallel or perpendicular axes in
2099
+ k-space. As explained in the main text, the parallel MWSM has parent Weyl nodes separated along the same axis in k-space
2100
+ (the kz axis) while the perpendicular MWSM has parent 1 and parent 2 Weyl nodes separated along the ky-axis and kz-axis,
2101
+ respectively. The resultant Berry connection is then, A = (A1,kx − A2,kx, A1,ky − A2,ky, A1,kz − A2,kz).
2102
+ S2
2103
+ Calculation for the surface state spectrum of MWSM:
2104
+ We write down here the derivation for the surface state energy for the MWSM parallel and MWSM perpendicular Hamiltonians,
2105
+ for the case of open boundary conditions in the ˆx direction and periodic boundary conditions in the ˆy and ˆz directions. First, we
2106
+ briefly specify how such a calculation should be done for the two band Weyl semi-metal.
2107
+ A
2108
+ Slab spectra for WSM:
2109
+ We start by writing down the WSM Hamiltonian used,
2110
+ HW SM(k) =t3(2 + γ − cos kx − cos ky − cos kz)σz + t2 sin kyσy + t1 sin kxσx,
2111
+ =t3(f − cos kx)σz + t2 sin kyσy + t1 sin kxσx,
2112
+ (S2)
2113
+ where f = 2 + γ − cos ky − cos kz. Surface states decay into the bulk, so for open boundaries in the x-direction, we carry out
2114
+ the transformation, kx → iq for edge states on the left side (x = 0), so that,
2115
+ HW SM(iq, ky, kz) = t3(f − cosh q)σz + t2 sin kyσy + it1 sinh qσx.
2116
+ (S3)
2117
+ We claim that the determinant derived from the matrix due to the following limit must be zero,
2118
+ lim
2119
+ q1→q2
2120
+ H(iq1) − H(iq2)
2121
+ 2 sinh q−
2122
+ = −t3 sinh q+σz + it1 cosh q+σx,
2123
+ (S4)
2124
+ where q± = 1
2125
+ 2(q1 ± q2). Carrying out the determinant, we get the following two conditions,
2126
+ t3 sinh q+ = ±t1 cosh q+.
2127
+ (S5)
2128
+
2129
+ 18
2130
+ Choosing the + sign, the RHS in Eqn. S4 becomes, −t1 cosh q+(σz − iσx), so that the null eigenvector derived from it is one
2131
+ of the eigenvectors for the surface spectra,
2132
+ |ψ+⟩ =
2133
+ 1
2134
+
2135
+ 2
2136
+
2137
+ 1
2138
+ i
2139
+
2140
+ .
2141
+ (S6)
2142
+ The energy corresponding to this eigenvector can be found by solving the eigenvalue for the RHS in Eqn. S3 with the above
2143
+ eigenvector. This gives us the eigen-energy, E, and the equation to determine the eigen-function, for the left boundary
2144
+ E = t2 sin ky,
2145
+ (S7a)
2146
+ (t3 + t1)e−2q + 2fe−q + (t3 − t1) = 0,
2147
+ =⇒ e−q± = −f ±
2148
+
2149
+ f 2 − (t2
2150
+ 3 − t2
2151
+ 1)
2152
+ (t3 + t1)
2153
+ ,
2154
+ Ψ+(x, y, z) ∼ (e−q+x − e−q−x)eikyy+ikzz |ψ+⟩ .
2155
+ (S7b)
2156
+ The eigen-function in the last line has the following form based on the boundary condition on the left edge, Ψ(x = 0) = 0. The
2157
+ other edge can be derived similarly by shifting x → L + 1 − x where L is the length of the system along the x-direction.
2158
+ B
2159
+ Slab spectra for MWSM parallel:
2160
+ We use the same method as in section S2A of the supplementary materials to derive surface states and spectra for the MWSM
2161
+ parallel system. The Hamiltonian is given as follows,
2162
+ HMW SM||(k) = [t31(f1 − cos kx)τ z + t21 sin kyτ y + t11 sin kxτ x] ⊗ [−t32(f2 − cos kx)σz + t22 sin kyσy − t12 sin kxσx],
2163
+ (S8)
2164
+ where f1/2 = 2 + γ1/2 − cos ky − cos kz. To ease our calculations, we carry out the following rotation on the four band basis,
2165
+ τ z → τ y, τ y → −τ z and σz → −σy, σy → −σz. The Hamiltonian then becomes,
2166
+ HMW SM||(k) =[t31(f1 − cos kx)τ y − t21 sin kyτ z + t11 sin kxτ x] ⊗ [−t32(f2 − cos kx)σy − t22 sin kyσz − t12 sin kxσx],
2167
+ =[t31(f1 − cos kx)τ y + t11 sin kxτ x][−t32(f2 − cos kx)σy − t12 sin kxσx]
2168
+ − t21 sin kyτ z[−t32(f2 − cos kx)σy − t12 sin kxσx] − t22 sin ky[t31(f1 − cos kx)τ y + t11 sin kxτ x]σz
2169
+ + t21t22 sin2 kyτ zσz.
2170
+ (S9)
2171
+ Again, without loss of generality, we set t11 = t21 = t31 = 1 = t32 = t22 = t12. The edge modes on the left edge (x = 0),
2172
+ require we carry out the substitution, kx → iq, and the Hamiltonian is now,
2173
+ HMW SM||(iq, ky, kz) =[(f1 − cosh q)τ y + i sinh qτ x][−(f2 − cosh q)σy − i sinh qσx]
2174
+ − sin kyτ z[−(f2 − cosh q)σy − i sinh qσx] − sin ky[(f1 − cosh q)τ y + i sinh qτ x]σz
2175
+ + sin2 kyτ zσz.
2176
+ (S10)
2177
+ Carrying out our previous limit on the rotated Hamiltonian above, we get the following matrix,
2178
+ lim
2179
+ q1→q2
2180
+ HMW SM||(iq1) − HMW SM||(iq2)
2181
+ 2 sinh q−
2182
+ =
2183
+
2184
+
2185
+
2186
+ 0
2187
+ i sin kyS+
2188
+ −i sin kyS+
2189
+ S+(−(f1 + f2) + 2S+)
2190
+ i sin kyS−
2191
+ 0
2192
+ −f1S− + f2S+
2193
+ i sin kyS+
2194
+ −i sin kyS−
2195
+ f1S+ − f2S−
2196
+ 0
2197
+ −i sin kyS+
2198
+ S−((f1 + f2) − 2S−)
2199
+ i sin kyS−
2200
+ −i sin kyS−
2201
+ 0
2202
+
2203
+
2204
+ � ,
2205
+ (S11)
2206
+ where S± = cosh q+ ± sinh q+. The determinant of the RHS of Eqn. S11 must be zero, i.e., we have the condition,
2207
+ S−S+[sin2 kyS−(f1 + f2 − 2S+)(f1 − f2)(S− + S+) − sin2 kyS+(f1 + f2 − 2S−)(f1 + f2)(S+ − S−)
2208
+ − (f1 + f2 − 2S+)(f1 + f2 − 2S−)(f1S− − f2S+)(−f2S− + f1S+)] = 0
2209
+ (S12)
2210
+ Let us start with the first condition, S− = 0. The RHS of Eqn. S11 then becomes,
2211
+ lim
2212
+ q1→q2
2213
+ HMW SM||(iq1) − HMW SM||(iq2)
2214
+ 2 sinh q−
2215
+ =S+(−(f1 + f2) + 2S+)τ +σ+ + f2S+τ +σ− + f1S+τ −σ+
2216
+ + i sin kyS+τ zσ+ − i sin kyS+τ +σz,
2217
+ (S13)
2218
+
2219
+ 19
2220
+ where τ ± = 1
2221
+ 2(τ x ±iτ y) and σ± = 1
2222
+ 2(σx ±iσy) are the two level ladder operators. Here, if {|+⟩ , |−⟩} are eigen-vectors of τ z,
2223
+ then τ + |−⟩ = |+⟩, τ + |+⟩ = 0, τ − |−⟩ = 0 and τ − |+⟩ = |−⟩. Similar relations exist for the σ counterpart. |ψ1⟩ = |+⟩⊗|+⟩ is
2224
+ a null eigen-vector to the above expression on the RHS. We solve for the energy eigenvalue first for the special case γ1 = γ2.Then
2225
+ from HMW SM||(iq, ky, kz) in Eqn. S10 due to the eigen-vector |ψ1⟩, we have the energy and the condition,
2226
+ E = sin2 ky;
2227
+ (S14a)
2228
+ (f1 − cosh q + sinh q)(f2 − cosh q + sinh q) = 0.
2229
+ (S14b)
2230
+ S3
2231
+ Landau Level repulsion in the MWSM parallel system:
2232
+ We start with the MWSM parallel case,
2233
+ HMW SM,||(k) =[t1(2 + γ1 − cos kx − cos ky − cos kz)τ z + t′
2234
+ 1 sin kyτ y + t′
2235
+ 1 sin kxτ x]
2236
+ ⊗ [−t2(2 + γ2 − cos kx cos ky − cos kz)σz + t′
2237
+ 2 sin kyσy − t′
2238
+ 2 sin kxσx].
2239
+ (S15)
2240
+ We expand the Bloch Hamiltonian near the z-axis i.e. k → (0, 0, kz),
2241
+ HMW SM,||(k) ≈[t1(Q1 + 1
2242
+ 2(k2
2243
+ x + k2
2244
+ y))τ z + t′
2245
+ 1kyτ y + t′
2246
+ 1kxτ x]
2247
+ ⊗ [−t2(Q2 + 1
2248
+ 2(k2
2249
+ x + k2
2250
+ y))σz + t′
2251
+ 2kyσy − t′
2252
+ 2kxσx],
2253
+ (S16)
2254
+ where Qi = γi − cos kz (i=1,2). Expanding only up to second order in momenta, we have,
2255
+ HMW SM,||(k) ≈ − t1t2(Q1Q2 + (Q1 + Q2)1
2256
+ 2(k2
2257
+ x + k2
2258
+ y))τ zσz
2259
+ − t1t′
2260
+ 2Q1τ z(kxσx − kyσx) − t′
2261
+ 1t2Q2(kxτ x + kyτ y)σz
2262
+ − t′
2263
+ 1t′
2264
+ 2(k2
2265
+ xτ xσx − k2
2266
+ yτ yσy − 1
2267
+ 2(kxky + kykx)τ xσy + 1
2268
+ 2(kxky + kykx)τ yσx).
2269
+ (S17)
2270
+ /2
2271
+ 0
2272
+ /2
2273
+ kz
2274
+ 0.4
2275
+ 0.2
2276
+ 0.0
2277
+ 0.2
2278
+ 0.4
2279
+ E
2280
+ numerical
2281
+ 1st order
2282
+ 2nd order
2283
+ FIG. S12: Comparison of the numerically calculated Landau Levels of the MWSM||. system with the analytically calculated
2284
+ lower Landau levels for first order(blue dashed) and second order(red) expansion in momenta along the direction perpendicular
2285
+ to kz. Level repulsion between two parent graded lowest Landau levels are only observed if one expands to second order in
2286
+ momenta.
2287
+ We consider B = Bˆz. After Peierls substitution, kx → k′
2288
+ x = kx, ky → k′
2289
+ y = ky + eBx, and kz → k′
2290
+ z = kz. The position-
2291
+ momenta commutator leads to the commutator, [k′
2292
+ y, k′
2293
+ x] = ieB. Here, e is the charge of the particle in consideration. One can
2294
+ therefore construct bosonic ladder operators of the form,
2295
+ a = k′
2296
+ x − ik′
2297
+ x
2298
+
2299
+ 2eB
2300
+ ;
2301
+ a† = k′
2302
+ x + ik′
2303
+ y
2304
+
2305
+ 2eB
2306
+ ;
2307
+ [a, a†] = 1.
2308
+ (S18)
2309
+
2310
+ 20
2311
+ We calculate some important identities via Eqn.S18 which we will be using in the next few lines,
2312
+ 1
2313
+ 2(k′
2314
+ x
2315
+ 2 + k′
2316
+ y
2317
+ 2) = eB(a†a + 1
2318
+ 2);
2319
+ k′
2320
+ xσx + k′
2321
+ yσy =
2322
+
2323
+ 2eB(aσ+ + a†σ−);
2324
+ k′
2325
+ xσx − k′
2326
+ yσy =
2327
+
2328
+ 2eB(aσ− + a†σ+),
2329
+ k′
2330
+ x
2331
+ 2 − k′
2332
+ y
2333
+ 2 = eB(a2 + a†2);
2334
+ i[k′
2335
+ xk′
2336
+ y + k′
2337
+ yk′
2338
+ x] = eB(a†2 − a2),
2339
+ (S19)
2340
+ where we have used τ ± = 1
2341
+ 2(τ x ± iτ y) and σ± = 1
2342
+ 2(σx ± iσy), which are spin ladder operators in the basis {|+⟩ , |−⟩} in
2343
+ both the τ and σ spaces. Now, substituting k for k′ in Eqn. S17 and then transforming them via Eqn. S19, we get the following
2344
+ expression,
2345
+ HMW SM,||(k′) ≈ − t1t2(Q1Q2 + (Q1 + Q2)eB(a†a + 1
2346
+ 2))τ zσz − t1t′
2347
+ 2Q1
2348
+
2349
+ 2eBτ z(aσ− + a†σ+) − t′
2350
+ 1t2Q2
2351
+
2352
+ 2eB(aτ + + a†τ −)σz
2353
+ − t′
2354
+ 1t′
2355
+ 2(2eB)(a†a + 1
2356
+ 2)(τ +σ+ + τ −σ−) − t′
2357
+ 1t′
2358
+ 2(2eB)(a2τ +σ− + a†2τ −σ+).
2359
+ (S20)
2360
+ Let us ignore the second order perturbations not in the mass term (i.e. τ zσz) and simplify the Hamiltonian,
2361
+ HMW SM,||(k′) ≈ −(Q1Q2 +(Q1 +Q2)eB(a†a+ 1
2362
+ 2))τ zσz −Q1
2363
+
2364
+ 2eBτ z(aσ− +a†σ+)−Q2
2365
+
2366
+ 2eB(aτ + +a†τ −)σz. (S21)
2367
+ We obtain one of the lowest Landau levels, |ψ⟩1,LLL = |0; −, +⟩ with energy E1,LLL = (Q1Q2 + eB
2368
+ 2 (Q1 + Q2)) which match
2369
+ exactly both numerically and analytically in first and second order expansions. For the other lowest Landau level, we observe an
2370
+ amalgamation of chiral Landau levels obtained from each parent which cause level repulsion at the intersection point.
2371
+ S4
2372
+ Euler space topology calculation
2373
+ In the main text, we have already reported that the MWSM system possesses both time reversal, T and inversion symmetry, I and
2374
+ hence the combined symmetry, T ′ denoted by τ yσyκ, where κ refers to complex conjugation. However, here T ′2 = 1, so that
2375
+ a Z2 invariant is not possible. Instead, it is possible to find a basis, where T ′ = κ. Here we provide the unitary transformation
2376
+ which makes this possible,
2377
+ V = 1
2378
+ 2[(1 + i)τ 0σ0 + (1 − i)τ yσy].
2379
+ (S22)
2380
+ Based on the method provided in the appendix in a previous work52, the above unitary transformation satisfies, V τ yσyV T = 1,
2381
+ so that we get a Hamiltonian, ˜H(k) = V H(k)V † which satisfies, ˜H(k) = ˜H∗(k), and is real and symmetric. Denoting the
2382
+ MWSM in a condensed notation,
2383
+ H = (M1τ z + Q1τ x + R1τ y) ⊗ (−M2σz − Q2σx + R2σy),
2384
+ (S23)
2385
+ we obtain after the transformation,
2386
+ ˜H =
2387
+ M1(−M2τ zσz − Q2τ zσx + R2τ xσ0)
2388
+ − Q1(M2τ xσz + Q2τ xσx + R2τ zσ0)
2389
+ − R1(M2τ 0σx − Q2τ 0σz − R2τ yσy).
2390
+ (S24)
2391
+ Comparing with the method introduced in52, it is possible to view the real Hamiltonian as an element of a Real oriented Grass-
2392
+ mannian, ˜GR
2393
+ 2,4 which is diffeomorphic to S2×S2. For a given kz, then it is possible to define a mapping from the 2d BZ spanned
2394
+ by kx and ky (for MWSM ||) into (n1, n2) ∈ S2 × S2 and the topology of ˜H is then determined by the two skyrmion numbers,
2395
+ Q[n1] = q1 and Q[n2] = q2 of parent 1 and parent 2, respectively. The Euler class topology is then found from these skyrmion
2396
+ numbers as follows,
2397
+ EI = q2 − q1;
2398
+ EII = q2 + q1.
2399
+ (S25)
2400
+ The Euler numbers are unique up to the mapping (EI, EII) → (−EI, −EII).
2401
+
8NE0T4oBgHgl3EQffgAo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8dAzT4oBgHgl3EQfE_q4/content/tmp_files/2301.01004v1.pdf.txt ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01004v1 [math.RT] 3 Jan 2023
2
+ SPIN NORM AND LAMBDA NORM
3
+ CHAO-PING DONG AND DU CHENGYU
4
+ Abstract. Given a K-type π, it is known that its spin norm (due to first-named author)
5
+ is lower bounded by its lambda norm (due to Vogan). That is, ∥π∥spin ≥ ∥π∥lambda. This
6
+ note aims to describe for which π one can actually have equality. We apply the result to
7
+ tempered Dirac series. In the case of real groups, we obtain that the tempered Dirac series
8
+ are divided into #W 1 parts among all tempered modules with real infinitesimal characters.
9
+ 1. Introduction
10
+ Let G be a linear real reductive Lie group which is in the Harish-Chandra class [5]. That
11
+ is,
12
+ • G has only a finite number of connected components;
13
+ • The derived group [G, G] has finite center;
14
+ • The adjoint action Ad(g) of any g ∈ G is an inner automorphism of g = (g0)C, where
15
+ g0 is the Lie algebra of G.
16
+ Let θ be a Cartan involution of G. We assume the subgroup K = Gθ of fixed points
17
+ of θ is a maximal compact subgroup of G. Let g0 = k0 ⊕ s0 be the corresponding Cartan
18
+ decomposition of g0. We drop the subscript for the complexification.
19
+ Let ˆGtemp,o denote the set of irreducible tempered representations with real infinitesimal
20
+ character (up to equivalence). Let ˆK denote the set of K-types. The following bijection was
21
+ noted by Trapa [10], after Vogan’s paper [12].
22
+ Theorem 1.1. Let X be any irreducible tempered (g, K)-module with real infinitesimal char-
23
+ acter. Then X has a unique lowest K-type which occurs with multiplicity one. Moreover,
24
+ the map
25
+ φ : ˆGtemp,o → ˆK
26
+ defined by taking the lowest K-type, is a well-defined bijection.
27
+ Motivated by the lambda norm introduced by Vogan [11], the first-named author intro-
28
+ duced spin norm [4] for the classification of Dirac series (i.e., irreducible unitary representa-
29
+ tions of G with non-vanishing Dirac cohomology). We refer the reader to [6] and references
30
+ therein for the notion of Dirac cohomology. It was proven in [4] that the spin norm of a
31
+ K-type π is bounded below by its lambda norm. That is,
32
+ (1)
33
+ ∥π∥spin ⩾ ∥π∥lambda.
34
+ 2010 Mathematics Subject Classification. Primary 22E46.
35
+ Key words and phrases. lambda norm, spin norm, tempered representations.
36
+ 1
37
+
38
+ 2
39
+ CHAO-PING DONG AND DU CHENGYU
40
+ This inequality turns out to have a nice interpretation in the setting of Theorem 1.1. Indeed,
41
+ let ˆGtemp,d collect the members of ˆGtemp,o with non-zero Dirac cohomology. Put
42
+ ˆKe := {π ∈ ˆK| ∥π∥spin = ∥π∥lambda}.
43
+ Theorem 1.2. ([2]) The map φ restricts to ˆGtemp,d is a bijection onto ˆKe. More precisely,
44
+ any member π ∈ ˆGtemp,o is a Dirac series if and only if the inequality (1) becomes an equality
45
+ on its unique lowest K-type.
46
+ Given an arbitrary K-type π, it is not easy to compute neither ∥π∥lambda nor ∥π∥spin.
47
+ Thus, it is subtle to detect whether the inequality (1) is strict or not. This note aims to
48
+ give a criterion on this aspect. Our main result is Theorem 3.4. The main idea is to insert
49
+ an intermediate value between ∥π∥lambda and ∥π∥spin. As an application, our result suggests
50
+ that the tempered Dirac series should be separated into #W 1 parts. See (5) for the definition
51
+ of W 1.
52
+ The note is outlined as follows: In Section 2, we recall lambda norm and spin norm. Then
53
+ we deduce our main result in Section 3. The last section considers tempered Dirac series.
54
+ 2. Preliminaries
55
+ In this section, we briefly recall the definitions of the spin norm and the lambda norm.
56
+ 2.1. The lambda norm. We keep the notations K, G, k, s, θ, etc as in the previous section.
57
+ Let T be a maximal torus of K and t0 be the Lie algebra of T. Recall that the analytic
58
+ Weyl group is defined by
59
+ W(k, t) = NK(T)/AK(T).
60
+ It acts on the root system ∆(k, t). Fix a choice of positive roots ∆+(k, t), and define
61
+ R(G) := {r ∈ W(k, t)|r∆+(k, t) = ∆+(k, t)}.
62
+ Given a K-type π, by Lemma 0.1 of [9], the collection of highest weights of π as k-module
63
+ is a single orbit of R(G) on ˆT ∈ it∗
64
+ 0, where ˆT is the abelian group of characters of T.
65
+ Now given any K-type π, take a highest weight µ of it. Then µ ∈ it∗
66
+ 0 is dominant integral
67
+ for ∆+(k, t). Denote by ρc the half sum of all roots in ∆+(k, t). Choose a positive root system
68
+ ∆+(g, t) making µ + 2ρc dominant. Denote by ρ the half sum of all roots in ∆+(g, t). Let
69
+ P be the projection map to the dominant chamber C(g) corresponding to ∆+(g, t). Then
70
+ ∥P(µ+2ρc −ρ)∥ is independent of the choices of µ and ∆+(g, t), cf. Section 1 and Corrollary
71
+ 2.4 of [9]. Now we are ready to talk about the lambda norm.
72
+ Definition 2.1. ([11, 1]) For any π ∈ ˆK, the lambda norm of π is defined to be
73
+ (2)
74
+ ∥π∥lambda := ∥P(µ + 2ρc − ρ)∥,
75
+ where µ is any highest weight of π. For any irreducible admissible (g, K)-module X, the
76
+ lambda norm of X is defined to be
77
+ (3)
78
+ ∥X∥lambda := min
79
+ π ∥π∥lambda,
80
+ where π runs over all the K-types occurring in X. A K-type π is called a lowest K-type of
81
+ X if it occurs in X and ∥π∥lambda = ∥X∥lambda.
82
+
83
+ SPIN NORM AND LAMBDA NORM
84
+ 3
85
+ 2.2. The spin norm. Although the original definition of the spin norm involves the spin
86
+ module SG of the Clifford algebra C(s), our discussion here does not need a deep under-
87
+ standing of it. Our tool is mainly the root systems and their Weyl groups.
88
+ Definition 2.2. ([4]) For any π ∈ ˆK, its spin norm is defined to be
89
+ ∥π∥spin := min ∥γ + ρc∥,
90
+ where γ runs over all the highest weights of the ˜K-types in π ⊗ SG. For any irreducible
91
+ admissible (g, K)-module X, its spin norm is defined to be
92
+ ∥X∥spin := min
93
+ π ∥π∥spin,
94
+ where π runs over all the K-types occurring in X. We call π a spin lowest K-type of X if
95
+ it occurs in X and ∥π∥spin = ∥X∥spin.
96
+ 3. When is the inequality (1) strict?
97
+ We fix a positive root system ∆+(k, t), and denote the half sum of roots in it by ρc. Let
98
+ W(g, t) (resp., W(k, t))) be the Weyl group of ∆(g, t) (resp., ∆(k, t)). Let C(k) be the closed
99
+ dominant Weyl chamber for ∆+(k, t). For any µ ∈ t∗, we use {µ} to denote the unique weight
100
+ in C(k) to which µ is conjugate under the action of W(k, t). Let ∆+(g, t) be a positive root
101
+ system of ∆(g, t) containing ∆+(k, t).
102
+ Lemma 3.1. ([4, Lemma 3.5]) For any K-type π with a highest weight µ ∈ t∗, we have
103
+ (4)
104
+ ∥µ∥spin = min
105
+ w∈W 1 ∥{µ − wρ + ρc} + ρc∥,
106
+ where
107
+ (5)
108
+ W 1 := {w ∈ W(g, t)|wC(g) ⊆ C(k)}.
109
+ Lemma 3.2. ([7, §13.3, Lemma B]) Let λ ∈ C(k). Then
110
+ ∥λ + ρc∥ ⩾ ∥wλ + ρc∥
111
+ for any w ∈ W(k, t). Moreover, the equality holds if and only if λ = wλ.
112
+ Lemma 3.3. Let ∆ be a root system with Weyl group W. Fix a positive set ∆+ of roots
113
+ and denote by ρ the half sum of all positive roots. For any dominant weight λ, we have the
114
+ following inequality
115
+ (6)
116
+ ∥λ − ρ∥ ⩽ ∥λ − wρ∥, ∀w ∈ W.
117
+ Moreover, if λ is dominant with respect to w∆+, we have
118
+ ∥λ − ρ∥ = ∥λ − wρ∥
119
+ Otherwise, the inequality (6) is strict.
120
+ Proof. We first prove the inequality. Compute the following difference
121
+ (∗)
122
+ ∥λ − ρ∥2 − ∥λ − wρ∥2 = −2(λ, ρ − wρ).
123
+ A widely known fact is that ρ − wρ is a sum of positive roots. The weight λ is dominant by
124
+ assumption. Thus the pairing (λ, ρ − wρ) is non-negative, and (6) follows.
125
+
126
+ 4
127
+ CHAO-PING DONG AND DU CHENGYU
128
+ Now suppose λ is dominant with respect to w∆+. Notice that the half sum of positive
129
+ roots with respect to w∆+ is wρ. Applying (6) to λ, w∆+ and wρ gives
130
+ ∥λ − wρ∥ ⩽ ∥λ − w−1(wρ)∥ = ∥λ − ρ∥.
131
+ Therefore, (6) becomes an equality in the current setting.
132
+ Now suppose λ is not dominant with respect to the new positive set w∆+. Define
133
+ Dw := {γ ∈ ∆−|γ ∈ w∆+},
134
+ where ∆− = −∆+. It is well-known that
135
+ ρ − wρ =
136
+
137
+ γ∈Dw
138
+ (−γ).
139
+ By assumption, λ is not dominant with respect to w∆+. There must exist β ∈ w∆+ such
140
+ that (λ, β) < 0. But it cannot live in ∆+, because λ is dominant with respect to ∆+. As a
141
+ consequence, β ∈ Dw. Continuing with (∗), we have that
142
+ −(λ, ρ − wρ) = −
143
+
144
+ λ,
145
+
146
+ γ∈Dw
147
+ (−γ)
148
+
149
+  =
150
+
151
+ λ,
152
+
153
+ γ∈Dw
154
+ γ
155
+
156
+  ⩽ (λ, β) < 0.
157
+ Thus (6) is strict in this case.
158
+
159
+ Let us state the main result of this section.
160
+ Theorem 3.4. Let π be an irreducible representation of K with be a highest weight µ.
161
+ Choose a positive root system ∆+(g, t) making µ + 2ρc dominant. Let C(g) be the closed
162
+ dominant Weyl chamber corresponding to ∆+(g, t). Then the inequality (1) is strict if and
163
+ only if one of the following conditions holds:
164
+ (a) µ + 2ρc is irregular for ∆(g, t).
165
+ (b) µ − wρ + ρc /∈ C(k) for all w ∈ W(g, t) such that µ + 2ρc ∈ wC(g).
166
+ Proof. Let P(·) be the projection map to the cone C(g). It suffices to show that
167
+ (7)
168
+ ∥π∥lambda = ∥P(µ + 2ρc − ρ)∥ ≤ ∥µ + 2ρc − ρ∥ ≤ ∥π∥spin,
169
+ that the first equality happens if and only if (a) holds, and that the second equality happens
170
+ if and only if (b) holds.
171
+ By the Pythagorean theorem, the first inequality in (7) holds, and it becomes an equality
172
+ if and only if P(µ + 2ρc − ρ) = µ + 2ρc − ρ, which is equivalent to µ + 2ρc − ρ ∈ C(g). The
173
+ latter is equivalent to (a) since µ + 2ρc ∈ C(g) and µ + 2ρc is integral.
174
+ Now let us consider the second inequality in (7). We collect all w ∈ W(g, t) such that
175
+ µ + 2ρc ∈ wC(g) as W 1(µ). Since µ + 2ρc ∈ C(k), it follows that W 1(µ) ⊆ W 1. Moreover,
176
+ the identity element e ∈ W 1(µ) due to µ + 2ρc ∈ C(g).
177
+ Using Lemma 3.1 and 3.2, we have that
178
+ (8)
179
+ ∥π∥spin = min
180
+ w∈W 1 ∥{µ − wρ + ρc} + ρc∥ ⩾ min
181
+ w∈W 1 ∥µ − wρ + 2ρc∥.
182
+ Take λ = µ + 2ρc and ∆+ = ∆+(g, t) in Lemma 3.3. We have
183
+ (9)
184
+ ∥µ − wρ + 2ρc∥ ≥ ∥µ − ρ + 2ρc∥.
185
+
186
+ SPIN NORM AND LAMBDA NORM
187
+ 5
188
+ Furthermore, the inequality (9) is strict when w /∈ W 1(µ); yet it is an equality when w ∈
189
+ W 1(µ). Now the second inequality in (7) follows from (8) and (9).
190
+ Assume (b) holds. For any w ∈ W 1 \ W 1(µ), one has that
191
+ ∥{µ − wρ + ρc} + ρc∥ ⩾ ∥µ − wρ + 2ρc∥ > ∥µ − ρ + 2ρc∥.
192
+ On the other hand, for all w ∈ W 1(µ), one has that
193
+ ∥{µ − wρ + ρc} + ρc∥ > ∥µ − wρ + 2ρc∥ = ∥µ − ρ + 2ρc∥.
194
+ The first strict inequality is due to the assumption that µ − wρ + ρc /∈ C(k) and Lemma 3.2.
195
+ Assume (b) does not hold. Then there exists some w0 ∈ W 1(µ) such that µ − w0ρ + ρc ∈
196
+ C(k). Therefore,
197
+ ∥{µ − w0ρ + ρc} + ρc∥ = ∥µ − w0ρ + 2ρc∥ = ∥µ − ρ + 2ρc∥.
198
+ Since we have proven that
199
+ min
200
+ w∈W 1 ∥{µ − wρ + ρc} + ρc∥ ≥ ∥µ − ρ + 2ρc∥,
201
+ we must have ∥π∥spin = ∥µ − ρ + 2ρc∥.
202
+ To sum up, the two inequalities in (7) are controlled by (a) and (b), respectively. Thus
203
+ ∥π∥spin > ∥π∥lambda happens if and only if at least one of (a) and (b) holds.
204
+
205
+ We record an interesting corollary from the above proof.
206
+ Corollary 3.5. If µ + ρc − wρ ∈ C(k) for some w ∈ W 1(µ). Then
207
+ (10)
208
+ ∥µ∥spin = ∥µ + 2ρc − ρ∥.
209
+ 4. Application to tempered Dirac series
210
+ We call an irreducible tempered representations with non-zero Dirac cohomology a tem-
211
+ pered Dirac series. Combining Theorems 3.4 and 1.2, we have the following.
212
+ Theorem 4.1. Let X be a tempered (g, K)-module with real infinitesimal character. Let π
213
+ be the unique lowest K-type of X which has a highest weight µ. Then HD(X) = 0 if and
214
+ only if
215
+ (a) µ + 2ρc is irregular for ∆(g, t); or
216
+ (b) µ − wρ + ρc is not dominant for ∆+(k, t) for any w ∈ W 1(µ).
217
+ Example 4.2. In the special case that W 1 = {e}, which is met for complex Lie groups,
218
+ SL(2n + 1, R), SL(n, H) and the linear E6(−26), we always have that µ + 2ρc is regular for
219
+ ∆(g, t). Thus HD(X) = 0 if and only if µ − ρ + ρc is dominant for ∆+(k, t).
220
+ When #W 1 > 1, pick up two distinct elements w1, w2 from W 1 such that w1C(g)∩w2C(g)
221
+ is a codimension one facet of w1C(g). Then condition (a) holds for any µ such that µ+2ρc ∈
222
+ w1C(g) ∩ w2C(g). This suggests that the tempered Dirac series of G should be divided into
223
+ #W 1 parts by those irreducible tempered X such that HD(X) vanishes.
224
+ From now on, we shall use a circle to stand for a K-type, and paint it if and only if (1)
225
+ is an equality. Let us see some concrete examples.
226
+
227
+ 6
228
+ CHAO-PING DONG AND DU CHENGYU
229
+ -4
230
+ 0
231
+ 4
232
+ Figure 1. Some K-types of SL(2, R)
233
+ (0,0)
234
+ (4,4)
235
+ (-4,-4)
236
+ (4,-4)
237
+ Figure 2. Some K-types of Sp(4, R)
238
+ Example 4.3. Consider SL(2, R), where ∆(g, t) = ∆(s, t) = {±2}. Then #W 1 = 2 and
239
+ C(g) ∩ sC(g) = {0}, where s is the non-trivial element in W 1. Condition (b) does not take
240
+ effect here since ∆(k, t) is empty. Thus µ = 0 is the unique K-type such that ∥µ∥spin >
241
+ ∥µ∥lambda, and the tempered Dirac series of SL(2, R) are separated into two parts.
242
+ See
243
+ Figure 1.
244
+ Example 4.4. Consider G = Sp(4, R). Let K = U(2) and T = U(1) × U(1). Thus k has a
245
+ one-dimensional center. Fix
246
+ ∆+(k, t) = {(1, −1)},
247
+ ∆+(g, t) = {(1, −1), (2, 0), (0, 2), (1, 1)}.
248
+ The corresponding simple roots are α1 = (1, −1) = 2ρc, and α2 = (0, 2). The highest weight
249
+ of a K-type is represented by a pair of integers (x, y) such that x ≥ y.
250
+ Condition (a) of says that the K-types on the three lines y = 1, x = −1 and y = −x
251
+ should not be painted. These lines intersect at the point (−1, 1), which is −2ρc. Condition
252
+ (b) further says that (1, 0) and (0, −1) should not be painted. Now Figure 2 suggests that
253
+ the tempered Dirac series of Sp(4, R) are separated into four parts.
254
+ Example 4.5. Let G be G2(2), the linear split G2, which is centerless, connected, but not
255
+ simply connected. We adopt the simple roots of ∆+(g, t) and ∆+(k, t) as in Knapp [8]. Let
256
+
257
+ SPIN NORM AND LAMBDA NORM
258
+ 7
259
+ [0,0]
260
+ [0,4]
261
+ [22,0]
262
+ Figure 3. Some K-types of the linear split G2
263
+ α1 be the short simple root and α2 be the long one. In this case, ∆(g, t) is of type G2, while
264
+ ∆(k, t) is of type A1 × A1. We fix ∆+(k, t) = {γ1, γ2}, where γ1 := α1 and γ2 := 3α1 + 2α2.
265
+ Let ω1, ω2 be the fundamental weights for ∆(k, t) such that (ωi, α∨
266
+ j ) = δij. The K-types are
267
+ parameterized via the highest weight theorem by [a, b] := aω1 + bω2, a, b ∈ Z⩾0 such that
268
+ a + b is even.
269
+ We show some of the K-types in Figure 3, where the a-coordinates of the bottom line are
270
+ 0, 2, 4, 6, 8, . . . , and so are the b-coordinates of the left-most column.
271
+ Now condition (a) says that K-types on the two lines a = b and a = 3b + 4 should not
272
+ be painted. These two lines intersect at [−2, −2] = −2ρc. From Figure 3, one sees that the
273
+ tempered Dirac series are divided into three parts by the two lines. Condition (b) further
274
+ says that [2, 0] should not be painted.
275
+ To sum up, we have recovered Corollary 8.4 of [3].
276
+ Funding
277
+ Dong is supported by the National Natural Science Foundation of China (grant 12171344).
278
+ References
279
+ [1] J. Carmona, Sur la classification des modules admissibles irr´eductibles, pp.11–34 in Noncommutative
280
+ Harmonic Analysis and Lie Groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics
281
+ 1020, Springer-Verlag, New York, 1983.
282
+ [2] J. Ding and C.-P. Dong, Spin Norm, K-Types, and Tempered Representations, J. Lie Theory 26 (2016),
283
+ 651–658.
284
+ [3] J. Ding, C.-P. Dong, and L. Yang, Dirac series for some real exceptional Lie groups, J. Algebra 559
285
+ (2020) 379–407.
286
+ [4] C.-P. Dong, On the Dirac cohomology of complex Lie group representations, Transform. Groups 18 (2013),
287
+ 61-79. [Erratum: Transform. Groups 18 (2013), 595–597.]
288
+ [5] Harish-Chandra, Harmonic analysis on real reductive Lie groups. I. The theory of the constant term J.
289
+ Funct. Anal. 19 (1975), 104–204.
290
+ [6] J.-S. Huang and P. Pandˇzi´c, Dirac cohomology, unitary representations and a proof of a conjecture of
291
+ Vogan, J. Amer. Math. Soc. 15 (2002), 185–202.
292
+
293
+ 8
294
+ CHAO-PING DONG AND DU CHENGYU
295
+ [7] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York,
296
+ 1972.
297
+ [8] A. Knapp, Lie Groups, Beyond an Introduction, 2nd edition, Birkh¨auser, 2002.
298
+ [9] S. Salamanca-Riba and D. Vogan, On the classification of unitary representations of reductive Lie groups,
299
+ Ann. of Math. 148 (1998), 1067–1133.
300
+ [10] P. Trapa, A parametrization of ˆK (after Vogan), Notes from an AIM workshop, July 2004.
301
+ [11] D. Vogan, Representations of Real Reductive Groups, Birkh¨auser, 1981.
302
+ [12] D. Vogan, Unitarizability of certain series of representations, Ann. of Math. 120 (1984), 141–187.
303
+ (Dong) School of Mathematical Sciences, Soochow University, Suzhou 215006, P. R. China
304
+ Email address: [email protected]
305
+ (Du) School of Mathematical Sciences, Soochow University, Suzhou 215006, P. R. China
306
+ Email address: [email protected]
307
+
8dAzT4oBgHgl3EQfE_q4/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf,len=302
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
3
+ page_content='01004v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
4
+ page_content='RT] 3 Jan 2023 SPIN NORM AND LAMBDA NORM CHAO-PING DONG AND DU CHENGYU Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
5
+ page_content=' Given a K-type π, it is known that its spin norm (due to first-named author) is lower bounded by its lambda norm (due to Vogan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
6
+ page_content=' That is, ∥π∥spin ≥ ∥π∥lambda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
7
+ page_content=' This note aims to describe for which π one can actually have equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
8
+ page_content=' We apply the result to tempered Dirac series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
9
+ page_content=' In the case of real groups, we obtain that the tempered Dirac series are divided into #W 1 parts among all tempered modules with real infinitesimal characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
10
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
11
+ page_content=' Introduction Let G be a linear real reductive Lie group which is in the Harish-Chandra class [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
12
+ page_content=' That is, G has only a finite number of connected components;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
13
+ page_content=' The derived group [G, G] has finite center;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
14
+ page_content=' The adjoint action Ad(g) of any g ∈ G is an inner automorphism of g = (g0)C, where g0 is the Lie algebra of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
15
+ page_content=' Let θ be a Cartan involution of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
16
+ page_content=' We assume the subgroup K = Gθ of fixed points of θ is a maximal compact subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
17
+ page_content=' Let g0 = k0 ⊕ s0 be the corresponding Cartan decomposition of g0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
18
+ page_content=' We drop the subscript for the complexification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
19
+ page_content=' Let ˆGtemp,o denote the set of irreducible tempered representations with real infinitesimal character (up to equivalence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
20
+ page_content=' Let ˆK denote the set of K-types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
21
+ page_content=' The following bijection was noted by Trapa [10], after Vogan’s paper [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
22
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
23
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
24
+ page_content=' Let X be any irreducible tempered (g, K)-module with real infinitesimal char- acter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
25
+ page_content=' Then X has a unique lowest K-type which occurs with multiplicity one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
26
+ page_content=' Moreover, the map φ : ˆGtemp,o → ˆK defined by taking the lowest K-type, is a well-defined bijection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
27
+ page_content=' Motivated by the lambda norm introduced by Vogan [11], the first-named author intro- duced spin norm [4] for the classification of Dirac series (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
28
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
29
+ page_content=', irreducible unitary representa- tions of G with non-vanishing Dirac cohomology).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
30
+ page_content=' We refer the reader to [6] and references therein for the notion of Dirac cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
31
+ page_content=' It was proven in [4] that the spin norm of a K-type π is bounded below by its lambda norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
32
+ page_content=' That is, (1) ∥π∥spin ⩾ ∥π∥lambda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
33
+ page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
34
+ page_content=' Primary 22E46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
35
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
36
+ page_content=' lambda norm, spin norm, tempered representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
37
+ page_content=' 1 2 CHAO-PING DONG AND DU CHENGYU This inequality turns out to have a nice interpretation in the setting of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
38
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
39
+ page_content=' Indeed, let ˆGtemp,d collect the members of ˆGtemp,o with non-zero Dirac cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
40
+ page_content=' Put ˆKe := {π ∈ ˆK| ∥π∥spin = ∥π∥lambda}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
41
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
42
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
43
+ page_content=' ([2]) The map φ restricts to ˆGtemp,d is a bijection onto ˆKe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
44
+ page_content=' More precisely, any member π ∈ ˆGtemp,o is a Dirac series if and only if the inequality (1) becomes an equality on its unique lowest K-type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
45
+ page_content=' Given an arbitrary K-type π, it is not easy to compute neither ∥π∥lambda nor ∥π∥spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
46
+ page_content=' Thus, it is subtle to detect whether the inequality (1) is strict or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
47
+ page_content=' This note aims to give a criterion on this aspect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
48
+ page_content=' Our main result is Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
49
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
50
+ page_content=' The main idea is to insert an intermediate value between ∥π∥lambda and ∥π∥spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
51
+ page_content=' As an application, our result suggests that the tempered Dirac series should be separated into #W 1 parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
52
+ page_content=' See (5) for the definition of W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
53
+ page_content=' The note is outlined as follows: In Section 2, we recall lambda norm and spin norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
54
+ page_content=' Then we deduce our main result in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
55
+ page_content=' The last section considers tempered Dirac series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
56
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
57
+ page_content=' Preliminaries In this section, we briefly recall the definitions of the spin norm and the lambda norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
58
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
59
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
60
+ page_content=' The lambda norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
61
+ page_content=' We keep the notations K, G, k, s, θ, etc as in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
62
+ page_content=' Let T be a maximal torus of K and t0 be the Lie algebra of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
63
+ page_content=' Recall that the analytic Weyl group is defined by W(k, t) = NK(T)/AK(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
64
+ page_content=' It acts on the root system ∆(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
65
+ page_content=' Fix a choice of positive roots ∆+(k, t), and define R(G) := {r ∈ W(k, t)|r∆+(k, t) = ∆+(k, t)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
66
+ page_content=' Given a K-type π, by Lemma 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
67
+ page_content='1 of [9], the collection of highest weights of π as k-module is a single orbit of R(G) on ˆT ∈ it∗ 0, where ˆT is the abelian group of characters of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
68
+ page_content=' Now given any K-type π, take a highest weight µ of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
69
+ page_content=' Then µ ∈ it∗ 0 is dominant integral for ∆+(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
70
+ page_content=' Denote by ρc the half sum of all roots in ∆+(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
71
+ page_content=' Choose a positive root system ∆+(g, t) making µ + 2ρc dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
72
+ page_content=' Denote by ρ the half sum of all roots in ∆+(g, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
73
+ page_content=' Let P be the projection map to the dominant chamber C(g) corresponding to ∆+(g, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
74
+ page_content=' Then ∥P(µ+2ρc −ρ)∥ is independent of the choices of µ and ∆+(g, t), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
75
+ page_content=' Section 1 and Corrollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
76
+ page_content='4 of [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
77
+ page_content=' Now we are ready to talk about the lambda norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
78
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
79
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
80
+ page_content=' ([11, 1]) For any π ∈ ˆK, the lambda norm of π is defined to be (2) ∥��∥lambda := ∥P(µ + 2ρc − ρ)∥, where µ is any highest weight of π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
81
+ page_content=' For any irreducible admissible (g, K)-module X, the lambda norm of X is defined to be (3) ∥X∥lambda := min π ∥π∥lambda, where π runs over all the K-types occurring in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
82
+ page_content=' A K-type π is called a lowest K-type of X if it occurs in X and ∥π∥lambda = ∥X∥lambda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
83
+ page_content=' SPIN NORM AND LAMBDA NORM 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
84
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
85
+ page_content=' The spin norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
86
+ page_content=' Although the original definition of the spin norm involves the spin module SG of the Clifford algebra C(s), our discussion here does not need a deep under- standing of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
87
+ page_content=' Our tool is mainly the root systems and their Weyl groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
88
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
89
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
90
+ page_content=' ([4]) For any π ∈ ˆK, its spin norm is defined to be ∥π∥spin := min ∥γ + ρc∥, where γ runs over all the highest weights of the ˜K-types in π ⊗ SG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
91
+ page_content=' For any irreducible admissible (g, K)-module X, its spin norm is defined to be ∥X∥spin := min π ∥π∥spin, where π runs over all the K-types occurring in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
92
+ page_content=' We call π a spin lowest K-type of X if it occurs in X and ∥π∥spin = ∥X∥spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
93
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
94
+ page_content=' When is the inequality (1) strict?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
95
+ page_content=' We fix a positive root system ∆+(k, t), and denote the half sum of roots in it by ρc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
96
+ page_content=' Let W(g, t) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
97
+ page_content=', W(k, t))) be the Weyl group of ∆(g, t) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
98
+ page_content=', ∆(k, t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
99
+ page_content=' Let C(k) be the closed dominant Weyl chamber for ∆+(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
100
+ page_content=' For any µ ∈ t∗, we use {µ} to denote the unique weight in C(k) to which µ is conjugate under the action of W(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
101
+ page_content=' Let ∆+(g, t) be a positive root system of ∆(g, t) containing ∆+(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
102
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
103
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
104
+ page_content=' ([4, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
105
+ page_content='5]) For any K-type π with a highest weight µ ∈ t∗, we have (4) ∥µ∥spin = min w∈W 1 ∥{µ − wρ + ρc} + ρc∥, where (5) W 1 := {w ∈ W(g, t)|wC(g) ⊆ C(k)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
106
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
107
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
108
+ page_content=' ([7, §13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
109
+ page_content='3, Lemma B]) Let λ ∈ C(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
110
+ page_content=' Then ∥λ + ρc∥ ⩾ ∥wλ + ρc∥ for any w ∈ W(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
111
+ page_content=' Moreover, the equality holds if and only if λ = wλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
112
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
113
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
114
+ page_content=' Let ∆ be a root system with Weyl group W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
115
+ page_content=' Fix a positive set ∆+ of roots and denote by ρ the half sum of all positive roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
116
+ page_content=' For any dominant weight λ, we have the following inequality (6) ∥λ − ρ∥ ⩽ ∥λ − wρ∥, ∀w ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
117
+ page_content=' Moreover, if λ is dominant with respect to w∆+, we have ∥λ − ρ∥ = ∥λ − wρ∥ Otherwise, the inequality (6) is strict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
118
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
119
+ page_content=' We first prove the inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
120
+ page_content=' Compute the following difference (∗) ∥λ − ρ∥2 − ∥λ − wρ∥2 = −2(λ, ρ − wρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
121
+ page_content=' A widely known fact is that ρ − wρ is a sum of positive roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
122
+ page_content=' The weight λ is dominant by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
123
+ page_content=' Thus the pairing (λ, ρ − wρ) is non-negative, and (6) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
124
+ page_content=' 4 CHAO-PING DONG AND DU CHENGYU Now suppose λ is dominant with respect to w∆+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
125
+ page_content=' Notice that the half sum of positive roots with respect to w∆+ is wρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
126
+ page_content=' Applying (6) to λ, w∆+ and wρ gives ∥λ − wρ∥ ⩽ ∥λ − w−1(wρ)∥ = ∥λ − ρ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
127
+ page_content=' Therefore, (6) becomes an equality in the current setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
128
+ page_content=' Now suppose λ is not dominant with respect to the new positive set w∆+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
129
+ page_content=' Define Dw := {γ ∈ ∆−|γ ∈ w∆+}, where ∆− = −∆+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
130
+ page_content=' It is well-known that ρ − wρ = � γ∈Dw (−γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
131
+ page_content=' By assumption, λ is not dominant with respect to w∆+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
132
+ page_content=' There must exist β ∈ w∆+ such that (λ, β) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
133
+ page_content=' But it cannot live in ∆+, because λ is dominant with respect to ∆+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
134
+ page_content=' As a consequence, β ∈ Dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
135
+ page_content=' Continuing with (∗), we have that −(λ, ρ − wρ) = − \uf8eb \uf8edλ, � γ∈Dw (−γ) \uf8f6 \uf8f8 = \uf8eb \uf8edλ, � γ∈Dw γ \uf8f6 \uf8f8 ⩽ (λ, β) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
136
+ page_content=' Thus (6) is strict in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
137
+ page_content=' □ Let us state the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
138
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
139
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
140
+ page_content=' Let π be an irreducible representation of K with be a highest weight µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
141
+ page_content=' Choose a positive root system ∆+(g, t) making µ + 2ρc dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
142
+ page_content=' Let C(g) be the closed dominant Weyl chamber corresponding to ∆+(g, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
143
+ page_content=' Then the inequality (1) is strict if and only if one of the following conditions holds: (a) µ + 2ρc is irregular for ∆(g, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
144
+ page_content=' (b) µ − wρ + ρc /∈ C(k) for all w ∈ W(g, t) such that µ + 2ρc ∈ wC(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
145
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
146
+ page_content=' Let P(·) be the projection map to the cone C(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
147
+ page_content=' It suffices to show that (7) ∥π∥lambda = ∥P(µ + 2ρc − ρ)∥ ≤ ∥µ + 2ρc − ρ∥ ≤ ∥π∥spin, that the first equality happens if and only if (a) holds, and that the second equality happens if and only if (b) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
148
+ page_content=' By the Pythagorean theorem, the first inequality in (7) holds, and it becomes an equality if and only if P(µ + 2ρc − ρ) = µ + 2ρc − ρ, which is equivalent to µ + 2ρc − ρ ∈ C(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
149
+ page_content=' The latter is equivalent to (a) since µ + 2ρc ∈ C(g) and µ + 2ρc is integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
150
+ page_content=' Now let us consider the second inequality in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
151
+ page_content=' We collect all w ∈ W(g, t) such that µ + 2ρc ∈ wC(g) as W 1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
152
+ page_content=' Since µ + 2ρc ∈ C(k), it follows that W 1(µ) ⊆ W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
153
+ page_content=' Moreover, the identity element e ∈ W 1(µ) due to µ + 2ρc ∈ C(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
154
+ page_content=' Using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
155
+ page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
156
+ page_content='2, we have that (8) ∥π∥spin = min w∈W 1 ∥{µ − wρ + ρc} + ρc∥ ⩾ min w∈W 1 ∥µ − wρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
157
+ page_content=' Take λ = µ + 2ρc and ∆+ = ∆+(g, t) in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
158
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
159
+ page_content=' We have (9) ∥µ − wρ + 2ρc∥ ≥ ∥µ − ρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
160
+ page_content=' SPIN NORM AND LAMBDA NORM 5 Furthermore, the inequality (9) is strict when w /∈ W 1(µ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
161
+ page_content=' yet it is an equality when w ∈ W 1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
162
+ page_content=' Now the second inequality in (7) follows from (8) and (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
163
+ page_content=' Assume (b) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
164
+ page_content=' For any w ∈ W 1 \\ W 1(µ), one has that ∥{µ − wρ + ρc} + ρc∥ ⩾ ∥µ − wρ + 2ρc∥ > ∥µ − ρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
165
+ page_content=' On the other hand, for all w ∈ W 1(µ), one has that ∥{µ − wρ + ρc} + ρc∥ > ∥µ − wρ + 2ρc∥ = ∥µ − ρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
166
+ page_content=' The first strict inequality is due to the assumption that µ − wρ + ρc /∈ C(k) and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
167
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
168
+ page_content=' Assume (b) does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
169
+ page_content=' Then there exists some w0 ∈ W 1(µ) such that µ − w0ρ + ρc ∈ C(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
170
+ page_content=' Therefore, ∥{µ − w0ρ + ρc} + ρc∥ = ∥µ − w0ρ + 2ρc∥ = ∥µ − ρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
171
+ page_content=' Since we have proven that min w∈W 1 ∥{µ − wρ + ρc} + ρc∥ ≥ ∥µ − ρ + 2ρc∥, we must have ∥π∥spin = ∥µ − ρ + 2ρc∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
172
+ page_content=' To sum up, the two inequalities in (7) are controlled by (a) and (b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
173
+ page_content=' Thus ∥π∥spin > ∥π∥lambda happens if and only if at least one of (a) and (b) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
174
+ page_content=' □ We record an interesting corollary from the above proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
175
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
176
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
177
+ page_content=' If µ + ρc − wρ ∈ C(k) for some w ∈ W 1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
178
+ page_content=' Then (10) ∥µ∥spin = ∥µ + 2ρc − ρ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
179
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
180
+ page_content=' Application to tempered Dirac series We call an irreducible tempered representations with non-zero Dirac cohomology a tem- pered Dirac series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
181
+ page_content=' Combining Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
182
+ page_content='4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
183
+ page_content='2, we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
184
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
185
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
186
+ page_content=' Let X be a tempered (g, K)-module with real infinitesimal character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
187
+ page_content=' Let π be the unique lowest K-type of X which has a highest weight µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
188
+ page_content=' Then HD(X) = 0 if and only if (a) µ + 2ρc is irregular for ∆(g, t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
189
+ page_content=' or (b) µ − wρ + ρc is not dominant for ∆+(k, t) for any w ∈ W 1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
190
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
191
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
192
+ page_content=' In the special case that W 1 = {e}, which is met for complex Lie groups, SL(2n + 1, R), SL(n, H) and the linear E6(−26), we always have that µ + 2ρc is regular for ∆(g, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
193
+ page_content=' Thus HD(X) = 0 if and only if µ − ρ + ρc is dominant for ∆+(k, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
194
+ page_content=' When #W 1 > 1, pick up two distinct elements w1, w2 from W 1 such that w1C(g)∩w2C(g) is a codimension one facet of w1C(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
195
+ page_content=' Then condition (a) holds for any µ such that µ+2ρc ∈ w1C(g) ∩ w2C(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
196
+ page_content=' This suggests that the tempered Dirac series of G should be divided into #W 1 parts by those irreducible tempered X such that HD(X) vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
197
+ page_content=' From now on, we shall use a circle to stand for a K-type, and paint it if and only if (1) is an equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
198
+ page_content=' Let us see some concrete examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
199
+ page_content=' 6 CHAO-PING DONG AND DU CHENGYU 4 0 4 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
200
+ page_content=' Some K-types of SL(2, R) (0,0) (4,4) (-4,-4) (4,-4) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
201
+ page_content=' Some K-types of Sp(4, R) Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
202
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
203
+ page_content=' Consider SL(2, R), where ∆(g, t) = ∆(s, t) = {±2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
204
+ page_content=' Then #W 1 = 2 and C(g) ∩ sC(g) = {0}, where s is the non-trivial element in W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
205
+ page_content=' Condition (b) does not take effect here since ∆(k, t) is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
206
+ page_content=' Thus µ = 0 is the unique K-type such that ∥µ∥spin > ∥µ∥lambda, and the tempered Dirac series of SL(2, R) are separated into two parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
207
+ page_content=' See Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
208
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
209
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
210
+ page_content=' Consider G = Sp(4, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
211
+ page_content=' Let K = U(2) and T = U(1) × U(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
212
+ page_content=' Thus k has a one-dimensional center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
213
+ page_content=' Fix ∆+(k, t) = {(1, −1)}, ∆+(g, t) = {(1, −1), (2, 0), (0, 2), (1, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
214
+ page_content=' The corresponding simple roots are α1 = (1, −1) = 2ρc, and α2 = (0, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
215
+ page_content=' The highest weight of a K-type is represented by a pair of integers (x, y) such that x ≥ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
216
+ page_content=' Condition (a) of says that the K-types on the three lines y = 1, x = −1 and y = −x should not be painted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
217
+ page_content=' These lines intersect at the point (−1, 1), which is −2ρc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
218
+ page_content=' Condition (b) further says that (1, 0) and (0, −1) should not be painted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
219
+ page_content=' Now Figure 2 suggests that the tempered Dirac series of Sp(4, R) are separated into four parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
220
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
221
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
222
+ page_content=' Let G be G2(2), the linear split G2, which is centerless, connected, but not simply connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
223
+ page_content=' We adopt the simple roots of ∆+(g, t) and ∆+(k, t) as in Knapp [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
224
+ page_content=' Let SPIN NORM AND LAMBDA NORM 7 [0,0] [0,4] [22,0] Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
225
+ page_content=' Some K-types of the linear split G2 α1 be the short simple root and α2 be the long one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
226
+ page_content=' In this case, ∆(g, t) is of type G2, while ∆(k, t) is of type A1 × A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
227
+ page_content=' We fix ∆+(k, t) = {γ1, γ2}, where γ1 := α1 and γ2 := 3α1 + 2α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
228
+ page_content=' Let ω1, ω2 be the fundamental weights for ∆(k, t) such that (ωi, α∨ j ) = δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
229
+ page_content=' The K-types are parameterized via the highest weight theorem by [a, b] := aω1 + bω2, a, b ∈ Z⩾0 such that a + b is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
230
+ page_content=' We show some of the K-types in Figure 3, where the a-coordinates of the bottom line are 0, 2, 4, 6, 8, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
231
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
232
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
233
+ page_content=' , and so are the b-coordinates of the left-most column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
234
+ page_content=' Now condition (a) says that K-types on the two lines a = b and a = 3b + 4 should not be painted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
235
+ page_content=' These two lines intersect at [−2, −2] = −2ρc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
236
+ page_content=' From Figure 3, one sees that the tempered Dirac series are divided into three parts by the two lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
237
+ page_content=' Condition (b) further says that [2, 0] should not be painted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
238
+ page_content=' To sum up, we have recovered Corollary 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
239
+ page_content='4 of [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
240
+ page_content=' Funding Dong is supported by the National Natural Science Foundation of China (grant 12171344).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
241
+ page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
242
+ page_content=' Carmona, Sur la classification des modules admissibles irr´eductibles, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
243
+ page_content='11–34 in Noncommutative Harmonic Analysis and Lie Groups, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
244
+ page_content=' Carmona and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
245
+ page_content=' Vergne, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
246
+ page_content=', Lecture Notes in Mathematics 1020, Springer-Verlag, New York, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
247
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
248
+ page_content=' Ding and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
249
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
250
+ page_content=' Dong, Spin Norm, K-Types, and Tempered Representations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
251
+ page_content=' Lie Theory 26 (2016), 651–658.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
252
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
253
+ page_content=' Ding, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
254
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
255
+ page_content=' Dong, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
256
+ page_content=' Yang, Dirac series for some real exceptional Lie groups, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
257
+ page_content=' Algebra 559 (2020) 379–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
258
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
259
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
260
+ page_content=' Dong, On the Dirac cohomology of complex Lie group representations, Transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
261
+ page_content=' Groups 18 (2013), 61-79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
262
+ page_content=' [Erratum: Transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
263
+ page_content=' Groups 18 (2013), 595–597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
264
+ page_content='] [5] Harish-Chandra, Harmonic analysis on real reductive Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
265
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
266
+ page_content=' The theory of the constant term J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
267
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
268
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
269
+ page_content=' 19 (1975), 104–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
270
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
271
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
272
+ page_content=' Huang and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
273
+ page_content=' Pandˇzi´c, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
274
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
275
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
276
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
277
+ page_content=' 15 (2002), 185–202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
278
+ page_content=' 8 CHAO-PING DONG AND DU CHENGYU [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
279
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
280
+ page_content=' Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
281
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
282
+ page_content=' Knapp, Lie Groups, Beyond an Introduction, 2nd edition, Birkh¨auser, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
283
+ page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
284
+ page_content=' Salamanca-Riba and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
285
+ page_content=' Vogan, On the classification of unitary representations of reductive Lie groups, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
286
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
287
+ page_content=' 148 (1998), 1067–1133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
288
+ page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
289
+ page_content=' Trapa, A parametrization of ˆK (after Vogan), Notes from an AIM workshop, July 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
290
+ page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
291
+ page_content=' Vogan, Representations of Real Reductive Groups, Birkh¨auser, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
292
+ page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
293
+ page_content=' Vogan, Unitarizability of certain series of representations, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
294
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
295
+ page_content=' 120 (1984), 141–187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
296
+ page_content=' (Dong) School of Mathematical Sciences, Soochow University, Suzhou 215006, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
297
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
298
+ page_content=' China Email address: chaopindong@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
299
+ page_content='com (Du) School of Mathematical Sciences, Soochow University, Suzhou 215006, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
300
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
301
+ page_content=' China Email address: cydu0973@suda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
302
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
303
+ page_content='cn' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAzT4oBgHgl3EQfE_q4/content/2301.01004v1.pdf'}
A9E3T4oBgHgl3EQfswtu/content/tmp_files/2301.04670v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E3T4oBgHgl3EQfswtu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANAzT4oBgHgl3EQfhf3F/content/tmp_files/2301.01486v1.pdf.txt ADDED
@@ -0,0 +1,2233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. TCrA_Rigliaco
2
+ ©ESO 2023
3
+ January 5, 2023
4
+ Disk Evolution Study Through Imaging of Nearby Young Stars
5
+ (DESTINYS): Characterization of the young star T CrA and its
6
+ circumstellar environment ⋆
7
+ E. Rigliaco1, R. Gratton1, S. Ceppi2, C. Ginski.3, 4, M. Hogerheijde3, 4, M. Benisty5, 6, T. Birnstiel7, 8, M. Dima1, S.
8
+ Facchini2, A. Garufi9, J. Bae10, M. Langlois11, G. Lodato2, E. Mamajek12, C.F. Manara13, F. Ménard14, Á. Ribas15, and
9
+ A. Zurlo16, 17, 18
10
+ 1 INAF/Osservatorio Astronomico di Padova, Vicolo dell’osservatorio 5, 35122 Padova e-mail: [email protected]
11
+ 2 Dipartimento di Fisica, Università Degli Studi di Milano, Via Celoria, 16, Milano, 20133, Italy
12
+ 3 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
13
+ 4 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
14
+ 5 Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU UMI 3386, Departamento de Astronomía, Universidad
15
+ de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile
16
+ 6 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
17
+ 7 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 Munich, Germany
18
+ 8 Exzellenzcluster ORIGINS, Boltzmannstr. 2, D-85748 Garching, Germany
19
+ 9 INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125, Firenze, Italy
20
+ 10 Department of Astronomy, University of Florida, Gainesville, FL 32611, United States of America
21
+ 11 CRAL, UMR 5574, CNRS, Université Lyon 1, 9 avenue Charles André, 69561 Saint-Genis-Laval Cedex, France
22
+ 12 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
23
+ 13 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
24
+ 14 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
25
+ 15 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
26
+ 16 Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
27
+ 17 Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
28
+ 18 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
29
+ Received 12 October 2022; accepted 22 December 2022
30
+ ABSTRACT
31
+ Context. In recent years it is emerging a new hot-topic in the star and planet formation field: the interaction between circumstellar
32
+ disk and its birth cloud. Birth environments of young stars have strong imprints on the star itself and their surroundings. In this context
33
+ we present a detailed analysis of the wealthy circumstellar environment around the young Herbig Ae/Be star T CrA.
34
+ Aims. Our aim is to understand the nature of the stellar system and the extended circumstellar structures as seen in scattered light
35
+ images.
36
+ Methods. We conduct our analysis combining archival data, and new adaptive optics high-contrast and high-resolution images.
37
+ Results. The scattered light images reveal the presence of a complex environment around T CrA composed of a bright forward
38
+ scattering rim of the disk’s surface that is seen at very high inclination, a dark lane of the disk midplane, bipolar outflows, and streamer
39
+ features likely tracing infalling material from the surrounding birth cloud onto the disk. The analysis of the light curve suggests that
40
+ the star is a binary with a period of 29.6 years, confirming previous assertions based on spectro-astrometry. The comparison of the
41
+ scattered light images with ALMA continuum and 12CO (2–1) line emission shows that the disk is in keplerian rotation, and the
42
+ northern side of the outflowing material is receding, while the southern side is approaching to the observer. The overall system lays
43
+ on different geometrical planes. The orbit of the binary star is perpendicular to the outflows and is seen edge on. The disk is itself seen
44
+ edge-on, with a position angle of ∼7◦. The direction of the outflows seen in scattered light is in agreement with the direction of the
45
+ more distant molecular hydrogen emission-line objects (MHOs) associated to the star. Modeling of the spectral energy distribution
46
+ (SED) using a radiative transfer scheme well agrees with the proposed configuration, as well as the hydrodynamical simulation
47
+ performed using a Smoothed Particle Hydrodynamics (SPH) code.
48
+ Conclusions. We find evidence of streamers of accreting material around T CrA. These streamers connect the filament along which
49
+ T CrA is forming with the outer parts of the disk, suggesting that the strong misalignment between the inner and outer disk is due to
50
+ a change in the direction of the angular momentum of the material accreting on the disk during the late phase of star formation. This
51
+ impacts the accretion on the components of the binary, favoring the growth of the primary with respect the secondary, as opposite to
52
+ the case of aligned disks.
53
+ Key words. stars: pre-main sequence, circumstellar matter – protoplanetary disks – ISM: individual object: T CrA – ISM: jets and
54
+ outflows
55
+ Article number, page 1 of 17
56
+ arXiv:2301.01486v1 [astro-ph.SR] 4 Jan 2023
57
+
58
+ A&A proofs: manuscript no. TCrA_Rigliaco
59
+ 1. Introduction
60
+ Herbig Ae/Be stars (Herbig 1960) are pre-main sequence stars
61
+ with intermediate mass covering the range between low-mass T
62
+ Tauri stars (TTSs) and the embedded massive young stellar ob-
63
+ jects. The formation of stars in the low and intermediate-mass
64
+ regimes involves accreting disks formed during the collapse of
65
+ the protostar, and fast collimated outflows and jets. The circum-
66
+ stellar environment of these objects is highly dynamic and multi-
67
+ wavelengths observations show large photometric and spectro-
68
+ scopic variability (e.g., Pikhartova et al. 2021; Mendigutía et al.
69
+ 2011) that can be used as a tool to understand the physics of ac-
70
+ cretion and ejection related to the interaction between the star
71
+ and its circumstellar environment.
72
+ T CrA (RA=19:01:58.79 DEC=-36:57:50.33) is an Herbig
73
+ Ae/Be star member of the Coronet Cluster, belonging to the
74
+ Corona Australis star-forming region, which is one of the near-
75
+ est (149.4±0.4 pc, Galli et al. 2020) and most active regions of
76
+ ongoing star formation. The Coronet Cluster is centered on the
77
+ Herbig Ae/Be stars R CrA and T CrA. It is very active in star
78
+ formation (e.g. Lindberg & Jørgensen 2012), harboring many
79
+ Herbig-Haro (HHs) objects and Molecular Hydrogen emission-
80
+ line Objects (MHOs). It has been target of many surveys, and
81
+ all studies agree in assigning the Coronet an age <3 Myr (e.g.
82
+ Meyer & Wilking 2009; Sicilia-Aguilar et al. 2011). In this pa-
83
+ per we investigate the variable star T CrA. T CrA is classified
84
+ as F0 by Joy (1945) with effective temperature Teff=7200 K,
85
+ and according to Cazzoletti et al. (2019) and Herczeg & Hil-
86
+ lenbrand (2014) this corresponds to L∗ ∼29 L⊙, and stellar mass
87
+ ∼2.25 M⊙ using the evolutionary tracks by Siess et al. 2000, and
88
+ adopting the average distance of 154 pc calculated by Dzib et al.
89
+ (2018). The Gaia-DR2 and DR3 catalogs (Gaia Collaboration
90
+ et al. 2016, 2021) do not provide proper motion or parallax for
91
+ T CrA. This star was not observed by the Hipparcos satellite and
92
+ it is also not listed in the UCAC5 catalog. The former UCAC4
93
+ catalog (Zacharias et al. 2012) provides a proper motion result
94
+ (µα cos δ = 2.0 ± 3.8 mas yr−1, µδ=-22.6±3.8 mas yr−1), which
95
+ is consistent with membership in Corona-Australis (within the
96
+ large uncertainties of that solution). Galli et al. (2020) provided
97
+ an updated census of the stellar population in the Corona Aus-
98
+ tralis deriving an average distance of 149.4±0.4 pc. This is the
99
+ distance we will use throughout the paper. A deep H2 v=1–0
100
+ S(1) 2.12 µm narrow-band imaging survey of the northern part
101
+ of the Corona Australis cloud conducted by Kumar et al. (2011)
102
+ identified many new MHOs (Davis et al. 2010). Among these
103
+ objects, two are considered unambiguously associated to T CrA:
104
+ MHO2013 and MHO2015, see Figure 3 in Kumar et al. (2011).
105
+ MHO 2015 is a clear bow-shock feature, lying to the south of
106
+ T CrA, and it marks the southern lobe of the bipolar outflow
107
+ originating from T CrA. MHO 2013 marks the northern lobe.
108
+ The hypothetical line connecting the two MHOs crosses the po-
109
+ sition of T CrA. This is the only unambiguously detected bipolar
110
+ outflow traced by two complementing bow-shock features in the
111
+ entire Coronet region (Kumar et al. 2011). We reproduce the im-
112
+ age shown in Kumar et al. (2011) in the left panel of Fig. 1.
113
+ T CrA was suggested to be a binary system by Bailey (1998)
114
+ and Takami et al. (2003) who adopted spectro-astrometry in the
115
+ Hα line suggesting that the system is a binary with a compan-
116
+ ion at >0.14′′. However, no companion has been detected us-
117
+ ing spectro-astrometry in the fundamental rovibrational band of
118
+ CO at 4.6µm (Pontoppidan et al. 2011) nor with K-band speckle
119
+ ⋆ Based on observations collected at the European Organisation for
120
+ Astronomical Research in the Southern Hemisphere under ESO pro-
121
+ gramme 1104.C-0415(H).
122
+ imaging (Ghez et al. 1997; Köhler et al. 2008). In the same
123
+ years, infrared speckle observations performed by Ghez et al.
124
+ (1997) did not show the presence of a stellar companion. The
125
+ non-detection of the companion by Ghez et al. (1997) implies
126
+ that the possible companion has a contrast in the K-band larger
127
+ than 3 mag (that is a K-magnitude fainter than 10.5) or a sep-
128
+ aration smaller than 0.1 arcsec at the epoch of the observation
129
+ (April 26, 1994; see also Takami et al. 2003).
130
+ Recently, the circumstellar environment of T CrA has been
131
+ investigated. SOFIA/FORCAST (Faint Object infraRed CAm-
132
+ era for the SOFIA Telescope, Herter et al. 2018) observations
133
+ show very strong excess in the far-IR. T CrA was also de-
134
+ tected in all Herschel/PACS (Photodetector Array Camera and
135
+ Spectrometer) bands (Sandell et al. 2021), highlighting the pres-
136
+ ence of warm or hot dust. Mid-infrared interferometric data
137
+ obtained with VLT/MIDI (MID-infrared Interferometric instru-
138
+ ment) show the presence of disk emission from the inner regions,
139
+ where the temperature is sufficiently high (Varga et al. 2018).
140
+ The presence of the inner disk is also given by the spectral en-
141
+ ergy distribution (SED) which shows near-IR excess emission
142
+ (Sicilia-Aguilar et al. 2013). Optical and IR spectra covering
143
+ the [OI] λ6300 and [NeII] 12.81 µm lines (Pascucci et al. 2020)
144
+ show emission attributed to a jet nearly in the plane of the sky.
145
+ Moreover, continuum ALMA observations of T CrA at 1.3 mm
146
+ (230 GHz) were conducted as part of the survey of protoplan-
147
+ etary disks in Corona Australis (Cazzoletti et al. 2019) and the
148
+ data show a ∼22σ detection at 1.34′′ from the nominal Spitzer
149
+ position that is considered as detection. The 1.3 mm continuum
150
+ flux is then converted into a dust mass (Mdust) under the assump-
151
+ tion of optically thin and isothermal sub-millimeter emission,
152
+ yielding Mdust=3.64±0.27 M⊕. No information on the 12CO(2-
153
+ 1) gas content in the disk are provided. The average disk mass
154
+ in CrA is 6±3 M⊕, and it is significantly lower than that of disks
155
+ in other young (1–3 Myr) star forming regions (Lupus, Taurus,
156
+ Chamaeleon I, and Ophiuchus) and appears to be consistent with
157
+ the average disk mass of the 5–10 Myr-old Upper Sco (Cazzo-
158
+ letti et al. 2019).
159
+ In this paper we analyze images of T CrA acquired with the
160
+ Very Large Telescope at ESO’s Paranal Observatory in Chile.
161
+ We employ polarimetric differential imaging (PDI) observations
162
+ obtained with SPHERE (Spectro-Polarimetric High-contrast Ex-
163
+ oplanet REsearch, Beuzit et al. 2019) in the H band to explore
164
+ the circumstellar environment by tracing light scattered by the
165
+ small (µm-sized) dust grains. Moreover, we use archival pho-
166
+ tometric and imaging data to investigate the multiplicity of the
167
+ system. The paper is organized as follows. In Sect. 2 we describe
168
+ the data collected from the archive and newly acquired. In Sect. 3
169
+ we describe the data analysis. First we discuss the multiplicity of
170
+ the system as suggested by the photometric data, the analysis of
171
+ the proper motion and the analysis of the PSF subtracted images.
172
+ Second we analyze the geometry of the system with the analy-
173
+ sis of the disk and the extended emission seen in scattered light.
174
+ In Sect. 4 we propose a scenario that reconciles all the findings,
175
+ showing a model of the system, and discussing a modeling of
176
+ the spectral energy distribution and hydrodynamical simulation.
177
+ In Sect. 5 we summarize and conclude.
178
+ 2. Observations
179
+ 2.1. SPHERE data
180
+ T CrA was observed on 2021 June 6th with SPHERE/IRDIS
181
+ (InfraRed Dual-band Imager and Spectrograph (IRDIS; Dohlen
182
+ et al. 2008) in dual-beam polarimetric imaging mode (DPI; de
183
+ Article number, page 2 of 17
184
+
185
+ Rigliaco et al.: DESTINYS–TCrA
186
+ Boer et al. 2020; van Holstein et al. 2020) in the broadband H
187
+ filter with pupil tracking setting, as part of the DESTINYS pro-
188
+ gram (Disk Evolution Study Through Imaging of Nearby Young
189
+ Stars, Ginski et al. (2020, 2021)). An apodized Lyot coronagraph
190
+ with an inner working angle of 92.5 mas was used to mask the
191
+ central star. The individual frame exposure time was set to 32 s,
192
+ and a total of 136 frames were taken separately in 34 polari-
193
+ metric cycles of the half-wave plate. The total integration time
194
+ was 72.5 minutes. Observing conditions were excellent with an
195
+ average seeing of 0.8′′ and an atmosphere coherence time of
196
+ 6.4 ms. In addition to the science images, flux calibration images
197
+ were obtained by offsetting the star position by about 0.5 arcsec
198
+ with respect to the coronagraph using the SPHERE tip/tilt mir-
199
+ ror, and inserting a suitable neutral density filter to avoid image
200
+ saturation. Two flux calibration sequences were acquired, before
201
+ and after the science observation. We used the public IRDAP
202
+ pipeline (IRDIS Data reduction for Accurate Polarimetry; van
203
+ Holstein et al. 2020) to reduce the data. The images were astro-
204
+ metrically calibrated using the pixel scale and true north offset
205
+ given in Maire et al. (2016). Because the data were taken in pupil
206
+ tracking mode, we were able to perform an angular differential
207
+ imaging (ADI; Marois et al. 2006) reduction in addition to the
208
+ polarimetric reduction, resulting in a total intensity image and
209
+ a polarized intensity image. We show the initial combined and
210
+ flux calibrated Stokes Q and U images as well as the QΦ and UΦ
211
+ images in Appendix A.
212
+ Additional SPHERE observations of T CrA were acquired
213
+ in 2016 and 2018 with the ESO programs 097.C-0591(A) and
214
+ 0101.C-0686(A) (P.I. Schmidt) in classical imaging mode, using
215
+ a classical Lyot coronagraph and the broadband H filter (BB_H).
216
+ The data were reduced through the SPHERE Data Center (De-
217
+ lorme et al. 2017). The 2016 data have very low S/N ratio and
218
+ they are not usable for this work. The 2018 IRDIS data are in-
219
+ stead of good quality and are used to confirm the features de-
220
+ tected in the 2021 images.
221
+ 2.2. NACO data
222
+ To perform our analysis we also employed archival NACO data.
223
+ Adaptive optics corrected near-infrared imaging of T CrA was
224
+ obtained with NAOS-CONICA (NACO; Lenzen et al. 2003;
225
+ Rousset et al. 2003) at the VLT in July 12th 2007 (program ID
226
+ 079.C-0103(A)), March 29th 2016 (program ID 097.C-0085(A))
227
+ and May 21st 2017 (program ID 099.C-0563(A)). In all cases
228
+ images were obtained in Ks band (λc=2.18 µm) using the S13
229
+ camera, with a 13.72 mas/pixel scale. In 2007, 3000 frames of
230
+ 0.6 seconds were taken with an average seeing of 0.8. In 2016,
231
+ 540 frames of 0.5 seconds each were taken with average see-
232
+ ing of 1.5. In 2017, 756 frames of 0.35 seconds each were taken
233
+ with average seeing of 1.4. The final images are obtained as the
234
+ median of all the exposures for each year, after re-centering and
235
+ rotating the single-exposure images.
236
+ 2.3. Photometric data
237
+ We collected long-term optical photometry of T CrA from the
238
+ AAVSO Database1 (American Association of Variable Star Ob-
239
+ servers: Kafka 2020) in order to investigate its secular evolution.
240
+ We also considered data acquired within the ASAS (Pojman-
241
+ 1 https://www.aavso.org/data-access
242
+ ski 1997)2 and ASAS-SN surveys (Shappee et al. 2014)3. While
243
+ more accurate than the AAVSO data, they have a much more
244
+ limited temporal coverage. Results are fully consistent with the
245
+ long-term light curve obtained from the AAVSO data, but no fur-
246
+ ther insight could be obtained. So we will not discuss the ASAS
247
+ data further.
248
+ 2.4. ALMA data
249
+ T CrA was observed by ALMA on 2016 August 1–2 (project
250
+ 2015.1.01058.S). Details of the observations and calibration are
251
+ described in Cazzoletti et al. (2019). These authors also present
252
+ an analysis of the continuum emission. For the current paper,
253
+ the continuum emission was imaged using Hogböm CLEANing
254
+ with Brigss weighting, a robust parameter of 0.5, and a manu-
255
+ ally drawn CLEAN mask. The resulting beam size is 0.36×0.27
256
+ arcsec (PA +78◦). The noise level is 0.12 mJy, and a continuum
257
+ flux of 3.1 mJy is detected. These values are not corrected for
258
+ the primary beam response, which can be expected to affect the
259
+ results since the observations was not centered on the target. A
260
+ 2D Gaussian fit to the continuum emission shows that the con-
261
+ tinuum emission is slightly resolved, with a size of 0.54 × 0.37
262
+ and a PA of +23◦.
263
+ The 12CO line emission was imaged using natural weight-
264
+ ing and 0.5 km s−1 channels, from VLSR = −5 to +15 km s−1;
265
+ no emission was detected outside this range. We used hand
266
+ drawn masks for each individual channel and applied multi-scale
267
+ CLEAN with scales of 0,5,15,25 pixels. A pixel scale of 12.251
268
+ mas was used, coincident with the SPHERE pixel scale. Because
269
+ the CrA region contains extended CO emission around the sys-
270
+ temic velocity of T CrA (e.g., Cazzoletti et al. 2019), we re-
271
+ moved all baselines shorter than 55 kλ. This removed most, but
272
+ not all, of the extended line flux but also limits the recovered
273
+ spatial scales to ∼ 3.75 arcsec.
274
+ 3. Data Analysis
275
+ The new and archival data described in the previous section al-
276
+ low us to investigate the nature of T CrA as young stellar object.
277
+ In this section we will analyze the observational evidences we
278
+ have for the stellar system, its environment, and the geometry of
279
+ the extended structures visible in scattered light. In Sect. 3.1 we
280
+ analyze the clues related to the binarity of the system. In Sect. 3.2
281
+ we show the newly acquired polarized light image in H-band of
282
+ T CrA, describing all the features that we see in the image.
283
+ 3.1. T CrA as binary system
284
+ The light curve (Fig. 2) shows alternate and periodic maxima
285
+ and minima. The photometric time series analyzed in this study
286
+ consists of more than 5100 V-band data points collected from the
287
+ AAVSO Database and taken in a period of over 100 years, be-
288
+ tween 1910 and 2010. Each point in Figure 2 is the mean value
289
+ over each year. The secular evolution of the light curve is well
290
+ reproduced by a sinusoidal function with a period of 29.6 years.
291
+ Sinusoidal light curves, like the one observed in T CrA, can be
292
+ due to different reasons such as rotation, pulsation, the presence
293
+ of eclipsing binaries, or occulting binaries. In the case of oc-
294
+ culting binaries, the period is generally longer than in the other
295
+ cases, and the occultation is not only due to the stars, but also
296
+ 2 http://www.astrouw.edu.pl/asas/?page=aasc&catsrc=
297
+ asas3
298
+ 3 https://asas-sn.osu.edu/variables
299
+ Article number, page 3 of 17
300
+
301
+ A&A proofs: manuscript no. TCrA_Rigliaco
302
+ Fig. 1: SPHERE/IRDIS polarized light image in H-band of T CrA. Left panel: H2 image of the Coronet sub-region. The image is
303
+ adapted from Kumar et al. 2011. The red line shows the line connecting the two MHOs associated to T CrA. The orange box shows
304
+ the IRDIS field of view. Middle panel: Field of view (∼12.5′′) of the SPHERE/IRDIS polarized light image in H-band of T CrA.
305
+ The extended emission features analyzed in the manuscript are labeled. The orange box shows the innermost region of the system.
306
+ Right panel: Zoom-in of the innermost 2′′ around the central system. The disk and the shielded disk mid-plane seen as dark lane are
307
+ labeled.
308
+ Fig. 2: Secular light curve of T CrA with the photometry col-
309
+ lected from the AAVSO archive. Each point is the mean value
310
+ for each year; error bar is the standard deviation of the mean.The
311
+ horizontal dashed lines show the ∆V-mag variation. The period
312
+ of the light curve, measured as the mean between the difference
313
+ of the first and third maxima and minima, is labeled.
314
+ to the circumstellar disks surrounding one or both the stars. The
315
+ light curve of T CrA is suggestive of the motion of an occulting
316
+ binary star. The variation (∆V) in V-magnitude is of the order of
317
+ ∼1.4±0.2 mag (see Fig. 2).
318
+ Evidence of the presence of a binary star is also provided by
319
+ the peculiar proper motion of T CrA. Indeed T CrA shows a rela-
320
+ tive average motion of 7.5±3.8 mas yr−1 with respect to the clus-
321
+ ter in the direction (PAPM)=156±30◦ over the period 1998 (mean
322
+ epoch of UCAC4 and PPMXL observation) and 2016 (epoch of
323
+ Gaia DR3). These values are given by the difference between
324
+ the proper motion of T CrA, µα cos δ = 4.2 ± 2.5 mas yr−1 in
325
+ RA and µδ=-6.2±2.9 mas yr−1 in DEC (see Appendix B), and
326
+ the average proper motion of the on-cloud Coronet cluster mem-
327
+ bers (µα cos δ = 4.3 mas yr−1 and µδ=-27.3 mas yr−1, Galli et al.
328
+ 2020). This result might indicate a peculiar (large) motion of
329
+ T CrA with respect to the Coronet cluster. However the position
330
+ of T CrA is also constrained and defined by the position of the
331
+ two associated MHOs (Kumar et al. 2011). We measured the po-
332
+ sition angle of the straight line connecting MHO 2013 and 2015,
333
+ that are thought to be connected to the star (Kumar et al. 2011),
334
+ and crossing T CrA, finding the position angle of the bipolar out-
335
+ flow (PAMHO) to be PAMHO ≃33◦. This represents the direction
336
+ of the large scale bipolar outflows. We notice that the minimum
337
+ distance between T CrA and the line connecting the two MHOs
338
+ is only 0.44′′. While this small offset is within the errors in the
339
+ MHO positions, it can be used to set an upper limit to the relative
340
+ proper motion of T CrA with the Coronet cloud in the direction
341
+ perpendicular to this straight line, that is roughly along the di-
342
+ rection where we found an offset between the proper motion of
343
+ T CrA measured above and that of the Coronet cluster. The exact
344
+ value depends on the time elapsed between the expulsion of the
345
+ material responsible for the MHO and the observation by Ku-
346
+ mar et al. (2011). Given the projected distances from the star
347
+ of the MHO’s are 217′′ (MHO 2013) and 64′′ (MHO 2015),
348
+ considering the distance of the Coronet cluster and assuming
349
+ the collimated fast outflowing gas has a speed of approximately
350
+ 200 km/s as typical for jets from young stars (e.g., Frank et al.
351
+ 2014), we obtain that the material was expelled 765 year ago (for
352
+ MHO2013) and 224 years ago (for MHO 2015). The upper limit
353
+ on the proper motion of T CrA with respect to the cloud is then
354
+ obtained by dividing the measured offset between the barycenter
355
+ of the system that includes T Cra and the line connecting the two
356
+ MHOs: the result is about 1 mas/yr, an order of magnitude less
357
+ than the offset in proper motions considered above and consis-
358
+ tent with the typical scatter of stars in the Coronet cluster. We
359
+ conclude that this offset is not due to a real peculiar motion of
360
+ Article number, page 4 of 17
361
+
362
+ 36:54:00.0
363
+ F103
364
+ N
365
+ MHO2013
366
+ PAdisk
367
+ E
368
+ dark lane
369
+ 102
370
+ 36:56:00.0
371
+ Extended
372
+ Extended emission
373
+ DEC (J2000)
374
+ emission
375
+ (feature 1)
376
+ (feature 2)
377
+ 101
378
+ tail
379
+ 36:58:00.0
380
+ disk
381
+ TCrA
382
+ H2image of
383
+ the Coronet
384
+ subregion
385
+ MHO2015
386
+ 10°
387
+ 2"
388
+ 0.5"-75AU
389
+ PA
390
+ -37:00:00.0
391
+ 02:10.019:02:00.001:50.0
392
+ RA (J2000)Rigliaco et al.: DESTINYS–TCrA
393
+ T CrA, that moves as the Coronet cluster, and should then be
394
+ an apparent or transient effect, that might be due to the orbital
395
+ motion of the central binary star.
396
+ Additional evidence of T CrA as a binary system can also be
397
+ found in the images acquired with IRDIS in 2018 and 2021 and
398
+ NACO in 2007, 2016 and 2017. We subtracted a median PSF,
399
+ obtained by rotating and averaging the PSF image in steps of 1
400
+ degree, to the raw NACO images taken in 2007 and 2016, 2017.
401
+ For IRDIS, we used the flux calibration images that are acquired
402
+ before and after the science sequence. The technique, described
403
+ by Bonavita et al. (2021), allows to make a differential image
404
+ that cancels static aberrations. The output of the procedure is
405
+ a contrast map that allows to spot stellar companions. Due to
406
+ the contrast limit and to the limits imposed by the diffraction
407
+ patterns, none of the images obtained allows us to clearly and
408
+ uniquely detect the presence of a companion star. However, The
409
+ PSF of the NACO 2016 and 2017 data set clearly show an exten-
410
+ sion in the same direction (see Fig. 3), namely NW–SE, but in
411
+ the NACO 2007 data set we do not see this extension. A slight
412
+ extension can be seen in the SPHERE 2018 data set, while no ex-
413
+ tension in the SPHERE 2021 data set. The observed extensions,
414
+ all in the same direction, are very unlikely to be caused by adap-
415
+ tive optic effect, but might indicate a distortion of the PSF due to
416
+ an unresolved companion.
417
+ 3.2. The geometry of the system
418
+ Figure 1 shows the polarized light image in H-band of T CrA.
419
+ The image shows several structures, as annotated. In the right
420
+ panel the brightly illuminated top-side of the outer disk is clearly
421
+ visible, as well as the shielded disk mid-plane, seen as a stark
422
+ dark lane in approximately the N-S direction. On larger scale,
423
+ in the middle panel, we can identify two different extended
424
+ emissions. The extended emission labeled as "feature 1" is two-
425
+ lobed and extends in the NE–SW direction, up to 2′′ from the
426
+ central source. The extended emission labeled as "feature 2"
427
+ appears two lobed as well, it is approximately oriented along
428
+ the N-S direction. The South lobe extends out to the edge of
429
+ SPHERE/IRDIS field of view, while the North lobe extends up
430
+ to ∼5′′ from the central source. In the following section we will
431
+ analyze these different structures.
432
+ 3.2.1. Outer Disk
433
+ Figure 1 in the right panel shows a very prominent morpholog-
434
+ ical feature composed by a dark lane and a bright region that
435
+ represents the disk surface. This outer disk appears highly in-
436
+ clined, and oriented almost edge-on with respect to the observer,
437
+ and extends almost to the edge of the coronagraph. The dark
438
+ lane has a maximum width of ∼0.2′′ along the E–W direction,
439
+ corresponding to ∼30 au if it were seen exactly edge-on. More-
440
+ over, the disk seen as a dark lane shows an offset with respect
441
+ to the center of the image that corresponds to ∼10 pixels in the
442
+ West direction (∼122 mas) that is about four times the FWHM
443
+ of the point spread function. The disk surface is instead shown
444
+ by the bright regions that extend further out. The PA of the disk
445
+ measures PAdisk=7±2◦, shown as green line in Fig. 1. The disk
446
+ appears highly inclined and seen as a dark lane, as in the case
447
+ for DoAr25 (Garufi et al. 2020), MY Lup and IM Lup (Aven-
448
+ haus et al. 2018). From the images we cannot provide a precise
449
+ estimate of the disk inclination, but we can make a few con-
450
+ siderations. The brightness asymmetry between the bright disk
451
+ top-side, and the diffuse disk bottom-side, indicates that the disk
452
+ is not exactly seen edge-on, indeed in that case we should expect
453
+ top- and bottom-side of the disk to be equally bright. Moreover,
454
+ the offset between the dark-lane and the center of the image pro-
455
+ vides another hint of a non-exactly edge-on disk. From simple
456
+ trigonometric consideration, we can measure the inclination of
457
+ the disk from the angle between the center of the image and
458
+ the center of the dark lane and dividing for half the lengths of
459
+ the dark lane, finding an inclination of ∼87◦. We can conserva-
460
+ tively assume that the T CrA disk, identified as a dark lane in
461
+ the SPHERE image has an inclination between 85-90◦. Another
462
+ possible interpretation for the dark lane could be that it is due to
463
+ a shadow cast by a highly inclined inner disk close to the cen-
464
+ ter, as in the case of SU Aur (Ginski et al. 2021). However, in
465
+ this scenario, we can not reconcile the brightness asymmetry be-
466
+ tween the bright top-side and the diffuse bottom-side of the disk.
467
+ Moreover, we should expect the shadow to cross the center of
468
+ the image, while it appears shifted to the west by ∼10 pixels.
469
+ In order to investigate the innermost region of the outer disk,
470
+ we have plotted the radial profile of the flux seen in QΦ scat-
471
+ tered light along a slice oriented as the disk, seven pixels wide
472
+ and 2.5′′ long. The radial profile, normalized to the brightness
473
+ peak of the disk, is shown in Fig. 4 as a black line. The grey
474
+ area shows the coronagraph. The disk has a gap that extends up
475
+ to ∼25 au and is quite symmetric in the innermost region. As
476
+ far as 60 au the disk start to look asymmetric, and extends up to
477
+ ∼100 au. The observed asymmetry might be due to the outflow-
478
+ ing material that overlaps with the disk itself in the north side (as
479
+ discussed in the next section). From this analysis we consider for
480
+ the outer disk an inner rim with radius rin=0.17′′ (∼25 au) and
481
+ an outer rim rout=0.67′′ (∼100 au). We performed the same anal-
482
+ ysis of the radial profile in the direction orthogonal to the disk,
483
+ and shown as blue-dotted line in Fig. 4. In the East side there is
484
+ emission from the scattered light down to the border of the coro-
485
+ nagraph (rin−east ≲14 au), and inside the disk rim measured along
486
+ the disk direction. As expected, in the West-side the emission
487
+ starts further out, due to the presence of the disk’s dark silhou-
488
+ ette (rin−west ∼30 au). We notice that in the West direction at ra-
489
+ dial distances >50 au there is contamination with the outflowing
490
+ material. We will discuss the presence of scattered light emission
491
+ inside the outer disk gap in the following section, showing that it
492
+ may suggest the presence of an intermediate circumbinary disk
493
+ surrounding the central binary system.
494
+ 3.2.2. Extended emission
495
+ The structure seen in scattered light in the NE–SW direction,
496
+ identified as feature 1, is consistent with an outflow in the di-
497
+ rection of the line connecting the two MHOs (MHO2013 and
498
+ MHO2015) that are unambiguously associated to T CrA (show
499
+ in the left panel of Fig. 1), which are however at a projected sepa-
500
+ ration of ∼35,000 au and ∼10,000 au, respectively. The presence
501
+ of the MHOs is a clear sign that the source has in the past al-
502
+ ready experienced outflowing phenomena, hence it is consistent
503
+ to consider the emission seen in scattered light in the same direc-
504
+ tions as associated to outflowing material close to the star. From
505
+ a geometrical point of view, the dust seen in scattered light in
506
+ the direction of the outflow has a position angle PAoutflow ∼35◦
507
+ with semi-aperture of ∼25◦, consistent with the PAMHO previ-
508
+ ously discussed.
509
+ The extended emission that elongates approximately in the
510
+ N-S direction, and identified as feature 2, is two lobed as well.
511
+ In the North it extends up to 4.5′′ from the center, and appears
512
+ bent toward the West direction. The Southern feature 2 extends
513
+ up to the edge of the field of view and appears brighter than
514
+ Article number, page 5 of 17
515
+
516
+ A&A proofs: manuscript no. TCrA_Rigliaco
517
+ 0.2
518
+ 0.1
519
+ 0.0
520
+ 0.1
521
+ 0.2
522
+ 0.2
523
+ 0.1
524
+ 0.0
525
+ 0.1
526
+ 0.2
527
+ ∆Dec (arcsec)
528
+ NACO/2007
529
+ 0.2
530
+ 0.1
531
+ 0.0
532
+ 0.1
533
+ 0.2
534
+ NACO/2016
535
+ 0.2
536
+ 0.1
537
+ 0.0
538
+ 0.1
539
+ 0.2
540
+ ∆RA (arcsec)
541
+ NACO/2017
542
+ 0.2
543
+ 0.1
544
+ 0.0
545
+ 0.1
546
+ 0.2
547
+ SPHERE/2018
548
+ 0.2
549
+ 0.1
550
+ 0.0
551
+ 0.1
552
+ 0.2
553
+ 0.2
554
+ 0.1
555
+ 0.0
556
+ 0.1
557
+ 0.2
558
+ SPHERE/2021
559
+ Fig. 3: PSF for all the epochs T CrA was observed. The size of the PSF for every single epochs is shown in the bottom-right corner.
560
+ For NACO 2016, 2017 data sets we can notice an elongation of the PSF in the NW–SW direction.
561
+ Fig. 4: Radial profile of the Qφ image. The black profile shows
562
+ the radial profile obtained along a 2.5′′ long slice centered on
563
+ the star in the N-S direction, with PA=7◦ and extending along
564
+ the disk (black-dashed box in the insert). The blue-dotted profile
565
+ shows the radial profile obtained in the orthogonal direction (E-
566
+ W, blue-dashed box in the insert). All profiles are normalized to
567
+ the brightness peak of the disk. The gray area shows the radius
568
+ of the coronagraph.
569
+ the North feature. We can also detect a faint dust tail extend-
570
+ ing from the main disk toward SE. As it happens in the case of
571
+ SU Aur, where several tails are detected (Ginski et al. 2021),
572
+ we can trace the tail structure until it merges with the disk. Fea-
573
+ ture 2 is most likely showing the presence of accretion streamers
574
+ that bring material from the forming cloud filament to the outer
575
+ disk. From the polarized (Fig. 1) and total intensity images of
576
+ T CrA we can see that in both cases the northern streamer is
577
+ fainter than the southern streamer, indicating that we overall re-
578
+ ceive more photons from the South than from the North side of
579
+ the extended structure. Moreover, the ratio between the polarized
580
+ and total intensity image shows that the overall degree of polar-
581
+ ization is similar on both sides. This indicates that light from the
582
+ South streamer is scattered with angles smaller than 90◦, favor-
583
+ ing the forward scattering. Because the Northern streamer shows
584
+ a similar degree of polarization, but overall fainter signal, we
585
+ conclude that the light is scattered with angles larger than 90◦.
586
+ Hence, the South streamer is angled toward the observed and the
587
+ North streamer is angled away from the observer.
588
+ 4. Discussion
589
+ The environment around T CrA is very complex and the analysis
590
+ of new and archival data shows several features. In the following
591
+ we will discuss each of the evidences presented in the previous
592
+ sections, and we will provide a global picture of its circumstel-
593
+ lar environment. A cartoon of the proposed model, showing all
594
+ the observational evidences analyzed in the previous section, is
595
+ shown in Fig. 5.
596
+ Fig. 5: Not-to-scale cartoon of the proposed model for the T CrA
597
+ system. All the features seen in the scattered light images are
598
+ labeled. Moreover, the central binary system, and the size of the
599
+ coronagraph is shown.
600
+ 4.1. Modeling of the light curve
601
+ Motivated by the light curve, the peculiar proper motion and the
602
+ PSF distortion, we conducted a detailed analysis of the pho-
603
+ tometric and proper motion data, to be compared to the new
604
+ information on the system’s geometry gathered thanks to the
605
+ Article number, page 6 of 17
606
+
607
+ [argsec]
608
+ -0.5
609
+ 0.5
610
+ 1
611
+ N
612
+ Rin(N-s) = 0.17"
613
+ Rout(N-s) = 0.70"
614
+ 1
615
+ E
616
+ W
617
+ intensity
618
+ Arbitrary
619
+ 0.5
620
+ South-side
621
+ North-side
622
+ 0
623
+ East-side
624
+ West-side
625
+ -100
626
+ 0
627
+ 100
628
+ Radial distance (AU)Accretion
629
+ streamer
630
+ Outflow
631
+ Flows from
632
+ outer to inner
633
+ disk
634
+ Intermediate
635
+ (circumbinary)
636
+ Coronagraph
637
+ disk
638
+ edge
639
+ Outer disk
640
+ dark lane
641
+ Outer disk
642
+ surface
643
+ tailRigliaco et al.: DESTINYS–TCrA
644
+ Parameters
645
+ Value
646
+ log(q)
647
+ -0.27±0.17 M⊙
648
+ T0
649
+ 2006.06±0.4 years
650
+ AV0
651
+ 6.7±1.1 mag
652
+ Disk Thickness
653
+ 54.7±20.2 mas
654
+ Disk Offset
655
+ 90.7±19.2 mas
656
+ Table 1:
657
+ Stellar parameters obtained from the modeling of
658
+ T CrA as a binary star. The primary mass star is assumed to be
659
+ 1.7M⊙, the orbit to be circular, and period 29.6 years.
660
+ SPHERE’s images. In the attempt to reproduce the observed
661
+ light curve and the H-band magnitude collected from 2MASS,
662
+ we develop a Monte Carlo (MC) model that accounts for the
663
+ light emitted from a binary system and partially absorbed by a
664
+ disk seen edge-on, modeled as a slab with an exponential pro-
665
+ file, and inclined with respect to the binary’s orbit by 35◦, corre-
666
+ sponding to an orbit perpendicular to the outflow’s direction. For
667
+ this simplified model we assume for the binary system a circular
668
+ orbit seen itself edge-on. While the circular orbit is an assump-
669
+ tion made to reduce the number of free parameters, and hence
670
+ avoid degeneracy in the models, the high-inclination of the bi-
671
+ nary orbit is supported by the observation. Indeed, as discussed
672
+ in Pascucci et al. (2020), evidence from the small blueshift of
673
+ the [OI] and [NeII] forbidden lines of T CrA suggests that the
674
+ inner disk is itself close to edge-on, with the microjets close to
675
+ the plane of the sky. We assume for the F0 star a mass of 1.7M⊙
676
+ for the primary star, corresponding to 2 Myrs from the BHAC
677
+ evolutionary tracks (Baraffe et al. 2015), circular orbit, and a
678
+ period of 29.6 years as found from the light curve. The model
679
+ provides the mass ratio (q) between the primary and secondary
680
+ component of the binary system, the epoch of the minimum dis-
681
+ tance between the two components (T0, in years), the offset of
682
+ the center of mass with respect to the absorbing slab (disk offset,
683
+ in mas), the disk thickness (in mas) and the maximum absorption
684
+ at the disk center (AV0, in mag). The proper motion between the
685
+ 1998 and 2016 is also measured to be compared to the apparent
686
+ proper motion of T CrA.A corner plot of the derived quantities
687
+ is shown in Appendix C. The MC model computes one million
688
+ random sampling of the priors, and provides solutions with re-
689
+ duced χ2 <2.3. Figure 6 shows the comparison between the ob-
690
+ served secular evolution of T CrA and the light curve obtained
691
+ from the model. There is a very good agreement between the
692
+ observed and modeled light curve. The best fit parameters for
693
+ each of the computed values, obtained as the median value of all
694
+ the solutions with χ2 <2.3, are reported in Table 1. According
695
+ to this model T CrA is a binary system, whose primary star is
696
+ a 1.7M⊙ star, and the secondary is a ∼0.9M⊙, and it is orbiting
697
+ with a 29.6 years period. The corresponding semi-major axis of
698
+ the orbit is ∼12 au, seen edge-on, and with the line of nodes of
699
+ the orbit almost perpendicular to the position angle determined
700
+ for the outflow. Moreover, we check the consistency between
701
+ the apparent motion as measured from Gaia and ground-based
702
+ facilities, and the one measured by assuming the motion of the
703
+ modeled binary system. We find that the offset between the two
704
+ epochs (1998 and 2016) corresponds to 72±26 mas, which is
705
+ consistent with the value of 130±66 mas measured via Gaia and
706
+ UCAC4/PPMXL observations, hence justifying the large proper
707
+ motion of T CrA with respect to the Coronet motion as due to the
708
+ motion of the binary system. We will further discuss the results
709
+ from the model in the next Section.
710
+ Fig. 6: Light curve of T CrA (red points) compared to the light
711
+ curves computed with the MC model (black lines) assuming a
712
+ period of 29.6 years.
713
+ 4.2. Disk and extended emission
714
+ Thanks to the new images acquired with SPHERE/IRDIS, and
715
+ to the wealth of literature data on this target, we have now a bet-
716
+ ter knowledge of the disk and extended structure around T CrA,
717
+ and it appears very composite. The disk itself is composed by in-
718
+ ner (circumstellar) disk(s) surrounding the primary (secondary)
719
+ star of the binary system, an intermediate (circumbinary) disk,
720
+ slightly visible in scattered light, and an outer (circumbinary)
721
+ disk that is the most prominent in scattered light. Together with
722
+ the extended emission features, we will discuss all these features
723
+ in the following subsections.
724
+ Disks. The outer disk around T CrA is not continuous. The
725
+ scattered light images and the radial profile analysis of the QΦ
726
+ image show that the bright top-side of the outer disk extends up
727
+ to ∼100 au in the N-S direction, and show a gap in the same
728
+ direction that extends down to ∼25 au.
729
+ Evidence of an inner (circumstellar) disk(s) surrounding the
730
+ primary (secondary) star of the binary system comes from the
731
+ several tracers of gas and dust well beyond the dust gap. Pas-
732
+ cucci et al. (2020) analyze the [OI] λ6300 and [NeII] 12.81 µm
733
+ emission lines observed in high-resolution optical and infrared
734
+ spectra, and conclude that they are associated to fast and col-
735
+ limated microjets. In addition, the presence of gas can also be
736
+ inferred from the non-negligible level of mass accretion rate
737
+ ( ˙Macc ∼8.1×10−9 M⊙/yr, Dong et al. 2018; Takami et al. 2003).
738
+ This gas is most likely distributed into an inner circumstellar
739
+ disk, that allows accretion onto the system. The presence of the
740
+ inner disk is also highlighted by mid-infrared interferometric
741
+ data of the thermal emission of disk (Varga et al. 2018), and by
742
+ the SED (Sicilia-Aguilar et al. 2013; Sandell et al. 2021).
743
+ The images acquired with SPHERE show the presence of
744
+ scattered light down to the edge of the coronagraph in the E-
745
+ W direction. The origin of such emission, highly inclined with
746
+ respect to the outer disk, is not clear. However, as we will see
747
+ in section 4.4, it might be due to an intermediate circumbinary
748
+ disk, that is a natural transient consequence of the breaking of
749
+ the innermost circumstellar disks due to the different inclination
750
+ of inner and outer disks. Evidence of emission very close to the
751
+ coronagraph edges are also found by Cugno et al. 2022 using
752
+ the NaCo imager with the L′ filter (λ=3.6 µm) within the NaCo-
753
+ ISPY large program.
754
+ Feature 1. The PA of the extended emission identified as
755
+ feature 1 is consistent with the large scale MHOs and coinci-
756
+ Article number, page 7 of 17
757
+
758
+ 12
759
+ (mag)
760
+ 1.3
761
+ 14
762
+ 15
763
+ 1900
764
+ 1920
765
+ 1940
766
+ 1960
767
+ 1980
768
+ 2000
769
+ 2020
770
+ Time
771
+ (yr)A&A proofs: manuscript no. TCrA_Rigliaco
772
+ dent with the small scale microjets detected through forbidden
773
+ lines (Pascucci et al. 2020). Hence, we reasonably assume that
774
+ it is representing outflows detected in scattered light, and that
775
+ this feature is orthogonal to the inner and intermediate disk. The
776
+ innermost disks (inner and intermediate) are misaligned with re-
777
+ spect to the outer disk, with a PA for the inner disk of ∼125◦,
778
+ measured as PAoutflow+90◦. Considering the outer disk is seen
779
+ with PAdisk=7◦, the resulting misalignment between innermost
780
+ and outer disk is of the order of 62◦ with an uncertainty of ±10◦.
781
+ This feature is illuminated by the central system. The shape of
782
+ the outflow is due to higher density regions of dust, generated by
783
+ instabilities created by two or more layers of material with dif-
784
+ ferent densities and velocities resulting in a wind-blown cavity
785
+ (Liang et al. 2020). The regions with different physical prop-
786
+ erties are the highly collimated microjet (as seen from the de-
787
+ tection of forbidden lines, e.g., Pascucci et al. 2020), and the
788
+ surrounding wider-angle disk wind, or parent cloud. The impact
789
+ between these two regions, besides carving out a large and slow
790
+ massive outflow cavity into the parent cloud (Frank et al. 2014),
791
+ creates regions of high density where dust grains accumulate, be-
792
+ coming brighter in scattered light. We also notice that there is a
793
+ good agreement between the small scale outflow seen in the po-
794
+ larimetric images, and the large scale outflows determined by the
795
+ MHOs, supporting the scenario of highly collimated jets carving
796
+ a cavity and creating high density regions. We have also tested
797
+ the emission seen in scattered light versus the continuum thermal
798
+ emission at 1.3 mm, and the 12CO emission seen with ALMA.
799
+ In Figure 7, we show the continuum emission and the red- and
800
+ blue-shifted line emission overlayed on the SPHERE scattered
801
+ light image. The continuum emission, shown as white contours,
802
+ is slightly resolved, compact, and it is distinctly different from
803
+ the orientation of the beam. The comparison with the SPHERE
804
+ image is not quite conclusive in the direction of the emission, if
805
+ along the disk or the extended emission identified as feature 1.
806
+ 12CO line emission was clearly detected in the channels, consis-
807
+ tent with a structure of ∼ 2.5 arcsec in diameter. The emission is
808
+ most likely due to the combination from emission aligned with
809
+ the disk orientation inferred from SPHERE, and emission from
810
+ the outflowing material in the same direction as the MHOs. The
811
+ gas emission close to the N-S direction might trace the gas in the
812
+ outer disk, and the velocity structure of the line emission is con-
813
+ sistent with Keplerian rotation. The emission from the outflow-
814
+ ing material is in the same direction as the MHOs. The velocities
815
+ of the extended emission span from -3 km s−1 to 11 km s−1. The
816
+ low velocities for the outflowing material confirm that the emis-
817
+ sion must happen close to the plane of the sky, as also found
818
+ by Pascucci et al. (2020). In both cases, either when tracing the
819
+ outer disk or the outflowing material, the N-E side is receding
820
+ and the S-W side is approaching the observer.
821
+ Misalignment between the inner and the outer disks are not
822
+ rare. As an example, Bohn et al. (2021) have recently inves-
823
+ tigated misalignment between inner and outer disks in transi-
824
+ tional disks, finding that out of a sample of 20 objects ana-
825
+ lyzed, six clearly show evidence of misalignment, five do not
826
+ show evidence of misalignment and the others can not be eval-
827
+ uated with the current data. Misaligned disks, and disks whose
828
+ orientations vary with time can be due to their formation in a
829
+ turbulent, chaotic environment (Bate 2018). Moreover, the evo-
830
+ lution of the stellar and disk spin axes during the formation of
831
+ a star which is accreting in a variable fashion from an inher-
832
+ ently chaotic environment might affect the disk orientation as
833
+ well (Bate et al. 2010). Also late infalling events, which carry
834
+ along a specific angular momentum with respect to the star, may
835
+ tilt the pre-existing disk to another rotation axis depending on the
836
+ Fig. 7: Overlay of SPHERE (color scale) and ALMA (contours)
837
+ data. On the left all the extended structure as seen with SPHERE,
838
+ on the right a zoom-in of the innermost 2′′. White contours are
839
+ ALMA 1.3 mm continuum, plotted at contours starting at, and
840
+ increasing with, 3σ=0.37 mJy beam−1. Red and blue contours
841
+ are integrated 12CO 2–1 emission over 10 km s−1 blue- and red-
842
+ shifted relative to the source velocity, taken as VLSR=4.5 km s−1.
843
+ Red and blue contours are also drawn starting at, and increasing
844
+ with, 3σ = 0.12 Jy beam−1 km s−1. The ALMA data are aligned
845
+ with the SPHERE data to have the stellar position at the center
846
+ of the image; the continuum emission peaks ∼ 0.06′′ North of
847
+ that position.
848
+ mass ratio of the mass accreted and the disk (Dullemond et al.
849
+ 2019; Kuffmeier et al. 2021). This was indeed recently observed
850
+ within the DESTINYS program for the SU Aur system (Ginski
851
+ et al. 2021), which shows large scale streamers in scattered light,
852
+ similar to those observed in our new observations of T CrA and
853
+ which were shown to trace infalling material. Stellar properties,
854
+ such as strong stellar magnetic dipole, can cause a warp or mis-
855
+ alignment in the innermost region of the disk (e.g., Matsumoto
856
+ & Tomisaka 2004; Machida et al. 2006; Matsumoto et al. 2006;
857
+ Hennebelle & Ciardi 2009; Joos et al. 2012; Krumholz et al.
858
+ 2013; Li et al. 2013; Lewis et al. 2015; Lewis & Bate 2017;
859
+ Wurster & Li 2018). Additionally, the presence of a compan-
860
+ ion, either stellar or substellar, can also cause inner and outer
861
+ disks misalignment (e.g., Facchini et al. 2013, 2018; Zhu 2019;
862
+ Nealon et al. 2020), as in the case of HD142527 (Owen & Lai
863
+ 2017; Price et al. 2018a).
864
+ Indeed, T CrA and HD142527 show several similarities even
865
+ if the inclinations at which the outer disks are seen are very dif-
866
+ ferent (almost edge-on in the case of T CrA and almost face-
867
+ on for HD142527). HD142527 is a binary system characterized
868
+ by a primary 2.0 M⊙ star surrounded by an inner disk signifi-
869
+ cantly misaligned (59◦) with respect to the outer disk (Balmer
870
+ et al. 2022). For T CrA the outer disk is seen almost edge-on
871
+ and the misalignment between outer and inner disk is coinci-
872
+ dent with the inclination of the inner disk orbit, namely ∼55◦.
873
+ The primary star in both cases is an F-type Herbig. In the case
874
+ of HD142527 all the main observational features (spirals, shad-
875
+ ows seen in scattered light, horseshoe dust structure, radial flows
876
+ and streamers) can be explained by the interaction between the
877
+ disk and the observed binary companion (Price et al. 2018a). The
878
+ analysis done on HD142527 led the authors (Price et al. 2018a)
879
+ to conclude that the disk around this Herbig star is a circumbi-
880
+ nary rather than transitional disk, with an inclined inner disk, and
881
+ Article number, page 8 of 17
882
+
883
+ 103
884
+ 102
885
+ 1.0"Rigliaco et al.: DESTINYS–TCrA
886
+ with streamers of material connecting the inner and outer disk.
887
+ In the case of T CrA, if we assume that the inner disk is aligned
888
+ perpendicular to the outflowing material, and hence misaligned
889
+ with respect to the outer disk, the configuration is similar. Hints
890
+ of dusty material inside and misaligned with respect to the outer
891
+ disk come from the radial profile of the scattered light signal
892
+ seen from SPHERE/IRDIS and shown in Fig. 4, where in the
893
+ East-side of the disk in the direction orthogonal to the disk there
894
+ is material down to the coronagraph edge. However, we cannot
895
+ say from these images if this material is organized into a disk-
896
+ structure itself, or if it represents a streamer of material accreting
897
+ from the outer disk onto the inner regions of the system. How-
898
+ ever, as opposite to HD142527, we must mention the absence
899
+ of obvious shadowing features in scattered light in T CrA, that
900
+ can nevertheless be due to the different viewing geometry. In the
901
+ following section we will present a 3D hydrodynamical model
902
+ as the one developed for HD142527 to explain the observed fea-
903
+ tures as disk–binary interaction.
904
+ Feature 2. The extended emission identified as feature 2 ap-
905
+ pears very extended and resemble material falling onto the disk
906
+ as in the case of SU Aur (Ginski et al. 2021). Unfortunately,
907
+ the strong foreground contamination due to the overall cloud
908
+ does not allow to clearly detect the 12CO (2–1), 13CO (2–1),
909
+ and C18O (2–1) transitions at distances larger than ∼2.5′′, thus
910
+ we cannot perform a detailed analysis of the kinematics of the
911
+ material, as it was done, for example, in the case of SU Aur
912
+ (Ginski et al. 2021). Indeed, some parts of the CO disk may
913
+ be missing from from Fig. 7 because the cloud contaminates
914
+ the signal. Moreover, the large scale streamers do not show any
915
+ emission due to the removing of any sensitivity to large scale
916
+ emission in the data reduction process. They may exist, but they
917
+ are very hard to image. The disk may also be more extended
918
+ than seen here. Hence we cannot be conclusive on the nature
919
+ of the extended emission in feature 2. It is highly unlikely that
920
+ this emission is itself indicating outflowing material, as feature
921
+ 1, but it can be most likely due to streamers of material that is
922
+ falling onto the disk connecting the disk itself to the surrounding
923
+ cloud material, as for SU Aur. To some extent we might con-
924
+ sider the scattered light morphology of T CrA as an edge-on
925
+ view of SU Aur, where we can see the streamers of infalling
926
+ material and at least one tail of accretion. The same stream-
927
+ ers of accretion were already seen, but not interpreted as such,
928
+ by Ward-Thompson et al. (1985); Clark et al. (2000). Ward-
929
+ Thompson et al. (1985) used linear polarization mapping of the
930
+ region in R-band and identified a jet-like structure with a pro-
931
+ jected lengths of 20′′ emerging from T CrA, in the direction of,
932
+ but pointing away from R CrA. Clark et al. (2000) performed
933
+ near-infrared linear imaging polarimetry in J, H and Kn bands,
934
+ and circular imaging polarimetry in the H band and interpreted
935
+ the images as bipolar cavities, where the SE emission is visi-
936
+ ble as far as ∼15′′ from T CrA. They stress the presence of a
937
+ pronounced asymmetry in the polarized intensity images, sug-
938
+ gestive of fairly sudden depolarization of the dust grains caused
939
+ by foreground material in the reflection nebula. The identifica-
940
+ tion of the MHOs, and the analysis of the images acquired with
941
+ NACO and SPHERE is now showing that the features observed
942
+ in the past were not associated with jets but more likely the same
943
+ streamer of accretion seen in scattered light. A possible test to
944
+ ascertain the origin of feature 2 can be done using the SO2 tran-
945
+ sition from ALMA. Garufi et al. (2022) have indeed shown that
946
+ for the source IRAS 04302+2247, the SO2 emission does not
947
+ probe the disk region, but rather originates at the intersection be-
948
+ tween extended streamers and disks. We notice that the presence
949
+ of streamers of material feeding the disk of T CrA would also
950
+ go in the direction of mitigating the issue of the low disk masses
951
+ found in CrA. Indeed, it was found that the average disk mass
952
+ in CrA is significantly lower than that of disks in other young
953
+ (1-3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I,
954
+ and Ophiuchus, Cazzoletti et al. 2019). If there is accretion of
955
+ fresh material onto the disk, one could have lower measured disk
956
+ masses at the beginning, and mitigate the issue (Manara et al.
957
+ 2018). The observed increase in disk masses with time (e.g.,
958
+ Testi et al. 2022; Cazzoletti et al. 2019) should otherwise be ex-
959
+ plained with other mechanisms such as planetesimal collisions
960
+ (Bernabò et al. 2022).
961
+ Moreover, the presence of streamers of accretion is also in
962
+ agreement with the orientation of T CrA with respect to R CrA,
963
+ both belonging to the Coronet Cluster. These two stars formed
964
+ within the same filament, which is oriented at PA=124◦ pro-
965
+ jected on sky (this is also the PA of T CrA relative to R CrA).
966
+ This orientation is indeed similar to that of the orbit proposed
967
+ for the central binary of T CrA and very close to perpendicular
968
+ to the PA of the MHO objects (PA=33◦); these values are well
969
+ consistent with the direction of the same structures seen in the
970
+ neighbor star R CrA (Rigliaco et al. 2019; Mesa et al. 2019)).
971
+ This suggests that the bulk of the inflow of material that formed
972
+ the T CrA system was coplanar with this filament and that the
973
+ original disk of T CrA was likely oriented at the PA of the fil-
974
+ ament; this is actually the case also for the disk around R CrA.
975
+ However, the current outer disk of T CrA has a very different
976
+ orientation (PA=7 degree), though it seems to be still fed by the
977
+ same filament. This is because T CrA appears to be presently
978
+ offset by a few hundreds au (a few arcsec on sky) with respect
979
+ to the filament. Considering the age of T CrA (likely 1-3 Myr),
980
+ this offset is indeed very small, corresponding to a minuscule ve-
981
+ locity of only ∼ 1m/s. This suggests that the generation of mis-
982
+ aligned structure is very likely whenever accretion on the disk is
983
+ prolonged over such long intervals of time.
984
+ 4.3. Spectral Energy Distribution
985
+ We model the SED of T CrA using the dust radiative transfer
986
+ model developed by Whitney et al. (2003b,a). The code uses a
987
+ Monte Carlo radiative transfer scheme that follows photon pack-
988
+ ets emitted by the central star as they are scattered, absorbed,
989
+ and re-emitted throughout the disk. For the modeling we have
990
+ assumed that the geometry of the star+disk system is comprised
991
+ by a central 2.0 M⊙ source emitting photons and a gapped and
992
+ misaligned circumstellar disk as described above. The total mass
993
+ of the disk Mdisk=10−3M⊙, which is in agreement with Mdust re-
994
+ trieved by Cazzoletti et al. (2019) using the 1.3 mm continuum
995
+ flux, assuming an ISM gas-to-dust ratio of 100. The outcome of
996
+ the model, shown in orange in Fig. 8, well reproduces the ob-
997
+ served photometric points collected in Table 2, suggesting that
998
+ the interpretation of inner and outer disks misaligned with re-
999
+ spect to each other is in very good agreement with the collected
1000
+ photometry 4. For comparison, we also show the SED obtained
1001
+ with the same parameters, in the case where no misalignment
1002
+ between inner and outer disk is assumed (red profile). In this
1003
+ case the curve does not well reproduce the observed photome-
1004
+ try at wavelengths longer than ∼10–15 µm. We must notice that
1005
+ the radiative transfer model does not account for the binary star,
1006
+ hence it may cause deviation in the illumination of the disk. In
1007
+ particular, in their orbit the two stars spend time above the disk
1008
+ midplane, hence illuminating the circumbinary disk from above.
1009
+ 4 The apparent oscillations of the model at wavelengths longer than
1010
+ 300 µm is due to low number statistics and has no physical meaning.
1011
+ Article number, page 9 of 17
1012
+
1013
+ A&A proofs: manuscript no. TCrA_Rigliaco
1014
+ λc
1015
+ Flux
1016
+ Facility
1017
+ Reference
1018
+ (µm)
1019
+ (Jy)
1020
+ 0.349
1021
+ 0.00531
1022
+ SkyMapper
1023
+ Wolf et al. (2018)
1024
+ 0.444
1025
+ 0.00792
1026
+ CTIO
1027
+ Henden et al. (2016)
1028
+ 0.444
1029
+ 0.00988
1030
+ UCAC4-RPM
1031
+ Nascimbeni et al. (2016)
1032
+ 0.482
1033
+ 0.0138
1034
+ CTIO
1035
+ Henden et al. (2016)
1036
+ 0.497
1037
+ 0.0126
1038
+ SkyMapper
1039
+ Wolf et al. (2018)
1040
+ 0.504
1041
+ 0.0142
1042
+ GAIA
1043
+ Gaia Collaboration (2020)
1044
+ 0.554
1045
+ 0.0163
1046
+ Hamilton
1047
+ Herbig & Bell (1988)
1048
+ 0.554
1049
+ 0.0171
1050
+ CTIO
1051
+ Henden et al. (2016)
1052
+ 0.554
1053
+ 0.0204
1054
+ UCAC4-RPM
1055
+ Nascimbeni et al. (2016)
1056
+ 0.604
1057
+ 0.0181
1058
+ SkyMapper
1059
+ Wolf et al. (2018)
1060
+ 0.762
1061
+ 0.045
1062
+ GAIA
1063
+ Gaia Collaboration (2020)
1064
+ 0.763
1065
+ 0.0539
1066
+ CTIO
1067
+ Henden et al. (2016)
1068
+ 1.24
1069
+ 0.425
1070
+ 2MASS-J
1071
+ Cutri et al. (2003)
1072
+ 1.65
1073
+ 0.871
1074
+ 2MASS-H
1075
+ Cutri et al. (2003)
1076
+ 2.16
1077
+ 1.55
1078
+ 2MASS-K
1079
+ Cutri et al. (2003)
1080
+ 3.55
1081
+ 1.93
1082
+ Spitzer/IRAC
1083
+ Gutermuth et al. (2009)
1084
+ 4.49
1085
+ 2.07
1086
+ Spitzer/IRAC
1087
+ Gutermuth et al. (2009)
1088
+ 5.73
1089
+ 2.38
1090
+ Spitzer/IRAC
1091
+ Gutermuth et al. (2009)
1092
+ 11.6
1093
+ 3.48
1094
+ WISE/W3
1095
+ Cutri & et al. (2012)
1096
+ 19.7
1097
+ 23.4
1098
+ SOFIA
1099
+ Sandell et al. (2021)
1100
+ 22.1
1101
+ 23.8
1102
+ WISE/W4
1103
+ Cutri & et al. (2012)
1104
+ 25.3
1105
+ 30.7
1106
+ SOFIA
1107
+ Sandell et al. (2021)
1108
+ 31.5
1109
+ 29.0
1110
+ SOFIA
1111
+ Sandell et al. (2021)
1112
+ 37.1
1113
+ 29.3
1114
+ SOFIA
1115
+ Sandell et al. (2021)
1116
+ 70.0
1117
+ 19.3
1118
+ Herschel
1119
+ Herschel Group et al. (2020)
1120
+ 100.0
1121
+ 14.2
1122
+ Herschel
1123
+ Herschel Group et al. (2020)
1124
+ 160.0
1125
+ 5.0
1126
+ Herschel
1127
+ Herschel Group et al. (2020)
1128
+ 1300
1129
+ 0.00499
1130
+ ALMA
1131
+ Cazzoletti et al. (2019)
1132
+ Table 2: List of the fluxes at different wavelengths collected
1133
+ from the literature used for the SED.
1134
+ In the two SEDs shown in Fig. 8 we do not account for this ef-
1135
+ fect.
1136
+ 4.4. Hydrodynamical Simulation
1137
+ We perform a 3D hydrodynamical simulation of the T CrA con-
1138
+ figuration considered in this work using the Smoothed Particle
1139
+ Hydrodynamics (SPH) code Phantom (Price et al. 2018b; Mon-
1140
+ aghan 2005; Price 2012). The initial conditions of the system
1141
+ are set following the observational constraints acquired so far.
1142
+ T CrA is modeled as a binary system with masses 1.7 M⊙, and
1143
+ 1.0 M⊙ for the primary and secondary component, respectively.
1144
+ Each star is simulated as a sink particle (Price et al. 2018b; Bate
1145
+ et al. 1995) with an accretion radius of 0.5 au. The orbit is eccen-
1146
+ tric, and the period of the binary star is 29.6 years, correspond-
1147
+ ing to a semi-major axis of 13.3 au. The orbit is seen edge-on
1148
+ with an inclination of 90◦, and PAorbit is perpendicular to the out-
1149
+ flowing material (PAorbit=145◦). The outer disk, extending from
1150
+ Rin = 25 au to Rout = 100 au is simulated with 8 × 105 SPH par-
1151
+ ticles, resulting in a smoothing length ≈ 0.2 times the disk scale
1152
+ height. The inner disk, extending from rin = 1 au to rout = 5 au,
1153
+ and co-planar to the orbit of the binary star, is simulated with
1154
+ 2 × 105 SPH particles, resulting in a smoothing length of about
1155
+ the disk scale height. Outflows and inflows are not considered in
1156
+ this model. Viscosity is implemented with the artificial viscosity
1157
+ method (Lucy 1977; Gingold & Monaghan 1977) that results in
1158
+ an Shakura & Sunyaev (1973) α-viscosity as shown by Lodato
1159
+ & Price (2010). We use α ≈ 5 × 10−3. We run the full hydrody-
1160
+ namical model (with both the outer and the inner disk) for 100
1161
+ binary orbits in order to relax the initial condition and to produce
1162
+ a synthetic image of the system to compare with the observation.
1163
+ To perform a direct comparison with observations of T CrA we
1164
+ Fig. 8: SED of TCrA. The black asterisks show the published
1165
+ photometry as reported in Table 2. The orange curve shows the
1166
+ total emission. The magenta line shows the SED component due
1167
+ to stellar origin, in blue the component due to the disk, and in
1168
+ green the component due to the envelope. The red curve shows
1169
+ the emission if no misalignment between the intermediate and
1170
+ outer disk is assumed. The oscillations in the model curves at
1171
+ the longest wavelengths are artifacts related to the finite number
1172
+ of photon packets considered in the Monte Carlo scheme.
1173
+ post-processed our simulation using the Monte Carlo radiative
1174
+ transfer code MCFOST (Pinte et al. 2016) in order to produce
1175
+ synthetic images of the hydrodynamical model. MCFOST maps
1176
+ the physical quantities in the SPH simulation (e.g. dust and gas
1177
+ density, temperature) onto a Voronoi mesh directly built around
1178
+ the SPH particles, without interpolation. We adopt a gas-to-dust
1179
+ mass ratio equals to 100 and we assume micrometer grains to be
1180
+ well coupled with the gas. These grains scatter the stellar light
1181
+ collected by SPHERE and are assumed to be spherical and ho-
1182
+ mogeneous (as in the Mie theory). Their chemical composition
1183
+ is 60% astronomical silicates and 15% amorphous carbons (as
1184
+ DIANA standard dust composition, Woitke et al. 2016) and they
1185
+ have a porosity of 10%. The gas mass is directly taken from the
1186
+ SPH simulation. We use the same distance from the source used
1187
+ in this paper (149.4 pc) and ≈ 106 photon packets to compute
1188
+ the temperature profile of the model and ≈ 1010 photon packets
1189
+ to compute the source function of the model in order to produce
1190
+ the scattered light image at 2 µm wavelength.
1191
+ The total intensity polarized light image obtained with the
1192
+ hydrodynamical simulation is show in the left panel of Fig. 9.
1193
+ The middle panel is the synthetic image convolved to the
1194
+ SPHERE/IRDIS resolution and in the right panel we show the
1195
+ observed image. There are a few features that are clearly repro-
1196
+ duced in the simulation: the dark lane, the offset of the dark lane
1197
+ with respect to the center of the image, the top-surface of the disk
1198
+ brighter than the bottom-side of the disk. There are two bright
1199
+ spots in the East-West direction on the convolved synthetic im-
1200
+ age, that are also observed in the real image. These points are
1201
+ due to the intermediate circumbinary disk that breaks from the
1202
+ outer regions, precessing as a rigid body, and leading to its evo-
1203
+ lution. The breaking of the inner disk generates an intermediate
1204
+ disk, that is visible as bright spots at the East and West side of
1205
+ the coronagraph. We must notice that the simulation does not
1206
+ take into consideration the outflowing material, and does not ac-
1207
+ Article number, page 10 of 17
1208
+
1209
+ 1000
1210
+ collectedphotometry
1211
+ Itotal
1212
+ stellarorigin
1213
+ 100
1214
+ - disk origin
1215
+ LL
1216
+ :envelopeorigin
1217
+ Itotal-nodisksmisalignment
1218
+ 10
1219
+ TTT
1220
+ (Jy)
1221
+ Flux
1222
+ 1
1223
+ LLL
1224
+ 0.1
1225
+ TT
1226
+ 0.01
1227
+ L
1228
+ *
1229
+ 0.001
1230
+ 0.1
1231
+ 1
1232
+ 10
1233
+ 100
1234
+ 1000
1235
+ 104
1236
+ Wavelength (μm)Rigliaco et al.: DESTINYS–TCrA
1237
+ count for the replenishment of the outer disk due to the accretion
1238
+ streamers (hence slowing down its expansion). A more detailed
1239
+ simulation is needed for T CrA, but it is beyond the scope of this
1240
+ observational paper and will be discussed in a separate publica-
1241
+ tion.
1242
+ In order to measure how the circumbinary disk mass dis-
1243
+ tributes among the binary stars, we run a second hydrodynamical
1244
+ model as the one described above but without the circumprimary
1245
+ disk. Indeed, accretion into a binary system happens via the for-
1246
+ mation of up to three disks (two circumstellar disks, one around
1247
+ each component, and a circumbinary disk, Monin et al. (2007)).
1248
+ The two circumstellar disks are periodically replenished by ac-
1249
+ cretion streamers pulled from the inner edge of the circumbi-
1250
+ nary disks by the stars (Artymowicz & Lubow 1994; Tofflemire
1251
+ et al. 2017). In a quasi-steady state regime, the mass flux en-
1252
+ tering the Roche lobe of a star via the gas streamers equals the
1253
+ star accretion rate. Thus, we can reliably measure the fraction of
1254
+ mass accreted onto a star by simulating only the circumbinary
1255
+ disk, provided that the stellar Roche lobes are resolved by the
1256
+ simulation and the central part of the disk has relaxed (as done
1257
+ with SPH simulations e.g. in Young & Clarke 2015 and recently
1258
+ tested in Ceppi et al. 2022). In general, simulations of accretion
1259
+ into binary systems find that the primordial mass ratio is pushed
1260
+ towards unity (that is, closer to equal masses in the binary com-
1261
+ ponents) by accretion from a circumbinary disk (Clarke 2012).
1262
+ This is due to the ease with which the secondary component ac-
1263
+ cretes the infalling gas, as it lies farther from the binary barycen-
1264
+ ter and closer to the disk edge. Its differential velocity with re-
1265
+ spect to the gas is also low, allowing it to accrete efficiently. In
1266
+ the case of T CrA the primary star is still accreting more than the
1267
+ secondary (see Fig. 10). This is due to the misalignment between
1268
+ inner and outer disk that makes the secondary to be at consider-
1269
+ able height over/below the disk for a large fraction of its orbit.
1270
+ 5. Summary and Conclusions
1271
+ We investigate new and archival data of the Herbig Ae/Be star
1272
+ T CrA collected with different instruments. The analysis of the
1273
+ data shows that T CrA is a very interesting and complex system,
1274
+ belonging to one of the nearest and most active region of star
1275
+ formation. Combining archival NACO imaging data with pho-
1276
+ tometric data, and new and archival SPHERE adaptive optics
1277
+ images we study the complex stellar environment around T CrA
1278
+ and the stellar properties:
1279
+ – the outer disk is seen edge-on as a dark lane elongated ap-
1280
+ proximately in the N-S. The dark lane is shifted by 122 mas
1281
+ with respect to the center of the image, and it is seen with
1282
+ a PA of 7◦. This value is in very good agreement with the
1283
+ value recently found by Cugno et al. 2022 using a different
1284
+ instrument and set of data;
1285
+ – the bright illuminated top-side of the disk surface is clearly
1286
+ visible in scattered light;
1287
+ – extended emission in the NE–SW direction, identified as fea-
1288
+ ture 1, is consistent in direction with the line connecting the
1289
+ two-lobed MHOs seen on larger scale. It is most likely out-
1290
+ flowing material, with PA=33◦, consistent with the PA of the
1291
+ two MHOs.
1292
+ – extended emission in the N-S direction, identified as feature
1293
+ 2, is interpreted as large scale streamers of material likely in-
1294
+ falling onto the disk. In the North the streamer extends up to
1295
+ ∼4.5′′ from the central system, while in the South it extends
1296
+ up to the edge of the field of view, and probably beyond, as
1297
+ suggested by previous stellar polarization images in the op-
1298
+ tical and near-IR;
1299
+ – the periodic behavior of the light curve suggests a cen-
1300
+ tral binary with a period of 29.6 years. Even if the non-
1301
+ coronagraphic images acquired with NACO and SPHERE do
1302
+ not show direct evidence of the presence of a stellar compan-
1303
+ ion, a detailed comparison of the position of the secondary
1304
+ along the proposed orbit at the epochs of the observations
1305
+ acquired so far with NACO and SPHERE shows that in all
1306
+ of them it was too close to the primary star for detection as
1307
+ a separate object. According to our modeling results the two
1308
+ components will be at their maximum separation in 2027: ap-
1309
+ propriate high-contrast images at that epoch should provide
1310
+ direct evidence of the binary system.
1311
+ Overall, we find that the binary system and intermediate
1312
+ circumbinary disk lay on different geometrical planes, placing
1313
+ T CrA among the objects with a misaligned inner disk. Inner
1314
+ and outer disk misalignment is not rare, and in very recent years,
1315
+ thanks to high-contrast imaging, it is becoming clear that the
1316
+ misalignment can also be due to the accretion history of the star-
1317
+ forming cloud onto the disk. Indeed in the case of T CrA (as well
1318
+ as SU Aur) we found evidences of the presence of streamers of
1319
+ accreting material that connect the filament along which the star
1320
+ has formed with the outer part of the disk. These streamers have
1321
+ an angular momentum with respect to the star whose direction is
1322
+ very different from that of the system (in the case of T CrA, this
1323
+ is dominated by the binary) causing a misalignment between an
1324
+ inner and outer disk.
1325
+ Besides characterizing the disk/outflow structures around
1326
+ T CrA, we have also modeled its spectral energy distribution,
1327
+ showing that the disk geometry obtained is well consistent with
1328
+ the observed SED, and such consistency is not reached if we
1329
+ do not consider the misalignment between inner and outer disk.
1330
+ Moreover, we have performed hydrodynamical simulation of the
1331
+ configuration for 100 orbits of the binary star. The model is
1332
+ consistent with the observations and the analysis of the accre-
1333
+ tion rates of the individual stars shows that the accretion hap-
1334
+ pens mainly onto the primary star, rather than on the secondary,
1335
+ as a consequence of the inclination between inner/intermediate
1336
+ and outer disk. Also the light curve is easily explained assum-
1337
+ ing the configuration of two misaligned disks. Comparison of
1338
+ the ALMA continuum and 12CO emission have also been per-
1339
+ formed. While for the continuum emission we cannot clearly
1340
+ point out the region where the dust is located, if along the disk
1341
+ or the outflowing material, the gas emission is most likely due
1342
+ to the combination from emission aligned with the disk orienta-
1343
+ tion inferred from SPHERE, and emission from the outflowing
1344
+ material in the same direction as the MHOs.
1345
+ The analysis conducted on T CrA has confirmed its ex-
1346
+ tremely interesting and complex nature. As in the case of
1347
+ HD142527, the misalignment between inner and outer disk can
1348
+ be due to the interaction between the disk and the central binary
1349
+ system. On the other hand, the large scale streamers observed in
1350
+ the N–S direction are very similar to the disk-cloud interaction
1351
+ observed for SU Aur, that represents material infalling onto the
1352
+ disk, and inner and outer disk misalignment might be caused by
1353
+ this interaction. It comes clear the need for high resolution obser-
1354
+ vations to disentangle the different effects that shape early plan-
1355
+ etary system formation. T CrA is an excellent target/laboratory
1356
+ to better understand the impact of binarity and the environment
1357
+ in the evolution of protoplanetary disks.
1358
+ Acknowledgements. We would like to thank the referee Roubing Dong, whose
1359
+ careful and constructive comments improved the quality of this manuscript. E.R.
1360
+ was supported by the European Union’s Horizon 2020 research and innovation
1361
+ programme under the Marie Skłodowska-Curie grant agreement No 664931.
1362
+ This work has been supported by the project PRIN INAF 2016 The Cradle of Life
1363
+ Article number, page 11 of 17
1364
+
1365
+ A&A proofs: manuscript no. TCrA_Rigliaco
1366
+ Fig. 9: Snapshot of the SPH simulation compared to the observed image. The left panel shows the result in total intensity of the
1367
+ SPH simulation, with a resolution of 4.0 mas/pixel. In the middle panel the same image convolved to the SPHERE/IRDIS resolution
1368
+ (12.25 mas/pixel). On the right the observed total intensity image. All images have a 2′′ field of view.
1369
+ Fig. 10: Mass accretion rate ratio of secondary and primary star
1370
+ as a function of the number of orbits.
1371
+ - GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of
1372
+ life with SKA) and by the "Progetti Premiali" funding scheme of the Italian Min-
1373
+ istry of Education, University, and Research. C.F.M acknowledges funding from
1374
+ the European Union under the European Union’s Horizon Europe Research &
1375
+ Innovation Programme 101039452 (WANDA). Views and opinions expressed
1376
+ are however those of the author(s) only and do not necessarily reflect those of
1377
+ the European Union or the European Research Council. Neither the European
1378
+ Union nor the granting authority can be held responsible for them. T.B. acknowl-
1379
+ edges funding from the European Research Council (ERC) under the European
1380
+ Union’s Horizon 2020 research and innovation programme under grant agree-
1381
+ ment No 714769 and funding by the Deutsche Forschungsgemeinschaft (DFG,
1382
+ German Research Foundation) under grants 361140270, 325594231, and Ger-
1383
+ many’s Excellence Strategy - EXC-2094 - 390783311. A.R. has been supported
1384
+ by the UK Science and Technology research Council (STFC) via the consoli-
1385
+ dated grant ST/S000623/1 and by the European Union’s Horizon 2020 research
1386
+ and innovation programme under the Marie Sklodowska-Curie grant agreement
1387
+ No. 823823 (RISE DUSTBUSTERS project). This paper makes use of the fol-
1388
+ lowing ALMA data: ADS/JAO.ALMA#2016.0.01058.S. ALMA is a partnership
1389
+ of ESO (representing its member states), NSF (USA) and NINS (Japan), together
1390
+ with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Ko-
1391
+ rea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is
1392
+ operated by ESO, AUI/NRAO and NAOJ. MRH acknowledges the assistance of
1393
+ Allegro, the ARC node in the Netherlands, who assisted with the calibration of
1394
+ this data set. This work is partly based on data products produced at the SPHERE
1395
+ Data Centre hosted at OSUG/IPAG, Grenoble. We thank P. Delorme and E. La-
1396
+ gadec (SPHERE Data Centre) for their efficient help during the data reduction
1397
+ process. SPHERE is an instrument designed and built by a consortium consist-
1398
+ ing of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille,
1399
+ France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF Os-
1400
+ servatorio Astronomico di Padova (Italy), Observatoire de Genève (Switzerland),
1401
+ ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France) and AS-
1402
+ TRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO,
1403
+ with additional contributions from CNRS (France), MPIA (Germany), INAF
1404
+ (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received
1405
+ funding from the European Commission Sixth and Seventh Framework Pro-
1406
+ grammes as part of the Optical Infrared Coordination Network for Astronomy
1407
+ (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008),
1408
+ grant number 226604 for FP7 (2009-2012), and grant number 312430 for FP7
1409
+ (2013-2016). This work has made use of data from the European Space Agency
1410
+ (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by
1411
+ the Gaia Data Processing and Analysis Consortium (DPAC, https://www.
1412
+ cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has
1413
+ been provided by national institutions, in particular the institutions participating
1414
+ in the Gaia Multilateral Agreement. We acknowledge with thanks the variable
1415
+ star observations from the AAVSO International Database contributed by ob-
1416
+ servers worldwide and used in this research.
1417
+ References
1418
+ Artymowicz, P. & Lubow, S. H. 1994, ApJ, 421, 651
1419
+ Avenhaus, H., Quanz, S. P., Garufi, A., et al. 2018, ApJ, 863, 44
1420
+ Bailey, J. 1998, MNRAS, 301, 161
1421
+ Balmer, W. O., Follette, K. B., Close, L. M., et al. 2022, arXiv e-prints,
1422
+ arXiv:2206.00687
1423
+ Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42
1424
+ Bate, M. R. 2018, MNRAS, 475, 5618
1425
+ Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362
1426
+ Bate, M. R., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505
1427
+ Bernabò, L. M., Turrini, D., Testi, L., Marzari, F., & Polychroni, D. 2022, ApJ,
1428
+ 927, L22
1429
+ Beuzit, J. L., Vigan, A., Mouillet, D., et al. 2019, A&A, 631, A155
1430
+ Bohn,
1431
+ A.
1432
+ J.,
1433
+ Benisty,
1434
+ M.,
1435
+ Perraut,
1436
+ K.,
1437
+ et
1438
+ al.
1439
+ 2021,
1440
+ arXiv
1441
+ e-prints,
1442
+ arXiv:2112.00123
1443
+ Bonavita, M., Gratton, R., Desidera, S., et al. 2021, arXiv e-prints,
1444
+ arXiv:2103.13706
1445
+ Cazzoletti, P., Manara, C. F., Liu, H. B., et al. 2019, A&A, 626, A11
1446
+ Ceppi, S., Cuello, N., Lodato, G., et al. 2022, MNRAS[arXiv:2205.08784]
1447
+ Clark, S., McCall, A., Chrysostomou, A., et al. 2000, MNRAS, 319, 337
1448
+ Clarke, C. J. 2012, in From Interacting Binaries to Exoplanets: Essential Model-
1449
+ ing Tools, ed. M. T. Richards & I. Hubeny, Vol. 282, 409–416
1450
+ Cugno, G., Pearce, T. D., Launhardt, R., et al. 2022, arXiv e-prints,
1451
+ arXiv:2211.15434
1452
+ Cutri, R. M. & et al. 2012, VizieR Online Data Catalog, II/311
1453
+ Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All Sky Catalog
1454
+ of point sources.
1455
+ Davis, C. J., Gell, R., Khanzadyan, T., Smith, M. D., & Jenness, T. 2010, A&A,
1456
+ 511, A24
1457
+ de Boer, J., Langlois, M., van Holstein, R. G., et al. 2020, A&A, 633, A63
1458
+ Article number, page 12 of 17
1459
+
1460
+ 1.0
1461
+ 0.8
1462
+ M
1463
+ 0.6
1464
+ M2/
1465
+ 0.4
1466
+ 0.2
1467
+ 0.0
1468
+ 0
1469
+ 50
1470
+ 100
1471
+ 150
1472
+ 200
1473
+ 250
1474
+ 300
1475
+ Orbits10-1
1476
+ 6× 10-1
1477
+ 10-1
1478
+ 10-3
1479
+ 4× 10-1
1480
+ 3× 10-1
1481
+ 10-5
1482
+ 10-2
1483
+ 2×10-1
1484
+ 10-7
1485
+ 1.0"
1486
+ 1.0"
1487
+ 1.0"Rigliaco et al.: DESTINYS–TCrA
1488
+ Delorme, P., Meunier, N., Albert, D., et al. 2017, in SF2A-2017: Proceedings of
1489
+ the Annual meeting of the French Society of Astronomy and Astrophysics,
1490
+ ed. C. Reylé, P. Di Matteo, F. Herpin, E. Lagadec, A. Lançon, Z. Meliani, &
1491
+ F. Royer, Di
1492
+ Dohlen, K., Langlois, M., Saisse, M., et al. 2008, in Society of Photo-Optical
1493
+ Instrumentation Engineers (SPIE) Conference Series, Vol. 7014, Proc. SPIE,
1494
+ 70143L
1495
+ Dong, R., Najita, J. R., & Brittain, S. 2018, ApJ, 862, 103
1496
+ Dullemond, C. P., Küffmeier, M., Goicovic, F., et al. 2019, A&A, 628, A20
1497
+ Dzib, S. A., Loinard, L., Ortiz-León, G. N., Rodríguez, L. F., & Galli, P. A. B.
1498
+ 2018, ApJ, 867, 151
1499
+ Facchini, S., Juhász, A., & Lodato, G. 2018, MNRAS, 473, 4459
1500
+ Facchini, S., Lodato, G., & Price, D. J. 2013, MNRAS, 433, 2142
1501
+ Frank, A., Ray, T. P., Cabrit, S., et al. 2014, in Protostars and Planets VI, ed.
1502
+ H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 451
1503
+ Gaia Collaboration. 2020, VizieR Online Data Catalog, I/350
1504
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1
1505
+ Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1
1506
+ Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020, A&A, 634, A98
1507
+ Garufi, A., Avenhaus, H., Pérez, S., et al. 2020, A&A, 633, A82
1508
+ Garufi, A., Podio, L., Codella, C., et al. 2022, A&A, 658, A104
1509
+ Ghez, A. M., McCarthy, D. W., Patience, J. L., & Beck, T. L. 1997, ApJ, 481,
1510
+ 378
1511
+ Gingold, R. A. & Monaghan, J. J. 1977, MNRAS, 181, 375
1512
+ Ginski, C., Facchini, S., Huang, J., et al. 2021, ApJ, 908, L25
1513
+ Ginski, C., Ménard, F., Rab, C., et al. 2020, A&A, 642, A119
1514
+ Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18
1515
+ Henden, A. A., Templeton, M., Terrell, D., et al. 2016, VizieR Online Data Cat-
1516
+ alog, II/336
1517
+ Hennebelle, P. & Ciardi, A. 2009, A&A, 506, L29
1518
+ Herbig, G. H. 1960, ApJS, 4, 337
1519
+ Herbig, G. H. & Bell, K. R. 1988, Third Catalog of Emission-Line Stars of the
1520
+ Orion Population : 3 : 1988
1521
+ Herczeg, G. J. & Hillenbrand, L. A. 2014, ApJ, 786, 97
1522
+ Herschel Group, Marton, G., Calzoletti, L., et al. 2020, VizieR Online Data Cat-
1523
+ alog, VIII/106
1524
+ Herter, T. L., Adams, J. D., Gull, G. E., et al. 2018, Journal of Astronomical
1525
+ Instrumentation, 7, 1840005
1526
+ Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128
1527
+ Joy, A. H. 1945, ApJ, 102, 168
1528
+ Kafka, S. 2020, in European Planetary Science Congress, EPSC2020–314
1529
+ Köhler, R., Neuhäuser, R., Krämer, S., et al. 2008, A&A, 488, 997
1530
+ Krumholz, M. R., Crutcher, R. M., & Hull, C. L. H. 2013, ApJ, 767, L11
1531
+ Kuffmeier, M., Dullemond, C. P., Reissl, S., & Goicovic, F. G. 2021, arXiv e-
1532
+ prints, arXiv:2110.04309
1533
+ Kumar, M. S. N., Sharma, S., Davis, C. J., Borissova, J., & Grave, J. M. C. 2011,
1534
+ A&A, 533, A137
1535
+ Lenzen, R., Hartung, M., Brandner, W., et al. 2003, in Society of Photo-Optical
1536
+ Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Instrument
1537
+ Design and Performance for Optical/Infrared Ground-based Telescopes, ed.
1538
+ M. Iye & A. F. M. Moorwood, 944–952
1539
+ Lewis, B. T. & Bate, M. R. 2017, MNRAS, 467, 3324
1540
+ Lewis, B. T., Bate, M. R., & Price, D. J. 2015, MNRAS, 451, 288
1541
+ Li, H.-b., Fang, M., Henning, T., & Kainulainen, J. 2013, MNRAS, 436, 3707
1542
+ Liang, L., Johnstone, D., Cabrit, S., & Kristensen, L. E. 2020, ApJ, 900, 15
1543
+ Lindberg, J. E. & Jørgensen, J. K. 2012, A&A, 548, A24
1544
+ Lodato, G. & Price, D. J. 2010, MNRAS, 405, 1212
1545
+ Lucy, L. B. 1977, AJ, 82, 1013
1546
+ Machida, M. N., Matsumoto, T., Hanawa, T., & Tomisaka, K. 2006, ApJ, 645,
1547
+ 1227
1548
+ Maire, A.-L., Langlois, M., Dohlen, K., et al. 2016, in Society of Photo-Optical
1549
+ Instrumentation Engineers (SPIE) Conference Series, Vol. 9908, Ground-
1550
+ based and Airborne Instrumentation for Astronomy VI, ed. C. J. Evans,
1551
+ L. Simard, & H. Takami, 990834
1552
+ Manara, C. F., Morbidelli, A., & Guillot, T. 2018, A&A, 618, L3
1553
+ Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ,
1554
+ 641, 556
1555
+ Matsumoto, T., Nakazato, T., & Tomisaka, K. 2006, ApJ, 637, L105
1556
+ Matsumoto, T. & Tomisaka, K. 2004, ApJ, 616, 266
1557
+ Mendigutía, I., Eiroa, C., Montesinos, B., et al. 2011, A&A, 529, A34
1558
+ Mesa, D., Bonnefoy, M., Gratton, R., et al. 2019, A&A, 624, A4
1559
+ Meyer, M. R. & Wilking, B. A. 2009, PASP, 121, 350
1560
+ Monaghan, J. J. 2005, Reports on Progress in Physics, 68, 1703
1561
+ Monin, J. L., Clarke, C. J., Prato, L., & McCabe, C. 2007, in Protostars and
1562
+ Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil, 395
1563
+ Nascimbeni, V., Piotto, G., Ortolani, S., et al. 2016, MNRAS, 463, 4210
1564
+ Nealon, R., Cuello, N., & Alexander, R. 2020, MNRAS, 491, 4108
1565
+ Owen, J. E. & Lai, D. 2017, MNRAS, 469, 2834
1566
+ Pascucci, I., Banzatti, A., Gorti, U., et al. 2020, ApJ, 903, 78
1567
+ Pikhartova, M., Long, Z. C., Assani, K. D., et al. 2021, ApJ, 919, 64
1568
+ Pinte, C., Dent, W. R. F., Ménard, F., et al. 2016, ApJ, 816, 25
1569
+ Pojmanski, G. 1997, Acta Astron., 47, 467
1570
+ Pontoppidan, K. M., Blake, G. A., & Smette, A. 2011, ApJ, 733, 84
1571
+ Price, D. J. 2012, Journal of Computational Physics, 231, 759
1572
+ Price, D. J., Cuello, N., Pinte, C., et al. 2018a, MNRAS, 477, 1270
1573
+ Price, D. J., Wurster, J., Tricco, T. S., et al. 2018b, PASA, 35, e031
1574
+ Rigliaco, E., Gratton, R., Mesa, D., et al. 2019, A&A, 632, A18
1575
+ Roeser, S., Demleitner, M., & Schilbach, E. 2010, AJ, 139, 2440
1576
+ Rousset, G., Lacombe, F., Puget, P., et al. 2003, in Society of Photo-Optical In-
1577
+ strumentation Engineers (SPIE) Conference Series, Vol. 4839, Adaptive Op-
1578
+ tical System Technologies II, ed. P. L. Wizinowich & D. Bonaccini, 140–149
1579
+ Sandell, G., Reipurth, B., Vacca, W. D., & Bajaj, N. S. 2021, ApJ, 920, 7
1580
+ Shakura, N. I. & Sunyaev, R. A. 1973, in IAU Symposium, Vol. 55, X- and
1581
+ Gamma-Ray Astronomy, ed. H. Bradt & R. Giacconi, 155
1582
+ Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48
1583
+ Sicilia-Aguilar, A., Henning, T., Kainulainen, J., & Roccatagliata, V. 2011, ApJ,
1584
+ 736, 137
1585
+ Sicilia-Aguilar, A., Henning, T., Linz, H., et al. 2013, A&A, 551, A34
1586
+ Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
1587
+ Takami, M., Bailey, J., & Chrysostomou, A. 2003, A&A, 397, 675
1588
+ Testi, L., Natta, A., Manara, C. F., et al. 2022, A&A, 663, A98
1589
+ Tofflemire, B. M., Mathieu, R. D., Ardila, D. R., et al. 2017, ApJ, 835, 8
1590
+ van Holstein, R. G., Girard, J. H., de Boer, J., et al. 2020, A&A, 633, A64
1591
+ Varga, J., Ábrahám, P., Chen, L., et al. 2018, A&A, 617, A83
1592
+ Ward-Thompson, D., Warren-Smith, R. F., Scarrott, S. M., & Wolstencroft, R. D.
1593
+ 1985, MNRAS, 215, 537
1594
+ Whitney, B. A., Wood, K., Bjorkman, J. E., & Cohen, M. 2003a, ApJ, 598, 1079
1595
+ Whitney, B. A., Wood, K., Bjorkman, J. E., & Wolff, M. J. 2003b, ApJ, 591,
1596
+ 1049
1597
+ Woitke, P., Min, M., Pinte, C., et al. 2016, A&A, 586, A103
1598
+ Wolf, C., Onken, C. A., Luvaul, L. C., et al. 2018, PASA, 35, e010
1599
+ Wurster, J. & Li, Z.-Y. 2018, Frontiers in Astronomy and Space Sciences, 5, 39
1600
+ Young, M. D. & Clarke, C. J. 2015, MNRAS, 452, 3085
1601
+ Zacharias, N., Finch, C. T., Girard, T. M., et al. 2012, VizieR Online Data Cata-
1602
+ log, I/322A
1603
+ Zhu, Z. 2019, MNRAS, 483, 4221
1604
+ Article number, page 13 of 17
1605
+
1606
+ A&A proofs: manuscript no. TCrA_Rigliaco
1607
+ Appendix A: SPHERE polarimetric images
1608
+ In Figure A.1 we present the Stokes Q and U, as well as the
1609
+ derived QΦ and UΦ images of T CrA. The flux calibration was
1610
+ carried out by measuring the flux of the central star in the non-
1611
+ coronagraphic flux calibration images, taken at the beginning
1612
+ and end of the observation sequence. To convert pixel counts
1613
+ to physical units we used the 2MASS H-band magnitude of the
1614
+ star.
1615
+ 4
1616
+ 3
1617
+ 2
1618
+ 1
1619
+ 0
1620
+ 1
1621
+ 2
1622
+ 3
1623
+ 4
1624
+ 4
1625
+ 3
1626
+ 2
1627
+ 1
1628
+ 0
1629
+ 1
1630
+ 2
1631
+ 3
1632
+ 4
1633
+ Q
1634
+ 4
1635
+ 3
1636
+ 2
1637
+ 1
1638
+ 0
1639
+ 1
1640
+ 2
1641
+ 3
1642
+ 4
1643
+ 4
1644
+ 3
1645
+ 2
1646
+ 1
1647
+ 0
1648
+ 1
1649
+ 2
1650
+ 3
1651
+ 4
1652
+ U
1653
+ 4
1654
+ 3
1655
+ 2
1656
+ 1
1657
+ 0
1658
+ 1
1659
+ 2
1660
+ 3
1661
+ 4
1662
+ 4
1663
+ 3
1664
+ 2
1665
+ 1
1666
+ 0
1667
+ 1
1668
+ 2
1669
+ 3
1670
+ 4
1671
+
1672
+ 4
1673
+ 3
1674
+ 2
1675
+ 1
1676
+ 0
1677
+ 1
1678
+ 2
1679
+ 3
1680
+ 4
1681
+ 4
1682
+ 3
1683
+ 2
1684
+ 1
1685
+ 0
1686
+ 1
1687
+ 2
1688
+ 3
1689
+ 4
1690
+
1691
+ ∆RA (arcsec)
1692
+ ∆Dec (arcsec)
1693
+ 60
1694
+ 45
1695
+ 30
1696
+ 15
1697
+ 0
1698
+ 15
1699
+ 30
1700
+ 45
1701
+ 60
1702
+ (mJy/arcsec2)
1703
+ Fig. A.1: Flux calibrated image of the Q, U, QΦ and UΦ frames.
1704
+ Appendix B: Proper motion analysis
1705
+ The average proper motion for the on-cloud Coronet cluster
1706
+ members obtained using Gaia DR2 data from Galli et al. 2020,
1707
+ is µα cos δ = 4.3 mas yr−1 and µδ=-27.3 mas yr−1 with a small
1708
+ dispersion of less than 1 mas/yr for the individual objects. As we
1709
+ mentioned in the introduction, Gaia does not provide astrometric
1710
+ solutions and proper motion for the star T CrA. However, we can
1711
+ check for peculiar/transient motion of the star using the follow-
1712
+ ing procedure. We collect from UCAC4 (Zacharias et al. 2012),
1713
+ PPMXL (Roeser et al. 2010) and Gaia DR3 (Gaia Collaboration
1714
+ et al. 2016, 2021) database a list of 10 bright stars in the T CrA
1715
+ surroundings for which proper motion are available in all cata-
1716
+ logs. These stars, listed in Table B.1, are selected such that they
1717
+ have magG ≤14 and lay within 10′ from T CrA. For these stars
1718
+ we measure a long term proper motion given by the difference in
1719
+ position between the UCAC4, PPMXL, and Gaia DR3 epochs.
1720
+ The long term proper motion, defined as the motion of the star
1721
+ between different epochs of observations is measured as:
1722
+ µα cos δ = (RAEpoch1 − RAEpoch2) ∗ cos(DECEpoch1)
1723
+ (Epoch1 − Epoch2)
1724
+ (B.1)
1725
+ µδ = (DECEpoch1 − DECEpoch2)
1726
+ (Epoch1 − Epoch2)
1727
+ (B.2)
1728
+ The analysis of the proper motion between the various epochs of
1729
+ the selected stars allows us to find a systematic offset between the
1730
+ average of the coordinate systems of UCAC4 and PPMXL with
1731
+ respect to Gaia DR3, that averages to 0.41±2.46 mas yr−1 in RA
1732
+ and 9.67 mas yr−1±2.93 mas yr−1 in DEC for this specific region
1733
+ of the sky. For T CrA we obtain an estimate of the proper motion
1734
+ of the star by correcting the long term proper motion with the
1735
+ systematic offset, finding as values µα cos δ = 8.5 ± 2.5 mas yr−1
1736
+ and µδ=-33.5±2.9 mas yr−1. Considering the average proper
1737
+ motion of the on-cloud members we find for T CrA an ap-
1738
+ parent motion µα cos δ = 4.2 ± 2.5 mas yr−1 in RA and µδ=-
1739
+ 6.2±2.9 mas yr−1 in DEC.
1740
+ Fig. B.1: Proper motion of the ten stars reported in Table B.1.
1741
+ The cyan square represents the average proper motion for the on-
1742
+ cloud Coronet cluster obtained using Gaia DR2 data (Galli et al.
1743
+ 2020). The blue star is the calculated apparent proper motion
1744
+ of T CrA after correcting the long term proper motion for the
1745
+ systematic offset. In orange the direction of the systematic offset
1746
+ of the proper motion due to the different coordinate system.
1747
+ Article number, page 14 of 17
1748
+
1749
+ -10
1750
+ PMfromGaiafortheselectedstars
1751
+ average PM of the on-cloud members
1752
+ apparent PM of TCrA
1753
+ -20
1754
+ μ(mas/yr)
1755
+ -30
1756
+ 40
1757
+ average systematic offset
1758
+ betweenGaiaandUCAC4/PPMXL
1759
+ 50
1760
+ 40
1761
+ -20
1762
+ 0
1763
+ 20
1764
+ μαcosd(mas/yr)Rigliaco et al.: DESTINYS–TCrA
1765
+ T CrA
1766
+ V709 CrA
1767
+ HD176269
1768
+ HD176270
1769
+ TY CrA
1770
+ HD176423
1771
+ V702 CrA
1772
+ HD176386
1773
+ HD176497
1774
+ HD176018
1775
+ CD-36 13202
1776
+ (UCAC4)
1777
+ RA
1778
+ 285.494904
1779
+ 285.395229
1780
+ 285.263532
1781
+ 285.267908
1782
+ 285.420107
1783
+ 285.460076
1784
+ 285.508229
1785
+ 285.412217
1786
+ 285.528297
1787
+ 284.930902
1788
+ 284.920385
1789
+ Dec
1790
+ -36.963871
1791
+ -37.015723
1792
+ -37.060898
1793
+ -37.061555
1794
+ -36.876063
1795
+ -36.664651
1796
+ -37.128761
1797
+ -36.890712
1798
+ -36.361622
1799
+ -36.788004
1800
+ -36.588797
1801
+ Ep. RA
1802
+ 1997.40
1803
+ 1985.45
1804
+ 1991.25
1805
+ 1991.25
1806
+ 1991.09
1807
+ 1990.50
1808
+ 1985.88
1809
+ 1991.25
1810
+ 1990.57
1811
+ 1988.91
1812
+ 1995.62
1813
+ Ep. Dec
1814
+ 1997.77
1815
+ 1985.43
1816
+ 1991.25
1817
+ 1991.25
1818
+ 1990.52
1819
+ 1989.91
1820
+ 1984.44
1821
+ 1991.25
1822
+ 1990.28
1823
+ 1988.04
1824
+ 1995.74
1825
+ (PPMXL)
1826
+ RA
1827
+ 285.494908
1828
+ 285.395224
1829
+ 285.263532
1830
+ 285.267908
1831
+ 285.420102
1832
+ 285.460076
1833
+ 285.508229
1834
+ 285.412219
1835
+ 285.528303
1836
+ 284.930902
1837
+ 284.920394
1838
+ Dec
1839
+ -36.963869
1840
+ -37.015722
1841
+ -37.060898
1842
+ -37.061555
1843
+ -36.876064
1844
+ -36.664651
1845
+ -37.128761
1846
+ -36.890703
1847
+ -36.361625
1848
+ -36.788007
1849
+ -36.588800
1850
+ Ep. RA
1851
+ 1999.95
1852
+ 1988.00
1853
+ 1991.73
1854
+ 1991.18
1855
+ 1991.53
1856
+ 1991.41
1857
+ 1997.44
1858
+ 1991.14
1859
+ 1991.32
1860
+ 1991.23
1861
+ 1997.69
1862
+ Ep. Dec
1863
+ 1999.95
1864
+ 1986.70
1865
+ 1991.64
1866
+ 1991.19
1867
+ 1991.76
1868
+ 1991.62
1869
+ 1998.14
1870
+ 1991.09
1871
+ 1991.38
1872
+ 1991.64
1873
+ 1998.44
1874
+ (Gaia DR3)
1875
+ RA
1876
+ 285.494959
1877
+ 285.395278
1878
+ 285.263578
1879
+ 285.267966
1880
+ 285.420142
1881
+ 285.460103
1882
+ 285.508268
1883
+ 285.412238
1884
+ 285.528324
1885
+ 284.930856
1886
+ 284.920226
1887
+ Dec
1888
+ -36.963983
1889
+ -37.015845
1890
+ -37.061040
1891
+ -37.061682
1892
+ -36.876201
1893
+ -36.664770
1894
+ -37.128870
1895
+ -36.890838
1896
+ -36.361752
1897
+ -36.788188
1898
+ -36.589008
1899
+ Ep. RA
1900
+ 2016.0
1901
+ 2016.0
1902
+ 2016.0
1903
+ 2016.0
1904
+ 2016.0
1905
+ 2016.0
1906
+ 2016.0
1907
+ 2016.0
1908
+ 2016.0
1909
+ 2016.0
1910
+ 2016.0
1911
+ Ep. Dec
1912
+ 2016.0
1913
+ 2016.0
1914
+ 2016.0
1915
+ 2016.0
1916
+ 2016.0
1917
+ 2016.0
1918
+ 2016.0
1919
+ 2016.0
1920
+ 2016.0
1921
+ 2016.0
1922
+ 2016.0
1923
+ Table B.1: List of the stars used to measure the proper motion offset.
1924
+ Article number, page 15 of 17
1925
+
1926
+ A&A proofs: manuscript no. TCrA_Rigliaco
1927
+ Epoch
1928
+ Offset B-A (mas)
1929
+ dH (mag)
1930
+ 2007.54 (NACO)
1931
+ -26.0±7.0
1932
+ 1.0±0.6
1933
+ 2016.25 (NACO)
1934
+ -72.0±5.0
1935
+ 0.0±0.7
1936
+ 2016.60 (SPHERE)
1937
+ -69.0±5.0
1938
+ 0.2±0.7
1939
+ 2018.36 (SPHERE )
1940
+ -44.0±7.0
1941
+ 0.3±0.6
1942
+ 2021.50 (SPHERE)
1943
+ 11.0±7.0
1944
+ 1.0±0.5
1945
+ Table C.1: Relative position of the secondary star (B) with re-
1946
+ spect to the primary star (A), and relative contrast (dH) in H-
1947
+ band of the secondary star with respect to the primary star, for a
1948
+ period of 29.6 years. The offset is defined in the direction of the
1949
+ semi-major axis of the stellar orbit.
1950
+ Appendix C: Binarity and light curve
1951
+ The light curve of T CrA appears to be periodic. The period is
1952
+ found to be 29.6 years and it can be due to the presence of a
1953
+ binary star at the center of the T CrA system with a mass ratio
1954
+ q∼0.5±0.2, that is partially obscured by a disk seen edge-on, that
1955
+ has an offset with respect to the photocenter of the binary star of
1956
+ ∼90 mas. The model of this binary system, described in Sect 3.1,
1957
+ is also able to account for the large apparent proper motion mea-
1958
+ sured in the period between 1998 and 2016. None of the images
1959
+ acquired in recent years with NACO (in 2007, 2016 and 2017)
1960
+ and SPHERE (in 2016, 2018 and 2021) shows clear evidence of
1961
+ a binary system for T CrA. Hence, we have checked what was
1962
+ the relative position of the secondary star with respect to the pri-
1963
+ mary for every single epoch for which we have an image, and
1964
+ the H-band contrast that should be observed. These quantities
1965
+ are shown in Table C.1. These value are all consistent with the
1966
+ fact that the binary system is not clearly resolved. Indeed, in the
1967
+ 2007, 2018 and 2021 epochs the separation between the two stars
1968
+ is too small to see the two sources separately. On the contrary,
1969
+ the two 2016 epochs have a larger separation, though still within
1970
+ 2×λ/D, that is so close that the secondary cannot be clearly sep-
1971
+ arated from the primary. We notice however, that in both images
1972
+ acquired around this epoch with NACO and SPHERE, the PSF
1973
+ appears elongated in the NW-SE direction, that corresponds to
1974
+ the direction of the major axis of the orbital motion of the bi-
1975
+ nary system. The average position angle of the elongated PSFs
1976
+ acquired in 2016 is 130±15◦, in very good agreement with the
1977
+ direction of the peculiar proper motion (PAPM) measured, and
1978
+ with the hypothesis that the orbit of the binary system is seen
1979
+ edge-on, and perpendicular to the outflow. This elongation in
1980
+ different epochs supports then the scenario of a binary star. In
1981
+ a few years, namely in 2027, when the system is at its highest
1982
+ separation, the secondary component should be detectable with
1983
+ high-contrast images.
1984
+ We have also considered that the period of the system
1985
+ might be double than the period measured in Sect. 2.3, namely
1986
+ 59.2 years. While the light curve can be, also in this case, eas-
1987
+ ily reproduced, there are several observational shortcomings in
1988
+ this interpretation. First of all we must notice that in this case
1989
+ the model predicts a mass ratio q as high as 0.9, and an off-
1990
+ set of the disk of ∼10 mas. This last quantity is in disagree-
1991
+ ment with the observations, that instead show that the disk
1992
+ dark lane has an offset ten times larger. Moreover, the position
1993
+ of the center of the binary system as retrieved by assuming a
1994
+ 59.2 years period is not consistent with the motion of the system
1995
+ obtained from UCAC4/PPMXL and Gaia DR3 data. Addition-
1996
+ ally, in the SPHERE image acquired in 2021, the predicted sep-
1997
+ aration between the primary and secondary component should
1998
+ be 108±6 mas, with a contrast dH=0.5±0.1 mag, making it visi-
1999
+ ble as a separate point source in the image. The relative position
2000
+ Epoch
2001
+ Offset B-A (mas)
2002
+ dH (mag)
2003
+ 2007.54 (NACO)
2004
+ 91.0±7.0
2005
+ 1.0±0.2
2006
+ 2016.25 (NACO)
2007
+ -39.0±8.0
2008
+ 0.0±0.3
2009
+ 2016.60 (SPHERE)
2010
+ -44.0±8.0
2011
+ 0.0±0.2
2012
+ 2018.36 (SPHERE)
2013
+ -70.0±7.0
2014
+ 0.0±0.2
2015
+ 2021.50 (SPHERE)
2016
+ -108.0±6..0
2017
+ 0.0 ± 0.1
2018
+ Table C.2: Relative position of the secondary star (B) with re-
2019
+ spect to the primary star (A), and relative contrast (dH) in H-
2020
+ band of the secondary star with respect to the primary star, for a
2021
+ period of 59.2 years. The offset is defined in the direction of the
2022
+ semi-major axis of the stellar orbit.
2023
+ of the secondary star with respect to the primary for every sin-
2024
+ gle epoch for which we have an image, and the H-band contrast
2025
+ that should be observed are reported in Table C.2. The image
2026
+ does not reveal the presence of the secondary star. Given these
2027
+ shortcomings between observations and the output of the model,
2028
+ we exclude that the period of the binary star is 59.2 years. Fig-
2029
+ ure C.1 and C.2 show the corner plot of the derived quantities
2030
+ of the model used in Sect. 4.1 to model the light curve assuming
2031
+ a period of 29.6 years or the double (59.2 years). The light curve
2032
+ for the period of 59.2 years is shown in Fig. C.3.
2033
+ Fig. C.1: Corner plot showing the results of the MC parameters
2034
+ estimation for the model described in the paper when a period of
2035
+ 29.2 years is considered. The plots show the 2D joints posterior
2036
+ densities of all couple of parameters.
2037
+ Article number, page 16 of 17
2038
+
2039
+ 2009
2040
+ 2008
2041
+ 2007
2042
+ 2006
2043
+ 2005
2044
+ 2004
2045
+ 2003
2046
+ -1.0-0.8-0.6-0.4-0.2 0.0
2047
+ log q
2048
+ (mag)
2049
+ 12
2050
+ Max absorption
2051
+ 10
2052
+ 8
2053
+ 6
2054
+ 4
2055
+ 1.0-0.8-0.6-0.4-0.2 0.0
2056
+ log q
2057
+ 2003
2058
+ 2004
2059
+ 2005
2060
+ 2006
2061
+ 2007
2062
+ 2008
2063
+ 2009
2064
+ TO
2065
+ Disk Thickness (mas)
2066
+ Disk Thickness (mas)
2067
+ 3688885
2068
+ 40
2069
+ 140
2070
+ 120
2071
+ 8688867
2072
+ 100E
2073
+ Thickness
2074
+ 80 E
2075
+ 60 E
2076
+ 40
2077
+ 20 E
2078
+ 1.0-0.8-0.6-0.4-0.2 0.0
2079
+ 6
2080
+ 8
2081
+ 10
2082
+ 12
2083
+ log q
2084
+ 20032004
2085
+ 2005
2086
+ 2006
2087
+ 2007
2088
+ 20082009
2089
+ Max absorption (mag)
2090
+ TO
2091
+ 148
2092
+ 160E
2093
+ (mas)
2094
+ 140E
2095
+ offset (mas)
2096
+ 160
2097
+ (mas)
2098
+ 160
2099
+ 148
2100
+ (sDw)
2101
+ 120 E
2102
+ 2888898
2103
+ offset
2104
+ Disk offset
2105
+ 100日
2106
+ offset
2107
+ 80 E
2108
+ Disk
2109
+ 60 E
2110
+ Disk
2111
+ 40 E
2112
+ 1.0-0.8-0.6-0.4-0.2 0.0
2113
+ 20日
2114
+ 4
2115
+ 6
2116
+ 8
2117
+ 10
2118
+ 12
2119
+ 20 40 60 80100120140
2120
+ b 6ol
2121
+ 2003
2122
+ 20042005
2123
+ 2006
2124
+ 200720082009
2125
+ Max absorption (mag)
2126
+ Disk thickness (mas)
2127
+ TORigliaco et al.: DESTINYS–TCrA
2128
+ Fig. C.2: Corner plot showing the results of the MC parameters
2129
+ estimation for the model described in the paper when a period of
2130
+ 59.6 years is considered. The plots show the 2D joints posterior
2131
+ densities of all couple of parameters.
2132
+ Fig. C.3: Light curve of T CrA (red points) compared to the light
2133
+ curves computed with the MC model (black lines) assuming a
2134
+ period of 59.2 years.
2135
+ Article number, page 17 of 17
2136
+
2137
+ 2017
2138
+ 2016
2139
+ 2015
2140
+ 2014
2141
+ 2013
2142
+ 2012
2143
+ 2011
2144
+ 1.0-0.8-0.6-0.4-0.2 0.0
2145
+ log q
2146
+ absorption
2147
+ XDW
2148
+ .5
2149
+ 1.0-0.8-0.6-0.4-0.2 0.0
2150
+ log q
2151
+ 2011
2152
+ 2012
2153
+ 2013
2154
+ 2014
2155
+ 2015
2156
+ 20162017
2157
+ TO
2158
+ (mas)
2159
+ (mas)
2160
+ 140
2161
+ 40
2162
+ 140
2163
+ 2888898
2164
+ 120
2165
+ Disk Thickness
2166
+ Thickness
2167
+ 00
2168
+ 100
2169
+ 80
2170
+ 80
2171
+ 60
2172
+ 60
2173
+ 40
2174
+ MSI
2175
+ 40
2176
+ Disk
2177
+ 20
2178
+ 1.0-0.8-0.6-0.4-0.2 0.0
2179
+ 4.0 4.5 5.0 5.5 6.0 6.5 7.0
2180
+ log q
2181
+ 2011
2182
+ 2012
2183
+ 2013
2184
+ 2014
2185
+ 2015
2186
+ 2016
2187
+ 2017
2188
+ Max absorption (mag)
2189
+ TO
2190
+ < offset (mas)
2191
+ (mas)
2192
+ (mas)
2193
+ 40
2194
+ 40
2195
+ 40
2196
+ 40
2197
+ SDU
2198
+ 20
2199
+ 20
2200
+ 20
2201
+ offset
2202
+ < offset
2203
+ 0
2204
+ 0
2205
+ 0
2206
+ Disk
2207
+ Disk
2208
+ 20
2209
+ Disk
2210
+ Disk
2211
+ 20
2212
+ -1.0-0.8-0.6-0.4-0.2 0.0
2213
+ 4.0 4.5 5.0 5.5 6.0 6.5 7.0
2214
+ 20 40 60 80100120140
2215
+ log q
2216
+ 201120122013
2217
+ 2014
2218
+ 201520162017
2219
+ Max absorption (mag)
2220
+ Disk thickness (mas)
2221
+ TO12
2222
+ mag
2223
+ 13
2224
+ 15
2225
+ 1900
2226
+ 1920
2227
+ 1940
2228
+ 1960
2229
+ 1980
2230
+ 2000
2231
+ 2020
2232
+ Time
2233
+ (yr
ANAzT4oBgHgl3EQfhf3F/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtAzT4oBgHgl3EQfhv1C/content/2301.01488v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f135afe587d47d94f4b1fc93bdb9231dac3b2a822bf9e7085a09db8e79b19a38
3
+ size 7087447
AtAzT4oBgHgl3EQfhv1C/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a24fba9464fb72034a52193092609b9f485b4e68c63d74a129770f8f309434e
3
+ size 5373997
AtAzT4oBgHgl3EQfv_4W/content/2301.01714v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405bf38c3f46093548e8aed4951156b388a763d676ed6f2fda9623e31b5f2f7f
3
+ size 697519
AtAzT4oBgHgl3EQfv_4W/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dafb05b2578290c9e409c18b6f96a74e06d6d3207f5f6a0b6b2377f8248f5e9
3
+ size 86679
BdFKT4oBgHgl3EQfXC6p/content/tmp_files/2301.11793v1.pdf.txt ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11793v1 [hep-th] 27 Jan 2023
2
+ 1
3
+ Schwinger-Dyson equation in complex plane
4
+ − The (1 + 1)-dimensional Gross-Neveu model −
5
+ Hidekazu Tanaka ∗) and Shuji Sasagawa
6
+ Rikkyo University, Tokyo 171-8501, Japan
7
+ ABSTRACT
8
+ Effective mass and energy of fermions are investigated using the Schwinger-
9
+ Dyson equation (SDE) in the complex plane. As a simple example, we solve the
10
+ SDE for the (1+1)-dimensional Gross-Neveu model and study some properties of
11
+ the effective mass and energy of fermions in the complex plane.
12
+ ∗) E-mail:[email protected]
13
+
14
+ 2
15
+ §1.
16
+ Introduction
17
+ Behavior of effective mass and energy in non-perturbative region is one of in-
18
+ teresting problems to be studied, because they are related to the properties of the
19
+ propagator in non-perturbative region.
20
+ Particularly, interesting phenomena are expected in Minkowski space. In some
21
+ studies, it has been pointed out that the positivity of the gluon spectral function in
22
+ quantum chromodynamics (QCD) appears to be violated in strong coupling region.
23
+ [1,2] This indicates that gluons do not have asymptotic states, suggesting that gluons
24
+ are confined to hadrons.
25
+ Unfortunately, lattice simulations for studying non-perturbative region do not
26
+ allow direct evaluation of the imaginary part of the effective mass in Minkowski space.
27
+ One useful tool for studying non-perturbative phenomena is the Schwinger-Dyson
28
+ equation (SDE) [3,4]. The structure of the gluon propagator has been evaluated by
29
+ the SDE, in which the squared momentum for the gluon is extended to the complex
30
+ value. [5,6]. They found that the gluon propagator has poles not on the real axis
31
+ in the squared momentum plane at zero temperature. In their framework, they also
32
+ showed that the spectral function of the gluon violates positive value condition.
33
+ In evaluations using the SDE, one of difficulties in Minkowski space is the exis-
34
+ tence of poles in propagator. This requires knowledge of the precise pole positions of
35
+ the propagator in the self-energy calculation. To avoid this, it is computed by Wick-
36
+ rotating the axis of integration from the real axis to the imaginary axis. However,
37
+ the Wick rotation requires the location of the poles to be known in advance, but the
38
+ value of the mass in the non-perturbative region is non-trivial.
39
+ In this paper, as a starting point for thinking about these problems, we examine
40
+ the (1 + 1)-dimensional (one dimension of time and one dimension of space) Gross-
41
+ Neveu (GN) model at zero temperature. [7] We extend the SDE to the complex
42
+ plane, and integrate the loop momentum around poles of the propagator in the self-
43
+ energy with two different integration paths in the complex energy plane. Then we
44
+ examine the properties of the solutions obtained by the SDE in the complex plane.
45
+ In Section 2, we formulate the SDE for the (1 + 1)-dimensional GN model in
46
+ terms of complex mass and energy.
47
+ In Section 3, we discuss analytical solutions
48
+ for effective mass and energy in the complex plane with finite cutoff values of the
49
+ momentum. In Section 4, we numerically calculate the effective mass and energy
50
+ using the SDE. Section 5 is devoted to the summary and some comments. Explicit
51
+ expressions of the complex mass and energy implemented in calculations are given
52
+ in Appendix.
53
+
54
+ 3
55
+ §2.
56
+ The SDE for effective mass of fermion in complex plane
57
+ The Lagrangian density of the GN model is given by
58
+ L = i ¯ψ∂/ψ + g2
59
+ 2 ( ¯ψψ)2,
60
+ (2.1)
61
+ where ψ and g2 are the 2-component fermion field in (1 + 1) dimensions and the
62
+ coupling constant of 4-fermion interaction, respectively.
63
+ In this paper, we evaluate the fermion effective mass M using the SDE. In order
64
+ to obtain the effective mass, we calculate the one-loop self-energy Σ of the fermion
65
+ in (1 + 1) dimensions, which is given by
66
+ Σ = i
67
+ g2
68
+ (2π)2
69
+
70
+ d2QTr[S(Q)].
71
+ (2.2)
72
+ In Eq.(2 · 2), S(Q) is an effective propagator of the fermion with momentum Q =
73
+ (q0, q), which is given by
74
+ iS(Q) =
75
+ i
76
+ Q/ − Σ + iε
77
+ (2.3)
78
+ Here, we define Σ ≡ M, because the wave-function renormalization constant of the
79
+ fermion is √Z2 = 1 in one-loop order of perturbation.
80
+ Therefore, the SDE for the effective mass M is given by
81
+ M = i 2g2
82
+ (2π)2
83
+
84
+ d2Q
85
+ M
86
+ Q2 − M2 + iε = iλ
87
+
88
+ dq0dq
89
+ M
90
+ q2
91
+ 0 − q2 − M2 + iε,
92
+ (2.4)
93
+ where we define λ ≡ 2g2/(2π)2 for simplicity. The propagator S(Q) has poles, which
94
+ satisfies q2
95
+ 0 − q2 − M2 + iε = 0.
96
+ In this paper, we extend q0 as a complex value z and the effective mass M is also
97
+ extended as a complex value. Explicitly, they are written as q0 = (q0)R + i(q0)I ≡
98
+ zR + izI = z and M ≡ MR + iMI, respectively. Here, we write the denominator of
99
+ the fermion propagator S(Q) as
100
+ z2 − q2 − M2 + iε ≡ z2 − E2(q) = (z − E(q))(z + E(q))
101
+ (2.5)
102
+ with
103
+ E(q) ≡
104
+
105
+ E2(q) =
106
+
107
+ q2 + M2 − iε ≡ ER(q) + iEI(q).
108
+ (2.6)
109
+ Therefore, the poles are located at z = ±E(q) in the complex z plane. Here, we define
110
+ ER(q) > 0. Explicit relations among the complex values are given in Appendix.
111
+ The SDE for the effective fermion mass in terms of the complex values is written
112
+ as
113
+ M = iλ
114
+
115
+ dq
116
+
117
+ C
118
+ dz
119
+ M
120
+ z2 − q2 − M2 + iε = iλ
121
+
122
+ dq
123
+
124
+ C
125
+ dz
126
+ M
127
+ (z − E(q))(z + E(q)).(2.7)
128
+
129
+ 4
130
+ Here, we write above equation as
131
+ M = 1
132
+ 2M(+) + 1
133
+ 2M(−),
134
+ (2.8)
135
+ where
136
+ M(±) = iλ
137
+
138
+ dq
139
+
140
+ C
141
+ dz
142
+ 1
143
+ z − z±
144
+
145
+ M
146
+ z + z±
147
+
148
+ ≡ iλ
149
+
150
+ dq
151
+
152
+ C
153
+ dz
154
+ 1
155
+ z − z±
156
+ f (±)(z, q) (2.9)
157
+ with z± = ±E(q) and
158
+ f (±)(z, q) =
159
+ M
160
+ z + z±
161
+ .
162
+ (2.10)
163
+ In our calculation, we integrate Eq.(2·9) around z = z± with following two
164
+ integral paths.
165
+ (1) Integral path including the imaginary axis
166
+ In this case, we separate the integral path around the poles z± = ±E(q) to C1
167
+ and C2 as follows:
168
+ For the integral path around z+ = E(q), we take −iΛ0 − η < z < iΛ0 − η as
169
+ the path C1, and the path C2 is defined as clockwise rotation in right-half on the
170
+ complex energy plane with z = Λ0eiθ, where we take the integration from θ = π/2
171
+ to θ = −π/2.
172
+ On the other hand, for the integral path around z− = −E(q), we take −iΛ0+η <
173
+ z < iΛ0 + η as the path C1, and the path C2 is defined as anticlockwise rotation in
174
+ left-half on the complex energy plane with z = Λ0eiθ, where we take the integration
175
+ from θ = π/2 to θ = 3π/2. ∗)
176
+ Integrating over the integral path C around the pole z± = ±E(q) in the right-
177
+ hand side of Eq. (2·9), we have
178
+ M(±) = iλ
179
+
180
+ dq(∓2πi)f (±)(z±, q) = πλ
181
+
182
+ dq M
183
+ E(q)
184
+ (2.11)
185
+ for Λ0 → ∞. Therefore, the SDE for the effective mass is given by
186
+ M = 1
187
+ 2M(+) + 1
188
+ 2M(−) = πλ
189
+
190
+ dq M
191
+ E(q).
192
+ (2.12)
193
+ For η → 0, this case corresponds to the SDE for Euclidian momentum integration
194
+ with the complex mass M, which is given as
195
+ M = λ
196
+
197
+ dq
198
+ � ∞
199
+ −∞
200
+ dq4
201
+ M
202
+ q2
203
+ 4 + q2 + M2 − iε
204
+ (2.13)
205
+ with z = iq4 in Eq. (2·7).
206
+ ∗) In order to evaluate the contributions from the singular poles on the imaginary axis, we sift
207
+ the integral path by ∓η from the imaginary axis.
208
+
209
+ 5
210
+ (2) Integral path including the real axis
211
+ In this case, we separate the integral path around the poles z± = ±E(q) to C1
212
+ and C2 as follows:
213
+ For the integral path around z+ = E(q), we take −Λ0 − iη < z < Λ0 − iη as the
214
+ path C1 if EI > 0, and the path C2 is defined as anticlockwise rotation in upper-half
215
+ on the complex energy plane with z = Λ0eiθ, where we take the integration from
216
+ θ = 0 to θ = π. If EI < 0, we take −Λ0 + iη < z < Λ0 + iη as the path C1, and the
217
+ path C2 is defined as clockwise rotation in lower-half on the complex energy plane
218
+ with z = Λ0eiθ, where we take the integration from θ = 0 to θ = −π.
219
+ For the integral path around z− = −E(q), we take −Λ0 −iη < z < Λ0 −iη as the
220
+ path C1 if EI < 0, and the path C2 is defined as anticlockwise rotation in upper-half
221
+ on the complex energy plane with z = Λ0eiθ, where we take the integration from
222
+ θ = 0 to θ = π. If EI > 0, we take −Λ0 + iη < z < Λ0 + iη as the path C1, and the
223
+ path C2 is defined as clockwise rotation in lower-half on the complex energy plane
224
+ with z = Λ0eiθ, where we take the integration from θ = 0 to θ = −π. ∗)
225
+ Integrating over the integral path C around the pole z± = ±E(q) in the right-
226
+ hand side of Eq. (2·9), we have
227
+ M(±) = iλ
228
+
229
+ dq(±2πi)
230
+ � EI(q)
231
+ |EI(q)|
232
+
233
+ f (±)(z±, q) = −πλ
234
+
235
+ dq
236
+ � EI(q)
237
+ |EI(q)|
238
+ � M
239
+ E(q)(2.14)
240
+ for Λ0 → ∞.
241
+ Therefore, the effective mass is given as
242
+ M = 1
243
+ 2M(+) + 1
244
+ 2M(−) = −πλ
245
+
246
+ dq
247
+ � EI(q)
248
+ |EI(q)|
249
+ � M
250
+ E(q).
251
+ (2.15)
252
+ For η → 0, this case corresponds to the SDE for Minkowski momentum integra-
253
+ tion with the complex mass M, which is given as
254
+ M = iλ
255
+
256
+ dq
257
+ � ∞
258
+ −∞
259
+ dq0
260
+ M
261
+ q2
262
+ 0 − q2 − M2 + iε
263
+ (2.16)
264
+ with z = q0 in Eq. (2·7).
265
+ §3.
266
+ Analytical solutions
267
+ We can find analytical solutions for the SDE obtained in the previous section.
268
+ Here, we write the SDE for two different integral paths as
269
+ M = πsλ
270
+
271
+ dq M
272
+ E(q)
273
+ (3.1)
274
+ with s = 1 for the case (1) and s = −EI(q)/|EI(q)| = −[(M2)I − ε]/|(M2)I − ε| for
275
+ the case (2), respectively.
276
+ ∗) In order to evaluate the contributions from the singular poles on the real axis, we sift the
277
+ integral path by ∓iη from the real axis.
278
+
279
+ 6
280
+ From Eq.(3·1), nontrivial solutions with M ̸= 0 are given by solving the equation
281
+ 1 − πsλ
282
+
283
+ dq
284
+ 1
285
+ E(q) = 0.
286
+ (3.2)
287
+ Thus, the real and imaginary parts of Eq.(3·2) satisfy
288
+ 1 − πsλ
289
+
290
+ dq ER(q)
291
+ |E(q)|2 = 0
292
+ (3.3)
293
+ and
294
+ πsλ
295
+
296
+ dq EI(q)
297
+ |E(q)|2 = 0,
298
+ (3.4)
299
+ respectively.
300
+ Here, Eq. (3·4) is written as
301
+ πsλ
302
+
303
+ dq EI(q)
304
+ |E(q)|2 = πsλ((M2)I − ε)
305
+
306
+ dq
307
+ 1
308
+ 2ER(q)|E(q)|2 = 0.
309
+ (3.5)
310
+ For ER(q) > 0, we obtain (M2)I − ε = 0 for sλ ̸= 0, which gives EI(q) = 0.∗)
311
+ Moreover, from
312
+ (M2)I − ε = 2MRMI − ε = 0,
313
+ (3.6)
314
+ the imaginary part of the effective mass MI is given by
315
+ MI =
316
+ ε
317
+ 2MR
318
+ .
319
+ (3.7)
320
+ In the calculation below, we neglect the imaginary part of the effective mass for small
321
+ ε. Thus, we approximate as (M2)R ≃ M2
322
+ R for simplicity.
323
+ Using EI(q) = 0, and introducing a ultraviolet cutoff Λ and an infrared cutoff δ
324
+ for the momentum q, we write Eq. (3·3) as
325
+ 1 = πsλ
326
+ � Λ
327
+ −Λ
328
+ dq 1
329
+ ER
330
+ θ(|q| − δ) = 2πsλ
331
+ � Λ
332
+ δ
333
+ dq
334
+ 1
335
+
336
+ q2 + M2
337
+ R
338
+ .
339
+ (3.8)
340
+ Here, θ(|q| − δ) denotes the step function for restriction of the momentum q.
341
+ Eq. (3·8) gives
342
+ 1 = 2πsλ log
343
+ ������
344
+ Λ +
345
+
346
+ Λ2 + M2
347
+ R
348
+ δ +
349
+
350
+ δ2 + M2
351
+ R
352
+ ������
353
+ ,
354
+ (3.9)
355
+ which is satisfied if sλ > 0. Therefore, for λ > 0, s = −EI(q)/|EI(q)| = 1 should be
356
+ satisfied for the case (2).
357
+ ∗) As shown in the next section, EI(q) is determined by an asymptotic value, which is numerically
358
+ calculated by the SDE with a given initial value of the mass M.
359
+
360
+ 7
361
+ Defining mR = MR/Λ, ¯δ = δ/Λ and
362
+ 1 +
363
+
364
+ 1 + m2
365
+ R
366
+ ¯δ +
367
+
368
+ ¯δ2 + m2
369
+ R
370
+ = e1/(2πsλ) ≡ ζ,
371
+ (3.10)
372
+ Eq. (3·10) is written as
373
+ m2
374
+ R(Am2
375
+ R − B) = 0
376
+ (3.11)
377
+ with A = (1 − ζ2)2 and B = 4ζ(1 − ¯δζ)(ζ − ¯δ).
378
+ The solution for m2
379
+ R ̸= 0 is given as
380
+ m2
381
+ R = B
382
+ A = 4ζ(1 − ¯δζ)(ζ − ¯δ)
383
+ (1 − ζ2)2
384
+ .
385
+ (3.12)
386
+ For sλ > 0, ζ − ¯δ > 0 is satisfied. Moreover, m2
387
+ R > 0 demands 1 − ¯δζ > 0, which
388
+ gives
389
+ ζ = e1/(2πsλ) < 1
390
+ ¯δ = Λ
391
+ δ .
392
+ (3.13)
393
+ Eq. (3·13) restricts the coupling constant λ as
394
+ λ >
395
+ 1
396
+ 2π log Λ
397
+ δ
398
+ ≡ λc
399
+ (3.14)
400
+ with s = 1.
401
+ For above restriction of λ, the real part of the effective mass is given as
402
+ mR = MR
403
+ Λ
404
+ = ±
405
+
406
+ 4ζ(1 − ¯δζ)(ζ − ¯δ)
407
+ (1 − ζ2)2
408
+ .
409
+ (3.15)
410
+ §4.
411
+ Numerical solutions
412
+ In this section, we calculate the SDE for two different integral paths. The SDE
413
+ is given in Eq. (3·1). In numerical calculation, we write the SDE for the real and
414
+ imaginary parts of the mass as
415
+ MR = 2πsλ
416
+ � Λ
417
+ δ
418
+ dq[M(E(q))∗]R
419
+ |E(q)|2
420
+ = 2πsλ
421
+ � Λ
422
+ δ
423
+ dqMRER(q) + MIEI(q)
424
+ |E(q)|2
425
+ (4.1)
426
+ and
427
+ MI = 2πsλ
428
+ � Λ
429
+ δ
430
+ dq[M(E(q))∗]I
431
+ |E(q)|2
432
+ = 2πsλ
433
+ � Λ
434
+ δ
435
+ dqMIER(q) − MREI(q)
436
+ |E(q)|2
437
+ ,
438
+ (4.2)
439
+ ,respectively with |E(q)|2 = E2
440
+ R(q) + E2
441
+ I (q).
442
+
443
+ 8
444
+ We solve the SDE by iteration method from some initial input values for the
445
+ real and imaginary parts of the effective mass denoted by MR(0) and MI(0).
446
+ For the case (1), we can start from any values of the mass to solve the SDE, since
447
+ s is independent on the mass. However, for the case (2), the SDE has non-trivial
448
+ solutions only for s = −EI(q)/|EI(q)| = −[(M2)I−ε]/|(M2)I−ε| = 1. Since (M2)I =
449
+ 2MRMI, we set initial input values of the real and imaginary parts of the mass, which
450
+ satisfy (M2)I(0) = 2MR(0)MI(0) < 0.
451
+ 1e-010
452
+ 1e-008
453
+ 1e-006
454
+ 0.0001
455
+ 0.01
456
+ 1
457
+ 100
458
+ 0
459
+ 20
460
+ 40
461
+ 60
462
+ 80
463
+ 100
464
+ |M|/Λ
465
+ I
466
+ λ=0.020
467
+ λ=0.025
468
+ λ=0.030
469
+ Fig. 1.
470
+ The convergence behaviors of |M|/Λ for λ = 0.020, 0.025, 0.030 with MR(0) = −MI(0) =
471
+ 0.01Λ. The horizontal axis denotes the number of iterations.
472
+ In Fig.1, we present the convergence behaviors of |M|/Λ =
473
+
474
+ M2
475
+ R + M2
476
+ I /Λ near
477
+ the critical coupling constant λc denoted in Eq. (3·14) with δ/Λ = 10−3, which gives
478
+ λ > 0.023. Here, we set the input values of the mass as MR(0) = −MI(0) = 0.01Λ.∗)
479
+ From Fig.1, we can conclude that λc locates between λ = 0.020 and λ = 0.025.
480
+ 0.001
481
+ 0.01
482
+ 0.1
483
+ 1
484
+ 10
485
+ 100
486
+ 0
487
+ 0.5
488
+ 1
489
+ 1.5
490
+ 2
491
+ 2.5
492
+ 3
493
+ |M|/Λ
494
+ λ
495
+ Solution by SDE
496
+ Analytical solution
497
+ Fig. 2.
498
+ The λ dependence of |M|/Λ for 0.03 ≤ λ ≤ 3 with MR(0) = −MI(0) = 0.01Λ. The dotted
499
+ curve denotes the calculated result by the analytical solution divided by Λ.
500
+ ∗) We set ε = 10−5Λ2.
501
+
502
+ 9
503
+ In Fig.2, we present the λ dependence of the absolute value of the effective mass
504
+ |M|/Λ for 0.03 ≤ λ ≤ 3 with MR(0) = −MI(0) = 0.01Λ. The dotted curve denotes the
505
+ calculated result using Eqs. (3·7) and (3·15).
506
+ In the following calculations, we set four initial values for the mass as MR(0) =
507
+ ±0.01Λ and MI(0) = ±0.01Λ, respectively.
508
+ 0
509
+ 0.5
510
+ 1
511
+ 1.5
512
+ 2
513
+ 2.5
514
+ 3
515
+ 0
516
+ 5
517
+ 10
518
+ 15
519
+ 20
520
+ ER/Λ
521
+ I
522
+ MR(0)>0 MI(0)>0
523
+ MR(0)>0 MI(0)<0
524
+ Analytical soltion for MR>0
525
+ MR(0)<0 MI(0)>0
526
+ MR(0)<0 MI(0)<0
527
+ Analytical soltion for MR<0
528
+ Fig. 3.
529
+ The convergence behavior of ER(q)/Λ with q = 0. The straight lines denote the energy
530
+ divided by Λ calculated using the analytical solutions of the mass. The horizontal axis denotes
531
+ the number of iterations.
532
+ -2e-005
533
+ -1.5e-005
534
+ -1e-005
535
+ -5e-006
536
+ 0
537
+ 5e-006
538
+ 1e-005
539
+ 1.5e-005
540
+ 2e-005
541
+ 0
542
+ 5
543
+ 10
544
+ 15
545
+ 20
546
+ EI/Λ
547
+ I
548
+ MR(0)>0 MI(0)>0
549
+ MR(0)>0 MI(0)<0
550
+ Analytical soltion for MR>0
551
+ MR(0)<0 MI(0)>0
552
+ MR(0)<0 MI(0)<0
553
+ Analytical soltion for MR<0
554
+ Fig. 4.
555
+ The convergence behavior of EI(q)/Λ with q = 0. The straight lines denote the analytical
556
+ solutions of energy, which is EI(q)/Λ = 0. The horizontal axis denotes the number of iterations.
557
+ In Figs.3 and 4, we show the convergence behaviors of the real and imaginary
558
+ parts of the energy with the momentum q = 0, respectively. The straight lines denote
559
+ the energy calculated using the analytical solutions of the mass given in Eqs.(3·7)
560
+ and (3·15).(See Appendix.)
561
+ Since the real part of the energy is defined to be positive, the numerical results
562
+ do not depend on the sign of initial values of the mass. The imaginary part of the
563
+ energy converges EI → 0, in which the convergence behavior depends on the sign of
564
+
565
+ 10
566
+ (M2)I(0). The calculated results shown in Figs. 1-4 are common for the two integral
567
+ paths (1) and (2).
568
+ On the other hand, the convergence behaviors for the effective mass are different
569
+ for the two integral paths.
570
+ -3
571
+ -2
572
+ -1
573
+ 0
574
+ 1
575
+ 2
576
+ 3
577
+ 4
578
+ 5
579
+ 0
580
+ 5
581
+ 10
582
+ 15
583
+ 20
584
+ MR/Λ
585
+ I
586
+ MR(0)>0 MI(0)>0
587
+ MR(0)>0 MI(0)<0
588
+ Analytical soltion for MR>0
589
+ MR(0)<0 MI(0)>0
590
+ MR(0)<0 MI(0)<0
591
+ Analytical soltion for MR<0
592
+ Fig. 5.
593
+ The convergence behavior of MR/Λ for the case (1). The straight lines denote the analytical
594
+ solutions of the real part of the effective mass divided by Λ. The horizontal axis denotes the
595
+ number of iterations.
596
+ -2e-005
597
+ -1.5e-005
598
+ -1e-005
599
+ -5e-006
600
+ 0
601
+ 5e-006
602
+ 1e-005
603
+ 1.5e-005
604
+ 2e-005
605
+ 0
606
+ 5
607
+ 10
608
+ 15
609
+ 20
610
+ MI/Λ
611
+ I
612
+ MR(0)>0 MI(0)>0
613
+ MR(0)>0 MI(0)<0
614
+ Analytical soltion for MI>0
615
+ MR(0)<0 MI(0)>0
616
+ MR(0)<0 MI(0)<0
617
+ Analytical soltion for MI<0
618
+ Fig. 6.
619
+ The convergence behavior of MI/Λ for the case (1). The straight lines denote the analytical
620
+ solutions of the imaginary part of the effective mass divided by Λ. The horizontal axis denotes
621
+ the number of iterations.
622
+ For the case (1), the real and imaginary parts of the effective mass calculated
623
+ by the SDE are shown in Figs.5 and 6, respectively.
624
+ As shown in Fig.
625
+ 5, the
626
+ convergent solution splits into two values depending on the sign of MR(0)/Λ. As
627
+ shown in Fig.6, the imaginary part of the effective mass is small and it depends
628
+ on ε. Moreover, MI/Λ initially behaves according to the sign of the initial value
629
+ of MI(0)/Λ, but the convergent solution depends on the sign of the initial value
630
+ MR(0)/Λ.
631
+
632
+ 11
633
+ -3
634
+ -2
635
+ -1
636
+ 0
637
+ 1
638
+ 2
639
+ 3
640
+ 4
641
+ 5
642
+ 0
643
+ 5
644
+ 10
645
+ 15
646
+ 20
647
+ MR/Λ
648
+ I
649
+ MR(0)>0 MI(0)>0
650
+ MR(0)>0 MI(0)<0
651
+ Analytical soltion for MR>0
652
+ MR(0)<0 MI(0)>0
653
+ MR(0)<0 MI(0)<0
654
+ Analytical soltion for MR<0
655
+ Fig. 7.
656
+ The convergence behavior of MR/Λ for the case (2). The straight lines denote the analytical
657
+ solutions of the real part of the effective mass divided by Λ. The horizontal axis denotes the
658
+ number of iterations.
659
+ -2e-005
660
+ -1.5e-005
661
+ -1e-005
662
+ -5e-006
663
+ 0
664
+ 5e-006
665
+ 1e-005
666
+ 1.5e-005
667
+ 2e-005
668
+ 0
669
+ 5
670
+ 10
671
+ 15
672
+ 20
673
+ MI/Λ
674
+ I
675
+ MR(0)>0 MI(0)>0
676
+ MR(0)>0 MI(0)<0
677
+ Analytical soltion for MI>0
678
+ MR(0)<0 MI(0)>0
679
+ MR(0)<0 MI(0)<0
680
+ Analytical soltion for MI<0
681
+ Fig. 8.
682
+ The convergence behavior of MI/Λ for the case (2). The straight lines denote the analytical
683
+ solutions of the imaginary part of the effective mass divided by Λ. The horizontal axis denotes
684
+ the number of iterations.
685
+ For the case (2), the convergence behaviors of the effective mass calculated by
686
+ the SDE are shown in Figs.7 and 8, respectively. As shown in Figs. 7 and 8, the
687
+ convergent solution splits into two values depending on the sign of the initial value
688
+ of MR(0)/Λ for (M2)I(0) < 0. However, for (M2)I(0) > 0, the iterated values are
689
+ oscillated. In this case, since s < 0, the SDE has no non-trivial solution.
690
+ §5.
691
+ Summary and Comments
692
+ In this paper, we examined the (1 + 1)-dimensional Gross-Neveu (GN) model at
693
+ zero temperature and solved the Schwinger-Dyson equation (SDE) in the complex
694
+ plane. We compered the effective mass and energy calculated in two different integral
695
+ paths in the complex energy plane. Then we examined the properties of the solutions
696
+
697
+ 12
698
+ obtained by the SDE.
699
+ First, we investigated the effect of the momentum cutoff on chiral symmetry
700
+ breaking. Though the cutoff on the momentum is an artificial parameter for numer-
701
+ ical calculations, this example suggests a possibility of changing the critical point in
702
+ a physical system with restricted momentum.
703
+ In the model treated in this paper, the imaginary part of the energy is zero and
704
+ the poles of the effective propagator are on the real axis, which is different situation
705
+ in QCD pointed out in Ref.[5,6], in which the poles are not on the real axis.
706
+ We also investigated the dependence of the solutions obtained by the SDE on
707
+ the initial input parameters. The effective mass obtained by the SDE depends on
708
+ the sign of the input initial input values. Our calculations suggest that the SDE
709
+ may lead to multiple solutions depending on the initial input values. Moreover, it
710
+ can be seen that, for the integral path including the real axis, which corresponds to
711
+ the SDE in Minkowski space, the input values leading to chiral symmetry broken
712
+ phases are limited than the case with the integral path including the imaginary axis,
713
+ which corresponds to the SDE in Euclidean space. This result suggests that the
714
+ calculation of SDE requires careful selection of input values. On the other hand, in
715
+ our example, when an oscillating solution exists, there exists a solution with broken
716
+ chiral symmetry for input values of appropriate sign.
717
+ The SDE extended to complex plane may be useful for investigating a wider
718
+ class of non-perturbative solutions. Although further computational techniques will
719
+ be required, it is expected that the method presented in this paper can be applied
720
+ to other models such as non-perturbative QCD in Minkowski space.
721
+ Appendix. Complex mass and energy
722
+ In order to solve the SDE in complex energy plane, we need the explicit forms
723
+ ofcomplex mass and energy.
724
+ We define the complex mass as M = MR + iMI and the squared of the mass as
725
+ M2 = (M2)R + i(M2)I. Here, (M2)R and (M2)I are given by
726
+ (M2)R = M2
727
+ R − M2
728
+ I ,
729
+ (M2)I = 2MRMI.
730
+ The squared energy E2 is defined by
731
+ E2 = q2 + M2 − iε ≡ (E2)R + i(E2)I.
732
+ with
733
+ (E2)R = q2 + (M2)R,
734
+ (E2)I = (M2)I − ε.
735
+ On the other hand, using the complex energy E = ER + iEI, (E2)R and (E2)I are
736
+ also written as
737
+ (E2)R = E2
738
+ R − E2
739
+ I ,
740
+ (E2)I = 2EREI.
741
+ Therefore the imaginary part of the energy is written as
742
+ EI = (E2)I
743
+ 2ER
744
+ .
745
+
746
+ 13
747
+ Substituting above equation to (E2)R = E2
748
+ R − E2
749
+ I , we have a quadratic equation for
750
+ E2
751
+ R as
752
+ (E2
753
+ R)2 − E2
754
+ R(E2)R − (E2)2
755
+ I /4 = 0.
756
+ The solution of the equation for E2
757
+ R > 0 is given by
758
+ E2
759
+ R = (E2)R + |E2|
760
+ 2
761
+ with |E2| =
762
+
763
+ [(E2)R]2 + [(E2)I]2.
764
+ Therefore, we have the solution
765
+ ER =
766
+
767
+ (E2)R + |E2|
768
+ 2
769
+ ,
770
+ EI = (E2)I
771
+ 2ER
772
+ for ER > 0.
773
+ -
774
+ References
775
+ 1) D.Dudal,O.Oliveira and P.J.Silva, Phys.Rev.D89,014010(2014) [arXiv:1310:4069 [hep-
776
+ lat]].
777
+ 2) F.Siringo, Phys.Rev.D94,0114036(2016) [arXiv:1605:07357 [hep-ph]].
778
+ 3) F.J.Dyson, Phys.Rev.75 (1949) ,1736.
779
+ 4) J.S.Schwinger,Proc.Nat.Acad.Sci.37 (1951),452.
780
+ 5) S.Strauss,
781
+ C.S.Fischer
782
+ and
783
+ C.Kellermann,
784
+ Phys.
785
+ Rev.
786
+ Lett.
787
+ 109
788
+ (2012),252001
789
+ [arXiv:1208:6239 [hep-ph]].
790
+ 6) C.S.Fischer and M.Q.Huber, Phys. Rev. D102 (2020),094005 [arXiv:2007.11505].
791
+ 7) D.J.Gross and A.Neveu, Phys. Rev. D10 (1974),3235.
792
+
BdFKT4oBgHgl3EQfXC6p/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf,len=313
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
3
+ page_content='11793v1 [hep-th] 27 Jan 2023 1 Schwinger-Dyson equation in complex plane − The (1 + 1)-dimensional Gross-Neveu model − Hidekazu Tanaka ∗) and Shuji Sasagawa Rikkyo University, Tokyo 171-8501, Japan ABSTRACT Effective mass and energy of fermions are investigated using the Schwinger- Dyson equation (SDE) in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
4
+ page_content=' As a simple example, we solve the SDE for the (1+1)-dimensional Gross-Neveu model and study some properties of the effective mass and energy of fermions in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
5
+ page_content=' ∗) E-mail:tanakah@rikkyo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
6
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
7
+ page_content='jp 2 §1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
8
+ page_content=' Introduction Behavior of effective mass and energy in non-perturbative region is one of in- teresting problems to be studied, because they are related to the properties of the propagator in non-perturbative region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
9
+ page_content=' Particularly, interesting phenomena are expected in Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
10
+ page_content=' In some studies, it has been pointed out that the positivity of the gluon spectral function in quantum chromodynamics (QCD) appears to be violated in strong coupling region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
11
+ page_content=' [1,2] This indicates that gluons do not have asymptotic states, suggesting that gluons are confined to hadrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
12
+ page_content=' Unfortunately, lattice simulations for studying non-perturbative region do not allow direct evaluation of the imaginary part of the effective mass in Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
13
+ page_content=' One useful tool for studying non-perturbative phenomena is the Schwinger-Dyson equation (SDE) [3,4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
14
+ page_content=' The structure of the gluon propagator has been evaluated by the SDE, in which the squared momentum for the gluon is extended to the complex value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
15
+ page_content=' [5,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
16
+ page_content=' They found that the gluon propagator has poles not on the real axis in the squared momentum plane at zero temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
17
+ page_content=' In their framework, they also showed that the spectral function of the gluon violates positive value condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
18
+ page_content=' In evaluations using the SDE, one of difficulties in Minkowski space is the exis- tence of poles in propagator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
19
+ page_content=' This requires knowledge of the precise pole positions of the propagator in the self-energy calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
20
+ page_content=' To avoid this, it is computed by Wick- rotating the axis of integration from the real axis to the imaginary axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
21
+ page_content=' However, the Wick rotation requires the location of the poles to be known in advance, but the value of the mass in the non-perturbative region is non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
22
+ page_content=' In this paper, as a starting point for thinking about these problems, we examine the (1 + 1)-dimensional (one dimension of time and one dimension of space) Gross- Neveu (GN) model at zero temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
23
+ page_content=' [7] We extend the SDE to the complex plane, and integrate the loop momentum around poles of the propagator in the self- energy with two different integration paths in the complex energy plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
24
+ page_content=' Then we examine the properties of the solutions obtained by the SDE in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
25
+ page_content=' In Section 2, we formulate the SDE for the (1 + 1)-dimensional GN model in terms of complex mass and energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
26
+ page_content=' In Section 3, we discuss analytical solutions for effective mass and energy in the complex plane with finite cutoff values of the momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
27
+ page_content=' In Section 4, we numerically calculate the effective mass and energy using the SDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
28
+ page_content=' Section 5 is devoted to the summary and some comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
29
+ page_content=' Explicit expressions of the complex mass and energy implemented in calculations are given in Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
30
+ page_content=' 3 §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
31
+ page_content=' The SDE for effective mass of fermion in complex plane The Lagrangian density of the GN model is given by L = i ¯ψ∂/ψ + g2 2 ( ¯ψψ)2, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
32
+ page_content='1) where ψ and g2 are the 2-component fermion field in (1 + 1) dimensions and the coupling constant of 4-fermion interaction, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
33
+ page_content=' In this paper, we evaluate the fermion effective mass M using the SDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
34
+ page_content=' In order to obtain the effective mass, we calculate the one-loop self-energy Σ of the fermion in (1 + 1) dimensions, which is given by Σ = i g2 (2π)2 � d2QTr[S(Q)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
35
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
36
+ page_content='2) In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
37
+ page_content=' (2 · 2), S(Q) is an effective propagator of the fermion with momentum Q = (q0, q), which is given by iS(Q) = i Q/ − Σ + iε (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
38
+ page_content='3) Here, we define Σ ≡ M, because the wave-function renormalization constant of the fermion is √Z2 = 1 in one-loop order of perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
39
+ page_content=' Therefore, the SDE for the effective mass M is given by M = i 2g2 (2π)2 � d2Q M Q2 − M2 + iε = iλ � dq0dq M q2 0 − q2 − M2 + iε, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
40
+ page_content='4) where we define λ ≡ 2g2/(2π)2 for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
41
+ page_content=' The propagator S(Q) has poles, which satisfies q2 0 − q2 − M2 + iε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
42
+ page_content=' In this paper, we extend q0 as a complex value z and the effective mass M is also extended as a complex value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
43
+ page_content=' Explicitly, they are written as q0 = (q0)R + i(q0)I ≡ zR + izI = z and M ≡ MR + iMI, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
44
+ page_content=' Here, we write the denominator of the fermion propagator S(Q) as z2 − q2 − M2 + iε ≡ z2 − E2(q) = (z − E(q))(z + E(q)) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
45
+ page_content='5) with E(q) ≡ � E2(q) = � q2 + M2 − iε ≡ ER(q) + iEI(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
46
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
47
+ page_content='6) Therefore, the poles are located at z = ±E(q) in the complex z plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
48
+ page_content=' Here, we define ER(q) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
49
+ page_content=' Explicit relations among the complex values are given in Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
50
+ page_content=' The SDE for the effective fermion mass in terms of the complex values is written as M = iλ � dq � C dz M z2 − q2 − M2 + iε = iλ � dq � C dz M (z − E(q))(z + E(q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
51
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
52
+ page_content='7) 4 Here, we write above equation as M = 1 2M(+) + 1 2M(−), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
53
+ page_content='8) where M(±) = iλ � dq � C dz 1 z − z± � M z + z± � ≡ iλ � dq � C dz 1 z − z± f (±)(z, q) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
54
+ page_content='9) with z± = ±E(q) and f (±)(z, q) = M z + z± .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
55
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
56
+ page_content='10) In our calculation, we integrate Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
57
+ page_content=' (2·9) around z = z± with following two integral paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
58
+ page_content=' (1) Integral path including the imaginary axis In this case, we separate the integral path around the poles z± = ±E(q) to C1 and C2 as follows: For the integral path around z+ = E(q), we take −iΛ0 − η < z < iΛ0 − η as the path C1, and the path C2 is defined as clockwise rotation in right-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = π/2 to θ = −π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
59
+ page_content=' On the other hand, for the integral path around z− = −E(q), we take −iΛ0+η < z < iΛ0 + η as the path C1, and the path C2 is defined as anticlockwise rotation in left-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = π/2 to θ = 3π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
60
+ page_content=' ∗) Integrating over the integral path C around the pole z± = ±E(q) in the right- hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
61
+ page_content=' (2·9), we have M(±) = iλ � dq(∓2πi)f (±)(z±, q) = πλ � dq M E(q) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
62
+ page_content='11) for Λ0 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
63
+ page_content=' Therefore, the SDE for the effective mass is given by M = 1 2M(+) + 1 2M(−) = πλ � dq M E(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
64
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
65
+ page_content='12) For η → 0, this case corresponds to the SDE for Euclidian momentum integration with the complex mass M, which is given as M = λ � dq � ∞ −∞ dq4 M q2 4 + q2 + M2 − iε (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
66
+ page_content='13) with z = iq4 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
67
+ page_content=' (2·7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
68
+ page_content=' ∗) In order to evaluate the contributions from the singular poles on the imaginary axis, we sift the integral path by ∓η from the imaginary axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
69
+ page_content=' 5 (2) Integral path including the real axis In this case, we separate the integral path around the poles z± = ±E(q) to C1 and C2 as follows: For the integral path around z+ = E(q), we take −Λ0 − iη < z < Λ0 − iη as the path C1 if EI > 0, and the path C2 is defined as anticlockwise rotation in upper-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = 0 to θ = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
70
+ page_content=' If EI < 0, we take −Λ0 + iη < z < Λ0 + iη as the path C1, and the path C2 is defined as clockwise rotation in lower-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = 0 to θ = −π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
71
+ page_content=' For the integral path around z− = −E(q), we take −Λ0 −iη < z < Λ0 −iη as the path C1 if EI < 0, and the path C2 is defined as anticlockwise rotation in upper-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = 0 to θ = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
72
+ page_content=' If EI > 0, we take −Λ0 + iη < z < Λ0 + iη as the path C1, and the path C2 is defined as clockwise rotation in lower-half on the complex energy plane with z = Λ0eiθ, where we take the integration from θ = 0 to θ = −π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
73
+ page_content=' ∗) Integrating over the integral path C around the pole z± = ±E(q) in the right- hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
74
+ page_content=' (2·9), we have M(±) = iλ � dq(±2πi) � EI(q) |EI(q)| � f (±)(z±, q) = −πλ � dq � EI(q) |EI(q)| � M E(q)(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
75
+ page_content='14) for Λ0 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
76
+ page_content=' Therefore, the effective mass is given as M = 1 2M(+) + 1 2M(−) = −πλ � dq � EI(q) |EI(q)| � M E(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
77
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
78
+ page_content='15) For η → 0, this case corresponds to the SDE for Minkowski momentum integra- tion with the complex mass M, which is given as M = iλ � dq � ∞ −∞ dq0 M q2 0 − q2 − M2 + iε (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
79
+ page_content='16) with z = q0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
80
+ page_content=' (2·7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
81
+ page_content=' §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
82
+ page_content=' Analytical solutions We can find analytical solutions for the SDE obtained in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
83
+ page_content=' Here, we write the SDE for two different integral paths as M = πsλ � dq M E(q) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
84
+ page_content='1) with s = 1 for the case (1) and s = −EI(q)/|EI(q)| = −[(M2)I − ε]/|(M2)I − ε| for the case (2), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
85
+ page_content=' ∗) In order to evaluate the contributions from the singular poles on the real axis, we sift the integral path by ∓iη from the real axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
86
+ page_content=' 6 From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
87
+ page_content=' (3·1), nontrivial solutions with M ̸= 0 are given by solving the equation 1 − πsλ � dq 1 E(q) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
88
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
89
+ page_content='2) Thus, the real and imaginary parts of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
90
+ page_content=' (3·2) satisfy 1 − πsλ � dq ER(q) |E(q)|2 = 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
91
+ page_content='3) and πsλ � dq EI(q) |E(q)|2 = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
92
+ page_content='4) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
93
+ page_content=' Here, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
94
+ page_content=' (3·4) is written as πsλ � dq EI(q) |E(q)|2 = πsλ((M2)I − ε) � dq 1 2ER(q)|E(q)|2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
95
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
96
+ page_content='5) For ER(q) > 0, we obtain (M2)I − ε = 0 for sλ ̸= 0, which gives EI(q) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
97
+ page_content='∗) Moreover, from (M2)I − ε = 2MRMI − ε = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
98
+ page_content='6) the imaginary part of the effective mass MI is given by MI = ε 2MR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
99
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
100
+ page_content='7) In the calculation below, we neglect the imaginary part of the effective mass for small ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
101
+ page_content=' Thus, we approximate as (M2)R ≃ M2 R for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
102
+ page_content=' Using EI(q) = 0, and introducing a ultraviolet cutoff Λ and an infrared cutoff δ for the momentum q, we write Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
103
+ page_content=' (3·3) as 1 = πsλ � Λ −Λ dq 1 ER θ(|q| − δ) = 2πsλ � Λ δ dq 1 � q2 + M2 R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
104
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
105
+ page_content='8) Here, θ(|q| − δ) denotes the step function for restriction of the momentum q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
106
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
107
+ page_content=' (3·8) gives 1 = 2πsλ log ������ Λ + � Λ2 + M2 R δ + � δ2 + M2 R ������ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
108
+ page_content='9) which is satisfied if sλ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
109
+ page_content=' Therefore, for λ > 0, s = −EI(q)/|EI(q)| = 1 should be satisfied for the case (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
110
+ page_content=' ∗) As shown in the next section, EI(q) is determined by an asymptotic value, which is numerically calculated by the SDE with a given initial value of the mass M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
111
+ page_content=' 7 Defining mR = MR/Λ, ¯δ = δ/Λ and 1 + � 1 + m2 R ¯δ + � ¯δ2 + m2 R = e1/(2πsλ) ≡ ζ, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
112
+ page_content='10) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
113
+ page_content=' (3·10) is written as m2 R(Am2 R − B) = 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
114
+ page_content='11) with A = (1 − ζ2)2 and B = 4ζ(1 − ¯δζ)(ζ − ¯δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
115
+ page_content=' The solution for m2 R ̸= 0 is given as m2 R = B A = 4ζ(1 − ¯δζ)(ζ − ¯δ) (1 − ζ2)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
116
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
117
+ page_content='12) For sλ > 0, ζ − ¯δ > 0 is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
118
+ page_content=' Moreover, m2 R > 0 demands 1 − ¯δζ > 0, which gives ζ = e1/(2πsλ) < 1 ¯δ = Λ δ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
119
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
120
+ page_content='13) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
121
+ page_content=' (3·13) restricts the coupling constant λ as λ > 1 2π log Λ δ ≡ λc (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
122
+ page_content='14) with s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
123
+ page_content=' For above restriction of λ, the real part of the effective mass is given as mR = MR Λ = ± � 4ζ(1 − ¯δζ)(ζ − ¯δ) (1 − ζ2)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
124
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
125
+ page_content='15) §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
126
+ page_content=' Numerical solutions In this section, we calculate the SDE for two different integral paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
127
+ page_content=' The SDE is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
128
+ page_content=' (3·1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
129
+ page_content=' In numerical calculation, we write the SDE for the real and imaginary parts of the mass as MR = 2πsλ � Λ δ dq[M(E(q))∗]R |E(q)|2 = 2πsλ � Λ δ dqMRER(q) + MIEI(q) |E(q)|2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
130
+ page_content='1) and MI = 2πsλ � Λ δ dq[M(E(q))∗]I |E(q)|2 = 2πsλ � Λ δ dqMIER(q) − MREI(q) |E(q)|2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
131
+ page_content='2) ,respectively with |E(q)|2 = E2 R(q) + E2 I (q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
132
+ page_content=' 8 We solve the SDE by iteration method from some initial input values for the real and imaginary parts of the effective mass denoted by MR(0) and MI(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
133
+ page_content=' For the case (1), we can start from any values of the mass to solve the SDE, since s is independent on the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
134
+ page_content=' However, for the case (2), the SDE has non-trivial solutions only for s = −EI(q)/|EI(q)| = −[(M2)I−ε]/|(M2)I−ε| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
135
+ page_content=' Since (M2)I = 2MRMI, we set initial input values of the real and imaginary parts of the mass, which satisfy (M2)I(0) = 2MR(0)MI(0) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
136
+ page_content=' 1e-010 1e-008 1e-006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
137
+ page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
138
+ page_content='01 1 100 0 20 40 60 80 100 |M|/Λ I λ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
139
+ page_content='020 λ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
140
+ page_content='025 λ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
141
+ page_content='030 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
142
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
143
+ page_content=' The convergence behaviors of |M|/Λ for λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
144
+ page_content='020, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
145
+ page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
146
+ page_content='030 with MR(0) = −MI(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
147
+ page_content='01Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
148
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
149
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
150
+ page_content='1, we present the convergence behaviors of |M|/Λ = � M2 R + M2 I /Λ near the critical coupling constant λc denoted in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
151
+ page_content=' (3·14) with δ/Λ = 10−3, which gives λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
152
+ page_content='023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
153
+ page_content=' Here, we set the input values of the mass as MR(0) = −MI(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
154
+ page_content='01Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
155
+ page_content='∗) From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
156
+ page_content='1, we can conclude that λc locates between λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
157
+ page_content='020 and λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
158
+ page_content='025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
159
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
160
+ page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
161
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
162
+ page_content='1 1 10 100 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
163
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
164
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
165
+ page_content='5 3 |M|/Λ λ Solution by SDE Analytical solution Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
166
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
167
+ page_content=' The λ dependence of |M|/Λ for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
168
+ page_content='03 ≤ λ ≤ 3 with MR(0) = −MI(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
169
+ page_content='01Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
170
+ page_content=' The dotted curve denotes the calculated result by the analytical solution divided by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
171
+ page_content=' ∗) We set ε = 10−5Λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
172
+ page_content=' 9 In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
173
+ page_content='2, we present the λ dependence of the absolute value of the effective mass |M|/Λ for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
174
+ page_content='03 ≤ λ ≤ 3 with MR(0) = −MI(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
175
+ page_content='01Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
176
+ page_content=' The dotted curve denotes the calculated result using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
177
+ page_content=' (3·7) and (3·15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
178
+ page_content=' In the following calculations, we set four initial values for the mass as MR(0) = ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
179
+ page_content='01Λ and MI(0) = ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
180
+ page_content='01Λ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
181
+ page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
182
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
183
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
184
+ page_content='5 3 0 5 10 15 20 ER/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MR>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MR<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
185
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
186
+ page_content=' The convergence behavior of ER(q)/Λ with q = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
187
+ page_content=' The straight lines denote the energy divided by Λ calculated using the analytical solutions of the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
188
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
189
+ page_content=' 2e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
190
+ page_content='5e-005 1e-005 5e-006 0 5e-006 1e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
191
+ page_content='5e-005 2e-005 0 5 10 15 20 EI/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MR>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MR<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
192
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
193
+ page_content=' The convergence behavior of EI(q)/Λ with q = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
194
+ page_content=' The straight lines denote the analytical solutions of energy, which is EI(q)/Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
195
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
196
+ page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
197
+ page_content='3 and 4, we show the convergence behaviors of the real and imaginary parts of the energy with the momentum q = 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
198
+ page_content=' The straight lines denote the energy calculated using the analytical solutions of the mass given in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
199
+ page_content=' (3·7) and (3·15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
200
+ page_content=' (See Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
201
+ page_content=') Since the real part of the energy is defined to be positive, the numerical results do not depend on the sign of initial values of the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
202
+ page_content=' The imaginary part of the energy converges EI → 0, in which the convergence behavior depends on the sign of 10 (M2)I(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
203
+ page_content=' The calculated results shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
204
+ page_content=' 1-4 are common for the two integral paths (1) and (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
205
+ page_content=' On the other hand, the convergence behaviors for the effective mass are different for the two integral paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
206
+ page_content=' 3 2 1 0 1 2 3 4 5 0 5 10 15 20 MR/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MR>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MR<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
207
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
208
+ page_content=' The convergence behavior of MR/Λ for the case (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
209
+ page_content=' The straight lines denote the analytical solutions of the real part of the effective mass divided by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
210
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
211
+ page_content=' 2e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
212
+ page_content='5e-005 1e-005 5e-006 0 5e-006 1e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
213
+ page_content='5e-005 2e-005 0 5 10 15 20 MI/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MI>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MI<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
214
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
215
+ page_content=' The convergence behavior of MI/Λ for the case (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
216
+ page_content=' The straight lines denote the analytical solutions of the imaginary part of the effective mass divided by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
217
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
218
+ page_content=' For the case (1), the real and imaginary parts of the effective mass calculated by the SDE are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
219
+ page_content='5 and 6, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
220
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
221
+ page_content=' 5, the convergent solution splits into two values depending on the sign of MR(0)/Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
222
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
223
+ page_content='6, the imaginary part of the effective mass is small and it depends on ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
224
+ page_content=' Moreover, MI/Λ initially behaves according to the sign of the initial value of MI(0)/Λ, but the convergent solution depends on the sign of the initial value MR(0)/Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
225
+ page_content=' 11 3 2 1 0 1 2 3 4 5 0 5 10 15 20 MR/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MR>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MR<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
226
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
227
+ page_content=' The convergence behavior of MR/Λ for the case (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
228
+ page_content=' The straight lines denote the analytical solutions of the real part of the effective mass divided by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
229
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
230
+ page_content=' 2e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
231
+ page_content='5e-005 1e-005 5e-006 0 5e-006 1e-005 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
232
+ page_content='5e-005 2e-005 0 5 10 15 20 MI/Λ I MR(0)>0 MI(0)>0 MR(0)>0 MI(0)<0 Analytical soltion for MI>0 MR(0)<0 MI(0)>0 MR(0)<0 MI(0)<0 Analytical soltion for MI<0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
233
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
234
+ page_content=' The convergence behavior of MI/Λ for the case (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
235
+ page_content=' The straight lines denote the analytical solutions of the imaginary part of the effective mass divided by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
236
+ page_content=' The horizontal axis denotes the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
237
+ page_content=' For the case (2), the convergence behaviors of the effective mass calculated by the SDE are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
238
+ page_content='7 and 8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
239
+ page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
240
+ page_content=' 7 and 8, the convergent solution splits into two values depending on the sign of the initial value of MR(0)/Λ for (M2)I(0) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
241
+ page_content=' However, for (M2)I(0) > 0, the iterated values are oscillated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
242
+ page_content=' In this case, since s < 0, the SDE has no non-trivial solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
243
+ page_content=' §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
244
+ page_content=' Summary and Comments In this paper, we examined the (1 + 1)-dimensional Gross-Neveu (GN) model at zero temperature and solved the Schwinger-Dyson equation (SDE) in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
245
+ page_content=' We compered the effective mass and energy calculated in two different integral paths in the complex energy plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
246
+ page_content=' Then we examined the properties of the solutions 12 obtained by the SDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
247
+ page_content=' First, we investigated the effect of the momentum cutoff on chiral symmetry breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
248
+ page_content=' Though the cutoff on the momentum is an artificial parameter for numer- ical calculations, this example suggests a possibility of changing the critical point in a physical system with restricted momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
249
+ page_content=' In the model treated in this paper, the imaginary part of the energy is zero and the poles of the effective propagator are on the real axis, which is different situation in QCD pointed out in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
250
+ page_content=' [5,6], in which the poles are not on the real axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
251
+ page_content=' We also investigated the dependence of the solutions obtained by the SDE on the initial input parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
252
+ page_content=' The effective mass obtained by the SDE depends on the sign of the input initial input values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
253
+ page_content=' Our calculations suggest that the SDE may lead to multiple solutions depending on the initial input values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
254
+ page_content=' Moreover, it can be seen that, for the integral path including the real axis, which corresponds to the SDE in Minkowski space, the input values leading to chiral symmetry broken phases are limited than the case with the integral path including the imaginary axis, which corresponds to the SDE in Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
255
+ page_content=' This result suggests that the calculation of SDE requires careful selection of input values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
256
+ page_content=' On the other hand, in our example, when an oscillating solution exists, there exists a solution with broken chiral symmetry for input values of appropriate sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
257
+ page_content=' The SDE extended to complex plane may be useful for investigating a wider class of non-perturbative solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
258
+ page_content=' Although further computational techniques will be required, it is expected that the method presented in this paper can be applied to other models such as non-perturbative QCD in Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
259
+ page_content=' Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
260
+ page_content=' Complex mass and energy In order to solve the SDE in complex energy plane, we need the explicit forms ofcomplex mass and energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
261
+ page_content=' We define the complex mass as M = MR + iMI and the squared of the mass as M2 = (M2)R + i(M2)I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
262
+ page_content=' Here, (M2)R and (M2)I are given by (M2)R = M2 R − M2 I , (M2)I = 2MRMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
263
+ page_content=' The squared energy E2 is defined by E2 = q2 + M2 − iε ≡ (E2)R + i(E2)I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
264
+ page_content=' with (E2)R = q2 + (M2)R, (E2)I = (M2)I − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
265
+ page_content=' On the other hand, using the complex energy E = ER + iEI, (E2)R and (E2)I are also written as (E2)R = E2 R − E2 I , (E2)I = 2EREI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
266
+ page_content=' Therefore the imaginary part of the energy is written as EI = (E2)I 2ER .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
267
+ page_content=' 13 Substituting above equation to (E2)R = E2 R − E2 I , we have a quadratic equation for E2 R as (E2 R)2 − E2 R(E2)R − (E2)2 I /4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
268
+ page_content=' The solution of the equation for E2 R > 0 is given by E2 R = (E2)R + |E2| 2 with |E2| = � [(E2)R]2 + [(E2)I]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
269
+ page_content=' Therefore, we have the solution ER = � (E2)R + |E2| 2 , EI = (E2)I 2ER for ER > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
270
+ page_content=' References 1) D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
271
+ page_content='Dudal,O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
272
+ page_content='Oliveira and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
273
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
274
+ page_content='Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
275
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
276
+ page_content='D89,014010(2014) [arXiv:1310:4069 [hep- lat]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
277
+ page_content=' 2) F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
278
+ page_content='Siringo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
279
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
280
+ page_content='D94,0114036(2016) [arXiv:1605:07357 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
281
+ page_content=' 3) F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
282
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
283
+ page_content='Dyson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
284
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
285
+ page_content='75 (1949) ,1736.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
286
+ page_content=' 4) J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
287
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
288
+ page_content='Schwinger,Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
289
+ page_content='Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
290
+ page_content='Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
291
+ page_content='Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
292
+ page_content='37 (1951),452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
293
+ page_content=' 5) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
294
+ page_content='Strauss, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
295
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
296
+ page_content='Fischer and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
297
+ page_content='Kellermann, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
298
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
299
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
300
+ page_content=' 109 (2012),252001 [arXiv:1208:6239 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
301
+ page_content=' 6) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
302
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
303
+ page_content='Fischer and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
304
+ page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
305
+ page_content='Huber, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
306
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
307
+ page_content=' D102 (2020),094005 [arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
308
+ page_content='11505].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
309
+ page_content=' 7) D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
310
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
311
+ page_content='Gross and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
312
+ page_content='Neveu, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
313
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
314
+ page_content=' D10 (1974),3235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdFKT4oBgHgl3EQfXC6p/content/2301.11793v1.pdf'}
BtAyT4oBgHgl3EQf4PqZ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bf19ba8cfba3cdfc781a5cd6ce955f27f5396cb210b75d496ff4923cd70318
3
+ size 4194349
E9E1T4oBgHgl3EQfqgWQ/content/2301.03344v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e4378bd4e534d78a8ae8900f6fdefc9fead1b3d5d4fbe156285be348db35ba5
3
+ size 18686188
E9E1T4oBgHgl3EQfqgWQ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6fe55497b5c562283ecf96af9cfb3d4ddcba1c661fe28ac2fdb25ad6550ab00
3
+ size 7340077
ENE2T4oBgHgl3EQfogjY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtE1T4oBgHgl3EQf-gZN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c49f26757cf2ef3e8f1093447dd2190a0c1ebb4d9fdd6cec69f8f23ac543791
3
+ size 295836
FNAzT4oBgHgl3EQfUPz_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c40950afa1ed55371ce4bdf565339d4d6002b260a7ccf8290f339ecfb010cd6
3
+ size 189568