jackkuo commited on
Commit
eb43ba1
·
verified ·
1 Parent(s): 7d9263d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +57 -0
  2. 0dFQT4oBgHgl3EQf0Daw/content/2301.13415v1.pdf +3 -0
  3. 0dFQT4oBgHgl3EQf0Daw/vector_store/index.faiss +3 -0
  4. 0dFQT4oBgHgl3EQf0Daw/vector_store/index.pkl +3 -0
  5. 1dAyT4oBgHgl3EQf1fkT/content/2301.00734v1.pdf +3 -0
  6. 1dAyT4oBgHgl3EQf1fkT/vector_store/index.faiss +3 -0
  7. 1dAyT4oBgHgl3EQf1fkT/vector_store/index.pkl +3 -0
  8. 1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf +3 -0
  9. 29E1T4oBgHgl3EQfAQI2/content/2301.02836v1.pdf +3 -0
  10. 29E1T4oBgHgl3EQfAQI2/vector_store/index.faiss +3 -0
  11. 2NE0T4oBgHgl3EQfdwA8/content/2301.02380v1.pdf +3 -0
  12. 2NE0T4oBgHgl3EQfdwA8/vector_store/index.faiss +3 -0
  13. 2NE1T4oBgHgl3EQfSAMg/content/tmp_files/2301.03059v1.pdf.txt +581 -0
  14. 2NE1T4oBgHgl3EQfSAMg/content/tmp_files/load_file.txt +491 -0
  15. 3tAzT4oBgHgl3EQfuf3H/content/2301.01693v1.pdf +3 -0
  16. 3tAzT4oBgHgl3EQfuf3H/vector_store/index.pkl +3 -0
  17. 49E4T4oBgHgl3EQfBAv2/vector_store/index.faiss +3 -0
  18. 5NFKT4oBgHgl3EQf-C45/content/2301.11956v1.pdf +3 -0
  19. 5NFKT4oBgHgl3EQf-C45/vector_store/index.pkl +3 -0
  20. 5dE0T4oBgHgl3EQfegDz/vector_store/index.pkl +3 -0
  21. 5dE1T4oBgHgl3EQfBAJm/content/2301.02846v1.pdf +3 -0
  22. 5tAzT4oBgHgl3EQf9_5e/content/2301.01927v1.pdf +3 -0
  23. 6NE0T4oBgHgl3EQfewDQ/content/2301.02396v1.pdf +3 -0
  24. 6NE0T4oBgHgl3EQfewDQ/vector_store/index.pkl +3 -0
  25. 6NFKT4oBgHgl3EQfTS23/content/2301.11779v1.pdf +3 -0
  26. 6NFKT4oBgHgl3EQfTS23/vector_store/index.faiss +3 -0
  27. 6NFKT4oBgHgl3EQfTS23/vector_store/index.pkl +3 -0
  28. 7tE3T4oBgHgl3EQfqQo3/content/tmp_files/2301.04649v1.pdf.txt +1644 -0
  29. 7tE3T4oBgHgl3EQfqQo3/content/tmp_files/load_file.txt +0 -0
  30. 89FPT4oBgHgl3EQfYjQR/content/tmp_files/2301.13072v1.pdf.txt +763 -0
  31. 89FPT4oBgHgl3EQfYjQR/content/tmp_files/load_file.txt +499 -0
  32. 8dAyT4oBgHgl3EQfc_fQ/content/tmp_files/2301.00295v1.pdf.txt +380 -0
  33. 8dAyT4oBgHgl3EQfc_fQ/content/tmp_files/load_file.txt +271 -0
  34. 8dAyT4oBgHgl3EQfp_jS/content/2301.00536v1.pdf +3 -0
  35. 8dAyT4oBgHgl3EQfp_jS/vector_store/index.pkl +3 -0
  36. 8tE2T4oBgHgl3EQfPwar/vector_store/index.faiss +3 -0
  37. 9NE0T4oBgHgl3EQfwgHr/content/tmp_files/2301.02635v1.pdf.txt +1144 -0
  38. 9NE0T4oBgHgl3EQfwgHr/content/tmp_files/load_file.txt +0 -0
  39. 9dFQT4oBgHgl3EQfJTUp/content/tmp_files/2301.13255v1.pdf.txt +847 -0
  40. 9dFQT4oBgHgl3EQfJTUp/content/tmp_files/load_file.txt +400 -0
  41. AtAzT4oBgHgl3EQfhv1C/vector_store/index.pkl +3 -0
  42. B9FJT4oBgHgl3EQfsy1U/content/2301.11614v1.pdf +3 -0
  43. D9AzT4oBgHgl3EQfGvu-/content/tmp_files/2301.01034v1.pdf.txt +1275 -0
  44. D9AzT4oBgHgl3EQfGvu-/content/tmp_files/load_file.txt +0 -0
  45. DNE4T4oBgHgl3EQfGAw7/content/2301.04890v1.pdf +3 -0
  46. DNE4T4oBgHgl3EQfGAw7/vector_store/index.faiss +3 -0
  47. DNE4T4oBgHgl3EQfGAw7/vector_store/index.pkl +3 -0
  48. DtE2T4oBgHgl3EQf9gmM/content/tmp_files/2301.04229v1.pdf.txt +1373 -0
  49. DtE2T4oBgHgl3EQf9gmM/content/tmp_files/load_file.txt +0 -0
  50. ENE2T4oBgHgl3EQfogjY/content/tmp_files/2301.04020v1.pdf.txt +0 -0
.gitattributes CHANGED
@@ -7782,3 +7782,60 @@ YdFLT4oBgHgl3EQfVC8l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
7782
  R9E3T4oBgHgl3EQfDQnp/content/2301.04286v1.pdf filter=lfs diff=lfs merge=lfs -text
7783
  OdAzT4oBgHgl3EQflP0i/content/2301.01543v1.pdf filter=lfs diff=lfs merge=lfs -text
7784
  bNAzT4oBgHgl3EQfnP3n/content/2301.01579v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7782
  R9E3T4oBgHgl3EQfDQnp/content/2301.04286v1.pdf filter=lfs diff=lfs merge=lfs -text
7783
  OdAzT4oBgHgl3EQflP0i/content/2301.01543v1.pdf filter=lfs diff=lfs merge=lfs -text
7784
  bNAzT4oBgHgl3EQfnP3n/content/2301.01579v1.pdf filter=lfs diff=lfs merge=lfs -text
7785
+ 0dFQT4oBgHgl3EQf0Daw/content/2301.13415v1.pdf filter=lfs diff=lfs merge=lfs -text
7786
+ 1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf filter=lfs diff=lfs merge=lfs -text
7787
+ OdAzT4oBgHgl3EQflP0i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7788
+ 2NE0T4oBgHgl3EQfdwA8/content/2301.02380v1.pdf filter=lfs diff=lfs merge=lfs -text
7789
+ 8dAyT4oBgHgl3EQfp_jS/content/2301.00536v1.pdf filter=lfs diff=lfs merge=lfs -text
7790
+ jNFAT4oBgHgl3EQfaR1d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7791
+ d9E1T4oBgHgl3EQfLgNb/content/2301.02977v1.pdf filter=lfs diff=lfs merge=lfs -text
7792
+ 5NFKT4oBgHgl3EQf-C45/content/2301.11956v1.pdf filter=lfs diff=lfs merge=lfs -text
7793
+ 5tAzT4oBgHgl3EQf9_5e/content/2301.01927v1.pdf filter=lfs diff=lfs merge=lfs -text
7794
+ 5dE1T4oBgHgl3EQfBAJm/content/2301.02846v1.pdf filter=lfs diff=lfs merge=lfs -text
7795
+ DNE4T4oBgHgl3EQfGAw7/content/2301.04890v1.pdf filter=lfs diff=lfs merge=lfs -text
7796
+ X9E1T4oBgHgl3EQfcARq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7797
+ 29E1T4oBgHgl3EQfAQI2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7798
+ B9FJT4oBgHgl3EQfsy1U/content/2301.11614v1.pdf filter=lfs diff=lfs merge=lfs -text
7799
+ TNAzT4oBgHgl3EQfJftl/content/2301.01080v1.pdf filter=lfs diff=lfs merge=lfs -text
7800
+ 49E4T4oBgHgl3EQfBAv2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7801
+ LdE1T4oBgHgl3EQfZAQe/content/2301.03144v1.pdf filter=lfs diff=lfs merge=lfs -text
7802
+ vtAzT4oBgHgl3EQfB_rN/content/2301.00953v1.pdf filter=lfs diff=lfs merge=lfs -text
7803
+ 8tE2T4oBgHgl3EQfPwar/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7804
+ EtAyT4oBgHgl3EQf4_op/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7805
+ KNE3T4oBgHgl3EQfAQkY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7806
+ 0dFQT4oBgHgl3EQf0Daw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7807
+ bNAzT4oBgHgl3EQfnP3n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7808
+ 2NE0T4oBgHgl3EQfdwA8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7809
+ rtE0T4oBgHgl3EQfrQGn/content/2301.02564v1.pdf filter=lfs diff=lfs merge=lfs -text
7810
+ mNE2T4oBgHgl3EQfeQdZ/content/2301.03914v1.pdf filter=lfs diff=lfs merge=lfs -text
7811
+ jNFAT4oBgHgl3EQfaR1d/content/2301.08550v1.pdf filter=lfs diff=lfs merge=lfs -text
7812
+ m9E0T4oBgHgl3EQfpwHn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7813
+ kb_27/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7814
+ nNE1T4oBgHgl3EQfOQP4/content/2301.03014v1.pdf filter=lfs diff=lfs merge=lfs -text
7815
+ m9E_T4oBgHgl3EQf7Ry5/content/2301.08369v1.pdf filter=lfs diff=lfs merge=lfs -text
7816
+ 29E1T4oBgHgl3EQfAQI2/content/2301.02836v1.pdf filter=lfs diff=lfs merge=lfs -text
7817
+ 1dAyT4oBgHgl3EQf1fkT/content/2301.00734v1.pdf filter=lfs diff=lfs merge=lfs -text
7818
+ WtFIT4oBgHgl3EQfiCtg/content/2301.11290v1.pdf filter=lfs diff=lfs merge=lfs -text
7819
+ 1dAyT4oBgHgl3EQf1fkT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7820
+ o9FKT4oBgHgl3EQfGS3Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7821
+ v9FKT4oBgHgl3EQf4i7d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7822
+ PtE3T4oBgHgl3EQfxwuM/content/2301.04714v1.pdf filter=lfs diff=lfs merge=lfs -text
7823
+ 6NFKT4oBgHgl3EQfTS23/content/2301.11779v1.pdf filter=lfs diff=lfs merge=lfs -text
7824
+ WtFIT4oBgHgl3EQfiCtg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7825
+ 6NFKT4oBgHgl3EQfTS23/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7826
+ PtE3T4oBgHgl3EQfxwuM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7827
+ DNE4T4oBgHgl3EQfGAw7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7828
+ GNAzT4oBgHgl3EQfHPvT/content/2301.01043v1.pdf filter=lfs diff=lfs merge=lfs -text
7829
+ Plough[[:space:]]Knowledge[[:space:]]Ocean[[:space:]]Intro/content/北斗知海系统用户指南.pdf filter=lfs diff=lfs merge=lfs -text
7830
+ 6NE0T4oBgHgl3EQfewDQ/content/2301.02396v1.pdf filter=lfs diff=lfs merge=lfs -text
7831
+ ZNFRT4oBgHgl3EQfPjcf/content/2301.13517v1.pdf filter=lfs diff=lfs merge=lfs -text
7832
+ YNE0T4oBgHgl3EQf3wIQ/content/2301.02728v1.pdf filter=lfs diff=lfs merge=lfs -text
7833
+ YNE0T4oBgHgl3EQf3wIQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7834
+ v9FKT4oBgHgl3EQf4i7d/content/2301.11934v1.pdf filter=lfs diff=lfs merge=lfs -text
7835
+ ttAzT4oBgHgl3EQfBfrk/content/2301.00945v1.pdf filter=lfs diff=lfs merge=lfs -text
7836
+ 3tAzT4oBgHgl3EQfuf3H/content/2301.01693v1.pdf filter=lfs diff=lfs merge=lfs -text
7837
+ ztFJT4oBgHgl3EQfjCwq/content/2301.11572v1.pdf filter=lfs diff=lfs merge=lfs -text
7838
+ ZNFRT4oBgHgl3EQfPjcf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7839
+ LNFRT4oBgHgl3EQf1jiU/content/2301.13657v1.pdf filter=lfs diff=lfs merge=lfs -text
7840
+ Plough[[:space:]]Knowledge[[:space:]]Ocean[[:space:]]Intro/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7841
+ m9E_T4oBgHgl3EQf7Ry5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dFQT4oBgHgl3EQf0Daw/content/2301.13415v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:955ef5716a76012e0dd17cb4da62f5701c3509be5d9c8f4866f5f5d92e3780be
3
+ size 685420
0dFQT4oBgHgl3EQf0Daw/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1f5921c9ade8904b85baf248f8b850284b931528c2fd9b02f66e6077f1d5b5a
3
+ size 3473453
0dFQT4oBgHgl3EQf0Daw/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6d94c514263772947439ff7be38357e618fe23756bcc3e65ceec438f97b724
3
+ size 153274
1dAyT4oBgHgl3EQf1fkT/content/2301.00734v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789ddf5df6b9fffcd8fb5ff1c6b5b36a1644f795d770f906371f3987ee42391e
3
+ size 3341053
1dAyT4oBgHgl3EQf1fkT/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d9a9c48aab675b808f9c94fa6c48fe50d8055fec39ec98750a24813e0277d35
3
+ size 4063277
1dAyT4oBgHgl3EQf1fkT/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:518c71f7f6f9305b5159834e05a7574a08e2bfc42a2254805346b6b1e29cfd34
3
+ size 138036
1dE2T4oBgHgl3EQfigf6/content/2301.03960v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6151d09c731dec29a29e78550f2f648d010f28e48684f456e77e5b76df0cfdb0
3
+ size 6048361
29E1T4oBgHgl3EQfAQI2/content/2301.02836v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dfdf001d5b6611ffd732d9e5e862dba8c5bb11e773f0583991336bcd150e505
3
+ size 3265144
29E1T4oBgHgl3EQfAQI2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd60e9699a39d5e98748911aa33a20d5902c1bd95f41ef4d926afbe19e2f4502
3
+ size 4653101
2NE0T4oBgHgl3EQfdwA8/content/2301.02380v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:450912517615b8ae9ce2d3e75386592bb970de22dd21c8aaa42d18d2c15b03d1
3
+ size 13064830
2NE0T4oBgHgl3EQfdwA8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3cbe47fd8fdababc85984fc9ba63542592212da856031cc3dea5d9d0854b17
3
+ size 2097197
2NE1T4oBgHgl3EQfSAMg/content/tmp_files/2301.03059v1.pdf.txt ADDED
@@ -0,0 +1,581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03059v1 [math.CO] 8 Jan 2023
2
+ Eggs in finite projective spaces
3
+ and unitals in translation planes
4
+ Giusy Monzillo∗
5
6
+ Dipartimento di Matematica, Informatica ed Economia
7
+ Universit`a degli Studi della Basilicata
8
+ Viale dell’Ateneo Lucano 10
9
+ 85100 Potenza, Italy
10
+ Tim Penttila
11
12
+ School of Mathematical Sciences
13
+ The University of Adelaide
14
+ Adelaide, South Australia
15
+ 5005 Australia
16
+ Alessandro Siciliano∗
17
18
+ Dipartimento di Matematica, Informatica ed Economia
19
+ Universit`a degli Studi della Basilicata
20
+ Viale dell’Ateneo Lucano 10
21
+ 85100 Potenza, Italy
22
+ Abstract
23
+ Inspired by the connection between ovoids and unitals arising from the
24
+ Buekenhout construction in the Andr´e/Bruck-Bose representation of trans-
25
+ lation planes of dimension at most two over their kernel, and since eggs of
26
+ PG(4m − 1, q), m ≥ 1, are a generalization of ovoids, we explore the rela-
27
+ tion between eggs and unitals in translation planes of higher dimension over
28
+ their kernel. By investigating such a relationship, we construct a unital in the
29
+ Dickson semifield plane of order 310, which is represented in PG(20, 3) by a
30
+ ∗The research was supported by the Italian National Group for Algebraic and Geometric Struc-
31
+ tures and their Applications (GNSAGA-INdAM).
32
+ 1
33
+
34
+ cone whose base is a set of points constructed from the dual of the Penttila-
35
+ Williams egg in PG(19, 3). This unital is not polar; so, up to the knowledge
36
+ of the authors, it seems to be a new unital in such a plane.
37
+ Keywords: Unital, Blocking set, Egg, Projective plane
38
+ 1
39
+ Introduction
40
+ Field reduction has become a theme of finite geometry which turned out very fruit-
41
+ ful in the last few decades. Given a construction of an interesting object from a
42
+ configuration in a vector space of dimension r over a field of order qn, the question
43
+ is raised as to which objects give rise similar configurations in a vector space of
44
+ dimension rn over a field of order q.
45
+ The Buekenhout-Metz construction of unitals in finite translation planes [15, 33]
46
+ (which gives all known unitals in Desarguesian planes) can be recontextualized in
47
+ this fashion, with cones projecting an ovoid as a base in the Andr´e/Bruck-Bose
48
+ representation of such planes.
49
+ It has long been known [14] that unitals are extremal in size among minimal
50
+ blocking sets (at the other end than that most studied - large rather than small). The
51
+ observation of Lunardon [29] at the turn of the millennium that changing the field
52
+ gave access to many more subspaces, some of which were blocking sets, transformed
53
+ the theory of blocking sets in the process giving rise to the idea of linear sets. Thus,
54
+ the idea of Buekenhout and Metz was taken by Sz˝onyi et al. [40] and, later, by
55
+ Mazzocca and Polverino [31] to provide further minimal blocking sets, using cones
56
+ rather than subspaces.
57
+ For the construction by Tits of generalized quadrangles from (ovals and) ovoids,
58
+ the configurations that arise by applying a field reduction are eggs, and the similar
59
+ objects are translation generalized quadrangles. Thus, changing the field for ovoids
60
+ and studying eggs gave the possibility of new translation generalized quadrangles,
61
+ first realized in work of Kantor [25] from three decades past; the result of field
62
+ reduction applied to the concept of an ovoid is an egg.
63
+ Motivated by the relationship between ovoids and unitals via the Buekenhout-
64
+ Metz construction, and since eggs are generalization of ovoids, we explore possible
65
+ relationships between eggs and unitals. Putting all the above ideas together, in this
66
+ paper we construct a unital in the Dickson semifield plane of order 310, which is
67
+ represented in PG(20, 3) by a cone whose base is a set of points constructed from
68
+ the dual of the Penttila-Williams egg in PG(19, 3). This unital does not arise from
69
+ a polarity; so it is a new unital, up to the knowledge of the authors.
70
+ While field reduction is usually thought of in a projective setting, algebraic di-
71
+ mensions are more amenable to an introductory discussion of it, so we will take a
72
+ vector space approach along all the paper.
73
+ 2
74
+
75
+ 2
76
+ Definitions and preliminary results
77
+ A unital in a finite projective plane π of order n2 is a set U of n3 + 1 points such
78
+ that every line of π meets U in 1 or n + 1 points. Therefore, U is equipped with a
79
+ family of subsets, each of size n + 1, such that every pair of distinct points of U is
80
+ contained in exactly one subset of the family; such subsets are usually called blocks,
81
+ and U turns out to be a 2-(n3 + 1, n + 1, 1) design.
82
+ In a computer search, Brouwer [10, 11] found a large number of mutually non-
83
+ isomorphic 2-(28, 4, 1) designs. Only a few of these are embeddable in a projective
84
+ plane of order 9 as unitals. One of the examples has been generalized by Gr¨uning
85
+ [23], who constructed a unital of order q for any odd prime power in both the Hall
86
+ plane and dual Hall plane of order q. An infinite family of non-Buekenhout unitals
87
+ in the Hall planes of order q2 have been constructed in [19]. Other infinite families
88
+ of unitals in various square order planes are known to exist; see e.g. [1], [5], [6], [18],
89
+ [36], [37]. The only known 2-(n3 + 1, n + 1, 1) design with n not a prime power is
90
+ the one found in [4] and [30] where n = 6. For more on 2-(n3 + 1, n + 1, 1) designs
91
+ embeddable as unitals in projective plane, see [8].
92
+ In the Desarguesian projective plane PG(2, q2), a unital can arise from a unitary
93
+ polarity: the points of the unital are the absolute points, and the blocks are the
94
+ intersections of the non-absolute lines of the polarity with U. These unitals are
95
+ called classical or Hermitian unitals. By a result of Seib [39], the absolute points
96
+ of a unitary polarity in any square order projective plane form the point-set of a
97
+ unital. Such unitals are called polar unitals. So, classical unitals of PG(2, q2) are
98
+ examples of polar unitals, and Ganley [21] showed that polar unitals exist in any
99
+ Dickson commutative semifield plane of odd order.
100
+ A finite semifield is a finite set S with two binary operations + and ∗, such that
101
+ (S, +) is an abelian group and (S \ {0}, ∗) is a loop such that both distributive laws
102
+ hold.
103
+ Let π(S) be the point-line geometry whose points are the elements in S × S and
104
+ in {(m) : m ∈ S ∪ {∞}}, and the lines are the sets
105
+ [m, k] = {(y, x) ∈ S × S : m ∗ x + y = k} ∪ {(m)},
106
+ [z] = {(y, z) : y ∈ S} ∪ {(∞)}
107
+ and
108
+ [∞] = {(m) : m ∈ S} ∪ {(∞)}.
109
+ with m, k, z ∈ S, and ∞ a symbol not in S.
110
+ It turns out that π(S) is a translation plane which is called the semifield plane
111
+ coordinatized by S. We refer to [9] and [17] for basic information on semifields and
112
+ translation planes.
113
+ 3
114
+
115
+ For any semifield S, the subset Nl = {a ∈ S : a ∗ (x ∗ y) = (a ∗ x) ∗ y, ∀x, y ∈ S} is
116
+ called the left nucleus of S. Similarly, the middle nucleus Nm and the right nucleus
117
+ Nr are defined. The set K = {a ∈ Nl ∩ Nm ∩ Nr : a ∗ b = b ∗ a, ∀b ∈ S} is called the
118
+ center of S. Each of these four structures is a field, and a finite semifield is a left
119
+ vector space over its left nucleus and a two-sided vector space over its center [17].
120
+ Here, K is isomorphic to the kernel of the translation plane π(S).
121
+ For any element b of the semifield S with center K, the map φb : x ∈ S �→ xb ∈ S is
122
+ a linear map when S is considered over its left nucleus Nl. It turns out that the set
123
+ CS = {φb : b ∈ S} is a K-vector subspace of the vector space of the Nl-linear maps
124
+ of S. Since S is finite, we may assume K = Fq, Nl = Fqn and S is an t-dimensional
125
+ left vector space over Fqn, for some positive integers n and t.
126
+ Under the previous indentification, the set CS satisfies the following properties: (i)
127
+ CS has qnt elements; (ii) CS contains the zero and the identity maps; (iii) A − B is
128
+ non-singular for all distinct A, B ∈ CS. A set of linear maps of V (t, qn) satisfying
129
+ the above properties is called a spread set of V (t, qn).
130
+ A (t−1)-spread of the (r −1)-dimensional projective space PG(r −1, q) over Fq is
131
+ a set S of (t−1)-dimensional projective subspaces such that every point is contained
132
+ in exactly one subspace of S. It is known that a (t−1)-spread of PG(r −1, q) exists
133
+ if and only if t divides r [17].
134
+ Let C be a spread set of V (t, qn) = F t
135
+ qn. In PG(2t − 1, qn) consider the subspaces
136
+ Sτ = {((x1, . . . , xt)τ, x1, . . . , xt) : xi ∈ Fqn},
137
+ for all τ ∈ C. Then, the set S = {Sτ : τ ∈ C}∪{S∞}, with S∞ = {(x1, . . . , xt, 0, . . . , 0) :
138
+ xi ∈ Fqn} forms a (t − 1)-spread of PG(2t − 1, qn).
139
+ Conversely, let S be a (t − 1)-spread of PG(2t − 1, qn). Then, it is possible to
140
+ choose homogeneus coordinates in PG(2t − 1, qn) such that there is a spread set C
141
+ of V (t, qn) from which S is constructed as above. Thanks to the Andr´e/Bruck-Bose
142
+ construction, the spread S defines a translation plane Π(S) [3, 12, 13]. If the set C
143
+ is closed under the sum, then there is a (finite) semifield S that coordinatizes Π(S)
144
+ such that C = CS; the left nucleus of S is Fqn and S can be viewed as a t-dimensional
145
+ left vector space over Fqn [17]. In addition, if Fq is the largest subfield K of Fqn
146
+ such that C is a K-vector subspace of the vector space of the Fqn-linear maps of
147
+ V (t, qn), the center of S is Fq. Therefore, there exists a canonical correspondence
148
+ between translation planes coordinatized over a semifield S with dimension t over its
149
+ left nucleus Fqn and center Fq, and the (t−1)-spreads of PG(2t−1, qn) arising from
150
+ a spread set of V (t, qn), that is closed under the sum. Moreover, it is well-known
151
+ that the resulting plane is Desarguesian if and only if S is a Desarguesian spread
152
+ [13].
153
+ Buekenhout [15], and Metz [33] (by refining Buekenhout’s idea), constructed uni-
154
+ tals in any translation planes with dimension at most two over their kernel by using
155
+ the Andr´e/Bruck-Bose representation of such planes. These unitals are cones of
156
+ 4
157
+
158
+ PG(4, q) projecting an ovoid in a 3-dimensional subspace of PG(4, q) from a point
159
+ at infinity. These unitals are called Buekenhout-Metz unitals. Since classical unitals
160
+ can be obtained in this way, they fall in the class of Buekenhout-Metz unitals which,
161
+ so far, are the only known unitals of PG(2, q2).
162
+ Many other authors have used the above representation of PG(2, qn) in PG(2n, q)
163
+ to study objects in the Desarguesian plane in order to determine whether this higher
164
+ dimensional representation provides additional information about those objects in
165
+ the plane. In particular, the projective plane PG(2, q4), modelled in PG(8, q), has
166
+ been considered in [7] to study the representation of classical unitals, and the rep-
167
+ resentation of PG(2, q2m) in PG(4m, q), for m > 1, have been considered to study
168
+ other geometric objects of the plane; see [31, 32, 38, 40] just to cite some.
169
+ A blocking set in a projective plane π is a set of points such that every line of π
170
+ has a non-empty intersection with the set. A blocking set is said to be minimal if
171
+ through any of its points there is a line of π intersecting it precisely in that point.
172
+ In the paper [14], Bruen and Thas proved that, when the order of the projective
173
+ plane is a square, say n2, then the size of a minimal blocking set is bounded by
174
+ n3 + 1. This size is reached if and only if the minimal blocking set is a unital.
175
+ In [31] the following geometric setting was introduced to construct large minimal
176
+ blocking sets of PG(2, q2m) from cones in its Andr´e/Bruck-Bose representation in
177
+ PG(4m, q). Let z be a fixed element of a (2m−1)-spread S of Σ∞ and V an (m−1)-
178
+ dimensional subspace of z. Let Γ be a (3m−1)-dimensional subspace of Σ∞ disjoint
179
+ from V. For every x ∈ S, x ̸= z, let I(x) be the (2m − 1)-dimensional subspace
180
+ ⟨x, V⟩∩Γ. We denote by I(V) the set of all the subspaces I(x), x ∈ S. Let Γ′ be an
181
+ affine 3m-dimensional subspace of PG(4m, q) through Γ, and denote by F(V) the
182
+ set of all affine 2m-dimensional subspaces of Γ′ containing an element of I(V).
183
+ Let F be a family of 2m-dimensional subspaces of Γ′. An F-blocking set of Γ′ is
184
+ a set B of affine points such that every element of F has a non-empty intersection
185
+ with B. The blocking set B is said to be minimal if through any point of B there is
186
+ an element in F intersecting B precisely in that point.
187
+ By keeping the above geometric setting in mind, the following result, which is a
188
+ sharpening of Corollary 3.3 in [31], is crucial for our succeeding considerations.
189
+ Proposition 2.1. Let B be a set of affine points of Γ′ and
190
+ B∗ =
191
+
192
+ P ∈B
193
+ ⟨V, P⟩ ∪ {z}.
194
+ (1)
195
+ If B is a minimal F(V)-blocking set, then B∗ is a minimal blocking set of size |B∗| =
196
+ qm|B| + 1 in the translation plane Π(S).
197
+ Proof. Construction 2 in [31] works perfectly well under the milder hypothesis that
198
+ S is any (2m − 1)-spread of Σ∞. The details are left to the reader.
199
+ 5
200
+
201
+ By combining the above result of Bruen and Thas with Proposition 2.1, we get
202
+ the following theorem.
203
+ Theorem 2.2. Let B be a minimal F(V)-blocking set of size q2m. Then, the cone
204
+ B∗ defined in Proposition 2.1 is a unital in Π(S).
205
+ If S is a Desarguesian (2m−1)-spread of Σ∞, then there is a unique Desarguesian
206
+ (m−1)-spread, say T , that fills every element of S, i.e., T induces a (m−1)-spread
207
+ in each spread element of S [20]. The following result gives a characterization of
208
+ Buekenhout-Metz unitals as cones in PG(4m, q).
209
+ Proposition 2.3. [31] Let S be a Desarguesian (2m − 1)-spread of Σ∞ and B a
210
+ minimal F(V)-blocking set of size q2m. Then, the cone B∗ is a Buekenhout-Metz
211
+ unital in PG(2, q2m) if and only if V is an element of the spread T .
212
+ 3
213
+ Unitals from eggs
214
+ An egg in PG(4m − 1, q) is a set E of q2m + 1 pairwise disjoint (m − 1)−dimensional
215
+ subspaces such that any three egg elements span a (3m−1)−dimensional subspace.
216
+ When m = 1, this definition recovers indeed the notion of ovoid in PG(3, q). There-
217
+ fore, since the notion of an egg, introduced by J.A. Thas in [41], generalizes that of
218
+ an ovoid, it make sense to investigate whether it is possible to mimic Buekenhout’s
219
+ construction to get unitals in translation planes with dimension over their kernel
220
+ greater than two, by using eggs. Apart from the so-called elementary eggs, which
221
+ are obtained by applying the field reduction to an ovoid in PG(3, qm), there are few
222
+ other known examples of eggs, namely, the Kantor-Knuth eggs, the Cohen-Ganley
223
+ eggs and the (sporadic) Penttila-Williams egg; see [27] for an explicit description of
224
+ these objects.
225
+ Let E be an egg in PG(4m − 1, q). For every egg element E there exists a unique
226
+ (3m − 1)-dimensional subspace, denoted by E∗, containing E and disjoint from any
227
+ other egg element; it is called the tangent space of E at E. Therefore, the egg E
228
+ defines an egg in the dual space of PG(4m − 1, q), called the dual egg of E and
229
+ denoted by ED.
230
+ The following result is a corollary of Theorem 2.2.
231
+ Theorem 3.1. Let E be an egg in PG(4m − 1, q), and E∞ a fixed egg element. Let
232
+ Γ′ be a 3m-dimensional subsubspace of PG(4m − 1, q) containing the tangent space
233
+ E∗
234
+ ∞ at E∞. In Γ′ we consider the sets:
235
+ BE = {E ∩ Γ′ : E ∈ E, E ̸= E∞}
236
+ and
237
+ IE = {E∗ ∩ E∗
238
+ ∞ : E ∈ E, E ̸= E∞}.
239
+ 6
240
+
241
+ Let FE be the family of all affine 2m-dimensional subspaces of Γ′ containing an
242
+ element of IE, and assume that BE is a minimal FE-blocking set.
243
+ Embed Γ′ in PG(4m, q) in such a way that E∗
244
+ ∞ is a subspace of the hyperplane at
245
+ infinity Σ∞ of PG(4m, q), and Γ′ is an affine subspace.
246
+ If there exist a (2m − 1)-spread S of Σ∞ and a (m − 1)-dimensional subspace V
247
+ disjoint from E∗
248
+ ∞ and contained in a spread element z such that IE = I(V), then
249
+ the cone
250
+ B∗ =
251
+
252
+ P ∈BE
253
+ ⟨P, V⟩ ∪ {z}
254
+ is a unital in Π(S).
255
+ Proof. Here, BE is a set of q2m points of Γ′ \ E∗
256
+ ∞, and hence it consists of affine
257
+ points of PG(4m, q). Furthermore, every element in IE is a (2m − 1)-dimensional
258
+ subspace of E∗
259
+ ∞. By Theorem 2.2, if FE coincides with the family F(V) previously
260
+ defined, then B∗ is a unital in the semifield plane Π(S). Since FE consists of all affine
261
+ 2m-dimensional subspaces of Γ′ through an element of IE, we get that FE = F(V)
262
+ if and only if IE = I(V).
263
+ An egg is said to be good at an element E if every (3m−1)-dimensional subspace
264
+ containing E and at least two other egg elements, contains exactly qm + 1 egg
265
+ elements [42].
266
+ Let K be the quadratic cone in PG(3, qm) with equation X0X1 = X2
267
+ 2. A flock of
268
+ K is a set of qm planes partitioning the cone minus its vertex V = ⟨(0, 0, 0, 1)⟩ into
269
+ disjoint conics. In accordance with this choice of coordinates, the planes of a flock
270
+ of K can be written as tX0 + f(t)X1 + g(t)X2 + X3 = 0, for all t ∈ Fqm, for some
271
+ f, g : Fqm → Fqm. We denote this flock by F(f, g). If f and g are linear over a
272
+ subfield of Fqm, then the flock is called a semifield flock. The maximal subfield with
273
+ this property is called the kernel of the flock.
274
+ From now on, we assume that the kernel of a semifield flock F(f, g) is Fq. This
275
+ implies that the f and g are Fq-linearized polynomials, i.e.
276
+ f(t) =
277
+ m−1
278
+
279
+ i=0
280
+ citqi,
281
+ g(t) =
282
+ m−1
283
+
284
+ i=0
285
+ bitqi,
286
+ for some bi, ci ∈ Fqm, i = 0, . . . , m − 1.
287
+ If a basis of Fqm over Fq is fixed, then every r-ple (x1, . . . , xr) ∈ Fr
288
+ qm can be
289
+ viewed as a rm-ple over Fq, which will be denoted by (x1, . . . , xr)q. In the paper
290
+ [27] it was shown that for every semifield flock F(f, g) there corresponds an egg in
291
+ PG(4m − 1, q) whose dual, say E, is good at an element, which can be assumed to
292
+ 7
293
+
294
+ be E∞. Then, the elements and the tangent spaces of E have the following form,
295
+ respectively:
296
+ E(a, b) = {(t, −g(a,b)(t), −at, −bt)q : t ∈ Fqm}, for all a, b ∈ Fqm,
297
+ E∞ = {(0, t, 0, 0)q : t ∈ Fqm},
298
+ E∗(a, b) = {(t, h(a,b)(r, s) + g(a,b)(t), r, s)q : t, r, s ∈ Fqm}, for all a, b ∈ Fqm,
299
+ E∗
300
+ ∞ = {(0, t, r, s)q : t, r, s ∈ Fqm},
301
+ (2)
302
+ with
303
+ g(a,b)(t) = a2t +
304
+ m−1
305
+
306
+ i=0
307
+ (biab + cib2)1/qit1/qi,
308
+ and
309
+ h(a,b)(r, s) = 2ar +
310
+ m−1
311
+
312
+ i=0
313
+ (bi(as + br) + 2cibs)1/qi.
314
+ Because of the expression of the polynomials g(a, b) and h(a, b), such an egg will be
315
+ denoted by E(b, c).
316
+ Theorem 3.2. Let E = E(b, c) be a good egg of PG(4m − 1, q), which is good at
317
+ E∞. Then, the set BE is a minimal FE-blocking set in Γ′ = PG(3m, q) if and only
318
+ if X2 + �m−1
319
+ i=0 (biXY + ciY 2)1/qi + c = 0 has a solution for all c ∈ Fqm.
320
+ Proof. Let Γ′ = {(u, t, r, s)q : u ∈ Fq and r, s, t ∈ Fqm}. It is evident that Γ′ is
321
+ a projective space of dimension 3m over Fq and it contains E∗
322
+ ∞. By taking into
323
+ account the general form of the elements of E = E(b, c), we get
324
+ BE = {⟨(1, −g(a,b)(1), −a, −b)q⟩ : a, b ∈ Fqm}
325
+ and
326
+ IE = {I(a, b) : a, b ∈ Fqm},
327
+ where
328
+ I(a, b) = E∗(a, b) ∩ E∗
329
+ ∞ = {(0, h(a,b)(r, s), r, s)q : r, s ∈ Fqm}.
330
+ (3)
331
+ All the affine 2m-dimensional subspaces of Γ′ through an I(a, b) are determined
332
+ by joining it with an affine point of the affine m-dimensional subspace spanned by
333
+ E∞ and O = ⟨(1, 0, 0, 0, 0)⟩. Therefore, the elements of FE have the form
334
+ F(a, b, c) = {(u, uc + h(a,b)(r, s), r, s)q : u ∈ Fq and r, s ∈ Fqm},
335
+ for all a, b, c ∈ Fqm.
336
+ A point P(x, y) = ⟨(1, −g(x,y)(1), −x, −y)q⟩ ∈ BE lies in F(a, b, c) if and only if
337
+ −g(x,y)(1) = −h(a,b)(x, y) + c
338
+ 8
339
+
340
+ or, equivalently, if and only if (x, y) is a solution of
341
+ X2 +
342
+ m−1
343
+
344
+ i=0
345
+ (biXY + ciY 2)1/qi − 2aX −
346
+ m−1
347
+
348
+ i=0
349
+ (bi(aY + bX) + 2cibY )1/qi + c = 0.
350
+ (4)
351
+ We refer to the polynomial on the left-hand side of the equation as H(a,b,c)(x, y).
352
+ Since E is an egg, for any given a, b ∈ Fqm, the intersection of the tangent space
353
+ E∗(a, b) with Γ′ is the 2m-dimensional subspace F(a, b, c′) ∈ FE, with c′ = g(a,b)(1).
354
+ Therefore, through the point P(a, b) ∈ BE there is the element F(a, b, c′) ∈ FE
355
+ intersecting BE precisely at P(a, b). This implies that BE is a minimal FE-blocking
356
+ set if and only if Eq. (4) has a solution (x, y) ∈ Fqm × Fqm for any given elements
357
+ a, b, c ∈ Fqm.
358
+ From [26, Lemma 1.4], for any a, b ∈ Fqm, the linear collineation
359
+ ψa,b :
360
+ PG(4m − 1, q)
361
+ ���→
362
+ PG(4m − 1, q)
363
+ ⟨(u, t, r, s)q⟩
364
+ �→
365
+ ⟨(u, t + h(a,b)(r, s) − g(a,b)(u), r − ua, s − ub)q⟩
366
+ fixes E∞ pointwise and maps E(a′, b′) to E(a′+a, b′+b). In addition, ψa,b fixes Γ′, and
367
+ hence BE. A straightforward, though tedious, calculation shows that ψa,b acts also on
368
+ the set of tangent spaces by fixing E∗
369
+ ∞ setwise and mapping E∗(a′, b′) to E∗(a+a′, b+
370
+ b′). This implies that ψa,b fixes both IE and FE setwise; in particular, F(a′, b′, c) is
371
+ mapped to F(a + a′, b + b′, c′), with c′ = c − ga,b(1) + h(a′+a,b′+b)(a, b). This means
372
+ that, because of the linearity of the second sum in Eq. (4), H(a′+a,b′+b,c)(x, y) = 0
373
+ has a solution for all c ∈ Fqm if and only if H(a,b,c)(x, y) = 0 has a solution for all
374
+ c ∈ Fqm. Therefore, BE is a minimal FE-blocking set if and only if, for a fixed pair
375
+ (a, b) ∈ Fqm × Fqm, Eq. (4) has at least one solution (x, y) ∈ Fqm × Fqm, for all
376
+ c ∈ Fqm. In particular, we can chose (a, b) = (0, 0) so that Eq. (4) reduces to
377
+ X2 +
378
+ m−1
379
+
380
+ i=0
381
+ (biXY + ciY 2)1/qi + c = 0.
382
+ (5)
383
+ 4
384
+ A new unital in a Dickson commutative semi-
385
+ field plane
386
+ In [35], Penttila and Williams constructed an ovoid of the parabolic quadric Q(4, 35)
387
+ in PG(4, 35), i.e., a set O of 310 + 1 points having exactly one point on each gen-
388
+ erator of the quadric. Moreover, O is a translation ovoid, meaning that the points
389
+ of O can be coordinatized by using functions that are additive over F3. According
390
+ to a construction given in [28], such a translation ovoid corresponds to a semifield
391
+ 9
392
+
393
+ flock of the quadratic cone in PG(3, 35), which, in turn, corresponds to a generalized
394
+ quadrangle with parameters (310, 35), whose point-line dual is a translation gener-
395
+ alized quadrangle. By a result of Payne and Thas [34, 8.7.1], the latter generalized
396
+ quadrangle is isomorphic to T(E) for some egg E in PG(19, 3). By Theorem 3.4 in
397
+ [27], the dual egg of E forms a good egg ED in PG(19, 3). Whence, via the above
398
+ correspondences, the Penttila-Williams ovoid of Q(4, 35) gives rise to a good (dual)
399
+ egg in PG(19, 3). In order to simplify the notation, we will refer to it as E = E(b, c)
400
+ with b = (0, 1, 0, 0, 0), c = (0, 0, 0, −1, 0); see [27].
401
+ According to the expressions of the polynomials g(a,b)(t) and h(a,b)(r, s) in this case,
402
+ the egg elements of E are defined by the polynomials
403
+ g(a,b)(t) = a2t − (b2)32t32 + (ab)34t34
404
+ (6)
405
+ and
406
+ h(a,b)(r, s) = −ar + b32s32 + (br + as)34,
407
+ (7)
408
+ for all a, b ∈ F35.
409
+ Let p be an odd prime and ξ a non-square in Fpm. By [17, p.241], the multiplication
410
+ defined by
411
+ (x, y) ∗ (a, b) = (ax + ξbαyα, bx + ay)
412
+ with α ∈ Aut(Fpm) not the identity, turns F2
413
+ pm into a Dickson commutative semifield
414
+ of order p2m which we denote by D = D(pm, ξ, α). In particular, its middle nucleus
415
+ is Nm = {(a, 0) : a ∈ Fpm}, and its left nucleus is Nl = {(a, 0) : a ∈ Fix(α)},
416
+ coinciding with its center K.
417
+ Now, let p = 3 and m = 5. For any pair (a, b) ∈ F2
418
+ 35, we consider the following
419
+ map
420
+ τ(a,b) :
421
+ (x, y)
422
+ �→
423
+ (bx + ay, −ax + b32y32),
424
+ which defines the subspaces S(a, b) = {((x, y)τ(a,b), x, y)3 : x, y ∈ F35} of PG(19, 3).
425
+ Set S = {S(a, b) : a, b ∈ F35} ∪ {S∞}, where S∞ = {(x, y, 0, 0)3 : x, y ∈ F35}.
426
+ Let ϕ be the linear map ϕ : (x, y) �→ (−y, x). Then, the set {ϕτ(a,b) : a, b ∈ F35}
427
+ is precisely the spread set of F10
428
+ 3 associated with the Dickson commutative semifield
429
+ D = D(35, −1, 32).
430
+ It turns out that S is a 9-spread of Σ∞ = PG(19, 3) and, by [2], the translation
431
+ plane Π(S) is isomorphic to the Dickson commutative semifield plane π(D).
432
+ Let V = {(t, −t34, 0, 0)3 : t ∈ F35}. Then, V is contained in the spread element
433
+ z = S∞ and it intersects trivially the subspace Γ = E∗
434
+ ∞ = {(0, t, r, s)3 : t, r, s ∈ F35}.
435
+ We also have
436
+ ⟨S(a, b), V⟩ = {(br + as + t, −ar + b32s32 − t34, r, s)3 : t, r, s ∈ F35},
437
+ giving
438
+ ⟨S(a, b), V⟩ ∩ Γ = {(0, −ar + b32s32 + (br + as)34, r, s)3 : r, s ∈ F35}
439
+ 10
440
+
441
+ which is precisely the subspace I(a, b) defined by expression (3), with h(a,b)(r, s) as
442
+ in (7).
443
+ Proposition 4.1. The set BE defined by the Penttila-Williams egg E = E(b, c) is a
444
+ minimal F(E)-blocking set.
445
+ Proof. By taking into account Theorem 3.2, BE is a minimal FE-blocking set if and
446
+ only if
447
+ X2 + (XY )34 − (Y 2)32 = −c
448
+ (8)
449
+ has a solution for all c ∈ Fqm.
450
+ We distinguish two cases: −c is a square in Fqm or not. If −c is a square, then
451
+ (±√−c, 0) are solutions of Eq.
452
+ (8); if −c is not a square, then (0, ±
453
+
454
+ c33) are
455
+ solutions of Eq. (8).
456
+ By Theorem 3.1, the cone
457
+ B∗
458
+ E = {⟨(1, c, −g(a,b)(1) − c34, −a, −b)3⟩ : a, b, c ∈ F35} ∪ {S∞},
459
+ with g(a,b)(t) as in (6), is a unital in the translation plane Π(S).
460
+ Consider the collineation of PG(20, 3) defined as ϕ : ⟨(u, v, t, r, s)3⟩ �→ ⟨(u, −t, v, r, s)3⟩.
461
+ Then, Π(S)ϕ represents the Dickson commutative semifield plane π(D). It turns out
462
+ that the set
463
+ U = {(g(a,b)(1) + c34, c, −a, −b) : a, b, c ∈ F35} ∪ {(∞)}
464
+ is a unital in π(D). Note that U cannot be a Buekenhout-Metz unital since π(D) is
465
+ a 10-dimensional translation plane over its kernel F3. On the other hand, as π(D)
466
+ admits unitary polarities [21], U might be a polar unital. The following result shows
467
+ that this is not the case.
468
+ Theorem 4.2. The unital U is not a polar unital in π(D).
469
+ Proof. Since the tangent space at the egg element E(0, 0) is E∗(0, 0), the tangent
470
+ line of Π(S) at the point O = ⟨(1, 0, 0, 0, 0)3⟩ ∈ B∗
471
+ E is the subspace spanned by
472
+ S(0, 0) and O. Then, the tangent line of π(D) at (0, 0) ∈ U is [0, 0].
473
+ From [24, Theorem 2.1], any unitary polarity of π(D) mapping (0, 0) to [0, 0] is
474
+ given by
475
+ ρa :
476
+ (x1, x2, y1, y2)
477
+
478
+ [ax1, −ax2, −y1, y2],
479
+ (m1, m2)
480
+
481
+ (a−1m1, −a−1m2)
482
+ (∞)
483
+
484
+ [∞].
485
+ for some non-zero a ∈ F35.
486
+ The unital U is a polar unital with respect to ρa, for some a ∈ F35, if and only if
487
+ each of its points is an absolute point. Straightforward calculations show that the
488
+ point (1, 1, 0, 0) ∈ U is not incident with ρa(1, 1, 0, 0) = [a, −a, 0, 0] for all non-zero
489
+ a ∈ F35, showing that U is not a polar unital.
490
+ 11
491
+
492
+ References
493
+ [1] V. Abatangelo, B. Larato and L.A. Rosati, Unitals in planes derived from
494
+ Hughes planes, J. Combin. Inform. System Sci. 15 (1990), 151–155.
495
+ [2] A.A. Albert, Finite division algebras and finite planes, Proc. Sympos. Appl.
496
+ Math. 10 (1960), 53–70.
497
+ [3] J. Andr´e, ¨Uber nicht-Desarguessche Ebenen mit transitiver Translationsgruppe,
498
+ Math. Z. 60 (1954), 156–186.
499
+ [4] B. Bagchi and S. Bagchi, Designs from pairs of finite fields, I. A cyclic unital
500
+ U(6) and other regular Steiner 2-designs, J. Combin. Theory Ser. A 52 (1989),
501
+ 51–61.
502
+ [5] A. Barlotti and G. Lunardon, Una classe di unitals nei ∆-piani, Riv. Mat. Univ.
503
+ Parma (4) 5 (1979), 781–785.
504
+ [6] S.G. Barwick, Unitals in the Hall plane, J. Geom. 58 (1997), 26–42.
505
+ [7] S.G. Barwick, L.R.A. Casse and C.T. Quinn, The Andr´e/Bruck and Bose rep-
506
+ resentation in PG(2h, q): unitals and Baer subplanes, Bull. Belg. Math. Soc.
507
+ Simon Stevin 7 (2000), 173–197.
508
+ [8] S. Barwick and G. Ebert, Unitals in projective planes, Springer, New York,
509
+ 2008.
510
+ [9] M. Biliotti, V. Jha and N.L. Johnson, Foundations of Translation Planes, Pure
511
+ and Applied Mathematics, Vol. 243, Marcel Dekker, New York, Basel, 2001.
512
+ [10] A.E. Brouwer, Some unitals on 28 points and their embeddings in projective
513
+ planes of order 9, Geometries and Groups, Springer Lecture Notes in Mathe-
514
+ matics, 893 (1981), 183–188.
515
+ [11] A.E. Brouwer, A unital in the Hughes plane of order nine, Discrete Math. 27
516
+ (1989), 55–56.
517
+ [12] R.H. Bruck and R.C. Bose, The construction of translation planes from projec-
518
+ tive spaces, J. Algebra 1 (1964), 85–102.
519
+ [13] R.H. Bruck and R.C. Bose, Linear representation of projective planes in pro-
520
+ jective spaces, J. Algebra 4 (1966), 117–172.
521
+ [14] A.A. Bruen and J.A. Thas, Blocking sets, Geometriae Dedicata 6 (1977), 193–
522
+ 203.
523
+ [15] F. Buekenhout, Existence of unitals in finite translation planes of order q2 with
524
+ a kernel of order q, Geometriae Dedicata 5 (1976), 189–194.
525
+ 12
526
+
527
+ [16] J. Cannon and C. Playoust, An Introduction to MAGMA, University of Sydney
528
+ Press, 193.
529
+ [17] P. Dembowski, Finite geometries, Springer-Verlag, New York, 1968.
530
+ [18] M. J. de Resmini and N. Hamilton, Hyperovals and unitals in Figueroa planes,
531
+ European J. Combin. 19 (1998), 215–220.
532
+ [19] J. Dover, A family of non-Buekenhout unitals in the Hall planes, in “Mostly
533
+ finite geometries (Iowa City, IA, 1996)”, Lecture Notes in Pure and Appl. Math.
534
+ 190 (1997), 197–205.
535
+ [20] K. Drudge, On the orbits of Singer groups and their subgroups, Electron. J.
536
+ Combin. 9 (2002), 10 pp. (electronic).
537
+ [21] M.J. Ganley, A class of unitary block designs, Math. Z. 128 (1972), 34–42.
538
+ [22] K. Gr¨uning, Das kleinste Ree-Unital, Arch. Math. 46 (1986), 473–480.
539
+ [23] K. Gr¨uning, A class of unitals of order q which can be embedded in two different
540
+ planes of order q2, J. Geom. 29 (1987), 61–77.
541
+ [24] A.M.W. Hui, H.F. Law, Y.K. Tai and P.P.W. Wong, A note on unitary polarities
542
+ in finite Dickson semifield planes, J. Geom. 106 (2015), 175–183.
543
+ [25] W.M. Kantor, Some generalized quadrangles with parameters q2, q, Math. Z.
544
+ 192 (1986), 45–50.
545
+ [26] M. Lavrauw, Characterizations and properties of good eggs in PG(4m − 1, q),
546
+ q odd, Discrete Math. 301 (2005), 106–116.
547
+ [27] M. Lavrauw and T. Penttila, On eggs and translation generalised quadrangles,
548
+ J. Combin. Theory Ser. A 96 (2001), 303–315.
549
+ [28] G. Lunardon, Flocks, ovoids of Q(4, q) and designs, Geom. Dedicata 66 (1997),
550
+ 163–173.
551
+ [29] G. Lunardon, Normal spreads, Geom. Dedicata 75 (1999), 245–261.
552
+ [30] R. Mathon, Constructions for cyclic Steiner 2-designs, Ann. Disc. Math. 34
553
+ (1987), 353–362.
554
+ [31] F. Mazzocca and O. Polverino, Blocking sets in PG(2, qn) from cones of
555
+ PG(2n, q), J. Algebraic Combin. 24 (2006), 61–81.
556
+ [32] F. Mazzocca, O. Polverino and L. Storme, Blocking sets in PG(r, qn), Des.
557
+ Codes Cryptogr. 44 (2007), 97–113.
558
+ [33] R. Metz, On a class of unitals, Geom. Dedicata 8 (1979), 125–126.
559
+ 13
560
+
561
+ [34] S.E Payne and J.A. Thas, Finite generalized quadrangles, Second edition, in:
562
+ EMS Series of Lectures in Mathematics, Z¨urich, 2009.
563
+ [35] T. Penttila and B. Williams, Ovoids in parabolic spaces, Geom. Dedicata, 82
564
+ (2000), 1–19.
565
+ [36] G. Rinaldi, Hyperbolic unitals in the Hall planes, J. Geom. 54 (1995), 148–154.
566
+ [37] L.A. Rosati, Disegni unitari nei piani di Hughes, Geom. Dedicata 27 (1988),
567
+ 295–299.
568
+ [38] S. Rottey,
569
+ J. Sheekey and G. Van de Voorde,
570
+ Subgeometries in the
571
+ Andr´e/Bruck-Bose representation, Finite Fields Appl. 35 (2015), 115–138.
572
+ [39] M. Seib, Unit¨are Polarit¨aten endlicher projektiver Ebenen, Arch. Math. 21
573
+ (1970), 103–112.
574
+ [40] T. Sz˝onyi, A. Cossidente, A. G´acs, C. Mengyn, A. Siciliano and Z. Weiner, On
575
+ large minimal blocking sets in PG(2, q), J. Combin. Des. 13 (2005), 25–41.
576
+ [41] J.A. Thas, Geometric characterization of the [n − 1]-ovaloids of the projective
577
+ space PG(4n − 1, q), Simon Stevin 47 (1974), 97–106.
578
+ [42] J.A. Thas, Generalized quadrangles of order (s, s2), II, J. Combin. Theory Ser.
579
+ A 79 (1997), 223–254.
580
+ 14
581
+
2NE1T4oBgHgl3EQfSAMg/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf,len=490
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
3
+ page_content='03059v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
4
+ page_content='CO] 8 Jan 2023 Eggs in finite projective spaces and unitals in translation planes Giusy Monzillo∗ monzillo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
5
+ page_content='giusy@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
6
+ page_content='com Dipartimento di Matematica, Informatica ed Economia Universit`a degli Studi della Basilicata Viale dell’Ateneo Lucano 10 85100 Potenza, Italy Tim Penttila penttila86@msn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
7
+ page_content='com School of Mathematical Sciences The University of Adelaide Adelaide, South Australia 5005 Australia Alessandro Siciliano∗ alessandro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
8
+ page_content='siciliano@unibas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
9
+ page_content='it Dipartimento di Matematica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
10
+ page_content=' Informatica ed Economia Universit`a degli Studi della Basilicata Viale dell’Ateneo Lucano 10 85100 Potenza,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
11
+ page_content=' Italy Abstract Inspired by the connection between ovoids and unitals arising from the Buekenhout construction in the Andr´e/Bruck-Bose representation of trans- lation planes of dimension at most two over their kernel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
12
+ page_content=' and since eggs of PG(4m − 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
13
+ page_content=' q),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
14
+ page_content=' m ≥ 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
15
+ page_content=' are a generalization of ovoids,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
16
+ page_content=' we explore the rela- tion between eggs and unitals in translation planes of higher dimension over their kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
17
+ page_content=' By investigating such a relationship, we construct a unital in the Dickson semifield plane of order 310, which is represented in PG(20, 3) by a ∗The research was supported by the Italian National Group for Algebraic and Geometric Struc- tures and their Applications (GNSAGA-INdAM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
18
+ page_content=' 1 cone whose base is a set of points constructed from the dual of the Penttila- Williams egg in PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
19
+ page_content=' This unital is not polar;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
20
+ page_content=' so, up to the knowledge of the authors, it seems to be a new unital in such a plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
21
+ page_content=' Keywords: Unital, Blocking set, Egg, Projective plane 1 Introduction Field reduction has become a theme of finite geometry which turned out very fruit- ful in the last few decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
22
+ page_content=' Given a construction of an interesting object from a configuration in a vector space of dimension r over a field of order qn, the question is raised as to which objects give rise similar configurations in a vector space of dimension rn over a field of order q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
23
+ page_content=' The Buekenhout-Metz construction of unitals in finite translation planes [15, 33] (which gives all known unitals in Desarguesian planes) can be recontextualized in this fashion, with cones projecting an ovoid as a base in the Andr´e/Bruck-Bose representation of such planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
24
+ page_content=' It has long been known [14] that unitals are extremal in size among minimal blocking sets (at the other end than that most studied - large rather than small).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
25
+ page_content=' The observation of Lunardon [29] at the turn of the millennium that changing the field gave access to many more subspaces, some of which were blocking sets, transformed the theory of blocking sets in the process giving rise to the idea of linear sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
26
+ page_content=' Thus, the idea of Buekenhout and Metz was taken by Sz˝onyi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
27
+ page_content=' [40] and, later, by Mazzocca and Polverino [31] to provide further minimal blocking sets, using cones rather than subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
28
+ page_content=' For the construction by Tits of generalized quadrangles from (ovals and) ovoids, the configurations that arise by applying a field reduction are eggs, and the similar objects are translation generalized quadrangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
29
+ page_content=' Thus, changing the field for ovoids and studying eggs gave the possibility of new translation generalized quadrangles, first realized in work of Kantor [25] from three decades past;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
30
+ page_content=' the result of field reduction applied to the concept of an ovoid is an egg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
31
+ page_content=' Motivated by the relationship between ovoids and unitals via the Buekenhout- Metz construction, and since eggs are generalization of ovoids, we explore possible relationships between eggs and unitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
32
+ page_content=' Putting all the above ideas together, in this paper we construct a unital in the Dickson semifield plane of order 310, which is represented in PG(20, 3) by a cone whose base is a set of points constructed from the dual of the Penttila-Williams egg in PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
33
+ page_content=' This unital does not arise from a polarity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
34
+ page_content=' so it is a new unital, up to the knowledge of the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
35
+ page_content=' While field reduction is usually thought of in a projective setting, algebraic di- mensions are more amenable to an introductory discussion of it, so we will take a vector space approach along all the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
36
+ page_content=' 2 2 Definitions and preliminary results A unital in a finite projective plane π of order n2 is a set U of n3 + 1 points such that every line of π meets U in 1 or n + 1 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
37
+ page_content=' Therefore, U is equipped with a family of subsets, each of size n + 1, such that every pair of distinct points of U is contained in exactly one subset of the family;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
38
+ page_content=' such subsets are usually called blocks, and U turns out to be a 2-(n3 + 1, n + 1, 1) design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
39
+ page_content=' In a computer search, Brouwer [10, 11] found a large number of mutually non- isomorphic 2-(28, 4, 1) designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
40
+ page_content=' Only a few of these are embeddable in a projective plane of order 9 as unitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
41
+ page_content=' One of the examples has been generalized by Gr¨uning [23], who constructed a unital of order q for any odd prime power in both the Hall plane and dual Hall plane of order q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
42
+ page_content=' An infinite family of non-Buekenhout unitals in the Hall planes of order q2 have been constructed in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
43
+ page_content=' Other infinite families of unitals in various square order planes are known to exist;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
44
+ page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
45
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
46
+ page_content=' [1], [5], [6], [18], [36], [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
47
+ page_content=' The only known 2-(n3 + 1, n + 1, 1) design with n not a prime power is the one found in [4] and [30] where n = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
48
+ page_content=' For more on 2-(n3 + 1, n + 1, 1) designs embeddable as unitals in projective plane, see [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
49
+ page_content=' In the Desarguesian projective plane PG(2, q2), a unital can arise from a unitary polarity: the points of the unital are the absolute points, and the blocks are the intersections of the non-absolute lines of the polarity with U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
50
+ page_content=' These unitals are called classical or Hermitian unitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
51
+ page_content=' By a result of Seib [39], the absolute points of a unitary polarity in any square order projective plane form the point-set of a unital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
52
+ page_content=' Such unitals are called polar unitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
53
+ page_content=' So, classical unitals of PG(2, q2) are examples of polar unitals, and Ganley [21] showed that polar unitals exist in any Dickson commutative semifield plane of odd order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
54
+ page_content=' A finite semifield is a finite set S with two binary operations + and ∗, such that (S, +) is an abelian group and (S \\ {0}, ∗) is a loop such that both distributive laws hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
55
+ page_content=' Let π(S) be the point-line geometry whose points are the elements in S × S and in {(m) : m ∈ S ∪ {∞}}, and the lines are the sets [m, k] = {(y, x) ∈ S × S : m ∗ x + y = k} ∪ {(m)}, [z] = {(y, z) : y ∈ S} ∪ {(∞)} and [∞] = {(m) : m ∈ S} ∪ {(∞)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
56
+ page_content=' with m, k, z ∈ S, and ∞ a symbol not in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
57
+ page_content=' It turns out that π(S) is a translation plane which is called the semifield plane coordinatized by S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
58
+ page_content=' We refer to [9] and [17] for basic information on semifields and translation planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
59
+ page_content=' 3 For any semifield S, the subset Nl = {a ∈ S : a ∗ (x ∗ y) = (a ∗ x) ∗ y, ∀x, y ∈ S} is called the left nucleus of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
60
+ page_content=' Similarly, the middle nucleus Nm and the right nucleus Nr are defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
61
+ page_content=' The set K = {a ∈ Nl ∩ Nm ∩ Nr : a ∗ b = b ∗ a, ∀b ∈ S} is called the center of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
62
+ page_content=' Each of these four structures is a field, and a finite semifield is a left vector space over its left nucleus and a two-sided vector space over its center [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
63
+ page_content=' Here, K is isomorphic to the kernel of the translation plane π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
64
+ page_content=' For any element b of the semifield S with center K, the map φb : x ∈ S �→ xb ∈ S is a linear map when S is considered over its left nucleus Nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
65
+ page_content=' It turns out that the set CS = {φb : b ∈ S} is a K-vector subspace of the vector space of the Nl-linear maps of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
66
+ page_content=' Since S is finite, we may assume K = Fq, Nl = Fqn and S is an t-dimensional left vector space over Fqn, for some positive integers n and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
67
+ page_content=' Under the previous indentification, the set CS satisfies the following properties: (i) CS has qnt elements;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
68
+ page_content=' (ii) CS contains the zero and the identity maps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
69
+ page_content=' (iii) A − B is non-singular for all distinct A, B ∈ CS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
70
+ page_content=' A set of linear maps of V (t, qn) satisfying the above properties is called a spread set of V (t, qn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
71
+ page_content=' A (t−1)-spread of the (r −1)-dimensional projective space PG(r −1, q) over Fq is a set S of (t−1)-dimensional projective subspaces such that every point is contained in exactly one subspace of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
72
+ page_content=' It is known that a (t−1)-spread of PG(r −1, q) exists if and only if t divides r [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
73
+ page_content=' Let C be a spread set of V (t, qn) = F t qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
74
+ page_content=' In PG(2t − 1, qn) consider the subspaces Sτ = {((x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
76
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
77
+ page_content=' , xt)τ, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
78
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
79
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
80
+ page_content=' , xt) : xi ∈ Fqn}, for all τ ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
81
+ page_content=' Then, the set S = {Sτ : τ ∈ C}∪{S∞}, with S∞ = {(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
82
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
84
+ page_content=' , xt, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
85
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
86
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
87
+ page_content=' , 0) : xi ∈ Fqn} forms a (t − 1)-spread of PG(2t − 1, qn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
88
+ page_content=' Conversely, let S be a (t − 1)-spread of PG(2t − 1, qn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
89
+ page_content=' Then, it is possible to choose homogeneus coordinates in PG(2t − 1, qn) such that there is a spread set C of V (t, qn) from which S is constructed as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
90
+ page_content=' Thanks to the Andr´e/Bruck-Bose construction, the spread S defines a translation plane Π(S) [3, 12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
91
+ page_content=' If the set C is closed under the sum, then there is a (finite) semifield S that coordinatizes Π(S) such that C = CS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
92
+ page_content=' the left nucleus of S is Fqn and S can be viewed as a t-dimensional left vector space over Fqn [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
93
+ page_content=' In addition, if Fq is the largest subfield K of Fqn such that C is a K-vector subspace of the vector space of the Fqn-linear maps of V (t, qn), the center of S is Fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
94
+ page_content=' Therefore, there exists a canonical correspondence between translation planes coordinatized over a semifield S with dimension t over its left nucleus Fqn and center Fq, and the (t−1)-spreads of PG(2t−1, qn) arising from a spread set of V (t, qn), that is closed under the sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
95
+ page_content=' Moreover, it is well-known that the resulting plane is Desarguesian if and only if S is a Desarguesian spread [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
96
+ page_content=' Buekenhout [15], and Metz [33] (by refining Buekenhout’s idea), constructed uni- tals in any translation planes with dimension at most two over their kernel by using the Andr´e/Bruck-Bose representation of such planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
97
+ page_content=' These unitals are cones of 4 PG(4, q) projecting an ovoid in a 3-dimensional subspace of PG(4, q) from a point at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
98
+ page_content=' These unitals are called Buekenhout-Metz unitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
99
+ page_content=' Since classical unitals can be obtained in this way, they fall in the class of Buekenhout-Metz unitals which, so far, are the only known unitals of PG(2, q2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
100
+ page_content=' Many other authors have used the above representation of PG(2, qn) in PG(2n, q) to study objects in the Desarguesian plane in order to determine whether this higher dimensional representation provides additional information about those objects in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
101
+ page_content=' In particular, the projective plane PG(2, q4), modelled in PG(8, q), has been considered in [7] to study the representation of classical unitals, and the rep- resentation of PG(2, q2m) in PG(4m, q), for m > 1, have been considered to study other geometric objects of the plane;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
102
+ page_content=' see [31, 32, 38, 40] just to cite some.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
103
+ page_content=' A blocking set in a projective plane π is a set of points such that every line of π has a non-empty intersection with the set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
104
+ page_content=' A blocking set is said to be minimal if through any of its points there is a line of π intersecting it precisely in that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
105
+ page_content=' In the paper [14], Bruen and Thas proved that, when the order of the projective plane is a square, say n2, then the size of a minimal blocking set is bounded by n3 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
106
+ page_content=' This size is reached if and only if the minimal blocking set is a unital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
107
+ page_content=' In [31] the following geometric setting was introduced to construct large minimal blocking sets of PG(2, q2m) from cones in its Andr´e/Bruck-Bose representation in PG(4m, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
108
+ page_content=' Let z be a fixed element of a (2m−1)-spread S of Σ∞ and V an (m−1)- dimensional subspace of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
109
+ page_content=' Let Γ be a (3m−1)-dimensional subspace of Σ∞ disjoint from V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
110
+ page_content=' For every x ∈ S, x ̸= z, let I(x) be the (2m − 1)-dimensional subspace ⟨x, V⟩∩Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
111
+ page_content=' We denote by I(V) the set of all the subspaces I(x), x ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
112
+ page_content=' Let Γ′ be an affine 3m-dimensional subspace of PG(4m, q) through Γ, and denote by F(V) the set of all affine 2m-dimensional subspaces of Γ′ containing an element of I(V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
113
+ page_content=' Let F be a family of 2m-dimensional subspaces of Γ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
114
+ page_content=' An F-blocking set of Γ′ is a set B of affine points such that every element of F has a non-empty intersection with B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
115
+ page_content=' The blocking set B is said to be minimal if through any point of B there is an element in F intersecting B precisely in that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
116
+ page_content=' By keeping the above geometric setting in mind, the following result, which is a sharpening of Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
117
+ page_content='3 in [31], is crucial for our succeeding considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
118
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
119
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
120
+ page_content=' Let B be a set of affine points of Γ′ and B∗ = � P ∈B ⟨V, P⟩ ∪ {z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
121
+ page_content=' (1) If B is a minimal F(V)-blocking set, then B∗ is a minimal blocking set of size |B∗| = qm|B| + 1 in the translation plane Π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
122
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
123
+ page_content=' Construction 2 in [31] works perfectly well under the milder hypothesis that S is any (2m − 1)-spread of Σ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
124
+ page_content=' The details are left to the reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
125
+ page_content=' 5 By combining the above result of Bruen and Thas with Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
126
+ page_content='1, we get the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
127
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
128
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
129
+ page_content=' Let B be a minimal F(V)-blocking set of size q2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
130
+ page_content=' Then, the cone B∗ defined in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
131
+ page_content='1 is a unital in Π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
132
+ page_content=' If S is a Desarguesian (2m−1)-spread of Σ∞, then there is a unique Desarguesian (m−1)-spread, say T , that fills every element of S, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
133
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
134
+ page_content=', T induces a (m−1)-spread in each spread element of S [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
135
+ page_content=' The following result gives a characterization of Buekenhout-Metz unitals as cones in PG(4m, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
136
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
137
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
138
+ page_content=' [31] Let S be a Desarguesian (2m − 1)-spread of Σ∞ and B a minimal F(V)-blocking set of size q2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
139
+ page_content=' Then, the cone B∗ is a Buekenhout-Metz unital in PG(2, q2m) if and only if V is an element of the spread T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
140
+ page_content=' 3 Unitals from eggs An egg in PG(4m − 1, q) is a set E of q2m + 1 pairwise disjoint (m − 1)−dimensional subspaces such that any three egg elements span a (3m−1)−dimensional subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
141
+ page_content=' When m = 1, this definition recovers indeed the notion of ovoid in PG(3, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
142
+ page_content=' There- fore, since the notion of an egg, introduced by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
143
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
144
+ page_content=' Thas in [41], generalizes that of an ovoid, it make sense to investigate whether it is possible to mimic Buekenhout’s construction to get unitals in translation planes with dimension over their kernel greater than two, by using eggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
145
+ page_content=' Apart from the so-called elementary eggs, which are obtained by applying the field reduction to an ovoid in PG(3, qm), there are few other known examples of eggs, namely, the Kantor-Knuth eggs, the Cohen-Ganley eggs and the (sporadic) Penttila-Williams egg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
146
+ page_content=' see [27] for an explicit description of these objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
147
+ page_content=' Let E be an egg in PG(4m − 1, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
148
+ page_content=' For every egg element E there exists a unique (3m − 1)-dimensional subspace, denoted by E∗, containing E and disjoint from any other egg element;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
149
+ page_content=' it is called the tangent space of E at E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
150
+ page_content=' Therefore, the egg E defines an egg in the dual space of PG(4m − 1, q), called the dual egg of E and denoted by ED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
151
+ page_content=' The following result is a corollary of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
152
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
153
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
154
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
155
+ page_content=' Let E be an egg in PG(4m − 1, q), and E∞ a fixed egg element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
156
+ page_content=' Let Γ′ be a 3m-dimensional subsubspace of PG(4m − 1, q) containing the tangent space E∗ ∞ at E∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
157
+ page_content=' In Γ′ we consider the sets: BE = {E ∩ Γ′ : E ∈ E, E ̸= E∞} and IE = {E∗ ∩ E∗ ∞ : E ∈ E, E ̸= E∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
158
+ page_content=' 6 Let FE be the family of all affine 2m-dimensional subspaces of Γ′ containing an element of IE, and assume that BE is a minimal FE-blocking set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
159
+ page_content=' Embed Γ′ in PG(4m, q) in such a way that E∗ ∞ is a subspace of the hyperplane at infinity Σ∞ of PG(4m, q), and Γ′ is an affine subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
160
+ page_content=' If there exist a (2m − 1)-spread S of Σ∞ and a (m − 1)-dimensional subspace V disjoint from E∗ ∞ and contained in a spread element z such that IE = I(V), then the cone B∗ = � P ∈BE ⟨P, V⟩ ∪ {z} is a unital in Π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
161
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
162
+ page_content=' Here, BE is a set of q2m points of Γ′ \\ E∗ ∞, and hence it consists of affine points of PG(4m, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
163
+ page_content=' Furthermore, every element in IE is a (2m − 1)-dimensional subspace of E∗ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
164
+ page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
165
+ page_content='2, if FE coincides with the family F(V) previously defined, then B∗ is a unital in the semifield plane Π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
166
+ page_content=' Since FE consists of all affine 2m-dimensional subspaces of Γ′ through an element of IE, we get that FE = F(V) if and only if IE = I(V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
167
+ page_content=' An egg is said to be good at an element E if every (3m−1)-dimensional subspace containing E and at least two other egg elements, contains exactly qm + 1 egg elements [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
168
+ page_content=' Let K be the quadratic cone in PG(3, qm) with equation X0X1 = X2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
169
+ page_content=' A flock of K is a set of qm planes partitioning the cone minus its vertex V = ⟨(0, 0, 0, 1)⟩ into disjoint conics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
170
+ page_content=' In accordance with this choice of coordinates, the planes of a flock of K can be written as tX0 + f(t)X1 + g(t)X2 + X3 = 0, for all t ∈ Fqm, for some f, g : Fqm → Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
171
+ page_content=' We denote this flock by F(f, g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
172
+ page_content=' If f and g are linear over a subfield of Fqm, then the flock is called a semifield flock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
173
+ page_content=' The maximal subfield with this property is called the kernel of the flock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
174
+ page_content=' From now on, we assume that the kernel of a semifield flock F(f, g) is Fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
175
+ page_content=' This implies that the f and g are Fq-linearized polynomials, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
176
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
177
+ page_content=' f(t) = m−1 � i=0 citqi, g(t) = m−1 � i=0 bitqi, for some bi, ci ∈ Fqm, i = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
178
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
179
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
180
+ page_content=' , m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
181
+ page_content=' If a basis of Fqm over Fq is fixed, then every r-ple (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
182
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
183
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
184
+ page_content=' , xr) ∈ Fr qm can be viewed as a rm-ple over Fq, which will be denoted by (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
187
+ page_content=' , xr)q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
188
+ page_content=' In the paper [27] it was shown that for every semifield flock F(f, g) there corresponds an egg in PG(4m − 1, q) whose dual, say E, is good at an element, which can be assumed to 7 be E∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
189
+ page_content=' Then, the elements and the tangent spaces of E have the following form, respectively: E(a, b) = {(t, −g(a,b)(t), −at, −bt)q : t ∈ Fqm}, for all a, b ∈ Fqm, E∞ = {(0, t, 0, 0)q : t ∈ Fqm}, E∗(a, b) = {(t, h(a,b)(r, s) + g(a,b)(t), r, s)q : t, r, s ∈ Fqm}, for all a, b ∈ Fqm, E∗ ∞ = {(0, t, r, s)q : t, r, s ∈ Fqm}, (2) with g(a,b)(t) = a2t + m−1 � i=0 (biab + cib2)1/qit1/qi, and h(a,b)(r, s) = 2ar + m−1 � i=0 (bi(as + br) + 2cibs)1/qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
190
+ page_content=' Because of the expression of the polynomials g(a, b) and h(a, b), such an egg will be denoted by E(b, c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
191
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
192
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
193
+ page_content=' Let E = E(b, c) be a good egg of PG(4m − 1, q), which is good at E∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
194
+ page_content=' Then, the set BE is a minimal FE-blocking set in Γ′ = PG(3m, q) if and only if X2 + �m−1 i=0 (biXY + ciY 2)1/qi + c = 0 has a solution for all c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
195
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
196
+ page_content=' Let Γ′ = {(u, t, r, s)q : u ∈ Fq and r, s, t ∈ Fqm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
197
+ page_content=' It is evident that Γ′ is a projective space of dimension 3m over Fq and it contains E∗ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
198
+ page_content=' By taking into account the general form of the elements of E = E(b, c), we get BE = {⟨(1, −g(a,b)(1), −a, −b)q⟩ : a, b ∈ Fqm} and IE = {I(a, b) : a, b ∈ Fqm}, where I(a, b) = E∗(a, b) ∩ E∗ ∞ = {(0, h(a,b)(r, s), r, s)q : r, s ∈ Fqm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
199
+ page_content=' (3) All the affine 2m-dimensional subspaces of Γ′ through an I(a, b) are determined by joining it with an affine point of the affine m-dimensional subspace spanned by E∞ and O = ⟨(1, 0, 0, 0, 0)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
200
+ page_content=' Therefore, the elements of FE have the form F(a, b, c) = {(u, uc + h(a,b)(r, s), r, s)q : u ∈ Fq and r, s ∈ Fqm}, for all a, b, c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
201
+ page_content=' A point P(x, y) = ⟨(1, −g(x,y)(1), −x, −y)q⟩ ∈ BE lies in F(a, b, c) if and only if −g(x,y)(1) = −h(a,b)(x, y) + c 8 or, equivalently, if and only if (x, y) is a solution of X2 + m−1 � i=0 (biXY + ciY 2)1/qi − 2aX − m−1 � i=0 (bi(aY + bX) + 2cibY )1/qi + c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
202
+ page_content=' (4) We refer to the polynomial on the left-hand side of the equation as H(a,b,c)(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
203
+ page_content=' Since E is an egg, for any given a, b ∈ Fqm, the intersection of the tangent space E∗(a, b) with Γ′ is the 2m-dimensional subspace F(a, b, c′) ∈ FE, with c′ = g(a,b)(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
204
+ page_content=' Therefore, through the point P(a, b) ∈ BE there is the element F(a, b, c′) ∈ FE intersecting BE precisely at P(a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
205
+ page_content=' This implies that BE is a minimal FE-blocking set if and only if Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
206
+ page_content=' (4) has a solution (x, y) ∈ Fqm × Fqm for any given elements a, b, c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
207
+ page_content=' From [26, Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
208
+ page_content='4], for any a, b ∈ Fqm, the linear collineation ψa,b : PG(4m − 1, q) −→ PG(4m − 1, q) ⟨(u, t, r, s)q⟩ �→ ⟨(u, t + h(a,b)(r, s) − g(a,b)(u), r − ua, s − ub)q⟩ fixes E∞ pointwise and maps E(a′, b′) to E(a′+a, b′+b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
209
+ page_content=' In addition, ψa,b fixes Γ′, and hence BE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
210
+ page_content=' A straightforward, though tedious, calculation shows that ψa,b acts also on the set of tangent spaces by fixing E∗ ∞ setwise and mapping E∗(a′, b′) to E∗(a+a′, b+ b′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
211
+ page_content=' This implies that ψa,b fixes both IE and FE setwise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
212
+ page_content=' in particular, F(a′, b′, c) is mapped to F(a + a′, b + b′, c′), with c′ = c − ga,b(1) + h(a′+a,b′+b)(a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
213
+ page_content=' This means that, because of the linearity of the second sum in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
214
+ page_content=' (4), H(a′+a,b′+b,c)(x, y) = 0 has a solution for all c ∈ Fqm if and only if H(a,b,c)(x, y) = 0 has a solution for all c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
215
+ page_content=' Therefore, BE is a minimal FE-blocking set if and only if, for a fixed pair (a, b) ∈ Fqm × Fqm, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
216
+ page_content=' (4) has at least one solution (x, y) ∈ Fqm × Fqm, for all c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
217
+ page_content=' In particular, we can chose (a, b) = (0, 0) so that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
218
+ page_content=' (4) reduces to X2 + m−1 � i=0 (biXY + ciY 2)1/qi + c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
219
+ page_content=' (5) 4 A new unital in a Dickson commutative semi- field plane In [35], Penttila and Williams constructed an ovoid of the parabolic quadric Q(4, 35) in PG(4, 35), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
220
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
221
+ page_content=', a set O of 310 + 1 points having exactly one point on each gen- erator of the quadric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
222
+ page_content=' Moreover, O is a translation ovoid, meaning that the points of O can be coordinatized by using functions that are additive over F3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
223
+ page_content=' According to a construction given in [28], such a translation ovoid corresponds to a semifield 9 flock of the quadratic cone in PG(3, 35), which, in turn, corresponds to a generalized quadrangle with parameters (310, 35), whose point-line dual is a translation gener- alized quadrangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
224
+ page_content=' By a result of Payne and Thas [34, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
225
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
226
+ page_content='1], the latter generalized quadrangle is isomorphic to T(E) for some egg E in PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
227
+ page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
228
+ page_content='4 in [27], the dual egg of E forms a good egg ED in PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
229
+ page_content=' Whence, via the above correspondences, the Penttila-Williams ovoid of Q(4, 35) gives rise to a good (dual) egg in PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
230
+ page_content=' In order to simplify the notation, we will refer to it as E = E(b, c) with b = (0, 1, 0, 0, 0), c = (0, 0, 0, −1, 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
231
+ page_content=' see [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
232
+ page_content=' According to the expressions of the polynomials g(a,b)(t) and h(a,b)(r, s) in this case, the egg elements of E are defined by the polynomials g(a,b)(t) = a2t − (b2)32t32 + (ab)34t34 (6) and h(a,b)(r, s) = −ar + b32s32 + (br + as)34, (7) for all a, b ∈ F35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
233
+ page_content=' Let p be an odd prime and ξ a non-square in Fpm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
234
+ page_content=' By [17, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
235
+ page_content='241], the multiplication defined by (x, y) ∗ (a, b) = (ax + ξbαyα, bx + ay) with α ∈ Aut(Fpm) not the identity, turns F2 pm into a Dickson commutative semifield of order p2m which we denote by D = D(pm, ξ, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
236
+ page_content=' In particular, its middle nucleus is Nm = {(a, 0) : a ∈ Fpm}, and its left nucleus is Nl = {(a, 0) : a ∈ Fix(α)}, coinciding with its center K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
237
+ page_content=' Now, let p = 3 and m = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
238
+ page_content=' For any pair (a, b) ∈ F2 35, we consider the following map τ(a,b) : (x, y) �→ (bx + ay, −ax + b32y32), which defines the subspaces S(a, b) = {((x, y)τ(a,b), x, y)3 : x, y ∈ F35} of PG(19, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
239
+ page_content=' Set S = {S(a, b) : a, b ∈ F35} ∪ {S∞}, where S∞ = {(x, y, 0, 0)3 : x, y ∈ F35}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
240
+ page_content=' Let ϕ be the linear map ϕ : (x, y) �→ (−y, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
241
+ page_content=' Then, the set {ϕτ(a,b) : a, b ∈ F35} is precisely the spread set of F10 3 associated with the Dickson commutative semifield D = D(35, −1, 32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
242
+ page_content=' It turns out that S is a 9-spread of Σ∞ = PG(19, 3) and, by [2], the translation plane Π(S) is isomorphic to the Dickson commutative semifield plane π(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
243
+ page_content=' Let V = {(t, −t34, 0, 0)3 : t ∈ F35}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
244
+ page_content=' Then, V is contained in the spread element z = S∞ and it intersects trivially the subspace Γ = E∗ ∞ = {(0, t, r, s)3 : t, r, s ∈ F35}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
245
+ page_content=' We also have ⟨S(a, b), V⟩ = {(br + as + t, −ar + b32s32 − t34, r, s)3 : t, r, s ∈ F35}, giving ⟨S(a, b), V⟩ ∩ Γ = {(0, −ar + b32s32 + (br + as)34, r, s)3 : r, s ∈ F35} 10 which is precisely the subspace I(a, b) defined by expression (3), with h(a,b)(r, s) as in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
246
+ page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
247
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
248
+ page_content=' The set BE defined by the Penttila-Williams egg E = E(b, c) is a minimal F(E)-blocking set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
249
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
250
+ page_content=' By taking into account Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
251
+ page_content='2, BE is a minimal FE-blocking set if and only if X2 + (XY )34 − (Y 2)32 = −c (8) has a solution for all c ∈ Fqm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
252
+ page_content=' We distinguish two cases: −c is a square in Fqm or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
253
+ page_content=' If −c is a square, then (±√−c, 0) are solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
254
+ page_content=' (8);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
255
+ page_content=' if −c is not a square, then (0, ± √ c33) are solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
256
+ page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
257
+ page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
258
+ page_content='1, the cone B∗ E = {⟨(1, c, −g(a,b)(1) − c34, −a, −b)3⟩ : a, b, c ∈ F35} ∪ {S∞}, with g(a,b)(t) as in (6), is a unital in the translation plane Π(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
259
+ page_content=' Consider the collineation of PG(20, 3) defined as ϕ : ⟨(u, v, t, r, s)3⟩ �→ ⟨(u, −t, v, r, s)3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
260
+ page_content=' Then, Π(S)ϕ represents the Dickson commutative semifield plane π(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
261
+ page_content=' It turns out that the set U = {(g(a,b)(1) + c34, c, −a, −b) : a, b, c ∈ F35} ∪ {(∞)} is a unital in π(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
262
+ page_content=' Note that U cannot be a Buekenhout-Metz unital since π(D) is a 10-dimensional translation plane over its kernel F3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
263
+ page_content=' On the other hand, as π(D) admits unitary polarities [21], U might be a polar unital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
264
+ page_content=' The following result shows that this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
265
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
266
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
267
+ page_content=' The unital U is not a polar unital in π(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
268
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
269
+ page_content=' Since the tangent space at the egg element E(0, 0) is E∗(0, 0), the tangent line of Π(S) at the point O = ⟨(1, 0, 0, 0, 0)3⟩ ∈ B∗ E is the subspace spanned by S(0, 0) and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
270
+ page_content=' Then, the tangent line of π(D) at (0, 0) ∈ U is [0, 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
271
+ page_content=' From [24, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
272
+ page_content='1], any unitary polarity of π(D) mapping (0, 0) to [0, 0] is given by ρa : (x1, x2, y1, y2) ↔ [ax1, −ax2, −y1, y2], (m1, m2) ↔ (a−1m1, −a−1m2) (∞) ↔ [∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
273
+ page_content=' for some non-zero a ∈ F35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
274
+ page_content=' The unital U is a polar unital with respect to ρa, for some a ∈ F35, if and only if each of its points is an absolute point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
275
+ page_content=' Straightforward calculations show that the point (1, 1, 0, 0) ∈ U is not incident with ρa(1, 1, 0, 0) = [a, −a, 0, 0] for all non-zero a ∈ F35, showing that U is not a polar unital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
276
+ page_content=' 11 References [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
277
+ page_content=' Abatangelo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
278
+ page_content=' Larato and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
279
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
280
+ page_content=' Rosati, Unitals in planes derived from Hughes planes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
281
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
282
+ page_content=' Inform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
283
+ page_content=' System Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
284
+ page_content=' 15 (1990), 151–155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
285
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
286
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
287
+ page_content=' Albert, Finite division algebras and finite planes, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
288
+ page_content=' Sympos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
289
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
290
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
291
+ page_content=' 10 (1960), 53–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
292
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
293
+ page_content=' Andr´e, ¨Uber nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
294
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
295
+ page_content=' 60 (1954), 156–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
296
+ page_content=' [4] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
297
+ page_content=' Bagchi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
298
+ page_content=' Bagchi, Designs from pairs of finite fields, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
299
+ page_content=' A cyclic unital U(6) and other regular Steiner 2-designs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
300
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
301
+ page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
302
+ page_content=' A 52 (1989), 51–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
303
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
304
+ page_content=' Barlotti and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
305
+ page_content=' Lunardon, Una classe di unitals nei ∆-piani, Riv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
306
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
307
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
308
+ page_content=' Parma (4) 5 (1979), 781–785.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
309
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
310
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
311
+ page_content=' Barwick, Unitals in the Hall plane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
312
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
313
+ page_content=' 58 (1997), 26–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
314
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
315
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
316
+ page_content=' Barwick, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
317
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
318
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
319
+ page_content=' Casse and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
320
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
321
+ page_content=' Quinn, The Andr´e/Bruck and Bose rep- resentation in PG(2h, q): unitals and Baer subplanes, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
322
+ page_content=' Belg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
323
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
324
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
325
+ page_content=' Simon Stevin 7 (2000), 173–197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
326
+ page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
327
+ page_content=' Barwick and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
328
+ page_content=' Ebert, Unitals in projective planes, Springer, New York, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
329
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
330
+ page_content=' Biliotti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
331
+ page_content=' Jha and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
332
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
333
+ page_content=' Johnson, Foundations of Translation Planes, Pure and Applied Mathematics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
334
+ page_content=' 243, Marcel Dekker, New York, Basel, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
335
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
336
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
337
+ page_content=' Brouwer, Some unitals on 28 points and their embeddings in projective planes of order 9, Geometries and Groups, Springer Lecture Notes in Mathe- matics, 893 (1981), 183–188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
338
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
339
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
340
+ page_content=' Brouwer, A unital in the Hughes plane of order nine, Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
341
+ page_content=' 27 (1989), 55–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
342
+ page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
343
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
344
+ page_content=' Bruck and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
345
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
346
+ page_content=' Bose, The construction of translation planes from projec- tive spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
347
+ page_content=' Algebra 1 (1964), 85–102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
348
+ page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
349
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
350
+ page_content=' Bruck and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
351
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
352
+ page_content=' Bose, Linear representation of projective planes in pro- jective spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
353
+ page_content=' Algebra 4 (1966), 117–172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
354
+ page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
355
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
356
+ page_content=' Bruen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
357
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
358
+ page_content=' Thas, Blocking sets, Geometriae Dedicata 6 (1977), 193– 203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
359
+ page_content=' [15] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
360
+ page_content=' Buekenhout, Existence of unitals in finite translation planes of order q2 with a kernel of order q, Geometriae Dedicata 5 (1976), 189–194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
361
+ page_content=' 12 [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
362
+ page_content=' Cannon and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
363
+ page_content=' Playoust, An Introduction to MAGMA, University of Sydney Press, 193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
364
+ page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
365
+ page_content=' Dembowski, Finite geometries, Springer-Verlag, New York, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
366
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
367
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
368
+ page_content=' de Resmini and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
369
+ page_content=' Hamilton, Hyperovals and unitals in Figueroa planes, European J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
370
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
371
+ page_content=' 19 (1998), 215–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
372
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
373
+ page_content=' Dover, A family of non-Buekenhout unitals in the Hall planes, in “Mostly finite geometries (Iowa City, IA, 1996)”, Lecture Notes in Pure and Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
374
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
375
+ page_content=' 190 (1997), 197–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
376
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
377
+ page_content=' Drudge, On the orbits of Singer groups and their subgroups, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
378
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
379
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
380
+ page_content=' 9 (2002), 10 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
381
+ page_content=' (electronic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
382
+ page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
383
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
384
+ page_content=' Ganley, A class of unitary block designs, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
385
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
386
+ page_content=' 128 (1972), 34–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
387
+ page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
388
+ page_content=' Gr¨uning, Das kleinste Ree-Unital, Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
389
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
390
+ page_content=' 46 (1986), 473–480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
391
+ page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
392
+ page_content=' Gr¨uning, A class of unitals of order q which can be embedded in two different planes of order q2, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
393
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
394
+ page_content=' 29 (1987), 61–77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
395
+ page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
396
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
397
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
398
+ page_content=' Hui, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
399
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
400
+ page_content=' Law, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
401
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
402
+ page_content=' Tai and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
403
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
404
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
405
+ page_content=' Wong, A note on unitary polarities in finite Dickson semifield planes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
406
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
407
+ page_content=' 106 (2015), 175–183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
408
+ page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
409
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
410
+ page_content=' Kantor, Some generalized quadrangles with parameters q2, q, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
411
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
412
+ page_content=' 192 (1986), 45–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
413
+ page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
414
+ page_content=' Lavrauw, Characterizations and properties of good eggs in PG(4m − 1, q), q odd, Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
415
+ page_content=' 301 (2005), 106–116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
416
+ page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
417
+ page_content=' Lavrauw and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
418
+ page_content=' Penttila, On eggs and translation generalised quadrangles, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
419
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
420
+ page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
421
+ page_content=' A 96 (2001), 303–315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
422
+ page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
423
+ page_content=' Lunardon, Flocks, ovoids of Q(4, q) and designs, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
424
+ page_content=' Dedicata 66 (1997), 163–173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
425
+ page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
426
+ page_content=' Lunardon, Normal spreads, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
427
+ page_content=' Dedicata 75 (1999), 245–261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
428
+ page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
429
+ page_content=' Mathon, Constructions for cyclic Steiner 2-designs, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
430
+ page_content=' Disc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
431
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
432
+ page_content=' 34 (1987), 353–362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
433
+ page_content=' [31] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
434
+ page_content=' Mazzocca and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
435
+ page_content=' Polverino, Blocking sets in PG(2, qn) from cones of PG(2n, q), J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
436
+ page_content=' Algebraic Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
437
+ page_content=' 24 (2006), 61–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
438
+ page_content=' [32] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
439
+ page_content=' Mazzocca, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
440
+ page_content=' Polverino and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
441
+ page_content=' Storme, Blocking sets in PG(r, qn), Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
442
+ page_content=' Codes Cryptogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
443
+ page_content=' 44 (2007), 97–113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
444
+ page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
445
+ page_content=' Metz, On a class of unitals, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
446
+ page_content=' Dedicata 8 (1979), 125–126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
447
+ page_content=' 13 [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
448
+ page_content='E Payne and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
449
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
450
+ page_content=' Thas, Finite generalized quadrangles, Second edition, in: EMS Series of Lectures in Mathematics, Z¨urich, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
451
+ page_content=' [35] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
452
+ page_content=' Penttila and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
453
+ page_content=' Williams, Ovoids in parabolic spaces, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
454
+ page_content=' Dedicata, 82 (2000), 1–19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
455
+ page_content=' [36] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
456
+ page_content=' Rinaldi, Hyperbolic unitals in the Hall planes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
457
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
458
+ page_content=' 54 (1995), 148–154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
459
+ page_content=' [37] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
460
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
461
+ page_content=' Rosati, Disegni unitari nei piani di Hughes, Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
462
+ page_content=' Dedicata 27 (1988), 295–299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
463
+ page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
464
+ page_content=' Rottey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
465
+ page_content=' Sheekey and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
466
+ page_content=' Van de Voorde, Subgeometries in the Andr´e/Bruck-Bose representation, Finite Fields Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
467
+ page_content=' 35 (2015), 115–138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
468
+ page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
469
+ page_content=' Seib, Unit¨are Polarit¨aten endlicher projektiver Ebenen, Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
470
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
471
+ page_content=' 21 (1970), 103–112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
472
+ page_content=' [40] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
473
+ page_content=' Sz˝onyi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
474
+ page_content=' Cossidente, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
475
+ page_content=' G´acs, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
476
+ page_content=' Mengyn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
477
+ page_content=' Siciliano and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
478
+ page_content=' Weiner, On large minimal blocking sets in PG(2, q), J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
479
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
480
+ page_content=' Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
481
+ page_content=' 13 (2005), 25–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
482
+ page_content=' [41] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
483
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
484
+ page_content=' Thas, Geometric characterization of the [n − 1]-ovaloids of the projective space PG(4n − 1, q), Simon Stevin 47 (1974), 97–106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
485
+ page_content=' [42] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
486
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
487
+ page_content=' Thas, Generalized quadrangles of order (s, s2), II, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
488
+ page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
489
+ page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
490
+ page_content=' A 79 (1997), 223–254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
491
+ page_content=' 14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE1T4oBgHgl3EQfSAMg/content/2301.03059v1.pdf'}
3tAzT4oBgHgl3EQfuf3H/content/2301.01693v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec1a47218fed0611463dc6c349e62808c09708cb8b5fe6da99f4aef6413c80aa
3
+ size 426798
3tAzT4oBgHgl3EQfuf3H/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26b9d545aca9de47119a533953dd6d4a31af2854d410ec927aed97c4312c168
3
+ size 102665
49E4T4oBgHgl3EQfBAv2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b4d334996a7ca22e4d9c19c53e8c05fcc43385b3b892bae53796d5865b32410
3
+ size 3276845
5NFKT4oBgHgl3EQf-C45/content/2301.11956v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c64496cc345070c050d021bc0561cb1ac4da9036ed05703d8a53470f4124c2d1
3
+ size 607482
5NFKT4oBgHgl3EQf-C45/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca16430c9e92b4e5ac23af028aef965b82f86d47d994efe735e5b1d85bb7d187
3
+ size 237595
5dE0T4oBgHgl3EQfegDz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8246b0384503c5689734f4314f9021ad5ab9dc75e6156617b4caca92d1090266
3
+ size 214345
5dE1T4oBgHgl3EQfBAJm/content/2301.02846v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e14dcc0243d976bf69fabfdab952f1f11f69d93b4bfc91b4accd1b93001d0c7
3
+ size 2663648
5tAzT4oBgHgl3EQf9_5e/content/2301.01927v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8850f2ef130ecf68869913340bd279d394c2073bcba6bd09cbda75f2af689e49
3
+ size 12143416
6NE0T4oBgHgl3EQfewDQ/content/2301.02396v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5791a0050ca7362f3e19a95f7b815d738fc67a6a2f302a8fed8d0633060d017
3
+ size 1170487
6NE0T4oBgHgl3EQfewDQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d188c8e652dd0f6f5d39de9a5b20a5f4dda3128e1a0232cb4b4d1b9a97ab401
3
+ size 212673
6NFKT4oBgHgl3EQfTS23/content/2301.11779v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:413b14e0a28485130ca8be383a798eae98af773b1266dee6bbd5ac98c0cb73a1
3
+ size 313596
6NFKT4oBgHgl3EQfTS23/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d18498fd861fb326f6618ed9a4d147cc639dbf839dd43d822dcb02ddde98dfd
3
+ size 1179693
6NFKT4oBgHgl3EQfTS23/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb649e130a2c58d2a9bf8961734511c23c8fd7c3a54501a32ed3f7ffbd52b51
3
+ size 46122
7tE3T4oBgHgl3EQfqQo3/content/tmp_files/2301.04649v1.pdf.txt ADDED
@@ -0,0 +1,1644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The alignment of galaxies at the Baryon Acoustic Oscillation scale
2
+ Dennis van Dompseler, Christos Georgiou,∗ and Nora Elisa Chisari†
3
+ Institute for Theoretical Physics, Utrecht University,
4
+ Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
5
+ (Dated: January 12, 2023)
6
+ Massive elliptical galaxies align pointing towards each other in the structure of the Universe. Such
7
+ alignments are well-described at large scales through a linear relation with respect to the tidal field
8
+ of the large-scale structure. At such scales, galaxy alignments are sensitive to the presence of baryon
9
+ acoustic oscillations (BAO). The shape of the BAO feature in galaxy alignment correlations differs
10
+ from the traditional peak in the clustering correlation function. Instead, it appears as a trough
11
+ feature at the BAO scale. In this work, we show that this feature can be explained by a simple
12
+ toy model of tidal fields from a spherical shell of matter. This helps give a physical insight for the
13
+ feature and highlights the need for tailored template-based identification methods for the BAO in
14
+ alignment statistics. We also discuss the impact of projection baselines and photometric redshift
15
+ uncertainties for identifying the BAO in intrinsic alignment measurements.
16
+ I.
17
+ INTRODUCTION
18
+ Baryon acoustic oscillations (BAO, [1]) are sound
19
+ waves supported by the plasma present in the Universe
20
+ before recombination. After the Universe became neu-
21
+ tral, these waves could no longer travel and remained
22
+ frozen at a comoving scale of ∼ 150 Mpc. In the late
23
+ Universe, BAO manifest themselves as a subtle but signif-
24
+ icant percent-level peak in the auto-correlation function
25
+ of galaxies or matter. Because they constitute a standard
26
+ ruler of an absolute distance scale, they are regularly used
27
+ to probe the expansion of the Universe [2].
28
+ Any cosmological observable that correlates with the
29
+ matter field can have a manifestation of BAO. One
30
+ such observable beyond galaxy clustering statistics is the
31
+ alignments of galaxies.
32
+ Galaxies are known to align
33
+ themselves radially towards other galaxies [3], and this
34
+ phenomenon can be described, when the alignment is
35
+ weak, by a proportional response of the projected shape
36
+ of a galaxy to the projected tidal field of matter [4]. This
37
+ model is successful in describing the observed alignments
38
+ of luminous red galaxies at large-scale from wide sur-
39
+ veys [5–9]. Although intrinsic alignments are typically re-
40
+ garded a contaminant to other cosmological observables
41
+ [3, 10–13], there are examples of how they can be used
42
+ for extracting cosmological information [14–18].
43
+ In principle, a detection of BAO could be achieved
44
+ in the correlation function of galaxy alignments around
45
+ other galaxies. In [14], it was shown that such a detection
46
+ was within the reach of existing surveys. For luminous
47
+ galaxies in the Baryon Oscillation Spectroscopic Survey
48
+ (BOSS, [19]), the signal-to-noise ratio (S/N) would be of
49
+ the order of ∼ 2.7. For upcoming data sets such as the
50
+ Dark Energy Spectroscopic Instrument (DESI, [20]), the
51
+ expectation is for this to increase to S/N ∼ 12.
52
+ Searches for BAO in galaxy statistics often adopt
53
+ matched templates [21, 22], decompositions thereof [23,
54
55
56
+ 24] or remove the smooth (no BAO) component [25]. In
57
+ [14], it was noticed that the shape of the BAO differs
58
+ from the traditionally expected ‘peak’ at 150 Mpc. When
59
+ looking at the alignment of galaxies with the matter field,
60
+ it rather appears as a trough at a similar distance, fol-
61
+ lowed by a peak at larger comoving separations. This
62
+ behavior was recently confirmed by [26], who measured
63
+ the alignment of massive (cluster-scale) halos with the
64
+ underlying matter field in the DarkQuest N-body sim-
65
+ ulations [27]. These authors also pointed out a similar
66
+ behaviour for the correlation of halo alignments with the
67
+ velocity field, with the BAO appearing as trough rather
68
+ than a peak.
69
+ In light of possible upcoming detections of this feature,
70
+ we aim here to give an intuitive physical picture of the ori-
71
+ gin of this trough pattern rooted in simple linear physics.
72
+ We show that gravitational tides in and around a spher-
73
+ ical shell of matter display exactly the trough pattern
74
+ and justify its appearance in both matter- and velocity-
75
+ alignment cross-correlations. We also discuss the impact
76
+ of long projection baselines and photometric redshifts for
77
+ identifying the BAO in observational data.
78
+ This work is organised as follows. In Section II, we in-
79
+ troduce the most widely used linear model for the shapes
80
+ of galaxies and halos, we present the equations for cor-
81
+ relations with matter, galaxies and velocity field, we ex-
82
+ plain how we model BAO using two approaches which
83
+ differ in complexity, and how tidal fields are calculated
84
+ for the simple toy model. Section III gives our results
85
+ and we conclude in Section IV.
86
+ In the matter power spectrum, BAOs appear as a se-
87
+ ries of successive peaks or ‘wiggles’ at different wavenum-
88
+ bers.
89
+ In real space, this corresponds to a peak in the
90
+ three-dimensional correlation function of galaxies, at a
91
+ comoving scale of ∼ 150 Mpc [28].
92
+ In this work, we
93
+ model a Universe with and without BAO ‘wiggles’ using
94
+ the analytical approximation of [29] for a cosmology with
95
+ σ8 = 0.8158, h = 0.6774, Ωm = 0.3089, Ωb = 0.0486 and
96
+ ns = 0.9667, consistent with constraints from the Planck
97
+ satellite [30].
98
+ The matter power spectra at z = 0 are
99
+ output by the nbodykit software [31].
100
+ Other cosmo-
101
+ arXiv:2301.04649v1 [astro-ph.CO] 11 Jan 2023
102
+
103
+ 2
104
+ logical quantities were obtained via the Core Cosmology
105
+ Library[32] [33]. In the following sections, we compare
106
+ our predictions for the alignment correlation function for
107
+ both models.
108
+ II.
109
+ MODELLING
110
+ A.
111
+ Linear alignment model
112
+ In the linear alignment model [4], galaxies align their
113
+ observed two-dimensional shapes proportionally to the
114
+ projected tidal field of matter. This is mathematically
115
+ described as:
116
+ (γ+, γ×) = − C1
117
+ 4πG(∂2
118
+ x − ∂2
119
+ y, 2∂x∂y)φp
120
+ (1)
121
+ where C1 is an unknown proportionality constant, i.e.
122
+ the alignment ‘bias’ and φp is the primordial gravita-
123
+ tional potential (i.e.
124
+ at some high redshift when the
125
+ galaxy was formed). This gives a prescription for con-
126
+ necting galaxy shapes to the underlying gravitational po-
127
+ tential field and leaves C1 as a free parameter. As a re-
128
+ sult, galaxy shapes are expected to be correlated with
129
+ any observable that depends on the gravitational poten-
130
+ tial, or the matter field which sources it.
131
+ The linear alignment model is known to provide a
132
+ good description of elliptical galaxies in both simulations
133
+ [34–37] and observations [5–9] and it is widely used in
134
+ cosmological studies which aim to extract information
135
+ from gravitational lensing [e.g. 38–40].
136
+ Here, intrinsic
137
+ alignments act as a contaminant.
138
+ (We will not cover
139
+ blue/spiral galaxies in this work, to which different mod-
140
+ els are thought to apply, namely based on tidal torque
141
+ theory [41–43].)
142
+ In general, the strength (or ‘bias’) of alignment C1 is
143
+ constrained from observations [5–9]. We know from them
144
+ that this constant is generally positive. In this context,
145
+ this means that elliptical galaxies tend to point radi-
146
+ ally towards peaks in the density field.
147
+ [44] proposed
148
+ a method for estimating C1 using the stellar distribution
149
+ function of elliptical galaxies. Using this method, once
150
+ again one expects that C1 > 0. However, the predicted
151
+ alignment seemed to fall short of the observed one. This
152
+ could be a consequence of alignments of galaxies being
153
+ built-up over time, rather than instantaneously reacting
154
+ to the tidal field.
155
+ For our purposes, it suffices to em-
156
+ phasise that the sign of C1 is at least observationally
157
+ constrained for elliptical galaxies that are the subject of
158
+ our work. A completely analogous model and arguments
159
+ would apply for halos as well, where C1 is also known to
160
+ be positive [45].
161
+ The most commonly measured statistic of galaxy in-
162
+ trinsic shapes is the projected correlation function of
163
+ galaxy positions and the + component of the shape,
164
+ wg+(rp), which is a function of the projected comoving
165
+ separation between galaxies. At any given redshift, this
166
+ is given by an integral along separation in comoving ra-
167
+ dial distance (Π) of the three-dimensional correlation of
168
+ positions and shapes, ξg+(rp, Π, z):
169
+ wg+(rp, z) =
170
+ � Πmax
171
+ −Πmax
172
+ dΠ ξg+(rp, Π, z).
173
+ (2)
174
+ Here, ξg+ is defined as:
175
+ 1 + ξg+ = ⟨[1 + δg(x1)]γ+(x2)⟩,
176
+ (3)
177
+ and r = x2 − x1.
178
+ Because galaxy alignments only arise between galaxies
179
+ that are physically close, Πmax is usually restricted to
180
+ scales ≲ 100 h−1Mpc. This justifies assuming a separate
181
+ dependence of ξg+ on Π and redshift.
182
+ In the linear alignment model, ξg+(rp, Π) is given by
183
+ ξg+(rp, Π, z) = bgC1ρcritΩm
184
+ 2π2D(z)
185
+ � ∞
186
+ 0
187
+ dkz
188
+ � ∞
189
+ 0
190
+ dk⊥
191
+ k3
192
+
193
+ k2 P(k, z)J2(k⊥rp) cos(kzΠ)
194
+ (4)
195
+ where D(z) is the growth function, normalized to (z +
196
+ 1)D(z) = 1 during matter domination, P(k, z) is the
197
+ matter power spectrum, ρcrit is the critical density today
198
+ and J2 is the Bessel function of the first kind of order 2.
199
+ This results in a projected correlation function
200
+ wg+(rp, z) = bgC1ρcritΩm
201
+ π2D(z)
202
+ � ∞
203
+ 0
204
+ dkz
205
+ � ∞
206
+ 0
207
+ dk⊥
208
+ k3
209
+
210
+ k2kz
211
+ P(k, z)J2(k⊥rp) sin(kzΠmax)
212
+ (5)
213
+ Notice that when bg = 1, wg+ reduces to the correlation
214
+ between matter and the + component of galaxy shapes,
215
+
216
+ 3
217
+ wm+. For simplicity, we will work with wm+ from here
218
+ on. We also note that in the linear alignment model, wg×
219
+ is expected to be zero, and we do not consider it further
220
+ in this work.
221
+ For comparison, the projected correlation function of
222
+ the matter field, wmm, is given by
223
+ wmm(rp, z) = 1
224
+ π2
225
+ � ∞
226
+ 0
227
+ dkz
228
+ � ∞
229
+ 0
230
+ dk⊥
231
+ k⊥
232
+ kz
233
+ P(k, z)J0(k⊥rp) sin(kzΠmax) .
234
+ (6)
235
+ This model was used in forecasts by [14], where it was
236
+ proposed that a detection of BAO could be achieved in
237
+ the projected alignment correlation function of galaxies.
238
+ It is also commonly used in fits to the data [e.g. 5, 7].
239
+ However, other works adopt larger projections lengths,
240
+ effectively taking Πmax to infinity [e.g. 8].
241
+ The corre-
242
+ sponding projected correlation functions in those cases
243
+ are
244
+ wmm(rp, z) =
245
+ � ∞
246
+ 0
247
+ dk⊥
248
+ 2π k⊥P(k⊥, z)J0(k⊥rp) ,
249
+ (7)
250
+ wm+(rp, z) = ˜C1
251
+ � ∞
252
+ 0
253
+ dk⊥
254
+ 2π k⊥P(k⊥, z)J2(k⊥rp) . (8)
255
+ where ˜C1 = C1ρcritΩm/D(z) for simplicity.
256
+ Eq.
257
+ 8 is
258
+ derived explicitly in the appendix.
259
+ B.
260
+ Shape-shape correlations
261
+ Although more sensitive to shape noise, intrinsic shape
262
+ auto-correlations have been derived in previous work in
263
+ the context of the linear alignment model and also de-
264
+ tected in spectroscopic survey observations [e.g. 5]. The
265
+ projected correlation functions for shape-shape correla-
266
+ tions take the form
267
+ w(++,××)(rp, z) =
268
+ 1
269
+ 2π2
270
+ �C1ρcritΩm
271
+ D(z)
272
+ �2 � ∞
273
+ 0
274
+ dkz
275
+ � ∞
276
+ 0
277
+ dk⊥
278
+ k5
279
+
280
+ k4kz
281
+ P(k, z)[J4(k⊥rp) ± J0(k⊥rp)] sin(kzΠmax).
282
+ (9)
283
+ C.
284
+ Modelling photometric redshifts
285
+ The correlation functions presented in the sections
286
+ above assume precise knowledge of the redshift informa-
287
+ tion of our galaxy samples. This would be the case when
288
+ data are taken from a spectroscopic survey, but such sur-
289
+ veys require a predetermined target selection and long
290
+ integration times which limit the size of galaxy samples
291
+ that can be obtained.
292
+ Photometric surveys can over-
293
+ come this problem at the cost of significantly reduced
294
+ accuracy in the determination of redshift information by
295
+ using band photometry instead of spectra.
296
+ The accuracy of the photometric redshifts depend on a
297
+ number of factors, such as the signal-to-noise of the flux
298
+ measurement of galaxies and the existence of a represen-
299
+ tative calibration data-set. There are several techniques
300
+ that can increase the typical accuracy of photometric
301
+ redshifts. These include mapping of the galaxy red se-
302
+ quence (limited to intrinsically red galaxies) [46, 47], us-
303
+ ing machine learning techniques with representative over-
304
+ lapping spectroscopic samples as training set (limited by
305
+ the training set) [48–50] or using narrow band photome-
306
+ try to resolve more features in a galaxy’s spectral energy
307
+ distribution (which is more observationally costly com-
308
+ pared to broad band photometry) [51, 52]. In light of
309
+ these techniques, it is interesting to investigate how the
310
+ projected correlation functions change when the galaxy
311
+ samples used are obtained through photometric data.
312
+ To compute the projected correlation functions in this
313
+ context, we model the impact of redshift uncertainty fol-
314
+ lowing [48]. The uncertainty is expressed in the proba-
315
+ bility density function p(z|¯z), where z, ¯z is the true and
316
+ observed redshift of a galaxy, respectively. We choose to
317
+ model this with a generalized Lorentzian distribution,
318
+ p(z|¯z) ∝
319
+
320
+ 1 + ∆z2
321
+ 2as2
322
+ �−a
323
+ ,
324
+ (10)
325
+ where ∆z = (z − ¯z)/(1 + z) and a, s are free parame-
326
+ ters. In [53] it was shown that this distribution better
327
+ describes the probability density function compared to
328
+ a Gaussian one, especially the long tails away from the
329
+ mean. We fix a = 2.613 as was found in [53] and vary
330
+ s ∈ {0.0035, 0.015, 0.025} to mimic different photometric
331
+ redshift precision scenarios. The precision is commonly
332
+ expressed in terms of the scaled median absolute devi-
333
+ ation (SMAD) of ∆z, given by ˆσ∆z = k · MAD, where
334
+ k ≈ 1.4826 and p (|∆z| ≤ MAD) = 1/2 (using the fact
335
+ that the median of (10) is at ∆z = 0). The SMAD is
336
+ a way to quantify a standard deviation equivalent in the
337
+ case where the distribution is different than a Gaussian.
338
+ Assuming that the line-of-sight separation between two
339
+ galaxy pairs is small compared to the comoving radial
340
+ distance of their mean redshift, we can express their true
341
+ redshifts z1 + z2 = 2zm as Π ≈ c(z1 − z2)/H(zm). The
342
+
343
+ 4
344
+ matter-matter projected correlation function in the pres-
345
+ ence of redshift uncertainty can be modelled by
346
+ wphot
347
+ mm (rp, zm) =
348
+ � Πmax
349
+ −Πmax
350
+
351
+ � ∞
352
+ 0
353
+ dℓ ℓ
354
+ 2π J0(ℓθ)Cmm(ℓ, ¯z1, ¯z2) ,
355
+ (11)
356
+ where rp ≈ θχ(zm) and Cmm is the matter-matter angu-
357
+ lar power spectrum, computed using p(zm|¯z1,2) for the
358
+ redshift distribution of its tracers.
359
+ In a similar way,
360
+ one can compute the projected matter-shape and shape-
361
+ shape correlation functions, using the matter-intrinsic
362
+ and intrinsic-intrinsic angular power spectra, via
363
+ wphot
364
+ m+ (rp, zm) = −
365
+ � Πmax
366
+ −Πmax
367
+
368
+ � ∞
369
+ 0
370
+ dℓ ℓ
371
+ 2π J2(ℓθ)CmI(ℓ, ¯z1, ¯z2)
372
+ (12)
373
+ and
374
+ wphot
375
+ (++,××)(rp, zm) =
376
+ � Πmax
377
+ −Πmax
378
+
379
+ � ∞
380
+ 0
381
+ dℓ ℓ
382
+ 2π [J4(ℓθ) ± J0(ℓθ)] CII(ℓ, ¯z1, ¯z2) .
383
+ (13)
384
+ D.
385
+ Correlations with the velocity field
386
+ Because intrinsic alignments are correlated with the
387
+ matter field, we also expect them to be correlated with
388
+ the velocity field of the large-scale structure [26].
389
+ On
390
+ linear scales, the velocity field and the matter den-
391
+ sity are related by the continuity equation:
392
+ ∇ · ⃗v =
393
+ −δ (1 + z)/H(z)f(z), where H is the Hubble factor, f =
394
+ d ln D/d ln a is the logarithmic growth rate and ⃗v is the
395
+ irrotational velocity field. This leads to a correlation be-
396
+ tween the divergence of the velocity field and the + com-
397
+ ponent of galaxy shapes. In practice, one expects to actu-
398
+ ally measure the correlation between projected + shapes
399
+ and radial velocities (along the line-of-sight) [54], which
400
+ in Fourier space is vr ∝ (kz/k)δ/k. The wvr+ correlation
401
+ function is thus modelled by
402
+ wvr+(rp, z) = C1ρcritΩm(1 + z)
403
+ π2D(z)H(z)f(z)
404
+ � ∞
405
+ 0
406
+ dkz
407
+ � ∞
408
+ 0
409
+ dk⊥
410
+ k3
411
+
412
+ k4 P(k, z)J2(k⊥rp) sin(kzΠmax).
413
+ (14)
414
+ Since the radial velocity field often requires spectroscopic
415
+ information to be constructed, we do not discuss the
416
+ effect of photometric redshifts on the wvr+ correlation
417
+ function (but see [54] for an alternative approach).
418
+ E.
419
+ Tidal field for a spherical mass distribution
420
+ To give a qualitative explanation of how the BAO fea-
421
+ tures in the wm+ correlation, we recall that the gravita-
422
+ tional potential of a spherical mass distribution is given
423
+ by
424
+ φ(r) = −4πG
425
+ �1
426
+ r
427
+ � r
428
+ 0
429
+ dr1ρ(r1)r2
430
+ 1 +
431
+ � ∞
432
+ r
433
+ dr1ρ(r1)r1
434
+
435
+ .
436
+ (15)
437
+ where ρ(r1) is the density of matter as a function of ra-
438
+ dius.
439
+ For an extended object, the difference between the
440
+ force acting at any point and the force acting at the cen-
441
+ ter of mass is the tidal force: T = F(x) − F(xCM). A
442
+ small displacement from the center of mass gives rise to
443
+ a differential change of the force of dTj = τijdxi, implic-
444
+ itly summing over i and where τij = −∂i∂jφ is the tidal
445
+ tensor. A spherically symmetric gravitational potential
446
+ originates a tidal field given by [55]:
447
+ τrr(r) = −∂2
448
+ rφ(r),
449
+ (16)
450
+ τθθ(r) = τφφ(r) = −∂rφ(r)/r.
451
+ (17)
452
+ The explicit expression in terms of the density profile of
453
+ the object is
454
+ τrr(r) = 4πG
455
+ � 2
456
+ r3
457
+ � r
458
+ 0
459
+ dr1ρ(r1)r2
460
+ 1 − ρ(r)
461
+
462
+ ,
463
+ (18)
464
+ τθθ(r) = τφφ(r) = 4πG
465
+ r3
466
+ � r
467
+ 0
468
+ dr1ρ(r1)r2
469
+ 1,
470
+ (19)
471
+ and this can also be expressed in terms of the mean den-
472
+ sity interior to a given radius, ¯ρ(r).
473
+ For example, as
474
+ τrr(r) = 4πG[2¯ρ(r)/3 − ρ(r)].
475
+ F.
476
+ A simple BAO model
477
+ We model the BAO as a spherical shell of mass MBAO,
478
+ with an inner radius RBAO, width ∆R and uniform den-
479
+ sity ρBAO. We will neglect the smooth extended compo-
480
+ nent that corresponds to the matter distribution inside
481
+ and outside the shell, and focus only on how the tidal
482
+ field changes when the BAO shell is added.
483
+
484
+ 5
485
+ Looking at Figure 1, we first examine the tidal field of
486
+ the mass configuration on the xy plane. This should be
487
+ qualitatively representative of the projection along the
488
+ line of sight, although we will discuss the impact of the
489
+ projection in more detail below. We imagine taking a
490
+ spherical coordinate system where φ = 0 is aligned with
491
+ the projection (z) axis. According to Eq. 1, we would
492
+ then have the change in shapes due to the presence of
493
+ the BAO being γBAO
494
+ +
495
+ = C1[τrr(r) − τθθ(r)]/(4πG).
496
+ The radial and θ components of the tidal field for such
497
+ configuration are
498
+ τrr(r) =
499
+
500
+
501
+
502
+ 0
503
+ r ≤ RBAO
504
+ (I)
505
+ −4πGρBAO[1/3 + 2/3(RBAO/r)3]
506
+ RBAO < r ≤ RBAO + ∆R
507
+ (II)
508
+ 2GMBAO/r3
509
+ r > RBAO + ∆R (III)
510
+ (20)
511
+ τθθ(r) =
512
+
513
+
514
+
515
+ 0
516
+ r ≤ RBAO
517
+ (I)
518
+ 4πGρBAO[1 − (RBAO/r)3]/3
519
+ RBAO < r ≤ RBAO + ∆R
520
+ (II)
521
+ GMBAO/(3r3)
522
+ r > RBAO + ∆R (III)
523
+ (21)
524
+ respectively, where we have identified three regions of
525
+ interest: inside the spherical shell (I), within the shell
526
+ (II) and outside (III). Similarly, τφφ(r) = τθθ(r).
527
+ In addition to this simple model, we also consider a
528
+ slightly more realistic Gaussian form for the density pro-
529
+ file of the shell, with a center at RBAO + ∆R/2 and a
530
+ dispersion σBAO = ∆R/2. We obtain the tidal field in
531
+ this scenario numerically integrating Eqs. 18 and 19. We
532
+ then use the change of shapes (γBAO
533
+ +
534
+ ) to explain devia-
535
+ tions in wmm from wm+ based on the definition given in
536
+ Eq. 2.
537
+ III.
538
+ RESULTS
539
+ Figure 1 illustrates the geometry of the problem.
540
+ Stacking on as many galaxies as possible and measur-
541
+ ing the matter (or galaxy) distribution around them,
542
+ one would find it slightly enhanced at scales equal to
543
+ or smaller than the BAO comoving distance scale due to
544
+ projection over the line-of-sight. The wider the range in
545
+ Π, the higher the dilution of the BAO peak in projection,
546
+ and the further in it will move in rp.
547
+ Figure 2 shows the projected matter correlation func-
548
+ tion (top panel), computed at z = 0, for different val-
549
+ ues of Πmax in a universe with and without wiggles.
550
+ BAO feature as an enhancement of the correlation func-
551
+ tion at a projected comoving separation of approximately
552
+ ∼ 110 h−1 Mpc. Because of projection effects, such a
553
+ distance is slightly reduced compared to the comoving
554
+ distance at which one would find the BAO peak for the
555
+ three-dimensional correlation function of matter.
556
+ The
557
+ larger the projection baseline (Πmax), the further the
558
+ peak moves towards smaller separations.
559
+ In the bottom panel of Figure 2, we show the projected
560
+ alignment correlation function, computed at z = 0, for
561
+ different values of Πmax in a Universe with and without
562
+ wiggles. Compared to wmm in the top panel of Figure 2,
563
+ FIG. 1. A sketch showing the geometry of the problem. Ac-
564
+ cording to observational constraints on the linear alignment
565
+ model, galaxies (orange) align themselves radially towards
566
+ density peaks. These constraints come from integrating the
567
+ three-dimensional correlation function of galaxy positions and
568
+ shapes along a line-of-sight baseline of Πmax (black cylinder),
569
+ typically ≲ RBAO, the BAO scale. The BAO is represented
570
+ as a spherical shell of matter around the center of the poten-
571
+ tial. The reader should interpret that the smooth ‘no wiggles’
572
+ component has been subtracted in this image.
573
+ we see clearly that, at the location of the original BAO
574
+ peak, there is now a trough, followed by a peak at a larger
575
+ distance. This is indeed the feature that was seen in pre-
576
+ vious theoretical predictions and numerical simulations.
577
+ To explain why it differs so from wmm, we make the
578
+ following simplification of the problem: we assume that
579
+
580
+ 4Z
581
+ AR
582
+ BAO
583
+ RBAO
584
+ +max
585
+ p
586
+ -max
587
+ X6
588
+ 60
589
+ 80
590
+ 100
591
+ 120
592
+ 140
593
+ r
594
+ p
595
+ [M c/h]
596
+ −20
597
+ −15
598
+ −10
599
+ −5
600
+ 0
601
+ 5
602
+ 10
603
+ 15
604
+ 20
605
+ r
606
+ p
607
+ w
608
+ mm
609
+ [(M c/h)
610
+ 2
611
+ ]
612
+ Wiggles Π
613
+ max
614
+ =
615
+ 40 M c/h
616
+ No wiggles Π
617
+ max
618
+ =
619
+ 40 M c/h
620
+ Π
621
+ max
622
+ =
623
+ 80 M c/h
624
+ Π
625
+ max
626
+ =
627
+ 200 M c/h
628
+ Π
629
+ max
630
+ =
631
+
632
+ BAO eak
633
+ 60
634
+ 70
635
+ 80
636
+ 90
637
+ 100
638
+ 110
639
+ 120
640
+ 130
641
+ 140
642
+ r
643
+ p
644
+ [Mpc/h]
645
+ 0.1
646
+ 0.2
647
+ 0.3
648
+ w
649
+
650
+ +
651
+ [Mpc/h]
652
+ Wiggles Π
653
+ ax
654
+ =
655
+ 40 Mpc/h
656
+ No wiggles Π
657
+ ax
658
+ =
659
+ 40 Mpc/h
660
+ Π
661
+ ax
662
+ =
663
+ 60 Mpc/h
664
+ Π
665
+ ax
666
+ =
667
+ 80 Mpc/h
668
+ Π
669
+ ax
670
+ =
671
+ 100 Mpc/h
672
+ Π
673
+ ax
674
+ =
675
+ 200 Mpc/h
676
+ Π
677
+ ax
678
+ =
679
+
680
+ BAO peak
681
+ FIG. 2. Projected correlation functions for matter clustering,
682
+ wmm (top) and alignments of galaxies with the matter field,
683
+ wm+ (bottom), projected over different line-of-sight baselines,
684
+ Πmax = [40, 60, 80] h−1 Mpc, for universes with (solid) and
685
+ without (dashed) BAO. The BAO peak scale is indicated as
686
+ a dotted vertical line. This corresponds to a peak in the case
687
+ of wmm and a trough for wm+.
688
+ the BAO is a spherical shell centered at the origin, and
689
+ that we are interested in computing the tides produced
690
+ by this shell in the radial direction: τrr and in the θ
691
+ direction: τθθ, according to Eqs. 20 and 21, respectively.
692
+ This can be combined to predict γBAO
693
+ +
694
+ . Our assumptions
695
+ are justified by our findings in Figure 2, in which we see
696
+ the BAO feature appear as a peak in wmm (top panel).
697
+ γBAO
698
+ +
699
+ is shown in Figure 3.
700
+ This should be inter-
701
+ preted as the change in the intrinsic shapes of elliptical
702
+ galaxies from a universe with BAO to a universe without
703
+ BAO. (For illustration purposes, we adopt here C1 = 1.)
704
+ It is calculated by fixing the outer rim of the shell to
705
+ RBAO + ∆R = 150 Mpc and varying the choice of ∆R.
706
+ The overall mass normalization, MBAO is arbitrary, but
707
+ conserved, while varying ∆R. Consistently with Eq. 20
708
+ we see that as a result of the BAO matter shell, the tidal
709
+ field is unchanged inside the shell (Region I: R < RBAO),
710
+ 60
711
+ 70
712
+ 80
713
+ 90
714
+ 100
715
+ 110
716
+ 120
717
+ 130
718
+ 140
719
+ r [M c/h]
720
+ −3.0
721
+ −2.5
722
+ −2.0
723
+ −1.5
724
+ −1.0
725
+ −0.5
726
+ 0.0
727
+ 0.5
728
+
729
+ rr
730
+ (r)
731
+
732
+ τ
733
+ θθ
734
+ (r)]/(4πG)
735
+ 1e−7
736
+ R
737
+ BAO
738
+ +
739
+ ΔR
740
+ ΔR
741
+ =
742
+ 20 M c
743
+ ΔR
744
+ =
745
+ 30 M c
746
+ ΔR
747
+ =
748
+ 40 M c
749
+ Gaussian
750
+ FIG. 3. γBAO
751
+ +
752
+ given the tidal field (normalized) of a spherical
753
+ mass shell configuration spanning from RBAO to RBAO + ∆R
754
+ and assuming C1 = 1 for illustration purposes. We plot the
755
+ function for different BAO widths: ∆R = [20, 30, 40] Mpc
756
+ in shades of red. In region III, where r > RBAO + ∆R, the
757
+ increase in the tidal field is consistent with the addition of a
758
+ point mass MBAO. In Region II, within the BAO shell, we see
759
+ a suppression of the tidal field compared to the ‘no wiggles’
760
+ case. In Region I, inside the BAO shell, the tidal field remains
761
+ unchanged. We also plot γBAO
762
+ +
763
+ as originated from a spherical
764
+ mass shell with a Gaussian profile centered at RBAO + ∆R/2
765
+ and with a dispersion of ∆R/2 (gray).
766
+ 75
767
+ 80
768
+ 85
769
+ 90
770
+ 95
771
+ 100
772
+ 105
773
+ 110
774
+ 115
775
+ x [Mpc/h]
776
+ −20
777
+ −15
778
+ −10
779
+ −5
780
+ 0
781
+ 5
782
+ 10
783
+ 15
784
+ 20
785
+ y [Mpc/h]
786
+ I
787
+ II
788
+ III
789
+
790
+ g
791
+ FIG. 4. The gravitational acceleration vector, ⃗g from a spheri-
792
+ cal shell of matter. Three regions are indicated: region I inside
793
+ the shell, region II within the shell and region III outside the
794
+ shell. There is no gravity in region I. It builds up in region II
795
+ and is the same as for a point mass with MBAO in region III.
796
+ it decreases within the shell and it increases outside of
797
+ it. The increase is originated by the addition of the mass
798
+ MBAO, compared to the case where this is absent.
799
+ The Gaussian model (gray curve) represents a slightly
800
+ more realistic situation in which the BAO has no sharp
801
+ edge. For this case, we only show one possible scenario
802
+
803
+ 7
804
+ with a dispersion which corresponds to 10 Mpc.
805
+ The
806
+ behaviour of the curve is similar in general to the hard-
807
+ edge model, although γBAO
808
+ +
809
+ transitions from negative to
810
+ positive values at larger separations, above RBAO + ∆R.
811
+ A model galaxy represented by a sphere embedded in
812
+ this tidal field is deformed in the following way. Inside
813
+ the shell, in region I, there is no deformation. Within
814
+ the shell, in region II, the gravitational force increases
815
+ with separation. This can be seen in the two-dimensional
816
+ representation of the gravitational acceleration vector
817
+ (⃗g = −∇φ) shown in Figure 4. The tidal field is thus neg-
818
+ ative in region II and thus compressive along the radial
819
+ direction. Outside the shell, in region III, tidal forces are
820
+ positive and thus disruptive, elongating the galaxy along
821
+ the radial direction. This is due to the gravitational force
822
+ decreasing outside the shell in the radial direction.
823
+ A.
824
+ Velocity-shape alignments
825
+ We also obtained the line-of-sight velocity-intrinsic
826
+ shape projected correlation function, shown in Figure 5.
827
+ This shows very similar BAO behaviour to wm+ in the
828
+ right panel of Figure 2.
829
+ There is trough at the BAO
830
+ scale, followed by an excess at larger scales compared to
831
+ the ‘no wiggles’ case. This is justified by the fact that
832
+ at these scales, the velocity field of the large-scale struc-
833
+ ture follows the linear continuity equation, resulting in
834
+ v(k) ∝ δ(k)/k. It is thus not surprising that the BAO
835
+ would also follow qualitatively the tidal field of the spher-
836
+ ical shell of mass as presented in Figure 3, confirming the
837
+ findings of [26].
838
+ B.
839
+ Shape-shape correlations
840
+ For completion, we also show in Figure 6 the impact
841
+ of the BAO feature in shape-shape correlations. BAO
842
+ appear as a peak in the w++ correlation function rather
843
+ than a trough. The opposite is true for the w×× correla-
844
+ tion.
845
+ C.
846
+ Long projection baselines and photometric
847
+ redshifts
848
+ The bottom panel of Figure 2 presents wm+ integrated
849
+ over an infinite projection baseline. We see that as Πmax
850
+ increases, BAO become progressively smeared. The evo-
851
+ lution of the amplitude of wm+ is monotonic and informa-
852
+ tion progressively saturates as Πmax → ∞. In practice,
853
+ most observational works adopt 60 h−1 Mpc < Πmax <
854
+ 100 h−1 Mpc. The shape of the BAO is preserved with
855
+ increasing Πmax. This is similar in the case of wmm in
856
+ the top panel of Figure 2, though here the correlation
857
+ amplitude does not change monotonically. For all cases,
858
+ we notice the BAO feature (peak or trough depending on
859
+ 60
860
+ 70
861
+ 80
862
+ 90
863
+ 100
864
+ 110
865
+ 120
866
+ 130
867
+ 140
868
+ r
869
+ p
870
+ [Mpc/h]
871
+ 0.04
872
+ 0.05
873
+ 0.06
874
+ 0.07
875
+ 0.08
876
+ 0.09
877
+ 0.10
878
+ 0.11
879
+ w
880
+ v
881
+ r
882
+ +
883
+ [Mpc/h]
884
+ Wiggles Π
885
+ ax
886
+ =
887
+ 40 Mpc/h
888
+ No wiggles Π
889
+ ax
890
+ =
891
+ 40 Mpc/h
892
+ Π
893
+ ax
894
+ =
895
+ 60 Mpc/h
896
+ Π
897
+ ax
898
+ =
899
+ 80 Mpc/h
900
+ BAO peak
901
+ FIG. 5.
902
+ Projected correlation function for line-of-sight
903
+ velocity-alignment statistics, wvr+, projected over different
904
+ line-of-sight baselines, Πmax = [40, 60, 80] h−1 Mpc, for uni-
905
+ verses with (solid) and without (dashed) BAO. The BAO peak
906
+ scale is indicated as a dotted vertical line. This corresponds
907
+ to a trough in wvr+.
908
+ the fields considered) move inwards as a consequence of
909
+ the increased projection length.
910
+ Next, we address the impact of redshift uncertainty,
911
+ such as in the case of photometrically obtained red-
912
+ shift information (photo-z), on the projected correla-
913
+ tion functions.
914
+ We choose three different uncertainty
915
+ scenarios: redshifts obtain by narrow-band photometry
916
+ with ˆσ∆z ∼ 0.004 [52], redshifts obtained over a bright
917
+ galaxy sample or using the galaxy red sequence with
918
+ ˆσ∆z ∼ 0.018 [46, 47, 49] and redshifts obtained from an
919
+ optimized gold sample from large photometric surveys
920
+ with ˆσ∆z ∼ 0.03 [50, 56]. The last value is also equal
921
+ to requirements in the uncertainty of the photo-z scat-
922
+ ter for next generation photometric surveys, such as the
923
+ Vera Rubin Observatory LSST [57].
924
+ Figure 7 shows the projected correlation functions
925
+ wmm, wm+ and w++ computed at z = 0.2, in a universe
926
+ with and without BAO, for the three different redshift
927
+ uncertainty scenarios. We see that, as the uncertainty
928
+ gets larger, the BAO feature is less pronounced for all
929
+ three functions.
930
+ The behaviour of the clustering and
931
+ alignment signals are similar to the case with accurate,
932
+ spectroscopic redshifts (spec-z).
933
+ It is also interesting to compare the projected corre-
934
+ lation functions in the case of no redshift uncertainty
935
+ and an infinite Πmax to functions with modelled redshift
936
+ uncertainty. We show this in Figure 8 where the photo-
937
+ z signal has ˆσ∆z ∼ 0.018. The signal obtained through
938
+ photo-z’s is closer to zero in both the clustering and align-
939
+ ment correlation. Since the clustering signal crosses zero
940
+ at around 110 Mpc/h, the photometric clustering signal
941
+ appears simply flatter. In the case of matter-shape cor-
942
+ relations, the photo-z signal is about a factor of 2 smaller
943
+ than the spec-z.
944
+
945
+ 8
946
+ 60
947
+ 70
948
+ 80
949
+ 90
950
+ 100
951
+ 110
952
+ 120
953
+ 130
954
+ 140
955
+ r
956
+ p
957
+ [Mpc/h]
958
+ 0.005
959
+ 0.010
960
+ 0.015
961
+ 0.020
962
+ 0.025
963
+ 0.030
964
+ 0.035
965
+ w
966
+ +
967
+ +
968
+ [Mpc/h]
969
+ Wiggles Π
970
+ ax
971
+ =
972
+ 40 Mpc/h
973
+ No wiggles Π
974
+ ax
975
+ =
976
+ 40 Mpc/h
977
+ Π
978
+ ax
979
+ =
980
+ 60 Mpc/h
981
+ Π
982
+ ax
983
+ =
984
+ 80 Mpc/h
985
+ BAO peak
986
+ 60
987
+ 70
988
+ 80
989
+ 90
990
+ 100
991
+ 110
992
+ 120
993
+ 130
994
+ 140
995
+ r
996
+ p
997
+ [Mpc/h]
998
+ 0.005
999
+ 0.010
1000
+ 0.015
1001
+ 0.020
1002
+ 0.025
1003
+ 0.030
1004
+ 0.035
1005
+ w
1006
+ ×
1007
+ ×
1008
+ [Mpc/h]
1009
+ FIG. 6. Projected shape-shape correlation functions for ++
1010
+ (top) and ×× (bottom), projected over different line-of-sight
1011
+ baselines, Πmax = [40, 60, 80] h−1 Mpc, for universes with
1012
+ (solid) and without (dashed) BAO. The BAO peak scale is
1013
+ indicated as a dotted vertical line.
1014
+ IV.
1015
+ CONCLUSION
1016
+ While BAO appear as a peak in the matter field pro-
1017
+ jected auto-correlation, in the correlation of matter with
1018
+ intrinsic galaxy shapes, the pattern is replaced by a
1019
+ trough at the same scale, followed by an excess at larger
1020
+ separations. We showed that this behavior is consistent
1021
+ with the response of galaxy shapes to the linear tidal
1022
+ field represented by a shell of matter with radius simi-
1023
+ lar to the location of the BAO peak. A similar behavior
1024
+ is observed for the correlation between intrinsic shapes
1025
+ and radial velocities. Our work highlights the need for
1026
+ dedicated templates for the BAO in such statistic, if a
1027
+ detection is to be attempted.
1028
+ This is, in fact, not far
1029
+ from the reach of current surveys [14].
1030
+ Progressively increasing projection baselines for the
1031
+ correlation function results in a smearing of the BAO
1032
+ peak. In the case of redshift uncertainty, such as for a
1033
+ sample where the redshift was obtained through photom-
1034
+ 60
1035
+ 70
1036
+ 80
1037
+ 90
1038
+ 100
1039
+ 110
1040
+ 120
1041
+ 130
1042
+ 140
1043
+ rp [Mpc/h]
1044
+ 5
1045
+ 0
1046
+ 5
1047
+ 10
1048
+ rp wmm [Mpc/h]2
1049
+ z = 0.2
1050
+ Wiggles,
1051
+ z = 0.004
1052
+ No wiggles,
1053
+ z = 0.004
1054
+ z = 0.018
1055
+ z = 0.030
1056
+ BAO peak
1057
+ 60
1058
+ 70
1059
+ 80
1060
+ 90
1061
+ 100
1062
+ 110
1063
+ 120
1064
+ 130
1065
+ 140
1066
+ rp [Mpc/h]
1067
+ 6
1068
+ 7
1069
+ 8
1070
+ 9
1071
+ rp wm + [Mpc/h]2
1072
+ 60
1073
+ 70
1074
+ 80
1075
+ 90
1076
+ 100 110 120 130 140
1077
+ rp [Mpc/h]
1078
+ 1400
1079
+ 1600
1080
+ 1800
1081
+ 2000
1082
+ 2200
1083
+ 2400
1084
+ (10
1085
+ 3) rp w + + [Mpc/h]2
1086
+ FIG. 7.
1087
+ Projected correlation functions for matter-matter
1088
+ (top), matter-shape (middle) and shape-shape (bottom) cor-
1089
+ relations computed in the case of redshift uncertainties, quan-
1090
+ tified by ˆσ∆z = [0.004, 0.018, 0.3], for universes with (solid)
1091
+ and without (dashed) BAO. The BAO peak scale is indicated
1092
+ as a dotted vertical line.
1093
+ etry, two effects take place in the projected correlation
1094
+ functions.
1095
+ Firstly, the correlation function is closer to
1096
+ zero, meaning the signal is lower. Note, however, that
1097
+ typically large photometric samples are easier to obtain
1098
+ compared to spectroscopic ones. The second effect is that
1099
+ the BAO feature is washed out by the redshift uncer-
1100
+ tainty. The higher the uncertainty, the less pronounced
1101
+ the BAO feature will be, across all correlation functions.
1102
+
1103
+ 9
1104
+ 60
1105
+ 70
1106
+ 80
1107
+ 90
1108
+ 100
1109
+ 110
1110
+ 120
1111
+ 130
1112
+ 140
1113
+ rp [Mpc/h]
1114
+ 10
1115
+ 5
1116
+ 0
1117
+ 5
1118
+ 10
1119
+ 15
1120
+ rp wmm [Mpc/h]2
1121
+ z = 0.2
1122
+ Wiggles, spec-z
1123
+ No wiggles, spec-z
1124
+ Photo-z
1125
+ BAO peak
1126
+ 60
1127
+ 70
1128
+ 80
1129
+ 90
1130
+ 100
1131
+ 110
1132
+ 120
1133
+ 130
1134
+ 140
1135
+ rp [Mpc/h]
1136
+ 6
1137
+ 8
1138
+ 10
1139
+ 12
1140
+ 14
1141
+ 16
1142
+ 18
1143
+ rp wm + [Mpc/h]2
1144
+ FIG. 8.
1145
+ Projected correlation functions for matter-matter
1146
+ (top) and matter-shape (bottom) correlations computed in
1147
+ the case of accurate, spectroscopic (grey) and photometric
1148
+ (maroon) redshift information, for universes with (solid) and
1149
+ without (dashed) BAO. The BAO peak scale is indicated as
1150
+ a dotted vertical line.
1151
+ ACKNOWLEDGMENTS
1152
+ This publication is part of the project “A rising
1153
+ tide:
1154
+ Galaxy intrinsic alignments as a new probe of
1155
+ cosmology and galaxy evolution” (with project number
1156
+ VI.Vidi.203.011) of the Talent programme Vidi which is
1157
+ (partly) financed by the Dutch Research Council (NWO).
1158
+ This work is also part of the Delta ITP consortium, a
1159
+ program of the Netherlands Organisation for Scientific
1160
+ Research (NWO) that is funded by the Dutch Ministry
1161
+ of Education, Culture and Science (OCW).
1162
+ Appendix A: Limber approximation
1163
+ In this appendix we explicitly show the derivation of Eq. 8 by making use of the Limber approximation [58]. For
1164
+ completeness, we will consider the g+ correlation instead of m+ and we will explicitly model the window functions
1165
+ for the galaxy populations used to trace the density and shape fields. These will be labelled qg(χ) = dNg/dχ and
1166
+ qγ(χ) = dNγ/dχ for number and shape tracers, respectively, and where χ is the comoving line-of-sight distance.
1167
+ First, we establish that our goal is to calculate Eq. 2 to the case where Πmax → ∞:
1168
+ wg+(rp) =
1169
+
1170
+ dχ qg(χ)
1171
+
1172
+ dχ′ qγ(χ′)⟨δ(⃗xp, χ)γ+(⃗x′
1173
+ p, χ′)⟩.
1174
+ (A1)
1175
+ The Limber approximation [58] consists of assuming that the galaxy positions and the intrinsic + component of
1176
+ the shape field are uncorrelated unless they are evaluated at the same redshift or line-of-sight distance. In other
1177
+ words, there is a coherence scale [59] over which the correlation is non-zero and this is much smaller than the infinite
1178
+ projection baseline we are using to project ξm+.
1179
+ Replacing the three-dimensional correlation function by its Fourier transform, we obtain
1180
+ wg+(rp) =
1181
+
1182
+ dχ qg(χ)
1183
+
1184
+ dχ′ qγ(χ′)
1185
+
1186
+ d3k
1187
+ (2π)3
1188
+
1189
+ d3k′
1190
+ (2π)3 ⟨ˆδ(⃗k, χ)ˆγ+(⃗k′, χ′)⟩e−i⃗k⊥·x⊥e−i⃗k′
1191
+ ⊥·x′
1192
+ ⊥e−ikzχe−ik′
1193
+ zΠ′.
1194
+ (A2)
1195
+ Here we have aligned the component of the wavevector that is perpendicular to the line-of-sight with the x axis
1196
+
1197
+ 10
1198
+ without loss of generality [5]. By explicitly modelling the power spectrum of the density and the shapes, we can write
1199
+ wg+(rp) =
1200
+
1201
+ dχ qg(χ)
1202
+
1203
+ dχ′ qγ(χ′)
1204
+
1205
+ d3k
1206
+ (2π)3
1207
+
1208
+ d3k′
1209
+ (2π)3 Pm+(⃗k, z)(2π)3δD(⃗k − ⃗k′)e−i⃗k⊥·x��e−i⃗k′
1210
+ ⊥·x′
1211
+ ⊥e−ikzχe−ik′
1212
+ zΠ′. (A3)
1213
+ and collapse one of the integrals in wavevector to obtain
1214
+ wg+(rp) =
1215
+
1216
+ dχ qg(χ)
1217
+
1218
+ dχ′ qγ(χ′)
1219
+
1220
+ d3k
1221
+ (2π)3 Pm+(⃗k, z)e−i⃗k⊥·(⃗x⊥−⃗x′
1222
+ ⊥)e−ikzχe−ikzχ′.
1223
+ (A4)
1224
+ Applying the Limber approximation,
1225
+ wg+(rp) =
1226
+
1227
+ dχ qg(χ) qγ(χ)
1228
+
1229
+ dχ′
1230
+
1231
+ d3k
1232
+ (2π)3 Pm+(⃗k, z)e−i⃗k⊥·(⃗x⊥−⃗x′
1233
+ ⊥)e−ikzχe−ikzχ′.
1234
+ (A5)
1235
+ From here onward, we will assume qg(χ) = qγ(χ) = δD(χ), which corresponds to correlations are evaluated at z = 0 for
1236
+ simplicity. The integral over χ′ can now be brought inside, resulting in a Dirac delta over the line-of-sight wavevector:
1237
+ wg+(rp) =
1238
+
1239
+ d3k
1240
+ (2π)3 Pg+(⃗k, z = 0)e−i⃗k⊥·(⃗x⊥−⃗x′
1241
+ ⊥)e−ikzχ2πδD(kz).
1242
+ (A6)
1243
+ Before continuing we re-write Pg+ explicitly:
1244
+ wg+(rp) = −C1ρcritΩmbg
1245
+ D(z)
1246
+
1247
+ d3k
1248
+ (2π)3 P(k, z = 0)k2
1249
+ x − k2
1250
+ y
1251
+ k2
1252
+ e−i⃗k⊥·(⃗x⊥−⃗x′
1253
+ ⊥)e−ikzχ2πδD(kz).
1254
+ (A7)
1255
+ where ⃗k⊥ = (kx, ky). The presence of the Dirac delta in kz simplifies the whole expression to
1256
+ wg+(rp) = −C1ρcritΩmbg
1257
+ D(z)
1258
+
1259
+ d2k⊥
1260
+ (2π)2 P(k⊥, z = 0)k2
1261
+ x − k2
1262
+ y
1263
+ k2
1264
+
1265
+ e−i⃗k⊥·(⃗x⊥−⃗x′
1266
+ ⊥).
1267
+ (A8)
1268
+ If θk is the angle between ⃗k⊥ and the x axis and k⊥ = |⃗k⊥|, then
1269
+ wg+(rp) = −C1ρcritΩmbg
1270
+ D(z)
1271
+ � dk⊥dθk k⊥
1272
+ (2π)2
1273
+ P(k⊥, z = 0) cos(2θk)e−ik⊥rp cos θk.
1274
+ (A9)
1275
+ This makes the second order Bessel function appear and now the integral is over the absolute value of
1276
+ wg+(rp) = C1ρcritΩmbg
1277
+ D(z)
1278
+ � dk⊥
1279
+ 2π k⊥P(k⊥, z)J2(k⊥rp).
1280
+ (A10)
1281
+ Similarly for the correlation with the matter field,
1282
+ wm+(rp) = C1ρcritΩm
1283
+ D(z)
1284
+ � dk⊥
1285
+ 2π k⊥P(k⊥, z)J2(k⊥rp).
1286
+ (A11)
1287
+ This is in agreement with Eq. 8.
1288
+ [1] B. Bassett and R. Hlozek, Baryon acoustic oscillations, in
1289
+ Dark Energy: Observational and Theoretical Approaches,
1290
+ edited by P. Ruiz-Lapuente (2010) p. 246.
1291
+ [2] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein,
1292
+ C. Hirata, A. G. Riess, and E. Rozo, Observational
1293
+ probes of cosmic acceleration, Phys. Rep. 530, 87 (2013),
1294
+ arXiv:1201.2434 [astro-ph.CO].
1295
+ [3] M. L. Brown, A. N. Taylor, N. C. Hambly, and S. Dye,
1296
+ Measurement of intrinsic alignments in galaxy elliptici-
1297
+ ties, MNRAS 333, 501 (2002), arXiv:astro-ph/0009499
1298
+ [astro-ph].
1299
+ [4] P. Catelan, M. Kamionkowski, and R. D. Blandford, In-
1300
+ trinsic and extrinsic galaxy alignment, MNRAS 320, L7
1301
+ (2001), arXiv:astro-ph/0005470 [astro-ph].
1302
+
1303
+ 11
1304
+ [5] J. Blazek, M. McQuinn, and U. Seljak, Testing the
1305
+ tidal alignment model of galaxy intrinsic alignment,
1306
+ J.
1307
+ Cosmology
1308
+ Astropart.
1309
+ Phys.
1310
+ 2011,
1311
+ 010
1312
+ (2011),
1313
+ arXiv:1101.4017 [astro-ph.CO].
1314
+ [6] B. Joachimi, R. Mandelbaum, F. B. Abdalla, and S. L.
1315
+ Bridle, Constraints on intrinsic alignment contamination
1316
+ of weak lensing surveys using the MegaZ-LRG sample,
1317
+ A&A 527, A26 (2011), arXiv:1008.3491 [astro-ph.CO].
1318
+ [7] S. Singh, R. Mandelbaum, and S. More, Intrinsic align-
1319
+ ments of SDSS-III BOSS LOWZ sample galaxies, MN-
1320
+ RAS 450, 2195 (2015), arXiv:1411.1755 [astro-ph.CO].
1321
+ [8] H. Johnston, C. Georgiou, B. Joachimi, H. Hoekstra,
1322
+ N. E. Chisari, D. Farrow, M. C. Fortuna, C. Heymans,
1323
+ S. Joudaki, K. Kuijken, and A. Wright, KiDS+GAMA:
1324
+ Intrinsic alignment model constraints for current and
1325
+ future weak lensing cosmology, A&A 624, A30 (2019),
1326
+ arXiv:1811.09598 [astro-ph.CO].
1327
+ [9] M. C. Fortuna, H. Hoekstra, H. Johnston, M. Vakili,
1328
+ A. Kannawadi, C. Georgiou, B. Joachimi, A. H. Wright,
1329
+ M. Asgari, M. Bilicki, C. Heymans, H. Hildebrandt,
1330
+ K. Kuijken, and M. Von Wietersheim-Kramsta, KiDS-
1331
+ 1000: Constraints on the intrinsic alignment of luminous
1332
+ red galaxies, A&A 654, A76 (2021), arXiv:2109.02556
1333
+ [astro-ph.CO].
1334
+ [10] C. M. Hirata, Tidal alignments as a contaminant of
1335
+ redshift space distortions, MNRAS 399, 1074 (2009),
1336
+ arXiv:0903.4929 [astro-ph.CO].
1337
+ [11] D. Kirk, A. Rassat, O. Host, and S. Bridle, The cos-
1338
+ mological impact of intrinsic alignment model choice for
1339
+ cosmic shear, MNRAS 424, 1647 (2012), arXiv:1112.4752
1340
+ [astro-ph.CO].
1341
+ [12] E. Krause, T. Eifler, and J. Blazek, The impact of in-
1342
+ trinsic alignment on current and future cosmic shear sur-
1343
+ veys, MNRAS 456, 207 (2016), arXiv:1506.08730 [astro-
1344
+ ph.CO].
1345
+ [13] K. Zwetsloot and N. E. Chisari, Impact of intrinsic align-
1346
+ ments on clustering constraints of the growth rate, MN-
1347
+ RAS 516, 787 (2022), arXiv:2208.07062 [astro-ph.CO].
1348
+ [14] N. E. Chisari and C. Dvorkin, Cosmological informa-
1349
+ tion in the intrinsic alignments of luminous red galax-
1350
+ ies, J. Cosmology Astropart. Phys. 2013, 029 (2013),
1351
+ arXiv:1308.5972 [astro-ph.CO].
1352
+ [15] N. E. Chisari, C. Dvorkin, and F. Schmidt, Can weak
1353
+ lensing surveys confirm BICEP2?, Phys. Rev. D 90,
1354
+ 043527 (2014), arXiv:1406.4871 [astro-ph.CO].
1355
+ [16] F. Schmidt, N. E. Chisari, and C. Dvorkin, Imprint of
1356
+ inflation on galaxy shape correlations, J. Cosmology As-
1357
+ tropart. Phys. 2015, 032 (2015), arXiv:1506.02671 [astro-
1358
+ ph.CO].
1359
+ [17] M. Biagetti and G. Orlando, Primordial gravitational
1360
+ waves from galaxy intrinsic alignments, J. Cosmology As-
1361
+ tropart. Phys. 2020, 005 (2020), arXiv:2001.05930 [astro-
1362
+ ph.CO].
1363
+ [18] A. Taruya and T. Okumura, Improving Geometric
1364
+ and Dynamical Constraints on Cosmology with In-
1365
+ trinsic Alignments of Galaxies, ApJ 891, L42 (2020),
1366
+ arXiv:2001.05962 [astro-ph.CO].
1367
+ [19] K. S. Dawson, D. J. Schlegel, C. P. Ahn, S. F. Anderson,
1368
+ ´E. Aubourg, S. Bailey, R. H. Barkhouser, J. E. Bautista,
1369
+ A. Beifiori, A. A. Berlind, V. Bhardwaj, D. Bizyaev,
1370
+ C. H. Blake, M. R. Blanton, M. Blomqvist, et al., The
1371
+ Baryon Oscillation Spectroscopic Survey of SDSS-III, AJ
1372
+ 145, 10 (2013), arXiv:1208.0022 [astro-ph.CO].
1373
+ [20] DESI
1374
+ Collaboration,
1375
+ A.
1376
+ Aghamousa,
1377
+ J.
1378
+ Aguilar,
1379
+ S. Ahlen, S. Alam, L. E. Allen, C. Allende Prieto,
1380
+ J. Annis, S. Bailey, C. Balland, O. Ballester, C. Baltay,
1381
+ L. Beaufore, C. Bebek, T. C. Beers, E. F. Bell, et al.,
1382
+ The DESI Experiment Part I: Science,Targeting, and
1383
+ Survey Design, arXiv e-prints , arXiv:1611.00036 (2016),
1384
+ arXiv:1611.00036 [astro-ph.IM].
1385
+ [21] H.-J. Seo and D. J. Eisenstein, Improved Forecasts for
1386
+ the Baryon Acoustic Oscillations and Cosmological Dis-
1387
+ tance Scale, ApJ 665, 14 (2007), arXiv:astro-ph/0701079
1388
+ [astro-ph].
1389
+ [22] H.-J. Seo, J. Eckel, D. J. Eisenstein, K. Mehta, M. Metch-
1390
+ nik, N. Padmanabhan, P. Pinto, R. Takahashi, M. White,
1391
+ and X. Xu, High-precision Predictions for the Acoustic
1392
+ Scale in the Nonlinear Regime, ApJ 720, 1650 (2010),
1393
+ arXiv:0910.5005 [astro-ph.CO].
1394
+ [23] P. Arnalte-Mur, A. Labatie, N. Clerc, V. J. Mart´ınez,
1395
+ J. L. Starck, M. Lachi`eze-Rey, E. Saar, and S. Pare-
1396
+ des, Wavelet analysis of baryon acoustic structures
1397
+ in the galaxy distribution, A&A 542, A34 (2012),
1398
+ arXiv:1101.1911 [astro-ph.CO].
1399
+ [24] H. J. Tian, M. C. Neyrinck, T. Budav´ari, and A. S.
1400
+ Szalay, Redshift-space Enhancement of Line-of-sight
1401
+ Baryon Acoustic Oscillations in the Sloan Digital Sky
1402
+ Survey
1403
+ Main-galaxy
1404
+ Sample,
1405
+ ApJ
1406
+ 728,
1407
+ 34
1408
+ (2011),
1409
+ arXiv:1011.2481 [astro-ph.CO].
1410
+ [25] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol,
1411
+ J. A. Peacock, A. C. Pope, and A. S. Szalay, Measuring
1412
+ the Baryon Acoustic Oscillation scale using the Sloan
1413
+ Digital Sky Survey and 2dF Galaxy Redshift Survey,
1414
+ MNRAS 381, 1053 (2007), arXiv:0705.3323 [astro-ph].
1415
+ [26] T. Okumura, A. Taruya, and T. Nishimichi, Intrinsic
1416
+ alignment statistics of density and velocity fields at large
1417
+ scales: Formulation, modeling, and baryon acoustic os-
1418
+ cillation features, Phys. Rev. D 100, 103507 (2019),
1419
+ arXiv:1907.00750 [astro-ph.CO].
1420
+ [27] T. Nishimichi, M. Takada, R. Takahashi, K. Osato,
1421
+ M. Shirasaki, T. Oogi, H. Miyatake, M. Oguri, R. Mu-
1422
+ rata, Y. Kobayashi, and N. Yoshida, Dark Quest. I. Fast
1423
+ and Accurate Emulation of Halo Clustering Statistics
1424
+ and Its Application to Galaxy Clustering, ApJ 884, 29
1425
+ (2019), arXiv:1811.09504 [astro-ph.CO].
1426
+ [28] E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett,
1427
+ B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon,
1428
+ L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut,
1429
+ S. S. Meyer, et al., Five-Year Wilkinson Microwave
1430
+ Anisotropy Probe Observations: Cosmological Interpre-
1431
+ tation, ApJS 180, 330 (2009), arXiv:0803.0547 [astro-
1432
+ ph].
1433
+ [29] D. J. Eisenstein and W. Hu, Baryonic Features in
1434
+ the Matter Transfer Function, ApJ 496, 605 (1998),
1435
+ arXiv:astro-ph/9709112 [astro-ph].
1436
+ [30] Planck Collaboration,
1437
+ P. A. R. Ade,
1438
+ N. Aghanim,
1439
+ M.
1440
+ Arnaud,
1441
+ M.
1442
+ Ashdown,
1443
+ J.
1444
+ Aumont,
1445
+ C.
1446
+ Bacci-
1447
+ galupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett,
1448
+ N. Bartolo,
1449
+ E. Battaner,
1450
+ R. Battye,
1451
+ K. Benabed,
1452
+ A. Benoˆıt, A. Benoit-L´evy, et al., Planck 2015 results.
1453
+ XIII. Cosmological parameters, A&A 594, A13 (2016),
1454
+ arXiv:1502.01589 [astro-ph.CO].
1455
+ [31] N. Hand, Y. Feng, F. Beutler, Y. Li, C. Modi, U. Seljak,
1456
+ and Z. Slepian, nbodykit: An Open-source, Massively
1457
+ Parallel Toolkit for Large-scale Structure, AJ 156, 160
1458
+ (2018), arXiv:1712.05834 [astro-ph.IM].
1459
+ [32] https://github.com/LSSTDESC/CCL.
1460
+
1461
+ 12
1462
+ [33] N. E. Chisari, D. Alonso, E. Krause, C. D. Leonard,
1463
+ P. Bull, J. Neveu, A. S. Villarreal, S. Singh, T. McClin-
1464
+ tock, J. Ellison, Z. Du, J. Zuntz, A. Mead, S. Joudaki,
1465
+ C. S. Lorenz,
1466
+ T. Tr¨oster,
1467
+ J. Sanchez,
1468
+ F. Lanusse,
1469
+ M. Ishak, R. Hlozek, J. Blazek, J.-E. Campagne, H. Al-
1470
+ moubayyed, T. Eifler, M. Kirby, D. Kirkby, S. Plaszczyn-
1471
+ ski, A. Slosar, M. Vrastil, E. L. Wagoner, and LSST Dark
1472
+ Energy Science Collaboration, Core Cosmology Library:
1473
+ Precision Cosmological Predictions for LSST, ApJS 242,
1474
+ 2 (2019), arXiv:1812.05995 [astro-ph.CO].
1475
+ [34] A. Tenneti, S. Singh, R. Mandelbaum, T. di Matteo,
1476
+ Y. Feng, and N. Khandai, Intrinsic alignments of galaxies
1477
+ in the MassiveBlack-II simulation: analysis of two-point
1478
+ statistics, MNRAS 448, 3522 (2015), arXiv:1409.7297
1479
+ [astro-ph.CO].
1480
+ [35] N. Chisari, S. Codis, C. Laigle, Y. Dubois, C. Pichon,
1481
+ J. Devriendt, A. Slyz, L. Miller, R. Gavazzi, and K. Ben-
1482
+ abed, Intrinsic alignments of galaxies in the Horizon-
1483
+ AGN cosmological hydrodynamical simulation, MNRAS
1484
+ 454, 2736 (2015), arXiv:1507.07843 [astro-ph.CO].
1485
+ [36] N. Chisari, C. Laigle, S. Codis, Y. Dubois, J. Devriendt,
1486
+ L. Miller, K. Benabed, A. Slyz, R. Gavazzi, and C. Pi-
1487
+ chon, Redshift and luminosity evolution of the intrinsic
1488
+ alignments of galaxies in Horizon-AGN, MNRAS 461,
1489
+ 2702 (2016), arXiv:1602.08373 [astro-ph.CO].
1490
+ [37] S. Hilbert, D. Xu, P. Schneider, V. Springel, M. Vogels-
1491
+ berger, and L. Hernquist, Intrinsic alignments of galax-
1492
+ ies in the Illustris simulation, MNRAS 468, 790 (2017),
1493
+ arXiv:1606.03216 [astro-ph.CO].
1494
+ [38] C. Hikage, M. Oguri, T. Hamana, S. More, R. Man-
1495
+ delbaum,
1496
+ M.
1497
+ Takada,
1498
+ F.
1499
+ K¨ohlinger,
1500
+ H.
1501
+ Miyatake,
1502
+ A. J. Nishizawa, H. Aihara, R. Armstrong, J. Bosch,
1503
+ J. Coupon,
1504
+ A. Ducout,
1505
+ P. Ho,
1506
+ et al., Cosmology
1507
+ from cosmic shear power spectra with Subaru Hy-
1508
+ per Suprime-Cam first-year data, PASJ 71, 43 (2019),
1509
+ arXiv:1809.09148 [astro-ph.CO].
1510
+ [39] C. Heymans, T. Tr¨oster, M. Asgari, C. Blake, H. Hilde-
1511
+ brandt, B. Joachimi, K. Kuijken, C.-A. Lin, A. G.
1512
+ S´anchez, J. L. van den Busch, A. H. Wright, A. Amon,
1513
+ M. Bilicki, J. de Jong, M. Crocce, et al., KiDS-1000
1514
+ Cosmology: Multi-probe weak gravitational lensing and
1515
+ spectroscopic galaxy clustering constraints, A&A 646,
1516
+ A140 (2021), arXiv:2007.15632 [astro-ph.CO].
1517
+ [40] L. F. Secco, S. Samuroff, E. Krause, B. Jain, J. Blazek,
1518
+ M. Raveri, A. Campos, A. Amon, A. Chen, C. Doux,
1519
+ A. Choi,
1520
+ D. Gruen,
1521
+ G. M. Bernstein,
1522
+ C. Chang,
1523
+ J. DeRose, DES Collaboration, et al., Dark Energy Sur-
1524
+ vey Year 3 results: Cosmology from cosmic shear and
1525
+ robustness to modeling uncertainty, Phys. Rev. D 105,
1526
+ 023515 (2022), arXiv:2105.13544 [astro-ph.CO].
1527
+ [41] C. Porciani, A. Dekel, and Y. Hoffman, Testing tidal-
1528
+ torque theory - I. Spin amplitude and direction, MNRAS
1529
+ 332, 325 (2002), arXiv:astro-ph/0105123 [astro-ph].
1530
+ [42] C. Porciani, A. Dekel, and Y. Hoffman, Testing tidal-
1531
+ torque theory - II. Alignment of inertia and shear and the
1532
+ characteristics of protohaloes, MNRAS 332, 339 (2002),
1533
+ arXiv:astro-ph/0105165 [astro-ph].
1534
+ [43] S. Codis, C. Pichon, and D. Pogosyan, Spin align-
1535
+ ments within the cosmic web: a theory of constrained
1536
+ tidal torques near filaments, MNRAS 452, 3369 (2015),
1537
+ arXiv:1504.06073 [astro-ph.CO].
1538
+ [44] G. Camelio and M. Lombardi, On the origin of intrin-
1539
+ sic alignment in cosmic shear measurements: an analytic
1540
+ argument, A&A 575, A113 (2015), arXiv:1501.03014
1541
+ [astro-ph.CO].
1542
+ [45] E. van Uitert and B. Joachimi, Intrinsic alignment of
1543
+ redMaPPer clusters: cluster shape-matter density cor-
1544
+ relation, MNRAS 468, 4502 (2017), arXiv:1701.02307
1545
+ [astro-ph.CO].
1546
+ [46] E. Rozo, E. S. Rykoff, A. Abate, C. Bonnett, M. Crocce,
1547
+ C. Davis, B. Hoyle, B. Leistedt, H. V. Peiris, R. H. Wech-
1548
+ sler, T. Abbott, F. B. Abdalla, M. Banerji, A. H. Bauer,
1549
+ A. Benoit-L´evy, et al., redMaGiC: selecting luminous red
1550
+ galaxies from the DES Science Verification data, MNRAS
1551
+ 461, 1431 (2016), arXiv:1507.05460 [astro-ph.IM].
1552
+ [47] M. Vakili, M. Bilicki, H. Hoekstra, N. E. Chisari,
1553
+ M. J. I. Brown, C. Georgiou, A. Kannawadi, K. Kui-
1554
+ jken, and A. H. Wright, Luminous red galaxies in the
1555
+ Kilo-Degree Survey: selection with broad-band photom-
1556
+ etry and weak lensing measurements, MNRAS 487, 3715
1557
+ (2019), arXiv:1811.02518 [astro-ph.CO].
1558
+ [48] B. Joachimi, R. Mandelbaum, F. B. Abdalla, and S. L.
1559
+ Bridle, Constraints on intrinsic alignment contamination
1560
+ of weak lensing surveys using the MegaZ-LRG sample,
1561
+ A&A 527, A26 (2011), arXiv:1008.3491 [astro-ph.CO].
1562
+ [49] M. Bilicki, H. Hoekstra, M. J. I. Brown, V. Amaro,
1563
+ C. Blake, S. Cavuoti, J. T. A. de Jong, C. Geor-
1564
+ giou, H. Hildebrandt, C. Wolf, A. Amon, M. Brescia,
1565
+ S. Brough, M. V. Costa-Duarte, T. Erben, et al., Pho-
1566
+ tometric redshifts for the Kilo-Degree Survey. Machine-
1567
+ learning analysis with artificial neural networks, A&A
1568
+ 616, A69 (2018), arXiv:1709.04205 [astro-ph.CO].
1569
+ [50] A. H. Wright, H. Hildebrandt, J. L. van den Busch,
1570
+ and
1571
+ C.
1572
+ Heymans,
1573
+ Photometric
1574
+ redshift
1575
+ calibration
1576
+ with self-organising maps, A&A 637, A100 (2020),
1577
+ arXiv:1909.09632 [astro-ph.CO].
1578
+ [51] O. Ilbert, P. Capak, M. Salvato, H. Aussel, H. J. Mc-
1579
+ Cracken, D. B. Sanders, N. Scoville, J. Kartaltepe,
1580
+ S. Arnouts, E. Le Floc’h, B. Mobasher, Y. Taniguchi,
1581
+ F. Lamareille, A. Leauthaud, S. Sasaki, et al., Cosmos
1582
+ Photometric Redshifts with 30-Bands for 2-deg2, ApJ
1583
+ 690, 1236 (2009), arXiv:0809.2101 [astro-ph].
1584
+ [52] M. Eriksen, A. Alarcon, E. Gaztanaga, A. Amara,
1585
+ L. Cabayol, J. Carretero, F. J. Castander, M. Crocce,
1586
+ M. Delfino, J. De Vicente, E. Fernandez, P. Fosalba,
1587
+ J. Garcia-Bellido, H. Hildebrandt, H. Hoekstra, et al.,
1588
+ The PAU Survey:
1589
+ early demonstration of photomet-
1590
+ ric redshift performance in the COSMOS field, MNRAS
1591
+ 484, 4200 (2019), arXiv:1809.04375 [astro-ph.GA].
1592
+ [53] M. Bilicki, A. Dvornik, H. Hoekstra, A. H. Wright, N. E.
1593
+ Chisari, M. Vakili, M. Asgari, B. Giblin, C. Heymans,
1594
+ H. Hildebrandt, B. W. Holwerda, A. Hopkins, H. John-
1595
+ ston, A. Kannawadi, K. Kuijken, et al., Bright galaxy
1596
+ sample in the Kilo-Degree Survey Data Release 4. Se-
1597
+ lection, photometric redshifts, and physical properties,
1598
+ A&A 653, A82 (2021), arXiv:2101.06010 [astro-ph.GA].
1599
+ [54] I. R. van Gemeren and N. E. Chisari, Erratum: Prospects
1600
+ for detection and application of the alignment of galax-
1601
+ ies with the large-scale velocity field [Phys. Rev. D
1602
+ 102, 123507 (2020)], Phys. Rev. D 104, 069902 (2021),
1603
+ arXiv:2011.07087 [astro-ph.CO].
1604
+ [55] M. Masi, On compressive radial tidal forces, Ameri-
1605
+ can Journal of Physics 75, 116 (2007), arXiv:0705.3747
1606
+ [astro-ph].
1607
+ [56] A. Carnero Rosell, M. Rodriguez-Monroy, M. Crocce,
1608
+ J. Elvin-Poole,
1609
+ A. Porredon,
1610
+ I. Ferrero,
1611
+ J. Mena-
1612
+ Fern´andez, R. Cawthon, J. De Vicente, E. Gaztanaga,
1613
+ A. J. Ross, E. Sanchez, I. Sevilla-Noarbe, O. Alves,
1614
+
1615
+ 13
1616
+ F. Andrade-Oliveira, DES Collaboration, et al., Dark En-
1617
+ ergy Survey Year 3 results: galaxy sample for BAO mea-
1618
+ surement, MNRAS 509, 778 (2022), arXiv:2107.05477
1619
+ [astro-ph.CO].
1620
+ [57] The LSST Dark Energy Science Collaboration, R. Man-
1621
+ delbaum, T. Eifler, R. Hloˇzek, T. Collett, E. Gawiser,
1622
+ D. Scolnic, D. Alonso, H. Awan, R. Biswas, J. Blazek,
1623
+ P. Burchat, N. E. Chisari, I. Dell’Antonio, S. Digel,
1624
+ J. Frieman, D. A. Goldstein, I. Hook, ˇZ. Ivezi´c, S. M.
1625
+ Kahn, S. Kamath, D. Kirkby, T. Kitching, E. Krause,
1626
+ P.-F. Leget, P. J. Marshall, J. Meyers, H. Miyatake,
1627
+ J. A. Newman, R. Nichol, E. Rykoff, F. J. Sanchez,
1628
+ A. Slosar, M. Sullivan, and M. A. Troxel, The LSST
1629
+ Dark Energy Science Collaboration (DESC) Science Re-
1630
+ quirements Document, arXiv e-prints , arXiv:1809.01669
1631
+ (2018), arXiv:1809.01669 [astro-ph.CO].
1632
+ [58] D. N. Limber, The Analysis of Counts of the Extragalac-
1633
+ tic Nebulae in Terms of a Fluctuating Density Field., ApJ
1634
+ 117, 134 (1953).
1635
+ [59] M. Bartelmann and P. Schneider, Weak gravitational
1636
+ lensing,
1637
+ Phys.
1638
+ Rep.
1639
+ 340,
1640
+ 291
1641
+ (2001),
1642
+ arXiv:astro-
1643
+ ph/9912508 [astro-ph].
1644
+
7tE3T4oBgHgl3EQfqQo3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89FPT4oBgHgl3EQfYjQR/content/tmp_files/2301.13072v1.pdf.txt ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Guided Deep Reinforcement Learning for Articulated Swimming Robots
2
+ Jiaheng Hu1 and Tony Dear1
3
+ Abstract— Deep reinforcement learning has recently been
4
+ applied to a variety of robotics applications, but learning
5
+ locomotion for robots with unconventional configurations is still
6
+ limited. Prior work has shown that, despite the simple modeling
7
+ of articulated swimmer robots, such systems struggle to find
8
+ effective gaits using reinforcement learning due to the hetero-
9
+ geneity of the search space. In this work, we leverage insight
10
+ from geometric models of these robots in order to focus on
11
+ promising regions of the space and guide the learning process.
12
+ We demonstrate that our augmented learning technique is able
13
+ to produce gaits for different learning goals for swimmer robots
14
+ in both low and high Reynolds number fluids.
15
+ I. INTRODUCTION
16
+ Articulated swimming robots have attracted much interest
17
+ from researchers due to their effective locomotive capabilities
18
+ as well as the richness of their geometric structure. The basis
19
+ of their locomotion arises from the interaction between ac-
20
+ tuation of their joints and the surrounding fluid environment.
21
+ Such interactions depend highly on the nature of the fluid,
22
+ but previous work has shown that in the cases of extremely
23
+ low or extremely high Reynolds number fluids, a kinematic
24
+ system can be approximated, leading to great insights into
25
+ trajectory planning [1].
26
+ Even for these idealized systems, however, it is still
27
+ difficult to derive optimal trajectories analytically. These
28
+ difficulties are compounded when dealing with robots with
29
+ more complex morphologies or higher-dimensional joint
30
+ spaces. Deep reinforcement learning (RL) has recently shown
31
+ promise to be an effective search strategy, as algorithms
32
+ have developed to make techniques feasible on physical
33
+ systems. However, the heterogeneity of the search space and
34
+ the sparsity of the corresponding reward functions introduce
35
+ additional challenges for motion planning with RL.
36
+ In this paper, we exploit the geometric structure of three-
37
+ link swimmer systems in low and high Reynolds number
38
+ fluids to restrict the search space of our reinforcement
39
+ learning algorithm and learn effective locomoting gaits from
40
+ a blank slate. We show that this approach is able to speed
41
+ up training time, as the robot is less likely to be trapped into
42
+ executing suboptimal gaits. At the same time, we show that
43
+ the RL method is still flexible enough to be optimized for
44
+ different objectives, such as energy and speed.
45
+ To the best of our knowledge, this is the first attempt to
46
+ confine RL policy search by utilizing the geometry of the
47
+ system at hand. This is also one of the first attempts to the
48
+ locomotion problem of articulated swimmers using model-
49
+ free deep reinforcement learning.
50
+ 1Computer Science Department, Columbia University, New York, NY
51
+ 10027, USA {jh3916, tbd2115}@columbia.edu
52
+ Fig. 1: A swimming snake robot comprised of three artic-
53
+ ulated slender bodies. The coordinates (x, y, θ) denote the
54
+ SE(2) inertial configuration of the proximal link, which also
55
+ has velocities (ξx, ξy, ξθ) relative to a body-fixed frame. The
56
+ relative angles of the joints are denoted α = (α1, α2).
57
+ II. PRIOR WORK
58
+ A. Geometric Structure
59
+ In recent decades, techniques and methods from geometric
60
+ mechanics have been a popular way to model and control
61
+ mechanical systems. A key idea is that of symmetries in a
62
+ system’s configuration space, which allow for the reduction
63
+ of the equations of motion to a simpler form. This has been
64
+ addressed for general mechanical systems by [2], as well
65
+ as nonholonomic systems by [3]. For locomoting systems,
66
+ geometric reduction is often leveraged in tandem with a
67
+ decomposition of the configuration variables into actuated
68
+ shape variables and unactuated position variables. If such
69
+ a splitting is possible, then the configuration space often
70
+ takes on a fiber bundle structure, whereby a mapping called
71
+ the connection relates trajectories between each subspace.
72
+ Analysis of the connection can then give us intuition into
73
+ ways to perform motion planning and control of the system,
74
+ as detailed by [4] and [5]. This mathematical structure also
75
+ lends itself to visualization and design tools, detailed by [6].
76
+ Much of the progress in the geometric mechanics of loco-
77
+ motion is predicated on the assumption that the symmetries
78
+ of a system coincide exactly with the position degrees of
79
+ freedom. Robots that can be modeled with nonholonomic
80
+ constraints are examples in which these symmetries occur.
81
+ Nonholonomic wheeled snake robots have received consid-
82
+ erable attention from researchers such as [7] and [8] treating
83
+ them as kinematic systems, so named because constraints
84
+ that eliminate the need to consider second-order dynamics
85
+ when modeling its locomotion. This allows for the treatment
86
+ of the system’s locomotion, and subsequent motion planning,
87
+ as a result of geometric phase (see [9], [10], [11], [12]).
88
+ Geometric methods have also examined systems locomot-
89
+ ing in fluids. As with terrestrial systems, such a description
90
+ arXiv:2301.13072v1 [cs.RO] 30 Jan 2023
91
+
92
+ is most useful if the position degrees of freedom correspond
93
+ to system symmetries and the rest to internal shape. For
94
+ single bodies, motion may be achieved through temporal
95
+ deformation of the body’s shape. For articulated swimmers
96
+ like the three-link robot shown in Fig. 1, deformation occurs
97
+ naturally when joints are moved relative to each other (see
98
+ [1], [13], [14]), analogous to the terrestrial version of the
99
+ system.
100
+ Articulated swimmer robots belong to a family of gen-
101
+ eral snake-like robots, which are characterized by a large
102
+ number of degrees of freedom and locomotion patterns
103
+ that exhibit cyclic motions through coordination of their
104
+ joints. Therefore, snake-like robots are usually controlled
105
+ through kinematics-based methods [15], [16]. These meth-
106
+ ods, however, often rely on hand-tuning a number of different
107
+ parameters, which can be costly as well as inflexible in new
108
+ environments.
109
+ B. Gait Optimization and Reinforcement Learning
110
+ The problem of gait optimization has been approached
111
+ through a variety of traditional optimization methods, such
112
+ as evolutionary algorithms [17], gradient-based methods [18]
113
+ and Bayesian optimization [19]. However, these methods
114
+ often suffer from local optima, and while the resulting gaits
115
+ appear effective in locomoting the robots, they are often
116
+ still quite inefficient when compared to the natural motion
117
+ achieved by animals.
118
+ Reinforcement learning is a data-driven method that
119
+ searches for a reward-maximizing policy under a given
120
+ environment. As an algorithm based on trial-and-error, it
121
+ has the advantage of not requiring a specific model of the
122
+ environment or expert knowledge of the problem. With re-
123
+ cent advancements in deep neural network and reinforcement
124
+ learning algorithms, reinforcement learning has become a
125
+ useful tool for solving robot control tasks such as walker’s lo-
126
+ comotion [20], dexterous manipulation [21], and autonomous
127
+ driving [22].
128
+ There have been a few attempts to solve the problem of
129
+ gait optimization through reinforcement learning. Bing et
130
+ al. [23] used PPO to train a forward-locomotion controller
131
+ for a wheeled snake robot and were able to generate gaits
132
+ that out-perform those derived from Bayesian optimization
133
+ and grid search. Sharma and Kitani [24] proposed phase-
134
+ DDPG, where they explicitly trained a cyclic policies for a
135
+ walker robot by oscillating the weight of the policy network
136
+ with the phase of the robot. These methods were able to
137
+ generate fairly natural gaits on certain robots, but often failed
138
+ to converge to global optima as the robot environment grew
139
+ more complex. For example, none of the methods were able
140
+ to solve the swimmer environment [25].
141
+ III. MODEL AND METHODS
142
+ A. Swimmer Model
143
+ As shown in Fig. 1, our swimmer robot consists of three
144
+ rigid links, each of length R, which can rotate relative to
145
+ one another. Its configuration is defined by q ∈ Q = G × B,
146
+ where g = (x, y, θ)T ∈ G = SE(2) specifies the position
147
+ and orientation of the first link in an inertial frame; we
148
+ measure a link’s position at the center of the link. The
149
+ joint angles α = (α1, α2)T ∈ B specify the links’ relative
150
+ orientation. We can view Q as a principal fiber bundle,
151
+ in which trajectories in the shape or base space B lift to
152
+ trajectories in the group G (see [11]).
153
+ 1) Low Reynolds Number: Following the treatment of [1],
154
+ we assume that the swimmer is comprised of three slender
155
+ bodies and suspended in a planar fluid. In the low Reynolds
156
+ number case, viscous drag forces dominate inertial forces.
157
+ This allows us to approximate the drag forces as linear
158
+ functions of the system’s body and shape velocities ξ and
159
+ ˙α; we also assume that net forces acting on the system are
160
+ zero for all time due to damping out by drag forces. We can
161
+ then derive a Pfaffian constraint on the swimming system’s
162
+ velocities as
163
+ F =
164
+
165
+
166
+ Fx
167
+ Fy
168
+
169
+
170
+ � =
171
+
172
+
173
+ 0
174
+ 0
175
+ 0
176
+
177
+ � = ω1(α)ξ + ω2(α) ˙α,
178
+ (1)
179
+ where ω1 ∈ R3×3 and ω2 ∈ R3×2. The variables ξ =
180
+ (ξx, ξy, ξθ)T give us the body velocity of the system, as
181
+ shown in Fig. 1. In SE(2), the mapping that takes body
182
+ velocities to inertial velocities is given by ˙g = TeLgξ, where
183
+ TeLg =
184
+
185
+
186
+ cos θ
187
+ − sin θ
188
+ 0
189
+ sin θ
190
+ cos θ
191
+ 0
192
+ 0
193
+ 0
194
+ 1
195
+
196
+ � .
197
+ (2)
198
+ The full forms of these components can be found in [1].
199
+ The general approach would be to first compute local drag
200
+ forces on each link, and then combine them to find the total
201
+ force components for each of the body frame directions. In
202
+ addition to the system link length R, the kinematics also
203
+ utilize the drag constant of the fluid, characterized by k.
204
+ Since the number of independent constraints is equal to
205
+ the dimension of the group, these equations are sufficient
206
+ to derive a kinematic connection for the system ([8]). In
207
+ other words, the constraint equations fully describe the first-
208
+ order dynamics of the group variables in terms of the shape
209
+ variables only. Thus, Eq. (3) can be rearranged to show this
210
+ explicitly as the kinematic reconstruction equation:
211
+ ξ = −A(α) ˙α = −ω−1
212
+ 1 ω2 ˙α.
213
+ (3)
214
+ A(α) is called the local connection form, a mapping that
215
+ depends only on the shape variables, in this case α1 and α2.
216
+ 2) High Reynolds Number: The high Reynolds number
217
+ case is opposite from the low Reynolds number environment
218
+ in that inertial forces dominate viscous forces. Despite the
219
+ entirely different swimming conditions, the model of the
220
+ swimmer robot can once again be approximated as kine-
221
+ matic. A Lagrangian for the robot can be expressed in terms
222
+ of its kinetic energy, as there is no means of storing energy
223
+ or application of external forces:
224
+ L = 1
225
+ 2
226
+
227
+ ξ
228
+ ˙α
229
+
230
+ M(α)
231
+ �ξ
232
+ ˙α
233
+
234
+ .
235
+ (4)
236
+
237
+ The mass matrix M is a function of the system configuration
238
+ α, and it can be decomposed into blocks containing the
239
+ system’s local connection [8]:
240
+ M(α) =
241
+
242
+ I(α)
243
+ I(α)A(α)
244
+ (I(α)A(α))T
245
+ m(α)
246
+
247
+ .
248
+ To derive the mass matrix M, we recognize that the
249
+ Lagrangian of the three-link system is equal to the sum of the
250
+ Lagrangians Li of each of the individual links. Each link has
251
+ an associated inertia tensor Ii dependent on the shape that
252
+ we use to model it. In addition, each link has an added mass
253
+ Mi, which arises due to the inertia of a displaced fluid as a
254
+ body moves through it; like the inertia tensor, Mi is solely
255
+ a function of the body geometry. [1] gives an example of the
256
+ added mass tensor for an elliptical body. The total effective
257
+ inertia of a single link is then Ii + Mi, which gives us a
258
+ Lagrangian of the form
259
+ L =
260
+ 3
261
+
262
+ i=1
263
+ Li =
264
+ 3
265
+
266
+ i=1
267
+ 1
268
+ 2ξT
269
+ i (Ii + Mi)ξi
270
+ (5)
271
+ Once the total Lagrangian is written down, it can be
272
+ rearranged into the form of Eq. (4), from which the local
273
+ connection A(α) can then be extracted.
274
+ 3) Connection Visualization: The structure of the connec-
275
+ tion form in Eq. (3) can be visualized in order to understand
276
+ the response of ξ to input trajectories without regard to time,
277
+ according to [6]. We can first integrate each row of Eq. (3)
278
+ over time to obtain a measure of displacement corresponding
279
+ to the body frame directions. In the world frame, this measure
280
+ provides the exact rotational displacement, i.e., ˙θ = ξθ for
281
+ the third row, and an approximation of the translational
282
+ component for the first two rows. If our input trajectories
283
+ are periodic, we can transform this “body velocity integral”
284
+ into one over the trajectory ψ : [0, T] → B in the joint
285
+ space, since the kinematics are independent of input pacing.
286
+ Stokes’ theorem can then be applied to perform a second
287
+ transformation into an area integral over β, the region of the
288
+ joint space enclosed by ψ:
289
+
290
+ � T
291
+ 0
292
+ A(α(τ)) ˙α(τ) dτ = −
293
+
294
+ ψ
295
+ A(α) dα = −
296
+
297
+ β
298
+ dA(α).
299
+ (6)
300
+ The integrand in the rightmost integral is the exterior deriva-
301
+ tive of A, computed as the curl of A in two dimensions.
302
+ For example, the connection exterior derivative of Eq. (3)
303
+ has three components, one for each row i given by
304
+ dAi(α) = ∂Ai,2
305
+ ∂α1
306
+ − ∂Ai,1
307
+ ∂α2
308
+ ,
309
+ (7)
310
+ where Ai,j is the element corresponding to the ith row and
311
+ jth column of A.
312
+ The magnitudes of the body-x component (first row) of
313
+ the connection exterior derivative of each swimmer over the
314
+ α1-α2 joint space, for a fixed set of sample parameters,
315
+ are depicted in Fig. 2. The area integral over an enclosed
316
+ region is the geometric phase, a measure of the expected
317
+ displacement in the corresponding direction. In particular, a
318
+ Fig. 2: Visualizations of the body-x components of the
319
+ local connection’s exterior derivative for the low and high
320
+ Reynolds swimmers, respectively. Periodic trajectories can
321
+ be represented as closed curves on these surfaces, and the
322
+ robot’s associated displacement corresponds to the enclosed
323
+ volume.
324
+ trajectory that advances in a counter-clockwise direction over
325
+ time in joint space will yield positive displacement, since that
326
+ corresponds to a positive area integral; negative displacement
327
+ is achieved with a clockwise trajectory.
328
+ For both swimmers, we see that a high value of the
329
+ body velocity integral, and thus a high displacement per
330
+ gait cycle, is generally achieved by executing gaits that
331
+ encircle a zero contour of these exterior derivative surfaces.
332
+ However, the optimal parameters of these gaits differ for the
333
+ two swimmers, with a larger range for the low Reynolds
334
+ case and a smaller range for the high Reynolds case. In
335
+ addition, the means of finding a gait is not obvious when
336
+ the joint angles are restricted to be smaller than the zero
337
+ contour. Finally, while we do not show them here we may
338
+ also be concerned with the y and θ components as well.
339
+ Analytically optimizing gaits is thus equivalent to solving
340
+ a multi-objective constrained optimization problem over a
341
+ continuous space, a task that becomes exponentially more
342
+ difficult with increasing system complexity.
343
+ B. Baseline-Guided Policy Search (BGPS)
344
+ Based on the geometric models of the robots, we pro-
345
+ pose an augmented reinforcement learning algorithm called
346
+
347
+ Low Reynolds Number dAx
348
+ 2
349
+ α2
350
+ 0
351
+ 2
352
+ 0.10
353
+ 0.05
354
+ 0.00
355
+ 2
356
+ 0
357
+ -2
358
+ α1High Reynolds Number dAx
359
+ 2
360
+ α2
361
+ 0
362
+ 5
363
+ 0
364
+ -5
365
+ 2
366
+ 0
367
+ α1
368
+ -2Baseline-Guided Policy Search (BGPS), in which we restrict
369
+ the policy search space of the learning algorithm by utilizing
370
+ a baseline policy approximated from the geometric structure.
371
+ 1) Robot Environment Setup: In this work, we focus on
372
+ locomotion for three-link swimmer robots; the study of more
373
+ complex robots will the subject of future work. The state of
374
+ the robot at time t is st = (α1, α2, θ, t) , which contains
375
+ both the joint angles and orientation of the swimmer. The
376
+ action taken by the robot at time t is at = ( ˙α1, ˙α2), the
377
+ velocities of the two joints. We investigate two choices of
378
+ reward functions, which corresponding to two tasks with
379
+ different optimization goals.
380
+ The first task is to optimize the total distance the robot
381
+ travels in a pre-determined direction in a given amount of
382
+ time. The reward is therefore very straightforward: after the
383
+ robot makes a transition (st, at, st+1), the value of the reward
384
+ function Rt is set to be
385
+ Rt = xt+1 − xt.
386
+ (8)
387
+ The second task is to simultaneously maximize the dis-
388
+ tance travelled and minimize the energy spent. We use a
389
+ kinetic energy metric and define the reward function as
390
+ Rt = xt+1 − xt − β∥ ˙α∥,
391
+ (9)
392
+ where β is a coefficient that controls the weight of the energy
393
+ penalty.
394
+ 2) Proximal Policy Optimization: A number of reinforce-
395
+ ment learning algorithms have been shown to be effective
396
+ for different physical systems, although the comparison of
397
+ their various performances is not the focus of this paper. For
398
+ this work, we choose the proximal policy optimization (PPO)
399
+ algorithm by Schulman et al. [26], in which an agent seeks
400
+ to optimize the surrogate objective within the trust region
401
+ by clipping the probability ratio. PPO has been shown to
402
+ outperform other online policy gradient methods, with the
403
+ advantage of being easy to implement.
404
+ 3) Baseline from Geometric Structure: The key idea of
405
+ this work is that we can exploit what we know about
406
+ the system structure, e.g., as shown in Fig. 2, to help
407
+ restrict the search space in which reinforcement learning
408
+ operates. Specifically, the exterior derivative plots suggest
409
+ that the optimal gaits for moving forward can be roughly
410
+ approximated as single-frequency sinusoidal functions whose
411
+ joint-space loops overlay the blue ridges and whose phases
412
+ are large enough to encircle the widths of the same. Note
413
+ that the actual optimal policies have no such restriction, e.g.
414
+ as single-frequency sinusoidal functions. This is particularly
415
+ the case if we have joint limits that prevent the joint angles
416
+ from extending all the way out to the zero contour at the ends
417
+ of the ridges. However, such an approximation is sufficient
418
+ for formulating a baseline policy from which RL techniques
419
+ can then improve upon with a large number of degrees of
420
+ freedom.
421
+ 4) RL Policy from Baseline: Once we obtain a baseline
422
+ policy πbase(s) through the method described above, we then
423
+ use reinforcement learning to search for a separate policy
424
+ Fig. 3: The training curve of different action ranges for opti-
425
+ mizing the travelled distance for the low Reynolds swimmer.
426
+ Red: 0.1, orange: 0.2, cyan: 0.3, blue: 0.6.
427
+ πRL(s). Our eventual policy is then
428
+ πfinal(s) = πbase(s) + πRL(s)
429
+ (10)
430
+ The most important reason for using a baseline is that we can
431
+ now control the size of the policy search space by reducing
432
+ the action range of our RL-learned policy, |πRL|. By doing
433
+ so, we limit the policy search to be within the vicinity of our
434
+ baseline policy, thus guiding the policy search. A properly
435
+ small action range can shape the policy search space to be
436
+ near convex, allowing gradient-based methods like RL to be
437
+ particularly suitable.
438
+ 5) Action Range from Geometric Structure: Given an
439
+ environment step length t, the amount of deviation δ that
440
+ the robot is allowed from the baseline policy, and an action
441
+ range α, we can relate these quantities as δ = αt. Thus, for
442
+ each action cycle of length T, the maximum deviation per
443
+ cycle is δtotal = αT = Nδ, where N is the number of steps
444
+ per cycle.
445
+ The choice of action range α is another parameter whose
446
+ value can be informed by the system’s geometric structure.
447
+ α can be interpreted as the maximum amount that we would
448
+ allow the policy to “stray” away from the baseline. Since
449
+ the baseline is just an approximation for the optimal policy,
450
+ α needs to be sufficiently large to allow exploration of the
451
+ policy space to occur. However, the exterior derivative plots
452
+ can also give us an upper bound on the action range, as there
453
+ is a finite distance away from our chosen baseline at which
454
+ the effectiveness of an action would start to drop.
455
+ IV. LEARNING AND RESULTS
456
+ We implement BGPS with different action ranges, and
457
+ compare the performances directly with PPO and phase-
458
+ DDPG [24]. Our results show that our algorithm generally
459
+ outperforms the other methods, and that a smaller action
460
+ range is able to boost the performance of the learned policy,
461
+ confirming the importance of confining the policy search
462
+ space.
463
+ A. Parameters
464
+ We implemented both a low and high Reynolds three-link
465
+ swimmer for our simulations. We used a link length of 0.3
466
+
467
+ 80
468
+ Reward
469
+ 50
470
+ 20
471
+ 500k
472
+ 1.5M
473
+ 2.5M
474
+ 3.5M
475
+ 4.5M
476
+ Training StepBFG
477
+ PPO
478
+ Phase-DDPG
479
+ BGPS (0.6)
480
+ BGPS (0.3)
481
+ BGPS (0.2)
482
+ BGPS (0.15)
483
+ BGPS (0.1)
484
+ Distance
485
+ 111.05
486
+ 31.79
487
+ 1.14
488
+ 32.08
489
+ 39.39
490
+ 117.6
491
+ 133.3
492
+ 130.8
493
+ Energy
494
+ 75.08
495
+ 28.58
496
+ 0.08
497
+ 21.63
498
+ 15.61
499
+ 29.88
500
+ 37.58
501
+ 85.22
502
+ BFG
503
+ PPO
504
+ Phase-DDPG
505
+ BGPS (0.6)
506
+ BGPS (0.3)
507
+ BGPS (0.2)
508
+ BGPS (0.15)
509
+ BGPS (0.1)
510
+ Distance
511
+ 94.71
512
+ 19.73
513
+ 13.27
514
+ 122.8
515
+ 116.5
516
+ 141.8
517
+ 126.2
518
+ 121.4
519
+ Energy
520
+ 58.75
521
+ 13.20
522
+ 9.62
523
+ 9.04
524
+ 9.47
525
+ 72.87
526
+ 77.31
527
+ 76.47
528
+ TABLE I: The average reward of the learned policy for the low Reynolds swimmer (top) and high Reynolds swimmer
529
+ (bottom). BFG refers to the baseline policy that we observed from the robots’ geometric structures (no learning). PPO and
530
+ phase-DDPG are the main algorithms to which we compared results. BGPS refers to Baseline-Guided Policy Search (our
531
+ method), with results provided for several choices of action range for different trials.
532
+ m for the low Reynolds case, a nod toward the prevalence of
533
+ micro-swimmers in this category. For the high Reynolds case,
534
+ we set the fluid density to ρ = 1 kg/m3, and treat the links as
535
+ ellipses with semi-major axis a = 4 m and semi-minor axis
536
+ b = 1 m. The exterior derivative plots of the swimmers in
537
+ Fig. 2 were obtained using the same parameter values. Our
538
+ environment step time was set to 0.04 s per step. For both
539
+ the low and high Reynolds swimmer, we run separate trials
540
+ for optimizing the speed with and without energy concern.
541
+ We set β to 0.1 for the task of optimizing for energy usage.
542
+ B. Network Architecture
543
+ We followed the settings outlined in Schulman et al. [26]
544
+ for implementing PPO. Our policy network, which maps
545
+ from observation to action, consists of two hidden layers
546
+ of size 64 and a linear output layer at the end. Rectified
547
+ Linear units (ReLU) were used as the activation function for
548
+ every layer except the output layer. Our value network has
549
+ the same architecture as our policy network, except mapping
550
+ from (observation, action) to value space. No parameter is
551
+ shared between the two networks.
552
+ C. Training Settings
553
+ We run our experiments on a a computer with an i7-8650U
554
+ CPU running at 1.90Ghz and an Nvidia GTX 1070 GPU. For
555
+ each given algorithms and settings, we run for 2.5 million
556
+ time steps. For each single trial, our algorithm takes about 3
557
+ hours to run.
558
+ D. Results
559
+ Table
560
+ I shows the results of different algorithms for
561
+ learning locomotive gaits for each swimmer. The ”Distance”
562
+ row refers to the task of maximizing the distance traveled
563
+ per time in a given direction (the x axis), and the ”Energy”
564
+ row refers to the task of locomoting the robot forward while
565
+ simultaneously minimizing the energy spent.
566
+ BFG refers to “baseline from geometry,” which is the
567
+ baseline gait we estimated by looking at the geometric model
568
+ of the robot. For both swimmers, we set a baseline of
569
+ 0.6cos(t) for each joint, with a phase difference of 1 rad
570
+ between them. Baseline-Guided Policy Search (BGPS) is
571
+ our method, and the accompanying number on each column
572
+ header marks the action range for that trial. Both PPO and
573
+ Phase-DDPG are learning from scratch without utilizing the
574
+ geometric model, and both of them perform extremely poorly
575
+ Fig. 4: Joint angle (top) and workspace (bottom) trajectories
576
+ of the low Reynolds swimmer from the best learning trian
577
+ (BGPS 0.15). The joint angle trajectories are similar to but
578
+ improve upon the baseline derived from geometry.
579
+ comparing to the other methods shown. In particular, they are
580
+ unable to learn a gait that performs even close to the baseline
581
+ gait derived from simple inspection.
582
+ BGPS also performs poorly when the action range is too
583
+ large, but beats all other baselines as the action range is
584
+ reduced. Fig. 3 shows the training curve of optimizing the
585
+ distance for the low Reynolds swimmer. We can clearly see
586
+ from the plot that training tends to converge to a higher
587
+ reward when the action range is between 0.1 and 0.2, but
588
+ fails to converge when between 0.3 and 0.6. This shows that
589
+ a smaller action range within the appropriate region is the key
590
+ to our algorithm’s success at locomoting the swimmer. For
591
+ both the low and high Reynolds swimmers, our algorithm
592
+ produced the best result for both the task of optimizing
593
+ distance and of minimizing energy spent, among all the
594
+ methods we tested.
595
+
596
+ 0.8
597
+ al
598
+ 0.6
599
+ 0.4
600
+ 0.2
601
+ 0.0
602
+ 0.2
603
+ 0.4
604
+ 0.6
605
+ 0.8
606
+ 0
607
+ 5
608
+ 10
609
+ 15
610
+ 20
611
+ 25
612
+ 30
613
+ 35
614
+ 40
615
+ Time [sec]0.10
616
+ Robot Trajectory
617
+ 0.05
618
+ 0.00-
619
+ >
620
+ 0.05
621
+ -0.10
622
+ 0.15
623
+ 0.5
624
+ 0.4
625
+ 0.3
626
+ 0.2
627
+ 0.1
628
+ 0.0
629
+ XThe joint angle and workspace trajectories of the low
630
+ Reynolds swimmer learned from the best trial (BGPS 0.15)
631
+ are shown in Fig. 4. As expected, the joint angle trajectories
632
+ are not entirely too different from the baseline that we
633
+ wrote down from inspection of geometry. However, subtle
634
+ differences, such as the varying of the relative phases and
635
+ amplitudes of the two joints over time, suggest the existence
636
+ of higher-frequency components that were not at all obvi-
637
+ ous from simple inspection. The accompanying workspace
638
+ trajectory maximizes the distance reward compared to the
639
+ other learning trials, as shown in the first row of Table I.
640
+ V. CONCLUSIONS AND FUTURE WORK
641
+ We have leveraged traditional motion planning techniques
642
+ from geometric mechanics to make deep reinforcement
643
+ learning feasible for training articulated swimming robots.
644
+ Such systems exhibit challenges, such as a policy search
645
+ space with many local optima, that have previously made it
646
+ difficult for common DRL approaches. Our approach, which
647
+ combines intuition with learning, is able to produce superior
648
+ results for different robot models and different environments.
649
+ The fact that our algorithm is able to work across different
650
+ tasks and robots suggests that this method may easily be
651
+ generalized. Other robots with similar kinematics or even
652
+ dynamics can benefit from initialization with an informed
653
+ baseline. Since the baseline need not be exact, this also opens
654
+ presents an opportunity for work with higher-dimensional
655
+ systems for which pure optimization is very difficult. Visu-
656
+ alization of geometry would not be necessary to determine
657
+ the exact form of optimal gaits.
658
+ The task of selecting a proper action range is still under
659
+ investigation. In this work we had the ability to compare
660
+ different values of this parameter and found the best one
661
+ for the given robot and environment, and the interpretation
662
+ of this parameter will certainly vary for other systems. Real
663
+ systems would not have the luxury of trying different values
664
+ until finding the one that works best. Thus, a direct line of
665
+ future work would be to determine whether the action range
666
+ can also be guided by system geometry.
667
+ REFERENCES
668
+ [1] R. L. Hatton and H. Choset, “Geometric swimming at low and high
669
+ reynolds numbers,” IEEE Transactions on Robotics, vol. 29, no. 3, pp.
670
+ 615–624, 2013.
671
+ [2] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symme-
672
+ try: A Basic Exposition of Classical Mechanical Systems.
673
+ Springer
674
+ Science & Business Media, 2013, vol. 17.
675
+ [3] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. M. Murray,
676
+ “Nonholonomic mechanical systems with symmetry,” Archive for
677
+ Rational Mechanics and Analysis, vol. 136, no. 1, pp. 21–99, 1996.
678
+ [4] S. D. Kelly and R. M. Murray, “The geometry and control of
679
+ dissipative systems,” in Proceedings of the 35th IEEE Conference on
680
+ Decision and Control, vol. 1.
681
+ IEEE, 1996, pp. 981–986.
682
+ [5] J. P. Ostrowski and J. W. Burdick, “The geometric mechanics of
683
+ undulatory robotic locomotion,” The International Journal of Robotics
684
+ Research, vol. 17, no. 7, pp. 683–701, 1998.
685
+ [6] R. L. Hatton and H. Choset, “Geometric motion planning: The local
686
+ connection, stokes’ theorem, and the importance of coordinate choice,”
687
+ The International Journal of Robotics Research, vol. 30, no. 8, pp.
688
+ 988–1014, 2011.
689
+ [7] J. Ostrowski, “Computing reduced equations for robotic systems
690
+ with constraints and symmetries,” Robotics and Automation, IEEE
691
+ Transactions on, vol. 15, no. 1, pp. 111–123, Feb 1999.
692
+ [8] E. A. Shammas, H. Choset, and A. A. Rizzi, “Geometric motion plan-
693
+ ning analysis for two classes of underactuated mechanical systems,”
694
+ The International Journal of Robotics Research, vol. 26, no. 10, pp.
695
+ 1043–1073, 2007.
696
+ [9] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning:
697
+ Steering using sinusoids,” IEEE Transactions on Automatic Control,
698
+ vol. 38, no. 5, pp. 700–716, 1993.
699
+ [10] R. Mukherjee and D. P. Anderson, “Nonholonomic motion planning
700
+ using stoke’s theorem,” in Robotics and Automation, 1993. Proceed-
701
+ ings., 1993 IEEE International Conference on. IEEE, 1993, pp. 802–
702
+ 809.
703
+ [11] S. D. Kelly and R. M. Murray, “Geometric phases and robotic
704
+ locomotion,” Journal of Robotic Systems, vol. 12, no. 6, pp. 417–431,
705
+ 1995.
706
+ [12] F. Bullo and K. M. Lynch, “Kinematic controllability for decou-
707
+ pled trajectory planning in underactuated mechanical systems,” IEEE
708
+ Transactions on Robotics and Automation, vol. 17, no. 4, pp. 402–412,
709
+ 2001.
710
+ [13] J. B. Melli, C. W. Rowley, and D. S. Rufat, “Motion planning for an
711
+ articulated body in a perfect planar fluid,” SIAM Journal on applied
712
+ dynamical systems, vol. 5, no. 4, pp. 650–669, 2006.
713
+ [14] L. Burton, R. L. Hatton, H. Choset, and A. Hosoi, “Two-link swim-
714
+ ming using buoyant orientation,” Physics of Fluids, vol. 22, no. 9, p.
715
+ 091703, 2010.
716
+ [15] Z. Zuo, Z. Wang, B. Li, and S. Ma, “Serpentine locomotion of a
717
+ snake-like robot in water environment,” 03 2009, pp. 25 – 30.
718
+ [16] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
719
+ and H. Choset, “Parameterized and scripted gaits for modular snake
720
+ robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, 2009.
721
+ [17] S. Chernova and M. Veloso, “An evolutionary approach to gait learning
722
+ for four-legged robots,” in 2004 IEEE/RSJ International Conference
723
+ on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
724
+ vol. 3, Sep. 2004, pp. 2562–2567 vol.3.
725
+ [18] N. Kohl and P. Stone, “Machine learning for fast quadrupedal loco-
726
+ motion,” in AAAI, 2004.
727
+ [19] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. Deisenroth,
728
+ “Bayesian gait optimization for bipedal locomotion,” 02 2014, pp.
729
+ 274–290.
730
+ [20] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne, “Deeploco:
731
+ Dynamic locomotion skills using hierarchical deep reinforcement
732
+ learning,” ACM Transactions on Graphics (Proc. SIGGRAPH 2017),
733
+ vol. 36, no. 4, 2017.
734
+ [21] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov,
735
+ and S. Levine, “Learning complex dexterous manipulation with
736
+ deep
737
+ reinforcement
738
+ learning
739
+ and
740
+ demonstrations,”
741
+ CoRR,
742
+ vol.
743
+ abs/1709.10087, 2017. [Online]. Available: http://arxiv.org/abs/1709.
744
+ 10087
745
+ [22] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
746
+ optimally decentralized multi-robot collision avoidance via deep rein-
747
+ forcement learning,” 2017.
748
+ [23] Z. Bing, C. Lemke, Z. Jiang, K. Huang, and A. Knoll, “Energy-
749
+ efficient slithering gait exploration for a snake-like robot based on
750
+ reinforcement learning,” 2019.
751
+ [24] A. Sharma and K. M. Kitani, “Phase-parametric policies for reinforce-
752
+ ment learning in cyclic environments,” in AAAI, 2018.
753
+ [25] R. Coulom, “Reinforcement learning using neural networks, with
754
+ applications to motor control,” 2002.
755
+ [26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
756
+ “Proximal
757
+ policy
758
+ optimization
759
+ algorithms,”
760
+ arXiv
761
+ preprint
762
+ arXiv:1707.06347, 2017.
763
+
89FPT4oBgHgl3EQfYjQR/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf,len=498
2
+ page_content='Guided Deep Reinforcement Learning for Articulated Swimming Robots Jiaheng Hu1 and Tony Dear1 Abstract— Deep reinforcement learning has recently been applied to a variety of robotics applications, but learning locomotion for robots with unconventional configurations is still limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
3
+ page_content=' Prior work has shown that, despite the simple modeling of articulated swimmer robots, such systems struggle to find effective gaits using reinforcement learning due to the hetero- geneity of the search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
4
+ page_content=' In this work, we leverage insight from geometric models of these robots in order to focus on promising regions of the space and guide the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
5
+ page_content=' We demonstrate that our augmented learning technique is able to produce gaits for different learning goals for swimmer robots in both low and high Reynolds number fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
6
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
7
+ page_content=' INTRODUCTION Articulated swimming robots have attracted much interest from researchers due to their effective locomotive capabilities as well as the richness of their geometric structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
8
+ page_content=' The basis of their locomotion arises from the interaction between ac- tuation of their joints and the surrounding fluid environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
9
+ page_content=' Such interactions depend highly on the nature of the fluid, but previous work has shown that in the cases of extremely low or extremely high Reynolds number fluids, a kinematic system can be approximated, leading to great insights into trajectory planning [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
10
+ page_content=' Even for these idealized systems, however, it is still difficult to derive optimal trajectories analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
11
+ page_content=' These difficulties are compounded when dealing with robots with more complex morphologies or higher-dimensional joint spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
12
+ page_content=' Deep reinforcement learning (RL) has recently shown promise to be an effective search strategy, as algorithms have developed to make techniques feasible on physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
13
+ page_content=' However, the heterogeneity of the search space and the sparsity of the corresponding reward functions introduce additional challenges for motion planning with RL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
14
+ page_content=' In this paper, we exploit the geometric structure of three- link swimmer systems in low and high Reynolds number fluids to restrict the search space of our reinforcement learning algorithm and learn effective locomoting gaits from a blank slate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
15
+ page_content=' We show that this approach is able to speed up training time, as the robot is less likely to be trapped into executing suboptimal gaits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
16
+ page_content=' At the same time, we show that the RL method is still flexible enough to be optimized for different objectives, such as energy and speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
17
+ page_content=' To the best of our knowledge, this is the first attempt to confine RL policy search by utilizing the geometry of the system at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
18
+ page_content=' This is also one of the first attempts to the locomotion problem of articulated swimmers using model- free deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
19
+ page_content=' 1Computer Science Department, Columbia University, New York, NY 10027, USA {jh3916, tbd2115}@columbia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
20
+ page_content='edu Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
21
+ page_content=' 1: A swimming snake robot comprised of three artic- ulated slender bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
22
+ page_content=' The coordinates (x, y, θ) denote the SE(2) inertial configuration of the proximal link, which also has velocities (ξx, ξy, ξθ) relative to a body-fixed frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
23
+ page_content=' The relative angles of the joints are denoted α = (α1, α2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
24
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
25
+ page_content=' PRIOR WORK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
26
+ page_content=' Geometric Structure In recent decades, techniques and methods from geometric mechanics have been a popular way to model and control mechanical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
27
+ page_content=' A key idea is that of symmetries in a system’s configuration space, which allow for the reduction of the equations of motion to a simpler form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
28
+ page_content=' This has been addressed for general mechanical systems by [2], as well as nonholonomic systems by [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
29
+ page_content=' For locomoting systems, geometric reduction is often leveraged in tandem with a decomposition of the configuration variables into actuated shape variables and unactuated position variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
30
+ page_content=' If such a splitting is possible, then the configuration space often takes on a fiber bundle structure, whereby a mapping called the connection relates trajectories between each subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
31
+ page_content=' Analysis of the connection can then give us intuition into ways to perform motion planning and control of the system, as detailed by [4] and [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
32
+ page_content=' This mathematical structure also lends itself to visualization and design tools, detailed by [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
33
+ page_content=' Much of the progress in the geometric mechanics of loco- motion is predicated on the assumption that the symmetries of a system coincide exactly with the position degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
34
+ page_content=' Robots that can be modeled with nonholonomic constraints are examples in which these symmetries occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
35
+ page_content=' Nonholonomic wheeled snake robots have received consid- erable attention from researchers such as [7] and [8] treating them as kinematic systems, so named because constraints that eliminate the need to consider second-order dynamics when modeling its locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
36
+ page_content=' This allows for the treatment of the system’s locomotion, and subsequent motion planning, as a result of geometric phase (see [9], [10], [11], [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
37
+ page_content=' Geometric methods have also examined systems locomot- ing in fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
38
+ page_content=' As with terrestrial systems, such a description arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
39
+ page_content='13072v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
40
+ page_content='RO] 30 Jan 2023 is most useful if the position degrees of freedom correspond to system symmetries and the rest to internal shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
41
+ page_content=' For single bodies, motion may be achieved through temporal deformation of the body’s shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
42
+ page_content=' For articulated swimmers like the three-link robot shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
43
+ page_content=' 1, deformation occurs naturally when joints are moved relative to each other (see [1], [13], [14]), analogous to the terrestrial version of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
44
+ page_content=' Articulated swimmer robots belong to a family of gen- eral snake-like robots, which are characterized by a large number of degrees of freedom and locomotion patterns that exhibit cyclic motions through coordination of their joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
45
+ page_content=' Therefore, snake-like robots are usually controlled through kinematics-based methods [15], [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
46
+ page_content=' These meth- ods, however, often rely on hand-tuning a number of different parameters, which can be costly as well as inflexible in new environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
47
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
48
+ page_content=' Gait Optimization and Reinforcement Learning The problem of gait optimization has been approached through a variety of traditional optimization methods, such as evolutionary algorithms [17], gradient-based methods [18] and Bayesian optimization [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
49
+ page_content=' However, these methods often suffer from local optima, and while the resulting gaits appear effective in locomoting the robots, they are often still quite inefficient when compared to the natural motion achieved by animals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
50
+ page_content=' Reinforcement learning is a data-driven method that searches for a reward-maximizing policy under a given environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
51
+ page_content=' As an algorithm based on trial-and-error, it has the advantage of not requiring a specific model of the environment or expert knowledge of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
52
+ page_content=' With re- cent advancements in deep neural network and reinforcement learning algorithms, reinforcement learning has become a useful tool for solving robot control tasks such as walker’s lo- comotion [20], dexterous manipulation [21], and autonomous driving [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
53
+ page_content=' There have been a few attempts to solve the problem of gait optimization through reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
54
+ page_content=' Bing et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
55
+ page_content=' [23] used PPO to train a forward-locomotion controller for a wheeled snake robot and were able to generate gaits that out-perform those derived from Bayesian optimization and grid search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
56
+ page_content=' Sharma and Kitani [24] proposed phase- DDPG, where they explicitly trained a cyclic policies for a walker robot by oscillating the weight of the policy network with the phase of the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
57
+ page_content=' These methods were able to generate fairly natural gaits on certain robots, but often failed to converge to global optima as the robot environment grew more complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
58
+ page_content=' For example, none of the methods were able to solve the swimmer environment [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
59
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
60
+ page_content=' MODEL AND METHODS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
61
+ page_content=' Swimmer Model As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
62
+ page_content=' 1, our swimmer robot consists of three rigid links, each of length R, which can rotate relative to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
63
+ page_content=' Its configuration is defined by q ∈ Q = G × B, where g = (x, y, θ)T ∈ G = SE(2) specifies the position and orientation of the first link in an inertial frame;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
64
+ page_content=' we measure a link’s position at the center of the link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
65
+ page_content=' The joint angles α = (α1, α2)T ∈ B specify the links’ relative orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
66
+ page_content=' We can view Q as a principal fiber bundle, in which trajectories in the shape or base space B lift to trajectories in the group G (see [11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
67
+ page_content=' 1) Low Reynolds Number: Following the treatment of [1], we assume that the swimmer is comprised of three slender bodies and suspended in a planar fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
68
+ page_content=' In the low Reynolds number case, viscous drag forces dominate inertial forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
69
+ page_content=' This allows us to approximate the drag forces as linear functions of the system’s body and shape velocities ξ and ˙α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
70
+ page_content=' we also assume that net forces acting on the system are zero for all time due to damping out by drag forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
71
+ page_content=' We can then derive a Pfaffian constraint on the swimming system’s velocities as F = � � Fx Fy Fθ � � = � � 0 0 0 � � = ω1(α)ξ + ω2(α) ˙α, (1) where ω1 ∈ R3×3 and ω2 ∈ R3×2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
72
+ page_content=' The variables ξ = (ξx, ξy, ξθ)T give us the body velocity of the system, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
73
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
74
+ page_content=' In SE(2), the mapping that takes body velocities to inertial velocities is given by ˙g = TeLgξ, where TeLg = � � cos θ − sin θ 0 sin θ cos θ 0 0 0 1 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
75
+ page_content=' (2) The full forms of these components can be found in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
76
+ page_content=' The general approach would be to first compute local drag forces on each link, and then combine them to find the total force components for each of the body frame directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
77
+ page_content=' In addition to the system link length R, the kinematics also utilize the drag constant of the fluid, characterized by k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
78
+ page_content=' Since the number of independent constraints is equal to the dimension of the group, these equations are sufficient to derive a kinematic connection for the system ([8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
79
+ page_content=' In other words, the constraint equations fully describe the first- order dynamics of the group variables in terms of the shape variables only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
80
+ page_content=' Thus, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
81
+ page_content=' (3) can be rearranged to show this explicitly as the kinematic reconstruction equation: ξ = −A(α) ˙α = −ω−1 1 ω2 ˙α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
82
+ page_content=' (3) A(α) is called the local connection form, a mapping that depends only on the shape variables, in this case α1 and α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
83
+ page_content=' 2) High Reynolds Number: The high Reynolds number case is opposite from the low Reynolds number environment in that inertial forces dominate viscous forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
84
+ page_content=' Despite the entirely different swimming conditions, the model of the swimmer robot can once again be approximated as kine- matic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
85
+ page_content=' A Lagrangian for the robot can be expressed in terms of its kinetic energy, as there is no means of storing energy or application of external forces: L = 1 2 � ξ ˙α � M(α) �ξ ˙α � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
86
+ page_content=' (4) The mass matrix M is a function of the system configuration α, and it can be decomposed into blocks containing the system’s local connection [8]: M(α) = � I(α) I(α)A(α) (I(α)A(α))T m(α) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
87
+ page_content=' To derive the mass matrix M, we recognize that the Lagrangian of the three-link system is equal to the sum of the Lagrangians Li of each of the individual links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
88
+ page_content=' Each link has an associated inertia tensor Ii dependent on the shape that we use to model it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
89
+ page_content=' In addition, each link has an added mass Mi, which arises due to the inertia of a displaced fluid as a body moves through it;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
90
+ page_content=' like the inertia tensor, Mi is solely a function of the body geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
91
+ page_content=' [1] gives an example of the added mass tensor for an elliptical body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
92
+ page_content=' The total effective inertia of a single link is then Ii + Mi, which gives us a Lagrangian of the form L = 3 � i=1 Li = 3 � i=1 1 2ξT i (Ii + Mi)ξi (5) Once the total Lagrangian is written down, it can be rearranged into the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
93
+ page_content=' (4), from which the local connection A(α) can then be extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
94
+ page_content=' 3) Connection Visualization: The structure of the connec- tion form in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
95
+ page_content=' (3) can be visualized in order to understand the response of ξ to input trajectories without regard to time, according to [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
96
+ page_content=' We can first integrate each row of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
97
+ page_content=' (3) over time to obtain a measure of displacement corresponding to the body frame directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
98
+ page_content=' In the world frame, this measure provides the exact rotational displacement, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
99
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
100
+ page_content=', ˙θ = ξθ for the third row, and an approximation of the translational component for the first two rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
101
+ page_content=' If our input trajectories are periodic, we can transform this “body velocity integral” into one over the trajectory ψ : [0, T] → B in the joint space, since the kinematics are independent of input pacing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
102
+ page_content=' Stokes’ theorem can then be applied to perform a second transformation into an area integral over β, the region of the joint space enclosed by ψ: − � T 0 A(α(τ)) ˙α(τ) dτ = − � ψ A(α) dα = − � β dA(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
103
+ page_content=' (6) The integrand in the rightmost integral is the exterior deriva- tive of A, computed as the curl of A in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
104
+ page_content=' For example, the connection exterior derivative of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
105
+ page_content=' (3) has three components, one for each row i given by dAi(α) = ∂Ai,2 ∂α1 − ∂Ai,1 ∂α2 , (7) where Ai,j is the element corresponding to the ith row and jth column of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
106
+ page_content=' The magnitudes of the body-x component (first row) of the connection exterior derivative of each swimmer over the α1-α2 joint space, for a fixed set of sample parameters, are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
107
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
108
+ page_content=' The area integral over an enclosed region is the geometric phase, a measure of the expected displacement in the corresponding direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
109
+ page_content=' In particular, a Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
110
+ page_content=' 2: Visualizations of the body-x components of the local connection’s exterior derivative for the low and high Reynolds swimmers, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
111
+ page_content=' Periodic trajectories can be represented as closed curves on these surfaces, and the robot’s associated displacement corresponds to the enclosed volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
112
+ page_content=' trajectory that advances in a counter-clockwise direction over time in joint space will yield positive displacement, since that corresponds to a positive area integral;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
113
+ page_content=' negative displacement is achieved with a clockwise trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
114
+ page_content=' For both swimmers, we see that a high value of the body velocity integral, and thus a high displacement per gait cycle, is generally achieved by executing gaits that encircle a zero contour of these exterior derivative surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
115
+ page_content=' However, the optimal parameters of these gaits differ for the two swimmers, with a larger range for the low Reynolds case and a smaller range for the high Reynolds case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
116
+ page_content=' In addition, the means of finding a gait is not obvious when the joint angles are restricted to be smaller than the zero contour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
117
+ page_content=' Finally, while we do not show them here we may also be concerned with the y and θ components as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
118
+ page_content=' Analytically optimizing gaits is thus equivalent to solving a multi-objective constrained optimization problem over a continuous space, a task that becomes exponentially more difficult with increasing system complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
119
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
120
+ page_content=' Baseline-Guided Policy Search (BGPS) Based on the geometric models of the robots, we pro- pose an augmented reinforcement learning algorithm called Low Reynolds Number dAx 2 α2 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
121
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
122
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
123
+ page_content='00 2 0 2 α1High Reynolds Number dAx 2 α2 0 5 0 5 2 0 α1 2Baseline-Guided Policy Search (BGPS), in which we restrict the policy search space of the learning algorithm by utilizing a baseline policy approximated from the geometric structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
124
+ page_content=' 1) Robot Environment Setup: In this work, we focus on locomotion for three-link swimmer robots;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
125
+ page_content=' the study of more complex robots will the subject of future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
126
+ page_content=' The state of the robot at time t is st = (α1, α2, θ, t) , which contains both the joint angles and orientation of the swimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
127
+ page_content=' The action taken by the robot at time t is at = ( ˙α1, ˙α2), the velocities of the two joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
128
+ page_content=' We investigate two choices of reward functions, which corresponding to two tasks with different optimization goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
129
+ page_content=' The first task is to optimize the total distance the robot travels in a pre-determined direction in a given amount of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
130
+ page_content=' The reward is therefore very straightforward: after the robot makes a transition (st, at, st+1), the value of the reward function Rt is set to be Rt = xt+1 − xt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
131
+ page_content=' (8) The second task is to simultaneously maximize the dis- tance travelled and minimize the energy spent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
132
+ page_content=' We use a kinetic energy metric and define the reward function as Rt = xt+1 − xt − β∥ ˙α∥, (9) where β is a coefficient that controls the weight of the energy penalty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
133
+ page_content=' 2) Proximal Policy Optimization: A number of reinforce- ment learning algorithms have been shown to be effective for different physical systems, although the comparison of their various performances is not the focus of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
134
+ page_content=' For this work, we choose the proximal policy optimization (PPO) algorithm by Schulman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
135
+ page_content=' [26], in which an agent seeks to optimize the surrogate objective within the trust region by clipping the probability ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
136
+ page_content=' PPO has been shown to outperform other online policy gradient methods, with the advantage of being easy to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
137
+ page_content=' 3) Baseline from Geometric Structure: The key idea of this work is that we can exploit what we know about the system structure, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
138
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
139
+ page_content=', as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
140
+ page_content=' 2, to help restrict the search space in which reinforcement learning operates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
141
+ page_content=' Specifically, the exterior derivative plots suggest that the optimal gaits for moving forward can be roughly approximated as single-frequency sinusoidal functions whose joint-space loops overlay the blue ridges and whose phases are large enough to encircle the widths of the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
142
+ page_content=' Note that the actual optimal policies have no such restriction, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
143
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
144
+ page_content=' as single-frequency sinusoidal functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
145
+ page_content=' This is particularly the case if we have joint limits that prevent the joint angles from extending all the way out to the zero contour at the ends of the ridges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
146
+ page_content=' However, such an approximation is sufficient for formulating a baseline policy from which RL techniques can then improve upon with a large number of degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
147
+ page_content=' 4) RL Policy from Baseline: Once we obtain a baseline policy πbase(s) through the method described above, we then use reinforcement learning to search for a separate policy Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
148
+ page_content=' 3: The training curve of different action ranges for opti- mizing the travelled distance for the low Reynolds swimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
149
+ page_content=' Red: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
150
+ page_content='1, orange: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
151
+ page_content='2, cyan: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
152
+ page_content='3, blue: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
153
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
154
+ page_content=' πRL(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
155
+ page_content=' Our eventual policy is then πfinal(s) = πbase(s) + πRL(s) (10) The most important reason for using a baseline is that we can now control the size of the policy search space by reducing the action range of our RL-learned policy, |πRL|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
156
+ page_content=' By doing so, we limit the policy search to be within the vicinity of our baseline policy, thus guiding the policy search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
157
+ page_content=' A properly small action range can shape the policy search space to be near convex, allowing gradient-based methods like RL to be particularly suitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
158
+ page_content=' 5) Action Range from Geometric Structure: Given an environment step length t, the amount of deviation δ that the robot is allowed from the baseline policy, and an action range α, we can relate these quantities as δ = αt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
159
+ page_content=' Thus, for each action cycle of length T, the maximum deviation per cycle is δtotal = αT = Nδ, where N is the number of steps per cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
160
+ page_content=' The choice of action range α is another parameter whose value can be informed by the system’s geometric structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
161
+ page_content=' α can be interpreted as the maximum amount that we would allow the policy to “stray” away from the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
162
+ page_content=' Since the baseline is just an approximation for the optimal policy, α needs to be sufficiently large to allow exploration of the policy space to occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
163
+ page_content=' However, the exterior derivative plots can also give us an upper bound on the action range, as there is a finite distance away from our chosen baseline at which the effectiveness of an action would start to drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
164
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
165
+ page_content=' LEARNING AND RESULTS We implement BGPS with different action ranges, and compare the performances directly with PPO and phase- DDPG [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
166
+ page_content=' Our results show that our algorithm generally outperforms the other methods, and that a smaller action range is able to boost the performance of the learned policy, confirming the importance of confining the policy search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
167
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
168
+ page_content=' Parameters We implemented both a low and high Reynolds three-link swimmer for our simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
169
+ page_content=' We used a link length of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
170
+ page_content='3 80 Reward 50 20 500k 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
171
+ page_content='5M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
172
+ page_content='5M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
173
+ page_content='5M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
174
+ page_content='5M Training StepBFG PPO Phase-DDPG BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
175
+ page_content='6) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
176
+ page_content='3) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
177
+ page_content='2) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
178
+ page_content='15) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
179
+ page_content='1) Distance 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
180
+ page_content='05 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
181
+ page_content='79 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
182
+ page_content='14 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
183
+ page_content='08 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
184
+ page_content='39 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
185
+ page_content='6 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
186
+ page_content='3 130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
187
+ page_content='8 Energy 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
188
+ page_content='08 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
189
+ page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
190
+ page_content='08 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
191
+ page_content='63 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
192
+ page_content='61 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
193
+ page_content='88 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
194
+ page_content='58 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
195
+ page_content='22 BFG PPO Phase-DDPG BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
196
+ page_content='6) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
197
+ page_content='3) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
198
+ page_content='2) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
199
+ page_content='15) BGPS (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
200
+ page_content='1) Distance 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
201
+ page_content='71 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
202
+ page_content='73 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
203
+ page_content='27 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
204
+ page_content='8 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
205
+ page_content='5 141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
206
+ page_content='8 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
207
+ page_content='2 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
208
+ page_content='4 Energy 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
209
+ page_content='75 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
210
+ page_content='20 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
211
+ page_content='62 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
212
+ page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
213
+ page_content='47 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
214
+ page_content='87 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
215
+ page_content='31 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
216
+ page_content='47 TABLE I: The average reward of the learned policy for the low Reynolds swimmer (top) and high Reynolds swimmer (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
217
+ page_content=' BFG refers to the baseline policy that we observed from the robots’ geometric structures (no learning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
218
+ page_content=' PPO and phase-DDPG are the main algorithms to which we compared results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
219
+ page_content=' BGPS refers to Baseline-Guided Policy Search (our method), with results provided for several choices of action range for different trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
220
+ page_content=' m for the low Reynolds case, a nod toward the prevalence of micro-swimmers in this category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
221
+ page_content=' For the high Reynolds case, we set the fluid density to ρ = 1 kg/m3, and treat the links as ellipses with semi-major axis a = 4 m and semi-minor axis b = 1 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
222
+ page_content=' The exterior derivative plots of the swimmers in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
223
+ page_content=' 2 were obtained using the same parameter values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
224
+ page_content=' Our environment step time was set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
225
+ page_content='04 s per step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
226
+ page_content=' For both the low and high Reynolds swimmer, we run separate trials for optimizing the speed with and without energy concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
227
+ page_content=' We set β to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
228
+ page_content='1 for the task of optimizing for energy usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
229
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
230
+ page_content=' Network Architecture We followed the settings outlined in Schulman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
231
+ page_content=' [26] for implementing PPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
232
+ page_content=' Our policy network, which maps from observation to action, consists of two hidden layers of size 64 and a linear output layer at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
233
+ page_content=' Rectified Linear units (ReLU) were used as the activation function for every layer except the output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
234
+ page_content=' Our value network has the same architecture as our policy network, except mapping from (observation, action) to value space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
235
+ page_content=' No parameter is shared between the two networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
236
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
237
+ page_content=' Training Settings We run our experiments on a a computer with an i7-8650U CPU running at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
238
+ page_content='90Ghz and an Nvidia GTX 1070 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
239
+ page_content=' For each given algorithms and settings, we run for 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
240
+ page_content='5 million time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
241
+ page_content=' For each single trial, our algorithm takes about 3 hours to run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
242
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
243
+ page_content=' Results Table I shows the results of different algorithms for learning locomotive gaits for each swimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
244
+ page_content=' The ”Distance” row refers to the task of maximizing the distance traveled per time in a given direction (the x axis), and the ”Energy” row refers to the task of locomoting the robot forward while simultaneously minimizing the energy spent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
245
+ page_content=' BFG refers to “baseline from geometry,” which is the baseline gait we estimated by looking at the geometric model of the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
246
+ page_content=' For both swimmers, we set a baseline of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
247
+ page_content='6cos(t) for each joint, with a phase difference of 1 rad between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
248
+ page_content=' Baseline-Guided Policy Search (BGPS) is our method, and the accompanying number on each column header marks the action range for that trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
249
+ page_content=' Both PPO and Phase-DDPG are learning from scratch without utilizing the geometric model, and both of them perform extremely poorly Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
250
+ page_content=' 4: Joint angle (top) and workspace (bottom) trajectories of the low Reynolds swimmer from the best learning trian (BGPS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
251
+ page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
252
+ page_content=' The joint angle trajectories are similar to but improve upon the baseline derived from geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
253
+ page_content=' comparing to the other methods shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
254
+ page_content=' In particular, they are unable to learn a gait that performs even close to the baseline gait derived from simple inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
255
+ page_content=' BGPS also performs poorly when the action range is too large, but beats all other baselines as the action range is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
256
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
257
+ page_content=' 3 shows the training curve of optimizing the distance for the low Reynolds swimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
258
+ page_content=' We can clearly see from the plot that training tends to converge to a higher reward when the action range is between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
259
+ page_content='1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
260
+ page_content='2, but fails to converge when between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
261
+ page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
262
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
263
+ page_content=' This shows that a smaller action range within the appropriate region is the key to our algorithm’s success at locomoting the swimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
264
+ page_content=' For both the low and high Reynolds swimmers, our algorithm produced the best result for both the task of optimizing distance and of minimizing energy spent, among all the methods we tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
265
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
266
+ page_content='8 al 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
267
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
268
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
269
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
270
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
271
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
272
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
273
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
274
+ page_content='8 0 5 10 15 20 25 30 35 40 Time [sec]0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
275
+ page_content='10 Robot Trajectory 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
276
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
277
+ page_content='00- > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
278
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
279
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
280
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
281
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
282
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
283
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
284
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
285
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
286
+ page_content='0 XThe joint angle and workspace trajectories of the low Reynolds swimmer learned from the best trial (BGPS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
287
+ page_content='15) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
288
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
289
+ page_content=' As expected, the joint angle trajectories are not entirely too different from the baseline that we wrote down from inspection of geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
290
+ page_content=' However, subtle differences, such as the varying of the relative phases and amplitudes of the two joints over time, suggest the existence of higher-frequency components that were not at all obvi- ous from simple inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
291
+ page_content=' The accompanying workspace trajectory maximizes the distance reward compared to the other learning trials, as shown in the first row of Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
292
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
293
+ page_content=' CONCLUSIONS AND FUTURE WORK We have leveraged traditional motion planning techniques from geometric mechanics to make deep reinforcement learning feasible for training articulated swimming robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
294
+ page_content=' Such systems exhibit challenges, such as a policy search space with many local optima, that have previously made it difficult for common DRL approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
295
+ page_content=' Our approach, which combines intuition with learning, is able to produce superior results for different robot models and different environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
296
+ page_content=' The fact that our algorithm is able to work across different tasks and robots suggests that this method may easily be generalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
297
+ page_content=' Other robots with similar kinematics or even dynamics can benefit from initialization with an informed baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
298
+ page_content=' Since the baseline need not be exact, this also opens presents an opportunity for work with higher-dimensional systems for which pure optimization is very difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
299
+ page_content=' Visu- alization of geometry would not be necessary to determine the exact form of optimal gaits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
300
+ page_content=' The task of selecting a proper action range is still under investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
301
+ page_content=' In this work we had the ability to compare different values of this parameter and found the best one for the given robot and environment, and the interpretation of this parameter will certainly vary for other systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
302
+ page_content=' Real systems would not have the luxury of trying different values until finding the one that works best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
303
+ page_content=' Thus, a direct line of future work would be to determine whether the action range can also be guided by system geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
304
+ page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
305
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
306
+ page_content=' Hatton and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
307
+ page_content=' Choset, “Geometric swimming at low and high reynolds numbers,” IEEE Transactions on Robotics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
308
+ page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
309
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
310
+ page_content=' 615–624, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
311
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
312
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
313
+ page_content=' Marsden and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
314
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
315
+ page_content=' Ratiu, Introduction to Mechanics and Symme- try: A Basic Exposition of Classical Mechanical Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
316
+ page_content=' Springer Science & Business Media, 2013, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
317
+ page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
318
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
319
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
320
+ page_content=' Bloch, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
321
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
322
+ page_content=' Krishnaprasad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
323
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
324
+ page_content=' Marsden, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
325
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
326
+ page_content=' Murray, “Nonholonomic mechanical systems with symmetry,” Archive for Rational Mechanics and Analysis, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
327
+ page_content=' 136, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
328
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
329
+ page_content=' 21–99, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
330
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
331
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
332
+ page_content=' Kelly and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
333
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
334
+ page_content=' Murray, “The geometry and control of dissipative systems,” in Proceedings of the 35th IEEE Conference on Decision and Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
335
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
336
+ page_content=' IEEE, 1996, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
337
+ page_content=' 981–986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
338
+ page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
339
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
340
+ page_content=' Ostrowski and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
341
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
342
+ page_content=' Burdick, “The geometric mechanics of undulatory robotic locomotion,” The International Journal of Robotics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
343
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
344
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
345
+ page_content=' 683–701, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
346
+ page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
347
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
348
+ page_content=' Hatton and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
349
+ page_content=' Choset, “Geometric motion planning: The local connection, stokes’ theorem, and the importance of coordinate choice,” The International Journal of Robotics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
350
+ page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
351
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
352
+ page_content=' 988–1014, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
353
+ page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
354
+ page_content=' Ostrowski, “Computing reduced equations for robotic systems with constraints and symmetries,” Robotics and Automation, IEEE Transactions on, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
355
+ page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
356
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
357
+ page_content=' 111–123, Feb 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
358
+ page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
359
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
360
+ page_content=' Shammas, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
361
+ page_content=' Choset, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
362
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
363
+ page_content=' Rizzi, “Geometric motion plan- ning analysis for two classes of underactuated mechanical systems,” The International Journal of Robotics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
364
+ page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
365
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
366
+ page_content=' 1043–1073, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
367
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
368
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
369
+ page_content=' Murray and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
370
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
371
+ page_content=' Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
372
+ page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
373
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
374
+ page_content=' 700–716, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
375
+ page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
376
+ page_content=' Mukherjee and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
377
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
378
+ page_content=' Anderson, “Nonholonomic motion planning using stoke’s theorem,” in Robotics and Automation, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
379
+ page_content=' Proceed- ings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
380
+ page_content=', 1993 IEEE International Conference on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
381
+ page_content=' IEEE, 1993, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
382
+ page_content=' 802– 809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
383
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
384
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
385
+ page_content=' Kelly and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
386
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
387
+ page_content=' Murray, “Geometric phases and robotic locomotion,” Journal of Robotic Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
388
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
389
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
390
+ page_content=' 417–431, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
391
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
392
+ page_content=' Bullo and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
393
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
394
+ page_content=' Lynch, “Kinematic controllability for decou- pled trajectory planning in underactuated mechanical systems,” IEEE Transactions on Robotics and Automation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
395
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
396
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
397
+ page_content=' 402–412, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
398
+ page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
399
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
400
+ page_content=' Melli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
401
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
402
+ page_content=' Rowley, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
403
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
404
+ page_content=' Rufat, “Motion planning for an articulated body in a perfect planar fluid,” SIAM Journal on applied dynamical systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
405
+ page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
406
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
407
+ page_content=' 650–669, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
408
+ page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
409
+ page_content=' Burton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
410
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
411
+ page_content=' Hatton, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
412
+ page_content=' Choset, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
413
+ page_content=' Hosoi, “Two-link swim- ming using buoyant orientation,” Physics of Fluids, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
414
+ page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
415
+ page_content=' 9, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
416
+ page_content=' 091703, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
417
+ page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
418
+ page_content=' Zuo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
419
+ page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
420
+ page_content=' Li, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
421
+ page_content=' Ma, “Serpentine locomotion of a snake-like robot in water environment,” 03 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
422
+ page_content=' 25 – 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
423
+ page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
424
+ page_content=' Tesch, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
425
+ page_content=' Lipkin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
426
+ page_content=' Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
427
+ page_content=' Hatton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
428
+ page_content=' Peck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
429
+ page_content=' Rembisz, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
430
+ page_content=' Choset, “Parameterized and scripted gaits for modular snake robots,” Advanced Robotics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
431
+ page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
432
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
433
+ page_content=' 1131–1158, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
434
+ page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
435
+ page_content=' Chernova and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
436
+ page_content=' Veloso, “An evolutionary approach to gait learning for four-legged robots,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
437
+ page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
438
+ page_content='04CH37566), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
439
+ page_content=' 3, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
440
+ page_content=' 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
441
+ page_content=' 2562–2567 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
442
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
443
+ page_content=' [18] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
444
+ page_content=' Kohl and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
445
+ page_content=' Stone, “Machine learning for fast quadrupedal loco- motion,” in AAAI, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
446
+ page_content=' [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
447
+ page_content=' Calandra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
448
+ page_content=' Gopalan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
449
+ page_content=' Seyfarth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
450
+ page_content=' Peters, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
451
+ page_content=' Deisenroth, “Bayesian gait optimization for bipedal locomotion,” 02 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
452
+ page_content=' 274–290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
453
+ page_content=' [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
454
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
455
+ page_content=' Peng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
456
+ page_content=' Berseth, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
457
+ page_content=' Yin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
458
+ page_content=' van de Panne, “Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning,” ACM Transactions on Graphics (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
459
+ page_content=' SIGGRAPH 2017), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
460
+ page_content=' 36, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
461
+ page_content=' 4, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
462
+ page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
463
+ page_content=' Rajeswaran, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
464
+ page_content=' Kumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
465
+ page_content=' Gupta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
466
+ page_content=' Schulman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
467
+ page_content=' Todorov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
468
+ page_content=' Levine, “Learning complex dexterous manipulation with deep reinforcement learning and demonstrations,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
469
+ page_content=' abs/1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
470
+ page_content='10087, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
471
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
472
+ page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
473
+ page_content='org/abs/1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
474
+ page_content=' 10087 [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
475
+ page_content=' Long, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
476
+ page_content=' Fan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
477
+ page_content=' Liao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
478
+ page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
479
+ page_content=' Zhang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
480
+ page_content=' Pan, “Towards optimally decentralized multi-robot collision avoidance via deep rein- forcement learning,” 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
481
+ page_content=' [23] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
482
+ page_content=' Bing, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
483
+ page_content=' Lemke, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
484
+ page_content=' Jiang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
485
+ page_content=' Huang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
486
+ page_content=' Knoll, “Energy- efficient slithering gait exploration for a snake-like robot based on reinforcement learning,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
487
+ page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
488
+ page_content=' Sharma and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
489
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
490
+ page_content=' Kitani, “Phase-parametric policies for reinforce- ment learning in cyclic environments,” in AAAI, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
491
+ page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
492
+ page_content=' Coulom, “Reinforcement learning using neural networks, with applications to motor control,” 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
493
+ page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
494
+ page_content=' Schulman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
495
+ page_content=' Wolski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
496
+ page_content=' Dhariwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
497
+ page_content=' Radford, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
498
+ page_content=' Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
499
+ page_content='06347, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89FPT4oBgHgl3EQfYjQR/content/2301.13072v1.pdf'}
8dAyT4oBgHgl3EQfc_fQ/content/tmp_files/2301.00295v1.pdf.txt ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00295v1 [math.GT] 31 Dec 2022
2
+ PACKING MEETS TOPOLOGY
3
+ MICHAEL H. FREEDMAN
4
+ ABSTRACT. This note initiates an investigation of packing links into a region of Euclidean space to
5
+ achieve a maximal density subject to geometric constraints. The upper bounds obtained apply only
6
+ to the class of homotopically essential links and even there seem extravagantly large, leaving much
7
+ working room for the interested reader.
8
+ 1. INTRODUCTION AND THEOREMS
9
+ Optimal packing of balls into Euclidean space has a long history and recent astonishing suc-
10
+ cesses, including Hale’s resolution of the Kepler conjecture [H+17] and the optimality of the E8
11
+ and Leech lattices [Via17,CKM+17], resulting in a 2022 Fields Medal to Maryna Viazovska.
12
+ In this note, we introduce the idea of packing links, rather than points, again with the goal of
13
+ achieving the highest possible density subject to the geometric constraints that certain link compo-
14
+ nents must maintain a distance ≥ ε from certain other components. There will be an observation
15
+ about higher dimensions but let us begin with packing classical links into Euclidean 3-space. In
16
+ the classical sphere packing problem, all points are constrained to have distance ≥ ε from each
17
+ other. The analogous stipulation for links, that all components must maintain a distance ≥ ε from
18
+ each other, is also of potential interest, but in that case, the coarse outline of the subject is broadly
19
+ similar to point packings. That is, in both cases, each component takes up a definite amount of
20
+ volume so no more that O(ε−3) link components can be ε-embedded into the unit cube, where
21
+ ε-embedded means no two components approach within ε of each other. While this coarse upper
22
+ bound holds for all link types, complicated links almost surely have smaller upper bounds. For
23
+ example, we conjecture that if Ln is the link type consisting of n-fibers of the Hopf map S3 → S2
24
+ then n can grow no more quickly than O(ε−2).
25
+ However, this note focuses on a regime, partial-ε-embeddings, where even the coarse answer
26
+ can be quite mysterious. By a partial-ε-embedding we mean that only certain specified pairs of
27
+ components must stay ε apart. In this context we are often left puzzled as to whether the number of
28
+ link components that can fit into the unit cube is: (1) countably infinite1, (2) finite but unbounded,
29
+ (3) exponential or super-exponential in ε−1, or (4) polynomial in ε−1.
30
+ The theme of this note is well illustrated by our first example: Hn, which by definition is the
31
+ 2n-component link type formed by taking n-Hopf links r
32
+ b each separated from the others by
33
+ some smooth embedded 2-sphere. One may write the link as Hn :=
34
+
35
+ n
36
+ j=1Hj, where Hj = r j ∪bj.
37
+ The partial-ε-embedding condition we study is that for all j, dist(r j,bj) ≥ ε. We call such an
38
+ embedding a diagonal-ε-embedding.
39
+ 1This case, of course, would require slightly relaxing the definition of “embedding” to a 1-1 map which, when
40
+ restricted to any finite collection of circles, is a smooth embedding of the expected link type.
41
+ 1
42
+
43
+ 2
44
+ MICHAEL H. FREEDMAN
45
+ We use Ω-notation, g(x) = Ω( f(x)), to mean that, for some a > 0 and sufficiently large x,
46
+ g(x) ≤ a f(x).
47
+ Theorem 1. If Hn has a diagonal-ε-embedding into the unit cube then n(ε) = Ω
48
+
49
+ eaε−3�
50
+ for some
51
+ a > 0.
52
+ Proof. Let I3 be the unit cube. Tile I3 by cells dual to a triangulation of I3. The cells should have
53
+ the property that they are somewhat regular: each cell should have an inscribed sphere of radius
54
+ > ε
55
+ 20 and an excribed sphere of radius < ε
56
+ 2. These dual cells have the property that any union of
57
+ them is a PL 3-manifold with boundary. We prefer not to use the obvious coordinate sub-cubes of
58
+ I3, because they fail to have this property.2 The number of cells in this tiling τ is O(ε−3).
59
+ Assume Hn is diagonally-ε-embedded. For each j, 1 ≤ j ≤ n, 3-color the tiling τ according
60
+ to the rule that a cell is red if it meets r j, blue if it meets bj, and white otherwise. Call this
61
+ coloring cj. Now we decorate cj with additional homological information. Let Rj (Bj) be the
62
+ union of the red (blue) cells under cj. The first homology, H1(Rj;Z2) is a vector space over
63
+ Z2 of dimension dj = Ω(ε−3), for which we choose a basis bj1,...,bjdj. Similarly, H1(Bj;Z2)
64
+ has dimension ej = Ω(ε−3) with basis f j1,..., f je j. Let Ljpq be the djxej matrix of Z2-linking
65
+ numbers, Lpq
66
+ j = Link(bjp,ejq).
67
+ Now, homologically we may express the class of r j in H1(Rj) (the class of bj in H1(Bj))
68
+ as r j = ∑
69
+ dj
70
+ p=1xjpbjp (bj = ∑
71
+ e j
72
+ q=1 yjq f jq). Now the mod 2 linking numbers of the link Hj can be
73
+ recovered as:
74
+ (1)
75
+ 1 = Link(bj,r j) = Lpq
76
+ j xjpyjq,
77
+ Einstein summation convention in effect.
78
+ Where cj was the jth coloring, let ˆcj be a decorated j-coloring where the decoration amounts
79
+ to fixing the mod 2 numbers {xp}, 1 ≤ p ≤ dj, and {yq}, 1 ≤ q ≤ ej, which express, within the
80
+ arbitrarily chosen bases, how bj and r j lie homologically in H1(Bj;Z2) and H1(Rj;Z2).
81
+ How many possible decorated colorings, #DC(ε) can there be?
82
+ (2)
83
+ #DC(ε) = Ω
84
+
85
+ 3a′ε−3 ·2a′′ε−3 ·2a′′ε−3�
86
+ = Ω
87
+
88
+ eaε−3�
89
+ ,
90
+ all constants > 0.
91
+ The first factor bounds the number of 3-colorings and the second two factors the possible values
92
+ of the binary strings {xjp} and {yjq}, respectively.
93
+ Now by the pigeonhole principle if n(ε) were not Ω(eaε−3), two Hopf links Hi and Hj, i ̸= j,
94
+ within Hn must determine the same decorated coloring ˆci = ˆcj. But with Hi and Hj having identical
95
+ thickenings: Bi = Bj and Ri = Rj, and identical homological data. Line 1 can also be read as a
96
+ computation for the off-diagonal linking number:
97
+ (3)
98
+ 0 = Link(bj,ri) = Lpq
99
+ j xjpyiq = Lpq
100
+ i xjpyjq = Lpq
101
+ i xipyiq = 1
102
+ This contradiction proves the theorem.
103
+
104
+ 2For this first proof, the manifold property is actually not necessary, but for Theorems 2 and 6 the manifold property
105
+ is an added convenience.
106
+
107
+ PACKING MEETS TOPOLOGY
108
+ 3
109
+ Before leaving this example, what packings can we imagine to supply a lower bound on n(ε),
110
+ for Hn? The simplest starting point would be to link two circles of radius ε into a small, rigid,
111
+ Hopf link, and then throw copies of these “linked key rings” into a unit box, shaking gently until
112
+ full. This seems to yield n = O(ε−3). But then we realize the box is not as full as we thought.
113
+ We can sprinkle in a second generation of orthogonally linked pairs of radius 3ε circles, ignoring
114
+ the presence of the first generation. By ignoring the first generation, we will create many linking
115
+ number = 1 with the first generation, but these can be undone “finger moves” of length ≤ ε to the
116
+ second generation. By the triangle inequality, the second generation will still satisfy the diagonal-
117
+ ε-embedded condition after all finger moves. We are still not done; we can add a third generation
118
+ of orthogonal radius = 7ε Hopf links, which will retain the diagonal-ε condition after length ≤ 3
119
+ finger moves recovers the correct link type, Hn. We can of course itterate with Hopf links of radius
120
+ {ri}, r0 = ε, ri+1 = 2ri +1, until ri approaches unit size. From scale considerations, but ignoring
121
+ unimportant boundary effects, we see that if ni is the number of ith generation Hopf links in the
122
+ box, then n0,n1,n2,... is dominated by the geometric series n0,2−3n0,4−3n0,.... So summing this
123
+ series we find that the total number n = ∑ni of the Hopf links satisfies
124
+ (4)
125
+ n(ε) < 8
126
+ 7n0
127
+ So, in the end, all our extra work only changed (slightly) the leading coefficient. Not being
128
+ able to find anything more clever, this leaves the huge gap between O(ε−3) and O(eaε−3), in which
129
+ the truth must lie. Our conjecture is that n = O(ε−3), but the proof calls out for a new idea.
130
+ Before discussing other link types, let us make a quick remark regarding higher dimensions.
131
+ If d = p +q +1, then two disjoint closed submanifolds of Rd have a well-defined mod 2 linking
132
+ nmber if they have dimensions p and q respectively. Now in Rd let Hn denote any link of 2n
133
+ component {r j,bj}, 1 ≤ j ≤ n, with mod 2 linking numbers given by:
134
+ L(ri,r j) = 0, L(bi,bj) = 0, i ̸= j, and L(ri,bj) = δi j
135
+ Identical reasoning shows that the maximum possible n(ε), nmax(ε), satisfies:
136
+ (5)
137
+ O(ε−d) ≤ nmax(ε) ≤ ea(d)ε−d
138
+ for some a > 0, which actually generalizes Theorem 1 even when d = 3. nmax(ε) is the largest
139
+ number such that a 2n(ε)-component link can be embedded in the unit d-cube with the specified
140
+ linking and dist(r j,bj) ≥ ε, 1 ≤ j ≤ n.
141
+ Returning to dimension d = 3, let us give a further example, which steps away, slightly, from
142
+ linking number. Consider the problem of packing the disjoint union (again this means smoothly
143
+ embedded spheres separating the copies of) of n copies Bn of a three component link B, such as the
144
+ Borromean rings, which has all linking numbers 0 and Milnor’s µ-invariant µ123(L) ̸≡ 0 mod 3
145
+ [Mil54]. B has components l1,l2,l3, Bj = (l j1,l j2,l j3). Again, colors r1,r2,r3 are associated to the
146
+ 3-components. We now enforce the diagonal-ε-condition: for each j, 1 ≤ j ≤ n, dist(l ji,l ji′) ≥ ε
147
+ whenever i ̸= i′.
148
+ Let nB(ε) be the largest n for which such an embedding exists, or ∞ is no such bound exists.
149
+ Theorem 2. For all ε > 0, the Borromean packing number nB(ε) is indeed a finite integer, with
150
+ nB(ε) = Ω(eaε−9).
151
+
152
+ 4
153
+ MICHAEL H. FREEDMAN
154
+ Proof. We begin, as before, with a generic tessellation of I3 of scale between ε
155
+ 20 and ε
156
+ 2. Now, for
157
+ each j, 1 ≤ j ≤ n, make a 4-coloring cj of I3 by the rule that a cell gets the color ri, 1 ≤ i ≤ 3, of
158
+ the component it meets; if it meets none then it is white. But now we proceed differently, for the
159
+ decoration: homology is wholly insufficient. To motivate our new decoration recall a classic:
160
+ Theorem 3 (Burnside). Any finitely generated group of exponent 3 is finite.
161
+
162
+ Note. To estimate nB(ε) in Theorem 2, we used the calculation of [LvdW33] that the order of
163
+ the free, restricted Burnside group is |B(m,3)| = 3m+(m
164
+ 2)+(m
165
+ 3). This will imply the bound stated in
166
+ Theorem 2.
167
+ We create a bespoke invariant to exploit Burnside’s theorem.
168
+ Definition. Define 3-link-homotopy to be Milnor’s classical link-homotopy [Mil54] (individual
169
+ components may cross themselves during the homotopy but not other components) with the addi-
170
+ tional ad hoc relation: at any moment during the homotopy, any component may be band summed
171
+ to g3, where g is a free loop in the complement of the other components. The cube means wrap 3
172
+ times around g.
173
+ Whereas before, the coloring cj was decorated with homological information, now the deco-
174
+ ration ˆcj assigns to the submanifold Cji colored ri (according to our rule for the jth coloring cj)
175
+ the conjugacy class [l ji] of the component l ji in the Burnside group π3
176
+ 1(Cji), where by definition,
177
+ π3
178
+ 1(X) means π1(X) with the additional relations that all elements cube to the identity.
179
+ Lemma 4. The 3-link-homotopy class of a link Bj in I3 can be recovered from the decorated
180
+ coloring ˆcj.
181
+ Proof. Since Cji and Cji′ are disjoint for i ̸= i′, a homotopy of Lj in which each component l ji
182
+ stays within its Cji′ is a link-homotopy. Furthermore, if each l ji is permitted to vary in Cji within
183
+ its π3
184
+ 1(Cji) conjugacy class, this is a special case of 3-link-homotopy. Thus, if each l ji is rechosen
185
+ within its π3
186
+ 1(Cji) conjugacy class, the 3-link homotopy class is preserved.
187
+
188
+ Lemma 5. For a 3-component link with vanishing linking numbers3, µ123(B) is conserved mod 3
189
+ under 3-link-homotopy.
190
+ Proof. We may assume that during the 3-link-homotopy only one component moves or is altered
191
+ at any given time. The “cyclic symmetry” theorem ([Mil57] Theorem 6) says that w.l.o.g. we
192
+ may assume that the active component is the one being Magnus-expanded in the link group of the
193
+ others. To recall, for any k-component link L, µI(L), I = i1,...,ik distinct indices, is computed by
194
+ expending, as below, the component lik in the polynomial ring denoted by R[xi1,...,xik−1] [Mil54].
195
+ This is Milnor’s notation for the integers adjoined k −1 non-commuting variables which are also
196
+ “non-repeating,” meaning that one divides out by the ideal generated by monomials in which any
197
+ variable occurs more than once.
198
+ 3It is actually only necessary to assume 3 ∤ gcd(link(li,lj)), i ̸= j.
199
+
200
+ PACKING MEETS TOPOLOGY
201
+ 5
202
+ (6)
203
+ [lik] ∈ π1(I3 \(li1 ∪···∪lik−1))
204
+ ։
205
+ M(I3 \(li1 ∪···∪lik−1))
206
+ ։
207
+ FMk−1(mi−1,...,mik−1)
208
+ Magnus
209
+ −−−−→ R[xi1,...,xik−1]
210
+ mi j �→ 1+xi
211
+ m−1
212
+ i j �→ 1−xi
213
+ where mi j are meridians to li j, M denotes the Milnor link group obtained by adding the relations
214
+ that each meridian commutes with all its conjugates, and FM is the corresponding free Milnor
215
+ group generated by mi1,...,mik−1 subject only to these commutation relations. As the diagram
216
+ indicates, [lik] is first projected, then lifted to FMk−1, and finally expanded.
217
+ Then by definition, µI(L) = the coefficient of xi1,...,xik−1 of Magnus[l jk]. Any ambiguity in
218
+ the expansion due to the choice of lifting constitutes the indeterminancy of that µI. For general
219
+ background on µ invariants see [Mil54,Mil57,Kru98].
220
+ As the kth-component moves by link-homotopy the element and its expansion are constant.
221
+ Adding the cube g3 of a loop g to l jk multiplies its Magnus expansion M by the Magnus expansion
222
+ Mg3 of g3, M → MMg3 = M(Mg)3.
223
+ Since B has 3 components, k − 1 = 2, (Mg)3 is the cube of some monoic polynomial in two
224
+ variables x1 and x2: (Mg)3 = (1 + c1x1 + c2x2 + c12x1x2 + ...)3. A brute force consideration of
225
+ the 27 possible coefficient values mod 3 shows that in all cases the coefficients of x1, x2, and x1x2
226
+ in (Mg)3 are all divisible by 3. Multiplying out we see that µ123(B) mod 3 is invariant under
227
+ 3-link-homotopy.
228
+
229
+ The number #c(ε) of possible colors is #c(ε) = Ω(ea′ε−3) and the number of decorations pos-
230
+ sible for a coloring c is bounded by the product of the order of the Burnside groups Ω(ea′′ε−9) for
231
+ each of the colored (not white) regions. Thus the number of possible decorated coloring #ˆc(ε) has
232
+ a similar bound as a function of ε. As in Theorem 1, the pigeonhole principle tells us that if we
233
+ could place n > #ˆc(ε) copies of B in I3, obeying the diagonal-ε-condition then for 1 ≤ i < j ≤ n, Bi
234
+ and Bj will determine identical decorated colorings.
235
+ But Lemma 4 now tells us three things: Li has 3-link-homotopy type B, Bj has 3-link-homotopy
236
+ type B, and Bi j has 3-link-homotopy type B, where Bi j is the link obtained by starting with Bi and
237
+ then swapping out any one component of Bi for the corresponding component of Bj. The first two
238
+ conclusions are as we expect, but the third sounds wrong. Because Bi and Bj are split (separated
239
+ by a smoothly embedded 2-sphere), so Bi j is a split link and all its µ123-invariant must vanish. But
240
+ this vanishing contradicts Lemma 5, which says any link (including Bi j) in the 3-link-homotopy
241
+ class of B has its µ123-invariant not congruent to 0 mod 3. This proves Theorem 2.
242
+
243
+ Replacing Burnside groups with the mod p lower central series (p-lcs) quotients allows a joint
244
+ extension of Theorems 1 and 2, although with an exponentially weaker upper bound.
245
+ Theorem 6. Let E be any homotopically essential link of k-components, E = (e1,...,ek) and En
246
+ be the disjoint union of n copies of E. For every ε > 0 there is a largest n, nmax, such that En
247
+
248
+ 6
249
+ MICHAEL H. FREEDMAN
250
+ embeds in the unit cube I3 with the property that for all j, 1 ≤ j ≤ n, dist(eji,eji′) ≥ ε for i ̸= j,
251
+ and 1 ≤ i ̸= i′ ≤ k. nmax = Ω
252
+
253
+ eap((a′ε−3)k)�
254
+ , where p is the smallest prime not dividing the first
255
+ nontrivial non-repeating µ-invariant of E, and a,a′ > 0 are fixed constants.
256
+ Proof. Begin in the familiar fashion by creating a (k+1)-coloring cj of a fixed ε-scale tessellation
257
+ of I3 in which each cell meeting eji is colored ri and the remaining cells are colored white. Similar
258
+ to Theorems 1 and 2, we need to specify some finite amount of data about eji in its ri-colored region
259
+ Rji sufficient to (1) certify the homotopically essential nature of Ej and (2) create the contradiction
260
+ that a related split link Ei j would also be homotopically essential.
261
+ By induction, it suffices to consider the case that E is almost homotopically trivial, meaning all
262
+ its sub-links are all homotopically trivial, or more algebraically, that all non-repeating µ-invariants
263
+ of length < k vanish.
264
+ As in the proof of Theorem 2, cyclic symmetry implies that we may focus on a single “active”
265
+ component l jik (and going forward drop the j-index for the embedding and replace ik′ by a single
266
+ index), project l jik, now denoted simply by lk, to the Milnor group, and choose a lift αk to the free
267
+ Milnor group FMk−1. The finite data we consider is the image of αk in Qp
268
+ k := FMk−1/[FMk−1]p
269
+ k,
270
+ where for any group G, [G]p
271
+ n is the nth-term of the mod p lower central series of G. This is defined
272
+ by saying G1 = G, and Gm is generated (= normally generated) by the words aua−1u−1vp, a ∈ G,
273
+ and u,v ∈ Gm−1.
274
+ Regarding the bound, its essential ingredient is that the order
275
+ ��Qp
276
+ k
277
+ �� = Ω
278
+
279
+ p((a′ε−3)k)�
280
+ . π1(Rji)
281
+ has g = Ω(ε−3) generators, so this also bounds the size of the free Milnor group under considera-
282
+ tion. The quotient Qp
283
+ k is (k −1)-stage nilpotent with at most gs new (twisted) 2p factors added by
284
+ during the sth-central extension. Thus the total number of copies of Zp twisted together to make
285
+ the p-group Qp
286
+ k−1 is Ω(ε−3)k−1, giving the order bound.
287
+ Returning to the main line of the proof, we need:
288
+ Lemma 7. Suppose β ∈ [FM(m1,...,mk−1)]p
289
+ i , 1 ≤ i ≤ k − 1, then Magnus(β) maps to (1 +
290
+ monomials of degree ≥ i) under reduction of coefficients Z → Zp, inducing R[x1,...,xk−1]
291
+ πp
292
+ −→
293
+ Rp[x1,...,xk−1] := Zp[x1,...,xk−1]/(repeating ideal), i.e. πp(Magnus(β)) = (1 +terms of degree
294
+ ≥ i).
295
+ Proof. By induction. When i = 1 the statement is that pth power has no linear terms when expanded
296
+ into Rp[x1,...,xk−1]. Now assume that Lemma 7 is true for i −1 and expand aua−1u−1vp, where
297
+ a ∈ FM(m1,...,mk−1), and u,v ∈ [FM(m1,...,mk−1)]p
298
+ i−1. The lowest positive degree (= i − 1)
299
+ monomials in Magnus(u) and Magnus(u−1) are identical except for reversed signs; consequently,
300
+ the aua−1u−1 factor expands to (1 + monomials of degree ≥ i) as the degree = i − 1 terms all
301
+ cancel. The vp factor has the same form since the degree i − 1 terms are now repeated p times
302
+ each. Consequently, the product aua−1u−1v2 also expands to this form.
303
+
304
+
305
+ PACKING MEETS TOPOLOGY
306
+ 7
307
+ The p-lcs subgroups are characteristic: they map to each other under homomorphisms and if
308
+ F ։ G is an epimorphism then [F]p
309
+ k maps epimorphically to [G]p
310
+ k. Apply these facts to the maps:
311
+ (7)
312
+ π1(Rk) → π1(I3 \e1 ∪···∪ek−1) → M(I3 \e1 ∪···∪ek−1) ← FM(I3 \e1 ∪···∪ek−1)
313
+ Magnus
314
+ −→
315
+ Rp[x1,...,xk−1]
316
+ −→
317
+ β ∈ [π1(Rk)]p
318
+ k
319
+ and apply Lemma 7 to conclude that any β ∈ [π1(Rh)]p
320
+ k−1 will Magnus expand to 1 in line 6.
321
+ Now consider a second version of a bespoke link homotopy, (p,k)-link-homotopy, in which
322
+ components homotope (while maintaining disjointness), for convenience only move one at a time,
323
+ and finally the active component (which our notation treats as the last component) is permitted
324
+ at any moment to form an ambient connected sum with any loop β ∈ [π1(Rk)]p
325
+ k. The present
326
+ analog of Lemma 5 is that the non-repeating length k µ invariants of L are invariant mod p under
327
+ (p,k)-link-homotopy. The proof is parallel to that of Lemma 5, simply Magnus expand ek#β ⊂
328
+ I3 \(e1∪,···∪ek−1) into Rp[x1,...,xk−1].
329
+ The present analog of Lemma 4 is that any k-component E′ (p,k)-link-homotopic to E contin-
330
+ ues to have nontrivial, non-repeating, µ invariants of length k. This follows from Lemma 7, again
331
+ by expanding ek#β into Rp[x1,...,xk−1]. In particular, no such E′ can be a split link.
332
+ The proof of Theorem 6 is completed, once again, by an application of the pigeonhole principle.
333
+ If nmax(ε) exceeds the cardinality of the decorate colorings {ˆcj}, where now each colored region
334
+ Rji is decorated by a conjugacy class of [π1(Rji)]p
335
+ k representing the invariant information regarding
336
+ the location of eji inside Rji, then for j ̸= j′, Ej and Ej′ will induce identical data. We have just
337
+ argued that this data suffices to reconstruct the nontrivial (p,k)-link-homotopy classes of both Ej
338
+ and Ej′. This is as it should be. But now define Ej j′ by starting with Ej and exchanging any one of
339
+ its components with the corresponding component of Ej′. Exactly the same data now tells us that
340
+ Ej j′ has a non-vanishing, µ-invariant of length k. This is a contradiction since Ej j′ is a split link,
341
+ split by the 2-sphere separating Ej from Ej′.
342
+
343
+ 2. DISCUSSION
344
+ The use of Z2 coefficients in the initial homological disucssion was arbitrary, and any finite
345
+ coefficient ring would suffice. However, for Theorem 2, the choice of the prime 3 was crucial.
346
+ p = 2 would make the Burnside group abelian and provide no useful information. In this regard
347
+ it is amusing to check that the Borromean rings is indeed 2-link-homotopy equivalent to the 3-
348
+ component unlink (µ123 is not conserved mod 2 under 2-link-homotopy). The restricted Burnside
349
+ groups B(n,k) are only known to be finite for k = 2,3,4, and 6. The most general Theorem 6
350
+ exploits the interplay of the mod p-lcs with the µ-invariants. While broadest, the estimate there is
351
+ exponentially worse.
352
+ Our philosophy is that the upper bounds we offer, based on homology or µ, are terrible. Firstly,
353
+ the estimates seem way too big, and second they only apply to links with easy algebraic features;
354
+ boundary link and even the Whitehead link are left untouched. Our conjecture, a challenge to the
355
+ reader, is that every non-trivial link L of two or more components has an ε-diagonal packing bound
356
+ for the number of ε-diagonally embedded copies of the form #L(ε) = Ω(ε−3).
357
+
358
+ 8
359
+ MICHAEL H. FREEDMAN
360
+ 3. ACKNOWLEDGEMENTS
361
+ The question studied here arose while working with Michael Starbird on [FS22]. An Ω(ε−3)
362
+ bound for the Hopf link problem might offer an alternative proof strategy for that paper’s main
363
+ theorem. I would also like to thank Slava Krushkal for insightful discussions.
364
+ REFERENCES
365
+ [CKM+17] Henry Cohn, Abhinav Kumar, Stephen Miller, Danylo Radchenko, and Maryna Viazovska, The sphere
366
+ packing problem in dimension 24, Ann. Math. 185 (2017), no. 3, 1017–1033.
367
+ [FS22] Michael Freedman and Michael Starbird, The geometry of the Bing involution (2022), available at
368
+ arXiv:2209.07597.
369
+ [H+17] Thomas Hales et al., A formal proof of the Kepler conjecture, Forum Math. Pi 5 (2017).
370
+ [Kru98] Vyacheslav Krushkal, Additivity properties of Milnor’s µ-invariants, J. Knot Theory Ramif. 7 (1998),
371
+ no. 5, 625–637.
372
+ [LvdW33] Friedrich Levi and B.L. van der Waerden, ¨Uber eine besondere Klasse von Gruppen, Abh. Math. Semin.
373
+ Univ. Hambg. 9 (1933), 154–158.
374
+ [Mil54] John Milnor, Link groups, Ann. Math. 59 (1954), no. 2, 177–195.
375
+ [Mil57]
376
+ , Isotopy of links, Algebraic geometry and topology, 1957.
377
+ [Via17] Maryna Viazovska, The sphere packing problem in dimension 8, Ann. Math. 185 (2017), no. 3, 991–1015.
378
+ MICHAEL H. FREEDMAN, MICROSOFT RESEARCH, STATION Q, AND DEPARTMENT OF MATHEMATICS, UNI-
379
+ VERSITY OF CALIFORNIA, SANTA BARBARA, SANTA BARBARA, CA 93106
380
+
8dAyT4oBgHgl3EQfc_fQ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf,len=270
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
3
+ page_content='00295v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
4
+ page_content='GT] 31 Dec 2022 PACKING MEETS TOPOLOGY MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
5
+ page_content=' FREEDMAN ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
6
+ page_content=' This note initiates an investigation of packing links into a region of Euclidean space to achieve a maximal density subject to geometric constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
7
+ page_content=' The upper bounds obtained apply only to the class of homotopically essential links and even there seem extravagantly large, leaving much working room for the interested reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
8
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
9
+ page_content=' INTRODUCTION AND THEOREMS Optimal packing of balls into Euclidean space has a long history and recent astonishing suc- cesses, including Hale’s resolution of the Kepler conjecture [H+17] and the optimality of the E8 and Leech lattices [Via17,CKM+17], resulting in a 2022 Fields Medal to Maryna Viazovska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
10
+ page_content=' In this note, we introduce the idea of packing links, rather than points, again with the goal of achieving the highest possible density subject to the geometric constraints that certain link compo- nents must maintain a distance ≥ ε from certain other components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
11
+ page_content=' There will be an observation about higher dimensions but let us begin with packing classical links into Euclidean 3-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
12
+ page_content=' In the classical sphere packing problem, all points are constrained to have distance ≥ ε from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
13
+ page_content=' The analogous stipulation for links, that all components must maintain a distance ≥ ε from each other, is also of potential interest, but in that case, the coarse outline of the subject is broadly similar to point packings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
14
+ page_content=' That is, in both cases, each component takes up a definite amount of volume so no more that O(ε−3) link components can be ε-embedded into the unit cube, where ε-embedded means no two components approach within ε of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
15
+ page_content=' While this coarse upper bound holds for all link types, complicated links almost surely have smaller upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
16
+ page_content=' For example, we conjecture that if Ln is the link type consisting of n-fibers of the Hopf map S3 → S2 then n can grow no more quickly than O(ε−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
17
+ page_content=' However, this note focuses on a regime, partial-ε-embeddings, where even the coarse answer can be quite mysterious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
18
+ page_content=' By a partial-ε-embedding we mean that only certain specified pairs of components must stay ε apart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
19
+ page_content=' In this context we are often left puzzled as to whether the number of link components that can fit into the unit cube is: (1) countably infinite1, (2) finite but unbounded, (3) exponential or super-exponential in ε−1, or (4) polynomial in ε−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
20
+ page_content=' The theme of this note is well illustrated by our first example: Hn, which by definition is the 2n-component link type formed by taking n-Hopf links r b each separated from the others by some smooth embedded 2-sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
21
+ page_content=' One may write the link as Hn := ∏ n j=1Hj, where Hj = r j ∪bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
22
+ page_content=' The partial-ε-embedding condition we study is that for all j, dist(r j,bj) ≥ ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
23
+ page_content=' We call such an embedding a diagonal-ε-embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
24
+ page_content=' 1This case, of course, would require slightly relaxing the definition of “embedding” to a 1-1 map which, when restricted to any finite collection of circles, is a smooth embedding of the expected link type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
25
+ page_content=' 1 2 MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
26
+ page_content=' FREEDMAN We use Ω-notation, g(x) = Ω( f(x)), to mean that, for some a > 0 and sufficiently large x, g(x) ≤ a f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
27
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
28
+ page_content=' If Hn has a diagonal-ε-embedding into the unit cube then n(ε) = Ω � eaε−3� for some a > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
29
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
30
+ page_content=' Let I3 be the unit cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
31
+ page_content=' Tile I3 by cells dual to a triangulation of I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
32
+ page_content=' The cells should have the property that they are somewhat regular: each cell should have an inscribed sphere of radius > ε 20 and an excribed sphere of radius < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
33
+ page_content=' These dual cells have the property that any union of them is a PL 3-manifold with boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
34
+ page_content=' We prefer not to use the obvious coordinate sub-cubes of I3, because they fail to have this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
35
+ page_content='2 The number of cells in this tiling τ is O(ε−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
36
+ page_content=' Assume Hn is diagonally-ε-embedded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
37
+ page_content=' For each j, 1 ≤ j ≤ n, 3-color the tiling τ according to the rule that a cell is red if it meets r j, blue if it meets bj, and white otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
38
+ page_content=' Call this coloring cj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
39
+ page_content=' Now we decorate cj with additional homological information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
40
+ page_content=' Let Rj (Bj) be the union of the red (blue) cells under cj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
41
+ page_content=' The first homology, H1(Rj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
42
+ page_content='Z2) is a vector space over Z2 of dimension dj = Ω(ε−3), for which we choose a basis bj1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
43
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
44
+ page_content=',bjdj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
45
+ page_content=' Similarly, H1(Bj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
46
+ page_content='Z2) has dimension ej = Ω(ε−3) with basis f j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
47
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
48
+ page_content=', f je j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
49
+ page_content=' Let Ljpq be the djxej matrix of Z2-linking numbers, Lpq j = Link(bjp,ejq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
50
+ page_content=' Now, homologically we may express the class of r j in H1(Rj) (the class of bj in H1(Bj)) as r j = ∑ dj p=1xjpbjp (bj = ∑ e j q=1 yjq f jq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
51
+ page_content=' Now the mod 2 linking numbers of the link Hj can be recovered as: (1) 1 = Link(bj,r j) = Lpq j xjpyjq, Einstein summation convention in effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
52
+ page_content=' Where cj was the jth coloring, let ˆcj be a decorated j-coloring where the decoration amounts to fixing the mod 2 numbers {xp}, 1 ≤ p ≤ dj, and {yq}, 1 ≤ q ≤ ej, which express, within the arbitrarily chosen bases, how bj and r j lie homologically in H1(Bj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
53
+ page_content='Z2) and H1(Rj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
54
+ page_content='Z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
55
+ page_content=' How many possible decorated colorings, #DC(ε) can there be?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
56
+ page_content=' (2) #DC(ε) = Ω � 3a′ε−3 ·2a′′ε−3 ·2a′′ε−3� = Ω � eaε−3� , all constants > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
57
+ page_content=' The first factor bounds the number of 3-colorings and the second two factors the possible values of the binary strings {xjp} and {yjq}, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
58
+ page_content=' Now by the pigeonhole principle if n(ε) were not Ω(eaε−3), two Hopf links Hi and Hj, i ̸= j, within Hn must determine the same decorated coloring ˆci = ˆcj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
59
+ page_content=' But with Hi and Hj having identical thickenings: Bi = Bj and Ri = Rj, and identical homological data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
60
+ page_content=' Line 1 can also be read as a computation for the off-diagonal linking number: (3) 0 = Link(bj,ri) = Lpq j xjpyiq = Lpq i xjpyjq = Lpq i xipyiq = 1 This contradiction proves the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
61
+ page_content=' □ 2For this first proof, the manifold property is actually not necessary, but for Theorems 2 and 6 the manifold property is an added convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
62
+ page_content=' PACKING MEETS TOPOLOGY 3 Before leaving this example, what packings can we imagine to supply a lower bound on n(ε), for Hn?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
63
+ page_content=' The simplest starting point would be to link two circles of radius ε into a small, rigid, Hopf link, and then throw copies of these “linked key rings” into a unit box, shaking gently until full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
64
+ page_content=' This seems to yield n = O(ε−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
65
+ page_content=' But then we realize the box is not as full as we thought.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
66
+ page_content=' We can sprinkle in a second generation of orthogonally linked pairs of radius 3ε circles, ignoring the presence of the first generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
67
+ page_content=' By ignoring the first generation, we will create many linking number = 1 with the first generation, but these can be undone “finger moves” of length ≤ ε to the second generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
68
+ page_content=' By the triangle inequality, the second generation will still satisfy the diagonal- ε-embedded condition after all finger moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
69
+ page_content=' We are still not done;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
70
+ page_content=' we can add a third generation of orthogonal radius = 7ε Hopf links, which will retain the diagonal-ε condition after length ≤ 3 finger moves recovers the correct link type, Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
71
+ page_content=' We can of course itterate with Hopf links of radius {ri}, r0 = ε, ri+1 = 2ri +1, until ri approaches unit size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
72
+ page_content=' From scale considerations, but ignoring unimportant boundary effects, we see that if ni is the number of ith generation Hopf links in the box, then n0,n1,n2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
73
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
74
+ page_content=' is dominated by the geometric series n0,2−3n0,4−3n0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
75
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
76
+ page_content='. So summing this series we find that the total number n = ∑ni of the Hopf links satisfies (4) n(ε) < 8 7n0 So, in the end, all our extra work only changed (slightly) the leading coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
77
+ page_content=' Not being able to find anything more clever, this leaves the huge gap between O(ε−3) and O(eaε−3), in which the truth must lie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
78
+ page_content=' Our conjecture is that n = O(ε−3), but the proof calls out for a new idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
79
+ page_content=' Before discussing other link types, let us make a quick remark regarding higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
80
+ page_content=' If d = p +q +1, then two disjoint closed submanifolds of Rd have a well-defined mod 2 linking nmber if they have dimensions p and q respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
81
+ page_content=' Now in Rd let Hn denote any link of 2n component {r j,bj}, 1 ≤ j ≤ n, with mod 2 linking numbers given by: L(ri,r j) = 0, L(bi,bj) = 0, i ̸= j, and L(ri,bj) = δi j Identical reasoning shows that the maximum possible n(ε), nmax(ε), satisfies: (5) O(ε−d) ≤ nmax(ε) ≤ ea(d)ε−d for some a > 0, which actually generalizes Theorem 1 even when d = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
82
+ page_content=' nmax(ε) is the largest number such that a 2n(ε)-component link can be embedded in the unit d-cube with the specified linking and dist(r j,bj) ≥ ε, 1 ≤ j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
83
+ page_content=' Returning to dimension d = 3, let us give a further example, which steps away, slightly, from linking number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
84
+ page_content=' Consider the problem of packing the disjoint union (again this means smoothly embedded spheres separating the copies of) of n copies Bn of a three component link B, such as the Borromean rings, which has all linking numbers 0 and Milnor’s µ-invariant µ123(L) ̸≡ 0 mod 3 [Mil54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
85
+ page_content=' B has components l1,l2,l3, Bj = (l j1,l j2,l j3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
86
+ page_content=' Again, colors r1,r2,r3 are associated to the 3-components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
87
+ page_content=' We now enforce the diagonal-ε-condition: for each j, 1 ≤ j ≤ n, dist(l ji,l ji′) ≥ ε whenever i ̸= i′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
88
+ page_content=' Let nB(ε) be the largest n for which such an embedding exists, or ∞ is no such bound exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
89
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
90
+ page_content=' For all ε > 0, the Borromean packing number nB(ε) is indeed a finite integer, with nB(ε) = Ω(eaε−9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
91
+ page_content=' 4 MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
92
+ page_content=' FREEDMAN Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
93
+ page_content=' We begin, as before, with a generic tessellation of I3 of scale between ε 20 and ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
94
+ page_content=' Now, for each j, 1 ≤ j ≤ n, make a 4-coloring cj of I3 by the rule that a cell gets the color ri, 1 ≤ i ≤ 3, of the component it meets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
95
+ page_content=' if it meets none then it is white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
96
+ page_content=' But now we proceed differently, for the decoration: homology is wholly insufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
97
+ page_content=' To motivate our new decoration recall a classic: Theorem 3 (Burnside).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
98
+ page_content=' Any finitely generated group of exponent 3 is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
99
+ page_content=' □ Note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
100
+ page_content=' To estimate nB(ε) in Theorem 2, we used the calculation of [LvdW33] that the order of the free, restricted Burnside group is |B(m,3)| = 3m+(m 2)+(m 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
101
+ page_content=' This will imply the bound stated in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
102
+ page_content=' We create a bespoke invariant to exploit Burnside’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
103
+ page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
104
+ page_content=' Define 3-link-homotopy to be Milnor’s classical link-homotopy [Mil54] (individual components may cross themselves during the homotopy but not other components) with the addi- tional ad hoc relation: at any moment during the homotopy, any component may be band summed to g3, where g is a free loop in the complement of the other components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
105
+ page_content=' The cube means wrap 3 times around g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
106
+ page_content=' Whereas before, the coloring cj was decorated with homological information, now the deco- ration ˆcj assigns to the submanifold Cji colored ri (according to our rule for the jth coloring cj) the conjugacy class [l ji] of the component l ji in the Burnside group π3 1(Cji), where by definition, π3 1(X) means π1(X) with the additional relations that all elements cube to the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
107
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
108
+ page_content=' The 3-link-homotopy class of a link Bj in I3 can be recovered from the decorated coloring ˆcj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
109
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
110
+ page_content=' Since Cji and Cji′ are disjoint for i ̸= i′, a homotopy of Lj in which each component l ji stays within its Cji′ is a link-homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
111
+ page_content=' Furthermore, if each l ji is permitted to vary in Cji within its π3 1(Cji) conjugacy class, this is a special case of 3-link-homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
112
+ page_content=' Thus, if each l ji is rechosen within its π3 1(Cji) conjugacy class, the 3-link homotopy class is preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
113
+ page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
114
+ page_content=' For a 3-component link with vanishing linking numbers3, µ123(B) is conserved mod 3 under 3-link-homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
115
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
116
+ page_content=' We may assume that during the 3-link-homotopy only one component moves or is altered at any given time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
117
+ page_content=' The “cyclic symmetry” theorem ([Mil57] Theorem 6) says that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
118
+ page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
119
+ page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
120
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
121
+ page_content=' we may assume that the active component is the one being Magnus-expanded in the link group of the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
122
+ page_content=' To recall, for any k-component link L, µI(L), I = i1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
123
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
124
+ page_content=',ik distinct indices, is computed by expending, as below, the component lik in the polynomial ring denoted by R[xi1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
125
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
126
+ page_content=',xik−1] [Mil54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
127
+ page_content=' This is Milnor’s notation for the integers adjoined k −1 non-commuting variables which are also “non-repeating,” meaning that one divides out by the ideal generated by monomials in which any variable occurs more than once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
128
+ page_content=' 3It is actually only necessary to assume 3 ∤ gcd(link(li,lj)), i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
129
+ page_content=' PACKING MEETS TOPOLOGY 5 (6) [lik] ∈ π1(I3 \\(li1 ∪···∪lik−1)) ։ M(I3 \\(li1 ∪···∪lik−1)) ։ FMk−1(mi−1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
130
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
131
+ page_content=',mik−1) Magnus −−−−→ R[xi1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
132
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
133
+ page_content=',xik−1] mi j �→ 1+xi m−1 i j �→ 1−xi where mi j are meridians to li j, M denotes the Milnor link group obtained by adding the relations that each meridian commutes with all its conjugates, and FM is the corresponding free Milnor group generated by mi1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
134
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
135
+ page_content=',mik−1 subject only to these commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
136
+ page_content=' As the diagram indicates, [lik] is first projected, then lifted to FMk−1, and finally expanded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
137
+ page_content=' Then by definition, µI(L) = the coefficient of xi1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
138
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
139
+ page_content=',xik−1 of Magnus[l jk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
140
+ page_content=' Any ambiguity in the expansion due to the choice of lifting constitutes the indeterminancy of that µI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
141
+ page_content=' For general background on µ invariants see [Mil54,Mil57,Kru98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
142
+ page_content=' As the kth-component moves by link-homotopy the element and its expansion are constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
143
+ page_content=' Adding the cube g3 of a loop g to l jk multiplies its Magnus expansion M by the Magnus expansion Mg3 of g3, M → MMg3 = M(Mg)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
144
+ page_content=' Since B has 3 components, k − 1 = 2, (Mg)3 is the cube of some monoic polynomial in two variables x1 and x2: (Mg)3 = (1 + c1x1 + c2x2 + c12x1x2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
145
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
146
+ page_content=')3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
147
+ page_content=' A brute force consideration of the 27 possible coefficient values mod 3 shows that in all cases the coefficients of x1, x2, and x1x2 in (Mg)3 are all divisible by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
148
+ page_content=' Multiplying out we see that µ123(B) mod 3 is invariant under 3-link-homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
149
+ page_content=' □ The number #c(ε) of possible colors is #c(ε) = Ω(ea′ε−3) and the number of decorations pos- sible for a coloring c is bounded by the product of the order of the Burnside groups Ω(ea′′ε−9) for each of the colored (not white) regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
150
+ page_content=' Thus the number of possible decorated coloring #ˆc(ε) has a similar bound as a function of ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
151
+ page_content=' As in Theorem 1, the pigeonhole principle tells us that if we could place n > #ˆc(ε) copies of B in I3, obeying the diagonal-ε-condition then for 1 ≤ i < j ≤ n, Bi and Bj will determine identical decorated colorings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
152
+ page_content=' But Lemma 4 now tells us three things: Li has 3-link-homotopy type B, Bj has 3-link-homotopy type B, and Bi j has 3-link-homotopy type B, where Bi j is the link obtained by starting with Bi and then swapping out any one component of Bi for the corresponding component of Bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
153
+ page_content=' The first two conclusions are as we expect, but the third sounds wrong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
154
+ page_content=' Because Bi and Bj are split (separated by a smoothly embedded 2-sphere), so Bi j is a split link and all its µ123-invariant must vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
155
+ page_content=' But this vanishing contradicts Lemma 5, which says any link (including Bi j) in the 3-link-homotopy class of B has its µ123-invariant not congruent to 0 mod 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
156
+ page_content=' This proves Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
157
+ page_content=' □ Replacing Burnside groups with the mod p lower central series (p-lcs) quotients allows a joint extension of Theorems 1 and 2, although with an exponentially weaker upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
158
+ page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
159
+ page_content=' Let E be any homotopically essential link of k-components, E = (e1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
160
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
161
+ page_content=',ek) and En be the disjoint union of n copies of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
162
+ page_content=' For every ε > 0 there is a largest n, nmax, such that En 6 MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
163
+ page_content=' FREEDMAN embeds in the unit cube I3 with the property that for all j, 1 ≤ j ≤ n, dist(eji,eji′) ≥ ε for i ̸= j, and 1 ≤ i ̸= i′ ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
164
+ page_content=' nmax = Ω � eap((a′ε−3)k)� , where p is the smallest prime not dividing the first nontrivial non-repeating µ-invariant of E, and a,a′ > 0 are fixed constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
165
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
166
+ page_content=' Begin in the familiar fashion by creating a (k+1)-coloring cj of a fixed ε-scale tessellation of I3 in which each cell meeting eji is colored ri and the remaining cells are colored white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
167
+ page_content=' Similar to Theorems 1 and 2, we need to specify some finite amount of data about eji in its ri-colored region Rji sufficient to (1) certify the homotopically essential nature of Ej and (2) create the contradiction that a related split link Ei j would also be homotopically essential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
168
+ page_content=' By induction, it suffices to consider the case that E is almost homotopically trivial, meaning all its sub-links are all homotopically trivial, or more algebraically, that all non-repeating µ-invariants of length < k vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
169
+ page_content=' As in the proof of Theorem 2, cyclic symmetry implies that we may focus on a single “active” component l jik (and going forward drop the j-index for the embedding and replace ik′ by a single index), project l jik, now denoted simply by lk, to the Milnor group, and choose a lift αk to the free Milnor group FMk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
170
+ page_content=' The finite data we consider is the image of αk in Qp k := FMk−1/[FMk−1]p k, where for any group G, [G]p n is the nth-term of the mod p lower central series of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
171
+ page_content=' This is defined by saying G1 = G, and Gm is generated (= normally generated) by the words aua−1u−1vp, a ∈ G, and u,v ∈ Gm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
172
+ page_content=' Regarding the bound, its essential ingredient is that the order ��Qp k �� = Ω � p((a′ε−3)k)� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
173
+ page_content=' π1(Rji) has g = Ω(ε−3) generators, so this also bounds the size of the free Milnor group under considera- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
174
+ page_content=' The quotient Qp k is (k −1)-stage nilpotent with at most gs new (twisted) 2p factors added by during the sth-central extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
175
+ page_content=' Thus the total number of copies of Zp twisted together to make the p-group Qp k−1 is Ω(ε−3)k−1, giving the order bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
176
+ page_content=' Returning to the main line of the proof, we need: Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
177
+ page_content=' Suppose β ∈ [FM(m1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
178
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
179
+ page_content=',mk−1)]p i , 1 ≤ i ≤ k − 1, then Magnus(β) maps to (1 + monomials of degree ≥ i) under reduction of coefficients Z → Zp, inducing R[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
180
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
181
+ page_content=',xk−1] πp −→ Rp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
182
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
183
+ page_content=',xk−1] := Zp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
184
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
185
+ page_content=',xk−1]/(repeating ideal), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
186
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
187
+ page_content=' πp(Magnus(β)) = (1 +terms of degree ≥ i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
188
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
189
+ page_content=' By induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
190
+ page_content=' When i = 1 the statement is that pth power has no linear terms when expanded into Rp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
191
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
192
+ page_content=',xk−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
193
+ page_content=' Now assume that Lemma 7 is true for i −1 and expand aua−1u−1vp, where a ∈ FM(m1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
194
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
195
+ page_content=',mk−1), and u,v ∈ [FM(m1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
196
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
197
+ page_content=',mk−1)]p i−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
198
+ page_content=' The lowest positive degree (= i − 1) monomials in Magnus(u) and Magnus(u−1) are identical except for reversed signs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
199
+ page_content=' consequently, the aua−1u−1 factor expands to (1 + monomials of degree ≥ i) as the degree = i − 1 terms all cancel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
200
+ page_content=' The vp factor has the same form since the degree i − 1 terms are now repeated p times each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
201
+ page_content=' Consequently, the product aua−1u−1v2 also expands to this form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
202
+ page_content=' □ PACKING MEETS TOPOLOGY 7 The p-lcs subgroups are characteristic: they map to each other under homomorphisms and if F ։ G is an epimorphism then [F]p k maps epimorphically to [G]p k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
203
+ page_content=' Apply these facts to the maps: (7) π1(Rk) → π1(I3 \\e1 ∪···∪ek−1) → M(I3 \\e1 ∪···∪ek−1) ← FM(I3 \\e1 ∪···∪ek−1) Magnus −→ Rp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
204
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
205
+ page_content=',xk−1] −→ β ∈ [π1(Rk)]p k and apply Lemma 7 to conclude that any β ∈ [π1(Rh)]p k−1 will Magnus expand to 1 in line 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
206
+ page_content=' Now consider a second version of a bespoke link homotopy, (p,k)-link-homotopy, in which components homotope (while maintaining disjointness), for convenience only move one at a time, and finally the active component (which our notation treats as the last component) is permitted at any moment to form an ambient connected sum with any loop β ∈ [π1(Rk)]p k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
207
+ page_content=' The present analog of Lemma 5 is that the non-repeating length k µ invariants of L are invariant mod p under (p,k)-link-homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
208
+ page_content=' The proof is parallel to that of Lemma 5, simply Magnus expand ek#β ⊂ I3 \\(e1∪,···∪ek−1) into Rp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
209
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
210
+ page_content=',xk−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
211
+ page_content=' The present analog of Lemma 4 is that any k-component E′ (p,k)-link-homotopic to E contin- ues to have nontrivial, non-repeating, µ invariants of length k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
212
+ page_content=' This follows from Lemma 7, again by expanding ek#β into Rp[x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
213
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
214
+ page_content=',xk−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
215
+ page_content=' In particular, no such E′ can be a split link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
216
+ page_content=' The proof of Theorem 6 is completed, once again, by an application of the pigeonhole principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
217
+ page_content=' If nmax(ε) exceeds the cardinality of the decorate colorings {ˆcj}, where now each colored region Rji is decorated by a conjugacy class of [π1(Rji)]p k representing the invariant information regarding the location of eji inside Rji, then for j ̸= j′, Ej and Ej′ will induce identical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
218
+ page_content=' We have just argued that this data suffices to reconstruct the nontrivial (p,k)-link-homotopy classes of both Ej and Ej′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
219
+ page_content=' This is as it should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
220
+ page_content=' But now define Ej j′ by starting with Ej and exchanging any one of its components with the corresponding component of Ej′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
221
+ page_content=' Exactly the same data now tells us that Ej j′ has a non-vanishing, µ-invariant of length k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
222
+ page_content=' This is a contradiction since Ej j′ is a split link, split by the 2-sphere separating Ej from Ej′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
223
+ page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
224
+ page_content=' DISCUSSION The use of Z2 coefficients in the initial homological disucssion was arbitrary, and any finite coefficient ring would suffice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
225
+ page_content=' However, for Theorem 2, the choice of the prime 3 was crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
226
+ page_content=' p = 2 would make the Burnside group abelian and provide no useful information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
227
+ page_content=' In this regard it is amusing to check that the Borromean rings is indeed 2-link-homotopy equivalent to the 3- component unlink (µ123 is not conserved mod 2 under 2-link-homotopy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
228
+ page_content=' The restricted Burnside groups B(n,k) are only known to be finite for k = 2,3,4, and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
229
+ page_content=' The most general Theorem 6 exploits the interplay of the mod p-lcs with the µ-invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
230
+ page_content=' While broadest, the estimate there is exponentially worse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
231
+ page_content=' Our philosophy is that the upper bounds we offer, based on homology or µ, are terrible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
232
+ page_content=' Firstly, the estimates seem way too big, and second they only apply to links with easy algebraic features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
233
+ page_content=' boundary link and even the Whitehead link are left untouched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
234
+ page_content=' Our conjecture, a challenge to the reader, is that every non-trivial link L of two or more components has an ε-diagonal packing bound for the number of ε-diagonally embedded copies of the form #L(ε) = Ω(ε−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
235
+ page_content=' 8 MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
236
+ page_content=' FREEDMAN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
237
+ page_content=' ACKNOWLEDGEMENTS The question studied here arose while working with Michael Starbird on [FS22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
238
+ page_content=' An Ω(ε−3) bound for the Hopf link problem might offer an alternative proof strategy for that paper’s main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
239
+ page_content=' I would also like to thank Slava Krushkal for insightful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
240
+ page_content=' REFERENCES [CKM+17] Henry Cohn, Abhinav Kumar, Stephen Miller, Danylo Radchenko, and Maryna Viazovska, The sphere packing problem in dimension 24, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
241
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
242
+ page_content=' 185 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
243
+ page_content=' 3, 1017–1033.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
244
+ page_content=' [FS22] Michael Freedman and Michael Starbird, The geometry of the Bing involution (2022), available at arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
245
+ page_content='07597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
246
+ page_content=' [H+17] Thomas Hales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
247
+ page_content=', A formal proof of the Kepler conjecture, Forum Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
248
+ page_content=' Pi 5 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
249
+ page_content=' [Kru98] Vyacheslav Krushkal, Additivity properties of Milnor’s µ-invariants, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
250
+ page_content=' Knot Theory Ramif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
251
+ page_content=' 7 (1998), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
252
+ page_content=' 5, 625–637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
253
+ page_content=' [LvdW33] Friedrich Levi and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
254
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
255
+ page_content=' van der Waerden, ¨Uber eine besondere Klasse von Gruppen, Abh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
256
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
257
+ page_content=' Semin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
258
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
259
+ page_content=' Hambg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
260
+ page_content=' 9 (1933), 154–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
261
+ page_content=' [Mil54] John Milnor, Link groups, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
262
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
263
+ page_content=' 59 (1954), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
264
+ page_content=' 2, 177–195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
265
+ page_content=' [Mil57] , Isotopy of links, Algebraic geometry and topology, 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
266
+ page_content=' [Via17] Maryna Viazovska, The sphere packing problem in dimension 8, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
267
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
268
+ page_content=' 185 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
269
+ page_content=' 3, 991–1015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
270
+ page_content=' MICHAEL H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
271
+ page_content=' FREEDMAN, MICROSOFT RESEARCH, STATION Q, AND DEPARTMENT OF MATHEMATICS, UNI- VERSITY OF CALIFORNIA, SANTA BARBARA, SANTA BARBARA, CA 93106' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dAyT4oBgHgl3EQfc_fQ/content/2301.00295v1.pdf'}
8dAyT4oBgHgl3EQfp_jS/content/2301.00536v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7a368b7bd42f1e822330f4946bc1da94a8283e9aa479c929c0d3f1c63f43391
3
+ size 500170
8dAyT4oBgHgl3EQfp_jS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ef4b076bc583091e6deaae93f1d0051b5dfc67d072d43a05106b0cba1bb67c
3
+ size 248920
8tE2T4oBgHgl3EQfPwar/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccdaac563382e65211abf7535e053f2d9418c4b94097293a64c26192b95d4e7
3
+ size 3538989
9NE0T4oBgHgl3EQfwgHr/content/tmp_files/2301.02635v1.pdf.txt ADDED
@@ -0,0 +1,1144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02635v1 [math.AC] 6 Jan 2023
2
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
3
+ NAOKI ENDO, LAURA GHEZZI, SHIRO GOTO, JOOYOUN HONG, SHIN-ICHIRO IAI,
4
+ TOSHINORI KOBAYASHI, NAOYUKI MATSUOKA, AND RYO TAKAHASHI
5
+ Dedicated to the memory of Wolmer V. Vasconcelos
6
+ Abstract. Let A be a Noetherian local ring with canonical module KA. We characterize A when
7
+ KA is a torsionless, reflexive, or q-torsionfree module for an integer q ≥ 3. If A is a Cohen-Macaulay
8
+ ring, H.-B. Foxby proved in 1974 that the A-module KA is q-torsionfree if and only if the ring A
9
+ is q-Gorenstein. With mild assumptions, we provide a generalization of Foxby’s result to arbitrary
10
+ Noetherian local rings admitting the canonical module. In particular, since the reflexivity of the
11
+ canonical module is closely related to the ring being Gorenstein in low codimension, we also explore
12
+ quasi-normal rings, introduced by W. V. Vasconcelos. We provide several examples as well.
13
+ 1. Introduction
14
+ This paper investigates the question of the structure of a Noetherian local ring A if its canonical
15
+ module KA is a torsionless, reflexive, or more generally, q-torsionfree A-module for an integer q ≥ 3.
16
+ The notion of q-torsionfree modules was one of the central contributions of the famous research
17
+ of M. Auslander and M. Bridger [1], which was succeeded by H.-B. Foxby [11] to be a striking
18
+ study of q-Gorenstein rings. Among many interesting results, Foxby settled the above question
19
+ in the case where A is a Cohen-Macaulay ring. More precisely, the A-module KA is q-torsionfree
20
+ if and only if the ring A is q-Gorenstein, i.e., Ap is a Gorenstein ring for every p ∈ Spec A with
21
+ depth Ap < q (see [10, Proposition 3.2]). It remains unclear what happens if we do not assume the
22
+ ring A is Cohen-Macaulay. The theory of canonical modules nowadays has been developed mainly
23
+ over Cohen-Macaulay rings in connection with the Gorenstein property; see e.g., [7, 13, 14, 15, 20].
24
+ However, over Noetherian local (not necessarily Cohen-Macaulay) rings, there are also remarkable
25
+ preceding researches on canonical modules, including the study of their endomorphism algebras;
26
+ see [3, 4, 6]. Therefore, behaviors of canonical modules, even for non-Cohen-Macaulay rings, are
27
+ interesting and the q-torsionfree property is well worth studying. The motivation for the present
28
+ 2020 Mathematics Subject Classification. 13H10, 13A02, 13A15.
29
+ Key words and phrases. Canonical module, Gorenstein ring, Cohen-Macaulay ring, q-torsionfree module, q-Gorenstein
30
+ ring, quasi-normal ring.
31
+ N. Endo was partially supported by JSPS Grant-in-Aid for Young Scientists 20K14299. L. Ghezzi was partially
32
+ supported by the Fellowship Leave from the New York City College of Technology-CUNY (Fall 2022-Spring 2023)
33
+ and by a grant from the City University of New York PSC-CUNY Research Award Program Cycle 53. S. Goto was
34
+ partially supported by JSPS Grant-in-Aid for Scientific Research (C) 21K03211. J. Hong was partially supported
35
+ by the Sabbatical Leave Program at Southern Connecticut State University (Spring 2022). T. Kobayashi was partly
36
+ supported by JSPS Grant-in-Aid for JSPS Fellows 21J00567. N. Matsuoka was partially supported by JSPS Grant-in-
37
+ Aid for Scientific Research (C) 18K03227. R. Takahashi was partially supported by JSPS Grant-in-Aid for Scientific
38
+ Research (C) 19K03443.
39
+ 1
40
+
41
+ 2
42
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
43
+ research started with this question that arose while the second and fourth authors were writing the
44
+ last paper with Vasconcelos concerning (torsionless) canonical modules [5].
45
+ To explain our results more precisely, let us start from definitions which we will use throughout
46
+ this paper. For a Noetherian local ring A of dimension d with maximal ideal m, a canonical module
47
+ K of A is a finitely generated A-module satisfying
48
+ �A ⊗A K ∼= Hom �
49
+ A(Hd
50
+ �m( �A), �E)
51
+ where Hd
52
+ �m( �A) denotes the dth local cohomology module of the m-adic completion �A of A with respect
53
+ to its maximal ideal �m and �E is the injective hull of the �A-module �A/�m ([14, Definition 5.6]).
54
+ Equivalently, a finitely generated A-module K is a canonical module of A if HomA(K, E) ∼= Hd
55
+ m(A),
56
+ where Hd
57
+ m(A) is the dth local cohomology module of A with respect to m and E is the injective hull
58
+ of A/m ([6, Definition 12.1.2, Remarks 12.1.3]). The canonical module KA is uniquely determined
59
+ up to isomorphisms ([3, (1.5)], see also [14, Lemma 5.8]) if it exists. Although the existence is
60
+ not guaranteed even for Cohen-Macaulay local domains, provided A is Cohen-Macaulay, the ring
61
+ A admits the canonical module if and only if A is a homomorphic image of a Gorenstein ring
62
+ ([17, 19]). The fundamental theory of canonical modules over Cohen-Macaulay rings was developed
63
+ in the monumental book [14] of J. Herzog and E. Kunz. We shall in this paper freely refer to [14]
64
+ for basic results on canonical modules (see [7, Chapter 3] also).
65
+ We now continue to state our setup. Let R be a Noetherian (not necessarily local) ring. For an
66
+ R-module M, we have a canonical homomorphism
67
+ ϕ : M → M∗∗
68
+ defined by
69
+
70
+ ϕ(x)
71
+
72
+ (f) = f(x) for each f ∈ M∗ and x ∈ M, where (−)∗ = HomR(−, R) denotes the
73
+ R-dual functor. We say that M is torsionless (resp. reflexive) if ϕ is injective (resp. bijective).
74
+ Torsionless modules are torsionfree, i.e., there is no nonzero torsion elements, and the converse holds
75
+ if the total ring of fractions Q(R) of R is Gorenstein ([22, Theorem (A.1)]). Moreover, the R-module
76
+ M is torsionless (resp. reflexive) if and only if Exti
77
+ R(D(M), R) = (0) for i = 1 (resp. i = 1, 2),
78
+ where D(M) denotes the Auslander transpose of M ([1]). From this point of view, Auslander and
79
+ Bridger introduced a q-torsionfree module M to be Exti
80
+ R(D(M), R) = (0) for all i = 1, 2, . . . , q. In
81
+ addition, for an integer n, we say that
82
+ • M satisfies (Sn) if depth Mp ≥ min {n, dim Rp} for every p ∈ Spec R,
83
+ • M satisfies (�Sn) if depth Mp ≥ min {n, depth Rp} for every p ∈ Spec R,
84
+ • R satisfies (Gn) if Rp is Gorenstein for every p ∈ Spec R with dim Rp ≤ n,
85
+ • R satisfies (�Gn) if Rp is Gorenstein for every p ∈ Spec R with depth Rp ≤ n.
86
+ The condition (Sn) is known as Serre’s condition. A Noetherian ring satisfying (�Gn) coincides with
87
+ (n + 1)-Gorenstein ring in earlier publications such as [1, 11]. The condition (�Gn) is equivalent to
88
+ saying that the ring satisfies both (Sn+1) and (Gn).
89
+ Let us now state our results, explaining how this paper is organized. In Section 2, after recalling
90
+ the necessary definitions and preliminaries, we give a criterion for a Noetherian local ring A to
91
+ have the torsionless canonical module. We show that the A-module KA is torsionless if and only
92
+ if Ap is Gorenstein for every p ∈ Assh A, where Assh A = {p ∈ Spec A | dim A/p = dim A} =
93
+
94
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
95
+ 3
96
+ AssA KA (Proposition 2.3).
97
+ Section 3 is devoted to the characterizations of local rings A with
98
+ reflexive canonical modules. When dim A = 1, this is exactly the case where A is a Gorenstein
99
+ ring (Proposition 3.3). We elaborate on the one-dimensional case in Section 5. For the higher
100
+ dimensional case, the reflexivity of KA is characterized by the local ring Ap being Gorenstein for
101
+ every p ∈ SuppA KA with dim Ap ≤ 1 and Ass A ∩ V (U) = Assh A, where U denotes the unmixed
102
+ component of (0) in A and V (U) is the set of all prime ideals in A containing U (Theorem 3.6).
103
+ This lead us to obtain Corollary 3.8, which claims that KA is reflexive if and only if A satisfies (G1),
104
+ provided Assh A = Ass A. This indicates that the reflexivity of canonical modules is deeply related
105
+ to the ring being Gorenstein in low codimension.
106
+ Thus Section 4 is dedicated to quasi-normal
107
+ rings, i.e., rings with (S2) and (G1), which have been introduced by Vasconcelos. In Section 6, we
108
+ generalize Foxby’s result on q-torsionfree canonical modules to arbitrary Noetherian local rings A
109
+ admitting a canonical module. Our results of Sections 2 and 3 provide a complete generalization
110
+ in case q = 1, 2. When q ≥ 3, Theorem 6.6 states that the A-module KA is q-torsionfree if and
111
+ only if the ring A satisfies (Gq−1) and (Sq−1) on SuppA KA, provided that KA satisfies (Sq). In the
112
+ final section we provide concrete examples of Cohen-Macaulay and q-Gorenstein rings in order to
113
+ illustrate our theorems.
114
+ 2. Torsionless canonical modules
115
+ Throughout the section, let (A, m) be a Noetherian local ring of dimension d. We begin with
116
+ some preliminaries. Let (0) =
117
+
118
+ p∈Ass A
119
+ Q(p) denote a primary decomposition of (0) in A. We set
120
+ Assh A = {p ∈ Spec A | dim A/p = d}
121
+ and
122
+ U =
123
+
124
+ p∈Assh A
125
+ Q(p)
126
+ where U is called the unmixed component of (0) in A. Let V (U) denote the set of all prime ideals
127
+ of A containing U.
128
+ Lemma 2.1. There is an embedding 0 → A/U → A of A-modules.
129
+ Proof. We may assume that U ̸= (0). Then Assh A ⊊ Ass A. Let
130
+ L =
131
+
132
+ p∈Ass A\Assh A
133
+ Q(p).
134
+ We then have L ̸⊆
135
+
136
+ p∈Assh A
137
+ p. Choose an element a ∈ L but a ̸∈
138
+
139
+ p∈Assh A
140
+ p. Since a is a non-zerodivisor
141
+ on A/U and aU ⊆ L∩U = (0), we obtain ((0) :A a) = U. Then U is the kernel of the homomorphism
142
+ ϕ : A → A given by ϕ(1) = a. Thus, A/U ∼= Im(ϕ) ֒→ A.
143
+
144
+ In the rest of this section, we assume the ring A admits the canonical module KA. We recall
145
+ several known facts about KA which we will use throughout this article; see [3, (1.6), (1.7), (1.8),
146
+ (1.9), (1.10), Theorem 3.2] and [14, Korollar 6.3] (also [6, Chapter 12]) for the proofs.
147
+ Proposition 2.2. The following assertions hold true.
148
+ (1) The annihilator of KA is U. In particular, dimA KA = d and AssA KA = Assh A.
149
+
150
+ 4
151
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
152
+ (2) If a ∈ m is A-regular, then a is KA-regular.
153
+ (3) V (U) = SuppA KA = {p ∈ Spec A | dim A = dim A/p + htA p}.
154
+ (4) Both KA and HomA(KA, KA) satisfy (S2).
155
+ (5) KAp =
156
+
157
+ KA
158
+
159
+ p for every p ∈ SuppA KA.
160
+ (6) SuppA KA = Spec A if and only if Min A = Assh A.
161
+ (7) Ass A = Assh A if and only if KA is a faithful A-module.
162
+ (8) Suppose A is Cohen-Macaulay. If a ∈ m is A-regular, then KA/(a) exists and KA/(a) ∼= KA/aKA.
163
+ (9) Suppose that KA/U exists. Then KA/U, as an A-module, is the canonical module of A.
164
+ By Proposition 2.2-(2), the canonical module KA is torsionfree as an A-module.
165
+ In general,
166
+ torsionless modules are torsionfree, and the converse holds if and only if Ap is a Gorenstein local
167
+ ring for every p ∈ Ass A ([22, Theorem (A.1)]). Therefore, if the total ring of fractions Q(A) of A is
168
+ Gorenstein, then KA is torsionless. The following proposition shows the case where KA is torsionless
169
+ without assuming Q(A) is Gorenstein. It is also a generalization of [5, Proposition 3.2].
170
+ Proposition 2.3. The following conditions are equivalent :
171
+ (1) KA is a torsionless A-module ;
172
+ (2) Ap is a Gorenstein ring for every p ∈ Assh A ;
173
+ (3) KA ∼= I for some ideal I of A.
174
+ Proof. (1) ⇒ (2) Since KA is torsionless, there exists an exact sequence 0 → KA → F of A-modules,
175
+ where F is a finitely generated free A-module. Let p ∈ Assh A ⊆ SuppA KA. Then Ap is Artinian
176
+ and
177
+
178
+ KA
179
+
180
+ p is the canonical module of Ap. Therefore, we may assume that
181
+
182
+ KA
183
+
184
+ p is the injective hull
185
+ of Ap/pAp. The splitting monomorphism 0 →
186
+
187
+ KA
188
+
189
+ p → Fp induces that
190
+
191
+ KA
192
+
193
+ p is a direct summand
194
+ of the free Ap-module Fp. Since Ap is Artinian, by the Matlis duality, we have
195
+
196
+ KA
197
+
198
+ p ∼= Ap. Hence
199
+ Ap is a Gorenstein ring.
200
+ (2) ⇒ (3) Let W = A \ �
201
+ p∈Assh A p. By assumption,
202
+
203
+ KA
204
+
205
+ p ∼= Ap for every p ∈ Assh A. Thus,
206
+ W −1KA ∼= W −1A. Moreover, we have W −1A ∼= W −1(A/U) because W −1U = (0) by the proof of
207
+ Lemma 2.1. Since every element of W is a non-zerodivisor on both KA and A/U, the isomorphism
208
+ W −1KA ∼= W −1(A/U) induces the embedding KA ֒→ A/U. By Lemma 2.1, there is an embedding
209
+ KA ֒→ A.
210
+ (3) ⇒ (1) is clear.
211
+
212
+ If A is reduced, which means there are no nonzero nilpotents, then the local ring Ap is a field for
213
+ every p ∈ Ass A. Hence we obtain the following.
214
+ Corollary 2.4. If A is a reduced ring, then KA ∼= I for some ideal I of A.
215
+ We recall that if A is Cohen-Macaulay, the canonical module KA has rank one if and only if the
216
+ ring A is generically Gorenstein, i.e., Ap is a Gorenstein local ring for every p ∈ Min A. When
217
+ one of the equivalent conditions of [7, Proposition 3.3.18] is satisfied, the canonical module can be
218
+ identified with an ideal of A (see also [14, Satz 6.21]). The example below shows that the assumption
219
+ p ∈ Assh A is necessary for Proposition 2.3.
220
+
221
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
222
+ 5
223
+ Example 2.5. Let S = k[[X, Y, Z]] be the formal power series ring over a field k and set A =
224
+ S/[(X) ∩ (Y, Z)2]. Let x, y, z denote the images of X, Y, Z in A, respectively. Then we have
225
+ U = (x) and KA ∼= A/(x) ∼= y2A.
226
+ By Proposition 2.3, KA is torsionless. However, A is not generically Gorenstein. In fact, Aq is not
227
+ a Gorenstein ring for q = (y, z) ∈ Min A.
228
+ 3. Reflexive canonical modules
229
+ Let (A, m) be a Noetherian local ring of dimension d admitting the canonical module KA. We
230
+ denote by U the unmixed component of (0) in A. In this section we will show how the reflexivity
231
+ of the canonical module is related to the Gorensteinness of the ring. We begin with the following
232
+ simple but effective lemma.
233
+ Lemma 3.1. Suppose that KA is reflexive. Then Ass A ∩ V (U) = Assh A. In particular, if KA is
234
+ reflexive and depth A = 0, then dim A = 0.
235
+ Proof. The assertion follows from
236
+ V (U) ∩ Ass A = SuppA K∗
237
+ A ∩ Ass A = AssA HomA(K∗
238
+ A, A) = AssA K∗∗
239
+ A = AssA KA = Assh A.
240
+
241
+ The example below shows that the reflexivity of KA may require a rather strong restriction on A.
242
+ Example 3.2. Let S = k[[X, Y ]] be the formal power series ring over a field k and set A =
243
+ S/[(X) ∩ (X2, Y )]. Let x, y denote the images of X, Y in A, respectively. Let m = (x, y) be the
244
+ maximal ideal of A. Then we have Assh A = {(x)}, U = (x), and KA = A/U.
245
+ (1) Let p = (x). Since Ap is a field, by Proposition 2.3, KA is torsionless.
246
+ (2) Since depth A = 0 and dim A = 1, by Lemma 3.1, KA is not reflexive.
247
+ Proposition 3.3. Suppose d = 1. Then KA is a reflexive A-module if and only if A is a Gorenstein
248
+ ring.
249
+ Proof. Suppose that KA is reflexive. By Lemma 3.1, A is Cohen-Macaulay. Since KA is reflexive,
250
+ there exists an exact sequence 0 → KA → F1 → F0, where F0, F1 are finite free A-modules [11,
251
+ Proposition 2.1]. Let a ∈ m be an A-regular element. Since A is Cohen-Macaulay, KA/aKA is the
252
+ canonical module of A/aA. Moreover, the embedding 0 → KA/aKA → F1/aF1 proves that KA/aA
253
+ is torsionless. Therefore, by Proposition 2.3, A/aA is a Gorenstein ring. Thus, A is a Gorenstein
254
+ ring. The converse is clear.
255
+
256
+ Remark 3.4. There exist non-Cohen-Macaulay local rings with reflexive canonical module. Exam-
257
+ ple 6.2 shows a two-dimensional non-Cohen-Macaulay local ring A with KA reflexive. The example
258
+ also shows that, even if KA is reflexive, the equality Ass A = Assh A does not hold true in general.
259
+ Recall that a finitely generated A-module M is reflexive, i.e., the canonical map ϕ : M → M∗∗ is
260
+ an isomorphism, if and only if there is at least one isomorphism M ∼= M∗∗ of A-modules.
261
+
262
+ 6
263
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
264
+ Lemma 3.5. Suppose that there is an exact sequence
265
+ 0 → KA → K∗∗
266
+ A → C → 0
267
+ of A-modules. If C ̸= (0), then Ap is a Cohen-Macaulay ring with dim Ap = 1 for every p ∈ AssA C
268
+ with depth Ap ≥ 1. In particular, p ∈ V (U) and Up = (0).
269
+ Proof. Let p ∈ AssA C such that depth Ap ≥ 1. Then p ∈ SuppA KA = V (U). Since
270
+
271
+ KA
272
+
273
+ p ∼= KAp,
274
+ by passing to the ring Ap, we may assume depth A > 0 and depthA C = 0. Since AssA K∗∗
275
+ A ⊆ Ass A,
276
+ we have depthA K∗∗
277
+ A ≥ 1. From the exact sequence 0 → KA → K∗∗
278
+ A → C → 0, we obtain
279
+ 0 = depthA C ≥ min{depthA KA − 1, depthA K∗∗
280
+ A }.
281
+ Thus, depthA KA = 1. Since KA satisfies (S2), we have
282
+ 1 = depthA KA ≥ min{2, dim A}.
283
+ Therefore, A is a Cohen-Macaulay ring of dimension 1. In particular, U = (0).
284
+
285
+ Now we aim to generalize Proposition 3.3.
286
+ Theorem 3.6. The following conditions are equivalent :
287
+ (1) KA is a reflexive A-module ;
288
+ (2) Ass A ∩ V (U) = Assh A, and Ap is Gorenstein for every p ∈ SuppA KA with htA p ≤ 1.
289
+ Proof. (1) ⇒ (2) By Lemma 3.1, we have Ass A∩V (U) = Assh A. Let p ∈ SuppA KA with htA p ≤ 1.
290
+ If p ∈ Assh A, then Ap is Gorenstein by Proposition 2.3. Otherwise, we have dim Ap = 1. Since
291
+ KAp is a reflexive Ap-module, the ring Ap is Gorenstein by Proposition 3.3.
292
+ (2) ⇒ (1) Since Ap is Gorenstein for every p ∈ Assh A, by Proposition 2.3, KA is torsionless. Hence
293
+ we have the exact sequence
294
+ 0 → KA
295
+ ϕ
296
+ −→ K∗∗
297
+ A → C → 0
298
+ of A-modules, where ϕ is the canonical homomorphism. Suppose that C ̸= (0). Let p ∈ AssA C.
299
+ Note that p ∈ SuppA KA and
300
+
301
+ KA
302
+
303
+ p ∼= KAp. If htA p ≤ 1, then by assumption Ap is Gorenstein.
304
+ Then Cp = (0), which is a contradiction. Thus, htA p ≥ 2. Since Ass A ∩ V (U) = Assh A, we have
305
+ depth Ap ≥ 1. This shows, by Lemma 3.5, that Ap is a Cohen-Macaulay ring with dim Ap = 1,
306
+ which is a contradiction. Therefore C = (0) and KA is a reflexive A-module.
307
+
308
+ We summarize some consequences of Theorem 3.6.
309
+ Note that A satisfies (S1) if and only if
310
+ Ass A = Min A, and the latter condition implies Ass A ∩ V (U) = Assh A.
311
+ Corollary 3.7. If A satisfies (S1) and (G1), then KA is a reflexive A-module.
312
+ Recall that if Assh A = Ass A, then Spec A = SuppA KA. Thus, we obtain the following as another
313
+ direct consequence of Theorem 3.6.
314
+ Corollary 3.8. Suppose that Assh A = Ass A. Then KA is a reflexive A-module if and only if A
315
+ satisfies (G1).
316
+
317
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
318
+ 7
319
+ If A is a Cohen-Macaulay ring, the above corollary recovers [14, Korollar 7.29]. Recall that A is a
320
+ generalized Cohen-Macaulay ring, if the ith local cohomology module Hi
321
+ m(A) is a finitely generated
322
+ A-module for every i ̸= d.
323
+ Corollary 3.9. Suppose that A is a generalized Cohen-Macaulay ring and d > 0. Then KA is a
324
+ reflexive A-module if and only if depth A > 0 and A satisfies (G1).
325
+ Proof. By assumption, we have Ass A \ {m} ⊆ Assh A. If KA is reflexive, then by Lemma 3.1 we see
326
+ that depth A > 0. Without loss of generality, we may assume depth A > 0. Hence Ass A = Assh A.
327
+ The assertion follows from Corollary 3.8.
328
+
329
+ It seems natural to ask for the relation between the reflexivity of the A-module KA and that of
330
+ the A/U-module KA/U. As for this question, we have the following.
331
+ Theorem 3.10. The following conditions are equivalent :
332
+ (1) KA is a reflexive A-module ;
333
+ (2) KA/U is a reflexive A/U-module and Ass A ∩ V (U) = Assh A.
334
+ Proof. Let B = A/U. Then KA = KB ([3, 1.8]). Also note that Ass B = Assh B.
335
+ (1) ⇒ (2) By Lemma 3.1, we have Ass A ∩ V (U) = Assh A. By Corollary 3.8, it suffices to show
336
+ that B satisfies (G1). Let P ∈ Spec B be a prime with htB P ≤ 1. We write P = p/U for some
337
+ p ∈ V (U). Then htA p = htB P ≤ 1. Moreover, KAp is a reflexive Ap-module. By Propositions
338
+ 2.3 and 3.3, Ap is Gorenstein. Since Up = (0) :Ap KAp = (0), we obtain BP = Ap. Thus, BP is a
339
+ Gorenstein ring.
340
+ (2) ⇒ (1) Let p ∈ SuppA KA with htA p ≤ 1. By Theorem 3.6, it is enough to show that Ap is
341
+ Gorenstein. Let P = p/U. Then by Corollary 3.8, BP is a Gorenstein ring. Since Ass A ∩ V (U) =
342
+ Assh A, the ring Ap is Cohen-Macaulay. In particular, Up = (0) and Ap = BP. Therefore Ap is
343
+ Gorenstein.
344
+
345
+ Corollary 3.11. Suppose that A/U is a Gorenstein ring. Then the following assertions hold true.
346
+ (1) KA is a reflexive A-module if and only if Ass A ∩ V (U) = Assh A.
347
+ (2) If A satisfies (S1), then KA is reflexive.
348
+ Proof. Note that (1) follows directly from Theorem 3.10. To prove (2), it is enough to show that
349
+ Ass A ∩ V (U) ⊆ Assh A. Let p ∈ Ass A ∩ V (U). Since A satisfies (S1), we have htA p = 0. Since
350
+ p ∈ V (U), we have dim A = dim A/p + htA p = dim A/p. Therefore p ∈ Assh A.
351
+
352
+ Closing this section, we provide the examples of (not necessarily Cohen-Macaulay) local rings
353
+ admitting reflexive canonical modules.
354
+ Example 3.12. Let S = k[[X, Y1, Y2, . . . , Yn]] (n ≥ 2) be the formal power series ring over a field k
355
+ and let A = S/[(Xm) ∩ J] where m ≥ 1 and J is a (Y1, Y2, . . . , Yn)-primary ideal of S. Let x denote
356
+ the image of X in A. Then U = (xm), Assh A = {(x)}, and A/U is a Gorenstein ring. By Corollary
357
+ 3.11, the A-module KA is reflexive.
358
+
359
+ 8
360
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
361
+ Example 3.13. Let k be a field and R = k[∆] be the Stanley-Reisner ring of a simplicial complex
362
+ ∆. Since R is reduced, the graded canonical module KR (see [13, 21]) is torsionless. Moreover, if
363
+ #(Assh R) = 1, the ring R/U is Gorenstein, so that KR is reflexive as an R-module, where U stands
364
+ for the unmixed component of (0) in R and Assh R = {p ∈ Spec R | dim R/p = dim R}.
365
+ 4. Quasi-normal rings
366
+ Quasi-normal rings were introduced by Vasconcelos ([22, Definition 1.2]) and they are exactly
367
+ 2-Gorenstein rings.
368
+ Definition 4.1. A Noetherian ring R is said to be quasi-normal if R satisfies (S2) and (G1).
369
+ The following is a direct consequence of [11, Proposition 2.3] (for a local ring case, see also [8,
370
+ Theorem 3.8]). Here we include our alternative proof specifically for quasi-normal rings.
371
+ Proposition 4.2. Let R be a quasi-normal ring and let M be a finitely generated R-module. If
372
+ depthRp Mp ≥ min{2, dim Rp} for every p ∈ Spec R, then M is reflexive.
373
+ Proof. Consider the exact sequence of R-modules
374
+ 0 → X → M
375
+ ϕ
376
+ −→ M∗∗ → C → 0,
377
+ where ϕ denotes the canonical homomorphism. Suppose X ̸= (0) and choose p ∈ AssR X. By
378
+ assumption, we have dim Rp = 0. Since R satisfies (G1), the local ring Rp is Gorenstein, whence Mp
379
+ is reflexive. Hence Xp = (0), which is a contradiction. So X = (0), and we have the exact sequence
380
+ 0 → M → M∗∗ → C → 0.
381
+ Suppose C ̸= (0). Let p ∈ AssR C. If dim Rp = 0, then Mp is reflexive, so Cp = (0). This is a
382
+ contradiction. Thus dim Rp ≥ 1. As R satisfies (S2), we have depth Rp ≥ min{2, dim Rp}. Hence
383
+ depth Rp ≥ 1. Since depthRp M∗∗
384
+ p
385
+ ≥ min{2, depth Rp}, we then have depthRp M∗∗
386
+ p
387
+ ≥ 1. The exact
388
+ sequence
389
+ 0 → Mp → M∗∗
390
+ p
391
+ → Cp → 0
392
+ gives that
393
+ 0 = depthRp Cp ≥ min{depthRp Mp − 1, depthRp M∗∗
394
+ p }.
395
+ Hence depthRp Mp ≤ 1. By assumption, we have
396
+ 1 ≥ depthRp Mp ≥ min{2, dim Rp}.
397
+ Therefore dim Rp = 1 and depthRp Mp = 1. Since R satisfies (G1), the ring Rp is Gorenstein. By
398
+ [22, Corollary 2.3], we see that Mp is reflexive. Hence Cp = (0), which is a contradiction.
399
+
400
+ A finitely generated R-module ωR is a canonical module of R, if (ωR)m is the canonical module of
401
+ Rm for all maximal ideals m of R. In contrast to the local case, the canonical module is in general
402
+ not unique up to isomorphisms; see e.g., [7, Remark 3.3.17].
403
+ Corollary 4.3. Let R be a Noetherian ring with d = dim R > 0. Suppose that there exists a
404
+ canonical module ωR and Ass Rm = Assh Rm for every maximal ideal m. Then R is quasi-normal if
405
+ and only if R satisfies (S2) and ωR is reflexive.
406
+
407
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
408
+ 9
409
+ Proof. Suppose R is quasi-normal. Since ωR satisfies (S2) and dimRp[ωR]p = dim Rp for every p ∈
410
+ Spec R, by Proposition 4.2, we conclude that ωR is reflexive. For the converse, it remains to show
411
+ that R satisfies (G1). Let A = Rm, where m is a maximal ideal of R. Then KA = (ωR)m is reflexive.
412
+ Therefore we have Ass A = Assh A. By Corollary 3.8, A satisfies (G1). Thus R satisfies (G1).
413
+
414
+ We summarize some examples.
415
+ First, we note examples of quasi-normal rings which are not
416
+ normal. The simplest ones are non-normal Gorenstein rings.
417
+ Example 4.4. Suppose that R is a Cohen-Macaulay ring with canonical module ωR.
418
+ We set
419
+ T = R ⋉ωR to be the idealization of ωR over R. Then T is a Gorenstein ring ([17]), but not normal
420
+ because it is never a reduced ring.
421
+ For a commutative ring R, we denote by R the integral closure of R in Q(R). We refer to [7, p.
422
+ 178] for background on numerical semigroups.
423
+ Example 4.5. Let H = ⟨a1, a2, . . . , aℓ⟩ be a symmetric numerical semigroup. We consider R =
424
+ k[s, ta1, ta2, . . . , taℓ], where s, t are indeterminates and k is a field. Then R is a two-dimensional
425
+ Gorenstein ring with R = k[s, t], so that R is not normal if 1 ̸∈ H. As a special case, the ring
426
+ R = k[s, t2, t3] is quasi-normal, but not normal.
427
+ Next, we note examples of quasi-normal but non-normal Cohen-Macaulay rings which are more-
428
+ over not Gorenstein.
429
+ Example 4.6. Let k be a field and k[X, Y ] the polynomial ring over k. Let H = ⟨a1, a2, . . . , aℓ⟩
430
+ be a symmetric numerical semigroup such that 1 ̸∈ H and let k[H] = k[ta1, ta2, . . . , taℓ] denote the
431
+ semigroup ring of H over k, where t is an indeterminate. Let T = k[Xn, Xn−1Y, . . . , XY n−1, Y n],
432
+ where n ≥ 3 is an integer. We set R = T ⊗k k[H]. Then R is a quasi-normal Cohen-Macaulay
433
+ ring with dim R = 3, which is neither Gorenstein nor normal. Indeed, because R = T ⊗k k[t]
434
+ and k[H] ̸= k[t], the ring R is not normal. As T is normal, we see that R is a quasi-normal ring
435
+ (see Proposition 7.3 (2)). Moreover, R is not a Gorenstein ring because T is not Gorenstein. The
436
+ simplest example in this class is R = k[X3, X2Y, XY 2, Y 3] ⊗k k[t2, t3].
437
+ Example 4.7. Let T = k[X, Y, Z, V ] be the polynomial ring over a field k. We denote by I2(N) the
438
+ ideal of T generated by all the 2×2 minors of a matrix N. Let I = I2(M) where M =
439
+
440
+ Xa Y b+V
441
+ Zc
442
+ Y b′
443
+ Zc′
444
+ Xa′
445
+
446
+ for some integers a, b, c, a′, b′, c′ ≥ 1.
447
+ We set R = T/I.
448
+ Then R is a Cohen-Macaulay ring of
449
+ dimension 2. Let x, y, z, v denote the images of X, Y, Z, V in R, respectively. We first check the
450
+ isomorphism ωR ∼= (xa, yb′)R. In fact, by setting
451
+ f = Zc+c′ − Xa′(Y b + V ),
452
+ g = Xa+a′ − Y b′Zc,
453
+ and h = −XaZc′ + Y b′(Y b + V ),
454
+ we can consider the exact sequence
455
+ 0
456
+ � T 2
457
+ tM � T 3 (f
458
+ g
459
+ h) � T
460
+ � R
461
+ � 0
462
+
463
+ 10
464
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
465
+ of T-modules. By taking the T-dual, we get the presentation of ωR of the form T 3 M
466
+ → T 2 → ωR → 0.
467
+ Therefore, the complex of R-modules
468
+ R3
469
+ M
470
+ � R2 ( Y b′ −Xa ) � (xa, yb′)R
471
+ � 0
472
+ induces a natural epimorphism
473
+ ϕ : ωR ։ (xa, yb′)R
474
+ of R-modules. Moreover, ϕ is an isomorphism because ωR is a torsionfree R-module of rank one
475
+ and xa is a non-zerodivisor on R. Hence ωR ∼= (xa, yb′)R, as claimed. We similarly have
476
+ ωR ∼= (yb + v, zc′)R ∼= (zc, xa′)R.
477
+ We also note that the isomorphisms can be obtained by using the procedure of [23, Section 6.1.2].
478
+ In particular, R is not a Gorenstein ring, since the type of R is two.
479
+ Next, we show that R is a quasi-normal ring. Let p ∈ Spec R with htR p ≤ 1. If x ̸∈ p, then
480
+ [ωR]p ∼= (xa, yb′)Rp = Rp, so that Rp is a Gorenstein ring. Assume that x ∈ p. Similarly, we may
481
+ assume that y, z ∈ p. Then, v /∈ p, since htR p ≤ 1. Therefore, [ωR]p ∼= (yb + v, zc′)Rp = Rp, so that
482
+ Rp is a Gorenstein ring. Hence R is a quasi-normal ring.
483
+ Finally, we prove that R is a normal ring if and only if a′ = b′ = c = 1. Assume a′ = b′ = c = 1
484
+ and consider the ideal
485
+ J = I2
486
+
487
+
488
+
489
+
490
+ Zc′
491
+ (a + 1)Xa
492
+ Y b + V
493
+ −(b + 1)Y b + V
494
+ −Z
495
+ bXY b−1
496
+ c′XaZc′−1
497
+ −Y
498
+ −(c′ + 1)Zc′
499
+ −Y
500
+ 0
501
+ X
502
+
503
+
504
+
505
+  .
506
+ Then J + I/I is the Jacobian ideal of R over k.
507
+ A direct computation shows that
508
+
509
+ J + I =
510
+ (X, Y, Z, V ) and hence, by the Jacobian criterion, the local ring Rp is regular for every p ∈ Spec R \
511
+ {(x, y, z, v)}. Hence R is a normal ring. Conversely, we assume a′ ≥ 2, or b′ ≥ 2, or c ≥ 2. By
512
+ taking
513
+ P =
514
+
515
+ (X, Y b + V, Z)
516
+ (if c ≥ 2)
517
+ (X, Y, Z)
518
+ (if c = 1),
519
+ we then have J ⊆ P. We set p = PR. Then htR p = 1, but Rp is not a DVR. Indeed, because
520
+ ε = Y or ε′ = Y b + V is invertible in TP, we see that
521
+ JTP =
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+ Zc+c′ − Xa′(Y b + V ), Xa+a′
531
+ εb′
532
+ − Zc, −XaZc′
533
+ ε
534
+ + (Y b + V )
535
+
536
+ ⊆ (Y b + V ) + (X, Z)2
537
+ (if c ≥ 2)
538
+ �Zc+c′
539
+ ε′
540
+ − Xa′, Xa+a′ − Y b′Zc, −XaZc′
541
+ ε′
542
+ + Y b′
543
+
544
+ ⊆ (Y ) + (X, Z)2
545
+ (if c = 1)
546
+ in TP. Thus Rp = TP/JTP cannot be a DVR. Hence R is not a normal ring. As a special case,
547
+ R = k[X, Y, Z, V ]/I2
548
+ � X Y +V
549
+ Z
550
+ Y
551
+ Z
552
+ X2
553
+
554
+ is a quasi-normal ring, but not normal.
555
+
556
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
557
+ 11
558
+ 5. Reflexive canonical modules in dimension one
559
+ Let (A, m) be a Cohen-Macaulay local ring with dim A = 1 admitting the canonical module KA.
560
+ In this section, we explore the question of when A has a reflexive canonical module. We denote
561
+ by Q(A) the total ring of fractions of A. Throughout this section, we assume that there exists an
562
+ A-submodule K of Q(A) such that A ⊆ K ⊆ A and K ∼= KA as an A-module, where A denotes
563
+ the integral closure of A in Q(A). Note that the assumption is automatically satisfied if Q(A) is
564
+ Gorenstein and the residue class field A/m is infinite; see [12, Corollaries 2.8, 2.9]. For A-submodules
565
+ X and Y of Q(A), let X : Y = {a ∈ Q(A) | aY ⊆ X}. If we consider ideals I, J of A, we set
566
+ I :A J = {a ∈ A | aJ ⊆ I}; hence I :A J = (I : J) ∩ A.
567
+ Proposition 5.1. The following conditions are equivalent :
568
+ (1) A is a Gorenstein ring ;
569
+ (2) K2 : K = K ;
570
+ (3) KA is a reflexive A-module.
571
+ Proof. (1) ⇔ (3) See Proposition 3.3.
572
+ (3) ⇔ (2) Since A : K = [K : K] : K = K : K2 ([14, Bemerkung 2.5]), we have
573
+ A : (A : K) = (K : K) : (K : K2) = [K : (K : K2)] : K = K2 : K.
574
+ Therefore, K2 : K = K if and only if A : (A : K) = K, that is KA is a reflexive A-module.
575
+
576
+ Recall that an ideal I of A is called a canonical ideal of A, if I ̸= A and I ∼= KA as an A-module.
577
+ By [12, Corollary 2.8], there exists a canonical ideal I of A. We then have the following.
578
+ Theorem 5.2. Let I be a canonical ideal of A. Then the following conditions are equivalent :
579
+ (1) A is a Gorenstein ring ;
580
+ (2) I2 :A I = I ;
581
+ (3) I/I2 is a free A/I-module ;
582
+ (4) I is a reflexive A-module.
583
+ Proof. By Proposition 5.1, it suffices to show (2) ⇒ (1). Enlarging the residue class field A/m of A
584
+ if necessary, we may assume that A/m is infinite. Let I = (x1, x2, . . . , xn) (n > 0) so that each (xi)
585
+ is a reduction of I. We set Ki = x−1
586
+ i I and choose a non-zerodivisor b of A so that bK2
587
+ i ⊆ A for all
588
+ 1 ≤ i ≤ n. Let J = bI and yi = bxi for 1 ≤ i ≤ n. Then (yi) is a reduction of J. Notice that A/I
589
+ and A/J are both Gorenstein rings, since I, J ∼= KA as A-modules.
590
+ Claim 1. J2 :A J = J.
591
+ Proof of Claim 1. Suppose that J2 :A J ⊋ J. Then, J :A m ⊆ J2 :A J. Since A/J is a Gorenstein
592
+ ring, we have J :A m = J + Aϕ for some ϕ ∈ (J :A m) \ J. Hence, ϕ
593
+ b ∈ Q(A) and m· ϕ
594
+ b ⊆ I, so that
595
+ ϕ
596
+ b ∈ I : m. Because I ⊊ I :A m ⊆ I : m and ℓA ((I : m)/I) = 1 (since A/I is a Gorenstein ring),
597
+ we get ϕ
598
+ b ∈ I :A m, so that ϕ
599
+ b ∈ A. On the other hand, ϕ
600
+ b ·I ⊆ I2, since ϕ·bI = ϕJ ⊆ J2 = b2I2.
601
+ Consequently, ϕ
602
+ b ∈ I2 :A I = I, whence ϕ ∈ bI = J, which is impossible. Thus J2 :A J = J.
603
+
604
+
605
+ 12
606
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
607
+ Let yi denote the image of yi in J/J2.
608
+ We then have J/J2 = �n
609
+ i=1(A/J)·yi, and therefore,
610
+ (0) :A/J yi = (0) for some i, since A/J is a Gorenstein ring and (0) :A/J J/J2 = (0) by Claim 1.
611
+ Without loss of generality, assume i = 1. Then, J2 :A y1 = J. On the other hand, since bK2
612
+ 1 ⊆ A
613
+ and K1 = y−1
614
+ 1 J, we get b·(y−1
615
+ 1 J)2 ⊆ A , whence bJ2 ⊆ (bx1)2. Therefore, J2 ⊆ (bx2
616
+ 1) ⊆ (bx1) = (y1).
617
+ Hence, J2 = y1·(J2 :A y1) = y1J. Thus A is a Gorenstein ring (see [12, Theorem 3.7]).
618
+
619
+ 6. q-torsionfree canonical modules
620
+ The purpose of this section is to give a generalization of Proposition 2.3 and Theorem 3.6, which
621
+ characterize local rings with q-torsionfree canonical modules for q = 1, 2.
622
+ Let R be a Noetherian (not necessarily local) ring and q an integer. Let M be a finitely generated
623
+ R-module with a finite projective presentation P1
624
+ σ→ P0 → M → 0. By applying the R-dual functor
625
+ (−)∗ = HomR(−, R), we obtain the exact sequence
626
+ 0 −→ M∗ −→ P ∗
627
+ 0
628
+ σ∗
629
+ −→ P ∗
630
+ 1 −→ Dσ(M) −→ 0
631
+ of R-modules. We set D(M) = Dσ(M) and call it the Auslander transpose of M. Note that D(M)
632
+ is uniquely determined up to projective equivalence.
633
+ Definition 6.1 ([1, Definition 2.15]). A finitely generated R-module M is said to be q-torsionfree
634
+ if Exti
635
+ R(D(M), R) = 0 for all i = 1, 2, . . . , q.
636
+ By [1, Proposition 2.6], there exists an exact sequence
637
+ 0 −→ Ext1
638
+ R(D(M), R) −→ M
639
+ ϕ
640
+ −→ M∗∗ −→ Ext2
641
+ R(D(M), R) → 0
642
+ of R-modules, where ϕ is the canonical homomorphism, and furthermore, we have
643
+ Exti+2
644
+ R (D(M), R) ∼= Exti
645
+ R(M∗, R)
646
+ for all i > 0.
647
+ This shows M is torsionless (resp. reflexive) if and only if M is 1-torsionfree (2-torsionfree). When
648
+ q ≥ 3, the R-module M is q-torsionfree if and only if M is reflexive and Exti
649
+ R(M∗, R) = (0) for all
650
+ i = 1, 2, . . . , q − 2.
651
+ Example 6.2. Let S = k[[X, Y, Z]] be the formal power series ring over a field k and set A =
652
+ S/[(X) ∩ (Y, Z)].
653
+ Let x, y, z denote the images of X, Y, Z in A, respectively.
654
+ Then we have
655
+ Assh A = {(x)}, U = (x), and KA = A/U, where U denotes the unmixed component of (0) in A.
656
+ By dualizing the exact sequence
657
+ A
658
+ ·x
659
+ −→ A → A/(x) = KA → 0,
660
+ we obtain
661
+ 0 → K∗
662
+ A → A
663
+ ·x
664
+ −→ A → A/(x) → 0.
665
+ Thus, D(KA) = KA. Consider the free resolution of D(KA) = D:
666
+ A5
667
+ τ4
668
+ −→ A3
669
+ τ3
670
+ −→ A2
671
+ τ2
672
+ −→ A
673
+ ·x
674
+ −→ A −→ D −→ 0,
675
+
676
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
677
+ 13
678
+ where τ2 = [y z], τ3 =
679
+
680
+ x
681
+ 0
682
+ z
683
+ 0
684
+ x
685
+ −y
686
+
687
+ , and τ4 =
688
+
689
+
690
+ y
691
+ z
692
+ 0
693
+ 0
694
+ 0
695
+ 0
696
+ 0
697
+ y
698
+ z
699
+ 0
700
+ 0
701
+ 0
702
+ 0
703
+ 0
704
+ x
705
+
706
+  . Dualize this free resolution to
707
+ obtain
708
+ 0 −→ D∗ −→ A
709
+ ·x
710
+ −→ A
711
+ σ2
712
+ −→ A2
713
+ σ3
714
+ −→ A3
715
+ σ4
716
+ −→ A5,
717
+ where σ2, σ3, σ4 are the transposes of τ2, τ3, τ4, respectively. Let a ∈ Ker σ2. Then
718
+ a ∈
719
+
720
+ (0) :A y
721
+
722
+
723
+
724
+ (0) :A z
725
+
726
+ = (x) ∩ (x) = (x) = Im(·x).
727
+ Thus, Ext1
728
+ A(D, A) = (0).
729
+ Let ( a1
730
+ a2 ) ∈ Ker σ3.
731
+ Then a1, a2 ∈ (0) :A x = (y, z) and a1z − a2y = 0.
732
+ Hence ( −a2
733
+ a1 ) ∈ Ker τ2 = Im(τ3). Let −a2 = c1x − c3z, and a1 = c2x + c3y for some c1, c2, c3 ∈ A.
734
+ Then c1x = −a2 + c3z ∈ (y, z).
735
+ Thus, c1 = 0 and a2 = c3z.
736
+ Similarly, a1 = c3y.
737
+ We obtain
738
+ ( a1
739
+ a2 ) ∈ Im σ2. Then Ext2
740
+ A(D, A) = (0). Hence KA is 2-torsionfree. Note that Ker σ4 is generated by
741
+ � x
742
+ 0
743
+ 0
744
+
745
+ ,
746
+ � 0
747
+ x
748
+ 0
749
+
750
+ ,
751
+ � 0
752
+ 0
753
+ y
754
+
755
+ ,
756
+ � 0
757
+ 0
758
+ z
759
+
760
+ . Then Ext3
761
+ A(D, A) ̸= (0). Thus, KA is not 3-torsionfree.
762
+ Definition 6.3 ([1, Definition 2.15]). A finitely generated R-module M is called q-syzygy, if there
763
+ exist finite free R-modules F1, F2, . . . , Fq and an exact sequence 0 → M → F1 → F2 → · · · → Fq of
764
+ R-modules.
765
+ Note that (a) M is torsionless if and only if M is 1-syzygy, (b) every q-torsionfree R-module is
766
+ q-syzygy, and (c) if M is q-syzygy and x is an R-regular element, then M/xM is (q �� 1)-syzygy as
767
+ an R/xR-module.
768
+ Although the following theorem has been proved by Foxby in a more general setting involving
769
+ Gorenstein modules, we restate it and give its proof in our context for the sake of completeness.
770
+ Recall that R is q-Gorenstein if Rp is Gorenstein for every prime p with depth Rp < q.
771
+ Theorem 6.4 ([10, Proposition 3.2]). Let A be a Cohen-Macaulay local ring admitting the canonical
772
+ module KA. Then the following conditions are equivalent :
773
+ (1) A is q-Gorenstein ;
774
+ (2) KA is q-torsionfree ;
775
+ (3) KA is q-syzygy.
776
+ Proof. Since A is Cohen-Macaulay, we have Spec A = SuppA KA and [KA]p = KAp for every p ∈
777
+ Spec A. Notice that KAp is maximal Cohen-Macaulay as an Ap-module.
778
+ (1) ⇒ (2) Since every A-regular sequence is KA-regular, the A-module KA is q-torsionfree by [11,
779
+ Proposition 2.3].
780
+ (2) ⇒ (3) This follows from [11, Proposition 2.1].
781
+ (3) ⇒ (1) Let p ∈ Spec A with depth Ap < q. Set n = dim Ap. When n = 0, the ring Ap
782
+ is Gorenstein.
783
+ Assume n > 0 and choose a system f1, f2, . . . , fn of parameters of Ap.
784
+ Then
785
+ it is an Ap-regular sequence, so that KAp/(f1, f2, . . . , fn)KAp is 1-syzygy because n < q.
786
+ Since
787
+ KAp/(f1, f2, . . . , fn)KAp ∼= KAp/(f1,f2,...,fn)Ap, we conclude that Ap/(f1, f2, . . . , fn)Ap is Gorenstein by
788
+ Proposition 2.3, whence so is the ring Ap. This completes the proof.
789
+
790
+ As a direct consequence of Theorem 6.4, we have the following.
791
+
792
+ 14
793
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
794
+ Corollary 6.5. Let A be a Cohen-Macaulay local ring with d = dim A admitting the canonical
795
+ module KA. Then A is a Gorenstein ring if and only if KA is (d + 1)-torsionfree.
796
+ Theorem 6.4 and Corollary 6.5 lead us to the question of the structure of a local ring A with
797
+ q-torsionfree canonical module without the assumption that A is Cohen-Macaulay.
798
+ For a subset Φ of prime ideals in a Noetherian ring R, we say that
799
+ • R satisfies (Sn) on Φ if depth Rp ≥ min {n, dim Rp} for every p ∈ Φ,
800
+ • R satisfies (Gn) on Φ if Rp is Gorenstein for every p ∈ Φ with dim Rp ≤ n.
801
+ The main result of this section gives an answer to the above question.
802
+ Theorem 6.6. Let A be a Noetherian local ring admitting the canonical module KA. Suppose that
803
+ KA satisfies (Sq). Then the following conditions are equivalent :
804
+ (1) A satisfies both (Gq−1) and (Sq−1) on SuppA KA ;
805
+ (2) KA is q-torsionfree ;
806
+ (3) KA is q-syzygy.
807
+ To show this, we need some auxiliaries. Let A be a Noetherian local ring. For each integer i ≥ 1,
808
+ let ΩiM denote the ith syzygy of a finitely generated A-module M with respect to a minimal free
809
+ resolution
810
+ · · · −→ Fi
811
+ ∂i
812
+ −−→ Fi−1
813
+ ∂i−1
814
+ −−→ · · ·
815
+ ∂1
816
+ −−→ F0
817
+ ∂0
818
+ −−→ M −→ 0.
819
+ We set Ω0M = M for convention. The A-module ΩiM depends, up to isomorphisms, only on M.
820
+ We note the following due to Okiyama. Here pdA M denotes the projective dimension of M.
821
+ Theorem 6.7 ([16], cf. [2, Proposition 1.2.8]). Let A be a Noetherian local ring and M a finitely
822
+ generated A-module with pdA M = ∞. Then the following assertions hold true.
823
+ (1) depthA ΩiM ≥ depth A for every i > max{0, depth A − depthA M}.
824
+ (2) If depthA M > depth A, then depthA ΩiM = depth A for every i > 0.
825
+ (3) Let n > 0 and assume depthA ΩnM > depth A. Then n = (depth A − depthA M) + 1 and
826
+ depthA ΩiM = depth A for every i ≥ 0 with i ̸= n.
827
+ The result above yields the following, which plays an important role in our argument.
828
+ Lemma 6.8. Let A be a Noetherian local ring and M a nonzero finitely generated A-module.
829
+ Assume that q ≥ depth A + 2 and M is q-syzygy. Then depthA M = depth A.
830
+ Proof. Since M is q-syzygy, we have M = ΩqN ⊕ F for some finitely generated A-module N and
831
+ finite free A-module F. If pdA N < ∞, then ΩqN = 0 because pdA N ≤ depth A ≤ q − 2, and
832
+ hence depthA M = depth A. We may assume pdA N = ∞. Since q ≥ depth A ≥ max{0, depth A −
833
+ depthA N}, we have depthA ΩqN ≥ depth A (Proposition 6.7 (1)). If depthA ΩqN > depth A, then
834
+ q = depth A−depthA N+1 (Proposition 6.7 (3)), so that depth A+2 ≤ q = depth A−depthA N+1 ≤
835
+ depth A + 1. This is a contradiction. Hence depthA ΩnN = depth A, so depthA M = depth A.
836
+
837
+
838
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
839
+ 15
840
+ Theorem 6.9. Let R be a Noetherian ring and M a finitely generated R-module. If M is (q + 1)-
841
+ syzygy, then one has
842
+ depth Rp ≥ min{q, depthRp Mp}
843
+ for all p ∈ SuppR M.
844
+ In particular, if M satisfies (Sq), then R satisfies (Sq) on SuppR M.
845
+ Proof. By localizing at p ∈ SuppR M, it suffices to show depth R ≥ min{q, depthR M}. If depth R ≥
846
+ q, the assertion is obvious. Otherwise, if depth R < q, the assertion follows from Lemma 6.8.
847
+
848
+ As consequences of Theorems 6.4, 6.9, we get the following.
849
+ Corollary 6.10. Let A be a Noetherian local ring with d = dim A admitting the canonical module
850
+ KA. Then the following conditions are equivalent :
851
+ (1) A is Gorenstein ;
852
+ (2) KA is a (d + 1)-torsionfree maximal Cohen-Macaulay A-module ;
853
+ (3) KA is a (d + 1)-syzygy maximal Cohen-Macaulay A-module.
854
+ Proof. We only need to show (3) ⇒ (1). By Theorem 6.9 we have that depth A = d, so that A is
855
+ Cohen-Macaulay. Hence the assertion follows from Theorem 6.4.
856
+
857
+ Corollary 6.11. Let (A, m) be a Noetherian local ring with d = dim A admitting the canonical
858
+ module KA. Furthermore, we assume one of the following conditions (i) and (ii).
859
+ (i) Hi
860
+ m(A) = (0) for every integer i ̸= 0, 1, d.
861
+ (ii) d ≤ 2.
862
+ Then the following conditions are equivalent :
863
+ (1) A is Gorenstein ;
864
+ (2) KA is (d + 1)-torsionfree ;
865
+ (3) KA is (d + 1)-syzygy.
866
+ Proof. (i) By passing to the m-adic completion, we may assume A is m-adically complete. In view
867
+ of [18, (2.3) Satz], it follows that KA is maximal Cohen-Macaulay. Therefore the assertion follows
868
+ from Corollary 6.10.
869
+ (ii) Since KA satisfies (S2), the assertion follows from Corollary 6.10.
870
+
871
+ Remark 6.12. Let A be a Noetherian local ring admitting the canonical module KA. We say
872
+ that A is quasi-Gorenstein if KA ∼= A as an A-module. When d ≥ 3, there exist non-Gorenstein
873
+ quasi-Gorenstein local rings of dimension d (see e.g., [3, Theorem 2.11]). Notice that, in such a ring
874
+ A, KA is q-torsionfree for all q ≥ 1. So, Corollary 6.11 fails without the condition (i) or (ii).
875
+ Based on the above observation, it is natural to raise the following question.
876
+ Question 6.13. Let A be a Noetherian local ring with d = dim A ≥ 3 admitting the canonical
877
+ module KA. When are the following conditions equivalent?
878
+ (i) A is a quasi-Gorenstein ring, i.e., KA ∼= A.
879
+ (ii) KA is a (d + 1)-torsionfree A-module.
880
+
881
+ 16
882
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
883
+ In what follows, let R be a Noetherian ring and M a finitely generated R-module. The equivalence
884
+ of (1) and (2) in the next theorem was essentially proved by Auslander and Bridger [1]. Notice that
885
+ this is a qth version of [7, Proposition 1.4.1].
886
+ Theorem 6.14. The following conditions are equivalent :
887
+ (1) M is q-torsionfree ;
888
+ (2) M satisfies the conditions below :
889
+ (i) Mp is q-torsionfree for every p ∈ SuppR M with depth Rp < q ;
890
+ (ii) M satisfies (�Sq) ;
891
+ (3) M satisfies the conditions below :
892
+ (i) Mp is q-torsionfree for every p ∈ SuppR M with depthRp Mp < q ;
893
+ (ii) depthRp Mp = depth Rp for every p ∈ SuppR M with depth Rp < q − 1.
894
+ Proof. Without loss of generality, we may assume q ≥ 1.
895
+ (1) ⇒ (2) This follows from [11, Proposition 2.1].
896
+ (2) ⇒ (3) (i) Let p ∈ SuppR M with depthRp Mp < q. Since M satisfies (�Sq), we have depthRp Mp ≥
897
+ depth Rp. This implies depth Rp < q, and hence Mp is q-torsionfree. (ii) Let p ∈ SuppR M with
898
+ depth Rp < q − 1. Then Mp is q-torsionfree, so that depthRp Mp = depth Rp by Lemma 6.8.
899
+ (3) ⇒ (1) For each i ∈ {1, 2, . . . , q}, we set Ei = Exti
900
+ R(D(M), R). Suppose Eq ̸= 0 and seek a
901
+ contradiction. Take p ∈ AssR Eq. Since p ∈ SuppR M, by (i) we have depthRp Mp ≥ q. Then by
902
+ (ii), depth Rp ≥ q − 1. By passing to the localization Rp at p, we may assume R is a local ring,
903
+ depth R ≥ q − 1, depthR M ≥ q, and depthR Eq = 0.
904
+ We proceed by induction on q. First, assume that q = 1. Since E1 is isomorphic to a submodule
905
+ of M, it follows that depthR M = 0, a contradiction. Thus E1 = (0). Next, we assume q = 2.
906
+ Applying the depth lemma to the exact sequence 0 → M → M∗∗ → E2 → 0 of R-modules, we get
907
+ depthR M = 1, as depthR M∗∗ ≥ 1. This is impossible, whence E2 = (0). Suppose q ≥ 3 and the
908
+ assertion holds for q − 1, i.e., M is (q − 1)-torsionfree. Hence E1 = · · · = Eq−1 = (0). Consider a
909
+ free resolution (Fi, ∂i) of M∗. Applying the R-dual functor (−)∗, we get the exact sequence
910
+ 0 → M∗∗ → F ∗
911
+ 0
912
+ ∂∗
913
+ 1
914
+ −→ F ∗
915
+ 1 → · · · → F ∗
916
+ q−3
917
+ ∂∗
918
+ q−2
919
+ −−→ F ∗
920
+ q−2
921
+ of R-modules because E3 = · · · = Eq−1 = (0). Let C be the cokernel of ∂∗
922
+ q−2. Since M is reflexive
923
+ as an R-module, we obtain the exact sequence of the form
924
+ 0 → M → F ∗
925
+ 0 → · · · → F ∗
926
+ q−2 → C → 0.
927
+ Since Eq = Extq−2
928
+ R (M∗, R) may be regarded as a submodule of C, we see that depthR C = 0. Hence
929
+ depthR M = q − 1. This gives a contradiction. Hence we conclude that Eq = (0), which shows M
930
+ is q-torsionfree.
931
+
932
+ Corollary 6.15. Suppose that the following conditions are satisfied :
933
+ (a) Mp is q-torsionfree for every p ∈ SuppR M with dim Rp < q ;
934
+ (b) M satisfies (Sq) ;
935
+ (c) depth Rp ≥ min{q − 1, dim Rp − 1} for every p ∈ SuppR M.
936
+
937
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
938
+ 17
939
+ Then M is q-torsionfree.
940
+ Proof. We will check condition (3) in Theorem 6.14. Let p ∈ SuppR M. (i) Assume that depthRp Mp <
941
+ q. By (b), depthRp Mp = dim Rp, so that dim Rp < q. Therefore Mp is q-torsionfree by (a). (ii)
942
+ Assume that depth Rp < q − 1. By (c), depth Rp ≥ dim Rp − 1, so that dim Rp < q. Therefore Mp
943
+ is q-torsionfree by (a), whence depthRp Mp = depth Rp by Lemma 6.8.
944
+
945
+ Corollary 6.16. Suppose that the following conditions are satisfied :
946
+ (a) M satisfies (Sq) ;
947
+ (b) R satisfies both (Gq−1) and (Sq−1) on SuppR M.
948
+ Then M is q-torsionfree.
949
+ Proof. By Corollary 6.15, it suffices to show that Mp is q-torsionfree on {p ∈ SuppR M | dim Rp <
950
+ q}. Let p ∈ SuppR M with dim Rp < q. Then by (b), Rp is Gorenstein. As M satisfies (Sq),
951
+ depthRp Mp ≥ dim Rp. Hence Mp is maximal Cohen-Macaulay as an Rp-module. In particular, Mp
952
+ is q-torsionfree.
953
+
954
+ We are now ready to prove Theorem 6.6.
955
+ Proof of Theorem 6.6. (1) ⇒ (2) This follows from Corollary 6.16.
956
+ (2) ⇒ (3) This follows from [11, Proposition 2.1].
957
+ (3) ⇒ (1) By Theorem 6.9, the ring A satisfies (Sq−1) on SuppA KA. Let p ∈ SuppA KA with
958
+ dim Ap ≤ q − 1. Then Ap is a Cohen-Macaulay ring of dimension at most q − 1. Hence Theorem
959
+ 6.4 implies that Ap is a Gorenstein ring.
960
+
961
+ As consequences of Theorem 6.6, we get the following corollaries.
962
+ Corollary 6.17. Let A be a Noetherian local ring admitting the canonical module KA. Suppose
963
+ that q ≥ 2 and KA satisfies (Sq). Consider the following conditions :
964
+ (1) KA is (q + 1)-torsionfree ;
965
+ (2) KA is (q + 1)-syzygy ;
966
+ (3) A satisfies both (Sq) and (Gq−1) on SuppA KA ;
967
+ (4) A satisfies both (Sq) and (Gq−1), that is, A is q-Gorenstein ;
968
+ (5) A satisfies (Sq) and KA is q-torsionfree ;
969
+ (6) A satisfies (Sq) and KA is q-syzygy.
970
+ Then the implications (1)⇔(2)⇒(3)⇔(4)⇔(5)⇔(6) hold true.
971
+ Proof. The implications (1) ⇒ (2) and (4) ⇒ (3) are clear.
972
+ The equivalence of (3), (5), and
973
+ (6) immediately follows from Theorem 6.6. Thus it suffices to check the implications (2) ⇒ (3),
974
+ (3) ⇒ (4), and (2) ⇒ (1).
975
+ (2) ⇒ (3) Theorem 6.6 shows the ring A satisfies (Gq−1) on SuppA KA. On the other hand, by
976
+ Theorem 6.9, we deduce that A satisfies (Sq) on SuppA KA.
977
+ (3) ⇒ (4) Since q ≥ 2, by [4, Lemma 1.1] we have SuppA KA = Spec A.
978
+ (2) ⇒ (1) The implication (2) ⇒ (4) guarantees that A is q-Gorenstein. Hence KA is q-torsionfree
979
+ by [1, Proposition 4.21].
980
+
981
+
982
+ 18
983
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
984
+ Since KA satisfies (S2), from Corollary 6.17 we have the following.
985
+ Corollary 6.18. Let A be a Noetherian local ring admitting the canonical module KA. Consider
986
+ the following conditions :
987
+ (1) KA is 3-torsionfree ;
988
+ (2) KA is 3-syzygy ;
989
+ (3) A satisfies both (S2) and (G1), that is, A is quasi-normal ;
990
+ (4) A satisfies (S2) and KA is 2-torsionfree ;
991
+ (5) A satisfies (S2) and KA is 2-syzygy.
992
+ Then the implications (1)⇔(2)⇒(3)⇔(4)⇔(5) hold true.
993
+ Corollary 6.19. Let A be a Noetherian local ring admitting the canonical module KA. Suppose
994
+ that q ≥ 2 and KA satisfies (Sq+1). Then the following conditions are equivalent :
995
+ (1) KA is (q + 1)-torsionfree ;
996
+ (2) KA is (q + 1)-syzygy ;
997
+ (3) A satisfies both (Sq) and (Gq) on SuppA KA ;
998
+ (4) A satisfies both (Sq) and (Gq).
999
+ Proof. This follows from Theorem 6.6 and the fact that SuppA KA = Spec A ([4, Lemma 1.1]).
1000
+
1001
+ Corollary 6.20. Let A be a Noetherian local ring with d = dim A which is a homomorphic image
1002
+ of a Gorenstein ring. Suppose that q ≥ d
1003
+ 2 + 1 and KA is (q + 1)-syzygy satisfying (Sq). Then A is a
1004
+ Cohen-Macaulay ring.
1005
+ Proof. By Theorem 6.9, we see that A satisfies (Sq). We may assume d > 0. Then q ≥ 2, so that A
1006
+ is equidimensional by [4, Lemma 1.1]. Furthermore, either A is Cohen-Macaulay or depth A ≥ q.
1007
+ We assume depth A ≥ q. Since KA satisfies (Sq), every A-regular sequence of length at most q
1008
+ is KA-regular ([11, Proposition 2.1]). The assertion follows from [9, Corollary (2.6)] (see also [10,
1009
+ Proposition 4.2]).
1010
+
1011
+ 7. Examples of q-Gorenstein rings
1012
+ Closing this paper, in order to illustrate our theorems, we provide additional examples of Cohen-
1013
+ Macaulay and q-Gorenstein rings, i.e., rings with (Sq) and (Gq−1) conditions, or equivalently, rings
1014
+ with (�Gq−1) condition.
1015
+ Theorem 7.1. Let A be a Gorenstein local ring with d = dim A ≥ 3 and let a1, a2, . . . , ad be a
1016
+ system of parameters of A. Let a = (a1, a2, . . . , aℓ) (3 ≤ ℓ ≤ d) and let
1017
+ R = A[a1t, a2t, . . . , aℓt] ⊆ A[t]
1018
+ be the Rees algebra of a, where t denotes an indeterminate. Then, R is not a Gorenstein ring, but
1019
+ it is a Cohen-Macaulay (ℓ + 1)-Gorenstein ring of dimension d + 1.
1020
+ Proof. Recall that R is a Cohen-Macaulay ring of dimension d + 1. Let S = A[X1, X2, . . . , Xℓ] be
1021
+ the polynomial ring over A and let ϕ : S → R denote the surjective homomorphism of A-algebras
1022
+
1023
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
1024
+ 19
1025
+ defined by ϕ(Xi) = ait for each 1 ≤ i ≤ ℓ.
1026
+ The homomorphism ϕ preserves the grading and
1027
+ Ker(ϕ) = I2
1028
+ � X1 X2 ... Xℓ
1029
+ a1 a2 ... aℓ
1030
+
1031
+ is the perfect ideal of S of grade ℓ − 1 generated by the 2 × 2 minors of
1032
+ the matrix
1033
+ � X1 X2 ... Xℓ
1034
+ a1 a2 ... aℓ
1035
+
1036
+ . We set I = Ker(ϕ). We then have the following.
1037
+ Claim 2. Let P ∈ Spec S such that I ⊆ P but (X1, X2, . . . , Xℓ) + (a1, a2, . . . , aℓ) ̸⊆ P. Then,
1038
+ SP/ISP is a Gorenstein ring.
1039
+ Proof of Claim 2. We may assume that X1 ̸∈ P. Let �S = S[ 1
1040
+ X1], �A = A[X1,
1041
+ 1
1042
+ X1], and Yi =
1043
+ Xi
1044
+ X1
1045
+ for 2 ≤ i ≤ ℓ.
1046
+ Then, �S = �A[Y2, Y3, . . . , Yℓ] and I �S = (ai − a1Yi | 2 ≤ i ≤ ℓ)�S.
1047
+ Because
1048
+ a1 �S + (ai − a1Yi | 2 ≤ i ≤ ℓ)�S = (ai | 1 ≤ i ≤ ℓ)�S and a1, a2, . . . , aℓ is an �S-regular sequence, the
1049
+ sequence a2 − a1Y2, a3 − a1Y3, . . . , aℓ − a1Yℓ is �SP-regular, so that SP/ISP is a Gorenstein ring.
1050
+
1051
+ Let P ∈ Spec S and suppose that I ⊆ P. We set p = ϕ(P) ∈ Spec R. Then, (X1, X2, . . . , Xℓ) +
1052
+ (a1, a2, . . . , aℓ) ̸⊆ P if htS P < 2ℓ, while
1053
+ htR p = htS/I P/I = htS P − (ℓ − 1).
1054
+ Therefore, if htR p < ℓ+1, then htS P −(ℓ−1) < ℓ+1, that is htS P < 2ℓ, so that (X1, X2, . . . , Xℓ)+
1055
+ (a1, a2, . . . , aℓ) ̸⊆ P, whence Rp = SP/ISP is a Gorenstein ring by Claim 2. Thus, R is an (ℓ + 1)-
1056
+ Gorenstein ring.
1057
+
1058
+ Since the proofs of the following assertions are standard, we left them to the interested readers.
1059
+ Lemma 7.2. Let ϕ : A → B be a flat local homomorphism of Noetherian local rings and q ≥ 1 be
1060
+ an integer. Then the following conditions are equivalent :
1061
+ (1) B is a q-Gorenstein ring ;
1062
+ (2) A is a q-Gorenstein ring and BP/pBP is a Gorenstein ring for every P ∈ Spec B with depth BP <
1063
+ q, where p = ϕ−1(P).
1064
+ Proposition 7.3. Let R be a Noetherian ring. Then the following assertions hold true.
1065
+ (1) Let q ≥ 1 be an integer. Then R[t] is a q-Gorenstein ring if and only if R is a q-Gorenstein
1066
+ ring, where t is an indeterminate.
1067
+ (2) Let H be a symmetric numerical semigroup. If R is a q-Gorenstein ring, then the semigroup
1068
+ ring R[H] of H over R is a q-Gorenstein ring.
1069
+ (3) Let X = {Xij}1≤i≤ℓ,1≤j≤m be indeterminates where ℓ, m ≥ 2, and set T = R[X]. Let t be an
1070
+ integer such that 2 ≤ t ≤ min {ℓ, m} and let I = It(X) denote the ideal of S generated by the
1071
+ t × t minors of the matrix X. We set S = T/I.
1072
+ (a) Let ℓ = m. If R is a q-Gorenstein ring, then S is a q-Gorenstein ring.
1073
+ (b) Suppose that R is a field and let t = 2. Then S is a d-Gorenstein ring, where d = ℓ+m−1.
1074
+ References
1075
+ [1] M. Auslander and M. Bridger, Stable module theory, Amer. Math. Soc., Memoirs, 94, 1969. 1, 2, 12, 13, 16, 17
1076
+ [2] L. Avramov, Infinite free resolutions, Six Lecture on Commutative Algebra, Birkhuser Verlag, Basel, (2010),
1077
+ 1–118. 14
1078
+ [3] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ, 23 (1983), no. 1, 85–94. 1, 2, 3, 7,
1079
+ 15
1080
+
1081
+ 20
1082
+ N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI
1083
+ [4] Y. Aoyama and S. Goto, On the endomorphism ring of the canonical module. J. Math. Kyoto Univ., 25 (1985),
1084
+ no. 1, 21–30. 1, 17, 18
1085
+ [5] J. Brennan, L. Ghezzi, J. Hong and W. V. Vasconcelos, Generalization of bi-canonical degrees, S˜ao Paulo J.
1086
+ Math. Sci. (2022), https://doi.org/10.1007/s40863-022-00333-9. 2, 4
1087
+ [6] M. P. Brodmann and R. Y. Sharp, Local cohomology, An algebraic introduction with geometric applications,
1088
+ Cambridge Studies in Advanced Mathematics 136, 2nd edition, Cambridge University Press, 1993. 1, 2, 3
1089
+ [7] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 2013. 1, 2, 4, 8, 9, 16
1090
+ [8] E. G. Evans and P. Griffith, Syzygies, London Mathematical Society Lecture Note Series, 106, Cambridge
1091
+ University Press, Cambridge, 1985. 8
1092
+ [9] R. Fossum, H.-B. Foxby, P. Griffith, I. Reiten, Minimal injective resolutions with applications to dualizing
1093
+ modules and Gorenstein modules, Inst. Hautes ´Etudes Sci. Publ. Math., 45 (1975), 193–215. 18
1094
+ [10] H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267–284. 1, 13, 18
1095
+ [11] H.-B. Foxby, n-Gorenstein rings, Proc. Amer. Math. Soc., 42 (1974), 67–72. 1, 2, 5, 8, 13, 16, 17, 18
1096
+ [12] S. Goto, N. Matsuoka, and T. T. Phuong, Almost Gorenstein rings, J. Algebra, 379 (2013), 355–381. 11, 12
1097
+ [13] S. Goto and K.-i. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), no. 2, 179–213. 1, 8
1098
+ [14] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics,
1099
+ 238, Springer-Verlag, Berlin-New York, 1971. 1, 2, 3, 4, 7, 11
1100
+ [15] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25 (1970), 748–
1101
+ 751. 1
1102
+ [16] S. Okiyama, A local ring is CM if and only if its residue field has a CM syzygy, Tokyo J. Math. 14 (1991),
1103
+ 489–500. 14
1104
+ [17] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc., 32 (1972),
1105
+ 417–420. 2, 9
1106
+ [18] P. Schenzel, Zur lokalen Kohomologie des kanonischen Moduls. Math. Z. 165 (1979), no. 3, 223–230. 15
1107
+ [19] R. Y. Sharp, On Gorenstein modules over a complete Cohen-Macaulay ring, Quart. J. Math., 22, no. 3 (1971),
1108
+ 425–434. 2
1109
+ [20] R. Stanely, Hilbert functions of graded algebras, Adv. Math., 28 (1978), no. 1, 57–83. 1
1110
+ [21] R. Stanley, Combinatorics and commutative algebra, Second Edition, Birkh¨auser, Boston, 1996. 8
1111
+ [22] W. V. Vasconcelos, Reflexive modules over Gorenstein rings, Proc. Amer. Math. Soc., 19 (1968), 1349–1355. 2,
1112
+ 4, 8
1113
+ [23] W. V. Vasconcelos, Integral Closure. Rees algebras, multiplicities, algorithms. Springer Monographs in Mathe-
1114
+ matics. Berlin, Springer-Verlag, 2005. 10
1115
+
1116
+ RINGS WITH q-TORSIONFREE CANONICAL MODULES
1117
+ 21
1118
+ School of Political Science and Economics, Meiji University, 1-9-1 Eifuku, Suginami-ku, Tokyo
1119
+ 168-8555, Japan
1120
+ Email address: [email protected]
1121
+ URL: https://www.isc.meiji.ac.jp/~endo/
1122
+ Department of Mathematics, New York City College of Technology and the Graduate Center,
1123
+ The City University of New York, 300 Jay Street, Brooklyn, NY 11201, U.S.A.; 365 Fifth Avenue,
1124
+ New York, NY 10016, U.S.A.
1125
+ Email address: [email protected]
1126
+ Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-
1127
+ mita, Tama-ku, Kawasaki 214-8571, Japan
1128
+ Email address: [email protected]
1129
+ Department of Mathematics, Southern Connecticut State University, 501 Crescent Street, New
1130
+ Haven, CT 06515-1533, U.S.A.
1131
+ Email address: [email protected]
1132
+ Mathematics laboratory, Sapporo College, Hokkaido University of Education, 1-3 Ainosato 5-3,
1133
+ Kita-ku, Sapporo 002-8502, Japan
1134
+ Email address: [email protected]
1135
+ Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-
1136
+ mita, Tama-ku, Kawasaki 214-8571, Japan
1137
+ Email address: [email protected]
1138
+ Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-
1139
+ mita, Tama-ku, Kawasaki 214-8571, Japan
1140
+ Email address: [email protected]
1141
+ Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi 464-
1142
+ 8602, Japan
1143
+ Email address: [email protected]
1144
+
9NE0T4oBgHgl3EQfwgHr/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFQT4oBgHgl3EQfJTUp/content/tmp_files/2301.13255v1.pdf.txt ADDED
@@ -0,0 +1,847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
2
+ Wavelet Analysis for Time Series Financial Signals
3
+ via Element Analysis
4
+ Nathan Zavanelli
5
+ George W. Woodruff School of Mechanical Engineering,
6
+ College of Engineering, Georgia Institute of Technology
7
+ Atlanta, GA 30332, USA
8
9
+ Abstract— The method of element analysis is proposed here as an
10
+ alternative to traditional wavelet-based approaches to analyzing
11
+ perturbations in financial signals by scale. In this method, the
12
+ processes that generate oscillations in financial signals are modelled
13
+ as scaled, shifted, and isolated events that produce ripples of various
14
+ frequencies across a sea of noise as opposed to a simple sinusoidal or
15
+ mixed frequency oscillation or an impulse. This allows one to directly
16
+ estimate the wavelet parameters derived only from the generating
17
+ functions, rejecting spurious perturbations driven by noise or
18
+ extraneous factors. Financial signals may then be reconstructed based
19
+ on a finite set of generators localized in time and frequency. This
20
+ method offers a marked advantage compared to traditional
21
+ econometric tools because it directly targets the generators of
22
+ oscillations. Furthermore, the choice of the Morse wavelet allows for
23
+ wide latitude in capturing a broad set of diverse generators. In this
24
+ work, the basic mathematical principles underlying element analysis
25
+ are presented, and the method is applied to the study of variance in
26
+ financial data, where the advantages of element analysis over
27
+ traditional wavelet techniques is demonstrated. Specifically, in the
28
+ example analysis of inflation expectations, element analysis shows a
29
+ clear ability to distinguish between oscillations formed by noise and
30
+ those formed by generators logically matched to historical events.
31
+ Keywords—econometrics, wavelet, element analysis, variance,
32
+ financial signals
33
+ I. INTRODUCTION
34
+ Wavelet transforms are a powerful tool for analyzing
35
+ financial data because they decompose the fluctuations in a
36
+ signal (like a graph of stock price vs time) into different
37
+ frequency scales. This multi-resolution analysis is increasingly
38
+ used to isolate trends by time scale, derive scale-based
39
+ assessments of data variance, and assess correlation between
40
+ signals by scale1-6. For instance, Crowley et al used a
41
+ continuous wavelet transform (CWT) to analyze growth cycles
42
+ of productivity in the European Union (EU), United States (US)
43
+ and United Kingdom (UK), and they discovered that cycles
44
+ occurred at various frequencies beyond those classically
45
+ studied7,8. Furthermore, they characterized the correlation
46
+ between each region’s productivity cycles by frequency scale,
47
+ enabling them to hypothesize how international and national
48
+ factors drive production volatility in short- and long-term
49
+ scales. Similar analysis has been conducted for high frequency
50
+ stock trading, analyzing market trends, assessing relations
51
+ between variables and the yield curve, and quantifying risk4,6,9.
52
+ However, frequency decomposition techniques, like the
53
+ wavelet transform, have not achieved their full potential in
54
+ finance because the mathematical tools have not been
55
+ sufficiently updated in conjunction with recent discoveries in
56
+ adjacent fields10,11. In order to better understand the problem of
57
+ frequency decomposition, let us consider the development of
58
+ suitable approaches from simplest to most complex. The
59
+ Fourier transform is the simplest frequency decomposition
60
+ technique, representing a signal as a sum of sinusoidal
61
+ variations at different frequencies. However, this method is ill-
62
+ suited for handling non-sinusoidal signals12. On the other
63
+ extreme, the modulus maxima method can be used to analyze
64
+ signals that are nearly impulses13,14. However, almost all
65
+ financial signals fall at neither extreme, instead exhibiting
66
+ complex morphologies positioned over a background of
67
+ noise15. These morphologies are well represented by a series of
68
+ events localized in time with varying spatial distributions and
69
+ oscillatory and non-oscillatory components15. Thus, an
70
+ effective means for studying these signals is to model them as
71
+ a sum of various scaled orthogonal wavelets, or the wavelet
72
+ transform2,4,16. However, this transform does not sufficiently
73
+ separate signal from noise for two reasons. First, any waveform
74
+ component, be it noise or signal, is mapped to a wavelet scale
75
+ without any means of distinguishing the two. Second, the signal
76
+ almost always does not exactly match the chosen wavelet, so it
77
+ is itself dispersed across several scales. The result is a blurred
78
+ transform, where significant information may be lost due to the
79
+ presence of noise4. Several traditional methods are commonly
80
+ used to address this issue, like wavelet thresholding and
81
+ complex statistical tests6,10,11. These approaches, however, are
82
+ also limited. In the first case, statistically significant wavelet
83
+ coefficients are identified and maximized, but the underlying
84
+ limitations of the wavelet transform are never addressed8,12. In
85
+ the second, one typically must make strong assumptions about
86
+ either the duration or form of a signal, which can lead to
87
+ significant biases in analysis and great difficulty in
88
+ application10.
89
+ Instead, a new method termed element analysis,
90
+ developed by Lilly, can produce a much clearer distinction
91
+ between signal and noise16. The key intuition is to model the
92
+ processes that generate perturbations in financial signals as
93
+ scaled, shifted, and isolated events that produce ripples of
94
+
95
+ various frequencies across a sea of noise as opposed to a simple
96
+ sinusoidal or mixed frequency oscillation or an impulse. Here,
97
+ a time series signal x(𝑡) is modelled not as a sum of sine waves,
98
+ impulses, or wavelets, but instead as a baseline of stationary
99
+ and Gaussian noise upon which are added many individual
100
+ copies of a complex valued function Ψ(𝑡) with a morphology
101
+ and time localization that is simply controlled by a time-offset,
102
+ phase shift, and scaling.
103
+
104
+ x(t) = ∑ ℜ {cnΨμ,γ (t − tn
105
+ ρn
106
+ )}
107
+ n
108
+ n=1
109
+ + xe(t) 1.1
110
+
111
+ where the complex parameter cn = |cn|eiϕn sets the amplitude
112
+ |cn| and phase ϕn of the event tn and ρn sets the event scale.
113
+ xe(t) represents the aforementioned noise. This representation
114
+ (1.1) is referred to as the element model. Element analysis
115
+ based on this model is similar to the CWT, but it limits the
116
+ signal reconstruction only to isolated points in both time and
117
+ frequency that correspond to specific events, rejecting spurious
118
+ noise. In general, this method has three steps. First, the wavelet
119
+ transform maxima corresponding only to events are identified.
120
+ Second, the significant of these maxima is examined in relation
121
+ to the noise threshold. Third, the reconstruction is performed
122
+ based on the coefficients resulting from these maxima. Element
123
+ analysis is a distinct improvement over wavelet analysis
124
+ because its goal is not to faithfully capture all signal content,
125
+ like the CWT, but instead to infer properties of key signal
126
+ events over a noise threshold. In essence, element analysis
127
+ seeks to assess the significance of signal events over the null
128
+ hypothesis of white noise. This method allows for a clear
129
+ distinction of financial signals separate from the noise, marking
130
+ a strong improvement over traditional wavelet approaches.
131
+ Although element analysis has been successfully employed for
132
+ a variety of signal processing disciplines, it has not been
133
+ employed for econometrics to the author’s knowledge, marking
134
+ a large missed opportunity in financial data analysis17,18.
135
+
136
+ The remainder of the paper will consist of the
137
+ following sections: a brief discussion of essential wavelet
138
+ principles, a general summary of the element method, an
139
+ example relating to financial volatility analysis, and a
140
+ discussion. In conjunction with his seminal paper, Lilly created
141
+ a freely available toolbox of Matlab functions, called jLab,
142
+ available at http://www.jmlilly.net16. Furthermore, all software
143
+ and data relating to the econometrics techniques discussed here
144
+ is
145
+ made
146
+ available
147
+ by
148
+ the
149
+ author
150
+ at
151
+ https://github.com/nzavanelli/Element_Analysis_Financial_D
152
+ ata
153
+
154
+ II. WAVELET ESSENTIALS
155
+
156
+ This section seeks to briefly cover several of the key
157
+ wavelet properties needs to understand element analysis. For
158
+ further details, please see the following references. These next
159
+ two sections will also represent a simplification of the material
160
+ presented in Lilly’s work, which the reader may also
161
+ reference16. This section is divided into 2 subsections: (a)
162
+ continuous wavelet transforms based on the Morse wavelet and
163
+ (b) additional Morse wavelet properties.
164
+
165
+ A. CWT approaches with the Morse Wavelet
166
+
167
+ The Morse wavelet Ψ𝛽,𝛾 is a complex function
168
+ represented for 𝛽 ≥ 0 𝑎𝑛𝑑 𝛾 > 0 as follows:
169
+
170
+ Ψ𝛽,𝛾 = 𝛼𝛽,𝛾𝜔𝛽𝑒−𝜔𝛾 × {
171
+ 1 𝜔 > 0
172
+ 1
173
+ 2 𝜔 = 0
174
+ 0 𝜔 < 0
175
+ 2.1
176
+
177
+ where 𝛽 is the order, which controls the low frequency
178
+ behavior, 𝛾 the family, controlling the high frequency decay, 𝜔
179
+ the frequency, and 𝛼𝛽,𝛾 the normalizing constant of
180
+
181
+ 𝛼𝛽,𝛾 = 2 (𝑒𝛾
182
+ 𝛽 )
183
+ 𝛽
184
+ 𝛾 2.2
185
+
186
+ With this definition, the Morse wavelet is strictly analytic,
187
+ meaning that it must contain both complex and real
188
+ components. Therefore, the wavelets may be naturally grouped
189
+ into odd and even pairs, allowing them to capture phase
190
+ information similar to sine and cosine representations. The
191
+ wavelet transform of a signal x(𝑡) is represented in the time
192
+ domain and frequency domain, respectively, as follows:
193
+
194
+ 𝒲𝛽,𝛾(τ, s) = ∫
195
+ 1
196
+ 𝑠
197
+
198
+ −∞
199
+ Ψ∗𝛽,𝛾 (𝑡 − 𝜏
200
+ 𝑠
201
+ ) 𝑥(𝑡)𝑑𝑡
202
+ = 1
203
+ 2𝜋 ∫
204
+ 𝑒𝑖𝜋𝜏Ψ∗𝛽,𝛾(𝑠, 𝜔)𝑋(𝜔)𝑑𝜔 2.3
205
+
206
+ −∞
207
+
208
+
209
+ where 𝑋(𝜔) denotes the Fourier transform of x(t) defined as
210
+
211
+ 𝑥(𝑡) = 1
212
+ 2𝜋 ∫ 𝑒𝑖𝜋𝜏𝑋(𝜔)𝑑𝜔 2.4
213
+
214
+ −∞
215
+
216
+
217
+ This transform in the time domain is simply the inner product
218
+ of the signal and shifted, time scaled versions of the Morse
219
+ wavelet. In the frequency domain, the scale variable s
220
+ represents the stretching or compression of the signal, and the
221
+ rescaled frequency domain wavelet will always be maximized
222
+ at 𝜔𝑠 =
223
+ 𝜔𝛽,𝛾
224
+ 𝑠 , which is referred to as the scale frequency. Note
225
+ that normalization by
226
+ 1
227
+ √𝑠 is typically performed to ensure the
228
+ wavelet maintains constant energy. However,
229
+ 1
230
+ 𝑠 normalization
231
+ is employed here because it allows for the transform values to
232
+ be controlled by only cn and not ρn, greatly simplifying the
233
+ analytic calculations employed in element analysis.
234
+
235
+
236
+
237
+
238
+ B. Morse wavelet properties
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+ Figure 1. Morse wavelet representations with various 𝜷 and
257
+ 𝜸 values. Here, the real, imaginary, and envelope components
258
+ are illustrated as blue, red, and yellow, respectively.
259
+
260
+
261
+ One highly attractive feature of Morse wavelets is that
262
+ they can assume a wide range of morphologies, which is easily
263
+ controlled by the choice of 𝛽 and 𝛾. This is illustrated in Fig 1.
264
+ Increasing 𝛽 tends to make the signal more oscillatory, and
265
+ increasing 𝛽 with a fixed 𝛾 causes more oscillations to fit in the
266
+ same envelope. On the other hand, modifying 𝛾 tends to
267
+ modulate the overall function and envelope shape.
268
+
269
+ III. ELEMENT ANALYSIS
270
+
271
+ This section pertains to the method of element analysis
272
+ developed by Lilly, representing a summary treatment16. Here,
273
+ the Morse wavelet is introduced as a signal element in 3(a).
274
+ Next, it is shown in 3(b) that a wavelet transform of a Morse
275
+ function is in fact another Morse wavelet. This allows for the
276
+ derivation in 3(c) of the element analysis method to produce
277
+ transform maxima. Finally, the algorithm is completed in 3(d)
278
+ by reproducing the element properties based on these maxima.
279
+
280
+ A. Morse wavelet representations of signal elements
281
+
282
+ Consider the wavelet function in (1.1), where 𝜇 and 𝛾
283
+ determine the element function properties (as described in Fig
284
+ 1) and 𝜌 serves as the scale s. Taking the wavelet transform of
285
+ (1.1) with a Morse wavelet Ψ∗
286
+ 𝛽,𝛾 (
287
+ 𝑡−𝜏
288
+ 𝑠 ) leads to
289
+
290
+ 𝒲𝛽,𝛾(τ, s) = 1
291
+ 2 ∑ 𝑐𝑛
292
+ 𝑛
293
+ 𝑛=1
294
+
295
+ 1
296
+ 𝑠
297
+
298
+ −∞
299
+ Ψ∗
300
+ 𝛽,𝛾 (𝑡 − 𝜏
301
+ 𝑠
302
+ ) Ψ𝜇,𝛾 (𝑡 − 𝜏
303
+ 𝜌𝑛
304
+ ) 𝑑𝑡 + 𝜀𝛽,𝛾(𝜏, 𝑠) 3.1
305
+
306
+ where 𝜀𝛽,𝛾(𝜏, 𝑠) represents the wavelet transform of the noise
307
+ process in (1.1). Now, let us define the wavelet maxima points
308
+ as the time and scale coordinates where the wavelet transform
309
+ modulus is maximized. This will occur when the following four
310
+ conditions are met.
311
+
312
+
313
+ 𝜕τ |𝑤𝛽,𝛾(𝜏, 𝑠)| = 0 3.2
314
+
315
+ 𝜕s |𝑤𝛽,𝛾(𝜏, 𝑠)| = 0 3.3
316
+ 𝜕2
317
+ 𝜕𝑡2 |𝑤𝛽,𝛾(𝜏, 𝑠)| < 0 3.4
318
+ 𝜕2
319
+ 𝜕𝑠2 |𝑤𝛽,𝛾(𝜏, 𝑠)| < 0 3.5
320
+
321
+ The goal of element analysis is to simply to use the values of
322
+ the wavelet transform at these maxima points to estimate the
323
+ coefficients cn, the scales ρn, and the times tn of the N signal
324
+ events that constitute the signal. From there, a highly denoised
325
+ scalogram containing only the event content may be produced.
326
+
327
+ B. Wavelet transform of a Morse function
328
+
329
+ When one performs a wavelet transform of a 𝜇 order
330
+ Morse wavelet Ψ𝜇,𝛾 (
331
+ 𝑡
332
+ 𝜌) with a 𝛽 order wavelet of the same family
333
+ 𝛾, the result is a modified wavelet 𝜁(𝛽,𝜇,𝛾) (
334
+ 𝜏
335
+ 𝜌 ,
336
+ 𝑠
337
+ 𝜌), as shown in
338
+ 3.1. This transform is defined as
339
+
340
+ 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) =
341
+ 𝛼𝛽,𝛾𝛼𝜇,𝛾
342
+ 𝛼𝛽+𝜇,𝛾
343
+ 𝑠𝛽
344
+ (√𝑠𝛾 + 1
345
+ 𝛾
346
+ )
347
+ 𝛽+𝜇+1 𝜓𝛽+𝜇,𝛾 (
348
+ 𝜏
349
+ √𝑠𝛾 + 1
350
+ 𝛾
351
+ ) 3.6
352
+
353
+ For a rigorous derivation, please refer to Lilly’s work. Briefly,
354
+ this result may be obtained by substituting the wavelet
355
+ definition, evaluating the triple integral, rescaling the wavelet,
356
+ and performing a simple change of variables. Notably, 3.6
357
+ shows that performing a wavelet transform of a Morse wavelet
358
+ modifies the time and scale of the original wavelet, but does not
359
+ affect the transform amplitude. The result is a wavelet of order
360
+ 𝛽 + 𝜇, which follows because both 𝛽 and 𝜇 are powers of 𝜔 in
361
+ the frequency domain, where the wavelet transform
362
+ corresponds to multiplication.
363
+
364
+ This modified wavelet also has two intriguing
365
+ properties: First, the amplitude of the wavelet transform is
366
+ highly dependent on the scales s and 𝜌. Second, the wavelet’s
367
+ time argument can be effectively rescaled by the transform
368
+ scale s. To examine the scaling effect on 3.6 in more detail,
369
+ consider the following two cases:
370
+
371
+ 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) = 𝛼𝛽,𝛾𝛼𝜇,𝛾
372
+ 𝛼𝛽+𝜇,𝛾 ×
373
+ {
374
+ 𝜌
375
+ 𝑠
376
+ 𝜇+1
377
+ Ψ𝛽+𝜇,𝛾 (
378
+ 𝑡
379
+ 𝑠) 𝑠 ≫ 𝜌
380
+ 𝑠
381
+ 𝜌
382
+ 𝛽
383
+ Ψ𝛽+𝜇,𝛾 (
384
+ 𝑡
385
+ 𝜌) 𝑠 ≪ 𝜌
386
+ 3.7
387
+
388
+ The result is that when 𝑠 ≫ 𝜌, the resultant wavelet 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠)
389
+ is smoothed, with the transform spread out over the scale s. This is
390
+ because the transform wavelet Ψ𝛽,𝛾 (
391
+ 𝑡
392
+ 𝑠) is much broader than the
393
+
394
+ β=1
395
+ β = 1/5
396
+ β=5
397
+ y=1
398
+ =4
399
+ =8Morse wavelet being transformed Ψ𝜇,𝛾 (
400
+ 𝑡
401
+ 𝜌). In the opposite case,
402
+ the wavelet scale becomes fixed at 𝜌, decreasing in magnitude
403
+ with further decreases in s.
404
+
405
+ C. Transform maxima
406
+
407
+ The modified wavelet function 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) can be
408
+ used to identify the wavelet transform values at the maxima.
409
+ First, consider the wavelet transform definition from 3.1 with
410
+ the modified wavelet:
411
+
412
+ 𝒲𝛽,𝛾(τ, s) = 1
413
+ 2 ∑ 𝑐𝑛
414
+ 𝑛
415
+ 𝑛=1
416
+ 𝜁(𝛽,𝜇,𝛾) (𝜏 − 𝑡𝑛
417
+ 𝜌𝑛
418
+ , 𝑠
419
+ 𝜌𝑛
420
+ ) + 𝜀𝛽,𝛾(𝜏, 𝑠) 3.8
421
+
422
+ The expected value of the squared modulus of this wavelet
423
+ transform thus may be approximated as:
424
+
425
+ 𝐸 {|𝒲𝛽,𝛾(τ, s)|
426
+ 2} ≈ 1
427
+ 4 ∑|𝑐𝑛|2
428
+ 𝑛
429
+ 𝑛=1
430
+ |𝜁(𝛽,𝜇,𝛾) (𝜏 − 𝑡𝑛
431
+ 𝜌𝑛
432
+ , 𝑠
433
+ 𝜌𝑛
434
+ )|
435
+ 2
436
+ + 𝐸 {|𝜀𝛽,𝛾(𝜏, 𝑠) |
437
+ 2} 3.9
438
+
439
+ This approximation requires the assumption that cross-terms
440
+ within the summation may be neglected on the basis of the zero
441
+ mean and that events are well separated. The second
442
+ assumption is generally not fully valid for financial signals, and
443
+ the result is the potential for low level maxima amplitudes to
444
+ arise. Fortunately, these amplitudes are generally higher than
445
+ the noise floor, but still lesser than a pure signal with only one
446
+ generating function. However, care must be taken when
447
+ selecting 𝛽 and 𝛾 parameters to ensure strong maxima in the
448
+ case of most signals. In general, financial signals with many
449
+ complicated interactions should avoid large 𝛾 and small 𝛽
450
+ values to ensure strong monotonic decay and avoid sidelobe
451
+ maxima effects.
452
+
453
+ Now let us consider the scale locations and wavelet
454
+ transform values corresponding to the wavelet maxima. Note
455
+ that the maxima of 𝜁(𝛽,𝜇,𝛾) (
456
+ 𝜏
457
+ 𝜌 ,
458
+ 𝑠
459
+ 𝜌) with respect to time occurs at
460
+ 𝜏 = 0 , at which point 𝜁(𝛽,𝜇,𝛾) (0,
461
+ 𝑠
462
+ 𝜌) assumes the real and
463
+ positive value:
464
+
465
+ 𝜁(𝛽,𝜇,𝛾) (0, 𝑠
466
+ 𝜌) =
467
+ 𝛼𝛽,𝛾𝛼𝜇,𝛾
468
+ 2𝜋𝛾
469
+ Γ (𝛽 + 𝜇 + 1
470
+ 𝛾
471
+ )
472
+ (𝑠
473
+ 𝜌)
474
+ 𝛾
475
+ √((𝑠
476
+ 𝜌)
477
+ 𝛾
478
+ + 1)
479
+ 𝛾
480
+ β+𝜇+1 3.10
481
+
482
+ This value may be derived by combining 3.6 with the definition
483
+ of the wavelet function at 𝜏 = 0 . Defining 𝑠̃ ≡
484
+ 𝑠
485
+ 𝜌 and
486
+ differentiating 𝜁(𝛽,𝜇,𝛾)(0, 𝑠̃) with this new variable allows for
487
+ one to determine that the maximal value occurs at:
488
+
489
+ 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 = 𝜁(𝛽,𝜇,𝛾)(0, 𝑠̃𝑚𝑎𝑥) 3.11
490
+
491
+ 𝑠̃𝑚𝑎𝑥 = (
492
+ 𝛽
493
+ 𝜇 + 1)
494
+ 1
495
+ 𝛾
496
+ 3.12
497
+
498
+ Inserting 3.11 into 3.10 allows for the determination of the maximum
499
+ value of the modified wavelet transform:
500
+
501
+
502
+ 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 =
503
+ 𝛼𝛽,𝛾𝛼𝜇,𝛾
504
+ 2𝜋𝛾
505
+ Γ (𝛽 + 𝜇 + 1
506
+ 𝛾
507
+ ) 𝜂𝛽,𝜇,𝛾 3.13
508
+
509
+ where 𝜂𝛽,𝜇,𝛾 is the scale weighting function defined as:
510
+
511
+ 𝜂𝛽,𝜇,𝛾 ≡
512
+ 𝑠̃𝑚𝑎𝑥
513
+ 𝛾
514
+ √(𝑠̃𝑚𝑎𝑥
515
+ 𝛾 + 1)
516
+ 𝛾
517
+ β+𝜇+1 =
518
+ (
519
+ 𝛽
520
+ 𝜇 + 1)
521
+ 𝛽
522
+ 𝛾
523
+ (
524
+ 𝛽
525
+ 𝜇 + 1 + 1)
526
+ 𝛽+𝜇+1
527
+ 𝛾
528
+ 3.14
529
+
530
+ Thus, is can readily seen that the maximum value 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 is indeed
531
+ independent of the scale 𝜌.
532
+
533
+ D. Estimating element properties from the transform maxima
534
+
535
+ In the case of well-behaved signals with a proper
536
+ choice of wavelet parameters, we will have one maximum point
537
+ for each of the N generating events, and the nth maxima will be
538
+ located at time 𝑡𝑛 and scale 𝑠𝑛 = 𝜌𝑛𝑠̃𝑚𝑎𝑥. It is clear from 3.8
539
+ that the wavelet transform here is thus:
540
+
541
+ 𝒲𝛽,𝛾(𝑡𝑛,𝑠𝑛) = 1
542
+ 2𝑐𝑛𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 3.15
543
+
544
+ Now, one may use the equations in 3.2-3.5 to define
545
+ the set of observed time/scale maxima points, which will be
546
+ denoted as (𝜏̂𝑛, 𝑠̂𝑛). From these points, the element properties
547
+ (𝑡𝑛, 𝑐𝑛, 𝜌𝑛) may be simply estimated. If one defines
548
+ 𝒲𝑛 ≡ 𝒲𝛽,𝛾(𝜏̂𝑛,𝑠̂𝑛) as the wavelet transform at each observed
549
+ maximum, then these element properties become:
550
+
551
+ 𝑡̂𝑛 = 𝜏̂𝑛 𝑐̂𝑛 = 2
552
+ 𝒲𝑛
553
+ 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥
554
+ 𝜌̂𝑛 =
555
+ 𝑠̂𝑛
556
+ 𝑠̃𝑚𝑎𝑥
557
+ 3.16
558
+
559
+ where the quantities are hatted to show that these values are
560
+ estimates of the true element properties. Before the method is
561
+ complete, one final modification is necessary. Here, the
562
+ frequency of the function is reported instead of the scale. This
563
+ may be rectified by substituting 𝑠 =
564
+ ω𝛽,𝛾
565
+ ω𝑠 and 𝜌 =
566
+ ω𝜇,𝛾
567
+ ω𝑠 into
568
+ 𝜌̂𝑛 =
569
+ 𝑠̂𝑛
570
+ 𝑠̃𝑚𝑎𝑥 from 3.16 to yield:
571
+
572
+ ω𝜌̂𝑛 = ω𝑠̂𝑛
573
+ ω𝜇,𝛾
574
+ ω𝛽,𝛾
575
+ 𝑠̃𝑚𝑎𝑥 = 𝜔𝑠̂𝑛
576
+ 𝜔𝜇,𝛾
577
+ 𝜔𝛽,𝛾
578
+ (
579
+ 𝛽
580
+ 𝜇 + 1)
581
+ 1
582
+ 𝛾
583
+ 3.17
584
+
585
+ which is the relationship between the frequency band 𝜔𝑠̂𝑛of the
586
+ observed wavelet maximum and that of the corresponding
587
+ element, ω𝜌̂𝑛. We now have all the parameters necessary to
588
+ reconstruct the signal transform as a scalogram containing the
589
+ information of the N elements, without the noise function. An
590
+ algorithm to do so with examples and all code used in this work
591
+ is
592
+ proved
593
+ by
594
+ the
595
+ author
596
+ at
597
+ https://github.com/nzavanelli/Element_Analysis_Financial_D
598
+
599
+ ata. Furthermore, the reader is encouraged to consider the
600
+ original algorithms derived by Lilly et al, which are available
601
+ at http://www.jmlilly.net and upon which the author’s
602
+ algorithms are heavily based.
603
+
604
+ IV. APPLICATION TO VARIANCE ANALYSIS
605
+
606
+
607
+ As mentioned in the introduction, wavelet analysis is
608
+ a powerful, yet underutilized, tool in econometrics for
609
+ analyzing financial data by time scale. Although many complex
610
+ analyzes are possible, like assessing the correlation of variables
611
+ to the yield curve by scale, two very simple examples will be
612
+ shown here to demonstrate that the element method of wavelet
613
+ analysis offers a notable improvement over traditional wavelet
614
+ methods.
615
+ First, let us consider the expected 10 year inflation rate
616
+ in the United States (E10YRI) between July 2018 and July
617
+ 2022. Fig 2(A) shows the E10YRI versus time over the period
618
+ described. A third order high-pass Butterworth infinite impulse
619
+ response filter with a cutoff of 1/3 years is then applied to
620
+ isolate only the higher frequency perturbations in the signal,
621
+ removing any longer-term trends. The result is the graph in Fig
622
+ 2(B). Next, a traditional wavelet scalogram is produced from
623
+ the data in Fig 2(B) using a Morse wavelet with parameters 𝛽 =
624
+ 3 and 𝛾 = 1. The resultant scalogram is shown in Fig 2(C). The
625
+ scalogram appears to show a clear and persistent long-term
626
+ volatility on the order of multiple months (1/12 – 1/20 years),
627
+ which generally waxes and wanes with time. Furthermore,
628
+ several shocks are present in March 2020, 2021, and 2022.
629
+ Interestingly, the volatility associated with the shock in 2022
630
+ appears to be notably higher frequency than that of 2021.
631
+ The data can be extracted from each of these frequency
632
+ bands and analyzed separately for a variety of purposes.
633
+ Although this scalogram does offer a promising and useful tool
634
+ for analyzing volatility in the E10YRI, a comparison with an
635
+ element analysis scalogram will reveal several limitations. The
636
+ element analysis method described in this paper was used with
637
+ identical wavelet parameters to produce the scalogram shown
638
+ in Fig 2(D). From this scalogram, several additional high
639
+ volatility events that are not evident in Fig 2(C) are clearly
640
+ visible. For instance, an uptick in volatility associated with the
641
+ stock market contraction of December 2018 is easily visible,
642
+ and the volatility in this shock can be clearly delineated by
643
+ frequency scale. In Fig 2(C), this shock is not readily visible, as
644
+ it is drowned out by noise and the other generating variabilities.
645
+ However, a careful inspection of Fig 2(B) shows that this
646
+ volatility is, in fact, present in December 2018. Whereas the
647
+ traditional scalogram cannot capture this information, the
648
+ element analysis method can. Likewise, news regarding
649
+ currency conflict between the EU and US and anxiety over
650
+ trade with China fueled volatility in July 2019, which is
651
+ captured in the element analysis scalogram and not the
652
+ traditional wavelet scalogram. Finally, the twin events of 2021
653
+ and 2022 can be better studied via element analysis. Whereas
654
+ the traditional wavelet scalogram indicates that the volatility in
655
+ 2022 is bifurcated into two separate modes, the element
656
+ analysis produces the more intuitive result that the volatility is
657
+ in fact continuous. Similarly, the start and end times in Fig 2(C)
658
+ are generally more spread out than those clearly delineated in
659
+ Fig 2(D). Finally, it is noteworthy that Fig 2(C) generally lacks
660
+ much of the changes in high frequency volatility that is present
661
+ in Fig 2(D). Overall, it should be clear from this example that
662
+ the element analysis method offers a promising alternative to
663
+ traditional wavelet scalogram methods for analyzing financial
664
+ data.
665
+
666
+
667
+
668
+
669
+
670
+
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+ Figure 2. Wavelet scalogram analysis of expected 10 year
694
+ inflation rate (E10YRI) in the United States. (A) Plot of
695
+ E10YRI vs time. (B) Plot of high frequency filtered
696
+ perturbations in E10YRI vs time. (C) Wavelet scalogram
697
+ produced from the data in B. (D) Element analysis scalogram
698
+ produced from the data in B.
699
+
700
+ V. DISCUSSION
701
+
702
+ Here, the element analysis method of Lilly has been
703
+ described and, and its application to econometrics has been
704
+ demonstrated in a simple example16. The key intuition is to
705
+ model the processes that generate perturbations in financial
706
+ signals as scaled, shifted, and isolated events that produce
707
+ ripples of various frequencies across a sea of noise as opposed
708
+ to a simple sinusoidal or mixed frequency oscillation. This
709
+ method is similar to the continuous wavelet transform and
710
+ based on the Morse wavelet, but it is unique in that it produces
711
+ a new transform for each generating event, allowing for a
712
+
713
+ A
714
+ Bsignificant improvement in noise reduction and signal clarity.
715
+ The analysis created by Lilly et al marks a valuable addition to
716
+ the econometrist’s toolbox for analyzing financial signals
717
+ because it can more precisely capture generators of
718
+ perturbations in financial signals than traditional wavelet
719
+ methods. This was demonstrated in an analysis of the expected
720
+ 10-year inflation rate in the United States (E10YRI) between
721
+ July 2018 and July 2022, where several clear events were
722
+ present in the element analysis that could not be studied using
723
+ traditional wavelet methods. In addition, there are ample
724
+ opportunities for this method to be improved to better fit
725
+ financial data. For instance, assumptions regarding the
726
+ distribution of noise could effect the expected value determined
727
+ in 3.9, and variance and bias terms could also be introduced at
728
+ this juncture. There is also a lack of clear criteria to determine
729
+ the optimal wavelet parameters for the transform wavelet,
730
+ especially for financial data. Finally, this method could be
731
+ further generalized by modelling events as superpositions of
732
+ higher order wavelets as opposed to single functions.
733
+
734
+ VI. REFERENCES
735
+
736
+ 1.
737
+ Connor, J., and Rossiter, R. (2005). Wavelet
738
+ Transforms and Commodity Prices. Studies in
739
+ Nonlinear Dynamics & Econometrics 9.
740
+ 2.
741
+ Collard, F. (1999). Spectral and persistence properties
742
+ of cyclical growth. Journal of Economic Dynamics
743
+ and Control 23, 463– 488.
744
+ 3.
745
+ Dalkir, M. (2004). A new approach to causality in the
746
+ frequency domain. Economics Bulletin 3 (4), 1-14.
747
+ 4.
748
+ Armah, M., Amewu, G., and Bossman, A. (2022).
749
+ Time-frequency analysis of financial stress and global
750
+ commodities prices: Insights from wavelet-based
751
+ approaches. Cogent Economics & Finance 10.
752
+ 10.1080/23322039.2022.2114161.
753
+ 5.
754
+ Karaev, A.K., Gorlova, O.S., Sedova, M.L.,
755
+ Ponkratov, V.V., Shmigol, N.S., and Demidova, S.E.
756
+ (2022). Improving the Accuracy of Forecasting the
757
+ TSA Daily Budgetary Fund Balance Based on
758
+ Wavelet Packet Transforms. Journal of Open
759
+ Innovation: Technology, Market, and Complexity 8.
760
+ 10.3390/joitmc8030107.
761
+ 6.
762
+ Li, X., and Tang, P. (2020). Stock index prediction
763
+ based on wavelet transform and FCD ‐ MLGRU.
764
+ Journal
765
+ of
766
+ Forecasting
767
+ 39,
768
+ 1229-1237.
769
+ 10.1002/for.2682.
770
+ 7.
771
+ Crowley, P. (2007). A Guide To Wavelets For
772
+ Economists. Journal of Economic Surverys 21, 207-
773
+ 267.
774
+ 8.
775
+ Crowley, P.M., and Hallett, A.H. (2015). Correlations
776
+ Between Macroeconomic Cycles in the US and UK:
777
+ What Can a Frequency Domain Analysis Tell Us?
778
+ Italian Economic Journal 2, 5-29. 10.1007/s40797-
779
+ 015-0023-6.
780
+ 9.
781
+ Aguiar-Conraria, L., Martins, M.M.F., and Soares,
782
+ M.J. (2012). The yield curve and the macro-economy
783
+ across time and frequencies. Journal of Economic
784
+ Dynamics
785
+ and
786
+ Control
787
+ 36,
788
+ 1950-1970.
789
+ 10.1016/j.jedc.2012.05.008.
790
+ 10.
791
+ Singh, S., Parmar, K.S., Kumar, J., and Makkhan,
792
+ S.J.S. (2020). Development of new hybrid model of
793
+ discrete wavelet decomposition and autoregressive
794
+ integrated moving average (ARIMA) models in
795
+ application to one month forecast the casualties cases
796
+ of COVID-19. Chaos Solitons Fractals 135, 109866.
797
+ 10.1016/j.chaos.2020.109866.
798
+ 11.
799
+ Adebayo, T.S. (2020). New Insights into Export-
800
+ growth Nexus: Wavelet and Causality Approaches.
801
+ Asian
802
+ Journal
803
+ of
804
+ Economics,
805
+ Business
806
+ and
807
+ Accounting, 32-44. 10.9734/ajeba/2020/v15i230212.
808
+ 12.
809
+ Arfaoui, S., Ben Mabrouk, A., and C., C. (2021).
810
+ Wavelet Analysis Basic Concepts and Applications.
811
+ Chapman and Hall/CRC 1.
812
+ 13.
813
+ Liu, J., Enderlin, E.M., Marshall, H.-P., and Khalil, A.
814
+ (2021). Automated Detection of Marine Glacier
815
+ Calving Fronts Using the 2-D Wavelet Transform
816
+ Modulus Maxima Segmentation Method. IEEE
817
+ Transactions on Geoscience and Remote Sensing 59,
818
+ 9047-9056. 10.1109/tgrs.2021.3053235.
819
+ 14.
820
+ Ding, W., and Li, Z. (2018). Research on adaptive
821
+ modulus maxima selection of wavelet modulus
822
+ maxima denoising. The Journal of Engineering 2019,
823
+ 175-180. 10.1049/joe.2018.8958.
824
+ 15.
825
+ Das, P. (2019). Econometrics in Theory and Practice.
826
+ Springer 1, 247-259.
827
+ 16.
828
+ Lilly, J.M. (2017). Element analysis: a wavelet-based
829
+ method for analysing time-localized events in noisy
830
+ time series. Proc Math Phys Eng Sci 473, 20160776.
831
+ 10.1098/rspa.2016.0776.
832
+ 17.
833
+ Zavanelli, N., Kim, H., Kim, J., Herbert, R.,
834
+ Mahmood, M., Kim, Y.S., Kwon, S., Bolus, B.,
835
+ Torstrick, F.B., Lee, C.S.D., and Yeo, W.H. (2021).
836
+ At-home wireless monitoring of acute hemodynamic
837
+ disturbances to detect sleep apnea and sleep stages via
838
+ a soft sternal patch. Sci Adv 7, eabl4146
839
+ 18.
840
+ Lee, S.H., Kim, Y.S., Yeo, M.K., Mahmood, M.,
841
+ Zavanelli, N., Chung, C., Heo, J.Y., Kim, Y., Jung,
842
+ S.S., and Yeo, W.H. (2022). Fully portable continuous
843
+ real-time auscultation with a soft wearable stethoscope
844
+ designed for automated disease diagnosis. Sci. Adv. 8,
845
+ eabo5867.
846
+
847
+
9dFQT4oBgHgl3EQfJTUp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf,len=399
2
+ page_content='XXX-X-XXXX-XXXX-X/XX/$XX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
3
+ page_content='00 ©20XX IEEE Wavelet Analysis for Time Series Financial Signals via Element Analysis Nathan Zavanelli George W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
4
+ page_content=' Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA nzavanelli@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
5
+ page_content='edu Abstract— The method of element analysis is proposed here as an alternative to traditional wavelet-based approaches to analyzing perturbations in financial signals by scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
6
+ page_content=' In this method, the processes that generate oscillations in financial signals are modelled as scaled, shifted, and isolated events that produce ripples of various frequencies across a sea of noise as opposed to a simple sinusoidal or mixed frequency oscillation or an impulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
7
+ page_content=' This allows one to directly estimate the wavelet parameters derived only from the generating functions, rejecting spurious perturbations driven by noise or extraneous factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
8
+ page_content=' Financial signals may then be reconstructed based on a finite set of generators localized in time and frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
9
+ page_content=' This method offers a marked advantage compared to traditional econometric tools because it directly targets the generators of oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
10
+ page_content=' Furthermore, the choice of the Morse wavelet allows for wide latitude in capturing a broad set of diverse generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
11
+ page_content=' In this work, the basic mathematical principles underlying element analysis are presented, and the method is applied to the study of variance in financial data, where the advantages of element analysis over traditional wavelet techniques is demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
12
+ page_content=' Specifically, in the example analysis of inflation expectations, element analysis shows a clear ability to distinguish between oscillations formed by noise and those formed by generators logically matched to historical events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
13
+ page_content=' Keywords—econometrics, wavelet, element analysis, variance, financial signals I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
14
+ page_content=' INTRODUCTION Wavelet transforms are a powerful tool for analyzing financial data because they decompose the fluctuations in a signal (like a graph of stock price vs time) into different frequency scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
15
+ page_content=' This multi-resolution analysis is increasingly used to isolate trends by time scale, derive scale-based assessments of data variance, and assess correlation between signals by scale1-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
16
+ page_content=' For instance, Crowley et al used a continuous wavelet transform (CWT) to analyze growth cycles of productivity in the European Union (EU), United States (US) and United Kingdom (UK), and they discovered that cycles occurred at various frequencies beyond those classically studied7,8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
17
+ page_content=' Furthermore, they characterized the correlation between each region’s productivity cycles by frequency scale, enabling them to hypothesize how international and national factors drive production volatility in short- and long-term scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
18
+ page_content=' Similar analysis has been conducted for high frequency stock trading, analyzing market trends, assessing relations between variables and the yield curve, and quantifying risk4,6,9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
19
+ page_content=' However, frequency decomposition techniques, like the wavelet transform, have not achieved their full potential in finance because the mathematical tools have not been sufficiently updated in conjunction with recent discoveries in adjacent fields10,11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
20
+ page_content=' In order to better understand the problem of frequency decomposition, let us consider the development of suitable approaches from simplest to most complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
21
+ page_content=' The Fourier transform is the simplest frequency decomposition technique, representing a signal as a sum of sinusoidal variations at different frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
22
+ page_content=' However, this method is ill- suited for handling non-sinusoidal signals12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
23
+ page_content=' On the other extreme, the modulus maxima method can be used to analyze signals that are nearly impulses13,14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
24
+ page_content=' However, almost all financial signals fall at neither extreme, instead exhibiting complex morphologies positioned over a background of noise15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
25
+ page_content=' These morphologies are well represented by a series of events localized in time with varying spatial distributions and oscillatory and non-oscillatory components15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
26
+ page_content=' Thus, an effective means for studying these signals is to model them as a sum of various scaled orthogonal wavelets, or the wavelet transform2,4,16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
27
+ page_content=' However, this transform does not sufficiently separate signal from noise for two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
28
+ page_content=' First, any waveform component, be it noise or signal, is mapped to a wavelet scale without any means of distinguishing the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
29
+ page_content=' Second, the signal almost always does not exactly match the chosen wavelet, so it is itself dispersed across several scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
30
+ page_content=' The result is a blurred transform, where significant information may be lost due to the presence of noise4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
31
+ page_content=' Several traditional methods are commonly used to address this issue, like wavelet thresholding and complex statistical tests6,10,11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
32
+ page_content=' These approaches, however, are also limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
33
+ page_content=' In the first case, statistically significant wavelet coefficients are identified and maximized, but the underlying limitations of the wavelet transform are never addressed8,12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
34
+ page_content=' In the second, one typically must make strong assumptions about either the duration or form of a signal, which can lead to significant biases in analysis and great difficulty in application10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
35
+ page_content=' Instead, a new method termed element analysis, developed by Lilly, can produce a much clearer distinction between signal and noise16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
36
+ page_content=' The key intuition is to model the processes that generate perturbations in financial signals as scaled, shifted, and isolated events that produce ripples of various frequencies across a sea of noise as opposed to a simple sinusoidal or mixed frequency oscillation or an impulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
37
+ page_content=' Here, a time series signal x(𝑡) is modelled not as a sum of sine waves, impulses, or wavelets, but instead as a baseline of stationary and Gaussian noise upon which are added many individual copies of a complex valued function Ψ(𝑡) with a morphology and time localization that is simply controlled by a time-offset, phase shift, and scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
38
+ page_content=' x(t) = ∑ ℜ {cnΨμ,γ (t − tn ρn )} n n=1 + xe(t) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
39
+ page_content='1 where the complex parameter cn = |cn|eiϕn sets the amplitude |cn| and phase ϕn of the event tn and ρn sets the event scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
40
+ page_content=' xe(t) represents the aforementioned noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
41
+ page_content=' This representation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
42
+ page_content='1) is referred to as the element model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
43
+ page_content=' Element analysis based on this model is similar to the CWT, but it limits the signal reconstruction only to isolated points in both time and frequency that correspond to specific events, rejecting spurious noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
44
+ page_content=' In general, this method has three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
45
+ page_content=' First, the wavelet transform maxima corresponding only to events are identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
46
+ page_content=' Second, the significant of these maxima is examined in relation to the noise threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
47
+ page_content=' Third, the reconstruction is performed based on the coefficients resulting from these maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
48
+ page_content=' Element analysis is a distinct improvement over wavelet analysis because its goal is not to faithfully capture all signal content, like the CWT, but instead to infer properties of key signal events over a noise threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
49
+ page_content=' In essence, element analysis seeks to assess the significance of signal events over the null hypothesis of white noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
50
+ page_content=' This method allows for a clear distinction of financial signals separate from the noise, marking a strong improvement over traditional wavelet approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
51
+ page_content=' Although element analysis has been successfully employed for a variety of signal processing disciplines, it has not been employed for econometrics to the author’s knowledge, marking a large missed opportunity in financial data analysis17,18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
52
+ page_content=' The remainder of the paper will consist of the following sections: a brief discussion of essential wavelet principles, a general summary of the element method, an example relating to financial volatility analysis, and a discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
53
+ page_content=' In conjunction with his seminal paper, Lilly created a freely available toolbox of Matlab functions, called jLab, available at http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
54
+ page_content='jmlilly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
55
+ page_content='net16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
56
+ page_content=' Furthermore, all software and data relating to the econometrics techniques discussed here is made available by the author at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
57
+ page_content='com/nzavanelli/Element_Analysis_Financial_D ata II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
58
+ page_content=' WAVELET ESSENTIALS This section seeks to briefly cover several of the key wavelet properties needs to understand element analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
59
+ page_content=' For further details, please see the following references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
60
+ page_content=' These next two sections will also represent a simplification of the material presented in Lilly’s work, which the reader may also reference16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
61
+ page_content=' This section is divided into 2 subsections: (a) continuous wavelet transforms based on the Morse wavelet and (b) additional Morse wavelet properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
62
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
63
+ page_content=' CWT approaches with the Morse Wavelet The Morse wavelet Ψ𝛽,𝛾 is a complex function represented for 𝛽 ≥ 0 𝑎𝑛𝑑 𝛾 > 0 as follows: Ψ𝛽,𝛾 = 𝛼𝛽,𝛾𝜔𝛽𝑒−𝜔𝛾 × { 1 𝜔 > 0 1 2 𝜔 = 0 0 𝜔 < 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
64
+ page_content='1 where 𝛽 is the order, which controls the low frequency behavior, 𝛾 the family, controlling the high frequency decay, 𝜔 the frequency, and 𝛼𝛽,𝛾 the normalizing constant of 𝛼𝛽,𝛾 = 2 (𝑒𝛾 𝛽 ) 𝛽 𝛾 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
65
+ page_content='2 With this definition, the Morse wavelet is strictly analytic, meaning that it must contain both complex and real components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
66
+ page_content=' Therefore, the wavelets may be naturally grouped into odd and even pairs, allowing them to capture phase information similar to sine and cosine representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
67
+ page_content=' The wavelet transform of a signal x(𝑡) is represented in the time domain and frequency domain, respectively, as follows: 𝒲𝛽,𝛾(τ, s) = ∫ 1 𝑠 ∞ −∞ Ψ∗𝛽,𝛾 (𝑡 − 𝜏 𝑠 ) 𝑥(𝑡)𝑑𝑡 = 1 2𝜋 ∫ 𝑒𝑖𝜋𝜏Ψ∗𝛽,𝛾(𝑠, 𝜔)𝑋(𝜔)𝑑𝜔 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
68
+ page_content='3 ∞ −∞ where 𝑋(𝜔) denotes the Fourier transform of x(t) defined as 𝑥(𝑡) = 1 2𝜋 ∫ 𝑒𝑖𝜋𝜏𝑋(𝜔)𝑑𝜔 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
69
+ page_content='4 ∞ −∞ This transform in the time domain is simply the inner product of the signal and shifted, time scaled versions of the Morse wavelet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
70
+ page_content=' In the frequency domain, the scale variable s represents the stretching or compression of the signal, and the rescaled frequency domain wavelet will always be maximized at 𝜔𝑠 = 𝜔𝛽,𝛾 𝑠 , which is referred to as the scale frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
71
+ page_content=' Note that normalization by 1 √𝑠 is typically performed to ensure the wavelet maintains constant energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
72
+ page_content=' However, 1 𝑠 normalization is employed here because it allows for the transform values to be controlled by only cn and not ρn, greatly simplifying the analytic calculations employed in element analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
73
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
74
+ page_content=' Morse wavelet properties Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
75
+ page_content=' Morse wavelet representations with various 𝜷 and 𝜸 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
76
+ page_content=' Here, the real, imaginary, and envelope components are illustrated as blue, red, and yellow, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
77
+ page_content=' One highly attractive feature of Morse wavelets is that they can assume a wide range of morphologies, which is easily controlled by the choice of 𝛽 and 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
78
+ page_content=' This is illustrated in Fig 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
79
+ page_content=' Increasing 𝛽 tends to make the signal more oscillatory, and increasing 𝛽 with a fixed 𝛾 causes more oscillations to fit in the same envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
80
+ page_content=' On the other hand, modifying 𝛾 tends to modulate the overall function and envelope shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
81
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
82
+ page_content=' ELEMENT ANALYSIS This section pertains to the method of element analysis developed by Lilly, representing a summary treatment16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
83
+ page_content=' Here, the Morse wavelet is introduced as a signal element in 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
84
+ page_content=' Next, it is shown in 3(b) that a wavelet transform of a Morse function is in fact another Morse wavelet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
85
+ page_content=' This allows for the derivation in 3(c) of the element analysis method to produce transform maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
86
+ page_content=' Finally, the algorithm is completed in 3(d) by reproducing the element properties based on these maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
87
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
88
+ page_content=' Morse wavelet representations of signal elements Consider the wavelet function in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
89
+ page_content='1), where 𝜇 and 𝛾 determine the element function properties (as described in Fig 1) and 𝜌 serves as the scale s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
90
+ page_content=' Taking the wavelet transform of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
91
+ page_content='1) with a Morse wavelet Ψ∗ 𝛽,𝛾 ( 𝑡−𝜏 𝑠 ) leads to 𝒲𝛽,𝛾(τ, s) = 1 2 ∑ 𝑐𝑛 𝑛 𝑛=1 ∫ 1 𝑠 ∞ −∞ Ψ∗ 𝛽,𝛾 (𝑡 − 𝜏 𝑠 ) Ψ𝜇,𝛾 (𝑡 − 𝜏 𝜌𝑛 ) 𝑑𝑡 + 𝜀𝛽,𝛾(𝜏, 𝑠) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
92
+ page_content='1 where 𝜀𝛽,𝛾(𝜏, 𝑠) represents the wavelet transform of the noise process in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
93
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
94
+ page_content=' Now, let us define the wavelet maxima points as the time and scale coordinates where the wavelet transform modulus is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
95
+ page_content=' This will occur when the following four conditions are met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
96
+ page_content=' ∂ 𝜕τ |𝑤𝛽,𝛾(𝜏, 𝑠)| = 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
97
+ page_content='2 ∂ 𝜕s |𝑤𝛽,𝛾(𝜏, 𝑠)| = 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
98
+ page_content='3 𝜕2 𝜕𝑡2 |𝑤𝛽,𝛾(𝜏, 𝑠)| < 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
99
+ page_content='4 𝜕2 𝜕𝑠2 |𝑤𝛽,𝛾(𝜏, 𝑠)| < 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
100
+ page_content='5 The goal of element analysis is to simply to use the values of the wavelet transform at these maxima points to estimate the coefficients cn, the scales ρn, and the times tn of the N signal events that constitute the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
101
+ page_content=' From there, a highly denoised scalogram containing only the event content may be produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
102
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
103
+ page_content=' Wavelet transform of a Morse function When one performs a wavelet transform of a 𝜇 order Morse wavelet Ψ𝜇,𝛾 ( 𝑡 𝜌) with a 𝛽 order wavelet of the same family 𝛾, the result is a modified wavelet 𝜁(𝛽,𝜇,𝛾) ( 𝜏 𝜌 , 𝑠 𝜌), as shown in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
104
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
105
+ page_content=' This transform is defined as 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) = 𝛼𝛽,𝛾𝛼𝜇,𝛾 𝛼𝛽+𝜇,𝛾 𝑠𝛽 (√𝑠𝛾 + 1 𝛾 ) 𝛽+𝜇+1 𝜓𝛽+𝜇,𝛾 ( 𝜏 √𝑠𝛾 + 1 𝛾 ) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
106
+ page_content='6 For a rigorous derivation, please refer to Lilly’s work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
107
+ page_content=' Briefly, this result may be obtained by substituting the wavelet definition, evaluating the triple integral, rescaling the wavelet, and performing a simple change of variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
108
+ page_content=' Notably, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
109
+ page_content='6 shows that performing a wavelet transform of a Morse wavelet modifies the time and scale of the original wavelet, but does not affect the transform amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
110
+ page_content=' The result is a wavelet of order 𝛽 + 𝜇, which follows because both 𝛽 and 𝜇 are powers of 𝜔 in the frequency domain, where the wavelet transform corresponds to multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
111
+ page_content=' This modified wavelet also has two intriguing properties: First, the amplitude of the wavelet transform is highly dependent on the scales s and 𝜌.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
112
+ page_content=' Second, the wavelet’s time argument can be effectively rescaled by the transform scale s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
113
+ page_content=' To examine the scaling effect on 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
114
+ page_content='6 in more detail, consider the following two cases: 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) = 𝛼𝛽,𝛾𝛼𝜇,𝛾 𝛼𝛽+𝜇,𝛾 × { 𝜌 𝑠 𝜇+1 Ψ𝛽+𝜇,𝛾 ( 𝑡 𝑠) 𝑠 ≫ 𝜌 𝑠 𝜌 𝛽 Ψ𝛽+𝜇,𝛾 ( 𝑡 𝜌) 𝑠 ≪ 𝜌 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
115
+ page_content='7 The result is that when 𝑠 ≫ 𝜌, the resultant wavelet 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) is smoothed, with the transform spread out over the scale s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
116
+ page_content=' This is because the transform wavelet Ψ𝛽,𝛾 ( 𝑡 𝑠) is much broader than the β=1 β = 1/5 β=5 y=1 =4 =8Morse wavelet being transformed Ψ𝜇,𝛾 ( 𝑡 𝜌).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
117
+ page_content=' In the opposite case, the wavelet scale becomes fixed at 𝜌, decreasing in magnitude with further decreases in s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
118
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
119
+ page_content=' Transform maxima The modified wavelet function 𝜁(𝛽,𝜇,𝛾)(𝜏, 𝑠) can be used to identify the wavelet transform values at the maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
120
+ page_content=' First, consider the wavelet transform definition from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
121
+ page_content='1 with the modified wavelet: 𝒲𝛽,𝛾(τ, s) = 1 2 ∑ 𝑐𝑛 𝑛 𝑛=1 𝜁(𝛽,𝜇,𝛾) (𝜏 − 𝑡𝑛 𝜌𝑛 , 𝑠 𝜌𝑛 ) + 𝜀𝛽,𝛾(𝜏, 𝑠) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
122
+ page_content='8 The expected value of the squared modulus of this wavelet transform thus may be approximated as: 𝐸 {|𝒲𝛽,𝛾(τ, s)| 2} ≈ 1 4 ∑|𝑐𝑛|2 𝑛 𝑛=1 |𝜁(𝛽,𝜇,𝛾) (𝜏 − 𝑡𝑛 𝜌𝑛 , 𝑠 𝜌𝑛 )| 2 + 𝐸 {|𝜀𝛽,𝛾(𝜏, 𝑠) | 2} 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
123
+ page_content='9 This approximation requires the assumption that cross-terms within the summation may be neglected on the basis of the zero mean and that events are well separated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
124
+ page_content=' The second assumption is generally not fully valid for financial signals, and the result is the potential for low level maxima amplitudes to arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
125
+ page_content=' Fortunately, these amplitudes are generally higher than the noise floor, but still lesser than a pure signal with only one generating function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
126
+ page_content=' However, care must be taken when selecting 𝛽 and 𝛾 parameters to ensure strong maxima in the case of most signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
127
+ page_content=' In general, financial signals with many complicated interactions should avoid large 𝛾 and small 𝛽 values to ensure strong monotonic decay and avoid sidelobe maxima effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
128
+ page_content=' Now let us consider the scale locations and wavelet transform values corresponding to the wavelet maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
129
+ page_content=' Note that the maxima of 𝜁(𝛽,𝜇,𝛾) ( 𝜏 𝜌 , 𝑠 𝜌) with respect to time occurs at 𝜏 = 0 , at which point 𝜁(𝛽,𝜇,𝛾) (0, 𝑠 𝜌) assumes the real and positive value: 𝜁(𝛽,𝜇,𝛾) (0, 𝑠 𝜌) = 𝛼𝛽,𝛾𝛼𝜇,𝛾 2𝜋𝛾 Γ (𝛽 + 𝜇 + 1 𝛾 ) (𝑠 𝜌) 𝛾 √((𝑠 𝜌) 𝛾 + 1) 𝛾 β+𝜇+1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
130
+ page_content='10 This value may be derived by combining 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
131
+ page_content='6 with the definition of the wavelet function at 𝜏 = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
132
+ page_content=' Defining 𝑠̃ ≡ 𝑠 𝜌 and differentiating 𝜁(𝛽,𝜇,𝛾)(0, 𝑠̃) with this new variable allows for one to determine that the maximal value occurs at: 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 = 𝜁(𝛽,𝜇,𝛾)(0, 𝑠̃𝑚𝑎𝑥) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
133
+ page_content='11 𝑠̃𝑚𝑎𝑥 = ( 𝛽 𝜇 + 1) 1 𝛾 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
134
+ page_content='12 Inserting 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
135
+ page_content='11 into 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
136
+ page_content='10 allows for the determination of the maximum value of the modified wavelet transform: 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 = 𝛼𝛽,𝛾𝛼𝜇,𝛾 2𝜋𝛾 Γ (𝛽 + 𝜇 + 1 𝛾 ) 𝜂𝛽,𝜇,𝛾 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
137
+ page_content='13 where 𝜂𝛽,𝜇,𝛾 is the scale weighting function defined as: 𝜂𝛽,𝜇,𝛾 ≡ 𝑠̃𝑚𝑎𝑥 𝛾 √(𝑠̃𝑚𝑎𝑥 𝛾 + 1) 𝛾 β+𝜇+1 = ( 𝛽 𝜇 + 1) 𝛽 𝛾 ( 𝛽 𝜇 + 1 + 1) 𝛽+𝜇+1 𝛾 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
138
+ page_content='14 Thus, is can readily seen that the maximum value 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 is indeed independent of the scale 𝜌.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
139
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
140
+ page_content=' Estimating element properties from the transform maxima In the case of well-behaved signals with a proper choice of wavelet parameters, we will have one maximum point for each of the N generating events, and the nth maxima will be located at time 𝑡𝑛 and scale 𝑠𝑛 = 𝜌𝑛𝑠̃𝑚𝑎𝑥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
141
+ page_content=' It is clear from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
142
+ page_content='8 that the wavelet transform here is thus: 𝒲𝛽,𝛾(𝑡𝑛,𝑠𝑛) = 1 2𝑐𝑛𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
143
+ page_content='15 Now, one may use the equations in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
144
+ page_content='2-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
145
+ page_content='5 to define the set of observed time/scale maxima points, which will be denoted as (𝜏̂𝑛, 𝑠̂𝑛).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
146
+ page_content=' From these points, the element properties (𝑡𝑛, 𝑐𝑛, 𝜌𝑛) may be simply estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
147
+ page_content=' If one defines 𝒲𝑛 ≡ 𝒲𝛽,𝛾(𝜏̂𝑛,𝑠̂𝑛) as the wavelet transform at each observed maximum, then these element properties become: 𝑡̂𝑛 = 𝜏̂𝑛 𝑐̂𝑛 = 2 𝒲𝑛 𝜁(𝛽,𝜇,𝛾)𝑚𝑎𝑥 𝜌̂𝑛 = 𝑠̂𝑛 𝑠̃𝑚𝑎𝑥 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
148
+ page_content='16 where the quantities are hatted to show that these values are estimates of the true element properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
149
+ page_content=' Before the method is complete, one final modification is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
150
+ page_content=' Here, the frequency of the function is reported instead of the scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
151
+ page_content=' This may be rectified by substituting 𝑠 = ω𝛽,𝛾 ω𝑠 and 𝜌 = ω𝜇,𝛾 ω𝑠 into 𝜌̂𝑛 = 𝑠̂𝑛 𝑠̃𝑚𝑎𝑥 from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
152
+ page_content='16 to yield: ω𝜌̂𝑛 = ω𝑠̂𝑛 ω𝜇,𝛾 ω𝛽,𝛾 𝑠̃𝑚𝑎𝑥 = 𝜔𝑠̂𝑛 𝜔𝜇,𝛾 𝜔𝛽,𝛾 ( 𝛽 𝜇 + 1) 1 𝛾 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
153
+ page_content='17 which is the relationship between the frequency band 𝜔𝑠̂𝑛of the observed wavelet maximum and that of the corresponding element, ω𝜌̂𝑛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
154
+ page_content=' We now have all the parameters necessary to reconstruct the signal transform as a scalogram containing the information of the N elements, without the noise function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
155
+ page_content=' An algorithm to do so with examples and all code used in this work is proved by the author at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
156
+ page_content='com/nzavanelli/Element_Analysis_Financial_D ata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
157
+ page_content=' Furthermore, the reader is encouraged to consider the original algorithms derived by Lilly et al, which are available at http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
158
+ page_content='jmlilly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
159
+ page_content='net and upon which the author’s algorithms are heavily based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
160
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
161
+ page_content=' APPLICATION TO VARIANCE ANALYSIS As mentioned in the introduction, wavelet analysis is a powerful, yet underutilized, tool in econometrics for analyzing financial data by time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
162
+ page_content=' Although many complex analyzes are possible, like assessing the correlation of variables to the yield curve by scale, two very simple examples will be shown here to demonstrate that the element method of wavelet analysis offers a notable improvement over traditional wavelet methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
163
+ page_content=' First, let us consider the expected 10 year inflation rate in the United States (E10YRI) between July 2018 and July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
164
+ page_content=' Fig 2(A) shows the E10YRI versus time over the period described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
165
+ page_content=' A third order high-pass Butterworth infinite impulse response filter with a cutoff of 1/3 years is then applied to isolate only the higher frequency perturbations in the signal, removing any longer-term trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
166
+ page_content=' The result is the graph in Fig 2(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
167
+ page_content=' Next, a traditional wavelet scalogram is produced from the data in Fig 2(B) using a Morse wavelet with parameters 𝛽 = 3 and 𝛾 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
168
+ page_content=' The resultant scalogram is shown in Fig 2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
169
+ page_content=' The scalogram appears to show a clear and persistent long-term volatility on the order of multiple months (1/12 – 1/20 years), which generally waxes and wanes with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
170
+ page_content=' Furthermore, several shocks are present in March 2020, 2021, and 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
171
+ page_content=' Interestingly, the volatility associated with the shock in 2022 appears to be notably higher frequency than that of 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
172
+ page_content=' The data can be extracted from each of these frequency bands and analyzed separately for a variety of purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
173
+ page_content=' Although this scalogram does offer a promising and useful tool for analyzing volatility in the E10YRI, a comparison with an element analysis scalogram will reveal several limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
174
+ page_content=' The element analysis method described in this paper was used with identical wavelet parameters to produce the scalogram shown in Fig 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
175
+ page_content=' From this scalogram, several additional high volatility events that are not evident in Fig 2(C) are clearly visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
176
+ page_content=' For instance, an uptick in volatility associated with the stock market contraction of December 2018 is easily visible, and the volatility in this shock can be clearly delineated by frequency scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
177
+ page_content=' In Fig 2(C), this shock is not readily visible, as it is drowned out by noise and the other generating variabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
178
+ page_content=' However, a careful inspection of Fig 2(B) shows that this volatility is, in fact, present in December 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
179
+ page_content=' Whereas the traditional scalogram cannot capture this information, the element analysis method can.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
180
+ page_content=' Likewise, news regarding currency conflict between the EU and US and anxiety over trade with China fueled volatility in July 2019, which is captured in the element analysis scalogram and not the traditional wavelet scalogram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
181
+ page_content=' Finally, the twin events of 2021 and 2022 can be better studied via element analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
182
+ page_content=' Whereas the traditional wavelet scalogram indicates that the volatility in 2022 is bifurcated into two separate modes, the element analysis produces the more intuitive result that the volatility is in fact continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
183
+ page_content=' Similarly, the start and end times in Fig 2(C) are generally more spread out than those clearly delineated in Fig 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
184
+ page_content=' Finally, it is noteworthy that Fig 2(C) generally lacks much of the changes in high frequency volatility that is present in Fig 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
185
+ page_content=' Overall, it should be clear from this example that the element analysis method offers a promising alternative to traditional wavelet scalogram methods for analyzing financial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
186
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
187
+ page_content=' Wavelet scalogram analysis of expected 10 year inflation rate (E10YRI) in the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
188
+ page_content=' (A) Plot of E10YRI vs time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
189
+ page_content=' (B) Plot of high frequency filtered perturbations in E10YRI vs time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
190
+ page_content=' (C) Wavelet scalogram produced from the data in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
191
+ page_content=' (D) Element analysis scalogram produced from the data in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
192
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
193
+ page_content=' DISCUSSION Here, the element analysis method of Lilly has been described and, and its application to econometrics has been demonstrated in a simple example16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
194
+ page_content=' The key intuition is to model the processes that generate perturbations in financial signals as scaled, shifted, and isolated events that produce ripples of various frequencies across a sea of noise as opposed to a simple sinusoidal or mixed frequency oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
195
+ page_content=' This method is similar to the continuous wavelet transform and based on the Morse wavelet, but it is unique in that it produces a new transform for each generating event, allowing for a A Bsignificant improvement in noise reduction and signal clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
196
+ page_content=' The analysis created by Lilly et al marks a valuable addition to the econometrist’s toolbox for analyzing financial signals because it can more precisely capture generators of perturbations in financial signals than traditional wavelet methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
197
+ page_content=' This was demonstrated in an analysis of the expected 10-year inflation rate in the United States (E10YRI) between July 2018 and July 2022, where several clear events were present in the element analysis that could not be studied using traditional wavelet methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
198
+ page_content=' In addition, there are ample opportunities for this method to be improved to better fit financial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
199
+ page_content=' For instance, assumptions regarding the distribution of noise could effect the expected value determined in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
200
+ page_content='9, and variance and bias terms could also be introduced at this juncture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
201
+ page_content=' There is also a lack of clear criteria to determine the optimal wavelet parameters for the transform wavelet, especially for financial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
202
+ page_content=' Finally, this method could be further generalized by modelling events as superpositions of higher order wavelets as opposed to single functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
203
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
204
+ page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
205
+ page_content=' Connor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
206
+ page_content=', and Rossiter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
207
+ page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
208
+ page_content=' Wavelet Transforms and Commodity Prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
209
+ page_content=' Studies in Nonlinear Dynamics & Econometrics 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
210
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
211
+ page_content=' Collard, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
212
+ page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
213
+ page_content=' Spectral and persistence properties of cyclical growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
214
+ page_content=' Journal of Economic Dynamics and Control 23, 463– 488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
215
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
216
+ page_content=' Dalkir, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
217
+ page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
218
+ page_content=' A new approach to causality in the frequency domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
219
+ page_content=' Economics Bulletin 3 (4), 1-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
220
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
221
+ page_content=' Armah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
222
+ page_content=', Amewu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
223
+ page_content=', and Bossman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
224
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
225
+ page_content=' Time-frequency analysis of financial stress and global commodities prices: Insights from wavelet-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
226
+ page_content=' Cogent Economics & Finance 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
227
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
228
+ page_content='1080/23322039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
229
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
230
+ page_content='2114161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
231
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
232
+ page_content=' Karaev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
233
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
234
+ page_content=', Gorlova, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
235
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
236
+ page_content=', Sedova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
237
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
238
+ page_content=', Ponkratov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
239
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
240
+ page_content=', Shmigol, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
241
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
242
+ page_content=', and Demidova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
243
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
244
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
245
+ page_content=' Improving the Accuracy of Forecasting the TSA Daily Budgetary Fund Balance Based on Wavelet Packet Transforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
246
+ page_content=' Journal of Open Innovation: Technology, Market, and Complexity 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
247
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
248
+ page_content='3390/joitmc8030107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
249
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
250
+ page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
251
+ page_content=', and Tang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
252
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
253
+ page_content=' Stock index prediction based on wavelet transform and FCD ‐ MLGRU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
254
+ page_content=' Journal of Forecasting 39, 1229-1237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
255
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
256
+ page_content='1002/for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
257
+ page_content='2682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
258
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
259
+ page_content=' Crowley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
260
+ page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
261
+ page_content=' A Guide To Wavelets For Economists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
262
+ page_content=' Journal of Economic Surverys 21, 207- 267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
263
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
264
+ page_content=' Crowley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
265
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
266
+ page_content=', and Hallett, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
267
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
268
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
269
+ page_content=' Correlations Between Macroeconomic Cycles in the US and UK: What Can a Frequency Domain Analysis Tell Us?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
270
+ page_content=' Italian Economic Journal 2, 5-29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
271
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
272
+ page_content='1007/s40797- 015-0023-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
273
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
274
+ page_content=' Aguiar-Conraria, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
275
+ page_content=', Martins, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
276
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
277
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
278
+ page_content=', and Soares, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
279
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
280
+ page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
281
+ page_content=' The yield curve and the macro-economy across time and frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
282
+ page_content=' Journal of Economic Dynamics and Control 36, 1950-1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
283
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
284
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
285
+ page_content='jedc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
286
+ page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
287
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
288
+ page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
289
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
290
+ page_content=' Singh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
291
+ page_content=', Parmar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
292
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
293
+ page_content=', Kumar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
294
+ page_content=', and Makkhan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
295
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
296
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
297
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
298
+ page_content=' Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
299
+ page_content=' Chaos Solitons Fractals 135, 109866.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
300
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
301
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
302
+ page_content='chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
303
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
304
+ page_content='109866.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
305
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
306
+ page_content=' Adebayo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
307
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
308
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
309
+ page_content=' New Insights into Export- growth Nexus: Wavelet and Causality Approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
310
+ page_content=' Asian Journal of Economics, Business and Accounting, 32-44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
311
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
312
+ page_content='9734/ajeba/2020/v15i230212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
313
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
314
+ page_content=' Arfaoui, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
315
+ page_content=', Ben Mabrouk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
316
+ page_content=', and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
317
+ page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
318
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
319
+ page_content=' Wavelet Analysis Basic Concepts and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
320
+ page_content=' Chapman and Hall/CRC 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
321
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
322
+ page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
323
+ page_content=', Enderlin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
324
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
325
+ page_content=', Marshall, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
326
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
327
+ page_content=', and Khalil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
328
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
329
+ page_content=' Automated Detection of Marine Glacier Calving Fronts Using the 2-D Wavelet Transform Modulus Maxima Segmentation Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
330
+ page_content=' IEEE Transactions on Geoscience and Remote Sensing 59, 9047-9056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
331
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
332
+ page_content='1109/tgrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
333
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
334
+ page_content='3053235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
335
+ page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
336
+ page_content=' Ding, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
337
+ page_content=', and Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
338
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
339
+ page_content=' Research on adaptive modulus maxima selection of wavelet modulus maxima denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
340
+ page_content=' The Journal of Engineering 2019, 175-180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
341
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
342
+ page_content='1049/joe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
343
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
344
+ page_content='8958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
345
+ page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
346
+ page_content=' Das, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
347
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
348
+ page_content=' Econometrics in Theory and Practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
349
+ page_content=' Springer 1, 247-259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
350
+ page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
351
+ page_content=' Lilly, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
352
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
353
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
354
+ page_content=' Element analysis: a wavelet-based method for analysing time-localized events in noisy time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
355
+ page_content=' Proc Math Phys Eng Sci 473, 20160776.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
356
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
357
+ page_content='1098/rspa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
358
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
359
+ page_content='0776.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
360
+ page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
361
+ page_content=' Zavanelli, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
362
+ page_content=', Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
363
+ page_content=', Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
364
+ page_content=', Herbert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
365
+ page_content=', Mahmood, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
366
+ page_content=', Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
367
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
368
+ page_content=', Kwon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
369
+ page_content=', Bolus, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
370
+ page_content=', Torstrick, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
371
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
372
+ page_content=', Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
373
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
374
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
375
+ page_content=', and Yeo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
376
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
377
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
378
+ page_content=' At-home wireless monitoring of acute hemodynamic disturbances to detect sleep apnea and sleep stages via a soft sternal patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
379
+ page_content=' Sci Adv 7, eabl4146 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
380
+ page_content=' Lee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
381
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
382
+ page_content=', Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
383
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
384
+ page_content=', Yeo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
385
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
386
+ page_content=', Mahmood, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
387
+ page_content=', Zavanelli, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
388
+ page_content=', Chung, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
389
+ page_content=', Heo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
390
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
391
+ page_content=', Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
392
+ page_content=', Jung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
393
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
394
+ page_content=', and Yeo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
395
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
396
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
397
+ page_content=' Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
398
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
399
+ page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
400
+ page_content=' 8, eabo5867.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFQT4oBgHgl3EQfJTUp/content/2301.13255v1.pdf'}
AtAzT4oBgHgl3EQfhv1C/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:310681fdf028969e38e85c54cf6ede8eb8083e566b80e6ec0f2bbd5a65c17603
3
+ size 196591
B9FJT4oBgHgl3EQfsy1U/content/2301.11614v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd6f7bb84382c780c8f6de6e68da3f9e77420b89406549ebe24512ce334d4652
3
+ size 9753420
D9AzT4oBgHgl3EQfGvu-/content/tmp_files/2301.01034v1.pdf.txt ADDED
@@ -0,0 +1,1275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01034v1 [math.CT] 3 Jan 2023
2
+ VARIETIES OF QUANTITATIVE OR CONTINUOUS
3
+ ALGEBRAS (EXTENDED ABSTRACT)
4
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
5
+ Abstract. Quantitative algebras are algebras enriched in the cat-
6
+ egory Met of metric spaces so that all operations are nonexpand-
7
+ ing. Mardare, Plotkin and Panangaden introduced varieties (aka
8
+ 1-basic varieties) as classes of quantitative algebras presented by
9
+ quantitative equations. We prove that they bijectively correspond
10
+ to strongly finitary monads T on Met. This means that T is the
11
+ Kan extension of its restriction to finite discrete spaces. An analo-
12
+ gous result holds in the category CMet of complete metric spaces.
13
+ Analogously, continuous algebras are algebras enriched in CPO,
14
+ the category of ω-cpos, so that all operations are continuous. We
15
+ introduce equations between extended terms, and prove that vari-
16
+ eties (classes presented by such equations) correspond bijectively
17
+ to strongly finitary monads T on CPO. This means that T is the
18
+ Kan extension of its restriction to finite discrete cpos. (The two
19
+ results have substantially different proofs.) An analogous result is
20
+ also presented for monads on DCPO.
21
+ We also characterize strong finitarity in all the categories above
22
+ by preservations of certain weighted colimits. As a byproduct we
23
+ prove that directed colimits commute with finite products in all
24
+ cartesian closed categories.
25
+ 1. Introduction
26
+ Quantitative algebraic reasoning was formalized in a series of arti-
27
+ cles of Mardare, Panangaden and Plotkin [10, 21, 22, 11] as a tool for
28
+ studying computational effects in probabilistic computation. Those pa-
29
+ pers work with algebras in the category Met of metric spaces or CMet of
30
+ complete metric spaces. Metrics are always understood to be extended:
31
+ the distance ∞ is allowed; morphisms are the nonexpanding maps f
32
+ which means that for x, y in the domain one has d(x, y) ≤ d(f(x), f(y)).
33
+ Quantitative algebras are algebras acting on a (complete) metric space
34
+ A so that every n-ary operation is a nonexpanding map from An (with
35
+ the maximum metric) to A. Mardare et al. introduced quantitative
36
+ equations, which are formal expressions t =ε t′ where t and t′ are terms
37
+ and ε ≥ 0 is a rational number. A quantitative algebra A satisfies this
38
+ equation iff for every interpretation of the variables the elements of A
39
+ corresponding to t and t′ have distance at most ε. A variety (called
40
+ J. Ad´amek and M. Dost´al acknowledge the support by the Grant Agency of the
41
+ Czech Republic under the grant 22-02964S.
42
+ 1
43
+
44
+ 2
45
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
46
+ 1-basic variety in [21]) is a class of quantitative algebras presented by
47
+ a set of quantitative equations. Classical varieties of (non-structured)
48
+ algebras are well known to correspond bijectively to finitary monads
49
+ T = (T, µ, η) on Set, i.e. T preserves directed colimits: every variety
50
+ is isomorphic to the category SetT of algebras for T, and vice versa.
51
+ The question whether an analogous correspondence holds for quanti-
52
+ tative algebras has been posed in two presentations of LICS 22, see [2]
53
+ and [24]. We answer this by working with enriched (i.e. locally nonex-
54
+ panding) monads on the category Met of metric spaces, and introduc-
55
+ ing weighted colimits called precongruences. We prove that varieties
56
+ of quantitative algebras bijectively correspond to categories MetT for
57
+ strongly finitary monads T on Met. And we characterize these monads
58
+ as precisely those that preserve directed colimits and colimits of pre-
59
+ congruences (Theorem 3.21). Analogously for strongly finitary monads
60
+ on the category CMet (Theorem 3.22).
61
+ We also study closely related continuous algebras which are alge-
62
+ bras acting on a cpo (a poset with joins of ω-chains) so that their
63
+ operations are continuous. Here we use equations t = t′ between ex-
64
+ tended terms which allow not only the formation of composite terms
65
+ t = σ(t0, . . . , tn−1) for n-ary operations σ, but also the formation of for-
66
+ mal joins t = �
67
+ k∈N tk for countable collections of terms. A variety of
68
+ continuous algebras is a class presented by a set of such equations. We
69
+ again work with enriched (i.e. locally continuous) monads. We prove
70
+ that varieties of continuous algebras bijectively correspond to categories
71
+ CPOT for strongly finitary monads on CPO. And we characterize these
72
+ monads as precisely those that preserve directed colimits and reflexive
73
+ coinserters (Theorem 4.25). The proof substantially uses that (unlike
74
+ Met and CMet) the category CPO is cartesian closed. We prove that in
75
+ every cartesian closed category directed colimits commute with finite
76
+ products (Theorem 2.12).
77
+ Related Work The main tool of Mardare et at. ([21, 22]) are ω-
78
+ basic equations: for a finite metric space M on the set of variebles of
79
+ terms t and t′ one wries M ⊢ t =ε t′. An algebra A satisfies this equa-
80
+ tion if every nonexpanding interpretation f : M → A of the variebles
81
+ the elements corresponding to t and t′ have distance at most ε.
82
+ A
83
+ class of quantitative algebras presented by such equations is called an
84
+ ω-variety. Unfortunately, the free-algebra monad of an ω-variety need
85
+ not be finitary ([2], Example 4.1). However, when the category Met
86
+ is substituted by its full subcategory UMet of ultrametric spaces, then
87
+ ω-varieties were proved in [2] to correspond bijectively to enriched mon-
88
+ ads preserving directed colimits of split monomorphisms and surjective
89
+ morphisms.
90
+ Full proofs of the results presented in this extended abstract can be
91
+ found in [4] and [5].
92
+
93
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
94
+ 3
95
+ 2. Strongly Finitary Monads
96
+ Assumption 2.1. Throughout our paper we work with categories and
97
+ functors enriched over a symmetric monoidal closed category (V , ⊗, I).
98
+ We recall these concepts shortly and introduce strongly finitary monads
99
+ on V , giving a characterization of them via preservation of certain
100
+ colimits. Our leading examples of V are (complete) metric spaces and
101
+ (complete) partially ordered sets.
102
+ Definition 2.2 ([13], 6.12). A symmetric monoidal category is given by
103
+ a category V , a bifunctor ⊗ : V × V → V and an object I. Moreover,
104
+ natural isomorphisms are given expressing that ⊗ is commutative and
105
+ associative, and has the unit I (all up to coherent natural isomorphism).
106
+ Finally, for every object Y a right adjoint of the functor −⊗Y : V → V
107
+ is given. We denote it by [Y, −] and denote the morphism corresponding
108
+ to f : X ⊗ Y → Z by �f : Y → [X, Z].
109
+ Often ⊗ is the categorical product and I the terminal object; then
110
+ V is called cartesian closed.
111
+ Examples 2.3.
112
+ (1) V = Pos, the category of posets, is cartesian closed, [X, Y ] is the
113
+ poset of all monotone maps f : X → Y ordered pointwise. Here
114
+ �f = curryf is the curried form of f.
115
+ (2) V = CPO, the category of cpos (more precisely: ω-cpos) which
116
+ are posets with joins of ω-chains.
117
+ Morphisms are the continu-
118
+ ous maps: monotone maps preserving joins of ω-chains. It is also
119
+ cartesian closed, [X, Y ] is the cpo of all continuous maps (ordered
120
+ again pointwise). Analogously V = DCPO is the category of posets
121
+ with directed joins (dcpos) where morphisms (also called continu-
122
+ ous maps) preserve directed joins.
123
+ (3) V = Met, the category of (extended) metric spaces and nonexpand-
124
+ ing maps. Objects are metric spaces defined as usual, except that
125
+ the distance ∞ is allowed. Nonexpanding maps are those maps
126
+ f : X → Y with d(x, x′) ≥ d(f(x), f(x′)) for all x, x′ ∈ X. A
127
+ product of metric spaces Ai (i ∈ I) is the metric space on �
128
+ i∈I Ai
129
+ with the supremum metric
130
+ d((xi), (yi)) = sup
131
+ i∈I
132
+ d(xi, yi).
133
+ This category is not cartesian closed: curryfication is not bijec-
134
+ tive. However, Met is symmetric closed monoidal w.r.t. the tensor
135
+ product X ⊗ Y which is the cartesian product with the addition
136
+ metric
137
+ d((x, y), (x′, y′)) = d(x, x′) + d(y, y′).
138
+ Here [X, Y ] is the metric space Met(X, Y ) of all morphisms f :
139
+ X → Y with the supremum metric: the distance of f, g : X → Y
140
+ is supx∈X d(f(x), g(x)). And I is the singleton space.
141
+
142
+ 4
143
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
144
+ (4) The category CMet of complete metric spaces is the full subcategory
145
+ of Met on spaces with limits of all Cauchy sequences. It has the
146
+ same symmetric closed monoidal structure as above: if X and Y
147
+ are complete spaces, then so are X ⊗ Y and [X, Y ].
148
+ Notation 2.4.
149
+ (1) Every set X is considered as a discrete cpo with x ⊑ x′ iff x = x′.
150
+ This is the coproduct �
151
+ X I in CPO (and also in DCPO). Anal-
152
+ ogously, X is considered as a discrete metric space: all distances
153
+ of x ̸= x′ are ∞. This is the coproduct �
154
+ X I in Met (and also in
155
+ CMet).
156
+ (2) For the category Setf of finite sets and mappings we define a functor
157
+ K : Setf → V ,
158
+ X �→
159
+
160
+ X
161
+ I.
162
+ Thus for V = Met, CMet, CPO or DCPO it assigns to every fi-
163
+ nite set the corresponding discrete metric space or discrete cpo,
164
+ respectively.
165
+ Convention 2.5. By a catgory C we always mean a category enriched
166
+ over V . It is given by
167
+ (1) a class obC of objects,
168
+ (2) an object C (X, Y ) of V (called the hom-object) for every pair X, Y
169
+ in obC ,
170
+ (3) a ’unit’ morphism uX : I → C (X, X) in V for every object X ∈
171
+ obC , and
172
+ (4) ’composition’ morphisms
173
+ cX,Y,Z : C (X, Y ) ⊗ C (Y, Z) → C (X, Z)
174
+ for all X, Y, Z ∈ obC , subject to commutative diagrams expressing
175
+ the associativity of composition and the fact that uX are units of
176
+ composition. For details see [13], 6.2.1.
177
+ Examples 2.6.
178
+ (1) If V = Met then C is an ordinary category in which every hom-set
179
+ C (X, Y ) carries a metric such that composition is nonexpanding.
180
+ Analogously for V = CMet.
181
+ (2) If V = CPO then each hom-set C (X, Y ) carries a cpo such that
182
+ composition is continuous. Analogously for DCPO.
183
+ Let us recall the concept of an enriched functor F : C → C ′ for
184
+ (enriched) categories C and C ′. It assigns
185
+ (1) an object FX ∈ obC ′ to every object X ∈ obC , and
186
+ (2) a morphism FX,Y : C (X, Y ) → C ′(FX, FY ) of V to every pair
187
+ X, Y ∈ obC so that the expected diagrams expressing that F pre-
188
+ serves composition and identity morphisms commute.
189
+
190
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
191
+ 5
192
+ Convention 2.7. By a functor we always mean an enriched functor.
193
+ We use ’ordinary functor’ in the few cases where a non-enriched functor
194
+ is meant.
195
+ Examples 2.8.
196
+ (1) For categories enriched over Met a functor F : C → C ′ is an ordi-
197
+ nary functor which is locally nonexpanding: given f, g ∈ C (X, Y )
198
+ we have d(f, g) ≥ d(Ff, Fg). Analogously for CMet.
199
+ (2) For categories enriched over Pos functors F are the locally mono-
200
+ tone ordinary functors: given f ⊑ g in C (X, Y ), we get Ff ⊑ Fg
201
+ in C (FX, FY ).
202
+ (3) If V = CPO, then F is an ordinary functor which is locally con-
203
+ tinuous: it is locally monotone and for all ω-chains fn : X → Y
204
+ in C (X, Y ) we have F(�
205
+ n<ω fn) = �
206
+ n<ω Ffn.
207
+ Analogously for
208
+ DCPO.
209
+ Remark 2.9.
210
+ (1) In general one also needs the concept of an enriched natural trans-
211
+ formation between parallel (enriched) functors. However, if V is
212
+ one of the categories of Example 2.3, this concept is just that of an
213
+ ordinary natural transformation between the underlying ordinary
214
+ functors.
215
+ (2) Given two categories D, C , we denote by [D, C ] the category of all
216
+ functors F : D → C enriched by assigning to every pair of functors
217
+ F, G : D → C an appropriate object [F, G] of V of all natural
218
+ transformations.
219
+ In case V = Pos, CPO or DCPO the order of [F, G] is component-
220
+ wise: given τ, τ ′ : F → G put τ ⊑ τ ′ iff τX ⊑ τ ′
221
+ X holds in [FX, GX]
222
+ of all X ∈ obD.
223
+ In case V = Met or CMet the distance of τ, τ ′ is supX∈obD d(τX, τ ′
224
+ X).
225
+ Definition 2.10 ([13, 16]). A weighted diagram in a category C is
226
+ given by a functor D : D → C together with a weight W : Dop → V .
227
+ A weighted colimit is an object C = colimWD of C together with
228
+ isomorphisms in V :
229
+ ψX : C (C, X) → [Dop, C ](W, C (D−, X))
230
+ natural in X ∈ obC . The unit of this colimit is the natural transfor-
231
+ mation
232
+ ν = ψC(id C) : W → C (D−, C).
233
+ In all categories of Example 2.3 weighted colimits (for all D small)
234
+ exist.
235
+ Example 2.11. (Conical) directed colimits are the special case where
236
+ D is a directed poset and the weight W is trivial: the constant functor
237
+ with value 1 (the terminal object).
238
+
239
+ 6
240
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
241
+ (1) In Pos directed colimits are formed on the level of the underlying
242
+ sets. They commute with finite products.
243
+ (2) In CPO directed colimits exist, but are not formed on the level of the
244
+ underlying sets. For example, the finite ordinals An = {0, . . . , n−1}
245
+ form a directed diagram with inclusions An ֒→ An+1 as connecting
246
+ maps for n < ω. The colimit of this diagram in CPO is
247
+ N⊤ = colim
248
+ n<ω An,
249
+ the chain of natural numbers with a top element ⊤ added. Still,
250
+ directed colimits commute with finite products in CPO:
251
+ Theorem 2.12. In every cartesian closed category C directed colimits
252
+ commute with finite products.
253
+ Proof.
254
+ (1) Suppose D, D′ : D → C are diagrams, where D is a directed poset.
255
+ Given colimit cocones cd : Dd → C and c′
256
+ d : D′d → C, it is our
257
+ task to prove that for the diagram D × D′ : D → C (given by
258
+ d �→ Dd × D′d) the cocone cd × c′
259
+ d : Dd × D′d′ → C × C′ is a
260
+ colimit, too.
261
+ (2) Define a diagram D ∗ D′ : D × D → C by (d, d′) �→ Dd × D′d′. We
262
+ shall prove that it has the colimit cd × c′
263
+ d′ : Dd × D′d′ → C × C′.
264
+ This proves the theorem: since D is directed, the diagonal ∆ :
265
+ D → D × D is a cofinal functor, thus D ∗ D′ has the same colimit
266
+ as D × D′ = (D ∗ D′) · ∆.
267
+ (3) Given a cocone fd,d′ : Dd × D′d′ → E of D ∗ D′, we prove that it
268
+ factorizes through cd ×c′
269
+ d′; it is easy to verify that the factorization
270
+ is unique. Fix an object d′ ∈ D and form the adjoint transposes
271
+ �fd,d′ : D′d′ → [Dd, E] for all d ∈ D. They form a cocone of D,
272
+ thus, there exists a unique factorization through the cocone cd.
273
+ That is, we have a unique gd′ : D′d′ × C → E with �fd,d′ = �gd′ · cd
274
+ (for all d ∈ D). For the isomorphism u : C × D′d′ → D′d′ × C
275
+ put hd′ = gd′ · u : C × D′d′ → E and form adjoint transposes
276
+ �hd′ : D′d′ → [C, E] for all d′ ∈ D. This is a cocone of D′, thus
277
+ there exists a unique factorization through the cocone c′
278
+ d′: we have
279
+ a unique h : C × C′ → E with h′
280
+ d′ = �h · c′
281
+ d′ (for all d′ ∈ D). It
282
+ follows that h is the desired factorization of fd,d′:
283
+ h · (cd × c′
284
+ d′) = h · (C × c′
285
+ d′) · (cd × C′) = hd′ · (cd × D′d′) = fd.d′.
286
+
287
+ Example 2.13. (Conical) directed colimits in Met and CMet also ex-
288
+ ist. Again, they are not formed on the level of the underlying sets.
289
+ For example, consider the diagram of metric space An = {0, 1} with
290
+ dn(0, 1) = 2−n, where the connecting maps are id : An → An+1 (n < ω).
291
+ The colimit is a singleton space.
292
+
293
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
294
+ 7
295
+ Theorem 2.14. Directed colimits in Met or CMet commute with finite
296
+ products.
297
+ Proof sketch.
298
+ (1) For directed diagrams (Di)i∈I in Met, cocones ci : Di → C forming
299
+ a colimit were characterized in [8], Lemma 2.4, by the following
300
+ properties:
301
+ (a) C = �
302
+ i∈I ci[Di], and
303
+ (b) for every i ∈ I, given y, y′ ∈ Di we have
304
+ d(ci(y), ci(y′)) = inf
305
+ j≥i d(fj(y), fj(y′))
306
+ where fj : Di → Dj denotes the connecting map.
307
+ Given another directed diagram (D′
308
+ i)i∈I with a cocone c′
309
+ i : D′
310
+ i →
311
+ C′ satisfying (a) and (b), it is our task to prove that the cocone
312
+ ci ×c′
313
+ i : Di ×D′
314
+ i → C ×C′ satisfies (a), (b), too. Since I is directed,
315
+ (a) is clear, and (b) needs just a short computation.
316
+ (2) For directed colimits in CMet the characterization of colimit co-
317
+ cones is analogous: (b) is unchanged, and in (a) one states that
318
+
319
+ i∈I ci[Di] is dense in C. The further argument is then analogous
320
+ to (1).
321
+
322
+ Example 2.15.
323
+ (1) For our next development an important type of a weighted colimit
324
+ in Pos, CPO or DCPO is the coinserter. Let f0, f1 : A → B be
325
+ an ordered parallel pair.
326
+ Its coinserter is a universal morphism
327
+ c : B → C w.r.t. the property c · f0 ⊑ c · f1. Universality means
328
+ that
329
+ (a) every morphism c′ with c′ · f0 ⊑ c′ · f1 factorizes through c and
330
+ (b) given u, v : C → D with u · c ⊑ v · c, it follows that u ⊑ v.
331
+ For Pos this is precisely the weighted colimit of the diagram D :
332
+ D → Pos where D consists of a single parallel pair δ0, δ1 : d → d
333
+ (where D(d, d) is a discrete poset) and Dδi = fi.
334
+ The weight
335
+ W : Dop → Pos is given by Wd = {0, 1} where 0 < 1, Wd = {∗}
336
+ and Wδi(∗) = i. Analogously for CPO or DCPO.
337
+ (2) A concrete example: every poset C is a coinserter of a parallel
338
+ pair between discrete posets. Indeed, let |C| be the discrete poset
339
+ underlying C and let C(2) ⊆ |C|×|C| be the set of all pairs x0 ⊑ x1
340
+ in C. For the pair of projections π0, π1 : C(2) → |C| the coinserter
341
+ is id : |C| → C. Analogously for CPO and DCPO.
342
+ Definition 2.16. A coinserter c of f0, f1 is called surjective if c is a
343
+ surjective map. It is called reflexive if f0, f1 is a reflexive pair, i.e. they
344
+ are split epimorphisms with a joint splitting d (f0 · d = f1 · d = id).
345
+
346
+ 8
347
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
348
+ Example 2.17. The coinserter of Example 2.15 (2) is reflexive and
349
+ surjective. In Pos, all coinserters are surjective, in CPO they are not in
350
+ general.
351
+ Proposition 2.18. In Pos, CPO and DCPO reflexive coinserters com-
352
+ mute with finite products.
353
+ The proof is similar to that of Theorem 2.12.
354
+ Analogously to coinserters of discrete cpos yielding all cpos, we now
355
+ introduce weighted colimits in Met of diagrams called precongruences
356
+ (a name borrowed from [14]).
357
+ They express every metric space as
358
+ a colimit of discrete spaces. (The weight used for precongruence is,
359
+ however, not discrete.)
360
+ In the following definition |M| denotes the underlying set (a discrete
361
+ metric space) of a metric space M.
362
+ Definition 2.19.
363
+ (1) We define the basic weight W0 : Dop
364
+ 0
365
+ → Met as follows. The cat-
366
+ egory D0 has an object a and objects ε for every rational number
367
+ ε > 0. The only non-trivial hom-spaces are the spaces
368
+ D0(ε, a) = {λε, ρε} with d(λε, ρε) = ε
369
+ Thus D0 consists of the discrete category of positive rationals to-
370
+ gether with a pair of cocones (having codomain a). The values
371
+ of W0 are W0a = {0} and W0ε = {l, r} with d(l, r) = ε.
372
+ The
373
+ morphisms W0λε, W0ρε : {0} → {l, r} are given by 0 �→ l, 0 �→ r,
374
+ respectively.
375
+ (2) For every metric space M we define its precongruence as the weighted
376
+ diagram DM : D0 → Met with the basic weight W0, where DMa =
377
+ |M| and DMε ⊆ |M|×|M| is the set of all pairs of distance at most
378
+ ε. Here Dλε, Dρε : DMε → |M| are the left and right projections,
379
+ respectively.
380
+ Proposition 2.20. Every metric space M is the weighted colimit of
381
+ its precongruence in Met.
382
+ Proof. Given a space X, to give a natural transformation τ : W0 →
383
+ [DM−, X] means to specify a map f = τa(0) : |M| → X together with
384
+ τε(l), τε(r) : DMε → X with τε(l) = f · πl and τε(r) = f · πr. Thus τ is
385
+ determined by f and the given equations are equivalent to f : M → X
386
+ being nonexpanding. The desired isomorphism ψX of Definition 2.10
387
+ is given by ψX(τ) = f.
388
+
389
+ Remark 2.21. Analogously we define precongruences in CMet: we just
390
+ use the codomain restrictions W0 : Dop
391
+ 0
392
+ → CMet and DM : D0 → CMet.
393
+ Again, every complete space is the weighted colimit of its precongruence
394
+ in CMet.
395
+ Remark 2.22.
396
+
397
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
398
+ 9
399
+ (1) Let C = colimWD be a weighted colimit of D : D → C with unit
400
+ ν : W → C (D−, C). Given an (enriched) functor F : C → C ′,
401
+ it preserves the colimit provided that the diagram FD : D → C ′
402
+ with weight W has the colimit colimWFD = FC with the unit
403
+ ν : W → C ′(FD−, FC) having components νd = Fνd.
404
+ (2) A functor is finitary if it preserves directed colimits.
405
+ Example 2.23.
406
+ (1) The endofunctor (−)n of Met or CMet preserves colimits of precon-
407
+ gruences for every n ∈ N. This is easy to verify. By Example 2.13
408
+ (−)n is finitary.
409
+ (2) The endofunctor (−)n on CPO or Pos preserves reflexive coinsert-
410
+ ers for every n ∈ N by Proposition 2.18, and is finitary by Theo-
411
+ rem 2.12.
412
+ Let us recall the concept of the (enriched) left Kan extension [16] of a
413
+ functor F : A → C along a functor K : A → C : this is an endofunctor
414
+ LanKF : C → C endowed with a universal natural transformation
415
+ τ : F → (LanKF) · K. The universal property states that given a
416
+ natural transformation σ : F → G·K for any endofunctor G : C → C ,
417
+ there exists a unique natural transformation σ : LanKF → G with
418
+ σ = σK · τ.
419
+ Definition 2.24. An endofunctor F of V is strongly finitary if it is a
420
+ left Kan extension of its restriction F · K to Setf:
421
+ F = LanK(F · K)
422
+ (see Notation 2.4).
423
+ Examples 2.25.
424
+ (1) An endofunctor of Set is strongly finitary iff it is finitary.
425
+ (2) An endofunctor of Pos is strongly finitary iff it is finitary and pre-
426
+ serves reflexive coinserters, see [3].
427
+ In order to characterize strong finitarity for V = CPO, DCPO, Met
428
+ and CMet, we apply Kelly’s concept of density presentation that we
429
+ now recall.
430
+ Notation 2.26. Let K : A → C be a functor. We denote by �K :
431
+ C → [A op, V ] the functor �KC = C (K−, C).
432
+ For example, the functor K : Setf → CPO yields �K : CPO →
433
+ [Setop
434
+ f , CPO] taking a cpo C to the functor C(−) : Setop
435
+ f
436
+ → CPO of
437
+ finite powers of C. Analogously for K : Setf → Met.
438
+ Definition 2.27 ([16]). A density presentation of a functor K : A →
439
+ C is a collection of weighted colimits in C such that
440
+ (1) �K preserves those colimits, and
441
+ (2) C is the (iterated) closure of the image K[A ] under those colimits.
442
+
443
+ 10
444
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
445
+ Example 2.28.
446
+ (a) K : Setf → Pos has a density presentation consisting of directed
447
+ colimits and reflexive coinserters.
448
+ Indeed, Condition (2) in the
449
+ above definition follows from Example 2.15 (2): every finite poset
450
+ is a coinserter of a pair in Setf. And every poset is a directed col-
451
+ imit of finite subposets. For Condition (1) observe that �K : Pos →
452
+ [Setop
453
+ f , Pos] assigns to every poset A the functor of its finite pow-
454
+ ers A(−) : Setop
455
+ f
456
+ → Pos. This functor preserves directed colimits
457
+ (Proposition 2.12) and reflexive coinserters (Example 2.23).
458
+ (b) K : Setf → CPO also has a density presentation consisting of
459
+ directed colimits and reflexive coinserters. Here Condition (1) is
460
+ verified as above, using Proposition 2.12 and Example 2.23. To
461
+ verify Condition (2), we express every cpo in four steps, starting
462
+ from Setf:
463
+ (i) Every finite cpo is a reflexive coinserter of a parallel pair in
464
+ Setf (Example 2.15 (2)).
465
+ (ii) The cpo N⊤ is a directed colimit of finite cpos An (Exam-
466
+ ple 2.11 (2)). Analogously, every copower r • N⊤ of r copies,
467
+ r ∈ N, is a directed colimit of r • An for n < ω.
468
+ (iii) In this step we create all reflexive coinserters C of pairs
469
+ f0, f1 : r • N⊤ → r′ • N⊤ for all r, r′ ∈ N. Such cpos C are
470
+ called basic.
471
+ (iv) The proof is concluded by proving that every cpo A is a
472
+ directed colimit of the diagram of all of its basic sub-cpos Ai
473
+ (i ∈ I). In fact, that this diagram is directed follows from
474
+ the fact that a coproduct of two basic cpos is clearly basic.
475
+ Given a cocone si : Ai → S, we are to prove that there is
476
+ a unique continuous map s : A → S extending each si. For
477
+ each x ∈ A the subposet {x} is clearly basic. Thus given i
478
+ with x ∈ Ai the value si(x) is independent of i. This follows
479
+ easily from the compatibility of the cocone si. The desired
480
+ map is defined by s(x) = si(x). The verification that s is
481
+ continuous is a bit more subtle.
482
+ Remark 2.29.
483
+ (1) The reflexive coinserters used in steps (i) and (iii) of the last exam-
484
+ ple are all surjective. Consequently, K : Setf → CPO also has the
485
+ density presentation consisting of directed colimits and reflexive,
486
+ surjective coinserters.
487
+ (2) The functor K : Setf → DCPO also has the density presentation
488
+ of all directed colimits and reflexive (surjective) coinserters. The
489
+ proof is the same as for CPO: all cpos used in the last example are
490
+ indeed dcpos.
491
+ Corollary 2.30. An endofunctor of CPO or DCPO is strongly finitary
492
+ iff it preserves directed colimits and reflexive (surjective) coinserters.
493
+
494
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
495
+ 11
496
+ Indeed, by [16], Theorem 5.29, given a density presentation of K :
497
+ Setf → CPO, strong finitarity means precisely preservation of all col-
498
+ imits in that presentation. The same corollary also holds in DCPO.
499
+ Example 2.31. The categories Met and CMet have a density pre-
500
+ sentation of K consisting of all directed diagrams and precongruences
501
+ of finite spaces.
502
+ Indeed, Condition (1) follows from Examples 2.13
503
+ and 2.23 (1). For Condition (2) observe that finite metric spaces are
504
+ obtained from Setf as colimits of precongruences by Lemma 2.20, and
505
+ every (complete) metric space is a directed colimit of all of its finite
506
+ subspaces in Met (or CMet, resp.).
507
+ Corollary 2.32. An endofunctor of Met or CMet is strongly finitary
508
+ iff it preserves directed colimits and colimits of precongruences.
509
+ Example 2.33. Every coproduct of endofunctors (−)n with n finite on
510
+ Met, CMet, CPO or DCPO is strongly finitary. Indeed, strongly finitary
511
+ functors are closed under coproducts, which follows directly from the
512
+ definition.
513
+ 3. Varieties of Quantitative Algebras
514
+ We now prove that varieties of quantitative algebras on the cate-
515
+ gories Met and CMet bijectively correspond to strongly finitary monads.
516
+ These are monads carried by a strongly finitary endofunctor. Through-
517
+ out this section Σ = (Σn)n∈N denotes a signature, and V is a specified
518
+ countable set of variables.
519
+ Notation 3.1.
520
+ (1) Following Mardare, Panangaden and Plotkin [21], a quantitative
521
+ algebra is a metric space A endowed with a nonexpanding opera-
522
+ tion σA : An → A for every σ ∈ Σn (w.r.t. the supremum metric
523
+ (Example 2.3)). We denote by Σ-Met the category of quantitative
524
+ algebras and nonexpanding homomorphisms. Its forgetful functor
525
+ is denoted by UΣ : Σ-Met → Met.
526
+ (2) Analogously, a complete quantitative algebra is a quantitative alge-
527
+ bra carried by a complete metric space.
528
+ The category Σ-CMet
529
+ is the corresponding full subcategory of Σ-Met.
530
+ We again use
531
+ UΣ : Σ-CMet → CMet for the forgetful functor.
532
+ (3) The underlying set of a metric space M is denoted by |M|.
533
+ Example 3.2. (1) A free quantitative algebra on a metric space M is
534
+ the usual algebra TΣM of terms on variables from M. That is, the
535
+ smallest set containing |M| and such that for every n-ary symbol
536
+ σ and every n-tuple of terms ti (i < n) we obtain a composite term
537
+ σ(ti)i<n. To describe the metric, let us introduce the equivalence ∼
538
+ on TΣM (similarity of terms): it is the smallest equivalence making
539
+ all variables of |M| into one class, and such that σ(ti)i<n ∼ σ′(t′
540
+ i)i<n
541
+
542
+ 12
543
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
544
+ holds iff σ = σ′ and ti ∼ t′
545
+ i for all i < n. The metric of TΣM extends
546
+ that of M as follows: d(t, t′) = ∞ if t is not similar to t′. For similar
547
+ terms t = σ(ti) and t′ = σ(t′
548
+ i) we put d(t, t′) = supi<n d(ti, t′
549
+ i).
550
+ (2) If M is a complete space, TΣM is also complete, and this is the free
551
+ quantitative algebra on M in Σ-CMet.
552
+ In particular, consider the specified set V of variables as a discrete
553
+ metric space, then TΣV is the discrete algebra of usual terms. For every
554
+ algebra A and every interpretation of variables f : V → A (in Met or
555
+ CMet) we denote by f ♯ : TΣV → A the corresponding homomorphism:
556
+ it interprets terms in A.
557
+ Definition 3.3 ([21]). By a quantitative equation (aka 1-basic quanti-
558
+ tative equation) is meant a formal expression t =ε t′ where t, t′ are
559
+ terms in TΣV and ε ≥ 0 is a rational number.
560
+ An algebra A in
561
+ Σ-Met (or Σ-CMet) satisfies that equation if for every interpretation
562
+ f : V → A we have d(f ♯(t), f ♯(t′)) ≤ ε. We write t = t′ in case ε = 0.
563
+ By a variety, aka 1-basic variety, of quantitative (or complete quan-
564
+ titative) algebras is meant a full subcategory of Σ-Met (or Σ-CMet,
565
+ resp.) specified by a set of quantitative equations.
566
+ Example 3.4.
567
+ (1) Quantitative monoids are given by the usual signature: a binary
568
+ symbol · and a constant e, and by the usual equations: (x · y) · z =
569
+ x · (y · z), e · x = x, and x · e = x.
570
+ (2) Almost commutative monoids are quantitative monoids in which
571
+ the distance of ab and ba is always at most 1. They are presented
572
+ by the quantitative equation x · y =1 y · x.
573
+ Proposition 3.5 (See [21]). Every variety V of quantitative algebras
574
+ has free algebras: the forgetful funtor UV : V → Met has a left adjoint
575
+ FV : Met → V.
576
+ Notation 3.6. We denote by TV the free-algebra monad of a variety
577
+ V on Met. Its underlying functor is TV = UV · FV.
578
+ Example 3.7. For V = Σ-Met we have seen the monad TΣ in Exam-
579
+ ple 3.2: TΣM is the metric space of all terms over M. Observe that TΣ
580
+ is a coproduct of endofunctors (−)n, one summand for each similarity
581
+ class of terms on n variables over M (which is independent of the choice
582
+ M). Thus TΣ is a strongly finitary monad: see Example 2.33.
583
+ Remark 3.8.
584
+ (1) Recall the comparison functor KV : V → MetTV: it assigns to every
585
+ algebra A of V the algebra on UVA for TV given by the unique
586
+ homomorphism α : FVUVA → A extending id UVA. More precisely:
587
+ KVA = (UVA, UVα).
588
+ (2) By a concrete category over Met is meant a category together with
589
+ a faithful ’forgetful’ functor UV : V → Met. For example a variety,
590
+
591
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
592
+ 13
593
+ or MetT for every monad T. A concrete functor is a functor F :
594
+ V → W with UV = UWF. For example, the comparison functor
595
+ KV.
596
+ Proposition 3.9. Every variety V of quantitative algebras is concretely
597
+ isomorphic to the category MetTV: the comparison functor KV : V →
598
+ MetTV is a concrete isomorphism.
599
+ Proof. For classical varieties (over Set) this is proved in [20], Theo-
600
+ rem VI.8.1. The proof for Met in place of Set is analogous.
601
+
602
+ Notation 3.10. (1) Given a natural number n denote by [n] the sig-
603
+ nature of one n-ary symbol δ.
604
+ If a term t ∈ TΣV contains at
605
+ most n variables (say, x0, . . . , xn−1), we obtain a monad morphism
606
+ t : T[n] → TΣ as follows. For every space M the function tM takes
607
+ a term s using the single symbol δ and substitutes each occurence
608
+ of δ by t(x0, . . . , xn−1).
609
+ (2) Every metric space A defines a monad ⟨A, A⟩ on Met assigning to
610
+ X ∈ Met the space ⟨A, A⟩X = [[X, A], A]. More precisely: the
611
+ functor [−, A] : Met → Metop is self-adjoint, and ⟨A, A⟩ is the
612
+ monad corresponding to that adjunction.
613
+ (3) Let T be a monad on Met and α : TA → A an algebra for it.
614
+ We denote by �αX : TX → ⟨A, A⟩X the morphism adjoint to the
615
+ following composite
616
+ [X, A] ⊗ TX
617
+ T(−)⊗TX
618
+ −−−−−−→ [TX, TA] ⊗ TX
619
+ ev
620
+ −→ TA
621
+ α−→ A.
622
+ Theorem 3.11 ([15]). Given an algebra α : TA → A for a monad T
623
+ on Met, the morphisms �αX above form a monad morphism �α : T →
624
+ ⟨A, A⟩. Every monad morphism from T to ⟨A, A⟩ has that form for a
625
+ unique α.
626
+ Lemma 3.12. Let A be a Σ-algebra expressed by α : TΣA → A in
627
+ MetTΣ. It satisfies a quantitative equation l =ε r iff the distance of
628
+ �α · l, �α · r : T[n] → ⟨A, A⟩ is at most ε.
629
+ Notation 3.13. The category of finitary monads on Met (and monad
630
+ morphisms) is denoted by Monf(Met). Its full subcategory of strongly
631
+ finitary monads by Monsf(Met).
632
+ We also denote by Monc(Met) the
633
+ category of monads preserving countably directed colimits.
634
+ Lemma 3.14. The category Monf(Met) has weighted colimits, and
635
+ Monsf(Met) is closed under them.
636
+ Proof sketch. (1) The category Monc(Met) is locally countably presentable
637
+ as an enriched category, thus it has weighted colimits, and
638
+ (2) both Monf(Met) and Monsf(Met) are coreflective subcategories of
639
+ Monc(Met). The coreflection of a countably accessible monad T
640
+ in Monsf(Met) is given by the left Kan extension LanK(T · K),
641
+ analogously for Monf(Met).
642
+
643
+
644
+ 14
645
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
646
+ Lemma 3.15. Every monad morphism α : TΣ → S in the category
647
+ Monf(Met) factorizes as a morphism TΣ → S with surjective compo-
648
+ nents followed by a morphism S → S whose components are isometric
649
+ embeddings.
650
+ Theorem 3.16. For every variety V of quantitative algebras the free-
651
+ algebra monad TV is strongly finitary.
652
+ Proof sketch.
653
+ (1) Let V be given by a signature Σ and quantitative equations li =ε ri
654
+ (i ∈ I), each containing ni variables. For every i ∈ I we consider
655
+ the signature [n(i)] of one symbol δi of arity n(i), then the terms
656
+ li, ri yield the corresponding monad morphisms li, ri : T[n(i)] → TΣ
657
+ of Notation 3.10. An algebra α : TΣA → A lies in V iff the distance
658
+ of �α·li, �α·ri : T[n(i)] → ⟨A, A⟩ is at most εi for each i (Lemma 3.12).
659
+ (2) We verify that TV is a weighted colimit of strongly finitary monads
660
+ in Monf(Met). The domain D of the weighted diagram D : D →
661
+ Monf(Met) is the discrete category I (indexing the equations) en-
662
+ larged by a new object a, and by morphisms λi, ρi : i → a for every
663
+ i ∈ I. Then put Di = T[n(i)] and Da = TΣ; further Dλi = li
664
+ and Dρi = ri. The weight W : Dop → Met takes i to the space
665
+ {l, r} with d(l, r) = εi and a to {0}. We define Wλi(0) = l and
666
+ Wρi(0) = r. The monads TΣ and T[n(i)] are strongly finitary by
667
+ Example 3.7. This will finish the proof by Lemma 3.14.
668
+ We denote by T the weighted colimit T = colimWD in Monf(Met).
669
+ The proof is concluded by proving that V is isomorphic, as a con-
670
+ crete category, to the category MetT of algebras for T.
671
+ Then
672
+ T is the free-algebra monad of V.
673
+ For T we have the unit γ :
674
+ W → �D−, T� of the weighted colimit T = colimWD (Defini-
675
+ tion 2.10).
676
+ Its component νa assigns to 0 a monad morphism
677
+ γ = νa(0) : TΣ → T, whereas for i ∈ I the component νi is given by
678
+ l �→ γ ·li and r �→ γ ·ri. Since νi is nonexpanding, we conclude that
679
+ γ ·λi, γ ·ρi : T[n(i)] → T have distance at most εi. We thus obtain a
680
+ functor E : MetT → V assigning to every algebra α : TA → A the
681
+ Σ-algebra corresponding to α · γA : TΣA → A: it satisfies li =εi ri
682
+ due to d(γ · λi, γ · ρi) ≤ εi. Moreover, γ has surjective components,
683
+ which can be derived from Lemma 3.15. Therefore, E is a concrete
684
+ isomorphism, which concludes the proof.
685
+
686
+ Construction 3.17. In the reverse direction we assign to every strongly
687
+ finitary monad T = (T, µ, η) on Met a variety VT, and prove that T is
688
+ its free-algebra monad. For every morphism k : X → Y let us denote
689
+ by k∗ = µY · Tk : TX → TY the corresponding homomorphism in
690
+ MetT. Recall our fixed set V = {xi | i ∈ N} of variables, and form,
691
+ for each n ∈ N, the finite discrete space Vn = {xi | i < n}.
692
+ The
693
+
694
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
695
+ 15
696
+ signature we use has as n-ary symbols the elements of the space TVn:
697
+ Σn = |TVn| for n ∈ N. The variety VT is given by the following quanti-
698
+ tative equations, where each symbol σ ∈ Σn is considered as the term
699
+ σ(x1, . . . , xn−1) and n, m below range over N:
700
+ (1) σ =ε σ′ for all σ, σ′ ∈ Σn with d(σ, σ′) ≤ ε in TVn;
701
+ (2) k∗(σ) = σ(k(xi))i<n for all σ ∈ Σn and all maps k : Vn → Σm;
702
+ (3) ηVn(xi) = xi for all i = 0, . . . , n − 1.
703
+ Lemma 3.18. Every algebra α : TA → A in MetT yields an algebra
704
+ A in VT with operations σA : An → A defined by σA(a(xi)) = a∗(σ) for
705
+ all σ ∈ Σn and a : Vn → A. Moreover, every homomorphism in MetT
706
+ is also a Σ-homomorphism between the corresponding algebras in VT.
707
+ Proof sketch. (1) The operation σA is nonexpanding because T is lo-
708
+ cally nonexpanding. It satisfies 1) in Construction 3.17 because
709
+ for every interpretation a : Vn → A we have d(a∗(l), a∗(r)) ≤ ε.
710
+ Satisfaction of 2) follows from a∗ · k∗ = (a∗ · k)∗, and 3) is clearly
711
+ satisfied. Thus the Σ-algebra A lies in VT.
712
+ (2) Given a morphism h : (A, α) → (B, β) in MetT (i.e., h· α = β · Th)
713
+ we are to prove that h · σA = σB · hn for all σ ∈ TVn. This follows
714
+ easily from h · a∗ = (h · a)∗ for each a : Vn → A.
715
+
716
+ Theorem 3.19. Every strongly finitary monad T on Met is the free-
717
+ algebra monad of the variety VT.
718
+ Proof. For every metric space M we want to prove that the Σ-algebra
719
+ associated with (TM, µM) in Lemma 3.18 is free in VT w.r.t. the uni-
720
+ versal map ηM. Then the theorem follows from Proposition 3.9.
721
+ We have two strongly finitary monads, T and the free algebra monad
722
+ of VT (Theorem 3.16). Thus, it is sufficient to prove the above for finite
723
+ discrete spaces M. Then this extends to all finite spaces because we
724
+ have M = colimW0DM (Lemma 2.20) and both monads preserve this
725
+ colimit. Since they coincide on all finite discrete spaces, they coincide
726
+ on M. Finally, the above extends to all spaces M: we have a directed
727
+ colimit M = colim
728
+ i∈I
729
+ Mi of the diagram of all finite subspaces Mi (i ∈ I)
730
+ which both monads preserve.
731
+ Given a finite discrete space M, we can assume without loss of gen-
732
+ erality M = Vn for some n ∈ N.
733
+ For every algebra A in VT and
734
+ an interpretation f : Vn → A, we prove that there exists a unique
735
+ Σ-homomorphism f : TVn → A with f = f · ηVn.
736
+ Existence: Define f(σ) = σA(f(xi))i<n for every σ ∈ TVn. The equal-
737
+ ity f = f · ηVn follows since A satisfies the equations ηVn(xi) = xi, thus
738
+ the operation of A corresponding to ηVn(xi) is the i-th projection. The
739
+ map f is nonexpanding: given d(l, r) ≤ ε, the algebra A satisfies l =ε r.
740
+
741
+ 16
742
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
743
+ Therefore given an n-tuple f : Vn → A we have
744
+ d(lA(f(xi)), rA(f(xi))) ≤ ε.
745
+ To prove that f is a Σ-homomorphism, take an m-ary operation symbol
746
+ τ ∈ TVm. We prove f · τVm = τA · f
747
+ m. This means that every k : Vm →
748
+ TVn fulfils
749
+ f · τVm(k(xj))j<m = τA · f
750
+ m(k(xj))j<m.
751
+ The definition of f yields that the right-hand side is τA(k(xj)A(f(xi))).
752
+ Due to equation (2) in Construction 3.17 with τ in place of σ this is
753
+ k∗(τ)A(f(xi)). The left-hand side yields the same result since
754
+ f
755
+ m(k(xj)) = (k(xj))A(f(xi)).
756
+ Uniqueness: Let f be a nonexpanding Σ-homomorphism with f =
757
+ f · ηVn. In TVn the operation σ asigns to ηVn(xi) the value σ. (Indeed,
758
+ for every a : n → |TVn| we have σTVn(ai) = a∗(σ) = µVn · Ta(σ). Thus
759
+ σTVn(ηVn(xi)) = µVn · TηVn(σ) = σn.) Since f is a homomorphism, we
760
+ conclude
761
+ f(σ) = σA(f · ηVn(xi)) = σA(f(xi))
762
+ which is the above formula.
763
+
764
+ Corollary 3.20. Varieties of quantitative algebras correspond bijec-
765
+ tively, up to isomorphism, to strongly finitary monads on Met.
766
+ Indeed, a stronger result can be deduced from Theorems 3.16 and 3.19:
767
+ let Var(Met) denote the category of varieties of quantitative algebras
768
+ and concrete functors (Remark 3.8). Recall that Monsf(Met) denotes
769
+ the category of strongly finitary monads.
770
+ Theorem 3.21. The category Var(Met) of varieties of quantitative al-
771
+ gebras is equivalent to the dual of the category Monsf(Met) of strongly
772
+ finitary monads on Met.
773
+ Proof. Morphisms ϕ : S → T between monads in Monsf(Met) bijec-
774
+ tively correspond to concrete functors ϕ : MetT → MetS ([12], Theo-
775
+ rem 3.3): ϕ assigns to an algebra α : TA → A of MetT the algebra
776
+ α · ϕA : SA → A in MetS.
777
+ We know that for every variety V the
778
+ comparison functor is invertible (Proposition 3.9). This yields a func-
779
+ tor Φ : Var(Met)op → Monsf(Met) assigning to a variety V the monad
780
+ TV (Theorem 3.16). Given a concrete functor F : V → W between
781
+ varieties, there is a unique monad morphism ϕ : TW → TV such that
782
+ ϕ = KW · F · K−1
783
+ V
784
+ : MetTV → MetTW. We define ΦF = ϕ and get a
785
+ functor which is clearly full and faithful. Thus Theorem 3.19 implies
786
+ that Φ is an equivalence of categories.
787
+
788
+
789
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
790
+ 17
791
+ The whole development of the present section works in Σ-CMet as
792
+ well as in CMet. First observe that for every complete space M the
793
+ space TΣM of Example 3.2 is also complete (being a coproduct of fi-
794
+ nite powers of M). The resulting monad TΣ on the category CMet is
795
+ strongly finitary (as in Example 3.7). More generally, every variety V
796
+ of complete quantitative algebras yields a monad TV on CMet which
797
+ is strongly finitary, and V is isomorphic to MetTV. The proof is anal-
798
+ ogous to that of Theorem 3.16, just at the end we use, instead of the
799
+ factorization system (surjective, isometric embedding) of Met the fac-
800
+ torization system of CMet consisting of dense morphisms f : A → B
801
+ (every element of B is a limit of a sequence in f[A]) followed by closed
802
+ isometric embeddings. The proof that every strongly finitary monad
803
+ on CMet is the free-algebra monad of a variety is completely analogous
804
+ to that of Theorem 3.19. We thus obtain
805
+ Theorem 3.22. The category Var(CMet) of varieties of complete quan-
806
+ titative algebras is equivalent to the dual of the category Monsf(CMet)
807
+ of strongly finitary monads on CMet.
808
+ 4. Varieties of Continuous Algebras
809
+ For the categories Pos, CPO and DCPO we obtain here and in Sec-
810
+ tion 5 the same result: varieties of algebras bijectively correspond to
811
+ strongly finitary monads. For Pos we have proved this in [3]. The proof
812
+ for CPO presented below is very different from the proofs in [3] and in
813
+ the previous section. In fact, already the concept of equation is entirely
814
+ different since it uses formal joins �
815
+ k∈N tk of collections t0, t1, t2, . . . of
816
+ terms. The idea of such formal joins stems from [7], but our concept is
817
+ slightly more restrictive: we request that all the terms ti contain only
818
+ a finite set of variables. We assume again that Σ is a finitary signa-
819
+ ture, and that a countable set V of variables has been chosen. The
820
+ underlying set of a cpo M is denoted by |M|.
821
+ Definition 4.1. A continuous algebra is a cpo A endowed with con-
822
+ tinuous operations σA : An → A for every n-ary symbol σ ∈ Σ (w.r.t.
823
+ the coordinate-wise order on An). We denote by Σ-CPO the category
824
+ of continuous algebras and continuous homomorphisms.
825
+ Example 4.2. A free continuous algebra on a cpo M is the usual
826
+ algebra TΣM of terms on variables from |M| (compare Example 3.2)
827
+ with the following order ⊑ extending that of M: t ⊑ t′ iff t and t′ are
828
+ similar, t = σ(ti)i<n, t′ = σ(t′
829
+ i)i<n and such that ti ⊑ t′
830
+ i for every i < n.
831
+ In particular, considering V as a discrete cpo (no distinct elements
832
+ are comparable), then TΣV is the discrete cpo of the usual terms. For
833
+ every continuous algebra A and every interpretation f : V → A of
834
+ variables we again denote by f ♯ : TΣV → A the corresponding homo-
835
+ morphism. As already mentioned, usual terms are not sufficient for
836
+
837
+ 18
838
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
839
+ equational presentations: we need formal joins of terms. We use the
840
+ symbol �
841
+ k∈N for them, while �
842
+ k∈N denotes ω-joins in a given poset.
843
+ Definition 4.3.
844
+ (1) The set TΣV of extended terms is the smallest set containing TΣV ,
845
+ and such that for every countable collection tk (k ∈ N) of extended
846
+ terms containing only finitely many variables we get an extended
847
+ term �
848
+ k∈N tk.
849
+ (2) For every continuous algebra A and every interpretation f : V → A
850
+ of variables we define the interpretations of extended terms as the
851
+ following partial function f @ : TΣV ⇀ A:
852
+ (a) f @ extends f ♯ (thus f @(t) is defined for all terms t ∈ TΣV ),
853
+ and
854
+ (b) f @ is defined in t = �
855
+ k∈N tk iff each f @(tk) is defined and fulfils
856
+ f @(tk) ⊑ f @(tk+1) in A; then f @(t) = �
857
+ k∈N f @(tk).
858
+ Example 4.4. Given a unary operation σ, the extended term �
859
+ k∈N σk(x)
860
+ is well formed, but �
861
+ k∈N σ(xk) is not: it contains infinitely many vari-
862
+ ables.
863
+ Definition 4.5. By an equation we understand a formal expression
864
+ t = t′, where t, t′ are extended terms in TΣV .
865
+ A continuous algebra satisfies t = t′ if for every interpretation f :
866
+ V → A of the variables both f @(t) and f @(t′) are defined and are
867
+ equal.
868
+ A variety of continuous algebras is a full subcategory of Σ-CPO pre-
869
+ sented by a set of equations.
870
+ Remark 4.6.
871
+ (1) We do not need presentation by inequations t ≤ t′.
872
+ Indeed, to
873
+ satisfy such an inequation means precisely to satisfy t = �
874
+ k∈N tk
875
+ where t0 = t and tk = t′ for all k > 0.
876
+ (2) A term t is definable in an algebra A iff for every interpretation
877
+ f : V → A of variables f @(t) is defined.
878
+ Instead of equations,
879
+ we can use definability to introduce varieties. Indeed, an algebra
880
+ satisfies t = t′ iff the term �
881
+ k∈N sk where s0 = t, s1 = t′ and sk = t
882
+ for k ≥ 2 is definable. Conversely, t is definable in A iff A satisfies
883
+ t = t.
884
+ Example 4.7.
885
+ (1) Continuous monoids are monoids acting on cpos with continuous
886
+ multiplication: for all ω-chains (ak), (bk) we have (� ak)(� bk) =
887
+ �(akbk). This is a variety presented by the usual monoid equations
888
+ (see Example 3.4).
889
+ (2) Continuous monoids satisfying a ⊑ a2 are presented by the defin-
890
+ ability of the term �
891
+ k∈N xk.
892
+
893
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
894
+ 19
895
+ (3) The equation �
896
+ k∈N xk = e presents continuous monoids satisfying
897
+ a ⊑ a2 and �
898
+ k∈N ak = e for all a.
899
+ Remark 4.8. In the classical universal algebra Birkhoff’s Variety The-
900
+ orem states that varieties are precisely the HSP classes, i.e., closed un-
901
+ der homomorphic images, subalgebras, and products. In Σ-CPO we
902
+ have the corresponding constructions:
903
+ (i) A product of algebras Ai (i ∈ I) is their cartesian product �
904
+ i∈I Ai
905
+ with operations and order given coordinate-wise.
906
+ (ii) A subalgebra of an algebra A is a subobject m : B → A such that
907
+ m is an embedding: x ⊑ y holds in B iff m(x) ⊑ m(y).
908
+ (iii) A homomorphic image of an algebra A is a quotient object e :
909
+ A → B such that e is surjective.
910
+ Lemma 4.9. Every variety of continuous algebras is an HSP-class.
911
+ The proof in [7] on pp. 339-340 works in our setting without any
912
+ changes. The main result of [7] is the converse implication, but the
913
+ proof does not work for our extended terms (more special than the
914
+ terms in op. cit.):
915
+ Open Problem 4.10. Is every HSP-class in Σ-CPO a variety of con-
916
+ tinuous algebras?
917
+ Definition 4.11. A subset X of a cpo C is dense if the only sub-cpo
918
+ containing X is all of C.
919
+ Example 4.12. Given a directed diagram D with a colimit as : As →
920
+ A (s ∈ S) in CPO, the union �
921
+ s∈S as[As] is dense in A. Indeed, if a sub-
922
+ cpo A′ contains that union, then the codomain restrictions a′
923
+ s : As → A′
924
+ form a cocone of D in CPO. From the fact that this cocone factorizes
925
+ through as it follows that A′ = A.
926
+ Lemma 4.13. If X is dense in a cpo C, then Xn is dense in Cn for
927
+ each n ∈ N.
928
+ Proposition 4.14. Every variety V of continuous algebras has free
929
+ algebras: the forgetful functor UV : V → CPO has a left adjoint FV :
930
+ CPO → V.
931
+ Proof sketch. For V = Σ-CPO we have described the free algebras in
932
+ Example 4.2. Every variety V is closed under products and subalge-
933
+ bras by Lemma 4.9. The category Σ-CPO is complete and wellpowered.
934
+ It has the factorization system (E, M) where E consists of homomor-
935
+ phisms e : A → B with e[A] dense in B and M consists of embed-
936
+ dings of closed subalgebras. (Indeed, let a continuous homomorphism
937
+ f : A → C have such a factorization f = m · e for e : A → X and
938
+ m : X → C in Met. Then there is a unique algebra structure on X
939
+ making e and m homomorphisms.)
940
+ It follows that V is a reflective
941
+ subcategory: the inclusion functor E : V → Σ-CPO has a left adjoint
942
+
943
+ 20
944
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
945
+ by Theorem 16.8 in [6]. Since UV = UΣ · E, we conclude that UV has a
946
+ left adjoint.
947
+
948
+ Notation 4.15.
949
+ (1) We denote by TV the free-algebra monad of a variety V on CPO.
950
+ Its underlying functor is TV = UV · FV.
951
+ (2) Concrete categories (and functors) over CPO are defined analo-
952
+ gously to Remark 3.8.
953
+ Example 4.16. For V = Σ-CPO the monad TΣ of Example 4.2 assigns
954
+ to a cpo M the cpo TΣM. As in Example 3.7, TΣ is strongly finitary.
955
+ Proposition 4.17. Every variety V of continuous algebras is con-
956
+ cretely isomorphic to the category CPOTV:
957
+ the comparison functor
958
+ KV : V → CPOTV is a concrete isomorphism.
959
+ This is, as Proposition 3.9, analogous to the classical case.
960
+ Lemma 4.18 ([7], Proposition 3.5). Let h : A → B be a morphism in
961
+ Σ-CPO and t an extended term. Given an interpretation f : V → A
962
+ with f @(t) defined, then (hf)@ is also defined: (hf)@(t) = h(f @(t)).
963
+ Proposition 4.19. The forgetful functor UΣ : Σ-CPO → CPO creates
964
+ directed colimits: given a directed diagram D of continuous algebras
965
+ with a colimit ci : UDi → C in CPO, there exists a unique algebra
966
+ structure on C making all ci homomorphisms; moreover the resulting
967
+ cocone ci : Di → C is a colimit of D in Σ-CPO.
968
+ Proof sketch. This follows from CPO being cartesian closed. Thus di-
969
+ rected colimits commute with finite products (Theorem 2.12). Given
970
+ an n-ary symbol σ ∈ Σ, from the fact that cn
971
+ i : UDn
972
+ i → Cn is a directed
973
+ colimit it follows that there is a unique morphism σC : Cn
974
+ i → C such
975
+ that the given operations σCi : Cn
976
+ i → Ci fulfil σC · cn
977
+ i = ci · σCi. That
978
+ is, ci are homomorphisms. The verification that this yields a colimit of
979
+ D in CPO is easy.
980
+
981
+ Proposition 4.20. The functor UΣ creates reflexive coinserters.
982
+ Proof sketch. Indeed, if e : B → C is such a coinserter of f0, f1 :
983
+ A → B, then for an n-ary symbol σ we have a coinserter en of f n
984
+ 0 , f n
985
+ 1
986
+ (Example 2.23). We thus obtain a unique σC : Cn → C with σC ·
987
+ en = e · σB, hence e is a homomorphism which is easily seen to be the
988
+ coinserter in Σ-CPO.
989
+
990
+ Theorem 4.21. Every variety of continuous algebras is closed under
991
+ directed colimits in Σ-CPO.
992
+ Proof sketch. Let as : As → A (s ∈ S) be a directed colimit in Σ-CPO.
993
+ Consider an extended term t ∈ TΣV such that in each of the algebras
994
+ As t is definable. We prove that t is definable in A. This concludes the
995
+ proof using Remark 4.6. We use structural induction: the statement
996
+
997
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
998
+ 21
999
+ is obvious if t is a classical term. Thus we need to prove the induction
1000
+ step: let t = �
1001
+ k∈N tk with each tk definable in all As (s ∈ S), then t
1002
+ is definable in A. By the definition of extended terms we know that
1003
+ there is a finite set V0 ⊆ V of variables with tk ∈ TΣV0 for all k ∈ N.
1004
+ Thus we can work with interpretations f : V0 → A. The colimit cocone
1005
+ as : As → A has the property that the set X = �
1006
+ s∈S as[As] is dense
1007
+ (Example 4.12).
1008
+ In the cpo [V0, A] of all interpretations the subset
1009
+ [V0, X] is thus dense, too (Lemma 4.13). We use this to prove that
1010
+ f @(t) is defined by structural induction on f:
1011
+ (i) if f[V0] ⊆ X then f @ is defined, and
1012
+ (ii) given f = �
1013
+ n∈N fn in [V0, A] with all f @
1014
+ n (t) defined, then f @(t) is
1015
+ defined.
1016
+ Step (i) is easy, using the fact that since V0 is finite, f : V0 → � as[As]
1017
+ factorizes through one of the subset as[As], as f = as · f.
1018
+ For the
1019
+ interpretaion f : V0 → As we know that f
1020
+ @(t) is defined. Then we
1021
+ apply Lemma 4.18 to h = as. Step (ii) is more involved since it works
1022
+ with double induction: for tk and fn.
1023
+
1024
+ Corollary 4.22. The monad TV on CPO is strongly finitary for every
1025
+ variety V of continuous algebras.
1026
+ Proof. We know that UΣ : Σ-CPO → CPO creates directed colimits and
1027
+ reflexive coinserters (Propositions 4.19 and 4.20).
1028
+ Given a variety V, the embedding E : V ֒→ Σ-CPO preserves directed
1029
+ colimits (Theorem 4.21) and reflexive surjective homomorphisms: in-
1030
+ deed, V is closed under homomorphic images (Lemma 4.9). Conse-
1031
+ quently, the forgetful functor UV = UΣ · E preserves directed colim-
1032
+ its and reflexive surjective coinserters.
1033
+ Its left adjoint FV preserves
1034
+ weighted colimits. Thus TV = UV · FV preserves directed colimits and
1035
+ reflexive coinserters. This finishes the proof by Corollary 2.30.
1036
+
1037
+ Construction 4.23. Analogously to Construction 3.17, to every strongly
1038
+ finitary monad T = (T, µ, η) on CPO we assign a variety VT of algebras
1039
+ of the signature Σn = |TVn| presented by equations as follows:
1040
+ (1) σ = �
1041
+ k∈N σk for every ω-chain (σk)k<ω in the cpo TVn with σ =
1042
+
1043
+ k∈N σk;
1044
+ (2) k∗(σ) = σ(k(xi))i<n for all σ ∈ Σn and all maps k : Vn → Σm;
1045
+ (3) ηVn(xi) = xi for all i = 0, . . . , n − 1.
1046
+ Lemma 4.24. Every algebra α : TA → A in CPOT defines an algebra
1047
+ in VT with σA(a(xi)) = a∗(σ) for all σ ∈ Σn and a : Vn → A. Moreover,
1048
+ every homomorphism in CPOT is also a Σ-homomorphism between the
1049
+ corresponding algebras in VT.
1050
+ The proof is analogous to that of Lemma 3.18.
1051
+ Theorem 4.25. Every strongly finitary monad T on CPO is the free-
1052
+ algebra monad of the variety VT.
1053
+
1054
+ 22
1055
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
1056
+ Proof. By Example 2.28 the functor K : Setf → CPO has the den-
1057
+ sity presentation consisting of directed colimits and surjective reflexive
1058
+ coinserters. Both the free-algebra monad T′ of VT and T are strongly
1059
+ finitary (Corollary 4.22). Therefore, it is sufficient to prove for every
1060
+ finite discrete cpo X that the Σ-algeba of VT corresponding to the free
1061
+ algebra (TX, µX) of CPOT is a free algebra on X in VT. In other words,
1062
+ T and T′ have the same free algebras on objects of Setf. Since they both
1063
+ preserve the colimits of the density presentation of K : Setf ֒→ CPO, it
1064
+ follows that for every cpo the free algebras of T and T′ are the same.
1065
+ Thus the monads T and T′ are isomorphic, which proves the theorem.
1066
+ We can assume X = Vn for some n ∈ N.
1067
+ The verification that for every algebra A in VT and every interpre-
1068
+ tation f : Vn → A, there is a unique Σ-homomorphism f : TΣVn → A
1069
+ with f = f ·ηVn is analogous to that in Theorem 3.19: In the ’existence’
1070
+ part, f is defined by the same formula. It is continuous because, given
1071
+ an ω-join σ = �
1072
+ k∈N σk in TV , the algebra A satisfies σ = �
1073
+ k∈N σk, thus
1074
+ f(σ) = σA(f(xi)) =
1075
+
1076
+ k∈N
1077
+ (σk)A(f(xi)) =
1078
+
1079
+ k∈N
1080
+ f(σk).
1081
+ The ’uniqueness’ part is identical.
1082
+
1083
+ Corollary 4.26. Varieties of continuous algebras correspond bijec-
1084
+ tively, up to isomorphism, to strongly finitary monads on CPO.
1085
+ The proof is analogous to that of Theorem 3.21.
1086
+ 5. Varieties of ∆-Continuous Algebras
1087
+ We now turn from CPO to DCPO.
1088
+ Definition 5.1. A ∆-continuous algebra is a dcpo endowed with con-
1089
+ tinuous operations. We denote by Σ-DCPO the category of ∆-continuous
1090
+ algebras and continuous (directed-joins preserving) homomorphisms.
1091
+ We assume again that a signature Σ is given, and a countable set V
1092
+ of variables is chosen.
1093
+ Example 5.2. A free ∆-continuous algebra on a dcpo M is the algebra
1094
+ TΣM of terms on variables from |M|, see Example 4.2. Indeed, the
1095
+ underlying poset is a coproduct of copies of |M|n (Example 3.7), thus
1096
+ TΣM is a dcpo. We again use the notation f ♯ : TΣM → A for the
1097
+ homomorphism extending f : M → A.
1098
+ We are ready to define equations and varieties of ∆-continuous al-
1099
+ gebras. The extended terms here have the form �
1100
+ k<α tk for arbitrary
1101
+ ordinals α. We namely use the fact that a poset is a dcpo iff it has
1102
+ joins of ordinal-indexed chains, and a map preserves directed joins iff
1103
+ it preserves joins of ordinal-indexed chains ([9], Corollary 1.7). Re-
1104
+ call that an ordinal is the linearly ordered set of all smaller ordinals,
1105
+ α = {k ∈ Ord | k < α}.
1106
+
1107
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
1108
+ 23
1109
+ Definition 5.3.
1110
+ (1) We define ∆-extended terms as the smallest set T ∆
1111
+ Σ V containing
1112
+ TΣV and such that for each ordinal α and every collection tk (k <
1113
+ α) of ∆-extended terms containing only finitely many variables we
1114
+ get a ∆-extended term �
1115
+ k<α tk.
1116
+ (2) For every ∆-continuous algebra A and every interpretation f : V →
1117
+ A we denote by f @ : T ∆
1118
+ Σ V ⇀ A the partial map extending f ♯
1119
+ which is defined in t = �
1120
+ i<α ti iff each f @(ti) is defined and fulfils
1121
+ f @(ti) ⊑ f @(tj) for all i < j < α; then f @(t) = �
1122
+ i<α f @(ti).
1123
+ (3) An equation is a pair of extended terms; we write again t = t′. An
1124
+ algebra A satisfies it iff for every interpretation f : V → A both
1125
+ f @(t) and f @(t′) are defined, and are equal.
1126
+ We thus obtain varieties of ∆-continuous algebras as the full subcat-
1127
+ egories of Σ-DCPO presented by a set of equations between ∆-extended
1128
+ terms. Please note that although T ∆
1129
+ Σ V is a proper class, every variety
1130
+ is presented by a set (not a proper class) of equations.
1131
+ Proposition 5.4. Every variety V of ∆-continuous algebras has free
1132
+ algebras, and for the ensuing monad TV it is concretely isomorphic to
1133
+ DCPOTV.
1134
+ Proof. The existence of free algebras is verified as in Proposition 4.14.
1135
+ We just need to understand density of a set X ⊆ C for a dcpo C to
1136
+ mean that the only sub-dcpo containing X is all of C. The rest is, like
1137
+ Proposition 3.9, analogous to the classical case.
1138
+
1139
+ Theorem 5.5. The monad TV on DCPO is strongly finitary for every
1140
+ variety of ∆-continuous algebras.
1141
+ The proof is analogous to that of Corollary 4.22.
1142
+ Construction 5.6. To every strongly finitary monad T on DCPO we
1143
+ assign a variety of ∆-continuous algebras of signature Σn = |TVn|. It
1144
+ is presented by the equations as in Construction 4.23, except that in
1145
+ Item 1) we choose arbitrary ordinals
1146
+ α ≤ card |TV |
1147
+ and then form the following equations:
1148
+ σ =
1149
+
1150
+ k<α
1151
+ σk
1152
+ for every α-chain (σk)k<α in the dcpo TVn with σ = �
1153
+ k<α σk. Observe
1154
+ that Items 1)-3) yield only a set of equations.
1155
+ Theorem 5.7. Every strongly finitary monad on DCPO is the free-
1156
+ algebra monad of the above variety.
1157
+ The proof is analogous to that of Theorem 3.19.
1158
+ Corollary 5.8. Varieties of ∆-continuous algebras correspond bijec-
1159
+ tively, up to isomorphism, to strongly finitary monads on DCPO.
1160
+
1161
+ 24
1162
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
1163
+ 6. Conclusion and Open Problems
1164
+ Varieties (aka 1-basic varieties) of quantitative algebras of Mardare
1165
+ et al. [21, 22] correspond bijectively to strongly finitary monads on
1166
+ the category Met of metric spaces.
1167
+ This is the main result of our
1168
+ paper. It is in surprising contrast to the fact that ω-varieties in op. cit.
1169
+ (where distance restrictions on finitely many variables in equations are
1170
+ considered) do not even yield finitary monads in general, as shown
1171
+ in [2]. For varieties of complete quantitative algebras the same result
1172
+ holds: they correspond bijectively to strongly finitary monads on the
1173
+ category CMet of complete metric spaces. This relates the quantitative
1174
+ algebraic reasoning of Mardare et al. closely to the classical equational
1175
+ reasoning of universal algebra where varieties are known to correspond
1176
+ to finitary monads on Set [20].
1177
+ Open Problem 6.1. Characterize monads on Met or CMet corre-
1178
+ sponding to ω-varieties of quantitative algebras.
1179
+ In [2] a partial answer has been given: when moving from Met to its
1180
+ full subcategory UMet on all ultrametric spaces, then enriched monads
1181
+ on UMet corresponding to ω-varieties of quantitative algebras in UMet
1182
+ are characterized.
1183
+ Analogously to the famous Birkhoff Variety Theorem in classical
1184
+ algebra, varieties of quantitative algebras can, as proved in [23], be
1185
+ characterized as precisely the HSP-classes: closed in Σ-Met under ho-
1186
+ momorphic images, subalgebras, and products. However, in CMet that
1187
+ proof does not seem to work.
1188
+ Open Problem 6.2. Does an analogy of the Birkhoff Variety Theorem
1189
+ hold for varieties of complete quantitative algebras?
1190
+ We have also presented a parallel theory of varieties of continuous
1191
+ algebras. Here we worked in the category CPO of ω-cpos (or DCPO
1192
+ of dcpos), and proved that varieties correspond bijectively to strongly
1193
+ finitary monads on CPO (or DCPO). Although the result sounds the
1194
+ same as that for Met, the proof is substantially different. It relies on
1195
+ CPO and DCPO being cartesian closed.
1196
+ Open Problem 6.3. Does an analogy of the Birkhoff Variety Theorem
1197
+ hold for varieties of continuous algebras?
1198
+ In [7] an affirmative answer is presented, but the extended terms
1199
+ used there are more general than in our paper.
1200
+ Our work in CPO and DCPO is based on the surprising fact we have
1201
+ proved: in cartesian closed categories directed colimits commute with
1202
+ finite products.
1203
+
1204
+ QUANTITATIVE AND CONTINUOUS ALGEBRAS
1205
+ 25
1206
+ References
1207
+ [1] J. Ad´amek, Free algebras and automata realizations in the language of cat-
1208
+ egories, Comment. Math. Univ. Carolinae 15 (1974), 589–602
1209
+ [2] J. Ad´amek, Varieties of quantitative algebras and their monads, Proceedings
1210
+ of Logic in Computer Science (LICS 2022),1–12
1211
+ [3] J. Ad´amek, M. Dost´al and J. Velebil, A categorical view of varieties of or-
1212
+ dered algebras, Math. Struct. Comput. Sci. 32, no. 4 (2022), 349–373
1213
+ [4] J. Ad´amek, M. Dost´al and J. Velebil, Quantitative algebras and a classifica-
1214
+ tion of metric monads, arXiv:2210.01565.
1215
+ [5] J. Ad´amek, M. Dost´al and J. Velebil, Strongly finitary monads for continuous
1216
+ algebras, manuscript.
1217
+ [6] J. Ad´amek, H. Herrlich and G. Strecker, Abstract and concrete categories:
1218
+ The joy of cats, John Wiley and Sons, New York 1990
1219
+ [7] J. Ad´amek, E. Nelson and J. Reiterman, The Birkhoff variety theorem for
1220
+ continuous algebras, Algebra Universalis 20 (1985), 328-350
1221
+ [8] J. Ad´amek and J. Rosick´y, Approximate injectivity and smallness in metric-
1222
+ enriched categories, J. Pure Appl. Algebra 226 (2022), 1–30
1223
+ [9] J. Ad´amek and J. Rosick´y, Locally presentable and accessible categories,
1224
+ Cambridge University Press, 1994
1225
+ [10] G. Bacci, R. Mardare, P. Panaganden and G. D. Plotkin, An algebraic theory
1226
+ of Markov processes, Proceedings of Logic in Computer Science (LICS 2018)
1227
+ ACM (2018), 679–688
1228
+ [11] G. Bacci, R. Mardare, P. Panaganden and G. D. Plotkin, Tensors of quanti-
1229
+ tative equational theories, Proceedings of Coalgebraic and Algebraic Methods
1230
+ in Computer Science (CALCO 2021).
1231
+ [12] M. Barr and Ch. Wells, Toposes, triples and theories, Springer-Verlag, New
1232
+ York 1985
1233
+ [13] F. Borceux, Handbook of Categorical Algebra: Volume 2, Categories and
1234
+ Structures, Cambridge Univ. Press, 1994
1235
+ [14] J. Bourke and R. Garner, Monads and theories, Adv. Math. 351 (2019),
1236
+ 1024–1071
1237
+ [15] E. J. Dubuc, Kan Extensions in Enriched Category Theory, Lecture Notes
1238
+ in Mathematics, vol. 145, Springer-Verlag 1970
1239
+ [16] G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc.
1240
+ Lecture Notes Series 64, Cambridge Univ. Press, 1982, also available as Repr.
1241
+ Theory Appl. Categ. 10 (2005)
1242
+ [17] G. M. Kelly, Structures defined by finite limits in the enriched context I,
1243
+ Cah. Topol. G´eom. Diff´er. Cat´eg. XXIII (1982), 3–42
1244
+ [18] G. M. Kelly and S. Lack, Finite-product-preserving functors, Kan extensions
1245
+ and strongly-finitary 2-monads, Appl. Categ. Structures 1 (1993), 85–94
1246
+ [19] A. Kurz and J. Velebil, Quasivarieties and varieties of ordered algebras: reg-
1247
+ ularity and exactness, Math. Structures Comput. Sci. (2016), 1–42.
1248
+ [20] S. Mac Lane, Categories for the working mathematician, 2nd ed., Springer
1249
+ 1998
1250
+ [21] R. Mardare, P. Panangaden and G. D. Plotkin, Quantitative algebraic rea-
1251
+ soning, Proceedings of Logic in Computer Science (LICS 2016), IEEE Com-
1252
+ puter Science 2016, 700–709
1253
+ [22] R. Mardare, P. Panangaden and G. D. Plotkin, On the axiomatizability
1254
+ of quantitative algebras, Proceedings of Logic in Computer Science (LICS
1255
+ 2017), IEEE Computer Science 2017, 1–12
1256
+ [23] S. Milius and H. Urbat, Equational axiomatization of algebras with structure,
1257
+ arXiv 1812-02016v2
1258
+
1259
+ 26
1260
+ J. AD´AMEK, M. DOST´AL, AND J. VELEBIL
1261
+ [24] M. Mio and V. Vignudelli, Monads and Quantitative Equational Theories for
1262
+ Nondeterminism and Probability, Proceedings of CONCUR 2020, vol. 171 of
1263
+ LIPIcs.
1264
+ [25] J. Rosick´y, Metric monads, Math. Struct. Comput. Sci., 31(5) (2021), 535–
1265
+ 552
1266
+ [26] J. Rosick´y, Discrete equational theories, arXiv 2204.02590v1
1267
+ Department of Mathematics, Faculty of Electrical Engineering,
1268
+ Czech Technical University in Prague, Czech Republic and Institute
1269
+ for Theoretical Computer Science, Technical University Braunschweig,
1270
+ Germany
1271
+ Email address: [email protected]
1272
+ Department of Mathematics, Faculty of Electrical Engineering,
1273
+ Czech Technical University in Prague, Czech Republic
1274
+ Email address: {dostamat,velebil}@fel.cvut.cz
1275
+
D9AzT4oBgHgl3EQfGvu-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE4T4oBgHgl3EQfGAw7/content/2301.04890v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6748ca9aaca05bae1a0ef14a0dcd368afced6f060d48255f9d4141d6911311f8
3
+ size 516370
DNE4T4oBgHgl3EQfGAw7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1695e56035dee1c50cd99e10391afbb63af14be11ffe29e99927ae3e4e86acf6
3
+ size 5898285
DNE4T4oBgHgl3EQfGAw7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e9dd6ee7fb982fd987a7d9ddc8ce63f7bffac608171de480944a6c4714e4b1
3
+ size 244753
DtE2T4oBgHgl3EQf9gmM/content/tmp_files/2301.04229v1.pdf.txt ADDED
@@ -0,0 +1,1373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Abstract
3
+ mm-Wave communication systems use narrow directional beams due to the spectrum’s characteristic
4
+ nature: high path and penetration losses. The mobile and the base station primarily employ beams in
5
+ line of sight (LoS) direction and when needed in non-line of sight direction. Beam management protocol
6
+ adapts the base station and mobile side beam direction during user mobility and to sustain link during
7
+ blockages. To avoid outage in transient pedestrian blockage of the LoS path, the mobile uses reflected
8
+ or NLoS path available in indoor environments. Reflected paths can sustain time synchronization and
9
+ maintain connectivity during temporary blockages. In outdoor environments, such reflections may not
10
+ be available and prior work relied on dense base station deployment or co-ordinated multi-point access
11
+ to address outage problem.
12
+ Instead of dense and hence cost intensive network deployments, we found experimentally that
13
+ the mobile can capitalize on ground reflection. We developed TERRA protocol to effectively handle
14
+ mobile side beam direction during transient blockage events. TERRA avoids outage during pedestrian
15
+ blockages 84.5 % of the time in outdoor environments on concrete and gravel surfaces. TERRA also
16
+ enables the mobile to perform a soft handover to a reserve neighbor base station in the event of a
17
+ permanent blockage, without requiring any side information unlike the existing works. Evaluations
18
+ show that TERRA maintains received signal strength close to the optimal solution while keeping track
19
+ of the neighbor base station.
20
+ arXiv:2301.04229v1 [eess.SY] 10 Jan 2023
21
+
22
+ 2
23
+ TERRA: Beam Management for Outdoor
24
+ mm-Wave Networks
25
+ Santosh Ganji, Jaewon Kim, Romil Sonigra and P. R. Kumar
26
+ Texas A&M University
27
+ I. INTRODUCTION
28
+ High path loss in millimeter wave (mm-wave) bands necessitates both the mobile and the
29
+ base station to communicate using narrow directional line-of-sight (LoS) beams [1]. The LoS
30
+ direction changes as the user move. To remain connected, the base station and the mobile manage
31
+ beam directions to counter user mobility. Another challenge to mm-wave communication is that
32
+ the human body significantly attenuates radiation [2], [3]. Pedestrian blockers cause the narrow
33
+ directional LoS beam inoperable. mm-wave device must adapt the beam direction to overcome
34
+ the challenges caused by blockage and user mobility.
35
+ When a pedestrian obstructs the mm-wave Line of Sight (LoS) link, the received signal strength
36
+ drops by about 15 dB [4]. Even though such blockage events are temporary and last only about
37
+ two hundred milliseconds [4], they create link outages as 96.8% of the signal is lost. The signal
38
+ amplifier cannot improve SNR as both signal and noise are equally amplified. The mobile loses
39
+ connectivity during such temporary blockages. After the temporary blockage, it has to reconnect
40
+ like a new user, which in technologies like 5G NewRadio takes about a second [5], disrupting
41
+ low latency applications like virtual reality and online gaming [6]. In an indoor environment, a
42
+ usable non-line-of-sight (NLoS) path is available [4].
43
+ Presuming that reflected NLoS beams are scarce in outdoor environments [7], [8], it has
44
+ been suggested that the solution to avoid disruption is to handover to another base station.
45
+ However, handover for every pedestrian blockage requires high deployment density. The study
46
+ [9] suggests 200 base stations per Sq. KM is necessary to meet the latency requirements. Such
47
+ high deployment density is expensive.
48
+ Based on outdoor signal measurement studies under the pedestrian blockage, we show that
49
+ there is frequently a ground reflection from hard surfaces, and propose a protocol called TERRA.
50
+
51
+ 3
52
+ It employs such a ground-reflected NLoS path as a control channel to sustain critical time
53
+ synchronization with the base station throughout a temporary blockage. This makes it possible
54
+ to revert to the LoS beam as soon as the blockage concludes. TERRA efficiently maintains the
55
+ beam identity of such a reserve NLoS path at all times, and refreshes it as needed, so that it
56
+ is always ready for blockage since blockage can happen at any time. Experiments show that
57
+ TERRA avoids outage events 84.5% time during pedestrian blockages. When either blockage
58
+ does not disappear or the current base station is out of range, handover to another base station
59
+ is the only viable choice for the mobile to continue communication. TERRA also addresses the
60
+ challenges in a handover event that arise from the directional nature of beams.
61
+ To avoid hard handover where the mobile needs to connect to the next base station as if
62
+ it is a new user, TERRA must manage mobile beams both with the serving and the neighbor
63
+ base station. TERRA first needs to determine neighboring base stations for potential handover
64
+ targets. And for the entire transition process, the protocol must ensure that it has aligned beams
65
+ at the detected neighbor base station. The mobile must also manage beams with the serving base
66
+ station till the transfer of connection.
67
+ Prior work [10], [11] corrects the beam misalignment that happens with user mobility. While
68
+ the mobile can continually adapt its beam during user mobility with the serving base station with
69
+ cooperation from the serving base station [10], [11], the neighbor base station neither adapts
70
+ its beam nor provides any assistance to the mobile for receive beam adaptation, as the mobile
71
+ is yet to establish communication with it. Terra uses information only in the radio domain,
72
+ as is desirable, without requiring any additional sensors. Experiments on TERRA show that it
73
+ maintains the received signal strength of a neighbor base station within 3 dB of an omniscient
74
+ oracle. We have also evaluated the performance of TERRA under several pedestrian mobility
75
+ patterns.
76
+ The rest of this paper is organized as follows. We explain the challenges in outdoor beam
77
+ management in Section II. In Section III, we present our outdoor experiments during pedestrian
78
+ blockages. Section IV-B shows the search overheard to discover the neighbor base station. We
79
+ present our protocol in Section V. Section VI presents TERRA’s efficacy in various user mobility
80
+ scenarios.
81
+
82
+ 4
83
+ II. THE CHALLENGES OF BEAM MANAGEMENT FOR BLOCKAGE RESILIENCY AND
84
+ HANDOVER
85
+ In this section, we elaborate on the challenges in managing beams during pedestrian block-
86
+ age and in handover. We also provide the outlines of the solution which are further detailed,
87
+ experimentally verified and validated in the subsequent sections.
88
+ A. Pedestrian Blockage
89
+ In the case of omnidirectional transmission, the environment scatters electromagnetic radiation
90
+ in all directions and an omnidirectional receiver can capture the multi-path components of the
91
+ transmitted signal. In contrast, due to directional transmission, there are fewer distinct multi-path
92
+ components in the mm-wave bands. A narrow directional radio receiver beam can only receive
93
+ signal components that arrive within a small angular spread of a beam direction. A 32x32 element
94
+ uniform planar array can produce beamwidths as narrow as 4◦. To discover either an LoS or such
95
+ NLoS paths, the base station sweeps beams within a sector, and the mobile receiver similarly
96
+ performs a spatial scan.
97
+ In the mm-wave band, an interposed pedestrian does obstruct the narrow directional LoS beam.
98
+ The human body attentuates the signal by 15 dB, resulting poor RSS. With most of the signal
99
+ energy lost and receiver’s amplifier cannot improve SNR. Since the mobile receives weak signal
100
+ energy and amplifiers cannot improve SNR, link suffers from outage during pedestrian blockage
101
+ event.
102
+ The mobile is left with one of two choices to continue communication with the network – to
103
+ switch to an NLoS path if such a path exists between the base station and mobile, or to perform
104
+ handover to a neighboring base station (or otherwise employ a neighboring base station through,
105
+ say, coordinated multipoint transmission).
106
+ Pedestrian blockage is sudden and unpredictable [10]. To avoid outage by employing NLoS
107
+ path, the mobile must therefore always have in hand an NLoS beam direction that it can quickly
108
+ switch to. If the mobile has no backup NLoS path to use in the event of blockage, link outage
109
+ occurs, and the mobile gets disconnected from the base station.
110
+ The disconnected mobile will need to re-perform an initial network access procedure, as
111
+ though it were a new user, which takes several seconds, due to the following. To acquire new
112
+ users, base stations periodically sweep directional beams with reference signals and broadcast
113
+ information such as cell and network identity. A mobile also sweeps through all its receive beams
114
+
115
+ 5
116
+ to discover at least one of the base station’s beams when it is pointed towards it. The number
117
+ of receive beams increases with the reciprocal of the beamwidth. To complete a bi-directional
118
+ connection, the mobile transmits a random preamble in the same direction as the discovered
119
+ base station’s beam, and awaits a response. After physical layer procedures to establish reliable
120
+ data communication, the network authenticates the mobile before granting network access. This
121
+ complete procedure takes several seconds [12].
122
+ On the other hand, were the mobile to have an NLoS path in hand when blockage occurs,
123
+ it can use that to sustain connectivity in the following way. The NLoS path has lesser RSS
124
+ than the LoS path, not enough to sustain the earlier high data rate communication of the LoS
125
+ path. However, the NLoS path can continue to sustain time synchronization between the mobile
126
+ and the base station. This is critical since it allows the mobile to revert to LoS communication
127
+ without delay as soon as the blockage disappears, and, typically, such blockage is temporary
128
+ and only lasts a few hundred milliseconds [4]. For such recovery from temporary blockages, it
129
+ is critical that it be performed without requiring any out of band communication, and this is
130
+ exactly what the NLoS path makes possible.
131
+ The critical issue is therefore: Do such NLoS paths exist outdoors? [13] Unlike indoor
132
+ environments, there is not a multiplicity of surfaces when outdoors. One that is always there
133
+ though is the ground. Indeed, ground reflections are used to shape glide paths for aircraft
134
+ instrument landing systems [14]. There is also a report of ground reflections at mm-wave
135
+ frequencies in [15] in an outdoor environment. However, the potential for this to help with
136
+ mm-wave communications, especially blockage, has apparently not been pursued. Motivated by
137
+ this possibility, we have conducted a measurement campaign in the 60GHz band to determine
138
+ whether mm-wave signals are reflected from the ground, and whether they are usable during
139
+ blockage events.
140
+ In Section III, we report on the results of the measurement study that show that mm-wave
141
+ signals are reflected from outdoor surfaces such as concrete and gravel with a loss of just 4-6
142
+ dB over LoS. Also important for base station to hand-held mobile communications is that base
143
+ stations are usually deployed with a slight downward tilt, as shown in Fig. 1, and are equipped
144
+ with phased arrays that steer beams. The hand-held mobile’s receiver can therefore capture these
145
+ ground reflections. We also report in Section III on the link measurements with human blocking
146
+ of the LoS link between the base station and the mobile.
147
+ In cellular communication systems, the base station schedules data transmission and reception
148
+
149
+ 6
150
+ Base Station-
151
+ Array
152
+ LoS Path
153
+ Ground
154
+ Reflection
155
+ 𝐻𝑇
156
+ 𝐻𝐵
157
+ 𝐻𝑅
158
+ 𝐷𝐵𝑅
159
+ Figure 1: Ground Reflection
160
+ opportunities. Time synchronization helps mobile adjust its timeline to that of base station’s. To
161
+ align the mobile’s time line, the base station transmits synchronization signals. Through signal
162
+ correlation, the mobile determines the temporal location of these signals in the captured over
163
+ the air samples and adjusts its timeline. A good received signal strength and high enough SNR
164
+ are necessary to improve the accuracy of signal processing algorithms and help achieve tight
165
+ timing alignment with the base station. Any timing offset induces packet errors in both uplink
166
+ and downlink [16] as the mobile’s transmissions fall out of the base station’s listening window
167
+ and vice versa. The mobile must therefore continuously adapt its timeline to account for the
168
+ propagation delay with user mobility. It is for this reason that TERRA switches to a NLoS beam
169
+ to maintain time synchronization throughput the temporary blockage period. This allows it to
170
+ revert to LoS communication as soon as the blockage ends.
171
+ B. Beam Management for handover
172
+ 1) Brief overview of 5G mm-Wave handover process: When a mobile user moves to the
173
+ boundary of the currently connected base station’s coverage region, called a “cell”, the mobile
174
+ experiences degraded radio conditions. At the edge of the cell, the received signal strength is
175
+ weak and hence Signal to Noise Ratio (SNR) is poor. When SNR is bad, packet decoding fails.
176
+ Cellular technologies like 5G can use hybrid packet retransmissions to use previously transmitted
177
+ bits to decode a message before sending the original message again with a reduced code rate.
178
+ Either way, when a packet is decoded in error, the recovery mechanisms increase communication
179
+ latency. A similar situation occurs when a LoS beam is permanently blocked by a building.
180
+ Under such edge radio or permanent blockage conditions, improve link performance, the
181
+ mobile searches for a neighbor base station. While omni-directional mobile receivers need to
182
+
183
+ 人7
184
+ perform only a frequency scan to discover the neighbor base station and initiate the handoff
185
+ process, in the mm-wave bands, the mobile uses narrow directional beams and therefore needs
186
+ to perform a spatial scan to discover a neighbor base station. A 5G mm-wave base station period-
187
+ ically sweeps broadcast information using narrow directional beams [5]. Broadcast messages help
188
+ mobile discover the neighbor base station’s timeline. The mobile must adjust its timeline to align
189
+ with the neighbor base station. This process called “time synchronization” is the foremost step
190
+ a mobile performs before starting the initial access protocol. During initial access procedures,
191
+ the mobile informs the neighbor base station of its presence in the coverage area. The mobile
192
+ transmits an uplink preamble signal in a listening window of the base station and anticipates a
193
+ response. Tight time synchronization at the mobile ensures that the sent preamble reaches the
194
+ base station.
195
+ Serving base station cannot help a mobile with the time schedules of a neighbor base station.
196
+ Without strict time synchronization among the base stations in the network, a base station cannot
197
+ have the knowledge of timing of another. For example, serving base station precisely time
198
+ synchronize with neighbor base station to convey to its mobile when a beam is available from
199
+ the neighbor base station to initiate communication.
200
+ The broadcast messages also carry schedules of when the base station uses a particular beam
201
+ to listen to a mobile’s transmissions. To complete handover, the mobile must transmit precisely
202
+ at the instants when a neighbor base station is listening in the direction of the beam discovered
203
+ after the spatial scan. Moreover, cellular standards require the mobile to choose time-frequency
204
+ resources for preamble signals randomly. The neighbor base station listens to the sent preamble
205
+ and responds when there is no resource collision. A response from the base station to a preamble
206
+ is necessary for the mobile to advance further in the handover protocol. The mobile waits for
207
+ a response for a pre-configured interval, after which it retransmits a new preamble [12] Upon
208
+ receiving a response to the preamble signal, the neighbor base station and mobile exchange
209
+ critical control plane messages for user authentication and connection transfer. The mobile must
210
+ maintain a highly aligned beam throughout this process to avoid handover failure.
211
+ In short, the mobile must search for a neighbor base station, time synchronize and perform
212
+ initial access procedure to handover. Below we elaborate on the main stages in a handover
213
+ protocol and implications of beam management on those stages.
214
+ 2) Neighbor Base Station Search: As mentioned earlier, the serving base station schedules
215
+ persistent measurement occasions for the mobile to discover neighbor base stations [17]. In
216
+
217
+ 8
218
+ the granted opportunities, mm-wave mobile performs directional search on frequencies that are
219
+ communicated by the serving base station. Mobile first measures signal strength temporarily
220
+ tuning the radio receiver to carrier frequencies of neighbor base station and attempts decoding
221
+ the broadcast information that contains the network related information.
222
+ The mobile searches for a neighbor base station using one receive beam at a time. As transmit
223
+ beam schedules of neighbor base station are unknown, mobile uses the same receive beam for
224
+ the entirety of one beam sweeping interval. In 5G mm-wave network, mobile holds each of its
225
+ receive beams for 20 ms, the duration in which base station sweeps all its beams once. Mobile
226
+ has complete freedom on the beamwidth of beams. Search concludes after discovering a base
227
+ station and mobile must report signal measurements to the serving base station. Time to discover
228
+ a base station is impacted with beamwidth, number of beams, and user mobility pattern.
229
+ Based on the reported measurements, serving base station then makes final decision on
230
+ handover. However, such a mechanism does not have any particular advantage. Irrespective of
231
+ whether mobile or serving base station that decides on the switch, there is no way to evade
232
+ measurements. Until the switching decision is made, the mobile’s receiver needs to toggle
233
+ between serving and neighbor base stations. Mobile must keep track of the found neighbor
234
+ base station beam until the handover is initiated. Also, the mobile must keep track of serving
235
+ base station beam. Failure to track the serving base station beam results in hard handover whereas
236
+ losing track of neighbor base station beam requires mobile to search again.
237
+ 3) Beam Tracking: Mere one-time discovery of a neighbor base station beam is insufficient to
238
+ complete the handover. The mobile must maintain alignment with the found base station beam
239
+ to overcome mobility impairments and maintain good received signal strength throughout the
240
+ transition process. This adaptation step, called Beam Tracking, involves the mobile switching its
241
+ receive beams to maintain high received signal strength. Beam tracking is essential to complete
242
+ all the handover protocol message exchanges and avoid a hard handover.
243
+ As the mobile is yet to establish connection with the neighbor base station before handover,
244
+ at the time of handover neither does the neighbor base station adapt its beams to counter user
245
+ mobility nor does it assist the mobile to adapt its beams to preserve beam alignment. The
246
+ mobile can only rely on its own beam adaptation. Since this adaptation of its receive beam to
247
+ the neighbor base station is done without any communication with the neighbor base station, we
248
+ call it “silent tracking.” Silent Tracking is different from adaptation that is done with the serving
249
+ base station, or which will be done with the neighbor base station after a connection handover
250
+
251
+ 9
252
+ since both of the latter exploit two-way communication with the respective base stations. In
253
+ connected state, the base station also adapts its beams to counter user mobility and aids the
254
+ mobile in adapting its receive beams. This can done with mobile’s adaptation procedure in the
255
+ companion Beamsurfer protocol [10] where the mobile shifts to one of its better adjacent beams
256
+ when the RSS of the current beam drops by 3dB. The details can be found in [10].
257
+ 4) Time Synchronization, Random Access and Connection Transfer: After beam discovery
258
+ and timing synchronization, the mobile transmits a preamble signal to announce its presence
259
+ to the neighbor base station. The preamble and the time-frequency resources to transmit the
260
+ signal are chosen randomly from a set known to the base station. This step in the initial access
261
+ procedure is called random access. The base station listens for all possible preamble resources.
262
+ After listening to the preamble signal, the base station responds and allocates resources for the
263
+ mobile to complete the rest of the initial access procedure. The preamble must arrive within the
264
+ base station’s listening window. As the communication at mm-wave bands is directional, the base
265
+ station listens in a particular direction in each window. The mobile must therefore maintain tight
266
+ time synchronization with the neighbor base station. Upon receiving a response to the preamble
267
+ signal, both the mobile and the base station exchange several protocol messages to complete the
268
+ transition. So, the mobile must still maintain a receive beam adapted to user mobility to continue
269
+ the handover procedures. The neighbor base station neither adapts its beams nor provides any
270
+ assistance to mobile in adapting beams during the initial connection.
271
+ Figure 2: 60 GHz Transceiver System
272
+ III. MEASUREMENTS UNDER PEDESTRIAN BLOCKAGE
273
+ We performed signal strength measurements under pedestrian blockage in outdoor built envi-
274
+ ronments with commonly found ground surfaces. The goal of the experiments is to study signal
275
+
276
+ Digital
277
+ Analog
278
+ Baseband
279
+ Baseband
280
+ Processing
281
+ Data
282
+ Baseband
283
+ Receiver
284
+ FPGA
285
+ mmWave
286
+ Phased Array
287
+ Interface
288
+ Ctrl
289
+ Receiver
290
+ And Up
291
+ Down
292
+ Digital I/O FAM
293
+ RF Ctrl FPGA
294
+ Host
295
+ mmWave
296
+ converter
297
+ Phased Array
298
+ Board
299
+ Transmitter
300
+ Baseband
301
+ Processing
302
+ Transmitter
303
+ FPGA
304
+ Analog
305
+ Data
306
+ Digital
307
+ Baseband
308
+ Baseband10
309
+ on LoS path during blockage and to explore NLoS paths, in particular ground reflections. NLoS
310
+ paths can sustain the link and help mobile maintain time synchronization when the LoS path is
311
+ blocked.
312
+ We conducted experiments using National Instruments 60 GHz software-defined radios. Func-
313
+ tional diagram of transceiver is shown in Fig. 2. Baseband IQ sample generation at transmitter
314
+ and signal processing at the receiver are implemented in FPGA. An analog baseband signal
315
+ of 2 GHz bandwidth is upconverted to 60 GHz carrier frequency. A 12 element phased array
316
+ is used both at the transmitter and receiver. The phase weights for desired radiation patterns
317
+ are calculated and stored as beam codebooks. The beam codebook has 25 beams, with narrow
318
+ beams of azimuth width approximately 18◦, within a 120◦ azimuth sector. The zenith beamwidth
319
+ is around 60◦. Figs. 3 and 4 present azimuth and elevation radiation patterns of the bore sight
320
+ beam. Transmit power is fixed at 20 dBm. The directivity gain of the phased array is 17 dB.
321
+ Further details on the transceiver design and implementation are available in [4], [18].
322
+ On each surface under study, the transmitter array was positioned at a height of HT =2.5
323
+ m above ground level, with the receiver antenna array held about HR =1 m above the the
324
+ surface. The transmitter and receiver arrays were positioned facing each other, and are placed
325
+ DTR = 6 m apart. For each scenario, experiments were repeated for two different cases where
326
+ the transmitter antenna is tilted towards the ground by 10◦ or 20◦. This geometry corresponds
327
+ to potential outdoor deployments where base stations are located higher than mobiles. This tilt
328
+ is responsible for creating additional reflected directions towards the receiver. Moreover, most
329
+ of the zenith beamwidth is directed towards the receiver.
330
+ While the transmitter beam is in the LoS direction of the receiver, the RSS at the receiver,
331
+ denoted by RSSLoS, is measured using a receive beam that is highly aligned with the transmitter
332
+ beam. It serves as a reference to calculate total loss suffered by ground reflection. RSSLoS in the
333
+ experiments was measured to be −60 dBm. When a human body obstructs the LoS direction by
334
+ standing in between transmitter and receiver, the RSS drops to −78 dBm, which is the noise floor
335
+ of the receiver, showing that pedestrian obstruction leads to LoS link loss. Although the pedestrian
336
+ blockage is transient, an undesirable outage event occurs at the receiver if communication, and
337
+ thereby time-synchronization, is not maintained as described in Section II.
338
+ Let HB be the height of a pedestrian human blocker. The pedestrian blocker can obstruct the
339
+ transmission only when she is close to the receiver. Using ray tracing, the maximum distance
340
+ DBRmax between blocker and the receiver to obstruct LoS transmissions can be calculated as
341
+
342
+ 11
343
+ Figure 3: Azimuth Cut
344
+ Figure 4: Elevation Cut
345
+ follows:
346
+ DBRmax = DTR ∗ HB − HR
347
+ HT − HR
348
+ .
349
+ (1)
350
+ For HR = 1m, HT = 2.5m, HB= 1.78m, and DTR = 6m, DBRmax was found to be 3.12m in
351
+ our experiments.
352
+ Table I: Concrete Surface
353
+ Transmitter Tilt
354
+ RSSGR (dBm)
355
+ DBR (m)
356
+ 0◦
357
+ -66
358
+ 2
359
+ 0◦
360
+ -66
361
+ 3
362
+ 10◦
363
+ -64.7
364
+ 2
365
+ 10◦
366
+ -64.5
367
+ 3
368
+ 20◦
369
+ -64.1
370
+ 2
371
+ 20◦
372
+ -64
373
+ 3
374
+ Tables I and II present the RSS for outdoor reflections from Concrete and Gravel pathways.
375
+ The extra loss incurred by the ground reflection is between 4 and 6 dB.
376
+ When both transmitter and receiver phased arrays are parallel to the ground surface, the only
377
+ ground reflection available to the receiver is from radiation in one-half of the 60◦ elevation
378
+ beamwidth of the transmitter beam. To capture the reflection in this direction, the receiver needs
379
+
380
+ 90
381
+ 60
382
+ 120
383
+ 10
384
+ 0
385
+ 150
386
+ 20
387
+
388
+ 3
389
+ 30
390
+ 8.83
391
+ 180
392
+
393
+ 12.16
394
+ -9°
395
+ 8.83
396
+ -150
397
+ -120
398
+ -60
399
+ -9090
400
+ 10
401
+ 09
402
+ 120
403
+ 0
404
+ 150
405
+ 10
406
+ 20
407
+ 30
408
+ 8
409
+
410
+ 12.16
411
+ 1
412
+ -150
413
+ 5
414
+ 9
415
+ -120
416
+ -60
417
+ -9012
418
+ Table II: Gravel Surface
419
+ Transmitter Tilt
420
+ RSSGR (dBm)
421
+ DBR (m)
422
+ 0◦
423
+ -66.1
424
+ 2
425
+ 0◦
426
+ -65.9
427
+ 3
428
+ 10◦
429
+ -64.8
430
+ 2
431
+ 10◦
432
+ -64.4
433
+ 3
434
+ 20◦
435
+ -64.4
436
+ 2
437
+ 20◦
438
+ -64.3
439
+ 3
440
+ to tilt its beams towards the ground while maintaining LoS in azimuth. Indeed we measured
441
+ slightly more RSS when the receiver is so tilted.
442
+ When the transmitter array is also tilted towards ground, directions with stronger incident
443
+ radiation get reflected, resulting in higher RSS. The highest RSSGR observed on all three surfaces
444
+ under study is around -64 dBm. This implies that ground reflected radiation is just 4 dB less
445
+ than LoS.
446
+ Based on the experiments, the following are our main observations:
447
+ • Pedestrian blockers can create mm-wave link outage, however, NLoS paths to preserve link
448
+ are available in outdoors too.
449
+ • Strong ground reflections are available on gravel and concrete built outdoor surfaces.
450
+ • Ground reflections are available in the same azimuth LoS direction at the receiver.
451
+ • Tilting the transmitter towards the ground helps the receiver with even stronger ground
452
+ reflections.
453
+ • Finally, when the ground reflected directed path is known to the mobile, there is no need to
454
+ handover to a neighboring base station in outdoor environments during transient blockage
455
+ events.
456
+ We note as an aside that after discovering ground reflections outdoors, we also experimented
457
+ with surfaces indoors, and discovered the presence of indoor ground reflections also when the
458
+ floor is hard. Table III presents RSSGR averaged over 100 measurements from an indoor surface
459
+ with concrete tiles. In fact, compared to the indoor NLoS paths reported in [10], the RSSGR is
460
+ at least 6 dB higher than RSS of NLoS paths. Therefore it appears that even indoors one can
461
+
462
+ 13
463
+ preferably use ground reflections when the floor is a hard surface. TERRA protocol harvests these
464
+ ground reflected directions, stores in the memory and employs that NLoS path in a blockage
465
+ event.
466
+ Table III: Indoor Floor, Concrete Tiles
467
+ Transmitter Tilt
468
+ RSSGR (dBm)
469
+ DBR (m)
470
+ 0◦
471
+ -65.7
472
+ 2
473
+ 0◦
474
+ -66
475
+ 3
476
+ 10◦
477
+ -64.5
478
+ 2
479
+ 10◦
480
+ -64.45
481
+ 3
482
+ 20◦
483
+ -64.4
484
+ 2
485
+ 20◦
486
+ -64.3
487
+ 3
488
+ IV. MOBILITY EXPERIMENTS ON OVERHEAD OF BEAM SEARCH
489
+ We now address the overhead of TERRA to maintain a potential neighbor base station to use
490
+ in case handover is needed. We present the experimental results on the number of beam searches
491
+ necessary to discover neighbor base station beams while a user is walking. We show that search
492
+ overhead varies with user’s location, orientation of the antenna array, and user mobility pattern.
493
+ During the pedestrian mobility experiments, the user moves with the phased array in hand.
494
+ Additionally, to showcase how rotational motion impacts search, a phased array is rotated with
495
+ angular velocities corresponding to the natural movement of a user’s hand. We also present the
496
+ results in the scenario where two contending neighbor base stations are visible to the mobile.
497
+ A. Experiment Setup:
498
+ We use National Instruments’ software-defined mm-wave transceivers operating at 60 GHz
499
+ for the experiments. One of the transceiver operates as base station, another as mobile.
500
+ 1) Data Collection:: The base station and mobile use 25 different beams, each of beam
501
+ width approximately 15◦. These 25 beams cover −50◦ to 60◦ azimuth around the boresight
502
+ of the array. On similar lines as existing 5G cellular standards [5], the base station transmits
503
+ a reference signal known to the mobile in 25 different beams every 20 milli-seconds. Base
504
+
505
+ 14
506
+ Figure 5: Beam patterns of a few beams from codebook used in the testbed
507
+ stations transmits reference symbols in time slots, changing transmitter beams every 8 slots or
508
+ 800 micro-seconds.
509
+ The mobile attempts to discover at least one base station beam. In doing so, the mobile
510
+ performs an exhaustive search, switching the receive beams. The base station’s broadcast beam
511
+ schedules are unknown to the mobile during the beam discovery phase, so the mobile holds a
512
+ receive beam for 20 milli-seconds before switching to another. The duration to sweep all the
513
+ 25 receive beams at the mobile receiver is 500 milli-seconds. For beam discovery experiments,
514
+ each trial lasts for 25 seconds during which the mobile repeats the search. Fig. 5 presents the
515
+ azimuth cut of a few beams used in the experiment.
516
+ The mobile’s baseband signal processor correlates the received samples with the reference
517
+ signal and calculates the received signal strength if the reference signal is detected. We make a
518
+ note of the number of searches needed to discover a base station beam and the received signal
519
+ strength of found beam.
520
+ B. Beam Search
521
+ As part of search process, the mobile measures the received signal strength on each of its
522
+ receive beams to discover a base station beam. The search terminates when one of the receive
523
+ beams has sufficient received signal strength to decode broadcast information and discovers
524
+ a neighbor. This beam direction is recorded for potential future handover, and the search is
525
+ commenced anew.
526
+
527
+ AzimuthCut,12elementURABeams
528
+ 06
529
+ 120
530
+ 60
531
+ 10
532
+ 150
533
+ -10
534
+ 30
535
+ 20
536
+ 180
537
+ P1
538
+ 14.31
539
+ -150
540
+ -30
541
+ O Deg?
542
+ -120
543
+ -60
544
+ 44 Deg
545
+ 06-
546
+ -30 Deg15
547
+ Sensors providing tilt or pose information of a mobile can help with searches. They can be
548
+ especially helpful in the case of searching in a purely zenith direction for a ground reflected beam.
549
+ However, during initial search or base station discovery, additional side information from sensors
550
+ gives no advantage. Also, the particular challenges of utilizing sensors such as gyroscopes, tilt
551
+ sensors, and accelerometers, to obtain angle information like pose have been investigated in [5],
552
+ [19], [20].
553
+ 1) Beam Search During Walk: We conducted mobility experiments to determine the search
554
+ duration necessary to find a base station beam during pedestrian mobility. We present the
555
+ following metrics for each mobility pattern; the number of searches required and the received
556
+ signal strength. For the human walk experiments, we consider two mobility scenarios. In the first,
557
+ a user with a phased array in her hand follows a linear trajectory walking at 1m/s. The linear
558
+ trajectory captures the translational motion component of a user walking along a pavement. On
559
+ the other hand, the free walk has both translational and rotational components, for example when
560
+ playing games with virtual reality gear. The length of each trajectory is 2 m. We conducted 50
561
+ trials for each scenario, and at five different locations.
562
+ To perform a spatial scan with all the 25 beams holding each beam for 20 ms takes half a
563
+ second. At four different locations, that are each half a second long along each trajectory, we
564
+ present the variation in the number of searches to discover a base station beam and received
565
+ signal strength. We number these locations as positions 1 to 4.
566
+ A mm-wave base station has only a small coverage region, i.e., a small “cell”. The mobile
567
+ can listen to transmissions of a base station when the mobile is in the coverage region, and the
568
+ mobile’s receive beam aligns with the base station beam.
569
+ Linear Trajectory: In this mobility experiment, the boresight of the mobile array faces the
570
+ base station, so that the neighbor base station array and mobile array are facing each other. This
571
+ experiment shows how the location of the mobile alone impacts the search process. The mobile
572
+ does not know when the neighbor base station directs a beam towards it. Even though there is
573
+ only one mobile beam that is in LoS direction at a particular location with the neighbor base
574
+ station, number of beams to search to discover LoS vary with time.
575
+ Along the trajectory, the number of searches necessary to detect the line of sight base station
576
+ beam varies with position. In Fig. 6a, the median number of beam searches is 14 at positions 1
577
+ and 2, and 13 at positions 3 and 4. As the perfect beam alignment may not occur all the time and
578
+ due to slight difference in gains of beams in our code book, signal strength in our experiments
579
+
580
+ 16
581
+ (a)
582
+ Position 1
583
+ Position 2
584
+ Position 3
585
+ Position 4
586
+ 11
587
+ 12
588
+ 13
589
+ 14
590
+ 15
591
+ 16
592
+ 17
593
+ Number of Beam Searches
594
+ Motion: Walk, Beam: Narrow, Boresight Angle: 0°
595
+ (b)
596
+ -72
597
+ -70
598
+ -68
599
+ -66
600
+ -64
601
+ -62
602
+ -60
603
+ Received Signal Strength (dBm)
604
+ 0
605
+ 0.2
606
+ 0.4
607
+ 0.6
608
+ 0.8
609
+ 1
610
+ CDF
611
+ Motion: Walk, Beam: Narrow, Boresight Angle: 0°
612
+ Position 1
613
+ Position 2
614
+ Position 3
615
+ Position 4
616
+ Figure 6: Search during linear translational motion
617
+ (a)
618
+ Narrow, 120°
619
+ Wide, 120°
620
+ Wide, 60°
621
+ 5
622
+ 10
623
+ 15
624
+ 20
625
+ 25
626
+ Number of Beam Searches
627
+ Motion: Walk, Beam: Narrow, Wide, Boresight: 60°, 120°
628
+ (b)
629
+ -72
630
+ -70
631
+ -68
632
+ -66
633
+ -64
634
+ -62
635
+ -60
636
+ Received Signal Strength (dBm)
637
+ 0
638
+ 0.2
639
+ 0.4
640
+ 0.6
641
+ 0.8
642
+ 1
643
+ CDF
644
+ Motion: Walk, Beam: Narrow, Wide, Boresight: 60°, 120°
645
+ Narrow, 120°
646
+ Wide, 120°
647
+ Narrow, 60°
648
+ Figure 7: Impact of array boresight direction on search
649
+ is not uniform across all trials. The median received signal strength observed from Fig. 6b at
650
+ positions 1 and 2 is 2 dB less than that of positions 3 and 4. We find it reasonable to expect
651
+ variation in signal strength due to mobility in directional mm-wave communication systems.
652
+ Impact of Boresight Direction: The direction of the antenna array i.e., the array boresight,
653
+ also has an impact on the spatial scan. As shown in Fig. 7, when we repeat the experiments
654
+ with different boresight directions of the phased array, we observe the median number of beams
655
+ to search when the array points towards 60◦ azimuth is 20, while it is 9 for 120◦. The median
656
+ received signal strengths in Fig. 7b are slightly lower compared to Fig. 6b, the case where both
657
+
658
+ 17
659
+ the base station and mobile are facing each other. The reason is the irregularities in the gains
660
+ across beams in the codebook. The codebook needs careful design to have uniform gains.
661
+ Rotational Mobility: Rotational mobility disrupts beam alignment between the base station
662
+ and mobile faster than translation mobility [10], [21]. The alignment of the beams therefore lasts
663
+ for a shorter duration, and the mobile side receive beam can listen to a base station beam only
664
+ for a shorter period. We experimentally investigated the expected large variation in the number
665
+ of beams searched and the received signal strength on the aligned beam. Before the experiments,
666
+ we first observe angular velocity from the gyroscope on a commercial mobile device [22]. We
667
+ logged data for one day. To name a few motion patterns during data collection are answering a
668
+ phone call, walking with the mobile in hand, sitting on a chair, etc. Fig. 8 shows the CDF of
669
+ the angular velocity of the mobile. We observe that angular velocity can reach up to 8 rad/s.
670
+ We rotated phased array in our experiment with 40th and 60th percentile angular velocities from
671
+ the observed data i.e., 90◦/s and 180◦/s and performed spatial scan during the mobility.
672
+ In Fig. 9a, we present the number of beams searched for at four equidistant positions while a
673
+ phased array rotates in a 120◦ sector with angular velocities of 90◦/s and 180◦/s. As observed in
674
+ Figs. 6a, 7a, 9c, and d, the standard deviation of the number of beams searched during rotational
675
+ mobility, 6, is higher than the corresponding number of 2 under the linear translational motion.
676
+ 0
677
+ 2
678
+ 4
679
+ 6
680
+ 8
681
+ 10
682
+ 12
683
+ rad/s
684
+ 0
685
+ 0.2
686
+ 0.4
687
+ 0.6
688
+ 0.8
689
+ 1
690
+ F(x)
691
+ Angular velocity during common human movements
692
+ Figure 8: Gyroscope data during daily activities
693
+ Walk: First we studied walking on a linear trajectory, next we looked at rotational motion, but
694
+ human walk often has both rotational and translational components. So, we studied free walk,
695
+ wherein a human walks casually, freely turns and changes direction of the motion.
696
+
697
+ 18
698
+ (a)
699
+ Position 1
700
+ Position 2
701
+ Position 3
702
+ Position 4
703
+ 0
704
+ 5
705
+ 10
706
+ 15
707
+ 20
708
+ 25
709
+ Number of Beam Searches
710
+ Device mobility, Narrow Beam Width,
711
+ = 90°/s
712
+ (b)
713
+ -74
714
+ -72
715
+ -70
716
+ -68
717
+ -66
718
+ -64
719
+ -62
720
+ -60
721
+ -58
722
+ Received Signal Strength (dBm)
723
+ 0
724
+ 0.2
725
+ 0.4
726
+ 0.6
727
+ 0.8
728
+ 1
729
+ CDF
730
+ Device mobility, Narrow Beam Width,
731
+ = 90°/s
732
+ Position 1
733
+ Position 2
734
+ Position 3
735
+ Position 4
736
+ (c)
737
+ Narrow Beam, Fast
738
+ Wide Beam, Slow
739
+ Wide Beam, Fast
740
+ 0
741
+ 5
742
+ 10
743
+ 15
744
+ 20
745
+ 25
746
+ Number of Beam Searches
747
+ Device Mobility
748
+ (d)
749
+ -72
750
+ -70
751
+ -68
752
+ -66
753
+ -64
754
+ -62
755
+ -60
756
+ Received Signal Strength (dBm)
757
+ 0
758
+ 0.2
759
+ 0.4
760
+ 0.6
761
+ 0.8
762
+ 1
763
+ CDF
764
+ Device Mobility
765
+ Wide, Slow
766
+ Narrow, Fast
767
+ Wide, Fast
768
+ Figure 9: Impact of rotational mobility on search
769
+ We repeated the search experiments during such “casual walks”. We have also repeated the
770
+ such experiments near two base stations to see if search is any faster under such deployments.
771
+ Fig. 10 a & b present search overhead and received signal strength during walk. We observe
772
+ slight decrease in search overhead when two beams from beams are visible to the mobile.
773
+ mobile discovers a base station quickly. Similar observations can be made from Fig. 11a where
774
+ we repeated rotational mobility experiments near two base stations. Prior art [23] also found
775
+ dense mm-wave network deployments helpful.
776
+ C. Tracking the Neighbor Base Station Beam
777
+ After completing the spatial scan, it is ideal for mobile to not to repeat search, as it is both
778
+ time consuming and energy intensive. To accomplish that mobile must keep track of the transmit
779
+
780
+ 19
781
+ (a)
782
+ Narrow Beam
783
+ Wide Beams
784
+ 0
785
+ 5
786
+ 10
787
+ 15
788
+ 20
789
+ 25
790
+ Number of Beam Searches
791
+ Motion: Walk, Beams: Narrow and Wide
792
+ (b)
793
+ -74
794
+ -72
795
+ -70
796
+ -68
797
+ -66
798
+ -64
799
+ -62
800
+ -60
801
+ -58
802
+ Received Signal Strength (dBm)
803
+ 0
804
+ 0.2
805
+ 0.4
806
+ 0.6
807
+ 0.8
808
+ 1
809
+ CDF
810
+ Motion: Walk, Beams: Narrow and Wide
811
+ Narrow Beams
812
+ Wide Beams
813
+ Figure 10: Beam search while walking near one neighbor and two neighbor base stations a)
814
+ number of beam searched b) received signal strength
815
+ (a)
816
+ = 90°
817
+ = 180°
818
+ 0
819
+ 5
820
+ 10
821
+ 15
822
+ 20
823
+ Number of Beam Searches
824
+ Motion: Rotation, Two Neighbor Base stations
825
+ (b)
826
+ -74
827
+ -72
828
+ -70
829
+ -68
830
+ -66
831
+ -64
832
+ -62
833
+ -60
834
+ -58
835
+ Received Signal Strength (dBm)
836
+ 0
837
+ 0.2
838
+ 0.4
839
+ 0.6
840
+ 0.8
841
+ 1
842
+ CDF
843
+ Motion: Rotation, Two Neighbor Base stations
844
+ =90°
845
+ =180°
846
+ Figure 11: Beam search while rotating mobile near one neighbor and two neighbor base stations
847
+ a) number of beam searched b) received signal strength
848
+ beam of the found base station until handover is complete. Tracking involves the mobile adapting
849
+ its receive beam to maintain alignment with the base station beam. Prior works have established
850
+ that the alignment of base station and mobile-side beams degrades over time as the user moves
851
+ [24], [25], [21]. Unlike connected mode beam tracking, where the serving base station can help
852
+ with beam adaptation, the mobile does not get any help from the neighbor station. The mobile
853
+ must solely and continuously track the discovered base station beam until the connection transfer
854
+
855
+ 20
856
+ is complete.
857
+ We have conducted experimental investigations to study whether the highly aligned mobile-
858
+ side receive beams follow any particular pattern as the user moves. Several mobility patterns
859
+ are studied, with the mobile’s phased array’s rotated with angular velocity 60◦/s, 120◦/s and
860
+ 240◦/s as well as natural walk. For 100 experiment trials, we recorded the highly aligned mobile
861
+ side receive beam directions. In each trail, there are 100 beam directions that provided highest
862
+ receive signal strength at the mobile. These sequences represent the best aligned LoS directions
863
+ in an experiment trial.
864
+ Our observation is that at any given point in time in the experiment, the best beam direction
865
+ is an angular neighbor to past receive beam. For better visualization, suppose if we replace
866
+ each element of the sequence with the angular distance from the previous element, sequence
867
+ is a simple random walk. To further illustrate this observation we performed statistical tests 1
868
+ of randomness on the 100 sequences. The hypothesis tests failed to accept that sequences are
869
+ generated from a deterministic source and hence might have random pattern. This implies that
870
+ relying on the historical aligned beams to predict next beam is of no help. As sequence is a
871
+ simple random walk, to track the base station beam it is sufficient for the mobile to check the
872
+ signal strength on the angular neighbors of the current beam best beam direction.
873
+ Following our experimental observations, below is the summary of Beam Management of
874
+ TERRA protocol
875
+ Blockage Beam Management: Contrary to the presumed requirement of the dense mm-wave
876
+ base station deployment to mitigate blockage in outdoors, we found a simple alternative. By
877
+ switching beam in the direction of ground reflection, mobile can maintain connectivity during
878
+ temporary pedestrian blockage in outdoor environments. Received signal strength on the ground
879
+ reflected beam direction is at least 6 dB less than LoS and is sufficient to maintain connectivity
880
+ as well as low data rate control plane traffic.
881
+ Handover Beam Management: Search for a neighbor base station during user mobility is
882
+ delay prone, consequently mobile needs a head start in search. To perform soft handover, mobile
883
+ must have found a reserve base station and keeping track of its beam prior to switching decision.
884
+ To track the found beam i.e., to maintain an aligned receive beam with neighbor base station,
885
+ 1To test the randomness hypothesis, we performed runs-test on the sequences [26] with 95% confidence interval and the null
886
+ hypothesis being the sequence is random.
887
+
888
+ 21
889
+ the mobile can only rely on the receive beam adaptation. The history of aligned receive beams
890
+ cannot help mobile predict the next beam to employ to track the neighbor base station beam.
891
+ Given the currently aligned receive beam, mobile can only statistically keep track of a neighbor
892
+ base station beam. We show that by following the approach proposed in [10], that reduces the
893
+ beam search space to the neighbors of the currently aligned receive beam, mobile can keep track
894
+ of neighbor base station until handover is complete.
895
+ We present an in-band beam management protocol called TERRA in Section V that manages
896
+ beams in outdoor environments. We present its efficacy both under temporary blockage and
897
+ during handover in Section VI
898
+ V. THE TERRA PROTOCOL FOR TRANSIENT BLOCKAGE AND HANDOVER
899
+ LoS.Op: Line of Sight Operation
900
+ NLoS.Op: Non Line of Sight
901
+ Operation
902
+ SBA: Serving Base station beam
903
+ Adaptation
904
+ NBA: Neighbor Base station beam
905
+ Adaptation
906
+ N-A/R: Neighbor Acquisition/Re-
907
+ acquisition
908
+ GRD: Ground Reflection Discovery
909
+ NBS: Neighbor Beam Search
910
+ ES: Exhaustive Search
911
+ A: Ground Reflection Discovery
912
+ B: No pose information
913
+ C: Pose information
914
+ D: Reflected Beam Found
915
+ E: Blockage event
916
+ F: Normal Operation
917
+ G: Neighbor Base Station Search
918
+ H: Search Success
919
+ I: Beam Alignment to counter
920
+ mobility
921
+ GRD
922
+ NBS
923
+ ES
924
+ LoS.
925
+ Op
926
+ NBA
927
+ Reflected Path
928
+ Discovery
929
+ I
930
+ B
931
+ C
932
+ N-
933
+ A/r
934
+ NLoS
935
+ .Op
936
+ A
937
+ E
938
+ H
939
+ G
940
+ Handover Preparation
941
+ D
942
+ D
943
+ F
944
+ Figure 12: TERRA state machine
945
+ In this section we present the TERRA protocol that maximizes connectivity in transient
946
+ blockages as well as conducts soft handover over directional beams if needed. Fig. 12 presents
947
+ the state transition diagram of the TERRA protocol.
948
+ A mm-wave mobile must continuously adapt LoS beam with the serving base station to counter
949
+ user mobility. In LoS Operation State, mobile adjusts its receive beam to maintain high degree
950
+
951
+ 22
952
+ of alignment with serving base station beam. Mobile may use beam alignment method proposed
953
+ in [10] to adjust LoS beam with serving base station to counter user motion. In addition to that,
954
+ the mobile needs a backup NLoS beam to avoid disconnection during the temporary pedestrian
955
+ blockages. TERRA protocol ensures this in Ground Reflected Beam Discovery (GRD) state
956
+ wherein mobile identifies a ground reflected beam direction that we showed to have usable
957
+ received signal strength. If pose of the mobile is available to the protocol, mobile moves to
958
+ Neighbor Beam Search state to search zenith neighbors to current LoS beam and discovers the
959
+ ground reflections. When the knowledge of pose of the mobile is not available, TERRA protocol
960
+ initiates search using all the receive beams in Exhaustive Search (ES) state to discover backup
961
+ NLoS ground reflected beam. Ground reflected direction changes whenever mobile adapts its LoS
962
+ direction. Therefore, TERRA must rediscover ground reflected direction too. Protocol erases the
963
+ stored reflected direction in memory after LoS beam adaptation and visits GRD state to identify
964
+ the ground reflected path. Protocol detects the transient blockage event when the received signal
965
+ strength suddenly decreases by 15 dB as shown in Fig. 13a, and in such an event TERRA
966
+ employs ground reflection and keeps RSS within 6 dB of RSS on LoS beam.
967
+ Unlike transient pedestrian blockage event where mobile can switch to LoS path after briefly
968
+ operating on NLoS path, during a permanent blockage event, when the LoS beam is occluded
969
+ by a building, tree or any other immovable obstacle, mobile must switch base station. Blockage
970
+ either transient or permanent is sudden, only difference is that, it is possible to switch to LoS
971
+ beam after transient blockage. In any case, if the mobile decides to switch to neighbor base
972
+ station, TERRA provides mechanism to do so. TERRA protocol searches for a neighbor base
973
+ station and keeps track of a neighbor base station to quickly perform soft-handover.
974
+ To search for a neighbor base station, the mobile moves to the Neighbor Acquisition/Re-
975
+ acquisition state (N-A/R). In this state, the mobile performs spatial scan and discovers at least
976
+ one neighbor base station beam. Mobile also identifies a receive beam, which we call the “current
977
+ receive beam of neighbor station” on which it can listen to the found base station beam.
978
+ The mobile needs to adapt its receive beams to counter user mobility during handover and
979
+ monitor the neighbor base station beam.
980
+ Mobile employs the only viable choice, the receive beam adaptation, to track neighbor base
981
+ station beam, in the Neighbor base station Receive Beam Adaptation (N-RBA) state. In this
982
+ state, whenever the received signal strength of neighbor base station beam drops by 3 dB,
983
+ mobile tests received signal strength on all the spatial neighbor beams to the current receive
984
+
985
+ 23
986
+ beam and chooses the beam improves the RSS. While the mobile maintains connectivity with
987
+ serving base station and tracks the neighbor base station beam, handover maybe initiated to a
988
+ neighbor when the received signal strength exceeds hysteresis thresholds. This work focuses only
989
+ on beam management during handover and there is extensive prior work on switching criteria
990
+ for handover.
991
+ VI. EVALUATION
992
+ We evaluate TERRA protocol under pedestrian blockages and its ability to track a neighbor
993
+ base station beam. The experiments and evaluation although performed on our 60 GHz National
994
+ Instruments transceiver [27] can be reproduced on any available mm-wave hardware. We provide
995
+ a python notebook [28] to control the beams of an off-the-shelf and cheaper mm-wave hardware
996
+ to help researchers reproduce the work.
997
+ A. Blockage Recovery
998
+ Fig. 13a shows the received signal strength of the LoS dropping below the noise floor of
999
+ NI’s 60 GHz receiver [27], i.e., -70 dBm, during a pedestrian blockage that lasts for about 200
1000
+ ms. Receiver experiences outage during this event as it cannot decode transmitted information.
1001
+ However, the ground reflected beam did not suffer outage. In this particular experiment trial on
1002
+ concrete surface, received signal strength is -64 dBm in ground reflected direction and -60 dBm
1003
+ in LoS. We repeated our pedestrian blockage experiments at different locations with concrete
1004
+ and gravel surfaces.
1005
+ Fig. 13b plots the CDFs obtained by employing TERRA’s blockage recovery mechanism
1006
+ during 50 blockage events. The colored region shows the outage region. The experiments show
1007
+ that TERRA employs beams that are outside the outage region 84.5% of time, and within 6 dB of
1008
+ normal operation 60% of the time. When pose information of receiver is available, TERRA either
1009
+ finds ground reflected radiation in just two measurements, or else it searches all the available
1010
+ 25 beams till successful.
1011
+ B. Neighbor Base Station Beam Tracking
1012
+ Tracking the neighbor base station beam is crucial for successful soft handover. TERRA
1013
+ actively tracks the neighbor base station. In this section, we present the experimental performance
1014
+ evaluation of TERRA. We conducted 50 trials of each of the mobility pattern mentioned in
1015
+
1016
+ 24
1017
+ (a)
1018
+ 0
1019
+ 50
1020
+ 100
1021
+ 150
1022
+ 200
1023
+ 250
1024
+ 300
1025
+ 350
1026
+ Time (ms)
1027
+ -78
1028
+ -76
1029
+ -74
1030
+ -72
1031
+ -70
1032
+ -68
1033
+ -66
1034
+ -64
1035
+ -62
1036
+ -60
1037
+ -58
1038
+ Received Signal Strength (dBm)
1039
+ Link RSS in a Blockage Event: Concrete Surface
1040
+ LoS Path
1041
+ Ground Reflected Path
1042
+ (b)
1043
+ -80
1044
+ -78
1045
+ -76
1046
+ -74
1047
+ -72
1048
+ -70
1049
+ -68
1050
+ -66
1051
+ -64
1052
+ Received Signal Strength (dBm)
1053
+ 0
1054
+ 0.1
1055
+ 0.2
1056
+ 0.3
1057
+ 0.4
1058
+ 0.5
1059
+ 0.6
1060
+ 0.7
1061
+ 0.8
1062
+ 0.9
1063
+ 1
1064
+ CDF
1065
+ Link RSS
1066
+ LoS path
1067
+ TERRA/GR path
1068
+ Blockage region
1069
+ X -69.85
1070
+ F(x) 0.6763
1071
+ X -69.77
1072
+ F(x) 0.1533
1073
+ X -66.38
1074
+ F(x) 0.4007
1075
+ Figure 13: (a) RSS in a blockage event (b) Performance of TERRA during pedestrain blockages
1076
+ Table IV. TERRA starts with the receive beam found after the initial search and monitors the
1077
+ received signal strength on that beam. Once the received signal strength goes down by 3 dB
1078
+ due to mobility, TERRA switches its receive beam direction to an adjacent beam that improves
1079
+ received signal strength. It then continues to monitor received signal strength using the new
1080
+ beam. Fig. 14a shows received the signal strength at the mobile in one of the trials of our
1081
+ experiments where the user is walking near the edge of the cell. The different beam directions
1082
+ are colored differently in Fig. 14a and b, thus showing the beam switching resulting from the
1083
+ TERRA protocol whose performance is indicated in dashed line.
1084
+ We also present in Fig. 14a and b the performance of an “Oracle” that has omniscient
1085
+ knowledge of the received signal strength of all the codewords and chooses the maximum. To
1086
+ measure Oracle received signal strength, we swept all the receive beams in the beam codebook
1087
+ and took the maximum. A parallel curve representing a 3dB loss over Oracle is also shown in
1088
+ Figs. 14a,b. As can be seen, for 3 seconds of the in the Walk experiment, and 2.4 seconds in the
1089
+ Rotational Motion experiment, the received signal strength observed using TERRA is within 3
1090
+ dB of the Oracle signal strength. Also, we can see that each receive beam of the TERRA takes
1091
+ advantage of the entire main lobe before switching to the next. Although Oracle signal strength
1092
+ is above TERRA’s, it is achievable only if the mobile exhaustively searches all its beams every
1093
+ time.
1094
+
1095
+ 25
1096
+ (a)
1097
+ 0
1098
+ 400
1099
+ 800
1100
+ 1200
1101
+ 1600
1102
+ 2000
1103
+ 2400
1104
+ 2800
1105
+ 3200
1106
+ Time (ms)
1107
+ -64
1108
+ -63.5
1109
+ -63
1110
+ -62.5
1111
+ -62
1112
+ -61.5
1113
+ -61
1114
+ -60.5
1115
+ -60
1116
+ -59.5
1117
+ -59
1118
+ Received Signal Strength (dBm)
1119
+ Beam Tracking: Walk
1120
+ TERRA
1121
+ Oracle
1122
+ 3dB from Oracle
1123
+ (b)
1124
+ 0
1125
+ 400
1126
+ 800
1127
+ 1200
1128
+ 1600
1129
+ 2000
1130
+ 2400
1131
+ Time (ms)
1132
+ -64
1133
+ -63.5
1134
+ -63
1135
+ -62.5
1136
+ -62
1137
+ -61.5
1138
+ -61
1139
+ -60.5
1140
+ -60
1141
+ -59.5
1142
+ -59
1143
+ Received Signal Strength (dBm)
1144
+ Beam Tracking: Rotational Motion
1145
+ TERRA
1146
+ Oracle
1147
+ 3dB from Oracle
1148
+ Figure 14: Beam tracking performance: a) Walking b) Rotation Motion ω = 120 deg/s
1149
+ Table IV: deviation of the TERRA’s received signal strength from oracle solution.
1150
+ Motion
1151
+ Root Mean Square Loss (in dB)
1152
+ Rotational motion at ω = 60 (deg/s)
1153
+ .4247
1154
+ Rotational motion at ω= 120 (deg/s)
1155
+ .71
1156
+ Walk: User holding phased array walks near base station
1157
+ .8343
1158
+ Table IV tabulates the deviation of TERRA’s received signal strength from the Oracle in all
1159
+ mobility experiments. TERRA can be seen to maintain received signal strength within 0.5 dB
1160
+ during slow rotational motion. In a faster rotational experiment with angular velocity 120 deg/s,
1161
+ it is 0.71 dB. For pedestrian mobility where a human walks near the neighbor base station
1162
+ holding phased array in hand, it is 0.83 dB. Overall, in all the mobility patterns that we have
1163
+ studied, tracking performance is very close to Oracle, within 1 dB.
1164
+ C. Simulation Study of Beam Tracking:
1165
+ Using computer simulations, we compare TERRA’s beam tracking complexity with state-of-
1166
+ the-art beam alignment schemes in terms of the number of measurements necessary to identify
1167
+ a receive beam.
1168
+ The simulation study uses a receiver with a uniform planar array with 32X32 elements,
1169
+ operating at 28 GHz, and is 10 m away from the transmitter. The total number of possible
1170
+
1171
+ 26
1172
+ receive beams is 1024. Exhaustive search needs 1024 measurements to identify a receive beam
1173
+ that is highly aligned with a transmitter beam. Receive beam adaptation is necessary when the
1174
+ current receive beam is no longer adequate.
1175
+ The Hierarchial Beam Alignment (HBA) [29] method first measures with an Omni-directional
1176
+ beam, and narrows down the beamwidth after each measurement. HBA [29] employs correlated
1177
+ bandit learning to narrow down the beam. In our study, HBA [29] needed 63 measurements to find
1178
+ an aligned receive beam. Given the sparse nature of the mm-wave channel in the spatial domain,
1179
+ compressive-sensing based approaches have been studied in literature to quickly identify aligned
1180
+ beams; fast beam alignment with low-resolution phase shifters (FALP) [30] uses a variation of
1181
+ the compressive sensing method.
1182
+ FALP [30] requires 70 measurements to align the receive beam. Another approach called Agile
1183
+ Link [11] uses carefully designed beam patterns that have multiple lobes to receive the signal
1184
+ from multiple directions. This design gives Agile Link [11] the ability to search in multiple
1185
+ directions in one measurement. In our simulation study Agile Link [11] took 110 measurements
1186
+ to find a receive beam that aligns with the transmit beam. In contrast, TERRA searches only the
1187
+ neighbors to the previously aligned beam, and yet finds a receive beam that provides received
1188
+ signal strength within 3 dB of the Oracle beam. While Oracle needs an exhaustive search,
1189
+ TERRA takes a maximum of 8 searches to find an aligned receive beam.
1190
+ State of the art
1191
+ Maximum number of measurements
1192
+ Terra
1193
+ 8
1194
+ HBA
1195
+ 63
1196
+ FALP
1197
+ 70
1198
+ Agile Link
1199
+ 110
1200
+ Exhaustive Search
1201
+ 1024
1202
+ Table V: Tracking overhead
1203
+ VII. RELATED WORK
1204
+ When the LoS beam of mobile is blocked for prolonged duration or when the user moves to
1205
+ the edge of the serving cell, mobile switches base stations. Broadly, beam management methods
1206
+ proposed so far to handover rely on location of the user; Reinforcement Learning; Machine
1207
+ Learning. Much of the prior work used computer simulations and a thorough experimental work
1208
+
1209
+ 27
1210
+ addressing all the challenges in handling beams during a handover is missing, and TERRA
1211
+ protocol fills the void.
1212
+ Significant number of works in the literature proposed either dense deployment of base
1213
+ stations or co-ordinated multiple point access (CoMP) to address outdoor pedestrian blockage.
1214
+ Recently, using reflective surfaces near the base stations in mm-wave deployments have been
1215
+ under investigation to overcome mm-wave link impairments. Mezavilla et al. have studied the
1216
+ use of such surfaces [31]. To the best of our knowledge, we first evaluated ground reflections to
1217
+ address temporary blockage in outdoor environments.
1218
+ User location: Junshen et al. have proposed a method [32] to reduce the numbers of beams
1219
+ to search to discover the target base station for handover. Along with the geometry model of
1220
+ environment, the approach requires co-ordination among current and target base station. Parada et
1221
+ al. have proposed a method [33] using user’s direction of motion to predict the target base station
1222
+ for handover. Using a multitude of access points, Palacio et al. have developed a user localization
1223
+ algorithm [34] and proposed location aware methods for beam adaptation and handover decisions.
1224
+ TERRA doesn’t rely on user location, instead it performs a search to discover a neighbor base
1225
+ station and keeps track of the found beam with little overhead as shown in Section VI.
1226
+ Reinforcement Learning: To learn a good beam management policy i.e., which beam and
1227
+ the base station to switch to, reinforcement learning based methods require precise and high
1228
+ fidelity model of the environment. A learning agent using any of the popular reinforcement
1229
+ learning algorithms interacts with environment model and learns a beam management policy.
1230
+ Additionally, one must do fine reward engineering that helps agent evaluate the actions for every
1231
+ state of the mobile in a given environment. State of the mobile may include signal strength,
1232
+ signal-to-noise ratio, user location, and speed of the mobile.
1233
+ Zang et al. have employed model-based reinforcement learning [35] to learn a beam manage-
1234
+ ment policy for handover. The model uses the mobile’s location, velocity, and connection state
1235
+ as state information, and uses a Gauss-Markov mobility model for the transition kernel. Sun
1236
+ et al have explored multi-arm bandit approaches [36]. Adding location and direction of motion
1237
+ of the user as state information, Sun et al. also applied contextual bandits [37]. Other works
1238
+ [38], [39], [40], [41] have applied various reinforcement learning algorithms to make handover
1239
+ decisions with state information being the location and trajectory of users. However, through our
1240
+ experiments, we found that given the current best aligned beam, the next best beam is its angular
1241
+ neighbor. Also, in a random walk, the learned policy is stochastic and suggests Reinforcement
1242
+
1243
+ 28
1244
+ Learning agent to try the neighbor beams which is not different from TERRA protocol.
1245
+ Another shortcoming Reinforcement Learning approaches is that it is not clear how a learned
1246
+ policy in an environment may perform in other environments and developing such algorithms,
1247
+ called meta learning, is still an active area of research in reinforcement learning. To keep the
1248
+ protocol design simple, TERRA switches to first found base station.
1249
+ Machine Learning: Authors applied [42] a popular sequence prediction method in machine
1250
+ learning literature, Long-Short Term Memory (LSTM), to predict the mm-wave link quality. To
1251
+ that end authors simulated a base station deployment in 200x200 m2 area. Although not accurate,
1252
+ LSTM approached performed better than moving average in predicting blockage events. TERRA
1253
+ protocol can leverage link prediction methods and employ ground reflected path. The challenge
1254
+ with data driven machine learning methods is that they may or may not perform well outside the
1255
+ trained environment. Kaya et al. utilized ray tracing to construct radio environment for a video
1256
+ feed from a traffic intersection in a major city in the USA, and [43] applied LSTM to predict
1257
+ beams to aid pedestrian and vehicular mobility. LSTM predicts top-2 with beams that gives 96
1258
+ % prediction accuracy. From the plots in work, we found that algorithms predicts neighbor beam
1259
+ to past best aligned beam. TERRA achieves this prediction accuracy without the need of history
1260
+ of past beams.
1261
+ Conclusion: In this work, we propose TERRA protocol that effectively manages mobile side
1262
+ beam in outdoors environments. TERRA ensures an outdoor mobile act quickly in a transient
1263
+ blockage event and tracks a neighbor base station to perform soft-handover. We present both
1264
+ experimental and simulated evaluation to show efficacy of the protocol. While TERRA helps
1265
+ mobile avoid outage in outdoors, still careful base deployment is a must to address crowded
1266
+ environments. In future, we plan to study optimal network deployment that maximizes visibility
1267
+ of ground reflections to the mobiles.
1268
+ REFERENCES
1269
+ [1] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,”
1270
+ Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, March 2014.
1271
+ [2] S. Collonge, G. Zaharia, and G. Zein, “Influence of the human activity on wide-band characteristics of the 60 ghz indoor
1272
+ radio channel,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 2396–2406, 2004.
1273
+ [3] G. R. MacCartney, T. S. Rappaport, and S. Rangan, “Rapid fading due to human blockage in pedestrian crowds at 5g
1274
+ millimeter-wave frequencies,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–7.
1275
+
1276
+ 29
1277
+ [4] V. Ganji, T.-H. Lin, F. A. Espinal, and P. R. Kumar, “Unblock: Low complexity transient blockage recovery for mobile
1278
+ mm-wave devices,” in 2021 International Conference on COMmunication Systems and NETworkS (COMSNETS), 2021,
1279
+ pp. 501–508.
1280
+ [5] 3GPP, “Base station (bs) radio transmission and reception,” 2017. [Online]. Available: https://portal.3gpp.org/
1281
+ desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3202
1282
+ [6] S. Vlahovic, M. Suznjevic, and L. Skorin-Kapov, “The impact of network latency on gaming qoe for an fps vr game,” in
1283
+ 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 2019, pp. 1–3.
1284
+ [7] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “Beamspy: Enabling robust 60 ghz links under blockage,” in Proceedings
1285
+ of the 13th Usenix Conference on Networked Systems Design and Implementation, ser. NSDI’16.
1286
+ USA: USENIX
1287
+ Association, 2016, p. 193–206.
1288
+ [8] R. Baldemair, T. Irnich, K. Balachandran, E. Dahlman, G. Mildh, Y. Sel´en, S. Parkvall, M. Meyer, and A. Osseiran,
1289
+ “Ultra-dense networks in millimeter-wave frequencies,” IEEE Communications Magazine, vol. 53, no. 1, pp. 202–208,
1290
+ 2015.
1291
+ [9] I. K. Jain, R. Kumar, and S. S. Panwar, “The impact of mobile blockers on millimeter wave cellular systems,” IEEE
1292
+ Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 854–868, 2019.
1293
+ [10] V. S. S. Ganji, T.-H. Lin, F. A. Espinal, and P. R. Kumar, “Beamsurfer: Minimalist beam management of mobile mm-wave
1294
+ devices,” IEEE Transactions on Wireless Communications, vol. 21, no. 11, pp. 8935–8949, 2022.
1295
+ [11] H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, and P. Indyk, “Fast millimeter wave beam
1296
+ alignment,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, ser.
1297
+ SIGCOMM ’18.
1298
+ New York, NY, USA: Association for Computing Machinery, 2018, p. 432–445. [Online]. Available:
1299
+ https://doi.org/10.1145/3230543.3230581
1300
+ [12] S. Desai and F. Malandra, “Delay estimation of initial access procedure for 5g mm-wave cellular networks,” in 2021 17th
1301
+ International Conference on Distributed Computing in Sensor Systems (DCOSS), 2021, pp. 489–494.
1302
+ [13] R. T. Rakesh, G. Das, and D. Sen, “An analytical model for millimeter wave outdoor directional non-line-of-sight channels,”
1303
+ in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
1304
+ [14] F. W. Iden, “Glide-slope antenna arrays for use under adverse siting conditions,” IRE Transactions on Aeronautical and
1305
+ Navigational Electronics, vol. ANE-6, no. 2, pp. 100–111, 1959.
1306
+ [15] S. Rajagopal, S. Abu-Surra, and M. Malmirchegini, “Channel feasibility for outdoor non-line-of-sight mmwave mobile
1307
+ communication,” in 2012 IEEE Vehicular Technology Conference (VTC Fall), 2012, pp. 1–6.
1308
+ [16] Y. Mostofi and D. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an
1309
+ ofdm system,” IEEE Transactions on Communications, vol. 54, no. 2, pp. 226–230, 2006.
1310
+ [17] 3GPP, “Nr; physical layer measurements,” 2017. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
1311
+ SpecificationDetails.aspx?specificationId=3217
1312
+ [18] S. K. Saha, T. Siddiqui, D. Koutsonikolas, A. Loch, J. Widmer, and R. Sridhar, “A detailed look into power consumption
1313
+ of commodity 60 ghz devices,” p. 1–10, 06 2017. [Online]. Available: https://ieeexplore.ieee.org/document/7974282
1314
+ [19] “Sensors overview-android developers.” [Online]. Available: https://developer.android.com/guide/topics/sensors/sensors
1315
+ overview
1316
+ [20] S. Odenwald, “Guide to smartphone sensors - nasa.” [Online]. Available: https://spacemath.gsfc.nasa.gov/Sensor/
1317
+ SensorsBook.pdf
1318
+ [21] B. Satchidanandan, S. Yau, P. R. Kumar, A. Aziz, A. Ekbal, and N. Kundargi, “Trackmac: An ieee 802.11ad-compatible
1319
+ beam tracking-based mac protocol for 5g millimeter-wave local area networks,” in 2018 10th International Conference on
1320
+ Communication Systems and Networks (COMSNETS), 2018, pp. 185–182.
1321
+
1322
+ 30
1323
+ [22] “Lsm6dso.” [Online]. Available: https://www.st.com/en/mems-and-sensors/lsm6dso.html
1324
+ [23] I. K. Jain, R. Kumar, and S. Panwar, “Driven by capacity or blockage? a millimeter wave blockage analysis,” in 2018 30th
1325
+ International Teletraffic Congress (ITC 30), vol. 01, 2018, pp. 153–159.
1326
+ [24] V. S. S. Ganji, T.-H. Lin, F. Espinal, and P. R. Kumar, “Beamsurfer: Simple in-band beam management for mobile mm-
1327
+ wave devices.”
1328
+ ACM Special Interest Group on Data Communication on the applications, technologies, architectures,
1329
+ and protocols for computer communication (SIGCOMM ’20 Demos and Posters), 08 2020, pp. 1–3.
1330
+ [25] V. Va, J. Choi, and R. W. Heath, “The impact of beamwidth on temporal channel variation in vehicular channels and its
1331
+ implications,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5014–5029, June 2017.
1332
+ [26] J. V. Bradley, Distribution-free statistical tests, 1968.
1333
+ [27] National Instruments, “Introduction to the NI mmWave Transceiver System Hardware,” 02 2020. [Online]. Available:
1334
+ https://www.ni.com/en-us/innovations/white-papers/16/introduction-to-the-ni-mmwave-transceiver-system-hardware.html
1335
+ [28] S. Ganji, “Shotsan/60ghz-mikrotik-python-dash-api: Python script and notebook to visualize data from mikrotik
1336
+ 60ghz router, control beams, read mcs, data rate and packet errors.” [Online]. Available: https://github.com/shotsan/
1337
+ 60GHz-mikrotik-python-dash-api
1338
+ [29] W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, and X. Shen, “Fast mmwave beam alignment via correlated bandit
1339
+ learning,” IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp. 5894–5908, 2019.
1340
+ [30] N. J. Myers, A. Mezghani, and R. W. Heath, “FALP: Fast beam alignment in mmwave systems with low-resolution phase
1341
+ shifters,” IEEE Transactions on Communications, vol. 67, no. 12, pp. 8739–8753, 2019.
1342
+ [31] L. Jiao, P. Wang, A. Alipour-Fanid, H. Zeng, and K. Zeng, “Enabling efficient blockage-aware handover in ris-assisted
1343
+ mmwave cellular networks,” IEEE Transactions on Wireless Communications, pp. 1–1, 2021.
1344
+ [32] W. Junsheng, C. Yawen, L. Zhaoming, W. Xiangming, and W. Zifan, “A low-complexity beam searching method for fast
1345
+ handover in mmwave vehicular networks,” in 2019 IEEE Wireless Communications and Networking Conference Workshop
1346
+ (WCNCW), 2019, pp. 1–6.
1347
+ [33] R. Parada and M. Zorzi, “Context-aware handover in mmwave 5g using ue’s direction of pass,” in European Wireless
1348
+ 2018; 24th European Wireless Conference, 2018, pp. 1–6.
1349
+ [34] J. Palacios, P. Casari, H. Assasa, and J. Widmer, “Leap: Location estimation and predictive handover with consumer-grade
1350
+ mmwave devices,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 2377–2385.
1351
+ [35] S. Zang, W. Bao, P. L. Yeoh, H. Chen, Z. Lin, B. Vucetic, and Y. Li, “Mobility handover optimization in millimeter
1352
+ wave heterogeneous networks,” in 2017 17th International Symposium on Communications and Information Technologies
1353
+ (ISCIT), 2017, pp. 1–6.
1354
+ [36] L. Sun, J. Hou, and T. Shu, “Optimal handover policy for mmwave cellular networks: A multi-armed bandit approach,”
1355
+ in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
1356
+ [37] L. Sun, J. Hou, and T. Shu, “Spatial and temporal contextual multi-armed bandit handovers in ultra-dense mmwave cellular
1357
+ networks,” vol. 20, no. 12, 2021, pp. 3423–3438.
1358
+ [38] S. Khosravi, H. S. Ghadikolaei, and M. Petrova, “Learning-based load balancing handover in mobile millimeter wave
1359
+ networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–7.
1360
+ [39] S. Khosravi, H. Shokri-Ghadikolaei, and M. Petrova, “Learning-based handover in mobile millimeter-wave networks,”
1361
+ IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 2, pp. 663–674, 2021.
1362
+ [40] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Reinforcement learning based predictive handover for pedestrian-
1363
+ aware mmwave networks,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops
1364
+ (INFOCOM WKSHPS), 2018, pp. 692–697.
1365
+
1366
+ 31
1367
+ [41] M. Mezzavilla, S. Goyal, S. Panwar, S. Rangan, and M. Zorzi, “An mdp model for optimal handover decisions in mmwave
1368
+ cellular networks,” in 2016 European Conference on Networks and Communications (EuCNC), 2016, pp. 100–105.
1369
+ [42] S. H. A. Shah, M. Sharma, and S. Rangan, “Lstm-based multi-link prediction for mmwave and sub-thz wireless systems,”
1370
+ in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
1371
+ [43] A. O. Kaya and H. Viswanathan, “Deep learning-based predictive beam management for 5g mmwave systems,” in 2021
1372
+ IEEE Wireless Communications and Networking Conference (WCNC), 2021.
1373
+
DtE2T4oBgHgl3EQf9gmM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENE2T4oBgHgl3EQfogjY/content/tmp_files/2301.04020v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff