jackkuo commited on
Commit
7d9263d
·
verified ·
1 Parent(s): c2c6e10

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +49 -0
  2. 09AzT4oBgHgl3EQfevxv/content/tmp_files/2301.01441v1.pdf.txt +1529 -0
  3. 09AzT4oBgHgl3EQfevxv/content/tmp_files/load_file.txt +0 -0
  4. 0tAyT4oBgHgl3EQfbfeR/content/2301.00264v1.pdf +3 -0
  5. 0tE1T4oBgHgl3EQf4wXL/vector_store/index.faiss +3 -0
  6. 0tFQT4oBgHgl3EQfDzUz/content/tmp_files/2301.13235v1.pdf.txt +0 -0
  7. 0tFQT4oBgHgl3EQfDzUz/content/tmp_files/load_file.txt +0 -0
  8. 29E1T4oBgHgl3EQfAQI2/vector_store/index.pkl +3 -0
  9. 2NE2T4oBgHgl3EQfjAcm/vector_store/index.faiss +3 -0
  10. 2NE2T4oBgHgl3EQfjAcm/vector_store/index.pkl +3 -0
  11. 2dFQT4oBgHgl3EQf2TZ3/content/tmp_files/2301.13423v1.pdf.txt +1982 -0
  12. 2dFQT4oBgHgl3EQf2TZ3/content/tmp_files/load_file.txt +0 -0
  13. 49E4T4oBgHgl3EQfBAv2/content/2301.04849v1.pdf +3 -0
  14. 49E4T4oBgHgl3EQfBAv2/vector_store/index.pkl +3 -0
  15. 59E4T4oBgHgl3EQf1g16/content/tmp_files/2301.05291v1.pdf.txt +0 -0
  16. 59E4T4oBgHgl3EQf1g16/content/tmp_files/load_file.txt +0 -0
  17. 5NE1T4oBgHgl3EQfSwPe/content/tmp_files/2301.03071v1.pdf.txt +1866 -0
  18. 5NE1T4oBgHgl3EQfSwPe/content/tmp_files/load_file.txt +462 -0
  19. 8NE1T4oBgHgl3EQfBwLj/vector_store/index.faiss +3 -0
  20. 8dE4T4oBgHgl3EQf2w3D/content/2301.05301v1.pdf +3 -0
  21. 8dE4T4oBgHgl3EQf2w3D/vector_store/index.pkl +3 -0
  22. 8tE2T4oBgHgl3EQfPwar/content/2301.03763v1.pdf +3 -0
  23. 8tE2T4oBgHgl3EQfPwar/vector_store/index.pkl +3 -0
  24. AdFQT4oBgHgl3EQf8zdx/content/tmp_files/2301.13448v1.pdf.txt +747 -0
  25. AdFQT4oBgHgl3EQf8zdx/content/tmp_files/load_file.txt +437 -0
  26. B9FJT4oBgHgl3EQfsy1U/vector_store/index.pkl +3 -0
  27. BtAyT4oBgHgl3EQf4PqZ/vector_store/index.pkl +3 -0
  28. FdE1T4oBgHgl3EQfEwOD/vector_store/index.faiss +3 -0
  29. ItE1T4oBgHgl3EQfFwPf/content/tmp_files/2301.02907v1.pdf.txt +690 -0
  30. ItE1T4oBgHgl3EQfFwPf/content/tmp_files/load_file.txt +0 -0
  31. ItE5T4oBgHgl3EQfXA9_/content/tmp_files/2301.05563v1.pdf.txt +747 -0
  32. ItE5T4oBgHgl3EQfXA9_/content/tmp_files/load_file.txt +0 -0
  33. JdE1T4oBgHgl3EQfsAXy/vector_store/index.pkl +3 -0
  34. KNE3T4oBgHgl3EQfAQkY/content/2301.04255v1.pdf +3 -0
  35. KNE3T4oBgHgl3EQfAQkY/vector_store/index.pkl +3 -0
  36. LdE1T4oBgHgl3EQfZAQe/vector_store/index.faiss +3 -0
  37. M9AyT4oBgHgl3EQfgfjF/content/tmp_files/2301.00361v1.pdf.txt +1763 -0
  38. M9AyT4oBgHgl3EQfgfjF/content/tmp_files/load_file.txt +0 -0
  39. OdAzT4oBgHgl3EQflP0i/content/2301.01543v1.pdf +3 -0
  40. OdAzT4oBgHgl3EQflP0i/vector_store/index.pkl +3 -0
  41. P9AyT4oBgHgl3EQfhPht/content/2301.00373v1.pdf +3 -0
  42. P9AyT4oBgHgl3EQfhPht/vector_store/index.faiss +3 -0
  43. P9E0T4oBgHgl3EQfkAHC/content/tmp_files/2301.02468v1.pdf.txt +400 -0
  44. P9E0T4oBgHgl3EQfkAHC/content/tmp_files/load_file.txt +250 -0
  45. QNE5T4oBgHgl3EQfZA_G/content/2301.05578v1.pdf +3 -0
  46. QNE5T4oBgHgl3EQfZA_G/vector_store/index.faiss +3 -0
  47. QNE5T4oBgHgl3EQfZA_G/vector_store/index.pkl +3 -0
  48. QtE4T4oBgHgl3EQfKQz1/content/tmp_files/2301.04929v1.pdf.txt +2079 -0
  49. QtE4T4oBgHgl3EQfKQz1/content/tmp_files/load_file.txt +0 -0
  50. R9E3T4oBgHgl3EQfDQnp/content/2301.04286v1.pdf +3 -0
.gitattributes CHANGED
@@ -7733,3 +7733,52 @@ m9E0T4oBgHgl3EQfpwHn/content/2301.02545v1.pdf filter=lfs diff=lfs merge=lfs -tex
7733
  8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf filter=lfs diff=lfs merge=lfs -text
7734
  5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7735
  M9E1T4oBgHgl3EQfZgQt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7733
  8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf filter=lfs diff=lfs merge=lfs -text
7734
  5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7735
  M9E1T4oBgHgl3EQfZgQt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7736
+ ttA0T4oBgHgl3EQfLf_G/content/2301.02120v1.pdf filter=lfs diff=lfs merge=lfs -text
7737
+ bdE1T4oBgHgl3EQfKwMf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7738
+ KNE3T4oBgHgl3EQfAQkY/content/2301.04255v1.pdf filter=lfs diff=lfs merge=lfs -text
7739
+ P9AyT4oBgHgl3EQfhPht/content/2301.00373v1.pdf filter=lfs diff=lfs merge=lfs -text
7740
+ 8NE1T4oBgHgl3EQfBwLj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7741
+ X9E1T4oBgHgl3EQfcARq/content/2301.03179v1.pdf filter=lfs diff=lfs merge=lfs -text
7742
+ bNFLT4oBgHgl3EQfXy8v/content/2301.12062v1.pdf filter=lfs diff=lfs merge=lfs -text
7743
+ mNA0T4oBgHgl3EQfJf9M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7744
+ TNE4T4oBgHgl3EQfLgyY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7745
+ adE3T4oBgHgl3EQf2ws3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7746
+ mNA0T4oBgHgl3EQfJf9M/content/2301.02090v1.pdf filter=lfs diff=lfs merge=lfs -text
7747
+ LdE1T4oBgHgl3EQfZAQe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7748
+ ttA0T4oBgHgl3EQfLf_G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7749
+ ddAzT4oBgHgl3EQfZ_yv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7750
+ qtFRT4oBgHgl3EQfezdF/content/2301.13572v1.pdf filter=lfs diff=lfs merge=lfs -text
7751
+ nNE1T4oBgHgl3EQfOQP4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7752
+ otFPT4oBgHgl3EQf6zWU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7753
+ R9E3T4oBgHgl3EQfDQnp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7754
+ rNE2T4oBgHgl3EQf1Aga/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7755
+ ztE1T4oBgHgl3EQf4gVZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7756
+ aNE2T4oBgHgl3EQfZgfV/content/2301.03866v1.pdf filter=lfs diff=lfs merge=lfs -text
7757
+ f9E1T4oBgHgl3EQfMAPe/content/2301.02985v1.pdf filter=lfs diff=lfs merge=lfs -text
7758
+ P9AyT4oBgHgl3EQfhPht/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7759
+ FdE1T4oBgHgl3EQfEwOD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7760
+ ztE1T4oBgHgl3EQf4gVZ/content/2301.03501v1.pdf filter=lfs diff=lfs merge=lfs -text
7761
+ 0tAyT4oBgHgl3EQfbfeR/content/2301.00264v1.pdf filter=lfs diff=lfs merge=lfs -text
7762
+ d9E1T4oBgHgl3EQfLgNb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7763
+ xtE4T4oBgHgl3EQfYAyx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7764
+ SdAyT4oBgHgl3EQfVPfZ/content/2301.00142v1.pdf filter=lfs diff=lfs merge=lfs -text
7765
+ 49E4T4oBgHgl3EQfBAv2/content/2301.04849v1.pdf filter=lfs diff=lfs merge=lfs -text
7766
+ 8dE4T4oBgHgl3EQf2w3D/content/2301.05301v1.pdf filter=lfs diff=lfs merge=lfs -text
7767
+ 2NE2T4oBgHgl3EQfjAcm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7768
+ 0tE1T4oBgHgl3EQf4wXL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7769
+ kNA0T4oBgHgl3EQfI_8Y/content/2301.02082v1.pdf filter=lfs diff=lfs merge=lfs -text
7770
+ QNE5T4oBgHgl3EQfZA_G/content/2301.05578v1.pdf filter=lfs diff=lfs merge=lfs -text
7771
+ stAzT4oBgHgl3EQfPPv2/content/2301.01182v1.pdf filter=lfs diff=lfs merge=lfs -text
7772
+ r9AyT4oBgHgl3EQfZvd-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7773
+ RdAzT4oBgHgl3EQf0P6C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7774
+ TNAzT4oBgHgl3EQfJftl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7775
+ YdFLT4oBgHgl3EQfVC8l/content/2301.12051v1.pdf filter=lfs diff=lfs merge=lfs -text
7776
+ QNE5T4oBgHgl3EQfZA_G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7777
+ kNA0T4oBgHgl3EQfI_8Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7778
+ f9E1T4oBgHgl3EQfMAPe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7779
+ mNE3T4oBgHgl3EQfiQps/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7780
+ YdFLT4oBgHgl3EQfVC8l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7781
+ 8tE2T4oBgHgl3EQfPwar/content/2301.03763v1.pdf filter=lfs diff=lfs merge=lfs -text
7782
+ R9E3T4oBgHgl3EQfDQnp/content/2301.04286v1.pdf filter=lfs diff=lfs merge=lfs -text
7783
+ OdAzT4oBgHgl3EQflP0i/content/2301.01543v1.pdf filter=lfs diff=lfs merge=lfs -text
7784
+ bNAzT4oBgHgl3EQfnP3n/content/2301.01579v1.pdf filter=lfs diff=lfs merge=lfs -text
09AzT4oBgHgl3EQfevxv/content/tmp_files/2301.01441v1.pdf.txt ADDED
@@ -0,0 +1,1529 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARXIV VERSION, 2022
2
+ 1
3
+ Automatically Prepare Training Data for YOLO
4
+ Using Robotic In-Hand Observation and Synthesis
5
+ Hao Chen1, Weiwei Wan1∗, Masaki Matsushita2, Takeyuki Kotaka2 and Kensuke Harada13
6
+ Abstract—Deep learning methods have recently exhibited im-
7
+ pressive performance in object detection. However, such methods
8
+ needed much training data to achieve high recognition accuracy,
9
+ which was time-consuming and required considerable manual
10
+ work like labeling images. In this paper, we automatically
11
+ prepare training data using robots. Considering the low efficiency
12
+ and high energy consumption in robot motion, we proposed
13
+ combining robotic in-hand observation and data synthesis to
14
+ enlarge the limited data set collected by the robot. We first used a
15
+ robot with a depth sensor to collect images of objects held in the
16
+ robot’s hands and segment the object pictures. Then, we used a
17
+ copy-paste method to synthesize the segmented objects with rack
18
+ backgrounds. The collected and synthetic images are combined to
19
+ train a deep detection neural network. We conducted experiments
20
+ to compare YOLOv5x detectors trained with images collected
21
+ using the proposed method and several other methods. The
22
+ results showed that combined observation and synthetic images
23
+ led to comparable performance to manual data preparation.
24
+ They provided a good guide on optimizing data configurations
25
+ and parameter settings for training detectors. The proposed
26
+ method required only a single process and was a low-cost way to
27
+ produce the combined data. Interested readers may find the data
28
+ sets and trained models from the following GitHub repository:
29
+ github.com/wrslab/tubedet
30
+ Note to Practitioners—The background of this study is a
31
+ requirement in lab automation – Using robots to arrange
32
+ randomly placed tubes automatically. Before sending test tubes
33
+ to an examination machine for gradient tests, humans need to
34
+ categorize and organize the tubes into specific patterns to fit the
35
+ machine’s internal design. Employing humans is difficult as the
36
+ tube arrangement requirements are time-varying. A preferred
37
+ solution is using robots to replace humans. The robots should
38
+ have a vision system to detect the tubes and a manipulation
39
+ system to perform physical arranging actions. They will be
40
+ used in busy seasons while deployed for other tasks in leisure
41
+ time. Deep neural networks like YOLO are effective for the
42
+ tube detection task. However, preparing the training data is
43
+ challenging and unsuitable for lab end users. Pre-trained neural
44
+ networks are options but have limited tube detection ability
45
+ and cannot deal with newly included tube types. The method
46
+ developed in this work helps solve the training data preparation
47
+ problem. With its support, the robot can automatically prepare
48
+ training data that has comparable quality to manually labeled
49
+ ones in a single-process and low-cost way.
50
+ Index Terms—Robotic data preparation, data synthesis, test
51
+ tube detection
52
+ I. INTRODUCTION
53
+ Recent advances in deep learning have led to a revolution
54
+ in object detection. Deep learning-based methods use deep
55
+ 1Department of System Innovation, Graduate School of Engineering Sci-
56
+ ence, Osaka University, Toyonaka, Osaka, Japan.
57
+ 2H.U. Group Research Inst. G. K., Japan.
58
+ 3National Inst. of AIST, Japan.
59
+ ∗Contact: Weiwei Wan, [email protected]
60
+ Fig. 1: Several examples of in-rack test tube detection. Each
61
+ grid includes two images. The left image is captured by a
62
+ vision sensor. The right image is the recognition result. The
63
+ data used for training the detection neural network is prepared
64
+ using the proposed method.
65
+ neural networks to learn features from training data. They
66
+ outperform traditional hand-crafted features with impressive
67
+ results. Despite these advantages, deep learning-based object
68
+ detection requires collecting a large amount of labeled data
69
+ for training, which is time-consuming and labor-intensive, and
70
+ has significantly hindered the scalability and flexibility of deep
71
+ learning-based applications.
72
+ Previously, researchers have developed several methods to
73
+ reduce data collection costs. For example, data augmentation
74
+ [1] enriched existing training data sets by applying random
75
+ transformations like image rotation or scaling. Data synthesis
76
+ [2][3] generated previously unseen data using simulation or
77
+ adversarial neural networks. The main challenge of the aug-
78
+ mentation or synthesis methods was the “domain gap” [4][5]:
79
+ arXiv:2301.01441v1 [cs.CV] 4 Jan 2023
80
+
81
+ ARXIV VERSION, 2022
82
+ 2
83
+ Augmented data had less varied visual contexts. Synthesized
84
+ data was prone to discrepancies with the real world. Recently,
85
+ researchers have revisited using the copy-paste method [6] to
86
+ increase data. The method was effective in compensating for
87
+ the “domain gap” problem, exhibiting impressive performance.
88
+ There is no clear boundary between augmentation and synthe-
89
+ sis when using the copy-paste method to generate data. It was
90
+ mainly classified as an synthesis method [7][8], although some
91
+ studies considered it to be augmentation [9]. This paper calls
92
+ it a synthesis method to avoid confusion with transformation
93
+ and scale-based data generation.
94
+ The most tiring aspect of the copy-and-paste method is
95
+ how to neatly cut a large variety of target regions and paste
96
+ them onto a new background. Previously, researchers work-
97
+ ing on robotic manipulation have developed robotic methods
98
+ to segment novel objects from backgrounds. For example,
99
+ Florence et al. [10], Boerdijk et al. [11], and Pathak et
100
+ al. [12] respectively used robotic in-hand or non-prehensile
101
+ manipulation to change objects’ observation viewpoints and
102
+ segmented the objects based on the robot motion. Such sys-
103
+ tems could replace humans to segment goal object regions
104
+ under various conditions. Very recent studies [11][13] has
105
+ noticed the advantage, and increased data size and contextual
106
+ variety by pasting the objects segmented by robotic systems
107
+ onto random backgrounds. Despite their seminal proposals,
108
+ the need for copy-and-paste synthesis and the impact of data
109
+ volume and ratios remain undiscussed.
110
+ Based on the current research status, this paper further
111
+ delves into using robots to collect training data automatically.
112
+ Considering the low efficiency and high energy consumption
113
+ in robotic data collection, we propose combining robotic ob-
114
+ servation and copy-paste synthesis to reduce costs. We assume
115
+ a test tube detection task shown in Fig. 1 and use a robot with
116
+ a depth sensor to move and observe tubes. The robot collects
117
+ observation images and, at the same time, segments tubes
118
+ from the images for copy-paste synthesis. The observation and
119
+ synthetic images are used as training data for deep detection
120
+ neural networks. Especially for the synthesis routine, we value
121
+ the co-occurrence of tubes and racks, and paste tubes inside a
122
+ rack area to obtain contextual consistency. Also, we take into
123
+ account factors like tube-to-tube occlusions and foreground
124
+ changes caused by environment or visual difference to reduce
125
+ unrealistic synthetic results. The proposed method helps enrich
126
+ the data set and resolve the “domain gap”. It does not need
127
+ heavy robotic effort.
128
+ In experiments, we trained several YOLOv5x networks to
129
+ understand the performance of the proposed method. The
130
+ training data was collected using the proposed and several
131
+ other methods. The results confirmed data collected using the
132
+ proposed method do have claimed advantages. We also con-
133
+ ducted multiple ablation studies to look into the impact of data
134
+ volumes and ratios when training detection neural networks
135
+ using data collected with the proposed method. The results
136
+ provided a good guide on optimizing data configurations and
137
+ parameter settings for training detectors.
138
+ The contributions of this work are as follows. (1) We
139
+ develop an automatic data-collection method in which a robot
140
+ holds target objects and observes them. The method yields
141
+ observation images and target regions segmented from the
142
+ images. (2) We develop a copy-paste image synthesis method
143
+ to enrich the training data. The method pastes object regions on
144
+ various rack backgrounds to balance “domain randomization”
145
+ and “domain gap”. The rack backgrounds are also automati-
146
+ cally collected by the robot. (3) We examined combinations
147
+ of the observation and synthetic images and compared them
148
+ with other data sets to understand the impact of data volume
149
+ and ratios.
150
+ The remaining part of this paper is organized as follows:
151
+ Section II reviews related work. Section III presents the
152
+ hardware system and the proposed method’s workflow. Section
153
+ IV delivers technical details. Section V shows experiments and
154
+ analysis. Section VI draws conclusions.
155
+ II. RELATED WORK
156
+ We review the related work considering robotic data collec-
157
+ tion and data synthesis, respectively.
158
+ A. Automatic Data Collection Using Robots
159
+ Segmenting the object regions from a picture is the basis of
160
+ automatic data collection. Conventional methods used simple
161
+ backgrounds [14], known environments [15], or designed eas-
162
+ ily identifiable gadgets [16][17] to simplify object extraction.
163
+ The methods required careful preparation about scenes and
164
+ objects.
165
+ Robot-based methods leverage actuated robots to simplify
166
+ object segmentation. They can be traced back to early studies
167
+ in object recognition and 3D object modeling [18][19][20][21].
168
+ These work took advantages of robotic manipulation sequence
169
+ to perceive objects from different viewpoints and segment
170
+ the objects from the background. From the robotic manipu-
171
+ lation perspective, such segmentation can be divided into two
172
+ categories: In-hand object segmentation and Interaction-based
173
+ segmentation.
174
+ 1) In-hand object segmentation: Previous work on in-hand
175
+ object segmentation used known robot models and handcrafted
176
+ visual features to isolate in-hand objects from background
177
+ environments and robot hands. For example, Krainin et al.
178
+ [21] isolated in-hand objects’ point clouds by examining
179
+ the Euclidean distance to the robot model. Welke et al.
180
+ [19] segmented in-hand objects from images based on Eigen
181
+ background subtraction, disparity map, and hand localization.
182
+ These methods required manually preparing detectors for
183
+ various targets considering their visual features.
184
+ More recent studies used deep learning to reduce the
185
+ reliance on hand-crafted visual features for in-hand object
186
+ segmentation. For instance, Florence et al. [10] proposed a
187
+ self-supervised framework to segment in-hand objects. The
188
+ framework involved two steps that used the same training
189
+ and learning routine. In the first step, the authors generated
190
+ masks for the robot by considering combined depth and RGB
191
+ information, and trained a neural network model based on
192
+ the masks to differentiate the robot from the background.
193
+ In the second step, the authors masked the grasped object
194
+ and train neural network models to isolate the object from
195
+ the robot hand. Boerdijk et al. [13] used optical flow to
196
+
197
+ ARXIV VERSION, 2022
198
+ 3
199
+ respectively segment manipulators that were holding and not
200
+ holding objects. The segmented data set were used to train a
201
+ neural network for isolating manipulators and grasped objects.
202
+ 2) Robot-object interaction: On the other hand, some re-
203
+ searchers took advantages of non-prehensile robot manipu-
204
+ lation like push to change object perspectives and segment
205
+ them based on robot motion cues [12][22][23]. For example,
206
+ Pathak et al. [12] designed a framework to continuously refine
207
+ a neural network model that generates object segmentation
208
+ masks through robot interaction. The model initially generated
209
+ hypothesis segmentation masks for objects. The masks were
210
+ refined based on the pixel differences of the images captured
211
+ before and after robotic interactions. The generating model
212
+ was updated along with the refined masks. Singh et al. [24]
213
+ proposed to segment unknown objects in a cluttered scene
214
+ while repeatedly using robotic nudge motions to interact with
215
+ objects and induce geometric constraints. Robotic interactive
216
+ segmentation often requires a static scene or surface to permit
217
+ interaction between robots and objects [25][26]. It is more
218
+ complicated compared with the in-hand object segmentation
219
+ as the object poses needs to be controlled and changed through
220
+ robotic manipulation.
221
+ A critical problem of the robotic methods is that they are
222
+ unsuitable for preparing a large amount of training data as
223
+ robots consume much time and energy to perform the physical
224
+ motion. Conducting thousands of robotic motion trajectories
225
+ to collect data is impractical. Also, the robots in the systems
226
+ are fixed, have limited views, and can only collect data in a
227
+ narrow range of scenarios. Neural networks trained using the
228
+ collected data may suffer from contextual (background) bias
229
+ and have bad generalizability [27][28].
230
+ This study focuses on robotic data collection while con-
231
+ sidering leveraging data synthesis to reduce robotic usage.
232
+ We first ask the robot to hold a single tube and annotate the
233
+ tube’s bounding polyhedron by extracting in-hand point cloud
234
+ according to the robot’s tool center point (TCP) and hand
235
+ model. Then, we map the annotated bounding polyhedron to
236
+ 2D image regions in the robot’s camera view for extracting the
237
+ tube region. The robot moves the tube to different positions
238
+ and rotations to obtain many varieties of 2D images and tube
239
+ regions. The images and tube regions are respectively used for
240
+ training and synthesizing new data in a later stage.
241
+ B. Data Augmentation and Synthesis
242
+ Data augmentation and synthesis are the two most well-
243
+ used methods to enrich training data. Data augmentation
244
+ generates new data by transforming the existing training data
245
+ with specific rules or learning-based methods. Data synthesis
246
+ generates synthetic data by merging existing data with others
247
+ or using computer simulations. Concurrent publications tend
248
+ to mix these nomenclatures. Therefore we conduct a uniform
249
+ literature review of them below without differentiation.
250
+ The copy-paste method is widely used for generating syn-
251
+ thetic data. It segments foreground objects from existing
252
+ images, possibly modifies them, and pastes them onto new
253
+ backgrounds [8][7][9]. The copy-paste method is easy to
254
+ implement and shows notable performance over using pure
255
+ real data. Previous studies showed that it was important to
256
+ carefully select the backgrounds when pasting objects. For
257
+ example, Divvala et al. [29] experimentally showed visual
258
+ context benefited object detection performance and reduced
259
+ detection errors. Dvornik et al. [30] showed that the correct
260
+ visual context when pasting object can improve prediction
261
+ performance while inappropriate visual context led to negative
262
+ results. Wang et al. [31] swapped objects of the same class
263
+ in different images to ensure contextual consistency between
264
+ objects and backgrounds and showed using the exsiting back-
265
+ grounds had better performance than random ones. Also,
266
+ the copy-paste method requires a data set containing many
267
+ possible views of the object that are easy to be cut out. It is
268
+ burdensome for humans to prepare them.
269
+ Graphical simulation is another popular method for synthe-
270
+ sizing training data. The benefits of simulation is that it allows
271
+ freely changing light conditions and materials to increase
272
+ variation. It also allows capturing many views of objects by
273
+ simply transforming virtual camera poses. For example, Hodaˇn
274
+ et al. [32] and Richter et al. [33] respectively used photo-
275
+ realistic rendering to synthesize images of 3D object models
276
+ and scenes. The methods required a lot of computational
277
+ resources to narrow down the domain gap between synthetic
278
+ and realistic data. Tobin et al. [34] proposed the concept of
279
+ domain randomization (DR). They randomized a simulator to
280
+ expose models to a wide range of environments and obtain
281
+ varied training data. Instead of photo-realistic rendering, the
282
+ method only required low-fidelity rendering results to reach
283
+ satisfying accuracy for medium-size objects. Carlson et al.
284
+ [35], Hinterstoisser et al. [4], Prakash et al. [36], and Tremblay
285
+ et al. [37] respectively used DR to narrow down the domain
286
+ gap. The authors randomly changed the context in simulation
287
+ so that “the real data was made to be just like another
288
+ simulation” [38]. Yang et al. [39] and Sundermeyer et al. [40]
289
+ respectively sampled viewpoints of 3D object models using
290
+ simulation and mixed the samples with real backgrounds to
291
+ reduce the human effort for preparing scenes with rich domain
292
+ randomness. Besides DR, Generative Adversarial Networks
293
+ (GANs) were also promising to reduce domain gap. For
294
+ example, Chatterjee et al. [41] designed a lightweight-GAN
295
+ to synthesize data for training plastic bottle detectors.
296
+ In this study, we leverage data synthesis to enrich the
297
+ training data. We develop a copy-paste based method to
298
+ attach tube cap regions separated from robotic observation
299
+ images to rack backgrounds and thus synthesize new images.
300
+ Various constraints like rack dimensions and tube occlusions
301
+ can be considered during the synthesis to reduce the domain
302
+ gap. The synthetic data is mixed with real-world data to
303
+ promote the performance of YOLO-based tube recognition
304
+ neural networks. It is also compared with other data collection
305
+ methods to understand the influence of data volume and data
306
+ combination ratio.
307
+ III. ROBOT SYSTEM AND WORKFLOW
308
+ A. Configurations of the Robot System
309
+ Fig. 2(a) shows our robot system used for preparing the
310
+ training data. A Photoneo Phoxi M 3D Scanner is used for
311
+
312
+ ARXIV VERSION, 2022
313
+ 4
314
+ Fig. 2: (a) The system configuration. (b) The test tubes and
315
+ rack in the view of the Phoxi M 3D Scanner.
316
+ capturing objects on the flat table. An ABB Yumi dual-arm
317
+ robot with a two-finger gripper is used to manipulate objects
318
+ in the system. A flat table is set up in the front of the Yumi
319
+ robot. The in-rack test tubes to be recognized are placed on
320
+ the surface. The Phoxi scanner is a structured-light based
321
+ depth sensor. It can capture gray images and point clouds
322
+ simultaneously. Each data point of a point cloud captured by
323
+ the Phoxi scanner have a one-to-one correspondence to a pixel
324
+ in a gray image. We can segment an object in the gray image
325
+ by considering its point cloud.
326
+ Especially, we install the Phoxi scanner on top of the robot
327
+ to obtain a top view of the racks and tubes. When recognizing
328
+ tubes in the rack, we select the tube caps as the primary
329
+ identifiers. There are two reasons why we prefer using the
330
+ tube caps for identification. The first one is that obtaining the
331
+ point cloud of a translucent or crystal test tube fails easily
332
+ due to limitations of the structured-light based depth sensors.
333
+ The second one is that the tube bodies are blocked by the
334
+ caps and also occluded by surrounding tubes when placed
335
+ in the rack and viewed from a top position. They are less
336
+ visible. However, despite the reasons and their merits, there is
337
+ a problem that different types of tubes may share a same cap
338
+ type. In this work, we assume the test tubes with the same
339
+ caps can be identified by their heights in the rack and analyze
340
+ the point cloud to differentiate them.
341
+ B. Workflow for Data Preparation
342
+ We prepare the training data using the robot system follow-
343
+ ing the workflow shown in Fig. 3. There are four dashed boxes
344
+ in the chart, where (a.1) and (a.2) have a blue background color
345
+ and represent the data collection component, (b) has an orange
346
+ background color and represents the data synthesis component,
347
+ (c) has a gray background and represents the resulted data.
348
+ The first blue dashed box (Fig. 3(a.1)) comprises three steps.
349
+ First, a human hands over an unknown test tube to the robot.
350
+ The tube is assumed to be grasped vertically by the robot after
351
+ handover, with the tube cap left above the robotic fingertips.
352
+ Second, the robot moves the test tube to the observation poses
353
+ prepared offline while considering avoiding self-occlusions.
354
+ The Phoxi sensor will capture the test tube’s gray image
355
+ and point cloud at each observation pose. Third, the system
356
+ segments the cap region out of the captured image based on
357
+ a mapping from its counterpart point cloud. The segmentation
358
+ result only includes the cap. The background will be removed
359
+ thanks to the point cloud mapping. The output of this dashed
360
+ box includes many cap region pictures. They are observed
361
+ from different views and thus have different illumination and
362
+ visual conditions.
363
+ The second blue dashed box (Fig. 3(a.2)) is similar to the
364
+ first one and also comprises three steps. First, a person places
365
+ a rack in the environment. Then, the robot pushes the rack to
366
+ random poses, capturing the rack’s gray image and point cloud
367
+ at each pose. Third, the system segments the rack region out
368
+ of the captured image based on the mapping from the rack’s
369
+ counterpart point cloud. The result of this dashed box includes
370
+ many rack region pictures. Like the caps, the rack region
371
+ pictures also have different illumination and visual conditions
372
+ since the data is captured from different view positions.
373
+ The orange dashed box shows the data synthesis process,
374
+ where the cap region pictures obtained in the first “Data
375
+ Collection” dashed box are pasted onto the rack region pictures
376
+ obtained in the second “Data Collection” dashed box for
377
+ synthesizing new images. Constraints like rack boundaries and
378
+ overlapping caused by perspective projection are considered
379
+ during the synthesis. The output of the dashed box will
380
+ be racks filled with many tube caps. The “Copy-paste data
381
+ synthesis” sub-block illustrates several examples of the output.
382
+ The final data preparation results include the images ob-
383
+ tained during collecting the tube cap data (observation images)
384
+ and the synthetic images. They are illustrated in the gray
385
+ dashed box (Fig. 3(c)).
386
+ Note that the above workflow is not completely automatic.
387
+ The sub-blocks with texts highlighted in a green color involve
388
+ human intervention. Also, before data collection, we need to
389
+ prepare the camera calibration matrix and test tube observation
390
+ poses. The camera calibration matrix transforms the point
391
+ cloud captured in the camera’s local coordinate system into
392
+ the robot coordinate system. Many existing methods exist for
393
+ obtaining the calibration matrix [42]. To avoid repetition, we
394
+ don’t discuss the details in this manuscript. The test tube
395
+ observation poses are a set of tube positions and rotations
396
+ for the robot to hold and capture observation images. The
397
+ developed method will generate robot joint configurations
398
+ considering the robot grasping and tube observation poses.
399
+ Section IV will present detailed algorithms on the generation.
400
+ IV. IMPLEMENTATION DETAILS
401
+ A. Observation Poses for Collecting Tube Caps
402
+ When collecting the tube cap data, the robot moves the
403
+ tube held in its hand to different poses for observation. The
404
+ observation poses are generated considering two constraints:
405
+ (1) Diversity of the captured cap data; (2) Occlusions by robot
406
+ links. Taking into account these two constraints allow us to
407
+ include the tube caps from many viewpoints and thus cover
408
+ lots of illumination and visual conditions. Meanwhile, they
409
+ help to prevent the robot links from occluding the grasped
410
+ test tubes and make sure the tubes are visible to the vision
411
+ sensor.
412
+ Fig. 4 illustrates the observation pose generation process and
413
+ how the two constraints are taken into account in it. First, we
414
+ sample the positions and rotations of a tube held by the robot
415
+ hand uniformly in the Phoxi depth sensor’s visible range. Tube
416
+
417
+ (b)
418
+ _Tube
419
+ (a)
420
+ Phoxi M
421
+ Holder
422
+ 3D Scanner
423
+ Rack
424
+ Yumi Robot
425
+ Purple
426
+ Tube
427
+ Flat Table
428
+ AB
429
+ Purple
430
+ Ring
431
+ Blue
432
+ White
433
+ In-rack
434
+ Tube
435
+ Tube
436
+ Tube
437
+ Test TubesARXIV VERSION, 2022
438
+ 5
439
+ Fig. 3: Workflow of the proposed method. (a.1,2) Data collection component. (b) Data synthesis component. (c) Resulted data.
440
+ data captured under the sampled poses will have rich light
441
+ conditions and a large variety of visible tube edges for training
442
+ a recognition neural network. Especially, the tube rotations are
443
+ sampled according to the vertices of a level-four icosphere
444
+ [43]. An icosphere is a spherical polyhedron with regularly
445
+ distributed vertices. The vectors pointing to the vertices of an
446
+ icosphere help to define the rotations of a tube1. A level-four
447
+ icosphere has 642 vertices and thus leads to 642 vectors and
448
+ test tube rotation poses. Thanks to the visibility constraints,
449
+ we do not move a test tube to all of the rotation poses for
450
+ capturing data as the tube caps facing downward will not
451
+ be seen by the Phoxi sensor. We filter the 642 vectors by
452
+ considering their angles with the normal of the table surface
453
+ for placing a rack. The vectors with large angles from the
454
+ surface normal cannot be seen and will not be considered. The
455
+ spherical polyhedron in Fig. 4(b.1) illustrates the level-four
456
+ icosphere. Vectors pointing to the red vertices have more than
457
+ θ angles from the surface normal and are removed. The green
458
+ vertices are the remaining candidates. The purple tube bouquet
459
+ on the right side of Fig. 4(b.1) illustrate the tube poses implied
460
+ by vectors pointing to the remaining candidate vertices.
461
+ Next, we plan the robot motion to move the test tube held in
462
+ a robot hand to the sampled tube positions and rotations. We
463
+ assume a test tube is vertically grasped at the finger center of a
464
+ robot hand. Since a tube is central symmetric, many grasping
465
+ poses meet the assumption. The grasping hand may rotate
466
+ freely around the symmetry axis of the test tube, as shown
467
+ in Fig. 4(b.2). The rotation is compact and forms a SO(2)
468
+ group. For numerical analysis, we sample the rotation in the
469
+ SO(2) group with a rotation interval hyperparameter named
470
+ ω to obtain a series of discretized grasping poses. The hand
471
+ 1A tube is centeral symmetric. We do not need to consider its rotation
472
+ around the central axis. The vectors pointing to the vertices of an icosphere
473
+ can thus define a tube pose.
474
+ illustrations in Fig. 4(b.2) are the grasping poses obtained with
475
+ ω = 60◦. The sampled grasping poses provide many candidate
476
+ goals for robot motion planning and thus increase the chances
477
+ of successfully moving and observing the tube.
478
+ When determining which exact candidate goal to move to,
479
+ we examine the occlusions from the robot arm links and
480
+ avoid choosing the grasping poses that lead to invisible tubes.
481
+ In detail, examining the occlusion is done by checking the
482
+ collision between a visual polyhedron and the robot arm links.
483
+ The visual polyhedron is computed using the camera origin
484
+ and vertices of the robot hand model, as illustrated in Fig.
485
+ 4(c.1). The robot arm may occlude the tube and the vision
486
+ sensor fails to capture it when there is collision between
487
+ the visual polyhedron and the robot arm links. Fig. 4(c.2)
488
+ exemplifies such a case.
489
+ B. Using Annotation Masks to Segment Cap Pictures
490
+ Since the tube is handed over from a human and the
491
+ Phoxi sensor captures the cap data from many different
492
+ views, the captured tube point clouds change dynamically
493
+ and have noises. It is unstable to extract cap point clouds by
494
+ autonomously detecting them. Thus, instead of autonomous
495
+ detection, we prepare an annotation mask in the robot hand’s
496
+ local coordinate system to help extract the test tube cap’s point
497
+ clouds. The extracted point clouds will be back-projected to
498
+ the corresponding 2D grey image for segmenting a picture
499
+ of the cap region. Fig. 5 shows the details of this mask and
500
+ how it helps to segment the cap regions. The mask and back
501
+ projection enable us to precisely segment the cap regions while
502
+ avoiding including backgrounds.
503
+ To prepare an annotation mask, we move the robot hand
504
+ that holds a test tube to a fixed position under the Phoxi
505
+ sensor and trigger the sensor to capture a point cloud. We can
506
+
507
+ (a.1) Collecting the tube cap data
508
+ (i) A human
509
+ (ii) The robot moves
510
+ Many pictures of the tube caps
511
+ (iii) Crop the tube cap
512
+ hands over
513
+ the test tube to new
514
+ based on the mapping
515
+ a test tube
516
+ observation poses
517
+ between the captured
518
+ to the robot
519
+ for capturing data
520
+ point cloud and image
521
+ (a.2) Collecting the rack data
522
+ (i) A human
523
+ (i) The robot
524
+ (iii) Crop the
525
+ Many pictures of the racks
526
+ places a
527
+ pushes the rack
528
+ rack from the
529
+ rack in the
530
+ to new poses for
531
+ environmental
532
+ environment
533
+ capturing data
534
+ background
535
+ (b) Data synthesis
536
+ (c) Resulted data (Images with known tube caps)
537
+ Pictures of tube caps
538
+ Pictures of racks
539
+ Images obtained
540
+ during collecting
541
+ Copy-paste data synthesis
542
+ the tube cap data
543
+ (Top view pictures
544
+ with tubes held in
545
+ Synthesized racks with
546
+ the robotic hands)
547
+ different backgroundsARXIV VERSION, 2022
548
+ 6
549
+ Fig. 4: (a) Sampling observation positions. The green region
550
+ is the visible area of the Phoxi scanner. The red points are
551
+ the sampled positions. (b.1) Sampling rotations based on a
552
+ level-four icosphere. The left spherical polyhedron illustrates
553
+ the icosphere. The green vertices are the ends of feasible
554
+ vectors that have less than θ = 60◦ angles with the surface
555
+ normal. They imply the tube rotation poses shown on the right.
556
+ (b.2) The grasping poses for each sampled tube pose form a
557
+ SO(2) group. They are sampled considering an interval ω for
558
+ numerical analysis. (c.1) A visual polyhedron computed using
559
+ the camera origin and vertices of the robot hand model. (c.2)
560
+ The grasped object has a risk of being occluded by the robot
561
+ arm when there is a collision between the visual polyhedron
562
+ and the robot arm links.
563
+ Fig. 5: Workflow for extracting the cap picture using an
564
+ annotation mask. (a) Applying a mask described in the local
565
+ coordinate system of the holding robot hand to the captured
566
+ point cloud. (b) The extract point cloud is projected back to
567
+ the 2D grey image for segmenting a picture of the cap region.
568
+ (b.1) The back-projected results might be disconnected pixels.
569
+ (b.2) A bounding convex hull of the disconnected pixels is
570
+ computed. (b.3,4) The cap region is segmented based on the
571
+ bounding convex hull.
572
+ easily get the cap’s point cloud data by examining the area
573
+ on top of the holding fingers and obtain an annotation mask
574
+ by considering a bounding polyhedron of the data. However,
575
+ a single bounding polyhedron may not be general for others
576
+ since the captured point cloud is susceptible to light reflection
577
+ or perspective projection (self-occlusion). Thus, instead of a
578
+ single point cloud and polyhedron, we collect point clouds
579
+ from multiple views, merge them under the robot hand’s local
580
+ coordinate system, and compute a bounding box of the merged
581
+ result as an annotation mask. Fig. 6 shows an example. The
582
+ multiple views are sampled the same way as the observation
583
+ poses mentioned in the previous subsection. However, we do
584
+ not need to change the observation positions since we aim to
585
+ Fig. 6: (a) Capture data from different views. The tube cap’s
586
+ point clouds are obtained by examining the area on top
587
+ of the holding fingers. They are high lighted with colored
588
+ polyhedrons. (b) Merge the cap’s point clouds in (a) under
589
+ the robot hand’s local coordinate system, and compute a
590
+ bounding box of the merged result as an annotation mask. (b.1)
591
+ Raw bounding box. (b.2) The bounding box can be adjusted
592
+ interactively if needed.
593
+ obtain a bounding box mask in the hand’s coordinate system.
594
+ The views under various rotations could provide enough
595
+ superficial point cloud data to meet the requirements. Note
596
+ that the merged result may include noise point data induced by
597
+ reflections from the transparent tube body and lead to a mask
598
+ larger than the cap. We provide an interactive user interface
599
+ for manually adjusting the bounding box sizes and minimizing
600
+ the negative influences caused by the noises. The adjustment
601
+ is optional and may be performed when precisely segmenting
602
+ the cap region is demanded.
603
+ C. Copy-Paste Synthesis
604
+ We apply random scaling, blurring, brightness, and contrast
605
+ to the segmented tube caps and then paste them onto the
606
+ segmented rack background for data synthesis. During pasting,
607
+ we permit the overlap among the cap regions to approximate
608
+ tube-to-tube occlusion. After pasting, we randomize the en-
609
+ vironmental background (background of the rack) to narrow
610
+ further the domain gap between synthetic images and images
611
+ captured in the real world.
612
+ A critical maneuver here is that we consider the co-
613
+ occurrence of the test tubes and the rack and paste the tube
614
+ cap pictures onto a rack instead of random backgrounds like
615
+ [11]. We randomly sample positions inside rack pictures for
616
+ pasting tube caps and use a pasting number T to control the
617
+ clutter. Note that there is no need to exactly paste a tube cap
618
+ near the hole centers of a rack as the tubes tilt randomly inside
619
+ the rack holes. The visible cap regions may reasonably overlap
620
+ with a hole boundary or other holes.
621
+ For tube-to-tube occlusion, we consider the perspective
622
+ projection of a vision sensor and define an occlusion threshold
623
+ t to permit overlap among the visible cap regions. A vision
624
+ sensor’s perspective projection leads to mutual occlusions in
625
+ the rack at certain viewpoints. The occlusion threshold helps to
626
+ simulate the occlusion and defines the maximum percentage
627
+ that segmented cap pictures can overlap or occlude. Fig. 7
628
+ shows how the t threshold works. It adds a constraint to
629
+ pasting, where a previously pasted cap picture “A” must have
630
+ less than t percentage overlap with the union of caps pasted
631
+ later. The B ∪ C ∪ ... component in the nominator of Fig.
632
+ 7 implies the union of caps pasted after “A”. When a new
633
+ cap is randomized, it must be unioned with this component
634
+
635
+ (a)
636
+ (b.1)
637
+ 0 = 60°
638
+ Surface
639
+ Test
640
+ normal
641
+ tube
642
+ Positions
643
+ Rotations
644
+ (b.2)
645
+ (c.1)
646
+ (c.2)
647
+ Visual
648
+ Gripper
649
+ polygon
650
+ .09 = 3(a)
651
+ (b)
652
+ Annotation Mask
653
+ (b.1)
654
+ (b.2)
655
+ ZH
656
+ (b.3)
657
+ (b.4)
658
+ ZH(b)
659
+ (b.1)
660
+ (b.2)ARXIV VERSION, 2022
661
+ 7
662
+ to ensure the t constraint on all previous “A” is not violated.
663
+ There are two noticeable points for t. First, its value could be
664
+ devised respectively considering the heights of specific tube
665
+ types. Second, its value is correlated with the pasting number
666
+ T. The maximum number of pasted tube caps in a rack that
667
+ meet the t threshold may be less than a given T. In that case,
668
+ we constrain the maximum number of pasted tube caps to the
669
+ smaller value to ensure t is not invalidated.
670
+ Fig. 7: (a) Using a threshold t to simulate cap occlusions.
671
+ “A” represents a previously pasted cap region. “B”, “C”, ...
672
+ represent the caps pasted after “A”. (b) Results with different
673
+ t values.
674
+ For the environmental background, we use the BG-20k data
675
+ set [44] to obtain high-resolution random background images
676
+ and change the background of a synthetic image with a 0.5
677
+ probability.
678
+ V. EXPERIMENTS AND ANALYSIS
679
+ We carried out experiments to compare YOLOv5x [45]
680
+ detectors trained using data sets collected with the proposed
681
+ method and several other methods to understand the per-
682
+ formance. Table II shows the methods. The SR (Synthesis
683
+ by pasting to Racks) method pastes randomly selected cap
684
+ pictures onto rack backgrounds to synthesize training data.
685
+ It represents the synthesizing method used in this work.
686
+ The SB (Synthesis by pasting to BG-20k) method is an
687
+ alternative synthesis method. Instead of being pasted onto a
688
+ rack, randomly selected cap pictures are pasted to random
689
+ backgrounds selected from the BG-20k data set. The RO
690
+ (Robotic Observation) method is a byproduct of robotic cap
691
+ segmentation, where the robot holds test tubes for data col-
692
+ lection. We considered RO an independent method because
693
+ we wondered if the hand-held observation was enough for
694
+ training. We also combined RO, SR, and SB methods (the **
695
+ row) to see if they help achieve a satisfying performance. The
696
+ RO+SR combination is exactly our proposed method in this
697
+ work. We especially proposed it since RO is a pre-process
698
+ of robotic cap segmentation. Using combined RO+SR does
699
+ not increase effort. Combining RO+SB or RO+SR+SB are
700
+ also candidate choices. They have the same cost as using
701
+ independent SR or SB data2. Finally, the CL (Crowd-source
702
+ Labeling) method is a conventional one that requires humans
703
+ to place racks with tubes under the robot and label the captured
704
+ images manually. Fig. 8 shows exemplary images collected
705
+ using the different methods.
706
+ 2Synthesizing data is considered to be free as it only require computational
707
+ work. Thus, the costs of SR and SB depend on the RO process.
708
+ TABLE I: Summary of the data collection methods
709
+ Abbr.
710
+ Full Name
711
+ Description
712
+ SR
713
+ Synthesis by pasting to Racks
714
+ Caps on racks
715
+ SB
716
+ Synthesis by pasting to BG-20k
717
+ Caps on random background
718
+ RO
719
+ Robotic Observation
720
+ Tubes held in robotic hands
721
+ **
722
+ Combinations of above methods
723
+ SR+SB is the proposed one
724
+ CL
725
+ Crowd-source Labeling
726
+ Tubes in a rack on the table
727
+ Fig. 8: Exemplary images collected using the various methods.
728
+ (a) RO. (b) SR. (c) SB (d) CL.
729
+ A. Performance of Various Data sets
730
+ We collected various data sets with the methods and their
731
+ combinations, used the data sets to train YOLOv5x detectors,
732
+ and examined the performance of the trained detectors using
733
+ a testing data set for comparison.
734
+ The first data set is CL200. It is considered a baseline for
735
+ comparison. In collecting the data set, we collected 200 images
736
+ with random tube and rack states and labeled the tube regions
737
+ manually using LabelImg3. There are, in total, 5916 labeled
738
+ instances in the 200 images.
739
+ The second data set is SR1600. In order to collect it, we
740
+ first prepared many cap pictures using robotic observation. As
741
+ shown in Fig. 2(b), we assumed four different test tubes and
742
+ took advantage of the Yumi robot’s both arms to collect cap
743
+ data quickly. For each tube type, we handed over two same
744
+ ones to the two robotic arms for observation. Each arm moved
745
+ its held tube to 400 observation poses for data collection. See
746
+ Fig. 9(a) for example. Here, we set the hyperparameter θ and
747
+ ω to 30◦ and 360◦ (single grasping pose) and set the positions
748
+ to be evenly sampled on the table with a granularity of 0.1m
749
+ for generating the observation poses. In total, more than 400
750
+ observation poses were obtained under the parameter setting
751
+ for each arm, and we used the first 400 for collecting images.
752
+ As a result, we obtained 400 observation images (800 cap
753
+ pictures since there are two tubes in each image, see Fig.
754
+ 9(b) for example) for a single tube type and 1600 observation
755
+ images for all tube types. We segmented 3200 pictures of
756
+ cap regions from the observation images considering point
757
+ cloud mapping. Fig. 9(c) shows the collected point clouds with
758
+ highlighted caps (green). Fig. 9(d) shows the segmented cap
759
+ regions. Besides the cap regions, we collected 15 images with
760
+ racks (a single rack in each image) and segmented 15 pictures
761
+ of racks. We synthesized a data set of 1600 images by pasting
762
+ caps randomly selected from the 3200 cap pictures to racks
763
+ randomly selected from the 15 rack pictures (SR method).
764
+ During synthesis, we set the pasting number to be T = 30, and
765
+ set the occlusion threshold for the “Blue Tube” to be tblue =
766
+ 0.4 and other tubes to be tothers = 0.15. We chose these
767
+ parameter settings because the “Blue Tube” was shorter and
768
+ susceptible to occlusion. We increased its occlusion threshold
769
+ 3https://github.com/heartexlabs/labelImg
770
+
771
+ (a)
772
+ IAN(BUCU.
773
+ Overlap(A, B, C, ...)
774
+ [A|
775
+ (b)
776
+ 10
777
+ t = 0.3 T = 20
778
+ t = 0.6 T = 40a
779
+ dARXIV VERSION, 2022
780
+ 8
781
+ to mimic frequent visual blockage from other tubes. Also,
782
+ we increased the variety of the segmented cap pictures by
783
+ applying random scaling (0.9 ∼ 1.1 of original picture size,
784
+ 0.5 probability), random blur (3 × 3 kernel, 0.5 probability),
785
+ random brightness (0.9 ∼ 1.1 of original brightness, 0.5
786
+ probability), and random contrast (0.9 ∼ 1.1 of the original
787
+ contrast value, 0.5 probability) using the Albumentations4
788
+ library. The background of the rack was randomly chosen from
789
+ the BG-20k data set with a 0.5 changing probability.
790
+ Fig. 9: (a) The robot moves test tubes for observation. Both
791
+ arms are used. (b) Observation Image. (c) Point clouds cap-
792
+ tured by the Phoxi sensor. (d) Cap pictures segmented from
793
+ the observation image.
794
+ The third data set is RO1600. It is a semi product of robotic
795
+ cap segmentation and comprises the 1600 observation images
796
+ obtained during robotic observation.
797
+ The fourth data set is SB1600. In contrast with the SR1600
798
+ data set, we pasted randomly selected caps directly to images
799
+ from the BG-20k data set for obtaining data. The pasted
800
+ caps might freely distribute on the image background. The
801
+ segmented racks were not used. The pasting number T and
802
+ occlusion threshold t are 35 and 0.15 respectively. There was
803
+ no difference on t for different tubes. The randomization were
804
+ performed in the same way as obtaining SR1600.
805
+ We also used combined methods to collect data sets
806
+ and study if the combination led to better results. The
807
+ combined data sets include RO1600+SR800, RO1600+SB800,
808
+ RO1600+SR400+SB400, SR800+SB800. Here, the superscript
809
+ number on the upper-right of a method name means the
810
+ number of images collected using the method. The “+” sym-
811
+ bol indicates that the data sets comprise data collected using
812
+ different methods. The RO1600+SR800 data set represents the
813
+ data collected using the proposed method.
814
+ The left part of Table II summarizes the various data sets.
815
+ They are used to train YOLOv5x detectors for comparison.
816
+ Before training, the YOLOv5x detectors for all data sets were
817
+ initialized with weights pre-trained using the COCO data set.
818
+ The images in all data sets were regulated into a resolution of
819
+ 1376 × 1376. Each data set is divided into a training subset
820
+ and a validation subset according to a 4 to 1 data ratio. During
821
+ learning, the training subset was fed to the training program
822
+ with a batch size of 2, and the training program performed
823
+ validation per episode. The training process was stopped
824
+ when the mAPs (mean Average Precision) [46] for all objects
825
+ reached higher than 99.0% under a 0.5 IoU (Intersection over
826
+ Union). Here, we defined a detected bounding box to be
827
+ correct when its IoU with a ground truth cap bounding box
828
+ was larger than 0.5.
829
+ 4https://albumentations.ai/
830
+ For evaluating the performance of YOLOv5x detectors
831
+ trained using the various data sets, we collected a testing
832
+ data set with 100 images and labeled their ground truth
833
+ using the same method as CL. We used the trained detectors
834
+ to detect tubes in the testing data set. Like validation, we
835
+ defined a detected bounding box as correct when its IoU
836
+ with a ground truth cap bounding box is larger than 0.5.
837
+ We used the AP (Average Precision) metric to measure the
838
+ detection performance of a single object class and used the
839
+ mAP for all objects. Since the detector that met a single
840
+ satisfying validation was not necessarily the best, we trained
841
+ each detector twice and took the higher precision value on the
842
+ testing data set as the final evaluation result.
843
+ Table II shows the evaluation results. We obtained the
844
+ following observations and speculations from them.
845
+ i) Using the data set collected by robotic observation for
846
+ training exhibited the worst performance, as shown by
847
+ the 2nd row (RO1600).
848
+ Speculation: All images in the data set had a similar
849
+ robotic background. They suffered from a domain shift.
850
+ ii) The synthetic data sets do not necessarily lead to a good
851
+ AP, as shown by the 3rd (SR1600) and 4th (SB1600) rows.
852
+ The SR1600 data set exhibited higher performance than
853
+ the SB1600 data set.
854
+ Speculation: The copy-paste synthesis failed to cover
855
+ certain visual contexts; Pasting onto racks (SR) provided
856
+ more effective visual contexts and benefited the neural
857
+ network more than pasting onto random backgrounds
858
+ (SB).
859
+ iii) Combining the synthetic data sets with robotic observa-
860
+ tions is effective. It can be concluded by comparing the
861
+ 5th, 6th, and 7th rows (RO1600+SR800, RO1600+SB800,
862
+ RO1600+SR400+SB400) with the 2nd, 3rd, and 4th rows
863
+ (RO1600, SR1600, and SB1600). The former rows had
864
+ higher mAP than the latter.
865
+ Speculation: The robotic observation data set additionally
866
+ provided helpful visual contexts.
867
+ iv) The 5th row (RO1600+SR800) had a 2.4% higher mAP
868
+ than the 6th row (RO1600+SB800). Especially, the AP of
869
+ the “Blue Tube” on the 5th row was 8.7% higher than
870
+ that on the 6th row. The AP of other tubes also had
871
+ 0.1% ∼ 0.7% performance increase.
872
+ Speculation: Considering the rack as a local context
873
+ helped improve domain-specific performance; The short
874
+ “Blue Tube” could be easily blocked. The data set
875
+ collected using the SR method had more simulated oc-
876
+ clusions. They were important for recognizing the short
877
+ “Blue Tube”.
878
+ v) The 7th row (RO1600+SR400+SB400) exhibited slightly
879
+ higher mAP (0.3%) than the 5th row (RO1600+SR800).
880
+ Speculation: Pasting onto racks (SR) provided better
881
+ domain-specific features. Random backgrounds for the
882
+ tubes slightly benefited the neural network and were less
883
+ necessary if the goal context was limited.
884
+ vi) The 5th row (RO1600+SR800) is competitive compared
885
+ with the 1st row (CL200). The mAP was 0.7% lower. The
886
+ AP of the “Blue Tube” and “White Tube” were 2.5% and
887
+ 1.1% lower, respectively. The AP of the “Purple Tube”
888
+
889
+ (c) Point clouds
890
+ (d) Cap
891
+ (b)
892
+ picturesARXIV VERSION, 2022
893
+ 9
894
+ TABLE II: Comparison of detectors trained using different data sets
895
+ AP
896
+ ID
897
+ Data Set Names
898
+ # Caps
899
+ Remark
900
+ Blue
901
+ Purple
902
+ White
903
+ Purple Ring
904
+ mAP
905
+ 1
906
+ CL200
907
+ 5916
908
+ Multiple tubes / image
909
+ 0.993
910
+ 0.995
911
+ 0.989
912
+ 0.984
913
+ 0.990
914
+ 2
915
+ RO1600
916
+ 3200
917
+ Two tubes / image
918
+ 0.380
919
+ 0.923
920
+ 0.695
921
+ 0.630
922
+ 0.657
923
+ 3
924
+ SR1600
925
+ 40000
926
+ tblue=0.4 & tothers=0.15, T = 25
927
+ 0.955
928
+ 0.979
929
+ 0.871
930
+ 0.953
931
+ 0.940
932
+ 4
933
+ SB1600
934
+ 56000
935
+ t=0.15 (same for all tubes), T = 35
936
+ 0.808
937
+ 0.978
938
+ 0.812
939
+ 0.897
940
+ 0.874
941
+ 5
942
+ RO1600+SR800
943
+ 23200
944
+ See note 2
945
+ 0.968
946
+ 0.995
947
+ 0.978
948
+ 0.992
949
+ 0.983
950
+ 6
951
+ RO1600+SB800
952
+ 31200
953
+ See note 2
954
+ 0.881
955
+ 0.994
956
+ 0.971
957
+ 0.992
958
+ 0.959
959
+ 7
960
+ RO1600+SR400+SB400
961
+ 27200
962
+ See note 2
963
+ 0.969
964
+ 0.994
965
+ 0.986
966
+ 0.993
967
+ 0.986
968
+ 8
969
+ SR800+SB800
970
+ 48000
971
+ See note 2
972
+ 0.973
973
+ 0.993
974
+ 0.969
975
+ 0.985
976
+ 0.980
977
+ Note 1: Largest AP and mAP values are highlighted in bold.
978
+ Note 2: The combined data sets are collected using the same parameters as respective ones.
979
+ was the same. The AP of the “Purple Ring” tube was
980
+ 0.8% higher.
981
+ Speculation: The robotic observation and paste-to-rack
982
+ synthesis compensated for each other’s shortcomings;
983
+ There remained extreme cases that could be labeled
984
+ manually but failed to be covered by robotic observation
985
+ or synthesis, especially for the “Blue Tube”.
986
+ Several failure cases are visualized in Fig. 10 to provide
987
+ the readers an insight into our observations and speculations.
988
+ Fig. 10(a) and (b) exemplify the recognition results of detec-
989
+ tors trained using the 5th (RO1600+SR800) and 6th data sets
990
+ (RO1600+SR800). The latter one failed to recognize occluded
991
+ tubes as the training data set had fewer simulated occlusions.
992
+ The example is consistent with the observation and speculation
993
+ in iv). Fig. 10(c) and (d) exemplify cases that the detectors
994
+ trained using the 5th (RO1600+SB800) data set failed. In the
995
+ first case, shadows from other test tubes were cast on a blue
996
+ test tube cap. The detector failed to recognize the tube. In the
997
+ second case, the detector misrecognized a crystal tube body
998
+ as the “Blue Tube” cap due to the illusion caused by body-
999
+ and-rack overlap. The two failure examples are consistent with
1000
+ the observation and speculation in vi). The synthetic data sets
1001
+ do not involve shadows or tube bodies. The detectors trained
1002
+ using them had worse performance in these cases than the one
1003
+ trained using the crowd-sourced real-world data.
1004
+ Fig. 10: (a) Detector trained using the 5th data set successfully
1005
+ recognized all tubes. (b) Detector trained using the 6th data
1006
+ set failed to recognize the occluded tube in the red circle. (c)
1007
+ Detector trained using the 5th data set failed to recognize the
1008
+ shadowed tube in the red circle. (d) Detector trained using the
1009
+ 5th data set misrecognized the tube body in the red circle as
1010
+ a “Blue Tube”.
1011
+ In summary, the results of the various training data sets
1012
+ showed that combining data collected using the RO and SR
1013
+ methods was effective. The conclusion was satisfying as the
1014
+ RO method is a subset of the SR method. The workflow for
1015
+ collecting them is simple and clean. However, we wonder if
1016
+ the number of images in the RO data set could be reduced,
1017
+ as it needs much manual handover to collect them. This
1018
+ query prompted us to carry out the studies in the following
1019
+ subsection.
1020
+ B. Ablation Study
1021
+ In this subsection, we conduct multiple ablation studies on
1022
+ the combined RO+SR data set to further understand 1) the
1023
+ influence of the data combination ratio and 2) the influence
1024
+ of pasting number T and occlusion threshold t used for
1025
+ generating synthetic data.
1026
+ 1) Influence of data combination ratio: The experiments for
1027
+ studying the influence of data combination ratio are divided
1028
+ into two parts. In the first part, we set the number of images
1029
+ collected using the RO method to 800 and varied the number
1030
+ of images collected using the SR method from 200 to 1600
1031
+ in a 2-fold ratio to understand the importance of the SR data.
1032
+ The upper section of Table III shows the precision of detectors
1033
+ trained using the varied data. The results indicate that the mAP
1034
+ improved when the SR image numbers increased from 200 to
1035
+ 1600. The second part is similar to the first one. In this part, we
1036
+ fixed the number of images collected using the SR method to
1037
+ 800 and varied the number of images collected using the RO
1038
+ method from 200 to 1600 in a two-fold ratio to understand
1039
+ the importance of the RO data. The lower section of Table
1040
+ III shows the precision of detectors trained using the varied
1041
+ data. The result indicates that the mAP improved when the
1042
+ RO image numbers increased from 200 to 1600.
1043
+ 2) Influence of hyperparameters: Besides the data combi-
1044
+ nation ratio, we also studied the influence of pasting number
1045
+ T and occlusion threshold t used in the SR method. We set
1046
+ both the RO and SR image numbers to 800 and observed
1047
+ the performance of detectors trained with data sets collected
1048
+ using different T and t values. Although we previously used a
1049
+ different t value for the “Blue Tube”, we did not differentiate
1050
+ the tubes here. Like the study on different data combination
1051
+ ratios, this study also comprised two parts. In the first part,
1052
+ we fixed t to be 0.1 and increased T from 10 to 40 with
1053
+ a step length of 10. The upper section of Table IV shows
1054
+ the precision changes under the parameter variations. The
1055
+
1056
+ ring
1057
+ ng0.94
1058
+ (d)
1059
+ a
1060
+ b
1061
+ cARXIV VERSION, 2022
1062
+ 10
1063
+ TABLE III: In��uence of data combination ratio
1064
+ AP
1065
+ Data Set Names
1066
+ Blue
1067
+ Purple
1068
+ White
1069
+ Purple Ring
1070
+ mAP
1071
+ RO800+SR200
1072
+ 0.958
1073
+ 0.994
1074
+ 0.973
1075
+ 0.987
1076
+ 0.978
1077
+ RO800+SR400
1078
+ 0.964
1079
+ 0.992
1080
+ 0.975
1081
+ 0.985
1082
+ 0.979
1083
+ RO800+SR800
1084
+ 0.966
1085
+ 0.995
1086
+ 0.979
1087
+ 0.986
1088
+ 0.981
1089
+ RO800+SR1600
1090
+ 0.970
1091
+ 0.994
1092
+ 0.987
1093
+ 0.987
1094
+ 0.985
1095
+ RO200+SR800
1096
+ 0.962
1097
+ 0.992
1098
+ 0.952
1099
+ 0.978
1100
+ 0.971
1101
+ RO400+SR800
1102
+ 0.965
1103
+ 0.992
1104
+ 0.979
1105
+ 0.978
1106
+ 0.979
1107
+ RO800+SR800
1108
+ 0.966
1109
+ 0.995
1110
+ 0.979
1111
+ 0.986
1112
+ 0.981
1113
+ RO1600+SR800
1114
+ 0.968
1115
+ 0.995
1116
+ 0.978
1117
+ 0.992
1118
+ 0.983
1119
+ Note 1 Largest AP and mAP values are highlighted in bold.
1120
+ Note 2 We used the following hyper-parameter setting tblue
1121
+ =
1122
+ 0.4 &
1123
+ tothers = 0.15, T = 30 to collect the SB data sets. The values were
1124
+ the same as the experiments in Section V.A.
1125
+ results exhibited a significant increase from 10 to 30. However,
1126
+ an even larger T had little influence on the recognition
1127
+ performance. In the second part, we set T to be 30 and varied t
1128
+ from 0.20 to 0.80 with a step length of 0.2. The lower section
1129
+ of Table IV shows the precision changes under the parameter
1130
+ variations. The results exhibited a clear precision increase on
1131
+ the “Blue Tube”. We speculate that the reason was that the
1132
+ “Blue Tube” was shorter and vulnerable to occlusions. A larger
1133
+ t helped provide more occlusion cases in the training data set,
1134
+ leading to a higher detection rate. The results also indicated
1135
+ that the precision of the ”White Tube” and ”Purple Ring Tube”
1136
+ irregularly changed as the t increased. They were taller and did
1137
+ not suffer from occlusions. Adding occlusions for them caused
1138
+ unexpected errors. For a complete observation, we recommend
1139
+ interested readers to compare with the third row of the table’s
1140
+ upper section to catch the changes starting from t = 0.1. The
1141
+ T value of the upper section’s third row was the same as the
1142
+ rows in the lower section.
1143
+ TABLE IV: Influence of parameters used for synthesis
1144
+ AP
1145
+ Params. (T, t)
1146
+ Blue
1147
+ Purple
1148
+ White
1149
+ Purple Ring
1150
+ mAP
1151
+ (10, 0.10)
1152
+ 0.904
1153
+ 0.995
1154
+ 0.971
1155
+ 0.973
1156
+ 0.961
1157
+ (20, 0.10)
1158
+ 0.915
1159
+ 0.995
1160
+ 0.976
1161
+ 0.985
1162
+ 0.968
1163
+ (30, 0.10)
1164
+ 0.939
1165
+ 0.995
1166
+ 0.987
1167
+ 0.992
1168
+ 0.978
1169
+ (40, 0.10)
1170
+ 0.934
1171
+ 0.994
1172
+ 0.972
1173
+ 0.983
1174
+ 0.970
1175
+ (30, 0.20)
1176
+ 0.945
1177
+ 0.995
1178
+ 0.985
1179
+ 0.989
1180
+ 0.978
1181
+ (30, 0.40)
1182
+ 0.969
1183
+ 0.995
1184
+ 0.985
1185
+ 0.994
1186
+ 0.986
1187
+ (30, 0.60)
1188
+ 0.985
1189
+ 0.995
1190
+ 0.965
1191
+ 0.967
1192
+ 0.978
1193
+ (30, 0.80)
1194
+ 0.987
1195
+ 0.995
1196
+ 0.984
1197
+ 0.988
1198
+ 0.988
1199
+ * Largest AP and mAP values are highlighted in bold.
1200
+ C. Further Analysis on Synthetic Data
1201
+ We also studied the influence of cap variation and combina-
1202
+ tion ratio on synthetic data sets (the data sets collected using
1203
+ the SR, SB, or SR+SB methods). The goal was to understand
1204
+ the best performance we could reach with synthesis.
1205
+ First, we fixed the number of images collected by the SR
1206
+ and SB methods to 800, respectively. We changed the number
1207
+ of cap region pictures (equals to the number of observation
1208
+ images multiplied by two) used for synthesis from 400 to 3200
1209
+ in a 2-fold ratio to study the influence of cap variation. The
1210
+ previsions YOLOv5x detectors using the changing data sets
1211
+ are shown in Table V. The results showed that the 400 row
1212
+ had competitive precision compared to the 1600 or 3200 rows.
1213
+ The number was enough to support a satisfying detector. The
1214
+ cap variations were thus considered to have a low influence
1215
+ on learning.
1216
+ Second, we fix the number of cap region pictures to 3200
1217
+ and change the number of images collected using the SR
1218
+ and SB methods, respectively, to study the influence of the
1219
+ combination ratio. Like the ablation study in Section V-B1,
1220
+ we divided the experiment here into two parts. In the first
1221
+ part, we set the number of images collected by the SR method
1222
+ to 800 and varied the number of images collected by the SB
1223
+ method from 200 to 1600 in a 2-fold ratio to understand the
1224
+ importance of the SB data. The upper section of Table VI
1225
+ shows the precision of detectors trained using the varied data.
1226
+ The number of SB images did not appear to be positively
1227
+ correlated with the final detector’s precision, although the
1228
+ largest mAP was observed when the number of SB images
1229
+ was 800. In the second part, we fixed the number of images
1230
+ collected by the SB method to 800 and varied the number
1231
+ of images collected by the SR method to understand the
1232
+ importance of the SR data. The lower section of Table VI
1233
+ shows the precision of detectors trained using the varied data.
1234
+ The result indicated that the mAP improved as the SR image
1235
+ number increased to 800. There was no significant difference
1236
+ when the image number increased from 800 to 1600.
1237
+ TABLE V: The influence of #caps to synthesis
1238
+ AP
1239
+ #Caps
1240
+ Blue
1241
+ Purple
1242
+ White
1243
+ Purple Ring
1244
+ mAP
1245
+ 400
1246
+ 0.970
1247
+ 0.994
1248
+ 0.969
1249
+ 0.984
1250
+ 0.979
1251
+ 800
1252
+ 0.971
1253
+ 0.993
1254
+ 0.954
1255
+ 0.976
1256
+ 0.973
1257
+ 1600
1258
+ 0.971
1259
+ 0.992
1260
+ 0.980
1261
+ 0.985
1262
+ 0.982
1263
+ 3200
1264
+ 0.973
1265
+ 0.993
1266
+ 0.969
1267
+ 0.985
1268
+ 0.980
1269
+ TABLE VI: Influence of the SR and SB ratio
1270
+ AP
1271
+ Data Set Names
1272
+ Blue
1273
+ Purple
1274
+ White
1275
+ Purple Ring
1276
+ mAP
1277
+ SB200 + SR800
1278
+ 0.975
1279
+ 0.994
1280
+ 0.943
1281
+ 0.957
1282
+ 0.967
1283
+ SB400 + SR800
1284
+ 0.973
1285
+ 0.990
1286
+ 0.960
1287
+ 0.970
1288
+ 0.973
1289
+ SB600 + SR800
1290
+ 0.967
1291
+ 0.988
1292
+ 0.951
1293
+ 0.968
1294
+ 0.969
1295
+ SB800 + SR800
1296
+ 0.973
1297
+ 0.993
1298
+ 0.969
1299
+ 0.985
1300
+ 0.980
1301
+ SB1600 + SR800
1302
+ 0.952
1303
+ 0.978
1304
+ 0.926
1305
+ 0.972
1306
+ 0.957
1307
+ SB800 + SR200
1308
+ 0.951
1309
+ 0.982
1310
+ 0.925
1311
+ 0.963
1312
+ 0.955
1313
+ SB800 + SR400
1314
+ 0.932
1315
+ 0.969
1316
+ 0.914
1317
+ 0.952
1318
+ 0.942
1319
+ SB800 + SR600
1320
+ 0.966
1321
+ 0.990
1322
+ 0.930
1323
+ 0.893
1324
+ 0.945
1325
+ SB800 + SR800
1326
+ 0.973
1327
+ 0.993
1328
+ 0.969
1329
+ 0.985
1330
+ 0.980
1331
+ SB800 + SR1600
1332
+ 0.975
1333
+ 0.993
1334
+ 0.967
1335
+ 0.986
1336
+ 0.980
1337
+ Note 1 Largest AP and mAP values are highlighted in bold.
1338
+ Note 2 We used the following hyper-parameter setting tblue
1339
+ =
1340
+ 0.4 &
1341
+ tothers = 0.15, T = 30 to collect the SB data sets, and used the following
1342
+ hyper-parameter setting T = 30, t = 0.15 (same for all tubes) to collect
1343
+ the SR data sets. The values were the same as the experiments in Section
1344
+ V.A.
1345
+ Note 2 We used 3200 segmented cap region pictures for both methods.
1346
+
1347
+ ARXIV VERSION, 2022
1348
+ 11
1349
+ VI. CONCLUSIONS
1350
+ In this paper, we proposed an integrated robot observation
1351
+ and data synthesis framework for data preparation. The pro-
1352
+ posed framework can significantly reduce the human effort in
1353
+ data preparation. It required only a single process and was a
1354
+ low-cost way to produce the combined data. The experimental
1355
+ result showed that combined observation and synthetic images
1356
+ led to comparable performance to manual data preparation.
1357
+ The ablation studies provided a good guide on optimizing data
1358
+ configurations and parameter settings for training detectors
1359
+ using the combined data.
1360
+ REFERENCES
1361
+ [1] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
1362
+ tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48,
1363
+ 2019.
1364
+ [2] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
1365
+ localisation in natural images,” in Proceedings of the IEEE conference
1366
+ on computer vision and pattern recognition, 2016, pp. 2315–2324.
1367
+ [3] X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in
1368
+ medical imaging: A review,” Medical image analysis, vol. 58, p. 101552,
1369
+ 2019.
1370
+ [4] S. Hinterstoisser, O. Pauly, H. Heibel, M. Martina, and M. Bokeloh, “An
1371
+ annotation saved is an annotation earned: Using fully synthetic training
1372
+ for object detection,” in IEEE/CVF international conference on computer
1373
+ vision workshops, 2019, pp. 0–0.
1374
+ [5] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem, “Rendering synthetic
1375
+ objects into legacy photographs,” ACM Transactions on Graphics,
1376
+ vol. 30, no. 6, pp. 1–12, 2011.
1377
+ [6] P. P´erez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
1378
+ Transactions on Graphics, vol. 22, no. 3, p. 313–318, 2003.
1379
+ [7] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly
1380
+ easy synthesis for instance detection,” in IEEE International Conference
1381
+ on Computer Vision, 2017, pp. 1301–1310.
1382
+ [8] G. Georgakis, A. Mousavian, A. Berg, and J. Koˇseck´a, “Synthesizing
1383
+ training data for object detection in indoor scenes,” in Robotics: Science
1384
+ and Systems, 07 2017.
1385
+ [9] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le,
1386
+ and B. Zoph, “Simple copy-paste is a strong data augmentation method
1387
+ for instance segmentation,” in IEEE/CVF Conference on Computer
1388
+ Vision and Pattern Recognition, 2021, pp. 2918–2928.
1389
+ [10] V. Florence, J. J. Corso, and B. Griffin, “Robot-supervised learning for
1390
+ object segmentation,” in IEEE International Conference on Robotics and
1391
+ Automation, 2020, pp. 1343–1349.
1392
+ [11] W. Boerdijk, M. Sundermeyer, M. Durner, and R. Triebel, ““what’s
1393
+ this?” – learning to segment unknown objects from manipulation se-
1394
+ quences,” in IEEE International Conference on Robotics and Automa-
1395
+ tion, 2021, pp. 10 160–10 167.
1396
+ [12] D. Pathak, Y. Shentu, D. Chen, P. Agrawal, T. Darrell, S. Levine,
1397
+ and J. Malik, “Learning instance segmentation by interaction,” in IEEE
1398
+ Conference on Computer Vision and Pattern Recognition Workshops,
1399
+ 2018, pp. 2042–2045.
1400
+ [13] W. Boerdijk, M. Sundermeyer, M. Durner, and R. Triebel, “Self-
1401
+ supervised object-in-gripper segmentation from robotic motions,” in
1402
+ Conference on Robot Learning, 2020.
1403
+ [14] B. Sapp, A. Saxena, and A. Y. Ng, “A fast data collection and
1404
+ augmentation procedure for object recognition,” in AAAI, 2008, pp.
1405
+ 1402–1408.
1406
+ [15] M. Suchi, T. Patten, D. Fischinger, and M. Vincze, “Easylabel: A
1407
+ semi-automatic pixel-wise object annotation tool for creating robotic
1408
+ rgb-d datasets,” in IEEE International Conference on Robotics and
1409
+ Automation, 2019, pp. 6678–6684.
1410
+ [16] T. Kiyokawa, K. Tomochika, J. Takamatsu, and T. Ogasawara, “Fully au-
1411
+ tomated annotation with noise-masked visual markers for deep-learning-
1412
+ based object detection,” IEEE Robotics and Automation Letters, vol. 4,
1413
+ no. 2, pp. 1972–1977, 2019.
1414
+ [17] D. De Gregorio, A. Tonioni, G. Palli, and L. Di Stefano, “Semiautomatic
1415
+ labeling for deep learning in robotics,” IEEE Transactions on Automa-
1416
+ tion Science and Engineering, vol. 17, no. 2, pp. 611–620, 2020.
1417
+ [18] P. Fitzpatrick and G. Metta, “Grounding vision through experimental
1418
+ manipulation,” Philosophical Transactions of the Royal Society of Lon-
1419
+ don. Series A: Mathematical, Physical and Engineering Sciences, vol.
1420
+ 361, no. 1811, pp. 2165–2185, 2003.
1421
+ [19] K. Welke, J. Issac, D. Schiebener, T. Asfour, and R. Dillmann, “Au-
1422
+ tonomous acquisition of visual multi-view object representations for ob-
1423
+ ject recognition on a humanoid robot,” in IEEE International Conference
1424
+ on Robotics and Automation.
1425
+ IEEE, 2010, pp. 2012–2019.
1426
+ [20] B. Browatzki, V. Tikhanoff, G. Metta, H. H. B¨ulthoff, and C. Wallraven,
1427
+ “Active object recognition on a humanoid robot,” in IEEE International
1428
+ Conference on Robotics and Automation, 2012, pp. 2021–2028.
1429
+ [21] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
1430
+ tracking for in-hand 3d object modeling,” International Journal of
1431
+ Robotics Research, vol. 30, no. 11, pp. 1311–1327, 2011.
1432
+ [22] M. Bj¨orkman and D. Kragic, “Active 3d scene segmentation and
1433
+ detection of unknown objects,” in IEEE International Conference on
1434
+ Robotics and Automation, 2010, pp. 3114–3120.
1435
+ [23] T. F¨aulhammer, R. Ambrus¸, C. Burbridge, M. Zillich, J. Folkesson,
1436
+ N. Hawes, P. Jensfelt, and M. Vincze, “Autonomous learning of object
1437
+ models on a mobile robot,” IEEE Robotics and Automation Letters,
1438
+ vol. 2, no. 1, pp. 26–33, 2016.
1439
+ [24] C. D. Singh, N. J. Sanket, C. M. Parameshwara, C. Ferm¨uller, and
1440
+ Y. Aloimonos, “Nudgeseg: Zero-shot object segmentation by repeated
1441
+ physical interaction,” in IEEE/RSJ International Conference on Intelli-
1442
+ gent Robots and Systems, 2021, pp. 2714–2712.
1443
+ [25] D. Schiebener, A. Ude, and T. Asfour, “Physical interaction for seg-
1444
+ mentation of unknown textured and non-textured rigid objects,” in IEEE
1445
+ International Conference on Robotics and Automation, 2014, pp. 4959–
1446
+ 4966.
1447
+ [26] A. Eitel, N. Hauff, and W. Burgard, “Self-supervised transfer learning
1448
+ for instance segmentation through physical interaction,” in IEEE/RSJ
1449
+ International Conference on Intelligent Robots and Systems, 2019, pp.
1450
+ 4020–4026.
1451
+ [27] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An
1452
+ empirical study of context in object detection,” in IEEE Conference on
1453
+ Computer Vision and Pattern Recognition, 2009, pp. 1271–1278.
1454
+ [28] E. Barnea and O. Ben-Shahar, “Exploring the bounds of the utility of
1455
+ context for object detection,” in IEEE/CVF Conference on Computer
1456
+ Vision and Pattern Recognition, 2019, pp. 7412–7420.
1457
+ [29] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An
1458
+ empirical study of context in object detection,” in IEEE Conference on
1459
+ computer vision and Pattern Recognition, 2009, pp. 1271–1278.
1460
+ [30] N. Dvornik, J. Mairal, and C. Schmid, “Modeling visual context is key
1461
+ to augmenting object detection datasets,” in European Conference on
1462
+ Computer Vision, 2018, pp. 364–380.
1463
+ [31] H. Wang, Q. Wang, H. Zhang, J. Yang, and W. Zuo, “Constrained
1464
+ online cut-paste for object detection,” IEEE Transactions on Circuits
1465
+ and Systems for Video Technology, vol. 31, no. 10, pp. 4071–4083, 2020.
1466
+ [32] T. Hodaˇn, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell,
1467
+ P. Urbina, S. N. Sinha, and B. Guenter, “Photorealistic image synthesis
1468
+ for object instance detection,” in IEEE International Conference on
1469
+ Image Processing, 2019, pp. 66–70.
1470
+ [33] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
1471
+ Ground truth from computer games,” in European Conference on
1472
+ Computer Vision, 2016, pp. 102–118.
1473
+ [34] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
1474
+ “Domain randomization for transferring deep neural networks from
1475
+ simulation to the real world,” in IEEE/RSJ International Conference
1476
+ on Intelligent Robots and Systems, 2017, pp. 23–30.
1477
+ [35] A. Carlson, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson,
1478
+ “Modeling camera effects to improve visual learning from synthetic
1479
+ data,” in European Conference on Computer Vision Workshops, 2018,
1480
+ pp. 0–0.
1481
+ [36] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State,
1482
+ O. Shapira, and S. Birchfield, “Structured domain randomization: Bridg-
1483
+ ing the reality gap by context-aware synthetic data,” in IEEE Interna-
1484
+ tional Conference on Robotics and Automation, 2019, pp. 7249–7255.
1485
+ [37] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
1486
+ T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
1487
+ networks with synthetic data: Bridging the reality gap by domain
1488
+ randomization,” in IEEE Conference on Computer Vision and Pattern
1489
+ Recognition workshops, 2018, pp. 969–977.
1490
+ [38] A. Tsirikoglou, G. Eilertsen, and J. Unger, “A survey of image synthesis
1491
+ methods for visual machine learning,” in Computer Graphics Forum,
1492
+ vol. 39, no. 6, 2020, pp. 426–451.
1493
+
1494
+ ARXIV VERSION, 2022
1495
+ 12
1496
+ [39] X. Yang, X. Fan, J. Wang, and K. Lee, “Image translation based synthetic
1497
+ data generation for industrial object detection and pose estimation,”
1498
+ IEEE Robotics and Automation Letters, 2022.
1499
+ [40] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
1500
+ “Implicit 3D orientation learning for 6D object detection from RGB
1501
+ images,” in European Conference on Computer Vision, 2018, pp. 699–
1502
+ 715.
1503
+ [41] S. Chatterjee, D. Hazra, Y.-C. Byun, and Y.-W. Kim, “Enhancement of
1504
+ image classification using transfer learning and gan-based synthetic data
1505
+ augmentation,” Mathematics, vol. 10, no. 9, p. 1541, 2022.
1506
+ [42] I. Lundberg, M. Bj¨orkman, and P. ¨Ogren, “Intrinsic camera and hand-eye
1507
+ calibration for a robot vision system using a point marker,” in IEEE-RAS
1508
+ International Conference on Humanoid Robots, 2014, pp. 59–66.
1509
+ [43] W. Wan and K. Harada, “Developing and comparing single-arm and
1510
+ dual-arm regrasp,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
1511
+ pp. 243–250, 2016.
1512
+ [44] J. Li, J. Zhang, S. J. Maybank, and D. Tao, “Bridging composite and
1513
+ real: towards end-to-end deep image matting,” International Journal of
1514
+ Computer Vision, vol. 130, no. 2, pp. 246–266, 2022.
1515
+ [45] G.
1516
+ Jocher
1517
+ et
1518
+ al.,
1519
+ “ultralytics/yolov5:
1520
+ v3.1
1521
+ -
1522
+ Bug
1523
+ Fixes
1524
+ and
1525
+ Performance Improvements,” Oct. 2020. [Online]. Available: https:
1526
+ //doi.org/10.5281/zenodo.4154370
1527
+ [46] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
1528
+ survey,” arXiv preprint arXiv:1905.05055, 2019.
1529
+
09AzT4oBgHgl3EQfevxv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tAyT4oBgHgl3EQfbfeR/content/2301.00264v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd696c2e0c7fb3578e54f86bcb2731caee4f2465390185981b8836d1a082d0bc
3
+ size 2314984
0tE1T4oBgHgl3EQf4wXL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b87bb43a59fd556338fc99dbaf68ab45d5fd7b4c587f50b97d4300ce00b2420c
3
+ size 26017837
0tFQT4oBgHgl3EQfDzUz/content/tmp_files/2301.13235v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tFQT4oBgHgl3EQfDzUz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E1T4oBgHgl3EQfAQI2/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69efd6106467fb8f559fe9781771dc06e3cc547a806ddbf2ea7f8ab6171797e6
3
+ size 156829
2NE2T4oBgHgl3EQfjAcm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca2bb60096aaaa83ad295451565000d027bd064e8af4610ccb94dfa6a92c571d
3
+ size 2949165
2NE2T4oBgHgl3EQfjAcm/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:412e67eb01254fa221324307a4b0d2ecaaffdc4368ba144af53077ad9f8cc182
3
+ size 97597
2dFQT4oBgHgl3EQf2TZ3/content/tmp_files/2301.13423v1.pdf.txt ADDED
@@ -0,0 +1,1982 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13423v1 [math.OA] 31 Jan 2023
2
+ ANALYSIS FOR IDEMPOTENT STATES ON QUANTUM
3
+ PERMUTATION GROUPS
4
+ J.P. MCCARTHY
5
+ Abstract. Woronowicz proved the existence of the Haar state for compact quantum
6
+ groups under a separability assumption later removed by Van Daele in a new existence
7
+ proof. A minor adaptation of Van Daele’s proof yields an idempotent state in any non-
8
+ empty weak∗-compact convolution-closed convex subset of the state space. Such subsets,
9
+ and their associated idempotent states, are studied in the case of quantum permutation
10
+ groups.
11
+ Contents
12
+ Introduction
13
+ 1
14
+ 1.
15
+ Compact quantum groups
16
+ 5
17
+ 2.
18
+ Pal sets and quasi-subgroups
19
+ 10
20
+ 3.
21
+ Stabiliser quasi-subgroups
22
+ 17
23
+ 4.
24
+ Exotic quasi-subgroups of the quantum permutation group
25
+ 23
26
+ 5.
27
+ Convolution dynamics
28
+ 29
29
+ 6.
30
+ Integer fixed points quantum permutations
31
+ 35
32
+ References
33
+ 38
34
+ Introduction
35
+ It is sometimes quipped that quantum groups are neither quantum nor groups. What-
36
+ ever about compact quantum groups not being quantum, compact quantum groups are,
37
+ of course, not in general classical groups. On the other hand, compact Hausdorff groups
38
+ are compact quantum groups. Furthermore, the classical theorems of the existence of
39
+ the Haar measure, Peter–Weyl, Tannaka–Krein duality, etc., can all be viewed as special
40
+ cases of the quantum analogues proved by Woronowicz [29, 30], and thus naturally the
41
+ theory of compact quantum groups has many commonalities with the theory of compact
42
+ groups.
43
+ 2020 Mathematics Subject Classification. 46L30,46L67.
44
+ Key words and phrases. quantum permutations, idempotent states.
45
+ 1
46
+
47
+ 2
48
+ J.P. MCCARTHY
49
+ Not all classical theorems generalise so nicely:
50
+ Theorem 0.1. (Kawada–Itˆo Theorem, [14], Th. 3) Let G be a compact separable group.
51
+ Then a probability distribution on G is idempotent with respect to convolution if and only
52
+ if it is the uniform distribution on a closed subgroup H ⊆ G.
53
+ The quantum analogue of a closed subgroup, H ⊆ G, is given by a comultiplication-
54
+ respecting surjective *-homomorphism π : C(G) → C(H), and the direct quantum ana-
55
+ logue of the Kawada–Itˆo theorem would be that each state idempotent with respect to
56
+ convolution is a Haar idempotent, that is a state on C(G) of the form hC(H) ◦ π (where
57
+ hC(H) is the Haar state on C(H)). However in 1996 Pal discovered non-Haar idempotents
58
+ in the Kac–Paljutkin quantum group [20], and thus the direct quantum analogue of the
59
+ Kawada–Itˆo theorem is false (in fact there are counterexamples in the dual of S3, an even
60
+ ‘smaller’ quantum group [8]).
61
+ The null-spaces of Pal’s idempotent states are only one-sided ideals. Starting with [8],
62
+ Franz, Skalski and coauthors undertook a general study of idempotent states on compact
63
+ quantum groups, and, amongst other results, showed that the null-space being a one-
64
+ sided rather than two-sided ideal is the only obstruction to an idempotent being Haar
65
+ (Proposition 2.21). In the case of quantum permutation groups, interpreting elements
66
+ of the state space as quantum permutations, called the Gelfand–Birkhoff picture in [17],
67
+ leads to the consideration of distinguished subsets of the state space. In [17], using the
68
+ fact that idempotent states in the case of finite quantum groups have group-like support
69
+ ([8], Cor. 4.2), subsets of the state space are associated to idempotent states. The current
70
+ work generalises this point of view: the subset associated to an idempotent state φ on
71
+ the algebra of continuous functions on a quantum permutation group G is called a quasi-
72
+ subgroup (after [12]), and given by the set of states absorbed by the idempotent:
73
+ Sφ = {ϕ ∈ S(C(G)): ϕ ⋆ φ = φ = φ ⋆ ϕ}.
74
+ Whenever a quasi-subgroup is given by a (universal) Haar idempotent, it is stable under
75
+ wave-function collapse (see Definition 2.14). There is an obvious relationship between
76
+ ideals and wave-function collapse: that all classical quasi-subgroups are subgroups is just
77
+ another way of saying that there are no one-sided ideals in the commutative case. An
78
+ equivalence between Haar idempotent states and the stability of the associated quasi-
79
+ subgroup under wave-function collapse is not proven here, but there is a partial result
80
+ (Theorem 2.23).
81
+ The other theme of the study of Franz, Skalski and coauthors is the relationship be-
82
+ tween idempotent states and group-like projections, and culminates in a comprehensive
83
+ statement about idempotent states being group-like projections in the multiplier algebra
84
+ of the dual discrete quantum group [8]. This work contains no such comprehensive state-
85
+ ment, but does extend the definition of continuous group-like projections p ∈ C(G) to
86
+
87
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
88
+ 3
89
+ group-like projections p ∈ C(G)∗∗, the bidual. Idempotent states with group-like support
90
+ projection are particularly well-behaved, however it is shown that in the non-coamenable
91
+ case the support projection of the Haar state is not group-like.
92
+ The consideration of subsets of the state space leads directly to the key observation in
93
+ this work that non-empty weak∗-compact convolution-closed convex subsets S of the state
94
+ space, which are termed Pal sets, contain S-invariant idempotent states φS:
95
+ ϕ ⋆ φS = φS = φS ⋆ ϕ
96
+ (ϕ ∈ S).
97
+ This observation is via Van Daele’s proof of the existence of the Haar state [26] (os-
98
+ tensibly for the apparently esoteric and pathological non-separable case). This observa-
99
+ tion yields new examples of (generally) non-Haar idempotent states in the case of quan-
100
+ tum permutation groups: namely from the stabiliser quasi-subgroups of Section 3. Pal
101
+ sets, through their idempotent state, generate quasi-subgroups. Consider S3 ⊂ S+
102
+ 4 via
103
+ C(S+
104
+ 4 ) → C(S+
105
+ 4 )/⟨u44 = 1⟩: this study yields the interesting example of an intermediate
106
+ quasi-subgroup
107
+ S3 ⊊ (S+
108
+ 4 )4 ⊊ S+
109
+ 4 .
110
+ Where h is the Haar state on C(S+
111
+ 4 ), the (non-Haar) idempotent in (S+
112
+ 4 )4 is given by:
113
+ φ(f) = h(u44fu44)
114
+ h(u44)
115
+ (f ∈ C(S+
116
+ 4 )).
117
+ The quasi-subgroup shares many properties of the state space of C(S3), namely it is
118
+ closed under convolution, closed under reverses ([17], (5.1)), and contains an identity for
119
+ the convolution (i.e. the counit). Moreover, if any quantum permutation ϕ ∈ (S+
120
+ 4 )4 is
121
+ measured with u44 ∈ C(S+
122
+ 4 ) (in the sense of the Gelfand–Birkhoff picture), it gives one
123
+ with probability one (i.e. it fixes label four). However, while it contains states non-zero on
124
+ the commutator ideal of C(S+
125
+ 4 ), this isn’t a quantum permutation group on three labels
126
+ because (S+
127
+ 4 )4 is not closed under wave-function collapse (the null-space of φ is one-sided).
128
+ A famous open problem in the theory of quantum permutation groups is the maxi-
129
+ mality conjecture: that the classical permutation group SN ⊆ S+
130
+ N is a maximal quantum
131
+ subgroup. Following on from Section 6.3 of [17], the current work considers the possibil-
132
+ ity of an exotic intermediate quasi-subgroup strictly between the classical and quantum
133
+ permutation groups. An attack on the maximality conjecture via such methods is not a
134
+ priori particularly promising, but some basic analysis of the support projections of the
135
+ characters might be useful in the future. This analysis shows that the support projec-
136
+ tion of the Haar idempotent associated with SN ⊂ S+
137
+ N is a group-like projection in the
138
+ bidual. One consequence of this is Theorem 4.8 which says that hSN and any “genuinely
139
+ quantum permutation” generates a quasi-subgroup strictly bigger than SN, i.e. an idem-
140
+ potent state between hSN and the Haar state on C(S+
141
+ N). It isn’t hSN, but it could be
142
+ (1) a non-Haar idempotent; or, for some N ≥ 6, (2) the Haar idempotent from an exotic
143
+
144
+ 4
145
+ J.P. MCCARTHY
146
+ quantum subgroup SN ⊊ GN ⊊ S+
147
+ N; or (3) the Haar state on C(S+
148
+ N). If it is always
149
+ (3), a strictly stronger statement than the maximality conjecture, then the maximality
150
+ conjecture holds.
151
+ Using the Gelfand–Birkhoff picture, this particular analysis allows us to consider the
152
+ (classically) random and truly quantum parts of a quantum permutation, and there are
153
+ some basic rules governing the convolution of (classically) random quantum permutations
154
+ and truly quantum permutations. Some consequences of these are explored: for example,
155
+ an idempotent state on C(S+
156
+ N) is either random, or “less than half” random (Corollary
157
+ 5.11).
158
+ The paper is organised as follows. Section 1 introduces compact quantum groups, and
159
+ discusses Van Daele’s proof of the existence of the Haar state. Key in this work is the
160
+ restriction to universal algebras of continuous functions, and the reasons for this restriction
161
+ are explained. A further restriction to quantum permutation groups is made, and finally
162
+ some elementary properties of the bidual are summarised. Section 2 introduces Pal sets,
163
+ and asserts that they contain idempotent states. Quasi-subgroups are defined to fix the
164
+ non-injectivity of the association of a Pal set to its idempotent state.
165
+ The definition
166
+ of a group-like projection is extended to include group-like projections in the bidual,
167
+ and the interplay between such group-like projections and idempotent states is explored.
168
+ Wave-function collapse is defined, and the question of stability of a quasi-subgroup under
169
+ wave-function collapse studied. In Section 3, stabiliser quasi-subgroups are defined, and
170
+ it is shown that there is a strictly intermediate quasi-subgroup between S+
171
+ N−1 ⊂ S+
172
+ N
173
+ and S+
174
+ N. In Section 4, exotic quasi-subgroups of S+
175
+ N are considered (and by extension
176
+ exotic quantum subgroups). Necessarily this section talks about the classical version of a
177
+ quantum permutation group. The support projections of characters are studied, and it is
178
+ proved that the sum of these is a group-like projection in the bidual. In the case of S+
179
+ N, this
180
+ group-like projection is used to define the (classically) random and truly quantum parts of
181
+ a quantum permutation, and it is proven that the Haar idempotent coming from SN ⊂ S+
182
+ N
183
+ together with a quantum permutation with non-zero truly quantum part generates a non-
184
+ classical quasi-subgroup in S+
185
+ N that is strictly bigger than SN (but possibly equal to S+
186
+ N).
187
+ In Section 5 the convolution of random and truly quantum permutations is considered,
188
+ and as a corollary a number of quantitative and qualitative results around the random
189
+ and truly quantum parts of convolutions. In Section 6 there is a brief study of the number
190
+ of fixed points of a quantum permutation, and it is shown that as a corollary of never
191
+ having an integer number of fixed points, the Haar state is truly quantum.
192
+
193
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
194
+ 5
195
+ 1. Compact quantum groups
196
+ 1.1. Definition and the Haar state.
197
+ Definition 1.1. An algebra of continuous functions on a (C∗-algebraic) compact quan-
198
+ tum group G is a C∗-algebra C(G) with unit 1G together with a unital ∗-homomorphism
199
+ ∆ : C(G) → C(G) ⊗ C(G) into the minimal tensor product that satisfies coassociativity
200
+ and Baaj–Skandalis cancellation:
201
+ ∆(C(G))(1G ⊗ C(G)) = ∆(C(G))(C(G) ⊗ 1G) = C(G) ⊗ C(G).
202
+ Woronowicz defined compact matrix quantum groups [28], and extended this definition
203
+ to compact quantum groups [30]. In order to establish the existence of a Haar state,
204
+ Theorem 1.2 below, Woronowicz assumed that the algebra of functions was separable.
205
+ Shortly afterwards Van Daele removed this condition [26], and established the existence
206
+ of a Haar state in the non-separable case. The quantum groups in the current work are
207
+ compact matrix quantum groups, which are separable, however, a careful study of Van
208
+ Daele’s proof suggests further applications. Therefore, Van Daele’s proof will be teased
209
+ out in some detail, and then adapted in Section 2. Note that while Lemmas 1.3 and 1.4
210
+ are attributed here to Van Daele, it is pointed out by Van Daele that the techniques of
211
+ their proofs were largely present in the work of Woronowicz.
212
+ Define the convolution of states ϕ1, ϕ2 on C(G):
213
+ ϕ1 ⋆ ϕ2 := (ϕ1 ⊗ ϕ2)∆.
214
+ Theorem 1.2 ([26, 30]). The algebra of continuous functions C(G) on a compact quantum
215
+ group admits a unique invariant state h, such that for all states ϕ on C(G):
216
+ h ⋆ ϕ = h = ϕ ⋆ h.
217
+ Lemma 1.3 ([26], Lemma 2.1). Let ϕ be a state on C(G). There exists a state φϕ on
218
+ C(G) such that
219
+ ϕ ⋆ φϕ = φϕ = ϕ ⋆ φϕ.
220
+ Proof. Define
221
+ ϕn = 1
222
+ n(ϕ + ϕ⋆2 + · · · + ϕ⋆n).
223
+ As the state space S(C(G)) is convex and closed under convolution, (ϕn)n≥1 ⊂ S(C(G)).
224
+ Via the weak*-compactness of the state space, Van Daele shows that φϕ, a weak*-limit
225
+ point of (ϕn)n≥1, is ϕ-invariant.
226
+
227
+ Lemma 1.4 ([26], Lemma 2.2). Let ϕ and φ be states on C(G) such that ϕ ⋆ φ = φ. If
228
+ ρ ∈ C(G)∗ and 0 ≤ ρ ≤ ϕ, then also ρ ⋆ φ = ρ(1G)φ.
229
+
230
+ 6
231
+ J.P. MCCARTHY
232
+ Proof of Theorem 1.2. Where S(C(G)) is the state space of C(G), for each positive linear
233
+ functional ω on C(G), define:
234
+ Kω := {ϕ ∈ S(C(G)) : ω ⋆ ϕ = ω(1G)ϕ}.
235
+ As per Van Daele, Kω is closed and thus compact with respect to the weak*-topology.
236
+ It is non-empty because ω can be normalised to a state �ω on C(G), and by Lemma 1.3,
237
+ there exists φω ∈ K�ω and thus φω ∈ Kω.
238
+ Let φ ∈ Kω1+ω2. Note that both ω1, ω2 ≤ ω1 +ω2, and so by Lemma 1.4, φ ∈ Kω1 ∩Kω2
239
+ so that:
240
+ Kω1+ω2 ⊂ Kω1 ∩ Kω2.
241
+ Assume that the intersection of the Kω over the positive linear functionals on C(G) is
242
+ empty. Thus, where the complement is with respect to S(C(G)):
243
+
244
+ ω pos. lin. func.
245
+ Kc
246
+ ω = S(C(G)),
247
+ is an open cover of a compact set, and thus admits a finite subcover {Kc
248
+ ωi : i = 1, . . . , n}
249
+ such that
250
+ n�
251
+ i=1
252
+ Kc
253
+ ωi = S(C(G)) =⇒
254
+ n�
255
+ i=1
256
+ Kωi = ∅.
257
+ Let ψ = �n
258
+ i=1 ωi: the set Kψ is non-empty. It is also a subset of:
259
+ n�
260
+ i=1
261
+ Kωi = ∅,
262
+ an absurdity, and so the intersection of all the Kω is non-empty, and thus there is a state
263
+ h that is left-invariant for all positive linear functionals and thus for S(C(G)).
264
+
265
+ 1.2. The universal and reduced versions. A reference for this section is Timmer-
266
+ mann [24]. A compact quantum group has a dense Hopf*-algebra of regular functions,
267
+ O(G). The algebra of regular functions has a minimal norm-completion, the reduced
268
+ algebra of continuous functions, Cr(G), the image of the GNS representation associated
269
+ to the Haar state; and a maximal norm-completion, the universal algebra of continuous
270
+ functions, Cu(G). The compact quantum group G is coamenable if O(G) has a unique
271
+ norm-completion to an algebra of continuous functions on a compact quantum group,
272
+ and so in particular Cr(G) ∼= Cu(G). The Haar state is faithful on O(G) and Cr(G), but
273
+ Cr(G) does not in general admit a character. On the other hand, Cu(G) does admit a
274
+ character, but the Haar state is no longer faithful in general.
275
+ After an abelianisation πab : C(G) → C(G)/Nab, and via Gelfand’s theorem, the algebra
276
+ of continuous functions on the classical version of a compact quantum group is given by
277
+ the algebra of continuous function on the set of characters. However, not every completion
278
+
279
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
280
+ 7
281
+ Cα(G) of O(G) admits a classical version: in particular, when G is not coamenable the
282
+ abelianisation of Cr(G) is zero, and Cr(G) admits no characters. This work includes a
283
+ study of the classical versions of quantum permutation groups G ⊆ S+
284
+ N, and working at
285
+ the universal level ensures that talking about the classical version G ⊆ G makes sense.
286
+ The quantum subgroup relation H ⊆ G will be given at the universal level: a quantum
287
+ subgroup is given by a surjective *-homomorphism π : Cu(G) → Cu(H) that respects the
288
+ comultiplication in the sense that:
289
+ ∆Cu(H) ◦ π = (π ⊗ π) ◦ ∆.
290
+ Every such morphism of algebras of continuous function Cu(G) → Cu(H) restricts to a
291
+ morphism on the level of regular functions O(G) → O(H); and every morphism O(G) →
292
+ O(H) extends to the level of universal algebras of continuous functions [6].
293
+ Key in this work is the notion of a quasi-subgroup Sφ ⊆ S(Cu(G)), defined as the set
294
+ of states ϕ that are absorbed by a given idempotent state φ on Cu(G):
295
+ ϕ ⋆ φ = φ = φ ⋆ ϕ.
296
+ If hH := hCα(H) ◦ π is a Haar idempotent associated with π : C(G) → Cα(H), it is the case
297
+ that
298
+ {ϕ ◦ π : ϕ ∈ S(Cα(H))} ⊆ ShH.
299
+ Remark 1.5. As explained by Stefaan Vaes1 [25], in general this is not an equality. In
300
+ particular the Haar state of Cr(G) in Cu(G),
301
+ hr := hCr(G) ◦ πr,
302
+ is in fact equal to the Haar state on Cu(G). Thus the quasi-subgroup generated by hr
303
+ is the whole state space of Cu(G), but in the non-coamenable case there are states on
304
+ Cu(G), such as the counit, that do not factor through πr, and thus in this case:
305
+ {ϕ ◦ πr : ϕ ∈ S(Cr(G))} ⊊ Shr.
306
+ Vaes goes on to prove that in the universal case of π : Cu(G) → Cu(H) that indeed:
307
+ (1)
308
+ {ϕ ◦ π : ϕ ∈ H} = ShH,
309
+ and this is more satisfactory for a theory of quasi-subgroups. Note that Vaes’s observation
310
+ yields Theorem 4.6 as a special case.
311
+ There are issues related to the non-faithfulness of the Haar state on Cu(G). For example,
312
+ suppose that π : Cr(G) → Cr(H) is a comultiplication-preserving quotient map and
313
+ consider the Haar idempotent:
314
+ φ := hCr(H) ◦ π.
315
+ 1it is believed that (1) is not in the literature, however as its proof requires representation theory, not
316
+ used in the current work, Vaes’s proof is omitted
317
+
318
+ 8
319
+ J.P. MCCARTHY
320
+ As the Haar state is faithful on Cr(H), the null-space Nφ of φ coincides with ker π, and the
321
+ support projection pφ ∈ Cr(G)∗∗ gives a nice direct sum structure to the bidual Cr(G)∗∗.
322
+ For a non-coamenable compact quantum group H, and a quotient π : Cu(G) → Cu(H),
323
+ the inclusion ker π ⊂ Nφ can be proper:
324
+ Cu(G) → Cu(H) → Cu(H)/Nφ,
325
+ with the final algebra of continuous functions isomorphic to Cr(H) ̸∼= Cu(H) [6].
326
+ From this point on, all algebras of continuous functions will be assumed
327
+ universal, C(G) ∼= Cu(G). Careful readers can extract results which hold more generally.
328
+ 1.3. Quantum Permutation Groups. Let C(X) be a C∗-algebra with unit 1X.
329
+ A
330
+ (finite) partition of unity is a (finite) set of projections {pi}N
331
+ i=1 ⊂ C(X) that sum to the
332
+ identity:
333
+ N
334
+
335
+ i=1
336
+ pi = 1X.
337
+ Definition 1.6. A matrix u ∈ MN(C(X)) is a magic unitary if the rows and columns are
338
+ partitions of unity:
339
+ N
340
+
341
+ k=1
342
+ uik = 1X =
343
+ N
344
+
345
+ k=1
346
+ ukj
347
+ (1 ≤ i, j ≤ N).
348
+ Consider the universal unital C∗-algebra:
349
+ C(S+
350
+ N) := C∗(uij : u an N × N magic unitary).
351
+ Define
352
+ (2)
353
+ ∆(uij) =
354
+ N
355
+
356
+ k=1
357
+ uik ⊗ ukj.
358
+ Using the universal property, Wang [27] shows that ∆ is a *-homomorphism, and S+
359
+ N is
360
+ a compact quantum group, called the quantum permutation group on N symbols. Note
361
+ S+
362
+ N is not coamenable for N ≥ 5.
363
+ Definition 1.7. Let G be a compact quantum group. A magic unitary u ∈ MN(C(G))
364
+ whose entries generate C(G) as a C∗-algebra, and such that ∆(uij) is given by (2), is
365
+ called a magic fundamental representation. A compact quantum group that admits such
366
+ a magic fundamental representation is known as a quantum permutation group, and by
367
+ the universal property G ⊆ S+
368
+ N.
369
+
370
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
371
+ 9
372
+ The relation G ⊆ S+
373
+ N yields a specific fundamental magic representation u ∈ MN(C(G)),
374
+ and whether uij is a generator of C(G) or of C(S+
375
+ N) should be clear from context. From
376
+ this point on, all quantum groups G will be assumed to be quantum permu-
377
+ tations groups G ⊆ S+
378
+ N. Again, careful readers can extract results which hold more
379
+ generally.
380
+ The antipode is given by:
381
+ S(uij) = uji =⇒ S2(uij) = uij,
382
+ that is quantum permutation groups are Kac, where the antipode is a bounded linear
383
+ map satisfying S2 = IC(G).
384
+ Proposition 1.8. Let ϕ1, ϕ2 be states on C(G):
385
+ (ϕ1 ⋆ ϕ2) ◦ S = (ϕ2 ◦ S) ⋆ (ϕ1 ◦ S).
386
+ Proof. Where τ is the flip, f ⊗ g �→ g ⊗ f, in O(G):
387
+ ∆ ◦ S = (S ⊗ S) ◦ τ ◦ ∆.
388
+ If f ∈ O(G), then using the antipodal property
389
+ ((ϕ1 ⋆ ϕ2) ◦ S)(f) = ((ϕ2 ◦ S) ⋆ (ϕ1 ◦ S))(f).
390
+ The same holds for all f ∈ C(G) because the antipode is bounded, and the comultiplica-
391
+ tion is a *-homomorphism, and thus both are norm-continuous.
392
+
393
+ Lemma 1.9 ([8], Section 3). If a state φ on C(G) is idempotent, φ⋆φ = ��, then φ◦S = φ.
394
+ 1.4. The Bidual. In the sequel the bidual C(X)∗∗ of a unital C∗-algebra C(X) will be
395
+ utilised. Here some of its properties are summarised from Takesaki, Vol. I. [23]. The
396
+ bidual admits C(G)∗ as a predual, and so is a von Neumann algebra. States ϕ on C(X)
397
+ have extensions to states ωϕ on C(X)∗∗. Where
398
+ Nϕ = {f ∈ C(X) : ϕ(|f|2) = 0},
399
+ the σ-weak-closure is a σ-weakly-closed left ideal in a von Neumann algebra, and so of
400
+ the form C(X)∗∗qϕ for some projection qϕ. The support projection of a state ϕ on C(X)
401
+ is pϕ = 1X − qϕ. It has the property that:
402
+ ϕ(f) = ωϕ(fpϕ) = ωϕ(pϕf) = ωϕ(pϕfpϕ)
403
+ (f ∈ C(X)),
404
+ and it is the smallest projection p ∈ C(X)∗∗ such that ωϕ(p) = 1 (if ωϕ(p) = 1 then ϕ is
405
+ said to be supported on p, and pϕ ≤ p). If N ⊆ C(X) is an ideal, then N∗∗ ⊆ C(X)∗∗ is
406
+ σ-weakly closed, and so equal to C(X)∗∗q for a central projection q ∈ C(X)∗∗. Then, as
407
+ C∗-algebras:
408
+ (3)
409
+ C(X)∗∗ ∼= (C(X)/N)∗∗ ⊕ N∗∗.
410
+
411
+ 10
412
+ J.P. MCCARTHY
413
+ The embedding C(X) ⊂ C(X)∗∗ is an isometry, so that C(X) is norm closed, and
414
+ the norm closure of a norm dense *-subalgebra O(X) ⊆ C(X) in C(X)∗∗ is C(X). In
415
+ addition, the σ-weak closures of O(X) and C(X) are both C(X)∗∗. A *-homomorphism
416
+ T : C(X) → C(Y) extends to a σ-weakly continuous *-homomorphism:
417
+ T ∗∗ : C(X)∗∗ → C(Y)∗∗.
418
+ In particular, the extension of a character on C(X) is a character on C(X)∗∗, and thus
419
+ the support projections of characters in C(X) are minimal projections in C(X)∗∗.
420
+ The product on the bidual is separately σ-weakly continuous:
421
+
422
+ lim
423
+ λ fλ
424
+
425
+ f = lim
426
+ λ (fλf)
427
+ (fλ, f ∈ C(X)∗∗).
428
+ Via the Sherman–Takeda Theorem [21, 22], projections p1, . . . , pN ∈ C(X) may be
429
+ viewed as Hilbert space projections. Then
430
+ (4)
431
+ lim
432
+ n→∞[(p1 · · · pN)n] = p1 ∧ · · · ∧ pN,
433
+ strongly [11]. The powers of products of projections are in the unit ball. The strong and
434
+ σ-strong coincide on the unit ball, and σ-strong convergence implies σ-weak convergence
435
+ of (4). Finally, for any Borel set E ⊆ σ(f) of self-adjoint f ∈ C(X), the spectral projection
436
+ 1E(f) ∈ C(X)∗∗.
437
+ 2. Pal sets and quasi-subgroups
438
+ 2.1. Pal sets. The following notation/terminology is outlined in [17] and used hereafter:
439
+ Definition 2.1. Given a quantum permutation group G, the Gelfand–Birkhoff picture
440
+ interprets elements of the state-space as quantum permutations, so that ϕ ∈ G means ϕ
441
+ is a state on C(G), and a subset of the state space S(C(G)) can be denoted S ⊆ G.
442
+ Definition 2.2. A subset S ⊆ G is closed under convolution if
443
+ ϕ, ρ ∈ S =⇒ ϕ ⋆ ρ ∈ S.
444
+ A subset S is closed under reverses if
445
+ ϕ ∈ S =⇒ (ϕ ◦ S) ∈ S.
446
+ A subset S contains the identity if C(G) admits a counit ε, and ε ∈ S.
447
+ Proposition 2.3. Suppose that π : C(G) → C(H) gives a (closed) quantum subgroup
448
+ H ⊆ G. Then the set:
449
+ H⊆G := {ϕ ◦ π : ϕ ∈ H},
450
+ is closed under convolution, and closed under reverses.
451
+ There are subsets S ⊂ G that are closed under convolution, closed under reverses, and
452
+ contain the identity that are not associated with quantum subgroups in this way.
453
+
454
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
455
+ 11
456
+ Example 2.4. Let Γ be a finite group with a non-normal subgroup Λ ⊂ Γ. The state space
457
+ of C(�Γ), denoted here �Γ, is the set of positive-definite functions on Γ. Define:
458
+ (5)
459
+ SΛ = {ϕ ∈ �Γ : ϕ(λ) = 1 for all λ ∈ Λ}.
460
+ The convolution for states on C(�Γ) is pointwise multiplication, therefore SΛ is closed
461
+ under convolution. The reverse of ϕ ∈ �Γ is:
462
+ (ϕ ◦ S)(γ) = ϕ(γ−1),
463
+ and Λ is a group so SΛ is closed under reverses. The identity, 1Γ ∈ SΛ.
464
+ Example 2.5. Let G0 be the Kac–Paljutkin quantum group with algebra of functions
465
+ C(G0) = Cf1 ⊕ Cf2 ⊕ Cf3 ⊕ Cf4 ⊕ M2(C).
466
+ Where f i is dual to fi, and Eij is dual to the matrix unit Eij in the M2(C) factor, the
467
+ convex hulls co({f 1, f 4, E11}) and co({f 1, f 4, E22}) are closed under convolution, under
468
+ reverses, and contain the identity, ε = f 1.
469
+ Example 2.6. Let G be a quantum permutation group with uii ∈ C(G) non-central. Define
470
+ a subset Gi ⊂ G by:
471
+ Gi := {ϕ ∈ G : ϕ(uii) = 1}.
472
+ This set is closed under convolution, and closed under reverses because S(uii) = uii.
473
+ Finally ε ∈ Gi as ε(uij) = δi,j. More in Section 3.
474
+ Definition 2.7. A Pal set is a non-empty convex weak*-closed subset S ⊆ G that is closed
475
+ under convolution.
476
+ Theorem 2.8. A Pal set S ⊆ G contains a unique S-invariant state, φS ∈ S, such that
477
+ for all ϕ ∈ S:
478
+ φS ⋆ ϕ = φS = ϕ ⋆ φS.
479
+ .
480
+ Proof. This has exactly the same proof as Theorem 1.2, except rather than defining a
481
+ Kω for each positive linear functional ω on C(G), they are defined only for each ω ∈
482
+ cone(S).
483
+
484
+ The strength of the notion of a Pal set is that, as will be seen in Section 3, they can be
485
+ easy to describe, and yield idempotent states with certain properties. The problem with
486
+ Definition 2.7 is that Pal sets are not in general sub-objects, not state-spaces of algebras
487
+ of continuous functions on a compact quantum group. It is possible to talk about compact
488
+ quantum hypergroups in this setting [8, 9, 15], but this avenue will not be pursued here.
489
+ Furthermore, the correspondence S → φS is not one-to-one. For example, the Pal set H⊆G
490
+ yields the Haar idempotent hH ◦ π. The singleton {hH ◦ π} is a Pal set with the same
491
+ idempotent hH ◦ π.
492
+
493
+ 12
494
+ J.P. MCCARTHY
495
+ Another such non-correspondence occurs for the Pal set of central states:
496
+ Definition 2.9. Where:
497
+ {uα
498
+ ij : i, j = 1, . . . , dα, α ∈ Irr(G)}
499
+ are matrix coefficients of mutually inequivalent irreducible unitary representations, a cen-
500
+ tral state ϕ ∈ G is one such that for all α ∈ Irr(G) there exists ϕ(α) ∈ C such that:
501
+ ϕ(uα
502
+ ij) = ϕ(α)δi,j.
503
+ Proposition 2.10. The set of central states is a Pal set with idempotent state h ∈ G.
504
+ In [10], an S+
505
+ N analogue of the measure on SN constant on transpositions, a central
506
+ state ϕtr on C(S+
507
+ N), is studied, and it is shown that the convolution powers (ϕ⋆k
508
+ tr )k≥0 are
509
+ a sequence of central states converging to the Haar state.
510
+ 2.2. Quasi-subgroups. To fix the non-injectivity of the association of a Pal set S with
511
+ an idempotent φS, is to define a quasi-subgroup. This nomenclature of quasi-subgroup is
512
+ inspired by Kasprzak and So�ltan [12].
513
+ Proposition 2.11. Given an idempotent state φ ∈ G, the set:
514
+ (6)
515
+ Sφ := {ϕ ∈ G: ϕ ⋆ φ = φ = φ ⋆ ϕ}
516
+ is a Pal set with idempotent state φ.
517
+ Proof. By associativity, Sφ is closed under convolution. Convexity is straightforward. For
518
+ weak*-closure, let (ϕλ) ⊆ Sφ converge to ϕ ∈ G, and take f ∈ O(G):
519
+ (ϕ ⋆ φ)(f) =
520
+
521
+ ϕ(f(1))φ(f(2)) =
522
+ � �
523
+ lim
524
+ λ ϕλ(f(1))
525
+
526
+ φ(f(2))
527
+ = lim
528
+ λ
529
+
530
+ ϕλ(f(1))φ(f(2)) = lim
531
+ λ ((ϕλ ⋆ φ)(f)) = lim
532
+ λ φ(f) = φ(f)
533
+
534
+ Definition 2.12. A quasi-subgroup is a subset of the state space of the form Sφ for an
535
+ idempotent state φ on C(G); the quasi-subgroup generated by φ.
536
+ The quasi-subgroup Sφ is the largest Pal set with idempotent φ, and there is a one-to-
537
+ one correspondence between quasi-subgroups and idempotent states.
538
+ 2.3. Group-like projections. Group-like projections (and their link with idempotent
539
+ states) were first noted by Lanstad and Van Daele [15]. This definition can be extended
540
+ to the bidual:
541
+ Definition 2.13. A group-like projection p ∈ C(G)∗∗ is a non-zero projection such that:
542
+ ∆∗∗(p)(1G ⊗ p) = p ⊗ p.
543
+
544
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
545
+ 13
546
+ In the finite case, there is a bijective correspondence between idempotent states and
547
+ group-like projections: every idempotent state has group-like density with respect to the
548
+ Haar state [8] (and this group-like density coincides with the support projection [17]). In
549
+ the compact case, continuous group-like projections p ∈ C(G) with h(p) > 0 give densities
550
+ to idempotent states via the Fourier transform, p �→ h(·p)/h(p), but the converse does
551
+ not hold (see Section 4 and Corollary 6.3). However it is shown here that every group-like
552
+ projection in the bidual yields a Pal set, and thus an idempotent state, but as seen in
553
+ Proposition 2.20 a converse statement does not hold. In general, it can only be said that
554
+ idempotent states are associated with group-like projections in the multiplier algebra of
555
+ the dual discrete quantum group [8].
556
+ The language of wave-function collapse will be used talk about idempotent states with
557
+ group-like density, and later illustrate the difference between Haar and non-Haar idem-
558
+ potents:
559
+ Definition 2.14. Let q ∈ C(G)∗∗ be a projection and ϕ ∈ G. If ωϕ(q) > 0, then ϕ
560
+ conditioned by q = 1 is given by:
561
+ �qϕ(g) := ωϕ(qgq)
562
+ ωϕ(q)
563
+ (g ∈ C(G)),
564
+ and ϕ → �qϕ is referred to as wave-function collapse. Furthermore, say that a subset
565
+ S ⊆ G is stable under wave-function collapse if for all projections q ∈ C(G)∗∗,
566
+ (7)
567
+ (ϕ ∈ S and ωϕ(q) > 0) =⇒ �qϕ ∈ S.
568
+ The following is well known in the algebraic setting ([15], Prop. 1.8), and a similar
569
+ proof is known to work in the finite quantum group setting ([8], Corollary 4.2). For the
570
+ benefit of the reader, the proof is reproduced in the current setting:
571
+ Proposition 2.15. If p ∈ C(G) is a continuous group-like projection such that h(p) > 0,
572
+ then �ph ∈ G is an idempotent state.
573
+ Proof. Let φ = �ph. The difference between ωh and h can be suppressed here as ωh |C(G) = h.
574
+ Let f ∈ O(G):
575
+ (φ ⋆ φ)(f) =
576
+ 1
577
+ h(p)2
578
+
579
+ h(pf(1)p)h(pf(2)p) =
580
+ 1
581
+ h(p)2
582
+
583
+ h(f(1)p)h(f(2)p)
584
+ =
585
+ 1
586
+ h(p)2(h ⊗ h) (∆(f)(p ⊗ p)) =
587
+ 1
588
+ h(p)2(h ⊗ h) (∆(f)∆(p)(1G ⊗ p))
589
+ =
590
+ 1
591
+ h(p)2(h ⊗ h) (∆(fp)(1G ⊗ p)) =
592
+ 1
593
+ h(p)2h(fp)h(p) = h(pfp)
594
+ h(p)
595
+ = φ(f),
596
+ where the traciality of the Haar state, p2 = p, and (h⊗ϕ)(∆(f)(1G⊗g)) = h(f)ϕ(g) ([24],
597
+ Remark 2.2.2 i.) were used. By norm-continuity this implies that �ph is idempotent.
598
+
599
+
600
+ 14
601
+ J.P. MCCARTHY
602
+ Note that it is not claimed that the support projection of �ph ∈ G is p. In the below
603
+ this is assumed, and a nice description of the quasi-subgroup follows
604
+ Proposition 2.16. Let φ = �pφh be an idempotent with continuous group-like support
605
+ projection pφ ∈ C(G). Then
606
+ Sφ = {ϕ ∈ G : ϕ(pφ) = 1}.
607
+ Proof. Suppose that ϕ(pφ) = 1. Similarly to the proof of Proposition 2.15, for f ∈ O(G):
608
+ (8)
609
+ (φ ⋆ ϕ)(f) =
610
+ 1
611
+ h(pφ)(h ⊗ ϕ)(∆(fpφ)(1G ⊗ pφ)) = h(fpφ)
612
+ h(pφ) ϕ(pφ) = φ(f),
613
+ and by weak*-continuity, φ ⋆ ϕ = φ. On the other hand, suppose that φ ⋆ ϕ = φ so that
614
+ ϕ ∈ Sφ, the quasi-subgroup generated by φ. Applying (8) at f = pφ, with the existence
615
+ of �ph implying h(pφ) > 0:
616
+ (φ ⋆ ϕ)(pφ) = h(pφ)
617
+ h(pφ)ϕ(pφ) = φ(pφ) = 1 =⇒ ϕ(pφ) = 1.
618
+
619
+ Proposition 2.17. If states ϕ1, ϕ2 on C(G) are supported on a group-like projection
620
+ p ∈ C(G)∗∗, then so is ϕ1 ⋆ ϕ2.
621
+ Proof. The proof for the finite case ([16], Prop. 3.12) applies with some adjustments. Let
622
+ (pλ) ⊂ O(G) converge σ-weakly to p ∈ C(G)∗∗. As the extension of ∆ to ∆∗∗ is σ-weakly
623
+ continuous
624
+ lim
625
+ λ
626
+
627
+ ∆(pλ)
628
+
629
+ (1 ⊗ p) = p ⊗ p
630
+ The product is separately continuous, and ωϕ1 ⊗ ωϕ2 is σ-weakly continuous.
631
+ =⇒ lim
632
+ λ (ωϕ1 ⊗ ωϕ2)
633
+
634
+
635
+ (0) ⊗ pλ
636
+ (1)p = (ωϕ1 ⊗ ωϕ2)(p ⊗ p)
637
+ =⇒ lim
638
+ λ
639
+
640
+ ωϕ1(pλ
641
+ (0))ωϕ2(pλ
642
+ (1)p) = 1
643
+ Note that as ϕ2 is supported on p:
644
+ =⇒ lim
645
+ λ
646
+
647
+ ϕ1(pλ
648
+ (0))ϕ2(pλ
649
+ (1)) = 1
650
+ =⇒ lim
651
+ λ (ϕ1 ⋆ ϕ2)(pλ) = 1
652
+ =⇒ lim
653
+ λ ωϕ1⋆ϕ2(pλ) = ωϕ1⋆ϕ2(p) = 1.
654
+
655
+ Proposition 2.18. Suppose p ∈ C(G)∗∗ is a group-like projection. Then:
656
+ {ϕ ∈ G : ωϕ(p) = 1},
657
+ is a Pal set, and so there is an idempotent φ supported on p such that pφ ≤ p.
658
+
659
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
660
+ 15
661
+ Proof. First {ϕ ∈ G : ωϕ(p) = 1} is non-empty because p is normal and as ∥p∥C(G)∗∗ = 1,
662
+ there exists a state ω on C(G)∗∗ such that ω(p) = 1 [19], whose restriction to C(G)
663
+ is a state in Sp.
664
+ Weak*-closure and convexity are straightforward, and closure under
665
+ convolution follows from Proposition 2.17.
666
+
667
+ Note that p is not necessarily equal to the support projection of the idempotent state
668
+ in {ϕ ∈ G : ωϕ(p) = 1}; and in the below the idempotent state in {ϕ ∈ G : ωϕ(p) = 1}
669
+ is not necessarily equal to φ.
670
+ Theorem 2.19. Suppose that an idempotent state φ ∈ G has group-like support projection
671
+ p ∈ C(G)∗∗. Then the quasi-subgroup generated by φ:
672
+ Sφ ⊆ {ϕ ∈ G : ωϕ(p) = 1}.
673
+ Proof. Consider ϕ ∈ Sφ not supported on p. Then, where q = 1G−p, ωϕ(q) > 0. Consider
674
+ ωϕ(q · q) ∈ C(G)∗ and note by Cauchy–Schwarz:
675
+ 0 ≤ ωϕ(q · q) ≤ ϕ.
676
+ Then by Lemma 1.4:
677
+ ωϕ(q · q) ⋆ φ = ωϕ(q1Gq)φ = ωϕ(q)φ,
678
+ and it follows that �qϕ ∈ Sφ. Note �qϕ(p) = 0.
679
+ Using similar notation and techniques to Proposition 2.17, apply the σ-weakly contin-
680
+ uous ω�qϕ ⊗ ωφ to both sides of ∆∗∗(1G ⊗ p) = p ⊗ p, using the fact that p is the support
681
+ of φ:
682
+ =⇒ lim
683
+ λ
684
+ ��
685
+ ω�qϕ(pλ
686
+ (0)) ⊗ ωφ(pλ
687
+ (1)p)
688
+
689
+ = ω�qϕ(p) ⊗ ωφ(p)
690
+ =⇒ lim
691
+ λ
692
+ ��
693
+ �qϕ(pλ
694
+ (0)) ⊗ ωφ(pλ
695
+ (1)p)
696
+
697
+ = 0
698
+ =⇒ lim
699
+ λ
700
+ ��
701
+ �qϕ(pλ
702
+ (0)) ⊗ φ(pλ
703
+ (1))
704
+
705
+ = 0
706
+ =⇒ lim
707
+ λ
708
+
709
+ (�qϕ ⋆ φ)(pλ)
710
+
711
+ = 0
712
+ =⇒ lim
713
+ λ
714
+
715
+ φ(pλ)
716
+
717
+ = 0
718
+ =⇒ ωφ(p) = 0,
719
+ a nonsense, so ωϕ(q) = 0, and so ωϕ(p) = 1.
720
+
721
+ It is not the case that every idempotent state φ has group-like support projection
722
+ pφ ∈ C(G)∗∗. Nor does Theorem 2.19 hold more generally:
723
+ Corollary 2.20. Suppose G is non-coamenable. Then the support projection ph ∈ C(G)∗∗
724
+ of the Haar state is not a group-like projection. Furthermore:
725
+ {ϕ ∈ G : ωϕ(ph) = 1} ⊊ Sh.
726
+
727
+ 16
728
+ J.P. MCCARTHY
729
+ Proof. Assume that the support ph ∈ C(G)∗∗ is a group-like projection. As ωh(1G) = 1,
730
+ 1G − ph > 0 strictly as G is at the universal level and G is assumed non-coamenable.
731
+ Therefore there exists a state ωϕ on C(G)∗∗ such that
732
+ ωϕ(1G − ph) = 1 =⇒ ωϕ(ph) = 0.
733
+ Restrict ωϕ to a state ϕ on C(G). By Theorem 2.19 it follows that ϕ is not invariant
734
+ under the Haar state, which is absurd as Sh = G.
735
+
736
+ There is a group-like projection p such that
737
+ {ϕ ∈ G : ωϕ(p) = 1} = Sh;
738
+ the unit p = 1G.
739
+ Note there is a relationship between quantum subgroups and wave-function collapse:
740
+ Proposition 2.21. ([9], Th. 3.3) Let G be a compact quantum group and φ ∈ C(G)∗ an
741
+ idempotent state. Then φ is a Haar idempotent if and only if the null-space
742
+ Nφ = {f ∈ C(G) : φ(|f|2) = 0}
743
+ is a two-sided ideal.
744
+ Note in the below ωϕ0 is the extension of the state ϕ0 on C(H) to a state on C(H)∗∗.
745
+ Lemma 2.22. Suppose that H ⊆ G via π : C(G) → C(H). Then the extension of ϕ0 ◦ π
746
+ to a state on C(G)∗∗ is given by: ωϕ0 ◦ π∗∗.
747
+ Proof. Consider f ∈ C(G). The result follows from the σ-continuity of the maps involved,
748
+ and π∗∗ |C(G) = π.
749
+
750
+ Note that part (i) of the below is restricted to Haar idempotents coming from Haar
751
+ states on universal versions.
752
+ Theorem 2.23. Suppose that φ is an idempotent state on C(G).
753
+ (i) If φ is a (universal) Haar idempotent, then Sφ is closed under wave-function col-
754
+ lapse.
755
+ (ii) If φ is a non-Haar idempotent with group-like projection support, then Sφ is not
756
+ closed under wave-function collapse.
757
+ Proof.
758
+ (i) Suppose φ is a (universal) Haar idempotent via π : C(G) → C(H). By
759
+ Vaes’s Remark 1.5, every element of Sφ is of the form ϕ0 ◦ π for a state ϕ0 on
760
+ C(H). Suppose ϕ undergoes wave-function collapse to �qϕ. Then, using Lemma
761
+ 2.22
762
+ ωϕ(q) > 0 =⇒ ωϕ0(π∗∗(q)) > 0
763
+ (ωϕ0 ∈ S(C(H)∗∗)).
764
+
765
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
766
+ 17
767
+ Using Lemma 2.22 again, it can be shown that �qϕ = ψ ◦ π, where:
768
+ ψ(g) = ωϕ0(π∗∗(q)gπ∗∗(q))
769
+ ωϕ0(π∗∗(q))
770
+ (g ∈ C(H), ωϕ0 ∈ S(C(H)∗∗)).
771
+ Thus, again by Vaes’s remark, ψ ◦ π and thus �qϕ ∈ Sφ, that is Sφ is closed under
772
+ wave-function collapse.
773
+ (ii) Suppose φ is a non-Haar idempotent with group-like support projection. By The-
774
+ orem 2.19
775
+ Sφ ⊆ {ϕ ∈ G : ωϕ(pφ) = 1}.
776
+ As φ is a non-Haar idempotent, N∗∗
777
+ φ
778
+ = C(G)∗∗qφ is only a left ideal, and qφ
779
+ non-central. Suppose that for all uij ∈ C(G), uijqφuij ∈ N∗∗
780
+ φ . Then uijqφuij =
781
+ uijqφuijqφ
782
+ =⇒
783
+ uijqφuij = uijqφuijqφuij, so that uijqφuij is a projection. This
784
+ implies, because [uij, qφ]3 = 0 and [uij, qφ] is skew adjoint, that uijqφ = qφuij.
785
+ Therefore qφ is central and Nφ is an ideal. Therefore there exists uij such that
786
+ uijqφuij ̸∈ N∗∗
787
+ φ :
788
+ ωφ(|uijqφuij|2) > 0.
789
+ By Cauchy–Schwarz:
790
+ 0 < ωφ(|uijqφuij|2) ≤ ωφ(uijqφuij) ≤ ωφ(uij).
791
+ =⇒ �
792
+ uijφ(qφ) = ωφ(uijqφuij)
793
+ ωφ(uij)
794
+ > 0 =⇒ �
795
+ uijφ(pφ) < 1 =⇒ �
796
+ uijφ ̸∈ Sφ.
797
+
798
+ 3. Stabiliser quasi-subgroups
799
+ The analysis here is helped somewhat by defining the Birkhoff slice, a map Φ from the
800
+ state space of the algebra of continuous functions C(G) on a quantum permutation group
801
+ G to the doubly stochastic matrices:
802
+ Φ(ϕ) := (ϕ(uij))N
803
+ i,j=1.
804
+ Given a finite group G ⊆ SN and a partition P = B1 ⊔ · · · ⊔ Bk of {1, . . . , N}, the
805
+ P-stabiliser subgroup of G can be formed:
806
+ GP = {σ ∈ G : σ(Bp) = Bp, 1 ≤ p ≤ k}.
807
+ A P-stabiliser quasi-subgroup of G can also be defined. There are two, equivalent, defi-
808
+ nitions. The first definition uses the equivalence relation ∼P associated to the partition:
809
+ GP := {ϕ ∈ G: ϕ(uij) = 0 for all i ̸∼P j}.
810
+ Alternatively, consider the Birkhoff slice S(C(G)) → MN(C). By relabelling if necessary,
811
+ the blocks of a partition can be assumed to consist of consecutive labels. Define:
812
+ GP := {ϕ ∈ G : Φ(ϕ) is block diagonal with pattern P},
813
+
814
+ 18
815
+ J.P. MCCARTHY
816
+ that is:
817
+ ϕ ∈ GP ⇐⇒ Φ(ϕ) =
818
+
819
+ 
820
+ ΦB1(ϕ)
821
+ 0
822
+ · · ·
823
+ 0
824
+ 0
825
+ ΦB2(ϕ)
826
+ · · ·
827
+ 0
828
+ ...
829
+ ...
830
+ ...
831
+ · · ·
832
+ 0
833
+ 0
834
+ · · ·
835
+ ΦBk(ϕ)
836
+
837
+  ,
838
+ where ΦBp(ϕ) = [ϕ(uij)]i,j∈Bp.
839
+ Theorem 3.1. For any partition P of {1, . . . , N}, GP is a quasi-subgroup.
840
+ Proof. That GP is convex, weak*-closed, and closed under convolution is straightforward
841
+ (using, for example that the Birkhoff slice is multiplicative Φ(ϕ1 ⋆ ϕ2) = Φ(ϕ1)Φ(ϕ2)).
842
+ The universal version gives ε ∈ GP so that GP is non-empty, and so a Pal set.
843
+ Suppose that φP is the associated idempotent. Therefore by Lemma 1.9:
844
+ φP(uij) = (φP ◦ S)(uij) = φP(uji).
845
+ For any fixed j ∈ {1, 2, . . . , N}, there exists i ∈ {1, 2, . . ., N} such that φP(uji) > 0. From
846
+ here:
847
+ φP(ujj) = (φP ⋆ φP)(ujj) = φP(uji)φP(uij) +
848
+
849
+ k̸=i
850
+ φP(ujk)φP(ukj) > 0.
851
+ To show that GP is equal to
852
+ SφP = {ϕ ∈ G : ϕ ⋆ φP = φP = φP ⋆ ϕ},
853
+ suppose ϕ ∈ SφP, but ϕ ̸∈ GP. That implies there exists uij such that ϕ(uij) ̸= 0 with
854
+ i ̸∼P j. But this gives
855
+ φP(uij) = (ϕ ⋆ φP)(uij) = ϕ(uij)φP(ujj) +
856
+
857
+ k̸=j
858
+ ϕ(uik)φP(ukj) > 0,
859
+ a contradiction.
860
+
861
+ For the partition j := {j} ⊔ ({1, 2, . . ., N}\{j}):
862
+ Gj = {ϕ ∈ G : ϕ(ujj) = 1}.
863
+ Note for any quantum permutation group G, and 1 ≤ j ≤ N, the diagonal element ujj is
864
+ a polynomial group-like projection:
865
+ ∆(ujj)(1G ⊗ ujj) =
866
+ � N
867
+
868
+ k=1
869
+ ujk ⊗ ukj
870
+
871
+ (1G ⊗ ujj) = ujj ⊗ ujj.
872
+ Using Proposition 2.16, it can be shown that the associated idempotent state is hj := �
873
+ ujjh,
874
+ that is:
875
+ hj(f) = h(ujjfujj)
876
+ h(ujj)
877
+ (f ∈ C(G)).
878
+
879
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
880
+ 19
881
+ The below is (almost) a special case of Theorem 2.23, but included as it uses different
882
+ proof techniques.
883
+ Theorem 3.2. The following are equivalent:
884
+ (i) hj is a Haar idempotent,
885
+ (ii) ujj is central,
886
+ (iii) Gj is stable under wave-function collapse.
887
+ Proof. (i) =⇒ (ii): assume hj is a Haar idempotent, say equal to hH◦π where π : C(G) →
888
+ C(H), uij �→ uH
889
+ ij, is the quotient map. Note that because hj(ujj) = hH(π(ujj)) = 1, and
890
+ hH is faithful on O(H),
891
+ 1H = π(1G) =
892
+ N
893
+
894
+ m=1
895
+ π(umj) = π(ujj),
896
+ so that π(ujj) = 1H is central in C(H). Assume that ujj is non-central. Then there exists
897
+ ukl ∈ C(G) such that |uklujj − ujjukl|2 > 0. Expanding:
898
+ ujjuklujj − ujjuklujjukl − uklujjuklujj + uklujjukl > 0.
899
+ Applying the Haar state, which is faithful on O(G), and using its traciality yields:
900
+ h(ujjuklujj) > h(ujjuklujjuklujj)
901
+ =⇒ hj(ukl) > hj(uklujjukl)
902
+ =⇒ hH(π(ukl)) > hH(π(uklujjukl)) = hH(π(ukl)π(ujj)π(ukl)))
903
+ =⇒ hH(π(ukl)) > hH(π(ukl)1Hπ(ukl))) = hH(π(ukl)),
904
+ an absurdity, and so ujj is central.
905
+ (ii) =⇒ (i): assume that ujj is central.
906
+ Nj := {f ∈ C(G) : hj(|f|2) = 0}.
907
+ If f ∈ Nj then h(ujjf ∗fujj) = 0 =⇒ fujj ∈ Nh, the null-space of the Haar state, so
908
+ that:
909
+ Nj = {f ∈ C(G) : fujj ∈ Nh}.
910
+ The rest of the argument is the same as ([8], Th. 4.5).
911
+ (ii) =⇒ (iii): assume that ujj is central. If ujj is central in C(G) then it is also central
912
+ in C(G)∗∗. Let ϕ ∈ Gj and q ∈ C(G)∗∗ such that ωϕ(q) > 0. Let pϕ ∈ C(G)∗∗ be the
913
+ support projection of ϕ. Note that
914
+ ωϕ(ujj) = ϕ(ujj) = 1 =⇒ pϕ ≤ ujj =⇒ pϕ = pϕujj.
915
+ Note
916
+ ωϕ(qujjq) = ωϕ(pϕqujjqpϕ) = ωϕ(pϕujjqqpϕ) = ωϕ(pϕqpϕ) = ωϕ(q).
917
+
918
+ 20
919
+ J.P. MCCARTHY
920
+ It follows that:
921
+ �qϕ(ujj) = ωϕ(qujjq)
922
+ ωϕ(q)
923
+ = 1 =⇒ �qϕ ∈ Gp.
924
+ (iii)
925
+ =⇒ (ii): assume now that ujj is non-central. Therefore there exists ukl ∈ C(G)
926
+ such that:
927
+ ujjukl ̸= uklujj.
928
+ Represent C(G) with the universal GNS representation πGNS(C(G)) ⊆ B(H). Denote
929
+ p := πGNS(ujj) and q := πGNS(ukl).
930
+ As pq ̸= qp, using Halmos two projections theory there exists a unit vector x ∈ ran p that
931
+ is orthogonal to both2 ran p ∩ ran q and ran p ∩ ker q. Define a state on C(G):
932
+ ϕ0(f) = ⟨x, πGNS(f)x⟩
933
+ (f ∈ C(G)).
934
+ Note that:
935
+ ϕ0(ujj) = ⟨x, px⟩ = ⟨x, x⟩ = 1 =⇒ ϕ0 ∈ Gj.
936
+ Furthermore, together with x ∈ ran p
937
+ ϕ0(ukl) = ⟨x, qx⟩ = 1 =⇒ x ∈ ran q
938
+ ϕ0(ukl) = ⟨x, qx⟩ = 0 =⇒ x ∈ ker q
939
+ but x is orthogonal to both ran p ∩ ran q and ran p ∩ ker q so
940
+ 0 < ⟨x, qx⟩ < 1 =⇒ 0 < ϕ0(ukl) < 1.
941
+ Now consider ϕ = �
942
+ uklϕ0:
943
+ ϕ(f) := ϕ0(uklfukl)
944
+ ϕ0(ukl)
945
+ = ⟨qx, πGNS(f)qx⟩
946
+ ⟨qx, qx⟩
947
+ (f ∈ C(G)).
948
+ In particular
949
+ ϕ(ujj) = ⟨qx, pqx⟩
950
+ ⟨qx, qx⟩
951
+ Together with qx ∈ ran q:
952
+ ϕ(ujj) = 1 =⇒ qx ∈ ran p
953
+ ϕ(ujj) = 0 =⇒ qx ∈ ker p
954
+ By ([7], (6)), qx is orthogonal to ran p ∩ ran q and ker p ∩ ran q, and it follows that:
955
+ 0 < ϕ(ujj) < 1,
956
+ that is,
957
+ ϕ0 ∈ Gj but �
958
+ uklϕ0 ̸∈ Gj.
959
+
960
+ 2in the notation of ([7],(1)), x ∈ M0
961
+
962
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
963
+ 21
964
+ Consider, at the universal level:
965
+ (S+
966
+ N)N := {ϕ ∈ S+
967
+ N : ϕ(uNN) = 1}.
968
+ If H given by π : C(S+
969
+ N) → C(H) is an isotropy subgroup in the sense that H ⊆ (S+
970
+ N)N
971
+ and so π(uNN) = 1H, then H ⊆ S+
972
+ N−1 by the universal property. In this way, where
973
+ πN−1 : C(S+
974
+ N) → C(S+
975
+ N−1) is the quotient
976
+ [u
977
+ S+
978
+ N
979
+ ij ]N
980
+ i,j=1 →
981
+
982
+ uS+
983
+ N−1
984
+ 0
985
+ 0
986
+ 1S+
987
+ N−1
988
+
989
+ ,
990
+ the following is a maximal (set of states on an algebra of continuous functions on a)
991
+ quantum subgroup in the quasi-subgroup (S+
992
+ N)N
993
+ (S+
994
+ N−1)⊂S+
995
+ N = {ϕ ◦ πN−1 : ϕ ∈ S+
996
+ N−1}.
997
+ In the classical case, N ≤ 3, quasi-subgroups are subgroups, and so (S+
998
+ N)N = (S+
999
+ N−1)⊂S+
1000
+ N.
1001
+ However, for N ≥ 4, the inclusion is proper.
1002
+ Lemma 3.3. (Teo Banica) Consider a monomial of entries from the fundamental repre-
1003
+ sentation u ∈ M4(C(S+
1004
+ 4 )):
1005
+ f = ui1j1 · · · uimjm.
1006
+ Then f can only be zero for trivial reasons; i.e. if and only if there exists 2 ≤ n ≤ m such
1007
+ that:
1008
+ δin−1,in + δjn−1,jn = 1,
1009
+ that is uin−1jn−1uinjn = 0.
1010
+ Proof. With the notation from [5], namely c1, . . . , c4 ∈ SU2 being the Pauli matrices, and
1011
+ x ∈ SU2 being a parameter, the Pauli representation of C(S+
1012
+ 4 ) is:
1013
+ π(uij) = Pcixcj,
1014
+ the rank one projection on cixcj. Given unit norm ξ, Pξ(η) = ⟨η, ξ⟩ξ. By recurrence
1015
+ Pξ1 · · ·Pξm(η) = ⟨η, ξm⟩⟨ξm, ξm−1⟩ · · ·⟨ξ2, ξ1⟩ξ1.
1016
+ With η = ck, one of the Pauli matrices, therefore:
1017
+ ui1j1 · · ·uimjm(ck) = Pci1xcj1 · · · Pcimxcjm(ck)
1018
+ = ⟨ck, cimxcjm⟩⟨cimxcjm, cim−1xcjm−1⟩ · · ·⟨ci2xcj2, ci1xcj1⟩ci1xck1.
1019
+ Look at one of these inner products:
1020
+ ⟨cinxcjn, cin−1xcjn−1⟩ = tr(cinxcjn(cin−1xcjn−1)∗)
1021
+ = ± tr(cinxcjncjn−1x∗cin−1)
1022
+ = ± tr(cin−1cinxcjncjn−1x∗).
1023
+
1024
+ 22
1025
+ J.P. MCCARTHY
1026
+ This vanishes for any x ∈ SU2 when one of cin−1cin or cjncjn−1 equals I2, and the other
1027
+ does not, and so when
1028
+ δin−1,in + δjn−1,jn = 1.
1029
+
1030
+ Proposition 3.4. Let S+
1031
+ N be the quantum permutation group on N symbols with Haar
1032
+ state h. Then, for any σ, τ ∈ SN:
1033
+ h(ui1j1 · · · uinjn) = h(uσ(i1)τ(j1) · · · uσ(in)τ(jn)).
1034
+ Proof. This is essentially ([17], Prop. 6.4), together with the fact that h is invariant.
1035
+
1036
+ Corollary 3.5. Let S+
1037
+ N be the quantum permutation group on N ≥ 4 symbols. Then
1038
+ |ui1j1ui2j2ui3j3|2 = 0.
1039
+ for trivial reasons only.
1040
+ Proof. Let 1 ≤ a, b, c, d, e, f ≤ 4 such that u
1041
+ S+
1042
+ 4
1043
+ ab u
1044
+ S+
1045
+ 4
1046
+ cd u
1047
+ S+
1048
+ 4
1049
+ ef
1050
+ ̸= 0. Using the quotient map
1051
+ π4 : C(S+
1052
+ N) → C(S+
1053
+ 4 ), u → diag(uS+
1054
+ 4 , 1S+
1055
+ 4 , . . . , 1S+
1056
+ 4 )
1057
+ π4(|uabucduef|2) ̸= 0 =⇒ |uabucduef|2 ̸= 0.
1058
+ Let σ(a) = i1, σ(c) = i2, σ(f) = i3 and similarly τ map b, d, f to j1, j2, j3. Proposition
1059
+ 3.4 gives
1060
+ h(|ui1j1ui2j2ui3j3|2) = h(|uabucduef|2) ̸= 0 =⇒ |ui1j1ui2j2ui3j3|2 ̸= 0.
1061
+
1062
+ Proposition 3.6. The inclusion (S+
1063
+ N−1)⊂S+
1064
+ N ⊂ (S+
1065
+ N)N is proper for N ≥ 4.
1066
+ Proof. Note that for any (ϕ ◦ πN−1) ∈ (S+
1067
+ N−1)⊂S+
1068
+ N,
1069
+ (ϕ ◦ πN−1)(u11u2Nu11) = ϕ(πN−1(u11u2Nu11)) = ϕ(πN−1(u11)πN−1(u2N)πN−1(u11)) = 0,
1070
+ as πN−1(u2N) = 0. On the other hand, hN = �
1071
+ uNNh, the idempotent in the stabiliser
1072
+ quasi-subgroup (S+
1073
+ N)N, is not in (S+
1074
+ N−1)⊂S+
1075
+ N, because h faithful on O(S+
1076
+ N) implies
1077
+ hN(u11u2Nu11) = h(uNNu11u2Nu11uNN)
1078
+ h(uNN)
1079
+ = h(|u2Nu11uNN|2)
1080
+ h(uNN)
1081
+ > 0.
1082
+
1083
+ Trying to do something for more complicated partitions of {1, . . . , N}, with an (ex-
1084
+ plicit) idempotent state with a density with respect to ωh is in general more troublesome.
1085
+ Consider for example:
1086
+ Pi,j := ({1, . . . , N}\{i, j}) ⊔ {i} ⊔ {j}.
1087
+
1088
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1089
+ 23
1090
+ The obvious way to fix two points is to work with pi,j := uii ∧ ujj, an element of C(G)∗∗,
1091
+ and given a quantum permutation ϕ ∈ G, define a subset of G by:
1092
+ Gi,j := {ϕ ∈ G : ωϕ(pi,j) = 1}.
1093
+ Note that Gi,j = Gi ∩ Gj. However the following is not in general well defined because
1094
+ ωh(pi,j) is not necessarily strictly positive:
1095
+ φi,j := ωh(pi,j · pi,j)
1096
+ ωh(pi,j)
1097
+ ,
1098
+ For example, consider the dual of the infinite dihedral group with the famous embedding
1099
+
1100
+ D∞ ⊂ S+
1101
+ 4 . Working with alternating projection theory, and noting the Haar state on
1102
+ C(�
1103
+ D∞) is h(λ) = δλ,e,
1104
+ ωh(p1,3) = lim
1105
+ n→∞ h((u11u33)n) = lim
1106
+ n→∞
1107
+ 1
1108
+ 4n = 0.
1109
+ Proposition 3.7. The stabiliser quasi-subgroup (�
1110
+ D∞)1,3 is the trivial group.
1111
+ Proof. Let ϕ ∈ (�
1112
+ D∞)1,3 so that ϕ(u11) = ϕ(u33) = 1. Then Φ(ϕ) = I4 and, as will be seen
1113
+ later, by Proposition 4.1, ϕ is a character. There are four characters in �
1114
+ D∞ and only the
1115
+ counit has Birkhoff slice equal to the identity.
1116
+
1117
+ By Proposition 4.3, p1,3 = pε, the support projection of the counit.
1118
+ As C(�
1119
+ D∞) is
1120
+ coamenable, the Haar state is faithful and so ωh(pε) = 0 implies that pε ̸∈ C(�
1121
+ D∞) (and
1122
+ indeed p ∧ q ̸∈ C∗(p, q), the universal unital C∗-algebra generated by two projections).
1123
+ Note that in general {ε} is a quantum subgroup of any quantum permutation group in
1124
+ the sense that ε is a Haar idempotent via the quotient π : C(G) → C(e) to the trivial
1125
+ group {e} ⊆ G:
1126
+ [uij]N
1127
+ i,j=1 → diag(1C, . . . , 1C).
1128
+ 4. Exotic quasi-subgroups of the quantum permutation group
1129
+ A second reason for studying Pal sets and their generated quasi-subgroups is to pos-
1130
+ tulate, or rather speculate, on, for some N ≥ 4, the existence of an exotic intermediate
1131
+ quasi-subgroup:
1132
+ SN ⊊ SN ⊊ S+
1133
+ N.
1134
+ It is currently unknown whether or not there is a Haar idempotent giving an exotic
1135
+ intermediate quantum subgroup SN ⊊ GN ⊊ S+
1136
+ N for some N ≥ 6. It is the case that
1137
+ SN = S+
1138
+ N for N ≤ 3, and for N = 4 [4] and N = 5 [1] there is no such Haar idempotent.
1139
+ Of course, if there is no exotic intermediate quasi-subgroup SN ⊊ SN ⊊ S+
1140
+ N then it is the
1141
+ case that SN is a maximal quantum subgroup of S+
1142
+ N for all N, but of course this is stronger
1143
+ than the non-existence of an exotic intermediate quantum subgroup. Indeed it is strictly
1144
+
1145
+ 24
1146
+ J.P. MCCARTHY
1147
+ stronger in the sense that given a quantum permutation group G and its classical version
1148
+ G ⊆ G (see below), the existence of a strictly intermediate quasi-subgroup G ⊊ S ⊊ G
1149
+ does not imply a strictly intermediate quantum subgroup. For example, the finite dual
1150
+
1151
+ A5 has trivial classical version, and for any non-trivial subgroup H ⊂ A5 the non-Haar
1152
+ idempotent 1H gives a strict intermediate quasi-subgroup:
1153
+ {ε} ⊊ SH ⊊ �
1154
+ A5.
1155
+ However �
1156
+ A5 has no non-trivial quantum subgroups because A5 is simple.
1157
+ The idea for an example of an exotic intermediate quasi-subgroup would be to find a
1158
+ Pal set given by some condition that is satisfied by the ‘elements of SN in S+
1159
+ N’ — and
1160
+ some states non-zero on a commutator [f, g] ∈ C(S+
1161
+ N) — but not by the Haar state on
1162
+ C(S+
1163
+ N). It will be seen that the ‘elements of SN in S+
1164
+ N’ correspond to the characters on
1165
+ C(S+
1166
+ N).
1167
+ 4.1. The classical version of a quantum permutation group. The quotient of C(G)
1168
+ by the commutator ideal is the algebra of functions on the characters on C(G). The
1169
+ characters form a group G, with the group law given by the convolution:
1170
+ ϕ1 ⋆ ϕ2 = (ϕ1 ⊗ ϕ2)∆,
1171
+ the identity is the counit, and the inverse is the reverse ϕ−1 = ϕ ◦ S.
1172
+ This section contains some general analysis for the support projections of characters on
1173
+ algebras of continuous functions on quantum permutation groups. While passing to a von
1174
+ Neumann algebra to talk about support projections, it will not be the conventional choice
1175
+ of a von Neumann algebra associated to a compact quantum group. This conventional
1176
+ choice is the algebra:
1177
+ L∞(G) := Cr(G)′′.
1178
+ As discussed previously, the current work is at the universal level, so instead consider the
1179
+ bidual C(G)∗∗.
1180
+ As before the Birkhoff slice aids the analysis. See [17] for more, where the following
1181
+ proof is sketched.
1182
+ Proposition 4.1. A state ϕ on C(G) is a character if and only if Φ(ϕ) is a permutation
1183
+ matrix.
1184
+ Proof. If ϕ is a character,
1185
+ ϕ(uij) = ϕ(u2
1186
+ ij) = ϕ(uij)2 ⇒ ϕ(uij) = 0 or 1.
1187
+ As it is doubly stochastic, it follows that Φ(ϕ) is a permutation matrix. Suppose now that
1188
+ Φ(ϕ) = σ. Consider the GNS representation (Hσ, πσ, ξσ) associated to ϕ. By assumption
1189
+ (9)
1190
+ ϕ(uij) = ⟨ξσ, πσ(uij)(ξσ)⟩ = ⟨πσ(uij)(ξσ), πσ(uij)(ξσ)⟩ = ∥πσ(uij)(ξσ)∥2 = 0 or 1.
1191
+
1192
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1193
+ 25
1194
+ For f ∈ C(G), let (f (n))n≥1 ⊂ O(G) converge to f. For each f (n), (9) implies there exists
1195
+ an ∈ C such that
1196
+ πσ(f (n))(ξσ) = anξσ.
1197
+ The representation πσ is norm continuous, and so πσ(f (n)) → πσ(f), and (πσ(f (n)))n≥1 is
1198
+ Cauchy:
1199
+ ∥πσ(f (m)) − πσ(f (n))∥ → 0
1200
+ =⇒ |am − an|∥ξσ∥ → 0,
1201
+ which implies that (an)n≥1 converges, to say af ∈ C. The norm convergence of f (n) → f
1202
+ implies the strong convergence of πσ(f (n)) to πσ(f):
1203
+ πσ(f)ξσ = lim
1204
+ n→∞
1205
+
1206
+ πσ(f (n))ξσ
1207
+
1208
+ = lim
1209
+ n→∞(anξσ) = afξσ.
1210
+ Therefore
1211
+ ϕ(gf) = ⟨ξσ, πσ(gf)ξσ⟩ = ⟨ξσ, πσ(g)πσ(f)(ξσ)⟩
1212
+ = ⟨ξσ, πσ(g)afξσ⟩ = af⟨ξσ, πσ(g)ξσ⟩ = ϕ(g)ϕ(f).
1213
+
1214
+ Define evσ : C(G) → C:
1215
+ evσ(f) := πab(f)(σ)
1216
+ (f ∈ C(G)).
1217
+ This is a *-homomorphism, but in general evσ need not be non-zero.
1218
+ Proposition 4.2. If ϕ is a state on C(G) such that Φ(ϕ) = σ, then ϕ = evσ.
1219
+ Proof. Suppose that Φ(ϕ) = σ. We know that evσ is a *-homomorphism, and by Propo-
1220
+ sition 4.1 so is ϕ.
1221
+ As C(G) admits a character, πab is non-zero.
1222
+ Furthermore, as *-
1223
+ homomorphisms they are determined by their values on the generators:
1224
+ ϕ(uij) = Φ(ϕ)ij = σij = δi,σ(j) = 1j→i(σ) = πab(uij)(σ) = evσ(uij).
1225
+
1226
+ The classical version of G is therefore the finite group G ⊆ SN given by:
1227
+ G := {evσ : σ ∈ SN, evσ ̸= 0}.
1228
+ References to uij in the below are in the embedding:
1229
+ C(G) ⊆ C(G)∗∗.
1230
+ Note that the proof of (i) doesn’t use minimality to show that pσ is central:
1231
+ Proposition 4.3. Associated to each character evσ on C(G) is a support projection
1232
+ pσ ∈ C(G)∗∗ such that:
1233
+ (i) pσ is a central projection in C(G)∗∗, and pσpτ = δσ,τpσ.
1234
+ (ii) pσ = uσ(1),1 ∧ uσ(2),2 ∧ . . . ∧ uσ(N),N.
1235
+
1236
+ 26
1237
+ J.P. MCCARTHY
1238
+ Proof.
1239
+ (i) Note that
1240
+ evσ(uσ(j),j) = 1 ⇒ ωσ(uσ(j),j) = 1 ⇒ pσ ≤ uσ(j),j,
1241
+ while pσuij = 0 for i ̸= σ(j). Therefore pσ commutes with all of C(G) ⊆ C(G)∗∗
1242
+ and thus, via the Sherman–Takeda Theorem, pσ is in the commutant of C(G).
1243
+ Everything in C(G)∗∗ commutes with the commutant of C(G). Any pair of per-
1244
+ mutations σ ̸= τ are distinguished by some σ(j) ̸= τ(j),
1245
+ pσpτ = pσuσ(j),juτ(j),jpτ = 0.
1246
+ (ii) Let
1247
+ qσ = uσ(1),1 ∧ uσ(2),2 ∧ . . . ∧ uσ(N),N.
1248
+ Define
1249
+ fσ := uσ(1),1 · · · uσ(N),N.
1250
+ The sequence (f n
1251
+ σ )n≥1 ⊂ C(G) converges σ-weakly to qσ. The extension ωσ of evσ
1252
+ is a character implying that:
1253
+ ωσ(qσ) = lim
1254
+ n→∞ ωσ(f n
1255
+ σ ) = 1 =⇒ pσ ≤ qσ.
1256
+ Suppose r := qσ − pσ is non-zero. Then there exists a state ωr on C(G)∗∗ such
1257
+ that ωr(r) = 1. Define a state ϕr on C(G) by:
1258
+ ϕr(f) = ωr(rfr)
1259
+ (f ∈ C(G)).
1260
+ Then ϕr(uσ(j),j) = 1 =⇒ ϕx = evσ, by Proposition 4.2, with equal extensions ωr
1261
+ and ωσ. However, in this case
1262
+ ωσ(pσ) = ωr(pσ) = 0,
1263
+ and this contradiction gives qσ = pσ.
1264
+
1265
+ In the following, whenever evσ = 0, then so is pσ. Properties of the bidual summarised
1266
+ in Section 1.4 are used.
1267
+ Theorem 4.4. Where G ⊆ G is the classical version, define
1268
+ pG :=
1269
+
1270
+ σ∈G
1271
+ pσ.
1272
+ Then pG is a group-like projection in C(G)∗∗. In addition, pG is the support projection of
1273
+ the Haar idempotent hC(G) ◦ πab.
1274
+
1275
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1276
+ 27
1277
+ Proof. Note pG is non-zero, as pεpG = pε. Consider pσ ̸= 0. Let (pλ
1278
+ σ) ⊂ O(G) converge
1279
+ σ-weakly to pσ ∈ C(G)∗∗. The extension of ∆ is σ-weakly continuous, and recall that pσ
1280
+ is a meet of projections in O(G):
1281
+ ∆∗∗(pσ) = ∆∗∗(uσ(1),1 ∧ uσ(2),2 ∧ · · · ∧ uσ(N),N)
1282
+ = ∆(uσ(1),1) ∧ ∆(uσ(2),2) ∧ · · · ∧ ∆(uσ(N),N)
1283
+ = lim
1284
+ n→∞
1285
+ ��
1286
+ ∆(uσ(1),1)∆(uσ(2),2) · · · ∆(uσ(N),N)
1287
+ �n�
1288
+ .
1289
+ Consider, for pτ ̸= 0
1290
+ ∆(uσ(1),1)∆(uσ(2),2) · · · ∆(uσ(N),N)(1G ⊗ pτ)
1291
+ =
1292
+
1293
+ N
1294
+
1295
+ k1,...,kN=1
1296
+ uσ(1),k1uσ(2),k2 · · · uσ(N),kN ⊗ uk1,1uk2,2 · · ·ukN,N
1297
+
1298
+ (1G ⊗ pτ)
1299
+ Note pτ is central and
1300
+ pτukj =
1301
+
1302
+ pτukj,
1303
+ if k = τ(j)
1304
+ 0,
1305
+ otherwise. ,
1306
+ and so
1307
+ ∆(uσ(1),1)∆(uσ(2),2) · · ·∆(uσ(N),N)(1G ⊗ pτ)
1308
+ = uσ(1),τ(1)uσ(2),τ(2) · · · uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),Npτ
1309
+ = (uσ(1),τ(1)uσ(2),τ(2) · · · uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),N)(1G ⊗ pτ)
1310
+ Now
1311
+ ∆∗∗(pσ)(1G ⊗ pτ) = lim
1312
+ n→∞
1313
+
1314
+ ∆(uσ(1),1)∆(uσ(2),2) · · ·∆(uσ(N),N)
1315
+ �n (1G ⊗ pτ)
1316
+ = lim
1317
+ n→∞
1318
+
1319
+ ∆(uσ(1),1)∆(uσ(2),2) · · ·∆(uσ(N),N)n(1G ⊗ pτ)
1320
+
1321
+ = lim
1322
+ n→∞
1323
+
1324
+ ∆(uσ(1),1)∆(uσ(2),2) · · ·∆(uσ(N),N)n(1G ⊗ pτ)n�
1325
+ = lim
1326
+ n→∞
1327
+
1328
+ ∆(uσ(1),1)∆(uσ(2),2) · · ·∆(uσ(N),N)(1G ⊗ pτ)
1329
+ �n
1330
+ = lim
1331
+ n→∞
1332
+
1333
+ (uσ(1),τ(1)uσ(2),τ(2) · · · uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),N)(1G ⊗ pτ)
1334
+ �n
1335
+ = lim
1336
+ n→∞
1337
+
1338
+ (uσ(1),τ(1)uσ(2),τ(2) · · · uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),N)n(1G ⊗ pτ)n�
1339
+ = lim
1340
+ n→∞
1341
+
1342
+ (uσ(1),τ(1)uσ(2),τ(2) · · · uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),N)n(1G ⊗ pτ)
1343
+
1344
+ = lim
1345
+ n→∞
1346
+
1347
+ uσ(1),τ(1)uσ(2),τ(2) · · ·uσ(N),τ(N) ⊗ uτ(1),1uτ(2),2 · · · uτ(N),N)n�
1348
+ (1G ⊗ pτ)
1349
+ = (pστ −1 ⊗ pτ)(1G ⊗ pτ) = pστ −1 ⊗ pτ.
1350
+ Finally, sum ∆∗∗(pσ)(1G ⊗ pτ) over σ, τ ∈ G.
1351
+
1352
+ 28
1353
+ J.P. MCCARTHY
1354
+ Note that C(G) = C(G)/Nab is finite dimensional, and so by (3):
1355
+ C(G)∗∗ ∼= C(G) ⊕ N∗∗
1356
+ ab.
1357
+ It follows that the support projection of hC(G) ◦ πab is pG.
1358
+
1359
+ 4.2. The (classically) random and truly quantum parts of a quantum permu-
1360
+ tation. In the case of C(S+
1361
+ N), define pC := pSN and pQ := 1S+
1362
+ N − pC. In the rest of this
1363
+ section the Gelfand–Birkhoff picture will be used:
1364
+ ϕ ∈ S+
1365
+ N is a quantum permutation ⇐⇒ ϕ a state on C(S+
1366
+ N).
1367
+ Definition 4.5. Let ϕ ∈ S+
1368
+ N be a quantum permutation. Say that ϕ
1369
+ (i) is a (classically) random permutation if ωϕ(pQ) = 0,
1370
+ (ii) is a genuinely quantum permutation if ωϕ(pQ) > 0,
1371
+ (iii) is a mixed quantum permutation if 0 < ωϕ(pQ) < 1,
1372
+ (iv) is a truly quantum permutation if ωϕ(pQ) = 1.
1373
+ Random permutations are in bijection with probability measures ν ∈ Mp(SN):
1374
+ ϕ random
1375
+ ⇐⇒ ϕ = ϕν where
1376
+ ϕν(f) :=
1377
+
1378
+ σ∈SN
1379
+ πab(f)(σ)ν({σ})
1380
+ (f ∈ C(S+
1381
+ N)).
1382
+ Theorem 4.6. Suppose hSN is the state on C(S+
1383
+ N) defined by hC(SN) ◦ πab. Then if
1384
+ ϕ ⋆ hSN = hSN = hSN ⋆ ϕ,
1385
+ ϕ is a random permutation.
1386
+ Proof. This follows from Theorem 2.19.
1387
+
1388
+ Lemma 4.7. Let ϕ, ρ be quantum permutations. The convolution operators ϕ → ρ ⋆ ϕ
1389
+ and ϕ → ϕ ⋆ ρ are weak*-continuous
1390
+ Proof. Follows from (ϕ ⋆ ρ)(f) = ϕ((IC(S+
1391
+ N) ⊗ ρ)∆(f)) = ρ((ϕ ⊗ IC(S+
1392
+ N))∆(f)).
1393
+
1394
+ 4.3. Exotic quasi-subgroups.
1395
+ Theorem 4.8. Let ϕ ∈ S+
1396
+ N be genuinely quantum, ωϕ(pQ) > 0, and hSN ∈ S+
1397
+ N the Haar
1398
+ idempotent hC(SN) ◦ πab. Form the idempotent φϕ from the weak*-limit of Ces`aro means
1399
+ of ϕ, and then define an idempotent:
1400
+ (10)
1401
+ φ := w∗- lim
1402
+ n→∞
1403
+ 1
1404
+ n
1405
+ n
1406
+
1407
+ k=1
1408
+ (hSN ⋆ φϕ)⋆k.
1409
+ Then the quasi-subgroup generated satisfies:
1410
+ SN ⊊ Sφ ⊆ S+
1411
+ N.
1412
+
1413
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1414
+ 29
1415
+ Proof. First let us show that SN ⊆ Sφ.
1416
+ For any σ ∈ SN, and φn a Ces`aro mean of
1417
+ (hSN ⋆ φϕ):
1418
+ evσ ⋆φn = φn =⇒ w∗- lim
1419
+ n→∞(evσ ⋆φn) = φ =⇒ evσ ⋆φ = φ =⇒ φ ⋆ evσ−1 = φ.
1420
+ by Proposition 1.8. Similarly evσ−1 ⋆φn → φ which implies that φ ⋆ evσ = φ, and so
1421
+ SN ⊆ Sφ
1422
+ Now suppose for the sake of contradiction that φ is random. Then
1423
+ φ ⋆ hSN = hSN = hSN ⋆ φ.
1424
+ However for all Ces`aro means φn:
1425
+ φn ⋆ ϕ = φn =⇒ φ ⋆ ϕ = φ =⇒ hSN ⋆ ϕ = hSN,
1426
+ by left convolving both sides of φ ⋆ ϕ = φ with hSN. But Theorem 4.6 says in this case
1427
+ that ϕ is random, a contradiction.
1428
+
1429
+ If in fact for all genuinely quantum ϕ ∈ S+
1430
+ N it is the case that Sφ = S+
1431
+ N for φ given
1432
+ by (10), then the maximality conjecture holds, and it is tenable to say that hSN and any
1433
+ genuinely quantum permutation ϕ ∈ S+
1434
+ N generates S+
1435
+ N.
1436
+ 5. Convolution dynamics
1437
+ This section will explore, with respect to pQ ∈ C(S+
1438
+ N)∗∗, the qualitative dynamics of
1439
+ states on C(S+
1440
+ N) under convolution. Again, using the Gelfand–Birkhoff picture such states
1441
+ will be referred to as quantum permutations. The results of this section are illustrated
1442
+ qualitatively in a phase diagram, Figure 1.
1443
+ 5.1. The convolution of random and truly quantum permutations.
1444
+ Lemma 5.1. Suppose p ∈ C(G)∗∗ is a group-like projection. Then, where q := 1G − p:
1445
+ ∆∗∗(q)(1G ⊗ p) = q ⊗ p.
1446
+ Proof. Expand
1447
+ ∆∗∗(p + q)(1G ⊗ p) = (1G ⊗ p),
1448
+ then multiply on the right with q ⊗ p.
1449
+
1450
+ Proposition 5.2. Consider quantum permutations in S+
1451
+ N:
1452
+ (i) The convolution of random permutations is random.
1453
+ (ii) The convolution of a truly quantum permutation and a random permutation is
1454
+ truly quantum.
1455
+ (iii) The convolution of a truly quantum permutations can be random, mixed, or truly
1456
+ quantum.
1457
+ Proof.
1458
+ (i) This is straightforward.
1459
+
1460
+ 30
1461
+ J.P. MCCARTHY
1462
+ (ii) Let ϕ be truly quantum, and ϕν random with extension ων. Let (pλ
1463
+ Q) ⊂ O(S+
1464
+ N)
1465
+ converge σ-weakly to pQ. Using Lemma 5.1, mimic the proof of Theorem 2.19,
1466
+ hitting both sides of
1467
+ ∆∗∗(pQ)(1S+
1468
+ N ⊗ pC) = pQ ⊗ pC,
1469
+ with ωϕ ⊗ ων, to yield:
1470
+ ωϕ⋆ϕν(pQ) = 1,
1471
+ i.e. ϕ ⋆ ϕν is truly quantum.
1472
+ (iii) It will be seen in Corollary 6.3 that the Haar state is truly quantum. Note that
1473
+ for any N ≥ 4, the Kac–Paljutkin quantum group can be embedded G0 ⊂ S+
1474
+ N via
1475
+ πG0. It can be shown that E11 ◦ πG0 is truly quantum, and (E11 ◦ πG0)⋆2 = ϕν is a
1476
+ random permutation ([17], (4.6)). Let 0 ≤ c ≤ 1 and consider the truly quantum
1477
+ permutation:
1478
+ ϕ :=
1479
+
1480
+ 1 − c (E11 ◦ πG0) + (1 −
1481
+
1482
+ 1 − c) h.
1483
+ Then:
1484
+ ϕ⋆2 = (1 − c)ϕν + c h =⇒ ϕ⋆2(pQ) = c.
1485
+
1486
+ Corollary 5.3. If the convolution of two quantum permutations is a random permutation,
1487
+ then either both are random, or both are truly quantum.
1488
+ Proposition 5.4. A quantum permutation ϕ ∈ S+
1489
+ N can be written as a convex combination
1490
+ of a random permutation and a truly quantum permutation.
1491
+ Proof. If ϕ is random, or truly quantum, the result holds.
1492
+ Assume ϕ is mixed.
1493
+ The
1494
+ projections pC, pQ ∈ C(S+
1495
+ N)∗∗ are central, and thus
1496
+ ϕ = ωϕ(pC) �
1497
+ pCϕ + ωϕ(pQ) �
1498
+ pQϕ,
1499
+ and �
1500
+ pCϕ is random, while �
1501
+ pQϕ is truly quantum.
1502
+
1503
+ Definition 5.5. Let ϕ ∈ S+
1504
+ N be a quantum permutation. Define ϕC := �
1505
+ pCϕ, the (classi-
1506
+ cally) random part of ϕ, and ϕQ := �
1507
+ pQϕ, the truly quantum part of ϕ.
1508
+ Proposition 5.6. If ϕ ∈ S+
1509
+ N is a mixed quantum permutation with 0 < ωϕ(pQ) < 1, then
1510
+ no finite convolution power ϕ⋆k is random, or truly quantum.
1511
+ Proof. Let α := ωϕ(pQ) and write ϕ = (1 − α)ϕC + α ϕQ:
1512
+ ϕ⋆k > (1 − α)kϕ⋆k
1513
+ C
1514
+ =⇒ ωϕ⋆k(pQ) ≤ 1 − (1 − α)k,
1515
+ so no ϕ⋆k is truly quantum. In addition, ϕ⋆k = ϕ⋆ϕ⋆(k−1) cannot be random, by Corollary
1516
+ 5.3, because ϕ is neither random nor truly quantum.
1517
+
1518
+ Definition 5.7. A quantum permutation ϕ ∈ S+
1519
+ N is called α-quantum if ωϕ(pQ) = α.
1520
+
1521
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1522
+ 31
1523
+ Proposition 5.8. If ϕ ∈ S+
1524
+ N is α-quantum and ρ ∈ S+
1525
+ N is β-quantum, then
1526
+ α + β − 2αβ ≤ ωϕ⋆ρ(pQ) ≤ α + β − αβ.
1527
+ Proof. Note that ϕ ⋆ ρ equals:
1528
+ (1 − α)(1 − β)(ϕC ⋆ ρC) + β(1 − α)(ϕC ⋆ ρQ) + α(1 − β)(ϕQ ⋆ ρC) + αβ(ϕQ ⋆ ρQ).
1529
+ Now apply Proposition 5.2.
1530
+
1531
+ Definition 5.9. Where (ϕ, ρ) = (ϕ + ρ)/2 is the mean of two quantum permutations, a
1532
+ quantum strictly 1-increasing pair of quantum permutations ϕ1, ϕ2 ∈ S+
1533
+ N are a pair such
1534
+ that:
1535
+ ωϕ1⋆ϕ2(pQ) > ω(ϕ1,ϕ2)(pQ).
1536
+ A quantum strictly 2-increasing pair of quantum permutations are a pair such that:
1537
+ ω(ϕ1⋆ϕ2)⋆2(pQ) > ωϕ1⋆ϕ2(pQ) > ω(ϕ1,ϕ2)(pQ).
1538
+ Inductively, a quantum strictly (n + 1)-increasing pair of quantum permutations are a
1539
+ pair such that:
1540
+ ω(ϕ1⋆ϕ2)⋆(2n)(pQ) > ω(ϕ1⋆ϕ2)⋆(2n−1)(pQ) > · · · > ωϕ1⋆ϕ2(pQ) > ω(ϕ1,ϕ2)(pQ).
1541
+ Proposition 5.10. Let ϕ1 ∈ S+
1542
+ N be an α-quantum permutation, and ϕ2 ∈ S+
1543
+ N a β-
1544
+ quantum permutation.
1545
+ (i) If (α, β) ̸= (0, 0), then if α = 1/4 or β < α/(4α −1), the pair (ϕ1, ϕ2) is quantum
1546
+ strictly 1-increasing.
1547
+ (ii) If (α, β) ̸= (0, 0), and β = α/(4α − 1), then:
1548
+ ωϕ1⋆ϕ2(pQ) ≥ ω(ϕ1,ϕ2)(pQ).
1549
+ Equality is possible, with e.g. quantum permutations coming from the Kac–Paljutkin
1550
+ quantum group G0 ⊂ S+
1551
+ N.
1552
+ (iii) If β > α/(4α − 1) then ωϕ1⋆ϕ2(pQ) can be less than, equal to, or greater than
1553
+ ω(ϕ1,ϕ2)(pQ).
1554
+ (iv) Let
1555
+ (S+
1556
+ N × S+
1557
+ N)α,β := {(ϕ, ρ) : ωϕ(pQ) = α, ωρ(pQ) = β}.
1558
+ Then
1559
+ max{|ωϕ1⋆ϕ2(pQ) − ωϕ3⋆ϕ4(pQ)| : (ϕ1, ϕ2), (ϕ3, ϕ4) ∈ (S+
1560
+ N × S+
1561
+ N)α,β} = αβ.
1562
+
1563
+ 32
1564
+ J.P. MCCARTHY
1565
+ Proof. For (i)-(iii) apply Proposition 5.8. For (iv), the maximum in Proposition 5.8 is
1566
+ attained for
1567
+ ϕ1 = (1 − α) hSN + α h
1568
+ ϕ2 = (1 − β) hSN + β h
1569
+ ϕ3 = (1 − α) hSN + α (E11 ◦ πG0)
1570
+ ϕ4 = (1 − β) hSN + β (E11 ◦ πG0)
1571
+
1572
+ Suppose that ϕ1 is α-quantum, and ϕ2 is β-quantum. The subset of S+
1573
+ N × S+
1574
+ N given
1575
+ by condition (1) is called the QI-region. In this region the dynamics of the convolution
1576
+ (ϕ1, ϕ2) → ϕ with respect to pQ cannot be too wild:
1577
+ ωϕ1⋆ϕ2(pQ) ∈
1578
+
1579
+ ω(ϕ1,ϕ2)(pQ), ω(ϕ1,ϕ2)(pQ) + αβ
1580
+
1581
+ .
1582
+ Note that the width of this interval tends to zero for αβ → 0.
1583
+ On the other hand, the region of S+
1584
+ N ×S+
1585
+ N given by (3) is called the QW-region, and the
1586
+ dynamics can be more wild here. Given an arbitrary pair of quantum permutations in
1587
+ this region, the convolution can be more, equal, or less quantum than the mean, and, as
1588
+ αβ → 1, over the collection of (ϕ, ρ) ∈ QW the possible range of values of ωϕ⋆ρ(pQ) tends
1589
+ to one. Tracing from QI towards QW, on the boundary ∂W (given by (2)) ‘conservation
1590
+ of quantumness’,
1591
+ ωϕ1⋆ϕ2(pQ) = ω(ϕ1,ϕ2)(pQ),
1592
+ becomes possible for the first time.
1593
+ Similarly, higher order regions can be defined:
1594
+ (1) The region Q2I ⊆ QI given by β < (2α − 1)/(2α − 2) consists of quantum strictly
1595
+ 2-increasing pairs;
1596
+ (2) The region Q3I ⊆ Q2I given by β < 1 −
1597
+
1598
+ 2/(1 − 2α) consists of quantum strictly
1599
+ 3-increasing pairs;
1600
+ (3) The region Q 1
1601
+ 2 W ⊆ QW given by β > (1 − 1/
1602
+
1603
+ 2)/α consists of pairs of quantum
1604
+ permutations (ϕ1, ϕ2) such that the pair (ϕ1 ⋆ ϕ2, ϕ1 ⋆ ϕ2) ̸∈ Q2I, etc.
1605
+ 5.2. The truly quantum part of an idempotent state.
1606
+ Corollary 5.11. If φ ∈ S+
1607
+ N is an idempotent state, then
1608
+ ωφ(pQ) ∈ {0} ∪ [1/2, 1].
1609
+ Proof. If φ is an idempotent state,
1610
+ ωφ(pQ) = ωφ⋆φ(pQ).
1611
+ The rest follows from Proposition 5.10.
1612
+
1613
+
1614
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1615
+ 33
1616
+ Figure 1. The phase diagram for the convolution of α-quantum and β-
1617
+ quantum permutations.
1618
+ The phases are quantum increasing, QI, in the
1619
+ bottom left, and quantum wild, QW, in the top right, with the bold line
1620
+ ∂W the boundary.
1621
+ From the bottom left, Q3I ⊂ Q2I ⊂ QI, and then
1622
+ touching ∂W on the diagonal, Q 1
1623
+ 2W ⊂ QW. The region Q 1
1624
+ 2W is such that
1625
+ the convolution of states from this region cannot be too close to random:
1626
+ indeed the convolution cannot fall inside Q2I. The line α = β represents
1627
+ (ϕ, ϕ) → ϕ⋆2. The shading is proportional to αβ (see Proposition 5.10 (4)).
1628
+ An idempotent on the boundary ∂W is the Haar idempotent hG0 associated with the
1629
+ Kac–Paljutkin quantum group G0 ⊂ S+
1630
+ 4 which satisfies ωhG0(pQ) = 1/2.
1631
+ Example 5.12. Let G be a finite quantum group given by π : C(S+
1632
+ N) → C(G). Where
1633
+ G ⊆ G is the classical version, the σ-weak extension π∗∗ to the biduals maps onto C(G),
1634
+ and in particular π∗∗(pσ) ∈ C(G) is the support projection of
1635
+ f �→ πab(π(f))(σ)
1636
+ (f ∈ C(S+
1637
+ N)).
1638
+ Let hG := hC(G) ◦ π with extension to the biduals ωG. From e.g. [13]:
1639
+ ωG(pσ) =
1640
+ 1
1641
+ dim C(G)
1642
+ (σ ∈ G).
1643
+
1644
+ 0.8
1645
+ 0.6
1646
+ β
1647
+ 0.4-
1648
+ 02
1649
+ 0:
1650
+ 0
1651
+ 0.2
1652
+ 0.4
1653
+ 0.6
1654
+ 0.834
1655
+ J.P. MCCARTHY
1656
+ This implies that
1657
+ (11)
1658
+ ωG(pQ) = 1 −
1659
+ |G|
1660
+ dim C(G).
1661
+ Let n ≥ 9, where Sn is generated by elements σ, τ of order two and three [18], and thus
1662
+ there is an embedding �
1663
+ Sn ⊂ S+
1664
+ 5 given by Fourier type matrices uσ ∈ M2(C(�
1665
+ Sn)) and
1666
+ uτ ∈ M3(C(�
1667
+ Sn)) ([2], Chapter 13):
1668
+ u =
1669
+
1670
+
1671
+ 0
1672
+ 0
1673
+
1674
+
1675
+ .
1676
+ A finite dual �Γ ⊆ S+
1677
+ N has classical version with order equal to the number of one dimen-
1678
+ sional representations of Γ (see [17] for more). Therefore the classical version of �
1679
+ Sn is Z2
1680
+ and so, for n ≥ 9, the associated Haar idempotent:
1681
+ (12)
1682
+ ω�
1683
+ Sn(pQ) = 1 − 2
1684
+ n!,
1685
+ which tends to one for n → ∞.
1686
+ This suggests the following study: consider
1687
+ χN := {ωφ(pQ) : φ ∈ S+
1688
+ N, φ ⋆ φ = φ}.
1689
+ It is the case that χN = {0} for N ≤ 3, and otherwise a non-singleton. By (12), 1 is a
1690
+ limit point for χ5 ∩ [1/2, 1). Is there any other interesting behaviour: either at fixed N,
1691
+ or asymptotically N → ∞?
1692
+ It seems unlikely that there exists a finite exotic quantum permutation group SN ⊊
1693
+ GN ⊊ S+
1694
+ N for some N ≥ 6, but something can be said:
1695
+ Proposition 5.13. An exotic finite quantum permutation group at order N satisfies:
1696
+ dim C(G) ≥ 2N!
1697
+ In particular, there is no exotic finite quantum group with dim C(G) < 1440.
1698
+ Proof. This follows from (11) and Corollary 5.11, and the fact that any exotic quantum
1699
+ permutation group SN ⊊ G ⊊ S+
1700
+ N must satisfy N ≥ 6.
1701
+
1702
+ 5.3. Periodicity. A periodicity in convolution powers of random permutations is possi-
1703
+ ble. For example, suppose that G ⊆ SN and N ⊳ G is a normal subgroup. Consider the
1704
+ probability ν uniform on the coset Ng. Then, where ϕν ∈ S+
1705
+ N is the associated state:
1706
+ ϕν(f) =
1707
+
1708
+ σ∈SN
1709
+ πab(f)(σ)ν({σ}) =
1710
+ 1
1711
+ |Ng|
1712
+
1713
+ τ∈N
1714
+ πab(f)(τg)
1715
+ (f ∈ C(S+
1716
+ N)),
1717
+ the convolution powers (ϕ⋆k
1718
+ ν )k≥0 are periodic, with period equal to the order of g.
1719
+
1720
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1721
+ 35
1722
+ There can also be periodicity with respect to pQ. For example, ϕ := E11 ◦ πG0 is such
1723
+ that
1724
+ ϕ⋆k(pQ) =
1725
+
1726
+ 0,
1727
+ if k odd,
1728
+ 1,
1729
+ if k odd.
1730
+ Proposition 5.14. Suppose that ϕ ∈ S+
1731
+ N is truly quantum. If ϕ⋆k is random, then ϕ⋆(k+1)
1732
+ is truly quantum.
1733
+ Proof. Follows from Corollary 5.3.
1734
+
1735
+ Corollary 5.15. Suppose that a truly quantum permutation ϕ has a random finite con-
1736
+ volution power. Let k0 be the smallest such power. Then:
1737
+ ωϕk(pQ) =
1738
+
1739
+ 0,
1740
+ if k
1741
+ mod k0 = 0,
1742
+ 1,
1743
+ otherwise.
1744
+ Is there a quantum permutation with k0 > 2? This phenomenon suggests looking at
1745
+ when the classical version of G is a normal quantum subgroup G⊳G. However, in general,
1746
+ the classical periodicity associated with probability measures constant on cosets of N ⊳G
1747
+ for G ⊆ SN does not extend to the quantum case. See [16], Section 4.3.1.
1748
+ 6. Integer fixed points quantum permutations
1749
+ An example of an exotic intermediate quasi-subgroup would be nice: instead this section
1750
+ presents a non-example. For a quantum permutation group G, consider the observable:
1751
+ fix :=
1752
+ N
1753
+
1754
+ j=1
1755
+ ujj.
1756
+ Note that σ(fix) ⊆ [0, N]. Consider a finite partition P of the spectrum into Borel subsets,
1757
+ σ(fix) =
1758
+ m
1759
+
1760
+ i=1
1761
+ Ei.
1762
+ Borel functional calculus can be used to attach a (pairwise-distinct) label λi to each
1763
+ Ei ⊆ σ(fix), and the number of fixed points of a quantum permutation ϕ can be measured
1764
+ using fixP ∈ C(G)∗∗ given by:
1765
+ fixP :=
1766
+ m
1767
+
1768
+ i=1
1769
+ λi 1Ei(fix).
1770
+ Measurement is in the sense of algebraic quantum probability and the Gelfand–Birkhoff
1771
+ picture: when a quantum permutation ϕ ∈ G is measured with a finite spectrum observ-
1772
+ able f = �
1773
+ λ∈σ(f) λ pλ in the bidual C(G)∗∗, the result is an element of σ(f), with f = λ
1774
+ with probability ωϕ(pλ), and in that event there is wave-function collapse to �pλϕ.
1775
+
1776
+ 36
1777
+ J.P. MCCARTHY
1778
+ Definition 6.1. A quantum permutation ϕ ∈ S+
1779
+ N has integer fixed points only if for all
1780
+ Borel subsets E ⊆ σ(fix),
1781
+ E ∩ {0, 1, . . . , N} = ∅ =⇒ ωϕ(1E(fix)) = 0.
1782
+ Equivalently, if
1783
+ ωϕ(1{0,1,...,N}(fix)) = 1.
1784
+ Let F(G) ⊆ G be the set of quantum permutations with integer fixed points.
1785
+ In the quotient πab : C(G) → C(G) to the classical version G ⊆ G, the number of fixed
1786
+ points observable becomes a integer valued:
1787
+ πab(fix) = fixG =
1788
+
1789
+ λ=0,1...,N
1790
+ λ̸=N−1
1791
+ λ pλ,
1792
+ with
1793
+ pλ(σ) =
1794
+
1795
+ 1,
1796
+ if σ has λ fixed points,
1797
+ 0,
1798
+ otherwise.
1799
+ .
1800
+ Therefore, random permutations ϕν ∈ S+
1801
+ N are elements of F(S+
1802
+ N).
1803
+ There are plenty of concrete examples of genuinely quantum permutations with integer
1804
+ fixed points: e.g. the quantum permutation ϕ := E11 ◦ πG0 has zero fixed points. So,
1805
+ F(S+
1806
+ N) contains all the elements of SN in S+
1807
+ N, and also genuinely quantum permutations.
1808
+ Proposition 6.2. For N ≥ 4, the Haar state on C(S+
1809
+ N) is not an element of F(S+
1810
+ N). In
1811
+ fact:
1812
+ ωh(1{x}(fix)) = 0
1813
+ (x ∈ [0, N]).
1814
+ Proof. This follows from the fact that for N ≥ 4 the moments of fix with respect to
1815
+ the Haar state are the Catalan numbers [3], and thus the corresponding measure is the
1816
+ Marchenko-Pastur law of parameter one, which has no atoms:
1817
+ ωh(1{x}(fix)) =
1818
+
1819
+ {x}
1820
+ 1
1821
+
1822
+
1823
+ 4
1824
+ t − 1 dt = 0.
1825
+
1826
+ Corollary 6.3. For N ≥ 4, the Haar state on C(S+
1827
+ N) is truly quantum.
1828
+ Proof. The Haar state h is genuinely quantum. Assume that h ∈ S+
1829
+ N is mixed:
1830
+ ωh(pC) > 0 =⇒ ωh(pσ) > 0
1831
+ for some σ ∈ SN. Let qσ := 1S+
1832
+ N − pσ. Recalling that pσ is central:
1833
+ ωh(f) = ωh(pσ) ( �pσh)(f) + ωh(qσ) ( �qσh)(f)
1834
+ (f ∈ C(S+
1835
+ N)∗∗).
1836
+
1837
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1838
+ 37
1839
+ Note that �pσh has a central minimal projection for support, which implies it is a character.
1840
+ By Proposition 4.2, �pσh = evσ, which factors through the abelianisation πab:
1841
+ evσ(f) = πab(f)(σ)
1842
+ (f ∈ C(S+
1843
+ N)),
1844
+ while the extension ωσ factors through π∗∗
1845
+ ab. Suppose that σ has λ ∈ {0, 1, . . . , N} fixed
1846
+ points. Using Lemma 2.22, consider, where pλ = π∗∗
1847
+ ab(1{λ}(fix)),
1848
+ ωσ(1{λ}(fix)) = pλ(σ) = 1,
1849
+ =⇒ ωh(1{λ}(fix)) = ωh(pσ) ( �pσh)(1{λ}(fix)) + ωh(qσ) ( �qσh)(1{λ}(fix))
1850
+ ≥ ωh(pσ) ωσ(1{λ}(fix)) = ωh(pσ) > 0,
1851
+ contradicting Proposition 6.2.
1852
+
1853
+ However, F(G) ⊆ G is in general not a Pal set:
1854
+ Example 6.4. Let �S4 ⊂ S+
1855
+ 5 by:
1856
+ u =
1857
+
1858
+ u(12)
1859
+ 0
1860
+ 0
1861
+ u(234)
1862
+
1863
+ .
1864
+ Here u(12) ∈ M2(C( �S4)) and u(234) ∈ M3(C( �S4)) are Fourier-type magic unitaries associ-
1865
+ ated with (12) and (234) ([2], Chapter 13). Consider the regular representation:
1866
+ π : C( �S4) → B(C24).
1867
+ Consider:
1868
+ π(fix) = π(2e + (12) + (234) + (243)).
1869
+ The spectrum contains λ± := (5 ±
1870
+
1871
+ 17)/2 (see [17]), but consider unit eigenvectors x2
1872
+ and x4 ∈ C24 of eigenvalues two and four that give quantum permutations:
1873
+ ϕ2 = ⟨x2, π(·)x2⟩ and ϕ4 = ⟨x4, π(·)x4⟩,
1874
+ with two and four fixed points. It can be shown that:
1875
+ ϕ := 1
1876
+ 2ϕ2 + 1
1877
+ 2ϕ4
1878
+ is strict, that is |ϕ(σ)| = 1 for σ = e only, and therefore as the convolution in �S4 is
1879
+ pointwise multiplication,
1880
+ ϕ⋆k → δe,
1881
+ which is the Haar state on C( �S4). The Haar state for finite quantum groups such as �S4
1882
+ is faithful, and so where pλ+ is the spectral projection associated with the eigenvalue λ+:
1883
+ h�
1884
+ S4(pλ+) > 0,
1885
+ which implies that (ϕ⋆k)k≥0 does not converge to an element with integer fixed points,
1886
+ and so F( �S4) is not a Pal set, and thus neither is F(S+
1887
+ N) for N ≥ 4.
1888
+
1889
+ 38
1890
+ J.P. MCCARTHY
1891
+ Example 6.5. In the case of C(S+
1892
+ N) (N ≥ 4), the central algebra C(S+
1893
+ N)0 generated by the
1894
+ characters of irreducible unitary representations is commutative [10], and generated by
1895
+ fix, and so the central algebra C(S+
1896
+ N)0 ∼= C([0, N]), and the central states are given by
1897
+ Radon probability measures.
1898
+ The quantum permutation ‘uniform on quantum transpositions’, ϕtr from [10], is a
1899
+ central state given by:
1900
+ ϕtr(f) = f(N − 2)
1901
+ (f ∈ C(S+
1902
+ N)0)
1903
+ It has N − 2 fixed points (see [17]) but its convolution powers converge to the Haar state
1904
+ h ∈ S+
1905
+ N, which is not in F(S+
1906
+ N) by Proposition 6.2.
1907
+ Acknowledgement. Some of this work goes back to discussions with Teo Banica. Indeed
1908
+ the proof of Lemma 3.3 is due to Teo. Thanks also to Matthew Daws for helping with
1909
+ Section 1.4, Stefaan Vaes with Remark 1.5, and Ruy Exel with the argument in Theorem
1910
+ 2.23 (ii).
1911
+ References
1912
+ [1] T. Banica, Homogeneous quantum groups and their easiness level, Kyoto J. Math. 61, (2021) 1–30.
1913
+ [2] T. Banica, Introduction to quantum groups, Springer Nature Switzerland, (2023), doi:10.1007/978-
1914
+ 3-031-23817-8.
1915
+ [3] T. Banica and J. Bichon, Free product formulae for quantum permutation groups, J. Inst. Math.
1916
+ Jussieu 6 (2007), 381–414.
1917
+ [4] T. Banica and J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626, (2009)
1918
+ 74–114.
1919
+ [5] T. Banica and B. Collins, Integration over the Pauli quantum group, J. Geom. Phys. 58 (2008),
1920
+ 942–961.
1921
+ [6] E. B´edos, G. Murphy and L. Tuset, Co-amenability for compact quantum groups, J. Geom. Phys.
1922
+ 40 (2001) no. 2, 130–153.
1923
+ [7] A. B¨ottcher, I.M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra
1924
+ Appl. 432 (6), (2010) 1412—1459.
1925
+ [8] U. Franz and A. Skalski, On idempotent states on quantum groups, Journal of Algebra, 322, (2009),
1926
+ no.5, 1774–1802.
1927
+ [9] U. Franz, A. Skalski, and R. Tomatsu, Idempotent states on the compact quantum groups and their
1928
+ classification on Uq(2), SUq(2), and SOq(3), Journal of Noncommutative Geometry 7 (2013), no.1,
1929
+ 221–254.
1930
+ [10] A. Freslon, Cut-off phenomenon for random walks on free orthogonal free groups, Probab. Theory
1931
+ Related Fields, 174 (2019), no 3–4, 731–760.
1932
+ [11] I. Halperin, The product of projection operators. Acta Sci. Math. (Szeged) 23(1962), 96-–99.
1933
+ [12] P. Kasprzak, and P.M. So�ltan, The Lattice of Idempotent States on a Locally Compact Quantum
1934
+ Group, Publ. Res. Inst. Math. Sci., 56 (2020), 33–53.
1935
+ [13] G.I. Kac and V.G. Paljutkin, Finite Group Rings, Trudy Moskov. Mat. Obˇsˇc. 15:224–261, 1966.
1936
+ Translated in Trans. Moscow Math. Soc. (1967), 251–284, (1966).
1937
+ [14] Y. Kawada, and K. Itˆo, On the probability distribution on a compact group. I, Proc. Phys.-Math.
1938
+ Soc. Japan, 3 (1940), 22:977-988. .
1939
+
1940
+ IDEMPOTENT STATES ON QUANTUM PERMUTATION GROUPS
1941
+ 39
1942
+ [15] M. B. Landstand and A. Van Daele, Compact and discrete subgroups of algebraic quantum groups,
1943
+ I (2007), available at arXiv:0702.458.
1944
+ [16] J.P. McCarthy, The ergodic theorem for random walks on finite quantum groups, Communications
1945
+ in Algebra, 49:9, (2021), 3850–3871, DOI:10.1080/00927872.2021.1908551
1946
+ [17] J.P. McCarthy, A state-space approach to quantum permutations, Exp. Math., 40(3), (2022), 628–
1947
+ 664.
1948
+ [18] G.A. Miller,On the groups generated by 2 operators, Bull. Amer. Math. Soc. 7, (1901) 14-–32.
1949
+ [19] G. J. Murphy, C∗-algebras and Operator Theory, Academic Press, Boston, (1990).
1950
+ [20] A. Pal, A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys.,
1951
+ 37(1) (1996), 75–77.
1952
+ [21] S. Sherman, The second adjoint of a C∗-algebra, Proceedings of the International Congress of Math-
1953
+ ematicians (1): (1950) 470.
1954
+ [22] Z. Takeda, Conjugate spaces of operator algebras Proceedings of the Japan Academy 30 (2) (1954)
1955
+ 90-–95.
1956
+ [23] M. Takesaki, Theory of Operator Algebras I, Springer (1979).
1957
+ [24] T. Timmermann, An Invitation to Quantum Groups and Duality, Eur. Math. Soc., (2008).
1958
+ [25] S.
1959
+ Vaes,
1960
+ States
1961
+ absorbed
1962
+ by
1963
+ a
1964
+ Haar
1965
+ idempotent
1966
+ on
1967
+ a
1968
+ compact
1969
+ quantum
1970
+ group,
1971
+ https://mathoverflow.net/q/438517, 14-01-2023.
1972
+ [26] A. Van Daele, The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995),
1973
+ 3125-–3128.
1974
+ [27] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195–211.
1975
+ [28] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.
1976
+ [29] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups,
1977
+ Invent. Math. 93 (1988), 35–76.
1978
+ [30] S.L. Woronowicz, Compact quantum groups, in “Sym´etries quantiques” (Les Houches, 1995), North-
1979
+ Holland, Amsterdam (1998), 845–884.
1980
+ Department of Mathematics, Munster Technological University, Cork, Ireland.
1981
1982
+
2dFQT4oBgHgl3EQf2TZ3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49E4T4oBgHgl3EQfBAv2/content/2301.04849v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b37d2b8309a7a6f860b8301877c53c5910f31f99c3e805c2a9f534c5240c0017
3
+ size 2759534
49E4T4oBgHgl3EQfBAv2/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a47abcbb62c211cbe7f73d25a90433737e3edc3d30ea52756c155f9b7bc3dda9
3
+ size 143434
59E4T4oBgHgl3EQf1g16/content/tmp_files/2301.05291v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
59E4T4oBgHgl3EQf1g16/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5NE1T4oBgHgl3EQfSwPe/content/tmp_files/2301.03071v1.pdf.txt ADDED
@@ -0,0 +1,1866 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03071v1 [math.DG] 8 Jan 2023
2
+ Curves of Constant Breadth According to Darboux
3
+ Frame in a Strict Walker 3-Manifold
4
+ Ameth Ndiaye*
5
+ D´epartement de Math´ematiques, FASTEF, UCAD, Dakar, Senegal.
6
+ Abstract
7
+ In this paper, we investigate the differential geometry properties of curves of constant
8
+ breadth according to Darboux frame in a given strict Walker 3-manifold. The considered curves
9
+ are lying on a timelike surface in the Walker 3-manifold.
10
+ MSC: 53B25 ; 53C40.
11
+ Keywords: Darboux frame, curvature, torsion, constant breadth curve, Walker 3-manifolds.
12
+ 1
13
+ Introduction
14
+ The study of curves of constant breadth were defined first in 1778 by Euler. Then, Solow [11]
15
+ investigated the curves of constant breadth. Kose, Magden and Yilmaz in [9, 10] studied plane
16
+ curves of constant breadth in Euclidean spaces E3 and E4. Fujiwara [7] defined constant breadth
17
+ for space curves and obtained a problem to determine whether there exists space curve of con-
18
+ stant breadth or not. Furthermore, Blaschke [3] defined the curves of constant breadth on a sphere.
19
+ In [2], Altunkaya et al. defined null curves of constant breadth in Minkowski 4-space and obtain
20
+ a characterization of these curves. Also Altunkaya et al. in [1] investigate constant breadth curves
21
+ on a surface according to Darboux frame and give some characterizations of these curves.
22
+ Motivated by the above papers, we investigate the geometries of curves of constant breadth accord-
23
+ ing to Darboux frame in a Strict Walker 3-manifold which is a Lorentzian three-manifold admitting
24
+ a parallel null vector field. It is known that Walker metrics have served as a powerful tool of con-
25
+ structing interesting indefinite metrics which exhibit various aspects of geometric properties not
26
+ given by any positive definite metrics. For more details about Walker 3-manifold see [5,6,8].
27
+ 2
28
+ Preliminaries
29
+ A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel r-
30
+ planes, with r ≤ n
31
+ 2. The canonical forms of the metrics were investigated by A. G. Walker ( [4]).
32
+ * E–mail: [email protected] (A. Ndiaye)
33
+ 1
34
+
35
+ Walker has derived adapted coordinates to a parallel plan field. Hence, the metric of a three-
36
+ dimensional Walker manifold (M, gǫ
37
+ f) with coordinates (x, y, z) is expressed as
38
+
39
+ f = dx ◦ dz + ǫdy2 + f(x, y, z)dz2
40
+ (1)
41
+ and its matrix form as
42
+
43
+ f =
44
+
45
+
46
+ 0
47
+ 0
48
+ 1
49
+ 0
50
+ ǫ
51
+ 0
52
+ 1
53
+ 0
54
+ f
55
+
56
+
57
+ with inverse (gǫ
58
+ f)−1 =
59
+
60
+
61
+ −f
62
+ 0
63
+ 1
64
+ 0
65
+ ǫ
66
+ 0
67
+ 1
68
+ 0
69
+ 0
70
+
71
+
72
+ for some function f(x, y, z), where ǫ = ±1 and thus D = Span∂x as the parallel degenerate line
73
+ field. Notice that when ǫ = 1 and ǫ = −1 the Walker manifold has signature (2, 1) and (1, 2)
74
+ respectively, and therefore is Lorentzian in both cases. In this study we take ǫ = 1.
75
+ It follows after a straightforward calculation that the Levi-Civita connection of any metric (1)
76
+ is given by:
77
+ ∇∂x∂z
78
+ =
79
+ 1
80
+ 2fx∂x,
81
+ ∇∂y∂z = 1
82
+ 2fy∂x,
83
+ ∇∂z∂z
84
+ =
85
+ 1
86
+ 2(ffx + fz)∂x + 1
87
+ 2fy∂y − 1
88
+ 2fx∂z
89
+ (2)
90
+ where ∂x, ∂y and ∂z are the coordinate vector fields
91
+
92
+ ∂x,
93
+
94
+ ∂y and
95
+
96
+ ∂z , respectively. Hence, if (M, gǫ
97
+ f)
98
+ is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the associated Levi-Civita connection
99
+ satisfies
100
+ ∇∂y∂z = 1
101
+ 2fy∂x,
102
+ ∇∂z∂z = 1
103
+ 2fz∂x − 1
104
+ 2fy∂y.
105
+ (3)
106
+ Note that the existence of a null parallel vector field (i.e f = f(y, z)) simplifies the non-zero
107
+ components of the Christoffel symbols and the curvature tensor of the metric gǫ
108
+ f as follows:
109
+ Γ1
110
+ 23 = Γ1
111
+ 32 = 1
112
+ 2fy, Γ1
113
+ 33 = 1
114
+ 2fz, Γ2
115
+ 33 = −1
116
+ 2fy
117
+ (4)
118
+ Let now u and v be two vectors in M. Denoted by (⃗i,⃗j,⃗k) the canonical frame in R3.
119
+ The vector product of u and v in (M, gǫ
120
+ f) with respect to the metric gǫ
121
+ f is the vector denoted by u×v
122
+ in M defined by
123
+
124
+ f(u × v, w) = det(u, v, w)
125
+ (5)
126
+ for all vector w in M, where det(u, v, w) is the determinant function associated to the canonical
127
+ basis of R3. If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (5), we have:
128
+ u × v =
129
+ �����
130
+ u1
131
+ v1
132
+ u2
133
+ v2
134
+ ���� − f
135
+ ����
136
+ u2
137
+ v2
138
+ u3
139
+ v3
140
+ ����
141
+
142
+ ⃗i − ǫ
143
+ ����
144
+ u1
145
+ v1
146
+ u3
147
+ v3
148
+ ����⃗j +
149
+ ����
150
+ u2
151
+ v2
152
+ u3
153
+ v3
154
+ ����⃗k
155
+ (6)
156
+ 2
157
+
158
+ 3
159
+ Darboux equations in Walker 3-manifold
160
+ Let α : I ⊂ R −→ (M, gǫ
161
+ f) be a curve parametrized by its arc-length s. The Frenet frame of α is
162
+ the vectors T, N and B along α where T is the tangent, N the principal normal and B the binormal
163
+ vector. They satisfied the Frenet formulas
164
+
165
+
166
+
167
+ ∇TT(s)
168
+ =
169
+ ǫ2κ(s)N(s)
170
+ ∇TN(s)
171
+ =
172
+ −ǫ1κT(s) − ǫ3τB(s)
173
+ ∇TB(s)
174
+ =
175
+ ǫ2τ(s)N(s)
176
+ (7)
177
+ where κ and τ are respectively the curvature and the torsion of the curve α, with ǫ1 = gf(T; T); ǫ2 =
178
+ gf(N; N) and ǫ3 = gf(B, B).
179
+ Starting from local coordinates (x, y, z) for which (1) holds, it is easy to check that
180
+ e1 = ∂y, e2 = 2 − f
181
+ 2
182
+
183
+ 2 ∂x + 1
184
+
185
+ 2∂z, e3 = 2 + f
186
+ 2
187
+
188
+ 2 ∂x − 1
189
+
190
+ 2∂z
191
+ are local pseudo-orthonormal frame fields on (M, gǫ
192
+ f), with gǫ
193
+ f(e1, e1) = ǫ, gǫ
194
+ f(e2, e2) = 1 and
195
+
196
+ f(e3, e3) = −1. Thus the signature of the metric gǫ
197
+ f is (1, ǫ, −1). If we choose ǫ = 1 then,
198
+ pseudo-orthonormal frame is formed by two spacelike vectors and one timelike vector and If we
199
+ choose ǫ = −1 then, pseudo-orthonormal frame is formed by one spacelike vector and two timelike
200
+ vectors. For both cases we obtain Lorentzian manifold. In this work we assume that ǫ = 1
201
+ Now we suppose that the curve α lies on a timelike surface S in M. Let U be the unit normal vector
202
+ of S, then the Darboux frame is given by {T, Y, U}, where T is the tangent vector of the curve α(s)
203
+ and Y = U × T.
204
+ Case 1: Let α be timelike curve. Then the tangent vector T is timelike (ǫ1 = −1), the normal
205
+ vector N and the binormal vector B are spacelike, that is (ǫ2 = ǫ3 = 1).
206
+ Since S is timelike, the unit normal vector U is spacelike and so Y becomes spacelike. The usual
207
+ transformations between the Walker Frenet frame and the Darboux takes the form
208
+ Y = cos θN + sin θB
209
+ (8)
210
+ U = − sin θN + cos θB,
211
+ (9)
212
+ where θ is an angle between the vector Y and the vector N.
213
+ Derivating Y along the curve alpha we get
214
+ ∇TY = cos θ∇TN − θ′ sin θN + sin θ∇TB + θ′ cos θB.
215
+ Using the Frenet equation in (2.7) we have
216
+ ∇T Y = cos θ(κT − ǫ3τB) − θ′ sin θN + sin θ(ǫ2τN) + θ′ cos θB.
217
+ Now we suppose that the principal normal and the binormal have the same sign. then we get
218
+ ∇TY = κ cos θT + (θ′ − τ)U
219
+ (10)
220
+ The same calculus gives
221
+ ∇TU = −κ sin θT − (θ′ − τ)Y.
222
+ (11)
223
+ 3
224
+
225
+ Then the Walker Darboux equation is expressed as
226
+
227
+
228
+
229
+ ∇TT = κgY + κnU
230
+ ∇TY = κgT + τgU
231
+ ∇TU = κnT − τgY,
232
+ (12)
233
+ where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on
234
+ S, respectively. Also, (12) gives
235
+
236
+ f (∇T Y, U) = τg = θ′ − τ,
237
+ (13)
238
+
239
+ f (∇TT, Y ) = κg = κ cos θ,
240
+ (14)
241
+
242
+ f (∇TT, U) = κn = −κ sin θ.
243
+ (15)
244
+ Case 2: Let α be spacelike curve. Then the tangent vector T is spacelike (ǫ1 = 1), the normal
245
+ vector N is spacelike (ǫ2 = 1) and the binormal vector B is timelike (ǫ3 = −1) or normal vector N
246
+ is timelike (ǫ2 = −1) and the binormal vector B is spacelike (ǫ3 = 1). So we have two following
247
+ subcases:
248
+ i): ǫ2 = 1 and ǫ3 = −1.
249
+ Then the usual transformations between the Walker Frenet frame and the Darboux takes the form
250
+ Y = cosh θN + sinh θB
251
+ (16)
252
+ U = sinh θN + cosh θB,
253
+ (17)
254
+ where θ is an angle between the vector Y and the vector N.
255
+ Since ∇TT = κN, we have
256
+ ∇TT = −κ sinh θY + κ cosh θU.
257
+ (18)
258
+ Derivating Y along the curve alpha we get
259
+ ∇T Y = −κ sinh θT + (θ′ + τ)U
260
+ (19)
261
+ The same calculus gives
262
+ ∇TU = −κ cosh θT + (θ′ + τ)Y.
263
+ (20)
264
+ Then the Walker Darboux equation is expressed as
265
+
266
+
267
+
268
+ ∇TT = −κgY + κnU
269
+ ∇TY = −κgT + τgU
270
+ ∇TU = −κnT + τgY,
271
+ (21)
272
+ where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on
273
+ S, respectively. Also, (21) gives
274
+
275
+ f (∇TY, U) = τg = θ′ + τ,
276
+ (22)
277
+
278
+ f (∇TT, Y ) = κg = κ sinh θ,
279
+ (23)
280
+
281
+ f (∇TT, U) = κn = κ cosh θ.
282
+ (24)
283
+ 4
284
+
285
+ ii): ǫ2 = −1 and ǫ3 = 1.
286
+ Then the usual transformations between the Walker Frenet frame and the Darboux takes the form
287
+ Y = sinh θN + cosh θB
288
+ (25)
289
+ U = cosh θN + sinh θB,
290
+ (26)
291
+ where θ is an angle between the vector Y and the vector N.
292
+ Since ∇TT = −κN, we have
293
+ ∇TT = −κ cosh θY + κ sinh θU.
294
+ (27)
295
+ Derivating Y with respect to s we get
296
+ ∇TY = −κ cosh θT + (θ′ − τ)U
297
+ (28)
298
+ Derivating Y with respect to s alpha we get
299
+ ∇TU = −κ sinh θT + (θ′ − τ)Y.
300
+ (29)
301
+ Then the Walker Darboux equation is expressed as
302
+
303
+
304
+
305
+ ∇TT = −κgY + κnU
306
+ ∇TY = −κgT + τgU
307
+ ∇TU = −κnT + τgY,
308
+ (30)
309
+ where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on
310
+ S, respectively. Also, (30) gives
311
+
312
+ f (∇T Y, U) = τg = θ′ − τ,
313
+ (31)
314
+
315
+ f (∇TT, Y ) = κg = κ cosh θ,
316
+ (32)
317
+
318
+ f (∇TT, U) = κn = κ sinh θ.
319
+ (33)
320
+ 4
321
+ Space curves of constant breadth According to Darboux Frame
322
+ in Walker manifold
323
+ In this section, we define space curves of constant breadth in the three dimensional Walker mani-
324
+ fold.
325
+ Definition 4.1. A curve α : I → (M, gǫ
326
+ f) in the three-dimensional Walker manifold (M, gǫ
327
+ f) is
328
+ called a curve of constant breadth if there exists a curve β : I → Mf such that, at the corresponding
329
+ points of curves, the parallel tangent vectors of α and β at α(s) and β(s⋆) at s; s⋆ ∈ I are opposite
330
+ directions and the distance gǫ
331
+ f(β − α, β − α) is constant. In this case, (α; β) is called a pair curve
332
+ of constant breadth.
333
+ Let now (α; β) be a pair of unit speed curves of constant breadth and s, s⋆ be arc-length of α
334
+ and β, respectively.
335
+ We suppose that the curve α lies on a timelike surface in Mf, then it has Darboux frame in addition
336
+ to Frenet frame. Then we may write the following equation:
337
+ β(s⋆) = α(s) + m1(s)T(s) + m2(s)Y (s) + m3(s)U(s);
338
+ (34)
339
+ where mi(i = 1, 2, 3) are smooth functions of s.
340
+ 5
341
+
342
+ 4.1
343
+ Case where α is timelike.
344
+ Differentiating (34) with respect to s and using (12) we obtain
345
+
346
+ ds
347
+ =
348
+
349
+ ds⋆
350
+ ds⋆
351
+ ds
352
+ =
353
+ T ⋆(s⋆)ds⋆
354
+ ds = (1 + m′
355
+ 1 + m2κg + m3κn)T(s)
356
+ +(m′
357
+ 2 + m1κg − m3τg)Y (s)
358
+ +(m′
359
+ 3 + m2τg + m1κn)U(s),
360
+ (35)
361
+ where T ⋆ denotes the unit tangent vector of β.
362
+ Since T = −T ∗, from the equations in (35) we have
363
+
364
+
365
+
366
+ m′
367
+ 1
368
+ =
369
+ −m2κg − m3κn − h(s)
370
+ m′
371
+ 2
372
+ =
373
+ −m1κg + m3τg
374
+ m′
375
+ 3
376
+ =
377
+ −m2τg − m1κn,
378
+ (36)
379
+ where h(s) =
380
+ ds⋆
381
+ ds + 1. We assume that (α, β) is a curve pair of constant breadth. Since α is a
382
+ timelike curve and the vectors Y and U are spacelike vectors, we have
383
+ ∥β − α∥ = −m2
384
+ 1 + m2
385
+ 2 + m2
386
+ 3 = constant,
387
+ (37)
388
+ which imlplies that
389
+ −m1
390
+ dm1
391
+ ds + m2
392
+ dm2
393
+ ds + m3
394
+ dm3
395
+ ds = 0.
396
+ (38)
397
+ If we combine (36) and (38), we get
398
+ m1h(s) = 0.
399
+ (39)
400
+ If α and β are curves of constant breadth then m1 = 0 or h(s) = 0. If m1 ̸= 0 (that is h(s) = 0)
401
+ then d = m1T(s) + m2Y (s) + m3U(s) becomes a constant vector. So β(s∗) is a translation of α
402
+ along the constant vector d. Also h(s) = 0 gives s∗ = −s + c, where c is constant.
403
+ Now, we investigate curves of constant breadth for m1 ̸= 0 or m1 = 0 in some special case.
404
+ 4.1.1
405
+ Case (For geodesic curves)
406
+ Let α be non-straight line geodesic curve on a timelike surface. Then κg = κ cos θ = 0. As κ ̸= 0,
407
+ we get cos θ = 0. So it implies that κn = −κ, τg = −τ. From (36), we have following differential
408
+ equation system
409
+
410
+
411
+
412
+ m′
413
+ 1
414
+ =
415
+ m3κ − h(s)
416
+ m′
417
+ 2
418
+ =
419
+ −m3τ
420
+ m′
421
+ 3
422
+ =
423
+ m1κ + m2τ.
424
+ (40)
425
+ By using (40), we obtain the following differential equation.
426
+ 1
427
+ κ
428
+ �1
429
+ κ(m′
430
+ 1 + h)
431
+ �′′
432
+ +
433
+ ��1
434
+ κ
435
+ �′
436
+ − 1
437
+ τ
438
+ �τ
439
+ κ
440
+ �′� �1
441
+ κ(m′
442
+ 1 + h)
443
+ �′
444
+ +
445
+ �τ
446
+ κ
447
+ �2
448
+ (m′
449
+ 1+h)+
450
+ �τ
451
+ κ
452
+ �′ κ
453
+ τ m1−m′
454
+ 1 = 0.
455
+ (41)
456
+ 6
457
+
458
+ Subcase 1: m1 ̸= 0 (h(s) = 0).
459
+ If we write h(s) = 0 in equation (41), we have.
460
+ 1
461
+ κ
462
+ �1
463
+ κm′
464
+ 1
465
+ �′′
466
+ +
467
+ ��1
468
+ κ
469
+ �′
470
+ − 1
471
+ τ
472
+ �τ
473
+ κ
474
+ �′� �1
475
+ κm′
476
+ 1
477
+ �′
478
+ +
479
+ ��τ
480
+ κ
481
+ �2
482
+ − 1
483
+
484
+ m′
485
+ 1 +
486
+ �τ
487
+ κ
488
+ �′ κ
489
+ τ m1 = 0.
490
+ (42)
491
+ Theorem 4.2. Let α be a timelike geodesic curve lying a timelike surface in M and let (α, β) be a
492
+ pair of unit speed curves of constant breadth. If m1 is a non-zero constant then α is a general helix
493
+ in the three dimensional Walker manifold (M, gǫ
494
+ f). Also the curve β is given as:
495
+ β(s⋆) = α(s) + m1T(s) + m2Y (s)
496
+ (43)
497
+ where m2 is a real constant and s∗ = −s + c.
498
+ Proof. If m1 is non zero constant, then from (42) we obtain that
499
+ � τ
500
+ κ
501
+ �′ = 0. So α is a general
502
+ helix. Also from the first and second equations of (40) we get m3 = 0 and m2 is a real constant,
503
+ respectively.
504
+ Theorem 4.3. Let α be a timelike geodesic curve and a general helix lying a timelike surface in
505
+ M. Let (α, β) be a pair of unit speed curves of constant breadth. If m1 is not zero, then the curve
506
+ β can be expressed as one of the following cases:
507
+ β(s∗) = α(s) + m1T(s) + 1
508
+ c0
509
+ ( ¨m1 − m1)Y (s) + ˙m1U(s)
510
+ (44)
511
+ where
512
+ i) m1 =
513
+ 1
514
+
515
+ c2
516
+ 0−1
517
+
518
+ a1 sin(
519
+
520
+ c2
521
+ 0 − 1z) − a2 cos(
522
+
523
+ c2
524
+ 0 − 1z)
525
+
526
+ + a3,
527
+ c2
528
+ 0 − 1 > 0
529
+ ii) m1 = a1
530
+ 2 z2 + a2z + a3,
531
+ c2
532
+ 0 − 1 = 0
533
+ iii) m1 =
534
+ 1
535
+
536
+ 1−c2
537
+ 0
538
+
539
+ a1 sinh(
540
+
541
+ 1 − c2
542
+ 0z) + a2 cosh(
543
+
544
+ 1 − c2
545
+ 0z)
546
+
547
+ + a3,
548
+ c2
549
+ 0 − 1 < 0
550
+ where z =
551
+
552
+ κds and a1, a2, a3 are real constants.
553
+ Proof. Let us consider that α is timelike geodesic curve and a general helix in Wlaker 3-manifold.
554
+ Then we have τ
555
+ κ = c0 = constant. From (42), we have
556
+ �1
557
+ κ
558
+ �1
559
+ κm′
560
+ 1
561
+ �′�′
562
+ +
563
+
564
+ c2
565
+ 0 − 1
566
+
567
+ m′
568
+ 1 = 0.
569
+ (45)
570
+ By means of changing of the independant variable s with z =
571
+
572
+ κds, from (45) we obtain
573
+ m′
574
+ 1 = dm1
575
+ ds = dm1
576
+ dz
577
+ dz
578
+ ds = ˙m1κ.
579
+ ...
580
+ m1 + (c2
581
+ 0 − 1) ˙m1 = 0.
582
+ (46)
583
+ 7
584
+
585
+ If we solve this equation we get
586
+ m1 =
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+ 1
595
+
596
+ c2
597
+ 0−1
598
+
599
+ a1 sin(
600
+
601
+ c2
602
+ 0 − 1z) − a2 cos(
603
+
604
+ c2
605
+ 0 − 1z)
606
+
607
+ + a3, if c2
608
+ 0 − 1 > 0
609
+ a1
610
+ 2 z2 + a2z + a2, if c2
611
+ 0 − 1 = 0
612
+ 1
613
+
614
+ 1−c2
615
+ 0
616
+
617
+ a1 sinh(
618
+
619
+ 1 − c2
620
+ 0z) + a2 cosh(
621
+
622
+ 1 − c2
623
+ 0z)
624
+
625
+ + a3, if c2
626
+ 0 − 1 < 0.
627
+ From (40) we obtain m3 = ˙m1 and m2 =
628
+ 1
629
+ c0( ¨m1 − m1).
630
+ Subcase 2: m1 = 0.
631
+ If we take m1 = 0 in the equation (40), we get
632
+
633
+
634
+
635
+ h(s)
636
+ =
637
+ m3κ
638
+ m′
639
+ 2
640
+ =
641
+ −m3τ
642
+ m′
643
+ 3
644
+ =
645
+ m2τ.
646
+ (47)
647
+ Since m3 = h
648
+ κ, m2 = 1
649
+ τ m′
650
+ 3 = 1
651
+ τ
652
+ �h
653
+ κ
654
+ �′, we get
655
+ �1
656
+ τ
657
+ �h
658
+ κ
659
+ �′�′
660
+ +
661
+ �h
662
+ κ
663
+
664
+ τ = 0.
665
+ (48)
666
+ If we put y = h
667
+ κ, the equation (48) becomes
668
+ y′′ − τ ′
669
+ τ y′ + τ 2y = 0.
670
+ (49)
671
+ For solving the equation (49), we put the new variable dw
672
+ ds = τ. Then
673
+
674
+ y′ = dy
675
+ dw
676
+ dw
677
+ ds = ˙yτ
678
+ y′′ = d2y
679
+ dw2τ 2 + dy
680
+ dwτ ′
681
+ (50)
682
+ If we put the equation (50) in the equation (49) we obtain
683
+ d2y
684
+ dw2 + y = 0.
685
+ (51)
686
+ and the solution of (51) is y = b1 cos w + b2 sin w. Then we have
687
+ h(s) = ��
688
+
689
+ b1 cos
690
+ ��
691
+ τds
692
+
693
+ + b2 sin
694
+ ��
695
+ τds
696
+ ��
697
+ (52)
698
+ m2 = h
699
+ κ = b1 cos
700
+ ��
701
+ τds
702
+
703
+ + b2 sin
704
+ ��
705
+ τds
706
+
707
+ (53)
708
+ m3 = 1
709
+ τ
710
+ �h
711
+ κ
712
+ �′
713
+ = −b1 sin
714
+ ��
715
+ τds
716
+
717
+ + b2 cos
718
+ ��
719
+ τds
720
+
721
+ .
722
+ (54)
723
+ So we give the following theorem
724
+ Theorem 4.4. Let (α, β) be a pair of constant breadth curve in (M, gf) where α is a timelike
725
+ geodesic curve lying in a timelike surface in M. If m1 = 0, then the curve β is given by
726
+ β(s∗) = α(s)+
727
+
728
+ b1 cos
729
+ ��
730
+ τds
731
+
732
+ + b2 sin
733
+ ��
734
+ τds
735
+ ��
736
+ Y (s)+
737
+
738
+ −b1 sin
739
+ ��
740
+ τds
741
+
742
+ + b2 cos
743
+ ��
744
+ τds
745
+ ��
746
+ U(s).
747
+ 8
748
+
749
+ 4.1.2
750
+ Case (For asymptotic lines)
751
+ Let α be non-straight line asymptotic line on a timelike surface. Then κn = −κ sin θ = 0. As
752
+ κ ̸= 0, we get sin θ = 0. So it implies that κg = κ, τg = −τ. From (36), we have following
753
+ differential equation system
754
+
755
+
756
+
757
+ m′
758
+ 1
759
+ =
760
+ −m2κ − h(s)
761
+ m′
762
+ 2
763
+ =
764
+ −m1κ − m3τ
765
+ m′
766
+ 3
767
+ =
768
+ m2τ.
769
+ (55)
770
+ By using (55), we get
771
+ 1
772
+ κ
773
+ �1
774
+ κ(m′
775
+ 1 + h)
776
+ �′′
777
+ +
778
+ ��1
779
+ κ
780
+ �′
781
+ − 1
782
+ τ
783
+ �τ
784
+ κ
785
+ �′� �1
786
+ κ(m′
787
+ 1 + h)
788
+ �′
789
+ +
790
+ �τ
791
+ κ
792
+ �2
793
+ (m′
794
+ 1+h)+
795
+ �τ
796
+ κ
797
+ �′ κ
798
+ τ m1−m′
799
+ 1 = 0.
800
+ (56)
801
+ Subcase 1: m1 ̸= 0 (h(s) = 0).
802
+ If we take as h(s) = 0 in equation (56), we get following differential equation
803
+ 1
804
+ κ
805
+ �1
806
+ κm′
807
+ 1
808
+ �′′
809
+ +
810
+ ��1
811
+ κ
812
+ �′
813
+ − 1
814
+ τ
815
+ �τ
816
+ κ
817
+ �′� �1
818
+ κm′
819
+ 1
820
+ �′
821
+ +
822
+ ��τ
823
+ κ
824
+ �2
825
+ − 1
826
+
827
+ m′
828
+ 1 +
829
+ �τ
830
+ κ
831
+ �′ κ
832
+ τ m1 = 0.
833
+ (57)
834
+ Theorem 4.5. Let α be a timelike asymptotic line lying a timelike surface in M. Let (α, β) be a
835
+ pair of unit speed curves of constant breadth. If m1 is non-zero constant then α is a general helix
836
+ in the three dimensional Walker manifold (M, gǫ
837
+ f). Also the curve β is given as:
838
+ β(s⋆) = α(s) + m1T(s) + m3U(s)
839
+ (58)
840
+ where m3 is a real constant and s∗ = −s + c.
841
+ Proof. If m1 is non zero constant, then from (57) we obtain that
842
+ � τ
843
+ κ
844
+ �′ = 0. So α is a general
845
+ helix. Also from the first and third equation of (55) we get m2 = 0 and m3 is a real constant,
846
+ respectively.
847
+ Theorem 4.6. Let α be a timelike asymptotic line lying in a timelike surface in M. Let (α, β) be a
848
+ pair of unit speed curves of constant breadth. If m1 is not zero, then the curve β can be expressed
849
+ as one of the following cases:
850
+ β(s∗) = α(s) + m1T(s) − ˙m1Y (s) + 1
851
+ c0
852
+ ( ¨m1 − m1)U(s),
853
+ (59)
854
+ where
855
+ i) m1 =
856
+ 1
857
+
858
+ c2
859
+ 0−1
860
+
861
+ a1 sin(
862
+
863
+ c2
864
+ 0 − 1z) − a2 cos(
865
+
866
+ c2
867
+ 0 − 1z)
868
+
869
+ + a3, c2
870
+ 0 − 1 > 0
871
+ ii) m1 = a1
872
+ 2 z2 + a2z + a3, c2
873
+ 0 − 1 = 0
874
+ iii) m1 =
875
+ 1
876
+
877
+ 1−c2
878
+ 0
879
+
880
+ a1 sinh(
881
+
882
+ 1 − c2
883
+ 0z) + a2 cosh(
884
+
885
+ 1 − c2
886
+ 0z)
887
+
888
+ + a3, c2
889
+ 0 − 1 < 0
890
+ where z =
891
+
892
+ κds and a1, a2, a3 are constants.
893
+ 9
894
+
895
+ Proof. The proof of Theorem (4.6) is done similarly to the proof of Theorem (4.3)
896
+ Subcase 2: m1 = 0.
897
+ If we take as m1 = 0 in (55) we get following differential equation system
898
+
899
+
900
+
901
+ h(s)
902
+ =
903
+ −m2κ
904
+ m′
905
+ 2
906
+ =
907
+ −m3τ
908
+ m′
909
+ 3
910
+ =
911
+ m2τ.
912
+ (60)
913
+ Then we give the following theorem.
914
+ Theorem 4.7. Let (α; β) be a curve pair of constant breadth in (M, gf) where α is a timelike
915
+ asymptotic curve lying in a timelike surface in M. If m1 = 0, then the curve β is given by
916
+ β(s∗) = α(s)+
917
+
918
+ −b1 cos
919
+ ��
920
+ τds
921
+
922
+ − b2 sin
923
+ ��
924
+ τds
925
+ ��
926
+ Y (s)+
927
+
928
+ −b1 sin
929
+ ��
930
+ τds
931
+
932
+ + b2 cos
933
+ ��
934
+ τds
935
+ ��
936
+ U(s).
937
+ Proof. The proof of Theorem (4.7) is done similarly to the proof of Theorem (4.4).
938
+ 4.1.3
939
+ Case (For Principal line)
940
+ We suppose that α is a non-planar timelike principal line. Then we have τg = 0. Then it follows
941
+ that τ = θ′. By using (36), we have the following differential equation system
942
+
943
+
944
+
945
+ m′
946
+ 1
947
+ =
948
+ m3κ sin θ − m2κ cos θ − h(s)
949
+ m′
950
+ 2
951
+ =
952
+ −m1κ cos θ
953
+ m′
954
+ 3
955
+ =
956
+ m1κ sin θ.
957
+ (61)
958
+ By mean of changing of the independant variable s with θ =
959
+
960
+ τds, we get
961
+
962
+
963
+
964
+ ˙m1
965
+ =
966
+ φ(m3 sin θ − m2 cos θ) − g(θ)
967
+ ˙m2
968
+ =
969
+ −m1φ cos θ
970
+ ˙m3
971
+ =
972
+ m1φ sin θ.
973
+ (62)
974
+ where g(θ) = (− ds
975
+ dθ − ds∗
976
+ dθ ) and φ = κ
977
+ τ . In here we denote the derivative with respect to θ with ”.”.
978
+ From the equations in (62) we have
979
+ ...
980
+ m1 + ¨g − d
981
+
982
+ � ˙φ
983
+ φ( ˙m1 + g)
984
+
985
+ − d
986
+ dθ(φ2m1) + ( ˙m1 + g)
987
+ − ˙φ
988
+
989
+ − sin θ
990
+
991
+ m1φ cos θdθ + cos θ
992
+
993
+ m1φ sin θdθ
994
+
995
+ = 0.
996
+ (63)
997
+ Subcase 1: m1 ̸= 0 (h(s) = 0).
998
+ In this case, we give the following theorem:
999
+ Theorem 4.8. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be a non-planar
1000
+ timelike principal line and a general helix then β is given by one of the following cases:
1001
+ β(s∗) = α(s) + m1T(s) − c
1002
+
1003
+ m1 cos θdθY (s) + c
1004
+
1005
+ m1 sin θdθU(s),
1006
+ (64)
1007
+ where
1008
+ 10
1009
+
1010
+ i) m1 =
1011
+ 1
1012
+
1013
+ 1−c2
1014
+
1015
+ a1 sin(
1016
+
1017
+ 1 − c2θ) − a2 cos(
1018
+
1019
+ 1 − c2θ)
1020
+
1021
+ + a3,
1022
+ 1 − c2 > 0
1023
+ ii) m1 = a1
1024
+ 2 θ2 + a2θ + a3,
1025
+ c2 − 1 = 0
1026
+ iii) m1 =
1027
+ 1
1028
+
1029
+ c2−1
1030
+
1031
+ a1 sinh(
1032
+
1033
+ c2 − 1θ) + a2 cosh(
1034
+
1035
+ c2 − 1θ)
1036
+
1037
+ + a3,
1038
+ 1 − c2 < 0
1039
+ Proof. If h(s) = 0 then g(θ) = 0 and from (63) we have
1040
+ ...
1041
+ m1 − d
1042
+
1043
+ � ˙φ
1044
+ φ ˙m1
1045
+
1046
+ − d
1047
+ dθ(φ2m1) + ˙m1 − ˙φ
1048
+
1049
+ − sin θ
1050
+
1051
+ m1φ cos θdθ + cos θ
1052
+
1053
+ m1φ sin θdθ
1054
+
1055
+ = 0.(65)
1056
+ If α is helix curve then φ = κ
1057
+ τ = c = constant. From (65) we have
1058
+ ...
1059
+ m1 + (1 − c2) ˙m1 = 0.
1060
+ (66)
1061
+ Then the solution is
1062
+ m1 =
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+ 1
1069
+
1070
+ 1−c2
1071
+
1072
+ a1 sin(
1073
+
1074
+ 1 − c2θ) − a2 cos(
1075
+
1076
+ 1 − c2θ)
1077
+
1078
+ + a3, if 1 − c2 > 0
1079
+ a1
1080
+ 2 θ2 + a2θ + a3,
1081
+ if
1082
+ 1 − c2 = 0
1083
+ 1
1084
+
1085
+ c2−1
1086
+
1087
+ a1 sinh(
1088
+
1089
+ c2 − 1θ) + a2 cosh(
1090
+
1091
+ c2 − 1θ)
1092
+
1093
+ + a3, if 1 − c2 < 0,
1094
+ where θ =
1095
+
1096
+ τdθ.
1097
+ Subcase 2: m1 = 0.
1098
+ The case where m1 = 0, we have the following the following theorem:
1099
+ Theorem 4.9. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be a non-planar
1100
+ timelike principal line. If m1 = 0 then α is general helix. The curve β is expressed as
1101
+ β(s∗) = α(s) + c2Y (s) + c3U(s),
1102
+ (67)
1103
+ where c2 and c3 are constants.
1104
+ Proof. From (63) we have
1105
+ ¨g − d
1106
+
1107
+ � ˙φ
1108
+ φg
1109
+
1110
+ + g = 0.
1111
+ (68)
1112
+ On the other hand, from (61) we have m2 = c2 = constant ̸= 0, m3 = c3 = constant ̸= 0 and
1113
+ from (62)
1114
+ g = φ(−c2 cos θ + c3 sin θ).
1115
+ (69)
1116
+ By considering (68) and (69) with together, we get
1117
+ ˙φ(c2 sin θ + c3 cos θ) = 0.
1118
+ (70)
1119
+ Then we have ˙φ = 0 or c2 sin θ + c3 cos θ = 0. If c2 sin θ + c3 cos θ = 0 then we have that θ is a
1120
+ constant. So α becomes a planar curve. It is a contridiction. So ˙φ = 0. Then we obtain that φ = κ
1121
+ τ
1122
+ is a constant. Thus α is a general helix.
1123
+ 11
1124
+
1125
+ 4.2
1126
+ Case where α is spacelike and ǫ2 = 1 and ǫ3 = −1.
1127
+ Here we suppose that the curve α is spacelike and lying on a timelike surface in Mf.
1128
+ Differentiating (34) with respect to s and using (21) we obtain
1129
+
1130
+ ds
1131
+ =
1132
+
1133
+ ds⋆
1134
+ ds⋆
1135
+ ds
1136
+ =
1137
+ T ⋆ds⋆
1138
+ ds = (1 + m′
1139
+ 1 − m2κg − m3κn)T
1140
+ +(m′
1141
+ 2 − m1κg + m3τg)Y
1142
+ +(m′
1143
+ 3 + m2τg + m1κn)U,
1144
+ (71)
1145
+ where T ⋆ denotes the tangent vector of β.
1146
+ Since T = −T ∗, from the equation in (35) we have
1147
+
1148
+
1149
+
1150
+ m′
1151
+ 1
1152
+ =
1153
+ m2κg + m3κn − h(s)
1154
+ m′
1155
+ 2
1156
+ =
1157
+ m1κg − m3τg
1158
+ m′
1159
+ 3
1160
+ =
1161
+ −m2τg − m1κn,
1162
+ (72)
1163
+ where h(s) = ds∗
1164
+ ds + 1.
1165
+ Since α is spacelike and ǫ2 = 1 andǫ3 = −1, then, if we assume that (α, β) is a curve pair of
1166
+ constant breadth, we have
1167
+ ∥β − α∥ = m2
1168
+ 1 + m2
1169
+ 2 − m2
1170
+ 3 = constant,
1171
+ (73)
1172
+ which imlplies that
1173
+ m1
1174
+ dm1
1175
+ ds + m2
1176
+ dm2
1177
+ ds − m3
1178
+ dm3
1179
+ ds = 0.
1180
+ (74)
1181
+ If we combine (72) and (74) we get
1182
+ m1(2m′
1183
+ 1 + h(s)) = 0.
1184
+ (75)
1185
+ If α and β are curves of constant breadth then m1 = 0 or 2m′
1186
+ 1 − h(s) = 0.
1187
+ Now we investigate the case where α is geodesic curve or principal line curve because κn ̸= 0.
1188
+ 4.2.1
1189
+ Case (For geodesic curves)
1190
+ Let α be non-straight line geodesic curve on a timelike surface. Then κg = κ sinh θ = 0. As κ ̸= 0,
1191
+ we get sinh θ = 0. So it implies that κn = κ, τg = τ. From (72), we have the following differential
1192
+ equation system
1193
+
1194
+
1195
+
1196
+ m′
1197
+ 1
1198
+ =
1199
+ m3κ − h(s)
1200
+ m′
1201
+ 2
1202
+ =
1203
+ −m3τ
1204
+ m′
1205
+ 3
1206
+ =
1207
+ −m1κ − m2τ.
1208
+ (76)
1209
+ From (76) we have
1210
+
1211
+
1212
+
1213
+ m3
1214
+ =
1215
+ 1
1216
+ κ(m′
1217
+ 1 + h)
1218
+ m′
1219
+ 2
1220
+ =
1221
+ − τ
1222
+ κ(m′
1223
+ 1 + h)
1224
+ m2
1225
+ =
1226
+ − 1
1227
+ τ
1228
+
1229
+ ( 1
1230
+ κ(m′
1231
+ 1 + h))′ + m1κ
1232
+
1233
+ .
1234
+ (77)
1235
+ 12
1236
+
1237
+ Differentiating the third equation of (76) with respect to s and using the first, the second and the
1238
+ third equations of (77), we obtain the following equation:
1239
+ 1
1240
+ κ
1241
+ �1
1242
+ κ(m′
1243
+ 1 + h)
1244
+ �′′
1245
+ +
1246
+ ��1
1247
+ κ
1248
+ �′
1249
+ − 1
1250
+ τ
1251
+ �τ
1252
+ κ
1253
+ �′� �1
1254
+ κ(m′
1255
+ 1 + h)
1256
+ �′
1257
+
1258
+ �τ
1259
+ κ
1260
+ �2
1261
+ (m′
1262
+ 1+h)−
1263
+ �τ
1264
+ κ
1265
+ �′ κ
1266
+ τ m1+m′
1267
+ 1 = 0.
1268
+ (78)
1269
+ Subcase 1: m1 ̸= 0 (h(s) = −2m′
1270
+ 1).
1271
+ The equation (78) becomes
1272
+ 1
1273
+ κ
1274
+ �1
1275
+ κm′
1276
+ 1
1277
+ �′′
1278
+ +
1279
+ ��1
1280
+ κ
1281
+ �′
1282
+ − 1
1283
+ τ
1284
+ �τ
1285
+ κ
1286
+ �′� �1
1287
+ κm′
1288
+ 1
1289
+ �′
1290
+
1291
+ ��τ
1292
+ κ
1293
+ �2
1294
+ + 1
1295
+
1296
+ m′
1297
+ 1 +
1298
+ �τ
1299
+ κ
1300
+ �′ κ
1301
+ τ m1 = 0.
1302
+ (79)
1303
+ Theorem 4.10. Let α be a geodesic curve. Let (α; β) be a pair of unit speed curves of constant
1304
+ breadth where α is spacelike (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface in Mf. If m1 is
1305
+ non-zero constant then m3 = 0 and α is a general helix in the three dimensional Walker manifold
1306
+ (M, gǫ
1307
+ f). Also the curve β is given as:
1308
+ β(s⋆) = α(s) + m1T + cY
1309
+ (80)
1310
+ where c is a real constant and s∗ = −s + c.
1311
+ Proof. If m1 is non zero constant, then from (79) we obtain that
1312
+ � τ
1313
+ κ
1314
+ �′ = 0. So α is a general helix.
1315
+ Also from the second and third equation of (76) we get m3 = 0 because h = 0 and m2 is a real
1316
+ constant.
1317
+ Theorem 4.11. Let α be a geodesic curve. Let (α, β) be a pair of unit speed curves of constant
1318
+ breadth where α is spacelike curve (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface Mf. If m1 is
1319
+ not zero, then the curve β can be expressed as one of the following cases:
1320
+ β(s∗) = α(s) + m1T + 1
1321
+ c0
1322
+ ( ¨m1 − m1)Y + ˙m1U,
1323
+ (81)
1324
+ where m1 =
1325
+ 1
1326
+
1327
+ 1+c2
1328
+ 0
1329
+
1330
+ a1e
1331
+
1332
+ 1+c2
1333
+ 0θ − a2e−√
1334
+ 1+c2
1335
+ 0θ�
1336
+ , m3 = − ˙m1 and m2 = 1
1337
+ c0( ¨m1 − m1).
1338
+ Proof. Let us consider that α is a general helix in Wlaker 3-manifold. Then we have τ
1339
+ κ = c0 =
1340
+ constant. From (79), we have
1341
+ �1
1342
+ κ
1343
+ �1
1344
+ κm′
1345
+ 1
1346
+ �′�′
1347
+
1348
+
1349
+ c2
1350
+ 0 + 1
1351
+
1352
+ m′
1353
+ 1 = 0.
1354
+ (82)
1355
+ By means of changing of the independant variable s with z =
1356
+
1357
+ κds, we obtain
1358
+ m′
1359
+ 1 = dm1
1360
+ ds = dm1
1361
+ dz
1362
+ dz
1363
+ ds = ˙m1κ.
1364
+ From (82), we get
1365
+ ...
1366
+ m1 − (c2
1367
+ 0 + 1) ˙m1 = 0.
1368
+ (83)
1369
+ If we solve this equation we get
1370
+ m1 =
1371
+ 1
1372
+
1373
+ 1 + c2
1374
+ 0
1375
+
1376
+ a1e
1377
+
1378
+ 1+c2
1379
+ 0θ − a2e−√
1380
+ 1+c2
1381
+ 0θ�
1382
+ .
1383
+ (84)
1384
+ From (77) we have m3 = − ˙m1 and m2 =
1385
+ 1
1386
+ c0( ¨m1 − m1).
1387
+ 13
1388
+
1389
+ Subcase 2: m1 = 0.
1390
+ Theorem 4.12. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be a geodesic
1391
+ spacelike curve (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface on Mf. If m1 = 0 then the curve
1392
+ β is expressed as
1393
+ β(s∗) = α(s) + cY,
1394
+ (85)
1395
+ where c is a constant real.
1396
+ Proof. If m′
1397
+ 1 = 0 then h = 0 and from (76) we have m3 = 0 and m2 = constant.
1398
+ 4.2.2
1399
+ Case (For Principal line)
1400
+ If α is principal line, then τg = 0 and τ = −θ′. From (72)
1401
+
1402
+
1403
+
1404
+ m′
1405
+ 1
1406
+ =
1407
+ m2κ sinh θ + m3κ cosh θ − h(s)
1408
+ m′
1409
+ 2
1410
+ =
1411
+ m1κ sinh θ
1412
+ m′
1413
+ 3
1414
+ =
1415
+ −m1κ cosh θ,
1416
+ (86)
1417
+ By mean of changing of the independant variable s with θ =
1418
+
1419
+ τds, we get
1420
+
1421
+
1422
+
1423
+ ˙m1
1424
+ =
1425
+ m3
1426
+ κ
1427
+ τ cosh θ + m2
1428
+ κ
1429
+ τ sinh θ − h(s)
1430
+ τ(s)
1431
+ ˙m2
1432
+ =
1433
+ m1
1434
+ κ
1435
+ τ sinh θ
1436
+ ˙m3
1437
+ =
1438
+ −m1
1439
+ κ
1440
+ τ cosh θ.
1441
+ (87)
1442
+ Denoted by h(s)
1443
+ τ(s) = g(θ) and κ
1444
+ τ = φ, we have
1445
+
1446
+
1447
+
1448
+ ˙m1
1449
+ =
1450
+ φ(m3 cosh θ + m2 sinh θ) − g(θ)
1451
+ ˙m2
1452
+ =
1453
+ m1φ sinh θ
1454
+ ˙m3
1455
+ =
1456
+ −m1φ cosh θ.
1457
+ (88)
1458
+ From the equations in (88) we have
1459
+
1460
+
1461
+
1462
+ 1
1463
+ φ( ˙m1 + g)
1464
+ =
1465
+ m3 cosh θ + m2 sinh θ
1466
+ ˙m2 sinh θ + ˙m3 cosh θ
1467
+ =
1468
+ −m1φ
1469
+ ˙m2 cosh θ
1470
+ =
1471
+ −m3 sinh θ.
1472
+ (89)
1473
+ Differentiating the first equation in (88), we get
1474
+ ...
1475
+ m1 + ¨g − d
1476
+
1477
+ � ˙φ
1478
+ φ( ˙m1 + g)
1479
+
1480
+ + d
1481
+ dθ(φ2m1) − ( ˙m1 + g)
1482
+ − ˙φ
1483
+
1484
+ cosh θ
1485
+
1486
+ m1φ sinh θdθ − sinh θ
1487
+
1488
+ m1φ cosh θdθ
1489
+
1490
+ = 0.
1491
+ (90)
1492
+ Subcase 1: m1 ̸= 0 (m′
1493
+ 1 = −h
1494
+ 2).
1495
+ If m′
1496
+ 1 = −h
1497
+ 2 then ˙m1 = −g
1498
+ 2. From (90) we obtain
1499
+ −...
1500
+ m1 + d
1501
+
1502
+ � ˙φ
1503
+ φ ˙m1
1504
+
1505
+ + d
1506
+ dθ(φ2m1) + ˙m1 − ˙φ
1507
+
1508
+ cosh θ
1509
+
1510
+ m1φ sinh θdθ − sinh θ
1511
+
1512
+ m1φ cosh θdθ
1513
+
1514
+ = 0.(91)
1515
+ 14
1516
+
1517
+ Theorem 4.13. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be principal line
1518
+ and a general helix then β is given by
1519
+ β(s∗) = α(s) + m1T + m2Y + m3U,
1520
+ (92)
1521
+ where
1522
+ m1 =
1523
+ 1
1524
+
1525
+ 1 + c2
1526
+
1527
+ a1e
1528
+
1529
+ 1+c2θ − a2e−
1530
+
1531
+ 1+c2θ�
1532
+ ,
1533
+ m2 = c
1534
+
1535
+ m1 sinh θdθ and m3 = −c
1536
+
1537
+ m1 cosh θdθ.
1538
+ Proof. If α is helix curve then φ = κ
1539
+ τ = c = constant. From (91) we have
1540
+ ...
1541
+ m1 − (1 + c2) ˙m1 = 0.
1542
+ (93)
1543
+ m1 =
1544
+ 1
1545
+
1546
+ 1 + c2
1547
+
1548
+ a1e
1549
+
1550
+ 1+c2θ − a2e−
1551
+
1552
+ 1+c2θ�
1553
+ .
1554
+ (94)
1555
+ Subcase 2: m1 = 0.
1556
+ From the equations in (72) we have m2 = c2 = constant ̸= 0, m3 = c3 = constant ̸= 0. The first
1557
+ equation in (72) gives
1558
+ tanh θ = −c2
1559
+ c3
1560
+ .
1561
+ (95)
1562
+ Then θ is a constant and we have τ = 0.
1563
+ Theorem 4.14. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be principal line.
1564
+ If m1 = 0 then α is planar curve. The curve β is expressed as
1565
+ β(s∗) = α(s) + c2Y + c3U,
1566
+ (96)
1567
+ where c2 and c3 are constants.
1568
+ 4.3
1569
+ Case where α is spacelike and ǫ2 = −1 and ǫ3 = 1.
1570
+ Let α be a spacelike with ǫ2 = −1 and ǫ3 = 1 lying on a timelike surface in Mf.
1571
+ Differentiating (34) with respect to s and using (30) we obtain
1572
+
1573
+
1574
+
1575
+ m′
1576
+ 1
1577
+ =
1578
+ m2κg + m3κn − h(s)
1579
+ m′
1580
+ 2
1581
+ =
1582
+ m1κg − m3τg
1583
+ m′
1584
+ 3
1585
+ =
1586
+ −m2τg − m1κn,
1587
+ (97)
1588
+ where h(s) = ds∗
1589
+ ds + 1.
1590
+ Since α is spacelike and ǫ2 = −1 andǫ3 = 1, then, if we assume that (α, β) is a curve pair of
1591
+ constant breadth, we have
1592
+ ∥β − α∥ = m2
1593
+ 1 − m2
1594
+ 2 + m2
1595
+ 3 = constant,
1596
+ (98)
1597
+ 15
1598
+
1599
+ which imlplies that
1600
+ m1
1601
+ dm1
1602
+ ds + m2
1603
+ dm2
1604
+ ds − m3
1605
+ dm3
1606
+ ds = 0.
1607
+ (99)
1608
+ If we combine (97) and (99) we get
1609
+ m1h(s) = 0.
1610
+ (100)
1611
+ If α and β are curves of constant breadth then m1 = 0 or h(s) = 0. If m1 ̸= 0 (that is h(s) = 0)
1612
+ then d = m1T + m2Y + m3U becomes a constant vector because d′ = 0. So β(s∗) is a translation
1613
+ of α along the constant vector d. Also h(s) = 0 gives s∗ = −s + c, where c is constant.
1614
+ Since κg ̸= 0, here we investigate curves of constant breadth for m1 ̸= 0 or m1 = 0 in some special
1615
+ case (asymptotic line or principal line).
1616
+ 4.3.1
1617
+ Case (For Asymptotic line)
1618
+ Let α be non-straight line asymptotic line on a timelike surface. Then κn = κ sinh θ = 0. As
1619
+ κ ̸= 0, we get cosh θ = 0. So it implies that κg = κ, τg = −τ. From (97), we have following
1620
+ differential equation system
1621
+
1622
+
1623
+
1624
+ m′
1625
+ 1
1626
+ =
1627
+ m2κ − h(s)
1628
+ m′
1629
+ 2
1630
+ =
1631
+ m1κ + m3τ
1632
+ m′
1633
+ 3
1634
+ =
1635
+ −m2τ.
1636
+ (101)
1637
+ By differentiating the second equation in (101) with respect to s and using the first and third equa-
1638
+ tions in (101), we get
1639
+ 1
1640
+ κ
1641
+ �1
1642
+ κ(m′
1643
+ 1 + h)
1644
+ �′′
1645
+ +
1646
+ ��1
1647
+ κ
1648
+ �′
1649
+ − 1
1650
+ τ
1651
+ �τ
1652
+ κ
1653
+ �′� �1
1654
+ κ(m′
1655
+ 1 + h)
1656
+ �′
1657
+
1658
+ �τ
1659
+ κ
1660
+ �2
1661
+ (m′
1662
+ 1+h)+
1663
+ �τ
1664
+ κ
1665
+ �′ κ
1666
+ τ m1 −m′
1667
+ 1 = 0.
1668
+ (102)
1669
+ Subcase 1: m1 ̸= 0 (h(s) = 0).
1670
+ The equation (102) is given by
1671
+ 1
1672
+ κ
1673
+ �1
1674
+ κm′
1675
+ 1
1676
+ �′′
1677
+ +
1678
+ ��1
1679
+ κ
1680
+ �′
1681
+ − 1
1682
+ τ
1683
+ �τ
1684
+ κ
1685
+ �′� �1
1686
+ κm′
1687
+ 1
1688
+ �′
1689
+
1690
+ ��τ
1691
+ κ
1692
+ �2
1693
+ + 1
1694
+
1695
+ m′
1696
+ 1 +
1697
+ �τ
1698
+ κ
1699
+ �′ κ
1700
+ τ m1 = 0.
1701
+ (103)
1702
+ Theorem 4.15. Let α be a asymptotic curve. Let (α; β) be a pair of unit speed curves of constant
1703
+ breadth where α is spacelike (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf. If m1 is
1704
+ non-zero constant then m2 = 0 and α is a general helix in the three dimensional Walker manifold
1705
+ (M, gǫ
1706
+ f). Also the curve β is given as:
1707
+ β(s⋆) = α(s) + m1T + m3U
1708
+ (104)
1709
+ where m3 is a real constant and s∗ = −s + c.
1710
+ Proof. If m1 is non zero constant, then from (103) we obtain that
1711
+ � τ
1712
+ κ
1713
+ �′ = 0. So α is a general helix.
1714
+ Also from the first and third equation of (101) we get m2 = 0 and m3 is a real constant.
1715
+ 16
1716
+
1717
+ Theorem 4.16. Let α be a asymptotic line. Let (α, β) be a pair of unit speed curves of constant
1718
+ breadth where α is timelike curve and lying in a timelike surface Mf. If m1 is not zero, then the
1719
+ curve β can be expressed as one of the following cases:
1720
+ β(s∗) = α(s) + m1T + ˙m1Y + 1
1721
+ c0
1722
+ ( ¨m1 + m1)U,
1723
+ (105)
1724
+ where
1725
+ m1 =
1726
+ 1
1727
+
1728
+ c2
1729
+ 0 + 1
1730
+
1731
+ a1e
1732
+
1733
+ c2
1734
+ 0+1z − a2e
1735
+
1736
+ c2
1737
+ 0+1z�
1738
+ .
1739
+ Proof. Let us consider that α is a general helix in Walker 3-manifold. Then we have τ
1740
+ κ = c0 =
1741
+ constant. From (103), we have
1742
+ �1
1743
+ κ
1744
+ �1
1745
+ κm′
1746
+ 1
1747
+ �′�′
1748
+
1749
+
1750
+ c2
1751
+ 0 + 1
1752
+
1753
+ m′
1754
+ 1 = 0.
1755
+ (106)
1756
+ By means of changing of the independant variable s with z =
1757
+
1758
+ κds, we obtain
1759
+ ...
1760
+ m1 − (c2
1761
+ 0 + 1) ˙m1 = 0.
1762
+ (107)
1763
+ If we solve this equation we get
1764
+ m1 =
1765
+ 1
1766
+
1767
+ c2
1768
+ 0 + 1
1769
+
1770
+ a1e
1771
+
1772
+ c2
1773
+ 0+1z − a2e
1774
+
1775
+ c2
1776
+ 0+1z�
1777
+ (108)
1778
+ From (101) we obtain m2 = ˙m1 and m3 = 1
1779
+ c0( ¨m1 + m1).
1780
+ Subcase 2: m1 = 0
1781
+ With the same computation as above, we have the following theorem:
1782
+ Theorem 4.17. Let (α; β) be a curve pair of constant breadth in (M, gf). If α is a spacelike
1783
+ asymptotic curve (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf. If m1 = 0, then the
1784
+ curve β is given by
1785
+ β(s∗) = α(s)+
1786
+
1787
+ b1 cos
1788
+ ��
1789
+ τds
1790
+
1791
+ + b2 sin
1792
+ ��
1793
+ τds
1794
+ ��
1795
+ Y (s)+
1796
+
1797
+ −b1 sin
1798
+ ��
1799
+ τds
1800
+
1801
+ + b2 cos
1802
+ ��
1803
+ τds
1804
+ ��
1805
+ U(s).
1806
+ 4.3.2
1807
+ Case (For Principal line)
1808
+ In this case we have the two following theorems:
1809
+ Theorem 4.18. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be spacelike
1810
+ principal line (with ǫ2 = −1 and ǫ3 = 1) and a general helix then β is given by
1811
+ β(s∗) = α(s) + m1T + m2Y + m3U,
1812
+ (109)
1813
+ where
1814
+ m1 =
1815
+ 1
1816
+
1817
+ 1 + c2
1818
+
1819
+ a1e
1820
+
1821
+ 1+c2θ − a2e−
1822
+
1823
+ 1+c2θ�
1824
+ ,
1825
+ m2 = c
1826
+
1827
+ m1 cosh θdθ and m3 = −c
1828
+
1829
+ m1 sinh θdθ.
1830
+ 17
1831
+
1832
+ Theorem 4.19. Let (α, β) be a pair curves of constant breadth in (M, gfǫ). Let α be principal line
1833
+ (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf. If m1 = 0 then α is general helix or
1834
+ α is planar curve and the curve β is expressed as
1835
+ β(s∗) = α(s) + c2Y + c3U,
1836
+ (110)
1837
+ where c2 and c3 are constants.
1838
+ Acknowledgments
1839
+ The author would like to thank the anonymous Referees for their comments and suggestions. All
1840
+ many thanks to professor Ferdag Kahraman from Ahi Evran University (Turkish) for their remarks
1841
+ and suggestions.
1842
+ References
1843
+ [1] B. Altunkaya, F. Kahraman, Curves of constant breadth according to Darboux frame. Com-
1844
+ mun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66, (2), 44–52 (2017).
1845
+ [2] B. Altunkaya, F. Kahraman, Null curves of constant breadth in Minkowski 4-space. Commun.
1846
+ Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68, (1), 451–456 (2019).
1847
+ [3] Blaschke W., Einige Bemerkungen uber Kurven und Flachen konstanter Breite, Ber. Verh.
1848
+ sachs. Akad. Leipzig 67, 290–297 (1915).
1849
+ [4] M. Brozos-V´azquez, E. Garc´ıa-Rio, P. Gilkey, S. Nikevi´c and R. V´azquez-Lorenzo, The Ge-
1850
+ ometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics, 5. Morgan
1851
+ and Claypool Publishers, Williston, VT, (2009).
1852
+ [5] G. Calvaruso and J. Van der Veken, Parallel surfaces in Lorentzian three-manifolds admitting
1853
+ a parallel null vector field, J. Phys. A 43, no. 32, 325207 (2010).
1854
+ [6] A. S. Diallo, A. Ndiaye and A. Niang, Minimal graphs on three-dimensional Walker man-
1855
+ ifolds, Proceedings of the First NLAGA-BIRS Symposium, Dakar, Senegal, Trends Math.,
1856
+ Birkh¨a user/Springer, Cham, 425-438 (2020).
1857
+ [7] M. Fujivara, On space curve of constant breadth, Tohoku Math. J. 5, 179–184 (1914).
1858
+ [8] M. Gningue, A. Ndiaye, R. Nkunzimana, Biharmonic Curves in a Strict Walker 3-Manifold.
1859
+ Int. J. Math. Math. Sci., 1–6 (2022).
1860
+ [9] O. Kose, Some properties of ovals and curves of constant width in a plane, Doga Sci. J. Serial
1861
+ B (8), 2, 119-126 (1984).
1862
+ [10] A. Magden and O. Kose, On the curves of constant breadth in E4 space, Turkish J. Math., 21,
1863
+ 277-284 (1997).
1864
+ [11] R. M. Solow, Quarterly Journal of Economics, 70, 6594 (1956).
1865
+ 18
1866
+
5NE1T4oBgHgl3EQfSwPe/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf,len=461
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
3
+ page_content='03071v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
4
+ page_content='DG] 8 Jan 2023 Curves of Constant Breadth According to Darboux Frame in a Strict Walker 3-Manifold Ameth Ndiaye* D´epartement de Math´ematiques, FASTEF, UCAD, Dakar, Senegal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
5
+ page_content=' Abstract In this paper, we investigate the differential geometry properties of curves of constant breadth according to Darboux frame in a given strict Walker 3-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
6
+ page_content=' The considered curves are lying on a timelike surface in the Walker 3-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
7
+ page_content=' MSC: 53B25 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
8
+ page_content=' 53C40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
9
+ page_content=' Keywords: Darboux frame, curvature, torsion, constant breadth curve, Walker 3-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
10
+ page_content=' 1 Introduction The study of curves of constant breadth were defined first in 1778 by Euler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
11
+ page_content=' Then, Solow [11] investigated the curves of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
12
+ page_content=' Kose, Magden and Yilmaz in [9, 10] studied plane curves of constant breadth in Euclidean spaces E3 and E4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
13
+ page_content=' Fujiwara [7] defined constant breadth for space curves and obtained a problem to determine whether there exists space curve of con- stant breadth or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
14
+ page_content=' Furthermore, Blaschke [3] defined the curves of constant breadth on a sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
15
+ page_content=' In [2], Altunkaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
16
+ page_content=' defined null curves of constant breadth in Minkowski 4-space and obtain a characterization of these curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
17
+ page_content=' Also Altunkaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
18
+ page_content=' in [1] investigate constant breadth curves on a surface according to Darboux frame and give some characterizations of these curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
19
+ page_content=' Motivated by the above papers, we investigate the geometries of curves of constant breadth accord- ing to Darboux frame in a Strict Walker 3-manifold which is a Lorentzian three-manifold admitting a parallel null vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
20
+ page_content=' It is known that Walker metrics have served as a powerful tool of con- structing interesting indefinite metrics which exhibit various aspects of geometric properties not given by any positive definite metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
21
+ page_content=' For more details about Walker 3-manifold see [5,6,8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
22
+ page_content=' 2 Preliminaries A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel r- planes, with r ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
23
+ page_content=' The canonical forms of the metrics were investigated by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
24
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
25
+ page_content=' Walker ( [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
26
+ page_content=' E–mail: ameth1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
27
+ page_content='ndiaye@ucad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
28
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
29
+ page_content='sn (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
30
+ page_content=' Ndiaye) 1 Walker has derived adapted coordinates to a parallel plan field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
31
+ page_content=' Hence, the metric of a three- dimensional Walker manifold (M, gǫ f) with coordinates (x, y, z) is expressed as gǫ f = dx ◦ dz + ǫdy2 + f(x, y, z)dz2 (1) and its matrix form as gǫ f = \uf8eb \uf8ed 0 0 1 0 ǫ 0 1 0 f \uf8f6 \uf8f8 with inverse (gǫ f)−1 = \uf8eb \uf8ed −f 0 1 0 ǫ 0 1 0 0 \uf8f6 \uf8f8 for some function f(x, y, z), where ǫ = ±1 and thus D = Span∂x as the parallel degenerate line field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
32
+ page_content=' Notice that when ǫ = 1 and ǫ = −1 the Walker manifold has signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
33
+ page_content=' In this study we take ǫ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
34
+ page_content=' It follows after a straightforward calculation that the Levi-Civita connection of any metric (1) is given by: ∇∂x∂z = 1 2fx∂x, ∇∂y∂z = 1 2fy∂x, ∇∂z∂z = 1 2(ffx + fz)∂x + 1 2fy∂y − 1 2fx∂z (2) where ∂x, ∂y and ∂z are the coordinate vector fields ∂ ∂x, ∂ ∂y and ∂ ∂z , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
35
+ page_content=' Hence, if (M, gǫ f) is a strict Walker manifolds i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
36
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
37
+ page_content=', f(x, y, z) = f(y, z), then the associated Levi-Civita connection satisfies ∇∂y∂z = 1 2fy∂x, ∇∂z∂z = 1 2fz∂x − 1 2fy∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
38
+ page_content=' (3) Note that the existence of a null parallel vector field (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
39
+ page_content='e f = f(y, z)) simplifies the non-zero components of the Christoffel symbols and the curvature tensor of the metric gǫ f as follows: Γ1 23 = Γ1 32 = 1 2fy, Γ1 33 = 1 2fz, Γ2 33 = −1 2fy (4) Let now u and v be two vectors in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
40
+ page_content=' Denoted by (⃗i,⃗j,⃗k) the canonical frame in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
41
+ page_content=' The vector product of u and v in (M, gǫ f) with respect to the metric gǫ f is the vector denoted by u×v in M defined by gǫ f(u × v, w) = det(u, v, w) (5) for all vector w in M, where det(u, v, w) is the determinant function associated to the canonical basis of R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
42
+ page_content=' If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (5), we have: u × v = ����� u1 v1 u2 v2 ���� − f ���� u2 v2 u3 v3 ���� � ⃗i − ǫ ���� u1 v1 u3 v3 ����⃗j + ���� u2 v2 u3 v3 ����⃗k (6) 2 3 Darboux equations in Walker 3-manifold Let α : I ⊂ R −→ (M, gǫ f) be a curve parametrized by its arc-length s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
43
+ page_content=' The Frenet frame of α is the vectors T, N and B along α where T is the tangent, N the principal normal and B the binormal vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
44
+ page_content=' They satisfied the Frenet formulas \uf8f1 \uf8f2 \uf8f3 ∇TT(s) = ǫ2κ(s)N(s) ∇TN(s) = −ǫ1κT(s) − ǫ3τB(s) ∇TB(s) = ǫ2τ(s)N(s) (7) where κ and τ are respectively the curvature and the torsion of the curve α, with ǫ1 = gf(T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
45
+ page_content=' T);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
46
+ page_content=' ǫ2 = gf(N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
47
+ page_content=' N) and ǫ3 = gf(B, B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
48
+ page_content=' Starting from local coordinates (x, y, z) for which (1) holds, it is easy to check that e1 = ∂y, e2 = 2 − f 2 √ 2 ∂x + 1 √ 2∂z, e3 = 2 + f 2 √ 2 ∂x − 1 √ 2∂z are local pseudo-orthonormal frame fields on (M, gǫ f), with gǫ f(e1, e1) = ǫ, gǫ f(e2, e2) = 1 and gǫ f(e3, e3) = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
49
+ page_content=' Thus the signature of the metric gǫ f is (1, ǫ, −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
50
+ page_content=' If we choose ǫ = 1 then, pseudo-orthonormal frame is formed by two spacelike vectors and one timelike vector and If we choose ǫ = −1 then, pseudo-orthonormal frame is formed by one spacelike vector and two timelike vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
51
+ page_content=' For both cases we obtain Lorentzian manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
52
+ page_content=' In this work we assume that ǫ = 1 Now we suppose that the curve α lies on a timelike surface S in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
53
+ page_content=' Let U be the unit normal vector of S, then the Darboux frame is given by {T, Y, U}, where T is the tangent vector of the curve α(s) and Y = U × T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
54
+ page_content=' Case 1: Let α be timelike curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
55
+ page_content=' Then the tangent vector T is timelike (ǫ1 = −1), the normal vector N and the binormal vector B are spacelike, that is (ǫ2 = ǫ3 = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
56
+ page_content=' Since S is timelike, the unit normal vector U is spacelike and so Y becomes spacelike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
57
+ page_content=' The usual transformations between the Walker Frenet frame and the Darboux takes the form Y = cos θN + sin θB (8) U = − sin θN + cos θB, (9) where θ is an angle between the vector Y and the vector N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
58
+ page_content=' Derivating Y along the curve alpha we get ∇TY = cos θ∇TN − θ′ sin θN + sin θ∇TB + θ′ cos θB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
59
+ page_content=' Using the Frenet equation in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
60
+ page_content='7) we have ∇T Y = cos θ(κT − ǫ3τB) − θ′ sin θN + sin θ(ǫ2τN) + θ′ cos θB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
61
+ page_content=' Now we suppose that the principal normal and the binormal have the same sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
62
+ page_content=' then we get ∇TY = κ cos θT + (θ′ − τ)U (10) The same calculus gives ∇TU = −κ sin θT − (θ′ − τ)Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
63
+ page_content=' (11) 3 Then the Walker Darboux equation is expressed as \uf8f1 \uf8f2 \uf8f3 ∇TT = κgY + κnU ∇TY = κgT + τgU ∇TU = κnT − τgY, (12) where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on S, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
64
+ page_content=' Also, (12) gives gǫ f (∇T Y, U) = τg = θ′ − τ, (13) gǫ f (∇TT, Y ) = κg = κ cos θ, (14) gǫ f (∇TT, U) = κn = −κ sin θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
65
+ page_content=' (15) Case 2: Let α be spacelike curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
66
+ page_content=' Then the tangent vector T is spacelike (ǫ1 = 1), the normal vector N is spacelike (ǫ2 = 1) and the binormal vector B is timelike (ǫ3 = −1) or normal vector N is timelike (ǫ2 = −1) and the binormal vector B is spacelike (ǫ3 = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
67
+ page_content=' So we have two following subcases: i): ǫ2 = 1 and ǫ3 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
68
+ page_content=' Then the usual transformations between the Walker Frenet frame and the Darboux takes the form Y = cosh θN + sinh θB (16) U = sinh θN + cosh θB, (17) where θ is an angle between the vector Y and the vector N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
69
+ page_content=' Since ∇TT = κN, we have ∇TT = −κ sinh θY + κ cosh θU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
70
+ page_content=' (18) Derivating Y along the curve alpha we get ∇T Y = −κ sinh θT + (θ′ + τ)U (19) The same calculus gives ∇TU = −κ cosh θT + (θ′ + τ)Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
71
+ page_content=' (20) Then the Walker Darboux equation is expressed as \uf8f1 \uf8f2 \uf8f3 ∇TT = −κgY + κnU ∇TY = −κgT + τgU ∇TU = −κnT + τgY, (21) where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on S, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
72
+ page_content=' Also, (21) gives gǫ f (∇TY, U) = τg = θ′ + τ, (22) gǫ f (∇TT, Y ) = κg = κ sinh θ, (23) gǫ f (∇TT, U) = κn = κ cosh θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
73
+ page_content=' (24) 4 ii): ǫ2 = −1 and ǫ3 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
74
+ page_content=' Then the usual transformations between the Walker Frenet frame and the Darboux takes the form Y = sinh θN + cosh θB (25) U = cosh θN + sinh θB, (26) where θ is an angle between the vector Y and the vector N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
75
+ page_content=' Since ∇TT = −κN, we have ∇TT = −κ cosh θY + κ sinh θU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
76
+ page_content=' (27) Derivating Y with respect to s we get ∇TY = −κ cosh θT + (θ′ − τ)U (28) Derivating Y with respect to s alpha we get ∇TU = −κ sinh θT + (θ′ − τ)Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
77
+ page_content=' (29) Then the Walker Darboux equation is expressed as \uf8f1 \uf8f2 \uf8f3 ∇TT = −κgY + κnU ∇TY = −κgT + τgU ∇TU = −κnT + τgY, (30) where κg, κn and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on S, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
78
+ page_content=' Also, (30) gives gǫ f (∇T Y, U) = τg = θ′ − τ, (31) gǫ f (∇TT, Y ) = κg = κ cosh θ, (32) gǫ f (∇TT, U) = κn = κ sinh θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
79
+ page_content=' (33) 4 Space curves of constant breadth According to Darboux Frame in Walker manifold In this section, we define space curves of constant breadth in the three dimensional Walker mani- fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
80
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
81
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
82
+ page_content=' A curve α : I → (M, gǫ f) in the three-dimensional Walker manifold (M, gǫ f) is called a curve of constant breadth if there exists a curve β : I → Mf such that, at the corresponding points of curves, the parallel tangent vectors of α and β at α(s) and β(s⋆) at s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
83
+ page_content=' s⋆ ∈ I are opposite directions and the distance gǫ f(β − α, β − α) is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
84
+ page_content=' In this case, (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
85
+ page_content=' β) is called a pair curve of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
86
+ page_content=' Let now (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
87
+ page_content=' β) be a pair of unit speed curves of constant breadth and s, s⋆ be arc-length of α and β, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
88
+ page_content=' We suppose that the curve α lies on a timelike surface in Mf, then it has Darboux frame in addition to Frenet frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
89
+ page_content=' Then we may write the following equation: β(s⋆) = α(s) + m1(s)T(s) + m2(s)Y (s) + m3(s)U(s);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
90
+ page_content=' (34) where mi(i = 1, 2, 3) are smooth functions of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
91
+ page_content=' 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
92
+ page_content='1 Case where α is timelike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
93
+ page_content=' Differentiating (34) with respect to s and using (12) we obtain dβ ds = dβ ds⋆ ds⋆ ds = T ⋆(s⋆)ds⋆ ds = (1 + m′ 1 + m2κg + m3κn)T(s) +(m′ 2 + m1κg − m3τg)Y (s) +(m′ 3 + m2τg + m1κn)U(s), (35) where T ⋆ denotes the unit tangent vector of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
94
+ page_content=' Since T = −T ∗, from the equations in (35) we have \uf8f1 \uf8f2 \uf8f3 m′ 1 = −m2κg − m3κn − h(s) m′ 2 = −m1κg + m3τg m′ 3 = −m2τg − m1κn, (36) where h(s) = ds⋆ ds + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
95
+ page_content=' We assume that (α, β) is a curve pair of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
96
+ page_content=' Since α is a timelike curve and the vectors Y and U are spacelike vectors, we have ∥β − α∥ = −m2 1 + m2 2 + m2 3 = constant, (37) which imlplies that −m1 dm1 ds + m2 dm2 ds + m3 dm3 ds = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
97
+ page_content=' (38) If we combine (36) and (38), we get m1h(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
98
+ page_content=' (39) If α and β are curves of constant breadth then m1 = 0 or h(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
99
+ page_content=' If m1 ̸= 0 (that is h(s) = 0) then d = m1T(s) + m2Y (s) + m3U(s) becomes a constant vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
100
+ page_content=' So β(s∗) is a translation of α along the constant vector d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
101
+ page_content=' Also h(s) = 0 gives s∗ = −s + c, where c is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
102
+ page_content=' Now, we investigate curves of constant breadth for m1 ̸= 0 or m1 = 0 in some special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
103
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
104
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
105
+ page_content='1 Case (For geodesic curves) Let α be non-straight line geodesic curve on a timelike surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
106
+ page_content=' Then κg = κ cos θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
107
+ page_content=' As κ ̸= 0, we get cos θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
108
+ page_content=' So it implies that κn = −κ, τg = −τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
109
+ page_content=' From (36), we have following differential equation system \uf8f1 \uf8f2 \uf8f3 m′ 1 = m3κ − h(s) m′ 2 = −m3τ m′ 3 = m1κ + m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
110
+ page_content=' (40) By using (40), we obtain the following differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
111
+ page_content=' 1 κ �1 κ(m′ 1 + h) �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κ(m′ 1 + h) �′ + �τ κ �2 (m′ 1+h)+ �τ κ �′ κ τ m1−m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
112
+ page_content=' (41) 6 Subcase 1: m1 ̸= 0 (h(s) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
113
+ page_content=' If we write h(s) = 0 in equation (41), we have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
114
+ page_content=' 1 κ �1 κm′ 1 �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κm′ 1 �′ + ��τ κ �2 − 1 � m′ 1 + �τ κ �′ κ τ m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
115
+ page_content=' (42) Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
116
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
117
+ page_content=' Let α be a timelike geodesic curve lying a timelike surface in M and let (α, β) be a pair of unit speed curves of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
118
+ page_content=' If m1 is a non-zero constant then α is a general helix in the three dimensional Walker manifold (M, gǫ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
119
+ page_content=' Also the curve β is given as: β(s⋆) = α(s) + m1T(s) + m2Y (s) (43) where m2 is a real constant and s∗ = −s + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
120
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
121
+ page_content=' If m1 is non zero constant, then from (42) we obtain that � τ κ �′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
122
+ page_content=' So α is a general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
123
+ page_content=' Also from the first and second equations of (40) we get m3 = 0 and m2 is a real constant, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
124
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
125
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
126
+ page_content=' Let α be a timelike geodesic curve and a general helix lying a timelike surface in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
127
+ page_content=' Let (α, β) be a pair of unit speed curves of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
128
+ page_content=' If m1 is not zero, then the curve β can be expressed as one of the following cases: β(s∗) = α(s) + m1T(s) + 1 c0 ( ¨m1 − m1)Y (s) + ˙m1U(s) (44) where i) m1 = 1 √ c2 0−1 � a1 sin( � c2 0 − 1z) − a2 cos( � c2 0 − 1z) � + a3, c2 0 − 1 > 0 ii) m1 = a1 2 z2 + a2z + a3, c2 0 − 1 = 0 iii) m1 = 1 √ 1−c2 0 � a1 sinh( � 1 − c2 0z) + a2 cosh( � 1 − c2 0z) � + a3, c2 0 − 1 < 0 where z = � κds and a1, a2, a3 are real constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
129
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
130
+ page_content=' Let us consider that α is timelike geodesic curve and a general helix in Wlaker 3-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
131
+ page_content=' Then we have τ κ = c0 = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
132
+ page_content=' From (42), we have �1 κ �1 κm′ 1 �′�′ + � c2 0 − 1 � m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
133
+ page_content=' (45) By means of changing of the independant variable s with z = � κds, from (45) we obtain m′ 1 = dm1 ds = dm1 dz dz ds = ˙m1κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
135
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
136
+ page_content=' m1 + (c2 0 − 1) ˙m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
137
+ page_content=' (46) 7 If we solve this equation we get m1 = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 1 √ c2 0−1 � a1 sin( � c2 0 − 1z) − a2 cos( � c2 0 − 1z) � + a3, if c2 0 − 1 > 0 a1 2 z2 + a2z + a2, if c2 0 − 1 = 0 1 √ 1−c2 0 � a1 sinh( � 1 − c2 0z) + a2 cosh( � 1 − c2 0z) � + a3, if c2 0 − 1 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
138
+ page_content=' From (40) we obtain m3 = ˙m1 and m2 = 1 c0( ¨m1 − m1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
139
+ page_content=' Subcase 2: m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
140
+ page_content=' If we take m1 = 0 in the equation (40), we get \uf8f1 \uf8f2 \uf8f3 h(s) = m3κ m′ 2 = −m3τ m′ 3 = m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
141
+ page_content=' (47) Since m3 = h κ, m2 = 1 τ m′ 3 = 1 τ �h κ �′, we get �1 τ �h κ �′�′ + �h κ � τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
142
+ page_content=' (48) If we put y = h κ, the equation (48) becomes y′′ − τ ′ τ y′ + τ 2y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
143
+ page_content=' (49) For solving the equation (49), we put the new variable dw ds = τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
144
+ page_content=' Then � y′ = dy dw dw ds = ˙yτ y′′ = d2y dw2τ 2 + dy dwτ ′ (50) If we put the equation (50) in the equation (49) we obtain d2y dw2 + y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
145
+ page_content=' (51) and the solution of (51) is y = b1 cos w + b2 sin w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
146
+ page_content=' Then we have h(s) = κ � b1 cos �� τds � + b2 sin �� τds �� (52) m2 = h κ = b1 cos �� τds � + b2 sin �� τds � (53) m3 = 1 τ �h κ �′ = −b1 sin �� τds � + b2 cos �� τds � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
147
+ page_content=' (54) So we give the following theorem Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
148
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
149
+ page_content=' Let (α, β) be a pair of constant breadth curve in (M, gf) where α is a timelike geodesic curve lying in a timelike surface in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
150
+ page_content=' If m1 = 0, then the curve β is given by β(s∗) = α(s)+ � b1 cos �� τds � + b2 sin �� τds �� Y (s)+ � −b1 sin �� τds � + b2 cos �� τds �� U(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
151
+ page_content=' 8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
152
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
153
+ page_content='2 Case (For asymptotic lines) Let α be non-straight line asymptotic line on a timelike surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
154
+ page_content=' Then κn = −κ sin θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
155
+ page_content=' As κ ̸= 0, we get sin θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
156
+ page_content=' So it implies that κg = κ, τg = −τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
157
+ page_content=' From (36), we have following differential equation system \uf8f1 \uf8f2 \uf8f3 m′ 1 = −m2κ − h(s) m′ 2 = −m1κ − m3τ m′ 3 = m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
158
+ page_content=' (55) By using (55), we get 1 κ �1 κ(m′ 1 + h) �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κ(m′ 1 + h) �′ + �τ κ �2 (m′ 1+h)+ �τ κ �′ κ τ m1−m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
159
+ page_content=' (56) Subcase 1: m1 ̸= 0 (h(s) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
160
+ page_content=' If we take as h(s) = 0 in equation (56), we get following differential equation 1 κ �1 κm′ 1 �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κm′ 1 �′ + ��τ κ �2 − 1 � m′ 1 + �τ κ �′ κ τ m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
161
+ page_content=' (57) Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
162
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
163
+ page_content=' Let α be a timelike asymptotic line lying a timelike surface in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
164
+ page_content=' Let (α, β) be a pair of unit speed curves of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
165
+ page_content=' If m1 is non-zero constant then α is a general helix in the three dimensional Walker manifold (M, gǫ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
166
+ page_content=' Also the curve β is given as: β(s⋆) = α(s) + m1T(s) + m3U(s) (58) where m3 is a real constant and s∗ = −s + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
167
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
168
+ page_content=' If m1 is non zero constant, then from (57) we obtain that � τ κ �′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
169
+ page_content=' So α is a general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
170
+ page_content=' Also from the first and third equation of (55) we get m2 = 0 and m3 is a real constant, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
171
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
172
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
173
+ page_content=' Let α be a timelike asymptotic line lying in a timelike surface in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
174
+ page_content=' Let (α, β) be a pair of unit speed curves of constant breadth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
175
+ page_content=' If m1 is not zero, then the curve β can be expressed as one of the following cases: β(s∗) = α(s) + m1T(s) − ˙m1Y (s) + 1 c0 ( ¨m1 − m1)U(s), (59) where i) m1 = 1 √ c2 0−1 � a1 sin( � c2 0 − 1z) − a2 cos( � c2 0 − 1z) � + a3, c2 0 − 1 > 0 ii) m1 = a1 2 z2 + a2z + a3, c2 0 − 1 = 0 iii) m1 = 1 √ 1−c2 0 � a1 sinh( � 1 − c2 0z) + a2 cosh( � 1 − c2 0z) � + a3, c2 0 − 1 < 0 where z = � κds and a1, a2, a3 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
176
+ page_content=' 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
177
+ page_content=' The proof of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
178
+ page_content='6) is done similarly to the proof of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
179
+ page_content='3) Subcase 2: m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
180
+ page_content=' If we take as m1 = 0 in (55) we get following differential equation system \uf8f1 \uf8f2 \uf8f3 h(s) = −m2κ m′ 2 = −m3τ m′ 3 = m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
181
+ page_content=' (60) Then we give the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
182
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
183
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
184
+ page_content=' Let (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
185
+ page_content=' β) be a curve pair of constant breadth in (M, gf) where α is a timelike asymptotic curve lying in a timelike surface in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
186
+ page_content=' If m1 = 0, then the curve β is given by β(s∗) = α(s)+ � −b1 cos �� τds � − b2 sin �� τds �� Y (s)+ � −b1 sin �� τds � + b2 cos �� τds �� U(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
187
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
188
+ page_content=' The proof of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
189
+ page_content='7) is done similarly to the proof of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
190
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
191
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
192
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
193
+ page_content='3 Case (For Principal line) We suppose that α is a non-planar timelike principal line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
194
+ page_content=' Then we have τg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
195
+ page_content=' Then it follows that τ = θ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
196
+ page_content=' By using (36), we have the following differential equation system \uf8f1 \uf8f2 \uf8f3 m′ 1 = m3κ sin θ − m2κ cos θ − h(s) m′ 2 = −m1κ cos θ m′ 3 = m1κ sin θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
197
+ page_content=' (61) By mean of changing of the independant variable s with θ = � τds, we get \uf8f1 \uf8f2 \uf8f3 ˙m1 = φ(m3 sin θ − m2 cos θ) − g(θ) ˙m2 = −m1φ cos θ ˙m3 = m1φ sin θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
198
+ page_content=' (62) where g(θ) = (− ds dθ − ds∗ dθ ) and φ = κ τ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
199
+ page_content=' In here we denote the derivative with respect to θ with ”.”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
200
+ page_content=' From the equations in (62) we have .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
201
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
202
+ page_content=' m1 + ¨g − d dθ � ˙φ φ( ˙m1 + g) � − d dθ(φ2m1) + ( ˙m1 + g) − ˙φ � − sin θ � m1φ cos θdθ + cos θ � m1φ sin θdθ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
203
+ page_content=' (63) Subcase 1: m1 ̸= 0 (h(s) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
204
+ page_content=' In this case, we give the following theorem: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
205
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
206
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
207
+ page_content=' Let α be a non-planar timelike principal line and a general helix then β is given by one of the following cases: β(s∗) = α(s) + m1T(s) − c � m1 cos θdθY (s) + c � m1 sin θdθU(s), (64) where 10 i) m1 = 1 √ 1−c2 � a1 sin( √ 1 − c2θ) − a2 cos( √ 1 − c2θ) � + a3, 1 − c2 > 0 ii) m1 = a1 2 θ2 + a2θ + a3, c2 − 1 = 0 iii) m1 = 1 √ c2−1 � a1 sinh( √ c2 − 1θ) + a2 cosh( √ c2 − 1θ) � + a3, 1 − c2 < 0 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
208
+ page_content=' If h(s) = 0 then g(θ) = 0 and from (63) we have .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
209
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
210
+ page_content=' m1 − d dθ � ˙φ φ ˙m1 � − d dθ(φ2m1) + ˙m1 − ˙φ � − sin θ � m1φ cos θdθ + cos θ � m1φ sin θdθ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
211
+ page_content=' (65) If α is helix curve then φ = κ τ = c = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
212
+ page_content=' From (65) we have .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
213
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
214
+ page_content=' m1 + (1 − c2) ˙m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
215
+ page_content=' (66) Then the solution is m1 = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 1 √ 1−c2 � a1 sin( √ 1 − c2θ) − a2 cos( √ 1 − c2θ) � + a3, if 1 − c2 > 0 a1 2 θ2 + a2θ + a3, if 1 − c2 = 0 1 √ c2−1 � a1 sinh( √ c2 − 1θ) + a2 cosh( √ c2 − 1θ) � + a3, if 1 − c2 < 0, where θ = � τdθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
216
+ page_content=' Subcase 2: m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
217
+ page_content=' The case where m1 = 0, we have the following the following theorem: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
218
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
219
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
220
+ page_content=' Let α be a non-planar timelike principal line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
221
+ page_content=' If m1 = 0 then α is general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
222
+ page_content=' The curve β is expressed as β(s∗) = α(s) + c2Y (s) + c3U(s), (67) where c2 and c3 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
223
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
224
+ page_content=' From (63) we have ¨g − d dθ � ˙φ φg � + g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
225
+ page_content=' (68) On the other hand, from (61) we have m2 = c2 = constant ̸= 0, m3 = c3 = constant ̸= 0 and from (62) g = φ(−c2 cos θ + c3 sin θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
226
+ page_content=' (69) By considering (68) and (69) with together, we get ˙φ(c2 sin θ + c3 cos θ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
227
+ page_content=' (70) Then we have ˙φ = 0 or c2 sin θ + c3 cos θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
228
+ page_content=' If c2 sin θ + c3 cos θ = 0 then we have that θ is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
229
+ page_content=' So α becomes a planar curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
230
+ page_content=' It is a contridiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
231
+ page_content=' So ˙φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
232
+ page_content=' Then we obtain that φ = κ τ is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
233
+ page_content=' Thus α is a general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
234
+ page_content=' 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
235
+ page_content='2 Case where α is spacelike and ǫ2 = 1 and ǫ3 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
236
+ page_content=' Here we suppose that the curve α is spacelike and lying on a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
237
+ page_content=' Differentiating (34) with respect to s and using (21) we obtain dβ ds = dβ ds⋆ ds⋆ ds = T ⋆ds⋆ ds = (1 + m′ 1 − m2κg − m3κn)T +(m′ 2 − m1κg + m3τg)Y +(m′ 3 + m2τg + m1κn)U, (71) where T ⋆ denotes the tangent vector of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
238
+ page_content=' Since T = −T ∗, from the equation in (35) we have \uf8f1 \uf8f2 \uf8f3 m′ 1 = m2κg + m3κn − h(s) m′ 2 = m1κg − m3τg m′ 3 = −m2τg − m1κn, (72) where h(s) = ds∗ ds + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
239
+ page_content=' Since α is spacelike and ǫ2 = 1 andǫ3 = −1, then, if we assume that (α, β) is a curve pair of constant breadth, we have ∥β − α∥ = m2 1 + m2 2 − m2 3 = constant, (73) which imlplies that m1 dm1 ds + m2 dm2 ds − m3 dm3 ds = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
240
+ page_content=' (74) If we combine (72) and (74) we get m1(2m′ 1 + h(s)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
241
+ page_content=' (75) If α and β are curves of constant breadth then m1 = 0 or 2m′ 1 − h(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
242
+ page_content=' Now we investigate the case where α is geodesic curve or principal line curve because κn ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
243
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
244
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
245
+ page_content='1 Case (For geodesic curves) Let α be non-straight line geodesic curve on a timelike surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
246
+ page_content=' Then κg = κ sinh θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
247
+ page_content=' As κ ̸= 0, we get sinh θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
248
+ page_content=' So it implies that κn = κ, τg = τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
249
+ page_content=' From (72), we have the following differential equation system \uf8f1 \uf8f2 \uf8f3 m′ 1 = m3κ − h(s) m′ 2 = −m3τ m′ 3 = −m1κ − m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
250
+ page_content=' (76) From (76) we have \uf8f1 \uf8f2 \uf8f3 m3 = 1 κ(m′ 1 + h) m′ 2 = − τ κ(m′ 1 + h) m2 = − 1 τ � ( 1 κ(m′ 1 + h))′ + m1κ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
251
+ page_content=' (77) 12 Differentiating the third equation of (76) with respect to s and using the first, the second and the third equations of (77), we obtain the following equation: 1 κ �1 κ(m′ 1 + h) �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κ(m′ 1 + h) �′ − �τ κ �2 (m′ 1+h)− �τ κ �′ κ τ m1+m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
252
+ page_content=' (78) Subcase 1: m1 ̸= 0 (h(s) = −2m′ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
253
+ page_content=' The equation (78) becomes 1 κ �1 κm′ 1 �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κm′ 1 �′ − ��τ κ �2 + 1 � m′ 1 + �τ κ �′ κ τ m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
254
+ page_content=' (79) Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
255
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
256
+ page_content=' Let α be a geodesic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
257
+ page_content=' Let (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
258
+ page_content=' β) be a pair of unit speed curves of constant breadth where α is spacelike (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
259
+ page_content=' If m1 is non-zero constant then m3 = 0 and α is a general helix in the three dimensional Walker manifold (M, gǫ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
260
+ page_content=' Also the curve β is given as: β(s⋆) = α(s) + m1T + cY (80) where c is a real constant and s∗ = −s + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
261
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
262
+ page_content=' If m1 is non zero constant, then from (79) we obtain that � τ κ �′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
263
+ page_content=' So α is a general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
264
+ page_content=' Also from the second and third equation of (76) we get m3 = 0 because h = 0 and m2 is a real constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
265
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
266
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
267
+ page_content=' Let α be a geodesic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
268
+ page_content=' Let (α, β) be a pair of unit speed curves of constant breadth where α is spacelike curve (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
269
+ page_content=' If m1 is not zero, then the curve β can be expressed as one of the following cases: β(s∗) = α(s) + m1T + 1 c0 ( ¨m1 − m1)Y + ˙m1U, (81) where m1 = 1 √ 1+c2 0 � a1e √ 1+c2 0θ − a2e−√ 1+c2 0θ� , m3 = − ˙m1 and m2 = 1 c0( ¨m1 − m1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
270
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
271
+ page_content=' Let us consider that α is a general helix in Wlaker 3-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
272
+ page_content=' Then we have τ κ = c0 = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
273
+ page_content=' From (79), we have �1 κ �1 κm′ 1 �′�′ − � c2 0 + 1 � m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
274
+ page_content=' (82) By means of changing of the independant variable s with z = � κds, we obtain m′ 1 = dm1 ds = dm1 dz dz ds = ˙m1κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
275
+ page_content=' From (82), we get .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
276
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
277
+ page_content=' m1 − (c2 0 + 1) ˙m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
278
+ page_content=' (83) If we solve this equation we get m1 = 1 � 1 + c2 0 � a1e √ 1+c2 0θ − a2e−√ 1+c2 0θ� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
279
+ page_content=' (84) From (77) we have m3 = − ˙m1 and m2 = 1 c0( ¨m1 − m1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
280
+ page_content=' 13 Subcase 2: m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
281
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
282
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
283
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
284
+ page_content=' Let α be a geodesic spacelike curve (ǫ2 = 1, ǫ3 = −1) and lying in a timelike surface on Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
285
+ page_content=' If m1 = 0 then the curve β is expressed as β(s∗) = α(s) + cY, (85) where c is a constant real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
286
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
287
+ page_content=' If m′ 1 = 0 then h = 0 and from (76) we have m3 = 0 and m2 = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
288
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
289
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
290
+ page_content='2 Case (For Principal line) If α is principal line, then τg = 0 and τ = −θ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
291
+ page_content=' From (72) \uf8f1 \uf8f2 \uf8f3 m′ 1 = m2κ sinh θ + m3κ cosh θ − h(s) m′ 2 = m1κ sinh θ m′ 3 = −m1κ cosh θ, (86) By mean of changing of the independant variable s with θ = � τds, we get \uf8f1 \uf8f2 \uf8f3 ˙m1 = m3 κ τ cosh θ + m2 κ τ sinh θ − h(s) τ(s) ˙m2 = m1 κ τ sinh θ ˙m3 = −m1 κ τ cosh θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
292
+ page_content=' (87) Denoted by h(s) τ(s) = g(θ) and κ τ = φ, we have \uf8f1 \uf8f2 \uf8f3 ˙m1 = φ(m3 cosh θ + m2 sinh θ) − g(θ) ˙m2 = m1φ sinh θ ˙m3 = −m1φ cosh θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
293
+ page_content=' (88) From the equations in (88) we have \uf8f1 \uf8f2 \uf8f3 1 φ( ˙m1 + g) = m3 cosh θ + m2 sinh θ ˙m2 sinh θ + ˙m3 cosh θ = −m1φ ˙m2 cosh θ = −m3 sinh θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
294
+ page_content=' (89) Differentiating the first equation in (88), we get .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
295
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
296
+ page_content=' m1 + ¨g − d dθ � ˙φ φ( ˙m1 + g) � + d dθ(φ2m1) − ( ˙m1 + g) − ˙φ � cosh θ � m1φ sinh θdθ − sinh θ � m1φ cosh θdθ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
297
+ page_content=' (90) Subcase 1: m1 ̸= 0 (m′ 1 = −h 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
298
+ page_content=' If m′ 1 = −h 2 then ˙m1 = −g 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
299
+ page_content=' From (90) we obtain −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
300
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
301
+ page_content=' m1 + d dθ � ˙φ φ ˙m1 � + d dθ(φ2m1) + ˙m1 − ˙φ � cosh θ � m1φ sinh θdθ − sinh θ � m1φ cosh θdθ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
302
+ page_content=' (91) 14 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
303
+ page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
304
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
305
+ page_content=' Let α be principal line and a general helix then β is given by β(s∗) = α(s) + m1T + m2Y + m3U, (92) where m1 = 1 √ 1 + c2 � a1e √ 1+c2θ − a2e− √ 1+c2θ� , m2 = c � m1 sinh θdθ and m3 = −c � m1 cosh θdθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
306
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
307
+ page_content=' If α is helix curve then φ = κ τ = c = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
308
+ page_content=' From (91) we have .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
309
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
310
+ page_content=' m1 − (1 + c2) ˙m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
311
+ page_content=' (93) m1 = 1 √ 1 + c2 � a1e √ 1+c2θ − a2e− √ 1+c2θ� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
312
+ page_content=' (94) Subcase 2: m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
313
+ page_content=' From the equations in (72) we have m2 = c2 = constant ̸= 0, m3 = c3 = constant ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
314
+ page_content=' The first equation in (72) gives tanh θ = −c2 c3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
315
+ page_content=' (95) Then θ is a constant and we have τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
316
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
317
+ page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
318
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
319
+ page_content=' Let α be principal line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
320
+ page_content=' If m1 = 0 then α is planar curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
321
+ page_content=' The curve β is expressed as β(s∗) = α(s) + c2Y + c3U, (96) where c2 and c3 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
322
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
323
+ page_content='3 Case where α is spacelike and ǫ2 = −1 and ǫ3 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
324
+ page_content=' Let α be a spacelike with ǫ2 = −1 and ǫ3 = 1 lying on a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
325
+ page_content=' Differentiating (34) with respect to s and using (30) we obtain \uf8f1 \uf8f2 \uf8f3 m′ 1 = m2κg + m3κn − h(s) m′ 2 = m1κg − m3τg m′ 3 = −m2τg − m1κn, (97) where h(s) = ds∗ ds + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
326
+ page_content=' Since α is spacelike and ǫ2 = −1 andǫ3 = 1, then, if we assume that (α, β) is a curve pair of constant breadth, we have ∥β − α∥ = m2 1 − m2 2 + m2 3 = constant, (98) 15 which imlplies that m1 dm1 ds + m2 dm2 ds − m3 dm3 ds = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
327
+ page_content=' (99) If we combine (97) and (99) we get m1h(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
328
+ page_content=' (100) If α and β are curves of constant breadth then m1 = 0 or h(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
329
+ page_content=' If m1 ̸= 0 (that is h(s) = 0) then d = m1T + m2Y + m3U becomes a constant vector because d′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
330
+ page_content=' So β(s∗) is a translation of α along the constant vector d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
331
+ page_content=' Also h(s) = 0 gives s∗ = −s + c, where c is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
332
+ page_content=' Since κg ̸= 0, here we investigate curves of constant breadth for m1 ̸= 0 or m1 = 0 in some special case (asymptotic line or principal line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
333
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
334
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
335
+ page_content='1 Case (For Asymptotic line) Let α be non-straight line asymptotic line on a timelike surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
336
+ page_content=' Then κn = κ sinh θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
337
+ page_content=' As κ ̸= 0, we get cosh θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
338
+ page_content=' So it implies that κg = κ, τg = −τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
339
+ page_content=' From (97), we have following differential equation system \uf8f1 \uf8f2 \uf8f3 m′ 1 = m2κ − h(s) m′ 2 = m1κ + m3τ m′ 3 = −m2τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
340
+ page_content=' (101) By differentiating the second equation in (101) with respect to s and using the first and third equa- tions in (101), we get 1 κ �1 κ(m′ 1 + h) �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κ(m′ 1 + h) �′ − �τ κ �2 (m′ 1+h)+ �τ κ �′ κ τ m1 −m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
341
+ page_content=' (102) Subcase 1: m1 ̸= 0 (h(s) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
342
+ page_content=' The equation (102) is given by 1 κ �1 κm′ 1 �′′ + ��1 κ �′ − 1 τ �τ κ �′� �1 κm′ 1 �′ − ��τ κ �2 + 1 � m′ 1 + �τ κ �′ κ τ m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
343
+ page_content=' (103) Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
344
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
345
+ page_content=' Let α be a asymptotic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
346
+ page_content=' Let (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
347
+ page_content=' β) be a pair of unit speed curves of constant breadth where α is spacelike (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
348
+ page_content=' If m1 is non-zero constant then m2 = 0 and α is a general helix in the three dimensional Walker manifold (M, gǫ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
349
+ page_content=' Also the curve β is given as: β(s⋆) = α(s) + m1T + m3U (104) where m3 is a real constant and s∗ = −s + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
350
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
351
+ page_content=' If m1 is non zero constant, then from (103) we obtain that � τ κ �′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
352
+ page_content=' So α is a general helix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
353
+ page_content=' Also from the first and third equation of (101) we get m2 = 0 and m3 is a real constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
354
+ page_content=' 16 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
355
+ page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
356
+ page_content=' Let α be a asymptotic line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
357
+ page_content=' Let (α, β) be a pair of unit speed curves of constant breadth where α is timelike curve and lying in a timelike surface Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
358
+ page_content=' If m1 is not zero, then the curve β can be expressed as one of the following cases: β(s∗) = α(s) + m1T + ˙m1Y + 1 c0 ( ¨m1 + m1)U, (105) where m1 = 1 � c2 0 + 1 � a1e √ c2 0+1z − a2e √ c2 0+1z� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
359
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
360
+ page_content=' Let us consider that α is a general helix in Walker 3-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
361
+ page_content=' Then we have τ κ = c0 = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
362
+ page_content=' From (103), we have �1 κ �1 κm′ 1 �′�′ − � c2 0 + 1 � m′ 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
363
+ page_content=' (106) By means of changing of the independant variable s with z = � κds, we obtain .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
364
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
365
+ page_content=' m1 − (c2 0 + 1) ˙m1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
366
+ page_content=' (107) If we solve this equation we get m1 = 1 � c2 0 + 1 � a1e √ c2 0+1z − a2e √ c2 0+1z� (108) From (101) we obtain m2 = ˙m1 and m3 = 1 c0( ¨m1 + m1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
367
+ page_content=' Subcase 2: m1 = 0 With the same computation as above, we have the following theorem: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
368
+ page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
369
+ page_content=' Let (α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
370
+ page_content=' β) be a curve pair of constant breadth in (M, gf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
371
+ page_content=' If α is a spacelike asymptotic curve (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
372
+ page_content=' If m1 = 0, then the curve β is given by β(s∗) = α(s)+ � b1 cos �� τds � + b2 sin �� τds �� Y (s)+ � −b1 sin �� τds � + b2 cos �� τds �� U(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
373
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
374
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
375
+ page_content='2 Case (For Principal line) In this case we have the two following theorems: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
376
+ page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
377
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
378
+ page_content=' Let α be spacelike principal line (with ǫ2 = −1 and ǫ3 = 1) and a general helix then β is given by β(s∗) = α(s) + m1T + m2Y + m3U, (109) where m1 = 1 √ 1 + c2 � a1e √ 1+c2θ − a2e− √ 1+c2θ� , m2 = c � m1 cosh θdθ and m3 = −c � m1 sinh θdθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
379
+ page_content=' 17 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
380
+ page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
381
+ page_content=' Let (α, β) be a pair curves of constant breadth in (M, gfǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
382
+ page_content=' Let α be principal line (with ǫ2 = −1 and ǫ3 = 1) lying in a timelike surface in Mf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
383
+ page_content=' If m1 = 0 then α is general helix or α is planar curve and the curve β is expressed as β(s∗) = α(s) + c2Y + c3U, (110) where c2 and c3 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
384
+ page_content=' Acknowledgments The author would like to thank the anonymous Referees for their comments and suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
385
+ page_content=' All many thanks to professor Ferdag Kahraman from Ahi Evran University (Turkish) for their remarks and suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
386
+ page_content=' References [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
387
+ page_content=' Altunkaya, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
388
+ page_content=' Kahraman, Curves of constant breadth according to Darboux frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
389
+ page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
390
+ page_content=' Fac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
391
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
392
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
393
+ page_content=' Ank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
394
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
395
+ page_content=' A1 Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
396
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
397
+ page_content=' 66, (2), 44–52 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
398
+ page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
399
+ page_content=' Altunkaya, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
400
+ page_content=' Kahraman, Null curves of constant breadth in Minkowski 4-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
401
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
402
+ page_content=' Fac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
403
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
404
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
405
+ page_content=' Ank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
406
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
407
+ page_content=' A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
408
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
409
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
410
+ page_content=' 68, (1), 451–456 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
411
+ page_content=' [3] Blaschke W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
412
+ page_content=', Einige Bemerkungen uber Kurven und Flachen konstanter Breite, Ber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
413
+ page_content=' Verh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
414
+ page_content=' sachs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
415
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
416
+ page_content=' Leipzig 67, 290–297 (1915).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
417
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
418
+ page_content=' Brozos-V´azquez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
419
+ page_content=' Garc´ıa-Rio, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
420
+ page_content=' Gilkey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
421
+ page_content=' Nikevi´c and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
422
+ page_content=' V´azquez-Lorenzo, The Ge- ometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
423
+ page_content=' Morgan and Claypool Publishers, Williston, VT, (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
424
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
425
+ page_content=' Calvaruso and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
426
+ page_content=' Van der Veken, Parallel surfaces in Lorentzian three-manifolds admitting a parallel null vector field, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
427
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
428
+ page_content=' A 43, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
429
+ page_content=' 32, 325207 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
430
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
431
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
432
+ page_content=' Diallo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
433
+ page_content=' Ndiaye and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
434
+ page_content=' Niang, Minimal graphs on three-dimensional Walker man- ifolds, Proceedings of the First NLAGA-BIRS Symposium, Dakar, Senegal, Trends Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
435
+ page_content=', Birkh¨a user/Springer, Cham, 425-438 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
436
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
437
+ page_content=' Fujivara, On space curve of constant breadth, Tohoku Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
438
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
439
+ page_content=' 5, 179–184 (1914).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
440
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
441
+ page_content=' Gningue, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
442
+ page_content=' Ndiaye, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
443
+ page_content=' Nkunzimana, Biharmonic Curves in a Strict Walker 3-Manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
444
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
445
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
446
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
447
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
448
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
449
+ page_content=', 1–6 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
450
+ page_content=' [9] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
451
+ page_content=' Kose, Some properties of ovals and curves of constant width in a plane, Doga Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
452
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
453
+ page_content=' Serial B (8), 2, 119-126 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
454
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
455
+ page_content=' Magden and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
456
+ page_content=' Kose, On the curves of constant breadth in E4 space, Turkish J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
457
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
458
+ page_content=', 21, 277-284 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
459
+ page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
460
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
461
+ page_content=' Solow, Quarterly Journal of Economics, 70, 6594 (1956).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
462
+ page_content=' 18' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE1T4oBgHgl3EQfSwPe/content/2301.03071v1.pdf'}
8NE1T4oBgHgl3EQfBwLj/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14a98f4311487747563e628fc0fa6a487d851a0affc0619aa8c965c45e7680e9
3
+ size 2621485
8dE4T4oBgHgl3EQf2w3D/content/2301.05301v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d45b43eb3d06f9fe657aa34b50ad32199fa9c85460957dde98b3d7fe34721603
3
+ size 1493621
8dE4T4oBgHgl3EQf2w3D/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1676a93d6c73668741308aa253a94f580521b412c7ccb79a48494fed4719ea0a
3
+ size 1011449
8tE2T4oBgHgl3EQfPwar/content/2301.03763v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160e11bb8ebaebcb3eeb13ba0b79c1e3d7a2b4b47ef67c35ed7f63c056c8462b
3
+ size 489678
8tE2T4oBgHgl3EQfPwar/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c32958deacc25d24d014cbe60bb156fecc9d4efb66f775470fa7ea7d059d4427
3
+ size 167348
AdFQT4oBgHgl3EQf8zdx/content/tmp_files/2301.13448v1.pdf.txt ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13448v1 [nlin.AO] 31 Jan 2023
2
+ Delay, resonance and the Lambert W function
3
+ Kenta Ohira1 and Toru Ohira2
4
+ 1Future Value Creation Research Center,
5
+ Graduate School of Informatics, Nagoya University, Japan
6
+ 2Graduate School of Mathematics, Nagoya University, Japan
7
+ February 1, 2023
8
+ Abstract
9
+ We present here a connection between the solutions of the transcenden-
10
+ tal trigonometric equation and the Lambert W function. This connection
11
+ emerged through an analysis of resonant conditions with a recently pro-
12
+ posed simple delay differential equation that shows transient oscillatory
13
+ behaviors. We investigate and present the connection both analytically
14
+ and numerically.
15
+ 1
16
+ Introduction
17
+ In the various fields including mathematics, biology, physics, engineering, eco-
18
+ nomics, and so on, there have been interests in investigating the effect of delays
19
+ in the system.[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). Typically, delays intro-
20
+ duce oscillations and complex behaviors to otherwise simple and well-behaved
21
+ systems. Longer delays are known to induce an increase in the complexity of
22
+ dynamics. The representative example is the Mackey–Glass equation[8] which
23
+ shows the sequence of the monotonic convergence, transient oscillations, persis-
24
+ tent oscillations, and chaotic dynamics as the delay parameter in the feedback
25
+ function becomes longer.
26
+ The main mathematical approaches and modeling tools are “Delay Differen-
27
+ tial Equations”. Mathematical analysis of such delay systems has been posing
28
+ challenges. Though understanding of the delay systems have been gradually
29
+ gained (e.g.[15]), there is more to be investigated and explored. One recent an-
30
+ alytical approach to simple delay differential equations is an application of the
31
+ Lambert W function. It has been shown that the solution of the simple delay
32
+ differential equation can be expressed using the W function.
33
+ In this paper, we follow this path of analyzing a simple delay differential
34
+ equation using the W function. Specifically, we analyze the transient oscillatory
35
+ behaviors of a delay differential equation that shows a resonant behavior[16]. In
36
+ this resonance, the optimal height of the power spectrum of the dynamical
37
+ trajectory is observed with the suitably tuned value of the delay parameter.
38
+ 1
39
+
40
+ We focus on the appearance of the power spectrum peaks and found that it
41
+ relates to the transcendental trigonometric equation. That condition, on the
42
+ other hand, can be also expressed in terms of the W function. We connect these
43
+ two approaches both analytically and numerically to provide a new way that
44
+ the W function can be useful.
45
+ 2
46
+ Delay Differential Equation
47
+ Recently, we have proposed and studied the following delay differential equation:
48
+ dX(t)
49
+ dt
50
+ + atX(t) = bX(t − τ)
51
+ (1)
52
+ where a ≥ 0, b ≥ 0, τ ≥ 0 are real parameters with τ interpreted as the delay.
53
+ This equation is a slight extension of much-studied Hayes’s equation[4],
54
+ dX(t)
55
+ dt
56
+ + αX(t) = βX(t − τ)
57
+ (2)
58
+ where α, β are real constants.
59
+ Even though the apparent change from (2) to (1) is small with only the
60
+ second term changed to a linear function of time, their behaviors are quite
61
+ different. Particularly for (1), we have shown oscillatory transient dynamics
62
+ appear and disappear as the value of delay increases without losing asymptotic
63
+ stability of X = 0.
64
+ 2.1
65
+ Analysis
66
+ Let us first review some properties of (1).
67
+ When b = 0.
68
+ With the initial
69
+ condition X(t = 0) = X0, the solution to the equation is given as
70
+ X(t) = X0e− 1
71
+ 2 at2
72
+ (3)
73
+ Thus, this solution is a gaussian shape. We also note in this case that (1) is the
74
+ equation for the ground state of the quantum simple harmonic oscillator with
75
+ the interpretation of t as a position rather than time (e.g.[18]).
76
+ The case that a = 0 is a special case of (2). In this case, the origin X = 0 is
77
+ asymptotically stable only in the range of
78
+ − π/2τ < b < 0.
79
+ (4)
80
+ For the general case with a > 0, b > 0 with the delay τ = 0, the solution
81
+ X(t = 0) = X0 is obtained as
82
+ X(t) = X0e− 1
83
+ 2 at2+bt
84
+ (5)
85
+ This is again a Gaussian with its peak at b/a.
86
+ 2
87
+
88
+ For the case with a > 0, b > 0 with the delay τ → ∞, the dynamics is
89
+ influenced by the initial function for all 0 ≤ t. Thus for the initial function
90
+ X(t) = X0, (−τ ≤ t ≤ 0), we can replace the right hand side of equation (1) as
91
+ bX(t − τ) → X0. The solution can be obtained as
92
+ X(t) = X0e− 1
93
+ 2 at2(1 + b
94
+ � t
95
+ 0
96
+ e
97
+ 1
98
+ 2 as2ds) = X0e− 1
99
+ 2 at2(1 + b
100
+ � π
101
+ 2aerfi(
102
+ � a
103
+ 2 t))
104
+ (6)
105
+ where erfi(x) is the imaginary error function defined as
106
+ erfi(x) =
107
+ 2
108
+ √π
109
+ � x
110
+ 0
111
+ es2 ds
112
+ (7)
113
+ The shape of this function is also a single peaked function approaching to the
114
+ origin X = 0.
115
+ We now see one of the major differences between the equations (1) and (2).
116
+ In the latter, the asymptotic stability of X = 0 is lost for the larger delay with
117
+ 0 < α < β, while in the former, it is kept even with the large delay for all
118
+ a > 0, b > 0. Also, even though both exhibit transient oscillations, (1) shows
119
+ coherent oscillations with the tuned value of the delay τ. We now turn our
120
+ attention to these resonating phenomena.
121
+ 2.2
122
+ Power Spectrum and Resonance
123
+ The transient dynamics of equation (1) are investigated through numerical sim-
124
+ ulations. Some examples are shown in Fig. 1. With zero delays, the shape of
125
+ the dynamics is the gaussian as derived in the previous subsection. The oscil-
126
+ latory behaviors arise on top of the gaussian trajectory with increasing delay.
127
+ Further increase of delay changes the oscillatory shape into trains of pulses with
128
+ decreasing height at the delay interval, and asymptotically the pulses disappear
129
+ leading to the gaussian shape (5). As mentioned, the asymptotic stability of
130
+ X = 0 does not change by the increasing delay in this parameter set.
131
+ This property is in contrast to that of equation (2) where the onset of the
132
+ oscillation by the increasing delay leads to the loss of stability. Thus, it is differ-
133
+ ent from stability switching phenomena (e.g.[17]) with the delay as the bifurca-
134
+ tion parameter. It is also different from the delay induced transient oscillation
135
+ (DITO)[19, 20]. The phenomena arise in coupled delay differential equations
136
+ exhibiting the prolonged duration of oscillatory behaviors with increasing delay.
137
+ We investigate these oscillatory behaviors for the case a > 0, b > 0, and
138
+ finite τ ̸= 0 by taking the Fourier transform of the equation (1).
139
+ iω ˆX(ω) + iad ˆX(ω)
140
+
141
+ = −b ˆX(ω)eiωτ
142
+ (8)
143
+ where
144
+ ˆX(ω) =
145
+ � ∞
146
+ −∞
147
+ eiωtX(t)dt
148
+ (9)
149
+ 3
150
+
151
+ (B)
152
+ X(t)
153
+ t
154
+ (A)
155
+ X(t)
156
+ t
157
+ (E)
158
+ X(t)
159
+ t
160
+ (F)
161
+ X(t)
162
+ t
163
+ (C)
164
+ X(t)
165
+ t
166
+ (D)
167
+ X(t)
168
+ t
169
+ 50
170
+ 100
171
+ 150
172
+ 200
173
+ 0
174
+ 20000
175
+ 40000
176
+ 60000
177
+ 80000
178
+ 100000
179
+ 120000
180
+ 50
181
+ 100
182
+ 150
183
+ 200
184
+ 0
185
+ 50
186
+ 100
187
+ 150
188
+ 200
189
+ 250
190
+ 300
191
+ 350
192
+ 50
193
+ 100
194
+ 150
195
+ 200
196
+ 0
197
+ 5
198
+ 10
199
+ 15
200
+ 20
201
+ 50
202
+ 100
203
+ 150
204
+ 200
205
+ 0
206
+ 2
207
+ 4
208
+ 6
209
+ 50
210
+ 100
211
+ 150
212
+ 200
213
+ 0.0
214
+ 0.5
215
+ 1.0
216
+ 1.5
217
+ 2.0
218
+ 50
219
+ 100
220
+ 150
221
+ 200
222
+ 0.0
223
+ 0.5
224
+ 1.0
225
+ 1.5
226
+ Figure 1: Representative dynamics of the main equation (1) with different values
227
+ of the delays, τ. The parameters are set at a = 0.15, b = 6.0 with the initial
228
+ interval condition as X(t) = 0.1(−τ ≤ t ≤ 0). The values of the delays τ are
229
+ (A)2, (B)4, (C)7, (D)10, (E)20, (F)25.
230
+ 4
231
+
232
+ The solution is given as
233
+ ˆX(ω) = CExp[− 1
234
+ 2aω2 + b
235
+ τaeiωτ]
236
+ (10)
237
+ with C as the integration constant. We can calculate the power spectrum from
238
+ equation(9).
239
+ S(ω) = | ˆX(ω)|2 = ˆX(ω) ˆ
240
+ X∗(ω) = C2Exp[−1
241
+ aω2 + 2b
242
+ τa cos ωτ]
243
+ (11)
244
+ We have plotted this equation for the power spectrum for the various delays.
245
+ Results with the same parameter setting as in Fig. 1 are shown in Fig. 2.
246
+ In the previous work, we noted that the peak of the power spectrum shows
247
+ a maximum height with the tuned value of the delay. The higher peak indicates
248
+ a more coherent oscillation. It is in this sense that the resonance exists with the
249
+ delay as a tuning parameter.
250
+ 2.3
251
+ Peaks of the Power Spectrum
252
+ We now focus on the analysis of these power spectrum peaks. The appearance
253
+ and disappearance of the peaks in the power spectrum correspond to those of
254
+ oscillatory behavior. By taking the derivative of (11), we see the maximum and
255
+ minimum points of the power spectrum function occur at ω satisfying,
256
+ ω = −b sin ωτ
257
+ (12)
258
+ They are given by the intersection points of the two functions from both
259
+ sides of this condition. The position of the first peak corresponds to the second
260
+ non-zero smallest intersection point (the first one corresponds to the minimum
261
+ before the peak).
262
+ We can also infer the condition for the appearance of the series of power
263
+ spectrum peaks. Each peak appears when the intersection point is the tangent
264
+ point (Fig.3). This gives the following conditions for the n-th peak.
265
+ ω = −b sin ωτ,
266
+ 1 = −bτ cos ωτ,
267
+ (2n − 1)π
268
+ τ
269
+ < ω < (2n − 1
270
+ 2)π
271
+ τ
272
+ , (n = 1, 2, . . .).
273
+ (13)
274
+ If we set λ = bτ,θ = ωτ, the above condition leads to
275
+ θ = −λ sin θ,
276
+ 1 = −λ cosθ,
277
+ (2n − 1)π < θ < (2n − 1
278
+ 2)π, (n = 1, 2, . . . ).
279
+ (14)
280
+ From this set of equations, we can numerically estimate the solutions (θn, λn)
281
+ for each n. First, we can derive that θn and λn are related by
282
+ λ2
283
+ n = θ2
284
+ n + 1
285
+ (15)
286
+ Then, the followings are obtained:
287
+ θ = −
288
+
289
+ θ2 + 1 sin θ,
290
+ (2n − 1)π < θ < (2n − 1
291
+ 2)π, (n = 1, 2, . . .),
292
+ (16)
293
+ 5
294
+
295
+ 0.2
296
+ 0.4
297
+ 0.6
298
+ 0.8
299
+ 1.0
300
+ 1.2
301
+ 1.4
302
+ 5
303
+ 10
304
+ 15
305
+ 20
306
+ 25
307
+ 0.2
308
+ 0.4
309
+ 0.6
310
+ 0.8
311
+ 1.0
312
+ 1.2
313
+ 1.4
314
+ 5.0×1016
315
+ 1.0×1017
316
+ 1.5×1017
317
+ 2.0×1017
318
+ (A)
319
+ ω
320
+ S(ω)
321
+ 0.2
322
+ 0.4
323
+ 0.6
324
+ 0.8
325
+ 1.0
326
+ 1.2
327
+ 1.4
328
+ 1×108
329
+ 2×108
330
+ 3×108
331
+ 4×108
332
+ 5×108
333
+ 0.0
334
+ 0.2
335
+ 0.4
336
+ 0.6
337
+ 0.8
338
+ 1.0
339
+ 1.2
340
+ 1.4
341
+ 200
342
+ 400
343
+ 600
344
+ 800
345
+ 0.2
346
+ 0.4
347
+ 0.6
348
+ 0.8
349
+ 1.0
350
+ 1.2
351
+ 1.4
352
+ 10
353
+ 20
354
+ 30
355
+ 40
356
+ 50
357
+ 0.0
358
+ 0.2
359
+ 0.4
360
+ 0.6
361
+ 0.8
362
+ 1.0
363
+ 1.2
364
+ 1.4
365
+ 200
366
+ 400
367
+ 600
368
+ 800
369
+ (B)
370
+ ω
371
+ S(ω)
372
+ (C)
373
+ ω
374
+ S(ω)
375
+ (F)
376
+ ω
377
+ S(ω)
378
+ (E)
379
+ ω
380
+ S(ω)
381
+ (D)
382
+ ω
383
+ S(ω)
384
+ Figure 2: Representative power spectrums given by the equation (1) with dif-
385
+ ferent values of the delays τ.
386
+ The parameters are set as the same as Fig.1;
387
+ a = 0.15, b = 6.0, C = 1 with the initial interval condition as X(t) = 0.1(−τ ≤
388
+ t ≤ 0). The values of the delays τ are (A)2, (B)4, (C)7, (D)10, (E)20, (F)25.
389
+ 6
390
+
391
+ 5
392
+ 10
393
+ 15
394
+ 20
395
+ - 20
396
+ - 10
397
+ 10
398
+ 20
399
+ 5
400
+ 10
401
+ 15
402
+ 20
403
+ - 20
404
+ - 10
405
+ 10
406
+ 20
407
+ 30
408
+ (A)
409
+ (B)
410
+ θ1
411
+ θ2
412
+ θ3
413
+ θ1
414
+ θ2
415
+ θ3
416
+ Figure 3: The plots of equations (A) (16) and (B) (17).
417
+ or
418
+ θ = tan θ,
419
+ (2n − 1)π < θ < (2n − 1
420
+ 2)π, (n = 1, 2, . . . ),
421
+ (17)
422
+ or
423
+ − 1
424
+ λ = cos
425
+
426
+ λ2 − 1,
427
+
428
+ ((2n − 1)π)2 + 1 < λ <
429
+
430
+ ((2n − 1
431
+ 2)π)2 + 1.
432
+ (18)
433
+ The values of the solutions (θn, λn) are listed in the Table 1.
434
+ n
435
+ θn
436
+ λn
437
+ tan θn
438
+ 1
439
+ 4.49341
440
+ 4.60334
441
+ 4.49341
442
+ 2
443
+ 10.9041
444
+ 10.9499
445
+ 10.9041
446
+ 3
447
+ 17.2208
448
+ 17.2498
449
+ 17.2208
450
+ 4
451
+ 23.5195
452
+ 23.5407
453
+ 23.5195
454
+ 5
455
+ 29.8116
456
+ 29.8284
457
+ 29.8116
458
+ 6
459
+ 36.1006
460
+ 36.1145
461
+ 36.1006
462
+ 7
463
+ 42.3879
464
+ 42.3997
465
+ 42.3879
466
+ 8
467
+ 48.6741
468
+ 48.6844
469
+ 48.6741
470
+ 9
471
+ 54.9597
472
+ 54.9688
473
+ 54.9597
474
+ 10
475
+ 61.2447
476
+ 61.2529
477
+ 61.2447
478
+ Table 1: Numerically estimated values of θn, λn and tan θn
479
+ 2.4
480
+ Lambert W function
481
+ We present here that we can alternatively obtain the solutions (θn, λn) discussed
482
+ in the previous subsection using the Lambert W function.
483
+ W function is defined as a multivalued complex function with a complex
484
+ variable z satisfying
485
+ z = Wk(z)eWk(z),
486
+ (k = 0, 1, 2, . . .),
487
+ (19)
488
+ 7
489
+
490
+ where k is the branch number. It has been pointed out that the W function
491
+ can be used to express the solution of simple delay differential equations[21, 22].
492
+ What we present here is another way the W function can be utilized.
493
+ We start with (14) and use e−iθ = cos θ − i sin θ to obtain
494
+ 1 − iθ = −λe−iθ.
495
+ (20)
496
+ By defining Q ≡ −1 + iθ we can rewrite (20) as
497
+ QeQ = λ
498
+ e .
499
+ (21)
500
+ We can now use the W function on (21), and Q can be expressed as
501
+ Q = Wk(λ
502
+ e ).
503
+ (22)
504
+ By the constraints that θ is real, the real part of Q must be equal to −1, or
505
+ Re[Q] = Re[Wk(λ
506
+ e )] = −1.
507
+ (23)
508
+ Also by the definition of Q, we have θ from the imaginary part,
509
+ θ = Im[Q] = Im[Wk(λ
510
+ e )].
511
+ (24)
512
+ Further, we can prove the following.
513
+ Lemma
514
+ Re[Wk(λ
515
+ e )] = −1 ⇐⇒ |Wk(λ
516
+ e )| = λ
517
+ (25)
518
+ Proof
519
+ Necessary Part:
520
+ By the definition of the W function,
521
+ Wk(λ
522
+ e )Exp[Wk(λ
523
+ e )] = λ
524
+ e
525
+ (26)
526
+ Also, by the assumption of
527
+ Re[Wk(λ
528
+ e )] = −1,
529
+ (27)
530
+ we can write
531
+ Wk(λ
532
+ e ) = −1 + iµ,
533
+ (µ ∈ R).
534
+ (28)
535
+ 8
536
+
537
+ Then, (26) leads to
538
+ λ
539
+ e = Wk(λ
540
+ e )Exp[Wk(λ
541
+ e )] = Wk(λ
542
+ e )Exp[−1 + iµ].
543
+ (29)
544
+ Thus,
545
+ Wk(λ
546
+ e )Exp[iµ] = λ,
547
+ (30)
548
+ which is equivalent to
549
+ |Wk(λ
550
+ e )| = λ.
551
+ (31)
552
+ Sufficient Part:
553
+ By (26) and λ > 0 we have
554
+ λ
555
+ e = |Wk(λ
556
+ e )Exp[Wk(λ
557
+ e )]| = |Wk(λ
558
+ e )||Exp[Wk(λ
559
+ e )]|.
560
+ (32)
561
+ Also, by the assumption
562
+ |Wk(λ
563
+ e )| = λ,
564
+ (33)
565
+ this leads to
566
+ λ
567
+ e = λ|Exp[Wk(λ
568
+ e )]|
569
+ (34)
570
+ If we set
571
+ Wk(λ
572
+ e ) = η + iµ,
573
+ (η, µ ∈ R)
574
+ (35)
575
+ (34) can be re-writen as
576
+ 1
577
+ e = |Exp[Wk(λ
578
+ e )]| = eη,
579
+ (36)
580
+ leading to
581
+ η = Re[Wk(λ
582
+ e )] = −1
583
+ (37)
584
+ We are now in a position to put together pieces obtained through the analysis
585
+ of resonant peaks. They can be summarized as follows.
586
+ 9
587
+
588
+ Theorem
589
+ Let (θ, λ) satisfy the following,
590
+ θ = −λ sin θ,
591
+ 1 = −λ cosθ,
592
+ (2n − 1)π < θ < (2n − 1
593
+ 2)π, (n = 1, 2, . . . ),
594
+ (38)
595
+ then they also satisfy the following for some k
596
+ Re[Wk(λ
597
+ e )] = −1,
598
+ (39)
599
+ and
600
+ θ = Im[Wk(λ
601
+ e )],
602
+ λ = |Wk(λ
603
+ e )|
604
+ (40)
605
+ Based on the above, we further want to investigate between the n-th root and
606
+ the n-th branch of the W function. With numerical estimations, we conjecture
607
+ the following.
608
+ Conjecture
609
+ The n-th root θn of the following,
610
+ θn = tan θn,
611
+ (2n − 1)π < θn < (2n − 1
612
+ 2)π, (n = 1, 2, . . .),
613
+ (41)
614
+ is given by the n-th branch of the W function
615
+ θn = Im[Wn(λn
616
+ e )],
617
+ (42)
618
+ where λn satisfies
619
+ Re[Wn(λn
620
+ e )] = −1.
621
+ (43)
622
+ In Table 2, we show the results of estimated related numerical values. Com-
623
+ paring Tables 1 and 2 supports the above theorems and conjecture.
624
+ Thus,
625
+ through the analysis of resonant peaks, we have connected the solutions of the
626
+ trigonometric transcendental function with a specific value of the n-th branch of
627
+ the W function. To the author’s knowledge, this relation has not been explicitly
628
+ pointed out.
629
+ 3
630
+ Discussion
631
+ In this paper, we presented some properties of the Lambert W function through
632
+ the analysis of resonant behaviors of a simple delay differential equation. The
633
+ connection between the solutions of trigonometric transcendental equation and
634
+ that of the W function is revealed. It remains to be explored if these properties
635
+ of the W function can be utilized in more broader context.
636
+ 10
637
+
638
+ n
639
+ λn
640
+ Wn( λn
641
+ e )
642
+ |Wn( λn
643
+ e )|
644
+ 1
645
+ 4.60334
646
+ -1.0 + i 4.49341
647
+ 4.60334
648
+ 2
649
+ 10.9499
650
+ -1.0 + i 10.9041
651
+ 10.9499
652
+ 3
653
+ 17.2498
654
+ -1.0 + i 17.2208
655
+ 17.2498
656
+ 4
657
+ 23.5407
658
+ -1.0 + i 23.5195
659
+ 23.5407
660
+ 5
661
+ 29.8284
662
+ -1.0 + i 29.8116
663
+ 29.8284
664
+ 6
665
+ 36.1145
666
+ -1.0 + i 36.1006
667
+ 36.1145
668
+ 7
669
+ 42.3997
670
+ -1.0 + i 42.3879
671
+ 42.3997
672
+ 8
673
+ 48.6844
674
+ -1.0 + i 48.6741
675
+ 48.6844
676
+ 9
677
+ 54.9688
678
+ -1.0 + i 54.9597
679
+ 54.9688
680
+ 10
681
+ 61.2529
682
+ -1.0 + i 61.2447
683
+ 61.2529
684
+ Table 2: Numerically estimated values of λn, Wn( λn
685
+ e ) and |Wn( λn
686
+ e )|
687
+ Acknowledgments
688
+ The authors would like to thank useful discussions with Prof. Hideki Ohira
689
+ and members of his research group at Nagoya University. This work was sup-
690
+ ported by ”Yocho-gaku” Project sponsored by Toyota Motor Corporation, JSPS
691
+ Topic-Setting Program to Advance Cutting-Edge Humanities and Social Sci-
692
+ ences Research Grant Number JPJS00122674991, JSPS KAKENHI Grant Num-
693
+ ber 19H01201, and the Research Institute for Mathematical Sciences, an Inter-
694
+ national Joint Usage/Research Center located in Kyoto University.
695
+ References
696
+ [1] U. an der Heiden. Delays in physiological systems. J. Math. Biol., 8:345–364,
697
+ 1979.
698
+ [2] R. Bellman and K. Cooke. Differential-Difference Equations. Academic
699
+ Press, New York, 1963.
700
+ [3] J. L. Cabrera and J. G. Milton. On–off intermittency in a human balancing
701
+ task. Phys. Rev. Lett., 89:158702, 2002.
702
+ [4] N. D. Hayes. Roots of the transcendental equation associated with a certain
703
+ difference–differential equation. J. Lond. Math. Soc., 25:226–232, 1950.
704
+ [5] T. Insperger. Act-and-wait concept for continuous-time control systems with
705
+ feedback delay. IEEE Trans. Control Sys. Technol., 14:974–977, 2007.
706
+ [6] U. K¨uchler and B. Mensch. Langevin’s stochastic differential equation ex-
707
+ tended by a time-delayed term. Stoch. Stoch. Rep., 40:23–42, 1992.
708
+ [7] A. Longtin and J. G. Milton. Insight into the transfer function, gain and
709
+ oscillation onset for the pupil light reflex using delay-differential equations.
710
+ Biol. Cybern., 61:51–58, 1989.
711
+ 11
712
+
713
+ [8] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control
714
+ systems. Science, 197:287–289, 1977.
715
+ [9] J Mitlon, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich,
716
+ and S. A. Campbell. The time–delayed inverted pendulum: Implications for
717
+ human balance control. Chaos, 19:026110, 2009.
718
+ [10] T. Ohira and T. Yamane. Delayed stochastic systems. Phys. Rev. E,
719
+ 61:1247–1257, 2000.
720
+ [11] H. Smith. An introduction to delay differential equations with applications
721
+ to the life sciences. Springer, New York, 2010.
722
+ [12] G. St´ep´an. Retarded dynamical systems: Stability and characteristic func-
723
+ tions. Wiley & Sons, New York, 1989.
724
+ [13] G. St´ep´an and T. Insperger. Stability of time-periodic and delayed systems:
725
+ a route to act-and-wait control. Ann. Rev. Control, 30:159–168, 2006.
726
+ [14] M. Szydlowski and A. Krawiec. The Kaldor–Kalecki model of business cycle
727
+ as a two-dimensional dynamical system. J. Nonlinear Math. Phys., 8: 266–
728
+ 271, 2010.
729
+ [15] S. R.Taylor and S. A. Campbell. Approximating chaotic saddles for delay
730
+ differential equations. Phys. Rev. E, 75: 046215, 2007.
731
+ [16] K. Ohira. Resonating Delay Equation. EPL, 137: 23001, 2022.
732
+ [17] X. Yan, F. Liu and C. Zhang. Multiple stability switches and Hopf bifur-
733
+ cation in a damped harmonic oscillator with delayed feedback. Nonlinear
734
+ Dynamics, 99:2011, 2020.
735
+ [18] J. J. Sakurai. Modern Quantum Mechanics. Benjamin/Cummings, Menlo
736
+ Park, California, 1985.
737
+ [19] J. Milton, P. Naik, C. Chan, and S. A. Campbell. Indecision in neural
738
+ decision making models. Math. Model. Nat. Phenom., 5:125–145, 2010.
739
+ [20] K. Pakdaman, C. Grotta-Ragazzo, and C. P. Malta. Transient regime dura-
740
+ tion in continuous-time neural networks with delay. Phys. Rev. E, 58:3623–
741
+ 3627, 1998.
742
+ [21] R. Pusenjak. Application of Lambert function in the control of production
743
+ systems with delay. Int. J. Eng. Sci, 6:28?–38, 2017.
744
+ [22] H. Shinozaki and T. Mori. Robust stability analysis of linear time delay
745
+ system by Lambert W function. Automatica, 42: 1791–1799, 2006.
746
+ 12
747
+
AdFQT4oBgHgl3EQf8zdx/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf,len=436
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
3
+ page_content='13448v1 [nlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
4
+ page_content='AO] 31 Jan 2023 Delay, resonance and the Lambert W function Kenta Ohira1 and Toru Ohira2 1Future Value Creation Research Center, Graduate School of Informatics, Nagoya University, Japan 2Graduate School of Mathematics, Nagoya University, Japan February 1, 2023 Abstract We present here a connection between the solutions of the transcenden- tal trigonometric equation and the Lambert W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
5
+ page_content=' This connection emerged through an analysis of resonant conditions with a recently pro- posed simple delay differential equation that shows transient oscillatory behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
6
+ page_content=' We investigate and present the connection both analytically and numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
7
+ page_content=' 1 Introduction In the various fields including mathematics, biology, physics, engineering, eco- nomics, and so on, there have been interests in investigating the effect of delays in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
8
+ page_content=' [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
9
+ page_content=' Typically, delays intro- duce oscillations and complex behaviors to otherwise simple and well-behaved systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
10
+ page_content=' Longer delays are known to induce an increase in the complexity of dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
11
+ page_content=' The representative example is the Mackey–Glass equation[8] which shows the sequence of the monotonic convergence, transient oscillations, persis- tent oscillations, and chaotic dynamics as the delay parameter in the feedback function becomes longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
12
+ page_content=' The main mathematical approaches and modeling tools are “Delay Differen- tial Equations”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
13
+ page_content=' Mathematical analysis of such delay systems has been posing challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
14
+ page_content=' Though understanding of the delay systems have been gradually gained (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
15
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
16
+ page_content=' [15]), there is more to be investigated and explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
17
+ page_content=' One recent an- alytical approach to simple delay differential equations is an application of the Lambert W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
18
+ page_content=' It has been shown that the solution of the simple delay differential equation can be expressed using the W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
19
+ page_content=' In this paper, we follow this path of analyzing a simple delay differential equation using the W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
20
+ page_content=' Specifically, we analyze the transient oscillatory behaviors of a delay differential equation that shows a resonant behavior[16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
21
+ page_content=' In this resonance, the optimal height of the power spectrum of the dynamical trajectory is observed with the suitably tuned value of the delay parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
22
+ page_content=' 1 We focus on the appearance of the power spectrum peaks and found that it relates to the transcendental trigonometric equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
23
+ page_content=' That condition, on the other hand, can be also expressed in terms of the W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
24
+ page_content=' We connect these two approaches both analytically and numerically to provide a new way that the W function can be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
25
+ page_content=' 2 Delay Differential Equation Recently, we have proposed and studied the following delay differential equation: dX(t) dt + atX(t) = bX(t − τ) (1) where a ≥ 0, b ≥ 0, τ ≥ 0 are real parameters with τ interpreted as the delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
26
+ page_content=' This equation is a slight extension of much-studied Hayes’s equation[4], dX(t) dt + αX(t) = βX(t − τ) (2) where α, β are real constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
27
+ page_content=' Even though the apparent change from (2) to (1) is small with only the second term changed to a linear function of time, their behaviors are quite different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
28
+ page_content=' Particularly for (1), we have shown oscillatory transient dynamics appear and disappear as the value of delay increases without losing asymptotic stability of X = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
29
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
30
+ page_content='1 Analysis Let us first review some properties of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
31
+ page_content=' When b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
32
+ page_content=' With the initial condition X(t = 0) = X0, the solution to the equation is given as X(t) = X0e− 1 2 at2 (3) Thus, this solution is a gaussian shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
33
+ page_content=' We also note in this case that (1) is the equation for the ground state of the quantum simple harmonic oscillator with the interpretation of t as a position rather than time (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
34
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
35
+ page_content=' [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
36
+ page_content=' The case that a = 0 is a special case of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
37
+ page_content=' In this case, the origin X = 0 is asymptotically stable only in the range of − π/2τ < b < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
38
+ page_content=' (4) For the general case with a > 0, b > 0 with the delay τ = 0, the solution X(t = 0) = X0 is obtained as X(t) = X0e− 1 2 at2+bt (5) This is again a Gaussian with its peak at b/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
39
+ page_content=' 2 For the case with a > 0, b > 0 with the delay τ → ∞, the dynamics is influenced by the initial function for all 0 ≤ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
40
+ page_content=' Thus for the initial function X(t) = X0, (−τ ≤ t ≤ 0), we can replace the right hand side of equation (1) as bX(t − τ) → X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
41
+ page_content=' The solution can be obtained as X(t) = X0e− 1 2 at2(1 + b � t 0 e 1 2 as2ds) = X0e− 1 2 at2(1 + b � π 2aerfi( � a 2 t)) (6) where erfi(x) is the imaginary error function defined as erfi(x) = 2 √π � x 0 es2 ds (7) The shape of this function is also a single peaked function approaching to the origin X = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
42
+ page_content=' We now see one of the major differences between the equations (1) and (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
43
+ page_content=' In the latter, the asymptotic stability of X = 0 is lost for the larger delay with 0 < α < β, while in the former, it is kept even with the large delay for all a > 0, b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
44
+ page_content=' Also, even though both exhibit transient oscillations, (1) shows coherent oscillations with the tuned value of the delay τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
45
+ page_content=' We now turn our attention to these resonating phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
46
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
47
+ page_content='2 Power Spectrum and Resonance The transient dynamics of equation (1) are investigated through numerical sim- ulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
48
+ page_content=' Some examples are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
49
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
50
+ page_content=' With zero delays, the shape of the dynamics is the gaussian as derived in the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
51
+ page_content=' The oscil- latory behaviors arise on top of the gaussian trajectory with increasing delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
52
+ page_content=' Further increase of delay changes the oscillatory shape into trains of pulses with decreasing height at the delay interval, and asymptotically the pulses disappear leading to the gaussian shape (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
53
+ page_content=' As mentioned, the asymptotic stability of X = 0 does not change by the increasing delay in this parameter set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
54
+ page_content=' This property is in contrast to that of equation (2) where the onset of the oscillation by the increasing delay leads to the loss of stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
55
+ page_content=' Thus, it is differ- ent from stability switching phenomena (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
56
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
57
+ page_content=' [17]) with the delay as the bifurca- tion parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
58
+ page_content=' It is also different from the delay induced transient oscillation (DITO)[19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
59
+ page_content=' The phenomena arise in coupled delay differential equations exhibiting the prolonged duration of oscillatory behaviors with increasing delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
60
+ page_content=' We investigate these oscillatory behaviors for the case a > 0, b > 0, and finite τ ̸= 0 by taking the Fourier transform of the equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
61
+ page_content=' iω ˆX(ω) + iad ˆX(ω) dω = −b ˆX(ω)eiωτ (8) where ˆX(ω) = � ∞ −∞ eiωtX(t)dt (9) 3 (B) X(t) t (A) X(t) t (E) X(t) t (F) X(t) t (C) X(t) t (D) X(t) t 50 100 150 200 0 20000 40000 60000 80000 100000 120000 50 100 150 200 0 50 100 150 200 250 300 350 50 100 150 200 0 5 10 15 20 50 100 150 200 0 2 4 6 50 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
62
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
63
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
64
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
65
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
66
+ page_content='0 50 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
67
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
68
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
69
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
70
+ page_content='5 Figure 1: Representative dynamics of the main equation (1) with different values of the delays, τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
71
+ page_content=' The parameters are set at a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
72
+ page_content='15, b = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
73
+ page_content='0 with the initial interval condition as X(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
74
+ page_content='1(−τ ≤ t ≤ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
75
+ page_content=' The values of the delays τ are (A)2, (B)4, (C)7, (D)10, (E)20, (F)25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
76
+ page_content=' 4 The solution is given as ˆX(ω) = CExp[− 1 2aω2 + b τaeiωτ] (10) with C as the integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
77
+ page_content=' We can calculate the power spectrum from equation(9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
78
+ page_content=' S(ω) = | ˆX(ω)|2 = ˆX(ω) ˆ X∗(ω) = C2Exp[−1 aω2 + 2b τa cos ωτ] (11) We have plotted this equation for the power spectrum for the various delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
79
+ page_content=' Results with the same parameter setting as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
80
+ page_content=' 1 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
81
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
82
+ page_content=' In the previous work, we noted that the peak of the power spectrum shows a maximum height with the tuned value of the delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
83
+ page_content=' The higher peak indicates a more coherent oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
84
+ page_content=' It is in this sense that the resonance exists with the delay as a tuning parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
85
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
86
+ page_content='3 Peaks of the Power Spectrum We now focus on the analysis of these power spectrum peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
87
+ page_content=' The appearance and disappearance of the peaks in the power spectrum correspond to those of oscillatory behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
88
+ page_content=' By taking the derivative of (11), we see the maximum and minimum points of the power spectrum function occur at ω satisfying, ω = −b sin ωτ (12) They are given by the intersection points of the two functions from both sides of this condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
89
+ page_content=' The position of the first peak corresponds to the second non-zero smallest intersection point (the first one corresponds to the minimum before the peak).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
90
+ page_content=' We can also infer the condition for the appearance of the series of power spectrum peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
91
+ page_content=' Each peak appears when the intersection point is the tangent point (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
92
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
93
+ page_content=' This gives the following conditions for the n-th peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
94
+ page_content=' ω = −b sin ωτ, 1 = −bτ cos ωτ, (2n − 1)π τ < ω < (2n − 1 2)π τ , (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
95
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
96
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
97
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
98
+ page_content=' (13) If we set λ = bτ,θ = ωτ, the above condition leads to θ = −λ sin θ, 1 = −λ cosθ, (2n − 1)π < θ < (2n − 1 2)π, (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
101
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
102
+ page_content=' (14) From this set of equations, we can numerically estimate the solutions (θn, λn) for each n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
103
+ page_content=' First, we can derive that θn and λn are related by λ2 n = θ2 n + 1 (15) Then, the followings are obtained: θ = − � θ2 + 1 sin θ, (2n − 1)π < θ < (2n − 1 2)π, (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
104
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
106
+ page_content=' ), (16) 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
107
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
108
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
109
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
110
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
111
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
112
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
113
+ page_content='4 5 10 15 20 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
114
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
115
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
116
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
117
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
118
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
119
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
120
+ page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
121
+ page_content='0×1016 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
122
+ page_content='0×1017 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
123
+ page_content='5×1017 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
124
+ page_content='0×1017 (A) ω S(ω) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
125
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
126
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
127
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
128
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
129
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
130
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
131
+ page_content='4 1×108 2×108 3×108 4×108 5×108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
132
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
133
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
134
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
135
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
136
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
137
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
138
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
139
+ page_content='4 200 400 600 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
140
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
141
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
142
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
143
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
144
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
145
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
146
+ page_content='4 10 20 30 40 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
147
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
148
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
149
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
150
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
151
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
152
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
153
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
154
+ page_content='4 200 400 600 800 (B) ω S(ω) (C) ω S(ω) (F) ω S(ω) (E) ω S(ω) (D) ω S(ω) Figure 2: Representative power spectrums given by the equation (1) with dif- ferent values of the delays τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
155
+ page_content=' The parameters are set as the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
156
+ page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
157
+ page_content=' a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
158
+ page_content='15, b = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
159
+ page_content='0, C = 1 with the initial interval condition as X(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
160
+ page_content='1(−τ ≤ t ≤ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
161
+ page_content=' The values of the delays τ are (A)2, (B)4, (C)7, (D)10, (E)20, (F)25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
162
+ page_content=' 6 5 10 15 20 20 10 10 20 5 10 15 20 20 10 10 20 30 (A) (B) θ1 θ2 θ3 θ1 θ2 θ3 Figure 3: The plots of equations (A) (16) and (B) (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
163
+ page_content=' or θ = tan θ, (2n − 1)π < θ < (2n − 1 2)π, (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
164
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
166
+ page_content=' ), (17) or − 1 λ = cos � λ2 − 1, � ((2n − 1)π)2 + 1 < λ < � ((2n − 1 2)π)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
167
+ page_content=' (18) The values of the solutions (θn, λn) are listed in the Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
168
+ page_content=' n θn λn tan θn 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
169
+ page_content='49341 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
170
+ page_content='60334 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
171
+ page_content='49341 2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
172
+ page_content='9041 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
173
+ page_content='9499 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
174
+ page_content='9041 3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
175
+ page_content='2208 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
176
+ page_content='2498 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
177
+ page_content='2208 4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
178
+ page_content='5195 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
179
+ page_content='5407 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
180
+ page_content='5195 5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
181
+ page_content='8116 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
182
+ page_content='8284 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
183
+ page_content='8116 6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
184
+ page_content='1006 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
185
+ page_content='1145 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
186
+ page_content='1006 7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
187
+ page_content='3879 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
188
+ page_content='3997 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
189
+ page_content='3879 8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
190
+ page_content='6741 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
191
+ page_content='6844 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
192
+ page_content='6741 9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
193
+ page_content='9597 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
194
+ page_content='9688 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
195
+ page_content='9597 10 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
196
+ page_content='2447 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
197
+ page_content='2529 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
198
+ page_content='2447 Table 1: Numerically estimated values of θn, λn and tan θn 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
199
+ page_content='4 Lambert W function We present here that we can alternatively obtain the solutions (θn, λn) discussed in the previous subsection using the Lambert W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
200
+ page_content=' W function is defined as a multivalued complex function with a complex variable z satisfying z = Wk(z)eWk(z), (k = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
202
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
203
+ page_content=' ), (19) 7 where k is the branch number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
204
+ page_content=' It has been pointed out that the W function can be used to express the solution of simple delay differential equations[21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
205
+ page_content=' What we present here is another way the W function can be utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
206
+ page_content=' We start with (14) and use e−iθ = cos θ − i sin θ to obtain 1 − iθ = −λe−iθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
207
+ page_content=' (20) By defining Q ≡ −1 + iθ we can rewrite (20) as QeQ = λ e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
208
+ page_content=' (21) We can now use the W function on (21), and Q can be expressed as Q = Wk(λ e ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
209
+ page_content=' (22) By the constraints that θ is real, the real part of Q must be equal to −1, or Re[Q] = Re[Wk(λ e )] = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
210
+ page_content=' (23) Also by the definition of Q, we have θ from the imaginary part, θ = Im[Q] = Im[Wk(λ e )].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
211
+ page_content=' (24) Further, we can prove the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
212
+ page_content=' Lemma Re[Wk(λ e )] = −1 ⇐⇒ |Wk(λ e )| = λ (25) Proof Necessary Part: By the definition of the W function, Wk(λ e )Exp[Wk(λ e )] = λ e (26) Also, by the assumption of Re[Wk(λ e )] = −1, (27) we can write Wk(λ e ) = −1 + iµ, (µ ∈ R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
213
+ page_content=' (28) 8 Then, (26) leads to λ e = Wk(λ e )Exp[Wk(λ e )] = Wk(λ e )Exp[−1 + iµ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
214
+ page_content=' (29) Thus, Wk(λ e )Exp[iµ] = λ, (30) which is equivalent to |Wk(λ e )| = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
215
+ page_content=' (31) Sufficient Part: By (26) and λ > 0 we have λ e = |Wk(λ e )Exp[Wk(λ e )]| = |Wk(λ e )||Exp[Wk(λ e )]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
216
+ page_content=' (32) Also, by the assumption |Wk(λ e )| = λ, (33) this leads to λ e = λ|Exp[Wk(λ e )]| (34) If we set Wk(λ e ) = η + iµ, (η, µ ∈ R) (35) (34) can be re-writen as 1 e = |Exp[Wk(λ e )]| = eη, (36) leading to η = Re[Wk(λ e )] = −1 (37) We are now in a position to put together pieces obtained through the analysis of resonant peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
217
+ page_content=' They can be summarized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
218
+ page_content=' 9 Theorem Let (θ, λ) satisfy the following, θ = −λ sin θ, 1 = −λ cosθ, (2n − 1)π < θ < (2n − 1 2)π, (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
219
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
220
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
221
+ page_content=' ), (38) then they also satisfy the following for some k Re[Wk(λ e )] = −1, (39) and θ = Im[Wk(λ e )], λ = |Wk(λ e )| (40) Based on the above, we further want to investigate between the n-th root and the n-th branch of the W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
222
+ page_content=' With numerical estimations, we conjecture the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
223
+ page_content=' Conjecture The n-th root θn of the following, θn = tan θn, (2n − 1)π < θn < (2n − 1 2)π, (n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
225
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
226
+ page_content=' ), (41) is given by the n-th branch of the W function θn = Im[Wn(λn e )], (42) where λn satisfies Re[Wn(λn e )] = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
227
+ page_content=' (43) In Table 2, we show the results of estimated related numerical values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
228
+ page_content=' Com- paring Tables 1 and 2 supports the above theorems and conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
229
+ page_content=' Thus, through the analysis of resonant peaks, we have connected the solutions of the trigonometric transcendental function with a specific value of the n-th branch of the W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
230
+ page_content=' To the author’s knowledge, this relation has not been explicitly pointed out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
231
+ page_content=' 3 Discussion In this paper, we presented some properties of the Lambert W function through the analysis of resonant behaviors of a simple delay differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
232
+ page_content=' The connection between the solutions of trigonometric transcendental equation and that of the W function is revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
233
+ page_content=' It remains to be explored if these properties of the W function can be utilized in more broader context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
234
+ page_content=' 10 n λn Wn( λn e ) |Wn( λn e )| 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
235
+ page_content='60334 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
236
+ page_content='0 + i 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
237
+ page_content='49341 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
238
+ page_content='60334 2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
239
+ page_content='9499 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
240
+ page_content='0 + i 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
241
+ page_content='9041 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
242
+ page_content='9499 3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
243
+ page_content='2498 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
244
+ page_content='0 + i 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
245
+ page_content='2208 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
246
+ page_content='2498 4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
247
+ page_content='5407 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
248
+ page_content='0 + i 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
249
+ page_content='5195 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
250
+ page_content='5407 5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
251
+ page_content='8284 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
252
+ page_content='0 + i 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
253
+ page_content='8116 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
254
+ page_content='8284 6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
255
+ page_content='1145 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
256
+ page_content='0 + i 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
257
+ page_content='1006 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
258
+ page_content='1145 7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
259
+ page_content='3997 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
260
+ page_content='0 + i 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
261
+ page_content='3879 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
262
+ page_content='3997 8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
263
+ page_content='6844 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
264
+ page_content='0 + i 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
265
+ page_content='6741 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
266
+ page_content='6844 9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
267
+ page_content='9688 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
268
+ page_content='0 + i 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
269
+ page_content='9597 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
270
+ page_content='9688 10 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
271
+ page_content='2529 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
272
+ page_content='0 + i 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
273
+ page_content='2447 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
274
+ page_content='2529 Table 2: Numerically estimated values of λn, Wn( λn e ) and |Wn( λn e )| Acknowledgments The authors would like to thank useful discussions with Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
275
+ page_content=' Hideki Ohira and members of his research group at Nagoya University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
276
+ page_content=' This work was sup- ported by ”Yocho-gaku” Project sponsored by Toyota Motor Corporation, JSPS Topic-Setting Program to Advance Cutting-Edge Humanities and Social Sci- ences Research Grant Number JPJS00122674991, JSPS KAKENHI Grant Num- ber 19H01201, and the Research Institute for Mathematical Sciences, an Inter- national Joint Usage/Research Center located in Kyoto University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
277
+ page_content=' References [1] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
278
+ page_content=' an der Heiden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
279
+ page_content=' Delays in physiological systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
280
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
281
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
282
+ page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
283
+ page_content=', 8:345–364, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
284
+ page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
285
+ page_content=' Bellman and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
286
+ page_content=' Cooke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
287
+ page_content=' Differential-Difference Equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
288
+ page_content=' Academic Press, New York, 1963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
289
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
290
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
291
+ page_content=' Cabrera and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
292
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
293
+ page_content=' Milton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
294
+ page_content=' On–off intermittency in a human balancing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
295
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
296
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
297
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
298
+ page_content=', 89:158702, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
299
+ page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
300
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
301
+ page_content=' Hayes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
302
+ page_content=' Roots of the transcendental equation associated with a certain difference–differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
303
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
304
+ page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
305
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
306
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
307
+ page_content=', 25:226–232, 1950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
308
+ page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
309
+ page_content=' Insperger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
310
+ page_content=' Act-and-wait concept for continuous-time control systems with feedback delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
311
+ page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
312
+ page_content=' Control Sys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
313
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
314
+ page_content=', 14:974–977, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
315
+ page_content=' [6] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
316
+ page_content=' K¨uchler and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
317
+ page_content=' Mensch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
318
+ page_content=' Langevin’s stochastic differential equation ex- tended by a time-delayed term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
319
+ page_content=' Stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
320
+ page_content=' Stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
321
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
322
+ page_content=', 40:23–42, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
323
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
324
+ page_content=' Longtin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
325
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
326
+ page_content=' Milton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
327
+ page_content=' Insight into the transfer function, gain and oscillation onset for the pupil light reflex using delay-differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
328
+ page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
329
+ page_content=' Cybern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
330
+ page_content=', 61:51–58, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
331
+ page_content=' 11 [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
332
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
333
+ page_content=' Mackey and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
334
+ page_content=' Glass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
335
+ page_content=' Oscillation and chaos in physiological control systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
336
+ page_content=' Science, 197:287–289, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
337
+ page_content=' [9] J Mitlon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
338
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
339
+ page_content=' Cabrera, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
340
+ page_content=' Ohira, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
341
+ page_content=' Tajima, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
342
+ page_content=' Tonosaki, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
343
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
344
+ page_content=' Eurich, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
345
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
346
+ page_content=' Campbell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
347
+ page_content=' The time–delayed inverted pendulum: Implications for human balance control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
348
+ page_content=' Chaos, 19:026110, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
349
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
350
+ page_content=' Ohira and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
351
+ page_content=' Yamane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
352
+ page_content=' Delayed stochastic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
353
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
354
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
355
+ page_content=' E, 61:1247–1257, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
356
+ page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
357
+ page_content=' Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
358
+ page_content=' An introduction to delay differential equations with applications to the life sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
359
+ page_content=' Springer, New York, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
360
+ page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
361
+ page_content=' St´ep´an.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
362
+ page_content=' Retarded dynamical systems: Stability and characteristic func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
363
+ page_content=' Wiley & Sons, New York, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
364
+ page_content=' [13] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
365
+ page_content=' St´ep´an and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
366
+ page_content=' Insperger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
367
+ page_content=' Stability of time-periodic and delayed systems: a route to act-and-wait control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
368
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
369
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
370
+ page_content=' Control, 30:159–168, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
371
+ page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
372
+ page_content=' Szydlowski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
373
+ page_content=' Krawiec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
374
+ page_content=' The Kaldor–Kalecki model of business cycle as a two-dimensional dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
375
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
376
+ page_content=' Nonlinear Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
377
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
378
+ page_content=', 8: 266– 271, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
379
+ page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
380
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
381
+ page_content='Taylor and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
382
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
383
+ page_content=' Campbell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
384
+ page_content=' Approximating chaotic saddles for delay differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
385
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
386
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
387
+ page_content=' E, 75: 046215, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
388
+ page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
389
+ page_content=' Ohira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
390
+ page_content=' Resonating Delay Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
391
+ page_content=' EPL, 137: 23001, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
392
+ page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
393
+ page_content=' Yan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
394
+ page_content=' Liu and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
395
+ page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
396
+ page_content=' Multiple stability switches and Hopf bifur- cation in a damped harmonic oscillator with delayed feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
397
+ page_content=' Nonlinear Dynamics, 99:2011, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
398
+ page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
399
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
400
+ page_content=' Sakurai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
401
+ page_content=' Modern Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
402
+ page_content=' Benjamin/Cummings, Menlo Park, California, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
403
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
404
+ page_content=' Milton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
405
+ page_content=' Naik, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
406
+ page_content=' Chan, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
407
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
408
+ page_content=' Campbell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
409
+ page_content=' Indecision in neural decision making models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
410
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
411
+ page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
412
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
413
+ page_content=' Phenom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
414
+ page_content=', 5:125–145, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
415
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
416
+ page_content=' Pakdaman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
417
+ page_content=' Grotta-Ragazzo, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
418
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
419
+ page_content=' Malta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
420
+ page_content=' Transient regime dura- tion in continuous-time neural networks with delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
421
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
422
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
423
+ page_content=' E, 58:3623– 3627, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
424
+ page_content=' [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
425
+ page_content=' Pusenjak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
426
+ page_content=' Application of Lambert function in the control of production systems with delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
427
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
428
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
429
+ page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
430
+ page_content=' Sci, 6:28?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
431
+ page_content='–38, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
432
+ page_content=' [22] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
433
+ page_content=' Shinozaki and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
434
+ page_content=' Mori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
435
+ page_content=' Robust stability analysis of linear time delay system by Lambert W function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
436
+ page_content=' Automatica, 42: 1791–1799, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
437
+ page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFQT4oBgHgl3EQf8zdx/content/2301.13448v1.pdf'}
B9FJT4oBgHgl3EQfsy1U/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84e5f0c2e609303575fa386e646452deb7f9a6df8a2f47c3dde254b0232bec14
3
+ size 603004
BtAyT4oBgHgl3EQf4PqZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a35242446e9e062d368cf31a42878d2054599cbcdccdc5ec3de932a3d52238f
3
+ size 184378
FdE1T4oBgHgl3EQfEwOD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c1f05f79425b5f210ccf09b91e76aba2fe9907f9645f84d5dc5ea4eca363d43
3
+ size 1835053
ItE1T4oBgHgl3EQfFwPf/content/tmp_files/2301.02907v1.pdf.txt ADDED
@@ -0,0 +1,690 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ David Maurice Brink
2
+ 20 July 1930 - 8 March 2021
3
+ Elected FRS 1981
4
+ C. V. Sukumar1∗, A. Bonaccorso2 †
5
+ 1Wadham College, Oxford OX1 3PN, U.K, 2INFN, Sezione di Pisa, 56127 Pisa, Italy.
6
+ January 10, 2023
7
+ Abstract
8
+ David Brink was one of the leading theoretical nuclear physicists of his generation. He
9
+ made major contributions to the study of all aspects of nuclear physics embracing nuclear
10
+ structure, nuclear scattering, and nuclear instability. His wide ranging interests and inter-
11
+ actions with theorists and experimentalists alike helped him in providing both theoretical
12
+ analysis and interpretations and suggesting experiments.
13
+ He had the gift of visualising
14
+ complex problems in simple terms and provided clear analysis of the underlying processes.
15
+ He was an expert on the use of semi-classical methods which provided an intuitively clear
16
+ picture of complex phenomena. His research work and books are characterised by scientific
17
+ clarity, transparency, and depth. David possessed outstanding skills in mathematical com-
18
+ putation, and he was an expert on special functions, group theory, and the Feynman path
19
+ integral method. David had many research students and collaborated with a large number
20
+ of scientists from across the world, for whom he was a source of scientific and human in-
21
+ spiration and admiration. His most fundamental belief was that research was a means of
22
+ trying to discover and understand the beauties of Nature and explain them in simple terms
23
+ to others. His absolute belief in the value of truth and his unselfish and generous attitude
24
+ in sharing knowledge makes him an outstanding figure in contemporary Nuclear Physics.
25
+ 1
26
+ Early years and family memories
27
+ David Maurice Brink was born on 20 July 1930 in Hobart, Tasmania. His father, Maurice Brink
28
+ had been born in the village of Bjuv in Sweden in 1900. David’s grandparents emigrated to
29
+ Australia in July 1900. At the age of 14 David’s father moved to Sydney where he trained to
30
+ become an accountant. After this he went to Tasmania and joined an accountancy firm Wise,
31
+ Lord and Ferguson, where he eventually became a partner. In 1929 he married Victoria Finlayson,
32
+ (born in 1900). Her father David had emigrated with his parents from Scotland in 1884. They had
33
+ an engineering firm in Devonport, Tasmania whose main activity was maintaining and repairing
34
+ machinery for mining, shipping, and timber companies. David’s grandfather and his colleagues
35
+ built the first steam car in Tasmania and between 1900 and 1904 built nine vehicles including
36
+ three passenger cars and one 12-passenger bus.
37
+ David visited his grandparents often during
38
+ vacations. He saw the casting floor and other parts of the factory and enjoyed playing amongst
39
+ the remains of old steam traction engines.
40
41
42
+ 1
43
+ arXiv:2301.02907v1 [physics.hist-ph] 7 Jan 2023
44
+
45
+ Figure 1: David M. Brink
46
+ 2
47
+
48
+ David was the eldest of three brothers. The Brink brothers went to a Quaker school in Hobart,
49
+ Australia 1936 to 1948. David attended the University of Tasmania during 1948-51 studying
50
+ Physics, Mathematics, and Chemistry, graduating with a BSc in December 1950 and was elected
51
+ as a Rhodes Scholar at Magdalen College, Oxford, from October 1951. From February 1951 to
52
+ September 1951 he studied for BSc Honours in Hobart but did not complete the course because
53
+ he moved to Oxford in September 1951.
54
+ As a student at the University of Tasmania David joined the Hobart Walking Club. With this
55
+ club he went on many trips to the interior of the island. When he arrived in Oxford he became
56
+ a member of the Oxford University Alpine Club. Its activities took him to the Alps where he
57
+ climbed in the Valais and the Engadine in Switzerland. It was in Switzerland that he met his
58
+ future wife Verena. Verena and David married in 1958 and had three children together. His love
59
+ for walking was transmitted to his three children who continue to enjoy walking in urban, rural,
60
+ and mountainous settings. While always very committed and absorbed with his Physics he was
61
+ also a devoted husband and father, transmitting his joy for walking and travel to his family. He
62
+ often helped his children with their homework and was very patient with them, even when they
63
+ were not! Together David and his family travelled to, and lived in many countries across the
64
+ world, where their horizons were broadened and they were introduced to the idea that there are
65
+ many different ways of living and being. When his children had left home and travelled to other
66
+ countries he would often be found in front of an atlas studying their exact whereabouts.
67
+ David was very open minded and curious, always accepting other people’s opinions and points of
68
+ view. David and Verena were very close, shared everything and had full respect for each other.
69
+ Verena was a wonderful host and the Brinks often organised tea and dinner parties for students,
70
+ visitors, and their families. Verena also helped visitors find accommodation, and with other
71
+ issues related to living in Oxford. They were also very generous in offering accommodation at
72
+ their place whenever possible.
73
+ In Oxford David developed an interest in birds, initially just birds he saw in Oxford, but when
74
+ he travelled he always liked to look for birds and made lists of species he saw. This curiosity
75
+ in nature extended to other species as well, including trees. When in 1993 he moved to Trento,
76
+ Italy, he became a member of the SOSAT, a branch of the alpine club, and went regularly with
77
+ them on Sunday trekking trips.
78
+ 2
79
+ Graduate studies and Oxford beginnings
80
+ David started his studies at Oxford in October 1951. When he arrived at Magdalen College there
81
+ was no tutor in Theoretical Physics at the college. His maths tutor was David Kendal who sent
82
+ him for tutorials to Jack De Wet at Balliol College. Jack asked David to read Von Neumann’s
83
+ book on the foundations of Quantum Mechanics in German. He also encouraged David to change
84
+ his studies from a BA in Mathematics to a D. Phil in Theoretical Physics. Maurice H. L. Pryce
85
+ (FRS 1951) was the Wykeham Professor and head of the Theoretical Physics Department in
86
+ Oxford from 1946 to 1954. He was David’s supervisor. Pryce was also the part-time leader of the
87
+ Theoretical Physics Division of the Atomic Energy Research Establishment (AERE) at Harwell,
88
+ not far from Oxford, where nuclear theory was very much in the forefront and Rudolf E. Peierls
89
+ (FRS 1945) was a consultant. At Harwell there was a very productive theory group including
90
+ Tony Skyrme and J. P. (Phil) Elliott (FRS 1980). Skyrme organized regular informal meetings
91
+ known as ’Skyrmishes’. Important papers in the latest journals were presented and discussed.
92
+ Members of the group attended Oxford seminars and while the local group including Roger Blin-
93
+ Stoyle (FRS 1976), David Brink, and Pryce attended the Harwell meetings. Elliott gave some
94
+ 3
95
+
96
+ Figure 2: David (right) in Tasmania 1950.
97
+ 4
98
+
99
+ EVENT
100
+ RESlectures at Oxford on Racah algebra. Later on his best-known work brought together the shell
101
+ and collective models to explain rotational bands in deformed nuclei using the unitary group
102
+ SU(3). During this time he wrote a long article in Handbuch der Physik with A. M.(Tony)Lane
103
+ (FRS 1975) [1] on the shell model.
104
+ The foundations of David Brink’s lifelong research, can all be found in his thesis ”Some Aspects
105
+ of the Interactions of Fields with Matter” [2] which was submitted in May 1955. It is a remark-
106
+ able document for its breadth and early contributions to the field of nuclear physics. M. Pryce,
107
+ his thesis adviser was interested largely in atomic spectroscopy but also studied the spectroscopy
108
+ of nuclear energy levels. The advent of the shell model around 1950 opened the door to new
109
+ theoretical approaches for understanding the properties of nuclei and applying quantum mechan-
110
+ ical tools to calculate them. There was also a great interest in reactions involving heavy nuclei
111
+ and which could only be treated by statistical methods that had been developed much earlier.
112
+ Brink’s two-part thesis contained contributions to both areas, reflecting the interactions between
113
+ the Harwell and Oxford groups. The first part was inspired by the shell model and the second
114
+ contains important contributions to the statistical theory of nuclear reactions.
115
+ In the first part of his thesis, dealing with Nuclear Structure, David analyzed the spectroscopic
116
+ consequences of the nucleon-nucleon interaction acting on the valence nucleons in nuclei close to
117
+ the doubly-magic 208Pb. David was able to estimate the order of magnitude of the interaction
118
+ matrix elements from the properties of the deuteron. He also proposed treating the interac-
119
+ tion through a density matrix expansion. This would figure prominently in later work in the
120
+ field.
121
+ The second part of his thesis dealt with reactions involving heavy nuclei. It was probably inspired
122
+ by the work of experimental group at Harwell. There, a Van de Graaff accelerator was used to
123
+ measure energy levels, moments and transition rates in nuclei.
124
+ David was also fortunate to
125
+ have contact with the strong experimental group working on neutron resonances. While David
126
+ was working on gamma widths of neutron resonances he benefited from contacts with Prof.
127
+ Hughes [3] and Prof. Weisskopf who were visiting Oxford. Weisskopf was very much interested
128
+ in applying the detailed balance theory to nuclear reaction and interactions with him must
129
+ have influenced David because at the end of the thesis he acknowledges discussions with Victor
130
+ Weisskopf. The first subject in this part was the theory of inelastic scattering on deformed nuclei.
131
+ David constructed a theory for the excitation of rotational bands in deformed nuclei based on
132
+ two new ideas, namely Bohr’s model of deformed nuclei and the optical model of Weisskopf et al.
133
+ [4] published the previous year. David was able to carry out the calculations to a point where
134
+ the relative importance of this mechanism in the total cross section could be estimated. This
135
+ was an impressive achievement at a time before computers were available to carry out the full
136
+ calculations.
137
+ The final section of his thesis deals with the decays of the compound-nucleus resonances produced
138
+ in reactions on heavy nuclei. The formulas he presented here are still in use for modeling the
139
+ spectra and reactions in heavy nuclei [5]. The best known is the formula for gamma decay rates
140
+ in compound-nucleus resonances. This formula is based on a treatment widely known as the
141
+ ”Brink-Axel” hypothesis. At a fundamental level, the theory was derived from the principle of
142
+ detailed balance which Weisskopf had used very successfully in other contexts. The principle
143
+ gives a formula to relate decay rates to absorption cross sections in the inverse reaction. The
144
+ Brink-Axel hypothesis simply states that the absorption cross sections for gamma radiation on
145
+ excited states of heavy nuclei can be estimated by the corresponding cross sections on the ground
146
+ states. Axel and Brink worked independently. Peter Axel’s paper appeared in 1962 [6]. The
147
+ important statement is made on page 101 of David’s thesis and is expressed in equation (11) of
148
+ 5
149
+
150
+ Figure 3: David and his children (left to right), Barbara, Thomas, and Anne-Katherine 1969.
151
+ Axel’s paper. The prediction of the statistics of the widths of nuclear resonances, based on the
152
+ generalization of the central limit theorem which David had learned about in his statistics course
153
+ in Tasmania. David published the results in [7] where he showed the close connection between
154
+ the shell-model description of the giant dipole resonance and the collective model of Goldhaber
155
+ and Teller [8] and Steinwedel and Jensen [9]. After his paper, theory of the giant resonances
156
+ used the shell model as a starting point. Confirmation of the Brink-Axel hypothesis first came
157
+ from the Berkeley experiments in 1981 [10].
158
+ The last part of thesis has formulas related to another important topic in compound-nucleus
159
+ theory, the fluctuations in decay widths of individual resonances. Here, David speculated that
160
+ the fluctuations would follow a chi-squared distribution with one or two degrees of freedom.
161
+ This is borne out experimentally and is now considered one of the hallmark properties of the
162
+ compound nucleus. It also became a part of random matrix theory in mathematical physics.
163
+ Unlike the early parts of the thesis, David never published the parts on compound-nucleus decay
164
+ widths. However, physicists at the Harwell Laboratory knew about David’s results and J.E.
165
+ Lynn explained them in his book [11]. Unfortunately, David’s treatment of fluctuations was not
166
+ recognized until very recently [12] and the distributions are known today under other author’s
167
+ names [13].
168
+ 6
169
+
170
+ 3
171
+ Research areas
172
+ David’s interactions with the physicists mentioned earlier were reflected not only in David’s thesis
173
+ but also in his early publications. One paper [14], which dealt with angular momentum couplings
174
+ and angular distributions of γ-rays and other particles, is still the ”Bible” most experimentalist
175
+ use when they analyse their data, as we have been told by Peter Butler (FRS 2019) (Liverpool)
176
+ and Yorick Blumenfeld (Orsay), and others. Early in his research career David wrote the textbook
177
+ Angular Momentum [15] with Ray Satchler. This textbook was prominent among several texts
178
+ published in this time period.
179
+ It was widely used by graduate students and post-graduates
180
+ working in nuclear theory. David also published a book on Nuclear Forces [16].
181
+ 3.1
182
+ Effective interactions and calculations tools
183
+ In his thesis David had laid the basis for the use of effective interactions in the calculations
184
+ of matrix elements for nuclear structure studies. The idea was greatly advanced in three later
185
+ papers. The first proposes a gaussian form for the effective nucleon-nucleon interaction known
186
+ as the ”Brink-Boeker” interaction [17] that all nuclear physicists have used at least once in
187
+ their lives. This paper was very influential at the time and was later developed by Gogny and
188
+ collaborators in the interaction that is widely used even today [18, 19].
189
+ In 1959 Tony Skyrme proposed modelling the effective interaction between nucleons in nuclei
190
+ by a short-range potential, an idea which is useful in nuclear structure and the equation of
191
+ state of neutron stars [20]. The Skyrme force is an effective interaction depending on a small
192
+ number of parameters whose strength could be fitted to reproduce various bulk properties of
193
+ nuclei as well as selected properties of some nuclei, especially the doubly magic nuclei. At the
194
+ beginning of the 1970s David was a frequent visitor to the Theoretical Division at the Institut
195
+ de Physique Nucl´eaire, Orsay where his sixty-fifth birthday was celebrated (figure 4). The work
196
+ done there produced two papers with Dominique Vautherin [21, 22] which were the basis for the
197
+ intense use of the so-called Skyrme interactions, in all their many present variants. The papers
198
+ revived a general interest in using Skyrme’s parametrization of the nucleon-nucleon interaction
199
+ to calculate nuclear binding energies, and later to other aspects of nuclear structure. In effect,
200
+ the interaction is treated as an energy-density functional theory in the spirit of the Kohn-Sham
201
+ theory in condensed matter physics.
202
+ The Hartree-Fock calculations in [21] for spherical nuclei used Skyrme’s density dependent effec-
203
+ tive interaction. This seminal paper showed how the Skyrme force could be used to make accurate
204
+ calculations of certain nuclear properties and Vautherin and Brink developed these ideas further
205
+ in a series of papers which had a strong impact on nuclear structure calculations. T. Otsuka
206
+ comments: “The paper [21] has had a huge impact, as verified by the number of citations >2000.
207
+ In nuclear theory, papers having the citation index >1000 are rather few, which implies how
208
+ important the Vautherin-Brink paper is. This year is the 50 year anniversary of this paper, and
209
+ it is amazing that the basic formulation within the mean-field approach has not changed too
210
+ much, implying that the scheme presented in this paper is so solid”.
211
+ The calculations of Vautherin and Brink were extended by many other physicists during the
212
+ subsequent period.
213
+ In particular at Oxford, Micky Engel, Klaus Goeke and Steve Krieger,
214
+ together with Dominique Vautherin derived the energy density using a Slater determinant where
215
+ the single particle states were no longer invariant under time reversal, as it is in the Hartree-Fock
216
+ method. With the Skyrme interaction the TDHF approach leads to an equation of continuity
217
+ for the single particle density [22]. This paper showed how Dirac’s time-dependent Hartree-Fock
218
+ theory could be applied to nuclear dynamics in a light nucleus. In the year immediately following
219
+ 7
220
+
221
+ the publication, the theory was applied to collisions involving a large number of nucleons [23],
222
+ showing that the method would be a powerful one for heavy nuclei as well.
223
+ The method is
224
+ justified as a time-dependent density-functional theory, and it remains in widespread use.
225
+ In 1973 Ica Stancu came to Oxford as a post doctoral fellow and worked with David on heavy
226
+ ion reactions in deriving the interaction potential of two 16O nuclei starting from the Skyrme
227
+ energy density formalism [24]. They included the previously ignored tensor part of the Skyrme
228
+ interaction.
229
+ Along with an additional effort from Hubert Flocard at Orsay, the Skyrme HF
230
+ calculations yielded single particle levels of spherical closed nuclei [25]. The role of the tensor
231
+ force is to contribute to the spin-orbit splitting of the single-particle levels. For spherical closed
232
+ shell nuclei the effect turned out to be small. Later it was found that in spherical spin unsaturated
233
+ nuclei it makes a dramatic difference, giving the correct order of single particle levels, as, for
234
+ example, in the Sn isotopes [26]. Many experiments on neutron-rich nuclei since 2006 have shown
235
+ that the Skyrme formalism including the tensor force was the simplest way to describe the shell
236
+ evolution of neutron-rich or proton-rich nuclei and indicated new magic numbers.
237
+ 3.2
238
+ Heavy-ions and Semi-classical methods in Nuclear Physics
239
+ As tandem accelerators and cyclotrons were built to study heavy-ion Physics, David started an
240
+ intense collaboration with the experimentalists at the Department of Nuclear Physics in Oxford.
241
+ The accelerators were used to study heavy-ion elastic scattering and direct reactions such as
242
+ transfer and measure masses and perform spectroscopy of neutron-rich matter. In those years
243
+ semiclassical methods were widely used in the Nuclear Physics community to analyse data. They
244
+ were particularly appropriate for heavy ions because of the high incident energies and the large
245
+ impact parameters involved. Thus David started the Oxford school on the subject, more or
246
+ less parallel in time to the Copenhagen school of Broglia and Winter and collaborators.
247
+ At
248
+ that time, these heavy-ion reactions were analyzed through the partial wave expansions of the
249
+ colliding partners, a methodology that was computationally demanding and giving little insight
250
+ to the underlying dynamics. David’s semi-classical treatment of the collision was much simpler.
251
+ Some of the early papers on the theory of peripheral reactions were based on his student’s thesis,
252
+ including Hashima Hasan and Luigi Lo Monaco [27, 28].
253
+ David’s investigation of the kinematical effects in such reactions, for which there was concrete
254
+ experimental evidence from the work of Peter Twin (FRS 1993) and his collaborators at Liver-
255
+ pool, became a key element for experimentalists. In the paper by the title ”Kinematical effects in
256
+ heavy-ion reactions” [29] David introduced a ”semi-classical amplitude” [30] that could be used
257
+ in DWBA-like calculations of transfer [31] and proposed a matching condition to predict a large
258
+ reaction cross-sections, a condition that was beautifully adapted to understand spin-polarization
259
+ experiments. He showed that energy and angular momentum couplings in heavy-ion reactions led
260
+ to very selective matching rules by which high angular momentum single-particle states could
261
+ be populated.
262
+ High angular momentum single-particle states sometimes appear as low-lying
263
+ continuum resonances. They have been studied by the method of transfer-to-the-continuum [32]
264
+ which has helped disentangle single-particle from collective degrees of freedom and has also been
265
+ applied in the so called ”surrogate reactions” as a substitute for free neutron beams.
266
+ Semi-classical ideas have been helpful in studying breakup and dissociation of weakly bound
267
+ radioactive ions including halo nuclei and other such unstable nuclei whose dynamics is rather
268
+ involved and difficult to study experimentally due to the very low intensity of beams. David,
269
+ Angela Bonaccorso and her students got heavily involved in this new physics from the ’90s on,
270
+ with a long series of papers (see [33] and references therein), conference contributions, meeting
271
+ organization, some of them at the ECT* in Trento, spanning the last forty years of David’s
272
+ 8
273
+
274
+ career. Finally it has recently been shown [34] that the semi-classical treatment of breakup by
275
+ David and his collaborators is fully consistent with a quantum mechanical treatment.
276
+ David studied microscopic models for the real and imaginary parts of the ion-ion optical potential
277
+ to be used in elastic scattering calculations with Ica Stancu. He also studied fusion with Neil
278
+ Rowley and N. Takigawa. David and Takigawa developed a semi-classical reaction theory with
279
+ three classical turning points which explained the anomalous large angle scattering of α particles
280
+ as a quantum-mechanical interference between the barrier wave and the internal wave, thereby
281
+ providing an intuitively clear picture of a complex phenomenon underlying nuclear reactions in
282
+ terms of classical and quantum ideas. David, Vautherin, and M.C. Nemes studied the effect of
283
+ intrinsic degrees of freedom on the quantum tunnelling of a collective variable. This work was
284
+ further developed by other theorists including Kouichi Hagino who studied the deviation from
285
+ adiabaticity in quantum tunnelling with many degrees of freedom.
286
+ David met Uzi Smilanski in Munich when they were both there on sabbatical. Both had worked
287
+ on semi-classical approximations and gave a joint series of lectures on this topic. David was con-
288
+ cerned that the standard WKB method was insufficient to explain tunnelling through a barrier
289
+ and was particularly bad near the barrier top. David and Uzi applied the uniform semi-classical
290
+ method evolved by Michael Berry (FRS 1982) to successfully address the problem [35].
291
+ Uzi
292
+ remembers David as a physicist with excellent intuition and an ability to grasp the essence
293
+ of a problem before cracking the problem with rigorous mathematics and complex computa-
294
+ tion.
295
+ David, Massimo di Toro, and Alberto Dellafiore developed a semi-classical description of col-
296
+ lective responses with a mean field approach paving the way for a study of the dynamics of a
297
+ nuclear Hartree-Fock fluid. When the national heavy-ion laboratory started in Catania (LNS-
298
+ INFN) around an advanced superconducting cyclotron, David was a reference point for simple
299
+ physics suggestions.
300
+ 3.3
301
+ Path integral methods in Nuclear Physics
302
+ David’s expertise with semi-classical methods for tackling quantum problems naturally led him
303
+ towards the Feynman path integral approach to quantum mechanics which was based on a
304
+ Lagrangian approach. Hans Weidenm¨uller had met David at various conferences in the 1950s
305
+ and 1960s and spent 1977-78 on a sabbatical in Oxford. During this period David and Hans
306
+ worked on the application of the Feynman path integral method to the study of the heavy-ion
307
+ reactions and developed the Influence Functional approach to this problem which David and his
308
+ collaborators later used to establish master equations. Hans remembers that at a summer school
309
+ a few years later David delivered a series of lectures on nuclear reactions. In the first lecture
310
+ he developed the topic using a dozen transparencies and in subsequent lectures used the same
311
+ transparencies in a different order to display and illuminate aspects of the topic that had gone
312
+ unnoticed before. Hans remembers it as a display of the combination of simplicity and depth
313
+ that were hallmarks of David’s approach to Physics.
314
+ The path integral method was particularly well suited for studying problems with many degrees
315
+ of freedom in which classical description in terms of trajectories was good for some degrees of
316
+ freedom but not for all. Coulomb excitation in heavy-ion collisions is an example where the
317
+ relative motion of the ions could be described in terms of coulomb trajectories but the excitation
318
+ of the quantum states of the ions had to be treated using quantum mechanics.
319
+ David and
320
+ Sukumar [36] used the Feynman path integral method to evolve a systematic way of arranging
321
+ the correction terms for the quantum amplitudes for processes involving coupled degrees of
322
+ 9
323
+
324
+ Figure 4: David and his wife Verena, May 2018.
325
+ freedom where the description in terms of classical trajectories was good for some degrees of
326
+ freedom. David, Sukumar, and Fernando Dos Aidos used this method to provide corrections
327
+ to the primitive semi-classical amplitude for Coulomb excitation of heavy-ions. Sukumar and
328
+ David used the path integral method to describe spin-orbit coupling effects and together with Ron
329
+ Johnson at Surrey and his group successfully explained the experimental data on polarization
330
+ effects.
331
+ 4
332
+ Other topics
333
+ David was very quick at grasping the core of a Physics problem and putting it in simple, calculable
334
+ terms.
335
+ Often the problem required somewhat involved analytical calculations, but he was a
336
+ master of that. Thus anytime a visitor went to Oxford with a new problem, David would start
337
+ a very successful line of research which he often followed up with his graduate students.
338
+ 10
339
+
340
+ 4.1
341
+ Cluster models
342
+ It happened for example with the cluster model physics, starting with the seminal paper [37].
343
+ This paper developed the generator coordinate method of Hill and Wheeler [38] to produce
344
+ a practical tool to reduce the many-particle Hamiltonian to an ordinary Schr¨odinger equation
345
+ for a collective variable. Thus the nuclear cluster model was related to the shell model. To
346
+ treat nuclear states in such different circumstances, a formulation which includes clustering at
347
+ one extreme and shell structure at the other extreme was needed. David proposed microscopic
348
+ multi-α-clusters treating four nucleons with different spin-isospin states as a single particle orbit.
349
+ Under anti-symmetrisation of nucleons the cluster model wave-functions approximate shell model
350
+ functions and enabled the description of both cluster and shell model structures in a unified way.
351
+ Their approach was adopted and is in widespread use even in present-day nuclear theory. The
352
+ main applications up to now are on spectroscopy and large-amplitude collective motion.
353
+ Y. Suzuki’s work on the cluster model was largely inspired by David’s paper on ”Do alpha
354
+ clusters exist in nuclei?” [39] presented at a meeting in Tokyo in 1975. This paper contained
355
+ all the essential components needed in the alpha particle model, the microscopic theory beyond
356
+ the shell model description based on many-particle many-hole excitations, the relation between
357
+ the resonating group method GCM, the equilibrium arrangement of clusters, extension of the
358
+ Hill-Wheeler method, the angular momentum projection, and the Slater determinant technique
359
+ for evaluating matrix elements. Suzuki remembers that David never forgot to mention that the
360
+ original model was proposed by H. Margenau and C.Bloch [40, 41, 42].
361
+ At the Varenna School in 1955 David met S. Yoshida from Japan and they discussed inelastic
362
+ scattering of protons and neutrons by deformed nuclei. By chance David had a chapter in his
363
+ thesis on this topic and Yoshida had been studying the same subject. This interaction with
364
+ Yoshida helped David to develop strong connections with nuclear theory groups in Japan over
365
+ many years.
366
+ 4.2
367
+ Bose-Einstein condensation of atoms
368
+ During his period as Deputy Director of ECT* in Trento, 1993-1998, David interacted with many
369
+ members of the Physics Department in Trento. One such interaction with Sandro Stringari led to
370
+ David’s interest in Bose-Einstein condensation of alkali atoms in magnetic traps [43]. Sukumar
371
+ and David [44] developed an approximate method for calculating the rate of escape from the
372
+ magnetic trap thereby enabling an estimation of the duration for which the condensate atoms
373
+ can be held in the trap as a function of the ultra-cold temperature and the strength of the
374
+ magnetic field.
375
+ 4.3
376
+ Miscellaneous
377
+ David was interested in the role of pairing interaction in finite nuclei and this led to the study
378
+ of nuclear superfluids. His book with R. Broglia [45] is considered to be a wonderful exposition
379
+ of this subject. David’s knack for explaining detailed Physics in a simple and clear manner is
380
+ abundantly evident in this book. In the 1990s Ica Stancu raised David’s interest in the quark
381
+ structure of exotic hadrons named tetraquarks, a system of two quarks and two antiquarks, and
382
+ studied the stability of such systems containing heavy quarks/antiquarks in a QCD inspired
383
+ quark model. Even though David had not worked on the Interacting Boson Model (IBM) he
384
+ nevertheless provided supervision for doctoral students such as Martin Zirnbauer who chose
385
+ topics in this field. He also supervised Hans Peter Pavel’s thesis on Schwinger pair production
386
+ in a flux tube model containing a chromomagnetic field.
387
+ 11
388
+
389
+ 5
390
+ Teaching and administrative roles
391
+ David’s doctoral students remember him for the gentle way he corrected them when they had
392
+ made errors. Many of the students learned from him how to take a critical approach to their
393
+ results and how it is possible to look at a complex problem from several different viewpoints and
394
+ find the one that gives the best physical insight. They also remember the immense support he
395
+ gave to their research and pastoral care. Many graduate students also remember how much they
396
+ had learned from the courses he taught at Oxford and at Summer schools. His book with Satchler
397
+ [15] and paper with Rose [14] on angular momentum algebra were found to be of immense value
398
+ in formulating and tackling problems in Nuclear Physics. Many researchers and students who
399
+ met David were astonished that someone with such towering achievements could be so humble,
400
+ nice and honest. David was very open-minded and we report a number of episodes to illustrate
401
+ this aspect of his character.
402
+ Future Nobel laureate Prof. Tony Leggett remembers: ” My undergraduate major at Balliol was
403
+ in Greats (classical languages, ancient history and philosophy) and I was set to graduate (and
404
+ eventually did so) in the summer of 1959. Towards the end of the academic year 1957-1958,
405
+ partly encouraged by the post-Sputnik cultural swing towards science in the UK, I conceived
406
+ the ambition of taking a second undergraduate degree in physics and perhaps eventually making
407
+ my career in academia in that subject. Given that I had essentially no meaningful exposure to
408
+ physics at the high-school level and only a brief and informal exposure to any kind of mathematics
409
+ beyond simple differential calculus (I’m not sure that I had even had that), such a drastic change
410
+ of academic direction was extremely unusual, indeed at the time almost unheard-of. My first
411
+ concern was to find a higher education institution which would accept me for it and I rapidly
412
+ concluded that my only hope was to apply to my existing Oxford college, Balliol. David had
413
+ just recently become the college’s first tutor in theoretical physics (most Oxford colleges did
414
+ not have such a thing in 1958), so it fell on him to take the decision on my application. To
415
+ this end he asked me to read over the summer vacation a few chapters from the book ”What
416
+ is Mathematics?” by Courant and Robbins [46], perhaps the most beautiful presentation I have
417
+ ever seen of mathematical topics for the layperson. When I returned to Oxford in the Fall of
418
+ 1958 he gave me an informal mini-exam on that material, and on the basis of my performance
419
+ decided to recommend to Balliol to accept me. In the event I did my physics degree at Merton,
420
+ who offered me a scholarship, but since they did not at the time have a tutor in theoretical
421
+ physics David played that role for me for much of the two years which it took me to complete
422
+ the degree. I think it is virtually certain that had he made the opposite decision, I would never
423
+ have had a career in physics, and I am profoundly grateful to him for the imagination he showed
424
+ in going beyond my formal academic qualifications.”
425
+ Another story comes from Paul Stevenson: ”I was called up for interview at Balliol in December
426
+ 1991. The office I was in for that interview was David Brink’s office, above the Senior Common
427
+ Room. In the interview were me, David Brink, David Wark, Jonathan Hodby (those three there
428
+ for physics) and Bill Newton-Smith (for philosophy). I don’t remember all the questions. I do
429
+ remember that David Brink showed me a postcard and asked me what, physically, was wrong
430
+ with the picture. It was a Japanese style print with a mountain in the background and a lake in
431
+ the foreground. There was a reflection of the mountain in the lake, but it was off to one side. I
432
+ saw what was wrong, and struggled to articulate it in the language of a physicist, and in the end
433
+ David prompted me by asking what is particular about an incident light ray, a reflected light
434
+ ray, and the normal to the surface at which it is reflected and I said the right thing - that they
435
+ are all in the same plane. I was duly accepted to Balliol and spent three years there studying
436
+ physics”. Danny Chapman remembers: ”I don’t think I’ll ever forget the ”sense” of David Brink’s
437
+ 12
438
+
439
+ tutorials, and of being in the presence of such a sharp and insightful mind. I remember being
440
+ quite inspired once when my fellow student had tried to answer a question in what I thought was
441
+ an odd and probably wrong way, ending up with a sum, which he then attempted to turn into
442
+ an integral, which didn’t work out. Rather than saying ”don’t do it like that, do it like this”,
443
+ David was able to continue from there and make it work, which was a really positive experience
444
+ and encouragement to follow every path to its end. I feel lucky to have been at Balliol when he
445
+ was there.”
446
+ Angela Bonaccorso remembers daily life as one of David’s students: At the Department of The-
447
+ oretical Physics there was a coffee room where coffee was served between 11:00 and 11:30. We
448
+ would try to be there on time to sit around David who would be chatting with other senior
449
+ members of the department or some visitor. There would always be someone bringing up some
450
+ interesting and challenging new problem. Everyone gave an opinion, the atmosphere was com-
451
+ petitive. Most of the time David would win the argument and his students felt very proud.Not
452
+ all supervisors were so nice, helpful, and respectful of us as David was. But it was not at all
453
+ easy to be David’s student. First of all we needed to have detective skills. David was very busy
454
+ and very elusive. In those days there was no email or SMS. The only way to be sure that he was
455
+ inside was to look for his bicycle. If the bicycle was outside we would knock at the door of his
456
+ office and if we were lucky he would answer and let us in. In spite of all his many commitments
457
+ we always managed to have at least one chat per week with him. Another reason why it was
458
+ not easy to be his student was that David had a very original way of understanding things and
459
+ finding the way out of problems. During our conversations often he would stop talking and be
460
+ silent for five to ten minutes, rubbing his hand on his forehead. Then he came up with some
461
+ equation, or a drawing or something like that and he would tell us: I think it is like this...I think
462
+ we should get something like that...etc. I (we) would stare at him speechless and in wonder.
463
+ Where did the ’oracle’ come from? Most of the time this was the end of the meeting. I (we)
464
+ left his office rather puzzled, worked desperately hard for one week and if we had managed to
465
+ understand his line of thought, after pages and pages of calculations, we would find exactly what
466
+ he had predicted. We all knew it was like that, we all passed this information on to each other,
467
+ generation after generation: listen to David, he is always right, just try to reproduce the miracle
468
+ of his craftsmanship in physics.
469
+ A further proof of how much busy David was and how precious was for everyone the time spent in
470
+ conversation with him can be found in the comment Gerry Brown made in his review for Science
471
+ [47] of the Proceedings of the Varenna summer school [41] : ’Let me draw special attention also
472
+ to the article of David Brink, ”The alpha-particle model of light nuclei,” which is one of the most
473
+ beautiful developments in this subject. Brink likes to sit on his work for years and, on the whole,
474
+ doesn’t even answer letters inquiring about it, so that one must either adopt the expedient of
475
+ traveling to Oxford to talk with him, or invite him to lecture at summer schools. Both are worth
476
+ while.’
477
+ David was a pillar of Balliol college and Department of Theoretical Physics for decades, an
478
+ immensely popular tutor and supervisor, a cheerful and always helpful colleague, and a wonderful
479
+ guide to younger colleagues and administrative staff who happened to be working with him.
480
+ David had another long and distinguished career in Italy after he left Oxford. Following an
481
+ invitation from Renzo Leonardi he moved to Trento as full professor of History of Physics and
482
+ helped in establishing the ECT*, European Center for Theoretical Studies in Nuclear Physics
483
+ and Related Areas. The Nobel laureate Ben Mottelson was the founding director and David
484
+ the vice-director, while Renzo Leonardi was the Scientific Secretary. In the five years David
485
+ spent at Trento he took care of organising various technical aspects of the secretarial offices,
486
+ 13
487
+
488
+ Figure 5: David’s sixty-fifth birthday celebration. Orsay, 1995.
489
+ library, computer center and visitor hospitality.
490
+ At the same time he gave very productive
491
+ contributions to workshops with his constant presence, his huge knowledge of nuclear physics
492
+ and stimulating discussions. The superb reputation and international standing of this extremely
493
+ important European initiative is undoubtedly due in large part to David’s wisdom in its crucial,
494
+ formative years.
495
+ 6
496
+ Career, Honours and Awards
497
+ 1954-55 Royal Society Rutherford Scholarship.
498
+ 1957-1958 Instructor at the Massachusetts Institute of Technology (MIT).
499
+ 1958 Fellow of Balliol College and Lecturer in Theoretical Physics, Oxford.
500
+ 1976-1978 Vice-Master of Balliol College.
501
+ 1981 Fellow of the Royal Society.
502
+ 1982 Rutherford Medal of the Institute of Physics.
503
+ 1988 H. J. G. Mosley Reader at Oxford.
504
+ 1990-1993 Senior Tutor, Balliol College, academic planning and administration, Oxford.
505
+ 1992 Foreign member of the Royal Society of Sciences, Uppsala.
506
+ 1993-1998 ECT*, Trento, Vice-Director .
507
+ 1993-1998 Full professor of History of Physics, University of Trento.
508
+ 14
509
+
510
+ 2006 Varenna Conference on Nuclear Reactions dedicated to him.
511
+ 2006 Lise Meitner prize of the European Physical Society shared with H. J. Kluge.
512
+ Visiting scientist at :
513
+ • Niels Bohr Institute 1964,
514
+ • University of British Columbia 1975,
515
+ • Institut de Physique Nucl´eaire d’Orsay 1969 and 1981-1982,
516
+ • The Technical University of Munich 1982,
517
+ • University of Trento 1988,
518
+ • University of Catania 1988,
519
+ • Michigan State University 1988-1989.
520
+ 7
521
+ Acknowledgements
522
+ The authors are greatly indebted to the Brink family for sharing with them private memories
523
+ and photographs and for a critical reading of the manuscript. A large number of friends and
524
+ colleagues, too many to be individually mentioned, contributed with their appreciation of David’s
525
+ life and scientific career. Ica Stancu and Sharon McGrayne Bertsch read and commented the
526
+ manuscript. One of us (AB) gratefully acknowledges George F. Bertsch for his help in digging
527
+ out from David’s thesis and early work the roots of several founding pillars of modern Nuclear
528
+ Physics.
529
+ References
530
+ [1] Elliott J.P., Lane A.M. 1957 The Nuclear Shell-Model. Structure of Atomic Nuclei / Bau
531
+ der Atomkerne. Encyclopedia of Physics / Handbuch der Physik vol 8 / 39. Springer, Berlin,
532
+ Heidelberg. https://doi.org/10.1007/978-3-642-45872-9 4
533
+ [2] Brink, D. M., 1955
534
+ https://ora.ox.ac.uk/objects/uuid:334ec4a3-8a89-42aa-93f4-2e54d070ee09.
535
+ [3] Hughes, D. J., and Harvey, J. A. 1954 Radiation-widths of nuclear energy-levels Nature 173,
536
+ 942 - 943. DOI: https://doi.org/10.1038/173942a0
537
+ [4] Feshbach, H. Porter, C.E. and Weisskopf, V.F. 1954 Model for Nuclear Reactions with
538
+ Neutrons Phys. Rev. 96 448-464. DOI:https://doi.org/10.1103/PhysRev.96.448
539
+ [5] Capote, R. et al., 2009 RIPL, Reference Input Parameter Library for Calculation of Nuclear
540
+ Reactions and Nuclear Data Evaluations
541
+ Nuclear Data Sheets 110 3107-3214. DOI: https://doi.org/10.1016/j.nds.2009.10.004
542
+ [6] Axel, P. 1962 Electric Dipole ground-state transition width strength function and 7 Mev
543
+ photon interaction Phys. Rev. 126, 671-683. DOI:https://doi.org/10.1103/PhysRev.126.671
544
+ 15
545
+
546
+ [7] Brink, D. M., 1957 Individual Particle and Collective Aspects of the Nuclear Photoeffect
547
+ Nucl. Phys. 4 215 - 220. DOI: 10.1016/0029-5582(87)90021-6
548
+ [8] Goldhaber, M. and Teller, E. 1948 On Nuclear dipole vibrations Phys. Rev. 74 1046 - 49.
549
+ DOI:https://doi.org/10.1103/PhysRev.74.1046
550
+ [9] Steinwedel, H., Jensen, J. H. D. and Jensen, P. 1950 Nuclear dipole vibrations Phys. Rev.
551
+ 79 1019. DOI:https://doi.org/10.1103/PhysRev.79.1019
552
+ [10] Newton,
553
+ J.
554
+ O.
555
+ et
556
+ al.
557
+ 1981
558
+ Observation
559
+ of
560
+ Giant
561
+ dipole
562
+ resonances
563
+ built
564
+ on
565
+ states
566
+ of
567
+ high
568
+ energy
569
+ and
570
+ spin
571
+ Phys.
572
+ Rev.
573
+ Lett.
574
+ 46
575
+ ,
576
+ 1383-1386.
577
+ DOI:https://doi.org/10.1103/PhysRevLett.46.1383
578
+ [11] Lynn, J.E., 1968 Theory of neutron resonance reactions, (OUP) 321.
579
+ [12] Hagino, K. and Bertsch, G. F., 2021, Porter-Thomas fluctuations in complex quantum sys-
580
+ tems Phys. Rev. E104 L052104. DOI:https://doi.org/10.1103/PhysRevE.104.L052104 and
581
+ references therein.
582
+ [13] Porter, C.E. and Thomas, R.G. 1956 Fluctuations of Nuclear Reaction widths Phys. Rev.
583
+ 104, 483-491. DOI:https://doi.org/10.1103/PhysRev.104.483
584
+ [14] Rose, H.J. and Brink, D.M. 1967 Angular Distributions of Gamma Rays in Terms of Phase-
585
+ Defined Reduced Matrix Elements Rev. Mod. Phys. 39 , 306-347. DOI: 10.1103/RevMod-
586
+ Phys.39.306
587
+ [15] Brink, D. M. and Satchler, G. R., 1962 Angular Momentum, (OUP).
588
+ [16] Brink, D. M. 1965 Nuclear Forces, (Pergamon).
589
+ [17] Brink, D.M. and Boeker, E. 1967 Effective interactions for Hartree-Fock calculations Nucl.
590
+ Phys. A 91, 1-26. DOI: 10.1016/0375-9474(67)90446-0
591
+ [18] Gogny, D., Pires, D. P. and De Tourreil, R. 1970 A smooth realistic nucleon-nucleon
592
+ force suitable for nuclear Hartree-Fock calculations Phys. Lett. B32 591-595. DOI:
593
+ https://doi.org/10.1016/0370-2693(70)90552-6
594
+ [19] Decharge,
595
+ J.
596
+ and
597
+ Gogny,
598
+ D.1980
599
+ Hartree-Fock-Bogolyubov
600
+ calculations
601
+ with
602
+ the
603
+ D1effective
604
+ interaction
605
+ on
606
+ spherical
607
+ nuclei
608
+ Phys.
609
+ Rev.
610
+ C21
611
+ 1568-1593.
612
+ DOI:https://doi.org/10.1103/PhysRevC.21.1568
613
+ [20] Skyrme,
614
+ A.
615
+ 1959
616
+ The
617
+ effective
618
+ nuclear
619
+ potential
620
+ Nucl.
621
+ Phys.
622
+ 9
623
+ 615-634.
624
+ DOI:https://doi.org/10.1016/0029-5582(58)90345-6
625
+ [21] Vautherin , D. and Brink, D. M.1972 Hartree-Fock calculations with Skyrme’s interaction.
626
+ 1. Spherical nuclei Phys. Rev. C5 626-647. DOI: 10.1103/PhysRevC.5.626
627
+ [22] Engel, Y.M., Brink, D. M., Goeke, K., Kriege, S.J. and Vautherin, D. 1975 Time de-
628
+ pendent Hartree-Fock theory with Skyrme’s interaction Nucl. Phys. A249, 215-238. DOI:
629
+ 10.1016/0375-9474(75)90184-0
630
+ [23] Bonche, P., Koonin S., and Negele, J. W., 1976 One-dimensional nuclear dynam-
631
+ ics in the time-dependent Hartree-Fock approximation Phys. Rev. C13 1226-1258.
632
+ DOI:https://doi.org/10.1103/PhysRevC.13.1226
633
+ [24] Brink, D.M.and Stancu, Fl.1975 Interaction potential between two O-16 nuclei derived from
634
+ the Skyrme interaction Nucl. Phys. A 243 175-188.
635
+ 16
636
+
637
+ [25] Stancu, Fl., Brink, D.M. and Flocard, H. 1977 The tensor part of Skyrme’s interaction Phys.
638
+ Lett. B68 108-112.
639
+ [26] Brink, D.M. and Stancu, Fl., 2007 Evolution of nuclear shells with the Skyrme density
640
+ dependent interaction Phys. Rev. C 75 064311.
641
+ [27] Hasan, H. and Brink, D. M. 1979 The transfer amplitude and angular distributions in
642
+ heavy-ion reactions J. Phys. G: Nucl. Phys. 5 771.
643
+ [28] Lo Monaco, L. and Brink, D. M. 1985 Perturbation approach to nucleon transfer in heavy-ion
644
+ reactions J. Phys. G: Nucl. Phys. 11 935-952.
645
+ [29] Brink, D.M. 1972 Kinematical effects in heavy-ion reactions Phys .Lett. B40 37-40. DOI:
646
+ 10.1016/0370-2693(72)90274-2
647
+ [30] Brink, D. M., 1985. Semi-Classical Methods in Nucleus-Nucleus Scattering, (Cambridge
648
+ University Press).
649
+ [31] Anyas-Weiss, N., Cornell, J.C., Fisher, P.S. ,Hudson, P.N., Menchaca-Rocha, A., Millener,
650
+ D.J., Panagiotou, A.D., Scott, D.K., Strottman, D., Brink, D.M., Buck, B., Ellis, T.P.
651
+ and Engeland, J., 1974 Nuclear structure of light nuclei using the selectivity of high en-
652
+ ergy transfer reactions with heavy ions Physics Reports 12 201-272. DOI: 10.1016/0370-
653
+ 1573(74)90045-3
654
+ [32] Bonaccorso, A. and Brink, D. M., 1988 Nuclear transfer to continuum state Phys. Rev. C38
655
+ 1776-1786; 1991 Stripping to the continuum of 208Pb Phys. Rev. C44 1559-1568.
656
+ [33] Bonaccorso, A. and Brink, D. M., 2021 Models of breakup: a final state interaction problem
657
+ Eur. Phys. J.A57 171.
658
+ [34] Jin Lei, Bonaccorso, A. 2021 Comparison of semiclassical transfer to continuum model with
659
+ Ichimura-Austern-Vincent model in medium energy knockout reactions Phys. Lett. B813
660
+ 136032. DOI:https://doi.org/10.1016/j.physletb.2020.136032
661
+ [35] Berry, M. V. 1966 Uniform approximation for potential scattering. Proc. Phys. Soc. 89,
662
+ 479-490.
663
+ [36] Sukumar, C. V. and Brink, D.M. 1983 Path integral methods for inelastic scattering Nucl.
664
+ Phys. A404 121-141.
665
+ [37] Brink, D.M. and Weiguny, A. 1968 The generator coordinate theory of collective motion
666
+ Nucl. Phys. A120 59-93. DOI: 10.1016/0375-9474(68)90059-6
667
+ [38] Hill, D. L. and Wheeler, J. A. 1953 Phys. Rev. 89, 1102.
668
+ [39] Brink, D. M. 1975 Do alpha-clusters exist in nuclei. Proceedings of the INS-IPCR Symposium
669
+ on Cluster Structure of Nuclei and Transfer Reactions Induced by Heavy-Ions, Tokyo, March
670
+ 17-22, 1975.
671
+ [40] Margenau, H. 1940 Phys. Rev. 5, 37.
672
+ [41] Brink, D. M. 1966 The Alpha-Particle Model of Light Nuclei, Scuola Internazionale di Fisica
673
+ ’Enrico FERMI’, XXXVI Corso, Ed. C. Bloch, 247.
674
+ [42] Brink, D. M. 2008 J. Phys.: Conf. Ser. 111, 012001.
675
+ [43] Brink, D.M., Stringari, S., 1990 Density of states and evaporation rate of helium clusters.
676
+ Z Phys D-Atoms, Molecules and Clusters 15 257-263 .
677
+ 17
678
+
679
+ [44] Sukumar, C. V. and Brink, D.M. 1997 Spin flip transitions in a magnetic trap Phys. Rev.
680
+ A56 2451-2454.
681
+ [45] Brink, D. M. and Broglia, R. A., 2005 Nuclear Superfluidity Pairing in Finite Systems,
682
+ (CUP).
683
+ [46] Courant, R. and Robbins, H. 1941 What is mathematics?
684
+ Oxford, UK: Oxford University
685
+ Press.
686
+ [47] Brown, G. E., 1967 Nuclear Physics: Many-Body Description of Nuclear Structure and Re-
687
+ actions. Course 36, International School of Physics ’Enrico Fermi.’ C. Bloch, Ed. Academic
688
+ Press, New York, 1966. Science, 158 (3807), DOI: 10.1126/science.158.3807.1440
689
+ 18
690
+
ItE1T4oBgHgl3EQfFwPf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItE5T4oBgHgl3EQfXA9_/content/tmp_files/2301.05563v1.pdf.txt ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ High-fidelity ptychographic imaging of highly periodic structures
4
+ enabled by vortex high harmonic beams
5
+ Bin Wang1*†, Nathan J. Brooks1*, Peter C. Johnsen1, Nicholas W. Jenkins1, Yuka Esashi1, Iona
6
+ Binnie1, Michael Tanksalvala1, Henry C. Kapteyn1,2, Margaret M. Murnane1
7
+ 1STROBE Science and Technology Center, JILA, University of Colorado, Boulder, CO 80309, USA
8
+ 2KMLabs Inc., 4775 Walnut St. #102, Boulder, CO 80301, USA
9
+ *These authors contributed equally
10
11
+
12
+ Abstract
13
+ Ptychographic Coherent Diffractive Imaging enables diffraction-limited imaging of nanoscale structures at extreme
14
+ ultraviolet and x-ray wavelengths, where high-quality image-forming optics are not available. However, its reliance
15
+ on a set of diverse diffraction patterns makes it challenging to use ptychography to image highly periodic samples,
16
+ limiting its application to defect inspection for electronic and photonic devices. Here, we use a vortex high harmonic
17
+ light beam driven by a laser carrying orbital angular momentum to implement extreme ultraviolet ptychographic
18
+ imaging of highly periodic samples with high fidelity and reliability. We also demonstrate, for the first time to our
19
+ knowledge, ptychographic imaging of an isolated, near-diffraction-limited defect in an otherwise periodic sample
20
+ using vortex high harmonic beams. This enhanced metrology technique can enable high-fidelity imaging and
21
+ inspection of highly periodic structures for next-generation nano, energy, photonic and quantum devices.
22
+ Introduction
23
+ In recent decades, a powerful coherent diffractive imaging (CDI) technique known as ptychography has enabled robust,
24
+ diffraction-limited, phase-contrast imaging of nanoscale structures [1-5]. Although ptychography has been
25
+ implemented using a range of illumination wavelengths, its use in the extreme-ultraviolet (EUV) and x-ray regions is
26
+ particularly attractive for achieving high spatial resolution with inherent elemental and chemical contrast [6-10]. In
27
+ ptychography, a coherent illumination (the probe) is focused and scanned across an extended sample. A series of far-
28
+ field diffraction patterns are recorded, while maintaining a large overlap between adjacent scan positions. Iterative
29
+ phase-retrieval algorithms [11-15] can then be used to robustly and uniquely reconstruct the complex-valued probe
30
+ field and sample transmission or reflection functions. However, successful reconstruction relies heavily on diversity
31
+ in the data provided by the lateral scanning of the probe relative to the sample, i.e., interferences at the detector plane
32
+ mix amplitude and phase, allowing the reconstruction algorithms to unravel both. this means that ptychographic
33
+ imaging of highly periodic samples with a sufficiently small period is extremely challenging due to the lack of
34
+ diversity in a series of diffraction patterns, leading to poor convergence of the reconstructed sample images. This
35
+ significantly limits ptychography’s application to a wide variety of nanoscale periodic structures such as photonic
36
+ crystals [16-17], semiconductor devices [18], and EUV photomasks [19-25]. Consequently, it is critical to fill this
37
+ characterization gap to aid the advancement of a host of next-generation nano-devices.
38
+ High harmonic upconversion of femtosecond lasers can produce bright coherent beams from the EUV to the soft x-
39
+ ray regions of the spectrum, in a tabletop-scale setup [26-28]. When combined with ptychography, high harmonic
40
+ generation (HHG) enables phase-sensitive lensless imaging with diffraction-limited nanoscale spatial resolution and
41
+ excellent elemental specificity [9,15,29-31]. Moreover, because of the quantum-coherent nature of the HHG
42
+ upconversion process, polarization and phase structure present in the driving laser beam can be transferred to the
43
+ generated harmonics, provided energy, spin and orbital angular momentum are conserved [32,33]. This makes it
44
+ possible to create designer short-wavelength structured light for a variety of applications in advanced spectro-
45
+ microscopies [34,35].
46
+ Light beams carrying orbital angular momentum (OAM) have attracted considerable interest for super-resolution
47
+ imaging [36] and enhanced optical sensing, communication and inspection [37-39]. Recently, by considering
48
+
49
+
50
+
51
+ conservation of OAM in HHG upconversion, additional routes for controlling the OAM, polarization, as well as the
52
+ spectral and temporal properties of HHG have been revealed [40-47]. A property particularly interesting for
53
+ ptychography is the relationship between OAM and the HHG beam divergence/propagation: the spiral phase structure
54
+ characteristic of OAM-HHG beams forces them to diverge more quickly from the focal point [46]. This means that
55
+ by using one or more OAM beams to drive the HHG process (referred to as OAM-HHG), one can control the
56
+ divergence of the emitted HHG probe without changing the focusing optics of the HHG driving laser.
57
+ In this article, we demonstrate a solution to a decade-long challenge by showing that high harmonic beams carrying
58
+ orbital angular momentum can be used to advantage in high-resolution, high-fidelity and fast-convergence
59
+ ptychographic imaging of highly periodic two-dimensional (2D) grating structures, using the standard extended
60
+ ptychographic iterative engine (ePIE) algorithm [13]. The key to this technique is that the increased divergence of the
61
+ OAM-HHG source, combined with the ring-shaped intensity distribution, introduces strong interference fringes
62
+ between adjacent diffraction orders in the far-field. These encode the non-measurable phase information into the
63
+ measurable intensity modulation in diffraction fields, significantly enhancing data diversity so that the phase of the
64
+ diffracted field can be reliably retrieved. We further show that using OAM-HHG beams for illumination provides
65
+ three significant advantages compared to standard Gaussian-HHG beams, all of which lead to enhanced signal-to-
66
+ noise-ratio (SNR) for imaging periodic structures: First, due to the conservation of OAM in the HHG process and the
67
+ resulting strong spiral phase structure in the generated EUV beams, OAM-HHG beams naturally have a significantly
68
+ increased divergence compared to that of Gaussian-HHG beams. This enhanced illumination NA makes it possible to
69
+ achieve overlap between different diffraction orders for small pitch periodic samples, beyond what is possible with a
70
+ Gaussian-HHG probe, and without making any changes to the focusing optics of the ptychographic EUV microscope.
71
+ Second, the unique ring-shaped OAM beam intensity distribution, which is determined by the strong spiral phase
72
+ structure in the EUV beams, leads to overlap between different diffraction orders in the high-intensity regions of the
73
+ beam. And third, OAM-HHG also allows a higher total number of photons to be collected by the detector given a
74
+ fixed detector dynamic range. Therefore, by leveraging OAM-HHG beams for ptychography, we successfully imaged
75
+ highly periodic samples with substantially reduced gridding artifacts, and reliably detected defects near the diffraction
76
+ limit. This new structured-EUV HHG metrology technique can support the advancement of next-generation EUV
77
+ lithography, nanoelectronics, photonic and quantum devices.
78
+ Methodology
79
+
80
+ To date, imaging highly periodic structures has been extremely challenging for ptychography. In a conventional
81
+ implementation of ptychography using a Gaussian EUV beam to illuminate highly periodic 2D structures (see Fig.
82
+ 1(a)), the far-field diffraction patterns consist of many isolated diffraction orders, each of which is a copy of the far-
83
+ field beam profile, and is modulated by an envelope in both amplitude and phase. The zoomed-in green circle in Fig.
84
+ 1(a) shows this characteristic behavior, with the white circles indicating the edge of each diffraction order. In the
85
+ resulting ptychographic dataset, diffraction patterns taken at different positions on the highly periodic sample are
86
+ almost identical to each other. This is because, in contrast to diffraction from non-periodic structures, changes in the
87
+ far-field diffraction field happen almost entirely in the relative phase between the diffraction orders, but not in the
88
+ intensity (i.e., diffraction efficiency) of the diffracted orders. The phase information is thus totally lost in this case.
89
+ Ptychography, as a phase retrieval algorithm, tries to retrieve the phase distributions of diffraction patterns from their
90
+ intensity measurements. The fact that the phase information is totally lost for highly periodic samples with a
91
+ sufficiently short period, as opposed to being encoded in the intensity measurements as would be the case for non-
92
+ periodic structures, makes it extremely challenging to achieve successful ptychographic imaging of such highly
93
+ periodic structures. As expected, the reconstruction fails for ptychography using a Gaussian-HHG beam, as shown in
94
+ Fig. 1(b), in which the amplitude and phase of the reconstruction are plotted in brightness and hue, respectively. This
95
+ phase problem can also be understood through the convolution theorem, as discussed in detail in Supplementary
96
+ Section 1.
97
+ In 1969, Hoppe proposed to achieve electron diffraction imaging of periodic atomic lattices by encoding the non-
98
+ measurable phase information into the measurable intensity modulation in diffraction patterns, through interference
99
+ between neighboring diffraction orders [48]. As schematically shown in Fig. 1(c), OAM-HHG beams are able to
100
+ achieve overlap and interference between neighboring diffraction orders due to their intrinsically larger beam
101
+
102
+
103
+
104
+ divergence and ring-shaped intensity distribution. The zoomed-in blue circle in Fig. 1(c) shows the interference fringes,
105
+ with the yellow circles indicating the edge of each diffraction order. As one scans the probe relative to the periodic
106
+ structures, the relative phase of each diffraction order changes accordingly, which then causes the interference fringes
107
+ to shift. In other words, the phase information in the diffraction patterns is now encoded in the intensity measurements
108
+ through interference. These interference fringes contain the missing phase information, and increase the diversity in
109
+ diffraction patterns, thereby enabling robust and reliable ptychographic reconstructions (see Supplementary Section
110
+ 2). Figure 1(d) shows a high-fidelity ptychographic reconstruction of a 2D periodic structure under an OAM-HHG
111
+ illumination.
112
+
113
+ Figure 1. Robust and reliable ptychographic imaging of highly periodic structures. (a) Schematic showing HHG
114
+ ptychographic imaging of a periodic structure using conventional Gaussian-HHG illumination. The resulting diffraction orders are
115
+ isolated (see zoomed-in green circle), where the white circles indicate the edges of each diffraction order. This leads to a complete
116
+ loss of the relative phase information between the orders in the far-field diffraction, which subsequently leads to the failure of the
117
+ ptychographic reconstruction in (b). (c) OAM-HHG illumination intrinsically has a larger source divergence and a ring-shaped
118
+ intensity profile, to support overlap and interference between diffraction orders (see zoomed-in blue circle), in which the yellow
119
+ circles indicate the edges of each diffraction order. This interference converts the relative phase between the diffraction orders into
120
+ measurable intensity modulation, enabling fast and robust ptychographic reconstruction of the 2D periodic structure in (d). In (b,
121
+ d), the complex-valued amplitude and phase are plotted as brightness and hue, respectively.
122
+
123
+ 5um
124
+
125
+ The required NA for high fidelity imaging of periodic samples can be understood as follows. When a periodic structure
126
+ is illuminated by a focused coherent beam, the angular separation between two neighboring diffraction orders is given
127
+ by 𝛥𝜃 = 𝜆/𝛬, where 𝜆 is the illumination wavelength, and 𝛬 is the period of the structure. The illumination NA for
128
+ the microscope is defined as the half-cone angle of the focusing beam. Geometrically, for fixed 𝜆 and 𝛬, there exists
129
+ a critical value for illumination NA:
130
+ 𝑁𝐴𝑐 =
131
+ 1
132
+ 2 𝛥𝜃 =
133
+ 𝜆
134
+ 2𝛬. (1)
135
+ Only for illumination NAs larger than 𝑁𝐴𝑐 will neighboring diffraction orders have sufficiently large footprints on
136
+ the detector to overlap with each other and generate interference fringes, thus enabling successful ptychographic
137
+ reconstructions.
138
+ Experimental configuration
139
+ We designed and built an EUV ptychographic microscope in a transmission geometry, as shown in Fig. 2. The driving
140
+ laser for the HHG process is a frequency-doubled Ti:sapphire laser amplifier system (𝜆~395 nm), with an intrinsic
141
+ near-Gaussian mode (vortex charge of ℓ = 0), that can be converted to an OAM beam of vortex charge ℓ = 1 using a
142
+ spiral phase plate. The 7th harmonic of the driving laser (𝜆~56 nm) exhibits either a Gaussian mode or an OAM of
143
+ vortex charge ℓ = 7 depending on whether a spiral phase plate is used. The EUV beam is then focused by a double-
144
+ toroid focusing system onto the periodic samples, with a spot size of ~13 × 18 μm (1/𝑒2 intensity) for Gaussian-mode
145
+ HHG, or ~27 × 32 μm (donut intensity peak-to-peak) for OAM-HHG. The reconstructed Gaussian- and OAM-HHG
146
+ beam profiles are shown in a complex representation in Fig. S4, with the beam amplitude and phase indicated by
147
+ brightness and hue. The test samples are three Quantifoil holey carbon films (~20 nm thick) which have various hole
148
+ sizes and shapes arranged in a periodic rectangular grid. The three Quantifoil holey carbon films have a pitch of 9 μm,
149
+ 4.5 μm and 3 μm, respectively. These Quantifoil holey carbon films are mounted on standard Ted Pella Ø3mm Cu
150
+ 200 mesh TEM grids. (See the Methods section for more information.)
151
+
152
+ Figure 2. EUV ptychographic microscope using OAM-HHG EUV beams for imaging highly periodic structures. A spiral
153
+ phase plate (ℓ = 1 at 395 nm wavelength) converts the driving laser at 395 nm wavelength to an OAM beam, which is focused into
154
+ a semi-infinite gas cell to produce a nearly monochromatic 7th harmonic beam with a wavelength of 56 nm and an OAM charge
155
+ of ℓ = 7. A double-toroidal mirror focusing system focuses this OAM-HHG beam onto a 2D periodic sample, and an EUV-CCD
156
+ camera is used to record the far-field diffraction patterns.
157
+
158
+ e=7
159
+ 入=56nm
160
+ Detector
161
+ Periodic
162
+ Sample
163
+ 0=3.5mrad
164
+ To
165
+ l= 1
166
+ 入=395nm
167
+ do= 100 μm
168
+
169
+ During the ptychography scans, the test samples are translated in the plane perpendicular to the beam path in 7 × 7
170
+ rectangular grids (49 scan positions) with nominally 3.3 μm distance between adjacent scan positions. A random offset
171
+ of ±20% of the scan step size was added to each scan position to avoid gridding artifacts in the reconstructions [49].
172
+ The far-field diffraction patterns are recorded by an EUV-CCD detector (Andor iKon-L, 2048 × 2048, 13.5 μm pixel
173
+ size) positioned 50 mm after the sample. To obtain the best ptychographic reconstructions possible for each
174
+ illumination case, we carefully pre-characterized each probe function in the sample plane by taking ptychographic
175
+ scans on a non-periodic sample and reconstructing both the sample and the probe functions through blind
176
+ deconvolution. These pre-characterized probe functions were used as initial guesses in the ptychographic
177
+ reconstructions of highly periodic structures. Other than using the pre-characterized probe as the initial guess, we used
178
+ the standard ePIE algorithm [13] for all reconstructions in this study, without the need for additional constraints such
179
+ as modulus enforced probe [15] or total variation regularization [25,50].
180
+
181
+ Results
182
+ OAM-HHG enables robust and reliable ptychographic imaging of periodic structures
183
+ We experimentally demonstrate that OAM-HHG beams enable robust and reliable ptychographic imaging of highly
184
+ periodic structures because of three intrinsic advantages compared to Gaussian-HHG illumination. First, due to the
185
+ conservation of OAM in the HHG process and the resulting strong spiral phase structure in the generated EUV beams,
186
+ OAM-HHG beams naturally exhibit a significantly increased divergence (i.e., increased illumination NA for the
187
+ microscope given the same focusing optics) compared with Gaussian-HHG beams. This enhanced illumination NA
188
+ allows us to achieve overlap between diffraction orders for smaller pitch periodic samples beyond what is possible
189
+ with a Gaussian-mode probe, without making any changes to the EUV microscope end-station. Second, the
190
+ characteristic ring-shaped intensity distribution of OAM-HHG beams ensures that the majority of photons fall in the
191
+ overlap area (in contrast to the Gaussian-HHG beams, for which the overlap between diffraction orders occurs at the
192
+ tails of the intensity distributions), which increases the SNR for the interference fringes. Third, the ring-shaped
193
+ intensity distribution of OAM-HHG beams allows one to collect a higher total number of photons by the detector
194
+ given a fixed dynamic range, which also leads to higher SNR without the need for high dynamic range (HDR).
195
+ We performed ptychographic imaging on three highly periodic structures with 9 μm, 4.5 μm and 3 μm pitches using
196
+ Gaussian- and OAM-HHG beams at a wavelength of 56 nm. Example diffraction patterns and reconstructed images
197
+ from each ptychography scan can be found in Fig. 3. Furthermore, each ptychography scan collected 49 far-field
198
+ diffraction intensity patterns, as shown in a log scale in Supplementary Video 1. Note that while there is a clear change
199
+ in the diffraction patterns from frame to frame for the OAM-HHG case, particularly in the interference fringes between
200
+ the adjacent diffraction orders, the diffraction patterns in the Gaussian-HHG case do not change very much for small
201
+ period samples. All ptychography datasets were taken without making any changes to the EUV microscope — the
202
+ difference in divergence between Gaussian- and OAM-HHG beams is intrinsic to the HHG upconversion process,
203
+ which conserves energy and OAM.
204
+ For the 9 μm pitch sample, the small diffraction angle means that successive orders largely overlap even for the
205
+ Gaussian-HHG beam, as shown in Fig. 1(a). This results in a reasonably good image, apart from some gridding
206
+ artifacts as shown in Fig. 1(d). In comparison, the ptychography scan using OAM-HHG illumination sees more overlap
207
+ resulting in improved SNR in the interference fringes and a much higher-fidelity image with greatly reduced gridding
208
+ artifacts, as shown in Fig. 1(g,j).
209
+ For the smaller 4.5 μm pitch sample, the diffraction orders are further apart, causing the Gaussian-HHG beams to lose
210
+ most of the interference in the diffraction patterns, as shown in Fig. 3(b). The low SNR in the interference fringes
211
+ results in reduced quality image reconstruction, as shown in Fig. 3(e). However, due to their higher intrinsic divergence
212
+ and the unique ring-shaped intensity distribution, OAM-HHG maintains a large area of overlap between neighboring
213
+ diffraction orders with more photons, as shown in Fig. 3(h). This results in higher-quality images of the periodic
214
+ structure with a 4.5 μm period, as shown in Fig. 3(k). Thus, simply by inserting a spiral phase plate to convert the
215
+
216
+
217
+
218
+ driving laser to an OAM beam, while keeping everything else in the microscope the same, a greatly improved
219
+ reconstruction quality is obtained.
220
+ Lastly, for the smallest 3 μm period sample, Gaussian-HHG illumination totally fails due to the lack of interference
221
+ between diffraction orders, as shown in Fig. 3(c,f). In this case, OAM beams can reconstruct a reasonable image,
222
+ although the quality of the unit cell is degraded, as shown in Fig. 3(i,l).
223
+ We also evaluated the quality of these ptychographic reconstructions using complex histogram analysis and the results
224
+ can be found in Supplementary Section 3. We note that all reconstructions in Fig. 3 have the correct sample periodicity
225
+ because this information is directly available from the measured intensity of the diffracted fields — the success or
226
+ failure of the reconstructions of the unit cells depends on whether the relative phase between the diffraction orders
227
+ can be successfully retrieved or not. The ptychography reconstructed images in Fig. 3(d–f, j–l) are complex-valued
228
+ and are shown in a complex representation where the amplitude and phase information are represented by the
229
+ brightness and hue, respectively. The color wheel is shown in the bottom left corner of each panel.
230
+
231
+
232
+
233
+
234
+ Figure 3. High divergence OAM-HHG beams are able to produce higher-quality ptychography images of periodic
235
+ structures than low divergence Gaussian-HHG beams. Three test samples with different periods and shapes, i.e., 9 μm period
236
+ with square holes, 4.5 μm period with circular holes and 3 μm period with circular holes, are investigated. For Gaussian-HHG
237
+ beams, example diffraction patterns from the three test samples are shown in (a–c) and the corresponding ptychography
238
+ reconstructed images are shown in (d–f). The example diffraction patterns and ptychography images from OAM-HHG beams are
239
+ shown in (g–i) and (j–l). The complex-valued image in (d–f, j–l) are plotted in a complex representation where amplitude and
240
+ phase are shown in brightness and hue, respectively.
241
+
242
+ 9 μm pitch
243
+ 4.5 μm pitch
244
+ 3 μm pitch
245
+ (a)
246
+ 1.0
247
+ (b)
248
+ C
249
+ Intensity (a.u.)
250
+ Gaussian HHG
251
+ 0.0
252
+ 1.0
253
+ (g)
254
+ h
255
+ 1
256
+ Intensity (a.u.)
257
+ OAM HHG
258
+ 0.0
259
+ (k)
260
+ um
261
+
262
+ OAM-HHG beams reveal nanoscale defects in otherwise periodic samples
263
+ A major motivation for imaging periodic structures is to reliably detect and pinpoint small areas where the periodicity
264
+ is broken, i.e., to locate defects. However, when the diffraction orders are insufficiently overlapped, the artifacts in
265
+ the ptychographic reconstructions make it difficult or even impossible to locate defects. In contrast, the increase in
266
+ reconstruction quality enabled by OAM-HHG beams, especially the suppression of periodic artifacts in the
267
+ reconstructions (inherent to ptychographic imaging of periodic structures), enables reliable location of nanoscale
268
+ defects in otherwise highly periodic structures. This can potentially find its application in metrology for micro- and
269
+ nano-fabrication and manufacturing, including in advanced metrologies in support of EUV lithography.
270
+ In the 9 μm pitch sample, a damaged carbon bar (~300 nm wide) can be seen in the scanning electron microscopy
271
+ (SEM) image in Fig. 4(e), indicated by the red arrow. We first performed ptychographic imaging of the corresponding
272
+ area of the sample using an OAM-HHG beam. During data acquisition at each scan position, we acquired two
273
+ diffraction patterns with exposure times of 0.1 and 1 second, and combined them to form a composite high dynamic
274
+ range (HDR) image to increase SNR. The reconstructed image of the transmitted amplitude is shown in Fig. 4(a), in
275
+ which the defect is clearly resolved and is indicated by the red arrow. Given that the pixel size in the ptychography
276
+ reconstruction images is 200 nm, the fact that our EUV microscope using OAM-HHG illuminations can clearly image
277
+ a defect with size of about 300 nm (i.e., 1.5× the pixel size in the reconstruction images) makes it very promising to
278
+ detect or image smaller defects down to 10’s of nanometers using shorter EUV wavelengths and increased imaging
279
+ NA.
280
+ Next, a similar experiment is performed using a Gaussian-HHG beam under the same conditions, resulting in the same
281
+ approximate maximum detector count in the diffraction patterns as for the OAM case. The reconstructed image of the
282
+ transmitted amplitude is shown in Fig. 4(b), where reconstruction artifacts heavily corrupt the image details and render
283
+ the defect unidentifiable. Furthermore, due to the different intensity distributions of the Gaussian- and OAM-HHG
284
+ beams, even though the two datasets have the same maximum detector count, the OAM dataset has 3 times more total
285
+ detector counts than the Gaussian one.
286
+ To confirm that the difference in reconstructed image quality is not simply due to this different in the total number of
287
+ photons collected, but is due to how those photons are distributed in the diffraction plane (i.e., in the area of overlap
288
+ between diffraction orders), we performed a third experiment using the Gaussian-HHG beam and triple HDR exposure
289
+ (0.1-, 1- and 3-second exposure time), which leads to longer data acquisition time by a factor of 1.67, to have
290
+ approximately equal total counts in the combined diffraction data compared to the OAM-HHG case. The resulting
291
+ amplitude image is shown in Fig. 4(c). There is significant improvement over the reconstructed image from Gaussian-
292
+ HHG beams with double HDR exposure, but the reconstruction artifacts still make it difficult to identify the nanoscale
293
+ defect. We further quantitatively analyzed the SNR of the defect in these three reconstruction amplitude images using
294
+ the transmission profiles of the thin carbon bar in the boxes in Fig. 4(a-c). These transmission profiles are obtained by
295
+ averaging the transmission images in the vertical direction, and are plotted along the horizontal direction, as shown in
296
+ Fig. 4(d). The SNRs of the defect in Figs. 4(a–c) are calculated (see Methods) and summarized in Table 1. The SNR
297
+ for the defect image from OAM-HHG illumination is improved by a factor of >135 compared to that from Gaussian-
298
+ HHG illumination with equal exposure time. Furthermore, we evaluated the quality of these ptychographic
299
+ reconstructions using complex histogram analysis and verified that OAM-HHG illuminations result in higher fidelity
300
+ images, as discussed in detail in Supplementary Section 3. It is worth emphasizing that when taking the SEM image
301
+ in Fig. 4(e), the high-energy electron beam at 300 keV severely damaged the thin carbon bar, causing shrinkage and
302
+ the appearance of the bright areas on the top and bottom edges. In contrast, the EUV HHG beam can non-destructively
303
+ image both the periodic sample and the defect.
304
+
305
+
306
+
307
+
308
+ Figure 4. Enhanced sensitivity to nanoscale defects in periodic structures using OAM-HHG beams. (a–c) Amplitude images
309
+ of ptychographic reconstruction of a 2D square periodic structure (9 µm period, with a nanoscale defect of ~300 nm in size) under
310
+ various conditions: (a) OAM-HHG beams with double HDR (0.1- and 1- second exposure times), (b) Gaussian-HHG beams with
311
+ equal exposure time as the OAM-HHG case using double HDR (0.1- and 1- second exposure times), and (c) Gaussian-HHG beams
312
+ with roughly equal number of photons as the OAM-HHG case using triple HDR (0.1-, 1- and 3-second exposure times). The red
313
+ arrows indicate the nano-defect in the thin carbon bar. (d) Ptychography reconstructed transmission profile of the thin carbon bar
314
+ containing a nano-defect (indicated by the red arrow) in the boxes in (a–c). The transmission profiles are averaged in the vertical
315
+ direction. The red arrow indicates the nano-defect. (e) An SEM image of the same sample area shows a 300-nm-wide defect. Bright
316
+ areas on the top and bottom edges are due to sample damage from the high energy electron (300 keV) beams.
317
+
318
+ Table 1. Signal-to-noise ratio analysis for the three ptychographic reconstructions shown in Fig. 4(a–c).
319
+ Ptychographic reconstructions
320
+ signal
321
+ background
322
+ noise
323
+ SNR
324
+ Improvement
325
+ factor
326
+ OAM-HHG in Fig. 4(a)
327
+ 1.46e-1
328
+ 1.52e-2
329
+ 5.62e-3
330
+ 23.25
331
+ 135.8
332
+ Gaussian-HHG, equal
333
+ exposure time in Fig. 4(b)
334
+ 7.34e-2
335
+ 6.94e-2
336
+ 2.35e-2
337
+ 0.17
338
+ Benchmark
339
+ Gaussian-HHG, equal number
340
+ of photons in Fig. 4(c)
341
+ 7.40e-2
342
+ 1.72e-2
343
+ 1.31e-2
344
+ 4.34
345
+ 25.53
346
+
347
+ (a)
348
+ (b)
349
+ C
350
+ 5um
351
+ (p)
352
+ 0.2
353
+ (e)
354
+ OAM-HHG
355
+ Gaussian-HHG, equal exposure time
356
+ Gaussian-HHG, equal number of photons
357
+ 300 nm
358
+ 0.05
359
+ 6
360
+ 8
361
+ 10
362
+ 12
363
+ 14
364
+ 16
365
+ Sample position (μm)
366
+
367
+ Conclusion
368
+ In conclusion, we demonstrated that by incorporating illumination engineering via OAM-HHG beams into an EUV
369
+ ptychography microscope, we can address the long-standing challenge of high-fidelity coherent diffractive imaging
370
+ of periodic structures. The intrinsic large divergence and ring-shaped intensity distribution of OAM-HHG beams leads
371
+ to the formation of higher SNR interference fringes in the diffraction patterns — thus enabling faster and higher
372
+ fidelity image reconstructions using the basic ePIE algorithm, without extra algorithmic effort. Furthermore, the
373
+ improvement in image fidelity allowed sensitive detection of a 300 nm wide defect, which is 1.5× the pixel size of
374
+ the reconstructed images, in an otherwise periodic thin carbon mesh with 9 μm period.
375
+ Ptychographic imaging of highly periodic structures has been widely recognized to be challenging, which has
376
+ precluded its application in critical science and technology fields such as semiconductor metrology and EUV
377
+ photomask inspection. Future studies can employ coherent EUV and X-ray vortex beams to enable nanometer- or
378
+ even sub-nanometer-scale spatial resolution in a broad range of next-generation nanoelectronics, photonics and
379
+ quantum devices. A particularly interesting direction would be to use coherent EUV light at a wavelength of 13.5 nm
380
+ for actinic imaging and inspection of EUV photomasks [19-25]. Finally, this work can provide inspiration for the
381
+ electron ptychography community (e.g., cryo-EM and 4D-STEM), where recent work has explored the potential
382
+ benefits of engineered vortex electron beams for enhanced imaging fidelity and lower dose [51,52].
383
+
384
+ Methods
385
+ Experimental setup
386
+ A Ti:sapphire amplifier system (KMLabs Wyvern HE) with a 𝜆 = 790 nm central wavelength, 45 fs pulse duration, 8
387
+ mJ pulse energy, and 1 kHz repetition rate was used for this demonstration. Part of the laser output is used for second
388
+ harmonic generation (SHG) in a 𝛽-barium borate crystal (𝛽-BBO), yielding a frequency doubled beam at 395 nm
389
+ central wavelength for driving the HHG process. This SHG beam is focused into a semi-infinite gas cell, which
390
+ consists of a Brewster-cut entrance window, a 20 cm length filled with 50 torr of argon gas, and a copper gasket placed
391
+ in the focal plane of the driving laser where a coherent HHG beam is generated [53,54]. The driving laser at 395 nm
392
+ central wavelength is separated from the high-harmonic beam by using a 200 nm aluminum filter. This filter also
393
+ blocks any harmonics with 𝜆 > 77 nm, while harmonics with 𝜆 < 39 nm exceed the HHG cutoff energy, and so are
394
+ not generated. Furthermore, due to the centrosymmetry of the medium, only odd-numbered harmonic orders are
395
+ generated. The resulting EUV beam after the aluminum filter thus consists of narrow peaks at the 7th (𝜆 = 56 nm) and
396
+ 9th (𝜆 = 44 nm) harmonics. The intensity ratio of the two harmonics in our experimental setup is estimated to be
397
+ Iλ=56nm/Iλ=44nm ~30:1, which can be well-approximated as a monochromatic illumination suitable for ptychographic
398
+ imaging. For generating HHG beams with a Gaussian spatial profile, we used an SHG beam with pulse energy of
399
+ ~500 µJ. For generating HHG beams carrying OAM, we increased the pulse energy of the SHG beam to ~1.5 mJ, and
400
+ inserted a spiral phase plate (Holo-Or, VL-214-395-Y-A, OAM charge number ℓ = 1 at 395 nm wavelength) right
401
+ after the focusing optics into the semi-infinite gas cell to generate a driving beam with OAM charge number ℓ = 1,
402
+ and 𝜆 = 395 nm. The increased pulse energy is necessary in order to make the peak intensity (located at a central point
403
+ for the Gaussian beam, but distributed in a ring for the OAM beam) equal for the two cases, thus matching HHG cutoff
404
+ energies and conversion efficiency. Due to the conservation of OAM in HHG, the resulting quasi-monochromatic 7th
405
+ harmonic beam (𝜆 = 56 nm) carries an OAM charge number of ℓ = 7.
406
+ The HHG beam at 56 nm wavelength is focused sequentially by two toroidal mirrors (1: B4C-coated, feff = 27 cm, θ =
407
+ 15°; 2: Au-coated, feff = 50 cm, θ = 10°) in a Wolter configuration to create an imaging system with higher NA (feff =
408
+ 17 cm) while managing coma aberration [55]. The resulting focusing beam is redirected towards the sample at normal
409
+ incidence using a glancing incidence mirror (B4C coating, fused silica substrate, 3° incidence angle from grazing,
410
+ nominal reflectivity 95%). The testing samples are three Quantifoil holey carbon films which have various hole sizes
411
+ and shapes arranged in a rectangular grid, and are mounted on standard Ted Pella Ø3mm Cu TEM grids with 200
412
+ mesh (125 um pitch, 90 um hole width and 35 um bar width). More specifically, the three Quantifoil holey carbon
413
+
414
+
415
+
416
+ films have a pitch of 9 μm (7 μm square hole and 2 μm bar, product number 656-200-CU), 4.5 μm (3.5 μm diameter
417
+ circular holes and 1 μm separation, product number 660-200-CU) and 3 μm (2 um diameter circular holes and 1 um
418
+ separation, product number 661-200-CU), respectively. The samples are positioned close to the beam focus, and are
419
+ mounted on a precision translation stage ensemble (SmarAct XYZ-SLC17:30). They are translated in the plane
420
+ perpendicular to the beam path to perform ptychographic scans in 7 × 7 rectangular grids (49 positions) with nominally
421
+ 3.3 μm between adjacent positions. A random offset of ±20% of the scan step size was added to each scan position
422
+ to avoid artifacts originating from the scan grid itself. The far-field diffraction patterns are recorded by an EUV-CCD
423
+ detector (Andor iKon-L, 2048 × 2048, 13.5 μm pixel size) positioned 50 mm after the sample. In order to obtain the
424
+ best ptychographic reconstructions possible for each illumination case, we carefully characterized each probe function
425
+ in the sample planes by taking ptychographic scans on a non-periodic sample and reconstructing both the sample and
426
+ the probe function through blind deconvolution. The reconstructed probe functions were used in the ptychographic
427
+ reconstructions of highly periodic samples as initial guesses.
428
+
429
+ Ptychographic data processing and image reconstructions
430
+ The diffraction patterns were recorded by an EUV-CCD detector with 2048 × 2048 pixels and 13.5 μm detector pixel
431
+ size. During data processing, we cropped them to 1024 × 1024 because very few photons were detected outside this
432
+ area. The resulting pixel size of the reconstructed images is
433
+ 𝑑𝑟 =
434
+ 𝜆∙𝑧
435
+ 𝑁∙𝑑𝑥 ≈ 200 nm,
436
+
437
+
438
+
439
+
440
+
441
+ (2)
442
+ where λ = 56 nm is the wavelength, z = 50 cm is the distance from the sample to the CCD detector, N = 1024 is the
443
+ number of pixels in one direction and dx = 13.5 μm is the detector pixel size.
444
+ The ptychographic reconstructions were performed in two steps using only the ePIE algorithm [13]. In the first step,
445
+ the complex-valued probe functions (both Gaussian- and OAM-HHG beams) were characterized by performing
446
+ ptychography on a non-periodic sample and using the ePIE algorithm for reconstruction. In the second step, the pre-
447
+ characterized probe functions were used as initial guesses for reconstructing the periodic structures. For the first 100
448
+ iterations, only the sample images were updated while the probe functions were kept fixed. Then, both the sample
449
+ images and probe functions were updated by the ePIE algorithm for another 900 iterations. The total number of
450
+ iterations for ptychographic reconstructions of periodic structures was 1000. This procedure was kept constant for all
451
+ Gaussian-HHG and OAM-HHG reconstructions in this paper. We also want to emphasize the fast convergence speed
452
+ of our technique compared to that in the work by Gardner et al. [15], which takes more than 10,000 iterations.
453
+
454
+ SNR analysis of imaging of the nano-defect
455
+ The SNR of the defect detection in Table 1 is calculated as follows: We start from the three curves in Fig. 4(d). For
456
+ each curve, corresponding to an experimental condition shown in the legend, the signal level is the transmission value
457
+ in the defect, the background level and noise level are calculated as the average and the standard deviation, respectively,
458
+ of the transmission values excluding the defect. The SNR is then calculated using the following formula:
459
+ 𝑆𝑁𝑅 =
460
+ 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
461
+ 𝑛𝑜𝑖𝑠𝑒
462
+ .
463
+
464
+
465
+
466
+
467
+ (3)
468
+
469
+ Data availability
470
+ The data that supports the plots and other findings within this paper are available from the corresponding author upon
471
+ reasonable request.
472
+
473
+
474
+
475
+
476
+
477
+ References
478
+ [1] Miao, J. et al. Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-
479
+ crystalline specimens. Nature 400, 342–344 (1999).
480
+ [2] Rodenburg, J. M. et al. Hard-X-Ray Lensless Imaging of Extended Objects. Phys. Rev. Lett. 98, 034801 (2007).
481
+ [3] Rodenburg, J. M. et al. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy
482
+ 107, 227-231 (2007).
483
+ [4] Thibault, P. et al. High-resolution scanning x-ray diffraction microscopy. Science 321, 379-382 (2008).
484
+ [5] Seaberg, M. D. et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using
485
+ coherent Fresnel ptychography. Optica 1, 39-44 (2014).
486
+ [6] Shapiro, D. A. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat.
487
+ Photon. 8, 765-769 (2014).
488
+ [7] Donnelly, C. et al. Element-specific x-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett.
489
+ 114, 115501 (2015).
490
+ [8] Lo, Y. H. et al. Multimodal x-ray and electron microscopy of the Allende meteorite. Sci. Adv. 5, eaax3009 (2019).
491
+ [9] Tanksalvala, M. et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization
492
+ using phase-sensitive EUV imaging reflectometry. Sci. Adv. 7, eabd9667 (2021).
493
+ [10] Loetgering, L. et al. Advances in laboratory-scale ptychography using high harmonic sources. Opt. Exp. 30(3),
494
+ 4133-4164 (2022).
495
+ [11] Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758-2769 (1982).
496
+ [12] Luke, D. R. Relaxed average alternating reflections for diffraction imaging. Inverse Problems 21, 37-50 (2005).
497
+ [13] Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive
498
+ imaging. Ultramicroscopy 109, 1256-1262 (2009).
499
+ [14] Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J.
500
+ Phys. 14, 063004 (2012).
501
+ [15] Gardner, D. F. et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-
502
+ harmonic light source. Nat. Photon. 11, 259-264 (2017).
503
+ [16] Lazarev, S. et al. Ptychographic x-ray imaging of colloidal crystals. Small 14, 1702575 (2018).
504
+ [17] Mancini, G. F. et al. Colloidal crystal order and structure revealed by tabletop extreme ultraviolet scattering and
505
+ coherent diffractive imaging. Opt. Exp. 26, 11393-11406 (2018).
506
+ [18] Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543,
507
+ 402-406 (2017).
508
+ [19] Harada, T. et al. Imaging of extreme-ultraviolet mask patterns using coherent extreme-ultraviolet scatterometry
509
+ microscopes based on coherent diffraction imaging. J. Vac. Sci. Technol. B 29, 06F503 (2011).
510
+ [20] Goldberg, K. A. et al. Commissioning an EUV mask microscope for lithography generations reaching 8 nm. Proc.
511
+ SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, 867919 (1 April 2013).
512
+ [21] Helfenstein, P. et al. Scanning coherent diffractive imaging methods for actinic EUV mask metrology. Proc.
513
+ SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII, 97761F (18 March 2016).
514
+
515
+
516
+
517
+ [22] Hellweg, D. et al. Actinic review of EUV masks: performance data and status of the AIMSTM EUV system. Proc.
518
+ SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 101430J (24 March 2017).
519
+ [23] Rajendran, R. et al. Towards a stand-alone high-throughput EUV actinic photomask inspection tool – RESCAN.
520
+ Proc. SPIE 10145, Metrology, Inspection, and Process Control for Microlithography XXXI, 101450N (28 March
521
+ 2017).
522
+ [24] Mochi, I. et al. Quantitative characterization of absorber and phase defects on EUV reticles using coherent
523
+ diffraction imaging. J. of Micro/Nanolithography, MEMS, and MOEMS 19(1), 014002 (30 January 2020).
524
+ [25] Wang, B. et al. Robust and reliable actinic ptychographic imaging of highly periodic structures in EUV
525
+ photomasks. Proc. SPIE 12293, Photomask Technology, 122930N (1 December 2022).
526
+ [26] Rundquist, A. et al. Phase-matched generation of coherent soft x-rays. Science 280(5368), 1412–1415 (1998).
527
+ [27] Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297(5580),
528
+ 376–378, (2002).
529
+ [28] Zhang, X. et al. Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic
530
+ generation. Opt. Lett. 29(12), 1357–1359, (2004).
531
+ [29] Baksh, P. D. et al. Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal
532
+ neurons at high resolution. Sci. Adv. 6, eaaz3025 (2020).
533
+ [30] Brooks, N. J. et al. Temporal and spectral multiplexing for EUV multibeam ptychography with a high harmonic
534
+ light source. Opt. Exp. 30(17), 30331-30346 (2022).
535
+ [31] Eschen, W. et al. Material-specific high-resolution table-top extreme ultraviolet microscopy. Light: Science &
536
+ Applications 11:117 (2022).
537
+ [32] Fan, T. et al. Bright Circularly Polarized Soft X-Ray High Harmonics for X-Ray Magnetic Circular Dichroism.
538
+ PNAS 112(46), 14206–14211 (2015).
539
+ [33] Chen, C. et al. Tomographic Reconstruction of Circularly Polarized High Harmonic Fields: 3D Attosecond
540
+ Metrology. Sci. Adv. 2, e1501333 (2016).
541
+ [34] Zusin, D. et al. Direct measurement of the static and transient magneto-optical permittivity of cobalt across the
542
+ entire M-edge in a reflection geometry by use of polarization scanning. Phys. Rev. B 97, 024433 (2018).
543
+ [35] Rana, A. et al. Direct observation of 3D topological spin textures and their interactions using soft x-ray vector
544
+ ptychography. Nat. Nanotechnol (in press), arxiv.2104.12933 (2022).
545
+ [36] Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642-1645
546
+ (2006).
547
+ [37] Torres, J. P. & Torner, L. Twisted photons: applications of light with orbital angular momentum (Wiley-VCH,
548
+ 2011).
549
+ [38] Willner, A. E. et al. Optical communication using orbital angular momentum beams. Adv. Opt. Photon. 7(1), 66–
550
+ 106 (2015).
551
+ [39] Wang, B. et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt.
552
+ Exp. 29(3), 3342-3358 (2021).
553
+ [40] Hernández-García, C., Picón, A., Román, J. S. & Plaja, L. Attosecond extreme ultraviolet vortices from high-
554
+ order harmonic generation. Phys. Rev. Lett. 111, 083602 (2013).
555
+ [41] Gariepy, G. et al. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113,
556
+ 153901 (2014).
557
+
558
+
559
+
560
+ [42] Géneaux, R. et al. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat.
561
+ Commun. 7, 12583 (2016).
562
+ [43] Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via
563
+ simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123-130 (2019).
564
+ [44] Paufler, W., Böning, B. & Fritzsche, S. High harmonic generation with Laguerre-Gaussian beams. J. Opt. 21,
565
+ 094001 (2019).
566
+ [45] Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science
567
+ 364, 1253 (2019).
568
+ [46] Rego, L. et al. Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs
569
+ with tunable line spacing. Sci. Adv. 8, eabj7380 (2022).
570
+ [47] Kong, F. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970
571
+ (2017).
572
+ [48] Hoppe, W. Diffraction in inhomogeneous primary wave fields. I. Principle of phase determination from electron
573
+ diffraction interference. Acta Crystallogr. A 25, 495-501 (1969).
574
+ [49] Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer F. Probe retrieval in ptychographic coherent diffractive
575
+ imaging. Ultramicroscopy 109(4), 338-343 (2009).
576
+ [50] Nebling, R. et al. A priori information in ptychographic image reconstruction for EUV mask metrology. Proc.
577
+ SPIE 11875, Computational Optics, 118750M (14 September 2021).
578
+ [51] Pelz, P. M., Qiu, W. X., Bücker, R., Kassier, G. & Miller, R. J. Low-dose cryo electron ptychography via non-
579
+ convex Bayesian optimization. Sci. Rep. 7(1), 1-13 (2017).
580
+ [52] Zeltmann, S. E. et al. Patterned probes for high precision 4D-STEM Bragg measurements. Ultramicroscopy 209,
581
+ 112890 (2020).
582
+ [53] Sutherland, J. R. et al. High harmonic generation in a semi-infinite gas cell. Opt. Exp. 12(19), 4430-4436 (2004).
583
+ [54] Steingrube, D. S. et al. Phase matching of high-order harmonics in a semi-infinite gas cell. Phys. Rev. A 80,
584
+ 043819 (2009).
585
+ [55] Coudert-Alteirac, H. et al. Micro-focusing of broadband high-order radiation by a double toroidal mirror. Appl.
586
+ Sci. 7(11), 1159 (2017).
587
+
588
+ Acknowledgements
589
+ This research was primarily supported by STROBE: a National Science Foundation (NSF) Science and Technology
590
+ Center (STC) under award DMR-1548924 for the setup and new illumination engineering and algorithms, and also
591
+ by a DARPA STTR grant 140D0419C0094 for imaging periodic samples. A Moore Foundation Grant No. 10784
592
+ supported the low-dose imaging research. The authors thank Guan Gui, Drew Morrill, Yunzhe Shao, Chen-Ting Liao,
593
+ Emma Cating-Subramanian for comments on the text.
594
+
595
+ Author contributions
596
+ B. W., N. J. B., M. M. M. and H. C. K. conceived the experiment. B. W., N. J. B. and P. J. built and maintained the
597
+ EUV source. B. W. and N. J. B. collected the data sets and performed the reconstructions and data analysis. N. J., Y.
598
+ E. and B. W. performed the SEM imaging of the test samples. M.T., Y.E. and N.J. advised on the phase retrieval
599
+
600
+
601
+
602
+ algorithms and setup, while I.B. helped to develop the laser setup. All authors designed aspects of the experiment,
603
+ performed the research and wrote the paper.
604
+
605
+ Competing financial interests
606
+ B. W., N. J. B., M. M. M. and H. C. K. have submitted a patent disclosure based on this work. M.M M. and H. C. K.
607
+ are partial owners of KMLabs Inc. who manufactured the ultrafast laser used in this study.
608
+
609
+
610
+
611
+
612
+
613
+
614
+ Supplementary information:
615
+ S1. Convolution theorem perspective on ptychographic imaging of highly periodic structures
616
+ In ptychography, the far-field diffraction fields are approximated as the Fourier transform of the product of the
617
+ complex probe and object functions, p(x,y) and o(x,y), i.e.,
618
+ Ψ (u,v) = ℱ [p(x,y) × o(x,y)], (S1)
619
+ where ℱ is the Fourier transform operation, (x,y) are the real space coordinates and (u,v) are the reciprocal space
620
+ coordinates. According to the convolution theorem, this can also be represented as a convolution of the Fourier
621
+ transform of the probe function, P(u,v) = ℱ [p(x,y)], and that of the object function, O(u,v) = ℱ [o(x,y)], i.e.,
622
+ Ψ(u,v) = P(u,v) ⁕ O(u,v), (S2)
623
+ where ⁕ is the convolution operation. Often, P(u,v), which is the complex beam in the detector plane when no sample
624
+ is in the way, has an edge resulting from apertures in the system, as indicated by the circle in the close-ups in Fig.
625
+ 1(a,c). In the case of 2D highly periodic structures, O(u,v) consists of a 2D comb of 𝛿 functions (diffraction peaks)
626
+ arranged in a 2D periodic grid, the amplitudes and phases of which are modulated by the Fourier transform of the unit
627
+ cell of the periodic structure. This is a sparse function in the reciprocal space. The convolution operation in Eq. (S2)
628
+ puts a copy of P(u,v) at the location of each 𝛿 function with modulated amplitude and phase.
629
+ In cases where P(u,v) is small in size such that all diffraction orders are isolated, the modulated phase of each
630
+ diffraction order is totally lost when we collect intensity measurements, thus causing ptychography to fail. However,
631
+ in cases where P(u,v) is sufficiently large in size, the interference fringes in the overlapped regions between
632
+ neighboring diffraction orders encoded the relative phase of each diffraction orders into the intensity modulations that
633
+ are directly measurable with the EUV-CCD camera, thus enabling fast and robust ptychographic reconstructions of
634
+ the highly periodic structures.
635
+
636
+ S2. A phase-change-like behavior in ptychography demonstrated by Gaussian-HHG
637
+ illuminations with controlled divergence
638
+ Since the key to successfully achieving ptychographic imaging of highly periodic structures is to obtain overlap and
639
+ interference between neighboring diffraction orders, an abrupt, phase-change-like behavior in reconstruction quality
640
+ is expected as one smoothly changes the illumination NA. We experimentally demonstrated this behavior in
641
+ ptychographic imaging of highly periodic structures, as shown in Fig. S1, using Gaussian-HHG illuminations with a
642
+ controlled illumination NA. This is achieved by installing an in-vacuum iris ~0.5 m after the semi-infinite gas cell,
643
+ which allows direct control of the divergence of the HHG beams, and thus of the illumination NA on the sample and
644
+ the overlap between neighboring diffraction orders given the same focusing optics.
645
+ We performed four ptychography scans on the same 2D square periodic structure with a 9 μm period under various
646
+ illumination NAs controlled by the in-vacuum iris. Fig. S1(a–d) shows example diffraction patterns from each scan
647
+ from small illumination NA in (a) to large illumination NA in (d). The close-ups in the blue circles show the effect of
648
+ illumination NA on the resulting diffraction patterns. We then reconstructed these four datasets using the standard
649
+ ePIE algorithm [13] and the corresponding results are shown in Fig. S1(e–h). It is clear that for ptychography scans
650
+ where diffraction orders are isolated, the periodic structure cannot be reliably reconstructed due to the lost phase
651
+ information, as shown in Fig. S1(e–f), while for ptychography scans where the illumination NA is large enough to
652
+ support overlap between diffraction orders, the ePIE algorithm can quickly and reliably reconstruct the periodic
653
+ structures.
654
+
655
+
656
+
657
+
658
+
659
+ Figure S1. Experimental demonstrations of a phase-change-like behavior in ptychographic imaging of 2D square periodic
660
+ structures with 9 um period using Gaussian-HHG beams with controlled divergence. (a–d) Example diffractions from a 2D square
661
+ periodic structure using Gaussian-HHG beams with various divergences. The inserts show close-ups of the center of the diffraction
662
+ patterns. (e–h) The corresponding ptychographic reconstructions of the 2D square periodic structure under various illumination
663
+ conditions. The reconstructions are successful only when the diffraction orders have overlap, showing a phase-change-like behavior.
664
+
665
+ S3. Image quality assessment using complex histogram analysis
666
+ We use a complex histogram analysis to evaluate the quality of the ptychographic reconstructions in Fig. 3(d–f), 3(j–
667
+ l) and 4(a–c). A 2D complex histogram is an extension of a normal histogram showing how many data points of a
668
+ complex field lie within a certain range of real and imaginary parts. For the approximately binary test samples used in
669
+ this study, ideally, the complex histograms consist of only two 𝛿-function peaks corresponding to the transmissive
670
+ and opaque areas. In reality, the two 𝛿-function peaks are broadened due to limited SNR and spatial resolution. The
671
+ quality of the ptychographic reconstructions can thus be assessed by examining the degree of broadening of these
672
+ peaks, where reconstructions with higher quality have narrower peaks.
673
+ We first evaluate the quality of the ptychographic reconstructions in Fig. 3. In the complex histograms shown in Fig.
674
+ S2, the two parts of the sample (free space and the carbon bars) are indicated by the red and yellow circles respectively.
675
+ The complex histograms for OAM-HHG images (d–f) have narrower peaks than those for Gaussian-HHG images (a–
676
+ c), which indicates that OAM-HHG images have better quality. The reconstruction in (c) (Gaussian-HHG
677
+ illuminations on a 3-um-pitch structure) failed, thus not showing the double-peak feature.
678
+ We then evaluate the quality of the ptychographic reconstructions in Fig. 4. As shown in Fig. S3(a–c), the
679
+ ptychographic reconstructions are shown in the complex representation with amplitude and phase indicated by
680
+ brightness and hue. Visually, the image from OAM-HHG illumination in a has the best quality in terms of a sharp
681
+ transition from free space area to thin carbon bar area and smoothness within free space or carbon bar areas. The
682
+ complex histograms in (d–f) confirmed this: the primary peaks (indicated by the red and yellow circles) in the complex
683
+ histogram from OAM-HHG illuminations (as shown in d) are the narrowest.
684
+
685
+ (a)
686
+ (b)
687
+ (c)
688
+ (d)
689
+ (e)
690
+ (f)
691
+ (g)
692
+ (h)
693
+ 10um
694
+
695
+
696
+
697
+ Figure S2. Quality assessment of ptychographic reconstructions in Fig. 3 using complex histogram analysis. (a–c) Complex
698
+ histograms of ptychographic reconstructions of 9 μm, 4.5 μm and 3 μm pitch periodic structures using Gaussian-HHG illuminations.
699
+ The ptychographic reconstructions are shown in each bottom left corner and correspond to Fig. 3(d–f). (d–f) Complex histograms
700
+ of ptychographic reconstructions of 9 μm, 4.5 μm and 3 μm pitch periodic structures using OAM-HHG illuminations. The
701
+ ptychographic reconstructions are shown in each bottom left corner and correspond to Fig. 3(j–l). These complex histograms consist
702
+ of two primary peaks (except panel c because the reconstruction failed), which correspond to the open space area (indicated by the
703
+ red circles) and the thin carbon bar area (indicated by the yellow circles). The complex histograms from OAM-HHG illuminations
704
+ (the bottom row) have narrower primary peaks than those from Gaussian-HHG illuminations (the top row), which shows superior
705
+ image quality for OAM-HHG reconstructions. The ‘Re’ and ‘Im’ axes in (a) show the complex coordinate.
706
+
707
+ Im
708
+
709
+
710
+ Figure S3. Quality assessment of ptychographic reconstructions in Fig. 4 using complex histogram analysis. (a–c) Complex
711
+ representations of ptychographic reconstructions of 2D square periodic structures with 9 μm period under three different
712
+ experimental conditions: (a) an OAM-HHG illumination, (b) a Gaussian-HHG illumination with equal exposure time, and (c) a
713
+ Gaussian-HHG illumination with equal number of photons. The amplitude and phase of these images are presented in brightness
714
+ and hue, respectively. The color wheel is shown in the bottom left corner of panel a. (d–f) Complex histograms of ptychographic
715
+ reconstructions are shown in (a–c). These complex histograms all consist of two primary peaks, which correspond to the open
716
+ space area, indicated by the red circles, and the thin carbon bar area, indicated by the yellow circles. The complex histogram in
717
+ panel d has the narrowest primary peaks, which indicates its superior image quality provided by the intrinsic advantages of OAM-
718
+ HHG illumination.
719
+
720
+
721
+ (a)
722
+ (b)
723
+ (c)
724
+ Im
725
+ Re
726
+
727
+
728
+ Figure S4. Complex representations of the ptychography reconstructed Gaussian-HHG and OAM-HHG beams in the
729
+ sample plane (a–b) and in the detector plane (c–d). The amplitude and phase of the beams are shown in brightness and hue,
730
+ respectively. The scale bars in (a–b) indicate beam size in the sample plane, and those in (c–d) indicate beam divergence angle in
731
+ the detector plane. The OAM-HHG beam in the detector plane in (d) shows a characteristic donut intensity profile, while the OAM-
732
+ HHG beam in the sample plane does not show a donut intensity profile due to aberrations introduced by the focusing optics.
733
+
734
+ Gaussian-HHG
735
+ OAM-HHG
736
+ (a)
737
+ (b)
738
+ Sample plane
739
+ 0
740
+
741
+ 50 um
742
+ 50 μm
743
+ (c)
744
+ (d)
745
+ Detectorplane
746
+ 10mrad
747
+ 10mrad
ItE5T4oBgHgl3EQfXA9_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdE1T4oBgHgl3EQfsAXy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7164b0325f7fecb51f3c369022730022b82f4a7eed9608cf944a82851f605d
3
+ size 514042
KNE3T4oBgHgl3EQfAQkY/content/2301.04255v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ec24b3ac94999436caa892d5a426db05c759edcadac3f3ee63c99dad7000af0
3
+ size 1420963
KNE3T4oBgHgl3EQfAQkY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c949651a7106fbd350efd201d37518dcfd42b10611afa36e9029d8606e3bc8f
3
+ size 102942
LdE1T4oBgHgl3EQfZAQe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1562dfb4602ff0a92797f2fac73f85e0cf253f5f3b664905f4652892a0759676
3
+ size 11796525
M9AyT4oBgHgl3EQfgfjF/content/tmp_files/2301.00361v1.pdf.txt ADDED
@@ -0,0 +1,1763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Anomalous conductivities in the holographic
2
+ Stückelberg model
3
+ Nishal Rai1,2 and Eugenio Megías1,3
4
+ 1 Departamento de Física Atómica, Molecular y Nuclear,
5
+ Universidad de Granada, Avenida de Fuente Nueva s/n, E-18071 Granada, Spain
6
+ 2 Department of Physics, SRM University Sikkim, Upper Tadong, Sikkim, India
7
+ 3 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada,
8
+ E-18071 Granada, Spain
9
+ January 3, 2023
10
+ Abstract
11
+ We have studied a massive U(1) gauge holographic model with pure
12
+ gauge and mixed gauge-gravitational Chern-Simons terms. The full
13
+ backreaction of the gauge field on the metric tensor has been consid-
14
+ ered in order to explore the vortical and energy transport sector. The
15
+ background solution has been computed numerically. On this back-
16
+ ground, we have considered the fluctuation of the fields and evaluated
17
+ the different correlators. We have found that all the correlators depend
18
+ on the mass of the gauge field. Correlators such as the current-current
19
+ one, ⟨JxJx⟩, which were completely absent in the massless case, in the
20
+ presence of a finite gauge boson mass start picking up some finite value
21
+ even at zero chemical potential. Similarly, the energy-current corre-
22
+ lator, ⟨T0xJx⟩, which was also absent in the massless theory, has now
23
+ a non-vanishing value but for finite values of the chemical potential.
24
+ Using Kubo formulae we have evaluated the chiral magnetic and chiral
25
+ vortical conductivities and studied their behaviour with the variation
26
+ of the mass of the gauge field. Our findings for the chiral vortical con-
27
+ ductivity, σV , and the chiral magnetic/vortical conductivity of energy
28
+ current, σε
29
+ B = σε
30
+ V , are completely new results. In addition to this, we
31
+ have found that these anomalous transport coefficients depend linearly
32
+ both on the pure Chern-Simon coupling, κ, and on the mixed gauge-
33
+ gravity Chern-Simon coupling, λ. One of the results which we would
34
+ like to highlight is the contribution to σV induced by λ in the massive
35
+ theory, which was not present in the massless case.
36
+ 0
37
+ arXiv:2301.00361v1 [hep-th] 1 Jan 2023
38
+
39
+ 1
40
+ Introduction
41
+ The AdS/CFT correspondence [1, 2] has been one of the most prominent
42
+ theoretical handles for studying systems which were very hard to tackle pre-
43
+ viously. It states that, in the low energy limit, the large-Nc, N = 4 super
44
+ Yang-Mills field theory in four-dimensional space is equivalent to the type
45
+ IIB string theory in AdS5 × S5 space. It has been widely applied for the
46
+ study of strongly coupled systems such as condensed matter systems, QCD
47
+ and hydrodynamics. Our current objective is to study the hydrodynamical
48
+ approach using this correspondence.
49
+ Quantum chiral anomalies are very fascinating properties which arise in
50
+ the context of relativistic field theories of chiral fermions beyond perturba-
51
+ tion theory [3–5]. Chiral anomalies have played a very crucial role in the
52
+ formulation of relativistic hydrodynamics [6]. Anomaly-induced transport
53
+ mechanisms have appeared on many occasions since the 80’s [7]. The ax-
54
+ ial current was the main topic in [8], and AdS/CFT correspondence was
55
+ first used to anomalous hydrodynamics in [9]. Recently a lot of attention is
56
+ gained by the effect of quantum anomalies on the hydrodynamics of otherwise
57
+ conserved currents. The chiral magnetic effect [10] and the chiral vortical ef-
58
+ fect [11–14] are two of such effects. In the former, the axial anomaly induces
59
+ a current parallel to the external magnetic field, while in the latter a current
60
+ is generated due to the presence of a vortex in the charged relativistic fluid.
61
+ It has been argued that these and other anomaly-induced effects may be pro-
62
+ duced in non-central heavy ion collisions at RHIC and LHC [15], inducing in
63
+ particular an event-by-event parity violation. These effects can also lead to
64
+ anomalous transport properties in some condensed matter systems, such as
65
+ the Weyl semi-metals [16,17].
66
+ In the past few years, these anomalous effects has been implemented
67
+ in holography giving a lot of insights.
68
+ One of such works is [18], where
69
+ they considered a holographic model with a pure Chern-Simon term, and
70
+ they computed the chiral magnetic conductivity which exactly matches with
71
+ the results of the weakly coupled system. This is due to the fact that the
72
+ anomalous conductivities have non-renormalization properties so that they
73
+ are independent of the coupling constant. Later on, this model was extended
74
+ to incorporate the effect of the energy-momentum tensor related to the energy
75
+ current as well, and the mixed gauge-gravitational Chern-Simon term was
76
+ added in the gravitational action [19–21]. In these references the gauge fields
77
+ were considered to be massless.
78
+ In a similar line of work, the authors of [22] have studied the depen-
79
+ dence of the anomalous transport properties with the mass of the gauge field
80
+ which is introduced via the Stückelberg mechanism. In their case, they have
81
+ 1
82
+
83
+ considered the probe limit. As a consequence the sectors comprising of the
84
+ correlators related to the energy-momentum tensor were not accessible, in
85
+ particular: i) the chiral vortical conductivity, ii) the chiral vortical conduc-
86
+ tivity of energy current, and iii) the chiral magnetic conductivity of energy
87
+ current. In a sense, this model only comprises a pure gauge Chern-Simon
88
+ term. Our goal in the present work is to access those sectors and to study
89
+ the chiral vortical effects as well. To this end, we have considered the full
90
+ backreaction of the gauge field onto the metric tensor, and included in the
91
+ action of the model a mixed gauge-gravitational Chern-Simons term.
92
+ The paper has been organized as follows. In Section 2, we will discuss the
93
+ model under consideration and get the full backreacted numerical solution
94
+ for the background. Next, we will discuss in Section 3 the Kubo formulae
95
+ and their relation with the retarded Green’s functions, i.e. the correlators.
96
+ Using the AdS/CFT dictionary we will define these correlators in terms of
97
+ the boundary terms. In Section 4 we will start presenting our results; first,
98
+ we will compare the results with the known results for the massless case [19],
99
+ and after that, we will present our main results regarding the behaviour of the
100
+ two-point correlators including the mass term for the gauge boson. We will
101
+ discuss in the same section the effect of the mixed gauge-gravitational Chern-
102
+ Simons term in these correlators, and finally we will show how the gauge
103
+ boson mass affects the anomalous conductivities, namely the chiral vortical
104
+ conductivity, σV , the chiral vortical conductivity of energy current, σε
105
+ V , the
106
+ chiral magnetic conductivity, σB, and the chiral magnetic conductivity for
107
+ energy current, σε
108
+ B. Finally, we end with a discussion in Section 5.
109
+ 2
110
+ Holographic massive U(1) gauge theory
111
+ We consider a holographic model with a massive U(1) gauge boson that
112
+ includes both a pure gauge and a mixed gauge-gravitational Chern-Simon
113
+ term in the action [19,22]. The action of the model is
114
+ S
115
+ =
116
+ 1
117
+ 16πG
118
+
119
+ d5x√−g
120
+
121
+ R + 2Λ − 1
122
+ 4FMNF MN
123
+ −m2
124
+ 2 (AM − ∂Mθ)(AM − ∂Mθ)
125
+ +ϵMNPQR(AM − ∂Nθ)
126
+ �κ
127
+ 3FNPFQR + λRA
128
+ BNPRB
129
+ AQR
130
+ � �
131
+ +SGH + SCSK ,
132
+ (2.1)
133
+ 2
134
+
135
+ where
136
+ SGH
137
+ =
138
+ 1
139
+ 8πG
140
+
141
+
142
+ d4x
143
+
144
+ hK ,
145
+ (2.2)
146
+ SCSK
147
+ =
148
+ − 1
149
+ 2πG
150
+
151
+
152
+ d4x
153
+
154
+ hKλnMϵMNPQRANKPLDQKL
155
+ R ,
156
+ (2.3)
157
+ are the Gibbons-Hawking boundary term, and a boundary term induced by
158
+ the mixed gauge-gravitational anomaly, respectively, which have been well
159
+ discussed in [19]. θ is a field which ensures gauge invariance (up to gauge
160
+ anomalies), and thus the mass term enters in a consistent way. As it men-
161
+ tioned in [23–25], the Stückelberg term arises as the holographic realization
162
+ of dynamical anomalies. A comparison of the consistent form of the anomaly
163
+ for chiral fermions [3] with the variation of the action under axial gauge
164
+ transformations, allows to fix the anomaly coefficients to
165
+ κ = κp ≡ − G
166
+ 2π ,
167
+ λ = λp ≡ − G
168
+ 48π .
169
+ (2.4)
170
+ See e.g. Ref. [19] for a discussion. In the following we will refer to the values
171
+ of Eq. (2.4) as the physical values of the anomaly coefficients.
172
+ The bulk equations of motion for the action of Eq. (2.1) turn out to be
173
+ GMN − ΛgMN
174
+ =
175
+ 1
176
+ 2FMLFN
177
+ L − 1
178
+ 8gMNF 2 + m2
179
+ 2 BMBN − m2
180
+ 4 gMNBPBP
181
+ +2λϵLPQR(M▽B
182
+
183
+ F PLRB
184
+ N)
185
+ QR�
186
+ ,
187
+ (2.5)
188
+ ▽NF NM
189
+ =
190
+ −ϵMNPQR �
191
+ κFNPFQR + λRA
192
+ BNPRB
193
+ AQR
194
+
195
+ + m2BM ,(2.6)
196
+ where we have defined a new field BM ≡ AM − ∂Mθ, so that in the following
197
+ θ will not appear explicitly anywhere. We have used the notation X(MN) ≡
198
+ 1
199
+ 2(XMN + XNM).
200
+ The ansatz for the background metric is a black hole solution in Fefferman-
201
+ Graham coordinates, which is given by [26,27]
202
+ ds2 = −ℓ2
203
+ ρ gττ(ρ)dτ 2 + ℓ2
204
+ ρ gxx(ρ)d⃗x2 + ℓ2
205
+ 4ρ2dρ2,
206
+ (2.7)
207
+ where the boundary lies at ρ = 0 and the horizon at ρ = ρh, while ℓ is the
208
+ radius of AdS. The horizon ρh is chosen in such a way that gττ(ρh) = 0, and
209
+ the temperature of the black hole turns out to be
210
+ T = 1
211
+
212
+
213
+ 2ρhg′′
214
+ ττ(ρh) .
215
+ (2.8)
216
+ 3
217
+
218
+ The asymptotic expansion (ρ → 0) of the solution of Eq. (2.6) shows that
219
+ the gauge field near the boundary behaves as
220
+ BM(ρ) = a0ρ− ∆
221
+ 2 + a1ρ
222
+
223
+ 2 +1 + · · · ,
224
+ (2.9)
225
+ where m2ℓ2 = ∆(∆ + 2), with ∆ the anomalous dimension of the dual
226
+ current [22].
227
+ The first(second) term in Eq. (2.9) corresponds to a non-
228
+ normalizable(normalizable) mode. The scaling dimension of the normaliz-
229
+ able mode is (3 + ∆), and this puts an upper bound on the value ∆ = 1. For
230
+ ∆ > 1 the dual operators become irrelevant (in the IR), and so we will be
231
+ working in the range of values of ∆ below this bound.
232
+ 2.1
233
+ Numerical solution for the background
234
+ In order to account for the chiral vortical effects within the present model, we
235
+ will be considering the full backreaction of the gauge field onto the metric.
236
+ Plugging Eq. (2.7) into Eqs. (2.5) and (2.6), the equations of motion for the
237
+ background metric and gauge field turn out to be
238
+ g′′
239
+ xx(ρ) − g′
240
+ xx(ρ)
241
+ ρ
242
+ +
243
+ 1
244
+ 6ℓ2ρ
245
+ gxx(ρ)
246
+ gττ(ρ)
247
+ �m2ℓ2
248
+ 4
249
+ Bt(ρ)2 + ρ2B′
250
+ t(ρ)2
251
+
252
+ = 0 ,(2.10)
253
+ g′
254
+ ττ(ρ)
255
+
256
+ 1 − ρg′
257
+ xx(ρ)
258
+ gxx(ρ)
259
+
260
+ + gττ(ρ)g′
261
+ xx(ρ)
262
+ gxx(ρ)
263
+
264
+ 3 − ρg′
265
+ xx(ρ)
266
+ gxx(ρ)
267
+
268
+ −1
269
+ 3
270
+ ρ2
271
+ ℓ2 B′
272
+ t(ρ)2 + 1
273
+ 12m2Bt(ρ)2 = 0 ,
274
+ (2.11)
275
+ B′′
276
+ t (ρ) + 1
277
+ 2
278
+
279
+ 3g′
280
+ xx(ρ)
281
+ gxx(ρ) − g′
282
+ ττ(ρ)
283
+ gττ(ρ)
284
+
285
+ B′
286
+ t(ρ) − ℓ2m2
287
+ 4ρ2 Bt(ρ) = 0 ,
288
+ (2.12)
289
+ where the gauge field has been chosen in the following way
290
+ BMdxM = Bt(ρ)dt ,
291
+ (2.13)
292
+ so that Br = 0. We will solve numerically the above coupled differential
293
+ equations with the following boundary conditions
294
+ Bt(ρh) = 0 ,
295
+ lim
296
+ ρ→0
297
+
298
+ ρ∆/2Bt(ρ)
299
+
300
+ = µ5 ,
301
+ (2.14)
302
+ with µ5 being the source. As it is discussed in [22], in the presence of a finite
303
+ gauge boson mass µ5 does not correspond to a thermodynamic parameter,
304
+ but it is instead a coupling in the Hamiltonian. As a result, different values of
305
+ chemical potential correspond to different theories. For completeness, we will
306
+ 4
307
+
308
+ 0.0
309
+ 0.2
310
+ 0.4
311
+ 0.6
312
+ 0.8
313
+ 1.0
314
+ 0.0
315
+ 0.5
316
+ 1.0
317
+ 1.5
318
+ 2.0
319
+ ρ
320
+ gxx
321
+ gττ
322
+ ρΔ/2·Bt
323
+ Figure 2.1: (color) Dependence of the background metric and gauge field
324
+ with ρ.
325
+ We display the results for gxx(ρ) (blue), gττ(ρ) (orange), and
326
+ ρ∆/2Bt(ρ) (green). We have chosen ∆ = 0.1 and µ5 = 0.5.
327
+ provide the analytical solution of the background equations of motion (2.10)-
328
+ (2.12) for vanishing µ5. These are
329
+ gττ(ρ) = 1
330
+ ρ2
331
+ h
332
+ (ρ2
333
+ h − ρ2)2
334
+ ρ2
335
+ h + ρ2
336
+ ,
337
+ gxx(ρ) = 1 + ρ2
338
+ ρ2
339
+ h
340
+ ,
341
+ Bt(ρ) = 0 ,
342
+ (2.15)
343
+ while the temperature turns out to be T = 1
344
+ π
345
+
346
+ 2
347
+ ρh. For the metric tensor, we
348
+ demand that the solution is regular at the horizon, while at the boundary
349
+ it reaches some constant value which we can always scale to set it to 1.
350
+ Hereafter we will set the values of ℓ = 1 and ρh = 1 for our numerical
351
+ calculations, which one can fix as such by using the scaling symmetry of the
352
+ metric tensor. This will set the units of all the quantities, i.e. µ5, Q, M,
353
+ etc. We have plotted in Fig. 2.1 the numerical solution of all the background
354
+ fields, i.e. gxx(ρ), gττ(ρ) and Bt(ρ). One may note from this figure that
355
+ limρ→0
356
+
357
+ ρ∆/2Bt(ρ)
358
+
359
+ = µ5.
360
+ 3
361
+ Kubo formulae and correlators
362
+ In this section, we will discuss the Kubo formulae needed to compute the
363
+ anomalous transport coefficients in our model, and set up the equations to
364
+ evaluate these transport properties. The Kubo formulae for the anomalous
365
+ conductivities have been well studied [28]. The authors of this reference have
366
+ shown that the chiral vortical conductivity for charge and energy transport
367
+ 5
368
+
369
+ can be obtained from the following two-point functions
370
+ σV = lim
371
+ kc→0
372
+ i
373
+ 2kc
374
+
375
+ a,b
376
+ ϵabc⟨JaT 0b⟩|w=0 ,
377
+ σε
378
+ V = lim
379
+ kc→0
380
+ i
381
+ 2kc
382
+
383
+ a,b
384
+ ϵabc⟨T 0aT 0b⟩|w=0 ,
385
+ (3.1)
386
+ where σV is the chiral vortical conductivity and σε
387
+ V the chiral vortical con-
388
+ ductivity of energy current, respectively. The chiral magnetic conductivities
389
+ for charge, σB, and energy, σε
390
+ B, current are given by
391
+ σB = lim
392
+ kc→0
393
+ i
394
+ 2kc
395
+
396
+ a,b
397
+ ϵabc⟨JaJb⟩|w=0 ,
398
+ σε
399
+ B = lim
400
+ kc→0
401
+ i
402
+ 2kc
403
+
404
+ a,b
405
+ ϵabc⟨T 0aJb⟩|w=0 .
406
+ (3.2)
407
+ To compute these correlators one can use the AdS/CFT dictionary [19,
408
+ 29,30]. Keeping this in mind, we proceed with the perturbation of the fields,
409
+ where the background is set by the numerical solution as shown in Fig. 2.1.
410
+ We will study the linear response of the fluctuation, so that we split the
411
+ metric and gauge field into a background and a linear perturbation part, i.e.
412
+ gMN = g(0)
413
+ MN + ϵhMN,
414
+ BM = B(0)
415
+ M + ϵbM .
416
+ (3.3)
417
+ Then, we will follow the general procedure of Fourier mode decomposition [28]
418
+ hMN(ρ, xµ)
419
+ =
420
+
421
+ ddk
422
+ (2π)dhMN(ρ)e−iωt+i⃗k.⃗x ,
423
+ (3.4)
424
+ bM(ρ, xµ)
425
+ =
426
+
427
+ ddk
428
+ (2π)dbM(ρ)e−iωt+i⃗k.⃗x .
429
+ (3.5)
430
+ Without the loss of generality, one can consider perturbations of frequency ω
431
+ and momentum k in the z-direction. In order to study the anomalous effect
432
+ we will switch on the fluctuations Bi, hi
433
+ t and hi
434
+ z, where i = x, y. Following
435
+ this, we will substitute (3.3) in the equations of motion (2.5) and (2.6), and
436
+ consider the resulting expressions at order O(ϵ).
437
+ Since we are interested in computing correlators at zero frequency, we
438
+ can set the frequency-dependent parts as zero in the equations, and solve
439
+ the system up to first order in k. In this limit, the fields hi
440
+ z decouple from
441
+ the system and take a constant value. Finally, we can write the system of
442
+ 6
443
+
444
+ differential equations for the shear sector as
445
+ b′′
446
+ i (ρ) + 1
447
+ 2
448
+ �g′
449
+ xx(ρ)
450
+ gxx(ρ) + g′
451
+ ττ(ρ)
452
+ gττ(ρ)
453
+
454
+ b′
455
+ i(ρ) − ∆(∆ + 2)
456
+ 4ρ2
457
+ bi(ρ)
458
+ (3.6)
459
+ +
460
+
461
+ 4iκkϵijbj(ρ)
462
+
463
+ gxx(ρ)gττ(ρ)
464
+ + gxx(ρ)hi′
465
+ t(ρ)
466
+ gττ(ρ)
467
+
468
+ B′
469
+ t(ρ) + iλkϵijhj′
470
+ t(ρ)Ω(ρ) = 0 ,
471
+ hi′′
472
+ t (ρ) −
473
+ � g′
474
+ ττ(ρ)
475
+ 2gττ(ρ) − 5g′
476
+ xx(ρ)
477
+ 2gxx(ρ) + 1
478
+ ρ
479
+
480
+ hi′
481
+ t(ρ) + ρB′
482
+ t(ρ)
483
+ gxx(ρ) b′
484
+ i(ρ)
485
+ +∆(∆ + 2)Bt(ρ)
486
+ 4ρgxx(ρ)
487
+ bi(ρ) + iλkϵijΦj(ρ) = 0 ,
488
+ (3.7)
489
+ where i, j = x, y. The explicit expressions of the functions Ω(ρ) and Φj(ρ)
490
+ are given in Appendix A.
491
+ Asymptotic analysis of the fluctuations near the boundary (ρ → 0) up to
492
+ the first subleading order shows
493
+ bi(ρ)
494
+ =
495
+ b(0)
496
+ i ρ− ∆
497
+ 2 + b(1)
498
+ i ρ
499
+
500
+ 2 +1 + · · · ,
501
+ (3.8)
502
+ hi
503
+ t(ρ)
504
+ =
505
+ hi
506
+ t
507
+ (0) + hi
508
+ t
509
+ (1)ρ2 + · · · ,
510
+ (3.9)
511
+ where the leading order terms b(0)
512
+ i
513
+ and hi
514
+ t
515
+ (0) are the sources. From the holo-
516
+ graphic description of the correlation functions, one can evaluate the one-
517
+ point functions as
518
+ ⟨Ja⟩
519
+ =
520
+ δSren
521
+ δb(0)
522
+ a
523
+ = −
524
+ 2
525
+ 16πG(∆ + 1)b(1)
526
+ a ,
527
+ (a = x, y) ,
528
+ (3.10)
529
+ ⟨T0a⟩
530
+ =
531
+ δSren
532
+ δha
533
+ t (0) =
534
+ 1
535
+ 16πG
536
+
537
+ 2ha
538
+ t
539
+ (0) + ha
540
+ t
541
+ (1)�
542
+ ,
543
+ (a = x, y) ,
544
+ (3.11)
545
+ where Sren = S + Sct is the renormalized action, with S the action given
546
+ in Eq. (2.1) and Sct the counterterm. The procedure to evaluate this coun-
547
+ terterm is given in [19] and [22]. We find that the counterterm needed to
548
+ renormalize this theory is the same as the one given in [22], i.e. the mixed
549
+ gauge-gravitational Chern-Simons term does not introduce new divergences,
550
+ and so the renormalization is not modified by it (see e.g. Ref. [19] for a discus-
551
+ sion in the massless case). In this regards, we are not writing the counterterm
552
+ Sct explicitly. ⟨Ja⟩ and ⟨T0a⟩ correspond to current and energy-momentum
553
+ tensor one-point functions, respectively 1. Similarly, the two-point functions
554
+ can be obtained by taking the variation of one-point function with respect
555
+ 1Ji and T0i are related with the fluctuations bi and hi
556
+ t, respectively, with i = x, y.
557
+ 7
558
+
559
+ to the corresponding source term, i.e.
560
+ ⟨JaJb⟩
561
+ =
562
+ δ⟨Ja⟩
563
+ δb(0)
564
+ b
565
+ ,
566
+ (a, b = x, y) ,
567
+ (3.12)
568
+ ⟨JaT0b⟩
569
+ =
570
+ δ⟨Ja⟩
571
+ δhb
572
+ t(0) ,
573
+ (a, b = x, y) ,
574
+ (3.13)
575
+ ⟨T0aJb⟩
576
+ =
577
+ δ⟨T0a⟩
578
+ δb(0)
579
+ b
580
+ ,
581
+ (a, b = x, y) ,
582
+ (3.14)
583
+ ⟨T0aT0b⟩
584
+ =
585
+ δ⟨T0a⟩
586
+ δhb
587
+ t(0) ,
588
+ (a, b = x, y) .
589
+ (3.15)
590
+ From the above expressions, it is clear that it is required the leading and
591
+ subleading parts of the asymptotic expansion of the fluctuations to evaluate
592
+ the two-point functions we are interested in. To do so we have solved numer-
593
+ ically the coupled differential equations of the fluctuations (3.6) and (3.7)
594
+ and imposed suitable boundary conditions, i.e. i) regularity at the horizon,
595
+ and ii) sourceless condition at the asymptotic boundary.
596
+ 4
597
+ Results
598
+ In this section, we will start presenting our results. Firstly, we will start
599
+ with the massless case (∆ = 0) and compare the results with the previous
600
+ work done in [19]. In the second part of this section, we will consider the
601
+ massive case ∆ ̸= 0, and study the dependence of the two-point functions
602
+ with ∆ for different values of µ5. In both cases, we will set G = 1/(16π) so
603
+ that the physical values of the anomalous couplings are κ = −1/(32π2) and
604
+ λ = −1/(768π2), cf. Eq. (2.4). Later on, we will study the dependence of the
605
+ two-point functions with the parameters κ and λ. This is done to show that
606
+ the parametric dependence of the correlators is linear in these parameters,
607
+ but values of κ and λ different from κ/λ = 24 are non-physical. In addition
608
+ to this, to make a direct comparison with the previous work in [22], all the
609
+ anomalous correlators have been displayed normalized by |κ|−1.
610
+ 8
611
+
612
+ 0.0
613
+ 0.1
614
+ 0.2
615
+ 0.3
616
+ 0.4
617
+ 0.5
618
+ 0.6
619
+ 0.0
620
+ 0.5
621
+ 1.0
622
+ 1.5
623
+ 2.0
624
+ 2.5
625
+ 3.0
626
+ 3.5
627
+ μ5
628
+ -Im  < Jx Jy >
629
+ k κ
630
+ 0.0
631
+ 0.1
632
+ 0.2
633
+ 0.3
634
+ 0.4
635
+ 0.5
636
+ 0.6
637
+ 0.0
638
+ 0.5
639
+ 1.0
640
+ 1.5
641
+ 2.0
642
+ 2.5
643
+ μ5
644
+ <JyT0 y>
645
+ 0.0
646
+ 0.1
647
+ 0.2
648
+ 0.3
649
+ 0.4
650
+ 0.5
651
+ 0.6
652
+ 2.5
653
+ 3.0
654
+ 3.5
655
+ 4.0
656
+ μ5
657
+ -Im  < Jx T0 y >
658
+ k κ
659
+ 0.0
660
+ 0.1
661
+ 0.2
662
+ 0.3
663
+ 0.4
664
+ 0.5
665
+ 0.6
666
+ 1.00
667
+ 1.05
668
+ 1.10
669
+ 1.15
670
+ μ5
671
+ <T0 yT0 y>
672
+ Figure 4.1: Upper panel: Plots of the correlators ⟨JxJy⟩ (left) and ⟨JyT0y⟩
673
+ (right) vs µ5. Lower panel: Plots of the correlators ⟨JxT0y⟩(left) and ⟨T0yT0y⟩
674
+ (right) vs µ5. These plots are obtained in the massless case (∆ = 0).
675
+ 4.1
676
+ Massless case
677
+ In the absence of mass, the correlators have been evaluated in [19,22], leading
678
+ to
679
+ ⟨JxT0x⟩
680
+ =
681
+ ⟨JyT0y⟩ =
682
+
683
+ 3Q
684
+ 4πGℓ3 ,
685
+ ⟨JxJy⟩
686
+ =
687
+ −⟨JyJx⟩ = κi
688
+
689
+ 3kQ
690
+ 2πGr2
691
+ h
692
+ − κ ikα
693
+ 6πG = −ik(3µ5 − α)
694
+ 12π2
695
+ ,
696
+ ⟨JxT0y⟩
697
+ =
698
+ −⟨JyT0x⟩ = ⟨T0xJy⟩ = −⟨T0yJx⟩ = κ 3ikQ2
699
+ 4πGr4
700
+ h
701
+ + λ2ikπT 2
702
+ G
703
+ ,
704
+ = −ik
705
+ � µ2
706
+ 5
707
+ 8π2 + T 2
708
+ 24
709
+
710
+ ,
711
+ (4.1)
712
+ ⟨T0xT0x⟩
713
+ =
714
+ ⟨T0yT0y⟩ =
715
+ M
716
+ 16πGℓ3 ,
717
+ ⟨T0xT0y⟩
718
+ =
719
+ −⟨T0yT0x⟩ = κi
720
+
721
+ 3kQ3
722
+ 2πGr6
723
+ h
724
+ + λ4πi
725
+
726
+ 3kQT 2
727
+ Gr2
728
+ h
729
+ = −ik
730
+ � µ3
731
+ 5
732
+ 12π2 + µ5T 2
733
+ 12
734
+
735
+ ,
736
+ 9
737
+
738
+ 0.0
739
+ 0.1
740
+ 0.2
741
+ 0.3
742
+ 0.4
743
+ 0.5
744
+ 0.6
745
+ 0
746
+ 1
747
+ 2
748
+ 3
749
+ 4
750
+ μ5
751
+ -Im  < T0 x T0 y >
752
+ k κ
753
+ Figure 4.2: Plot of the correlator ⟨T0xT0y⟩ vs µ5 in the massless case (∆ = 0).
754
+ with M = r4
755
+ h
756
+ ℓ2 + Q2
757
+ r2
758
+ h
759
+ and Q = µ5r2
760
+ h
761
+
762
+ 3 the mass and charge of the black hole
763
+ solution computed in Poincaré coordinates, with blackening factor
764
+ f(r) = 1 − Mℓ2
765
+ r4
766
+ + Q2ℓ2
767
+ r6
768
+ .
769
+ (4.2)
770
+ The Hawking temperature is given in terms of these black hole parameters
771
+ as
772
+ T =
773
+ r2
774
+ h
775
+ 4πℓ2f ′(rh) = (2r2
776
+ hM − 3Q2)
777
+ 2πr5
778
+ h
779
+ .
780
+ (4.3)
781
+ The parameter α in Eq. (4.1) corresponds to the asymptotic value of the
782
+ gauge field At for ρ → 0. In our case, we are assuming α = µ5 for ∆ = 0, cf.
783
+ Eq. (2.14). The other correlators are vanishing in the massless case, i.e.
784
+ ⟨JxJx⟩ = ⟨JyJy⟩ = 0 ,
785
+ ⟨T0xJx⟩ = ⟨T0yJy⟩ = 0 .
786
+ (4.4)
787
+ While the correlators with the same indices are not induced by quantum
788
+ anomalies (i.e. they are non-anomalous) and they become real, the correla-
789
+ tors with different indexes are anomalous and they become imaginary. We
790
+ will be comparing the numerical results with the analytical expressions given
791
+ in the above equations, Eq. (4.1). We plot in Figs. 4.1 and 4.2 five inde-
792
+ pendent non-vanishing correlators, while the other correlators are related to
793
+ them through the expressions given in Eq. (4.1). In these and subsequent
794
+ plots, it is understood that it has been taken the limit k → 0 with k ≡ kz.
795
+ In these figures the dots stand for the numerical results, and the solid lines
796
+ correspond to the analytic results of Eq. (4.1). One may observe that the
797
+ numerical results are in good agreement with the analytic expression.
798
+ 10
799
+
800
+ 0.0
801
+ 0.1
802
+ 0.2
803
+ 0.3
804
+ 0.4
805
+ 0.5
806
+ 0.6
807
+ 0
808
+ 1
809
+ 2
810
+ 3
811
+ 4
812
+ 5
813
+ 6
814
+ 7
815
+ Δ
816
+ -<JxJx>
817
+ 0.0
818
+ 0.1
819
+ 0.2
820
+ 0.3
821
+ 0.4
822
+ 0.5
823
+ 0.6
824
+ 0.0
825
+ 0.5
826
+ 1.0
827
+ 1.5
828
+ Δ
829
+ <JxT0 x>
830
+ 0.0
831
+ 0.1
832
+ 0.2
833
+ 0.3
834
+ 0.4
835
+ 0.5
836
+ 0.6
837
+ 0
838
+ 2
839
+ 4
840
+ 6
841
+ 8
842
+ 10
843
+ Δ
844
+ -<T0 xJx>
845
+ 0.0
846
+ 0.1
847
+ 0.2
848
+ 0.3
849
+ 0.4
850
+ 0.5
851
+ 0.6
852
+ 1.000
853
+ 1.005
854
+ 1.010
855
+ 1.015
856
+ 1.020
857
+ 1.025
858
+ 1.030
859
+ Δ
860
+ <T0 xT0 x>
861
+ Figure 4.3: (color) Plots for non-anomalous correlators vs ∆. Upper panel:
862
+ Plot of the correlators ⟨JxJx⟩ (left) and ⟨JxT0x⟩ (right) vs ∆. Lower panel:
863
+ Plot of the correlators ⟨T0xJx⟩ (left) and ⟨T0xT0x⟩ (right) vs ∆. We have
864
+ considered in all the panels µ5 = {0, 0.1, 0.2} (blue, orange and green).
865
+ 4.2
866
+ Massive case
867
+ We will split our discussion into anomalous and non-anomalous correlators.
868
+ We have found that the above mentioned relations between different corre-
869
+ lators still hold in the massive case, i.e.
870
+ ⟨JxT0x⟩ = ⟨JyT0y⟩ ,
871
+ ⟨JxJy⟩ = −⟨JyJx⟩ ,
872
+ ⟨JxT0y⟩ = −⟨JyT0x⟩ = ⟨T0xJy⟩ = −⟨T0yJx⟩ ,
873
+ ⟨T0xT0x⟩ = ⟨T0yT0y⟩ ,
874
+ ⟨T0xT0y⟩ = −⟨T0yT0x⟩ .
875
+ (4.5)
876
+ In addition to this, there are two more independent correlators, i.e ⟨T0xJx⟩ =
877
+ ⟨T0yJy⟩ and ⟨JxJx⟩ = ⟨JyJy⟩. In this regard, we will be plotting only seven
878
+ independent correlators.
879
+ 11
880
+
881
+ 0.0
882
+ 0.1
883
+ 0.2
884
+ 0.3
885
+ 0.4
886
+ 0.5
887
+ 0.6
888
+ 0
889
+ 1
890
+ 2
891
+ 3
892
+ 4
893
+ 5
894
+ Δ
895
+ Im  < Jy Jx >
896
+ k κ
897
+ 0.0
898
+ 0.1
899
+ 0.2
900
+ 0.3
901
+ 0.4
902
+ 0.5
903
+ 0.6
904
+ 0.0
905
+ 0.2
906
+ 0.4
907
+ 0.6
908
+ 0.8
909
+ 1.0
910
+ Δ
911
+ Im  < T0 y T0 x >
912
+ k κ
913
+ Figure 4.4: (color) Plot of the correlators ⟨JyJx⟩ (left) and ⟨T0yT0x⟩ (right)
914
+ vs ∆ with µ5 = {0, 0.1, 0.2} (blue, orange and green).
915
+ 4.2.1
916
+ Non-anomalous correlators
917
+ While the correlator ⟨JxJx⟩ is vanishing for ∆ = 0 (cf. Section 4.1), we can
918
+ see from the Fig. 4.3 (upper-left panel) that this correlator starts picking
919
+ up some finite value in the massive case (∆ ̸= 0). With the increase of ∆
920
+ the absolute value of this correlator increases quite sharply, and gets even
921
+ shaper with the increase in µ5. This property, i.e. an increasing value of
922
+ the (absolute value of the) correlator for increasing ∆ and for finite µ5, is a
923
+ general feature for all the non-anomalous coefficients as we will discuss below.
924
+ We can see from Fig. 4.3 (upper-right panel) that for µ5 = 0 the correlator
925
+ ⟨JxT0x⟩ is zero for all values of ∆.
926
+ As the value of µ5 increases, ⟨JxT0x⟩
927
+ becomes finite and its value increases with ∆ in a somewhat linear fashion.
928
+ The slope of ⟨JxT0x⟩ vs ∆ also increases with the increase of µ5.
929
+ In Fig. 4.3 (lower panel-left) we can see that even though the correlator
930
+ ⟨T0xJx⟩ is vanishing for ∆ = 0, for finite values of ∆ and µ5 this corre-
931
+ lator is non-vanishing. More in details, for a given finite value of µ5, the
932
+ absolute value |⟨T0xJx⟩| increases quite sharply with ∆. Notice that ⟨T0xJx⟩
933
+ was completely absent in the previous work [19], but we find now that it is
934
+ non-vanishing at finite µ5 in the massive theory.
935
+ Finally, we can see in Fig. 4.3 (lower-right panel) that ⟨T0xT0x⟩ is inde-
936
+ pendent of ∆ for µ5 = 0, i.e. it has a constant value corresponding to the
937
+ pressure term, a feature that has been well discussed in [18–20, 22]. At fi-
938
+ nite chemical potential, this correlator increases with ∆, a behavior which is
939
+ sharper for larger values of µ5.
940
+ 4.2.2
941
+ Anomalous correlators
942
+ We display in Fig. 4.4 (left) the behaviour of ⟨JyJx⟩ vs ∆. One can see that
943
+ the absolute value of this correlator increases with ∆, and the change is quite
944
+ 12
945
+
946
+ 0.0
947
+ 0.1
948
+ 0.2
949
+ 0.3
950
+ 0.4
951
+ 0.5
952
+ 0.6
953
+ 2.5
954
+ 3.0
955
+ 3.5
956
+ 4.0
957
+ 4.5
958
+ Δ
959
+ -Im  < Jx T0 y >
960
+ k κ
961
+ Figure 4.5: (color) Plot of the correlator ⟨JxT0y⟩ vs ∆ with µ5 = {0, 0.15, 0.3}
962
+ (blue, orange and green).
963
+ -0.0002
964
+ -0.0001
965
+ 0.0000
966
+ 0.0001
967
+ 0.0002
968
+ -0.0010
969
+ -0.0005
970
+ 0.0000
971
+ 0.0005
972
+ 0.0010
973
+ -0.2
974
+ -0.1
975
+ 0.0
976
+ 0.1
977
+ 0.2
978
+ -2
979
+ -1
980
+ 0
981
+ 1
982
+ 2
983
+ λ
984
+ κp
985
+ Im  < T0 y T0 x >
986
+ k κp
987
+ -0.0010
988
+ -0.0005
989
+ 0.0000
990
+ 0.0005
991
+ 0.0010
992
+ -0.03
993
+ -0.02
994
+ -0.01
995
+ 0.00
996
+ 0.01
997
+ 0.02
998
+ 0.03
999
+ -0.2
1000
+ -0.1
1001
+ 0.0
1002
+ 0.1
1003
+ 0.2
1004
+ -15
1005
+ -10
1006
+ -5
1007
+ 0
1008
+ 5
1009
+ 10
1010
+ 15
1011
+ λ
1012
+ κp
1013
+ Im  < Jy T0 x >
1014
+ k κp
1015
+ Figure 4.6: Plot of the correlator ⟨T0yT0x⟩ (left) and ⟨JyT0x⟩ (right) vs λ/|κp|.
1016
+ The inset figures correspond to zooms of the main figures in the small λ
1017
+ regime. We have considered in both panels, µ5 = 0.1, ∆ = 0.1 and κp =
1018
+ −1/(32π2).
1019
+ subtle. It is plotted in Fig. 4.4 (right) the correlator ⟨T0yT0x⟩ vs ∆, and unlike
1020
+ the other correlator, its absolute value decreases with the increase of ∆.
1021
+ In Fig. 4.5 we have plotted ⟨JxT0y⟩ vs ∆. We find that the absolute value
1022
+ of this correlator increases with the increase in ∆ and µ5. We have taken a
1023
+ different value of µ5 as compared to the other correlators, because for those
1024
+ values of µ5 the correlator did not have any substantial changes. The new
1025
+ values of µ5 = {0, 0.15, 0.3} are chosen to make these changes distinct in
1026
+ the figure. We can see from the figure that even in the absence of µ5 this
1027
+ correlator is non-zero. This can be traced back to the temperature term, as
1028
+ the temperature does not vanish for µ5 = 0. Finally, one may notice that
1029
+ in all the cases the values of two point correlators tend toward the analytic
1030
+ values as given in (4.1) when considering the limit ∆ → 0. This is also shown
1031
+ in the figures for the massless case.
1032
+ 13
1033
+
1034
+ -0.2
1035
+ -0.1
1036
+ 0.0
1037
+ 0.1
1038
+ 0.2
1039
+ 0.674
1040
+ 0.676
1041
+ 0.678
1042
+ 0.680
1043
+ 0.682
1044
+ λ
1045
+ κp
1046
+ Im  < Jy Jx >
1047
+ k κp
1048
+ -1.0
1049
+ -0.5
1050
+ 0.0
1051
+ 0.5
1052
+ 1.0
1053
+ -0.6
1054
+ -0.4
1055
+ -0.2
1056
+ 0.0
1057
+ 0.2
1058
+ 0.4
1059
+ 0.6
1060
+ κ
1061
+ κp
1062
+ Im  < Jy Jx >
1063
+ k κp
1064
+ Figure 4.7: Left: Plot of the correlator ⟨JyJx⟩ vs λ/|κp|. Right: Plot of the
1065
+ correlator ⟨JyJx⟩ vs κ/|κp| for λ = −1/(768π2). We have considered in both
1066
+ panels µ5 = 0.1 and ∆ = 0.1, while κp = −1/(32π2).
1067
+ -1.0
1068
+ -0.5
1069
+ 0.0
1070
+ 0.5
1071
+ 1.0
1072
+ 0.492
1073
+ 0.493
1074
+ 0.494
1075
+ 0.495
1076
+ κ
1077
+ κp
1078
+ Im  < T0 y T0 x >
1079
+ k κp
1080
+ -1.0
1081
+ -0.5
1082
+ 0.0
1083
+ 0.5
1084
+ 1.0
1085
+ 2.82
1086
+ 2.84
1087
+ 2.86
1088
+ 2.88
1089
+ 2.90
1090
+ κ
1091
+ κp
1092
+ Im  < Jy T0 x >
1093
+ k κp
1094
+ Figure 4.8: Plot of the correlator ⟨T0yT0x⟩ (left) and ⟨JyT0x⟩ (right) vs κ/|κp|.
1095
+ In both cases, µ5 = 0.1, ∆ = 0.1, |κp| = 1/(32π2) and λ = −1/(768π2).
1096
+ λ and κ dependence:
1097
+ To study the dependence of the two-point functions
1098
+ with the parameter λ, we will consider the case where we fix the values as
1099
+ µ5 = ∆ = 0.1 and κ = −1/(32π2), and vary λ. Here we will only present the
1100
+ correlators that have a dependence on λ, while the λ independent correlators
1101
+ are given in Fig. B.1 of Appendix B. We have plotted in Figs. 4.6 and 4.7
1102
+ (left) the dependence of the anomalous correlators with λ. One can see that
1103
+ the behaviour is linear with λ in all the cases. The inset figures are given
1104
+ to show that the corresponding correlators do not vanish at λ = 0. This is
1105
+ in fact true, as the non-vanishing values arise due to the κ coupling, which
1106
+ leads to ⟨T0xT0y⟩ ∼ µ3
1107
+ 5κ and ⟨J0yT0x⟩ ∼ µ2
1108
+ 5κ at λ = 0, with some contribution
1109
+ from ∆. In the case of ⟨JyJx⟩ the λ dependence only arises in the massive
1110
+ case.
1111
+ Setting the values of ∆ = µ5 = 0.1, λ = −1/(768π2) and varying κ, we
1112
+ see a similar kind of linear behaviour with κ. The effect of κ is only seen in
1113
+ ⟨T0xT0y⟩, ⟨J0yT0x⟩ and ⟨JyJx⟩ as shown in Fig. 4.7 (right) and Fig. 4.8. The
1114
+ non-anomalous correlators are independent of κ, and they are displayed in
1115
+ 14
1116
+
1117
+ Fig. B.2 of Appendix B. These correlators are in fact independent of both the
1118
+ parameters κ and λ, and hence they are non-anomalous in nature even in the
1119
+ massive theory. This means that they do not contribute to anomalous trans-
1120
+ port, unlike the correlators studied above which are associated to anoma-
1121
+ lous conductivities. This can be seen in the Kubo formulae for anomalous
1122
+ conductivities, Eqs.
1123
+ (3.1) and (3.2), as these formulae involve Levi-Civita
1124
+ (ϵijz) symbols which runs over i = j = {x, y}. Hence, the correlators with
1125
+ i = j = x and i = j = y do not lead to anomalous transport effects.
1126
+ Anomalous conductivities:
1127
+ Finally, as a summary of the previous nu-
1128
+ merical results, we now present the anomalous conductivities which are com-
1129
+ puted with the Kubo formulas (3.1) and (3.2), i.e.
1130
+ σV = − lim
1131
+ k→0
1132
+ 1
1133
+ kIm⟨JxT0y⟩ ,
1134
+ σε
1135
+ V = − lim
1136
+ k→0
1137
+ 1
1138
+ kIm⟨T0xT0y⟩ ,
1139
+ (4.6)
1140
+ σB = − lim
1141
+ k→0
1142
+ 1
1143
+ kIm⟨JxJy⟩ ,
1144
+ σε
1145
+ B = − lim
1146
+ k→0
1147
+ 1
1148
+ kIm⟨T0xJy⟩ .
1149
+ (4.7)
1150
+ The results are displayed in Fig. 4.9. We can see from this figure that the
1151
+ chiral vortical conductivity and the chiral magnetic conductivity for energy
1152
+ current are the same either at zero or finite mass, i.e. σV = σε
1153
+ B, and these
1154
+ quantities increase with ∆. We also see in this figure that the chiral vortical
1155
+ conductivity of energy current, σε
1156
+ V , decreases with ∆ but the rate decreases
1157
+ rapidly. In the case of the chiral magnetic conductivity, σB, it increases with
1158
+ ∆ as shown in Fig. 4.9.
1159
+ Regarding the other dependences of the anomalous conductivities, for
1160
+ instance the dependence in the parameters κ and λ, it would be sufficient to
1161
+ study them from Fig. 4.6 and Fig. 4.7, as the two-point functions and the
1162
+ anomalous conductivities are related through Kubo formulae. We conclude
1163
+ that for a given value of µ5 and ∆, the anomalous transport coefficients:
1164
+ σV , σε
1165
+ B, σB and σε
1166
+ B; change linearly with the pure (κ) and mixed (λ) gauge-
1167
+ gravitational Chern-Simon couplings. At the limit of vanishing mass, our
1168
+ results lead to
1169
+ σB
1170
+ µ5|κ| ≃ 16/3, which exactly coincides with the results in [18,
1171
+ 19,22] where α has been set to µ5 in both references 2. In order to reproduce
1172
+ the results of [18] where they have set α = 0, our κ needs to be rescaled by
1173
+ a factor 3/2. Finally, let us emphasize that all the correlators involving the
1174
+ energy-momentum tensor are completely new results at finite mass (∆ ̸= 0),
1175
+ i.e. σV , σε
1176
+ V and σε
1177
+ B.
1178
+ 2α corresponds to the asymptotic value of the gauge field At for ρ → 0. In our case,
1179
+ we assume α = µ5 for ∆ = 0.
1180
+ 15
1181
+
1182
+ 0.0
1183
+ 0.1
1184
+ 0.2
1185
+ 0.3
1186
+ 0.4
1187
+ 0.5
1188
+ 0.6
1189
+ 2.8
1190
+ 3.0
1191
+ 3.2
1192
+ 3.4
1193
+ 3.6
1194
+ 3.8
1195
+ 4.0
1196
+ Δ
1197
+ σV
1198
+ κ
1199
+ 0.0
1200
+ 0.1
1201
+ 0.2
1202
+ 0.3
1203
+ 0.4
1204
+ 0.5
1205
+ 0.6
1206
+ 0.55
1207
+ 0.60
1208
+ 0.65
1209
+ 0.70
1210
+ 0.75
1211
+ 0.80
1212
+ Δ
1213
+ σε
1214
+ V
1215
+ κ
1216
+ 0.0
1217
+ 0.1
1218
+ 0.2
1219
+ 0.3
1220
+ 0.4
1221
+ 0.5
1222
+ 0.6
1223
+ 0.0
1224
+ 0.5
1225
+ 1.0
1226
+ 1.5
1227
+ 2.0
1228
+ 2.5
1229
+ 3.0
1230
+ 3.5
1231
+ Δ
1232
+ σB
1233
+ κ
1234
+ 0.0
1235
+ 0.1
1236
+ 0.2
1237
+ 0.3
1238
+ 0.4
1239
+ 0.5
1240
+ 0.6
1241
+ 2.8
1242
+ 3.0
1243
+ 3.2
1244
+ 3.4
1245
+ 3.6
1246
+ 3.8
1247
+ 4.0
1248
+ Δ
1249
+ σε
1250
+ B
1251
+ κ
1252
+ Figure 4.9: Upper panel: Plot of σV (left) and σε
1253
+ V (right) vs ∆. Lower panel:
1254
+ Plot of σB (left) and σε
1255
+ B (right) vs ∆. We have considered µ5 = 0.15 in all
1256
+ the panels.
1257
+ 5
1258
+ Discussion
1259
+ We have studied the anomalous and non-anomalous conductivities in the
1260
+ holographic Stückelberg model including both pure gauge and mixed gauge-
1261
+ gravitational anomaly terms. To access the sectors concerning the energy-
1262
+ momentum tensor we have to consider the full backreaction of the massive
1263
+ gauge field onto the metric tensor. We have evaluated the numerical back-
1264
+ ground solution and on this background, we have considered the fluctuations
1265
+ of the fields. From these fluctuations, we have calculated the different corre-
1266
+ lators and studied their behaviors with the relevant parameters of the model
1267
+ (µ5, ∆, κ and λ).
1268
+ We have found that the correlators in the massless case match with previ-
1269
+ ous results in the literature [28]. Later on, we have studied the dependence of
1270
+ these correlators with the mass of the gauge field, m2 = ∆(∆+2), and found
1271
+ that all the correlators explicitly depend on the mass for a given non-zero
1272
+ value of µ5. One of the results that it is important to emphasize here is that
1273
+ the non-anomalous correlators such as ⟨JxJx⟩ and ⟨T0xJx⟩ are non-vanishing
1274
+ in the massive theory for finite values of µ5. Moreover ⟨JxJx⟩ is non-zero in
1275
+ this theory even for µ5 = 0, while ⟨T0xJx⟩ is vanishing for µ5 = 0 indepen-
1276
+ dently of the mass. These correlators are vanishing in the massless theory,
1277
+ independently of µ5. The mass of the gauge field highly enhances the abso-
1278
+ 16
1279
+
1280
+ lute value of the correlators, and this gets translated into an enhancement
1281
+ of the anomalous conductivities. The behaviours of the correlators on the
1282
+ pure gauge and mixed gauge-gravitational Chern-Simon couplings, κ and λ,
1283
+ were also studied. We found that the correlators ⟨JxJx⟩, ⟨JxT0x⟩, ⟨T0xJx⟩ and
1284
+ ⟨T0xT0x⟩ are independent of κ and λ, and hence they are non-anomalous in
1285
+ nature. They do not contribute to the anomalous conductivities, as it can
1286
+ be seen from the Kubo formulae (3.1) and (3.2) as well.
1287
+ Finally, we have computed the anomalous conductivities and studied their
1288
+ dependence with the mass of the gauge field (m). We have found that the
1289
+ chiral vortical conductivity, σV , and the chiral magnetic conductivity for
1290
+ energy current, σε
1291
+ B, are equal and increase with ∆. One interesting result is
1292
+ that there are contributions to σB coming from λ in the massive theory, which
1293
+ was completely absent in the massless case. The conductivities σB, σV and
1294
+ σε
1295
+ B increase with ∆, while the chiral vortical conductivity of energy current,
1296
+ σε
1297
+ V , decreases with ∆. We have explicitly checked that all our numerical
1298
+ results for the conductivities at finite mass tend to the known results at zero
1299
+ mass in the limit ∆ → 0. For instance, it is known that at zero mass, the
1300
+ chiral magnetic conductivity is σB = − 16
1301
+ 3 κµ5 when α = µ5, which implies
1302
+ that the ratio − σB
1303
+ κµ5 = 16/3, independently of κ and µ5. As one can see
1304
+ from Fig. 4.9 (left), our numerics produces in this limit σB/|κ| = 0.8 for
1305
+ µ5 = 0.15, in agreement with the expected result. We have also checked the
1306
+ ratio − σB
1307
+ κµ5 = 16/3 for other values of κ and µ5.
1308
+ This work can be extended in several ways. One possible extension could
1309
+ be to consider the U(1)V × U(1)A gauge group. There are some studies in
1310
+ holography with this gauge group, see e.g. Refs. [22,31,32]. However, in these
1311
+ works: i) either the probe limit has been considered so that the chiral vortical
1312
+ effect and the transport conductivities in the energy-momentum tensor are
1313
+ not accessible, or ii) they correspond to studies for massless gauge bosons.
1314
+ In particular, it would be interesting to study the interplay between the
1315
+ anomalous and non-anomalous currents in the set-up of the full backreacted
1316
+ background of Ref. [32], both for massless and massive gauge bosons. We
1317
+ will explore these and other issues in future works.
1318
+ Acknowledgments
1319
+ We would like to thank Karl Landsteiner for enlightening discussions. E.M.
1320
+ is grateful to Manuel Valle for collaboration in the early stages of this work.
1321
+ N.R. thanks the Instituto de Física Teórica UAM/CSIC, Spain, for its hos-
1322
+ pitality and partial support during his research visits in the final stages
1323
+ of this work.
1324
+ The works of N.R. and E.M. are supported by the project
1325
+ 17
1326
+
1327
+ PID2020-114767GB-I00 funded by MCIN/AEI/10.13039/501100011033, by
1328
+ the FEDER/Junta de Andalucía-Consejería de Economía y Conocimiento
1329
+ 2014-2020 Operational Program under Grant A-FQM-178-UGR18, and by
1330
+ the Ramón y Cajal Program of the Spanish MCIN under Grant RYC-2016-
1331
+ 20678. The work of E.M. is also supported by Junta de Andalucía under
1332
+ Grant FQM-225.
1333
+ Appendix A
1334
+ Explicit expressions for the func-
1335
+ tions Ω(ρ) and Φj(ρ)
1336
+ These functions have been introduced in the equations of motion of the fluc-
1337
+ tuations (3.6)-(3.7). Their explicit expressions are given by
1338
+ Ω(ρ) =
1339
+ 4
1340
+
1341
+ gττ(ρ) (g′
1342
+ xx(ρ) + 2ρg′′
1343
+ xx(ρ)) + ρg′
1344
+ xx(ρ)g′
1345
+ ττ(ρ)
1346
+
1347
+
1348
+ gxx(ρ)gττ(ρ)3/2
1349
+ − 8ρ g′
1350
+ xx(ρ)2
1351
+ gxx(ρ)3/2
1352
+
1353
+ gττ(ρ)
1354
+ +
1355
+
1356
+ gxx(ρ)
1357
+ gττ(ρ)5/2
1358
+
1359
+ 4ρg′
1360
+ ττ(ρ)2 − 4gττ(ρ) (g′
1361
+ ττ(ρ) + 2ρg′′
1362
+ ττ(ρ))
1363
+
1364
+ ,
1365
+ (A.1)
1366
+ and
1367
+ Φj(ρ) = b′
1368
+ j(ρ)
1369
+
1370
+ − 8ρ2�
1371
+ gττ(ρ)g′
1372
+ xx(ρ)2
1373
+ gxx(ρ)7/2
1374
+ +
1375
+
1376
+
1377
+ gττ(ρ)
1378
+
1379
+ g′
1380
+ xx(ρ) + 2ρg′′
1381
+ xx(ρ)
1382
+
1383
+ + ρg′
1384
+ xx(ρ)g′
1385
+ ττ(ρ)
1386
+
1387
+ gxx(ρ)5/2�
1388
+ gττ(ρ)
1389
+
1390
+
1391
+
1392
+ gττ(ρ)
1393
+
1394
+ g′
1395
+ ττ(ρ) + 2ρg′′
1396
+ ττ(ρ)
1397
+
1398
+ − ρg′
1399
+ ττ(ρ)2�
1400
+ gxx(ρ)3/2gττ(ρ)3/2
1401
+
1402
+ + bj(ρ)
1403
+
1404
+ 8ρ2�
1405
+ gττ(ρ)g′
1406
+ xx(ρ)3
1407
+ gxx(ρ)9/2
1408
+ − 8ρ
1409
+
1410
+ gττ(ρ)g′
1411
+ xx(ρ)
1412
+ gxx(ρ)7/2
1413
+
1414
+ g′
1415
+ xx(ρ) + 2ρg′′
1416
+ xx(ρ)
1417
+
1418
+ +
1419
+
1420
+
1421
+ ρg′′
1422
+ xx(ρ)g′
1423
+ ττ(ρ) − ρg′
1424
+ xx(ρ)g′′
1425
+ ττ(ρ) + 3gττ(ρ)g′′
1426
+ xx(ρ) + 2ρgxx(3)(ρ)gττ(ρ)
1427
+
1428
+ gxx(ρ)5/2�
1429
+ gττ(ρ)
1430
+
1431
+
1432
+
1433
+ − 2gττ(ρ)g′
1434
+ ττ(ρ)
1435
+
1436
+ g′
1437
+ ττ(ρ) + 2ρg′′
1438
+ ττ(ρ)
1439
+
1440
+ + 2ρg′
1441
+ ττ(ρ)3 + gττ(ρ)2�
1442
+ 3g′′
1443
+ ττ(ρ) + 2ρgττ (3)(ρ)
1444
+ ��
1445
+ gxx(ρ)3/2gττ(ρ)5/2
1446
+
1447
+ (A.2)
1448
+ 18
1449
+
1450
+ + hj′
1451
+ t(ρ)
1452
+
1453
+ B′
1454
+ t(ρ)
1455
+
1456
+
1457
+ 16ρ2g′
1458
+ xx(ρ)
1459
+ gxx(ρ)3/2�
1460
+ gττ(ρ)
1461
+ +
1462
+
1463
+
1464
+ gττ(ρ) − ρg′
1465
+ ττ(ρ)
1466
+
1467
+
1468
+ gxx(ρ)gττ(ρ)3/2
1469
+
1470
+ � +
1471
+ 8ρ2B′′
1472
+ t (ρ)
1473
+
1474
+ gxx(ρ)
1475
+
1476
+ gττ(ρ)
1477
+
1478
+ + hj′′
1479
+ t (ρ)
1480
+ 8ρ2B′
1481
+ t(ρ)
1482
+
1483
+ gxx(ρ)
1484
+
1485
+ gττ(ρ)
1486
+ .
1487
+ Appendix B
1488
+ Some additional results for the non-
1489
+ anomalous correlators
1490
+ We show in this Appendix the numerical results for the non-anomalous cor-
1491
+ relators as a function of the anomalous parameters κ and λ, in the massive
1492
+ case (∆ ̸= 0). The correlators ⟨JxJx⟩, ⟨JxT0x⟩, ⟨T0xJx⟩ and ⟨T0xT0x⟩, are
1493
+ displayed in Figs. B.2 and B.1. These correlators turn out to be constant in
1494
+ both κ and λ. The lack of dependence in these parameters implies that they
1495
+ lead to non-anomalous transport effects.
1496
+ 19
1497
+
1498
+ -0.2
1499
+ -0.1
1500
+ 0.0
1501
+ 0.1
1502
+ 0.2
1503
+ 0.0
1504
+ 0.1
1505
+ 0.2
1506
+ 0.3
1507
+ 0.4
1508
+ λ
1509
+ κp
1510
+ -<JxJx>
1511
+ -0.2
1512
+ -0.1
1513
+ 0.0
1514
+ 0.1
1515
+ 0.2
1516
+ 0.0
1517
+ 0.2
1518
+ 0.4
1519
+ 0.6
1520
+ 0.8
1521
+ λ
1522
+ κp
1523
+ -<JxT0 x>
1524
+ -0.2
1525
+ -0.1
1526
+ 0.0
1527
+ 0.1
1528
+ 0.2
1529
+ 0.00
1530
+ 0.05
1531
+ 0.10
1532
+ 0.15
1533
+ λ
1534
+ κp
1535
+ -<T0 xJx>
1536
+ -0.2
1537
+ -0.1
1538
+ 0.0
1539
+ 0.1
1540
+ 0.2
1541
+ 0.0
1542
+ 0.5
1543
+ 1.0
1544
+ 1.5
1545
+ 2.0
1546
+ λ
1547
+ κp
1548
+ <T0 xT0 x>
1549
+ Figure B.1: Upper panel: plot of the correlator ⟨JxJx⟩ (left) and ⟨JxT0x⟩
1550
+ (right) vs λ/|κp|.
1551
+ Lower panel: plot of the correlator ⟨T0xJx⟩ (left) and
1552
+ ⟨T0xT0x⟩ (right) vs λ/|κp|.
1553
+ We have considered µ5 = 0.1, ∆ = 0.1 and
1554
+ κp = −1/(32π2) in all the panels.
1555
+ 20
1556
+
1557
+ -1.0
1558
+ -0.5
1559
+ 0.0
1560
+ 0.5
1561
+ 1.0
1562
+ 0.0
1563
+ 0.1
1564
+ 0.2
1565
+ 0.3
1566
+ 0.4
1567
+ κ
1568
+ κp
1569
+ -<JxJx>
1570
+ -1.0
1571
+ -0.5
1572
+ 0.0
1573
+ 0.5
1574
+ 1.0
1575
+ 0.0
1576
+ 0.2
1577
+ 0.4
1578
+ 0.6
1579
+ 0.8
1580
+ κ
1581
+ κp
1582
+ <JxT0 x>
1583
+ -1.0
1584
+ -0.5
1585
+ 0.0
1586
+ 0.5
1587
+ 1.0
1588
+ 0.00
1589
+ 0.05
1590
+ 0.10
1591
+ 0.15
1592
+ κ
1593
+ κp
1594
+ -<T0 xJx>
1595
+ -2
1596
+ -1
1597
+ 0
1598
+ 1
1599
+ 2
1600
+ 0.0
1601
+ 0.5
1602
+ 1.0
1603
+ 1.5
1604
+ 2.0
1605
+ κ
1606
+ κp
1607
+ <T0 xT0 x>
1608
+ Figure B.2: Upper panel: plot of the correlator ⟨JxJx⟩ (left) and ⟨JxT0x⟩
1609
+ (right) vs κ/|κp|.
1610
+ Lower panel: plot of the correlator ⟨T0xJx⟩ (left) and
1611
+ ⟨T0xT0x⟩ (right) vs κ/|κp|. We have considered µ5 = 0.1, ∆ = 0.1, |κp| =
1612
+ 1/(32π2) and λ = −1/(768π2) in all the panels.
1613
+ 21
1614
+
1615
+ References
1616
+ [1] J. M. Maldacena,
1617
+ Int. J. Theor. Phys. 38,
1618
+ 1113 (1999) [Adv.
1619
+ Theor. Math. Phys. 2, 231 (1998)] doi:10.1023/A:1026654312961 [hep-
1620
+ th/9711200].
1621
+ [2] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].
1622
+ [3] R. A. Bertlmann, Oxford, UK: Clarendon (1996) 566 p. (International
1623
+ series of monographs on physics: 91).
1624
+ [4] F. Bastianelli and P. van Nieuwenhuizen, Cambridge,UK: Univ. Pr.
1625
+ (2006) 379p.
1626
+ [5] K. Fujikawa and H. Suzuki, Oxford,UK: Clarendon (2004) 284p.
1627
+ [6] K. Landsteiner, E. Megías and F. Pena-Benitez, Lect. Notes Phys. 871
1628
+ (2013),
1629
+ 433-468 doi:10.1007/978-3-642-37305-3_17 [arXiv:1207.5808
1630
+ [hep-th]].
1631
+ [7] A.Vilenkin,Phys.Rev.D20(1979)1807. A.Vilenkin,Phys.Rev.D21(1980)2260.
1632
+ A.Vilenkin,Phys.Rev.D22(1980)3067. A.Vilenkin,Phys.Rev.D22(1980)3080.
1633
+ [8] G. M. Newman and D. T. Son, Phys. Rev. D 73 (2006), 045006
1634
+ doi:10.1103/PhysRevD.73.045006 [arXiv:hep-ph/0510049 [hep-ph]].
1635
+ [9] G.
1636
+ M.
1637
+ Newman,
1638
+ JHEP
1639
+ 01
1640
+ (2006),
1641
+ 158
1642
+ doi:10.1088/1126-
1643
+ 6708/2006/01/158 [arXiv:hep-ph/0511236 [hep-ph]].
1644
+ [10] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78
1645
+ (2008), 074033 doi:10.1103/PhysRevD.78.074033 [arXiv:0808.3382 [hep-
1646
+ ph]].
1647
+ [11] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797 (2007), 67-79
1648
+ doi:10.1016/j.nuclphysa.2007.10.001 [arXiv:0706.1026 [hep-ph]].
1649
+ [12] N.
1650
+ Banerjee,
1651
+ J.
1652
+ Bhattacharya,
1653
+ S.
1654
+ Bhattacharyya,
1655
+ S.
1656
+ Dutta,
1657
+ R.
1658
+ Loganayagam
1659
+ and
1660
+ P.
1661
+ Surowka,
1662
+ JHEP
1663
+ 01
1664
+ (2011),
1665
+ 094
1666
+ doi:10.1007/JHEP01(2011)094 [arXiv:0809.2596 [hep-th]].
1667
+ [13] D. T. Son and P. Surowka, Phys. Rev. Lett. 103 (2009), 191601
1668
+ doi:10.1103/PhysRevLett.103.191601 [arXiv:0906.5044 [hep-th]].
1669
+ [14] K. Landsteiner, E. Megías and F. Pena-Benitez, Phys. Rev. Lett. 107,
1670
+ 021601 (2011) doi:10.1103/PhysRevLett.107.021601 [arXiv:1103.5006
1671
+ [hep-ph]].
1672
+ 22
1673
+
1674
+ [15] B. I. Abelev et al. [STAR], Phys. Rev. Lett. 103 (2009), 251601
1675
+ doi:10.1103/PhysRevLett.103.251601 [arXiv:0909.1739 [nucl-ex]].
1676
+ [16] G. Basar, D. E. Kharzeev and H. U. Yee, Phys. Rev. B 89, no.3, 035142
1677
+ (2014) doi:10.1103/PhysRevB.89.035142 [arXiv:1305.6338 [hep-th]].
1678
+ [17] K.
1679
+ Landsteiner,
1680
+ Phys.
1681
+ Rev.
1682
+ B
1683
+ 89,
1684
+ no.7,
1685
+ 075124
1686
+ (2014)
1687
+ doi:10.1103/PhysRevB.89.075124 [arXiv:1306.4932 [hep-th]].
1688
+ [18] A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, JHEP 02
1689
+ (2011), 110 doi:10.1007/JHEP02(2011)110 [arXiv:1005.2587 [hep-th]].
1690
+ [19] K. Landsteiner, E. Megías, L. Melgar and F. Pena-Benitez, JHEP 09
1691
+ (2011), 121 doi:10.1007/JHEP09(2011)121 [arXiv:1107.0368 [hep-th]].
1692
+ [20] K.
1693
+ Landsteiner
1694
+ and
1695
+ L.
1696
+ Melgar,
1697
+ JHEP
1698
+ 10
1699
+ (2012),
1700
+ 131
1701
+ doi:10.1007/JHEP10(2012)131 [arXiv:1206.4440 [hep-th]].
1702
+ [21] E.
1703
+ Megías
1704
+ and
1705
+ F.
1706
+ Pena-Benitez,
1707
+ JHEP
1708
+ 05,
1709
+ 115
1710
+ (2013)
1711
+ doi:10.1007/JHEP05(2013)115 [arXiv:1304.5529 [hep-th]].
1712
+ [22] A. Jimenez-Alba, K. Landsteiner and L. Melgar, Phys. Rev. D 90 (2014),
1713
+ 126004 doi:10.1103/PhysRevD.90.126004 [arXiv:1407.8162 [hep-th]].
1714
+ [23] I. R. Klebanov, P. Ouyang and E. Witten, Phys. Rev. D 65 (2002),
1715
+ 105007 doi:10.1103/PhysRevD.65.105007 [arXiv:hep-th/0202056 [hep-
1716
+ th]].
1717
+ [24] U.
1718
+ Gürsoy
1719
+ and
1720
+ A.
1721
+ Jansen,
1722
+ JHEP
1723
+ 10
1724
+ (2014),
1725
+ 092
1726
+ doi:10.1007/JHEP10(2014)092 [arXiv:1407.3282 [hep-th]].
1727
+ [25] R. Casero, E. Kiritsis and A. Paredes, Nucl. Phys. B 787 (2007), 98-134
1728
+ doi:10.1016/j.nuclphysb.2007.07.009 [arXiv:hep-th/0702155 [hep-th]].
1729
+ [26] E. Megías and M. Valle, Fortsch. Phys. 66, no.7, 1800035 (2018)
1730
+ doi:10.1002/prop.201800035 [arXiv:1707.04747 [hep-th]].
1731
+ [27] E.
1732
+ Megías,
1733
+ J.
1734
+ Phys.
1735
+ Conf.
1736
+ Ser.
1737
+ 1416,
1738
+ no.1,
1739
+ 012022
1740
+ (2019)
1741
+ doi:10.1088/1742-6596/1416/1/012022 [arXiv:1909.13836 [hep-th]].
1742
+ [28] I. Amado, K. Landsteiner and F. Pena-Benitez, JHEP 05 (2011), 081
1743
+ doi:10.1007/JHEP05(2011)081 [arXiv:1102.4577 [hep-th]].
1744
+ [29] D. T. Son and A. O. Starinets, JHEP 09 (2002), 042 doi:10.1088/1126-
1745
+ 6708/2002/09/042 [arXiv:hep-th/0205051 [hep-th]].
1746
+ 23
1747
+
1748
+ [30] C. P. Herzog and D. T. Son, JHEP 03 (2003), 046 doi:10.1088/1126-
1749
+ 6708/2003/03/046 [arXiv:hep-th/0212072 [hep-th]].
1750
+ [31] K. Landsteiner, E. Megías and F. Pena-Benitez, Phys. Rev. D 90, no.6,
1751
+ 065026 (2014) doi:10.1103/PhysRevD.90.065026 [arXiv:1312.1204 [hep-
1752
+ ph]].
1753
+ [32] E.
1754
+ Megías,
1755
+ EPJ
1756
+ Web
1757
+ Conf.
1758
+ 164
1759
+ (2017),
1760
+ 08001
1761
+ doi:10.1051/epjconf/201716408001 [arXiv:1701.00087 [hep-th]].
1762
+ 24
1763
+
M9AyT4oBgHgl3EQfgfjF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
OdAzT4oBgHgl3EQflP0i/content/2301.01543v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa1efaf4f2b5c11e7f76b7ba4dcec97e9a8eeb20423f06c166ae5de3789f817a
3
+ size 110493
OdAzT4oBgHgl3EQflP0i/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1a22f94881c43866dbae1eda5bdabf6fa3a82ffd12a335a3d80cb22a456f71e
3
+ size 33702
P9AyT4oBgHgl3EQfhPht/content/2301.00373v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebcff1c8967a5f896cb240802286d28bc19cae183cab397941965e5f968e53d9
3
+ size 6534389
P9AyT4oBgHgl3EQfhPht/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b138067ebdbf710f2d78045f7bbd8d6584e99e20dda12875015125467415a6
3
+ size 18743341
P9E0T4oBgHgl3EQfkAHC/content/tmp_files/2301.02468v1.pdf.txt ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ Deep Learning For Classification Of Chest X-Ray Images (Covid 19)
5
+
6
+ Benbakreti Samir1, Said Mwanahija1, Benbakreti Soumia2, Umut Özkaya3
7
+ 1 Specialty Department, Ecole Nationale des Télécommunications et des Technologies de l'Information et de la Communication
8
+ (ENSTTIC), Oran, Algeria.
9
+ 2 Laboratoire des Mathématiques, University of Djillali Liabes, Sidi Bel Abbes, Algeria.
10
+ 3Electrical ans Electronic Engineering, Konya Technical University, Turkey
11
+
12
+ ABSTRACT
13
+
14
+
15
+ In medical practice, the contribution of information technology can be considerable. Most of these practices include the
16
+ images that medical assistance uses to identify different pathologies of the human body. One of them is X-ray images
17
+ which cover much of our work in this paper. Chest x-rays have played an important role in Covid 19 identification and
18
+ diagnosis. The Covid 19 virus has been declared a global pandemic since 2020 after the first case found in Wuhan
19
+ China in December 2019. Our goal in this project is to be able to classify different chest X-ray images containing Covid
20
+ 19, viral pneumonia, lung opacity and normal images. We used CNN architecture and different pre-trained models. The
21
+ best result is obtained by the use of the ResNet 18 architecture with 94.1% accuracy. We also note that The GPU
22
+ execution time is optimal in the case of AlexNet but what requires our attention is that the pretrained models converge
23
+ much faster than the CNN. The time saving is very considerable.
24
+ With these results not only will solve the diagnosis time for patients, but will provide an interesting tool for practitioners,
25
+ thus helping them in times of strong pandemic in particular.
26
+
27
+ Keywords: Deep learning, Image classification, CNN, Covid-19, Chest Xray, Pre-trained models.
28
+
29
+
30
+
31
+
32
+ 1. Introduction
33
+
34
+ Computerized Tomography (CT) and X-ray scans are frequently used for chest imaging. An X-ray is a scan of
35
+ the body that looks for pneumonia, tumors, fractures, and lung infections. An upgraded X-ray machine called a
36
+ CT scan can produce sharper images of bones, tissue, and organs. Compared to CT, the X-ray approach is
37
+ simpler, faster, and more affordable, but it is also more dangerous. Doctors can visually diagnose viral
38
+ bacterial infections, viruses like covid 19 [1], and other infections by examining chest X-ray images. The
39
+ technique of visual diagnosis is typically unappealing, time-consuming, and inaccurate, because it can result
40
+ in low accuracy and requires specialized human resources.
41
+ Coronavirus disease 2019 (COVID-19) is an infectious disease brought on by the coronavirus strain known as
42
+ severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [2]. It is a lung infection that is respiratory in
43
+ nature. The root of the coronavirus word is Greek (κορώνη) which means "crown or halo." It relates to the
44
+ virus's appearance under an electron microscope, which resembles a royal crown. Because of this,
45
+ coronavirus is also known as the crowned virus. The purpose of this paper is therefore to provide a decision
46
+ making tool that will lighten the burden on medical staff, especially during pandemic peaks.
47
+
48
+ 2. Related work
49
+
50
+ Since Corona was announced as a pandemic, different projects were carried out since 2020 to 2022 that it
51
+ became among an interesting subject to learn from, some of the works related to image classification for
52
+ different reasons are discussed in this paragraph.
53
+ The COVID-CT dataset of 2560 images was the database used in [3], 2214 of which were used for training
54
+ and the remaining 246 for testing. By employing WOA to optimize the network's hyperparameters, the model
55
+ used to train ResNet-50 became the WOANet model. This last experiment looked at the accuracy of the
56
+ classification using the suggested method on 246 CT scans, and found that 98.37% of them were categorized
57
+ as COVID-19, while 99.18% were identified as non-COVID-19. The radiologists will be greatly assisted by this
58
+ proposed WOANet in reducing the burden on the healthcare system and hospitals.
59
+ In this study [4], patients' X-ray images are used to classify patients using CNN deep learning. One of the
60
+ most powerful algorithms with generative and deterministic capabilities is the capsule network (CapsNet).
61
+ However, compared to the basic CNN structures, this network has been relatively more responsive to images.
62
+ The dataset utilized was the NIH complete Chest X-rays [5] collection. VDSNet has a validation accuracy
63
+ value of 73%, which is higher than the sample dataset's score of 70.8%.
64
+ Using a dataset of 6432 images, the DLH COVID [6] model is distinct, trustworthy, and independently created
65
+ without any input from the transfer learning approach. The experimental findings from the prospective
66
+ validation phase suggest that the DLH MODEL outperformed the majority of the pre-trained models since it
67
+ distinguished COVID-19, pneumonia, and healthy/unhealthy patients from the image dataset with a promising
68
+ accuracy of 96%.
69
+
70
+ 3. Dataset
71
+
72
+ As seen in figure 1, a database of chest X-ray images for COVID-19 positive cases as well as images of
73
+ normal and viral pneumonia was created in collaboration with medical professionals by a group of researchers
74
+ from Qatar University, Doha, Qatar, and the University of Dhaka, Bangladesh, as well as their collaborators
75
+ from Pakistan and Malaysia. This dataset contains 3616 COVID-19 positive cases, 10,192 Normal, 6012 Lung
76
+ Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images. The COVID-19 x-ray image database
77
+ was created using different sources [7, 8, 9].
78
+
79
+ Fig. 1 CXR scans with four categories of pathology.
80
+
81
+ COVID
82
+ Lung_Opacity
83
+ Normal
84
+ ViralPneumonia
85
+
86
+
87
+
88
+ For training of datasets, we employed Matlab 2021 installed on computer with 64-bit operating system,
89
+ windows 10 Pro, 24 GB of Random Access Memory (RAM), with an Intel(R) Xeon(R) CPU E5-2620 v3 @
90
+ 2.40GHz and Graphical Processing Unit (GPU). Eighty percent of the datasets are used for training and 20%
91
+ for testing (evaluating the model performance).
92
+
93
+ 4. Proposed Model
94
+
95
+ In this study, we analyzed the different techniques for image classification of COVID-19 using X-Ray
96
+ radiographic images of the chest, then examined CNN’s architecture that is based on research on the visual
97
+ cortex of the cat by Hubel and Wisiel [10], and different pre-trained models: AlexNet, ResNet18 and
98
+ GoogleNet in order to see the variation of answers in our work.
99
+
100
+
101
+ Fig. 2 The proposed model with different algorithms.
102
+
103
+ The use of deep learning methods not only allows us to process a very large number of images but at the
104
+ same time allows us to skip the feature extraction step, such a cumbersome step because it is done by hand
105
+ crucially.
106
+ Due to their capacity to extract features (see figure 2) and learn to distinguish between various classes,
107
+ convolutional neural networks (CNNs) are the top DL tool that are widely employed in several fields of the
108
+ healthcare system (i.e., positive and negative, infected). Transfer learning (TL) has made it simpler to quickly
109
+ and accurately retrain neural networks on chosen datasets.
110
+
111
+ 5. Experiments and Results
112
+ 5.1 Experiment 1: Application of the CNN model
113
+
114
+ The structure of our CNN includes a number of layers, as shown in table I. CNN receives a CXR image with a
115
+ size of 299 by 299 pixels as its input, and the rest of the architecture is mentioned in the table I.
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+ Model: CNN/AlexNet/GoogleNet/ResNet 18
132
+ Fully
133
+ Convolution
134
+ Connected
135
+ Pooling
136
+ Output
137
+ Input
138
+ O
139
+ O
140
+ O
141
+ 299*299*1
142
+ 4 classes
143
+ FeatureExtraction
144
+ Classification
145
+
146
+
147
+ Table 1 The architecture of the CNN model.
148
+ Name
149
+ Type
150
+ Description of output size
151
+ Input layer
152
+ Input data
153
+ 299*299
154
+ Conv 1
155
+ Convolution +ReLU
156
+ 32*32*8
157
+ S1
158
+ Max pooling
159
+ 3,2
160
+ Conv 2
161
+ Convolution +ReLU
162
+ 64*64*3
163
+ S2
164
+ Max pooling
165
+ 3,2
166
+ Conv 3
167
+ Convolution +ReLU
168
+ 128*128*5
169
+ S3
170
+ Max pooling
171
+ 3,2
172
+ Conv 4
173
+ Convolution +ReLU
174
+ 256*256*5
175
+ S4
176
+ Max pooling
177
+ 3,2
178
+ Conv 5
179
+ Convolution +ReLU
180
+ 512*512*5
181
+ S5
182
+ Max pooling
183
+ 3,2
184
+ Conv 6
185
+ Convolution +ReLU
186
+ 1024*1024*5
187
+ S6
188
+ Max pooling
189
+ 3,2
190
+ Fc
191
+ Fully connected
192
+ 1 Fc (4)
193
+
194
+ The trained parameters used in this model are in the options side where all the hyperparameters used were
195
+ defined including the number of epochs used (1 or 5), the mini batch (64), the learning rate is 0.001 and
196
+ frequency validation is 20. The given CNN was trained using different parameters to test the accuracy for this
197
+ model. We utilized the accuracy parameter to evaluate how well the trained models performed. The
198
+ percentage of correctly classified images over all the images is what is referred to as accuracy. The following
199
+ formula is utilized:
200
+ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
201
+ 𝑇𝑃 + 𝑇𝑁
202
+ 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
203
+
204
+ Table 2 The results of the CNN model.
205
+ The CNN model
206
+
207
+ 1 epoch
208
+ 5 epochs
209
+ Accuracy
210
+ 75.61%
211
+ 89.13%
212
+ Time GPU
213
+ execution
214
+ 146 min 58s
215
+ 703 min 16s
216
+
217
+ The first top accuracy after training the model using one epoch provided us with 75.61% accuracy for our 4
218
+ classes classification. As training the model using only one epoch did not provide the best result, we had to
219
+ increase the number of epochs and see the performance of our model and the results for our model gave us
220
+ 89.13%, which is a lot better compared to our first experiment with one epoch.
221
+
222
+ 5.2 Experiment 2: Application of the pretrained models
223
+
224
+ AlexNet: With 5 convolutional layers and convolutional filter sizes of 3*3 and 2*2 for max pooling operation,
225
+ AlexNet is an 8-layer convolutional neural network [11]. Fully connected layers are the final three layers. The
226
+ AlexNet model's standard input size is 227*227*3.
227
+ GoogleNet (Inception v3): A convolutional neural network with 50 layers in depth is called GoogleNet [12].
228
+ The program, titled "Going deeper with convolutions," was developed and taught by Google. Up to 1000
229
+ objects can be classified using the pre-trained Inceptionv3 model with the ImageNet dataset [13] weights. This
230
+ network's image input size was 299x299 pixels.
231
+ ResNet18: A convolutional neural network with 18 layers in depth is called ResNet18. Deep Residual
232
+ Learning for Image Recognition, as it is known, was developed and trained by Microsoft in 2015 [14]. To
233
+ address the issue of vanishing gradient that may affect the weightage change in neural networks, ResNet
234
+ architectures introduced the use of residual layers and skip connections. This made training easier and
235
+ allowed neural networks to get much deeper with greater performance. The network was trained on colored
236
+ images with a resolution of 224x224 pixels.
237
+
238
+
239
+
240
+
241
+
242
+ In addition to the accuracy parameters, we estimated the time GPU execution for each model. The results
243
+ obtained are shown in Table 3.
244
+ Table 3 The results of the pretrained models.
245
+
246
+ Pretrained models
247
+
248
+ AlexNet
249
+ GoogleNet
250
+ ResNet18
251
+ Accuracy
252
+ 89.93%
253
+ 91.87%
254
+ 94.1%
255
+ Time
256
+ GPU
257
+ execution
258
+ 14 min
259
+ 58s
260
+ 41 min
261
+ 34s
262
+ 33 min
263
+ 13s
264
+
265
+ Confusion matrix is the common approach used for evaluation of model performance based on true positive
266
+ (TP), true negative (TN), false positive (FP), and false negative (FN).
267
+
268
+ The figure 3 represents the confusion matrix of the Resnet 18 model which gave the best result in terms
269
+ of accuracy.
270
+
271
+
272
+ Fig. 3 The confusion matrix for the RestNet 18 model with the best result.
273
+ When the same dataset was used using the same hyper parameters the accuracy found was 89.93%, 91.87%
274
+ and 94.1 % for AlexNet, GoogleNet and ResNet18 respectively. Note that the pretrained models used only
275
+ one epoch. We see that the results can be improved by using pretrained architectures, attaining an accuracy
276
+ of 94.1%. The increased classification rate attained by Resnet 18 can be attributed to the network's use of
277
+ novel techniques to lessen over-fitting in its model.
278
+ The first method involved artificially enlarging the dataset with the aid of a label-preserving transformation.
279
+ This involved extracting random patches (224x224 for ResNet 18) and training the network on them while
280
+ varying the intensities of the RGB channels in the training images. The result was the generation of image
281
+ translations and horizontal reflections. The second strategy was "dropout," which involves removing neurons
282
+ that do not participate in the forward pass or the backward propagation. As a result, the model is forced to
283
+ learn more robust characteristics and decreases the complex co-adaptations of neurons. The GPU execution
284
+ time is optimal in the case of AlexNet but what requires our attention is that the pretrained models converge
285
+ much faster than the CNN. The time saving is very considerable.
286
+
287
+
288
+ 707
289
+ COVID
290
+ 6
291
+ 6
292
+ 0
293
+ 97.9%
294
+ 16.7%
295
+ 0.1%
296
+ 0.2%
297
+ 0.0%
298
+ 2.1%
299
+ Lungopacity
300
+ S
301
+ 1060
302
+ LL
303
+ 1
304
+ 92.7%
305
+ 0.1%
306
+ 25.1%
307
+ 1.8%
308
+ 0.0%
309
+ 7.3%
310
+ Output Class
311
+ Normal
312
+ 8
313
+ 136
314
+ 1949
315
+ 5
316
+ 92.9%
317
+ 0.2%
318
+ 3.2%
319
+ 46.1%
320
+ 0.1%
321
+ 7.1%
322
+ 1
323
+ 0
324
+ 3
325
+ 263
326
+ ViralPneumonia
327
+ 98.5%
328
+ 0.0%
329
+ %00
330
+ 0.1%
331
+ 6.2%
332
+ 1.5%
333
+ 981%
334
+ 88.2%
335
+ 95.6%
336
+ 97.8%
337
+ 94.1%
338
+ 1.9%
339
+ 118%
340
+ 4.4%
341
+ 2.2%
342
+ 5.9%
343
+ alPpr
344
+ Target Class
345
+
346
+
347
+ 6. Conclusion
348
+ This work aimed at developing a convolutional neural network (CNN) model that will help classify COVID-19
349
+ and non-COVID 19 disease such as viral pneumonia cases using chest X-ray images in the period caused by
350
+ the pandemic. The model used in this work was CNN as well as pre-trained models including AlexNet,
351
+ GoogleNet, and ResNet18. The CNN gave a result with 89.13% accuracy for classifying the four classes after
352
+ training 80% of the dataset and testing on 20%. This motivated us not only to keep changing settings, but also
353
+ to work on pretrained model. In the latter, the pre-trained models were used on the same dataset but with just
354
+ one epoch for each model. And the results were 89.93%, 91.87% and 94.1 % for AlexNet, GoogleNet and
355
+ ResNet18 respectively.
356
+
357
+ 7. References
358
+ [1] Kutlu, Yakup, and Yunus Camgözlü. "Detection of coronavirus disease (COVID-19) from X-ray images
359
+ using deep convolutional neural networks." Natural and Engineering Sciences 6, no. 1 (2021): 60-74.
360
+ [2] Alakus, T.B. and Turkoglu, I., 2020. Comparison of deep learning approaches to predict COVID-19
361
+ infection. Chaos, Solitons & Fractals, 140, p.110120
362
+ [3] Murugan, R., Goel, T., Mirjalili, S., & Chakrabartty, D. K. (2021). WOANet: Whale optimized deep neural
363
+ network for the classification of COVID-19 from radiography images. Biocybernetics and Biomedical
364
+ Engineering, 41(4), 1702-1718.
365
+ [4] Apostolopoulos, I.D., Mpesiana, T.A. Covid-19: automatic detection from X-ray images utilizing transfer
366
+ learning with convolutional neural networks. Phys Eng Sci Med 43, 635–640 (2020).
367
+ [5] Patel
368
+ P.
369
+ Chest
370
+ X-ray
371
+ (COVID-19
372
+ &
373
+ Pneumonia).
374
+ Kaggle.
375
+ (2020);
376
+ https://www.kaggle.com/prashant268/chest-xray-covid19- pneumonia
377
+ [6] CDey, S., Bacellar, G. C., Chandrappa, M. B., & Kulkarni, R. (2021). COVID-19 Chest X-Ray Image
378
+ Classification
379
+ Using
380
+ Deep
381
+ Learning.
382
+ medRxiv
383
+ 2021.07.15.21260605;
384
+ doi:
385
+ https://doi.org/10.1101/2021.07.15.21260605
386
+ [7] https://bimcv.cipf.es/bimcv-projects/bimcv covid19/#1590858128006-9e640421-6711
387
+ [8] https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
388
+ [9] https://sirm.org/category/senza-categoria/covid-19/
389
+ [10] D. H. Hubel, T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, J. Physiol,
390
+ vol. 195, pp. 215-243, 1968.
391
+ [11] Li, Shaojuan, Lizhi Wang, Jia Li, and Yuan Yao. "Image classification algorithm based on improved
392
+ AlexNet." In Journal of Physics: Conference Series, vol. 1813, no. 1, p. 012051. IOP Publishing, 2021.
393
+ [12] Hu, J., Shen, L. and Sun, G., 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE
394
+ conference on computer vision and pattern recognition (pp. 7132-7141).
395
+ [13] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional
396
+ neural networks." Advances in neural information processing systems 25 (2012).
397
+ [14] Huang L, Ruan S, Denoeux T. Covid-19 classification with deep neural network and belief functions.
398
+ InThe Fifth International Conference on Biological Information and Biomedical Engineering 2021 Jul 20
399
+ (pp. 1-4).
400
+
P9E0T4oBgHgl3EQfkAHC/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf,len=249
2
+ page_content="Deep Learning For Classification Of Chest X-Ray Images (Covid 19) Benbakreti Samir1, Said Mwanahija1, Benbakreti Soumia2, Umut Özkaya3 1 Specialty Department, Ecole Nationale des Télécommunications et des Technologies de l'Information et de la Communication (ENSTTIC), Oran, Algeria." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
3
+ page_content=' 2 Laboratoire des Mathématiques, University of Djillali Liabes, Sidi Bel Abbes, Algeria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
4
+ page_content=' 3Electrical ans Electronic Engineering, Konya Technical University, Turkey ABSTRACT In medical practice, the contribution of information technology can be considerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
5
+ page_content=' Most of these practices include the images that medical assistance uses to identify different pathologies of the human body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
6
+ page_content=' One of them is X-ray images which cover much of our work in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
7
+ page_content=' Chest x-rays have played an important role in Covid 19 identification and diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
8
+ page_content=' The Covid 19 virus has been declared a global pandemic since 2020 after the first case found in Wuhan China in December 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
9
+ page_content=' Our goal in this project is to be able to classify different chest X-ray images containing Covid 19, viral pneumonia, lung opacity and normal images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
10
+ page_content=' We used CNN architecture and different pre-trained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
11
+ page_content=' The best result is obtained by the use of the ResNet 18 architecture with 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
12
+ page_content='1% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
13
+ page_content=' We also note that The GPU execution time is optimal in the case of AlexNet but what requires our attention is that the pretrained models converge much faster than the CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
14
+ page_content=' The time saving is very considerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
15
+ page_content=' With these results not only will solve the diagnosis time for patients, but will provide an interesting tool for practitioners, thus helping them in times of strong pandemic in particular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
16
+ page_content=' Keywords: Deep learning, Image classification, CNN, Covid-19, Chest Xray, Pre-trained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
17
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
18
+ page_content=' Introduction Computerized Tomography (CT) and X-ray scans are frequently used for chest imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
19
+ page_content=' An X-ray is a scan of the body that looks for pneumonia, tumors, fractures, and lung infections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
20
+ page_content=' An upgraded X-ray machine called a CT scan can produce sharper images of bones, tissue, and organs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
21
+ page_content=' Compared to CT, the X-ray approach is simpler, faster, and more affordable, but it is also more dangerous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
22
+ page_content=' Doctors can visually diagnose viral bacterial infections, viruses like covid 19 [1], and other infections by examining chest X-ray images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
23
+ page_content=' The technique of visual diagnosis is typically unappealing, time-consuming, and inaccurate, because it can result in low accuracy and requires specialized human resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
24
+ page_content=' Coronavirus disease 2019 (COVID-19) is an infectious disease brought on by the coronavirus strain known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
25
+ page_content=' It is a lung infection that is respiratory in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
26
+ page_content=' The root of the coronavirus word is Greek (κορώνη) which means "crown or halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
27
+ page_content='" It relates to the virus\'s appearance under an electron microscope, which resembles a royal crown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
28
+ page_content=' Because of this, coronavirus is also known as the crowned virus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
29
+ page_content=' The purpose of this paper is therefore to provide a decision making tool that will lighten the burden on medical staff, especially during pandemic peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
30
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
31
+ page_content=' Related work Since Corona was announced as a pandemic, different projects were carried out since 2020 to 2022 that it became among an interesting subject to learn from, some of the works related to image classification for different reasons are discussed in this paragraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
32
+ page_content=' The COVID-CT dataset of 2560 images was the database used in [3], 2214 of which were used for training and the remaining 246 for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
33
+ page_content=" By employing WOA to optimize the network's hyperparameters, the model used to train ResNet-50 became the WOANet model." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
34
+ page_content=' This last experiment looked at the accuracy of the classification using the suggested method on 246 CT scans, and found that 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
35
+ page_content='37% of them were categorized as COVID-19, while 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
36
+ page_content='18% were identified as non-COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
37
+ page_content=' The radiologists will be greatly assisted by this proposed WOANet in reducing the burden on the healthcare system and hospitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
38
+ page_content=" In this study [4], patients' X-ray images are used to classify patients using CNN deep learning." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
39
+ page_content=' One of the most powerful algorithms with generative and deterministic capabilities is the capsule network (CapsNet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
40
+ page_content=' However, compared to the basic CNN structures, this network has been relatively more responsive to images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
41
+ page_content=' The dataset utilized was the NIH complete Chest X-rays [5] collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
42
+ page_content=" VDSNet has a validation accuracy value of 73%, which is higher than the sample dataset's score of 70." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
43
+ page_content='8%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
44
+ page_content=' Using a dataset of 6432 images, the DLH COVID [6] model is distinct, trustworthy, and independently created without any input from the transfer learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
45
+ page_content=' The experimental findings from the prospective validation phase suggest that the DLH MODEL outperformed the majority of the pre-trained models since it distinguished COVID-19, pneumonia, and healthy/unhealthy patients from the image dataset with a promising accuracy of 96%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
46
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
47
+ page_content=' Dataset As seen in figure 1, a database of chest X-ray images for COVID-19 positive cases as well as images of normal and viral pneumonia was created in collaboration with medical professionals by a group of researchers from Qatar University, Doha, Qatar, and the University of Dhaka, Bangladesh, as well as their collaborators from Pakistan and Malaysia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
48
+ page_content=' This dataset contains 3616 COVID-19 positive cases, 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
49
+ page_content=' The COVID-19 x-ray image database was created using different sources [7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
50
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
51
+ page_content=' 1 CXR scans with four categories of pathology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
52
+ page_content=' COVID Lung_Opacity Normal ViralPneumonia For training of datasets, we employed Matlab 2021 installed on computer with 64-bit operating system, windows 10 Pro, 24 GB of Random Access Memory (RAM), with an Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
53
+ page_content='40GHz and Graphical Processing Unit (GPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
54
+ page_content=' Eighty percent of the datasets are used for training and 20% for testing (evaluating the model performance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
55
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
56
+ page_content=' Proposed Model In this study, we analyzed the different techniques for image classification of COVID-19 using X-Ray radiographic images of the chest, then examined CNN’s architecture that is based on research on the visual cortex of the cat by Hubel and Wisiel [10], and different pre-trained models: AlexNet, ResNet18 and GoogleNet in order to see the variation of answers in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
57
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
58
+ page_content=' 2 The proposed model with different algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
59
+ page_content=' The use of deep learning methods not only allows us to process a very large number of images but at the same time allows us to skip the feature extraction step, such a cumbersome step because it is done by hand crucially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
60
+ page_content=' Due to their capacity to extract features (see figure 2) and learn to distinguish between various classes, convolutional neural networks (CNNs) are the top DL tool that are widely employed in several fields of the healthcare system (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
61
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
62
+ page_content=', positive and negative, infected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
63
+ page_content=' Transfer learning (TL) has made it simpler to quickly and accurately retrain neural networks on chosen datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
64
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
65
+ page_content=' Experiments and Results 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
66
+ page_content='1 Experiment 1: Application of the CNN model The structure of our CNN includes a number of layers, as shown in table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
67
+ page_content=' CNN receives a CXR image with a size of 299 by 299 pixels as its input, and the rest of the architecture is mentioned in the table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
68
+ page_content=' Model: CNN/AlexNet/GoogleNet/ResNet 18 Fully Convolution Connected Pooling Output Input O O O 299 299 1 4 classes FeatureExtraction Classification Table 1 The architecture of the CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
69
+ page_content=' Name Type Description of output size Input layer Input data 299*299 Conv 1 Convolution +ReLU 32*32*8 S1 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
70
+ page_content='2 Conv 2 Convolution +ReLU 64*64*3 S2 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
71
+ page_content='2 Conv 3 Convolution +ReLU 128*128*5 S3 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
72
+ page_content='2 Conv 4 Convolution +ReLU 256*256*5 S4 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
73
+ page_content='2 Conv 5 Convolution +ReLU 512*512*5 S5 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
74
+ page_content='2 Conv 6 Convolution +ReLU 1024*1024*5 S6 Max pooling 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
75
+ page_content='2 Fc Fully connected 1 Fc (4) The trained parameters used in this model are in the options side where all the hyperparameters used were defined including the number of epochs used (1 or 5),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
76
+ page_content=' the mini batch (64),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
77
+ page_content=' the learning rate is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
78
+ page_content='001 and frequency validation is 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
79
+ page_content=' The given CNN was trained using different parameters to test the accuracy for this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
80
+ page_content=' We utilized the accuracy parameter to evaluate how well the trained models performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
81
+ page_content=' The percentage of correctly classified images over all the images is what is referred to as accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
82
+ page_content=' The following formula is utilized: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 Table 2 The results of the CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
83
+ page_content=' The CNN model 1 epoch 5 epochs Accuracy 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
84
+ page_content='61% 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
85
+ page_content='13% Time GPU execution 146 min 58s 703 min 16s The first top accuracy after training the model using one epoch provided us with 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
86
+ page_content='61% accuracy for our 4 classes classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
87
+ page_content=' As training the model using only one epoch did not provide the best result, we had to increase the number of epochs and see the performance of our model and the results for our model gave us 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
88
+ page_content='13%, which is a lot better compared to our first experiment with one epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
89
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
90
+ page_content='2 Experiment 2: Application of the pretrained models AlexNet: With 5 convolutional layers and convolutional filter sizes of 3*3 and 2*2 for max pooling operation, AlexNet is an 8-layer convolutional neural network [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
91
+ page_content=' Fully connected layers are the final three layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
92
+ page_content=" The AlexNet model's standard input size is 227*227*3." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
93
+ page_content=' GoogleNet (Inception v3): A convolutional neural network with 50 layers in depth is called GoogleNet [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
94
+ page_content=' The program, titled "Going deeper with convolutions," was developed and taught by Google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
95
+ page_content=' Up to 1000 objects can be classified using the pre-trained Inceptionv3 model with the ImageNet dataset [13] weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
96
+ page_content=" This network's image input size was 299x299 pixels." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
97
+ page_content=' ResNet18: A convolutional neural network with 18 layers in depth is called ResNet18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
98
+ page_content=' Deep Residual Learning for Image Recognition, as it is known, was developed and trained by Microsoft in 2015 [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
99
+ page_content=' To address the issue of vanishing gradient that may affect the weightage change in neural networks, ResNet architectures introduced the use of residual layers and skip connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
100
+ page_content=' This made training easier and allowed neural networks to get much deeper with greater performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
101
+ page_content=' The network was trained on colored images with a resolution of 224x224 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
102
+ page_content=' In addition to the accuracy parameters, we estimated the time GPU execution for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
103
+ page_content=' The results obtained are shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
104
+ page_content=' Table 3 The results of the pretrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
105
+ page_content=' Pretrained models AlexNet GoogleNet ResNet18 Accuracy 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
106
+ page_content='93% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
107
+ page_content='87% 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
108
+ page_content='1% Time GPU execution 14 min 58s 41 min 34s 33 min 13s Confusion matrix is the common approach used for evaluation of model performance based on true positive (TP), true negative (TN), false positive (FP), and false negative (FN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
109
+ page_content=' The figure 3 represents the confusion matrix of the Resnet 18 model which gave the best result in terms of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
110
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
111
+ page_content=' 3 The confusion matrix for the RestNet 18 model with the best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
112
+ page_content=' When the same dataset was used using the same hyper parameters the accuracy found was 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
113
+ page_content='93%, 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
114
+ page_content='87% and 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
115
+ page_content='1 % for AlexNet, GoogleNet and ResNet18 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
116
+ page_content=' Note that the pretrained models used only one epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
117
+ page_content=' We see that the results can be improved by using pretrained architectures, attaining an accuracy of 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
118
+ page_content='1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
119
+ page_content=" The increased classification rate attained by Resnet 18 can be attributed to the network's use of novel techniques to lessen over-fitting in its model." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
120
+ page_content=' The first method involved artificially enlarging the dataset with the aid of a label-preserving transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
121
+ page_content=' This involved extracting random patches (224x224 for ResNet 18) and training the network on them while varying the intensities of the RGB channels in the training images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
122
+ page_content=' The result was the generation of image translations and horizontal reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
123
+ page_content=' The second strategy was "dropout," which involves removing neurons that do not participate in the forward pass or the backward propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
124
+ page_content=' As a result, the model is forced to learn more robust characteristics and decreases the complex co-adaptations of neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
125
+ page_content=' The GPU execution time is optimal in the case of AlexNet but what requires our attention is that the pretrained models converge much faster than the CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
126
+ page_content=' The time saving is very considerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
127
+ page_content=' 707 COVID 6 6 0 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
128
+ page_content='9% 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
129
+ page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
130
+ page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
131
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
132
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
133
+ page_content='1% Lungopacity S 1060 LL 1 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
134
+ page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
135
+ page_content='1% 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
136
+ page_content='1% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
137
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
138
+ page_content='0% 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
139
+ page_content='3% Output Class Normal 8 136 1949 5 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
140
+ page_content='9% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
141
+ page_content='2% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
142
+ page_content='2% 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
143
+ page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
144
+ page_content='1% 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
145
+ page_content='1% 1 0 3 263 ViralPneumonia 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
146
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
147
+ page_content='0% %00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
148
+ page_content='1% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
149
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
150
+ page_content='5% 981% 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
151
+ page_content='2% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
152
+ page_content='6% 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
153
+ page_content='8% 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
154
+ page_content='1% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
155
+ page_content='9% 118% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
156
+ page_content='4% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
157
+ page_content='2% 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
158
+ page_content='9% alPpr Target Class 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
159
+ page_content=' Conclusion This work aimed at developing a convolutional neural network (CNN) model that will help classify COVID-19 and non-COVID 19 disease such as viral pneumonia cases using chest X-ray images in the period caused by the pandemic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
160
+ page_content=' The model used in this work was CNN as well as pre-trained models including AlexNet, GoogleNet, and ResNet18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
161
+ page_content=' The CNN gave a result with 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
162
+ page_content='13% accuracy for classifying the four classes after training 80% of the dataset and testing on 20%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
163
+ page_content=' This motivated us not only to keep changing settings, but also to work on pretrained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
164
+ page_content=' In the latter, the pre-trained models were used on the same dataset but with just one epoch for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
165
+ page_content=' And the results were 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
166
+ page_content='93%, 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
167
+ page_content='87% and 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
168
+ page_content='1 % for AlexNet, GoogleNet and ResNet18 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
169
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
170
+ page_content=' References [1] Kutlu, Yakup, and Yunus Camgözlü.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
171
+ page_content=' "Detection of coronavirus disease (COVID-19) from X-ray images using deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
172
+ page_content='" Natural and Engineering Sciences 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
173
+ page_content=' 1 (2021): 60-74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
174
+ page_content=' [2] Alakus, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
175
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
176
+ page_content=' and Turkoglu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
177
+ page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
178
+ page_content=' Comparison of deep learning approaches to predict COVID-19 infection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
179
+ page_content=' Chaos, Solitons & Fractals, 140, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
180
+ page_content='110120 [3] Murugan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
181
+ page_content=', Goel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
182
+ page_content=', Mirjalili, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
183
+ page_content=', & Chakrabartty, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
184
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
185
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
186
+ page_content=' WOANet: Whale optimized deep neural network for the classification of COVID-19 from radiography images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
187
+ page_content=' Biocybernetics and Biomedical Engineering, 41(4), 1702-1718.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
188
+ page_content=' [4] Apostolopoulos, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
189
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
190
+ page_content=', Mpesiana, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
191
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
192
+ page_content=' Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
193
+ page_content=' Phys Eng Sci Med 43, 635–640 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
194
+ page_content=' [5] Patel P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
195
+ page_content=' Chest X-ray (COVID-19 & Pneumonia).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
196
+ page_content=' Kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
197
+ page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
198
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
199
+ page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
200
+ page_content='com/prashant268/chest-xray-covid19- pneumonia [6] CDey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
201
+ page_content=', Bacellar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
202
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
203
+ page_content=', Chandrappa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
204
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
205
+ page_content=', & Kulkarni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
206
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
207
+ page_content=' COVID-19 Chest X-Ray Image Classification Using Deep Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
208
+ page_content=' medRxiv 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
209
+ page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
210
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
211
+ page_content='21260605;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
212
+ page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
213
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
214
+ page_content='1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
215
+ page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
216
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
217
+ page_content='21260605 [7] https://bimcv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
218
+ page_content='cipf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
219
+ page_content='es/bimcv-projects/bimcv covid19/#1590858128006-9e640421-6711 [8] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
220
+ page_content='com/ml-workgroup/covid-19-image-repository/tree/master/png [9] https://sirm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
221
+ page_content='org/category/senza-categoria/covid-19/ [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
222
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
223
+ page_content=' Hubel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
224
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
225
+ page_content=' Wiesel, Receptive fields and functional architecture of monkey striate cortex, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
226
+ page_content=' Physiol, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
227
+ page_content=' 195, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
228
+ page_content=' 215-243, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
229
+ page_content=' [11] Li, Shaojuan, Lizhi Wang, Jia Li, and Yuan Yao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
230
+ page_content=' "Image classification algorithm based on improved AlexNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
231
+ page_content='" In Journal of Physics: Conference Series, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
232
+ page_content=' 1813, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
233
+ page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
234
+ page_content=' 012051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
235
+ page_content=' IOP Publishing, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
236
+ page_content=' [12] Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
237
+ page_content=', Shen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
238
+ page_content=' and Sun, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
239
+ page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
240
+ page_content=' Squeeze-and-excitation networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
241
+ page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
242
+ page_content=' 7132-7141).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
243
+ page_content=' [13] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
244
+ page_content=' Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
245
+ page_content=' "Imagenet classification with deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
246
+ page_content='" Advances in neural information processing systems 25 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
247
+ page_content=' [14] Huang L, Ruan S, Denoeux T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
248
+ page_content=' Covid-19 classification with deep neural network and belief functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
249
+ page_content=' InThe Fifth International Conference on Biological Information and Biomedical Engineering 2021 Jul 20 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
250
+ page_content=' 1-4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfkAHC/content/2301.02468v1.pdf'}
QNE5T4oBgHgl3EQfZA_G/content/2301.05578v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e4e1b410c44a77735a22ae73a36be022f9330b39e27d22ab9aa318cc733c47
3
+ size 678110
QNE5T4oBgHgl3EQfZA_G/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:413aedc45ef265a57316c61d34dd83c227b0c6f5fb0a01088edef06f30c97b5a
3
+ size 4390957
QNE5T4oBgHgl3EQfZA_G/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a5e6a3d89c8448485d992c93ff2dcd11833df52883b305b2c79cf71c852db9b
3
+ size 172207
QtE4T4oBgHgl3EQfKQz1/content/tmp_files/2301.04929v1.pdf.txt ADDED
@@ -0,0 +1,2079 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Heterogeneous Beliefs and Multi-Population Learning in
2
+ Network Games
3
+ Shuyue Hu1, Harold Soh2, and Georgios Piliouras3
4
+ 1Shanghai Artificial Intelligence Laboratory
5
+ 2National University of Singapore
6
+ 3Singapore University of Technology and Design
7
+ Abstract
8
+ The effect of population heterogeneity in multi-agent learning is practically relevant but remains
9
+ far from being well-understood. Motivated by this, we introduce a model of multi-population learning
10
+ that allows for heterogeneous beliefs within each population and where agents respond to their
11
+ beliefs via smooth fictitious play (SFP). We show that the system state — a probability distribution
12
+ over beliefs — evolves according to a system of partial differential equations. We establish the
13
+ convergence of SFP to Quantal Response Equilibria in different classes of games capturing both
14
+ network competition as well as network coordination. We also prove that the beliefs will eventually
15
+ homogenize in all network games. Although the initial belief heterogeneity disappears in the limit,
16
+ we show that it plays a crucial role for equilibrium selection in the case of coordination games as it
17
+ helps select highly desirable equilibria. Contrary, in the case of network competition, the resulting
18
+ limit behavior is independent of the initialization of beliefs, even when the underlying game has many
19
+ distinct Nash equilibria.
20
+ 1
21
+ Introduction
22
+ Smooth Fictitious play (SFP) and variants thereof are arguably amongst the most well-studied learning
23
+ models in AI and game theory [2, 3, 21, 22, 9, 19, 36, 37, 42, 18, 17]. SFP describes a belief-based learning
24
+ process: agents form beliefs about the play of opponents and update their beliefs based on observations.
25
+ Informally, an agent’s belief can be thought as reflecting how likely its opponents will play each strategy.
26
+ During game plays, each agent plays smoothed best responses to its beliefs. Much of the literature of
27
+ SFP is framed in the context of homogeneous beliefs models where all agents in a given role have the
28
+ same beliefs. This includes models with one agent in each player role [3, 2, 39] as well as models with a
29
+ single population but in which all agents have the same beliefs [21, 22]. SFP are known to converge in
30
+ large classes of homogeneous beliefs models (e.g., most 2-player games [9, 19, 3]). However, in the context
31
+ of heterogeneous beliefs, where agents in a population have different beliefs, SFP has been explored to a
32
+ less extent.
33
+ The study of heterogeneous beliefs (or more broadly speaking, population heterogeneity) is important
34
+ and practically relevant. From multi-agent system perspective, heterogeneous beliefs widely exist in
35
+ many applications, such as traffic management, online trading and video game playing. For example,
36
+ it is natural to expect that public opinions generally diverge on autonomous vehicles and that people
37
+ have different beliefs about the behaviors of taxi drivers vs non-professional drivers. From machine
38
+ learning perspective, recent empirical advances hint that injecting heterogeneity potentially accelerates
39
+ population-based training of neural networks and improves learning performance [25, 29, 44]. From game
40
+ theory perspective, considering heterogeneity of beliefs better explains results of some human experiments
41
+ [10, 11].
42
+ Heterogeneous beliefs models of SFP are not entirely new. In the pioneering work [12], Fudenberg
43
+ and Takahashi examine the heterogeneity issue in 2-population settings by appealing to techniques from
44
+ the stochastic approximation theory. This approach, which is typical in the SFP literature, relates the
45
+ limit behavior of each individual to an ordinary differential equation (ODE) and has yielded significant
46
+ insights for many homogeneous beliefs models [3, 2, 19, 39]. However, this approach, as also noted by
47
+ Fudenberg and Takahashi, “does not provide very precise estimates of the effect of the initial condition of
48
+ the system.” Consider an example of a population of agents each can choose between two pure strategies
49
+ 1
50
+ arXiv:2301.04929v1 [cs.MA] 12 Jan 2023
51
+
52
+ s1 and s2. Let us imagine two cases: (i) every agents in the population share the same belief that their
53
+ opponents play a mixed strategy choosing s1 and s2 with equal probability 0.5, and (ii) half of the agents
54
+ believe that their opponents determinedly play the pure strategy s1 and the other half believe that
55
+ their opponents determinedly play the pure strategy s2. The stochastic approximation approach would
56
+ generally treat these two cases equally, providing little information about the heterogeneity in beliefs as
57
+ well as its consequential effects on the system evolution. This drives our motivating questions:
58
+ How does heterogeneous populations evolve under SFP? How much and under what conditions does
59
+ the heterogeneity in beliefs affect their long-term behaviors?
60
+ Model and Solutions. In this paper, we study the dynamics of SFP in general classes of multi-
61
+ population network games that allow for heterogeneous beliefs. In a multi-population network game, each
62
+ vertex of the network represents a population (continuum) of agents, and each edge represents a series
63
+ of 2-player subgames between two neighboring populations. Note that multi-population network games
64
+ include all the 2-population games considered in [12] and are representation of subclasses of real-world
65
+ systems where the graph structure is evident [?]. We consider that for a certain population, individual
66
+ agents form separate beliefs about each neighbor population and observe the mean strategy play of
67
+ that population. Taking a approach different from stochastic approximation, we define the system state
68
+ as a probability measure over the space of beliefs, which allows us to precisely examine the impact of
69
+ heterogeneous beliefs on system evolution. This probability measure changes over time in response to
70
+ agents’ learning. Thus, the main challenge is to analyze the evolution of the measure, which in general
71
+ requires the development of new techniques.
72
+ As a starting point, we establish a system of partial differential equations (PDEs) to track the
73
+ evolution of the measure in continuous time limit (Proposition 1). The PDEs that we derive are akin
74
+ to the continuity equations1 commonly encountered in physics and do not allow for a general solution.
75
+ Appealing to moment closure approximation [13], we circumvent the need of solving the PDEs and
76
+ directly analyze the dynamics of the mean and variance (Proposition 2 and Theorem 1). As one of our
77
+ key results, we prove that the variance of beliefs always decays quadratically fast with time in all network
78
+ games (Theorem 1). Put differently, eventually, beliefs will homogenize and the distribution of beliefs
79
+ will collapse to a single point, regardless of initial distributions of beliefs, 2-player subgames that agents
80
+ play, and the number of populations and strategies. This result is non-trivial and perhaps somewhat
81
+ counterintuitive. Afterall, one may find it more natural to expect that the distribution of beliefs would
82
+ converge to some distribution rather than a single point, as evidenced by recent studies on Q-learning
83
+ and Cross learning [23, 24, 27].
84
+ Technically, the eventual belief homogenization has a significant implication — it informally hints
85
+ that the asymptotic system state of initially heterogeneous systems are likely to be the same as in
86
+ homogeneous systems. We show that the fixed point of SFP correspond to Quantual Response Equilibria
87
+ (QRE)2 in network games for both homogeneous and initially heterogeneous systems (Theorem 2). As
88
+ our main result, we establish the convergence of SFP to QRE in different classes of games capturing both
89
+ network competition as well as network coordination, independent of belief initialization. Specifically,
90
+ for competitive network games, we first prove via a Lyapunov argument that the SFP converges to a
91
+ unique QRE in homogeneous systems, even when the underlying game has many distinct Nash equilibria
92
+ (Theorem 3). Then, we show that this convergence result can be carried over to initially heterogeneous
93
+ systems (Theorem 4), by leveraging that the mean belief dynamics of initially heterogeneous systems is
94
+ asymptotically autonomous [31] with its limit dynamics being the belief dynamics of a homogeneous system
95
+ (Lemma 7). For coordination network games, we also prove the convergence to QRE for homogeneous
96
+ and initially heterogeneous systems, in which the underlying network has star structure (Theorem 5).
97
+ On the other hand, the eventual belief homogenization may lead to a misconception that belief
98
+ heterogeneity has little effect on system evolution. Using an example of 2-population stag hunt games,
99
+ we show that belief heterogeneity actually plays a crucial role in equilibrium selection, even though it
100
+ eventually vanishes. As shown in Figure 1, changing the variance of initial beliefs results in different limit
101
+ behaviors, even when the mean of initial beliefs remains unchanged; in particular, while a small variance
102
+ leads to the less desirable equilibrium pH, Hq, a large variance leads to the payoff dominant equilibrium
103
+ pS, Sq. Thus, in the case of network coordination, initial belief heterogeneity can help select the highly
104
+ desirable equilibrium and provides interesting insights to the seminal thorny problem of equilibrium
105
+ selection [26]. On the contrary, in the case of network competition, we prove (Theorems 3 and 4 on the
106
+ 1The continuity equation is a PDE that describes the transport phenomena of some quantity (e.g., mass, energy,
107
+ momentum and other conserved quantities) in a physical system.
108
+ 2QRE is a game theoretic solution concept under bounded rationality. By QRE, in this paper we refer to their canonical
109
+ form also referred to as logit equilibria or logit QRE in the literature [14].
110
+ 2
111
+
112
+ Figure 1: The system dynamics under the effects of different variances of initial beliefs (thin lines:
113
+ predictions of our PDE model, shaded wide lines: simulation results). ¯µ2S represents the mean belief
114
+ about population 2 and ¯x1S represents the mean probability of playing strategy S in population 1. Initially,
115
+ we set the mean beliefs ¯µ2S “ ¯µ1S “ 0.3 (details of the setup are summarized in the supplementary).
116
+ Given the same initial mean belief, different initial variances σ2pµ2Sq lead to the convergence to different
117
+ beliefs (the left panel) and even to different strategy choices (the right panel). In particular, a large initial
118
+ variance helps select the payoff dominant equilibrium pS, Sq in stag hunt games.
119
+ convergence to a unique QRE in competitive network games) as well as showcase experimentally that the
120
+ resulting limit behavior is independent of initialization of beliefs, even if the underlying game has many
121
+ distinct Nash equilibria.
122
+ Related Works.
123
+ SFP and its variants have recently attracted a lot of attention in AI research
124
+ [36, 37, 42, 18, 17]. There is a significant literature that analyze SFP in different models [3, 7, 21, 19], and
125
+ the paper that is most closely related to our work is [12]. Fudenberg and Takahashi [12] also examines the
126
+ heterogeneity issue and anticipate belief homogenization in the limit under 2-population settings. In this
127
+ paper, we consider multi-population network games, which is a generalization of their setting.3 Moreover,
128
+ our approach is more fundamental, as the PDEs that we derive can provide much richer information
129
+ about the system evolution and thus precisely estimates the temporal effects of heterogeneity, which is
130
+ generally intractable in [12]. Therefore, using our approach, we are able to show an interesting finding —
131
+ the initial heterogeneity plays a crucial role in equilibrium selection (Figure 1) — which unfortunately
132
+ cannot be shown using the approach in [12]. Last but not least, to our knowledge, our paper is the first
133
+ work that presents a systematic study of smooth fictitious play in general classes of network games.
134
+ On the other hand, networked multi-agent learning constitutes one of the current frontiers in AI and
135
+ ML research [43, 30, 16]. Recent theoretical advances on network games provide conditions for learning
136
+ behaviors to be not chaotic [6, 34], and investigate the convergence of Q-learning and continuous-time FP
137
+ in the case of network competitions [7, 28]. However, [7, 28] consider that there is only one agent on each
138
+ vertex, and hence their models are essentially for homogeneous systems.
139
+ Lahkar and Seymour [27] and Hu et al. [23, 24] also use the continuity equations as a tool to study
140
+ population heterogeneity in multi-agent systems where a single population of agents applies Cross learning
141
+ or Q-learning to play symmetric games. They either prove or numerically showcase that heterogeneity
142
+ generally persists. Our results complement these advances by showing that heterogeneity vanishes under
143
+ SFP and that heterogeneity helps select highly desirable equilibria. Moreover, methodologically, we
144
+ establish new proof techniques for the convergence of learning dynamics in heterogeneous systems by
145
+ leveraging seminal results (Lemmas 1 and 2) from the asymptotically autonomous dynamical system
146
+ literature, which may be of independent interest.
147
+ 3The analysis presented in this paper covers all generic 2-population network games, all generic bipartite network games
148
+ where the game played on each edge is the same along all edges, and all weighted zero-sum games which do not require the
149
+ graph to be bipartite nor to have the same game played on each edge.
150
+ 3
151
+
152
+ Small vs. Large Variance of Initial Population Beliefs
153
+ Mean Belief about the Others' Playing S
154
+ Mean Probability of Playing S
155
+ 1S
156
+ 0.8
157
+ 0.8
158
+ 0.6
159
+ Mean Prob.
160
+ 0.6
161
+ )~ 0.023
162
+ (μ2s) ~ 0.023
163
+ 0.A
164
+ α(μ2s)
165
+ = 0.1
166
+ 0.4
167
+ g(μ2s)
168
+ = 0.1
169
+ 0.2
170
+ 0.2
171
+ 50
172
+ 100
173
+ 150
174
+ 200
175
+ 50
176
+ 100
177
+ 150
178
+ 200
179
+ Time t
180
+ Time t2
181
+ Preliminaries
182
+ Population Network Games.
183
+ A population network game (PNG) Γ “ pN, pV, Eq, pSi, ωiq@iPV , pAijqpi,jqPEq
184
+ consists of a multi-agent system N distributed over a graph pV, Eq, where V “ t1, ..., nu is the set of
185
+ vertices each represents a population (continuum) of agents, and E is the set of pairs, pi, jq, of population
186
+ i ‰ j P V . For each population i P V , agents of this population has a finite set Si of pure strategies (or
187
+ actions) with generic elements si P Si. Agents may also use mixed strategies (or choice distributions).
188
+ For an arbitrary agent k in population i, its mixed strategy is a vector xipkq P ∆i, where ∆i is the
189
+ simplex in R|Si| such that ř
190
+ siPSi xisipkq “ 1 and xisipkq ě 0, @si P Si. Each edge pi, jq P E defines
191
+ a series of two-player subgames between populations i and j, such that for a given time step, each
192
+ agent in population i is randomly paired up with another agent in population j to play a two-player
193
+ subgame. We denote the payoff matrices for agents of population i and j in these two-player subgames by
194
+ Aij P R|Si|ˆ|Sj| and Aji P R|Sj|ˆ|Si|, respectively. Note that at a given time step, each agent chooses a
195
+ (mixed or pure) strategy and plays that strategy in all two-player subgames. Let x “ pxi, txjupi,jqPEq be
196
+ a mixed strategy profile, where xi (or xj) denotes a generic mixed strategy in population i (or j). Given
197
+ the mixed strategy profile x, the expected payoff of using xi in the game Γ is
198
+ ripxq “ ripxi, txjupi,jqPEq :“
199
+ ÿ
200
+ pi,jqPE
201
+ xJ
202
+ i Aijxj.
203
+ (1)
204
+ The game Γ is competitive (or weighted zero-sum), if there exist positive constants ω1, . . . , ωn such that
205
+ ÿ
206
+ iPV
207
+ ωiripxq “
208
+ ÿ
209
+ pi,jqPE
210
+ `
211
+ ωixJ
212
+ i Aijxj ` ωjxJ
213
+ j Ajixi
214
+ ˘
215
+ “ 0,
216
+ @x P
217
+ ź
218
+ iPV
219
+ ∆i.
220
+ (2)
221
+ On the other hand, Γ is a coordination network game, if for each edge pi, jq P E, the payoff matrices of
222
+ the two-player subgame satisfy Aij “ AJ
223
+ ji.
224
+ Smooth Fictitious Play.
225
+ SFP is a belief-based model for learning in games. In SFP, agents form
226
+ beliefs about the play of opponents and respond to the beliefs via smooth best responses. Given a
227
+ game Γ, consider an arbitrary agent k in a population i P V . Let Vi “ tj P V : pi, jq P Eu be the set
228
+ of neighbor populations. Agent k maintains a weight κi
229
+ jsjpkq for each opponent strategy sj P Sj of a
230
+ neighbor population j P Vi. Based on the weights, agent k forms a belief about the neighbor population
231
+ j, such that each opponent strategy sj is played with probability
232
+ µi
233
+ jsjpkq “
234
+ κi
235
+ jsjpkq
236
+ ř
237
+ s1
238
+ jPSj κi
239
+ js1
240
+ jpkq.
241
+ (3)
242
+ Let µi
243
+ jpkq be the vector of beliefs with the sj-th element equals µi
244
+ jsjpkq. Agent k forms separate beliefs
245
+ for each neighbor population, and plays a smooth best response to the set of beliefs tµi
246
+ jpkqujPVi. Given a
247
+ game Γ, agent k’s expected payoff for using a pure strategy si P Si is
248
+ uisipkq “ ripesi, tµi
249
+ jpk, tqujPViq “
250
+ ÿ
251
+ jPVi
252
+ eJ
253
+ siAijµi
254
+ jpkq
255
+ (4)
256
+ where esi is a unit vector where the si-th element is 1. The probability of playing strategy si is then
257
+ given by
258
+ xisipkq “
259
+ exppβuisipkqq
260
+ ř
261
+ s1
262
+ iPSi exppβuis1
263
+ ipkqq
264
+ (5)
265
+ where β is a temperature (or the degree of rationality). We consider that agents observe the mean mixed
266
+ strategy of each neighbor population. As such, at a given time step t, agent k updates the weights for
267
+ each opponent strategy sj P Sj, j P Vi as follows:
268
+ κi
269
+ jsjpk, t ` 1q “ κi
270
+ jsjpk, tq ` ¯xjsjptq
271
+ (6)
272
+ where ¯xjsj is the mean probability of playing strategy sj in population j, i.e., ¯xjsj “
273
+ 1
274
+ nj
275
+ ř
276
+ lPpopulation j xjsjplq
277
+ with the number of agents denoted by nj.
278
+ For simplicity, we assume the initial sum of weights
279
+ ř
280
+ sjPSj κi
281
+ jsjpk, 0q to be the same for every agent in the system N and denote this initial sum by λ.
282
+ Observe that Equation 6 can be rewritten as
283
+ pλ ` t ` 1qµi
284
+ jsjpk, t ` 1q “ pλ ` tqµi
285
+ jsjpk, tq ` ¯xjsjptq.
286
+ (7)
287
+ 4
288
+
289
+ Hence, even though agent k directly updates the weights, its individual state can be characterized by the
290
+ set of beliefs tµi
291
+ jpkqujPVi. In the following, we usually drop the time index t and agent index k in the
292
+ bracket (depending on the context) for notational convenience.
293
+ 3
294
+ Belief Dynamics in Population Network Games
295
+ Observe that for an arbitrary agent k, its belief µi
296
+ jpkq is in the simplex ∆j “ tµi
297
+ jpkq P R|Sj|| ř
298
+ sjPSj µi
299
+ jsjpkq “
300
+ 1, µi
301
+ jsjpkq ě 0, @sj P Sju. We assume that the system state is characterized by a Borel probability measure
302
+ P defined on the state space ∆ “ ś
303
+ iPV ∆i. Given µi P ∆i, we write the marginal probability density func-
304
+ tion as ppµi, tq. Note that ppµi, tq is the density of agents having the belief µi about population i throughout
305
+ the system. Define µ “ tµiuiPV P ∆. Since agents maintain separate beliefs about different neighbor
306
+ populations, the joint probability density function ppµ, tq can be factorized, i.e., ppµ, tq “ ś
307
+ iPV ppµi, tq.
308
+ We make the following assumption for the initial marginal density functions.
309
+ Assumption 1. At time t “ 0, for each population i P V , the marginal density function ppµi, tq is
310
+ continuously differentiable and has zero mass at the boundary of the simplex ∆i.
311
+ This assumption is standard and common for a “nice” probability distribution. Under this mild
312
+ condition, we determine the evolution of the system state P with the following proposition, using the
313
+ techniques similar to those in [27, 23].
314
+ Proposition 1 (Population Belief Dynamics). The continuous-time dynamics of the marginal density
315
+ function ppµi, tq for each population i P V is governed by a partial differential equation
316
+ ´Bppµi, tq
317
+ Bt
318
+ “ ∇ ¨
319
+ ˆ
320
+ ppµi, tq ¯xi ´ µi
321
+ λ ` t ` 1
322
+ ˙
323
+ (8)
324
+ where ∇¨ is the divergence operator and ¯xi is the mean mixed strategy with each si-th element
325
+ ¯xisi “
326
+ ż
327
+ ś
328
+ jPVi ∆j
329
+ exp pβuisiq
330
+ ř
331
+ s1
332
+ iPSi exp pβuis1
333
+ iq
334
+ ź
335
+ jPVi
336
+ ppµj, tq
337
+ ˜ ź
338
+ jPVi
339
+ dµj
340
+ ¸
341
+ (9)
342
+ where uisi “ ř
343
+ jPVi eJ
344
+ siAijµj.
345
+ For every marginal density function ppµi, tq, the total mass is always conserved (Corollary 1 of the
346
+ supplementary); moreover, the mass at the boundary of the simplex ∆i always remains zero, indicating
347
+ that agents’ beliefs will never go to extremes (Corollary 2 of the supplementary).
348
+ Generalizing the notion of a system state to a distribution over beliefs allows us to address a very
349
+ specific question — the impact of belief heterogeneity on system evolution. That said, partial differential
350
+ equations (Equation 8) are notoriously difficult to solve. Here we resort to the evolution of moments
351
+ based on the evolution of the distribution (Equation 8). In the following proposition, we show that the
352
+ characterization of belief heterogeneity is important, as the dynamics of the mean system state (or the
353
+ mean belief dynamics) is indeed affected by belief heterogeneity.
354
+ Proposition 2 (Mean Belief Dynamics). The dynamics of the mean belief ¯µi about each population
355
+ i P V is governed by a system of differential equations such that for each strategy si,
356
+ d¯µisi
357
+ dt
358
+ « fsiptµjujPViq ´ ¯µisi
359
+ λ ` t ` 1
360
+ `
361
+ ř
362
+ jPVi
363
+ ř
364
+ sjPSj
365
+ B2fsiptµjujPViq
366
+ pBµjsj q2
367
+ Varpµjsjq
368
+ 2pλ ` t ` 1q
369
+ .
370
+ (10)
371
+ where fsiptµujPViq is the logit choice function (Equation 5) applied to strategy si P Si, and Varpµjsjq is
372
+ the variance of belief µjsj in the entire system.
373
+ In general, the mean belief dynamics is under the joint effects of the mean, variance, and infinitely
374
+ many higher moments of the belief distribution. To allow for more conclusive results, we apply the
375
+ moment closure approximation4 and assume the effects of the third and higher moments to be negligible.
376
+ Now, just for a moment, suppose that the system beliefs are homogeneous —- the beliefs of every
377
+ individuals are the same. Hence, the mean belief dynamics are effectively the belief dynamics of individuals.
378
+ The following proposition follows from Equation 7.
379
+ 4Moment closure is a typical approximation method used to estimate moments of population models [13, 15, 32]. To use
380
+ moment closure, a level is chosen past which all cumulants are set to zero. The conventional choice of the level is 2, i.e.,
381
+ setting the third and higher cumulants to be zero.
382
+ 5
383
+
384
+ Proposition 3 (Belief Dynamics for Homogeneous Populations). For a homogeneous system, the
385
+ dynamics of the belief µi about each population i P V is governed by a system of differential equations
386
+ such that for each strategy si,
387
+ dµisi
388
+ dt
389
+ “ xisi ´ µisi
390
+ λ ` t ` 1 “ fsiptµjujPViq ´ µisi
391
+ λ ` t ` 1
392
+ (11)
393
+ where µisi is the same for all agents in each neighbor population j P Vi.
394
+ Intuitively, the mean belief dynamics indicates the trend of beliefs in a system, and the variance of
395
+ beliefs indicates belief heterogeneity. Contrasting Propositions 2 and 3, it is clear that the variance of
396
+ belief (belief heterogeneity) plays a role in determining the mean belief dynamics (the trend of beliefs) for
397
+ heterogeneous systems. It is then natural to ask: how does the belief heterogeneity evolve over time?
398
+ How much does the belief heterogeneity affect the trend of beliefs? Our investigation to these questions
399
+ reveals an interesting finding — the variance of beliefs asymptotically tends to zero.
400
+ Theorem 1 (Quadratic Decay of the Variance of Population Beliefs). The dynamics of the
401
+ variance of beliefs µi about each population i P V is governed by a system of differential equations such
402
+ that for each strategy si,
403
+ dVarpµisiq
404
+ dt
405
+ “ ´2Varpµisiq
406
+ λ ` t ` 1 .
407
+ (12)
408
+ At given time t, Varpµisiq “
409
+ ´
410
+ λ`1
411
+ λ`t`1
412
+ ¯2
413
+ σ2pµisiq, where σ2pµisiq is the initial variance. Thus, the variance
414
+ Varpµisiq decays to zero quadratically fast with time.
415
+ Such quadratic decay of the variance stands no matter what 2-player subgames agents play and what
416
+ initial conditions are. Put differently, the beliefs will eventually homogenize for all population network
417
+ games. This fact immediately implies the system state in the limit.
418
+ Corollary 1. As time t Ñ 8, the density function ppµi, tq for each population i P V evolves into a Dirac
419
+ delta function, and the variance of the choice distributions within each population i P V also goes to zero.
420
+ Note that while the choice distributions will homogenize within each population, they are not necessarily
421
+ the same across different populations. This is because the strategy choice of each population is in response
422
+ to its own set of neighbor populations (which are generally different).
423
+ 4
424
+ Convergence of Smooth Fictitious Play in Population Network
425
+ Games
426
+ The finding on belief homogenization is non-trivial and also technically important. One implication is
427
+ that the fixed points of systems with initially heterogeneous beliefs are the same as in systems with
428
+ homogeneous beliefs. Thus, it follows from the belief dynamics for homogeneous systems (Proposition 3)
429
+ that the fixed points of systems have the following property.
430
+ Theorem 2 (Fixed Points of System Dynamics). For any system that initially have homogeneous
431
+ or heterogeneous beliefs, the fixed points of the system dynamics is a pair pµ˚, x˚q that satisfy x˚
432
+ i “ µ˚
433
+ i
434
+ for each population i P V and are the solutions of the system of equations
435
+
436
+ isi “
437
+ exp
438
+ ´
439
+ β ř
440
+ jPVi eJ
441
+ siAijx˚
442
+ j
443
+ ¯
444
+ ř
445
+ s1
446
+ iPSi exp
447
+ ´
448
+ β ř
449
+ jPVi eJ
450
+ s1
451
+ iAijx˚
452
+ j
453
+ ¯
454
+ (13)
455
+ for every strategy si P Si and population i P V . Such fixed points always exist and coincide with the
456
+ Quantal Response Equilibria (QRE) [33] of the population network game Γ.
457
+ Note that the above theorem applies for all population network games.
458
+ We study the convergence of SFP to the QRE under the both cases of network competition and
459
+ network coordination. Due to space limits, in the following, we mainly focus on network competition and
460
+ present only the main result on network coordination.
461
+ 6
462
+
463
+ 4.1
464
+ Network Competition
465
+ Consider a competitive population network game Γ. Note that in competitive network games, the Nash
466
+ equilibrium payoffs need not to be unique (which is in clear contrast to two-player settings), and it
467
+ generally allows for infinitely many Nash equilibria. In the following theorem, focusing on homogeneous
468
+ systems, we establish the convergence of the belief dynamics to a unique QRE, regardless of the number
469
+ of Nash equilibria in the underlying game.
470
+ Theorem 3 (Convergence in Homogeneous Network Competition). Given a competitive Γ, for
471
+ any system that has homogeneous beliefs, the belief dynamics (Equation 11) converges to a unique QRE
472
+ which is globally asymptotically stable.
473
+ Proof of Sketch. We proof this theorem by showing that the “distance” between xi and µi is strictly
474
+ decreasing until the QRE is reached. In particular, we measure the distance in terms of the perturbed
475
+ payoff and construct a strict Lyapunov function
476
+ L :“
477
+ ÿ
478
+ iPV
479
+ ωi
480
+
481
+ πi
482
+ `
483
+ xi, tµjujPVi
484
+ ˘
485
+ ´ πi
486
+ `
487
+ µi, tµjujPVi
488
+ ˘‰
489
+ (14)
490
+ where ω1 . . . ωn are the positive weights given by Γ, and πi is a perturbed payoff function defined as
491
+ πi
492
+ `
493
+ xi, tµjujPVi
494
+ ˘ :“ xJ
495
+ i
496
+ ř
497
+ jPVi Aijµj ´ 1
498
+ β
499
+ ř
500
+ siPSi xisi lnpxisiq.
501
+ Next, we turn to systems with initially heterogeneous beliefs. Leveraging that the variance of beliefs
502
+ eventually goes to zero, we establish the following lemma.
503
+ Lemma 1. For a system that initially has heterogeneous beliefs, the mean belief dynamics (Equation 10) is
504
+ asymptotically autonomous [31] with the limit equation dµi
505
+ dt “ xi ´ µi, which after time-reparmeterization
506
+ is equivalent to the belief dynamics for homogeneous systems (Equation 11).
507
+ For ease of presentation, we follow the convention to denote the solution flows of an asymptotically
508
+ autonomous system and its limit equation by φ and Θ, respectively. Thieme [40] provides the following
509
+ seminal result that connects the limit behaviors of φ and Θ.
510
+ Lemma 2 (Thieme [40] Theorem 4.2). Given a metric space pX, dq. Assume that the equilibria of Θ
511
+ are isolated compact Θ-invariant subsets of X. The ω-Θ-limit set of any pre-compact Θ-orbit contains a
512
+ Θ-equilibrium. The point ps, xq, s ě t0, x P X, have a pre-compact φ-orbit. Then the following alternative
513
+ holds: 1) φpt, s, xq Ñ e, t Ñ 8, for some Θ-equilibrium e, and 2) the ω-φ-limit set of ps, xq contains
514
+ finitely many Θ-equilibria which are chained to each other in a cyclic way.
515
+ Combining the above results, we prove the convergence for initially heterogeneous systems.
516
+ Theorem 4 (Convergence in Initially Heterogeneous Network Competition). Given a compet-
517
+ itive Γ, for any system that initially has heterogeneous beliefs, the mean belief dynamics (Equation 10)
518
+ converges to a unique QRE.
519
+ The following corollary immediately follows as the result of belief homogenization.
520
+ Corollary 2. For any competitive Γ, under smooth fictitious play, the choice distributions and beliefs of
521
+ every individual converges to a unique QRE (given in Theorem 2), regardless of belief initialization and
522
+ the number of Nash equilibria in Γ.
523
+ 4.2
524
+ Network Coordination
525
+ We delegate most of the results on coordination network games to the supplementary, and summarize
526
+ only the main result here.
527
+ Theorem 5 (Convergence in Network Coordination with Star Structure). Given a coordination
528
+ Γ where the network structure consists of a single or disconnected multiple stars, each orbit of the belief
529
+ dynamics (Equation 11) for homogeneous systems as well as each orbit of the mean belief dynamics
530
+ (Equation 10) for initially heterogeneous systems converges to the set of QRE.
531
+ Note that this theorem applies to all 2-population coordination games, as network games with or
532
+ without star structure are essentially the same when there are only two vertices. We also remark that
533
+ pure or mixed Nash equilibria in coordination network games are complex; as reported in recent works
534
+ [5, 4, 1], finding a pure Nash equilibrium is PLS-complete. Hence, learning in the general case of network
535
+ coordination is difficult and generally requires some conditions for theoretical analysis [34, 35].
536
+ 7
537
+
538
+ H
539
+ S
540
+ H
541
+ (1, 1)
542
+ (2, 0)
543
+ S
544
+ (0, 2)
545
+ (4, 4)
546
+ Table 1: Stag Hunt.
547
+ Figure 2: Asymmetric Matching Pennies.
548
+ Figure 3: Belief heterogeneity helps select the payoff dominant equilibrium pS, Sq (yellow: the equilibrium
549
+ pS, Sq, blue: the equilibrium pH, Hq). As the variance of initial beliefs increases (from the left to right
550
+ panel), a larger range of initial mean beliefs will approximately reach the equilibrium pS, Sq in the limit.
551
+ For each panel, the initial variances of two populations σ2pµ1Hq and σ2pµ2Hq are the same.
552
+ 5
553
+ Experiments:
554
+ Equilibrium Selection in Population Network
555
+ Games
556
+ In this section, we complement our theory and present an empirical study of SFP in a two-population
557
+ coordination (stag hunt) game and a five-population zero-sum (asymmetric matching pennies) game.
558
+ Importantly, these two games both have multiple Nash equilibria, which naturally raises the problem of
559
+ equilibrium selection.
560
+ 5.1
561
+ Two-Population Stag Hunt Games
562
+ We have shown in Figure 1 (in the introduction) that given the same initial mean belief, changing the
563
+ variances of initial beliefs can result in different limit behaviors. In the following, we systematically study
564
+ the effect of initial belief heterogeneity by visualizing how it affects the regions of attraction to different
565
+ equilibria.
566
+ Game Description. We consider a two-population stag hunt game, where each player in populations
567
+ 1 and 2 has two actions tH, Su. As shown in the payoff bi-matrices (Table 1), there are two pure strategy
568
+ Nash equilibria in this game: pH, Hq and pS, Sq. While pH, Hq is risk dominant, pS, Sq is indeed more
569
+ desirable as it is payoff dominant as well as Pareto optimal.
570
+ Results. In this game, population 1 forms beliefs about population 2 and vice versa. We denote
571
+ the initial mean beliefs by a pair p¯µ2H, ¯µ1Hq. We numerically solve the mean belief dynamics for a large
572
+ range of initial mean beliefs, given different variances of initial beliefs. In Figure 3, for each pair of initial
573
+ mean beliefs, we color the corresponding data point based on which QRE the system eventually converges
574
+ to. We observe that as the variance of initial beliefs increases (from the left to right panel), a larger range
575
+ of initial mean beliefs results in the convergence to the QRE that approximates the payoff dominant
576
+ equilibrium pS, Sq. Put differently, a higher degree of initial belief heterogeneity leads to a larger region
577
+ of attraction to pS, Sq. Hence, belief heterogeneity eventually vanishes though, it provides an approach to
578
+ equilibrium selection, as it helps select the highly desirable equilibrium.
579
+ 5.2
580
+ Five-Population Asymmetric Matching Pennies Games
581
+ We have shown in Corollary 2 that SFP converges to a unique QRE even if there are multiple Nash
582
+ equilibria in a competitive Γ. In the following, we corroborate this by providing empirical evidence in
583
+ 8
584
+
585
+ +1
586
+ +1
587
+ +1
588
+ 1
589
+ Population 1
590
+ Population 2
591
+ Population 3
592
+ Population 4
593
+ Population 5
594
+ H
595
+ (L H)
596
+ {H, T}
597
+ [H, T}
598
+ Match
599
+ Match
600
+ Match
601
+ MatchBasins of Attraction of (S, S) and (H, H) under Different Variances of Initial Beliefs
602
+ g?(μ1H)
603
+ = 0
604
+ g2(μ1H) = 0.02
605
+ g?(μH)
606
+ = 0.05
607
+ g2(μ1H) = 0.1
608
+ (S,S)
609
+ j12H
610
+ H
611
+ 2H
612
+ 0.8
613
+ 0.8
614
+ 0.8
615
+ 0.8
616
+ Initial
617
+ Initial
618
+ Initial
619
+ Initial
620
+ 0.6
621
+ 0.6
622
+ 0.6
623
+ 0.6
624
+ (H,H)
625
+ 0.6
626
+ 0.8
627
+ 1
628
+ 0.6
629
+ 0.8
630
+ 1
631
+ 0.6
632
+ 0.8
633
+ 1
634
+ 0.6
635
+ 0.8
636
+ 1
637
+ Initial jiH
638
+ Initial jiiH
639
+ Initial jiH
640
+ InitialjiiHFigure 4: With different belief initialization, SFP selects a unique equilibrium where all agents in
641
+ population 3 play strategy H with probability 0.5. We run 100 simulation runs for each initialization. The
642
+ thin lines represent the mean mixed strategy (the choice probability of H) and the shaded areas represent
643
+ the variance of the mixed strategies in the population. In the legends, B denotes Beta distribution;
644
+ the two Beta distributions correspond to the initial beliefs about the neighbor populations 2 and 4,
645
+ respectively.
646
+ agent-based simulations with different belief initialization (the details of simulations are summarized in
647
+ the supplementary).
648
+ Game Description. Consider a five-population asymmetric matching pennies game [28], where
649
+ the network structure is a line (depicted in Figure 2). Each agent has two actions tH, Tu. Agents in
650
+ populations 1 and 5 do not learn; they always play strategies H and T, respectively. For agents in
651
+ populations 2 to 4, they receive `1 if they match the strategy of the opponent in the next population,
652
+ and receive ´1 if they mismatch. On the contrary, they receive `1 if they mismatch the strategy of the
653
+ opponent in the previous population, and receive ´1 if they match. Hence, this game has infinitely many
654
+ Nash equilibria of the form: agents in populations 2 and 4 play strategy T, whereas agents in population
655
+ 3 are indifferent between strategies H and T.
656
+ Results. In this game, agents in each population form two beliefs (one for the previous population
657
+ and one for the next population). We are mainly interested in the strategies of population 3, as the
658
+ Nash equilibria differ in the strategies in population 3. For validation, we vary population 3’s beliefs
659
+ about the neighbor populations 2 and 4, and fix population 3’s beliefs about the other populations. As
660
+ shown in Figure 4, given differential initialization of beliefs, agents in population 3 converge to the same
661
+ equilibrium where they all take strategy H with probability 0.5. Therefore, even when the underlying
662
+ zero-sum game has many Nash equilibria, SFP with different initial belief heterogeneity selects a unique
663
+ equilibria, addressing the problem of equilibrium selection.
664
+ 6
665
+ Conclusions
666
+ We study a heterogeneous beliefs model of SFP in network games. Representing the system state with a
667
+ distribution over beliefs, we prove that beliefs eventually become homogeneous in all network games. We
668
+ establish the convergence of SFP to Quantal Response Equilibria in general competitive network games
669
+ as well as coordination network games with star structure. We experimentally show that although the
670
+ initial belief heterogeneity vanishes in the limit, it plays a crucial role in equilibrium selection and helps
671
+ select highly desirable equilibria.
672
+ Appendix A: Corollaries and Proofs omitted in Section 3
673
+ Proof of Proposition 1
674
+ It follows from Equation 7 in the main paper that the change in µi
675
+ jpk, tq between two discrete time steps
676
+ is
677
+ µi
678
+ jpk, t ` 1q “ µi
679
+ jpk, tq `
680
+ ¯xjptq ´ µi
681
+ jpk, tq
682
+ λ ` t ` 1
683
+ .
684
+ (15)
685
+ 9
686
+
687
+ Probability of Playing H in Population 3
688
+ Vary the inital Mean, Fix the initial Variance
689
+ Vary the initial Variance, Fix the initial Mean
690
+ B(5, 10), B(8, 2)
691
+ B(10, 20), B(16, 4)
692
+ B(5, 10), B(2, 8)
693
+ B(2.5, 5), B(4,1)
694
+ B(10, 5), B(8, 2)
695
+ B(50, 100),B(80,20)
696
+ 0.5
697
+ 0
698
+ 0
699
+ 100
700
+ 200
701
+ 300
702
+ 400
703
+ 100
704
+ 200
705
+ 300
706
+ 400
707
+ Time t
708
+ Time tLemma 3. Under Assumption 1 (in the main paper), for an arbitrary agent k in population i, its belief
709
+ µi
710
+ jpk, tq about a neighbor population j will never reach the extreme belief (i.e., the boundary of the simplex
711
+ ∆i).
712
+ Proof. Assumption 1 ensures that ¯xjp0q is in the interior of the simplex ∆j. Moreover, the logit choice
713
+ function (Equation 5 in the main paper) also ensures that ¯xjptq stays in the interior of ∆j afterwards for
714
+ a finite temperature β. Hence, from Equation 15, one can see that µi
715
+ jpk, tq for every time step t will stay
716
+ in the interior of ∆j.
717
+ In the following, for notation convenience, we sometimes drop the agent index k and the time index
718
+ t depending on the context. Consider a population i. We rewrite the change in the beliefs about this
719
+ population as follows.
720
+ µipt ` 1q “ µiptq ` ¯xiptq ´ µiptq
721
+ λ ` t ` 1
722
+ .
723
+ (16)
724
+ Suppose that the amount of time that passes between two successive time steps is δ P p0, 1s. We
725
+ rewrite the above equation as
726
+ µipt ` δq “ µiptq ` δ ¯xiptq ´ µiptq
727
+ λ ` t ` 1
728
+ .
729
+ (17)
730
+ Next, we consider a test function θpµiq. Define
731
+ Y “ Erθpµipt ` δqqs ´ Erθpµiptqqs
732
+ δ
733
+ .
734
+ (18)
735
+ Applying Taylor series for θpµipt ` δqq at µiptq, we obtain
736
+ θpµipt ` δqq “ θpµiptqq `
737
+ δ
738
+ λ ` t ` 1Bµiθpµiq r¯xiptq ´ µiptqs
739
+ `
740
+ δ2
741
+ 2pλ ` t ` 1q2 r¯xiptq ´ µiptqsJ Hθpµiq r¯xiptq ´ µiptqs
742
+ ` o
743
+ ˜„
744
+ δ ¯xiptq ´ µiptq
745
+ λ ` t ` 1
746
+ ȷ2¸
747
+ (19)
748
+ where H denotes the Hessian matrix. Hence, the expectation Erθpµipt ` δqqs is
749
+ Erθpµipt ` δqqs “ Erθpµiptqqs `
750
+ δ
751
+ λ ` t ` 1ErBµiθpµiptqqp¯xiptq ´ µiptqqs
752
+ `
753
+ δ2
754
+ 2pλ ` t ` 1q2 E
755
+
756
+ r¯xiptq ´ µiptqsJHθpµiq r¯xiptq ´ µiptqs
757
+
758
+ `
759
+ δ2
760
+ 2pλ ` t ` 1q2 Eropr¯xiptq ´ µiptqs2qs
761
+ (20)
762
+ Moving the term Erθpµiptqqs to the left hand side and dividing both sides by δ, we recover the quantity
763
+ Y , i.e.,
764
+ Y “
765
+ 1
766
+ λ ` t ` 1ErBµiθpµiptqqp¯xiptq ´ µiptqqs
767
+ `
768
+ δ
769
+ 2pλ ` t ` 1q2 Err¯xiptq ´ µiptqsJHθpµiptqqr¯xiptq ´ µiptqs ` o
770
+ `
771
+ p¯xiptq ´ µiptqq2˘
772
+ s
773
+ (21)
774
+ Taking the limit of Y with δ Ñ 0, the contribution of the second term on the right hand side vanishes,
775
+ yielding
776
+ lim
777
+ δÑ0 Y “
778
+ 1
779
+ λ ` t ` 1ErBµiθpµiptqqp¯xiptq ´ µiptqqs
780
+ (22)
781
+
782
+ 1
783
+ λ ` t ` 1
784
+ ż
785
+ ppµiptq, tq
786
+
787
+ Bµiθpµiptqqp¯xiptq ´ µiptqq
788
+
789
+ dµiptq.
790
+ (23)
791
+ Apply integration by parts. We obtain
792
+ lim
793
+ δÑ0 Y “ 0 ´
794
+ 1
795
+ λ ` t ` 1
796
+ ż
797
+ θpµiptqq∇ ¨ rppµiptq, tqp¯xiptq ´ µiptqqs dµiptq
798
+ (24)
799
+ 10
800
+
801
+ where we have leveraged that the probability mass ppµi, tq at the boundary B∆i remains zero as a result
802
+ of Lemma 1. On the other hand, according to the definition of Y ,
803
+ lim
804
+ δÑ0 Y “ lim
805
+ δÑ0
806
+ ż
807
+ θpµiptqqppµi, t ` δq ´ ppµi, tq
808
+ δ
809
+ dµi “
810
+ ż
811
+ θpµiptqqBtppµi, tqdµi.
812
+ (25)
813
+ Therefore, we have the equality
814
+ ż
815
+ θpµiptqqBtppµi, tqdµi “ ´
816
+ 1
817
+ λ ` t ` 1
818
+ ż
819
+ θpµiptqq∇ ¨ rppµiptq, tqp¯xiptq ´ µiptqqs dµiptq.
820
+ (26)
821
+ As θ is a test function, this leads to
822
+ Btppµi, tq “ ´
823
+ 1
824
+ λ ` t ` 1∇ ¨ rppµiptq, tqp¯xiptq ´ µiptqqs .
825
+ (27)
826
+ Rearranging the terms, we obtain Equation 8 in the main paper. By the definition of expectation given a
827
+ probability distribution, it is straightforward to obtain Equation 9 in the main paper. Q.E.D.
828
+ Remarks: The PDEs we derived are akin to the continuity equation commonly encountered in physics
829
+ in the study of conserved quantities.The continuity equation describes the transport phenomena (e.g., of
830
+ mass or energy) in a physical system. This renders a physical interpretation for our PDE model: under
831
+ SFP, the belief dynamics of a heterogeneous system is analogously the transport of the agent mass in the
832
+ simplex ∆ “ ś
833
+ iPV ∆i.
834
+ Corollaries of Proposition 1
835
+ Corollary 3. For any population i P V , the system beliefs about this population never go to extremes.
836
+ Proof. This is a straightforward result of Lemma 1.
837
+ Corollary 4. For any population i P V , the total probability mass ppµi, tq always remains conserved.
838
+ Proof. Consider the time derivative of the total probability mass
839
+ d
840
+ dt
841
+ ż
842
+ ppµi, tqdµi.
843
+ (28)
844
+ Apply the Leibniz rule to interchange differentiation and integration,
845
+ d
846
+ dt
847
+ ż
848
+ ppµi, tqdµi “
849
+ ż Bppµi, tq
850
+ Bt
851
+ dµi.
852
+ (29)
853
+ Substitute Bppµi,tq
854
+ Bt
855
+ with Equation 8 in the main paper,
856
+ d
857
+ dt
858
+ ż
859
+ ppµi, tqdµi
860
+ “ ´
861
+ ż
862
+ ∇ ¨
863
+ ˆ
864
+ ppµi, tq ¯xi ´ µi
865
+ λ ` t ` 1
866
+ ˙
867
+ dµi
868
+ (30)
869
+ “ ´
870
+ ż
871
+ ÿ
872
+ siPSi
873
+ Bµisi
874
+ ˆ
875
+ ppµi, tq ¯xisi ´ µisi
876
+ λ ` t ` 1
877
+ ˙
878
+ dµi
879
+ (31)
880
+ “ ´
881
+ 1
882
+ λ ` t ` 1
883
+ «ż
884
+ ÿ
885
+ siPSi
886
+ Bµisi ppµi, tq p¯xisi ´ µisiq dµi `
887
+ ż
888
+ ppµi, tq
889
+ ÿ
890
+ siPSi
891
+ Bµisi p¯xisi ´ µisiq dµi
892
+
893
+ (32)
894
+ Apply integration by parts,
895
+ ż
896
+ ÿ
897
+ siPSi
898
+ Bµisi ppµi, tq p¯xisi ´ µisiq dµi “ 0 ´
899
+ ż
900
+ ppµi, tq
901
+ ÿ
902
+ siPSi
903
+ Bµisi p¯xisi ´ µisiq dµi.
904
+ (33)
905
+ where we have leveraged that the probability mass ppµi, tq at the boundary B∆i remains zero. Hence, the
906
+ terms within the bracket of Equation 32 cancel out, and
907
+ d
908
+ dt
909
+ ż
910
+ ppµi, tqdµi “ 0.
911
+ (34)
912
+ 11
913
+
914
+ Proof of Proposition 2
915
+ Lemma 4. The dynamics of the mean belief ¯µi about each population i P V is governed by a differential
916
+ equation
917
+ d¯µisi
918
+ dt
919
+ “ ¯xisi ´ ¯µisi
920
+ λ ` t ` 1 ,
921
+ @si P Si.
922
+ (35)
923
+ Proof. The time derivative of the mean belief about strategy si is
924
+ d¯µisi
925
+ dt
926
+ “ d
927
+ dt
928
+ ż
929
+ µisippµi, tqdµi.
930
+ (36)
931
+ We apply the Leibniz rule to interchange differentiation and integration, and then substitute Bppµi,tq
932
+ Bt
933
+ with
934
+ Equation 8 in the main paper.
935
+ d
936
+ dt
937
+ ż
938
+ µisippµi, tqdµi
939
+ (37)
940
+
941
+ ż
942
+ µisi
943
+ Bppµi, tq
944
+ Bt
945
+ dµi
946
+ (38)
947
+ “ ´
948
+ ż
949
+ µisi∇ ¨
950
+ ˆ
951
+ ppµi, tq ¯xi ´ µi
952
+ λ ` t ` 1
953
+ ˙
954
+ dµi
955
+ (39)
956
+ “ ´
957
+ ż
958
+ µisi
959
+ ÿ
960
+ siPSi
961
+ Bµisi
962
+ ˆ
963
+ ppµi, tq ¯xisi ´ µisi
964
+ λ ` t ` 1
965
+ ˙
966
+ dµi
967
+ (40)
968
+ “ γ
969
+ «ż
970
+ µisi
971
+ ÿ
972
+ siPSi
973
+ `
974
+ Bµisi ppµi, tq
975
+ ˘
976
+ p¯xisi ´ µisiq dµi `
977
+ ż
978
+ µisippµi, tq
979
+ ÿ
980
+ siPSi
981
+ Bµisi p¯xisi ´ µisiq dµi
982
+
983
+ (41)
984
+ where γ :“ ´
985
+ 1
986
+ λ`t`1. Apply integration by parts to the first term in Equation 41.
987
+ ż
988
+ µisi
989
+ ÿ
990
+ siPSi
991
+ `
992
+ Bµisi ppµi, tq
993
+ ˘
994
+ p¯xisi ´ µisiq dµi
995
+ “ ´
996
+ ż
997
+ µisippµi, tq
998
+ »
999
+ – ÿ
1000
+ s1
1001
+ iPSi
1002
+ Bµis1
1003
+ i p¯xis1
1004
+ i ´ µis1
1005
+ iq
1006
+
1007
+ fl ` ppµi, tqBµisi rµisip¯xisi ´ µisiqs dµi
1008
+ (42)
1009
+ where we have leveraged that the probability mass at the boundary remains zero. Hence, it follows from
1010
+ Equation 41 that
1011
+ d
1012
+ dt
1013
+ ż
1014
+ µisippµi, tqdµi
1015
+ (43)
1016
+ “ ´γ
1017
+ ż
1018
+ µisippµi, tq
1019
+ ÿ
1020
+ s1
1021
+ iPSi
1022
+ Bµis1
1023
+ i p¯xis1
1024
+ i ´ µis1
1025
+ iqdµi ´ γ
1026
+ ż
1027
+ ppµi, tqBµisi rµisip¯xisi ´ µisiqs dµi
1028
+ ` γ
1029
+ ż
1030
+ µisippµi, tq
1031
+ ÿ
1032
+ siPSi
1033
+ Bµisi p¯xisi ´ µisiq dµi
1034
+ (44)
1035
+ “ γ
1036
+ ż
1037
+ ppµi, tq
1038
+
1039
+ µisiBµisi p¯xisi ´ µisiq ´ Bµisi rµisip¯xisi ´ µisiqs
1040
+
1041
+ dµi
1042
+ (45)
1043
+ “ γ
1044
+ ż
1045
+ ppµi, tqµisidµi ´
1046
+ ż
1047
+ ppµi, tq¯xisidµi
1048
+ (46)
1049
+ “ ¯xisi ´ ¯µisi
1050
+ λ ` t ` 1
1051
+ (47)
1052
+ We repeat the mean probability ¯xisi, which has been given in Equation 9 in the main paper, as follows:
1053
+ ¯xisi “
1054
+ ż
1055
+ exp pβuisiq
1056
+ ř
1057
+ s1
1058
+ iPSi exp pβuis1
1059
+ iq
1060
+ ź
1061
+ jPVi
1062
+ ppµj, tq
1063
+ ˜ ź
1064
+ jPVi
1065
+ dµj
1066
+ ¸
1067
+ (48)
1068
+ 12
1069
+
1070
+ where uisi “ ř
1071
+ jPVi eJ
1072
+ siAijµj. Define ¯µ :“ t¯µjujPVi and
1073
+ fsiptµjujPViq :“
1074
+ exp pβ ř
1075
+ jPVi eJ
1076
+ siAijµjq
1077
+ ř
1078
+ s1
1079
+ iPSi exp pβ ř
1080
+ jPVi eJ
1081
+ s1
1082
+ iAijµjq.
1083
+ (49)
1084
+ Applying the Taylor expansion to approximate this function at the mean belief ¯µ, we have
1085
+ fsiptµjujPViq « fsip¯µq ` ∇fsip¯µq ¨ pµ ´ ¯µq ` 1
1086
+ 2pµ ´ ¯µqJHfsip¯µqpµ ´ ¯µq ` Op||µ ´ ¯µ||3q
1087
+ (50)
1088
+ where H denotes the Hessian matrix. Hence, we can rewrite Equation 48 as
1089
+ ¯xisi “
1090
+ ż
1091
+ fsiptµjujPViq
1092
+ ź
1093
+ jPVi
1094
+ ppµj, tq
1095
+ ˜ ź
1096
+ jPVi
1097
+ dµj
1098
+ ¸
1099
+ (51)
1100
+ « fsip¯µq `
1101
+ ż
1102
+ ∇fsip¯µq ¨ µ
1103
+ ź
1104
+ jPVi
1105
+ ppµj, tq
1106
+ ˜ ź
1107
+ jPVi
1108
+ dµj
1109
+ ¸
1110
+ ´ ∇fsip¯µq ¨ ¯µ
1111
+ `
1112
+ ż 1
1113
+ 2pµ ´ ¯µqJHfsip¯µqpµ ´ ¯µq
1114
+ ź
1115
+ jPVi
1116
+ ppµj, tq
1117
+ ˜ ź
1118
+ jPVi
1119
+ dµj
1120
+ ¸
1121
+ `
1122
+ ż
1123
+ Op||µ ´ ¯µ||q3 ź
1124
+ jPVi
1125
+ ppµj, tq
1126
+ ˜ ź
1127
+ jPVi
1128
+ dµj
1129
+ ¸
1130
+ (52)
1131
+ Observe that in Equation 52, the second and the third term can be canceled out. Moreover, for any
1132
+ two neighbor populations j, k P Vi, the beliefs µj, µk about these two populations are separate and
1133
+ independent. Hence, the covariance of these beliefs are zero. We apply the moment closure approximation
1134
+ [32, 13] with the second order and obtain
1135
+ ¯xisi « fsip¯µq ` 1
1136
+ 2
1137
+ ÿ
1138
+ jPVi
1139
+ ÿ
1140
+ sjPSj
1141
+ B2fsip¯µq
1142
+ pBµjsjq2 Varpµjsjq.
1143
+ (53)
1144
+ Hence, substituting ¯xisi in Lemma 4 with the above approximation, we have the mean belief dynamics
1145
+ d¯µisi
1146
+ dt
1147
+ « fsip¯µq ´ ¯µisi
1148
+ λ ` t ` 1
1149
+ `
1150
+ ř
1151
+ jPVi
1152
+ ř
1153
+ sjPSj
1154
+ B2fsip¯µq
1155
+ pBµjsj q2 Varpµjsjq
1156
+ 2pλ ` t ` 1q
1157
+ .
1158
+ (54)
1159
+ Q.E.D.
1160
+ Remarks: the use of the moment closure approximation (considering only the first and the second
1161
+ moments) is for obtaining more conclusive results. Strictly speaking, the mean belief dynamics also depend
1162
+ on the third and higher moments. However, we observe in the experiments that these moments in general
1163
+ have little effects on the mean belief dynamics. To be more specific, given the same initial mean beliefs,
1164
+ while the variance of initial beliefs sometimes can change the limit behaviors of a system, we do not
1165
+ observe similar phenomena for the third and higher moments.
1166
+ Proof of Proposition 3
1167
+ Consider a population i. It follows from Equation 7 in the main paper that the change in the beliefs
1168
+ about this population can be written as follows.
1169
+ µipt ` 1q “ µiptq ` xiptq ´ µiptq
1170
+ λ ` t ` 1
1171
+ .
1172
+ (55)
1173
+ Suppose that the amount of time that passes between two successive time steps is δ P p0, 1s. We rewrite
1174
+ the above equation as
1175
+ µipt ` δq “ µiptq ` δ xiptq ´ µiptq
1176
+ λ ` t ` 1
1177
+ .
1178
+ (56)
1179
+ Move the term µiptq to the right hand side and divide both sides by δ,
1180
+ µipt ` δq ´ µiptq
1181
+ δ
1182
+ “ xiptq ´ µiptq
1183
+ λ ` t ` 1
1184
+ .
1185
+ (57)
1186
+ 13
1187
+
1188
+ Assume that the amount of time δ between two successive time steps goes to zero. we have
1189
+ dµi
1190
+ dt “ lim
1191
+ δÑ0
1192
+ µipt ` δq ´ µiptq
1193
+ δ
1194
+ “ xiptq ´ µiptq
1195
+ λ ` t ` 1
1196
+ .
1197
+ (58)
1198
+ Note that for continuous-time dynamics, we usually drop the time index in the bracket, yielding the belief
1199
+ dynamics (Equation 11) in Proposition 3. Q.E.D.
1200
+ Proof of Theorem 1
1201
+ Without loss of generality, we consider the variance of the belief µisi about strategy si of population i.
1202
+ Note that
1203
+ Varpµisiq “ Erpµisiq2s ´ p¯µisiq2.
1204
+ (59)
1205
+ Hence, we have
1206
+ dVarpµisiq
1207
+ dt
1208
+ “ dErpµisiq2s
1209
+ dt
1210
+ ´ 2¯µisi
1211
+ d¯µisi
1212
+ dt .
1213
+ (60)
1214
+ Consider the first term on the right hand side. We apply the Leibniz rule to interchange differentiation
1215
+ and integration, and then substitute Bppµi,tq
1216
+ Bt
1217
+ with Equation 8 in the main paper.
1218
+ dErpµisiq2s
1219
+ dt
1220
+
1221
+ ż
1222
+ pµisiq2 Bppµi, tq
1223
+ Bt
1224
+ dµi
1225
+ (61)
1226
+ “ ´
1227
+ ż
1228
+ pµisiq2∇ ¨
1229
+ ˆ
1230
+ ppµi, tq ¯xi ´ µi
1231
+ λ ` t ` 1
1232
+ ˙
1233
+ dµi
1234
+ (62)
1235
+ “ ´
1236
+ ż
1237
+ pµisiq2 ÿ
1238
+ siPSi
1239
+ Bµisi
1240
+ ˆ
1241
+ ppµi, tq ¯xisi ´ µisi
1242
+ λ ` t ` 1
1243
+ ˙
1244
+ dµi
1245
+ (63)
1246
+ “ γ
1247
+ ż
1248
+ pµisiq2 ÿ
1249
+ siPSi
1250
+ Bµisi ppµi, tq p¯xisi ´ µisiq dµi ` γ
1251
+ ż
1252
+ pµisiq2ppµi, tq
1253
+ ÿ
1254
+ siPSi
1255
+ Bµisi p¯xisi ´ µisiq dµi
1256
+ (64)
1257
+ where γ :“ ´
1258
+ 1
1259
+ λ`t`1. Applying integration by parts to the first term in Equation 64 yields
1260
+ ż
1261
+ pµisiq2 ÿ
1262
+ siPSi
1263
+ Bµisi ppµi, tq p¯xisi ´ µisiq dµi
1264
+ “ ´
1265
+ ż
1266
+ pµisiq2ppµi, tq
1267
+ »
1268
+ – ÿ
1269
+ s1
1270
+ iPSi
1271
+ Bµis1
1272
+ i p¯xis1
1273
+ i ´ µis1
1274
+ iq
1275
+
1276
+ fl ` ppµi, tqBµisi
1277
+
1278
+ pµisiq2p¯xisi ´ µisiq
1279
+
1280
+ dµi
1281
+ (65)
1282
+ where we have leveraged that the probability mass at the boundary remains zero. Combining the above
1283
+ two equations, we obtain
1284
+ dErpµisiq2s
1285
+ dt
1286
+ “ ´γ
1287
+ ż
1288
+ pµisiq2ppµi, tq
1289
+ »
1290
+ – ÿ
1291
+ s1
1292
+ iPSi
1293
+ Bµis1
1294
+ i p¯xis1
1295
+ i ´ µis1
1296
+ iq
1297
+
1298
+ fl ` ppµi, tqBµisi
1299
+
1300
+ pµisiq2p¯xisi ´ µisiq
1301
+
1302
+ dµi
1303
+ ` γ
1304
+ ż
1305
+ pµisiq2ppµi, tq
1306
+ ÿ
1307
+ siPSi
1308
+ Bµisi p¯xisi ´ µisiq dµi
1309
+ (66)
1310
+ “ γ
1311
+ ż “
1312
+ ´ppµi, tqBµisi
1313
+
1314
+ pµisiq2p¯xisi ´ µisiq
1315
+ ‰‰
1316
+ ` pµisiq2ppµi, tqBµisi p¯xisi ´ µisiq dµi
1317
+ (67)
1318
+ “ γ
1319
+ ż
1320
+ 2pµisiq2ppµi, tqdµi ´ γ
1321
+ ż
1322
+ 2¯xisiµisippµi, tqdµi
1323
+ (68)
1324
+ “ ´2Erpµisiq2s ´ 2¯xisi ¯µisi
1325
+ λ ` t ` 1
1326
+ .
1327
+ (69)
1328
+ 14
1329
+
1330
+ Next, we consider the second term in Equation 60. By Lemma 4, we have
1331
+ 2¯µisi
1332
+ d¯µisi
1333
+ dt
1334
+ “ 2¯µisip¯xisi ´ ¯µisiq
1335
+ λ ` t ` 1
1336
+ .
1337
+ (70)
1338
+ Combining Equations 69 and 70, the dynamics of the variance is
1339
+ dVarpµisiq
1340
+ dt
1341
+ “ ´2Erpµisiq2s ´ 2¯xisi ¯µisi
1342
+ λ ` t ` 1
1343
+ ´ 2¯µisip¯xisi ´ ¯µisiq
1344
+ λ ` t ` 1
1345
+ (71)
1346
+ “ 2p¯µisiq2 ´ 2Erpµisiq2s
1347
+ λ ` t ` 1
1348
+ (72)
1349
+ “ ´2Varpµisiq
1350
+ λ ` t ` 1 .
1351
+ (73)
1352
+ Q.E.D.
1353
+ Remarks: We believe that the rationale behind such a phenomenon is twofold: 1) agents apply smooth
1354
+ fictitious play, and 2) agents respond to the mean strategy play of other populations rather than the
1355
+ strategy play of some fixed agents. Regarding the former, we notice that under a similar setting, population
1356
+ homogenization may not occur if agents apply other learning methods, e.g., Q-learning and Cross learning.
1357
+ Regarding the latter, imagine that agents adjust their beliefs in response to the strategies of some fixed
1358
+ agents. For example, consider two populations; one contains agents A and C, and the other one contains
1359
+ agents B and D. Suppose that agents A and B form a fixed pair such that they adjust their beliefs only in
1360
+ response to each other; the same applies to agents C and D. Belief homogenization may not happen.
1361
+ Appendix B: Proofs omitted in Section 4.1
1362
+ Proof of Theorem 2
1363
+ Belief homogenization implies that the fixed points of systems with initially heterogeneous beliefs are the
1364
+ same as in systems with homogeneous beliefs. Thus, we focus on homogeneous systems to analyze the
1365
+ fixed points. It is straightforward to see that
1366
+ dµi
1367
+ dt “ xi ´ µi
1368
+ λ ` t ` 1 “ 0 ùñ xi “ µi.
1369
+ (74)
1370
+ Denote the fixed points of the system dynamics, which satisfies the above equation, by px˚
1371
+ i , µ˚
1372
+ i q for each
1373
+ population i. By the logit choice function (Equation 5 in the main paper), we have
1374
+
1375
+ isi “
1376
+ exp pβuisiq
1377
+ ř
1378
+ s1
1379
+ iPSi exp pβuis1
1380
+ iq “
1381
+ exp pβ ř
1382
+ jPVi eJ
1383
+ siAijµ˚
1384
+ j q
1385
+ ř
1386
+ s1
1387
+ iPSi exp pβ ř
1388
+ jPVi eJ
1389
+ s1
1390
+ iAijµ˚
1391
+ j q.
1392
+ (75)
1393
+ Leveraging that x˚
1394
+ i “ µ˚
1395
+ i , @i P V at the fixed points, we can replace µ˚
1396
+ j with x˚
1397
+ j . Q.E.D.
1398
+ Proof of Theorem 3
1399
+ Consider a population i. The set of neighbor populations is Vi, the set of beliefs about the neighbor
1400
+ populations is tµjujPVi, and the choice distribution is xi. Given a population network game Γ, the
1401
+ expected payoff is given by xJ
1402
+ i
1403
+ ř
1404
+ pi,jqPE Aijµj. Define a perturbed payoff function
1405
+ πi
1406
+ `
1407
+ xi, tµjujPVi
1408
+ ˘ :“ xJ
1409
+ i
1410
+ ÿ
1411
+ jPVi
1412
+ Aijµj ` vpxiq
1413
+ (76)
1414
+ where vpxiq “ ´ 1
1415
+ β
1416
+ ř
1417
+ siPSi xisi lnpxisiq. Under this form of vpxiq, the maximization of πi yields the choice
1418
+ distribution xi from the logit choice function [8]. Based on this, we establish the following lemma.
1419
+ Lemma 5. For a choice distribution xi of SFP in a population network game,
1420
+ Bxiπi
1421
+ `
1422
+ xi, tµjujPVi
1423
+ ˘
1424
+ “ 0
1425
+ and
1426
+ ÿ
1427
+ jPVi
1428
+ `
1429
+ Aijµj
1430
+ ˘J “ ´Bxivpxiq.
1431
+ (77)
1432
+ Proof. This lemma immediately follows from the fact that the maximization of πi will yield the choice
1433
+ distribution xi from the logit choice function [8].
1434
+ 15
1435
+
1436
+ The belief dynamics of a homogeneous populations can be simplified after time-reparameterization.
1437
+ Lemma 6. Given τ “ ln λ`t`1
1438
+ λ`1 , the belief dynamics of homogeneous systems (given in Equation 11 in
1439
+ the main paper) is equivalent to
1440
+ dµi
1441
+ dτ “ xi ´ µi.
1442
+ (78)
1443
+ Proof. From τ “ ln λ`t`1
1444
+ λ`1 , we have
1445
+ t “ pλ ` 1qpexp pτq ´ 1q.
1446
+ (79)
1447
+ By the chain rule, for each dimension si,
1448
+ dµisi
1449
+
1450
+ “ dµisi
1451
+ dt
1452
+ dt
1453
+
1454
+ (80)
1455
+ “ xisi ´ µisi
1456
+ λ ` t ` 1
1457
+ d ppλ ` 1qpexp pτq ´ 1qq
1458
+
1459
+ (81)
1460
+
1461
+ xisi ´ µisi
1462
+ λ ` pλ ` 1qpexp pτq ´ 1q ` 1pλ ` 1q exp pτq
1463
+ (82)
1464
+ “ xisi ´ µisi.
1465
+ (83)
1466
+ Next, we define the Lyapunov function L as
1467
+ L :“
1468
+ ÿ
1469
+ iPV
1470
+ ωiLi
1471
+ s.t.
1472
+ Li :“ πi
1473
+ `
1474
+ xi, tµjujPVi
1475
+ ˘
1476
+ ´ πi
1477
+ `
1478
+ µi, tµjujPVi
1479
+ ˘
1480
+ .
1481
+ (84)
1482
+ where tωiuiPV is the set of positive weights defined in the weighted zero-sum Γ. The function L is
1483
+ non-negative because for every i P V , xi maximizes the function πi. When for every i P V , xi “ µi, the
1484
+ function L reaches the minimum value 0.
1485
+ Rewrite L as
1486
+ L “
1487
+ ÿ
1488
+ iPV
1489
+ «
1490
+ ωiπi
1491
+ `
1492
+ xi, tµjujPVi
1493
+ ˘
1494
+ ´ ωiµJ
1495
+ i
1496
+ ÿ
1497
+ jPVi
1498
+ Aijµj ´ ωivpµiq
1499
+
1500
+ .
1501
+ (85)
1502
+ We observe that πi
1503
+ `
1504
+ xi, tµjujPVi
1505
+ ˘
1506
+ is convex in µj, j P Vi by Danskin’s theorem, and ´vpµiq is strictly
1507
+ convex in µi. Moreover, by the weighted zero-sum property given in Equation 2 in the main paper, we
1508
+ have
1509
+ ÿ
1510
+ iPV
1511
+ ˜
1512
+ ωiµJ
1513
+ i
1514
+ ÿ
1515
+ jPVi
1516
+ Aijµj
1517
+ ¸
1518
+ “ 0
1519
+ (86)
1520
+ since µi P ∆i, µj P ∆j for every i, j P V. Therefore, the function L is a strictly convex function and attains
1521
+ its minimum value 0 at a unique point xi “ µi, @i P V.
1522
+ Consider the function Li. Its time derivative is
1523
+ 9Li “ Bxiπi
1524
+ `
1525
+ xi, tµjujPVi
1526
+ ˘
1527
+ 9xi `
1528
+ ÿ
1529
+ jPVi
1530
+
1531
+ Bµjπi
1532
+ `
1533
+ xi, tµjujPVi
1534
+ ˘ 9µj
1535
+ ı
1536
+ ´ Bµiπi
1537
+ `
1538
+ µi, tµjujPVi
1539
+ ˘ 9µi ´
1540
+ ÿ
1541
+ jPVi
1542
+
1543
+ Bµjπi
1544
+ `
1545
+ µi, tµjujPVi
1546
+ ˘ 9µj
1547
+ ı
1548
+ .
1549
+ (87)
1550
+ Note that the partial derivative Bxiπi equals 0 by Lemma 5. Thus, we can rewrite this as
1551
+ 9Li “ Bµiπi
1552
+ `
1553
+ µi, tµjujPVi
1554
+ ˘ 9µi `
1555
+ ÿ
1556
+ jPVi
1557
+
1558
+ Bµjπi
1559
+ `
1560
+ xi, tµjujPVi
1561
+ ˘
1562
+ ´ Bµjπi
1563
+ `
1564
+ µi, tµjujPVi
1565
+ ˘ı
1566
+ 9µj
1567
+ (88)
1568
+ “ ´
1569
+ « ÿ
1570
+ jPVi
1571
+ `
1572
+ Aijµj
1573
+ ˘J ` Bµivpµiq
1574
+
1575
+ pxi ´ µiq `
1576
+ ÿ
1577
+ jPVi
1578
+ `
1579
+ xJ
1580
+ i Aij ´ µJ
1581
+ i Aij
1582
+ ˘
1583
+ pxj ´ µjq
1584
+ (89)
1585
+ “ rBxivpxiq ´ Bµivpµiqs pxi ´ µiq `
1586
+ ÿ
1587
+ jPVi
1588
+ `
1589
+ xJ
1590
+ i Aijxj ´ µJ
1591
+ i Aijxj ´ xJ
1592
+ i Aijµj ` µJ
1593
+ i Aijµj
1594
+ ˘
1595
+ .
1596
+ (90)
1597
+ 16
1598
+
1599
+ where from Equation 89 to 90, we apply Lemma 5 to substitute ř
1600
+ jPVi
1601
+ `
1602
+ Aijµj
1603
+ ˘J with ´Bxivpxiq. Hence,
1604
+ summing over all the populations, the time derivative of L is
1605
+ 9L “
1606
+ ÿ
1607
+ iPV
1608
+ ωi rBxivpxiq ´ Bµivpµiqs pxi ´ µiq
1609
+ `
1610
+ ÿ
1611
+ iPV
1612
+ ÿ
1613
+ jPVi
1614
+ ωi
1615
+ `
1616
+ xJ
1617
+ i Aijxj ´ µJ
1618
+ i Aijxj ´ xJ
1619
+ i Aijµj ` µJ
1620
+ i Aijµj
1621
+ ˘
1622
+ .
1623
+ (91)
1624
+ The summation in the second line is equivalent to
1625
+ ÿ
1626
+ pi,jqPE
1627
+ pωixJ
1628
+ i Aijxj ` ωjxJ
1629
+ j Ajixiq ´ pωiµJ
1630
+ i Aijxj ` ωjxJ
1631
+ j Ajiµiq
1632
+ (92)
1633
+ ´ pωixJ
1634
+ i Aijµj ` ωjµJ
1635
+ j Ajixiq ` pωiµJ
1636
+ i Aijµj ` ωjµJ
1637
+ j Ajiµiq.
1638
+ (93)
1639
+ By the weighted zero-sum property given in Equation 2 in the main paper, this summation equals 0,
1640
+ yielding
1641
+ 9L “
1642
+ ÿ
1643
+ iPV
1644
+ ωi rBxivpxiq ´ Bµivpµiqs pxi ´ µiq.
1645
+ (94)
1646
+ Note that the function v is strictly concave such that its second derivative is negative definite. By this
1647
+ property, 9L ď 0 with equality only if xi “ µi, @i P V , which corresponds to the QRE. Therefore, L is a
1648
+ strict Lyapunov function, and the global asymptotic stability of the QRE follows. Q.E.D.
1649
+ Remarks: Intuitively, the Lyapunov function defined above measures the distance between the QRE
1650
+ and a given set of beliefs. The idea of measuring the distance in terms of entropy-regularized payoffs is
1651
+ inspired from the seminal work [19]. However, different from the network games considered in this paper,
1652
+ Hofbauer and Hopkins [19] consider SFP in two-player games. To our knowledge, so far there has been
1653
+ no systematic study on SFP in network games.
1654
+ Proof of Theorem 4
1655
+ The proof of Theorem 4 leverages the seminal results of the asymptotically autonomous dynamical system
1656
+ [31, 40, 41] which conventionally is defined as follows.
1657
+ Definition 1. A nonautonomous system of differential equations in Rn
1658
+ x1 “ fpt, xq
1659
+ (95)
1660
+ is said to be asymptotically autonomous with limit equation
1661
+ y1 “ gpyq,
1662
+ (96)
1663
+ if fpt, xq Ñ gpxq, t Ñ 8, where the convergence is uniform on each compact subset of Rn. Conventionally,
1664
+ the solution flow of Eq. 95 is called the asymptotically autonomous semiflow (denoted by φ) and the
1665
+ solution flow of Eq. 96 is called the limit semiflow (denoted by Θ).
1666
+ Based on this definition, we establish Lemma 1 in the main paper, which is repeated as follows.
1667
+ Lemma 7. For a system that initially has heterogeneous beliefs, the mean belief dynamics is asymptotically
1668
+ autonomous [31] with the limit equation
1669
+ dµi
1670
+ dt “ xi ´ µi
1671
+ (97)
1672
+ which after time-reparameterization is equivalent to the belief dynamics for homogeneous systems.
1673
+ Proof. We first time-reparameterize the mean belief dynamics of heterogeneous systems. Assume τ “
1674
+ 17
1675
+
1676
+ Figure 5: Population network games where the underlying network consists of star structure.
1677
+ ln λ`t`1
1678
+ λ`1 . By the chain rule and Equation 54, for each dimension si,
1679
+ d¯µisi
1680
+
1681
+ “ d¯µisi
1682
+ dt
1683
+ dt
1684
+
1685
+ (98)
1686
+
1687
+ »
1688
+ —–fsip¯µq ´ ¯µisi
1689
+ λ ` t ` 1
1690
+ `
1691
+ ř
1692
+ jPVi
1693
+ ř
1694
+ sjPSj
1695
+ B2fsip¯µq
1696
+ pBµjsj q2 Varpµjsjq
1697
+ 2pλ ` t ` 1q
1698
+
1699
+ ffifl d ppλ ` 1qpexp pτq ´ 1qq
1700
+
1701
+ (99)
1702
+
1703
+ fsip¯µq ´ ¯µisi ` 1
1704
+ 2
1705
+ ř
1706
+ jPVi
1707
+ ř
1708
+ sjPSj
1709
+ B2fsip¯µq
1710
+ pBµjsj q2
1711
+ ´
1712
+ λ`1
1713
+ λ`t`1
1714
+ ¯2
1715
+ σ2pµjsjq
1716
+ λ ` pλ ` 1qpexp pτq ´ 1q ` 1
1717
+ pλ ` 1q exp pτq
1718
+ (100)
1719
+ “ fsip¯µq ´ ¯µisi ` 1
1720
+ 2
1721
+ ÿ
1722
+ jPVi
1723
+ ÿ
1724
+ sjPSj
1725
+ B2fsip¯µq
1726
+ pBµjsjq2 σ2pµjsjq exp p´2τq.
1727
+ (101)
1728
+ Observe that exp p´2τq decays to zero exponentially fast and that both σ2pµjsjq and
1729
+ B2fsip¯µq
1730
+ pBµjsj q2 are bounded
1731
+ for every µ in the simplex ś
1732
+ jPVi ∆j. Hence, Equation 101 converges locally and uniformly to the following
1733
+ equation:
1734
+ d¯µisi
1735
+
1736
+ “ fsip¯µq ´ ¯µisi.
1737
+ (102)
1738
+ Note that xisi “ fsip¯µq for homogeneous systems, and the above equation is algebraically equivalent to
1739
+ Equation 97. Hence, by Definition 1, Equation 101 is asymptotically autonomous with the limit equation
1740
+ being Equation 97.
1741
+ By the above lemma, we can formally connect the limit behaviors of initially heterogeneous systems
1742
+ and those of homogeneous systems. Recall that Theorem 3 in the main paper states that under SFP,
1743
+ there is a unique rest point (QRE) for the belief dynamics in a weighted zero-sum network game Γ;
1744
+ this excludes the case where there are finitely many equilibria that are chained to each other. Hence,
1745
+ combining Lemma 2 in the main paper, we prove that the mean belief dynamics of initially heterogeneous
1746
+ systems converges to a unique QRE. Q.E.D.
1747
+ Appendix C: Results and Proofs omitted in Section 4.2
1748
+ For the case of network coordination, we consider networks that consist of a star or disconnected multiple
1749
+ stars due to technical reasons. In Figure 1, we present examples of the considered network structure with
1750
+ different numbers of nodes (populations).
1751
+ In the following theorem, focusing on homogeneous systems, we establish the convergence of the belief
1752
+ dynamics to the set of QRE.
1753
+ Theorem 6 (Convergence in Homogeneous Network Coordination with Star Structure).
1754
+ Given a coordination Γ where the network structure consists of a single or disconnected multiple stars,
1755
+ each orbit of the belief dynamics for homogeneous systems converges to the set of QRE.
1756
+ Proof. Consider a root population j of a star structure. Its set of leaf (neighbor) populations is Vj, the
1757
+ set of beliefs about the leaf populations is tµiuiPVj, and the choice distribution is xj. Given the game Γ,
1758
+ 18
1759
+
1760
+ Five Populations
1761
+ Five Populations
1762
+ (Two Disconnected
1763
+ Stars)
1764
+ Three Populations
1765
+ Two Populations
1766
+ P2
1767
+ P1
1768
+ P3the expected payoff is xJ
1769
+ j
1770
+ ř
1771
+ iPVj Ajiµi. Define a perturbed payoff function
1772
+ πj
1773
+ `
1774
+ xj, tµiuiPVj
1775
+ ˘ :“ xJ
1776
+ j
1777
+ ÿ
1778
+ iPVj
1779
+ Ajiµi ` vpxjq
1780
+ (103)
1781
+ where vpxjq “ ´ 1
1782
+ β
1783
+ ř
1784
+ sjPSj xjsj lnpxjsjq. Under this form of vpxjq, the maximization of πj yields the choice
1785
+ distribution xj from the logit choice function [8].
1786
+ Consider a leaf population i of the root population j. It has only one neighbor population, which
1787
+ is population j. Thus, given the game Γ, the expected payoff is xJ
1788
+ i Aijµj. Define a perturbed payoff
1789
+ function
1790
+ πi
1791
+ `
1792
+ xi, µj
1793
+ ˘ :“ xJ
1794
+ i Aijµj ` vpxiq
1795
+ (104)
1796
+ where vpxiq “ ´ 1
1797
+ β
1798
+ ř
1799
+ siPSi xisi lnpxisiq. Similarly, the maximization of πi yields the choice distribution xi
1800
+ from the logit choice function [8]. Based on this, we establish the following lemma.
1801
+ Lemma 8. For choice distributions of SFP in a population network game with start structure,
1802
+ Bxjπj
1803
+ `
1804
+ xj, tµiuiPVj
1805
+ ˘
1806
+ “ 0
1807
+ and
1808
+ ÿ
1809
+ iPVj
1810
+ pAjiµiqJ “ ´Bxjvpxjq
1811
+ if j is a root population,
1812
+ (105)
1813
+ Bxiπi
1814
+ `
1815
+ xi, µj
1816
+ ˘
1817
+ “ 0
1818
+ and
1819
+ `
1820
+ Aijµj
1821
+ ˘J “ ´Bxivpxiq
1822
+ if i is a leaf population.
1823
+ (106)
1824
+ Proof. This lemma immediately follows from the fact that the maximization of πj and πi , respectively,
1825
+ yield the choice distributions xj and xi from the logit choice function [8].
1826
+ For readability, we repeat the belief dynamics of a homogeneous population after time-reparameterization,
1827
+ which has been proved in Lemma 4 in Appendix B, as follows:
1828
+ dµi
1829
+ dτ “ xi ´ µi.
1830
+ (107)
1831
+ Let R Ă V be the set of all root populations. We define
1832
+ L :“
1833
+ ÿ
1834
+ jPR
1835
+ Lj
1836
+ s.t.
1837
+ Lj :“ µJ
1838
+ j
1839
+ ÿ
1840
+ iPVj
1841
+ Ajiµi ` vpµjq `
1842
+ ÿ
1843
+ iPVj
1844
+ vpµiq.
1845
+ (108)
1846
+ Consider the function Lj. Its time derivative 9Lj is
1847
+ 9Lj “
1848
+ »
1849
+ –BµjpµJ
1850
+ j
1851
+ ÿ
1852
+ iPVj
1853
+ Ajiµiq 9µj `
1854
+ ÿ
1855
+ iPVj
1856
+ BµipµJ
1857
+ j
1858
+ ÿ
1859
+ iPVj
1860
+ Ajiµiq 9µi
1861
+
1862
+ fl ` Bµjvpµjq 9µj `
1863
+ ÿ
1864
+ iPVj
1865
+ Bµivpµiq 9µi
1866
+ (109)
1867
+
1868
+ ÿ
1869
+ iPVj
1870
+ pAjiµiqJpxj ´ µjq `
1871
+ »
1872
+ – ÿ
1873
+ iPVj
1874
+ µJ
1875
+ j Ajipxi ´ µiq
1876
+
1877
+ fl ` Bµjvpµjqpxj ´ µjq `
1878
+ ÿ
1879
+ iPVj
1880
+ Bµivpµiqpxi ´ µiq. (110)
1881
+ Since Γ is a coordination game, we have
1882
+ `
1883
+ Aijµj
1884
+ ˘J “ µJ
1885
+ j AJ
1886
+ ij “ µJ
1887
+ j Aji. Hence, applying Lemma 8, we can
1888
+ substitute ř
1889
+ iPVjpAjiµiqJ with ´v1pxjq, and µJ
1890
+ j Aji with ´v1pxiq, yielding
1891
+ 9Lj “ ´Bxjvpxjqpxj ´ µjq `
1892
+ »
1893
+ – ÿ
1894
+ iPVj
1895
+ p´Bxivpxiqqpxi ´ µiq
1896
+
1897
+ fl ` Bµjvpµjqpxj ´ µjq `
1898
+ ÿ
1899
+ iPVj
1900
+ Bµivpµiqpxi ´ µiq
1901
+ (111)
1902
+ “ pBµjvpµjq ´ Bxjvpxjqqpxj ´ µjq `
1903
+ ÿ
1904
+ iPVj
1905
+ pBµivpµiq ´ Bxivpxiqqpxi ´ µiq
1906
+ (112)
1907
+ Note that the function v is strictly concave such that its second derivative is negative definite. By this
1908
+ property, 9Lj ě 0 with equality only if xi “ µi, @i P Vj and xj “ µj. Thus, the time derivative of the
1909
+ function L, i.e., 9L “ ř
1910
+ jPR 9Lj ě 0 with equality only if xi “ µi, @i P Vj, xj “ µj, @j P R.
1911
+ We generalize the convergence result to initially heterogeneous systems in the following theorem.
1912
+ 19
1913
+
1914
+ Theorem 7 (Convergence in Initially Heterogeneous Network Coordination with Star Struc-
1915
+ ture). Given a coordination Γ where the network structure consists of a single or disconnected multiple
1916
+ stars, each orbit of the mean belief dynamics for initially heterogeneous systems converges to the set of
1917
+ QRE.
1918
+ Proof. The proof technique is similar to that for initially heterogeneous competitive network games. By
1919
+ Lemma 1 in the main paper, we show that the mean belief dynamics of initially heterogeneous systems is
1920
+ asymptotically autonomous with the belief dynamics of homogeneous systems. Therefore, it follows from
1921
+ Lemma 2 in the main paper that the convergence result for homogeneous systems can be carried over to
1922
+ the initially heterogeneous systems.
1923
+ Remarks: The convergence of SFP in coordination games and potential games has been established
1924
+ under the 2-player settings [19] as well as some n-player settings [20, 39]. Our work differs from the
1925
+ previous works in two aspects. First, our work allows for heterogeneous beliefs. Moreover, we consider that
1926
+ agents maintain separate beliefs about other agents, while in the previous works agents do not distinguish
1927
+ between other agents. Thus, even when the system beliefs are homogeneous, our setting is still different
1928
+ from (and more complicated) than the previous settings.
1929
+ Appendix D: Omitted Experimental Details
1930
+ Numerical Method for the PDE model.
1931
+ PDEs are notoriously difficult to solve, and only limited
1932
+ types of PDEs allow analytic solutions. Hence, similar to previous research [23], we resort to numerical
1933
+ method for PDEs; in particular, we consider the finite difference method [38].
1934
+ Agent-based Simulations.
1935
+ The presented simulation results are averaged over 100 independent
1936
+ simulation runs to smooth out the randomness. For each simulation run, there are 1, 000 agents in each
1937
+ population. For each agent, the initial beliefs are sampled from the given initial probability distribution.
1938
+ Detailed Experimental Setups for Figure 1.
1939
+ In the case of small initial variance, the initial
1940
+ beliefs µ1H and µ2H are distributed according to the distribution Betap280, 120q. On the contrary,
1941
+ in the case of large initial variance, the initial beliefs µ1H and µ2H are distributed according to the
1942
+ distribution Betap14, 6q. Thus, initially, the mean beliefs in these two cases are both ¯µ1H “ ¯µ2H “ 0.7
1943
+ and ¯µ1S “ ¯µ2S “ 0.3. In both cases, the initial sum of weights λ “ 10 and the temperature β “ 10.
1944
+ Detailed Experimental Setups for Figure 3.
1945
+ We visualize the regions of attraction of different
1946
+ equilibria in stag hunt games by numerically solving the mean belief dynamics (Equation 10 in the main
1947
+ paper). The initial variances have been given in the title of each panel. In all cases, the initial sum of
1948
+ weights λ “ 0 and the temperature β “ 5.
1949
+ Detailed Experimental Setups for Figure 4.
1950
+ We let the initial beliefs about populations 1, 3 and 5
1951
+ remain unchanged across different cases, and vary the initial beliefs about populations 2 and 4. The initial
1952
+ beliefs about populations 1, 3 and 5, denoted by µ1H, µ3H and µ5H, are distributed according to the
1953
+ distributions Betap20, 10q, Betap6, 4q, and Betap10, 5q, respectively. The initial beliefs about populations
1954
+ 2 and 4 have been given in the legends of Figure 4. In all cases, the initial sum of weights λ “ 10 and the
1955
+ temperature β “ 10. Note that µiT “ 1 ´ µiH for all populations i “ 1, 2, 3, 4, 5.
1956
+ Source Code and Computing Resource.
1957
+ We have attached the source code for reproducing our
1958
+ main experiments. The Matlab script finitedifference.m numerically solves our PDE model presented
1959
+ in Proposition 1 in the main paper. The Matlab script regionofattraction.m visualizes the region of
1960
+ attraction of different equilibria in stag hunt games, which are presented in Figure 3. The Python scripts
1961
+ simulation(staghunt).py and simulation(matchingpennies).py correspond to the agent-based simulations
1962
+ in two-population stag hunt games and five-population asymmetric matching pennies games, respectively.
1963
+ We use a laptop (CPU: AMD Ryzen 7 5800H) to run all the experiments.
1964
+ 20
1965
+
1966
+ References
1967
+ [1] Yakov Babichenko and Aviad Rubinstein. Settling the complexity of nash equilibrium in congestion
1968
+ games. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
1969
+ 1426–1437, 2021.
1970
+ [2] Michel Benaïm and Mathieu Faure. Consistency of vanishingly smooth fictitious play. Mathematics
1971
+ of Operations Research, 38(3):437–450, 2013.
1972
+ [3] Michel Benaım and Morris W Hirsch. Mixed equilibria and dynamical systems arising from fictitious
1973
+ play in perturbed games. Games and Economic Behavior, 29(1-2):36–72, 1999.
1974
+ [4] Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Smoothed efficient algorithms and reductions
1975
+ for network coordination games. arXiv preprint arXiv:1809.02280, 2018.
1976
+ [5] Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In Proceedings
1977
+ of the twenty-second annual ACM-SIAM symposium on Discrete algorithms, pages 217–234. SIAM,
1978
+ 2011.
1979
+ [6] Aleksander Czechowski and Georgios Piliouras. Poincarz’teu-bendixson limit sets in multi-agent
1980
+ learning. 2022.
1981
+ [7] Christian Ewerhart and Kremena Valkanova. Fictitious play in networks. Games and Economic
1982
+ Behavior, 123:182–206, 2020.
1983
+ [8] Drew Fudenberg, Fudenberg Drew, David K Levine, and David K Levine. The theory of learning in
1984
+ games, volume 2. MIT press, 1998.
1985
+ [9] Drew Fudenberg and David M Kreps. Learning mixed equilibria. Games and economic behavior,
1986
+ 5(3):320–367, 1993.
1987
+ [10] Drew Fudenberg and David K Levine. Steady state learning and nash equilibrium. Econometrica:
1988
+ Journal of the Econometric Society, pages 547–573, 1993.
1989
+ [11] Drew Fudenberg and David K Levine. Measuring players’ losses in experimental games. The Quarterly
1990
+ Journal of Economics, 112(2):507–536, 1997.
1991
+ [12] Drew Fudenberg and Satoru Takahashi. Heterogeneous beliefs and local information in stochastic
1992
+ fictitious play. Games and Economic Behavior, 71(1):100–120, 2011.
1993
+ [13] Colin S Gillespie. Moment-closure approximations for mass-action models. IET systems biology,
1994
+ 3(1):52–58, 2009.
1995
+ [14] Jacob K Goeree, Charles A Holt, and Thomas R Palfrey. Quantal response equilibrium. In Quantal
1996
+ Response Equilibrium. Princeton University Press, 2016.
1997
+ [15] Leo A Goodman. Population growth of the sexes. Biometrics, 9(2):212–225, 1953.
1998
+ [16] Shubham Gupta, Rishi Hazra, and Ambedkar Dukkipati. Networked multi-agent reinforcement
1999
+ learning with emergent communication. In Proceedings of the 19th International Conference on
2000
+ Autonomous Agents and MultiAgent Systems, pages 1858–1860, 2020.
2001
+ [17] Jiequn Han and Ruimeng Hu.
2002
+ Deep fictitious play for finding markovian nash equilibrium in
2003
+ multi-agent games. In Mathematical and Scientific Machine Learning, pages 221–245. PMLR, 2020.
2004
+ [18] Erik Hernández, Antonio Barrientos, and Jaime Del Cerro. Selective smooth fictitious play: An
2005
+ approach based on game theory for patrolling infrastructures with a multi-robot system. Expert
2006
+ Systems with Applications, 41(6):2897–2913, 2014.
2007
+ [19] Josef Hofbauer and Ed Hopkins. Learning in perturbed asymmetric games. Games and Economic
2008
+ Behavior, 52(1):133–152, 2005.
2009
+ [20] Josef Hofbauer and William H Sandholm. On the global convergence of stochastic fictitious play.
2010
+ Econometrica, 70(6):2265–2294, 2002.
2011
+ 21
2012
+
2013
+ [21] Josef Hofbauer and William H Sandholm. Evolution in games with randomly disturbed payoffs.
2014
+ Journal of economic theory, 132(1):47–69, 2007.
2015
+ [22] Ed Hopkins. A note on best response dynamics. Games and Economic Behavior, 29(1-2):138–150,
2016
+ 1999.
2017
+ [23] Shuyue Hu, Chin-wing Leung, and Ho-fung Leung. Modelling the dynamics of multiagent q-learning
2018
+ in repeated symmetric games: a mean field theoretic approach. In Advances in Neural Information
2019
+ Processing Systems, pages 12102–12112, 2019.
2020
+ [24] Shuyue Hu, Chin-Wing Leung, Ho-fung Leung, and Harold Soh.
2021
+ The dynamics of q-learning
2022
+ in population games: A physics-inspired continuity equation model. In Proceedings of the 21st
2023
+ International Conference on Autonomous Agents and Multiagent Systems, page 615–623, 2022.
2024
+ [25] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali Razavi,
2025
+ Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training of neural
2026
+ networks. arXiv preprint arXiv:1711.09846, 2017.
2027
+ [26] KG Binmore AP Kirman et al. Frontiers of game theory. Mit Press, 1993.
2028
+ [27] Ratul Lahkar and Robert M Seymour. Reinforcement learning in population games. Games and
2029
+ Economic Behavior, 80:10–38, 2013.
2030
+ [28] Stefanos Leonardos and Georgios Piliouras. Exploration-exploitation in multi-agent learning: Catas-
2031
+ trophe theory meets game theory. In Proceedings of the AAAI Conference on Artificial Intelligence,
2032
+ volume 35, pages 11263–11271, 2021.
2033
+ [29] Chin-Wing Leung, Shuyue Hu, and Ho-Fung Leung. Self-play or group practice: Learning to play
2034
+ alternating markov game in multi-agent system. In 2020 25th International Conference on Pattern
2035
+ Recognition (ICPR), pages 9234–9241. IEEE, 2021.
2036
+ [30] Yiwei Liu, Jiamou Liu, Kaibin Wan, Zhan Qin, Zijian Zhang, Bakhadyr Khoussainov, and Liehuang
2037
+ Zhu. From local to global norm emergence: Dissolving self-reinforcing substructures with incremental
2038
+ social instruments. In International Conference on Machine Learning, pages 6871–6881. PMLR,
2039
+ 2021.
2040
+ [31] L Markus. Asymptotically autonomous differential systems. contributions to the theory of nonlinear
2041
+ oscillations iii (s. lefschetz, ed.), 17-29. Annals of Mathematics Studies, 36, 1956.
2042
+ [32] Timothy I Matis and Ivan G Guardiola. Achieving moment closure through cumulant neglect. The
2043
+ Mathematica Journal, 12:12–2, 2010.
2044
+ [33] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
2045
+ Games and economic behavior, 10(1):6–38, 1995.
2046
+ [34] Sai Ganesh Nagarajan, David Balduzzi, and Georgios Piliouras. From chaos to order: Symmetry
2047
+ and conservation laws in game dynamics. In International Conference on Machine Learning, pages
2048
+ 7186–7196. PMLR, 2020.
2049
+ [35] Gerasimos Palaiopanos, Ioannis Panageas, and Georgios Piliouras. Multiplicative weights update
2050
+ with constant step-size in congestion games: Convergence, limit cycles and chaos. Advances in Neural
2051
+ Information Processing Systems, 30, 2017.
2052
+ [36] Julien Perolat, Bilal Piot, and Olivier Pietquin. Actor-critic fictitious play in simultaneous move
2053
+ multistage games. In International Conference on Artificial Intelligence and Statistics, pages 919–928.
2054
+ PMLR, 2018.
2055
+ [37] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and Olivier Pietquin.
2056
+ Fictitious play for mean field games: Continuous time analysis and applications. Advances in Neural
2057
+ Information Processing Systems, 33:13199–13213, 2020.
2058
+ [38] Gordon Dennis Smith. Numerical solution of partial differential equations: finite difference methods.
2059
+ Clarendon Press, 1985.
2060
+ 22
2061
+
2062
+ [39] Brian Swenson and H Vincent Poor. Smooth fictitious play in nˆ 2 potential games. In 2019 53rd
2063
+ Asilomar Conference on Signals, Systems, and Computers, pages 1739–1743. IEEE, 2019.
2064
+ [40] Horst R Thieme. Convergence results and a poincaré-bendixson trichotomy for asymptotically
2065
+ autonomous differential equations. Journal of mathematical biology, 30(7):755–763, 1992.
2066
+ [41] Horst R Thieme. Asymptotically autonomous differential equations in the plane. The Rocky Mountain
2067
+ Journal of Mathematics, pages 351–380, 1994.
2068
+ [42] Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca. Provable fictitious play for general
2069
+ mean-field games. arXiv preprint arXiv:2010.04211, 2020.
2070
+ [43] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar.
2071
+ Fully decentralized
2072
+ multi-agent reinforcement learning with networked agents. In International Conference on Machine
2073
+ Learning, pages 5872–5881. PMLR, 2018.
2074
+ [44] Rui Zhao, Jinming Song, Hu Haifeng, Yang Gao, Yi Wu, Zhongqian Sun, and Yang Wei. Max-
2075
+ imum entropy population based training for zero-shot human-ai coordination.
2076
+ arXiv preprint
2077
+ arXiv:2112.11701, 2021.
2078
+ 23
2079
+
QtE4T4oBgHgl3EQfKQz1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
R9E3T4oBgHgl3EQfDQnp/content/2301.04286v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78fe78a7b543b8812a37bb4b2b739e94747afbe358592d1fa37230d8160704fa
3
+ size 1310158