jackkuo commited on
Commit
f4114cf
·
verified ·
1 Parent(s): 8d5f50f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +80 -0
  2. 09AzT4oBgHgl3EQftv3n/content/tmp_files/2301.01682v1.pdf.txt +1935 -0
  3. 09AzT4oBgHgl3EQftv3n/content/tmp_files/load_file.txt +0 -0
  4. 0dAyT4oBgHgl3EQfoPiS/content/2301.00504v1.pdf +3 -0
  5. 0dAyT4oBgHgl3EQfoPiS/vector_store/index.faiss +3 -0
  6. 0dAyT4oBgHgl3EQfoPiS/vector_store/index.pkl +3 -0
  7. 0tE4T4oBgHgl3EQfzA1I/content/2301.05270v1.pdf +3 -0
  8. 0tE4T4oBgHgl3EQfzA1I/vector_store/index.pkl +3 -0
  9. 1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf +3 -0
  10. 29FAT4oBgHgl3EQfDxyZ/vector_store/index.faiss +3 -0
  11. 2dE0T4oBgHgl3EQfugHS/vector_store/index.faiss +3 -0
  12. 2dE2T4oBgHgl3EQfNgaR/content/2301.03738v1.pdf +3 -0
  13. 2dE2T4oBgHgl3EQfNgaR/vector_store/index.faiss +3 -0
  14. 2dE2T4oBgHgl3EQfNgaR/vector_store/index.pkl +3 -0
  15. 39E4T4oBgHgl3EQfbQyO/content/2301.05071v1.pdf +3 -0
  16. 39E4T4oBgHgl3EQfbQyO/vector_store/index.faiss +3 -0
  17. 39E4T4oBgHgl3EQfbQyO/vector_store/index.pkl +3 -0
  18. 49AyT4oBgHgl3EQf2PmT/content/tmp_files/2301.00748v1.pdf.txt +1265 -0
  19. 49AyT4oBgHgl3EQf2PmT/content/tmp_files/load_file.txt +0 -0
  20. 49AzT4oBgHgl3EQf9v6Q/content/tmp_files/2301.01924v1.pdf.txt +681 -0
  21. 49AzT4oBgHgl3EQf9v6Q/content/tmp_files/load_file.txt +475 -0
  22. 4NE4T4oBgHgl3EQf0w0Q/content/tmp_files/2301.05284v1.pdf.txt +1123 -0
  23. 4NE4T4oBgHgl3EQf0w0Q/content/tmp_files/load_file.txt +0 -0
  24. 59E5T4oBgHgl3EQfPQ7C/content/2301.05504v1.pdf +3 -0
  25. 6dE3T4oBgHgl3EQfpwoB/vector_store/index.faiss +3 -0
  26. 7NAyT4oBgHgl3EQfQfbq/content/tmp_files/2301.00049v1.pdf.txt +2220 -0
  27. 7NAyT4oBgHgl3EQfQfbq/content/tmp_files/load_file.txt +0 -0
  28. 89E4T4oBgHgl3EQfdgwn/content/2301.05091v1.pdf +3 -0
  29. 89E4T4oBgHgl3EQfdgwn/vector_store/index.pkl +3 -0
  30. 8NE0T4oBgHgl3EQfwQHW/content/tmp_files/2301.02631v1.pdf.txt +777 -0
  31. 8NE0T4oBgHgl3EQfwQHW/content/tmp_files/load_file.txt +0 -0
  32. 8tE1T4oBgHgl3EQf7wU5/content/2301.03537v1.pdf +3 -0
  33. 8tE1T4oBgHgl3EQf7wU5/vector_store/index.faiss +3 -0
  34. 9NAzT4oBgHgl3EQf-_5O/content/tmp_files/2301.01941v1.pdf.txt +2759 -0
  35. 9NAzT4oBgHgl3EQf-_5O/content/tmp_files/load_file.txt +0 -0
  36. AdAyT4oBgHgl3EQfd_gY/content/tmp_files/2301.00311v1.pdf.txt +1478 -0
  37. AdAyT4oBgHgl3EQfd_gY/content/tmp_files/load_file.txt +0 -0
  38. AdE3T4oBgHgl3EQfsgtu/content/2301.04668v1.pdf +3 -0
  39. AdE3T4oBgHgl3EQfsgtu/vector_store/index.faiss +3 -0
  40. AdE5T4oBgHgl3EQfSg_z/content/tmp_files/2301.05530v1.pdf.txt +1426 -0
  41. AdE5T4oBgHgl3EQfSg_z/content/tmp_files/load_file.txt +0 -0
  42. AtE5T4oBgHgl3EQfSw9y/content/tmp_files/2301.05531v1.pdf.txt +781 -0
  43. AtE5T4oBgHgl3EQfSw9y/content/tmp_files/load_file.txt +452 -0
  44. BdFRT4oBgHgl3EQfvDhO/content/tmp_files/2301.13633v1.pdf.txt +2043 -0
  45. BdFRT4oBgHgl3EQfvDhO/content/tmp_files/load_file.txt +0 -0
  46. BtE2T4oBgHgl3EQfRwcX/content/tmp_files/2301.03783v1.pdf.txt +3502 -0
  47. BtE2T4oBgHgl3EQfRwcX/content/tmp_files/load_file.txt +0 -0
  48. CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf +3 -0
  49. CdE4T4oBgHgl3EQf5g79/vector_store/index.pkl +3 -0
  50. CtAzT4oBgHgl3EQfTvyL/content/2301.01255v1.pdf +3 -0
.gitattributes CHANGED
@@ -6764,3 +6764,83 @@ XNE2T4oBgHgl3EQfugh7/content/2301.04081v1.pdf filter=lfs diff=lfs merge=lfs -tex
6764
  YNAyT4oBgHgl3EQfWfeb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6765
  6dE3T4oBgHgl3EQfpwoB/content/2301.04644v1.pdf filter=lfs diff=lfs merge=lfs -text
6766
  PdE1T4oBgHgl3EQfaQSn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6764
  YNAyT4oBgHgl3EQfWfeb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6765
  6dE3T4oBgHgl3EQfpwoB/content/2301.04644v1.pdf filter=lfs diff=lfs merge=lfs -text
6766
  PdE1T4oBgHgl3EQfaQSn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6767
+ mNE1T4oBgHgl3EQfhASI/content/2301.03236v1.pdf filter=lfs diff=lfs merge=lfs -text
6768
+ jtFRT4oBgHgl3EQfWjfo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6769
+ 6dE3T4oBgHgl3EQfpwoB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6770
+ JtE0T4oBgHgl3EQfSADl/content/2301.02217v1.pdf filter=lfs diff=lfs merge=lfs -text
6771
+ RNAyT4oBgHgl3EQft_lA/content/2301.00604v1.pdf filter=lfs diff=lfs merge=lfs -text
6772
+ ytAzT4oBgHgl3EQftP2f/content/2301.01673v1.pdf filter=lfs diff=lfs merge=lfs -text
6773
+ 8tE1T4oBgHgl3EQf7wU5/content/2301.03537v1.pdf filter=lfs diff=lfs merge=lfs -text
6774
+ HdA0T4oBgHgl3EQfB_8L/content/2301.01982v1.pdf filter=lfs diff=lfs merge=lfs -text
6775
+ F9AzT4oBgHgl3EQfUfyk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6776
+ RNAyT4oBgHgl3EQft_lA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6777
+ PNE1T4oBgHgl3EQfaQRP/content/2301.03159v1.pdf filter=lfs diff=lfs merge=lfs -text
6778
+ 2dE0T4oBgHgl3EQfugHS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6779
+ gdAyT4oBgHgl3EQfxPne/content/2301.00665v1.pdf filter=lfs diff=lfs merge=lfs -text
6780
+ gdE2T4oBgHgl3EQfcAds/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6781
+ AdE3T4oBgHgl3EQfsgtu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6782
+ 1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf filter=lfs diff=lfs merge=lfs -text
6783
+ fdFMT4oBgHgl3EQf1zGx/content/2301.12441v1.pdf filter=lfs diff=lfs merge=lfs -text
6784
+ 29FAT4oBgHgl3EQfDxyZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6785
+ etE3T4oBgHgl3EQf3Asg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6786
+ AdE3T4oBgHgl3EQfsgtu/content/2301.04668v1.pdf filter=lfs diff=lfs merge=lfs -text
6787
+ dtA0T4oBgHgl3EQfG__M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6788
+ gdAyT4oBgHgl3EQfxPne/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6789
+ INFKT4oBgHgl3EQfdi4B/content/2301.11820v1.pdf filter=lfs diff=lfs merge=lfs -text
6790
+ uNA0T4oBgHgl3EQfLv9Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6791
+ fdFMT4oBgHgl3EQf1zGx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6792
+ R9FQT4oBgHgl3EQfbDai/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6793
+ mNE1T4oBgHgl3EQfhASI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6794
+ cdE1T4oBgHgl3EQfLANo/content/2301.02971v1.pdf filter=lfs diff=lfs merge=lfs -text
6795
+ FdE3T4oBgHgl3EQftAvj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6796
+ ptE0T4oBgHgl3EQfaADZ/content/2301.02330v1.pdf filter=lfs diff=lfs merge=lfs -text
6797
+ 59E5T4oBgHgl3EQfPQ7C/content/2301.05504v1.pdf filter=lfs diff=lfs merge=lfs -text
6798
+ 39E4T4oBgHgl3EQfbQyO/content/2301.05071v1.pdf filter=lfs diff=lfs merge=lfs -text
6799
+ atFLT4oBgHgl3EQfXS8c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6800
+ ltE3T4oBgHgl3EQfKAnG/content/2301.04350v1.pdf filter=lfs diff=lfs merge=lfs -text
6801
+ FtAzT4oBgHgl3EQfUfxu/content/2301.01267v1.pdf filter=lfs diff=lfs merge=lfs -text
6802
+ HdA0T4oBgHgl3EQfB_8L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6803
+ l9FKT4oBgHgl3EQfDy1k/content/2301.11713v1.pdf filter=lfs diff=lfs merge=lfs -text
6804
+ LtE3T4oBgHgl3EQfwAst/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6805
+ LtE3T4oBgHgl3EQfwAst/content/2301.04698v1.pdf filter=lfs diff=lfs merge=lfs -text
6806
+ ptE0T4oBgHgl3EQfaADZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6807
+ pNFKT4oBgHgl3EQfGi3M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6808
+ NdFIT4oBgHgl3EQfdCtI/content/2301.11268v1.pdf filter=lfs diff=lfs merge=lfs -text
6809
+ JNE3T4oBgHgl3EQfuwvk/content/2301.04688v1.pdf filter=lfs diff=lfs merge=lfs -text
6810
+ 39E4T4oBgHgl3EQfbQyO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6811
+ INFKT4oBgHgl3EQfdi4B/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6812
+ c9E0T4oBgHgl3EQfWgB2/content/2301.02279v1.pdf filter=lfs diff=lfs merge=lfs -text
6813
+ eNE0T4oBgHgl3EQfogEC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6814
+ rdE5T4oBgHgl3EQfJw7T/content/2301.05461v1.pdf filter=lfs diff=lfs merge=lfs -text
6815
+ 2dE2T4oBgHgl3EQfNgaR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6816
+ 0tE4T4oBgHgl3EQfzA1I/content/2301.05270v1.pdf filter=lfs diff=lfs merge=lfs -text
6817
+ cdE1T4oBgHgl3EQfLANo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6818
+ xtE0T4oBgHgl3EQftQEc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6819
+ pNFKT4oBgHgl3EQfGi3M/content/2301.11726v1.pdf filter=lfs diff=lfs merge=lfs -text
6820
+ 8tE1T4oBgHgl3EQf7wU5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6821
+ aNAzT4oBgHgl3EQfZPyw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6822
+ c9E0T4oBgHgl3EQfWgB2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6823
+ q9E1T4oBgHgl3EQfiwR1/content/2301.03255v1.pdf filter=lfs diff=lfs merge=lfs -text
6824
+ aNAzT4oBgHgl3EQfZPyw/content/2301.01349v1.pdf filter=lfs diff=lfs merge=lfs -text
6825
+ CtAzT4oBgHgl3EQfTvyL/content/2301.01255v1.pdf filter=lfs diff=lfs merge=lfs -text
6826
+ yNAyT4oBgHgl3EQfOvbc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6827
+ mdE5T4oBgHgl3EQfHg75/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6828
+ yNE2T4oBgHgl3EQfhQfv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6829
+ 2dE2T4oBgHgl3EQfNgaR/content/2301.03738v1.pdf filter=lfs diff=lfs merge=lfs -text
6830
+ yNAyT4oBgHgl3EQfOvbc/content/2301.00013v1.pdf filter=lfs diff=lfs merge=lfs -text
6831
+ 89E4T4oBgHgl3EQfdgwn/content/2301.05091v1.pdf filter=lfs diff=lfs merge=lfs -text
6832
+ WNE1T4oBgHgl3EQfbQTu/content/2301.03172v1.pdf filter=lfs diff=lfs merge=lfs -text
6833
+ mtE5T4oBgHgl3EQfjA_C/content/2301.05653v1.pdf filter=lfs diff=lfs merge=lfs -text
6834
+ 0dAyT4oBgHgl3EQfoPiS/content/2301.00504v1.pdf filter=lfs diff=lfs merge=lfs -text
6835
+ CtE1T4oBgHgl3EQfWAR_/content/2301.03109v1.pdf filter=lfs diff=lfs merge=lfs -text
6836
+ CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf filter=lfs diff=lfs merge=lfs -text
6837
+ 0dAyT4oBgHgl3EQfoPiS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6838
+ rdE5T4oBgHgl3EQfJw7T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6839
+ HdAyT4oBgHgl3EQfS_fF/content/2301.00098v1.pdf filter=lfs diff=lfs merge=lfs -text
6840
+ htE2T4oBgHgl3EQfcgdl/content/2301.03896v1.pdf filter=lfs diff=lfs merge=lfs -text
6841
+ gdE2T4oBgHgl3EQfHQYN/content/2301.03665v1.pdf filter=lfs diff=lfs merge=lfs -text
6842
+ gdE2T4oBgHgl3EQfHQYN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6843
+ _tFIT4oBgHgl3EQf-Cuq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6844
+ V9AyT4oBgHgl3EQfu_l-/content/2301.00623v1.pdf filter=lfs diff=lfs merge=lfs -text
6845
+ tNAzT4oBgHgl3EQf6f7D/content/2301.01877v1.pdf filter=lfs diff=lfs merge=lfs -text
6846
+ tNAzT4oBgHgl3EQf6f7D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09AzT4oBgHgl3EQftv3n/content/tmp_files/2301.01682v1.pdf.txt ADDED
@@ -0,0 +1,1935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DOT: Fast Cell Type Decomposition of Spatial
2
+ Omics by Optimal Transport
3
+ Arezou Rahimi, Luis A. Vale-Silva, Maria F¨alth Savitski, Jovan Tanevski, Julio Saez-Rodriguez
4
+ !
5
+ Abstract
6
+ Single-cell RNA sequencing (scRNA-seq) and spatially-resolved imaging/sequencing technologies have revolutionized biomedical
7
+ research. On one hand, scRNA-seq data provides for individual cells information about a large portion of the transcriptome, but does not
8
+ include the spatial context of the cells. On the other hand, spatially resolved measurements come with a trade-off between resolution,
9
+ throughput and gene coverage. Combining data from these two modalities can provide a spatially resolved picture with enhances
10
+ resolution and gene coverage. Several methods have been recently developed to integrate these modalities, but they use only the
11
+ expression of genes available in both modalities. They don’t incorporate other relevant and available features, especially the spatial
12
+ context. We propose DOT, a novel optimization framework for assigning cell types to tissue locations. Our model (i) incorporates ideas
13
+ from Optimal Transport theory to leverage not only joint but also distinct features, such as the spatial context, (ii) introduces scale-
14
+ invariant distance functions to account for differences in the sensitivity of different measurement technologies, and (iii) provides control
15
+ over the abundance of cells of different types in the tissue. We present a fast implementation based on the Frank-Wolfe algorithm and
16
+ we demonstrate the effectiveness of DOT on correctly assigning cell types or estimating the expression of missing genes in spatial data
17
+ coming from two areas of the brain, the developing heart, and breast cancer samples.
18
+ Index Terms
19
+ Optimal Transport, optimization, Frank-Wolfe, single-cell, biology, spatial, tissue, decomposition, deconvolution
20
+ Arezou Rahimi is with the Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, and Cellzome
21
+ GmbH, GlaxoSmithKline, Heidelberg, Germany (e-mail: [email protected]).
22
+ Luis A. Vale-Silva is with Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany (e-mail: [email protected])
23
+ Maria F¨alth Savitski is with Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany (e-mail: [email protected])
24
+ Jovan Tanevski is with the Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg,
25
+ Germany, and Department of Knowledge Technologies, Joˇzef Stefan Institute, Ljubljana, Slovenia (e-mail: [email protected]).
26
+ Julio Saez-Rodriguez is with the Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital,
27
+ Heidelberg, Germany (e-mail: [email protected]).
28
+ Jovan Tanevski and Julio Saez-Rodriguez cosupervised this work.
29
+ arXiv:2301.01682v1 [cs.CE] 4 Jan 2023
30
+
31
+ 1
32
+ DOT: Fast Cell Type Decomposition of Spatial
33
+ Omics by Optimal Transport
34
+ 1
35
+ INTRODUCTION
36
+ The organization of cells within human tissues, their molec-
37
+ ular programs and their response to perturbations are cen-
38
+ tral to better understand physiology, disease progression
39
+ and to eventual identification of targets for therapeutic in-
40
+ tervention [1], [2]. Cell types are distinct subpopulations of
41
+ cells with unique trasncriptional signatures, which are often
42
+ identified by known markers and/or by data-driven tech-
43
+ niques, most commonly clustering based on transcriptomic
44
+ profiles [3]. Single-cell RNA sequencing can profile the
45
+ entire transcriptome (mRNA expression of the full range of
46
+ genes) of large portions of individual (single) cells. This has
47
+ made scRNA-seq an essential tool for revealing distinct cell
48
+ types in complex tissues and has profoundly impacted our
49
+ understanding of biological processes and the underlying
50
+ mechanisms that control cellular functions [4], [5], [6], [7].
51
+ However, scRNA-seq requires dissociation of the tissue [8],
52
+ losing the information about the spatial context and physical
53
+ relationship between cells.
54
+ To overcome these limitations, there has been recent ad-
55
+ vancements in spatially resolved transcriptomics methods
56
+ [9]. Spatial transcriptomics methods measure gene expres-
57
+ sion in locations, hereafter referred to as spots, coupled with
58
+ their two- or three-dimensional position. These methods
59
+ vary in two axes: spatial resolution and gene throughput.
60
+ On one hand, technologies such as Multiplexed Error-
61
+ Robust Fluorescence In-Situ Hybridization (MERFISH) and
62
+ In-Situ Sequencing (ISS), achieve cellular or even subcellular
63
+ resolution [10] through cell segmentation [11], [12], but
64
+ are limited to measuring up to a couple of hundred pre-
65
+ selected genes. On the other hand, spatially resolved RNA
66
+ sequencing, such as Spatial Transcriptomics [13], commer-
67
+ cially available as 10x’s Visium, and Slide-seq [14], enable
68
+ high-throughput gene profiling by capturing mRNAs in-situ
69
+ at the cost of spots with the size of tens of cells. Thus, there
70
+ is a trade-off between the resolution and the richness of the
71
+ data.
72
+ A strategy to overcome these limitations is to combine
73
+ scRNA-seq data with high resolution spatial data to map
74
+ dissociated cells to spatial locations or more generally to
75
+ combine it with low-resolution spatial data to estimate the
76
+ composition of cell types and expression in each spot. We
77
+ refer to this task as decomposition. Alternatively, we can
78
+ attempt to enrich high-resolution data by predicting the
79
+ expression of unmeasured genes. As the latter requires
80
+ extrapolation to various degrees, machine learning and opti-
81
+ mization methods are generally suited to the decomposition
82
+ task. We will show that our tailored Optimal Transport
83
+ formulation is capable of tackling both decomposition and
84
+ enrichment tasks in high- and low-resolution spatial data.
85
+ Since the initial efforts to bridge this gap [15], there has
86
+ been an increased interest in improvement and new method
87
+ development (see Section 2). However, so far the methods
88
+ rely on the genes that are captured both by scRNA-seq and
89
+ spatial data without using the remaining genes captured in
90
+ each modality, do not use the spatial relationships between
91
+ spots in the spatial data, and usually come with high com-
92
+ putation cost for large instances. Neglecting the spatial con-
93
+ text is equivalent to assuming random placement of spots in
94
+ the space, which is in contrast to the established structure-
95
+ function relationship of tissues. Considering only a subset
96
+ of genes limits the applicability of these methods to cases
97
+ where the two data sets share several informative genes,
98
+ which might not be the case when different technologies are
99
+ used for profiling, or when few genes are measured in the
100
+ spatial data (e.g., in MERFISH).
101
+ We address these limitations by incorporating ideas
102
+ from the Optimal Transport (OT) theory and adapting
103
+ a Gromov-Wasserstein (GW) distance [16], [17] between
104
+ scRNA-seq and spatial data. We present DOT (Fast Cell
105
+ Type Decomposition by Optimal Transport), a fast and
106
+ scalable optimization framework to integrate scRNA-seq
107
+ and spatial data for cell type localization by solving a multi-
108
+ criteria probabilistic matching problem. We summarize the
109
+ main contributions of our work as follows:
110
+ (i) We propose a novel formulation for mapping cell types
111
+ from scRNA-seq to spots in spatial data by casting
112
+ this problem to a multi-objective probabilistic matching
113
+ problem. Our model is applicable to both high- and
114
+ low-resolution spatial data, in the form of inferring
115
+ membership probabilities for the former and relative
116
+ abundance of cell types in the latter, and is capable of
117
+ estimating the expression of genes that are missing in
118
+ the spatial data but present in the scRNA-seq data.
119
+ (ii) We adapt a generalization of OT with a Gromov-
120
+ Wasserstein objective to leverage spatial information
121
+ and to go beyond the use of genes common to the two
122
+ modalities.
123
+ (iii) We introduce a scale-invariant metric based on cosine-
124
+ similarity to account for differences in the scale of gene
125
+ expressions in different technologies.
126
+ (iv) We present a very fast implementation for our model
127
+ based on the Frank-Wolfe algorithm, ensuring scalabil-
128
+ ity and efficient solvability in large-scale datasets.
129
+ 2
130
+ RELATED WORK
131
+ Cell type decomposition. Several decomposition methods
132
+ (also known as deconvolution methods) have been pro-
133
+ posed in recent years. As cell type decomposition, partic-
134
+ ularly in the high-resolution spatial data, is inherently a
135
+ multiclass classification task, classification methods, such as
136
+ Random Forests [18], can be used for tackling this problem.
137
+
138
+ 2
139
+ However, because of the domain-specific properties of this
140
+ problem, including differences in gene coverage, resolution,
141
+ measurement sensitivity, and modality-specific characteris-
142
+ tics, tailored approaches are needed.
143
+ While most of these models are designed specifically for
144
+ low-resolution spatial data, some are also applicable to high-
145
+ resolution spatial data. [19] proposed SPOTlight, which es-
146
+ timates relative abundance of cell types in spots using non-
147
+ negative matrix factorization regression and non-negative
148
+ least squares. Robust cell type decomposition (RCTD) [20]
149
+ fits a statistical model by maximum-likelihood estimation,
150
+ assuming a Poisson distribution for the expression of each
151
+ gene at each spot. cell2location assumes a two-step Bayesian
152
+ model for inferring cell type composition of spots [21].
153
+ Tangram [22] proposes a deep learning model to find the
154
+ best placement of single cells in spots using a designed
155
+ loss function and can thus carry cell type information as a
156
+ byproduct. Seurat V3 workflow [23] is a widely-used toolkit
157
+ for analyzing scRNA-seq data, which offers an “anchoring”
158
+ technique based on mutual nearest neighbours classifier for
159
+ aligning two modalities in the PCA space.
160
+ Optimal Transport. Optimal Transport (OT) [24] is a way
161
+ to match, with minimal cost, data points/histograms be-
162
+ tween two domains embedded in possibly different spaces
163
+ using different variants of the Wasserstein distance [25], [26],
164
+ [27]. Over the past years, OT has been applied to various
165
+ machine learning problems in a wide variety of contexts,
166
+ including but not limited to generative modeling [28], [29],
167
+ Wasserstein auto-encoders [30], feature aggregation [31],
168
+ generalization error prediction [32], dataset denoising [33],
169
+ graph matching/classification [34], and domain adaptation
170
+ [35], [36], [37].
171
+ Recently, OT has been employed in biology, in particular
172
+ to analyse single-cell data. For example, [38] model cellu-
173
+ lar dynamics as an unbalanced dynamic transport, with
174
+ the goal of transporting entities from one cross sectional
175
+ measurement to the next. [39] use OT for studying devel-
176
+ opmental time courses and understanding the molecular
177
+ programs that guide differentiation during development
178
+ by incorporating temporal information and modeling cell
179
+ growth over time. Similarly, [40] employ graphical models
180
+ and OT to reconstruct developmental trajectories from time
181
+ courses with snapshots of cell states and lineages.
182
+ 3
183
+ MODEL
184
+ 3.1
185
+ Preliminaries
186
+ Given a reference scRNAseq data (R for short), which is
187
+ a collection of single cells each annotated with a cell type
188
+ c ∈ C, and a target spatially resolved transcriptomics data
189
+ (S for short), which consists of a set I of spots without cell
190
+ type annotations, the goal of decomposition is to determine
191
+ the composition of cell types in spots of S. Note that the
192
+ term “spot” can refer to one or a group of cells in certain
193
+ spatial contexts. We denote by ni the given size (number of
194
+ cells) of spot i ∈ I. When such information is not available,
195
+ or when spots are at single-cell resolution, we set ni = 1 to
196
+ compute the proportion or probability of cell types in each
197
+ spot rather than computing the number of cells of each type.
198
+ Let XR
199
+ c,g denote the mean expression of gene g ∈ GR in
200
+ cell type c ∈ C, where GR is the set of genes measured in R.
201
+ Each spot i ∈ I of S consists of spatial coordinates xi ∈ R2 or
202
+ R3 and gene expressions XS
203
+ i,g for g ∈ GS, where GS is the set
204
+ of genes that are measured in S. Further, if prior information
205
+ about the expected abundance of cell types in S is available
206
+ (e.g., estimated from a neighboring single-cell level tissue),
207
+ we denote the expected abundance of cell type c ∈ C in S
208
+ by rc. Note that r is scaled such that �
209
+ i∈I ni = �
210
+ c∈C rc.
211
+ For convenience, we also define G = GR ∩ GS as the set of
212
+ genes that are common between R and S. In the following,
213
+ unless otherwise mentioned, vectors of gene expressions are
214
+ assumed to be in the space of common genes.
215
+ To assess dissimilarity between expression vectors a and
216
+ b, we also introduce the distance function
217
+ dcos(a, b) :=
218
+
219
+ 1 − cos (a, b),
220
+ (1)
221
+ where cos (a, b) =
222
+ 1
223
+ ∥a∥∥b∥⟨a, b⟩. Note that dcos is convex for
224
+ positive vectors a and b, and is scale-invariant, in the sense
225
+ that it is indifferent to the magnitudes of the vectors. This
226
+ is by design, since we want to assess dissimilarity between
227
+ expression vectors regardless of the measurement sensitiv-
228
+ ities of different technologies. We also note the following
229
+ important property of dcos (proofs given in Appendix C).
230
+ Proposition 1. Unlike cosine dissimilarity (i.e., 1 − cos(·, ·)),
231
+ dcos is a metric distance function.
232
+ 3.2
233
+ High-Level Model
234
+ Our model relies on determining a “many-to-many” map-
235
+ ping Y of cell types in R to spots in S, with Yc,i denoting the
236
+ proportion (or probability when ni = 1) of spot i ∈ I that is
237
+ of cell type c ∈ C. A high-quality mapping should naturally
238
+ match the expression of common genes across R and S. We
239
+ ensure this by considering the following genomic criteria:
240
+ (i) Expression of genes in each spot of S should match
241
+ expression of genes mapped to that spot via Y .
242
+ (ii) Centroid of each cell type in R should match the cen-
243
+ troid of that cell type in S as determined via Y .
244
+ (iii) Distribution of expression of each gene across spots of S
245
+ should be similar to the distribution of that gene across
246
+ spots as mapped from R to S via Y .
247
+ Additionally, we may incorporate prior knowledge in the
248
+ form of spatial location of spots as well as expected abun-
249
+ dance of cell types using the following auxiliary criteria:
250
+ (iv) Spots that are both adjacent in space and have similar
251
+ expression profiles should attain similar cell type pro-
252
+ files.
253
+ (v) If prior information about abundance of cell types in S
254
+ is available (e.g., when R and S correspond to adjacent
255
+ tissues), abundance of cell types mapped to S should
256
+ match with the given abundances.
257
+ The genomic objectives naturally take precedence over
258
+ the auxiliary objectives, especially when a large number
259
+ of genes are common between R and S, but the auxiliary
260
+ objectives are useful when the common genes are limited.
261
+ Note that objective (v) is meant to provide additional control
262
+ over the abundance of cell types in the spatial data, but can
263
+ be ignored if prior information about the abundance of cell
264
+ types is not available. We elaborate on these objectives in
265
+ the following.
266
+
267
+ 3
268
+ 3.3
269
+ Formulation
270
+ Objective (i) ensures that the vector of gene expressions in
271
+ spot i ∈ I (i.e., XS
272
+ i,:) is most similar to the vector of gene ex-
273
+ pressions mapped to spot i through Y (i.e., �
274
+ c∈C Yc,iXR
275
+ c,:).
276
+ To achieve this objective, we minimize dissimilarity between
277
+ these vectors by using
278
+ di(Y ) := dcos(XS
279
+ i,:,
280
+
281
+ c∈C Yc,iXR
282
+ c,:).
283
+ (2)
284
+ Objective (ii) is in nature similar to objective (i). Here,
285
+ we would like to minimize dissimilarity between centroid
286
+ of cell type c ∈ C in R (i.e., XR
287
+ c,:) and centroid of cell type
288
+ c in S as determined via Y (i.e.,
289
+ 1
290
+ ρc
291
+
292
+ i∈I Yc,iXS
293
+ i,:). Given
294
+ the scale-invariance property of dcos, we can drop 1/ρc and
295
+ measure the dissimilarity between these centroids using the
296
+ following distance function
297
+ dc(Y ) := dcos(XR
298
+ c,:, ρ−1
299
+ c
300
+
301
+ i∈I Yc,iXS
302
+ i,:)
303
+ = dcos(XR
304
+ c,:,
305
+
306
+ i∈I Yc,iXS
307
+ i,:).
308
+ (3)
309
+ Our goal in objective (iii) is to match distribution of
310
+ expression of gene g ∈ G in S (i.e., XS
311
+ :,g) with the one
312
+ mapped to S through Y (i.e., �
313
+ c∈C Yc,:XR
314
+ c,g). Hence, we
315
+ minimize dissimilarity between these vectors by using
316
+ dg(Y ) := dcos(XS
317
+ :,g,
318
+
319
+ c∈C Yc,:XR
320
+ c,g).
321
+ (4)
322
+ To achieve objective (iv), we borrow ideas from Optimal
323
+ Transport theory and the Gromov-Wasserstein metric. Let
324
+ M R and M S be metrics in R and S, respectively, in that
325
+ M R
326
+ c,k defines distance between cell types c and k, while
327
+ M S
328
+ i,j defines distance between spots i and j. Note that these
329
+ distances are defined for each dataset independently; hence,
330
+ we can use the entire features in each set: the entire genome
331
+ in R, including the genes not measured in S, and the un-
332
+ common/common genes as well as the spatial coordinates
333
+ in S (see Section 4 for how these matrices are computed).
334
+ The 2-Gromov-Wasserstein distance [16] between R and S
335
+ for given mapping Y , denoted dGW(Y ), is defined in (5).
336
+ Minimizing dGW(Y ) ensures that similar pair of spots in
337
+ S (with respect to their locations and expressions) are not
338
+ assigned to dissimilar pair of cell types in R, and vice versa.
339
+ dGW(Y ) :=
340
+
341
+
342
+
343
+
344
+
345
+ i∈I
346
+
347
+ j∈I
348
+
349
+ c∈C
350
+
351
+ k∈C
352
+
353
+ M R
354
+ c,k − M S
355
+ i,j
356
+ �2
357
+ Yc,iYk,j
358
+ (5)
359
+ Let ρc := �
360
+ i∈I Yc,i denote the abundance of cell type c in
361
+ S as determined by mapping Y . As noted by [41], we may
362
+ simplify (5) as stated in Proposition 2 below.
363
+ Proposition 2. Define parameter
364
+ ¯mi
365
+ :=
366
+
367
+ j∈I(M S
368
+ i,j)2nj
369
+ and auxiliary variables ¯mc := �
370
+ k∈C(M R
371
+ c,k)2ρk and Z :=
372
+ M RY M S. GW distance function in (5) is equivalent to
373
+ dGW(Y ) =
374
+ ��
375
+ c∈C
376
+
377
+ i∈I Yc,i( ¯mc + ¯mi − 2Zc,i).
378
+ (6)
379
+ Objective (v) provides optional control over abundance
380
+ of cell types mapped to S, when prior information about
381
+ expected abundance of cell types is available. We employ
382
+ Jensen-Shannon divergence between ρ and r to measure
383
+ their dissimilarity
384
+ dA(Y ) := 1
385
+ 2DKL
386
+
387
+ ρ
388
+ ����
389
+ ρ + r
390
+ 2
391
+
392
+ + 1
393
+ 2DKL
394
+
395
+ r
396
+ ����
397
+ ρ + r
398
+ 2
399
+
400
+ ,
401
+ (7)
402
+ where DKL (p∥q) = �
403
+ j pj log(pj/qj) denotes the Kull-
404
+ back–Leibler divergence [42]. In addition, to avoid overfit-
405
+ ting, we may require that all cell types are at least minimally
406
+ represented in the mapping. To achieve this goal, we define
407
+ dR(Y ) := −
408
+
409
+ c∈C log(ρc) = DKL (¯r∥ρ) ,
410
+ (8)
411
+ where ¯rc = 1 for all c ∈ C. Equation (8) is in fact a
412
+ Nash fairness [43] objective and its logarithmic form ensures
413
+ presence of all cell types (i.e., ρc > 0).
414
+ We treat these criteria as objectives in a multi-objective
415
+ optimization problem and to achieve them simultaneously
416
+ (i.e., produce a Pareto-optimal solution), we optimize Y
417
+ against a linear combination of these objectives as formu-
418
+ lated below, hereafter referred to DOT model:
419
+ min
420
+
421
+ i∈I
422
+ nidi(Y ) + λC
423
+
424
+ c∈C
425
+ ρcdc(Y ) + λG
426
+
427
+ g∈G
428
+ dg(Y )
429
+ + λGWdGW(Y ) + λAdA(Y ) + λRdR(Y )
430
+ (9)
431
+ w.r.t.
432
+ Y ∈ R|C|×|I|
433
+ +
434
+ , ρ ∈ R|C|
435
+ (10)
436
+ s.t.
437
+
438
+ c∈C Yc,i = ni
439
+ ∀i ∈ I,
440
+ (11)
441
+
442
+ i∈I Yc,i = ρc
443
+ ∀c ∈ C,
444
+ (12)
445
+ where λC, λG, λGW, λA and λR are the user-defined penalty
446
+ weights, and coefficients ni and ρc in (9) balance the scales
447
+ of deviations in spots and cell types, respectively.
448
+ Remark 1. Unlike the conventional OT formulations, DOT does
449
+ not require the cell type abundances in S (i.e., ρ) to be strictly
450
+ equal to their expected abundances (i.e., r), and rather penalizes
451
+ their deviation in the objective function.
452
+ 4
453
+ ALGORITHM
454
+ We propose a solution to the DOT model based on the
455
+ Frank-Wolfe (FW) algorithm [44], [45], which is a first-order
456
+ method for solving non-linear optimization problems of the
457
+ form minx∈X f(x), where f : Rn → R is a (potentially
458
+ non-convex) continuously differentiable function over the
459
+ convex and compact set X. FW operates by replacing the
460
+ non-linear objective function f with its linear approximation
461
+ ˜f(x) = f(x(0))+∇xf(x(0))⊤(x−x(0)) at a trial point x(0) ∈
462
+ X, and solving a simpler problem ˆx = arg minx∈X ˜f(x) to
463
+ produce an “atom” solution ˆx. The algorithm then iterates
464
+ by taking a convex combination of x(0) and ˆx to produce
465
+ the next trial point x(1), which remains feasible thanks to
466
+ convexity of X. The FW algorithm is described in Algorithm
467
+ 1, in which f(Y ) is the objective function in (9).
468
+ 4.1
469
+ Distance Matrices
470
+ Distance matrices M R and M S incorporate the features that
471
+ are not shared across R and S. To compute M R
472
+ c,k, we calculate
473
+ the dissimilarity between the centroids of cell types c and k
474
+ considering all genes in R (i.e., XR
475
+ c,: = (XR
476
+ c,g)g∈GR for each
477
+ c ∈ C)
478
+ M R
479
+ c,k = dcos(XR
480
+ c,:, XR
481
+ k,:).
482
+
483
+ 4
484
+ Algorithm 1: Frank-Wolfe algorithm for DOT
485
+ 1 Initialization: Setup distance matrices M R and M S.
486
+ 2 Set t = 0 and find an initial map Y (0) (see Appendix
487
+ A.1).
488
+ 3 while not converged do
489
+ 4
490
+ Compute gradient ∆(t) = ∇Y f(Y (t)) (see
491
+ Appendix A.2)
492
+ 5
493
+ for each spot i ∈ I do
494
+ 6
495
+ Find current best cell type
496
+ ˆc = arg minc∈C{∆(t)
497
+ c,i}
498
+ 7
499
+ Compute atom solution ˆY (t)
500
+ ˆc,i = ni and
501
+ ˆY (t)
502
+ c,i = 0 for c ̸= ˆc
503
+ 8
504
+ Update Y (t+1) = Y (t) +
505
+ 2
506
+ 2+t( ˆY (t) − Y (t))
507
+ 9
508
+ t ← t + 1
509
+ Remark 2. M R is a metric in the domain of R since dcos is a
510
+ metric.
511
+ The matrix M S captures the dissimilarity of S spots
512
+ in terms of their locations and expressions. Let D1
513
+ i,j and
514
+ D2
515
+ i,j represent distance of spots (i, j) with respect to their
516
+ locations and expressions, respectively, as defined below:
517
+ D1
518
+ i,j = 1condition
519
+ �∥xi − xj∥ > ¯d
520
+
521
+ D2
522
+ i,j = dcos
523
+
524
+ XS
525
+ i,:, XS
526
+ j,:
527
+
528
+ ,
529
+ where ¯d is a given distance threshold, and D2
530
+ i,j is computed
531
+ with respect to all genes in S (i.e., GS). Finally, we take M S
532
+ to be the average of D1 and D2:
533
+ M S = (D1 + D2)/2
534
+ (13)
535
+ Remark 3. M S is a metric in the domain of S, since both D1
536
+ and D2 are metrics.
537
+ To see why this definition of M S makes sense, we first
538
+ note that cell types, by definition, are distinct subpopula-
539
+ tions in the scRNA-seq data. Therefore, it is reasonable to
540
+ assume that their centroids are dissimilar (i.e., Mc,k ≈ 1 for
541
+ c ̸= k). This yields the following result.
542
+ Proposition 3. Let α = �
543
+ i∈I
544
+
545
+ j∈I(1−M S
546
+ i,j)2ninj. Assuming
547
+ that cell types are relatively distinct, so that M R
548
+ c,k ≈ 1, for c, k ∈
549
+ C, c ̸= k, then
550
+ dGW(Y ) ≈
551
+
552
+ α +
553
+
554
+ i∈I
555
+
556
+ j∈I
557
+
558
+ 2M S
559
+ i,j − 1
560
+
561
+ ⟨Y:,i, Y:,j⟩
562
+ Remark 4. Observe that ⟨Y:,i, Y:,j⟩ measures similarity between
563
+ cell type profiles of spots i and j. Therefore, dGW (i) rewards
564
+ ⟨Y:,i, Y:,j⟩ when 2M S
565
+ i,j −1 ≈ +1 (i.e., encourages adjacent spots
566
+ to attain similar cell types if their expressions are similar) and
567
+ (ii) penalizes ⟨Y:,i, Y:,j⟩ when 2M S
568
+ i,j − 1 ≈ −1 (i.e., prevents
569
+ distant spots from attaining similar cell types if their expressions
570
+ are different). Moreover, (iii) dGW is indifferent to pair (i, j)
571
+ when 2M S
572
+ i,j − 1 ≈ 0 (i.e., if i and j are distant or different
573
+ in expressions, but not both).
574
+ 4.2
575
+ Producing an Atom Solution
576
+ While the DOT model is not separable, its linear approxi-
577
+ mation can be decomposed to |I| independent subproblems,
578
+ one for each spot i ∈ I. This is because, unlike conventional
579
+ OT formulations, we do not require the distribution of cell
580
+ types (i.e., ρ) to be equal to their expected distribution
581
+ (i.e., r), but have penalized their deviations in the objective
582
+ function using dA (7). The subproblem i then becomes
583
+ min
584
+
585
+ ⟨Y:,i, ∆(t)
586
+ :,i ⟩ : Y:,i ∈ R|C|
587
+ + ,
588
+
589
+ c∈C Yc,i = ni
590
+
591
+ which, in turn, is a simple sorting problem. This property
592
+ of Algorithm 1 enables it to efficiently tackle problems with
593
+ large number of spots in the spatial data.
594
+ 4.3
595
+ Convergence
596
+ Under suitable conditions, FW converges to an optimal so-
597
+ lution in linear rate when optimizing a convex function over
598
+ a polytope domain [46]. Given the non-convex objective
599
+ function in (9), Algorithm 1 instead obtains a first-order sta-
600
+ tionary point at a rate of O(1/
601
+
602
+ t) [47], [48]. We numerically
603
+ assess the convergence of Algorithm 1 at iteration t using
604
+ the so-called “FW-gap” [45]
605
+ δ(t) :=
606
+
607
+ i∈I
608
+
609
+ c∈C(Y (t)
610
+ c,i − ˆY (t)
611
+ c,i )∆(t)
612
+ c,i.
613
+ We also implemented acceleration techniques such as av-
614
+ eraging gradients [49] and away steps [46], [50], but did
615
+ not observe practical gains compared to the vanilla FW.
616
+ Moreover, while it is common practice to use entropic or
617
+ other strongly-convex regularizations in OT to facilitate
618
+ producing the atom solutions, we did not incorporate such
619
+ regularizations because an atom solution can be produced
620
+ easily in our formulation.
621
+ 5
622
+ PRACTICAL ENHANCEMENTS
623
+ In this section, we introduce practical enhancements to
624
+ incorporate the domain-specific properties of the problems.
625
+ 5.1
626
+ Cell Heterogeneity
627
+ While cell types are distinct subpopulations of cells, signif-
628
+ icant variations may naturally exist within each cell type.
629
+ This means, a single vector XR
630
+ c,: may not properly represent
631
+ the distribution of cells within this cell type. Consequently,
632
+ mapping cell types solely based on the centroids of cell types
633
+ can be error-prone. To capture the intrinsic heterogeneity
634
+ of cell types, we cluster each cell type into predefined κ
635
+ smaller groups using an unsupervised learning method,
636
+ and produce a total of κ|C| centroids to replace the original
637
+ |C| centroids. With this definition of centroids, we treat all
638
+ terms except dA and dR as before. For dA and dR, since
639
+ prior information about cell types (and not sub-clusters)
640
+ are available, we keep ρ to represent the abundance of
641
+ original cell types by setting ρc = �
642
+ k∈Kc
643
+
644
+ i∈I Yk,i, where
645
+ Kc denotes the set of sub-clusters of cell type c. Finally, once
646
+ Y is obtained, �
647
+ k∈Kc Yk,i determines probability that spot
648
+ i is of cell type c.
649
+
650
+ 5
651
+ 5.2
652
+ Sparse Mapping
653
+ As previously discussed, spatial data are either high-
654
+ resolution (single-cell level) or low-resolution (multicell
655
+ level). In the case of high-resolution spatial data, given that
656
+ each spot corresponds to an individual cell (i.e., ni = 1),
657
+ it is desirable to produce sparse allocations, in the sense
658
+ that we prefer Yc,i close to 0 or 1. In general, assuming that
659
+ Yc,i ∈ {0, ni}, then (11) implies that Yc,i = ni for exactly one
660
+ cell type c and is zero for all other cell types. Consequently,
661
+ for binary Y we obtain
662
+ dcos
663
+
664
+ XS
665
+ i,:,
666
+
667
+ c∈C
668
+ Yc,iXR
669
+ c,:
670
+
671
+ = 1
672
+ ni
673
+
674
+ c∈C
675
+ Yc,idcos
676
+
677
+ XS
678
+ i,:, XR
679
+ c,:
680
+
681
+ ,
682
+ which is linear in Y . As linear objectives promote sparse (or
683
+ corner point) solutions, we may control the level of sparsity
684
+ of the mapping by introducing a parameter θ ∈ [0, 1] and
685
+ redefining di(Y ) as
686
+ di(Y ) =(1 − θ)dcos
687
+
688
+ XS
689
+ i,:,
690
+
691
+ c∈C Yc,iXR
692
+ c,:
693
+
694
+ + θ
695
+ ni
696
+
697
+ c∈C Yc,idcos
698
+
699
+ XS
700
+ i,:XR
701
+ c,:
702
+
703
+ .
704
+ (14)
705
+ Note that a higher value for θ yields a sparser solution.
706
+ Indeed, with θ = 1 and zero weights assigned to other
707
+ objectives, the optimal mapping will be completely binary.
708
+ 6
709
+ RESULTS
710
+ We compared the performance of our method, abbreviated
711
+ DOT, against five state of the art models in the litera-
712
+ ture: SPOTlight [19], RCTD [20], cell2location [21],
713
+ Tangram [22], and Seurat [23]. We designed three exper-
714
+ iments to evaluate the performance of DOT from different
715
+ perspectives. Briefly, in Section 6.2, we evaluate the per-
716
+ formance of models in predicting the cell type of single-
717
+ cell level spots in high-resolution spatial data, followed by
718
+ cell type decomposition in multicell spots in low-resolution
719
+ spatial data in Section 6.3. Finally, in Section 6.4, we evaluate
720
+ capability of DOT in estimating the expression of genes that
721
+ are missing in the spatial data but present in the reference
722
+ single-cell data.
723
+ We performed experiments on data coming from (i) the
724
+ primary motor cortex of the mouse brain, (ii) the primary
725
+ somatosensory cortex of the mouse brain, (iii) the develop-
726
+ ing human heart, and (iv) the human breast cancer, specifics
727
+ of which are presented in Appendix B.
728
+ 6.1
729
+ Experimental Setup
730
+ 6.1.1
731
+ Parameter Setting
732
+ For DOT, we set penalty weights λC
733
+ = 1 and λG
734
+ =
735
+ |n|/|G| to balance the scales of different objectives, where
736
+ |n| := �
737
+ i∈I ni. This is because both �
738
+ i∈I nidi(Y ) and
739
+
740
+ c∈C rcdc(Y ) are in the range of 0 and |n|, while 0 ≤
741
+
742
+ g∈G dg(Y ) ≤ |G|. For the GW objective, it is not difficult
743
+ to verify that 0 ≤ dGW(Y ) ≤ |n|. However, although
744
+ spatial information contributes to the accuracy of cell type
745
+ mapping, meaning that λGW > 0 is desirable, a large value
746
+ for λGW may dominate the genomic objectives di(Y ), dc(Y )
747
+ and dg(Y ), thus reduce accuracy. A middle-ground is to
748
+ set a small positive value for λGW. In our computations, we
749
+ found that λGW = 0.1 works best in most cases. Whenever
750
+ prior information about expected abundance of cell types
751
+ is available, we set λA = 1 and λR = 1. We computed
752
+ ρc, the expected abundance of cell type c, based on the
753
+ observed fraction of cell type c in the reference scRNA-
754
+ seq data multiplied by |n|. We set the sparsity parameter
755
+ θ = 1 for high resolution spatial data, and set θ = 0 for
756
+ low resolution spatial data. To capture heterogeneity of cell
757
+ types, we clustered each cell type into κ = 10 clusters.
758
+ The distance threshold ¯d is computed as follows. For each
759
+ spot we computed its Euclidean distance to 8 closest spots
760
+ in space1, yielding 8|I| values. We then took ¯d as the 99th
761
+ percentile of these values.
762
+ For RCTD, SPOTlight, Tangram, and C2L we used the
763
+ default parameters suggested by the authors with the fol-
764
+ lowing exceptions. For RCTD we set the parameter UMI_min
765
+ to 50 to prevent the model from removing too many cells
766
+ from the data. Given the large number of cell types in
767
+ the mouse MOp datasets, for SPOTlight we reduced the
768
+ number of cells per cell type to 100 to enhance the computa-
769
+ tion time. Similarly, as Tangram was not able to produce
770
+ results in a reasonable time for the MOp instances, we
771
+ randomly selected 500 cells per cell type to reduce the com-
772
+ putation time. For C2L, we used 20000 epochs to balance
773
+ computation performance and accuracy. For Seurat and
774
+ SingleR, we followed the package documentations, with
775
+ functions used with default parameters. For RF we used
776
+ the implementation provided in the R package ranger [51]
777
+ with all parameters set at their default values.
778
+ 6.1.2
779
+ Performance Metrics
780
+ We compared the predictive performance of DOT against
781
+ the other methods using three metrics. Accuracy in the
782
+ context of high-resolution spatial data (i.e., when each spot
783
+ corresponds to an individual cell) is the proportion of
784
+ correctly classified spots (i.e., sum of the main diagonal in
785
+ the confusion matrix) over all spots. To assess the accuracy
786
+ of membership probabilities produced by each model, we
787
+ compared the models using Brier Score, also known as mean
788
+ squared error:
789
+ Brier Score = |I|−1 �
790
+ i∈I
791
+
792
+ c∈C(Yc,i − Pc,i)2,
793
+ where Pc,i = 1 if spot i is of cell type c and Pc,i = 0
794
+ otherwise, and Yc,i is the predicted probability that spot i is
795
+ of cell type c. As Brier Score is a strictly proper scoring rule
796
+ for measuring the accuracy of probabilistic predictions [52],
797
+ a model with lower Brier Score produces better-calibrated
798
+ probabilities.
799
+ Besides the cell type that each spot is annotated with, we
800
+ can produce a cell type probability distribution for each spot
801
+ by considering the cell type of its neighboring spots, using
802
+ a Gaussian smoothing kernel of the form
803
+ ˜Pc,i =(
804
+
805
+ j∈I Ki,j)−1 �
806
+ j∈I Ki,jPc,j,
807
+ where Ki,j = exp
808
+ �−∥xi − xj∥2/2σ2�
809
+ and σ is the kernel
810
+ width parameter which we set to 0.5 ¯d. Note that as spot j
811
+ becomes closer to spot i, its label contributes more to the
812
+ 1. We used 8 closest neighbors to mimic the number of adjacent tiles
813
+ in a 2D regular grid.
814
+
815
+ 6
816
+ probability distribution at spot i. Using these probabilities,
817
+ we also introduce the Spatial Jensen-Shannon (SJS) divergence
818
+ to compare the probability distributions assigned to spots
819
+ (i.e., Y ) with the smoothed probabilities (i.e., ˜P )
820
+ SJS = |I|−1 �
821
+ i∈I JS(Y:,i, ˜P:,i),
822
+ where JS(Y:,i, ˜P:,i) is the Jensen-Shannon divergence be-
823
+ tween probability distributions Y:,i and ˜P:,i with base 2
824
+ logarithm [42], also defined in (7).
825
+ 6.2
826
+ Experiment
827
+ 1:
828
+ Cell
829
+ Type
830
+ Prediction
831
+ in
832
+ High-
833
+ Resolution Spatial Data
834
+ Our goal with our first set of experiments is to evaluate
835
+ the performance of different models in determining the
836
+ probability distribution of cell types at each spot. Since the
837
+ identity of the cell type represented by the spot is known in
838
+ our high resolution spatial data, we can use this information
839
+ as ground-truth when evaluating the performance of the
840
+ different models. In addition to deconvolution methods,
841
+ we used SingleR [53], a method to define cell type from
842
+ single-cell resolution data. Given the multiclass classifica-
843
+ tion nature of this task, we also used RF [18] as a multiclass
844
+ classifier baseline.
845
+ We use the high-resolution MERFISH spatial data of the
846
+ primary motor cortex region (MOp) of the mouse brain [54],
847
+ which contains the spatial information of 280,186 cells across
848
+ 75 samples (Appendix B.1). With each sample, we created a
849
+ reference scRNA-seq data using all the 280,186 cells, except
850
+ the cells contained in the sample, and the 254 genes to
851
+ estimate the centroids of the 99 reference cell types. We
852
+ further created 15 high resolution spatial datasets for each
853
+ sample (i.e., a total of 1125 spatial datasets) as follows. To
854
+ simulate the effect of number of shared features between the
855
+ spatial and scRNA-seq data, we assumed that only a subset
856
+ of the 254 genes are available in the spatial data by selecting
857
+ the first |G| genes, where |G| ∈ {50, 75, 100, 125, 150} (i.e.,
858
+ 20%, 30%, 40%, 50%, 60% of genes). Moreover, to simulate
859
+ the effect of differences in measurement sensitivities of
860
+ different technologies, we introduced random noise in the
861
+ spatial data by multiplying the expression of gene g in spot
862
+ i by 1+βi,g, where βi,g ∼ U(−ϕ, ϕ) with ϕ ∈ {0, 0.25, 0.5}.
863
+ We compare the predictive performance of DOT to
864
+ Seurat, RCTD, Tangram, SingleR and RF in Fig. 1. We
865
+ removed SPOTlight and C2L from these plots due to their
866
+ clear under-performance in the high resolution spatial data.
867
+ We observe that not only does DOT dominate the three alter-
868
+ natives in assigning correct cell types to the spots (Fig. 1a),
869
+ but also produces well-calibrated probabilities (Fig. 1b) and
870
+ better captures the relationships between cell types in space
871
+ (Fig. 1c), owing to its capacity to incorporate the spatial
872
+ information in dGW through the distance matrices. We also
873
+ observe that even with very few genes in common between
874
+ the spatial data and the reference scRNA-seq data (e.g.,
875
+ |G| ≤ 75), DOT is able to reliably determine the cell type
876
+ of spots in the space with high accuracy. In contrast, RCTD
877
+ fails to produce results due to lack of shared information,
878
+ and Seurat and Tangram produce results with low accu-
879
+ racy. Additionally, we observe that DOT is more immune to
880
+ fluctuations in expressions in the spatial data, implying the
881
+ effectiveness of our dcos distance function in accounting for
882
+ ϕ = 0
883
+ ϕ = 0.25
884
+ ϕ = 0.5
885
+ 50
886
+ 75
887
+ 100
888
+ 125
889
+ 150
890
+ 50
891
+ 75
892
+ 100
893
+ 125
894
+ 150
895
+ 50
896
+ 75
897
+ 100
898
+ 125
899
+ 150
900
+ 0.3
901
+ 0.4
902
+ 0.5
903
+ 0.6
904
+ 0.7
905
+ 0.8
906
+ Accuracy
907
+ (a)
908
+ ϕ = 0
909
+ ϕ = 0.25
910
+ ϕ = 0.5
911
+ 50
912
+ 75
913
+ 100
914
+ 125
915
+ 150
916
+ 50
917
+ 75
918
+ 100
919
+ 125
920
+ 150
921
+ 50
922
+ 75
923
+ 100
924
+ 125
925
+ 150
926
+ 0.4
927
+ 0.6
928
+ 0.8
929
+ Brier Score
930
+ (b)
931
+ ϕ = 0
932
+ ϕ = 0.25
933
+ ϕ = 0.5
934
+ 50
935
+ 75
936
+ 100
937
+ 125
938
+ 150
939
+ 50
940
+ 75
941
+ 100
942
+ 125
943
+ 150
944
+ 50
945
+ 75
946
+ 100
947
+ 125
948
+ 150
949
+ 0.5
950
+ 0.6
951
+ 0.7
952
+ SJS
953
+ (c)
954
+ DOT
955
+ Seurat
956
+ RCTD
957
+ Tangram
958
+ RF
959
+ SingleR
960
+ Fig. 1: Predictive performance of the algorithms in the high-
961
+ resolution spatial data across different number of genes
962
+ in the spatial data (x-axis) and different noise factors (ϕ).
963
+ Points represent the median of 75 values, and the shaded ar-
964
+ eas correspond to their interquartile interval. Note: SingeR
965
+ does not produce probabilities and is compared based on
966
+ Accuracy only.
967
+ differences in measurement scales of different technologies.
968
+ In terms of algorithmic performance (Table 1), DOT takes
969
+ on average 441 seconds to solve each instance, which is an
970
+ order of magnitude faster than RCTD, Tangram, and RF, and
971
+ is comparable to Seurat and SingleR.
972
+ 6.3
973
+ Experiment 2: Cell Type Decomposition in Low-
974
+ Resolution Spatial Data
975
+ We evaluated the performance of models on low-resolution
976
+ spatial data. For these experiments, since there is no ground
977
+ truth for real multicell spatial data such as Visium and Slide-
978
+ seq, we resort to producing ground truth low-resolution
979
+ spatial data by pooling the adjacent cells in the high res-
980
+ olution spatial data of primary motor cortex of the mouse
981
+ brain (MOp), primary somatosensory cortex of the mouse
982
+ brain (SSp), and the developing human heart. Fig. A1 in
983
+ Appendix B.1 illustrates a sample low-resolution spatial
984
+ data obtained from a MERFISH MOp tissue. Unlike the
985
+ high-resolution spatial data, the ground truth Pc,i now
986
+ corresponds to relative abundance of cell type c in spot
987
+ i. We can therefore assess the performance of each model
988
+ by comparing the probability distributions P:,i and the
989
+ estimated probabilities (i.e., Y:,i) using Brier Score or Jensen-
990
+ Shannon metrics.
991
+ 6.3.1
992
+ Experiments on the Mouse MOp
993
+ To produce ground truth for MOp, using the common
994
+ subclass annotations between MERFISH MOp and scRNA-
995
+ seq MOp [55] (see Appendix B.1), for each of the 75 MER-
996
+ FISH MOp samples, we randomly assigned each cell in the
997
+ MERFISH MOp data to a cell in the scRNA-seq MOp data
998
+ of the same subclass. Next, we lowered the resolution of
999
+ spatial data by splitting each sample into regular grids of
1000
+
1001
+ 7
1002
+ Experiment
1003
+ Resolution
1004
+ Instances
1005
+ DOT
1006
+ Seurat
1007
+ RCTD
1008
+ Tangram
1009
+ SPOTlight
1010
+ C2L
1011
+ SingleR
1012
+ RF
1013
+ MOp
1014
+ High
1015
+ 1125
1016
+ 441
1017
+ 380
1018
+ 4748
1019
+ 10141
1020
+ 7884
1021
+ 3310
1022
+ 303
1023
+ 7427
1024
+ MOp
1025
+ Low
1026
+ 75
1027
+ 457
1028
+ 1086
1029
+ 4705
1030
+ 8250
1031
+ 52825
1032
+ 6119
1033
+
1034
+
1035
+ SSp
1036
+ Low
1037
+ 1
1038
+ 4
1039
+ 21
1040
+ 117
1041
+ 248
1042
+ 705
1043
+ 364
1044
+
1045
+
1046
+ Heart
1047
+ Low
1048
+ 1
1049
+ 8
1050
+ 11
1051
+ 185
1052
+ 88
1053
+ 316
1054
+ 398
1055
+
1056
+
1057
+ TABLE 1: Average computation times (in seconds) of different models across different experiments.
1058
+ 0.1
1059
+ 0.2
1060
+ 0.3
1061
+ 0.4
1062
+ 0.2
1063
+ 0.4
1064
+ 0.6
1065
+ 0.8
1066
+ Jensen−Shannon
1067
+ Brier Score
1068
+ DOT
1069
+ Seurat
1070
+ RCTD
1071
+ SPOTlight
1072
+ C2L
1073
+ Tangram
1074
+ Fig. 2: Predictive performance of the algorithms in the low-
1075
+ resolution spatial data across 75 samples of MOp. Each point
1076
+ in the scatter plots denoting the average performance across
1077
+ all spots in the sample.
1078
+ length 100µm to mimic the size and inter-distance of spots
1079
+ in low-resolution spatial transcriptomics, such as Visium.
1080
+ Finally, we aggregated the expression profiles of cells within
1081
+ each tile as the expression profile of the respective spots.
1082
+ Fig. 2 compares the performance of DOT against RCTD,
1083
+ SPOTlight, cell2location (C2L), Tangram and Seurat in
1084
+ determining the cell type composition of the multicell spots.
1085
+ We observe that DOT outperforms other models with respect
1086
+ to both metrics. As presented in Table 1, DOT took on
1087
+ average 457 seconds to solve an instance, which proved to
1088
+ be more than twice faster than Seurat, and orders of mag-
1089
+ nitude faster than RCTD, SPOTlight, C2L and Tangram,
1090
+ further highlighting the superiority of DOT in terms of both
1091
+ accuracy and computational efficiency.
1092
+ 6.3.2
1093
+ Experiments on the Mouse SSp and the Developing
1094
+ Human Heart
1095
+ We also carried out experiments on data from the SSp
1096
+ region of mouse brain as well as the developing human
1097
+ heart to evaluate the performance of models on tissues of
1098
+ different structures. We employed single-cell level spatial
1099
+ data coming from osmFISH technology [56] to produce
1100
+ multicell data for SSp (Appendix B.2). For the developing
1101
+ human heart, we used subcellular spatial data generated
1102
+ by the ISS platform [57] (Appendix B.3). We tested the
1103
+ performance of the six deconvolution methods on these
1104
+ two samples, results of which are illustrated in Fig. 3. Each
1105
+ subplot shows the distribution of prediction error based on
1106
+ the Jensen-Shannon divergence at each spot in the spatial
1107
+ data, with the average value over all spots given on top
1108
+ of each plot. DOT outperforms other models in the human
1109
+ heart sample and is among the best-performing models in
1110
+ the mouse SSp sample. Moreover, performance of DOT is not
1111
+ sensitive to different regions/cell type of the tissue (compare
1112
+ to Tangram and Seurat in SSp and RCTD in human heart).
1113
+ These results further highlight the competitive performance
1114
+ of DOT and its robustness in identifying the cell type com-
1115
+ position of spots across different tissues.
1116
+ 6.4
1117
+ Experiment 3: Gene Expression Estimation in High-
1118
+ Resolution Spatial Data
1119
+ Recall that, in high-resolution spatial data, only a few genes
1120
+ are measured. Hence, as a result of mapping scRNA-seq to
1121
+ spatial data, we can estimate the expression of genes that
1122
+ were not measured in the spatial data. Therefore, in our
1123
+ final set of experiments, we evaluate the performance of
1124
+ DOT in estimating the expression of missing genes in the
1125
+ high resolution spatial data. For this experiment, we use
1126
+ the spatial data from breast cancer tumor microenvironment
1127
+ produced by the 10X Xenium In Situ technology [58]. The
1128
+ dataset is unique in that it contains both high-resolution
1129
+ (Xenium) and low-resolution (Visium) spatial data of serial
1130
+ sections from the same tissue. The high-resolution data con-
1131
+ tains spatial information of 313 genes across 167,782 single-
1132
+ cell spots, while the low-resolution data contains the spatial
1133
+ information of around 18,000 genes across 4,992 multicell
1134
+ spots. The dataset also contains the dissociated scRNA-seq
1135
+ data coming from a tissue adjacent to the tissues used for
1136
+ high- and low-resolution spatial data, which contains the
1137
+ measurements of 18,000 genes across 30,365 cells. Therefore,
1138
+ we can use Visium as a proxy for ground truth to validate
1139
+ the distribution of genes that are not measured in Xenium,
1140
+ and are mapped by DOT from scRNA-seq.
1141
+ For this experiment, we matched the common capture
1142
+ areas of high- and low-resolution spatial data using the
1143
+ Hematoxylin-Eosin (H&E) images accompanying these spa-
1144
+ tial data (Fig. A2), which corresponded to 134,664 cells in
1145
+ the high-resolution and 3,928 spots in the low-resolution
1146
+ spatial data. Given that the task here is to complete the
1147
+ expression of missing genes in the high-resolution spatial
1148
+ data, we first performed community detection on the graph
1149
+ of shared nearest neighbors of cells in scRNA-seq using the
1150
+ Leiden implementation in [23], which is common practice
1151
+ in single-cell analysis and is used as a first step towards
1152
+ cell type identification. This resulted in 218 clusters, and
1153
+ we then mapped the centroids of these clusters to the high-
1154
+ resolution spatial data. (We also tried as high as 1000 fine-
1155
+ grained clusters but got essentially the same results.) We
1156
+ also turned off the cell-type-related objectives since we are
1157
+ not mapping cell types. Although the datasets are extremely
1158
+
1159
+ 8
1160
+ DOT (0.308)
1161
+ SPOTlight (0.456)
1162
+ Tangram (0.484)
1163
+ C2L (0.294)
1164
+ RCTD (0.298)
1165
+ Seurat (0.404)
1166
+ 0.00
1167
+ 0.25
1168
+ 0.50
1169
+ 0.75
1170
+ 1.00
1171
+ JS
1172
+ DOT (0.392)
1173
+ SPOTlight (0.548)
1174
+ Tangram (0.408)
1175
+ C2L (0.541)
1176
+ RCTD (0.607)
1177
+ Seurat (0.468)
1178
+ 0.25
1179
+ 0.50
1180
+ 0.75
1181
+ 1.00
1182
+ JS
1183
+ Mouse SSp
1184
+ Human Heart
1185
+ Fig. 3: Distribution of performance of models on each individual spot in the low-resolution spatial data of Mouse SSp (top)
1186
+ and developing human heart (bottom).
1187
+ large, DOT was able to perform the mapping in less than
1188
+ two hours.
1189
+ We start by evaluating the performance of DOT on genes
1190
+ that are present in the high-resolution spatial data as a true
1191
+ ground truth. The qualitative comparisons of gene maps of
1192
+ eight genes associated with breast cancer [59] produced by
1193
+ DOT with those of high-resolution (ground truth) and low-
1194
+ resolution data (approximate ground truth) can be seen in
1195
+ Fig. 4. As can be observed, the expression maps produced by
1196
+ DOT match almost perfectly with the ground truth expres-
1197
+ sion maps. Both DOT and the ground truth high-resolution
1198
+ spatial data also match the low resolution gene expression
1199
+ maps almost perfectly, which further validate the quality
1200
+ of mapping produced by DOT. Note that due to the single-
1201
+ cell resolution of the high-resolution spatial data, expression
1202
+ levels are higher at high resolution, thus the brighter colors.
1203
+ Nonetheless, the spatial patterns match between all three
1204
+ rows.
1205
+ Next, we compare the expression map of genes that
1206
+ are not present in the high-resolution spatial data but are
1207
+ estimated by DOT. Fig. 5a illustrates the expression maps
1208
+ of five genes associated with breast cancer that are not
1209
+ measured in the high-resolution spatial data. For a quanti-
1210
+ tative comparison of expression maps, given that there is no
1211
+ one-to-one mapping between single-cell spots in the high-
1212
+ resolution and multicell spots in the low-resolution spatial
1213
+ data, we split the tissue into a 10 by 10 grid, and aggregated
1214
+ the expression of each gene within each tile. Consequently,
1215
+ we obtained two 100 by 18,000 matrices, one for the low-
1216
+ resolution spatial data and another for DOT, with rows
1217
+ corresponding to tiles and columns corresponding to genes.
1218
+ Fig. 5b compares the column-wise cosine similarities across
1219
+ different genes. These results further confirm the ability of
1220
+ DOT in reliably estimating the expression of missing genes
1221
+ in high-resolution spatial data.
1222
+ 7
1223
+ CONCLUSION
1224
+ Single-cell
1225
+ RNA-seq
1226
+ and
1227
+ spatially-resolved
1228
+ imag-
1229
+ ing/sequencing technologies, the cutting edge technologies
1230
+ in transcriptomic data generation, each provide a partial
1231
+ picture in understanding the organization of complex
1232
+ tissues. To obtain a full picture, computational methods aim
1233
+ at combining data from these two modalities. We present
1234
+ DOT, a fast and scalable optimization framework based
1235
+ on Optimal Transport theory, for assigning cell types to
1236
+ tissue locations by leveraging the spatial information as
1237
+ well as both joint and distinct genes across scRNA-seq and
1238
+ spatial data. Using experiments on data from mouse brain
1239
+ and human heart, we show that DOT predicts the cell type
1240
+ composition of spots in spatial data with high accuracy,
1241
+ outperforming the state of the art methods both in terms of
1242
+ predictive performance and computation time.
1243
+ APPENDIX A
1244
+ IMPLEMENTATION DETAILS OF THE FW ALGORITHM
1245
+ A.1
1246
+ Initial Solution
1247
+ A good quality initial solution plays a critical role in fast
1248
+ convergence of FW. Given the multi-objective nature of our
1249
+ model, we produce an initial solution as convex combina-
1250
+ tion of two solutions. In the first solution, for each spot
1251
+ i we first find cell type ˆc = arg minc∈C{dcos
1252
+
1253
+ XS
1254
+ i,:, XR
1255
+ c,:
1256
+
1257
+ }
1258
+ and set Yc,i = ni if c = ˆc and Yc,i = 0 otherwise. Note
1259
+ that this solution is optimal for the sparse case when di is
1260
+ the only objective. In the second solution, we simply set
1261
+ Yc,i = niρc/|I| for each i and c. Note that this solution
1262
+ is optimal for dA. We then set the initial solution as the
1263
+ convex combination of these two solutions, with 0.9 weight
1264
+ assigned to the first solution.
1265
+ A.2
1266
+ Derivatives
1267
+ To find the derivatives of di(Y ) and dc(Y ), defined in (2)
1268
+ and (3), we introduce auxiliary quantities ¯
1269
+ XS := Y ⊤XR
1270
+ and ¯
1271
+ XR := Y XS to denote the expressions mapped through
1272
+ Y to spots and cell types, respectively. Derivatives for di(Y )
1273
+ and dc(Y ) can then be calculated as:
1274
+ ∂di
1275
+ ∂Yc,i
1276
+ =
1277
+ 1
1278
+ ∥XS
1279
+ i,:∥⟨XR
1280
+ c,:, T S
1281
+ i,:⟩,
1282
+ ∂dc
1283
+ ∂Yc,i
1284
+ =
1285
+ 1
1286
+ ∥XRc,:∥⟨XS
1287
+ i,:, T R
1288
+ c,:⟩,
1289
+
1290
+ 9
1291
+ CEACAM6 (Xenium) POSTN (Xenium)
1292
+ ITGAX (Xenium)
1293
+ VWF (Xenium)
1294
+ KRT15 (Xenium)
1295
+ FOXA1 (Xenium)
1296
+ GATA3 (Xenium)
1297
+ TACSTD2 (Xenium)
1298
+ CEACAM6 (DOT)
1299
+ POSTN (DOT)
1300
+ ITGAX (DOT)
1301
+ VWF (DOT)
1302
+ KRT15 (DOT)
1303
+ FOXA1 (DOT)
1304
+ GATA3 (DOT)
1305
+ TACSTD2 (DOT)
1306
+ CEACAM6 (Visium)
1307
+ POSTN (Visium)
1308
+ ITGAX (Visium)
1309
+ VWF (Visium)
1310
+ KRT15 (Visium)
1311
+ FOXA1 (Visium)
1312
+ GATA3 (Visium)
1313
+ TACSTD2 (Visium)
1314
+ Fig. 4: Expression map of eight breast cancer markers measured in both Xenium (ground truth; top) and Visium (low-
1315
+ resolution proxy; bottom), and as mapped from scRNA-seq to Xenium using DOT (estimated; middle). Brighter means
1316
+ higher expression.
1317
+ SCGB2A2 (DOT)
1318
+ KRT17 (DOT)
1319
+ CDH2 (DOT)
1320
+ SFRP2 (DOT)
1321
+ MT−ND1 (DOT)
1322
+ SCGB2A2 (Visium)
1323
+ KRT17 (Visium)
1324
+ CDH2 (Visium)
1325
+ SFRP2 (Visium)
1326
+ MT−ND1 (Visium)
1327
+ (a)
1328
+ 0%
1329
+ 10%
1330
+ 20%
1331
+ 30%
1332
+ 40%
1333
+ 50%
1334
+ 0.00
1335
+ 0.25
1336
+ 0.50
1337
+ 0.75
1338
+ 1.00
1339
+ Expression map similarity
1340
+ % Genes
1341
+ (b)
1342
+ Fig. 5: (a) Expression map of five breast cancer markers that are measured in Visium (bottom) but are missing in Xenium
1343
+ and are mapped from scRNA-seq using DOT (top). (b) Cosine similarity between expression maps of Visium and DOT for
1344
+ the genes that are not measured in Xenium.
1345
+ where
1346
+ T S
1347
+ i,g =
1348
+ −1
1349
+ 2di(Y )
1350
+
1351
+ XS
1352
+ i,g
1353
+ ∥ ¯
1354
+ XS
1355
+ i,:∥ −
1356
+ ¯XS
1357
+ i,g
1358
+ ∥ ¯
1359
+ XS
1360
+ i,:∥3 ⟨XS
1361
+ i,:, ¯
1362
+ XS
1363
+ i,:⟩
1364
+
1365
+ ,
1366
+ T R
1367
+ c,g =
1368
+ −1
1369
+ 2dc(Y )
1370
+
1371
+ XR
1372
+ c,g
1373
+ ∥ ¯
1374
+ XRc,:∥ −
1375
+ ¯XR
1376
+ c,g
1377
+ ∥ ¯
1378
+ XRc,:∥3 ⟨XR
1379
+ c,:, ¯
1380
+ XR
1381
+ c,:⟩
1382
+
1383
+ .
1384
+ Derivative of ρcdc(Y ) then can be computed using the
1385
+ product rule. Similarly, we may derive the derivative for
1386
+ dg(Y ) via
1387
+ ∂dg
1388
+ ∂Yc,i
1389
+ =
1390
+ −1
1391
+ 2dg(Y )
1392
+ XR
1393
+ c,g
1394
+ ∥XS:,g∥
1395
+
1396
+ XS
1397
+ i,g
1398
+ ∥ ¯
1399
+ XS:,g∥ −
1400
+ Yc,i
1401
+ ∥ ¯
1402
+ XS:,g∥3 ⟨XS
1403
+ :,g, ¯
1404
+ XS
1405
+ :,g⟩
1406
+
1407
+ Taking into account the simplification from Proposi-
1408
+ tion 2, noting that ¯mc and Zc,i are functions of Y while
1409
+ ¯mi is constant, we can show that
1410
+ ∂dGW
1411
+ ∂Yc,i
1412
+ =
1413
+ 1
1414
+ 2dGW(Y )(2 ¯mc + ¯mi − 4Zc,i).
1415
+ Finally, the derivatives for dA and dR, defined in (7) and
1416
+ (8) respectively, can be calculated as:
1417
+ ∂dA
1418
+ ∂Yc,i
1419
+ = 1
1420
+ 2 log
1421
+
1422
+ 2ρc
1423
+ ρc + rc
1424
+
1425
+ ,
1426
+ ∂dR
1427
+ ∂Yc,i
1428
+ = − 1
1429
+ ρc
1430
+ .
1431
+ APPENDIX B
1432
+ DATASETS
1433
+ B.1
1434
+ Mouse Primary Motor Cortex (MOp)
1435
+ MERFISH. For high-resolution spatial transcriptomics, we
1436
+ used the spatially resolved cell atlas of the MOp recently
1437
+ generated using multiplexed error-robust fluorescence in
1438
+ situ hybridization (MERFISH) technology and made pub-
1439
+ licly available by [54]. The processed dataset contains nor-
1440
+ malized RNA counts of 254 genes and coordinates of the
1441
+ boundaries of a total of 280,186 segmented cells across 75
1442
+ samples in the MOp of two adult mice, with the number of
1443
+ cells within each sample ranging from 1000 to 7500 cells. We
1444
+ computed the (x, y) coordinates of the center of each cell by
1445
+ taking the average of the coordinates of its boundary. The
1446
+ study also identifies 99 trasncriptionally distinct cell types
1447
+
1448
+ 10
1449
+ 0
1450
+ 500
1451
+ 1000
1452
+ 1500
1453
+ 2000
1454
+ 2500
1455
+ 0
1456
+ 500
1457
+ 1000
1458
+ 1500
1459
+ Fig. A1: Synthetic multicell spatial data from MERFISH.
1460
+ Dots show individual cells and tiles represent multicell
1461
+ spots (darker tile means denser spot).
1462
+ by community detection applied on a cell similarity graph.
1463
+ The clustering resulted in 39 excitatory neuronal cell types
1464
+ (clusters), 42 inhibitory neuronal cell types, 14 non-neuronal
1465
+ cell types, and four other cell types.
1466
+ scRNA-seq. The corresponding scRNA-seq data comes
1467
+ from a cell atlas of the MOp [55], which contains the
1468
+ mRNA expression of the full range of genes for more than
1469
+ 500,000 individual cells across several omics layers. We used
1470
+ the scRNA-seq dataset scRNA_10x_v2_A generated at the
1471
+ Allen Institute, which contains 145,748 cells and 100 cell
1472
+ types. After removing the unannotated cells and low quality
1473
+ cell types (as categorized in the study), we retrieved 124,330
1474
+ cells and 90 distinct cell types. For computational efficiency,
1475
+ we also selected the top 5,000 variable genes according to
1476
+ their means and variances [23].
1477
+ Fig. A1 illustrates a sample low-resolution spatial data
1478
+ obtained from a MERFISH MOp tissue.
1479
+ B.2
1480
+ Mouse Primary Somatosensory Cortex (SSp)
1481
+ Similar to MOp, another well-studied tissue area is the pri-
1482
+ mary somatosensory cortex area (SSp). Here, we used high-
1483
+ resolution spatial data coming from the osmFISH platform
1484
+ [56], which contains measurements of 33 genes across 4,837
1485
+ cells, as well as annotations based on 11 major cell types.
1486
+ For reference scRNA-seq data with matched cell types, we
1487
+ used the annotations independently generated by [60] using
1488
+ 5,392 single cells in the same SSp region.
1489
+ B.3
1490
+ Developing Human Heart
1491
+ For the developing human heart, we used subcellular spatial
1492
+ data generated by the ISS platform [57], which contains
1493
+ tissue sections from human embryonic cardiac samples
1494
+ collected at different times. We selected the PCW6.5 slide
1495
+ which contains measurements of 69 genes across 17,454 cells
1496
+ as well as annotations of 12 major cell types. The same
1497
+ study also provides scRNA-seq data for similar slide, which
1498
+ contains matched cell types for 3,253 cells.
1499
+ Fig. A2: Common region (cyan) in the capture areas of
1500
+ Visium (dashed blue lines) and Xenium (dark orange). The
1501
+ pink region is the H&E image accompanying Visium.
1502
+ B.4
1503
+ Human Breast Cancer
1504
+ Breast cancer is a complex disease with significant cel-
1505
+ lular and molecular heterogeneity. The breast cancer tu-
1506
+ mor microvenvironment dataset generated in [58] contains
1507
+ both single-cell and multicell data. The single-cell reso-
1508
+ lution spatial dataset is produced by the recent 10X Xe-
1509
+ nium In Situ technology, and contains two replications.
1510
+ We used Xenium_FFPE_Human_Breast_Cancer_Rep1,
1511
+ which contains the spatial information of 313 genes for
1512
+ 167,782 cells. The low-resolution multicell spatial dataset
1513
+ is produced by the 10X Visium Spatial Transcriptomics
1514
+ technology, which contains the spatial information of 18,000
1515
+ genes for 4,992 multicell spots. For the reference scRNA-
1516
+ seq data, we used the Single Cell Gene Expression
1517
+ Flex (FRP) data generated from a tissue section adjacent
1518
+ to the tissue sections used for Visium and Xenium work-
1519
+ flows, which contains expression of 18,000 genes across
1520
+ 30,365 cells.
1521
+ APPENDIX C
1522
+ C.1
1523
+ Proof of Proposition 1
1524
+ Proof: Note that
1525
+ ����
1526
+ a
1527
+ ∥a∥ −
1528
+ b
1529
+ ∥b∥
1530
+ ����
1531
+ 2
1532
+ = ∥a∥2
1533
+ ∥a∥2 + ∥b∥2
1534
+ ∥b∥2 − 2 ⟨a, b⟩
1535
+ ∥a∥∥b∥ = 2 − 2 cos(a, b)
1536
+ ⇒ dcos(a, b) =
1537
+
1538
+ 1 − cos(a, b) =
1539
+
1540
+ 2∥a/∥a∥ − b/∥b∥∥.
1541
+ This shows that dcos is a metric since ∥ · ∥ is a metric. We
1542
+ can easily show that cosine dissimilarity (i.e., 1 − cos(·, ·))
1543
+ is not a metric. For instance, consider a = (1, 0, 0), b =
1544
+ (0, 1, 0) and c = (x, x,
1545
+
1546
+ 1 − 2x2) for arbitrary x ∈ ( 1
1547
+ 2,
1548
+ 1
1549
+
1550
+ 2),
1551
+ and let f denote the cosine dissimilarity. Then f(a, b) =
1552
+ 1 − cos(a, b) = 1, and f(a, c) = f(c, b) = 1 − x, which
1553
+ violates the triangular inequality since f(a, c) + f(c, b) =
1554
+ 2−2x < 1 = f(a, b). It is not difficult to see that dcos(a, c)+
1555
+ dcos(c, b) > 1.
1556
+
1557
+ 11
1558
+ C.2
1559
+ Proof of Proposition 2
1560
+ Proof: Rewrite g(Y ) as
1561
+ g(Y ) =
1562
+
1563
+ i∈I
1564
+
1565
+ j∈I
1566
+
1567
+ c∈C
1568
+
1569
+ k∈C
1570
+
1571
+ M R
1572
+ c,k − M S
1573
+ i,j
1574
+ �2
1575
+ Yc,iYk,j
1576
+ =
1577
+
1578
+ c∈C
1579
+
1580
+ i∈I
1581
+ Yc,i
1582
+
1583
+ k∈C
1584
+
1585
+ j∈I
1586
+ Yk,j
1587
+
1588
+ (M R
1589
+ c,k)2 + (M S
1590
+ i,j)2 − 2M R
1591
+ c,kM S
1592
+ i,j
1593
+
1594
+ .
1595
+ Expanding the inner summations we obtain:
1596
+
1597
+ k∈C
1598
+
1599
+ j∈I
1600
+ Yk,j(M R
1601
+ c,k)2 =
1602
+
1603
+ k∈C
1604
+ (M R
1605
+ c,k)2 �
1606
+ j∈I
1607
+ Yk,j = ¯mc
1608
+
1609
+ k∈C
1610
+
1611
+ j∈I
1612
+ Yk,j(M S
1613
+ i,j)2 =
1614
+
1615
+ j∈I
1616
+ (M S
1617
+ i,j)2 �
1618
+ k∈C
1619
+ Yk,j = ¯mi
1620
+
1621
+ k∈C
1622
+
1623
+ j∈I
1624
+ Yk,jM R
1625
+ c,kM S
1626
+ i,j =
1627
+
1628
+ M RY M S�
1629
+ c,i = Zc,i,
1630
+ where we have used �
1631
+ j∈I
1632
+ Yk,j = ρk and �
1633
+ k∈C
1634
+ Yk,j = nj.
1635
+ Substituting these equations into g(Y ) gives the result.
1636
+ C.3
1637
+ Proof of Proposition 3
1638
+ Proof: Provided that M R
1639
+ c,k = 1 for c ̸= k and M R
1640
+ c,c = 0,
1641
+ we obtain
1642
+ g(Y ) =
1643
+
1644
+ i∈I
1645
+
1646
+ j∈I
1647
+
1648
+ c∈C
1649
+
1650
+ M S
1651
+ i,j
1652
+ �2
1653
+ Yc,iYc,j
1654
+ +
1655
+
1656
+ i∈I
1657
+
1658
+ j∈I
1659
+
1660
+ c∈C
1661
+
1662
+ k∈C,k̸=c
1663
+
1664
+ 1 − M S
1665
+ i,j
1666
+ �2
1667
+ Yc,iYk,j
1668
+ =
1669
+
1670
+ i∈I
1671
+
1672
+ j∈I
1673
+
1674
+ c∈C
1675
+ ��
1676
+ M S
1677
+ i,j
1678
+ �2
1679
+
1680
+
1681
+ 1 − M S
1682
+ i,j
1683
+ �2�
1684
+ Yc,iYc,j
1685
+ +
1686
+
1687
+ i∈I
1688
+
1689
+ j∈I
1690
+
1691
+ c∈C
1692
+
1693
+ k∈C
1694
+
1695
+ 1 − M S
1696
+ i,j
1697
+ �2
1698
+ Yc,iYk,j
1699
+ =
1700
+
1701
+ i∈I
1702
+
1703
+ j∈I
1704
+
1705
+ 2M S
1706
+ i,j − 1
1707
+
1708
+ ⟨Y:,i, Y:,j⟩ + α,
1709
+ where
1710
+ α =
1711
+
1712
+ i∈I
1713
+
1714
+ j∈I
1715
+
1716
+ 1 − M S
1717
+ i,j
1718
+ �2 �
1719
+ c∈C
1720
+
1721
+ k∈C
1722
+ Yc,iYk,j
1723
+ =
1724
+
1725
+ i∈I
1726
+
1727
+ j∈I
1728
+
1729
+ 1 − M S
1730
+ i,j
1731
+ �2
1732
+ ninj
1733
+ since �
1734
+ c∈C
1735
+ Yc,i = ni and �
1736
+ k∈C
1737
+ Yk,j = nj.
1738
+ ETHIC STATEMENT
1739
+ The human biological samples were sourced ethically and
1740
+ their research use was in accord with the terms of the
1741
+ informed consents under an IRB/EC approved protocol.
1742
+ All animal studies were ethically reviewed and carried
1743
+ out in accordance with European Directive 2010/63/EEC
1744
+ and the GSK Policy on the Care, Welfare and Treatment of
1745
+ Animals.
1746
+ REFERENCES
1747
+ [1]
1748
+ C. Trapnell, “Defining cell types and states with single-cell ge-
1749
+ nomics,” Genome Res., vol. 25, no. 10, pp. 1491–1498, 2015.
1750
+ [2]
1751
+ D. Arendt et al., “The origin and evolution of cell types,” Nat. Rev.
1752
+ Genet., vol. 17, no. 12, pp. 744–757, 2016.
1753
+ [3]
1754
+ V. Y. Kiselev, T. S. Andrews, and M. Hemberg, “Challenges in
1755
+ unsupervised clustering of single-cell RNA-seq data,” Nat. Rev.
1756
+ Genet., vol. 20, no. 5, pp. 273–282, 2019.
1757
+ [4]
1758
+ L. Haghverdi et al., “Diffusion pseudotime robustly reconstructs
1759
+ lineage branching,” Nat. Methods, vol. 13, no. 10, pp. 845–848, 2016.
1760
+ [5]
1761
+ E. Papalexi and R. Satija, “Single-cell RNA sequencing to explore
1762
+ immune cell heterogeneity,” Nat. Rev. Immunol., vol. 18, no. 1, pp.
1763
+ 35–45, 2018.
1764
+ [6]
1765
+ S. S. Potter, “Single-cell RNA sequencing for the study of devel-
1766
+ opment, physiology and disease,” Nat. Rev. Nephrol., vol. 14, no. 8,
1767
+ pp. 479–492, 2018.
1768
+ [7]
1769
+ N. Rajewsky et al., “LifeTime and improving European healthcare
1770
+ through cell-based interceptive medicine,” Nature, vol. 587, no.
1771
+ 7834, pp. 377–386, 2020.
1772
+ [8]
1773
+ J. Lee, D. Y. Hyeon, and D. Hwang, “Single-cell multiomics:
1774
+ technologies and data analysis methods,” Exp. Mol. Med., vol. 52,
1775
+ no. 9, pp. 1428–1442, 2020.
1776
+ [9]
1777
+ V. Marx, “Method of the year: spatially resolved transcriptomics,”
1778
+ Nat. Methods, vol. 18, no. 1, pp. 9–14, 2021.
1779
+ [10] K. H. Chen et al., “Spatially resolved, highly multiplexed RNA
1780
+ profiling in single cells,” Science, vol. 348, no. 6233, 2015.
1781
+ [11] L. Kostrykin and K. Rohr, “Superadditivity and convex opti-
1782
+ mization for globally optimal cell segmentation using deformable
1783
+ shape models,” IEEE Trans. Pattern Anal. Mach. Intell., 2022.
1784
+ [12] S. Minaee et al., “Image segmentation using deep learning: A
1785
+ survey,” IEEE Trans. Pattern Anal. Mach. Intell., 2021.
1786
+ [13] P. L. St˚ahl et al., “Visualization and analysis of gene expression
1787
+ in tissue sections by spatial transcriptomics,” Science, vol. 353, no.
1788
+ 6294, pp. 78–82, 2016.
1789
+ [14] S. G. Rodriques et al., “Slide-seq: A scalable technology for measur-
1790
+ ing genome-wide expression at high spatial resolution,” Science,
1791
+ vol. 363, no. 6434, pp. 1463–1467, 2019.
1792
+ [15] J. Tanevski et al., “Gene selection for optimal prediction of cell
1793
+ position in tissues from single-cell transcriptomics data,” Life Sci.
1794
+ Alliance, vol. 3, no. 11, p. e202000867, 2020.
1795
+ [16] F. M´emoli, “Gromov–Wasserstein distances and the metric ap-
1796
+ proach to object matching,” Found. Comut. Math., vol. 11, no. 4,
1797
+ pp. 417–487, 2011.
1798
+ [17] G. Peyr´e, M. Cuturi, and J. Solomon, “Gromov-Wasserstein aver-
1799
+ aging of kernel and distance matrices,” in International Conference
1800
+ on Machine Learning.
1801
+ PMLR, 2016, pp. 2664–2672.
1802
+ [18] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–
1803
+ 32, 2001.
1804
+ [19] Elosua-Bayes et al., “SPOTlight: seeded NMF regression to de-
1805
+ convolute spatial transcriptomics spots with single-cell transcrip-
1806
+ tomes,” Nucleic Acids Res., vol. 49, no. 9, pp. e50–e50, 2021.
1807
+ [20] D. M. Cable et al., “Robust decomposition of cell type mixtures in
1808
+ spatial transcriptomics,” Nat. Biotechnol., pp. 1–10, 2021.
1809
+ [21] V. Kleshchevnikov et al., “Cell2location maps fine-grained cell
1810
+ types in spatial transcriptomics,” Nat. Biotechnol., vol. 40, no. 5,
1811
+ pp. 661–671, 2022.
1812
+ [22] T. Biancalani et al., “Deep learning and alignment of spatially
1813
+ resolved single-cell transcriptomes with Tangram,” Nat. Methods,
1814
+ vol. 18, no. 11, pp. 1352–1362, 2021.
1815
+ [23] T. Stuart et al., “Comprehensive integration of single-cell data,”
1816
+ Cell, vol. 177, no. 7, pp. 1888–1902, 2019.
1817
+ [24] C. Villani, Topics in optimal transportation. American Mathematical
1818
+ Soc., 2021, vol. 58.
1819
+ [25] F. Santambrogio, “Optimal Transport for applied mathemati-
1820
+ cians,” Birk¨auser, NY, vol. 55, no. 58-63, p. 94, 2015.
1821
+ [26] G. Peyr´e, M. Cuturi et al., “Computational Optimal Transport:
1822
+ With applications to data science,” Found. Trends Mach. Learn.,
1823
+ vol. 11, no. 5-6, pp. 355–607, 2019.
1824
+ [27] Z. Zhang, M. Wang, and A. Nehorai, “Optimal Transport in
1825
+ reproducing kernel Hilbert spaces: Theory and applications,” IEEE
1826
+ Trans. Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1741–1754, 2019.
1827
+ [28] D. An, Y. Guo, N. Lei, Z. Luo, S.-T. Yau, and X. Gu, “Ae-ot: a
1828
+ new generative model based on extended semi-discrete Optimal
1829
+ Transport,” in International Conference on Learning Representations
1830
+ (ICLR), 2019.
1831
+
1832
+ 12
1833
+ [29] C. Bunne et al., “Learning generative models across incomparable
1834
+ spaces,” in International Conference on Machine Learning.
1835
+ PMLR,
1836
+ 2019, pp. 851–861.
1837
+ [30] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasser-
1838
+ stein auto-encoders,” in International Conference on Learning Repre-
1839
+ sentations (ICLR), 2018.
1840
+ [31] G. Mialon, D. Chen, A. d’Aspremont, and J. Mairal, “A trainable
1841
+ Optimal Transport embedding for feature aggregation,” in Inter-
1842
+ national Conference on Learning Representations (ICLR), 2020.
1843
+ [32] C.-Y. Chuang, Y. Mroueh, K. Greenewald, A. Torralba, and
1844
+ S. Jegelka, “Measuring generalization with Optimal Transport,”
1845
+ Advances in Neural Information Processing Systems, vol. 34, pp. 8294–
1846
+ 8306, 2021.
1847
+ [33] F. M´emoli, Z. Smith, and Z. Wan, “The Wasserstein transform,”
1848
+ in International Conference on Machine Learning.
1849
+ PMLR, 2019, pp.
1850
+ 4496–4504.
1851
+ [34] V. Titouan et al., “Optimal Transport for structured data with appli-
1852
+ cation on graphs,” in International Conference on Machine Learning.
1853
+ PMLR, 2019, pp. 6275–6284.
1854
+ [35] N. Courty et al., “Optimal Transport for domain adaptation,” IEEE
1855
+ Trans. Pattern Anal. Mach. Intell., vol. 39, no. 9, pp. 1853–1865, 2016.
1856
+ [36] K. Fatras et al., “Unbalanced minibatch Optimal Transport; ap-
1857
+ plications to domain adaptation,” in International Conference on
1858
+ Machine Learning.
1859
+ PMLR, 2021, pp. 3186–3197.
1860
+ [37] J. Li et al., “Divergence-agnostic unsupervised domain adaptation
1861
+ by adversarial attacks,” IEEE Trans. Pattern Anal. Mach. Intell., 2021.
1862
+ [38] A. Tong et al., “TrajectoryNet: A dynamic Optimal Transport net-
1863
+ work for modeling cellular dynamics,” in International Conference
1864
+ on Machine Learning.
1865
+ PMLR, 2020, pp. 9526–9536.
1866
+ [39] G. Schiebinger et al., “Optimal-transport analysis of single-cell
1867
+ gene expression identifies developmental trajectories in repro-
1868
+ gramming,” Cell, vol. 176, no. 4, pp. 928–943, 2019.
1869
+ [40] A. Forrow and G. Schiebinger, “LineageOT is a unified framework
1870
+ for lineage tracing and trajectory inference,” Nat. Commun., vol. 12,
1871
+ no. 1, pp. 1–10, 2021.
1872
+ [41] J. Solomon et al., “Entropic metric alignment for correspondence
1873
+ problems,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp.
1874
+ 1–13, 2016.
1875
+ [42] C. Manning and H. Schutze, Foundations of statistical natural lan-
1876
+ guage processing.
1877
+ MIT press, 1999.
1878
+ [43] I. Caragiannis et al., “The unreasonable fairness of maximum Nash
1879
+ welfare,” ACM Transactions on Economics and Computation (TEAC),
1880
+ vol. 7, no. 3, pp. 1–32, 2019.
1881
+ [44] M. Frank and P. Wolfe, “An algorithm for quadratic program-
1882
+ ming,” Naval Res. Logis. Quart., vol. 3, no. 1-2, pp. 95–110, 1956.
1883
+ [45] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex
1884
+ optimization,” in International Conference on Machine Learning.
1885
+ PMLR, 2013, pp. 427–435.
1886
+ [46] M. Jaggi and S. Lacoste-Julien, “On the global linear convergence
1887
+ of Frank-Wolfe optimization variants,” Advances in Neural Informa-
1888
+ tion Processing Systems, vol. 28, 2015.
1889
+ [47] D. P. Bertsekas, Nonlinear programming.
1890
+ Athena Scientific, 2016.
1891
+ [48] H.-T. Wai et al., “Decentralized Frank–Wolfe algorithm for convex
1892
+ and nonconvex problems,” IEEE Trans. Automat. Contr., vol. 62,
1893
+ no. 11, pp. 5522–5537, 2017.
1894
+ [49] Y. Zhang, B. Li, and G. B. Giannakis, “Accelerating Frank-Wolfe
1895
+ with weighted average gradients,” in ICASSP 2021-2021 IEEE
1896
+ International Conference on Acoustics, Speech and Signal Processing
1897
+ (ICASSP).
1898
+ IEEE, 2021, pp. 5529–5533.
1899
+ [50] D. Garber and O. Meshi, “Linear-memory and decomposition-
1900
+ invariant linearly convergent conditional gradient algorithm for
1901
+ structured polytopes,” Advances in Neural Information Processing
1902
+ Systems, vol. 29, 2016.
1903
+ [51] M. N. Wright and A. Ziegler, “ranger: A fast implementation of
1904
+ random forests for high dimensional data in C++ and R,” J. Stat.
1905
+ Softw., vol. 77, no. 1, p. 1–17, 2017.
1906
+ [52] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules,
1907
+ prediction, and estimation,” J Am Stat Assoc., vol. 102, no. 477,
1908
+ pp. 359–378, 2007.
1909
+ [53] D. Aran, A. P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak,
1910
+ R. P. Naikawadi, P. J. Wolters, A. R. Abate et al., “Reference-
1911
+ based analysis of lung single-cell sequencing reveals a transitional
1912
+ profibrotic macrophage,” Nat. Immunol., vol. 20, no. 2, pp. 163–172,
1913
+ 2019.
1914
+ [54] M. Zhang et al., “Spatially resolved cell atlas of the mouse primary
1915
+ motor cortex by MERFISH,” Nature, vol. 598, no. 7879, pp. 137–143,
1916
+ 2021.
1917
+ [55] Z. Yao et al., “A transcriptomic and epigenomic cell atlas of the
1918
+ mouse primary motor cortex,” Nature, vol. 598, no. 7879, pp. 103–
1919
+ 110, 2021.
1920
+ [56] S. Codeluppi et al., “Spatial organization of the somatosensory
1921
+ cortex revealed by osmfish,” Nat. Methods, vol. 15, no. 11, pp. 932–
1922
+ 935, 2018.
1923
+ [57] M. Asp et al., “A spatiotemporal organ-wide gene expression and
1924
+ cell atlas of the developing human heart,” Cell, vol. 179, no. 7, pp.
1925
+ 1647–1660, 2019.
1926
+ [58] A. Janesick et al., “High resolution mapping of the breast cancer
1927
+ tumor microenvironment using integrated single cell, spatial and
1928
+ in situ analysis of ffpe tissue,” bioRxiv, 2022.
1929
+ [59] T. Risom et al., “Transition to invasive breast cancer is associated
1930
+ with progressive changes in the structure and composition of
1931
+ tumor stroma,” Cell, vol. 185, no. 2, pp. 299–310, 2022.
1932
+ [60] Z. Yao et al., “A taxonomy of transcriptomic cell types across the
1933
+ isocortex and hippocampal formation,” Cell, vol. 184, no. 12, pp.
1934
+ 3222–3241, 2021.
1935
+
09AzT4oBgHgl3EQftv3n/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dAyT4oBgHgl3EQfoPiS/content/2301.00504v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:161b558f9aa5e330e19cfd97cee11797b2303b5e25b6f2461ccc433f8f080fa0
3
+ size 2097039
0dAyT4oBgHgl3EQfoPiS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cdf42a134817e44af47cec4f53d9bd6cf823995f653b33002a55dc4c32f5566
3
+ size 2293805
0dAyT4oBgHgl3EQfoPiS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e354193bf3aa6a8f8a1c22bb84204558705070c61bffb25c30bb10d432ef0586
3
+ size 96380
0tE4T4oBgHgl3EQfzA1I/content/2301.05270v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9775fcc70823b604e9c9cfdf5861ecef7aeb35cab3d528544b0f236a2c4d2b18
3
+ size 202336
0tE4T4oBgHgl3EQfzA1I/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:871e9aa0f69b7913fcb6496c074cb22a1c8d06de5f880540ef8360dcfcdc7a16
3
+ size 92209
1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3a91f778175b23f11394283f15e192dcf1e6ec180e26197e0654bce6daf4d8c
3
+ size 6329814
29FAT4oBgHgl3EQfDxyZ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9af16db95048ab40d3fc6998cae4b51ab619bb36f2f785bf53a2d50f7626831b
3
+ size 4587565
2dE0T4oBgHgl3EQfugHS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dcba77de70101e11daeaa93bc1da04c033ced2cd53f20c1dd51dc203c3156e9
3
+ size 1703981
2dE2T4oBgHgl3EQfNgaR/content/2301.03738v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e8b727930d2d27a7ad66e97127b5b19cd9ac85dadcdaf17462003ac39179e6
3
+ size 178067
2dE2T4oBgHgl3EQfNgaR/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9b0f81d0c2d04e7b65ab906f2033524e9842a1be5ac1616c60770c797081f91
3
+ size 2359341
2dE2T4oBgHgl3EQfNgaR/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48481a95032eabe8261fba14fa39edd9ca634106ec1e07f7f859545b9b229210
3
+ size 92573
39E4T4oBgHgl3EQfbQyO/content/2301.05071v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4392a8b740310e061e069b21e490322c01bfb2d2f9a54f061610603c2427b7e6
3
+ size 3575403
39E4T4oBgHgl3EQfbQyO/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3906c2192c5f60c2f11b8f1ef56b05029a40c13c1d984d56341c96520f179730
3
+ size 5505069
39E4T4oBgHgl3EQfbQyO/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a75f9af8ee190b6a2fbcb7fe1079fc506d49b2e8a515939f585a1c140749647d
3
+ size 196139
49AyT4oBgHgl3EQf2PmT/content/tmp_files/2301.00748v1.pdf.txt ADDED
@@ -0,0 +1,1265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Impact of random and targeted disruptions on information diffusion during outbreaks
2
+ Impact of random and targeted disruptions on information diffusion
3
+ during outbreaks
4
+ Hosein Masoomy,1, a) Tom Chou,2, b) and Lucas Böttcher3, c)
5
+ 1)Dept. of Physics, Shahid Beheshti University, 1983969411, Tehran, Iran
6
+ 2)Depts. of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095
7
+ 3)Centre for Human and Machine Intelligence, Frankfurt School of Finance and Management, 60322 Frankfurt am Main,
8
+ Germany
9
+ (Dated: 3 January 2023)
10
+ Outbreaks are complex multi-scale processes that are impacted not only by cellular dynamics and the ability of
11
+ pathogens to effectively reproduce and spread, but also by population-level dynamics and the effectiveness of miti-
12
+ gation measures. A timely exchange of information related to the spread of novel pathogens, stay-at-home orders, and
13
+ other containment measures can be effective at containing an infectious disease, particularly during in the early stages
14
+ when testing infrastructure, vaccines, and other medical interventions may not be available at scale. Using a multiplex
15
+ epidemic model that consists of an information layer (modeling information exchange between individuals) and a spa-
16
+ tially embedded epidemic layer (representing a human contact network), we study how random and targeted disruptions
17
+ in the information layer (e.g., errors and intentional attacks on communication infrastructure) impact outbreak dynam-
18
+ ics. We calibrate our model to the early outbreak stages of the SARS-CoV-2 pandemic in 2020. Mitigation campaign
19
+ can still be effective under random disruptions, such as failure of information channels between a few individuals.
20
+ However, targeted disruptions or sabotage of hub nodes that exchange information with a large number of individuals
21
+ can abruptly change outbreak characteristics such as the time to reach the peak infection. Our results emphasize the
22
+ importance of using a robust communication infrastructure that can withstand both random and targeted disruptions.
23
+ Online communication platforms and exposure notifica-
24
+ tion apps can help slow down and contain the spread of
25
+ an infectious disease1. Individuals who have been made
26
+ aware of an outbreak are likely to adapt their behavior to
27
+ reduce their risk of being infected. To study the interplay
28
+ between infectious disease outbreaks and corresponding
29
+ changes in individual contact behaviors, Granell et al.2 in-
30
+ troduced an epidemic model that accounts for the spread
31
+ of awareness through an information layer that is coupled
32
+ to a human contact network. Building upon their model of
33
+ awareness diffusion, our work studies the impact of ran-
34
+ dom and targeted disruptions in the information layer on
35
+ the overall outbreak dynamics.
36
+ I.
37
+ INTRODUCTION
38
+ The study of epidemic processes in networks has pro-
39
+ vided many insights into the interplay between structure and
40
+ dynamics.3,4 The aim of many works in this area has been
41
+ to analyze the impact of different structural features such as
42
+ clustering5, community structure6,7, hub nodes, and scale-
43
+ free degree distributions8 on the evolution of susceptible-
44
+ infected-susceptible (SIS) and susceptible-infected-recovered
45
+ (SIR) models and their extensions.9–11 Connections between
46
+ epidemic processes and percolation contributed to the devel-
47
+ opment of analytical methods that are useful to analyze epi-
48
+ demic transitions and determine outbreak size.12–16 Along
49
50
51
52
+ with progress in understanding epidemic processes in static
53
+ single-layer networks, developments in the study of tempo-
54
+ ral networks17, multilayer networks18,19, and other structures
55
+ describing higher-order interactions20–23 have allowed for the
56
+ integration of time-varying and non-binary interactions.
57
+ Before research turned to epidemic models in multilayer
58
+ networks, interactions between disease and behavioral dy-
59
+ namics have been studied mainly in single-layer networks24
60
+ and well-mixed populations.25–28 In an extension of the
61
+ classical SIS model, the so-called susceptible-infected-alert-
62
+ susceptible (SIAS) model, a new compartment was used to
63
+ study the effect of “alert” individuals that are surrounded by
64
+ a certain number of infecteds on disease dynamics.29,30 The
65
+ SIAS model has been implemented using a two-layer net-
66
+ work31 with a contact layer and an information-dissemination
67
+ layer to find optimal information dissemination strategies that
68
+ help contain an outbreak.
69
+ The interplay between behavioral effects and network dy-
70
+ namics has also been analyzed in terms of a multiplex struc-
71
+ ture where information on an outbreak diffuses in an infor-
72
+ mation layer.2,32 In a multiplex network, all of the interlayer
73
+ edges are edges between nodes and their counterparts in other
74
+ layers. As in the SIAS model, individuals in the information
75
+ layer can be either aware or unaware of a disease. Aware-
76
+ ness then translates into a reduced infection rate. The origi-
77
+ nal awareness model has been modified in various ways. One
78
+ study used a threshold model in the information layer and
79
+ identified awareness cascades.33 Other research investigated
80
+ the effects of dynamically varying transmission rates34, cou-
81
+ pled SIR and unaware-aware-unaware (UAU) dynamics with
82
+ and without latency35,36, SIS and UAU dynamics that propa-
83
+ gate at different speeds37, and higher-order interactions38. For
84
+ a detailed overview of models of coevolving spreading pro-
85
+ cesses in networks, we refer the reader to Ref. 39.
86
+ arXiv:2301.00748v1 [physics.soc-ph] 2 Jan 2023
87
+
88
+ Impact of random and targeted disruptions on information diffusion during outbreaks
89
+ 2
90
+ In this work, we study coevolving susceptible-exposed-
91
+ infected-recovered-deceased (SEIRD) and UAU dynamics on
92
+ a multiplex network that consists of an epidemic layer and an
93
+ information layer. The exposed compartment in our model
94
+ accounts for latency (i.e., the time difference between infec-
95
+ tion and becoming infectious). Different variants of SEIRD
96
+ models have been used to mechanistically describe the spread
97
+ of an infectious disease for which the latency period between
98
+ time of infection to time of becoming infectious cannot be
99
+ neglected9,40–42. Examples of such infectious diseases include
100
+ measles, smallpox, and SARS-CoV-2.
101
+ One of the main goals of this work is to provide insight into
102
+ the impact of disruptions in the information diffusion layer
103
+ on the overall outbreak dynamics. We therefore study differ-
104
+ ent edge removal protocols that describe random and targeted
105
+ disruptions. In Sec. II, we define the disease and awareness
106
+ model, develop a heterogeneous mean-field model, define ran-
107
+ dom and targeted edge removal protocols, and briefly describe
108
+ the structure of the considered networks. In Sec. III, we first
109
+ discuss a baseline simulation that uses model parameters that
110
+ are aligned with empirical data on the outbreak of SARS-
111
+ CoV-2 in early 2020. We then use this baseline simulation
112
+ as a reference to study the impact of disruptions in the in-
113
+ formation diffusion layer on three disease severity measures:
114
+ (i) final outbreak size, (ii) maximum proportion of infectious
115
+ nodes on a given day (i.e., the height of the infection peak),
116
+ and (iii) the time until the infection peak is reached.
117
+ II.
118
+ METHODS
119
+ A.
120
+ Epidemic model with information diffusion
121
+ We study the interplay between information diffusion and
122
+ epidemic dynamics in a multiplex network with two layers
123
+ [see Fig. 1(a)].
124
+ In the first layer, individuals exchange information (e.g.,
125
+ through online social media or messaging services) on the
126
+ prevalence of a certain disease in the overall population ac-
127
+ cording to the unaware-aware-unaware (UAU) model.2 Indi-
128
+ viduals in the “information layer” (IL) can be in two states.
129
+ They are either unaware (U) or aware (A) of the disease and
130
+ do not necessarily have to be in close proximity (in terms of
131
+ connectivity) to exchange information. Unaware nodes can
132
+ become aware in two ways. First, if an unaware node is in
133
+ contact with an aware node, it becomes aware at rate λ. Sec-
134
+ ond, nodes that have been infected and experience symptoms
135
+ become aware at rate κ. Given that certain individuals forget
136
+ or do not adhere to intervention measures after a certain time,
137
+ we also account for transitions from aware to unaware at rate
138
+ δ. A schematic of UAU dynamics is shown in Fig. 1(b).
139
+ In the second layer, we model an epidemic outbreak
140
+ using the susceptible-exposed-infected-recovered-deceased
141
+ (SEIRD) model. In the “epidemic layer” (EL), nodes can be in
142
+ states S (susceptible), E (exposed), I (infected), R (recovered),
143
+ and D (deceased). We distinguish between two infection rates,
144
+ β u and β a, that describe the rates at which susceptible nodes
145
+ become infected if they are unaware and aware, respectively.
146
+ The disease transmission rate associated with aware individu-
147
+ als is assumed to be strictly lower than the disease transmis-
148
+ sion rate associated with unaware individuals (i.e., β a < β u),
149
+ accounting for the decreased likelihood of an aware individ-
150
+ ual to become infected. We assume a latent rate σ, resolu-
151
+ tion rate γ, and infection fatality ratio f that are independent
152
+ of the awareness status. This assumption is valid for infec-
153
+ tious diseases for which no medication is available that pos-
154
+ itively affects recovery, even if a person is aware of an in-
155
+ fection before developing symptoms. For example, during the
156
+ early outbreak stages of SARS-CoV-2, there was very little in-
157
+ formation available on how to medically support patients that
158
+ were aware of their infection, but did not show symptoms yet.
159
+ Non-pharmaceutical interventions such as contact restrictions,
160
+ mask mandates, and quarantine are often the only possibility
161
+ to combat novel pathogens.1
162
+ According to the described UAU and SEIRD dynamics,
163
+ nodes can be in the following states: (U,S), (A,S), (U,E),
164
+ (A,E), (U,I), (A,I), (U,R), (A,R), and (U,D). The first en-
165
+ try in each tuple describes the awareness state (either U or A)
166
+ while the second entry describes vital and disease states (S, E,
167
+ I, R, and D). Deceased nodes are not aware.
168
+ B.
169
+ Heterogeneous mean-field theory
170
+ In accordance with Ref. 43, we formulate a heterogeneous
171
+ mean-field theory of SEIRD-UAU dynamics. We use xjyk ≡
172
+ xjyk(t) (x ∈ {u,a},y ∈ {s,e,i,r,d}) to denote the proportion of
173
+ nodes in state XjYk (X ∈ {U,A},Y ∈ {S,E,I,R,D}) with de-
174
+ grees j and k in the IL and EL at time t, respectively. For ex-
175
+ ample, ujsk ≡ u jsk(t) denotes the proportion of unaware and
176
+ susceptible nodes with degrees j and k in the IL and EL at time
177
+ t, respectively. Henceforth, we will not explicitly include the
178
+ time dependence in the notation xjyk for the sake of notational
179
+ brevity.
180
+ The proportions of susceptible, exposed, infected, recov-
181
+ ered, and deceased nodes are
182
+ sk =
183
+ J
184
+
185
+ j=1
186
+ (ujsk +ajsk),
187
+ (1)
188
+ ek =
189
+ J
190
+
191
+ j=1
192
+ (ujek +ajek),
193
+ (2)
194
+ ik =
195
+ J
196
+
197
+ j=1
198
+ (u jik +ajik),
199
+ (3)
200
+ rk =
201
+ J
202
+
203
+ j=1
204
+ (u jrk +ajrk),
205
+ (4)
206
+ dk =
207
+ J
208
+
209
+ j=1
210
+ ujdk ,
211
+ (5)
212
+ where J is the maximum (or cut-off) degree in the IL. Simi-
213
+ larly, we find that the proportions of unaware and aware nodes
214
+
215
+ Impact of random and targeted disruptions on information diffusion during outbreaks
216
+ 3
217
+ FIG. 1. Model schematic. (a) Information layer and epidemic layer. Nodes in the information layer are either unaware (U) or aware (A) while
218
+ nodes in the epidemic layer can be in one of five different states: susceptible (S), exposed (E), infected (I), recovered (R), and deceased (D).
219
+ Edge removal that is caused by disruptions in the information layer is indicated by the scissor symbol. (b) Unaware nodes become aware at rate
220
+ λ if they are adjacent to an aware node. If unaware nodes are infected, they can also become aware at rate κ. Aware nodes transition back to
221
+ an unaware state at rate δ. (c) Infectious nodes transmit a disease to unaware and aware susceptible nodes at rates β u and β a, respectively. To
222
+ account for a reduction in infectiousness risk of aware nodes, we assume the value of the disease transmission rate β u associated with unaware
223
+ nodes is strictly larger than the value of the disease transmission rate β a associated with aware nodes (β u > β a). Once susceptible nodes have
224
+ been infected, they enter an exposed state and become infectious at rate σ. The characteristic time scale σ−1 corresponds to the latency period
225
+ of the disease. Infected nodes either die or recover at rates fγ and (1− f)γ, respectively.
226
+ are
227
+ uj =
228
+ K
229
+
230
+ k=1
231
+ (ujsk +ujek +u jik +ujrk +dk),
232
+ (6)
233
+ aj =
234
+ K
235
+
236
+ k=1
237
+ (ajsk +ajek +a jik +ajrk),
238
+ (7)
239
+ where K is the maximum (or cut-off) degree in the EL. These
240
+ quantities satisfy the normalization conditions
241
+ K
242
+
243
+ k=1
244
+ (sk +ek +ik +rk +dk) = 1,
245
+ (8)
246
+ J
247
+
248
+ j=1
249
+ (uj +aj) = 1.
250
+ (9)
251
+ Assuming an uncorrelated network44, the rate equations of
252
+ the heterogeneous mean-field model are
253
+ dujsk
254
+ dt
255
+ =−λ ju jsk
256
+ ⟨˜k⟩ ∑
257
+ j′
258
+ j′aj′ −β u ku jsk
259
+ ⟨k⟩ ∑
260
+ k′
261
+ k′ik′ +δajsk , (10)
262
+ dajsk
263
+ dt
264
+ =λ ju jsk
265
+ ⟨˜k⟩ ∑
266
+ j′
267
+ j′aj′ −β a ka jsk
268
+ ⟨k⟩ ∑
269
+ k′
270
+ k′ik′ −δajsk ,
271
+ (11)
272
+ dujek
273
+ dt
274
+ =−λ ju jek
275
+ ⟨˜k⟩ ∑
276
+ j′
277
+ j′aj′ +β u ku jsk
278
+ ⟨k⟩ ∑
279
+ k′
280
+ k′ik′
281
+ (12)
282
+ −σujek +δajek
283
+ and
284
+ dajek
285
+ dt
286
+ =λ jujek
287
+ ⟨˜k⟩ ∑
288
+ j′
289
+ j′aj′ +β a kajsk
290
+ ⟨k⟩ ∑
291
+ k′
292
+ k′ik′
293
+ (13)
294
+ −σajek −δa jek ,
295
+ dujik
296
+ dt
297
+ =−λ ju jik
298
+ ⟨˜k⟩ ∑
299
+ j′
300
+ j′aj′ +σu jek −γujik
301
+ (14)
302
+ −κu jik +δajik ,
303
+ da jik
304
+ dt
305
+ =λ jujik
306
+ ⟨˜k⟩ ∑
307
+ j′
308
+ j′aj′ +σajek −γajik
309
+ (15)
310
+ +κu jik −δajik ,
311
+ dujrk
312
+ dt
313
+ =−λ ju jrk
314
+ ⟨˜k⟩ ∑
315
+ j′
316
+ j′aj′ +(1− f)γujik +δa jrk ,
317
+ (16)
318
+ dajrk
319
+ dt
320
+ =λ jujrk
321
+ ⟨˜k⟩ ∑
322
+ j′
323
+ j′aj′ +(1− f)γajik −δajrk ,
324
+ (17)
325
+ dujdk
326
+ dt
327
+ =fγ(uj +aj)ik ,
328
+ (18)
329
+ where ⟨k⟩ and ⟨˜k⟩ denote the mean degrees of the EL and IL,
330
+ respectively.
331
+ C.
332
+ Networks
333
+ In our numerical experiments, we use a Barabási–Albert
334
+ (BA) network45 to model the information layer of the two-
335
+ layer structure underlying SEIRD-UAU dynamics.
336
+ Such
337
+ networks exhibit scale-free degree distributions p(k) ∝ k−γ
338
+
339
+ (a)
340
+ (b)
341
+ Information layer
342
+ aware neighbor
343
+ already infected
344
+ C
345
+ E
346
+ Epidemic layerImpact of random and targeted disruptions on information diffusion during outbreaks
347
+ 4
348
+ (a)
349
+ (b)
350
+ FIG. 2. Multiplex networks. Information layer (top layer) with BA structure and and epidemic layer (bottom layer) with GIRG structure
351
+ determined by exponents α = 2, τ = 2.5 (a) and α = 2, τ = 3.5 (b). In the BA network, each new node has m = 2 edges that connect it to
352
+ existing nodes using linear preferential attachment. We use blue and orange edges in the epidemic layer to indicate short-range and long-range
353
+ connections, respectively. An edge connecting two nodes i, j is considered a short-range connection if the corresponding positions xi,x j satisfy
354
+ ∥xi − xj∥ < 7. Otherwise, it is considered a long-range connection. The numbers of nodes in panels (a) and (b) are N = 921 and N = 973,
355
+ respectively.
356
+ (γ > 0), and are often found in social and technological
357
+ systems.46–50 Note that other distributions such as log-normal
358
+ distributions may also provide good descriptions of empirical
359
+ degree distributions in seemingly scale-free networks.51 In the
360
+ epidemic layer, we use a geometric inhomogeneous random
361
+ graph (GIRG)52, a spatial network that has found applications
362
+ in representing spatially embedded metapopulation structures
363
+ in COVID-19 models.53
364
+ 1.
365
+ Barabási–Albert network
366
+ Barabási–Albert networks45 are constructed using a prefer-
367
+ ential attachment procedure in which new nodes that are itera-
368
+ tively added to an existing network have a higher likelihood of
369
+ being attached to nodes that have higher numbers of connec-
370
+ tions. A mean field analysis of the BA model and correspond-
371
+ ing numerical results show that the exponent of the power-law
372
+ degree distribution is γ ≈ 3.54
373
+ To construct the BA network that we will use in our sim-
374
+ ulations, we start with a star graph with one root node and
375
+ two leave nodes and iteratively add new nodes until we reach
376
+ N nodes. Each new node has m = 2 edges that connect it to
377
+ existing nodes using linear preferential attachment. A visual-
378
+ ization of such a BA information layer network with N ≈ 103
379
+ is given in the top row of Fig. 2. In our simulations, we use
380
+ a BA network with a larger node number of N ≈ 104 that is
381
+ constructed in the same way as the ILs in Fig. 2.
382
+ 2.
383
+ Geometric inhomogeneous random graph
384
+ The GIRG model52,55 produces a spatially embedded scale-
385
+ free random network. In this model, N points are first se-
386
+ lected uniformly at random in the n-dimensional hypercube
387
+ Kn = [0,1]n.
388
+ We denote the randomly selected point po-
389
+ sitions by xi ∈ Kn (1 ≤ i ≤ N) and assign each of them a
390
+ weight wi whose value is drawn from a power-law distribution
391
+ ˜p(w) = (τ −2)w−τ (w ≥ 1,τ ≥ 2).52,55 Note that the distribu-
392
+ tion ˜p(w) is normalized such that its mean value is equal to
393
+ 1. Pairs of nodes i, j with positions xi,xj are adjacent with
394
+ probability
395
+ Πij = 1−exp
396
+
397
+
398
+
399
+ wi w j
400
+ ∥xi −xj∥n
401
+ �α�
402
+ ,
403
+ (19)
404
+ where ∥xi − xj∥ denotes the Euclidean distance between
405
+ points xi and x j. The resulting degrees ki (1 ≤ i ≤ N) are
406
+ also distributed according to a power law with exponent τ.
407
+ According to Eq. 19, the exponent α tunes the distance and
408
+ weight dependence of Πij. For α = 0, the probability that
409
+ two nodes i, j are adjacent is independent of their distance
410
+ |xi − xj|. That is, Πij = 1 − e−1 for all i, j. By increasing α,
411
+ the distance-dependence of Πij strongly influences the struc-
412
+ ture of the network so that only nearby nodes are likely to be
413
+ adjacent. The bottom row of Fig. 2 shows GIRGs for various
414
+ parameters.
415
+ For small exponents τ ≥ 2, the number of nodes with large
416
+ weight values increases. According to Eq. 19, nodes with
417
+ large weights are more likely to be connected than nodes with
418
+
419
+ Impact of random and targeted disruptions on information diffusion during outbreaks
420
+ 5
421
+ small weights. The abundance of these large-weight nodes,
422
+ which are the hubs of the underlying scale-free network, im-
423
+ pacts the global structure of GIRG. By decreasing τ, many
424
+ long-range connections are added to the GIRG. In the bottom
425
+ row of Fig. 2, we observe that smaller values of τ are associ-
426
+ ated with a larger proportion of long-range connections.
427
+ D.
428
+ Edge removal
429
+ To model disruptions in the IL, we consider two different
430
+ edge-removal protocols: (i) random edge removal and (ii) tar-
431
+ geted edge removal. In both protocols, we select ˜N ≤ N nodes
432
+ and denote the proportion of selected nodes by q = ˜N/N. For
433
+ each selected node, we remove each of its edges with proba-
434
+ bility p. Values of p,q > 0 correspond to disruptions in the
435
+ IL that slow down the information spread. For p = q = 1,
436
+ there are no awareness dynamics and the epidemic progresses
437
+ without interference from the information layer.
438
+ In random edge removal, ˜N nodes are selected uniformly
439
+ at random while we select ˜N hub nodes (i.e., nodes with the
440
+ largest degrees) in targeted edge removal. Such random and
441
+ targeted disruptions have been studied to provide insight into
442
+ the ability of different types of networks to withstand errors
443
+ and intentional attacks.65 It has been shown that structural fea-
444
+ tures of scale-free networks such as the size of the largest con-
445
+ nected component are very sensitive to intentional attacks (or
446
+ sabotage).66,67
447
+ We next explore how variations in p,q ∈ [0,1] impact the
448
+ total proportion of infections i∗ = 1 − s∗, peak infection (i.e.,
449
+ the maximum proportion of the population that was infected
450
+ on any day), and the time between the beginning of the out-
451
+ break until peak infection is reached.
452
+ III.
453
+ RESULTS
454
+ First consider a baseline case of SEIRD-UAU dynamics
455
+ without edge removal (i.e., pq = 0) in two different multi-
456
+ plex networks. Both multiplex networks are connected and
457
+ have the same BA information layer (see Sec. II C 1). In the
458
+ epidemic layer, we set τ = 3.5 and τ = 2.5 to model contact
459
+ networks with different proportions of long-range connections
460
+ (see Fig. 2). In the remainder of this work, we will refer to the
461
+ networks with τ = 2.5 and τ = 3.5 as long-range and short-
462
+ range networks, respectively. In both networks, we set α = 2
463
+ [see Eq. (19)]. All stochastic simulations are implemented us-
464
+ ing Gillespie’s algorithm.68–70
465
+ A.
466
+ Baseline
467
+ We have chosen the model parameters that we use in the
468
+ baseline simulation in accordance with empirical data on the
469
+ outbreak of SARS-CoV-2 in the beginning of 2020. For ex-
470
+ ample, for the two multiplex networks that we use in our sim-
471
+ ulations, we have set the infection rate of unaware nodes to
472
+ β u = 0.17,0.6 day−1 to obtain a basic reproduction number R0
473
+ FIG. 3.
474
+ Stochastic simulation of baseline scenario without
475
+ information-layer disruption (i.e., pq = 0). (a,b) Proportions of sus-
476
+ ceptible (s(t)), exposed (e(t)), infected (i(t)), recovered (r(t)), and
477
+ deceased (d(t)) nodes at time t. The exponent τ in the epidemic
478
+ layer in panels (a,c) and (b,d) is set to 3.5 (short range) and 2.5
479
+ (long range), respectively. The corresponding numbers of nodes are
480
+ N = 10049 and N = 10025. Solid colored lines represent mean val-
481
+ ues that are based on 10 i.i.d. realizations (thin grey lines).
482
+ FIG. 4. Heterogeneous mean-field solution of baseline scenario with-
483
+ out information-layer disruption (i.e., pq = 0). (a,b) Proportions of
484
+ susceptible (s(t)), exposed (e(t)), infected (i(t)), recovered (r(t)),
485
+ and deceased (d(t)) nodes at time t. The exponent τ in the epi-
486
+ demic layer in panels (a,c) and (b,d) is set to 3.5 (short range) and
487
+ 2.5 (long range), respectively. The corresponding numbers of nodes
488
+ are N = 10049 and N = 10025.
489
+
490
+ 1.0
491
+ a
492
+ (b)
493
+ 0.8
494
+ 0.6
495
+ 0.4
496
+ 0.2
497
+ 0.0
498
+ 0
499
+ 50
500
+ 100
501
+ 150
502
+ 0
503
+ 50
504
+ 100
505
+ 150
506
+ 1.0
507
+ (d)
508
+ (c)
509
+ 0.8
510
+ u(t)
511
+ Proportion
512
+ a(t)
513
+ 0.6
514
+ s(t)
515
+ (+)a
516
+ 0.4
517
+ i(t)
518
+ r(t)
519
+ 30 × d(t)
520
+ 0.2
521
+ 0.0
522
+ 0.0
523
+ 2.5
524
+ 5.0
525
+ 7.5
526
+ 10.0
527
+ 0.0
528
+ 2.5
529
+ 5.0
530
+ 7.5
531
+ 10.0
532
+ Time [days]
533
+ Time [days]1.0
534
+ b
535
+ 0.8
536
+ Proportion
537
+ 0.6
538
+ 0.4
539
+ 0.2
540
+ 0.0
541
+ 0
542
+ 50
543
+ 100
544
+ 150
545
+ 0
546
+ 50
547
+ 100
548
+ 150
549
+ 1.0
550
+ (d)
551
+ 0.8
552
+ u(t)
553
+ Proportion
554
+ a(t)
555
+ 0.6
556
+ s(t)
557
+ e(t)
558
+ 0.4
559
+ i(t)
560
+ r(t)
561
+ 30 × d(t)
562
+ 0.2
563
+ 0.0
564
+ 0.0
565
+ 2.5
566
+ 5.0
567
+ 7.5
568
+ 10.0
569
+ 0.0
570
+ 2.5
571
+ 5.0
572
+ 7.5
573
+ 10.0
574
+ Time [days]
575
+ Time [days]Impact of random and targeted disruptions on information diffusion during outbreaks
576
+ 6
577
+ Parameter
578
+ Symbol
579
+ Value
580
+ Units
581
+ Comments/references
582
+ Infection rate (unaware)
583
+ β u
584
+ 0.17,0.6
585
+ day−1
586
+ inferred from R0 ≈ 2−4 for a given γ56,57
587
+ Infection rate (aware)
588
+ β a
589
+ 0.2β u
590
+ day−1
591
+ 58
592
+ Latent rate
593
+ σ
594
+ 1/5
595
+ day−1
596
+ 59
597
+ Resolution rate
598
+ γ
599
+ 1/14
600
+ day−1
601
+ 60,61
602
+ Infection fatality ratio
603
+ f
604
+ 1%
605
+ ...
606
+ 62,63
607
+ Awareness rate (infected)
608
+ κ
609
+ 1
610
+ day−1
611
+ 64
612
+ Base awareness rate
613
+ λ
614
+ 0.5κ
615
+ day−1
616
+ 64
617
+ Unawareness rate
618
+ δ
619
+ 1/30
620
+ day−1
621
+ 64
622
+ TABLE I. Overview of model parameters. We use infection rates β u = 0.17 day−1 and β u = 0.6 day−1 for GIRG networks with τ = 2.5 (long
623
+ range) and τ = 3.5 (short range), respectively.
624
+ of about 2−4.56,57 Given a latency period of about 5 days59,
625
+ we set the latent rate to σ = 1/5 day−1. The resolution rate is
626
+ set to γ = 1/14 day−1, and we use an infection fatality ratio f
627
+ of 1%.60–63 Other model parameters that are associated with
628
+ UAU dynamics are as in Ref. 64. We provide an overview of
629
+ all parameters and corresponding references in Tab. I.
630
+ Figure 3 shows the stochastic evolution of the proportions
631
+ of susceptible s(t), exposed e(t), infected i(t), recovered r(t),
632
+ and deceased d(t) nodes in the EL and of unaware u(t) and
633
+ aware a(t) nodes in the IL. Initially, 10 nodes are infectious
634
+ and 1 node is aware. For networks of about N = 10000 nodes
635
+ that are used in our stochastic simulations, these initial condi-
636
+ tions correspond to i(0) ≈ 10−3 and a(0) ≈ 10−4. The simu-
637
+ lation results shown in Figs. 3(a,c) and Figs. 3(b,d) are based
638
+ on short-range (τ = 3.5) and long-range (τ = 2.5) GIRGs, re-
639
+ spectively. The evolution of the UAU dynamics in the IL is
640
+ very similar for both GIRGs. However, structural differences
641
+ between the ELs directly impact the evolution of SEIRD dy-
642
+ namics. The infected fraction peaks at ∼ 0.17 after about 38
643
+ days in the long-range EL but peaks at ∼ 0.21 at about 51 days
644
+ in the short-range EL. Figure 3 also shows that the final epi-
645
+ demic size 1−s(t → ∞) in both networks differs significantly.
646
+ To understand what causes the different outbreak character-
647
+ istics in both networks, we examined the degree distribution
648
+ of susceptible nodes at T = 150: there are substantially more
649
+ susceptible low-degree nodes in the long-range GIRG where
650
+ τ = 2.5 compared to the short-range GIRG with τ = 3.5. Al-
651
+ though, there are more hub nodes with large degree in the
652
+ long-range GIRG, the proportion of low-degree nodes is also
653
+ larger. Hence, there are more low-degree nodes in the long-
654
+ range GIRG that are less exposed to the outbreak dynamics.
655
+ To complement the stochastic simulation results, we nu-
656
+ merically solve the heterogeneous mean-field model (10)-(18)
657
+ for the same networks and model parameters (see Tab. I).
658
+ We set the degree cut-offs to J = 210, K = 400 (τ = 2.5)
659
+ and J = 210, K = 164 (τ = 3.5). In the multiplex network
660
+ with short-range IL with τ = 3.5, the degree cut-offs corre-
661
+ spond to the maximum degrees. In the long-range EL where
662
+ τ = 2.5, the maximum degree is 856, and to keep the solu-
663
+ tion of the mean-field model computationally feasible we set
664
+ the cut-off K = 400. Initially, we set ajik(0) = pj ˜pka(0)/2,
665
+ ajsk(0) = pj ˜pka(0)/2, ujsk(0) = pj ˜pk(1 − i(0) − a(0)/2),
666
+ ujik(0) = pj ˜pk(i(0) − a(0)/2), where pj and ˜pk denote the
667
+ degree distributions in the IL and EL, respectively. Both de-
668
+ gree distributions are normalized according to ∑J
669
+ j=1 pj = 1
670
+ and ∑K
671
+ k=1 ˜pk = 1.
672
+ Note that these initial conditions satisfy
673
+ s(0) = ∑
674
+ j,k
675
+
676
+ u jsk(0)+ajsk(0)
677
+
678
+ (20)
679
+ = ∑
680
+ j,k
681
+ pj ˜pk
682
+
683
+ 1−i(0)
684
+
685
+ = 1−i(0),
686
+ (21)
687
+ i(0) = ∑
688
+ j,k
689
+
690
+ u jik(0)+ajik(0)
691
+
692
+ = ∑
693
+ j,k
694
+ pj ˜pki(0),
695
+ (22)
696
+ u(0) = ∑
697
+ j,k
698
+
699
+ u jsk(0)+ujik(0)
700
+
701
+ (23)
702
+ = ∑
703
+ j,k
704
+ pj ˜pk
705
+
706
+ 1−a(0)
707
+
708
+ = 1−a(0),
709
+ (24)
710
+ a(0) = ∑
711
+ j,k
712
+
713
+ a jsk(0)+ajik(0)
714
+
715
+ = ∑
716
+ j,k
717
+ pj ˜pka(0).
718
+ (25)
719
+ In accordance with the initial conditions that we used in the
720
+ stochastic simulations, we set i(0) = 10−3 and a(0) = 10−4.
721
+ Figure 4 shows the corresponding numerical results. Compar-
722
+ ing Figs. 3 to 4, we observe that the heterogeneous mean-field
723
+ model captures characteristic features that arise in the evolu-
724
+ tion of stochastic SEIRD-UAU dynamics. Examples of such
725
+ features include (i) the rapid spread of awareness in the IL
726
+ and (ii) differences between both ELs in the final epidemic
727
+ size 1 − s(t → ∞). In the heterogeneous mean-field model
728
+ (10)-(18), we account only for differences in node degree and
729
+ neglect other structural features of the considered multiplex
730
+ networks. Subpopulations interact in a well-mixed manner
731
+ and susceptible nodes of the same degree have the same risk
732
+ of being infected at any given time. As a consequence of these
733
+ approximations, the mean-field model overestimates both the
734
+ number of new infections and final outbreak size compared to
735
+ the stochastic simulation results in Fig. 3.
736
+
737
+ Impact of random and targeted disruptions on information diffusion during outbreaks
738
+ 7
739
+ FIG. 5. Random edge removal. The impact of random edge removal in the IL on disease dynamics in the EL. Epidemic size 1 − s(t → ∞)
740
+ (left column), peak infection (middle column), and time to peak infection (right column) as a function of the proportion of selected nodes q
741
+ and the corresponding edge removal probability p. The exponent τ in the ELs in top row and bottom row is set to 3.5 (short range) and 2.5
742
+ (long range), respectively. The corresponding numbers of nodes are N = 10049 and N = 10025. Simulation results are based on 230 i.i.d.
743
+ realizations.
744
+ FIG. 6. Targeted edge removal. The impact of random edge removal in the IL on disease dynamics in the EL. Epidemic size 1 − s(t → ∞)
745
+ (left panel), peak infection (middle panel), and time to peak infection (right panel) as a function of the proportion of selected nodes q and the
746
+ corresponding edge removal probability p. The exponent τ in the ELs in top row and bottom row is set to 3.5 (short range) and 2.5 (long range),
747
+ respectively. The corresponding numbers of nodes are N = 10049 and N = 10025. Simulation results are based on 230 i.i.d. realizations.
748
+
749
+ (a) Epidemic size (T = 3.5)
750
+ (b) Peak infection (T = 3.5)
751
+ (c) Time to peak infection (↑ = 3.5)
752
+ 1.00
753
+ 0.40
754
+ 50
755
+ 0.98
756
+ 0.35
757
+ 0.96
758
+ 0.30
759
+ 40
760
+ 0.94
761
+ 0.25
762
+ 0.92
763
+ 0.20
764
+ 30
765
+ 0.00
766
+ 0.00
767
+ 0.00
768
+ .1.00
769
+ 0.25
770
+ 1.00
771
+ 0.25
772
+ 1.00
773
+ 0.25
774
+ 0.75
775
+ 0.75
776
+ 0.75
777
+ 0.50
778
+ 0.50
779
+ 0.50
780
+ 0.50
781
+ 0.50
782
+ 0.50
783
+ 0.75
784
+ 0.75
785
+ 0.75
786
+ 0.25
787
+ 0.25
788
+ 0.25
789
+ p
790
+ p
791
+ p
792
+ 1.00
793
+ 1.00
794
+ 1.00
795
+ 0.00
796
+ 0.00
797
+ q
798
+ 0.00
799
+ q
800
+ q
801
+ (d) Epidemic size (T = 2.5)
802
+ (e) Peak infection (T = 2.5)
803
+ (f) Time to peak infection (T = 2.5)
804
+ 1.0
805
+ 0.4
806
+ 40
807
+ 0.9
808
+ 35
809
+ 0.3
810
+ 0.8
811
+ 30
812
+ 0.7
813
+ 0.2
814
+ 0.6
815
+ 25
816
+ 0.00
817
+ 0.00
818
+ 0.00
819
+ 0.25
820
+ 1.00
821
+ 0.25
822
+ 1.00
823
+ 0.25
824
+ 1.00
825
+ 0.75
826
+ 0.75
827
+ 0.75
828
+ 0.50
829
+ 0.50
830
+ 0.50
831
+ 0.50
832
+ 0.50
833
+ 0.50
834
+ 0.75
835
+ 0.75
836
+ 0.75
837
+ 0.25
838
+ 0.25
839
+ 0.25
840
+ p
841
+ p
842
+ p
843
+ 1.00
844
+ 0.00
845
+ 1.00
846
+ 0.00
847
+ 1.00
848
+ 0.00
849
+ q
850
+ q
851
+ q(a) Epidemic size (π = 3.5)
852
+ (b) Peak infection (T = 3.5)
853
+ (c) Time to peak infection (↑ = 3.5)
854
+ 1.00
855
+ 0.40
856
+ 50
857
+ 0.98
858
+ 0.35
859
+ 40
860
+ 0.96
861
+ 0.30
862
+ 0.94
863
+ 0.25
864
+ 30
865
+ 0.92
866
+ 0.20
867
+ 0.00
868
+ 0.00
869
+ 0.00
870
+ 0.25
871
+ 1.00
872
+ 0.25
873
+ 1.00
874
+ 0.00
875
+ 0.25
876
+ 0.75
877
+ 0.75
878
+ 0.25
879
+ 0.50
880
+ 0.50
881
+ 0.50
882
+ 0.50
883
+ 0.50
884
+ 0.50
885
+ 0.75
886
+ 0.75
887
+ 0.75
888
+ 0.25
889
+ 0.25
890
+ 0.75
891
+ p
892
+ p
893
+ p
894
+ 1.00
895
+ 1.00
896
+ 1.00
897
+ 0.00
898
+ 0.00
899
+ q
900
+ q
901
+ q
902
+ 1.00
903
+ (d) Epidemic size (T = 2.5)
904
+ (e) Peak infection (T = 2.5)
905
+ (f) Time to peak infection (T = 2.5)
906
+ 40
907
+ 1.0
908
+ 0.4
909
+ 35
910
+ 0.9
911
+ 0.3
912
+ 0.8
913
+ 30
914
+ 0.7
915
+ 0.2
916
+ 25
917
+ 0.6
918
+ 0.00
919
+ 0.00
920
+ 0.00
921
+ 0.25
922
+ 1.00
923
+ 0.25
924
+ 1.00
925
+ 0.00
926
+ 0.25
927
+ 0.75
928
+ 0.75
929
+ 0.25
930
+ 0.50
931
+ 0.50
932
+ 0.50
933
+ 0.50
934
+ 0.50
935
+ 0.50
936
+ 0.75
937
+ 0.75
938
+ 0.75
939
+ 0.25
940
+ 0.25
941
+ 0.75
942
+ p
943
+ p
944
+ p
945
+ 1.00
946
+ 0.00
947
+ 1.00
948
+ 0.00
949
+ 1.00
950
+ q
951
+ q
952
+ q
953
+ 1.00Impact of random and targeted disruptions on information diffusion during outbreaks
954
+ 8
955
+ B.
956
+ Impact of edge removal
957
+ We now study the impact of random and targeted edge re-
958
+ moval in the IL (see Sec. II D) on SEIRD dynamics in terms
959
+ of three disease severity measures: (i) final epidemic size, (ii)
960
+ peak infection, and (iii) time to peak infection.
961
+ 1.
962
+ Random edge removal
963
+ In random edge removal, we first select a proportion of q =
964
+ ˜N/N nodes in the IL uniformly at random. For each of the
965
+ selected nodes, each of its edges are removed with probability
966
+ p.
967
+ Figure 5(a,d) shows the epidemic size as a function of p,q
968
+ for both short-range and long-range GIRGs. The epidemic
969
+ size increases with p and q because larger values of p,q are
970
+ associated with fewer edges in the IL, leading to a smaller pro-
971
+ portion of aware nodes. Hence, the proportion of nodes with
972
+ a reduced infection rate β u also decreases. For the long-range
973
+ GIRG (τ = 2.5), the final epidemic size undergoes a transition
974
+ from about 0.6 for p,q ≈ 0 to about 0.9 for p,q ≈ 1. Because
975
+ the final epidemic size in the short-range GIRG (τ = 3.5) is
976
+ already about 0.9, random edge removal has relatively little
977
+ impact on this quantity.
978
+ As with the impact on final epidemic size 1−s(t → ∞), ran-
979
+ dom edge removal generates a similar-looking p,q-dependent
980
+ infection peak, as shown in Fig. 5(b,e). The time to reach peak
981
+ infection decreases with p,q since higher p,q are associated
982
+ with smaller proportions of aware nodes. Thus, the proportion
983
+ of nodes with a reduced infection rate β u also decreases, and
984
+ the epidemic spreads faster through the network.
985
+ 2.
986
+ Targeted edge removal
987
+ For targeted edge removal where the ˜N selected nodes cor-
988
+ respond to the hubs (i.e., largest-degree nodes) of the IL, we
989
+ find that the overall dependence of epidemic size, peak infec-
990
+ tion, and time to peak infection on p,q is qualitatively simi-
991
+ lar to random edge removal (see Fig. 6). As in random edge
992
+ removal, the impact of targeted edge removal on the final epi-
993
+ demic size is smaller for the short-range GIRG compared to
994
+ the long-range one. A key difference in targeted edge removal
995
+ is that all studied quantities are more sensitive to variations in
996
+ q, the proportion of selected hub nodes. For example, the tran-
997
+ sition of the epidemic size for p = 1 as a function of q in tar-
998
+ geted edge removal [see Fig. 6(a,d)] is steeper than the corre-
999
+ sponding transition in random edge removal [see Fig. 5(a,d)].
1000
+ Targeted edge removal selects nodes based on their degree
1001
+ rather than uniformly, and leads to more significant changes
1002
+ in epidemic size, peak infection, and time to peak infection
1003
+ as p ≥ 0.5. These findings are in accordance with previous
1004
+ work that showed that scale-free networks break down more
1005
+ easily under intentional attacks than under uniform random
1006
+ failure.67 Our work provide insights into how such disruptions
1007
+ in information diffusion translate into differences in disease
1008
+ severity measures.
1009
+ IV.
1010
+ DISCUSSION
1011
+ In this work, we studied the impact of disruptions in com-
1012
+ munication networks on information diffusion and subse-
1013
+ quently disease outcome during an outbreak. To do so, we
1014
+ constructed a multiplex network that consists of two lay-
1015
+ ers. The first layer, called information layer (IL), is used to
1016
+ model communication between individuals (e.g., online in-
1017
+ formation exchange via a social media platform). The sec-
1018
+ ond layer, called epidemic layer (EL), is used to represent a
1019
+ spatially embedded human contact network in which infec-
1020
+ tious individuals can transmit a disease to susceptible indi-
1021
+ viduals. We use this multiplex network to simulate coevolv-
1022
+ ing unaware-aware-unaware (UAU) and susceptible-exposed-
1023
+ infected-recovered-deceased (SEIRD) dynamics. The model
1024
+ parameters that we use in our simulations have been selected
1025
+ in accordance with empirical data on the early outbreak stages
1026
+ of SARS-CoV-2 in the beginning of 2020.
1027
+ We studied two different epidemic layers with different pro-
1028
+ portions of long-range connections, representing human con-
1029
+ tact networks with different contact characteristics. To illus-
1030
+ trate the impact of disruptions in the IL on the evolution of an
1031
+ outbreak, we utilized two different edge removal protocols: (i)
1032
+ random edge removal and (ii) targeted edge removal. In both
1033
+ protocols, we select a proportion q of nodes and then remove
1034
+ corresponding edges with probability p. In random edge re-
1035
+ moval, we select nodes in the IL uniformly at random while
1036
+ we select nodes with the largest degree (i.e., hub nodes) in
1037
+ targeted edge removal. Although edge removal may render
1038
+ the IL disconnected, the EL is always connected in our sim-
1039
+ ulations such that all nodes in the EL can potentially become
1040
+ infected. Previous work has shown that scale-free networks
1041
+ such as the IL in our multiplex network are more robust to
1042
+ random than targeted disruptions.65–67 The reason for this ef-
1043
+ fect is that by removing hub nodes of a scale-free network, a
1044
+ large number of all edges in the network is being removed,
1045
+ strongly impacting the connectivity properties of such a net-
1046
+ work. We observe that targeted edge removal can abruptly
1047
+ change outbreak characteristics such as time to peak infection,
1048
+ even for small proportions of selected nodes. Our results ex-
1049
+ tend those presented in previous work on random and targeted
1050
+ disruptions65–67 by establishing a connection to coevolving in-
1051
+ formation and epidemic diffusion.
1052
+ DATA AVAILABILITY
1053
+ Our
1054
+ source
1055
+ codes
1056
+ are
1057
+ publicly
1058
+ available
1059
+ at
1060
+ https://gitlab.com/ComputationalScience/
1061
+ information-epidemic.
1062
+ 1T. Schneider, O. R. Dunbar, J. Wu, L. Böttcher, D. Burov, A. Garbuno-
1063
+ Inigo, G. L. Wagner, S. Pei, C. Daraio, R. Ferrari, et al., “Epidemic manage-
1064
+ ment and control through risk-dependent individual contact interventions,”
1065
+ PLOS Computational Biology 18, e1010171 (2022).
1066
+ 2C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between aware-
1067
+ ness and epidemic spreading in multiplex networks,” Physical Review Let-
1068
+ ters 111, 128701 (2013).
1069
+ 3J. P. Gleeson, “Binary-state dynamics on complex networks: Pair approxi-
1070
+ mation and beyond,” Physical Review X 3, 021004 (2013).
1071
+
1072
+ Impact of random and targeted disruptions on information diffusion during outbreaks
1073
+ 9
1074
+ 4R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
1075
+ “Epidemic processes in complex networks,” Reviews of Modern Physics
1076
+ 87, 925 (2015).
1077
+ 5M. E. J. Newman, “Properties of highly clustered networks,” Physical Re-
1078
+ view E 68, 026121 (2003).
1079
+ 6W. Huang and C. Li, “Epidemic spreading in scale-free networks with com-
1080
+ munity structure,” Journal of Statistical Mechanics: Theory and Experiment
1081
+ 2007, P01014 (2007).
1082
+ 7I. Tunc and L. B. Shaw, “Effects of community structure on epidemic spread
1083
+ in an adaptive network,” Physical Review E 90, 022801 (2014).
1084
+ 8R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
1085
+ networks,” Physical Review Letters 86, 3200 (2001).
1086
+ 9M. J. Keeling and P. Rohani, Modeling infectious diseases in humans and
1087
+ animals (Princeton University Press, 2011).
1088
+ 10L. Böttcher, O. Woolley-Meza, E. Goles, D. Helbing, and H. J. Herrmann,
1089
+ “Connectivity disruption sparks explosive epidemic spreading,” Physical
1090
+ Review E 93, 042315 (2016).
1091
+ 11L. Böttcher, H. J. Herrmann, and M. Henkel, “Dynamical universality of
1092
+ the contact process,” Journal of Physics A: Mathematical and Theoretical
1093
+ 51, 125003 (2018).
1094
+ 12M. E. J. Newman, “Spread of epidemic disease on networks,” Physical Re-
1095
+ view E 66, 016128 (2002).
1096
+ 13R. M. D’Souza, J. Gómez-Gardenes, J. Nagler, and A. Arenas, “Explo-
1097
+ sive phenomena in complex networks,” Advances in Physics 68, 123–223
1098
+ (2019).
1099
+ 14R. M. D’Souza and J. Nagler, “Anomalous critical and supercritical phe-
1100
+ nomena in explosive percolation,” Nature Physics 11, 531–538 (2015).
1101
+ 15L. Böttcher and N. Antulov-Fantulin, “Unifying continuous, discrete, and
1102
+ hybrid susceptible-infected-recovered processes on networks,” Physical Re-
1103
+ view Research 2, 033121 (2020).
1104
+ 16J. Fan, J. Meng, Y. Liu, A. A. Saberi, J. Kurths, and J. Nagler, “Universal
1105
+ gap scaling in percolation,” Nature Physics 16, 455–461 (2020).
1106
+ 17P. Holme and J. Saramäki, “Temporal networks,” Physics Reports 519, 97–
1107
+ 125 (2012).
1108
+ 18M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A.
1109
+ Porter, S. Gómez, and A. Arenas, “Mathematical formulation of multilayer
1110
+ networks,” Physical Review X 3, 041022 (2013).
1111
+ 19M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
1112
+ Porter, “Multilayer networks,” Journal of Complex Networks 2, 203–271
1113
+ (2014).
1114
+ 20C. Berge, Graphs and Hypergraphs (North-Holland Pub. Co., Amsterdam,
1115
+ NL, 1973).
1116
+ 21O. T. Courtney and G. Bianconi, “Generalized network structures: The
1117
+ configuration model and the canonical ensemble of simplicial complexes,”
1118
+ Physical Review E 93, 062311 (2016).
1119
+ 22S. Majhi, M. Perc, and D. Ghosh, “Dynamics on higher-order networks: A
1120
+ review,” Journal of the Royal Society Interface 19, 20220043 (2022).
1121
+ 23M. S. Anwar and D. Ghosh, “Intralayer and interlayer synchronization in
1122
+ multiplex network with higher-order interactions,” Chaos: An Interdisci-
1123
+ plinary Journal of Nonlinear Science 32, 033125 (2022).
1124
+ 24Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and C. T. Bauch, “Coupled
1125
+ disease–behavior dynamics on complex networks: A review,” Physics of
1126
+ Life Reviews 15, 1–29 (2015).
1127
+ 25E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G.
1128
+ Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings,
1129
+ M. Springborn, L. Velazquez, and C. Villalobos, “Adaptive human behav-
1130
+ ior in epidemiological models,” Proceedings of the National Academy of
1131
+ Sciences 108, 6306–6311 (2011).
1132
+ 26F. Chen, “A mathematical analysis of public avoidance behavior during
1133
+ epidemics using game theory,” Journal of Theoretical Biology 302, 18–28
1134
+ (2012).
1135
+ 27T. C. Reluga, “Equilibria of an epidemic game with piecewise linear social
1136
+ distancing cost,” Bulletin of Mathematical Biology 75, 1961–1984 (2013).
1137
+ 28L. Böttcher, J. Nagler, and H. J. Herrmann, “Critical behaviors in contagion
1138
+ dynamics,” Physical Review Letters 118, 088301 (2017).
1139
+ 29F. D. Sahneh and C. M. Scoglio, “Epidemic spread in human networks,”
1140
+ in 50th IEEE Conference on Decision and Control and European Control
1141
+ Conference, 11th European Control Conference, CDC/ECC 2011, Orlando,
1142
+ FL, USA, December 12-15, 2011 (IEEE, 2011) pp. 3008–3013.
1143
+ 30F. D. Sahneh and C. M. Scoglio, “Optimal information dissemination in epi-
1144
+ demic networks,” in Proceedings of the 51th IEEE Conference on Decision
1145
+ and Control, CDC 2012, December 10-13, 2012, Maui, HI, USA (IEEE,
1146
+ 2012) pp. 1657–1662.
1147
+ 31H. Shakeri, F. D. Sahneh, C. Scoglio, P. Poggi-Corradini, and V. M. Pre-
1148
+ ciado, “Optimal information dissemination strategy to promote preventive
1149
+ behaviors in multilayer epidemic networks,” Mathematical Biosciences &
1150
+ Engineering 12, 609 (2015).
1151
+ 32C. Granell, S. Gómez, and A. Arenas, “Competing spreading processes
1152
+ on multiplex networks: awareness and epidemics,” Physical Review E 90,
1153
+ 012808 (2014).
1154
+ 33Q. Guo, X. Jiang, Y. Lei, M. Li, Y. Ma, and Z. Zheng, “Two-stage effects of
1155
+ awareness cascade on epidemic spreading in multiplex networks,” Physical
1156
+ Review E 91, 012822 (2015).
1157
+ 34V. Sagar, Y. Zhao, and A. Sen, “Effect of time varying transmission rates
1158
+ on the coupled dynamics of epidemic and awareness over a multiplex
1159
+ network,” Chaos: An Interdisciplinary Journal of Nonlinear Science 28,
1160
+ 113125 (2018).
1161
+ 35M. Scatá, B. Attanasio, G. V. Aiosa, and A. La Corte, “The dynamical
1162
+ interplay of collective attention, awareness and epidemics spreading in the
1163
+ multiplex social networks during COVID-19,” IEEE Access 8, 189203–
1164
+ 189223 (2020).
1165
+ 36Z. Wang, Q. Guo, S. Sun, and C. Xia, “The impact of awareness diffusion
1166
+ on SIR-like epidemics in multiplex networks,” Applied Mathematics and
1167
+ Computation 349, 134–147 (2019).
1168
+ 37F. Velásquez-Rojas, P. C. Ventura, C. Connaughton, Y. Moreno, F. A. Ro-
1169
+ drigues, and F. Vazquez, “Disease and information spreading at different
1170
+ speeds in multiplex networks,” Physical Review E 102, 022312 (2020).
1171
+ 38J. Fan, Q. Yin, C. Xia, and M. Perc, “Epidemics on multilayer simplicial
1172
+ complexes,” Proceedings of the Royal Society A 478, 20220059 (2022).
1173
+ 39W. Wang, Q.-H. Liu, J. Liang, Y. Hu, and T. Zhou, “Coevolution spreading
1174
+ in complex networks,” Physics Reports 820, 1–51 (2019).
1175
+ 40M. J. Keeling and B. T. Grenfell, “Understanding the persistence of
1176
+ measles: reconciling theory, simulation and observation,” Proceedings of
1177
+ the Royal Society of London. Series B: Biological Sciences 269, 335–343
1178
+ (2002).
1179
+ 41B. D. Elderd, G. Dwyer, and V. Dukic, “Population-level differences in dis-
1180
+ ease transmission: A Bayesian analysis of multiple smallpox epidemics,”
1181
+ Epidemics 5, 146–156 (2013).
1182
+ 42L. Böttcher and J. Nagler, “Decisive conditions for strategic vaccination
1183
+ against SARS-CoV-2,” Chaos: An Interdisciplinary Journal of Nonlinear
1184
+ Science 31, 101105 (2021).
1185
+ 43Y. Zhou, J. Zhou, G. Chen, and H. E. Stanley, “Effective degree theory for
1186
+ awareness and epidemic spreading on multiplex networks,” New Journal of
1187
+ Physics 21, 035002 (2019).
1188
+ 44M. Xia, L. Böttcher, and T. Chou, “Controlling epidemics through optimal
1189
+ allocation of test kits and vaccine doses across networks,” IEEE Transac-
1190
+ tions on Network Science and Engineering 9, 1422–1436 (2022).
1191
+ 45A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
1192
+ Science 286, 509–512 (1999).
1193
+ 46H. Ebel, L.-I. Mielsch, and S. Bornholdt, “Scale-free topology of e-mail
1194
+ networks,” Physical Review E 66, 035103 (2002).
1195
+ 47A.-L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek,
1196
+ “Evolution of the social network of scientific collaborations,” Physica A:
1197
+ Statistical mechanics and its applications 311, 590–614 (2002).
1198
+ 48R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world-wide web,”
1199
+ Nature 401, 130–131 (1999).
1200
+ 49L. Danon, T. A. House, J. M. Read, and M. J. Keeling, “Social encounter
1201
+ networks: collective properties and disease transmission,” Journal of The
1202
+ Royal Society Interface 9, 2826–2833 (2012).
1203
+ 50C. Brown, A. Noulas, C. Mascolo, and V. Blondel, “A place-focused model
1204
+ for social networks in cities,” in 2013 International Conference on Social
1205
+ Computing (IEEE, 2013) pp. 75–80.
1206
+ 51A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature Com-
1207
+ munications 10, 1–10 (2019).
1208
+ 52K. Bringmann, R. Keusch, and J. Lengler, “Geometric inhomogeneous ran-
1209
+ dom graphs,” Theoretical Computer Science 760, 35–54 (2019).
1210
+ 53G. Ódor, D. Czifra, J. Komjáthy, L. Lovász, and M. Karsai, “Switchover
1211
+ phenomenon induced by epidemic seeding on geometric networks,” Pro-
1212
+ ceedings of the National Academy of Sciences 118, e2112607118 (2021).
1213
+
1214
+ Impact of random and targeted disruptions on information diffusion during outbreaks
1215
+ 10
1216
+ 54A.-L. Barabási, R. Albert, and H. Jeong, “Mean-field theory for scale-free
1217
+ random networks,” Physica A: Statistical Mechanics and its Applications
1218
+ 272, 173–187 (1999).
1219
+ 55J. Jorritsma, “Random graph visualizations,” (2020).
1220
+ 56C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe
1221
+ acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus
1222
+ disease-2019 (COVID-19): The epidemic and the challenges,” International
1223
+ Journal of Antimicrobial Agents 55, 105924 (2020).
1224
+ 57S. W. Park, B. M. Bolker, D. Champredon, D. J. Earn, M. Li, J. S. Weitz,
1225
+ B. T. Grenfell, and J. Dushoff, “Reconciling early-outbreak estimates of the
1226
+ basic reproductive number and its uncertainty: framework and applications
1227
+ to the novel coronavirus (SARS-CoV-2) outbreak,” Journal of the Royal
1228
+ Society Interface 17, 20200144 (2020).
1229
+ 58C. Y. Liu, J. Berlin, M. C. Kiti, E. Del Fava, A. Grow, E. Zagheni, A. Mele-
1230
+ garo, S. M. Jenness, S. B. Omer, B. Lopman, et al., “Rapid review of social
1231
+ contact patterns during the COVID-19 pandemic,” Epidemiology 32, 781
1232
+ (2021).
1233
+ 59H. Xin, Y. Li, P. Wu, Z. Li, E. H. Lau, Y. Qin, L. Wang, B. J. Cowling, T. K.
1234
+ Tsang, and Z. Li, “Estimating the latent period of coronavirus disease 2019
1235
+ (COVID-19),” Clinical Infectious Diseases 74, 1678–1681 (2022).
1236
+ 60L. Böttcher, M. Xia, and T. Chou, “Why case fatality ratios can be mis-
1237
+ leading: individual-and population-based mortality estimates and factors
1238
+ influencing them,” Physical Biology 17, 065003 (2020).
1239
+ 61“Duration of Isolation and Precautions for Adults with COVID-19,” (2020,
1240
+ accessed: January 4, 2021).
1241
+ 62H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau,
1242
+ A. Andronico, N. Hozé, J. Richet, C.-L. Dubost, et al., “Estimating the
1243
+ burden of SARS-CoV-2 in France,” Science 369, 208–211 (2020).
1244
+ 63L. Böttcher, M. R. D’Orsogna, and T. Chou, “Using excess deaths and test-
1245
+ ing statistics to determine COVID-19 mortalities,” European Journal of Epi-
1246
+ demiology 36, 545–558 (2021).
1247
+ 64A. Teslya, T. M. Pham, N. G. Godijk, M. E. Kretzschmar, M. C. Bootsma,
1248
+ and G. Rozhnova, “Impact of self-imposed prevention measures and short-
1249
+ term government-imposed social distancing on mitigating and delaying a
1250
+ COVID-19 epidemic: A modelling study,” PLOS Medicine 17, e1003166
1251
+ (2020).
1252
+ 65R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
1253
+ complex networks,” Nature 406, 378–382 (2000).
1254
+ 66R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Resilience of the
1255
+ Internet to Random Breakdowns,” Physical Review Letters 85, 4626 (2000).
1256
+ 67R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Breakdown of the In-
1257
+ ternet under Intentional Attack,” Physical Review Letters 86, 3682 (2001).
1258
+ 68D. T. Gillespie, “A General Method for Numerically Simulating the
1259
+ Stochastic Time Evolution of Coupled Chemical Reactions,” Journal of
1260
+ Computational Physics 22, 403–434 (1976).
1261
+ 69D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reac-
1262
+ tions,” The Journal of Physical Chemistry 81, 2340–2361 (1977).
1263
+ 70L. Böttcher and H. J. Herrmann, Computational Statistical Physics (Cam-
1264
+ bridge University Press, Cambridge, UK, 2021).
1265
+
49AyT4oBgHgl3EQf2PmT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49AzT4oBgHgl3EQf9v6Q/content/tmp_files/2301.01924v1.pdf.txt ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Diagonalization Games
2
+ Noga Alon1,5, Olivier Bousquet6, Kasper Green Larsen4,
3
+ Shay Moran2,3,6, and Shlomo Moran2
4
+ 1Departments of Mathematics and Computer Science, Tel Aviv University
5
+ 2Department of Computer Science, Technion, Israel
6
+ 3Department of Mathematics, Technion, Israel
7
+ 4Department of Computer Science, Aarhus University
8
+ 5Department of Mathematics, Princeton University
9
+ 6Google Research
10
+ January 6, 2023
11
+ Abstract
12
+ We study several variants of a combinatorial game which is based on Cantor’s diagonal
13
+ argument. The game is between two players called Kronecker and Cantor. The names of the
14
+ players are motivated by the known fact that Leopold Kronecker did not appreciate Georg
15
+ Cantor’s arguments about the infinite, and even referred to him as a “scientific charlatan”.
16
+ In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor’s
17
+ goal is to produce a new binary vector which is different from each of Kronecker’s vectors, or
18
+ prove that no such vector exists. Cantor does not see Kronecker’s vectors but he is allowed
19
+ to ask queries of the form
20
+ “What is bit number j of vector number i?”
21
+ What is the minimal number of queries with which Cantor can achieve his goal? How much
22
+ better can Cantor do if he is allowed to pick his queries adaptively, based on Kronecker’s
23
+ previous replies?
24
+ The case when m = n is solved by diagonalization using n (non-adaptive) queries. We
25
+ study this game more generally, and prove an optimal bound in the adaptive case and nearly
26
+ tight upper and lower bounds in the non-adaptive case.
27
+ 1
28
+ Introduction
29
+ The concept of infinity has been fascinating philosophers and scientists for hundreds, perhaps
30
+ thousands of years. The work of Georg Cantor (1845 – 1918) played a pivotal role in the
31
+ mathematical treatment of the infinite. Cantor’s work is based on a simple notion which asserts
32
+ that two (possibly infinite) sets have the same size whenever their elements can be paired
33
+ in one-to-one correspondence with each other [Can74]. Despite being simple, this notion has
34
+ counter-intuitive implications: for example, a set can have the same size as a proper subset of it1;
35
+ this phenomena is nicely illustrated by Hilbert’s paradox of the Grand Hotel, see e.g. [Wik22b].
36
+ This simple notion led Cantor to develop his theory of sets, which forms the basis of modern
37
+ mathematics. Alas, Cantor’s set theory was controversial at the start, and only later became
38
+ widely accepted:
39
+ 1E.g. the natural numbers and the even numbers, via the correspondence “n �→ 2n”.
40
+ 1
41
+ arXiv:2301.01924v1 [math.CO] 5 Jan 2023
42
+
43
+ Figure 1: Georg Cantor (1845 – 1918)
44
+ Figure 2: Leopold Kronecker (1823 – 1891)
45
+ The objections to Cantor’s work were occasionally fierce: Leopold Kronecker’s public opposition
46
+ and personal attacks included describing Cantor as a ”scientific charlatan”, a ”renegade” and a
47
+ ”corrupter of youth”. Kronecker objected to Cantor’s proofs that the algebraic numbers are
48
+ countable, and that the transcendental numbers are uncountable, results now included in a
49
+ standard mathematics curriculum. [Wik22a]
50
+ 1.1
51
+ Diagonalization
52
+ One of the most basic and compelling results in set theory is that not all infinite sets have the same
53
+ size. To prove this result, Cantor came up with a beautiful argument, called diagonalization.
54
+ This argument is routinely taught in introductory classes to mathematics, and is typically
55
+ presented as follows. Let N denote the set of natural numbers and let {0, 1}N denote the set of
56
+ all infinite binary vectors. Clearly both sets are infinite, but it turns out that they do not have
57
+ the same size: assume towards contradiction that there is a one-to-one correspondence j �→ vj,
58
+ where vj = (vj(1), vj(2), . . .) is the infinite binary vector corresponding to j ∈ N. Define a vector
59
+ u = (1 − v1(1), 1 − v2(2), . . .).
60
+ That is, u is formed by letting its j’th entry be equal to the negation of the j’th entry of vj.
61
+ Notice that this way the resulting vector u disagrees with vj on the j’th entry, and hence
62
+ u ̸= vj for all j. Thus, we obtain a binary vector which does not correspond to any of the natural
63
+ numbers via the assumed correspondence – a contradiction.
64
+ Rather than reaching a contradiction, it is instructive to take a positivist perspective according
65
+ to which diagonalization can be seen as a constructive procedure that does the following:
66
+ Given binary vectors v1, v2, . . ., find a binary vector u such that u ̸= vj for all j.
67
+ Moreover, notice that Cantor’s diagonal argument involves querying only a single entry per
68
+ each of the input vectors vj (i.e. the “diagonal” entries vj(j)). Thus, it is possible to construct u
69
+ while using only a little information about the input vectors vi’s (a single bit per vector).
70
+ In this manuscript we study a finite variant of the problem in which m binary vectors
71
+ v1, . . . , vm of length n are given and the goal is to produce a vector u which is different from all
72
+ of the vi’s, or to report that no such vector exists, while querying as few as possible entries of
73
+ the vi’s. We first study the case when m < 2n whence such a u is guaranteed to exist, and the
74
+ goal boils down to finding one, and later the case when m ≥ 2n.
75
+ 2
76
+
77
+ v1 = 0, 1, 1, 0, 1, 0
78
+ v2 = 1, 0, 0, 1, 1, 1
79
+ v3 = 1, 1, 1, 0, 0, 0
80
+ v4 = 0, 1, 0, 1, 1, 0
81
+ v5 = 1, 1, 0, 1, 0, 1
82
+ v6 = 0, 1, 1, 1, 1, 1
83
+ u = 1, 1, 0, 0, 1, 0
84
+ Figure 3: An illustration of Cantor’s diagonalization: the vector u at the bottom is not equal to
85
+ any of the vi’s at the top.
86
+ 2
87
+ The Cantor-Kronecker Game
88
+ Consider a game between two players called Kronecker and Cantor. In the game there are
89
+ two parameters m and n, where m, n are positive integers. Kronecker maintains a set V =
90
+ {v1, v2, . . . , vm} of m binary vectors, each of length n. Cantor’s goal is to produce a binary
91
+ vector u, also of length n, which differs from each vi, or to report that no such vector exists. To
92
+ do so, he is allowed to ask queries, where each query is of the form
93
+ “What is bit number j of vector number i?”,
94
+ where 1 ≤ j ≤ n, 1 ≤ i ≤ m. Kronecker is answering each query being asked. The objective
95
+ of Cantor is to minimize the number of queries enabling him to produce u, whereas Kronecker
96
+ tries to maximize the number of queries. We distinguish between two versions of the game:
97
+ • In the adaptive version Cantor presents his queries to Kronecker in a sequential manner,
98
+ and may decide on the next query as a function of Kronecker’s answers to the previous
99
+ ones.
100
+ • In the oblivious version Cantor must declare all of his queries in advance, before getting
101
+ answers to any of them.
102
+ For m ≤ n the smallest number of queries, both in the adaptive and oblivious versions, is m.
103
+ Indeed, Cantor can query bit number i of vi for all 1 ≤ i ≤ m and return a vector u whose i’th
104
+ bit differs from the i’th bit of vi, for all i. The lower bound is even simpler: if Cantor asks less
105
+ than m queries then there is some vector vi about which he has no information at the end of the
106
+ game. In this case he cannot ensure that his vector u will not be equal to this vi.
107
+ Organization.
108
+ We begin with the case where m < 2n: in the next section (Section 3) we
109
+ derive nearly tight bounds both in the adaptive and oblivious cases. We do so by exhibiting and
110
+ analyzing near optimal strategies for Cantor. Then, in Section 4 we consider the case where
111
+ m ≥ 2n and derive an optimal bound of m·n in this case (for both the oblivious and the adaptive
112
+ versions). We do so by exhibiting and analyzing an optimal strategy for Kronecker. Finally, in
113
+ Section 5 we discuss some algorithmic aspects, and conclude with some suggestions to future
114
+ research.
115
+ 3
116
+
117
+ 3
118
+ The Cantor-Kronecker Game with m < 2n
119
+ 3.1
120
+ Adaptive Version
121
+ Theorem 3.1. Let g(n, m) denote the smallest number of queries that suffices for Cantor when
122
+ he is allowed to use adaptive strategies. Then,
123
+ g(n, m) =
124
+
125
+ m
126
+ m ≤ n,
127
+ 2m − n
128
+ n < m < 2n.
129
+ The case 1 ≤ m ≤ n is proved in the previous section so we assume n ≤ m < 2n.
130
+ Upper Bound.
131
+ We present a strategy for Cantor which combines diagonalization with another
132
+ simple idea. To illustrate this idea let us first consider the case m = n + 1. This special case
133
+ appeared as a question in the 2022 Grossman Math Olympiad for high-school students, and so
134
+ perhaps the reader might enjoy trying to solve it before continuing reading.
135
+ Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first bit of v1, v2, and
136
+ of v3. Getting the answers, there is a bit ε so that at least two vectors among v1, v2, v3 have
137
+ their first bit equals to ε. Cantor now defines the first bit of u to be u(1) = 1 − ε and can remove
138
+ the two vectors among v1, v2, v3 whose first bit equals ε. Now Cantor is left with at most n − 1
139
+ vectors and can therefore set the last n − 1 coordinates of u according to the diagonalization
140
+ construction.
141
+ The general case is handled similarly by induction on n: for n = 1 since n ≤ m < 2n, also m
142
+ must be 1 and the result is trivial.
143
+ Assuming the result for n − 1, let v1, . . . , vm be the m vectors of Kronecker. First, note that
144
+ there is an integer x satisfying 1 ≤ x ≤ ⌈m/2⌉ so that n − 1 ≤ m − x < 2n−1: indeed, for x = 1
145
+ we have m − x ≥ n − 1 and for x = ⌈m/2⌉ we have m − x ≤ m/2 < 2n−1. Starting from x = 1
146
+ keep increasing it in steps, where in each step it is increased by 1, until it reaches ⌈m/2⌉. As
147
+ m − x changes by 1 in each step we can take the smallest x ≥ 1 that satisfies m − x < 2n−1, and
148
+ it will clearly be at most ⌈m/2⌉ and satisfy m − x ≥ n − 1 as well.
149
+ Having x as above, Cantor first queries the first bit of each of the vectors v1, v2, . . . , v2x−1.
150
+ (Note that 2x − 1 ≤ m hence this is possible). Getting the answers, there is a bit ε ∈ {0, 1} so
151
+ that at least x of the vectors have their first bit equal to ε. Cantor now defines the first bit of
152
+ his vector u to be 1 − ε, removes from the set V exactly x of the vectors whose first bit is ε,
153
+ and defines as V ′ the set of all restrictions of the remaining m − x vectors to their last n − 1
154
+ coordinates. Note that n − 1 ≤ m − x < 2n−1.
155
+ By the induction hypothesis, Cantor can now play the game for the set V ′ producing an
156
+ appropriate vector u′ by asking at most 2(m − x) − (n − 1) additional queries. The total number
157
+ of queries is thus (2x − 1) + 2(m − x) − (n − 1) = 2m − n, as needed. The vector u obtained
158
+ by concatenating the 1-bit vector 1 − ε and the vector u′ is clearly different from each member
159
+ of V . This completes the induction step argument and finishes the proof of the upper bound.
160
+ Lower Bound.
161
+ For the lower bound, we present a strategy for Kronecker which essentially
162
+ mirrors Cantor’s strategy from the upper bound. Suppose Cantor manages to produce the
163
+ required vector u after making exactly bj queries in coordinate number j of some of the vectors vi.
164
+ Kronecker chooses his answers ensuring that for each such j, the answers for bits in the j’th
165
+ location are balanced, that is, at most ⌈bj/2⌉ of the answers are 0 and at most ⌈bj/2⌉ of the
166
+ answers are 1.
167
+ Consider the vector u produced by Cantor. For every 1 ≤ j ≤ n, there are at most ⌈bj/2⌉
168
+ vectors vi known to be different than u in coordinate number j. Thus altogether there are at
169
+ 4
170
+
171
+ most
172
+ n
173
+
174
+ j=1
175
+ �bj
176
+ 2
177
+
178
+
179
+ n
180
+
181
+ j=1
182
+ bj + 1
183
+ 2
184
+ .
185
+ vectors vi that are known to Cantor to be different than u. In order to ensure u is indeed
186
+ different from each vi this number has to be at least m and hence
187
+ m ≤
188
+ n
189
+
190
+ j=1
191
+ bj + 1
192
+ 2
193
+ .
194
+ By rearranging, this implies that the total number of queries �n
195
+ j=1 bj must be at least 2m − n,
196
+ as stated.
197
+ 3.2
198
+ Oblivious Version
199
+ Theorem 3.2. Let f(n, m) denote the smallest number of queries that suffices for Cantor when
200
+ he is restricted to use oblivious strategies. Then,
201
+ f(n, m) =
202
+
203
+ m
204
+ m ≤ n
205
+ m
206
+
207
+ log
208
+ � m
209
+ n
210
+
211
+ + o
212
+
213
+ log
214
+ � m
215
+ n
216
+ ���
217
+ n < m < 2n.
218
+ Quantitatively, for all n < m < 2n
219
+ m ·
220
+
221
+ log
222
+
223
+ m
224
+ n − log m + 1
225
+
226
+ − 1
227
+
228
+ ≤ f(n, m) ≤ m
229
+
230
+ log
231
+ �2m
232
+ n
233
+
234
+ + 2 log
235
+
236
+ log
237
+ �2m
238
+ n
239
+ ��
240
+ + 1
241
+
242
+ ,
243
+ The case 1 ≤ m ≤ n is proved above so we assume n < m < 2n.
244
+ Upper Bound.
245
+ Like in the adaptive case, we present a strategy for Cantor which combines
246
+ diagonalization with another simple idea. We first illustrate this idea by handling the case m =
247
+ n + 1, and again, we encourage the reader to try and handle this case before continuing reading.
248
+ Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first two bits of each
249
+ of v1, v2, and v3 (for a total of 6 queries). Notice that there are 22 = 4 possible combinations of
250
+ 0/1 patterns on the first two bits, but at most three of them are realized by v1, v2, v3. Hence,
251
+ there must be a pair of bits ε1, ε2 which is not realized by v1, v2, nor v3:
252
+ (ε1, ε2) /∈
253
+ ��
254
+ v1(1), v1(2)
255
+
256
+ ,
257
+
258
+ v2(1), v2(2)
259
+
260
+ ,
261
+
262
+ v3(1), v3(2)
263
+ ��
264
+ .
265
+ Thus, by setting u(1) = ε1 and u(2) = ε2, Cantor rules out v1, v2, v3 and is left with n−2 vectors
266
+ v3, . . . , vn+1 which can be obliviously ruled out with the last n − 2 using diagonalization.
267
+ For the general case, let d be an integer (to be determined later). Pick mutually disjoint
268
+ subsets of coordinates J1, . . . , J⌊n/d⌋ ⊆ [n], each of size d, and pick a partition of the m vectors to
269
+ ⌊n/d⌋ subsets V1, . . . , V⌊n/d⌋ such that the partition is as balanced as possible (i.e. the difference
270
+ between each pair of sizes is ≤ 1). Thus, each set has size
271
+ |Vi| ≤
272
+
273
+ m
274
+ ⌊n/d⌋
275
+
276
+ ≤ 2md
277
+ n .
278
+ Cantor queries (obliviously) as follows.
279
+ For each i and each vector in Vi query all the coordinates in Ji.
280
+ 5
281
+
282
+ Thus, the total number of queries is exactly m · d. Now, notice that if d satisfies
283
+ 2d > 2md
284
+ n ,
285
+ (1)
286
+ then there must exist an assignment fi : Ji → {0, 1} such that fi disagrees with each of the
287
+ vectors in Vi on at least one coordinate in Ji. Hence Cantor can output the vector u, which
288
+ agrees with each of the fi on Ji. Note that Equation 1 is satisfied iff 2d
289
+ d > 2m
290
+ n ; since m > n,
291
+ it can be verified that this inequality holds when d ≥ log( 2m
292
+ n ) + 2 log(log( 2m
293
+ n )) + 1. Thus for
294
+ d =
295
+
296
+ log
297
+ � 2m
298
+ n
299
+
300
+ + 2 log
301
+
302
+ log
303
+ � 2m
304
+ n
305
+ ��
306
+ + 1
307
+
308
+ , the total number of queries is at most
309
+ m · d = m
310
+
311
+ log
312
+ �2m
313
+ n
314
+
315
+ + 2 log
316
+
317
+ log
318
+ �2m
319
+ n
320
+ ��
321
+ + 1
322
+
323
+ .
324
+ Lower Bound.
325
+ The lower bound proof is based on the following simple idea. Let Ji denote
326
+ the set of coordinates of vi which Cantor queries. Thus, the total number of queries Cantor uses
327
+ is |J1| + . . . + |Jm|. Now, let fi : Ji → {0, 1} denote Kronecker’s answers for the queries on vi.
328
+ The crucial observation is that the vector u that Cantor outputs must satisfy
329
+ (∀i) : u|Ji ̸= fi.
330
+ Indeed, if u|Ji = fi for some i then Kronecker can fail Cantor by picking his i’th vector vi to be
331
+ equal to Cantor’s output u (which would be consistent with Kronecker’s answers).
332
+ We summarize the above consideration with a definition that characterizes the winning (or
333
+ losing) strategies of Cantor in the oblivious case.
334
+ Definition 3.3 (Covering Assignments). We say that a sequence of sets J1, . . . , Jm ⊆ [n]
335
+ has a covering assignment if there are m functions fi : Ji → {0, 1} such that every binary
336
+ vector v ∈ {0, 1}n agrees with one of the fi on Ji (i.e. v|Ji = fi).
337
+ Thus, Kronecker has a winning strategy if and only if the sequence of sets J1, . . . , Jm that
338
+ Cantor queries has a covering assignment. The following lemma establishes the lower bound.
339
+ Lemma 3.4. Let J1, . . . , Jm ⊆ [n] such that
340
+ |J1| + . . . + |Jm| < m ·
341
+
342
+ log
343
+
344
+ m
345
+ n − log m + 1
346
+
347
+ − 1
348
+
349
+ .
350
+ (2)
351
+ Then, J1, . . . , Jm has a covering assignment.
352
+ Equivalently, if for each vector vi Cantor queries its entries in Ji and Equation 2 holds, then
353
+ Kronecker has a winning strategy.
354
+ Proof. Let ti = |Ji| and let t = �
355
+ i ti. Assume, without loss of generality, that t1 ≤ t2 ≤ . . . ≤ tm.
356
+ To prove a lower bound of the form md for t, where d will be specified later, we show that if t is
357
+ smaller than md then there are m functions fi : Ji → {0, 1} so that for every possible vector
358
+ v ∈ {0, 1}n there is i ≤ m so that v|Ji = fi.
359
+ We do so by explicitly constructing the fi’s (which corresponds to describing a winning
360
+ strategy for Kronecker). Starting with the set V = {0, 1}n of all possible potential vectors z,
361
+ go over the vectors vi in order. In step i we choose the function fi : Ji → {0, 1} such that
362
+ |{v ∈ V : v|Ji = fi}| is maximized. Since there are 2ti possible choices for fi, the maximizing
363
+ choice satisfies
364
+ ���{v ∈ V : v|Ji = fi}
365
+ ��� ≥ |V |
366
+ 2ti .
367
+ 6
368
+
369
+ After picking fi, we remove all the vectors of V that agree with fi and proceed to the next step.
370
+ Therefore, after the first i steps, the size of the set V of the remaining vectors is at most
371
+ 2n
372
+ i�
373
+ j=1
374
+ (1 − 1/2tj).
375
+ We can continue with this analysis until the size of the set V becomes smaller than 1, namely
376
+ the set becomes empty. It is a bit better, however, to apply a simpler reasoning once the size
377
+ of V becomes smaller than 2d, and only argue that at least one vector from V is eliminated
378
+ in each step. (Continuing the same analysis as before would only guarantee that V shrinks by
379
+ a factor of (1 − 1/2ti) which by the choice of d would be roughly 1 − 1/2d < 1). To simplify
380
+ the computation it is not too wasteful to apply the simpler analysis already when the size of
381
+ V becomes smaller than m/2. If this happens in the first m/2 steps then by removing a single
382
+ vector in each of the remaining steps we will eliminate all of the vectors. This means that if
383
+ 2n
384
+ m/2
385
+
386
+ j=1
387
+
388
+ 1 − 1/2tj�
389
+ ≤ m
390
+ 2
391
+ then the sequence J1. . . . , Jm has a covering assignment. Since d is such that the total number of
392
+ queries is m · d, the above amounts to �m/2
393
+ j=1 tj ≤ md/2; that is, the average tj for 1 ≤ j ≤ m/2
394
+ is at most d. This implies that
395
+ 2n
396
+ m
397
+ 2
398
+
399
+ j=1
400
+
401
+ 1 − 1
402
+ 2tj
403
+
404
+ ≤ 2n
405
+ m
406
+ 2
407
+
408
+ j=1
409
+ exp
410
+
411
+ − 1
412
+ 2tj
413
+
414
+ (1 + x ≤ exp(x) for all x ∈ R)
415
+ = 2n exp
416
+
417
+
418
+ m
419
+ 2
420
+
421
+ j=1
422
+ 1
423
+ 2tj
424
+
425
+ ≤ 2n exp
426
+
427
+ − m
428
+ 2d+1
429
+
430
+ ,
431
+ where the last inequality follows because exp(−x) is decreasing and because
432
+ m
433
+ 2
434
+
435
+ j=1
436
+ 1
437
+ 2tj ≥ m
438
+ 2 ·
439
+ 1
440
+ 2
441
+ 1
442
+ m/2
443
+ �m/2
444
+ j=1 tj
445
+ ≥ m
446
+ 2 · 1
447
+ 2d ,
448
+ which follows by convexity of the function f(x) = 2x and because t1 ≤ t2 ≤ . . . ≤ tm.
449
+ We have thus shown that if |J1| + . . . + |Jm| = m · d such that
450
+ 2n exp
451
+
452
+ − m
453
+ 2d+1
454
+
455
+ ≤ m
456
+ 2
457
+ then the sequence J1, . . . , Jm has a covering assignment. The last inequality surely holds provided
458
+ m
459
+ 2d+1 ≥ n + 1 − log m.
460
+ That is, provided
461
+ 2d+1 ≤
462
+ m
463
+ n + 1 − log m,
464
+ or
465
+ d ≤ log
466
+
467
+ m
468
+ n + 1 − log m
469
+
470
+ − 1
471
+ completing the proof.
472
+ 7
473
+
474
+ 4
475
+ The Cantor-Kronecker Game with m ≥ 2n
476
+ Assume now that Kronecker’s list V consists of m ≥ 2n binary vectors of length n. In this case
477
+ V may contain all the binary vectors of length n and there is no vector Cantor can output that
478
+ is different from each vector on Kronecker’s list. In this regime it is more natural to first focus
479
+ on the decision problem in which Cantor’s goal is to decide whether V contains {0, 1}n, and if
480
+ this is not the case, to provide a vector which is not in V .2 Clearly Cantor can achieve this if he
481
+ queries all mn possible queries. Can he do better?
482
+ We first observe that mn queries are in fact needed in the oblivious case: assume that Cantor
483
+ submits only mn − 1 queries, and leaves the j’th bit of vi unqueried. Then Kronecker may set vi
484
+ to be the unique occurrence of the all ones vector 1n, and set the remaining m − 1 vectors in V
485
+ to include all 2n − 1 vectors that are different from the all ones vector. Clearly, it is necessary
486
+ for Cantor to query also the last bit of vi in order to see whether vi is the all ones vector or not.
487
+ Consequently, Cantor must query all mn queries in the oblivious case.
488
+ How about the adaptive case? A similar argument shows that for m = 2n, Kronecker can
489
+ force mn = 2nn queries also in the adaptive case, by using a list which contains each binary
490
+ vector of length n exactly once: indeed, if only mn − 1 bits are queried, then the last, yet
491
+ unqueried bit, belongs to a vector which occurs only once in V . Hence it is necessary to get the
492
+ value of this bit in order to verify that V contains all 2n vectors.
493
+ The case when m > 2n turns out to be more subtle. Nevertheless, we prove that mn queries
494
+ are necessary even in this case. We start with introducing some notation.
495
+ Notation.
496
+ Each step of the game consists of a query by Cantor followed by a response by
497
+ Kronecker. The status of the game after each such step is given by an m × n matrix L, where
498
+ L(i, j) denotes the status of the j’th bit of vi, that is: L(i, j) ∈ {0, 1, ⋆}, where L(i, j) = ⋆ means
499
+ that the j’th bit of vi was not queried yet, and otherwise L(i, j) equals the value of this bit as
500
+ answered by Kronecker.
501
+ Definition 4.1. FIXED(L) =
502
+
503
+ v ∈ L : v ∈ {0, 1}n�
504
+ . That is, FIXED(L) is the set of all vectors
505
+ in L that were fully queried by Cantor.
506
+ Definition 4.2. L is complete if FIXED(L) = {0, 1}n.
507
+ Definition 4.3. A subset S of 2n rows of L is useful if it either contains all the 2n binary vectors
508
+ of length n, or it can be converted to this set by replacing each ⋆-entry in S by 0 or 1.
509
+ Definition 4.4. A matrix L is unblocked if it can be completed; that is, if L has a useful subset.
510
+ Otherwise L is called blocked.
511
+ Notice that for m ≥ 2n, the m by n matrix all whose entries are ⋆ is unblocked.
512
+ As a warmup, and to get used to the definitions, let us assume first that Cantor’s queries
513
+ the vectors one by one according to their order; i.e. he first queries all the bits of v1 from left
514
+ to right, then all the bits of v2 from left to right, and so on. We use the following strategy for
515
+ Kronecker: when Cantor queries the j’th bit of vi (i.e. the value of L(i, j)), Kronecker replies
516
+ according to the following “0 first” strategy:
517
+ modified value of L(i, j) =
518
+
519
+ 1
520
+ If setting L(i, j) to 0 blocks L
521
+ 0
522
+ otherwise
523
+ (3)
524
+ It is not hard to verify that since Cantor queries the vectors one by one, and from left (most
525
+ significant bit) to right, the following matrix is produced: each of the first m − 2n + 1 rows will
526
+ 2Later we will see that the decision and search variants are in fact equivalent.
527
+ 8
528
+
529
+ be set to the all-zeros vector, and the last 2n − 1 rows will be set to the 2n − 1 non zero vectors
530
+ in increasing lexicographical order: starting with 0n−11 and ending with 1n. Hence Cantor is
531
+ forced to query all mn entries as in the oblivious case.
532
+ Interestingly, it turns out that, for any strategy of Cantor, the above “0 first” strategy of
533
+ Kronecker forces Cantor to make mn queries.
534
+ Theorem 4.5. Let m > 2n. Then for any strategy of Cantor, the “0 first” strategy of Kronecker
535
+ forces Cantor to make mn queries in order to determine if L contains {0, 1}n.
536
+ In the following we consider an arbitrary execution of the game, where Kronecker follows the
537
+ “0 first” strategy (and Cantor’s strategy is arbitrary). We denote by Lt the m × n matrix L after
538
+ t steps of the game; thus L0 is the initial matrix which is filled only with ⋆’s.
539
+ By the fact that if L is unblocked and L(i, j) = ⋆, then it is possible to set L(i, j) to 0 or
540
+ to 1 without blocking L, we get:
541
+ Observation 4.6. If Lt is unblocked, so is Lt+1. Hence Lmn is complete; i.e. it contains {0, 1}n.
542
+ Definition 4.7. We say that a row L(i) is essential for an unblocked matrix L if every useful
543
+ subset of L’s rows contains L(i).
544
+ Note that if Lt(i) is essential for Lt, then Ls(i) is essential for Ls for all s ≥ t. Also, if Lmn(i)
545
+ is essential for Lmn, then Lmn(i) is equal to a unique vector in {0, 1}n which is different from all
546
+ other rows of Lmn.
547
+ Lemma 4.8. Assume that Lt(i) is not essential for Lt and Lt(i, j) = ⋆. If Lt(i, j) is queried at
548
+ time t + 1, then it is set to 0, i.e. Lt+1(i, j) = 0.
549
+ Proof. By the “0 first” strategy, and the fact that if L(i) is not essential for an unblocked
550
+ matrix L, then setting L(i, j) to 0 does not block L.
551
+ By a straightforwards induction Lemma 4.8 implies:
552
+ Corollary 4.9. If Lt(i) is not essential for Lt, then Lt(i) contains no 1’s (only 0’s or ⋆’s).
553
+ Specifically, if Lmn(i) is not essential for Lmn, then Lmn(i) is the zero vector 0n. Hence, every
554
+ row of Lmn which is not the zero vector is essential, and thus it is different from all other rows
555
+ of Lmn.
556
+ Lemma 4.10. Let Lmn−1(i, j) be the last bit queried in the game. Then Lmn−1(i) is an essential
557
+ row of Lmn−1.
558
+ Proof. To simplify notation, we assume without loss of generality that j = 1. Assume towards
559
+ contradiction that Lmn−1(i) is not essential for Lmn−1. By Corollary 4.9, this implies that
560
+ Lmn−1(i) = ⋆0n−1 and Lmn(i) = 0n. (i.e. Kronecker sets Lmn−1(i, 1) to 0 at Cantor’s mn’th
561
+ query). Since Lmn is complete (Observation 4.6), this implies that Lmn−1 contains a distinct
562
+ occurrence of each of the 2n − 1 nonzero vectors of {0, 1}n, and in particular for some k ̸= i,
563
+ Lmn−1(k) is the unique row of Lmn−1 which equals 10n−1. Then, any subset S of Lmn−1 which
564
+ contains
565
+ • the row Lmn−1(i),
566
+ • the 2n − 2 non zero rows of Lmn−1 excluding Lmn−1(k), and
567
+ • some zero row of Lmn−1 (by Corollary 4.9 there are m − 2n > 0 such rows in Lmn−1),
568
+ 9
569
+
570
+ is a useful subset of Lmn−1 which does not contain Lmn−1(k). Hence Lmn−1(k) is not essential
571
+ for Lmn−1, and by Lemma 4.8 Lmn−1(1) = 0 ̸= 1, which stands in contradiction with Lmn−1(1) =
572
+ 10n−1.
573
+ Proof of Theorem 4.5. Let Lmn−1(i, j) be the last query in the game. By Lemma 4.10, Lmn−1(i),
574
+ and hence also Lmn(i), is essential, meaning that Lmn(i) is different from all other rows of Lmn.
575
+ Thus Cantor must get the value of Lmn−1(i, j) in order to reach a decision.
576
+ A remark on computational complexity.
577
+ A naive implementation of the “0 first” strategy
578
+ might take exponential time: indeed, it requires checking whether setting the queried bit to 0
579
+ blocks the current matrix, which involves checking a potentially exponential list of constraints.
580
+ Nevertheless, we next show that this strategy in fact admits a polynomial time implementation.
581
+ Firstly, notice that the first m − 2n steps are trivially efficient, because setting L(i, j) to any
582
+ value cannot block L (since at least 2n rows of L are not queried yet).
583
+ Thus it suffices to show that in each later step, deciding whether setting L(i, j) to 0 blocks
584
+ the matrix, can be performed in time which is polynomial in mn, the size of L. Let Lt be the
585
+ matrix L after t steps of the game, t > m − 2n. Consider the bipartite graph Gt = (At, B, Et),
586
+ where At = {Lt(i) : 1 ≤ i ≤ m} is the set of rows of Lt, B = {0, 1}n, and (Lt(i), u) ∈ Et if
587
+ and only if Lt(i) can be converted to the binary vector u by replacing the ⋆’s in Lt(i) (if any)
588
+ by binary digits. Then, a subset S of Lt is useful for Lt if and only if Gt contains a perfect
589
+ matching between the vertices in At which correspond to S and B.
590
+ Assume now that we are given the graph Gt, and the corresponding matching, and let Lt(i, j)
591
+ be the entry queried by Cantor at step t+1. To check if setting Lt(i, j) to 0 blocks Lt, we remove
592
+ from Gt all the edges (Lt(i), u) in which u(j) = 0, and check if the resulted graph contains a
593
+ perfect matching. Since we are given a perfect matching Mt for Gt, and removing these edges
594
+ eliminates at most one edge from Mt, this checking can be done by executing one phase in some
595
+ classical algorithm for bipartite matching, which can be done in O(|Et|) = O(m2n) = O(m2)
596
+ time (see e.g. [Eve11]).
597
+ 5
598
+ Concluding Remarks and Future Research
599
+ We studied the Cantor-Kronecker game for different values of m and n: when m ≤ n the trivial
600
+ lower bound of m is tight (a lower bound of m follows because Cantor must query at least one
601
+ bit in each vector); when m ≥ 2n, the trivial upper bound of mn is tight (an upper bound of
602
+ mn follows because querying all the bits is clearly sufficient); when n < m < 2n the landscape
603
+ is more interesting, and in particular the bounds depend on whether Cantor is adaptive or
604
+ oblivious.
605
+ Further Research.
606
+ We conclude with suggestions for possible future research:
607
+ 1. Study the Cantor-Kronecker game when there are r rounds of adaptivity: i.e. there are
608
+ r rounds in which Cantor can submit queries, and in each round the submitted queries
609
+ may depend on Kronecker’s answers to queries from previous rounds. How does the query
610
+ complexity change as a function of r? Note that r = 1 is the oblivious case and r = ∞ is
611
+ the adaptive case. (In fact r = n is already equivalent to r = ∞.)
612
+ 2. Consider the following generalization of the game. Let k ≤ m, ℓ ≤ n be positive integers.
613
+ Kronecker maintains an m×n binary matrix, and Cantor queries the entries of Kronecker’s
614
+ matrix. Cantor’s goal is to find a k × ℓ matrix which does not appear as a submatrix of
615
+ Kronecker’s m × n matrix, or to decide that one does not exist. So, the original game
616
+ 10
617
+
618
+ is when k = 1, ℓ = n. What is the query complexity as a function of k, ℓ, m, n in the
619
+ adaptive/oblivious case? For which values does Cantor have a strategy that uses strictly
620
+ less than m · n queries?
621
+ 3. Find tighter bounds for the oblivious case. Specifically, notice that Cantor’s original
622
+ diagonalization provides tight bound on the number of queries needed for the oblivious
623
+ case when m ≤ n. It will be interesting to derive tight bounds and optimal strategies in
624
+ the remaining cases. As we exemplify below, this question has connections with natural
625
+ combinatorial problems.
626
+ Consider the case when m is at the other end of the scale, namely 2n−1 ≤ m < 2n. Then,
627
+ Cantor can win the game by querying nm − d bits, where d = 2n − m − 1. In fact, it
628
+ suffices that Cantor chooses his queries such that each of the d unqueried entries belongs
629
+ to a different vector: in this case any assignments of values to the unqueried entries covers
630
+ (in the sense of Definition 3.3) the m − d fully queried vectors, and at most two additional
631
+ vectors per each of the remaining d vectors (each of which contains one unqueried entry):
632
+ altogether at most (m − d) + 2d = m + d vectors. Hence, Cantor is guaranteed to win the
633
+ game provided that m + d < 2n (equivalently d ≤ 2n − m − 1).
634
+ Is the above strategy optimal? i.e., can Kronecker win the game when Cantor queries only
635
+ mn − (2n − m) bits? Informally, Kronecker has a winning strategy if, for any distribution
636
+ of the 2n − m unqueried entries, there is an assignment which covers sufficiently many
637
+ vectors. This is formalized below.
638
+ Definition 5.1 (cube(v), J-cube). Let v be a vector with possibly some unqueried entries.
639
+ cube(v) is the set of binary vectors which can be obtained by replacing the unqueried
640
+ entries in v by zeros or ones. In particular, cube(v) = {v} if v is fully queried. The cube
641
+ cube(v) is called a J-cube if J = {j : the j′th bit of v is not queried}. For j ∈ [n], a
642
+ {j}-cube is denoted by j-edge.
643
+ Assume that Cantor distributes the (2n − m) unqueried entries among vectors v1, . . . , vq.
644
+ Then Kronecker answers to the queried entries define a cube C(vi) for each vector vi.
645
+ Kronecker wins if and only if those cubes cover {0, 1}n. Hence Kronecker has a winning
646
+ strategy when Cantor uses mn − (2n − m) queries (2n−1 + 1 ≤ m < 2n) if and only if the
647
+ following holds:
648
+ Conjecture 5.2. Let d = 2n − m < 2n−1. For any collection J1, J2, . . . , Jq of nonempty
649
+ subsets of [n] satisfying �q
650
+ i=1 |Ji| = d, there are cubes C1, . . . , Cq s.t. Ci is a Ji-cube, and
651
+ |�q
652
+ i=1 Ci| ≥ d + q.
653
+ The following result of [FHK93] proves Conjecture 5.2 for the case that each Ji-cube is a
654
+ ji-edge.
655
+ Theorem 5.3 ([FHK93]). Let d < 2n−1. For any multiset D = {j1, j2, . . . , jd} of elements
656
+ of [n], {0, 1}n contains a matching {e1, . . . , ed} s.t. for i = 1, . . . , d, ei is a ji-edge.
657
+ It is also shown in [FHK93] that Conjcture 5.2 does not hold when d = 2n−1: in this case
658
+ a corresponding matching exists if and only if each element in [n] occurs an even number
659
+ of times in D. This implies that when m = 2n−1 Cantor has a winning strategy with only
660
+ mn − (2n − m) = mn − 2n−1 queries: he may query n − 1 entries per each vector, so that
661
+ at least one dimension is left unqueried in an odd number of vectors.
662
+ 11
663
+
664
+ References
665
+ [Can74]
666
+ Georg Cantor. Ueber eine Eigenschaft des inbegriffs aller reellen algebraischen Zahlen.
667
+ Journal f¨ur die reine und angewandte Mathematik (Crelles Journal), 1(77):258–262,
668
+ 1874.
669
+ [Eve11]
670
+ Shimon Even. Graph Algorithms. Cambridge University Press, New York, NY, USA,
671
+ 2nd edition, 2011.
672
+ [FHK93] Alexander Felzenbaum, Ron Holzman, and Daniel J. Kleitman. Packing lines in a
673
+ hypercube. Discrete Mathematics, 117(1):107–112, 1993.
674
+ [Wik22a] Wikipedia contributors. Georg Cantor — Wikipedia, the free encyclopedia. https:
675
+ //en.wikipedia.org/wiki/Georg_Cantor, 2022. [Online; accessed 20-November-
676
+ 2022].
677
+ [Wik22b] Wikipedia contributors. Hilbert’s paradox of the Grand Hotel — Wikipedia, the
678
+ free encyclopedia. https://en.wikipedia.org/wiki/Hilbert’s_paradox_of_the_
679
+ Grand_Hotel, 2022. [Online; accessed 20-November-2022].
680
+ 12
681
+
49AzT4oBgHgl3EQf9v6Q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf,len=474
2
+ page_content='Diagonalization Games Noga Alon1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
3
+ page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
4
+ page_content=' Olivier Bousquet6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
5
+ page_content=' Kasper Green Larsen4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
6
+ page_content=' Shay Moran2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
7
+ page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
8
+ page_content='6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
9
+ page_content=' and Shlomo Moran2 1Departments of Mathematics and Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
10
+ page_content=' Tel Aviv University 2Department of Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
11
+ page_content=' Technion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
12
+ page_content=' Israel 3Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
13
+ page_content=' Technion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
14
+ page_content=' Israel 4Department of Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
15
+ page_content=' Aarhus University 5Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
16
+ page_content=' Princeton University 6Google Research January 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
17
+ page_content=' 2023 Abstract We study several variants of a combinatorial game which is based on Cantor’s diagonal argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
18
+ page_content=' The game is between two players called Kronecker and Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
19
+ page_content=' The names of the players are motivated by the known fact that Leopold Kronecker did not appreciate Georg Cantor’s arguments about the infinite, and even referred to him as a “scientific charlatan”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
20
+ page_content=' In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor’s goal is to produce a new binary vector which is different from each of Kronecker’s vectors, or prove that no such vector exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
21
+ page_content=' Cantor does not see Kronecker’s vectors but he is allowed to ask queries of the form “What is bit number j of vector number i?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
22
+ page_content=' What is the minimal number of queries with which Cantor can achieve his goal?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
23
+ page_content=' How much better can Cantor do if he is allowed to pick his queries adaptively, based on Kronecker’s previous replies?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
24
+ page_content=' The case when m = n is solved by diagonalization using n (non-adaptive) queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
25
+ page_content=' We study this game more generally, and prove an optimal bound in the adaptive case and nearly tight upper and lower bounds in the non-adaptive case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
26
+ page_content=' 1 Introduction The concept of infinity has been fascinating philosophers and scientists for hundreds, perhaps thousands of years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
27
+ page_content=' The work of Georg Cantor (1845 – 1918) played a pivotal role in the mathematical treatment of the infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
28
+ page_content=' Cantor’s work is based on a simple notion which asserts that two (possibly infinite) sets have the same size whenever their elements can be paired in one-to-one correspondence with each other [Can74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
29
+ page_content=' Despite being simple, this notion has counter-intuitive implications: for example, a set can have the same size as a proper subset of it1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
30
+ page_content=' this phenomena is nicely illustrated by Hilbert’s paradox of the Grand Hotel, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
31
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
32
+ page_content=' [Wik22b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
33
+ page_content=' This simple notion led Cantor to develop his theory of sets, which forms the basis of modern mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
34
+ page_content=' Alas, Cantor’s set theory was controversial at the start, and only later became widely accepted: 1E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
35
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
36
+ page_content=' the natural numbers and the even numbers, via the correspondence “n �→ 2n”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
37
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
38
+ page_content='01924v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
39
+ page_content='CO] 5 Jan 2023 Figure 1: Georg Cantor (1845 – 1918) Figure 2: Leopold Kronecker (1823 – 1891) The objections to Cantor’s work were occasionally fierce: Leopold Kronecker’s public opposition and personal attacks included describing Cantor as a ”scientific charlatan”, a ”renegade” and a ”corrupter of youth”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
40
+ page_content=' Kronecker objected to Cantor’s proofs that the algebraic numbers are countable, and that the transcendental numbers are uncountable, results now included in a standard mathematics curriculum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
41
+ page_content=' [Wik22a] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
42
+ page_content='1 Diagonalization One of the most basic and compelling results in set theory is that not all infinite sets have the same size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
43
+ page_content=' To prove this result, Cantor came up with a beautiful argument, called diagonalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
44
+ page_content=' This argument is routinely taught in introductory classes to mathematics, and is typically presented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
45
+ page_content=' Let N denote the set of natural numbers and let {0, 1}N denote the set of all infinite binary vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
46
+ page_content=' Clearly both sets are infinite, but it turns out that they do not have the same size: assume towards contradiction that there is a one-to-one correspondence j �→ vj, where vj = (vj(1), vj(2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
47
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
49
+ page_content=') is the infinite binary vector corresponding to j ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
50
+ page_content=' Define a vector u = (1 − v1(1), 1 − v2(2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
51
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
53
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
54
+ page_content=' That is, u is formed by letting its j’th entry be equal to the negation of the j’th entry of vj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
55
+ page_content=' Notice that this way the resulting vector u disagrees with vj on the j’th entry, and hence u ̸= vj for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
56
+ page_content=' Thus, we obtain a binary vector which does not correspond to any of the natural numbers via the assumed correspondence – a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
57
+ page_content=' Rather than reaching a contradiction, it is instructive to take a positivist perspective according to which diagonalization can be seen as a constructive procedure that does the following: Given binary vectors v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
58
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
59
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
60
+ page_content=', find a binary vector u such that u ̸= vj for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
61
+ page_content=' Moreover, notice that Cantor’s diagonal argument involves querying only a single entry per each of the input vectors vj (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
62
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
63
+ page_content=' the “diagonal” entries vj(j)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
64
+ page_content=' Thus, it is possible to construct u while using only a little information about the input vectors vi’s (a single bit per vector).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
65
+ page_content=' In this manuscript we study a finite variant of the problem in which m binary vectors v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
66
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
67
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
68
+ page_content=' , vm of length n are given and the goal is to produce a vector u which is different from all of the vi’s, or to report that no such vector exists, while querying as few as possible entries of the vi’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
69
+ page_content=' We first study the case when m < 2n whence such a u is guaranteed to exist, and the goal boils down to finding one, and later the case when m ≥ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
70
+ page_content=' 2 v1 = 0, 1, 1, 0, 1, 0 v2 = 1, 0, 0, 1, 1, 1 v3 = 1, 1, 1, 0, 0, 0 v4 = 0, 1, 0, 1, 1, 0 v5 = 1, 1, 0, 1, 0, 1 v6 = 0, 1, 1, 1, 1, 1 u = 1, 1, 0, 0, 1, 0 Figure 3: An illustration of Cantor’s diagonalization: the vector u at the bottom is not equal to any of the vi’s at the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
71
+ page_content=' 2 The Cantor-Kronecker Game Consider a game between two players called Kronecker and Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
72
+ page_content=' In the game there are two parameters m and n, where m, n are positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
73
+ page_content=' Kronecker maintains a set V = {v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
74
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
76
+ page_content=' , vm} of m binary vectors, each of length n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
77
+ page_content=' Cantor’s goal is to produce a binary vector u, also of length n, which differs from each vi, or to report that no such vector exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
78
+ page_content=' To do so, he is allowed to ask queries, where each query is of the form “What is bit number j of vector number i?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
79
+ page_content=', where 1 ≤ j ≤ n, 1 ≤ i ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
80
+ page_content=' Kronecker is answering each query being asked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
81
+ page_content=' The objective of Cantor is to minimize the number of queries enabling him to produce u, whereas Kronecker tries to maximize the number of queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
82
+ page_content=' We distinguish between two versions of the game: In the adaptive version Cantor presents his queries to Kronecker in a sequential manner, and may decide on the next query as a function of Kronecker’s answers to the previous ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
83
+ page_content=' In the oblivious version Cantor must declare all of his queries in advance, before getting answers to any of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
84
+ page_content=' For m ≤ n the smallest number of queries, both in the adaptive and oblivious versions, is m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
85
+ page_content=' Indeed, Cantor can query bit number i of vi for all 1 ≤ i ≤ m and return a vector u whose i’th bit differs from the i’th bit of vi, for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
86
+ page_content=' The lower bound is even simpler: if Cantor asks less than m queries then there is some vector vi about which he has no information at the end of the game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
87
+ page_content=' In this case he cannot ensure that his vector u will not be equal to this vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
88
+ page_content=' Organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
89
+ page_content=' We begin with the case where m < 2n: in the next section (Section 3) we derive nearly tight bounds both in the adaptive and oblivious cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
90
+ page_content=' We do so by exhibiting and analyzing near optimal strategies for Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
91
+ page_content=' Then, in Section 4 we consider the case where m ≥ 2n and derive an optimal bound of m·n in this case (for both the oblivious and the adaptive versions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
92
+ page_content=' We do so by exhibiting and analyzing an optimal strategy for Kronecker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
93
+ page_content=' Finally, in Section 5 we discuss some algorithmic aspects, and conclude with some suggestions to future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
94
+ page_content=' 3 3 The Cantor-Kronecker Game with m < 2n 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
95
+ page_content='1 Adaptive Version Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
96
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
97
+ page_content=' Let g(n, m) denote the smallest number of queries that suffices for Cantor when he is allowed to use adaptive strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
98
+ page_content=' Then, g(n, m) = � m m ≤ n, 2m − n n < m < 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
99
+ page_content=' The case 1 ≤ m ≤ n is proved in the previous section so we assume n ≤ m < 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
100
+ page_content=' Upper Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
101
+ page_content=' We present a strategy for Cantor which combines diagonalization with another simple idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
102
+ page_content=' To illustrate this idea let us first consider the case m = n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
103
+ page_content=' This special case appeared as a question in the 2022 Grossman Math Olympiad for high-school students, and so perhaps the reader might enjoy trying to solve it before continuing reading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
104
+ page_content=' Let v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
107
+ page_content=' , vn+1 be the input vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
108
+ page_content=' Cantor begins with querying the first bit of v1, v2, and of v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
109
+ page_content=' Getting the answers, there is a bit ε so that at least two vectors among v1, v2, v3 have their first bit equals to ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
110
+ page_content=' Cantor now defines the first bit of u to be u(1) = 1 − ε and can remove the two vectors among v1, v2, v3 whose first bit equals ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
111
+ page_content=' Now Cantor is left with at most n − 1 vectors and can therefore set the last n − 1 coordinates of u according to the diagonalization construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
112
+ page_content=' The general case is handled similarly by induction on n: for n = 1 since n ≤ m < 2n, also m must be 1 and the result is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
113
+ page_content=' Assuming the result for n − 1, let v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
114
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
115
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
116
+ page_content=' , vm be the m vectors of Kronecker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
117
+ page_content=' First, note that there is an integer x satisfying 1 ≤ x ≤ ⌈m/2⌉ so that n − 1 ≤ m − x < 2n−1: indeed, for x = 1 we have m − x ≥ n − 1 and for x = ⌈m/2⌉ we have m − x ≤ m/2 < 2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
118
+ page_content=' Starting from x = 1 keep increasing it in steps, where in each step it is increased by 1, until it reaches ⌈m/2⌉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
119
+ page_content=' As m − x changes by 1 in each step we can take the smallest x ≥ 1 that satisfies m − x < 2n−1, and it will clearly be at most ⌈m/2⌉ and satisfy m − x ≥ n − 1 as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
120
+ page_content=' Having x as above, Cantor first queries the first bit of each of the vectors v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
122
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
123
+ page_content=' , v2x−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
124
+ page_content=' (Note that 2x − 1 ≤ m hence this is possible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
125
+ page_content=' Getting the answers, there is a bit ε ∈ {0, 1} so that at least x of the vectors have their first bit equal to ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
126
+ page_content=' Cantor now defines the first bit of his vector u to be 1 − ε, removes from the set V exactly x of the vectors whose first bit is ε, and defines as V ′ the set of all restrictions of the remaining m − x vectors to their last n − 1 coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
127
+ page_content=' Note that n − 1 ≤ m − x < 2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
128
+ page_content=' By the induction hypothesis, Cantor can now play the game for the set V ′ producing an appropriate vector u′ by asking at most 2(m − x) − (n − 1) additional queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
129
+ page_content=' The total number of queries is thus (2x − 1) + 2(m − x) − (n − 1) = 2m − n, as needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
130
+ page_content=' The vector u obtained by concatenating the 1-bit vector 1 − ε and the vector u′ is clearly different from each member of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
131
+ page_content=' This completes the induction step argument and finishes the proof of the upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
132
+ page_content=' Lower Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
133
+ page_content=' For the lower bound, we present a strategy for Kronecker which essentially mirrors Cantor’s strategy from the upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
134
+ page_content=' Suppose Cantor manages to produce the required vector u after making exactly bj queries in coordinate number j of some of the vectors vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
135
+ page_content=' Kronecker chooses his answers ensuring that for each such j, the answers for bits in the j’th location are balanced, that is, at most ⌈bj/2⌉ of the answers are 0 and at most ⌈bj/2⌉ of the answers are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
136
+ page_content=' Consider the vector u produced by Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
137
+ page_content=' For every 1 ≤ j ≤ n, there are at most ⌈bj/2⌉ vectors vi known to be different than u in coordinate number j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
138
+ page_content=' Thus altogether there are at 4 most n � j=1 �bj 2 � ≤ n � j=1 bj + 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
139
+ page_content=' vectors vi that are known to Cantor to be different than u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
140
+ page_content=' In order to ensure u is indeed different from each vi this number has to be at least m and hence m ≤ n � j=1 bj + 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
141
+ page_content=' By rearranging, this implies that the total number of queries �n j=1 bj must be at least 2m − n, as stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
142
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
143
+ page_content='2 Oblivious Version Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
144
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
145
+ page_content=' Let f(n, m) denote the smallest number of queries that suffices for Cantor when he is restricted to use oblivious strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
146
+ page_content=' Then, f(n, m) = � m m ≤ n m � log � m n � + o � log � m n ��� n < m < 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
147
+ page_content=' Quantitatively, for all n < m < 2n m · � log � m n − log m + 1 � − 1 � ≤ f(n, m) ≤ m � log �2m n � + 2 log � log �2m n �� + 1 � , The case 1 ≤ m ≤ n is proved above so we assume n < m < 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
148
+ page_content=' Upper Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
149
+ page_content=' Like in the adaptive case, we present a strategy for Cantor which combines diagonalization with another simple idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
150
+ page_content=' We first illustrate this idea by handling the case m = n + 1, and again, we encourage the reader to try and handle this case before continuing reading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
151
+ page_content=' Let v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
153
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
154
+ page_content=' , vn+1 be the input vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
155
+ page_content=' Cantor begins with querying the first two bits of each of v1, v2, and v3 (for a total of 6 queries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
156
+ page_content=' Notice that there are 22 = 4 possible combinations of 0/1 patterns on the first two bits, but at most three of them are realized by v1, v2, v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
157
+ page_content=' Hence, there must be a pair of bits ε1, ε2 which is not realized by v1, v2, nor v3: (ε1, ε2) /∈ �� v1(1), v1(2) � , � v2(1), v2(2) � , � v3(1), v3(2) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
158
+ page_content=' Thus, by setting u(1) = ε1 and u(2) = ε2, Cantor rules out v1, v2, v3 and is left with n−2 vectors v3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
159
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
160
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
161
+ page_content=' , vn+1 which can be obliviously ruled out with the last n − 2 using diagonalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
162
+ page_content=' For the general case, let d be an integer (to be determined later).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
163
+ page_content=' Pick mutually disjoint subsets of coordinates J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
164
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
166
+ page_content=' , J⌊n/d⌋ ⊆ [n], each of size d, and pick a partition of the m vectors to ⌊n/d⌋ subsets V1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
167
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
169
+ page_content=' , V⌊n/d⌋ such that the partition is as balanced as possible (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
170
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
171
+ page_content=' the difference between each pair of sizes is ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
172
+ page_content=' Thus, each set has size |Vi| ≤ � m ⌊n/d⌋ � ≤ 2md n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
173
+ page_content=' Cantor queries (obliviously) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
174
+ page_content=' For each i and each vector in Vi query all the coordinates in Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
175
+ page_content=' 5 Thus, the total number of queries is exactly m · d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
176
+ page_content=' Now, notice that if d satisfies 2d > 2md n , (1) then there must exist an assignment fi : Ji → {0, 1} such that fi disagrees with each of the vectors in Vi on at least one coordinate in Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
177
+ page_content=' Hence Cantor can output the vector u, which agrees with each of the fi on Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
178
+ page_content=' Note that Equation 1 is satisfied iff 2d d > 2m n ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
179
+ page_content=' since m > n, it can be verified that this inequality holds when d ≥ log( 2m n ) + 2 log(log( 2m n )) + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
180
+ page_content=' Thus for d = � log � 2m n � + 2 log � log � 2m n �� + 1 � , the total number of queries is at most m · d = m � log �2m n � + 2 log � log �2m n �� + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
181
+ page_content=' Lower Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
182
+ page_content=' The lower bound proof is based on the following simple idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
183
+ page_content=' Let Ji denote the set of coordinates of vi which Cantor queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
184
+ page_content=' Thus, the total number of queries Cantor uses is |J1| + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
187
+ page_content=' + |Jm|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
188
+ page_content=' Now, let fi : Ji → {0, 1} denote Kronecker’s answers for the queries on vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
189
+ page_content=' The crucial observation is that the vector u that Cantor outputs must satisfy (∀i) : u|Ji ̸= fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
190
+ page_content=' Indeed, if u|Ji = fi for some i then Kronecker can fail Cantor by picking his i’th vector vi to be equal to Cantor’s output u (which would be consistent with Kronecker’s answers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
191
+ page_content=' We summarize the above consideration with a definition that characterizes the winning (or losing) strategies of Cantor in the oblivious case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
192
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
193
+ page_content='3 (Covering Assignments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
194
+ page_content=' We say that a sequence of sets J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
197
+ page_content=' , Jm ⊆ [n] has a covering assignment if there are m functions fi : Ji → {0, 1} such that every binary vector v ∈ {0, 1}n agrees with one of the fi on Ji (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
198
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
199
+ page_content=' v|Ji = fi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
200
+ page_content=' Thus, Kronecker has a winning strategy if and only if the sequence of sets J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
202
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
203
+ page_content=' , Jm that Cantor queries has a covering assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
204
+ page_content=' The following lemma establishes the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
205
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
206
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
207
+ page_content=' Let J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
208
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
209
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
210
+ page_content=' , Jm ⊆ [n] such that |J1| + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
211
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
212
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
213
+ page_content=' + |Jm| < m · � log � m n − log m + 1 � − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
214
+ page_content=' (2) Then, J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
215
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
216
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
217
+ page_content=' , Jm has a covering assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
218
+ page_content=' Equivalently, if for each vector vi Cantor queries its entries in Ji and Equation 2 holds, then Kronecker has a winning strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
219
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
220
+ page_content=' Let ti = |Ji| and let t = � i ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
221
+ page_content=' Assume, without loss of generality, that t1 ≤ t2 ≤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
222
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
223
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
224
+ page_content=' ≤ tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
225
+ page_content=' To prove a lower bound of the form md for t, where d will be specified later, we show that if t is smaller than md then there are m functions fi : Ji → {0, 1} so that for every possible vector v ∈ {0, 1}n there is i ≤ m so that v|Ji = fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
226
+ page_content=' We do so by explicitly constructing the fi’s (which corresponds to describing a winning strategy for Kronecker).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
227
+ page_content=' Starting with the set V = {0, 1}n of all possible potential vectors z, go over the vectors vi in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
228
+ page_content=' In step i we choose the function fi : Ji → {0, 1} such that |{v ∈ V : v|Ji = fi}| is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
229
+ page_content=' Since there are 2ti possible choices for fi, the maximizing choice satisfies ���{v ∈ V : v|Ji = fi} ��� ≥ |V | 2ti .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
230
+ page_content=' 6 After picking fi, we remove all the vectors of V that agree with fi and proceed to the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
231
+ page_content=' Therefore, after the first i steps, the size of the set V of the remaining vectors is at most 2n i� j=1 (1 − 1/2tj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
232
+ page_content=' We can continue with this analysis until the size of the set V becomes smaller than 1, namely the set becomes empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
233
+ page_content=' It is a bit better, however, to apply a simpler reasoning once the size of V becomes smaller than 2d, and only argue that at least one vector from V is eliminated in each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
234
+ page_content=' (Continuing the same analysis as before would only guarantee that V shrinks by a factor of (1 − 1/2ti) which by the choice of d would be roughly 1 − 1/2d < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
235
+ page_content=' To simplify the computation it is not too wasteful to apply the simpler analysis already when the size of V becomes smaller than m/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
236
+ page_content=' If this happens in the first m/2 steps then by removing a single vector in each of the remaining steps we will eliminate all of the vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
237
+ page_content=' This means that if 2n m/2 � j=1 � 1 − 1/2tj� ≤ m 2 then the sequence J1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
238
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
239
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
240
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
241
+ page_content=' , Jm has a covering assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
242
+ page_content=' Since d is such that the total number of queries is m · d, the above amounts to �m/2 j=1 tj ≤ md/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
243
+ page_content=' that is, the average tj for 1 ≤ j ≤ m/2 is at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
244
+ page_content=' This implies that 2n m 2 � j=1 � 1 − 1 2tj � ≤ 2n m 2 � j=1 exp � − 1 2tj � (1 + x ≤ exp(x) for all x ∈ R) = 2n exp � − m 2 � j=1 1 2tj � ≤ 2n exp � − m 2d+1 � , where the last inequality follows because exp(−x) is decreasing and because m 2 � j=1 1 2tj ≥ m 2 · 1 2 1 m/2 �m/2 j=1 tj ≥ m 2 · 1 2d , which follows by convexity of the function f(x) = 2x and because t1 ≤ t2 ≤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
245
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
246
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
247
+ page_content=' ≤ tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
248
+ page_content=' We have thus shown that if |J1| + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
249
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
250
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
251
+ page_content=' + |Jm| = m · d such that 2n exp � − m 2d+1 � ≤ m 2 then the sequence J1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
252
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
253
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
254
+ page_content=' , Jm has a covering assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
255
+ page_content=' The last inequality surely holds provided m 2d+1 ≥ n + 1 − log m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
256
+ page_content=' That is, provided 2d+1 ≤ m n + 1 − log m, or d ≤ log � m n + 1 − log m � − 1 completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
257
+ page_content=' 7 4 The Cantor-Kronecker Game with m ≥ 2n Assume now that Kronecker’s list V consists of m ≥ 2n binary vectors of length n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
258
+ page_content=' In this case V may contain all the binary vectors of length n and there is no vector Cantor can output that is different from each vector on Kronecker’s list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
259
+ page_content=' In this regime it is more natural to first focus on the decision problem in which Cantor’s goal is to decide whether V contains {0, 1}n, and if this is not the case, to provide a vector which is not in V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
260
+ page_content='2 Clearly Cantor can achieve this if he queries all mn possible queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
261
+ page_content=' Can he do better?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
262
+ page_content=' We first observe that mn queries are in fact needed in the oblivious case: assume that Cantor submits only mn − 1 queries, and leaves the j’th bit of vi unqueried.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
263
+ page_content=' Then Kronecker may set vi to be the unique occurrence of the all ones vector 1n, and set the remaining m − 1 vectors in V to include all 2n − 1 vectors that are different from the all ones vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
264
+ page_content=' Clearly, it is necessary for Cantor to query also the last bit of vi in order to see whether vi is the all ones vector or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
265
+ page_content=' Consequently, Cantor must query all mn queries in the oblivious case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
266
+ page_content=' How about the adaptive case?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
267
+ page_content=' A similar argument shows that for m = 2n, Kronecker can force mn = 2nn queries also in the adaptive case, by using a list which contains each binary vector of length n exactly once: indeed, if only mn − 1 bits are queried, then the last, yet unqueried bit, belongs to a vector which occurs only once in V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
268
+ page_content=' Hence it is necessary to get the value of this bit in order to verify that V contains all 2n vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
269
+ page_content=' The case when m > 2n turns out to be more subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
270
+ page_content=' Nevertheless, we prove that mn queries are necessary even in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
271
+ page_content=' We start with introducing some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
272
+ page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
273
+ page_content=' Each step of the game consists of a query by Cantor followed by a response by Kronecker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
274
+ page_content=' The status of the game after each such step is given by an m × n matrix L, where L(i, j) denotes the status of the j’th bit of vi, that is: L(i, j) ∈ {0, 1, ⋆}, where L(i, j) = ⋆ means that the j’th bit of vi was not queried yet, and otherwise L(i, j) equals the value of this bit as answered by Kronecker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
275
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
276
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
277
+ page_content=' FIXED(L) = � v ∈ L : v ∈ {0, 1}n� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
278
+ page_content=' That is, FIXED(L) is the set of all vectors in L that were fully queried by Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
279
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
280
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
281
+ page_content=' L is complete if FIXED(L) = {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
282
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
283
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
284
+ page_content=' A subset S of 2n rows of L is useful if it either contains all the 2n binary vectors of length n, or it can be converted to this set by replacing each ⋆-entry in S by 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
285
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
286
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
287
+ page_content=' A matrix L is unblocked if it can be completed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
288
+ page_content=' that is, if L has a useful subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
289
+ page_content=' Otherwise L is called blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
290
+ page_content=' Notice that for m ≥ 2n, the m by n matrix all whose entries are ⋆ is unblocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
291
+ page_content=' As a warmup, and to get used to the definitions, let us assume first that Cantor’s queries the vectors one by one according to their order;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
292
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
293
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
294
+ page_content=' he first queries all the bits of v1 from left to right, then all the bits of v2 from left to right, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
295
+ page_content=' We use the following strategy for Kronecker: when Cantor queries the j’th bit of vi (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
296
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
297
+ page_content=' the value of L(i, j)), Kronecker replies according to the following “0 first” strategy: modified value of L(i, j) = � 1 If setting L(i, j) to 0 blocks L 0 otherwise (3) It is not hard to verify that since Cantor queries the vectors one by one, and from left (most significant bit) to right, the following matrix is produced: each of the first m − 2n + 1 rows will 2Later we will see that the decision and search variants are in fact equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
298
+ page_content=' 8 be set to the all-zeros vector, and the last 2n − 1 rows will be set to the 2n − 1 non zero vectors in increasing lexicographical order: starting with 0n−11 and ending with 1n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
299
+ page_content=' Hence Cantor is forced to query all mn entries as in the oblivious case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
300
+ page_content=' Interestingly, it turns out that, for any strategy of Cantor, the above “0 first” strategy of Kronecker forces Cantor to make mn queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
301
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
302
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
303
+ page_content=' Let m > 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
304
+ page_content=' Then for any strategy of Cantor, the “0 first” strategy of Kronecker forces Cantor to make mn queries in order to determine if L contains {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
305
+ page_content=' In the following we consider an arbitrary execution of the game, where Kronecker follows the “0 first” strategy (and Cantor’s strategy is arbitrary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
306
+ page_content=' We denote by Lt the m × n matrix L after t steps of the game;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
307
+ page_content=' thus L0 is the initial matrix which is filled only with ⋆’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
308
+ page_content=' By the fact that if L is unblocked and L(i, j) = ⋆, then it is possible to set L(i, j) to 0 or to 1 without blocking L, we get: Observation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
309
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
310
+ page_content=' If Lt is unblocked, so is Lt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
311
+ page_content=' Hence Lmn is complete;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
312
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
313
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
314
+ page_content=' it contains {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
315
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
316
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
317
+ page_content=' We say that a row L(i) is essential for an unblocked matrix L if every useful subset of L’s rows contains L(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
318
+ page_content=' Note that if Lt(i) is essential for Lt, then Ls(i) is essential for Ls for all s ≥ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
319
+ page_content=' Also, if Lmn(i) is essential for Lmn, then Lmn(i) is equal to a unique vector in {0, 1}n which is different from all other rows of Lmn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
320
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
321
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
322
+ page_content=' Assume that Lt(i) is not essential for Lt and Lt(i, j) = ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
323
+ page_content=' If Lt(i, j) is queried at time t + 1, then it is set to 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
324
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
325
+ page_content=' Lt+1(i, j) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
326
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
327
+ page_content=' By the “0 first” strategy, and the fact that if L(i) is not essential for an unblocked matrix L, then setting L(i, j) to 0 does not block L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
328
+ page_content=' By a straightforwards induction Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
329
+ page_content='8 implies: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
330
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
331
+ page_content=' If Lt(i) is not essential for Lt, then Lt(i) contains no 1’s (only 0’s or ⋆’s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
332
+ page_content=' Specifically, if Lmn(i) is not essential for Lmn, then Lmn(i) is the zero vector 0n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
333
+ page_content=' Hence, every row of Lmn which is not the zero vector is essential, and thus it is different from all other rows of Lmn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
334
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
335
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
336
+ page_content=' Let Lmn−1(i, j) be the last bit queried in the game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
337
+ page_content=' Then Lmn−1(i) is an essential row of Lmn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
338
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
339
+ page_content=' To simplify notation, we assume without loss of generality that j = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
340
+ page_content=' Assume towards contradiction that Lmn−1(i) is not essential for Lmn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
341
+ page_content=' By Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
342
+ page_content='9, this implies that Lmn−1(i) = ⋆0n−1 and Lmn(i) = 0n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
343
+ page_content=' (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
344
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
345
+ page_content=' Kronecker sets Lmn−1(i, 1) to 0 at Cantor’s mn’th query).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
346
+ page_content=' Since Lmn is complete (Observation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
347
+ page_content='6), this implies that Lmn−1 contains a distinct occurrence of each of the 2n − 1 nonzero vectors of {0, 1}n, and in particular for some k ̸= i, Lmn−1(k) is the unique row of Lmn−1 which equals 10n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
348
+ page_content=' Then, any subset S of Lmn−1 which contains the row Lmn−1(i), the 2n − 2 non zero rows of Lmn−1 excluding Lmn−1(k), and some zero row of Lmn−1 (by Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
349
+ page_content='9 there are m − 2n > 0 such rows in Lmn−1), 9 is a useful subset of Lmn−1 which does not contain Lmn−1(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
350
+ page_content=' Hence Lmn−1(k) is not essential for Lmn−1, and by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
351
+ page_content='8 Lmn−1(1) = 0 ̸= 1, which stands in contradiction with Lmn−1(1) = 10n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
352
+ page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
353
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
354
+ page_content=' Let Lmn−1(i, j) be the last query in the game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
355
+ page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
356
+ page_content='10, Lmn−1(i), and hence also Lmn(i), is essential, meaning that Lmn(i) is different from all other rows of Lmn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
357
+ page_content=' Thus Cantor must get the value of Lmn−1(i, j) in order to reach a decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
358
+ page_content=' A remark on computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
359
+ page_content=' A naive implementation of the “0 first” strategy might take exponential time: indeed, it requires checking whether setting the queried bit to 0 blocks the current matrix, which involves checking a potentially exponential list of constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
360
+ page_content=' Nevertheless, we next show that this strategy in fact admits a polynomial time implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
361
+ page_content=' Firstly, notice that the first m − 2n steps are trivially efficient, because setting L(i, j) to any value cannot block L (since at least 2n rows of L are not queried yet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
362
+ page_content=' Thus it suffices to show that in each later step, deciding whether setting L(i, j) to 0 blocks the matrix, can be performed in time which is polynomial in mn, the size of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
363
+ page_content=' Let Lt be the matrix L after t steps of the game, t > m − 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
364
+ page_content=' Consider the bipartite graph Gt = (At, B, Et), where At = {Lt(i) : 1 ≤ i ≤ m} is the set of rows of Lt, B = {0, 1}n, and (Lt(i), u) ∈ Et if and only if Lt(i) can be converted to the binary vector u by replacing the ⋆’s in Lt(i) (if any) by binary digits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
365
+ page_content=' Then, a subset S of Lt is useful for Lt if and only if Gt contains a perfect matching between the vertices in At which correspond to S and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
366
+ page_content=' Assume now that we are given the graph Gt, and the corresponding matching, and let Lt(i, j) be the entry queried by Cantor at step t+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
367
+ page_content=' To check if setting Lt(i, j) to 0 blocks Lt, we remove from Gt all the edges (Lt(i), u) in which u(j) = 0, and check if the resulted graph contains a perfect matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
368
+ page_content=' Since we are given a perfect matching Mt for Gt, and removing these edges eliminates at most one edge from Mt, this checking can be done by executing one phase in some classical algorithm for bipartite matching, which can be done in O(|Et|) = O(m2n) = O(m2) time (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
369
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
370
+ page_content=' [Eve11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
371
+ page_content=' 5 Concluding Remarks and Future Research We studied the Cantor-Kronecker game for different values of m and n: when m ≤ n the trivial lower bound of m is tight (a lower bound of m follows because Cantor must query at least one bit in each vector);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
372
+ page_content=' when m ≥ 2n, the trivial upper bound of mn is tight (an upper bound of mn follows because querying all the bits is clearly sufficient);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
373
+ page_content=' when n < m < 2n the landscape is more interesting, and in particular the bounds depend on whether Cantor is adaptive or oblivious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
374
+ page_content=' Further Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
375
+ page_content=' We conclude with suggestions for possible future research: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
376
+ page_content=' Study the Cantor-Kronecker game when there are r rounds of adaptivity: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
377
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
378
+ page_content=' there are r rounds in which Cantor can submit queries, and in each round the submitted queries may depend on Kronecker’s answers to queries from previous rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
379
+ page_content=' How does the query complexity change as a function of r?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
380
+ page_content=' Note that r = 1 is the oblivious case and r = ∞ is the adaptive case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
381
+ page_content=' (In fact r = n is already equivalent to r = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
382
+ page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
383
+ page_content=' Consider the following generalization of the game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
384
+ page_content=' Let k ≤ m, ℓ ≤ n be positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
385
+ page_content=' Kronecker maintains an m×n binary matrix, and Cantor queries the entries of Kronecker’s matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
386
+ page_content=' Cantor’s goal is to find a k × ℓ matrix which does not appear as a submatrix of Kronecker’s m × n matrix, or to decide that one does not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
387
+ page_content=' So, the original game 10 is when k = 1, ℓ = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
388
+ page_content=' What is the query complexity as a function of k, ℓ, m, n in the adaptive/oblivious case?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
389
+ page_content=' For which values does Cantor have a strategy that uses strictly less than m · n queries?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
390
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
391
+ page_content=' Find tighter bounds for the oblivious case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
392
+ page_content=' Specifically, notice that Cantor’s original diagonalization provides tight bound on the number of queries needed for the oblivious case when m ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
393
+ page_content=' It will be interesting to derive tight bounds and optimal strategies in the remaining cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
394
+ page_content=' As we exemplify below, this question has connections with natural combinatorial problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
395
+ page_content=' Consider the case when m is at the other end of the scale, namely 2n−1 ≤ m < 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
396
+ page_content=' Then, Cantor can win the game by querying nm − d bits, where d = 2n − m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
397
+ page_content=' In fact, it suffices that Cantor chooses his queries such that each of the d unqueried entries belongs to a different vector: in this case any assignments of values to the unqueried entries covers (in the sense of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
398
+ page_content='3) the m − d fully queried vectors, and at most two additional vectors per each of the remaining d vectors (each of which contains one unqueried entry): altogether at most (m − d) + 2d = m + d vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
399
+ page_content=' Hence, Cantor is guaranteed to win the game provided that m + d < 2n (equivalently d ≤ 2n − m − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
400
+ page_content=' Is the above strategy optimal?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
401
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
402
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
403
+ page_content=', can Kronecker win the game when Cantor queries only mn − (2n − m) bits?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
404
+ page_content=' Informally, Kronecker has a winning strategy if, for any distribution of the 2n − m unqueried entries, there is an assignment which covers sufficiently many vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
405
+ page_content=' This is formalized below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
406
+ page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
407
+ page_content='1 (cube(v), J-cube).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
408
+ page_content=' Let v be a vector with possibly some unqueried entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
409
+ page_content=' cube(v) is the set of binary vectors which can be obtained by replacing the unqueried entries in v by zeros or ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
410
+ page_content=' In particular, cube(v) = {v} if v is fully queried.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
411
+ page_content=' The cube cube(v) is called a J-cube if J = {j : the j′th bit of v is not queried}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
412
+ page_content=' For j ∈ [n], a {j}-cube is denoted by j-edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
413
+ page_content=' Assume that Cantor distributes the (2n − m) unqueried entries among vectors v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
414
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
415
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
416
+ page_content=' , vq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
417
+ page_content=' Then Kronecker answers to the queried entries define a cube C(vi) for each vector vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
418
+ page_content=' Kronecker wins if and only if those cubes cover {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
419
+ page_content=' Hence Kronecker has a winning strategy when Cantor uses mn − (2n − m) queries (2n−1 + 1 ≤ m < 2n) if and only if the following holds: Conjecture 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
420
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
421
+ page_content=' Let d = 2n − m < 2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
422
+ page_content=' For any collection J1, J2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
423
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
424
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
425
+ page_content=' , Jq of nonempty subsets of [n] satisfying �q i=1 |Ji| = d, there are cubes C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
426
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
427
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
428
+ page_content=' , Cq s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
429
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
430
+ page_content=' Ci is a Ji-cube, and |�q i=1 Ci| ≥ d + q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
431
+ page_content=' The following result of [FHK93] proves Conjecture 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
432
+ page_content='2 for the case that each Ji-cube is a ji-edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
433
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
434
+ page_content='3 ([FHK93]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
435
+ page_content=' Let d < 2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
436
+ page_content=' For any multiset D = {j1, j2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
437
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
438
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
439
+ page_content=' , jd} of elements of [n], {0, 1}n contains a matching {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
440
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
441
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
442
+ page_content=' , ed} s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
443
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
444
+ page_content=' for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
445
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
446
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
447
+ page_content=' , d, ei is a ji-edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
448
+ page_content=' It is also shown in [FHK93] that Conjcture 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
449
+ page_content='2 does not hold when d = 2n−1: in this case a corresponding matching exists if and only if each element in [n] occurs an even number of times in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
450
+ page_content=' This implies that when m = 2n−1 Cantor has a winning strategy with only mn − (2n − m) = mn − 2n−1 queries: he may query n − 1 entries per each vector, so that at least one dimension is left unqueried in an odd number of vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
451
+ page_content=' 11 References [Can74] Georg Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
452
+ page_content=' Ueber eine Eigenschaft des inbegriffs aller reellen algebraischen Zahlen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
453
+ page_content=' Journal f¨ur die reine und angewandte Mathematik (Crelles Journal), 1(77):258–262, 1874.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
454
+ page_content=' [Eve11] Shimon Even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
455
+ page_content=' Graph Algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
456
+ page_content=' Cambridge University Press, New York, NY, USA, 2nd edition, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
457
+ page_content=' [FHK93] Alexander Felzenbaum, Ron Holzman, and Daniel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
458
+ page_content=' Kleitman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
459
+ page_content=' Packing lines in a hypercube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
460
+ page_content=' Discrete Mathematics, 117(1):107–112, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
461
+ page_content=' [Wik22a] Wikipedia contributors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
462
+ page_content=' Georg Cantor — Wikipedia, the free encyclopedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
463
+ page_content=' https: //en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
464
+ page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
465
+ page_content='org/wiki/Georg_Cantor, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
466
+ page_content=' [Online;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
467
+ page_content=' accessed 20-November- 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
468
+ page_content=' [Wik22b] Wikipedia contributors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
469
+ page_content=' Hilbert’s paradox of the Grand Hotel — Wikipedia, the free encyclopedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
470
+ page_content=' https://en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
471
+ page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
472
+ page_content='org/wiki/Hilbert’s_paradox_of_the_ Grand_Hotel, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
473
+ page_content=' [Online;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
474
+ page_content=' accessed 20-November-2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
475
+ page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQf9v6Q/content/2301.01924v1.pdf'}
4NE4T4oBgHgl3EQf0w0Q/content/tmp_files/2301.05284v1.pdf.txt ADDED
@@ -0,0 +1,1123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Numerical Study of the Rate of Convergence of Chernoff
2
+ Approximations to Solutions of the Heat Equation
3
+ K.A. Dragunova, A.A. Garashenkova, I.D. Remizov
4
+ Research and educational group “Evolution semigroups and their applications”
5
+ International Laboratory of Dynamical Systems and Applications
6
+ National Research University Higher School of Economics
7
8
+ MSC2020: 65M12, 47D06, 35K05, 35E15, 35C99
9
+ Keywords: heat equation, initial value problem, operator semigroups, Chernoff approximations,
10
+ rate of convergence.
11
+ Abstract. Chernoff approximations are a flexible and powerful tool of functional analysis, which
12
+ can be used, in particular, to find numerically approximate solutions of some differential equations with
13
+ variable coefficients. For many classes of equations such approximations have already been constructed,
14
+ however, the speed of their convergence to the exact solution has not been properly studied.
15
+ We
16
+ developed a program in Python 3 that allows to model a wide class of Chernoff approximations to
17
+ a wide class of evolution equations on the real line.
18
+ After that we select the heat equation (with
19
+ already known exact solutions) as a simple yet informative model example for the study of the rate
20
+ of convergence of Chernoff approximations. Examples illustrating the rate of convergence of Chernoff
21
+ approximations to the solution of the Cauchy problem for the heat conduction equation are constructed
22
+ in the paper. Numerically we show that for initial conditions that are smooth enough the order of
23
+ approximation is equal to the order of Chernoff tangency of the Chernoff function used.
24
+ We also
25
+ consider not smooth enough initial conditions and show how H¨older class of initial condition is related
26
+ to the rate of convergence. This method of study can be applied to general second order parabolic
27
+ equation with variable coefficients by a slight modification of our Python 3 code, the full text of it is
28
+ provided in the appendix to the paper.
29
+ Contents
30
+ 1
31
+ Introduction
32
+ 2
33
+ 2
34
+ Preliminaries
35
+ 2
36
+ 3
37
+ Numerical simulation results
38
+ 4
39
+ 3.1
40
+ Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
+ 4
42
+ 3.2
43
+ Approximations for initial condition u0(x) = sin(x) . . . . . . . . . . . . . . . . . . . .
44
+ 6
45
+ 3.3
46
+ Approximations for initial condition u0(x) = | sin(x)|3/2
47
+ . . . . . . . . . . . . . . . . .
48
+ 7
49
+ 3.4
50
+ Approximations for initial condition u0(x) = e−|x| . . . . . . . . . . . . . . . . . . . . .
51
+ 8
52
+ 3.5
53
+ Approximations for initial condition u0(x) = | sin(x)|5/2
54
+ . . . . . . . . . . . . . . . . .
55
+ 9
56
+ 3.6
57
+ Approximations for initial condition u0(x) = | sin(x)|7/2
58
+ . . . . . . . . . . . . . . . . .
59
+ 9
60
+ 3.7
61
+ Approximations for initial condition u0(x) = | sin(x)|9/2
62
+ . . . . . . . . . . . . . . . . .
63
+ 10
64
+ 4
65
+ Discussion
66
+ 11
67
+ Appendix: Python 3 code
68
+ 13
69
+ References
70
+ 14
71
+ 1
72
+ arXiv:2301.05284v1 [math.NA] 12 Jan 2023
73
+
74
+ 1
75
+ Introduction
76
+ Chernoff approximations are a flexible and powerful tool of functional analysis [3, 4, 5], which
77
+ can be used, in particular, to find numerically approximate solutions of some differential equa-
78
+ tions with variable coefficients, see [2, 14] for an introduction to this topic, and also Preliminaries
79
+ section of the paper. For given linear evolution equation the method of Chernoff approximation
80
+ generates a sequence of functions un(t, x) that converge to the exact solution u(t, x) of the equa-
81
+ tion studied. For arbitrary fixed moment of time t functions x �−→ u(t, x) and x �−→ un(t, x) are
82
+ elements of some Banach space, and Chernoff’s theorem guarantees that ∥u(t, ·)−un(t, ·)∥ → 0
83
+ as n → ∞.
84
+ To our current knowledge all contributions to a very young “theory of rates of convergence
85
+ in Chernoff’s theorem” can be found in [8, 19, 20, 7, 6] and references therein. These papers
86
+ provide estimates for the rate of convergence under some conditions but if these conditions are
87
+ not satisfied then one can say nothing about the quality of Chernoff approximations. There
88
+ are also very few “practical” research papers [10, 16] that measure the speed of convergence in
89
+ particular cases obtained via numerical simulations. In our research we continue contributions
90
+ to this field of study.
91
+ We consider initial value problem for the heat equation
92
+ � u′
93
+ t(t, x) = u′′
94
+ xx(t, x) for t > 0, x ∈ R1
95
+ u(0, x) = u0(x) for x ∈ R1
96
+ (1)
97
+ which is a good model example because its bounded solution u(t, x) is already known and given
98
+ by the formula
99
+ u(t, x) =
100
+
101
+ R
102
+ Φ(x − y, t)u0(y)dy, where Φ(x, t) = (2
103
+
104
+ πt)−1 exp
105
+ �−x2
106
+ 4t
107
+
108
+ .
109
+ Then we obtain Chernoff approximations un(t, x) to the exact solution u(t, x) for n =
110
+ 1, 2, . . . , 11 and fixed time t = 1/2, and via numerical simulation and linear regression (ordinary
111
+ least squares method) discover that
112
+ sup
113
+ x∈R
114
+ |u(t, x) − un(t, x)| ≈
115
+ �1
116
+ n
117
+ �β
118
+ with a reasonable accuracy (R2 > 0.98). Coefficient β > 0 depends on the smoothness of initial
119
+ condition u0 and of the way of constructing the Chernoff approximations.
120
+ P.S.Prudnikov in 2020 studied [16] this question in a similar setting, but his approach does
121
+ not allow a direct generalization. Meanwhile the simulation method that we use allows to study
122
+ not only heat equation, but also equations with variable coefficients. Also we consider more
123
+ initial conditions than were studied in [16].
124
+ Now let us provide necessary background on the topic to explain the notion of Chernoff
125
+ tangency and Chernoff operator-valued function that are important to understand how we
126
+ obtain Chernoff approximations un(t, x).
127
+ 2
128
+ Preliminaries
129
+ Let F be a Banach space. Let L (F) be a set of all bounded linear operators in F. Suppose we
130
+ have a mapping V : [0, +∞) → L (F), i.e. V (t) is a bounded linear operator V (t): F → F for
131
+ each t ≥ 0. The mapping V is called [5] a C0-semigroup, or a strongly continuous one-parameter
132
+ semigroup of operators iff it satisfies the following conditions:
133
+ 1) V (0) is the identity operator I, i.e. ∀ϕ ∈ F : V (0)ϕ = ϕ;
134
+ 2
135
+
136
+ 2) V maps the addition of numbers in [0, +∞) into the composition of operators in L (F),
137
+ i.e. ∀t ≥ 0, ∀s ≥ 0 : V (t + s) = V (t) ◦ V (s), where for each ϕ ∈ F the notation (A ◦ B)(ϕ) =
138
+ A(B(ϕ)) = ABϕ is used;
139
+ 3) V is continuous with respect to the strong operator topology in L (F), i.e. ∀ϕ ∈ F
140
+ function t �−→ V (t)ϕ is continuous as a mapping [0, +∞) → F.
141
+ The definition of a C0-group is obtained by the substitution of [0, +∞) by R in the paragraph
142
+ above.
143
+ It is known [5] that if (V (t))t≥0 is a C0-semigroup in Banach space F, then the set
144
+
145
+ ϕ ∈ F : ∃ lim
146
+ t→+0
147
+ V (t)ϕ − ϕ
148
+ t
149
+
150
+ denote
151
+ =
152
+ Dom(L)
153
+ is a dense linear subspace in F. The operator L defined on the domain Dom(L) by the equality
154
+ Lϕ = lim
155
+ t→+0
156
+ V (t)ϕ − ϕ
157
+ t
158
+ is called an infinitesimal generator (or just generator to make it shorter) of the C0-semigroup
159
+ (V (t))t≥0, and notation V (t) = etL is widely used.
160
+ One of the reasons for the study of C0-semigroups is their connection with differential
161
+ equations. If Q is a set, then the function u: [0, +∞) × Q → R, u: (t, x) �−→ u(t, x) of two
162
+ variables (t, x) can be considered as a function u: t �−→ [x �−→ u(t, x)] of one variable t with
163
+ values in the space of functions of the variable x. If u(t, ·) ∈ F then one can define Lu(t, x) =
164
+ (Lu(t, ·))(x). If there exists a C0-semigroup (etL)t≥0 then the Cauchy problem for a linear
165
+ evolution equation
166
+ � u′
167
+ t(t, x) = Lu(t, x) for t > 0, x ∈ Q
168
+ u(0, x) = u0(x) for x ∈ Q
169
+ (2)
170
+ has a unique (in sense of F, where u(t, ·) ∈ F for every t ≥ 0) solution
171
+ u(t, x) = (etLu0)(x)
172
+ depending on u0 continuously. Compare also different meanings of the solution [5], including
173
+ mild solution which solves the corresponding integral equation. Note that if there exists a
174
+ strongly continuous group (etL)t∈R then in the Cauchy problem the equation u′
175
+ t(t, x) = Lu(t, x)
176
+ can be considered not only for t > 0, but for t ∈ R, and the solution is provided by the same
177
+ formula u(t, x) = (etLu0)(x).
178
+ Definition 1 (Introduced in [13]).
179
+ Let us say that C is Chernoff-tangent to L iff the
180
+ following conditions of Chernoff tangency (CT) hold:
181
+ (CT0). Let F be a Banach space, and L (F) be a space of all linear bounded operators
182
+ in F. Suppose that we have an operator-valued function C: [0, +∞) → L (F), or, using other
183
+ words, we have a family (C(t))t≥0 of linear bounded operators in F. Closed linear operator
184
+ L: Dom(L) → F is defined on the linear subspace Dom(L) ⊂ F which is dense in F.
185
+ (CT1) Function t �−→ C(t)f ∈ F is continuous for each f ∈ F.
186
+ (CT2) C(0) = I, i.e. C(0)f = f for each f ∈ F.
187
+ (CT3) There exists such a dense subspace D ⊂ F that for each f ∈ D there exists a limit
188
+ C′(0)f = lim
189
+ t→0
190
+ C(t)f − f
191
+ t
192
+ .
193
+ (CT4) The closure of the operator (C′(0), D) is equal to (L, Dom(L)).
194
+ Remark 1. Let us consider one-dimensional example F = L (F) = R. Then g: [0, +∞) →
195
+ R is Chernoff-tangent to l ∈ R iff g(t) = 1 + tl + o(t) as t → +0.
196
+ Theorem 1 (P. R. Chernoff (1968), see [5, 3]). Let F and L (F) be as above. Suppose
197
+ 3
198
+
199
+ that the operator L: F ⊃ Dom(L) → F is linear and closed, and function C takes values in
200
+ L (F). Suppose that these assumptions are fulfilled:
201
+ (E) There exists a C0-semigroup (etL)t≥0 with the infenitesimal generator (L, Dom(L)).
202
+ (CT) C is Chernoff-tangent to (L, Dom(L)).
203
+ (N) There exists such a number ω ∈ R, that ∥C(t)∥ ≤ eωt for all t ≥ 0.
204
+ Then for each f ∈ F we have (C(t/n))nf → etLf as n → ∞ with respect to norm in F
205
+ uniformly with respect to t ∈ [0, T] for each T > 0, i.e.
206
+ lim
207
+ n→∞ sup
208
+ t∈[0,T]
209
+ ��etLf − (C(t/n))nf
210
+ �� = 0.
211
+ Remark 2. In our one-dimensional example (F = L (F) = R) the Chernoff theorem says
212
+ that etl = limn→∞ g(t/n)n = limn→∞(1 + tl/n + o(t/n))n, which is a simple fact of calculus.
213
+ Definition 2. Let F, L (F), L be as above. If C is Chernoff-tangent to L and the equation
214
+ limn→∞ supt∈[0,T]
215
+ ��etLf − (C(t/n))nf
216
+ �� = 0 holds, then C is called a Chernoff function for the
217
+ operator L, and the (C(t/n))nf is called a Chernoff approximation expression to etLf.
218
+ Remark 3. If L is a linear bounded operator in F, then etL = �+∞
219
+ k=0(tL)k/k! where the
220
+ series converges in the usual operator norm topology in L (F). When L is not bounded (such
221
+ as Laplacian and many other differential operators), expressing (etL)t≥0 in terms of L is not
222
+ an easy problem that is equivalent to the problem of finding (for each u0 ∈ F) the F-valued
223
+ function U that solves the Cauchy problem U ′(t) = LU(t); U(0) = u0. If one finds this solution,
224
+ then etL is obtained for each u0 ∈ F and each t ≥ 0 in the form etLu0 = U(t).
225
+ Remark 4. In the definition of the Chernoff tangency the family (C(t))t≥0 usually does
226
+ not have a semigroup composition property, i.e. C(t1 + t2) ̸= C(t1)C(t2), while (etL)t≥0 has it:
227
+ et1Let2L = e(t1+t2)L. However, each C0-semigroup (etL)t≥0 is Chernoff-tangent to its generator
228
+ L and appears to be it’s Chernoff function. When coefficients of the operator L are variable,
229
+ usually there is no simple formula for etL due to the remark 3. On the other hand, even in this
230
+ case one can find rather simple formula to construct Chernoff function C for the operator L,
231
+ because there is no need to worry about the composition property, and then obtain etL in the
232
+ form etL = limn→∞ C(t/n)n via the Chernoff theorem.
233
+ 3
234
+ Numerical simulation results
235
+ 3.1
236
+ Problem setting
237
+ Definition 3.
238
+ We say that operator-valued function C is Chernoff-tangent of order k to
239
+ operator L iff C is Chernoff-tangent to L in the sense of definition 1 and the following condition
240
+ (CT3-k) holds:
241
+ There exists such a dense subspace D ⊂ F that for each f ∈ D we have
242
+ C(t)f =
243
+
244
+ I + tL + 1
245
+ 2t2L2 + . . . + 1
246
+ k!tkLk
247
+
248
+ f + o(tk) as t → 0.
249
+ (CT3 − k)
250
+ Remark 5. It is clear that for k = 1 condition (CT3-k) becomes just (CT3). For the semigroup
251
+ C(t) = etL condition (CT3-k) holds for all k = 1, 2, 3, . . . So one can expect that the bigger k
252
+ is the better rate of convergence C(t/n)nf → etLf as n → ∞ will be, if f belongs to the space
253
+ D. This idea was proposed in [12], where two conjectures about the convergence speed were
254
+ formulated explicitly, and one of them were recently proved in [7, 6]. For initial conditions that
255
+ are good enough and t fixed, Chernoff function with Chernoff tangency of order k by conjecture
256
+ should provide ∥u(t, ·) − un(t, ·)∥ = O(1/nk) as n → ∞. However, if f ̸∈ D then nothing is
257
+ known on the rate of convergence. In the present paper we are starting to fill this gap for
258
+ 4
259
+
260
+ operator L given by (Lf)(x) = f ′′(x) for all x ∈ R and all bounded, infinitely smooth functions
261
+ f: R → R, and k = 1, 2.
262
+ Problem setting. In the initial value problem (2) consider Q = R, and Banach space
263
+ F = UCb(R) of all bounded, uniformly continuous functions f: R → R endowed with the
264
+ uniform norm ∥f∥ = supx∈R |f(x)|. Consider operator L given by (Lf)(x) = f ′′(x) for all
265
+ x ∈ R and all f ∈ D = C∞
266
+ b (R) of all infinitely smooth functions R → R that are bounded with
267
+ all the derivatives. Then (2) reads as (1). Cauchy problem (1) is a constant (one, zero, zero)
268
+ coefficients particular case of the Cauchy problem considered in [15], and the corresponding
269
+ Chernoff function was found in [15]. The particular case of this Chernoff function reads as
270
+ (G(t)f)(x) = 1
271
+ 2f(x) + 1
272
+ 4f(x + 2
273
+
274
+ t) + 1
275
+ 4f(x − 2
276
+
277
+ t)
278
+ where we write G(t) instead of C(t) in order to show that C(t) is a general abstract Chernoff
279
+ function for some operator L, meanwhile G(t) is this particular above-given Chernoff function
280
+ for operator d2/dx2. It was proved in [15] that G(t) is first order Chernoff-tangent to d2/dx2.
281
+ A.Vedenin (see [19]) proposed another Chernoff function for operator L considered in [15],
282
+ and the constant coefficient particular case of this operator is d2/dx2. The particular case of
283
+ the Chernoff function obtained by A.Vedenin reads as
284
+ (S(t)f)(x) = 2
285
+ 3f(x) + 1
286
+ 6f(x +
287
+
288
+ 6t) + 1
289
+ 6f(x −
290
+
291
+ 6t),
292
+ and it was proved by A.Vedenin that S(t) is second order Chernoff-tangent to d2/dx2.
293
+ In the paper we study how supx∈R |u(t, x) − un(t, x)| depends on n while t = 1/2 is fixed
294
+ and un(t, x) is given by
295
+ un(t, x) = (C(t/n)nu0)(x)
296
+ where C ∈ {G, S}, C(t/n) is obtained by substitution of t by t/n in the formula that defines
297
+ C(t), and C(t/n)n = C(t/n)C(t/n) . . . C(t/n) is a composition of n copies of linear bounded
298
+ operator C(t/n). We consider several initial conditions u0 that are all H¨older continuous (hence
299
+ all belong to the UCb(R) space) but have different H¨older exponents. Then we remark how the
300
+ rate of tending of supx∈R |u(t, x) − un(t, x)| to zero depends on these H¨older exponents and the
301
+ order of Chernoff tangency (which is 1 for G(t), and 2 for S(t)).
302
+ Comments on computational techniques. Calculations were performed in the Python
303
+ 3 environment using a program we wrote and which is available in the Appendix. All measure-
304
+ ments, for the sake of reducing computational complexity, for each value of n (varying from 1 to
305
+ 11) were carried out for 1000 points uniformly dividing the segment [−π, π] or [−2π, 2π]. Initial
306
+ conditions of the form u0(x) = | sin x|α for various α ∈ {9/2, 7/2, 5/2, 3/2, 1, 3/4, 1/2, 1/4}, like
307
+ any of Chernoff approximations based on them, are periodic functions. So, the standard norm
308
+ in UCb(R), namely
309
+ d = ∥un(t, ·) − u(t, ·)∥ = sup
310
+ x∈R
311
+ |un(t, x) − u(t, x)|,
312
+ where u is the exact solution of (1) and un is the Chernoff approximation, is reached at the
313
+ interval corresponding to the period.
314
+ The program code was written with the possibility to set any operator and any initial con-
315
+ dition, i.e. without simplifying Chernoff functions and using binomial coefficients, in contrast
316
+ to the work [16] published earlier. Moreover, the initial condition does not necessarily have
317
+ to be a smooth function. The number of iterations is not limited to 11, the value n can be
318
+ changed, both upward and downward. We have chosen the optimal value n since the program
319
+ is very time consuming: via Jupyter Notebook 6.1.4 Anaconda 3 Python 3.8.3 set on personal
320
+ computer with Windows 10, CPU Intel Core i5-1035G1, 1.0-3.6 GHz, 8 Gb RAM it takes about
321
+ 20 minutes to complete the program for all initial conditions with construction of graphs for
322
+ 5
323
+
324
+ them. At the research stage of the new method (Chernoff approximations) this is acceptable,
325
+ but in the future, of course, the code will be optimized for a better speed, since this is important
326
+ in practice. Our goal is to continue research and in the future write a library that allows to
327
+ solve partial derivative equations in this way.
328
+ 3.2
329
+ Approximations for initial condition u0(x) = sin(x)
330
+ Let us first analyze the approximations for the initial condition u0(x) = sin x.
331
+ fig. 1.1, n = 1, u0(x) = sin x, t = 1
332
+ 2
333
+ Figure 1.1 shows the exact solution, which coincides with the graph of the function y =
334
+ e−1/2 sin x, and approximate solutions for the functions S(t) (left) and G(t) (right) at n = 1.
335
+ The initial condition u0 = sin x is very good, since its derivatives of any order exist, have
336
+ no discontinuities and are bounded. And already at n = 1 the function S(t) gives a good
337
+ approximation.
338
+ Figure 1.2 below shows plots of the decreasing error of Chernoff approximations as a function
339
+ of n, where 1 ≤ n ≤ 11. On the left are plots of decreasing error for Chernoff functions S(t)
340
+ (in blue) and G(t) (in green) in regular scale, and on the right – the same plots in logarithmic
341
+ scale. The graph in the logarithmic scale allows us to estimate how much the convergence rate
342
+ for the function G(t) is less than the convergence rate for the function S(t). Here and through
343
+ all the paper we use the following notation:
344
+ d = ∥un(t, ·) − u(t, ·)∥ = sup
345
+ x∈R
346
+ |un(t, x) − u(t, x)|.
347
+ fig. 1.2, 1 ≤ n ≤ 11, u0(x) = sin x, t = 1
348
+ 2
349
+ 6
350
+
351
+ Approximetion of the sohution via Chemoff fmctin S(t)
352
+ Approximetion of the sohution via Chemoff fmcticm G(t)
353
+ 0.6
354
+ 0.6
355
+ 0.4
356
+ 0.4
357
+ 0.2
358
+ 0.2
359
+ 0.0
360
+ -2
361
+ 2
362
+ -2
363
+ -1
364
+ 0.0
365
+ .3
366
+ 13
367
+ i
368
+ 2
369
+ 3
370
+ 02
371
+ 7
372
+ 0.4
373
+ 0.4
374
+ Chernoff approximation
375
+ Chernoff approximation
376
+ 0.6
377
+ Solution
378
+ 0.6
379
+ SolutionNorm decay
380
+ Logarithmic dependence
381
+ R2=0,9949
382
+ Discrepancy (S(t)f)(x)
383
+ -4
384
+ Discrepancy (G(t)f)(x)
385
+ 0.025
386
+ -5
387
+ R"=0.9949
388
+ 0.020
389
+ -6
390
+ 0.015
391
+ Discrepancy (S(t)f)(x)
392
+ Discrepancy (G(t)f)(x)
393
+ -7
394
+ 0.010
395
+ -8
396
+ 0.005
397
+ 6-
398
+ 0.000
399
+ .
400
+ 10
401
+ 2
402
+ 6
403
+ 8
404
+ 10
405
+ 0'0
406
+ 0.5
407
+ 10
408
+ 1'5
409
+ 2.0
410
+ 2.5
411
+ n
412
+ In nYou can see that the points on the right graph lie on the straight lines with good accuracy.
413
+ Using the method of least squares (in Excel) we found the equations of these lines. Rounding
414
+ off the coefficients, we see that for the blue line the equation is as follows:
415
+ ln(d) = −2.092 ln(n) − 5.0671, i.e. d = n−2.092e−5.0671 = 0.0063
416
+ n2.092 .
417
+ Similarly, for the green line, the equation ln(d) = −1.0416 ln(n) − 3.5796, i.e.
418
+ d = n−1.0416e−3.5796 = 0.0279
419
+ n1.0416.
420
+ Using the same approach, we study the behavior of the error for other initial conditions.
421
+ 3.3
422
+ Approximations for initial condition u0(x) = | sin(x)|3/2
423
+ fig. 5.1, n = 4, u0(x) = | sin(x)|3/2, t = 1
424
+ 2
425
+ fig. 5.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|3/2, t = 1
426
+ 2
427
+ The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
428
+ scale was constructed without taking into account n = 1.
429
+ For the green line (see Fig. 5.2, right) the equation ln(d) = −0.9785 ln(n) − 2.8973, i.e.
430
+ d = n−0.9785e−2.8973 = 0.0552
431
+ n0.9785.
432
+ Similarly, for the blue line (see Figure 5.2), the equation is as follows: ln(d) = −1.5109 ln(n)−
433
+ 1.8234, i.e. d = n−1.5109e−1.8234 = 0.1615
434
+ n1.5109.
435
+ As can be seen from Figure 5.2, the difference between the error decay rates using Chernoff
436
+ functions S(t) and G(t) for u0(x) = | sin(x)|3/2 is larger than for u0(x) = | sin x|. This is due to
437
+ the greater smoothness of u0(x) = | sin(x)|3/2.
438
+ 7
439
+
440
+ Approximetion of the sohution via Chemoff fmcticn S(t)
441
+ Approximetion of the sohution via Chemoff fmcticn G(t)
442
+ 0.62
443
+ 0.62
444
+ 0.60
445
+ 0.60
446
+ 0.58
447
+ 0.58
448
+ 0.56
449
+ 0.56
450
+ 0.54
451
+ 0.54
452
+ 4152
453
+ 0.5b
454
+ 0.48
455
+ Chernoff approximation
456
+ 0.50
457
+ Chernoff approximation
458
+ Solution
459
+ Solution
460
+ -3
461
+ -2
462
+ -1
463
+ 0
464
+ 1
465
+ 2
466
+ 3
467
+ -3
468
+ -2
469
+ -1
470
+ 0
471
+ 1
472
+ 2
473
+ 3Norm decay
474
+ Logarithmic dependence
475
+ 0.16
476
+ =0.9976
477
+ Discrepancy (S(t)f)(x)
478
+ 2.0
479
+ Discrepancy (G(t)f)(x)
480
+ 0.14
481
+ 2.5
482
+ 0.12
483
+ 3.0
484
+ 0.10
485
+ R2=0,9903
486
+ Discrepancy (S(t)f)(x)
487
+ 3.5
488
+ 0.08
489
+ Discrepancy (G(t)f)(x)
490
+ 4.0
491
+ 0.06
492
+ 0.04
493
+ 4.5
494
+ 0.02
495
+ 5.0
496
+ 0.00
497
+ 5.5
498
+ 2
499
+ 4
500
+ 6
501
+ 8
502
+ 10
503
+ 0'0
504
+ 0.5
505
+ 10
506
+ 15
507
+ 2.0
508
+ 2.5
509
+ n
510
+ In n3.4
511
+ Approximations for initial condition u0(x) = e−|x|
512
+ Let us consider a non-smooth and non-periodic function e−|x| as an initial condition.
513
+ fig. 6.1, n = 4, u0(x) = e−|x|, t = 1
514
+ 2
515
+ fig. 6.2, 1 ≤ n ≤ 11, u0(x) = e−|x|, t = 1
516
+ 2
517
+ Figures 6.1 and 6.2 show plots of the exact solution, approximations to the solution, and
518
+ rates of convergence of the error to zero. As can be seen, the result is similar: the conver-
519
+ gence rate of the function S(t) is higher than that of G(t), but the order of convergence is
520
+ approximately the same, as can be seen from the fact that the lines are almost parallel.
521
+ For the green line (see Fig. 6.2, right), the equation is as follows: ln(d) = −0.9294 ln(n) −
522
+ 2.3832, i.e. d = n−0.9294e−2.3832 = 0.0923
523
+ n0.9294.
524
+ Similarly, for the blue line (see Figure 6.2) the equation is as follows: ln(d) = −1.056 ln(n)−
525
+ 1.5543, i.e. d = n−1.056e−1.5543 = 0.2113
526
+ n1.5543.
527
+ 8
528
+
529
+ Approximetion of the sohution via Chemoff fmcticn S(t)
530
+ Approximetion of the sohution via Chemoff fumcticn G(t)
531
+ - 9'0
532
+ 0.5/
533
+ 0.5
534
+ Q4
535
+ 0/4
536
+ 0.3
537
+ 0.3
538
+ 0.2
539
+ 0.2
540
+ 0.1
541
+ 0.1
542
+ Chernoff approximation
543
+ Chernoff approximation
544
+ 0.0
545
+ Solution
546
+ 0.0
547
+ Solution
548
+ 10.0
549
+ 7.5
550
+ 5.0
551
+ 2.5
552
+ 0.0
553
+ 25
554
+ 5.D
555
+ 7.5
556
+ 1±.0
557
+ -10.0
558
+ 7.5
559
+ 0'5-
560
+ 2.5
561
+ 0.D
562
+ 25
563
+ 5.D
564
+ 7.5
565
+ 1±.0Norm decay
566
+ Logarithmic dependence
567
+ 0.200
568
+ 1.5
569
+ Discrepancy (S(t)f)(x)
570
+ 6660-_
571
+ Discrepancy (G(t)f)(x)
572
+ 0.175
573
+ 2.0
574
+ 0.150
575
+ 2.5
576
+ 0.125
577
+ Discrepancy (S(t)f)(x)
578
+ R
579
+ =0.9979
580
+ 0.100
581
+ Discrepancy (G(t)f)(x)
582
+ 0.075
583
+ 3.5
584
+ 0.050
585
+ 4.0
586
+ 0.025
587
+ 4.5
588
+ 2
589
+ 6
590
+ 8
591
+ 10
592
+ 0'0
593
+ 0.5
594
+ 10
595
+ 1'5
596
+ 2.0
597
+ 2.5
598
+ n
599
+ In n3.5
600
+ Approximations for initial condition u0(x) = | sin(x)|5/2
601
+ fig. 7.1, n = 4, u0(x) = | sin(x)|5/2, t = 1
602
+ 2
603
+ fig. 7.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|5/2, t = 1
604
+ 2
605
+ The lines (green and blue) corresponding to the decreasing error of the functions G(t) and
606
+ S(t) in the logarithmic scale was constructed without taking into account n = 1 and n = 2.
607
+ 3.6
608
+ Approximations for initial condition u0(x) = | sin(x)|7/2
609
+ fig. 8.1, n = 4, u0(x) = | sin(x)|7/2, t = 1
610
+ 2
611
+ 9
612
+
613
+ Approximetion of the sohution via Chemoff fmcticn S(t)
614
+ Approximetion of the soution via Chemoff fumcticn G(t)
615
+ 0.52
616
+ 0.52
617
+ 0.50
618
+ 0.50
619
+ 0.48
620
+ 0.48
621
+ 0.46
622
+ 0.46
623
+ 0.44
624
+ 0.44
625
+ 1.42
626
+ 442
627
+ 00
628
+ Chernoff approximation
629
+ 0.40
630
+ Chernoff approximation
631
+ Solution
632
+ Solution
633
+ E-
634
+ -2
635
+ -1
636
+ 0
637
+ 1
638
+ 2
639
+ 3
640
+ -3
641
+ -2
642
+ -1
643
+ 0
644
+ 1
645
+ 2
646
+ 3Norm decay
647
+ Logarithmic dependence
648
+ 0.14
649
+ 2
650
+ Discrepancy (S(t)f)(x)
651
+ Discrepancy (G(t)f)(x)
652
+ 0.12
653
+ E-
654
+ 0.10
655
+ 0.08
656
+ -4
657
+ Discrepancy (S(t)f)(x)
658
+ 2
659
+ p ul
660
+ =0.9963
661
+ Discrepancy (G(t)f)(x)
662
+ 0.06
663
+ -5
664
+ 0.04
665
+ -6
666
+ 0.02
667
+ 00°0
668
+ 2
669
+ 6
670
+ -7
671
+ 4
672
+ 8
673
+ 10
674
+ 0'0
675
+ 0.5
676
+ 10
677
+ 15
678
+ 2.0
679
+ 2.5
680
+ n
681
+ In nApproximetion of the sohution via Chemoff fmcticn S(t)
682
+ Approximetion of the soution via Chemoff fumcticn G(t)
683
+ 0.46
684
+ 0.46
685
+ 0.44
686
+ 0.44
687
+ 0.42
688
+ 0.42
689
+ 0.40
690
+ 0.40
691
+ 0.38
692
+ 0.38
693
+ 1.36
694
+ 436
695
+ 0.14
696
+ Chernoff approximation
697
+ 0.34
698
+ Chernoff approximation
699
+ Solution
700
+ Solution
701
+ E-
702
+ -2
703
+ -1
704
+ 0
705
+ 1
706
+ 2
707
+ 3
708
+ -3
709
+ -2
710
+ -1
711
+ 0
712
+ 1
713
+ 2
714
+ 3fig. 8.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|7/2, t = 1
715
+ 2
716
+ The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
717
+ scale was constructed without taking into account n = 1 and n = 2.
718
+ 3.7
719
+ Approximations for initial condition u0(x) = | sin(x)|9/2
720
+ fig. 9.1, n = 4, u0(x) = | sin(x)|9/2, t = 1
721
+ 2
722
+ fig. 9.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|9/2, t = 1
723
+ 2
724
+ The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
725
+ scale was constructed without taking into account n = 1 and n = 2.
726
+ 10
727
+
728
+ Norm decay
729
+ Logarithmic dependence
730
+ 0.200
731
+ R=0.9864
732
+ :
733
+ Discrepancy (S(t)f)(x)
734
+ -2
735
+ Discrepancy (G(t)f)(x)
736
+ 0.175
737
+ 0.150
738
+ -3
739
+ 0.125
740
+ Discrepancy (S(t)f)(x)
741
+ -4
742
+ p ul
743
+ 0,9753
744
+ 0.100
745
+ Discrepancy (G(t)f)(x)
746
+ -5
747
+ 0.075
748
+ 0.050
749
+ -6
750
+ 0.025
751
+ -7
752
+ 0.000
753
+ 4
754
+ 6
755
+ 8
756
+ 10
757
+ 0'0
758
+ 0.5
759
+ 10
760
+ 1'5
761
+ 2.0
762
+ 2.5
763
+ n
764
+ In nApproximetion of the sohution via Chemoff fmcticn S(t)
765
+ Approximetion of the soution via Chemoff fumcticn G(t)
766
+ 0.42
767
+ 0.42
768
+ 0.40
769
+ 0.40
770
+ 0.38
771
+ 0.38
772
+ 0.36
773
+ 0.36
774
+ 0.34
775
+ 0.34
776
+ .32
777
+ 432
778
+ 0.30
779
+ Chernoff approximation
780
+ Chernoff approximation
781
+ Solution
782
+ Solution
783
+ 0.28
784
+ E-
785
+ -2
786
+ -1
787
+ 0
788
+ 1
789
+ 2
790
+ 3
791
+ -3
792
+ -2
793
+ -1
794
+ 0
795
+ 1
796
+ 2
797
+ 3Norm decay
798
+ Logarithmic dependence
799
+ 0.25
800
+ Discrepancy (S(t)f)(x)
801
+ -1
802
+ R
803
+ =0.9777
804
+ Discrepancy (G(t)f)(x)
805
+ 0.20
806
+ -2
807
+ E-
808
+ 0.15
809
+ Discrepancy (S(t)f)(x)
810
+ -4
811
+ R°=0,9309
812
+ Discrepancy (G(t)f)(x)
813
+ 0.10
814
+ -5
815
+ -6
816
+ 0.05
817
+ -7
818
+ 0.00
819
+ -8
820
+ 2
821
+ 6
822
+ 10
823
+ 0'0
824
+ 0.5
825
+ 10
826
+ 1'5
827
+ 2.0
828
+ 2.5
829
+ n
830
+ In n4
831
+ Discussion
832
+ The table below shows experimentally (using simulation in Python 3) the orders of decreas-
833
+ ing of error depending on the smoothness class of the initial condition and the Chernoff function.
834
+ The smoothness class of the initial
835
+ condition u0
836
+ Order of decreasing er-
837
+ ror
838
+ on
839
+ the
840
+ Chernoff
841
+ function
842
+ G(t),
843
+ which
844
+ has the 1st order of
845
+ the
846
+ Chernoff
847
+ tangent
848
+ to the operator L =
849
+ d2
850
+ dx2
851
+ Order of decreasing er-
852
+ ror
853
+ on
854
+ the
855
+ Chernoff
856
+ function
857
+ S(t),
858
+ which
859
+ has the 2nd order of
860
+ tangency by Chernoff
861
+ to the operator L =
862
+ d2
863
+ dx2
864
+ C∞, i.e.
865
+ all derivatives exist and are
866
+ bounded, u0(x) = sin(x)
867
+ -1.0416
868
+ -2.092
869
+ C4 1
870
+ 2 , the first, second, third, and fourth
871
+ derivatives exist and are bounded, and
872
+ the fourth is H¨older with a H¨older ex-
873
+ ponent 1/2, u0(x) = | sin(x)|9/2
874
+ -1.0212, the regression was
875
+ done without n = 1, n = 2
876
+ -3.1219, but the points do
877
+ not fit well on a straight
878
+ line, so the number is un-
879
+ informative
880
+ C3 1
881
+ 2 , the first, second, and third deriva-
882
+ tives exist and are bounded, and the
883
+ third is H¨older with H¨older exponent
884
+ 1/2, u0(x) = | sin(x)|7/2
885
+ -1.4013,regression
886
+ was
887
+ done without considering
888
+ n = 1, n = 2, but the
889
+ points do not lie well on
890
+ the line, so the number is
891
+ uninformative
892
+ -2.5045, but the points do
893
+ not lie well on the line, so
894
+ the number is uninforma-
895
+ tive
896
+ C2 1
897
+ 2 , the first and second derivative
898
+ exist and are bounded, while the sec-
899
+ ond derivative is H¨older continuous
900
+ with H¨older exponent 1/2, u0(x) =
901
+ | sin(x)|5/2
902
+ -1.1433,
903
+ regression
904
+ was
905
+ done without considering
906
+ n = 1, n = 2
907
+ -1.7923,
908
+ regression
909
+ was
910
+ done without considering
911
+ n = 1, n = 2
912
+ C1 1
913
+ 2 ,
914
+ the
915
+ first
916
+ derivative:
917
+ exists,
918
+ is
919
+ bounded
920
+ and
921
+ H¨older
922
+ continuous
923
+ with H¨older exponent 1/2, u0(x) =
924
+ | sin(x)|3/2
925
+ -0.9785, the regression was
926
+ done without considering
927
+ n = 1
928
+ -1.5109
929
+ H1, the H¨older with the H¨older expo-
930
+ nent 1, u0(x) = | sin(x)|
931
+ -1.0508
932
+ -1.0948
933
+ H1,the H¨older with the H¨older expo-
934
+ nent 1, u0(x) = e−|x|
935
+ -0.9294
936
+ -1.056
937
+ H3/4, the H¨older with the H¨older expo-
938
+ nent 3/4, u0(x) = | sin(x)|3/4
939
+ -0.815
940
+ -0.9262
941
+ H1/2, the H¨older with the H¨older expo-
942
+ nent 1/2, u0(x) = | sin(x)|1/2
943
+ -0.6905
944
+ -0.7723
945
+ H1/4, the H¨older with the H¨older expo-
946
+ nent 1/4, u0(x) = | sin(x)|1/4
947
+ -0.6138
948
+ -0.6653
949
+ We see that on the initial condition with high smoothness (first line in the table), the first
950
+ order of Chernoff tangency corresponds to a decreasing error rate of about 1/n, and the second
951
+ order – a decreasing rate of about 1/n2. This is in accordance with the conjecture from [12]
952
+ and theorem from [6].
953
+ As the smoothness is lost (second line in the table and below), theory from [6] stops working,
954
+ and the experimental evidence is the following: the convergence speed gradually decreases and
955
+ the advantages of the Chernoff function with the second order of Chernoff tangency gradually
956
+ vanish. Let us present the results from the table graphically:
957
+ 11
958
+
959
+ fig. 10
960
+ The regression was carried out without taking into account the point (2.5; -1.7923). The
961
+ equation of the approximating line: y = −0.684x − 0.4467.This may be interpreted as follows:
962
+ when the smoothness class α of the initial condition u0 is not greater than the order of Chernoff
963
+ tangency then
964
+ d = ∥un(t, ·) − u(t, ·)∥ = sup
965
+ x∈R
966
+ |un(t, x) − u(t, x)| ≈ const ·
967
+ �1
968
+ n
969
+ �0.68α+0.45
970
+ .
971
+ Meanwhile when the smoothness class α of the initial condition u0 is greater than the order of
972
+ Chernoff tangency then there is no such easy-to-state dependence but still Chernoff function
973
+ S(t) with the second order Chernoff tangency provides better approximations than Chernoff
974
+ function G(t) with the first order Chernoff tangency.
975
+ Conclusion.
976
+ The results of the numerical simulation are generally in agreement with
977
+ and confirm the theory arising from the conjecture in [12]. However, some of the points that
978
+ do not lie on straight lines exactly. This deserve closer attention: n = 11 for some initial
979
+ conditions is not sufficient to derive conclusions about the asymptotic behavior of the calculation
980
+ error. For not smooth initial conditions that we studied numerically there are not known any
981
+ theoretical bounds on the rate of convergence. And, of course, the most interesting case of
982
+ variable coefficients should be considered, understanding them as parameters analogously with
983
+ u0. So the research in this direction is far from ending.
984
+ Acknowledgements. The publication was prepared within the framework of the Academic
985
+ Fund Program at HSE University in 2021 (grant №20-04-022) by the Research and educational
986
+ group ”Evolution semigroups and their applications”. Authors are thankful to Prof. O.E.Galkin
987
+ and other members of the group for discussions of the results presented in the paper.
988
+ 12
989
+
990
+ 0.6
991
+ S(t)
992
+ 0.8
993
+ (a)9
994
+ 1.0
995
+ 1.2
996
+ decre
997
+ 1.4
998
+ 1.6
999
+ 1.8
1000
+ R2 = 0,9854
1001
+ 2.0
1002
+ 2.2
1003
+ 0.5
1004
+ 1.0
1005
+ 1.5
1006
+ 2.0
1007
+ 2.5
1008
+ The smoothness class of the initial conditionAppendix: Python 3 code
1009
+ 13
1010
+
1011
+ L.1Moduliandvariables
1012
+ In [1]:
1013
+ # importing moduli
1014
+ importmatplotlib.pyplotasplt
1015
+ from sympy import oo
1016
+ from scipy importintegrate
1017
+ import numpy as np
1018
+ importmath
1019
+ In [2]:
1020
+ # variables declaration
1021
+ tau = 1/2
1022
+ n = 11
1023
+ In[3]:
1024
+ 1=[]
1025
+ fori inrange(1,n+1):
1026
+ 1.append(math.log(i))1.2 Functions and operators
1027
+ # almost self-contained class
1028
+ classclassoffunctions(object):
1029
+ def thefunction(self, x):
1030
+ return x
1031
+ # Chernoff function (s(t)f)(x)=(2/3)f(x) + (1/6)f(x + (6t)^(1/2)) + (1/6)f(x - (6t)^(1/2))
1032
+ defoper(inputobject:classoffunctions,t):
1033
+ outputobject=inputobject
1034
+ f= inputobject.thefunction
1035
+ def funct(x):
1036
+ return (2/3)*f(×) +(1/6)*f(× + (6*t)**(1/2)) + (1/6)*f(x- (6*t)**(1/2))
1037
+ outputobject.thefunction=funct
1038
+ returnoutputobject
1039
+ # Chernoff function (G(t)f)(x) = (1/4)* f(x+2t^(1/2))+(1/4) f(x-2t^(1/2))+(1/2)f(x)
1040
+ defoperl(inputobject:classoffunctions,t):
1041
+ outputobject=inputobiect
1042
+ f=inputobject.thefunction
1043
+ def funct(x):
1044
+ return (1/4)*f(x+2*t**(1/2))+(1/4)*f(x-2*t**(1/2))+(1/2)*f(×)
1045
+ outputobject.thefunction=funct
1046
+ return outputobjectReferences
1047
+ [1] Bogachev V.I., Smolyanov O.G. Real and Functional Analysis. — Springer, 2020.
1048
+ [2] Butko Ya.A. The method of Chernoff approximation. Springer Proceedings in Mathematics
1049
+ and Statistics. Volume 325. — Springer, Cham, 2020. Pp. 19–46.
1050
+ [3] Chernoff P.R. Note on product formulas for operator semigroups.// J. Functional Analysis
1051
+ 2:2 (1968), 238-242.
1052
+ [4] Engel K.-J., Nagel R. A. Short Course on Operator Semigroups. — N.Y. Springer Science,
1053
+ Business Media, 2006.
1054
+ [5] Engel K.-J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. —
1055
+ Springer, 2000.
1056
+ [6] Galkin O.E., Remizov I.D. Rate of Convergence of Chernoff Approximations of operator
1057
+ C0-semigroups.// Mathematical Notes, to appear (2022)
1058
+ [7] Galkin O. E., Remizov I. D. Upper and lower estimates for rate of convergence in Chernoff’s
1059
+ product formula for semigroups of operators // https://arxiv.org/abs/2104.01249, 2021
1060
+ [8] Gomilko A., Kosowicz S., Tomilov Yu. A general approach to approximation theory of
1061
+ operator semigroups. // Journal de Math´ematiques Pures et Appliqu´ees. 127 (2019), 216–
1062
+ 267.
1063
+ 14
1064
+
1065
+ # composition degree of Chernoff function (s(t)f)(x)
1066
+ def degr(g, tau, n):
1067
+ y=[]
1068
+ obj=classoffunctions()
1069
+ for n_p in range(1, n + 1):
1070
+ objk=obj
1071
+ obj_k.thefunction = g
1072
+ for k in range(1, n_p + 1):
1073
+ objk=oper(objk,tau/np)
1074
+ y.append(obj_k.thefunction)
1075
+ return y
1076
+ # composition degree of Chernoff function (G(t)f)(x)
1077
+ def degrl(g, tau, n):
1078
+ y=[]
1079
+ obj=classoffunctions()
1080
+ for n_p in range(1, n + 1):
1081
+ obj_k = obj
1082
+ obj_k.thefunction =g
1083
+ for k in range(1, n_p + 1):
1084
+ obj k = oper1(obj k,tau/n p)
1085
+ y.append(obj_k.thefunction)
1086
+ return y
1087
+ #normcomputation
1088
+ def norm(y, sol):
1089
+ [] = p
1090
+ for n p in range(O, n):
1091
+ d.append(np.max(np.abs(sol -y[n_pj(x))))
1092
+ return d[9] Hille E., Phillips R. S. Functional Analysis and Semi-Groups. — American Mathematical
1093
+ Society, 1975.
1094
+ [10] Orlov Yu.N., Sakbaev V.Zh., Smolyanov O.G. Rate of convergence of Feynman approxima-
1095
+ tions of semigroups generated by the oscillator Hamiltonian. // Theoret. and Math. Phys.
1096
+ 172:1 (2012), 987–1000.
1097
+ [11] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations.
1098
+ — Springer-Verlag, 1983.
1099
+ [12] Remizov I.D. On estimation of error in approximations provided by Chernoff ’s product
1100
+ formula.// International Conference "ShilnikovWorkshop-2018" dedicated to the memory of
1101
+ outstanding Russian mathematician Leonid Pavlovich Shilnikov (1934-2011), Lobachevsky
1102
+ State University of Nizhny Novgorod, December 17-18, 2018 Book of abstracts, pp.38-41
1103
+ [13] Remizov I.D. A method of obtaining the evolution operator for the Schr¨odinger equation
1104
+ Quasi-Feynman formulas.// J. Funct. Anal. 270:12, (2016), 4540-4557.
1105
+ [14] Remizov I.D. Feynman and Quasi-Feynman Formulas for Evolution Equations// Doklady
1106
+ Mathematics, 96:2 (2017), 433-437
1107
+ [15] Remizov I. D. Approximations to the solution of Cauchy problem for a linear evolution
1108
+ equation via the space shift operator (second-order equation example)// Applied Mathe-
1109
+ matics and Computation, 328, 243-246, 2018
1110
+ [16] Prudnikov P.S. Speed of convergence of Chernoff approximations for two model examples:
1111
+ heat equation and transport equation// arXiv:2012.09615 [math.FA] (2020).
1112
+ [17] Smolyanov O.G., Tokarev A.G.,Truman A. Hamiltonian Feynman path integrals via the
1113
+ Chernoff formula.// J. Math. Phys. 43. 10 (2002), 5161-5171.
1114
+ [18] Vedenin A.V. Fast converging Chernoff approximations to solution of a parabolic differ-
1115
+ ential equation on a real line.// International school-conference Mathematical spring 2019,
1116
+ Russia, Nizhny Novgorod 2-5 May 2019, Book of abstracts, pp 22-23
1117
+ [19] Vedenin A.V., Voevodkin V.S., Galkin V.D., Karatetskaya E.Yu., Remizov I.D. . Speed
1118
+ of Convergence of Chernoff Approximations to Solutions of Evolution Equations. // Math.
1119
+ Notes, 108:3 (2020), 451–456.
1120
+ [20] Zagrebnov V.A. Notes on the Chernoff product formula. // J. Funct. Anal. 279:7 (2020),
1121
+ 108696
1122
+ 15
1123
+
4NE4T4oBgHgl3EQf0w0Q/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59E5T4oBgHgl3EQfPQ7C/content/2301.05504v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ccf5885cf2158e625842fc32902f8303c5ed79c4f57c1b128d6f1765ce3ef5a
3
+ size 3006063
6dE3T4oBgHgl3EQfpwoB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:844bf24d3fceb8ff6d1987f5b08e10cedbf35d029a4dcaceb0a263d4e32e013c
3
+ size 7798829
7NAyT4oBgHgl3EQfQfbq/content/tmp_files/2301.00049v1.pdf.txt ADDED
@@ -0,0 +1,2220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+ Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx
7
+ www.mdpi.com/journal/sensors
8
+ Article
9
+ Multi-Finger Haptics: Analysis of Human Hand Grasp towards
10
+ a Tripod Three-Finger Haptic Grasp model
11
+ Jose James
12
+ Brown University, Providence, RI, 02912, USA.
13
+ Correspondence: [email protected].
14
+ Abstract: Grasping is an incredible ability of animals using their arms and limbs in their daily life.
15
+ The human hand is an especially astonishing multi-fingered tool for precise grasping, which
16
+ helped humans to develop the modern world. The implementation of the human grasp to virtual
17
+ reality and tele robotics is always interesting and challenging at the same time. In this work, au-
18
+ thors surveyed, studied, and analyzed the human hand grasping behavior for the possibilities of
19
+ haptic grasping in the virtual and remote environment. This work is focused on the motion and
20
+ force analysis of fingers in human hand grasping scenarios and the paper describes the transition
21
+ of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtu-
22
+ al reality.
23
+ Keywords: hand grasp; grasp analysis; multi-finger haptics; haptic grasp interface
24
+
25
+ 1. Introduction
26
+ The human hand is a highly skilled, prehensile, multi-fingered, perception and ma-
27
+ nipulation organ at the distal end of the arm [1]. Prehensility is the quality of an ap-
28
+ pendage or organ that has adapted for grasping or holding. In the past decade’s, re-
29
+ searchers [2] explored the various aspects of the evolution, morphology, anthropology,
30
+ and social significance of the human hand as a tool [3], as a symbol [4] and as a weapon
31
+ [5]. Humans cognitively manipulating a variety of objects in daily life using various
32
+ hand configurations, resulting from changing the position, orientation and placement of
33
+ hand and fingers based on the object properties such as its weight, shape, texture, fric-
34
+ tion, hardness etc. Such a variety of grasps is possible because of the dexterity, various
35
+ degrees of freedom, and the great control strategy.
36
+ Hands are associated with the aligning capability of the body, kinesthetic percep-
37
+ tion of the limb and the richest tactile sense. Many researchers studied the anatomy,
38
+ muscles, biomechanics, kinematics, functionalities, and skills of human hand [6,7]. These
39
+ studies helped to do more focused research on human hand prehension [8] and grasp
40
+ [9,10]. Based on all these studies hand grasp types are classified and different grasp tax-
41
+ onomies were arising in the literature [11,12], covering a broad range of domains.
42
+ As technologies like virtual reality and tele-robotics being progressed, humans
43
+ started interacting with virtual and remote environments. But the integration of hand
44
+ grasping into virtual and remote environments still challenging because of the complex
45
+ architecture behind it. The extensive research in the analysis and synthesis of human
46
+ grasps [13,14] over the past years has provided a basic theoretical framework towards
47
+ better progress in human-computer interaction [15], robotic grasping [16] and dexterous
48
+ manipulation and lead to the design of artificial robotics hands and arms for the pros-
49
+ thetic application [17]. Since the last few decades, researchers put effort to mimic the
50
+ human hand to design robotic grippers [18], etc. But still, these frameworks need more
51
+ extensive studies for the practical implementation of the direct involvement of humans
52
+ Citation: James, J.; Title. Sensors
53
+ 2022,
54
+ 22,
55
+ x.
56
+ https://doi.org/10.3390/xxxxx
57
+ Academic Editor: Firstname Last-
58
+ name
59
+ Received: 27 April 2022
60
+ Accepted: date
61
+ Published: date
62
+ Publisher’s Note: MDPI stays neu-
63
+ tral with regard to jurisdictional
64
+ claims in published maps and insti-
65
+ tutional affiliations.
66
+
67
+ Copyright: © 2022 by the authors.
68
+ Submitted for possible open access
69
+ publication under the terms and
70
+ conditions of the Creative Commons
71
+ Attribution
72
+ (CC
73
+ BY)
74
+ license
75
+ (https://creativecommons.org/license
76
+ s/by/4.0/).
77
+
78
+ sehsorsMDPIBYSensors 2022, 22, x FOR PEER REVIEW
79
+ 2 of 20
80
+
81
+
82
+ to grasp objects in virtual and remote environments with multi-fingers.
83
+ The grasping force depends on the orientation of fingers, palm, and wrist [19]. The
84
+ force output on the fingertip is highly joint dependent and provides stable grasp and
85
+ precise manipulation of objects. Previous works [20], more focused on muscle activation
86
+ patterns and resultant positions/forces as a function of the joints as well as subject inde-
87
+ pendent leads to the structural variability in human hands [21]. Motion and force analy-
88
+ sis of fingers in various hand manipulation actions can be observed, learned, and ana-
89
+ lyzed to come up with better framework and devices for virtual and remote manipula-
90
+ tions [22,23] Adapting the gripping functions, manipulation capabilities, kinematics, dy-
91
+ namics, and size of the human hand, will accelerate the design of the human-like artifi-
92
+ cial arms and hands for the direct grasping interaction in the virtual world.
93
+ As a previous work, authors designed haptic interfaces for tweezer pinch grasp [24]
94
+ and tripod grasp [25]. Also implemented the hand grasp through augmented haptics by
95
+ means of custom-made attachments for virtual tools in motor skill training interfaces
96
+ [26,27]. The aim of this work is to understand human grasping and manipulations, sur-
97
+ veying different types of grasp taxonomies, study the characterization of hand in grasp-
98
+ ing, model a tripod haptic grasp and design an interface for multi-finger haptic grasping
99
+ which can offer better interactions with tasks in the virtual and remote environments.
100
+ 2. Human Hand
101
+ The human hand is a prehensile, multi-fingered astonishing organ/tool of complex
102
+ engineering used to carry and manipulate objects [2]. In view of human grasping, a short
103
+ description of hand anatomy, mechanisms and kinematics will help to model a multi-
104
+ finger haptic grasp and design a haptic grasping interface.
105
+ 2.1. Hand Anatomy
106
+ The human hand includes mainly three areas and five digits (fingers): Thumb, In-
107
+ dex finger, Middle finger, Ring finger, and Little finger are numbered 1-5 as shown in
108
+ Figure 1. The palm with fingers holds most pressure and support for the hand to grasp.
109
+ Fingers are the densest areas of nerve endings and the richest source of tactile feedback.
110
+ So, hands are the primary tool for a sense of touch and positioning capability. The hu-
111
+ man hand consists of 27 bones and 45 muscles with at least 23 degrees of freedom at the
112
+ joints [6] including the wrist as shown in Figure 1(a).
113
+
114
+ Figure 1. Skeleton system and arches of human hand
115
+ The human hand can grasp objects and do daily tasks by forming bony arches:
116
+ Longitudinal arches, transverse arches, and oblique arches as drawn in Figure 1(b). Lon-
117
+
118
+ (a)HumanHandskeletonsystem
119
+ (b)HumanHandarches
120
+ DIPjoint
121
+ PIP joint.
122
+ MCPjoint
123
+ Distal
124
+ Longitudinalarch
125
+ 1
126
+ Middle
127
+ Phalanges
128
+ (Fingers)
129
+ Obliquearch
130
+ Proximal
131
+ Metacarpaltransversearch
132
+ Metacarpals
133
+ Distaltransversearch
134
+ (Palm)
135
+ Hamate
136
+ Trapezium
137
+ Pisiform
138
+ Carpals
139
+ Trapezoid-
140
+ Scaphoid
141
+ -Triquetrum
142
+ (Wrist)
143
+ Capitate
144
+ Lunate
145
+ Carpaltransversearch
146
+ Radius
147
+ UlnaSensors 2022, 22, x FOR PEER REVIEW
148
+ 3 of 20
149
+
150
+
151
+ gitudinal arches shaped by the finger bones and their associated metacarpal bones,
152
+ transverse arches by the carpal bones and the distal ends of the metacarpal bones, and
153
+ oblique arches by the thumb and four fingers [7]. These arches are the basic frames for
154
+ various grasp patterns. The extrinsic and intrinsic muscles in hand controlled the motion
155
+ of the fingers and making grasping possible. Thumb together with the index and middle
156
+ finger forms the dynamic tridactyl configuration responsible for most grips which not
157
+ requiring force. The ring and little fingers are more static. So, for this multi-finger haptic
158
+ grasping interface model, authors considered the motion of the first three fingers the
159
+ thumb, index finger and middle finger.
160
+ 2.2 Hand Kinematics
161
+ Hand’s numerous patterns of action was resulted from the skeleton mechanical sys-
162
+ tems and the twenty-four muscle groups regulated by the diverse motor and sensory
163
+ nerve pathways [6].
164
+ The MCP and PIP joints exhibit a common rotation pattern. The virtual center of ro-
165
+ tation of hand is the center of curvature of the distal end of the proximal member [28].
166
+ The lateral rotation of fingers is small in the MCP joints and decreasing towards the pha-
167
+ langeal hinge joints. The thumb has the greater mobility in the CMC articulation. Other
168
+ fingers being more arched from index to little finger. The thumb, palm, and fingers to-
169
+ gether permitted to grasp a 1.75-inch cylinder at about 45 degrees to the radioulnar axis.
170
+ Bunnell [29] considers this "an ancestral position ready for grasping limbs, weapons, or
171
+ other creatures."
172
+ The major wrist motions are extension (or dorsiflexion), flexion (or volar flexion),
173
+ radial flexion and ulnar flexion, based on the angle of rotation of the wrist. The fixation
174
+ movements and ballistic movements are also major types of movements in the hand [30].
175
+ The hand with the fully extended arm can be rotated through almost 360 degrees with
176
+ the participation of shoulder and elbow. From palm up to palm down, the hand can be
177
+ rotated through 180 degrees, with the elbow flexed. Thumb can provide a variety of flex-
178
+ ions extension patterns of the phalanges for any given metacarpal position and due to
179
+ the relative mobility of the CMC joint, which allows the thumb to act in any plane neces-
180
+ sary to oppose the digits. In the principal opposition cases and prehensions, the plane of
181
+ the thumb action is inclined 45 to 60 degrees to the palmar plane. In lateral prehension,
182
+ the plane is approximately parallel to the palmar plane.
183
+ 2.3 Hand Dynamics
184
+ Fick [31] investigated the actions and contractile forces of hand muscles and esti-
185
+ mated the summed forces of the individual muscles participating in the action. But the
186
+ measured isometric forces are only 10% of the total forces because of the effective small
187
+ moment arm upon any of the wrist or hand joints. The flexor-extensor forces in the wrist
188
+ and the prehensile forces in the hand varied with wrist angle and it reaches a maximum
189
+ at a wrist angle of about 145 degrees. So, for very strong prehensions, wrist likely to at-
190
+ tain this angle [32].
191
+ Kamper et.al [33] was analyzed the joint angles and finger trajectories in reach-and-
192
+ grasp tasks which fit the actual finger positions with a mean error of 0.23 ± 0.25 cm and
193
+ accounted for over 98% of the variance in finger position. The direction of the thumb tra-
194
+ jectories exhibited a greater dependence on object type than the finger trajectories, but
195
+ still utilized a small percentage (<5%) of the available workspace [34]. Previous studies
196
+ of musculoskeletal models [35] observed that the role of the intrinsic muscles of the hand
197
+ as the main force-producing muscles in power grip [36]. These models were used in the
198
+ commercial software ANYBODY for the thumb and the index finger [37]. However,
199
+ these models did not address the coupling between the fingers and the interaction with
200
+ the wrist which limits the investigation of human grasping.
201
+
202
+ Sensors 2022, 22, x FOR PEER REVIEW
203
+ 4 of 20
204
+
205
+
206
+ In [38] authors presented an upper limb musculature model for the full arm includ-
207
+ ing the shoulder, elbow, wrist, thumb, and index finger and provides valuable data on
208
+ the wrist-finger joint coupling and extrinsic hand muscle anatomy [39]. The force output
209
+ on the fingertip is highly joint dependent and provides stable grasp and precise manipu-
210
+ lation of objects. That's why the force transfer is important for the human hand in con-
211
+ tact and manipulating purpose to avoid the slipping and deformation of the object. Pre-
212
+ vious works focused more on muscle activation patterns and resultant positions/forces
213
+ as a function of the joints [20] as well as a subject independent lead to the structural var-
214
+ iability in human hands.
215
+ 2.4 Purpose of Study
216
+ This study conducted to analyze the human hand grasping to isolate the functional
217
+ properties with the final goal to optimize haptic grasping by building simpler multi-
218
+ finger haptic grasping interfaces with at least similar grasping and manipulation capa-
219
+ bilities. This work helped to learn more about the complex engineering structure of the
220
+ human hand and leads to characterizing the multi-finger haptic grasping systems. For
221
+ instance, the proposed three-finger haptic grasping system has an independent joint ar-
222
+ chitecture for three fingers in the hand, which may be advantageous in virtual grasping.
223
+ Also, this led to identify the independence of joints needs in normal grasping tasks.
224
+ Conversely, the control of such an independent architecture is very challenging. By add-
225
+ ing synergies, we can reduce the complexity of control, but we also want to keep a cer-
226
+ tain, currently unquantified, level of dexterity.
227
+ 3. Human Grasp
228
+ A grasp is a system wherein the desired object is gripped by the fingers of a human
229
+ (or robot) hand.
230
+ 3.1 Human Grasp Patterns
231
+ Napier [40] categorized human grasp into two basic grips: power grasps and preci-
232
+ sion grasps (pinch grasps). In power grasp, the object is in the palm of the hand and en-
233
+ closed by the fingers which lead to large area of contact between the palm, the fingers,
234
+ and the object. In precision grasp (pinch grip), the object is held between the tip of the
235
+ thumb and finger, which offer more dexterity. Precision grasps become more relevant in
236
+ robotic and virtual grasping. The power grasp is enhanced by the precision grasp be-
237
+ tween the thumb and the distal finger pads, and it is inherently stable. Pinch grip re-
238
+ quires the six joints between the index finger and the thumb to be stabilized; it requires
239
+ more activity of the intrinsic finger muscles to maintain this balance. A large variety of
240
+ prehension patterns are identified from studies of the muscle-bone-joint anatomy and
241
+ from observation of the postures and motions of the hand. The object-contact pattern
242
+ furnishes a satisfactory basis for classification of major prehension patterns [41].
243
+ All the ages, the human hand was a part of most creative arts of every culture [42]
244
+ to speak and convey human emotions and the hands symbolize cultural behaviors, val-
245
+ ues, and beliefs. A mudra is a symbolic gesture in the spiritual practice of Indian reli-
246
+ gions and traditional art forms performed with the hands with a specific pattern of fin-
247
+ ger configurations [43]. A canonical set of predefined hand postures and modifiers can
248
+ be used in digital human modelling to develop the standard hand posture libraries and
249
+ a universal referencing scheme and continuum of hand poses from simple posture to
250
+ complex one. Researchers [9] have studied features for force-closure grasp by human
251
+ hands and characterized into four mutually independent properties for robotic arm
252
+ grasping listed as dexterity, equilibrium, stability, and dynamic behavior. The principal
253
+ component analysis of static hand posture of several subjects provides information
254
+ about the finger joint variance and shape of the grasped object and did not consider the
255
+ hand position/orientation relative to the object placement [44].
256
+
257
+ Sensors 2022, 22, x FOR PEER REVIEW
258
+ 5 of 20
259
+
260
+
261
+ 3.2 Grasp Taxonomy
262
+ Based on the various studies about human hand in the literature, hand grasp types
263
+ are classified, and different grasp taxonomies were raised in the literature [11,12] as
264
+ shown in Table 1. If the grasp object size/shape is not considered, this taxonomy might
265
+ be lowered to broad range.
266
+ Grasps are classified based on precision [45], grasped object’s size [9], shape [46],
267
+ weight, rigidity, force requirement, the position of thumb (adducted or abducted posi-
268
+ tion) and the situation. Based on the level of precision, grasps are classified as precision
269
+ grasp [10], intermediate grasp [47], and power grasp [48]. The movements of the hand in
270
+ the power grip are evoked by the arm but in the precision handling, the intrinsic move-
271
+ ments on the hand not evoked by the arm. In intermediate grasp, elements of power and
272
+ precision grasps are present in roughly the same proportion. Later studies included oth-
273
+ er grasps like hook grasp, flat hand grasp, platform grasp, push grasp [49]. In static and
274
+ stable grasps [12], the object is in a constant relation to the hand.
275
+ Based on the direction of force relative to the hand coordinate frame, applied by
276
+ the hand on the object to hold it securely [8] opposition type grasps are classified as pad
277
+ opposition, palm opposition and side opposition grasp [50]. Pad Opposition occurs be-
278
+ tween hand surfaces along a direction generally parallel to the palm, usually occurs be-
279
+ tween volar (palmar) surfaces and the fingers and thumb, near or on the pads. Palm Op-
280
+ position occurs between hand surfaces along a direction generally perpendicular to the
281
+ palm. Side Opposition occurs between hand surfaces along a direction generally trans-
282
+ verse to the palm.
283
+ The taxonomy of Cutkosky [9], which is widely used in the field of robotics, lists 15
284
+ different grasps. Other taxonomies mentioned in works of Kamakura et al. [47], Ed-
285
+ wards et al. [10], Kapandji [45] are listed with 14, 20 and 21 grasps respectively. A simi-
286
+ lar study [51], that used a different categorization which incorporated non-prehensile
287
+ grasps. Even though there has been a considerable effort in creating statistics of human
288
+ hand use and grouping of hand grasps [11,12]. The extensive research in human grasp
289
+ analysis and taxonomies over the past years helped towards better progress in human-
290
+ computer interaction, robotic grasping, and dexterous manipulation and lead to the de-
291
+ sign of artificial robotics hands and arms for the prosthetic application.
292
+ This helped to classify all hand usage in everyday life situations [52]. Furthermore,
293
+ the taxonomy could be extended to include non-prehensile “grasps”, or for dynamic
294
+ within - hand manipulation movements. Kamakura et al. [47] classified the tripod grasps
295
+ as intermediate grasps, apart from that it was classified as a precision grasp. Several
296
+ studies have investigated classifying grasps into a discrete set of types [8,9,47], and oth-
297
+ ers have been aimed at understanding certain aspects of human hand usage [53]. The
298
+ number of fingers used for grasping increases with the size and mass of the object [54]
299
+ until a two-handed grasp is required, indicating that object size and mass are strong fac-
300
+ tors in determining the grasp type. The rigidity of the objects also influencing the grasp
301
+ [55].
302
+
303
+
304
+ Sensors 2022, 22, x FOR PEER REVIEW
305
+ 6 of 20
306
+
307
+
308
+
309
+ Table 1. Taxonomy of grasps and allocation of virtual fingers.
310
+ The studies in [56,13,14] analyzed the human grasping scenarios and behavior of
311
+ unstructured tasks and investigated the relationship between grasp types and object
312
+ properties and the results indicated that three-fingertip precision grasps such as thumb-
313
+ 2 finger, tripod, or lateral tripod can be used to handle dexterous manipulation of a wide
314
+ range of objects. In [12] authors analyzed and compared 33 existing human grasp taxon-
315
+ omies of static and stable grasps performed by one hand and synthesized them into a
316
+ single new taxonomy called ‘The GRASP Taxonomy’. The grasps are arranged according
317
+ to opposition type, the virtual finger assignments, type in terms of power, precision or
318
+ intermediate grasp, and the position of the thumb. The classifications of micro-
319
+ interaction grasp instances [57] helped researchers in defining human hand capabilities
320
+ [58] and affordances in robotic hand design [59].
321
+ The concept of the virtual finger [15] has also incorporated in this taxonomy as an
322
+ abstract representation through which the human brain plans grasping tasks [60]. The
323
+ virtual finger is a functional unit of several fingers work together comprised of at least
324
+ one real physical finger to reduce the degrees of the human hand to perform the grasp-
325
+ ing task. This concept replaces the analysis of the mechanical degrees of freedom of in-
326
+
327
+ Grasp
328
+ Thumb
329
+ Virtual
330
+ Min. No.
331
+ Grasp
332
+ Thumb
333
+ Virtual
334
+ Min. No.
335
+ No.
336
+ Name
337
+ Picture
338
+ Type
339
+ Opp.Type Position
340
+ Fingers
341
+ Mod. VF
342
+ of Fingers
343
+ No.
344
+ Name
345
+ Picture
346
+ Type
347
+ Opp.Type Position
348
+ Fingers
349
+ Mod. VF
350
+ of Fingers
351
+ VF1:
352
+ VF1: 1
353
+ VF1:
354
+ VF1: 1
355
+ large
356
+ VF2: 2-5
357
+ VF2: 2-5
358
+ Extension
359
+ VF2: 2-5
360
+ VF2: 2-5
361
+ Diameter
362
+ Power
363
+ Palm
364
+ Abducted
365
+ VF3:
366
+ VF3: Palm
367
+ 3
368
+ 18
369
+ Type
370
+ Power
371
+ Pad
372
+ Abducted VF3:
373
+ VF3:
374
+ 3
375
+ VF1:
376
+ VF1: Palm
377
+ VF1:
378
+ VF1: 1
379
+ Small
380
+
381
+ VF2: 2-5
382
+ VF2: 2-5
383
+ Distal
384
+ VF2: 2-5
385
+ VF2: 2-5
386
+ 2
387
+ Daimeter
388
+ Power
389
+ Palm
390
+ Abducted
391
+ VF3:
392
+ VF3:
393
+ 2
394
+ 19
395
+ Type
396
+ Power
397
+ Pad
398
+ Abducted VF3:
399
+ VF3:
400
+ 2
401
+ VF1:
402
+ VF1: Palm
403
+ VF1:
404
+ VF1: 1
405
+ Medium
406
+ VF2: 2-5
407
+ VF2: 2-5
408
+ Writing
409
+ VF2: 2
410
+ VF2: 2
411
+ m
412
+ Wrap.
413
+ Power
414
+ Palm
415
+ Abducted
416
+ VF3:
417
+ VF3:
418
+ m
419
+ 20
420
+ Tripod
421
+ Precision
422
+ Side
423
+ Abducted VF3:
424
+ VF3: 3
425
+ m
426
+ VF1:
427
+ VF1: Palm
428
+ VF1:
429
+ VF1: 1
430
+ Adducted
431
+ VF2: 2-5
432
+ VF2: 2-5
433
+ Tripod
434
+ Intermed
435
+ VF2: 3-4
436
+ VF2: 3-4
437
+ Thumb
438
+ Power
439
+ Palm
440
+ Adducted
441
+ VF3: 1
442
+ VF3: 1
443
+ 3
444
+ 21
445
+ Variation
446
+ iate
447
+ Side
448
+ AbductedVF3:
449
+ VF3: 2
450
+ VF1:
451
+ VF1: Palm
452
+ VF1:
453
+ VF1: 1
454
+ VF2: 2-5
455
+ VF2: 2-5
456
+ Parallel
457
+ VF2: 2-5
458
+ VF2: 2-5
459
+ 5
460
+ Light Tool
461
+ Power
462
+ Palm
463
+ Adducted
464
+ VF3: (1)
465
+ VF3: (1)
466
+ 3
467
+ 22
468
+ Extension
469
+ Precision
470
+ Pad
471
+ Adducted VF3:
472
+ VF3:
473
+ m
474
+ VF1:
475
+ VF1: 1
476
+ VF1:
477
+ VF1: 2
478
+ Prismatic 4
479
+ VF2: 2-5
480
+ VF2: 2
481
+ Adductio
482
+ Intermed
483
+ VF2: 2
484
+ VF2: 3
485
+ 6
486
+ Finger
487
+ Precision
488
+ Pad
489
+ Abducted
490
+ VF3:
491
+ VF3: 3-5
492
+ m
493
+ 23
494
+ n Grip
495
+ iate
496
+ Side
497
+ Abducted VF3:
498
+ VF3:
499
+ 2
500
+ VF1:
501
+ VF1: 1
502
+ VF1:
503
+ VF1: 1
504
+ Prismatic 3
505
+ VF2: 2-4
506
+ VF2: 2
507
+ VF2: 2
508
+ VF2: 2
509
+ Finger
510
+ Precision
511
+ Pad
512
+ Abducted
513
+ VF3:
514
+ VF3: 3-4
515
+ 3
516
+ 24
517
+ Tip Pinch
518
+ Precision
519
+ Pad
520
+ Abducted/VF3:
521
+ VF3:
522
+ 2
523
+ VF1:
524
+ VF1: 1
525
+ VF1:
526
+ VF1: 1-2
527
+ Prismatic 2
528
+ VF2: 2-3
529
+ VF2: 2
530
+ Lateral
531
+ Intermed
532
+ VF2: 3
533
+ VF2: 3
534
+ Finger
535
+ Precision
536
+ Pad
537
+ Abducted
538
+ VF3:
539
+ VF3: 3
540
+ 3
541
+ 25
542
+ podul
543
+ iate
544
+ Side
545
+ Adducted VF3:
546
+ VF3:
547
+ 3
548
+ VF1:
549
+ VF1: 1
550
+ VF1:
551
+ VF1: 1
552
+ Palmar
553
+ VF2: 2
554
+ VF2: 2
555
+ Sphere4
556
+ VF2: 2-4
557
+ VF2: 2-4
558
+ 6
559
+ Pinch
560
+ Precision
561
+ Pad
562
+ Abducted
563
+ VF3:
564
+ VF3:
565
+ 2
566
+ 26
567
+ Finger
568
+ Power
569
+ Pad
570
+ Abducted/VF3:
571
+ VF3:
572
+ m
573
+ VF1:
574
+ VF1: 1
575
+ VF1:
576
+ VF1: 1
577
+ VF2: 2-5
578
+ VF2: 2-5
579
+ VF2: 2-4
580
+ VF2: 2-4
581
+ 10
582
+ Power Disk
583
+ Power
584
+ Palm
585
+ Abducted
586
+ VF3:
587
+ VF3: Palm
588
+ 3
589
+ 27
590
+ QuadPod
591
+ Precision
592
+ Pad
593
+ Abducted VF3:
594
+ VF3:
595
+ 3
596
+ VF1:
597
+ VF1: 1
598
+ VF1:
599
+ VF1: 1
600
+ Power
601
+ VF2: 2-5
602
+ VF2: 2-5
603
+ Sphere 3
604
+ VF2: 2-3
605
+ VF2: 2-3
606
+ 11
607
+ Sphere
608
+ Power
609
+ Palm
610
+ Abducted
611
+ VF3:
612
+ VF3: Palm
613
+ 3
614
+ 28
615
+ Finger
616
+ Power
617
+ Pad
618
+ Abducted VF3:
619
+ VF3:
620
+ 3
621
+ VF1:
622
+ VF1: 1
623
+ VF1:
624
+ VF1: 1
625
+ Precision
626
+ VF2: 2-5
627
+ VF2: 2-5
628
+ Intermed
629
+ VF2: 2
630
+ VF2: 2
631
+ 12
632
+ Disk
633
+ Precision
634
+ Pad
635
+ Abducted
636
+ VF3:
637
+ VF3:
638
+ 29
639
+ Stick
640
+ iate
641
+ Side
642
+ Adducted VF3:
643
+ VF3:3-53
644
+ VF1:
645
+ VF1: 1
646
+ VF1:
647
+ 1,Palm
648
+ Precision
649
+ VF2: 2-5
650
+ VF2: 2-5
651
+ VF2: 2-5
652
+ VF2: 2-5
653
+ 13
654
+ Sphere
655
+ Precision
656
+ Pad
657
+ Abducted
658
+ VF3:
659
+ VF3:
660
+ 3
661
+ 30
662
+ Palmar
663
+ Power
664
+ Palm
665
+ Adducted VF3:
666
+ VF3:
667
+ 3
668
+ VF1:
669
+ VF1: 1
670
+ VF1:
671
+ VF1: 1
672
+ VF2: 2-3
673
+ VF2: 2-3
674
+ VF2: 2
675
+ VF2: 2
676
+ 14
677
+ podul
678
+ Precision
679
+ Pad
680
+ Abducted
681
+ VF3:
682
+ VF3:
683
+ 31
684
+ Ring
685
+ Power
686
+ Pad
687
+ Abducted VF3:
688
+ VF3:
689
+ 2
690
+ VF1:
691
+ VF1: Palm
692
+ VF1:
693
+ VF1: 1
694
+ VF2: 2-5
695
+ VF2: 2-5
696
+ Intermed
697
+ VF2: 2
698
+ VF2: 2
699
+ 15
700
+ Fixed Hook
701
+ Power
702
+ Palm
703
+ Adducted
704
+ VF3:
705
+ VF3:
706
+ 3
707
+ 32
708
+ Ventral
709
+ iate
710
+ Side
711
+ Adducted VF3:
712
+ VF3: 3-5
713
+ 3
714
+ VF1:
715
+ VF1: 1
716
+ VF1:
717
+ VF1: 1
718
+ Intermedia
719
+ VF2: 2
720
+ VF2: 2
721
+ Inferier
722
+ VF2: 2
723
+ VF2: 2
724
+ 16
725
+ Lateral
726
+ te
727
+ Side
728
+ Adducted
729
+ VF3:
730
+ VF3: 3-5
731
+ 2
732
+ 33
733
+ Pincer
734
+ Precision Pad
735
+ Abducted VF3:
736
+ VF3:
737
+ 2
738
+ Index
739
+
740
+ VF1:
741
+ VF1: 1
742
+ Finger
743
+ VF2: 3-5
744
+ VF2: 3-5
745
+ 17
746
+ Extension
747
+ Power
748
+ Palm
749
+ Adducted
750
+ VF3: 2
751
+ VF3: 2
752
+ 3Sensors 2022, 22, x FOR PEER REVIEW
753
+ 7 of 20
754
+
755
+
756
+ dividual fingers by the analysis of the functional roles of forces being applied in a grasp.
757
+ The virtual fingers oppose each other in the grasp. Virtual fingers are assigned for each
758
+ grasp in the grasp taxonomy as mentioned in Table 1. Our characterization study re-
759
+ vised the existing virtual fingers allocation and replaced with new as mentioned in Table
760
+ 1. In this work, the authors aim for designing a three-finger haptic grasping interface for
761
+ virtual grasping the common objects in everyday life and tools in motor skill profes-
762
+ sions. For the proposed three-finger haptic grasping interface, the thumb assigned as
763
+ 𝑉𝐹1, Index finger as 𝑉𝐹2 and other three fingers as a single virtual finger 𝑉𝐹3 as ex-
764
+ plained in section 5.
765
+ 4. Characterization Experiments
766
+ 4.1 Overview
767
+ For designing a multi-finger haptic grasping interface, it is quintessential to study
768
+ the characteristics of the motion and force distribution of fingers in grasping activities.
769
+ This characterization study helped to propose models for multi-finger haptic rendering
770
+ and grasping haptic devices. Here the authors conducted experiments for calculating the
771
+ finger movements, trajectories, positions, orientations on different grasping activities.
772
+ Also tracked the positions and orientations of the skeleton of each finger through motion
773
+ tracking techniques. A characterization study was carried out to compute the models
774
+ and the design of the multi-finger haptic device.
775
+ 4.2 Subjects and Methods
776
+ Six subjects, 3 males and 3 females between the ages of 23 and 35 years were taking
777
+ part in this grasping experiment study with 10 common objects as listed in Table 2 with
778
+ possible grasp patterns and minimum number of virtual fingers to execute the grasp.
779
+ Each subject grasps each object for 5 seconds and repeats for 5 trials results total 300 in-
780
+ stances for the data sets. This study aimed on the force distribution and orientation of
781
+ wrist, palm, and finger in all grasping scenarios. The experiment set up consists of a leap
782
+ motion sensor [61] to track the movement of fingers and a wearable glove with Force
783
+ Sensitive Resistor (FSR) [62] to measure the force on fingers while grasping different ob-
784
+ jects and a computer display with the virtual grasping interface as shown in Figure 2.
785
+
786
+ Table 2. Selected objects with possible grasp patterns and minimum number of virtual fingers to
787
+ execute the grasp.
788
+
789
+ Index Finger Extension
790
+ Prismatic 4 Finger
791
+ Prismatic 3 Finger
792
+ Prismatic 2 Finger
793
+ n Sphere
794
+ Tripod Variation
795
+ [Parallel Extension
796
+ Small Daimeter
797
+ Medium Wrap.
798
+ [Extension Type
799
+ Adduction Grip
800
+ sphere 4 Finger
801
+ Sphere 3 Finger
802
+ Grasp Pattern
803
+ [large Diameter
804
+ [Power Sphere
805
+ Disk
806
+ Lateral Tripod
807
+ Inferier Pincer
808
+ [Palmar Pinch
809
+ Power Disk
810
+ Fixed Hook
811
+ Distal Type
812
+ Adducted
813
+ Light Tool
814
+ Precision I
815
+ Precision
816
+ Tip Pinch
817
+ padpeno
818
+ [Lateral
819
+ Palmar
820
+ stick
821
+ Ring
822
+ min.num. of VF|3
823
+ 3
824
+ 2
825
+ 3
826
+ 3
827
+ 3
828
+ 3
829
+ 3
830
+ 3
831
+ 2
832
+ 3
833
+ 3
834
+ 3
835
+ 3
836
+ 3
837
+ 3
838
+ 2
839
+ 3
840
+ 3
841
+ 2
842
+ 3
843
+ 3
844
+ 3
845
+ 2
846
+ 2
847
+ 3
848
+ 3
849
+ 3
850
+ 3
851
+ 3
852
+ 3
853
+ 2
854
+ 3
855
+ 2
856
+ Objects
857
+ Ball Pen
858
+ Marker Pen
859
+ Cube box
860
+ Toy Wheel
861
+ 1
862
+ Cup
863
+ Plastic bottle
864
+ Tennis ball
865
+ Credit card
866
+ Scissors
867
+ ScrewdriverSensors 2022, 22, x FOR PEER REVIEW
868
+ 8 of 20
869
+
870
+
871
+
872
+ Figure 2. Experimental setup for characterization study: (a) Motion tracking setup, (b) Force track-
873
+ ing setup for hand fingers during grasping and (c) 3d printed mounting module for FSR.
874
+ The Leap Motion sensor is a small USB peripheral device which is placed on the ta-
875
+ ble surface and connected to computer interface. Subjects grasped the 10 objects in the
876
+ hemispherical workspace area of Leap motion sensor and traced the position and orien-
877
+ tation parameters of user’s hand with an average accuracy of 0.7 mm [63]. The experi-
878
+ ment set up for tracking grasping forces in fingers as shown in Figure 2(b), users wore a
879
+ glove with FSR to measure force and pressure. But the sensing ability of FSR is depend-
880
+ ent on its contact area. To overcome this, a 3d printed mounting module placed on the
881
+ sensing area of the FSR in the fingertips of gloves as shown in Figure 2(c). The values
882
+ from FSR processed into multiple linear areas using an Arduino and measured the ex-
883
+ erted forces in Newton(N). Experiment procedure in one trial consist of pick the object,
884
+ grasp for 5 seconds, and place back the object and repeat for five trials for each object. In
885
+ each trial subject’s grasp parameters such as the position, speed, orientation, and force
886
+ are tracked. Further analysis of these primary data leads to the modelling of multi-finger
887
+ grasping haptics interface.
888
+ 4.3 Results and Discussions
889
+ The 30 primary parameters were tracked and used for calculating the user's hand
890
+ grasp movements and forces. Here the x-axis is defined as forward-backward, the y-axis
891
+ as right-left, and the z-axis as up-down. Roll (γ) is taken to be about the x-axis, pitch (β)
892
+ about the y-axis and yaw (α) about the z-axis.
893
+ 4.3.1. Direction, Trajectory, and Rotation of hand in grasping
894
+
895
+
896
+ (a)Motiontrackingsetup
897
+ (b)Forcetrackingsetup
898
+ (c)3dprintedmountingmoduleforFSR(a)Directionofhand
899
+ (b)Trajectoryofhand
900
+ (c)Rotationofhand
901
+ 100
902
+ Direction.x
903
+ -0.4
904
+ Trajectory
905
+ Yaw
906
+ Direction.y
907
+ O
908
+ Position
909
+ Pitch
910
+ Direction.z
911
+ 50
912
+ Position (cm)
913
+ 0.5
914
+ -0.6
915
+ Angle (degree)
916
+ Roll
917
+ axis
918
+ 0
919
+ N-0.8
920
+ &
921
+ -1
922
+ -50
923
+ -0.5
924
+ 1
925
+ -100
926
+ 0
927
+ 0
928
+ 0.2
929
+ -1
930
+ -150
931
+ 0
932
+ 500
933
+ 1000
934
+ 1500
935
+ Yaxis
936
+ -1
937
+ -0.4
938
+ -0.2
939
+ 0
940
+ 500
941
+ 1000
942
+ 1500
943
+ Time (cs)
944
+ Xaxis
945
+ Time (cs)
946
+ (d)Boxplotofyawrotationofhand
947
+ (e)Boxplotofpitchrotationofhand
948
+ (f)Boxplotofroll rotationofhand
949
+
950
+ -20
951
+ 5
952
+ Angle (degree)
953
+ 0
954
+ Angle (degree)
955
+ -40
956
+ -5
957
+ -60
958
+ -10
959
+ Angle
960
+ 20
961
+ -80
962
+ -15
963
+ -100
964
+ 0
965
+ -20
966
+ -120
967
+ -140
968
+ 1
969
+ 1
970
+ 1Sensors 2022, 22, x FOR PEER REVIEW
971
+ 9 of 20
972
+
973
+
974
+ Figure 3. Plots for the movement of hand: (a) Direction of hand, (b) Trajectory of hand, (c) Rotation
975
+ of hand, (d) Box plot of yaw rotation of the hand, (e) Box plot of pitch rotation, (f) Box plot of roll
976
+ rotation of the hand.
977
+ The direction, trajectory, and rotation of hand in grasping (based on the experiment
978
+ data set) is plotted as shown in Figure 3. The direction of the Hand in the 3D co-ordinate
979
+ axes is shown in Figure 3(a). The x, y and z components of hand direction are spanning
980
+ from -3 mm to 1 mm, -2 mm to 8 mm, and -10 mm to -6 mm respectively with standard
981
+ deviation (SD) of 0.11, 0.20 and 0.08. The trajectory of hand movement direction is plot-
982
+ ted in Figure 3(b). The movement in the y-direction is more than x and z-direction. The
983
+ ellipse region in the plot represents the trajectory of hand exactly in the grasping time.
984
+ Figure 3(c) plots the rotation of hand in the coordinate frame during grasping scenarios.
985
+ The span of the roll is more than yaw and pitch. The boxplot of hand rotation clearly ex-
986
+ plains the distribution of the yaw, pitch, and roll of hand in grasping exercises shown in
987
+ Figure 3(d)-(f). The minimum angle of hand yaw is -22.61° and the maximum is -0.86°
988
+ with an average of -11.57° and SD of 6.7°. Inter Quartile Range (IQR) of hand yaw is
989
+ 9.18°. The minimum angle of hand pitch is -11.06° and the maximum is 56.04° with an
990
+ average of 20.04° and SD of 13.09°. Inter Quartile Range (IQR) of hand pitch is 19.21°.
991
+ The minimum angle of hand roll is -136.69° and the maximum is -12.90° with an average
992
+ of -53.68° and SD of 32.29°. Inter Quartile Range (IQR) of hand roll is 50.14°.
993
+ 4.3.2. Position and trajectory of wrist and palm in grasping
994
+ The wrist is acted as the basement for most of the grasping scenarios. The infor-
995
+ mation about the movement of the wrist is helpful for characterizing the basement of
996
+ multi-finger gripper modules. The Position and trajectory of the wrist in grasping dur-
997
+ ing the experiments were tracked and plotted as shown in Figure 4. Here the position of
998
+ wrist n the 3D coordinate frame shows the span of position in x, y, and z-axes. It is clear
999
+ from the plot that the span of the position of the wrist in grasping is average of 50 mm.
1000
+ Also, the plot of the trajectory of wrist shows a minimum workspace of movement for
1001
+ the wrist in grasping is in shape of a square with each side 50 mm. The thick ellipse re-
1002
+ gion represents the data exactly during the grasping scenarios after noise filtering. Scat-
1003
+ ter plots in Figure 4 gives a clearer picture of the position of the wrist in the 3d space and
1004
+ 2D planes (x-y, y-z, and x-z).
1005
+
1006
+ Figure 4. Plots for the movement of the wrist: (a) Position of the wrist, (b) Trajectory and scatter
1007
+ plot of wrist, (c) Position of the wrist in the x-y plane, (d) Position of the wrist in y-z plane, and (e)
1008
+ Position of the wrist in x-z plane.
1009
+
1010
+ (a)Positionofwrist
1011
+ (b)Trajectoryandscatterplotofwrist
1012
+ 200
1013
+ Position.x
1014
+ Trajectory
1015
+ Position.y
1016
+ 200
1017
+ Position
1018
+ 150
1019
+ Position.z
1020
+ (mm)
1021
+ sixe
1022
+ 150
1023
+ Position
1024
+ 100
1025
+ N100
1026
+ 50
1027
+ 50
1028
+ 120
1029
+ 100
1030
+ 80
1031
+ 0
1032
+ 60
1033
+ 200
1034
+ 600
1035
+ 800
1036
+ 1000
1037
+ 1200
1038
+ 80
1039
+ 0
1040
+ 400
1041
+ 40
1042
+ 60
1043
+ Time (cs)
1044
+ Yaxis
1045
+ 20
1046
+ Xaxis
1047
+ (c)Position ofwrist inX-Yplane
1048
+ (d)PositionofwristinY-Zplane
1049
+ (e)PositionofwristinX-Zplane
1050
+ 120
1051
+ 160
1052
+ 160
1053
+ O
1054
+ 110
1055
+ 00
1056
+ O
1057
+ 140
1058
+ 140
1059
+ 100
1060
+ 120
1061
+ O
1062
+ 120
1063
+ axis
1064
+ 90
1065
+ 8
1066
+ N
1067
+ N
1068
+ 80
1069
+ O
1070
+ 80
1071
+ 80
1072
+ O
1073
+ 70
1074
+ 60
1075
+ 60
1076
+ O
1077
+ 60
1078
+ 40
1079
+ 40
1080
+ 30
1081
+ 40
1082
+ 50
1083
+ 60
1084
+ 70
1085
+ 80
1086
+ 60
1087
+ 70
1088
+ 80
1089
+ 90
1090
+ 100
1091
+ 110
1092
+ 120
1093
+ 30
1094
+ 40
1095
+ 50
1096
+ 60
1097
+ 70
1098
+ 80
1099
+ Xaxis
1100
+ Yaxis
1101
+ XaxisSensors 2022, 22, x FOR PEER REVIEW
1102
+ 10 of 20
1103
+
1104
+
1105
+ Next, to the wrist, the palm is also an important part of better grasping. In some of
1106
+ the grasping types, the palm acts as an additional supportive area for the successful
1107
+ grasp. So, it is important to study the movement factors of palm while grasping. This
1108
+ will help to model the minimal number of virtual fingers (VF) for a general haptic grasp-
1109
+ ing interface. The position and trajectory of the palm are plotted in Figure 5. It shows
1110
+ that there is not much deflection in the position of palm while grasping time in three ax-
1111
+ es. The trajectory of the palm shows the workspace of palm during the grasping scenari-
1112
+ os. After filtering out the noise in the dataset, the maximum span in the 3D space for a
1113
+ grasping activity is 30 mm.
1114
+
1115
+ Figure 5. Position and trajectory of palm: (a) Position of palm, (b) Trajectory and scatter plot of
1116
+ palm, (c) Position of palm in the x-y plane, (d) Position of palm in the y-z plane, and (e) Position of
1117
+ palm in the x-z plane.
1118
+ 4.3.3. Angle of grasp
1119
+ The angle of grasp is one of the common measurements used to describe grasping.
1120
+ Grasp angle describes the angle of the hand in grasping in relation to the Wrist position.
1121
+ The grasp angle influences comfort and easiness in grasping. A little bend in the wrist
1122
+ helps to maintain the grasp angle suitable for comfortable grasping of objects to get a
1123
+ proper grip. This will aid controlling the gripped objects easier. Figure 6 shows the vari-
1124
+ ous analysis plots of grasp angle tracked during the experimental scenarios.
1125
+
1126
+ (a)Positionofpalm
1127
+ 200
1128
+ (b)Trajectoryandscatterplotofpalm
1129
+ Position.x
1130
+ Position.y
1131
+ Trajectory
1132
+ 150
1133
+ Position.z
1134
+ 200
1135
+ Position
1136
+ (ww)
1137
+ 100
1138
+ 100
1139
+ axis
1140
+ Position
1141
+ 50
1142
+ N
1143
+ 0
1144
+ -100
1145
+ 0
1146
+ 200
1147
+ 150
1148
+ 50
1149
+ 60
1150
+ -50
1151
+ 100
1152
+ 30
1153
+ 40
1154
+ 0
1155
+ 200
1156
+ 400
1157
+ 600
1158
+ 800
1159
+ 1000
1160
+ 1200
1161
+ 50
1162
+ 10
1163
+ 20
1164
+ Time (cs)
1165
+ Yaxis
1166
+ Xaxis
1167
+ (c)Positionofpalm inX-Yplane
1168
+ (d)PositionofpalminY-Zplane
1169
+ (e)Positionofpalm inX-Zplane
1170
+ 180
1171
+ 150
1172
+ 150
1173
+ 160
1174
+ 100
1175
+ 100
1176
+ axis
1177
+ 80
1178
+ 8
1179
+ 50
1180
+ 50
1181
+ 120
1182
+ N
1183
+ N
1184
+ O
1185
+ 05
1186
+ O
1187
+ O
1188
+ 0
1189
+ 0
1190
+ 100
1191
+ 00
1192
+ O
1193
+ 80
1194
+ -50
1195
+ -50
1196
+ 10
1197
+ 20
1198
+ 30
1199
+ 40
1200
+ 50
1201
+ 60
1202
+ 80
1203
+ 100
1204
+ 120
1205
+ 140
1206
+ 160
1207
+ 180
1208
+ 10
1209
+ 20
1210
+ 30
1211
+ 40
1212
+ 50
1213
+ 60
1214
+ Xaxis
1215
+ Yaxis
1216
+ XaxisSensors 2022, 22, x FOR PEER REVIEW
1217
+ 11 of 20
1218
+
1219
+
1220
+
1221
+ Figure 6. Plots for the angle of grasp: (a) Angle of grasp, (b) Box plot of grasp angle, (c) Grasp an-
1222
+ gle with a normal distribution, (d) Probability plot for normal distribution, and (e) Quantile-
1223
+ Quantile plot of grasp angle.
1224
+ The angle of grasp is spanning from minimum 0°to maximum of 3.12° with an av-
1225
+ erage value of 1.33° and SD of 1.10 as shown in Figure 6(a). The grasp angle data are
1226
+ charted as a box and whisker plot as shown in Figure 6(b). This will help to show the
1227
+ shape of the distribution, its central value, and its variability. The first quartile of the
1228
+ grasp angle values lies between 0° to 0.41°, second lies between 0.41° to 1.03°, third lies
1229
+ between 1.03° to 2.44° and the final lies between 2.44° to 3.14°. 75% of the grasp angle is
1230
+ below 2.44°. So, most of the grasp types can perform comfortably with a maximum angle
1231
+ of grasp 2.44°. The ideal maximum angle of grasp for the proposed gripper module
1232
+ should be between 2.5° to 4°.
1233
+ Figure 6(c) plots a histogram of grasp angle in data using the number of bins equal
1234
+ to the square root of the number of elements in data and fits a normal density function.
1235
+ The bell curve fits the normal distribution with an SD of 1.10. 68% of the data falls with-
1236
+ in one SD of the mean 1.33°. The standard deviation controls the spread of the distribu-
1237
+ tion. Here the larger standard deviation indicates that the data is spread out around the
1238
+ mean and the normal distribution is flat and wide. Figure 6(d) draws a normal probabil-
1239
+ ity plot, comparing the distribution of the grasp angle data to the normal distribution.
1240
+ The plot includes a reference line helped to judge whether the data follow a normal dis-
1241
+ tribution. The plot shows that the normal line fit the data except the tails because of the
1242
+ outliers. Figure 6(e) displays a quantile-quantile plot of the sample quantiles of grasp
1243
+ angles versus theoretical quantiles from a normal distribution. The plot is close to linear
1244
+ in the IQR, so the distribution of grasp angle is normal during the grasping. In the dura-
1245
+ tion of not grasping the plot shows the distribution is not normal.
1246
+ 4.3.4.Sphere of grasp
1247
+ The spherical grip is the most used grasp in everyday life [64]. It is important to an-
1248
+ alyze the sphere of grasp in common grasping scenarios. Here the authors tracked the
1249
+ center and radius of the sphere of grasp in all the grasping scenarios in the experimental
1250
+ procedure. Figure 7 shows the various plots related to center and radius of the sphere of
1251
+ grasp. Through the experiment, the position of the center of the sphere is spanning from
1252
+ minimum (-147 mm, 48 mm, -48 mm) to maximum (181 mm, 259 mm, 85 mm) in x, y,
1253
+ and z-axes. After filtering out the non-grasping samples, the span of sphere grasp is re-
1254
+ duced from minimum (-19 mm, 42 mm, -3 mm) to maximum (68 mm, 150 mm, 78 mm).
1255
+ The scattering and trajectory of the sphere of grasp shown in Figure 7(b).
1256
+
1257
+ (a) Angle of grasp
1258
+ (b)Boxplotofgraspangle
1259
+ (c)Graspanglewithnormaldistribution
1260
+ 4
1261
+ 200
1262
+ Grasp angle
1263
+ 3
1264
+ Normal distribution
1265
+ 150
1266
+ degr
1267
+ 100
1268
+ Angle
1269
+ 50
1270
+ 0
1271
+ 0
1272
+ 0
1273
+ 0
1274
+ 200
1275
+ 400
1276
+ 600
1277
+ 800
1278
+ 1000
1279
+ 1200
1280
+ -2
1281
+ 0
1282
+ 2
1283
+ 4
1284
+ 6
1285
+ Time (cs)
1286
+ Angle (degree)
1287
+ (d)Probabilityplotfornormaldistribution
1288
+ (e)Quantile-Quantileplotofgraspangle
1289
+ 0.9999
1290
+ 8
1291
+ 6
1292
+ Data
1293
+ Quantiles of Input Sample
1294
+ Duration of not grasping
1295
+ 0.995
1296
+ Normal
1297
+ 6
1298
+ Inter Quartile Range
1299
+ %%
1300
+
1301
+ Data
1302
+ Probability
1303
+ 4
1304
+ 0.75
1305
+ +
1306
+ 0.5
1307
+ 2
1308
+ 0.25
1309
+ 0.05
1310
+ 0
1311
+ 0.005
1312
+ -2
1313
+ .0005
1314
+ 0.0001
1315
+ 0
1316
+ 1
1317
+ 2
1318
+ 3
1319
+ 4
1320
+ -2
1321
+ 0
1322
+ 2
1323
+ 4
1324
+ Angle (degree)
1325
+ StandardNormalQuantilesSensors 2022, 22, x FOR PEER REVIEW
1326
+ 12 of 20
1327
+
1328
+
1329
+
1330
+ Figure 7. Center and radius plots for sphere of grasp: (a) Position of center of sphere of grasp, (b)
1331
+ Trajectory and scatter plot of center of sphere, (c) Radius of sphere of grasp, (d) Histogram of
1332
+ sphere radius with normal distribution, and (e) Box plot of sphere radius.
1333
+ The volume of grasp can be represented by analyzing the radius of the sphere of
1334
+ grasp. Figure 7(c)-(e) shows the plots for the radius of the sphere of grasp. In the whole
1335
+ data tracked during the experiment, the radius of the sphere of grasp spanning from
1336
+ minimum 30 mm to 188 mm. In the box plot showing in Figure 7(e) 75% of the data is
1337
+ less than 10 mm and 50% of data is 64 mm. Again, after filtering out the noises the radi-
1338
+ us of the sphere of grasp is spanning from 31 mm to 50 mm. So, the authors targeting to
1339
+ model the grasping module with a radius of the sphere of grasp is 50 mm.
1340
+ 4.3.5.Distance of Pinch
1341
+
1342
+ Figure 8. Plots for the distance of pinch: (a) Distance of pinch, (b) Box plot of pinch distance, (c)
1343
+ Pinch distance with a normal distribution, (d) Probability plot for normal distribution, and (e)
1344
+ Quantile-Quantile plot of pinch distance.
1345
+ The pinch distance is the distance between two fingers in grasping. Pinch gestures
1346
+ are common for touch screens. The experiment interface tracked the pinch distance
1347
+
1348
+ (a)Positionofcenterofsphereofgrasp
1349
+ (b)Trajectoryandscatterplotofcenterofsphere
1350
+ 300
1351
+ Center.x
1352
+ 100
1353
+ Trajectory
1354
+ Center.y
1355
+ Position
1356
+ 200
1357
+ Center.z
1358
+ 50
1359
+ (mm)
1360
+ axis
1361
+ 100
1362
+ Position
1363
+ N
1364
+ 0
1365
+ 0
1366
+ -50
1367
+ 400
1368
+ -100
1369
+ 200
1370
+ -200
1371
+ 50
1372
+ 100
1373
+ 150
1374
+ 200
1375
+ 0
1376
+ 500
1377
+ 1000
1378
+ 1500
1379
+ Yaxis
1380
+ 0
1381
+ -150
1382
+ -100
1383
+ -50
1384
+ 0
1385
+ Time(cs)
1386
+ Xaxis
1387
+ (c)Radiusofsphereofgrasp
1388
+ (d)Histogramofsphereradiuswithnormaldistribution
1389
+ (e)Boxplotofsphereradius
1390
+ 250
1391
+ 150
1392
+ data
1393
+ bellcurve
1394
+ 200
1395
+ 200
1396
+ Radius (mm)
1397
+ 100
1398
+ 150
1399
+ Radius
1400
+ 100
1401
+ 100
1402
+ 50
1403
+ 50
1404
+ 50
1405
+ 0
1406
+ 0
1407
+ 0
1408
+ 500
1409
+ 1000
1410
+ 1500
1411
+ -100
1412
+ 0
1413
+ 100
1414
+ 200
1415
+ 300
1416
+ Time (cs)
1417
+ Radius (mm)(a) Distance of pinch
1418
+ (b)Boxplotofpinchdistance
1419
+ (c)Pinchdistancewithnormaldistribution
1420
+ 120
1421
+ 80
1422
+ Pinch distance
1423
+ Frequency of occurrence
1424
+ 100
1425
+ 100
1426
+ Normal distribution
1427
+ (ww)
1428
+ 60
1429
+ 80
1430
+ Distance (mm)
1431
+ 80
1432
+ Distance
1433
+ 60
1434
+ 60
1435
+ 40
1436
+ 40
1437
+ 40
1438
+ 20
1439
+ 20
1440
+ 0
1441
+ 0
1442
+ 200
1443
+ 400
1444
+ 600
1445
+ 800
1446
+ 1000
1447
+ 1200
1448
+ -100
1449
+ -50
1450
+ 0
1451
+ 50
1452
+ 100
1453
+ 150
1454
+ 200
1455
+ time (cs)
1456
+ Distance (mm)
1457
+ (d)Probability plotfornormal distribution
1458
+ (e)Quantile-Quantileplotofpinchdistance
1459
+ 0.9999
1460
+ 300
1461
+ Data
1462
+ Duration of not grasping
1463
+ Quantiles of Input Sample
1464
+ X
1465
+ Normal
1466
+ Inter Quartile Range
1467
+ 0.995
1468
+ 200
1469
+ Data
1470
+ %%
1471
+ Probability
1472
+ 0.75
1473
+ 100
1474
+ 0.5
1475
+ 0.25
1476
+ 0
1477
+ %
1478
+ 9.005
1479
+ -100
1480
+ 0.0005
1481
+ 0.0001
1482
+ -200
1483
+ 0
1484
+ 50
1485
+ 100
1486
+ 150
1487
+ 200
1488
+ -4
1489
+ -2
1490
+ 0
1491
+ 2
1492
+ 4
1493
+ Pinch distance (mm)
1494
+ StandardNormalQuantilesSensors 2022, 22, x FOR PEER REVIEW
1495
+ 13 of 20
1496
+
1497
+
1498
+ throughout the experiment and various plots are shown in Figure 8. The maximum
1499
+ pinch distance traced in the experiment setup is 110 mm. 75% of data is less than 90 mm
1500
+ and 50% is less than 70 mm as per the boxplot showed in Figure 8(b). The normal proba-
1501
+ bility plot is shown in Figure 8(d) compared the distribution of the pinch distance to the
1502
+ normal distribution. The reference normal line fits the data in a range of 20 mm – 100
1503
+ mm. Figure 8(e) displays a quantile-quantile plot of the sample quantiles of grasp angles
1504
+ versus theoretical quantiles from a normal distribution. This quantile-quantile plot is
1505
+ close to linear in the IQR, so the distribution of pinch distance is normal during the
1506
+ grasping. In the duration of not grasping the plot shows the distribution is not normal.
1507
+ So, the ideal values for the radius of the sphere of grasp for our proposed model are
1508
+ from 20 mm to 100 mm.
1509
+ 4.3.6.Finger motion parameters
1510
+ When a person lifts any object, his fingers align in a particular way. This must be re-
1511
+ flected by the device so that the user is at ease when he uses the device. The experiment
1512
+ setup traced the length and width of fingers and angular values between fingers in
1513
+ grasping objects differ in size and dimensions. These angular values measured between
1514
+ fingers must be replicated by the device. Unless the user feels comfortable when using
1515
+ the device, its intended purpose cannot be met. A base point was marked at the center of
1516
+ the outside of the palm. A line was drawn from the base point to the base of the middle
1517
+ finger. This was the baseline at 0 degrees as seen in Figure 9(a). Lines were also drawn to
1518
+ the base of the index and the thumb. The angles between the thumb and the index finger
1519
+ and the angles between the middle and the index fingers were measured during the
1520
+ grasping scenarios.
1521
+
1522
+ Figure 9. Length, width, and angle of fingers.
1523
+ The average length and width of fingers of the subjects took part in the experiment
1524
+ shown in Figure 9(b). The average length and width of Thumb are 50 mm and 18 mm,
1525
+ the index finger is 57 mm and 17 mm, the middle finger is 67 mm and 17 mm, ring finger
1526
+ is 61 mm and 16 mm, and little finger is 48 mm and 14 mm. This will help the authors to
1527
+ model the wearable multi-finger grasping interface to fit the user’s fingers. The meas-
1528
+ ured angles were tabulated and plotted as shown in Figure 9(c), proves that angular
1529
+ measurements between fingers in grasping and lifting of objects does not depend on
1530
+ gender. The angle between thumb and index finger is in range of 50-60degree, index and
1531
+ middle finger is in range of 20-30 degree and thumb and middle finger is in range of 70-
1532
+
1533
+ (a)Length,widthandangleoffingers
1534
+ (b)AverageLengthandwidthoffingersofsubjects
1535
+ ODegrees
1536
+ Length
1537
+ Width
1538
+ FingerLength
1539
+ 70
1540
+ Length & Width (mm)
1541
+ 60
1542
+ 30Degrees
1543
+ FingerWidth
1544
+ 30
1545
+ 20
1546
+ 10
1547
+ Thumb
1548
+ Thumb
1549
+ Index
1550
+ Middle
1551
+ Ring
1552
+ Little
1553
+ Range
1554
+ (c)Anglesbetweenfingers
1555
+ 100
1556
+ 90
1557
+ 80
1558
+ 70
1559
+ 60
1560
+ 90Degrees
1561
+ 50
1562
+ 40
1563
+ 30
1564
+ 20
1565
+ 10
1566
+ 0
1567
+ Average
1568
+ Maximun
1569
+ Minimum
1570
+ Average
1571
+ Maximum
1572
+ Minimum
1573
+ Angle
1574
+ Angle
1575
+ Men
1576
+ Women
1577
+ middle andindex
1578
+ IndexandThumb
1579
+ mMiddleandThumbSensors 2022, 22, x FOR PEER REVIEW
1580
+ 14 of 20
1581
+
1582
+
1583
+ 90 degree. This provided the data on how far apart the finger holders must be placed
1584
+ when designing the prototype for comfortable grasping and lifting of objects.
1585
+
1586
+ Figure 10. Position of movement of fingers
1587
+ The motion parameters of fingers in grasping are so important to characterize and
1588
+ model the multi-finger grasping module. Here The authors traced all the five-finger’s
1589
+ movement and force distributions. The movement of the tip of five fingers of the hand in
1590
+ all the grasping scenarios during the experiment was plotted in Figure 10. The move-
1591
+ ment of the fingertip is minimal in both x and z-axes is around -50 mm to +50 mm. The
1592
+ movement in x and z-axes are varied for fingers, especially it is very less in case of
1593
+ thumb, ring finger and little finger in the range of -20 mm to +20 mm. For index and
1594
+ middle finger, it is an almost same range of -50 mm to +50 mm. The movement in the y-
1595
+ axis is more compared to the other axes is around 50 mm to 200 mm for all fingers.
1596
+
1597
+ Figure 11. (a). Span of the trajectory of fingers and (b) Workspace triangle of three Virtual Fingers.
1598
+ The span of the trajectory of all five-finger movement in space during the grasping
1599
+ experiment is plotted together in Figure 11(a). This plot gave a clear idea about the ac-
1600
+ tive participation of all the fingers during grasping. Thumb is more active in grasping
1601
+ and gradually decreasing towards little finger. The thump, index and middle fingers
1602
+ more actively participate in the grasping scenarios than the ring and little fingers. Also,
1603
+
1604
+ (a)Position of thumb
1605
+ (b)Position of indexfinger
1606
+ (c) Position of middle finger
1607
+ 300
1608
+ 200
1609
+ 200
1610
+ Position (mm)
1611
+ 200
1612
+ Positions (mm)
1613
+ Position (mm)
1614
+ 100
1615
+ 100
1616
+ 100
1617
+ -100
1618
+ -100
1619
+ -100
1620
+ 0
1621
+ 20
1622
+ 40
1623
+ 60
1624
+ 80
1625
+ 0
1626
+ 20
1627
+ 40
1628
+ 60
1629
+ 80
1630
+ 0
1631
+ 20
1632
+ 40
1633
+ 60
1634
+ 80
1635
+ Samples
1636
+ Samples
1637
+ Samples
1638
+ (d) Position of ring finger
1639
+ (e) Position of little finger
1640
+ 150
1641
+ 150
1642
+ Tip position.x
1643
+ Tip position.y
1644
+ Position (mm)
1645
+ 100
1646
+ Position (mm)
1647
+ 100
1648
+ Tip position.z
1649
+ 50
1650
+ 50
1651
+ 0
1652
+ -50
1653
+ -50
1654
+ 0
1655
+ 20
1656
+ 40
1657
+ 60
1658
+ 80
1659
+ 0
1660
+ 20
1661
+ 40
1662
+ 60
1663
+ 80
1664
+ Samples
1665
+ Samples(a)Spanoftrajectoryoffingermovement
1666
+ (b)WorkspacetriangleofthreeVirtualFingers
1667
+ Thumb
1668
+ Thumb
1669
+ 100
1670
+ Index finger
1671
+ 100
1672
+ Index finger
1673
+ Middle finger
1674
+ Middle finger
1675
+ Ring finger
1676
+ 80
1677
+ Littlefinger
1678
+ axis
1679
+ 0
1680
+ 60
1681
+ N
1682
+ -100
1683
+ 40
1684
+ 220
1685
+ axis
1686
+ 20
1687
+ 200
1688
+ N
1689
+ 0.
1690
+ 180
1691
+ -20
1692
+ 160
1693
+ -40
1694
+ axis
1695
+ 140
1696
+ 120
1697
+ -60
1698
+ 250
1699
+ 100
1700
+ 200
1701
+ 150
1702
+ 80
1703
+ 100
1704
+ 100
1705
+ 60~
1706
+ 60
1707
+ 80
1708
+ 50
1709
+ 50
1710
+ 20
1711
+ 40
1712
+ Yaxis
1713
+ 0
1714
+ 40
1715
+ -20
1716
+ 0
1717
+ 0
1718
+ -50
1719
+ Xaxis
1720
+ -60
1721
+ -40
1722
+ XaxisSensors 2022, 22, x FOR PEER REVIEW
1723
+ 15 of 20
1724
+
1725
+
1726
+ the workspace of the ring and little finger aligns with the middle finger as shown in Fig-
1727
+ ure 11(a). So, authors proposed to group middle, ring, and little fingers to one Virtual
1728
+ Finger (VF) for multi-finger grasping interfaces. Thumb and index fingers can act as oth-
1729
+ er two Virtual Fingers. The workspace triangle for three VF is shown in Figure 11(b).
1730
+ 4.3.7 Grasping forces on Fingers
1731
+ The force values obtained through FSR sensors during the grasping exercises were
1732
+ tabulated and the average force was calculated for each person. As shown in Figure 12,
1733
+ forces are not more than 10N was experienced by the user. It can also be seen that the
1734
+ thumb experienced the maximum force, whereas the middle and the index finger expe-
1735
+ rienced somewhat similar forces.
1736
+
1737
+ Figure 12. Average grasping force values on each finger.
1738
+ 5. Computational Model for Tripod Haptic Grasp
1739
+ The multi-finger perception studies confirmed the hypothesis that the minimal con-
1740
+ figuration that allows most of the grasps is the three-finger tripod grasp. Based on the
1741
+ human grasp analysis, a conceptual, computational model is presented here for the
1742
+ three-finger tripod haptic grasping interface. Previous researchers worked on force
1743
+ models [65] and virtual linkages [66] for multi-grasp manipulations.
1744
+ The concept of the virtual finger [15] has been postulated as an abstract representa-
1745
+ tion through which the human brain plans are grasping tasks [60]. The virtual finger is a
1746
+ functional unit of several fingers work together comprised of at least one real physical
1747
+ finger (which may include the palm). This effectively reduces the many degrees of the
1748
+ human hand to those that are deemed necessary to perform the grasping task. This con-
1749
+ cept replaces the analysis of the mechanical degrees of freedom of individual fingers by
1750
+ the analysis of the functional roles of forces being applied in a grasp. Here the concept of
1751
+ the virtual finger was implemented to reduce the realistic five-finger grasping to virtual
1752
+ three-finger grasping. The characterization study revised the existing virtual fingers al-
1753
+ location and replaced with new tripod virtual fingers allocation.
1754
+
1755
+ Average Force (N) on Each Finger
1756
+ 9
1757
+ 8
1758
+ 6
1759
+ 5
1760
+ 4
1761
+ 3
1762
+ 2
1763
+ 1
1764
+ 0
1765
+ 7
1766
+ 2
1767
+ 3
1768
+ 4
1769
+ 5
1770
+ 6
1771
+ 7
1772
+ 8
1773
+ 10
1774
+ Thumb
1775
+ indlex
1776
+ MiddleSensors 2022, 22, x FOR PEER REVIEW
1777
+ 16 of 20
1778
+
1779
+
1780
+
1781
+ Figure 13. Haptic computation model for three-finger tripod haptic grasping interface.
1782
+ The haptic computation model is shown in Figure 13 was implemented to create the
1783
+ suitable force feedback for the tripod haptic grasping interface. Each finger holder is
1784
+ connected to each slider and these sliders are responsible for creating forces to each fin-
1785
+ ger attachment point on the grasping interface through the closed-loop belt system.
1786
+ Three proxies and Haptic Interactive Points (HIP) are assigned for three fingers. Based
1787
+ on the position information received from each slider, the position of proxy and HIP are
1788
+ updated. Collision detection algorithms detected the collision of each fingertip with the
1789
+ virtual object, these collision points act as simple virtual walls. Then applying the God
1790
+ object algorithms to these three proxies and calculated the resultant forces as shown in
1791
+ Figure 13. Each actuator in the slider generates forces and these forces are transferred to
1792
+ the fingertip through the attached finger holder. In this proposed model for multi-finger
1793
+ tripod haptic grasping, the thumb is assigned as 𝑉𝐹1, Index finger as 𝑉𝐹2 and other three
1794
+ fingers as a single virtual finger 𝑉𝐹3. The proposed model including object and virtual
1795
+ fingers in the virtual interface measures collision and progress of interactions in terms of
1796
+ applying forces and movements of the fingers and computes force feedback to be pro-
1797
+ vided by the haptic interfaces. It covers the dependence of the force feedback and the ef-
1798
+ fect of finger motions on the tripod grasp. A basic grasping touch in virtual reality is de-
1799
+ fined as a touch that provides vertical force feedbacks on the contact surface coincident
1800
+ with the reverse direction of the fingers in the space.
1801
+ Forces and moments from the individual virtual fingers are considered for the ren-
1802
+ dering of resultant forces for the model. Three proxies and Haptic Interactive Points
1803
+ (HIP) are assigned for three virtual fingers. Based on the position information received
1804
+ from each 𝑉𝐹𝑖, the position of proxy and HIP are updated. When collision detection al-
1805
+ gorithms detected the collision of each 𝑉𝐹𝑖 with the virtual object, these collision points
1806
+ act as simple virtual walls. The authors assume that only forces act at the grasp points.
1807
+ Let 𝑢𝑖𝑗 is the unit vector along the virtual finger i to j, 𝑣𝑖 be the vector from the object ref-
1808
+ erence point o to the virtual finger grasp point. Let 𝐹𝑖 be the force exerted on objects
1809
+ through each virtual finger 𝑉𝐹𝑖 and F be the vector. Based on the object shape, size, and
1810
+ stiffness the applying forces on objects by the virtual fingers are different.
1811
+ 𝐹𝑖 = 𝑘 𝑋𝑖
1812
+ (1)
1813
+ where i = 1,2,3.
1814
+
1815
+ 𝐹 = [𝐹1
1816
+ 𝐹2
1817
+ 𝐹3]𝑇
1818
+
1819
+ (2)
1820
+
1821
+ Slider3
1822
+ Slider2
1823
+ R2=-k.X2
1824
+ R3=-k.X3
1825
+ X3
1826
+ X2
1827
+ VirtualFinger3
1828
+ F3
1829
+ VirtualFinger2
1830
+ F2
1831
+ HIP
1832
+ Proxy
1833
+ F1
1834
+ X1
1835
+ VirtualFinger1
1836
+ R1=-k.X1
1837
+ Slider1Sensors 2022, 22, x FOR PEER REVIEW
1838
+ 17 of 20
1839
+
1840
+
1841
+ Grasp perception rate depends on the force applied by the fingers 𝐹𝑖, the area of
1842
+ contact between the fingers and the object A, the distance between the proxy and HIP X
1843
+ and the change in position of the HIP ΔX. Mathematically, the perception rate is
1844
+ 𝑃 =
1845
+ 𝑘 𝛥𝑋 𝐹𝑖
1846
+ 𝐴
1847
+
1848
+
1849
+
1850
+ (3)
1851
+ where k is a constant that depends on the material of the object. Let 𝑅𝑖 be the result-
1852
+ ant force exerted on each virtual finger 𝑉𝐹𝑖 and R be the vector. Then applying the God
1853
+ object algorithms [67] to three proxies and calculated the resultant forces 𝑅𝑖.
1854
+ 𝑅 = [𝑅1
1855
+ 𝑅2
1856
+ 𝑅3]𝑇
1857
+
1858
+ (4)
1859
+ The relationship between the applied forces F and resultant forces R would be giv-
1860
+ en by
1861
+ 𝑅 = 𝑢𝐹
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+ (5)
1869
+ were
1870
+
1871
+ 𝑢 = [
1872
+ 𝑢11
1873
+ 𝑢12
1874
+ 𝑢13
1875
+ 𝑢21
1876
+ 𝑢22
1877
+ 𝑢23
1878
+ 𝑢31
1879
+ 𝑢32
1880
+ 𝑢33
1881
+ ]
1882
+ (6)
1883
+ The relationships between the resultant force R, the resultant moment m, and the
1884
+ applied forces F are given by
1885
+ 𝐹 = 𝑣 [𝑅
1886
+ 𝑚]𝑇
1887
+
1888
+ (7)
1889
+
1890
+ were
1891
+ 𝑣 = [𝑣1
1892
+ 𝑣2
1893
+ 𝑣3]𝑇
1894
+
1895
+ (8)
1896
+ and
1897
+ 𝑚 = [𝑚1
1898
+ 𝑚2
1899
+ 𝑚3]𝑇
1900
+ (9)
1901
+ Force feedback on the grasping scenarios along virtual fingers has two components;
1902
+ the force feedback resisting the grasping motion and a frictional force (𝐹𝑟), represented
1903
+ by
1904
+ 𝑅 = 𝑢𝐹 + 𝐹𝑟
1905
+
1906
+
1907
+ (10)
1908
+
1909
+ An experiment was done to evaluate the rendered force to the fingers through the
1910
+ virtual fingers using the proposed tripod haptic grasp model. The results plotted as
1911
+ shown in Figure 14. Initially, the grasping forces in the real grasping cases were tracked
1912
+ using the FSR and plotted as shown in Figure 14(a). In case of the real grasping scenari-
1913
+ os, the forces exerted by the thumb is in the range of 6-8N which is greater than the force
1914
+ exerted by the index and middle finger. The force exerted by the index and middle fin-
1915
+ gers in in the range of 2-5N and 3-5N respectively. The same experiment was carried out
1916
+ to measure the rendered forces in haptic grasping interfaces during virtual grasping.
1917
+ Force is measured using the FSR sensor. The FSR was placed inside the finger holder of
1918
+ the gripper at the location of the fingertip contact. The sensing part of FSR facing the flat
1919
+ area of the holder and the user keeps a finger on top of the FSR. The motors were actuat-
1920
+ ed by the haptic rendering model. The tracked rendered forces were plotted in Figure
1921
+ 14(b). This graph shows that the range of rendered forces in virtual grasping is almost in
1922
+ the same range of forces in real grasping scenarios. The range of force rendered at the
1923
+ Thumb, index and middle finger holders is 5.7-7.5N, 2.6-4.4N and 3-4.5N respectively.
1924
+ This demonstrates that the three-finger haptic grasping interfaces able to provide realis-
1925
+ tic grasping haptic feedbacks to the users. Also, the experiment setup was traced the
1926
+ peak force that can provide the gripper device. As plotted in Figure 14(c), the device at-
1927
+ tained a peak force of 10.4N, 10.1N, and 10.2N at Thumb, index, and middle finger hold-
1928
+ ers respectively. It was found that the interface can give approximately 10N force which
1929
+ is greater than the force when lifting objects as found out in Section 3.1. Finally, the Fig-
1930
+
1931
+ Sensors 2022, 22, x FOR PEER REVIEW
1932
+ 18 of 20
1933
+
1934
+
1935
+ ure 14(d) shows the performance index of three-finger haptic grasping interface in haptic
1936
+ feedback and finger manipulability.
1937
+
1938
+ Figure 14. Evaluation results of the haptic grasping interface: (a) Exerted force tracked in the real
1939
+ grasping scenarios, (b) Force rendered in haptic grasping interface during virtual grasping, (c)
1940
+ Peak force generated in the haptic grasping interface, and (d) Performance index of the haptic
1941
+ grasping interface.
1942
+ 6. Conclusions
1943
+ The aim of this research was to come up with an analysis, model, and design of a
1944
+ three-finger haptic interface. A detailed literature review was carried out regards the
1945
+ anatomy, kinematics, and dynamics of hand. Also, a focused survey on the different
1946
+ human grasps, prehension patterns and grasp taxonomy. As part of this work, authors
1947
+ carried out characterization studies in most of the major aspects of human grasping. The
1948
+ position, orientation, and forces of hand, wrist, palm, and fingers were analyzed, and the
1949
+ results were discussed. The characterization studies confirmed the hypothesis that the
1950
+ minimal configuration that allows most of the grasps in grasp taxonomy is the three fin-
1951
+ gers grasping. This detailed characterization study leads to the design of a three-finger
1952
+ haptic grasping interface as an extension.
1953
+ As a future work, I am planning to work on the multi-Finger grasping interface for
1954
+ bimanual scenarios which provides the users a complete immersed grasping manipula-
1955
+ tion in the virtual and remote environment.
1956
+
1957
+ Funding: This research received no external funding.
1958
+ Institutional Review Board Statement: Not applicable.
1959
+ Informed Consent Statement: Not applicable.
1960
+ Data Availability Statement: Not applicable.
1961
+ Acknowledgments: I wholeheartedly thank the wonderful team at AMMACHI Labs for their
1962
+ support, encouragement and for providing constructive criticism and valuable inputs during the
1963
+ various stages of this work.
1964
+ Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the
1965
+ design of the study; in the collection, analyses, or interpretation of data; in the writing of the man-
1966
+ uscript; or in the decision to publish the results.
1967
+ References
1968
+ 1.
1969
+ Wolff, C. The human hand (Vol. 1). Routledge, 2015
1970
+ 2.
1971
+ Napier, J. R., & Tuttle, R. H. Hands. Princeton University Press,1993.
1972
+
1973
+ (a).Exertedforcetrackedintherealgraspingscenario.
1974
+ (b).Forcerenderedinhapticgraspinginterfaceduringvirtualgrasping
1975
+ 10
1976
+ Thumb
1977
+ 10
1978
+ Index
1979
+ Middle
1980
+ Force
1981
+ Force
1982
+ 2
1983
+ 2
1984
+ 0
1985
+ 0
1986
+ 0
1987
+ 20
1988
+ 40
1989
+ 60
1990
+ 80
1991
+ 100
1992
+ 0
1993
+ 20
1994
+ 40
1995
+ 60
1996
+ 80
1997
+ 100
1998
+ Time (s)
1999
+ Time (s)
2000
+ (c).Peakforceinhapticgraspinginterface.
2001
+ (d).Performanceindexofhapticgraspinginterface
2002
+ 12
2003
+ 4
2004
+ Thumb
2005
+ Hapticfeedback
2006
+ Index
2007
+ Fingermanipulability
2008
+ 11
2009
+ Middle
2010
+ 3
2011
+ PI(x10%)
2012
+ Force
2013
+ 10
2014
+ 2
2015
+ 9
2016
+ 8
2017
+ 0
2018
+ 0
2019
+ 20
2020
+ 40
2021
+ 60
2022
+ 80
2023
+ 100
2024
+ 5
2025
+ 10
2026
+ 15
2027
+ 20
2028
+ 25
2029
+ 30
2030
+ Time (ms)
2031
+ Time (s)Sensors 2022, 22, x FOR PEER REVIEW
2032
+ 19 of 20
2033
+
2034
+
2035
+ 3.
2036
+ Susman, R. L. Hand function and tool behavior in early hominids. Journal of Human Evolution, 1998; 35(1), 23-46.
2037
+ 4.
2038
+ Vipin, J. S., & Sen, D. Describing Hand Postures: Inspirations from Classical ‘Mudras’ (No. 2008-01-1904). SAE Technical Paper, 2008.
2039
+ 5.
2040
+ Young, R. W. Evolution of the human hand: the role of throwing and clubbing. Journal of Anatomy, 2003; 202(1), 165-174.
2041
+ 6.
2042
+ Schwarz, R. J., & Taylor, C. L. The anatomy and mechanics of the human hand. Artificial limbs, 1955; 2(2), 22-35.
2043
+ 7.
2044
+ Tubiana, R., Thomine, J. M., & Mackin, E. Examination of the hand and wrist,1998; CRC Press. ISBN 978-1-85317-544-2.
2045
+ 8.
2046
+ Iberall, T. Human prehension and dexterous robot hands. The International Journal of Robotics Research, 1997; 16(3), 285-299.
2047
+ 9.
2048
+ Cutkosky, M. R. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on robotics
2049
+ and automation, 1989; 5(3), 269-279.
2050
+ 10.
2051
+ Edwards, S. J., Buckland, D. J., & McCoy-Powlen, J. D. Developmental and functional hand grasps. Slack, 2002.
2052
+ 11.
2053
+ Bullock, I. M., Feix, T., & Dollar, A. M. The yale human grasping dataset: Grasp, object, and task data in household and ma-
2054
+ chine shop environments. The International Journal of Robotics Research, 2015; 34(3), 251-255.
2055
+ 12.
2056
+ Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., & Kragic, D. The grasp taxonomy of human grasp types. IEEE Trans-
2057
+ actions on Human-Machine Systems, 2016, 46(1), 66-77.
2058
+ 13.
2059
+ Feix, T., Bullock, I. M., & Dollar, A. M. Analysis of human grasping behavior: Object characteristics and grasp type. IEEE transactions on
2060
+ haptics, 2014; 7(3), 311-323.
2061
+ 14.
2062
+ Feix, T., Bullock, I. M., & Dollar, A. M. Analysis of human grasping behavior: Correlating tasks, objects and grasps. IEEE transactions on
2063
+ haptics, 2014; 7(4), 430-441.
2064
+ 15.
2065
+ Baud-Bovy, G., & Soechting, J. F. Two virtual fingers in the control of the tripod grasp. Journal of Neurophysiology, 2001; 86(2),
2066
+ 604-615.
2067
+ 16.
2068
+ Ciocarlie, M. T., & Allen, P. K. Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Re-
2069
+ search, 2009; 28(7), 851-867.
2070
+ 17.
2071
+ Mattar, E. A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics and
2072
+ Autonomous Systems, 2013; 61(5), 517-544.
2073
+ 18.
2074
+ Grebenstein, M., Albu-Schäffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., ... & Höppner, H. The DLR hand arm sys-
2075
+ tem. In Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 3175-3182), IEEE, May 2011.
2076
+ 19.
2077
+ Li, Z. M. The influence of wrist position on individual finger forces during forceful grip. Journal of Hand Surgery, 2002, 27(5),
2078
+ 886-896.
2079
+ 20.
2080
+ Dennerlein, J. T. Finger flexor tendon forces are a complex function of finger joint motions and fingertip forces. Journal of Hand
2081
+ Therapy, 2005, 18(2), 120-127.
2082
+ 21.
2083
+ Schmitt S. Modellierung und simulation biomechanischer Vorgänge am Beispiel Skisprung. Diplomarbeit, Universität
2084
+ Stuttgart, 2003.
2085
+ 22.
2086
+ Iadarola G, Poli A, Spinsante S. Reconstruction of galvanic skin Response peaks via sparse representation. In2021 IEEE Inter-
2087
+ national Instrumentation and Measurement Technology Conference (I2MTC) 2021 May 17 (pp. 1-6). IEEE.
2088
+ 23.
2089
+ Iadarola, G., Meletani, S., Di Nardo, F, and Spinsante, S. A new method for sEMG envelope detection from reduced measurements, 2022
2090
+ IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2022.
2091
+ 24.
2092
+ Amritha, N., Jose, J., Rahul, E. S., & Bhavani, R. R. A tweezer haptic interface for training surface mount device assembly. In Haptic, Audio
2093
+ and Visual Environments and Games (HAVE), 2017 IEEE International Symposium on(pp. 1-6), IEEE, October 2017.
2094
+ 25.
2095
+ Rahul, R., Jose, J., Harish, M. T., & Bhavani, R. R. Design of a novel Three-Finger haptic grasping system: Extending a Single point to Tripod
2096
+ grasp. In Proceedings of the Advances in Robotics (p. 39), ACM, June 2017.
2097
+ 26.
2098
+ Jose, J., Ramesh, S., Akshay, N., & Bhavani, R. R. TryStrokes: Learning on a digital canvas to paint in the real world. In Global Humanitarian
2099
+ Technology Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE (pp. 68-73), August 2013.
2100
+ 27.
2101
+ Akshay, N., Deepu, S., Rahul, E. S., Ranjith, R., Jose, J., Unnikrishnan, R., & Bhavani, R. R. Design and evaluation of a Haptic simulator for
2102
+ vocational skill Training and Assessment. In Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (pp. 6108-
2103
+ 6113), November 2013.
2104
+ 28.
2105
+ Taylor, C. L. The biomechanics of the normal and of the amputated upper extremity. Human limbs and their substitutes, 1954;
2106
+ 169-221.
2107
+ 29.
2108
+ Bunnell, S. Surgery of the Hand. In Surgery of the hand, 1944.
2109
+ 30.
2110
+ Stetson, R. H., & McDill, J. A. Mechanism of the different types of movement. Psychological Monographs, 1923; 32(3), 18.
2111
+ 31.
2112
+ Fick, R. Handbuch der anatomie und mechanik der gelenke. Рипол Классик, 2012.
2113
+ 32.
2114
+ Dempster, W. T., & Finerty, J. C. Relative activity of wrist moving muscles in static support of the wrist joint: an electromyo-
2115
+ graphic study. American Journal of Physiology--Legacy Content, 1947; 150(4), 596-606.
2116
+ 33.
2117
+ Kamper, D. G., Cruz, E. G., & Siegel, M. P. Stereotypical fingertip trajectories during grasp. Journal of neurophysiology, 2003; 90(6), 3702-3710.
2118
+ 34.
2119
+ Gustus, A., Stillfried, G., Visser, J., Jörntell, H., & van der Smagt, P. Human hand modelling: kinematics, dynamics, applications. Biological
2120
+ cybernetics, 1-15, 2012.
2121
+ 35.
2122
+ Landsmeer, J. M. Studies in the anatomy of articulation. I. The equilibrium of the" intercalated" bone. Acta Morphologica Neer-
2123
+ lando-Scandinavica, 1961; 3, 287.
2124
+ 36.
2125
+ Sancho-Bru, J. L., Perez-Gonzalez, A., Vergara-Monedero, M., & Giurintano, D. A 3-D dynamic model of human finger for
2126
+ studying free movements. Journal of biomechanics, 2001; 34(11), 1491-1500.
2127
+ 37.
2128
+ Wu, J. Z., An, K. N., Cutlip, R. G., Andrew, M. E., & Dong, R. G. Modeling of the muscle/tendon excursions and moment arms
2129
+ in the thumb using the commercial software anybody. Journal of biomechanics, 2009; 42(3), 383-388.
2130
+
2131
+ Sensors 2022, 22, x FOR PEER REVIEW
2132
+ 20 of 20
2133
+
2134
+
2135
+ 38.
2136
+ Holzbaur, K. R., Murray, W. M., & Delp, S. L. A model of the upper extremity for simulating musculoskeletal surgery and
2137
+ analyzing neuromuscular control. Annals of biomedical engineering, 2005; 33(6), 829-840.
2138
+ 39.
2139
+ Holzbaur, K. R., Murray, W. M., Gold, G. E., & Delp, S. L. Upper limb muscle volumes in adult subjects. Journal of biomechan-
2140
+ ics, 2007; 40(4), 742-749.
2141
+ 40.
2142
+ Napier, J. R. The prehensile movements of the human hand. Bone & Joint Journal, 1956; 38(4), 902-913.
2143
+ 41.
2144
+ Boelter, L. M. K., Keller, A. D., Taylor, C. L., & Zahm, V. Studies to determine the functional requirements for hand and arm prosthe-
2145
+ sis. Department of Engineering, University of California, 1947.
2146
+ 42.
2147
+ Reininger, W. The hand in art, Ciba Symposia, 1942; 4(4):1323.
2148
+ 43.
2149
+ Carroll, C., & Carroll, R. Mudras of India: a comprehensive guide to the hand gestures of yoga and Indian dance. Singing Dragon,
2150
+ 2012.
2151
+ 44.
2152
+ Santello, M., Flanders, M., & Soechting, J. F. Postural hand synergies for tool use. Journal of Neuroscience, 1998; 18(23), 10105-
2153
+ 10115.
2154
+ 45.
2155
+ Kapandji, A. I., Kandel, M. J., & Kapandji, I. A. Physiology of the Joints: Lower Limb: Volume 2. Churchill Livingstone, 1988.
2156
+ 46.
2157
+ Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. Effects of end-goal on hand shaping. Journal of neurophysiology, 2006;
2158
+ 95(4), 2456-2465.
2159
+ 47.
2160
+ Kamakura, N., Matsuo, M., Ishii, H., Mitsuboshi, F., & Miura, Y. Patterns of static prehension in normal hands. American Jour-
2161
+ nal of Occupational Therapy, 1980; 34(7), 437-445.
2162
+ 48.
2163
+ Cutkosky, M., & Wright, P. Modeling manufacturing grips and correlations with the design of robotic hands. In Robotics and
2164
+ Automation. Proceedings. 1986 IEEE International Conference on (Vol. 3, pp. 1533-1539), IEEE, April 1986.
2165
+ 49.
2166
+ Elliott, J. M., & Connolly, K. J. A classification of manipulative hand movements. Developmental Medicine & Child Neurolo-
2167
+ gy, 1984; 26(3), 283-296.
2168
+ 50.
2169
+ MacKenzie, C. L., & Iberall, T. The grasping hand, volume 104 of Advances in Psychology, 1994.
2170
+ 51.
2171
+ Vergara, M., Sancho-Bru, J. L., Gracia-Ibáñez, V., & Pérez-González, A. An introductory study of common grasps used by
2172
+ adults during performance of activities of daily living. Journal of Hand Therapy, 2014; 27(3), 225-234.
2173
+ 52.
2174
+ Liu, J., Feng, F., Nakamura, Y. C., & Pollard, N. S. A taxonomy of everyday grasps in action. In Humanoid Robots (Humanoids),
2175
+ 2014 14th IEEE-RAS International Conference on (pp. 573-580), IEEE, November 2014.
2176
+ 53.
2177
+ Sartori, L., Straulino, E., & Castiello, U. How objects are grasped: the interplay between affordances and end-goals. PloS
2178
+ one, 2011; 6(9), e25203.
2179
+ 54.
2180
+ Cesari, P., & Newell, K. M. Body-scaled transitions in human grip configurations. Journal of Experimental Psychology: Human
2181
+ Perception and Performance, 2000; 26(5), 1657.
2182
+ 55.
2183
+ Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. Constraints on human arm movement trajecto-
2184
+ ries. Canadian Journal of Psychology/Revue canadienne de psychologie, 1987; 41(3), 365.
2185
+ 56.
2186
+ Bullock, I. M., Feix, T., & Dollar, A. M. Finding small, versatile sets of human grasps to span common objects. In Robotics and Automation
2187
+ (ICRA), 2013 IEEE International Conference on (pp. 1068-1075), IEEE, May 2013.
2188
+ 57.
2189
+ Wolf, K., Naumann, A., Rohs, M., & Müller, J. A taxonomy of microinteractions: Defining microgestures based on ergonomic
2190
+ and scenario-dependent requirements. In IFIP Conference on Human-Computer Interaction (pp. 559-575). Springer, Berlin, Hei-
2191
+ delberg, September 2011.
2192
+ 58.
2193
+ Tessitore, G., Sinigaglia, C., & Prevete, R. Hierarchical and multiple hand action representation using temporal postural syn-
2194
+ ergies. Experimental brain research, 2013; 225(1), 11-36.
2195
+ 59.
2196
+ Villani, L., Ficuciello, F., Lippiello, V., Palli, G., Ruggiero, F., & Siciliano, B. Grasping and control of multi-fingered hands.
2197
+ In Advanced Bimanual Manipulation (pp. 219-266). Springer, Berlin, Heidelberg, 2012.
2198
+ 60.
2199
+ Gilster, R., Hesse, C., & Deubel, H. Contact points during multidigit grasping of geometric objects. Experimental brain re-
2200
+ search, 2012; 217(1), 137-151.
2201
+ 61.
2202
+ Motion, L. Leap motion controller, 2015. URl: https://www. leapmotion. com.
2203
+ 62.
2204
+ Force Sensitive Resistor (FSR). http://www.sensorwiki.org/doku.php/sensors/force-sensitive_resistor
2205
+ 63.
2206
+ Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. Analysis of the accuracy and robustness of the leap motion controller. Sensors, 2013;
2207
+ 13(5), 6380-6393.
2208
+ 64.
2209
+ Visser, B., De Looze, M. P., De Graaff, M. P., & Van Dieën, J. H. Effects of precision demands and mental pressure on muscle activation and
2210
+ hand forces in computer mouse tasks. Ergonomics, 2004; 47(2), 202-217.
2211
+ 65.
2212
+ Zatsiorsky, V. M., Li, Z. M., & Latash, M. L. Coordinated force production in multi-finger tasks: finger interaction and neural network mod-
2213
+ eling. Biological cybernetics, 1998; 79(2), 139-150.
2214
+ 66.
2215
+ Williams, D., & Khatib, O. The virtual linkage: A model for internal forces in multi-grasp manipulation. In Robotics and Auto-
2216
+ mation, 1993. Proceedings., 1993 IEEE International Conference on (pp. 1025-1030), IEEE, May 1993.
2217
+ 67.
2218
+ Harwin, W. S., & Melder, N. Improved haptic rendering for multi-finger manipulation using friction cone based god-objects. In Proceedings
2219
+ of Eurohaptics conference (pp. 82-85), July 2002.
2220
+
7NAyT4oBgHgl3EQfQfbq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89E4T4oBgHgl3EQfdgwn/content/2301.05091v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8aea837dda7af3b81322e69d43450ab1d8320c4f5bb832059e2aff27a4baec2
3
+ size 478795
89E4T4oBgHgl3EQfdgwn/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b256249cd6e9ef1a03411e6eab66b46d86b3a2da70f39daf7abc163339dd51b4
3
+ size 91014
8NE0T4oBgHgl3EQfwQHW/content/tmp_files/2301.02631v1.pdf.txt ADDED
@@ -0,0 +1,777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Holographic inflation in f(R, T) gravity
2
+ S. Taghavi, Kh.
3
+ Saaidi,∗ and Z. Ossoulian
4
+ Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
5
+ (Dated: January 9, 2023)
6
+ We study the possibility of having HDE as the source of inflation in the frame of f(R, T) gravity
7
+ theory. The length scale of the energy density is taken as GO cutoff which is a combination of the
8
+ Hubble parameter and its time derivative. It is found that for specific ranges of the free parameters
9
+ of the model, the scalar spectral index and the tensor-to-scalar ratio stand in good agreement with
10
+ data. Also, by reconstructing the potential in terms of the scalar field the validity of the swampland
11
+ criteria is considered. The results indicate that to have scalar field below the Planck mass, the
12
+ parameter λ should be at least of the order of O(102). The same order of λ is also required to keep
13
+ the gradient of the potential greater than one and satisfy the second conjecture of the swampland
14
+ criteria.
15
+ I.
16
+ INTRODUCTION
17
+ The modified versions of Einstein’s gravity have received tremendous attention and have been used for studying
18
+ different cosmological and astrophysical phenomena. One of these modified gravity theories is f(R, T) gravity which
19
+ was introduced in [1], where R is the Ricci scalar and T is the trace of the energy-momentum tensor. The theory
20
+ replaces the Ricci scalar in Einstein-Hilbert action with an arbitrary function of R and T, indicating a non-minimal
21
+ coupling between the geometric and matter parts. Different topics including dark energy[2], dark matter [3], worm-
22
+ holes [4], gravitational waves [5], inflation [6–8], have been studied in the frame of f(R, T) gravity.
23
+ One of the challenges in cosmological studies is understanding the true nature of dark energy. It is assumed to be
24
+ the main reason for having an accelerated expansion phase for the current universe which is supported by much
25
+ data. [9–14]. Different candidates for dark energy have been introduced such as cosmological constant, quintessence,
26
+ tachyon, and so on (refer to [15] for a review of different models of dark energy). Another candidate is holographic
27
+ dark energy (HDE) which recently becomes one of the most favorite ones [16–18]. The idea of HDE stands on the
28
+ holographic principle [19] which states that the number of degree of freedom of a physical system is scaled with its
29
+ bounding area rather than its volume [19–22]. It was first put forth by Cohen and colleagues [23] that in quantum
30
+ field theory, due to the limit set by the formation of black holes, a short distant cutoff is related to a long distant
31
+ cutoff. It suggests that the total energy in a region of size L should not exceed the mass of a black hole of the same
32
+ size. Taking this assumption the HDE density was introduced as ρ = 3c2M 2
33
+ p/L2 [18], where Mp = 8πG is the reduced
34
+ Planck mass and c2 is a dimensionless positive constant. The infrared cutoff length L, which is our main concern in
35
+ HDE, is usually selected as Hubble length, particle horizon, future event horizon, Ricci scalar curvature, and GO1
36
+ cutoff [24, 25]. The HDE mostly has been used for studying the late time evolution of the universe as a possible
37
+ reason for the current accelerated expansion [18, 26–29]. However, recently, the application of HDE as the origin of
38
+ the early expansion of the universe, i.e. as a source of inflation, is rising [30–32].
39
+ The universe is assumed to go through another phase of accelerated expansion at very early times, known as the
40
+ inflationary phase. The scenario has received a tremendous amount of interest and has been modified on different
41
+ levels [33–66]. In a common procedure, it is driven by a scalar field that stands on top of its potential and slowly rolls
42
+ down toward the minimum of the potential [67–74]. Due to the slowly varying, the scalar field gets a kinetic energy
43
+ density which is ignorable compared to the potential energy density. The scenario has been investigated for different
44
+ types of the potential, mostly inspired from particle physics, in different gravity frames including f(R, T) gravity. A
45
+ different approach, which has received interest recently, is to assumed that the dark energy which drives inflation is
46
+ HDE [30–32]. Different type of the entropies with different length scales were studied in this matter however, up to
47
+ our knowledge, no such formalism has been considered in f(R, T) gravity theory. Here, we are going to consider the
48
+ HDE inflation in the frame of f(R, T) gravity theory. In this regard, the energy density is assumed to be originated
49
+ from Tsallis entropy [75–78] addressed as Tsallis HDE2 (THDE). Since, during the slow-roll inflation, the total energy
50
+ density is approximated by the potential term, we take the potential as the THDE with GO cutoff as the length
51
52
+ 1 stand for Granda and Oliveros
53
+ 2 It was shown by Tsallis and Cirto [79] that the entropy of a black hole should be generalized to S = γAδ where A stands for the area of
54
+ the black hole, δ is the Tsallis parameter (or nonextensive parameter), and γ is an unknown parameter. Besides, the quantum gravity
55
+ suggests a power-law function of the entropy inspired by Tsallis entropy [80, 81]
56
+ arXiv:2301.02631v1 [gr-qc] 5 Jan 2023
57
+
58
+ 2
59
+ scale. Then, the potential is determined in terms of the Hubble parameter instead of the usual approach where it
60
+ is specified in terms of the scalar field. Applying the observational data and Python coding, the ranges of the free
61
+ parameters of the model are determined. Using the result, the potential in terms of the scalar field is reconstructed
62
+ and we find our way to examine the validity of the swampland criteria3.
63
+ The paper is organized as follows: the f(R, T) gravity and its main dynamical equation will be presented in Sec.II in
64
+ brief. In Sec.III, the scenario of the slow-roll inflation is introduced, and by applying the slow-roll approximations, the
65
+ dynamical equations get simplified. Then, in Sec.IV, we take the potential equal to a THDE density with GO cutoff
66
+ as the length scale. The perturbation parameters are estimated and by comparing with data, the free parameters of
67
+ the model are determined. Then, in Sec.V, the potential is reconstructed versus the scalar field and the validity of
68
+ the swampland criteria is studied. Finally, the results are summarized in Sec.VI.
69
+ II.
70
+ f(R, T) GRAVITY THEORY
71
+ The f(R, T) gravity is a modified theory of gravity where the Ricci scalar, R, in the Einstein-Hilbert action is
72
+ replaced by an arbitrary function of R and T, where it is the trace of the energy-momentum tensor. The general form
73
+ of the action is given by [1]
74
+ S =
75
+ 1
76
+ 2κ2
77
+
78
+ d4x√−g
79
+
80
+ f(R, T) + Lm
81
+
82
+ (1)
83
+ where f(R, T) is an arbitrary function of R and T, the determinant of the metric gµν is given by g, the Lagrangian
84
+ of the matter fields is indicated by Lm, and κ is related to the Newtonian gravitational constant as κ2 = 8πG.
85
+ The field equation of the theory is obtained by taking variation of the above action with respect to the metric, which
86
+ leads to [1]
87
+
88
+ gµν□ − ∇µ∇ν
89
+
90
+ f,R(R, T) + f,RRµν − 1
91
+ 2gµνf(R, T) = κ2Tµν − f,T (R, T)
92
+
93
+ Tµν + Θµν
94
+
95
+ ,
96
+ (2)
97
+ where the tensor Θµν is defined as
98
+ Θµν = gαβ δTαβ
99
+ δgµν .
100
+ (3)
101
+ In the case of a perfect fluid with energy density ρ, pressure p, and four velocity uµ, the energy-momentum tensor is
102
+ read as
103
+ Tµν = (ρ + p)uµuν − pgµν
104
+ (4)
105
+ and the tensor Θµν is obtained from the definition (3) as
106
+ Θ = −Tµν − pgµν.
107
+ (5)
108
+ Assuming a spatially flat FLRW metric and by taking f(R, T) = R + κ2λT, where λ is a constant, the Friedmann
109
+ equations are acquired as
110
+ H2 = κ2
111
+ 3
112
+ ��3
113
+ 2λ + 1
114
+
115
+ ρ − λ
116
+ 2 p
117
+
118
+ ,
119
+ (6)
120
+ −3H2 − 2 ˙H = κ2
121
+
122
+ −λ
123
+ 2 ρ +
124
+ �3
125
+ 2λ + 1
126
+
127
+ p
128
+
129
+ ,
130
+ (7)
131
+ Substituting Eq.(6) in (7), one arrives at
132
+ − 2 ˙H = κ2 (1 + λ) (ρ + p).
133
+ (8)
134
+ The conservation equation is achieved by taking the time derivative of Eq.(6) and using Eq.(8) as
135
+ ˙ρ + 3H(ρ + p) = −3λ
136
+ 2
137
+ ˙ρ + −λ
138
+ 2 ˙p − 3Hλ(ρ + p)
139
+ (9)
140
+ It is seen that the conservation equation is modified due to the term λT that implies a non-minimal coupling between
141
+ matter and curvature. However, it comes back to the standard conservation equation by putting λ = 0.
142
+ 3 The swampland criteria, proposed in [82–84], is originated from string theory and it is a mechanism to separate the consistent low-energy
143
+ effective field theory (EFT) from the inconsistent ones. Since inflation occurs at a low-energy scale, then, it is expected to be described
144
+ by a consistent low-energy EFT.
145
+
146
+ 3
147
+ III.
148
+ SLOW-ROLL INFLATION
149
+ Inflation is usually provided by an scalar field, known as inflaton, which is the dominant component of the universe
150
+ at the time. The Lagrangian of the scalar field is read as
151
+ Lφ = 1
152
+ 2∂µφ∂µφ − V (φ),
153
+ (10)
154
+ where V (φ) is the potential of the scalar field. The energy density and pressure of the scalar field is given by
155
+ ρφ = 1
156
+ 2
157
+ ˙φ2 + V (φ)
158
+ (11)
159
+ pφ = 1
160
+ 2
161
+ ˙φ2 − V (φ).
162
+ (12)
163
+ By substituting above energy density and pressure in the Friedmann equations (6) and (8), one has
164
+ H2 = κ2
165
+ 3
166
+ �1
167
+ 2 (1 + λ) ˙φ2 + (1 + 2λ) V (φ)
168
+
169
+ (13)
170
+ −2 ˙H = κ2(1 + λ) ˙φ2.
171
+ (14)
172
+ Also, the equation of motion of the scalar field takes the following form
173
+ (1 + λ) ¨φ + 3H(1 + λ) ˙φ + (1 + 2λ)V ′(φ) = 0,
174
+ (15)
175
+ which is obtained by inserting Eq.(11) in Eq.(9).
176
+ The conditions required for the slow-roll inflation are
177
+ | ˙H| ≪ H2,
178
+ ˙φ2 ≪ V (φ),
179
+ |¨φ| ≪ |H ˙φ|
180
+ which is known as the slow-roll conditions. Applying the conditions on the Friedmann equations above, leads one to
181
+ H2 = κ2
182
+ 3 (1 + 2λ) V (φ),
183
+ (16)
184
+ −2 ˙H = κ2(1 + λ) ˙φ2,
185
+ (17)
186
+ 3H ˙φ = 1 + 2λ
187
+ 1 + λ V ′(φ).
188
+ (18)
189
+ The slow-roll conditions are encoded in the slow-roll parameters. The first slow-roll parameter states that the rate
190
+ of the Hubble parameter during a Hubble time will be small, i.e. ϵ = − ˙H/H2. This condition provides a quasi-
191
+ de Sitter expansion. A common approach to introduce other slow-roll parameters are through a hierarchy, namely
192
+ ϵn+1 = ˙ϵn/Hϵ for n ≥ 1.
193
+ To proceed further, it is required to determine the potential in terms of the scalar field. There are different types
194
+ of the potential used to study the scenario. Chaotic potential, Hilltop potential, natural potential could be addressed
195
+ as some of these potential.
196
+ In the next section, we are going to follow a different path and propose a suitable function in terms of the Hubble
197
+ parameter as the potential.
198
+ IV.
199
+ THDE AS THE POTENTIAL
200
+ The early accelerated expansion of the universe is assumed to be provided by a dynamical scalar field, which is
201
+ also a dark energy candidate. The scalar field is taken as the dominant component of the universe which governs the
202
+ evolution. On the other hand, the kinetic energy of the scalar field could be ignored compared to the potential part
203
+ and the energy density of the scalar field is approximated by the potential part, i.e. ρφ ≈ V (φ). Different types of
204
+ the potential in terms of the scalar field have been introduced and studied in the literature. Another competent dark
205
+ energy candidate is HDE. After prosperous application of HDE for the late time evolution of the universe, recently
206
+ there has been a raising interest for taking it as the source of inflation. Here, we are going to change our prospective
207
+ a little and take it as the potential of the scalar field, which is actually the main part of the energy density during
208
+
209
+ 4
210
+ the inflationary times.
211
+ The shape of the HDE depends on the entropy of the system which based on the holographic principle is scaled
212
+ with the area rather than the volume[19–22]. Including the quantum correction, the standard entropy is modified
213
+ in different ways. One of the modification is achived by following this argument that the thermodynamics of the
214
+ gravitational and cosmological systems must be modified to the non-additive entropy. Based on this, Tsallis and
215
+ Citro obtained that the entropy of the black hole should be altered to S = γAδ. The resulted HDE density from the
216
+ entropy is ρ = Bc2L2δ−4 where B ≡ γ(4π)γ and L is the infrared cutoff. One of the candidate for the cutoff is GO
217
+ cutoff which contains the time derivative of the Hubble parameter in addition to the square of the Hubble parameter,
218
+ i.e. L−2 = αH2 + β ˙H.
219
+ Following the above approach and taking the HDE density as the potential of the scalar field, the Friedmann equation
220
+ (16) is rewritten as
221
+ H2 = κ2
222
+ 3 (1 + 2λ) Bc2�
223
+ αH2 + β ˙H
224
+ �2−δ.
225
+ (19)
226
+ Working with the equation, one finds the term ˙H/H2, which is also the definition of the first slow-roll parameter.
227
+ Then, we have
228
+ ϵ1 = − ˙H
229
+ H2 = 1
230
+ β
231
+
232
+ α − AHξ�
233
+ (20)
234
+ where the defined constants A and ξ respectively are given as
235
+ ξ ≡ 2δ − 2
236
+ 2 − δ ,
237
+ A ≡
238
+
239
+ 3M 2
240
+ p
241
+ Bc2(1 + 2λ)
242
+
243
+ 1
244
+ 2−δ
245
+ .
246
+ To introduce the second slow-roll parameter, the hierarchy procedure is used. Then, the parameter is given by
247
+ ϵ2 =
248
+ ˙ϵ1
249
+ Hϵ1
250
+ = ξ
251
+ β AHξ.
252
+ (21)
253
+ Solving the problems of the hot big bang theory requires having enough amount of inflation. which is measured by
254
+ the number of e-folds, defined as
255
+ N =
256
+ � te
257
+ t⋆
258
+ H dt =
259
+ � He
260
+ H⋆
261
+ H
262
+ ˙H
263
+ dt,
264
+ (22)
265
+ where the subscribes ”e” and ”⋆” respectively indicate that the parameters are estimated at the end of inflation and
266
+ the horizon crossing time. Solving the integral and after some manipulation, the Hubble parameter at the time of
267
+ horizon crossing is obtained as
268
+ AHξ
269
+ ⋆ =
270
+ α(α − β) e
271
+ αξN
272
+ β
273
+ β + (α − β) e
274
+ αξN
275
+ β
276
+ .
277
+ (23)
278
+ Utilizing the H⋆, the parameters could us estimated at the time of horizon crossing and it will allow us to compare
279
+ the model with data. In this regard, we first need to acquired the perturbation parameters.
280
+ Following [6–8], the scalar spectral index and the tensor-to-scalar ratio are read as
281
+ ns = 1 −
282
+
283
+ 2ϵ1 + ϵ2
284
+
285
+ = 1 − 2α
286
+ β − ξ − 2
287
+ β
288
+ AHξ,
289
+ (24)
290
+ r =
291
+ 16
292
+ 1 + λ ϵ1 =
293
+ 16
294
+ β(1 + λ)
295
+
296
+ α − AHξ�
297
+ ,
298
+ (25)
299
+ which are related to the slow-roll parameters. Applying Eq.(23), the scalar spectral index and the tensor-to-scalar
300
+ ratio are computed at the time of horizon crossing.
301
+ Fig.1 illustrates a three dimensional plot of the scalar spectral index versus α and β. It is realized that when the
302
+ parameter β decreases there is wider range of the parameter α which takes ns into the data range. The plot gives
303
+ some idea about the approximate values of the parameters α and β which we will use later for comparing the model
304
+
305
+ 5
306
+ FIG. 1. The scalar spectral index is plotted versus the parameters α and β.
307
+ (a)
308
+ (b)
309
+ with data.
310
+ By getting some instict from above figure, the tensor-to-scalar ratio is plotted versus the scalar spectral index for
311
+ different values of β, in Fig.IV, and δ, as in Fig.IV. The variable parameter in both plot is α which the arrow in the
312
+ plots shows the increase direction of α.
313
+ To enhance our understanding about the free parameters, Fig.2 portrays a parameteric space of (α, β) so that
314
+ for every point in the space, the result about the scalar spectral index and the tensor-to-scalar ratio stand in good
315
+ agreement with data. Table.I displays the results of the model for some selected (α, β) points from Fig.2.
316
+
317
+ 0.9
318
+ 0.9
319
+ 0.8
320
+ 0.8
321
+ 0.6
322
+ 0.7
323
+ 0.5
324
+ 0.6
325
+ 2.5
326
+ 5.0
327
+ 7.5
328
+ 2.0
329
+ 0.4
330
+ -12.3
331
+ 0.2
332
+ 0.0
333
+ 15.0
334
+ 0.2
335
+ -17.5
336
+ 0.4
337
+ 20.0β= - 10
338
+ 0.6
339
+ β= - 15
340
+ β= -20
341
+ 0.5
342
+ 0.4
343
+ 0.3
344
+ 0.2
345
+ 0.1
346
+ 0.0
347
+ 0.92
348
+ 0.93
349
+ 0.94
350
+ 0.95
351
+ 0.960.40
352
+ 6= -1.5
353
+ 6= -0.5
354
+ 0.35
355
+ 6= +0.1
356
+ 0.30
357
+ 0.25
358
+ 0.20
359
+ 0.15
360
+ 0.10
361
+ 0.05
362
+ 0.940
363
+ 0.945
364
+ 0.950
365
+ 0.955
366
+ 0.960
367
+ 0.9656
368
+ FIG. 2. The parametric space for the (α, β)) when δ = −1.5, λ = 5.5 and the number of e-folds is N = 65.
369
+ α
370
+ β
371
+ ns
372
+ r
373
+ 0.2500
374
+ −15.0
375
+ 0.9608
376
+ 0.0595
377
+ 0.1500
378
+ −10.0
379
+ 0.9619
380
+ 0.0662
381
+ 0.0800
382
+ −5.0
383
+ 0.9613
384
+ 0.0621
385
+ 0.0220
386
+ −1.5
387
+ 0.9622
388
+ 0.0676
389
+ 0.0078
390
+ −0.5
391
+ 0.9616
392
+ 0.0637
393
+ 0.0055
394
+ −0.3
395
+ 0.9596
396
+ 0.0533
397
+ 0.0016
398
+ −0.1
399
+ 0.9613
400
+ 0.0621
401
+ TABLE I. The result for the scalar spectal index and tensor-to-scalar ratio for different values of α and β taken from Fig.2 and
402
+ number of e-folds N = 65.
403
+ V.
404
+ SCALAR FIELD, POTENTIAL AND SWAMPLAND CRITERIA
405
+ The THDE was introduced as the potential of the scalar field where it is given in terms of the Hubble parameter.
406
+ Following the equations, the kinetic terms also could be expressed versus the Hubble parameter, so that
407
+ ˙φ2 = −2M 2
408
+ p
409
+ (1 + λ)
410
+ ˙H.
411
+ (26)
412
+ Fig.3 describes the behavior of the potential-kinetic ratio during the inflationary times for different values of the
413
+ parameter λ. The ratio decreases by the enhancement of the parameter λ. It is realized that the potential is the
414
+ dominant part and it is greater than the kinetic term by the order of O(102).
415
+ Taking integral of the above equation, the scalar field is obtained. Then, by combining the definition of the potential
416
+ and using parametric plot, the potential is illustrated in terms of the scalar field. The result is depicted in Fig.4 for
417
+ different values of the parameter λ. At the onset, the scalar field stands on the top of the potential, and by passing
418
+ the time, it increases and rolls down. The potential magnitude reduces by enhancement of the parameter λ.
419
+ Besides the observational constraints which we used in the previous section to determine the free parameters of the
420
+ model, there are some theoretical constraint which is our interest to be satisfied by an inflationary model. One of
421
+ these constraints is the swampland criteria proposed by [82–84]. It contains two conjectures, originated from string
422
+ theory, to distinguish the consistent low-energy EFT from the inconsistent ones. The conjectures are
423
+ • Distant conjecture: The scalar field excursion in the field space should satisfy the following upper bound
424
+ ∆φ
425
+ Mp
426
+ ≤ c1,
427
+ (27)
428
+ where c1 is a constant of the order of one [82–84].
429
+ • de Sitter conjecture: The conjecure is targeting the gradient of the potential and states that it should comply
430
+ the following condition [82, 84]
431
+ 1
432
+ Mp
433
+ |V ′|
434
+ V
435
+ ≥ c2
436
+ (28)
437
+
438
+ 5
439
+ 6= -2.5
440
+ 0
441
+ -5
442
+ -10
443
+ -15
444
+ -20
445
+ -0.4
446
+ -0.2
447
+ 0.0
448
+ 0.2
449
+ 0.47
450
+ FIG. 3. The ratio of the potential over the kinetic term, i.e. V (φ)/ ˙φ2 for different values of λ.
451
+ FIG. 4. The potential is plotted versus the scalar field for different values of the parameter λ.
452
+ where c2 is a constant of the order of one. However, some consideration imply that it could be smaller of the
453
+ order of O(0.1) [84, 85]. In the refined version of the conjecture, one of the following conditions should be
454
+ satisfies [83, 84]
455
+ 1
456
+ Mp
457
+ |V ′|
458
+ V
459
+ ≥ c2,
460
+ or
461
+ 1
462
+ Mp
463
+ |V ′′|
464
+ V
465
+ ≥ −c′
466
+ 2
467
+ (29)
468
+ The first conjecture could be checked out from the Fig.4 which describes the behavior of the potential versus the
469
+ scalar field during the inflationary times. It is realized that field excursion decreases by increasing the parameter λ
470
+ so that for λ ≳ 102 it will be smaller than one. Then, the model could satisfy the first conjecture.
471
+ To consider the validity of the second conjecture, the behavior of the term V ′/V is plotted versus the number of e-folds
472
+ in Fig.5 for different values of the parameter λ. At the beginning, the term could be bigger than one and it also gets
473
+ larger for higher values of λ. Besides, the term in general increases by approaching to the end of inflation. Therefore,
474
+ the second criterion is also satisfied by the model. For both conjectures, the parameter λ plays an important role and
475
+
476
+ 800
477
+ 入= 0.1
478
+ 入= 1.0
479
+ 入=300.0
480
+ 600
481
+ 400
482
+ 200
483
+ 0
484
+ 0
485
+ 10
486
+ 20
487
+ 30
488
+ 40
489
+ 50
490
+ 60
491
+ 701e-12
492
+ 3.0
493
+ 入= 400
494
+ 入=500
495
+ 2.5
496
+ 入=600
497
+ 2.0
498
+ 1.5
499
+ 1.0
500
+ 0.5
501
+ 0.0
502
+ 0.2
503
+ 0.4
504
+ 0.6
505
+ 0.8
506
+ 1.08
507
+ FIG. 5. The behavior of the term V ′/V in the inflationary times is plotted for different values λ.
508
+ λ
509
+ α
510
+ β
511
+ ES
512
+ |∆φ|
513
+ V ′/V
514
+ 90
515
+ 0.0220
516
+ −1.5
517
+ 1.84 × 10−3
518
+ 1.507
519
+ 0.877
520
+ 90
521
+ 0.0078
522
+ −0.5
523
+ 1.81 × 10−3
524
+ 1.493
525
+ 0.851
526
+ 90
527
+ 0.0055
528
+ −0.3
529
+ 1.73 × 10−3
530
+ 1.454
531
+ 0.779
532
+ 300
533
+ 0.0220
534
+ −1.5
535
+ 1.36 × 10−3
536
+ 0.828
537
+ 1.595
538
+ 300
539
+ 0.0078
540
+ −0.5
541
+ 1.34 × 10−3
542
+ 0.821
543
+ 1.548
544
+ 300
545
+ 0.0055
546
+ −0.3
547
+ 1.28 × 10−3
548
+ 0.799
549
+ 1.416
550
+ 500
551
+ 0.0220
552
+ −1.5
553
+ 1.20 × 10−3
554
+ 0.642
555
+ 2.058
556
+ 500
557
+ 0.0078
558
+ −0.5
559
+ 1.18 × 10−3
560
+ 0.636
561
+ 1.997
562
+ 500
563
+ 0.0055
564
+ −0.3
565
+ 1.13 × 10−3
566
+ 0.619
567
+ 1.827
568
+ TABLE II. The table presents some results about the energy scale of inflation, and two conjecture of the swampland criteria
569
+ for different values of α and β, selected from Fig.2, and λ. The other constant are picked as δ = −2.5 and N = 65.
570
+ due to this parameter the model could satisfy swampland criteria.
571
+ The results concerning the energy scale (ES) of
572
+ inflation and two conjectures of the swampland criteria are presented in Table.II for different values of α and β picked
573
+ from Fig.2. It is found that the energy scale of inflation is of the order of 10−3Mp stating that inflation occurs at
574
+ energy scale below the Planck scale. Moreover, the role of the parameter λ is clarified when we are considering the
575
+ validity of the swampland criteria. It is realized that for values of λ ≲ 300 the field distant becomes larger than one
576
+ and the potential gradient less than one. Then, to guarantee the validity of swampland criteria, the parameter λ is
577
+ required to approximately be λ ≳ 300.
578
+ VI.
579
+ CONCLUSION
580
+ f(R, T) gravity theory, known as an alternative theory of gravity where matter and curvature have a non-minimal
581
+ coupling, was utilized to study the scenario of slow-roll inflation. The common procedure in studying inflation is to
582
+ assume that it is driven by a scalar field that stands first at the top of its potential, and then slowly rolls down. Due
583
+ to the slow rolling, the kinetic energy of the scalar field is ignorable compared to the potential part, and a quasi-de
584
+ Sitter expansion is provided. The potential plays an important role in inflationary times, however, there is no specific
585
+ choice for it. Then, different choices for the potential have been considered and some of them provide an agreement
586
+ between the model and data.
587
+ Instead of introducing a function of the scalar field for the potential, here, the potential was assumed to be described
588
+ by HDE built from Tsallis entropy. The IR cutoff was taken as the GO cutoff which in addition to the square of the
589
+ Hubble parameter contains the time derivative of the parameter as well. Following this proposal, the perturbation
590
+ parameters were obtained at the time of the horizon crossing. Comparing the model with data, the free parameters
591
+
592
+ 35
593
+ 入= 10
594
+ 入=100
595
+ 30
596
+ 入=600
597
+ 25
598
+ 20
599
+ 15
600
+ 10
601
+ 5
602
+ 0
603
+ 0
604
+ 10
605
+ 20
606
+ 30
607
+ 40
608
+ 50
609
+ 60
610
+ N9
611
+ of the model were determined and we could illustrate a range for the free parameter so that for every point within
612
+ the range, the model completely agrees with the data.
613
+ Then, we tried to reconstruct the potential in terms of the scalar field. It was found that the field range and the
614
+ magnitude of the potential during inflation depend on the value of λ so that for smaller λ there is a wider field
615
+ range and higher values for the potential. Finally, the validity of the swampland criteria was investigated. The result
616
+ clarified that to satisfy both conjectures the parameter λ could at least be of the order of O(102).
617
+ [1] T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84, 024020 (2011), arXiv:1104.2669
618
+ [gr-qc].
619
+ [2] M. Z.-U.-H. Bhatti and Z. Yousaf, Dynamical variables and evolution of the universe, Int. J. Mod. Phys. D 26, 1750029
620
+ (2016).
621
+ [3] R. Zaregonbadi, M. Farhoudi, and N. Riazi, Dark Matter From f(R,T) Gravity, Phys. Rev. D 94, 084052 (2016),
622
+ arXiv:1608.00469 [gr-qc].
623
+ [4] P. H. R. S. Moraes and P. K. Sahoo, Wormholes in exponential f(R, T) gravity, Eur. Phys. J. C 79, 677 (2019),
624
+ arXiv:1903.03421 [gr-qc].
625
+ [5] M. E. S. Alves, P. H. R. S. Moraes, J. C. N. de Araujo, and M. Malheiro, Gravitational waves in f(R, T) and f(R, T φ)
626
+ theories of gravity, Phys. Rev. D 94, 024032 (2016), arXiv:1604.03874 [gr-qc].
627
+ [6] S. Bhattacharjee, J. R. L. Santos, P. H. R. S. Moraes, and P. K. Sahoo, Inflation in f(R, T) gravity, Eur. Phys. J. Plus
628
+ 135, 576 (2020), arXiv:2006.04336 [gr-qc].
629
+ [7] M. Gamonal, Slow-roll inflation in f(R, T) gravity and a modified Starobinsky-like inflationary model, Phys. Dark Univ.
630
+ 31, 100768 (2021), arXiv:2010.03861 [gr-qc].
631
+ [8] P. Sarkar, Ashmita, and P. K. Das, Inflationary Cosmology in a non-minimal f(R, T) gravity theory using a RT mixing
632
+ term, (2022), arXiv:2212.01782 [gr-qc].
633
+ [9] A. G. Riess et al. (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a
634
+ cosmological constant, Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201.
635
+ [10] S. Perlmutter et al. (Supernova Cosmology Project), Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys.
636
+ J. 517, 565 (1999), arXiv:astro-ph/9812133.
637
+ [11] P. de Bernardis et al. (Boomerang), A Flat universe from high resolution maps of the cosmic microwave background
638
+ radiation, Nature 404, 955 (2000), arXiv:astro-ph/0004404.
639
+ [12] S. Hanany et al., MAXIMA-1: A Measurement of the cosmic microwave background anisotropy on angular scales of 10
640
+ arcminutes to 5 degrees, Astrophys. J. Lett. 545, L5 (2000), arXiv:astro-ph/0005123.
641
+ [13] P. J. E. Peebles and B. Ratra, The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75, 559 (2003), arXiv:astro-
642
+ ph/0207347.
643
+ [14] T. Padmanabhan, Cosmological constant—the weight of the vacuum, Physics Reports 380, 235 (2003).
644
+ [15] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Dark energy cosmology: the equivalent description via different
645
+ theoretical models and cosmography tests, Astrophys. Space Sci. 342, 155 (2012), arXiv:1205.3421 [gr-qc].
646
+ [16] S. D. H. Hsu, Entropy bounds and dark energy, Phys. Lett. B 594, 13 (2004), arXiv:hep-th/0403052.
647
+ [17] R. Horvat, Holography and variable cosmological constant, Phys. Rev. D 70, 087301 (2004), arXiv:astro-ph/0404204.
648
+ [18] M. Li, A Model of holographic dark energy, Phys. Lett. B 603, 1 (2004), arXiv:hep-th/0403127.
649
+ [19] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308, 284 (1993), arXiv:gr-qc/9310026.
650
+ [20] L. Susskind, The World as a hologram, J. Math. Phys. 36, 6377 (1995), arXiv:hep-th/9409089.
651
+ [21] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150.
652
+ [22] R. Bousso, The Holographic principle, Rev. Mod. Phys. 74, 825 (2002), arXiv:hep-th/0203101.
653
+ [23] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Effective field theory, black holes, and the cosmological constant, Phys.
654
+ Rev. Lett. 82, 4971 (1999), arXiv:hep-th/9803132.
655
+ [24] L. Granda and A. Oliveros, Infrared cut-off proposal for the Holographic density, Phys. Lett. B 669, 275 (2008),
656
+ arXiv:0810.3149 [gr-qc].
657
+ [25] L. Granda and A. Oliveros, New infrared cut-off for the holographic scalar fields models of dark energy, Phys. Lett. B 671,
658
+ 199 (2009), arXiv:0810.3663 [gr-qc].
659
+ [26] S. Nojiri, S. D. Odintsov, and E. N. Saridakis, Modified cosmology from extended entropy with varying exponent, Eur.
660
+ Phys. J. C 79, 242 (2019), arXiv:1903.03098 [gr-qc].
661
+ [27] S. Nojiri, S. D. Odintsov, E. N. Saridakis, and R. Myrzakulov, Correspondence of cosmology from non-extensive thermo-
662
+ dynamics with fluids of generalized equation of state, Nucl. Phys. B 950, 114850 (2020), arXiv:1911.03606 [gr-qc].
663
+ [28] S. Nojiri and S. D. Odintsov, Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom tran-
664
+ sition model and generalized holographic dark energy, Gen. Rel. Grav. 38, 1285 (2006), arXiv:hep-th/0506212.
665
+ [29] S. Nojiri, S. Odintsov, V. Oikonomou, and T. Paul, Unifying Holographic Inflation with Holographic Dark Energy: a
666
+ Covariant Approach, Phys. Rev. D 102, 023540 (2020), arXiv:2007.06829 [gr-qc].
667
+ [30] S. Nojiri, S. D. Odintsov, and E. N. Saridakis, Holographic inflation, Phys. Lett. B 797, 134829 (2019), arXiv:1904.01345
668
+ [gr-qc].
669
+
670
+ 10
671
+ [31] A. Oliveros and M. A. Acero, Inflation driven by a holographic energy density, EPL 128, 59001 (2019), arXiv:1911.04482
672
+ [gr-qc].
673
+ [32] G. Chakraborty and S. Chattopadhyay, Modified holographic energy density-driven inflation and some cosmological out-
674
+ comes, International Journal of Geometric Methods in Modern Physics 17, 2050066 (2020).
675
+ [33] G. Barenboim and W. H. Kinney, Slow roll in simple non-canonical inflation, JCAP 0703, 014, arXiv:astro-ph/0701343
676
+ [astro-ph].
677
+ [34] P. Franche, R. Gwyn, B. Underwood, and A. Wissanji, Initial Conditions for Non-Canonical Inflation, Phys. Rev. D82,
678
+ 063528 (2010), arXiv:1002.2639 [hep-th].
679
+ [35] S. Unnikrishnan, V. Sahni, and A. Toporensky, Refining inflation using non-canonical scalars, JCAP 1208, 018,
680
+ arXiv:1205.0786 [astro-ph.CO].
681
+ [36] K. Rezazadeh, K. Karami, and P. Karimi, Intermediate inflation from a non-canonical scalar field, JCAP 1509 (09), 053,
682
+ arXiv:1411.7302 [gr-qc].
683
+ [37] K. Saaidi, A. Mohammadi, and T. Golanbari, Light of Planck-2015 on Noncanonical Inflation, Adv. High Energy Phys.
684
+ 2015, 926807 (2015), arXiv:1708.03675 [gr-qc].
685
+ [38] M. Fairbairn and M. H. G. Tytgat, Inflation from a tachyon fluid?, Phys. Lett. B546, 1 (2002), arXiv:hep-th/0204070
686
+ [hep-th].
687
+ [39] S. Mukohyama, Brane cosmology driven by the rolling tachyon, Phys. Rev. D66, 024009 (2002), arXiv:hep-th/0204084
688
+ [hep-th].
689
+ [40] A. Feinstein, Power law inflation from the rolling tachyon, Phys. Rev. D66, 063511 (2002), arXiv:hep-th/0204140 [hep-th].
690
+ [41] T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D66, 021301 (2002),
691
+ arXiv:hep-th/0204150 [hep-th].
692
+ [42] A. Aghamohammadi, A. Mohammadi, T. Golanbari, and K. Saaidi, Hamilton-Jacobi formalism for tachyon inflation, Phys.
693
+ Rev. D90, 084028 (2014), arXiv:1502.07578 [gr-qc].
694
+ [43] M. Spalinski, On Power law inflation in DBI models, JCAP 0705, 017, arXiv:hep-th/0702196 [hep-th].
695
+ [44] D. Bessada, W. H. Kinney, and K. Tzirakis, Inflationary potentials in DBI models, JCAP 0909, 031, arXiv:0907.1311
696
+ [gr-qc].
697
+ [45] J. M. Weller, C. van de Bruck, and D. F. Mota, Inflationary predictions in scalar-tensor DBI inflation, JCAP 1206, 002,
698
+ arXiv:1111.0237 [astro-ph.CO].
699
+ [46] N. Nazavari, A. Mohammadi, Z. Ossoulian, and K. Saaidi, Intermediate inflation driven by DBI scalar field, Phys. Rev.
700
+ D93, 123504 (2016), arXiv:1708.03676 [gr-qc].
701
+ [47] K.-i. Maeda and K. Yamamoto, Stability analysis of inflation with an su (2) gauge field, Journal of Cosmology and
702
+ Astroparticle Physics 2013 (12), 018.
703
+ [48] A. A. Abolhasani, R. Emami, and H. Firouzjahi, Primordial anisotropies in gauged hybrid inflation, Journal of Cosmology
704
+ and Astroparticle Physics 2014 (05), 016.
705
+ [49] S. Alexander, D. Jyoti, A. Kosowsky, and A. Marcian`o, Dynamics of gauge field inflation, Journal of Cosmology and
706
+ Astroparticle Physics 2015 (05), 005.
707
+ [50] M. Tirandari and K. Saaidi, Anisotropic inflation in brans–dicke gravity, Nuclear Physics B 925, 403 (2017).
708
+ [51] R. Maartens, D. Wands, B. A. Bassett, and I. P. Heard, Chaotic inflation on the brane, Physical Review D 62, 041301
709
+ (2000).
710
+ [52] T. Golanbari, A. Mohammadi, and K. Saaidi, Brane inflation driven by noncanonical scalar field, Physical Review D 89,
711
+ 103529 (2014).
712
+ [53] A. Mohammadi, T. Golanbari, S. Nasri, and K. Saaidi, Brane inflation: Swampland Criteria, TCC, and Reheating con-
713
+ straint, (2020), arXiv:2006.09489 [gr-qc].
714
+ [54] A. Mohammadi, T. Golanbari, and J. Enayati, Brane inflation and Trans-Planckian censorship conjecture,
715
+ (2020),
716
+ arXiv:2012.01512 [hep-th].
717
+ [55] A. Berera, Warm inflation, Physical Review Letters 75, 3218 (1995).
718
+ [56] A. Berera, Warm inflation in the adiabatic regime—a model, an existence proof for inflationary dynamics in quantum field
719
+ theory, Nuclear Physics B 585, 666 (2000).
720
+ [57] L. M. Hall, I. G. Moss, and A. Berera, Scalar perturbation spectra from warm inflation, Physical Review D 69, 083525
721
+ (2004).
722
+ [58] K. Sayar, A. Mohammadi, L. Akhtari, and K. Saaidi, Hamilton-Jacobi formalism to warm inflationary scenario, Phys. Rev.
723
+ D95, 023501 (2017), arXiv:1708.01714 [gr-qc].
724
+ [59] L. Akhtari, A. Mohammadi, K. Sayar, and K. Saaidi, Viscous warm inflation: Hamilton–Jacobi formalism, Astropart.
725
+ Phys. 90, 28 (2017), arXiv:1710.05793 [astro-ph.CO].
726
+ [60] H. Sheikhahmadi, A. Mohammadi, A. Aghamohammadi, T. Harko, R. Herrera, C. Corda, A. Abebe, and K. Saaidi, Con-
727
+ straining chameleon field driven warm inflation with Planck 2018 data, Eur. Phys. J. C79, 1038 (2019), arXiv:1907.10966
728
+ [gr-qc].
729
+ [61] A. Mohammadi, T. Golanbari, H. Sheikhahmadi, K. Sayar, L. Akhtari, M. Rasheed, and K. Saaidi, Warm tachyon inflation
730
+ and swampland criteria, Chin. Phys. C 44, 095101 (2020), arXiv:2001.10042 [gr-qc].
731
+ [62] A. Mohammadi, K. Saaidi, and T. Golanbari, Tachyon constant-roll inflation, Phys. Rev. D97, 083006 (2018),
732
+ arXiv:1801.03487 [hep-ph].
733
+ [63] A. Mohammadi, K. Saaidi, and H. Sheikhahmadi, Constant-roll approach to non-canonical inflation, Phys. Rev. D100,
734
+ 083520 (2019), arXiv:1803.01715 [astro-ph.CO].
735
+
736
+ 11
737
+ [64] T. Golanbari, A. Mohammadi, and K. Saaidi, Observational constraints on DBI constant-roll inflation, Phys. Dark Univ.
738
+ 27, 100456 (2020), arXiv:1808.07246 [gr-qc].
739
+ [65] A. Mohammadi, T. Golanbari, and K. Saaidi, Beta-function formalism for k-essence constant-roll inflation, Phys. Dark
740
+ Univ. 28, 100505 (2020), arXiv:1912.07006 [gr-qc].
741
+ [66] A. Mohammadi, T. Golanbari, S. Nasri, and K. Saaidi, Constant-roll brane inflation, Phys. Rev. D 101, 123537 (2020),
742
+ arXiv:2004.12137 [gr-qc].
743
+ [67] A. D. Linde, Inflationary cosmology, Phys. Rept. 333, 575 (2000).
744
+ [68] A. D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5, 1 (1990), arXiv:hep-th/0503203
745
+ [hep-th].
746
+ [69] A. D. Linde, Current understanding of inflation, Proceedings, 6th UCLA Symposium on Sources and Detection of Dark
747
+ Matter and Dark Energy in the Universe: Marina del Rey, CA, USA, February 18-20, 2004, New Astron. Rev. 49, 35
748
+ (2005).
749
+ [70] A. D. Linde, Prospects of inflation, Proceedings, Nobel Symposium 127 on String theory and cosmology: Sigtuna, Sweden,
750
+ August 14-19, 2003, Phys. Scripta T117, 40 (2005), arXiv:hep-th/0402051 [hep-th].
751
+ [71] A. Riotto, Inflation and the theory of cosmological perturbations, Astroparticle physics and cosmology. Proceedings: Sum-
752
+ mer School, Trieste, Italy, Jun 17-Jul 5 2002, ICTP Lect. Notes Ser. 14, 317 (2003), arXiv:hep-ph/0210162 [hep-ph].
753
+ [72] D. Baumann, TASI Lecture on Inflation, in Physics of the large and the small, TASI 09, proceedings of the Theoretical
754
+ Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June 2009 (2011) pp. 523–686,
755
+ arXiv:0907.5424 [hep-th].
756
+ [73] S. Weinberg, Cosmology (2008).
757
+ [74] D. H. Lyth and A. R. Liddle, The primordial density perturbation: Cosmology, inflation and the origin of structure (2009).
758
+ [75] C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics, J. Statist. Phys. 52, 479 (1988).
759
+ [76] M. Lyra and C. Tsallis, Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems, Phys. Rev. Lett. 80,
760
+ 53 (1998), arXiv:cond-mat/9709226.
761
+ [77] C. Tsallis, R. Mendes, and A. Plastino, The Role of constraints within generalized nonextensive statistics, Physica A 261,
762
+ 534 (1998).
763
+ [78] G. Wilk and Z. Wlodarczyk, On the interpretation of nonextensive parameter q in Tsallis statistics and Levy distributions,
764
+ Phys. Rev. Lett. 84, 2770 (2000), arXiv:hep-ph/9908459.
765
+ [79] C. Tsallis and L. J. L. Cirto, Black hole thermodynamical entropy, The European Physical Journal C 73,
766
+ 10.1140/epjc/s10052-013-2487-6 (2013).
767
+ [80] M. Rashki and S. Jalalzadeh, Holography from quantum cosmology, Phys. Rev. D 91, 023501 (2015), arXiv:1412.3950
768
+ [gr-qc].
769
+ [81] M. Tavayef, A. Sheykhi, K. Bamba, and H. Moradpour, Tsallis Holographic Dark Energy, Phys. Lett. B 781, 195 (2018),
770
+ arXiv:1804.02983 [gr-qc].
771
+ [82] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, De Sitter Space and the Swampland, (2018), arXiv:1806.08362 [hep-th].
772
+ [83] S. K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11, 075, arXiv:1807.05193 [hep-th].
773
+ [84] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B788, 180
774
+ (2019), arXiv:1810.05506 [hep-th].
775
+ [85] A. Kehagias and A. Riotto, A note on Inflation and the Swampland, Fortsch. Phys. 66, 1800052 (2018), arXiv:1807.05445
776
+ [hep-th].
777
+
8NE0T4oBgHgl3EQfwQHW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE1T4oBgHgl3EQf7wU5/content/2301.03537v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:121138b93d939a7c5ea19fec217453c440f83d82c3ca180347800451a8d19685
3
+ size 3765622
8tE1T4oBgHgl3EQf7wU5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6003d682f6886d8860d47425a8c24b0150497c560925327a97cb0f52ec91a794
3
+ size 4915245
9NAzT4oBgHgl3EQf-_5O/content/tmp_files/2301.01941v1.pdf.txt ADDED
@@ -0,0 +1,2759 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–16 (2022)
2
+ Preprint 6 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Light-curves and nucleosynthesis of CNO-rp driven general relativistic
5
+ instability supernovae in metal enriched supermassive protostars.
6
+ Chris Nagele,1★ Hideyuki Umeda,1 Koh Takahashi, 2
7
+ 1Department of Astronomy, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033, Japan
8
+ 2Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
9
+ Accepted XXX. Received YYY; in original form ZZZ
10
+ ABSTRACT
11
+ The assembly of supermassive black holes poses a challenge primarily because of observed quasars at high redshift, but
12
+ additionally because of the current lack of observations of intermediate mass black holes. One plausible scenario for creating
13
+ supermassive black holes is direct collapse triggered by the merger of two gas rich galaxies. This scenario allows the creation
14
+ of supermassive stars with up to solar metallicity, where the enhanced metallicity is enabled by extremely rapid accretion. We
15
+ investigate the behavior of metal enriched supermassive protostars which collapse due to the general relativistic radial instability.
16
+ These stars are rich in both hydrogen and metals and thus may explode due to the CNO cycle (carbon-nitrogen-oxygen) and the
17
+ rp process (rapid proton capture). We perform a suite of 1D general relativistic hydrodynamical simulations coupled to a 153
18
+ isotope nuclear network with the effects of neutrino cooling. We determine the mass and metallicity ranges for an explosion. We
19
+ then post process using a 514 isotope network which captures the full rp process. We present nucleosynthesis and lightcurves for
20
+ selected models. These events are characterized by enhanced nitrogen, suppressed light elements (8 ≥ A ≥ 14), and low mass p
21
+ nuclides and they are visible to JWST and other near infrared surveys as decades-long transients. Finally, we provide an estimate
22
+ for the number of currently ongoing explosions in the Universe.
23
+ Key words: gravitation — (stars:) supernovae: general — nuclear reactions, nucleosynthesis, abundances
24
+ 1 INTRODUCTION
25
+ The study of supermassive stars has arisen from two peculiarities of
26
+ the black hole population in the Universe. The first is that supermas-
27
+ sive black holes (SMBHs) exist soon after the big bang (Mortlock
28
+ et al. 2011; Wu et al. 2015; Bañados et al. 2018; Matsuoka et al. 2019;
29
+ Wang et al. 2021). Our current understanding of cosmology requires
30
+ that the SMBHs did not exist at the time of the big bang, implying
31
+ that they were created in the intervening period. The second pecu-
32
+ liarity is that the black hole mass function seems to be bimodal, with
33
+ a noticeable lack of intermediate mass black holes (having masses
34
+ in between solar mass black holes and SMBHs), although this may
35
+ be due to observational bias (Wrobel et al. 2016; Baumgardt 2017;
36
+ Kızıltan et al. 2017). If the bimodality is not due to observational bias,
37
+ it stands in opposition to the distributions of other self gravitating
38
+ objects (stars and galaxies), which have smooth mass functions.
39
+ The direct collapse black hole (DCBH) scenario was proposed to
40
+ resolve the first of these peculiarities (Bromm & Loeb 2003), and
41
+ is sometimes invoked to explain the second (e.g. Banik et al. 2019).
42
+ The scenario involves a gas cloud forming a single supermassive star
43
+ instead of many individual stars. This can occur in the presence of
44
+ local Lyman Werner radiation (Dijkstra et al. 2008; Agarwal et al.
45
+ 2012; Latif et al. 2014b) or baryon dark matter supersonic streaming
46
+ (Latif et al. 2014a; Schauer et al. 2017; Hirano et al. 2017). The
47
+ ★ E-mail: [email protected]
48
+ resultant supermassive star may be detectable directly (Surace et al.
49
+ 2018, 2019; Vikaeus et al. 2022), via a general relativistic instability
50
+ supernova (GRSN, Chen et al. 2014; Whalen et al. 2013c; Nagele
51
+ et al. 2020; Moriya et al. 2021; Nagele et al. 2022b,a), by the obser-
52
+ vation of gravitational waves (Shibata et al. 2016; Li et al. 2018), or
53
+ as an ultra long gamma ray burst (Sun et al. 2017).
54
+ In this paper, however, we consider a slightly different scenario
55
+ where the supermassive star formation is triggered by a merger of
56
+ two gas rich galaxies (for a review, see Mayer & Bonoli 2019).
57
+ The phenomenon of nuclear gaseous disks forming via multi-scale
58
+ inflows was first investigated in the context of the M-sigma relation
59
+ as a means of providing a source of dynamical friction for a SMBH
60
+ binary in order to assist with its eventual merger (Kazantzidis et al.
61
+ 2005; Mayer et al. 2007). Since then, it has been shown that not only
62
+ can this disk influence the behavior of existing SMBHs, but it can
63
+ also collapse under its own gravity to form a new black hole (Mayer
64
+ et al. 2010). Recently, Zwick et al. (2022) calculated observables
65
+ from DCBHs resulting from galaxy mergers. The crucial element of
66
+ this scenario as it pertains to the current study is that the scenario
67
+ is agnostic to the metallicity of the interstellar medium (ISM). This
68
+ means that supermassive stars will form out of metal enriched gas
69
+ (Mayer et al. 2015).
70
+ But what does it mean to have a metal enriched supermassive star?
71
+ These objects radiate at very nearly their Eddington limit and mass
72
+ loss rates from our local Universe (Vink et al. 2011) suggest such
73
+ objects would not survive for long. The situation is further compli-
74
+ © 2022 The Authors
75
+ arXiv:2301.01941v1 [astro-ph.HE] 5 Jan 2023
76
+
77
+ 2
78
+ C. Nagele et al.
79
+ cated by the fact that these metal enriched stars may be accreting
80
+ matter to replenish that lost to line driven winds. In this paper, we
81
+ sidestep this difficulty by considering only metal enriched supermas-
82
+ sive protostars which are massive enough to collapse via the general
83
+ relativistic (GR) radial instability (Chandrasekhar 1964) before they
84
+ reach the main sequence, thus avoiding any line driven mass loss.
85
+ The behavior of such metal enriched supermassive protostars has
86
+ been investigated previously (Fuller et al. 1986; Montero et al. 2012).
87
+ In particular, it was shown that if the protostars collapse due to the GR
88
+ radial instability, then this collapse can cause an explosion powered
89
+ by the CNO cycle (which we will term a proton rich or pr-GRSN, to
90
+ differentiate it from an 𝛼 process driven GRSN). pr-GRSNe were first
91
+ investigated in Fuller et al. (1986). They used a 1D post Newtonian
92
+ (PN) code with a 10 isotope nuclear reaction network and found
93
+ several exploding models spanning the mass range 5 × 105 − 106
94
+ M⊙. The metallicity floor for the lowest mass model was 5 × 10−3.
95
+ Subsequently, Montero et al. (2012) used a 2D BSSN code with
96
+ parameterized heating rates to investigate models with similar mass,
97
+ and they were able to include the effects of rotation. For their non
98
+ rotating models, they found explosions with the same masses as
99
+ Fuller et al. (1986), but with slightly higher metallicity.
100
+ We use a GR 1D hydrodynamics code coupled to a 153 isotope
101
+ network. The large network allows us to more accurately follow the
102
+ dynamics of the explosion at higher temperatures, and we thus find
103
+ a lower metallicity floor than in previous works. After running our
104
+ simulations, we post process the hydrodynamical trajectories with a
105
+ 514 isotope network designed to fully follow the rp-process on the
106
+ proton rich side. Contrary to the conclusions of previous works, we
107
+ find that the rp-process can play a critical role in the explosion.
108
+ In Sec. 2 we outline our numerical procedures for stellar evolu-
109
+ tion, hydrodynamics, post processing, and lightcurves. In Sec. 3.1,
110
+ we present the results of the stellar evolution simulations. In Sec.
111
+ 3.2, we present the results of our hydrodynamical simulations and
112
+ post processing, for a fiducial model, as well as for varying mass and
113
+ metallicity. In Sec. 3.3 we present the results of our lightcurve calcu-
114
+ lations and an estimate of pr-GRSN density. In Sec. 3.4, we discuss
115
+ various feedback induced by a pr-GRSN. Finally, we conclude with
116
+ a discussion in Sec. 4.
117
+ 2 METHODS
118
+ In this section, we first describe our initial models and stellar evo-
119
+ lution code, then provide details of our GR hydrodynamical code,
120
+ after which we detail the open source code SNEC, which is used to
121
+ calculate lightcurves.
122
+ 2.1 Stellar evolution
123
+ The HOSHI code (Takahashi et al. 2016, 2018, 2019; Yoshida et al.
124
+ 2019) is a 1D stellar evolution code which solves the stellar structure
125
+ and hydrodynamical equations using a Henyey type implicit method.
126
+ Nagele et al. (2020) introduced the first order PN correction to the
127
+ hydrostatic terms. The PN approximation is extremely accurate for
128
+ SMSs in hydrostatic equilibrium because the effects of GR are mi-
129
+ nor. These minor effects must be included, however, because SMSs
130
+ are radiation dominated and therefore close to instability. Once the
131
+ evolution of the star becomes dynamical, HOSHI’s lack of a shock
132
+ capture scheme and the PN dynamical corrections neccesitate the
133
+ use of another code. HOSHI includes a nuclear reaction network (52
134
+ isotopes), neutrino cooling, mass loss, and rotation. The equation
135
+ of state includes contributions from photons, averaged nuclei, elec-
136
+ trons, and positrons. HOSHI uses the Rosseland mean opacity of the
137
+ OPAL project (Iglesias & Rogers 1996) and solves the Saha equation
138
+ to determine the ionization of hydrogen, helium, carbon, nitrogen,
139
+ and oxygen.
140
+ In this paper, 𝑀 is the total mass, 𝑅 the radius, 𝑇 the temperature,
141
+ and 𝜌𝑏 the baryonic density where quantities with 𝑐 subscripts show-
142
+ ing the central values. 𝑠𝑟 is the entropy due to radiation at a given
143
+ mass (Shapiro & Teukolsky 1983)
144
+ 𝑠𝑟 = 0.942
145
+ � 𝑀
146
+ M⊙
147
+ �1/2
148
+ .
149
+ (1)
150
+ Finally, X is the mass fraction of a specified element.
151
+ To assist with analysis, we define various global energy quantities.
152
+ The internal energy is
153
+ 𝐸int =
154
+ ∫ 𝑀
155
+ 0
156
+ 𝜖 𝑑𝑚𝑟,
157
+ (2)
158
+ where 𝑚𝑟 is the mass coordinate and 𝜖 is the specific energy. The
159
+ gravitational energy is
160
+ 𝐸grav = −
161
+ ∫ 𝑀
162
+ 0
163
+ 𝑔effective 𝑟 𝑑𝑚𝑟,
164
+ (3)
165
+ where 𝑔effective is the local gravity with the 1st order PN correction
166
+ to the static terms (Nagele et al. 2022b). The accuracy of this ap-
167
+ proximation degrades with increasing density and velocity, neither
168
+ of which are particularly concerning for our purposes. The kinetic
169
+ energy is
170
+ 𝐸kin =
171
+ ∫ 𝑀
172
+ 0
173
+ 𝑣2
174
+ 2 𝑑𝑚𝑟,
175
+ (4)
176
+ where 𝑣 is the radial velocity. The binding energy of the star is
177
+ the negative of the thermal and gravitational energies (so that a
178
+ more tightly bound star has higher 𝐸bind), while the total energy
179
+ additionally includes kinetic energy:
180
+ 𝐸bind = −(𝐸int + 𝐸grav)
181
+ (5)
182
+ 𝐸tot = 𝐸int + 𝐸grav + 𝐸kin.
183
+ (6)
184
+ As in our previous works, we define the explosion energy as the
185
+ total energy at shock breakout. For HYDnuc, we also report the
186
+ integration over energy generation due to the nuclear network and
187
+ neutrino cooling (dots indicate time derivatives):
188
+ 𝐸nuc(𝑡) =
189
+ ∫ 𝑡
190
+ 0
191
+ ∫ 𝑀
192
+ 0
193
+
194
+ 𝜖nuc 𝑑𝑚𝑟 𝑑𝑡
195
+ (7)
196
+ 𝐸𝜈(𝑡) =
197
+ ∫ 𝑡
198
+ 0
199
+ ∫ 𝑀
200
+ 0
201
+ �𝜖𝜈 𝑑𝑚𝑟 𝑑𝑡.
202
+ (8)
203
+ A summary of the results of the HOSHI simulations can be found in
204
+ Table 2.
205
+ We initiate the HOSHI code in a high entropy state, which imme-
206
+ diately relaxes towards a constant entropy radiation dominated state,
207
+ though the protostar does not reach all the way to the radiation value
208
+ due to the small contribution of gas pressure. This configuration
209
+ could represent one of two physically realizable scenarios. Either,
210
+ it could be a supermassive protostar which has finished accreting
211
+ due to depletion of accretion material, which then contracts to the
212
+ radiation dominated constant entropy pre-ZAMS (zero age main se-
213
+ quence) state, or it could represent the convective core of a currently
214
+ MNRAS 000, 1–16 (2022)
215
+
216
+ CNO-rp driven GR instability supernovae.
217
+ 3
218
+ Table 1. Summary table for the nuclear networks. Entries show the range in A for the specified element.
219
+ Element
220
+ 52
221
+ 153
222
+ 216
223
+ 514
224
+ Element (ctd.)
225
+ 52
226
+ 153
227
+ 216
228
+ 514
229
+ N
230
+ 1
231
+ 1
232
+ 1
233
+ 1
234
+ V
235
+ 47
236
+ 45-51
237
+ 45-51
238
+ 42-53
239
+ P
240
+ 1-3
241
+ 1-3
242
+ 1-3
243
+ 1-3
244
+ Cr
245
+ 48
246
+ 47-54
247
+ 47-54
248
+ 44-55
249
+ He
250
+ 3-4
251
+ 3-4
252
+ 3-4
253
+ 2-4
254
+ Mn
255
+ 51
256
+ 49-55
257
+ 49-55
258
+ 46-57
259
+ Li
260
+ 6-7
261
+ 6-7
262
+ 6-7
263
+ 4-7
264
+ Fe
265
+ 52-56
266
+ 51-58
267
+ 51-58
268
+ 48-60
269
+ Be
270
+ 7-9
271
+ 7-9
272
+ 7-9
273
+ 5-9
274
+ Co
275
+ 55-56
276
+ 53-59
277
+ 53-59
278
+ 50-61
279
+ B
280
+ 8-11
281
+ 8-11
282
+ 8-11
283
+ 6-11
284
+ Ni
285
+ 56
286
+ 55-62
287
+ 55-62
288
+ 52-66
289
+ C
290
+ 12-13
291
+ 12-13
292
+ 12-13
293
+ 8-14
294
+ Cu
295
+
296
+ 57-63
297
+ 57-63
298
+ 54-68
299
+ N
300
+ 13-15
301
+ 13-15
302
+ 13-15
303
+ 10-16
304
+ Zn
305
+
306
+ 60-64
307
+ 60-64
308
+ 56-71
309
+ O
310
+ 14-18
311
+ 14-18
312
+ 14-18
313
+ 12-18
314
+ Ga
315
+
316
+
317
+ 63-69
318
+ 58-73
319
+ F
320
+ 17-19
321
+ 17-19
322
+ 16-19
323
+ 14-20
324
+ Ge
325
+
326
+
327
+ 65-70
328
+ 60-75
329
+ Ne
330
+ 18-20
331
+ 18-22
332
+ 18-22
333
+ 16-22
334
+ As
335
+
336
+
337
+ 68-75
338
+ 62-76
339
+ Na
340
+ 23
341
+ 21-23
342
+ 20-23
343
+ 18-24
344
+ Se
345
+
346
+
347
+ 72-76
348
+ 64-81
349
+ Mg
350
+ 24
351
+ 22-26
352
+ 22-26
353
+ 20-26
354
+ Br
355
+
356
+
357
+ 74-79
358
+ 66-82
359
+ Al
360
+ 27
361
+ 25-27
362
+ 24-27
363
+ 22-28
364
+ Kr
365
+
366
+
367
+ 76-80
368
+ 68-86
369
+ Si
370
+ 28
371
+ 26-32
372
+ 26-30
373
+ 24-30
374
+ Rb
375
+
376
+
377
+ 78-85
378
+ 70-87
379
+ P
380
+ 31
381
+ 29-33
382
+ 28-31
383
+ 26-32
384
+ Sr
385
+
386
+
387
+ 82-86
388
+ 72-89
389
+ S
390
+ 32
391
+ 30-36
392
+ 30-36
393
+ 28-37
394
+ Y
395
+
396
+
397
+ 84-89
398
+ 74-91
399
+ Cl
400
+ 35
401
+ 33-37
402
+ 32-37
403
+ 30-39
404
+ Zr
405
+
406
+
407
+ 86-90
408
+ 76-95
409
+ Ar
410
+ 36
411
+ 34-40
412
+ 34-40
413
+ 32-43
414
+ Nb
415
+
416
+
417
+
418
+ 78-96
419
+ K
420
+ 39
421
+ 37-41
422
+ 36-41
423
+ 34-45
424
+ Mo
425
+
426
+
427
+
428
+ 80-98
429
+ Ca
430
+ 40
431
+ 38-43
432
+ 38-43
433
+ 36-48
434
+ Tc
435
+
436
+
437
+
438
+ 82-98
439
+ Sc
440
+ 43
441
+ 41-45
442
+ 41-45
443
+ 38-49
444
+ Ru
445
+
446
+
447
+
448
+ 84-99
449
+ Ti
450
+ 44
451
+ 43-48
452
+ 43-48
453
+ 40-51
454
+ accreting supermassive star. In the latter case, the accretion envelope
455
+ could in theory effect the stability of the system, but such effects are
456
+ thought to be small (Haemmerlé 2020). We expect that the envelope
457
+ will have no effect on the dynamical behavior of the protostar once
458
+ the GR instability is reached besides increasing the overall gravity
459
+ (see e.g. Fig. 14 of Nagele et al. 2022b).
460
+ We determine the stability of the protostar in HOSHI by solving
461
+ the pulsation equation for a hydrostatic, spherically symmetric object
462
+ in general relativity (Chandrasekhar 1964):
463
+ 𝑒−2𝑎−𝑏 d
464
+ d𝑟
465
+
466
+ 𝑒3𝑎+𝑏Γ1
467
+ 𝑃
468
+ 𝑟2
469
+ d
470
+ d𝑟 (𝑒−𝑎𝑟2𝜉)
471
+
472
+ −4
473
+ 𝑟
474
+ d𝑃
475
+ d𝑟 𝜉+𝑒−2𝑎+2𝑏𝜔2(𝑃+𝜌𝑐2)𝜉
476
+ −8𝜋𝐺
477
+ 𝑐4 𝑒2𝑏𝑃(𝑃 + 𝜌𝑐2)𝜉 −
478
+ 1
479
+ 𝑃 + 𝜌𝑐2
480
+ � d𝑃
481
+ d𝑟
482
+ �2
483
+ 𝜉 = 0,
484
+ (9)
485
+ where 𝑎, 𝑏 are the metric coefficients as defined in Haemmerlé
486
+ (2021a), 𝑟 is the radius, 𝑃 the pressure, Γ1 the local adiabatic in-
487
+ dex at constant entropy (𝑠), 𝜌 = 𝜌𝑏(1 + 𝜖) the relativistic density,
488
+ and 𝜖 the specific internal energy (we absorb rest mass due to mass
489
+ excess of nuclei into this energy).
490
+ The star, or in this case, protostar, is unstable if there exists a trial
491
+ function 𝜉(𝑟) ∝ 𝑒𝑖𝜔𝑡 with 𝜔2 < 0, representing a perturbation which
492
+ will grow exponentially. There are two main approaches to solving
493
+ this equation, either by assuming a nearly linear trial function 𝜉 ∝ 𝑟𝑒𝑎
494
+ (Haemmerlé 2021a), or by iteratively solving for the fundamental
495
+ mode of the normal mode decomposition of perturbations to Eq. 9
496
+ (Nagele et al. 2022b). Here we adopt the latter approach, as in our
497
+ previous paper, but this choice should have a minimal bearing on the
498
+ results.
499
+ Even though we will eventually simulate the dynamics of metal
500
+ enriched supermassive protostars, we only consider metal free proto-
501
+ stars in HOSHI. This is because we are only interested in protostars
502
+ which become unstable before the onset of nuclear burning, so metal-
503
+ licity, will not effect the protostellar structure except as caused by
504
+ Figure 1. Radial (upper) and velocity (lower) snapshots of the fiducial model
505
+ at three timesteps, the initial time, the time when the central temperature is
506
+ largest, and shock breakout.
507
+ changes to the opacity. We consider the following range of masses:
508
+ 7 − 10 × 104 M⊙ in steps of 104 M⊙ and 1 − 3 × 105 M⊙ in steps of
509
+ 5 × 104 M⊙.
510
+ 2.2 Hydrodynamics
511
+ HYDnuc is a 1D Lagrangian GR hydrodynamics code which uses
512
+ a Roe-type approximate linearized Riemann solver (Yamada 1997;
513
+ Takahashi et al. 2016; Nagele et al. 2020). It includes all of the
514
+ physics from HOSHI except for convection and ionization. In this
515
+ paper, we use a 153 isotope network (Table 1). The 153 isotope
516
+ MNRAS 000, 1–16 (2022)
517
+
518
+ le13
519
+ initial
520
+ 1.5
521
+ max T.
522
+ shock breakout
523
+ r [cm]
524
+ 1.0
525
+ 0.5
526
+ 0.0
527
+ 6
528
+ 4
529
+ 2
530
+ 0
531
+ -2
532
+ 0
533
+ 20000
534
+ 40000
535
+ 60000
536
+ 80000
537
+ 100000
538
+ mr[M。]4
539
+ C. Nagele et al.
540
+ Figure 2. Nucleosynthesis in the post processed 514 isotope network for the fiducial model, 𝑀 = 105 M⊙, 𝑍 = 𝑍⊙. Upper panels — isotope mass fractions for
541
+ five snapshots: the initial time, when the temperature rises to 3/4 of the eventual maximum, the maximum temperature, the final time step, and 1012 seconds
542
+ later. Lower panel — total energy compared to 𝐸nuc in both the 153 and 514 isotope calculations and compared to 𝐸nuc + 𝐸𝜈 for the 153 isotope calculation.
543
+ network (Takahashi et al. 2018) covers the proton rich side (p side)
544
+ at a depth of 3-8 isotopes up to zinc. Reaction rates for all networks
545
+ are taken from JINA REACLIB (Cyburt et al. 2010).
546
+ We use the same scheme to transport our models from HOSHI to
547
+ HYDnuc as in Nagele et al. (2022b) which is based on the frequency
548
+ function defined in Takahashi et al. (2019). We set the chemical
549
+ composition to be constant throughout the star, as a fraction of the
550
+ solar composition (Asplund et al. 2009). Due to the exploratory
551
+ nature of this study and the requirement of a larger nuclear network,
552
+ we use slightly less optimal numerical parameters than in Nagele
553
+ et al. (2022b), specifically 255 mesh points and V = 10−4 (maximum
554
+ allowed fractional variation of independent variables per timestep).
555
+ The effect of these changes is to underestimate the energy generated
556
+ by nuclear burning (see Fig. 6 of Nagele et al. 2022b). As in our
557
+ previous works, we terminate the simulations when convergence
558
+ issues arise due to large radius (𝑟 ∼ 1015 cm).
559
+ 2.3 Post-processing
560
+ After performing the HYDnuc simulations, we post process the hy-
561
+ drodynamical trajectories using a 514 isotope network (Table 1)
562
+ designed to follow the rp process up to ruthenium. All isotopes on
563
+ the p side are covered up to the line with slope 1 and y intercept 5.
564
+ Even though this post processing is less computationally expensive,
565
+ the network is too large to solve the composition at every timestep of
566
+ HYDnuc. We choose to solve the composition with a frequency of
567
+ 100−1 timesteps−1, and have checked that a) the convergence of 𝐸nuc
568
+ as the frequency increases and b) that 𝐸nuc with frequency 100−1
569
+ agrees with 𝐸nuc with frequency 10−1 to within 0.1%. At the end
570
+ of the HYDnuc simulation, the post-processed composition contains
571
+ many radioactive isotopes. We then fix the temperature and density
572
+ and continue to post-process for an additional 1012 seconds while
573
+ logarithmically increasing the timestep. 1012 seconds is enough for
574
+ most, but not all (e.g. 26Al) radioactive isotopes to decay.
575
+ 2.4 Lightcurves
576
+ The SuperNova Explosion Code (SNEC) is an open source, 1D La-
577
+ grangian, radiation hydrodynamics code designed to compute su-
578
+ pernova lightcurves (Morozova et al. 2015). It includes artificial
579
+ Figure 3. Nucleosynthetic yields (𝑡 = 𝑡final + 1012 s) from the 514 isotope
580
+ network for the 𝑀 = 105 M⊙ for the indicated metallicities.
581
+ viscosity, an equation of state with a Saha solver for ionization of
582
+ hydrogen and helium, and equilibrium flux-limited photon diffusion
583
+ using OPAL. As in (Nagele et al. 2022a), we port our HYDnuc mod-
584
+ els to SNEC slightly before shock breakout and for the outer layer
585
+ of the SNEC model, we use the HOSHI progenitor which enables
586
+ increased surface resolution necessary for properly following the
587
+ lightcurve. We terminate the SNEC simulations after 109 seconds at
588
+ which point any plateau phase in the luminosity has finished.
589
+ We then use the effective temperature to construct blackbody spec-
590
+ tral energy distributions and assume a standard ΛCDM cosmology.
591
+ With these components, we calculate apparent magnitudes for the
592
+ passbands of various telescopes at a given redshift. In this study, we
593
+ do not take extinction into account.
594
+ MNRAS 000, 1–16 (2022)
595
+
596
+ t= tinitial
597
+ Tc= gTc,max
598
+ Te= Tc,max
599
+ t = tfinal
600
+ t= trinal + 1012 s
601
+ 0
602
+ 20
603
+ -2
604
+ pnumber
605
+ -4
606
+ 15
607
+ Log
608
+ -6
609
+ 10
610
+ -8
611
+ 10
612
+ 15
613
+ 20
614
+ 25
615
+ 10
616
+ 15
617
+ 20
618
+ 25
619
+ 10
620
+ 15
621
+ 20
622
+ 25
623
+ 10
624
+ 15
625
+ 20
626
+ 25
627
+ 10
628
+ 15
629
+ 20
630
+ 25
631
+ -10
632
+ nnumber
633
+ 1e55
634
+ 2
635
+ Etot (153 isotopes)
636
+ Etot(t = 0) + Enuc (153)
637
+ Etot(t = 0) + Enuc + Ev (153)
638
+ Etot(t = 0) + Enuc (514 isotopes)
639
+ 0
640
+ 0
641
+ 20000
642
+ 40000
643
+ 60000
644
+ 80000
645
+ 100000
646
+ t [s]Z/Z。=0.12254
647
+ 4
648
+ Z/Z。=0.1226
649
+ Z/Z。=0.123
650
+ Z/Z。= 0.13
651
+ Sc
652
+ 3
653
+ Z/Z。= 0.2
654
+ Z/Z。 = 1.0
655
+ 2
656
+ [X/Fe]
657
+ N
658
+ Mo
659
+ Ne
660
+ 0
661
+ -1
662
+ C
663
+ Ar
664
+ Co
665
+ -2
666
+ Mg
667
+ 5
668
+ 10
669
+ 15
670
+ 20
671
+ 25
672
+ 30
673
+ 35
674
+ 40
675
+ 45
676
+ Z (proton number)CNO-rp driven GR instability supernovae.
677
+ 5
678
+ Table 2. Summary of the state of the stellar evolution simulations at the GR instability. The columns are, total mass, radius, central temperature, baryonic density
679
+ and entropy, central entropy as a fraction of radiative entropy (for a star of that mass), hydrogen mass fraction and binding energy.
680
+ M [105 M⊙]
681
+ R [1013 cm]
682
+ 𝑇𝑐 [108 K]
683
+ 𝜌𝑏,𝑐 [g/cc]
684
+ 𝑠𝑐 [𝑘𝑏/baryon]
685
+ 𝑠𝑐/𝑠𝑟 − 1
686
+ X(1H)
687
+ 𝐸bind [1054 ergs]
688
+ 0.7
689
+ 264.8
690
+ 1.554
691
+ 1.881
692
+ 265.3
693
+ 0.06454
694
+ 0.4979
695
+ 1.694
696
+ 0.9
697
+ 32.24
698
+ 1.652
699
+ 1.968
700
+ 306.2
701
+ 0.08347
702
+ 0.7406
703
+ 2.702
704
+ 1.0
705
+ 2.061
706
+ 1.28
707
+ 0.8681
708
+ 322.4
709
+ 0.08224
710
+ 0.7599
711
+ 3.466
712
+ 1.5
713
+ 2.94
714
+ 0.7642
715
+ 0.1508
716
+ 390.4
717
+ 0.07005
718
+ 0.7599
719
+ 3.321
720
+ 2.0
721
+ 3.272
722
+ 0.7884
723
+ 0.1429
724
+ 447.6
725
+ 0.06238
726
+ 0.7599
727
+ 4.144
728
+ 2.5
729
+ 4.17
730
+ 0.6803
731
+ 0.08181
732
+ 499
733
+ 0.05935
734
+ 0.7599
735
+ 4.487
736
+ 3.0
737
+ 5.562
738
+ 0.5569
739
+ 0.04093
740
+ 544.7
741
+ 0.05577
742
+ 0.7599
743
+ 4.765
744
+ Figure 4. Monotonic dependence of maximum temperature on metallicity
745
+ for the 𝑀 = 105 M⊙ model.
746
+ Figure 5. Central temperature evolution of the 𝑀 = 105 M⊙ for the indicated
747
+ metallicities. These trajectories were used for the post processing.
748
+ 3 RESULTS
749
+ In this section, we first describe the results of the HOSHI code, after
750
+ which we provide details of the nucleosynthesis before moving on to
751
+ a discussion of the lightcurves.
752
+ 3.1 Stellar Evolution
753
+ The lowest mass model which we consider in this study (7×104 M⊙)
754
+ becomes unstable only after entering the ZAMS phase, with the
755
+ instability occurring after roughly half a million years. This model has
756
+ a large radius and low proton mass fraction at the onset of instability
757
+ (Table 2). Because of its relatively long lifetime, enhanced metallicity
758
+ would likely have caused significant mass loss, thus prolonging the
759
+ period before the GR instability occurred (less mass means less
760
+ gravity). Then, there is the effect of accretion to consider, which, if
761
+ present, may be able to restore some of the lost mass. We do not
762
+ posses the proper tools to model these physical processes and so we
763
+ do not perform any hydrodynamical simulations with this model.
764
+ On the other hand, models with mass of 105 M⊙ or greater (9 ×
765
+ 104 M⊙ is a marginal case, which we include), collapse due to the
766
+ GR radial instability before any nuclear burning has taken place. For
767
+ increasing mass, these models have higher entropy, and are getting
768
+ more and more radiation dominated (Table 2, 6th column). This
769
+ corresponds to a decrease in the central temperature and density as
770
+ well as an increase in the binding energy.
771
+ The upper limit for stability in our study (7 × 104 M⊙) is slightly
772
+ lower than that found in Fuller et al. (1986) (105 M⊙), which is
773
+ likely due to small deviation from the GR pressure gradient in the
774
+ PN code which they employed. Indeed, as was shown in Nagele et al.
775
+ (2022b), the use of the baryonic density instead of the relativistic
776
+ density in the PN correction changes the stellar structure. Our results
777
+ are more massive than the cores of the accreting SMSs in Haemmerlé
778
+ (2020) (Fig. 8), which is to be expected because we do not consider
779
+ the gravity of the envelope. It should be noted that this is not a
780
+ completely faithful comparison because the accreting SMSs will
781
+ begin nuclear burning before they collapse due to GR (Hosokawa
782
+ et al. 2013; Umeda et al. 2016; Haemmerlé et al. 2018). For the high
783
+ accretion rates implied by the galaxy merger formation scenario,
784
+ however, there is little chance that the hydrogen reservoir will be
785
+ depleted before the GR instability, in which case the pr-GRSN would
786
+ still occur. As we will show, the less massive the progenitor, the easier
787
+ it is for the star to explode (Sec. 3.2).
788
+ MNRAS 000, 1–16 (2022)
789
+
790
+ 1e8
791
+ 7
792
+ 6
793
+ max T. [K]
794
+ 5
795
+ 4
796
+ 3
797
+ 10~5
798
+ 10-4
799
+ 10-3
800
+ 10-2
801
+ 10-1
802
+ 100
803
+ Z/Zo-0.122531e8
804
+ 8
805
+ Z/Z。=0.12254
806
+ 7
807
+ Z/Z。=0.1226
808
+ Z/Z。=0.123
809
+ Z/Z。=0.13
810
+ 6
811
+ Z/Z。=0.2
812
+ Z/Z。=1.0
813
+ 5
814
+ 3
815
+ 2
816
+ 1
817
+ 0
818
+ 20000
819
+ 40000
820
+ 60000
821
+ 80000
822
+ 100000
823
+ time [s]6
824
+ C. Nagele et al.
825
+ Figure 6. Same as Fig. 2 but for 𝑀 = 105 M⊙, 𝑍 = 0.12254 𝑍⊙, which is the lowest metallicity explosion for 𝑀 = 105 M⊙.
826
+ Figure 7. Upper panel — same as upper panel Fig. 6 but showing the final composition at different meshes. Lower panel — mean molecular weight 𝜇 as a
827
+ function of mass coordinate.
828
+ 3.2 Nucleosynthesis
829
+ 3.2.1 Fiducial model
830
+ We take the M=105 M⊙, 𝑍 = Z⊙ as our fiducial model. This mass
831
+ is near the lower end of our mass range and the metallicity is well
832
+ above the threshold required for an explosion. In the hydrodynamical
833
+ simulation, the star begins in a high entropy, but relatively compact
834
+ state, due to the star not yet having settled into the main sequence.
835
+ At the start of the simulation, the CNO cycle immediately turns on,
836
+ but is not strong enough at those temperatures (𝑇𝑐 ≈ 108 K, Fig
837
+ 5) to arrest the collapse. The star continues to collapse for 50000
838
+ seconds before reaching a temperature of 𝑇𝑐 ≈ 2.3 × 108 K, at which
839
+ point the CNO cycle produces enough energy to reverse the motion
840
+ of the star. The CNO cycle continues to produce energy, even as the
841
+ temperature drops below 𝑇𝑐 ≈ 108 K, but the bulk of the energy
842
+ production occurs with the central temperature 𝑇𝑐 > 1.5 × 108 K
843
+ (Fig. 2). The star is completely unbound and explodes with energy
844
+ 𝐸exp = 1.81 × 1055 [ergs]. It’s final radial and velocity profiles as a
845
+ function of mass coordinate can be seen in Fig. 1.
846
+ After finishing the HYDnuc simulation, we post process the sim-
847
+ ulation results as described in Sec. 2.3 with a 514 isotope network
848
+ designed to follow the rp process. Fig. 2 shows the isotope mass frac-
849
+ tion of the entire star in the 514 network at several time snapshots. In
850
+ the fiducial model, the energy generation comes almost entirely from
851
+ the CNO cycle, but proton captures on light elements do occur near
852
+ the maximum temperature (Fig. 2) and this can be seen in the nucle-
853
+ osynthetic yields (Fig. 3). The yields for the fiducial model (Z=Z⊙)
854
+ are characterized by two features. The first is enhanced nitrogen and
855
+ suppressed carbon and oxygen due to the CNO cycle, which produces
856
+ roughly equal amounts of its eponymous elements. The second is a
857
+ broad exchange of light elements (flourine, sodium, magnesium) for
858
+ slightly heavier elements (aluminium through chlorine) due to mul-
859
+ tiple proton captures which then decay back to stability at higher
860
+ mass number than they originated (Fig. 2). The only exception to this
861
+ trend appears to be neon which experiences proton captures, but is
862
+ replenished from below by oxygen exiting the CNO cycle.
863
+ 3.2.2 Metallicity dependence
864
+ Next we consider the behavior of the M=105 M⊙ model as we vary
865
+ the metallicity. For each mass, there exists a threshold metallicity
866
+ value below which there are not enough seed metals to fuel an ex-
867
+ plosion. As one approaches this threshold, that is as one decreases
868
+ the metallicity, the model needs to reach higher temperatures before
869
+ the collapse can be reversed (Fig. 4). In addition, the time at which
870
+ the model reaches the maximum temperature is pushed further back
871
+ with decreasing metal content (Fig. 5).
872
+ Fig. 6 shows the isotope mass fraction for several time snapshots,
873
+ as in Fig. 2, but for Z= 0.12254 Z⊙ which is the metallicity closest
874
+ to the explosion threshold (we will refer to this as the metal-poor
875
+ MNRAS 000, 1–16 (2022)
876
+
877
+ t= tinitial
878
+ Te =gTc,max
879
+ Te = Tc,max
880
+ t= trinal
881
+ t = tinal + 1012 s
882
+ 40
883
+ -4
884
+ -6
885
+ Log
886
+ -8
887
+ X
888
+ -10
889
+ 10
890
+ 12
891
+ 10
892
+ 20
893
+ 30
894
+ 40
895
+ 50
896
+ 20
897
+ 30
898
+ 40
899
+ 50
900
+ 10
901
+ 20
902
+ 30
903
+ 40
904
+ 50
905
+ 10
906
+ 20
907
+ 30
908
+ 40
909
+ 50
910
+ 10
911
+ 20
912
+ 30
913
+ 40
914
+ 50
915
+ nnumber
916
+ le55
917
+ 5.0
918
+ Etot (153isotopes)
919
+ Etot(t = 0) + Enuc (153)
920
+ Etot(t = 0) + Enuc + Ev (153)
921
+ Etot(t = 0) + Enuc (514 isotopes)
922
+ 0.0
923
+ 40000
924
+ 50000
925
+ 60000
926
+ 70000
927
+ 80000
928
+ 90000
929
+ 100000
930
+ t [s]-2
931
+ 40
932
+ -4
933
+ number
934
+ 30
935
+ -6
936
+ Log
937
+ 20
938
+ -8
939
+ +
940
+ -10
941
+ 10
942
+ -12
943
+ 10
944
+ 20
945
+ 30
946
+ 40
947
+ 50
948
+ 10
949
+ 20
950
+ 30
951
+ 40
952
+ 10
953
+ 20
954
+ 30
955
+ 40
956
+ 50
957
+ 10
958
+ 20
959
+ 30
960
+ 40
961
+ 50
962
+ 10
963
+ 20
964
+ 30
965
+ 40
966
+ 50
967
+ nnumber
968
+ 0.63
969
+ 0.62
970
+ 0
971
+ 20000
972
+ 40000
973
+ 60000
974
+ 80000
975
+ 100000
976
+ mr[M。]CNO-rp driven GR instability supernovae.
977
+ 7
978
+ model). We emphasize that this fine tuning is not done in order to
979
+ find the precise value of the threshold, but rather to demonstrate
980
+ that near the threshold, temperatures high enough to trigger the rp
981
+ process can be reached. Indeed, panels 2 and 3 of Fig. 6 show extreme
982
+ levels of proton captures extending to technetium. Note that in the
983
+ HYDnuc simulations with the 153 isotope network (as opposed to
984
+ the post processing with 514), the composition cannot go higher
985
+ than zinc (Table 1). In the post processing, the heavy p-side elements
986
+ then decay back to stability at much higher mass number than they
987
+ originated. Fig. 7 shows the final isotopic mass fraction distribution
988
+ at different meshes throughout the star. Unlike in the 𝛼 process driven
989
+ GRSN, most of the star undergoes nuclear burning and this is one of
990
+ the reasons that these explosions can be so energetic.
991
+ Fig. 3 shows the final abundances (relative to iron, relative to solar
992
+ values Asplund et al. 2009) from the 514 isotope network for selected
993
+ metallicities. As was the case in the fiducial model (Z⊙), there are
994
+ two main characteristics, with the first being enhanced nitrogen.
995
+ The second characteristic is a bulk transport of light elements to
996
+ heavy elements, with lower metallicities experiencing a larger and
997
+ wider transport. Note that oxygen is part of this transport, whereas
998
+ carbon and nitrogen do not vary significantly with metallicity. For
999
+ Z= 0.2 Z⊙, the transport extends up to scandium. For Z= 0.13 Z⊙,
1000
+ iron peak elements are produced, terminating around gallium. For the
1001
+ three smallest metallicities, the transport extends well past iron, up
1002
+ to molybdenum in the extreme case. For the lower metallicity cases,
1003
+ significant contributions to selected element are in the form of low
1004
+ mass p-nuclides, which reside away from the line of stability (Fig. 6,
1005
+ 5th panel). Below Z= 1.0 Z⊙, all models show a peak at scandium,
1006
+ with Z= 0.123 Z⊙ peaking again at proton number 31-33 and the two
1007
+ lowest metallicity models peaking at proton number 31-36. Another
1008
+ signature of all models is high Cl/Ar and low Ar/K, both resulting
1009
+ from the bulk transport not necessarily preferring even elements. In
1010
+ the high temperature models, cobalt is suppressed because its lightest
1011
+ stable isotope (59Co) cannot be reached from the p side.
1012
+ 3.2.3 Mass dependence
1013
+ Next, we vary the mass at solar metallicity. As the mass increases,
1014
+ the binding energy of the star increases, and more nuclear energy is
1015
+ required to unbind it. This means that the higher mass models will
1016
+ reach higher temperatures until eventually (M = 2.5 × 105) they can
1017
+ no longer explode at solar metallicity. Higher temperatures, in turn,
1018
+ mean that the yields from the 514 isotope post processing should
1019
+ show more heavier elements, and this is demonstrated in Fig. 8. We
1020
+ have already discussed 105 M⊙, and 9 × 104 M⊙ is nearly identical.
1021
+ The 1.5 × 105 M⊙ model shows the same bulk transport described
1022
+ in the previous section, but this time extending up to titanium, while
1023
+ the 2 × 105 M⊙ model (we will refer to this as the massive model)
1024
+ peaks around titanium, but reaches as high as gallium.
1025
+ Fig. 9 shows the explosion energy in HYDnuc (153 isotopes) as
1026
+ a function of mass and metallicity. The explosion energy depends
1027
+ only on mass, as it is a fixed fraction of the star’s binding energy,
1028
+ unless the model is sufficiently close to the explosion threshold, as
1029
+ can be seen with M= 2 × 105 M⊙, Z= 0.9 Z⊙. On the other hand,
1030
+ the metallicity threshold increases with mass for the reasons stated
1031
+ above.
1032
+ We have attempted to run additional simulations using a 216 iso-
1033
+ tope network (Table 1). However, there is a substantial increase in
1034
+ computational cost (3469 reactions compared with 2463 for the 153
1035
+ isotope network) and the network is still not large enough to follow
1036
+ the rp process to higher mass (Appendix A). For a rough estimate of
1037
+ Figure 8. Same as Fig. 3, but for different masses at solar metallicity.
1038
+ Figure 9. Dependence of explosion energy (denoted by color) on mass and
1039
+ metallicity. The black crosses are models which failed to explode. The gray
1040
+ region roughly corresponds to non-explosion.
1041
+ the energy generation rate of the rp process beyond what we investi-
1042
+ gate in this paper, see Appendix B.
1043
+ 3.3 Lightcurves
1044
+ Fig. 10 shows the time evolution of photosphere radius, luminosity
1045
+ and effective temperature for each of the three named models. In
1046
+ addition, we have rerun the massive model with a much greater en-
1047
+ velope resolution in order to more accurately characterize the shock
1048
+ breakout (Fig. 11), though this increased resolution presents compu-
1049
+ tational challenges during the plateau phase. The shock breakout is
1050
+ accompanied by an extremely luminous (1049 ergs/s) burst with high
1051
+ effective temperature, which is potentially observable as an X-ray
1052
+ outburst. To date, the one observed X-ray outburst associated with
1053
+ shock breakout (Soderberg et al. 2008) had an X-ray luminosity six
1054
+ orders of magnitude lower (1043 ergs/s), implying that shock break-
1055
+ out of a pr-GRSN would be visible, even at high redshift. However,
1056
+ the short duration of the event and low rate of pr-GRSNe presents
1057
+ serious challenges to realizing an observation of this shock breakout.
1058
+ Besides the high luminosity and temperature at shock breakout,
1059
+ MNRAS 000, 1–16 (2022)
1060
+
1061
+ Sc
1062
+ Z/Z。= 9e4
1063
+ 3
1064
+ V
1065
+ Z/Z=1e5
1066
+ Z/Z。=1.5e5
1067
+ Z/Z。=2e5
1068
+ 2
1069
+ [X/Fe]
1070
+ 1
1071
+ N
1072
+ Ne
1073
+ 0
1074
+ C
1075
+ -1
1076
+ Mg
1077
+ 5
1078
+ 10
1079
+ 15
1080
+ 20
1081
+ 25
1082
+ 30
1083
+ 35
1084
+ 40
1085
+ 45
1086
+ Z (proton number)AA
1087
+ 1e56
1088
+ 1.0
1089
+ 1.2
1090
+ 0.8
1091
+ X
1092
+ 1.0
1093
+ X
1094
+ 0.85
1095
+ X
1096
+ [ergs
1097
+ N
1098
+ X
1099
+ 0.6
1100
+ 0.4
1101
+ X
1102
+ 0.4
1103
+ x
1104
+ 0.2
1105
+ 0.2
1106
+ x
1107
+ 0.0
1108
+ 100000
1109
+ 150000
1110
+ 200000
1111
+ 250000
1112
+ M[M。]8
1113
+ C. Nagele et al.
1114
+ Figure 10. Results of the SNEC simulations for the fiducial model, metal-poor
1115
+ model, and the massive model. Upper panel — photosphere radius. Middle
1116
+ panel — bolometric luminosity. Lower panel — effective temperature. The
1117
+ horizontal axis has been normalized so that shock breakout occurs at 10−3
1118
+ days.
1119
+ there is another difference between the lightcurves of the pr-GRSNe
1120
+ and the lightcurves of standard GRSNe (𝛼 process, Moriya et al.
1121
+ 2021; Nagele et al. 2022a). This is the longer duration of the plateau
1122
+ phase which follows hydrogen recombination, nearly an order of
1123
+ magnitude longer than our previous GRSN models. This longer du-
1124
+ ration may be due to the increased mass or the increased energy in
1125
+ comparison with previous GRSN models. During this plateau phase,
1126
+ the hierarchy of the luminosities follows that of the associated ex-
1127
+ plosion energies. Throughout this phase, the effective temperature
1128
+ steadily falls and the photosphere radius steadily rises, the latter of
1129
+ which is slightly different to the stalled photosphere found in standard
1130
+ GRSNe.
1131
+ This effect can be seen in Fig. 12 which shows the time evolution
1132
+ of JWST NIRCAM wideband filters for the three named models
1133
+ at redshift five, which is consistent with both ZISM = 0.1 Z⊙ and
1134
+ ZISM = 1.0 Z⊙ (e.g. Pallottini et al. 2014). The prompt emission is
1135
+ visible in the bluer filters because of the higher effective temperature,
1136
+ but as this quantity drops, they rapidly fall away and only the four
1137
+ reddest filters remain during the plateau phase.
1138
+ 3.3.1 Energy input from radioactive decays
1139
+ When calculating lightcurves in SNEC for the metal-poor model,
1140
+ there is an additional consideration, namely that the star is undergo-
1141
+ ing a significant amount of radioactive decays after the end of the
1142
+ HYDnuc calculation (see panels 4 and 5 of Fig. 6). In Fig. 13, we
1143
+ Figure 11. Same as Fig. 10, but showing shock breakout for the massive
1144
+ model. The simulation in this figure has higher surface resolution than those
1145
+ in Fig. 10. The horizontal axis has been normalized so that the peak luminosity
1146
+ occurs at 0 s.
1147
+ show the rate of change in the nuclear energy as a function of time.
1148
+ The vertical lines separate regions which are powered by different
1149
+ decays, and these regions are labeled by the mother nuclei. Swells in
1150
+ the heating rate can be seen for the decay of 56Ni and 57Co. Despite
1151
+ the staggering amount of energy produced by these radioactive de-
1152
+ cays (compare to Fig. 10), we do not think that they will affect the
1153
+ lightcurve for two reasons. The first is that these decays are occurring
1154
+ deep within the star and are well inside the photosphere. Later on,
1155
+ it is conceivable that they could contribute, but we have tested run-
1156
+ ning SNEC with 56Ni decays turned on and there is no difference in
1157
+ the lightcurve. The second reason is that the total amount of energy
1158
+ produced by these decays (∼ 1053 ergs) is order one percent of the
1159
+ explosion energy.
1160
+ 3.3.2 Multiband lightcurves at different redshifts
1161
+ In this section, we show the observer time evolution of the four reddest
1162
+ JWST NIRCAM widebands at a variety of redshifts. Because the
1163
+ galaxy merger scenario does not depend strongly on redshift (there
1164
+ is a decrease below redshift two, but only by an order of magnitude,
1165
+ see Fig. 4 of Bonoli et al. 2014), we show redshifts down to one. Fig.
1166
+ 14 shows this for the fiducial model up to redshift ten, above which
1167
+ we suspect solar metallicity conditions would be challenging (though
1168
+ not impossible, see e.g. Fig. 3 of Hartwig et al. 2022) to realize. Fig.
1169
+ 15 is a similar figure, but for the metal poor model, which we show
1170
+ up to redshift 19, though it would not be detectable by JWST much
1171
+ above redshift 10. Appendix C shows multiband lightcurves of the
1172
+ MNRAS 000, 1–16 (2022)
1173
+
1174
+ Photo-sphere radius [cm]
1175
+ 1018
1176
+ fiducialmodel
1177
+ metal-poor model
1178
+ 1017
1179
+ massivemodel
1180
+ 1016
1181
+ 1015
1182
+ 1014
1183
+ 1047
1184
+ I [ergs/s]
1185
+ 1046
1186
+ 1045
1187
+ Lbol
1188
+ 1044
1189
+ 1043
1190
+ 1042
1191
+ 106
1192
+ 105
1193
+ 104
1194
+ 103
1195
+ 102
1196
+ 10-4
1197
+ 10~3
1198
+ 10-2
1199
+ 10-1
1200
+ 100
1201
+ 101
1202
+ 102
1203
+ 103
1204
+ t [days]cm]
1205
+ 2.795
1206
+ 2.790
1207
+ 2.785
1208
+ 2.780
1209
+ 2.775
1210
+ 2.770
1211
+ 1.5
1212
+ 1.0
1213
+ 0.5
1214
+ 2:9
1215
+ 2.0
1216
+ got]
1217
+ 1.5
1218
+ 1.0
1219
+ 0.5
1220
+ 0.0
1221
+ -2
1222
+ 0
1223
+ 2
1224
+ 4
1225
+ 6
1226
+ 8
1227
+ 10
1228
+ t [s]CNO-rp driven GR instability supernovae.
1229
+ 9
1230
+ Figure 12. Rest frame time dependence of JWST NIRCAM magnitudes at
1231
+ 𝑧 = 5 for the fiducial model (upper panel), metal-poor model (middle panel)
1232
+ and massive model (lower panel). The horizontal dotted line shows a typical
1233
+ limiting magnitude for JWST (29).
1234
+ Figure 13. Rate of energy produced by radioactive decays in the metal-poor
1235
+ model after the end of the HYDnuc simulation. Vertical dotted lines separate
1236
+ regions where the energy production is dominated by different decays. The
1237
+ mother nuclei of those decays label each region.
1238
+ fiducial, metal poor, and massive models for JWST, Euclid, Roman,
1239
+ and Rubin at various redshifts.
1240
+ Comparing Figs. 14,15, it is clear that from the point of view of
1241
+ observation, more metal enrichment is better. Not only is the mass
1242
+ range wider at higher metallicity (Fig. 9), but also the GRSN would
1243
+ have occurred at lower redshift, making it easier to observe.
1244
+ 3.3.3 With hylotropic envelope
1245
+ Up to this point, we have not considered the effect that an accretion
1246
+ envelope (Hosokawa et al. 2013; Umeda et al. 2016; Haemmerlé
1247
+ et al. 2019) would have on the lightcurve. While the core of an
1248
+ accreting supermassive protostar has constant entropy, the envelope
1249
+ is thought to have entropy increasing as a power law Begelman
1250
+ (2010); Haemmerlé et al. (2019); Haemmerlé (2020, 2021b) and
1251
+ this structure has been termed a hylotrope (Gk. hyle, ‘matter’ +
1252
+ tropos, ‘turn’) in Begelman (2010). Specifically, hylotropes obey the
1253
+ equation of state
1254
+ 𝑃 = 𝐴𝜌4/3𝑀 𝛼
1255
+ (10)
1256
+ where 𝛼 is often taken to be 2/3 as derived from the homology
1257
+ scalings. In this scenario, we instead take 𝛼 as a parameter and
1258
+ enforce the mass radius relation of rapidly accreting supermassive
1259
+ protostars (Eq. 1 of Hosokawa et al. 2013). This choice is motivated
1260
+ by the sensitivity of lightcurves to the stellar radius.
1261
+ We construct the hylotropic envelope in a similar manner to the
1262
+ integration of an 𝑛 = 3 polytrope, as described in Haemmerlé (2020).
1263
+ We find that, taking the fiducial model as the core, 𝛼 = 0.90481
1264
+ satisfies the mass radius relation. This result is not sensitive to the
1265
+ matching radius. This hylotropic model has 𝑀𝐻 = 4.58 × 105 M⊙ ,
1266
+ 𝑅𝐻 = 1.23 × 1016 [cm], so that 𝑀𝐻 /𝑀 = 4.58 and 𝑅𝐻 /𝑅 = 653.
1267
+ This result resembles numerical models of accreting supermassive
1268
+ protostars, although self consistent simulations are needed to verify
1269
+ the results of this section.
1270
+ We run SNEC by attaching the final timestep of the HYDnuc sim-
1271
+ ulation to the hylotropic envelope which was constructed using the
1272
+ initial profile of the HYDnuc simulation. This results in a discon-
1273
+ tinuity in density, but such a feature is not unexpected around this
1274
+ radius (see Fig. 14 of Nagele et al. 2022b). We use the thermal bomb
1275
+ mode with the final explosion energy of the hylotropic model being
1276
+ the explosion energy of the fiducial model, as the added gravitational
1277
+ energy of the envelope could not be overcome otherwise. This ap-
1278
+ proach is not self consistent as it requires the injection of an additional
1279
+ ∼ 1055 ergs, but larger explosion energies (1056 ergs) are achieved
1280
+ in the massive model, so our strategy is not unreasonable. The pho-
1281
+ tosphere remains at the surface of the hylotrope for ten days as the
1282
+ shock propagates through the envelope, after which the photosphere
1283
+ expands and the effective temperature drops. From a peak value of
1284
+ 𝐿bol = 6.86 × 1046 [ergs/s], the luminosity then falls nearly mono-
1285
+ tonically (except for a slight increase at hydrogen recombination) in
1286
+ behavior reminiscent of the pulsations of large radius supermassive
1287
+ stars in Nagele et al. (2022a). The luminosity of the hylotropic model
1288
+ falls at a slower rate than for the fiducial model, passing 𝐿bol = 1043
1289
+ [ergs/s] only after 9.95 years in the rest frame. Fig. 16 shows the
1290
+ magnitudes of the hylotropic model at redshift 1 for JWST, Euclid,
1291
+ Roman, and Rubin.
1292
+ 3.3.4 Rate estimate
1293
+ We now turn to the question of how frequently these pr-GRSN occur.
1294
+ Bonoli et al. (2014) calculated the number density of massive galaxy
1295
+ MNRAS 000, 1–16 (2022)
1296
+
1297
+ AB mag at z = 5
1298
+ 24
1299
+ F070W
1300
+ F150W
1301
+ F356W
1302
+ F090W
1303
+ F200W
1304
+ F444W
1305
+ fiducial model
1306
+ 26
1307
+ F115W
1308
+ F277W
1309
+ 28
1310
+ 30
1311
+ 32
1312
+ 24
1313
+ metal-poor model
1314
+ 26
1315
+ 28
1316
+ 30
1317
+ 32
1318
+ 24
1319
+ model
1320
+ 26
1321
+ massive
1322
+ 28
1323
+ 30
1324
+ 32
1325
+ 10~3
1326
+ 10~2
1327
+ 10-1
1328
+ 100
1329
+ 101
1330
+ 102
1331
+ 103
1332
+ t [days]52Mn
1333
+ ...........
1334
+ ...........
1335
+ .................................
1336
+ 1047
1337
+ 725e
1338
+ .....
1339
+ .......
1340
+ :
1341
+ ...
1342
+ 1046
1343
+ oGe
1344
+ ...............
1345
+ ........
1346
+ ......
1347
+ .....
1348
+ 1045
1349
+ ....
1350
+ .......
1351
+ ............
1352
+ 1044
1353
+ 56Ni
1354
+ .....
1355
+ 1043
1356
+ .......
1357
+ ........
1358
+ 1042
1359
+ .....
1360
+ .......
1361
+ ......
1362
+ ......
1363
+ 1041
1364
+ .............
1365
+ ..............
1366
+ .......
1367
+ ..............
1368
+ 's5Fe
1369
+ 81kr
1370
+ 1040
1371
+ .......
1372
+ .........
1373
+ 1039
1374
+ 106
1375
+ 107
1376
+ 108
1377
+ 109
1378
+ 1010
1379
+ 1011
1380
+ 1012
1381
+ t [s]10
1382
+ C. Nagele et al.
1383
+ Figure 14. Redshift dependence of the four reddest JWST NIRCAM wide bands for the fiducial model. The horizontal axis shows the observer time.
1384
+ Figure 15. Same as Fig. 14 but for the metal-poor model. The horizontal axis shows the observer time.
1385
+ MNRAS 000, 1–16 (2022)
1386
+
1387
+ 20
1388
+ z= 1
1389
+ 20
1390
+ /magnitude
1391
+ 22
1392
+ /magnitude
1393
+ 22
1394
+ 24
1395
+ 24
1396
+ 5
1397
+ F200W
1398
+ 26
1399
+ 77W
1400
+ 26
1401
+ 28
1402
+ 2
1403
+ 28
1404
+ 10
1405
+ 30
1406
+ 30
1407
+ 20
1408
+ 20
1409
+ magnitude
1410
+ 22
1411
+ F444Wmagnitude
1412
+ 22
1413
+ 24
1414
+ 24
1415
+ F356W
1416
+ 26
1417
+ 26
1418
+ 28
1419
+ 28
1420
+ 30
1421
+ 30
1422
+ 0
1423
+ 5000
1424
+ 10000
1425
+ 15000
1426
+ 20000
1427
+ 25000
1428
+ 0
1429
+ 5000
1430
+ 10000
1431
+ 15000
1432
+ 20000
1433
+ 25000
1434
+ observertime[days]
1435
+ observertime[days]20
1436
+ z= 1
1437
+ 20
1438
+ /magnitude
1439
+ z = 3
1440
+ 22
1441
+ magnitude
1442
+ 22
1443
+ 24
1444
+ Z =
1445
+ 24
1446
+ 26
1447
+ 11
1448
+ F200W
1449
+ 13
1450
+ 77W
1451
+ 26
1452
+ 28
1453
+ 15
1454
+ 2
1455
+ 28
1456
+ 30
1457
+ 30
1458
+ 20
1459
+ 20
1460
+ magnitude
1461
+ 22
1462
+ F444Wmagnitude
1463
+ 22
1464
+ 24
1465
+ 24
1466
+ 356W
1467
+ 26
1468
+ 26
1469
+ 28
1470
+ 28
1471
+ 30
1472
+ 30
1473
+ 0
1474
+ 2000
1475
+ 400060008000100001200014000
1476
+ 0
1477
+ 2000400060008000100001200014000
1478
+ observertime[days]
1479
+ observertime[days]CNO-rp driven GR instability supernovae.
1480
+ 11
1481
+ Figure 16. Magnitudes of the hylotropic model in JWST (first panel), Euclid
1482
+ (second panel), Roman (third panel), and Rubin (fourth panel) at redshift 1.
1483
+ The horizontal axis is observer time.
1484
+ mergers (𝑀halo > 1011 M⊙) which fulfilled the criteria for merger
1485
+ induced direct collapse (Fig. 4). For a simple order of magnitude
1486
+ estimation, we will assume a merger rate of 𝜙 = 10−4 [cMpc−3
1487
+ Gyr−1] which is fairly conservative (note that Fig. 4 of Bonoli et al.
1488
+ (2014) has units of [cMpc−3 0.1 Gyr−1]). As discussed in Bonoli
1489
+ et al. (2014), relaxing the mass asymmetry condition further would
1490
+ increase the merger rate by an order of magnitude. Another increase
1491
+ could be had by relaxing the mass constraint, although the minimum
1492
+ mass at which the merger scenario creates a direct collapse object
1493
+ is unknown. For a more recent, empirical, estimate of the galaxy
1494
+ merger rate, see Fig. 3 of O’Leary et al. (2021).
1495
+ To determine the number of supermassive protostars produced per
1496
+ unit time by the galaxy merger scenario, we simply multiply the rate
1497
+ 𝜙 by the volume between redshifts 0.1 and 10 (𝑉𝑧∈(0.1,10)).
1498
+ 𝑁protostars = 𝜙𝑉𝑧∈(0.1,10) ≈ 0.3 yr−1
1499
+ (11)
1500
+ The lower bound of this range was chosen because very nearby GRSN
1501
+ will be visible to many instruments besides the four discussed in this
1502
+ paper, while the upper bound is nearing the observing threshold for
1503
+ JWST (Fig. 14).
1504
+ Next we introduce 𝑓 , the fraction of protostars which explode as
1505
+ pr-GRSN. We have no ability to estimate the initial mass function
1506
+ of these objects and thus no ability to estimate 𝑓 . However, it is
1507
+ reasonable to assume that the mass function decreases for increasing
1508
+ mass, as does an estimate of the mass function of supermassive stars
1509
+ (Toyouchi et al. 2022). If this is the case, then 𝑓 will depend heavily
1510
+ on the behavior of the protostars less massive than those considered
1511
+ in this paper (Fig. 9). As we have mentioned previously, however, it is
1512
+ feasible that many of these less massive protostars will also explode,
1513
+ so an 𝑓 of order unity is feasible.
1514
+ 𝑁pr−GRSN = 𝑓 𝜙𝑉𝑧∈(0.1,10) yr−1
1515
+ (12)
1516
+ From the rate of pr-GRSN, we would then like to obtain a number
1517
+ of currently ongoing pr-GRSN in the sky. To do this, we need to
1518
+ know the expected observer duration for the pr-GRSN (⟨𝑡obs⟩). To
1519
+ do this we perform a Monte Carlo simulation, randomly selecting
1520
+ lookback times between redshifts 0.1 and 10 and computing the
1521
+ observer time during which the GRSN is visible to the JWST F444W
1522
+ band. Averaging the Monte Carlo draws results in
1523
+ ⟨𝑡obs⟩ = 29.5 yr
1524
+ (13)
1525
+ so that the expected number of currently observable pr-GRSN is
1526
+ 𝑁observable = 𝑓 𝜙𝑉𝑧∈(0.1,10) ⟨𝑡obs⟩ ≈ 9f
1527
+ (14)
1528
+ and we plot this quantity as a function of 𝑓 in Fig. 17, indicating that
1529
+ it is reasonable to expect a few GRSNe to be observable right now.
1530
+ On the one hand, this is a small number because JWST only covers
1531
+ a tiny section of the sky. In addition, the true value of 𝑓 may be small.
1532
+ However, we point out that the majority of the Monte Carlo draws
1533
+ occur in the low redshift Universe where gas should be sufficiently
1534
+ enriched to trigger an explosion. Thus, the pertinent question be-
1535
+ comes what is the mass function of the supermassive protostars? On
1536
+ the other hand, Fig. 17 is showing a large number. Bonoli et al. (2014)
1537
+ and Mayer et al. (2015) are investigating the formation of the most
1538
+ massive SMBHs in the Universe. This investigation is well founded
1539
+ upon observations of high redshift quasars with inferred masses in
1540
+ excess of 108 M⊙, but it does not consider the vast majority of the
1541
+ black hole population, which have smaller masses (e.g. Inayoshi et al.
1542
+ 2020). For this reason, the mass and mass ratio constraints which are
1543
+ applied in Fig. 4 of Bonoli et al. (2014) could be far too stringent,
1544
+ in which case the population of direct collapse objects, and GRSNe,
1545
+ would be much greater.
1546
+ In summary, massive uncertainties exists regarding the frequency
1547
+ of this scenario, but we have shown that it is at least plausible to
1548
+ expect pr-GRSNe to be observable in the low redshift Universe, if
1549
+ the galaxy merger scenario is the dominant source of supermassive
1550
+ black holes.
1551
+ 3.3.5 Observing strategy
1552
+ Because of the long duration of the pr-GRSNe, identifying them as
1553
+ transients may not be straightforward, although detection by multi-
1554
+ ple instruments would ameliorate this difficulty; as well as JWST,
1555
+ Appendix C shows the magnitudes of Euclid, Roman, and Rubin at
1556
+ various redshifts. In the rest of this section, however, we will consider
1557
+ only the four reddest JWST NIRCAM widebands (see Fig. 12).
1558
+ We divide the lightcurve up into phases, a rising phase, a falling
1559
+ phase, and a plateau phase in between the rising and falling phases.
1560
+ We define the rising phase as lasting until peak magnitude is reached,
1561
+ which occurs at different times in each band (Fig. 12) and the falling
1562
+ phase as beginning when the photosphere radius jumps (Fig. 10);
1563
+ the falling phase will not be visible in all bands, especially at high
1564
+ redshift. Observations of the rising or falling phases will be easily
1565
+ identifiable as transients (Fig. 14), but the plateau phase, while not
1566
+ having constant magnitude, will dim at a rate of the order of a few
1567
+ magnitudes or less per decade (Fig. 18). This rate of dimming is
1568
+ roughly constant as the duration of the plateau phase increases (for
1569
+ MNRAS 000, 1–16 (2022)
1570
+
1571
+ 16
1572
+ F070W
1573
+ 18
1574
+ F090W
1575
+ F115W
1576
+ JWST
1577
+ 20
1578
+ F150W
1579
+ F200W
1580
+ 22
1581
+ F277W
1582
+ F356W
1583
+ F444W
1584
+ 24
1585
+ 16
1586
+ VIS
1587
+ 18
1588
+ Y
1589
+ Euclid
1590
+ 20
1591
+ H
1592
+ 22
1593
+ 24
1594
+ 16
1595
+ F062
1596
+ 18
1597
+ F087
1598
+ F106
1599
+ Roman
1600
+ 20
1601
+ F129
1602
+ F158
1603
+ 22
1604
+ F184
1605
+ F146
1606
+ 24
1607
+ F213
1608
+ 16
1609
+ Z
1610
+ 18
1611
+ Rubin
1612
+ 20
1613
+ y
1614
+ u
1615
+ 22
1616
+ 6
1617
+ 24
1618
+ 2500
1619
+ 5000
1620
+ 7500
1621
+ 10000
1622
+ 12500
1623
+ 15000
1624
+ 17500
1625
+ 20000
1626
+ observertime[days]12
1627
+ C. Nagele et al.
1628
+ Table 3. Various quantities related to chemical, mechanical, and radiative feedback for the post-processed models. The columns are mass, metallicity, the change
1629
+ in metal content, the change in iron, the change in mean molecular weight, the kinetic energy (HYDnuc), the fade radius (at which the shock becomes subsonic),
1630
+ the radiated energy (SNEC), the number of ionizing photons, and the number of Lyman Werner photons, where the last two assume blackbody emission.
1631
+ M [105 M⊙]
1632
+ 𝑍/𝑍⊙
1633
+ 𝑀𝑍 [M⊙]
1634
+ 𝑀Fe [M⊙]
1635
+ Δ𝜇
1636
+ 𝐸kin [1055 ergs]
1637
+ 𝑅fade [Mpc]
1638
+ 𝐸rad [1052 ergs]
1639
+ 𝑁𝛾,ion [1054]
1640
+ 𝑁𝛾,LW [1054]
1641
+ 1.0
1642
+ 0.12254
1643
+ 201.1
1644
+ 24.73
1645
+ 0.01721
1646
+ 2.684
1647
+ 1.423
1648
+ 2.257
1649
+ 55.9
1650
+ 9.65
1651
+ 1.0
1652
+ 0.1226
1653
+ 158.5
1654
+ 26.25
1655
+ 0.01663
1656
+ 2.409
1657
+ 1.278
1658
+ 2.285
1659
+ 25.28
1660
+ 7.807
1661
+ 1.0
1662
+ 0.123
1663
+ 105.8
1664
+ 26.91
1665
+ 0.01614
1666
+ 2.108
1667
+ 1.118
1668
+ 2.32
1669
+ 91.29
1670
+ 9.491
1671
+ 1.0
1672
+ 0.13
1673
+ 26.74
1674
+ 2.669
1675
+ 0.01591
1676
+ 1.637
1677
+ 0.8683
1678
+ 2.43
1679
+ 28.47
1680
+ 5.851
1681
+ 1.0
1682
+ 0.2
1683
+ 9.599
1684
+ -0.0008733
1685
+ 0.01698
1686
+ 1.45
1687
+ 0.7692
1688
+ 2.548
1689
+ 8.964
1690
+ 3.215
1691
+ 1.0
1692
+ 1.0
1693
+ 4.933
1694
+ -0.002745
1695
+ 0.02357
1696
+ 1.593
1697
+ 0.8446
1698
+ 2.46
1699
+ 7.814
1700
+ 2.287
1701
+ 0.9
1702
+ 1.0
1703
+ 4.509
1704
+ -0.002353
1705
+ 0.02311
1706
+ 1.278
1707
+ 0.6777
1708
+ 2.245
1709
+ 380.7
1710
+ 267.2
1711
+ 1.5
1712
+ 1.0
1713
+ 48.43
1714
+ -0.004265
1715
+ 0.05847
1716
+ 8.055
1717
+ 4.272
1718
+ 3.914
1719
+ 173.7
1720
+ 22.5
1721
+ 2.0
1722
+ 1.0
1723
+ 239.7
1724
+ -1.237
1725
+ 0.0823
1726
+ 17.26
1727
+ 9.15
1728
+ 5.485
1729
+ 209.6
1730
+ 41.23
1731
+ Figure 17. Expected number of concurrent GRSNe observable by JWST as
1732
+ a function of the fraction ( 𝑓 ) of supermassive protostars which explode as
1733
+ pr-GRSN.
1734
+ higher redshifts), until the photosphere radius jump is no longer
1735
+ visible (above 29 magnitude). For these fainter, high redshift, sources,
1736
+ the plateau phase is shorter and the magnitude changes more quickly.
1737
+ Fig. 19 shows color-color diagrams for the four reddest JWST
1738
+ NIRCAM filters. All of the data points, including different models
1739
+ and redshifts, fall neatly along a single line. The results of a linear fit
1740
+ to this line are shown in each plot. Based on these features, we propose
1741
+ that pr-GRSNe candidates are identified as NIRCAM sources falling
1742
+ within at least the three reddest bands which are consistent with Fig.
1743
+ 19. These candidates may then be confirmed or ruled out with long
1744
+ cadence observations. GRSNe which have already dropped out of
1745
+ F270W and F2777W will not be identifiable by their color, and can
1746
+ only be identified with repeated observation.
1747
+ On the one hand, the long durations and shallow slopes of these
1748
+ lightcurves pose a challenge to observing these events as transients.
1749
+ On the other hand, if they are identified as such, their further clas-
1750
+ sification as GRSNe will be relatively unambiguous, as there exist
1751
+ no other events one hundred thousand times more energetic than a
1752
+ supernova.
1753
+ Figure 18. Rate of dimming during the plateau phase as a function of plateau
1754
+ phase duration for the four reddest NIRCAM bands (different panels). The
1755
+ colors denote redshifts and are shown in steps of 0.25, while the symbols
1756
+ show different models.
1757
+ 3.4 Feedback
1758
+ The pr-GRSN likely would have been extremely disruptive to its
1759
+ host halo. Previously, several studies were conducted on the effect
1760
+ a standard GRSN would have on the halo, specifically on metal
1761
+ enrichment, gas evacuation, and star formation (Whalen et al. 2013a;
1762
+ Johnson et al. 2013; Whalen et al. 2013b). The pr-GRSN is more than
1763
+ an order of magnitude more energetic than in the standard case, and
1764
+ MNRAS 000, 1–16 (2022)
1765
+
1766
+ 8
1767
+ S
1768
+ 4
1769
+ 2
1770
+ 0
1771
+ 0.0
1772
+ 0.2
1773
+ 0.4
1774
+ 0.6
1775
+ 0.8
1776
+ 1.0
1777
+ ffiducial
1778
+ Z= 1
1779
+ 0.4
1780
+ massive
1781
+ Z=2
1782
+ metalpoor
1783
+ Z=3
1784
+ 0.3
1785
+ Z = 4
1786
+ F200W
1787
+ z = 5
1788
+ 0.2
1789
+ Z=6
1790
+ Z = 7
1791
+ 0.1
1792
+ z=9
1793
+ z = 10
1794
+ Plateauphase
1795
+ 0.0
1796
+ 0.4
1797
+ 0.3
1798
+ F277W
1799
+ 0.2
1800
+ 0.1
1801
+ 0.0
1802
+ 0.4
1803
+ 0.3
1804
+ F356W
1805
+ 0.2
1806
+ 0.1
1807
+ 0.0
1808
+ 0.4
1809
+ 0.3
1810
+ 0.2
1811
+ 0.1
1812
+ 0.0
1813
+ 0
1814
+ 10
1815
+ 20
1816
+ 30
1817
+ 40
1818
+ 50
1819
+ Plateauphaseduration[years]CNO-rp driven GR instability supernovae.
1820
+ 13
1821
+ Figure 19. Two color-color diagrams for the four reddest NIRCAM wide-
1822
+ bands. As in Fig. 18, colors denote redshift and symbols denote models. Also
1823
+ shown is a linear fit (dotted line) as well as its slope and intercept.
1824
+ has a completely different chemical signature. Whereas the standard
1825
+ GRSN is characterized by excess silicon and magnesium, the pr-
1826
+ GRSN will produce nitrogen from the CNO cycle, plus elements
1827
+ from wherever the bulk transport lands on the line of stability (Figs.
1828
+ 3,8).
1829
+ But this chemical enrichment will not be distributed evenly
1830
+ throughout the halo (at least not at first). Heavier elements are pref-
1831
+ erentially produced in the center of the protostar where higher tem-
1832
+ peratures are reached. In the resulting outflow, these regions have
1833
+ lower velocity, as the ejecta has nearly homologous structure (𝑣 ∝ 𝑟).
1834
+ Thus, portions of the ejecta with different chemical compositions
1835
+ will end up in different parts of the halo. We have attempted to vi-
1836
+ sualize this effect in Fig. 20, which shows the yields for different
1837
+ mass coordinates on the left, and the velocities of those correspond-
1838
+ ing coordinates on the right. As an example, in the middle panel
1839
+ (metal-poor model), consider the ratios of [Fe/Ni] and [C/Fe]. The
1840
+ former will be constant throughout the halo [Fe/Ni] = -3 (or 0 in the
1841
+ outermost regions), while the latter will vary [C/Fe] ∈ (-2,0).
1842
+ Table 3 summarizes various feedback effects for selected models.
1843
+ The third and fourth columns show the total amounts of metals and
1844
+ iron synthesized during the explosion. Note that models which do not
1845
+ reach sufficiently high temperature produce metals that do not extend
1846
+ up to iron which experiences a net loss. The change in mean molecular
1847
+ weight is shown in the next column. Next are the enormous effects
1848
+ of mechanical feedback, specifically the total kinetic energy and the
1849
+ radius at which the shock speed will become subsonic (𝑅fade, Magg
1850
+ et al. 2020), though this value does not take the effect of the halo’s
1851
+ gravity into account. Whalen et al. (2013a) found that the GRSN
1852
+ ejecta reached a radius of 1 kpc before falling back and igniting a
1853
+ violent starburst, although that was for a less energetic explosion.
1854
+ Finally, the radiated energy as well as the number of ionizing (E
1855
+ > 13.6 eV) and Lyman Werner (13.6 > E > 11.2 eV) photons. The
1856
+ number of high energy photons is fairly small because the effective
1857
+ temperature is low after shock breakout.
1858
+ 4 DISCUSSION
1859
+ As the saying goes, hydrogen is flammable. We have shown that
1860
+ if supermassive protostars have sufficient seed metals when they
1861
+ collapse, then they will explode through a combination of the CNO
1862
+ cycle and rp process. The consequences of this are as follows.
1863
+ Our results present a challenge to the galaxy merger scenario
1864
+ in two senses of the word. The first is that if the galaxy mergers
1865
+ do not happen early enough in the Universe, then when they do
1866
+ occur, the gas may be sufficiently enriched to trigger a pr-GRSN,
1867
+ thereby preventing the formation of a SMBH seed. If this scenario
1868
+ is avoided, then SMBH seeds may form from galaxy mergers and
1869
+ this may explain the presence of the first quasars. However, as the
1870
+ Universe continues to enrich itself, galaxy mergers continue to occur,
1871
+ and if these later mergers produce a supermassive protostar, it will
1872
+ almost certainly contain the requisite metallicity for an explosion. In
1873
+ addition, these low redshift pr-GRSN will be easily observable. Thus,
1874
+ if current and future NIR surveys do not see these objects, then the
1875
+ galaxy merger scenario must posses a way to suppress massive object
1876
+ formation at lower redshift. Such a mechanism is naturally built into
1877
+ other scenarios such as atomic cooling halos by the stipulation that
1878
+ the gas must be nearly metal free (Z/Z⊙ < 10−3, Chon & Omukai
1879
+ 2020; Hirano et al. 2022).
1880
+ As we have touched upon, the intermediate mass black hole popu-
1881
+ lation, or relative lack thereof, also presents a challenge to the study
1882
+ of black holes. If SMBHs originate primarily from the galaxy merger
1883
+ scenario, then our results present a natural explanation for the lack
1884
+ of intermediate mass black holes. This is because metal enriched
1885
+ supermassive stars and protostars which are not massive enough to
1886
+ collapse to supermassive black holes (say, 106 M⊙) do not then
1887
+ collapse to intermediate black holes, but instead either explode in a
1888
+ pr-GRSN or lose most of their mass due to line driven winds while
1889
+ on the main sequence. In the latter case, the mass of the final remnant
1890
+ will be determined roughly by how much helium can be produced
1891
+ before the envelope is completely lost, although mass loss from the
1892
+ helium core may also be possible in some situations.
1893
+ Although observation of the lightcurves from a pr-GRSN carries
1894
+ our best chance at observation, other pathways exist. We have pro-
1895
+ duced detailed nucleosynthetic signatures of the pr-GRSN and there
1896
+ is some possibility that we may be able to find traces of these signa-
1897
+ tures. A signature common to all of our models is enhanced nitrogen
1898
+ production. A large population of nitrogen-enhanced mildly metal
1899
+ poor stars has recently been observed (Fernández-Trincado et al.
1900
+ 2020), but any explanation involving a pr-GRSN seems far-fetched
1901
+ due to the large amount of ejecta produced by a single event. Another
1902
+ signature found in many of our models is a dearth of light alpha el-
1903
+ ements, such as magnesium, which serve as the fuel for the proton
1904
+ captures. Yoshii et al. (2022) reported a quasar with [Mg/Fe] =-1.11
1905
+ ± 0.12 at redshift 7.54. They discuss how it is challenging to produce
1906
+ so much iron so early in the Universe, but the pr-GRSN would nat-
1907
+ urally explain this phenomenon by producing iron and consuming
1908
+ MNRAS 000, 1–16 (2022)
1909
+
1910
+ fiducial
1911
+ 2.0
1912
+ massive
1913
+ metalpoor
1914
+ 1.5
1915
+ F356W
1916
+ 1.0
1917
+ z =1
1918
+ F277W-
1919
+ z = 2
1920
+ Z =3
1921
+ Z=4
1922
+ 0.5
1923
+ z = 5
1924
+ Z=6
1925
+ z = 7
1926
+ ..... linear fit
1927
+ 8=Z
1928
+ 0.0
1929
+ m= 1.768
1930
+ 6=Z
1931
+ b=0.303
1932
+ z = 10
1933
+ -0.2
1934
+ 0.0
1935
+ 0.2
1936
+ 0.4
1937
+ 0.6
1938
+ 0.8
1939
+ 1.0
1940
+ F200W-F277W
1941
+ 1.75
1942
+ fiducial
1943
+ massive
1944
+ 1.50
1945
+ +metalpoor
1946
+ 1.25
1947
+ P
1948
+ F444W
1949
+ 1.00
1950
+ F356W-
1951
+ 0.75
1952
+ Z = 1
1953
+ Z = 2
1954
+ z = 3
1955
+ 0.50
1956
+ Z = 4
1957
+ Z = 5
1958
+ 0.25
1959
+ Z = 6
1960
+ Z = 7
1961
+ 0.00
1962
+ .....linear fit
1963
+ Z=8
1964
+ m= 1.158
1965
+ Z=9
1966
+ b = 0.266
1967
+ Z = 10
1968
+ -0.25
1969
+ -0.2
1970
+ 0.0
1971
+ 0.2
1972
+ 0.4
1973
+ 0.6
1974
+ 0.8
1975
+ 1.0
1976
+ 1.2
1977
+ F277W-F356W14
1978
+ C. Nagele et al.
1979
+ Figure 20. Elemental yields at selected mass coordinates and velocity profiles for the three indicated models. Left column — elemental abundance for mass
1980
+ coordinates (not the average between mass coordinates) at multiples of 0.2 times the total mass. Right column — velocity profiles at a comparable timestep
1981
+ near the end of the HYDnuc simulation for each of the three models. The velocity profiles are nearly homologous. Colored circles indicate the mass coordinate
1982
+ shown in the left column.
1983
+ magnesium simultaneously. At this redshift, the ISM metallicity can
1984
+ be greater than the explosion threshold (Pallottini et al. 2014).
1985
+ We will now summarize some assumptions and shortcoming of the
1986
+ current study. First is our decision to ignore mass loss and accretion
1987
+ during the stellar evolution calculation, and thus limit ourselves to
1988
+ protostars greater than ∼ 105 M⊙. Because only a small mass fraction
1989
+ of protons is required to trigger the pr-GRSN, if a metal enriched
1990
+ supermassive star were to collapse via the GR radial instability at
1991
+ any point during the hydrogen burning phase (besides the very end),
1992
+ then it would likely explode. Similarly, if the GR instability triggers
1993
+ during the helium burning phase, a metal enriched version of the 𝛼
1994
+ process GRSN is plausible. A logical next step would be to apply our
1995
+ methods to realistic models of metal enriched accreting supermassive
1996
+ stars (e.g. Haemmerlé et al. 2019) which would also allow us to
1997
+ correctly account for the accretion envelope. The lightcurve of the
1998
+ pr-GRSNe is likely sensitive to the size of the accretion envelope
1999
+ (Fig. 16).
2000
+ The second major shortcoming of this study is that we do not
2001
+ have the resources to couple the 514 isotope network to our GR
2002
+ hydrodynamics code. Thus, all of the nucleosynthesis that we present
2003
+ is the result of post-processing, which may not be entirely accurate.
2004
+ In addition, since the energy generation by the 153 isotope network is
2005
+ smaller than that of 514 (Sec. 2), we likely underestimate the region
2006
+ MNRAS 000, 1–16 (2022)
2007
+
2008
+ 1.75
2009
+ 8
2010
+ 6
2011
+ 1.50
2012
+ [X/Fe]
2013
+ 4
2014
+ 1.25
2015
+ P
2016
+ S
2017
+ cm/
2018
+ 1.00
2019
+ model
2020
+ 0
2021
+ 0.75
2022
+ fiducial
2023
+ 2
2024
+ Mg
2025
+ m, = 0.2 M
2026
+ -4
2027
+ 0.50
2028
+ m,=0.4M
2029
+ -6
2030
+ m,=0.6M
2031
+ 0.25
2032
+ m,=0.8M
2033
+ -8
2034
+ m,=1.0M
2035
+ 0.00
2036
+ 8
2037
+ 1.75
2038
+ 6
2039
+ 1.50
2040
+ [X/Fe]
2041
+ Sc
2042
+ 4
2043
+ 1.25
2044
+ 2
2045
+ N
2046
+ metal-poormodel
2047
+ cm/
2048
+ 1.00
2049
+ 0
2050
+ 0.75
2051
+ m,=0.0M
2052
+ -4
2053
+ Co
2054
+ 0.50
2055
+ Mg
2056
+ m.= 0.4 M
2057
+ -6
2058
+ m,=0.6M
2059
+ 0.25
2060
+ m, = 0.8 M
2061
+ -8
2062
+ m.=10M
2063
+ 0.00
2064
+ 8
2065
+ 1.75
2066
+ 6
2067
+ 1.50
2068
+ [X/Fe]
2069
+ 1.25
2070
+ S
2071
+ cm/
2072
+ 1.00
2073
+ model
2074
+ 0
2075
+ 60t]
2076
+ 0.75
2077
+ massive
2078
+ -2
2079
+ m,=0.0M
2080
+ >
2081
+ Mq
2082
+ m, = 0.2 M
2083
+ 0.50
2084
+ m,=0.4M
2085
+ -6
2086
+ m, = 0.6 M
2087
+ 0.25
2088
+ m,=0.8M
2089
+ -8
2090
+ m,=1.0M
2091
+ 0.00
2092
+ 5
2093
+ 10
2094
+ 15
2095
+ 20
2096
+ 25
2097
+ 30
2098
+ 35
2099
+ 40
2100
+ 45
2101
+ 0
2102
+ 1
2103
+ 2
2104
+ 3
2105
+ 4
2106
+ 5
2107
+ 6
2108
+ 7
2109
+ protonnumber
2110
+ r [1014 cm]CNO-rp driven GR instability supernovae.
2111
+ 15
2112
+ covered by the pr-GRSN (Fig. 9). Other caveats such as effects of
2113
+ rotation and initial conditions are salient, but likely less important.
2114
+ We have shown that supermassive protostars which encounter the
2115
+ GR radial instability before hydrogen burning will explode in a pr-
2116
+ GRSN if the metallicity is high enough. These events will be clearly
2117
+ visible to NIR surveys at lower redshifts, and marginally visible at
2118
+ higher ones. They will also leave distinct chemical imprints on their
2119
+ host halos, as well as massive amounts of radiative and mechanical
2120
+ feedback. It is likely that current and future surveys with unprece-
2121
+ dented breadth and depth will be able to constrain the population of
2122
+ merger induce DCBHs based on the observation or non observation
2123
+ of pr-GRSNe.
2124
+ DATA AVAILABILITY
2125
+ The data underlying this article will be shared on reasonable request
2126
+ to the corresponding author.
2127
+ ACKNOWLEDGEMENTS
2128
+ This study was supported in part by the Grant-in-Aid for the Sci-
2129
+ entific Research of Japan Society for the Promotion of Science
2130
+ (JSPS, Nos. JP19K03837, JP20H01905, JP20H00158, JP21H01123,
2131
+ JP22K20377) and by Grant-in-Aid for Scientific Research on Inno-
2132
+ vative areas (JP17H06357, JP17H06365) from the Ministry of Edu-
2133
+ cation, Culture, Sports, Science and Technology (MEXT), Japan.
2134
+ REFERENCES
2135
+ Agarwal B., Khochfar S., Johnson J. L., Neistein E., Dalla Vecchia C., Livio
2136
+ M., 2012, MNRAS, 425, 2854
2137
+ Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
2138
+ Bañados E., et al., 2018, Nature, 553, 473
2139
+ Banik N., Tan J. C., Monaco P., 2019, MNRAS, 483, 3592
2140
+ Baumgardt H., 2017, MNRAS, 464, 2174
2141
+ Begelman M. C., 2010, MNRAS, 402, 673
2142
+ Bonoli S., Mayer L., Callegari S., 2014, MNRAS, 437, 1576
2143
+ Bromm V., Loeb A., 2003, The Astrophysical Journal, 596, 34
2144
+ Chandrasekhar S., 1964, ApJ, 140, 417
2145
+ Chen K.-J., Heger A., Woosley S., Almgren A., Whalen D. J., Johnson J. L.,
2146
+ 2014, ApJ, 790, 162
2147
+ Chon S., Omukai K., 2020, MNRAS, 494, 2851
2148
+ Cyburt R. H., et al., 2010, ApJS, 189, 240
2149
+ Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, MNRAS, 391,
2150
+ 1961
2151
+ Fernández-Trincado J. G., et al., 2020, ApJ, 903, L17
2152
+ Fuller G. M., Woosley S. E., Weaver T. A., 1986, ApJ, 307, 675
2153
+ Haemmerlé L., 2020, A&A, 644, A154
2154
+ Haemmerlé L., 2021a, A&A, 647, A83
2155
+ Haemmerlé L., 2021b, A&A, 650, A204
2156
+ Haemmerlé L., Woods T. E., Klessen R. S., Heger A., Whalen D. J., 2018,
2157
+ MNRAS, 474, 2757
2158
+ Haemmerlé L., Meynet G., Mayer L., Klessen R. S., Woods T. E., Heger A.,
2159
+ 2019, A&A, 632, L2
2160
+ Hartwig T., et al., 2022, ApJ, 936, 45
2161
+ Hirano S., Hosokawa T., Yoshida N., Kuiper R., 2017, Science, 357, 1375
2162
+ Hirano S., Machida M. N., Basu S., 2022, arXiv e-prints, p. arXiv:2209.03574
2163
+ Hosokawa T., Yorke H. W., Inayoshi K., Omukai K., Yoshida N., 2013, ApJ,
2164
+ 778, 178
2165
+ Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
2166
+ Inayoshi K., Visbal E., Haiman Z., 2020, ARA&A, 58, 27
2167
+ Johnson J. L., Whalen D. J., Even W., Fryer C. L., Heger A., Smidt J., Chen
2168
+ K.-J., 2013, ApJ, 775, 107
2169
+ Kazantzidis S., et al., 2005, ApJ, 623, L67
2170
+ Kızıltan B., Baumgardt H., Loeb A., 2017, Nature, 542, 203
2171
+ Latif M. A., Niemeyer J. C., Schleicher D. R. G., 2014a, MNRAS, 440, 2969
2172
+ Latif M. A., Bovino S., Van Borm C., Grassi T., Schleicher D. R. G., Spaans
2173
+ M., 2014b, MNRAS, 443, 1979
2174
+ Li J.-T., Fuller G. M., Kishimoto C. T., 2018, Phys. Rev. D, 98, 023002
2175
+ Magg M., et al., 2020, MNRAS, 498, 3703
2176
+ Matsuoka Y., et al., 2019, ApJ, 872, L2
2177
+ Mayer L., Bonoli S., 2019, Reports on Progress in Physics, 82, 016901
2178
+ Mayer L., Kazantzidis S., Madau P., Colpi M., Quinn T., Wadsley J., 2007,
2179
+ Science, 316, 1874
2180
+ Mayer L., Kazantzidis S., Escala A., Callegari S., 2010, Nature, 466, 1082
2181
+ Mayer L., Fiacconi D., Bonoli S., Quinn T., Roškar R., Shen S., Wadsley J.,
2182
+ 2015, ApJ, 810, 51
2183
+ Montero P. J., Janka H.-T., Müller E., 2012, ApJ, 749, 37
2184
+ Moriya T. J., Chen K.-J., Nakajima K., Tominaga N., Blinnikov S. I., 2021,
2185
+ MNRAS, 503, 1206
2186
+ Morozova V., Ott C. D., Piro A. L., 2015, SNEC: SuperNova Explosion Code,
2187
+ Astrophysics Source Code Library, record ascl:1505.033 (ascl:1505.033)
2188
+ Mortlock D. J., et al., 2011, Nature, 474, 616
2189
+ Nagele C., Umeda H., Takahashi K., Yoshida T., Sumiyoshi K., 2020, MN-
2190
+ RAS, 496, 1224
2191
+ Nagele C., Umeda H., Takahashi K., Maeda K., 2022a, arXiv e-prints, p.
2192
+ arXiv:2210.08662
2193
+ Nagele C., Umeda H., Takahashi K., Yoshida T., Sumiyoshi K., 2022b, MN-
2194
+ RAS, 517, 1584
2195
+ O’Leary J. A., Moster B. P., Naab T., Somerville R. S., 2021, MNRAS, 501,
2196
+ 3215
2197
+ Pallottini A., Ferrara A., Gallerani S., Salvadori S., D’Odorico V., 2014,
2198
+ MNRAS, 440, 2498
2199
+ Schauer A. T. P., Regan J., Glover S. C. O., Klessen R. S., 2017, MNRAS,
2200
+ 471, 4878
2201
+ Shapiro S. L., Teukolsky S. A., 1983, Black holes, white dwarfs, and neutron
2202
+ stars : the physics of compact objects
2203
+ Shibata M., Sekiguchi Y., Uchida H., Umeda H., 2016, Phys. Rev. D, 94,
2204
+ 021501
2205
+ Soderberg A. M., et al., 2008, Nature, 453, 469
2206
+ Sun L., Paschalidis V., Ruiz M., Shapiro S. L., 2017, Phys. Rev. D, 96, 043006
2207
+ Surace M., et al., 2018, ApJ, 869, L39
2208
+ Surace M., Zackrisson E., Whalen D. J., Hartwig T., Glover S. C. O., Woods
2209
+ T. E., Heger A., Glover S. C. O., 2019, MNRAS, 488, 3995
2210
+ Takahashi K., Yoshida T., Umeda H., Sumiyoshi K., Yamada S., 2016, MN-
2211
+ RAS, 456, 1320
2212
+ Takahashi K., Yoshida T., Umeda H., 2018, ApJ, 857, 111
2213
+ Takahashi K., Sumiyoshi K., Yamada S., Umeda H., Yoshida T., 2019, ApJ,
2214
+ 871, 153
2215
+ Toyouchi D., Inayoshi K., Li W., Haiman Z., Kuiper R., 2022, arXiv e-prints,
2216
+ p. arXiv:2206.14459
2217
+ Umeda H., Hosokawa T., Omukai K., Yoshida N., 2016, ApJ, 830, L34
2218
+ Vikaeus A., Whalen D. J., Zackrisson E., 2022, arXiv e-prints, p.
2219
+ arXiv:2205.14163
2220
+ Vink J. S., Muijres L. E., Anthonisse B., de Koter A., Gräfener G., Langer
2221
+ N., 2011, A&A, 531, A132
2222
+ Wang F., et al., 2021, ApJ, 907, L1
2223
+ Whalen D. J., Johnson J. L., Smidt J., Meiksin A., Heger A., Even W., Fryer
2224
+ C. L., 2013a, ApJ, 774, 64
2225
+ Whalen D. J., Johnson J. L., Smidt J., Heger A., Even W., Fryer C. L., 2013b,
2226
+ ApJ, 777, 99
2227
+ Whalen D. J., et al., 2013c, ApJ, 778, 17
2228
+ Wrobel J. M., Miller-Jones J. C. A., Middleton M. J., 2016, AJ, 152, 22
2229
+ Wu X.-B., et al., 2015, Nature, 518, 512
2230
+ Yamada S., 1997, ApJ, 475, 720
2231
+ Yoshida T., Takiwaki T., Kotake K., Takahashi K., Nakamura K., Umeda H.,
2232
+ 2019, ApJ, 881, 16
2233
+ Yoshii Y., Sameshima H., Tsujimoto T., Shigeyama T., Beers T. C., Peterson
2234
+ B. A., 2022, ApJ, 937, 61
2235
+ Zwick L., Mayer L., Haemmerlé L., Klessen R. S., 2022, arXiv e-prints, p.
2236
+ arXiv:2209.02358
2237
+ MNRAS 000, 1–16 (2022)
2238
+
2239
+ 16
2240
+ C. Nagele et al.
2241
+ 5 APPENDIX A
2242
+ This appendix shows the results of the 216 isotope simulation for M
2243
+ = 105 M⊙, Z = 0.1 Z⊙. The 216 isotope network is based on the 153
2244
+ isotope network, but contains additional heavy elements up to Zr.
2245
+ We had created this network because we noticed that our collapsing
2246
+ models were saturating at Zn, the heaviest element in the 153 network.
2247
+ Fig. 21 shows the isotopic mass fractions from the central mesh of
2248
+ this simulation as well as the proton mass fraction (bottom panel).
2249
+ As is apparent, proton captures stall around a central temperature of
2250
+ Log 𝑇𝑐 = 8.85, as the network runs out of room for additional proton
2251
+ captures. In addition, the decay times of the isotopes on the boundary
2252
+ of the network are longer than the dynamical timescale (∼ 500 s).
2253
+ This causes a buildup of isotopes at certain positions on the edge
2254
+ of the network. In an extreme case, 66Ge accumulates nearly half a
2255
+ percent (0.004) of the mass. This isotope has a half life of roughly
2256
+ 8000 s, largely preventing progress past it.
2257
+ We offer this demonstration as a cautionary tale, that future net-
2258
+ works likely need to be larger than the ones we have used here. Such
2259
+ endeavours are beyond our current computational setup.
2260
+ 6 APPENDIX B
2261
+ If we did have the resources to couple to a larger network, to what
2262
+ extent would that alter our results?
2263
+ To provide a simple estimate of the energy generation of the rp
2264
+ process, we calculate the energy density produced by 25% of the
2265
+ star undergoing the rp process up to an isotope, 𝐼𝑚. We assume that,
2266
+ in this region, every element with atomic number greater than 15 is
2267
+ converted to the most abundant solar isotope with proton number 𝑚
2268
+ (𝐼𝑚). Then, the chemical distribution of the inner 25% will change
2269
+ as follows:
2270
+ 𝑋′
2271
+ 𝐼𝑗 =
2272
+
2273
+ 𝑋𝐼𝑗
2274
+ 𝐴(𝐼 𝑗) < 16 or A(Ij) > A(Im)
2275
+ 0
2276
+ 15 < 𝐴(𝐼 𝑗) < 𝐴(𝐼𝑚)
2277
+ (15)
2278
+ 𝑋′
2279
+ 𝑝 = 𝑋𝑝 −
2280
+ ∑︁
2281
+ 𝐼𝑗
2282
+ (𝑋𝐼𝑗 − 𝑋′
2283
+ 𝐼𝑗 ) 𝐴(𝐼𝑚) − 𝐴(𝐼 𝑗)
2284
+ 𝐴(𝐼 𝑗)
2285
+ (16)
2286
+ 𝑋′
2287
+ 𝐼𝑚 = 𝑋𝐼𝑚 + 𝑋′
2288
+ 𝑝 +
2289
+ ∑︁
2290
+ 𝐼𝑗
2291
+ (𝑋𝐼𝑗 − 𝑋′
2292
+ 𝐼𝑗 )
2293
+ (17)
2294
+ Fig. 22 shows the resulting 𝐸nuc (in units of ergs/g) as a function of
2295
+ metallicity and m. Also shown are 𝐸nuc from the exploding models
2296
+ in Fig. 9. We have selected 25% so that the border between explosion
2297
+ and collapse will occur at the edge of our network, roughly m = 30.
2298
+ Note that this is a somewhat ad hoc approach, as we are ignoring
2299
+ neutrino cooling and inwards ram pressure, and we thus intend for
2300
+ this figure to be interpreted as an order of magnitude estimate. As
2301
+ such, it shows that a larger network would allow access to at least
2302
+ twice as much energy generated by the rp process if it extended up
2303
+ to technetium, a situation which we have shown to result from post
2304
+ processing (Fig. 6). Indeed, the post processed 𝐸nuc is roughly twice
2305
+ that produced by the 153 isotope network. Thus we can say that
2306
+ our mass and metallicity range is too conservative, but probably the
2307
+ correct order of magnitude.
2308
+ 7 APPENDIX C
2309
+ This appendix shows lightcurves of JWST, Euclid, Roman and Rubin
2310
+ for the fiducial model, at redshifts 0.1, 0.3, 0.5, 1.0, 3.0, 5.0. Rubin
2311
+ can observe the pr-GRSN below redshift 1, while Euclid and Roman
2312
+ extend this up to redshift 3. Observation of more distant events will
2313
+ only be possible with JWST.
2314
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
2315
+ MNRAS 000, 1–16 (2022)
2316
+
2317
+ CNO-rp driven GR instability supernovae.
2318
+ 17
2319
+ Figure 21. Upper panel — same as Fig. 6, but for only the central mesh of the M = 105 M⊙, Z = 0.1 Z⊙ with 216 isotopes. Lower panel — time evolution of
2320
+ proton mass fraction.
2321
+ Figure 22. 𝐸nuc (in units of ergs/g) generated by the rp process up to an
2322
+ isotope with mass proton number m for a given metallicity. The red triangles
2323
+ correspond to values of 𝐸nuc from the 153 isotope simulations (Fig. 9). The
2324
+ vertical dashed line shows the edge of the 153 isotope network.
2325
+ Figure 23. Same as Fig. 16, but for the fiducial model at redshift 0.1.
2326
+ MNRAS 000, 1–16 (2022)
2327
+
2328
+ Log T。= 8.31
2329
+ Log T, = 8.65
2330
+ Log Te = 8.84
2331
+ Log Te = 8.90
2332
+ Log Te= 8.98
2333
+ 40
2334
+ 10
2335
+ -2
2336
+ -4
2337
+ Log
2338
+ -6
2339
+ 20
2340
+ -8
2341
+ -10
2342
+ 10E
2343
+ -12
2344
+ 10
2345
+ 20
2346
+ 30
2347
+ 40
2348
+ 50
2349
+ 10
2350
+ 20
2351
+ 30
2352
+ 40
2353
+ 5010
2354
+ 20
2355
+ 30
2356
+ 40
2357
+ 50
2358
+ 10
2359
+ 20
2360
+ 30
2361
+ 40
2362
+ 50
2363
+ 10
2364
+ 20
2365
+ 30
2366
+ 40
2367
+ 50
2368
+ nnumber
2369
+ 0.75
2370
+ ...
2371
+ 47500
2372
+ 50000
2373
+ 52500
2374
+ 55000
2375
+ 57500
2376
+ 60000
2377
+ 62500
2378
+ 65000
2379
+ t [s] 1e18
2380
+ 1.0
2381
+ 1.17
2382
+ 1.04
2383
+ 0.8
2384
+ 0.91
2385
+ 0.78
2386
+ [ergs/g]
2387
+ 0.6
2388
+ 0.65
2389
+ N
2390
+ 0.52
2391
+ 0.4
2392
+ 0.39
2393
+ 0.26
2394
+ 0.2
2395
+ 0.13
2396
+ 0.00
2397
+ 10
2398
+ 15
2399
+ 20
2400
+ 25
2401
+ 30
2402
+ 35
2403
+ 40
2404
+ protonnumberatrpterminus(m)15.0
2405
+ F070W
2406
+ F090W
2407
+ 17.5
2408
+ F115W
2409
+ 5
2410
+ F150W
2411
+ 20.0
2412
+ M
2413
+ F200W
2414
+ 22.5
2415
+ F277W
2416
+ F356W
2417
+ 25.0
2418
+ F444W
2419
+ 15.0
2420
+ VIS
2421
+ Y
2422
+ 17.5
2423
+ Euclid
2424
+ H
2425
+ 20.0
2426
+ 22.5
2427
+ 25.0
2428
+ 15.0
2429
+ F062
2430
+ F087
2431
+ 17.5
2432
+ F106
2433
+ Roman
2434
+ F129
2435
+ 20.0
2436
+ F158
2437
+ 22.5
2438
+ F184
2439
+ F146
2440
+ 25.0
2441
+ F213
2442
+ 15.0
2443
+ Z
2444
+ 17.5
2445
+ Rubin
2446
+ 20.0
2447
+ y
2448
+ u
2449
+ 22.5
2450
+ b
2451
+ 25.0
2452
+ 0
2453
+ 1000
2454
+ 2000
2455
+ 3000
2456
+ 4000
2457
+ 5000
2458
+ observertime[days]18
2459
+ C. Nagele et al.
2460
+ Figure 24. Same as Fig. 16, but for the fiducial model at redshift 0.3.
2461
+ Figure 25. Same as Fig. 16, but for the fiducial model at redshift 0.5.
2462
+ Figure 26. Same as Fig. 16, but for the fiducial model at redshift 1.
2463
+ Figure 27. Same as Fig. 16, but for the fiducial model at redshift 3.
2464
+ MNRAS 000, 1–16 (2022)
2465
+
2466
+ 17.5
2467
+ F070W
2468
+ F090W
2469
+ 20.0
2470
+ F115W
2471
+ JWST
2472
+ 22.5
2473
+ F150W
2474
+ F200W
2475
+ 25.0
2476
+ F27XW
2477
+ F356W
2478
+ 27.5
2479
+ F444W
2480
+ 30.0
2481
+ 17.5
2482
+ VS
2483
+ Y
2484
+ 20.0
2485
+ Euclid
2486
+ 22.5
2487
+ H
2488
+ 25.0
2489
+ 27.5
2490
+ 30.0
2491
+ 17.5
2492
+ F062
2493
+ F087
2494
+ 20.0
2495
+ F106
2496
+ ue
2497
+ 22.5
2498
+ F129
2499
+ Rom
2500
+ F158
2501
+ 25.0
2502
+ F184
2503
+ F146
2504
+ 27.5
2505
+ F213
2506
+ 30.0
2507
+ 17.5
2508
+ 20.0
2509
+ Rubin
2510
+ 22.5
2511
+ y
2512
+ u
2513
+ 25.0
2514
+ 6
2515
+ 27.5
2516
+ 30.0
2517
+ 0
2518
+ 1000
2519
+ 2000
2520
+ 3000
2521
+ 4000
2522
+ 5000
2523
+ observertime[days]17.5
2524
+ F070W
2525
+ F090W
2526
+ 20.0
2527
+ F115W
2528
+ JWST
2529
+ F150W
2530
+ 22.5
2531
+ F200W
2532
+ 25.0
2533
+ F277W
2534
+ F356W
2535
+ 27.5
2536
+ F444W
2537
+ 30.0
2538
+ 17.5
2539
+ VS
2540
+ Y
2541
+ 20.0
2542
+ Euclid
2543
+ 22.5
2544
+ H
2545
+ 25.0
2546
+ 27.5
2547
+ 30.0
2548
+ 17.5
2549
+ F062
2550
+ F087
2551
+ 20.0
2552
+ F106
2553
+ ue
2554
+ 22.5
2555
+ F129
2556
+ Rom
2557
+ F158
2558
+ 25.0
2559
+ F184
2560
+ N146
2561
+ 27.5
2562
+ P213
2563
+ 30.0
2564
+ 17.5
2565
+ Z
2566
+ r
2567
+ 20.0
2568
+ Rubin
2569
+ 22.5
2570
+ y
2571
+ u
2572
+ 25.0
2573
+ b
2574
+ 27.5
2575
+ 30.0
2576
+ 0
2577
+ 1000
2578
+ 2000
2579
+ 3000
2580
+ 4000
2581
+ 5000
2582
+ observertime[days]20.0
2583
+ F070W
2584
+ 22.5
2585
+ F090W
2586
+ F115W
2587
+ JWST
2588
+ 25.0
2589
+ F15QW
2590
+ F200W
2591
+ 27.5
2592
+ F277W
2593
+ 30.0
2594
+ F356W
2595
+ F444W
2596
+ 32.5
2597
+ 20.0
2598
+ VS
2599
+ 22.5
2600
+ Y
2601
+ Euclid
2602
+ 25.0
2603
+ H
2604
+ 27.5
2605
+ 30.0
2606
+ 32.5
2607
+ 20.0
2608
+ F062
2609
+ 22.5
2610
+ F087
2611
+ F106
2612
+ Roman
2613
+ 25.0
2614
+ F129
2615
+ F158
2616
+ 27.5
2617
+ F184
2618
+ 30.0
2619
+ F146
2620
+ F213
2621
+ 32.5
2622
+ 20.0
2623
+ 22.5
2624
+ Rubin
2625
+ 25.0
2626
+ u
2627
+ 27.5
2628
+ 6
2629
+ 30.0
2630
+ 32.5
2631
+ 0
2632
+ 1000
2633
+ 2000
2634
+ 3000
2635
+ 4000
2636
+ 5000
2637
+ 6000
2638
+ 7000
2639
+ observertime[days]22.5
2640
+ F070W
2641
+ F090W
2642
+ 25.0
2643
+ F115W
2644
+ JWST
2645
+ F150W
2646
+ 27.5
2647
+ F200W
2648
+ 30.0
2649
+ F277WL
2650
+ F356W
2651
+ 32.5
2652
+ F444W
2653
+ 35.0
2654
+ 22.5
2655
+ VIS
2656
+ Y
2657
+ 25.0
2658
+ Euclid
2659
+ 27.5
2660
+ H
2661
+ 30.0
2662
+ 32.5
2663
+ 35.0
2664
+ 22.5
2665
+ F062
2666
+ F087
2667
+ 25.0
2668
+ F106
2669
+ Roman
2670
+ 27.5
2671
+ F129
2672
+ F158
2673
+ 30.0
2674
+ F184
2675
+ F146
2676
+ 32.5
2677
+ F213
2678
+ 35.0
2679
+ 22.5
2680
+ Z
2681
+ 25.0
2682
+ r
2683
+ i
2684
+ Rubin
2685
+ 27.5
2686
+ u
2687
+ 30.0
2688
+ 6
2689
+ 32.5
2690
+ 35.0
2691
+ 0
2692
+ 2000
2693
+ 4000
2694
+ 6000
2695
+ 8000
2696
+ 10000
2697
+ observertime[days]CNO-rp driven GR instability supernovae.
2698
+ 19
2699
+ Figure 28. Same as Fig. 16, but for the fiducial model at redshift 5.
2700
+ MNRAS 000, 1–16 (2022)
2701
+
2702
+ 22.5
2703
+ F070W
2704
+ F090W
2705
+ 25.0
2706
+ F115W
2707
+ JWST
2708
+ 27.5
2709
+ F150W
2710
+ F200W
2711
+ 30.0
2712
+ F277W
2713
+ F356W
2714
+ 32.5
2715
+ F444W
2716
+ 35.0
2717
+ 22.5
2718
+ VIS
2719
+ Y
2720
+ 25.0
2721
+ Euclid
2722
+ 27.5
2723
+ H
2724
+ 30.0
2725
+ 32.5
2726
+ 35.0
2727
+ 22.5
2728
+ F062
2729
+ F087
2730
+ 25.0
2731
+ F106
2732
+ Roman
2733
+ 27.5
2734
+ F129
2735
+ F158
2736
+ 30.0
2737
+ F184
2738
+ F146
2739
+ 32.5
2740
+ F213
2741
+ 35.0
2742
+ 22.5
2743
+ Z
2744
+ r
2745
+ 25.0
2746
+ Rubin
2747
+ 27.5
2748
+ u
2749
+ 30.0
2750
+ 6
2751
+ 32.5
2752
+ 35.0
2753
+ 0
2754
+ 2000
2755
+ 4000
2756
+ 6000
2757
+ 8000
2758
+ 10000
2759
+ observertime[days]
9NAzT4oBgHgl3EQf-_5O/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAyT4oBgHgl3EQfd_gY/content/tmp_files/2301.00311v1.pdf.txt ADDED
@@ -0,0 +1,1478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Non-linear corrections of overlap reduction functions for pulsar timing arrays
2
+ Qing-Hua Zhu∗
3
+ CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
4
+ Chinese Academy of Sciences, Beijing 100190, China and
5
+ School of Physical Sciences, University of Chinese Academy of Sciences,
6
+ No.
7
+ 19A Yuquan Road, Beijing 100049, China
8
+ (Dated: January 3, 2023)
9
+ The signals from international pulsar timing arrays have presented a hint of gravitational
10
+ stochastic background in nHz band frequency. Further confirmation will be based on whether
11
+ the signals follow the angular correlation curves formulated by the overlap reduction func-
12
+ tions, known as Hellings-Downs curves. This paper investigates the non-linear corrections of
13
+ overlap reduction functions in the present of non-Gaussianity, in which the self-interaction
14
+ of gravity is first taken into considerations. Based on perturbed Einstein field equations
15
+ for the second order metric perturbations, and perturbed geodesic equations to the second
16
+ order, we obtain non-linear corrections for the timing residuals of pulsar timing, and theo-
17
+ retically study corresponding overlap reduction functions for pulsar timing arrays. There is
18
+ order-one correction for the overlap reduction functions from the three-point correlations of
19
+ gravitational waves, and thus the shapes of the overlap reduction functions with non-linear
20
+ corrections can be distinguished from the Hellings-Downs curves.
21
+ I.
22
+ INTRODUCTION
23
+ The stochastic gravitational wave background (SGWB) might contain lots of information of
24
+ the Universe, since it can be originated from inflationary GWs [1–5], produced from early-time
25
+ phase transitions [6–8], sourced by cosmic string [9–12], or formed by superpositions of unresolved
26
+ individual GW sources such as binary systems [13–17], core-collapse supernovae [18–21], and de-
27
+ formed rotating neutron stars [19, 22]. In the 10Hz–1kHz frequency band, the ground-based GW
28
+ detectors LIGO/Virgo/KAGRA have presented an upper limits of SGWBs [23, 24]. In nHz fre-
29
+ quency band, the international timing pulsar array projects (IPTA) [25–27] found and confirmed
30
+ a common spectrum process from the pulsar-timing data sets, and suggested that further evidence
31
+ for SGWBs might rely on its angular correlation signature [28–30].
32
+ The angular correlations of output of a pair of GW detectors can give characteristic signature of
33
34
+ arXiv:2301.00311v1 [gr-qc] 1 Jan 2023
35
+
36
+ 2
37
+ GWs, which is formulated by overlap reduction functions (ORFs). For GW detector networks made
38
+ by pulsar timing arrays (PTAs), the ORFs of GWs are known as Hellings-Downs curve for a pair
39
+ of pulsars [31]. Motivated by the observation from IPTA on the angular correlations of SGWBs,
40
+ it is necessary to clarify physical causes of deviations of the Hellings-Downs curve. It might come
41
+ from the SGWBs beyond isotropy approximation [32, 33], polarized SGWBs [34–36], non-tensor
42
+ modes from modified gravity [37–42], or simply a careful calculation on the pulsar terms [43–45].
43
+ Recently, there was also study on the non-linear corrections for PTAs from higher order effect of
44
+ gravity [46]. This correction for ORFs was shown to be order one in the present of non-Gaussianity
45
+ of the GWs. In this paper, we will extend the study on the non-linear corrections of the ORFs, in
46
+ which the self-interaction of gravity is taken into considerations.
47
+ Due to the self-interaction of gravity, the linear order of GWs can generate the non-linear one
48
+ even in vacuum, which can affect the propagation of light, thereby changing the response of GW
49
+ detectors. There was shown to be order-one corrections for the ORFs in the present of the non-
50
+ Gaussianity of GWs [46]. To obtain a solid derivation for GW detectors to the non-linear regime,
51
+ we utilize perturbed Einstein field equations for evolution of metric perturbations, and perturbed
52
+ geodesic equations for evaluating timing residuals of pulsar timing. We compute the ORFs with
53
+ the non-linear corrections, and study its shapes.
54
+ The rest of the paper is organized as follows. In Sec. II, the evolutions of metric perturbations
55
+ to the second order are presented. In Sec. III, based on propagation of light formulated by the
56
+ perturbed geodesic equations to the second order, we obtain timing residuals of pulsar timing with
57
+ non-linear corrections. In Sec. IV, we compute ORFs with different shape of non-Gaussianity, and
58
+ show its deviation from the Hellings-Downs curves. In Sec. V, conclusions and discussions are
59
+ summarized.
60
+ II.
61
+ PROPAGATION OF SECONDARY GRAVITATIONAL WAVE WITHIN PTAS
62
+ From the theory of perturbations in general relativity, the first order GWs, the transverse-
63
+ traceless modes of metric perturbations, should give rise to secondary effects from the higher order
64
+ metric perturbations. Because all the space-time fluctuations can affect propagation of light, there
65
+ are inevitably corrections of response of GW detectors in non-linear regime. In this section, to
66
+ study the secondary effects of GWs on PTAs, we will firstly show how the non-linear order metric
67
+ perturbations freely propagate in vacuum.
68
+
69
+ 3
70
+ The perturbed metric in Minkowski background is given by [47]
71
+ ds2 = −dt2 +
72
+
73
+ δij(1 − ψ(2)) + ∂i∂jE(2) + 1
74
+ 2∂iC(2)
75
+ j
76
+ + 1
77
+ 2∂jC(2)
78
+ i
79
+ + h(1)
80
+ ij + 1
81
+ 2h(2)
82
+ ij
83
+
84
+ dxidxj ,
85
+ (1)
86
+ where δij is Kronecker symbol, h(1)
87
+ ij is the first order transverse-traceless metric perturbation known
88
+ as GWs, and h(2)
89
+ ij , C(2)
90
+ j , and ψ(2) are the second order tensor, vector, and scalar perturbations,
91
+ respectively. Because GW detectors are reckon in the freely-falling frame, we have adopted Syn-
92
+ chronous gauge for the perturbed metric.
93
+ From Einstein field equations for the first order GWs, the motion of equations reduce to wave
94
+ equations,
95
+ h(1)
96
+ ij
97
+ ′′ − ∆h(1)
98
+ ij = 0 .
99
+ (2)
100
+ Thus, the solutions can be given by
101
+ h(1)
102
+ ij =
103
+
104
+ d3k
105
+ (2π)3 ¯h(1)
106
+ ij,ke−i(kt−k·x) ,
107
+ (3)
108
+ where the h(1)
109
+ ij,k is the Fourier mode of ¯h(1)
110
+ ij , which contains the physical information before the
111
+ GWs reaching the detectors.
112
+ Since the GW detectors can response to tensor, vector, and scalar modes of the metric pertur-
113
+ bations, we should further consider all the second order metric perturbations. Using the metric in
114
+ Eq. (1), the perturbed Einstein field equations in the second order take the form of [48, 49]
115
+ h(2)
116
+ ij
117
+ ′′ − ∆h(2)
118
+ ij = −Λab
119
+ ij Sab ,
120
+ (4a)
121
+ C(2)
122
+ j
123
+ ′′ = −Vab
124
+ j Sab ,
125
+ (4b)
126
+ −2ψ(2)′′ + ∆
127
+
128
+ E(2)′′ + ψ(2)�
129
+ = −S(Ψ),abSab ,
130
+ (4c)
131
+ E(2)′′ + ψ(2) = −S(E),abSab ,
132
+ (4d)
133
+ where Λab
134
+ ij , Vab
135
+ j , S(Ψ),ab and S(E),ab are helicity decomposition operators [47], and the source on
136
+ the right hand side of Eq. (4) is given by
137
+ Sab = −2δcd∂0h(1)
138
+ ac ∂0h(1)
139
+ bd + 2h(1),cd∂c∂dh(1)
140
+ ab − 2h(1),cd∂c∂ah(1)
141
+ db
142
+ −2h(1),cd∂c∂bh(1)
143
+ da − 2∂dh(1)
144
+ ac ∂ch(1)
145
+ bd + 2δcd∂jh(1)
146
+ ad ∂jh(1)
147
+ bc + ∂ah(1),cd∂bh(1)
148
+ cd + 2h(1),cd∂a∂bh(1)
149
+ cd
150
+ +δab
151
+ �3
152
+ 2∂0h(1)
153
+ cd ∂0h(1),cd + 2h(1)
154
+ cd ∂2
155
+ 0h(1),cd − 2h(1)
156
+ cd ∆h(1),cd + ∂jh(1)
157
+ cd ∂dh(1),cj − 3
158
+ 2∂jh(1)
159
+ cd ∂jh(1),cd
160
+
161
+ .
162
+ (5)
163
+
164
+ 4
165
+ Differed from Eq. (2), the second metric perturbations are sourced the by the first order GWs. By
166
+ making use of Eq. (3) and (4), we obtain the solutions in the form of
167
+ ψ(2) (t, x) =
168
+
169
+ d3k
170
+ (2π)3
171
+ ��
172
+ d3p
173
+ (2π)3
174
+
175
+ ˆF ab
176
+ ψ ¯Sab (k, p) e−i(|k−p|+p)t�
177
+ eik·x
178
+
179
+ ,
180
+ (6a)
181
+ E(2) (t, x) =
182
+
183
+ d3k
184
+ (2π)3
185
+ ��
186
+ d3p
187
+ (2π)3
188
+
189
+ ˆF ab
190
+ E ¯Sab (k, p) e−i(|k−p|+p)t�
191
+ eik·x
192
+
193
+ ,
194
+ (6b)
195
+ C(2)
196
+ j
197
+ (t, x) =
198
+
199
+ d3k
200
+ (2π)3
201
+ ��
202
+ d3p
203
+ (2π)3
204
+
205
+ ˆF ab
206
+ C,j ¯Sab (k, p) e−i(|k−p|+p)t�
207
+ eik·x
208
+
209
+ ,
210
+ (6c)
211
+ h(2)
212
+ ij (t, x) =
213
+
214
+ d3k
215
+ (2π)3
216
+ ��
217
+ d3p
218
+ (2π)3
219
+
220
+ ˆF ab
221
+ h,ij ¯Sab (k, p) e−i(|k−p|+p)t�
222
+ eik·x
223
+
224
+ ,
225
+ (6d)
226
+ where
227
+ ˆF ab
228
+ h,ij (k, p) ≡ −
229
+ Λab
230
+ ij (k)
231
+ k2 − (|k − p| + p)2 ,
232
+ (7a)
233
+ ˆF ab
234
+ C,j (k, p) ≡
235
+ Vab
236
+ j (k)
237
+ (|k − p| + p)2 ,
238
+ (7b)
239
+ ˆF ab
240
+ ψ (k, p) ≡ −S(Ψ),ab (k) + k2S(E),ab (k)
241
+ 2 (|k − p| + p)2
242
+ ,
243
+ (7c)
244
+ ˆF ab
245
+ E (k, p) ≡
246
+ S(E),ab (k)
247
+ (|k − p| + p)2 − S(Ψ),ab (k) + k2S(E),ab (k)
248
+ 2 (|k − p| + p)4
249
+ .
250
+ (7d)
251
+ The ¯Sab (k, p) in Eq. (6) is defined with
252
+ ¯Sij (k, p) = fcdab
253
+ ij
254
+ (k, p) ¯h(1)
255
+ cd,k−p¯h(1)
256
+ ab,p ,
257
+ (8)
258
+ where
259
+ fbclm
260
+ ij
261
+ (k, p) = δblδcm (−3δij (p |k − p| − p · (k − p)) + pi(kj − 2pj) + ki(pj − 2kj))
262
+ +2
263
+
264
+ pb(−δl
265
+ iδm
266
+ j pc + δcm(δl
267
+ jpi + δl
268
+ ipj + δij(pl − kl))
269
+ +δb
270
+ j
271
+
272
+ δcm �
273
+ δl
274
+ i (p |k − p| − p · (k − p)) + ki(kl − pl) + pi(pl − kl)
275
+
276
+ + δl
277
+ ipc(km − pm)
278
+
279
+ +δb
280
+ i
281
+
282
+ δcm �
283
+ δl
284
+ j (p |k − p| − p · (k − p)) + kj(kl − pl) + pj(pl − kl)
285
+
286
+ + δl
287
+ jpc(km − pm)
288
+
289
+ −δb
290
+ i δc
291
+ j(klkm − 2klpm + plpm)
292
+
293
+ .
294
+ (9)
295
+ The ¯Sab (k, p) is derived from the source in Eq. (5) via
296
+ Sab (t, x) =
297
+
298
+ d3k
299
+ (2π)3 Sab (t, k, p) eik·x =
300
+
301
+ d3k
302
+ (2π)3 ¯Sab (k, p) e−i(|k−p|+p)t+ik·x .
303
+ (10)
304
+ Note that the Sab (t, k, p) is the Fourier mode of the source, and the ¯Sab (k, p) is not. Here, as
305
+ shown in Eqs. (6), the explicit solutions of perturbations ψ(2), E(2), C(2)
306
+ j
307
+ and h(2)
308
+ ij can be obtained
309
+ based on the known h(1)
310
+ ij in Eq. (3).
311
+
312
+ 5
313
+ We consider the non-linear corrections for GW detectors originated from the gravity self-
314
+ interaction. In this case, all the second order perturbations are generated by the first order one.
315
+ In fact, there could be second order perturbations that are independent of the h(1)
316
+ ij . Because the
317
+ response of the second order perturbations of this type to the GWs detector has nothing different
318
+ from the response for the first order GWs, we did not consider this situation in the present study.
319
+ III.
320
+ PERTURBED GEODESIC EQUATIONS
321
+ The space-time fluctuations can affect time of arrivals of radio beams from a pulsar. Thus, via
322
+ monitoring pulsar timing, the PTA observations can reflect the space-time fluctuations over the
323
+ Universe in principle. To formulate it, and extend it to the non-linear regime, we will calculate the
324
+ perturbed geodesic equations to the second order.
325
+ Based on geodesic equations in Minkowski background, namely,
326
+ P µ∂µP ν = 0 ,
327
+ (11)
328
+ one can obtain the 4-momentum of a light ray,
329
+ P µ = P 0(1, −ˆnj) ,
330
+ (12)
331
+ where ˆnj is a constant unit vector, and can be used to locate a pulsar. By making use of above
332
+ 4-momentums, one can obtain trajectories of light rays from a pulsar to the detectors. The pulsar
333
+ emits a radio beam at the event (t − L, Lˆnj), and the beam is detected on the earth at the event
334
+ of (t, 0), where the L is distance between the pulsar and the detectors.
335
+ From the first order perturbed geodesic equations,
336
+ 0 = δP µ∂µP ν + P µ∂µδP ν + gνρ
337
+
338
+ ∂µh(1)
339
+ λρ − 1
340
+ 2∂ρh(1)
341
+ µλ
342
+
343
+ P µP λ ,
344
+ (13)
345
+ we can evaluate it by using Eq. (12), namely,
346
+ (∂0 − ˆn · ∂)
347
+ �δP 0
348
+ P 0
349
+
350
+ = −1
351
+ 2 ˆnaˆnb∂0h(1)
352
+ ab ,
353
+ (14a)
354
+ (∂0 − ˆn · ∂)
355
+ �δP j
356
+ P 0
357
+
358
+ = δjbˆna
359
+
360
+ ∂0h(1)
361
+ ab − ˆnc
362
+
363
+ ∂ch(1)
364
+ ab − 1
365
+ 2∂bh(1)
366
+ ac
367
+ ��
368
+ ,
369
+ (14b)
370
+ where δP µ is the first order perturbed 4-momentum. The temporal and spatial components of
371
+ the above perturbed geodesic equations take different forms, because the time components of h(1)
372
+ µν
373
+ in Eq. (13) vanish in the Synchronous gauge. From Eq. (14), the solutions in Fourier space take
374
+
375
+ 6
376
+ the form of
377
+ δP 0
378
+ k
379
+ P 0 ≡ K0,ab (k, ˆn) ¯h(1)
380
+ ab,ke−ikt = −
381
+ 1
382
+ 2(1 + ˆn · ˆk)
383
+ ˆnaˆnb¯h(1)
384
+ ab,ke−ikt ,
385
+ (15a)
386
+ δP j
387
+ k
388
+ P 0 ≡ Kj,ab (k, ˆn) ¯h(1)
389
+ ab,ke−ikt =
390
+
391
+ δjbˆna −
392
+ ˆkjˆnaˆnb
393
+ 2(1 + ˆn · ˆk)
394
+
395
+ ¯h(1)
396
+ ab,ke−ikt ,
397
+ (15b)
398
+ where the k is wave number, and the ˆk describes propagation direction of the first order GWs.
399
+ The results shown in Eqs. (15) are the basis of GW detectors, and astrometric detection with Gaia
400
+ [31, 50].
401
+ In the non-linear regime, we extend the calculations to the second order perturbed geodesic
402
+ equations, namely,
403
+ 0 = δ2P µ∂µP ν + 2δP µ∂µδP ν + P µ∂µδ2P ν + 2gνρP µδP λ(∂µh(1)
404
+ λρ − ∂ρh(1)
405
+ µλ + ∂λh(1)
406
+ µρ )
407
+ +P µP λ
408
+
409
+ gνρ
410
+
411
+ ∂λδg(2)
412
+ µρ − 1
413
+ 2∂ρδg(2)
414
+ µλ
415
+
416
+ + gνκgρωh(1)
417
+ ωκ(∂ρh(1)
418
+ µλ − 2∂λh(1)
419
+ µρ )
420
+
421
+ ,
422
+ (16)
423
+ where where δ2P µ is the second order perturbed 4-momentum, and the second order metric per-
424
+ turbations in Synchronous gauge is
425
+ δg(2)
426
+ 00 = δg(2)
427
+ i0 = 0 ,
428
+ (17a)
429
+ δg(2)
430
+ ij = −2δijψ(2) + 2∂i∂jE(2) + ∂iC(2)
431
+ j
432
+ + ∂jC(2)
433
+ i
434
+ + h(2)
435
+ ij .
436
+ (17b)
437
+ To obtain the timing residuals to the second order, we calculate temporal components of Eq. (16)
438
+ by making use of Eqs. (12) and (17), namely,
439
+ (∂0 − ˆn · ∂)
440
+ �δ2P 0
441
+ P 0
442
+
443
+ = −1
444
+ 2 ˆnaˆnb∂0δg(2)
445
+ ab − 2
446
+ �δP µ
447
+ P 0
448
+
449
+ ∂µ
450
+ �δP 0
451
+ P 0
452
+
453
+ + 2ˆna
454
+ �δP b
455
+ P 0
456
+
457
+ ∂0h(1)
458
+ ab .
459
+ (18)
460
+ Differed from the linearized equations in Eq. (14a), the second and the third terms on the right hand
461
+ side of above equation should be attributed to the non-linear contributions from perturbed geodesic
462
+ equations. It was partly considered in previous study [46], in which the non-linear corrections were
463
+ obtained by expanding the proper time to the second order. By making use of Eqs. (15), the
464
+ solutions of Eq. (18) can be obtained,
465
+ δ2P 0
466
+ k
467
+ P 0
468
+ =
469
+
470
+ d3q
471
+ (2π)3
472
+
473
+ Fcd,ab (k, q) ¯h(1)
474
+ cd,k−q¯h(1)
475
+ ab,qe−i(|k−q|+q)t�
476
+ ,
477
+ (19)
478
+ where
479
+ Fcd,ab (k, q, ˆn) ≡ −
480
+ 1
481
+ |k − q| + q + ˆn · k
482
+
483
+ �Fcd,ab
484
+ L
485
+ (k, q) + |k − q| + q
486
+ 2
487
+
488
+ ∗=ψ,E,C,h
489
+ Fcd,ab
490
+
491
+ (k, q)
492
+
493
+ � ,
494
+ (20)
495
+
496
+ 7
497
+ and
498
+ Fcd,ab
499
+ L
500
+ (k, q) ≡ (|k − q| + q) K0,cd
501
+ k−qK0,ab
502
+ q
503
+ − qjKj,cd
504
+ k−qK0,ab
505
+ q
506
+ ,
507
+ −(kj − qj)K0,cd
508
+ k−qKj,ab
509
+ q
510
+ − qˆnaKb,cd
511
+ k−q − |k − q| ˆncKd,ab
512
+ q
513
+ ,
514
+ (21a)
515
+ Fcd,ab
516
+ ψ
517
+ (k, q) ≡ −2 ˆF ij
518
+ ψ (k, q) fcdab
519
+ ij
520
+ (k, q) ,
521
+ (21b)
522
+ Fcd,ab
523
+ E
524
+ (k, q) ≡ −2(ˆn · k)2 ˆF ij
525
+ E (k, q) fcdab
526
+ ij
527
+ (k, q) ,
528
+ (21c)
529
+ Fcd,ab
530
+ C
531
+ (k, q) ≡ iˆnj(ˆn · k) ˆF ml
532
+ C,j (k, q) fcdab
533
+ ml
534
+ (k, q) ,
535
+ (21d)
536
+ Fcd,ab
537
+ h
538
+ (k, q) ≡ ˆniˆnj ˆF ml
539
+ h,ij (k, q) fcdab
540
+ ml
541
+ (k, q) ,
542
+ (21e)
543
+ where Kµ,ab
544
+ k
545
+ has been defined in Eq. (15) and ˆF ij
546
+ ψ (k, q), ˆF ij
547
+ E (k, q), ˆF ij
548
+ C (k, q) and ˆF ij
549
+ h (k, q) have
550
+ been given in Eq. (7). The Fcd,ab
551
+ L
552
+ (k, q) is derived from the second and the third terms of Eq. (18),
553
+ and the Fcd,ab
554
+ ψ
555
+ (k, q), Fcd,ab
556
+ E
557
+ (k, q), Fcd,ab
558
+ C
559
+ (k, q), and Fcd,ab
560
+ h
561
+ (k, q) are obtained by the solving the
562
+ motion of equations of second order scalar, vector, and tensor perturbations, respectively.
563
+ The difference of the time of arrivals can be quantified by the redshift caused by GWs fluctua-
564
+ tions, namely,
565
+ z = uµ ˜P µ|obs
566
+ uµ ˜P µ|src
567
+ ,
568
+ (22)
569
+ where ˜P µ(≡ P µ + δP µ + 1
570
+ 2δ2P µ + O(3)) is the total 4-momentum of a radio beam from a pulsar.
571
+ For comoving observers in Synchronous gauge uµ = (1, 0, 0, 0), we obtain the redshift and its
572
+ fluctuations as follows,
573
+ z(0) = 0 ,
574
+ (23a)
575
+ z(1) = δP 0
576
+ obs
577
+ P 0
578
+ obs
579
+ − δP 0
580
+ src
581
+ δP 0src
582
+ ,
583
+ (23b)
584
+ z(2) = δ2P 0
585
+ obs
586
+ P 0
587
+ obs
588
+ − δ2P 0
589
+ src
590
+ P 0src
591
+ − 2
592
+ �δP 0
593
+ src
594
+ P 0src
595
+ � �δP 0
596
+ obs
597
+ P 0
598
+ obs
599
+ − δP 0
600
+ src
601
+ δP 0src
602
+
603
+ ,
604
+ (23c)
605
+ where the perturbed 4-momentums can be given by δ(n)P 0/P 0 =
606
+
607
+ d3k
608
+ (2π)3
609
+
610
+ (δ(n)P 0
611
+ k/P 0)eik·x�
612
+ , and
613
+ the expressions of δ(n)P 0
614
+ k/P 0 have been given in Eqs. (15) and (19). From Eq. (12), we have known
615
+ the events of a pulsar emitting a radio beam tsrc = t − L and xj
616
+ src = Lˆnj, and the events of the
617
+ beam reaching the earth tobs = t and xj
618
+ obs = 0. Therefore, the redshifts and its fluctuations in
619
+
620
+ 8
621
+ Eqs. (23) can be rewritten in the form of
622
+ z(1) =
623
+
624
+ d3k
625
+ (2π)3
626
+
627
+ K0,ab (k, ˆn) ¯h(1)
628
+ ab,ke−ikt(1 − eikL(1+ˆn·ˆk))
629
+
630
+ ,
631
+ (24a)
632
+ z(2) =
633
+ � d3kd3q
634
+ (2π)6
635
+
636
+ Fcd,ab (k, q, ˆn) ¯h(1)
637
+ cd,k−q¯h(1)
638
+ ab,qe−i(|k−q|+q)t �
639
+ 1 − eiL(|k−q|+q+ˆn·k)�
640
+ +K0,cd (k, ˆn) K0,ab (q, ˆn) ¯h(1)
641
+ cd,k¯h(1)
642
+ ab,qe−i(k+q)t
643
+ ×1
644
+ 2
645
+
646
+ eiqL(1+ˆn·ˆq)(1 − eikL(1+ˆn·ˆk)) + eikL(1+ˆn·ˆk)(1 − eiqL(1+ˆn·ˆq))
647
+ ��
648
+ .
649
+ (24b)
650
+ In practical, the observables are the timing residuals of pulsar timing. It can be obtained by
651
+ integration of the redshifts in Eqs. (24) over observation duration t, namely, R(n)(t) =
652
+ � t
653
+ 0 z(n)(¯t)d¯t.
654
+ Thus, one can obtain expressions of the timing residuals in the form of
655
+ R(1) =
656
+
657
+ d3k
658
+ (2π)3
659
+ � 1
660
+ ikK0,ab (k, ˆn) ¯h(1)
661
+ ab,k(1 − e−ikt)(1 − eikL(1+ˆn·ˆk))
662
+
663
+ ,
664
+ (25)
665
+ R(2) =
666
+ � d3kd3q
667
+ (2π)6
668
+
669
+ 1
670
+ i (|k − q| + q)Fcd,ab (k, q, ˆn) ¯h(1)
671
+ cd,k−q¯h(1)
672
+ ab,q(1 − e−i(|k−q|+q)t)
673
+
674
+ 1 − eiL(|k−q|+q+ˆn·k)�
675
+ +
676
+ 1
677
+ i(k + q)K0,cd (k, ˆn) K0,ab (q, ˆn) ¯h(1)
678
+ cd,k¯h(1)
679
+ ab,q(1 − e−i(k+q)t)
680
+ ×1
681
+ 2
682
+
683
+ eiqL(1+ˆn·ˆq)(1 − eikL(1+ˆn·ˆk)) + eikL(1+ˆn·ˆk)(1 − eiqL(1+ˆn·ˆq))
684
+ ��
685
+ .
686
+ (26)
687
+ Due to kt ≪ 1 for the nHz band PTAs, the timing residuals can be expanded as kt → 0. In
688
+ this approximation, the leading-order timing residuals reduce to R(n) = tz(n)|t=0. It indicates that
689
+ the corrections of the outputs (timing residuals) of PTAs can be obtained via the correlations of
690
+ redshifts, namely, ⟨R(x)R(x′)⟩ = t2⟨z(x)z(x′)⟩.
691
+ IV.
692
+ SPATIAL CORRELATIONS AND OVERLAP REDUCTION FUNCTIONS
693
+ A.
694
+ Non-linear correction of the correlations and non-Gaussianity
695
+ The timing residuals can reflect physical information of SGWBs in the space. Thus, it also
696
+ should be studied statistically, due to stochastic nature of the SGWBs. The spatial correlations of
697
+ the timing residuals, as mentioned above, are proportional to spatial correlations of the redshifts
698
+ ⟨z(x)z(x′)⟩, where the x and x′ can represent the locations of pulsar pairs. For illustration, we let
699
+ zα ≡ z(x) and zβ ≡ z(x′) in the rest of the paper.
700
+ To calculate the correlations order by order, we expand correlations for the redshifts zα in the
701
+ form of
702
+ ⟨zαzβ⟩ = ⟨z(1)
703
+ α z(1)
704
+ β ⟩ + 1
705
+ 2(⟨z(1)
706
+ α z(2)
707
+ β ⟩ + ⟨z(2)
708
+ α z(1)
709
+ β ⟩) + O(4) .
710
+ (27)
711
+
712
+ 9
713
+ For PTAs, the angular correlation derived from ⟨z(1)
714
+ α z(1)
715
+ β ⟩ is known as Hellings-Downs curve [31].
716
+ In this section, we will extend the spatial correlations to the non-linear regime with ⟨z(1)
717
+ α z(2)
718
+ β ⟩ and
719
+ ⟨z(2)
720
+ α z(1)
721
+ β ⟩.
722
+ The purpose of PTAs is extracting the physical information of h(1)
723
+ ij based on observation of the
724
+ timing residuals. Since z(1) ∝ h(1) and z(2) ∝ (h(1))2 shown in Eq. (24), the ⟨z(1)
725
+ α z(1)
726
+ β ⟩ and ⟨z(1)
727
+ α z(2)
728
+ β ⟩
729
+ could encode two-point and three-point correlations of h(1)
730
+ ij , respectively. Here, we strict our study
731
+ to the isotropic and unpolarized GWs. In this case, the two-point correlations of hλ
732
+ k in Fourier
733
+ space can be given by
734
+
735
+ h(1),λ1
736
+ k1
737
+ h(1),λ2
738
+ k2
739
+
740
+ = (2π)3δ (k1 + k2) δλ1λ2P(k2) ,
741
+ (28)
742
+ where the P(k) is power spectrum, the λ∗(= +, ×) is polarization index, and the Kronecker symbol
743
+ δλ1λ2 indicates that h(1),λ
744
+ k
745
+ is unpolarized. In the non-linear regime, the three-point correlations in
746
+ Fourier space can be given by
747
+
748
+ h(1),λ1
749
+ k1
750
+ h(1),λ2
751
+ k2
752
+ h(1),λ3
753
+ k3
754
+
755
+ = (2π)6δ(3) (k1 + k2 + k3) Bλ1λ2λ3(k1, k2, k3) ,
756
+ (29)
757
+ where the Bλ1λ2λ3(k1, k2, k3) is bi-spectrum.
758
+ It does not vanish due to the non-Gaussianity of
759
+ SGWBs. For the unpolarized GWs, i) different polarizations of h(1),λ have no correlations, namely,
760
+ Bλ1λ2λ3(k1, k2, k3) does not vanish, only if λ1 = λ2 = λ3, and ii) different components of the bi-
761
+ spectrum are equally weighted, namely, the B+++(k1, k2, k3) = B×××(k1, k2, k3). To quantifying
762
+ shapes of the non-Gaussianity, we follow the parameterization scenario used in Ref. [46]. With all
763
+ the above assumptions, the bi-spectrum in Eq. (29) can be given in the form of
764
+ Bλ1λ2λ3(k1, k2, k3) = Hλ1λ2λ3(k3)P(k3)δ(k1 − χk3)δ(k2 − ζk3) ,
765
+ (30)
766
+ where we have H+++(k3) = H×××(k3) ≡ κ(k3) due to the unpolarized GWs, the P(k) is the power
767
+ spectrum defined in Eq. (28), and the ζ and χ are the dimensionless quantities formulating the
768
+ shape of bi-spectrum. In principle, the shape of bi-spectrum quantified by κ, ζ and χ should be
769
+ given based on generation mechanism of GWs. Here, we did not involve any physical models for
770
+ the generation mechanism, but utilize the non-Gaussianity based on a phenomenological param-
771
+ eterization. Because of k1 + k2 + k3 = 0 in Eq. (29), the parameters ζ and χ should satisfy the
772
+ relations,
773
+ χ + ζ ⩾ 1 , and |χ − ζ| ⩽ 1 .
774
+ (31)
775
+ In Fig. 1, we show scheme diagram for the shape of the bi-spectrum, in which the ζ and χ are
776
+ defined with ζ ≡ BC/AB and χ ≡ CA/AB.
777
+ In Fig. 2, we show the parameter space (ζ, χ),
778
+
779
+ 10
780
+ k3
781
+ k1
782
+ k2
783
+ A
784
+ B
785
+ C
786
+ Figure 1: The scheme diagram of the parameterized bi-spectrum defined in Eq. (30).
787
+ 0.0
788
+ 0.5
789
+ 1.0
790
+ 1.5
791
+ 2.0
792
+ 0.0
793
+ 0.5
794
+ 1.0
795
+ 1.5
796
+ 2.0
797
+ ζ
798
+ χ
799
+ ζ  0.60
800
+ χ  0.60
801
+ ζ  0.87
802
+ χ  0.87
803
+ ζ  1.1
804
+ χ  1.1
805
+ ζ  1.4
806
+ χ  1.4
807
+ ζ  1.7
808
+ χ  1.7
809
+ ζ  1.9
810
+ χ  1.9
811
+ ζ  1.0
812
+ χ  1.0
813
+ ζ  1.3
814
+ χ  0.87
815
+ ζ  1.4
816
+ χ  0.87
817
+ ζ  1.9
818
+ χ  1.1
819
+ Figure 2: Left panel: parameter space of (ζ, χ) for the parameterized non-Gaussianity of hλ
820
+ ij,k. The
821
+ points locate the available domain of the parameters. The dashed curve is formulated by ζ = χ, and the
822
+ dotted curve is formulated by 1
823
+ 2ζχ
824
+
825
+ 1 −
826
+
827
+ ζ2+χ2−1
828
+ 2ζχ
829
+ �2
830
+ =
831
+
832
+ 3
833
+ 4 . Right panel: The shape of non-Gaussianity for
834
+ selected parameters ζ and χ on the dashed and dotted curves.
835
+ where the points locate the domain of available parameters in Eqs. (31). Here, every single point
836
+ represents a distinguishable shape of non-Gaussianity. As shown in the right panel of Fig. 2, for
837
+ example, the orange points on the dashed line represent isosceles triangles, and the green points
838
+ on the dotted curve represent triangles with the same height.
839
+ B.
840
+ Overlap reduction functions of PTAs in second order
841
+ By making use of Eqs. (24a) and (28), the linear-order correlations of the redshifts for a pulsar
842
+ pair can be given by
843
+ ⟨z(1)
844
+ α z(1)
845
+ β ⟩ =
846
+ � k2dk
847
+ 2π2 P(k)
848
+ � dΩ
849
+
850
+
851
+ K0,ab (k, ˆnα) K0,cd (k, ˆnβ) eλ
852
+ ab(ˆk)eλ
853
+ cd(ˆk)
854
+ ×(1 − eikLα(1+ˆnα·ˆk))(1 − e−ikLβ(1+ˆnβ·ˆk)) ,
855
+
856
+ (32)
857
+
858
+ 11
859
+ where the eλ
860
+ cd(ˆk) is polarization tensor for h(1)
861
+ ij,k, the θαβ ≡ cos−1(ˆnα · ˆnβ), and the P(k) is the
862
+ power spectrum defined in Eq. (28). The ORFs describe angular correlations of outputs of the GW
863
+ detectors, and can be obtained via surface integrals over the unit sphere ˆk. Rewriting Eq. (32) in
864
+ the form of
865
+ ⟨z(1)
866
+ α z(1)
867
+ β ⟩ ≡
868
+ � k2dk
869
+ 2π2 P(k)Γ(2)(k, θαβ) ,
870
+ (33)
871
+ one can read the ORFs,
872
+ Γ(2)(k, θab) =
873
+ � dΩ
874
+
875
+
876
+ K0,ab (k, ˆnα) K0,cd (k, ˆnβ) eλ
877
+ ab(ˆk)eλ
878
+ cd(ˆk)
879
+ ×(1 − eikLα(1+ˆnα·ˆk))(1 − e−ikLβ(1+ˆnβ·ˆk))
880
+
881
+ .
882
+ (34)
883
+ Because of the approximation kL ≫ 1 for the known frequency band and arms length of PTAs,
884
+ above ORFs would reduce to Hellings-Downs curve [31], namely,
885
+ ΓHD(θab) ≡ Γ(2)(k, θab)|kLα≫1,kLβ≫1 =
886
+ � dΩ
887
+
888
+
889
+ K0,ab (k, ˆnα) K0,cd (k, ˆnβ) eλ
890
+ ab(ˆk)eλ
891
+ cd(ˆk)
892
+
893
+ . (35)
894
+ Here, the oscillation parts in Eq. (34) is suppressed by the factor (kL)−1, and thus can be neglected
895
+ for PTAs. Besides, the ORFs without the approximation were also studied [43–45].
896
+ To the second order, we further compute non-linear corrections for the correlations of redshift
897
+ in Eq. (24), namely,
898
+ ⟨z(1)
899
+ α z(2)
900
+ β ⟩ =
901
+ � d3kd3k′d3q′
902
+ (2π)12
903
+ ��
904
+ h(1)
905
+ k,mlh(1)
906
+ k′−q′,cd
907
+ ∗h(1)
908
+ q,ab
909
+ ∗�
910
+ K0,ml (k, ˆnα) Fcd,ab �
911
+ k′, q′, ˆnβ
912
+
913
+ ×e−ikt(1 − eikLα(1+ˆnα·ˆk))eit(|k′−q′|+q′) �
914
+ 1 − e−iLβ(|k′−q′|+q′+ˆnβ·k′)�
915
+ +1
916
+ 2
917
+
918
+ h(1)
919
+ k,mlh(1)
920
+ k′,cd
921
+ ∗h(1)
922
+ q,ab
923
+ ∗�
924
+ K0,ml (k, ˆnα) K0,cd �
925
+ k′, ˆnβ
926
+
927
+ K0,ab �
928
+ q′, ˆnβ
929
+
930
+ e−ikt(1 − eikLα(1+ˆnα·ˆk))ei(k′+q′)t
931
+ ×
932
+
933
+ e−iq′Lβ(1+ˆnβ·ˆq′)(1 − e−ik′Lβ(1+ˆnβ·ˆk′)) + e−iq′Lβ(1+ˆnβ·ˆq′)(1 − e−ik′Lβ(1+ˆnβ·ˆk′))
934
+ ��
935
+ ,
936
+ (36)
937
+ where above three-point correlations of h(1)
938
+ ij,k can be written in terms of polarization components
939
+ h(1),λ
940
+ k
941
+ ,
942
+
943
+ h(1)
944
+ k,cdh(1)
945
+ ab,ph(1)
946
+ q,ml
947
+
948
+ = eλ1
949
+ cd(ˆk)eλ2
950
+ ab(ˆp)eλ3
951
+ ml(ˆq)
952
+
953
+ h(1),λ1
954
+ k
955
+ h(1),λ2
956
+ p
957
+ h(1),λ3
958
+ q
959
+
960
+ .
961
+ (37)
962
+
963
+ 12
964
+ By making use of Eqs. (29) and (30), the Eq. (34) is evaluated to be
965
+ ⟨z(1)
966
+ α z(2)
967
+ β ⟩ + ⟨z(2)
968
+ α z(1)
969
+ β ⟩ =
970
+
971
+ d3k
972
+ (2π)3
973
+ � dφq
974
+
975
+
976
+ eλ1
977
+ ml(ˆk)eλ2
978
+ cd( �
979
+ k − q)eλ3
980
+ ab(ˆq)Hλ1λ2λ3(k)P(k)
981
+ ×
982
+ ��
983
+ K0,ml (k, ˆnα) Fcd,ab (k, q, ˆnβ) (1 − eikLα(1+ˆnα·ˆk))(1 − e−ikLβ(χ+ζ+ˆnβ·ˆk))
984
+ +1
985
+ 2K0,ml (k, ˆnα) K0,cd (k − q, ˆnβ) K0,ab (q, ˆnβ)
986
+ ×e−iζkLβ(1+ˆnβ·ˆq)(1 − eikLα(1+ˆnα·ˆk))(1 − e−iLβ(χk+ˆnβ·(k−q)))
987
+ +1
988
+ 2K0,ml (k, ˆnα) K0,cd (q, ˆnβ) K0,ab (k − q, ˆnβ)
989
+ ×e−iLβ(χk+ˆnβ·(k−q))(1 − eikLα(1+ˆnα·ˆk))(1 − e−iζkLβ(1+ˆnβ·ˆq)))
990
+
991
+ e−ikt(1−χ−ζ)
992
+ +
993
+
994
+ Fcd,ab (k, q, ˆnα) K0,ml (k, ˆnβ) (1 − eikLα(ζ+χ+ˆnα·ˆk))(1 − e−ikLβ(1+ˆnβ·ˆk))
995
+ +1
996
+ 2Kml (k, ˆnβ) K0,cd (k − q, ˆnα) K0,ab (q, ˆnα)
997
+ ×eiζkLα(1+ˆnα·ˆq)(1 − eiLα(χk+ˆnα·(k−q)))(1 − e−ikLβ(1+ˆnβ·ˆk))
998
+ +1
999
+ 2Kml (k, ˆnβ) K0,cd (q, ˆnα) K0,ab (k − q, ˆnα)
1000
+ ×eiLα(χk+ˆnα·(k−q))(1 − eiζkLα(1+ˆnα·ˆq))(1 − e−ikLβ(1+ˆnβ·ˆk))
1001
+
1002
+ eikt(1−χ−ζ)��
1003
+ ,
1004
+ (38)
1005
+ where the momentums are give by
1006
+ q =
1007
+ �1 + ζ2 − χ2
1008
+ 2
1009
+
1010
+ k +
1011
+
1012
+ ((ζ + χ)2 − 1)(1 − (ζ − χ)2)
1013
+ 2
1014
+ k (cos φqu + sin φqυ) ,
1015
+ (39a)
1016
+ ˆq = 1 + ζ2 − χ2
1017
+
1018
+ ˆk +
1019
+
1020
+ ((ζ + χ)2 − 1)(1 − (ζ − χ)2)
1021
+
1022
+ (cos φqu + sin φqυ) ,
1023
+ (39b)
1024
+
1025
+ k − q = χ2 − ζ2 + 1
1026
+
1027
+ ˆk −
1028
+
1029
+ ((ζ + χ)2 − 1)(1 − (ζ − χ)2)
1030
+
1031
+ (cos φqu + sin φqυ) .
1032
+ (39c)
1033
+ Here, the u and υ represent polarization vectors with respect to the ˆk. Using Eq. (39a), one can
1034
+ verify the relations of q = ζk and |k − q| = χk shown in Fig. 1. From Eq. (38), it is found that the
1035
+ three-point correlations are proportional to e±ikt(1−χ−ζ). It indicates that the values of correlations
1036
+ would oscillate with time around zero. In practical, due to kt ≪ 1 for nHz band PTAs, we here
1037
+ can let e±ikt(1−χ−ζ) ≃ 1.
1038
+ Similarly, the correlations in Eq. (38) can be rewritten in the form of
1039
+ ⟨z(1)
1040
+ α z(2)
1041
+ β ⟩ + ⟨z(2)
1042
+ α z(1)
1043
+ β ⟩ =
1044
+ � k2dk
1045
+ 2π2 P(k)Γ(3)(k, θab) ,
1046
+ (40)
1047
+
1048
+ 13
1049
+ where the ORFs in the non-linear order are given by
1050
+ Γ(3)(k, θαβ) =
1051
+ � dΩ
1052
+
1053
+ � dφq
1054
+
1055
+
1056
+ eλ1
1057
+ ml(ˆk)eλ2
1058
+ cd( �
1059
+ k − q)eλ3
1060
+ ab(ˆq)Hλ1λ2λ3(k)P(k)
1061
+ ×
1062
+
1063
+ K0,ml (k, ˆnα) Fcd,ab (k, q, ˆnβ) (1 − eikLα(1+ˆnα·ˆk))(1 − e−ikLβ(χ+ζ+ˆnβ·ˆk))
1064
+ +Fcd,ab (k, q, ˆnα) K0,ml (k, ˆnβ) (1 − eikLα(ζ+χ+ˆnα·ˆk))(1 − e−ikLβ(1+ˆnβ·ˆk))
1065
+ +1
1066
+ 2K0,ml (k, ˆnα) K0,cd (k − q, ˆnβ) K0,ab (q, ˆnβ)
1067
+ ×e−iζkLβ(1+ˆnβ·ˆq)(1 − eikLα(1+ˆnα·ˆk))(1 − e−iLβ(χk+ˆnβ·(k−q)))
1068
+ +1
1069
+ 2K0,ml (k, ˆnα) K0,cd (q, ˆnβ) K0,ab (k − q, ˆnβ)
1070
+ ×e−iLβ(χk+ˆnβ·(k−q))(1 − eikLα(1+ˆnα·ˆk))(1 − e−iζkLβ(1+ˆnβ·ˆq)))
1071
+ +1
1072
+ 2Kml (k, ˆnβ) K0,cd (k − q, ˆnα) K0,ab (q, ˆnα)
1073
+ ×eiζkLα(1+ˆnα·ˆq)(1 − eiLα(χk+ˆnα·(k−q)))(1 − e−ikLβ(1+ˆnβ·ˆk))
1074
+ +1
1075
+ 2Kml (k, ˆnβ) K0,cd (q, ˆnα) K0,ab (k − q, ˆnα)
1076
+ ×eiLα(χk+ˆnα·(k−q))(1 − eiζkLα(1+ˆnα·ˆq))(1 − e−ikLβ(1+ˆnβ·ˆk))
1077
+ ��
1078
+ .
1079
+ (41)
1080
+ The expression of Hλ1λ2λ3(k) has been given in the Eq. (30). Since the oscillation parts in the
1081
+ integration is suppressed by the factor (kL)−1 for PTAs, we also adopt kLα ≫ 1 and kLβ ≫ 1 for
1082
+ evaluating Eq. (41). Namely, the ORFs can be simplified in the form of
1083
+ Γnl(k, θαβ) ≡ Γ(3)(k, θab)|kLα≫1,kLβ≫1
1084
+ = κ
1085
+ � dΩ
1086
+
1087
+ � dφq
1088
+
1089
+ ��
1090
+ e+
1091
+ ml(ˆk)e+
1092
+ cd( �
1093
+ k − q)e+
1094
+ ab(ˆq) + e×
1095
+ ml(ˆk)e×
1096
+ cd( �
1097
+ k − q)e×
1098
+ ab(ˆq)
1099
+
1100
+ ×
1101
+
1102
+ K0,ml (k, ˆnα) Fcd,ab (k, q, ˆnβ) + Fcd,ab (k, q, ˆnα) K0,ml (k, ˆnβ)
1103
+ ��
1104
+ .
1105
+ (42)
1106
+ In the following, we would show the results of Γnl(k, θab) with selected parameters ζ and χ. In
1107
+ Fig. 3, we show the ORFs over the κ as function of parameter (ζ, χ) for given angle θαβ. It is
1108
+ found that the values of Γln/κ tend to be zero for large ζ and χ, and to be larger in the case of
1109
+ ζ + χ = 1. In Fig. 4, we show the ORFs for select parameters given in right panel of Fig. 2. It
1110
+ is confirmed that there is a larger value of ORFs for the parameters ζ, χ → 0. Differed from the
1111
+ ORFs in the linear order, there are three extreme points in the curves of the non-linear ORFs. In
1112
+ order to clarify the extreme cases, such as ζ − χ = 1 or ζ + χ = 1, we show the ORFs as function
1113
+ of θαβ for ζ − χ → 1 and ζ + χ → 1 in Figs. 7 and 6, respectively. From Fig. 7, the values of ORFs
1114
+ tend to be zero as ζ − χ → 1, and these ORFs have the same zero of the Γ(k, θαβ) with respect
1115
+ to θαβ. From Fig. 6, the values of ORFs tend to be larger, and the numbers of extreme points are
1116
+ reduced as ζ + χ → 1, which is different from the results shown in the left panel of Fig. 4 for a
1117
+ larger ζ + χ.
1118
+ In the case of ζ + χ = 1, we can further simplify the expression of ORFs as
1119
+
1120
+ 14
1121
+ Figure 3: Non-linear ORFs over the κ as function of parameter (ζ, χ) for θαβ = 0, π/4, π/2, π.
1122
+ Γnl(k, θαβ) = κ
1123
+ � dΩ
1124
+
1125
+ ��
1126
+ e+
1127
+ ml(ˆk)e+
1128
+ cd(�k)e+
1129
+ ab(ˆk) + e×
1130
+ ml(ˆk)e×
1131
+ cd(�k)e×
1132
+ ab(ˆk)
1133
+
1134
+ ×
1135
+
1136
+ K0,ml (k, ˆnα) Fcd,ab (k, ζk, ˆnβ) + Fcd,ab (k, ζk, ˆnα) K0,ml (k, ˆnβ)
1137
+ ��
1138
+ .
1139
+ (43)
1140
+ Here, the integration over the angle φq simply gives 2π. In Fig. 7, we show the ORFs in the case
1141
+ of ζ + χ = 1 for different ζ. It is found that the values of ORFs get smaller as ζ → 0.
1142
+ In principle, the parameter κ in Eq. (42) depends on the wave number k, and the shape of
1143
+ non-Gaussianity quantified by ζ and χ. There seems no reason that the non-linear corrections
1144
+ come from the non-Gaussianity with one of the available parameters (ζ, χ). For a general case, the
1145
+ total ORFs to the non-linear order should be the sum of all the shape of non-Gaussianity weighted
1146
+ by parameter κ, namely,
1147
+ Γ(k, θαβ) = ΓHD(θαβ) + 1
1148
+ 2
1149
+
1150
+ ζ,χ
1151
+ Γnl(k, θαβ)∆σ ,
1152
+ (44)
1153
+
1154
+ 15
1155
+ ζ  χ  0.60
1156
+ ζ  χ  0.87
1157
+ ζ  χ  1.1
1158
+ ζ  χ  1.4
1159
+ ζ  χ  1.7
1160
+ ζ  χ  1.9
1161
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1162
+ -0.05
1163
+ 0.00
1164
+ 0.05
1165
+ 0.10
1166
+ 0.15
1167
+ 0.20
1168
+ θαβ
1169
+ Γnlθαβ
1170
+ ζ  χ  1.0
1171
+ ζ  1.3 , χ  0.87
1172
+ ζ  1.4 , χ  0.87
1173
+ ζ  1.9 , χ  1.1
1174
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1175
+ -0.04
1176
+ -0.02
1177
+ 0.00
1178
+ 0.02
1179
+ 0.04
1180
+ 0.06
1181
+ 0.08
1182
+ θαβ
1183
+ Γnlθαβ
1184
+ Figure 4: Non-linear ORFs for selected parameters ζ and χ shown in right panel of Fig. 2, and κ = 1.
1185
+ Left panel: the non-Gaussianity in the shape of isosceles triangles. Right panel: the non-Gaussianity in the
1186
+ shape of the triangles with the same height.
1187
+ ζ  0.500 , χ  1.40
1188
+ ζ  0.500 , χ  1.47
1189
+ ζ  0.500 , χ  1.49
1190
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1191
+ -0.002
1192
+ -0.001
1193
+ 0.000
1194
+ 0.001
1195
+ 0.002
1196
+ 0.003
1197
+ 0.004
1198
+ 0.005
1199
+ θαβ
1200
+ Γnlθαβ
1201
+ ζ  1.00 , χ  1.90
1202
+ ζ  1.00 , χ  1.97
1203
+ ζ  1.00 , χ  1.99
1204
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1205
+ -0.0005
1206
+ 0.0000
1207
+ 0.0005
1208
+ 0.0010
1209
+ 0.0015
1210
+ 0.0020
1211
+ θαβ
1212
+ Γnlθαβ
1213
+ ζ  0.500
1214
+ χ  1.40
1215
+ ζ  0.500
1216
+ χ  1.47
1217
+ ζ  0.500
1218
+ χ  1.49
1219
+ ζ  1.00
1220
+ χ  1.90
1221
+ ζ  1.00
1222
+ χ  1.97
1223
+ ζ  1.00
1224
+ χ  1.99
1225
+ Figure 5: Non-linear ORFs for selected parameters ζ − χ → 1, and κ = 1.
1226
+
1227
+ 16
1228
+ ζ  χ  0.600
1229
+ ζ  χ  0.533
1230
+ ζ  χ  0.510
1231
+ ζ  χ  0.501
1232
+ ζ  χ  0.500
1233
+ 0.0
1234
+ 0.5
1235
+ 1.0
1236
+ 1.5
1237
+ 2.0
1238
+ 2.5
1239
+ 3.0
1240
+ 0.00
1241
+ 0.05
1242
+ 0.10
1243
+ 0.15
1244
+ 0.20
1245
+ 0.25
1246
+ 0.30
1247
+ θαβ
1248
+ Γnlθαβ
1249
+ ζ  0.600
1250
+ χ  0.600
1251
+ ζ  0.533
1252
+ χ  0.533
1253
+ ζ  0.510
1254
+ χ  0.510
1255
+ ζ  0.501
1256
+ χ  0.501
1257
+ ζ  0.500
1258
+ χ  0.500
1259
+ Figure 6: Non-linear ORFs for selected parameters ζ + χ → 1, and κ = 1.
1260
+ ζ  χ  0.50
1261
+ ζ  0.75 , χ  0.25
1262
+ ζ  0.90 , χ  0.10
1263
+ ζ  0.99 , χ  0.010
1264
+ 0.0
1265
+ 0.5
1266
+ 1.0
1267
+ 1.5
1268
+ 2.0
1269
+ 2.5
1270
+ 3.0
1271
+ 0.00
1272
+ 0.05
1273
+ 0.10
1274
+ 0.15
1275
+ 0.20
1276
+ 0.25
1277
+ 0.30
1278
+ 0.35
1279
+ θαβ
1280
+ Γnlθαβ
1281
+ ζ  0.500
1282
+ χ  0.500
1283
+ ζ  0.750
1284
+ χ  0.250
1285
+ ζ  0.900
1286
+ χ  0.100
1287
+ ζ  0.990
1288
+ χ  0.0100
1289
+ Figure 7: Non-linear ORFs for selected parameters ζ + χ = 1, ζ → 1, and κ = 1.
1290
+ where ∆σ is the size of grids of points in the parameter space (ζ, χ).
1291
+ For example, we have
1292
+ ∆σ = 0.018 for the grids in the left panel of Fig. 2. Here, the Γnl(k, θαβ) is proportional to the
1293
+ parameter κ(k; ζ, χ) shown in Eq. (42). The dependence of Γ(k, θαβ) on the parameters ζ and
1294
+
1295
+ 17
1296
+ ΓHD(θαβ)
1297
+ Γtot(θαβ)
1298
+ ζ,χ<2,κ=1
1299
+ Γtot(θαβ)
1300
+ ζ,χ<10,κ=1
1301
+ Γtot(θαβ)
1302
+ ζ,χ<2,κ=-1
1303
+ Γtot(θαβ)
1304
+ ζ,χ<10,κ=-1
1305
+ 0.0
1306
+ 0.5
1307
+ 1.0
1308
+ 1.5
1309
+ 2.0
1310
+ 2.5
1311
+ 3.0
1312
+ -0.1
1313
+ 0.0
1314
+ 0.1
1315
+ 0.2
1316
+ 0.3
1317
+ 0.4
1318
+ θαβ
1319
+ Γθαβ
1320
+ 0.0
1321
+ 0.5
1322
+ 1.0
1323
+ 1.5
1324
+ 2.0
1325
+ 0.0
1326
+ 0.5
1327
+ 1.0
1328
+ 1.5
1329
+ 2.0
1330
+ ζ
1331
+ χ
1332
+ 0
1333
+ 2
1334
+ 4
1335
+ 6
1336
+ 8
1337
+ 10
1338
+ 0
1339
+ 2
1340
+ 4
1341
+ 6
1342
+ 8
1343
+ 10
1344
+ ζ
1345
+ χ
1346
+ Figure 8: Left panel: total ORFs with non-linear corrections. The non-linear ORFs are sum of the
1347
+ selected parameters κ = ±1 and (ζ, χ) shown with the points in the right panel. Right panel: The sets of
1348
+ selected parameters in the plots of (ζ, χ). The ζ, χ ∈ (0, 2), and ζ, χ ∈ (0, 10) for the top-right panel, and
1349
+ bottom-right panel, respectively.
1350
+ χ should be based on specific physical models, which are not involved in our study. Here, we
1351
+ phenomenologically show the ORFs in Eq. (44) by letting |κ| ≡ 1 on the left panel of Fig. 8.
1352
+ Because of the parameter space ζ, χ ∈ (0, ∞) in Eq. (31), it is not practical to consider to all the
1353
+ shape of non-Gaussianity with |κ| = 1. In principle, if the deviation from Hellings-Downs curve is
1354
+ completely ascribed to the non-linear corrections of the ORFs, one can fit the κ(k; ζ, χ) with real
1355
+ data [28].
1356
+ V.
1357
+ CONCLUSIONS AND DISCUSSIONS
1358
+ In this paper, we extended the study on the non-linear corrections of the ORFs in the present
1359
+ non-Gaussianity, in which self-interaction of gravity is first taken into considerations. Due to the
1360
+ self-interaction of gravity, the linear order GWs can generate the non-linear one, which will change
1361
+ the response of GW detectors. Based on the perturbed Einstein field equations for the second order
1362
+ metric perturbations, and perturbed geodesic equations to the second order, we obtained non-linear
1363
+ order timing residuals of pulsar timing, and compute the ORFs with non-linear corrections in the
1364
+
1365
+ 18
1366
+ PTA frequency band.
1367
+ We considered the self-interaction of gravity through evaluating Einstein field equations in
1368
+ vacuum for the second order metric perturbations. Namely, the space-time fluctuations are freely
1369
+ propagating within the GW detectors described in Einstein’s gravity.
1370
+ It is suggested that the
1371
+ influence from secondary effect of GWs on the detectors could be different in the alternative theory
1372
+ of gravity, or in the present of (dark) matter.
1373
+ This paper showed that the leading order non-linear corrections for the ORFs come from the
1374
+ three-point correlations of h(1)
1375
+ k,ij. It is different from pioneers’ study that the correlations are from
1376
+ the four-points functions [46]. It is because the contributions from three-point correlations in our
1377
+ study are all derived from the self-interaction of gravity shown in Eqs. (21a)–(21e), which was not
1378
+ considered in pioneers’ study.
1379
+ Acknowledgments.
1380
+ The author thanks Prof. Qing-Guo Huang and Prof. Sai Wang for useful
1381
+ discussions.
1382
+ [1] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974).
1383
+ [2] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
1384
+ [3] C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO].
1385
+ [4] S. Vagnozzi, Mon. Not. Roy. Astron. Soc. 502, L11 (2021), arXiv:2009.13432 [astro-ph.CO].
1386
+ [5] M. Benetti, L. L. Graef, and S. Vagnozzi, Phys. Rev. D 105, 043520 (2022), arXiv:2111.04758 [astro-
1387
+ ph.CO].
1388
+ [6] E. Witten, Phys. Rev. D 30, 272 (1984).
1389
+ [7] C. J. Hogan, Mon. Not. Roy. Astron. Soc. 218, 629 (1986).
1390
+ [8] Z. Arzoumanian et al. (NANOGrav), Phys. Rev. Lett. 127, 251302 (2021), arXiv:2104.13930 [astro-
1391
+ ph.CO].
1392
+ [9] A. Vilenkin, Phys. Lett. B 107, 47 (1981).
1393
+ [10] C. J. Hogan and M. J. Rees, Nature 311, 109 (1984).
1394
+ [11] T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052 (1985).
1395
+ [12] R. Abbott et al. (LIGO Scientific,
1396
+ Virgo,
1397
+ KAGRA), Phys. Rev. Lett. 126, 241102 (2021),
1398
+ arXiv:2101.12248 [gr-qc].
1399
+ [13] R. Schneider, V. Ferrari, S. Matarrese, and S. F. Portegies Zwart, Mon. Not. Roy. Astron. Soc. 324,
1400
+ 797 (2001), arXiv:astro-ph/0002055.
1401
+ [14] A. J. Farmer and E. S. Phinney, Mon. Not. Roy. Astron. Soc. 346, 1197 (2003), arXiv:astro-ph/0304393.
1402
+ [15] A. Sesana, A. Vecchio,
1403
+ and C. N. Colacino, Mon. Not. Roy. Astron. Soc. 390, 192 (2008),
1404
+ arXiv:0804.4476 [astro-ph].
1405
+
1406
+ 19
1407
+ [16] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 131102 (2016), arXiv:1602.03847
1408
+ [gr-qc].
1409
+ [17] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 120, 091101 (2018), arXiv:1710.05837
1410
+ [gr-qc].
1411
+ [18] D.
1412
+ Blair
1413
+ and
1414
+ L.
1415
+ Ju,
1416
+ Mon.
1417
+ Not.
1418
+ Roy.
1419
+ Astron.
1420
+ Soc.
1421
+ 283,
1422
+ 648
1423
+ (1996),
1424
+ https://academic.oup.com/mnras/article-pdf/283/2/648/3104130/283-2-648.pdf.
1425
+ [19] V. Ferrari, S. Matarrese, and R. Schneider, Mon. Not. Roy. Astron. Soc. 303, 247 (1999), arXiv:astro-
1426
+ ph/9804259.
1427
+ [20] A. Buonanno, G. Sigl, G. G. Raffelt, H.-T. Janka, and E. Muller, Phys. Rev. D 72, 084001 (2005),
1428
+ arXiv:astro-ph/0412277.
1429
+ [21] B. Finkel, H. Andresen, and V. Mandic, Phys. Rev. D 105, 063022 (2022), arXiv:2110.01478 [gr-qc].
1430
+ [22] B. J. Owen, L. Lindblom, C. Cutler, B. F. Schutz, A. Vecchio, and N. Andersson, Phys. Rev. D 58,
1431
+ 084020 (1998), arXiv:gr-qc/9804044.
1432
+ [23] R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), Phys. Rev. D 104, 022004 (2021), arXiv:2101.12130
1433
+ [gr-qc].
1434
+ [24] R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), Phys. Rev. D 104, 022005 (2021), arXiv:2103.08520
1435
+ [gr-qc].
1436
+ [25] F. Jenet et al., (2009), arXiv:0909.1058 [astro-ph.IM].
1437
+ [26] G. Hobbs, Class. Quant. Grav. 30, 224007 (2013), arXiv:1307.2629 [astro-ph.IM].
1438
+ [27] G. H. Janssen, B. W. Stappers, M. Kramer, M. Purver, A. Jessner, and I. Cognard, in 40 Years of
1439
+ Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series,
1440
+ Vol. 983, edited by C. Bassa, Z. Wang, A. Cumming, and V. M. Kaspi (2008) pp. 633–635.
1441
+ [28] Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-
1442
+ ph.HE].
1443
+ [29] S. Chen et al., Mon. Not. Roy. Astron. Soc. 508, 4970 (2021), arXiv:2110.13184 [astro-ph.HE].
1444
+ [30] B. Goncharov et al., Astrophys. J. Lett. 917, L19 (2021), arXiv:2107.12112 [astro-ph.HE].
1445
+ [31] R. w. Hellings and G. s. Downs, Astrophys. J. Lett. 265, L39 (1983).
1446
+ [32] C. M. F. Mingarelli, T. Sidery, I. Mandel,
1447
+ and A. Vecchio, Phys. Rev. D 88, 062005 (2013),
1448
+ arXiv:1306.5394 [astro-ph.HE].
1449
+ [33] Y. Himemoto and A. Taruya, Phys. Rev. D 100, 082001 (2019), arXiv:1908.10635 [astro-ph.IM].
1450
+ [34] H. Omiya and N. Seto, Phys. Rev. D 104, 064021 (2021), arXiv:2107.12001 [astro-ph.CO].
1451
+ [35] H. Omiya and N. Seto, Phys. Rev. D 102, 084053 (2020), arXiv:2010.00771 [gr-qc].
1452
+ [36] Y.-K. Chu, G.-C. Liu, and K.-W. Ng, Phys. Rev. D 104, 124018 (2021), arXiv:2107.00536 [gr-qc].
1453
+ [37] A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, and M.-a. Sakagami, Phys. Rev. D 79, 082002
1454
+ (2009), arXiv:0903.0528 [astro-ph.CO].
1455
+ [38] K. Lee, F. A. Jenet, R. H. Price, N. Wex,
1456
+ and M. Kramer, Astrophys. J. 722, 1589 (2010),
1457
+ arXiv:1008.2561 [astro-ph.HE].
1458
+
1459
+ 20
1460
+ [39] A. Boˆıtier, S. Tiwari, L. Philippoz, and P. Jetzer, Phys. Rev. D 102, 064051 (2020), arXiv:2008.13520
1461
+ [gr-qc].
1462
+ [40] Q. Liang and M. Trodden, Phys. Rev. D 104, 084052 (2021), arXiv:2108.05344 [astro-ph.CO].
1463
+ [41] Z.-C. Chen, C. Yuan,
1464
+ and Q.-G. Huang, Sci. China Phys. Mech. Astron. 64, 120412 (2021),
1465
+ arXiv:2101.06869 [astro-ph.CO].
1466
+ [42] A. Boˆıtier, T. Giroud, S. Tiwari, and P. Jetzer, Phys. Rev. D 105, 084006 (2022), arXiv:2111.12563
1467
+ [gr-qc].
1468
+ [43] C. M. F. Mingarelli and T. Sidery, Phys. Rev. D 90, 062011 (2014), arXiv:1408.6840 [astro-ph.HE].
1469
+ [44] A. Boˆıtier, S. Tiwari, and P. Jetzer, Phys. Rev. D 103, 064044 (2021), arXiv:2011.13405 [gr-qc].
1470
+ [45] Y. Hu, P.-P. Wang, Y.-J. Tan, and C.-G. Shao, (2022), arXiv:2205.09272 [gr-qc].
1471
+ [46] G. Tasinato, Phys. Rev. D 105, 083506 (2022), arXiv:2203.15440 [gr-qc].
1472
+ [47] S. Weinberg, Cosmology (2008).
1473
+ [48] Z. Chang, S. Wang, and Q.-H. Zhu, Chin. Phys. C 45, 095101 (2021), arXiv:2009.11025 [astro-ph.CO].
1474
+ [49] J.-Z. Zhou, X. Zhang, Q.-H. Zhu, and Z. Chang, JCAP 05, 013 (2022), arXiv:2106.01641 [astro-ph.CO].
1475
+ [50] C. J. Moore, D. P. Mihaylov, A. Lasenby,
1476
+ and G. Gilmore, Phys. Rev. Lett. 119, 261102 (2017),
1477
+ arXiv:1707.06239 [astro-ph.IM].
1478
+
AdAyT4oBgHgl3EQfd_gY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdE3T4oBgHgl3EQfsgtu/content/2301.04668v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f5c9c9a4571ac4941b2f54ced60874e93e685a02df5ab9225f4ebc80e58c376
3
+ size 2777947
AdE3T4oBgHgl3EQfsgtu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a69ef6538b31ae80c8b70f747e0d8f6c936404c05081c73e0dfb5673328df5
3
+ size 1966125
AdE5T4oBgHgl3EQfSg_z/content/tmp_files/2301.05530v1.pdf.txt ADDED
@@ -0,0 +1,1426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ An RTL Implementation of the Data Encryption
3
+ Standard (DES)
4
+ Ruby Kumari, Student Member, IEEE, Jai Gopal Pandey, Senior Member,IEEE, and Abhijit Karmakar,
5
+ Abstract—Data Encryption Standard (DES) is based on the
6
+ Feistel block cipher, developed in 1971 by IBM cryptography
7
+ researcher Horst Feistel. DES uses 16 rounds of the Feistel
8
+ structure. But with the changes in recent years, the internet is
9
+ starting to be used more to connect devices to each other. These
10
+ devices can range from powerful computing devices, such as
11
+ desktop computers and tablets, to resource constrained devices,
12
+ When it comes to these constrained devices, using a different key
13
+ for each round cryptography algorithms fail to provide necessary
14
+ security and performance.
15
+ Index Terms—Keywords: Cryptography, DES , SDES, Feistel
16
+ block Cipher.
17
+ I. INTRODUCTION
18
+ T
19
+ HIS Security is a prevalent concern in information and
20
+ data systems of all types. Historically, military and na-
21
+ tional security issues drove the need for secure communica-
22
+ tions. Recently, security issues have pervaded the business and
23
+ private sectors. E-commerce has driven the need for secure
24
+ internet communications. Many businesses have fire- walls to
25
+ protect internal corporate information from competitors. In the
26
+ private sector, personal privacy is a growing concern. Products
27
+ are available to scramble both e-mail and telephone communi-
28
+ cations. One means of providing security in communications
29
+ is through encryption. By encryption, data is transformed in a
30
+ way that it is rendered unrecognizable. Only by decryption can
31
+ this data be recovered. Ostensibly, the process of decryption
32
+ can only be performed correctly by the intended recipients.
33
+ The validity of this assertion determines the “strength” or
34
+ “security” of the encryption scheme. Many communications
35
+ products incorporate encryption as a feature to provide se-
36
+ curity. This application report studies the implementation of
37
+ one of the most historically famous and widely implemented
38
+ encryption algorithms, the Data Encryption Standard (DES).
39
+ The Data Encryption Standard is a symmetric-key block
40
+ cipher published by the National Institute of Standards and
41
+ Technology (NIST) for the encryption of digital data. DES
42
+ is probably one of the best-known cryptographic algorithms
43
+ and has been widely used since its introduction in 1976.
44
+ Although its short key length of 56 bits makes it too inse-
45
+ 1 cure for applications, it has been highly influential in the
46
+ advancement of cryptography. The DES must be stronger than
47
+ the other cryptosystems in security. The goal of this project is
48
+ to develop a python code for SDES and DES. Before building
49
+ our design, we need an overview of cryptography, followed
50
+ by a description of the DES algorithm.
51
+ Manuscript received December 19, 2022
52
+ 1) Overview of Cryptography: Cryptography is a type of
53
+ rule or technique by which private or sensitive information is
54
+ secured from the public or other members. It plays a vital role
55
+ in preserving data integrity, confidentiality and user privacy.
56
+ An encryption algorithm can convert imported essential data
57
+ to encrypted data (plaintext into cipher- text). This data
58
+ would be of no use to a person that does not possess the
59
+ encryption key. The use of Cryptography in passwords is a
60
+ very famous example. Cryptography is based on mathematical
61
+ theory and some Computer Science principles. There are many
62
+ terminologies related to cryptography. Some terms are defined
63
+ below.
64
+ • Ciphertext: Conversion of plain text into intelligible text
65
+ is called ciphertext.
66
+ • Cipher: It is a technique of encryption and decryption.
67
+ Critical and algorithms play vital role in this technique.
68
+ • Symmetric: It is a kind of cryptosystem. It uses same key
69
+ for encryption and decryption. It is faster than asymmetric.
70
+ • Asymmetric: It is also a kind of cryptosystem. It uses
71
+ a public key for the encryption and a private key for the
72
+ decryption of any message.
73
+ • Cryptanalysis: It studies cracking the encryption of the
74
+ algorithms.
75
+ A. Symmetric Ciphers Model
76
+ Symmetric-key (or private-key) encryption can be simply
77
+ illustrated with the schematic shown in Figure 1.
78
+ Fig. 1: Symmetric Cryptosystem model.
79
+ A symmetric encryption scheme has five main parts, that is,
80
+ • Encryption algorithm: The encryption algorithm per-
81
+ forms various substitutions and transformations on plain-
82
+ text.
83
+ • Secret key: The secret key is also input to the encryption
84
+ algorithm. The key is a value independent of the plaintext
85
+ and the algorithm. The algorithm will produce a different
86
+ arXiv:2301.05530v1 [cs.CR] 13 Jan 2023
87
+
88
+ Cryptanalyst
89
+ Message
90
+ Encryption
91
+ Decryption
92
+ Sources
93
+ Destination
94
+ Algorithm
95
+ Algorithm
96
+ Secure Channel
97
+ Key
98
+ Sources2
99
+ output depending on the specific key. The exact substi-
100
+ tutions and transformations performed by the algorithm
101
+ depend on the key.
102
+ • Ciphertext: This is the scrambled message produced as
103
+ output. It depends on the plaintext and the secret key.
104
+ For a given message, two different keys will produce two
105
+ different ciphertexts. The ciphertext is an random stream
106
+ of data.
107
+ • Decryption algorithm: This is essentially the encryption
108
+ algorithm run in reverse. It takes the ciphertext and the
109
+ secret key and produces the original plaintext.
110
+ Alice and Bob want to communicate over an un-secure
111
+ channel, but Oscar is trying to read the message. So Alice and
112
+ Bob must use a cryptosystem to prevent Oscar from reading
113
+ the message. Let us take a closer look at the essential elements
114
+ of a symmetric encryption scheme using Figure 1. A source
115
+ produces a message in plaintext, X = [X1, X2, . . . , XM].
116
+ The M elements of X are letters in some finite alphabet.
117
+ Traditionally, the alphabet usually consisted of t6 capital
118
+ letters. Nowadays, the binary alphabet 0, 1 is typically used.
119
+ For encryption, a key of the form K = [K1, K2, . . . . . .., KJ]
120
+ is generated. If the key is generated at the message source,
121
+ then it must also be provided to the destination using some
122
+ secure channel. Alternatively, a third party could generate key
123
+ and securely deliver it to both source and destination. The
124
+ encryption algorithm forms the ciphertext as given in 1.
125
+ Y = [Y 1, Y 2, ...., Y N]
126
+ (1)
127
+ with the message X and the encryption key K as it. We can
128
+ write this as given in 2.
129
+ Y = E(K, X)
130
+ (2)
131
+ This notation indicates that Y is produced by using en-
132
+ cryption algorithm E as a function of the plaintext X, with
133
+ the specific process determined by the value of the key K.
134
+ The intended receiver, in possession of the key, can invert the
135
+ transformation: X = D(K, Y ). An opponent, observing Y but
136
+ not having access to K or X, may attempt to recover X or K
137
+ or both X and K. It is assumed that the opponent knows the
138
+ encryption (E) and decryption (D) algorithms. If the opponent
139
+ is interested in only this particular message, then the focus of
140
+ the effort is to recover X by generating a plaintext estimate
141
+ X. Often, however, the opponent is interested in being able
142
+ to read future messages as well, in which case an attempt is
143
+ made to recover K by generating an estimate K.
144
+ B. Simplified Data Encryption Standard
145
+ The S-DES encryption algorithm takes an 8-bit block of
146
+ plaintext and a 10-bit key as input and produces an 8-bit block
147
+ of ciphertext as output. The S-DES decryption algorithm takes
148
+ an 8- bit block of ciphertext and the same 10-bit key used to
149
+ produce that ciphertext as input and produces the original 8-bit
150
+ block of plaintext. Simplified DES (SDES) was designed for
151
+ educational purposes only, to help students learn about modern
152
+ cryptanalytic techniques [1]. SDES has similar properties and
153
+ structure as DES but has been simplified to make it much
154
+ easier to perform encryption and decryption by hand with
155
+ Fig. 2: Simplified DES (SDES)
156
+ Pencil and paper. Some people feel that learning SDES gives
157
+ insight into DES and other block ciphers, and insight into
158
+ various cryptanalytic attacks against them.
159
+ An adversary trying to interrupt two communicating parties
160
+ may have one of the four main goals:
161
+ 1) Read the secret message.
162
+ 2) Find the secret key, so that they can read all messages
163
+ encrypted with that key.
164
+ 3) Modify the message sent by Alice and go unnoticed by
165
+ both parties.
166
+ 4) Act like Alice and send a message to Bob, to make Bob
167
+ think he is communicating with Alice when in reality
168
+ he is communicating with the adversary.
169
+ In order to prevent an adversary from reaching his
170
+ goals, some security measures are Applied to cryptosystems,
171
+
172
+ 10-bit Key
173
+ 4
174
+ P10
175
+ Encryption
176
+ Decryption
177
+ 8-bit Plaintext
178
+ 8-bit Plaintext
179
+ Shift
180
+ IP
181
+ IP-1
182
+ P8
183
+ K1
184
+ Ki
185
+ Fk
186
+ Fk
187
+ Shift
188
+ SW
189
+ SW
190
+ P8
191
+ K2
192
+ K2
193
+ Fk
194
+ Fk
195
+ IP
196
+ IP-1
197
+ 8-bit Ciphertext
198
+ 8-bit Ciphertext3
199
+ namely confidentiality, data integrity, authentication, and non-
200
+ repudiation.
201
+ 1) Confidentiality means the transmitted message or infor-
202
+ mation is kept secret, and only the authorized parties
203
+ have the means to decipher the information.
204
+ 2) Data integrity makes sure that the messages are not being
205
+ modified. This stops the adversary from reaching their
206
+ third goal.
207
+ 3) Authentication helps Bob to correctly identify the sender
208
+ as Alice, thus stopping the adversary from posing as
209
+ Alice.
210
+ 4) Non-repudiation prevents Alice from denying she sent
211
+ the message.
212
+ Cryptographic algorithms are gathered under two main
213
+ branches; symmetric algorithms and asymmetric algorithms. In
214
+ symmetric algorithms both Alice and Bob have the same key.
215
+ Since the communication channel is insecure, this key must
216
+ be previously decided on through secure ways. The encryption
217
+ and decryption keys are either the same, or very similar that
218
+ the decryption key can easily be derived from the encryption
219
+ key. But sometimes Alice and Bob cannot agree on a key
220
+ beforehand. They could be very far away from each other
221
+ and cannot get together to determine a secret key, and there
222
+ may not be a secure way for Alice to send Bob the secret
223
+ key. She cannot just send Bob a secret key through any open
224
+ channel, because an adversary can interrupt the channel and
225
+ get their hands on the key. Thus making the key useless. To
226
+ get around this problem asymmetric algorithms, usually called
227
+ public key algorithms, are used. In public key algorithms each
228
+ party has their key pairs, one public and one private key. As
229
+ can be understood from their names, private keys are kept
230
+ secret, and public keys can be known by everyone. The public
231
+ key is computed from the private key in a way that finding the
232
+ private key from the public key is infeasible. Alice encrypts
233
+ the message she wants to send using Bob’s public key. The
234
+ message can only be decrypted with the corresponding private
235
+ key, which only Bob has. Therefore Alice can send a secret
236
+ message even though they are far away and cannot decide on
237
+ a common key together [2].
238
+ Further, the details of the DES cipher is given in the next
239
+ chpater [3].
240
+ II. DATA ENCRYPTION STANDARD
241
+ Developed in 1974 by IBM in cooperation with the National
242
+ Securities Agency (NSA), DES has been the worldwide en-
243
+ cryption standard for more than 20 years. For these 20 years,
244
+ it has held up against cryptanalysis remarkably well and is still
245
+ secure against all but possibly the most powerful adversaries.
246
+ Because of its prevalence throughout the encryption market,
247
+ DES [4] is an excellent interoperability standard between
248
+ different encryption equipment. The predominant weakness of
249
+ DES is its 56-bit key which, more than sufficient for the time
250
+ period which it was developed [5], has become insufficient to
251
+ protect against brute-force attacks modern computers [6]. As
252
+ a result of the need for a greater encryption strength, DES
253
+ evolved into triple-DES [7].
254
+ Fig. 3: Encryption and Decryption
255
+ III. DES ENCRYPTION
256
+ The Data Encryption Standard is a Feistel cipher. In which
257
+ round function consists of an expansion, a bitwise XOR-
258
+ operation XOR operation round key, an S-box layer and a
259
+ permutation [3]. In encryption n scheme, there are two inputs
260
+ to the encryption function [8]. the plaintext to be encrypted
261
+ and the key. In this case, the plaintext must be 64 bits in length
262
+ and the key is 56 bits in length [9].
263
+ On the left-hand side of the figure, we can see that the
264
+ plaintext processing proceeds in three phases. First, the 64-
265
+ bit plaintext passes through an initial permutation (IP) that
266
+ rearranges the Bits to produce the permuted input [10]. This
267
+ is followed by a phase consisting of sixteen rounds of the same
268
+ function, which involves both permutation and substitution
269
+ functions. The output of the last (sixteenth) round consists of
270
+ 64 bits that are a function of the input plaintext and the key.
271
+ The left and right halves of the output are swapped to produce
272
+ the pre-output. Finally, the pre-output is passed through a per-
273
+ mutation [IP −1], inverse of the initial permutation function,
274
+ to produce the make ciphertext. With the exception of initial
275
+ and final permutations.
276
+ On the right-hand portion of figure 6-5,6-a-bitkey is used.
277
+ Initially, the key is passed through a permutation function.
278
+ Then, for each of the sixteen rounds, a subkey (Ki) is produced
279
+ by the combination f.t Initially, the key is passed through a
280
+ permutation function. Then, for each of the sixteen rounds, a
281
+ subkey (Ki) is produced by the combination of a left.
282
+ A. Initial Permutation and Final Permutation
283
+ Each of these permutations takes a 64-bit input and per-
284
+ mutes them according to a predefined rule. These permutations
285
+ are keyless straight permutations that are the inverse of each
286
+ other. For example, in the initial permutation [IP], the 58th bit
287
+ in the input becomes the first bit in the output. Similarly, in the
288
+ final permutation [IP −1], the first bit in the input becomes the
289
+ 58th bit in the output. In other words, if the rounds between
290
+ these two permutations do not exist, the 58th bit entering the
291
+ initial permutation is the same as the 58th bit leaving the final
292
+ permutation. The initial permutation is given in TABLE I
293
+ The final permutation is given in TABLE II.
294
+
295
+ DES Reverse
296
+ DES Cipher
297
+ Cipher4
298
+ Fig. 4: Structure of DES
299
+ Fig. 5: Initial and final permutation step in DES
300
+ IV. ROUNDS
301
+ DES uses 16 rounds. Each round of DES is a Feistel cipher.
302
+ Fig. 6 shows the internal structure of a single round. Again,
303
+ begin by focusing on the left-hand side of the diagram. The left
304
+ and right halves of each 64-bit intermediate value are treated
305
+ as separate 32-bit quantities, labeled L (left) and R (right). As
306
+ in the Feistel cipher, the overall processing at each round can
307
+ be summarized in the following formulas:
308
+ Li = Ri − 1 Ri = Li − 1 XOR FE(Ri − 1, Ki)
309
+ The round takes Li − 1 and Ri − 1 from the previous game
310
+ (or the initial permutation box) and creates Li and Ri, which
311
+ go to the next round (or final permutation box).
312
+ A. Initial Permutation
313
+ A single initial permutation is needed at the beginning of
314
+ the encryption process. IP is necessary on each block of 64
315
+ bits in DES once the entire plaintext has been divided into
316
+ TABLE I: Initial Permutation
317
+ 58
318
+ 50
319
+ 42
320
+ 34
321
+ 26
322
+ 18
323
+ 10
324
+ 2
325
+ 60
326
+ 52
327
+ 44
328
+ 36
329
+ 28
330
+ 20
331
+ 12
332
+ 4
333
+ 62
334
+ 54
335
+ 46
336
+ 38
337
+ 30
338
+ 22
339
+ 14
340
+ 6
341
+ 64
342
+ 56
343
+ 48
344
+ 40
345
+ 32
346
+ 24
347
+ 16
348
+ 8
349
+ 57
350
+ 49
351
+ 41
352
+ 33
353
+ 25
354
+ 17
355
+ 9
356
+ 1
357
+ 59
358
+ 51
359
+ 43
360
+ 35
361
+ 27
362
+ 19
363
+ 11
364
+ 3
365
+ 61
366
+ 53
367
+ 45
368
+ 37
369
+ 29
370
+ 21
371
+ 13
372
+ 5
373
+ 63
374
+ 55
375
+ 47
376
+ 39
377
+ 31
378
+ 23
379
+ 15
380
+ 7
381
+ TABLE II: Final Permutation
382
+ 40
383
+ 8
384
+ 48
385
+ 16
386
+ 56
387
+ 24
388
+ 64
389
+ 32
390
+ 39
391
+ 7
392
+ 47
393
+ 15
394
+ 55
395
+ 23
396
+ 63
397
+ 31
398
+ 38
399
+ 6
400
+ 46
401
+ 14
402
+ 54
403
+ 22
404
+ 62
405
+ 30
406
+ 37
407
+ 5
408
+ 45
409
+ 13
410
+ 53
411
+ 21
412
+ 61
413
+ 29
414
+ 36
415
+ 4
416
+ 44
417
+ 12
418
+ 52
419
+ 20
420
+ 60
421
+ 28
422
+ 35
423
+ 3
424
+ 53
425
+ 11
426
+ 51
427
+ 19
428
+ 59
429
+ 27
430
+ 34
431
+ 2
432
+ 42
433
+ 10
434
+ 50
435
+ 18
436
+ 58
437
+ 26
438
+ 33
439
+ 1
440
+ 41
441
+ 9
442
+ 49
443
+ 17
444
+ 57
445
+ 25
446
+ such blocks. The transposition process goes through this initial
447
+ permutation. Only once, just before the first round, does the
448
+ first permutation appear. As seen in the Table I, it provides
449
+ decisions for how the IP transposition process has to go. It is
450
+ possible to claim for example, that the IP replaced the first
451
+ bit of the original plain-text block with the 58th bit of the
452
+ original plain-text block, the second bit with the 50th bit of
453
+ the original plain-text block, etc. This is nothing more than
454
+ bit shuffling with respect to the original plaintext block.
455
+ B. Expansion D-Box
456
+ Since Ri − 1 is a 32-bit input and KI is a 48-bit key, we
457
+ first need to expand Ri − 1 to 48 bits. Ri − 1 is divided into
458
+ 8 4-bit sections. Each 4-bit section is then expanded to 6 bits.
459
+ For each section, input bits 1, 2, 3, and 4 are copied to output
460
+ bits 2, 3, 4, and 5, respectively. Output bit ‘1’ comes from bit
461
+ 4 of the previous section; output bit 6 comes from bit 1 of the
462
+ next section. If sections 1 and 8 can be considered adjacent
463
+ sections, the same rule applies to bits 1 and 32.
464
+ The main part of DES is the DES function. The DES
465
+ function applies a 48-bit key to the rightmost 32 bits (Ri −1)
466
+ to produce a 32-bit output. This function is made up of four
467
+ sections: an expansion D-box, a whitener (that adds key), a
468
+ group of S-boxes, and a straight D-box, as shown in Fig 6.
469
+ C. Whitener (XOR)
470
+ After the expansion permutation, DES uses the XOR op-
471
+ eration on the expanded right section and the round key. It
472
+ XORed expansion permutation and key input and gives 48-bit
473
+ TABLE III: Expansion Permutation
474
+ 32
475
+ 1
476
+ 2
477
+ 3
478
+ 4
479
+ 5
480
+ 64
481
+ 32
482
+ 4
483
+ 5
484
+ 6
485
+ 7
486
+ 8
487
+ 9
488
+ 63
489
+ 31
490
+ 8
491
+ 9
492
+ 10
493
+ 11
494
+ 12
495
+ 13
496
+ 62
497
+ 30
498
+ 12
499
+ 13
500
+ 14
501
+ 15
502
+ 16
503
+ 17
504
+ 61
505
+ 29
506
+ 16
507
+ 17
508
+ 18
509
+ 19
510
+ 20
511
+ 21
512
+ 60
513
+ 28
514
+ 20
515
+ 21
516
+ 22
517
+ 23
518
+ 24
519
+ 25
520
+ 59
521
+ 27
522
+ 24
523
+ 25
524
+ 26
525
+ 27
526
+ 28
527
+ 29
528
+ 58
529
+ 26
530
+ 28
531
+ 29
532
+ 30
533
+ 31
534
+ 32
535
+ 1
536
+ 57
537
+ 25
538
+
539
+ Initial Permutation
540
+ Permuted Choice 1
541
+ Round 1
542
+ Permuted Choice 2
543
+ Left circular Shift
544
+ Round 2
545
+ Permuted Choice 2
546
+ Left Circular Shift
547
+ Round 16
548
+ Permuted Choice 2
549
+ Left circular shift
550
+ 32 bit Swap
551
+ Inverse Initial Permutation1
552
+ 2
553
+ 25
554
+ 40
555
+ 50
556
+ 58
557
+ 60
558
+ Initial
559
+ Permutation
560
+ 1
561
+ 2
562
+ ...-8
563
+ 25
564
+ 40
565
+ 50
566
+ 58
567
+ 60
568
+ 16 Rounds
569
+ 1
570
+ 2...8
571
+ 25
572
+ 40
573
+ 50
574
+ 58
575
+ 60
576
+ Final
577
+ Permulalion
578
+
579
+ 25
580
+ 40
581
+ 1
582
+ 50
583
+ 58
584
+ 605
585
+ Fig. 6: Single round of the DES Algorithm [11].
586
+ Fig. 7: DES function
587
+ input to s-boxes. Note that both the right section and the key
588
+ are 48-bits in length [12].
589
+ D. S-Boxes
590
+ The S-boxes do the real mixing (confusion). DES uses 8
591
+ S-boxes, each with a 6-bit input and a 4-bit output. The 48-
592
+ bit data from the second operation is divided into eight 6-bit
593
+ chunks, and each chunk is fed into a box [13]. The result
594
+ of each box is a 4-bit chunk; when these are combined the
595
+ result is a 32-bit text. The substitution in each box follows a
596
+ pre-determined rule based on a 4-row by 16- column table.
597
+ Fig. 8: S-box
598
+ TABLE IV: Straight Permutation Table
599
+ 16
600
+ 07
601
+ 20
602
+ 21
603
+ 29
604
+ 12
605
+ 28
606
+ 17
607
+ 01
608
+ 15
609
+ 23
610
+ 26
611
+ 05
612
+ 18
613
+ 31
614
+ 10
615
+ 02
616
+ 08
617
+ 24
618
+ 14
619
+ 32
620
+ 27
621
+ 03
622
+ 09
623
+ 19
624
+ 13
625
+ 30
626
+ 06
627
+ 22
628
+ 11
629
+ 04
630
+ 25
631
+ 16
632
+ 17
633
+ 18
634
+ 19
635
+ 20
636
+ 21
637
+ 60
638
+ 28
639
+ 20
640
+ 21
641
+ 22
642
+ 23
643
+ 24
644
+ 25
645
+ 59
646
+ 27
647
+ 24
648
+ 25
649
+ 26
650
+ 27
651
+ 28
652
+ 29
653
+ 58
654
+ 26
655
+ 28
656
+ 29
657
+ 30
658
+ 31
659
+ 32
660
+ 1
661
+ 57
662
+ 25
663
+ E. Final Permutation
664
+ The last operation in the DES function is a permutation
665
+ with a 32-bit input and a 32-bit output. The input/output
666
+ relationship for this operation is shown in Table II.
667
+ V. EXAMPLES OF DES
668
+ Let M be the plain text message M = 0123456789ABCDEF
669
+ where M is in hexadecimal (base 16) format. Rewriting M in
670
+ binary format, we get the 64-bit block of text:
671
+ M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
672
+ 1010 1011 1100 1101 1110 1111,
673
+ R = 1000 1001 1010 1011 1100 1101 1110 1111,
674
+ L = 0000 0001 0010 0011 0100 0101 0110 0111.
675
+ The first bit of M is ‘0’. The last bit is ‘1’. We read from
676
+ left to right. DES operates on the 64-bit blocks using key sizes
677
+ of 56- bits. The keys are actually stored as being 64 bits long,
678
+ but every 8th bit in the key is not used (i.e., its numbered 8,
679
+ 16, 24, 32, 40, 48, 56, and 64). However, we will nevertheless
680
+ number the bits from 1 to 64, going left to right, in the
681
+ following calculations. But, as you will see, the eight bits just
682
+ mentioned get eliminated when we create subkeys. Let K be
683
+ the hexadecimal key K = 133457799BBCDFF1. This gives
684
+ us binary key (setting 1 = 0001, 3 = 0011, etc., and grouping
685
+ together every eight bits, of which the last one in each group
686
+ will be unused) [14]. K = 00010011 00110100 01010111
687
+ 01111001 10011011 10111100 11011111 11110001 .
688
+ VI. KEY GENERATION
689
+ The 64-bit key is permuted according to the following table,
690
+ PC−1. Since the first entry in the table is “57”, this means
691
+ that the 57th bit of the original key K becomes the first bit
692
+ of the permuted key K+. The 49th bit of the original key
693
+ becomes the second bit of the permuted key. The 4th bit of
694
+ the original key is the last bit of the permuted key. Note only
695
+ 56 bits of the original key appear in the permuted key.
696
+ From the original 64-bit key
697
+ K = 0001001100110100010101110111100110011011
698
+
699
+ 4
700
+ 32 bits
701
+ +
702
+ 32 bits
703
+ +
704
+ 4
705
+ 28 bits
706
+ +
707
+ 28 bits
708
+ Li1
709
+ Ri.1
710
+ C(i-1
711
+ Expansion/Perimutation (E Table)
712
+ Left Shit(s)
713
+ Right Shit(s)
714
+ 48
715
+ F
716
+ Permutation/Contraction
717
+ XOR
718
+ 48 1
719
+ (Perimuted Choice 2)
720
+ 48
721
+ Substitution/Choice (S-Box)
722
+ +
723
+ 32
724
+ Permutation (P)
725
+ 1
726
+ 32
727
+ XOR
728
+ 7
729
+ Li
730
+ R;
731
+ Ci
732
+ D,Expansion/Permutation (E Table
733
+ 48
734
+ F
735
+ XOR
736
+ 48/
737
+ 48
738
+ Substitution/Choice (S-Box)
739
+ 32
740
+ Permutation (P)
741
+ 3248-bit input
742
+ Array of S-Boxes
743
+ S-Box
744
+ S-Box
745
+ S-Box
746
+ S-Box
747
+ S-Box
748
+ S-Box
749
+ S-Box
750
+ S-Box
751
+ 32-bit output6
752
+ TABLE V: Permuted Choice-1
753
+ 57
754
+ 49
755
+ 41
756
+ 33
757
+ 25
758
+ 17
759
+ 9
760
+ 17
761
+ 1
762
+ 58
763
+ 50
764
+ 42
765
+ 34
766
+ 26
767
+ 18
768
+ 10
769
+ 10
770
+ 2
771
+ 59
772
+ 51
773
+ 43
774
+ 35
775
+ 27
776
+ 09
777
+ 19
778
+ 11
779
+ 3
780
+ 60
781
+ 52
782
+ 44
783
+ 36
784
+ 25
785
+ 63
786
+ 55
787
+ 47
788
+ 39
789
+ 31
790
+ 23
791
+ 15
792
+ 28
793
+ 7
794
+ 62
795
+ 54
796
+ 46
797
+ 38
798
+ 30
799
+ 22
800
+ 27
801
+ 14
802
+ 6
803
+ 61
804
+ 53
805
+ 45
806
+ 37
807
+ 29
808
+ 26
809
+ 21
810
+ 13
811
+ 5
812
+ 28
813
+ 20
814
+ 12
815
+ 4
816
+ 25
817
+ 101111001101111111110001 we get the 56-bit permutation
818
+ K+ = 11110000110011001010101011110101010
819
+ 101100110011110001111
820
+ Now, From the permuted key K+, we get
821
+ C0 = 1111000011001100101010101111
822
+ C1 = 1110000110011001010101011111
823
+ C2 = 1100001100110010101010111111
824
+ C3 = 0000110011001010101011111111
825
+ C4= 0011001100101010101111111100
826
+ C5 = 1100110010101010111111110000
827
+ D0 = 0101010101100110011110001111
828
+ D1 = 1010101011001100111100011110
829
+ D2 = 0101010110011001111000111101
830
+ D3 = 0101011001100111100011110101
831
+ D4 = 0101100110011110001111010101
832
+ D5 = 0110011001111000111101010101
833
+ C6 = 0011001010101011111111000011
834
+ D6 = 1001100111100011110101010101
835
+ C7 = 1100101010101111111100001100
836
+ D7 = 0110011110001111010101010110
837
+ C8 = 0010101010111111110000110011
838
+ D8 = 1001111000111101010101011001
839
+ C9 = 0101010101111111100001100110
840
+ D9 = 0011110001111010101010110011
841
+ C10 = 0101010111111110000110011001
842
+ D10 = 1111000111101010101011001100
843
+ C11 = 0101011111111000011001100101
844
+ D11 = 1100011110101010101100110011
845
+ C12 = 0101111111100001100110010101
846
+ D12 = 0001111010101010110011001111
847
+ C13 = 0111111110000110011001010101
848
+ D13 = 0111101010101011001100111100
849
+ C14 = 1111111000011001100101010101
850
+ D14 = 1110101010101100110011110001
851
+ C15 = 1111100001100110010101010111
852
+ D15 = 1010101010110011001111000111
853
+ C16 = 1111000011001100101010101111
854
+ D16 = 0101010101100110011110001111
855
+ TABLE VI: Permuted choice-2
856
+ 14
857
+ 17
858
+ 11
859
+ 24
860
+ 1
861
+ 5
862
+ 9
863
+ 17
864
+ 3
865
+ 28
866
+ 15
867
+ 6
868
+ 21
869
+ 10
870
+ 18
871
+ 10
872
+ 23
873
+ 19
874
+ 12
875
+ 4
876
+ 26
877
+ 8
878
+ 27
879
+ 09
880
+ 16
881
+ 7
882
+ 27
883
+ 20
884
+ 13
885
+ 2
886
+ 36
887
+ 25
888
+ 41
889
+ 52
890
+ 31
891
+ 37
892
+ 47
893
+ 55
894
+ 15
895
+ 28
896
+ 30
897
+ 40
898
+ 51
899
+ 45
900
+ 33
901
+ 48
902
+ 22
903
+ 27
904
+ 44
905
+ 49
906
+ 39
907
+ 56
908
+ 34
909
+ 53
910
+ 29
911
+ 26
912
+ 46
913
+ 42
914
+ 50
915
+ 36
916
+ 29
917
+ 32
918
+ 4
919
+ 25
920
+ After we apply the permutation PC-2, it becomes
921
+ K1 = 000110 110000 001011 101111 111111 000111 000001
922
+ 110010
923
+ K2 = 011110 011010 111011 011001 110110 111100 100111
924
+ 100101
925
+ K3 = 010101 011111 110010 001010 010000 101100 111110
926
+ 011001
927
+ K4 = 011100 101010 110111 010110 110110 110011 010100
928
+ 011101
929
+ K5 = 011111 001110 110000 000111 111010 110101 001110
930
+ 101000
931
+ K6 = 011000 111010 010100 111110 010100 000111 101100
932
+ 101111
933
+ K7 = 111011 001000 010010 110111 111101 100001 100010
934
+ 111100
935
+ K8 = 111101 111000 101000 111010 110000 010011 101111
936
+ 111011
937
+ K9 = 111000 001101 101111 101011 111011 011110 011110
938
+ 000001
939
+ K10 = 101100 011111 001101 000111 101110 100100 011001
940
+ 001111
941
+ K11 = 001000 010101 111111 010011 110111 101101 001110
942
+ 000110
943
+ K12 = 011101 010111 000111 110101 100101 000110 011111
944
+ 101001
945
+ K13 = 100101 111100 010111 010001 111110 101011 101001
946
+ 000001
947
+ K14 = 010111 110100 001110 110111 111100 101110 011100
948
+ 111010
949
+ K15 = 101111 111001 000110 001101 001111 010011 111100
950
+ 001010
951
+ K16 = 110010 110011 110110 001011 000011 100001 011111
952
+ 110101
953
+ Encode each 64-bit block of data Applying the initial
954
+ permutation to the block of text M, given previously, we get
955
+ M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
956
+ 1010 1011 1100 1101 1110 1111
957
+ IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000
958
+ 1010 1010 1111 0000 1010 1010
959
+ Here the 58th bit of M is ‘1’, which becomes the first bit
960
+ of IP. The 50th bit of M is ‘1’, which becomes the second
961
+ bit of IP. The 7th bit of M is ‘0’, which becomes the last bit
962
+ of IP.
963
+ Next, divide the permuted block IP into a left half L0 of
964
+ 32 bit, and a right half R0 of 32 bits.
965
+ From IP, we get L0 and R0
966
+ L0 = 1100 1100 0000 0000 1100 1100 1111 1111
967
+ R0 = 1111 0000 1010 1010 1111 0000 1010 1010
968
+ We now proceed through 16 iterations, for 1≤ n ≤ 16, using
969
+ a function f which operates on two blocks–a data block of 32
970
+ bits and a key Kn of 48 bits–to produce a block of 32 bits. Let
971
+ + denote XOR addition, (bit-by-bit addition modulo 2). Then
972
+ for n going from 1 to 16 we calculate (3) and (4).
973
+ Ln = Rn − 1
974
+ (3)
975
+ Rn = Ln−1 + f(Rn−1, Kn)
976
+ (4)
977
+
978
+ 7
979
+ This results in a final block, for n = 16, of L16R16. That
980
+ is, in each iteration, we take the right 32 bits of the previous
981
+ result and make them the left 32 bits of the current step. For
982
+ the right 32 bits in the current step, we XOR the left 32 bits
983
+ of the previous step with the calculation f.
984
+ For n = 1, we have
985
+ K1 = 000110 110000 001011 101111 111111 000111 000001
986
+ 110010
987
+ L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010
988
+ R1 = L0 + f(R0, K1)
989
+ It remains to explain how the function f works. To calculate
990
+ f, first expand each block Rn −1 from 32 bits to 48 bits. This
991
+ is done by using a selection table that repeats some of the
992
+ bits in Rn − 1. We’ll call the use of this selection table the
993
+ function E. Thus E(Rn − 1) has a 32 bit input block, and a
994
+ 48 bit output block. After this, We calculate E(R0) from R0
995
+ as follows:
996
+ R0 = 1111 0000 1010 1010 1111 0000 1010 1010
997
+ E(R0) = 011110 100001 010101 010101 011110 100001
998
+ 010101 010101 Next in the f calculation, we XOR the output
999
+ E(Rn − 1) with the key Kn : Kn + E(Rn − 1). For K1,
1000
+ E(R0), we have
1001
+ K1 = 000110 110000 001011 101111 111111 000111 000001
1002
+ 110010
1003
+ E(R0) = 011110 100001 010101 010101 011110 100001
1004
+ 010101 010101
1005
+ K1+E(R0) = 011000 010001 011110 111010 100001 100110
1006
+ 010100 100111
1007
+ To this point we have expanded Rn-1 from 32 bits to 48 bits,
1008
+ using the selection table, and XORed the result with the key
1009
+ Kn. We now have 48 bits, or eight groups of six bits. We now
1010
+ do something strange with each group of six bits: we use them
1011
+ as addresses in tables called ”S boxes”. Each group of six bits
1012
+ will give us an address in a different S box. Located at that
1013
+ address will be a 4-bit number. This 4-bit number will replace
1014
+ the original 6 bits. The net result is that the eight groups of
1015
+ 6 bits are transformed into eight groups of 4 bits (the 4-bit
1016
+ outputs from the S boxes) for 32 bits total.
1017
+ Write the previous result, which is 48 bits, in the form:
1018
+ Kn + E(Rn − 1) = B1B2B3B4B5B6B7B8
1019
+ where each Bi is a group of six bits. We now calculate it as
1020
+ S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
1021
+ where Si(Bi) refers to the output of the ith S box.
1022
+ To repeat, each of the functions S1, S2, ..., S8, takes a 6-bit
1023
+ block as input and yields a 4-bit block as output. For the first
1024
+ round, we obtain as the output of the eight S boxes:
1025
+ K1 + E(R0) = 011000 010001 011110 111010 100001
1026
+ 100110 010100 100111
1027
+ S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
1028
+ = 0101 1100 1000 0010 1011 0101 1001 0111
1029
+ The final stage in the calculation of f is to do a permutation
1030
+ P of the S-box output to obtain the final value of f:
1031
+ f = P(S1(B1)S2(B2)...S8(B8))
1032
+ (5)
1033
+ The permutation P is defined in the following table. P yields
1034
+ a 32-bit output from a 32-bit input by permuting the bits of
1035
+ the input block
1036
+ TABLE VII: Permutation
1037
+ 16
1038
+ 7
1039
+ 20
1040
+ 21
1041
+ 1
1042
+ 5
1043
+ 9
1044
+ 17
1045
+ 29
1046
+ 12
1047
+ 28
1048
+ 17
1049
+ 21
1050
+ 10
1051
+ 18
1052
+ 10
1053
+ 1
1054
+ 15
1055
+ 23
1056
+ 26
1057
+ 26
1058
+ 8
1059
+ 27
1060
+ 09
1061
+ 5
1062
+ 18
1063
+ 31
1064
+ 10
1065
+ 13
1066
+ 2
1067
+ 36
1068
+ 25
1069
+ 2
1070
+ 8
1071
+ 24
1072
+ 14
1073
+ 47
1074
+ 55
1075
+ 15
1076
+ 28
1077
+ 32
1078
+ 27
1079
+ 3
1080
+ 9
1081
+ 33
1082
+ 48
1083
+ 22
1084
+ 27
1085
+ 19
1086
+ 23
1087
+ 30
1088
+ 6
1089
+ 34
1090
+ 53
1091
+ 29
1092
+ 26
1093
+ 22
1094
+ 11
1095
+ 4
1096
+ 25
1097
+ 29
1098
+ 32
1099
+ 4
1100
+ 25
1101
+ From the output of the eight S boxes:
1102
+ S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
1103
+ = 0101 1100 1000 0010 1011 0101 1001 0111
1104
+ we get,
1105
+ f = 0010 0011 0100 1010 1010 1001 1011 1011
1106
+ R1 = L0 + f(R0, K1)
1107
+ R1 = 1100 1100 0000 0000 1100 1100 1111 1111 + 0010
1108
+ 0011 0100 1010 1010 1001 1011 1011 = 1110 1111 0100
1109
+ 1010 0110 0101 0100 0100
1110
+ In the next round, we will have L2 = R1, which is the
1111
+ block we just calculated, and then we must calculate R2 =
1112
+ L1 + f(R1, K2), and so on for 16 rounds. At the end of the
1113
+ sixteenth round we have the blocks L16 and R16. We then
1114
+ reverse the order of the two blocks into the 64-bit block as
1115
+ shown in equation (6).
1116
+ R16L16
1117
+ (6)
1118
+ Now, apply a final permutation IP−1 and the output of the
1119
+ algorithm has bit 40 of the preoutput block as its first bit, bit
1120
+ 8 as its second bit, and so on, until bit 25 of the preoutput
1121
+ block is the last bit of the output.
1122
+ If we process all 16 blocks using the method defined
1123
+ previously, we get, on the 16th round,
1124
+ L16 = 0100 0011 0100 0010 0011 0010 0011 0100
1125
+ R16 = 0000 1010 0100 1100 1101 1001 1001 0101
1126
+ We reverse the order of these two blocks and apply the
1127
+ final permutation to
1128
+ R16L16
1129
+ =
1130
+ 00001010
1131
+ 01001100
1132
+ 11011001
1133
+ 10010101
1134
+ 01000011 01000010 00110010 00110100
1135
+ IP −1 = 10000101 11101000 00010011 01010100 00001111
1136
+ 00001010 10110100 00000101 which in hexadecimal format
1137
+ is 85E813540F0AB405.
1138
+ This is the encrypted form of M = 0123456789ABCDEF:
1139
+ namely, C = 85E813540F0AB405. Decryption is simply the
1140
+ inverse of encryption, following the same steps as above, but
1141
+ reversing the order in which the subkeys are applied.
1142
+ VII. SYMMETRIC CIPHERS
1143
+ If we examine the symmetric ciphers in detail, we can see
1144
+ that symmetric ciphers can be divided into two categories;
1145
+ stream ciphers and block ciphers [15].
1146
+ Stream ciphers use a key-stream, obtained from the original
1147
+ key, and encrypts the plain-text bit by bit. Encryption is usually
1148
+ done by combining the plain-text bits with the corresponding
1149
+ key-stream bits with an XOR operation. In some cases stream
1150
+
1151
+ 8
1152
+ ciphers have some advantages over block ciphers, because
1153
+ there is no error propagation. It means that an error made
1154
+ in one bit of cipher-text during transmission only affects the
1155
+ decryption of that bit and doesn’t affect other bits [16].
1156
+ Block ciphers, on the other hand, take the plain-text bits
1157
+ in blocks. Each block is encrypted with the same encryption
1158
+ function and the cipher-text blocks are produced. When the
1159
+ length of the plain-text is not a multiple of the block size
1160
+ some padding is applied to the plain-text [17]. This padding
1161
+ is usually done by adding a ‘1’ bit followed by necessary
1162
+ amount of ‘0’ bits. Because the encryption function does not
1163
+ change from one block to another, same blocks of plain-
1164
+ text are encrypted to same blocks of cipher-text. When an
1165
+ adversary captures the cipher-text, they can accurately guess
1166
+ some information about the plaintext by using this property.
1167
+ In order to stop any information leakage, some modes of
1168
+ operation are used.
1169
+ VIII. ASYMMETRIC CIPHERS
1170
+ While modern symmetric ciphers such as AES are very
1171
+ secure, they have some drawbacks in practicality, namely key
1172
+ distribution problem, and the number of keys [18].
1173
+ The key distribution problem occurs when Alice and Bob
1174
+ want to determine a secret key. This would be easy if they
1175
+ can come together and decide, but if they have no means
1176
+ to decide on a key in person, they have to decide on the
1177
+ key through a secure channel [19]. Since the communication
1178
+ channel is always assumed to be insecure, because it can be
1179
+ easily hacked, this poses a problem. Even if they can somehow
1180
+ solve this problem, they would be facing another problem, the
1181
+ number of keys [20]. If there are n users in a network, and
1182
+ all of the users want to communicate with each other secretly,
1183
+ the number of encryption keys needed would be n∗(n−1)
1184
+ 2
1185
+ ,and
1186
+ each user would have n − 1 key pairs they need to know
1187
+ and keep secret. This becomes exponentially infeasible as the
1188
+ number of people increase. The usage of asymmetric ciphers
1189
+ eliminate these problems. Since every user has a pair of keys,
1190
+ and anything encrypted with a specific public key can only be
1191
+ decrypted with the corresponding private key, Alice and Bob
1192
+ doesn’t need to agree on a secret key together beforehand. In
1193
+ addition, nobody would need to store n − 1 key pairs, they
1194
+ only need to store their own private and public keys, and the
1195
+ number of key pairs needed in the network would be reduced
1196
+ to n [11]. Cryptographic protocols can be considered as a third
1197
+ main branch of cryptography, and one of the most important
1198
+ primitives they use is called a hash function. Therefore it
1199
+ would be useful to go over the definition of hash functions.
1200
+ In order to understand how public key algorithms work
1201
+ we can imagine a box [21]. For Alice to send Bob a secret
1202
+ message, first Bob sends Alice a box with an open padlock,
1203
+ for which he has the key. Alice then can put her message in the
1204
+ box, and lock it with the padlock. When Bob receives the box
1205
+ he simply unlocks the padlock and reads the message [11].
1206
+ Of course there are still some security concerns, for example
1207
+ an adversary can intercept the box and replace the padlock
1208
+ with their own lock, or put their own message in the box and
1209
+ act like Alice. To achieve authentication and to prevent these
1210
+ problems, cryptographers have developed some procedures.
1211
+ A. Modes of Operation
1212
+ There are several modes of operation that can be used when
1213
+ encrypting a plaintext with a block cipher. NIST recommends
1214
+ the usage of 5 modes of operation. [11]:
1215
+ • Electronic Codebook (ECB)
1216
+ • Cipher Block Chaining (CBC)
1217
+ • Cipher Feedback (CFB)
1218
+ • Output Feedback (OFB)
1219
+ • Counter (CTR)
1220
+ In ECB mode, each block is encrypted and decrypted in-
1221
+ dependently from each other. Because the encryption function
1222
+ does not change, identical blocks of plaintext are encypted to
1223
+ identical blocks of ciphertext [22].
1224
+ In CBC mode, the ciphertext of one block is XORed with
1225
+ the plaintext of the next block before the encryption [23].
1226
+ For the first plaintext block an Initialization Vector IV is
1227
+ used. In CFB mode, ciphertext blocks are encrypted with the
1228
+ encryption function instead of the plaintext blocks. Plaintext
1229
+ blocks are XORed with the results of encryption function to
1230
+ obtain the ciphertext blocks. For the first block an IV is used
1231
+ [24].
1232
+ In OFB mode [25], IV is repeatedly encrypted with the
1233
+ encryption function and the results are XORed with the
1234
+ plaintext blocks to obtain ciphertext blocks [26].
1235
+ In CTR mode, a nonce and counter is encrypted and the
1236
+ result is XORed with the plaintext block [27]. The counter is
1237
+ increased each time.
1238
+ All of these modes while having different advantages also
1239
+ have some disadvantages. For example, some of them have
1240
+ parallelizable encryption and decryption but others don’t. The
1241
+ decision of which modes of operation is to be used should
1242
+ be made based on the desired security and performance levels
1243
+ [28].
1244
+ IX. RESULTS
1245
+ Implementation of DES has been performed using VHDL
1246
+ and the results is shown in TABLE IX and TABLE VIII.
1247
+ TABLE VIII: Performance Matrix of DES on Virtex-7 FPGA
1248
+ Device.
1249
+ Operating
1250
+ Frequency (MHz)
1251
+ Datapath Dalay
1252
+ (nS)
1253
+ Maximum
1254
+ Frequency (MHz)
1255
+ Dynamic
1256
+ Power (mW)
1257
+ 100
1258
+ 1.829
1259
+ 246
1260
+ 8
1261
+ TABLE IX: Resource Utilization of DES on Virtex-7 FPGA
1262
+ Device.
1263
+ Slices
1264
+ LUTs
1265
+ Flip-Flops
1266
+ 69
1267
+ 244
1268
+ 139
1269
+ X. CONCLUSION
1270
+ Architecture Exploration of Simplified Data Encryption
1271
+ Standard (SDES) and Data Encryption Standard (DES) has
1272
+ been done. Simplified DES (SDES) was designed for educa-
1273
+ tional purposes only, to help learn about modern cryptanalytic
1274
+ techniques. SDES has similar properties and structure as DES
1275
+ but has been simplified to make it much easier to perform
1276
+
1277
+ 9
1278
+ encryption and decryption by hand with pencil and paper.
1279
+ Some people feel that learning SDES gives insight into DES
1280
+ and other block ciphers, and insight into various cryptanalytic
1281
+ attacks against them [29]. In DES, 64-bit input is encrypted
1282
+ and decrypted using 56-bit key. At the encryption site, DES
1283
+ takes a 64-bit plaintext and creates a 64-bit ciphertext; at the
1284
+ decryption site, DES takes a 64- bit ciphertext and creates a
1285
+ 64-bit block of plaintext. The same 56-bit cipher key is used
1286
+ for both encryption and decryption. Implementation of SDES
1287
+ and DES has been performed using Python 3.7 version and
1288
+ VHDL. During this project I have learned thoroughly about
1289
+ various cryptography techniques and ciphers.
1290
+ REFERENCES
1291
+ [1] Z. Lu, “Encryption management of accounting data based on des
1292
+ algorithm of wireless sensor network,” Wireless Communications and
1293
+ Mobile Computing, vol. 2022, 2022.
1294
+ [2] F. Pub, “Data encryption standard (des),” FIPS PUB, pp. 46–3, 1999.
1295
+ [3] S.-J. Han, H.-S. Oh, and J. Park, “The improved data encryption standard
1296
+ (des) algorithm,” in Proceedings of ISSSTA’95 International Symposium
1297
+ on Spread Spectrum Techniques and Applications, vol. 3.
1298
+ IEEE, 1996,
1299
+ pp. 1310–1314.
1300
+ [4] K. Rabah, “Theory and implementation of data encryption standard: A
1301
+ review,” Information Technology Journal, vol. 4, 04 2005.
1302
+ [5] T. Nie and T. Zhang, “A study of des and blowfish encryption algorithm,”
1303
+ in Tencon 2009-2009 IEEE Region 10 Conference.
1304
+ IEEE, 2009, pp.
1305
+ 1–4.
1306
+ [6] A. A. Yazdeen, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, O. M.
1307
+ Ahmed, and R. R. Zebari, “Fpga implementations for data encryption
1308
+ and decryption via concurrent and parallel computation: A review,”
1309
+ Qubahan Academic Journal, vol. 1, no. 2, pp. 8–16, 2021.
1310
+ [7] D. Coppersmith, D. B. Johnson, and S. M. Matyas, “A proposed mode
1311
+ for triple-des encryption,” IBM Journal of Research and Development,
1312
+ vol. 40, no. 2, pp. 253–262, 1996.
1313
+ [8] J. Thakur and N. Kumar, “Des, aes and blowfish: Symmetric key
1314
+ cryptography algorithms simulation based performance analysis,” In-
1315
+ ternational journal of emerging technology and advanced engineering,
1316
+ vol. 1, no. 2, pp. 6–12, 2011.
1317
+ [9] D. Coppersmith, “The data encryption standard (des) and its strength
1318
+ against attacks,” IBM journal of research and development, vol. 38,
1319
+ no. 3, pp. 243–250, 1994.
1320
+ [10] P. Mahajan and A. Sachdeva, “A study of encryption algorithms aes,
1321
+ des and rsa for security,” Global Journal of Computer Science and
1322
+ Technology, 2013.
1323
+ [11] W. Stallings, Cryptography and network security, 4/E.
1324
+ Pearson Educa-
1325
+ tion India, 2006.
1326
+ [12] K. Bhatia and S. Som, “Study on white-box cryptography: key whitening
1327
+ and entropy attacks,” in 2016 5th International Conference on Re-
1328
+ liability, Infocom Technologies and Optimization (Trends and Future
1329
+ Directions)(ICRITO).
1330
+ IEEE, 2016, pp. 323–327.
1331
+ [13] K. Mohamed, M. N. M. Pauzi, F. H. H. M. Ali, S. Ariffin, and
1332
+ N. H. N. Zulkipli, “Study of s-box properties in block cipher,” in 2014
1333
+ International Conference on Computer, Communications, and Control
1334
+ Technology (I4CT).
1335
+ IEEE, 2014, pp. 362–366.
1336
+ [14] “Des
1337
+ examples.”
1338
+ [Online].
1339
+ Available:
1340
+ https://page.math.
1341
+ tu-berlin.de/∼kant/teaching/hess/krypto-ws2006/des.htm#:∼:
1342
+ text=For%20example%2C%20if%20we%20take,the%20original%
1343
+ 20plaintext%20%228787878787878787%22.
1344
+ [15] A. Biryukov, “Block ciphers and stream ciphers: The state of the art,”
1345
+ Cryptology EPrint Archive, 2004.
1346
+ [16] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast
1347
+ symmetric-key cryptography,” in Proceedings of the ninth international
1348
+ conference on Architectural support for programming languages and
1349
+ operating systems, 2000, pp. 178–189.
1350
+ [17] A. Schubert and W. Anheier, “Efficient vlsi implementation of modern
1351
+ symmetric block ciphers,” in ICECS’99. Proceedings of ICECS’99. 6th
1352
+ IEEE International Conference on Electronics, Circuits and Systems
1353
+ (Cat. No. 99EX357), vol. 2.
1354
+ IEEE, 1999, pp. 757–760.
1355
+ [18] B. Lee, “The key distribution problem: Prior advances and future
1356
+ challenges,” 2020.
1357
+ [19] Y. Yusfrizal, A. Meizar, H. Kurniawan, and F. Agustin, “Key man-
1358
+ agement using combination of diffie–hellman key exchange with aes
1359
+ encryption,” in 2018 6th International Conference on Cyber and IT
1360
+ Service Management (CITSM), 2018, pp. 1–6.
1361
+ [20] U. SenthilKumar and U. Senthilkumaran, “Review of asymmetric key
1362
+ cryptography in wireless sensor networks,” International Journal of
1363
+ Engineering and Technology, vol. 8, no. 2, pp. 859–862, 2016.
1364
+ [21] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey
1365
+ of symmetric and asymmetric key cryptography,” in 2014 international
1366
+ conference on electronics, communication and computational engineer-
1367
+ ing (ICECCE).
1368
+ IEEE, 2014, pp. 83–93.
1369
+ [22] E. Celikel, J. Davidson, and C. Kern, “Parallel performance of des in
1370
+ ecb mode,” in 2006 International Symposium on Computer Networks.
1371
+ IEEE, 2006, pp. 134–139.
1372
+ [23] C. Tan, X. Deng, and L. Zhang, “Identification of block ciphers under
1373
+ cbc mode,” Procedia Computer Science, vol. 131, pp. 65–71, 2018.
1374
+ [24] S. Mister and R. Zuccherato, “An attack on cfb mode encryption as
1375
+ used by openpgp,” in International Workshop on Selected Areas in
1376
+ Cryptography.
1377
+ Springer, 2006, pp. 82–94.
1378
+ [25] Y.-L. Huang, F.-Y. Leu, J.-C. Liu, J.-H. Yang, C.-W. Yu, C.-C. Chu, and
1379
+ C.-T. Yang, “Building a block cipher mode of operation with feedback
1380
+ keys,” in 2013 IEEE International Symposium on Industrial Electronics.
1381
+ IEEE, 2013, pp. 1–4.
1382
+ [26] T. Iwata, K. Minematsu, J. Guo, S. Morioka, and E. Kobayashi, “Silc:
1383
+ simple lightweight cfb,” CAESAR submission, 2014.
1384
+ [27] H. Lipmaa, P. Rogaway, and D. Wagner, “Ctr-mode encryption,” in First
1385
+ NIST Workshop on Modes of Operation, vol. 39.
1386
+ Citeseer. MD, 2000.
1387
+ [28] S. Almuhammadi and I. Al-Hejri, “A comparative analysis of aes
1388
+ common modes of operation,” in 2017 IEEE 30th Canadian Conference
1389
+ on Electrical and Computer Engineering (CCECE), 2017, pp. 1–4.
1390
+ [29] R. C. Merkle and M. E. Hellman, “On the security of multiple encryp-
1391
+ tion,” Communications of the ACM, vol. 24, no. 7, pp. 465–467, 1981.
1392
+ R uby Kumari, Integrated Dual Degree Ph.D (IDDP)
1393
+ scholar at Academy of Scientific Innovative Re-
1394
+ search (AcSIR), working area Integrated Circuits
1395
+ and System Group, CSIR-CEERI. Completed B.tech
1396
+ in Electronics and Communication Engineering from
1397
+ Maulana Abul Kalam Azad University of Technol-
1398
+ ogy. Her research interest includes Cryptography,
1399
+ Lightweight Ciphers, Digital Logic Design, VLSI
1400
+ Architecture and RTL Design.
1401
+ Jai Gopal Pandey is a Principal Scientist and work-
1402
+ ing in the CSIR-CEERI, Pilani, India since 2005. He
1403
+ is an M.Tech. (Electronics Design and Technology)
1404
+ from U. P. Technical University, Lucknow, in 2003
1405
+ and a Ph.D. in Electronics Engineering from Birla
1406
+ Institute of Technology and Science (BITS), Pilani,
1407
+ India in 2015.
1408
+ His research interests include High-performance
1409
+ Architecture, System-on-chips (SoCs), Embedded
1410
+ Systems, Cryptography, FPGAs, and ASIC designs.
1411
+ Dr. Pandey is a Senior Member of IEEE and an IETE
1412
+ Fellow.
1413
+
1414
+ 10
1415
+ Abhijit Karmakar received the B.E. degree in
1416
+ Electronics and Telecommunication Engineering in
1417
+ 1993 from Jadavpur University, India, and M.Tech.
1418
+ degree in Electrical Engineering from Indian Insti-
1419
+ tute of Technology (IIT), Madras, India, in 1995. He
1420
+ recieved the Ph.D. degree in Electrical Engineering
1421
+ from IIT, Delhi, India, in 2007. Since 1995, he has
1422
+ been working with the CSIR - Central Electronics
1423
+ Engineering Research Institute (CEERI), Pilani, In-
1424
+ dia. His research interest span the area of VLSI
1425
+ Design, Signal Processing and related areas.
1426
+
AdE5T4oBgHgl3EQfSg_z/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtE5T4oBgHgl3EQfSw9y/content/tmp_files/2301.05531v1.pdf.txt ADDED
@@ -0,0 +1,781 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Strain-mediated ion-ion interaction in
2
+ rare-earth-doped solids
3
+ A. Louchet-Chauvet
4
+ E-mail: [email protected]
5
+ ESPCI Paris, Universit´e PSL, CNRS, Institut Langevin, 75005 Paris, France
6
+ T. Chaneli`ere
7
+ Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut N´eel, 38000 Grenoble, France
8
+ Abstract.
9
+ It was recently shown that the optical excitation of rare-earth ions produces a
10
+ local change of the host matrix shape, attributed to a change of the rare-earth ion’s
11
+ electronic orbital geometry. In this work we investigate the consequences of this piezo-
12
+ orbital backaction and show from a macroscopic model how it yields a disregarded
13
+ ion-ion interaction mediated by mechanical strain.
14
+ This interaction scales as 1/r3,
15
+ similarly to the other archetypal ion-ion interactions, namely electric and magnetic
16
+ dipole-dipole interactions. We quantitatively assess and compare the magnitude of these
17
+ three interactions from the angle of the instantaneous spectral diffusion mechanism, and
18
+ reexamine the scientific literature in a range of rare-earth doped systems in the light of
19
+ this generally underestimated contribution.
20
+ arXiv:2301.05531v1 [cond-mat.mtrl-sci] 13 Jan 2023
21
+
22
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
23
+ 2
24
+ 1. Introduction
25
+ Atomic ensembles have attracted a lot of attention over more than 20 years due to their
26
+ inherent capacity to efficiently interact with light [1]. They are at the center of a number of
27
+ quantum storage protocols, in the form of gases [2, 3] or solid state [4, 5]. Among the most
28
+ interesting solid state candidates, rare-earth ion-doped crystals (REIC) are particularly
29
+ attractive due to their long optical coherence lifetimes at cryogenic temperatures [6] and
30
+ are at the center of a number of actively developed quantum memory protocols [7, 8, 9].
31
+ In these light-matter interfaces, the optical depth of the medium is an important figure of
32
+ merit since it enables high storage and retrieval efficiency [10, 11, 5]. However, reaching
33
+ large optical depths usually comes with working with large atomic concentrations, leading
34
+ to reinforced ion-ion interactions and thereby enhanced decoherence [12, 13, 14, 15, 16, 17].
35
+ Interestingly, although ion-ion interactions are potentially detrimental to the
36
+ performance of quantum devices, they have also emerged as the foundational mechanism
37
+ for quantum computing architectures because they allow multiqubit gate operations [18].
38
+ Quantum computing was initially developed in physical systems with strong readout
39
+ capacity ranging from dilute systems (trapped atoms) to condensed matter (quantum
40
+ dots or superconducting qubits).
41
+ Rare-earth ion-doped crystals were only recently
42
+ considered as relevant for such applications [19] thanks to the elaboration of efficient
43
+ single ion readout schemes that compensate for the optical transition’s weak oscillator
44
+ strength [20, 21].
45
+ Either way, proper understanding and quantifying of ion-ion interactions in REIC
46
+ are crucial.
47
+ In most systems, the order of magnitude of the measured interaction
48
+ strength is compatible with magnetic and/or electric dipole-dipole interaction. In both
49
+ mechanisms, the excitation of some ions induces a change in their electric or magnetic
50
+ dipole moment, modifying the local field accordingly in their vicinity.
51
+ This modified
52
+ field affects the surrounding ions in proportion to the Stark or Zeeman sensitivity of
53
+ their energy levels.
54
+ In a limited number of REIC, however, the actual magnitude of
55
+ this interaction is larger than expected by several orders of magnitude [22, 23]. In this
56
+ paper we consider a strain-mediated ion-ion interaction that has not been investigated
57
+ so far and that may explain this discrepancy. The interaction we consider stems from
58
+ the apparition of an excitation-induced stress field, affecting the surrounding ions via
59
+ their piezospectroscopic sensivity. This fundamental effect has been pointed out early
60
+ in the context of paramagnetic resonance under RF excitation, named virtual phonon
61
+ exchange interaction initially considering transition metals ions [24, 25, 26]. At the time,
62
+ the description exploited the equivalent operators formalism for the spin-lattice coupled
63
+ system, but the different modeling parameters are difficult to infer from experimental
64
+ measurements. Despite a series of studies including rare-earth salts [27, and references],
65
+ phonon-mediated interactions seem to have been overlooked for years, before reappearing
66
+ in the context of quantum technologies with original proposals of phononic engineering
67
+ [28, 29].
68
+
69
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
70
+ 3
71
+ This paper is organized as follows. In Sec. 2, the physical origin of this interaction
72
+ is presented. A scaling law is given and an estimation of its strength is provided. In
73
+ Sec. 3, we quantitatively compare the magnitude of this strain-mediated interaction with
74
+ respect to the electromagnetic dipole-dipole interactions in a number of host-dopant
75
+ combinations and confront our predictions with the experimental data found in the
76
+ scientific literature. The strength of the instantaneous spectral diffusion mechanism is
77
+ used as a comparison criterion. Finally, in Sec. 4, we discuss the implications of this work
78
+ in quantum technology-related applications.
79
+ 2. Strain-mediated ion-ion interaction
80
+ 2.1. General description
81
+ When an atomic particle is promoted to a different electronic level, its outer shape and
82
+ size are bound to change due to the modification of its electronic wavefunction. If the
83
+ particle is embedded in a solid matrix, this piezo-orbital backaction effect will additionally
84
+ give rise to a stress field around the excited particle, making it detectable via a change
85
+ of shape of the solid itself. This was recently evidenced in a bulk rare-earth ion-doped
86
+ crystal in which only a finite volume of the crystal was illuminated, leading to a distortion
87
+ of the nearby crystal surface [30].
88
+ Conversely, it has been known for several decades that the optical lines of rare-earth
89
+ ions in solids are sensitive to stress via the piezospectroscopic effect [31, 32]. Indeed,
90
+ in the elastic regime, a compressive or tensile stress modifies the interatomic distances.
91
+ This affects the crystal field and in turn shifts the rare-earth ion’s energy levels. This
92
+ sensitivity to stress was recently proposed as a tool to sense mechanical vibrations in a
93
+ cryogenic environment [33, 34].
94
+ The piezo-orbital backaction and the piezospectroscopic effect are in fact two facets
95
+ of the same coupling mechanism. Their combination leads to a shift of the transition
96
+ frequency in the ions surrounding a given excited rare-earth ion. In the following we coin
97
+ this as the strain-mediated ion-ion interaction.
98
+ 2.2. Magnitude of the strain-mediated interaction
99
+ For simplicity we assume that the ion is spherical with a radius r1 and that the piezo-
100
+ orbital backaction acts as a simple ionic radius change (see Fig. 1). This impacts the
101
+ surrounding matrix by creating a radial stress field σ(r) around the ion. With a spherically
102
+ symmetric continuum mechanics model detailed in appendix Appendix A, we calculate
103
+ the elastic strain energy that is necessary to establish this stress field. Due to energy
104
+ conservation, this elastic energy corresponds to the energy shift of the electronic levels
105
+ due to the internal stress within the ionic volume (see appendix Appendix B). This allows
106
+
107
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
108
+ 4
109
+ Figure 1. Simplified view of the piezo-orbital backaction around a spherical rare-earth
110
+ ion. The stress field is symbolized by a radial color gradient around the ion.
111
+ us to relate the ionic radius variation ∆r to the piezospectroscopic sensitivity κ:
112
+ ∆r = hκ
113
+ 4πr2
114
+ 1
115
+ (1)
116
+ where h is the Planck constant. With this we derive the radial stress field σ(r) and write
117
+ the strain-mediated ion-ion interaction energy between two ions separated by a distance
118
+ r:
119
+ Estr(r) = hκσ(r) =
120
+ E
121
+ 1 + ν
122
+ (hκ)2
123
+ 2πr3
124
+ (2)
125
+ where E is the Young modulus and ν is the Poisson’s ratio of the crystal. We emphasize
126
+ the relatively strong hypotheses underlying this result: the piezo-orbital backaction is
127
+ assumed to occur in the form of a mere ionic radius change of the spherical excited ion,
128
+ and the piezospectroscopic sensitivity is assumed to be scalar. The anisotropic nature of
129
+ the crystalline matrix may naturally translate into a non-spherical strain field. Because
130
+ of the large distance between dopants (larger than the crystal cell parameter at low
131
+ concentration levels), we may expect the strain anisotropy to be weak. On the contrary,
132
+ the piezospectroscopic sensitivity is usually described by a tensor [35], so its scalar nature
133
+ appears as a crude assumption in order to derive an order of magnitude.
134
+ Using Eq. 1 we can estimate the corresponding relative ionic radius change due
135
+ to the piezo-orbital backaction in rare-earth-doped crystals.
136
+ Taking typical values
137
+ κ = 100 Hz/Pa [33] and r1 = 1 ˚A [36], we obtain ∆r/r1 ≃ 5·10−3. This value remarkably
138
+ agrees with the relative ionic radius change of a free ion among its 4f states that can be
139
+ derived from a Hartree-Fock calculation (see [37] for Ce3+ and [38] for Eu3+) even if the
140
+ exact rearrangement of the outer shell defining the ionic radius surrounding the 4f-shell
141
+ deserves further analysis.
142
+ 3. Comparing the three ion-ion interactions
143
+ In this section we propose to study how this interaction compares with the other usual
144
+ ion-ion interactions generally considered in rare-earth doped systems, i.e. electric and
145
+ magnetic dipole-dipole interactions.
146
+ We also confront these estimations to published
147
+ measurements of ion-ion interactions in rare-earth doped crystals.
148
+
149
+ (a) lon at rest
150
+ (b) Excited ion
151
+ ri +△r
152
+ r1Strain-mediated ion-ion interaction in rare-earth-doped solids
153
+ 5
154
+ Interestingly, the strain-mediated interaction scales as 1/r3, exactly like the electric
155
+ and magnetic dipole-dipole interactions, although originating from a radically different
156
+ physical mechanism. All three interactions can be characterized by a coefficient Ai such
157
+ that their energies read as:
158
+ Ei(r) = hAi
159
+ 2πr3
160
+ (3)
161
+ where the {Ai} are defined by the following:
162
+ Ael
163
+ = π¯h
164
+ ϵ0ϵr
165
+ ∆µ2
166
+ el
167
+ (4)
168
+ Amag = µ0¯h
169
+ 4π ∆µ2
170
+ mag
171
+ (5)
172
+ Astr =
173
+ E
174
+ 1 + ν hκ2
175
+ (6)
176
+ ∆µel and ∆µmag are the electric and magnetic dipole moment variation when the ion
177
+ is promoted to the excited state.
178
+ They are expressed in Hz m V−1 and in Hz T−1,
179
+ respectively. We note that in all three expressions, the sensitivity of the optical transition
180
+ to electric field, magnetic field or strain (respectively) appears as a square law, in
181
+ agreement with what is expected in an ion-ion interaction.
182
+ This scaling has been early derived for paramagnetic impurities under RF
183
+ excitation [24, 25], in the so-called zero-retardation limit of the virtual phonon exchange
184
+ (VPE) interaction [26]. At the time, McMahon et al. also showed that VPE and magnetic
185
+ interactions have the same order of magnitude for transition metal paramagnetic dopants
186
+ [25].
187
+ With these expressions one can anticipate the variability of the three considered
188
+ interactions amongst REIC. For example, the strain-mediated interaction should be
189
+ quite constant across different ions or crystals, since the mechanical properties of typical
190
+ crystalline rare-earth doped oxides and the piezospectroscopic sensitivity of their optical
191
+ lines are rather similar [33]. On the other hand, the magnetic dipole-dipole interactions
192
+ vary by several orders of magnitude between Kramers and non-Kramers ions because some
193
+ exhibit an electronic spin while some only have a nuclear spin behaviour. A variability
194
+ of 6 orders of magnitude is expected, since (µB/µN)2 ≃ 3 · 106, where µB and µN are
195
+ the Bohr magneton and the nuclear magneton, respectively. A large variability is also
196
+ expected for the electric dipole-dipole interaction because the appearance of an electric
197
+ dipole is only permitted by the crystal field that weakly perturbs the free ion electronic
198
+ structure. Indeed different hosts, depending on the crystal site symmetry, allow or inhibit
199
+ permanent electric dipole moment for the rare earth ion dopant.
200
+ The overall ion-ion interactions taking place in an ensemble of rare-earth ions can be
201
+ probed experimentally by the observation of instantaneous spectral diffusion (ISD) [39],
202
+ ie the effect of a substantial population transfer on the spectral width of a narrow subset
203
+ of ions within a given volume. When it builds upon interactions scaling as 1/r3, ISD
204
+
205
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
206
+ 6
207
+ manifests as an additional term in the homogeneous linewidth Γh that is proportional to
208
+ the volumic density of excited particles ne:
209
+ Γeff = Γh + β
210
+ 2 ne
211
+ (7)
212
+ where β
213
+ =
214
+
215
+ i βi is the sum of individual contributions due to each considered
216
+ interaction [40, 14]:
217
+ βi = 8π
218
+ 9
219
+
220
+ 3106Ai,
221
+ (8)
222
+ the 106 factor stemming from the choice of units (m3 s−1 for Ai and Hz cm3 for βi).
223
+ ISD is generally observed via high-resolution spectroscopy experiments such as
224
+ photon echoes [41, 42, 43]. It has been evidenced in a large number of rare-earth ion-
225
+ doped materials, but a quantitative value is only given in a handful of them. The published
226
+ experimental values for β in ten different rare-earth ion-doped crystals are given in Table 1.
227
+ These materials represent a rather complete sampling of the REIC diversity, including
228
+ non-Kramers and Kramers ions, different crystal and site symmetries, and crystals with
229
+ and without charge compensation. The measured values of β are contained within a 2
230
+ order-of-magnitude range (between 10−13 and 10−11 Hz cm3).
231
+ Cristal
232
+ βexp (Hz cm3)
233
+ Tm:YAG
234
+ 2.3 · 10−12 [43]
235
+ Tm:YGG
236
+ 2.6 · 10−13 [43]
237
+ Tm:LiNbO3
238
+ 1.0 · 10−11 [43]
239
+ Er:YSO
240
+ 1.3 · 10−12 [44]
241
+ Er:LiNbO3
242
+ 1.0 · 10−13 [45]
243
+ Eu:YSO
244
+ 9.0 · 10−13 [46]
245
+ Eu:Y2O3
246
+ 1.3 · 10−13 [47]
247
+ EuCl3·6D2O
248
+ 4.6 · 10−13 [22]
249
+ Pr:YSO
250
+ 1.2 · 10−11 [48]
251
+ Pr:La2(WO4)3
252
+ 7.0 · 10−12 [49]
253
+ Table 1. Measured values for the ISD coefficient βexp in a selection of rare-earth ion-
254
+ doped crystals.
255
+ The three ion-ion interactions considered in this work (see equations 4, 5 and 6)
256
+ should contribute to ISD. Focusing our attention to the selection of REICs for which
257
+ quantitative ISD measurements are available, we calculate the βi parameters for each ion-
258
+ ion interactions using Eq. 8 and display the results graphically in Figure 2. The material
259
+ parameters relevant to this calculation and resulting numerical estimations are given in
260
+ appendix Appendix C. Again, we point out that the values are mostly indicative since
261
+ they rely on a very simplified modelization of the interactions.
262
+ We verify that both magnetic and electric dipole-dipole interactions vary among
263
+ the materials within a 6 order-of-magnitude span depending on the existence of an
264
+
265
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
266
+ 7
267
+ Figure 2.
268
+ Calculated (bars) and measured (triangles) values for βi and Ai (where
269
+ i = {mag, el, str, exp}) for the 10 rare-earth ion-doped crystals for which quantitative
270
+ values for βexp are available (see Table 1). Note the logarithmic vertical scale spanning
271
+ 10 orders of magnitude.
272
+ electronic spin and the presence of a centrosymmetry in the doping site (βmag is comprised
273
+ between 7 · 10−20 and 2 · 10−13 Hz cm3and βel between 8 · 10−19 and 8 · 10−12 Hz cm3,
274
+ respectively). Conversely, the strain-mediated interaction is comprised within a much
275
+ smaller interval (βstr between 6 · 10−13 and 2 · 10−12 Hz cm3) since we use a typical value
276
+ for the piezospectroscopic sensitivity κ for all and because of the very similar values of
277
+ the Young moduli between crystals.
278
+ It is interesting to note that the strain-mediated interaction is of the order of
279
+ the largest of the electric or magnetic dipole-dipole contributions found among all
280
+ materials.
281
+ This means that when one or both of the dipole-dipole interactions are
282
+ strong, they should coexist with the strain-mediated interaction. On the other hand,
283
+ when both electromagnetic contributions are in the low range (weak Stark effect and
284
+ no electronic spin for the non-Kramers ions, e.g. Tm-doped garnets or in a lesser part
285
+ stoechiometric europium chloride), the strain-mediated interaction dominates by several
286
+ orders of magnitude.
287
+ In all considered REICs, the sum of the three predicted effects
288
+ satisfactorily accounts for the measured values of βexp, finally providing an explanation
289
+ to the previously large discrepancy between theoretical estimations and measurements of
290
+ the ISD mechanism in some media.
291
+
292
+ 10-10
293
+ (Hz cm²)
294
+ ) 10-12
295
+ S
296
+ 10-20
297
+ A
298
+ 10-14
299
+ ISD coeficient β
300
+ Magnetic
301
+ Electric
302
+ Strain
303
+ 10-22
304
+ Exp
305
+ 10
306
+ 16
307
+ Interaction
308
+ 10-
309
+ 24
310
+ 10-18
311
+ 10-26
312
+ 10-20
313
+ YSO
314
+ Tm:YAG
315
+ Tm:YGG
316
+ Eu:YSO
317
+ EuCl'Strain-mediated ion-ion interaction in rare-earth-doped solids
318
+ 8
319
+ 4. Discussion
320
+ Besides providing a better understanding of the physical origin and strength of ISD in
321
+ REIC, the strain-mediated interaction in REIC could have interesting applications in
322
+ the field of quantum computing.
323
+ Indeed, quantum computing schemes rest upon the
324
+ existence of a long-range atom-atom interaction enabling multiqubit operations [18]. This
325
+ interaction is often spontaneously assimilated to dipole-dipole interaction, and particularly
326
+ in REIC [50, 19].
327
+ We argue that the strain-mediated interaction could play this role
328
+ in quantum-computing to replace the dipole-dipole coupling. Such a scheme could be
329
+ performed in almost any rare-earth ion-doped crystal since the strength of the interaction
330
+ is rather similar over a broad variety of ion and host combinations [33]. In particular,
331
+ the possession of a permanent electric dipole moment would not be an exclusive criteria
332
+ for quantum computing compatibility. On the contrary, in some crystals (namely Tm-
333
+ doped garnets, although there could be other candidates) this strain-mediated interaction
334
+ dominates its electromagnetic counterparts by at least 4 orders of magnitude. This means
335
+ that not only is the ion-ion interaction particularly pure in such media, but these strain-
336
+ coupled qubits would be more robust against other types of decoherence process, such
337
+ as magnetic field fluctuations due to spin flips in the host matrix [51, 13], or electric
338
+ field noise due to charge fluctuations that may occur at the surface of rare-earth-doped
339
+ nanoparticles [52].
340
+ One may argue that since the strain-mediated interaction is intrinsically slow since it
341
+ relies on the propagation of stress at the speed of sound (between 3000 and 8000 m/s in
342
+ most considered crystals). We estimate its propagation delay by considering the average
343
+ ion-ion distance dion−ion, given by
344
+ 3√nRE (where nRE is the volumic density of rare-earth
345
+ ions). dion−ion ranges from a few nm in highly concentrated materials (e.g. ∼ 2 nm in
346
+ 1% doped YAG) up to hundreds of nm in low concentration materials (e.g. ∼ 650 nm in
347
+ 200ppm doped YSO). This leads to a strain propagation time shorter than the nanosecond,
348
+ to be compared with typical µs-scale light-matter interactions occuring in such media.
349
+ Therefore, the strain-mediated interaction can still be considered instantaneous within
350
+ rare-earth-doped crystals with typical concentrations.
351
+ 5. Conclusion
352
+ Based on recent evidence of a conservative optomechanical backaction mechanism in rare-
353
+ earth ion-doped crystals, we have unveiled a disregarded ion-ion interaction based on a
354
+ physical mechanism fundamentally different from generally considered electromagnetic
355
+ dipole-dipole interactions: the sensitivity of rare-earth ions to piezo-orbitally induced
356
+ stress. With a simple mechanical model, we have estimated the strength of this strain-
357
+ mediated interaction and shown that it is largely dominant in some rare-earth ion-doped
358
+ crystals, opening interesting perspectives for strain-based quantum computing in solids.
359
+
360
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
361
+ 9
362
+ 6. Acknowledgments
363
+ The authors are grateful to Lars Rippe and Xiaoping Jia for helpful discussions.
364
+ The authors acknowledge support from the French National Research Agency (ANR)
365
+ through the projects ATRAP (ANR-19-CE24-0008), MIRESPIN (ANR-19-CE47-0011)
366
+ and MARS (ANR-20-CE92-0041). This work has received support under the program
367
+ “Investissements d’Avenir” launched by the French Government.
368
+ Appendix A. Continuum mechanics in a REIC
369
+ Appendix A.1. Spherical defect in an isotropic elastic medium
370
+ Let us consider a sphere with radius r1, embedded in an infinite, isotropic, continuous
371
+ elastic medium with a Young modulus E and a Poisson’s ratio ν. When a homogeneous
372
+ radial stress σ0 is applied in the sphere, the displacement field at a distance r outside the
373
+ sphere is radial and obeys [53]:
374
+ u(r) = σ0
375
+ 1 + ν
376
+ 2E
377
+ r3
378
+ 1
379
+ r2,
380
+ (A.1)
381
+ while the stress field around the sphere is also radial and reads as:
382
+ σ(r) = σ0
383
+ r3
384
+ 1
385
+ r3 for r > r1
386
+ (A.2)
387
+ Defining ∆r = u(r1) as the radius change, we obtain a simple relationship between
388
+ σ0 et ∆r:
389
+ σ0 = ∆r
390
+ r1
391
+ 2E
392
+ 1 + ν
393
+ (A.3)
394
+ Figure A1.
395
+ Radial stress σ(r) corresponding to the dilation of a sphere within an
396
+ infinite isotropic medium. The stress is homogeneous within the sphere and decays with
397
+ a 1/r3 law outside.
398
+ The radial stress can then be written:
399
+ σ(r) = −∆r
400
+ r1
401
+ 2E
402
+ 1 + ν
403
+ r3
404
+ 1
405
+ r3
406
+ (A.4)
407
+
408
+ /0
409
+ ()
410
+ 1
411
+ 1 stress (
412
+ 0.8
413
+ Normalized radial
414
+ 0.6
415
+ 0.4
416
+ 0.2
417
+ 0
418
+ 0
419
+ 1
420
+ 2
421
+ 3
422
+ 4
423
+ 5
424
+ Normalized distance to ion r/riStrain-mediated ion-ion interaction in rare-earth-doped solids
425
+ 10
426
+ Appendix A.2. Strain energy
427
+ We now want to assess the elastic strain energy contained in the medium when the stress
428
+ σ0 is applied.
429
+ We successively calculate the energy contained inside and outside the
430
+ sphere [54].
431
+ Inside the sphere:
432
+ The strain energy inside the sphere reads as:
433
+ Uint = 1
434
+ 2σ0ε0V
435
+ (A.5)
436
+ where ε0 = ∆V/V = 3∆r/r1 is the volumic change of the sphere. We finally obtain:
437
+ Uint = 2π∆rσ0r2
438
+ 1
439
+ (A.6)
440
+ Outside the sphere:
441
+ The sphere being included in an infinite medium, we must also
442
+ consider the strain energy that was necessary to establish the whole stress field around
443
+ the sphere. The volumic energy outside the sphere at a distance r reads as:
444
+ uV (r) = 1
445
+ 2σ(r)ε(r)
446
+ (A.7)
447
+ The volumic strain ε(r) is related to the local stress via the volumic Hooke’s law
448
+ σ(r) = Kε(r) (where K =
449
+ E
450
+ 1−2ν is the bulk modulus). Using Eq. A.2 we get ε(r) = ε0r3
451
+ 1/r3,
452
+ which finally leads to:
453
+ uV (r) = 3∆r
454
+ 2 σ0
455
+ r5
456
+ 1
457
+ r6
458
+ (A.8)
459
+ We integrate this volumic energy over the infinite volume of the medium:
460
+ Uext = 4π
461
+ � ∞
462
+ r=r1
463
+ uV (r)r2dr = 6π∆rσ0r5
464
+ 1
465
+ � ∞
466
+ r=r1
467
+ 1
468
+ r4dr
469
+ (A.9)
470
+ and obtain:
471
+ Uext = 2π∆rσ0r2
472
+ 1
473
+ (A.10)
474
+ Total strain energy:
475
+ Based on Eqs. A.6 and A.10, we derive the total strain energy that
476
+ is necessary to distort the sphere and generate the associated stress field around it:
477
+ Ustrain = Uint + Uext = 4π∆rσ0r2
478
+ 1
479
+ (A.11)
480
+ Appendix B. Relating the strain energy with the atomic energy
481
+ Due to piezo-orbital backaction [30], the size of a rare-earth ion is expected to change
482
+ under optical excitation. Assuming this change of shape is merely a change of radius on
483
+ a spherical ion, we can apply the calculation presented in appendix Appendix A. Due
484
+ to energy conservation, this elastic energy is taken from the ion’s energy levels. We can
485
+
486
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
487
+ 11
488
+ therefore write the following, considering that the shift in the ion’s energy levels ∆E is
489
+ related to the stress within the ion σ0.
490
+ Ustrain = ∆E = hκσ0
491
+ (B.1)
492
+ where κ is the piezospectroscopic sensitivity, assumed scalar. Injecting the expression of
493
+ Ustrain given by Eq. A.11, we get:
494
+ ∆r = hκ
495
+ 4πr2
496
+ 1
497
+ (B.2)
498
+ This allows us to obtain a simple relationship between the radial stress σ(r) and the ionic
499
+ radius change ∆r, using Eq. A.4:
500
+ σ(r) =
501
+ 2E
502
+ 1 + ν
503
+
504
+ 4πr3
505
+ (B.3)
506
+ Appendix C. Instantaneous Spectral Diffusion
507
+ In Table C1 we list the physical parameters that are needed for the estimation of ISD
508
+ strengths for an ensemble of 10 REIC. Note that some values had to be estimated using
509
+ data measured in similar materials. The value for the piezospectroscopic sensitivity κ
510
+ being basically unknown for most REICs, we choose to take κ = 100 Hz/Pa for all. This
511
+ choice is supported by the observed similarity of the value of κ in a broad variety of hosts,
512
+ dopants and transitions [33].
513
+ Crystal
514
+ E
515
+ ν
516
+ ∆µmag
517
+ ϵr
518
+ ∆µel
519
+ Tm:YAG
520
+ 270 GPa [55]
521
+ 0.256 [55]
522
+ 320 MHz/T [56]
523
+ 10.6 [57]
524
+ 65 Hz cm/V [58]
525
+ Tm:YGG
526
+ 224 GPa [59]
527
+ 0.28 [59]
528
+ 44 MHz/T [60]
529
+ 12 [57]
530
+ ⋆65 Hz cm/V
531
+ Tm:LiNbO3
532
+ 170 GPa [61]
533
+ 0.25 [61]
534
+ 1.3 GHz/T [62]
535
+ †65 [63]
536
+ 18 kHz cm/V [62]
537
+ Er:YSO
538
+ 150 GPa [64]
539
+ 0.26 [64]
540
+ 26 GHz/T [65]
541
+ 10 [66]
542
+ 50 kHz cm/V [67]
543
+ Er:LiNbO3
544
+ 170 GPa [61]
545
+ 0.25 [61]
546
+ 16 GHz/T [68]
547
+ †65 [63]
548
+ 25 kHz cm/V [69]
549
+ Eu:YSO
550
+ 150 GPa [64]
551
+ 0.26 [64]
552
+ 10 MHz/T [70]
553
+ 10 [66]
554
+ 35 kHz cm/V [71, 72]
555
+ Eu:Y2O3
556
+ ⋆120 GPa
557
+ ⋆0.25
558
+ ⋆10 MHz/T
559
+ 15 [73]
560
+ ⋆35 kHz cm/V
561
+ EuCl3·6D2O
562
+ ⋆120 GPa
563
+ ⋆0.25
564
+ 8 MHz/T [74]
565
+ 3.6 [22]
566
+ 1.57 kHz cm/V [22]
567
+ Pr:YSO
568
+ 150 GPa [64]
569
+ 0.26 [64]
570
+ 150 MHz/T [75]
571
+ 10 [66]
572
+ 111 kHz cm/V [76]
573
+ Pr:La2(WO4)3
574
+ 90 GPa [77]
575
+ 0.3 [77]
576
+ ⋆150 MHz/T
577
+ 20 [78]
578
+ ⋆100 kHz cm/V
579
+ Table C1. Material parameters used to compute the interaction strengths. E is the
580
+ mechanical Young modulus, ν the Poisson’s ratio, and ϵr is the dielectric constant of
581
+ the host matrix.
582
+ ∆µmag and ∆µel are the difference in the rare earth magnetic or
583
+ electric moments between ground and excited states. When no values could be found
584
+ in the literature, we chose a value among similar materials and indicated this with the
585
+ symbol ”⋆”. †: The lithium niobate (LNO) crystal is anisotropic and exhibits different
586
+ values of ϵr depending on the crystallographic direction [63]. For simplicity we choose
587
+ an intermediate value.
588
+
589
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
590
+ 12
591
+ In Table C2 we present the different ISD coefficients βi calculated for the three
592
+ possible ion-ion interactions (magnetic dipole-dipole interaction, electric dipole-dipole
593
+ interaction, and strain-mediated interaction), using the parameters listed in Table C1
594
+ and Eqs. 4, 5 and 6.
595
+ Crystal
596
+ βmag
597
+ βel
598
+ βstr
599
+ Tm:YAG
600
+ 6.9 · 10−17
601
+ 2.0 · 10−18
602
+ 2.3 · 10−12
603
+ Tm:YGG
604
+ 1.3 · 10−18
605
+ 8.3 · 10−19
606
+ 1.9 · 10−12
607
+ Tm:LiNbO3
608
+ 1.1 · 10−15
609
+ 3.0 · 10−14
610
+ 1.5 · 10−12
611
+ Er:YSO
612
+ 4.5 · 10−13
613
+ 3.8 · 10−13
614
+ 1.3 · 10−12
615
+ Er:LiNbO3
616
+ 1.7 · 10−13
617
+ 5.8 · 10−14
618
+ 1.5 · 10−12
619
+ Eu:YSO
620
+ 6.7 · 10−20
621
+ 7.4 · 10−13
622
+ 1.3 · 10−12
623
+ Eu:Y2O3
624
+ 6.7 · 10−20
625
+ 4.9 · 10−13
626
+ 1.2 · 10−12
627
+ EuCl3·6D2O
628
+ 4.3 · 10−20
629
+ 4.1 · 10−15
630
+ 8.2 · 10−13
631
+ Pr:YSO
632
+ 1.5 · 10−17
633
+ 7.5 · 10−12
634
+ 1.3 · 10−12
635
+ Pr:La2(WO4)3
636
+ 1.5 · 10−17
637
+ 3.0 · 10−12
638
+ 6.3 · 10−13
639
+ Table C2. Estimated values for the ISD coefficients βi in Hz cm3.
640
+ [1] Hammerer K, Sørensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
641
+ [2] Duan L M, Lukin M, Cirac J I and Zoller P 2001 Nature (London) 414 413
642
+ [3] Lukin M D 2003 Rev. Mod. Phys. 75 457
643
+ [4] Tittel W, Afzelius M, Chaneliere T, Cone R L, Kr¨oll S, Moiseev S A and Sellars M 2010 Laser &
644
+ Photonics Reviews 4 244–267
645
+ [5] Gr`ezes C, Kubo Y, Julsgaard B, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T,
646
+ Nakamura K et al. 2016 C. R. Phys. 17 693–704
647
+ [6] Thiel C W, B¨ottger T and Cone R L 2011 J. Lumin. 131 353–361
648
+ [7] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594
649
+ 41–45
650
+ [8] Duda C K, Ferguson K R, Ahlefeldt R L, Hedges M P and Sellars M J 2022 arXiv preprint
651
+ arXiv:2207.07058
652
+ [9] Minnegaliev M M, Gerasimov K I, Sabirov T N, Urmancheev R V and Moiseev S A 2022 JETP Lett.
653
+ 115 720–727
654
+ [10] Gorshkov A V, Andr´e A, Fleischhauer M, Sørensen A S and Lukin M D 2007 Phys. Rev. Lett. 98
655
+ 123601
656
+ [11] Afzelius M, Simon C, De Riedmatten H and Gisin N 2009 Phys. Rev. A 79 052329
657
+ [12] Agnello S, Boscaino R, Cannas M and Gelardi F 2001 Phys. Rev. B 64 174423
658
+ [13] B¨ottger T, Thiel C W, Sun Y and Cone R L 2006 Phys. Rev. B 73 75101
659
+ [14] Dajczgewand J, Ahlefeldt R, B¨ottger T, Louchet-Chauvet A, Le Gou¨et J L and Chaneli`ere T 2015
660
+ New J. Phys. 17 023031
661
+ [15] Lim H J, Welinski S, Ferrier A, Goldner P and Morton J J L 2018 Phys. Rev. B 97 064409
662
+ [16] Alexander J, Dold G, Kennedy O W, ˇSim˙enas M, O’Sullivan J, Zollitsch C W, Welinski S, Ferrier
663
+ A, Lafitte-Houssat E, Lindstr¨om T et al. 2022 Phys. Rev. B 106 245416
664
+ [17] Ranˇci´c M, Le Dantec M, Lin S, Bertaina S, Chaneli`ere T, Serrano D, Goldner P, Liu R B, Flurin E,
665
+ Est`eve D et al. 2022 Phys. Rev. B 106 144412
666
+ [18] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 464 45–53
667
+
668
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
669
+ 13
670
+ [19] Kinos A, Hunger D, Kolesov R, Mølmer K, de Riedmatten H, Goldner P, Tallaire A, Morvan L,
671
+ Berger P, Welinski S et al. 2021 arXiv preprint arXiv:2103.15743
672
+ [20] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Verma V, Nam S W, Marsili F,
673
+ Shaw M D, Beyer A D et al. 2018 Phys. Rev. Lett. 121 183603
674
+ [21] Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M and Thompson J D 2020 Nat. Commun. 11
675
+ 1–6
676
+ [22] Ahlefeldt R L, McAuslan D L, Longdell J J, Manson N B and Sellars M J 2013 Phys. Rev. Lett. 111
677
+ 240501
678
+ [23] Attal Y 2017 Processeurs atomiques utilisant la propri´et´e de creusement spectral : mod´elisation
679
+ et application `a l’analyse spectrale radiofr´equence large bande sur porteuse optique Ph.D. thesis
680
+ Universit´e Paris-Saclay
681
+ [24] Sugihara K 1959 J. Phys. Soc. Japan 14 1231–1234
682
+ [25] McMahon D H and Silsbee R H 1964 Phys. Rev. 135 A91
683
+ [26] Orbach R and Tachiki M 1967 Phys. Rev. 158(2) 524–529 URL https://link.aps.org/doi/10.
684
+ 1103/PhysRev.158.524
685
+ [27] Cone R and Meltzer R 1987 Chapter 8 - ion–ion interactions and exciton effects in rare earth
686
+ insulators Spectroscopy of Solids Containing Rare Earth Ions (Modern Problems in Condensed
687
+ Matter Sciences vol 21) ed Kaplyanskii A A and Macfarlane R (Elsevier) pp 481–556 URL
688
+ https://www.sciencedirect.com/science/article/pii/B9780444870513500146
689
+ [28] Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P and Lukin M D 2013 Phys. Rev. Lett. 110(15)
690
+ 156402 URL https://link.aps.org/doi/10.1103/PhysRevLett.110.156402
691
+ [29] Lemonde M A, Meesala S, Sipahigil A, Schuetz M J A, Lukin M D, Loncar M and Rabl P 2018
692
+ Phys. Rev. Lett. 120(21) 213603 URL https://link.aps.org/doi/10.1103/PhysRevLett.120.
693
+ 213603
694
+ [30] Louchet-Chauvet A, Verlot P, Poizat J P and Chaneli`ere T 2021 arXiv preprint arXiv:2109.06577
695
+ [31] Kaplyanskii A A and Moskvin N A 1962 Opt. Spectry.(USSR)(English Transl.) 13
696
+ [32] Bungenstock C, Tr¨oster T and Holzapfel W 2000 Phys. Rev. B 62 7945
697
+ [33] Louchet-Chauvet A, Ahlefeldt R and Chaneli`ere T 2019 Rev. Sci. Inst. 90 034901
698
+ [34] Louchet-Chauvet A and Chaneli`ere T 2022 AVS Quantum Sci. 4 024401
699
+ [35] Grabner L 1978 J. Appl. Phys. 49 580–583
700
+ [36] Shannon R D 1976 Acta Cryst. A 32 751–767
701
+ [37] Freeman A J and Watson R E 1962 Phys. Rev. 127 2058
702
+ [38] Wybourne B G and Smentek L 2007 Optical spectroscopy of lanthanides: magnetic and hyperfine
703
+ interaction (CRC Press)
704
+ [39] Salikhov K M, Dzuba S A and Raitsimring A M 1981 J. Mag. Res. 42 255–276
705
+ [40] Mims W B 1972 Electron paramagnetic resonance 263–351
706
+ [41] Taylor D and Hessler J 1974 Phys. Lett. A 50 205–207
707
+ [42] Liu G K and Cone R L 1990 Phys. Rev. B 41 6193
708
+ [43] Thiel C W, Macfarlane R M, Sun Y, B¨ottger T, Sinclair N, Tittel W and Cone R L 2014 Laser Phys.
709
+ 24 106002
710
+ [44] Thiel C W, Babbitt W R and Cone R L 2012 Phys. Rev. B 85 174302
711
+ [45] Thiel C W, Cone R L, B¨ottger T, Sun Y, Babbitt W and Merkel K D 2008 Spectroscopy and dynamics
712
+ of Er3+:LiNbO3 for for quantum information and signal processing application sMQIOA workshop,
713
+ Bozeman Montana January 2008
714
+ [46] K¨onz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L and Macfarlane R M 2003 Phys.
715
+ Rev. B 68 85109
716
+ [47] Thiel C W, Macfarlane R M, Sun Y, Bottger T, Sinclair N, Tittel W and Cone R L 2015 Evaluating
717
+ the practical impact on applications of excitation-induced decoherence in rare-earth-doped optical
718
+ materials Quantum Light-Matter Interaction in Solid State Systems, Barcelona
719
+ [48] Zhang H 2010 Novel nonlinear optics and quantum optics approaches for ultrasound-modulated optical
720
+
721
+ Strain-mediated ion-ion interaction in rare-earth-doped solids
722
+ 14
723
+ tomography in soft biological tissue (Texas A&M University)
724
+ [49] Guillot-No¨el O, Goldner P, Le Du Y, Loiseau P, Julsgaard B, Rippe L and Kr¨oll S 2007 Phys. Rev.
725
+ B 75 205110
726
+ [50] Wesenberg J H, Mølmer K, Rippe L and Kr¨oll S 2007 Phys. Rev. A 75 012304
727
+ [51] Fraval E, Sellars M J and Longdell J J 2004 Phys. Rev. Lett. 92 077601
728
+ [52] Bartholomew J G, de Oliveira Lima K, Ferrier A and Goldner P 2017 Nano Lett. 17 778–787
729
+ [53] Landau L and Lifshitz L 1967 Theory of Elasticity (MIR)
730
+ [54] Gere
731
+ J
732
+ M
733
+ 2003
734
+ Mechanics
735
+ of
736
+ Materials
737
+ 6th
738
+ ed
739
+ (Thomson-Engineering)
740
+ ISBN
741
+ 0534417930,9780534417932
742
+ URL
743
+ https://libgen.fun/book/index.php?md5=
744
+ 35db95bfb0092ff91fb258216effcf30
745
+ [55] Huang Z, Feng J and Pan W 2012 Solid State Sci. 14 1327–1332
746
+ [56] Louchet A, Habib J, Crozatier V, Lorger´e I, Goldfarb F, Bretenaker F, Le Gou¨et J L, Guillot-No¨el
747
+ O and Goldner P 2007 Phys. Rev. B 75 035131 (pages 9) URL http://link.aps.org/abstract/
748
+ PRB/v75/e035131
749
+ [57] Hofmeister A M and Campbell K R 1992 J. Appl. Phys. 72 638–646
750
+ [58] Minnegaliev M M, Gerasimov K I, Urmancheev R V, Zheltikov A M and Moiseev S A 2021 Phys.
751
+ Rev. B 103 174110
752
+ [59] Monteseguro V, Rodr´ıguez-Hern´andez P, Lav´ın V, Manj´on F and Mu˜noz A 2013 J. Appl. Phys. 113
753
+ 183505
754
+ [60] Thiel C W, Sinclair N, Tittel W and Cone R L 2014 Phys. Rev. Lett. 113 160501
755
+ [61] Barker A S and Loudon R 1967 Phys. Rev. 158(2) 433–445 URL https://link.aps.org/doi/10.
756
+ 1103/PhysRev.158.433
757
+ [62] Thiel C W, Sun Y, B¨ottger T, Babbitt W R and Cone R L 2010 J. Lumin. 130 1598–1602
758
+ [63] Kushibiki J, Takanaga I, Arakawa M and Sannomiya T 1999 IEEE Trans. Ultrason. Ferroelectr.
759
+ Freq. Control 46 1315–1323
760
+ [64] Mirzai A, Ahadi A, Melin S and Olsson P A T 2021 Mech. Mater. 154 103739
761
+ [65] Sun Y, B¨ottger T, Thiel C W and Cone R L 2008 Phys. Rev. B 77 085124
762
+ [66] Carvalho N C, Le Floch J M, Krupka J and Tobar M E 2015 Appl. Phys. Lett. 106 192904
763
+ [67] Rancic M 2017 High Resolution Spectroscopy of Erbium Doped Solids Ph.D. thesis The Australian
764
+ National University
765
+ [68] Thiel C W, Macfarlane R M, B¨ottger T, Sun Y, Cone R L and Babbitt W R 2010 J. Lumin. 130
766
+ 1603–1609
767
+ [69] Hastings-Simon S R, Staudt M U, Afzelius M, Baldi P, Jaccard D, Tittel W and Gisin N 2006 Opt.
768
+ Commun. 266 716–719
769
+ [70] Arcangeli A, Lovri´c M, Tumino B, Ferrier A and Goldner P 2014 Phys. Rev. B 89 184305
770
+ [71] Graf F R 1998 Investigations of spectral dynamics in rare earth ion doped crystals using high
771
+ resolution laser techniques Ph.D. thesis ETH Zurich
772
+ [72] Macfarlane R M, Arcangeli A, Ferrier A and Goldner P 2014 Phys. Rev. Lett. 113 157603
773
+ [73] Robertson J 2004 EPJ Appl. Phys. 28 265–291
774
+ [74] Ahlefeldt R 2013 Evaluation of a stoichiometric rare earth crystal for quantum computing Ph.D.
775
+ thesis The Australian National University
776
+ [75] Heinze G, Mieth S and Halfmann T 2011 Phys. Rev. A 84 013827
777
+ [76] Nilsson M and Kr¨oll S 2005 Opt. Commun. 247 393
778
+ [77] Najafvandzadeh N, L´opez-Moreno S, Errandonea D, Pavone P and Draxl C 2020 Mater. Today
779
+ Commun. 24 101089
780
+ [78] Young K F and Frederikse H P R 1973 J. Phys. Chem. Ref. Data 2 313–410
781
+
AtE5T4oBgHgl3EQfSw9y/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf,len=451
2
+ page_content='Strain-mediated ion-ion interaction in rare-earth-doped solids A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
3
+ page_content=' Louchet-Chauvet E-mail: anne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
4
+ page_content='louchet-chauvet@espci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
5
+ page_content='fr ESPCI Paris, Universit´e PSL, CNRS, Institut Langevin, 75005 Paris, France T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
6
+ page_content=' Chaneli`ere Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
7
+ page_content=' Grenoble Alpes, CNRS, Grenoble INP, Institut N´eel, 38000 Grenoble, France Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
8
+ page_content=' It was recently shown that the optical excitation of rare-earth ions produces a local change of the host matrix shape, attributed to a change of the rare-earth ion’s electronic orbital geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
9
+ page_content=' In this work we investigate the consequences of this piezo- orbital backaction and show from a macroscopic model how it yields a disregarded ion-ion interaction mediated by mechanical strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
10
+ page_content=' This interaction scales as 1/r3, similarly to the other archetypal ion-ion interactions, namely electric and magnetic dipole-dipole interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
11
+ page_content=' We quantitatively assess and compare the magnitude of these three interactions from the angle of the instantaneous spectral diffusion mechanism, and reexamine the scientific literature in a range of rare-earth doped systems in the light of this generally underestimated contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
12
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
13
+ page_content='05531v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
14
+ page_content='mtrl-sci] 13 Jan 2023 Strain-mediated ion-ion interaction in rare-earth-doped solids 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
15
+ page_content=' Introduction Atomic ensembles have attracted a lot of attention over more than 20 years due to their inherent capacity to efficiently interact with light [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
16
+ page_content=' They are at the center of a number of quantum storage protocols, in the form of gases [2, 3] or solid state [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
17
+ page_content=' Among the most interesting solid state candidates, rare-earth ion-doped crystals (REIC) are particularly attractive due to their long optical coherence lifetimes at cryogenic temperatures [6] and are at the center of a number of actively developed quantum memory protocols [7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
18
+ page_content=' In these light-matter interfaces, the optical depth of the medium is an important figure of merit since it enables high storage and retrieval efficiency [10, 11, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
19
+ page_content=' However, reaching large optical depths usually comes with working with large atomic concentrations, leading to reinforced ion-ion interactions and thereby enhanced decoherence [12, 13, 14, 15, 16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
20
+ page_content=' Interestingly, although ion-ion interactions are potentially detrimental to the performance of quantum devices, they have also emerged as the foundational mechanism for quantum computing architectures because they allow multiqubit gate operations [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
21
+ page_content=' Quantum computing was initially developed in physical systems with strong readout capacity ranging from dilute systems (trapped atoms) to condensed matter (quantum dots or superconducting qubits).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
22
+ page_content=' Rare-earth ion-doped crystals were only recently considered as relevant for such applications [19] thanks to the elaboration of efficient single ion readout schemes that compensate for the optical transition’s weak oscillator strength [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
23
+ page_content=' Either way, proper understanding and quantifying of ion-ion interactions in REIC are crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
24
+ page_content=' In most systems, the order of magnitude of the measured interaction strength is compatible with magnetic and/or electric dipole-dipole interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
25
+ page_content=' In both mechanisms, the excitation of some ions induces a change in their electric or magnetic dipole moment, modifying the local field accordingly in their vicinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
26
+ page_content=' This modified field affects the surrounding ions in proportion to the Stark or Zeeman sensitivity of their energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
27
+ page_content=' In a limited number of REIC, however, the actual magnitude of this interaction is larger than expected by several orders of magnitude [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
28
+ page_content=' In this paper we consider a strain-mediated ion-ion interaction that has not been investigated so far and that may explain this discrepancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
29
+ page_content=' The interaction we consider stems from the apparition of an excitation-induced stress field, affecting the surrounding ions via their piezospectroscopic sensivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
30
+ page_content=' This fundamental effect has been pointed out early in the context of paramagnetic resonance under RF excitation, named virtual phonon exchange interaction initially considering transition metals ions [24, 25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
31
+ page_content=' At the time, the description exploited the equivalent operators formalism for the spin-lattice coupled system, but the different modeling parameters are difficult to infer from experimental measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
32
+ page_content=' Despite a series of studies including rare-earth salts [27, and references], phonon-mediated interactions seem to have been overlooked for years, before reappearing in the context of quantum technologies with original proposals of phononic engineering [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
33
+ page_content=' Strain-mediated ion-ion interaction in rare-earth-doped solids 3 This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
34
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
35
+ page_content=' 2, the physical origin of this interaction is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
36
+ page_content=' A scaling law is given and an estimation of its strength is provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
37
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
38
+ page_content=' 3, we quantitatively compare the magnitude of this strain-mediated interaction with respect to the electromagnetic dipole-dipole interactions in a number of host-dopant combinations and confront our predictions with the experimental data found in the scientific literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
39
+ page_content=' The strength of the instantaneous spectral diffusion mechanism is used as a comparison criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
40
+ page_content=' Finally, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
41
+ page_content=' 4, we discuss the implications of this work in quantum technology-related applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
42
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
43
+ page_content=' Strain-mediated ion-ion interaction 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
44
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
45
+ page_content=' General description When an atomic particle is promoted to a different electronic level, its outer shape and size are bound to change due to the modification of its electronic wavefunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
46
+ page_content=' If the particle is embedded in a solid matrix, this piezo-orbital backaction effect will additionally give rise to a stress field around the excited particle, making it detectable via a change of shape of the solid itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
47
+ page_content=' This was recently evidenced in a bulk rare-earth ion-doped crystal in which only a finite volume of the crystal was illuminated, leading to a distortion of the nearby crystal surface [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
48
+ page_content=' Conversely, it has been known for several decades that the optical lines of rare-earth ions in solids are sensitive to stress via the piezospectroscopic effect [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
49
+ page_content=' Indeed, in the elastic regime, a compressive or tensile stress modifies the interatomic distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
50
+ page_content=' This affects the crystal field and in turn shifts the rare-earth ion’s energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
51
+ page_content=' This sensitivity to stress was recently proposed as a tool to sense mechanical vibrations in a cryogenic environment [33, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
52
+ page_content=' The piezo-orbital backaction and the piezospectroscopic effect are in fact two facets of the same coupling mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
53
+ page_content=' Their combination leads to a shift of the transition frequency in the ions surrounding a given excited rare-earth ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
54
+ page_content=' In the following we coin this as the strain-mediated ion-ion interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
55
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
56
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
57
+ page_content=' Magnitude of the strain-mediated interaction For simplicity we assume that the ion is spherical with a radius r1 and that the piezo- orbital backaction acts as a simple ionic radius change (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
58
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
59
+ page_content=' This impacts the surrounding matrix by creating a radial stress field σ(r) around the ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
60
+ page_content=' With a spherically symmetric continuum mechanics model detailed in appendix Appendix A, we calculate the elastic strain energy that is necessary to establish this stress field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
61
+ page_content=' Due to energy conservation, this elastic energy corresponds to the energy shift of the electronic levels due to the internal stress within the ionic volume (see appendix Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
62
+ page_content=' This allows Strain-mediated ion-ion interaction in rare-earth-doped solids 4 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
63
+ page_content=' Simplified view of the piezo-orbital backaction around a spherical rare-earth ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
64
+ page_content=' The stress field is symbolized by a radial color gradient around the ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
65
+ page_content=' us to relate the ionic radius variation ∆r to the piezospectroscopic sensitivity κ: ∆r = hκ 4πr2 1 (1) where h is the Planck constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
66
+ page_content=' With this we derive the radial stress field σ(r) and write the strain-mediated ion-ion interaction energy between two ions separated by a distance r: Estr(r) = hκσ(r) = E 1 + ν (hκ)2 2πr3 (2) where E is the Young modulus and ν is the Poisson’s ratio of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
67
+ page_content=' We emphasize the relatively strong hypotheses underlying this result: the piezo-orbital backaction is assumed to occur in the form of a mere ionic radius change of the spherical excited ion, and the piezospectroscopic sensitivity is assumed to be scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
68
+ page_content=' The anisotropic nature of the crystalline matrix may naturally translate into a non-spherical strain field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
69
+ page_content=' Because of the large distance between dopants (larger than the crystal cell parameter at low concentration levels), we may expect the strain anisotropy to be weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
70
+ page_content=' On the contrary, the piezospectroscopic sensitivity is usually described by a tensor [35], so its scalar nature appears as a crude assumption in order to derive an order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
71
+ page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
72
+ page_content=' 1 we can estimate the corresponding relative ionic radius change due to the piezo-orbital backaction in rare-earth-doped crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
73
+ page_content=' Taking typical values κ = 100 Hz/Pa [33] and r1 = 1 ˚A [36], we obtain ∆r/r1 ≃ 5·10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
74
+ page_content=' This value remarkably agrees with the relative ionic radius change of a free ion among its 4f states that can be derived from a Hartree-Fock calculation (see [37] for Ce3+ and [38] for Eu3+) even if the exact rearrangement of the outer shell defining the ionic radius surrounding the 4f-shell deserves further analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
75
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
76
+ page_content=' Comparing the three ion-ion interactions In this section we propose to study how this interaction compares with the other usual ion-ion interactions generally considered in rare-earth doped systems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
77
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
78
+ page_content=' electric and magnetic dipole-dipole interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
79
+ page_content=' We also confront these estimations to published measurements of ion-ion interactions in rare-earth doped crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
80
+ page_content=' (a) lon at rest (b) Excited ion ri +△r r1Strain-mediated ion-ion interaction in rare-earth-doped solids 5 Interestingly, the strain-mediated interaction scales as 1/r3, exactly like the electric and magnetic dipole-dipole interactions, although originating from a radically different physical mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
81
+ page_content=' All three interactions can be characterized by a coefficient Ai such that their energies read as: Ei(r) = hAi 2πr3 (3) where the {Ai} are defined by the following: Ael = π¯h ϵ0ϵr ∆µ2 el (4) Amag = µ0¯h 4π ∆µ2 mag (5) Astr = E 1 + ν hκ2 (6) ∆µel and ∆µmag are the electric and magnetic dipole moment variation when the ion is promoted to the excited state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
82
+ page_content=' They are expressed in Hz m V−1 and in Hz T−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
83
+ page_content=' We note that in all three expressions, the sensitivity of the optical transition to electric field, magnetic field or strain (respectively) appears as a square law, in agreement with what is expected in an ion-ion interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
84
+ page_content=' This scaling has been early derived for paramagnetic impurities under RF excitation [24, 25], in the so-called zero-retardation limit of the virtual phonon exchange (VPE) interaction [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
85
+ page_content=' At the time, McMahon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
86
+ page_content=' also showed that VPE and magnetic interactions have the same order of magnitude for transition metal paramagnetic dopants [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
87
+ page_content=' With these expressions one can anticipate the variability of the three considered interactions amongst REIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
88
+ page_content=' For example, the strain-mediated interaction should be quite constant across different ions or crystals, since the mechanical properties of typical crystalline rare-earth doped oxides and the piezospectroscopic sensitivity of their optical lines are rather similar [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
89
+ page_content=' On the other hand, the magnetic dipole-dipole interactions vary by several orders of magnitude between Kramers and non-Kramers ions because some exhibit an electronic spin while some only have a nuclear spin behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
90
+ page_content=' A variability of 6 orders of magnitude is expected, since (µB/µN)2 ≃ 3 · 106, where µB and µN are the Bohr magneton and the nuclear magneton, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
91
+ page_content=' A large variability is also expected for the electric dipole-dipole interaction because the appearance of an electric dipole is only permitted by the crystal field that weakly perturbs the free ion electronic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
92
+ page_content=' Indeed different hosts, depending on the crystal site symmetry, allow or inhibit permanent electric dipole moment for the rare earth ion dopant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
93
+ page_content=' The overall ion-ion interactions taking place in an ensemble of rare-earth ions can be probed experimentally by the observation of instantaneous spectral diffusion (ISD) [39], ie the effect of a substantial population transfer on the spectral width of a narrow subset of ions within a given volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
94
+ page_content=' When it builds upon interactions scaling as 1/r3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
95
+ page_content=' ISD Strain-mediated ion-ion interaction in rare-earth-doped solids 6 manifests as an additional term in the homogeneous linewidth Γh that is proportional to the volumic density of excited particles ne: Γeff = Γh + β 2 ne (7) where β = � i βi is the sum of individual contributions due to each considered interaction [40,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
96
+ page_content=' 14]: βi = 8π 9 √ 3106Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
97
+ page_content=' (8) the 106 factor stemming from the choice of units (m3 s−1 for Ai and Hz cm3 for βi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
98
+ page_content=' ISD is generally observed via high-resolution spectroscopy experiments such as photon echoes [41, 42, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
99
+ page_content=' It has been evidenced in a large number of rare-earth ion- doped materials, but a quantitative value is only given in a handful of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
100
+ page_content=' The published experimental values for β in ten different rare-earth ion-doped crystals are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
101
+ page_content=' These materials represent a rather complete sampling of the REIC diversity, including non-Kramers and Kramers ions, different crystal and site symmetries, and crystals with and without charge compensation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
102
+ page_content=' The measured values of β are contained within a 2 order-of-magnitude range (between 10−13 and 10−11 Hz cm3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
103
+ page_content=' Cristal βexp (Hz cm3) Tm:YAG 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
104
+ page_content='3 · 10−12 [43] Tm:YGG 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
105
+ page_content='6 · 10−13 [43] Tm:LiNbO3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
106
+ page_content='0 · 10−11 [43] Er:YSO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
107
+ page_content='3 · 10−12 [44] Er:LiNbO3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
108
+ page_content='0 · 10−13 [45] Eu:YSO 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
109
+ page_content='0 · 10−13 [46] Eu:Y2O3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
110
+ page_content='3 · 10−13 [47] EuCl3·6D2O 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
111
+ page_content='6 · 10−13 [22] Pr:YSO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
112
+ page_content='2 · 10−11 [48] Pr:La2(WO4)3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
113
+ page_content='0 · 10−12 [49] Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
114
+ page_content=' Measured values for the ISD coefficient βexp in a selection of rare-earth ion- doped crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
115
+ page_content=' The three ion-ion interactions considered in this work (see equations 4, 5 and 6) should contribute to ISD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
116
+ page_content=' Focusing our attention to the selection of REICs for which quantitative ISD measurements are available, we calculate the βi parameters for each ion- ion interactions using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
117
+ page_content=' 8 and display the results graphically in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
118
+ page_content=' The material parameters relevant to this calculation and resulting numerical estimations are given in appendix Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
119
+ page_content=' Again, we point out that the values are mostly indicative since they rely on a very simplified modelization of the interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
120
+ page_content=' We verify that both magnetic and electric dipole-dipole interactions vary among the materials within a 6 order-of-magnitude span depending on the existence of an Strain-mediated ion-ion interaction in rare-earth-doped solids 7 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
121
+ page_content=' Calculated (bars) and measured (triangles) values for βi and Ai (where i = {mag, el, str, exp}) for the 10 rare-earth ion-doped crystals for which quantitative values for βexp are available (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
122
+ page_content=' Note the logarithmic vertical scale spanning 10 orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
123
+ page_content=' electronic spin and the presence of a centrosymmetry in the doping site (βmag is comprised between 7 · 10−20 and 2 · 10−13 Hz cm3and βel between 8 · 10−19 and 8 · 10−12 Hz cm3, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
124
+ page_content=' Conversely, the strain-mediated interaction is comprised within a much smaller interval (βstr between 6 · 10−13 and 2 · 10−12 Hz cm3) since we use a typical value for the piezospectroscopic sensitivity κ for all and because of the very similar values of the Young moduli between crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
125
+ page_content=' It is interesting to note that the strain-mediated interaction is of the order of the largest of the electric or magnetic dipole-dipole contributions found among all materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
126
+ page_content=' This means that when one or both of the dipole-dipole interactions are strong, they should coexist with the strain-mediated interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
127
+ page_content=' On the other hand, when both electromagnetic contributions are in the low range (weak Stark effect and no electronic spin for the non-Kramers ions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
128
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
129
+ page_content=' Tm-doped garnets or in a lesser part stoechiometric europium chloride), the strain-mediated interaction dominates by several orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
130
+ page_content=' In all considered REICs, the sum of the three predicted effects satisfactorily accounts for the measured values of βexp, finally providing an explanation to the previously large discrepancy between theoretical estimations and measurements of the ISD mechanism in some media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
131
+ page_content=" 10-10 (Hz cm²) ) 10-12 S 10-20 A 10-14 ISD coeficient β Magnetic Electric Strain 10-22 Exp 10 16 Interaction 10- 24 10-18 10-26 10-20 YSO Tm:YAG Tm:YGG Eu:YSO EuCl'Strain-mediated ion-ion interaction in rare-earth-doped solids 8 4." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
132
+ page_content=' Discussion Besides providing a better understanding of the physical origin and strength of ISD in REIC, the strain-mediated interaction in REIC could have interesting applications in the field of quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
133
+ page_content=' Indeed, quantum computing schemes rest upon the existence of a long-range atom-atom interaction enabling multiqubit operations [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
134
+ page_content=' This interaction is often spontaneously assimilated to dipole-dipole interaction, and particularly in REIC [50, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
135
+ page_content=' We argue that the strain-mediated interaction could play this role in quantum-computing to replace the dipole-dipole coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
136
+ page_content=' Such a scheme could be performed in almost any rare-earth ion-doped crystal since the strength of the interaction is rather similar over a broad variety of ion and host combinations [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
137
+ page_content=' In particular, the possession of a permanent electric dipole moment would not be an exclusive criteria for quantum computing compatibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
138
+ page_content=' On the contrary, in some crystals (namely Tm- doped garnets, although there could be other candidates) this strain-mediated interaction dominates its electromagnetic counterparts by at least 4 orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
139
+ page_content=' This means that not only is the ion-ion interaction particularly pure in such media, but these strain- coupled qubits would be more robust against other types of decoherence process, such as magnetic field fluctuations due to spin flips in the host matrix [51, 13], or electric field noise due to charge fluctuations that may occur at the surface of rare-earth-doped nanoparticles [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
140
+ page_content=' One may argue that since the strain-mediated interaction is intrinsically slow since it relies on the propagation of stress at the speed of sound (between 3000 and 8000 m/s in most considered crystals).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
141
+ page_content=' We estimate its propagation delay by considering the average ion-ion distance dion−ion, given by 3√nRE (where nRE is the volumic density of rare-earth ions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
142
+ page_content=' dion−ion ranges from a few nm in highly concentrated materials (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
143
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
144
+ page_content=' ∼ 2 nm in 1% doped YAG) up to hundreds of nm in low concentration materials (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
145
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
146
+ page_content=' ∼ 650 nm in 200ppm doped YSO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
147
+ page_content=' This leads to a strain propagation time shorter than the nanosecond, to be compared with typical µs-scale light-matter interactions occuring in such media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
148
+ page_content=' Therefore, the strain-mediated interaction can still be considered instantaneous within rare-earth-doped crystals with typical concentrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
149
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
150
+ page_content=' Conclusion Based on recent evidence of a conservative optomechanical backaction mechanism in rare- earth ion-doped crystals, we have unveiled a disregarded ion-ion interaction based on a physical mechanism fundamentally different from generally considered electromagnetic dipole-dipole interactions: the sensitivity of rare-earth ions to piezo-orbitally induced stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
151
+ page_content=' With a simple mechanical model, we have estimated the strength of this strain- mediated interaction and shown that it is largely dominant in some rare-earth ion-doped crystals, opening interesting perspectives for strain-based quantum computing in solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
152
+ page_content=' Strain-mediated ion-ion interaction in rare-earth-doped solids 9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
153
+ page_content=' Acknowledgments The authors are grateful to Lars Rippe and Xiaoping Jia for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
154
+ page_content=' The authors acknowledge support from the French National Research Agency (ANR) through the projects ATRAP (ANR-19-CE24-0008), MIRESPIN (ANR-19-CE47-0011) and MARS (ANR-20-CE92-0041).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
155
+ page_content=' This work has received support under the program “Investissements d’Avenir” launched by the French Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
156
+ page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
157
+ page_content=' Continuum mechanics in a REIC Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
158
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
159
+ page_content=' Spherical defect in an isotropic elastic medium Let us consider a sphere with radius r1, embedded in an infinite, isotropic, continuous elastic medium with a Young modulus E and a Poisson’s ratio ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
160
+ page_content=' When a homogeneous radial stress σ0 is applied in the sphere, the displacement field at a distance r outside the sphere is radial and obeys [53]: u(r) = σ0 1 + ν 2E r3 1 r2, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
161
+ page_content='1) while the stress field around the sphere is also radial and reads as: σ(r) = σ0 r3 1 r3 for r > r1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
162
+ page_content='2) Defining ∆r = u(r1) as the radius change, we obtain a simple relationship between σ0 et ∆r: σ0 = ∆r r1 2E 1 + ν (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
163
+ page_content='3) Figure A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
164
+ page_content=' Radial stress σ(r) corresponding to the dilation of a sphere within an infinite isotropic medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
165
+ page_content=' The stress is homogeneous within the sphere and decays with a 1/r3 law outside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
166
+ page_content=' The radial stress can then be written: σ(r) = −∆r r1 2E 1 + ν r3 1 r3 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
167
+ page_content='4) /0 () 1 1 stress ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
168
+ page_content='8 Normalized radial 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
169
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
170
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
171
+ page_content='2 0 0 1 2 3 4 5 Normalized distance to ion r/riStrain-mediated ion-ion interaction in rare-earth-doped solids 10 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
172
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
173
+ page_content=' Strain energy We now want to assess the elastic strain energy contained in the medium when the stress σ0 is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
174
+ page_content=' We successively calculate the energy contained inside and outside the sphere [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
175
+ page_content=' Inside the sphere: The strain energy inside the sphere reads as: Uint = 1 2σ0ε0V (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
176
+ page_content='5) where ε0 = ∆V/V = 3∆r/r1 is the volumic change of the sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
177
+ page_content=' We finally obtain: Uint = 2π∆rσ0r2 1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
178
+ page_content='6) Outside the sphere: The sphere being included in an infinite medium, we must also consider the strain energy that was necessary to establish the whole stress field around the sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
179
+ page_content=' The volumic energy outside the sphere at a distance r reads as: uV (r) = 1 2σ(r)ε(r) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
180
+ page_content='7) The volumic strain ε(r) is related to the local stress via the volumic Hooke’s law σ(r) = Kε(r) (where K = E 1−2ν is the bulk modulus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
181
+ page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
182
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
183
+ page_content='2 we get ε(r) = ε0r3 1/r3, which finally leads to: uV (r) = 3∆r 2 σ0 r5 1 r6 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
184
+ page_content='8) We integrate this volumic energy over the infinite volume of the medium: Uext = 4π � ∞ r=r1 uV (r)r2dr = 6π∆rσ0r5 1 � ∞ r=r1 1 r4dr (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
185
+ page_content='9) and obtain: Uext = 2π∆rσ0r2 1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
186
+ page_content='10) Total strain energy: Based on Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
187
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
188
+ page_content='6 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
189
+ page_content='10, we derive the total strain energy that is necessary to distort the sphere and generate the associated stress field around it: Ustrain = Uint + Uext = 4π∆rσ0r2 1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
190
+ page_content='11) Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
191
+ page_content=' Relating the strain energy with the atomic energy Due to piezo-orbital backaction [30], the size of a rare-earth ion is expected to change under optical excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
192
+ page_content=' Assuming this change of shape is merely a change of radius on a spherical ion, we can apply the calculation presented in appendix Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
193
+ page_content=' Due to energy conservation, this elastic energy is taken from the ion’s energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
194
+ page_content=' We can Strain-mediated ion-ion interaction in rare-earth-doped solids 11 therefore write the following, considering that the shift in the ion’s energy levels ∆E is related to the stress within the ion σ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
195
+ page_content=' Ustrain = ∆E = hκσ0 (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
196
+ page_content='1) where κ is the piezospectroscopic sensitivity, assumed scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
197
+ page_content=' Injecting the expression of Ustrain given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
198
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
199
+ page_content='11, we get: ∆r = hκ 4πr2 1 (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
200
+ page_content='2) This allows us to obtain a simple relationship between the radial stress σ(r) and the ionic radius change ∆r, using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
201
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
202
+ page_content='4: σ(r) = 2E 1 + ν hκ 4πr3 (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
203
+ page_content='3) Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
204
+ page_content=' Instantaneous Spectral Diffusion In Table C1 we list the physical parameters that are needed for the estimation of ISD strengths for an ensemble of 10 REIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
205
+ page_content=' Note that some values had to be estimated using data measured in similar materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
206
+ page_content=' The value for the piezospectroscopic sensitivity κ being basically unknown for most REICs, we choose to take κ = 100 Hz/Pa for all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
207
+ page_content=' This choice is supported by the observed similarity of the value of κ in a broad variety of hosts, dopants and transitions [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
208
+ page_content=' Crystal E ν ∆µmag ϵr ∆µel Tm:YAG 270 GPa [55] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
209
+ page_content='256 [55] 320 MHz/T [56] 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
210
+ page_content='6 [57] 65 Hz cm/V [58] Tm:YGG 224 GPa [59] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
211
+ page_content='28 [59] 44 MHz/T [60] 12 [57] ⋆65 Hz cm/V Tm:LiNbO3 170 GPa [61] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
212
+ page_content='25 [61] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
213
+ page_content='3 GHz/T [62] †65 [63] 18 kHz cm/V [62] Er:YSO 150 GPa [64] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
214
+ page_content='26 [64] 26 GHz/T [65] 10 [66] 50 kHz cm/V [67] Er:LiNbO3 170 GPa [61] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
215
+ page_content='25 [61] 16 GHz/T [68] †65 [63] 25 kHz cm/V [69] Eu:YSO 150 GPa [64] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
216
+ page_content='26 [64] 10 MHz/T [70] 10 [66] 35 kHz cm/V [71, 72] Eu:Y2O3 ⋆120 GPa ⋆0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
217
+ page_content='25 ⋆10 MHz/T 15 [73] ⋆35 kHz cm/V EuCl3·6D2O ⋆120 GPa ⋆0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
218
+ page_content='25 8 MHz/T [74] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
219
+ page_content='6 [22] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
220
+ page_content='57 kHz cm/V [22] Pr:YSO 150 GPa [64] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
221
+ page_content='26 [64] 150 MHz/T [75] 10 [66] 111 kHz cm/V [76] Pr:La2(WO4)3 90 GPa [77] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
222
+ page_content='3 [77] ⋆150 MHz/T 20 [78] ⋆100 kHz cm/V Table C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
223
+ page_content=' Material parameters used to compute the interaction strengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
224
+ page_content=' E is the mechanical Young modulus, ν the Poisson’s ratio, and ϵr is the dielectric constant of the host matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
225
+ page_content=' ∆µmag and ∆µel are the difference in the rare earth magnetic or electric moments between ground and excited states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
226
+ page_content=' When no values could be found in the literature, we chose a value among similar materials and indicated this with the symbol ”⋆”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
227
+ page_content=' †: The lithium niobate (LNO) crystal is anisotropic and exhibits different values of ϵr depending on the crystallographic direction [63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
228
+ page_content=' For simplicity we choose an intermediate value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
229
+ page_content=' Strain-mediated ion-ion interaction in rare-earth-doped solids 12 In Table C2 we present the different ISD coefficients βi calculated for the three possible ion-ion interactions (magnetic dipole-dipole interaction, electric dipole-dipole interaction, and strain-mediated interaction), using the parameters listed in Table C1 and Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
230
+ page_content=' 4, 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
231
+ page_content=' Crystal βmag βel βstr Tm:YAG 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
232
+ page_content='9 · 10−17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
233
+ page_content='0 · 10−18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
234
+ page_content='3 · 10−12 Tm:YGG 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
235
+ page_content='3 · 10−18 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
236
+ page_content='3 · 10−19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
237
+ page_content='9 · 10−12 Tm:LiNbO3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
238
+ page_content='1 · 10−15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
239
+ page_content='0 · 10−14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
240
+ page_content='5 · 10−12 Er:YSO 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
241
+ page_content='5 · 10−13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
242
+ page_content='8 · 10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
243
+ page_content='3 · 10−12 Er:LiNbO3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
244
+ page_content='7 · 10−13 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
245
+ page_content='8 · 10−14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
246
+ page_content='5 · 10−12 Eu:YSO 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
247
+ page_content='7 · 10−20 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
248
+ page_content='4 · 10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
249
+ page_content='3 · 10−12 Eu:Y2O3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
250
+ page_content='7 · 10−20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
251
+ page_content='9 · 10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
252
+ page_content='2 · 10−12 EuCl3·6D2O 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
253
+ page_content='3 · 10−20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
254
+ page_content='1 · 10−15 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
255
+ page_content='2 · 10−13 Pr:YSO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
256
+ page_content='5 · 10−17 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
257
+ page_content='5 · 10−12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
258
+ page_content='3 · 10−12 Pr:La2(WO4)3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
259
+ page_content='5 · 10−17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
260
+ page_content='0 · 10−12 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
261
+ page_content='3 · 10−13 Table C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
262
+ page_content=' Estimated values for the ISD coefficients βi in Hz cm3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
263
+ page_content=' [1] Hammerer K, Sørensen A S and Polzik E S 2010 Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
264
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
265
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
266
+ page_content=' 82 1041 [2] Duan L M, Lukin M, Cirac J I and Zoller P 2001 Nature (London) 414 413 [3] Lukin M D 2003 Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
267
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
268
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
269
+ page_content=' 75 457 [4] Tittel W, Afzelius M, Chaneliere T, Cone R L, Kr¨oll S, Moiseev S A and Sellars M 2010 Laser & Photonics Reviews 4 244–267 [5] Gr`ezes C, Kubo Y, Julsgaard B, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T, Nakamura K et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
270
+ page_content=' 2016 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
271
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
272
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
273
+ page_content=' 17 693–704 [6] Thiel C W, B¨ottger T and Cone R L 2011 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
274
+ page_content=' Lumin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
275
+ page_content=' 131 353–361 [7] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41–45 [8] Duda C K, Ferguson K R, Ahlefeldt R L, Hedges M P and Sellars M J 2022 arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
276
+ page_content='07058 [9] Minnegaliev M M, Gerasimov K I, Sabirov T N, Urmancheev R V and Moiseev S A 2022 JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
277
+ page_content=' 115 720–727 [10] Gorshkov A V, Andr´e A, Fleischhauer M, Sørensen A S and Lukin M D 2007 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
278
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
279
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
280
+ page_content=' 98 123601 [11] Afzelius M, Simon C, De Riedmatten H and Gisin N 2009 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
281
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
282
+ page_content=' A 79 052329 [12] Agnello S, Boscaino R, Cannas M and Gelardi F 2001 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
283
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
284
+ page_content=' B 64 174423 [13] B¨ottger T, Thiel C W, Sun Y and Cone R L 2006 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
285
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
286
+ page_content=' B 73 75101 [14] Dajczgewand J, Ahlefeldt R, B¨ottger T, Louchet-Chauvet A, Le Gou¨et J L and Chaneli`ere T 2015 New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
287
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
288
+ page_content=' 17 023031 [15] Lim H J, Welinski S, Ferrier A, Goldner P and Morton J J L 2018 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
289
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
290
+ page_content=' B 97 064409 [16] Alexander J, Dold G, Kennedy O W, ˇSim˙enas M, O’Sullivan J, Zollitsch C W, Welinski S, Ferrier A, Lafitte-Houssat E, Lindstr¨om T et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
291
+ page_content=' 2022 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
292
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
293
+ page_content=' B 106 245416 [17] Ranˇci´c M, Le Dantec M, Lin S, Bertaina S, Chaneli`ere T, Serrano D, Goldner P, Liu R B, Flurin E, Est`eve D et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
294
+ page_content=' 2022 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
295
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
296
+ page_content=' B 106 144412 [18] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 464 45–53 Strain-mediated ion-ion interaction in rare-earth-doped solids 13 [19] Kinos A, Hunger D, Kolesov R, Mølmer K, de Riedmatten H, Goldner P, Tallaire A, Morvan L, Berger P, Welinski S et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
297
+ page_content=' 2021 arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
298
+ page_content='15743 [20] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
299
+ page_content=' 2018 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
300
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
301
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
302
+ page_content=' 121 183603 [21] Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M and Thompson J D 2020 Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
303
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
304
+ page_content=' 11 1–6 [22] Ahlefeldt R L, McAuslan D L, Longdell J J, Manson N B and Sellars M J 2013 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
305
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
306
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
307
+ page_content=' 111 240501 [23] Attal Y 2017 Processeurs atomiques utilisant la propri´et´e de creusement spectral : mod´elisation et application `a l’analyse spectrale radiofr´equence large bande sur porteuse optique Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
308
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
309
+ page_content=' thesis Universit´e Paris-Saclay [24] Sugihara K 1959 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
310
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
311
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
312
+ page_content=' Japan 14 1231–1234 [25] McMahon D H and Silsbee R H 1964 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
313
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
314
+ page_content=' 135 A91 [26] Orbach R and Tachiki M 1967 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
315
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
316
+ page_content=' 158(2) 524–529 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
317
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
318
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
319
+ page_content=' 1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
320
+ page_content='158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
321
+ page_content='524 [27] Cone R and Meltzer R 1987 Chapter 8 - ion–ion interactions and exciton effects in rare earth insulators Spectroscopy of Solids Containing Rare Earth Ions (Modern Problems in Condensed Matter Sciences vol 21) ed Kaplyanskii A A and Macfarlane R (Elsevier) pp 481–556 URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
322
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
323
+ page_content='com/science/article/pii/B9780444870513500146 [28] Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P and Lukin M D 2013 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
324
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
325
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
326
+ page_content=' 110(15) 156402 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
327
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
328
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
329
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
330
+ page_content='110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
331
+ page_content='156402 [29] Lemonde M A, Meesala S, Sipahigil A, Schuetz M J A, Lukin M D, Loncar M and Rabl P 2018 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
332
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
333
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
334
+ page_content=' 120(21) 213603 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
335
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
336
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
337
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
338
+ page_content='120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
339
+ page_content=' 213603 [30] Louchet-Chauvet A, Verlot P, Poizat J P and Chaneli`ere T 2021 arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
340
+ page_content='06577 [31] Kaplyanskii A A and Moskvin N A 1962 Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
341
+ page_content=' Spectry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
342
+ page_content=' (USSR)(English Transl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
343
+ page_content=') 13 [32] Bungenstock C, Tr¨oster T and Holzapfel W 2000 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
344
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
345
+ page_content=' B 62 7945 [33] Louchet-Chauvet A, Ahlefeldt R and Chaneli`ere T 2019 Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
346
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
347
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
348
+ page_content=' 90 034901 [34] Louchet-Chauvet A and Chaneli`ere T 2022 AVS Quantum Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
349
+ page_content=' 4 024401 [35] Grabner L 1978 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
350
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
351
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
352
+ page_content=' 49 580–583 [36] Shannon R D 1976 Acta Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
353
+ page_content=' A 32 751–767 [37] Freeman A J and Watson R E 1962 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
354
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
355
+ page_content=' 127 2058 [38] Wybourne B G and Smentek L 2007 Optical spectroscopy of lanthanides: magnetic and hyperfine interaction (CRC Press) [39] Salikhov K M, Dzuba S A and Raitsimring A M 1981 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
356
+ page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
357
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
358
+ page_content=' 42 255–276 [40] Mims W B 1972 Electron paramagnetic resonance 263–351 [41] Taylor D and Hessler J 1974 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
359
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
360
+ page_content=' A 50 205–207 [42] Liu G K and Cone R L 1990 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
361
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
362
+ page_content=' B 41 6193 [43] Thiel C W, Macfarlane R M, Sun Y, B¨ottger T, Sinclair N, Tittel W and Cone R L 2014 Laser Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
363
+ page_content=' 24 106002 [44] Thiel C W, Babbitt W R and Cone R L 2012 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
364
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
365
+ page_content=' B 85 174302 [45] Thiel C W, Cone R L, B¨ottger T, Sun Y, Babbitt W and Merkel K D 2008 Spectroscopy and dynamics of Er3+:LiNbO3 for for quantum information and signal processing application sMQIOA workshop, Bozeman Montana January 2008 [46] K¨onz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L and Macfarlane R M 2003 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
366
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
367
+ page_content=' B 68 85109 [47] Thiel C W,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
368
+ page_content=' Macfarlane R M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
369
+ page_content=' Sun Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
370
+ page_content=' Bottger T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
371
+ page_content=' Sinclair N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
372
+ page_content=' Tittel W and Cone R L 2015 Evaluating the practical impact on applications of excitation-induced decoherence in rare-earth-doped optical materials Quantum Light-Matter Interaction in Solid State Systems,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
373
+ page_content=' Barcelona [48] Zhang H 2010 Novel nonlinear optics and quantum optics approaches for ultrasound-modulated optical Strain-mediated ion-ion interaction in rare-earth-doped solids 14 tomography in soft biological tissue (Texas A&M University) [49] Guillot-No¨el O,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
374
+ page_content=' Goldner P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
375
+ page_content=' Le Du Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
376
+ page_content=' Loiseau P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
377
+ page_content=' Julsgaard B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
378
+ page_content=' Rippe L and Kr¨oll S 2007 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
379
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
380
+ page_content=' B 75 205110 [50] Wesenberg J H, Mølmer K, Rippe L and Kr¨oll S 2007 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
381
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
382
+ page_content=' A 75 012304 [51] Fraval E, Sellars M J and Longdell J J 2004 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
383
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
384
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
385
+ page_content=' 92 077601 [52] Bartholomew J G, de Oliveira Lima K, Ferrier A and Goldner P 2017 Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
386
+ page_content=' 17 778–787 [53] Landau L and Lifshitz L 1967 Theory of Elasticity (MIR) [54] Gere J M 2003 Mechanics of Materials 6th ed (Thomson-Engineering) ISBN 0534417930,9780534417932 URL https://libgen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
387
+ page_content='fun/book/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
388
+ page_content='php?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
389
+ page_content='md5= 35db95bfb0092ff91fb258216effcf30 [55] Huang Z, Feng J and Pan W 2012 Solid State Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
390
+ page_content=' 14 1327–1332 [56] Louchet A, Habib J, Crozatier V, Lorger´e I, Goldfarb F, Bretenaker F, Le Gou¨et J L, Guillot-No¨el O and Goldner P 2007 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
391
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
392
+ page_content=' B 75 035131 (pages 9) URL http://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
393
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
394
+ page_content='org/abstract/ PRB/v75/e035131 [57] Hofmeister A M and Campbell K R 1992 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
395
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
396
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
397
+ page_content=' 72 638–646 [58] Minnegaliev M M, Gerasimov K I, Urmancheev R V, Zheltikov A M and Moiseev S A 2021 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
398
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
399
+ page_content=' B 103 174110 [59] Monteseguro V, Rodr´ıguez-Hern´andez P, Lav´ın V, Manj´on F and Mu˜noz A 2013 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
400
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
401
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
402
+ page_content=' 113 183505 [60] Thiel C W, Sinclair N, Tittel W and Cone R L 2014 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
403
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
404
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
405
+ page_content=' 113 160501 [61] Barker A S and Loudon R 1967 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
406
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
407
+ page_content=' 158(2) 433–445 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
408
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
409
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
410
+ page_content=' 1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
411
+ page_content='158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
412
+ page_content='433 [62] Thiel C W, Sun Y, B¨ottger T, Babbitt W R and Cone R L 2010 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
413
+ page_content=' Lumin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
414
+ page_content=' 130 1598–1602 [63] Kushibiki J, Takanaga I, Arakawa M and Sannomiya T 1999 IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
415
+ page_content=' Ultrason.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
416
+ page_content=' Ferroelectr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
417
+ page_content=' Freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
418
+ page_content=' Control 46 1315–1323 [64] Mirzai A, Ahadi A, Melin S and Olsson P A T 2021 Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
419
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
420
+ page_content=' 154 103739 [65] Sun Y, B¨ottger T, Thiel C W and Cone R L 2008 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
421
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
422
+ page_content=' B 77 085124 [66] Carvalho N C, Le Floch J M, Krupka J and Tobar M E 2015 Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
423
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
424
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
425
+ page_content=' 106 192904 [67] Rancic M 2017 High Resolution Spectroscopy of Erbium Doped Solids Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
426
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
427
+ page_content=' thesis The Australian National University [68] Thiel C W, Macfarlane R M, B¨ottger T, Sun Y, Cone R L and Babbitt W R 2010 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
428
+ page_content=' Lumin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
429
+ page_content=' 130 1603–1609 [69] Hastings-Simon S R, Staudt M U, Afzelius M, Baldi P, Jaccard D, Tittel W and Gisin N 2006 Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
430
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
431
+ page_content=' 266 716–719 [70] Arcangeli A, Lovri´c M, Tumino B, Ferrier A and Goldner P 2014 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
432
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
433
+ page_content=' B 89 184305 [71] Graf F R 1998 Investigations of spectral dynamics in rare earth ion doped crystals using high resolution laser techniques Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
434
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
435
+ page_content=' thesis ETH Zurich [72] Macfarlane R M, Arcangeli A, Ferrier A and Goldner P 2014 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
436
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
437
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
438
+ page_content=' 113 157603 [73] Robertson J 2004 EPJ Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
439
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
440
+ page_content=' 28 265–291 [74] Ahlefeldt R 2013 Evaluation of a stoichiometric rare earth crystal for quantum computing Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
441
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
442
+ page_content=' thesis The Australian National University [75] Heinze G, Mieth S and Halfmann T 2011 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
443
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
444
+ page_content=' A 84 013827 [76] Nilsson M and Kr¨oll S 2005 Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
445
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
446
+ page_content=' 247 393 [77] Najafvandzadeh N, L´opez-Moreno S, Errandonea D, Pavone P and Draxl C 2020 Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
447
+ page_content=' Today Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
448
+ page_content=' 24 101089 [78] Young K F and Frederikse H P R 1973 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
449
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
450
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
451
+ page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
452
+ page_content=' Data 2 313–410' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE5T4oBgHgl3EQfSw9y/content/2301.05531v1.pdf'}
BdFRT4oBgHgl3EQfvDhO/content/tmp_files/2301.13633v1.pdf.txt ADDED
@@ -0,0 +1,2043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13633v1 [hep-ph] 31 Jan 2023
2
+ QCD equation of state at finite isospin density from the linear sigma model with
3
+ quarks: The cold case
4
+ Alejandro Ayala1,2,3, Aritra Bandyopadhyay3,4,5, Ricardo L. S. Farias3, L. A. Hern´andez6,2, Jos´e Luis Hern´andez7,8
5
+ 1Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico, Apartado Postal 70-543, CdMx 04510, Mexico.
6
+ 2Centre for Theoretical and Mathematical Physics, and Department of Physics,
7
+ University of Cape Town, Rondebosch 7700, South Africa.
8
+ 3Departamento de F´ısica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
9
+ 4Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter,
10
+ South China Normal University, Guangzhou 510006, China.
11
+ 5Institut f¨ur Theoretische Physik, Universit¨at Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany.
12
+ 6Departamento de F´ısica, Universidad Aut´onoma Metropolitana-Iztapalapa,
13
+ Av.
14
+ San Rafael Atlixco 186, CdMx 09340, Mexico.
15
+ 7Instituto de Ciencias del Espacio (ICE, CSIC),
16
+ c.Can Magrans s.n., 08193 Cerdanyola del Vall`es, Catalonia, Spain.
17
+ 8Facultat de F´ısica, Universitat de Barcelona, Mart´ı i Franqu`es 1, 08028 Barcelona, Spain.
18
+ We use the two-flavor linear sigma model with quarks to study the phase structure of isospin
19
+ asymmetric matter at zero temperature.
20
+ The meson degrees of freedom provide the mean field
21
+ chiral- and isospin-condensates on top of which we compute the effective potential accounting for
22
+ quark fluctuations at one-loop order.
23
+ Using the renormalizability of the model, we absorb the
24
+ ultraviolet divergences into suitable counter-terms that are added respecting the original structure
25
+ of the theory. These counter-terms are determined from the stability conditions which require the
26
+ effective potential to have minima in the condensates directions at the classical values, as well as
27
+ the transition from the non-condensed to the condensed phase to be smooth as a function of the
28
+ isospin chemical potential. We use the model to study the evolution of the condensates as well as
29
+ the pressure, energy and isospin densities and the sound velocity as functions of the isospin chemical
30
+ potential. The approach does a good average description up to isospin chemical potentials values
31
+ not too large as compared to the vacuum pion mass.
32
+ Keywords: Quantum Chromodynamics, Linear Sigma Model with Quarks, Isospin Asymmetry
33
+ I.
34
+ INTRODUCTION
35
+ Multiple implications of the remarkably rich phase
36
+ structure of Quantum Chromodynamics (QCD) have
37
+ been extensively explored over the last years. QCD at
38
+ finite density is usually characterized by the baryon µB
39
+ and the isospin µI chemical potentials. Nature provides
40
+ us with physical systems at finite baryon densities with
41
+ non zero µI in the form of isospin asymmetric matter, for
42
+ example, compact astrophysical objects such as neutron
43
+ stars. Because of this, along with the imminent arrival
44
+ of new generation relativistic heavy-ion collision experi-
45
+ ments at the FAIR [1] and NICA [2] facilities, the study of
46
+ the phase structure in the temperature T and the chem-
47
+ ical potentials µB and µI has become an ideal subject of
48
+ scrutiny within the heavy-ion and astroparticle physics
49
+ communities [3, 4].
50
+ A typical T − µB − µI phase diagram is anticipated to
51
+ be full of rich phase structures [5]. However, from the
52
+ theoretical perspective, systems with finite µB are not
53
+ straightforwardly accessible to the first-principle meth-
54
+ ods of Lattice QCD (LQCD), due to the well-known
55
+ fermion determinant sign problem [6, 7]. Hence, studies
56
+ on the µB − µI plane have been performed mainly using
57
+ low energy effective models. These models have revealed
58
+ the existence of an exciting phase structure that includes
59
+ Gapless Pion Condensates (GPC), a Bose-Einstein Con-
60
+ densed (BEC) phase with gaped single particle excita-
61
+ tions, a BEC-BCS crossover, etc [8, 9].
62
+ On the other hand, LQCD calculations for vanishing
63
+ and even small µB do not suffer from the sign problem.
64
+ These calculations have predicted the existence of a su-
65
+ perfluid pion condensate phase for high enough µI [10–
66
+ 15]. At zero temperature, they show that a second order
67
+ phase transition at a critical isospin chemical potential
68
+ (corresponding to the vacuum pion mass), separates the
69
+ hadron from the pion condensate phase [14].
70
+ In addi-
71
+ tion to LQCD, these phases are also found using chiral
72
+ perturbation theory (χPT) [16–28], Hard Thermal Loop
73
+ perturbation theory (HTLPt) [29], the Nambu-Jona-
74
+ Lasinio (NJL) model [9, 30–45] and its Polyakov loop
75
+ (PNJL) extended version [46, 47], the quark meson model
76
+ (QMM) [48–51] and other low energy effective models ex-
77
+ ploiting functional RG studies [52]. Calculations using a
78
+ LQCD equation of state for finite µI have investigated
79
+ the viability of the existence of pion stars, with a pion
80
+ condensate as the dominant core constituent [24, 53].
81
+ Since LQCD calculations with µI ̸= 0, µB = µs = T = 0
82
+ can be carried out without being hindered by the sign
83
+ problem, they can be used as a benchmark to test effec-
84
+ tive model predictions. For example, recently, the NJL
85
+ model has been used in this domain and it has been
86
+ found that results agree exceptionally well with LQCD
87
+ results [54, 55].
88
+ In this work we study another effective QCD model,
89
+ the Linear Sigma Model with quarks (LSMq), extended
90
+
91
+ 2
92
+ to consider a finite µI to describe the properties of
93
+ strongly interacting systems with an isospin imbalance.
94
+ The LSMq is a renormalizable theory that explicitly im-
95
+ plements the QCD chiral symmetry.
96
+ It has been suc-
97
+ cessfully employed to study the chiral phase transition
98
+ at finite T and µB [56–59], as well as in the presence
99
+ of a magnetic field [60–67].
100
+ The Linear Sigma Model
101
+ has been used at finite µI, albeit considering the meson
102
+ degrees of freedom as an effective classical background,
103
+ in the Hartree or Hartree Fock approximations within
104
+ the Cornwall-Jackiw-Tomboulis (CJT) formalism [68]. In
105
+ contrast, in the LSMq mesons are treated as dynamical
106
+ fields able to contribute to quantum fluctuations. Part of
107
+ the reason for other models to avoid considering mesons
108
+ as dynamical fields, for example the QMM, is that when
109
+ mesons become true quantum fields and chiral symmetry
110
+ is only spontaneously broken, their masses are subject to
111
+ change as a result of medium effects. During this change,
112
+ the meson square masses can become zero or even neg-
113
+ ative.
114
+ At zero temperature, this drawback is avoided
115
+ by considering an explicit symmetry breaking term that
116
+ provides pions with a vacuum finite mass. At finite tem-
117
+ perature, the plasma screening effects need to also be
118
+ included.
119
+ In this work we use the LSMq to describe the evolu-
120
+ tion of the chiral and isospin (pion) condensates, as well
121
+ as thermodynamical quantities such as pressure, isospin
122
+ and energy densities and the sound velocity at zero tem-
123
+ perature and finite µI. We restrict ourselves to consider-
124
+ ing only the effects of fermion quantum fluctuations, re-
125
+ serving for a future work the inclusion of meson quantum
126
+ fluctuations effects. We make use of the renormalizability
127
+ of the LSMq and describe in detail the renormalization
128
+ procedure which is achieved by implementing the stabil-
129
+ ity conditions. The results thus obtained are valid for
130
+ the case where µ2
131
+ I) is small compared to the sum of the
132
+ squares of the chiral and isospin condensates multiplied
133
+ by the square of the boson-fermion coupling constant g.
134
+ The work is organized as follows: In Sec. II we write the
135
+ LSMq Lagrangian using degrees of freedom appropriate
136
+ to describe an isospin imbalanced system. We work with
137
+ an explicit breaking of the chiral symmetry introducing a
138
+ vacuum pion mass and expanding the charged pion fields
139
+ around the values of their condensates. The effective po-
140
+ tential is constructed by adding to the tree-level poten-
141
+ tial the one-loop contribution from the fermion degrees
142
+ of freedom. Renormalization is carried out by introduc-
143
+ ing counter-terms to enforce that the tree-level structure
144
+ of the effective potential is preserved by loop corrections.
145
+ We first work out explicitly the treatment in the con-
146
+ densed phase to then work out the non-condensed phase.
147
+ In Sec. III we study the condensates evolution with µI as
148
+ well as that of the pressure, isospin and energy density
149
+ and the sound velocity, and compare to recent LQCD
150
+ results. We finally summarize and conclude in Sec. IV.
151
+ We reserve for a follow up work the computation of the
152
+ meson quantum fluctuations as well as finite temperature
153
+ effects. The appendix is devoted to the explicit computa-
154
+ tion of the one-loop fermion contribution to the effective
155
+ potential.
156
+ II.
157
+ LSMQ AT FINITE ISOSPIN CHEMICAL
158
+ POTENTIAL
159
+ The LSMq is an effective theory that captures the ap-
160
+ proximate chiral symmetry of QCD. It describes the in-
161
+ teractions among small-mass mesons and quarks.
162
+ We
163
+ start with a Lagrangian invariant under SU(2)L ×
164
+ SU(2)R chiral transformations
165
+ L = 1
166
+ 2(∂µσ)2 + 1
167
+ 2(∂µ⃗π)2 + a2
168
+ 2 (σ2 + ⃗π2) − λ
169
+ 4 (σ2 + ⃗π2)2
170
+ + i ¯ψγµ∂µψ − ig ¯ψγ5⃗τ · ⃗πψ − g ¯ψψσ,
171
+ (1)
172
+ where ⃗τ = (τ1, τ2, τ3) are the Pauli matrices,
173
+ ψL,R =
174
+
175
+ u
176
+ d
177
+
178
+ L,R
179
+ ,
180
+ (2)
181
+ is a SU(2)L,R doublet, σ is a real scalar field and ⃗π =
182
+ (π1, π2, π3) is a triplet of real scalar fields. π3 corresponds
183
+ to the neutral pion whereas the charged ones are repre-
184
+ sented by the combinations
185
+ π− =
186
+ 1
187
+
188
+ 2
189
+ (π1 + iπ2),
190
+ π+ =
191
+ 1
192
+
193
+ 2
194
+ (π1 − iπ2).
195
+ (3)
196
+ The parameters a2, λ and g are real and positive definite.
197
+ Equation (1) can be written in terms of the charged and
198
+ neutral-pion degrees of freedom as
199
+ L = 1
200
+ 2[(∂µσ)2 + (∂µπ0)2] + ∂µπ−∂µπ+ + a2
201
+ 2 (σ2 + π2
202
+ 0)
203
+ + a2π−π+ − λ
204
+ 4 (σ4 + 4σ2π−π+ + 2σ2π2
205
+ 0 + 4π2
206
+ −π2
207
+ +
208
+ + 4π−π+π2
209
+ 0 + π4
210
+ 0) + i ¯ψ/∂ψ − g ¯ψψσ − ig ¯ψγ5(τ+π+
211
+ + τ−π− + τ3π0)ψ,
212
+ (4)
213
+ where we introduced the combination of Pauli matrices
214
+ τ+ =
215
+ 1
216
+
217
+ 2(τ1 + iτ2),
218
+ τ− =
219
+ 1
220
+
221
+ 2(τ1 − iτ2).
222
+ (5)
223
+ The Lagrangian in Eq. (4) possesses the following sym-
224
+ metries: A SU(Nc) global color symmetry, a SU(2)L ×
225
+ SU(2)R chiral symmetry and a U(1)B symmetry. The
226
+ sub-index of the latter emphasizes that the conserved
227
+ charge is the baryon number B.
228
+ A conserved isospin
229
+ charge can be added to the LSMq Hamiltonian, multi-
230
+ plied by the isospin chemical potential µI. The result is
231
+ that the Lagrangian gets modified such that the ordinary
232
+ derivative becomes a covariant derivative [69]
233
+ ∂µ → Dµ = ∂µ + iµIδ0
234
+ µ,
235
+ ∂µ → Dµ = ∂µ − iµIδµ
236
+ 0 , (6)
237
+
238
+ 3
239
+ As a result, Eq. (4) is modified to read as
240
+ L = 1
241
+ 2[(∂µσ)2 + (∂µπ0)2] + Dµπ−Dµπ+ + a2
242
+ 2 (σ2 + π2
243
+ 0)
244
+ + a2π−π+ − λ
245
+ 4
246
+
247
+ σ4 + 4σ2π−π+ + 2σ2π2
248
+ 0 + 4π2
249
+ −π2
250
+ +
251
+ + 4π−π+π2
252
+ 0 + π4
253
+ 0
254
+
255
+ + i ¯ψ/∂ψ − g ¯ψψσ + ¯ψµIτ3γ0ψ
256
+ − ig ¯ψγ5(τ+π+ + τ−π− + τ3π0)ψ.
257
+ (7)
258
+ Because of the spontaneous breaking of the chiral sym-
259
+ metry in the Lagrangian given in Eq. (7), the σ field ac-
260
+ quires a non-vanishing vacuum expectation value
261
+ σ → σ + v.
262
+ To make better contact with the meson vacuum proper-
263
+ ties and to include a finite vacuum pion mass, m0, we
264
+ can add an explicit symmetry breaking term in the La-
265
+ grangian such that
266
+ L → L′ = L + h(σ + v).
267
+ (8)
268
+ The constant h is fixed by requiring that the model ex-
269
+ pression for the neutral vacuum pion mass squared in
270
+ the non-condensed phase, Eq. (11a), corresponds to m2
271
+ 0.
272
+ This yields
273
+ h = m2
274
+ 0
275
+
276
+ a2 + m2
277
+ 0
278
+ λ
279
+ ,
280
+ ≡ m2
281
+ 0fπ,
282
+ (9)
283
+ where fπ is the pion decay constant and have used its ex-
284
+ plicit model expression. Equation (9) provides a relation
285
+ for the model parameters a and λ in terms of fπ.
286
+ Before diving into the formalism details, here we first
287
+ pause to discuss the symmetry properties of the theory.
288
+ Notice that the introduction of µI and h modifies the
289
+ structure of the effective Lagrangian given in Eq. (8). In
290
+ the presence of a finite µI, the U(1)B ×SU(2)L×SU(2)R
291
+ symmetry is reduced to U(1)B × U(1)I3L × U(1)I3R for
292
+ h = 0, and to U(1)B × U(1)I3 for h ̸= 0, thereby repre-
293
+ senting the explicit breaking of the chiral symmetry [70].
294
+ The notation also emphasizes that the third component
295
+ of the isospin charge, I3, corresponds to the generator
296
+ of the remaining symmetry U(1)I3. Since in the present
297
+ work, we are interested in the dynamics of the pion fields,
298
+ further simplifications in the pseudoscalar channels can
299
+ be obtained using the ansatz ⟨ ¯ψiγ5τ3ψ⟩ = 0 combined
300
+ with ⟨¯uiγ5d⟩ = ⟨ ¯diγ5u⟩∗ ̸= 0 [9]. This further breaks the
301
+ residual U(1)I3 symmetry and corresponds to a Bose-
302
+ Einstein condensation of the charged pions. Then, the
303
+ charged pion fields can be referred from their conden-
304
+ sates as
305
+ π+ → π+ + ∆
306
+
307
+ 2eiθ,
308
+ π− → π− + ∆
309
+
310
+ 2e−iθ,
311
+ (10)
312
+ where the phase factor θ indicates the direction of the
313
+ U(1)I3 symmetry breaking. We take θ = π for defini-
314
+ tiveness. The shift in the sigma field produces that the
315
+ fermions and neutral bosons acquire masses given by
316
+ mf = gv
317
+ (11a)
318
+ m2
319
+ π0 = λv2 − a2 + λ∆2
320
+ (11b)
321
+ m2
322
+ σ = 3λv2 − a2 + λ∆2.
323
+ (11c)
324
+ The charged pions also acquire masses.
325
+ However, in
326
+ the condensed phase (∆ ̸= 0) they need to be described
327
+ in terms of the π1,2 fields [71]. Since for our purposes,
328
+ pions are not treated as quantum fluctuations, hereby
329
+ we just notice that, as a consequence of the breaking
330
+ of the U(1)I3 symmetry, one of these fields becomes a
331
+ Goldstone boson. In the absence of the explicit symmetry
332
+ breaking term in the Lagrangian of Eq. (8), this mode’s
333
+ mass would vanish.
334
+ However, a finite h prevents this
335
+ mode from being massless.
336
+ A.
337
+ Condensed phase
338
+ In the condensed phase the tree-level potential, ex-
339
+ tracted from Eqs. (7) and (8), can be written as
340
+ Vtree = −a2
341
+ 2
342
+
343
+ v2 + ∆2�
344
+ + λ
345
+ 4
346
+
347
+ v2 + ∆2�2 − 1
348
+ 2µ2
349
+ I∆2 − hv.
350
+ (12)
351
+ The fermion contribution to the one-loop effective po-
352
+ tential becomes
353
+
354
+ f=u,d
355
+ V 1
356
+ f = −2Nc
357
+
358
+ d3k
359
+ (2π)3
360
+
361
+ Eu
362
+ ∆ + Ed
363
+
364
+
365
+ ,
366
+ (13)
367
+ with (see Appendix A)
368
+ Eu
369
+ ∆ =
370
+ ���
371
+ k2 + m2
372
+ f + µI
373
+ �2
374
+ + g2∆2
375
+ �1/2
376
+ ,
377
+ (14a)
378
+ Ed
379
+ ∆ =
380
+ ���
381
+ k2 + m2
382
+ f − µI
383
+ �2
384
+ + g2∆2
385
+ �1/2
386
+ ,
387
+ (14b)
388
+ where we chose that
389
+ µd = µI
390
+ µu = −µI.
391
+ (15)
392
+ Equation (13) is ultraviolet divergent. Ultraviolet diver-
393
+ gences are a common feature of loop vacuum contribu-
394
+ tions. However, since Eq. (13) depends on µI, this di-
395
+ vergence needs to be carefully treated given that mat-
396
+ ter contributions cannot contain ultraviolet divergences.
397
+ To identify the divergent terms, we work in the approx-
398
+ imation whereby the fermion energies, Eqs. (14), are ex-
399
+ panded in powers of µ2
400
+ I/[g2(v2 +∆2)]. Considering terms
401
+ up to O(µ4
402
+ I), we obtain
403
+
404
+ f=u,d
405
+ Ef
406
+ ∆ ≃ 2
407
+
408
+ k2 + m2
409
+ f + g2∆2 +
410
+ µ2
411
+ Ig2∆2
412
+ (k2 + m2
413
+ f + g2∆2)3/2
414
+ +
415
+ µ4
416
+ I
417
+
418
+ 4(k2 + m2
419
+ f)g2∆2 − g4∆4�
420
+ 4
421
+
422
+ k2 + m2
423
+ f + g2∆2
424
+ �7/2
425
+ + O(µ6
426
+ I).
427
+ (16)
428
+
429
+ 4
430
+ Notice that the ultraviolet divergent part corresponds
431
+ only to the first and second terms on the right-hand side
432
+ of Eq. (16). In this approximation, and up to terms of
433
+ order µ2
434
+ I, the expression for the leading fermion contri-
435
+ bution to the one-loop effective potential is given by
436
+
437
+ f=u,d
438
+ V 1
439
+ f = −2Nc
440
+
441
+ d3k
442
+ (2π)3
443
+
444
+ 2
445
+
446
+ k2 + m2
447
+ f + g2∆2
448
+ +
449
+ µ2
450
+ Ig2∆2
451
+ (k2 + m2
452
+ f + g2∆2)3/2
453
+
454
+ (17)
455
+ This expression can be readily computed using dimen-
456
+ sional regularization in the MS scheme, with the result
457
+ (see Appendix A)
458
+
459
+ f=u,d
460
+ V 1
461
+ f = 2Nc
462
+ g4 �
463
+ v2 + ∆2�2
464
+ (4π)2
465
+ �1
466
+ ǫ + 3
467
+ 2 + ln
468
+ � Λ2/g2
469
+ v2 + ∆2
470
+ ��
471
+ − 2Nc
472
+ g2µ2
473
+ I∆2
474
+ (4π)2
475
+ �1
476
+ ǫ + ln
477
+ � Λ2/g2
478
+ v2 + ∆2
479
+ ��
480
+ ,
481
+ (18)
482
+ where Nc = 3 is the number of colors, Λ is the dimen-
483
+ sional regularization ultraviolet scale and the limit ǫ → 0
484
+ is to be understood. The explicit computation of Eq. (18)
485
+ is described also in Appendix A. Notice that Eq. (18)
486
+ contains an ultraviolet divergence proportional to µ2
487
+ I∆2.
488
+ Since a term with this same structure is already present
489
+ in the tree-level potential, Eq. (12), it is not surpris-
490
+ ing that this ultraviolet divergence can be handled by
491
+ the renormalization procedure with the introduction of a
492
+ counter-term with the same structure, as we proceed to
493
+ show.
494
+ To carry out the renormalization of the effective po-
495
+ tential up to one-loop order, we introduce counter-terms
496
+ that respect the structure of the tree-level potential and
497
+ determine them by accounting for the stability condi-
498
+ tions. The latter are a set of conditions satisfied by the
499
+ tree-level potential and that must be preserved when con-
500
+ sidering loop corrections. These conditions require that
501
+ the position of the minimum in the v- and ∆-directions
502
+ remain the same as the tree-level potential ones.
503
+ The tree-level minimum in the v, ∆ plane is found from
504
+ ∂Vtree
505
+ ∂v
506
+ =
507
+
508
+ λv3 − (a2 − λ∆2)v − h
509
+ �����
510
+ v0, ∆0
511
+ = 0
512
+ (19a)
513
+ ∂Vtree
514
+ ∂∆
515
+ =
516
+
517
+ λ∆2 − (µ2
518
+ I − λv2 + a2)
519
+ �����
520
+ v0, ∆0
521
+ = 0. (19b)
522
+ Notice that the second of Eqs. (19) admits a real, non-
523
+ vanishing solution, only when
524
+ µ2
525
+ I > λv2 − a2 = m2
526
+ 0,
527
+ (20)
528
+ which means that a non-zero isospin condensate is devel-
529
+ oped only when, for positive values of the isospin chem-
530
+ ical potential, the latter is larger than the vacuum pion
531
+ mass. This is what we identify as the condensed phase.
532
+ The simultaneous solutions of Eqs. (19) are
533
+ v0 = h
534
+ µ2
535
+ I
536
+ ,
537
+ (21a)
538
+ ∆0 =
539
+
540
+ µ2
541
+ I
542
+ λ − h2
543
+ µ4
544
+ I
545
+ + a2
546
+ λ .
547
+ (21b)
548
+ Hereafter, we refer to the expressions in Eq. (21) as the
549
+ classical solution.
550
+ The effective potential, up to one-loop order in the
551
+ fermion fluctuations, including the counter-terms, can be
552
+ written as
553
+ Veff = Vtree +
554
+
555
+ f=u,d
556
+ V 1
557
+ f − δλ
558
+ 4 (v2 + ∆2)2
559
+ + δa
560
+ 2 (v2 + ∆2) + δ
561
+ 2∆2µ2
562
+ I.
563
+ (22)
564
+ The counter-terms δλ and δ are determined from the gap
565
+ equations
566
+ ∂Veff
567
+ ∂v
568
+ ����
569
+ v0, ∆0
570
+ = 0,
571
+ (23a)
572
+ ∂Veff
573
+ ∂∆
574
+ ����
575
+ v0, ∆0
576
+ = 0.
577
+ (23b)
578
+ These conditions suffice to absorb the infinities of
579
+ Eq. (18). The counter-term δa is determined by requiring
580
+ that the slope of Veff vanishes at µI = m0,
581
+ ∂Veff
582
+ ∂µI
583
+ ����
584
+ µI=m0
585
+ = 0,
586
+ (24)
587
+ or in other words, that the transition from the non-
588
+ condensed to the condensed phase be smooth. The ef-
589
+ fective potential thus obtained is ultraviolet finite as well
590
+ as Λ-independent.
591
+ B.
592
+ Non-condensed phase
593
+ In the non-condensed phase, 0 ≤ µI ≤ m0, the only
594
+ allowed solution for the second of Eqs. (19) is ∆ = 0. For
595
+ this case, the first of Eqs. (19) becomes a cubic equation
596
+ in v. The only real solution is
597
+ ˜v0 = (
598
+
599
+ 3
600
+
601
+ 27h2λ4 − 4a6λ3 + 9hλ2)1/3
602
+ (18)2/3λ
603
+ +
604
+ (2/3)1/3a2
605
+ (
606
+
607
+ 3
608
+
609
+ 27h2λ4 − 4a6λ3 + 9hλ2)1/3 .
610
+ (25)
611
+ In the limit when h is taken as small one gets
612
+ ˜v0 ≃
613
+ a
614
+
615
+ λ
616
+ + h
617
+ 2a2 ,
618
+ (26)
619
+ an approximation that some times is considered. How-
620
+ ever, hereafter we work instead with the full expression
621
+ given by Eq. (25).
622
+
623
+ 5
624
+ Δ [GeV]
625
+ v [GeV]
626
+ 0.0
627
+ 0.5
628
+ 1.0
629
+ 1.5
630
+ 2.0
631
+ 0.00
632
+ 0.02
633
+ 0.04
634
+ 0.06
635
+ 0.08
636
+ 0.10
637
+ 0.12
638
+ μI/m0
639
+ Figure 1: v- and ∆-condensates as functions of the
640
+ scaled variable µI/m0. For µI ≥ m0, the v-condensate
641
+ decreases while the ∆-condensate increases.
642
+ The effective potential V noncond
643
+ eff
644
+ up to one-loop order
645
+ can be obtained from the corresponding one in the con-
646
+ densed phase, by setting ∆ = 0. Therefore, we can write
647
+ V noncond
648
+ eff
649
+ = λ
650
+ 4 v4 − a2
651
+ 2 v2 − hv −
652
+ ˜δ1
653
+ 4 v4 +
654
+ ˜δ2
655
+ 2 v2
656
+ + 2Nc
657
+ g4v4
658
+ (4π)2
659
+ �1
660
+ ǫ + 3
661
+ 2 + ln
662
+ � Λ2
663
+ g2v2
664
+ ��
665
+ . (27)
666
+ In this case, only two conditions are needed to stabilize
667
+ the vacuum. We take these as the requirement that the
668
+ position and curvature of V noncond
669
+ eff
670
+ remain at its classical
671
+ value when evaluated at ˜v0, namely,
672
+ ∂V noncond
673
+ eff
674
+ ∂v
675
+ ����
676
+ ˜v0
677
+ = 0
678
+ (28a)
679
+ ∂2V noncond
680
+ eff
681
+ ∂v2
682
+ ����
683
+ ˜v0
684
+ = 3λ˜v2
685
+ 0 − a2,
686
+ (28b)
687
+ from where the counter-terms ˜δ1, ˜δ2 can be determined.
688
+ Therefore, in the non-condensed phase, in addition to
689
+ ∆ = 0, the v-condensate is simply given by the constant
690
+ ˜v0 given in Eq. (25). As for the case of the condensed
691
+ phase, in the non-condensed phase the effective potential
692
+ is ultraviolet finite as well as Λ-independent.
693
+ III.
694
+ THERMODYNAMICS OF THE
695
+ CONDENSED PHASE
696
+ Armed with the expressions for the effective potential,
697
+ we can now proceed to study the dependence of the con-
698
+ densates as well as of the thermodynamical quantities as
699
+ functions of µI.
700
+ Since the µI-dependence in the non-
701
+ condensed phase is trivial, we concentrate in the descrip-
702
+ tion of the behavior of these quantities in the condensed
703
+ phase.
704
+ LQCD 24×48
705
+ LQCD 32×48
706
+ Tree Level
707
+ One loop
708
+ SU(2) NJL
709
+ 1.0
710
+ 1.2
711
+ 1.4
712
+ 1.6
713
+ 1.8
714
+ 2.0
715
+ 0.0
716
+ 0.1
717
+ 0.2
718
+ 0.3
719
+ 0.4
720
+ 0.5
721
+ 0.6
722
+ μI/m0
723
+ PN/m0
724
+ 4
725
+ Figure 2: Normalized pressure as a function of the
726
+ scaled variable µI/m0. Shown are the tree-level and
727
+ one-loop fermion improved pressures compared to the
728
+ results from Ref. [54] together with the LQCD results
729
+ from Ref. [72].
730
+ The model requires fixing three independent parame-
731
+ ters: the boson self-coupling λ, the boson-fermion cou-
732
+ pling g and the mass parameter a. For a vacuum pion
733
+ mass m0 = 135 MeV, these parameters are fixed by re-
734
+ quiring that the pion vacuum decay constant is fπ = 93
735
+ MeV, the light quark mass is mq = 235 MeV and the
736
+ sigma mass is mσ = 400 MeV. The phase space for these
737
+ parameters is limited since for certain combinations, the
738
+ gap equation conditions in the v-∆ plane become saddle
739
+ points rather than global minima.
740
+ Figure 1 shows the v- and ∆-condensates as functions
741
+ of the scaled variable µI/m0. The behavior is qualita-
742
+ tively as expected: for µI ≥ m0, the v-condensate de-
743
+ creases while the ∆-condensate increases.
744
+ Figure 2 shows the normalized pressure, defined as the
745
+ negative of the effective potential referred from its value
746
+ at µI = m0, as a function of the scaled variable µI/m0
747
+ and divided by m4
748
+ 0. Shown are the results obtained by
749
+ using the tree-level and the fermion one-loop corrected
750
+ effective potentials, compared to the results from Ref. [54]
751
+ and the LQCD results from [72]. Notice that the one-loop
752
+ improved calculation does a better description than the
753
+ tree-level one and that deviations from the LQCD result
754
+ appear for µI ≳ 1.5 m0.
755
+ Figure 3 shows the normalized isospin density, nI =
756
+ dP/dµI, divided by m3
757
+ 0 as a function of the scaled vari-
758
+ able µI/m0 compared to results obtained using the tree-
759
+ level potential as well as to the results from Ref. [54]
760
+ together with the LQCD results from Ref. [72]. Notice
761
+ that the one-loop improved calculation is close to the NJL
762
+ one up to µI ∼ 1.5 m0 but the latter does a better job
763
+ describing the LQCD results for µI ≳ 1.5 m0. However,
764
+ it is fair to say that neither the current calculation nor
765
+ the NJL result reproduce the change of curvature that
766
+
767
+ 6
768
+ Tree Level
769
+ One loop
770
+ SU(2) NJL
771
+ 1.0
772
+ 1.2
773
+ 1.4
774
+ 1.6
775
+ 1.8
776
+ 0.0
777
+ 0.2
778
+ 0.4
779
+ 0.6
780
+ 0.8
781
+ 1.0
782
+ 1.2
783
+ 1.4
784
+ μI/m0
785
+ nI/m0
786
+ 3
787
+ Figure 3: Normalized isospin density as a function of
788
+ the scaled variable µI/m0. Shown are the tree-level and
789
+ one-loop fermion improved effective potentials
790
+ compared to a recent SU(2) NJL calculation [54] and
791
+ the LQCD results from Ref. [72].
792
+ seems to be present in the LQCD result.
793
+ Figure 4 shows the normalized energy density, ǫ/m4
794
+ 0,
795
+ as a function of the scaled variable µI/m0, compared to
796
+ the results from Ref. [54] together with the LQCD results
797
+ from Ref. [72]. Although the change in curvature shown
798
+ by the LQCD results is not described by the present cal-
799
+ culation, it is fair to say that neither the NJL calculation
800
+ captures such trend. The one-loop improved calculation
801
+ does a better average description of the LQCD result al-
802
+ though deviations appear for µI ≳ 1.5 m0.
803
+ Figure 5 shows the equation of state, pressure vs. en-
804
+ ergy density, compared to the results from Ref. [54] to-
805
+ gether with the LQCD results from Ref. [72].
806
+ Notice
807
+ that for the latter, the vacuum pion mass is taken as
808
+ m0 = 135 MeV. As can be seen, the initial increasing
809
+ trend of LQCD results is properly described by the low-
810
+ energy models considered. Given that the accuracy of
811
+ our results is limited to the low µI domain the NJL cal-
812
+ culation does a better description of the LQCD results.
813
+ Figure 6 shows the square of the speed of sound, c2
814
+ s, as
815
+ a function of the scaled variable µI/m0. Shown are the
816
+ one-loop results compared to the results from Ref. [54] to-
817
+ gether with the LQCD results from Ref. [72]. The appar-
818
+ ent peak in the LQCD results is not reproduced by any
819
+ model. However, notice that for the range of shown µI
820
+ values, the one-loop improved result is above, although
821
+ closer to the conformal bound, shown as a horizontal line
822
+ at c2
823
+ s = 1/3.
824
+ IV.
825
+ SUMMARY AND CONCLUSIONS
826
+ In this work we have used the LSMq, with two quark
827
+ flavors, to study the phase structure of isospin asymmet-
828
+ LQCD 24×48
829
+ LQCD 32×48
830
+ Tree Level
831
+ One loop
832
+ SU(2) NJL
833
+ 1.0
834
+ 1.2
835
+ 1.4
836
+ 1.6
837
+ 1.8
838
+ 0.0
839
+ 0.5
840
+ 1.0
841
+ 1.5
842
+ μI/m0
843
+ ϵ/m0
844
+ 4
845
+ Figure 4: Normalized energy density as a function of
846
+ the scaled variable µI/m0. Shown are the tree-level and
847
+ one-loop fermion improved effective potentials
848
+ compared to the results from Ref. [54] together with the
849
+ LQCD results from Ref. [72].
850
+ ric matter at zero temperature. The meson degrees of
851
+ freedom are taken as providing the mean field on top of
852
+ which we include quantum quark fluctuations at one-loop
853
+ order. We have used the renormalization of the LSMq to
854
+ absorb the ultraviolet divergences with the addition of
855
+ counter-terms that respect the original structure of the
856
+ theory. An interesting aspect of the method is that it al-
857
+ lows the proper handling of the disturbing µI-dependent
858
+ ultraviolet divergence. The one-loop quark contributions
859
+ are treated in the approximation whereby µ2
860
+ I is taken as
861
+ small compared to g2(v2 +∆2) and working up to O(µ2
862
+ I).
863
+ After determining the model parameters, we have stud-
864
+ ied the evolution of the chiral and isospin condensates
865
+ as well as the pressure, energy and isospin densities and
866
+ the sound velocity. We have compared the model results
867
+ with a recent NJL calculation of the same quantities and
868
+ with LQCD data. The model does a good description
869
+ for µI ≲ 1.5 m0, except perhaps for the sound veloc-
870
+ ity for which it does not reproduce the peak seemingly
871
+ appearing in the LQCD calculations.
872
+ The results are encouraging and set the stage to ex-
873
+ plore whether the method can be used to incorporate the
874
+ effect of meson fluctuations. The method also lends itself
875
+ to include in the description higher powers of µ2
876
+ I as well
877
+ as finite temperature effects. We are currently exploring
878
+ these avenues and will report on the findings elsewhere
879
+ in the near future.
880
+ ACKNOWLEDGMENTS
881
+ The authors are grateful to G. Endr¨odi and B. B.
882
+ Brandt for kindly sharing their LQCD data in tabular
883
+ form.
884
+ Support for this work was received in part by
885
+
886
+ LQCD 24×48
887
+ LQCD32×487
888
+ LQCD 24×48
889
+ LQCD 32×48
890
+ Tree level
891
+ One loop
892
+ SU(2) NJL
893
+ 0.0
894
+ 0.1
895
+ 0.2
896
+ 0.3
897
+ 0.4
898
+ 0.5
899
+ 0.0
900
+ 0.5
901
+ 1.0
902
+ 1.5
903
+ PN/m0
904
+ 4
905
+ ϵ/m0
906
+ 4
907
+ Figure 5: Equation of state, pressure vs. energy
908
+ density. Shown are the tree-level and one-loop fermion
909
+ improved effective potentials compared to the results
910
+ from Ref. [54] together with the LQCD results from
911
+ Ref. [72]. For the latter, the vacuum pion mass is taken
912
+ as m0 = 135 MeV.
913
+ UNAM-PAPIIT IG100322 and by Consejo Nacional de
914
+ Ciencia y Tecnolog´ıa grant number A1-S-7655. L. A. H.
915
+ acknowledges support from a PAPIIT-DGAPA-UNAM
916
+ fellowship. This work was partially supported by Con-
917
+ selho Nacional de Desenvolvimento Cient´ıfico e Tecno-
918
+ l´ogico (CNPq), Grant No.
919
+ 309598/2020-6 (R.L.S.F.);
920
+ Funda¸c˜ao de Amparo `a Pesquisa do Estado do Rio
921
+ Grande do Sul (FAPERGS), Grants Nos.
922
+ 19/2551-
923
+ 0000690-0 and 19/2551-0001948-3 (R.L.S.F.). A.B. ac-
924
+ knowledges the support from the Alexander von Hum-
925
+ boldt Foundation postdoctoral research fellowship in
926
+ Germany.
927
+ Appendix A: One-loop quark contribution to the
928
+ effective potential
929
+ The thermodynamic potential accounting for the quark
930
+ contribution at one-loop order is given by
931
+ V 1
932
+ f = iV −1 ln
933
+
934
+ Z1
935
+ f
936
+
937
+ ,
938
+ (A1)
939
+ where
940
+ ln (Z1
941
+ f ) = ln
942
+
943
+ det
944
+ ��
945
+ S−1
946
+ mf
947
+ ���
948
+ ,
949
+ (A2)
950
+ and V is the space-time volume. Also here, S−1
951
+ mf is the
952
+ inverse propagator of the two light-quark species. There-
953
+ fore, we are bound to compute the determinant of a ma-
954
+ trix M of the form
955
+ M =
956
+
957
+ A B
958
+ C D
959
+
960
+ ,
961
+ (A3)
962
+ where A, B, C, D can be thought of as p×p, p×q, q ×p,
963
+ and q × q complex matrices, respectively. When A, and
964
+ NJL SU(2)
965
+ Conformal Bound
966
+ LQCD 24×48
967
+ LQCD
968
+ 1.0
969
+ 1.2
970
+ 1.4
971
+ 1.6
972
+ 1.8
973
+ 0.0
974
+ 0.1
975
+ 0.2
976
+ 0.3
977
+ 0.4
978
+ 0.5
979
+ 0.6
980
+ μI/m0
981
+ cs
982
+ 2
983
+ Figure 6: Square of the speed of sound as a function of
984
+ the scaled variable µI/m0. Shown are the tree-level and
985
+ one-loop fermion improved effective potentials
986
+ compared to a recent SU(2) NJL calculation [54] and
987
+ the LQCD results from Ref. [72].
988
+ D, are invertible, the determinant of M is given by
989
+ det{(M)} = det{(A)} det
990
+
991
+ (D − CA−1B)
992
+
993
+ ,
994
+ (A4)
995
+ det{(M)} = det{(D)} det
996
+
997
+ (A − BD−1C)
998
+
999
+ .
1000
+ (A5)
1001
+ Equation (A4) can be written as
1002
+ det{(M)} = det{(A)} det
1003
+
1004
+ (D − CA−1B)
1005
+
1006
+ = det{(A)} det
1007
+
1008
+ (C−1C)
1009
+
1010
+ det
1011
+
1012
+ (D − CA−1B)
1013
+
1014
+ = det
1015
+
1016
+ (−C2A−1BC−1A + CDC−1A)
1017
+
1018
+ ,
1019
+ (A6)
1020
+ whereas Eq. (A5) as
1021
+ det{(M)} = det{(D)} det
1022
+
1023
+ (A − BD−1C)
1024
+
1025
+ = det{(D)} det
1026
+
1027
+ (C−1C)
1028
+
1029
+ det
1030
+
1031
+ (A − BD−1C)
1032
+
1033
+ = det
1034
+
1035
+ (−CB + CAC−1D)
1036
+
1037
+ .
1038
+ (A7)
1039
+ For our purposes, B = C = ig∆γ5.
1040
+ Thus, from
1041
+ Eqs. (A6) and (A7), we obtain
1042
+ det{(M)} = det
1043
+
1044
+ (−C2 + CDC−1A)
1045
+
1046
+ ,
1047
+ (A8)
1048
+ det{(M)} = det
1049
+
1050
+ (−C2 + CAC−1D)
1051
+
1052
+ .
1053
+ (A9)
1054
+ We explicitly compute both expressions.
1055
+ Fist, we use
1056
+ that the standard spin projectors Λ± satisfy
1057
+ γ0Λ±γ0 = ˜Λ∓,
1058
+ (A10)
1059
+ and
1060
+ γ5Λ±γ5 = ˜Λ±,
1061
+ (A11)
1062
+
1063
+ LQCD32X48
1064
+ Tree Level
1065
+ One Loop8
1066
+ with the projectors ˜Λ± defined as
1067
+ ˜Λ± = 1
1068
+ 2
1069
+
1070
+ 1 ± γ0(⃗γ · ⃗k − gv)
1071
+ Ek
1072
+
1073
+ .
1074
+ (A12)
1075
+ Next, we notice that A = S−1
1076
+ u
1077
+ and D = S−1
1078
+ d . There-
1079
+ fore, working first in the absence of an isospin chemical
1080
+ potential, for which
1081
+ S−1
1082
+ u
1083
+ = S−1
1084
+ d
1085
+ = k0γ0 − ⃗γ · ⃗k − gv,
1086
+ (A13)
1087
+ D1 ≡ −C2 + CDC−1A
1088
+ = g2∆2 + (ig∆γ5)S−1
1089
+ d
1090
+ � 1
1091
+ ig∆γ5
1092
+
1093
+ S−1
1094
+ u
1095
+ = g2∆2 −
1096
+
1097
+ k2
1098
+ 0 − (Eu
1099
+ k )2�
1100
+ Λ− −
1101
+
1102
+ k0 −
1103
+
1104
+ Ed
1105
+ k
1106
+ �2�
1107
+ Λ+,
1108
+ (A14)
1109
+ and
1110
+ D2 ≡ −C2 + CAC−1D
1111
+ = g2∆2 + γ5S−1
1112
+ u γ5S−1
1113
+ d
1114
+ = g2∆2 −
1115
+
1116
+ k2
1117
+ 0 −
1118
+
1119
+ Ed
1120
+ k
1121
+ �2�
1122
+ Λ− −
1123
+
1124
+ k2
1125
+ 0 − (Eu
1126
+ k )2�
1127
+ Λ+.
1128
+ (A15)
1129
+ Thus, using that Λ+ + Λ− = 11 and defining Eq
1130
+ ∆ =
1131
+
1132
+ (Eq
1133
+ k)2 + g2∆2, we have
1134
+ D1 = −
1135
+
1136
+ k2
1137
+ 0 − (Eu
1138
+ ∆)2�
1139
+ Λ− −
1140
+
1141
+ k0 −
1142
+
1143
+ Ed
1144
+
1145
+ �2�
1146
+ Λ+, (A16)
1147
+ D2 = −
1148
+
1149
+ k2
1150
+ 0 −
1151
+
1152
+ Ed
1153
+
1154
+ �2�
1155
+ Λ− −
1156
+
1157
+ k2
1158
+ 0 − (Eu
1159
+ ∆)2�
1160
+ Λ+, (A17)
1161
+ and
1162
+ det
1163
+
1164
+ (S−1
1165
+ mf )
1166
+
1167
+ = det{(D1)} = det{(D2)}.
1168
+ (A18)
1169
+ Note that
1170
+ ln (Z1
1171
+ f ) = ln
1172
+
1173
+ det
1174
+ ��
1175
+ S−1
1176
+ mf
1177
+ ���
1178
+ = 1
1179
+ 2 ln
1180
+
1181
+ det
1182
+ ��
1183
+ S−1
1184
+ mf
1185
+ �2��
1186
+ = 1
1187
+ 2 ln (det{(D1D2)})
1188
+ = 1
1189
+ 2Tr [ln (D1D2)] ,
1190
+ (A19)
1191
+ and since the product D1D2 is given by
1192
+ D1D2 =
1193
+
1194
+ k2
1195
+ 0 − (Eu
1196
+ ∆)2� �
1197
+ k2
1198
+ 0 −
1199
+
1200
+ Ed
1201
+
1202
+ �2�
1203
+ ,
1204
+ (A20)
1205
+ we get
1206
+ ln (Z1
1207
+ f ) = 1
1208
+ 2
1209
+
1210
+ q=u,d
1211
+ Tr
1212
+
1213
+ ln
1214
+
1215
+ k2
1216
+ 0 − (Eq
1217
+ ∆)2 ��
1218
+ ,
1219
+ (A21)
1220
+ where the trace is taken in Dirac, color (factors of 4 and
1221
+ Nc, respectively), and in coordinate spaces, namely,
1222
+ ln (Z1
1223
+ f ) = 2Nc
1224
+
1225
+ q=u,d
1226
+
1227
+ d4x
1228
+
1229
+ x
1230
+ ��� ln
1231
+
1232
+ k2
1233
+ 0 − (Eq
1234
+ ∆)2 ����x
1235
+
1236
+ = 2Nc
1237
+
1238
+ q=u,d
1239
+
1240
+ d4x
1241
+
1242
+ d4k
1243
+ (2π)4 ln
1244
+
1245
+ k2
1246
+ 0 − (Eq
1247
+ ∆)2 �
1248
+ .
1249
+ (A22)
1250
+ Therefore
1251
+ ln (Z1
1252
+ f) = 2V Nc
1253
+
1254
+ q=u,d
1255
+
1256
+ d4k
1257
+ (2π)4 ln
1258
+
1259
+ k2
1260
+ 0 − (Eq
1261
+ ∆)2 �
1262
+ .
1263
+ (A23)
1264
+ In order to obtain a more compact expression, we inte-
1265
+ grate and differentiate with respect to Eq
1266
+ ∆ as follows
1267
+ ln (Z1
1268
+ f) = 2V Nc
1269
+
1270
+ q=u,d
1271
+
1272
+ d4k
1273
+ (2π)4
1274
+
1275
+ dEq
1276
+
1277
+ Eq
1278
+
1279
+ k2
1280
+ 0 − (Eq
1281
+ ∆)2 .
1282
+ (A24)
1283
+ Performing a Wick rotation k0 → ik4, we obtain
1284
+ ln (Z1
1285
+ f) = 4iV Nc
1286
+
1287
+ q=u,d
1288
+
1289
+ d4kE
1290
+ (2π)4
1291
+
1292
+ dEq
1293
+
1294
+ Eq
1295
+
1296
+ k2
1297
+ 0 − (Eq
1298
+ ∆)2 ,
1299
+ (A25)
1300
+ and integrating over k4 and Eq
1301
+ ∆, in this order, we get
1302
+ ln (Z1
1303
+ f) = 2iV Nc
1304
+
1305
+ q=u,d
1306
+
1307
+ d3k
1308
+ (2π)3 Eq
1309
+ ∆,
1310
+ (A26)
1311
+ with Re[(Eq
1312
+ ∆)2] ≥ 0. Therefore, the quark contribution
1313
+ to the effective potential at one-loop order is given by
1314
+ V 1
1315
+ f = iV −1 ln (Z1
1316
+ f ).
1317
+ (A27)
1318
+ Thus,
1319
+ V 1
1320
+ f = −2Nc
1321
+
1322
+ q=u,d
1323
+
1324
+ d3k
1325
+ (2π)3 Eq
1326
+ ∆.
1327
+ (A28)
1328
+ In the presence of an isospin chemical potential for which
1329
+ S−1
1330
+ u
1331
+ = (k0 + µI)γ0 − ⃗γ · ⃗k − gv,
1332
+ S−1
1333
+ d
1334
+ = (k0 − µI)γ0 − ⃗γ · ⃗k − gv,
1335
+ (A29)
1336
+ and repeating the steps starting from Eq. (A14), we ob-
1337
+ tain Eq. (A28), with the energies Eu
1338
+ ∆ and Ed
1339
+ ∆ given by
1340
+ Eqs. (14).
1341
+ We now proceed to the explicit computation of
1342
+ Eq. (13). In the limit where µ2
1343
+ I/[g2(v2 + ∆2)] is small,
1344
+ Eq. (A28) can be written as in Eq. (17). We use dimen-
1345
+ sional regularization. The first of the integrals on the
1346
+ right hand side of Eq. (17) is expressed as
1347
+
1348
+ d3k
1349
+ (2π)3
1350
+
1351
+ k2 + g2v2 + g2∆2 → Λ3−d Γ
1352
+
1353
+ − 1
1354
+ 2 − d
1355
+ 2
1356
+
1357
+ (4π)
1358
+ d
1359
+ 2 Γ
1360
+
1361
+ − 1
1362
+ 2
1363
+
1364
+ ×
1365
+
1366
+ 1
1367
+ g2v2 + g2∆2
1368
+ �− 1
1369
+ 2 − d
1370
+ 2
1371
+ .
1372
+ (A30)
1373
+
1374
+ 9
1375
+ Taking d → 3 − 2ǫ and working in the MS scheme
1376
+ Λ2 → Λ2eγE
1377
+
1378
+ ,
1379
+ (A31)
1380
+ where γE is the Euler-Mascheroni constant, we get
1381
+
1382
+ d3k
1383
+ (2π)3
1384
+
1385
+ k2 + g2v2 + g2∆2 → −(g2v2 + g2∆2)2
1386
+ 2(4π)2
1387
+ �1
1388
+ ǫ + 3
1389
+ 2 + ln
1390
+
1391
+ Λ2
1392
+ g2v2 + g2∆2
1393
+ ��
1394
+ .
1395
+ (A32)
1396
+ The second of the integrals on the right hand side of Eq. (17) is expressed as
1397
+
1398
+ d3k
1399
+ (2π)3
1400
+ 1
1401
+ (k2 + g2v2 + g2∆2)3/2 → Λ3−d Γ
1402
+ � 3
1403
+ 2 − d
1404
+ 2
1405
+
1406
+ (4π)
1407
+ d
1408
+ 2 Γ
1409
+ � 3
1410
+ 2
1411
+
1412
+
1413
+ 1
1414
+ g2v2 + g2∆2
1415
+ � 3
1416
+ 2 − d
1417
+ 2
1418
+ .
1419
+ (A33)
1420
+ Taking d → 3 − 2ǫ and working in the MS scheme we get
1421
+
1422
+ d3k
1423
+ (2π)3
1424
+ 1
1425
+ (k2 + g2v2 + g2∆2)3/2 →
1426
+ 2
1427
+ (4π)2
1428
+ �1
1429
+ ǫ + ln
1430
+
1431
+ Λ2
1432
+ g2v2 + g2∆2
1433
+ ��
1434
+ ,
1435
+ (A34)
1436
+ from where the result of Eq. (18) follows.
1437
+ [1] K. Agarwal (CBM), (2022), arXiv:2207.14585 [hep-ex].
1438
+ [2] V.
1439
+ Abgaryan
1440
+ et
1441
+ al.
1442
+ (MPD),
1443
+ Eur. Phys. J. A 58, 140 (2022),
1444
+ arXiv:2202.08970 [physics.ins-det].
1445
+ [3] K.
1446
+ Fukushima
1447
+ and
1448
+ T.
1449
+ Hatsuda,
1450
+ Rept. Prog. Phys. 74, 014001 (2011),
1451
+ arXiv:1005.4814 [hep-ph].
1452
+ [4] M.
1453
+ G.
1454
+ Alford,
1455
+ A.
1456
+ Schmitt,
1457
+ K.
1458
+ Rajagopal,
1459
+ and
1460
+ T.
1461
+ Sch¨afer,
1462
+ Rev. Mod. Phys. 80, 1455 (2008),
1463
+ arXiv:0709.4635 [hep-ph].
1464
+ [5] NUPECC,
1465
+ “Long
1466
+ range
1467
+ plan,”
1468
+ http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
1469
+ (2017), accessed: 2021-01-20.
1470
+ [6] F.
1471
+ Karsch,
1472
+ Lect. Notes Phys. 583, 209 (2002),
1473
+ arXiv:hep-lat/0106019.
1474
+ [7] S.
1475
+ Muroya,
1476
+ A.
1477
+ Nakamura,
1478
+ C.
1479
+ Nonaka,
1480
+ and
1481
+ T.
1482
+ Takaishi,
1483
+ Prog. Theor. Phys. 110, 615 (2003),
1484
+ arXiv:hep-lat/0306031.
1485
+ [8] D.
1486
+ T.
1487
+ Son
1488
+ and
1489
+ M.
1490
+ A.
1491
+ Stephanov,
1492
+ Phys. Rev. A 74, 013614 (2006),
1493
+ arXiv:cond-mat/0507586.
1494
+ [9] C.-f.
1495
+ Mu,
1496
+ L.-y.
1497
+ He,
1498
+ and
1499
+ Y.-x.
1500
+ Liu,
1501
+ Phys. Rev. D 82, 056006 (2010).
1502
+ [10] J.
1503
+ B.
1504
+ Kogut
1505
+ and
1506
+ D.
1507
+ K.
1508
+ Sinclair,
1509
+ Phys. Rev. D 66, 034505 (2002), arXiv:hep-lat/0202028.
1510
+ [11] J.
1511
+ B.
1512
+ Kogut
1513
+ and
1514
+ D.
1515
+ K.
1516
+ Sinclair,
1517
+ Phys. Rev. D 66, 014508 (2002), arXiv:hep-lat/0201017.
1518
+ [12] B.
1519
+ B.
1520
+ Brandt
1521
+ and
1522
+ G.
1523
+ Endrodi,
1524
+ PoS LATTICE2016, 039 (2016),
1525
+ arXiv:1611.06758 [hep-lat].
1526
+ [13] B.
1527
+ B.
1528
+ Brandt,
1529
+ G.
1530
+ Endrodi,
1531
+ and
1532
+ S.
1533
+ Schmalzbauer,
1534
+ EPJ Web Conf. 175, 07020 (2018),
1535
+ arXiv:1709.10487 [hep-lat].
1536
+ [14] B.
1537
+ B.
1538
+ Brandt,
1539
+ G.
1540
+ Endrodi,
1541
+ and
1542
+ S.
1543
+ Schmalzbauer,
1544
+ Phys. Rev. D 97, 054514 (2018),
1545
+ arXiv:1712.08190 [hep-lat].
1546
+ [15] B.
1547
+ B.
1548
+ Brandt,
1549
+ G.
1550
+ Endrodi,
1551
+ and
1552
+ S. Schmalzbauer, PoS Confinement2018, 260 (2018),
1553
+ arXiv:1811.06004 [hep-lat].
1554
+ [16] D.
1555
+ T.
1556
+ Son
1557
+ and
1558
+ M.
1559
+ A.
1560
+ Stephanov,
1561
+ Phys. Rev. Lett. 86, 592 (2001), arXiv:hep-ph/0005225.
1562
+ [17] D.
1563
+ T.
1564
+ Son
1565
+ and
1566
+ M.
1567
+ A.
1568
+ Stephanov,
1569
+ Phys. Atom. Nucl. 64, 834 (2001),
1570
+ arXiv:hep-ph/0011365.
1571
+ [18] K. Splittorff,
1572
+ D. T. Son,
1573
+ and M. A. Stephanov,
1574
+ Phys. Rev. D 64, 016003 (2001), arXiv:hep-ph/0012274.
1575
+ [19] M.
1576
+ Loewe
1577
+ and
1578
+ C.
1579
+ Villavicencio,
1580
+ Phys. Rev. D 67, 074034 (2003), arXiv:hep-ph/0212275.
1581
+ [20] M.
1582
+ Loewe
1583
+ and
1584
+ C.
1585
+ Villavicencio,
1586
+ Phys. Rev. D 71, 094001 (2005), arXiv:hep-ph/0501261.
1587
+ [21] E.
1588
+ S.
1589
+ Fraga,
1590
+ L.
1591
+ F.
1592
+ Palhares,
1593
+ and
1594
+ C.
1595
+ Villav-
1596
+ icencio,
1597
+ Phys. Rev. D 79, 014021 (2009),
1598
+ arXiv:0810.1060 [hep-ph].
1599
+ [22] T. D. Cohen and S. Sen, Nucl. Phys. A 942, 39 (2015),
1600
+ arXiv:1503.00006 [hep-ph].
1601
+ [23] O.
1602
+ Janssen,
1603
+ M.
1604
+ Kieburg,
1605
+ K.
1606
+ Splittorff,
1607
+ J.
1608
+ J.
1609
+ M.
1610
+ Verbaarschot,
1611
+ and
1612
+ S.
1613
+ Zafeiropou-
1614
+ los,
1615
+ Phys. Rev. D 93, 094502 (2016),
1616
+ arXiv:1509.02760 [hep-lat].
1617
+ [24] S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli,
1618
+ and
1619
+ G.
1620
+ Pagliaroli,
1621
+ Eur. Phys. J. A 53, 35 (2017),
1622
+ arXiv:1610.06097 [hep-ph].
1623
+ [25] L.
1624
+ Lepori
1625
+ and
1626
+ M.
1627
+ Mannarelli,
1628
+ Phys. Rev. D 99, 096011 (2019),
1629
+ arXiv:1901.07488 [hep-ph].
1630
+ [26] P.
1631
+ Adhikari
1632
+ and
1633
+ J.
1634
+ O.
1635
+ Ander-
1636
+ sen,
1637
+ Eur. Phys. J. C 80, 1028 (2020),
1638
+ arXiv:2003.12567 [hep-ph].
1639
+ [27] P.
1640
+ Adhikari,
1641
+ J.
1642
+ O.
1643
+ Andersen,
1644
+ and
1645
+ M.
1646
+ A.
1647
+ Mojahed,
1648
+ Eur. Phys. J. C 81, 173 (2021),
1649
+
1650
+ 10
1651
+ arXiv:2010.13655 [hep-ph].
1652
+ [28] P.
1653
+ Adhikari,
1654
+ J.
1655
+ O.
1656
+ Andersen,
1657
+ and
1658
+ M.
1659
+ A.
1660
+ Mojahed,
1661
+ Eur. Phys. J. C 81, 449 (2021),
1662
+ arXiv:2012.04339 [hep-ph].
1663
+ [29] J. O. Andersen,
1664
+ N. Haque,
1665
+ M. G. Mustafa,
1666
+ and
1667
+ M.
1668
+ Strickland,
1669
+ Phys. Rev. D 93, 054045 (2016),
1670
+ arXiv:1511.04660 [hep-ph].
1671
+ [30] M.
1672
+ Frank,
1673
+ M.
1674
+ Buballa,
1675
+ and
1676
+ M.
1677
+ Oertel,
1678
+ Phys. Lett. B 562, 221 (2003), arXiv:hep-ph/0303109.
1679
+ [31] D.
1680
+ Toublan
1681
+ and
1682
+ J.
1683
+ B.
1684
+ Kogut,
1685
+ Phys. Lett. B 564, 212 (2003), arXiv:hep-ph/0301183.
1686
+ [32] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,
1687
+ Phys. Rev. D 69, 096004 (2004), arXiv:hep-ph/0402104.
1688
+ [33] L. He and P. Zhuang, Phys. Lett. B 615, 93 (2005),
1689
+ arXiv:hep-ph/0501024.
1690
+ [34] L.-y.
1691
+ He,
1692
+ M.
1693
+ Jin,
1694
+ and
1695
+ P.-f.
1696
+ Zhuang,
1697
+ Phys. Rev. D 71, 116001 (2005), arXiv:hep-ph/0503272.
1698
+ [35] L.
1699
+ He,
1700
+ M.
1701
+ Jin,
1702
+ and
1703
+ P.
1704
+ Zhuang,
1705
+ Phys. Rev. D 74, 036005 (2006), arXiv:hep-ph/0604224.
1706
+ [36] D.
1707
+ Ebert
1708
+ and
1709
+ K.
1710
+ G.
1711
+ Klimenko,
1712
+ J. Phys. G 32, 599 (2006), arXiv:hep-ph/0507007.
1713
+ [37] D.
1714
+ Ebert
1715
+ and
1716
+ K.
1717
+ G.
1718
+ Klimenko,
1719
+ Eur. Phys. J. C 46, 771 (2006), arXiv:hep-ph/0510222.
1720
+ [38] G.-f.
1721
+ Sun,
1722
+ L.
1723
+ He,
1724
+ and
1725
+ P.
1726
+ Zhuang,
1727
+ Phys. Rev. D 75, 096004 (2007), arXiv:hep-ph/0703159.
1728
+ [39] J.
1729
+ O.
1730
+ Andersen
1731
+ and
1732
+ L.
1733
+ Kyllingstad,
1734
+ J. Phys. G 37, 015003 (2009), arXiv:hep-ph/0701033.
1735
+ [40] H.
1736
+ Abuki,
1737
+ R.
1738
+ Anglani,
1739
+ R.
1740
+ Gatto,
1741
+ M.
1742
+ Pellicoro,
1743
+ and
1744
+ M.
1745
+ Ruggieri,
1746
+ Phys. Rev. D 79, 034032 (2009),
1747
+ arXiv:0809.2658 [hep-ph].
1748
+ [41] T.
1749
+ Xia,
1750
+ L.
1751
+ He,
1752
+ and
1753
+ P.
1754
+ Zhuang,
1755
+ Phys. Rev. D 88, 056013 (2013),
1756
+ arXiv:1307.4622 [hep-ph].
1757
+ [42] T.
1758
+ G.
1759
+ Khunjua,
1760
+ K.
1761
+ G.
1762
+ Klimenko,
1763
+ and
1764
+ R.
1765
+ N.
1766
+ Zhokhov,
1767
+ Eur. Phys. J. C 79, 151 (2019),
1768
+ arXiv:1812.00772 [hep-ph].
1769
+ [43] T.
1770
+ G.
1771
+ Khunjua,
1772
+ K.
1773
+ G.
1774
+ Klimenko,
1775
+ and
1776
+ R.
1777
+ N.
1778
+ Zhokhov,
1779
+ Phys. Rev. D 98, 054030 (2018),
1780
+ arXiv:1804.01014 [hep-ph].
1781
+ [44] T. G. Khunjua,
1782
+ K. G. Klimenko,
1783
+ R. N. Zhokhov,
1784
+ and V. C. Zhukovsky, Phys. Rev. D 95, 105010 (2017),
1785
+ arXiv:1704.01477 [hep-ph].
1786
+ [45] D.
1787
+ Ebert,
1788
+ T.
1789
+ G.
1790
+ Khunjua,
1791
+ and
1792
+ K.
1793
+ G.
1794
+ Klimenko,
1795
+ Phys. Rev. D 94, 116016 (2016),
1796
+ arXiv:1608.07688 [hep-ph].
1797
+ [46] S.
1798
+ Mukherjee,
1799
+ M.
1800
+ G.
1801
+ Mustafa,
1802
+ and
1803
+ R.
1804
+ Ray,
1805
+ Phys. Rev. D 75, 094015 (2007), arXiv:hep-ph/0609249.
1806
+ [47] A. Bhattacharyya, S. K. Ghosh, A. Lahiri, S. Majumder,
1807
+ S. Raha,
1808
+ and R. Ray, Phys. Rev. C 89, 064905 (2014),
1809
+ arXiv:1212.6134 [hep-ph].
1810
+ [48] K.
1811
+ Kamikado,
1812
+ N.
1813
+ Strodthoff,
1814
+ L.
1815
+ von
1816
+ Smekal,
1817
+ and
1818
+ J.
1819
+ Wambach,
1820
+ Phys. Lett. B 718, 1044 (2013),
1821
+ arXiv:1207.0400 [hep-ph].
1822
+ [49] H. Ueda, T. Z. Nakano, A. Ohnishi, M. Ruggieri,
1823
+ and
1824
+ K.
1825
+ Sumiyoshi,
1826
+ Phys. Rev. D 88, 074006 (2013),
1827
+ arXiv:1304.4331 [nucl-th].
1828
+ [50] R. Stiele,
1829
+ E. S. Fraga,
1830
+ and
1831
+ J. Schaffner-Bielich,
1832
+ Phys. Lett. B 729, 72 (2014), arXiv:1307.2851 [hep-ph].
1833
+ [51] P.
1834
+ Adhikari,
1835
+ J.
1836
+ O.
1837
+ Andersen,
1838
+ and
1839
+ P.
1840
+ Kneschke,
1841
+ Phys. Rev. D 98, 074016 (2018),
1842
+ arXiv:1805.08599 [hep-ph].
1843
+ [52] J.
1844
+ Braun
1845
+ and
1846
+ B.
1847
+ Schallmo,
1848
+ Phys. Rev. D 106, 076010 (2022),
1849
+ arXiv:2204.00358 [nucl-th].
1850
+ [53] B.
1851
+ B.
1852
+ Brandt,
1853
+ G.
1854
+ Endrodi,
1855
+ E.
1856
+ S.
1857
+ Fraga,
1858
+ M.
1859
+ Hippert,
1860
+ J.
1861
+ Schaffner-Bielich,
1862
+ and
1863
+ S.
1864
+ Schmalzbauer,
1865
+ Phys. Rev. D 98, 094510 (2018),
1866
+ arXiv:1802.06685 [hep-ph].
1867
+ [54] S. S. Avancini,
1868
+ A. Bandyopadhyay,
1869
+ D. C. Duarte,
1870
+ and R. L. S. Farias, Phys. Rev. D 100, 116002 (2019),
1871
+ arXiv:1907.09880 [hep-ph].
1872
+ [55] B.
1873
+ S.
1874
+ Lopes,
1875
+ S.
1876
+ S.
1877
+ Avancini,
1878
+ A.
1879
+ Bandy-
1880
+ opadhyay,
1881
+ D.
1882
+ C.
1883
+ Duarte,
1884
+ and
1885
+ R.
1886
+ L.
1887
+ S.
1888
+ Farias,
1889
+ Phys. Rev. D 103, 076023 (2021),
1890
+ arXiv:2102.02844 [hep-ph].
1891
+ [56] A.
1892
+ Ayala,
1893
+ B.
1894
+ A.
1895
+ Zamora,
1896
+ J.
1897
+ J.
1898
+ Cobos-Mart´ınez,
1899
+ S. Hern´andez-Ortiz, L. A. Hern´andez, A. Raya,
1900
+ and
1901
+ M. E. Tejeda-Yeomans, Eur. Phys. J. A 58, 87 (2022),
1902
+ arXiv:2108.02362 [hep-ph].
1903
+ [57] A. Ayala, L. A. Hern´andez, M. Loewe, J. C. Ro-
1904
+ jas,
1905
+ and R. Zamora, Eur. Phys. J. A 56, 71 (2020),
1906
+ arXiv:1904.11905 [hep-ph].
1907
+ [58] A.
1908
+ Ayala,
1909
+ S.
1910
+ Hernandez-Ortiz,
1911
+ and
1912
+ L.
1913
+ A.
1914
+ Hernandez,
1915
+ Rev. Mex. Fis. 64, 302 (2018),
1916
+ arXiv:1710.09007 [hep-ph].
1917
+ [59] A. Ayala, A. Bashir, J. J. Cobos-Martinez, S. Hernandez-
1918
+ Ortiz,
1919
+ and A. Raya, Nucl. Phys. B 897, 77 (2015),
1920
+ arXiv:1411.4953 [hep-ph].
1921
+ [60] A.
1922
+ Ayala,
1923
+ L.
1924
+ A.
1925
+ Hern´andez,
1926
+ M.
1927
+ Loewe,
1928
+ and
1929
+ C.
1930
+ Villavicencio,
1931
+ Eur. Phys. J. A 57, 234 (2021),
1932
+ arXiv:2104.05854 [hep-ph].
1933
+ [61] A.
1934
+ Ayala,
1935
+ J.
1936
+ L.
1937
+ Hern´andez,
1938
+ L.
1939
+ A.
1940
+ Hern´andez,
1941
+ R.
1942
+ L.
1943
+ S.
1944
+ Farias,
1945
+ and
1946
+ R.
1947
+ Zamora,
1948
+ Phys. Rev. D 103, 054038 (2021),
1949
+ arXiv:2011.03673 [hep-ph].
1950
+ [62] A.
1951
+ Ayala,
1952
+ J.
1953
+ L.
1954
+ Hern´andez,
1955
+ L.
1956
+ A.
1957
+ Hern´andez,
1958
+ R.
1959
+ L.
1960
+ S.
1961
+ Farias,
1962
+ and
1963
+ R.
1964
+ Zamora,
1965
+ Phys. Rev. D 102, 114038 (2020),
1966
+ arXiv:2009.13740 [hep-ph].
1967
+ [63] A.
1968
+ Ayala,
1969
+ R.
1970
+ L.
1971
+ S.
1972
+ Farias,
1973
+ S.
1974
+ Hern´andez-
1975
+ Ortiz,
1976
+ L.
1977
+ A.
1978
+ Hern´andez,
1979
+ D.
1980
+ M.
1981
+ Paret,
1982
+ and
1983
+ R.
1984
+ Zamora,
1985
+ Phys. Rev. D 98, 114008 (2018),
1986
+ arXiv:1809.08312 [hep-ph].
1987
+ [64] A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe,
1988
+ and
1989
+ R.
1990
+ Zamora,
1991
+ Phys. Rev. D 92, 096011 (2015),
1992
+ [Addendum:
1993
+ Phys.Rev.D
1994
+ 92,
1995
+ 119905
1996
+ (2015)],
1997
+ arXiv:1509.03345 [hep-ph].
1998
+ [65] A.
1999
+ Ayala,
2000
+ M.
2001
+ Loewe,
2002
+ and
2003
+ R.
2004
+ Zamora,
2005
+ Phys. Rev. D 91, 016002 (2015),
2006
+ arXiv:1406.7408 [hep-ph].
2007
+ [66] A.
2008
+ Ayala,
2009
+ M.
2010
+ Loewe,
2011
+ A.
2012
+ J.
2013
+ Mizher,
2014
+ and
2015
+ R.
2016
+ Zamora,
2017
+ Phys. Rev. D 90, 036001 (2014),
2018
+ arXiv:1406.3885 [hep-ph].
2019
+ [67] A. Ayala, L. A. Hern´andez, A. J. Mizher, J. C. Rojas,
2020
+ and C. Villavicencio, Phys. Rev. D 89, 116017 (2014),
2021
+ arXiv:1404.6568 [hep-ph].
2022
+ [68] H.
2023
+ Mao,
2024
+ Nucl. Phys. A 925, 185 (2014),
2025
+ arXiv:1305.4329 [hep-ph].
2026
+ [69] M.
2027
+ Mannarelli,
2028
+ Particles 2, 411 (2019),
2029
+ arXiv:1908.02042 [hep-ph].
2030
+ [70] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
2031
+ [71] A. Schmitt, Introduction to Superfluidity: Field-theoretical approach and applications,
2032
+ Vol. 888 (2015) arXiv:1404.1284 [hep-ph].
2033
+ [72] B.
2034
+ B.
2035
+ Brandt,
2036
+ F.
2037
+ Cuteri,
2038
+ and
2039
+ G.
2040
+ Endr¨odi,
2041
+ PoS LATTICE2022, 144 (2023),
2042
+ arXiv:2212.01431 [hep-lat].
2043
+
BdFRT4oBgHgl3EQfvDhO/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE2T4oBgHgl3EQfRwcX/content/tmp_files/2301.03783v1.pdf.txt ADDED
@@ -0,0 +1,3502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Divergence-Conforming Isogeometric Collocation Methods for the
2
+ Incompressible Navier-Stokes Equations
3
+ Ryan M. Aronsona,∗, John A. Evansb
4
+ aStanford University, 94305, Stanford, CA, USA
5
+ bUniversity of Colorado Boulder, 80309, Boulder, CO, USA
6
+ Abstract
7
+ We develop two isogeometric divergence-conforming collocation schemes for incompress-
8
+ ible flow. The first is based on the standard, velocity-pressure formulation of the Navier-
9
+ Stokes equations, while the second is based on the rotational form and includes the vorticity
10
+ as an unknown in addition to the velocity and pressure. We describe the process of discretiz-
11
+ ing each unknown using B-splines that conform to a discrete de Rham complex and collocat-
12
+ ing each governing equation at the Greville abcissae corresponding to each discrete space.
13
+ Results on complex domains are obtained by mapping the equations back to a parametric do-
14
+ main using structure-preserving transformations. Numerical results show the promise of the
15
+ method, including accelerated convergence rates of the three field, vorticity-velocity-pressure
16
+ scheme when compared to the two field, velocity-pressure scheme.
17
+ Keywords:
18
+ Isogeometric analysis, Collocation, Incompressible flow, Divergence-conforming
19
+ discretizations, Velocity-pressure formulation, Vorticity-velocity-pressure formulation
20
+ 1. Introduction
21
+ Isogeometric Analysis (IGA) is a technology [1, 2] which replaces the standard polynomial
22
+ basis functions used in traditional Finite Element Analysis (FEA) with B-splines, Non-
23
+ Uniform Rational B-splines (NURBS), and other classes of splines in an aim to reduce the
24
+ gap between geometry and analysis. IGA has a distinct advantage over traditional FEA
25
+ due to its ability to exactly represent the geometries commonly seen in Computer-Aided
26
+ Design (CAD). Moreover, the basis functions used in IGA are globally more smooth than
27
+ those of FEA and it has been shown that IGA can exhibit improved accuracy and robustness
28
+ over FEA. For example, higher continuity splines are shown to have optimal approximating
29
+ power in the sense of Kolmogorov n-widths [3] and spline discretizations have more favorable
30
+ dissipation and dispersion properties than standard, high-order FEA discretizations [2].
31
+ To improve on the complexity and implementation details of IGA, the feasibility of isoge-
32
+ ometric collocation methods has been explored [4, 5]. In Galerkin IGA methods, the discrete
33
+ system of equations is formed by integrating the PDE residual against the test function space.
34
+ ∗Corresponding author
35
+ Email address: [email protected] (Ryan M. Aronson)
36
+ Preprint submitted to Elsevier
37
+ January 11, 2023
38
+ arXiv:2301.03783v1 [math.NA] 10 Jan 2023
39
+
40
+ This requires numerical integration, which renders system assembly quite expensive. Collo-
41
+ cation, on the other hand, forms the discrete system by simply requiring that the residual
42
+ of the governing equations vanish at a set of discrete locations in the domain.
43
+ Many recent studies have shown the efficacy of isogeometric collocation methods in both
44
+ static and dynamic solid mechanics problems [6, 7, 8], and detailed comparisons between iso-
45
+ geometric Galerkin and collocation methods have been made [9]. In addition, recent studies
46
+ have also investigated the use of mixed collocation methods for use in nearly incompressible
47
+ elasticity [10, 11]. Isogeometric collocation has even been used for acoustic problems [12],
48
+ computing Karhunen-Loeve expansions [13, 14], and introduced into physics-informed neural
49
+ networks [15]. Finally, a method was recently introduced for IGA collocation in immersed
50
+ domains by combining with the finite cell method near the boundaries [16]. These results
51
+ all suggest that isogeometric collocation methods retain some of the improved qualities of
52
+ standard IGA, while reducing the computational cost and improving sparsity of the discrete
53
+ systems.
54
+ Isogeometric collocation methods have not been as well explored in the context of fluid
55
+ mechanics, though the idea of using B-spline collocation to solve incompressible fluid me-
56
+ chanics problems has been investigated in the past [17, 18]. In addition, spline collocation
57
+ has been employed in fundamental Direct Numerical Simulation (DNS) studies of turbulent
58
+ flows [19]. However, the methods previously introduced are typically limited to simple ge-
59
+ ometries and are not divergence-conforming, meaning that the discrete velocity field does
60
+ not exactly satisfy the continuity equation in incompressible flow.
61
+ In addition, a mixed
62
+ isogeometric collocation method has recently been proposed for use in poromechanics [20],
63
+ though the preliminary results were limited to one-dimensional problems.
64
+ In the context of incompressible fluid mechanics, divergence-conforming Galerkin meth-
65
+ ods based on B-spline basis functions have been developed for both the Stokes and the
66
+ Navier-Stokes equations [21, 22, 23]. These methods are provably inf-sup stable and yield
67
+ discrete velocity fields that are exactly pointwise divergence free, among other desirable qual-
68
+ ities such as pressure robustness. An excellent summary of divergence-conforming methods
69
+ is given by [24]. These discretizations have prospered in areas such as turbulent flow simula-
70
+ tion [25, 26, 27] and fluid-structure interaction [28]. Moreover, efficient multigrid solvers have
71
+ been developed based on these discretizations [29]. Divergence-conforming Galerkin meth-
72
+ ods have also been developed for more advanced spline discretizations, such as hierarchical
73
+ B-splines [30] and LR B-splines [31].
74
+ In this paper we develop similar divergence-conforming methodologies for incompressible
75
+ flow using collocation. In particular, we introduce two collocation methods, one based on
76
+ the standard velocity-pressure form of the steady Navier-Stokes equations, and one based on
77
+ a three field (velocity-vorticity-pressure) form of the steady Navier-Stokes equations. The
78
+ latter form of the Navier-Stokes equations has recently been used to develop alternative
79
+ structure-preserving finite element discretizations [32, 33, 34] and we find that collocation
80
+ methods based on the resulting system of first order differential-algebraic equations returns
81
+ improved convergence rates compared to the rates obtained using collocation in conjunction
82
+ with the standard velocity-pressure form of the equations. In our collocation schemes, each
83
+ unknown is discretized with compatible B-spline spaces that preserve the structure of the
84
+ governing equations. Both collocation methods in this paper are shown to return velocity
85
+ fields which are still exactly pointwise divergence free, similar to the Galerkin methods
86
+ 2
87
+
88
+ mentioned above.
89
+ We lay out this paper as follows: In Section 2 we describe the steady form of the Navier-
90
+ Stokes equations using velocity and pressure unknowns as well as vorticity, velocity, and
91
+ pressure unknowns. This is followed in Section 3 by a discussion of the de Rham complex and
92
+ isogeometric discrete differential forms, the tools used to develop a divergence-conforming
93
+ method. Section 4 describes the collocation schemes for square domains in two dimensions.
94
+ Then results are presented in the two dimensional setting in Section 5 which detail the
95
+ high-order convergence rates of the methods as well as agreement with standard benchmark
96
+ problems.
97
+ We then discuss the necessary changes to make the methods work for cubic
98
+ domains in three dimensions and illustrate that the methods performs similarly in this setting
99
+ in Sections 6 and 7. Finally, we return to 2D in Section 8 and consider the Stokes equations
100
+ in more complicated domains. We show that by mapping the equations and unknowns via
101
+ divergence and integral preserving transformations we can also obtain results for flow in
102
+ complex geometries. Section 9 summarizes these results.
103
+ 2. Velocity-Pressure and Vorticity-Velocity-Pressure Forms of the Navier-Stokes
104
+ Equations
105
+ In this paper we consider the steady, incompressible Navier-Stokes equations on a Lips-
106
+ chitz open set Ω of points in either R2 or R3 when subjected to Dirichlet boundary conditions.
107
+ The standard form of this problem with d = 2, 3 is stated as follows:
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+ Given ν ∈ R+, f : Ω → Rd, and g : ∂Ω → Rd, find u : Ω → Rd and
132
+ p : Ω → R such that:
133
+ −ν∆u + u · ∇u + ∇p = f
134
+ in
135
+
136
+ (1)
137
+ ∇ · u = 0
138
+ in
139
+
140
+ (2)
141
+ u = g
142
+ on
143
+ ∂Ω.
144
+ (3)
145
+ Equations (1) and (2) represent the standard forms of the momentum and mass conservation
146
+ equations, while Equation (3) sets the Dirichlet boundary values. Above, we denote the
147
+ velocity field by u, the kinematic pressure field by p, the constant kinematic viscosity by ν,
148
+ the applied forcing as f, and the prescribed Dirichlet boundary values as g.
149
+ For the purposes of this paper we will not only work with this set of equations, but also
150
+ introduce vorticity ω as a separate unknown variable and introduce ω − ∇ × u = 0 as a
151
+ constitutive relation. Substituting the two vector calculus identities:
152
+ ∆u = ∇(∇ · u) − ∇ × (∇ × u) = −∇ × ω,
153
+ (4)
154
+ u · ∇u = (∇ × u) × u + 1
155
+ 2∇(u · u) = ω × u + 1
156
+ 2∇(u · u),
157
+ (5)
158
+ into Equation (1) when d = 3, we arrive at the vorticity-velocity-pressure formulation of the
159
+ problem in 3D:
160
+ 3
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+ Given ν ∈ R+, f : Ω → R3, and g : ∂Ω → R3, find u : Ω → R3,
190
+ P : Ω → R, and ω : Ω → R3 such that:
191
+ ν∇ × ω + ω × u + ∇P = f
192
+ in
193
+
194
+ (6)
195
+ ∇ · u = 0
196
+ in
197
+
198
+ (7)
199
+ ω − ∇ × u = 0
200
+ in
201
+
202
+ (8)
203
+ u = g
204
+ on
205
+ ∂Ω.
206
+ (9)
207
+ Note that in the above formulation we have replaced the kinematic pressure p with the total
208
+ pressure P, which are related via P = p + 1
209
+ 2u · u.
210
+ For later sections in this paper it is useful to employ the component forms of the vec-
211
+ tor equations above describing the vorticity-velocity-pressure formulation. When explicitly
212
+ broken into its components, the momentum conservation equation, given by Equation (6),
213
+ becomes:
214
+ ν(∂ωz
215
+ ∂y − ∂ωy
216
+ ∂z ) + (ωyuz − ωzuy) + ∂P
217
+ ∂x = fx,
218
+ (10)
219
+ ν(∂ωx
220
+ ∂z − ∂ωz
221
+ ∂x ) + (ωzux − ωxuz) + ∂P
222
+ ∂y = fy,
223
+ (11)
224
+ ν(∂ωy
225
+ ∂x − ∂ωx
226
+ ∂y ) + (ωxuy − ωyux) + ∂P
227
+ ∂z = fz,
228
+ (12)
229
+ and the constitutive relation given by Equation (8) reads:
230
+ ωx − (∂uz
231
+ ∂y − ∂uy
232
+ ∂z ) = 0,
233
+ (13)
234
+ ωy − (∂ux
235
+ ∂z − ∂uz
236
+ ∂x ) = 0,
237
+ (14)
238
+ ωz − (∂uy
239
+ ∂x − ∂ux
240
+ ∂y ) = 0.
241
+ (15)
242
+ The above component form of the equations is also useful for considering 2D problems in
243
+ the three field formulation, as we do not need to redefine operations such as cross products
244
+ when the vorticity reduces to a scalar unknown. Thus we can arrive at the problem statement
245
+ for 2D domains by simply removing any terms involving ωx, ωy, or any derivatives in the z
246
+ direction. In full, the 2D problem reads:
247
+ 4
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+ Given ν ∈ R+, f : Ω → R2, and g : ∂Ω → R2, find u : Ω → R2,
293
+ P : Ω → R, and ω : Ω → R such that:
294
+ ν ∂ω
295
+ ∂y − ωuy + ∂P
296
+ ∂x = fx
297
+ in
298
+
299
+ (16)
300
+ −ν ∂ω
301
+ ∂x + ωux + ∂P
302
+ ∂y = fy
303
+ in
304
+
305
+ (17)
306
+ ∇ · u = 0
307
+ in
308
+
309
+ (18)
310
+ ω − (∂uy
311
+ ∂x − ∂ux
312
+ ∂y ) = 0
313
+ in
314
+
315
+ (19)
316
+ u = g
317
+ on
318
+ ∂Ω.
319
+ (20)
320
+ With the governing equations fully defined we can move to a more in-depth description
321
+ of the collocation scheme, starting with the definition of discrete approximation spaces in
322
+ the following section.
323
+ 3. The de Rham Complex and Isogeometric Discrete Differential Forms
324
+ The first step in creating a collocation scheme is to define the sets of basis functions used
325
+ to approximate the unknown variables. To construct the collocation methods presented in
326
+ this paper, we leverage the de Rham complex which aids in the development of exactly
327
+ divergence-conforming finite element spaces. After recalling the de Rham complex, we de-
328
+ scribe the process of constructing B-spline basis functions and conclude with the definition
329
+ of B-spline spaces that conform to the de Rham complex.
330
+ 3.1. The de Rham Complex
331
+ The de Rham complex is a cochain complex that is often used as a starting point for
332
+ developing mixed finite element methods which preserve topological properties of the con-
333
+ tinuous problem and are typically more stable in practice [24]. In 3D, it is typically written
334
+ as:
335
+ R
336
+ Φ
337
+ Ψ
338
+ V
339
+ Q
340
+ 0,
341
+
342
+ ∇×
343
+ ∇·
344
+ (21)
345
+ where:
346
+ Φ := H 1(Ω),
347
+ (22)
348
+ Ψ := H(curl, Ω),
349
+ (23)
350
+ V := H(div, Ω),
351
+ (24)
352
+ Q := L2(Ω).
353
+ (25)
354
+ In the context of fluid flow, these infinite dimensional spaces can be interpreted as the
355
+ spaces of scalar potential fields (Φ), vector potential fields (Ψ), velocity fields (V), and
356
+ 5
357
+
358
+ pressure fields (Q). This complex is exact for simply connected domains, meaning that the
359
+ range of each map is the same as the null space of the following map.
360
+ For completeness, we also state the rotated 2D de Rham complex:
361
+ R
362
+ Ψ
363
+ V
364
+ Q
365
+ 0,
366
+ ∇⊥
367
+ ∇·
368
+ (26)
369
+ where:
370
+ Ψ := H1(Ω),
371
+ (27)
372
+ V := H(div, Ω),
373
+ (28)
374
+ Q := L2(Ω),
375
+ (29)
376
+ and the rotor operator ∇⊥ acting on a scalar function ω is defined as ∇⊥ω = ( ∂ω
377
+ ∂y , − ∂ω
378
+ ∂x).
379
+ Not only is the topological structure of the incompressible Navier-Stokes equations em-
380
+ bedded in the de Rham complex, but stability conditions result from the complex as well. By
381
+ creating approximation spaces for the unknown variables that conform to discrete analogs of
382
+ Equations (21) and (26) we can generate numerical methods which inherit these properties.
383
+ More concretely, for 3D problems let the space Φh contain the discrete scalar potentials, Ψh
384
+ contain the discrete vector potentials as well as the discrete vorticity, Vh contain the dis-
385
+ crete velocity, and Qh contain the discrete pressure. Then if there exist projection operators
386
+ ΠΦ : Φ → Φh, ΠΨ : Ψ → Ψh, ΠV : V → Vh, and ΠQ : Q → Qh such that the following
387
+ commuting diagram holds
388
+ R −−−→ Φ
389
+
390
+ −−−→ Ψ
391
+ ∇×
392
+ −−−→ V
393
+ ∇·
394
+ −−−→ Q −−−→ 0
395
+ ���ΠΦ
396
+ ���ΠΨ
397
+ ���ΠV
398
+ ���ΠQ
399
+ R −−−→ Φh
400
+
401
+ −−−→ Ψh
402
+ ∇×
403
+ −−−→ Vh
404
+ ∇·
405
+ −−−→ Qh −−−→ 0,
406
+ (30)
407
+ a Galerkin finite element method employing Vh for the discrete velocity space and Qh for the
408
+ discrete pressure space will be inf-sup stable and will yield discrete velocity approximations
409
+ that are divergence free almost everywhere [35]. We shall prove later on that the divergence-
410
+ conforming property is maintained if we utilize these spaces in our collocation scheme.
411
+ The same holds in 2D, where we instead let Ψh define the discrete space to which the
412
+ vorticity belongs (as well as the streamfunction), Vh define the discrete velocity space, and
413
+ Qh define the discrete pressure space. The required commuting diagram in this case is
414
+ R −−−→ Ψ
415
+ ∇⊥
416
+ −−−→ V
417
+ ∇·
418
+ −−−→ Q −−−→ 0
419
+ ���ΠΨ
420
+ ���ΠV
421
+ ���ΠQ
422
+ R −−−→ Ψh
423
+ ∇⊥
424
+ −−−→ Vh
425
+ ∇·
426
+ −−−→ Qh −−−→ 0.
427
+ (31)
428
+ Of course, we have yet to define the specifics of how to construct discrete spaces such
429
+ that these discrete complexes hold. For the purposes of this paper we will use compatible
430
+ B-spline spaces, and the following section is devoted to introducing the basics of B-spline
431
+ basis functions.
432
+ 6
433
+
434
+ 3.2. Univariate and Multivariate B-Splines
435
+ The construction of a B-spline basis in one dimension requires two objects: the de-
436
+ gree of the basis (denoted k) and a series of numbers called the knot vector (denoted
437
+ Ξ = {ξ1, ...ξn+k+1}). The knots ξi are non-decreasing and denote the locations in paramet-
438
+ ric space where the parametrization can change, similar to element boundaries in standard
439
+ FEA. The number n in the previous relation represents the total number of functions in the
440
+ basis. The basis functions themselves are defined through the Cox-de Boor recursion: The
441
+ k = 0 basis functions are built as
442
+ Ni,0(ξ) =
443
+
444
+ 1
445
+ ξi ≤ ξ ≤ ξi+1
446
+ 0
447
+ otherwise,
448
+ (32)
449
+ and higher-order bases are defined through
450
+ Ni,k(ξ) =
451
+ ξ − ξi
452
+ ξi+k − ξi
453
+ Ni,k−1(ξ) +
454
+ ξi+k+1 − ξ
455
+ ξi+k+1 − ξi+1
456
+ Ni+1,k−1(ξ).
457
+ (33)
458
+ Note that in the above relations, we must utilize the convention that any occurrence of zero
459
+ divided by zero is equal to zero.
460
+ In higher dimensions (two or three for the purposes of this paper), B-spline basis functions
461
+ are constructed by simply taking the tensor product of one dimensional B-spline bases in
462
+ each parametric direction. Note that different polynomial degrees and knot vectors can be
463
+ used in each direction.
464
+ B-spline basis functions possess a number of useful properties for numerical method
465
+ development.
466
+ In particular, the smoothness of the global basis at the knot locations is
467
+ controlled by the repetition of the knot value in Ξ. The basis at these locations is Ck−r,
468
+ where r is the multiplicity of the knot. Compared to a standard finite element basis, this
469
+ basis has improved global continuity, which enables the use of collocation as more classical
470
+ derivatives of the functions are well defined. Note that if the first and last entries in the knot
471
+ vector are repeated k +1 times, the spline basis will become interpolatory at those locations.
472
+ Such knot vectors are referred to as open knot vectors, and allow for easy specification of
473
+ Dirichlet boundary conditions. For the results within this paper, all other entries in the
474
+ knot vector have multiplicity one, meaning we are utilizing a B-spline basis with the highest
475
+ possible order of continuity. Further, let us define the so-called regularity vector α for a
476
+ basis. The size of this vector is equal to the number of distinct knots, with entries equal
477
+ to the polynomial degree of the basis minus the multiplicity of the corresponding knot. In
478
+ terms of the regularity vector, the global basis functions are Cαj-continuous across the αj
479
+ unique knot. To simplify notation, the space of functions spanned by a 1D B-spline basis of
480
+ degree k and a provided knot vector is denoted as:
481
+ Sk
482
+ α = span{Ni,k}n
483
+ i=1.
484
+ (34)
485
+ We extend this notation to higher dimensions by adding extra sub- and superscripts, repre-
486
+ senting the polynomial degrees and regularities in each spatial direction.
487
+ 7
488
+
489
+ 3.3. Isogeometric Discrete Differential Forms
490
+ Using the basics of B-spine functions above allows us to develop discrete approximation
491
+ spaces for the vorticity, velocity, and pressure. These results are built upon work in the
492
+ area of isogeometric discrete differential forms [36, 37], which we will not fully develop here.
493
+ The construction of these types of spaces in the context of Galerkin approximation for the
494
+ Navier-Stokes equations can also be found in [22, 23]. For 3D problems, the B-spline spaces
495
+ used to discretize our unknown fields are given by:
496
+ Φh := {φh ∈ Sk1,k2,k3
497
+ α1,α2,α3},
498
+ (35)
499
+ Ψh := {ψh ∈ Sk1−1,k2,k3
500
+ α1−1,α2,α3 × Sk1,k2−1,k3
501
+ α1,α2−1,α3 × Sk1,k2,k3−1
502
+ α1,α2,α3−1},
503
+ (36)
504
+ Vh := {wh ∈ Sk1,k2−1,k3−1
505
+ α1,α2−1,α3−1 × Sk1−1,k2,k3−1
506
+ α1−1,α2,α3−1 × Sk1−1,k2−1,k3
507
+ α1−1,α2−1,α3},
508
+ (37)
509
+ Qh := {qh ∈ Sk1−1,k2−1,k3−1
510
+ α1−1,α2−1,α3−1}.
511
+ (38)
512
+ It can be shown that these spaces satisfy the discrete complex in Equation (30).
513
+ In practice we usually define k1 = k2 = k3, and thus we can define the polynomial degree
514
+ of the spline bases constructed in the above manner using a single number k′ = k1 − 1 =
515
+ k2−1 = k3−1. This indicates that the pressure space Qh will have degree equal to k′ in each
516
+ direction. Then, according to the above, each velocity component will have degree k′ + 1 in
517
+ one direction and degree k′ in the other two. Similarly, the vorticity components will have
518
+ degree k′ + 1 in two directions and degree k in the last.
519
+ In 2D, we define the following spline spaces:
520
+ Ψh := {ψh ∈ Sk1,k2
521
+ α1,α2},
522
+ (39)
523
+ Vh := {wh ∈ Sk1,k2−1
524
+ α1,α2−1 × Sk1−1,k2
525
+ α1��1,α2},
526
+ (40)
527
+ Qh := {qh ∈ Sk1−1,k2−1
528
+ α1−1,α2−1}.
529
+ (41)
530
+ Similar to the 3D setting, these spaces are related as in Equation (31).
531
+ 4. Collocation Methods on Square Domains
532
+ Using the discrete spaces developed above, this section focuses on the construction of
533
+ collocation methods for the Navier-Stokes equations using divergence-conforming bases. Here
534
+ we develop methods based on the velocity-pressure form of the Navier-Stokes equations as
535
+ well as the vorticity-velocity-pressure form. As the vorticity changes between a scalar in the
536
+ 2D case and a vector in the 3D case, we start by considering only square domains in 2D.
537
+ This selection also lends itself to easier visualization of the methods. After briefly reviewing
538
+ the form of a typical divergence-conforming isogeometric Galerkin method, we define the
539
+ collocation grids for each unknown and then describe the imposition of boundary conditions.
540
+ The section concludes by summarizing the form of the discrete system.
541
+ 8
542
+
543
+ 4.1. Review of Galerkin Methods
544
+ We start by reviewing the form of the divergence-conforming isogeometric Galerkin meth-
545
+ ods which inspired our collocation schemes. Let us consider a problem with Dirichlet bound-
546
+ ary conditions on the velocity for concreteness. Then we define the discrete test and trial
547
+ function spaces for velocity as Vh,0 and Vh,g, which are defined as the same Vh from Equa-
548
+ tion (40) with either no penetration boundary conditions strongly enforced (for the test
549
+ space Vh,0) or with the normal velocity prescribed as given by the boundary data g at spec-
550
+ ified collocation points (for the trial space Vh,g). Similarly, define the test and trial space
551
+ for pressure as Qh,0, where Qh is the same space as in Equation (41) but with the added
552
+ condition that the pressure must have zero integral. Then the Galerkin formulation for the
553
+ velocity-pressure form would read
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+
584
+
585
+
586
+
587
+
588
+
589
+ Given ν ∈ R+, f : Ω → R2, and g : ∂Ω → R2, find uh ∈ Vh,g and ph ∈ Qh,0 such that,
590
+ ∀(wh, qh) ∈ (Vh,0, Qh,0):
591
+
592
+
593
+ (ν∇wh · ∇uh + wh · (uh · ∇uh) − ph∇ · wh)dΩ
594
+ − ν
595
+
596
+ ∂Ω
597
+ ((∇uh · n) · wh − Cpen
598
+ h uh · wh)dΓ =
599
+
600
+
601
+ wh · fdΩ + ν
602
+
603
+ ∂Ω
604
+ Cpen
605
+ h g · whdΓ
606
+ (42)
607
+
608
+
609
+ qh(∇ · uh)dΩ = 0.
610
+ (43)
611
+ Note that in the above we have used a Nitsche approach to enforce the tangential bound-
612
+ ary conditions in the momentum equations. This Galerkin formulation is valid if and only if
613
+ the minimum entry in the regularity vectors satisfy min{α1 − 1} ≥ 0 and min{α2 − 1} ≥ 0,
614
+ where α1 and α2 are the regularity vectors from Equations (39) - (41). We can write a
615
+ similar Galerkin form of the vorticity-velocity-pressure form of the Navier-Stokes equations,
616
+ which would yield
617
+ 9
618
+
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+ Given ν ∈ R+, f : Ω → R2, and g : ∂Ω → R2, find uh ∈ Vh,g, P h ∈ Qh,0, and ωh ∈ Ψh
667
+ such that, ∀(wh, qh, ψh) ∈ (Vh,0, Qh,0, Ψh):
668
+
669
+
670
+ ν ∂ωh
671
+ ∂y wh
672
+ xdΩ −
673
+
674
+
675
+ ωhuh
676
+ ywh
677
+ xdΩ −
678
+
679
+
680
+ ∂wh
681
+ x
682
+ ∂x P hdΩ +
683
+
684
+ Γ
685
+ P hwh
686
+ xdy =
687
+
688
+ ω
689
+ fxwh
690
+ xdΩ
691
+ (44)
692
+
693
+
694
+
695
+ ν ∂ωh
696
+ ∂x wh
697
+ ydΩ +
698
+
699
+
700
+ ωhuh
701
+ xwh
702
+ ydΩ −
703
+
704
+
705
+ ∂wh
706
+ y
707
+ ∂y P hdΩ +
708
+
709
+ Γ
710
+ P hwh
711
+ ydx =
712
+
713
+ ω
714
+ fywh
715
+ ydΩ (45)
716
+
717
+
718
+ (∇ · uh)qhdΩ = 0
719
+ (46)
720
+
721
+
722
+ ωhψhdΩ +
723
+
724
+
725
+ (∂ψh
726
+ ∂x uh
727
+ y − ∂ψh
728
+ ∂y uh
729
+ x)dΩ =
730
+
731
+ ∂Ω
732
+ ψh(g · s)dΓ.
733
+ (47)
734
+ In this case the tangential velocity boundary conditions appear as natural boundary condi-
735
+ tions in the weak form of the constitutive equation, with s representing the unit tangent on
736
+ the boundary (oriented counter-clockwise). In contrast with the velocity-pressure Galerkin
737
+ formulation, this three field Galerkin formulation is valid if and only if the minimum regu-
738
+ larity of the discrete spaces satisfies min{α1 − 1} ≥ −1 and min{α2 − 1} ≥ −1 due to the
739
+ reduced differential order of the strong form.
740
+ However, we wish to pursue a collocation method inspired by the divergence-free mixed
741
+ finite element form, which we describe below.
742
+ Collocation imposes additional regularity
743
+ requirements on the spaces of unknowns, as the unknown fields and their derivatives will be
744
+ evaluated at points rather than integrated over the domain. The spaces developed above are
745
+ not only divergence-conforming, meaning discrete velocity approximations will be pointwise
746
+ divergence-free, but are also regular enough to use in collocation provided the polynomial
747
+ degree is sufficiently large and the global basis is sufficiently regular.
748
+ 4.2. Collocation Grids
749
+ Similarly to the Galerkin setting, each discrete unknown in the collocation schemes is
750
+ assumed to lie in the corresponding space from above: The discrete velocity uh ∈ Vh,g, the
751
+ discrete pressure ph ∈ Qh,0, and, when applicable, the discrete vorticity ωh ∈ Ψh. For now we
752
+ ignore any boundary conditions; these will be discussed in the following section. To generate
753
+ the system of equations needed to solve for the coefficients for each basis function, we define
754
+ sets of collocation points of the form τ i for i = 1, ..., N for each of the governing equations.
755
+ Note that the total number of collocation points should be equal to the total number of
756
+ degrees of freedom in the discretization. The full discrete system is formed by requiring the
757
+ strong form of the governing equations to hold at each of the collocation points.
758
+ We choose the Greville abscissae of a B-spline space as collocation points. In one dimen-
759
+ sion, the Greville abscissae are defined by
760
+ ˆξi = ξi+1 + ... + ξi+p
761
+ p
762
+ ,
763
+ (48)
764
+ 10
765
+
766
+ A First Collocation Attempt for Stokes:
767
+ The Unit Square
768
+
769
+ ˆξi = ξi+1 +…+ξi+p
770
+ p
771
+ Greville abscissae:
772
+ = First Momentum Collocation Pt.
773
+ = Second Momentum Collocation Pt.
774
+ = Continuity Collocation Pt.
775
+ k = 2, 4 x 4 elements
776
+ (a) Before strong enforcement of normal ve-
777
+ locity boundary conditions
778
+ A First Collocation Attempt for Stokes:
779
+ The Unit Square
780
+ k = 2, 4 x 4 elements
781
+ Boundary Conditions:
782
+ We enforce no-penetration BCs strongly and
783
+ remove the corresponding collocation points.
784
+ We enforce no-slip BCs weakly by modifying
785
+ the momentum equations at the boundary
786
+ with a suitable penalty term.
787
+
788
+ −div
789
+ ! grad
790
+ " ˆu
791
+ ( )
792
+ (
793
+ )+ grad
794
+ " ˆp
795
+ ( )− ˆf
796
+ (
797
+ )
798
+ + Cpen
799
+ 2
800
+ h2
801
+ ˆu − ˆuBC
802
+ (
803
+ ) = 0
804
+ (b) After strong enforcement of normal ve-
805
+ locity boundary conditions
806
+ Figure 1: Example of collocation grid for k′ = 2, 4 x 4 elements for the velocity-pressure scheme. Horizontal
807
+ triangles represent the collocation points for the first momentum equation, vertical triangles represent the
808
+ points for the second momentum equation, and squares are collocation points for the continuity equation.
809
+ and in higher dimensions we simply take the tensor product of the Greville abscissae in each
810
+ direction. By construction there will be the same number of Greville points as there are basis
811
+ functions in the considered space. There are choices for collocation points other than the
812
+ Greville abscissae, such as the Cauchy-Galerkin points [38, 39] or the Demko abscissae [40].
813
+ However, the Greville points are very easy to compute and have already been demonstrated
814
+ to give satisfactory results in practical applications (see for example [6, 18]).
815
+ As each of the discrete unknowns lie in a different B-spline space, each of the governing
816
+ equations will be collocated at a different set of Greville points. In particular, for both
817
+ the velocity-pressure formulation and the vorticity-velocity-pressure formulation we use the
818
+ Greville abscissae associated with the basis of the x-velocity (Sk1,k2−1
819
+ α1,α2−1) as collocation points
820
+ for the x-momentum equation, the Greville abscissae associated with the basis of the y-
821
+ velocity (Sk1−1,k2
822
+ α1−1,α2) as collocation points for the y-momentum equation, and the Greville
823
+ abscissae associated with the basis of the pressure (Sk1−1,k2−1
824
+ α1−1,α2−1) as collocation points for the
825
+ continuity equation. The constitutive relation within the three field formulation is collocated
826
+ at the Greville abscissae for the vorticity basis (Sk1,k2
827
+ α1,α2). The left of Figure 1 details an
828
+ example of this construction for the velocity-pressure scheme, while the left of Figure 2
829
+ shows example grids for the vorticity-velocity-pressure scheme.
830
+ 4.3. Boundary Condition Enforcement
831
+ The last unspecified aspect of the method is enforcement of the Dirichlet boundary con-
832
+ ditions. The enforcement of the normal boundary condition is done strongly and collocation
833
+ points along a boundary for the velocity component orthogonal to that boundary are re-
834
+ moved, as the boundary condition specifies the value of the solution at these points. This
835
+ is shown on the right of Figure 1 and Figure 2, which depict the same scenarios as their
836
+ counterparts but with normal boundary conditions enforced.
837
+ 11
838
+
839
+ A Second Collocation Attempt for Stokes:
840
+ The Unit Square
841
+
842
+ ˆξi = ξi+1 +…+ξi+p
843
+ p
844
+ Greville abscissae:
845
+ = First Momentum Collocation Pt.
846
+ = Second Momentum Collocation Pt.
847
+ = Continuity Collocation Pt.
848
+ k = 2, 4 x 4 elements
849
+ = Constitutive Collocation Pt.
850
+ (a) Before strong enforcement of normal ve-
851
+ locity boundary conditions
852
+ A Second Collocation Attempt for Stokes:
853
+ The Unit Square
854
+ k = 2, 4 x 4 elements
855
+ Boundary Conditions:
856
+ We enforce no-penetration BCs strongly and
857
+ remove the corresponding collocation points.
858
+ We enforce no-slip BCs weakly by modifying
859
+ the constitutive equations at the boundary
860
+ with a suitable penalty term.
861
+
862
+ ˆω ˆx, ˆy
863
+ (
864
+ )− curl
865
+ ! ˆu ˆx, ˆy
866
+ (
867
+ )
868
+ (
869
+ )
870
+ (
871
+ )
872
+ + Cpen
873
+ h
874
+ ˆu⋅ ˆs − ˆuBC ⋅ ˆs
875
+ (
876
+ ) = 0
877
+ An exact expression for the penalty
878
+ constant is obtained by appealing to
879
+ isogeometric finite volumes.
880
+ (b) After strong enforcement of normal ve-
881
+ locity boundary conditions
882
+ Figure 2: Example of collocation grid for k′ = 2, 4 x 4 elements for the vorticity-velocity-pressure scheme.
883
+ Horizontal triangles represent the collocation points for the first momentum equation, vertical triangles
884
+ represent the points for the second momentum equation, squares are collocation points for the continuity
885
+ equation, and circles are the points for the constitutive relation.
886
+ Enforcement of the tangential boundary condition is slightly more subtle. Recall that
887
+ in Equation (42) we utilized Nitsche’s method to enforce this boundary condition. This
888
+ motivates the enforcement in the velocity-pressure collocation scheme. Indeed if we take this
889
+ equation and undo the integration by parts, the consistency term vanishes by construction
890
+ and we are left with just the penalty terms.
891
+ If we approximate the integral of the test
892
+ function as done in [41] the collocated momentum equations will be of the form
893
+ − ν∆uh + uh · ∇uh + ∇ph + C2
894
+ pen
895
+ h2 (uh − g) = f,
896
+ (49)
897
+ where Cpen is a penalty constant and h is the Greville mesh size perpendicular to the bound-
898
+ ary. Note that because this construction is used to only enforce the tangential boundary
899
+ conditions, this penalty term only appears in the equation for the momentum balance along
900
+ the tangential direction of each boundary.
901
+ In the vorticity-velocity-pressure scheme we do not use the same Nitsche-based approach.
902
+ The method utilized here is directly inspired by the Enhanced Collocation method for en-
903
+ forcing Neumann boundary conditions in isogeometric collocation schemes [41].
904
+ We start by considering the weak form of the constitutive relation given by Equation
905
+ (47). The final term on the left hand side is the boundary term which would be used to
906
+ enforce natural boundary conditions in a Galerkin method. In a similar vein to the Enhanced
907
+ Collocation approach, we can undo the integration by parts to arrive at
908
+
909
+
910
+ ψh(ωh − (∂uh
911
+ y
912
+ ∂x − ∂uh
913
+ x
914
+ ∂y ))dΩ +
915
+
916
+ ∂Ω
917
+ ψh(uh · s − g · s)ds = 0.
918
+ (50)
919
+ By approximating the integrals of the test functions as done in [41, 38] we arrive at a
920
+ modified strong form statement of the constitutive relation which can be collocated along
921
+ 12
922
+
923
+ the boundaries
924
+ ωh − (∂uh
925
+ y
926
+ ∂x − ∂uh
927
+ x
928
+ ∂y ) + Cpen
929
+ h (uh · s − g · s) = 0,
930
+ (51)
931
+ where again Cpen is a penalty constant and h is the Greville mesh size perpendicular to the
932
+ boundary.
933
+ 4.4. Final Collocated Equations
934
+ Finally, the results of the previous sections are collected and we present the final form of
935
+ the discrete equations used to solve for the discrete unknowns. The velocity-pressure scheme
936
+ is considered first. Let us define τ ux
937
+
938
+ for ℓ = 1, ..., M ux to be the set of Greville points for
939
+ Sk1,k2−1
940
+ α1,α2−1 with the points corresponding to no-penetration boundaries removed as discussed
941
+ previously. Define in a similar manner τ uy
942
+
943
+ for ℓ = 1, ..., M uy, which are the Greville points
944
+ of Sk1−1,k2
945
+ α1−1,α2 with no-penetration boundary points removed. Lastly, τ p
946
+ ℓ for k = 1, ..., N p are
947
+ the Greville points of Qh. Then the discrete 2D problem reads:
948
+
949
+
950
+
951
+
952
+
953
+
954
+
955
+
956
+
957
+
958
+
959
+
960
+
961
+
962
+
963
+
964
+
965
+
966
+
967
+
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+
982
+
983
+
984
+
985
+
986
+
987
+
988
+
989
+
990
+
991
+
992
+
993
+
994
+
995
+
996
+
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+ Find uh ∈ Vh,g and P h ∈ Qh,0 such that:
1016
+
1017
+ −ν ∂2uh
1018
+ x
1019
+ ∂x2 − ν ∂2uh
1020
+ x
1021
+ ∂y2 + uh
1022
+ x
1023
+ ∂uh
1024
+ x
1025
+ ∂x + uh
1026
+ y
1027
+ ∂uh
1028
+ x
1029
+ ∂y + ∂ph
1030
+ ∂x
1031
+
1032
+ (τ ux
1033
+ ℓ ) = fx(τ ux
1034
+ ℓ )
1035
+ ∀τ ux
1036
+
1037
+ ∈ Ω
1038
+ (52)
1039
+
1040
+ −ν ∂2uh
1041
+ x
1042
+ ∂x2 − ν ∂2uh
1043
+ x
1044
+ ∂y2 + uh
1045
+ x
1046
+ ∂uh
1047
+ x
1048
+ ∂x + uh
1049
+ y
1050
+ ∂uh
1051
+ x
1052
+ ∂y + ∂ph
1053
+ ∂x + C2
1054
+ pen
1055
+ h2 (uh
1056
+ x − gx)
1057
+
1058
+ (τ ux
1059
+ ℓ )
1060
+ = fx(τ ux
1061
+ ℓ )
1062
+ ∀τ ux
1063
+
1064
+ ∈ ∂Ω
1065
+ (53)
1066
+
1067
+ −ν ∂2uh
1068
+ y
1069
+ ∂x2 − ν ∂2uh
1070
+ y
1071
+ ∂y2 + uh
1072
+ x
1073
+ ∂uh
1074
+ y
1075
+ ∂x + uh
1076
+ y
1077
+ ∂uh
1078
+ y
1079
+ ∂y + ∂ph
1080
+ ∂y
1081
+
1082
+ (τ uy
1083
+ ℓ ) = fy(τ uy
1084
+ ℓ )
1085
+ ∀τ uy
1086
+
1087
+ ∈ Ω
1088
+ (54)
1089
+
1090
+ −ν ∂2uh
1091
+ y
1092
+ ∂x2 − ν ∂2uh
1093
+ y
1094
+ ∂y2 + uh
1095
+ x
1096
+ ∂uh
1097
+ y
1098
+ ∂x + uh
1099
+ y
1100
+ ∂uh
1101
+ y
1102
+ ∂y + ∂ph
1103
+ ∂y + C2
1104
+ pen
1105
+ h2 (uh
1106
+ y − gy)
1107
+
1108
+ (τ uy
1109
+ ℓ )
1110
+ = fy(τ uy
1111
+ ℓ )
1112
+ ∀τ uy
1113
+
1114
+ ∈ ∂Ω
1115
+ (55)
1116
+
1117
+ ∂uh
1118
+ x
1119
+ ∂x + ∂uh
1120
+ y
1121
+ ∂y
1122
+
1123
+ (τ p
1124
+ ℓ) = 0
1125
+ ∀τ p
1126
+ ℓ ∈ Ω ∪ ∂Ω.
1127
+ (56)
1128
+ In the above we have split the momentum equations into expressions valid on the interior
1129
+ collocation points (Equations (52) and (54)) and expressions valid on the remaining boundary
1130
+ collocation points (Equations (53) and (55)).
1131
+ Similarly, for the vorticity-velocity-pressure scheme we also define τ ω
1132
+ ℓ for ℓ = 1, ..., N ω as
1133
+ the Greville points of Ψh. With this scheme the discrete 2D problem reads:
1134
+ 13
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+
1190
+
1191
+ Find uh ∈ Vh,g, P h ∈ Qh,0, and ωh ∈ Ψh such that:
1192
+
1193
+ ν ∂ωh
1194
+ ∂y − ωhuh
1195
+ y + ∂P h
1196
+ ∂x
1197
+
1198
+ (τ ux
1199
+ ℓ ) = fx(τ ux
1200
+ ℓ )
1201
+ ∀τ ux
1202
+
1203
+ ∈ Ω ∪ ∂Ω
1204
+ (57)
1205
+
1206
+ −ν ∂ωh
1207
+ ∂x + ωhuh
1208
+ x + ∂P h
1209
+ ∂y
1210
+
1211
+ (τ uy
1212
+ ℓ ) = fy(τ uy
1213
+ ℓ )
1214
+ ∀τ uy
1215
+
1216
+ ∈ Ω ∪ ∂Ω
1217
+ (58)
1218
+
1219
+ ∂uh
1220
+ x
1221
+ ∂x + ∂uh
1222
+ y
1223
+ ∂y
1224
+
1225
+ (τ p
1226
+ ℓ) = 0
1227
+ ∀τ p
1228
+ ℓ ∈ Ω ∪ ∂Ω
1229
+ (59)
1230
+
1231
+ ωh − ∂uh
1232
+ y
1233
+ ∂x − ∂uh
1234
+ x
1235
+ ∂y
1236
+
1237
+ (τ ω
1238
+ ℓ ) = 0
1239
+ ∀τ ω
1240
+ ℓ ∈ Ω
1241
+ (60)
1242
+
1243
+ ωh − ∂uh
1244
+ y
1245
+ ∂x − ∂uh
1246
+ x
1247
+ ∂y + Cpen
1248
+ h (uh · s − g · s)
1249
+
1250
+ (τ ω
1251
+ ℓ ) = 0
1252
+ ∀τ ω
1253
+ ℓ ∈ ∂Ω.
1254
+ (61)
1255
+ In the three field formulation we split the constitutive law into an expression for the
1256
+ interior collocation points (Equation (60)) and another expression for boundary collocation
1257
+ points (Equation (61)).
1258
+ Resulting from these equations are nonlinear systems of equations which we can use to
1259
+ solve for the unknown coefficients of velocity, pressure, and vorticity using a Newton-Raphson
1260
+ method.
1261
+ 4.5. Proof of Divergence Conforming Property
1262
+ From the commuting diagrams our spaces form, shown in Equations (30) and (31), it is
1263
+ simple to show that both of the resulting collocation methods return an exactly pointwise
1264
+ divergence free velocity field. The commuting diagrams reveal that the divergence of the
1265
+ discrete velocity lies within the discrete pressure space, ∇·uh ∈ Qh. We can thus equivalently
1266
+ write the divergence of the velocity as a linear combination of the pressure basis functions:
1267
+ ∇ · uh =
1268
+ Np
1269
+
1270
+ i=0
1271
+ ciqi,
1272
+ (62)
1273
+ where qi ∈ Qh are the basis functions for the pressure and ci ∈ R are the coefficients. As
1274
+ part of the collocation scheme, we strongly enforce that the velocity field has zero divergence
1275
+ at a number of collocation points equal to the dimension of the discrete pressure space. This
1276
+ condition can be written as a system of linear equations
1277
+ Mc = 0,
1278
+ (63)
1279
+ where M is a square matrix whose entries are the pressure basis functions evaluated at each
1280
+ collocation point and c is the vector of coefficients.
1281
+ 14
1282
+
1283
+ If the choice of collocation points yields a set of linearly independent equations, that is
1284
+ to say M is invertible, then we know that the solution to Equation (63) is c = 0, and thus
1285
+ the velocity field is exactly divergence free pointwise.
1286
+ 5. Numerical Results on Square Domains
1287
+ The developed schemes are now tested on multiple 2D problems on the unit square. First,
1288
+ a manufactured vortex problem is considered to experimentally compute the convergence
1289
+ rates of the error and test for pressure and Reynolds number robustness. Then, the classical
1290
+ lid-driven cavity problem is considered at a variety of Reynolds numbers.
1291
+ 5.1. Two-Dimensional Manufactured Solution
1292
+ As a first numerical experiment, we consider a vortex problem on the unit square con-
1293
+ structed using the method of manufactured solutions. This solution was originally developed
1294
+ in [21] and employs the following velocity and pressure fields:
1295
+ ˜u =
1296
+
1297
+ 2ex(−1 + x)2x2(y2 − y)(−1 + 2y)
1298
+ (−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2)
1299
+
1300
+ ,
1301
+ (64)
1302
+ ˜p
1303
+ =
1304
+ (−424 + 156e + (y2 − y)(−456 + ex(456 + x2(228 − 5(y2 − y))+
1305
+ 2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).
1306
+ (65)
1307
+ For the velocity-pressure scheme we define the forcing term to be
1308
+ f = −ν∆˜u + ˜u · ∇˜u + ∇˜p,
1309
+ (66)
1310
+ while for the vorticity-velocity-pressure formulation we define the forcing term in the mo-
1311
+ mentum equations to be:
1312
+ f = ν∇⊥˜ω + ˜ω × ˜u + ∇ ˜P,
1313
+ (67)
1314
+ with ˜ω = ∇ × ˜u and ˜P = ˜p + 1
1315
+ 2(˜u · ˜u). Enforcing homogeneous boundary conditions and
1316
+ requiring that the integral of pressure is zero, it is clear to see that the velocity and kinematic
1317
+ pressure solutions should be equal to ˜u and ˜p.
1318
+ To understand the accuracy of this collocation method, we test the convergence rates on
1319
+ a variety of grids and with different degree B-spline bases. For this test we set the Reynolds
1320
+ number to Re = 1
1321
+ ν = 1. We measure error using the L2 norm as well as the H1 semi-norm.
1322
+ Figure 3 details the convergence rates of velocity and pressure when using the two field
1323
+ formulation. In this case the errors in both velocity and pressure converge at a rate of k′
1324
+ when k′ is even and k′ − 1 for odd k′. These are the standard, expected rates that have been
1325
+ seen in other studies of isogeometric collocation, and are one and two orders suboptimal in
1326
+ L2 for odd and even k′.
1327
+ Figure 4 details the convergence of velocity, kinematic pressure, and vorticity as we refine
1328
+ the meshes in the three field scheme. Using this scheme, all of the unknowns converge in the
1329
+ L2 norm at a rate of approximately k′ for even values of k′ and at a rate of k′ + 1 for odd
1330
+ values of k′. These rates match the rates achieved using even k′ in the two field formulation,
1331
+ 15
1332
+
1333
+ 10-2
1334
+ 10-1
1335
+ 10-10
1336
+ 10-5
1337
+ (a) Velocity L2 error
1338
+ 10-2
1339
+ 10-1
1340
+ 10-10
1341
+ 10-5
1342
+ (b) Velocity H1 error
1343
+ 10-2
1344
+ 10-1
1345
+ 10-10
1346
+ 10-5
1347
+ (c) Pressure L2 error
1348
+ 10-2
1349
+ 10-1
1350
+ 10-10
1351
+ 10-5
1352
+ 100
1353
+ (d) Pressure H1 error
1354
+ Figure 3: Errors in 2D manufactured vortex solution for velocity-pressure formulation
1355
+ 16
1356
+
1357
+ and these rates are two orders faster for odd k′. In fact, this formulation recovers optimal
1358
+ convergence rates in the L2 norm for odd k′.
1359
+ In the H1 semi-norm, we see convergence rates of k′ for all polynomial degrees for the
1360
+ velocity and pressure. These rates are optimal in the H1 semi-norm for all degrees and again
1361
+ are as fast or better than the corresponding velocity-pressure scheme results. Interestingly,
1362
+ the H1 convergence of vorticity seems to be at a rate of k′ + 1 for odd k′ and a rate of k′ for
1363
+ even values.
1364
+ To further study our new collocation schemes, we can also directly compare the errors
1365
+ produced with divergence-conforming Galerkin schemes of the same orders. Figure 5 shows
1366
+ the L2 norm and H1 semi-norm errors in velocity as well as the L2 errors in pressure for both
1367
+ collocation schemes along with the Galerkin results for the same problem from [22]. This
1368
+ comparison highlights the severe suboptimality of the velocity-pressure results with odd k′.
1369
+ We also note that the H1 errors obtained with the three field formulation nearly match the
1370
+ Galerkin results.
1371
+ 5.2. Pressure Robustness
1372
+ Next we perform some ancillary tests related to the manufactured solution to test some
1373
+ secondary robustness properties of the method. The first test relates to so-called pressure
1374
+ robustness [24].
1375
+ In particular, we take the kinematic pressure ˜p from the manufactured
1376
+ solution and multiply it by a scalar σ. Thus the pressure term in the forcing function f
1377
+ will also be multiplied by σ, and the exact solution to which our numerical solution should
1378
+ converge has the same velocity as before but with a scaled kinematic pressure field.
1379
+ For a pressure robust method this increase in the pressure magnitude, and thus the
1380
+ pressure approximation errors, will not affect the velocity approximation error. Conversely,
1381
+ a non-pressure robust method will see its velocity errors increase as the pressure is scaled
1382
+ larger. Figure 6 shows the convergence of the velocity errors for the two field scheme with
1383
+ k′ = 2 and increasing values of the scalar σ, while Figure 7 shows the same for the three field
1384
+ formulation. Clearly the velocity error increases in both schemes as σ increases, meaning
1385
+ the method is not pressure robust. This is interesting as the divergence-conforming Galerkin
1386
+ method upon which this work is based is pressure robust.
1387
+ 5.3. Reynolds Robustness
1388
+ Similar to pressure robustness, we also want to test how the errors in the solution behave
1389
+ as the Reynolds number is increased. We increase the Reynolds number by decreasing the
1390
+ viscosity ν. This affects the viscous term in the forcing vector f, but the exact solution to
1391
+ the problem is identical to the original manufactured solution.
1392
+ Figures 8 and 9 detail the convergence of the velocity errors as the Reynolds number
1393
+ increases, again for k′ = 2, in the two and three field schemes. Once again, the error in the
1394
+ velocity field increases as we increase the Reynolds number, in contrast to the divergence-
1395
+ conforming Galerkin setting, where the velocity error is agnostic to increasing Reynolds
1396
+ number [22].
1397
+ 5.4. Two-Dimensional Lid-Driven Cavity Flow
1398
+ The next 2D numerical test problem that we consider is the square lid-driven cavity flow.
1399
+ The left, right, and bottom walls of the cavity remain fixed while the top wall slides in the
1400
+ 17
1401
+
1402
+ 10-2
1403
+ 10-1
1404
+ 10-10
1405
+ 10-5
1406
+ (a) Velocity L2 error
1407
+ 10-2
1408
+ 10-1
1409
+ 10-10
1410
+ 10-5
1411
+ 100
1412
+ (b) Velocity H1 error
1413
+ 10-2
1414
+ 10-1
1415
+ 10-10
1416
+ 10-5
1417
+ 100
1418
+ (c) Pressure L2 error
1419
+ 10-2
1420
+ 10-1
1421
+ 10-8
1422
+ 10-6
1423
+ 10-4
1424
+ 10-2
1425
+ 100
1426
+ (d) Pressure H1 error
1427
+ 10-2
1428
+ 10-1
1429
+ 10-10
1430
+ 10-5
1431
+ (e) Vorticity L2 error
1432
+ 10-2
1433
+ 10-1
1434
+ 10-8
1435
+ 10-6
1436
+ 10-4
1437
+ 10-2
1438
+ 100
1439
+ (f) Vorticity H1 error
1440
+ Figure 4: Errors in 2D manufactured vortex solution for vorticity-velocity-pressure formulation
1441
+ 18
1442
+
1443
+ 10-2
1444
+ 10-1
1445
+ 10-10
1446
+ 10-9
1447
+ 10-8
1448
+ 10-7
1449
+ 10-6
1450
+ 10-5
1451
+ 10-4
1452
+ 10-3
1453
+ 10-2
1454
+ (a) Velocity L2 error
1455
+ 10-2
1456
+ 10-1
1457
+ 10-7
1458
+ 10-6
1459
+ 10-5
1460
+ 10-4
1461
+ 10-3
1462
+ 10-2
1463
+ 10-1
1464
+ (b) Velocity H1 error
1465
+ 10-2
1466
+ 10-1
1467
+ 10-9
1468
+ 10-8
1469
+ 10-7
1470
+ 10-6
1471
+ 10-5
1472
+ 10-4
1473
+ 10-3
1474
+ 10-2
1475
+ 10-1
1476
+ (c) Pressure L2 error
1477
+ Figure 5: Errors in 2D manufactured vortex solution comparison
1478
+ 19
1479
+
1480
+ 10-2
1481
+ 10-1
1482
+ 10-6
1483
+ 10-4
1484
+ 10-2
1485
+ (a) Velocity L2 error
1486
+ 10-2
1487
+ 10-1
1488
+ 10-5
1489
+ 100
1490
+ (b) Velocity H1 error
1491
+ Figure 6: Errors in 2D manufactured vortex solution with varying pressure scaling for velocity-pressure
1492
+ formulation
1493
+ 10-2
1494
+ 10-1
1495
+ 10-6
1496
+ 10-4
1497
+ 10-2
1498
+ (a) Velocity L2 error
1499
+ 10-2
1500
+ 10-1
1501
+ 10-5
1502
+ 100
1503
+ (b) Velocity H1 error
1504
+ Figure 7: Errors in 2D manufactured vortex solution with varying pressure scaling for vorticity-velocity-
1505
+ pressure formulation
1506
+ 20
1507
+
1508
+ 10-2
1509
+ 10-1
1510
+ 10-6
1511
+ 10-4
1512
+ 10-2
1513
+ (a) Velocity L2 error
1514
+ 10-2
1515
+ 10-1
1516
+ 10-5
1517
+ 100
1518
+ (b) Velocity H1 error
1519
+ Figure 8: Errors in 2D manufactured vortex solution with varying Reynolds number for velocity-pressure
1520
+ formulation
1521
+ 10-2
1522
+ 10-1
1523
+ 10-6
1524
+ 10-4
1525
+ 10-2
1526
+ (a) Velocity L2 error
1527
+ 10-2
1528
+ 10-1
1529
+ 10-5
1530
+ 100
1531
+ (b) Velocity H1 error
1532
+ Figure 9: Errors in 2D manufactured vortex solution with varying Reynolds number for vorticity-velocity-
1533
+ pressure formulation
1534
+ 21
1535
+
1536
+ positive x direction, causing vortices to develop within the domain. Due to the inconsistency
1537
+ in the boundary conditions, pressure singularities exist in the corners of the domain, making
1538
+ this a challenging test case for a numerical scheme to properly capture.
1539
+ For our simulations, we set both the speed of the top wall U = 1 and the wall lengths
1540
+ H = 1. The kinematic viscosity ν defines the Reynolds number through Re = UH
1541
+ ν
1542
+ = 1
1543
+ ν. In
1544
+ particular, we consider the flows produced with Re = 100, Re = 400, and Re = 1000. To
1545
+ validate our results, we compare the centerline velocity profiles at each Reynolds number
1546
+ with the results from Ghia et al [42].
1547
+ Figure 10 details the two field formulation results across the three considered Reynolds
1548
+ numbers and two mesh sizes: a 32 element stretched mesh and a 64 element stretched mesh.
1549
+ The stretched mesh is formed by setting the interior knots of the knot vectors defining the
1550
+ bases in each direction as
1551
+ ξi = 1
1552
+ 2
1553
+
1554
+ 1 + tanh(4ih − 2)
1555
+ tanh(2)
1556
+
1557
+ ∀ξi ∈ Ξ,
1558
+ (68)
1559
+ where h is the mesh size in each direction. Figure 11 shows the same results for the three field
1560
+ formulation. The collocation results from both schemes agree very well with the reference
1561
+ data in all cases, and we see that the results are converging with increasing resolution. At a
1562
+ Reynolds number of 100, all of our results show that the maximum and minimum values of
1563
+ the vertical velocity are larger in magnitude than those of Ghia et al. This is similar to the
1564
+ behavior seen in the Galerkin method [22], and we note that there are some inaccuracies in
1565
+ the Ghia data for this low Reynolds number case [22, 43]. For Reynolds number 400, the
1566
+ two field formulation predicts extrema in velocity that are slightly smaller than the three
1567
+ field predictions, which match the corresponding Galerkin results very well. This trend is
1568
+ also valid at a Reynolds number of 1000. Moreover, while we have used stretched meshes
1569
+ here, the results with a non-stretched mesh are similar.
1570
+ As a more quantitative comparison, we compute the minimum horizontal velocity along
1571
+ the vertical centerline as well as the maximum and minimum vertical velocities along the
1572
+ horizontal centerline for each of simulations presented above. These results are shown for a
1573
+ Reynolds number of 100 in Table 1, along with the values from [42] and [17]. These results
1574
+ show the inadequacy of the Ghia results at this Reynolds number, and for the most part the
1575
+ k′ = 2 collocation results outperform the Ghia data when compared to the pseudospectral
1576
+ results. To highlight the potential possibilities of the collocation methods, we also compute
1577
+ results using an unstretched mesh of 8 elements in each direction and k′ = 20 for both the
1578
+ two and three field formulations. While this would be essentially infeasible with a Galerkin
1579
+ method, as the quadrature would be prohibitively expensive, it is handled with ease by the
1580
+ collocation schemes. We see that these results match the pseudospectral results, even on the
1581
+ utilized coarse meshes.
1582
+ 6. Collocation Methods on Cubic Domains
1583
+ The previous two sections detailed the construction of the divergence-conforming colloca-
1584
+ tion methods in 2D and tested their behavior numerically. In the following, we will highlight
1585
+ the required modifications to the methods to solve problems in 3D cubic domains.
1586
+ 22
1587
+
1588
+ 0
1589
+ 0.2
1590
+ 0.4
1591
+ 0.6
1592
+ 0.8
1593
+ 1
1594
+ -0.3
1595
+ -0.2
1596
+ -0.1
1597
+ 0
1598
+ 0.1
1599
+ 0.2
1600
+ -0.5
1601
+ 0
1602
+ 0.5
1603
+ 1
1604
+ 0
1605
+ 0.2
1606
+ 0.4
1607
+ 0.6
1608
+ 0.8
1609
+ 1
1610
+ (a) Re = 100 velocities with h = 1/32
1611
+ 0
1612
+ 0.2
1613
+ 0.4
1614
+ 0.6
1615
+ 0.8
1616
+ 1
1617
+ -0.3
1618
+ -0.2
1619
+ -0.1
1620
+ 0
1621
+ 0.1
1622
+ 0.2
1623
+ -0.5
1624
+ 0
1625
+ 0.5
1626
+ 1
1627
+ 0
1628
+ 0.2
1629
+ 0.4
1630
+ 0.6
1631
+ 0.8
1632
+ 1
1633
+ (b) Re = 100 velocities with h = 1/64
1634
+ 0
1635
+ 0.2
1636
+ 0.4
1637
+ 0.6
1638
+ 0.8
1639
+ 1
1640
+ -0.6
1641
+ -0.4
1642
+ -0.2
1643
+ 0
1644
+ 0.2
1645
+ 0.4
1646
+ -0.5
1647
+ 0
1648
+ 0.5
1649
+ 1
1650
+ 0
1651
+ 0.2
1652
+ 0.4
1653
+ 0.6
1654
+ 0.8
1655
+ 1
1656
+ (c) Re = 400 velocities with h = 1/32
1657
+ 0
1658
+ 0.2
1659
+ 0.4
1660
+ 0.6
1661
+ 0.8
1662
+ 1
1663
+ -0.6
1664
+ -0.4
1665
+ -0.2
1666
+ 0
1667
+ 0.2
1668
+ 0.4
1669
+ -0.5
1670
+ 0
1671
+ 0.5
1672
+ 1
1673
+ 0
1674
+ 0.2
1675
+ 0.4
1676
+ 0.6
1677
+ 0.8
1678
+ 1
1679
+ (d) Re = 400 velocities with h = 1/64
1680
+ 0
1681
+ 0.2
1682
+ 0.4
1683
+ 0.6
1684
+ 0.8
1685
+ 1
1686
+ -0.6
1687
+ -0.4
1688
+ -0.2
1689
+ 0
1690
+ 0.2
1691
+ 0.4
1692
+ -0.5
1693
+ 0
1694
+ 0.5
1695
+ 1
1696
+ 0
1697
+ 0.2
1698
+ 0.4
1699
+ 0.6
1700
+ 0.8
1701
+ 1
1702
+ (e) Re = 1000 velocities with h = 1/32
1703
+ 0
1704
+ 0.2
1705
+ 0.4
1706
+ 0.6
1707
+ 0.8
1708
+ 1
1709
+ -0.6
1710
+ -0.4
1711
+ -0.2
1712
+ 0
1713
+ 0.2
1714
+ 0.4
1715
+ -0.5
1716
+ 0
1717
+ 0.5
1718
+ 1
1719
+ 0
1720
+ 0.2
1721
+ 0.4
1722
+ 0.6
1723
+ 0.8
1724
+ 1
1725
+ (f) Re = 1000 velocities with h = 1/64
1726
+ Figure 10: Centerline velocity profiles for 2D lid-driven cavity with velocity-pressure formulation, k′ = 2.
1727
+ Red curves and axes represent the vertical velocity along the horizontal centerline, while blue curves and
1728
+ axes represent the horizontal velocity along the vertical centerline.
1729
+ 23
1730
+
1731
+ 0
1732
+ 0.2
1733
+ 0.4
1734
+ 0.6
1735
+ 0.8
1736
+ 1
1737
+ -0.3
1738
+ -0.2
1739
+ -0.1
1740
+ 0
1741
+ 0.1
1742
+ 0.2
1743
+ -0.5
1744
+ 0
1745
+ 0.5
1746
+ 1
1747
+ 0
1748
+ 0.2
1749
+ 0.4
1750
+ 0.6
1751
+ 0.8
1752
+ 1
1753
+ (a) Re = 100 velocities with h = 1/32
1754
+ 0
1755
+ 0.2
1756
+ 0.4
1757
+ 0.6
1758
+ 0.8
1759
+ 1
1760
+ -0.3
1761
+ -0.2
1762
+ -0.1
1763
+ 0
1764
+ 0.1
1765
+ 0.2
1766
+ -0.5
1767
+ 0
1768
+ 0.5
1769
+ 1
1770
+ 0
1771
+ 0.2
1772
+ 0.4
1773
+ 0.6
1774
+ 0.8
1775
+ 1
1776
+ (b) Re = 100 velocities with h = 1/64
1777
+ 0
1778
+ 0.2
1779
+ 0.4
1780
+ 0.6
1781
+ 0.8
1782
+ 1
1783
+ -0.6
1784
+ -0.4
1785
+ -0.2
1786
+ 0
1787
+ 0.2
1788
+ 0.4
1789
+ -0.5
1790
+ 0
1791
+ 0.5
1792
+ 1
1793
+ 0
1794
+ 0.2
1795
+ 0.4
1796
+ 0.6
1797
+ 0.8
1798
+ 1
1799
+ (c) Re = 400 velocities with h = 1/32
1800
+ 0
1801
+ 0.2
1802
+ 0.4
1803
+ 0.6
1804
+ 0.8
1805
+ 1
1806
+ -0.6
1807
+ -0.4
1808
+ -0.2
1809
+ 0
1810
+ 0.2
1811
+ 0.4
1812
+ -0.5
1813
+ 0
1814
+ 0.5
1815
+ 1
1816
+ 0
1817
+ 0.2
1818
+ 0.4
1819
+ 0.6
1820
+ 0.8
1821
+ 1
1822
+ (d) Re = 400 velocities with h = 1/64
1823
+ 0
1824
+ 0.2
1825
+ 0.4
1826
+ 0.6
1827
+ 0.8
1828
+ 1
1829
+ -0.6
1830
+ -0.4
1831
+ -0.2
1832
+ 0
1833
+ 0.2
1834
+ 0.4
1835
+ -0.5
1836
+ 0
1837
+ 0.5
1838
+ 1
1839
+ 0
1840
+ 0.2
1841
+ 0.4
1842
+ 0.6
1843
+ 0.8
1844
+ 1
1845
+ (e) Re = 1000 velocities with h = 1/32
1846
+ 0
1847
+ 0.2
1848
+ 0.4
1849
+ 0.6
1850
+ 0.8
1851
+ 1
1852
+ -0.6
1853
+ -0.4
1854
+ -0.2
1855
+ 0
1856
+ 0.2
1857
+ 0.4
1858
+ -0.5
1859
+ 0
1860
+ 0.5
1861
+ 1
1862
+ 0
1863
+ 0.2
1864
+ 0.4
1865
+ 0.6
1866
+ 0.8
1867
+ 1
1868
+ (f) Re = 1000 velocities with h = 1/64
1869
+ Figure 11: Centerline velocity profiles for 2D lid-driven cavity with vorticity-velocity-pressure formulation,
1870
+ k′ = 2. Red curves and axes represent the vertical velocity along the horizontal centerline, while blue curves
1871
+ and axes represent the horizontal velocity along the vertical centerline.
1872
+ 24
1873
+
1874
+ Table 1: Velocity extrema for 2D lid-driven cavity at Re = 100
1875
+ Method
1876
+ ux,min
1877
+ uy,max
1878
+ uy,min
1879
+ Collocation, 2 field formulation, k′ = 2 and h = 1/32
1880
+ −0.21348
1881
+ 0.17941
1882
+ −0.25307
1883
+ Collocation, 2 field formulation, k′ = 2 and h = 1/64
1884
+ −0.21389
1885
+ 0.17953
1886
+ −0.25358
1887
+ Collocation, 2 field formulation, k′ = 20 and h = 1/8
1888
+ −0.21404
1889
+ 0.17957
1890
+ −0.25380
1891
+ Collocation, 3 field formulation, k′ = 2 and h = 1/32
1892
+ −0.21800
1893
+ 0.18392
1894
+ −0.25908
1895
+ Collocation, 3 field formulation, k′ = 2 and h = 1/64
1896
+ −0.21511
1897
+ 0.18075
1898
+ −0.25521
1899
+ Collocation, 3 field formulation, k′ = 20 and h = 1/8
1900
+ −0.21404
1901
+ 0.17957
1902
+ −0.25380
1903
+ Pseudospectral (Ref. [43])
1904
+ −0.21404
1905
+ 0.17957
1906
+ −0.25380
1907
+ Ghia et al. (Ref. [42])
1908
+ −0.21090
1909
+ 0.17527
1910
+ −0.24533
1911
+ 6.1. Review of Galerkin Methods
1912
+ Similar to 2D, we start by reviewing the form of the divergence-conforming isogeometric
1913
+ Galerkin methods for 3D problems. Again assume the velocity is subject to Dirichlet bound-
1914
+ ary conditions along the entire boundary. We then define the discrete test and trial function
1915
+ spaces for velocity as Vh,0 and Vh,g, which are defined as the same Vh from Equation (37)
1916
+ with either no penetration boundary conditions strongly enforced (for the test space Vh,0)
1917
+ or with the normal velocity prescribed at collocation points as given by the boundary data g
1918
+ (for the trial space Vh,g). We also define the test and trial space for pressure as Qh,0, where
1919
+ Qh is the same space as in Equation (38) but with the added condition that the pressure
1920
+ must have zero integral. Then the Galerkin formulation for the velocity-pressure form would
1921
+ read
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+ Given ν ∈ R+, f : Ω → R3, and g : ∂Ω → R3, find uh ∈ Vh,g and ph ∈ Qh,0 such that,
1958
+ ∀(wh, qh) ∈ (Vh,0, Qh,0):
1959
+
1960
+
1961
+ (ν∇wh · ∇uh + wh · (uh · ∇uh) − ph∇ · wh)dΩ
1962
+ − ν
1963
+
1964
+ ∂Ω
1965
+ (∇uh · n) · wh − Cpen
1966
+ h uh · whdA =
1967
+
1968
+
1969
+ wh · fdΩ + ν
1970
+
1971
+ ∂Ω
1972
+ Cpen
1973
+ h g · whdA
1974
+ (69)
1975
+
1976
+
1977
+ qh(∇ · uh)dΩ = 0.
1978
+ (70)
1979
+ This weak form is essentially unchanged from the 2D case, with the only major difference
1980
+ being that the velocity has 3 components. The vorticity-velocity-pressure Galerkin form,
1981
+ however, is more different. In this case the discrete problem reads
1982
+ 25
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+ Given ν ∈ R+, f : Ω → R3, and g : ∂Ω → R3, find uh ∈ Vh,g, P h ∈ Qh,0, and
2022
+ ωh ∈ Ψh such that, ∀(wh, qh, ψh) ∈ (Vh,0, Qh,0, Ψh):
2023
+
2024
+
2025
+ (ν∇ × ωh) · vhdΩ +
2026
+
2027
+
2028
+ (ωh × uh) · vhdΩ −
2029
+
2030
+
2031
+ P h(∇ · vh)dΩ =
2032
+
2033
+
2034
+ f · vhdΩ
2035
+ (71)
2036
+
2037
+
2038
+ (∇ · uh)qhdΩ = 0
2039
+ (72)
2040
+
2041
+
2042
+ (ωh · ψh)dΩ +
2043
+
2044
+
2045
+ uh · (∇ × ψh)dΩ −
2046
+
2047
+ ∂Ω
2048
+ (ψh × g) · ndA = 0.
2049
+ (73)
2050
+ Again the no-slip velocity boundary conditions appear as natural boundary conditions in
2051
+ the weak form of the constitutive equation.
2052
+ Within the collocation schemes, the unknowns are selected to reside in the same spaces as
2053
+ the corresponding Galerkin scheme, as in 2D. In the following we highlight the main changes
2054
+ to the method for 3D problems with regards to the choice of collocation grids and boundary
2055
+ condition enforcement before again summarizing the final form of the discrete equations.
2056
+ 6.2. Collocation Grids
2057
+ Much like the two dimensional case, in 3D we choose to collocate at Greville abscissae
2058
+ and the grids are different for each of the governing equations. For both formulations the
2059
+ schemes for the momentum and pressure equations are essentially unchanged; each momen-
2060
+ tum equation component is collocated at the Greville abscissae of the corresponding discrete
2061
+ velocity component space, and the continuity equation is collocated at the Greville abscissae
2062
+ of the discrete pressure space. Thus the velocity-pressure formulation extends fairly trivially
2063
+ to 3D.
2064
+ The constitutive equation in the vorticity-velocity-pressure formulation, on the other
2065
+ hand, is now split into components much like how the momentum equations are treated.
2066
+ We choose to collocate the x component of the constitutive equation at the Greville ab-
2067
+ scissae associated with the discrete x vorticity space (Sk1−1,k2,k3
2068
+ α1−1,α2,α3), the y component of the
2069
+ constitutive equation at the Greville abscissae associated with the discrete y vorticity space
2070
+ (Sk1,k2−1,k3
2071
+ α1,α2−1,α3), and the z component of the constitutive equation at the Greville abscissae
2072
+ associated with the discrete z vorticity space (Sk1,k2,k3−1
2073
+ α1,α2,α3−1).
2074
+ 6.3. Boundary Condition Enforcement
2075
+ The no-penetration boundary condition is enforced identically to 2D case: We strongly
2076
+ enforce the normal velocity on face collocation points corresponding to the normal velocity
2077
+ component and remove these points from the set used to collocate the momentum equations.
2078
+ The no-slip boundary condition in the velocity-pressure scheme is also essentially enforced
2079
+ identically to the 2D case and again leads to equations of the form
2080
+ 26
2081
+
2082
+ − ν∆uh + uh · ∇uh + ∇ph + C2
2083
+ pen
2084
+ h2 (uh − g) = f.
2085
+ (74)
2086
+ As the constitutive law relating velocity and vorticity is a vector relation in 3D, the weak
2087
+ enforcement of no-slip boundary conditions is slightly altered in the three field formulation.
2088
+ We again start by considering the weak form shown above, particularly Equation (73). The
2089
+ last term in this equation represents the boundary term which would be used to enforce
2090
+ boundary conditions by replacing terms with their prescribed values. Following the Enhanced
2091
+ Collocation method of [41], the equation can be integrated by parts once again, to arrive at
2092
+ a strong form representation given by:
2093
+
2094
+
2095
+ ψ · (ω − ∇ × u)dΩ +
2096
+
2097
+ ∂Ω
2098
+ (ψ × u − ψ × g) · ndA = 0.
2099
+ Using the properties of the scalar triple product, we can re-write this as:
2100
+
2101
+
2102
+ ψ · (ω − ∇ × u)dΩ +
2103
+
2104
+ ∂Ω
2105
+ (u × n − g × n) · ψdA = 0.
2106
+ By approximating these integrals as is done in [41, 38], we arrive at a strong form state-
2107
+ ment including boundary conditions suitable for collocation:
2108
+ ωh − ∇ × uh + Cpen
2109
+ h (uh × n − g × n) = 0.
2110
+ (75)
2111
+ 6.4. Final Collocated Equations
2112
+ Once again the entire collocation scheme based on the velocity-pressure formulation is
2113
+ summarized first. Let us again define τ ux
2114
+
2115
+ for ℓ = 1, ..., M ux to be the set of Greville points
2116
+ for the basis of the x velocity component (Sk1,k2−1,k3−1
2117
+ α1,α2−1,α3−1) with the points corresponding to
2118
+ no-penetration boundaries removed as discussed previously. Define in a similar manner τ uy
2119
+
2120
+ for ℓ = 1, ..., M uy and τ uz
2121
+
2122
+ for ℓ = 1, ..., M uz. The pressure Greville points are defined as τ p
2123
+
2124
+ for ℓ = 1, ..., N p. For this formulation the discrete 3D problem reads:
2125
+ 27
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+ Find uh ∈ Vh,g and P h ∈ Qh,0 such that:
2249
+
2250
+ −ν ∂2uh
2251
+ x
2252
+ ∂x2 − ν ∂2uh
2253
+ x
2254
+ ∂y2 − ν ∂2uh
2255
+ x
2256
+ ∂z2 + uh
2257
+ x
2258
+ ∂uh
2259
+ x
2260
+ ∂x + uh
2261
+ y
2262
+ ∂uh
2263
+ x
2264
+ ∂y + uh
2265
+ z
2266
+ ∂uh
2267
+ x
2268
+ ∂z + ∂ph
2269
+ ∂x
2270
+
2271
+ (τ ux
2272
+ ℓ )
2273
+ = fx(τ ux
2274
+ ℓ )
2275
+ ∀τ ux
2276
+
2277
+ ∈ Ω
2278
+ (76)
2279
+
2280
+ −ν ∂2uh
2281
+ x
2282
+ ∂x2 − ν ∂2uh
2283
+ x
2284
+ ∂y2 − ν ∂2uh
2285
+ x
2286
+ ∂z2 + uh
2287
+ x
2288
+ ∂uh
2289
+ x
2290
+ ∂x + uh
2291
+ y
2292
+ ∂uh
2293
+ x
2294
+ ∂y + uh
2295
+ z
2296
+ ∂uh
2297
+ x
2298
+ ∂z + ∂ph
2299
+ ∂x +
2300
+ C2
2301
+ pen
2302
+ h2 (uh
2303
+ x − gx)
2304
+
2305
+ (τ ux
2306
+ ℓ ) = fx(τ ux
2307
+ ℓ )
2308
+ ∀τ ux
2309
+
2310
+ ∈ ∂Ω
2311
+ (77)
2312
+
2313
+ −ν ∂2uh
2314
+ y
2315
+ ∂x2 − ν ∂2uh
2316
+ y
2317
+ ∂y2 − ν ∂2uh
2318
+ y
2319
+ ∂z2 + uh
2320
+ x
2321
+ ∂uh
2322
+ y
2323
+ ∂x + uh
2324
+ y
2325
+ ∂uh
2326
+ y
2327
+ ∂y + uh
2328
+ z
2329
+ ∂uh
2330
+ y
2331
+ ∂z + ∂ph
2332
+ ∂y
2333
+
2334
+ (τ uy
2335
+ ℓ )
2336
+ = fy(τ uy
2337
+ ℓ )
2338
+ ∀τ uy
2339
+
2340
+ ∈ Ω
2341
+ (78)
2342
+
2343
+ −ν ∂2uh
2344
+ y
2345
+ ∂x2 − ν ∂2uh
2346
+ y
2347
+ ∂y2 − ν ∂2uh
2348
+ y
2349
+ ∂z2 + uh
2350
+ x
2351
+ ∂uh
2352
+ y
2353
+ ∂x + uh
2354
+ y
2355
+ ∂uh
2356
+ y
2357
+ ∂y + uh
2358
+ z
2359
+ ∂uh
2360
+ y
2361
+ ∂z + ∂ph
2362
+ ∂y +
2363
+ C2
2364
+ pen
2365
+ h2 (uh
2366
+ y − gy)
2367
+
2368
+ (τ uy
2369
+ ℓ ) = fy(τ uy
2370
+ ℓ )
2371
+ ∀τ uy
2372
+
2373
+ ∈ ∂Ω
2374
+ (79)
2375
+
2376
+ −ν ∂2uh
2377
+ z
2378
+ ∂x2 − ν ∂2uh
2379
+ z
2380
+ ∂y2 − ν ∂2uh
2381
+ z
2382
+ ∂z2 + uh
2383
+ x
2384
+ ∂uh
2385
+ z
2386
+ ∂x + uh
2387
+ y
2388
+ ∂uh
2389
+ z
2390
+ ∂y + uh
2391
+ z
2392
+ ∂uh
2393
+ z
2394
+ ∂z + ∂ph
2395
+ ∂z
2396
+
2397
+ (τ uz
2398
+ ℓ )
2399
+ = fz(τ uz
2400
+ ℓ )
2401
+ ∀τ uz
2402
+ ℓ ∈ Ω
2403
+ (80)
2404
+
2405
+ −ν ∂2uh
2406
+ z
2407
+ ∂x2 − ν ∂2uh
2408
+ z
2409
+ ∂y2 − ν ∂2uh
2410
+ z
2411
+ ∂z2 + uh
2412
+ x
2413
+ ∂uh
2414
+ z
2415
+ ∂x + uh
2416
+ y
2417
+ ∂uh
2418
+ z
2419
+ ∂y + uh
2420
+ z
2421
+ ∂uh
2422
+ z
2423
+ ∂z + ∂ph
2424
+ ∂z +
2425
+ C2
2426
+ pen
2427
+ h2 (uh
2428
+ z − gz)
2429
+
2430
+ (τ uz
2431
+ ℓ ) = fz(τ uz
2432
+ ℓ )
2433
+ ∀τ uz
2434
+ ℓ ∈ ∂Ω
2435
+ (81)
2436
+
2437
+ ∂uh
2438
+ x
2439
+ ∂x + ∂uh
2440
+ y
2441
+ ∂y + ∂uh
2442
+ z
2443
+ ∂z
2444
+
2445
+ (τ p
2446
+ ℓ) = 0
2447
+ ∀τ p
2448
+ ℓ ∈ Ω ∪ ∂Ω.
2449
+ (82)
2450
+ Similarly to the velocity, in the three field formulation we also define collocation points
2451
+ for the vorticity component-wise. In particular, let τ ωx
2452
+
2453
+ for ℓ = 1, ..., N ωx be the Greville
2454
+ points for the x component of the vorticity, and define τ ωy
2455
+
2456
+ for ℓ = 1, ..., N ωy and τ ωz
2457
+
2458
+ for
2459
+ ℓ = 1, ..., N ωz similarly. The final, discrete 3D problem for the vorticity-velocity-pressure
2460
+ collocation scheme reads as:
2461
+ 28
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+
2546
+
2547
+
2548
+
2549
+
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+
2572
+
2573
+
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+
2597
+
2598
+
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+ Find uh ∈ Vh,g, P h ∈ Qh,0, and ωh ∈ Ψh such that:
2605
+
2606
+ ν(∂ωh
2607
+ z
2608
+ ∂y − ∂ωh
2609
+ y
2610
+ ∂z ) + ωh
2611
+ yuh
2612
+ z − ωh
2613
+ z uh
2614
+ y + ∂P h
2615
+ ∂x
2616
+
2617
+ (τ ux
2618
+ ℓ ) = fx(τ ux
2619
+ ℓ )
2620
+ ∀τ ux
2621
+
2622
+ ∈ Ω ∪ ∂Ω
2623
+ (83)
2624
+
2625
+ ν(∂ωh
2626
+ x
2627
+ ∂z − ∂ωh
2628
+ z
2629
+ ∂x ) + ωh
2630
+ z uh
2631
+ x − ωh
2632
+ xuh
2633
+ z + ∂P h
2634
+ ∂y
2635
+
2636
+ (τ uy
2637
+ ℓ ) = fy(τ uy
2638
+ ℓ )
2639
+ ∀τ uy
2640
+
2641
+ ∈ Ω ∪ ∂Ω
2642
+ (84)
2643
+
2644
+ ν(∂ωh
2645
+ y
2646
+ ∂x − ∂ωh
2647
+ x
2648
+ ∂y + ωh
2649
+ xuh
2650
+ y − ωh
2651
+ yuh
2652
+ x + ∂P h
2653
+ ∂z
2654
+
2655
+ (τ uz
2656
+ ℓ ) = fz(τ uz
2657
+ ℓ )
2658
+ ∀τ uz
2659
+ ℓ ∈ Ω ∪ ∂Ω
2660
+ (85)
2661
+
2662
+ ∂uh
2663
+ x
2664
+ ∂x + ∂uh
2665
+ y
2666
+ ∂y + ∂uh
2667
+ z
2668
+ ∂z
2669
+
2670
+ (τ p
2671
+ ℓ) = 0
2672
+ ∀τ p
2673
+ ℓ ∈ Ω ∪ ∂Ω
2674
+ (86)
2675
+
2676
+ ωh
2677
+ x − (∂uh
2678
+ z
2679
+ ∂y − ∂uh
2680
+ y
2681
+ ∂z )
2682
+
2683
+ (τ ωx
2684
+ ℓ ) = 0
2685
+ ∀τ ωx
2686
+
2687
+ ∈ Ω
2688
+ (87)
2689
+
2690
+ ωh
2691
+ x − (∂uh
2692
+ z
2693
+ ∂y − ∂uh
2694
+ y
2695
+ ∂z )+
2696
+ Cpen
2697
+ h ((uh
2698
+ y − gy)nz − (uh
2699
+ z − gz)ny)
2700
+
2701
+ (τ ωx
2702
+ ℓ ) = 0
2703
+ ∀τ ωx
2704
+
2705
+ ∈ ∂Ω
2706
+ (88)
2707
+
2708
+ ωh
2709
+ y − (∂uh
2710
+ x
2711
+ ∂z − ∂uh
2712
+ z
2713
+ ∂x )
2714
+
2715
+ (τ ωy
2716
+ ℓ ) = 0
2717
+ ∀τ ωy
2718
+
2719
+ ∈ Ω
2720
+ (89)
2721
+
2722
+ ωh
2723
+ y − (∂uh
2724
+ x
2725
+ ∂z − ∂uh
2726
+ z
2727
+ ∂x )+
2728
+ Cpen
2729
+ h ((uh
2730
+ z − gz)nx − (uh
2731
+ x − gx)nz)
2732
+
2733
+ (τ ωy
2734
+ ℓ ) = 0
2735
+ ∀τ ωy
2736
+
2737
+ ∈ ∂Ω
2738
+ (90)
2739
+
2740
+ ωh
2741
+ z − (∂uh
2742
+ y
2743
+ ∂x − ∂uh
2744
+ x
2745
+ ∂y )
2746
+
2747
+ (τ ωz
2748
+ ℓ ) = 0
2749
+ ∀τ ωz
2750
+
2751
+ ∈ Ω
2752
+ (91)
2753
+
2754
+ ωh
2755
+ z − (∂uh
2756
+ y
2757
+ ∂x − ∂uh
2758
+ x
2759
+ ∂y )+
2760
+ Cpen
2761
+ h ((uh
2762
+ x − gx)ny − (uh
2763
+ y − gy)nx)
2764
+
2765
+ (τ ωz
2766
+ ℓ ) = 0
2767
+ ∀τ ωz
2768
+
2769
+ ∈ ∂Ω.
2770
+ (92)
2771
+ 7. Numerical Results on Cubic Domains
2772
+ To verify that the schemes properly extend into 3D, two sample problems are considered.
2773
+ First, a manufactured solution gives even more insight into the convergence properties of
2774
+ 29
2775
+
2776
+ the methods. Then the three-dimensional lid-driven cavity problem is considered and the
2777
+ results are compared with established literature.
2778
+ 7.1. Three-Dimensional Manufactured Solution
2779
+ In 3D, we also start our numerical studies by considering a manufactured solution. In
2780
+ this case, the exact solution represents the flow around a single vortex filament within the
2781
+ unit cube. We define a potential function as
2782
+ ˜φ =
2783
+
2784
+
2785
+ x(x − 1)y2(y − 1)2z2(z − 1)2
2786
+ 0
2787
+ x2(x − 1)2y2(y − 1)2z(z − 1)
2788
+
2789
+ � ,
2790
+ (93)
2791
+ through which we can define the velocity field as
2792
+ ˜u = ∇ × ˜φ,
2793
+ (94)
2794
+ and the vorticity as
2795
+ ˜ω = ∇ × ˜u.
2796
+ (95)
2797
+ Finally, we specify the pressure field as
2798
+ ˜p = sin(πx) sin(πy) − 4
2799
+ π2.
2800
+ (96)
2801
+ For the velocity-pressure scheme we define the forcing term on the right hand sign of the
2802
+ momentum equations as
2803
+ f = −ν∆˜u + ˜u · ∇˜u + ∇˜p,
2804
+ (97)
2805
+ while for the vorticity-velocity-pressure scheme the forcing term is given by
2806
+ f = −ν∆˜u + ˜ω × ˜u + ∇ ˜P.
2807
+ (98)
2808
+ Once again we enforce homogeneous Dirichlet boundary conditions everywhere and require
2809
+ that the kinematic pressure field has zero average. With these conditions the discrete solution
2810
+ should again converge to the quantities above with mesh refinement.
2811
+ Similar to the 2D case, we set Re = 1
2812
+ ν = 1 and measure the errors produced on a variety of
2813
+ grids in the L2 norm and H1 semi-norm. Figure 12 shows the results for the velocity-pressure
2814
+ scheme while Figure 13 details the errors for the vorticity-velocity-pressure scheme.
2815
+ We start by noting that when k′ < 3 in both cases, everything behaves in the same
2816
+ manner as in the 2D setting. Once k′ ≥ 3 we start to see very fast convergence rates and
2817
+ some pre-asymptotic type behavior in the velocity errors produced by both schemes. This
2818
+ can be explained by talking a closer look at the exact velocity field for this problem. In fact,
2819
+ the exact velocity field is given by a quartic polynomial in each direction and this solution
2820
+ is actually contained within the discrete velocity approximation space for k′ ≥ 3. If we
2821
+ were using a pressure robust Galerkin method, the velocity error would be zero. Since the
2822
+ collocation scheme is not pressure robust, we obtain superconvergence rather than exactly
2823
+ zero error.
2824
+ 30
2825
+
2826
+ 10-1
2827
+ 10-10
2828
+ 10-5
2829
+ (a) Velocity L2 error
2830
+ 10-1
2831
+ 10-10
2832
+ 10-5
2833
+ (b) Velocity H1 error
2834
+ 10-1
2835
+ 10-8
2836
+ 10-6
2837
+ 10-4
2838
+ 10-2
2839
+ (c) Pressure L2 error
2840
+ 10-1
2841
+ 10-6
2842
+ 10-4
2843
+ 10-2
2844
+ 100
2845
+ (d) Pressure H1 error
2846
+ Figure 12: Errors in 3D manufactured vortex solution for velocity-pressure formulation
2847
+ 31
2848
+
2849
+ 10-1
2850
+ 10-10
2851
+ 10-5
2852
+ (a) Velocity L2 error
2853
+ 10-1
2854
+ 10-10
2855
+ 10-5
2856
+ 100
2857
+ (b) Velocity H1 error
2858
+ 10-1
2859
+ 10-8
2860
+ 10-6
2861
+ 10-4
2862
+ 10-2
2863
+ 100
2864
+ (c) Pressure L2 error
2865
+ 10-1
2866
+ 10-6
2867
+ 10-4
2868
+ 10-2
2869
+ 100
2870
+ (d) Pressure H1 error
2871
+ 10-1
2872
+ 10-10
2873
+ 10-5
2874
+ 100
2875
+ (e) Vorticity L2 error
2876
+ 10-1
2877
+ 10-10
2878
+ 10-5
2879
+ 100
2880
+ (f) Vorticity H1 error
2881
+ Figure 13: Errors in 3D manufactured vortex solution for vorticity-velocity-pressure formulation
2882
+ 32
2883
+
2884
+ 0
2885
+ 0.2
2886
+ 0.4
2887
+ 0.6
2888
+ 0.8
2889
+ 1
2890
+ -0.3
2891
+ -0.2
2892
+ -0.1
2893
+ 0
2894
+ 0.1
2895
+ 0.2
2896
+ -0.5
2897
+ 0
2898
+ 0.5
2899
+ 1
2900
+ 0
2901
+ 0.2
2902
+ 0.4
2903
+ 0.6
2904
+ 0.8
2905
+ 1
2906
+ (a) Velocity-pressure formulation
2907
+ 0
2908
+ 0.2
2909
+ 0.4
2910
+ 0.6
2911
+ 0.8
2912
+ 1
2913
+ -0.3
2914
+ -0.2
2915
+ -0.1
2916
+ 0
2917
+ 0.1
2918
+ 0.2
2919
+ -0.5
2920
+ 0
2921
+ 0.5
2922
+ 1
2923
+ 0
2924
+ 0.2
2925
+ 0.4
2926
+ 0.6
2927
+ 0.8
2928
+ 1
2929
+ (b) Vorticity-velocity-pressure formulation
2930
+ Figure 14: Centerline velocity profile for 3D lid-driven cavity using both formulations, k′ = 2. Red curves
2931
+ and axes represent the vertical velocity along the horizontal centerline, while blue curves and axes represent
2932
+ the horizontal velocity along the vertical centerline.
2933
+ The pressure convergence results also show some interesting behavior. While the vorticity-
2934
+ velocity-pressure scheme seems to behave in the same manner as in 2D, the velocity-pressure
2935
+ scheme seems to be recovering the faster rates seen in the three field scheme. We believe
2936
+ that this is a consequence of the superconvergence of velocity.
2937
+ 7.2. Three-Dimensional Lid-Driven Cavity
2938
+ The next numerical study that we perform is on the 3D lid-driven cavity flow. Consider
2939
+ again the cavity setup describing the 2D flow, but now extend the square cavity by unit
2940
+ length in the out-of-page direction, thus making it a cube. The point singularities of the 2D
2941
+ case now extend along the top edges of the cube and we expect to see more influence of 3D
2942
+ boundary effects [44].
2943
+ In our tests we again set the wall speed U = 1, the side length H = 1, and consider
2944
+ Re = UH
2945
+ 1
2946
+ = 100. We use an unstretched mesh with 32 elements per side and k′ = 2, and
2947
+ compare the x velocity along the vertical centerline and the y velocity along the horizontal
2948
+ centerline with the pseudospectral results from [44]. Figure 14 shows the results with each
2949
+ formulation. Once again the results match very well with the literature, and it seems as
2950
+ though the results from the three field formulation match with the reference results slightly
2951
+ better that the two field results.
2952
+ 8. Collocation Methods on Mapped Domains
2953
+ As the last main component of this paper we shift our focus to problems posed on more
2954
+ complicated domains. We will present some theory for both 2D and 3D problems, but for
2955
+ simplicity we will focus the development of numerical schemes for the 2D, linear Stokes
2956
+ equations. However, the results would generalize to the nonlinear, 3D setting as well. We
2957
+ will also focus on the rotational form of the equations, as the first order nature enables easier
2958
+ mappings between domains.
2959
+ 33
2960
+
2961
+ The main idea of this section is the mapping back to a parametric reference domain,
2962
+ i.e. a square in 2D or a cube in 3D. The previous sections detail how to develop collocation
2963
+ schemes on these simple geometries, thus simply pulling the equations and unknowns back to
2964
+ the reference domain, collocating as before, and pushing the results forward to the physical
2965
+ domain gives our numerical solution.
2966
+ Let ˆΩ be the parametric domain (the unit square in 2D or the unit cube in 3D), and let
2967
+ Ω be the physical domain. We define the function F as mapping from ˆΩ to Ω. Let DF be
2968
+ the Jacobian of the parametric mapping, and define
2969
+ J = Det(DF),
2970
+ (99)
2971
+ C = (DF)T(DF).
2972
+ (100)
2973
+ Next we can define the pull-back operators in 3D as
2974
+ ιΦ(φ) = (φ ◦ F),
2975
+ (101)
2976
+ ιω(ψ) = (DF)T(ψ ◦ F),
2977
+ (102)
2978
+ ιu(v) = J(DF)−1(v ◦ F),
2979
+ (103)
2980
+ ιp(q) = J(q ◦ F).
2981
+ (104)
2982
+ We define the pulled-back unknowns on the reference domain via the ι maps, specifically
2983
+ ˆu = ιu(u), ˆp = ιp(p), and ˆω = ιω(ω). These are the unknowns for which we solve us-
2984
+ ing collocation, and the physical domain solution is then obtained via the corresponding
2985
+ push-forward. Importantly, the push-forward of velocity as defined above maps divergences
2986
+ to divergences and preserves nullity of normal components. Similarly the push-forward of
2987
+ pressure preserves the nullity of the integral operator. These facts imply that the following
2988
+ commuting diagram exists:
2989
+ R −−−→ Φ
2990
+
2991
+ −−−→ Ψ
2992
+ ∇×
2993
+ −−−→ V
2994
+ ∇·
2995
+ −−−→ Q −−−→ 0
2996
+ ���ιΦ
2997
+ ���ιω
2998
+ ���ιu
2999
+ ���ιp
3000
+ R −−−→ Φ
3001
+
3002
+ −−−→ ˆΨ
3003
+ ∇×
3004
+ −−−→ ˆV
3005
+ ∇·
3006
+ −−−→ ˆQ −−−→ 0,
3007
+ (105)
3008
+ where now the hat spaces correspond to the ones defined over the parametric domain, and
3009
+ are identical to the ones used in the previous sections of this paper. Moreover, by composing
3010
+ the ι maps with the projectors from the de Rham complex in the square domain setting, we
3011
+ arrive at a new commuting diagram between the physical domain continuous spaces and the
3012
+ discrete spaces in the physical domain defined by the push-forward of the discrete spaces
3013
+ chosen for the unit square.
3014
+ For completeness we also define the 2D pull-back operators
3015
+ ιω(ψ) = ψ ◦ F,
3016
+ (106)
3017
+ ιu(v) = J(DF)−1(v ◦ F),
3018
+ (107)
3019
+ ιp(q) = J(q ◦ F).
3020
+ (108)
3021
+ 34
3022
+
3023
+ In 2D a commuting diagram also exists:
3024
+ R −−−→ Ψ
3025
+ ∇⊥
3026
+ −−−→ V
3027
+ ∇·
3028
+ −−−→ Q −−−→ 0
3029
+ ���ιω
3030
+ ���ιu
3031
+ ���ιp
3032
+ R −−−→ ˆΨ
3033
+ ∇⊥
3034
+ −−−→ ˆV
3035
+ ∇·
3036
+ −−−→ ˆQ −−−→ 0.
3037
+ (109)
3038
+ Next we begin the process of mapping the governing equations back to the reference
3039
+ domain. We start with Equations (6) - (8) for the rotational form of the 3D Navier-Stokes
3040
+ equations. The Stokes equations are recovered by simply removing the nonlinear term in the
3041
+ momentum equation, Equation (6), and noting now that the pressure becomes the standard
3042
+ kinematic pressure p. In the momentum equation, the viscous term is mapped back to the
3043
+ reference domain via
3044
+ (∇ × ω) ◦ F = J−1(DF)( ˆ∇ × ιω(ω)) = J−1(DF)( ˆ∇ × ˆω),
3045
+ (110)
3046
+ and the pressure term is mapped to
3047
+ (∇p) ◦ F = (DF)−T ˆ∇(ιΦ(p)) = (DF)−T ˆ∇(J−1ιp(p)) = (DF)−T ˆ∇(J−1ˆp).
3048
+ (111)
3049
+ Within the continuity equation, Equation (7), the divergence is mapped via
3050
+ (∇ · u) ◦ F = J−1 ˆ∇ · (ιu(u)) = J−1 ˆ∇ · ˆu.
3051
+ (112)
3052
+ Finally, in the constitutive law, Equation (8), the curl term is mapped similarly to the
3053
+ viscous momentum term
3054
+ (∇ × u) ◦ F = J−1(DF)( ˆ∇ × ιω(u)) = J−1(DF)( ˆ∇ × ((DF)Tu))
3055
+ = J−1(DF)( ˆ∇ × ((DF)T(J−1(DF)ˆu)))
3056
+ = J−1(DF)( ˆ∇ × (J−1Cˆu)).
3057
+ (113)
3058
+ Now we pull each equation back to the reference domain via the corresponding ι map,
3059
+ so the momentum equations are pulled back via ιu, the continuity equation is pulled back
3060
+ with ιp and the constitutive law is pulled back with ιω. For brevity, we will not state the
3061
+ full form of the mapped equations in 3D, but instead state just the 2D form. This arises in
3062
+ a similar way as the 2D rotational form of the Navier-Stokes equations was generated from
3063
+ the 3D equations. In particular we can simply write the equations out component-wise and
3064
+ note that z velocities as well as derivatives in the z direction are zero. This yields:
3065
+ 35
3066
+
3067
+ (a) Before strong enforcement of no pene-
3068
+ tration conditions
3069
+ (b) After strong enforcement of no penetra-
3070
+ tion conditions
3071
+ Figure 15: Example of collocation grid on a mapped domain for vorticity-velocity-pressure scheme
3072
+
3073
+
3074
+
3075
+
3076
+
3077
+
3078
+
3079
+
3080
+
3081
+
3082
+
3083
+
3084
+
3085
+
3086
+
3087
+
3088
+
3089
+
3090
+
3091
+
3092
+
3093
+
3094
+
3095
+
3096
+
3097
+
3098
+
3099
+
3100
+
3101
+
3102
+
3103
+
3104
+
3105
+
3106
+
3107
+
3108
+
3109
+
3110
+
3111
+
3112
+
3113
+
3114
+
3115
+
3116
+
3117
+
3118
+
3119
+
3120
+
3121
+ Given ν ∈ R+, ˆf : ˆΩ → R2, and ˆg : ∂ ˆΩ → R2, find ˆu : ˆΩ → R2, ˆp : ˆΩ → R, and
3122
+ ˆω : ˆΩ → R such that:
3123
+ ν ∂ˆω
3124
+ ∂ˆy + JC−1
3125
+ 11
3126
+ ∂(J−1ˆp)
3127
+ ∂ˆx
3128
+ + JC−1
3129
+ 12
3130
+ ∂(J−1ˆp)
3131
+ ∂ˆy
3132
+ = ˆf1
3133
+ in
3134
+ ˆΩ
3135
+ (114)
3136
+ − ν ∂ˆω
3137
+ ∂ˆx + JC−1
3138
+ 21
3139
+ ∂(J−1ˆp)
3140
+ ∂ˆx
3141
+ + JC−1
3142
+ 22
3143
+ ∂(J−1ˆp)
3144
+ ∂ˆy
3145
+ = ˆf2
3146
+ in
3147
+ ˆΩ
3148
+ (115)
3149
+ ˆ∇ · ˆu = 0
3150
+ in
3151
+ ˆΩ
3152
+ (116)
3153
+ ˆω − J−1( ∂
3154
+ ∂ˆx(J−1(C21ˆux + C22ˆuy)) − ∂
3155
+ ∂ˆy(J−1(C11ˆux + C12ˆuy))) = 0
3156
+ in
3157
+ ˆΩ
3158
+ (117)
3159
+ ˆu = ˆg
3160
+ on
3161
+ ∂ ˆΩ,
3162
+ (118)
3163
+ where ˆf = ιu(f) and ˆg = ιu(g).
3164
+ We collocate these equations in the same manner as in the previous sections to solve
3165
+ for the parametric domain variables ˆu, ˆp, and ˆω. The collocation points are chosen as the
3166
+ Greville abscissae in the parametric domain, and an example of the resulting points pushed
3167
+ forward into the physical domain is shown in Figure 15. No penetration boundary conditions
3168
+ are enforced strongly and no slip boundary conditions are enforced weakly with a suitable
3169
+ penalty term. For brevity we omit the full statement of the discrete problem and simply
3170
+ note that it leads to a linear system of equations (as we are focused in this section on Stokes
3171
+ flow).
3172
+ 36
3173
+
3174
+ 9. Numerical Results on Mapped Domains
3175
+ In this penultimate section we verify the performance of the vorticity-velocity-pressure
3176
+ collocation scheme on non-square domains. We first consider linear Couette flow to confirm
3177
+ that the expected convergence rates are maintained and then move on to modified lid-driven
3178
+ cavity flows in non-square setups.
3179
+ 9.1. Cylindrical Couette Flow
3180
+ The first problem posed on a mapped domain that we consider is Couette flow. This
3181
+ models the behavior of a fluid between 2 concentric cylinders, with the outer fixed and the
3182
+ inner rotating at a constant rate. We solve the problem over a quarter circle domain as shown
3183
+ in Figure 15, enforcing homogeneous Dirichlet boundary conditions on the outer cylindrical
3184
+ wall, zero normal and unit tangential velocity on the inner cylindrical wall, and zero pressure
3185
+ gradient on the horizontal and vertical boundaries. The last Neumann boundary condition
3186
+ is enforced using the Enhanced Collocation approach [41].
3187
+ The exact velocity field is given in polar coordinates as:
3188
+ ¯u =
3189
+ � (Ar + B/r) sin θ
3190
+ (Ar + B/r) sin θ
3191
+
3192
+ ,
3193
+ (119)
3194
+ with A = −Ωin
3195
+ δ2
3196
+ 1−δ2, B = Ωin
3197
+ r2
3198
+ in
3199
+ 1−δ2, Ωin =
3200
+ U
3201
+ rin, δ =
3202
+ rin
3203
+ rout, rin = 1 is the radius of the inner
3204
+ cylinder, rout = 2 is the radius of the outer cylinder, and the velocity of the inner cylinder
3205
+ has magnitude U = 1. The exact pressure field is zero everywhere, and the exact vorticity
3206
+ is a constant equal to 2A. We use a polar mapping to map between the parametric and
3207
+ physical domains:
3208
+ F(ξ1, ξ2) =
3209
+ � ((rout − rin)ξ2 + rin) sin(2πξ1)
3210
+ ((rout − rin)ξ2 + rin) cos(2πξ1)
3211
+
3212
+ .
3213
+ (120)
3214
+ In solving this problem with this mapping one can show analytically that the collocation
3215
+ approximation to the exact solution ˆu is a function of ˆy only, the collocation approximation
3216
+ to ˆv is zero, the collocation approximation to ˆp is zero, and the collocation approximation
3217
+ to ˆω is a constant. However, we assemble and solve the full linear system without utilizing
3218
+ this structure.
3219
+ Figure 16 shows the errors in the solution as a function of resolution. For the L2 norm
3220
+ and H1 semi-norm errors of velocity we recover the same rates are in the square domain
3221
+ setting. The collocation scheme also captures the zero pressure up to finite precision on the
3222
+ coarsest mesh as both the L2 and H1 errors are essentially zero. As the mesh is refined we see
3223
+ this error increase, which we attribute to worsening matrix conditioning and roundoff error
3224
+ effects. We also see the same rates as in square domains for the L2 convergence of vorticity.
3225
+ Note that a constant vorticity is also recovered even on the coarsest mesh, as evidenced by
3226
+ the numerically zero H1 semi-norm error. Like the pressure errors the H1 error grows with
3227
+ mesh refinement, and we believe the explanation is the same.
3228
+ 37
3229
+
3230
+ 10-2
3231
+ 10-1
3232
+ 10-10
3233
+ 10-8
3234
+ 10-6
3235
+ 10-4
3236
+ 10-2
3237
+ (a) Velocity L2 error
3238
+ 10-2
3239
+ 10-1
3240
+ 10-10
3241
+ 10-5
3242
+ 100
3243
+ (b) Velocity H1 error
3244
+ 10-2
3245
+ 10-1
3246
+ 4
3247
+ 6
3248
+ 8
3249
+ 10
3250
+ 12
3251
+ 14
3252
+ 16
3253
+ 10-16
3254
+ (c) Pressure L2 error
3255
+ 10-2
3256
+ 10-1
3257
+ 10-15
3258
+ 10-14
3259
+ 10-13
3260
+ (d) Pressure H1 error
3261
+ 10-2
3262
+ 10-1
3263
+ 10-10
3264
+ 10-5
3265
+ (e) Vorticity L2 error
3266
+ 10-2
3267
+ 10-1
3268
+ 10-15
3269
+ 10-14
3270
+ 10-13
3271
+ (f) Vorticity H1 error
3272
+ Figure 16: Errors in Couette flow solution for vorticity-velocity-pressure formulation
3273
+ 38
3274
+
3275
+ x
3276
+ y
3277
+ 0
3278
+ 0.2
3279
+ 0.4
3280
+ 0.6
3281
+ 0.8
3282
+ 1
3283
+ 0
3284
+ 0.1
3285
+ 0.2
3286
+ 0.3
3287
+ 0.4
3288
+ 0.5
3289
+ 0.6
3290
+ 0.7
3291
+ 0.8
3292
+ 0.9
3293
+ 1
3294
+ x
3295
+ y
3296
+ 0
3297
+ 0.2
3298
+ 0.4
3299
+ 0.6
3300
+ 0.8
3301
+ 1
3302
+ 0
3303
+ 0.1
3304
+ 0.2
3305
+ x
3306
+ y
3307
+ 0
3308
+ 0.2
3309
+ 0.4
3310
+ 0.6
3311
+ 0.8
3312
+ 1
3313
+ 0
3314
+ 0.1
3315
+ 0.2
3316
+ Lid-Driven Cavity Flow Over a Wavy Wall
3317
+ Figure 17: Mapped Stokes results for lid-driven cavity with varying numbers of bumps
3318
+ 9.2. Lid-Driven Cavity Over Wavy Wall
3319
+ Our final numerical test case concerns the Stokes flow in a 2D lid-driven cavity, similar
3320
+ to the square domain examples, but now with a non-flat bottom surface of the cavity. In
3321
+ particular, the mapping from parametric to physical domain is given by
3322
+ F(ξ1, ξ2) =
3323
+
3324
+ ξ1
3325
+ A(B(1 − ξ2) sin(Cπξ1) + ξ2)
3326
+
3327
+ ,
3328
+ (121)
3329
+ where A, B, and C are constants which control the shape of the domain. We use three
3330
+ combinations in this paper, in particular A = 1, B = 0.75, and C = 1 gives a domain with
3331
+ one bump, A = 0.25, B = 0.3, and C = 3 gives a domain with two bumps, and A = 0.25,
3332
+ B = 0.3, and C = 5 gives a domain with three bumps.
3333
+ Figure 17 shows the streamfunctions obtained with 64 elements and k′ = 2. Clearly we
3334
+ are able to recover symmetric fields in all cases which are appropriate for Stokes flow.
3335
+ 39
3336
+
3337
+ 10. Conclusions
3338
+ In this paper, two divergence-conforming collocation methodologies have been presented
3339
+ for solution of the steady, incompressible Navier-Stokes equations using a velocity-pressure
3340
+ formulation and a vorticity-velocity-pressure formulation.
3341
+ By employing B-spline spaces
3342
+ that conform to the de Rham complex, these methods produce velocity fields which are
3343
+ exactly pointwise divergence free. Moreover, by the nature of collocation methods, these
3344
+ methods are much less computationally expensive than traditional Galerkin finite element
3345
+ formulations as no costly numerical integrations are required. By applying the discretizations
3346
+ to benchmark problems in two and three dimensions we have shown that the methods retain
3347
+ a high order of accuracy. Moreover, we have seen that by re-writing the equations in the
3348
+ vorticity-velocity-pressure form many convergence rates are improved compared to those
3349
+ obtained with a velocity-pressure scheme. However, useful properties of the corresponding
3350
+ divergence-conforming B-spline Galerkin method, such as pressure and Reynolds robustness,
3351
+ are not maintained in these collocation schemes. Finally, methods for problems posed in
3352
+ more complicated domains were created by mapping unknowns and equations between the
3353
+ physical and reference domains using structure-preserving transformations.
3354
+ There are many interesting directions for future work. Collocation schemes that do retain
3355
+ pressure and Reynolds robustness properties would be useful, as would developing a strategy
3356
+ for stabilization of these types of collocation schemes in advection-dominated flow regimes.
3357
+ The schemes proposed in this paper could also be extended to the multi-patch setting to
3358
+ allow for simulations posed on even more complicated domains. The use of locally adaptive
3359
+ splines would also aid in maximizing the ratio of accuracy to cost in which collocation already
3360
+ excels. Finally, while collocation improves upon the cost of numerical integration, unsteady,
3361
+ incompressible Navier-Stokes solution strategies will still likely involve the solution of linear
3362
+ systems during each time step, and thus reducing cost of linear system solution is also very
3363
+ important.
3364
+ Acknowledgements
3365
+ This material is based upon work supported by the National Science Foundation Graduate
3366
+ Research Fellowship Program under Grant No. DGE-1656518. Any opinions, findings, and
3367
+ conclusions or recommendations expressed in this material are those of the authors and do
3368
+ not necessarily reflect the views of the National Science Foundation.
3369
+ References
3370
+ [1] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
3371
+ NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechan-
3372
+ ics and Engineering 194 (39-41) (2005) 4135–4195.
3373
+ [2] J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: Toward integration of
3374
+ CAD and FEA, John Wiley & Sons, 2009.
3375
+ [3] J. A. Evans, Y. Bazilevs, I. Babuˇska, T. J. Hughes, n-widths, sup–infs, and optimality
3376
+ ratios for the k-version of the isogeometric finite element method, Computer Methods
3377
+ in Applied Mechanics and Engineering 198 (21-26) (2009) 1726–1741.
3378
+ 40
3379
+
3380
+ [4] F. Auricchio, L. B. Da Veiga, T. Hughes, A. Reali, G. Sangalli, Isogeometric collocation
3381
+ methods, Mathematical Models and Methods in Applied Sciences 20 (11) (2010) 2075–
3382
+ 2107.
3383
+ [5] A. Reali, T. J. Hughes, An introduction to isogeometric collocation methods, in: Isoge-
3384
+ ometric Methods for Numerical Simulation, Springer, 2015, pp. 173–204.
3385
+ [6] F. Auricchio, L. B. Da Veiga, T. J. Hughes, A. Reali, G. Sangalli, Isogeometric colloca-
3386
+ tion for elastostatics and explicit dynamics, Computer Methods in Applied Mechanics
3387
+ and Engineering 249 (2012) 2–14.
3388
+ [7] J. A. Evans, R. R. Hiemstra, T. J. Hughes, A. Reali, Explicit higher-order accurate iso-
3389
+ geometric collocation methods for structural dynamics, Computer Methods in Applied
3390
+ Mechanics and Engineering 338 (2018) 208–240.
3391
+ [8] R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, T. J. Hughes, Isogeometric collocation
3392
+ for large deformation elasticity and frictional contact problems, Computer Methods in
3393
+ Applied Mechanics and Engineering 296 (2015) 73–112.
3394
+ [9] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, T. J. Hughes, Isogeometric collocation:
3395
+ Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS
3396
+ discretizations, Computer Methods in Applied Mechanics and Engineering 267 (2013)
3397
+ 170–232.
3398
+ [10] F. Fahrendorf, S. Morganti, A. Reali, T. J. Hughes, L. De Lorenzis, Mixed stress-
3399
+ displacement isogeometric collocation for nearly incompressible elasticity and elasto-
3400
+ plasticity, Computer Methods in Applied Mechanics and Engineering 369 (2020) 113112.
3401
+ [11] S. Morganti, F. Fahrendorf, L. De Lorenzis, J. Evans, T. Hughes, A. Reali, Isogeometric
3402
+ collocation: A mixed displacement-pressure method for nearly incompressible elasticity,
3403
+ CMES–Computer Modeling in Engineering & Sciences 129 (2021) 1125–1150.
3404
+ [12] E. Zampieri, L. F. Pavarino, Isogeometric collocation discretizations for acoustic wave
3405
+ problems, Computer Methods in Applied Mechanics and Engineering 385 (2021) 114047.
3406
+ [13] R. Jahanbin, S. Rahman, An isogeometric collocation method for efficient random field
3407
+ discretization, International Journal for Numerical Methods in Engineering 117 (3)
3408
+ (2019) 344–369.
3409
+ [14] M. L. Mika, R. R. Hiemstra, D. Schillinger, T. J. Hughes, A comparison of matrix-
3410
+ free isogeometric Galerkin and collocation methods for karhunen–loeve expansion, in:
3411
+ Current Trends and Open Problems in Computational Mechanics, Springer, 2022, pp.
3412
+ 329–341.
3413
+ [15] M. M¨oller, D. Toshniwal, F. van Ruiten, Physics-informed machine learning embed-
3414
+ ded into isogeometric analysis, KEY ENABLING TECHNOLOGY FOR SCIENTIFIC
3415
+ MACHINE LEARNING (2021) 57.
3416
+ 41
3417
+
3418
+ [16] M. Torre, S. Morganti, F. S. Pasqualini, A. D¨uster, A. Reali, Immersed isogeometric
3419
+ analysis based on a hybrid collocation/finite cell method, Computer Methods in Applied
3420
+ Mechanics and Engineering 405 (2023) 115856.
3421
+ [17] O. Botella, On a collocation B-spline method for the solution of the Navier-Stokes
3422
+ equations, Computers & Fluids 31 (4-7) (2002) 397–420.
3423
+ [18] R. W. Johnson, Higher order B-spline collocation at the Greville abscissae, Applied
3424
+ Numerical Mathematics 52 (1) (2005) 63–75.
3425
+ [19] M. Lee, R. D. Moser, Direct numerical simulation of turbulent channel flow up to
3426
+ Reτ ≈ 5200, Journal of fluid mechanics 774 (2015) 395–415.
3427
+ [20] S. Morganti, C. Callari, F. Auricchio, A. Reali, Mixed isogeometric collocation methods
3428
+ for the simulation of poromechanics problems in 1D, Meccanica 53 (6) (2018) 1441–1454.
3429
+ [21] A. Buffa, C. de Falco, G. Sangalli, Isogeometric analysis: Stable elements for the 2D
3430
+ Stokes equation, International Journal for Numerical Methods in Fluids 65 (11-12)
3431
+ (2011) 1407–1422.
3432
+ [22] J. A. Evans, T. J. Hughes, Isogeometric divergence-conforming B-splines for the steady
3433
+ Navier-Stokes equations, Mathematical Models and Methods in Applied Sciences 23 (08)
3434
+ (2013) 1421–1478.
3435
+ [23] J. A. Evans, T. J. Hughes, Isogeometric divergence-conforming B-splines for the un-
3436
+ steady Navier-Stokes equations, Journal of Computational Physics 241 (2013) 141–167.
3437
+ [24] V. John, A. Linke, C. Merdon, M. Neilan, L. G. Rebholz, On the divergence constraint
3438
+ in mixed finite element methods for incompressible flows, SIAM Review 59 (3) (2017)
3439
+ 492–544.
3440
+ [25] T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, Y. Bazilevs, Isogeometric
3441
+ divergence-conforming variational multiscale formulation of incompressible turbulent
3442
+ flows, Computer Methods in Applied Mechanics and Engineering 316 (2017) 859–879.
3443
+ [26] J. A. Evans, C. Coley, R. M. Aronson, C. L. Wetterer-Nelson, Y. Bazilevs, Residual-
3444
+ based large eddy simulation with isogeometric divergence-conforming discretizations, in:
3445
+ Frontiers in Computational Fluid-Structure Interaction and Flow Simulation, Springer,
3446
+ 2018, pp. 91–130.
3447
+ [27] J. A. Evans, D. Kamensky, Y. Bazilevs, Variational multiscale modeling with discretely
3448
+ divergence-free subscales, Computers & Mathematics with Applications 80 (11) (2020)
3449
+ 2517–2537.
3450
+ [28] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. Hughes, Immersoge-
3451
+ ometric cardiovascular fluid-structure interaction analysis with divergence-conforming
3452
+ B-splines, Computer Methods in Applied Mechanics and Engineering 314 (2017) 408–
3453
+ 472.
3454
+ 42
3455
+
3456
+ [29] C. Coley, J. Benzaken, J. A. Evans, A geometric multigrid method for isogeometric
3457
+ compatible discretizations of the generalized Stokes and Oseen problems, Numerical
3458
+ Linear Algebra with Applications 25 (3) (2018) e2145.
3459
+ [30] J. A. Evans, M. A. Scott, K. M. Shepherd, D. C. Thomas, R. V´azquez Hern´andez,
3460
+ Hierarchical b-spline complexes of discrete differential forms, IMA Journal of Numerical
3461
+ Analysis 40 (1) (2020) 422–473.
3462
+ [31] K. A. Johannessen, M. Kumar, T. Kvamsdal, Divergence-conforming discretization for
3463
+ stokes problem on locally refined meshes using lr b-splines, Computer Methods in Ap-
3464
+ plied Mechanics and Engineering 293 (2015) 38–70.
3465
+ [32] Y. Zhang, A. Palha, M. Gerritsma, L. G. Rebholz, A mass-, kinetic energy- and
3466
+ helicity-conserving mimetic dual-field discretization for three-dimensional incompress-
3467
+ ible Navier-Stokes equations, part i: Periodic domains (2021). arXiv:2104.13023.
3468
+ [33] M. Hanot, An arbitrary order and pointwise divergence-free finite element scheme for
3469
+ the incompressible 3D Navier-Stokes equations (2021). arXiv:2106.05146.
3470
+ [34] J. Gopalakrishnan, L. Kogler, P. L. Lederer, J. Sch¨oberl, Minimal order H(div)-
3471
+ conforming velocity-vorticity approximations for incompressible fluids, arXiv preprint
3472
+ arXiv:2112.00089 (2021).
3473
+ [35] J. A. Evans, T. J. Hughes, Isogeometric divergence-conforming b-splines for the Darcy–
3474
+ Stokes–Brinkman equations, Mathematical Models and Methods in Applied Sciences
3475
+ 23 (04) (2013) 671–741.
3476
+ [36] A. Buffa, J. Rivas, G. Sangalli, R. V´azquez, Isogeometric discrete differential forms in
3477
+ three dimensions, SIAM Journal on Numerical Analysis 49 (2) (2011) 818–844.
3478
+ [37] A. Buffa, G. Sangalli, R. V´azquez, Isogeometric analysis in electromagnetics: B-splines
3479
+ approximation, Computer Methods in Applied Mechanics and Engineering 199 (17-20)
3480
+ (2010) 1143–1152.
3481
+ [38] H. Gomez, L. De Lorenzis, The variational collocation method, Computer Methods in
3482
+ Applied Mechanics and Engineering 309 (2016) 152–181.
3483
+ [39] M. Montardini, G. Sangalli, L. Tamellini, Optimal-order isogeometric collocation at
3484
+ Galerkin superconvergent points, Computer Methods in Applied Mechanics and Engi-
3485
+ neering 316 (2017) 741–757.
3486
+ [40] S. Demko, On the existence of interpolating projections onto spline spaces, Journal of
3487
+ Approximation Theory 43 (2) (1985) 151–156.
3488
+ [41] L. De Lorenzis, J. Evans, T. J. Hughes, A. Reali, Isogeometric collocation: Neumann
3489
+ boundary conditions and contact, Computer Methods in Applied Mechanics and Engi-
3490
+ neering 284 (2015) 21–54.
3491
+ 43
3492
+
3493
+ [42] U. Ghia, K. N. Ghia, C. Shin, High-Re solutions for incompressible flow using the
3494
+ Navier-Stokes equations and a multigrid method, Journal of Computational Physics
3495
+ 48 (3) (1982) 387–411.
3496
+ [43] O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Com-
3497
+ puters & Fluids 27 (4) (1998) 421–433.
3498
+ [44] H. C. Ku, R. S. Hirsh, T. D. Taylor, A pseudospectral method for solution of the three-
3499
+ dimensional incompressible Navier-Stokes equations, Journal of Computational Physics
3500
+ 70 (2) (1987) 439–462.
3501
+ 44
3502
+
BtE2T4oBgHgl3EQfRwcX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00fcafbdabe0c0941992ff53535090bfa53a07827e15d7f80cdc0341a729fa5a
3
+ size 157338
CdE4T4oBgHgl3EQf5g79/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c35796eca6ec3774d331ed100a47f01a0d3312bdcc06e7dfe7c2ec9e687844a5
3
+ size 67509
CtAzT4oBgHgl3EQfTvyL/content/2301.01255v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ff3c6d408a4a4616a7b3f2c657a82214976bd39364be00cbed446a5071719a
3
+ size 442103