jackkuo commited on
Commit
ec01655
·
verified ·
1 Parent(s): fd221eb

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE1T4oBgHgl3EQfoQQY/content/tmp_files/2301.03317v1.pdf.txt +2445 -0
  2. -NE1T4oBgHgl3EQfoQQY/content/tmp_files/load_file.txt +0 -0
  3. -NFLT4oBgHgl3EQfCi71/vector_store/index.faiss +3 -0
  4. -dE1T4oBgHgl3EQfCgLC/content/tmp_files/2301.02866v1.pdf.txt +1221 -0
  5. -dE1T4oBgHgl3EQfCgLC/content/tmp_files/load_file.txt +0 -0
  6. .gitattributes +58 -0
  7. 09E1T4oBgHgl3EQfRgOv/content/tmp_files/2301.03054v1.pdf.txt +795 -0
  8. 09E1T4oBgHgl3EQfRgOv/content/tmp_files/load_file.txt +0 -0
  9. 0dE4T4oBgHgl3EQfyw3J/content/tmp_files/2301.05269v1.pdf.txt +1080 -0
  10. 0dE4T4oBgHgl3EQfyw3J/content/tmp_files/load_file.txt +0 -0
  11. 19AyT4oBgHgl3EQf1fl-/content/2301.00736v1.pdf +3 -0
  12. 19AyT4oBgHgl3EQf1fl-/vector_store/index.pkl +3 -0
  13. 1NAzT4oBgHgl3EQfevyy/content/tmp_files/2301.01442v1.pdf.txt +1749 -0
  14. 1NAzT4oBgHgl3EQfevyy/content/tmp_files/load_file.txt +0 -0
  15. 1tFQT4oBgHgl3EQf1jZM/content/tmp_files/2301.13420v1.pdf.txt +2265 -0
  16. 1tFQT4oBgHgl3EQf1jZM/content/tmp_files/load_file.txt +0 -0
  17. 29E4T4oBgHgl3EQf0A2b/vector_store/index.pkl +3 -0
  18. 3NFRT4oBgHgl3EQfoDdP/content/tmp_files/2301.13607v1.pdf.txt +2438 -0
  19. 3NFRT4oBgHgl3EQfoDdP/content/tmp_files/load_file.txt +0 -0
  20. 3tAzT4oBgHgl3EQfuf3H/vector_store/index.faiss +3 -0
  21. 49E4T4oBgHgl3EQf1A2T/content/tmp_files/2301.05287v1.pdf.txt +2572 -0
  22. 49E4T4oBgHgl3EQf1A2T/content/tmp_files/load_file.txt +0 -0
  23. 4NE2T4oBgHgl3EQfOQYe/content/2301.03745v1.pdf +3 -0
  24. 4NE2T4oBgHgl3EQfOQYe/vector_store/index.pkl +3 -0
  25. 5NFKT4oBgHgl3EQf-C45/vector_store/index.faiss +3 -0
  26. 5dE0T4oBgHgl3EQfegDz/vector_store/index.faiss +3 -0
  27. 5tE4T4oBgHgl3EQfBgtg/content/tmp_files/2301.04852v1.pdf.txt +1129 -0
  28. 5tE4T4oBgHgl3EQfBgtg/content/tmp_files/load_file.txt +333 -0
  29. 69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf +3 -0
  30. 69FKT4oBgHgl3EQf_y40/vector_store/index.faiss +3 -0
  31. 69FKT4oBgHgl3EQf_y40/vector_store/index.pkl +3 -0
  32. 6NE0T4oBgHgl3EQfewDQ/vector_store/index.faiss +3 -0
  33. 6tE0T4oBgHgl3EQfwAE6/content/2301.02625v1.pdf +3 -0
  34. 6tE0T4oBgHgl3EQfwAE6/vector_store/index.pkl +3 -0
  35. AtAzT4oBgHgl3EQfv_4W/vector_store/index.faiss +3 -0
  36. B9FJT4oBgHgl3EQfsy1U/vector_store/index.faiss +3 -0
  37. BtAyT4oBgHgl3EQf4PqZ/content/2301.00783v1.pdf +3 -0
  38. E9E0T4oBgHgl3EQfzAJD/content/tmp_files/2301.02666v1.pdf.txt +1691 -0
  39. E9E0T4oBgHgl3EQfzAJD/content/tmp_files/load_file.txt +0 -0
  40. EdE2T4oBgHgl3EQfowg5/content/tmp_files/2301.04021v1.pdf.txt +218 -0
  41. EdE2T4oBgHgl3EQfowg5/content/tmp_files/load_file.txt +287 -0
  42. EtE1T4oBgHgl3EQf-gZN/content/2301.03569v1.pdf +3 -0
  43. EtE1T4oBgHgl3EQf-gZN/vector_store/index.faiss +3 -0
  44. F9E0T4oBgHgl3EQfhQEq/content/2301.02428v1.pdf +3 -0
  45. F9E0T4oBgHgl3EQfhQEq/vector_store/index.pkl +3 -0
  46. FNAzT4oBgHgl3EQfUPz_/content/2301.01265v1.pdf +3 -0
  47. FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf +3 -0
  48. FNE1T4oBgHgl3EQfEwMv/vector_store/index.faiss +3 -0
  49. FNE1T4oBgHgl3EQfEwMv/vector_store/index.pkl +3 -0
  50. G9E5T4oBgHgl3EQfWA_j/content/2301.05556v1.pdf +3 -0
-NE1T4oBgHgl3EQfoQQY/content/tmp_files/2301.03317v1.pdf.txt ADDED
@@ -0,0 +1,2445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ ATM-R: An Adaptive Tradeoff Model with
3
+ Reference Points for Constrained Multiobjective
4
+ Evolutionary Optimization
5
+ Bing-Chuan Wang, Yunchuan Qin, Xian-Bing Meng, Zhi-Zhong Liu
6
+ Abstract—The goal of constrained multiobjective evolutionary
7
+ optimization is to obtain a set of well-converged and well-
8
+ distributed feasible solutions. To complete this goal, there should
9
+ be a tradeoff among feasibility, diversity, and convergence.
10
+ However, it is nontrivial to balance these three elements simulta-
11
+ neously by using a single tradeoff model since the importance of
12
+ each element varies in different evolutionary phases. As an alter-
13
+ native, we adapt different tradeoff models in different phases and
14
+ propose a novel algorithm called ATM-R. In the infeasible phase,
15
+ ATM-R takes the tradeoff between diversity and feasibility into
16
+ account, aiming to move the population toward feasible regions
17
+ from diverse search directions. In the semi-feasible phase, ATM-R
18
+ promotes the transition from “the tradeoff between feasibility and
19
+ diversity” to “the tradeoff between diversity and convergence”,
20
+ which can facilitate the discovering of enough feasible regions
21
+ and speed up the search for the feasible Pareto optima in
22
+ succession. In the feasible phase, the tradeoff between diversity
23
+ and convergence is considered to attain a set of well-converged
24
+ and well-distributed feasible solutions. It is worth noting that the
25
+ merits of reference points are leveraged in ATM-R to accomplish
26
+ these tradeoff models. Also, in ATM-R, a multiphase mating
27
+ selection strategy is developed to generate promising solutions
28
+ beneficial to different evolutionary phases. Systemic experiments
29
+ on a wide range of benchmark test functions demonstrate that
30
+ ATM-R is effective and competitive, compared against five state-
31
+ of-the-art constrained multiobjective optimization evolutionary
32
+ algorithms.
33
+ Index Terms—Constrained multiobjective evolutionary opti-
34
+ mization, adaptive tradeoff model, reference point, multiphase
35
+ mating selection
36
+ I. INTRODUCTION
37
+ M
38
+ ANY scientific or engineering problems involve the
39
+ optimization of conflicting objectives subject to con-
40
+ straints, which can be formulated as constrained multiobjective
41
+ optimization problems (CMOPs) [1]:
42
+ min
43
+ F(x) = (f1(x), f2(x), · · · , fm(x))T ∈ Rm
44
+ s.t.
45
+ gj(x) < 0, j = 1, · · · , ng
46
+ hj(x) = 0, j = ng + 1, · · · , ng + nh
47
+ xj ≤ xj ≤ xj, j = 1, · · · , D
48
+ ,
49
+ (1)
50
+ B.-C. Wang is with the School of Automation, Central South University,
51
+ Changsha 410083, China (email: [email protected]).
52
+ Y. Qin and Z.-Z. Liu are with the College of Information Science and
53
+ Electronic Engineering, Hunan University, Changsha 410082, China (e-mail:
54
55
+ X.-B. Meng is with the School of Computer Science and Engineering,
56
+ South China University of Technology, Guangzhou 510006, China (e-mail:
57
58
+ where F(x) denotes the objective vector consisting of m
59
+ conflicting objectives (i.e., fi(x), i
60
+ =
61
+ 1, · · · , m); x
62
+ =
63
+ (x1, · · · , xD)T is a D-dimensional decision vector/solution;
64
+ xj and xj are the lower and upper bounds of xj, respectively;
65
+ S = �D
66
+ j=1[xj, xj] refers to the decision space; gj(x) and
67
+ hj(x) represent the jth inequality and (j − ng)th equality
68
+ constraints, respectively; ng and nh are the numbers of the
69
+ inequality and equality constraints, respectively.
70
+ When solving a CMOP, we always quantify constraint
71
+ violation by the degree of constraint violation:
72
+ G(x) =
73
+ ng+nh
74
+
75
+ j=1
76
+ Gj(x).
77
+ (2)
78
+ Gj(x) denotes the degree of constraint violation of the jth
79
+ constraint [2]:
80
+ Gj(x) =
81
+
82
+ max(0, gj(x)),
83
+ 1 ≤ j ≤ ng
84
+ max(0, |hj(x)| − δ),
85
+ ng + 1 ≤ j ≤ ng + nh
86
+ (3)
87
+ where δ is a small positive value used to relax an equality
88
+ constraint to some degree. A solution x is called a feasible
89
+ solution, if and only if G(x) = 0. All feasible solutions
90
+ constitute the feasible region: Ω = {x ∈ RD|G(x) = 0}. For
91
+ two solutions xu, xv ∈ Ω, xu is said to Pareto dominate xv,
92
+ denoted as xu ≺ xv, if and only if ∀j ∈ {1, · · · , m}, fj(xu) ≤
93
+ fj(xv) � ∃j ∈ {1, · · · , m}, fj(xu) < fj(xv). A solution
94
+ xp ∈ Ω is considered as a Pareto optimum if and only if
95
+ ¬∃xv ∈ Ω, xv ≺ xp. The set of all Pareto optima is called
96
+ the constrained Pareto set, and its image in the objective
97
+ space is called the constrained Pareto front (CPF). The goal
98
+ of constrained multiobjective evolutionary optimization is to
99
+ pursue a set of well-converged and well-distributed feasible
100
+ solutions to approximate the CPF.
101
+ To complete this goal, a consensus has been reached in the
102
+ community of constrained multiobjective optimization that a
103
+ good tradeoff among feasibility, diversity, and convergence
104
+ should be achieved [3]. It is worth noting that the impor-
105
+ tance of these three elements varies in different evolutionary
106
+ phases. Let us take the element of feasibility for example. In
107
+ the infeasible phase, this element is very important because
108
+ feasibility information plays an indispensable role in locating
109
+ feasible regions, which is crucial for constrained multiobjec-
110
+ tive optimization. However, in the feasible phase, this element
111
+ is negligible as all solutions become feasible. We only need to
112
+ consider the tradeoff between diversity and convergence. Due
113
+ arXiv:2301.03317v1 [cs.NE] 9 Jan 2023
114
+
115
+ 2
116
+ Convergence
117
+ Convergence
118
+ tradeoff
119
+ tradeoff
120
+ transition
121
+ Population is
122
+ infeasible
123
+ Population is
124
+ feasible
125
+ Population is
126
+ semi-feasible
127
+ Diversity
128
+ Diversity
129
+ Feasibility
130
+ Feasibility
131
+ Fig. 1. Task decomposition of achieving a tradeoff among feasibility, diversity,
132
+ and convergence.
133
+ to their varied importance, it is nontrivial to balance these three
134
+ elements simultaneously by using a single tradeoff model.
135
+ As an alternative, we adapt different tradeoff models in
136
+ different evolutionary phases, proposing an adaptive tradeoff
137
+ model with reference points (ATM-R) to handle CMOPs.
138
+ Fig. 1 depicts the tradeoffs considered in ATM-R:
139
+ • achieving a tradeoff between feasibility and diversity in
140
+ the infeasible phase: when the population is entirely
141
+ infeasible, the primary goal is to find as many feasible
142
+ regions as possible since the Pareto optima may be scat-
143
+ tered in different feasible regions. To this end, a tradeoff
144
+ between feasibility and diversity should be achieved to
145
+ move the population toward the feasible regions from
146
+ diverse search directions.
147
+ • promoting the transition from “the tradeoff between fea-
148
+ sibility and diversity” to “the tradeoff between diversity
149
+ and convergence” in the semi-feasible phase: when the
150
+ population is semi-feasible (i.e., the population contains
151
+ both infeasible and feasible solutions), two situations
152
+ should be considered. In the early stage, only a few
153
+ feasible regions are discovered. In this case, the tradeoff
154
+ between feasibility and diversity should still be prioritized
155
+ to find more promising feasible regions. Once enough
156
+ feasible regions are located, in the later stage, attention
157
+ should be paid to drive the population toward the CPF
158
+ quickly and make them uniformly spread over the CPF
159
+ simultaneously. Thus, the tradeoff between convergence
160
+ and diversity should be concentrated on. In summary, in
161
+ this phase, we should shift from “the tradeoff between
162
+ feasibility and diversity” to “the tradeoff between diver-
163
+ sity and convergence” [3].
164
+ • achieving a tradeoff between diversity and convergence
165
+ in the feasible phase: when the population is completely
166
+ feasible, the final task is to move the feasible solutions
167
+ toward the CPF quickly while maintaining good diversity.
168
+ Apparently, a tradeoff between diversity and convergence
169
+ should be realized [4].
170
+ In summary, the core of a CMOEA is how to accomplish
171
+ the above tradeoffs. The tradeoff in the feasible phase has
172
+ been well studied in the community of evolutionary multiob-
173
+ jective optimization. For convenience, in ATM-R, an off-the-
174
+ shelf unconstrained multiobjective optimization evolutionary
175
+ algorithm (MOEA) is utilized to achieve this tradeoff directly.
176
+ As for the tradeoffs in the other two phases, the related
177
+ studies remain relatively scarce. Especially for the tradeoff
178
+ in the semi-feasible phase, little research focuses on this
179
+ topic. Indeed, to achieve the tradeoffs in these two phases, an
180
+ important concern is how to deal with the infeasible solutions.
181
+ Past experience in the community of evolutionary constrained
182
+ multiobjective optimization has shown that the infeasible so-
183
+ lutions can not only facilitate maintaining diversity but also
184
+ contribute to speeding up the convergence. In ATM-R, the
185
+ merits of reference points are leveraged to select different
186
+ kinds of infeasible solutions suitable for different evolutionary
187
+ phases. In summary, the main contributions of this paper are
188
+ as follows:
189
+ • Instead of using a single tradeoff model, we adapt dif-
190
+ ferent tradeoff models in different evolutionary phases,
191
+ proposing a novel constrained multiobjective optimiza-
192
+ tion algorithm (CMOEA) called ATM-R. Although it is
193
+ inevitable for an algorithm to experience three phases
194
+ during the evolution, few attempts have been made to
195
+ develop alternate tradeoff models for different phases to
196
+ facilitate a more explicit adaptation.
197
+ • By leveraging the merits of reference points, we provide
198
+ a new perspective that selects promising infeasible so-
199
+ lutions suitable for different evolutionary phases. To the
200
+ best of our knowledge, relevant work along this direction
201
+ remains scarce.
202
+ • A multiphase mating selection strategy is developed in
203
+ this paper that adaptively selects suitable mating parents
204
+ for different evolutionary phases.
205
+ • Systemic experiments have been implemented on three
206
+ sets of test suites including 36 benchmark CMOPs to
207
+ validate the effectiveness of ATM-R. Comparison against
208
+ five state-of-the-art CMOEAs suggests that ATM-R is
209
+ significantly superior or comparable to the contender
210
+ algorithms on most of the test problems. Additionally, the
211
+ advantages of some important algorithmic components in
212
+ ATM-R have been verified.
213
+ The rest of this paper is organized as follows. Section II
214
+ conducts a brief review of related CMOEAs. The details of
215
+ ATM-R are described in Section III. The performance of ATM-
216
+ R is compared with five representative CMOEAs in Section
217
+ IV. Section V presents some further analyses of ATM-R in
218
+ depth. The concluding remarks and future work are given in
219
+ Section VI.
220
+ II. RELATED WORK
221
+ Constrained multiobjective optimization has become a hot
222
+ topic in the community of evolutionary computation and
223
+ numerous CMOEAs have been proposed. Based on whether
224
+ infeasible solutions are utilized, these CMOEAs can be clas-
225
+ sified into two categories: feasibility-driven CMOEAs and
226
+ infeasibility-assisted CMOEAs.
227
+ A. Feasibility-Driven CMOEAs
228
+ A feasibility-driven CMOEA is driven by feasibility infor-
229
+ mation, in which feasible solutions are considered to be better
230
+ than infeasible ones. Some feasibility-driven CMOEAs use
231
+ the constrained dominance principle (CDP) to compare two
232
+ solutions [5]. In the CDP, a solution xu is said to be better
233
+
234
+ 3
235
+ than another solution xv, if one of the following conditions is
236
+ met:
237
+ • both xu and xv are infeasible, and G(xu) < G(xv);
238
+ • xu is feasible and xv is infeasible;
239
+ • both xu and xv are feasible, and xu ≺ xv.
240
+ Due to its preference for feasible solutions, the CDP can
241
+ motivate the population toward feasible regions quickly. It has
242
+ been widely integrated with different kinds of MOEAs [6],
243
+ [7] and used in a spectrum of engineering optimization prob-
244
+ lems [8], [9]. Liu et al. [6] combined an angle-based selection
245
+ strategy, the shift-based density estimation strategy, and the
246
+ CDP for constrained many-objective optimization. Jain and
247
+ Deb [7] proposed a reference-point-based nondominated sort-
248
+ ing approach, which is integrated with the CDP for constrained
249
+ many-objective optimization. Jan and Khanum [10] embedded
250
+ the CDP into the framework of MOEA/D and compared its
251
+ performance with that of the stochastic ranking [11]. CDP-
252
+ based CMOEAs are often used as the baseline algorithms
253
+ when evaluating the performance of a CMOEA [12]–[14].
254
+ The feasibility rule, which is widely used for constrained
255
+ single-objective optimization, has been extended to solve
256
+ CMOPs. Liu et al. [15] combined the feasibility rule with an
257
+ indicator-based MOEA and compared its performance with
258
+ that of some other kinds of CMOEAs. Fan et al. [16] carried
259
+ out a comparison study on MOEA/D for constrained multiob-
260
+ jective optimization. Different constraint-handling techniques
261
+ including the feasibility rule are embedded into the framework
262
+ of MOEA/D.
263
+ Some CMOEAs put emphasis on constraints when the
264
+ population contains no feasible solutions. Woldesenbet and
265
+ Yen [17] presented a self-adaptive penalty method to solve
266
+ CMOPs, in which an adaptive penalty function and a dis-
267
+ tance measure are combined for constraint-handling. In fact,
268
+ when the population is entirely infeasible, the self-adaptive
269
+ penalty method compares two solutions based on constraints
270
+ regardless of objectives. Liu and Wang [18] presented a two-
271
+ phase CMOEA to solve CMOPs. When the population is
272
+ entirely infeasible, all objectives are combined together and the
273
+ feasibility rule is used to tackle constraints. Due to the superior
274
+ capability of its search algorithm, the two-phase CMOEA can
275
+ handle complex constraints in the decision space. Jimenez et
276
+ al. [19] designed a CMOEA for constrained multiobjective
277
+ optimization, in which the min-max formulation is used to
278
+ tackle constraints. In addition, the feasibility rule is used to
279
+ compare two solutions when an offspring is inserted into the
280
+ new population. Miyakawa et al.
281
+ [20] developed a two-
282
+ stage nondominated sorting method to solve CMOPs. The
283
+ population is divided into several fronts by the nondominated
284
+ sorting according to constraints. The obtained fronts are further
285
+ partitioned by the nondominated sorting based on objectives.
286
+ In this manner, constraints are prior to objectives in environ-
287
+ mental selection.
288
+ B. Infeasibility-assisted CMOEAs
289
+ An infeasibility-assisted CMOEA takes advantage of in-
290
+ feasible solutions for constrained multiobjective optimization.
291
+ Most state-of-the-art CMOEAs fall into this category.
292
+ Some CMOEAs take advantage of infeasible solutions
293
+ implicitly by using a comparison criterion that takes both
294
+ constraints and objectives into account. Ma and Wang [3] pro-
295
+ posed a shifted-based penalty function, in which an infeasible
296
+ solution is penalized based on the information provided by the
297
+ feasible solutions nearby. Jiao et al. [21] proposed a modified
298
+ objective function method. When the population is entirely
299
+ infeasible, the modified objective function is equivalent to
300
+ a distance measure in which constraints and objectives are
301
+ considered equally important. Fan et al. [?] presented an
302
+ angle-based CDP for constrained multiobjective optimization.
303
+ Given a feasible solution and an infeasible solution, if the
304
+ angle between these two solutions is smaller than a predefined
305
+ threshold, they would be nondominated each other. Thus, some
306
+ infeasible solutions could enter into the new population instead
307
+ of some feasible ones. Young [22] proposed a blended ranking
308
+ measure to select solutions. By blending an individual’s rank
309
+ in the objective space with its rank in the constraint space, an
310
+ infeasible solution may be better than a feasible one. Similarly,
311
+ Ma et al. [13] designed a new fitness function with two
312
+ rankings, in which one ranking value is obtained based on the
313
+ CDP and the other is calculated based on the Pareto dominance
314
+ without considering constraints. The ε constrained method can
315
+ use infeasibility information by tuning a threshold value ε [2];
316
+ thus, it has been widely used to solve CMOPs [23]. Zapotecas-
317
+ Mart´ınez and Ponsich [24] combined MOEA/D with the ε
318
+ constrained method to solve CMOPs, in which the ε value
319
+ is set according to the degree of constraint violation. Fan et
320
+ al. [25] improved the ε constrained method by setting the ε
321
+ value dynamically. Zhou et al. [26] extended the ε constrained
322
+ method to solve CMOPs. When the degree of constraint
323
+ violation of an infeasible solution is larger than the ε value, its
324
+ diversity will be carefully maintained. The stochastic ranking
325
+ that is popular for constrained single-objective optimization
326
+ has also been extended to solve CMOPs [15], [27].
327
+ Some CMOEAs leverage the advantages of infeasible so-
328
+ lutions explicitly by archiving or coevolution. Ray et al. [28]
329
+ proposed an infeasibility-driven EA, in which a small per-
330
+ centage of infeasible solutions close to the constraint bound-
331
+ aries are maintained. Li et al. [29] designed a two-archive
332
+ EA for constrained multiobjective optimization. An archive
333
+ is used to promote convergence, while the other is used
334
+ to maintain diversity. The diversity archive evolves without
335
+ considering constraints; thus, infeasible solutions with good
336
+ objective function values can be fully used. Liu et al. [4]
337
+ tried to solve CMOPs through bidirectional coevolution. The
338
+ CDP is used to drive the main population toward the CPF
339
+ from the feasible side of the search space. In addition, a
340
+ nondominated sorting procedure and an angle-based selection
341
+ scheme are conducted in sequence to motivate the population
342
+ toward the CPF within the infeasible region. Tian et al. [30]
343
+ developed a coevolutionary framework for constrained mul-
344
+ tiobjective optimization. Similarly, one population is updated
345
+ by the CDP, while the other is updated by an unconstrained
346
+ MOEA. Additionally, the elites of these two populations are
347
+ selected to generate offspring. Ishibuchi et al. [31] designed
348
+ a dual-grid model of MOEA/D for constrained multiobjective
349
+ optimization. Two populations are maintained and infeasible
350
+
351
+ 4
352
+ solutions with good objective function values are preferred
353
+ in the secondary population. Zhu et al. [32] employed two
354
+ types of weight vectors in MOEA/D to solve CMOPs. The
355
+ solutions associated with the convergence weight vectors are
356
+ updated based on the aggregation function, while the solutions
357
+ associated with the diversity weight vectors are renewed
358
+ according to both the aggregation function and the degree
359
+ of constraint violation. Peng et al. [14] used two kinds of
360
+ weight vectors for constrained multiobjective optimization.
361
+ Specifically, the degree of constraint violation is considered
362
+ as another objective. Subsequently, a set of feasible weight
363
+ vectors and a set of infeasible weight vectors are used to
364
+ update the population. Additionally, the set of infeasible
365
+ weight vectors is dynamically adjusted to maintain a number
366
+ of infeasible solutions with good objective function values and
367
+ small degrees of constraint violation.
368
+ Some CMOEAs divide the evolutionary process into several
369
+ phases and put emphasis on objectives in one of the phases.
370
+ Yang et al. [33] divided the evolutionary process into a
371
+ constrained search mode and an unconstrained search mode.
372
+ These two search modes are executed by a dynamic constraint-
373
+ handling mechanism. Fan et al. [12] proposed a push and pull
374
+ search (PPS) framework to solve CMOPs, in which the evo-
375
+ lutionary process is divided into two stages: push and pull. In
376
+ the push stage, the population is updated by an unconstrained
377
+ MOEA. In the pull stage, an improved ε constrained method is
378
+ designed to tackle complex constraints. Since its proposition,
379
+ the PPS framework has been used in various fields [34],
380
+ [35]. Yu et al. [36] proposed a dynamic selection preference-
381
+ assisted constrained multiobjective differential evolutionary
382
+ (DE) algorithm. The selection preference for a solution shifts
383
+ from infeasibility to feasibility as the optimization progresses.
384
+ Tian et al. [37] proposed a two-stage CMOEA to balance
385
+ objective optimization and constraint sanctification. These two
386
+ stages are executed dynamically according to the percentage of
387
+ feasible solutions in the population. Recently, Ming et al. [38]
388
+ proposed a simple two-stage EA for constrained multiobjective
389
+ optimization. The two-stage EA focuses on approaching the
390
+ unconstrained Pareto front in the first stage and the feasible
391
+ solutions are archived. In the second stage, the method seeks to
392
+ approximate the CPF, where the archived feasible solutions are
393
+ adopted as the initial population. Peng et al. [39] proposed a
394
+ two-phase EA for constrained multiobjective optimization with
395
+ deceptive constraints. In the first phase, two subpopulations are
396
+ employed to explore the feasible regions and the entire space,
397
+ respectively. The second phase aims to approach the CPF.
398
+ Additionally, an infeasibility utilization strategy is designed
399
+ to leverage the promising information provided by infeasible
400
+ solutions.
401
+ III. PROPOSED METHOD
402
+ The general flow chart of ATM-R is shown in Fig. 2. As its
403
+ name implies, ATM-R makes use of reference points to adap-
404
+ tively accomplish different tradeoffs in different evolutionary
405
+ phases, those are, the infeasible phase, the semi-feasible phase,
406
+ and the feasible phase. The details of the update mechanisms
407
+ in these three different phases are described in Section III-A,
408
+ Infeasible?
409
+ Infeasible
410
+ Phase
411
+ Semi-feasible
412
+ Phase
413
+ Feasible
414
+ Phase
415
+ Reproduction
416
+ Initialization
417
+ Stop?
418
+ Semi-feasible?
419
+ Output the
420
+ Population
421
+ Yes
422
+ No
423
+ Yes
424
+ Yes
425
+ No
426
+ No
427
+ Fig. 2. Flow chart of ATM-R.
428
+ Algorithm 1: Update Mechanism in the Infeasible
429
+ Phase
430
+ Input: Population P, offspring population O
431
+ Output: New population P
432
+ 1 Q ← P ∪ O;
433
+ 2 Divide Q into k fronts based on ˆF(x): F1, · · · , Fk;
434
+ 3 P ← ∅;
435
+ 4 for l = 1 : k do
436
+ 5
437
+ if |P| + |Fl| ≥ N then
438
+ 6
439
+ Break;
440
+ 7
441
+ P ← P ∪ Fl;
442
+ 8 if |P| + |Fl| > N then
443
+ 9
444
+ Sample n uniformly distributed reference points
445
+ and generate corresponding weight vectors:
446
+ w1, · · · , wn;
447
+ 10
448
+ Assign each solution in Fl to a weight vector
449
+ according to (5)-(7);
450
+ 11
451
+ while |P| + |Fl| > N do
452
+ 12
453
+ Select the weight vector associated with the
454
+ largest number of solutions: wc;
455
+ 13
456
+ Among the solutions assigned to wc, select the
457
+ one with the largest value of G(x): xw;
458
+ 14
459
+ Fl ← Fl\xw;
460
+ 15 P ← P ∪ Fl;
461
+ Section III-B, and Section III-C, respectively. Aside from the
462
+ environmental selection procedure, another critical element
463
+ of a CMOEA is the mating selection procedure. In ATM-
464
+ R, a multiphase mating selection strategy is developed to
465
+ generate promising solutions beneficial to different tradeoffs.
466
+ The details of this strategy are illustrated in Section III-D.
467
+ Finally, the framework of ATM-R and some discussions are
468
+ shown in Section III-E and Section III-F, respectively.
469
+ A. Update Mechanism in the Infeasible Phase
470
+ In this phase, ATM-R aims to strike a balance between feasi-
471
+ bility and diversity. In other words, it motivates the population
472
+ toward feasibility from diverse search directions, thus locating
473
+ as many feasible regions as possible. Algorithm 1 shows how
474
+ ATM-R accomplishes this tradeoff. In general, it involves two
475
+ essential elements.
476
+ 1) Nondominated Sorting in the Transformed Objective
477
+ Space: Following the ideas in [40], we consider G(x) as
478
+ an additional objective function, and transform (1) into an
479
+
480
+ 5
481
+ unconstrained MOP:
482
+ min ˆF(x) = (f1(x), · · · , fm(x), G(x))T ∈ Rm+1.
483
+ (4)
484
+ Clearly, this transformation does not introduce any extra
485
+ parameters. In addition, both objective functions and con-
486
+ straints are considered in (4), which can facilitate maintaining
487
+ population diversity and enhance driving forces toward the
488
+ feasible regions. Based on ˆF(x), the population will be divided
489
+ into several fronts, denoted as F1, · · · , Fk, by implementing a
490
+ nondominated sorting procedure in the transformed objective
491
+ space. Afterward, the solutions in each front will be selected
492
+ in turn until �l−1
493
+ i=1 |Fi| < N ≤ �l
494
+ i=1 |Fi| where N denotes
495
+ the size of the final solution set.
496
+ 2) Regular Reference Point-based Selection: If �l
497
+ i=1 |Fi|
498
+ is larger than N, we should further select (n = N−�l−1
499
+ i=1 |Fi|)
500
+ solutions from the last desired front Fl. To complete this task,
501
+ in this study, a regular reference point-based selection scheme
502
+ is developed by taking advantage of uniformly distributed
503
+ reference points. Its implementation is quite simple.
504
+ • First, a set of regular (i.e., uniformly distributed) refer-
505
+ ence points is sampled in the objective space to generate
506
+ weight vectors denoted as {w1, · · · , wn} following the
507
+ ideas in [41].
508
+ • Subsequently, a solution (denoted as x) in Fl is assigned
509
+ to the weight vector with the smallest angle to its nor-
510
+ malized objective vector:
511
+ I = arg min
512
+ j∈{1,··· ,n}
513
+ θj,
514
+ (5)
515
+ θj = arccos
516
+ �����
517
+ F′(x)Twj
518
+ ∥F′(x)∥ · ∥wj∥
519
+ ����� , j = 1, · · · , n,
520
+ (6)
521
+ f ′
522
+ j(x) = fj(x) − zmin
523
+ j
524
+ zmax
525
+ j
526
+ − zmin
527
+ j
528
+ , j = 1, · · · , m,
529
+ (7)
530
+ where I indicates which weight vector the solution x is
531
+ assigned to; θj denotes the angle between wj and the nor-
532
+ malized objective vector F′(x) = (f ′
533
+ 1(x), · · · , f ′
534
+ m(x))T;
535
+ ∥ · ∥ represents the function to calculate the 2-norm
536
+ of a vector; zmax
537
+ =
538
+ (zmax
539
+ 1
540
+ , · · · , zmax
541
+ m )T and zmin
542
+ =
543
+ (zmin
544
+ 1 , · · · , zmin
545
+ m )T refer to the estimated nadir point and
546
+ ideal point, respectively.
547
+ • Afterward, (|Fl|−n) inferior solutions are deleted one by
548
+ one by employing a “diversity first, feasibility second”
549
+ strategy. To be specific, it first identifies the weight
550
+ vector associated with the largest number of solutions1.
551
+ Intuitively, since these solutions are associated with the
552
+ same weight vector, they will share highly similar search
553
+ directions. To maintain diverse search directions, it is nec-
554
+ essary to delete one of them. The feasibility information
555
+ of these solutions is considered for the deletion. The one
556
+ with the largest value of G(x) is discarded. These two
557
+ steps will continue until (|Fl| − n) solutions are deleted.
558
+ A simple example is given in Fig. 3 for better understanding
559
+ the regular reference point-based selection scheme. We con-
560
+ sider a CMOP with two objectives. Suppose there are seven
561
+ 1Note that the tie is broken at random
562
+ A
563
+ B
564
+ D
565
+ C
566
+ E
567
+ F
568
+ Feasible
569
+ region
570
+ 1
571
+ w
572
+ 2
573
+ w
574
+ 3
575
+ w
576
+ 4
577
+ w
578
+ '
579
+ 2f
580
+ '
581
+ 1f
582
+ G
583
+ G
584
+ Fig. 3. Update mechanism in the infeasible phase.
585
+ solutions in the population, and they lie in the same front in
586
+ the transformed objective space. According to the values of
587
+ G(x), these individuals were ranked as F, C, E, A, G, D, and
588
+ B in ascending order. The task is to select four solutions for
589
+ the next generation.
590
+ 1) First, four reference points are sampled uniformly to
591
+ generate four weight vectors denoted as {w1, · · · , w4}.
592
+ 2) Next, each solution in the population is assigned to a
593
+ weight vector: w1 ↔ {A}, w2 ↔ {B, C}, w3 ↔ {D},
594
+ and w4 ↔ {E, F, G}.
595
+ 3) Subsequently, three solutions are deleted one by one.
596
+ G is first deleted since w4 is matched with the largest
597
+ number of solutions and G is the one with the largest
598
+ value of G(x) compared with E and F. According to
599
+ this principle, B and E will be also removed.
600
+ 4) Finally, the solutions (i.e., A, C, D, and F will enter into
601
+ the next generation.
602
+ Remark 1: Both ATMES2 [40] and IDEA [28] employ non-
603
+ dominated sorting in the transformed objective space as ATM-
604
+ R does. The main difference lies in how to distinguish the
605
+ solutions in the same front. Specifically, in ATMES, solutions
606
+ are selected based on G(x) only. A solution with a smaller
607
+ value of G(x) will be preferred. In this manner, ATMES will
608
+ put too much emphasis on constraints. It will cause perfor-
609
+ mance deterioration in terms of the search diversity, which
610
+ is essential for finding as many promising feasible regions
611
+ as possible. On the contrary, in IDEA, only the diversity in
612
+ the transformed objective space is considered to update the
613
+ last desired front Fl. Unfortunately, this manner will result in
614
+ a limited driving force toward the feasible regions, which in
615
+ turn leads to a relatively low convergence speed. Unlike these
616
+ two methods, ATM-R takes both diversity and feasibility into
617
+ account to update Fl, and a “diversity first, feasibility second”
618
+ strategy is thus developed. As illustrated in Fig. 3, ATM-R can
619
+ strike a good balance between diversity and feasibility, thereby
620
+ motivating the population toward feasible regions from diverse
621
+ search directions.
622
+ B. Update Mechanism in the Semi-feasible Phase
623
+ ATM-R intends to promote the transition from “the tradeoff
624
+ between feasibility and diversity” to “the tradeoff between
625
+ 2Although ATMES is originally designed for constrained single-objective
626
+ optimization, it can be directly applied to solve CMOPs.
627
+
628
+ 6
629
+ Algorithm 2: Update Mechanism in the Semi-feasible
630
+ Phase
631
+ Input: Population P, offspring population O, FEs,
632
+ MaxFEs
633
+ Output: New population P
634
+ 1 Q ← P ∪ O, P ← ∅;
635
+ 2 Qf ← {x ∈ Q|G(x) = 0}, Qif ← {x ∈ Q|G(x) > 0};
636
+ 3 if |Qf| > N then
637
+ 4
638
+ Qf ← N feasible solutions seleted from Qf by an
639
+ unconstrained MOEA;
640
+ 5 P ← P ∪ Qf;
641
+ 6 if |Qif| > N then
642
+ 7
643
+ if
644
+ F Es
645
+ MaxF Es < 0.5 or |Qf| < N then
646
+ 8
647
+ Qif ← N infeasible solutions selected from
648
+ Qif by using Algorithm 1;
649
+ 9
650
+ else
651
+ 10
652
+ Generate |Qf| weight vectors by using the
653
+ solutions in Qf according to (8)-(9);
654
+ 11
655
+ Assign each solution in |Qif| to a weight
656
+ vector according to (5)-(7);
657
+ 12
658
+ while |Qif| > N do
659
+ 13
660
+ Select the weight vector associated with the
661
+ largest number of solutions: wc;
662
+ 14
663
+ Among the solutions assigned to wc, select
664
+ the one furthest from the feasible solution
665
+ used to generate wc: xw;
666
+ 15
667
+ Qif ← Qif\xw;
668
+ 16 P ← P ∪ Qif;
669
+ diversity and convergence” in the semi-feasible phase (i.e.,
670
+ the population contains both infeasible and feasible solutions).
671
+ The reasons for this transition are two-fold. In the early
672
+ stage of the semi-feasible phase, ATM-R must locate as many
673
+ feasible regions as possible. To this end, it must focus on
674
+ the tradeoff between feasibility and diversity. After finding a
675
+ sufficient number of feasible regions, in the later stage, ATM-
676
+ R should steer the population rapidly toward the CPF and
677
+ distribute it uniformly along with the CPF simultaneously.
678
+ Thus, the tradeoff between convergence and diversity should
679
+ be prioritized. Algorithm 2 shows how ATM-R updates the
680
+ solutions in the semi-feasible phase.
681
+ From Algorithm 2, it is observed that ATM-R updates
682
+ the feasible and infeasible solutions separately. To update
683
+ the feasible solutions, an unconstrained MOEA is used to
684
+ truncate the feasible population Qf if its size is greater than
685
+ N; otherwise, all feasible solutions are reserved. To update the
686
+ infeasible solutions, ATM-R considers two situations. In the
687
+ early stage, it aims to achieve a tradeoff between feasibility
688
+ and diversity, which is the same as in the infeasible phase.
689
+ Thus, the update mechanism used in the infeasible phase (i.e.,
690
+ Algorithm 1) can be directly applied in this stage. While in
691
+ the later stage, ATM-R shifts the emphasis to the tradeoff
692
+ between diversity and convergence. To realize this tradeoff,
693
+ an important task is how to preserve those infeasible solutions
694
+ that can contribute to both diversity and convergence. ATM-R
695
+ 1
696
+ w
697
+ 2
698
+ w
699
+ 3
700
+ w
701
+ '
702
+ 1f
703
+ '
704
+ 2f
705
+ A
706
+ B
707
+ C
708
+ D
709
+ E
710
+ F
711
+ '
712
+ 1
713
+ w
714
+ '
715
+ 2
716
+ w
717
+ '
718
+ 3
719
+ w
720
+ '
721
+ 4
722
+ w
723
+ A
724
+ B
725
+ C
726
+ D
727
+ E
728
+ F
729
+ 4
730
+ w
731
+ '
732
+ 1f
733
+ '
734
+ 2f
735
+ G
736
+ H
737
+ I
738
+ J
739
+ G
740
+ H
741
+ I
742
+ J
743
+ Feasible solution
744
+ Infeasible solution
745
+ CPF
746
+ Feasible solution
747
+ Infeasible solution
748
+ CPF
749
+ Feasible
750
+ region
751
+ Feasible
752
+ region
753
+ (a)
754
+ 1
755
+ w
756
+ 2
757
+ w
758
+ 3
759
+ w
760
+ '
761
+ 1f
762
+ '
763
+ 2f
764
+ A
765
+ B
766
+ C
767
+ D
768
+ E
769
+ F
770
+ '
771
+ 1
772
+ w
773
+ '
774
+ 2
775
+ w
776
+ '
777
+ 3
778
+ w
779
+ '
780
+ 4
781
+ w
782
+ A
783
+ B
784
+ C
785
+ D
786
+ E
787
+ F
788
+ 4
789
+ w
790
+ '
791
+ 1f
792
+ '
793
+ 2f
794
+ G
795
+ H
796
+ I
797
+ J
798
+ G
799
+ H
800
+ I
801
+ J
802
+ Feasible solution
803
+ Infeasible solution
804
+ CPF
805
+ Feasible solution
806
+ Infeasible solution
807
+ CPF
808
+ Feasible
809
+ region
810
+ Feasible
811
+ region
812
+ (b)
813
+ Fig. 4.
814
+ Illustration of difference between the weight vectors in the regular
815
+ reference point-based selection and those in the adaptive reference point-based
816
+ selection: (a) weight vectors in regular reference point-based selection and (b)
817
+ weight vectors in adaptive reference point-based selection.
818
+ designs the following two steps to accomplish this task.
819
+ 1) Discovery of the Nondominated Infeasible Solutions:
820
+ Compared with the feasible solutions in the current population,
821
+ the nondominated infeasible solutions usually have smaller ob-
822
+ jective function values. It is natural to leverage their benefits to
823
+ promote convergence. To distinguish these infeasible solutions,
824
+ we first employ a nondominated sorting procedure to divide
825
+ the union population (i.e., Q in Algorithm 2) into several
826
+ fronts based on ˆF(x) in
827
+ (4). Subsequently, the infeasible
828
+ solutions in the first front are picked out. If the number of these
829
+ nondominated infeasible solutions (denoted as M) is smaller
830
+ than N, all of them will be kept; otherwise, they will be further
831
+ distinguished by the following adaptive reference point-based
832
+ selection.
833
+ 2) Adaptive Reference Point-based Selection: Herein, the
834
+ regular reference points are no longer used to assist the
835
+ selection. The reason is that the CPF might be disconnected
836
+ (see Fig. 4), and some weight vectors (i.e., w1 and w3 in
837
+ Fig. 4(a)) generated using the uniformly distributed reference
838
+ points cannot point to any parts of the CPF. As a result, the
839
+ solutions preserved by making use of such weight vectors
840
+ (i.e., C and F) are far away from the CPF and hardly con-
841
+ tribute to convergence speed, which is not desirable. Instead,
842
+ we use adaptive reference points for solution selection. For
843
+ convenience, in our study, the feasible solutions are considered
844
+ as adaptive reference points since they can deliver important
845
+ clues for the localization of the CPF (see Fig. 4(b)). Based
846
+ on these reference points, a set of adaptive weight vectors
847
+ can be obtained conveniently. To be specific, for the ith
848
+
849
+ 7
850
+ feasible solution xi, the corresponding weight vector (denoted
851
+ as w
852
+
853
+ i = (w
854
+
855
+ i,1, · · · , w
856
+
857
+ i,m)T) is generated as follows:
858
+ w
859
+
860
+ i,j =
861
+ f
862
+
863
+ j(x)
864
+ �m
865
+ j=1 f
866
+
867
+ j(x), j = 1, · · · , m,
868
+ (8)
869
+ f ′
870
+ j(x) = fj(x) − zmin
871
+ j
872
+ zmax
873
+ j
874
+ − zmin
875
+ j
876
+ , j = 1, · · · , m,
877
+ (9)
878
+ where (f ′
879
+ 1(x), · · · , f ′
880
+ m(x))T is the normalized objective vector,
881
+ (zmax
882
+ 1
883
+ , · · · , zmax
884
+ m )T and (zmin
885
+ 1 , · · · , zmin
886
+ m )T denote the estimated
887
+ nadir point and ideal point, respectively. Fig. 4 shows the
888
+ difference between the weight vectors generated using regular
889
+ reference points and those using adaptive reference points.
890
+ It is evident that the weight vectors obtained using adaptive
891
+ reference points fit better to the characteristics of the CPF.
892
+ Once the adaptive weight vectors are prepared, the next
893
+ procedures in the adaptive reference point-based selection
894
+ scheme are quite simple. First, each nondominated infeasi-
895
+ ble solution is assigned to a weight vector following the
896
+ ideas in the regular reference point-based selection scheme
897
+ (see Eqs. (5)-(7)). Afterward, (M-N) infeasible solutions are
898
+ deleted one by one in a two-step manner. The first step
899
+ is to identify the weight vector associated with the largest
900
+ number of solutions. In the second step, among the solutions
901
+ assigned to this weight vector, the one furthest from the
902
+ feasible solution corresponding to the weight vector in the
903
+ objective space will be deleted. In general, the first step is
904
+ similar to many decomposition-based approaches and can help
905
+ to maintain population diversity. As for the second step, it can
906
+ help to retain those infeasible solutions close to the feasible
907
+ solutions and thus offer a driving force toward the CPF from
908
+ the infeasible side of the search space. Intuitively, this way
909
+ can speed up the convergence.
910
+ Remark 2: In the semi-feasible phase, the population size
911
+ in ATM-R is larger than or equal to N. The reason is that a
912
+ larger population can enhance population diversity, which is
913
+ critical to both “the tradeoff between feasibility and diversity”
914
+ and “the tradeoff between diversity and convergence”. As for
915
+ how to determine whether the algorithm has entered the later
916
+ stage of the semi-feasible phase, we considered two simple
917
+ conditions which should be satisfied simultaneously. The first
918
+ condition is that
919
+ F Es
920
+ MaxF Es should be larger than 0.5. Note
921
+ that FEs and MaxFEs denote the function evaluations and
922
+ the maximum function evaluations, respectively. The second
923
+ condition relies on the number of feasible solutions which
924
+ should be equal to N. The first condition implies that enough
925
+ search efforts have been devoted to finding feasible regions,
926
+ while the second condition is set to ensure a sufficient number
927
+ of reference points. In the later stage of the semi-infeasible
928
+ phase, if no nondominated infeasible solutions are discovered,
929
+ the algorithm will enter the feasible phase.
930
+ C. Update Mechanism in the Feasible Phase
931
+ In this phase, all solutions are feasible. Under this condition,
932
+ only the tradeoff between diversity and convergence should be
933
+ considered, thus motivating the feasible solutions toward the
934
+ CPF quickly while maintaining good diversity. Apparently,
935
+ Algorithm 3: Multiphase Mating Selection Strategy
936
+ Input: Population P, N
937
+ Output: Mating population C
938
+ 1 C ← ∅;
939
+ 2 for i = 1 : N do
940
+ 3
941
+ Randomly select two different solutions denoted as
942
+ xa and xb from P;
943
+ 4
944
+ if P is entirely infeasible then
945
+ 5
946
+ if rand < 0.5 then
947
+ 6
948
+ xm ← the better one between xa and xb
949
+ based on the degree of constraint
950
+ violation;
951
+ 7
952
+ else
953
+ 8
954
+ xm ← the better one between xa and xb
955
+ based on the diversity;
956
+ 9
957
+ else if P is feasible then
958
+ 10
959
+ if xa ≺ xb then
960
+ 11
961
+ xm ← xa;
962
+ 12
963
+ else if xb ≺ xa then
964
+ 13
965
+ xm ← xb;
966
+ 14
967
+ else
968
+ 15
969
+ xm ← the better one between xa and xb
970
+ based on the diversity;
971
+ 16
972
+ else if P is semi-feasible then
973
+ 17
974
+ if i < N/2 then
975
+ 18
976
+ xm ← the better one between xa and xb by
977
+ using the method in the infeasible phase;
978
+ 19
979
+ else
980
+ 20
981
+ xm ← the better one between xa and xb
982
+ by using the method in the feasible phase;
983
+ 21
984
+ C ← C ∪ xm;
985
+ a current effective unconstrained MOEA can be applied to
986
+ achieve this balance. Thus, in ATM-R, an off-the-shelf uncon-
987
+ strained MOEA is employed in this phase straightforwardly.
988
+ D. Multiphase Mating Selection Strategy
989
+ In addition to the multi-phase strategy in environmental
990
+ selection, ATM-R uses a multi-phase strategy for mating selec-
991
+ tion. It selects appropriate mating parents suitable for different
992
+ evolutionary phases. The details of this multiphase mating
993
+ selection strategy are described in Algorithm 3. Similarly,
994
+ three different phases are considered in this strategy.
995
+ • In the infeasible phase, population diversity and feasi-
996
+ bility should be focused on simultaneously. Thus, in the
997
+ tournament selection, solutions are compared based on
998
+ the diversity and the degree of constraint violation with
999
+ the same probability (i.e., 0.5). Note that the diversity is
1000
+ quantified by the same way as in [30].
1001
+ • In the feasible phase, population diversity and conver-
1002
+ gence should be taken into account. Following the ideas
1003
+ in NSGA-II [5], in the tournament selection, solutions are
1004
+ compared based on the Pareto dominance relationship.
1005
+
1006
+ 8
1007
+ Algorithm 4: ATM-R
1008
+ Input: A CMOP, N, MaxFEs
1009
+ Output: Final population P
1010
+ 1 P ← a population initialized from the decision space;
1011
+ 2 FEs ← N;
1012
+ 3 while FEs < MaxFEs do
1013
+ 4
1014
+ C ← a mating population selected from P by using
1015
+ Algorithm 3;
1016
+ 5
1017
+ O ← an offspring population generated by
1018
+ executing genetic operators on C;
1019
+ 6
1020
+ FEs ← FEs + N;
1021
+ 7
1022
+ Q ← P ∪ O;
1023
+ 8
1024
+ if Q is entirely infeasible then
1025
+ 9
1026
+ P ← the solutions seleted from Q by using
1027
+ Algorithm 1;
1028
+ 10
1029
+ else if Q is semi-feasible then
1030
+ 11
1031
+ P ← the solutions selected from Q by using
1032
+ Algorithm 2;
1033
+ 12
1034
+ else if Q is feasible then
1035
+ 13
1036
+ P ← the solutions selected from Q by using an
1037
+ unconstrained MOEA;
1038
+ Also, if two solutions do not dominate each other, they
1039
+ are compared based on the diversity.
1040
+ • The semi-feasible phase needs to bridge the gap between
1041
+ the feasible phase and the infeasible phase. Thus, in this
1042
+ phase, the first half of the mating population is selected
1043
+ by using the method in the infeasible phase, while the
1044
+ other half is selected by using the method in the feasible
1045
+ phase.
1046
+ E. ATM-R
1047
+ In summary, the details of ATM-R are given in Algorithm 4.
1048
+ At the beginning, a population of N solutions is sampled
1049
+ uniformly in the decision space (Lines 1-2). Afterward, the
1050
+ population is employed to search for the CPF until the
1051
+ maximum number of function evaluations is exhausted (Lines
1052
+ 3-15). In the search process, first, N mating parents are
1053
+ selected for offspring generation by using the multiphase
1054
+ mating selection strategy in Algorithm 3 (Line 4). Next,
1055
+ N offspring are produced by the simulated binary crossover
1056
+ (SBX) [42] and the polynomial mutation (PM) [43] (Lines
1057
+ 5-6). Afterward, promising solutions are selected based on
1058
+ population feasibility (Lines 7-14) where Algorithm 1 and
1059
+ Algorithm 2 are used in the infeasible phase and the semi-
1060
+ feasible phase, respectively. Note that if FEs ≥ MaxFEs,
1061
+ the final population P would be output.
1062
+ F. Discussion
1063
+ In essence, ATM-R is a multiphase CMOEA. ATM-R in-
1064
+ tends to achieve a tradeoff between diversity and feasibility in
1065
+ the infeasible phase, promote the transition from “the tradeoff
1066
+ between feasibility and diversity” to “the tradeoff between
1067
+ diversity and convergence” in the semi-feasible phase, and
1068
+ accomplish the tradeoff between diversity and convergence in
1069
+ the feasible phase. To the best of our knowledge, ATM-R is
1070
+ the first algorithm considering these tradeoffs simultaneously
1071
+ during different evolution phases. Also, ATM-R is interesting
1072
+ in that it selects promising infeasible solutions suitable for
1073
+ different evolutionary phases by using two kinds of reference
1074
+ points. As far as we know, relevant studies in this direction
1075
+ are almost absent. From our analysis, it is apparent that ATM-
1076
+ R is a brand-new CMOEA for constrained multiobjective
1077
+ optimization.
1078
+ The computational time complexity of ATM-R is mainly
1079
+ determined by the nondominated sorting and the unconstrained
1080
+ MOEA. Suppose the fast nondominated sorting and NS-
1081
+ GAII [5] are adopted in ATM-R. In the worst case of the
1082
+ infeasible phase, no solutions nondominated another in the
1083
+ transformed objective space. The time complexity of this
1084
+ nondominated sorting is O((m+1)·N 2). The time complexity
1085
+ of assigning each solution to a weight vector is O(m·N 2). The
1086
+ time complexity of selecting N solutions is O(N 2). Thus, the
1087
+ time complexity of the infeasible phase is O((m + 1) · N 2) +
1088
+ O(m · N 2) + O(N 2) = O((m + 1) · N 2). In the semi-feasible
1089
+ phase, the worst-case time complexity of selecting feasible
1090
+ solutions is O(m·N 2). In the early stage of the semi-feasible
1091
+ phase, the worst-case time complexity is the same as that of
1092
+ the infeasible phase: O((m + 1) · N 2). In the worst case of
1093
+ the later stage, no infeasible solutions nondominated another.
1094
+ It is the same as that of the infeasible phase. Thus, its time
1095
+ complexity is O((m + 1) · N 2). The time complexity of the
1096
+ semi-feasible phase is O(m·N 2)+O((m+1)·N 2)+O((m+
1097
+ 1) · N 2) = O((m + 1) · N 2). In the feasible phase, the time
1098
+ complexity is the same as that of NSGAII: O(m · N 2). In
1099
+ summary, the computational time complexity of ATM-R is
1100
+ O((m+1)·N 2)+O((m+1)·N 2)+O(m·N 2) = O(m·N 2),
1101
+ which is indeed acceptable.
1102
+ IV. PERFORMANCE COMPARISON
1103
+ In this section, we assess the performance of ATM-R based
1104
+ on a wide range of benchmark test functions. Specifically,
1105
+ ATM-R was used to solve three test suites and its performance
1106
+ was compared with that of five representative CMOEAs.
1107
+ Note that all experiments were implemented by the PlatEMO
1108
+ toolbox [44].
1109
+ A. Experimental Settings
1110
+ 1) Test Functions: Three test suites consisting of 36 bench-
1111
+ mark test functions (e.g., MW [45], CTP [46], and LIRC-
1112
+ MOP [25]) were adopted in our study. These test functions
1113
+ own various challenging characteristics; thus, they can assess
1114
+ the performance of a CMOEA adequately. Most state-of-the-
1115
+ art CMOEAs adopt these test functions for empirical study.
1116
+ Note that the number of decision variables in MW and
1117
+ LIRCMOP was set to 15 and 10, respectively. Please see [25],
1118
+ [45], [46] for the details of these test functions.
1119
+ 2) Peer Algorithms:
1120
+ For performance comparison, five
1121
+ representative
1122
+ CMOEAs
1123
+ were
1124
+ taken
1125
+ into
1126
+ consideration:
1127
+ NSGAII-CDP [5], PPS [12], the constrained two-archive EA
1128
+ (CTAEA) [29], the coevolutionary constrained multiobjective
1129
+
1130
+ 9
1131
+ TABLE I
1132
+ THE IGD VALUES OF NSGAII-CDP, PPS, CTAEA, CCMO, TOP, AND ATM-R ON THREE SETS OF BENCHMARK TEST FUNCTIONS.
1133
+ Test Functions
1134
+ NSGAII-CDP
1135
+ mean IGD (std)
1136
+ PPS
1137
+ mean IGD (std)
1138
+ CTAEA
1139
+ mean IGD (std)
1140
+ CCMO
1141
+ mean IGD (std)
1142
+ ToP
1143
+ mean IGD (std)
1144
+ ATM-R
1145
+ mean IGD (std)
1146
+ MW1
1147
+ 4.0545e-2 (1.02e-1) -
1148
+ 2.3190e-2 (4.01e-2) -
1149
+ 2.1884e-3 (9.96e-4) -
1150
+ 1.8990e-3 (1.42e-3) +
1151
+ NaN (NaN) -
1152
+ 2.1748e-3 (1.70e-3)
1153
+ MW2
1154
+ 2.3926e-2 (7.65e-3) -
1155
+ 4.2401e-2 (3.25e-2) -
1156
+ 1.7953e-2 (6.74e-3) ≈
1157
+ 2.1515e-2 (8.20e-3) -
1158
+ 2.3108e-1 (1.89e-1) -
1159
+ 1.9130e-2 (9.76e-3)
1160
+ MW3
1161
+ 7.4318e-2 (2.31e-1) -
1162
+ 7.5935e-3 (9.94e-4) -
1163
+ 5.4804e-3 (4.86e-4) ≈
1164
+ 5.2178e-3 (4.41e-4) ≈
1165
+ 5.9698e-1 (2.78e-1) -
1166
+ 5.3646e-3 (4.08e-4)
1167
+ MW4
1168
+ 5.5780e-2 (2.97e-3) -
1169
+ 5.3955e-2 (1.73e-3) -
1170
+ 4.6413e-2 (4.99e-4) -
1171
+ 4.1285e-2 (3.48e-4) ≈
1172
+ NaN (NaN) -
1173
+ 4.1255e-2 (3.45e-4)
1174
+ MW5
1175
+ 4.2761e-1 (3.35e-1) -
1176
+ 1.4507e-1 (1.97e-1) -
1177
+ 1.5758e-2 (3.38e-3) -
1178
+ 4.6474e-3 (7.30e-3) -
1179
+ NaN (NaN) -
1180
+ 4.0638e-3 (1.06e-2)
1181
+ MW6
1182
+ 8.0099e-2 (1.51e-1) -
1183
+ 1.0037e-1 (1.61e-1) -
1184
+ 1.1188e-2 (6.68e-3) ≈
1185
+ 5.2473e-2 (1.26e-1) -
1186
+ 1.0872e+0 (1.81e-1) -
1187
+ 1.5369e-2 (8.69e-3)
1188
+ MW7
1189
+ 1.0205e-1 (1.93e-1) -
1190
+ 2.5520e-2 (1.88e-2) -
1191
+ 7.2156e-3 (5.22e-4) -
1192
+ 4.8994e-3 (4.80e-4) +
1193
+ 4.7226e-1 (2.39e-1) -
1194
+ 5.2004e-3 (4.73e-4)
1195
+ MW8
1196
+ 6.1793e-2 (8.78e-3) -
1197
+ 7.4112e-2 (2.69e-2) -
1198
+ 5.5531e-2 (2.47e-3) -
1199
+ 4.9189e-2 (1.58e-2) ≈
1200
+ 9.5949e-1 (2.01e-1) -
1201
+ 4.6368e-2 (5.74e-3)
1202
+ MW9
1203
+ 2.1737e-1 (3.10e-1) -
1204
+ 7.4032e-2 (1.81e-1) -
1205
+ 8.8691e-3 (9.23e-4) ≈
1206
+ 5.1927e-2 (1.79e-1) -
1207
+ NaN (NaN) -
1208
+ 9.9563e-3 (2.88e-3)
1209
+ MW10
1210
+ 2.3341e-1 (2.36e-1) -
1211
+ 1.3321e-1 (1.48e-1) -
1212
+ 1.7599e-2 (1.22e-2) ≈
1213
+ 4.2867e-2 (2.54e-2) -
1214
+ NaN (NaN) -
1215
+ 2.7242e-2 (2.33e-2)
1216
+ MW11
1217
+ 4.7335e-1 (3.24e-1) -
1218
+ 1.3565e-2 (2.15e-2) -
1219
+ 1.6564e-2 (2.80e-3) -
1220
+ 6.3416e-3 (5.30e-4) ≈
1221
+ 9.2141e-1 (1.37e-1) -
1222
+ 6.1791e-3 (2.34e-4)
1223
+ MW12
1224
+ 8.2766e-2 (2.23e-1) -
1225
+ 2.9552e-2 (1.20e-1) +
1226
+ 8.0645e-3 (6.84e-4) +
1227
+ 3.0553e-2 (1.40e-1) ≈
1228
+ NaN (NaN) -
1229
+ 7.8769e-2 (2.24e-1)
1230
+ MW13
1231
+ 2.0642e-1 (2.77e-1) -
1232
+ 1.3735e-1 (6.32e-2) -
1233
+ 3.8211e-2 (2.66e-2) ≈
1234
+ 8.2172e-2 (4.41e-2) -
1235
+ 8.3328e-1 (5.33e-1) -
1236
+ 5.2527e-2 (3.23e-2)
1237
+ MW14
1238
+ 1.2974e-1 (1.27e-2) -
1239
+ 2.5313e-1 (9.28e-2) -
1240
+ 1.1279e-1 (6.91e-3) +
1241
+ 9.8349e-2 (2.41e-3) +
1242
+ 4.9059e-1 (5.81e-1) -
1243
+ 1.1492e-1 (4.72e-2)
1244
+ CTP1
1245
+ 8.1699e-2 (6.62e-2) -
1246
+ 1.9234e-2 (1.80e-2) -
1247
+ 1.8672e-2 (3.64e-2) -
1248
+ 4.4317e-3 (1.05e-3) -
1249
+ 3.9400e-3 (1.48e-4) -
1250
+ 3.2367e-3 (7.38e-5)
1251
+ CTP2
1252
+ 2.4408e-3 (1.89e-3) -
1253
+ 3.7003e-3 (6.96e-4) -
1254
+ 4.6860e-2 (1.25e-2) -
1255
+ 1.6836e-3 (1.65e-4) -
1256
+ 4.4453e-3 (1.08e-3) -
1257
+ 1.4735e-3 (5.94e-5)
1258
+ CTP3
1259
+ 6.2833e-2 (9.95e-2) -
1260
+ 3.1094e-2 (4.07e-3) -
1261
+ 5.8093e-2 (5.79e-3) -
1262
+ 2.2180e-2 (2.24e-3) -
1263
+ 3.2847e-2 (6.99e-3) -
1264
+ 1.0066e-2 (1.60e-3)
1265
+ CTP4
1266
+ 2.4494e-1 (1.29e-1) -
1267
+ 1.4930e-1 (1.84e-2) -
1268
+ 1.5350e-1 (1.92e-2) -
1269
+ 1.3538e-1 (2.18e-2) -
1270
+ 1.8414e-1 (3.29e-2) -
1271
+ 7.9556e-2 (1.13e-2)
1272
+ CTP5
1273
+ 7.2574e-3 (2.92e-3) -
1274
+ 1.8168e-2 (6.11e-3) -
1275
+ 1.8209e-2 (4.61e-3) -
1276
+ 7.6639e-3 (1.76e-3) -
1277
+ 1.2167e-2 (3.45e-3) -
1278
+ 3.3142e-3 (4.13e-4)
1279
+ CTP6
1280
+ 1.1404e-2 (4.04e-4) -
1281
+ 1.3061e-2 (7.81e-4) -
1282
+ 3.8535e-2 (5.23e-3) -
1283
+ 1.0141e-2 (3.56e-4) -
1284
+ 1.5214e-2 (2.78e-3) -
1285
+ 9.7103e-3 (3.13e-4)
1286
+ CTP7
1287
+ 1.6882e-3 (1.39e-3) -
1288
+ 1.6825e-3 (7.14e-5) -
1289
+ 1.6364e-3 (1.31e-4) -
1290
+ 1.1669e-3 (4.52e-5) ≈
1291
+ 1.5176e-3 (5.54e-5) -
1292
+ 1.1599e-3 (4.62e-5)
1293
+ CTP8
1294
+ 1.2019e-1 (1.45e-1) -
1295
+ 1.1932e-2 (5.26e-3) -
1296
+ 3.4505e-2 (4.79e-3) -
1297
+ 5.5516e-3 (6.49e-4) -
1298
+ 8.0925e-2 (1.38e-1) -
1299
+ 4.7357e-3 (2.32e-4)
1300
+ LIRCMOP1
1301
+ 2.6010e-1 (8.10e-2) -
1302
+ 1.1024e-1 (3.40e-2) -
1303
+ 3.7900e-1 (1.66e-1) -
1304
+ 2.0503e-1 (6.82e-2) -
1305
+ 1.2547e-1 (1.36e-1) -
1306
+ 3.5295e-2 (1.26e-2)
1307
+ LIRCMOP2
1308
+ 1.9890e-1 (7.22e-2) -
1309
+ 7.3024e-2 (2.79e-2) -
1310
+ 1.2324e-1 (6.12e-2) -
1311
+ 1.1419e-1 (3.19e-2) -
1312
+ 6.8227e-2 (5.38e-2) -
1313
+ 3.1146e-2 (9.36e-3)
1314
+ LIRCMOP3
1315
+ 2.4894e-1 (8.38e-2) -
1316
+ 1.7697e-1 (5.80e-2) -
1317
+ 3.4751e-1 (1.14e-1) -
1318
+ 2.0960e-1 (7.98e-2) -
1319
+ 3.6351e-1 (5.72e-2) -
1320
+ 2.3380e-2 (1.06e-2)
1321
+ LIRCMOP4
1322
+ 2.3080e-1 (6.23e-2) -
1323
+ 1.4996e-1 (5.59e-2) -
1324
+ 2.7661e-1 (1.38e-1) -
1325
+ 1.9069e-1 (7.18e-2) -
1326
+ 3.2442e-1 (5.76e-2) -
1327
+ 2.3928e-2 (1.11e-2)
1328
+ LIRCMOP5
1329
+ 7.3176e-1 (4.81e-1) -
1330
+ 8.4362e-2 (2.44e-2) -
1331
+ 1.3918e-1 (4.41e-2) -
1332
+ 1.4046e-2 (8.21e-3) ≈
1333
+ 1.2091e-1 (3.48e-1) -
1334
+ 1.3635e-2 (6.48e-3)
1335
+ LIRCMOP6
1336
+ 5.7447e-1 (4.57e-1) -
1337
+ 9.5258e-2 (6.31e-2) -
1338
+ 1.3633e-1 (1.13e-1) -
1339
+ 1.1357e-2 (7.75e-3) ≈
1340
+ 6.4593e-3 (3.45e-4) +
1341
+ 5.7790e-2 (1.51e-1)
1342
+ LIRCMOP7
1343
+ 1.7441e-2 (1.32e-2) ≈
1344
+ 5.6488e-2 (5.84e-2) -
1345
+ 2.5246e-2 (9.12e-3) -
1346
+ 1.1404e-2 (6.38e-3) ≈
1347
+ 8.6357e-3 (2.52e-4) +
1348
+ 1.2400e-2 (5.03e-3)
1349
+ LIRCMOP8
1350
+ 3.6946e-2 (4.51e-2) -
1351
+ 6.6479e-2 (7.05e-2) -
1352
+ 3.6096e-2 (6.64e-2) -
1353
+ 9.1531e-3 (5.01e-3) ≈
1354
+ 8.6820e-3 (4.53e-4) +
1355
+ 9.4267e-3 (3.85e-3)
1356
+ LIRCMOP9
1357
+ 5.3564e-1 (1.24e-1) -
1358
+ 1.4063e-1 (8.94e-2) ≈
1359
+ 1.1622e-1 (5.42e-2) ≈
1360
+ 3.4398e-2 (3.91e-2) +
1361
+ 2.4115e-1 (1.73e-1) -
1362
+ 1.1216e-1 (7.48e-2)
1363
+ LIRCMOP10
1364
+ 3.6496e-1 (9.66e-2) -
1365
+ 8.2848e-3 (1.47e-2) -
1366
+ 6.0919e-2 (6.50e-2) -
1367
+ 5.4399e-3 (3.36e-4) +
1368
+ 5.4878e-3 (2.21e-4) +
1369
+ 6.9018e-3 (6.27e-4)
1370
+ LIRCMOP11
1371
+ 2.4114e-1 (1.80e-1) -
1372
+ 8.1119e-3 (7.48e-3) -
1373
+ 1.3778e-1 (3.83e-2) -
1374
+ 2.4538e-3 (8.89e-5) +
1375
+ 1.2447e-1 (6.37e-2) -
1376
+ 5.3691e-3 (1.45e-2)
1377
+ LIRCMOP12
1378
+ 1.5180e-1 (8.66e-2) -
1379
+ 1.5216e-2 (2.43e-2) ≈
1380
+ 3.1152e-2 (1.68e-2) -
1381
+ 4.6113e-3 (2.58e-3) ≈
1382
+ 2.9104e-2 (5.29e-2) ≈
1383
+ 7.8014e-3 (7.28e-3)
1384
+ LIRCMOP13
1385
+ 2.3757e-1 (3.69e-1) -
1386
+ 1.1968e-1 (3.45e-3) -
1387
+ 1.0834e-1 (3.97e-4) -
1388
+ 9.3972e-2 (1.13e-3) -
1389
+ 1.2450e-1 (3.78e-3) -
1390
+ 9.3120e-2 (9.31e-4)
1391
+ LIRCMOP14
1392
+ 2.0248e-1 (2.93e-1) -
1393
+ 1.1859e-1 (3.97e-3) -
1394
+ 1.1126e-1 (7.98e-4) -
1395
+ 9.5773e-2 (7.40e-4) -
1396
+ 1.1883e-1 (4.04e-3) -
1397
+ 9.4848e-2 (7.79e-4)
1398
+ +/-/≈
1399
+ 0/35/1
1400
+ 1/33/2
1401
+ 2/27/7
1402
+ 6/19/11
1403
+ 4/25/1
1404
+ optimization (CCMO) [30], and the two-phase EA (ToP) [18].
1405
+ NSGAII-CDP is a classic CMOEA that is usually adopted
1406
+ as a baseline algorithm, while the other four CMOEAs are
1407
+ state-of-the-art algorithms proposed recently. NSGAII-CDP is
1408
+ a feasibility-driven CMOEA and the others are infeasibility-
1409
+ assisted CMOEAs. Among these four infeasibility-assisted
1410
+ CMOEAs, CTAEA and CCMO are multi-population methods
1411
+ which take advantage of infeasible solutions explicitly by
1412
+ an archive or an additional population. PPS and ToP are
1413
+ multiphase methods which divide the evolutionary process into
1414
+ several phases and put emphasis on objectives in some phases.
1415
+ Note that ATM-R is also a multiphase method.
1416
+ 3) Performance Metrics: Two frequently used performance
1417
+ metrics were adopted to assess the performance of a CMOEA:
1418
+ inverted generational distance (IGD) and hyper-volume (HV).
1419
+ Both IGD and HV can measure the convergence and coverage
1420
+ of a solution set. More details of these two metrics can be
1421
+ found in [47].
1422
+ 4) Parameter Settings: The parameters involved in the
1423
+ experiments are given as follows:
1424
+ • Size of the final solution set: N = 100 for all comparison
1425
+ CMOEAs;
1426
+ • MaxFEs: MaxFEs = 60, 000 for the MW and CTP
1427
+ test suites, and MaxFEs = 300, 000 for the LIRCMOP
1428
+ test suite;
1429
+ 4.6
1430
+ 3.89
1431
+ 3.68
1432
+ 2.15
1433
+ 5
1434
+ 1.68
1435
+ 4.65
1436
+ 3.69
1437
+ 3.78
1438
+ 2.15
1439
+ 4.85
1440
+ 1.87
1441
+ 0
1442
+ 1
1443
+ 2
1444
+ 3
1445
+ 4
1446
+ 5
1447
+ 6
1448
+ NSGAII-CDP
1449
+ PPS
1450
+ CTAEA
1451
+ CCMO
1452
+ ToP
1453
+ ATM-R
1454
+ IGD
1455
+ HV
1456
+ Fig. 5. Average rankings of six CMOEAs on 36 test functions in terms of
1457
+ the IGD/HV value. A lower ranking value denotes a better performance.
1458
+ • Number of independent runs: 30.
1459
+ The SBX and PM were used as genetic operators in all
1460
+ CMOEAs except ToP. The parameters of SBX and PM are as
1461
+ follows:
1462
+ • Crossover probability of SBX: 1;
1463
+ • Mutation probability of PM: 1/D;
1464
+ • Distribution index of SBX and PM: 20.
1465
+ In addition, the algorithm-specific parameters of the five
1466
+ peer CMOEAs were obtained from their original papers.
1467
+
1468
+ 10
1469
+ TABLE II
1470
+ THE HV VALUES OF NSGAII-CDP, PPS, CTAEA, CCMO, TOP, AND ATM-R ON THREE SETS OF BENCHMARK TEST FUNCTIONS.
1471
+ Test Functions
1472
+ NSGAII-CDP
1473
+ mean HV (std)
1474
+ PPS
1475
+ mean HV (std)
1476
+ CTAEA
1477
+ mean HV (std)
1478
+ CCMO
1479
+ mean HV (std)
1480
+ ToP
1481
+ mean HV (std)
1482
+ ATM-R
1483
+ mean HV (std)
1484
+ MW1
1485
+ 4.5445e-1 (8.09e-2) -
1486
+ 4.6529e-1 (3.63e-2) -
1487
+ 4.8849e-1 (2.03e-3) -
1488
+ 4.8927e-1 (3.04e-3) +
1489
+ NaN (NaN) -
1490
+ 4.8853e-1 (3.60e-3)
1491
+ MW2
1492
+ 5.4798e-1 (1.15e-2) -
1493
+ 5.2241e-1 (4.44e-2) -
1494
+ 5.5765e-1 (1.14e-2) ≈
1495
+ 5.5199e-1 (1.30e-2) -
1496
+ 3.2482e-1 (1.46e-1) -
1497
+ 5.5635e-1 (1.54e-2)
1498
+ MW3
1499
+ 5.0168e-1 (1.37e-1) -
1500
+ 5.4398e-1 (4.88e-4) +
1501
+ 5.4413e-1 (6.14e-4) +
1502
+ 5.4368e-1 (7.81e-4) +
1503
+ 1.2745e-1 (1.27e-1) -
1504
+ 5.4292e-1 (7.86e-4)
1505
+ MW4
1506
+ 8.2309e-1 (5.63e-3) -
1507
+ 8.2478e-1 (2.49e-3) -
1508
+ 8.3814e-1 (4.04e-4) -
1509
+ 8.4116e-1 (4.35e-4) +
1510
+ NaN (NaN) -
1511
+ 8.4001e-1 (7.93e-4)
1512
+ MW5
1513
+ 1.7725e-1 (9.80e-2) -
1514
+ 2.5212e-1 (6.86e-2) -
1515
+ 3.1449e-1 (2.61e-3) -
1516
+ 3.2205e-1 (5.38e-3) -
1517
+ NaN (NaN) -
1518
+ 3.2214e-1 (6.45e-3)
1519
+ MW6
1520
+ 2.8267e-1 (4.89e-2) -
1521
+ 2.5928e-1 (6.08e-2) -
1522
+ 3.1251e-1 (9.93e-3) ≈
1523
+ 2.9009e-1 (5.16e-2) -
1524
+ 1.2194e-2 (2.75e-2) -
1525
+ 3.0911e-1 (1.20e-2)
1526
+ MW7
1527
+ 3.7706e-1 (6.78e-2) ≈
1528
+ 4.0647e-1 (2.09e-3) -
1529
+ 4.0868e-1 (1.03e-3) -
1530
+ 4.1205e-1 (5.95e-4) +
1531
+ 1.9015e-1 (7.70e-2) -
1532
+ 4.1019e-1 (9.75e-4)
1533
+ MW8
1534
+ 4.9733e-1 (2.20e-2) -
1535
+ 4.7275e-1 (5.64e-2) -
1536
+ 5.2198e-1 (1.16e-2) -
1537
+ 5.2798e-1 (3.48e-2) -
1538
+ 4.6501e-2 (7.81e-2) -
1539
+ 5.3338e-1 (1.72e-2)
1540
+ MW9
1541
+ 2.6792e-1 (1.71e-1) ≈
1542
+ 3.4455e-1 (1.00e-1) -
1543
+ 3.9100e-1 (2.43e-3) +
1544
+ 3.7160e-1 (1.01e-1) -
1545
+ NaN (NaN) -
1546
+ 3.8287e-1 (4.60e-3)
1547
+ MW10
1548
+ 3.1175e-1 (1.18e-1) -
1549
+ 3.5982e-1 (7.57e-2) -
1550
+ 4.3564e-1 (1.30e-2) ≈
1551
+ 4.1378e-1 (1.88e-2) -
1552
+ NaN (NaN) -
1553
+ 4.2764e-1 (1.94e-2)
1554
+ MW11
1555
+ 3.2816e-1 (8.07e-2) -
1556
+ 4.4157e-1 (9.48e-3) -
1557
+ 4.4127e-1 (1.39e-3) -
1558
+ 4.4609e-1 (2.03e-3) -
1559
+ 2.2321e-1 (4.19e-2) -
1560
+ 4.4746e-1 (2.05e-4)
1561
+ MW12
1562
+ 5.4172e-1 (1.81e-1) -
1563
+ 5.8181e-1 (1.06e-1) +
1564
+ 6.0052e-1 (7.80e-4) +
1565
+ 5.8415e-1 (1.10e-1) ≈
1566
+ NaN (NaN) -
1567
+ 5.4377e-1 (1.82e-1)
1568
+ MW13
1569
+ 4.0153e-1 (5.63e-2) -
1570
+ 4.1137e-1 (4.30e-2) -
1571
+ 4.6130e-1 (1.23e-2) ≈
1572
+ 4.3974e-1 (2.53e-2) -
1573
+ 2.3054e-1 (1.15e-1) -
1574
+ 4.5371e-1 (1.66e-2)
1575
+ MW14
1576
+ 4.5123e-1 (5.66e-3) -
1577
+ 4.2008e-1 (2.54e-2) -
1578
+ 4.6575e-1 (3.90e-3) ≈
1579
+ 4.7246e-1 (1.53e-3) +
1580
+ 3.4138e-1 (1.53e-1) -
1581
+ 4.6217e-1 (1.49e-2)
1582
+ CTP1
1583
+ 3.5920e-1 (1.97e-2) -
1584
+ 3.7510e-1 (5.31e-3) -
1585
+ 3.7588e-1 (1.03e-2) -
1586
+ 3.8065e-1 (3.93e-4) -
1587
+ 3.8036e-1 (1.15e-4) -
1588
+ 3.8106e-1 (1.09e-4)
1589
+ CTP2
1590
+ 4.3083e-1 (1.66e-3) -
1591
+ 4.2928e-1 (7.86e-4) -
1592
+ 3.9367e-1 (8.22e-3) -
1593
+ 4.3073e-1 (2.94e-4) -
1594
+ 4.2689e-1 (1.40e-3) -
1595
+ 4.3128e-1 (2.45e-4)
1596
+ CTP3
1597
+ 3.7267e-1 (5.45e-2) -
1598
+ 3.8376e-1 (4.03e-3) -
1599
+ 3.5588e-1 (7.25e-3) -
1600
+ 3.9219e-1 (2.18e-3) -
1601
+ 3.8119e-1 (6.97e-3) -
1602
+ 4.0507e-1 (1.75e-3)
1603
+ CTP4
1604
+ 2.2838e-1 (6.88e-2) -
1605
+ 2.5406e-1 (1.86e-2) -
1606
+ 2.4611e-1 (2.00e-2) -
1607
+ 2.7265e-1 (2.41e-2) -
1608
+ 2.2246e-1 (2.88e-2) -
1609
+ 3.3430e-1 (1.20e-2)
1610
+ CTP5
1611
+ 3.9329e-1 (2.59e-2) -
1612
+ 3.8822e-1 (4.53e-3) -
1613
+ 3.5629e-1 (9.01e-3) -
1614
+ 3.9643e-1 (2.52e-3) -
1615
+ 3.8643e-1 (5.29e-3) -
1616
+ 4.0665e-1 (1.86e-3)
1617
+ CTP6
1618
+ 4.6359e-1 (3.75e-4) -
1619
+ 4.6198e-1 (6.48e-4) -
1620
+ 4.4896e-1 (2.68e-3) -
1621
+ 4.6381e-1 (3.03e-4) -
1622
+ 4.6034e-1 (1.83e-3) -
1623
+ 4.6468e-1 (2.22e-4)
1624
+ CTP7
1625
+ 5.6701e-1 (2.23e-3) -
1626
+ 5.6676e-1 (9.22e-4) -
1627
+ 5.6637e-1 (4.11e-4) -
1628
+ 5.6745e-1 (1.69e-4) ≈
1629
+ 5.6692e-1 (1.86e-4) -
1630
+ 5.6721e-1 (1.62e-3)
1631
+ CTP8
1632
+ 3.4937e-1 (2.45e-2) -
1633
+ 3.6598e-1 (2.71e-3) -
1634
+ 3.5213e-1 (3.79e-3) -
1635
+ 3.6932e-1 (8.68e-4) -
1636
+ 3.5503e-1 (2.42e-2) -
1637
+ 3.7069e-1 (4.25e-4)
1638
+ LIRCMOP1
1639
+ 1.3114e-1 (2.17e-2) -
1640
+ 1.9042e-1 (1.06e-2) -
1641
+ 1.0593e-1 (3.85e-2) -
1642
+ 1.4954e-1 (1.82e-2) -
1643
+ 1.8833e-1 (4.61e-2) -
1644
+ 2.2304e-1 (6.36e-3)
1645
+ LIRCMOP2
1646
+ 2.5580e-1 (2.95e-2) -
1647
+ 3.2332e-1 (1.35e-2) -
1648
+ 2.9229e-1 (3.67e-2) -
1649
+ 2.9325e-1 (2.05e-2) -
1650
+ 3.2282e-1 (2.82e-2) -
1651
+ 3.4702e-1 (3.44e-3)
1652
+ LIRCMOP3
1653
+ 1.1697e-1 (2.61e-2) -
1654
+ 1.4007e-1 (1.86e-2) -
1655
+ 9.9083e-2 (2.08e-2) -
1656
+ 1.2942e-1 (2.47e-2) -
1657
+ 9.1646e-2 (1.42e-2) -
1658
+ 1.9947e-1 (4.24e-3)
1659
+ LIRCMOP4
1660
+ 2.1773e-1 (2.72e-2) -
1661
+ 2.4241e-1 (3.29e-2) -
1662
+ 1.8974e-1 (4.86e-2) -
1663
+ 2.3242e-1 (3.14e-2) -
1664
+ 1.8379e-1 (2.31e-2) -
1665
+ 3.0693e-1 (3.76e-3)
1666
+ LIRCMOP5
1667
+ 8.9983e-2 (1.05e-1) -
1668
+ 2.4475e-1 (1.22e-2) -
1669
+ 2.4215e-1 (1.32e-2) -
1670
+ 2.8700e-1 (5.09e-3) ≈
1671
+ 2.6214e-1 (8.89e-2) -
1672
+ 2.8657e-1 (5.90e-3)
1673
+ LIRCMOP6
1674
+ 8.6641e-2 (5.68e-2) -
1675
+ 1.7269e-1 (1.24e-2) -
1676
+ 1.4582e-1 (3.86e-2) -
1677
+ 1.9402e-1 (3.37e-3) ≈
1678
+ 1.9677e-1 (1.59e-4) +
1679
+ 1.8377e-1 (3.56e-2)
1680
+ LIRCMOP7
1681
+ 2.8752e-1 (6.87e-3) ≈
1682
+ 2.6957e-1 (2.12e-2) -
1683
+ 2.8582e-1 (3.18e-3) -
1684
+ 2.9114e-1 (4.01e-3) ≈
1685
+ 2.9389e-1 (1.55e-4) +
1686
+ 2.8957e-1 (4.05e-3)
1687
+ LIRCMOP8
1688
+ 2.8236e-1 (1.47e-2) -
1689
+ 2.6950e-1 (1.80e-2) -
1690
+ 2.8424e-1 (1.40e-2) -
1691
+ 2.9321e-1 (3.40e-3) ≈
1692
+ 2.9387e-1 (2.04e-4) ≈
1693
+ 2.9235e-1 (3.25e-3)
1694
+ LIRCMOP9
1695
+ 3.5772e-1 (8.15e-2) -
1696
+ 5.2821e-1 (2.63e-2) ≈
1697
+ 4.9955e-1 (2.81e-2) -
1698
+ 5.5712e-1 (8.54e-3) +
1699
+ 4.9582e-1 (5.19e-2) -
1700
+ 5.3708e-1 (2.00e-2)
1701
+ LIRCMOP10
1702
+ 5.1193e-1 (6.34e-2) -
1703
+ 7.0668e-1 (5.59e-3) +
1704
+ 6.7264e-1 (2.74e-2) -
1705
+ 7.0659e-1 (3.77e-4) +
1706
+ 7.0755e-1 (1.24e-4) +
1707
+ 7.0630e-1 (4.01e-4)
1708
+ LIRCMOP11
1709
+ 5.3737e-1 (1.32e-1) -
1710
+ 6.9062e-1 (4.88e-3) -
1711
+ 6.4145e-1 (1.47e-2) -
1712
+ 6.9392e-1 (7.61e-5) ≈
1713
+ 6.1686e-1 (4.29e-2) -
1714
+ 6.9393e-1 (5.71e-5)
1715
+ LIRCMOP12
1716
+ 5.5161e-1 (4.68e-2) -
1717
+ 6.1582e-1 (9.12e-3) ≈
1718
+ 6.0522e-1 (7.22e-3) -
1719
+ 6.1952e-1 (1.29e-3) ≈
1720
+ 6.0839e-1 (2.46e-2) -
1721
+ 6.1811e-1 (3.04e-3)
1722
+ LIRCMOP13
1723
+ 4.7950e-1 (1.63e-1) -
1724
+ 5.3426e-1 (4.14e-3) -
1725
+ 5.4704e-1 (3.37e-4) -
1726
+ 5.5421e-1 (1.49e-3) -
1727
+ 5.1626e-1 (3.56e-3) -
1728
+ 5.5578e-1 (1.23e-3)
1729
+ LIRCMOP14
1730
+ 4.9121e-1 (1.36e-1) -
1731
+ 5.3744e-1 (4.86e-3) -
1732
+ 5.4656e-1 (7.33e-4) -
1733
+ 5.5357e-1 (1.22e-3) -
1734
+ 5.2944e-1 (4.28e-3) -
1735
+ 5.5604e-1 (1.16e-3)
1736
+ +/-/≈
1737
+ 0/33/3
1738
+ 3/31/2
1739
+ 3/28/5
1740
+ 7/20/9
1741
+ 3/32/1
1742
+ B. Comparison Results
1743
+ First, we compared the performance of ATM-R with that of
1744
+ the other five CMOEAs. The mean IGD values and standard
1745
+ deviations of 36 test functions over 30 independent runs are
1746
+ summarized in Table I. The results in terms of the HV value
1747
+ are collected in Table II. In each table, “std” represents the
1748
+ standard deviation of the IGD/HV values over 30 independent
1749
+ runs. “NaN” denotes that a CMOEA cannot find a feasible
1750
+ solution of a test function over all 30 independent runs.
1751
+ For a given test function, ATM-R was compared with each
1752
+ competitor by the Friedman test with Bonferroni correction at
1753
+ a significance level of 0.05. For convenience, “+”, “-”, and
1754
+ “≈” are used to represent that a competitor is better than,
1755
+ worse than, and similar to ATM-R, respectively. In addition,
1756
+ for each test function, the best result among the six CMOEAs
1757
+ is highlighted in gray. To visualize the results, we plotted the
1758
+ CPFs obtained by the six CMOEAs in a typical run on three
1759
+ representative CMOPs in Figs. 6-8. A typical run denotes the
1760
+ one producing the median IGD value among all runs.
1761
+ 1) General Performance: In general, as shown in Table I
1762
+ and Table II, ATM-R obtained the best results of most of the
1763
+ test functions in terms of both the IGD and the HV values.
1764
+ Additionally, it performed significantly better than the other
1765
+ five competitors on most of the test functions. The multi-
1766
+ problem Friedman’s test [?] was implemented to compare
1767
+ these six CMOEAs simultaneously. As shown in Fig. 5, ATM-
1768
+ R achieved the lowest ranking value among six CMOEAs.
1769
+ Furthermore, the results in Figs. 6-8 show that ATM-R can
1770
+ obtain a set of well-converged and well-distributed solutions.
1771
+ A more detailed discussion on different test suites is given
1772
+ next.
1773
+ 2) Performance on MW Test Suite: In terms of the IGD
1774
+ value, ATM-R performed better than NSGAII-CDP, PPS,
1775
+ CTAEA, CCMO, and ToP on 14, 13, six, six, and 14 test
1776
+ functions, respectively. Inversely, these peer CMOEAs were
1777
+ better than ATM-R on zero, one, two, three, and zero test
1778
+ functions, respectively. ATM-R obtained the best results of
1779
+ four test functions on which it performed better than the other
1780
+ five competitors. CCMO obtained the best results of four test
1781
+ functions, on one of which it performed similarly to ATM-
1782
+ R. Although CTAEA obtained the best results of six test
1783
+ functions, it performed similarly to ATM-R on five of these
1784
+ test functions.
1785
+ In terms of the HV value, ATM-R performed better than
1786
+ NSGAII-CDP, PPS, CTAEA, CCMO, and ToP on 12, 12, six,
1787
+ eight, and 14 test functions, respectively. On the contrary, these
1788
+ peer CMOEAs revealed better results than ATM-R on zero,
1789
+ two, three, five, and zero test functions, respectively. ATM-
1790
+ R obtained the best results of three test functions on which
1791
+ it performed better than the other five competitors. CCMO
1792
+
1793
+ 11
1794
+ 0.5
1795
+ 1
1796
+ 1.5
1797
+ 1
1798
+ 2
1799
+ 3
1800
+ NSGAII-CDP on MW13
1801
+ 0.5
1802
+ 1
1803
+ 1.5
1804
+ 1
1805
+ 2
1806
+ 3
1807
+ PPS on MW13
1808
+ 0.5
1809
+ 1
1810
+ 1.5
1811
+ 1
1812
+ 2
1813
+ 3
1814
+ CTAEA on MW13
1815
+ 0.5
1816
+ 1
1817
+ 1.5
1818
+ 1
1819
+ 2
1820
+ 3
1821
+ CCMO on MW13
1822
+ 2
1823
+ 3
1824
+ 4
1825
+ 5
1826
+ 1
1827
+ 2
1828
+ 3
1829
+ ToP on MW13
1830
+ 0.5
1831
+ 1
1832
+ 1.5
1833
+ 1
1834
+ 2
1835
+ 3
1836
+ ATM-R on MW13
1837
+ Fig. 6. The constrained Pareto front with median value among 30 runs obtained by NSGAII-CDP, PPS, CTAEA, CCMO, ToP, and ATM-R on MW13.
1838
+ 0
1839
+ 0.2
1840
+ 0.4
1841
+ 0.6
1842
+ 0.8
1843
+ 0.6
1844
+ 0.8
1845
+ 1
1846
+ 1.2
1847
+ NSGAII-CDP on CTP4
1848
+ 0
1849
+ 0.2
1850
+ 0.4
1851
+ 0.6
1852
+ 0.8
1853
+ 0.6
1854
+ 0.8
1855
+ 1
1856
+ 1.2
1857
+ PPS on CTP4
1858
+ 0
1859
+ 0.5
1860
+ 1
1861
+ 5
1862
+ 10
1863
+ 15
1864
+ CTAEA on CTP4
1865
+ 0
1866
+ 0.2
1867
+ 0.4
1868
+ 0.6
1869
+ 0.8
1870
+ 0.6
1871
+ 0.8
1872
+ 1
1873
+ 1.2
1874
+ CCMO on CTP4
1875
+ 0
1876
+ 0.2
1877
+ 0.4
1878
+ 0.6
1879
+ 0.8
1880
+ 0.6
1881
+ 0.8
1882
+ 1
1883
+ 1.2
1884
+ ToP on CTP4
1885
+ 0
1886
+ 0.2
1887
+ 0.4
1888
+ 0.6
1889
+ 0.8
1890
+ 0.4
1891
+ 0.6
1892
+ 0.8
1893
+ 1
1894
+ ATM-R on CTP4
1895
+ Fig. 7. The constrained Pareto front with median value among 30 runs obtained by NSGAII-CDP, PPS, CTAEA, CCMO, ToP, and ATM-R on CTP4.
1896
+ 0
1897
+ 0
1898
+ 0.5
1899
+ 0.5
1900
+ 0.5
1901
+ NSGAII-CDP on LIRCMOP14
1902
+ 1
1903
+ 1
1904
+ 1
1905
+ 1.5
1906
+ 1.5
1907
+ 1.5
1908
+ 0
1909
+ 0
1910
+ 0.5
1911
+ 0.5
1912
+ 0.5
1913
+ PPS on LIRCMOP14
1914
+ 1
1915
+ 1
1916
+ 1
1917
+ 1.5
1918
+ 1.5
1919
+ 1.5
1920
+ 0
1921
+ 0
1922
+ 0.5
1923
+ 0.5
1924
+ 0.5
1925
+ CTAEA on LIRCMOP14
1926
+ 1
1927
+ 1
1928
+ 1
1929
+ 1.5
1930
+ 1.5
1931
+ 1.5
1932
+ 0
1933
+ 0
1934
+ 0.5
1935
+ 0.5
1936
+ 0.5
1937
+ 1
1938
+ CCMO on LIRCMOP14
1939
+ 1.5
1940
+ 1
1941
+ 1
1942
+ 1.5
1943
+ 1.5
1944
+ 0
1945
+ 0
1946
+ 0.5
1947
+ 0.5
1948
+ 0.5
1949
+ ToP on LIRCMOP14
1950
+ 1
1951
+ 1
1952
+ 1
1953
+ 1.5
1954
+ 1.5
1955
+ 1.5
1956
+ 0
1957
+ 0
1958
+ 0.5
1959
+ 0.5
1960
+ 0.5
1961
+ ATM-R on LIRCMOP14
1962
+ 1
1963
+ 1
1964
+ 1
1965
+ 1.5
1966
+ 1.5
1967
+ 1.5
1968
+ Fig. 8. The constrained Pareto front with median value among 30 runs obtained by NSGAII-CDP, PPS, CTAEA, CCMO, ToP, and ATM-R on LIRCMOP14.
1969
+ obtained the best results of four test functions. Although
1970
+ CTAEA obtained the best results of seven test functions, it
1971
+ performed similarly to ATM-R on four of these test functions.
1972
+ Furthermore, as shown in Fig 6, ATM-R obtained a set of
1973
+ well-converged and well-distributed feasible solutions that is
1974
+ close to the CPF. However, ToP failed to converge to the CPF.
1975
+ NSGAII-CDP, PPS, CTAEA, and CCMO lost some parts of
1976
+ the CPF. The results reflect that ATM-R performs better than
1977
+ the other five competitors on the MW test suite.
1978
+ 3) Performance on CTP Test Suite: For the CTP test suite,
1979
+ ATM-R performed better than the other five competitors on
1980
+ most of the test functions in terms of both the IGD and HV
1981
+ values. Additionally, it obtained the best IGD/HV values on
1982
+ most of the test functions.
1983
+ For CTP1, some parts of the CPF come from the un-
1984
+ constrained Pareto front. For CTP6, the objective space has
1985
+ infeasible holes of differing widths toward the Pareto-optimal
1986
+ regions. For CTP2-CTP5, CTP7, and CTP8, the CPFs are
1987
+ divided into several disconnected segments. To solve these
1988
+ problems effectively, infeasibility information should be used
1989
+ carefully. Thus, NSGAII-CDP and ToP, which only consider
1990
+ constraints in the infeasible phase, performed worse than
1991
+ ATM-R. As stated in [4], due to the complex (i.e., disconnected
1992
+ and discrete) characteristics of the CPFs, the CMOEAs using
1993
+ reference points or vectors would have inferior performance.
1994
+ Therefore, CTAEA performed worse than ATM-R. PPS puts
1995
+ emphasis on objectives in the early stage, while CCMO adopts
1996
+ a specific population to make use of infeasibility information.
1997
+ Compared with the MW test suite, the test functions in the
1998
+ CTP test suite have larger feasibility ratios. Thus, too much
1999
+ infeasibility information would impair the performance of a
2000
+ CMOEA. This may be why PPS and CCMO performed worse
2001
+ than ATM-R.
2002
+ Furthermore, as shown in Fig. 7, ATM-R can converge to
2003
+ the CPF of CTP4 more quickly than the other five competitors.
2004
+ Additionally, it can cover more parts of the CPF than the other
2005
+ five competitors. The results reflect that ATM-R performs
2006
+ better than the other five competitors on the CTP test suite.
2007
+ 4) Performance on LIRCMOP Test Suite: For the LIRC-
2008
+ MOP test suite, ATM-R obtained the best results on half of the
2009
+ test functions in terms of both the IGD and HV values. Similar
2010
+ to the CTP test suite, the test functions in the LIRCMOP
2011
+ test suite have infeasible holes in the objective space and the
2012
+ CPFs of some test functions are disconnected. To solve these
2013
+ test functions effectively, infeasibility information should be
2014
+ used carefully. NSGAII-CDP and ToP performed worse than
2015
+ ATM-R on most of the test functions because they ignore
2016
+ the infeasibility information to a great extent. ToP performed
2017
+ better than ATM-R on four and three test functions in terms
2018
+ of the IGD and HV values, respectively. This is attributed to
2019
+ the powerful genetic operator (i.e., differential evolution) used
2020
+ in ToP.
2021
+ Among the infeasibility-assisted CMOEAs, PPS motivates
2022
+ the population toward the unconstrained Pareto front in the
2023
+ early stage. In CTAEA and CCMO, an additional popula-
2024
+ tion is employed to approach the unconstrained Pareto front.
2025
+ Thus, these three CMOEAs will fail to solve a CMOP (i.e.,
2026
+ LIRCMOP1-LIRCMOP4) in which the CPF is far away from
2027
+
2028
+ 12
2029
+ the unconstrained Pareto front. Regarding LIRCMOP5 and
2030
+ LIRCMOP6, the CPFs are the same as the unconstrained
2031
+ Pareto fronts. Regarding LIRCMOP7 and LIRCMOP8, the
2032
+ CPFs are near the unconstrained Pareto fronts. For these four
2033
+ test functions, an infeasibility-assisted CMOEA can approach
2034
+ the CPF easily; thus, uniformity is the key factor affecting its
2035
+ performance. ATM-R and CCMO performed better than PPS
2036
+ and CTAEA on these test functions because they can preserve
2037
+ diversity more effectively. For LIRCMOP9-LIRCMOP12, the
2038
+ CPFs are divided into several disconnected segments. To solve
2039
+ these test functions effectively, diversity should be maintained
2040
+ carefully. Due to the weak cooperation of two populations,
2041
+ CCMO can maintain diversity effectively during the evolution-
2042
+ ary process. Thus, it performed better than ATM-R on these
2043
+ four test functions. For the two three-objective test functions
2044
+ (i.e., LIRCMOP13-LIRCMOP14), ATM-R performed better
2045
+ than the other five competitors in terms of both the IGD
2046
+ and HV values. It implies that ATM-R can achieve a bet-
2047
+ ter tradeoff among feasibility, diversity, and convergence for
2048
+ three-objective CMOPs.
2049
+ Furthermore, as shown in Fig. 8, all six CMOEAs can
2050
+ converge to the constrained Pareto front successfully. ATM-
2051
+ R performed better than the other five competitors in terms of
2052
+ the uniformity since it can achieve a better tradeoff among fea-
2053
+ sibility, diversity, and convergence for three-objective CMOPs.
2054
+ The results reflect that ATM-R performs better than the other
2055
+ five competitors on the LIRCMOP test suite.
2056
+ In summary, the extensive experiments on 36 test func-
2057
+ tions with various challenging characteristics demonstrate that
2058
+ ATM-R is able to solve complex CMOPs successfully.
2059
+ V. FURTHER ANALYSES
2060
+ A. Advantages of ATM-R over ATM
2061
+ As discussed in Remark 1, it is not effective to extend
2062
+ ATM [40] to solve CMOPs straightforwardly. In this subsec-
2063
+ tion, the advantages of ATM-R over ATM were demonstrated
2064
+ through experiments. The comparison results on 36 test func-
2065
+ tions in terms of the IGD and the HV values are summarized in
2066
+ Table III, where “+”, “-”, and “≈” denote that ATM performs
2067
+ better than, worse than, and similarly to ATM-R in terms of the
2068
+ IGD/HV value, respectively. As shown in Table III, ATM-R
2069
+ performed better than ATM on these three test suites in terms
2070
+ of both the IGD and the HV values. Specifically, in terms of
2071
+ the IGD value, ATM-R was better than ATM on 9, 5, and 12
2072
+ test functions of the MW, the CTP, and the LIRCMOP test
2073
+ suites, respectively. In contrast, ATM was better than ATM-
2074
+ R on no more than three test functions of these test suites.
2075
+ With regard to the HV value, ATM-R performed better than
2076
+ ATM on 8, 6, and 12 test functions, respectively. Inversely,
2077
+ ATM outperformed ATM-R on no more than 4 test functions
2078
+ of these test suites. In summary, the experimental results on
2079
+ these test functions with various characteristics demonstrate
2080
+ that ATM-R has an edge over ATM.
2081
+ B. Effectiveness of the Infeasible Phase
2082
+ To validate the effectiveness of the update mechanism in the
2083
+ infeasible phase, we implemented three variants (denoted as
2084
+ TABLE III
2085
+ RESULTS OF ATM VS ATM-R ON 36 TEST FUNCTIONS.
2086
+ Test Functions
2087
+ IGD
2088
+ +/-/≈
2089
+ HV
2090
+ +/-/≈
2091
+ MW1-MW14
2092
+ 2/9/3
2093
+ 4/8/2
2094
+ CTP1-CTP8
2095
+ 3/5/0
2096
+ 2/6/0
2097
+ LIRCMOP1-LIRCMOP14
2098
+ 1/12/1
2099
+ 1/12/1
2100
+ TABLE IV
2101
+ RESULTS OF ATM-RICDP VS ATM-R, ATM-RIOBJ VS ATM-R, AND
2102
+ ATM-RIDIV VS ATM-R ON 36 TEST FUNCTIONS.
2103
+ Algorithms
2104
+ IGD
2105
+ +/-/≈
2106
+ HV
2107
+ +/-/≈
2108
+ ATM-RICDP vs ATM-R
2109
+ 2/19/15
2110
+ 2/23/11
2111
+ ATM-RIobj vs ATM-R
2112
+ 5/11/20
2113
+ 7/11/18
2114
+ ATM-RIdiv vs ATM-R
2115
+ 8/14/14
2116
+ 10/14/12
2117
+ ATM-RICDP, ATM-RIobj, and ATM-RIdiv) by using different
2118
+ update mechanisms in this phase. Specifically, in ATM-RICDP,
2119
+ the CDP is used for solution selection. In ATM-RIobj, the
2120
+ solutions are selected based on Pareto dominance regardless
2121
+ of constraints. In ATM-RIdiv, the diversity is quantified and
2122
+ used to select promising solutions. By comparing ATM-R
2123
+ with each of ATM-RICDP, ATM-RIobj, and ATM-RIdiv, the
2124
+ effectiveness of the update mechanism in the infeasible phase
2125
+ can be validated. The comparison results on 36 test functions
2126
+ mentioned above are summarized in Table IV, where “+”, “-”,
2127
+ and “≈” denote that a competitor performs better than, worse
2128
+ than, and similarly to ATM-R in terms of the IGD/HV value,
2129
+ respectively.
2130
+ As shown in Table IV, ATM-R performed better than ATM-
2131
+ RICDP, ATM-RIobj, and ATM-RIdiv in terms of both the
2132
+ IGD and the HV values. Specifically, with regard to the IGD
2133
+ value, ATM-R was better than ATM-RICDP, ATM-RIobj, and
2134
+ ATM-RIdiv on 19, 11, and 14 test functions, respectively.
2135
+ Inversely, ATM-RICDP, ATM-RIobj, and ATM-RIdiv outper-
2136
+ formed ATM-R on 2, 5, and 8 test functions, respectively. In
2137
+ terms of the HV value, ATM-R performed better than ATM-
2138
+ RICDP, ATM-RIobj, and ATM-RIdiv on 23, 11, and 14 test
2139
+ functions, respectively. In contrast, ATM-RICDP, ATM-RIobj,
2140
+ and ATM-RIdiv outperformed ATM-R on 2, 7, and 4 test
2141
+ functions, respectively. The experimental results show that the
2142
+ update mechanism in the infeasible phase is critical to ATM-R.
2143
+ C. Effectiveness of the Semi-feasible Phase
2144
+ To validate the effectiveness of the update mechanism
2145
+ in the semi-feasible phase, we implemented three variants
2146
+ (i.e., ATM-RSCDP, ATM-RSobj, and ATM-RSdiv) by using
2147
+ different update mechanisms in this phase. Specifically, in
2148
+ ATM-RSCDP, ATM-RSobj, and ATM-RSdiv, the CDP, the
2149
+ Pareto dominance, and the diversity are used for solution
2150
+ selection, respectively. By comparing ATM-R with each of
2151
+ ATM-RICDP, ATM-RIobj, and ATM-RIdiv, the effectiveness
2152
+ of the update mechanism in the semi-feasible phase can
2153
+ be validated. Specifically, the comparison results on 36 test
2154
+ functions mentioned above are summarized in Table V, where
2155
+
2156
+ 13
2157
+ TABLE V
2158
+ RESULTS OF ATM-RSCDP VS ATM-R, ATM-RSOBJ VS ATM-R, AND
2159
+ ATM-RSDIV VS ATM-R ON 36 TEST FUNCTIONS.
2160
+ Algorithms
2161
+ IGD
2162
+ +/-/≈
2163
+ HV
2164
+ +/-/≈
2165
+ ATM-RSCDP vs ATM-R
2166
+ 3/24/9
2167
+ 5/23/8
2168
+ ATM-RSobj vs ATM-R
2169
+ 3/32/1
2170
+ 2/31/3
2171
+ ATM-RSdiv vs ATM-R
2172
+ 0/36/0
2173
+ 0/36/0
2174
+ “+”, “-”, and “≈” denote that a competitor performs better
2175
+ than, worse than, and similarly to ATM-R in terms of the
2176
+ IGD/HV value, respectively.
2177
+ As shown in Table V, ATM-R performed better than ATM-
2178
+ RSCDP, ATM-RSobj, and ATM-RSdiv in terms of both the
2179
+ IGD and the HV values. With regard to the IGD value,
2180
+ ATM-R was better than ATM-RSCDP, ATM-RSobj, and ATM-
2181
+ RSdiv on 24, 32, and 36 test functions, respectively. In
2182
+ contrast, ATM-RSCDP, ATM-RSobj, and ATM-RSdiv out-
2183
+ performed ATM-R on no more than three test functions. In
2184
+ terms of the HV value, ATM-R performed better than ATM-
2185
+ RSCDP, ATM-RSobj, and ATM-RSdiv on 23, 31, and 36 test
2186
+ functions, respectively. Inversely, ATM-RSCDP, ATM-RSobj,
2187
+ and ATM-RSdiv outperformed ATM-R on no more than five
2188
+ test functions. The experimental results show that the update
2189
+ mechanism in the semi-feasible phase is critical to ATM-R.
2190
+ D. Effectiveness of the Multiphase Mating Selection Strategy
2191
+ In order to verify the effectiveness of the multiphase mating
2192
+ selection strategy, we implemented three variants (i.e., ATM-
2193
+ RMCDP, ATM-RMobj, and ATM-RMdiv) by using different
2194
+ selection methods to select mating solutions. Specifically, in
2195
+ ATM-RMCDP, ATM-RMobj, and ATM-RMdiv, the CDP, the
2196
+ Pareto dominance, and the diversity are used for solution selec-
2197
+ tion, respectively. By comparing ATM-R with each of ATM-
2198
+ RMCDP, ATM-RMobj, and ATM-RMdiv, the effectiveness of
2199
+ the multiphase mating selection strategy can be demonstrated.
2200
+ Specifically, the comparison results on 36 test functions men-
2201
+ tioned above are summarized in Table VI, where “+”, “-”,
2202
+ and “≈” denote that a competitor performs better than, worse
2203
+ than, and similarly to ATM-R in terms of the IGD/HV value,
2204
+ respectively.
2205
+ As shown in Table VI, ATM-R performed better than ATM-
2206
+ RMCDP, ATM-RMobj, and ATM-RMdiv in terms of both
2207
+ the IGD and the HV values. With regard to the IGD value,
2208
+ ATM-R was better than ATM-RMCDP, ATM-RMobj, and
2209
+ ATM-RMdiv on 19, 10, and 9 test functions, respectively. In
2210
+ contrast, ATM-RMCDP, ATM-RMobj, and ATM-RMdiv out-
2211
+ performed ATM-R on 5, 7, and 5 test functions, respectively. In
2212
+ terms of the HV value, ATM-R performed better than ATM-
2213
+ RMCDP, ATM-RMobj, and ATM-RMdiv on 22, 13, and 8
2214
+ test functions, respectively. Inversely, ATM-RMCDP, ATM-
2215
+ RMobj, and ATM-RMdiv outperformed ATM-R on 3, 7, and
2216
+ 4 test functions, respectively. The experimental results show
2217
+ that the multiphase selection strategy is critical to ATM-R.
2218
+ TABLE VI
2219
+ RESULTS OF ATM-RMCDP VS ATM-R, ATM-RMOBJ VS ATM-R, AND
2220
+ ATM-RMDIV VS ATM-R ON 36 TEST FUNCTIONS.
2221
+ Algorithms
2222
+ IGD
2223
+ +/-/≈
2224
+ HV
2225
+ +/-/≈
2226
+ ATM-RMCDP vs ATM-R
2227
+ 5/19/12
2228
+ 3/22/11
2229
+ ATM-RMobj vs ATM-R
2230
+ 7/10/19
2231
+ 7/13/16
2232
+ ATM-RMdiv vs ATM-R
2233
+ 5/9/22
2234
+ 4/8/24
2235
+ VI. CONCLUSIONS
2236
+ This paper has analyzed the key task of constrained multi-
2237
+ objective optimization in depth and decomposed it into three
2238
+ subtasks explicitly for the first time. To accomplish these
2239
+ three subtasks in different evolutionary phases, an adaptive
2240
+ tradeoff model with reference points (ATM-R) was designed.
2241
+ Specifically, ATM-R takes advantage of infeasible solutions
2242
+ to achieve different tradeoffs in these three subtasks. In the
2243
+ infeasible phase, ATM-R distinguishes and uses infeasible
2244
+ solutions with good diversity to enhance the diversity loss
2245
+ due to its pursuit of feasibility. Thus, the population can
2246
+ move toward feasible regions from diverse search directions. In
2247
+ the semi-feasible phase, ATM-R leverages infeasible solutions
2248
+ with good diversity/objective function values to promote the
2249
+ transition from “the tradeoff between feasibility and diversity”
2250
+ to “the tradeoff between convergence and diversity”. Thus, the
2251
+ population can locate enough feasible solutions and approach
2252
+ the CPF quickly. In the feasible phase, ATM-R employs
2253
+ NSGAII to seek a set of well-converged and well-distributed
2254
+ solutions close to the constrained Pareto front. Moreover, a
2255
+ multiphase mating selection strategy is proposed to select
2256
+ appropriate mating parents adaptively. Experimental studies on
2257
+ a wide range of CMOPs demonstrate that:
2258
+ • ATM-R achieves better or at least highly competitive
2259
+ performance against other representative CMOEAs.
2260
+ • ATM-R has a significant advantage over ATM for con-
2261
+ strained multiobjective optimization.
2262
+ • The update mechanisms in the infeasible phase and the
2263
+ semi-feasible phase are both critical to the performance
2264
+ of ATM-R.
2265
+ • The multiphase mating selection strategy is significant to
2266
+ the performance of ATM-R.
2267
+ In the future, we will extend ATM-R to solve constrained
2268
+ expensive multiobjective optimization problems.
2269
+ REFERENCES
2270
+ [1] K. Miettinen, Nonlinear multiobjective optimization.
2271
+ Springer Science
2272
+ & Business Media, 2012, vol. 12.
2273
+ [2] B.-C. Wang, H.-X. Li, J.-P. Li, and Y. Wang, “Composite differential
2274
+ evolution for constrained evolutionary optimization,” IEEE Transactions
2275
+ on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1482–
2276
+ 1495, 2018.
2277
+ [3] Z. Ma and Y. Wang, “Shift-based penalty for evolutionary constrained
2278
+ multiobjective optimization and its application,” IEEE Transactions on
2279
+ Cybernetics, 2021.
2280
+ [4] Z.-Z. Liu, B.-C. Wang, and K. Tang, “Handling constrained multi-
2281
+ objective optimization problems via bidirectional coevolution,” IEEE
2282
+ Transactions on Cybernetics, 2021.
2283
+ [5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
2284
+ multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
2285
+ lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
2286
+
2287
+ 14
2288
+ [6] Z.-Z. Liu, Y. Wang, and P.-Q. Huang, “And: A many-objective evo-
2289
+ lutionary algorithm with angle-based selection and shift-based density
2290
+ estimation,” Information Sciences, vol. 509, pp. 400–419, 2020.
2291
+ [7] H. Jain and K. Deb, “An evolutionary many-objective optimization
2292
+ algorithm using reference-point based nondominated sorting approach,
2293
+ part ii: Handling constraints and extending to an adaptive approach,”
2294
+ IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.
2295
+ 602–622, 2013.
2296
+ [8] W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and D. Zhao, “Constrained
2297
+ multi-objective optimization using constrained non-dominated sorting
2298
+ combined with an improved hybrid multi-objective evolutionary algo-
2299
+ rithm,” Engineering Optimization, vol. 49, no. 10, pp. 1645–1664, 2017.
2300
+ [9] J. G. Hobbie, A. H. Gandomi, and I. Rahimi, “A comparison of
2301
+ constraint handling techniques on nsga-ii,” Archives of Computational
2302
+ Methods in Engineering, pp. 1–16, 2021.
2303
+ [10] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless
2304
+ constraint handling techniques in the framework of moea/d,” Applied
2305
+ Soft Computing, vol. 13, no. 1, pp. 128–148, 2013.
2306
+ [11] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
2307
+ tionary optimization,” IEEE Transactions on Evolutionary Computation,
2308
+ vol. 4, no. 3, pp. 284–294, 2000.
2309
+ [12] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman,
2310
+ “Push and pull search for solving constrained multi-objective optimiza-
2311
+ tion problems,” Swarm and Evolutionary Computation, vol. 44, pp. 665–
2312
+ 679, 2019.
2313
+ [13] Z. Ma, Y. Wang, and W. Song, “A new fitness function with two
2314
+ rankings for evolutionary constrained multiobjective optimization,” IEEE
2315
+ Transactions on Systems, Man, and Cybernetics: Systems, 2019.
2316
+ [14] C. Peng, H.-L. Liu, and F. Gu, “An evolutionary algorithm with
2317
+ directed weights for constrained multi-objective optimization,” Applied
2318
+ Soft Computing, vol. 60, pp. 613–622, 2017.
2319
+ [15] Z. Liu, Y. Wang, and B.-C. Wang, “Indicator-based constrained multiob-
2320
+ jective evolutionary algorithms,” IEEE Transactions on Systems, Man,
2321
+ and Cybernetics: Systems, pp. 1–13, 2019.
2322
+ [16] Z. Fan, Y. Fang, W. Li, J. Lu, X. Cai, and C. Wei, “A comparative study
2323
+ of constrained multi-objective evolutionary algorithms on constrained
2324
+ multi-objective optimization problems,” in 2017 IEEE Congress on
2325
+ Evolutionary Computation (CEC).
2326
+ IEEE, 2017, pp. 209–216.
2327
+ [17] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling
2328
+ in multiobjective evolutionary optimization,” IEEE Transactions on
2329
+ Evolutionary Computation, vol. 13, no. 3, pp. 514–525, 2009.
2330
+ [18] Z.-Z. Liu and Y. Wang, “Handling constrained multiobjective optimiza-
2331
+ tion problems with constraints in both the decision and objective spaces,”
2332
+ IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp.
2333
+ 870–884, 2019.
2334
+ [19] F. Jimenez, A. F. G´omez-Skarmeta, G. S´anchez, and K. Deb, “An
2335
+ evolutionary algorithm for constrained multi-objective optimization,”
2336
+ in Proceedings of the 2002 Congress on Evolutionary Computation.
2337
+ CEC’02 (Cat. No. 02TH8600), vol. 2.
2338
+ IEEE, 2002, pp. 1133–1138.
2339
+ [20] M. Miyakawa, K. Takadama, and H. Sato, “Two-stage non-dominated
2340
+ sorting and directed mating for solving problems with multi-objectives
2341
+ and constraints,” in Proceedings of the 15th Annual Conference on
2342
+ Genetic and Evolutionary Computation, 2013, pp. 647–654.
2343
+ [21] L. Jiao, J. Luo, R. Shang, and F. Liu, “A modified objective func-
2344
+ tion method with feasible-guiding strategy to solve constrained multi-
2345
+ objective optimization problems,” Applied Soft Computing, vol. 14, pp.
2346
+ 363–380, 2014.
2347
+ [22] N. Young, “Blended ranking to cross infeasible regions in constrained-
2348
+ multiobjective problems,” in International Conference on Computational
2349
+ Intelligence for Modelling, Control and Automation and International
2350
+ Conference on Intelligent Agents, Web Technologies and Internet Com-
2351
+ merce (CIMCA-IAWTIC’06), vol. 2.
2352
+ IEEE, 2005, pp. 191–196.
2353
+ [23] Z. Yang, X. Cai, and Z. Fan, “Epsilon constrained method for con-
2354
+ strained multiobjective optimization problems: some preliminary re-
2355
+ sults,” in Proceedings of the Companion Publication of the 2014 Annual
2356
+ Conference on Genetic and Evolutionary Computation, 2014, pp. 1181–
2357
+ 1186.
2358
+ [24] S. Zapotecas-Mart´ınez and A. Ponsich, “Constraint handling within
2359
+ moea/d through an additional scalarizing function,” in Proceedings of
2360
+ the 2020 Genetic and Evolutionary Computation Conference, 2020, pp.
2361
+ 595–602.
2362
+ [25] Z. Fan, H. Li, C. Wei, W. Li, H. Huang, X. Cai, and Z. Cai, “An
2363
+ improved epsilon constraint handling method embedded in moea/d
2364
+ for constrained multi-objective optimization problems,” in 2016 IEEE
2365
+ Symposium Series on Computational Intelligence (SSCI).
2366
+ IEEE, 2016,
2367
+ pp. 1–8.
2368
+ [26] J. Zhou, J. Zou, J. Zheng, S. Yang, D. Gong, and T. Pei, “An infeasible
2369
+ solutions diversity maintenance epsilon constraint handling method for
2370
+ evolutionary constrained multiobjective optimization,” Soft Computing,
2371
+ pp. 1–12, 2021.
2372
+ [27] H. Geng, M. Zhang, L. Huang, and X. Wang, “Infeasible elitists and
2373
+ stochastic ranking selection in constrained evolutionary multi-objective
2374
+ optimization,” in Asia-Pacific Conference on Simulated Evolution and
2375
+ Learning.
2376
+ Springer, 2006, pp. 336–344.
2377
+ [28] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, “Infeasibility driven
2378
+ evolutionary algorithm for constrained optimization,” in Constraint-
2379
+ Handling in Evolutionary Optimization.
2380
+ Springer, 2009, pp. 145–165.
2381
+ [29] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm
2382
+ for constrained multiobjective optimization,” IEEE Transactions on
2383
+ Evolutionary Computation, vol. 23, no. 2, pp. 303–315, 2018.
2384
+ [30] Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, “A coevolutionary
2385
+ framework for constrained multi-objective optimization problems,” IEEE
2386
+ Transactions on Evolutionary Computation, 2020.
2387
+ [31] H. Ishibuchi, T. Fukase, N. Masuyama, and Y. Nojima, “Dual-grid model
2388
+ of moea/d for evolutionary constrained multiobjective optimization,” in
2389
+ Proceedings of the Genetic and Evolutionary Computation Conference,
2390
+ 2018, pp. 665–672.
2391
+ [32] Q. Zhu, Q. Zhang, Q. Lin, and J. Sun, “Moea/d with two types of
2392
+ weight vectors for handling constraints,” in 2019 IEEE Congress on
2393
+ Evolutionary Computation (CEC).
2394
+ IEEE, 2019, pp. 1359–1365.
2395
+ [33] Y. Yang, J. Liu, and S. Tan, “A constrained multi-objective evolutionary
2396
+ algorithm based on decomposition and dynamic constraint-handling
2397
+ mechanism,” Applied Soft Computing, vol. 89, p. 106104, 2020.
2398
+ [34] Z. Fan, Z. Wang, W. Li, Y. Yuan, Y. You, Z. Yang, F. Sun, and
2399
+ J. Ruan, “Push and pull search embedded in an m2m framework for
2400
+ solving constrained multi-objective optimization problems,” Swarm and
2401
+ Evolutionary Computation, vol. 54, p. 100651, 2020.
2402
+ [35] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained multi-objective
2403
+ optimization for iot-enabled computation offloading in collaborative
2404
+ edge and cloud computing,” IEEE Internet of Things Journal, 2021.
2405
+ [36] K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic selection
2406
+ preference-assisted constrained multiobjective differential evolution,”
2407
+ IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.
2408
+ [37] Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, “Balancing
2409
+ objective optimization and constraint satisfaction in constrained evolu-
2410
+ tionary multi-objective optimization,” IEEE Transactions on Cybernet-
2411
+ ics, 2020.
2412
+ [38] F. Ming, W. Gong, H. Zhen, S. Li, L. Wang, and Z. Liao, “A simple
2413
+ two-stage evolutionary algorithm for constrained multi-objective opti-
2414
+ mization,” Knowledge-Based Systems, pp. 1–14, 2021.
2415
+ [39] C. Peng, H.-L. Liu, and E. D. Goodman, “A cooperative evolutionary
2416
+ framework based on an improved version of directed weight vectors
2417
+ for constrained multiobjective optimization with deceptive constraints,”
2418
+ IEEE Transactions on Cybernetics, 2020.
2419
+ [40] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
2420
+ for constrained evolutionary optimization,” IEEE Transactions on Evo-
2421
+ lutionary Computation, vol. 12, no. 1, pp. 80–92, 2008.
2422
+ [41] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
2423
+ for generating the pareto surface in nonlinear multicriteria optimization
2424
+ problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,
2425
+ 1998.
2426
+ [42] K. Deb, R. B. Agrawal et al., “Simulated binary crossover for continuous
2427
+ search space,” Complex Systems, vol. 9, no. 2, pp. 115–148, 1995.
2428
+ [43] K. Deb, M. Goyal et al., “A combined genetic adaptive search (geneas)
2429
+ for engineering design,” Computer Science and Informatics, vol. 26, pp.
2430
+ 30–45, 1996.
2431
+ [44] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “Platemo: A matlab platform
2432
+ for evolutionary multi-objective optimization [educational forum],” IEEE
2433
+ Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017.
2434
+ [45] Z. Ma and Y. Wang, “Evolutionary constrained multiobjective opti-
2435
+ mization: Test suite construction and performance comparisons,” IEEE
2436
+ Transactions on Evolutionary Computation, vol. 23, no. 6, pp. 972–986,
2437
+ 2019.
2438
+ [46] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for
2439
+ multi-objective evolutionary optimization,” in International Conference
2440
+ on Evolutionary Multi-Criterion Optimization. Springer, 2001, pp. 284–
2441
+ 298.
2442
+ [47] M. Li and X. Yao, “Quality evaluation of solution sets in multiobjective
2443
+ optimisation: A survey,” ACM Computing Surveys (CSUR), vol. 52,
2444
+ no. 2, pp. 1–38, 2019.
2445
+
-NE1T4oBgHgl3EQfoQQY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NFLT4oBgHgl3EQfCi71/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3dbc8d424025c29632de7f5e7e05e9b8fcdf6e47b9c5e6e1c93da6a8e660a6
3
+ size 2359341
-dE1T4oBgHgl3EQfCgLC/content/tmp_files/2301.02866v1.pdf.txt ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ X-ray properties of high-redshift Radio Loud and Radio Quiet
2
+ Quasars observed by Chandra
3
+ F. Shabana,∗, A. Siemiginowskab, R.M. Suleimanb, M.S. El-Nawawya, A. Alia
4
+ aAstronomy, Space Science and Meteorology Department, Faculty of Science, Cairo University, Giza, EGYPT
5
+ bCenter for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
6
+ Abstract
7
+ We performed a study of high redshift (z > 2) quasars, looking for the main differences be-
8
+ tween Radio Loud Quasars (RLQ) and Radio Quiet Quasars (RQQ) in the X-ray band. Our
9
+ sample of 472 RQQ and 81 RLQ was selected by cross-matching the SDSS DR7 quasars
10
+ catalog with the Chandra Source Catalog. We computed the X-ray luminosity for the two
11
+ samples and confirmed the X-ray luminosity excess of RLQ over RQQ. We fit the X-ray
12
+ spectra assuming the absorbed power law model and obtained the photon index (Γ) values
13
+ for all the sources in the sample. We excluded quasars with a low number of counts (< 10)
14
+ and large uncertainty on the best-fit photon index (Γerr > 1), and obtained the mean values
15
+ of ΓRLQ = 1.70 +0.36
16
+ −0.33 and ΓRQQ = 2.19 +0.46
17
+ −0.44 for the RLQ and RQQ samples, respectively,
18
+ showing that the RLQ have flatter (harder) X-ray spectra than RQQ. The Kuiper-two test
19
+ confirms this result with the significant difference between the RLQ and RQQ photon in-
20
+ dex distributions (Dk = 0.37 and P-value = 10−6). We also evaluated the hardness ratio
21
+ distributions and confirmed that the spectra of RLQ are flatter than the spectra of the RQQ.
22
+ The RLQ’s hard-to-soft ratio distribution is skewed towards the hard X-ray band, while the
23
+ RQQ is towards the soft X-ray band. The hard-to-medium and medium-to-soft ratios show
24
+ no difference.
25
+ Keywords: Radio Loud Quasars, Radio Quiet Quasars, X-ray Astrophysics, X-ray photon
26
+ index, Hardness Ratio
27
+ 1. Introduction
28
+ There are two main classes of quasars: the Radio Quiet Quasars (RQQ) and the Radio
29
+ Loud Quasars (RLQ). They have been identified based on the orientation and presence of
30
+ ∗corresponding author
31
+ Email address: [email protected] (F. Shaban )
32
+ Preprint submitted to JHEAP
33
+ January 10, 2023
34
+ arXiv:2301.02866v1 [astro-ph.HE] 7 Jan 2023
35
+
36
+ a radio jet (Antonucci, 1993; Wilson and Colbert, 1995; Urry and Padovani, 1995). RLQ
37
+ have optical and X-rays luminosity about three times greater than their RQQ counterparts
38
+ (Zamorani et al., 1981; Worrall et al., 1987; Miller et al., 2010; Zhu et al., 2020). The X-
39
+ ray radiation could be due to the Compton scattering of UV photons by energetic electrons
40
+ or due to synchrotron radiation from highly relativistic electrons. (Mushotzky et al., 1993;
41
+ Nowak, 1995; Turner and Miller, 2009; Worrall, 2009; Fabian, 2012).
42
+ Majority of quasars are RQQ with the X-ray radiation attributed to a hot corona formed in
43
+ the accretion flow (Haardt and Maraschi, 1993; Fabian et al., 2015; Zhu et al., 2020). RLQ
44
+ are a small minority, about ≈ 10% of all quasars, and are characterized by their relativis-
45
+ tic jets generated by an accreting supermassive black hole (SMBH) (Padovani et al., 2017;
46
+ Blandford et al., 2019). The amount of jet radiation contributing to the X-ray spectrum in
47
+ RLQ is still not fully understood. However, identifying the main radiation components in the
48
+ X-ray spectrum is important to the estimates of the quasar power.
49
+ The RLQ have flatter X-rays spectra (lower photon index value) than those of the RQQ
50
+ (Reeves et al., 1997; Page et al., 2005; Miller et al., 2010). The quasar’s hardness ratio
51
+ is consistent with the spectral slope (Freeman et al., 2001; Evans et al., 2010; Peca et al.,
52
+ 2021). The RLQ are divided into Core Dominant (CD) and Lobe Dominant (LD) (Haardt and
53
+ Maraschi, 1993; Wilson and Colbert, 1995). The radio emission of CD quasars is dominated
54
+ by the relativistic jet, while the LD quasars show significant radio emission from the large-
55
+ scale components in comparison to the core (Falcke et al., 1995; Boroson, 2002). These two
56
+ populations might have different X-ray radiation processes, which was noted recently by Zhu
57
+ et al. (2020).
58
+ During the past decades, quasar data from X-ray surveys have become available, allowing
59
+ for statistical studies of relatively large samples. Many recent studies considered the high
60
+ redshift quasars for survey (Kelly et al., 2007; Vito et al., 2019; Pons et al., 2020; Li et al.,
61
+ 2021). Some studies were focusing on deducing RLQ properties using correlations between
62
+ X-ray, radio, and optical (or UV) luminosities to investigate the quasars physical model,
63
+ Miller et al. (2010) investigate the disk-jet model, Zhu et al. (2020) deduced the disk-corona-
64
+ jet model. Interestingly, Lusso and Risaliti (2017) were studying RQQ and showed that RQQ
65
+ could be used as standard candles at high redshifts (z > 2), which is important for distance
66
+ measurement and cosmological tests.
67
+ In this research, we investigate the differences in the X-ray spectral properties (photon
68
+ index, intrinsic absorption, hardness ratios, and X-ray luminosity) between RQQ and RLQ
69
+ samples using the data available in the Chandra Source Catalog (CSC2) (Evans et al., 2019).
70
+ We study quasars at a high redshift near the peak of cosmic quasar activity, at z > 2. Our
71
+ sample contains the largest number of RLQ at high redshift observed with Chandra and
72
+ 2
73
+
74
+ include faint sources with [10−15 - 10−13] ergcm−2 s−1 1 for the energy range [0.5 - 7.0]
75
+ keV. We calculate the photon index by fitting the faint X-ray spectra, thus expanding the
76
+ number of quasars with this parameter. The observed Chandra effective energy range is [0.5
77
+ - 7.0] keV and corresponds to the rest frame energy greater than [1.5 - 21.0] keV at redshift
78
+ z > 2, so at the higher redshifts we are able to study the X-ray spectra, which are the most
79
+ sensitive to the properties of the corona and relativistic jet.
80
+ In section 2, we briefly describe the data catalogs, the sample selection criteria, and our
81
+ constraints. In section 3, we show the distributions of RLQ and RQQ as functions of X-
82
+ ray parameters and illustrate the photon index calculations and constraints, furthermore, we
83
+ analyze extreme cases for the photon index. In section 4, we discuss our results and compare
84
+ them with previous studies, and conclude with a discussion and outlook for future work.
85
+ 2. Sample selection
86
+ DR7+ CSC2
87
+ (2561)
88
+ Z > 2
89
+ (595)
90
+ DR7
91
+ 105,783
92
+ quasars
93
+ First_flag= 2;
94
+ Lobe-
95
+ Dominant
96
+ First_flag= -1;
97
+ Out of First
98
+ field
99
+ First_flag= 0;
100
+ Radio Quiet
101
+ First_flag= 1;
102
+ Core-
103
+ Dominant
104
+ Radio Loud
105
+ R ≥ 10
106
+ Radio intermediate
107
+ R < 10
108
+ 19
109
+ 71
110
+ 472
111
+ 10
112
+ 23
113
+ Radio Loud
114
+ R ≥ 10
115
+ Figure 1: The sample selection is based on the DR7, CSC2, redshift and radio-loudness. The filters in the fourth column are showing the
116
+ FIRST flag values (-1, 0, 1, and 2) representing quasars (not in the FIRST field, Radio Quiet, Core dominant, and Lobe dominant). The
117
+ next column filters the radio-loudness (R) into RQQ, RLQ, and RIQ. The circles represent the quasar’s number in each category.
118
+ 1https://cxc.cfa.harvard.edu/csc/char.html
119
+ 3
120
+
121
+ We study the X-ray properties of quasars using archival data from two quasar catalogs.
122
+ We use DR7 quasars catalog (Shen et al., 2011), which contains 105,783 quasars with optical
123
+ spectra and redshift measurements. Shen et al. (2011) quasars were selected from the SDSS
124
+ DR7 sample compiled by Schneider et al. (2010) and all have spectroscopic redshift mea-
125
+ surements. Schneider et al. (2010) rejected the pipeline redshift measurements for the quasar
126
+ candidates with images exceeding the PSF size in the r-band. They provide the uncertainty
127
+ on the redshift measurement to be +
128
+ − 0.004.
129
+ We use the X-ray data obtained by the Chandra X-ray Observatory (Chandra) during the
130
+ first 15 years of the mission available in the Chandra Source Catalog release 2.0 (CSC22).
131
+ There are more than 315,000 unique X-ray sources in the CSC2 (Evans et al., 2019). Chandra
132
+ has a high-quality angular resolution (better than 5′′), which is important for detecting faint
133
+ sources, at high redshift, with good source positions. We cross-matched the 105,783 DR7
134
+ quasars with sources in CSC2, using TOPCAT (Taylor, 2017), and set a search cone radius of
135
+ 30′′, consistent with the range of the sources offset uncertainty given by Evans et al. (2019).
136
+ We found 2,561 sources corresponding to X-ray sources in CSC2. We study the sources at
137
+ high redshift (z > 2). After applying the (z > 2) filter, we obtained 595 out of 2,561 quasars.
138
+ The details of our full sample selection are presented in Fig.1.
139
+ Shen et al. (2011) matched DR7 optical quasars catalog with Faint Images of the Radio
140
+ Sky at Twenty Centimeters (FIRST) catalog (White et al., 1997), and estimated the quasar
141
+ radio loudness parameter (R) defining RLQ and RQQ based on the following equation
142
+ R =
143
+ �f6 cm
144
+ f2500
145
+
146
+ (1)
147
+ where f6 cm and f2500 are the fluxes density (fν) at rest-frame 6 cm and 2500 ˚A, respec-
148
+ tively. The flux density in DR7 is determined from the FIRST integrated flux density at 20 cm
149
+ assuming a power-law slope of αν = − 0.5. The flux density at the rest frame of 2500 ˚A is
150
+ determined by fitting the optical spectrum with a power-law continuum (Shen et al., 2011).
151
+ Similar to Jiang et al. (2007), Shen et al. (2011) have divided RLQ in DR7 into lobe
152
+ dominant (LD) and core dominant (CD) with FIRST cone radius of 30′′ and 5′′, respectively.
153
+ Shen et al. (2011) have removed the effects of galactic extinction in the SDSS spectra
154
+ using the Schlegel et al. (1998) map, and the Milky Way extinction curve by Cardelli et al.
155
+ (1989). Furthermore, Shen et al. (2011) shifts the spectra to the rest frame using the cataloged
156
+ redshift as the systematic redshift (Hewett and Wild, 2010).
157
+ We select the Radio Intermediate quasars (RIQ) to have R < 10 and RLQ with (R ≥ 10)
158
+ (Miller et al., 2010). We applied the above selection categories to our initial sample of 595
159
+ 2https://cxc.cfa.harvard.edu/csc/
160
+ 4
161
+
162
+ quasars in CSC2 and divided them into different radio-loudness categories as given in Figure
163
+ 1. Because we focus on strong differences between the RLQ and RQQ, therefore we exclude
164
+ the intermediate sample and only include RLQ and RQQ in our analysis. Our final sample
165
+ contains 81 RLQ and 472 RQQ.
166
+ 3. Data Analysis and Results
167
+ We study several parameters representing the X-ray properties of the quasars in our sam-
168
+ ples. The redshift (z), and the radio loudness (R) are provided from DR7 (Shen et al., 2011),
169
+ while the X-ray flux (fX), the hardness ratios (HRh/m), the hydrogen column density (NH),
170
+ and the X-ray spectral files are given in CSC2 (Evans et al., 2019). We calculate the X-ray
171
+ luminosity (LX) and the X-ray photon index (Γ).
172
+ In order to evaluate the difference between RLQ and RQQ samples in all X-ray param-
173
+ eters we use the Kuiper-two sample test (Watson, 1961). The Kuiper test is a test for the
174
+ difference between two samples based on their observed Cumulative Distribution Functions
175
+ (CDF). It is an extension of the Kolmogorov–Smirnov test, but it is more sensitive to the
176
+ shift between the two distributions and the difference in the tails of the distributions. The
177
+ Kuiper test is non-parametric and does not assume any functional form of the sample’s true
178
+ distribution and it is appropriate when true distributions are unknown. The test returns DK
179
+ and Fk, which are the maximum difference between the two samples and the probability
180
+ p-value of the test, respectively. The Fk < 0.05 rejects the hypothesis that the two samples
181
+ are drawn from the same distribution, so the smaller the value the stronger the significance
182
+ of the difference between the two samples. All the Kuiper-two test values of this study are
183
+ given in (Table 2).
184
+ In our figures, we use normalized density histograms because we have different samples
185
+ size. The histograms represent the probability density function of the parameter distributions
186
+ (Hunter, 2007), (i.e., m/M × b), where m is the number of quasars in each specific bin, M
187
+ is the total number of quasars in the sample, and b is the bin bandwidth. So the area under
188
+ the bins integrates into one. We apply the same number of bins to RLQ and RQQ. The RQQ
189
+ sample appears to have a smaller bin bandwidth than the RLQ sample because the bin band-
190
+ width is affected by the sample number in the probability density function. We also apply
191
+ the Kernel Density Estimation (KDE) smoothing function to account for the small sample
192
+ size and different bin sizes (Rosenblatt, 1956). The small sample size may contribute to the
193
+ gaps within the histograms, and different binning could lead to statistical biases (Waskom,
194
+ 2021). We use the following KDE equation:
195
+ P(x) =
196
+ 1
197
+ M × h
198
+ M
199
+
200
+ i=1
201
+ k
202
+ �x − xi
203
+ h
204
+
205
+ (2)
206
+ 5
207
+
208
+ Where M is the total number of quasars in the sample, h the Kernel bandwidth, k the
209
+ chosen kernel weight function in our estimate (Gaussian), x is the point where to calculate
210
+ the function, and xi is the parameter value in bin i. The seaborn package 3 for fitting KDE
211
+ has a built-in kernel bandwidth optimal estimation using Silverman methods, which are used
212
+ for random normally distributed samples (Silverman, 1981).
213
+ Figure 2 shows the redshift distributions of RLQ and RQQ samples. We apply the Kuiper-
214
+ two test which returns a small difference between the RLQ and RQQ samples with Dk =
215
+ 0.19 and Fk = 0.08. This confirms that the RLQ and RQQ samples in our studies have
216
+ consistent redshift distributions.
217
+ 3.1. X-ray Luminosity
218
+ We calculated the X-ray luminosity using the equation given by:
219
+ LX = 4πdL
220
+ 2fX
221
+ (3)
222
+ Where LX is X-ray luminosity, dL is the distance luminosity, and fX is the X-ray flux
223
+ in [0.5 - 7.0] keV broadband energy band. The cosmological model used in this study is the
224
+ WMAP9 with (Ho = 69.33, Ωo = 0.287, ΩΛ = 0.712) parameters (Hinshaw et al., 2013).
225
+ We use the WMAP9 under the astropy.cosmology package to obtain the distance lu-
226
+ minosity (dL) (Astropy Collaboration et al., 2018). Using fX and dL, and Eq.3 we calculate
227
+ the X-ray luminosity (Harris et al., 2020).
228
+ Figure 2 shows the X-ray luminosity distributions of RLQ and RQQ samples. The RQQ
229
+ KDE (blue) shows a shape consistent with a Gaussian distribution and the RLQ KDE (green)
230
+ is skewed to the higher X-ray luminosities. The X-ray luminosity range, given in log scale,
231
+ for RLQ is LXmin. = 44.5 and LXmax. = 47.07, while for RQQ are LXmin. = 43.68 and
232
+ LXmax. = 46.30. The differences between minimum and maximum luminosities are similar,
233
+ 2.57 and 2.62 for RLQ and RQQ, respectively. However, the median of LX is higher in the
234
+ RLQ sample by 0.53 compared to the RQQ’s median. This difference in the median between
235
+ RLQ and RQQ is significant and indicates a reliable difference between the intrinsic proper-
236
+ ties of the two samples, RLQ and RQQ. The Kuiper-two test returns a significant difference
237
+ in X-ray luminosity distributions between RLQ and RQQ, Dk = 0.42, and Fk = 2.18×10−9.
238
+ The Fk value validates the remarkable difference in the X-ray luminosity between the radio-
239
+ quiet and radio-loud quasars (see Table 1).
240
+ 3https://seaborn.pydata.org/generated/seaborn.kdeplot.html
241
+ 6
242
+
243
+ Figure 2: The two panels show the redshift (left), and the X-ray luminosity (right) distributions comparison between RLQ and RQQ. The
244
+ green histogram represents all of the RLQ as a function of X-ray Luminosity, and the solid green curve represents the KDE for the RLQ.
245
+ The blue histogram represents the RQQ as a function of the X-ray Luminosity, and the dashed-blue line represents its KDE. The
246
+ histograms are normalized.
247
+ 3.2. The Hardness ratios
248
+ The hardness ratio is defined as the flux ratio between two different Chandra energy
249
+ bands. The X-ray energy bands in the CSC2 are divided into several categories 4:
250
+ • Broad (0.5-7.0) keV
251
+ • Hard (2.0-7.0) keV
252
+ • Medium (1.2-2.0) keV
253
+ • Soft (0.5-1.2) keV
254
+ The hardness ratios for hard to medium (HRh/m), medium to soft (HRm/s), and hard to
255
+ soft (HRh/s) 5 are given in CSC2 for each detected source. CSC2 provides f(h), f(m), and
256
+ f(s) the X-ray fluxes in the hard, medium, and soft energy bands, respectively.
257
+ HRh/m
258
+ =
259
+ f(h) − f(m)
260
+ f(h) + f(m)
261
+ (4)
262
+ The HRm/s and HRh/s are defined similar to equation 4. When the hardness ratio exceeds
263
+ zero, the flux of the higher energy band dominates over the flux of the lower energy band.
264
+ For a general comparison between RLQ and RQQ samples, we investigate the distributions
265
+ for HRh/m, HRm/s and HRh/s shown in Figure 3 and Figure 3. The distribution plots were
266
+ normalized and smoothed with KDE.
267
+ 4https://cxc.cfa.harvard.edu/csc/columns/ebands.html
268
+ 5https://cxc.cfa.harvard.edu/csc/columns/spectral properties.html
269
+ 7
270
+
271
+ 1.75
272
+ RQQ
273
+ RLQ
274
+ 1.50
275
+ 1.25
276
+ #1.00
277
+ Densit
278
+ 0.75
279
+ 0.50
280
+ 0.25
281
+ 0.00
282
+ 2.0
283
+ 2.5
284
+ 3.0
285
+ 3.5
286
+ 4.0
287
+ 4.5
288
+ 5.0
289
+ 5.5
290
+ 6.0
291
+ Redshift-
292
+ RQQ
293
+ 1.0
294
+ RLQ
295
+ 0.8
296
+ L
297
+ Density
298
+ 0.6
299
+ 0.4
300
+ 0.2
301
+ 0.0
302
+ 44
303
+ 45
304
+ 46
305
+ 47
306
+ 48
307
+ log (x-rays_luminosity)Figure 3: The three panels show the HRh/m, HRm/s, and HRh/s distributions. The green solid line represents the RLQ, while the blue
308
+ dashed line represents the RQQ. The red vertical lines indicate the photon index values corresponding to each hardness ratio for Γ equal
309
+ to (3, 2, 1, 0) from left to right. The left panel shows no difference between RLQ and RQQ distributions. The middle panel shows a slight
310
+ difference. The right panel shows a significant difference between RLQ and RQQ with a higher tendency toward soft energy in the RQQ
311
+ sample.
312
+ We also mark the evolution of the photon index as a function of the hardness ratios. Using
313
+ the fake pha function in Sherpa and the standard ACIS-S response files, we fix the photon
314
+ index (Γ = 0, 1, 2, 3) to simulate the spectrum and calculate the corresponding hardness
315
+ ratios for each Γ. Figures 3 show that the red marks of the photon index decrease (flat
316
+ spectrum) as the hardness ratios increase (towards the hard band). RLQ and RQQ samples
317
+ have a similar HRh/m distributions (see Figure 3) confirmed by the Kuiper-two test Dk =
318
+ 0.16, Fk = 0.37.
319
+ The HRm/s distribution shown in Figure 3, shows a slight shift towards the soft energy
320
+ band for RQQ in comparison to the RLQ sample, also indicated by the Kuiper-two test
321
+ Dk = 0.21 and Fk = 0.05.
322
+ Finally, the HRh/s distribution shows the most significant difference between RLQ and
323
+ RQQ samples (see Figure 3) with the Kuiper-two test results of Dk = 0.25 and Fk = 0.01,
324
+ the test accuracy is 99.8% (see Table 2). The HRh/s distribution indicates that the X-ray
325
+ spectra of RQQ quasars are softer than the spectra of RLQ quasars in our samples.
326
+ We investigate the X-ray properties of the CD and LD quasars separately in our compar-
327
+ ison to RQQ by applying the Kuiper-two test on all the parameters. We find that LD and
328
+ CD samples are consistent in all of the X-ray physical parameters except for hardness ratios,
329
+ HRh/s and HRh/m with Fk = 0.16 and Fk = 0.10, respectively. However, HRh/s and HRh/m
330
+ distributions for LD sample are similar to RQQ with Fk = 0.53 and Fk = 0.58, respectively.
331
+ On the other hand, our LD sample is small (10 LD quasars). Future studies of CD and LD
332
+ quasars with high-quality X-ray spectra are needed to confirm and investigate these results
333
+ further.
334
+ 8
335
+
336
+ 3.0
337
+ RQQ
338
+ RLQ
339
+ 2.5
340
+ 2.0
341
+ isity
342
+ 1.5
343
+ 1.0
344
+ 0.5
345
+ 0.0
346
+ 1.0
347
+ 0.5
348
+ 0.0
349
+ 0.5
350
+ 1.0
351
+ HRh/m2.5
352
+ RQQ
353
+ RLQ
354
+ 2.0
355
+ 1.5
356
+ Density
357
+ 1.0
358
+ 0.5
359
+ 0.0
360
+ -1.00
361
+ -0.75
362
+ -0.50
363
+ -0.25
364
+ 0.00
365
+ 0.25
366
+ 0.50
367
+ 0.75
368
+ HRml/sRQQ
369
+ 2.00
370
+ RLQ
371
+ 1.75
372
+ 1.50
373
+ ensity
374
+ 1.25
375
+ 1.00
376
+ 0.75
377
+ 0.50
378
+ 0.25
379
+ 0.00
380
+ -1.0
381
+ 0.5
382
+ 0.0
383
+ 0.5
384
+ 1.0
385
+ HRh/sTable 1: The Statistical Analysis for X-ray Parameters
386
+ Radio Loud Quasars
387
+ Radio Quiet Quasars
388
+ Parameter
389
+ max
390
+ min
391
+ mean
392
+ median
393
+ SD
394
+ max
395
+ min
396
+ mean
397
+ median
398
+ SD
399
+ z
400
+ 4.7
401
+ 2.0
402
+ 2.88
403
+ 2.67
404
+ 0.76
405
+ 5.42
406
+ 2.08
407
+ 2.7
408
+ 2.45
409
+ 0.75
410
+ fX
411
+ 10
412
+ 0.05
413
+ 1.4 +0.2
414
+ −0.2
415
+ 0.7 +0.17
416
+ −0.14
417
+ 2
418
+ 3
419
+ 0.004
420
+ 0.4 +0.10
421
+ −0.09
422
+ 0.2 +0.89
423
+ −0.68
424
+ 0.4
425
+ LX
426
+ 47.07
427
+ 44.54
428
+ 45.66 +0.08
429
+ −0.07
430
+ 45.9 +0.09
431
+ −0.07
432
+ 0.56
433
+ 46.3
434
+ 43.68
435
+ 45.16 +0.11
436
+ −0.01
437
+ 45.16 +0.10
438
+ 0.00
439
+ 0.45
440
+ HRh/s
441
+ 0.90
442
+ -0.99
443
+ -0.10 +0.05
444
+ −0.35
445
+ -0.13 +0.06
446
+ −0.33
447
+ 0.3
448
+ 0.99
449
+ -0.99
450
+ -0.21 −0.05
451
+ −0.53
452
+ -0.28 −0.06
453
+ −0.52
454
+ 0.40
455
+ HRm/s
456
+ 0.99
457
+ -0.74
458
+ -0.21 −0.02
459
+ −0.39
460
+ -0.21 +0.05
461
+ −0.38
462
+ 0.29
463
+ 0.99
464
+ -0.99
465
+ -0.29 −0.02
466
+ −0.49
467
+ -0.3 −0.08
468
+ −0.51
469
+ 0.3
470
+ HRh/m
471
+ 0.6
472
+ -0.99
473
+ 0.11 +0.23
474
+ −0.16
475
+ 0.09 +0.27
476
+ −0.11
477
+ 0.24
478
+ 0.99
479
+ -0.99
480
+ 0.09 +0.30
481
+ −0.26
482
+ 0.07 +0.28
483
+ ���0.26
484
+ 0.39
485
+ Γ
486
+ 3.4
487
+ -0.39
488
+ 1.8 +0.38
489
+ −0.34
490
+ 1.76 +0.35
491
+ −0.32
492
+ 0.50
493
+ 4.8
494
+ -0.88
495
+ 2.14 +0.0.5
496
+ −0.44
497
+ 2.06 +0.48
498
+ −0.43
499
+ 0.65
500
+ fX: The given X-ray flux (ergcm−2 s−1) must be multiplied by factor of 10−13.
501
+ LX: The X-ray luminosity (ergs−1) is given in log scale.
502
+ 9
503
+
504
+ 3.3. X-ray Spectral Modeling and Photon Index
505
+ CSC2 lists the photon index calculated by fitting a power law model multiplied by the
506
+ photoelectric absorption. However, the CSC2 pipeline restricted the model fitting to spectra
507
+ with at least 150 net counts (after subtracting the background) and applied the spectral bin-
508
+ ning of 20 counts per energy bin to use the χ2 fit statistics (Evans et al., 2019; McCollough
509
+ et al., 2020). The CSC2 fitting criteria mean that the majority of quasars in our study do not
510
+ have a photon index available in the CSC2 catalog. We only found 13 RLQ and 26 RQQ.
511
+ On the other hand, CSC2 provides X-ray spectra and response files for all the sources
512
+ in the catalog. We obtained these spectral files and fit the absorbed power law model to all
513
+ the quasars in our sample. In order to fit a larger number of quasar’s spectra, we put less
514
+ restrictive criteria. We accept measurements with total counts greater than or equal to 10
515
+ and use the wstat-statistics appropriate for low counts data fitting (Freeman et al., 2001).
516
+ Furthermore, we reject any calculated photon index with an error greater than or equal to
517
+ one. With these criteria, we increased the number of sources with the calculated photon
518
+ index, for RQQ from 26 to 455, and RLQ from 13 to 63.
519
+ We note that some quasars have multiple observations. In RQQ, there are 85 RQQ
520
+ quasars with 243 observations. One of these quasars has 11 observations. In the RLQ sam-
521
+ ple, we found 5 quasars with 12 observations. We checked for the variability between the
522
+ multiple observations and confirmed that there is no variability as the measured flux is con-
523
+ sistent for each quasar.
524
+ In Figure 4, the left panel shows the distribution of our calculated photon index for the
525
+ RQQ sample containing 445 quasars and the RLQ sample containing 63 quasars. The right
526
+ panel shows the CSC2 photon index for the RQQ sample containing 26 quasars and the RLQ
527
+ sample containing 13 quasars. The fitted photon index has a similar distribution to that of
528
+ CSC2. We note that a range of the photon index values in our fitting is larger than in the
529
+ CSC2. We discuss this in Section 3.4.
530
+ The photon index distribution in the RQQ sample shows a steeper spectrum, with the
531
+ mean value of Γ = 2.14 +0.05
532
+ −0.44, while RLQ shows a flatter spectrum, the mean value of Γ =
533
+ 1.8 +0.38
534
+ −0.34 (see Table 2). In addition, the Kuiper-two test for our calculated photon index
535
+ shows that the difference between RLQ and RQQ samples is significant with Dk = 0.37 and
536
+ Fk = 7.30×10−6. However, the Kuiper-two test gives an insignificant difference (Dk = 0.46
537
+ and Fk = 0.18) for the CSC2 photon index, which may be due to the small sample size (only
538
+ 13 RLQ and 26 RQQ).
539
+ 3.4. Extreme cases in RLQ and RQQ
540
+ Figure 4 shows some extreme values of the photon index in the distributions (13 RQQ and
541
+ 3 RLQ). The three RLQ quasars belong to CD class but they show extreme soft spectrum of
542
+ Γ > 3: i.e. Γ = 3.14 +0.58
543
+ −0.56 , 3.00 +0.58
544
+ −0.56 and 3.4 +0.8
545
+ −0.7 , a total counts = 33, 22 and 13 counts, and
546
+ 10
547
+
548
+ Figure 4: The left panel shows our best-fit photon index using wstat-statistics. We fit 63 RLQ and 445 RQQ. The right panel shows the
549
+ photon index we obtain from CSC2 for 13 RLQ and 26 RQQ. The RLQ distributions are represented by the solid green histogram and
550
+ green KDE curve. The RQQ distributions are represented by the dashed-blue histogram and KDE curve.
551
+ the background counts of 0.87, 0.25 and 0.86 counts, at z = 2.23, 2.11 and 3.7, respectively.
552
+ Due to the high uncertainty of Γ and the low number of counts in their spectra we were not
553
+ able to investigate their properties in more detail. These are interesting outliers identified in
554
+ our RLQ distribution, which need to be observed in the future.
555
+ On the other side, we identify 13 RQQ with extremely hard spectra, Γ < 1 , with a range
556
+ of the photon index [-0.08 - 0.97]. The total number of counts for these sources range [16 -
557
+ 827] counts with background counts in the source region [0.12 - 655.8] counts. We selected
558
+ three quasars with a relatively good signal-to-noise for detail modeling, with a total number
559
+ of counts 133, 88, and 156 and a small number of background counts 0.48, 0.27, and 0.88, at
560
+ z = 2.5, 2.1, and 3.2. These are RQQ with hard spectra potentially indicating a presence of
561
+ the intrinsic absorption resulting in ”flattening” of the intrinsically soft spectrum (Zickgraf
562
+ et al., 1997; de Kool et al., 2002; Page et al., 2005).
563
+ We fit these three spectra of the RQQ assuming a power law model with additional
564
+ multiplicative absorption components (Sherpa has built-in models for the intrinsic absorp-
565
+ tion at the quasar redshift (xszphabs), and the photoelectric Galactic absorption compo-
566
+ nent (xsphabs)). The best-fit Γ changes from (0.80 +0.14
567
+ −0.14, 0.82 +0.16
568
+ −0.16, 0.93 +0.12
569
+ −0.13) to (1.69 +0.31
570
+ −0.31,
571
+ 1.39 +0.32
572
+ −0.32, 1.16 +0.21
573
+ −0.21), bringing the photon index values closer to the bulk of the distribution
574
+ (see Figure 4). Figure 5 shows the confidence contours for the best-fit Γ and the intrinsic
575
+ absorption NH showing a high uncertainty in both the NH and Γ values. We need higher
576
+ quality spectra for these quasars to confirm that they are intrinsically absorbed.
577
+ After eliminating the extreme cases, the RLQ Γmean changes from 1.8 +0.38
578
+ −0.34 to 1.70 +0.36
579
+ −0.33
580
+ and from 2.14 +0.0.5
581
+ −0.44 to 2.19 +0.46
582
+ −0.44 for RQQ. Consequently, the Kuiper-two test value between
583
+ RLQ and RQQ increased to Dk = 0.38 and its corresponding probability decreased to Fk =
584
+ 10−7, which confirms a strong difference between RLQ and RQQ samples. Since these
585
+ extreme cases are a small percentage, 4% RLQ and 2% RQQ for our sample sets, they are
586
+ not changing the primary trend of RLQ (hard spectrum) and RQQ (soft spectrum).
587
+ 11
588
+
589
+ RQQ(445)
590
+ 1.2
591
+ RLQ(63)
592
+ 1.0
593
+ 0.8
594
+ Density
595
+ 0.6
596
+ 0.4
597
+ 0.2
598
+ 0.0
599
+ -2
600
+ -1
601
+ 0
602
+ 1
603
+ 2
604
+ 3
605
+ 4
606
+ Photonindex2.00
607
+ RQQ_CSC(26)
608
+ RLQ_CSC(13)
609
+ 1.75
610
+ 1.50
611
+ ensity
612
+ 1.25
613
+ Der
614
+ 1.00
615
+ 0.75
616
+ 0.50
617
+ 0.25
618
+ 0.00
619
+ -2
620
+ -1
621
+ 0
622
+ 1
623
+ 2
624
+ 3
625
+ 4
626
+ PhotonindexTable 2: The Kuiper-two sample test between RLQ and RQQ for all the parameters of interest
627
+ Samples
628
+ RLQ, RQQ
629
+ CD, RQQ
630
+ LD, RQQ
631
+ CD, LD
632
+ Parameters
633
+ Dk
634
+ Fk
635
+ Dk
636
+ Fk
637
+ Dk
638
+ Fk
639
+ Dk
640
+ Fk
641
+ z
642
+ 0.19
643
+ 0.08
644
+ 0.24
645
+ 0.02
646
+ 0.39
647
+ 0.31
648
+ 0.50
649
+ 0.09
650
+ LX
651
+ 0.42
652
+ 2.18x10−9
653
+ 0.42
654
+ 2.41x10−8
655
+ 0.48
656
+ 0.09
657
+ 0.22
658
+ 0.99
659
+ Γ
660
+ 0.37
661
+ 7.30x10−6
662
+ 0.39
663
+ 2.56x10−5
664
+ 0.50
665
+ 0.04
666
+ 0.24
667
+ 0.98
668
+ HRh/s
669
+ 0.25
670
+ 0.01
671
+ 0.31
672
+ 9.80x10−4
673
+ 0.37
674
+ 0.53
675
+ 0.49
676
+ 0.16
677
+ HRm/s
678
+ 0.21
679
+ 0.05
680
+ 0.21
681
+ 0.10
682
+ 0.52
683
+ 0.07
684
+ 0.41
685
+ 0.37
686
+ HRh/m
687
+ 0.16
688
+ 0.37
689
+ 0.18
690
+ 0.30
691
+ 0.34
692
+ 0.58
693
+ 0.52
694
+ 0.10
695
+ Dk: is the maximum absolute difference between the two cumulative distribution functions.
696
+ Fk: is a probability (P-value) of the hypothesis that the two samples come from the same population
697
+ and therefore have the same CDF.
698
+ Bolded values: are highlighting the highest difference distributions.
699
+ 4. Discussion
700
+ We studied a sample of high redshift (z > 2) quasars selected from CSC2. The samples
701
+ have similar redshift distribution, but the RQQ sample has (472) a higher number of quasars
702
+ than the RLQ sample (81). We calculate the X-ray luminosity and the X-ray photon index.
703
+ All the properties of the two samples are summarized in Table 1. The Kuiper-two test shows
704
+ a significant difference between RLQ and RQQ for both LX and Γ indicating that the RLQ
705
+ spectra were flatter than the spectra of RQQ. The Kuiper-two test values for all the X-ray
706
+ parameters are given in Table 2.
707
+ 4.1. Comparing our parameterized results with literature
708
+ Our studies indicate that the X-ray luminosity of RLQ is significantly higher than the X-
709
+ ray luminosity of RQQ (Dk = 0.42, Fk = 2.18 × 10−9), see Table 1) in the sample of z > 2
710
+ quasars in CSC2. This result agrees with the earlier studies (Scott et al., 2011), and suggests
711
+ an additional X-ray radiation component present in RLQ (Bechtold et al., 1994; Zhu et al.,
712
+ 2020).
713
+ 12
714
+
715
+ (a)
716
+ (b)
717
+ (c)
718
+ Figure 5: The confidence regions of Γ and NH for the three quasars: (a)2CXO J011513.1+002013, (b)2CXO J123540.1+123620,
719
+ (c)2CXO J095858.6+020139 with a number of counts (88, 156, 133), respectively. We fit Γ and NH with a power law model multiplied
720
+ by the intrinsic absorption at a given redshift (and including the Galactic absorption). The cross marks the best fit value and the contours
721
+ show 1σ (purple), 2σ (blue) and 3σ (yellow) levels. The NH values is in log scale.
722
+ This additional component may also cause RLQ’s X-ray spectra to be flatter than the
723
+ spectra of RQQ (Reeves and Turner, 2000; Piconcelli et al., 2005). Our studies cover a
724
+ relatively high rest frame energies, exceeding 30 keV, in this high redshift sample. These
725
+ energies are less sensitive to the intrinsic absorption, thus the flattening of the RLQ is less
726
+ likely related to the absorption (e.g. high absorption columns, NH > [1022 − 1026] cm−2,
727
+ are required to modify the high energy spectra), but more likely due to the differences in the
728
+ radiation processes between the two classes (i.e. RLQ and RQQ).
729
+ For our sample, the column density in the direction of the source ranges within [0.57-
730
+ 12.58]×1020 cm−2, with a mean of 2.49×1020 cm−2. The nuclear obscuration is parameter-
731
+ ized by the hydrogen column density NH and the maximum value of NH in our sample is
732
+ 1.26 × 1021 cm−2, which does not affect the AGN X-ray continuum (Hickox and Alexander,
733
+ 2018). The obscuration due to the Compton-thick absorption requires a strong reflection
734
+ component at E > 10 keV, and a prominent Fe-Kα emission line at 6.4 keV (Ricci et al.,
735
+ 2015). In our sample spectra, we did not find any Fe-Kα emission line.
736
+ In addition to the photon index we studied the X-ray hardness ratios for the quasars in the
737
+ two samples. Our analysis shows, no difference in HRh/m between RLQ and RQQ samples,
738
+ a small difference in HRm/s, and a moderate difference in HRh/s with the RLQ having a
739
+ harder spectra (see Table 1 and Table 2).
740
+ The soft X-ray radiation might be produced anywhere in the vicinity of a SMBH in both
741
+ RLQ and RQQ (Shen et al., 2006). However, we find that the peaks of the HRh/s and HRm/s
742
+ distributions (see Figures 3) are shifted towards the soft energy band in RQQ but not in RLQ.
743
+ Our result indicates that for RQQ, the soft X-ray radiation dominates over the radiation in the
744
+ hard and medium energy bands. However, for RLQ, the radiation in the hard and medium
745
+ energy X-ray bands dominates over the soft energy band.
746
+ Page et al. (2005) considered a small sample of 7 RQQ and 16 RLQ at (z > 2) observed
747
+ with XMM-Newton. They used the broad energy band [0.3 - 10] keV. They found 9 intrinsi-
748
+ 13
749
+
750
+ 18
751
+ 16
752
+ 14
753
+ Column density (Nn)
754
+ 12
755
+ 10
756
+ 8
757
+ 6
758
+ 4
759
+ 2
760
+ 0
761
+ 0.00
762
+ 0.25
763
+ 0.50
764
+ 0.75
765
+ 1.00
766
+ 1.25
767
+ 1.50
768
+ 1.75
769
+ 2.00
770
+ Photon index ()35
771
+ 30
772
+ Column density (Nn)
773
+ 25
774
+ 20
775
+ 15
776
+ 10
777
+ 5
778
+ 0
779
+ 0.5
780
+ 1.0
781
+ 1.5
782
+ 2.0
783
+ 2.5
784
+ 3.0
785
+ Photon index ()35
786
+ 30
787
+ Column density (Nn)
788
+ 25
789
+ 20
790
+ 15
791
+ 10
792
+ 5
793
+ 0
794
+ 0.5
795
+ 1.0
796
+ 1.5
797
+ 2.0
798
+ 2.5
799
+ 3.0
800
+ Photon index ()Figure 6: The comparison between our calculated photon index and the CSC2 photon index for the same set of quasars (13 RLQ and 26
801
+ RQQ). Dark blue dashed lines and dark green solid lines show our photon index, and light blue dashed lines and light green solid lines
802
+ show the CSC2 photon index.
803
+ cally absorbed quasars with NH between [1 - 2]×1022 cm−2 in the rest frame of the objects.
804
+ Using the absorbed power law model, they found that RLQ have flatter spectra than the RQQ
805
+ counterparts (RLQ ≈ 1.55 and RQQ ≈ 1.98). Some studies compare RLQ and RQQ in a
806
+ specific part of the X-rays (hard band) to specify the corresponding mechanism (Gupta et al.,
807
+ 2018; Zhu et al., 2020). In our study, the RLQ is flatter than RQQ by 0.49 +0.10
808
+ −0.11, which is a
809
+ bigger difference than that found by Page et al. (2005), due to our larger sample size. We do
810
+ not see any clear intrinsically absorbed quasars, which could be due to lower signal-to-noise
811
+ spectra in our sample. Furthermore, the extreme cases in our samples did not show strong
812
+ evidence for intrinsic absorption.
813
+ 4.2. Calibrating our calculated photon index with CSC2
814
+ We compare the photon index calculated by our spectral modeling to the photon index
815
+ given in CSC2 for the same quasars (13 RLQ and 26 RQQ). Figure 6 shows the RLQ and
816
+ RQQ distributions for the calculated Γ and the one given in CSC2. The distributions show
817
+ a rough agreement between the two methods, with our modeled values indicating a slightly
818
+ wider range.
819
+ CSC2 uses the χ2 statistics with background subtraction and binning, while we use wstat-
820
+ statistics and no background subtraction appropriate for low counts spectra. van Dyk et al.
821
+ (2001) have explained the χ2 statistical bias at low counts spectra, see also (Protassov et al.,
822
+ 14
823
+
824
+ 2.00
825
+ -
826
+ RQQ_CSC
827
+ RQQ
828
+ 1.75
829
+ RLQ CSC
830
+ RLQ
831
+ 1.50
832
+ 1.25
833
+ Density
834
+ 1.00
835
+ 0.75
836
+ 0.50
837
+ 0.25
838
+ 0.00
839
+ 0.5
840
+ 1.0
841
+ 1.5
842
+ 2.0
843
+ 2.5
844
+ 3.0
845
+ 3.5
846
+ 4.0
847
+ PhotonindexFigure 7: The two panels show the 100 trials of the Kuiper test DK (left panel) and FK (right panel) for the HRh/s parameter, between
848
+ RLQ and RQQ. The red color for HRh/s at 2 < z < 2.5, and the blue color for HRh/s at z > 2.5. The solid vertical lines are for the
849
+ mean and the dashed vertical lines are for the median.
850
+ 2002). Humphrey et al. (2009) found that even high counts give an inherent bias in the
851
+ χ2 fitting. These studies show that χ2 methods should not routinely be used for fitting an
852
+ arbitrary, parameterized model to Poisson-distributed data, irrespective of the number of
853
+ counts (Mighell, 1999), and instead, the Cash statistic should be adopted (Humphrey et al.,
854
+ 2009). We used the wstat, which is based on the Poisson likelihood and accounts for the
855
+ background6.
856
+ We applied the Kuiper-two test to evaluate the difference between the two photon-index
857
+ distributions, Γfit and ΓCSC2. The test returns high values of Fk, for RQQ Fk = 0.33 and
858
+ Fk = 0.77 for RLQ, which implies that the distributions of Γ resulting from our modeling
859
+ are consistent with the CSC2 distributions for these small sub-samples.
860
+ 4.3. Redshift Dependence of the Hardness Ratio
861
+ Our results on the hardness ratio parameter HRh/s indicate that the RQQ spectra are
862
+ softer than the spectra of RLQ (see Sec.3.2). We perform simulations to confirm that the
863
+ effect is an inherent physical property of RQQ and is not affected by the redshift. Because
864
+ the rest frame energy range is shifted towards the lower energy in the observed frame we
865
+ check the distributions of the hardness ratio parameter in the two redshift ranges. There are
866
+ 261 RQQ and 33 RLQ at 2 < z < 2.5 and 211 RQQ and 48 RLQ at 2.5 < z < 5.5 redshift.
867
+ Thus the fraction of RQQ is higher at z < 2.5 than at z > 2.5, which may bias the RQQ’s
868
+ HRh/s parameter in the full redshift range.
869
+ 6https://cxc.harvard.edu/sherpa/ahelp/wstat.html
870
+ 15
871
+
872
+ Z<2.5
873
+ Z>2.5
874
+ 6
875
+ 2
876
+ 0
877
+ 0.15
878
+ 0.20
879
+ 0.25
880
+ 0.30
881
+ 0.35
882
+ 0.40
883
+ 0.45
884
+ 0.50
885
+ 0.55
886
+ D_K8
887
+ Z<2.5
888
+ Z>2.5
889
+ 6
890
+ 5
891
+ ISU
892
+ 3
893
+ 2
894
+ 1
895
+ 0.2
896
+ 0.0
897
+ 0.2
898
+ 0.4
899
+ 0.6
900
+ 0.8
901
+ 1.0
902
+ F_KWe apply the Kuiper test to the HRh/s at 2 < z < 2.5 sample and get the Kuiper param-
903
+ eter values of DK = 0.33, and FK = 0.04. Then, we select the same sample size of 33 RQQ
904
+ and RLQ by randomly selecting 33 quasars from the 261 RQQ sample and using all 33 RLQ
905
+ in this low redshift bin. In the first random selection of the 33 RQQ we get DK = 0.47, and
906
+ Fk = 0.02. Afterward, we perform the test for the hardness ratio difference by looking at
907
+ the distribution of the Kuiper parameters, Dk and Fk, in 100 random samples (see Fig. 7).
908
+ We selected the 100 random samples of 33 RQQ and used the existing 33 RLQ. The median
909
+ values for the 100 Kuiper test parameters in this step are Dk = 0.36, and FK = 0.05.
910
+ For the z > 2.5 sample, the Kuiper test results for HRh/s difference between RLQ and
911
+ RQQ are DK = 0.30, FK = 0.04. We then performed the same simulation steps as described
912
+ above for the z > 2.5 sample using the 48 RLQ and a random sample of 48 RQQ selected
913
+ from the 211 RQQ. The median value of the Kuiper test distribution was Dk = 0.32, and
914
+ FK = 0.06 (see Fig.7).
915
+ The simulation results show that the difference in the HRh/s parameter between RLQ
916
+ and RQQ samples is slightly more significant at 2 < z < 2.5 than z > 2.5. According to
917
+ Peca et al. (2021), our sample selection is the least affected by the absorption dependence
918
+ with redshift and the Chandra detector contamination. At low redshift (z < 2), the difference
919
+ in the flux between hard and soft bands is larger for quasars with NH < 1022 cm−2 because
920
+ the soft X-ray emission is present in the observed energy band. At high redshift (z > 2)
921
+ the hardness ratio of the quasars with low NH is not affected by the hard band shift to the
922
+ lower observed energies and only the quasars with high absorption, NH > 1023 cm−2, will
923
+ show the impact on the HRh/s parameter. We conclude that the observed difference in the
924
+ hardness ratio between RQQ and RLQ at z > 2 is not affected by redshift.
925
+ 5. Summary and Conclusions
926
+ We studied the X-ray properties of high redshift quasars observed by Chandra. We found
927
+ a total of 2,561 DR7 quasars in the CSC2 database. After applying redshift and radio-
928
+ loudness filters we obtained two samples, one with 472 RQQ and the second with 81 RLQ.
929
+ The two samples have a similar redshift range, 2 < z < 5, with the RLQ sample being
930
+ one of the largest samples of RLQ within that redshift range to date. Our main results are
931
+ summarized below.
932
+ • We found that an average X-ray luminosity of RLQ at high redshift is higher than the
933
+ average X-ray luminosity of RQQ, consistent with the previous studies.
934
+ • We calculated the mean photon index of ΓRLQ = 1.70 +0.36
935
+ −0.33 and ΓRQQ = 2.19 +0.46
936
+ −0.44
937
+ for the RLQ and RQQ samples, respectively. This result confirms that RLQ spectra
938
+ 16
939
+
940
+ are flatter than the spectra of RQQ. We identified a few extremely soft RLQ and ex-
941
+ tremely hard RQQ, but these sources have low signal-to-noise data and require further
942
+ observations to understand their X-ray properties.
943
+ • We found that the LD and RQQ have similar distributions of hardness ratios, HRh/m
944
+ and HRh/s. In comparison, LD and CD have similar photon index and X-ray luminos-
945
+ ity distributions. However, our sample has only 10 LD quasars and more LD observa-
946
+ tions are needed to confirm this result.
947
+ • The peaks of HRh/s and HRm/s distributions are shifted towards negative values (soft
948
+ energy band) in RQQ compared to RLQ, which confirms that the X-ray luminosity in
949
+ the RQQ is dominated by soft X-rays in comparison to RLQ.
950
+ Our study shows potential directions for further investigation. The quasars of extreme cases
951
+ need longer observation. The CD and LD comparison needs larger samples for statistically
952
+ meaningful results. The current samples can be extended to include quasars at higher red-
953
+ shifts, z > 5, with the future releases of the Chandra Source Catalog. Additionally, the
954
+ available quasar catalogs can be used to study the early universe population of quasars using
955
+ high redshift infrared observations which will become available with the JWST (Gardner et
956
+ al., 2006).
957
+ Software: Sherpa (Freeman et al., 2001), Topcat (Taylor, 2017), Python packages: As-
958
+ tropy (Astropy Collaboration et al., 2018), Seaborn (Waskom, 2021), Numpy (Harris et al.,
959
+ 2020), and Matplotlib (Hunter, 2007).
960
+ 6. Acknowledgement
961
+ This research has made use of data obtained from the Chandra Data Archive and the
962
+ Chandra Source Catalog, and software provided by the Chandra X-ray Center (CXC) in the
963
+ application packages CIAO and Sherpa. F.S. thanks CXC Helpdesk and Nick Lee for the
964
+ support in the analysis of Chandra data. A.S. was supported by NASA contract NAS8-03060
965
+ (Chandra X-ray Center). We are very grateful to the referee for helpful and constructive
966
+ comments that helped to improve the paper.
967
+ References
968
+ Antonucci, R., 1993. Unified models for active galactic nuclei and quasars. ARAA 31,
969
+ 473–521. doi:10.1146/annurev.aa.31.090193.002353.
970
+ 17
971
+
972
+ Astropy Collaboration et al., 2018. The Astropy Project: Building an Open-science Project
973
+ and Status of the v2.0 Core Package.
974
+ AJ 156, 123.
975
+ doi:10.3847/1538-3881/
976
+ aabc4f, arXiv:1801.02634.
977
+ Bechtold et al., 1994. X-Ray Spectral Evolution of High redshift Quasars. AJ 108, 759.
978
+ doi:10.1086/117111.
979
+ Blandford, R., Meier, D., Readhead, A., 2019.
980
+ Relativistic Jets from Active Galactic
981
+ Nuclei. ARAA 57, 467–509. doi:10.1146/annurev-astro-081817-051948,
982
+ arXiv:1812.06025.
983
+ Boroson, T.A., 2002. Black Hole Mass and Eddington Ratio as Drivers for the Observ-
984
+ able Properties of Radio-loud and Radio-quiet QSOs. APJ 565, 78–85. doi:10.1086/
985
+ 324486, arXiv:astro-ph/0109317.
986
+ Cardelli, J.A., Clayton, G.C., Mathis, J.S., 1989. The Relationship between Infrared, Optical,
987
+ and Ultraviolet Extinction. APJ 345, 245. doi:10.1086/167900.
988
+ de Kool, M., Becker, R.H., Gregg, M.D., White, R.L., Arav, N., 2002. Intrinsic Absorption
989
+ in the QSO FIRST J121442.3+280329. APJ 567, 58–67. doi:10.1086/338490.
990
+ Evans et al., 2010.
991
+ The Chandra Source Catalog.
992
+ APJS 189, 37–82.
993
+ doi:10.1088/
994
+ 0067-0049/189/1/37, arXiv:1005.4665.
995
+ Evans et al., 2019. Chandra Source Catalog Release 2.0 - The State of the Art Serendipitous
996
+ X-ray Source Catalog. volume 17 of AAS/High Energy Astrophysics Division.
997
+ Fabian, A., 2012.
998
+ Observational evidence of active galactic nuclei feedback.
999
+ An-
1000
+ nual Review of Astronomy and Astrophysics 50,
1001
+ 455–489.
1002
+ doi:10.1146/
1003
+ annurev-astro-081811-125521.
1004
+ Fabian, A.C., Lohfink, A., Kara, E., Parker, M.L., Vasudevan, R., Reynolds, C.S., 2015.
1005
+ Properties of AGN coronae in the NuSTAR era. MNRAS 451, 4375–4383. doi:10.
1006
+ 1093/mnras/stv1218, arXiv:1505.07603.
1007
+ Falcke, H., Malkan, M.A., Biermann, P.L., 1995. The jet-disk symbiosis. II.Interpreting the
1008
+ radio/UV correlations in quasars. AP 298, 375. arXiv:astro-ph/9411100.
1009
+ Freeman, P., Doe, S., Siemiginowska, A., 2001. Sherpa: a mission-independent data analysis
1010
+ application, in: Starck, J.L., Murtagh, F.D. (Eds.), Astronomical Data Analysis, pp. 76–87.
1011
+ doi:10.1117/12.447161, arXiv:astro-ph/0108426.
1012
+ 18
1013
+
1014
+ Gardner et al., 2006. The James Webb Space Telescope. SSR 123, 485–606. doi:10.1007/
1015
+ s11214-006-8315-7, arXiv:astro-ph/0606175.
1016
+ Gupta, M., Sikora, M., Rusinek, K., Madejski, G.M., 2018. Comparison of hard X-ray
1017
+ spectra of luminous radio galaxies and their radio-quiet counterparts. Monthly Notices
1018
+ of the Royal Astronomical Society 480, 2861–2871. URL: https://doi.org/10.
1019
+ 1093/mnras/sty2043, doi:10.1093/mnras/sty2043.
1020
+ Haardt, F., Maraschi, L., 1993. X-Ray Spectra from Two-Phase Accretion Disks. APJ 413,
1021
+ 507. doi:10.1086/173020.
1022
+ Harris et al., 2020. Array programming with NumPy. NAT 585, 357–362. doi:10.1038/
1023
+ s41586-020-2649-2, arXiv:2006.10256.
1024
+ Hewett, P.C., Wild, V., 2010. Improved redshifts for SDSS quasar spectra. MNRAS 405,
1025
+ 2302–2316. doi:10.1111/j.1365-2966.2010.16648.x, arXiv:1003.3017.
1026
+ Hickox,
1027
+ R.C.,
1028
+ Alexander,
1029
+ D.M.,
1030
+ 2018.
1031
+ Obscured active galactic nuclei.
1032
+ An-
1033
+ nual Review of Astronomy and Astrophysics 56,
1034
+ 625–671.
1035
+ doi:10.1146/
1036
+ annurev-astro-081817-051803.
1037
+ Hinshaw et al., 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Obser-
1038
+ vations: Cosmological Parameter Results. APJS 208, 19. doi:10.1088/0067-0049/
1039
+ 208/2/19, arXiv:1212.5226.
1040
+ Humphrey, P.J., Liu, W., Buote, D.A., 2009.
1041
+ χ2 and Poissonian Data: Biases Even in
1042
+ the High-Count Regime and How to Avoid Them. APJ 693, 822–829. doi:10.1088/
1043
+ 0004-637X/693/1/822, arXiv:0811.2796.
1044
+ Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Computing in Science and
1045
+ Engineering 9, 90–95. doi:10.1109/MCSE.2007.55.
1046
+ Jiang,
1047
+ L.,
1048
+ Fan,
1049
+ X.,
1050
+ Ivezi´c,
1051
+ ˇZ.,
1052
+ Richards,
1053
+ G.T.,
1054
+ Schneider,
1055
+ D.P.,
1056
+ Strauss,
1057
+ M.A.,
1058
+ Kelly, B.C., 2007.
1059
+ The Radio-Loud Fraction of Quasars is a Strong Function of
1060
+ Redshift and Optical Luminosity.
1061
+ APJ 656, 680–690.
1062
+ doi:10.1086/510831,
1063
+ arXiv:astro-ph/0611453.
1064
+ Kelly, B.C., Bechtold, J., Siemiginowska, A., Aldcroft, T., Sobolewska, M., 2007. Evolution
1065
+ of the x-ray emission of radio-quiet quasars. The Astrophysical Journal 657, 116–134.
1066
+ URL: https://doi.org/10.1086/510876, doi:10.1086/510876.
1067
+ 19
1068
+
1069
+ Li, J.T., Wang, F., Yang, J., Bregman, J.N., Fan, X., Zhang, Y., 2021. A Chandra survey of z
1070
+ ≥ 4.5 quasars. MNRAS 504, 2767–2782. doi:10.1093/mnras/stab1042.
1071
+ Lusso, E., Risaliti, G., 2017. Quasars as standard candles. I. The physical relation between
1072
+ disc and coronal emission. AP 602, A79. doi:10.1051/0004-6361/201630079,
1073
+ arXiv:1703.05299.
1074
+ McCollough et al., 2020. Chandra Source Catalog 2.0 Spectral Properties and a ULX Case
1075
+ Study, in: American Astronomical Society Meeting Abstracts #235, p. 306.09.
1076
+ Mighell, K.J., 1999.
1077
+ Parameter Estimation in Astronomy with Poisson-distributed
1078
+ Data.
1079
+ I.The
1080
+ χ2γ
1081
+ Statistic.
1082
+ APJ
1083
+ 518,
1084
+ 380–393.
1085
+ doi:10.1086/307253,
1086
+ arXiv:astro-ph/9903093.
1087
+ Miller, B.P., Brandt, W.N., Schneider, D.P., Gibson, R.R., Steffen, A.T., Wu, J., 2010. X-
1088
+ ray Emission From Optically Selected Radio-intermediate And Radio-loud Quasars, in:
1089
+ American Astronomical Society Meeting Abstracts #215, p. 433.15.
1090
+ Mushotzky, R.F., Done, C., Pounds, K.A., 1993. X-ray spectra and time variability of active
1091
+ galactic nuclei. Annual Review of Astronomy and Astrophysics 31, 717–761. doi:10.
1092
+ 1146/annurev.aa.31.090193.003441.
1093
+ Nowak, M.A., 1995. Toward a unified view of black-hole high-energy states. Publications
1094
+ of the Astronomical Society of the Pacific 107, 1207. URL: https://doi.org/10.
1095
+ 1086/133679, doi:10.1086/133679.
1096
+ Padovani et al., 2017. Active galactic nuclei: what’s in a name?
1097
+ AAPR 25, 2. doi:10.
1098
+ 1007/s00159-017-0102-9, arXiv:1707.07134.
1099
+ Page, K.L., Reeves, J.N., O’Brien, P.T., Turner, M.J.L., 2005. XMM-Newton spectroscopy
1100
+ of high-redshift quasars.
1101
+ MNRAS 364, 195–207.
1102
+ doi:10.1111/j.1365-2966.
1103
+ 2005.09550.x, arXiv:astro-ph/0508524.
1104
+ Peca et al., 2021. X-Ray Redshifts for Obscured AGN: A Case Study in the J1030 Deep
1105
+ Field. APJ 906, 90. doi:10.3847/1538-4357/abc9c7, arXiv:2011.05983.
1106
+ Piconcelli, E., Jimenez-Bail´on, E., Guainazzi, M., Schartel, N., Rodr´ıguez-Pascual, P.M.,
1107
+ Santos-Lle´o, M., 2005.
1108
+ The XMM-Newton view of PG quasars. I. X-ray contin-
1109
+ uum and absorption.
1110
+ AP 432, 15–30.
1111
+ doi:10.1051/0004-6361:20041621,
1112
+ arXiv:astro-ph/0411051.
1113
+ 20
1114
+
1115
+ Pons, E., McMahon, R.G., Banerji, M., Reed, S.L., 2020.
1116
+ X-ray properties of
1117
+ z ≳ 6.5 quasars.
1118
+ MNRAS 491, 3884–3890.
1119
+ doi:10.1093/mnras/stz3275,
1120
+ arXiv:1910.04122.
1121
+ Protassov, R., van Dyk, D.A., Connors, A., Kashyap, V.L., Siemiginowska, A., 2002. Statis-
1122
+ tics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio
1123
+ Test. APJ 571, 545–559. doi:10.1086/339856, arXiv:astro-ph/0201547.
1124
+ Reeves, J.N., Turner, M.J.L., 2000.
1125
+ X-ray spectra of a large sample of quasars with
1126
+ ASCA.
1127
+ MNRAS 316, 234–248.
1128
+ doi:10.1046/j.1365-8711.2000.03510.x,
1129
+ arXiv:astro-ph/0003080.
1130
+ Reeves, J.N., Turner, M.J.L., Ohashi, T., Kii, T., 1997. An X-ray survey of quasars using
1131
+ ASCA. MNRAS 292, 468–4809. doi:10.1093/mnras/292.3.468.
1132
+ Ricci, C., Ueda, Y., Koss, M.J., Trakhtenbrot, B., Bauer, F.E., Gandhi, P., 2015. Compton-
1133
+ thick Accretion in the Local Universe. APJL 815, L13. doi:10.1088/2041-8205/
1134
+ 815/1/L13, arXiv:1603.04852.
1135
+ Rosenblatt, M., 1956. Remarks on Some Nonparametric Estimates of a Density Function.
1136
+ The Annals of Mathematical Statistics 27, 832 – 837. URL: https://doi.org/10.
1137
+ 1214/aoms/1177728190, doi:10.1214/aoms/1177728190.
1138
+ Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998. Maps of Dust Infrared Emission for Use
1139
+ in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds.
1140
+ APJ 500, 525–553. doi:10.1086/305772, arXiv:astro-ph/9710327.
1141
+ Schneider et al., 2010.
1142
+ The Sloan Digital Sky Survey Quasar Catalog. V. Sev-
1143
+ enth Data Release.
1144
+ AJ 139, 2360.
1145
+ doi:10.1088/0004-6256/139/6/2360,
1146
+ arXiv:1004.1167.
1147
+ Scott, A.E., Stewart, G.C., Mateos, S., Alexander, D.M., Hutton, S., Ward, M.J., 2011. New
1148
+ constraints on the X-ray spectral properties of type 1 active galactic nuclei. MNRAS 417,
1149
+ 992–1012. doi:10.1111/j.1365-2966.2011.19325.x, arXiv:1106.4904.
1150
+ Shen, S., White, S.D.M., Mo, H.J., Voges, W., Kauffmann, G., Tremonti, C., Ander-
1151
+ son, S.F., 2006.
1152
+ The soft X-ray properties of quasars in the Sloan Digital Sky Sur-
1153
+ vey.
1154
+ MNRAS 369, 1639–1653.
1155
+ doi:10.1111/j.1365-2966.2006.10463.x,
1156
+ arXiv:astro-ph/0512645.
1157
+ 21
1158
+
1159
+ Shen et al., 2011.
1160
+ A Catalog of Quasar Properties from Sloan Digital Sky Sur-
1161
+ vey Data Release 7.
1162
+ APJS 194, 45.
1163
+ doi:10.1088/0067-0049/194/2/45,
1164
+ arXiv:1006.5178.
1165
+ Silverman, B.W., 1981. Using kernel density estimates to investigate multimodality. Journal
1166
+ of the Royal Statistical Society. Series B (Methodological) 43, 97–99.
1167
+ URL: http:
1168
+ //www.jstor.org/stable/2985156.
1169
+ Taylor, M., 2017. TOPCAT: Desktop Exploration of Tabular Data for Astronomy and Be-
1170
+ yond. arXiv e-prints , arXiv:1707.02160arXiv:1707.02160.
1171
+ Turner, T.J., Miller, L., 2009. X-ray absorption and reflection in active galactic nuclei. AAPR
1172
+ 17, 47–104. doi:10.1007/s00159-009-0017-1, arXiv:0902.0651.
1173
+ Urry, C.M., Padovani, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei.
1174
+ PASP 107, 803. doi:10.1086/133630, arXiv:astro-ph/9506063.
1175
+ van Dyk, D.A., Connors, A., Kashyap, V.L., Siemiginowska, A., 2001. Analysis of Energy
1176
+ Spectra with Low Photon Counts via Bayesian Posterior Simulation. APJ 548, 224–243.
1177
+ doi:10.1086/318656, arXiv:astro-ph/0008170.
1178
+ Vito et al., 2019. The X-ray properties of z > 6 quasars: no evident evolution of accretion
1179
+ physics in the first Gyr of the Universe. AP 630, A118. doi:10.1051/0004-6361/
1180
+ 201936217, arXiv:1908.09849.
1181
+ Waskom, M., 2021. seaborn: statistical data visualization. The Journal of Open Source
1182
+ Software 6, 3021. doi:10.21105/joss.03021.
1183
+ Watson, G.S., 1961. Goodness-of-fit tests on a circle. Biometrika 48, 109–114. URL:
1184
+ http://www.jstor.org/stable/2333135.
1185
+ White, R.L., Becker, R.H., Helfand, D.J., Gregg, M.D., 1997. A Catalog of 1.4 GHz Radio
1186
+ Sources from the FIRST Survey. APJ 475, 479–493. doi:10.1086/303564.
1187
+ Wilson,
1188
+ A.S.,
1189
+ Colbert,
1190
+ E.J.M.,
1191
+ 1995.
1192
+ The
1193
+ Difference
1194
+ between
1195
+ Radio-loud
1196
+ and
1197
+ Radio-quiet
1198
+ Active
1199
+ Galaxies.
1200
+ APJ 438,
1201
+ 62.
1202
+ doi:10.1086/175054,
1203
+ arXiv:astro-ph/9408005.
1204
+ Worrall, D.M., 2009. The X-ray jets of active galaxies. AAPR 17, 1–46. doi:10.1007/
1205
+ s00159-008-0016-7, arXiv:0812.3401.
1206
+ 22
1207
+
1208
+ Worrall, D.M., Giommi, P., Tananbaum, H., Zamorani, G., 1987. X-Ray Studies of Quasars
1209
+ with the Einstein Observatory. IV. X-Ray Dependence on Radio Emission. APJ 313, 596.
1210
+ doi:10.1086/164999.
1211
+ Zamorani et al., 1981. X-ray studies of quasars with the Einstein Observatory II. APJ 245,
1212
+ 357–374. doi:10.1086/158815.
1213
+ Zhu, S.F., Brandt, W.N., Luo, B., Wu, J., Xue, Y.Q., Yang, G., 2020. The LX-Luv-Lradio
1214
+ relation and corona-disc-jet connection in optically selected radio-loud quasars. MNRAS
1215
+ 496, 245–268. doi:10.1093/mnras/staa1411, arXiv:2006.13226.
1216
+ Zickgraf, F.J., Voges, W., Krautter, J., Thiering, I., Appenzeller, I., Mujica, R., Serrano,
1217
+ A., 1997. Identification of a complete sample of northern ROSAT All-Sky Survey X-ray
1218
+ sources. V. Discovery of a z=4.28 QSO near the RASS source RX J1028.6-0844. AP 323,
1219
+ L21–L24.
1220
+ 23
1221
+
-dE1T4oBgHgl3EQfCgLC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -7893,3 +7893,61 @@ JdE1T4oBgHgl3EQfsAXy/content/2301.03362v1.pdf filter=lfs diff=lfs merge=lfs -tex
7893
  JtE5T4oBgHgl3EQfXg-b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7894
  AtAzT4oBgHgl3EQfv_4W/content/2301.01714v1.pdf filter=lfs diff=lfs merge=lfs -text
7895
  AtAzT4oBgHgl3EQfhv1C/content/2301.01488v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7893
  JtE5T4oBgHgl3EQfXg-b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7894
  AtAzT4oBgHgl3EQfv_4W/content/2301.01714v1.pdf filter=lfs diff=lfs merge=lfs -text
7895
  AtAzT4oBgHgl3EQfhv1C/content/2301.01488v1.pdf filter=lfs diff=lfs merge=lfs -text
7896
+ VdE1T4oBgHgl3EQfvAWi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7897
+ R9AzT4oBgHgl3EQf0f4J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7898
+ XtFQT4oBgHgl3EQfdTZh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7899
+ _9AyT4oBgHgl3EQf3vnw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7900
+ G9E5T4oBgHgl3EQfWA_j/content/2301.05556v1.pdf filter=lfs diff=lfs merge=lfs -text
7901
+ 19AyT4oBgHgl3EQf1fl-/content/2301.00736v1.pdf filter=lfs diff=lfs merge=lfs -text
7902
+ _9AyT4oBgHgl3EQf3vnw/content/2301.00776v1.pdf filter=lfs diff=lfs merge=lfs -text
7903
+ 6NE0T4oBgHgl3EQfewDQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7904
+ _dFKT4oBgHgl3EQfUy2I/content/2301.11785v1.pdf filter=lfs diff=lfs merge=lfs -text
7905
+ 5dE0T4oBgHgl3EQfegDz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7906
+ 3tAzT4oBgHgl3EQfuf3H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7907
+ EtE1T4oBgHgl3EQf-gZN/content/2301.03569v1.pdf filter=lfs diff=lfs merge=lfs -text
7908
+ X9E0T4oBgHgl3EQfWQAZ/content/2301.02274v1.pdf filter=lfs diff=lfs merge=lfs -text
7909
+ FNAzT4oBgHgl3EQfUPz_/content/2301.01265v1.pdf filter=lfs diff=lfs merge=lfs -text
7910
+ xdFRT4oBgHgl3EQfhzcF/content/2301.13584v1.pdf filter=lfs diff=lfs merge=lfs -text
7911
+ VdE1T4oBgHgl3EQfvAWi/content/2301.03395v1.pdf filter=lfs diff=lfs merge=lfs -text
7912
+ zdE3T4oBgHgl3EQfmgot/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7913
+ fNFKT4oBgHgl3EQfsS69/content/2301.11882v1.pdf filter=lfs diff=lfs merge=lfs -text
7914
+ AtAzT4oBgHgl3EQfv_4W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7915
+ jtAzT4oBgHgl3EQf4_7R/content/2301.01854v1.pdf filter=lfs diff=lfs merge=lfs -text
7916
+ PNFAT4oBgHgl3EQfzR5c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7917
+ edE1T4oBgHgl3EQfyQVt/content/2301.03431v1.pdf filter=lfs diff=lfs merge=lfs -text
7918
+ XtFQT4oBgHgl3EQfdTZh/content/2301.13330v1.pdf filter=lfs diff=lfs merge=lfs -text
7919
+ B9FJT4oBgHgl3EQfsy1U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7920
+ -NFLT4oBgHgl3EQfCi71/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7921
+ 69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf filter=lfs diff=lfs merge=lfs -text
7922
+ BtAyT4oBgHgl3EQf4PqZ/content/2301.00783v1.pdf filter=lfs diff=lfs merge=lfs -text
7923
+ P9FPT4oBgHgl3EQfoTUR/content/2301.13133v1.pdf filter=lfs diff=lfs merge=lfs -text
7924
+ QNAyT4oBgHgl3EQfU_cN/content/2301.00133v1.pdf filter=lfs diff=lfs merge=lfs -text
7925
+ jtAzT4oBgHgl3EQf4_7R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7926
+ QNAyT4oBgHgl3EQfU_cN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7927
+ fNFKT4oBgHgl3EQfsS69/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7928
+ g9FKT4oBgHgl3EQfty7v/content/2301.11889v1.pdf filter=lfs diff=lfs merge=lfs -text
7929
+ edE1T4oBgHgl3EQfyQVt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7930
+ sdE0T4oBgHgl3EQfrgGT/content/2301.02567v1.pdf filter=lfs diff=lfs merge=lfs -text
7931
+ 4NE2T4oBgHgl3EQfOQYe/content/2301.03745v1.pdf filter=lfs diff=lfs merge=lfs -text
7932
+ l9E4T4oBgHgl3EQftw0Q/content/2301.05226v1.pdf filter=lfs diff=lfs merge=lfs -text
7933
+ oNFMT4oBgHgl3EQf6zEt/content/2301.12461v1.pdf filter=lfs diff=lfs merge=lfs -text
7934
+ m9FPT4oBgHgl3EQf5DW2/content/2301.13195v1.pdf filter=lfs diff=lfs merge=lfs -text
7935
+ lNE5T4oBgHgl3EQfHA6S/content/2301.05436v1.pdf filter=lfs diff=lfs merge=lfs -text
7936
+ 69FKT4oBgHgl3EQf_y40/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7937
+ FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf filter=lfs diff=lfs merge=lfs -text
7938
+ aNE2T4oBgHgl3EQfZgfV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7939
+ LdFRT4oBgHgl3EQfEzcl/content/2301.13477v1.pdf filter=lfs diff=lfs merge=lfs -text
7940
+ EtE1T4oBgHgl3EQf-gZN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7941
+ 6tE0T4oBgHgl3EQfwAE6/content/2301.02625v1.pdf filter=lfs diff=lfs merge=lfs -text
7942
+ r9E3T4oBgHgl3EQf9AtL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7943
+ _dE2T4oBgHgl3EQfmgfK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7944
+ VtE2T4oBgHgl3EQfuAgt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7945
+ FNE1T4oBgHgl3EQfEwMv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7946
+ VtE2T4oBgHgl3EQfuAgt/content/2301.04075v1.pdf filter=lfs diff=lfs merge=lfs -text
7947
+ lNE5T4oBgHgl3EQfHA6S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7948
+ 5NFKT4oBgHgl3EQf-C45/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7949
+ oNFMT4oBgHgl3EQf6zEt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7950
+ F9E0T4oBgHgl3EQfhQEq/content/2301.02428v1.pdf filter=lfs diff=lfs merge=lfs -text
7951
+ MdE2T4oBgHgl3EQfqQjZ/content/2301.04038v1.pdf filter=lfs diff=lfs merge=lfs -text
7952
+ HtAyT4oBgHgl3EQfS_fv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7953
+ PNFAT4oBgHgl3EQfzR5c/content/2301.08697v1.pdf filter=lfs diff=lfs merge=lfs -text
09E1T4oBgHgl3EQfRgOv/content/tmp_files/2301.03054v1.pdf.txt ADDED
@@ -0,0 +1,795 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03054v1 [cond-mat.str-el] 8 Jan 2023
2
+ Time-crystalline spin ice and Dirac strings in a driven magnet
3
+ Mingxi Yue1 and Zi Cai1, 2, ∗
4
+ 1Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control,
5
+ School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
6
+ 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
7
+ Studies on systems far from equilibrium open up new avenues for investigating exotic phases of
8
+ matter. A driven-dissipative frustrated spin system is examined in this study, and we suggest an
9
+ out-of-equilibrium non-magnetic phase where the spins do not order but adhere to the ice rule in
10
+ space and establish a long-range crystalline order in time. It is shown that this time-crystalline
11
+ spin ice phase is distinct from the equilibrium spin ice and conventional discrete time crystal. The
12
+ dynamics of monopoles, Dirac strings and other space-time topological defects have been examined
13
+ in the context of this far-from-equilibrium system, and the possible experimental realization of our
14
+ model has been discussed.
15
+ Introduction – Spin ice (SI) is an unusual magnet that
16
+ does not order even as the temperature tends towards
17
+ zero[1]. Here, geometrical frustration results in ground
18
+ states with extensive degeneracy yet local constraints
19
+ known as ice rule.
20
+ For example, in the rare-earth ti-
21
+ tanates such as Dy2Ti2O7 and Ho2Ti2O7, the energy is
22
+ minimized for those configurations satisfying two spins
23
+ pointing in and two out in each tetrahedra of the py-
24
+ rochlore lattice[2–4]. Despite its simplicity, the ice rule is
25
+ responsible for a wealth of interesting phenomena includ-
26
+ ing the zero point entropy[5, 6], fractionalization[7, 8],
27
+ and the emergent gauge field[9, 10].
28
+ Locally break-
29
+ ing the ice rule produces a pair of point-like defects -
30
+ condensed matter analogs of monopoles[11]- that can be
31
+ separated to a large distance with a finite energy cost.
32
+ Most studies on this topic focused on the equilibrium or
33
+ near-equilibrium (relaxation[12, 13] or transport[14–16]
34
+ of monopoles) properties, while the spin ice physics in
35
+ far-from-equilibrium systems is elusive. Because the ice
36
+ rule is rooted in the energy minimization principle, while
37
+ non-equilibrium systems, especially driven systems, are
38
+ usually far from ground states.
39
+ The scope of nonequilibrium physics is considerable.
40
+ Nevertheless, far from equilibrium less is known in gen-
41
+ eral. However, nonequilibrium systems present fresh op-
42
+ portunities for investigating novel phases of matters ab-
43
+ sent in thermal equilibrium. A prototypical example is
44
+ the time crystal phase, which spontaneously breaks the
45
+ temporal translational symmetry[17–26]. Further incor-
46
+ porating spatial degrees of freedom might lead to more
47
+ complex non-equilibrium phases with intriguing space-
48
+ time structures[27–30]. As for magnetic systems, the role
49
+ of frustration in a nonequilibrium magnet is still unclear
50
+ despite great efforts[31–35]. For example, one may won-
51
+ der whether a magnet driven far from the ground state
52
+ can host an out-of-equilibrium analog of the SI phase,
53
+ which does not order yet still obeys the ice rule that is
54
+ typically assumed to be held only for the ground state.
55
+ If exists, how does such a non-equilibrium SI differ from
56
+ its equilibrium counterpart? Is it possible to define and
57
+ characterize “excitations” above such a non-equilibrium
58
+ state that has already been highly excited?
59
+ In this study, we attempt to answer these questions by
60
+ investigating a periodically driven classical spin system in
61
+ a checkerboard lattice. Dynamical simulations of classi-
62
+ cal spin systems, unlike quantum many-body systems, do
63
+ not suffer from the notorious exponential wall problem,
64
+ thus allowing us to simulate 2D systems up to very high
65
+ system sizes. On the other hand, it has been realized that
66
+ certain intriguing features of non-equilibrium physics do
67
+ not crucially depend on the quantum or classical nature
68
+ of the systems[36], and discrete time crystal (DTC) or
69
+ other exotic orders have been investigated in classical pe-
70
+ riodically driven systems[35–40]. In terms of SI physics,
71
+ typically, a periodical driving will pump energy into the
72
+ system thus is detrimental to the SI phase[41]. Here, we
73
+ demonstrate that the interplay between periodic driving
74
+ and frustration can lead to a non-equilibrium phase that
75
+ displays oscillating SI patterns in space, accompanied by
76
+ a DTC order in time. Furthermore, the dynamics of the
77
+ space-time defects (monopoles, Dirac string and instan-
78
+ ton) emerged from such a time-crystalline spin ice (TC-
79
+ SI) phase have also been discussed.
80
+ FIG. 1:
81
+ (Color online)(a)Schematic of a perfect spin ice
82
+ configuration (monopole vacuum) in a checkerboard lat-
83
+ tice(blue/red dots indicate spin up/down); (b)Flipping one
84
+ spin creates two monopole excitations (dark ⊠) above the vac-
85
+ uum; (c)Two monopoles are separated in space by flipping all
86
+ the spins in the associated Dirac string (the red line).
87
+ The model – To examine the spin ice phase, we em-
88
+ ploy a classical transverse Ising model in a checkerboard
89
+
90
+ (a)
91
+ (b)
92
+ c2
93
+ -2
94
+ 0
95
+ 2
96
+ 4
97
+ -1
98
+ 0
99
+ 1
100
+ 0.0
101
+ 0.2
102
+ 0.4
103
+ 0.6
104
+ s
105
+ x
106
+ (t)
107
+
108
+
109
+
110
+ s
111
+ z
112
+ (t)
113
+ (b)
114
+ t
115
+ 3
116
+ t
117
+ 4
118
+ t
119
+ 2
120
+
121
+ (t)
122
+ t
123
+ 1
124
+ 548
125
+ 546
126
+ 544
127
+ 542
128
+
129
+ t
130
+ [J
131
+ -1
132
+ ]
133
+ 540
134
+ 0
135
+ 5
136
+ 10
137
+ -0.5
138
+ 0.0
139
+ 0.5
140
+ 1.0
141
+ 1
142
+ 10
143
+ 0.1
144
+ 1
145
+
146
+
147
+ S(r
148
+ i
149
+ )
150
+ i+1
151
+ (c)
152
+
153
+
154
+ |S(r
155
+ i
156
+ )|
157
+ i+1
158
+ |S(r)|~r
159
+ -
160
+ FIG. 2: (Color online) (a)the snapshot of {sz
161
+ i } at three typical
162
+ time slices; (b)dynamics of the x and z components of spin
163
+ on site i; (c)equal-time correlation function at a AF time slice
164
+ t = t1 (left panel), which exhibits an algebraic decay (right
165
+ panel). The parameters are chosen as J′ = 4J, ω = 2πJ,
166
+ Γ = 1.5J, γ = J, D = 0.01J and L = 30 (a 10 × 10 section is
167
+ plotted in (a)).
168
+ lattice, whose Hamiltonian reads:
169
+ Hice =
170
+
171
+
172
+
173
+ ij∈⊠
174
+ Θ(t)sz
175
+ i sz
176
+ j − Γ
177
+
178
+ i
179
+ sx
180
+ i ,
181
+ (1)
182
+ where ⊠ indicates the plaquette in the checkerboard
183
+ lattice with the next nearest neighboring (NNN) cou-
184
+ pling (the grey plaquette in Fig.1 a).
185
+ si = [sx
186
+ i , sy
187
+ i , sz
188
+ i ]
189
+ is a classical vector with a fixed length |si| = 1.
190
+ Γ
191
+ is the strength of a time-independent transverse field,
192
+ and Θ(t) = J + J′ cos ωt is a periodically varying inter-
193
+ action strength, where Θ(t) being positive/negative in-
194
+ dicates anti-ferromagnetic(AF)/ferromagnetic(FM) cou-
195
+ pling, whereas J′ and ω represent the amplitude and
196
+ frequency of the driving.
197
+ Throughout this paper, we
198
+ fix these Hamiltonian parameters.
199
+ However, we shall
200
+ demonstrate in the supplementary material(SM)that the
201
+ key results of this work do not crucially depend on this
202
+ specific choice of parameters[42] .
203
+ Typically, periodic driving will heat closed interact-
204
+ ing systems towards an infinite temperature state. We
205
+ incorporate dissipation into our model by coupling each
206
+ spin to a thermal bath, which can be phenomenologically
207
+ described using stochastic methods, to avoid this feature-
208
+ less asymptotic state. In the presence of a thermal bath,
209
+ the dynamics of spin i can be described by a stochastic
210
+ Landau-Lifshitz-Gilbert equation[43]:
211
+ ˙si = hi(t) × si − γsi × (si × hi(t))
212
+ (2)
213
+ where γ is the dissipation strength, which is fixed as
214
+ γ = J for the numerical convenience.
215
+ Although this
216
+ value is larger than that in conventional magnet, the
217
+ long-time asymptotic state does not importantly depends
218
+ on γ[42]. hi(t) = h0
219
+ i (t) + ξi(t), where h0
220
+ i = −∇siHice =
221
+ [Γ, 0, −Θ(t)¯sz
222
+ i ] is the effective magnetic field on site i
223
+ and ¯sz
224
+ i = �
225
+ j sz
226
+ j where the summation is over all the six
227
+ neighboring spins of site i. ξi(t) is a 3D zero-mean ran-
228
+ dom field representing thermal fluctuations. The local
229
+ bath satisfies: ⟨ξα
230
+ i (t)ξβ
231
+ j (t′)⟩ξ = D2δαβδijδ(t − t′) where
232
+ α, β = x, y, z and D is the strength of the noise. If the
233
+ bath is in thermal equilibrium, γ and D should satisfy
234
+ D2 = 2T γ, where T is the temperature of the bath. The
235
+ stochastic differential equation can be numerically solved
236
+ by the standard Heun method with a Stratonovich’s dis-
237
+ cretization formula[44], in which we select the discrete
238
+ time step ∆t = 10−3J−1 (the convergence with smaller
239
+ ∆t has been verified). The simulation is performed over a
240
+ L×L checkerboard lattice with periodic boundary condi-
241
+ tion. In our simulations, we choose random initial states
242
+ whose effect has also been analyzed in SM[42]. In the fol-
243
+ lowing, we will focus on the long-time asymptotic dynam-
244
+ ics of this model. The dynamical phase diagram of this
245
+ model is extremely rich as shown in the SM[42]. Here, we
246
+ only consider the scenario when the system concurrently
247
+ displays SI patterns in space and DTC order in time, as
248
+ opposed to listing all the dynamical phases.
249
+ Time-crystalline spin ice – We consider the case where
250
+ Θ(t) oscillates between the AF and FM couplings (this
251
+ condition, however, is not necessary for the TC-SI phase
252
+ as illustrated in the SM[42]), and the spin configuration
253
+ accordingly varies. The snapshots of {sz
254
+ i } at three typical
255
+ time slices have been plotted in Fig.2 (a). At a time slice
256
+ t1 = 541.2T0 with AF coupling (T0 = 1/J is the period
257
+ of Θ(t), the magnetization has a 0.2T0 phase lag with
258
+ respect to Θ(t)), each sz
259
+ i reaches its maximum (|sz
260
+ i | =
261
+ 0.9994), and {sz
262
+ i } obeys the ice rule (�
263
+ ij∈⊠ sz
264
+ i vanishes
265
+ for all ⊠). The {sz
266
+ i } snapshot at the next time slice t2 =
267
+ t1 + 0.5T0 with FM coupling (Θ(t2) < 0) shows neither
268
+ spin ice pattern, nor FM long-range order, rather, it is
269
+ a paramagnetic phase (PM) with magnetization along
270
+ the x-direction (see Fig.2 b).
271
+ At the time slices t3 =
272
+ t1+T0, the system Hamiltonian return to the original one
273
+ (Hice(t3) = Hice(t1)), but {sz
274
+ i } does not. Instead, all of
275
+ them are simultaneously reversed {sz
276
+ i (t3)} = {−sz
277
+ i (t1)},
278
+ thus the ice rule is still preserved.
279
+ {sz
280
+ i } return to its
281
+ original values after two periods of driving at t4 = t1+2T0
282
+ ({sz
283
+ i (t4) = sz
284
+ i (t1)}), which indicates a spontaneous Z2
285
+
286
+ (a)
287
+ 0.8
288
+ 0.6
289
+ 0.4
290
+ 0.2
291
+ 0.2
292
+ -0.4
293
+ 0.6
294
+ -0.8
295
+ t,=541.2T。
296
+ t=541.7To
297
+ t,=542.2To3
298
+ time translational symmetry breaking (TTSB).
299
+ The origin of the DTC order can be understood as a
300
+ consequence of the periodically driven interaction. For a
301
+ pair of adjacent sites ij, if sz
302
+ i (t) and sz
303
+ j(t) synchronize as
304
+ sz
305
+ i = sz
306
+ j ∼ cos[ω′t + φ], the instantaneous interacting en-
307
+ ergy HI(t) ∼ Θ(t) cos[2ω′t + 2φ] with Θ(t) ∼ cos ωt can
308
+ be expressed as HI(t) ∼ cos[δωt − 2φ] + cos[Ωt + 2φ]
309
+ with δω = ω − 2ω′ and Ω = ω + 2ω′.
310
+ HI(t) oscil-
311
+ lates around zero except for the period doubling case
312
+ (ω′ = ω/2), where H(t) ∼ cos 2φ (the fast oscillating
313
+ term cos[2ωt + 2φ] is omitted). Therefore HI(t) becomes
314
+ approximately time-independent and takes its minimum
315
+ value at two degenerate points φ1 =
316
+ π
317
+ 2 and φ2 =
318
+
319
+ 2 ,
320
+ which is responsible for the spontaneous Z2 TTSB in the
321
+ DTC. This intuitive picture also explains the fact only
322
+ {sz
323
+ i } exhibit period doubling, while {sx
324
+ i } do not, as shown
325
+ in Fig.2 (b).
326
+ The equilibrium SI supports a Coulomb phase char-
327
+ acterized by an algebraic decay of the spatial corre-
328
+ lation function, one may query whether this property
329
+ holds for the non-equilibrium TC-SI phase. To answer
330
+ this question, we select an AF time slices (t = t1),
331
+ and calculate the equal-time correlation function S(r) =
332
+ 1
333
+ L2
334
+
335
+ i⟨sz
336
+ i (t1)sz
337
+ i+r(t1)⟩, where the average ⟨⟩ is performed
338
+ over the trajectories starting from different random ini-
339
+ tial states.
340
+ As shown in Fig.2 (c), along the diagonal
341
+ direction r =
342
+ 1
343
+
344
+ 2(r, r) with r = |r|, S(r) decays al-
345
+ gebraically in distance S(r) ∼ r−α, with α = 1.9(2)
346
+ agreeing very well with the exponent predicted by the
347
+ Coulomb phase[10] (α = d with d = 2 the dimension of
348
+ the lattice).
349
+ However, this agreement does not indicate that the
350
+ asymptotic state in our model adiabatically follows the
351
+ ground state of the Hice. First, the ice rule only hold at
352
+ the time slices with AF coupling. For example, at a time
353
+ slice with FM coupling (e.g. t = t2), the ground state
354
+ of Hice(t2) is supposed to be an FM state along the z-
355
+ direction, while the system shows a PM state in our case.
356
+ Furthermore, the spontaneous TTSB can is forbidden in
357
+ thermal equilibrium due to the no-go theorem[45, 46].
358
+ Therefore, the asymptotic state in our model is a gen-
359
+ uine non-equilibrium state with alternating SI and PM
360
+ configurations in space and DTC order in time.
361
+ Dynamics of monopoles after a local spin flip – In a
362
+ conventional SI, the elementary excitations can be intro-
363
+ duced by flipping one spin in a perfect SI configuration,
364
+ which violates the ice rule in the two adjacent ⊠. For a
365
+ monopole “vacuum” (a perfect SI configuration), flipping
366
+ a spin equals to create of a pair of monopoles, which can
367
+ be separated by properly identifying a chain of spins with
368
+ alternating spin up and down and flipping them simul-
369
+ taneously, as shown in Fig.1 (c). The energy required to
370
+ separate two monopoles in a SI model with short-range
371
+ coupling is independent of their distance, and the string
372
+ composed of the flipped spins is a condensed matter ana-
373
+ 100
374
+ 1000
375
+ 0.0
376
+ 0.5
377
+ 1.0
378
+ 4
379
+ 5
380
+ 6
381
+ 7
382
+ 8
383
+ 9
384
+ 10
385
+ 100
386
+ <
387
+ >
388
+ l
389
+
390
+
391
+ (t
392
+ n
393
+ )
394
+ t
395
+ n
396
+ l=3
397
+ l=5
398
+ l=7
399
+ (c)
400
+ [J
401
+ -1
402
+ ]
403
+ FIG. 3: (Color online) The spin difference configuration {δsz
404
+ i }
405
+ at the time slices t = t1 (initial state) and t = tN (final
406
+ states). At t = t1, (a) only one spin is flipped and (b) a string
407
+ of spins are flipped (Dirac string); (c) stroboscopic dynamics
408
+ of the excess energy ∆E(tn) at the AF time slices with tn =
409
+ t0 + 2T0(n − 1) starting from different initial states, each of
410
+ which contains one Dirac string with different length l. The
411
+ inset indicates the average relaxation time ⟨τ⟩ξ as a function
412
+ of the length of the Dirac string in the initial state. Other
413
+ parameters are chosen the same as in Fig.2.
414
+ log of the Dirac string[47].
415
+ In general, the definition of “excitation” above an out-
416
+ of-equilibrium state is elusive. Nevertheless, for the TC-
417
+ SI phase in our model, we adopt a similar procedure of
418
+ perturbing the state by flipping one spin, and monitor-
419
+ ing the subsequential dynamics.
420
+ For this purpose, we
421
+ first choose an AF time slice t0 when all sz
422
+ i reach their
423
+ maximum and the corresponding spin configuration {s0
424
+ j}
425
+ obeys the ice rule. Then we randomly pick a site (say, site
426
+ i), flip its spin then study the evolution from such a con-
427
+ figuration {s1
428
+ j} (s1
429
+ j = s0
430
+ j except j = i where s1
431
+ i = −s0
432
+ i ).
433
+ We only focus on the stroboscopic dynamics at the AF
434
+ time slice with tn = t0 + 2T0(n − 1).
435
+ At the time slice tn, we defined {δsn
436
+ j } (δsn
437
+ j = sn
438
+ j − s0
439
+ j)
440
+ to measure the change of the spin configuration with re-
441
+ spect to the initial SI configuration before the spin flip
442
+ {s0
443
+ j}. At t = t1, only one spin is flipped, and thus δs1
444
+ j = 0
445
+ except j = i. Due to the dissipative nature of the dynam-
446
+ ics, after sufficiently long time (tn > tN), the system will
447
+ approach a new SI configuration, which differs from the
448
+ initial state as shown in {δsN
449
+ j } in Fig.3 (a). By com-
450
+ paring the final and initial state, we can find that the
451
+ spins which have been flipped during this process form
452
+ a closed ring, along which the δsN
453
+ j exhibits an alternat-
454
+ ing + and − structure. Flipping one spin produces two
455
+ monopoles, each of which can propagate from one ⊠ to
456
+ another by flipping the spin between them. The motion
457
+ of the monopoles resembles a random walk under certain
458
+
459
+ (a)
460
+ (OsN)
461
+ (0s,)
462
+ (SsN
463
+ 14
464
+ constraint. If these two monopoles contact and their tra-
465
+ jectories form a closed ring, they could annihilate with
466
+ each other, leaving behind a new SI configuration that
467
+ differs from the original one by flipping all of the spins
468
+ along the closed ring that the monopoles went through.
469
+ Topology protected relaxation dynamics – A more in-
470
+ triguing dynamics occur if we start from an initial state
471
+ with a pair of well-separated monopoles attached by a
472
+ Dirac string, as shown in Fig.3 (b).
473
+ A monopole is a
474
+ topological fractionalized object that can not be created
475
+ or annihilated by itself. As an alternative, monopoles can
476
+ only be annihilated in pairs when they intersect. There-
477
+ fore, for a configuration with only two well-separated
478
+ monopoles, despite the dissipative nature of the dynam-
479
+ ics, the excess energy ∆En = ⟨Hice(tn)⟩ξ − ⟨Hice(t0)⟩ξ
480
+ (⟨⟩ξ indicates the ensemble average over the trajectories
481
+ of the thermal noise) can be protected for a sufficiently
482
+ long time before these two monopoles collide.
483
+ Conse-
484
+ quently, the relaxation is supposed to be slower from an
485
+ initial state with a pair of monopoles with larger separa-
486
+ tion (see Fig.3 c). The inset of Fig.3 (c) shows that the
487
+ average relaxation time ⟨τ⟩ξ exponentially diverges with
488
+ the length of the Dirac string l.
489
+ -4
490
+ 0
491
+ 4
492
+ 95
493
+ 100
494
+ 105
495
+ 110
496
+ -1
497
+ 0
498
+ 1
499
+
500
+
501
+ (t)
502
+ (a)
503
+
504
+ s
505
+ z
506
+ i
507
+ t
508
+ D=0.01J
509
+ D=0.1J
510
+ [J
511
+ -1
512
+ ]
513
+ -phase shift
514
+ 0
515
+ 10
516
+ 20
517
+ 30
518
+ 40
519
+ 50
520
+ 60
521
+ -1
522
+ 0
523
+ 1
524
+ 0
525
+ 20
526
+ 40
527
+ 0.4
528
+ 0.6
529
+ 0.8
530
+ 1
531
+ |<s
532
+ z
533
+ i
534
+ >
535
+ |
536
+ t
537
+
538
+
539
+ <s
540
+ z
541
+ i
542
+ >
543
+ t
544
+ (b)
545
+ [J
546
+ -1
547
+ ]
548
+ FIG. 4: (Color online) (a) The dynamics of sz
549
+ i on site i in
550
+ a single noise trajectory with D = 0.01J and D = 0.1J, the
551
+ former demonstrates a perfect DTC order, while in the latter,
552
+ thermal fluctuations activate a π-phase shift; (b) The dynam-
553
+ ics of the average ⟨sz
554
+ i ⟩ξ starting from a perfect SI state after
555
+ ensemble average over 103 noise trajectories. The envelope
556
+ of ⟨sz
557
+ i ⟩ξ exhibits an exponential decay as shown in the inset.
558
+ Other parameters except D are chosen the same as in Fig.2.
559
+ Instanton activated by the thermal fluctuation – Al-
560
+ though the stroboscopic dynamics of monopoles resemble
561
+ the relaxation dynamics in the conventional SI phase, the
562
+ proposed TC-SI phase is distinct from the equilibrium SI
563
+ because of the spontaneous TTSB. A natural question
564
+ thus arises: what’s the effect of the monopoles on the
565
+ temporal order of the TC-SI phase. The answer to this
566
+ question is directly related to the stability of TC-SI phase
567
+ against thermal fluctuations, which excite monopole with
568
+ a finite density. The Coulomb phase in equilibrium SI
569
+ does not breaks any symmetry, and is not robust at finite
570
+ temperature. However, the TC-SI phase is characterized
571
+ by a spontaneous Z2 TTSB, while a discrete symmetry
572
+ breaking phase is typically assumed to be robust against
573
+ weak thermal fluctuations in 2D systems. For example,
574
+ in a similar model without frustration, the corresponding
575
+ DTC phase is indeed stable at low temperature[48]. The
576
+ impact of thermal fluctuation on the TC-SI phase will
577
+ then be discussed.
578
+ Unlike the conventional SI phase, once a spin in our
579
+ TC-SI phase is suddenly flipped at a typical AF time
580
+ slice, it does not only produce a pair of monopoles in
581
+ space, but also results in a π−phase shift on top of the
582
+ periodic dynamics of this flipped spin, which corresponds
583
+ to tunneling from one “degenerate” DTC phase (φ = π
584
+ 2 )
585
+ to the other (φ = 3π
586
+ 2 ). Such a fluctuation-activated tun-
587
+ neling between the two Z2 symmetry breaking states (see
588
+ Fig.4 a) resembles the instanton excitation in the field
589
+ theory[49], and is a topological defect in the temporal do-
590
+ main. These instanton excitations, no matter how rare
591
+ they are, are detrimental to the DTC long-range order
592
+ in the time domain and result in an exponential decay
593
+ of the DTC order at any finite temperature, as shown in
594
+ Fig.4 (b). However, the life-time of TC-SI phase can be
595
+ extraordinarily long at a temperatures much lower than
596
+ the activated temperature of monopoles.
597
+ Discussion – The proposed model is classical, while
598
+ a quantum generalization might provide a new perspec-
599
+ tive, although it is extremely challenging, if not impos-
600
+ sible, to simulate its real-time evolution. For a quantum
601
+ transverse Ising model in a checkerboard lattice, quan-
602
+ tum fluctuation lifts the extensive classical degeneracy
603
+ and leads to ordered ground states[50]. These magnetic
604
+ orderings could be suppressed by increasing temperature,
605
+ which leads to non-magnetic phases that resemble the
606
+ Coulomb phase. In terms of a quantum generalization of
607
+ our driven-dissipative model, we hypothesize that there
608
+ may be a regime of intermediate temperature where the
609
+ temperature could overwhelm the quantum fluctuation
610
+ while remaining significantly lower than the activated
611
+ temperature of monopoles, and the quantum system may
612
+ exhibit dynamics similar to those in our classical model.
613
+ Experimental realizations of dynamically modulated
614
+ interactions– One of the primary obstacles to the experi-
615
+ mental realization of our model is that it requires a peri-
616
+ odical driving imposed on the interaction rather than on
617
+ the external field, which seems unrealistic for solid-state
618
+ magnets. This dynamical modulated interaction can be
619
+ achieved using magnetophononics, in which the electric
620
+
621
+ 5
622
+ field of a laser is coupled to the optical phonon, and the
623
+ consequent periodic atomic displacements could dynami-
624
+ cally modulate the magnetic exchange couplings between
625
+ the spins[51, 52].
626
+ This proposal has been realized ex-
627
+ perimentally in the AF semiconductor α-MnTe[53]. Al-
628
+ though the tunable coupling regime is small and it is
629
+ impossible to change the sign of the interaction, we show
630
+ in the SM[42] that, for a slower driving (e.g. ω = 0.5πJ)
631
+ the TC-SI can exist even when the coupling is always
632
+ AF (J′ < J). This periodically modulated interaction is
633
+ accessible in synthetic quantum systems such as trapped
634
+ ions[54] and cavity QED systems[55]. For instance, in the
635
+ latter, by applying a periodic driving to the cavity pho-
636
+ tons, the magnetic interaction mediated by cavity can be
637
+ dynamically controlled.
638
+ Conclusion and outlook – In summary, we examined
639
+ a driven-dissipative frustrated magnetic system, and our
640
+ results demonstrate that the interplay between the pe-
641
+ riodic driving and frustration can give rise to a non-
642
+ equilibrium TC-SI phase.
643
+ Unlike earlier studies, the
644
+ aim of this work is to investigate SI physics in the con-
645
+ text of far-from-equilibrium systems rather than the out-
646
+ of-equilibrium features of a conventional SI phase.
647
+ In
648
+ frustrated quantum magnetism, a similar phase without
649
+ spontaneous symmetry breaking is the quantum spin liq-
650
+ uid.
651
+ One thus may wonder whether it is possible to
652
+ realize similar exotic quantum phases of matter out of
653
+ equilibrium[56], which can simultaneously show spatial
654
+ topological order and non-trivial temporal (long-range or
655
+ quasi-long-range) orders. Another important direction is
656
+ to classify the topological space-time defects that emerge
657
+ from non-equilibrium phases of matter and identify their
658
+ properties, which are directly relevant to the physical ob-
659
+ servable effect of these nonequilibrium phases.
660
+ Acknowledgments.—This work is supported by the
661
+ National Key Research and Development Program of
662
+ China (Grant No.
663
+ 2020YFA0309000), NSFC of China
664
+ (Grant No.12174251), Natural Science Foundation of
665
+ Shanghai (Grant No.22ZR142830), Shanghai Munic-
666
+ ipal Science and Technology Major Project (Grant
667
+ No.2019SHZDZX01).
668
+ ∗ Electronic address: [email protected]
669
+ [1] C.Castelnovo, R.Moessner, and S. Sondhi, Annu. Rev.
670
+ Condens. Mat. Phys. 3, 35 (2012).
671
+ [2] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske,
672
+ and K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).
673
+ [3] S. T. Bramwell and M. J. Gingras, Science 294, 1495
674
+ (2001).
675
+ [4] J. Snyder, B. G. Ueland, J. S. Slusky, H. Karunadasa,
676
+ R. J. Cava, and P. Schiffer, Phys. Rev. B 69, 064414
677
+ (2004).
678
+ [5] L. Pauling, J.Am. Chem.Soc 57, 2680 (1935).
679
+ [6] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan,
680
+ and B. S. Shastry, Nature 399, 333 (1999).
681
+ [7] Y. Wan, J. Carrasquilla, and R. G. Melko, Phys. Rev.
682
+ Lett. 116, 167202 (2016).
683
+ [8] S. Kourtis and C. Castelnovo, Phys. Rev. B 94, 104401
684
+ (2016).
685
+ [9] D. A. Huse, W. Krauth, R. Moessner, and S. L. Sondhi,
686
+ Phys. Rev. Lett. 91, 167004 (2003).
687
+ [10] C. Henley, Annu. Rev. Condens. Mat. Phys. 1, 179
688
+ (2010).
689
+ [11] C.Castelnovo, R.Moessner, and S. Sondhi, Nature 451,
690
+ 42 (2008).
691
+ [12] L. Jaubert and P. Holdsworth, Nat. Phys. 5, 258 (2009).
692
+ [13] C. Castelnovo, R. Moessner, and S. L. Sondhi, Phys. Rev.
693
+ Lett. 104, 107201 (2010).
694
+ [14] S. T. Bramwell, S. Giblin, S. Calder, R. Aldus, D. Prab-
695
+ hakaran, and T. Fennell, Nature 461, 956 (2009).
696
+ [15] S.Mostame, C.Castelnovo, R.Moessner, and S. Sondhi,
697
+ PNAS 2, 640 (2014).
698
+ [16] L. Pan, N. J. Laurita, K. A. Ross, B. D. Gaulin, and
699
+ N. P. Armitage, Nat. Phys 12, 361 (2016).
700
+ [17] F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
701
+ [18] K. Sacha, Phys. Rev. A 91, 033617 (2015).
702
+ [19] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett.
703
+ 117, 090402 (2016).
704
+ [20] V. Khemani, A. Lazarides, R. Moessner, and S. L.
705
+ Sondhi, Phys. Rev. Lett. 116, 250401 (2016).
706
+ [21] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vish-
707
+ wanath, Phys. Rev. Lett. 118, 030401 (2017).
708
+ [22] S. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
709
+ F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von
710
+ Keyserlingk, et al., Nature 543, 221 (2017).
711
+ [23] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee,
712
+ J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter,
713
+ A. Vishwanath, et al., Nature 543, 217 (2017).
714
+ [24] X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen,
715
+ J. Gross, F. Arute, K. Arya, J. Atalaya, R. Babbush,
716
+ et al., Nature 601, 531 (2022).
717
+ [25] P. Frey and S. Rachel, Sci.Adv. 8, 7652 (2022).
718
+ [26] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme,
719
+ A. Hemmerich, and H. Kessler, Science 337, 670 (2022).
720
+ [27] S. Xu and C. Wu, Phys. Rev. Lett. 120, 096401 (2018).
721
+ [28] J. N. Stehouwer, H. T. C. Stoof, J. Smits, and P. van der
722
+ Straten, Phys. Rev. A 104, 043324 (2021).
723
+ [29] M. Yue and Z. Cai, arXiv e-prints arXiv:2209.14578
724
+ (2022), 2209.14578.
725
+ [30] H. Zhao, J. Knolle, and R. Moessner, arXiv e-prints
726
+ arXiv:2212.03135 (2022), 2212.03135.
727
+ [31] Y. Wan and R. Moessner, Phys. Rev. Lett. 119, 167203
728
+ (2017).
729
+ [32] Y. Wan and R. Moessner, Phys. Rev. B 98, 184432
730
+ (2018).
731
+ [33] N. Bittner, D. Goleˇz, M. Eckstein, and P. Werner, Phys.
732
+ Rev. B 102, 235169 (2020).
733
+ [34] R.
734
+ Hanai,
735
+ arXiv
736
+ e-prints
737
+ arXiv:2208.08577
738
+ (2022),
739
+ 2208.08577.
740
+ [35] H.-K. Jin, A. Pizzi, and J. Knolle, Phys. Rev. B 106,
741
+ 144312 (2022).
742
+ [36] N. Y. Yao, C. Nayak, L. Balents, and M. P. Zaletel, Nat.
743
+ Phys. 16, 438 (2020).
744
+ [37] F. M. Gambetta, F. Carollo, A. Lazarides, I. Lesanovsky,
745
+ and J. P. Garrahan, Phys. Rev. E 100, 060105 (2019).
746
+ [38] R. Khasseh, R. Fazio, S. Ruffo, and A. Russomanno,
747
+ Phys. Rev. Lett. 123, 184301 (2019).
748
+ [39] B. Ye, F. Machado, and N. Y. Yao, Phys. Rev. Lett. 127,
749
+ 140603 (2021).
750
+
751
+ 6
752
+ [40] A. Pizzi, A. Nunnenkamp, and J. Knolle, Phys. Rev.
753
+ Lett. 127, 140602 (2021).
754
+ [41] D. Slobinsky, C. Castelnovo, R. A. Borzi, A. S. Gibbs,
755
+ A. P. Mackenzie, R. Moessner, and S. A. Grigera, Phys.
756
+ Rev. Lett. 105, 267205 (2010).
757
+ [42] See the supplementary material for an analysis of the
758
+ dynamical phases other than the TC-SI, and a discussion
759
+ about the role of initial state and thermal noise. More
760
+ details about the dynamics starting from an initial state
761
+ with a Dirac string have also been provided.
762
+ [43] W. F. Brown, Phys. Rev. 130, 1677 (1963).
763
+ [44] S. Ament,
764
+ N. Rangarajan,
765
+ A. Parthasarathy,
766
+ and
767
+ S. Rakheja,
768
+ arXiv e-prints arXiv:1607.04596 (2016),
769
+ 1607.04596.
770
+ [45] P. Bruno, Phys. Rev. Lett. 111, 070402 (2013).
771
+ [46] H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114,
772
+ 251603 (2015).
773
+ [47] D. Morris, D. Tennant, S. Grigera, B. Klemke, C. Castel-
774
+ novo, R. Moessner, C. Czternasty, M. Meissner, K. C.
775
+ Rule, J.-U. Hoffmann, et al., Science 326, 411 (2009).
776
+ [48] M. Yue, X. Yang, and Z. Cai, Phys. Rev. B 105, L100303
777
+ (2022).
778
+ [49] R. Rajaraman, Solitons and instantons (Elsevier, 1987).
779
+ [50] L.-P. Henry and T. Roscilde, Phys. Rev. Lett. 113,
780
+ 027204 (2014).
781
+ [51] M. Yarmohammadi, C. Meyer, B. Fauseweh, B. Nor-
782
+ mand, and G. S. Uhrig, Phys. Rev. B 103, 045132 (2021).
783
+ [52] K. Deltenre, D. Bossini, F. B. Anders, and G. S. Uhrig,
784
+ Phys. Rev. B 104, 184419 (2021).
785
+ [53] D. Bossini, S. Dal Conte, M. Terschanski, G. Springholz,
786
+ A. Bonanni, K. Deltenre, F. Anders, G. S. Uhrig,
787
+ G. Cerullo, and M. Cinchetti, Phys. Rev. B 104, 224424
788
+ (2021).
789
+ [54] C.Schneider, D. Porras, and T. Sch¨atz, Rep. Prog. Phys.
790
+ 75, 024401 (2012).
791
+ [55] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Na-
792
+ ture Phys 5, 845 (2009).
793
+ [56] H.-K. Jin, J. Knolle, and M. Knap, arXiv e-prints
794
+ arXiv:2211.10453 (2022), 2211.10453.
795
+
09E1T4oBgHgl3EQfRgOv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dE4T4oBgHgl3EQfyw3J/content/tmp_files/2301.05269v1.pdf.txt ADDED
@@ -0,0 +1,1080 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 16, 2023
2
+ Typeset using LATEX preprint2 style in AASTeX63
3
+ Globular Clusters in NGC 4839 Falling into Coma: Evidence for the Second Infall?
4
+ Seong-A Oh,1 Myung Gyoon Lee,1 and In Sung Jang2
5
+ 1Astronomy Program, Department of Physics and Astronomy, SNUARC, Seoul National University, 1 Gwanak-ro,
6
+ Gwanak-gu, Seoul 08826, Republic of Korea
7
+ 2Department of Astronomy & Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
8
+ ABSTRACT
9
+ NGC 4839 is the brightest galaxy (cD) of the NGC 4839 group at R ≈ 1 Mpc in the
10
+ south-west of the Coma cluster, which is known to be falling into Coma. However, it
11
+ has been controversial whether it is in the first phase of infall or in the second phase of
12
+ infall after passing the Coma center. We present a wide field study of globular clusters
13
+ (GCs) in NGC 4839 and its environment based on Hyper Suprime-Cam gr images in
14
+ the Subaru archive. We compare the GC system of NGC 4839 with that of NGC 4816,
15
+ which is the brightest member (S0) of the nearby group and lies at a similar distance
16
+ in the west from the Coma center. Interestingly the spatial distribution of the GCs
17
+ in NGC 4839 is significantly more compact than that of the GCs in NGC 4816.
18
+ In
19
+ addition, the radial number density profile of the GCs in NGC 4839 shows an abrupt
20
+ drop at RN4839 ≈ 80 kpc, while that of the GCs in NGC 4816 shows a continuous slow
21
+ decline even in the outer region at 80 < RN4816 < 500 kpc. The effective radius of
22
+ the NGC 4839 GC system is about three times smaller than that of the NGC 4816 GC
23
+ system. This striking difference can be explained if NGC 4839 lost a significant fraction
24
+ of the GCs in its outskirt when it passed through Coma. This supports strongly the
25
+ second infall scenario where the NGC 4839 passed the Coma center about 1.6 Gyr ago,
26
+ and began the second infall after reaching the apocenter in the south-west recently.
27
+ 1. INTRODUCTION
28
+ 1.1. The NGC 4839 Group and the Main
29
+ Cluster in Coma
30
+ Coma is the most massive galaxy cluster in
31
+ the local universe.
32
+ It is connected with fil-
33
+ aments from neighboring galaxy clusters and
34
+ hosts various substructures indicating that it
35
+ is a complex merger system (Colless & Dunn
36
+ 1996; Malavasi et al. 2020; Healy et al. 2021).
37
+ Thus, Coma is one of the best targets to study
38
+ how large scale substructures are assembled and
39
+ Corresponding author: Myung Gyoon Lee
40
41
+ evolve, and has been a focus of many cluster
42
+ studies in various aspects (see Biviano (1998);
43
+ Churazov et al. (2021) and references therein).
44
+ Two most prominent substructures in Coma are
45
+ the main cluster core in the center and the
46
+ NGC 4839 group in the south-west, as shown by
47
+ galaxy number density maps (Colless & Dunn
48
+ 1996; Healy et al. 2021), X-ray images of hot
49
+ gas (White et al. 1993; Neumann et al. 2001;
50
+ Lyskova et al. 2019; Churazov et al. 2021), and
51
+ radio images of synchrotron emission (Bonafede
52
+ et al. 2021, 2022; Lal et al. 2022). The main
53
+ cluster core hosts two giant galaxies (NGC 4874
54
+ (cD) and NGC 4889 (D)), which are merging
55
+ now. The NGC 4839 group is at R ≈ 1 Mpc in
56
+ arXiv:2301.05269v1 [astro-ph.GA] 12 Jan 2023
57
+
58
+ 2
59
+ Oh et al.
60
+ the south-west of Coma, and it is much smaller
61
+ and less massive than the main cluster core
62
+ (Colless & Dunn 1996; Lyskova et al. 2019). The
63
+ NGC 4839 group is considered to be falling into
64
+ Coma and that the two systems will merge to
65
+ form a more massive system in the future (Bi-
66
+ viano (1998) and references therein).
67
+ 1.2. Merger Scenarios for the NGC 4839
68
+ Group: A Pre-merger or a Post-merger?
69
+ It is generally accepted that the NGC 4839
70
+ group is merging with the main cluster. How-
71
+ ever, whether it is a pre-merger where the
72
+ NGC 4839 group is in the first phase of infall
73
+ (Briel et al. 1992; White et al. 1993; Colless &
74
+ Dunn 1996; Neumann et al. 2001; Akamatsu et
75
+ al. 2013) or a post-merger (Burns et al. 1994;
76
+ Lyskova et al. 2019; Churazov et al. 2021) has
77
+ been controversial (Sanders et al. 2020; Healy
78
+ et al. 2021).
79
+ We summarize the observational features re-
80
+ lated with the merging of the NGC 4839 group
81
+ in the previous studies in Table 1. These fea-
82
+ tures include several substructures seen in X-
83
+ ray and radio images, an excess of E+A galax-
84
+ ies in the SW region of the cluster, and sub-
85
+ structures found in the spatial distribution and
86
+ kinematics of galaxies. Each feature can be ex-
87
+ plained with either the pre-merger scenario or
88
+ the post-merger scenario.
89
+ Recently the post-
90
+ merger scenario, which can better explain the
91
+ existence of X-ray/radio substructures (in par-
92
+ ticular, bridges and streams), appears to be
93
+ more supported (Lyskova et al. 2019; Churazov
94
+ et al. 2021, 2022; Bonafede et al. 2021). How-
95
+ ever, even in the recent discussions of both sce-
96
+ narios based on various observations, Healy et
97
+ al. (2021) state that Nevertheless, the question
98
+ whether the NGC 4839 group is on its first in-
99
+ fall or has already passed through the cluster,
100
+ remains open.
101
+ 1.3. Globular Clusters as a Probe
102
+ The halos of massive galaxies in galaxy clus-
103
+ ters grow via numerous mergers of less massive
104
+ galaxies and host a large number of globular
105
+ clusters (GCs).
106
+ Thus, GCs are an excellent
107
+ probe for investigating the structure of the outer
108
+ halos in massive galaxies in the local universe,
109
+ and they provide a critical clue for revealing the
110
+ assembly history of galaxy halos.
111
+ In this study, we present a wide field sur-
112
+ vey of GCs covering the NGC 4839 group
113
+ and its environment, based on the archival
114
+ Subaru/Hypersuprime-Cam (HSC) gr images.
115
+ The primary goals of this study are to derive
116
+ wide field number density maps of GCs and to
117
+ use them to constrain the merger scenarios of
118
+ the NGC 4839 group. We adopt the distance to
119
+ Coma as 100 Mpc (de Grijs & Bono 2020).
120
+ 1.4. Previous Studies of NGC 4839 GCs
121
+ The main host of the NGC 4839 group is
122
+ NGC 4839 (MV
123
+ = −23.1 mag, vh = 7338
124
+ km s−1), which is an elongated cD galaxy
125
+ (Schombert 1988; Ali et al. 2014).
126
+ There
127
+ are only two previous studies of the GCs in
128
+ NGC 4839. Mar´ın-Franch & Aparicio (2002) ap-
129
+ plied the surface brightness fluctuation (SBF)
130
+ method to estimate indirectly the total number
131
+ of GCs in several bright Coma galaxies from
132
+ r-band images obtained at the 2.5m Issac New-
133
+ ton Telescope. They found that NGC 4839 is
134
+ the second-most GC-rich in Coma, following
135
+ NGC 4874 in their sample.
136
+ Later Jord´an et
137
+ al. (2004) presented a F450W(B)/F814W(I)
138
+ photometry of GCs in NGC 4839 based on
139
+ HST/WFPC2 images, deriving the total num-
140
+ ber of GCs to be Ntot(GC) = 3060±850, which
141
+ is three times smaller than the value given by
142
+ Mar´ın-Franch & Aparicio (2002). These previ-
143
+ ous studies either covered only the small field
144
+ of NGC 4839 or used only one band, so lit-
145
+ tle is known about the GCs in the outskirt
146
+ of NGC 4839. Other previous HST surveys of
147
+ GCs in Coma covered mainly the main cluster
148
+
149
+ Globular Clusters in NGC 4839
150
+ 3
151
+ core, and did not cover the NGC 4839 region
152
+ (Peng et al. 2011; Madrid et al. 2018).
153
+ 2. DATA
154
+ Utilizing the Subaru/Hyper Suprime-Cam
155
+ (HSC) archival gr images from the Subaru Mi-
156
+ taka Okayama Kiso Archive system (SMOKA)
157
+ (Aihara et al. 2019), Oh et al. (2023) provided
158
+ a wide field survey of GCs in the entire Coma
159
+ cluster. At the distance of Coma (100 Mpc), one
160
+ arcsec (arcmin) corresponds to a linear scale of
161
+ 484.8 pc (29.1 kpc). Thus GCs at the distance
162
+ of Coma appear as point sources in the HSC im-
163
+ ages. Oh et al. (2023) obtained photometry of
164
+ the point sources in the seven HSC fields cover-
165
+ ing the entire Coma cluster, using DAOPHOT
166
+ (Stetson 1987). We adopt the AB magnitudes in
167
+ the SDSS system. The limiting magnitude with
168
+ 50% completeness of detection derived from ar-
169
+ tificial star experiments is r ≈ 27.1 mag. De-
170
+ tailed description of the detection and photom-
171
+ etry of the point sources is given in Oh et al.
172
+ (2023), of which we used the data for NGC 4839
173
+ and its environment in this study.
174
+ We apply
175
+ the foreground extinction correction using the
176
+ extinction maps for Coma given in Schlegel et
177
+ al. (1998); Schlafly & Finkbeiner (2011).
178
+ 3. RESULTS
179
+ 3.1. NGC 4839 in Comparison with NGC 4816
180
+ In Figure 1 we show a gray scale map of the
181
+ r-band SDSS image of the Coma cluster region
182
+ including the NGC 4839 group.
183
+ The zoom-in
184
+ images (10′ × 10′) of NGC 4839 and NGC 4816
185
+ show that the two galaxies are similar in their
186
+ luminosity and size. In the following analysis of
187
+ NGC 4839 we chose NGC 4816, a nearby bright
188
+ S0 galaxy, as a comparison galaxy.
189
+ NGC 4839 and NGC 4816 are at similar pro-
190
+ jected distances from the Coma center.
191
+ The
192
+ projected separation between the two galaxies
193
+ in the sky is 21.′8 (0.63 Mpc at the distance of
194
+ Coma). Healy et al. (2021) found 15 groups us-
195
+ ing the catalog of Coma member galaxies, and
196
+ provided the number of members and velocity
197
+ dispersion of each group. Groups S11 and S14
198
+ in their study correspond to the NGC 4816 and
199
+ NGC 4839 groups, respectively. We used these
200
+ group data in the following analysis.
201
+ NGC 4816 is the brightest member of the S14
202
+ group (with N(member) = 17 and σv = 521 km
203
+ s−1) at R = 49′ in the west of Coma (see Fig. 12
204
+ in Healy et al. (2021)). Similarly, NGC 4839 is
205
+ the brightest cD/SA0 member of the NGC 4839
206
+ group (the S11 group with N(member) = 24
207
+ and σv = 462 km s−1) at R = 43′, but in the
208
+ south-west of Coma.
209
+ Thus both galaxies are very bright, and the
210
+ V
211
+ magnitude of NGC 4816 is only 0.9 mag
212
+ fainter than that of NGC 4839.
213
+ While the
214
+ NGC 4839 group shows a strong X-ray emission,
215
+ the NGC 4816 group shows little detected X-
216
+ ray emission even in the recent X-ray images
217
+ (Lyskova et al. 2019; Sanders et al. 2020; Mi-
218
+ rakhor & Walker 2020; Churazov et al. 2021,
219
+ 2022).
220
+ Table 2 lists the basic parameters of the
221
+ NGC 4839 and NGC 4816 groups in compari-
222
+ son with the main cluster. We calculated the
223
+ virial mass from the velocity dispersion of the
224
+ two groups (Healy et al. 2021) using the group
225
+ virial mass equation: Mvir/M⊙ = 1.5×106h−1σ3
226
+ v
227
+ in Tully (2015) (adopting h = 0.7), as listed
228
+ in Table 2:
229
+ Mvir
230
+ = 2.1 × 1014M⊙ for the
231
+ NGC 4839 group, and Mvir = 3.0 × 1014M⊙ for
232
+ the NGC 4816 group. We also list the mass for
233
+ the subhalo 2 corresponding to the NGC 4816
234
+ group (Mvir = 1.3 × 1013M⊙), and the sub-
235
+ halo 9 corresponding to the NGC 4839 group
236
+ (Mvir = 1.7 × 1013M⊙) derived from the weak
237
+ lensing analysis in Okabe et al. (2014).
238
+ Ok-
239
+ abe et al. (2014) derived the mass within the
240
+ truncation radius of each subhalo. The trunca-
241
+ tion radius of the subhalo 9 is 98 kpc, which is
242
+ much smaller than the virial radius of the typi-
243
+ cal galaxy groups (the truncation radius of the
244
+ subhalo 2 is not given in Okabe et al. (2014)).
245
+
246
+ 4
247
+ Oh et al.
248
+ Thus weak-lensing masses of the two groups are
249
+ significantly smaller than the dynamical masses.
250
+ These results show that the NGC 4839 and
251
+ NGC 4816 groups have comparable high masses.
252
+ This indicates that the NGC 4816 group should
253
+ show strong X-ray emission like the NGC 4839
254
+ group, but it is not yet detected in any previous
255
+ X-ray observations. Not all galaxy groups are
256
+ detected in X-ray observations. About a half
257
+ of the nearby galaxy groups show X-ray emis-
258
+ sion (Mulchaey 2000). It is not clear why the
259
+ NGC 4816 group does not show any strong X-
260
+ ray emission, unlike the NGC 4839 group. It
261
+ may need a study to investigate this issue fur-
262
+ ther.
263
+ 3.2. CMDs of the GCs
264
+ In Figure 2 we plot the color-magnitude dia-
265
+ grams (CMDs) of the point sources in the cen-
266
+ tral regions (Rgal < 3′ (< 87 kpc)) of NGC 4839
267
+ and NGC 4816 as well as a nearby background
268
+ region with the same area as the galaxy region.
269
+ We also plot the color histograms of the bright
270
+ sources with r0 < 26.5 mag of each region. To
271
+ show the net color histograms we display the
272
+ contribution of the background sources in the
273
+ galaxy regions using the background histogram.
274
+ The color histograms of the sources in the
275
+ two galaxies clearly show an excess (open his-
276
+ tograms) with respect to the background re-
277
+ gion (hatched histograms) in the color range of
278
+ (0.0 < (g − r)0 < 1.3). In the CMDs the verti-
279
+ cal structure seen inside the red box represents
280
+ mainly GCs in NGC 4839 and NGC 4816. We
281
+ select GC candidates from the entire field using
282
+ the color-magnitude criteria marked by the red
283
+ box (0.35 < (g − r)0 < 1.0, and 22.5 < r0 <
284
+ 26.5 mag) in the CMDs for the following anal-
285
+ ysis.
286
+ 3.3. Spatial Distribution of the GCs
287
+ In Figure 3 we display the spatial number
288
+ density contour map of the selected GC can-
289
+ didates in NGC 4839 and its environment. The
290
+ region covers out to the virial radius of Coma
291
+ (96′ = 2.8 Mpc), and NGC 4839 and NGC 4816
292
+ are located approximately at the half virial ra-
293
+ dius.
294
+ The strongest peak of the GC number
295
+ density is seen at the position of NGC 4874,
296
+ which is adopted as the Coma center in this
297
+ study. Two other strong peaks in the main clus-
298
+ ter core are visible at the position of NGC 4889
299
+ and IC 4051. The main cluster core shows also a
300
+ large extended distribution of intracluster GCs,
301
+ the details of which are presented in Oh et al.
302
+ (2023); Lee et al. (2022). Note that in the south-
303
+ west outskirt two more strong peaks are found
304
+ at the positions of NGC 4839 and NGC 4816,
305
+ similar to those of NGC 4889 and IC 4051 in the
306
+ main cluster core.
307
+ One striking feature seen in this figure is a
308
+ clear difference in the spatial distribution of
309
+ GCs between NGC 4839 and NGC 4816:
310
+ the
311
+ spatial extent of the GC system in NGC 4839
312
+ is very compact and that of the GC system in
313
+ NGC 4816 is much more extended, despite both
314
+ galaxies showing a similarly strong peak at their
315
+ centers.
316
+ NGC 4839 shows a weak excess tail
317
+ of GCs in the east. There is no corresponding
318
+ galaxies around the center of this excess. This
319
+ may be due to stripped GCs from NGC 4839.
320
+ Sasaki et al. (2016) noted that the center of the
321
+ massive subhalo 9 in Okabe et al. (2014) is 1′
322
+ east of NGC 4839 that is located at the X-ray
323
+ peak in the XMM-Newton and Suzaku images.
324
+ This offset of the subhalo 9 might have also pro-
325
+ duced the east tail of the GCs in NGC 4839.
326
+ No bright galaxies are found in the outer
327
+ region of NGC 4816, which might have con-
328
+ tributed to the extended distribution of GCs.
329
+ The strong central concentration of the GCs
330
+ around NGC 4816 (R < 1200′′) in the radial
331
+ number density profiles, as shown in the fol-
332
+ lowing section, indicates that a majority of the
333
+ GCs in this region are bound to the NGC 4816
334
+ group. In the GC number density map of Fig-
335
+ ure 3 there are several weak GC clumps in the
336
+
337
+ Globular Clusters in NGC 4839
338
+ 5
339
+ outskirts of the NGC 4816 group, some of which
340
+ can be due to some non-group member galaxies,
341
+ but their contribution to the group GC system
342
+ is negligible.
343
+ 3.4. Radial Number Density Profiles of the
344
+ GCs
345
+ We derive the radial number density profiles of
346
+ the GCs in NGC 4839 and NGC 4816. We esti-
347
+ mate the background levels from the surround-
348
+ ing regions (at Rgal = 9.2′ for NGC 4839 and
349
+ Rgal = 26.4′ for NGC 4816), and subtract them
350
+ from the original counts for the galaxy regions.
351
+ GC colors such as (g−i) are a useful proxy for
352
+ metallicity. The (g−r) color in this study is less
353
+ sensitive than the (g − i) color, but is still use-
354
+ ful. We divide the GC sample into two subsam-
355
+ ples according to their color: blue (metal-poor)
356
+ GCs with 0.35 < (g − i) < 0.655, and the red
357
+ (metal-rich) GCs with 0.655 < (g − r) < 1.0, as
358
+ described in Oh et al. (2023). We derive the ra-
359
+ dial number density profiles of the blue GCs and
360
+ red GCs in NGC 4839 and NGC ,4816, display-
361
+ ing them as well as that of all GCs in Figure 4.
362
+ This figure shows that the blue GC system is
363
+ slightly more extended than the red GC system
364
+ in both NGC 4839 and NGC 4816.
365
+ In Figure 5, we compare the radial profiles of
366
+ the GC number density and surface brightness
367
+ of galaxy light in NGC 4839 and NG 4816 For
368
+ comparison with galaxy light, we derive the ra-
369
+ dial surface brightness profiles of the two galax-
370
+ ies from the HSC r-band images. First we mask
371
+ out several bright sources except for the two
372
+ galaxies in the images. Then we obtain surface
373
+ brightness profiles of the galaxies using annu-
374
+ lar aperture photometry, and plot them in the
375
+ same figure.
376
+ Several interesting features are noted in Fig-
377
+ ure 5. First, the radial number density profiles
378
+ of the GCs in the two galaxies show a striking
379
+ difference in the outer region, while they are
380
+ similar in the inner region. The decline in the
381
+ central region at Rgal < 20′′ (< 10 kpc) is due
382
+ to incompleteness of our photometry, so we use
383
+ only the data for the outer region at Rgal > 20′′.
384
+ We note only the difference in the outer regions
385
+ between the two galaxies. The radial number
386
+ density profile of the NGC 4839 GCs shows a
387
+ sudden drop at RN4839 ≈ 80 kpc, and few GCs
388
+ are found at RN4839 > 100 kpc. On the other
389
+ hand, the radial number density profile of the
390
+ NGC 4816 GCs shows a slow decline even in the
391
+ outer region at RN4816 > 100 kpc, and some
392
+ GCs are found even out to RN4816 ≈ 500 kpc.
393
+ Second, the surface brightness profiles of the
394
+ two galaxies are similar in the inner region at
395
+ 1 < Rgal < 20 kpc, and show a slight difference
396
+ in the outer region at 20 < Rgal < 50 kpc. The
397
+ shapes of these profiles are also similar to that
398
+ of the GC number density profile of NGC 4816,
399
+ but showing a clear difference against that of
400
+ the GC number density profile of NGC 4839.
401
+ Third, we fit the surface brightness profiles of
402
+ the galaxies (3′′ < Rgal < 30′′) with a S´ersic
403
+ law for n = 4 (i.e., a de Vaucouleurs law), as
404
+ shown by the dot-dashed lines.
405
+ The surface
406
+ brightness profiles of the galaxy light in the in-
407
+ ner regions of the two galaxies are reasonably
408
+ fit by the S´ersic law.
409
+ The effective radius of
410
+ the NGC 4839 galaxy light, Reff,N4839 = 23.′′5 ±
411
+ 0.′′7 = 11.4 ± 0.3 kpc, is similar to that of the
412
+ NGC 4816 galaxy light, Reff,N4816 = 23.′′9±1.′′1 =
413
+ 11.6 ± 0.5 kpc. The surface brightness profile of
414
+ NGC 4839 shows a slight excess over the fitting
415
+ line at R > 1′, which is a cD envelope, con-
416
+ sistent with the previous results in Schombert
417
+ (1988); Ali et al. (2014). On the other hand, this
418
+ excess is much weaker in the case of NGC 4816.
419
+ Fourth, we fit the radial number density pro-
420
+ files of GCs at 50′′ < Rgal < 1260′′ in NGC 4816
421
+ with a S´ersic law for n = 4, as shown by the
422
+ dotted line in the figure.
423
+ The radial number
424
+ density profile of the NGC 4816 GCs is approxi-
425
+ mately fit by the S´ersic law. The effective radius
426
+ of the NGC 4816 GC system derived from this
427
+ fitting, is Reff,GCS = 124±37 kpc. In the case of
428
+
429
+ 6
430
+ Oh et al.
431
+ NGC 4839, the radial number density profile of
432
+ the GCs in the inner region (50′′ < Rgal < 200′′)
433
+ is roughly fit by the S´ersic law, but the number
434
+ density is significantly lower than the fitted line
435
+ in the outer region at Rgal > 200′′. We derive
436
+ the GC system effective radius of the two galax-
437
+ ies, from the cumulative radial distribution of
438
+ GCs. We assume that the number density pro-
439
+ file is flat in the central region (Rgal < 25′′)
440
+ where our data is incomplete (see Lee et al.
441
+ (2008) for the radial number density profile of
442
+ M60 GCs)). The effective radius of the GC sys-
443
+ tem derived from this, is Reff,GCS = 101.′′5 ± 3.′′1
444
+ = 49.1 ± 1.5 kpc for NGC 4839. We resample
445
+ the radial density profiles from the data 1000
446
+ times, and repeat the same procedure to de-
447
+ rive an effective radius from each profile. From
448
+ this we obtain a standard deviation of resam-
449
+ pled Reff,GCS as a measuring error. Note that
450
+ the true error must be larger than this error.
451
+ Similarly we obtain Reff,GCS = 331.′′2 ± 10.′′8 =
452
+ 160.1 ± 5.2 kpc for NGC 4816, which is larger
453
+ than, but consistent, within the error, with the
454
+ value based on the fitting. Thus the effective ra-
455
+ dius of the NGC 4839 GC system is about three
456
+ times smaller than that of the NGC 4816 GC
457
+ system.
458
+ 4. DISCUSSION AND CONCLUSION
459
+ Coma is an ideal target for investigating not
460
+ only the general assembly process of galaxy clus-
461
+ ters but also the details of the merging pro-
462
+ cess including the infall phase of substructures.
463
+ Various substructures related with the merging
464
+ process in Coma were discovered in previous X-
465
+ ray images (see Briel et al. (1992); White et al.
466
+ (1993); Neumann et al. (2001); Sanders et al.
467
+ (2020); Mirakhor & Walker (2020); Churazov et
468
+ al. (2021) and references therein). Early stud-
469
+ ies based on X-ray observations suggested that
470
+ the NGC 4839 group is in the first phase of in-
471
+ fall (Briel et al. 1992; White et al. 1993). Then
472
+ Burns et al. (1994) presented a new scenario,
473
+ based on hydro/N-body simulations, that Coma
474
+ already had a lunch (the NGC 4839 group) and
475
+ the NGC 4839 group is in the second infall,
476
+ which can explain the optical, radio, and X-
477
+ ray properties of Coma. Later Colless & Dunn
478
+ (1996) pointed out the shortcomings of the ar-
479
+ guments in Burns et al. (1994), and argued that
480
+ NGC 4839 is in the first phase of infall, based on
481
+ dynamics of a large number of Coma galaxies.
482
+ Most of these substructures could be explained
483
+ either in pre-merger scenarios or in post-merger
484
+ scenarios, as summarized in Table 1.
485
+ Later Lyskova et al. (2019) noted two promi-
486
+ nent features seen in the XMM-Newton and
487
+ Chandra images of the NGC 4839 group: a long
488
+ (600 kpc) bent tail of cool gas of NGC 4839, and
489
+ a sheath of enhanced X-ray surface brightness
490
+ due to hotter gas in the southwest, and tried
491
+ SPH simulations to test both pre-merger and
492
+ post-merger scenarios. They concluded that the
493
+ post-merger scenario can explain better the ob-
494
+ servational results (X-ray brightness and tem-
495
+ peratures) than the pre-merger scenario.
496
+ Ac-
497
+ cording to this scenario (see their Fig. 8), the
498
+ NGC 4839 group began falling to the main clus-
499
+ ter from the northeast about 2 Gyr ago, passed
500
+ the center about 1.6 Gyr ago, and began the
501
+ second infall after reaching the apocenter in the
502
+ southwest recently.
503
+ Recently from the X-ray images obtained
504
+ with the SRG/eROSITA, Churazov et al. (2021,
505
+ 2022) found a faint X-ray bridge connecting the
506
+ NGC 4839 group with the main cluster. This
507
+ bridge may be a remnant of stripped gas while
508
+ NGC 4839 moves outward from the main clus-
509
+ ter to the current position, showing that it is
510
+ strong evidence that NGC 4839 already passed
511
+ the main cluster core (see their Fig. 11). Chura-
512
+ zov et al. (2021, 2022) also pointed out that the
513
+ existence of the bow shock at R ≈ 33′ (960 kpc)
514
+ in the west and the radio relic at R ≈ 2.1 Mpc
515
+ in the southwest (Bonafede et al. 2021) may cor-
516
+ respond, respectively, to the secondary shock
517
+ (produced when crossing the apocenter) and
518
+
519
+ Globular Clusters in NGC 4839
520
+ 7
521
+ the primary shock (produced when crossing the
522
+ main cluster core) caused by the merging event
523
+ with NGC 4839.
524
+ In Figure 6 we compare the GC number den-
525
+ sity map (pseudocolor map) with the XMM-
526
+ Newton X-ray contour map of hot gas ob-
527
+ tained after β model subtraction (showing sub-
528
+ structures better, Neumann et al. (2001, 2003))
529
+ (based on Fig. 3 in Adami et al. (2005)).
530
+ In
531
+ this figure, the X-ray contours around the NGC
532
+ 4839 region show a slight offset from the cen-
533
+ ter of the NGC 4839 GC clump. This offset is
534
+ not seen in the recent X-ray data (Lyskova et
535
+ al. 2019; Churazov et al. 2021). This offset is
536
+ due to the outdated X-ray data (Neumann et
537
+ al. 2003) used in Adami et al. (2005). The X-
538
+ ray map shows three prominent substructures:
539
+ (a) the NGC 4839 group where a strong con-
540
+ centration of GCs is seen only at the position of
541
+ NGC 4839, (b) a large arc-like western substruc-
542
+ ture where few GCs are found, and (c) a smaller
543
+ substructure associated with NGC 4911/4921 in
544
+ the southeast where only a small population of
545
+ GCs are seen.
546
+ Note that the X-ray emission
547
+ substructure is seen in the NGC 4839 group, but
548
+ not in the NGC 4816 group.
549
+ The center of the NGC 4839 group (G2 in
550
+ Adami et al. (2005)) was close to NGC 4839 in
551
+ the old study by Adami et al. (2005). However,
552
+ the recent study based on a much larger sam-
553
+ ple of Coma members by Healy et al. (2021)
554
+ shows that the center of the NGC 4839 group
555
+ (S11) is significantly offset to the southwest
556
+ from NGC 4839 (see their Fig. 11).
557
+ On the
558
+ other hand, the recent SRG/eROSITA X-ray
559
+ data with higher spatial resolution (Churazov
560
+ et al. 2021) (as well as XMM-Newton data)
561
+ shows clearly an X-ray peak at the position of
562
+ NGC 4839 which is embedded in a much more
563
+ diffuse X-ray emission. This diffuse component
564
+ is significantly overlapped with the galaxy dis-
565
+ tribution of the S11 group (see Fig. 11 in Healy
566
+ et al. (2021)).
567
+ In the figure we also add the trajectory (red
568
+ dashed line) of the NGC 4839 group suggested
569
+ for the second-infall scenario(Lyskova et al.
570
+ 2019; Churazov et al. 2021) (from Figure 11 in
571
+ Churazov et al. (2021)), as well as other known
572
+ substructures. The very compact spatial extent
573
+ of the GC system in NGC 4839, much smaller
574
+ than the GC system in NGC 4816, can be ex-
575
+ plained if NGC 4839 lost a significant number of
576
+ GCs in the outskirt of NGC 4839 when it passed
577
+ the main cluster.
578
+ On the other hand, the more extended GC
579
+ system in NGC 4816 indicates that it may be in
580
+ the first phase of infall, as described below. The
581
+ radial velocity of the NGC 4839 group is 768 km
582
+ s−1
583
+ larger than that of the main cluster (6853
584
+ km s−1). Colless & Dunn (1996) suggested that
585
+ the angle between the observer and the velocity
586
+ vector of the NGC 4839 group is about 74 deg
587
+ so the merger is happening with ∆v = 1700 km
588
+ s−1 almost in the projected sky plane. Which of
589
+ the main cluster and NGC 4839 is closer to us is
590
+ not yet known. On the other hand, the relative
591
+ velocity of the NGC 4816 group with respect to
592
+ the main cluster is only +35 km s−1
593
+ and the
594
+ NGC 4816 group is located along the large scale
595
+ filament connecting with Abell 1367. Consider-
596
+ ing these we infer that the NGC 4816 group is
597
+ infalling to the cluster center in the sky plane.
598
+ In addition, the GC system of the NGC 4816
599
+ shows an extended structure with a continu-
600
+ ously declining radial number density profile.
601
+ These results indicate that the NGC 4816 is in
602
+ its first infall. If it is in its second infall, its ra-
603
+ dial profile of the GC system would have shown
604
+ a significant drop in the outer region like the
605
+ one in the NGC 4839 group.
606
+ If NGC 4839 is in the first phase of infall,
607
+ it should show a similar distribution to that
608
+ of NGC 4816, and it would be difficult to ex-
609
+ plain the observed difference between NGC 4839
610
+ and NGC 4816.
611
+ When NGC 4839 crosses the
612
+
613
+ 8
614
+ Oh et al.
615
+ main cluster core again, it would lose more GCs,
616
+ which will become part of the intracluster GCs.
617
+ In conclusion, the spatial distribution of GCs
618
+ in NGC 4839 and its environment supports
619
+ the second infall scenario where the NGC 4839
620
+ passed the Coma center about 1.6 Gyr ago, and
621
+ began the second infall after reaching the apoc-
622
+ enter in the southwest. Previous simulations on
623
+ GCs in galaxy clusters (e.g., Ramos-Almendares
624
+ et al. (2018, 2020)) are useful to understand
625
+ the spatial distribution and kinematics of the
626
+ GCs in large scales. However none of them pro-
627
+ vide any results on how the motion of individual
628
+ groups in galaxy clusters affects the size of the
629
+ GC systems in individual galaxies, which could
630
+ be compared with the results in this study. We
631
+ expect that our results motivate future simula-
632
+ tions to address this issue.
633
+ ACKNOWLEDGMENTS
634
+ This work was supported by the National Re-
635
+ search Foundation grant funded by the Korean
636
+ Government (NRF-2019R1A2C2084019).
637
+ We
638
+ thank Brian S. Cho for his help in improving
639
+ the English in the manuscript.
640
+ The authors
641
+ are grateful to the anonymous referee for use-
642
+ ful comments.
643
+ Facilities: Subaru(Hyper Suprime-Cam)
644
+
645
+ Globular Clusters in NGC 4839
646
+ 9
647
+ REFERENCES
648
+ Adami, C., Biviano, A., Durret, F., et al. 2005,
649
+ A&A, 443, 17. doi:10.1051/0004-6361:20053504
650
+ Aihara, H., AlSayyad, Y., Ando, M., et al. 2019,
651
+ PASJ, 71, 114
652
+ Akamatsu, H., Inoue, S., Sato, T., et al. 2013,
653
+ PASJ, 65, 89. doi:10.1093/pasj/65.4.89
654
+ Ali, G. B., Shaban, E. A., Amin, M. Y., et al.
655
+ 2014, Ap&SS, 352, 789.
656
+ doi:10.1007/s10509-014-1991-y
657
+ Biviano, A. 1998, Untangling Coma Berenices: A
658
+ New Vision of an Old Cluster, 1
659
+ Bonafede, A., Brunetti, G., Vazza, F., et al. 2021,
660
+ ApJ, 907, 32. doi:10.3847/1538-4357/abcb8f
661
+ Bonafede, A., Brunetti, G., Rudnick, L., et al.
662
+ 2022, arXiv:2203.01958
663
+ Briel, U. G., Henry, J. P., & Boehringer, H. 1992,
664
+ A&A, 259, L31
665
+ Burns, J. O., Roettiger, K., Ledlow, M., et al.
666
+ 1994, ApJL, 427, L87. doi:10.1086/187371
667
+ Caldwell, N., Rose, J. A., Sharples, R. M., et al.
668
+ 1993, AJ, 106, 473. doi:10.1086/116656
669
+ Churazov, E., Khabibullin, I., Lyskova, N., et al.
670
+ 2021, A&A, 651, A41.
671
+ doi:10.1051/0004-6361/202040197
672
+ Churazov, E., Khabibullin, I., Bykov, A. M., et al.
673
+ 2022, arXiv:2205.07511
674
+ Colless, M. & Dunn, A. M. 1996, ApJ, 458, 435.
675
+ doi:10.1086/176827
676
+ de Grijs, R. & Bono, G. 2020, ApJS, 248, 6.
677
+ doi:10.3847/1538-4365/ab8562
678
+ Doi, M., Fukugita, M., Okamura, S., et al. 1995,
679
+ ApJS, 97, 77. doi:10.1086/192136
680
+ Healy, J., Blyth, S.-L., Verheijen, M. A. W., et al.
681
+ 2021, A&A, 650, A76.
682
+ doi:10.1051/0004-6361/202038738
683
+ Jord´an, A., Cˆot´e, P., West, M. J., et al. 2004, AJ,
684
+ 127, 24. doi:10.1086/379965
685
+ Kim, K.-T., Kronberg, P. P., Giovannini, G., et al.
686
+ 1989, Nature, 341, 720. doi:10.1038/341720a0
687
+ Lal, D. V., Lyskova, N., Zhang, C., et al. 2022,
688
+ ApJ, 934, 170. doi:10.3847/1538-4357/ac7a9b
689
+ Lee, M. G., Park, H. S., Kim, E., et al. 2008, ApJ,
690
+ 682, 135. doi:10.1086/587469
691
+ Lee, M. G., Bae, J. H., & Jang, I. S. 2022, ApJL,
692
+ 940, L19. doi:10.3847/2041-8213/ac990b
693
+ Lyskova, N., Churazov, E., Zhang, C., et al. 2019,
694
+ MNRAS, 485, 2922. doi:10.1093/mnras/stz597
695
+ Madrid, J. P., O’Neill, C. R., Gagliano, A. T., et
696
+ al. 2018, ApJ, 867, 144.
697
+ doi:10.3847/1538-4357/aae206
698
+ Malavasi, N., Aghanim, N., Tanimura, H., et al.
699
+ 2020, A&A, 634, A30.
700
+ doi:10.1051/0004-6361/201936629
701
+ Mar´ın-Franch, A. & Aparicio, A. 2002, ApJ, 568,
702
+ 174. doi:10.1086/338839
703
+ Mirakhor, M. S. & Walker, S. A. 2020, MNRAS,
704
+ 497, 3204. doi:10.1093/mnras/staa2203
705
+ Mulchaey, J. S. 2000, ARA&A, 38, 289.
706
+ doi:10.1146/annurev.astro.38.1.289
707
+ Neumann, D. M., Arnaud, M., Gastaud, R., et al.
708
+ 2001, A&A, 365, L74.
709
+ doi:10.1051/0004-6361:20000182
710
+ Neumann, D. M., Lumb, D. H., Pratt, G. W., et
711
+ al. 2003, A&A, 400, 811.
712
+ doi:10.1051/0004-6361:20021911
713
+ Oh, S., Lee, M. G., & Jang, I. S. 2023, in
714
+ preparation
715
+ Okabe, N., Futamase, T., Kajisawa, M., et al.
716
+ 2014, ApJ, 784, 90.
717
+ doi:10.1088/0004-637X/784/2/90
718
+ Peng, E. W., Ferguson, H. C., Goudfrooij, P., et
719
+ al. 2011, ApJ, 730, 23.
720
+ doi:10.1088/0004-637X/730/1/23
721
+ Ramos-Almendares, F., Abadi, M., Muriel, H., et
722
+ al. 2018, ApJ, 853, 91.
723
+ doi:10.3847/1538-4357/aaa1ef
724
+ Ramos-Almendares, F., Sales, L. V., Abadi,
725
+ M. G., et al. 2020, MNRAS, 493, 5357.
726
+ doi:10.1093/mnras/staa551
727
+ Sanders, J. S., Dennerl, K., Russell, H. R., et al.
728
+ 2020, A&A, 633, A42.
729
+ doi:10.1051/0004-6361/201936468
730
+ Sasaki, T., Matsushita, K., Sato, K., et al. 2016,
731
+ PASJ, 68, 85. doi:10.1093/pasj/psw078
732
+ Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ,
733
+ 737, 103
734
+ Schlegel, D. J., Finkbeiner, D. P., & Davis, M.
735
+ 1998, ApJ, 500, 525
736
+ Schombert, J. M. 1988, ApJ, 328, 475.
737
+ doi:10.1086/166306
738
+ Stetson, P. B. 1987, PASP, 99, 191.
739
+ doi:10.1086/131977
740
+ Tully, R. B. 2015, AJ, 149, 171.
741
+ doi:10.1088/0004-6256/149/5/171
742
+
743
+ 10
744
+ Oh et al.
745
+ White, S. D. M., Briel, U. G., & Henry, J. P. 1993,
746
+ MNRAS, 261, L8. doi:10.1093/mnras/261.1.L8
747
+
748
+ Globular Clusters in NGC 4839
749
+ 11
750
+ Table 1. Merging-related Features for the NGC 4839 Group
751
+ Band
752
+ Features
753
+ Infall Phasea Referenceb
754
+ X-ray
755
+ NGC 4839 inner tail (SW), SW main tail (sheath)
756
+ 1,2
757
+ 1,2
758
+ SW bridge connecting NGC 4839 and the main cluster 2
759
+ W sharp edge, E contact discontinuity
760
+ 1,2
761
+ Radio (cont) Coma radio halo, W halo front
762
+ 2
763
+ 3,4
764
+ SW bridge, SW streams, SW relic (R = 2.1 Mpc)
765
+ 2
766
+ Radio (HI)
767
+ HI deficiency and old galaxies in NGC 4839 group
768
+ 1,2
769
+ 5
770
+ Optical
771
+ E+A galaxies in SWc
772
+ 2
773
+ 6
774
+ galaxy distribution and kinematics
775
+ 1,2
776
+ 7
777
+ Compact globular cluster system in NGC 4839
778
+ 2
779
+ This study
780
+ a1 for the first infall phase (a pre-merger scenario), and 2 for the second infall phase (a post-merger
781
+ scenario).
782
+ b1.Lyskova et al. (2019);2.Churazov et al. (2021, 2022); 3. Kim et al. (1989); 4.Bonafede et al.
783
+ (2021, 2022);5.Healy et al. (2021);6.Caldwell et al. (1993); 7.Colless & Dunn (1996).
784
+ cColless & Dunn (1996) pointed out that a few of the E+A galaxies that are the members of the
785
+ NGC 4839 group, and that these E+A galaxies may be falling recently into Coma like NGC 4839.
786
+
787
+ 12
788
+ Oh et al.
789
+ Table 2. Basic Parameters for the Main Cluster, NGC 4839 and NGC 4816 Group in Coma
790
+ Parameter
791
+ Main cluster
792
+ NGC 4839 group NGC 4816 group Referencea
793
+ Heliocentric galaxy velocity, vh
794
+ 7167 km s−1
795
+ 7338 km s−1
796
+ 6915 km s−1
797
+ 1,2,3
798
+ Heliocentric group velocity, vh
799
+ 6853 km s−1
800
+ 7621 km s−1
801
+ 6898 km s−1
802
+ 1,2,3
803
+ Velocity dispersion, σv
804
+ 1082 km s−1
805
+ 462 km s−1
806
+ 521 km s−1
807
+ 2,3
808
+ Virial Mass (dynamics)b, Mvir
809
+ 2.7 × 1015M⊙
810
+ 2.1 × 1014M⊙
811
+ 3.0 × 1014M⊙
812
+ 4
813
+ Weak Lensing Massc, MWL
814
+ 1.2 × 1015M⊙
815
+ 1.7 × 1013M⊙
816
+ 1.3 × 1013M⊙
817
+ 5
818
+ a1: NED; 2: Colless & Dunn (1996); 3: Healy et al. (2021); 4: This study; 5: Okabe et al. (2014).
819
+ bCalculated for the velocity dispersion (Healy et al. 2021) using the group virial mass equation:
820
+ Mvir/M⊙ = 1.5 × 106h−1σ3
821
+ v in Tully (2015). Note that Colless & Dunn (1996) presented Mvir =
822
+ 1.3×1015M⊙ for the main cluster, and Mvir = 8.6×1012M⊙ for the NGC 4839 group from galaxy
823
+ dynamics.
824
+ c Projected masses (M2D) within the truncation radius for the subhalo 2 for the NGC 4816 group,
825
+ and the subhalo 9 for the NGC 4839 group derived from the weak lensing analysis in Okabe et al.
826
+ (2014), given for h = 0.7.
827
+
828
+ Globular Clusters in NGC 4839
829
+ 13
830
+ Coma
831
+ N
832
+ E
833
+ 1 Mpc
834
+ NGC 4839
835
+ NGC 4816
836
+ Figure 1. A gray scale map (4◦ × 4◦) of the r-band SDSS image of NGC 4839 and its environment in the
837
+ Coma cluster. Zoom-in fields for NGC 4839 and NGC 4816 (red boxes) are 10′ × 10′.
838
+
839
+ :
840
+ .
841
+ .
842
+ :.14
843
+ Oh et al.
844
+ 200
845
+ 400
846
+ Number
847
+ NGC 4839(r0 < 26.5)
848
+ Background
849
+ NGC 4816(r0 < 26.5)
850
+ Background
851
+ Background
852
+ 0.5
853
+ 0.0
854
+ 0.5
855
+ 1.0
856
+ 1.5
857
+ (g
858
+ r)0
859
+ 21
860
+ 22
861
+ 23
862
+ 24
863
+ 25
864
+ 26
865
+ 27
866
+ 28
867
+ r0 PSF mag
868
+ NGC 4839
869
+ 0.5
870
+ 0.0
871
+ 0.5
872
+ 1.0
873
+ 1.5
874
+ (g
875
+ r)0
876
+ NGC 4816
877
+ 0.5
878
+ 0.0
879
+ 0.5
880
+ 1.0
881
+ 1.5
882
+ (g
883
+ r)0
884
+ Background
885
+ Figure 2. Color-magnitude diagrams (lower panels) and color distributions (upper panels) of the point
886
+ sources with 22.5 < r0 < 26.5 mag in the central regions (1′.2 < Rgal < 3′.3) of NGC 4839, NGC 4816, and
887
+ the background region with the same area based on the HSC images. The hatched histograms in the upper
888
+ panels for the galaxy regions represent the background region. The red boxes in the lower panels represent
889
+ the boundary for GC selection.
890
+
891
+ Globular Clusters in NGC 4839
892
+ 15
893
+ 1.4
894
+ 1.2
895
+ 1.0
896
+ 0.8
897
+ 0.6
898
+ 0.4
899
+ 0.2
900
+ 0.0
901
+ 0.2
902
+ 0.4
903
+ 0.6
904
+ R.A. [deg]
905
+ 0.8
906
+ 0.6
907
+ 0.4
908
+ 0.2
909
+ 0.0
910
+ 0.2
911
+ 0.4
912
+ Dec. [deg]
913
+ Rvir
914
+ 0.5°
915
+ 1.0°
916
+ NGC 4839
917
+ NGC 4816
918
+ NGC 4854
919
+ NGC 4923
920
+ NGC 4874
921
+ NGC 4889
922
+ IC 4051
923
+ NGC 4798
924
+ Coma GCs
925
+ ETG (E+S0, Doi+1995)
926
+ LTG (Sa+Im, Doi+1995)
927
+ E+A galaxies (Caldwell+1993)
928
+ 50
929
+ 60
930
+ 70
931
+ 80
932
+ 90
933
+ 100
934
+ 110
935
+ 120
936
+ 130
937
+ 140
938
+ 150
939
+ 160
940
+ 170
941
+ 180
942
+ Number density [arcmin
943
+ 2]
944
+ Figure 3.
945
+ Spatial number density contour map of GCs in the Coma field including NGC 4839 and
946
+ NGC 4816 (see Oh et al. (2023) for details). Dotted line circles represent R = 0.5◦, 1.0◦, and Rvir(=2.8
947
+ Mpc) from NGC 4874 at the Coma center. Red circles and green triangles mark early-type galaxy members,
948
+ and late-type galaxy members (Doi et al. 1995). Black boxes mark E+A galaxies (Caldwell et al. 1993).
949
+ The contour levels denote 2σbg and larger with an interval of one σbg where σbg denotes the background
950
+ fluctuation. The contour maps were smoothed using a Gaussian filter with σG = 1′. The color bar represents
951
+ the GC number density.
952
+
953
+ 16
954
+ Oh et al.
955
+ 102
956
+ 103
957
+ Angular distance from galaxy center [arcsec]
958
+ 4.5
959
+ 4.0
960
+ 3.5
961
+ 3.0
962
+ 2.5
963
+ 2.0
964
+ 1.5
965
+ 1.0
966
+ Log GC number density [arcsec
967
+ 2]
968
+ NGC 4816
969
+ All GC
970
+ Blue GC
971
+ Red GC
972
+ 101
973
+ 102
974
+ Linear distance [kpc]
975
+ 102
976
+ 103
977
+ Angular distance from galaxy center [arcsec]
978
+ 4.5
979
+ 4.0
980
+ 3.5
981
+ 3.0
982
+ 2.5
983
+ 2.0
984
+ 1.5
985
+ 1.0
986
+ Log GC number density [arcsec
987
+ 2]
988
+ NGC 4839
989
+ All GC
990
+ Blue GC
991
+ Red GC
992
+ 101
993
+ 102
994
+ Linear distance [kpc]
995
+ Figure 4.
996
+ Radial number density profiles of the GCs in NGC 4839 (upper panel) and NGC 4816 (lower
997
+ panel): all GCs (black solid line), blue (metal-poor) GCs (blue dashed line), and red (metal-rich) GCs (red
998
+ dashed line).
999
+
1000
+ Globular Clusters in NGC 4839
1001
+ 17
1002
+ 100
1003
+ 101
1004
+ 102
1005
+ 103
1006
+ Angular distance from galaxy center [arcsec]
1007
+ 14
1008
+ 16
1009
+ 18
1010
+ 20
1011
+ 22
1012
+ 24
1013
+ 26
1014
+ r [mag/arcsec2]
1015
+ NGC 4839
1016
+ NGC 4816
1017
+ Galaxy
1018
+ light
1019
+ GCS
1020
+ 100
1021
+ 101
1022
+ 102
1023
+ Linear distance [kpc]
1024
+ 4.0
1025
+ 3.5
1026
+ 3.0
1027
+ 2.5
1028
+ 2.0
1029
+ 1.5
1030
+ 1.0
1031
+ Log GC number density [arcsec
1032
+ 2]
1033
+ Figure 5.
1034
+ Radial profiles for HSC r-band surface brightness (solid lines) and GC number density (dashed
1035
+ lines) for NGC 4839 (red lines) and NGC 4816 (blue lines). Dot-dashed lines and dotted lines denote the
1036
+ results of S´ersic law (n = 4) fitting for galaxy light and GC number density profiles, respectively. Thicker
1037
+ lines denote the fitting ranges.
1038
+
1039
+ 18
1040
+ Oh et al.
1041
+ Figure 6. Comparison of the GC number density map (pseudo color map) with XMM-Newton X-ray map
1042
+ (Neumann et al. 2001, 2003) after β model subtraction (white contours, based on Figure 3 in Adami et al.
1043
+ (2005)). Dotted black lines mark the direction of neighboring large scale structures. Green, purple, and
1044
+ yellow lines denote the primary shock, secondary shock, and contact discontinuity, respectively, in Churazov
1045
+ et al. (2021) (from their Fig. 11). The red dashed line shows the trajectory of the NGC 4839 group suggested
1046
+ for the second-infall scenario (Lyskova et al. 2019; Churazov et al. 2021). The color bar represents the GC
1047
+ number density.
1048
+
1049
+ Adami+2005 X-ray map
1050
+ 175
1051
+ 29.0
1052
+ NGC4839 path
1053
+ Secondary shock
1054
+ 155
1055
+ 28.5
1056
+ 135
1057
+ A2199
1058
+ Dec. [deg]
1059
+ 115
1060
+ A779
1061
+ 28.0
1062
+ 95
1063
+ N4816
1064
+ 14839
1065
+ C.D.
1066
+ 136
1067
+ 75
1068
+ 27.5
1069
+ 55
1070
+ IMpc
1071
+ 27.0
1072
+ 35
1073
+ Primary shock
1074
+ 15
1075
+ 196.0
1076
+ 195.5
1077
+ 195.0
1078
+ 194.5
1079
+ 194.0
1080
+ R.A. [deg]
0dE4T4oBgHgl3EQfyw3J/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19AyT4oBgHgl3EQf1fl-/content/2301.00736v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6152d417f596adf0fe5d2370db709f356e070d9cda0b81a806c1178fdab6dbe
3
+ size 2004363
19AyT4oBgHgl3EQf1fl-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd8a41674588786ac941a6d457f78e9550e9320439159023dc294dabf428f3b7
3
+ size 359841
1NAzT4oBgHgl3EQfevyy/content/tmp_files/2301.01442v1.pdf.txt ADDED
@@ -0,0 +1,1749 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficient Quantum Simulation of Electron-Phonon Systems by Variational Basis State
2
+ Encoder
3
+ Weitang Li,1 Jiajun Ren,2 Sainan Huai,1 Tianqi Cai,1 Zhigang Shuai,3, 4, ∗ and Shengyu Zhang1, †
4
+ 1Tencent Quantum Lab, Tencent, Shenzhen, China
5
+ 2College of Chemistry, Beijing Normal Univerisity, Beijing, China
6
+ 3Department of Chemistry, Tsinghua University, Beijing, China
7
+ 4School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
8
+ (Dated: January 5, 2023)
9
+ Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels
10
+ into N basis states and then encoding them with qubit computational basis. Unary encoding and
11
+ the more compact binary/Gray encoding are the two most representative encoding schemes, which
12
+ demand O(N) and O(log N) qubits as well as O(N) and O(N log N) quantum gates respectively.
13
+ In this work, we propose a variational basis state encoding algorithm that reduces the scaling of the
14
+ number of qubits and quantum gates to both O(1). The cost for the scaling reduction is a constant
15
+ amount of additional measurement. The accuracy and efficiency of the approach are verified by both
16
+ numerical simulation and realistic quantum hardware experiments. In particular, we find using 1
17
+ or 2 qubits for each phonon mode is sufficient to produce quantitatively correct results across weak
18
+ and strong coupling regimes.
19
+ Our approach paves the way for practical quantum simulation of
20
+ electron-phonon systems on both near-term hardware and error-corrected quantum computers.
21
+ Introduction
22
+ Electron-phonon couplings are per-
23
+ vasive in quantum materials, governing phenomena such
24
+ as charge transport in semiconductors [1], vibrational
25
+ spectra [2], polaron formation [3], and superconductiv-
26
+ ity [4].
27
+ Classically, expensive numerical methods such
28
+ as density matrix renormalization group (DMRG) and
29
+ quantum Monte-Carlo (QMC) are required to accurately
30
+ simulate electron-phonon systems due to the interior
31
+ many-body interaction [5–9]. Quantum computers hold
32
+ promise for the simulation of quantum systems with ex-
33
+ ponential speedup over classical computers [10]. In the
34
+ wake of the tremendous progress in the implementation of
35
+ quantum computers [11, 12] and the dawning of the noisy
36
+ intermediate-scale quantum (NISQ) era [13], how to solve
37
+ electron-phonon coupling problems with quantum com-
38
+ puters has attracted a lot of research interest [14–17].
39
+ A prominent problem for the digital quantum simu-
40
+ lation of electron-phonon systems is how to encode the
41
+ infinite phonon states with finite quantum computational
42
+ basis states. The first step is usually truncating the in-
43
+ finite phonon states into N basis states {|m⟩} and then
44
+ the second step is encoding {|m⟩} into quantum compu-
45
+ tational basis {|n⟩}. The phonon basis states are usu-
46
+ ally the N lowest harmonic oscillator eigenstates or N
47
+ uniformly distributed grid basis states. There are two
48
+ established strategies to perform the encoding {|m⟩} �→
49
+ {|n⟩} [18, 19]. The first is unary encoding [20, 21], in
50
+ which each |m⟩ is encoded to |00 . . . 1m . . . 00⟩, and the
51
+ total number of qubits required scales as O(N). The sec-
52
+ ond is binary encoding, in which each |m⟩ is encoded to
53
+
54
+ i |⌊ m
55
+ 2i ⌋ mod 2⟩ represented by O(log N) qubits [14, 15].
56
+ In terms of two-qubit gates required to simulate quantum
57
+ operators such as ˆb† ± ˆb and ˆb†ˆb, unary encoding scales
58
+ as O(N) and binary encoding scales as O(N log N) [19].
59
+ The features of unary encoding and binary encoding are
60
+ summarized in Table 1. Compared to the simulation of
61
+ electrons, the simulation of phonons consumes quantum
62
+ resources in a much faster manner, which becomes the
63
+ bottleneck for efficient quantum simulation of electron-
64
+ phonon systems.
65
+ TABLE I. Comparison of traditional encoding schemes and
66
+ the proposed variational encoding in terms of encoding for-
67
+ mula, the number of qubits Nqubit required and the number
68
+ of quantum gates Ngate required to simulate common phonon
69
+ operators such as ˆb† ± ˆb and ˆb†ˆb .
70
+ Scheme
71
+ Formula
72
+ Nqubit
73
+ Ngate
74
+ Unary
75
+ |m⟩ �→ |00 . . . 1m . . . 00⟩
76
+ O(N)
77
+ O(N)
78
+ Binary
79
+ |m⟩ �→ �
80
+ i |⌊ m
81
+ 2i ⌋ mod 2⟩ O(log N) O(N log N)
82
+ Variational
83
+
84
+ m Cmn |m⟩ �→ |n⟩
85
+ O(1)
86
+ O(1)
87
+ In this work, we propose a new basis encoding scheme
88
+ called variational encoding. Variational encoding maps
89
+ linear combinations of |m⟩ that are most entangled to
90
+ the simulated system into the computational basis, i.e.
91
+
92
+ m Cmn |m⟩ �→ |n⟩, where Cmn is determined by varia-
93
+ tional principle. The advantage of our approach is that,
94
+ by encoding only the most entangled states and discard-
95
+ ing the ones with little entanglement, the size of {|n⟩}
96
+ can be made irrelevant to the size of {|m⟩}.
97
+ In other
98
+ words, the number of qubits required scales as O(1).
99
+ Consequently, the scaling for the number of gates is also
100
+ O(1).
101
+ Variational encoding is best suited to work in
102
+ combination with variational quantum algorithms such
103
+ as variational quantum eigensolver (VQE) [22, 23] and
104
+ variational quantum dynamics (VQD) [24, 25]. Besides,
105
+ the variational encoding is also compatible with Trot-
106
+ terized time evolution and quantum phase estimation
107
+ (QPE) [10, 26, 27].
108
+ Numerical simulation and experi-
109
+ ments on realistic quantum hardware based on the Hol-
110
+ arXiv:2301.01442v1 [quant-ph] 4 Jan 2023
111
+
112
+ 2
113
+ stein model and spin-boson model shows that using 1
114
+ or 2 qubits for each phonon mode is typically sufficient
115
+ for highly accurate results even in the strong coupling
116
+ regime.
117
+ Variational Basis State Encoder
118
+ Encoder coeffi-
119
+ cients C are determined by variational principle for both
120
+ static and dynamic cases. We start the derivation us-
121
+ ing parameterized quantum circuit (PQC) and discuss
122
+ how to incorporate the variational encoder in Trotterized
123
+ time evolution and QPE later on. We use atomic units
124
+ throughout the paper.
125
+ More details for the derivation
126
+ can be found in the Appendix.
127
+ For each phonon mode l, encoded by Nl qubits, define
128
+ the variational encoder ˆB[l]
129
+ ˆB[l] =
130
+
131
+ m
132
+ 2Nl
133
+
134
+ n=1
135
+ C[l]mn |n⟩l ⟨m|
136
+ l
137
+ ,
138
+ (1)
139
+ with orthonormal constraint ˆB[l] ˆB[l]† = ˆI. The original
140
+ Hamiltonian in |m⟩ basis can then be encoded to |n⟩ basis
141
+ ˆ˜H = �
142
+ l ˆB[l] ˆH �
143
+ l ˆB[l]†.
144
+ Suppose the quantum circuit
145
+ is parameterized by |φ⟩ = �
146
+ k eiθk ˆ
147
+ Rk |φ0⟩, and then the
148
+ ground state Lagrangian with multipliers λlnn′ is
149
+ L = ⟨φ| ˆ˜H|φ⟩ +
150
+
151
+ lnn′
152
+ λlnn′(
153
+
154
+ m
155
+ C[l]mnC[l]mn′ − δnn′) . (2)
156
+ Taking the derivative with respect to θk leads to tradi-
157
+ tional VQE with encoded Hamiltonian ˆ˜H. Taking the
158
+ derivative with respect to C[l] and setting it to 0 yields
159
+ (1 − ˆP[l]) ⟨φ| ˆ˜H′[l]|φ⟩ = 0 ,
160
+ (3)
161
+ with projector ˆP[l] =
162
+ ˆB[l]† ˆB[l] and the half encoded
163
+ Hamiltonian ˆ˜H′[l] = �
164
+ k̸=l ˆB[k] ˆH �
165
+ k ˆB[k]†. In practice,
166
+ θk and C[l] are solved iteratively until convergence. In
167
+ the following, this iteration is termed macro-iteration to
168
+ avoid confusion with VQE iteration.
169
+ Next, we discuss the measurement required to solve
170
+ C[l] from Eq. 3. Suppose the Hamiltonian can be written
171
+ as ˆH = �M
172
+ x ˆhx and ˆhx = �
173
+ k ˆh[k]x, where M is the total
174
+ number of terms in the Hamiltonian and ˆh[k]x acts on the
175
+ kth degree of freedom. The measurement of ⟨φ| ˆ˜H′[l]|φ⟩
176
+ boils down to that of ⟨φ|n⟩l ⟨n′|
177
+ l
178
+
179
+ k̸=l
180
+ ˆ˜h[k]x |φ⟩, where
181
+ ˆ˜h[k]x = ˆB[k]ˆh[k]x ˆB[k]† is the encoded local operator. For
182
+ electron degree of freedom a dummy encoder ˆB[k] = ˆI is
183
+ used for notational simplicity. The number of additional
184
+ measurements for the update of C[l] is thus O
185
+
186
+ 2NlM
187
+
188
+ ,
189
+ which is polynomial to the system size and does not in-
190
+ crease with N. If the number of phonon modes is as-
191
+ sumed to be linear with M and each C[l] is updated
192
+ independently, then the total number of measurements
193
+ for all C[l] is O
194
+
195
+ 2NlM 2�
196
+ .
197
+ The measurement overhead
198
+ increases exponentially with Nl. Due to arguments pre-
199
+ sented later, Nl is usually small and does not increase
200
+ with system size. From numerical experiments, we find
201
+ Nl ≤ 2 is sufficient to produce excellent results.
202
+ For time-dependent problems, it is convenient to define
203
+ |ψ⟩ = �
204
+ l ˆB[l]† |φ⟩ and use ΘK denote both θk and C[l].
205
+ The Lagrangian with multipliers λlnn′ and γlnn′ is then
206
+ L = |i
207
+
208
+ K
209
+ ∂ |ψ⟩
210
+ ∂ΘK
211
+ ˙ΘK − ˆH |ψ⟩ |2
212
+ +
213
+
214
+ lnn′
215
+ λlnn′ Re
216
+ ��
217
+ m
218
+ C[l]∗
219
+ mn ˙C[l]mn′
220
+
221
+ +
222
+
223
+ lnn′
224
+ γlnn′ Im
225
+ ��
226
+ m
227
+ C[l]∗
228
+ mn ˙C[l]mn′
229
+
230
+ .
231
+ (4)
232
+ The constraints ensure that C[l]mn remains orthonormal
233
+ during time evolution. Similar to the ground state prob-
234
+ lem, the equation of motion for θk is the same as vanilla
235
+ VQD with encoded Hamiltonian ˆ˜H
236
+
237
+ j
238
+ Re
239
+ �∂ ⟨φ|
240
+ ∂θk
241
+ ∂ |φ⟩
242
+ ∂θj
243
+
244
+ ˙θj = Im
245
+ �∂ ⟨φ|
246
+ ∂θk
247
+ ˆ˜H |φ⟩
248
+
249
+ .
250
+ (5)
251
+ The equation of motion for C[l] reads
252
+ iρ[l] ˙C[l]∗ = (1 − ˆP[l]) ⟨φ| ˆ˜H′[l]|φ⟩ ,
253
+ (6)
254
+ where ρ[l]nn′ = Tr{⟨φ|n⟩ ⟨n′|φ⟩} is the reduced density
255
+ matrix for the Nl qubits of |φ⟩.
256
+ Eq. 3 represents a
257
+ ˙C[l] = 0 stationary point during real and imaginary
258
+ time evolution.
259
+ The measurement cost is the same as
260
+ the ground state algorithm.
261
+ The VQD step described by Eq. 5 can be natu-
262
+ rally replaced by a Suzuki-Trotter time evolution step
263
+ e−i ˆ˜
264
+ Hτ ≈ �M
265
+ x e−iˆ˜hxτ on a digital quantum simulator, so
266
+ that Hamiltonian simulation is performed via Trotterized
267
+ time evolution instead of VQD. To update C[l] based on
268
+ Eq. 6, measurements on the circuit should be performed
269
+ for every or every several Trotter steps. The variationally
270
+ encoded ground state can then be prepared by adiabatic
271
+ state preparation, whose energy is accessible by QPE us-
272
+ ing ˆ˜H.
273
+ It is instructive to observe that if the variational ba-
274
+ sis encoder is viewed as a wavefunction ansatz |ψ⟩, then
275
+ the algorithm proposed in this work can be viewed as a
276
+ generalization for the local basis optimization method
277
+ for DMRG [28, 29], or a special case of the recently
278
+ proposed quantum-classical hybrid tensor network [30].
279
+ Thus, ˆB[l] captures the 2Nl phonon states that are most
280
+ entangled with the rest of the system. For local Hamil-
281
+ tonian obeying the area law, the entanglement entropy
282
+ between one phonon mode and the rest of the system S
283
+ is a constant [31]. Consequently, | ⟨ψ|Ψ⟩ |2, the fidelity
284
+ between the approximated encoded state and the target
285
+ state has a lower bound of 2Nl
286
+ eS , which lays the theoretical
287
+
288
+ 3
289
+ 0
290
+ 1
291
+ 2
292
+ 3
293
+ Coupling strength g
294
+ −8
295
+ −6
296
+ −4
297
+ −2
298
+ E/V
299
+ (a)
300
+ Exact (DMRG)
301
+ Gray encoding
302
+ Variational encoding
303
+ 0
304
+ 5
305
+ 10
306
+ 15
307
+ Iteration
308
+ −8
309
+ −6
310
+ −4
311
+ −2
312
+ E/V
313
+ (b)
314
+ g = 0.3
315
+ g = 1.5
316
+ g = 3.0
317
+ 8
318
+ 16
319
+ 24
320
+ 32
321
+ Number of levels N
322
+ 10−3
323
+ 10−2
324
+ 10−1
325
+ 100
326
+ 101
327
+ (E − Eexact)/V
328
+ (c)
329
+ g = 1.5, 1 qubit
330
+ g = 3.0, 1 qubit
331
+ g = 1.5, 2 qubits
332
+ g = 3.0, 2 qubits
333
+ 0
334
+ 5
335
+ 10
336
+ 15
337
+ Index
338
+ 10−14
339
+ 10−11
340
+ 10−8
341
+ 10−5
342
+ 10−2
343
+ Singular values
344
+ (d)
345
+ g = 0.3
346
+ g = 1.5
347
+ g = 3.0
348
+ FIG. 1.
349
+ Numerical simulation results for the ground state of
350
+ the Holstein model. (a) Ground state energy by numerically
351
+ exact DMRG, binary encoding, and variational encoding with
352
+ different coupling strength g; (b) Convergence of ground state
353
+ energy with respect to the macro-iteration for variational en-
354
+ coding; (c) Ground state energy error for the variational en-
355
+ coding method at different numbers of phonon basis states
356
+ N; (d) The singular values for the Schmidt decomposition
357
+ between the last phonon mode and the rest of the system.
358
+ foundation for the effectiveness of the variational encod-
359
+ ing approach to ground state and low-lying excited state
360
+ problems.
361
+ Simulations
362
+ We first show numerical simulation re-
363
+ sults on a noiseless simulator and verify the algorithm
364
+ on a superconducting quantum computer at the end of
365
+ the section. The variational basis state encoder is first
366
+ tested for VQE simulation of the one-dimensional Hol-
367
+ stein model [32, 33]
368
+ ˆH = −
369
+
370
+ ⟨i,j⟩
371
+ V ˆa†
372
+ iˆaj +
373
+
374
+ i
375
+ ωˆb†
376
+ iˆbi +
377
+
378
+ i
379
+ gωˆa†
380
+ iˆai(ˆb†
381
+ i +ˆbi) . (7)
382
+ where V is the hopping coefficient, ⟨i, j⟩ denotes near-
383
+ est neighbour pairs with periodic boundary condition, ω
384
+ is the vibration frequency and g is dimensionless cou-
385
+ pling constant. In the following, we assume V = ω = 1
386
+ and adjust g for different coupling strengths. We con-
387
+ sider a 3-site system corresponding to 3(Nl + 1) qubits.
388
+ We use binary encoding to represent traditional encod-
389
+ ing approaches. Unary encoding is expected to produce
390
+ similar results with binary encoding only with different
391
+ quantum resource budgets. The ansatz used and more
392
+ details of the simulation are included in the Appendix.
393
+ We first compare the accuracy of the variational encod-
394
+ ing and the binary encoding with Nl = 1. It is clear from
395
+ Fig. 1(a) that variational encoding is significantly more
396
+ accurate than binary encoding, especially at the strong
397
+ coupling regime. Within the setup, binary encoding uses
398
+ only two phonon basis states to describe each phonon
399
+ mode, yet the variational encoding is allowed to use up
400
+ to 32 phonon basis states before combining them into the
401
+ most entangled states. We note that the quantum circuit
402
+ used for variational encoding and binary encoding is es-
403
+ sentially the same. The number of macro-iterations to
404
+ determine C[l] is found to be rather small, as shown in
405
+ Fig. 1(b).
406
+ Fully converged results are obtained within
407
+ 5 iterations.
408
+ In Fig. 1(c) we show more details of the
409
+ error for the variational approach.
410
+ The simulation er-
411
+ ror typically decreases exponentially with respect to the
412
+ number of phonon levels N included in C[l]. It is worth
413
+ noting that quantum computational resources, including
414
+ the number of qubits, the number of gates in the circuit,
415
+ and the number of measurements remain constant when
416
+ N is increased from 2 to 32. Furthermore, by using 2
417
+ qubits to encode each mode, it is possible to further re-
418
+ duce the error at the N → ∞ limit. When g = 3.0, the
419
+ error is not sensitive to Nl, which implies that the error
420
+ is dominated by other sources such as limitations of the
421
+ ansatz, instead of the small Nl. Fig. 1(d) shows the sin-
422
+ gular values for the Schmidt decomposition between the
423
+ last phonon mode and the rest of the system by DMRG.
424
+ The exponential decay ensures the fast convergence of
425
+ Nl. The von Neumann entropy S for the 3 systems is
426
+ found to be 0.01, 0.25, and 0.65 respectively. We also
427
+ note the g = 1.5 case has the largest 3rd singular value,
428
+ which explains why setting Nl = 2 significantly reduces
429
+ the g = 1.5 error in Fig. 1(c).
430
+ We now turn to the spin-relaxation dynamics of the
431
+ spin-boson model [34], described by the Hamiltonian
432
+ ˆH = ϵ
433
+ 2 ˆσz + ∆ˆσx +
434
+
435
+ j
436
+ gjωjˆσz(ˆb†
437
+ j +ˆbj) +
438
+
439
+ j
440
+ ωjˆb†
441
+ jˆbj . (8)
442
+ where ϵ is the eigenfrequency and ∆ is the tunnelling rate.
443
+ The coupling term has a similar form with Eq. 7 and is
444
+ more commonly written as �
445
+ j cjˆσzˆxj. For systems in the
446
+ condensed phase the coupling is usually characterized by
447
+ the spectral density function J (ω) = π
448
+ 2
449
+
450
+ j
451
+ c2
452
+ j
453
+ ωj δ(�� − ωk).
454
+ In the following we assume ϵ = 0 and ∆ = 1. We first
455
+ use VQD for the simulation and discuss Trotterized time
456
+ evolution at last. The variational Hamiltonian ansatz [35]
457
+ with 3 layers is used if not otherwise specified.
458
+ The performance of variational encoding and binary
459
+ encoding is first compared based on a 1-mode spin-boson
460
+ model at the strong coupling (ω = 1 and g = 3) regime,
461
+ shown in Fig. 2(a). Variational encoding with Nl = 1
462
+ generates much more accurate dynamics than binary en-
463
+ coding with fewer qubits and quantum gates. The sim-
464
+ ulation of binary encoding with Nl > 4 is prohibited by
465
+ the deep circuit depth in the ansatz. The variational en-
466
+ coding scheme is exceptionally efficient for this 1-mode
467
+ model because Schmidt decomposition guarantees that 2
468
+ variational bases for the phonon mode are sufficient to ex-
469
+ actly represent the system. In Fig. 2(b) a 2-mode model
470
+ with ωj = 1
471
+ 2, 1 and gj = 1
472
+ 2, 1 is used. Variational encod-
473
+ ing with Nl = 1 is accurate at t < 2 but as the entan-
474
+
475
+ 4
476
+ 0.0
477
+ 0.2
478
+ 0.4
479
+ 0.6
480
+ 0.8
481
+ 1.0
482
+ ⟨σz⟩
483
+ (a)
484
+ Exact
485
+ Binary, N = 2
486
+ Binary, N = 4
487
+ Binary, N = 8
488
+ Binary, N = 16
489
+ Variational, N = 64
490
+ −0.2
491
+ 0.0
492
+ 0.2
493
+ 0.4
494
+ 0.6
495
+ 0.8
496
+ 1.0
497
+ ⟨σz⟩
498
+ (b)
499
+ Exact
500
+ Variational, 1 qubit
501
+ Variational, 2 qubits
502
+ 0
503
+ 1
504
+ 2
505
+ 3
506
+ 4
507
+ 5
508
+ Time t
509
+ 0.4
510
+ 0.5
511
+ 0.6
512
+ 0.7
513
+ 0.8
514
+ 0.9
515
+ 1.0
516
+ ⟨σz⟩
517
+ (c)
518
+ Exact (DMRG)
519
+ Variational
520
+ Binary
521
+ 0
522
+ 1
523
+ 2
524
+ 3
525
+ 4
526
+ 5
527
+ Time t
528
+ −0.2
529
+ 0.0
530
+ 0.2
531
+ 0.4
532
+ 0.6
533
+ 0.8
534
+ 1.0
535
+ ⟨σz⟩
536
+ (d)
537
+ Exact
538
+ Trotter+Variational
539
+ FIG. 2.
540
+ Numerical simulation results for the spin-relaxation
541
+ dynamics of the spin-boson model. (a) Comparison between
542
+ binary encoding with different numbers of phonon basis states
543
+ and variational encoding for a 1-mode spin-boson model;
544
+ (b) Variational encoding with different numbers of encoding
545
+ qubits Nl for a 2-mode spin-boson model; (c) Comparison
546
+ between binary encoding and variational encoding for an 8-
547
+ mode spin-boson model with sub-Ohmic spectral density; (d)
548
+ Trotterized time evolution with variational encoding based on
549
+ a 1-mode spin-boson model.
550
+ glement builds up the dynamics deviate from the exact
551
+ solution. Increasing Nl to 2 effectively eliminates the er-
552
+ ror. Next, we move on to a more challenging model with
553
+ 8 modes, in which ω and g are determined by discretizing
554
+ a sub-Ohmic spectral density J (ω) = π
555
+ 2 αωsω1−s
556
+ c
557
+ e−ω/ωc
558
+ following the prescription in the literature [36]. The pa-
559
+ rameters are s = 1
560
+ 4, ωc = 4 and α = 10. As illustrated in
561
+ Fig. 2(c) variational encoding with Nl = 1 captures the
562
+ localization behavior yet binary encoding with Nl = 1
563
+ completely fails. The number of layers in the variational
564
+ Hamiltonian ansatz is 8 and 32 for variational and binary
565
+ encoding respectively. Fig. 2(d) demonstrates the possi-
566
+ bility to incorporate variational basis state encoder into
567
+ Trotterized time evolution with ω = g = 1 and Nl = 1.
568
+ The measurement and the evolution of C[l] are performed
569
+ at each Trotter step.
570
+ Lastly, we verify the accuracy and efficiency of the vari-
571
+ ational encoder approach on a superconducting quantum
572
+ computer. We consider the ground state problem of a
573
+ 2-site Holstein model described by Eq. 7 with g = 3 and
574
+ Nl = 1. The two electronic sites are represented by 1
575
+ qubit and the total number of qubits for the system is
576
+ thus 3.
577
+ The quantum circuit for the simulation is de-
578
+ picted in Fig. 3(a). The electronic degree of freedom is
579
+ mapped to the second qubit, and the two phonon modes
580
+ are mapped to the first and the third qubits respectively.
581
+ There is one parameter to be determined by VQE in the
582
+ circuit and the same ansatz is used for both binary en-
583
+ coding and variational encoding. More simulation details
584
+ (a)
585
+ 1
586
+ 2
587
+ 3
588
+ Coupling strength g
589
+ −8
590
+ −6
591
+ −4
592
+ −2
593
+ E/V
594
+ (b)
595
+ Binary
596
+ Variational
597
+ Simulation
598
+ Exact
599
+ 1
600
+ 2
601
+ 3
602
+ 4
603
+ 5
604
+ Macro-iteration
605
+ (c)
606
+ Binary
607
+ Variational
608
+ Simulation
609
+ Exact
610
+ FIG. 3.
611
+ Quantum hardware experiments for the ground state
612
+ energy of the Holstein model with variational basis state en-
613
+ coder. (a) 3 qubits out of 9 qubits of a superconducting quan-
614
+ tum computer and a one-parameter circuit are used for the
615
+ simulation; (b) Ground state energy by binary encoding and
616
+ variational encoding; (c) Convergence of ground state energy
617
+ with respect to the macro-iteration for variational encoding.
618
+ can be found in the Appendix. In Fig. 3(b) we show the
619
+ ground state energy by variational encoding from weak
620
+ to strong coupling, in analog to Fig. 1(a). The simulator
621
+ result is based on the parameterized quantum circuit de-
622
+ scribed in Fig. 3(a) without considering gate noise and
623
+ measurement uncertainty. The results in Fig. 3(b) are
624
+ consistent with that in Fig. 1(a). The residual error is
625
+ dominated by the intrinsic gate noise in the quantum
626
+ computer.
627
+ In Fig. 3(c) we show the convergence with
628
+ respect to the macro-iteration for variational encoding.
629
+ The algorithm is resilient to the presence of quantum
630
+ noise and measurement uncertainty. The convergent en-
631
+ ergy is reached within 5 iterations.
632
+ Conclusion
633
+ We proposed variational basis state
634
+ encoder to encode phonon basis states into quantum
635
+ computational states for efficient quantum simulation
636
+ of electron-phonon systems.
637
+ The proposed variational
638
+ encoding approach requires only O(1) qubits and O(1)
639
+ quantum gates, which is significantly better than tradi-
640
+ tional encoding schemes. The algorithm enables quan-
641
+ tum simulation of electron-phonon systems with smaller
642
+ quantum processors and shallower circuits.
643
+ The addi-
644
+ tional measurement required to implement the approach
645
+ is found to be also O(1) with respect to the number of
646
+ phonon basis states and it scales quadratically with the
647
+ number of Pauli strings in the Hamiltonian. The accu-
648
+ racy of the approach is ensured by the finite entangle-
649
+ ment entropy between one phonon mode and the rest of
650
+ the system in common electron-phonon systems. Vari-
651
+ ational basis state encoder most naturally works with
652
+ variational quantum algorithms and is compatible with
653
+ Trotterized time evolution, adiabatic state preparation,
654
+
655
+ Ry(-0)
656
+ Ry(-0)
657
+ Measurement
658
+ Module
659
+ Ry(0)
660
+ Ry(-0)
661
+ D5
662
+ and QPE. Numerical simulation and quantum hardware
663
+ experiments based on VQE of the Holstein model and
664
+ dynamics of the spin-boson model indicates that varia-
665
+ tional encoding is more accurate and resource-efficient
666
+ than traditional encoding methods. In particular, using
667
+ 1 or 2 qubits to represent each phonon mode is suffi-
668
+ cient for accurate simulation even at the strong coupling
669
+ regime where N = 64 phonon basis states are involved.
670
+ The approach could also be extended to other quantum
671
+ simulation problems involving an infinite or large local
672
+ Hilbert space.
673
+ We thank Jinzhao Sun and Shixin Zhang for helpful
674
+ discussions. This work is supported by the National Nat-
675
+ ural Science Foundation of China through grand numbers
676
+ 22273005 and 21788102. This work is also supported by
677
+ Shenzhen Science and Technology Program.
678
679
680
+ [1] J. Bardeen and W. Shockley, Deformation potentials and
681
+ mobilities in non-polar crystals, Phys. Rev. 80, 72 (1950).
682
+ [2] M. Cardona and M. L. W. Thewalt, Isotope effects on
683
+ the optical spectra of semiconductors, Rev. Mod. Phys.
684
+ 77, 1173 (2005).
685
+ [3] M. B. Salamon and M. Jaime, The physics of manganites:
686
+ Structure and transport, Rev. Mod. Phys. 73, 583 (2001).
687
+ [4] W.
688
+ E.
689
+ Pickett,
690
+ Electronic
691
+ structure
692
+ of
693
+ the
694
+ high-
695
+ temperature oxide superconductors, Rev. Mod. Phys. 61,
696
+ 433 (1989).
697
+ [5] E.
698
+ Jeckelmann
699
+ and
700
+ S.
701
+ R.
702
+ White,
703
+ Density-matrix
704
+ renormalization-group study of the polaron problem in
705
+ the Holstein model, Phys. Rev. B 57, 6376 (1998).
706
+ [6] E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalet-
707
+ tar, and T. P. Devereaux, Competition between antiferro-
708
+ magnetic and charge-density-wave order in the half-filled
709
+ Hubbard-Holstein model, Phys. Rev. Lett. 109, 246404
710
+ (2012).
711
+ [7] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Can-
712
+ dia, and V. Cataudella, Mobility of Holstein polaron at
713
+ finite temperature: An unbiased approach, Phys. Rev.
714
+ Lett. 114, 146401 (2015).
715
+ [8] X. Cai, Z.-X. Li, and H. Yao, Antiferromagnetism in-
716
+ duced by bond Su-Schrieffer-Heeger electron-phonon cou-
717
+ pling: A quantum Monte Carlo study, Phys. Rev. Lett.
718
+ 127, 247203 (2021).
719
+ [9] W. Li, J. Ren, and Z. Shuai, A general charge trans-
720
+ port picture for organic semiconductors with nonlo-
721
+ cal electron-phonon couplings, Nat. Commun. 12, 4260
722
+ (2021).
723
+ [10] S. Lloyd, Universal quantum simulators, Science 273,
724
+ 1073 (1996).
725
+ [11] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
726
+ R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
727
+ Buell, et al., Quantum supremacy using a programmable
728
+ superconducting processor, Nature 574, 505 (2019).
729
+ [12] S. Xu, Z.-Z. Sun, K. Wang, L. Xiang, Z. Bao, Z. Zhu,
730
+ F. Shen, Z. Song, P. Zhang, W. Ren, et al., Digital sim-
731
+ ulation of non-abelian anyons with 68 programmable su-
732
+ perconducting qubits, arXiv preprint arXiv:2211.09802
733
+ (2022).
734
+ [13] J. Preskill, Quantum Computing in the NISQ era and
735
+ beyond, Quantum 2, 79 (2018).
736
+ [14] A.
737
+ Macridin,
738
+ P.
739
+ Spentzouris,
740
+ J.
741
+ Amundson,
742
+ and
743
+ R. Harnik, Electron-phonon systems on a universal quan-
744
+ tum computer, Phys. Rev. Lett. 121, 110504 (2018).
745
+ [15] P. J. Ollitrault, G. Mazzola, and I. Tavernelli, Nonadia-
746
+ batic molecular quantum dynamics with quantum com-
747
+ puters, Phys. Rev. Lett. 125, 260511 (2020).
748
+ [16] C.-K. Lee, C.-Y. Hsieh, S. Zhang, and L. Shi, Variational
749
+ quantum simulation of chemical dynamics with quan-
750
+ tum computers, J. Chem. Theory and Comput. 18, 2105
751
+ (2022).
752
+ [17] Y. Wang, J. Ren, W. Li, and Z. Shuai, Hybrid quantum-
753
+ classical boson sampling algorithm for molecular vibra-
754
+ tionally resolved electronic spectroscopy with Duschin-
755
+ sky rotation and anharmonicity, J. Phys. Chem. Lett.
756
+ 13, 6391 (2022).
757
+ [18] N. P. Sawaya,
758
+ T. Menke,
759
+ T. H. Kyaw,
760
+ S. Johri,
761
+ A. Aspuru-Guzik, and G. G. Guerreschi, Resource-
762
+ efficient digital quantum simulation of d-level systems
763
+ for photonic, vibrational, and spin-s hamiltonians, npj
764
+ Quantum Inf. 6, 1 (2020).
765
+ [19] O. Di Matteo,
766
+ A. McCoy,
767
+ P. Gysbers,
768
+ T. Miyagi,
769
+ R. Woloshyn, and P. Navr´atil, Improving Hamiltonian
770
+ encodings with the Gray code, Phys. Rev. A 103, 042405
771
+ (2021).
772
+ [20] R. Somma, G. Ortiz, E. Knill, and J. Gubernatis, Quan-
773
+ tum simulations of physics problems, Int. J. Quantum
774
+ Inf. 1, 189 (2003).
775
+ [21] A. Miessen, P. J. Ollitrault, and I. Tavernelli, Quan-
776
+ tum algorithms for quantum dynamics: a performance
777
+ study on the spin-boson model, Phys. Rev. Res. 3, 043212
778
+ (2021).
779
+ [22] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
780
+ Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien,
781
+ A variational eigenvalue solver on a photonic quantum
782
+ processor, Nat. Commun. 5, 1 (2014).
783
+ [23] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
784
+ Guzik,
785
+ The
786
+ theory
787
+ of
788
+ variational
789
+ hybrid
790
+ quantum-
791
+ classical algorithms, New J. Physics 18, 023023 (2016).
792
+ [24] Y. Li and S. C. Benjamin, Efficient variational quantum
793
+ simulator incorporating active error minimization, Phys.
794
+ Rev. X 7, 021050 (2017).
795
+ [25] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin,
796
+ Theory of variational quantum simulation, Quantum 3,
797
+ 191 (2019).
798
+ [26] D. S. Abrams and S. Lloyd, Quantum algorithm provid-
799
+ ing exponential speed increase for finding eigenvalues and
800
+ eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).
801
+ [27] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
802
+ Gordon, Simulated quantum computation of molecular
803
+ energies, Science 309, 1704 (2005).
804
+ [28] C. Zhang, E. Jeckelmann, and S. R. White, Density ma-
805
+ trix approach to local Hilbert space reduction, Phys. Rev.
806
+ Lett. 80, 2661 (1998).
807
+ [29] C. Guo, A. Weichselbaum, J. von Delft, and M. Vojta,
808
+ Critical and strong-coupling phases in one-and two-bath
809
+ spin-boson models, Phys. Rev. Lett. 108, 160401 (2012).
810
+ [30] X. Yuan, J. Sun, J. Liu, Q. Zhao, and Y. Zhou, Quantum
811
+ simulation with hybrid tensor networks, Phys. Rev. Lett.
812
+ 127, 040501 (2021).
813
+ [31] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium:
814
+
815
+ 6
816
+ Area laws for the entanglement entropy, Rev. Mod. Phys.
817
+ 82, 277 (2010).
818
+ [32] T. Holstein, Studies of polaron motion:
819
+ Part I. the
820
+ molecular-crystal model, Ann. Phys. 8, 325 (1959).
821
+ [33] T. Holstein, Studies of polaron motion:
822
+ Part II. the
823
+ “small” polaron, Ann. Phys. 8, 343 (1959).
824
+ [34] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher,
825
+ A. Garg, and W. Zwerger, Dynamics of the dissipative
826
+ two-state system, Rev. Mod. Phys. 59, 1 (1987).
827
+ [35] D. Wecker, M. B. Hastings, and M. Troyer, Progress to-
828
+ wards practical quantum variational algorithms, Phys.
829
+ Rev. A 92, 042303 (2015).
830
+ [36] H. Wang and M. Thoss, From coherent motion to lo-
831
+ calization: II. dynamics of the spin-boson model with
832
+ sub-Ohmic spectral density at zero temperature, Chem.
833
+ Phys. 370, 78 (2010).
834
+ [37] S.-X. Zhang, J. Allcock, Z.-Q. Wan, S. Liu, J. Sun, H. Yu,
835
+ X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, et al., Tensorcir-
836
+ cuit: a quantum software framework for the nisq era,
837
+ arXiv preprint arXiv:2205.10091 (2022).
838
+ [38] J.
839
+ Ren,
840
+ W.
841
+ Li,
842
+ T.
843
+ Jiang,
844
+ Y.
845
+ Wang,
846
+ and
847
+ Z.
848
+ Shuai,
849
+ The
850
+ Renormalizer
851
+ package.
852
+ https://github.com/shuaigroup/renormalizer (2021).
853
+ [39] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
854
+ land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
855
+ terson, W. Weckesser, J. Bright, S. J. van der Walt,
856
+ M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
857
+ Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ˙I. Po-
858
+ lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
859
+ J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
860
+ C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
861
+ dregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
862
+ SciPy 1.0: Fundamental Algorithms for Scientific Com-
863
+ puting in Python, Nat. Methods 17, 261 (2020).
864
+ I. Derivation of variational basis state encoder
865
+ Time-independent equation
866
+ We start with the Lagrangian defined in the main text, i.e. Eq. 2. Taking the derivative with respect to C[l]mn
867
+ and setting it to 0 yields
868
+ ⟨φ|n⟩l ⟨m|
869
+ l
870
+ ˆ˜H′[l] |φ⟩ +
871
+
872
+ n′
873
+ λlnn′C[l]mn′ = 0 .
874
+ (9)
875
+ Multiply with C[l]mn′′
876
+
877
+ m
878
+ C[l]mn′′ ⟨φ|n⟩l ⟨m|
879
+ l
880
+ ˆ˜H′[l] |φ⟩ +
881
+
882
+ n′
883
+ λlnn′
884
+
885
+ m
886
+ C[l]mn′C[l]mn′′ = 0 ,
887
+ (10)
888
+ and use the C[l] orthonormal condition �
889
+ m C[l]mnC[l]mn′ = δnn′ to get λ
890
+ λlnn′ = −
891
+
892
+ m
893
+ C[l]mn′ ⟨φ|n⟩l ⟨m|
894
+ l
895
+ ˆ˜H′[l] |φ⟩ .
896
+ (11)
897
+ Substitute λ into Eq. 9 yields
898
+ ⟨φ|n⟩l ⟨m|
899
+ l
900
+ ˆ˜H′[l] |φ⟩ −
901
+
902
+ n′m
903
+ C[l]mn′ ⟨φ|n⟩l ⟨m|
904
+ l
905
+ ˆ˜H′[l] |φ⟩ C[l]m′n′ = 0 .
906
+ (12)
907
+ Using
908
+ ˆP = ˆB[l]†B[l] =
909
+
910
+ mm′
911
+
912
+ n
913
+ |m⟩l C[l]mnC[l]m′n ⟨m′|
914
+ l
915
+ ,
916
+ (13)
917
+ to simplify the notation of the second term
918
+ ⟨φ|n⟩l ⟨m|
919
+ l
920
+ ˆ˜H′[l] |φ⟩ − ⟨φ|n⟩l ⟨m|
921
+ l
922
+ ˆP ˆ˜H′[l] |φ⟩ = 0 .
923
+ (14)
924
+ Rearranging and rewriting in matrix form, we get the equation for C[l]
925
+ (1 − ˆP[l]) ⟨φ| ˆ˜H′[l]|φ⟩ = 0 .
926
+ (15)
927
+
928
+ 7
929
+ Quantum circuit measurement
930
+ In this section, we discuss the quantum circuit measurement required to solve C[l] from Eq. 3. The key quantity
931
+ to be computed is matrix G[l]mn, defined as
932
+ G[l]mn = ⟨φ|n⟩l ⟨m|
933
+ l
934
+ ˆ˜H′[l] |φ⟩ .
935
+ (16)
936
+ Express ˆH in sum-of-product form ˆH = �M
937
+ x
938
+
939
+ k ˆh[k]x, using notations in the main text, and we get
940
+ G[l]mn =
941
+ M
942
+
943
+ x
944
+ ⟨φ|n⟩l ⟨m|
945
+ l
946
+
947
+ k̸=l
948
+ ˆB[k]
949
+
950
+ k
951
+ ˆh[k]x
952
+
953
+ k
954
+ ˆB[k]† |φ⟩
955
+ =
956
+ M
957
+
958
+ x
959
+ ⟨φ|n⟩l ⟨m|
960
+ l
961
+ ˆh[l]x ˆB[l]† �
962
+ k̸=l
963
+ ˆ˜h[k]x |φ⟩ .
964
+ (17)
965
+ Here we assume �
966
+ k̸=l
967
+ ˆ˜h[k]x can be expressed by a constant amount of Pauli strings. Represent ˆh[l]x in operator form
968
+ ˆh[l]x =
969
+
970
+ mm′
971
+ h[l]xm′m |m′⟩l ⟨m|
972
+ l
973
+ .
974
+ (18)
975
+ G[l]mn then becomes
976
+ G[l]mn =
977
+ M
978
+
979
+ x
980
+
981
+ m′n′
982
+ h[l]xmm′C[l]m′n′ ⟨φ|n⟩l ⟨n′|
983
+ l
984
+
985
+ k̸=l
986
+ ˆ˜h[k]x |φ⟩ .
987
+ (19)
988
+ Thus to evaluate G[l]mn it is sufficient to measure ⟨φ|n⟩l ⟨n′|
989
+ l
990
+
991
+ k̸=l
992
+ ˆ˜h[k]x |φ⟩. |n⟩l ⟨n′|
993
+ l
994
+ in general is not Hermitian,
995
+ and the real and imaginary parts can be measured by
996
+ Re
997
+
998
+
999
+ �⟨φ|n⟩l ⟨n′|
1000
+ l
1001
+
1002
+ k̸=l
1003
+ ˆ˜h[k]x |φ⟩
1004
+
1005
+
1006
+ � = 1
1007
+ 2 ⟨φ| (|n⟩l ⟨n′|
1008
+ l
1009
+ + |n′⟩l ⟨n|
1010
+ l
1011
+ )
1012
+
1013
+ k̸=l
1014
+ ˆ˜h[k]x |φ⟩ ,
1015
+ Im
1016
+
1017
+
1018
+ �⟨φ|n⟩l ⟨n′|
1019
+ l
1020
+
1021
+ k̸=l
1022
+ ˆ˜h[k]x |φ⟩
1023
+
1024
+
1025
+ � = 1
1026
+ 2 ⟨φ| i(|n′⟩l ⟨n|
1027
+ l
1028
+ − |n⟩l ⟨n′|
1029
+ l
1030
+ )
1031
+
1032
+ k̸=l
1033
+ ˆ˜h[k]x |φ⟩ .
1034
+ (20)
1035
+ To evaluate all matrix elements in G[l], the total number of measurements required scales as O
1036
+
1037
+ 2NlM
1038
+
1039
+ .
1040
+ Time-dependent equation
1041
+ In this section, we derive the time-dependent equation for C[l]. For time-dependent problems, C[l] in general is
1042
+ complex
1043
+ C[l] = D[l] − iE[l] ,
1044
+ (21)
1045
+ where both D[l] and E[l] are real. The minus sign is for convenience expressing ˆB† |φ⟩. From the definition we have
1046
+ ∂ |ψ⟩
1047
+ ∂E[l]mn
1048
+ = i
1049
+ ∂ |ψ⟩
1050
+ ∂D[l]mn
1051
+ .
1052
+ (22)
1053
+ The starting point is the Lagrangian Eq. 4 defined in the main text. Taking the derivative with respect to ˙ΘK
1054
+
1055
+ 8
1056
+ yields
1057
+ ∂L
1058
+ ∂ ˙ΘK
1059
+ =
1060
+
1061
+ J
1062
+ ∂ ⟨ψ|
1063
+ ∂ΘJ
1064
+ ∂ |ψ⟩
1065
+ ∂ΘK
1066
+ ˙ΘJ +
1067
+
1068
+ J
1069
+ ∂ ⟨ψ|
1070
+ ∂ΘK
1071
+ ∂ |ψ⟩
1072
+ ∂ΘJ
1073
+ ˙ΘJ
1074
+ + i∂ ⟨ψ|
1075
+ ∂ΘK
1076
+ ˆH |ψ⟩ − i ⟨ψ| ˆH ∂ |ψ⟩
1077
+ ∂ΘK
1078
+ +
1079
+
1080
+ lnn′
1081
+ λlnn′ Re
1082
+ ��
1083
+ m
1084
+ C[l]∗
1085
+ mn
1086
+ ∂ ˙C[l]mn′
1087
+ ∂ ˙ΘK
1088
+
1089
+ +
1090
+
1091
+ lnn′
1092
+ γlnn′ Im
1093
+ ��
1094
+ m
1095
+ C[l]∗
1096
+ mn
1097
+ ∂ ˙C[l]mn′
1098
+ ∂ ˙ΘK
1099
+
1100
+ .
1101
+ (23)
1102
+ We first consider the case of ΘK = θk, and then
1103
+ ∂L
1104
+ ∂ ˙θk
1105
+ =
1106
+
1107
+ J
1108
+ ∂ ⟨ψ|
1109
+ ∂ΘJ
1110
+ ∂ |ψ⟩
1111
+ ∂θk
1112
+ ˙ΘJ +
1113
+
1114
+ J
1115
+ ∂ ⟨ψ|
1116
+ ∂θk
1117
+ ∂ |ψ⟩
1118
+ ∂ΘJ
1119
+ ˙ΘJ
1120
+ + i∂ ⟨ψ|
1121
+ ∂θk
1122
+ ˆH |ψ⟩ − i ⟨ψ| ˆH ∂ |ψ⟩
1123
+ ∂θk
1124
+ = 2
1125
+
1126
+ J
1127
+ Re
1128
+ �∂ ⟨ψ|
1129
+ ∂θk
1130
+ ∂ |ψ⟩
1131
+ ∂ΘJ
1132
+
1133
+ ˙ΘJ − 2 Im
1134
+ �∂ ⟨ψ|
1135
+ ∂θk
1136
+ ˆH |ψ⟩
1137
+
1138
+ ,
1139
+ (24)
1140
+ which means at the
1141
+ ∂L
1142
+ ∂ ˙θk = 0 minimum, we have
1143
+
1144
+ J
1145
+ Re
1146
+ �∂ ⟨ψ|
1147
+ ∂θk
1148
+ ∂ |ψ⟩
1149
+ ∂ΘJ
1150
+
1151
+ ˙ΘJ = Im
1152
+ �∂ ⟨ψ|
1153
+ ∂θk
1154
+ ˆH |ψ⟩
1155
+
1156
+ .
1157
+ (25)
1158
+ Substitute ΘJ with θk, D[l]mn and E[l]mn
1159
+
1160
+ J
1161
+ Re
1162
+ �∂ ⟨ψ|
1163
+ ∂θk
1164
+ ∂ |ψ⟩
1165
+ ∂ΘJ
1166
+
1167
+ ˙ΘJ =
1168
+
1169
+ j
1170
+ Re
1171
+ �∂ ⟨ψ|
1172
+ ∂θk
1173
+ ∂ |ψ⟩
1174
+ ∂θj
1175
+
1176
+ ˙θj
1177
+ +
1178
+
1179
+ lmn
1180
+ Re
1181
+ �∂ ⟨ψ|
1182
+ ∂θk
1183
+ ∂ |ψ⟩
1184
+ ∂D[l]mn
1185
+
1186
+ ˙D[l]mn
1187
+ +
1188
+
1189
+ lmn
1190
+ Re
1191
+ �∂ ⟨ψ|
1192
+ ∂θk
1193
+ ∂ |ψ⟩
1194
+ ∂E[l]mn
1195
+
1196
+ ˙E[l]mn .
1197
+ (26)
1198
+ Using Eq. 22 the last two terms become
1199
+
1200
+ lmn
1201
+ Re
1202
+ �∂ ⟨ψ|
1203
+ ∂θk
1204
+ ∂ |ψ⟩
1205
+ ∂D[l]mn
1206
+
1207
+ ˙D[l]mn +
1208
+
1209
+ lmn
1210
+ Re
1211
+ �∂ ⟨ψ|
1212
+ ∂θk
1213
+ ∂ |ψ⟩
1214
+ ∂E[l]mn
1215
+
1216
+ ˙E[l]mn =
1217
+
1218
+ lmn
1219
+ Re
1220
+ �∂ ⟨ψ|
1221
+ ∂θk
1222
+ ∂ |ψ⟩
1223
+ ∂D[l]mn
1224
+ ˙C[l]∗
1225
+ mn
1226
+
1227
+ ,
1228
+ (27)
1229
+ which is zero because
1230
+
1231
+ mn
1232
+ ∂ ⟨ψ|
1233
+ ∂θk
1234
+ ∂ |ψ⟩
1235
+ ∂D[l]mn
1236
+ ˙C[l]∗
1237
+ mn =
1238
+
1239
+ mn
1240
+ ∂ ⟨φ|
1241
+ ∂θk
1242
+ ˆB[l] |m⟩l ⟨n|
1243
+ l
1244
+ ˙C[l]∗
1245
+ mn |φ⟩ = 0 ,
1246
+ (28)
1247
+ where the constraint �
1248
+ m C[l]mn ˙C[l]∗
1249
+ mn′ = 0 is used. Thus the simplified equation of motion reads
1250
+
1251
+ j
1252
+ Re
1253
+ �∂ ⟨ψ|
1254
+ ∂θk
1255
+ ∂ |ψ⟩
1256
+ ∂θj
1257
+
1258
+ ˙θj = Im
1259
+ �∂ ⟨ψ|
1260
+ ∂θk
1261
+ ˆH |ψ⟩
1262
+
1263
+ ,
1264
+ (29)
1265
+ or equivalently
1266
+
1267
+ j
1268
+ Re
1269
+ �∂ ⟨φ|
1270
+ ∂θk
1271
+ ∂ |φ⟩
1272
+ ∂θj
1273
+
1274
+ ˙θj = Im
1275
+ �∂ ⟨φ|
1276
+ ∂θk
1277
+ ˆ˜H |φ⟩
1278
+
1279
+ .
1280
+ (30)
1281
+
1282
+ 9
1283
+ In short, the equation of motion for θk is the same as vanilla VQD with encoded Hamiltonian ˆ˜H .
1284
+ Next we consider the case of ΘK = D[l] and ΘK = E[l]. After some complex algebra, we have
1285
+ i
1286
+
1287
+ J
1288
+ ∂ ⟨ψ|
1289
+ ∂D[l]mn
1290
+ ∂ |ψ⟩
1291
+ ∂ΘJ
1292
+ ˙ΘJ + i1
1293
+ 2
1294
+
1295
+ n′
1296
+ λln′nC[l]∗
1297
+ mn′ − 1
1298
+ 2
1299
+
1300
+ n′
1301
+ γln′nC[l]∗
1302
+ mn′ =
1303
+ ∂ ⟨ψ|
1304
+ ∂D[l]mn
1305
+ ˆH |ψ⟩ .
1306
+ (31)
1307
+ Similar to the case of ΘK = θk, substitute ΘJ with θk, D[l]mn and E[l]mn
1308
+
1309
+ J
1310
+ ∂ ⟨ψ|
1311
+ ∂D[l]mn
1312
+ ∂ |ψ⟩
1313
+ ∂ΘJ
1314
+ ˙ΘJ =
1315
+
1316
+ k
1317
+ ∂ ⟨ψ|
1318
+ ∂D[l]mn
1319
+ ∂ |ψ⟩
1320
+ ∂θk
1321
+ ˙θk +
1322
+
1323
+ km′n′
1324
+ ∂ ⟨ψ|
1325
+ ∂D[l]mn
1326
+ ∂ |ψ⟩
1327
+ ∂D[k]m′n′
1328
+ ˙C[k]∗
1329
+ m′n′
1330
+ =
1331
+
1332
+ k
1333
+ ∂ ⟨ψ|
1334
+ ∂D[l]mn
1335
+ ∂ |ψ⟩
1336
+ ∂θk
1337
+ ˙θk +
1338
+
1339
+ n′
1340
+ ∂ ⟨ψ|
1341
+ ∂D[l]mn
1342
+ ∂ |ψ⟩
1343
+ ∂D[l]mn′
1344
+ ˙C[l]∗
1345
+ mn′ .
1346
+ (32)
1347
+ Here the orthonormal condition is again used. Substitute the equation back into Eq. 31.
1348
+ i
1349
+
1350
+ k
1351
+ ∂ ⟨ψ|
1352
+ ∂D[l]mn
1353
+ ∂ |ψ⟩
1354
+ ∂θk
1355
+ ˙θk + i
1356
+
1357
+ n′
1358
+ ∂ ⟨ψ|
1359
+ ∂D[l]mn
1360
+ ∂ |ψ⟩
1361
+ ∂D[l]mn′
1362
+ ˙C[l]∗
1363
+ mn′ + 1
1364
+ 2
1365
+
1366
+ n′
1367
+ (iλln′n − γln′n)C[l]∗
1368
+ mn′ =
1369
+ ∂ ⟨ψ|
1370
+ ∂D[l]mn
1371
+ ˆH |ψ⟩ ,
1372
+ (33)
1373
+ Following the same strategy with the derivation of the time-independent equation, multiply Eq. 33 with C[l]mn
1374
+ i
1375
+
1376
+ k
1377
+ ⟨φ|n⟩l ⟨n′|
1378
+ l
1379
+ ∂ |φ⟩
1380
+ ∂θk
1381
+ ˙θk + 1
1382
+ 2(iλln′n − γln′n) =
1383
+
1384
+ m
1385
+ C[l]mn′
1386
+ ∂ ⟨ψ|
1387
+ ∂D[l]mn
1388
+ ˆH |ψ⟩ ,
1389
+ (34)
1390
+ where �
1391
+ m C[l]∗
1392
+ mn′C[l]mn = δn′n and �
1393
+ m ˙C[l]∗
1394
+ mn′C[l]mn = 0 are used. Then, multiply again with C[l]∗
1395
+ mn
1396
+ i
1397
+
1398
+ k
1399
+ ∂ ⟨ψ|
1400
+ ∂D[l]mn
1401
+ ∂ |ψ⟩
1402
+ ∂θk
1403
+ ˙θk + 1
1404
+ 2
1405
+
1406
+ n′
1407
+ (iλln′n − γln′n)C[l]∗
1408
+ mn′ = ˆP[l]
1409
+ ∂ ⟨ψ|
1410
+ ∂D[l]mn
1411
+ ˆH |ψ⟩ .
1412
+ (35)
1413
+ Use this equation to eliminate λ and γ in Eq. 33, we get the equation of motion for C[l]
1414
+ i
1415
+
1416
+ n′
1417
+ ∂ ⟨ψ|
1418
+ ∂D[l]mn
1419
+ ∂ |ψ⟩
1420
+ ∂D[l]mn′
1421
+ ˙C[l]∗
1422
+ mn′ = (1 − ˆP[l])
1423
+ ∂ ⟨ψ|
1424
+ ∂D[l]mn
1425
+ ˆH |ψ⟩ ,
1426
+ (36)
1427
+ which can be simplified to Eq. 6. The measurement required for time evolution is in the same order as the static VQE
1428
+ algorithm.
1429
+ In the end, we note that imaginary time evolution might be another approach to finding the ground state, in addition
1430
+ to the iterative method described in the main text. Imaginary time evolution might also be a feasible approach to
1431
+ determine C[l] as an alternative to solving Eq. 3.
1432
+ II. Numerical noiseless simulations
1433
+ All numerical quantum circuit simulation is performed using the TensorCircuit [37] package without considering
1434
+ noise. Classical DMRG simulation is performed using the Renormalizer package [38]. We use harmonic oscillator
1435
+ eigenstates for phonon basis states. Using positional states might affect the performance of traditional encodings
1436
+ because of the truncation, however, we expect variational encoding to be insensitive to the choice of phonon basis
1437
+ states at the N → ∞ limit. We use Gray code for binary encoding as an improvement to the standard approach [18].
1438
+ For both ground state simulation and dynamics simulation, C[l] is initialized as C[l]mn = δmn.
1439
+ For the VQE simulation of the Holstein model, the following ansatz is used
1440
+ |φ⟩ =
1441
+ L
1442
+
1443
+ l
1444
+
1445
+
1446
+
1447
+
1448
+ ⟨j,k⟩
1449
+ eθljk(ˆa†
1450
+ j ˆak−ˆa†
1451
+ kˆaj) �
1452
+ j
1453
+ eθljˆa†
1454
+ j ˆaj(ˆb†
1455
+ j−ˆbj)
1456
+
1457
+
1458
+ � |φ0⟩ .
1459
+ (37)
1460
+ where L is the number of layers and L = 3 is adopted. The advantage of Eq. 37 is enforcing real-valued wavefunction.
1461
+ The circuit parameters ⃗θ are optimized by the L-BFGS-G method implemented in SciPy package [39]. The parameter
1462
+ gradient is calculated by auto-differentiation. The initial values for the parameters are set to zero at the first round
1463
+
1464
+ 10
1465
+ of the macro-iteration. In subsequent macro-iterations, the previously optimized parameters are used as the initial
1466
+ value for faster convergence. Eq. 3 is solved by the DF-SANE method implemented in SciPy [39]. Since this is a
1467
+ non-linear equation, we provide 3 initial guesses and adopt the one with the lowest energy. The solved C[l] sometimes
1468
+ does not satisfy the orthonormal condition due to numerical imprecision and the orthonormal condition is enforced
1469
+ by QR decomposition in each macro-iteration.
1470
+ For the VQD simulation of the spin-boson model, the variational Hamiltonian ansatz used is more complex than
1471
+ the VQE simulation. Because C[l] is complex, ˆB[l]ˆh[l]x ˆB[l]† spans the whole Hermitian matrix space. Thus for ˆh[l]x
1472
+ the whole Pauli matrix set {X, Y, Z, I}⊗Nl is added to the ansatz. To obtain the quantities required to calculate θk,
1473
+ the Jacobian of the wavefunction φ(⃗θ) is firstly calculated by auto-differentiation, and then the r.h.s and l.h.s of Eq. 5
1474
+ is calculated by matrix multiplication. How to measure the quantities in realistic quantum circuits is well described
1475
+ in the literature [16]. To calculate ˙C[l] it is necessary to take the inverse of ρ[l] which is sometimes ill-conditioned.
1476
+ We add 1 × 10−5 to the diagonal elements of ρ[l] for regularization. The time evolution of θk and C[l] is carried out
1477
+ using the RK45 method implemented in SciPy [39]. We observe that the gradient of θk is usually much larger than
1478
+ C[l]. Thus it is possible to evolve the two sets of parameters separately, which deserves further investigation. For
1479
+ Trotterized time evolution, N = 16 and a time step of 0.01 are used.
1480
+ III. Experiments on a superconducting quantum processor
1481
+ Device parameters
1482
+ The superconducting quantum processor, as shown in Fig. 3(a), is composed of nine computational transmon
1483
+ qubits with each pair of neighboring qubits mediated via a tunable coupler, forming a cross-shaped architecture.
1484
+ Each computational qubit has an independent readout cavity for state measurement and XY /Z control lines for state
1485
+ operation. High-fidelity simultaneous single-shot readout for all qubits are achieved with the help of the multistage
1486
+ amplification with the Josephson parametric amplifier (JPA) functioning as the first stage of the amplification. The
1487
+ fundamental device parameters including qubit parameters and gate parameters are outlined in Table. II and Table. III,
1488
+ where the parasitic ZZ interaction between qubits is suppressed by the coupler.
1489
+ TABLE II. Single qubit gate parameters. ωr is the resonant frequency of the readout cavity for each qubit. ωj,max (j = 1 ∼ 9)
1490
+ are the maximum resonant frequencies when qubits are biased at the sweet spot. ωj,idle (j = 1 ∼ 9) are the idle frequencies
1491
+ for implementing the single-qubit operations. αj (j = 1 ∼ 9) are the qubits’ anharmonicities. T1, T2,idle and T2E,idle are the
1492
+ corresponding energy relaxation time, Ramsey dephasing time and echoed dephasing time for the qubits measured at the idle
1493
+ frequency. The readout fidelities are typically characterized by detecting each qubit in |g⟩ (|e⟩) when it is prepared in |g⟩ (|e⟩),
1494
+ labeled by F0,j and F1,j. To mitigate the error coming from the readout infidelity, the outcomes are reconstructed with the
1495
+ calibration matrix through the Bayes’ rule. Single-qubit errors esq are measured with randomized benchmarking (RB).
1496
+ Q0
1497
+ Q1
1498
+ Q2
1499
+ Q3
1500
+ Q4
1501
+ Q5
1502
+ Q6
1503
+ Q7
1504
+ Q8
1505
+ ωr (GHz)
1506
+ 6.874
1507
+ 6.825
1508
+ 6.931
1509
+ 6.901
1510
+ 6.845
1511
+ 6.786
1512
+ 6.991
1513
+ 6.961
1514
+ 6.806
1515
+ ωj,max (GHz)
1516
+ 4.003
1517
+ 4.215
1518
+ 4.479
1519
+ 4.689
1520
+ 4.470
1521
+ 4.479
1522
+ 4.657
1523
+ 4.512
1524
+ 4.362
1525
+ ωj,idle (GHz)
1526
+ 3.988
1527
+ 4.187
1528
+ 4.464
1529
+ 4.668
1530
+ 4.404
1531
+ 4.359
1532
+ 4.641
1533
+ 4.498
1534
+ 4.223
1535
+ αj/2π (MHz)
1536
+ −260
1537
+ −258
1538
+ −255
1539
+ −250
1540
+ −254
1541
+ −258
1542
+ −253
1543
+ −257
1544
+ −264
1545
+ T1 (µs)
1546
+ 35.3
1547
+ 31.6
1548
+ 29.5
1549
+ 27.7
1550
+ 33.9
1551
+ 34.3
1552
+ 33.3
1553
+ 22.1
1554
+ 31.8
1555
+ T2,idle (µs)
1556
+ 11.0
1557
+ 10.2
1558
+ 32.6
1559
+ 38.2
1560
+ 9.1
1561
+ 5.6
1562
+ 43.1
1563
+ 24.1
1564
+ 4.3
1565
+ T2E,idle (µs)
1566
+ 48.2
1567
+ 38.4
1568
+ 47.8
1569
+ 44.2
1570
+ 31.6
1571
+ 21.8
1572
+ 56.8
1573
+ 32.9
1574
+ 18.6
1575
+ F0,j (%)
1576
+ 96.9
1577
+ 97.4
1578
+ 98.6
1579
+ 98.9
1580
+ 98.7
1581
+ 98.4
1582
+ 96.3
1583
+ 97.2
1584
+ 94.1
1585
+ F1,j (%)
1586
+ 93.7
1587
+ 94.3
1588
+ 92.5
1589
+ 94.3
1590
+ 94.5
1591
+ 94.6
1592
+ 92.7
1593
+ 92.4
1594
+ 90.9
1595
+ esq (%)
1596
+ 0.07
1597
+ 0.32
1598
+ 0.06
1599
+ 0.07
1600
+ 0.08
1601
+ 0.05
1602
+ 0.06
1603
+ 0.15
1604
+ 0.08
1605
+ Experimental details
1606
+ We use 3 qubits out of the 9-qubit computer for the 2-site Holstein model
1607
+ ˆH = −V (a†
1608
+ 1a2 + a†
1609
+ 2a1) + ωb†
1610
+ 1b1 + ωb†
1611
+ 2b2 + gωa†
1612
+ 1a1(b†
1613
+ 1 + b1) + gωa†
1614
+ 2a2(b†
1615
+ 2 + b2) .
1616
+ (38)
1617
+ The electronic degree of freedom is mapped to the second qubit. Thus, a†
1618
+ 1a1 is mapped to 1
1619
+ 2(1 + Z1) and a†
1620
+ 2a2 is
1621
+ mapped to 1
1622
+ 2(1 − Z1). The phonon modes are mapped to the first and the third qubit. With binary encoding and
1623
+
1624
+ 11
1625
+ TABLE III. Two qubits gate parameters. ωc,idle are the idle frequencies for each coupler where the ZZ interaction between
1626
+ neighboring computational qubits are maximally suppressed. ξZZ is the residual ZZ interaction between each qubit pairs.
1627
+ Two-qubit gates are implemented with the controlled-Z (CZ) and the corresponding gate errors etq,CZ are characterized with
1628
+ RB.
1629
+ Q0 − Q1
1630
+ Q0 − Q2
1631
+ Q0 − Q3
1632
+ Q0 − Q4
1633
+ Q1 − Q5
1634
+ Q2 − Q6
1635
+ Q3 − Q7
1636
+ Q4 − Q8
1637
+ ωc,idle (GHz)
1638
+ 5.020
1639
+ 5.445
1640
+ 5.570
1641
+ 5.335
1642
+ 5.325
1643
+ 5.595
1644
+ 5.695
1645
+ 5.355
1646
+ |ξZZ| (kHz)
1647
+ 18.0
1648
+ 10.0
1649
+ 5.0
1650
+ 8.0
1651
+ 2.0
1652
+ 3.0
1653
+ 5.0
1654
+ 2.0
1655
+ etq,CZ (%)
1656
+ 1.57
1657
+ 2.22
1658
+ 1.99
1659
+ 2.47
1660
+ 0.91
1661
+ 1.04
1662
+ 1.2
1663
+ 0.96
1664
+ Nl = 1, the Hamiltonian in the Pauli string form reads
1665
+ ˆH = −V X1 + 1
1666
+ 2ω(1 − Z0) + 1
1667
+ 2ω(1 − Z2) + 1
1668
+ 2gω(1 + Z1)X0 + 1
1669
+ 2gω(1 − Z1)X2 .
1670
+ (39)
1671
+ For variational encoding, we assume C[l] = C. That is, the two modes share the same variational encoder. This is a
1672
+ reasonable assumption for translational invariant systems. Supposing ˆb†ˆb and ˆb† +ˆb are mapped to the following form
1673
+ ˆB(ˆb†ˆb) ˆB† = c1iI + c1xX + c1zZ
1674
+ ˆB(ˆb† + ˆb) ˆB† = c2iI + c2xX + c2zZ ,
1675
+ (40)
1676
+ the encoded Hamiltonian is then
1677
+ ˆH = −V X1 + ω(c1iI0 + c1xX0 + c1zZ0) + ω(c1iI2 + c1xX2 + c1zZ2)
1678
+ + 1
1679
+ 2gω(1 + Z1)(c2iI0 + c2xX0 + c2zZ0) + 1
1680
+ 2gω(1 − Z1)(c2iI2 + c2xX2 + c2zZ2) .
1681
+ (41)
1682
+ We use the following ansatz for the parameterized quantum circuit
1683
+ |φ⟩ =
1684
+ 2
1685
+
1686
+ j=1
1687
+ eθja†
1688
+ jaj(b†
1689
+ j−bj) 1
1690
+
1691
+ 2 (|000⟩ + |100⟩) ,
1692
+ (42)
1693
+ Because C[1] = C[2], the parameter space can be further simplified by setting θ1 = θ2. With binary encoding, the
1694
+ ansatz transforms to
1695
+ |φ⟩ = eiθY2e−iθZ1Y2eiθY0eiθZ1Y0H1 |0⟩ .
1696
+ (43)
1697
+ The ansatz is compiled into the following quantum circuit with 4 CNOT gates.
1698
+ q0 :
1699
+ RZ( −π
1700
+ 2 )
1701
+ H
1702
+ RZ(−θ)
1703
+ RZ(−θ)
1704
+ H
1705
+ RZ( π
1706
+ 2 )
1707
+ q1 :
1708
+ H
1709
+
1710
+
1711
+
1712
+
1713
+ q2 :
1714
+ RZ( −π
1715
+ 2 )
1716
+ H
1717
+ RZ(θ)
1718
+ RZ(−θ)
1719
+ H
1720
+ RZ( π
1721
+ 2 )
1722
+ Each energy term is measured by 8192 shots, and the uncertainty is obtained by repeating the measurement 5 times
1723
+ and taking the standard deviation. For the update of C[l], 4096 shots are performed for each term. Local readout
1724
+ error mitigation is applied for all results presented unless otherwise stated.
1725
+ In Fig. 4 we plot the energy landscape E(θ)/V in VQE with binary encoding. Both raw data and data with local
1726
+ readout error mitigation (EM) are presented for the energy expectation from quantum hardware. The mitigated
1727
+ landscape is in decent agreement with the perfect simulator. A minimum at around θ = 0.6 is clearly visible. We note
1728
+ that the perfect simulator is also based on the Nl = 1 ansatz and N is far smaller than what is physically demanded.
1729
+ Thus the minimum presented by the perfect simulator can not be recognized as the ground truth.
1730
+
1731
+ 12
1732
+ 0.00
1733
+ 0.25
1734
+ 0.50
1735
+ 0.75
1736
+ 1.00
1737
+ θ
1738
+ −3
1739
+ −2
1740
+ −1
1741
+ 0
1742
+ E/V
1743
+ Simulator
1744
+ Hardware (raw)
1745
+ Hardware (EM)
1746
+ FIG. 4.
1747
+ VQE energy landscape for the 2-site Holstein model with binary encoding. For the data from quantum hardware,
1748
+ both raw data and data with readout error mitigation are presented. The error bar indicates the measurement uncertainty.
1749
+
1NAzT4oBgHgl3EQfevyy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tFQT4oBgHgl3EQf1jZM/content/tmp_files/2301.13420v1.pdf.txt ADDED
@@ -0,0 +1,2265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Superhuman Fairness
2
+ Omid Memarrast 1 Linh Vu 1 Brian Ziebart 1
3
+ Abstract
4
+ The fairness of machine learning-based decisions
5
+ has become an increasingly important focus in
6
+ the design of supervised machine learning meth-
7
+ ods. Most fairness approaches optimize a spec-
8
+ ified trade-off between performance measure(s)
9
+ (e.g., accuracy, log loss, or AUC) and fairness met-
10
+ ric(s) (e.g., demographic parity, equalized odds).
11
+ This begs the question: are the right performance-
12
+ fairness trade-offs being specified? We instead re-
13
+ cast fair machine learning as an imitation learning
14
+ task by introducing superhuman fairness, which
15
+ seeks to simultaneously outperform human de-
16
+ cisions on multiple predictive performance and
17
+ fairness measures. We demonstrate the benefits
18
+ of this approach given suboptimal decisions.
19
+ 1. Introduction
20
+ The social impacts of algorithmic decisions based on ma-
21
+ chine learning have motivated various group and individ-
22
+ ual fairness properties that decisions should ideally satisfy
23
+ (Calders et al., 2009; Hardt et al., 2016). Unfortunately, im-
24
+ possibility results prevent multiple common group fairness
25
+ properties from being simultaneously satisfied (Kleinberg
26
+ et al., 2016). Thus, no set of decisions can be universally fair
27
+ to all groups and individuals for all notions of fairness. In-
28
+ stead, specified weightings, or trade-offs, of different criteria
29
+ are often optimized (Liu & Vicente, 2022). Identifying an
30
+ appropriate trade-off to prescribe to these fairness methods
31
+ is a daunting task open to application-specific philosophical
32
+ and ideological debate that could delay or completely derail
33
+ the adoption of algorithmic methods.
34
+ We consider the motivating scenario of a fairness-aware deci-
35
+ sion task currently being performed by well-intentioned, but
36
+ inherently error-prone human decision makers. Rather than
37
+ seeking optimal decisions for specific performance-fairness
38
+ trade-offs, which may be difficult to accurately elicit, we
39
+ propose a more modest, yet more practical objective: out-
40
+ perform human decisions across all performance and
41
+ 1Computer Science Department, University of Illinois Chicago.
42
+ Correspondence to: O. Memarrast <[email protected]>.
43
+ Figure 1. Three sets of
44
+ decisions (black dots)
45
+ with different predictive
46
+ performance and group
47
+ disparity values defining
48
+ the sets of 100%-, 67%-,
49
+ and
50
+ 33%-superhuman
51
+ fairness-performance
52
+ values (red shades) based
53
+ on Pareto dominance.
54
+ fairness measures with maximal frequency. We implic-
55
+ itly assume that available human decisions reflect desired
56
+ performance-fairness trade-offs, but are often noisy and sub-
57
+ optimal. This provides an opportunity for superhuman
58
+ decisions that Pareto dominate human decisions across pre-
59
+ dictive performance and fairness metrics (Figure 1) without
60
+ identifying an explicit desired trade-off.
61
+ To the best of our knowledge, this paper is the first to define
62
+ fairness objectives for supervised machine learning with
63
+ respect to noisy human decisions rather than using prescrip-
64
+ tive trade-offs or hard constraints. We leverage and extend a
65
+ recently-developed imitation learning method for subdomi-
66
+ nance minimization (Ziebart et al., 2022). Instead of using
67
+ the subdominance to identify a target trade-off, as previous
68
+ work does in the inverse optimal control setting to estimate
69
+ a cost function, we use it to directly optimize our fairness-
70
+ aware classifier. We develop policy gradient optimization
71
+ methods (Sutton & Barto, 2018) that allow flexible classes
72
+ of probabilistic decision policies to be optimized for given
73
+ sets of performance/fairness measures and demonstrations.
74
+ We conduct extensive experiments on standard fairness
75
+ datasets (Adult and COMPAS) using accuracy as a per-
76
+ formance measure and three conflicting fairness definitions:
77
+ Demographic Parity (Calders et al., 2009), Equalized Odds
78
+ (Hardt et al., 2016), and Predictive Rate Parity (Choulde-
79
+ chova, 2017)). Though our motivation is to outperform hu-
80
+ man decisions, we employ a synthetic decision-maker with
81
+ differing amounts of label and group membership noise to
82
+ identify sufficient conditions for superhuman fairness of
83
+ varying degrees. We find that our approach achieves high
84
+ levels of superhuman performance that increase rapidly with
85
+ reference decision noise and significantly outperform the
86
+ superhumanness of other methods that are based on more
87
+ arXiv:2301.13420v1 [cs.LG] 31 Jan 2023
88
+
89
+ Superhuman Fairness
90
+ narrow fairness-performance objectives.
91
+ 2. Fairness, Elicitation, and Imitation
92
+ 2.1. Group Fairness Measures
93
+ Group fairness measures are primarily defined by confu-
94
+ sion matrix statistics (based on labels yi ∈ {0, 1} and
95
+ decisions/predictions ˆyi ∈ {0, 1} produced from inputs
96
+ xi ∈ RM) for examples belonging to different protected
97
+ groups (e.g., ai ∈ {0, 1}).
98
+ We focus on three prevalent fairness properties in this paper:
99
+ • Demographic Parity (DP) (Calders et al., 2009) requires
100
+ equal positive rates across protected groups:
101
+ P( ˆY = 1|A = 1) = P( ˆY = 1|A = 0);
102
+ • Equalized Odds (EqOdds) (Hardt et al., 2016) requires
103
+ equal true positive rates and false positive rates across
104
+ groups, i.e.,
105
+ P( ˆY =1|Y =y, A=1) = P( ˆY =1|Y =y, A=0), y ∈ {0, 1};
106
+ • Predictive Rate Parity (PRP) (Chouldechova, 2017) re-
107
+ quires equal positive predictive value (ˆy = 1) and negative
108
+ predictive value (ˆy = 0) across groups:
109
+ P(Y =1|A=1, ˆY = ˆy) = P(Y =1|A=0, ˆY = ˆy),
110
+ ˆy ∈ {0, 1}.
111
+ Violations of these fairness properties can be measured as
112
+ differences:
113
+ D.DP(ˆy, a) =
114
+ �����
115
+ �N
116
+ i=1 I [ˆyi =1, ai =1]
117
+ �N
118
+ i=1 I [ai =1]
119
+ (1)
120
+
121
+ �N
122
+ i=1 I [ˆyi =1, ai =0]
123
+ �N
124
+ i=1 I [ai =0]
125
+ �����;
126
+ D.EqOdds(ˆy, y, a) = max
127
+ y∈{0,1}
128
+ �����
129
+ �N
130
+ i=1 I [ˆyi =1, yi =y, ai =1]
131
+ �N
132
+ i=1 I [ai =1, yi =y]
133
+
134
+ �N
135
+ i=1 I [ˆyi =1, yi =y, ai =0]
136
+ �N
137
+ i=1 I [ai =0, yi =y]
138
+ �����;
139
+ (2)
140
+ D.PRP(ˆy, y, a) = max
141
+ y∈{0,1}
142
+ �����
143
+ �N
144
+ i=1 I [yi =1, ˆyi =y, ai =1]
145
+ �N
146
+ i=1 I [ai =1, ˆyi =y]
147
+
148
+ �N
149
+ i=1 I [yi =1, ˆyi =y, ai =0]
150
+ �N
151
+ i=1 I [ai =0, ˆyi =y]
152
+ �����.
153
+ (3)
154
+ 2.2. Performance-Fairness Trade-offs
155
+ Numerous fair classification algorithms have been devel-
156
+ oped over the past few years, with most targeting one fair-
157
+ ness metric (Hardt et al., 2016). With some exceptions
158
+ (Blum & Stangl, 2019), predictive performance and fairness
159
+ are typically competing objectives in supervised machine
160
+ learning approaches. Thus, though satisfying many fairness
161
+ properties simultaneously may be na¨ıvely appealing, doing
162
+ so often significantly degrades predictive performance or
163
+ even creates infeasibility (Kleinberg et al., 2016).
164
+ Given this, many approaches seek to choose parameters θ
165
+ for (probabilistic) classifier Pθ that balance the competing
166
+ predictive performance and fairness objectives (Kamishima
167
+ et al., 2012; Hardt et al., 2016; Menon & Williamson, 2018;
168
+ Celis et al., 2019; Martinez et al., 2020; Rezaei et al., 2020).
169
+ Recently, Hsu et al. (2022) proposed a novel optimization
170
+ framework to satisfy three conflicting fairness metrics (de-
171
+ mographic parity, equalized odds, and predictive rate parity)
172
+ to the best extent possible:
173
+ min
174
+ θ
175
+ Eˆy∼Pθ
176
+
177
+ loss(ˆy, y) + αDPD.DP(ˆy, a)
178
+ (4)
179
+ + αOddsD.EqOdds(ˆy, y, a) + αPRPD.PRP(ˆy, y, a)
180
+
181
+ .
182
+ 2.3. Preference Elictation & Imitation Learning
183
+ Preference elicitation (Chen & Pu, 2004) is one natural ap-
184
+ proach to identifying desirable performance-fairness trade-
185
+ offs. Preference elicitation methods typically query users
186
+ for their pairwise preference on a sequence of pairs of op-
187
+ tions to identify their utilities for different characteristics of
188
+ the options. This approach has been extended and applied to
189
+ fairness metric elicitation (Hiranandani et al., 2020), allow-
190
+ ing efficient learning of linear (e.g., Eq. (4)) and non-linear
191
+ metrics from finite and noisy preference feedback.
192
+ Imitation learning (Osa et al., 2018) is a type of supervised
193
+ machine learning that seeks to produce a general-use policy
194
+ ˆπ based on demonstrated trajectories of states and actions,
195
+ ˜ξ = (˜s1, ˜a1, ˜s2, . . . , ˜sT ). Inverse reinforcement learning
196
+ methods (Abbeel & Ng, 2004; Ziebart et al., 2008) seek
197
+ to rationalize the demonstrated trajectories as the result
198
+ of (near-) optimal policies on an estimated cost or reward
199
+ function. Feature matching (Abbeel & Ng, 2004) plays a key
200
+ role in these methods, guaranteeing if the expected feature
201
+ counts match, the estimated policy ˆπ will have an expected
202
+ cost under the demonstrator’s unknown fixed cost function
203
+ weights ˜w ∈ RK equal to the average of the demonstrated
204
+ trajectories:
205
+ Eξ∼ˆπ [fk(ξ)] = 1
206
+ N
207
+ N
208
+
209
+ i=1
210
+ fk
211
+
212
+ ˜ξi
213
+
214
+ , ∀k
215
+ (5)
216
+ =⇒ Eξ∼ˆπ [cost ˜
217
+ w(ξ)] = 1
218
+ N
219
+ N
220
+
221
+ i=1
222
+ cost ˜
223
+ w
224
+
225
+ ˜ξi
226
+
227
+ ,
228
+ where fk(ξ) = �
229
+ st∈ξ fk (st).
230
+ Syed & Schapire (2007) seeks to outperform the set of
231
+ demonstrations when the signs of the unknown cost function
232
+
233
+ Superhuman Fairness
234
+ are known, ˜wk ≥ 0, by making the inequality,
235
+ Eξ∼π [fk(ξ)] ≤ 1
236
+ N
237
+ N
238
+
239
+ i=1
240
+ fk
241
+
242
+ ˜ξi
243
+
244
+ , ∀k,
245
+ (6)
246
+ strict for at least one feature. Subdominance minimization
247
+ (Ziebart et al., 2022) seeks to produce trajectories that out-
248
+ perform each demonstration by a margin:
249
+ fk(ξ) + mk ≤ fk(˜ξi), ∀i, k,
250
+ (7)
251
+ under the same assumption of known cost weight signs.
252
+ However, since this is often infeasible, the approach in-
253
+ stead minimizes the subdominance, which measures the
254
+ α-weighted violation of this inequality:
255
+ subdomα(ξ, ˜ξ) ≜
256
+
257
+ k
258
+
259
+ αk
260
+
261
+ fk(ξ) − fk(˜ξ)
262
+
263
+ + 1
264
+
265
+ + , (8)
266
+ where [f(x)]+ ≜ max(f(x), 0) is the hinge function and
267
+ the per-feature margin has been reparameterized as α−1
268
+ k .
269
+ Previous work (Ziebart et al., 2022) has employed subdom-
270
+ inance minimization in conjunction with inverse optimal
271
+ control:
272
+ min
273
+ w min
274
+ α
275
+ N
276
+
277
+ i=1
278
+ K
279
+
280
+ k=1
281
+ subdomα(ξ∗(w), ˜ξi), where:
282
+ ξ∗(w) = argmin
283
+ ξ
284
+
285
+ k
286
+ wkfk(ξ),
287
+ learning the cost function parameters w for the optimal tra-
288
+ jectory ξ∗(w) that minimizes subdominance. One contribu-
289
+ tion of this paper is extending subdominance minimization
290
+ to the more flexible prediction models needed for fairness-
291
+ aware classification that are not directly conditioned on cost
292
+ features or performance/fairness metrics.
293
+ 3. Subdominance Minimization for Improved
294
+ Fairness-Aware Classification
295
+ We approach fair classification from an imitation learning
296
+ perspective. We assume vectors of (human-provided) ref-
297
+ erence decisions are available that roughly reflect desired
298
+ fairness-performance trade-offs, but are also noisy. Our
299
+ goal is to construct a fairness-aware classifier that outper-
300
+ forms reference decisions on all performance and fairness
301
+ measures on withheld data as frequently as possible.
302
+ 3.1. Superhumanness and Subdominance
303
+ We consider reference decisions ˜y = {˜yj}M
304
+ j=1 that are
305
+ drawn from a human decision-maker or baseline method ˜P,
306
+ on a set of M items, XM×L = {xj}M
307
+ j=1, where L is the num-
308
+ ber of attributes in each of M items xj. Group membership
309
+ Figure 2. A Pareto fron-
310
+ tier for possible ˆPθ (blue)
311
+ optimally trading off pre-
312
+ dictive performance (e.g.,
313
+ inaccuracy) and group
314
+ unfairness. The model-
315
+ produced decision (red
316
+ point) defines dominance
317
+ boundaries (solid red)
318
+ and margin boundaries
319
+ (dashed red), which in-
320
+ cur subdominance (green
321
+ lines) on three examples.
322
+ attributes am from vector a indicate to which group item m
323
+ belongs.
324
+ The predictive performance and fairness of decisions ˆy for
325
+ each item are assessed based on ground truth y and group
326
+ membership a using a set of predictive loss and unfairness
327
+ measures {fk(ˆy, y, a)}.
328
+ Definition 3.1. A fairness-aware classifier is considered γ-
329
+ superhuman for a given set of predictive loss and unfairness
330
+ measures {fk} if its decisions ˆy satisfy:
331
+ P (f (ˆy, y, a) ⪯ f (˜y, y, a)) ≥ γ.
332
+ If strict Pareto dominance is required to be γ-superhuman,
333
+ which is often effectively true for continuous domains, then
334
+ by definition, at most (1 − γ)% of human decision makers
335
+ could be γ-superhuman. However, far fewer than (1 − γ)
336
+ may be γ−superhuman if pairs of human decisions do not
337
+ Pareto dominate one another in either direction (i.e., neither
338
+ f (˜y, y, a) ⪯ f (˜y′, y, a) nor f (˜y′, y, a) ⪯ f (˜y, y, a)
339
+ for pairs of human decisions ˜y and ˜y′). From this perspec-
340
+ tive, any decisions with γ−superhuman performance more
341
+ than (1 − γ)% of the time exceed the performance limit for
342
+ the distribution of human demonstrators.
343
+ Unfortunately, directly maximizing γ is difficult in part
344
+ due to the discontinuity of Pareto dominance (⪯). The
345
+ subdominance (Ziebart et al., 2022) serves as a convex upper
346
+ bound for non-dominance in each metric {fk} and on 1 − γ
347
+ in aggregate:
348
+ subdomk
349
+ αk(ˆy, ˜y, y, a) ≜ [αk (fk(ˆy, y, a) − fk(˜y, y, a)) + 1]+ .
350
+ subdomα(ˆy, ˜y, y, a) ≜
351
+
352
+ k
353
+ subdomk
354
+ αk(ˆy, ˜y, y, a).
355
+ (9)
356
+ Given N vectors of reference decisions as demonstrations,
357
+ ˜Y = {˜yi}N
358
+ i=1, the subdominance for decision vector ˆy with
359
+ respect to the set of demonstrations is1
360
+ subdomα(ˆy, ˜Y, y, a) = 1
361
+ N
362
+
363
+ ˜y∈ ˜
364
+ Y
365
+ subdomα(ˆy, ˜y, y, a),
366
+ 1For notational simplicity, we assume all demonstrated deci-
367
+ sions ˜y ∈ ˜Y correspond to the same M items represented in X.
368
+ Generalization to unique X for each demonstration is straightfor-
369
+ ward.
370
+
371
+ Superhuman Fairness
372
+ where ˆyi is the predictions produced by our model for the
373
+ set of items Xi, and ˆY is the set of these prediction sets,
374
+ ˆY = {ˆyi}N
375
+ i=1. The subdominance is illustrated by Figure 2.
376
+ Following concepts from support vector machines (Cortes &
377
+ Vapnik, 1995), reference decisions ˜y that actively constrain
378
+ the predictions ˆy in a particular feature dimension, k, are
379
+ referred to as support vectors and denoted as:
380
+ ˜YSVk(ˆy, αk) =
381
+
382
+ ˜y|αk(fk(ˆy) − fk(˜y)) + 1 ≥ 0
383
+
384
+ .
385
+ 3.2. Performance-Fairness Subdominance
386
+ Minimization
387
+ We consider probabilistic predictors Pθ : X M → ∆YM
388
+ that make structured predictions over the set of items in
389
+ the most general case, but can also be simplified to make
390
+ conditionally independent decisions for each item.
391
+ Definition 3.2. The minimally subdominant fairness-aware
392
+ classifier ˆPθ has model parameters θ chosen by:
393
+ argmin
394
+ θ
395
+ min
396
+ α⪰0 Eˆy|X∼Pθ
397
+
398
+ subdomα,1
399
+
400
+ ˆy, ˜Y, y, a
401
+ ��
402
+ + λ∥α∥1.
403
+ Hinge loss slopes α ≜ {αk}K
404
+ k=1 are also learned from the
405
+ data during training. For subdominance of kth feature, αk
406
+ indicates the degree of sensitivity to how much the algo-
407
+ rithm fails to sufficiently outperform demonstrations in that
408
+ feature. When αk value is higher, the algorithm chooses that
409
+ feature to minimize subdominance. In our setting, features
410
+ are loss/violation metrics defined to measure the perfor-
411
+ mance/fairness of a set of reference decisions.
412
+ We use the subgradient of subdominance with respect to θ
413
+ and α to update these variables iteratively, and after con-
414
+ vergence, the best learned weights θ∗ are used in the final
415
+ model ˆPθ∗. A commonly used model like logistic regression
416
+ can be used for ˆPθ.
417
+ Theorem 3.3. The gradient of expected subdominance un-
418
+ der Pθ with respect to the set of reference decisions {˜yi}N
419
+ i=1
420
+ is:
421
+ ∇θEˆy|X∼ ˆ
422
+
423
+
424
+ ����
425
+
426
+ k
427
+ Γk(ˆy, ˜
428
+ Y,y,a)
429
+
430
+ ��
431
+
432
+ min
433
+ αk
434
+
435
+ subdomk
436
+ αk
437
+
438
+ ˆy, ˜Y, y, a
439
+
440
+ + λkαk
441
+
442
+
443
+ ����
444
+ = Eˆy|X∼ ˆ
445
+
446
+ � ��
447
+ k
448
+ Γk(ˆy, ˜Y, y, a)
449
+
450
+ ∇θ log ˆPθ(ˆy|X)
451
+
452
+ ,
453
+ where the optimal αk for each γk is obtained from:
454
+ αk = argmin
455
+ α(m)
456
+ k
457
+ m such that fk (ˆy) + λ ≤ 1
458
+ m
459
+ m
460
+
461
+ j=1
462
+ fk
463
+
464
+ ˜y(j)�
465
+ ,
466
+ using α(j)
467
+ k
468
+ =
469
+ 1
470
+ fk(ˆy(j))−fk(˜y(j)) to represent the αk value
471
+ that would make the demonstration with the jth smallest fk
472
+ feature, ˜y(j), a support vector with zero subdominance.
473
+ Using gradient descent, we update the model weights θ
474
+ using an approximation of the gradient based on a set of
475
+ sampled predictions ˆy ∈ ˆY from the model ˆPθ:
476
+ θ ← θ + η
477
+
478
+ ��
479
+ ˆy∈ ˆ
480
+ Y
481
+ ��
482
+ k
483
+ Γk(ˆy, ˜Y, y, a)
484
+
485
+ ∇θ log ˆPθ(ˆy|X)
486
+
487
+ � ,
488
+ We show the steps required for the training of our model in
489
+ Algorithm 1. Reference decisions {˜yi}N
490
+ i=1 from a human
491
+ decision-maker or baseline method ˜P are provided as input
492
+ to the algorithm.
493
+ θ is set to an initial value. In each
494
+ iteration of the algorithm, we first sample a set of model
495
+ predictions {ˆyi}N
496
+ i=1 from ˆPθ(.|Xi) for the matching items
497
+ used for reference decisions {˜yi}N
498
+ i=1. We then find the new
499
+ θ (and α) based on the algorithms discussed in Theorem
500
+ 3.3.
501
+ Algorithm 1: Subdominance policy gradient opti-
502
+ mization
503
+ Draw N set of reference decisions {˜yi}N
504
+ i=1 from a
505
+ human decision-maker or baseline method ˜P.
506
+ Initialize: θ ← θ0;
507
+ while θ not converged do
508
+ Sample model predictions {ˆyi}N
509
+ i=1 from
510
+ ˆPθ(.|Xi) for the matching items used in
511
+ reference decisions {˜yi}N
512
+ i=1;
513
+ for k ∈ {1, ..., K} do
514
+ Sort reference decisions {˜yi}N
515
+ i=1 in
516
+ ascending order based on their kth feature
517
+ value fk(˜yi): {˜y(j)}N
518
+ j=1;
519
+ Compute α(j)
520
+ k
521
+ =
522
+ 1
523
+ fk(˜y(j))−fk(ˆy(j));
524
+ αk = argmin
525
+ α(m)
526
+ k
527
+ m
528
+ such that fk
529
+ �ˆy(j)�
530
+ ≤ 1
531
+ m
532
+ �m
533
+ j=1 fk
534
+ �˜y(j)�
535
+ ;
536
+ Compute Γk(ˆyi, ˜Y, y, a);
537
+ θ ← θ +
538
+ η
539
+ N
540
+
541
+ i
542
+ ��
543
+ k Γk(ˆyi, ˜Y, y, a)
544
+
545
+ ∇θ log ˆPθ(ˆyi|Xi);
546
+ 3.3. Generalization Bounds
547
+ With a small effort, we extend the generalization bounds
548
+ based on support vectors developed for inverse optimal con-
549
+ trol subdominance minimization (Ziebart et al., 2022).
550
+ Theorem 3.4.
551
+ A classifier
552
+ ˆPθ
553
+ trained to minimize
554
+ subdomα (ˆy, ˜yi) on a set of N iid reference decisions
555
+ has the support vector set
556
+ ��
557
+ ˆy:Pθ(ˆy|X)>0 ˜YSVk (ˆy, αk)
558
+
559
+ defined by the union of support vectors for any decision
560
+ with support under ˆPθ. Such a classifier is on average γ-
561
+ superhuman on the population distribution with: γ = 1−
562
+ 1
563
+ N
564
+ ����K
565
+ k=1
566
+
567
+ ˆy:Pθ(ˆy|X)>0 ˜YS Vk (ˆy, αk)
568
+ ���.
569
+ This generalization bound requires overfitting to the training
570
+
571
+ Superhuman Fairness
572
+ 0.000
573
+ 0.025
574
+ 0.050
575
+ 0.075
576
+ 0.100
577
+ 0.125
578
+ 0.150
579
+ 0.175
580
+ D.DP
581
+ 0.20
582
+ 0.22
583
+ 0.24
584
+ 0.26
585
+ 0.28
586
+ 0.30
587
+ 0.32
588
+ 0.34
589
+ Prediction error
590
+ 1/
591
+ DP
592
+ 1/
593
+ error
594
+ Adult
595
+ fair_logloss_eqodds
596
+ fair_logloss_dp
597
+ post_proc_eqodds
598
+ post_proc_dp
599
+ MFOpt
600
+ post_proc_demos
601
+ superhuman_train
602
+ superhuman_test
603
+ 0.00
604
+ 0.05
605
+ 0.10
606
+ 0.15
607
+ 0.20
608
+ 0.25
609
+ 0.30
610
+ D.EqOdds
611
+ 0.20
612
+ 0.22
613
+ 0.24
614
+ 0.26
615
+ 0.28
616
+ 0.30
617
+ 0.32
618
+ 0.34
619
+ Prediction error
620
+ 1/
621
+ EqOdds
622
+ 1/
623
+ error
624
+ Adult
625
+ fair_logloss_eqodds
626
+ fair_logloss_dp
627
+ post_proc_eqodds
628
+ post_proc_dp
629
+ MFOpt
630
+ post_proc_demos
631
+ superhuman_train
632
+ superhuman_test
633
+ 0.10
634
+ 0.15
635
+ 0.20
636
+ 0.25
637
+ 0.30
638
+ 0.35
639
+ 0.40
640
+ 0.45
641
+ 0.50
642
+ D.PRP
643
+ 0.20
644
+ 0.22
645
+ 0.24
646
+ 0.26
647
+ 0.28
648
+ 0.30
649
+ 0.32
650
+ 0.34
651
+ Prediction error
652
+ 1/
653
+ PRP
654
+ 1/
655
+ error
656
+ Adult
657
+ fair_logloss_eqodds
658
+ fair_logloss_dp
659
+ post_proc_eqodds
660
+ post_proc_dp
661
+ MFOpt
662
+ post_proc_demos
663
+ superhuman_train
664
+ superhuman_test
665
+ 0.0
666
+ 0.1
667
+ 0.2
668
+ 0.3
669
+ 0.4
670
+ 0.5
671
+ D.DP
672
+ 0.35
673
+ 0.40
674
+ 0.45
675
+ 0.50
676
+ 0.55
677
+ Prediction error
678
+ 1/
679
+ DP
680
+ 1/
681
+ error
682
+ COMPAS
683
+ fair_logloss_eqodds
684
+ fair_logloss_dp
685
+ post_proc_eqodds
686
+ post_proc_dp
687
+ MFOpt
688
+ post_proc_demos
689
+ superhuman_train
690
+ superhuman_test
691
+ 0.0
692
+ 0.1
693
+ 0.2
694
+ 0.3
695
+ 0.4
696
+ 0.5
697
+ 0.6
698
+ 0.7
699
+ D.EqOdds
700
+ 0.35
701
+ 0.40
702
+ 0.45
703
+ 0.50
704
+ 0.55
705
+ Prediction error
706
+ 1/
707
+ EqOdds
708
+ 1/
709
+ error
710
+ COMPAS
711
+ fair_logloss_eqodds
712
+ fair_logloss_dp
713
+ post_proc_eqodds
714
+ post_proc_dp
715
+ MFOpt
716
+ post_proc_demos
717
+ superhuman_train
718
+ superhuman_test
719
+ 0.15
720
+ 0.20
721
+ 0.25
722
+ 0.30
723
+ 0.35
724
+ 0.40
725
+ D.PRP
726
+ 0.35
727
+ 0.40
728
+ 0.45
729
+ 0.50
730
+ 0.55
731
+ Prediction error
732
+ 1/
733
+ PRP
734
+ 1/
735
+ error
736
+ COMPAS
737
+ fair_logloss_eqodds
738
+ fair_logloss_dp
739
+ post_proc_eqodds
740
+ post_proc_dp
741
+ MFOpt
742
+ post_proc_demos
743
+ superhuman_train
744
+ superhuman_test
745
+ Figure 3. Prediction error versus difference of: Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive Rate Parity
746
+ (D.PR) on test data using noiseless training data (ϵ = 0) for Adult (top row) and COMPAS (bottom row) datasets.
747
+ data so that the ˆPθ has restricted support (i.e., ˆPθ(ˆy|X) = 0
748
+ for many ˆy) or becomes deterministic.
749
+ 4. Experiments
750
+ The goal of our approach is to produce a fairness-aware
751
+ prediction method that outperforms reference (human) de-
752
+ cisions on multiple fairness/performance measures. In this
753
+ section, we discuss our experimental design to synthesize
754
+ reference decisions with varying levels of noise, evaluate
755
+ our method, and provide comparison baselines.
756
+ 4.1. Training and Testing Dataset Construction
757
+ To emulate human decision-making with various levels of
758
+ noise, we add noise to the ground truth data of benchmark
759
+ fairness datasets and apply fair learning methods over re-
760
+ peated randomized dataset splits. We describe this process
761
+ in detail in the following section.
762
+ Datasets
763
+ We perform experiments on two benchmark fair-
764
+ ness datasets:
765
+ • UCI Adult dataset (Dheeru & Karra Taniskidou, 2017)
766
+ considers predicting whether a household’s income is
767
+ higher than $50K/yr based on census data. Group mem-
768
+ bership is based on gender. The dataset consists of 45,222
769
+ items.
770
+ • COMPAS dataset (Larson et al., 2016) considers predict-
771
+ ing recidivism with group membership based on race. It
772
+ consists of 6,172 examples.
773
+ Partitioning the data
774
+ We first split entire dataset
775
+ randomly into a disjoint train (train-sh) and test
776
+ (test-sh) set of equal size. The test set (test-sh) is
777
+ entirely withheld from the training procedure and ultimately
778
+ used solely for evaluation. To produce each demonstration
779
+ (a vector of reference decisions), we split the (train-sh)
780
+ set, randomly into a disjoint train (train-pp) and test
781
+ (test-pp) set of equal size.
782
+ Noise insertion
783
+ We randomly flip ϵ% of the ground truth
784
+ labels y and group membership attributes a to add noise to
785
+ our demonstration-producing process.
786
+ Fair classifier ˜P:
787
+ Using the noisy data, we provide ex-
788
+ isting fairness-aware methods with labeled train-pp
789
+ data and unlabeled test-pp to produce decisions on the
790
+ test-pp data as demonstrations ˜y. Specifically, we em-
791
+ ploy:
792
+ • The Post-processing method of Hardt et al. (2016), which
793
+ aims to reduce both prediction error and {demographic
794
+ parity or equalized odds} at the same time. We use de-
795
+ mographic parity as the fairness constraint. We produce
796
+ demonstrations using this method for Adult dataset.
797
+ • Robust fairness for logloss-based classification (Rezaei
798
+ et al., 2020) employs distributional robustness to match
799
+ target fairness constraint(s) while robustly minimizing the
800
+ log loss. We use equalized odds as the fairness constraint.
801
+
802
+ Superhuman Fairness
803
+ 0.00
804
+ 0.05
805
+ 0.10
806
+ 0.15
807
+ 0.20
808
+ 0.25
809
+ D.DP
810
+ 0.20
811
+ 0.25
812
+ 0.30
813
+ 0.35
814
+ 0.40
815
+ 0.45
816
+ Prediction error
817
+ 1/
818
+ DP
819
+ 1/
820
+ error
821
+ Adult
822
+ fair_logloss_eqodds
823
+ fair_logloss_dp
824
+ post_proc_eqodds
825
+ post_proc_dp
826
+ MFOpt
827
+ post_proc_demos
828
+ superhuman_train
829
+ superhuman_test
830
+ 0.00
831
+ 0.05
832
+ 0.10
833
+ 0.15
834
+ 0.20
835
+ 0.25
836
+ 0.30
837
+ D.EqOdds
838
+ 0.20
839
+ 0.25
840
+ 0.30
841
+ 0.35
842
+ 0.40
843
+ 0.45
844
+ Prediction error
845
+ 1/
846
+ EqOdds
847
+ 1/
848
+ error
849
+ Adult
850
+ fair_logloss_eqodds
851
+ fair_logloss_dp
852
+ post_proc_eqodds
853
+ post_proc_dp
854
+ MFOpt
855
+ post_proc_demos
856
+ superhuman_train
857
+ superhuman_test
858
+ 0.15
859
+ 0.20
860
+ 0.25
861
+ 0.30
862
+ 0.35
863
+ 0.40
864
+ D.PRP
865
+ 0.20
866
+ 0.25
867
+ 0.30
868
+ 0.35
869
+ 0.40
870
+ 0.45
871
+ Prediction error
872
+ 1/
873
+ PRP
874
+ 1/
875
+ error
876
+ Adult
877
+ fair_logloss_eqodds
878
+ fair_logloss_dp
879
+ post_proc_eqodds
880
+ post_proc_dp
881
+ MFOpt
882
+ post_proc_demos
883
+ superhuman_train
884
+ superhuman_test
885
+ 0.0
886
+ 0.1
887
+ 0.2
888
+ 0.3
889
+ 0.4
890
+ 0.5
891
+ 0.6
892
+ D.DP
893
+ 0.35
894
+ 0.40
895
+ 0.45
896
+ 0.50
897
+ 0.55
898
+ Prediction error
899
+ 1/
900
+ DP
901
+ 1/
902
+ error
903
+ COMPAS
904
+ fair_logloss_eqodds
905
+ fair_logloss_dp
906
+ post_proc_eqodds
907
+ post_proc_dp
908
+ MFOpt
909
+ post_proc_demos
910
+ superhuman_train
911
+ superhuman_test
912
+ 0.0
913
+ 0.1
914
+ 0.2
915
+ 0.3
916
+ 0.4
917
+ 0.5
918
+ 0.6
919
+ 0.7
920
+ 0.8
921
+ D.EqOdds
922
+ 0.35
923
+ 0.40
924
+ 0.45
925
+ 0.50
926
+ 0.55
927
+ Prediction error
928
+ 1/
929
+ EqOdds
930
+ 1/
931
+ error
932
+ COMPAS
933
+ fair_logloss_eqodds
934
+ fair_logloss_dp
935
+ post_proc_eqodds
936
+ post_proc_dp
937
+ MFOpt
938
+ post_proc_demos
939
+ superhuman_train
940
+ superhuman_test
941
+ 0.15
942
+ 0.20
943
+ 0.25
944
+ 0.30
945
+ 0.35
946
+ D.PRP
947
+ 0.35
948
+ 0.40
949
+ 0.45
950
+ 0.50
951
+ 0.55
952
+ Prediction error
953
+ 1/
954
+ PRP
955
+ 1/
956
+ error
957
+ COMPAS
958
+ fair_logloss_eqodds
959
+ fair_logloss_dp
960
+ post_proc_eqodds
961
+ post_proc_dp
962
+ MFOpt
963
+ post_proc_demos
964
+ superhuman_train
965
+ superhuman_test
966
+ Figure 4. Experimental results on the Adult and COMPAS datasets with noisy demonstrations (ϵ = 0.2). Margin boundaries are shown
967
+ with dotted red lines. Each plot shows the relationships between two features.
968
+ We employ this method to produce demonstrations for
969
+ COMPAS dataset.
970
+ We repeat the process of partitioning train-sh N =
971
+ 50 times to create randomized partitions of train-pp
972
+ and test-pp and then produce a set of demonstrations
973
+ {˜y}50
974
+ i=1.
975
+ 4.2. Evaluation Metrics and Baselines
976
+ Predictive Performance and Fairness Measures
977
+ Our
978
+ focus for evaluation is on outperforming demonstrations in
979
+ multiple fairness and performance measures. We use K = 4
980
+ measures: inaccuracy (Prediction error), difference
981
+ from demographic parity (D.DP), difference from equalized
982
+ odds (D.EqOdds), difference from predictive rate parity
983
+ (D.PRP).
984
+ Baseline methods
985
+ As baseline comparisons, we train five
986
+ different models on the entire train set (train-sh) and
987
+ then evaluate them on the withheld test data (test-sh):
988
+ • The Post-processing model of (Hardt et al., 2016)
989
+ with demographic parity as the fairness constraint
990
+ (post proc dp).
991
+ • The Post-processing model of (Hardt et al., 2016)
992
+ with
993
+ equalized
994
+ odds
995
+ as
996
+ the
997
+ fairness
998
+ constraint
999
+ (post proc eqodds).
1000
+ • The Robust Fair-logloss model of (Rezaei et al., 2020)
1001
+ with demographic parity as the fairness constraint
1002
+ (fair logloss dp).
1003
+ • The Robust Fair-logloss model of (Rezaei et al.,
1004
+ 2020)
1005
+ equalized
1006
+ odds
1007
+ as
1008
+ the
1009
+ fairness
1010
+ constraint
1011
+ (fair logloss eqodds).
1012
+ • The Multiple Fairness Optimization framework of Hsu
1013
+ et al. (2022) which is designed to satisfy three conflict-
1014
+ ing fairness metrics (demographic parity, equalized odds
1015
+ and predictive rate parity) to the best extent possible
1016
+ (MFOpt).
1017
+ Hinge Loss Slopes
1018
+ As discussed previously, αk value cor-
1019
+ responds to the hinge loss slope, which defines by how far
1020
+ a produced decision does not sufficiently outperform the
1021
+ demonstrations on the kth feature. When the αk is large, the
1022
+ model chooses heavily weights support vector reference de-
1023
+ cisions for that particular k when minimizing subdominance.
1024
+ We report these values in our experiments.
1025
+ 4.3. Superhuman Model Specification and Updates
1026
+ We use a logistic regression model Pθ0 with first-order mo-
1027
+ ments feature function, φ(y, x) = [x1y, x2y, . . . xmy]⊤,
1028
+ and weights θ applied independently on each item as our
1029
+ decision model. During the training process, we update the
1030
+ model parameter θ to reduce subdominance.
1031
+ Sample from Model ˆPθ
1032
+ In each iteration of the algorithm,
1033
+ we first sample prediction vectors {ˆyi}N
1034
+ i=1 from ˆPθ(.|Xi)
1035
+
1036
+ Superhuman Fairness
1037
+ Table 1. Experimental results on noise-free datasets, along with the αk values learned for each feature in subdominance minimization.
1038
+ Method
1039
+ Dataset
1040
+ Adult
1041
+ COMPAS
1042
+ Prediction error
1043
+ DP diff
1044
+ EqOdds diff
1045
+ PRP diff
1046
+ Prediction error
1047
+ DP diff
1048
+ EqOdds diff
1049
+ PRP diff
1050
+ αk
1051
+ 62.62
1052
+ 35.93
1053
+ 6.46
1054
+ 4.98
1055
+ 82.5
1056
+ 4.27
1057
+ 3.15
1058
+ 12.72
1059
+ γ-superhuman
1060
+ 98%
1061
+ 94%
1062
+ 100%
1063
+ 100%
1064
+ 100%
1065
+ 100%
1066
+ 100%
1067
+ 100%
1068
+ MinSub-Fair (ours)
1069
+ 0.210884
1070
+ 0.025934
1071
+ 0.006690
1072
+ 0.183138
1073
+ 0.366806
1074
+ 0.040560
1075
+ 0.124683
1076
+ 0.171177
1077
+ MFOpt
1078
+ 0.195696
1079
+ 0.063152
1080
+ 0.077549
1081
+ 0.209199
1082
+ 0.434743
1083
+ 0.005830
1084
+ 0.069519
1085
+ 0.161629
1086
+ post proc dp
1087
+ 0.212481
1088
+ 0.030853
1089
+ 0.220357
1090
+ 0.398278
1091
+ 0.345964
1092
+ 0.010383
1093
+ 0.077020
1094
+ 0.173689
1095
+ post proc eqodds
1096
+ 0.213873
1097
+ 0.118802
1098
+ 0.007238
1099
+ 0.313458
1100
+ 0.363395
1101
+ 0.041243
1102
+ 0.060244
1103
+ 0.151040
1104
+ fair logloss dp
1105
+ 0.281194
1106
+ 0.004269
1107
+ 0.047962
1108
+ 0.124797
1109
+ 0.467610
1110
+ 0.000225
1111
+ 0.071392
1112
+ 0.172418
1113
+ fair logloss eqodds
1114
+ 0.254060
1115
+ 0.153543
1116
+ 0.030141
1117
+ 0.116579
1118
+ 0.451496
1119
+ 0.103093
1120
+ 0.029085
1121
+ 0.124447
1122
+ for the matching items used in demonstrations {˜yi}N
1123
+ i=1. In
1124
+ the implementation, to produce the ith sample, we look up
1125
+ the indices of the items used in ˜yi, which constructs item set
1126
+ Xi. Now we make predictions using our model on this item
1127
+ set ˆPθ(.|Xi). The model produces a probability distribution
1128
+ for each item which can be sampled and used as a prediction
1129
+ {ˆyi}N
1130
+ i=1.
1131
+ Update model parameters θ
1132
+ We update θ until conver-
1133
+ gence using Algorithm 1. For our logistic regression model,
1134
+ the gradient is:
1135
+ ∇θ log ˆPθ(ˆy|X) = φ(ˆy, X) − Eˆy|X∼ ˆ
1136
+ Pθ [φ(ˆy, X)] ,
1137
+ where φ denotes the feature function and φ(ˆy, X) =
1138
+ �M
1139
+ m=1 φ(ˆym, xm) is the corresponding feature function
1140
+ for the ith set of reference decisions.
1141
+ 4.4. Experimental Results
1142
+ After training each model, e.g., obtaining the best
1143
+ model weight θ∗ from the training data (train-sh)
1144
+ for superhuman, we evaluate each on unseen test data
1145
+ (test-sh). We employ hard predictions (i.e., the most
1146
+ probable label) using our approach at time time rather than
1147
+ randomly sampling.
1148
+ Noise-free reference decisions
1149
+ Our first set of experi-
1150
+ ments considers learning from reference decisions with no
1151
+ added noise. The results are shown in Figure 3. We ob-
1152
+ serve that our approach outperforms demonstrations in all
1153
+ fairness metrics and shows comparable performance in accu-
1154
+ racy. The (post proc dp) performs almost as an average
1155
+ of demonstrations in all dimensions, hence our approach
1156
+ can outperform it in all fairness metrics. In comparison
1157
+ to (post proc dp), our approach can outperform in all
1158
+ fairness metrics but is slightly worse in prediction error.
1159
+ We show the experiment results along with αk values in
1160
+ Table 1. Note that the margin boundaries (dotted red lines)
1161
+ in Figure 3 are equal to
1162
+ 1
1163
+ αk for feature k, hence there is re-
1164
+ verse relation between αk and margin boundary for feature
1165
+ k. We observe larger values of αk for prediction error and
1166
+ 0.00
1167
+ 0.02
1168
+ 0.04
1169
+ 0.06
1170
+ 0.08
1171
+ 0.10
1172
+ Noise Ratio
1173
+ 0.86
1174
+ 0.88
1175
+ 0.90
1176
+ 0.92
1177
+ 0.94
1178
+ 0.96
1179
+ 0.98
1180
+ 1.00
1181
+ -Superhumn
1182
+ Adult
1183
+ Predictive value difference
1184
+ Equalized odds difference
1185
+ Demographic parity difference
1186
+ ZeroOne
1187
+ 0.00
1188
+ 0.01
1189
+ 0.02
1190
+ 0.03
1191
+ 0.04
1192
+ 0.05
1193
+ 0.06
1194
+ 0.07
1195
+ 0.08
1196
+ Noise Ratio
1197
+ 0.4
1198
+ 0.5
1199
+ 0.6
1200
+ 0.7
1201
+ 0.8
1202
+ 0.9
1203
+ 1.0
1204
+ -Superhumn
1205
+ Adult
1206
+ Predictive value difference
1207
+ Equalized odds difference
1208
+ Demographic parity difference
1209
+ ZeroOne
1210
+ Figure 5. The relationship between the ratio of augmented noise
1211
+ in the label and the protected attribute of reference decisions
1212
+ produced by post-processing (upper) and fair-logloss (lower)
1213
+ and achieving γ-superhuman performance in our approach.
1214
+ demographic parity difference. The reason is that these fea-
1215
+ tures are already optimized in demonstrations and our model
1216
+ has to increase αk values for those features to sufficiently
1217
+ outperform them.
1218
+ Noisy reference decisions
1219
+ In our second set of experi-
1220
+ ments, we introduce significant amounts of noise (ϵ = 0.2)
1221
+ into our reference decisions. The results for these experi-
1222
+ ments are shown in Figure 4. We observe that in the case of
1223
+ learning from noisy demonstrations, our approach still out-
1224
+ performs the reference decisions. The main difference here
1225
+ is that due to the noisy setting, demonstrations have worse
1226
+ prediction error but regardless of this issue, our approach
1227
+
1228
+ Superhuman Fairness
1229
+ Table 2. Experimental results on datasets with noisy demonstrations, along with the αk values learned for each feature.
1230
+ Method
1231
+ Dataset
1232
+ Adult
1233
+ COMPAS
1234
+ Prediction error
1235
+ DP diff
1236
+ EqOdds diff
1237
+ PRP diff
1238
+ Prediction error
1239
+ DP diff
1240
+ EqOdds diff
1241
+ PRP diff
1242
+ αk
1243
+ 29.63
1244
+ 10.77
1245
+ 5.83
1246
+ 13.42
1247
+ 29.33
1248
+ 4.51
1249
+ 3.34
1250
+ 57.74
1251
+ γ-superhuman
1252
+ 100%
1253
+ 100%
1254
+ 100%
1255
+ 100%
1256
+ 100%
1257
+ 100%
1258
+ 100%
1259
+ 98%
1260
+ MinSub-Fair (ours)
1261
+ 0.202735
1262
+ 0.030961
1263
+ 0.009263
1264
+ 0.176004
1265
+ 0.359985
1266
+ 0.031962
1267
+ 0.036680
1268
+ 0.172286
1269
+ MFOpt
1270
+ 0.195696
1271
+ 0.063152
1272
+ 0.077549
1273
+ 0.209199
1274
+ 0.459731
1275
+ 0.091892
1276
+ 0.039745
1277
+ 0.153257
1278
+ post proc dp
1279
+ 0.225462
1280
+ 0.064232
1281
+ 0.237852
1282
+ 0.400427
1283
+ 0.353164
1284
+ 0.087889
1285
+ 0.088414
1286
+ 0.160538
1287
+ post proc eqodds
1288
+ 0.224561
1289
+ 0.103158
1290
+ 0.010552
1291
+ 0.310070
1292
+ 0.351269
1293
+ 0.144190
1294
+ 0.158372
1295
+ 0.148493
1296
+ fair logloss dp
1297
+ 0.285549
1298
+ 0.007576
1299
+ 0.057659
1300
+ 0.115751
1301
+ 0.484620
1302
+ 0.005309
1303
+ 0.145502
1304
+ 0.183193
1305
+ fair logloss eqodds
1306
+ 0.254577
1307
+ 0.147932
1308
+ 0.012778
1309
+ 0.118041
1310
+ 0.487025
1311
+ 0.127163
1312
+ 0.011918
1313
+ 0.153869
1314
+ Table 3. Percentage of reference demonstrations that each method outperforms in all prediction/fairness measures.
1315
+ Method
1316
+ Adult(ϵ = 0.0)
1317
+ Adult(ϵ = 0.2)
1318
+ COMPAS(ϵ = 0.0)
1319
+ COMPAS(ϵ = 0.2)
1320
+ MinSub-Fair (ours)
1321
+ 96%
1322
+ 100%
1323
+ 100%
1324
+ 98%
1325
+ MFOpt
1326
+ 42%
1327
+ 0%
1328
+ 18%
1329
+ 18%
1330
+ post proc dp
1331
+ 16%
1332
+ 86%
1333
+ 100%
1334
+ 80%
1335
+ post proc eqodds
1336
+ 0%
1337
+ 66%
1338
+ 100%
1339
+ 88%
1340
+ fair logloss dp
1341
+ 0%
1342
+ 0%
1343
+ 0%
1344
+ 0%
1345
+ fair logloss eqodds
1346
+ 0%
1347
+ 0%
1348
+ 0%
1349
+ 0%
1350
+ still can achieve a competitive prediction error. We show
1351
+ the experimental results along with αk values in Table 2.
1352
+ Relationship of noise to superhuman performance
1353
+ We
1354
+ also evaluate the relationship between the amount of aug-
1355
+ mented noise in the label and protected attribute of demon-
1356
+ strations, with achieving γ-superhuman performance in our
1357
+ approach. As shown in Figure 5, with slightly increasing the
1358
+ amount of noise in demonstrations, our approach can outper-
1359
+ form 100% of demonstrations and reach to 1-superhuman
1360
+ performance. In Table 3 we show the percentage of demon-
1361
+ strations that each method can outperform across all predic-
1362
+ tion/fairness measures (i.e., the γ−superhuman value).
1363
+ 5. Conclusions
1364
+ In this paper, we introduce superhuman fairness, an ap-
1365
+ proach to fairness-aware classifier construction based on im-
1366
+ itation learning. Our approach avoids explicit performance-
1367
+ fairness trade-off specification or elicitation. Instead, it
1368
+ seeks to unambiguously outperform human decisions across
1369
+ multiple performance and fairness measures with maximal
1370
+ frequency. We develop a general framework for pursuing
1371
+ this based on subdominance minimization (Ziebart et al.,
1372
+ 2022) and policy gradient optimization methods (Sutton
1373
+ & Barto, 2018) that enable a broad class of probabilistic
1374
+ fairness-aware classifiers to be learned. Our experimental
1375
+ results show the effectiveness of our approach in outper-
1376
+ forming synthetic decisions corrupted by small amounts of
1377
+ label and group-membership noise when evaluated using
1378
+ multiple fairness criteria combined with predictive accuracy.
1379
+ Societal impacts
1380
+ By design, our approach has the po-
1381
+ tential to identify fairness-aware decision-making tasks in
1382
+ which human decisions can frequently be outperformed by
1383
+ a learned classifier on a set of provided performance and
1384
+ fairness measures. This has the potential to facilitate a tran-
1385
+ sition from manual to automated decisions that are preferred
1386
+ by all interested stakeholders, so long as their interests are
1387
+ reflected in some of those measures. However, our approach
1388
+ has limitations. First, when performance-fairness tradeoffs
1389
+ can either be fully specified (e.g., based on first principles)
1390
+ or effectively elicited, fairness-aware classifiers optimized
1391
+ for those trade-offs should produce better results than our
1392
+ approach, which operates under greater uncertainty cast by
1393
+ the noisiness of human decisions. Second, if target fair-
1394
+ ness concepts lie outside the set of metrics we consider,
1395
+ our resulting fairness-aware classifier will be oblivious to
1396
+ them. Third, our approach assumes human-demonstrated
1397
+ decision are well-intentioned, noisy reflections of desired
1398
+ performance-fairness trade-offs. If this is not the case, then
1399
+ our methods could succeed in outperforming them across all
1400
+ fairness measures, but still not provide an adequate degree
1401
+ of fairness.
1402
+ Future directions
1403
+ We have conducted experiments with
1404
+ a relatively small number of performance/fairness measures
1405
+ using a simplistic logistic regression model. Scaling our ap-
1406
+ proach to much larger numbers of measures and classi���ers
1407
+ with more expressive representations are both of great inter-
1408
+ est. Additionally, we plan to pursue experimental validation
1409
+ using human-provided fairness-aware decisions in addition
1410
+ to the synthetically-produced decisions we consider in this
1411
+ paper.
1412
+
1413
+ Superhuman Fairness
1414
+ References
1415
+ Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse
1416
+ reinforcement learning. In Proceedings of the Interna-
1417
+ tional Conference on Machine Learning, pp. 1–8, 2004.
1418
+ Blum, A. and Stangl, K. Recovering from biased data: Can
1419
+ fairness constraints improve accuracy? arXiv preprint
1420
+ arXiv:1912.01094, 2019.
1421
+ Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
1422
+ bridge University Press, 2004.
1423
+ Calders, T., Kamiran, F., and Pechenizkiy, M. Building
1424
+ classifiers with independency constraints. In 2009 IEEE
1425
+ International Conference on Data Mining Workshops, pp.
1426
+ 13–18. IEEE, 2009.
1427
+ Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K.
1428
+ Classification with fairness constraints: A meta-algorithm
1429
+ with provable guarantees. In ACM FAT*, 2019.
1430
+ Chen, L. and Pu, P. Survey of preference elicitation methods.
1431
+ Technical report, EPFL, 2004.
1432
+ Chouldechova, A. Fair prediction with disparate impact: A
1433
+ study of bias in recidivism prediction instruments. Big
1434
+ data, 5(2):153–163, 2017.
1435
+ Cortes, C. and Vapnik, V. Support-vector networks. Ma-
1436
+ chine learning, 20:273–297, 1995.
1437
+ Dheeru, D. and Karra Taniskidou, E. UCI machine learning
1438
+ repository, 2017. URL http://archive.ics.uci.
1439
+ edu/ml.
1440
+ Hardt, M., Price, E., and Srebro, N. Equality of opportunity
1441
+ in supervised learning. Advances in Neural Information
1442
+ Processing Systems, 29:3315–3323, 2016.
1443
+ Hiranandani, G., Narasimhan, H., and Koyejo, S. Fair perfor-
1444
+ mance metric elicitation. Advances in Neural Information
1445
+ Processing Systems, 33:11083–11095, 2020.
1446
+ Hsu, B., Mazumder, R., Nandy, P., and Basu, K. Pushing
1447
+ the limits of fairness impossibility: Who’s the fairest of
1448
+ them all? In Advances in Neural Information Processing
1449
+ Systems, 2022.
1450
+ Kamishima, T., Akaho, S., Asoh, H., and Sakuma, J.
1451
+ Fairness-aware classifier with prejudice remover regu-
1452
+ larizer. In Joint European Conference on Machine Learn-
1453
+ ing and Knowledge Discovery in Databases, pp. 35–50.
1454
+ Springer, 2012.
1455
+ Kleinberg, J., Mullainathan, S., and Raghavan, M. Inherent
1456
+ trade-offs in the fair determination of risk scores. arXiv
1457
+ preprint arXiv:1609.05807, 2016.
1458
+ Larson, J., Mattu, S., Kirchner, L., and Angwin, J. How we
1459
+ analyzed the compas recidivism algorithm. ProPublica,
1460
+ 9, 2016.
1461
+ Liu, S. and Vicente, L. N. Accuracy and fairness trade-
1462
+ offs in machine learning: A stochastic multi-objective
1463
+ approach. Computational Management Science, pp. 1–
1464
+ 25, 2022.
1465
+ Martinez, N., Bertran, M., and Sapiro, G. Minimax Pareto
1466
+ fairness: A multi objective perspective. In Proceedings of
1467
+ the International Conference on Machine Learning, pp.
1468
+ 6755–6764. PMLR, 13–18 Jul 2020.
1469
+ Menon, A. K. and Williamson, R. C. The cost of fairness in
1470
+ binary classification. In ACM FAT*, 2018.
1471
+ Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel,
1472
+ P., Peters, J., et al. An algorithmic perspective on imita-
1473
+ tion learning. Foundations and Trends® in Robotics, 7
1474
+ (1-2):1–179, 2018.
1475
+ Rezaei, A., Fathony, R., Memarrast, O., and Ziebart, B.
1476
+ Fairness for robust log loss classification. In Proceed-
1477
+ ings of the AAAI Conference on Artificial Intelligence,
1478
+ volume 34, pp. 5511–5518, 2020.
1479
+ Sutton, R. S. and Barto, A. G. Reinforcement learning: An
1480
+ introduction. MIT press, 2018.
1481
+ Syed, U. and Schapire, R. E. A game-theoretic approach to
1482
+ apprenticeship learning. Advances in neural information
1483
+ processing systems, 20, 2007.
1484
+ Vapnik, V. and Chapelle, O. Bounds on error expectation
1485
+ for support vector machines. Neural computation, 12(9):
1486
+ 2013–2036, 2000.
1487
+ Ziebart, B., Choudhury, S., Yan, X., and Vernaza, P. Towards
1488
+ uniformly superhuman autonomy via subdominance mini-
1489
+ mization. In International Conference on Machine Learn-
1490
+ ing, pp. 27654–27670. PMLR, 2022.
1491
+ Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
1492
+ Maximum entropy inverse reinforcement learning. In
1493
+ AAAI, volume 8, pp. 1433–1438, 2008.
1494
+
1495
+ Superhuman Fairness
1496
+ A. Proofs of Theorems
1497
+ Proof of Theorem 3.3. The gradient of the training objective with respect to model parameters θ is:
1498
+ ∇θEˆy|X∼ ˆ
1499
+
1500
+
1501
+ ����
1502
+
1503
+ k
1504
+ Γk(ˆy, ˜
1505
+ Y,y,a)
1506
+
1507
+ ��
1508
+
1509
+ min
1510
+ αk
1511
+
1512
+ subdomk
1513
+ αk
1514
+
1515
+ ˆy, ˜Y, y, a
1516
+
1517
+ + λkαk
1518
+
1519
+
1520
+ ���� = Eˆy|X∼ ˆ
1521
+
1522
+ � ��
1523
+ k
1524
+ Γk(ˆy, ˜Y, y, a)
1525
+
1526
+ ∇θ log ˆPθ(ˆy|X)
1527
+
1528
+ ,
1529
+ which follows directly from a property of gradients of logs of function:
1530
+ ∇θ log ˆP(ˆy|X) =
1531
+ 1
1532
+ ˆP(ˆy|X)
1533
+ ∇θˆP(ˆy|X) =⇒ ∇θˆPθ(ˆy|X) = ˆP(ˆy|X)∇θ log ˆP(ˆy|X).
1534
+ (10)
1535
+ We note that this is a well-known approach employed by policy-gradient methods in reinforcement learning (Sutton & Barto,
1536
+ 2018).
1537
+ Next, we consider how to obtain the α−minimized subdominance for a particular tuple (ˆy, ˜Y,y,a), Γk
1538
+
1539
+ ˆy, ˜Y, y, a
1540
+
1541
+ =
1542
+ minαk
1543
+
1544
+ subdomk
1545
+ αk
1546
+
1547
+ ˆy, ˜Y, y, a
1548
+
1549
+ + λkαk
1550
+
1551
+ , analytically.
1552
+ First, we note that subdomk
1553
+ αk
1554
+
1555
+ ˆy, ˜Y, y, a
1556
+
1557
+ + λkαk is comprised of hinged linear functions of αk, making it a convex
1558
+ and piece-wise linear function of αk. This has two important implications: (1) any point of the function for which the
1559
+ subgradient includes 0 is a global minimum of the function (Boyd & Vandenberghe, 2004); (2) an optimum must exist at a
1560
+ corner of the function: αk = 0 or where one of the hinge functions becomes active:
1561
+ αk(fk(ˆyi) − fk(˜yi)) + 1 = 0 =⇒ αk =
1562
+ 1
1563
+ fk(˜yi) − fk(ˆyi).
1564
+ (11)
1565
+ The subgradient for the jth of these points (ordered by fk value from smallest to largest and denoted fk(˜y(j)) for the
1566
+ demonstration) is:
1567
+ ∂αk subdomk
1568
+ αk
1569
+
1570
+ ˆy, ˜Y, y, a
1571
+ � ���
1572
+ αk=(fk(ˆy)−fk(˜y(j)))−1 = ∂αk
1573
+
1574
+ 1
1575
+ N
1576
+ j
1577
+
1578
+ i=1
1579
+
1580
+ αk
1581
+
1582
+ fk(ˆy) − fk(˜y(i))
1583
+
1584
+ + 1
1585
+
1586
+ +
1587
+ + λαk
1588
+
1589
+ = λ + 1
1590
+ N
1591
+ j−1
1592
+
1593
+ i=1
1594
+
1595
+ fk(ˆy) − fk(˜y(i))
1596
+
1597
+ +
1598
+
1599
+ 0, fk(ˆy) − fk(˜y(j))
1600
+
1601
+ ,
1602
+ where the final bracketed expression indicates the range of values added to the constant value preceding it.
1603
+ The smallest j for which the largest value in this range is positive must contain the 0 in its corresponding range, and is thus
1604
+ the provides the j value for the optimal αk value.
1605
+ Proof of Theorem 3.4. We extend the leave-one-out generalization bound of Ziebart et al. (2022) by considering the set of
1606
+ reference decisions that are support vectors for any learner decisions with non-zero probability. For the remaining reference
1607
+ decisions that are not part of this set, removing them from the training set would not change the optimal model choice
1608
+ and thus contribute zero error to the leave-one-out cross validation error, which is an almost unbiased estimate of the
1609
+ generalization error (Vapnik & Chapelle, 2000).
1610
+ B. Additional Results
1611
+ In the main paper, we only included plots that show the relationship of a fairness metric with prediction error. To show the
1612
+ relation between each pair of fairness metrics, in Figures 6 and 7 we show the remaining plots removed from Figures 3 and
1613
+ 4 respectively.
1614
+
1615
+ Superhuman Fairness
1616
+ 0.00
1617
+ 0.05
1618
+ 0.10
1619
+ 0.15
1620
+ 0.20
1621
+ 0.25
1622
+ 0.30
1623
+ D.EqOdds
1624
+ 0.000
1625
+ 0.025
1626
+ 0.050
1627
+ 0.075
1628
+ 0.100
1629
+ 0.125
1630
+ 0.150
1631
+ 0.175
1632
+ D.DP
1633
+ 1/
1634
+ EqOdds
1635
+ 1/
1636
+ DP
1637
+ Adult
1638
+ fair_logloss_eqodds
1639
+ fair_logloss_dp
1640
+ post_proc_eqodds
1641
+ post_proc_dp
1642
+ MFOpt
1643
+ post_proc_demos
1644
+ superhuman_train
1645
+ superhuman_test
1646
+ 0.10
1647
+ 0.15
1648
+ 0.20
1649
+ 0.25
1650
+ 0.30
1651
+ 0.35
1652
+ 0.40
1653
+ 0.45
1654
+ 0.50
1655
+ D.PRP
1656
+ 0.000
1657
+ 0.025
1658
+ 0.050
1659
+ 0.075
1660
+ 0.100
1661
+ 0.125
1662
+ 0.150
1663
+ 0.175
1664
+ D.DP
1665
+ 1/
1666
+ PRP
1667
+ 1/
1668
+ DP
1669
+ Adult
1670
+ fair_logloss_eqodds
1671
+ fair_logloss_dp
1672
+ post_proc_eqodds
1673
+ post_proc_dp
1674
+ MFOpt
1675
+ post_proc_demos
1676
+ superhuman_train
1677
+ superhuman_test
1678
+ 0.10
1679
+ 0.15
1680
+ 0.20
1681
+ 0.25
1682
+ 0.30
1683
+ 0.35
1684
+ 0.40
1685
+ 0.45
1686
+ 0.50
1687
+ D.PRP
1688
+ 0.00
1689
+ 0.05
1690
+ 0.10
1691
+ 0.15
1692
+ 0.20
1693
+ 0.25
1694
+ 0.30
1695
+ D.EqOdds
1696
+ 1/
1697
+ PRP
1698
+ 1/
1699
+ EqOdds
1700
+ Adult
1701
+ fair_logloss_eqodds
1702
+ fair_logloss_dp
1703
+ post_proc_eqodds
1704
+ post_proc_dp
1705
+ MFOpt
1706
+ post_proc_demos
1707
+ superhuman_train
1708
+ superhuman_test
1709
+ 0.0
1710
+ 0.1
1711
+ 0.2
1712
+ 0.3
1713
+ 0.4
1714
+ 0.5
1715
+ 0.6
1716
+ 0.7
1717
+ D.EqOdds
1718
+ 0.0
1719
+ 0.1
1720
+ 0.2
1721
+ 0.3
1722
+ 0.4
1723
+ 0.5
1724
+ D.DP
1725
+ 1/
1726
+ EqOdds
1727
+ 1/
1728
+ DP
1729
+ COMPAS
1730
+ fair_logloss_eqodds
1731
+ fair_logloss_dp
1732
+ post_proc_eqodds
1733
+ post_proc_dp
1734
+ MFOpt
1735
+ post_proc_demos
1736
+ superhuman_train
1737
+ superhuman_test
1738
+ 0.15
1739
+ 0.20
1740
+ 0.25
1741
+ 0.30
1742
+ 0.35
1743
+ 0.40
1744
+ D.PRP
1745
+ 0.0
1746
+ 0.1
1747
+ 0.2
1748
+ 0.3
1749
+ 0.4
1750
+ 0.5
1751
+ D.DP
1752
+ 1/
1753
+ PRP
1754
+ 1/
1755
+ DP
1756
+ COMPAS
1757
+ fair_logloss_eqodds
1758
+ fair_logloss_dp
1759
+ post_proc_eqodds
1760
+ post_proc_dp
1761
+ MFOpt
1762
+ post_proc_demos
1763
+ superhuman_train
1764
+ superhuman_test
1765
+ 0.15
1766
+ 0.20
1767
+ 0.25
1768
+ 0.30
1769
+ 0.35
1770
+ 0.40
1771
+ D.PRP
1772
+ 0.0
1773
+ 0.1
1774
+ 0.2
1775
+ 0.3
1776
+ 0.4
1777
+ 0.5
1778
+ 0.6
1779
+ 0.7
1780
+ D.EqOdds
1781
+ 1/
1782
+ PRP
1783
+ 1/
1784
+ EqOdds
1785
+ COMPAS
1786
+ fair_logloss_eqodds
1787
+ fair_logloss_dp
1788
+ post_proc_eqodds
1789
+ post_proc_dp
1790
+ MFOpt
1791
+ post_proc_demos
1792
+ superhuman_train
1793
+ superhuman_test
1794
+ Figure 6. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive
1795
+ Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0) for Adult (top row) and COMPAS (bottom row) datasets.
1796
+ B.1. Experiment with more measures
1797
+ Since our approach is flexible enough to accept wide range of fairness/performance measures, we extend the experiment on
1798
+ Adult to K = 5 features. In this experiment we use Demographic Parity (D.DP), Equalized Odds (D.EqOdds), False
1799
+ Negative Rate (D.FNR), False Positive Rate (D.FPR) and Prediction Error as the features to outperform reference decisions
1800
+ on. The results are shown in Figure 8.
1801
+
1802
+ Superhuman Fairness
1803
+ 0.00
1804
+ 0.05
1805
+ 0.10
1806
+ 0.15
1807
+ 0.20
1808
+ 0.25
1809
+ 0.30
1810
+ D.EqOdds
1811
+ 0.00
1812
+ 0.05
1813
+ 0.10
1814
+ 0.15
1815
+ 0.20
1816
+ 0.25
1817
+ D.DP
1818
+ 1/
1819
+ EqOdds
1820
+ 1/
1821
+ DP
1822
+ Adult
1823
+ fair_logloss_eqodds
1824
+ fair_logloss_dp
1825
+ post_proc_eqodds
1826
+ post_proc_dp
1827
+ MFOpt
1828
+ post_proc_demos
1829
+ superhuman_train
1830
+ superhuman_test
1831
+ 0.15
1832
+ 0.20
1833
+ 0.25
1834
+ 0.30
1835
+ 0.35
1836
+ 0.40
1837
+ D.PRP
1838
+ 0.00
1839
+ 0.05
1840
+ 0.10
1841
+ 0.15
1842
+ 0.20
1843
+ 0.25
1844
+ D.DP
1845
+ 1/
1846
+ PRP
1847
+ 1/
1848
+ DP
1849
+ Adult
1850
+ fair_logloss_eqodds
1851
+ fair_logloss_dp
1852
+ post_proc_eqodds
1853
+ post_proc_dp
1854
+ MFOpt
1855
+ post_proc_demos
1856
+ superhuman_train
1857
+ superhuman_test
1858
+ 0.15
1859
+ 0.20
1860
+ 0.25
1861
+ 0.30
1862
+ 0.35
1863
+ 0.40
1864
+ D.PRP
1865
+ 0.00
1866
+ 0.05
1867
+ 0.10
1868
+ 0.15
1869
+ 0.20
1870
+ 0.25
1871
+ 0.30
1872
+ D.EqOdds
1873
+ 1/
1874
+ PRP
1875
+ 1/
1876
+ EqOdds
1877
+ Adult
1878
+ fair_logloss_eqodds
1879
+ fair_logloss_dp
1880
+ post_proc_eqodds
1881
+ post_proc_dp
1882
+ MFOpt
1883
+ post_proc_demos
1884
+ superhuman_train
1885
+ superhuman_test
1886
+ 0.0
1887
+ 0.1
1888
+ 0.2
1889
+ 0.3
1890
+ 0.4
1891
+ 0.5
1892
+ 0.6
1893
+ 0.7
1894
+ 0.8
1895
+ D.EqOdds
1896
+ 0.0
1897
+ 0.1
1898
+ 0.2
1899
+ 0.3
1900
+ 0.4
1901
+ 0.5
1902
+ 0.6
1903
+ D.DP
1904
+ 1/
1905
+ EqOdds
1906
+ 1/
1907
+ DP
1908
+ COMPAS
1909
+ fair_logloss_eqodds
1910
+ fair_logloss_dp
1911
+ post_proc_eqodds
1912
+ post_proc_dp
1913
+ MFOpt
1914
+ post_proc_demos
1915
+ superhuman_train
1916
+ superhuman_test
1917
+ 0.15
1918
+ 0.20
1919
+ 0.25
1920
+ 0.30
1921
+ 0.35
1922
+ D.PRP
1923
+ 0.0
1924
+ 0.1
1925
+ 0.2
1926
+ 0.3
1927
+ 0.4
1928
+ 0.5
1929
+ 0.6
1930
+ D.DP
1931
+ 1/
1932
+ PRP
1933
+ 1/
1934
+ DP
1935
+ COMPAS
1936
+ fair_logloss_eqodds
1937
+ fair_logloss_dp
1938
+ post_proc_eqodds
1939
+ post_proc_dp
1940
+ MFOpt
1941
+ post_proc_demos
1942
+ superhuman_train
1943
+ superhuman_test
1944
+ 0.15
1945
+ 0.20
1946
+ 0.25
1947
+ 0.30
1948
+ 0.35
1949
+ D.PRP
1950
+ 0.0
1951
+ 0.1
1952
+ 0.2
1953
+ 0.3
1954
+ 0.4
1955
+ 0.5
1956
+ 0.6
1957
+ 0.7
1958
+ 0.8
1959
+ D.EqOdds
1960
+ 1/
1961
+ PRP
1962
+ 1/
1963
+ EqOdds
1964
+ COMPAS
1965
+ fair_logloss_eqodds
1966
+ fair_logloss_dp
1967
+ post_proc_eqodds
1968
+ post_proc_dp
1969
+ MFOpt
1970
+ post_proc_demos
1971
+ superhuman_train
1972
+ superhuman_test
1973
+ Figure 7. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive
1974
+ Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0.2) for Adult (top row) and COMPAS (bottom row) datasets.
1975
+
1976
+ Superhuman Fairness
1977
+ 0.000
1978
+ 0.025
1979
+ 0.050
1980
+ 0.075
1981
+ 0.100
1982
+ 0.125
1983
+ 0.150
1984
+ 0.175
1985
+ D.DP
1986
+ 0.20
1987
+ 0.22
1988
+ 0.24
1989
+ 0.26
1990
+ 0.28
1991
+ 0.30
1992
+ 0.32
1993
+ 0.34
1994
+ Prediction error
1995
+ 1/
1996
+ DP
1997
+ 1/
1998
+ error
1999
+ Adult
2000
+ fair_logloss_eqodds
2001
+ fair_logloss_dp
2002
+ post_proc_eqodds
2003
+ post_proc_dp
2004
+ MFOpt
2005
+ post_proc_demos
2006
+ superhuman_train
2007
+ superhuman_test
2008
+ 0.05
2009
+ 0.10
2010
+ 0.15
2011
+ 0.20
2012
+ 0.25
2013
+ 0.30
2014
+ D.EqOdds
2015
+ 0.20
2016
+ 0.22
2017
+ 0.24
2018
+ 0.26
2019
+ 0.28
2020
+ 0.30
2021
+ 0.32
2022
+ 0.34
2023
+ Prediction error
2024
+ 1/
2025
+ EqOdds
2026
+ 1/
2027
+ error
2028
+ Adult
2029
+ fair_logloss_eqodds
2030
+ fair_logloss_dp
2031
+ post_proc_eqodds
2032
+ post_proc_dp
2033
+ MFOpt
2034
+ post_proc_demos
2035
+ superhuman_train
2036
+ superhuman_test
2037
+ 0.05
2038
+ 0.10
2039
+ 0.15
2040
+ 0.20
2041
+ 0.25
2042
+ 0.30
2043
+ D.FNR
2044
+ 0.20
2045
+ 0.22
2046
+ 0.24
2047
+ 0.26
2048
+ 0.28
2049
+ 0.30
2050
+ 0.32
2051
+ 0.34
2052
+ Prediction error
2053
+ 1/
2054
+ FNR
2055
+ 1/
2056
+ error
2057
+ Adult
2058
+ fair_logloss_eqodds
2059
+ fair_logloss_dp
2060
+ post_proc_eqodds
2061
+ post_proc_dp
2062
+ MFOpt
2063
+ post_proc_demos
2064
+ superhuman_train
2065
+ superhuman_test
2066
+ 0.00
2067
+ 0.05
2068
+ 0.10
2069
+ 0.15
2070
+ 0.20
2071
+ 0.25
2072
+ D.FPR
2073
+ 0.20
2074
+ 0.22
2075
+ 0.24
2076
+ 0.26
2077
+ 0.28
2078
+ 0.30
2079
+ 0.32
2080
+ 0.34
2081
+ Prediction error
2082
+ 1/
2083
+ FPR
2084
+ 1/
2085
+ error
2086
+ Adult
2087
+ fair_logloss_eqodds
2088
+ fair_logloss_dp
2089
+ post_proc_eqodds
2090
+ post_proc_dp
2091
+ MFOpt
2092
+ post_proc_demos
2093
+ superhuman_train
2094
+ superhuman_test
2095
+ 0.05
2096
+ 0.10
2097
+ 0.15
2098
+ 0.20
2099
+ 0.25
2100
+ 0.30
2101
+ D.EqOdds
2102
+ 0.000
2103
+ 0.025
2104
+ 0.050
2105
+ 0.075
2106
+ 0.100
2107
+ 0.125
2108
+ 0.150
2109
+ 0.175
2110
+ D.DP
2111
+ 1/
2112
+ EqOdds
2113
+ 1/
2114
+ DP
2115
+ Adult
2116
+ fair_logloss_eqodds
2117
+ fair_logloss_dp
2118
+ post_proc_eqodds
2119
+ post_proc_dp
2120
+ MFOpt
2121
+ post_proc_demos
2122
+ superhuman_train
2123
+ superhuman_test
2124
+ 0.05
2125
+ 0.10
2126
+ 0.15
2127
+ 0.20
2128
+ 0.25
2129
+ 0.30
2130
+ D.FNR
2131
+ 0.000
2132
+ 0.025
2133
+ 0.050
2134
+ 0.075
2135
+ 0.100
2136
+ 0.125
2137
+ 0.150
2138
+ 0.175
2139
+ D.DP
2140
+ 1/
2141
+ FNR
2142
+ 1/
2143
+ DP
2144
+ Adult
2145
+ fair_logloss_eqodds
2146
+ fair_logloss_dp
2147
+ post_proc_eqodds
2148
+ post_proc_dp
2149
+ MFOpt
2150
+ post_proc_demos
2151
+ superhuman_train
2152
+ superhuman_test
2153
+ 0.00
2154
+ 0.05
2155
+ 0.10
2156
+ 0.15
2157
+ 0.20
2158
+ 0.25
2159
+ D.FPR
2160
+ 0.000
2161
+ 0.025
2162
+ 0.050
2163
+ 0.075
2164
+ 0.100
2165
+ 0.125
2166
+ 0.150
2167
+ 0.175
2168
+ D.DP
2169
+ 1/
2170
+ FPR
2171
+ 1/
2172
+ DP
2173
+ Adult
2174
+ fair_logloss_eqodds
2175
+ fair_logloss_dp
2176
+ post_proc_eqodds
2177
+ post_proc_dp
2178
+ MFOpt
2179
+ post_proc_demos
2180
+ superhuman_train
2181
+ superhuman_test
2182
+ 0.05
2183
+ 0.10
2184
+ 0.15
2185
+ 0.20
2186
+ 0.25
2187
+ 0.30
2188
+ D.EqOdds
2189
+ 0.05
2190
+ 0.10
2191
+ 0.15
2192
+ 0.20
2193
+ 0.25
2194
+ 0.30
2195
+ D.FNR
2196
+ 1/
2197
+ EqOdds
2198
+ 1/
2199
+ FNR
2200
+ Adult
2201
+ fair_logloss_eqodds
2202
+ fair_logloss_dp
2203
+ post_proc_eqodds
2204
+ post_proc_dp
2205
+ MFOpt
2206
+ post_proc_demos
2207
+ superhuman_train
2208
+ superhuman_test
2209
+ 0.00
2210
+ 0.05
2211
+ 0.10
2212
+ 0.15
2213
+ 0.20
2214
+ 0.25
2215
+ D.FPR
2216
+ 0.05
2217
+ 0.10
2218
+ 0.15
2219
+ 0.20
2220
+ 0.25
2221
+ 0.30
2222
+ D.FNR
2223
+ 1/
2224
+ FPR
2225
+ 1/
2226
+ FNR
2227
+ Adult
2228
+ fair_logloss_eqodds
2229
+ fair_logloss_dp
2230
+ post_proc_eqodds
2231
+ post_proc_dp
2232
+ MFOpt
2233
+ post_proc_demos
2234
+ superhuman_train
2235
+ superhuman_test
2236
+ 0.05
2237
+ 0.10
2238
+ 0.15
2239
+ 0.20
2240
+ 0.25
2241
+ 0.30
2242
+ D.EqOdds
2243
+ 0.00
2244
+ 0.05
2245
+ 0.10
2246
+ 0.15
2247
+ 0.20
2248
+ 0.25
2249
+ D.FPR
2250
+ 1/
2251
+ EqOdds
2252
+ 1/
2253
+ FPR
2254
+ Adult
2255
+ fair_logloss_eqodds
2256
+ fair_logloss_dp
2257
+ post_proc_eqodds
2258
+ post_proc_dp
2259
+ MFOpt
2260
+ post_proc_demos
2261
+ superhuman_train
2262
+ superhuman_test
2263
+ Figure 8. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds), False Negative
2264
+ Rate (D.FNR), False Positive Rate (D.FPR) and Prediction Error on test data using noiseless training data (ϵ = 0) for Adult dataset.
2265
+
1tFQT4oBgHgl3EQf1jZM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E4T4oBgHgl3EQf0A2b/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04204ba7b912600a09b533069660ccd95c4de993c19a3d4cf6ef552f9eab7b5b
3
+ size 90559
3NFRT4oBgHgl3EQfoDdP/content/tmp_files/2301.13607v1.pdf.txt ADDED
@@ -0,0 +1,2438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND
2
+ BROWNIAN GRAPHON LIMITS
3
+ TH´EO LENOIR
4
+ Abstract. We consider large uniform labeled random graphs in different classes with
5
+ few induced P4 (P4 is the graph consisting of a single line of 4 vertices), which generalize
6
+ the case of cographs. Our main result is the convergence to a Brownian limit object in the
7
+ space of graphons. We also obtain an equivalent of the number of graphs of size n in the
8
+ different classes. Finally we estimate the expected number of induced graphs isomorphic
9
+ to a fixed graph H for a large variety of graphs H.
10
+ Our proofs rely on tree encoding of graphs. We then use mainly combinatorial argu-
11
+ ments, including the symbolic method and singularity analysis.
12
+ 1. Introduction
13
+ 1.1. Motivation. Random graphs are one of the most studied objects in probability theory
14
+ and in combinatorics. A natural question is to investigate the scaling limits of a uniformly
15
+ chosen graph in a given family (an important example for this paper are the cographs).
16
+ Cographs have been studied since the seventies by various authors, especially for their
17
+ algorithmic properties: recognizing cographs can be solved in linear time [4, 6, 12], and
18
+ many hard problems can be solved in polynomial time for cographs. Several equivalent
19
+ definitions exists of the class of cographs exists, here are two important ones:
20
+ • A graph is a cograph if and only if it has no induced P4 (a line of 4 vertices).
21
+ • The class of cograph is the smallest class containing every graph reduced to a single
22
+ vertex, and stable by union and by join1.
23
+ Simultaneously in [1] and [21], the authors exhibit a Brownian limiting object for a
24
+ uniform cograph, called the Brownian cographon, which can be explicitly constructed from
25
+ the Brownian excursion and a parameter p ∈ [0, 1].
26
+ The convergence holds in distribution in the sense of graphons. Introduced in [2], graphon
27
+ is a well-established topic in graph theory but their probabilistic counterpart is more recent.
28
+ Graphon convergence can be seen as the convergence of the renormalized adjacency matrix
29
+ for the so-called cut metric (a good reference on graphon theory is [19]).
30
+ One natural question to go further than the case of cographs is to study more complicated
31
+ classes with, in some specific sense, few P4’s. A natural question is to study classes of graphs
32
+ to which some algorithmic properties of cographs extend. Several classes characterized by
33
+ properties of their induced P4’s have thus been considered in the graph theory literature.
34
+ 1the join of two graphs (G, H) is the graph obtained by adding an edge between every pair of vertices
35
+ (g, h) ∈ G × H
36
+ 1
37
+ arXiv:2301.13607v1 [math.PR] 31 Jan 2023
38
+
39
+ 2
40
+ TH´EO LENOIR
41
+ The classes we will focus on here are the following: P4-reducible graphs [15,18], P4-sparse
42
+ graphs [13,17] P4-lite graphs [14], P4-extendible graphs [16] and P4-tidy graphs [10] which
43
+ can all be seen as classes defined by some constraints on the induced P4’s. All these classes
44
+ will be defined precisely in Section 3. The inclusion relations between these classes are
45
+ sketched in Figure 1.
46
+ P4-tidy
47
+ P4-lite
48
+ P4-sparse
49
+ P4-extendible
50
+ P4-reducible
51
+ P4-free
52
+ (=cographs)
53
+ Figure 1. Inclusion relations between the different classes of graphs
54
+ To our knowledge, these different classes have not been studied from a probabilistic point
55
+ of view. The main aim of this paper is to prove a result of universality of the Brownian
56
+ cographon: for every class previously mentioned, a random graph will converge towards the
57
+ Brownian cographon of parameter 1
58
+ 2 (the rigorous construction is given by [1, Definition
59
+ 10]). An intermediate result is the asymptotic enumeration of each of these classes, which
60
+ was unknown up to now.
61
+ 1.2. Main results. For a finite graph G, let WG be the embedding of the finite graph G
62
+ in the set of graphon (the formal construction will be recalled in Definition 6.2). Our main
63
+ result is:
64
+ Theorem 1.1. Let G(n) be a uniform graph of size n taken uniformly at random in one
65
+ of the following families: P4-sparse, P4-tidy, P4-lite, P4-extendible or P4-reducible. The
66
+ following convergence in distribution holds in the sense of graphons:
67
+ WG(n)
68
+ n→∞
69
+ −→ W
70
+ 1
71
+ 2
72
+ where W
73
+ 1
74
+ 2 is the Brownian cographon of parameter 1
75
+ 2.
76
+ Graphon convergence is equivalent to the joint convergence of subgraphs density. Di-
77
+ aconis and Janson extended this criterion in [7] to random graphs: the convergence of a
78
+ family (H(n))n≥1 of random graphs is characterized by the convergence in distribution of
79
+ OccH(n)(H)
80
+ nk
81
+ for every positive integer k and for every finite graph H of size k, where OccG(H)
82
+ is the number of induced subgraphs of G isomorphic to H. All the necessary material on
83
+ graphon will be recalled at the beginning of Section 6.
84
+
85
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
86
+ 3
87
+ Figure 2 shows an example of the adjacency matrix of a random P4-extensible graph of
88
+ size 200. This picture gives an idea of what a realization of the Brownian cographon could
89
+ look like.
90
+ Figure 2. The adjacency matrix of a random P4-extensible graph of size
91
+ 200, simulation by Micka¨el Maazoun
92
+ In the course of proving Theorem 1.1, we get an equivalent of the number of graphs in
93
+ the different classes.
94
+ Theorem 1.2. The number of labeled P4-sparse, P4-tidy, P4-lite, P4-extendible, P4-reducible
95
+ or the number of P4-free graphs of size n is asymptotically equivalent to
96
+ C
97
+ n!
98
+ Rnn
99
+ 3
100
+ 2 ,
101
+ for some R, C > 0, depending on the class.
102
+ We can compute with arbitrary precision the numerical values of R and C (see Sec-
103
+ tion 4.2). All the numerical values of R and C vary according to each class which confirms
104
+ that all these classes are significantly different.
105
+ Theorem 1.1 provides a precise estimation of OccH(G(n)) for every cograph H. But for
106
+ every graph H which is not a cograph, the only information given by the convergence in
107
+ the sense of graphon is that the number of induced H in G(n) is typically o(n|H|). Quite
108
+ unexpectedly, thanks to the tools developed to prove Theorem 1.1, we are able to estimate
109
+ the expected number of induced subgraphs isomorphic to a specific class of graphs H in
110
+ G(n): the graphs that are called ”prime” for the modular decomposition (see Definition 2.8).
111
+ Theorem 1.3. Let G(n) be a uniform graph of size n taken uniformly at random in one of
112
+ the following families: P4-sparse, P4-tidy, P4-lite, P4-extendible or P4-reducible. Let H be
113
+ a prime graph, denote by OccH(G(n)) the number of labeled subgraphs of G(n) isomorphic
114
+ to H.
115
+
116
+ 回4
117
+ TH´EO LENOIR
118
+ Then there exists KH ≥ 0 such that:
119
+ E[OccH(G(n))] ∼
120
+
121
+
122
+
123
+ KHn
124
+ 3
125
+ 2
126
+ if H verifies condition (A)
127
+ KHn
128
+ otherwise
129
+ where (A) is defined p.38 and constant KH is given in Theorem 6.9.
130
+ This results follows from Theorem 6.9 which is stated in a more general setting. The
131
+ condition (A) depends on the class of graphs, checking if H verifies condition (A) and if
132
+ KH is positive is quite straightforward.
133
+ To make things more concrete, let us apply Theorem 1.3 to the example of H = P4. We
134
+ can check that for each class P4 does not verify condition (A). Thus a uniform random
135
+ graph contains in average a linear number of induced P4, while Theorem 1.1 only implies
136
+ that this number is o(n4). The different numerical values of KP4 are explicitly computed
137
+ p.41, and happen to take different values for each class. For each class, the graph called
138
+ ”bull” (see Fig. 7) does not verify condition (A). Thus a uniform random graph contains
139
+ in average a number of induced bulls growing as n3/2, while Theorem 1.1 only implies that
140
+ this number is o(n5). However, for non prime graphs H, the behavior of the expected
141
+ value of induced subgraphs of G(n) isomorphic to H is not well-understood, which leads to
142
+ interesting open questions.
143
+ 1.3. Proof strategy. The proof is essentially combinatorial and is based on modular de-
144
+ composition, which allows to encode a graph with a decorated tree. Modular decomposition
145
+ is a standard tool in graph theory (it was introduced in the 60’s by Gallai [9]) but to our
146
+ knowledge it has been very little used in the context of random graphs. In this paper we
147
+ introduce an enriched modular decomposition which enables us to obtain exact enumer-
148
+ ations for a large family of graph classes. The five classes mentioned before fit in this
149
+ framework. We exploit those enumerative results with tools from analytic combinatorics
150
+ to get asymptotic estimates in order to prove Theorem 1.2.
151
+ The more technical part of the proof is, for every finite graph H, to estimate the number
152
+ of induced subgraphs of G(n) isomorphic to H. The enriched modular decomposition allows
153
+ us to count the number of graphs with a specific induced subgraph H. Again asymptotics
154
+ are derived with tools from combinatorics to prove Theorem 1.1 and Theorem 1.3.
155
+ 1.4. Outline of the paper.
156
+ • In Section 2 we define the encoding of graphs with trees, the modular decomposition
157
+ and the enriched modular decomposition which will be used throughout the different
158
+ proofs.
159
+ • Section 3 presents the necessary material on the different classes of graphs studied:
160
+ results are already widely known, most of them are quoted from the litterature and
161
+ reformulated to suit our enriched modular decomposition.
162
+ • Sections 4 and 5 are about calculating generating series related to our graph classes:
163
+ in Section 4 we prove Theorem 1.2 and Section 5 deals with the generating series
164
+ of graphs with a given induced subgraph.
165
+
166
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
167
+ 5
168
+ • Section 6 presents the necessary material on graphons, and the proofs of Theo-
169
+ rem 1.1 and Theorem 1.3.
170
+ 2. Modular decomposition of graphs: old and new
171
+ 2.1. Labeled graphs. In the following all the graphs considered are simple and finite.
172
+ Each time a graph G is defined, we denote by V its set of vertices and E its set of edges.
173
+ Whenever there is an ambiguity, we denote by VG (resp. EG) the set of vertices (resp. edges)
174
+ of G.
175
+ Definition 2.1. We say that G = (V, E) is a weakly-labeled graph if every element of V
176
+ has a distinct label in N and that G = (V, E) is a labeled graph if every element of V has
177
+ a distinct label in {1, . . . , |V |}.
178
+ The size of a graph G, denoted by |G|, is its number of vertices.
179
+ The minimum of a graph G, denoted min(G), is the minimal label of its vertices.
180
+ In the following, every graph will be labeled, otherwise we will mention explicitly that
181
+ the graph is weakly-labeled.
182
+ Remark. We do not identify a vertex with its label. A vertex of label i will be denoted vi.
183
+ The label of a vertex v will be denoted ℓ(v).
184
+ Definition 2.2. For any weakly-labeled object (graph or tree) of size n, we call reduction
185
+ the operation that reduces its labels to the set {1, . . . , n} while preserving the relative order
186
+ of the labels.
187
+ For example if G labels 2, 4, 12, 63 then the reduced version of G is a copy of G in which
188
+ 2, 4, 12, 63 are respectively replaced by 1, 2, 3, 4.
189
+ 2.2. Encoding graphs with trees.
190
+ Definition 2.3. Let G be a graph of size n and H1, . . . , Hn be weakly-labeled graphs such
191
+ that no label is given to two distinct vertices of �n
192
+ i=1 Hi. The graph G[H1, . . . , Hn] = (V, E)
193
+ is the graph whose set of vertices is V = �n
194
+ i=1 VHi and such that:
195
+ • for every i ∈ {1, . . . , n} and every pair (v, v′) ∈ V 2
196
+ Hi, {v, v′} ∈ E if and only if
197
+ {v, v′} ∈ EHi;
198
+ • For every (i, j) ∈ {1, . . . , n} with i ̸= j, and every pair (v, v′) ∈ VHi ×VHj, {v, v′} ∈
199
+ E if and only if {vi, vj} ∈ EG.
200
+ Notation. In Definition 2.3 we will use the shortcut ⊕ for the complete graph of size n.
201
+ Thus ⊕[H1, . . . , Hn] is the graph obtained from copies of H1, . . . , Hn in which for every
202
+ i ̸= j every vertex of Hi is connected to every vertex of Hj. This graph is called the join
203
+ of H1, . . . , Hn
204
+ We use the shortcut ⊖ for the empty graph of size n. Thus ⊖[H1, . . . , Hn] is the graph
205
+ given by the disjoint union of H1, . . . , Hn This graph is called the union of H1, . . . , Hn.
206
+ This construction allows us to transform non-plane labeled trees with internal nodes
207
+ decorated with graphs, ⊕ and ⊖ into graphs.
208
+
209
+ 6
210
+ TH´EO LENOIR
211
+ Definition 2.4. Let T0 be the set of rooted non-plane trees whose leaves have distinct labels
212
+ in N and whose internal nodes carry decorations satisfying the following constraints:
213
+ • internal nodes are decorated with ⊕, ⊖ or a graph;
214
+ • If a node is decorated with some graph G then |G| ≥ 2 and this node has |G|
215
+ children. If a node is decorated with ⊕ or ⊖ then it has at least 2 children.
216
+ A tree t ∈ T0 is called a substitution tree if the labels of its leaves are in {1, . . . , |t|}.
217
+ We call linear the internal nodes decorated with ⊕ or ⊖ and non-linear the other ones.
218
+ Notation. For a non-plane rooted tree t, and an internal node v of t, let tv be the multiset
219
+ of trees attached to v and let t[v] be the non-plane tree rooted at v containing only the
220
+ descendants of v in t.
221
+ Convention. We only consider non-plane trees. However it is sometimes convenient to
222
+ order the subtrees of a given node. The convention is that for some v in a tree t the trees
223
+ of tv are ordered according to their minimal leaf labels.
224
+ Definition 2.5. Let t be an element of T0, the weakly-labeled graph Graph(t) is inductively
225
+ defined as follows:
226
+ • if t is reduced to a single leaf labeled j, Graph(t) is the graph reduced to a single
227
+ vertex labeled j;
228
+ • otherwise, the root r of t is decorated with a graph H, and
229
+ Graph(t) = H[Graph(t1), . . . , Graph(t|H|)]
230
+ where ti is the i-th tree of tr.
231
+ 1
232
+ 2
233
+ 7
234
+ 5
235
+ 8
236
+ 3
237
+ 4
238
+ 6
239
+ 9
240
+ Root
241
+ 1
242
+ 9
243
+ 6
244
+ 2
245
+ 3
246
+ 8
247
+ 7
248
+ 5
249
+ 4
250
+ t0
251
+ Graph(t0)
252
+ Figure 3. A substitution tree t0 and the corresponding graph Graph(t0)
253
+ Note that if t is a substitution tree then Graph(t) is a labeled graph.
254
+
255
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
256
+ 7
257
+ The following simple Lemma is essential to the study of the enriched decomposition of
258
+ graphs introduced in Section 2.4.
259
+ Lemma 2.6. Let t be a substitution tree such that the decoration of the root of t (resp. its
260
+ complementary) is connected. Then Graph(t) (resp. its complementary) is connected.
261
+ Proof. Since both cases are similar, we only deal with the case of a connected decoration.
262
+ Let r be the root of t, H its decoration and k the size of H. Let w1, . . . , wk be vertices of
263
+ Graph(t) such that for each i ∈ {1, . . . , k} there is a leaf labeled ℓ(wi) in the i-th tree of tr.
264
+ Since the unlabeled graph induced by {wi | 1 ≤ i ≤ k} is isomorphic to H, it is connected.
265
+ Let C be the connected component of Graph(t) containing all wi’s. Note that for every
266
+ vertex v of Graph(t), there exists p ∈ {1, . . . k} such that the leaf labeled ℓ(v) belongs to
267
+ the p-th tree of tr. Since H is connected and of size at least 2, there exists q ̸= p such that
268
+ the vertices of label q and p are connected by an edge in H. Thus v and wq are connected
269
+ by an edge in Graph(t), which means that v ∈ C. This implies that C = V , thus Graph(t)
270
+ is connected.
271
+
272
+ 2.3. Modular decomposition. In this short section we gather the main definitions and
273
+ properties of modular decomposition. The historical reference is [9], the interested reader
274
+ may also look at [3] or [20].
275
+ The next definitions and theorems allows to get a unique recursive decomposition of any
276
+ graph in the sense of Definition 2.5, the modular decomposition, and to encode it by a
277
+ tree.
278
+ Definition 2.7. Let G be a graph (labeled or not). A module M of G is a subset of V
279
+ such that for every (x, y) ∈ M 2, and every z ∈ V \M, {x, z} ∈ E if and only if {y, z} ∈ E.
280
+ Remark. Note that ∅, V and {v} for v ∈ V are always modules of G. Those sets are called
281
+ the trivial modules of G.
282
+ Definition 2.8. A graph G is prime if it has at least 3 vertices and its only modules are
283
+ the trivial ones.
284
+ Definition 2.9. A graph is called ⊖-indecomposable (resp. ⊕-indecomposable) if it cannot
285
+ be written as ⊖[G1, . . . , Gk] (resp. ⊕[G1, . . . , Gk]) for some k ≥ 2 and weakly-labeled graphs
286
+ G1, . . . , Gk.
287
+ Note that a graph is ⊖-indecomposable if and only if it is connected, and ⊕-indecomposable
288
+ if and only if its complementary is connected.
289
+ Theorem 2.10 (Modular decomposition, [9]). Let G be a graph with at least 2 vertices,
290
+ there exists a unique partition M = {M1, . . . , Mk} for some k ≥ 2, where each Mi is a
291
+ module of G and such that either
292
+ • G = ⊕[M1, . . . , Mk] and the (Mi)1≤i≤k are ⊕-indecomposable;
293
+ • G = ⊖[M1, . . . , Mk] and the (Mi)1≤i≤k are ⊖-indecomposable;
294
+ • G = P[M1, . . . , Mk] for some prime graph P.
295
+ Moreover, only one of the possibilities occurs.
296
+
297
+ 8
298
+ TH´EO LENOIR
299
+ This decomposition can be used to encode graphs by specific trees to get a one-to-one
300
+ correspondence.
301
+ Definition 2.11. Let t be a substitution tree. We say that t is a canonical tree if its
302
+ internal nodes are either ⊕, ⊖ or prime graphs, and if there is no child of a node decorated
303
+ with ⊕ (resp. ⊖) which is decorated with ⊕ (resp. ⊖).
304
+ To a graph G we associate a canonical tree by recursively applying the decomposition
305
+ of Theorem 2.10 to the modules (Mi)1≤i≤k, until they are of size 1. First of all, at each
306
+ step, we order the different modules increasingly according to their minimal vertex labels.
307
+ Doing so, a labeled graph G can be encoded by a canonical tree. The internal nodes are
308
+ decorated with the different graphs that are encountered along the recursive decomposition
309
+ process (⊕ if G = ⊕[M1, . . . , Mk], ⊖ if G = ⊖[M1, . . . , Mk], P if G = P[M1, . . . , Mk]).
310
+ At the end, every module of size 1 is converted into a leaf labeled by the label of the vertex.
311
+ This construction provides a one-to-one correspondence between labeled graphs and
312
+ canonical trees that maps the size of a graph to the size of the corresponding tree.
313
+ Proposition 2.12. Let G be a graph, and t its canonical tree, then t is the only canonical
314
+ tree such that Graph(t) = G.
315
+ Remark. It is crucial to consider canonical trees as non-plane: otherwise, since prime graphs
316
+ can have several labelings, there would be several canonical trees associated with the same
317
+ graph.
318
+ 2.4. Enriched modular decomposition. Unfortunately the modular decomposition alone
319
+ does not provide usable decompositions for the graph classes that we consider. The aim of
320
+ this section is to solve this issue: we will state and prove Proposition 2.18 which provides
321
+ in a very general settings a one-to-one encoding of graphs with substitution trees with
322
+ constraints. In Section 3 we will show that P4-reducible graphs, P4-sparse graphs, P4-lite
323
+ graphs, P4-extendible graphs, P4-tidy graphs fit in the settings of Proposition 2.18.
324
+ Definition 2.13. We say that G is a graph with blossoms if there exists k ∈ {0, . . . , |V |}
325
+ such that exactly k vertices of G are labeled ∗, and the others ones have a distinct label in
326
+ {1, . . . , |V | − k}.
327
+ The vertices labeled ∗ are called the blossoms of G. Let BG the set of vertices that are
328
+ blossoms of G and N(G) := |V | − |BG| the number of vertices that are not a blossom of G.
329
+ Remark. In the above definition, we allow k = 0, then the definition reduces to the one of
330
+ a labeled graph.
331
+ Definition 2.14. Let G be a graph with blossoms and π be a permutation of {1, . . . , N(G)}.
332
+ The π-relabeling of G is the graph G′ such that:
333
+ • VG′ = VG and BG′ = BG;
334
+ • for every vertex v in VG′\BG′, we replace the label of the leaf v by π(ℓ(v)).
335
+ We write G ∼ G′ if there exists a permutation π of {1, . . . , N(G)} such that G is iso-
336
+ morphic to the π-relabeling of G′.
337
+
338
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
339
+ 9
340
+ Note that ∼ is an equivalence relation.
341
+ Definition 2.15. Let G be a graph with blossoms, a permutation π of {1, . . . , N(G)} is an
342
+ automorphism of G if the π-relabeling of G is G.
343
+ Definition 2.16. A module of a graph with blossoms is called flowerless if it does not
344
+ contain any blossom.
345
+ Let G be a graph with blossoms and M a non-empty flowerless module of G. We define
346
+ bloM(G) to be the labeled graph obtained after the following transformations:
347
+ • M is replaced by a new vertex v, that is now labeled ∗;
348
+ • for every vertex w ∈ G\M, {w, v} is an edge if and only if {w, m} is an edge of G
349
+ for every m ∈ M;
350
+ • the graph obtained is replaced by its reduction as defined in Definition 2.2.
351
+ If G is a graph with one blossom and M is a non-empty flowerless module of G, we
352
+ define bloM,0(G) (resp. bloM,1(G)) to be the graph bloM(G) where the label of the initial
353
+ blossom of G is replaced by ∗0 (resp. ∗1) and the label of the new blossom is replaced by ∗1
354
+ (resp. ∗0).
355
+ 1
356
+ 2
357
+ 3
358
+ 4
359
+ 5
360
+
361
+ 1
362
+ 2
363
+ 4
364
+ 5
365
+ 6
366
+ 3
367
+ 7
368
+ 8
369
+ M = {v3, v7, v8}
370
+ bloM(G)
371
+ Figure 4. Illustration of Definition 2.16 Left: A graph G in which we have
372
+ highlighted the module M
373
+ = {v3, v7, v8}.
374
+ Right:
375
+ The corresponding
376
+ bloM(G).
377
+ In this paper, we only consider the construction bloM(G) for graphs with 0 or 1 blossom.
378
+ We are now ready to precise the general framework of our study. One of the key ingredient
379
+ is the following recursive definition of families of graphs.
380
+ Definition 2.17. Let P be a set of graphs with no blossom and P• be a set of graphs with
381
+ one blossom. A tree t ∈ T0 is called (P, P•)-consistent if one of the following conditions
382
+ holds:
383
+ (D1) The tree t is a single leaf.
384
+ (D2) The root r of t is decorated with a graph H ∈ P and tr (the multiset of trees attached
385
+ to r) is a union of leaves.
386
+ (D3) The root r of t is decorated with ⊕ (resp. ⊖) and all the elements of tr are (P, P•)-
387
+ consistent and their roots are not decorated with ⊕ (resp. ⊖).
388
+
389
+ 10
390
+ TH´EO LENOIR
391
+ (D4) The root r of t is decorated with a graph H /∈ {⊕, ⊖} and there exists at least
392
+ one index i ∈ {1, . . . , |H|} such that the i-th tree of tr is (P, P•)-consistent, the
393
+ remaining subtrees of tr are reduced to a single leaf and blo{vi}(H) ∈ P•.
394
+ We define TP,P• to be the set of trees t that are (P, P•)-consistent and such that each leaf
395
+ has a distinct label in {1, . . . , |t|}.
396
+ 1
397
+ 2
398
+ 5
399
+ 7
400
+ 4
401
+ 9 8
402
+ 3
403
+ 6
404
+ 10
405
+ 12
406
+ 11
407
+ (D2)
408
+ (D3)
409
+ (D4)
410
+ (D3)
411
+ (D3)
412
+ Figure 5. An example of tree in some TP,P•. The different colours illustrate
413
+ the different cases of Definition 2.17. The subtree with leaves {5, 6} on the
414
+ top-right is attached to the vertex which is circled in red inside the vertex of
415
+ case (D4). This corresponds to the i-th subtree of case (D4)
416
+ A graph G is called (P, P•)-consistent if there exists a (P, P•)-consistent tree t such
417
+ that G = Graph(t). We let GP,P• be the set of Graph(t) for t ∈ TP,P•.
418
+ The map t �→ Graph(t) from TP,P• to GP,P• is surjective, but without conditions on
419
+ (P, P•) this map is not one-to-one. To solve this issue, we introduce the following additional
420
+ constraints on the set P, P•:
421
+ Condition (C).
422
+ (C1) P and P• do not contain a graph of size 1.
423
+ (C2) For every F ∈ P and every module M of F, either bloM(F) ̸∈ P• or the subgraph
424
+ of F induced by M is not (P, P•)-consistent.
425
+ (C3) For every F and F ′ in P•, and every flowerless modules M and M ′ of respectively
426
+ F and F ′ one of the following conditions is verified:
427
+ • bloM,0(F) ̸= bloM′,1(F ′)
428
+ • The subgraph of F induced by M is not (P, P•)-consistent.
429
+ • The subgraph of F ′ induced by M ′ is not (P, P•)-consistent.
430
+ (C4) Every element of P and P• is ⊕-indecomposable and ⊖-indecomposable.
431
+
432
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
433
+ 11
434
+ (C5) For every G ∈ P•, the only modules of G containing the blossom are {∗} and G.
435
+ We say that (P, P•) verifies condition (C) if (C1) − (C5) hold.
436
+ Remark. The last two constraints are not necessary to ensure that the map is bijective.
437
+ However, giving necessary and sufficient conditions to have unicity that can be checked
438
+ easily is quite complicated.
439
+ Note that if condition (C) is satisfied for a pair of sets (P, P•) and Q ⊂ P and Q• ⊂ P•,
440
+ it is also verified by (Q, Q•).
441
+ Proposition 2.18. Let P be a set of graphs with no blossom and P• a set of graphs with
442
+ one blossom. Assume that (P, P•) verifies condition (C). For any G ∈ GP,P•, there exists
443
+ a unique t ∈ TP,P• such that G = Graph(t). Moreover, for any element of TP,P• satifying
444
+ case (D4) in Definition 2.17, the index i such that case (D4) holds is unique.
445
+ Proof. Existence is guaranted by definition of GP,P•.
446
+ We proceed by contradiction to prove the uniqueness of t.
447
+ Let t be a smallest tree
448
+ in TP,P• such that there exists another t′ in TP,P• verifying Graph(t) = Graph(t′). Let
449
+ G = Graph(t).
450
+ The graph G cannot be reduced to a single vertex due to (C1), otherwise t and t′ would
451
+ be a single leaf with label 1. Thus we can assume that t and t′ are not in case (D1).
452
+ By Lemma 2.6 and (C4), G is ⊕-indecomposable (resp. ⊖-indecomposable) if and only
453
+ if t is not in case (D3) with a root decorated with ⊕ (resp. ⊖). Thus either t and t′ are
454
+ both in case (D3) and their roots are both decorated ⊕ or ⊖, or they are both in case
455
+ (D2) or (D4).
456
+ Case (i): t, t′ are both in case (D3) and their are both decorated ⊕ or ⊖.
457
+ Let r and r′ be the roots of respectively t and t′. Assume that both decorations are
458
+ ⊖, the other case is similar. The elements of tr induce connected graphs by Lemma 2.6
459
+ as their roots are either decorated with ⊕, or ⊖-indecomposable by (C4). Since the roots
460
+ of t and t′ are decorated with ⊖, we have a one-to-one correspondence between trees
461
+ of tr and connected components of G. The same is true for t′
462
+ r′. Assume that two trees
463
+ corresponding to the same connected component of G are different. Since their set of labels
464
+ are the same (they correspond to the labels of the vertices in the connected component)
465
+ after reduction, one would obtain two trees t1, t2 that are different, (P, P•)-consistent and
466
+ such that Graph(t1) = Graph(t2) since both are equal to the reduction of the corresponding
467
+ connected component of G. This contradicts the minimality of t. Therefore tr = t′
468
+ r′ and
469
+ t = t′.
470
+ Case (ii): t, t′ are both in case (D2).
471
+ The graph G is simply the decoration of the root of t so t = t′.
472
+ Case (iii): t is in case (D4), t′ is in case (D2).
473
+ Let r be the root of t and H its decoration. Let i be one of the elements of {1, . . . |VH|}
474
+ such that (D4) holds for t, H and i. Let M be the set of vertices of G whose labels are
475
+ labels of leaves that belong to the i-th tree of tr: M is a module of G. Then bloM(G) is
476
+ equal to blo{vi}(H) and thus belongs to P•. Moreover the subgraph of G induced by M is
477
+ (P, P•)-consistent as the i-th subtree of t is also (P, P•)-consistent. This contradicts (C2).
478
+
479
+ 12
480
+ TH´EO LENOIR
481
+ Case (iv): t, t′ are both in case (D4).
482
+ Let r and r′ be the roots of respectively t and t′ and H and H′ be their decorations. Let
483
+ i be an element of {1, . . . , |VH|} such that (D4) is true for t, H and i, and i′ be an element
484
+ of {1, . . . , |VH′|} such that (D4) is true for t′, H′ and i′. Consider M (resp. M ′) the set of
485
+ vertices of G whose labels are labels of leaves that belong to the i-th tree of tr (resp. i′-th
486
+ tree of t′
487
+ r′): M (resp. M ′) is a module of G. Since the i-th tree of tr (resp. the i′-th tree of
488
+ t′
489
+ r′) is (P, P•)-consistent the subgraph of G induced by M (resp. M ′) is (P, P•)-consistent.
490
+ We now prove by contradiction that M = M ′.
491
+ By symmetry we can assume that
492
+ M ′ ̸⊂ M.
493
+ First assume that M ∩ M ′ = ∅. Note that bloM,1(bloM′(G)) = bloM′,0(bloM(G)). Since
494
+ bloM(G) = blo{vi}(H) and bloM′(G) = blo{vi′}(H′), we get that bloM′,0(blo{vi}(H)) =
495
+ bloM,1(blo{vi′}(H′)) which contradicts (C3) as both subgraphs of G induced by M and M ′
496
+ are (P, P•)-consistent.
497
+ Now assume that M ∩ M ′ ̸= ∅. Let L be the subset of VH such that v ∈ L if and only if
498
+ the ℓ(v)-th tree of tr contains a leaf labeled with the label of an element of M ′. Since M ′
499
+ is a module of G and M ∩ M ′ ̸= ∅, L is a module of blo{vi}(H) containing the blossom.
500
+ Since M ′ is not included in M, by (C5), L = H. Since M ′ ̸= G, there exists a vertex w
501
+ in G such that w ̸∈ M ′. Let w′ be the vertex of H such that w is in the ℓ(w′)-th tree
502
+ of tr. Since M ′ is a module, every vertex of M ′ is either connected or not to w, thus w′
503
+ is connected to every vertex of H (except w′) or to none of them. This means that H is
504
+ either ⊕-decomposable or ⊖-decomposable, which is a contradiction.
505
+ Thus M = M ′ and blo{vi}(H) = bloM(G) = bloM′(G) = blo{vi′}(H′), and we get that
506
+ H = H′, and that i = i′: thus i is unique.
507
+ We know that the i-th tree of tr and the i-th tree of t′
508
+ r′ are (P, P•)-consistent and the
509
+ associated graph is the one induced by M. By taking the reduction of the trees and the
510
+ graph, we get by minimality of t that the reductions of both trees are equal. Since M = M ′,
511
+ it implies that both subtrees are the same: thus t = t′.
512
+
513
+ 3. Zoology of graph classes with few P4’s
514
+ Several classes have been defined as generalizations of the class of P4-free graphs, the
515
+ cographs. Here the classes we will focus on are the following: P4-reducible graphs [15,18],
516
+ P4-sparse graphs [13,17] P4-lite graphs [14], P4-extendible graphs [16], P4-tidy graphs [10].
517
+ The aim of this section is to give explicit sets P and P• such that GP,P• is one of the
518
+ previously mentioned classes.
519
+ 3.1. Basic definitions. The following results and definitions are from [3, Section 11.3].
520
+ Definition 3.1. A graph G is a Pk if it is a path of k vertices, and a Ck if it is a cycle of
521
+ k vertices.
522
+ The two vertices of degree one of a P4 are called the endpoints, the two vertices of degree
523
+ two are called the midpoints.
524
+ Notation. For a graph G, we denote by G its complementary.
525
+
526
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
527
+ 13
528
+ The modular decompositions of classes of graphs we consider are already well-known [10].
529
+ To explain the different properties, we need the notion of spider and bull.
530
+ Definition 3.2. A spider is a graph G, such that there exists a partition of VG in three
531
+ parts, K, S, R, verifying:
532
+ • |K| ≥ 2;
533
+ • K induces a clique;
534
+ • S induces a graph without edges;
535
+ • every element of R is connected to every element of K but to none of S;
536
+ • there exists a bijection f from K to S such that for every k ∈ K, k is only connected
537
+ to f(k) in S, or such that for every k ∈ K, k is connected to every element of S
538
+ except f(k). In the first case the spider is called thin, in the second one it is called
539
+ fat.
540
+ K
541
+ S
542
+ K
543
+ S
544
+ R
545
+ R
546
+ 1
547
+ 1
548
+ 2
549
+ 2
550
+ 3
551
+ 3
552
+ 4
553
+ 4
554
+ 5
555
+ 5
556
+ 6
557
+ 6
558
+ 7
559
+ 7
560
+ Figure 6. Left: a thin spider. Right: a fat spider. Both with |K| = 3.
561
+ Remark. For every spider G, the partition (K, S, R) is uniquely determined by G. Moreover,
562
+ the bijection f given by the definition is unique, except in the case |K| = 2. In this case,
563
+ since there is no difference between a thin and a fat spider, a spider with |K| = 2 is called
564
+ thin. A spider with |K| = 2 and |R| = 1 is called a bull, and a spider with |K| = 2 and
565
+ |R| = 0 is simply a P4.
566
+ 1
567
+ 2
568
+ 3
569
+ 4
570
+ 1
571
+ 2
572
+ 3
573
+ 4
574
+ 5
575
+ 1
576
+ 2
577
+ 3
578
+ 4
579
+ 5
580
+ Figure 7. From left to right: a P4, a bull, a C5
581
+ Proposition 3.3. A spider is prime if and only if |R| ≤ 1.
582
+
583
+ 14
584
+ TH´EO LENOIR
585
+ In the following, if |R| = 1, the vertex belonging to R will be a blossom of the spider,
586
+ and it will be its only blossom: such spiders will be called blossomed spiders. If |R| = 0,
587
+ the spider will have no blossom. This also applies for bulls and P4.
588
+ Definition 3.4. We call a graph H a pseudo-spider if there exists a prime spider G such
589
+ that, if we duplicate a vertex that is not a blossom of G (his label is the new number of
590
+ vertices), and if either by adding or not an edge between the vertex and its duplicate, the
591
+ graph obtained is a relabeling of H. If |K| = 2, we also call H a pseudo-P4.
592
+ Moreover, we say that H is a blossomed pseudo-spider if G is a blossomed spider. If
593
+ |K| = 2, we also call H a pseudo-bull.
594
+ 1
595
+ 2
596
+ 3
597
+ 4
598
+ 5
599
+ 1
600
+ 2
601
+ 3
602
+ 4
603
+ 5
604
+
605
+ K
606
+ S
607
+ R
608
+ 1
609
+ 2
610
+
611
+ 3
612
+ 4
613
+ 5
614
+ 6
615
+ Duplicate
616
+ 7
617
+ Figure 8. A blossomed pseudo-spider, a pseudo-bull, a pseudo P4
618
+ Lemma 3.5. A prime spider with 0 or 1 blossom has |K|! automorphisms (as there is a
619
+ natural bijection between the automorphisms of the spider and the automorphisms of K).
620
+ A pseudo-spider with 0 or 1 blossom has 2 × (|K| − 1)! automorphisms.
621
+ 3.2. P4-tidy graphs.
622
+ Definition 3.6. A graph G is said to be a P4-tidy graph if, for every subgraph H of G
623
+ inducing a P4, there exists at most one vertex y ∈ VG\VH such that y is connected to at
624
+ least one element of H but not all, and y is not connected to exactly both midpoints of H.
625
+ Theorem 3.7. Let Ptidy be the set containing all C5, P5, P5, all prime spiders without
626
+ blossom and all pseudo-spiders without blossom.
627
+ Let P•
628
+ tidy be the set of all blossomed
629
+ prime spiders and all blossomed pseudo-spiders. Then the set of graphs that are P4-tidy is
630
+ GPtidy,P•
631
+ tidy.
632
+ Proof. It is simply a reformulation in our setting of [10, Theorem 3.3] that states that a
633
+ graph G is P4-tidy if and only if its canonical tree t verifies the following conditions:
634
+ • Every node in t is labeled with ⊕, ⊖, C5, P5, P5 or a prime spider.
635
+ • If a node w in t is decorated with C5, P5 or P5, every element of tw is reduced to a
636
+ single leaf.
637
+
638
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
639
+ 15
640
+ • If a node w in t is decorated with a prime spider with |R| = 0, every element of tw
641
+ is a tree of size at most two, and at most one is of size two.
642
+ • If a node w in t is decorated with a prime spider H with |R| = 1, let v be the vertex
643
+ of H in R, and t′ the ℓ(v)-th tree of tw. Every element of tw\{t′} is a tree of size
644
+ at most two, and at most one is of size two.
645
+
646
+ Proposition 3.8. The pair (Ptidy, P•
647
+ tidy) verifies (C)
648
+ Proof. Note that all the graph in Ptidy or P•
649
+ tidy are prime except the pseudo-spiders. The
650
+ only modules of the pseudo-spiders are the trivial ones, and the module formed by the
651
+ vertex that was duplicated and its duplicate, which implies (C5).
652
+ (C2) is also verified with the previous observation, as the modules of every graph in Ptidy
653
+ are trivial.
654
+ (C1) is clearly verified and (C4) can be checked easily as all the graphs in P ∪ P• are
655
+ connected, and their complementary is also connected.
656
+ For (C3), assume that for (F, F ′)2 ∈ P•
657
+ tidy and M, M ′ are respectively flowerless modules
658
+ of F and F ′, bloM,0(G) = bloM′,1(G).
659
+ By cardinality argument, F and F ′ are either
660
+ both spiders, or both pseudo-spiders of same size. If both are spiders, as R is uniquely
661
+ determined by the spiders, and the only element of R does not have the same label in
662
+ bloM,0(G) and in bloM,1(G), we get a contradiction. If both are pseudo-spiders, note that
663
+ the original node and its duplicate form the only module of size 2 of bloM,0(G). Thus the
664
+ only element of R (in the original spiders) is uniquely determined by the pseudo-spiders,
665
+ and the only element of R does not have the same label in bloM,0(G) and in bloM,1(G), we
666
+ get a contradiction.
667
+
668
+ 3.3. P4-lite graphs.
669
+ Definition 3.9. A graph G is said to be a P4-lite graph if every subgraph of G of size at
670
+ most 6 does not contain three induced P4.
671
+ Theorem 3.10. Let Plite be the set containing all P5, P5, all prime spiders without blossom
672
+ and all pseudo-spiders without blossom. Let P•
673
+ lite to be the set containing all blossomed
674
+ prime spiders and all blossomed pseudo-spiders. Then the set of graphs that are P4-lite is
675
+ GPlite,P•
676
+ lite.
677
+ Proof. It is simply a reformulation in our setting of [10, Theorem 3.8] that states that a
678
+ graph G is P4-lite if and only if its canonical tree t verifies the following conditions:
679
+ • Every node in t is labeled with ⊕, ⊖, P5, P5 or a prime spider.
680
+ • If a node w in t is decorated with P5 or P5, every element of tw is reduced to a
681
+ single leaf.
682
+ • If a node w in t is decorated with a prime spider with |R| = 0, every element of tw
683
+ is a tree of size at most two, and at most one is of size two.
684
+ • If a node w in t is decorated with a prime spider H with |R| = 1, let v be the vertex
685
+ of H in R, and t′ the ℓ(v)-th tree of tw. Every element of tw\{t′} is a tree of size
686
+ at most two, and at most one is of size two.
687
+
688
+
689
+ 16
690
+ TH´EO LENOIR
691
+ By Proposition 3.8 since Plite ⊂ Ptidy, P•
692
+ lite ⊂ P•
693
+ tidy we get that the pair (Plite, P•
694
+ lite)
695
+ verifies (C).
696
+ 3.4. P4-extendible graphs.
697
+ Definition 3.11. A graph G is said to be a P4-extendible graph if, for every subgraph H
698
+ of G inducing a P4, there exists at most one vertex y ∈ VG\VH such that y belongs to an
699
+ induced P4 sharing at least one vertex with H.
700
+ Theorem 3.12. Let Pext be the set containing all C5, P5, P5, P4 and all pseudo-P4. Let
701
+ P•
702
+ ext be the set containing all bulls and all pseudo-bulls. Then the set of graphs that are
703
+ P4-extendible is GPext,P•
704
+ ext.
705
+ Proof. It is simply a reformulation in our setting of [10, Theorem 3.7] that states that a
706
+ graph G is P4-extendible if and only if its canonical tree t verifies the following conditions:
707
+ • Every node in t is labeled with ⊕, ⊖, C5, P5, P5, P4 or a bull.
708
+ • If a node w in t is decorated with C5, P5 or P5, every element of tw is reduced to a
709
+ single leaf.
710
+ • If a node w in t is decorated with P4, every element of tw is a tree of size at most
711
+ two, and at most one is of size two.
712
+ • If a node w in t is decorated with a bull G, let v be the vertex of G in R, and t′
713
+ the ℓ(v)-th tree of tn. Every element of tw\{t′} is a tree of size at most two, and at
714
+ most one is of size two.
715
+
716
+ By Proposition 3.8 since Pext ⊂ Ptidy, P•
717
+ ext ⊂ P•
718
+ tidy we get that the pair (Pext, P•
719
+ ext)
720
+ verifies (C).
721
+ 3.5. P4-sparse graphs.
722
+ Definition 3.13. A graph G is said to be a P4-sparse graph if every subgraph of G of size
723
+ 5 does not contain two induced P4.
724
+ Theorem 3.14. Let P be the set containing all prime spiders without blossom. Let P• be
725
+ the set containing all blossomed prime spiders. Then the set of graphs that are P4-sparse
726
+ is GP,P•.
727
+ Proof. It is simply a reformulation in our setting of [11, Theorem 3.4] that states that a
728
+ graph G is P4-sparse if and only if its canonical tree t verifies the following conditions:
729
+ • Every node in t is labeled with ⊕, ⊖ or a prime spider.
730
+ • If a node w in t is decorated with a prime spider with |R| = 0, every element of tw
731
+ is reduced to a single leaf.
732
+ • If a node w in t is decorated with a prime spider h with |R| = 1, let v be the vertex
733
+ of H in R, and t′ the ℓ(v)-th tree of tw. Every element of tw\{t′} is reduced to a
734
+ single leaf.
735
+
736
+ By Proposition 3.8 since Pspa ⊂ Ptidy, P•
737
+ spa ⊂ P•
738
+ tidy we get that the pair (Pspa, P•
739
+ spa)
740
+ verifies (C).
741
+
742
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
743
+ 17
744
+ 3.6. P4-reducible graphs.
745
+ Definition 3.15. A graph G is said to be a P4-reducible graph if every vertex of G belongs
746
+ to at most one induced P4.
747
+ Theorem 3.16. Let Pred be the set containing all P4. Let P•
748
+ red be the set containing all
749
+ bulls. Then the set of graphs that are P4-reducible is GPred,P•
750
+ red.
751
+ Proof. It is simply a reformulation in our setting of [11, Theorem 4.2] that states that a
752
+ graph G is P4-reducible if and only if its canonical tree t verifies the following conditions:
753
+ • Every node in t is labeled with ⊕, ⊖, P4 or a bull.
754
+ • If a node w in t is decorated with a P4, every element of tw is reduced to a single
755
+ leaf.
756
+ • If a node w in t is decorated with a bull H, let v be the vertex of H in R, and t′
757
+ the ℓ(v)-th tree of tn. Every element of tw\{t′} is reduced to a single leaf.
758
+
759
+ By Proposition 3.8 since Pred ⊂ Ptidy, P•
760
+ red ⊂ P•
761
+ tidy we get that the pair (Pred, P•
762
+ red)
763
+ verifies (C).
764
+ 3.7. P4-free graphs (cographs).
765
+ Definition 3.17. A graph G is said to be a cograph if no subgraph of G induces a P4.
766
+ Theorem 3.18. Set Pcog = ∅ and P•
767
+ cog = ∅. Then the set of graphs that are cographs is
768
+ GPcog,P•cog.
769
+ Proof. It is simply a reformulation in our setting of [5, Theorem 7] that states that a graph
770
+ G is a cograph if and only if its canonical tree t has no internal node decorated with a
771
+ prime graph.
772
+
773
+ Clearly the pair (Pcog, P•
774
+ cog) verifies (C).
775
+ 4. Enriched modular decomposition: enumerative results
776
+ 4.1. Exact enumeration. In the following, we establish combinatorial identities between
777
+ formal power series involving subsets of P and P•.
778
+ Throughout this section, we consider generic pairs (P, P•) where P (resp. P•) is a set
779
+ of graphs with no blossom (resp. with one blossom) verifying condition (C) defined p.10.
780
+ Recall that for a graph G with blossoms, N(G) is the number of vertices that are not
781
+ a blossom: this will be the crucial parameter in the subsequent analysis. Let P •(z) :=
782
+
783
+ s∈P•
784
+ zN(s)
785
+ N(s)! and P(z) := �
786
+ s∈P
787
+ zN(s)
788
+ N(s)!.
789
+ For n ∈ N, let Pn (resp. P•
790
+ n) be the set of graphs G in P (resp. P•) such that N(G) = n.
791
+ Note that, if both P and P• are stable under relabeling (which is the case for the classes
792
+ of graphs mentioned in Section 3), for each n ∈ N, there is a natural action Φn of the
793
+
794
+ 18
795
+ TH´EO LENOIR
796
+ permutations of {1, . . . , n} over Pn and P•
797
+ n. Let RPn and RP•n be a system of representants
798
+ of every orbit under this action, then
799
+ P •(z) =
800
+
801
+ n∈N
802
+ |P•
803
+ n|zn
804
+ n! =
805
+
806
+ n∈N
807
+
808
+ s∈RPn
809
+ |RP•n|
810
+ n!
811
+ |Aut(s)|
812
+ zn
813
+ n! =
814
+
815
+ n∈N
816
+
817
+ s∈RPn
818
+ |RP•n|
819
+ zn
820
+ |Aut(s)|
821
+ Similarly, we have:
822
+ P(z) =
823
+
824
+ n∈N
825
+
826
+ s∈RPn
827
+ |RPn|
828
+ zn
829
+ |Aut(s)|
830
+ Theorem 4.1. For each graph class introduced in Section 3, we have the following expres-
831
+ sions for P and P •:
832
+ P4-tidy
833
+ P •
834
+ tidy(z) = (2 + 4z3) exp(z2) − 2 − 2z2 − 4z3 − z4
835
+ 2 − 2z5
836
+ Ptidy(z) = P •
837
+ tidy(z) + z5 + z5
838
+ 10
839
+ P4-lite
840
+ P •
841
+ lite(z) = (2 + 4z3) exp(z2) − 2 − 2z2 − 4z3 − z4
842
+ 2 − 2z5
843
+ Plite(z) = P •
844
+ lite(z) + z5
845
+ P4-extendible
846
+ P •
847
+ ext(z) = z4
848
+ 2 + 2z5
849
+ Pext(z) = P •
850
+ ext(z) + z5 + z5
851
+ 10
852
+ P4-sparse
853
+ P •
854
+ spa(z) = Pspa(z) = 2(exp(z2) − 1 − z2 − z4
855
+ 4 )
856
+ P4-reducible
857
+ P •
858
+ red(z) = Pred(z) = z4
859
+ 2
860
+ P4-free
861
+ P •
862
+ cog(z) = Pcog(z) = 0
863
+ Proof. We only detail the computation of Ptidy and P •
864
+ tidy for P4-tidy graphs as this is the
865
+ most involved case. According to Theorem 3.7, Ptidy is composed of one C5 that has 10
866
+ automorphisms and all its relabelings, one P5, and one P5 that both have 2 automorphisms
867
+ and all their relabelings.
868
+ For k ≥ 3 (resp. k = 2), there are thin and fat spiders corresponding to the 2 (resp. 1)
869
+ different orbits of the action Φ2k over prime spiders of size 2k, each having k! automor-
870
+ phisms.
871
+ For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
872
+ come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
873
+ cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over pseudo-spiders
874
+ of size 2k + 1, each having 2(k − 1)! automorphisms.
875
+ Thus we have
876
+ Ptidy(z) = z5
877
+ 10 + 2z5
878
+ 2 + z4
879
+ 2 + 2
880
+
881
+ k≥3
882
+ z2k
883
+ k! + 4z5
884
+ 2 + 8
885
+
886
+ k≥3
887
+ z2k+1
888
+ 2(k − 1)!
889
+ Hence
890
+ Ptidy(z) = z5 + z5
891
+ 10 + (2 + 4z3) exp(z2) − 2 − 2z2 − 4z3 − z4
892
+ 2 − 2z5.
893
+ Now let’s compute P •
894
+ tidy. For k ≥ 3 (resp. k = 2), there are thin and fat spiders with
895
+ blossom corresponding to the 2 (resp. 1) different orbits of the action Φ2k over blossomed
896
+ prime spiders G with 2k non blossomed vertices, each having k! automorphisms.
897
+
898
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
899
+ 19
900
+ For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
901
+ come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
902
+ cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over blossomed
903
+ pseudo-spiders with 2k + 1 non blossomed vertices, each having 2(k − 1)! automorphisms.
904
+ Hence
905
+ P •
906
+ tidy(z) = z4
907
+ 2 +2
908
+
909
+ k≥3
910
+ z2k
911
+ k! +4z5
912
+ 2 +8
913
+
914
+ k≥3
915
+ z2k+1
916
+ 2(k − 1)! = (2+4z3) exp(z2)−2−2z2−4z3− z4
917
+ 2 −2z5,
918
+ which gives the announced result.
919
+
920
+ Let T be the exponential generating function of TP,P•, the set of trees defined in Def-
921
+ inition 2.17 counted by their number of leaves. Denote by Tnot⊕ (resp. Tnot⊖) the set of
922
+ all t ∈ TP,P• whose root is not decorated with ⊕ (resp. ⊖) and by Tnot⊕ (resp. Tnot⊖) the
923
+ corresponding exponential generating function.
924
+ Theorem 4.2. Together with Tnot⊕ = 0, the exponential generating function Tnot⊕ is de-
925
+ termined (as a formal series) by the following equation:
926
+ Tnot⊕ = z + P + (exp(Tnot⊕) − 1)P • + exp(Tnot⊕) − 1 − Tnot⊕,
927
+ (1)
928
+ and the series T and Tnot⊖ are simply given by the following equations:
929
+ T = exp(Tnot⊕) − 1
930
+ (2)
931
+ Tnot⊖ = Tnot⊕
932
+ (3)
933
+ Moreover, Eq. (1) with Tnot⊕(0) = 0 determines uniquely the generating function Tnot⊕.
934
+ Proof. Note that there is a natural involution on TP,P•: the decoration of every linear node
935
+ can be changed to its opposite: ⊕ to ⊖, and ⊖ to ⊕. Therefore Tnot⊕ = Tnot⊖.
936
+ First, we prove that
937
+ T = z + T × P • + P + 2 × (exp(Tnot⊕) − 1 − Tnot⊕)
938
+ (4)
939
+ We split the enumeration of the trees t ∈ TP,P• according to the different cases of
940
+ Definition 2.17.
941
+ (D1) The tree t is a single leaf (which gives the z in Eq. (4)).
942
+ (D2) The tree t has a root decorated with a graph H belonging to P. The exponential
943
+ generating function for a fixed H is zN(H)
944
+ N(H)!. Summing over all H and all n gives the
945
+ term P in Eq. (4).
946
+ (D3) The tree t has a root r decorated with ⊕ and having k children with k ≥ 2. In this
947
+ case, the generating function of the set of the k subtrees of tr is
948
+ T k
949
+ not⊕
950
+ k! . Summing
951
+ over all k implies that the exponential generating function of all trees in case (D3)
952
+ with a root labeled ⊕ is exp(Tnot⊕) − 1 − Tnot⊕.
953
+ The tree t can also have a root r decorated with ⊖. Since Tnot⊕ = Tnot⊖, the
954
+ exponential generating function of all trees in case (D3) with a root labeled ⊖ is
955
+ exp(Tnot⊕) − 1 − Tnot⊕.
956
+
957
+ 20
958
+ TH´EO LENOIR
959
+ (D4) The tree t has a root r decorated with a graph H and there exists v ∈ VH such that
960
+ blov(H) = W where W ∈ P•. Denote t′ the ℓ(v)-th tree of tr.
961
+ The exponential generating function corresponding to the set of leaves in t\t′
962
+ is
963
+ zN(W )
964
+ N(W)!, and the exponential generating function corresponding to t′ is T. Note
965
+ that the tree t is uniquely determined by W, the labeled product of t′ and the
966
+ set of leaves of t\t′. Thus the corresponding generating function for a fixed W is
967
+ T × zN(W )
968
+ N(W)!. Summing over all W and all n gives the term T × P • in Eq. (4).
969
+ Summing all terms gives Eq. (4).
970
+ Similarly, we get
971
+ Tnot⊕ = z + T × P • + P + exp(Tnot⊕) − 1 − Tnot⊕.
972
+ (5)
973
+ Substracting Eq. (5) to Eq. (4) gives Eq. (2). Then Eq. (1) is an easy consequence from
974
+ Eqs. (2) and (5).
975
+ Note that Eq. (1) can be rewritten as:
976
+ Tnot⊕ = z + P + (exp(Tnot⊕) − 1)P • +
977
+
978
+ k≥2
979
+ T k
980
+ not⊕
981
+ k! .
982
+ (6)
983
+ For every n ≥ 1, the coefficient of degree n of Tnot⊕ only depends on coefficients of lower
984
+ degree as P •(z) has no term of degree 0 or 1 and Tnot⊕(0) = 0. Thus Eq. (1) combined
985
+ with Tnot⊕(0) = 0 determines uniquely Tnot⊕.
986
+
987
+ We are going to define the notions of trees with marked leaves, and of blossomed trees,
988
+ which will be crucial in the next section. We insist on the fact that the size parameter will
989
+ count the number of leaves including the marked ones but not the blossoms.
990
+ Definition 4.3. A marked tree is a pair (t, I) where t is a tree and I a partial injection
991
+ from the set of labels of leaves of t to N. The number of marked leaves is the size of the
992
+ domain of I denoted by |(t, I)|, and a leaf is marked if its label j is in the domain, its mark
993
+ being I(j).
994
+ Remark. In the following, we will consider marked trees (t, I), and subtrees t′ of t. The
995
+ marked tree (t′, I) will refer to the marked tree (t′, I′) where I′ is the restriction of I to
996
+ the set of labels of leaves of t′.
997
+ Remark. Let F ∈ {TP,P•, Tnot⊖, Tnot⊕}, and F be its generating exponential function. The
998
+ exponential generating function of trees in F with a marked leaf is zF ′(z): if there are fn
999
+ trees of size n in F, there are nfn trees with a marked leaf. Thus the generating exponential
1000
+ function is �
1001
+ n≥1
1002
+ nfn
1003
+ n! zn = zF ′(z).
1004
+ Blossoming transformation. Let t be a tree not reduced to a leaf in TP,P•, ℓ a leaf of t
1005
+ and n the parent of ℓ. If n is a linear node, we replace the label of ℓ by ∗, and do the
1006
+ reduction on t. If v is a non-linear node, and ℓ is in the i-th tree of tv (where i is the
1007
+ element such that (D4) holds in Definition 2.17), we replace the label of ℓ by ∗ and i by
1008
+ ∗ in the decoration of v, and do the reduction on both t and the decoration of v. If t is
1009
+
1010
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1011
+ 21
1012
+ reduced to a leaf, we replace the leaf by a blossom. We call such this transformation the
1013
+ blossoming of (t, ℓ).
1014
+ We extend this operation to internal node: if n is a internal node, we replace t[n] by its
1015
+ leaf of smallest label, and do the blossoming operation on the tree obtained. The resulting
1016
+ tree is still called the blossoming of (t, n).
1017
+ Definition 4.4 (Blossomed tree). A blossomed tree is a tree that can be obtained by the
1018
+ blossoming of a tree in TP,P•. Its size is its number of leaves without blossom.
1019
+ A blossom is ⊕-replaceable (resp. ⊖-replaceable) if its parent is not decorated with ⊕
1020
+ (resp. ⊖).
1021
+ Remark. Similarly to a tree, a blossomed tree can be marked by a partial injection I.
1022
+ We will denote T b and T b
1023
+ a with a = not⊕, not⊖, and b = ⊕, ⊖ or blo the set of trees
1024
+ whose root is not ⊕ (resp. ⊖) if a = not⊕ (resp. a = not⊖), and with one blossom that is
1025
+ b-replaceable if b = ⊕ or ⊖, or just with one blossom if b = blo.
1026
+ We define T b
1027
+ a to be the corresponding exponential generating function of trees, counted
1028
+ by the number of non blossomed leaves.
1029
+ However, we take the convention that T ⊕
1030
+ not⊕(0) = 0 = T ⊖
1031
+ not⊖. In other words, a single leaf
1032
+ is neither in T ⊕
1033
+ not⊕ nor in T ⊖
1034
+ not⊖. The other series have constant coefficient 1.
1035
+ Remark. From the previously defined involution, it follows that T ⊖
1036
+ not⊕ = T ⊕
1037
+ not⊖, T ⊕
1038
+ not⊕ =
1039
+ T ⊖
1040
+ not⊖ et T ⊕ = T ⊖ and T blo
1041
+ not⊕ = T blo
1042
+ not⊖.
1043
+ Theorem 4.5. The functions T ⊕, T ⊕
1044
+ not⊕, T ⊕
1045
+ not⊖ are given by the following equations:
1046
+ T ⊕ =
1047
+ 1
1048
+ 2 − exp(Tnot⊕) − P • exp(Tnot⊕)
1049
+ (7)
1050
+ T ⊖
1051
+ not⊕ =
1052
+ T ⊕
1053
+ exp(Tnot⊕)
1054
+ (8)
1055
+ T ⊕
1056
+ not⊕ =
1057
+ T ⊕ − 1
1058
+ exp(Tnot⊕)
1059
+ (9)
1060
+ Proof. Let t be a tree in T ⊕
1061
+ not⊕. Note that it cannot be reduced to a single leaf, have a root
1062
+ decorated with ⊕ or be in case (D2) of Definition 2.17.
1063
+ (D3) The tree t can have a root r decorated with ⊖ and having k children with k ≥ 2.
1064
+ There are k−1 subtrees without blossom, and 1 with a blossom. Thus the generating
1065
+ function of the set of the k subtrees of tr is
1066
+ T k−1
1067
+ not⊖
1068
+ (k−1)!T ⊖
1069
+ not⊕. Summing over all k gives
1070
+ that the exponential generating function of all trees in case (D3) with a root labeled
1071
+ ⊖ is
1072
+
1073
+ k≥2
1074
+ T k−1
1075
+ not⊖
1076
+ (k − 1)!T ⊕
1077
+ not⊖ = (exp(Tnot⊖) − 1)T ⊕
1078
+ not⊖
1079
+
1080
+ 22
1081
+ TH´EO LENOIR
1082
+ ⊕ or (D4)
1083
+ ⊖ or (D4)
1084
+ ⊖ or (D4)
1085
+ not (D2)
1086
+ (D4)
1087
+ 2
1088
+ 9
1089
+ 6
1090
+ or
1091
+ At least one tree, each does not
1092
+ have a root decorated with ⊕
1093
+ If the previous node is in (D4) the marked leaf must be in the i-th tree
1094
+ Figure 9. Illustration of both cases in the proof of Theorem 4.5
1095
+ (D4) The tree t can have a root r decorated with H and v ∈ VH such that blov(H) = W
1096
+ with W ∈ P•. Then the blossom must be in the ℓ(v)-th tree of tr that will be
1097
+ denoted t′.
1098
+ The exponential generating function corresponding to the set of leaves in t\t′
1099
+ is zN(W )
1100
+ N(W)!, and the exponential generating function corresponding to t′ is T ⊕. Note
1101
+ that the tree t is uniquely determined by W, the labeled product of t′ and the
1102
+ set of leaves of t\t′. Thus the corresponding generating function for a fixed W
1103
+ is T ⊕ × zN(W )
1104
+ N(W)!. Summing over all W and all n gives the exponential generating
1105
+ function T ⊕ × P •.
1106
+ This implies the following equation:
1107
+ T ⊕
1108
+ not⊕ = (exp(Tnot⊖) − 1)T ⊕
1109
+ not⊖ + P •T ⊕ = (exp(Tnot⊕) − 1)T ⊖
1110
+ not⊕ + P •T ⊕
1111
+ (10)
1112
+ We have similarly:
1113
+ T ⊖
1114
+ not⊕ = 1 + (exp(Tnot⊖) − 1)T ⊖
1115
+ not⊖ + P •T ⊖ = 1 + (exp(Tnot⊕) − 1)T ⊕
1116
+ not⊕ + P •T ⊕
1117
+ (11)
1118
+ T ⊕ = 1 + (exp(Tnot⊖) − 1)T ⊕
1119
+ not⊖ + (exp(Tnot⊕) − 1)T ⊕
1120
+ not⊕ + P •T ⊕
1121
+ (12)
1122
+ Thus:
1123
+ T ⊕ = 1 + (exp(Tnot⊕) − 1)(T ⊕
1124
+ not⊕ + T ⊖
1125
+ not⊕) + P •T ⊕
1126
+ (13)
1127
+ By substracting Eq. (11) to Eq. (13), we get T ⊕ − T ⊖
1128
+ not⊕ = (exp(Tnot⊕) − 1)T ⊖
1129
+ not⊕ which
1130
+ implies Eq. (8).
1131
+ Using Eqs. (10) and (13), we get
1132
+ T ⊕ = 1 + (exp(Tnot⊕) − 1)T ⊕
1133
+ not⊕ + T ⊕
1134
+ not⊕ = 1 + exp(Tnot⊕)T ⊕
1135
+ not⊕
1136
+ which implies Eq. (9).
1137
+
1138
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1139
+ 23
1140
+ Substituting T ⊕
1141
+ not⊕ and T ⊖
1142
+ not⊕ with Eqs. (9) and (10) ins Eq. (8), it follows that:
1143
+ T ⊕ − 1 = (exp(Tnot⊕) − 1)T ⊕ + exp(Tnot⊕)P •T ⊕
1144
+ and T ⊕(2 − exp(Tnot⊕) − P • exp(Tnot⊕)) = 1 which implies Eq. (7).
1145
+
1146
+ Theorem 4.6. We also have the following equations:
1147
+ T blo =
1148
+ exp(Tnot⊕)
1149
+ 2 − exp(Tnot⊕) − P • exp(Tnot⊕)
1150
+ (14)
1151
+ T blo
1152
+ not⊕ =
1153
+ 1
1154
+ exp(Tnot⊕)T blo
1155
+ (15)
1156
+ Proof. By the same techniques used as those of the previous proof, we establish that:
1157
+ T blo = 1 + 2(exp(Tnot⊕) − 1)T blo
1158
+ not⊕ + P •T blo;
1159
+ (16)
1160
+ T blo
1161
+ not⊕ = 1 + (exp(Tnot⊕) − 1)T blo
1162
+ not⊕ + P •T blo.
1163
+ (17)
1164
+ By substracting Eq. (17) to Eq. (16), we get that:
1165
+ T blo − T blo
1166
+ not⊕ = (exp(Tnot⊕) − 1)T blo
1167
+ not⊕
1168
+ which implies Eq. (15).
1169
+ By multiplying Eq. (17) by exp(Tnot⊕) and using Eq. (15) we get that:
1170
+ T blo (2 − P • exp(Tnot⊕) − exp(Tnot⊕)) = exp(Tnot⊕)
1171
+ which implies Eq. (14).
1172
+
1173
+ Combining Theorem 4.5 and Theorem 4.6 we obtain:
1174
+ Corollary 4.7. We have the following equations:
1175
+ T blo = exp(Tnot⊕)T ⊕;
1176
+ (18)
1177
+ T blo
1178
+ not⊕ = T ⊕.
1179
+ (19)
1180
+ 4.2. Asymptotic enumeration. In the following, we derive from the previously obtained
1181
+ equations the radii of the different series introduced, the asymptotic behavior of the dif-
1182
+ ferent series in R and an equivalent of the number of graphs in GP,P•
1183
+ From now on, we assume that P and P • have a positive radius of convergence.
1184
+ Let R0
1185
+ be the minimum of their radii of convergence. Denote by P(R0) and P •(R0) the limit in
1186
+ [0, +∞] of P and P • at R−
1187
+ 0 .
1188
+ In the following, we assume that one of the conditions below is verified:
1189
+ • P •(R0) ≥ 1
1190
+ • R0 + P(R0) + 2 ln(1 + P •(R0)) − P •(R0) > 2 ln(2) − 1
1191
+
1192
+ 24
1193
+ TH´EO LENOIR
1194
+ Note that one of these conditions is verified in the different classes of graphs we study,
1195
+ as R0 = +∞.
1196
+ Denote by R the only solution in [0, R0) of the equation:
1197
+ R + P(R) + 2 ln(1 + P •(R)) − P •(R) = 2 ln(2) − 1
1198
+ (20)
1199
+ such that P •(R) < 1 (unicity comes from the fact that z �→ 2 ln(1 + z) − z is increasing in
1200
+ [0, 1]). Note that by definition, 0 < R < R0.
1201
+ Recall that a formal series A is aperiodic if there does not exist two integers r ≥ 0 and
1202
+ d ≥ 2 and B a formal series such that A(z) = zrB(zd).
1203
+ Lemma 4.8. The functions T, Tnot⊕, T ⊕, T ⊖
1204
+ not⊕, T ⊕
1205
+ not⊕, T blo, T blo
1206
+ not⊕ are aperiodic.
1207
+ Proof. One can easily check that for each of the previous series, the coefficients of degree
1208
+ 3 and 4 are positive, and thus all the series are aperiodic.
1209
+
1210
+ Definition 4.9. A set ∆ is a ∆-domain at 1 if there exist two positive numbers R and
1211
+ π
1212
+ 2 < φ < π such that
1213
+ ∆ = {z ∈ C||z| ≤ R, z ̸= 1, |arg(1 − z)| < φ}
1214
+ For every w ∈ C∗, a set is a ∆-domain at w if it is the image of a ∆-domain by the
1215
+ mapping z �→ zw.
1216
+ Definition 4.10. A power series U is said to be ∆-analytic if it has a positive radius of
1217
+ convergence ρ and there exists a ∆-domain D at ρ such that U has an analytic continuation
1218
+ on D.
1219
+ Theorem 4.11. Both T and Tnot⊕ have R as radius of convergence and a unique dominant
1220
+ singularity at R. They are ∆-analytic. Their asymptotic expansions near R are:
1221
+ Tnot⊕(z) = ln
1222
+
1223
+ 2
1224
+ 1 + P •(R)
1225
+
1226
+ − κ
1227
+
1228
+ 1 − z
1229
+ R + o
1230
+ ��
1231
+ 1 − z
1232
+ R
1233
+
1234
+ (21)
1235
+ T(z) =
1236
+ 2
1237
+ 1 + P •(R) − 1 −
1238
+ 2
1239
+ 1 + P •(R)κ
1240
+
1241
+ 1 − z
1242
+ R + o
1243
+ ��
1244
+ 1 − z
1245
+ R
1246
+
1247
+ (22)
1248
+ where κ is the constant given by:
1249
+ κ =
1250
+
1251
+
1252
+
1253
+ �R
1254
+
1255
+ 1 + P ′(R) + (1 − P •(R))(P •)′(R)
1256
+ 1 + P •(R)
1257
+
1258
+ Proof. We begin with the expansion of Tnot⊕ for which we apply the smooth implicit the-
1259
+ orem [8, Theorem VII.3, p.467]. Following [8, Sec VII.4.1] we claim that Tnot⊕ satifies the
1260
+ settings of the so-called smooth implicit-function schema: Tnot⊕ is solution of
1261
+ T = G(z, T),
1262
+ where G(z, w) = z + P(z) + (exp(w) − 1)P •(z) + (exp(w) − 1 − w).
1263
+
1264
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1265
+ 25
1266
+ The singularity analysis of Tnot⊕ will go through the study of the characteristic system:
1267
+
1268
+
1269
+
1270
+ G(r, s) = s,
1271
+ Gw(r, s) = 1
1272
+ with 0 < r < R, s > 0
1273
+ where Fx = ∂F
1274
+ ∂x .
1275
+ Note that (r, s) =
1276
+
1277
+ R, ln
1278
+
1279
+ 2
1280
+ 1+P •(R)
1281
+ ��
1282
+ is a solution of the characteristic system of G since
1283
+ • Gw(r, s) = exp(s)(1 + P •(R)) − 1 = 2 − 1 = 1
1284
+ • G(r, s) = R+P(R)−P •(R)+∂wG(r, s)−s = 2 ln(2)−1−2 ln(1+P •(R))+1−s =
1285
+ 2s − s = s
1286
+ Moreover
1287
+ • Gz(r, s) = 1 + P ′(R) + (exp(s) − 1)(P •)′(R) = 1 + P ′(R) + (1−P •(R))(P •)′(R)
1288
+ (1+P •(R))
1289
+ • Gw,w(r, s) = exp(s)(1 + P •(r)) = 2
1290
+ The expansion of T is then a consequence of Eq. (2) p.19 and of the expansion of
1291
+ Tnot⊕.
1292
+
1293
+ Corollary 4.12. The radius of convergence of T ⊕, T ⊖
1294
+ not⊕, T ⊕
1295
+ not⊕, T blo, and T blo
1296
+ not⊕ is R
1297
+ and R is the unique dominant singularity of these series. They are ∆-analytic and their
1298
+ asymptotic expansions near R are:
1299
+ T ⊕ = 1
1300
+
1301
+
1302
+ 1 − z
1303
+ R
1304
+ �− 1
1305
+ 2 + o
1306
+ ��
1307
+ 1 − z
1308
+ R
1309
+ �− 1
1310
+ 2
1311
+
1312
+ (23)
1313
+ T ⊖
1314
+ not⊕ = (1 + P•(R))
1315
+
1316
+
1317
+ 1 − z
1318
+ R
1319
+ �− 1
1320
+ 2 + o
1321
+ ��
1322
+ 1 − z
1323
+ R
1324
+ �− 1
1325
+ 2
1326
+
1327
+ (24)
1328
+ T ⊕
1329
+ not⊕ = (1 + P•(R))
1330
+
1331
+
1332
+ 1 − z
1333
+ R
1334
+ �− 1
1335
+ 2 + o
1336
+ ��
1337
+ 1 − z
1338
+ R
1339
+ �− 1
1340
+ 2
1341
+
1342
+ (25)
1343
+ T blo =
1344
+ 1
1345
+ (1 + P•(R))κ
1346
+
1347
+ 1 − z
1348
+ R
1349
+ �− 1
1350
+ 2 + o
1351
+ ��
1352
+ 1 − z
1353
+ R
1354
+ �− 1
1355
+ 2
1356
+
1357
+ (26)
1358
+ T blo
1359
+ not⊕ = 1
1360
+
1361
+
1362
+ 1 − z
1363
+ R
1364
+ �− 1
1365
+ 2 + o
1366
+ ��
1367
+ 1 − z
1368
+ R
1369
+ �− 1
1370
+ 2
1371
+
1372
+ (27)
1373
+ Proof. note that, if |z| ≤ R,
1374
+ |(1 + P •(z)) exp(Tnot⊕(z))| ≤ (1 + P •(|z|)) exp(|Tnot⊕(z)|) ≤ (1 + P •(R)) exp(Tnot⊕(R)) = 2
1375
+ with equality if and only if z = R by aperiodicity from Daffodil lemma [8, Lemma IV.1]
1376
+ and since Tnot⊕(R) ∈ R+.
1377
+ Hence, by Theorem 4.11 and by compacity, 2−(1+P •(z)) exp(Tnot⊕(z)) can be extended
1378
+ to a ∆-domain D at R with 2 − (1 + P •(z)) exp(Tnot⊕)(z) ̸= 0 for every z ∈ D.
1379
+ Eq. (7) shows that T ⊕ can be extended to D and yields the announced expansions when
1380
+ z tends to R. These expansions show that all these series have a radius of convergence
1381
+ exactly equal to R.
1382
+
1383
+
1384
+ 26
1385
+ TH´EO LENOIR
1386
+ Applying the Transfer Theorem [8, Corollary VI.1 p.392] to the results of Theorem 4.11,
1387
+ we obtain an equivalent of the number of trees of size n in TP,P•. Since there is a one-to-one
1388
+ correspondence between graphs in GP,P• and trees in TP,P•, we get the following result:
1389
+ Corollary 4.13. The number of graphs in GP,P• of size n is asymptotically equivalent to
1390
+ C
1391
+ n!
1392
+ Rnn
1393
+ 3
1394
+ 2
1395
+ where
1396
+ C =
1397
+ κ
1398
+ √π(1 + P •(R)).
1399
+ Here are the numerical approximations of R and C in the different cases:
1400
+ class of graph
1401
+ R−1
1402
+ R
1403
+ C
1404
+ P4-tidy
1405
+ 2.90405818
1406
+ 0.34434572
1407
+ 0.40883495
1408
+ P4-lite
1409
+ 2.90146936
1410
+ 0.34465296
1411
+ 0.40833239
1412
+ P4-extendible
1413
+ 2.88492066
1414
+ 0.34662998
1415
+ 0.40351731
1416
+ P4-sparse
1417
+ 2.72743550
1418
+ 0.36664478
1419
+ 0.37405701
1420
+ P4-reducible
1421
+ 2.71715531
1422
+ 0.36803196
1423
+ 0.37115484
1424
+ P4-free
1425
+ 1
1426
+ 2 ln(2)−1 ≈ 2.58869945
1427
+ 2 ln(2) − 1 ≈ 0.38629436
1428
+ 0.35065840
1429
+ 5. Enumeration of graphs with a given induced subgraph
1430
+ 5.1. Induced subtrees and subgraphs. We recall that the size of a graph is its number
1431
+ of vertices, and the size of a tree is its number of leaves.
1432
+ Definition 5.1 (Induced subgraph). Let G be a graph, k a positive integer and I a partial
1433
+ injection from the set of labels of G to N. The labeled subgraph GI of G induced by I is
1434
+ defined as:
1435
+ • The vertices of GI are the vertices of G whose label ℓ is in the domain of I. For
1436
+ every such vertex, we replace the label ℓ of the vertex by I(ℓ);
1437
+ • For two vertices v and v′ of GI, (v, v′) is an edge of GI if and only if it is an edge
1438
+ of G.
1439
+ Definition 5.2 (First common ancestor). Let t be a rooted tree and let ℓ1, ℓ2 be two distinct
1440
+ leaves of t. The first common ancestor of ℓ1 and ℓ2 is the internal node of t that is the
1441
+ furthest from the root and that belongs to the shortest path from the root to ℓ1, and the
1442
+ shortest path from the root to ℓ2.
1443
+ Definition 5.3 (Induced subtree). Let (t, I) be a marked tree in T0 (T0 is defined in
1444
+ Definition 2.4, and the notion of marked tree in Definition 4.3). The induced subtree tI
1445
+ of t induced by I is defined as:
1446
+ • The leaves of tI are the leaves of t that are marked. For every such leaf labeled with
1447
+ an integer ℓ, the new label of ℓ is I(ℓ);
1448
+ • The internal nodes of tI are the internal nodes of t that are first common ancestors
1449
+ of two or more leaves of tI;
1450
+ • The ancestor-descendent relation in tI is inherited from the one in t;
1451
+
1452
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1453
+ 27
1454
+ • For every internal node v of t that appears in tI, let H be its decoration in t. Denote
1455
+ by J the set of positive integers k such that the k-th tree of tv contains a leaf of tI.
1456
+ For every k in J, we define L(k) as the smallest image by I of a marked leaf label
1457
+ in the k-th tree of tv. The decoration of v in tI is the reduction of HL.
1458
+ For every internal node v (resp. leaf ℓ) of tI, we also define φ(v) to be the only internal
1459
+ node (resp. leaf) of t corresponding to v.
1460
+ Remark. When (t, I) is a marked tree and t′ is a subtree of t, we will denote t′
1461
+ I the tree
1462
+ induced by the restriction of I to the set of labels of leaves of t′.
1463
+ As a consequence of Definitions 5.1 and 5.3, we obtain:
1464
+ Lemma 5.4. Let (t, I) be a marked tree in T0. Then
1465
+ Graph(t)I = Graph(tI).
1466
+ 8
1467
+ 3
1468
+ 7
1469
+ 2
1470
+ 6
1471
+ 4
1472
+ 5
1473
+ 1
1474
+ 4
1475
+ 1
1476
+ 3
1477
+ 2
1478
+ Graph(t)
1479
+ 3
1480
+ 7
1481
+ 5
1482
+ 6
1483
+ 1
1484
+ 2
1485
+ 4
1486
+ 1
1487
+ 3
1488
+ 4
1489
+ 2
1490
+ Figure 10. Relations between induced subgraph and induced subtree.
1491
+ Definition 5.5. For every pair of graphs (G, H) such that G has no blossom and H has at
1492
+ most one blossom, let OccG(H) be the number of partial injection I from the vertex labels
1493
+ of G to N such that no blossom is marked and HI is isomorphic to G.
1494
+ Definition 5.6. For every pair of graphs (G, H) and a ∈ N such that G has no blossom,
1495
+ H has exactly one blossom and a is the label of a vertex of G, let OccG,a(H) be the number
1496
+
1497
+ (6) = 1, J(7) = 2, J(3) = 1, J(4) = 3tGraph(ts)Graph(t)>J(6) = 1, (7) = 2, J(1) = 3, J(3) = 428
1498
+ TH´EO LENOIR
1499
+ of partial injection I from the vertex labels of G to N such that the image of the blossom
1500
+ by I is a and HI is isomorphic to G.
1501
+ 2
1502
+ 3
1503
+ 1
1504
+
1505
+ 8
1506
+ 5
1507
+ 7
1508
+ 9
1509
+ 6
1510
+ 6
1511
+ Figure 11. Two occurences of a P4 in a blossomed graph H. If G is a P4,
1512
+ the blue one is counted twice in OccG(H), the red one in counted once in
1513
+ OccG,a(H) iff a is the label of an extremity of G.
1514
+ Definition 5.7. For every graph G without blossom, and every a ∈ {1, . . . , N(G) = |G|},
1515
+ set:
1516
+ OccG,P(z) :=
1517
+
1518
+ H∈P
1519
+ OccG(H)zN(H)−N(G)
1520
+ N(H)!
1521
+ ;
1522
+ OccG,P•(z) :=
1523
+
1524
+ H∈P•
1525
+ OccG(H)zN(H)−N(G)
1526
+ N(H)!
1527
+ OccG,a,P•(z) :=
1528
+
1529
+ H∈P•
1530
+ OccG,a(H)zN(H)−N(G)+1
1531
+ N(H)!
1532
+ Notation. OccG,... will only be used for graphs G with no blossom.
1533
+ Proposition 5.8. For every k ≥ 1 and every a ∈ {1, . . . , k}:
1534
+
1535
+ G: N(G)=k
1536
+ OccG,P(z) = P (k)(z)
1537
+ (28)
1538
+
1539
+ G: N(G)=k
1540
+ OccG,P•(z) = (P •)(k)(z)
1541
+ (29)
1542
+
1543
+ G: N(G)=k
1544
+ OccG,a,P•(z) = (P •)(k−1)(z)
1545
+ (30)
1546
+ Thus for every graph G with no blossom and every a ∈ {1, . . . , N(G)}, OccG,P, OccG,P•
1547
+ and OccG,a,P• have a radius of convergence strictly greater than R, the radius of convergence
1548
+ of T.
1549
+ Proof. Let H be an element of P. Since there are
1550
+ N(H)!
1551
+ (N(H)−k)! choices of partial injection
1552
+ whose image is {1, . . . , k}, we have:
1553
+
1554
+ G: N(G)=k
1555
+ OccG,P(z) =
1556
+
1557
+ H∈P
1558
+
1559
+ G: N(G)=k
1560
+ OccG(H)zN(H)−k
1561
+ N(H)!
1562
+ =
1563
+
1564
+ H∈P
1565
+ zN(H)−k
1566
+ (N(H) − k)! = P (k)(z)
1567
+
1568
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1569
+ 29
1570
+ The proofs of Eqs. (29) and (30) are similar. In Eq. (30), since I−1(a) must be ∗, there
1571
+ are exactly
1572
+ N(H)!
1573
+ (N(H)−(k−1))! choices for the partial injection.
1574
+ For every graph G, OccG,P has nonnegative coefficients and for every k ≥ 0, as mentioned
1575
+ in Section 4.2, P (k) has a radius of convergence at least R0, the minimum of the radii of
1576
+ convergence P and P •, which is greater than R. This implies that OccG,P has a radius of
1577
+ convergence greater than R. The proof for the other series is similar.
1578
+
1579
+ 5.2. Enumerations of trees with a given induced subtree. The key step in the proof
1580
+ of our main theorem is to compute the limiting probability (when n → ∞) that a uniform
1581
+ induced subtree of a uniform tree in TP,P• with n leaves is a given substitution tree.
1582
+ In the following, let τ ∈ T0 be a fixed substitution tree of size at least 2.
1583
+ Definition 5.9. We define Tτ to be the set of marked trees (t, I) where t ∈ TP,P• and I
1584
+ is such that tI is isomorphic to τ. We also define Tτ to be the corresponding exponential
1585
+ generating function (where the size parameter is the total number of leaves, including the
1586
+ marked ones).
1587
+ The aim now is to decompose a tree admitting τ as a subtree in smaller trees. Let
1588
+ (t, I) be in Tτ. A prime node v of τ is such that t[φ(v)] is either in case (D2) or (D4) of
1589
+ Definition 2.17: in other word, φ(v) must be a prime node. In constrast, knowing that an
1590
+ internal node v′ of τ is decorated with ⊕ or ⊖ does not give any information about the
1591
+ decoration of φ(v′).
1592
+ In order to state Theorem 5.11 below, we need to partition the internal nodes of τ:
1593
+ Definition 5.10. Let (t, I) be in Tτ. We denote by V(t, I) the set of internal nodes v of
1594
+ τ such that φ(v) is non-linear. The set V(t, I) can be partitioned in 4 subsets:
1595
+ • V0(t, I) the set of internal nodes v such that t[φ(v)] is in case (D2);
1596
+ • V1(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and no marked
1597
+ leaf is in the i-th tree of tφ(v) (where i is the element such that (D4) holds in
1598
+ Definition 2.17);
1599
+ • V2(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and exactly
1600
+ one marked leaf is in the i-th tree of tφ(v) (where i is the element such that (D4)
1601
+ holds in Definition 2.17);
1602
+ • V3(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and at least
1603
+ two marked leaves are in the i-th tree of tφ(v) (where i is the element such that (D4)
1604
+ holds in Definition 2.17).
1605
+ Note that the set of non-linear nodes of τ must be included in V(t, I). Since for every
1606
+ element v of V(t, I) at most one element of tφ(v) is non trivial, at most one element of τv
1607
+ is non trivial. Thus if τ has some non-linear nodes v such that two or more elements of τv
1608
+ are not reduced to a single leaf, Tτ = ∅. In the following, we assume that it is not the case
1609
+ for τ. If τv has exactly one non trivial subtree, then v ∈ V3(t, I). Otherwise, τv is a union
1610
+ of leaves.
1611
+ Notation. We denote by U0 (resp. U1) the set of internal nodes v of τ such that no tree
1612
+ (resp. exactly one tree) of τv has size greater or equal to 2.
1613
+
1614
+ 30
1615
+ TH´EO LENOIR
1616
+ Note that by definition V0(t, I) ∪ V1(t, I) ∪ V2(t, I) ⊂ U0 and V3(t, I) ⊂ U1.
1617
+ We also define rkt,I : V2(t, I) �→ N as follows. Let v ∈ V2(t, I), we define rkt,I(v) to
1618
+ be the only integer k such that, if ℓ is the label of the k-th leaf of τv then the leaf of label
1619
+ I−1(ℓ) in t belongs to the i-th tree of tφ(v) (where i is the element such that (D4) holds in
1620
+ Definition 2.17). For every v ∈ V2(t, I), we have 1 ≤ rkt,I(v) ≤ |τv|.
1621
+ Theorem 5.11. Let τ be a substitution tree of size at least 2 such that every non-linear
1622
+ node of τ is in U0 ∪ U1. Let V0, V1 and V2 be three disjoint subsets of U0 and let V3 be a
1623
+ subset of U1 such that every non-linear node of τ is in V := V0 ∪ V1 ∪ V2 ∪ V3. Let rk:
1624
+ V2 → N be such that 1 ≤ rk(w) ≤ |τw| for every w ∈ V2.
1625
+ Let Tτ,V0,V1,V2,V3,rk be the set of marked trees (t, I) in Tτ such that V0(t, I) = V0, V1(t, I) =
1626
+ V1, V2(t, I) = V2, V3(t, I) = V3, rkt,I = rk, and let Tτ,V0,V1,V2,V3,rk be its exponential gener-
1627
+ ating function.
1628
+ Then
1629
+ Tτ,V0,V1,V2,V3,rk = z|t|T root �
1630
+ T ⊕
1631
+ not⊕
1632
+ �d= �
1633
+ T ⊖
1634
+ not⊕
1635
+ �d̸= �
1636
+ T blo
1637
+ not⊕
1638
+ �dV →V �
1639
+ T
1640
+
1641
+ not⊕
1642
+ �dV →ℓ exp(nLTnot⊕)
1643
+ × T |V1|T ′|V2|(T ⊕)n1(T blo)n2F
1644
+ where
1645
+ F :=
1646
+
1647
+ v∈V0
1648
+ Occdec(v),P
1649
+
1650
+ v∈V3
1651
+ Occdec(v),br(v),P•
1652
+
1653
+ v∈V1
1654
+ Occdec(v),P•
1655
+
1656
+ v∈V2
1657
+ Occdec(v),rk(v),P•
1658
+ and:
1659
+ • d= is the number of edges between two internal nodes not in V with the same
1660
+ decoration (⊕ and ⊕, or ⊖ and ⊖);
1661
+ • d̸= is the number of edges between two internal nodes not in V decorated with
1662
+ different decorations (⊕ and ⊖);
1663
+ • dV →V is the number of edges between an internal node not belonging to V and one
1664
+ of its children belonging to V ;
1665
+ • dV →ℓ is the number of edges between an internal node not in V and a leaf;
1666
+ • nL is the number of internal nodes not in V ;
1667
+ • dec(v) is the decoration of v;
1668
+ • for every v ∈ V3, br(v) is the position of the subtree of τv not reduced to a leaf;
1669
+ • n1 (resp. n2) is the number of internal nodes v in V3 such that the root of the
1670
+ br(v)-th tree of τv is not in V (resp. is in V );
1671
+ • T root = T ⊕ if the root of τ is not in V , T root = T blo otherwise.
1672
+ Proof. Let t be a tree in Tτ,V0,V1,V2,V3,rk. We decompose t into several disjoints subtrees.
1673
+ The blossoms are nodes where (the root of) an other tree will be glued (and thus they are
1674
+ not counted in the generating series, to avoid counting them twice).
1675
+ We define t→root to be the tree t blossomed at φ(r0), where r0 is the root of τ.
1676
+ We define the tree tv→ in the following way:
1677
+ • If v is not in V , tv→ is the subtree of t containing φ(v) and all the subtrees of tφ(v)
1678
+ that do not contain a marked leaf of t.
1679
+
1680
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1681
+ 31
1682
+ V0
1683
+ V0
1684
+ V1
1685
+ V2
1686
+ V3
1687
+ V
1688
+ V
1689
+ Figure 12. A possible τ and choices of V0, V1, V2, V3
1690
+ • If v is in V0 ∪ V1 ∪ V2, tv→ is the tree t[φ(v)].
1691
+ • If v is in V3, tv→ is the tree t[φ(v)] obtained after blossoming the root of the non
1692
+ trivial tree of tφ(v). The blossom is marked with the smallest mark in the non trivial
1693
+ tree of tφ(v).
1694
+ For every internal nodes v, v′ in τ such that v is not in V and v′ is a child of v, let tv→v′
1695
+ be the unique tree of tφ(v) containing φ(v′), blossomed at φ(v′).
1696
+ For every internal node v in τ not in V , and every leaf f which is a child of v in τ, we
1697
+ define tv→f to be the subtree of tφ(v) containing φ(f).
1698
+ For every internal node v in V3, we define tv→br(v) to be the non trivial tree of tφ(v) blossomed
1699
+ at φ(v′), where v′ is the root of the br(v)-th tree of τv.
1700
+ Now we need to analyze the properties of the trees that appear in this decomposition
1701
+ and compute the corresponding exponential generating function. In the rest of the proof,
1702
+ we will say abusively that every blossomed tree belongs to TP,P•, and that two nodes both
1703
+ decorated with ⊕ or ⊖ have the same decoration, even if they do not have the same number
1704
+ of children.
1705
+ (i): analysis of t→root where v ̸∈ V
1706
+ The tree t→root is a tree in TP,P•, it has no marked leaf and a unique blossom. If the root
1707
+ is not in V and decorated with ⊕ (resp. ⊖), the blossom is ⊕-replaceable (see Definition 4.4)
1708
+ (resp. ⊖-replaceable). If the root is in V , the blossom is replaceable.
1709
+
1710
+ 32
1711
+ TH´EO LENOIR
1712
+ root
1713
+ ii
1714
+ iii
1715
+ iv
1716
+ iv
1717
+ iv
1718
+ iv
1719
+ v
1720
+ v
1721
+ vii
1722
+ vii
1723
+ vii
1724
+ vi
1725
+ ix
1726
+ tv,v′
1727
+ i
1728
+ viii
1729
+ viii
1730
+ x
1731
+ xi
1732
+ tv,f
1733
+ tv→
1734
+ t→root
1735
+ tv→br(v)
1736
+ Figure 13. The decomposition of a tree admitting the graph τ of Fig. 12
1737
+ as an induced tree. The different notations correspond to the different cases
1738
+ of the proof of Theorem 5.11.
1739
+ The corresponding exponential generating function is equal to T ⊕ if the root is not in
1740
+ V and equal to T blo otherwise.
1741
+ (ii): analysis of tv→v′ where v ̸∈ V and v′ is a child of v not in V with the same
1742
+ decoration
1743
+ The tree tv→v′ is a tree in TP,P• whose root is not decorated with the same decoration as
1744
+ v and with one blossom ⊕-replaceable if v′ is decorated with ⊕, ⊖-replaceable otherwise
1745
+ and no marked leaf.
1746
+ The exponential generating function of such trees is either T ⊕
1747
+ not⊕ if both nodes are deco-
1748
+ rated with ⊕ or T ⊖
1749
+ not⊖ if both nodes are decorated with ⊖, which are both equal.
1750
+ (iii): analysis of tv→v′ where v ̸∈ V and v′ is a child of v not in V with a different
1751
+ decoration
1752
+ The tree tv→v′ is a tree in TP,P• whose root is not decorated with the same decoration as
1753
+ v and with one blossom ⊕-replaceable if v′ is decorated with ⊕, ⊖-replaceable otherwise
1754
+ and no marked leaf.
1755
+
1756
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1757
+ 33
1758
+ The exponential generating function of such trees is either T ⊖
1759
+ not⊕ if v is decorated with
1760
+ ⊕ and v′ with ⊖ or T ⊖
1761
+ not⊖ if v is decorated with ⊖ and v′ with ⊕, which are both equal.
1762
+ (iv): analysis of tv→v′ where v ̸∈ V and v′ is a child of v in V
1763
+ The tree tv→v′ is a tree in TP,P• whose root is not decorated with the decoration of v
1764
+ with one blossom and no marked leaf.
1765
+ The corresponding exponential generating function is T blo
1766
+ not⊕.
1767
+ (v): analysis of tv→f where v ̸∈ V and f is a leaf which is a child of v
1768
+ The tree tv→f is a tree in TP,P• whose root is not decorated with the decoration of v
1769
+ with one marked leaf and no blossom.
1770
+ The corresponding exponential generating function is zT ′
1771
+ not⊕.
1772
+ (vi): analysis of tv→br(v) where v ∈ V3
1773
+ The tree tv→br(v) is a tree with a blossom that is replaceable if the root of the br(v)-th
1774
+ subtree of t[v] is in V , ⊕-replaceable (resp. ⊖-replaceable) if the root is not in V and
1775
+ labeled ⊕ (resp. ⊖), with no marked leaf.
1776
+ The corresponding exponential generating function is equal to T ⊕ if the root of the
1777
+ br(v)-th tree of τv is not in V and equal to T blo otherwise.
1778
+ (vii): analysis of tv→ where v ̸∈ V
1779
+ The tree tv→ is a tree whose root denoted is decorated with the same decoration as v, who
1780
+ has no marked leaf and no blossom. It verifies all the conditions of being (P, P•)-consistent,
1781
+ except that the root can have 0 or 1 child.
1782
+ The corresponding exponential generating function is �
1783
+ k≥0 T k
1784
+ not⊕ = exp(Tnot⊕).
1785
+ (viii): analysis of tv→ where v ∈ V0
1786
+ The tree tv→ is a tree in TP,P• whose root is decorated with an element of P. The subtree
1787
+ induced by the marked leaves of tv→ is τ[v]. Moreover tv→ has only one internal node.
1788
+ The corresponding exponential generating function is
1789
+
1790
+ H∈P
1791
+ Occdec(v)(H)zN(H)
1792
+ N(H)!
1793
+ = zN(dec(v))Occdec(v),P.
1794
+ Indeed, for a given H ∈ P, the term zN(H)
1795
+ N(H)! correspond to the set of leaves and the term
1796
+ Occdec(v)(H) to the possible markings.
1797
+ (ix): analysis of tv→ where v ∈ V3
1798
+ The tree tv→ is a tree (P, P•)-consistent in case (D4) of Definition 2.17. The subtree
1799
+ induced by the marked leaves of tv→ is τ[v], where the non-trivial tree of τv is replaced by
1800
+ a blossom, marked with the smallest mark in the non-trivial tree of τv. Moreover tv→ has
1801
+ only one internal node.
1802
+ Similarly to case (viii), the corresponding exponential generating function is:
1803
+
1804
+ H∈P•
1805
+ Occdec(v),br(v)(H)zN(H)
1806
+ N(H)!
1807
+ = zN(dec(v))−1Occdec(v),rk(v),P•.
1808
+ (x): analysis of tv→ where v ∈ V1
1809
+
1810
+ 34
1811
+ TH´EO LENOIR
1812
+ The tree tv→ is a tree (P, P•)-consistent in case (D4) of Definition 2.17. The subtree
1813
+ induced by the marked leaves of tv→ is τ[v] and no marked leaf belongs to the i-th tree of
1814
+ tφ(v) (where i is the element such that (D4) holds in Definition 2.17).
1815
+ The corresponding exponential generating function is:
1816
+
1817
+ H∈P•
1818
+ Occdec(v)(H)zN(H)
1819
+ N(H)!
1820
+ × T = zN(dec(v))Occdec(v),P• × T.
1821
+ The sum corresponds to the choice of the root (as in the previous cases), and the factor
1822
+ T to the potential non trivial tree of tv.
1823
+ (
1824
+ ¯
1825
+ xi): analysis of tv→ where v ∈ V2
1826
+ The tree tv→ is a tree (P, P•)-consistent in case (D4) of Definition 2.17. The subtree
1827
+ induced by the marked leaves of tv→ is τ[v] and there is only one marked leaf ℓ in the i-th
1828
+ tree of tφ(v) (where i is the element such that (D4) holds in Definition 2.17). Moreover, if
1829
+ we denote by j the label of ℓ, the label of the rk(v)-th leaf of τv is I(j).
1830
+ Similarly to case (x), the corresponding exponential generating function is:
1831
+
1832
+ H∈P•
1833
+ Occdec(v),rk(v)(H)zN(H)
1834
+ N(H)!
1835
+ × zT ′ = zN(dec(v))Occdec(v),rk(v),P• × T ′.
1836
+ All these conditions ensure that we can recover t by gluing all the different trees and that
1837
+ the subtree of t induced by I is τ. Thus, Tτ,V0,V1,V2,V3,rk is the product of the generating
1838
+ functions corresponding to labeled such trees and concludes the proof of the theorem.
1839
+
1840
+ Corollary 5.12. The series Tτ,V0,V1,V2,V3,rk has radius at least R, is ∆-analytic and its
1841
+ asymptotic expansion near R is:
1842
+ Tτ,V0,V1,V2,V3,rk = Cτ,V0,V1,V2,V3,rk
1843
+
1844
+ 1 − z
1845
+ R
1846
+ �β
1847
+ (1 + o(1))
1848
+ where
1849
+ Cτ,V0,V1,V2,V3,rk := ακγ(1 + P •(R))θ(1 − P •(R))|V1|2λRµ × F(R)
1850
+ with
1851
+ β = −1 + d= + d̸= + dV →V + dV →ℓ + |V2| + |V3|
1852
+ 2
1853
+ γ = dV →ℓ + |V2| − d= − d̸= − dV →V − |V3| − 1
1854
+ θ = d= + d̸= − |V1| − |V2| − n2 − nL
1855
+ λ = −dV →ℓ − n1 − 2d= − 2d̸= + dV →V + nL
1856
+ µ = −dV →ℓ − |V2| + l
1857
+ and α = 1
1858
+ 2 if the root is not in V ,
1859
+ 1
1860
+ 1+P •(κ) otherwise.
1861
+
1862
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1863
+ 35
1864
+ 6. Proof of the main theorems
1865
+ 6.1. Background on graphons. We now review the necessary material on graphons.
1866
+ We refer the reader to [19] for a comprehensive presentation of deterministic graphons,
1867
+ while [7] studies specifically the convergence of random graphs in the sens of graphons.
1868
+ Here we will only recall the properties needed to prove the convergence of random graphs
1869
+ toward the Brownian cographon (see [1]).
1870
+ Definition 6.1. A graphon is an equivalence class of symmetric functions f : [0, 1]2 �→
1871
+ [0, 1], under the equivalence relation ∼, where f ∼ g if there exists a measurable function
1872
+ φ : [0, 1] �→ [0, 1] that is invertible and measure preserving such that, for almost every
1873
+ (x, y) ∈ [0, 1]2, f(φ(x), φ(y)) = g(x, y). We denote by ˜
1874
+ W the set of graphons.
1875
+ Intuitively graphons can be seen as continuous analogous of graph adjacency matrices,
1876
+ where graphs are considered up to relabeling (hence the quotient by ∼). There is a natural
1877
+ way to embed a finite graph into graphons:
1878
+ Definition 6.2. Let G be a (random) graph of size n. We define the (random) graphon
1879
+ WG to be the equivalence class of wG : [0, 1]2 �→ [0, 1] defined by:
1880
+ ∀(x, y) ∈ [0, 1]2
1881
+ wG(x, y) := 1⌈nx⌉connected to⌈ny⌉
1882
+ There exists a metric δ□ on the set of graphons ˜
1883
+ W such that ( ˜
1884
+ W, δ□) is compact [19,
1885
+ Chapter 8], thus we can define for δ□ the convergence in distribution of a random graphon.
1886
+ If (G(n))n≥1 is a sequence of random graphs, there exists a simple criterion [7, Theorem
1887
+ 3.1] characterizing the convergence in distribution of (WG(n)) with respect to δ□:
1888
+ Theorem 6.3 (Rephrasing of [7], Theorem 3.1). For any n, let G(n) be a random graph of
1889
+ size n. Denote by WG(n) the random graphon associated to G(n). The following assertions
1890
+ are equivalent:
1891
+ (a) The sequence of random graphons (WG(n))n≥1 converges in distribution to some
1892
+ random graphon W.
1893
+ (b) The random infinite vector
1894
+
1895
+ OccG(n)(H)
1896
+ n(n−1)...(n−|H|+1)
1897
+
1898
+ H finite graph converges in distribution
1899
+ in the product topology to some random infinite vector (ΛH)H finite graph.
1900
+ For a finite graph H, the random variable ΛH can be seen as the density of the pattern
1901
+ H in the graphon W: the variables (ΛH)H play the roles of margins of W in the space of
1902
+ graphons.
1903
+ For k ≥ 1 and W a random graphon, we denote by Samplek(W) the unlabeled random
1904
+ graph built as follows: Samplek(W) has vertex set {v1, v2, . . . , vk} and, letting (X1, . . . , Xk)
1905
+ be i.i.d. uniform random variables in [0, 1], we connect vertices vi and vj with probability
1906
+ w(Xi, Xj) (these events being independent, conditionally on (X1, · · · , Xk) and W). The
1907
+ construction does not depend on the representation of the graphon.
1908
+ With the notations of Theorem 6.3, we have for any finite graph H
1909
+ ΛH = P(Sample|H|(W) = H | W).
1910
+
1911
+ 36
1912
+ TH´EO LENOIR
1913
+ The article [1] introduces a random graphon W1/2 called the Brownian cographon which
1914
+ can be explicitly constructed as a function of a realization of a Brownian excursion. Besides,
1915
+ [1, Proposition 5] states that the distribution of the Brownian cographon is characterized2
1916
+ by the fact that for every k ≥ 2, Samplek(W1/2) has the same law as the unlabeled
1917
+ version of Graph(bk) with bk a uniform labeled binary tree with k leaves and i.i.d. uniform
1918
+ decorations in {⊕, ⊖}.
1919
+ A consequence of this characterization is a simple criterion for convergence to the Brow-
1920
+ nian cographon.
1921
+ Lemma 6.4 (Rephrasing of [1] Lemma 4.4). For every positive integer n, let T(n) be a
1922
+ uniform random tree in TP,P• with n vertices.
1923
+ For every positive integer ℓ, Iℓ
1924
+ (n) be a
1925
+ uniform partial injection from {1, . . . , n} to N whose image is {1, . . . , ℓ} and independent
1926
+ of T(n). Denote by T(n)
1927
+ Iℓ(n) the subtree induced by Iℓ
1928
+ (n).
1929
+ Suppose that for every ℓ and for every binary tree τ with ℓ leaves,
1930
+ (31)
1931
+ P(T(n)
1932
+ I(n) = τ) −−−→
1933
+ n→∞
1934
+ (ℓ − 1)!
1935
+ (2ℓ − 2)!.
1936
+ Then WGraph(T(n)) converges as a graphon to the Brownian cographon W1/2 of parameter
1937
+ 1/2.
1938
+ 6.2. Conclusion of the proof of Theorem 1.1.
1939
+ Proposition 6.5. Let τ be a binary tree with ℓ ≥ 2 leaves. The series Tτ has radius of
1940
+ convergence R, is ∆-analytic and its asymptotic expansion near R is:
1941
+ Tτ =
1942
+ κ
1943
+ (1 + P •(R))22ℓ−2
1944
+
1945
+ 1 − z
1946
+ R
1947
+ �− 2ℓ−1
1948
+ 2
1949
+ (1 + o(1)) .
1950
+ (32)
1951
+ Proof. As
1952
+ Tτ =
1953
+
1954
+ τ,V0,V1,V2,V3,rk
1955
+ Tτ,V0,V1,V2,V3,rk,
1956
+ the asymptotic expansions of the different series Tτ,V0,V1,V2,V3,rk yield the ∆-analyticity of
1957
+ Tτ, its asymptotic expansion and its radius of convergence.
1958
+ Note that β ≤
1959
+ 1+e
1960
+ 2
1961
+ where e is the number of edge of τ, with equality if and only if
1962
+ V0, V1, V2 and V3 are all empty.
1963
+ Therefore, only the series Tτ,∅,∅,∅,∅,rk contributes to the leading term of the asymptotic
1964
+ expansion. In this case, dV →ℓ = ℓ, d= + d̸= = ℓ − 2 and nL = ℓ − 1 which gives the
1965
+ announced expansion.
1966
+
1967
+ Theorem 6.6. Let τ be a binary tree with ℓ ≥ 2 leaves.
1968
+ For n ≥ ℓ and T(n) be a
1969
+ uniform random tree in TP,P• with n vertices. Let Iℓ
1970
+ (n) be a uniform partial injection from
1971
+ {1, . . . , n} to N whose image is {1, . . . , ℓ} and independent of T(n). Denote by T(n)
1972
+ Iℓ(n) the
1973
+ subtree induced by Iℓ
1974
+ (n).
1975
+ 2This characterization is strongly linked to the remarkable property that k uniform leaves in the CRT
1976
+ induce a uniform binary tree with k leaves, see again [1, Section 4.2].
1977
+
1978
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
1979
+ 37
1980
+ Then
1981
+ P(T(n)
1982
+ Iℓ(n) = τ) −−−→
1983
+ n→∞
1984
+ (ℓ − 1)!
1985
+ (2(ℓ − 1))!.
1986
+ Proof. Since Iℓ
1987
+ (n) is independent of T(n),
1988
+ P(T(n)
1989
+ Iℓ(n) = τ) =
1990
+ n![zn]Tτ
1991
+ n(n − 1) . . . (n − ℓ + 1)n![zn]T =
1992
+ [zn]Tτ
1993
+ n(n − 1) . . . (n − ℓ + 1)[zn]T
1994
+ By applying the Transfer Theorem [8, Corollary VI.1 p.392] to Eq. (32), we get
1995
+ [zn]Tτ ∼
1996
+ κ
1997
+ (1 + P •(R))22ℓ−2
1998
+ n
1999
+ 2ℓ−3
2000
+ 2
2001
+ Γ
2002
+
2003
+ 2ℓ−1
2004
+ 2
2005
+
2006
+ Rn
2007
+ and by Corollary 4.13 we obtain
2008
+ n × · · · × (n − ℓ + 1)[zn]T ∼ nℓ
2009
+ κ
2010
+ √π(1 + P•(R))
2011
+ 1
2012
+ Rnn
2013
+ 3
2014
+ 2 .
2015
+ Thus when n goes to infinity
2016
+ P(T(n)
2017
+ Iℓ(n) = τ) →
2018
+ √π
2019
+ 22ℓ−2Γ
2020
+
2021
+ 2ℓ−1
2022
+ 2
2023
+ � =
2024
+ (ℓ − 1)!
2025
+ (2(ℓ − 1))!
2026
+
2027
+ Combining Lemma 6.4 and Theorem 6.6 prove Theorem 6.7 of which Theorem 1.1 is a
2028
+ particular case.
2029
+ Theorem 6.7. Let G(n) be a uniform random graph in GP,P• with n vertices. We have the
2030
+ following convergence in distribution in the sense of graphons:
2031
+ WG(n)
2032
+ n→∞
2033
+ −→ W
2034
+ 1
2035
+ 2
2036
+ where W
2037
+ 1
2038
+ 2 is the Brownian cographon of parameter 1
2039
+ 2.
2040
+ 6.3. Number of induced prime subgraphs. We now estimate for a prime graph H the
2041
+ number OccH(G(n)) of induced occurences of H in G(n) and show that in average it is null,
2042
+ linear or of order n
2043
+ 3
2044
+ 2.
2045
+ We first observe that substitution trees encoding prime graphs have a very simple struc-
2046
+ ture.
2047
+ Lemma 6.8. Let H be a prime graph. If t is a substitution tree such that H = Graph(t),
2048
+ t is reduced to a single internal node decorated with a relabeling of H with |H| leaves.
2049
+ Proof. Let t be such a tree and r its root. To every element t′ of tr we can associate a
2050
+ module of H by taking the vertices whose labels are the labels of the leaves of t′. Thus tr
2051
+ is a union of leaves, and the decoration of the root is a relabeling of H.
2052
+
2053
+ We say that H verifies (A) if there exists a ∈ {1, . . . , ℓ} such that OccG,a,P•(R) > 0.
2054
+
2055
+ 38
2056
+ TH´EO LENOIR
2057
+ Theorem 6.9. Let H be a prime graph and let ℓ be its size. For n ≥ ℓ, let G(n) be a
2058
+ uniform random graph in GP,P• with n vertices.
2059
+ Then if H verifies (A),
2060
+ E[OccH(G(n))] ∼ KHn
2061
+ 3
2062
+ 2
2063
+ with
2064
+ KH =
2065
+ Rℓ−1√π
2066
+
2067
+ a∈{1,...,ℓ}
2068
+ OccH,a,P•(R)
2069
+ κ(1 + P •(R))
2070
+ otherwise,
2071
+ E[OccH(G(n))] ∼ KHn
2072
+ with
2073
+ KH =
2074
+ �1 − P •(R)
2075
+ 1 + P •(R)OccH,P•(R) + OccH,P(R)
2076
+ � Rℓ
2077
+ κ2
2078
+ Proof. Let T(n) be a uniform random tree in TP,P• with n vertices .
2079
+ Let τ be the canonical tree of H and NT(n),τ the number of induced subtrees of Tn
2080
+ isomorphic to τ. Since τ is the unique substitution tree of G, E[OccH(G(n))] = E[NT(n),τ].
2081
+ By independence
2082
+ E[OccH(G(n))] = n![zn]Tτ
2083
+ n![zn]T = [zn]Tτ
2084
+ [zn]T .
2085
+ From Theorem 5.11, since in this case the only node of τ is either in V0, V1 or V2, we
2086
+ have that:
2087
+ Tτ = zℓT blo
2088
+
2089
+ �T ′
2090
+
2091
+
2092
+
2093
+ a∈{1,...,ℓ}
2094
+ OccG,a,P•
2095
+
2096
+ � + TOccG,P• + OccG,P
2097
+
2098
+ � .
2099
+ Thus
2100
+ • in case (A), with Eqs. (22) and (26)
2101
+ Tτ ∼
2102
+ Rℓ
2103
+ R(1 + P•(R))2
2104
+
2105
+
2106
+
2107
+ a∈{1,...,ℓ}
2108
+ OccH,a,P•(R)
2109
+
2110
+
2111
+
2112
+ 1 − z
2113
+ R
2114
+ �−1
2115
+ ;
2116
+ • Otherwise, Tτ ∼
2117
+ � 1−P •(R)
2118
+ 1+P •(R)OccH,P•(R) + OccH,P(R)
2119
+
2120
+ Rℓ
2121
+ κ(1+P •(R))
2122
+
2123
+ 1 − z
2124
+ R
2125
+ �− 1
2126
+ 2 .
2127
+ By applying the Transfer Theorem [8, Corollary VI.1 p. 392],
2128
+ • In case (A),
2129
+ [zn]Tτ ∼
2130
+ Rℓ
2131
+ Rn+1(1 + P•(R))2
2132
+
2133
+ a∈{1,...,ℓ}
2134
+ OccH,a,P•(R)
2135
+ • Otherwise,
2136
+ [zn]Tτ ∼
2137
+ �1 − P •(R)
2138
+ 1 + P •(R)OccH,P•(R) + OccH,P(R)
2139
+
2140
+ Rℓ
2141
+ √πκ(1 + P•(R))
2142
+ 1
2143
+ Rnn
2144
+ 1
2145
+ 2
2146
+ .
2147
+
2148
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
2149
+ 39
2150
+ By Corollary 4.13,
2151
+ [zn]T ∼
2152
+ κ
2153
+ √π(1 + P•(R))
2154
+ 1
2155
+ Rnn
2156
+ 3
2157
+ 2 .
2158
+ Thus:
2159
+ • In case (A),
2160
+ E[OccG(G(n))] ∼
2161
+ Rℓ−1√π
2162
+
2163
+ a∈{1,...,ℓ}
2164
+ OccG,a,P•(R)
2165
+ κ(1 + P •(R))
2166
+ n
2167
+ 3
2168
+ 2,
2169
+ • Otherwise,
2170
+ E[OccG(G(n))] ∼
2171
+ �1 − P •(R)
2172
+ 1 + P •(R)OccG,P•(R) + OccG,P(R)
2173
+ � Rℓ
2174
+ κ2 n,
2175
+ concluding the proof.
2176
+
2177
+ An interesting application of this theorem is the computation of the asymptotic number
2178
+ of ˜P4’s in a random uniform graph of each of the graph classes of Section 3, where ˜P4 is
2179
+ the only labeling of P4 with endpoints 1 and 4 and 2 connected to 1.
2180
+ Lemma 6.10. A prime spider has exactly |K|(|K| − 1) induced ˜P4. A pseudo-spider of
2181
+ size k has exactly (|K| + 2)(|K| − 1) induced ˜P4.
2182
+ Proof. One can check that for a prime spider, the P ′
2183
+ 4s are induced by the partial injections
2184
+ I whose domain is {k, k′, f(k), f(k′)} for every (k, k′) ∈ K2 with k ̸= k′. In the 24 such
2185
+ partial injections, only 2 are such that the graph induced is ˜P4. Since every induced ˜P4 is
2186
+ counted twice, we have |K|(|K| − 1) induced ˜P4.
2187
+ For a pseudo-spider, let d be the duplicate and d0 the original node. The P ′
2188
+ 4s are induced
2189
+ by the partial injections I whose domain is {k, k′, f(k), f(k′)} for every (k, k′) ∈ K2 with
2190
+ k ̸= k′, or by the partial injections I whose domain is {d, k′, f(d0), f(k′)} (resp. {f −1(d0), k′, d, f(k′)})
2191
+ for every k′ ∈ K with k′ ̸= d0 (resp. k′ ̸= f −1(d0)) if d0 is in K (resp. in S). In the 24 such
2192
+ partial injections, only 2 are such that the graph induced is ˜P4. Since every induced ˜P4
2193
+ not containing d is counted twice, we have |K|(|K| − 1) + 2(|K| − 1) = (|K| + 2)(|K| − 1)
2194
+ induced ˜P4.
2195
+
2196
+ Remark. Note that this lemma implies that Occ ˜
2197
+ P4,a,P• = 0 for all the graph classes men-
2198
+ tionned in Section 3.
2199
+ Theorem 6.11. For each graph class introduced in Section 3, we have the following ex-
2200
+ pressions for Occ ˜
2201
+ P4,P and Occ ˜
2202
+ P4,P•:
2203
+
2204
+ 40
2205
+ TH´EO LENOIR
2206
+ P4-tidy
2207
+ Occ ˜
2208
+ P4,P•
2209
+ tidy(z) = (2 + 16z + 4z3) exp(z2) − 1 − 8z
2210
+ Occ ˜
2211
+ P4,Ptidy(z) = Occ ˜
2212
+ P4,P•
2213
+ tidy(z) + 5z
2214
+ P4-lite
2215
+ Occ ˜
2216
+ P4,P•
2217
+ lite(z) = (2 + 16z + 4z3) exp(z2) − 1 − 8z
2218
+ Occ ˜
2219
+ P4,Plite(z) = Occ ˜
2220
+ P4,P•
2221
+ lite(z) + 4z
2222
+ P4-extendible
2223
+ Occ ˜
2224
+ P4,P•
2225
+ ext(z) = 1 + 8z
2226
+ Occ ˜
2227
+ P4,Pext = Occ ˜
2228
+ P4,P•
2229
+ ext(z) + 5z
2230
+ P4-sparse
2231
+ Occ ˜
2232
+ P4,P•spa(z) = Occ ˜
2233
+ P4,Pspa(z) = 2 exp(z2) − 1
2234
+ P4-reducible
2235
+ Occ ˜
2236
+ P4,P•
2237
+ red(z) = Occ ˜
2238
+ P4,Pred = 1
2239
+ P4-free
2240
+ Occ ˜
2241
+ P4,P•cog(z) = Occ ˜
2242
+ P4,Pcog(z) = 0
2243
+ Proof. We only detail the computation of Occ ˜
2244
+ P4,P•
2245
+ tidy and Occ ˜
2246
+ P4,Ptidy for P4-tidy graphs as
2247
+ this is the most involved case. Note that, with the notations of Section 4.1,
2248
+ Occ ˜
2249
+ P4,P(z) =
2250
+
2251
+ n∈N
2252
+
2253
+ H∈RPn
2254
+
2255
+ H′∼H
2256
+ Occ ˜
2257
+ P4(H)zN(H)−4
2258
+ N(H)!
2259
+ =
2260
+
2261
+ n∈N
2262
+
2263
+ H∈RPn
2264
+ Occ ˜
2265
+ P4(H)zN(H)−4
2266
+ |Aut(H)|
2267
+ and similarly
2268
+ Occ ˜
2269
+ P4,P•(z) =
2270
+
2271
+ n∈N
2272
+
2273
+ H∈RP•n
2274
+
2275
+ H′∼H
2276
+ Occ ˜
2277
+ P4(H)zN(H)−4
2278
+ N(H)!
2279
+ =
2280
+
2281
+ n∈N
2282
+
2283
+ H∈RPn
2284
+ Occ ˜
2285
+ P4(H)zN(H)−4
2286
+ |Aut(H)|
2287
+ According to Theorem 3.7, Ptidy is composed of one C5 that has 10 automorphisms and
2288
+ 10 induced ˜P4 and all its relabelings, one P5, and one P5 that both have 2 automorphisms
2289
+ and 4 induced ˜P4’s and all their relabelings.
2290
+ For k ≥ 3 (resp. k = 2), there are thin and fat spiders corresponding to the 2 (resp. 1)
2291
+ different orbits of the action Φ2k over prime spiders of size 2k, each having k! automorphisms
2292
+ and k(k − 1) ˜P4’s.
2293
+ For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
2294
+ come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
2295
+ cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over pseudo-spiders
2296
+ of size 2k + 1, each having 2(k − 1)! automorphisms and (k + 2)(k − 1) ˜P4’s.
2297
+ Thus we have
2298
+ Occ ˜
2299
+ P4,P(z) = z + 4z
2300
+ 2 + 4z
2301
+ 2 + 2
2302
+ 2 + 2
2303
+
2304
+ k≥3
2305
+ k(k − 1)z2k−4
2306
+ k!
2307
+ + 44z
2308
+ 2 + 8
2309
+
2310
+ k≥3
2311
+ (k + 2)(k − 1)z2k−3
2312
+ 2(k − 1)!
2313
+ = 5z + 1 + 2
2314
+
2315
+ k≥1
2316
+ z2k
2317
+ k! + 8z + 4
2318
+
2319
+ k≥1
2320
+ (k + 4)z2k+1
2321
+ k!
2322
+ = 5z + 1 + 2 exp(z2) − 2 + 8z + 4
2323
+
2324
+ k≥0
2325
+ z2k+3
2326
+ k!
2327
+ + 16
2328
+
2329
+ k≥1
2330
+ z2k+1
2331
+ k!
2332
+
2333
+ GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND BROWNIAN GRAPHON LIMITS
2334
+ 41
2335
+ = 5z + 2 exp(z2) − 1 + 4z3 exp(z2) + 16z exp(z2) − 8z
2336
+ = 5z + (2 + 16z + 4z3) exp(z2) − 1 − 8z
2337
+ Now let’s compute Occ ˜
2338
+ P4,P•(z). For k ≥ 3 (resp. k = 2), there are thin and fat spiders
2339
+ with blossom corresponding to the 2 (resp. 1) different orbits of the action Φ2k over blos-
2340
+ somed prime spiders G with 2k non blossomed vertices, each having k! automorphisms and
2341
+ k(k − 1) ˜P4’s.
2342
+ For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
2343
+ come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
2344
+ cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over blossomed
2345
+ pseudo-spiders with 2k + 1 non blossomed vertices, each having 2(k − 1)! automorphisms
2346
+ and (k + 2)(k − 1) ˜P4’s.
2347
+ Hence
2348
+ Occ ˜
2349
+ P4,P•(z) = 2
2350
+ 2 + 2
2351
+
2352
+ k≥3
2353
+ k(k − 1)z2k−4
2354
+ k!
2355
+ + 44z
2356
+ 2 + 8
2357
+
2358
+ k≥3
2359
+ (k + 2)(k − 1)z2k−3
2360
+ 2(k − 1)!
2361
+ Thus Occ ˜
2362
+ P4,P•(z) + 5z = Occ ˜
2363
+ P4,P(z) which gives the announced result.
2364
+
2365
+ Combining Theorem 6.9, Theorem 6.11 and the remark above, we get that ˜P4 does not
2366
+ verify (A), thus ˜P4 belongs to the linear case of Theorem 6.9:
2367
+ Corollary 6.12. Let G(n) be a uniform graph of size n taken uniformly at random in one
2368
+ of the following families: P4-sparse, P4-tidy, P4-lite, P4-extendible, P4-reducible or P4-free.
2369
+ Then E[Occ ˜
2370
+ P4(G(n))] ∼ K ˜
2371
+ P4n where K ˜
2372
+ P4 is defined in Theorem 6.9.
2373
+ Here are the numerical approximations of K ˜
2374
+ P4 in the different cases:
2375
+ class of graph
2376
+ K ˜
2377
+ P4
2378
+ P4-tidy
2379
+ 0.29200322
2380
+ P4-lite
2381
+ 0.28507010
2382
+ P4-extendible
2383
+ 0.24959979
2384
+ P4-sparse
2385
+ 0.10280703
2386
+ P4-reducible
2387
+ 0.08249263
2388
+ P4-free
2389
+ 0
2390
+ Acknowledgements. I would like to thank Lucas Gerin and Fr´ed´erique Bassino for
2391
+ useful discussions and for carefully reading many earlier versions of this manuscript.
2392
+ References
2393
+ [1] F. Bassino, M. Bouvel, V. F´eray, L. Gerin, M. Maazoun, and A. Pierrot. Random cographs: Brownian
2394
+ graphon limit and asymptotic degree distribution. Random Struct. Algor., 60(2):166–200, 2022.
2395
+ [2] C. Borgs, J. T. Chayes, L. Lov´asz, V. T. S´os, and K. Vesztergombi. Convergent sequences of dense
2396
+ graphs I: Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–1851, 2008.
2397
+ [3] A. Brandst¨adt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Society for Industrial and
2398
+ Applied Mathematics, 1999.
2399
+
2400
+ 42
2401
+ TH´EO LENOIR
2402
+ [4] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear time LexBFS cograph recognition
2403
+ algorithm. SIAM J. Discrete Math., 22(4):1277–1296, 2008.
2404
+ [5] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Appl.
2405
+ Math., 3(3):163–174, 1981.
2406
+ [6] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM J.
2407
+ Comput., 14(4):926–934, 1985.
2408
+ [7] P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rendiconti di Matematica,
2409
+ 28(1):33–61, 2008.
2410
+ [8] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
2411
+ [9] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica,
2412
+ 18:25–66, 1967.
2413
+ [10] V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs. Discrete Math. Theor. Comput.
2414
+ Sci., 1:17–41, 1997.
2415
+ [11] V. Giakoumakis and J.-M. Vanherpe. On extended P4-reducible and extended P4-sparse graphs. The-
2416
+ oretical Computer Science, 180(1):269–286, 1997.
2417
+ [12] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition. Discrete Appl. Math.,
2418
+ 145(2):183–197, 2005.
2419
+ [13] B. Jamison. A tree-representation for P4-sparse graphs. Discrete Appl. Math., 35(2):115–129, 1992.
2420
+ [14] B. Jamison and S. Olariu. A new class of brittle graphs. Stud. Appl. Math., 81(1):89–92, 1989.
2421
+ [15] B. Jamison and S. Olariu. P4-reducible graphs—class of uniquely tree-representable graphs. Stud.
2422
+ Appl. Math., 81(1):79–87, 1989.
2423
+ [16] B. Jamison and S. Olariu. On a unique tree representation for P4-extendible graphs. Discrete Appl.
2424
+ Math., 34(1-3):151–164, 1991.
2425
+ [17] B. Jamison and S. Olariu. Recognizing P4 sparse graphs in linear time. SIAM J. Comput., 21(2):381–
2426
+ 406, 1992.
2427
+ [18] B. Jamison and S. Olariu. A linear-time recognition algorithm for P4-reducible graphs. Theoret. Com-
2428
+ put. Sc., 145(1):329–344, 1995.
2429
+ [19] L. Lov´asz. Large Networks and Graph Limits. Colloquium Publications. American Mathematical So-
2430
+ ciety, 2012.
2431
+ [20] R. H. M¨ohring. Algorithmic Aspects of Comparability Graphs and Interval Graphs, pages 41–101.
2432
+ Springer, 1985.
2433
+ [21] B. Stufler. Graphon convergence of random cographs. Random Struct. & Algor., 59:464 – 491, 2019.
2434
+ Th´eo Lenoir [email protected]
2435
+ Cmap, Cnrs, ´Ecole polytechnique,
2436
+ Institut Polytechnique de Paris,
2437
+ 91120 Palaiseau, France
2438
+
3NFRT4oBgHgl3EQfoDdP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tAzT4oBgHgl3EQfuf3H/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f699f66e91e9e1ad05b0783c98c789f03c8b91dcd8d941e4d74142402c80ce3
3
+ size 3145773
49E4T4oBgHgl3EQf1A2T/content/tmp_files/2301.05287v1.pdf.txt ADDED
@@ -0,0 +1,2572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model selection in atomistic simulation
2
+ Jonathan E. Moussa
3
+ Molecular Sciences Software Institute, Virginia Tech, Blacksburg, Virginia 24060, USA
4
+ (*Electronic mail: [email protected])
5
+ There are many atomistic simulation methods with very different costs, accuracies, transferabilities, and numbers of empirical parameters.
6
+ I show how statistical model selection can compare these methods fairly, even when they are very different. These comparisons are also
7
+ useful for developing new methods that balance cost and accuracy. As an example, I build a semiempirical model for hydrogen clusters.
8
+ I.
9
+ INTRODUCTION
10
+ Scientists have been building quantitative atomistic models for
11
+ over a century1. In that time, many atomistic models have evolved
12
+ into sophisticated computer simulations2.
13
+ While there are now
14
+ models based on a wide variety of atomistic simulation methods,
15
+ most development has focused on two contradictory goals. Classi-
16
+ cal molecular mechanics (MM) methods focus on minimizing cost
17
+ to access phenomena at large length scales and long time scales3.
18
+ However, the use of MM methods is limited by the availability and
19
+ accuracy of system-specific interatomic potentials4. In contrast,
20
+ first-principles quantum mechanics (QM) methods focus on mini-
21
+ mizing error for general-purpose simulations5, which can get very
22
+ expensive. MM methods can achieve simulation costs of less than
23
+ 10−5 CPU-seconds per atom6, while high-accuracy QM methods
24
+ have asymptotic costs greater than 104 CPU-seconds per atom7.
25
+ Because of the large gaps in cost and utility, there are many
26
+ atomistic simulation tasks for which QM methods are too expensive
27
+ and MM methods have no suitable interatomic potential. In this
28
+ situation, a scientist needs an affordable model and must either
29
+ develop their own or use an existing one such as a semiempirical
30
+ QM (SQM) model8,9. In either case, they need to collect evidence
31
+ to support their model. They must either gather enough reference
32
+ data to fit a new model, or find enough examples of scientists
33
+ using an existing model for similar tasks to be confident that it will
34
+ work for them. This type of model selection process is a common
35
+ occurrence in atomistic science, and yet it remains rather informal
36
+ and subjective much of the time.
37
+ In this paper, I advocate for using statistical model selection10
38
+ to develop and compare models for atomistic simulation. All else
39
+ being equal, a scientist should fit or choose a model to maximize
40
+ the probability that they will succeed at their simulation task. Since
41
+ the exact probability will be more expensive to compute than the
42
+ simulation task itself, they must rely on a proxy probability based
43
+ on related but simpler simulation tasks. Assumptions about the
44
+ transferability of a method’s accuracy between related simulation
45
+ tasks are unavoidable in atomistic science. Also, when considering
46
+ methods with different numbers of fitting parameters or costs, extra
47
+ penalties are needed to avoid overfitting or exceeding computa-
48
+ tional budgets. These same principles apply to the development
49
+ of general-purpose models that are intended to be used by many
50
+ scientists over a broad distribution of simulation tasks.
51
+ As an example, I apply statistical model selection to the task
52
+ of simulating random hydrogen clusters. First, I generate high-
53
+ accuracy QM reference data. Second, I compare the accuracy of
54
+ some popular SQM models and density functionals from density
55
+ functional theory (DFT)11. Third, I build new SQM models by
56
+ correcting this SQM and QM data with atomic pair potentials. Here,
57
+ model selection determines the optimal number of parameters in
58
+ the pair potentials and the computational budget thresholds for
59
+ switching between models.
60
+ II.
61
+ STATISTICAL MODEL SELECTION
62
+ The standard practice in fitting atomistic models with param-
63
+ eters is to minimize a distance between model predictions and
64
+ reference data. I consider vectors of 𝑚 reference data points x and
65
+ model predictions y(λ), which are determined by 𝑛 real parame-
66
+ ters λ. The value of λ is usually chosen by minimizing the mean
67
+ absolute error (MAE),
68
+ ∥x − y(λ)∥1 =
69
+ 𝑚
70
+ ∑︁
71
+ 𝑖=1
72
+ |𝑥𝑖 − 𝑦𝑖(λ)|,
73
+ (1)
74
+ or the root-mean-square deviation (RMSD),
75
+ ∥x − y(λ)∥2 =
76
+
77
+ � 𝑚
78
+ ∑︁
79
+ 𝑖=1
80
+ [𝑥𝑖 − 𝑦𝑖(λ)]2.
81
+ (2)
82
+ The general expectation is that smaller distances correspond to bet-
83
+ ter accuracy and thus a higher chance of success when these models
84
+ are used for other simulation tasks. However, this relationship is
85
+ indirect because these distances are not operational measures of
86
+ success. An operational measure would describe the application of
87
+ a model by scientists in a more explicit and direct way, including
88
+ how successful they are. Directly optimizing an operational mea-
89
+ sure should produce a more successful model if the operational
90
+ measure itself is sufficiently accurate.
91
+ To use statistical model
92
+ selection as an operational measure in this context, I must first
93
+ introduce two distinct sources of randomness.
94
+ The first source of randomness is in the model predictions.
95
+ I consider a generalization of the reference information from data
96
+ points x to simulation tasks X. Each reference simulation task 𝑋𝑖
97
+ defines one or more physical systems and calculations to perform,
98
+ together with reference output data and success criteria. The con-
99
+ ditional probability of success, 𝑝(λ|𝑋𝑖), after choosing a task 𝑋𝑖
100
+ and using a model with parameters λ replaces a distance between
101
+ 𝑥𝑖 and 𝑦𝑖(λ). The only constraint on the success criteria is that the
102
+ success probability for the method used to generate the reference
103
+ data must be one.
104
+ Viable models must always have a nonzero
105
+ success probability, which requires the model output or success
106
+ criteria to have a random component.
107
+ The second source of randomness is in the choice of reference
108
+ simulation tasks. I relate a set of reference simulation tasks to
109
+ the actual simulation task that a scientist wants to succeed at by
110
+ arXiv:2301.05287v1 [physics.chem-ph] 12 Jan 2023
111
+
112
+ 2
113
+ considering them to be randomly drawn from a common distribution
114
+ of simulation tasks. The probability of choosing a simulation task
115
+ 𝑋 is 𝑝(𝑋), and the probability of choosing this task and then
116
+ succeeding with the model is
117
+ 𝑝(λ, 𝑋) = 𝑝(λ|𝑋)𝑝(𝑋).
118
+ (3)
119
+ It is not strictly necessary for the simulation tasks to have been
120
+ randomly drawn from this distribution. Such a distribution is still
121
+ formally useful even when it is an artificial context and not even
122
+ precisely defined. It is simply the mathematical representation of
123
+ a computational scientist as a distribution over simulation tasks.
124
+ A.
125
+ Maximum likelihood estimation
126
+ I now apply the framework of maximum likelihood estimation
127
+ (MLE)10 to determine the best model in this randomized setting.
128
+ The operational measure of modeling success is the probability of
129
+ succeeding at all 𝑚 reference simulation tasks,
130
+ 𝑃(λ) =
131
+ 𝑚
132
+
133
+ 𝑖=1
134
+ 𝑝(λ|𝑋𝑖).
135
+ (4)
136
+ It is related to a statistical likelihood function,
137
+ 𝐿(λ) =
138
+ 𝑚
139
+
140
+ 𝑖=1
141
+ 𝑝(λ, 𝑋𝑖) = 𝑃(λ)
142
+ 𝑚
143
+
144
+ 𝑖=1
145
+ 𝑝(𝑋𝑖),
146
+ (5)
147
+ over the joint distribution of simulation tasks and modeling success
148
+ or failure events. I follow the common convention of considering
149
+ the negative logarithm of the probability or likelihood,
150
+ − log 𝑃(λ) = −
151
+ 𝑚
152
+ ∑︁
153
+ 𝑖=1
154
+ log 𝑝(λ|𝑋𝑖)
155
+ = − log 𝐿(λ) +
156
+ 𝑚
157
+ ∑︁
158
+ 𝑖=1
159
+ log 𝑝(𝑋𝑖),
160
+ (6)
161
+ which replaces the product over reference simulation tasks with a
162
+ more convenient sum. The negative logarithm is a strictly mono-
163
+ tonically decreasing function, and maximizing it corresponds to
164
+ maximizing the likelihood. Since 𝑝(𝑋𝑖) has no dependence on λ,
165
+ 𝑃(λ) and 𝐿(λ) are maximized by the same value of λ.
166
+ The familiar case of minimizing RMSD follows from a simple
167
+ success criterion and error model. I assume that each simulation
168
+ task 𝑋𝑖 produces a single model output 𝑦𝑖(λ) that must be within 𝜖
169
+ of a reference value 𝑥𝑖 for success. I further adjust each model output
170
+ by a Gaussian error model with mean 𝜇 and standard deviation 𝜎
171
+ to guarantee a finite success probability. Each success probability
172
+ reduces to a quadratic penalty for small 𝜖 values,
173
+ − log 𝑝(λ|𝑋𝑖) = − log
174
+
175
+ 𝑥𝑖+𝜖
176
+ 𝑥𝑖−𝜖
177
+ 𝑒−0.5[𝑧−𝜇−𝑦𝑖 (λ)]2/𝜎2
178
+ 𝜎
179
+
180
+ 2𝜋
181
+ 𝑑𝑧
182
+ ≈ [𝑥𝑖 − 𝑦𝑖(λ) − 𝜇]2
183
+ 2𝜎2
184
+ + 1
185
+ 2 log 𝜋𝜎2
186
+ 2𝜖2 + 𝑂(𝜖).
187
+ (7)
188
+ While not clear from this notation, error model parameters such as
189
+ 𝜇 and 𝜎 are also considered to be part of the parameter vector λ.
190
+ In the small-𝜖 limit, the operational measure of success reduces to
191
+ an RMSD-like formula,
192
+ − log 𝑃(λ) ≈ 𝑚
193
+ 2 log 𝜋𝜎2
194
+ 2𝜖2 +
195
+ 𝑚
196
+ ∑︁
197
+ 𝑖=1
198
+ [𝑥𝑖 − 𝑦𝑖(λ) − 𝜇]2
199
+ 2𝜎2
200
+ .
201
+ (8)
202
+ When minimizing this formula over 𝜇 and 𝜎, the minimizers are
203
+ the mean and standard deviation of the model error distribution,
204
+ 𝜇 =
205
+ 𝑚
206
+ ∑︁
207
+ 𝑖=1
208
+ 𝑥𝑖 − 𝑦𝑖(λ)
209
+ 𝑚
210
+ ,
211
+ 𝜎 =
212
+
213
+ � 𝑚
214
+ ∑︁
215
+ 𝑖=1
216
+ [𝑥𝑖 − 𝑦𝑖(λ) − 𝜇]2
217
+ 𝑚
218
+ .
219
+ (9)
220
+ The remaining minimization over λ is equivalent to minimizing
221
+ the RMSD with a model bias correction of 𝜇. The minimum value
222
+ of the small-𝜖 success measure is
223
+ − log 𝑃(λ) ≈ 𝑚
224
+ 2 + 𝑚
225
+ 2 log 𝜋𝜎2
226
+ 2𝜖2
227
+ (10)
228
+ for 𝜎 in Eq. (9), which is a monotonically increasing function of the
229
+ bias-corrected RMSD. In the absence of model bias, the RMSD
230
+ and success measure thus produce the same minimizing models
231
+ and rank them in the same order.
232
+ Using a Gaussian distribution to approximate model errors is
233
+ justified when they come from an accumulation of many small,
234
+ independent errors. A non-zero mean suggests that these small
235
+ errors are biased on average. The same small-𝜖 analysis can relate
236
+ a similar success measure to the MAE if the underlying error model
237
+ is a Laplace distribution,
238
+ 𝜌(𝑥) = 𝑒−
239
+
240
+ 2|𝑥−𝜇|/𝜎
241
+ 𝜎
242
+
243
+ 2
244
+ .
245
+ (11)
246
+ However, non-Gaussian error distributions suggest a small number
247
+ of dominant, independent error sources that avoid the inevitable
248
+ consequences of the central limit theorem.
249
+ Also, the Laplace
250
+ distribution has a fatter tail than a Gaussian distribution, which
251
+ implies an increased tolerance of large error outliers. Ultimately,
252
+ the choice of distributions in an error model should be informed
253
+ by the observed distribution of errors between model and data.
254
+ A more sophisticated MLE example is a multi-Gaussian error
255
+ model. Here, we partition the reference simulation tasks into 𝑟
256
+ groups of similar tasks, each with their model errors described
257
+ by a different Gaussian distribution. Such grouping is appropriate
258
+ when different groups of tasks are observed to have different error
259
+ statistics for models under consideration12. The small-𝜖 limit of
260
+ the success measure generalizes from Eq. (8) to
261
+ − log 𝑃(λ) ≈
262
+ 𝑟∑︁
263
+ 𝑖=1
264
+ 𝑚𝑖
265
+ 2 log 𝜋𝜎2
266
+ 𝑖
267
+ 2𝜖2
268
+ +
269
+ 𝑟∑︁
270
+ 𝑖=1
271
+ 𝑚𝑖
272
+ ∑︁
273
+ 𝑗=1
274
+ [𝑥𝑖, 𝑗 − 𝑦𝑖, 𝑗 (λ) − 𝜇𝑖]2
275
+ 2𝜎2
276
+ 𝑖
277
+ ,
278
+ (12)
279
+ where the extra index is for the groups. The minimizing 𝜇𝑖 and 𝜎𝑖
280
+ values generalize from Eq. (9) to
281
+ 𝜇𝑖 =
282
+ 𝑚𝑖
283
+ ∑︁
284
+ 𝑗=1
285
+ 𝑥𝑖, 𝑗 − 𝑦𝑖, 𝑗 (λ)
286
+ 𝑚𝑖
287
+ ,
288
+ 𝜎𝑖 =
289
+
290
+ � 𝑚𝑖
291
+ ∑︁
292
+ 𝑖=1
293
+ [𝑥𝑖, 𝑗 − 𝑦𝑖, 𝑗 (λ) − 𝜇𝑖]2
294
+ 𝑚𝑖
295
+ .
296
+ (13)
297
+
298
+ 3
299
+ The minimization over λ is now equivalent to a weighted, bias-
300
+ corrected RMSD with weights proportional to the inverse error
301
+ variance. However, the minimum value of the success measure,
302
+ − log 𝑃(λ) ≈ 𝑚
303
+ 2 +
304
+ 𝑟∑︁
305
+ 𝑖=1
306
+ 𝑚𝑖
307
+ 2 log 𝜋𝜎2
308
+ 𝑖
309
+ 2𝜖2 ,
310
+ (14)
311
+ no longer ranks minimizing models in the same order as the cor-
312
+ responding weighted RMSD. Thus MLE rapidly deviates from
313
+ minimizing simple distances between model and reference data as
314
+ success criteria and error models get more complicated.
315
+ Beyond these simple examples, MLE can provide a lot of
316
+ flexibility to the model-fitting process. It is possible to fit low-
317
+ cost models that are designed to have only qualitative accuracy
318
+ by choosing success criteria that tolerate large but well-shaped
319
+ errors. For example, conformer searches only need to preserve the
320
+ order of conformer energies, which can be tested by the Spearman
321
+ rank correlation coefficient13. When fitting very accurate models,
322
+ many reference simulation tasks may have success probabilities
323
+ very close to one and effectively vanish from log 𝑃(λ). In this
324
+ highly successful regime, error outliers in a model will have a
325
+ greatly enhanced influence on the success measure and MLE may
326
+ become functionally equivalent to minimax optimization.
327
+ B.
328
+ Information criteria
329
+ Simple MLE is capable of selecting the best model from one
330
+ family of models parameterized by λ, but it cannot reliably compare
331
+ models from different families. Adding more free parameters to an
332
+ existing model and optimizing them can only improve the success
333
+ measure, and nested models with more parameters will always be
334
+ preferred. This can eventually cause the modeling phenomenon
335
+ of fitting noise rather than data, and there needs to be additional
336
+ modeling criteria for eliminating parameters that are not useful.
337
+ The most common approach is to introduce a penalty for adding
338
+ model parameters that is overcome by useful parameters. Such
339
+ measures of model accuracy with penalties for parameters are
340
+ called information criteria (IC), the oldest and most famous of
341
+ which is the Akaike information criterion (AIC)14. The Takeuchi
342
+ information criterion (TIC)15 is a more complicated generalization
343
+ of the AIC that does not assume model accuracy. Here, I provide
344
+ a minimal motivation and derivation of the TIC and AIC to justify
345
+ their use in fitting models for atomistic simulation.
346
+ An implicit assumption about both the IC derivations and
347
+ MLE itself is that 𝑃(λ) can be optimized over λ effectively in
348
+ practice. The mathematical structure of 𝑃(λ) depends on both
349
+ the model family and the success criteria of simulation tasks. I
350
+ specifically assume that 𝑃(λ) is twice differentiable with respect to
351
+ λ and that derivative information is used to find local minimizers.
352
+ I also assume that it is possible to choose initial values for λ in
353
+ the basin of convergence for the global minimizer. While there is
354
+ not enough structure here to guarantee or verify global minima,
355
+ there are often physical considerations to guide reasonable choices
356
+ of initial λ values.
357
+ Both the AIC and TIC come from attempting to change the
358
+ modeling success measure from Eq. (6) to
359
+ 𝐷(λ) = −𝑚
360
+ ∑︁
361
+ 𝑋
362
+ 𝑝(𝑋) log 𝑝(λ|𝑋),
363
+ (15)
364
+ which is 𝑚 times the Kullback-Leibler divergence16 of the always
365
+ successful reference distribution from the model distribution that
366
+ can fail at simulation tasks. Minimizing this divergence maximizes
367
+ the asymptotic success probability for any large number of simula-
368
+ tion tasks drawn from the model distribution16. While this is more
369
+ reliable than only maximizing the success probability for a specific
370
+ set of 𝑚 simulation tasks, 𝐷(λ) and its minimizer ˆλ cannot be
371
+ calculated efficiently in general. The practical alternative is to use
372
+ − log 𝑃(λ) and its minimizer ˆλX to approximate these inaccessi-
373
+ ble quantities. To clarify their relationship, I use two convenient
374
+ intermediates,
375
+ 𝐷X(λ) = −
376
+ 𝑛
377
+ ∑︁
378
+ 𝑖=1
379
+ log 𝑝(λ|𝑋𝑖),
380
+ ∑︁
381
+ X
382
+ =
383
+ ∑︁
384
+ 𝑋1
385
+ 𝑝(𝑋1) · · ·
386
+ ∑︁
387
+ 𝑋𝑛
388
+ 𝑝(𝑋𝑛),
389
+ (16)
390
+ to simplify the notation during the IC derivations.
391
+ For a constant value of λ, 𝐷X(λ) is an unbiased estimator of
392
+ 𝐷(λ) when averaged over sets of 𝑚 simulation tasks X,
393
+ 𝐷(λ) =
394
+ ∑︁
395
+ X
396
+ 𝐷X(λ).
397
+ (17)
398
+ Since I cannot efficiently calculate ˆλ, I would like to evaluate 𝐷(λ)
399
+ at one λ = ˆλX value that I can calculate. If this was repeated and
400
+ averaged over sets of 𝑚 simulation tasks, it would be an unbiased
401
+ estimator of
402
+ 𝐷min−ave =
403
+ ∑︁
404
+ X
405
+ 𝐷(ˆλX).
406
+ (18)
407
+ However, with a single X, I can only evaluate 𝐷X(λ) at its own
408
+ minimum, λ = ˆλX, which is an unbiased estimator of the average
409
+ minimum,
410
+ 𝐷ave−min =
411
+ ∑︁
412
+ X
413
+ 𝐷X(ˆλX).
414
+ (19)
415
+ This has a negative bias relative to 𝐷(ˆλX) because each 𝐷(λ) is
416
+ evaluated at its own minimum instead of a common λ. A single
417
+ 𝐷X(ˆλX) can be unbiased as an estimator of 𝐷(ˆλX) by adding a
418
+ bias correction,
419
+ Δ = 𝐷min−ave − 𝐷ave−min =
420
+ ∑︁
421
+ X
422
+ [𝐷(ˆλX) − 𝐷X(ˆλX)].
423
+ (20)
424
+ I approximate Δ with several simplifying assumptions.
425
+ The first IC assumption is that 𝐷(λ) and 𝐷X(λ) are both
426
+ slowly changing in a region containing ˆλ and ˆλX. Both functions
427
+ can be extrapolated from their minimum to the other function’s
428
+ minimum with a second-order Taylor expansion,
429
+ 𝐷(ˆλX) ≈ 𝐷(ˆλ) + 1
430
+ 2 (ˆλX − ˆλ)𝑇 F(ˆλX − ˆλ),
431
+ 𝐷X(ˆλ) ≈ 𝐷X(ˆλX) + 1
432
+ 2 (ˆλ − ˆλX)𝑇 FX(ˆλ − ˆλX),
433
+ [F]𝑖, 𝑗 =
434
+ 𝜕2𝐷
435
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
436
+ (ˆλ),
437
+ [FX]𝑖, 𝑗 = 𝜕2𝐷X
438
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
439
+ (ˆλX).
440
+ (21)
441
+
442
+ 4
443
+ These extrapolations can be combined using Eq. (17) to simplify
444
+ the bias correction in Eq. (20) to
445
+ Δ ≈ 1
446
+ 2
447
+ ∑︁
448
+ X
449
+ (ˆλ − ˆλX)𝑇 (F + FX)(ˆλ − ˆλX).
450
+ (22)
451
+ Similarly, I can extrapolate 𝐷X(λ) from λ = ˆλ to λ = ˆλX,
452
+ 𝐷X(ˆλX) ≈ 𝐷X(ˆλ) + (ˆλX − ˆλ)𝑇 𝜕𝐷X
453
+ 𝜕λ (ˆλ)
454
+ + 1
455
+ 2 (ˆλX − ˆλ)𝑇 F′
456
+ X(ˆλX − ˆλ),
457
+ [F′
458
+ X]𝑖, 𝑗 = 𝜕2𝐷X
459
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
460
+ (ˆλ),
461
+ (23)
462
+ and minimize the quadratic form for the parameter variations,
463
+ ˆλ − ˆλX ≈ (F′
464
+ X)−1 𝜕𝐷X
465
+ 𝜕λ (ˆλ).
466
+ (24)
467
+ The second IC assumption is that F ≈ FX ≈ F′
468
+ X, which allows for
469
+ the removal of FX and F′
470
+ X from Eq. (22) after substituting Eq. (24),
471
+ Δ ≈ tr[ ˜FF−1],
472
+ [ ˜F]𝑖, 𝑗 =
473
+ ∑︁
474
+ X
475
+ 𝜕𝐷X
476
+ 𝜕𝜆𝑖
477
+ (ˆλ) 𝜕𝐷X
478
+ 𝜕𝜆 𝑗
479
+ (ˆλ).
480
+ (25)
481
+ The validity of these two assumptions can be increased by adding
482
+ more reference data to reduce finite-sample effects until 𝐷X(λ)
483
+ and 𝐷(λ) have small differences in their gradients and negligible
484
+ differences in their Hessians at λ = ˆλX.
485
+ The TIC follows from a related assumption about small finite-
486
+ sampling effects. As a useful reference, I rearrange F and ˜F into a
487
+ similar form by rewriting ˜F as a sum over simulation tasks rather
488
+ than over groups of 𝑚 simulation tasks,
489
+ [ ˜F]𝑖, 𝑗 = 𝑚
490
+ ∑︁
491
+ 𝑋
492
+ 𝑝(𝑋)
493
+ � 𝜕 log 𝑝(λ|𝑋)
494
+ 𝜕𝜆𝑖
495
+ 𝜕 log 𝑝(λ|𝑋)
496
+ 𝜕𝜆 𝑗
497
+
498
+ λ=ˆλ
499
+ ,
500
+ [F]𝑖, 𝑗 = −𝑚
501
+ ∑︁
502
+ 𝑋
503
+ 𝑝(𝑋)
504
+ � 𝜕2 log 𝑝(λ|𝑋)
505
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
506
+
507
+ λ=ˆλ
508
+ .
509
+ (26)
510
+ The TIC bias correction is a direct approximation of Eq. (25) by
511
+ Δ ≈ ΔTIC = tr[ ˜FXF−1
512
+ X ],
513
+ [ ˜FX]𝑖, 𝑗 =
514
+ 𝑚
515
+ ∑︁
516
+ 𝑘=1
517
+ � 𝜕 log 𝑝(λ|𝑋𝑘)
518
+ 𝜕𝜆𝑖
519
+ 𝜕 log 𝑝(λ|𝑋𝑘)
520
+ 𝜕𝜆 𝑗
521
+
522
+ λ=ˆλX
523
+ ,
524
+ (27)
525
+ which again assumes that the 𝑚 samples in X are sufficient to
526
+ converge expectation values so that ˜F ≈ ˜FX and F ≈ FX.
527
+ The AIC follows from additional assumptions about model
528
+ accuracy. I can simplify the difference between F and ˜F in Eq. (26)
529
+ by rearranging and combining the logarithmic derivatives into
530
+ [ ˜F − F]𝑖, 𝑗 = 𝑚
531
+ ∑︁
532
+ 𝑋
533
+ 𝑝(𝑋)
534
+ 𝑝(ˆλ|𝑋)
535
+ � 𝜕2𝑝(λ|𝑋)
536
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
537
+
538
+ λ=ˆλ
539
+ .
540
+ (28)
541
+ Next, I consider a modified form of 𝐷(λ) from Eq. (15) in which
542
+ the reference simulation tasks are assigned a failure rate 𝛿,
543
+ 𝐷(λ) = −𝑚
544
+ ∑︁
545
+ 𝑋
546
+ (1 − 𝛿)𝑝(𝑋) log 𝑝(λ|𝑋)
547
+ − 𝑚
548
+ ∑︁
549
+ 𝑋
550
+ 𝛿𝑝(𝑋) log(1 − 𝑝(λ|𝑋)).
551
+ (29)
552
+ The original form is recovered in the 𝛿 → 0 limit.
553
+ If the IC
554
+ derivation is repeated for the modified form, Eq. (28) becomes
555
+ [ ˜F − F]𝑖, 𝑗 = 𝑚
556
+ ∑︁
557
+ 𝑋
558
+ (1 − 𝛿)𝑝(𝑋)
559
+ 𝑝(ˆλ|𝑋)
560
+ � 𝜕2𝑝(λ|𝑋)
561
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
562
+
563
+ λ=ˆλ
564
+ + 𝑚
565
+ ∑︁
566
+ 𝑋
567
+ 𝛿���(𝑋)
568
+ 1 − 𝑝(ˆλ|𝑋)
569
+ � 𝜕2[1 − 𝑝(λ|𝑋)]
570
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
571
+
572
+ λ=ˆλ
573
+ .
574
+ (30)
575
+ The final AIC assumption is that the optimized model can recover
576
+ the reference distribution, resulting in 𝑝(ˆλ|𝑋) ≈ 1 − 𝛿 here. I can
577
+ then cancel the 𝛿 factors and combine the two terms in Eq. (30),
578
+ [ ˜F − F]𝑖, 𝑗 ≈ 𝑚
579
+
580
+ 𝜕2
581
+ 𝜕𝜆𝑖𝜕𝜆 𝑗
582
+ ∑︁
583
+ 𝑋
584
+ 𝑝(𝑋)
585
+
586
+ λ=ˆλ
587
+ = 0.
588
+ (31)
589
+ The difference between ˜F and F disappears for any value of 𝛿. In
590
+ this scenario, ˜F and F are 𝑚 times the Fisher information matrix16
591
+ of 𝑝(λ, 𝑋). The AIC bias correction corresponds to ignoring this
592
+ difference and keeping only the trace of the identity matrix over
593
+ the 𝑛-dimensional parameter space,
594
+ Δ = 𝑛 + tr[( ˜F − F)F−1] ≈ ΔAIC = 𝑛.
595
+ (32)
596
+ The validity of the good model assumption can be increased by
597
+ improving the model family and relaxing the success criteria to
598
+ increase all optimized success probabilities towards one.
599
+ C.
600
+ Transferability
601
+ A statistical framework for model selection can also sup-
602
+ port more precise statistical statements about model transferability.
603
+ Here, I briefly contrast a notion of statistical transferability from
604
+ that of physical transferability, which is frequently discussed when
605
+ building models for atomistic simulation17. I argue that while sta-
606
+ tistical transferability is the more desirable goal of model building,
607
+ it is often impractical to avoid physical transferability assumptions
608
+ given the present state of atomistic simulation methods.
609
+ Statistical transferability can directly predict the average future
610
+ success of a model when simulation tasks can be interpreted as
611
+ being drawn from the same distribution that was used to fit the
612
+ model. This is a form of model transferability to future simulation
613
+ tasks that were not part of the reference data. For a model fit with
614
+ 𝑚 reference simulation tasks to a minimum divergence 𝐷(ˆλ) in
615
+ Eq. (15), the asymptotic fraction of successful simulations will be
616
+ exp(−𝐷(ˆλ)/𝑚).
617
+ (33)
618
+ If the task distribution is designed to predict or approximate typical
619
+ workloads of typical users of a model, then the model fitting process
620
+ provides a direct operational statement about how effective the
621
+ model should be for its users.
622
+ Statistical transferability can also be used to recycle refer-
623
+ ence data by transferring it between task distributions. Reference
624
+ data sampled from a second distribution 𝑝′(𝑋) over a superset of
625
+ simulation tasks can be reused to estimate 𝐷(λ) for 𝑝(𝑋),
626
+ 𝐷(λ) ≈ −
627
+
628
+ min
629
+ 𝑖
630
+ 𝑝′(𝑋𝑖)
631
+ 𝑝(𝑋𝑖)
632
+
633
+ 𝑚
634
+ ∑︁
635
+ 𝑖=1
636
+ 𝑝(𝑋𝑖)
637
+ 𝑝′(𝑋𝑖) log 𝑝(λ|𝑋𝑖).
638
+ (34)
639
+
640
+ 5
641
+ This is an implicit form of rejection sampling, and it requires the
642
+ ability to calculate probability ratios between two task distribu-
643
+ tions.
644
+ It can also be used heuristically to reduce the influence
645
+ of data that is necessary to fit a model but not representative of
646
+ its typical applications. Operationally, this can be interpreted as
647
+ rare instances when users validate the model for themselves on the
648
+ original reference data. The effective sample size associated with
649
+ this resampling procedure is
650
+ 𝑚′ =
651
+
652
+ min
653
+ 𝑖
654
+ 𝑝′(𝑋𝑖)
655
+ 𝑝(𝑋𝑖)
656
+
657
+ 𝑚
658
+ ∑︁
659
+ 𝑖=1
660
+ 𝑝(𝑋𝑖)
661
+ 𝑝′(𝑋𝑖) ,
662
+ (35)
663
+ which can be small if 𝑝(𝑋) and 𝑝′(𝑋) are very different.
664
+ Physical transferability is a set of observations and assumptions
665
+ about the spatial locality of physics at an atomistic length scale. It
666
+ assumes that some model details and parameters describing short-
667
+ range interatomic effects will be insensitive to distant changes in
668
+ a large system with many atoms and then observes the varying
669
+ degrees to which this is true. The underlying first-principles QM
670
+ equations are completely local and transferable when long-range
671
+ interactions are mediated by local fields. Unfortunately, locality
672
+ and transferability are both degraded when encapsulating many-
673
+ body effects and non-essential degrees of freedom to build simpler
674
+ models. Physical transferability assumptions are essential for justi-
675
+ fying the use of methods that decompose large systems into a set of
676
+ small fragments and simulate them individually, often embedded
677
+ in simpler model environments. Such methods include implicit
678
+ solvation models18, QM/MM embedding19, and the use of periodic
679
+ supercells20. However, the effectiveness of these methods can be
680
+ highly system dependent, an important example being the reduced
681
+ locality of electronic effects in metallic systems that complicate
682
+ efforts to develop low-cost methods21.
683
+ In the context of statistical model selection, physical transfer-
684
+ ability assumptions are unavoidable when generating reference data
685
+ for task distributions containing large systems. Reliable methods
686
+ for reference data generation generally have large cost prefactors or
687
+ poor cost scaling with system size that prevent their direct use on
688
+ the task distribution. Physical transferability can be used to justify
689
+ the use of more accessible reference data corresponding to a proxy
690
+ task distribution over small embedded fragments. Tasks from the
691
+ original distribution can be decomposed into sets of proxy tasks
692
+ on fragments to generate the proxy distribution. While these small
693
+ proxy tasks may all be contained within the original task distri-
694
+ bution, the proxy distribution is over a strict subset of simulation
695
+ tasks. It is statistically impossible to sample from a distribution
696
+ by weighting samples from a second distribution over a subset of
697
+ events, but this is avoided by the physical fragmentation process.
698
+ While rigorous error analysis of this process is difficult, the general
699
+ expectation is that the use of larger system fragments increases the
700
+ validity of physical transferability assumptions.
701
+ D.
702
+ Cost penalties
703
+ The primary purpose of fitting models in statistics is to explain
704
+ data in the absence of a prior explanation. In contrast, the purpose
705
+ of fitting models for atomistic simulation is to avoid the large cost of
706
+ evaluating a known first-principles model. Statistics is concerned
707
+ with efficiency, but its main consideration is in getting the most
708
+ value out of limited data to avoid the potentially high cost of
709
+ collecting or generating data. Without some penalty for the cost
710
+ of models, the inevitable conclusion of statistical model selection
711
+ in atomistic simulation is to choose the expensive model that was
712
+ used to generate the reference data. The IC already add penalties
713
+ to the success measure that limits the number of model parameters,
714
+ and the simplest approach is to introduce a cost penalty with a
715
+ similar form. The linear parameter penalty in Eq. (32) looks like a
716
+ Lagrange multiplier, except that the coefficient is not adjustable and
717
+ the number of parameters is a trivial function of parameter values.
718
+ The average model evaluation cost can be a non-trivial function of
719
+ model parameter values, and it can be controlled using a Lagrange
720
+ multiplier that penalizes excessive cost.
721
+ With both cost and parameter penalties added, the operational
722
+ measure of modeling success is
723
+ ˜𝐷(λ) = 𝛾(𝑡 − 𝑡0) + Δ −
724
+ 𝑚
725
+ ∑︁
726
+ 𝑖=1
727
+ log 𝑝(λ|𝑋𝑖).
728
+ (36)
729
+ Here, 𝛾 is a Lagrange multiplier, 𝑡 is the total cost of applying
730
+ the model to the 𝑚 simulation tasks, 𝑡0 is the target computational
731
+ budget, and Δ is an IC penalty approximating Eq. (20). Between
732
+ multiple model families with different costs and parameters, the
733
+ family that produces the minimum value of ˜𝐷(λ) for a common 𝛾
734
+ value should be selected. The stationary condition of the Lagrange
735
+ multiplier,
736
+ 𝜕
737
+ 𝜕𝛾
738
+ ˜𝐷(λ) = 𝑡 − 𝑡0 = 0,
739
+ (37)
740
+ should be applied to the model family with the smallest minimum
741
+ ˜𝐷(λ) value. If this best model family has a parameter-invariant 𝑡
742
+ value, then 𝛾 should be adjusted until the minimum cost-penalized
743
+ ˜𝐷(λ) is equal for two different models.
744
+ In this scenario, the
745
+ cost of the two best models, 𝑡1 and 𝑡2, should bracket 𝑡0 as 𝑡1 ≤
746
+ 𝑡0 ≤ 𝑡2. A new, hybrid model can then achieve the target cost by
747
+ randomly switching tasks between the two bracketing models with
748
+ probabilities (𝑡2 − 𝑡0)/(𝑡2 − 𝑡1) and (𝑡0 − 𝑡1)/(𝑡2 − 𝑡1). It is often
749
+ more practical to minimize Eq. (36) over λ without any penalties
750
+ and then add in the penalties with no further optimization of λ.
751
+ The use of cost penalties may be more complicated if applied
752
+ to proxy distributions of fragmented simulation tasks as described
753
+ in the previous subsection. If sets of fragmented simulation tasks
754
+ are meant to represent a larger simulation task, then the model eval-
755
+ uation cost for the larger simulation task may not be approximated
756
+ well by the sum of costs for the proxy tasks. In this situation, a
757
+ proxy cost penalty could be constructed from resource estimates
758
+ that approximate the unknown cost of the larger simulation task
759
+ from the known costs of the proxy tasks and other task-specific
760
+ data. Models usually have a well-understood scaling with system
761
+ size and cost prefactors can be estimated from the proxy calcu-
762
+ lations. More detailed, model-specific resource estimation is also
763
+ possible22. The estimated total simulation cost of the model on the
764
+ large simulation tasks could then be used as 𝑡 in Eq. (36) instead
765
+ of the total proxy simulation cost that is directly observed.
766
+
767
+ 6
768
+ III.
769
+ HYDROGEN CLUSTER EXAMPLE
770
+ To demonstrate the principles of statistical model selection, I
771
+ consider a simple set of simulation tasks on randomly generated
772
+ hydrogen clusters. By only considering hydrogen atoms, I keep
773
+ the elemental diversity at a minimum to simplify the process of
774
+ fitting SQM models with element-specific parameters. I keep the
775
+ phenomenological diversity high by considering two distributions
776
+ of clusters. A “dense” distribution of clusters forces the minimum
777
+ interatomic distance between hydrogen atoms to be less than the
778
+ Coulson-Fischer point23 near 1 Å, while a “sparse” distribution
779
+ allows larger minimum separations.
780
+ Molecular orbitals tend to
781
+ remain grouped into pairs with opposite spin and similar spatial
782
+ character in the dense distribution, while the sparse distribution
783
+ generates many clusters that favor spin-polarized, atom-localized
784
+ orbitals.
785
+ Because of limitations in methods and software that
786
+ generate accurate and reliable reference data, the only observable
787
+ that I consider is the total energy of clusters.
788
+ I consider three
789
+ simulation tasks to calculate energies for three cluster modifications:
790
+ removal of an atom, removal of an electron, and addition of an
791
+ electron. A success is defined as the calculation of one such energy
792
+ with an error of 1 kcal/mol or less. While these distributions and
793
+ tasks are artificial and not directly motivated by any application,
794
+ there is some experimental interest in positively24 and negatively25
795
+ charged hydrogen clusters.
796
+ I generate the dense and sparse distribution of hydrogen clus-
797
+ ters by sequential rejection sampling. Atoms are assigned uniformly
798
+ random positions in a box containing the valid domain, and the
799
+ atom is rejected and repositioned if it violates a distance constraint.
800
+ The minimum allowed interatomic distance for both distributions
801
+ is 0.3 Å, near the classical turning point of the H2 potential energy
802
+ surface. The maximum allowed value for the minimum interatomic
803
+ distance is 1 Å for the dense distribution and 4 Å for the sparse
804
+ distribution. The sparse distribution is a strict superset of the dense
805
+ distribution, and some sparse clusters could be recycled as dense
806
+ clusters. However, the recycling rate of two-atom clusters is only
807
+ 0.016, and it decreases rapidly with increasing cluster size. This is
808
+ an example of low recycling efficiency between distributions that
809
+ are very different. For the reference data set, I generate 10,000
810
+ nested sequences of clusters between two and seven atoms for each
811
+ distribution, resulting in 120,000 distinct structures. The three sim-
812
+ ulation tasks require calculations of three different charge states –
813
+ 0, 1, and -1 – corresponding to 360,003 total energy calculations
814
+ including an isolated hydrogen atom.
815
+ I briefly compare this reference data set with the MGCDB84
816
+ data set that is popular for testing DFT functionals26. Both data
817
+ sets are restricted to total energies of small, isolated groups of
818
+ atoms.
819
+ MGCDB84 corresponds to 5,931 total energy calcula-
820
+ tions of structures that are 52.6% hydrogen, 29.2% carbon, 8.8%
821
+ oxygen, 5.5% nitrogen, and less than 1% each of main-group ele-
822
+ ments from the first four rows of the periodic table. Thus, while
823
+ it is not restricted to only hydrogen atoms, hydrogen is the most
824
+ well-represented element in MGCDB84. MGCDB84 is organized
825
+ into 84 subsets of data corresponding to different simulation tasks,
826
+ including non-covalent binding energies, isomerization energies,
827
+ formation energies, and barrier heights.
828
+ However, this data set
829
+ lacks diversity by some measures, such as 95.2% of the structures
830
+ being closed-shell singlets and 93.0% being charge neutral. Also,
831
+ 0
832
+ 1
833
+ 2
834
+ 3
835
+ 4
836
+ 5
837
+ 101
838
+ 103
839
+ 105
840
+ MGCDB84
841
+ 0
842
+ 1
843
+ 2
844
+ 3
845
+ 4
846
+ 5
847
+ 101
848
+ 103
849
+ 105
850
+ dense
851
+ 0
852
+ 1
853
+ 2
854
+ 3
855
+ 4
856
+ 5
857
+ H-H distance
858
+ 101
859
+ 103
860
+ 105
861
+ sparse
862
+ FIG. 1. Histograms of interatomic distances between hydrogen atoms in
863
+ the structures from three reference data sets.
864
+ MGCDB84 mostly contains structures and properties of interest to
865
+ organic chemistry with structures at equilibrium or saddle points.
866
+ MGCDB84 is thus a reasonable proxy for the interests of organic
867
+ chemists, while the hydrogen cluster data sets broadly sample from
868
+ the potential energy surface of many hydrogen atoms. Of partic-
869
+ ular interest when fitting distance-dependent parameters such as
870
+ pair potentials and one-body matrix elements is the distribution
871
+ of interatomic distances between hydrogen atoms. These distance
872
+ distributions are shown in Fig. 1 for MGCDB84 and the two distri-
873
+ butions of hydrogen clusters considered here. MGCDB84 has poor
874
+ coverage at distances less than 1.4 Å and is not a good reference
875
+ to fit distance-dependent parameters for hydrogen interactions.
876
+ A.
877
+ Reference data
878
+ I gather high-level reference data for the hydrogen clusters at
879
+ the CCSD(T) level of theory27 with the def2-QZVPP basis set28. I
880
+ also record data at the Hartree-Fock (HF), MP2, and CCSD levels
881
+ of theory during the CCSD(T) calculations. In addition to the high-
882
+ level reference data, I also gather data using several popular SQM
883
+ models and DFT functionals to test their transferability. There are
884
+ too many SQM models and DFT functionals to test all of them, and
885
+ this study is limited to a few important representative examples.
886
+ AM129 was the most popular SQM thermochemistry model of the
887
+ last century, and PM730 is the most recent model from that family
888
+ of MNDO-like models31.
889
+ GFN132 and GFN233 are two recent
890
+ SQM models from the density functional tight-binding (DFTB)
891
+ framework34. PBE35 is the most popular DFT functional in solid-
892
+ state physics and materials science. B3LYP36 is the most popular
893
+
894
+ 7
895
+ DFT functional in chemistry. 𝜔B97M-V37 is claimed to be the most
896
+ accurate DFT functional without including terms from many-body
897
+ perturbation theory. While a smaller basis set might be sufficient,
898
+ I perform all DFT calculations using the def2-QZVPP basis set
899
+ for consistency. In total, I gather data from eleven QM and SQM
900
+ models, which corresponds to 3,960,033 total energy calculations.
901
+ All QM calculations use a post-2.1.1 development version of
902
+ PySCF38–40. All calculations use spin-unrestricted orbitals. For
903
+ HF theory and every DFT functional, the large-basis calculations
904
+ are initialized by projecting a converged density matrix from a
905
+ calculation in the smaller def2-SVP basis set28.
906
+ The def2-SVP
907
+ density matrix is taken from the calculation with the lowest total
908
+ energy from a systematic ground-state search for each structure
909
+ and charge state. First, a def2-SVP calculation is performed for
910
+ every spin state from the standard spin-averaged independent-atom
911
+ density matrix guess. Second, a custom density matrix guess is
912
+ constructed from spin-polarized independent-atom density matrices
913
+ with every combination of atomic charges and spin orientations.
914
+ Third, after performing all of these small-basis calculations with the
915
+ default DIIS algorithm41, they are all repeated with an alternative
916
+ ADIIS algorithm42.
917
+ The large-basis calculation uses the same
918
+ algorithm, either DIIS or ADIIS, as the small-basis calculation that
919
+ is used to initialize it. Even with all of this redundancy, it is not
920
+ possible to converge a self-consistent field (SCF) cycle for every
921
+ charge and spin state of every structure.
922
+ While the variational
923
+ nature of SCF calculations guarantees the existence of stable local
924
+ energy minima, DIIS-based algorithms provide no guarantees of
925
+ convergence. All large-basis DFT calculations use a (99,590) local
926
+ grid and a SG-1 nonlocal grid, following the recommendations for
927
+ the 𝜔B97M-V functional37.
928
+ For SQM calculations, MOPAC 22.0.543 is used for AM1 and
929
+ PM7 calculations, and xTB 6.5.19 is used for GFN1 and GFN2
930
+ calculations. MOPAC calculations follow the same ground-state
931
+ search procedure as the PySCF calculations except with only DIIS
932
+ and without any projection into a larger basis. There are fewer
933
+ points of failure in minimal-basis calculations, and MOPAC is able
934
+ to converge an SCF calculation for every structure and charge state.
935
+ xTB calculations do not contain Fock exchange and depend on an
936
+ initial electronic density guess rather than a density matrix guess.
937
+ I only use the default spin-averaged density guess and restrict the
938
+ ground-state search to total spin values. There is a high failure rate
939
+ for SCF convergence in xTB with the default options for this data
940
+ set. However, it is possible to converge every structure and charge
941
+ state in xTB with calculations at elevated electronic temperatures
942
+ of 3000 K and then 1500 K followed by linear extrapolation of the
943
+ total energies to zero temperature.
944
+ At this level of automation and scale of data generation, it is not
945
+ possible to converge every iterative solve for HF, DFT, and CCSD
946
+ calculations in PySCF. The choice of solver options is important
947
+ as it changes success statistics and average run times. I did not
948
+ try to optimize these choices in a systematic way, but they were
949
+ adjusted during the implementation of the workflow to improve
950
+ success rates44. In addition to convergence failures, a DFT or HF
951
+ calculation is considered to fail if the def2-QZVPP total energy
952
+ is more than 10 kcal/mol larger than the smallest def2-SVP total
953
+ energy. Total energies tend to be lower for larger basis sets because
954
+ they have more variational degrees of freedom. I attribute these
955
+ energy increases to the DIIS phenomenon of escaping from the
956
+ 0.00
957
+ 0.01
958
+ 0.02
959
+ 0.03
960
+ 0.04
961
+ 101
962
+ 103
963
+ 105
964
+ dense
965
+ 0.00
966
+ 0.01
967
+ 0.02
968
+ 0.03
969
+ 0.04
970
+ 101
971
+ 103
972
+ 105
973
+ sparse
974
+ FIG. 2. Histograms of the maximum deviation from zero and one of the
975
+ unrelaxed MP2 1RDM eigenvalues for all structures and charge states from
976
+ the reference data sets.
977
+ basin of convergence of a ground state and converging to a very
978
+ different stationary state with a larger energy. The failure rate of
979
+ DFT calculations is 3.4%, the failure rate of CCSD(T) calculations
980
+ is 1.0%, and the overall failure rate of the simulation tasks is 4.3%.
981
+ If at least one model fails to produce an output for a simulation
982
+ task, then that task is omitted from the final data set and statistical
983
+ analysis. Such failures distort the distribution of simulation tasks
984
+ because they act as a form of rejection sampling.
985
+ I also validate the CCSD(T)/def2-QZVPP level of theory for
986
+ this data set while gathering data. The main validity concern is
987
+ strong electron correlation effects, which are known to occur in
988
+ hydrogen clusters45. These effects are caused by multi-reference
989
+ ground states that come from a superposition of many electronic
990
+ spin configurations with nearly degenerate energies in the atomic
991
+ limit. Randomly generated hydrogen clusters are unlikely to have
992
+ many degenerate spin configurations, and they are expected to be
993
+ more weakly correlated on average. The most direct validity test
994
+ would be the overlap between the normalized HF and CCSD many-
995
+ body wave-functions, but this quantity is not efficiently computable.
996
+ Instead, I use the eigenvalues of the one-particle density matrix
997
+ (1RDM) at the unrelaxed MP2 level of theory as an accessible
998
+ proxy for this overlap. The maximum deviation of the eigenvalues
999
+ from zero and one is strictly zero when the overlap is one, and
1000
+ the deviation increases as the overlap is reduced. This deviation
1001
+ is plotted for every structure in every charge state in Fig. 2. The
1002
+ sparse distribution that is expected to be more susceptible to multi-
1003
+ reference effects because of spin symmetry breaking does not have
1004
+ larger deviations than the dense distribution.
1005
+ The other major validity concern is the basis-set convergence
1006
+ of CCSD(T)/def2-QZVPP. A quadruple-zeta basis such as def2-
1007
+ QZVPP does not typically converge absolute post-HF energies to
1008
+ chemical accuracy of 1 kcal/mol or less without basis-set extrapo-
1009
+ lation or explicit correlation corrections. However, the simulation
1010
+ tasks considered here only require energy differences between struc-
1011
+
1012
+ 8
1013
+ −2.5
1014
+ 0.0
1015
+ 2.5
1016
+ 101
1017
+ 103
1018
+ 105
1019
+ CCSD
1020
+ –0.5
1021
+ ±0.5
1022
+ remove atom
1023
+ dense
1024
+ −5
1025
+ 0
1026
+ 5
1027
+ –0.0
1028
+ ±0.1
1029
+ sparse
1030
+ −2.5
1031
+ 0.0
1032
+ 2.5
1033
+ –0.5
1034
+ ±0.5
1035
+ remove electron
1036
+ dense
1037
+ 0
1038
+ 25
1039
+ 0.1
1040
+ ±0.7
1041
+ sparse
1042
+ 0.0
1043
+ 2.5
1044
+ 0.1
1045
+ ±0.5
1046
+ add electron
1047
+ dense
1048
+ 0
1049
+ 20
1050
+ 0.7
1051
+ ±1.0
1052
+ sparse
1053
+ −20
1054
+ 0
1055
+ 101
1056
+ 103
1057
+ 105
1058
+ MP2
1059
+ –2.7
1060
+ ±3.1
1061
+ −20
1062
+ 0
1063
+ –2.3
1064
+ ±4.7
1065
+ −20
1066
+ 0
1067
+ 20
1068
+ –2.0
1069
+ ±3.4
1070
+ −25
1071
+ 0
1072
+ 25
1073
+ –3.0
1074
+ ±5.7
1075
+ −10
1076
+ 0
1077
+ 10
1078
+ 0.0
1079
+ ±0.9
1080
+ −10
1081
+ 0
1082
+ 10
1083
+ 6.6
1084
+ ±4.2
1085
+ −50
1086
+ 0
1087
+ 101
1088
+ 103
1089
+ 105
1090
+ HF
1091
+ –18.8
1092
+ ±8.9
1093
+ −25
1094
+ 0
1095
+ –4.1
1096
+ ±8.1
1097
+ −25
1098
+ 0
1099
+ –17.1
1100
+ ±9.7
1101
+ −50
1102
+ 0
1103
+ –5.0
1104
+ ±8.3
1105
+ 0
1106
+ 25
1107
+ 1.2
1108
+ ±4.2
1109
+ 0
1110
+ 25
1111
+ 17.8
1112
+ ±6.3
1113
+ −25
1114
+ 0
1115
+ 25
1116
+ 101
1117
+ 103
1118
+ 105
1119
+ ωB97M-V
1120
+ 0.7
1121
+ ±2.3
1122
+ −10
1123
+ 0
1124
+ 10
1125
+ –1.3
1126
+ ±2.4
1127
+ −25
1128
+ 0
1129
+ 25
1130
+ 0.5
1131
+ ±2.6
1132
+ −50
1133
+ 0
1134
+ 50
1135
+ –29.1
1136
+ ±8.8
1137
+ 0
1138
+ 25
1139
+ –0.2
1140
+ ±1.1
1141
+ −20
1142
+ 0
1143
+ –7.6
1144
+ ±3.4
1145
+ −25
1146
+ 0
1147
+ 25
1148
+ 101
1149
+ 103
1150
+ 105
1151
+ B3LYP
1152
+ 2.2
1153
+ ±2.8
1154
+ 0
1155
+ 10
1156
+ –0.1
1157
+ ±1.6
1158
+ 0
1159
+ 25
1160
+ 4.2
1161
+ ±3.3
1162
+ −50
1163
+ 0
1164
+ –36.9
1165
+ ±13.4
1166
+ 0
1167
+ 20
1168
+ –0.4
1169
+ ±1.4
1170
+ −50
1171
+ 0
1172
+ –21.5
1173
+ ±6.1
1174
+ −25
1175
+ 0
1176
+ 25
1177
+ 101
1178
+ 103
1179
+ 105
1180
+ PBE
1181
+ 0.9
1182
+ ±4.5
1183
+ −10
1184
+ 0
1185
+ 10
1186
+ –0.8
1187
+ ±2.0
1188
+ −25
1189
+ 0
1190
+ 25
1191
+ 0.7
1192
+ ±4.6
1193
+ 0
1194
+ 200
1195
+ –47.6
1196
+ ±19.0
1197
+ 0
1198
+ 25
1199
+ –0.2
1200
+ ±1.1
1201
+ −25
1202
+ 0
1203
+ 25
1204
+ –15.6
1205
+ ±5.7
1206
+ −1000
1207
+ 0
1208
+ 1000
1209
+ 101
1210
+ 103
1211
+ 105
1212
+ GFN2
1213
+ –32.7
1214
+ ±96.5
1215
+ −100
1216
+ 0
1217
+ 6.8
1218
+ ±9.3
1219
+ −200
1220
+ 0
1221
+ 21.0
1222
+ ±54.0
1223
+ 0
1224
+ 100
1225
+ 21.4
1226
+ ±17.8
1227
+ −100
1228
+ 0
1229
+ –19.1
1230
+ ±33.2
1231
+ −200
1232
+ 0
1233
+ –157.1
1234
+ ±19.7
1235
+ −250
1236
+ 0
1237
+ 101
1238
+ 103
1239
+ 105
1240
+ GFN1
1241
+ –7.7
1242
+ ±54.3
1243
+ −200
1244
+ 0
1245
+ 9.4
1246
+ ±13.2
1247
+ 0
1248
+ 100
1249
+ 68.5
1250
+ ±26.5
1251
+ 0
1252
+ 100
1253
+ 36.1
1254
+ ±21.5
1255
+ −100
1256
+ 0
1257
+ –10.7
1258
+ ±21.6
1259
+ −200
1260
+ 0
1261
+ –153.3
1262
+ ±23.4
1263
+ −2000
1264
+ 0
1265
+ 101
1266
+ 103
1267
+ 105
1268
+ PM7
1269
+ –23.5
1270
+ ±150.1
1271
+ −1000
1272
+ 0
1273
+ –1.3
1274
+ ±20.6
1275
+ −100
1276
+ 0
1277
+ –42.1
1278
+ ±15.9
1279
+ −100
1280
+ 0
1281
+ –50.4
1282
+ ±7.7
1283
+ 0
1284
+ 50
1285
+ 1.3
1286
+ ±4.6
1287
+ 0
1288
+ 50
1289
+ 17.9
1290
+ ±6.4
1291
+ 0
1292
+ 250
1293
+ 101
1294
+ 103
1295
+ 105
1296
+ AM1
1297
+ 15.6
1298
+ ±42.9
1299
+ 0
1300
+ 200
1301
+ –2.0
1302
+ ±7.5
1303
+ −100
1304
+ 0
1305
+ –21.8
1306
+ ±22.2
1307
+ −100
1308
+ 0
1309
+ –41.6
1310
+ ±8.5
1311
+ 0
1312
+ 50
1313
+ 1.3
1314
+ ±4.6
1315
+ 0
1316
+ 50
1317
+ 17.9
1318
+ ±6.4
1319
+ FIG. 3. Error histograms in kcal/mol for all models and tasks along with their means, standard deviations, and moment-matching Gaussian model fits.
1320
+
1321
+ 9
1322
+ −25
1323
+ 0
1324
+ 25
1325
+ 101
1326
+ 103
1327
+ 105
1328
+ ωB97M-V
1329
+ 0.7
1330
+ ±1.6
1331
+ remove atom
1332
+ dense
1333
+ −10
1334
+ 0
1335
+ 10
1336
+ –1.3
1337
+ ±2.4
1338
+ sparse
1339
+ −25
1340
+ 0
1341
+ 25
1342
+ 0.5
1343
+ ±2.0
1344
+ remove electron
1345
+ dense
1346
+ −50
1347
+ 0
1348
+ 50
1349
+ –27.7
1350
+ ±8.9
1351
+ sparse
1352
+ 0
1353
+ 25
1354
+ –0.2
1355
+ ±0.7
1356
+ add electron
1357
+ dense
1358
+ −20
1359
+ 0
1360
+ –6.9
1361
+ ±2.9
1362
+ sparse
1363
+ −25
1364
+ 0
1365
+ 25
1366
+ 101
1367
+ 103
1368
+ 105
1369
+ B3LYP
1370
+ 2.2
1371
+ ±2.3
1372
+ 0
1373
+ 10
1374
+ –0.1
1375
+ ±1.6
1376
+ 0
1377
+ 25
1378
+ 4.1
1379
+ ±3.0
1380
+ −50
1381
+ 0
1382
+ –33.3
1383
+ ±14.0
1384
+ 0
1385
+ 20
1386
+ –0.5
1387
+ ±1.2
1388
+ −50
1389
+ 0
1390
+ –19.5
1391
+ ±6.2
1392
+ −25
1393
+ 0
1394
+ 25
1395
+ 101
1396
+ 103
1397
+ 105
1398
+ PBE
1399
+ 0.8
1400
+ ±4.2
1401
+ −10
1402
+ 0
1403
+ 10
1404
+ –0.8
1405
+ ±2.1
1406
+ −25
1407
+ 0
1408
+ 25
1409
+ 0.6
1410
+ ±4.4
1411
+ 0
1412
+ 200
1413
+ –42.8
1414
+ ±14.9
1415
+ 0
1416
+ 25
1417
+ –0.2
1418
+ ±0.9
1419
+ −25
1420
+ 0
1421
+ 25
1422
+ –14.0
1423
+ ±5.8
1424
+ FIG. 4. Error histograms in kcal/mol for DFT models and all tasks along with the means, standard deviations, and moment-matching Gaussian model
1425
+ fits of the marked data with consistent total spin values between HF and DFT.
1426
+ tures that differ by at most one atom, which should be less sensitive
1427
+ to finite-basis errors. The most basis-set sensitive structures are
1428
+ correlation-bound anions, which account for 5.3% of the anions
1429
+ in the dense distribution and 45.2% in the sparse distribution.
1430
+ Correlation-bound anions do not have a proper complete basis set
1431
+ (CBS) limit with HF orbitals because the overlap between the HF
1432
+ and CCSD wave-functions tends to zero as the unbound HF orbital
1433
+ delocalizes. A formally correct treatment of correlation-bound an-
1434
+ ions in the CBS limit requires Brueckner orbitals46. However, I
1435
+ do not expect the def2-QZVPP basis set to be large enough for the
1436
+ pathological CBS limit to have a substantial effect on this data set.
1437
+ B.
1438
+ Anomaly detection
1439
+ Anomaly detection is a natural part of error analysis when
1440
+ gathering large amounts of data within a statistical framework.
1441
+ The basic expectation of a good model is that its errors are an
1442
+ accumulation of a large number of small, independent errors, which
1443
+ tend to induce Gaussian distributions of model errors. Errors in the
1444
+ hydrogen cluster data organized by model and task are shown in
1445
+ Fig. 3 with moment-matching Gaussian fits. While many errors are
1446
+ effectively described by the Gaussian model, there are also several
1447
+ fat error tails, many of which are rare enough to be unlikely to
1448
+ appear in data generation at smaller scales. What is not shown are
1449
+ some even larger error tails that were present in earlier versions of
1450
+ the data set as the workflow was being refined to detect and avoid
1451
+ more failure events and silent errors.
1452
+ This statistical overview
1453
+ of error distributions along with metadata collected during the
1454
+ primary data generation are essential for detecting and correcting
1455
+ rare failures. Unfortunately, sufficiently rare failures are unlikely
1456
+ to occur in small-scale preliminary testing of a workflow precisely
1457
+ because of how rare they are.
1458
+ There is not necessarily a clean partition between model,
1459
+ algorithm, and software errors in large-scale data generation. For
1460
+ example, the lack of reliability in DIIS-based SCF solvers causes
1461
+ enough gaps in the ground-state searches that the wrong total
1462
+ spin is assigned in some DFT calculations.
1463
+ As a result, some
1464
+ DFT calculations produce total energies that are too high, which
1465
+ are likely a source of some rare error outliers.
1466
+ However, there
1467
+ is no guarantee that the DFT and HF ground states for a given
1468
+ structure and charge state will have the same total spin. There is
1469
+ not enough information to distinguish model from algorithm errors
1470
+ here without more reliable SCF solver algorithms to fill gaps in
1471
+ data. Similarly, software bugs may cause failures in one algorithm
1472
+ implementation that are not reproduced by other implementations,
1473
+ and custom improvements to algorithms may cause successes that
1474
+ are also not reproducible in other software. To see the impact of
1475
+ spin inconsistency, the DFT data is shown in Fig. 4 with spin-
1476
+ consistent calculations marked and fit to Gaussian error models.
1477
+ The spin-inconsistent data contains most of the error outliers but
1478
+ does not substantially change the overall error statistics since the
1479
+ spin-consistent data has similar means and standard deviations.
1480
+ The broadest error distributions in Fig. 3 are in the SQM atom
1481
+ removal data from the dense distribution. It is likely that errors in
1482
+ short-range pair potentials and matrix elements account for much
1483
+ of this error since these SQM models are mostly fit to data from
1484
+ near-equilibrium structures. I test this hypothesis by separating data
1485
+ in Fig. 5 based on the minimum interatomic distance in a structure
1486
+ being greater than or less than 0.74 Å, the equilibrium bond length
1487
+ of H2. There is a clear narrowing of the error distributions for the
1488
+ structures without short interatomic distances, which supports the
1489
+ error hypothesis.
1490
+ It may not be possible to detect or explain all error outliers.
1491
+ The CCSD error tails from the sparse distribution in Fig. 3 imply
1492
+ rare instances of large perturbative triples corrections to the total
1493
+ energy. In these cases, the exact ground-state wave-function may
1494
+ have strong multi-reference character. However, the multi-reference
1495
+ test in Fig. 2 has no corresponding outliers, and a variety of multi-
1496
+ reference tests may be needed to increase detection reliability47.
1497
+
1498
+ 10
1499
+ −1000
1500
+ 0
1501
+ 1000
1502
+ 101
1503
+ 103
1504
+ 105
1505
+ GFN2
1506
+ –1.6
1507
+ ±37.2
1508
+ remove atom
1509
+ dense
1510
+ −100
1511
+ 0
1512
+ 6.9
1513
+ ±9.3
1514
+ sparse
1515
+ −200
1516
+ 0
1517
+ 51.3
1518
+ ±21.6
1519
+ remove electron
1520
+ dense
1521
+ 0
1522
+ 100
1523
+ 21.3
1524
+ ±17.7
1525
+ sparse
1526
+ −100
1527
+ 0
1528
+ –25.4
1529
+ ±38.8
1530
+ add electron
1531
+ dense
1532
+ −200
1533
+ 0
1534
+ –157.3
1535
+ ±19.0
1536
+ sparse
1537
+ −250
1538
+ 0
1539
+ 101
1540
+ 103
1541
+ 105
1542
+ GFN1
1543
+ 15.1
1544
+ ±35.6
1545
+ −200
1546
+ 0
1547
+ 9.5
1548
+ ±12.6
1549
+ 0
1550
+ 100
1551
+ 88.0
1552
+ ±19.0
1553
+ 0
1554
+ 100
1555
+ 35.9
1556
+ ±21.4
1557
+ −100
1558
+ 0
1559
+ –16.7
1560
+ ±29.4
1561
+ −200
1562
+ 0
1563
+ –153.6
1564
+ ±22.8
1565
+ −2000
1566
+ 0
1567
+ 101
1568
+ 103
1569
+ 105
1570
+ PM7
1571
+ 26.5
1572
+ ±14.5
1573
+ −1000
1574
+ 0
1575
+ –1.0
1576
+ ±6.2
1577
+ −100
1578
+ 0
1579
+ –37.5
1580
+ ±9.7
1581
+ −100
1582
+ 0
1583
+ –50.4
1584
+ ±7.6
1585
+ 0
1586
+ 50
1587
+ 0.7
1588
+ ±3.4
1589
+ 0
1590
+ 50
1591
+ 17.9
1592
+ ±6.4
1593
+ 0
1594
+ 250
1595
+ 101
1596
+ 103
1597
+ 105
1598
+ AM1
1599
+ 5.3
1600
+ ±20.3
1601
+ 0
1602
+ 200
1603
+ –2.4
1604
+ ±5.7
1605
+ −100
1606
+ 0
1607
+ –28.8
1608
+ ±17.3
1609
+ −100
1610
+ 0
1611
+ –41.6
1612
+ ±8.4
1613
+ 0
1614
+ 50
1615
+ 0.7
1616
+ ±3.4
1617
+ 0
1618
+ 50
1619
+ 17.9
1620
+ ±6.4
1621
+ FIG. 5. Error histograms in kcal/mol for SQM models and all tasks along with the means, standard deviations, and moment-matching Gaussian model
1622
+ fits of the marked data from structures with minimum interatomic distances greater than 0.74 Å.
1623
+ The failures that statistical model selection in Sec. II seeks to
1624
+ avoid are silent failures. Anomaly detection implies an ability to
1625
+ detect and herald some types of failures. For the example data set in
1626
+ this paper, I havechosen to removesome heralded failuresassociated
1627
+ with algorithm-specific SCF convergence problems to increase the
1628
+ emphasis on errors in the physical models. This formally changes
1629
+ the underlying task distributions by a small amount. To be faithful to
1630
+ the original task distributions, a more complete model would always
1631
+ produce a viable output by branching to less accurate but more
1632
+ reliable calculations and eventually resorting to a random guess.
1633
+ When trying to increase a model’s overall success probability,
1634
+ improving the ability to detect and respond to rare failures and
1635
+ error outliers can be just as important as improving the average
1636
+ model accuracy for typical inputs.
1637
+ C.
1638
+ Model fitting
1639
+ I now consider a minimal representative example of using
1640
+ model selection to fit SQM models. First, I highlight the benefits of
1641
+ using more complicated error models to improve success measures.
1642
+ Second, I fit an atomic pair potential to all QM and SQM data,
1643
+ primarily to correct the large error outliers in the SQM data. Pair
1644
+ potentials are one of the most common and basic elements of both
1645
+ interatomic potentials and SQM models. While pair potentials are
1646
+ often restricted to a simple form before fitting them, I consider a
1647
+ general form and rely on model selection to limit the number of
1648
+ parameters that define the pair potential.
1649
+ Because some models being considered are near chemical
1650
+ accuracy, the small-𝜖 approximation used in Eq. (7) is not always
1651
+ accurate. Instead, I use the exact success probability,
1652
+ 𝑝(λ|𝑋𝑖) =
1653
+
1654
+ 𝑥𝑖+𝜖
1655
+ 𝑥𝑖−𝜖
1656
+ 𝑒−0.5[𝑧−𝜇−𝑦𝑖 (λ)]2/𝜎2
1657
+ 𝜎
1658
+
1659
+ 2𝜋
1660
+ 𝑑𝑧
1661
+ = erf
1662
+
1663
+ 𝑥𝑖−𝑦𝑖 (λ)−𝜇+𝜖
1664
+
1665
+ 2𝜋𝜎
1666
+
1667
+ − erf
1668
+
1669
+ 𝑥𝑖−𝑦𝑖 (λ)−𝜇−𝜖
1670
+
1671
+ 2𝜋𝜎
1672
+
1673
+ ,
1674
+ (38)
1675
+ for a success interval [𝑥𝑖 − 𝜖, 𝑥𝑖 + 𝜖] around a reference data value
1676
+ 𝑥𝑖. For chemical accuracy, 𝜖 = 1 kcal/mol. This interval needs
1677
+ to be adjusted for electron addition and removal energies that are
1678
+ near their vacuum-limited values. The energy to add an electron
1679
+ cannot be greater than zero, and the energy to remove an electron
1680
+ cannot be less than zero. If the success interval crosses into this
1681
+ physically forbidden region, then I ignore the unphysical end point
1682
+ and consider a semi-infinite success interval in Eq. (38). The form
1683
+ of the pair potential is a polynomial at short range that goes to
1684
+ zero at an adjustable cutoff 𝑅 and strictly zero beyond that. The
1685
+ success measure in Eq. (36) and its analytical first and second
1686
+ derivatives with respect to λ are tedious but straightforward to
1687
+ evaluate. I minimize the success measure with a sequence of line
1688
+ searches that use this derivative information to achieve asymptotic
1689
+ quadratic convergence.
1690
+ As I increase the polynomial degree, I
1691
+ use the minimizing model with one fewer degree as the initial
1692
+ guess for minimization. For degree one, I use the moment-based
1693
+ approximations of the error model in Eq. (13) and a zero pair
1694
+ potential with 𝑅 = 4 Å as the initial guess. The TIC bias correction
1695
+ in Eq. (27) is calculated at the penalty-free minimum of the success
1696
+ measure instead of being included in the minimization process.
1697
+ The models that minimize the success measure are summarized
1698
+ in Table I. There is a clear benefit to using a richer error model
1699
+ with a separate Gaussian error model for each type of simulation
1700
+
1701
+ 11
1702
+ model
1703
+ ˜𝐷1g
1704
+ ˜𝐷6g
1705
+ 𝜇
1706
+ 𝜎
1707
+ 𝜇rad
1708
+ 𝜎rad
1709
+ 𝜇ras
1710
+ 𝜎ras
1711
+ 𝜇red 𝜎red
1712
+ 𝜇res
1713
+ 𝜎res
1714
+ 𝜇aed 𝜎aed
1715
+ 𝜇aes 𝜎aes 𝑡
1716
+ CCSD+PP 1.57 × 105 9.20 × 104
1717
+ 0.2
1718
+ 0.7
1719
+ 0.1
1720
+ 0.4 -0.1
1721
+ 0.3
1722
+ -0.6
1723
+ 0.3
1724
+ 0.1
1725
+ 0.8
1726
+ 1.3
1727
+ 0.4
1728
+ 0.8
1729
+ 0.9 3.64 × 108
1730
+ CCSD
1731
+ 1.72 × 105 9.57 × 104
1732
+ 0.0
1733
+ 0.7
1734
+ -0.6
1735
+ 0.4 -0.2
1736
+ 0.3
1737
+ -0.6
1738
+ 0.3
1739
+ 0.1
1740
+ 0.8
1741
+ 1.3
1742
+ 0.4
1743
+ 0.8
1744
+ 0.9 3.64 × 108
1745
+ MP2
1746
+ 7.41 × 105 6.17 × 105
1747
+ 0.0
1748
+ 5.5
1749
+ -2.7
1750
+ 3.0 -2.3
1751
+ 4.7
1752
+ -2.0
1753
+ 3.4
1754
+ -3.0
1755
+ 5.6
1756
+ 2.0
1757
+ 1.8
1758
+ 6.9
1759
+ 3.8 2.10 × 108
1760
+ HF
1761
+ 1.06 × 106 8.17 × 105
1762
+ -2.9
1763
+ 16.0
1764
+ -18.9
1765
+ 8.8 -4.1
1766
+ 8.1
1767
+ -1.7
1768
+ 9.7
1769
+ -5.0
1770
+ 8.3
1771
+ 12.5
1772
+ 6.0
1773
+ 18.3
1774
+ 5.5 5.42 × 107
1775
+ 𝜔B97M-V 9.82 × 105 5.63 × 105
1776
+ -4.5
1777
+ 12.3
1778
+ 0.7
1779
+ 2.2 -1.3
1780
+ 2.3
1781
+ 0.5
1782
+ 2.5
1783
+ -29.1
1784
+ 8.8
1785
+ 2.8
1786
+ 2.8
1787
+ -7.5
1788
+ 3.2 2.57 × 108
1789
+ B3LYP
1790
+ 1.09 × 106 6.28 × 105
1791
+ -6.2
1792
+ 17.8
1793
+ 2.2
1794
+ 2.7 -0.1
1795
+ 1.5
1796
+ 4.2
1797
+ 3.3
1798
+ -36.9 13.4
1799
+ 4.3
1800
+ 4.3
1801
+ -21.4
1802
+ 6.0 8.51 × 107
1803
+ PBE
1804
+ 1.14 × 106 7.00 × 105
1805
+ -7.5
1806
+ 21.1
1807
+ 0.9
1808
+ 4.5 -0.8
1809
+ 2.0
1810
+ 0.7
1811
+ 4.6
1812
+ -47.6 19.0
1813
+ 2.9
1814
+ 2.8
1815
+ -15.4
1816
+ 5.6 1.14 × 108
1817
+ GFN2+PP
1818
+ 1.53 × 106 1.17 × 106
1819
+ -9.0
1820
+ 82.3
1821
+ -52.5
1822
+ 92.0
1823
+ 2.2
1824
+ 5.2
1825
+ 21.0 54.0
1826
+ 21.4 17.8 111.2 98.9 -156.8 20.0 9.31 × 104
1827
+ GFN2
1828
+ 1.54 × 106 1.21 × 106
1829
+ -15.1
1830
+ 85.1
1831
+ -32.7
1832
+ 96.5
1833
+ 6.8
1834
+ 9.3
1835
+ 21.0 54.0
1836
+ 21.4 17.8 111.2 98.9 -156.8 20.0 9.31 × 104
1837
+ GFN1+PP
1838
+ 1.52 × 106 1.13 × 106
1839
+ 5.2
1840
+ 79.4
1841
+ -23.2
1842
+ 42.7
1843
+ 4.7
1844
+ 8.4
1845
+ 68.5 26.5
1846
+ 36.1 21.5
1847
+ 69.4 60.7 -153.0 23.9 9.08 × 104
1848
+ GFN1
1849
+ 1.52 × 106 1.17 × 106
1850
+ 2.2
1851
+ 81.2
1852
+ -7.7
1853
+ 54.3
1854
+ 9.4 13.2
1855
+ 68.5 26.5
1856
+ 36.1 21.5
1857
+ 69.4 60.7 -153.0 23.9 9.08 × 104
1858
+ PM7+PP
1859
+ 1.27 × 106 9.11 × 105
1860
+ -6.5
1861
+ 33.2
1862
+ 13.8
1863
+ 29.7 -0.7
1864
+ 7.3
1865
+ -42.1 15.9
1866
+ -50.4
1867
+ 7.7
1868
+ 13.7
1869
+ 6.8
1870
+ 18.4
1871
+ 5.7 1.22 × 106
1872
+ PM7
1873
+ 1.50 × 106 1.07 × 106
1874
+ -7.3
1875
+ 75.0
1876
+ -23.5 150.1 -1.3 20.6
1877
+ -42.1 15.9
1878
+ -50.4
1879
+ 7.7
1880
+ 13.7
1881
+ 6.8
1882
+ 18.4
1883
+ 5.7 1.22 × 106
1884
+ AM1+PP
1885
+ 1.21 × 106 9.00 × 105
1886
+ -5.0
1887
+ 26.8
1888
+ 15.1
1889
+ 25.1 -0.9
1890
+ 4.6
1891
+ -21.8 22.2
1892
+ -41.6
1893
+ 8.5
1894
+ 13.7
1895
+ 6.8
1896
+ 18.4
1897
+ 5.7 1.18 × 106
1898
+ AM1
1899
+ 1.26 × 106 9.60 × 105
1900
+ -0.8
1901
+ 32.1
1902
+ 15.6
1903
+ 42.9 -2.0
1904
+ 7.5
1905
+ -21.8 22.2
1906
+ -41.6
1907
+ 8.5
1908
+ 13.7
1909
+ 6.8
1910
+ 18.4
1911
+ 5.7 1.18 × 106
1912
+ PP
1913
+ 1.69 × 106 1.15 × 106 -100.8 135.5 143.8 121.8 -2.4
1914
+ 9.7 -228.1 76.2 -293.1 17.7
1915
+ 13.7
1916
+ 6.8
1917
+ 18.4
1918
+ 5.7 5.25 × 10−2
1919
+ none
1920
+ 1.72 × 106 1.18 × 106
1921
+ -62.7 154.5
1922
+ 20.8 100.3 -7.5 19.4 -228.1 76.2 -293.1 17.7
1923
+ 13.7
1924
+ 6.8
1925
+ 18.4
1926
+ 5.7 3.38 × 10−2
1927
+ TABLE I. Comparison of minimized success measures over 𝑚 = 344, 513 simulation tasks for various models, including a pair potential (PP) correction
1928
+ when the improvement is greater than one percent. This comparison includes one-Gaussian (1g) error models (𝜇, 𝜎) and six-Gaussian (6g) error models
1929
+ fit to atom removal (ra), electron removal (re), and electron addition (ae) on both dense (d) and sparse (s) distributions. The success measures do not
1930
+ include parameter or cost penalties. The error model parameters are in kcal/mol and the total model evaluation times 𝑡 are in CPU-seconds. The cost of
1931
+ generating the reference data is 𝑡 = 4.13 × 108.
1932
+ task. Many of the large standard deviations in the overall error
1933
+ are better explained as biases in a specific task type with a smaller
1934
+ standard deviation per type. Some of these biases are obvious and
1935
+ expected, but it is still useful to quantify them. The GFN1 and
1936
+ GFN2 models predict a very large electron binding energy for most
1937
+ hydrogen clusters, while AM1 and PM7 do not predict any binding
1938
+ of excess electrons to any hydrogen cluster. The HF model has
1939
+ biases associated with the absence of electron correlation energy,
1940
+ which is always negative and usually proportional to the number of
1941
+ electrons. The DFT models are known to have large delocalization
1942
+ errors48 that are likely to be biasing the electron removal energies of
1943
+ the sparse distribution. If an error model is used to improve success
1944
+ probabilities by adding random numbers to a model’s outputs, then
1945
+ an improvement to the error model is an improvement to the model
1946
+ as a whole.
1947
+ The effects of the IC penalties on the selection of the pair
1948
+ potential are shown for two representative model families in Fig. 6.
1949
+ CCSD is a more accurate model than PM7, and the AIC is likewise
1950
+ a better approximation of the TIC for CCSD. For PM7, the AIC
1951
+ is unable to compensate for the parameter bias enough to create
1952
+ a local minimum in the success measure. For CCSD, the AIC is
1953
+ able to create a local minimum, but its location is different than for
1954
+ the TIC. In this example, the TIC correction introduces significant
1955
+ numerical noise, which appear as values above the smoother trend
1956
+ line.
1957
+ The TIC is a response property that depends sensitively
1958
+ on the numerical quality of the success measure minimum. The
1959
+ derivative discontinuity that I allow at the large-distance cutoff
1960
+ point 𝑅 of the pair potential introduces derivative discontinuities
1961
+ in the 𝑅 dependence of the success measure that complicates the
1962
+ minimization. Even under such non-ideal conditions, the TIC is
1963
+ 0
1964
+ 20
1965
+ 40
1966
+ 60
1967
+ 80
1968
+ 100
1969
+ −3700
1970
+ −3690
1971
+ −3680
1972
+ −3670
1973
+ −3660
1974
+ −3650
1975
+ −3640
1976
+ ˜D6g change for CCSD
1977
+ AIC
1978
+ TIC
1979
+ 0
1980
+ 20
1981
+ 40
1982
+ 60
1983
+ 80
1984
+ 100
1985
+ polynomial degree
1986
+ −159500
1987
+ −159000
1988
+ −158500
1989
+ −158000
1990
+ −157500
1991
+ −157000
1992
+ −156500
1993
+ ˜D6g change for PM7
1994
+ AIC
1995
+ TIC
1996
+ FIG. 6. Reduction of the success measure ˜𝐷6g with a six-Gaussian error
1997
+ model as the polynomial degree of the pair potential is increased. The
1998
+ TIC is regularized by replacing small and negative eigenvalues of the ˜𝐷6g
1999
+ Hessian with 10−9 times the largest eigenvalue when that value is greater.
2000
+
2001
+ 12
2002
+ 0.5
2003
+ 1.0
2004
+ 1.5
2005
+ 2.0
2006
+ 2.5
2007
+ −0.4
2008
+ −0.2
2009
+ 0.0
2010
+ 0.2
2011
+ PP for CCSD (kcal/mol)
2012
+ no TIC
2013
+ TIC
2014
+ 0.3
2015
+ 0.4
2016
+ 0.5
2017
+ 0.6
2018
+ 0.7
2019
+ distance (Å)
2020
+ −200
2021
+ −150
2022
+ −100
2023
+ −50
2024
+ 0
2025
+ PP for PM7 (kcal/mol)
2026
+ no TIC
2027
+ TIC
2028
+ FIG. 7. Short-range polynomial pair potential corrections for the CCSD
2029
+ and PM7 models. With the TIC penalty, the minimizing polynomial has
2030
+ degree 22 for CCSD and degree 14 for PM7. Without an IC penalty, there
2031
+ is no local minimum in polynomial degree and best degree 100 polynomial
2032
+ is shown as an example of overfitting. Outside of the plotted range, the
2033
+ PM7 pair potential decreases to -1790 kcal/mol at 0.3 Å.
2034
+ still functional for model selection with appropriate regularization
2035
+ of the success measure Hessian.
2036
+ The TIC is more challenging
2037
+ to calculate for parameterized QM calculations that involve QM
2038
+ response properties in the parameter derivatives of the success
2039
+ measure.
2040
+ The benefits of a pair potential correction are not uniform
2041
+ over models or tasks. Since the pair potential only depends on
2042
+ the atomic structure and not electronic structure, it cannot correct
2043
+ the electron addition and removal tasks. For many models, the
2044
+ overall reduction of the success measure is one percent or less, and
2045
+ these minor improvements are omitted from Table I. The largest
2046
+ improvement comes from the PM7 pair potential, shown in Fig.
2047
+ 7. Apparently, the short-range hydrogen-hydrogen pair potential
2048
+ in PM7 is much too repulsive at distances just below the bond
2049
+ length of H2. In contrast, the CCSD pair potential is much longer
2050
+ in range and much smaller in magnitude. It is not surprising that
2051
+ the largest correction occurs near the Coulson-Fischer point around
2052
+ 1 Å. However, it is surprising that something as complicated as
2053
+ the CCSD(T) triples correction can be partially approximated by a
2054
+ pair potential. The IC penalties succeed in suppressing the high-
2055
+ frequency oscillations typically attributed to overfitting noise, but
2056
+ there are still some artifacts near the edges of the polynomial’s
2057
+ domain. There are other ways to reduce unphysical oscillations
2058
+ in pair potentials, such as considering reference tasks that depend
2059
+ directly on derivatives of a pair potential or explicit functional
2060
+ regularization49. As shown in Fig. 8, the pair potential corrections
2061
+ eliminate most of the large error outliers in SQM models except for
2062
+ GFN2 on the dense distribution. I expect that the persistent error
2063
+ in GFN2 is from the short-range part of either a 3-body potential
2064
+ term or a Hamiltonian matrix element, neither of which can be
2065
+ repaired by a pair potential.
2066
+ This example demonstrates the benefits of having an excessive
2067
+ amount of data available when fitting models. As the amount of
2068
+ data increases, the utility and reliability of statistical tools and con-
2069
+ cepts increases. The abundance of data creates a comfortable safety
2070
+ buffer between the number of parameters needed to fit a model ac-
2071
+ curately and the maximum number of parameters that can be fit with
2072
+ statistical significance. The model selection process then enables
2073
+ an accurate model to be carved from an accessible set of redundant,
2074
+ overfit models. Such large amounts of data are accessible because
2075
+ of the massive scale of modern high-performance computing, an
2076
+ ability to generate data sets procedurally, and careful use of phys-
2077
+ ical transferability assumptions. This strongly contrasts with how
2078
+ SQM models such as PM730 and GFN233 have been developed.
2079
+ They prescribe simple model forms with a few tens of parameters
2080
+ per element and collect enough reference data to fit those forms
2081
+ specifically. They do not gather enough data to consider or rule out
2082
+ more complicated models with more parameters, and many SQM
2083
+ model design choices have remained frozen for decades.
2084
+ PM7
2085
+ still uses the MNDO model form31 proposed in 1977, just with
2086
+ the addition of more complicated classical correction terms. De-
2087
+ spite being from a much newer model family, GFN2 also contains
2088
+ old model forms such as the Wolfsberg–Helmholz approximation50
2089
+ from 1952 relating Hamiltonian and overlap off-diagonal matrix
2090
+ elements. With an increasing amount of data, model forms can
2091
+ −2.5
2092
+ 0.0
2093
+ 2.5
2094
+ 101
2095
+ 103
2096
+ 105
2097
+ CCSD+PP
2098
+ 0.1
2099
+ ±0.4
2100
+ remove atom
2101
+ dense
2102
+ −5
2103
+ 0
2104
+ 5
2105
+ 0.0
2106
+ ±0.1
2107
+ sparse
2108
+ −1000
2109
+ 0
2110
+ 1000
2111
+ 101
2112
+ 103
2113
+ 105
2114
+ GFN2+PP
2115
+ –52.3
2116
+ ±92.0
2117
+ −50
2118
+ 0
2119
+ 2.2
2120
+ ±5.2
2121
+ −100
2122
+ 0
2123
+ 100
2124
+ 101
2125
+ 103
2126
+ 105
2127
+ GFN1+PP
2128
+ –22.9
2129
+ ±42.7
2130
+ −50
2131
+ 0
2132
+ 4.7
2133
+ ±8.5
2134
+ −200
2135
+ −100
2136
+ 0
2137
+ 100
2138
+ 101
2139
+ 103
2140
+ 105
2141
+ PM7+PP
2142
+ 13.7
2143
+ ±29.7
2144
+ −50
2145
+ 0
2146
+ 50
2147
+ –0.7
2148
+ ±7.4
2149
+ −100
2150
+ 0
2151
+ 100
2152
+ 101
2153
+ 103
2154
+ 105
2155
+ AM1+PP
2156
+ 15.0
2157
+ ±25.2
2158
+ −50
2159
+ 0
2160
+ 50
2161
+ –0.9
2162
+ ±4.7
2163
+ FIG. 8. Revisions of error histograms from Fig. 3 in kcal/mol for the
2164
+ models and tasks that benefit from a pair potential correction.
2165
+
2166
+ 13
2167
+ shift more towards what is objectively supported by the data and
2168
+ farther from the subjective technical opinions of specific model
2169
+ builders.
2170
+ D.
2171
+ Cost budgeting
2172
+ Considerations of model cost are always more complicated
2173
+ than model accuracy because they are much more sensitive to
2174
+ software, hardware, and fine details of a workflow. All calculations
2175
+ reported in Table I are performed on the same computing cluster,
2176
+ with AMD EPYC 7702 CPU cores and two gigabytes of memory
2177
+ per core. Except for MP2, CCSD, and CCSD(T) calculations, all
2178
+ calculations are performed on a single CPU core for maximum
2179
+ throughput. Some of the MP2, CCSD, and CCSD(T) calculations
2180
+ exceed the memory budget of a single CPU core, and they are run
2181
+ with four cores per calculation for a safety buffer of memory usage.
2182
+ Parts of the calculation are threaded and make use of multiple
2183
+ cores, but the thread scaling is limited. This complicates some
2184
+ cost comparisons. For example, the HF and MP2 calculations have
2185
+ very similar run times under similar conditions, and the large cost
2186
+ difference reported in Table I is caused by the different number
2187
+ of cores required.
2188
+ Also, the AM1 and PM7 calculations have
2189
+ similar run times as GFN1 and GFN2 calculations for an individual
2190
+ calculation, but their workflow requires a combinatorial search over
2191
+ atomic spin configurations. The limited sensitivity of GFN1 and
2192
+ GFN2 calculations to spin order makes this search unnecessary and
2193
+ reduces their overall run time per simulation task, but may also be
2194
+ related to their relatively poor accuracy here.
2195
+ A visual way to compare success measures with varying cost
2196
+ penalties is to plot them versus cost as in Fig. 9 and draw the
2197
+ convex hull connecting minimum-cost models with various rates
2198
+ of success. Models on the convex hull are optimal for a range
2199
+ of computational budgets, and models above the convex hull are
2200
+ not worth using for these simulation tasks according to this cost
2201
+ analysis. In this example, the convex hull connects PP, AM1+PP,
2202
+ B3LYP, and CCSD+PP, with GFN1+PP also just on the convex
2203
+ hull. As noted in Sec. II D, any model cost versus accuracy along
2204
+ the convex hull can be achieved by randomly switching between the
2205
+ models on the end points with a probability varying linearly between
2206
+ zero and one along the facet. Thus, there is a natural continuum of
2207
+ hybrid models between the cheapest and most expensive models.
2208
+ The practice of randomly mixing models with different accu-
2209
+ racies as suggested here is usually avoided in atomistic simulation.
2210
+ Models often rely on some form of error cancellation or a study
2211
+ of qualitative trends rather than precise quantitative predictions
2212
+ that can be disrupted by comparing data between different models.
2213
+ These behaviors can be described within a framework of statisti-
2214
+ cally independent simulation tasks by carefully defining tasks as
2215
+ groups of simulations with success based on comparisons rather
2216
+ than the absolute value of outputs. In the simple example of a
2217
+ ranking, random pairs of simulations might be performed with the
2218
+ output being the decision of which system had the larger value for
2219
+ a specific output. Such a grouping forces comparisons to remain
2220
+ within a specific model while still allowing for the use of a different
2221
+ model for each independent ranking decision. A more common
2222
+ practice of mixing models is to filter a larger number of systems
2223
+ with a cheap, inaccurate model and then filter the remains systems
2224
+ 10−2
2225
+ 100
2226
+ 102
2227
+ 104
2228
+ 106
2229
+ 108
2230
+ 1010
2231
+ 1012
2232
+ t (CPU-seconds)
2233
+ 0.0
2234
+ 0.2
2235
+ 0.4
2236
+ 0.6
2237
+ 0.8
2238
+ 1.0
2239
+ 1.2
2240
+ ˜D6g
2241
+ ×106
2242
+ CCSD+PP
2243
+ MP2
2244
+ HF
2245
+ ωB97M-V
2246
+ B3LYP
2247
+ PBE
2248
+ GFN2+PP
2249
+ GFN1+PP
2250
+ PM7+PP
2251
+ AM1+PP
2252
+ PP
2253
+ FIG. 9. Success measure versus total cost of models from Table I with the
2254
+ convex hull denoting the most cost-effective models in the example.
2255
+ that pass the first filter with a more expensive and accurate model.
2256
+ The intention of this practice is to approximate the effect of ap-
2257
+ plying the more expensive filter to all of the systems with a lower
2258
+ overall cost. However, this requires the cheaper model to have a
2259
+ sufficiently low false positive rate that the overall cost is actually
2260
+ reduced while maintaining a very low false negative rate to avoid
2261
+ distorting the outcome.
2262
+ Simultaneous considerations of model cost and accuracy at
2263
+ a large enough scale that reliability also matters as in Fig. 9 is a
2264
+ very challenging test for models. It is much easier to show cost
2265
+ benchmarks of a model or software under ideal conditions, accuracy
2266
+ benchmarks under a different set of ideal conditions, and ignore
2267
+ problematic cases altogether. Even the hydrogen cluster example
2268
+ considered here is artificially generous because a small fraction
2269
+ of structures that caused SCF convergence failures were omitted
2270
+ from the set of simulation tasks. While the models are depicted
2271
+ as points on the plot, they are more generally going to be regions
2272
+ corresponding to the set of possible changes in a workflow that alter
2273
+ both cost and accuracy. For example, the combinatorial search over
2274
+ atomic spin configurations for the hydrogen cluster example could
2275
+ have been avoided, which would have substantially reduced the
2276
+ cost of many models. However, many of the calculations would
2277
+ have failed to find the lowest energy ground state, and the overall
2278
+ accuracy would have been reduced as a result. Cost and accuracy
2279
+ could have been balanced more carefully by randomly sampling a
2280
+ limited set of spin configurations rather than using an exhaustive
2281
+ combinatorial search. Adjusting details of a model workflow to
2282
+ improve the convex hull of optimal models requires a careful balance
2283
+ of these cost, accuracy, and reliability considerations.
2284
+
2285
+ 14
2286
+ IV.
2287
+ CONCLUSION
2288
+ As scientists continue to develop more diverse and sophisti-
2289
+ cated models for atomistic simulation, how models are compared
2290
+ and how their successes are judged become increasingly important.
2291
+ Progress in method development can slow down or stop if scientists
2292
+ have different, incompatible definitions for what success is51. This
2293
+ paper has presented an operational success measure for judging
2294
+ atomistic models that is based on statistical model selection. Using
2295
+ simple simulation tasks on hydrogen clusters as an example, I have
2296
+ shown how this measure can be used to compare the cost and accu-
2297
+ racy of a diverse set of QM and SQM models. I have also used it to
2298
+ fit a minimal SQM model that applies a pair potential correction to
2299
+ this QM and SQM data and select the potential form that best fits
2300
+ the data. The TIC provides a reliable parameter penalty to avoid
2301
+ selecting over-complicated models, while the AIC is not a reliable
2302
+ penalty because some atomistic models are too inaccurate for its
2303
+ assumptions to hold. For a computational budget that is too small
2304
+ for a high-accuracy model but excessive for a low-accuracy model,
2305
+ the success measure predicts the efficacy of splitting a workload
2306
+ between models to match the budget. By adjusting the operational
2307
+ definition of success for simulation tasks, this success measure
2308
+ can be equally good for designing expensive models to succeed at
2309
+ difficult tasks and cheap models to succeed at easy tasks.
2310
+ An essential aspect of model building in atomistic simulation
2311
+ is the availability of high-quality reference data for fitting and test-
2312
+ ing. While models have historically relied on reference data from
2313
+ experiments, it is now possible to generate accurate data using ex-
2314
+ pensive QM models. As shown in the hydrogen cluster example,
2315
+ CCSD(T) data is affordable for small molecular fragments, and
2316
+ less accurate DFT data remains affordable for larger molecules and
2317
+ periodic systems. For data generation at scales larger than what
2318
+ has been presented in this paper, reliability issues will become
2319
+ increasingly important alongside cost and accuracy considerations.
2320
+ SCF convergence problems can cause heralded failures, while SCF
2321
+ convergence to excited states can cause silent failures. Without
2322
+ more fundamentally reliable algorithms to reduce failure rates, a
2323
+ fixed rate of failure means an increasing number of failure events
2324
+ as data sets grow larger in size. There are increasingly sophisti-
2325
+ cated tools52 for remote, automated computing of large workloads
2326
+ and organizing large data sets with modern database standards.
2327
+ However, limitations in the reliability of the underlying tasks being
2328
+ automated may have a strongly negative influence on the cost and
2329
+ accuracy of generating large data sets as failures persist against
2330
+ increasing computational redundancy.
2331
+ The hydrogen cluster example considered here is sufficiently
2332
+ different from typical reference data sets that it serves as a challeng-
2333
+ ing test of physical transferability. There is a significant difference
2334
+ in the apparent progress that DFT and SQM models have made in
2335
+ developing transferable models. The improvement in transferability
2336
+ from PBE to B3LYP to 𝜔B97M-V is consistent with the develop-
2337
+ ment roadmap of DFT functionals with increasing complexity53.
2338
+ While likely a coincidence, the SQM models considered here have
2339
+ systematically degrading performance in chronological order of
2340
+ their development. A simple explanation of this difference might
2341
+ be that DFT functionals are fundamentally more transferable than
2342
+ minimal-basis SQM models. However, it is also important to con-
2343
+ sider the vastly differing amounts of technical effort that have been
2344
+ invested in these two approaches.
2345
+ The development path from
2346
+ B3LYP to 𝜔B97M-V includes the development of hundreds of
2347
+ DFT functionals from numerous research groups over more than
2348
+ three decades26. In contrast, the development path from AM1 to
2349
+ PM7 consists of only a few other models developed by a single
2350
+ scientist – Dr. James J. P. Stewart – working mostly in isolation
2351
+ outside of academia for more than three decades. GFN1 and GFN2
2352
+ were developed much more recently by a single academic group
2353
+ – the research group of Prof. Stefan Grimme at the University of
2354
+ Bonn. While there are other SQM models outside of the GFN and
2355
+ MNDO-like model families, these are the two most widely used
2356
+ families and the only non-commerical models54 to be fit for com-
2357
+ binations of elements over most of the periodic table. The GFN
2358
+ models incorporate ideas from both MNDO-like models (multipole
2359
+ expansions of electrostatics, avoidance of diatomic parameters) and
2360
+ DFTB models (expansion around an atomic limit, DFT-like cor-
2361
+ relation models). All of the SQM models considered here have
2362
+ similar superficial complexity, similar numbers of parameters per
2363
+ element, and are fit to similar amounts of reference data. Except
2364
+ for a belief in the superiority of DFT-like models, there is no com-
2365
+ pelling theoretical reason why any SQM model from this set should
2366
+ perform any better than any other on systems that are very different
2367
+ from their training data.
2368
+ The concepts presented in this paper are meant to inform the
2369
+ process of designing, fitting, and selecting models for atomistic
2370
+ simulation tasks. If a simulation task is not going to be repeated a
2371
+ very large number of times, then the formal process of gathering
2372
+ reference data and calculating a success measure might not be
2373
+ worth the amount of human effort required. However, the statistical
2374
+ model selection process can still be useful as a conceptual guide
2375
+ even when it is not worthwhile to perform it carefully or explicitly.
2376
+ For tasks that are performed frequently by many scientists, it may
2377
+ be worthwhile to capture that activity as a distribution of tasks
2378
+ and a representative sampling from that distribution.
2379
+ Quantum
2380
+ chemistry has a tradition of curating reference data sets to guide
2381
+ method development26. Expanding that tradition to accommodate
2382
+ larger data sets, statistical interpretations, and success measures that
2383
+ capture the real needs of applied scientists could create an even
2384
+ better guide for method development. It is difficult for a scientist
2385
+ to characterize real application needs while also developing novel
2386
+ simulation methods to satisfy those needs, and it would be helpful
2387
+ to decouple those important research activities from each other.
2388
+ ACKNOWLEDGMENTS
2389
+ J. E. M. thanks Jimmy Stewart for helpful discussions. The
2390
+ Molecular Sciences Software Institute is supported by NSF Grant
2391
+ No. ACI-1547580. The computational resources used in this work
2392
+ were provided by Advanced Research Computing at Virginia Tech.
2393
+ AUTHOR DECLARATIONS
2394
+ Conflict of Interest
2395
+ The author has no conflicts to disclose.
2396
+
2397
+ 15
2398
+ Author Contributions
2399
+ Jonathan E. Moussa: Conceptualization (equal); Data curation
2400
+ (equal); Formal analysis (equal); Investigation (equal); Method-
2401
+ ology (equal); Resources (equal); Software (equal); Validation
2402
+ (equal); Visualization (equal); Writing – original draft (equal);
2403
+ Writing – review & editing (equal).
2404
+ DATA AVAILABILITY
2405
+ The data and software that support the findings of this study
2406
+ are available on Zenodo at the DOI 10.5281/zenodo.7530231.
2407
+ REFERENCES
2408
+ 1M. Born and A. Landé, “Die Abstände der Atome im Molekül und im Kristalle,”
2409
+ Die Naturwissenschaften 6, 496 (1918).
2410
+ 2L. Talirz, L. M. Ghiringhelli, and B. Smit, “Trends in Atomistic Simulation
2411
+ Software Usage [Article v1.0],” Living J. Comput. Mol. Sci. 3, 1483 (2021).
2412
+ 3K. A. Dill and J. L. MacCallum, “The Protein-Folding Problem, 50 Years On,”
2413
+ Science 338, 1042–1046 (2012).
2414
+ 4C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. Buarque de Macedo, “Consider-
2415
+ ations for choosing and using force fields and interatomic potentials in materials
2416
+ science and engineering,” Curr. Opin. Solid State Mater. Sci. 17, 277–283 (2013).
2417
+ 5J. A. Pople, “Nobel Lecture: Quantum chemical models,” Rev. Mod. Phys. 71,
2418
+ 1267–1274 (1999).
2419
+ 6S. J. Plimpton and A. P. Thompson, “Computational aspects of many-body po-
2420
+ tentials,” MRS Bull. 37, 513–521 (2012).
2421
+ 7P. R. Nagy and M. Kállay, “Approaching the Basis Set Limit of CCSD(T) Energies
2422
+ for Large Molecules with Local Natural Orbital Coupled-Cluster Methods,” J.
2423
+ Chem. Theory Comput. 15, 5275–5298 (2019).
2424
+ 8T. Husch, A. C. Vaucher, and M. Reiher, “Semiempirical molecular orbital mod-
2425
+ els based on the neglect of diatomic differential overlap approximation,” Int. J.
2426
+ Quantum Chem. 118, e25799 (2018).
2427
+ 9C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S.
2428
+ Spicher, and S. Grimme, “Extended tight-binding quantum chemistry methods,”
2429
+ Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1493 (2021).
2430
+ 10K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference:
2431
+ A Practical Information-Theoretic Approach (Springer, New York, 2002).
2432
+ 11K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901
2433
+ (2012).
2434
+ 12T. Weymuth and M. Reiher, “The transferability limits of static benchmarks,”
2435
+ Phys. Chem. Chem. Phys. 24, 14692–14698 (2022).
2436
+ 13D. Folmsbee and G. Hutchison, “Assessing conformer energies using electronic
2437
+ structure and machine learning methods,” Int. J. Quantum Chem. 121, e26381
2438
+ (2021).
2439
+ 14H. Akaike, “A new look at the statistical model identification,” IEEE Trans.
2440
+ Automat. Contr. 19, 716–723 (1974).
2441
+ 15R. Shibata, “Statistical Aspects of Model Selection,” in From Data to Model,
2442
+ edited by J. C. Willems (Springer-Verlag, New York, 1989), pp. 215–240.
2443
+ 16S. Kullback, Information Theory and Statistics (Wiley, New York,1959).
2444
+ 17B. O’Leary, B. J. Duke, and J. E. Eilers, “Utilization of Transferability in Molecular
2445
+ Orbital Theory,” Adv. Quantum Chem. 9, 1–67 (1975).
2446
+ 18C. J. Cramer and D. G. Truhlar, “Implicit Solvation Models: Equilibria, Structure,
2447
+ Spectra, and Dynamics,” Chem. Rev. 99, 2161–2200 (1999).
2448
+ 19H. M. Senn and W. Thiel, “QM/MM Methods for Biomolecular Systems,” Angew.
2449
+ Chem. Int. Ed. 48, 1198–1229 (2009).
2450
+ 20M. Leslie and N. J. Gillan, “The energy and elastic dipole tensor of defects in
2451
+ ionic crystals calculated by the supercell method,” J. Phys. C: Solid State Phys.
2452
+ 18, 973–982 (1985).
2453
+ 21S. Goedecker, “Linear scaling electronic structure methods,” Rev. Mod. Phys. 71,
2454
+ 1085–1123 (1999).
2455
+ 22J. E. Moussa, “Cubic-scaling algorithm and self-consistent field for the random-
2456
+ phase approximation with second-order screened exchange,” J. Chem. Phys. 140,
2457
+ 014107 (2014).
2458
+ 23C. A. Coulson and I. Fischer, “XXXIV. Notes on the molecular orbital treatment
2459
+ of the hydrogen molecule,” Philos. Mag. 40, 386–393 (1949).
2460
+ 24R. Clampitt and L. Gowland, “Clustering of Cold Hydrogen Gas on Protons,”
2461
+ Nature 223, 815–816 (1969).
2462
+ 25M. Renzler, M. Kuhn, A. Mauracher, A. Lindinger, P. Scheier, and A. M. Ellis,
2463
+ “Anionic Hydrogen Cluster Ions as a New Form of Condensed Hydrogen,” Phys.
2464
+ Rev. Lett. 117, 273001 (2016).
2465
+ 26N. Mardirossian and M. Head-Gordon, “Thirty years of density functional theory
2466
+ in computational chemistry: an overview and extensive assessment of 200 density
2467
+ functionals,” Mol. Phys. 115, 2315–2372 (2017).
2468
+ 27K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, “A fifth-order
2469
+ perturbation comparison of electron correlation theories,” Chem. Phys. Lett. 157,
2470
+ 479–483 (1989).
2471
+ 28F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta
2472
+ valence and quadruple zeta valence quality for H to Rn: Design and assessment
2473
+ of accuracy,” Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
2474
+ 29M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “Development and
2475
+ use of quantum mechanical molecular models. 76. AM1: a new general purpose
2476
+ quantum mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909
2477
+ (1985).
2478
+ 30J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more
2479
+ modifications to the NDDO approximations and re-optimization of parameters,”
2480
+ J. Mol. Model. 19, 1–32 (2013).
2481
+ 31M. J. S. Dewar and W. Thiel, “Ground states of molecules. 38. The MNDO
2482
+ method. Approximations and parameters,” J. Am. Chem. Soc. 99, 4899–4907
2483
+ (1977).
2484
+ 32S. Grimme, C. Bannwarth, and P. Shushkov, “A Robust and Accurate Tight-
2485
+ Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and
2486
+ Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-
2487
+ Block Elements (Z = 1–86),” J. Chem. Theory Comput. 13, 1989–2009 (2017).
2488
+ 33C. Bannwarth, S. Ehlert, and S. Grimme, “GFN2-xTB – An Accurate and Broadly
2489
+ Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with
2490
+ Multipole Electrostatics and Density-Dependent Dispersion Contributions,” J.
2491
+ Chem. Theory Comput. 15, 3, 1652–1671 (2019).
2492
+ 34M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim,
2493
+ S. Suhai, and G. Seifert, “Self-consistent-charge density-functional tight-binding
2494
+ method for simulations of complex materials properties,” Phys. Rev. B 58, 7260–
2495
+ 7268 (1998).
2496
+ 35J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation
2497
+ Made Simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
2498
+ 36P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab Initio
2499
+ Calculation of Vibrational Absorption and Circular Dichroism Spectra Using
2500
+ Density Functional Force Fields,” J. Phys. Chem. 98, 11623–11627 (1994).
2501
+ 37N. Mardirossian and M. Head-Gordon, “𝜔B97M-V: A combinatorially optimized,
2502
+ range-separated hybrid, meta-GGA density functional with VV10 nonlocal cor-
2503
+ relation,” J. Chem. Phys. 144, 214110 (2016).
2504
+ 38Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J.
2505
+ McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, “PySCF:
2506
+ the Python-based simulations of chemistry framework,” WIREs Comput. Mol.
2507
+ Sci. 8, e1340 (2018).
2508
+ 39Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov,
2509
+ G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann,
2510
+ M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J.
2511
+ D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J.
2512
+ Robinson, E. Ronca, E. R. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T.
2513
+ Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J.
2514
+ D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C.
2515
+ Berkelbach, S. Sharma, A. Yu. Sokolov, and G. K.-L. Chan, “Recent developments
2516
+ in the PySCF program package,” J. Chem. Phys. 153, 024109 (2020).
2517
+ 40Several quantum chemistry codes were considered for this work, but I was not
2518
+ able to get all of the necessary methods for this project working in any one
2519
+ code without modifications. I ultimately chose PySCF because the open-source
2520
+ Python codebase made it easier to find and fix bugs and contribute bug fixes. The
2521
+ offending bugs were associated with logical problems when a fully spin-polarized
2522
+ system had no beta electrons in some post-HF methods and a memory leak in the
2523
+ CCSD(T) code that caused crashes in long workflows.
2524
+
2525
+ 16
2526
+ 41P. Pulay, “Convergence acceleration of iterative sequences. the case of SCF
2527
+ iteration,” Chem. Phys. Lett. 73, 393–398 (1980).
2528
+ 42X. Hu and W. Yang, “Accelerating self-consistent field convergence with the
2529
+ augmented Roothaan-Hall energy function,” J. Chem. Phys. 132, 054109 (2010).
2530
+ 43J. J. P. Stewart, “MOPAC: A semiempirical molecular orbital program,” J.
2531
+ Computer-Aided Mol. Des. 4, 1–103 (1990).
2532
+ 44The most relevant details for success rates were SCF convergence tolerances set
2533
+ to 10−8, the DIIS spaces set to 10, and the maximum number of SCF cycles set
2534
+ to 100 for def2-SVP and 200 for def2-QZVPP. The CCSD calculations were also
2535
+ set to a maximum number of 200 iterations and a convergence tolerance of 10−5
2536
+ on the cluster operator.
2537
+ 45M. Motta, C. Genovese, F. Ma, Z.-H. Cui, R. Sawaya, G. K.-L. Chan, N. Chepiga,
2538
+ P. Helms, C. Jiménez-Hoyos, A. J. Millis, U. Ray, E. Ronca, H. Shi, S. Sorella,
2539
+ E. M. Stoudenmire, S. R. White, and S. Zhang, “Ground-State Properties of
2540
+ the Hydrogen Chain: Dimerization, Insulator-to-Metal Transition, and Magnetic
2541
+ Phases,” Phys. Rev. X 10, 031058 (2020).
2542
+ 46V. K. Voora, A. Kairalapova, T. Sommerfeld, and K. D. Jordan, “Theoretical
2543
+ approaches for treating non-valence correlation-bound anions,” J. Chem. Phys.
2544
+ 147, 214114 (2017).
2545
+ 47C. Duan, D. B. K. Chu, A. Nandy, and H. J. Kulik, “Detection of multi-reference
2546
+ character imbalances enables a transfer learning approach for virtual high through-
2547
+ put screening with coupled cluster accuracy at DFT cost,” Chem. Sci. 13, 4962–
2548
+ 4971 (2022).
2549
+ 48P. Mori-Sánchez, A. J. Cohen, and W. Yang, “Localization and Delocalization
2550
+ Errors in Density Functional Theory and Implications for Band-Gap Prediction,”
2551
+ Phys. Rev. Lett. 100, 146401 (2008).
2552
+ 49F. Hu, F. He, and D. J. Yaron, “Semiempirical Hamiltonians learned from data
2553
+ can have accuracy comparable to Density Functional Theory,” arXiv preprint
2554
+ arXiv:2210.11682 [physics.chem-ph].
2555
+ 50M. Wolfsberg and L. Helmholz, “The Spectra and Electronic Structure of the
2556
+ Tetrahedral Ions MnO−
2557
+ 4 , CrO−−
2558
+ 4 , and ClO−
2559
+ 4 ,” J. Chem. Phys. 20, 837–843 (1952).
2560
+ 51M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko,
2561
+ “Density functional theory is straying from the path toward the exact functional,”
2562
+ Science 355, 49–52 (2017).
2563
+ 52D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N. Naden, L. Ward, S.
2564
+ Ellis, B. P. Pritchard, and T. D. Crawford, “The MolSSI QCArchive project: An
2565
+ open-source platform to compute, organize, and share quantum chemistry data,”
2566
+ WIREs Comput. Mol. Sci. 11, e1491 (2021).
2567
+ 53J. P. Perdew and K. Schmidt, “Jacob’s ladder of density functional approximations
2568
+ for the exchange-correlation energy,” AIP Conf. Proc. 577, 1–20 (2001).
2569
+ 54M. Wahiduzzaman, A. F. Oliveira, P. Philipsen, L. Zhechkov, E. van Lenthe, H. A.
2570
+ Witek, and T. Heine, “DFTB Parameters for the Periodic Table: Part 1, Electronic
2571
+ Structure,” J. Chem. Theory Comput. 9, 4006–4017 (2013).
2572
+
49E4T4oBgHgl3EQf1A2T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE2T4oBgHgl3EQfOQYe/content/2301.03745v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6097f74a8d429201e0c280f03b20e79d7e42ba1bdbbfb3b13a29b6850526b694
3
+ size 259563
4NE2T4oBgHgl3EQfOQYe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6194fa4ae5a483bd6a28b24e8fe16999925cf29331d838c282f3a1cc1f27570d
3
+ size 96320
5NFKT4oBgHgl3EQf-C45/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:391069e3ff4386417d8272071cd1edfcf98445ea2a65ed4dc0e64559f39a3d25
3
+ size 6750253
5dE0T4oBgHgl3EQfegDz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa8cae548c170d2836dd9c0af6c5d75d2a659293aaa481fcd52d3c4a68605aad
3
+ size 6619181
5tE4T4oBgHgl3EQfBgtg/content/tmp_files/2301.04852v1.pdf.txt ADDED
@@ -0,0 +1,1129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04852v1 [hep-ph] 12 Jan 2023
2
+ Evaluation of one type scalar one loop three-point amplitude
3
+ inspired by H → gg decay in the standard model
4
+ Jin Zhang∗
5
+ School of Physics and Engineering, Yuxi Normal University,
6
+ Yuxi, Yunnan, 653100, P. R. China
7
+ Abstract
8
+ Motivated by the Higgs boson decaying to gg at one loop approximation, the amplitude of scalar one
9
+ loop three-point diagram with two different internal masses are evaluated and fully analytic results are
10
+ obtained. The main ingredient of the evaluation is a integral in which the integrand is product of the
11
+ reciprocal of the integral variable and a logarithm, where the argument of the logarithm is a quadratic
12
+ function of the general form. The results depend on the choice of the masses of the propagators and
13
+ the massive external line. In the first case the amplitude contains an infinite series in which each
14
+ term is a hypergeometric function, in the second case the result is expressed through dilogarithms. In
15
+ particular, if the three internal lines are taking the same mass, the results will reduce to the known
16
+ functions in one loop evaluation of Higgs decaying to gg or γγ.
17
+ PACS numbers:
18
19
+ 1
20
+
21
+ I.
22
+ INTRODUCTION
23
+ In framework of the Standard Model(SM) and its minimal supersymmetric extension, the
24
+ evaluation of scalar one loop three-point amplitudes play a fundamental role in deciphering the
25
+ property of the Higgs boson[1, 2] though its decaying to gg(or γγ) and the inverse process, i.e.,
26
+ production of the Higgs boson by gluon fusion[3–7]. Owing to the coupling of the Higgs boson
27
+ to the fermions gHf ¯f and the coupling of fermions to gluon, the three propagators take the
28
+ same mass at the leading order of perturbative theory. The evaluated amplitude, if the high
29
+ energy approximation[9, 10] is not exploited, will be expressed as function of mf/mH, where
30
+ mf and mH are the masses of the internal fermion and the Higgs boson, respectively. At the
31
+ final stage of the evaluation, a integral of the following form must be handled carefully
32
+ I1 =
33
+ � 1
34
+ 0
35
+ dx ln(ax2 − ax + 1 − iε)
36
+ x
37
+ ,
38
+ a > 0
39
+ (1)
40
+ where ε is positive infinitesimal. The integral in Eq.(1) necessarily arises both in the evaluation
41
+ of the amplitude of Higgs boson decaying to gg and its production via gluon fusion at one loop.
42
+ In addition to the top quark, there is considerable mass hierarchy between the Higgs boson
43
+ and other quarks, an economic way to compute Eq.(1) is taking the limit that the masses of
44
+ the propagators in the triangle are negligible compared with mass of the Higgs boson, then
45
+ the result of Eq.(1) tends to constant. However, in this manner we can not tell the different
46
+ contributions from various competing processes to the amplitude. Thus, fully analytic results
47
+ is essential to analyze H → gg, then results will be distinguished the cases 0 < a < 4 from the
48
+ case a > 4 as detailed in the later works[5, 11–17].
49
+ As a natural generalization of Eq.(1), let us consider the following integral
50
+ I2 =
51
+ � 1
52
+ 0
53
+ dx ln(ax2 − bx + 1 − iε)
54
+ x
55
+ ,
56
+ (2)
57
+ the parameters a and b satisfy
58
+ a > 0,
59
+ b > 0,
60
+ a ̸= b
61
+ (3)
62
+ It is obvious that if a = b, Eq.(2) reduce to Eq.(1). This integral can be derived from the
63
+ evaluation of the scalar one loop three-point diagram depicted in fig.1, in this case a and b will
64
+ be functions of the masses of the propagators ω1 and ω1 as well as the mass of external line m1.
65
+ Unfortunately, a close inspection to fig.1 indicates that it does not connect with real decaying
66
+ 2
67
+
68
+ p1
69
+ p2
70
+ p3
71
+ k
72
+ ω2
73
+ ω2
74
+ ω1
75
+ FIG. 1: Massive triangle with two massless external lines. The solid lines and dashed lines denote
76
+ massive and massless particles, respectively.
77
+ processes of the Higgs boson even though the contribution from Higgs-Kibble ghosts associated
78
+ with the W ± and Z bosons are taken into account. Maybe it is the reason that rarely can
79
+ we look up the evaluation of integral displayed in Eq.(2) in the one loop evaluation of Higgs
80
+ boson decaying to gg1. An thorough investigation of the integral in Eq.(2) on the footing of
81
+ perturbative theory is necessary. Therefore, in this paper we will present a systematic study on
82
+ Eq.(2) based on the evaluation of scalar one loop three-point amplitude, the complete analytic
83
+ results are derived. We hope that the results can be applied to some decaying process under
84
+ reasonable approximation addition to H → gg, but also enrich the results of scalar one loop
85
+ three-point diagram from the viewpoint of analytic evaluation.
86
+ The paper is organized as follows.
87
+ In section II we introduce the integral in Eq.(2) by
88
+ evaluation the amplitude depicted in fig.1 in a scalar field theory, some general results are
89
+ derived. In section III the analytic results of fig.1 are obtained and the special case a = b
90
+ are discussed. A short summary are presented in IV. Some useful formulas are listed in the
91
+ appendix.
92
+ 1 Integral of this type has been computed in Eq.(23) of Ref.[8], but only the case b2 − 4a > 0 is considered.
93
+ 3
94
+
95
+ II.
96
+ THE FORMULAS
97
+ A.
98
+ The massive triangle with two massless external lines
99
+ To start with, we write down the amplitude corresponding to fig.1
100
+ I =
101
+
102
+ d4k
103
+ (2π)4
104
+ 1
105
+ A1A2A3
106
+ ,
107
+ (4)
108
+ where the three denominators are defined by
109
+ A1 = k2 − ω2
110
+ 1 + iε
111
+ A2 = (p1 − k)2 − ω2
112
+ 2 + iε
113
+ A3 = (p1 − p2 − k)2 − ω2
114
+ 2 + iε,
115
+ (5)
116
+ and ε is real positive infinitesimal, the three external momentum satisfy
117
+ p2
118
+ 1 = m2
119
+ 1,
120
+ p2
121
+ 2 = p2
122
+ 3 = 0.
123
+ (6)
124
+ Using the Feynman’s trick, Eq.(4) can be written as
125
+ I =
126
+
127
+ d4k
128
+ (2π)4
129
+
130
+ dxdydz2! δ(1 − x − y − z)
131
+ [D(x, y, z)]3
132
+ ,
133
+ (7)
134
+ where
135
+ D(x, y, z) = x(k2 − ω2
136
+ 1 + iε) + y[(p1 − k)2 − ω2
137
+ 2 + iε] + z[(p1 − p2 − k)2 − ω2
138
+ 2 + iε],
139
+ (8)
140
+ Since the amplitude given by Eq.(4) is both ultraviolet and infrared finite, thus regularization
141
+ is unnecessary, the evaluation can be carried out in the four-dimensional space-time. We first
142
+ perform the integral over k and z, obtaining
143
+ I = −
144
+ i
145
+ 16π2
146
+ � 1
147
+ 0
148
+ dx
149
+ � 1−x
150
+ 0
151
+ dy
152
+ 1
153
+ −yxm2
154
+ 1 + x(ω2
155
+ 1 − ω2
156
+ 2) + ω2
157
+ 2 − iε
158
+ (9)
159
+ The integral over y in Eq.(9) is trivial, combining with Eq.(A1), we arrive at the following
160
+ intermediate result
161
+ I =
162
+ i
163
+ 16π2m2
164
+ 1
165
+ � 1
166
+ 0
167
+ dx1
168
+ x
169
+
170
+ ln
171
+ �m2
172
+ 1
173
+ ω2
174
+ 2
175
+ x2 − m2
176
+ 1 − ω2
177
+ 1 + ω2
178
+ 2
179
+ ω2
180
+ 2
181
+ x + 1 − iε
182
+
183
+ − ln
184
+ �ω2
185
+ 1 − ω2
186
+ 2
187
+ ω2
188
+ 2
189
+ x + 1 − iε
190
+ ��
191
+ =
192
+ i
193
+ 16π2m2
194
+ 1
195
+
196
+ Li2
197
+
198
+ 1 − ω2
199
+ 1
200
+ ω2
201
+ 2
202
+
203
+ +
204
+ � 1
205
+ 0
206
+ dx1
207
+ x ln
208
+ �m2
209
+ 1
210
+ ω2
211
+ 2
212
+ x2 − m2
213
+ 1 − ω2
214
+ 1 + ω2
215
+ 2
216
+ ω2
217
+ 2
218
+ x + 1 − iε
219
+ ��
220
+ .
221
+ (10)
222
+ The remaining work is the evaluation of the last integral in Eq.(10). For brevity, in the forth-
223
+ coming sections the pre-factor i/(16π2) will be suppressed while 1/m2
224
+ 1 will be preserved so as
225
+ to maintain the correct dimension of the primitive amplitude displayed in Eq.(4).
226
+ 4
227
+
228
+ B.
229
+ evaluation of integral with logarithms
230
+ The evaluation of the last term in Eq.(10) motivates a general investigation on the integral
231
+ of the following type
232
+ F =
233
+ � 1
234
+ 0
235
+ dx ln(ax2 − bx + 1 − iε)
236
+ x
237
+ ,
238
+ a > 0,
239
+ b > 0
240
+ (11)
241
+ Since the argument of the logarithm is quadratic in x, we first consider the case b2 − 4a < 0,
242
+ in this case the argument of the logarithm is positive definite thus the iε term can be safely
243
+ dropped. A feasible way to calculate the integral of Eq.(11) turns out to be expressing it as
244
+ F =
245
+ � 1
246
+ 0
247
+ dx
248
+ � 1
249
+ 0
250
+ dz
251
+ ax − b
252
+ 1 + zx(ax − b)
253
+ = a
254
+ � 1
255
+ 0
256
+ dz
257
+ � 1
258
+ 0
259
+ dx
260
+ x
261
+ 1 + zx(ax − b) − b
262
+ � 1
263
+ 0
264
+ dz
265
+ � 1
266
+ 0
267
+ dx
268
+ 1
269
+ 1 + zx(ax − b)
270
+ = 1
271
+ 2
272
+ � 1
273
+ 0
274
+ dzln[1 + z(a − b)]
275
+ z
276
+ − b
277
+ 2
278
+ � 1
279
+ 0
280
+ dz
281
+ � 1
282
+ 0
283
+ dx
284
+ 1
285
+ 1 + zx(ax − b))
286
+ = −1
287
+ 2Li2(b − a) − b
288
+ 2
289
+ � 1
290
+ 0
291
+ dz
292
+ � 1
293
+ 0
294
+ dx
295
+ 1
296
+ 1 + zx(ax − b).
297
+ (12)
298
+ Now we concentrate on the last integral in Eq.(12), for later convenience we label it as A, the
299
+ integral over x can be calculated[18]
300
+ A =
301
+ � 1
302
+ 0
303
+ dz
304
+ � 1
305
+ 0
306
+ dx
307
+ 1
308
+ 1 + zx(ax − b)
309
+ =
310
+ � 1
311
+ 0
312
+ dz
313
+ 2
314
+
315
+ 4az − b2z2
316
+
317
+ arctan
318
+ bz
319
+
320
+ 4az − b2z2 + arctan
321
+ 2az − bz
322
+
323
+ 4az − b2z2
324
+
325
+ ,
326
+ (13)
327
+ In deriving Eq.(13) we employ the property that arctan(x) is odd
328
+ arctan(−x) = − arctan(x),
329
+ (14)
330
+ To proceed we separate the integral in Eq.(13) into two parts
331
+ A = 2(A1 + A2),
332
+ (15)
333
+ where
334
+ A1 =
335
+ � 1
336
+ 0
337
+ dz
338
+ 1
339
+
340
+ 4az − b2z2 arctan
341
+ bz
342
+
343
+ 4az − b2z2,
344
+ 5
345
+
346
+ A2 =
347
+ � 1
348
+ 0
349
+ dz
350
+ 1
351
+
352
+ 4az − b2z2 arctan
353
+ 2az − bz
354
+
355
+ 4az − b2z2.
356
+ (16)
357
+ It is not difficult to demonstrate that
358
+
359
+ arcsin
360
+
361
+ b
362
+ � z
363
+ 4a
364
+ ��′ =
365
+
366
+ arctan
367
+ bz
368
+
369
+ 4az − b2z2
370
+ �′ = b
371
+ 2
372
+ 1
373
+
374
+ 4az − b2z2,
375
+ (17)
376
+ Hence, the integral in A1 is easy to calculate
377
+ A1 = 1
378
+ b
379
+
380
+ arctan
381
+ b
382
+
383
+ 4a − b2
384
+ �2,
385
+ (18)
386
+ Using the identity[21]
387
+ arctan x = arcsin
388
+ x
389
+
390
+ 1 + x2,
391
+ (19)
392
+ leads to the final result for A1
393
+ A1 = 1
394
+ b
395
+
396
+ arcsin
397
+ b
398
+ 2√a
399
+ �2.
400
+ (20)
401
+ Next, we evaluate A2, by making use integration by parts, getting
402
+ A2 = 2
403
+ b arcsin(
404
+ b
405
+ 2√a) arctan
406
+ 2a − b
407
+
408
+ 4a − b2 − 2a − b
409
+ b
410
+ � 1
411
+ 0
412
+ arcsin
413
+
414
+ b� z
415
+ 4a
416
+
417
+ [1 + (a − b)z]
418
+
419
+ 4az − b2z2 dz,
420
+ (21)
421
+ We label the second term in Eq.(21) as B and define
422
+ u = b
423
+ � z
424
+ 4a,
425
+ (22)
426
+ such that this term casts into the following form
427
+ B = 2a − b
428
+ b2
429
+ � b/(2√a)
430
+ 0
431
+ arcsin u
432
+ (1 + αu2)
433
+
434
+ 1 − u2 du,
435
+ α = 4a(a − b)
436
+ b2
437
+ (23)
438
+ Since 0 < u < 1, we employ the following expansion[22]
439
+ arcsin u
440
+
441
+ 1 − u2 =
442
+ +∞
443
+
444
+ n=0
445
+ 2nn!
446
+ (2n + 1)!!u2n+1,
447
+ (24)
448
+ Plugging Eq.(24) into Eq.(23), interchanging the order of integration and summation, yields
449
+ B = 2a − b
450
+ b2
451
+ +∞
452
+
453
+ n=0
454
+ 2nn!
455
+ (2n + 1)!!
456
+ � b/(2√a)
457
+ 0
458
+ u2n+1
459
+ 1 + αu2 du,
460
+ (25)
461
+ It is convenient to make variable transformation for the second time
462
+ ξ = u2,
463
+ (26)
464
+ 6
465
+
466
+ Then we obtain
467
+ B = 2a − b
468
+ b2
469
+ +∞
470
+
471
+ n=0
472
+ 2nn!
473
+ (2n + 1)!!
474
+ � b2/(4a)
475
+ 0
476
+ ξn
477
+ 1 + αξdξ,
478
+ (27)
479
+ Changing the variable further
480
+ ξ = b2
481
+ 4aρ,
482
+ (28)
483
+ Eq.(27) can be written as
484
+ B = 2a − b
485
+ b2
486
+ +∞
487
+
488
+ n=0
489
+ 2nn!
490
+ (2n + 1)!!
491
+ � b2
492
+ 4a
493
+ �n+1 � 1
494
+ 0
495
+ ρn�
496
+ 1 + αb2
497
+ 4a ρ
498
+ �−1
499
+ dρ,
500
+ (29)
501
+ Comparing with Eq.(A4), we identify
502
+ α = 1,
503
+ β = n + 1,
504
+ γ = n + 2,
505
+ z = b − a,
506
+ (30)
507
+ which generates the following result for B
508
+ B = 2a − b
509
+ 2a
510
+ +∞
511
+
512
+ n=0
513
+ 2nn!
514
+ (n + 1)(2n + 1)!!
515
+ � b2
516
+ 4a
517
+ �n
518
+ 2F1(1, n + 1; n + 2; b − a),
519
+ (31)
520
+ Combining Eq.(20), Eq.(21) and Eq.(31), we arrive at the final result of F in the case b2−4a < 0
521
+ F = −1
522
+ 2Li2(b − a) −
523
+
524
+ arcsin
525
+ b
526
+ 2√a
527
+ �2 − 2 arcsin(
528
+ b
529
+ 2√a) arctan
530
+ 2a − b
531
+
532
+ 4a − b2
533
+ + (2a − b)b
534
+ 2a
535
+ +∞
536
+
537
+ n=0
538
+ 2nn!
539
+ (n + 1)(2n + 1)!!
540
+ � b2
541
+ 4a
542
+ �n
543
+ 2F1(1, n + 1; n + 2; b − a).
544
+ (32)
545
+ Next, we consider the case b2 − 4a > 0. In this case there are two zeros of the logarithm in
546
+ the range [0, 1], the iε prescription must be retained appropriately. By exploiting integration
547
+ by parts, it is easy to get
548
+ F = −
549
+ � 1
550
+ 0
551
+ (2ax − b) ln x
552
+ a(x − x1)(x − x2) dx,
553
+ (33)
554
+ where x1 and x2 are the two roots of the argument of the logarithm
555
+ x1 = x+ + iε,
556
+ x+ = b +
557
+
558
+ b2 − 4a
559
+ 2a
560
+ ,
561
+ x2 = x− − iε,
562
+ x− = b −
563
+
564
+ b2 − 4a
565
+ 2a
566
+ ,
567
+ (34)
568
+ Making use partial fraction expansion and Eq.(A3), we obtain the following result
569
+ F =
570
+ 1
571
+ x1 − x2
572
+ ( b
573
+ a − 2x1)
574
+ � 1
575
+ 0
576
+ ln x
577
+ x − x1
578
+ dx +
579
+ 1
580
+ x1 − x2
581
+ (2x2 − b
582
+ a)
583
+ � 1
584
+ 0
585
+ ln x
586
+ x − x2
587
+ dx
588
+ =
589
+ 1
590
+ x1 − x2
591
+
592
+ ( b
593
+ a − 2x1)Li2[ 1
594
+ x+
595
+ − iε sgn(x+)] − ( b
596
+ a − 2x2)Li2[ 1
597
+ x−
598
+ + iε sgn(x−)]
599
+
600
+ .
601
+ (35)
602
+ with the function sgn(x) defined in Eq.(A3).
603
+ 7
604
+
605
+ III.
606
+ RESULTS AND DISCUSSIONS
607
+ We shall now apply the results obtained in Section 2 to calculate the integral left in Eq.(10).
608
+ Comparing Eq.(10) and Eq.(11), we identify that
609
+ a = m2
610
+ 1
611
+ ω2
612
+ 2
613
+ ,
614
+ b = m2
615
+ 1 − ω2
616
+ 1 + ω2
617
+ 2
618
+ ω2
619
+ 2
620
+ ,
621
+ (36)
622
+ In the case b2 − 4a < 0 which implies that λ(m2
623
+ 1, ω2
624
+ 1, ω2
625
+ 2) < 0, where λ(x, y, z) is the well-known
626
+ K¨allen function
627
+ λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz,
628
+ (37)
629
+ By employing Eq.(32), yields the following explicit result
630
+ I =
631
+ 1
632
+ m2
633
+ 1
634
+ �1
635
+ 2 Li2
636
+
637
+ 1 − ω2
638
+ 1
639
+ ω2
640
+ 2
641
+
642
+
643
+
644
+ arcsin m2
645
+ 1 − ω2
646
+ 1 + ω2
647
+ 2
648
+ 2m1ω2
649
+ �2
650
+ − 2 arcsin m2
651
+ 1 − ω2
652
+ 1 + ω2
653
+ 2
654
+ 2m1ω2
655
+ arctan m2
656
+ 1 + ω2
657
+ 1 − ω2
658
+ 2
659
+
660
+ λ(m2
661
+ 1, ω2
662
+ 1, ω2
663
+ 2)
664
+ + m4
665
+ 1 − (ω2
666
+ 1 − ω2
667
+ 2)2
668
+ 8m2
669
+ 1ω2
670
+ 2
671
+ � +∞
672
+
673
+ n=0
674
+ 2nn!
675
+ (n + 1)(2n + 1)!!
676
+ �(m2
677
+ 1 − ω2
678
+ 1 + ω2
679
+ 2)2
680
+ 4m2
681
+ 1ω2
682
+ 1
683
+ �n
684
+ × 2F1
685
+
686
+ 1, n + 1; n + 2; 1 − ω2
687
+ 1
688
+ ω2
689
+ 2
690
+ ���
691
+ .
692
+ (38)
693
+ In order to apply the result in Eq.(38) correctly, the following comments are necessary. First,
694
+ from the conditions of a and b declared in Eq.(11), to guarantee Eq.(38) holds true for the
695
+ evaluation, in addition to λ(m2
696
+ 1, ω2
697
+ 1, ω2
698
+ 2) < 0, the masses must obey
699
+ m2
700
+ 1 > ω2
701
+ 1 − ω2
702
+ 2,
703
+ (39)
704
+ Second, since Eq.(38) is summed over hypergeometric functions, a crucial issue is that if the
705
+ summation of the infinite series is convergent. Due to λ(m2
706
+ 1, ω2
707
+ 1, ω2
708
+ 2) < 0, it is obvious that
709
+ 0 < (m2
710
+ 1 − ω2
711
+ 1 + ω2
712
+ 2)2
713
+ 4m2
714
+ 1ω2
715
+ 1
716
+ < 1.
717
+ (40)
718
+ and the hypergeometric functions are always taking finite value, thus the summation is conver-
719
+ gent. Finally, in considering the analytic property of the dilogarithm in Eq.(A2), a question is
720
+ that if Eq.(38) can develop imaginary part. In other words, if the argument of the dilogarithm
721
+ can be greater than 1. But it is impossible since both ω1 and ω2 are assumed to be real, thus
722
+ 0 < 1 − (ω2
723
+ 1/ω2
724
+ 2) < 1 is always satisfied, therefore there is no imaginary part can be developed.
725
+ 8
726
+
727
+ In the case b2 − 4a > 0, this implies that λ(m2
728
+ 1, ω2
729
+ 1, ω2
730
+ 2) > 0, exploiting Eq.(35) we get
731
+ I = 1
732
+ m2
733
+ 1
734
+ �1
735
+ 2 Li2(1 − ω2
736
+ 1
737
+ ω2
738
+ 2
739
+ ) − Li2[ 1
740
+ x+
741
+ − iε sgn(x+)] − Li2[ 1
742
+ x−
743
+ + iε sgn(x−)]
744
+
745
+ ,
746
+ (41)
747
+ where
748
+ x+ = (m2
749
+ 1 − ω2
750
+ 1 + ω2
751
+ 2) + λ1/2(m2
752
+ 1, ω2
753
+ 1, ω2
754
+ 2)
755
+ 2m2
756
+ 1
757
+ ,
758
+ x− = (m2
759
+ 1 − ω2
760
+ 1 + ω2
761
+ 2) − λ1/2(m2
762
+ 1, ω2
763
+ 1, ω2
764
+ 2)
765
+ 2m2
766
+ 1
767
+ ,
768
+ (42)
769
+ Since m2
770
+ 1 > ω2
771
+ 1 − ω2
772
+ 2 as presented in Eq.(39), both x+ and x− are positive definite, thus Eq.(41)
773
+ simplified to
774
+ I = 1
775
+ m2
776
+ 1
777
+ �1
778
+ 2 Li2(1 − ω2
779
+ 1
780
+ ω2
781
+ 2
782
+ ) − Li2( 1
783
+ x+
784
+ − iε) − Li2( 1
785
+ x−
786
+ + iε)
787
+
788
+ .
789
+ (43)
790
+ In order to explore phenomenological implications of the results presented in Eq.(38) and
791
+ Eq.(43), it is instructive to consider the special case that the coefficients in Eq.(11) are con-
792
+ strained by the following conditions
793
+ a = b > 0,
794
+ (44)
795
+ This is the integral indispensable in the evaluation of H → gg decay. studied in past. Supposing
796
+ the mass of each propagator of the triangle is ω1, setting
797
+ a = b = m2
798
+ 1
799
+ ω2
800
+ 1
801
+ ,
802
+ (45)
803
+ Hence, Eq.(10) reduces to
804
+ I = 1
805
+ m2
806
+ 1
807
+ � 1
808
+ 0
809
+ dxln(ax2 − ax + 1 − iε)
810
+ x
811
+ ,
812
+ a = m2
813
+ 1
814
+ ω2
815
+ 1
816
+ (46)
817
+ First consider the case 0 < a < 4, i.e., 0 < m1 < 2ω1. To get the correct results we must trace
818
+ back to Eq.(12) and Eq.(13), other than taking advantage of Eq.(32) and simply setting a = b,
819
+ otherwise it will make some mistakes. By exploiting Eq.(17), we immediately obtain
820
+ I = − a
821
+ 2m2
822
+ 1
823
+ � 1
824
+ 0
825
+ dz
826
+ � 1
827
+ 0
828
+ dx
829
+ 1
830
+ 1 + zax(x − 1)
831
+ = − a
832
+ 2m2
833
+ 1
834
+ � 1
835
+ 0
836
+ dz
837
+ 4
838
+
839
+ 4az − a2z2 arctan
840
+ az
841
+
842
+ 4az − a2z2
843
+ = − 2
844
+ m2
845
+ 1
846
+
847
+ arctan
848
+ a
849
+
850
+ 4a − a2
851
+ �2
852
+ ,
853
+ (47)
854
+ 9
855
+
856
+ By using Eq.(19), we get the well-known function appeared in one loop evaluation of H → gg
857
+ I = − 2
858
+ m2
859
+ 1
860
+
861
+ arcsin m1
862
+ 2ω1
863
+ �2
864
+ ,
865
+ 0 < m1 < 2ω1.
866
+ (48)
867
+ Next, we consider the case of a > 4, i.e., m1 > 2ω1. From Eq.(35) we get
868
+ I = 1
869
+ m2
870
+ 1
871
+
872
+ − Li2( 1
873
+ x−
874
+ + iε) − Li2( 1
875
+ x+
876
+ − iε)
877
+
878
+ ,
879
+ (49)
880
+ x+ and x− are given by
881
+ x+ = 1
882
+ 2
883
+
884
+ 1 +
885
+
886
+ 1 − 4
887
+ a
888
+
889
+ ,
890
+ x− = 1
891
+ 2
892
+
893
+ 1 −
894
+
895
+ 1 − 4
896
+ a
897
+
898
+ ,
899
+ (50)
900
+ Since both x+ and x− are less than 1, in order to simplify the Eq.(49), defining
901
+ α = 1
902
+ x−
903
+ > 1,
904
+ 1
905
+ x+
906
+ =
907
+ 1
908
+ 1 − x−
909
+ =
910
+ α
911
+ α − 1 > 1,
912
+ (51)
913
+ Then Eq.(49) can be written as
914
+ I = 1
915
+ m2
916
+ 1
917
+
918
+ − Li2(α + iε) − Li2(
919
+ α
920
+ α − 1 − iε)
921
+
922
+ ,
923
+ (52)
924
+ Combining Eq.(A2) we obtain
925
+ I =
926
+ 1
927
+ m2
928
+ 1
929
+
930
+
931
+
932
+ Re Li2(α) + iπ ln α
933
+
934
+
935
+
936
+ Re Li2(
937
+ α
938
+ α − 1) − iπ ln
939
+ α
940
+ α − 1
941
+
942
+ =
943
+ 1
944
+ m2
945
+ 1
946
+
947
+ − Re
948
+
949
+ Li2(α) + Li2(
950
+ α
951
+ α − 1)
952
+
953
+ − iπ ln(α − 1)
954
+
955
+ ,
956
+ (53)
957
+ In considering the property od dilogarithm
958
+ Re
959
+
960
+ Li2(x) + Li2(
961
+ x
962
+ x − 1)
963
+
964
+ = π2
965
+ 2 − ln2(x − 1)
966
+ 2
967
+ ,
968
+ x > 1
969
+ (54)
970
+ which leads to
971
+ I = 1
972
+ m2
973
+ 1
974
+
975
+ − π2
976
+ 2 + ln2(α − 1)
977
+ 2
978
+ − iπ ln(α − 1)
979
+
980
+ ,
981
+ (55)
982
+ Substituting Eq.(51) into Eq.(55) and noticing that
983
+ α − 1 = x+
984
+ x−
985
+ ,
986
+ (56)
987
+ we get
988
+ I = 1
989
+ m2
990
+ 1
991
+
992
+ − π2
993
+ 2 + 1
994
+ 2 ln2 x+
995
+ x−
996
+ − iπ ln x+
997
+ x−
998
+
999
+ ,
1000
+ (57)
1001
+ Plugging Eq.(50) into Eq.(57) we arrive at the well-known function in the one loop evaluation
1002
+ of H → gg decay
1003
+ I = − 1
1004
+ 2m2
1005
+ 1
1006
+
1007
+ π + i ln
1008
+ 1 +
1009
+
1010
+ 1 − 4ω2
1011
+ 1
1012
+ m2
1013
+ 1
1014
+ 1 −
1015
+
1016
+ 1 − 4ω2
1017
+ 1
1018
+ m2
1019
+ 1
1020
+ �2
1021
+ .
1022
+ m1 > 2ω1
1023
+ (58)
1024
+ 10
1025
+
1026
+ IV.
1027
+ SUMMARY
1028
+ In this paper, the amplitude of scalar one loop three-point diagram in which the masses of
1029
+ the three internal propagators are assigned two different masses is evaluated. A general type
1030
+ integral is extracted and analytic results are obtained. Conditions of the validity of the results
1031
+ are discussed in details. As a check to the results, we consider the case that each propagator of
1032
+ the triangle taking the same mass, we find that the general results will reduce to the functions
1033
+ obtained in the lowest order evaluation of H → gg decay. We also notice that the results are
1034
+ mathematically preferred in that the diagram does not corresponds to real process in H → gg
1035
+ in the SM. However, we still hope that the results and techniques may be found its applications
1036
+ in triangle mediated decays addition to H → gg.
1037
+ Appendix A: The dilogarithm function and integral representation of Gauss hyperge-
1038
+ ometric function
1039
+ In this section we list some necessary formula in our evaluation. The dilogarithm is defined
1040
+ as[19]
1041
+ Li2(x) =
1042
+ +∞
1043
+
1044
+ k=1
1045
+ xk
1046
+ k2 = −
1047
+ � 1
1048
+ 0
1049
+ ln(1 − xt)
1050
+ t
1051
+ dt,
1052
+ |x| < 1
1053
+ (A1)
1054
+ There is a branch cut from 1 to ∞, for ε → 0
1055
+ Li2(x + iε) = Re Li2(x) + iπ sgn(ε)Θ(x − 1) ln x,
1056
+ (A2)
1057
+ where Θ is the step function, the sgn(x) is
1058
+ sgn(x) =
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+ 1
1065
+ x > 0
1066
+ −1
1067
+ x < 0
1068
+ Another two formulas we need are the following equation of dilogarithm[20]
1069
+ � 1
1070
+ 0
1071
+ ln x
1072
+ a + bx dx = 1
1073
+ bLi2
1074
+
1075
+ − b
1076
+ a
1077
+
1078
+ ,
1079
+ (A3)
1080
+ and the integral representation of the Gauss hypergeometric function[23, 24]
1081
+ 2F1(α, β; γ; z) =
1082
+ Γ(γ)
1083
+ Γ(β)Γ(γ − β)
1084
+ � 1
1085
+ 0
1086
+ tβ−1(1 − t)γ−β−1(1 − zt)−αdt,
1087
+ (A4)
1088
+ 11
1089
+
1090
+ where
1091
+ Re(γ) > Re(β) > 0,
1092
+ |arg(1 − z)| < π.
1093
+ (A5)
1094
+ [1] G. Aad et al.(ATLAS), PhysLett. B 716, 1(2012).
1095
+ [2] S. Chatrchyan et al.(CMS), B 716, 30(2012).
1096
+ [3] J. F. Gunion, H. E. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide (Perseus Publishing,
1097
+ Cambridge, Massachusetts, 1990).
1098
+ [4] B. A. Kniehl, Phys. Rept. 240, 211(1994).
1099
+ [5] A. Djouadi, Phys. Rept. 457, 1(2008), Phys. Rept. 459, 1(2008).
1100
+ [6] M. Spira, Prog. Part. Nucl. Phys. 95, 98(2017).
1101
+ [7] M. Carena, C. Grojean, M. Kado et al, “Status of Higgs Boson Physics”, R. L. Workman et
1102
+ al.(Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01(2022).
1103
+ [8] M. Roth, A. Denner, Nucl. Phys. B 479, 495(1996).
1104
+ [9] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106, 292(1976).
1105
+ [10] T. G. Rizzo, Phys. Rev. D 22, 178(1980), Phys. Rev. D 22, 1824(1980).
1106
+ [11] A. I. Vainshtein, M. B. Voloshin, V. I. Zakharov et al, Sov. J. Nucl. Phys. 30, 711(1979).
1107
+ [12] L. B. Okun, Leptons and Quarks(North-Holland, Amsterdam, 1982).
1108
+ [13] J. F. Gunion and H. E. Haber, Nucl. Phys. B 278, 449(1986), Erratum: Nucl. Phys. B 402,
1109
+ 569(1993).
1110
+ [14] R. K. Ellis, I. Hinchliffe, M. Soldate et al, Nucl. Phys. B 297, 221(1988).
1111
+ [15] D. Huang, Y. Tang and Y-L. Wu, Commun. Theor. Phys. 57, 427(2012).
1112
+ [16] M. Shifman, A. Vainshtein, M. B. Voloshin, et al, Phys. Rev. D 85, 013015(2012).
1113
+ [17] W. J. Marciano, C. Zhang and S. Willenbrock, Phys. Rev. D 85, 013002(2012).
1114
+ [18] H. B. Dwight, Tables of Integrals and Other Mathematical Data(The Macmillan Company, New
1115
+ York, 1957), Third edition.
1116
+ [19] L. Lewin, Polylogarithms and Associated Functions(North Holland, New York, 1981), Second
1117
+ Edition.
1118
+ [20] A. Devoto and D. W. Duke, Riv. Nuovo Cim. 7N6, 1(1984).
1119
+ 12
1120
+
1121
+ [21] I. S. Gradshteyn I. M. Ryzhik, Table of Integrals, Series, and Products, Eighth Edition(Academic
1122
+ Press, London, 2014).
1123
+ [22] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with formulas, Graphs and
1124
+ Mathematical Tables(Dover Publications, New York,1972).
1125
+ [23] A. Erdelyi, Higher Transcendental Functions, Vol.I (McGrill-Hall Book Company, New York,
1126
+ 1953).
1127
+ [24] Z. X. Wang, D. R. Guo, Special Functions(World Scientific, Singapore, 1989).
1128
+ 13
1129
+
5tE4T4oBgHgl3EQfBgtg/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf,len=332
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
3
+ page_content='04852v1 [hep-ph] 12 Jan 2023 Evaluation of one type scalar one loop three-point amplitude inspired by H → gg decay in the standard model Jin Zhang∗ School of Physics and Engineering, Yuxi Normal University, Yuxi, Yunnan, 653100, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
4
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
5
+ page_content=' China Abstract Motivated by the Higgs boson decaying to gg at one loop approximation, the amplitude of scalar one loop three-point diagram with two different internal masses are evaluated and fully analytic results are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
6
+ page_content=' The main ingredient of the evaluation is a integral in which the integrand is product of the reciprocal of the integral variable and a logarithm, where the argument of the logarithm is a quadratic function of the general form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
7
+ page_content=' The results depend on the choice of the masses of the propagators and the massive external line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
8
+ page_content=' In the first case the amplitude contains an infinite series in which each term is a hypergeometric function, in the second case the result is expressed through dilogarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
9
+ page_content=' In particular, if the three internal lines are taking the same mass, the results will reduce to the known functions in one loop evaluation of Higgs decaying to gg or γγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
10
+ page_content=' PACS numbers: ∗ jinzhang@yxnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
11
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
12
+ page_content='cn 1 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
13
+ page_content=' INTRODUCTION In framework of the Standard Model(SM) and its minimal supersymmetric extension, the evaluation of scalar one loop three-point amplitudes play a fundamental role in deciphering the property of the Higgs boson[1, 2] though its decaying to gg(or γγ) and the inverse process, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
14
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
15
+ page_content=', production of the Higgs boson by gluon fusion[3–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
16
+ page_content=' Owing to the coupling of the Higgs boson to the fermions gHf ¯f and the coupling of fermions to gluon, the three propagators take the same mass at the leading order of perturbative theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
17
+ page_content=' The evaluated amplitude, if the high energy approximation[9, 10] is not exploited, will be expressed as function of mf/mH, where mf and mH are the masses of the internal fermion and the Higgs boson, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
18
+ page_content=' At the final stage of the evaluation, a integral of the following form must be handled carefully I1 = � 1 0 dx ln(ax2 − ax + 1 − iε) x , a > 0 (1) where ε is positive infinitesimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
19
+ page_content=' The integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
20
+ page_content=' (1) necessarily arises both in the evaluation of the amplitude of Higgs boson decaying to gg and its production via gluon fusion at one loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
21
+ page_content=' In addition to the top quark, there is considerable mass hierarchy between the Higgs boson and other quarks, an economic way to compute Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
22
+ page_content=' (1) is taking the limit that the masses of the propagators in the triangle are negligible compared with mass of the Higgs boson, then the result of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
23
+ page_content=' (1) tends to constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
24
+ page_content=' However, in this manner we can not tell the different contributions from various competing processes to the amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
25
+ page_content=' Thus, fully analytic results is essential to analyze H → gg, then results will be distinguished the cases 0 < a < 4 from the case a > 4 as detailed in the later works[5, 11–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
26
+ page_content=' As a natural generalization of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
27
+ page_content=' (1), let us consider the following integral I2 = � 1 0 dx ln(ax2 − bx + 1 − iε) x , (2) the parameters a and b satisfy a > 0, b > 0, a ̸= b (3) It is obvious that if a = b, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
28
+ page_content=' (2) reduce to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
29
+ page_content='(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
30
+ page_content=' This integral can be derived from the evaluation of the scalar one loop three-point diagram depicted in fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
31
+ page_content='1, in this case a and b will be functions of the masses of the propagators ω1 and ω1 as well as the mass of external line m1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
32
+ page_content=' Unfortunately, a close inspection to fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
33
+ page_content='1 indicates that it does not connect with real decaying 2 p1 p2 p3 k ω2 ω2 ω1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
34
+ page_content=' 1: Massive triangle with two massless external lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
35
+ page_content=' The solid lines and dashed lines denote massive and massless particles, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
36
+ page_content=' processes of the Higgs boson even though the contribution from Higgs-Kibble ghosts associated with the W ± and Z bosons are taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
37
+ page_content=' Maybe it is the reason that rarely can we look up the evaluation of integral displayed in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
38
+ page_content=' (2) in the one loop evaluation of Higgs boson decaying to gg1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
39
+ page_content=' An thorough investigation of the integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
40
+ page_content=' (2) on the footing of perturbative theory is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
41
+ page_content=' Therefore, in this paper we will present a systematic study on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
42
+ page_content=' (2) based on the evaluation of scalar one loop three-point amplitude, the complete analytic results are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
43
+ page_content=' We hope that the results can be applied to some decaying process under reasonable approximation addition to H → gg, but also enrich the results of scalar one loop three-point diagram from the viewpoint of analytic evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
44
+ page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
45
+ page_content=' In section II we introduce the integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
46
+ page_content=' (2) by evaluation the amplitude depicted in fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
47
+ page_content='1 in a scalar field theory, some general results are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
48
+ page_content=' In section III the analytic results of fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
49
+ page_content='1 are obtained and the special case a = b are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
50
+ page_content=' A short summary are presented in IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
51
+ page_content=' Some useful formulas are listed in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
52
+ page_content=' 1 Integral of this type has been computed in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
53
+ page_content=' (23) of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
54
+ page_content=' [8], but only the case b2 − 4a > 0 is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
55
+ page_content=' 3 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
56
+ page_content=' THE FORMULAS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
57
+ page_content=' The massive triangle with two massless external lines To start with, we write down the amplitude corresponding to fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
58
+ page_content='1 I = � d4k (2π)4 1 A1A2A3 , (4) where the three denominators are defined by A1 = k2 − ω2 1 + iε A2 = (p1 − k)2 − ω2 2 + iε A3 = (p1 − p2 − k)2 − ω2 2 + iε, (5) and ε is real positive infinitesimal, the three external momentum satisfy p2 1 = m2 1, p2 2 = p2 3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
59
+ page_content=' (6) Using the Feynman’s trick, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
60
+ page_content=' (4) can be written as I = � d4k (2π)4 � dxdydz2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
61
+ page_content=' δ(1 − x − y − z) [D(x, y, z)]3 , (7) where D(x, y, z) = x(k2 − ω2 1 + iε) + y[(p1 − k)2 − ω2 2 + iε] + z[(p1 − p2 − k)2 − ω2 2 + iε], (8) Since the amplitude given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
62
+ page_content=' (4) is both ultraviolet and infrared finite, thus regularization is unnecessary, the evaluation can be carried out in the four-dimensional space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
63
+ page_content=' We first perform the integral over k and z, obtaining I = − i 16π2 � 1 0 dx � 1−x 0 dy 1 −yxm2 1 + x(ω2 1 − ω2 2) + ω2 2 − iε (9) The integral over y in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
64
+ page_content=' (9) is trivial, combining with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
65
+ page_content=' (A1), we arrive at the following intermediate result I = i 16π2m2 1 � 1 0 dx1 x � ln �m2 1 ω2 2 x2 − m2 1 − ω2 1 + ω2 2 ω2 2 x + 1 − iε � − ln �ω2 1 − ω2 2 ω2 2 x + 1 − iε �� = i 16π2m2 1 � Li2 � 1 − ω2 1 ω2 2 � + � 1 0 dx1 x ln �m2 1 ω2 2 x2 − m2 1 − ω2 1 + ω2 2 ω2 2 x + 1 − iε �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
66
+ page_content=' (10) The remaining work is the evaluation of the last integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
67
+ page_content='(10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
68
+ page_content=' For brevity, in the forth- coming sections the pre-factor i/(16π2) will be suppressed while 1/m2 1 will be preserved so as to maintain the correct dimension of the primitive amplitude displayed in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
69
+ page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
70
+ page_content=' 4 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
71
+ page_content=' evaluation of integral with logarithms The evaluation of the last term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
72
+ page_content=' (10) motivates a general investigation on the integral of the following type F = � 1 0 dx ln(ax2 − bx + 1 − iε) x , a > 0, b > 0 (11) Since the argument of the logarithm is quadratic in x, we first consider the case b2 − 4a < 0, in this case the argument of the logarithm is positive definite thus the iε term can be safely dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
73
+ page_content=' A feasible way to calculate the integral of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
74
+ page_content=' (11) turns out to be expressing it as F = � 1 0 dx � 1 0 dz ax − b 1 + zx(ax − b) = a � 1 0 dz � 1 0 dx x 1 + zx(ax − b) − b � 1 0 dz � 1 0 dx 1 1 + zx(ax − b) = 1 2 � 1 0 dzln[1 + z(a − b)] z − b 2 � 1 0 dz � 1 0 dx 1 1 + zx(ax − b)) = −1 2Li2(b − a) − b 2 � 1 0 dz � 1 0 dx 1 1 + zx(ax − b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
75
+ page_content=' (12) Now we concentrate on the last integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
76
+ page_content=' (12), for later convenience we label it as A, the integral over x can be calculated[18] A = � 1 0 dz � 1 0 dx 1 1 + zx(ax − b) = � 1 0 dz 2 √ 4az − b2z2 � arctan bz √ 4az − b2z2 + arctan 2az − bz √ 4az − b2z2 � , (13) In deriving Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
77
+ page_content=' (13) we employ the property that arctan(x) is odd arctan(−x) = − arctan(x), (14) To proceed we separate the integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
78
+ page_content=' (13) into two parts A = 2(A1 + A2), (15) where A1 = � 1 0 dz 1 √ 4az − b2z2 arctan bz √ 4az − b2z2, 5 A2 = � 1 0 dz 1 √ 4az − b2z2 arctan 2az − bz √ 4az − b2z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
79
+ page_content=' (16) It is not difficult to demonstrate that � arcsin � b � z 4a ��′ = � arctan bz √ 4az − b2z2 �′ = b 2 1 √ 4az − b2z2, (17) Hence, the integral in A1 is easy to calculate A1 = 1 b � arctan b √ 4a − b2 �2, (18) Using the identity[21] arctan x = arcsin x √ 1 + x2, (19) leads to the final result for A1 A1 = 1 b � arcsin b 2√a �2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
80
+ page_content=' (20) Next, we evaluate A2, by making use integration by parts, getting A2 = 2 b arcsin( b 2√a) arctan 2a − b √ 4a − b2 − 2a − b b � 1 0 arcsin � b� z 4a � [1 + (a − b)z] √ 4az − b2z2 dz, (21) We label the second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
81
+ page_content=' (21) as B and define u = b � z 4a, (22) such that this term casts into the following form B = 2a − b b2 � b/(2√a) 0 arcsin u (1 + αu2) √ 1 − u2 du, α = 4a(a − b) b2 (23) Since 0 < u < 1, we employ the following expansion[22] arcsin u √ 1 − u2 = +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
82
+ page_content=' (2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
83
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
84
+ page_content='u2n+1, (24) Plugging Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
85
+ page_content=' (24) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
86
+ page_content=' (23), interchanging the order of integration and summation, yields B = 2a − b b2 +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
87
+ page_content=' (2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
88
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
89
+ page_content=' � b/(2√a) 0 u2n+1 1 + αu2 du, (25) It is convenient to make variable transformation for the second time ξ = u2, (26) 6 Then we obtain B = 2a − b b2 +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
90
+ page_content=' (2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
91
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
92
+ page_content=' � b2/(4a) 0 ξn 1 + αξdξ, (27) Changing the variable further ξ = b2 4aρ, (28) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
93
+ page_content=' (27) can be written as B = 2a − b b2 +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
94
+ page_content=' (2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
95
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
96
+ page_content=' � b2 4a �n+1 � 1 0 ρn� 1 + αb2 4a ρ �−1 dρ, (29) Comparing with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
97
+ page_content=' (A4), we identify α = 1, β = n + 1, γ = n + 2, z = b − a, (30) which generates the following result for B B = 2a − b 2a +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
98
+ page_content=' (n + 1)(2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
99
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
100
+ page_content=' � b2 4a �n 2F1(1, n + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
101
+ page_content=' n + 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
102
+ page_content=' b − a), (31) Combining Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
103
+ page_content=' (20), Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
104
+ page_content=' (21) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
105
+ page_content=' (31), we arrive at the final result of F in the case b2−4a < 0 F = −1 2Li2(b − a) − � arcsin b 2√a �2 − 2 arcsin( b 2√a) arctan 2a − b √ 4a − b2 + (2a − b)b 2a +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
106
+ page_content=' (n + 1)(2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
107
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
108
+ page_content=' � b2 4a �n 2F1(1, n + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
109
+ page_content=' n + 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
110
+ page_content=' b − a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
111
+ page_content=' (32) Next, we consider the case b2 − 4a > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
112
+ page_content=' In this case there are two zeros of the logarithm in the range [0, 1], the iε prescription must be retained appropriately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
113
+ page_content=' By exploiting integration by parts, it is easy to get F = − � 1 0 (2ax − b) ln x a(x − x1)(x − x2) dx, (33) where x1 and x2 are the two roots of the argument of the logarithm x1 = x+ + iε, x+ = b + √ b2 − 4a 2a , x2 = x− − iε, x− = b − √ b2 − 4a 2a , (34) Making use partial fraction expansion and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
114
+ page_content=' (A3), we obtain the following result F = 1 x1 − x2 ( b a − 2x1) � 1 0 ln x x − x1 dx + 1 x1 − x2 (2x2 − b a) � 1 0 ln x x − x2 dx = 1 x1 − x2 � ( b a − 2x1)Li2[ 1 x+ − iε sgn(x+)] − ( b a − 2x2)Li2[ 1 x− + iε sgn(x−)] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
115
+ page_content=' (35) with the function sgn(x) defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
116
+ page_content=' (A3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
117
+ page_content=' 7 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
118
+ page_content=' RESULTS AND DISCUSSIONS We shall now apply the results obtained in Section 2 to calculate the integral left in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
119
+ page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
120
+ page_content=' Comparing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
121
+ page_content=' (10) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
122
+ page_content=' (11), we identify that a = m2 1 ω2 2 , b = m2 1 − ω2 1 + ω2 2 ω2 2 , (36) In the case b2 − 4a < 0 which implies that λ(m2 1, ω2 1, ω2 2) < 0, where λ(x, y, z) is the well-known K¨allen function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (37) By employing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
123
+ page_content=' (32), yields the following explicit result I = 1 m2 1 �1 2 Li2 � 1 − ω2 1 ω2 2 � − � arcsin m2 1 − ω2 1 + ω2 2 2m1ω2 �2 − 2 arcsin m2 1 − ω2 1 + ω2 2 2m1ω2 arctan m2 1 + ω2 1 − ω2 2 � λ(m2 1, ω2 1, ω2 2) + m4 1 − (ω2 1 − ω2 2)2 8m2 1ω2 2 � +∞ � n=0 2nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
124
+ page_content=' (n + 1)(2n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
125
+ page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
126
+ page_content=' �(m2 1 − ω2 1 + ω2 2)2 4m2 1ω2 1 �n × 2F1 � 1, n + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
127
+ page_content=' n + 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
128
+ page_content=' 1 − ω2 1 ω2 2 ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
129
+ page_content=' (38) In order to apply the result in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
130
+ page_content=' (38) correctly, the following comments are necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
131
+ page_content=' First, from the conditions of a and b declared in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
132
+ page_content=' (11), to guarantee Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
133
+ page_content=' (38) holds true for the evaluation, in addition to λ(m2 1, ω2 1, ω2 2) < 0, the masses must obey m2 1 > ω2 1 − ω2 2, (39) Second, since Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
134
+ page_content=' (38) is summed over hypergeometric functions, a crucial issue is that if the summation of the infinite series is convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
135
+ page_content=' Due to λ(m2 1, ω2 1, ω2 2) < 0, it is obvious that 0 < (m2 1 − ω2 1 + ω2 2)2 4m2 1ω2 1 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
136
+ page_content=' (40) and the hypergeometric functions are always taking finite value, thus the summation is conver- gent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
137
+ page_content=' Finally, in considering the analytic property of the dilogarithm in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
138
+ page_content=' (A2), a question is that if Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
139
+ page_content=' (38) can develop imaginary part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
140
+ page_content=' In other words, if the argument of the dilogarithm can be greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
141
+ page_content=' But it is impossible since both ω1 and ω2 are assumed to be real, thus 0 < 1 − (ω2 1/ω2 2) < 1 is always satisfied, therefore there is no imaginary part can be developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
142
+ page_content=' 8 In the case b2 − 4a > 0, this implies that λ(m2 1, ω2 1, ω2 2) > 0, exploiting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
143
+ page_content=' (35) we get I = 1 m2 1 �1 2 Li2(1 − ω2 1 ω2 2 ) − Li2[ 1 x+ − iε sgn(x+)] − Li2[ 1 x− + iε sgn(x−)] � , (41) where x+ = (m2 1 − ω2 1 + ω2 2) + λ1/2(m2 1, ω2 1, ω2 2) 2m2 1 , x− = (m2 1 − ω2 1 + ω2 2) − λ1/2(m2 1, ω2 1, ω2 2) 2m2 1 , (42) Since m2 1 > ω2 1 − ω2 2 as presented in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
144
+ page_content=' (39), both x+ and x− are positive definite, thus Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
145
+ page_content=' (41) simplified to I = 1 m2 1 �1 2 Li2(1 − ω2 1 ω2 2 ) − Li2( 1 x+ − iε) − Li2( 1 x− + iε) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
146
+ page_content=' (43) In order to explore phenomenological implications of the results presented in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
147
+ page_content=' (38) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
148
+ page_content=' (43), it is instructive to consider the special case that the coefficients in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
149
+ page_content=' (11) are con- strained by the following conditions a = b > 0, (44) This is the integral indispensable in the evaluation of H → gg decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
150
+ page_content=' studied in past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
151
+ page_content=' Supposing the mass of each propagator of the triangle is ω1, setting a = b = m2 1 ω2 1 , (45) Hence, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
152
+ page_content=' (10) reduces to I = 1 m2 1 � 1 0 dxln(ax2 − ax + 1 − iε) x , a = m2 1 ω2 1 (46) First consider the case 0 < a < 4, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
153
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
154
+ page_content=', 0 < m1 < 2ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
155
+ page_content=' To get the correct results we must trace back to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
156
+ page_content=' (12) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
157
+ page_content=' (13), other than taking advantage of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
158
+ page_content=' (32) and simply setting a = b, otherwise it will make some mistakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
159
+ page_content=' By exploiting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
160
+ page_content=' (17), we immediately obtain I = − a 2m2 1 � 1 0 dz � 1 0 dx 1 1 + zax(x − 1) = − a 2m2 1 � 1 0 dz 4 √ 4az − a2z2 arctan az √ 4az − a2z2 = − 2 m2 1 � arctan a √ 4a − a2 �2 , (47) 9 By using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
161
+ page_content=' (19), we get the well-known function appeared in one loop evaluation of H → gg I = − 2 m2 1 � arcsin m1 2ω1 �2 , 0 < m1 < 2ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
162
+ page_content=' (48) Next, we consider the case of a > 4, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
163
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
164
+ page_content=', m1 > 2ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
165
+ page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
166
+ page_content=' (35) we get I = 1 m2 1 � − Li2( 1 x− + iε) − Li2( 1 x+ − iε) � , (49) x+ and x− are given by x+ = 1 2 � 1 + � 1 − 4 a � , x− = 1 2 � 1 − � 1 − 4 a � , (50) Since both x+ and x− are less than 1, in order to simplify the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
167
+ page_content=' (49), defining α = 1 x− > 1, 1 x+ = 1 1 − x− = α α − 1 > 1, (51) Then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
168
+ page_content=' (49) can be written as I = 1 m2 1 � − Li2(α + iε) − Li2( α α − 1 − iε) � , (52) Combining Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
169
+ page_content=' (A2) we obtain I = 1 m2 1 � − � Re Li2(α) + iπ ln α � − � Re Li2( α α − 1) − iπ ln α α − 1 � = 1 m2 1 � − Re � Li2(α) + Li2( α α − 1) � − iπ ln(α − 1) � , (53) In considering the property od dilogarithm Re � Li2(x) + Li2( x x − 1) � = π2 2 − ln2(x − 1) 2 , x > 1 (54) which leads to I = 1 m2 1 � − π2 2 + ln2(α − 1) 2 − iπ ln(α − 1) � , (55) Substituting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
170
+ page_content=' (51) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
171
+ page_content=' (55) and noticing that α − 1 = x+ x− , (56) we get I = 1 m2 1 � − π2 2 + 1 2 ln2 x+ x− − iπ ln x+ x− � , (57) Plugging Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
172
+ page_content=' (50) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
173
+ page_content=' (57) we arrive at the well-known function in the one loop evaluation of H → gg decay I = − 1 2m2 1 � π + i ln 1 + � 1 − 4ω2 1 m2 1 1 − � 1 − 4ω2 1 m2 1 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
174
+ page_content=' m1 > 2ω1 (58) 10 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
175
+ page_content=' SUMMARY In this paper, the amplitude of scalar one loop three-point diagram in which the masses of the three internal propagators are assigned two different masses is evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
176
+ page_content=' A general type integral is extracted and analytic results are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
177
+ page_content=' Conditions of the validity of the results are discussed in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
178
+ page_content=' As a check to the results, we consider the case that each propagator of the triangle taking the same mass, we find that the general results will reduce to the functions obtained in the lowest order evaluation of H → gg decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
179
+ page_content=' We also notice that the results are mathematically preferred in that the diagram does not corresponds to real process in H → gg in the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
180
+ page_content=' However, we still hope that the results and techniques may be found its applications in triangle mediated decays addition to H → gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
181
+ page_content=' Appendix A: The dilogarithm function and integral representation of Gauss hyperge- ometric function In this section we list some necessary formula in our evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
182
+ page_content=' The dilogarithm is defined as[19] Li2(x) = +∞ � k=1 xk k2 = − � 1 0 ln(1 − xt) t dt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
183
+ page_content=' |x| < 1 (A1) There is a branch cut from 1 to ∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
184
+ page_content=' for ε → 0 Li2(x + iε) = Re Li2(x) + iπ sgn(ε)Θ(x − 1) ln x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
185
+ page_content=' (A2) where Θ is the step function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
186
+ page_content=' the sgn(x) is sgn(x) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 1 x > 0 −1 x < 0 Another two formulas we need are the following equation of dilogarithm[20] � 1 0 ln x a + bx dx = 1 bLi2 � − b a � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
187
+ page_content=' (A3) and the integral representation of the Gauss hypergeometric function[23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
188
+ page_content=' 24] 2F1(α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
189
+ page_content=' β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
190
+ page_content=' γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
191
+ page_content=' z) = Γ(γ) Γ(β)Γ(γ − β) � 1 0 tβ−1(1 − t)γ−β−1(1 − zt)−αdt, (A4) 11 where Re(γ) > Re(β) > 0, |arg(1 − z)| < π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
192
+ page_content=' (A5) [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
193
+ page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
194
+ page_content=' (ATLAS), PhysLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
195
+ page_content=' B 716, 1(2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
196
+ page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
197
+ page_content=' Chatrchyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
198
+ page_content=' (CMS), B 716, 30(2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
199
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
200
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
201
+ page_content=' Gunion, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
202
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
203
+ page_content=' Haber, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
204
+ page_content=' Kane, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
205
+ page_content=' Dawson, The Higgs Hunter’s Guide (Perseus Publishing, Cambridge, Massachusetts, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
206
+ page_content=' [4] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
207
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
208
+ page_content=' Kniehl, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
209
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
210
+ page_content=' 240, 211(1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
211
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
212
+ page_content=' Djouadi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
213
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
214
+ page_content=' 457, 1(2008), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
215
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
216
+ page_content=' 459, 1(2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
217
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
218
+ page_content=' Spira, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
219
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
220
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
221
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
222
+ page_content=' 95, 98(2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
223
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
224
+ page_content=' Carena, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
225
+ page_content=' Grojean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
226
+ page_content=' Kado et al, “Status of Higgs Boson Physics”, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
227
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
228
+ page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
229
+ page_content=' (Particle Data Group), Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
230
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
231
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
232
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
233
+ page_content=' 2022, 083C01(2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
234
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
235
+ page_content=' Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
236
+ page_content=' Denner, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
237
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
238
+ page_content=' B 479, 495(1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
239
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
240
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
241
+ page_content=' Ellis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
242
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
243
+ page_content=' Gaillard and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
244
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
245
+ page_content=' Nanopoulos, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
246
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
247
+ page_content=' B 106, 292(1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
248
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
249
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
250
+ page_content=' Rizzo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
251
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
252
+ page_content=' D 22, 178(1980), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
253
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
254
+ page_content=' D 22, 1824(1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
255
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
256
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
257
+ page_content=' Vainshtein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
258
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
259
+ page_content=' Voloshin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
260
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
261
+ page_content=' Zakharov et al, Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
262
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
263
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
264
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
265
+ page_content=' 30, 711(1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
266
+ page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
267
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
268
+ page_content=' Okun, Leptons and Quarks(North-Holland, Amsterdam, 1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
269
+ page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
270
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
271
+ page_content=' Gunion and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
272
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
273
+ page_content=' Haber, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
274
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
275
+ page_content=' B 278, 449(1986), Erratum: Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
276
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
277
+ page_content=' B 402, 569(1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
278
+ page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
279
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
280
+ page_content=' Ellis, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
281
+ page_content=' Hinchliffe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
282
+ page_content=' Soldate et al, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
283
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
284
+ page_content=' B 297, 221(1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
285
+ page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
286
+ page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
287
+ page_content=' Tang and Y-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
288
+ page_content=' Wu, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
289
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
290
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
291
+ page_content=' 57, 427(2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
292
+ page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
293
+ page_content=' Shifman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
294
+ page_content=' Vainshtein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
295
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
296
+ page_content=' Voloshin, et al, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
297
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
298
+ page_content=' D 85, 013015(2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
299
+ page_content=' [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
300
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
301
+ page_content=' Marciano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
302
+ page_content=' Zhang and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
303
+ page_content=' Willenbrock, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
304
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
305
+ page_content=' D 85, 013002(2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
306
+ page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
307
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
308
+ page_content=' Dwight, Tables of Integrals and Other Mathematical Data(The Macmillan Company, New York, 1957), Third edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
309
+ page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
310
+ page_content=' Lewin, Polylogarithms and Associated Functions(North Holland, New York, 1981), Second Edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
311
+ page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
312
+ page_content=' Devoto and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
313
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
314
+ page_content=' Duke, Riv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
315
+ page_content=' Nuovo Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
316
+ page_content=' 7N6, 1(1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
317
+ page_content=' 12 [21] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
318
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
319
+ page_content=' Gradshteyn I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
320
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
321
+ page_content=' Ryzhik, Table of Integrals, Series, and Products, Eighth Edition(Academic Press, London, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
322
+ page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
323
+ page_content=' Abramowitz and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
324
+ page_content=' Stegun, Handbook of Mathematical Functions with formulas, Graphs and Mathematical Tables(Dover Publications, New York,1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
325
+ page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
326
+ page_content=' Erdelyi, Higher Transcendental Functions, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
327
+ page_content='I (McGrill-Hall Book Company, New York, 1953).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
328
+ page_content=' [24] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
329
+ page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
330
+ page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
331
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
332
+ page_content=' Guo, Special Functions(World Scientific, Singapore, 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
333
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5tE4T4oBgHgl3EQfBgtg/content/2301.04852v1.pdf'}
69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71b1a851f027dcbbabb4a214f375589a1d47bfcb180cf4fc6df3f296f32b0075
3
+ size 179362
69FKT4oBgHgl3EQf_y40/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aae90c77f13636b0e1911171dd68eff25fff2f8d8eb97411b8f42a4b69dbd7c9
3
+ size 2031661
69FKT4oBgHgl3EQf_y40/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ba0475445f491a56c7af04a133c05e2aa7c76f42eb0357e5822bcab57d1abd9
3
+ size 76861
6NE0T4oBgHgl3EQfewDQ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cada2977c60d83676657c673dfe9b0907c0cc303b85daac6c411b7b3d4f65bd3
3
+ size 6684717
6tE0T4oBgHgl3EQfwAE6/content/2301.02625v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dab9141bad165daa3b3d66eb923ab3d893f3a08316f6114872a6ec0f9dd8ad0b
3
+ size 443085
6tE0T4oBgHgl3EQfwAE6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ba1cb66632adb5b3f4ffc1d5152c95c837a515a7f65434fdf9de8c70121cf9d
3
+ size 233867
AtAzT4oBgHgl3EQfv_4W/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e562bbba32423dc13b274c92eb7b833c7c305573d75962e3d1721963ddd3507d
3
+ size 2031661
B9FJT4oBgHgl3EQfsy1U/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f07e8241a9b03de9dbd9dfd4291c884e25e052452e65ec0422f4431cc462eb
3
+ size 17498157
BtAyT4oBgHgl3EQf4PqZ/content/2301.00783v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26a848a4d7ba9181724554458aaf40811ad3267e0130d9072946e383cabc122e
3
+ size 4524288
E9E0T4oBgHgl3EQfzAJD/content/tmp_files/2301.02666v1.pdf.txt ADDED
@@ -0,0 +1,1691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ First Realization of Quantum Energy Teleportation on Quantum Hardware
2
+ Kazuki Ikeda1, ∗
3
+ 1Co-design Center for Quantum Advantage & Center for Nuclear Theory,
4
+ Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
5
+ Teleporting physical quantities to remote locations is a remaining key challenge for quantum
6
+ information science and technology. Quantum teleportation has enabled the transfer of quantum
7
+ information, but teleportation of quantum physical quantities has not yet been realized.
8
+ Here
9
+ we report the first realization and observation of quantum energy teleportation on real quantum
10
+ hardware.
11
+ We achieve this by using several IBM’s superconducting quantum computers.
12
+ The
13
+ results are consistent with the exact solution of the theory and are improved by the mitigation
14
+ of measurement error. Quantum energy teleportation requires only local operations and classical
15
+ communication. Therefore our results provide a realistic benchmark that is fully achievable with
16
+ current quantum computing and communication technologies.
17
+ I.
18
+ QUANTUM ENERGY TELEPORTATION
19
+ While it is fairly widely known that information about
20
+ quantum states can be transported to remote loca-
21
+ tions [1–4], it is less well known that quantum state
22
+ energy can be similarly transmitted, despite its impact
23
+ and potential for future applications. Quantum informa-
24
+ tion transferred by quantum teleportation is not a phys-
25
+ ical quantity, but energy is a distinct physical quantity.
26
+ Transferring physical quantities to remote locations is an
27
+ unexplored area of technology. Quantum Energy Tele-
28
+ portation (QET) was proposed by Hotta about 15 years
29
+ ago and has been studied theoretically for spin chains [5–
30
+ 7], an ion trap system [8], a quantum Hall system [9], and
31
+ other various theoretical systems [10, 11]. It is surprising
32
+ that (to the best of knowledge of the author) QET has
33
+ never been confirmed by any experiment on any system
34
+ before, even though it can be achieved with a very simple
35
+ quantum system. The purpose of this paper is to make
36
+ the first experimental realization of QET in actual quan-
37
+ tum hardware and to establish the quantum circuits that
38
+ make it possible. We achieved the realization of QET us-
39
+ ing some IBM quantum computers by applying quantum
40
+ error mitigation [12–14]. The methods we have estab-
41
+ lished can be applied to any system capable of QET.
42
+ In what follows, we explain that QET is a universal
43
+ means of quantum energy transfer, just as quantum tele-
44
+ portation is a universal means of quantum information
45
+ transfer. Any non-trivial local operations, including mea-
46
+ surements on the ground state of a quantum many-body
47
+ system give rise to excited states, which in turn increase
48
+ the energy expectation value. Note that the increase in
49
+ energy is supplied by the experimental devices. An im-
50
+ portant property of the ground state of a quantum many-
51
+ body system is that it has entanglement, which brings
52
+ about quantum fluctuations in the global ground state
53
+ energy. In other words, quantum fluctuations in the en-
54
+ ergy of the local systems are entangled. Local measure-
55
56
+ ment of the quantum state at a subsystem A partially de-
57
+ stroys this ground state entanglement. At the same time,
58
+ energy EA from the device making the measurement is
59
+ injected into the entire system. The injected energy EA
60
+ stays around the subsystem A in the very early stages
61
+ of time evolution, but operations around A alone cannot
62
+ extract EA from the system. This is because informa-
63
+ tion about EA is also stored in remote locations other
64
+ than A due to the entanglement that exists prior to the
65
+ measurement. In other words, the locally injected energy
66
+ EA can be partially extracted at any location other than
67
+ A [15]. QET is the protocol that makes this possible. Up
68
+ to this point, no special assumptions about the system
69
+ have been used.
70
+ The crucial property of QET is that
71
+ it can be realized entirely by the general nature of the
72
+ ground state of the quantum many-body system and the
73
+ universal fact of measurement.
74
+ We work on the minimal QET model given in [16].
75
+ One of the purposes of this paper is to give a quantum
76
+ circuit that utilizes QETs with real quantum computers
77
+ and quantum networks. The complete form of quantum
78
+ circuits we used for QET is displayed in Fig. 1. The max-
79
+ imum circuit depth is 10 and the number of qubits used
80
+ is 2.
81
+ Hence, current quantum computers are powerful
82
+ enough to implement QET.
83
+ Let k, h be positive real numbers. The Hamiltonian of
84
+ the minimal model is
85
+ Htot = H0 + H1 + V,
86
+ (1)
87
+ Hn = hZn +
88
+ h2
89
+
90
+ h2 + k2 , (n = 0, 1)
91
+ (2)
92
+ V = 2kX0X1 +
93
+ 2k2
94
+
95
+ h2 + k2 .
96
+ (3)
97
+ The ground state of Htot is
98
+ |g⟩ =
99
+ 1
100
+
101
+ 2
102
+
103
+ 1 −
104
+ h
105
+
106
+ h2 + k2 |00⟩− 1
107
+
108
+ 2
109
+
110
+ 1 +
111
+ h
112
+
113
+ h2 + k2 |11⟩ ,
114
+ (4)
115
+ The constant terms in the Hamiltonians are added so
116
+ that the ground state |g⟩ of Htot returns the zero mean
117
+ arXiv:2301.02666v1 [quant-ph] 7 Jan 2023
118
+
119
+ 2
120
+ FIG. 1: Quantum gate operations used for quantum energy teleportation. (A) preparation of ground state and Alice’s X0
121
+ measurement to deposit her energy. She tells Bob via classical communication whether µ = −1 or µ = +1 was observed. (B)
122
+ Bob’s conditional operations to receive energy. He selects an operation U1(+1) or U1(−1) based on µ = +1 or −1, corresponding
123
+ to the Maxwell demon operation. (C) Equivalent implementation of Bob’s operations on a quantum computer.
124
+ energy for all local and global Hamiltonians:
125
+ ⟨g| Htot |g⟩ = ⟨g| H0 |g⟩ = ⟨g| H1 |g⟩ = ⟨g| V |g⟩ = 0. (5)
126
+ However it should be noted that |g⟩ is neither a ground
127
+ state nor an eigenstate of Hn, V, Hn + V (n = 0, 1). The
128
+ essence of QET is to extract negative ground state energy
129
+ of those local and semi-local Hamiltonians.
130
+ The QET protocol is as follows. First, Alice makes a
131
+ measurement on her Pauli operator X0 by P0(µ) = 1
132
+ 2(1+
133
+ (−1)µX0) and then she obtains either µ = −1 or +1. At
134
+ this point, Alice’s expectation energy is E0 =
135
+ h2
136
+
137
+ h2+k2 .
138
+ Via a classical channel, Alice then sends her measure-
139
+ ment result µ to Bob, who applies an operation U1(µ) to
140
+ his qubit and measures H1 and V . The density matrix
141
+ ρQET after Bob operates U1(µ) to P0(µ) |g⟩ is
142
+ ρQET =
143
+
144
+ µ∈{−1,1}
145
+ U1(µ)P0(µ) |g⟩ ⟨g| P0(µ)U †
146
+ 1(µ).
147
+ (6)
148
+ Using ρQET, the expected local energy at Bob’s subsys-
149
+ tem is evaluated as ⟨E1⟩ = Tr[ρQET(H1 + V )], which
150
+ is negative in general.
151
+ Due to the conservation of en-
152
+ ergy, EB = −⟨E1⟩(> 0) is extracted from the system by
153
+ the device that operates U1(µ) [17]. In this way, Alice
154
+ and Bob can transfer the energy of the quantum system
155
+ only by operations on their own local system and classical
156
+ communication (LOCC).
157
+ II.
158
+ QUANTUM CIRCUIT IMPLEMENTATION
159
+ OF QUANTUM ENERGY TELEPORTATION
160
+ A.
161
+ Preparation of Ground State
162
+ Here we explain how to construct a quantum circuit
163
+ (Fig. 1 (A)) that generates the exact ground state |g⟩.
164
+ Let us begin with a Bell state |Φ−⟩ = |00⟩−|11⟩
165
+
166
+ 2
167
+ since |g⟩
168
+ is resemble to it. |Φ−⟩ can be prepared by
169
+ |00⟩ − |11⟩
170
+
171
+ 2
172
+ = (Z ⊗ I)CNOT(H ⊗ I |00⟩
173
+ (7)
174
+ where CNOT= |0⟩ ⟨0|⊗I +|1⟩ ⟨1|⊗X. Using Y = SXS†,
175
+ we can perform a gate operation that maps |Φ−⟩ to the
176
+ ground state |g⟩ (eq. (4)) by a combination of one- and
177
+ two-qubit operators
178
+ |g⟩ = exp(−iαX ⊗ Y ) |Φ−⟩
179
+ =
180
+ 1
181
+
182
+ 2(cos α + sin α) |00⟩ − 1
183
+
184
+ 2(cos α − sin α) |11⟩ .
185
+ (8)
186
+ where
187
+ α
188
+ is
189
+ designed
190
+ to
191
+ satisfy
192
+ cos α + sin α
193
+ =
194
+
195
+ 1 −
196
+ h
197
+
198
+ h2+k2 and cos α − sin α =
199
+
200
+ 1 +
201
+ h
202
+
203
+ h2+k2 .
204
+ Those quantum operations are implemented by the
205
+ quantum circuit in Fig. 1 (A).
206
+ B.
207
+ Step 1: Deposit Energy
208
+ We use the following projective measurement operator
209
+ P0(µ) = 1
210
+ 2(1 + (−1)µX0).
211
+ (9)
212
+
213
+ H
214
+ H
215
+ st
216
+ Rx(2α)
217
+ s
218
+ H
219
+ Ui(+1)
220
+ Ui(-1)
221
+ Ui(+1)
222
+ Ui(-1)
223
+ H
224
+ Ui(+1)
225
+ Ui(-1)
226
+ Ui(+1)
227
+ Ui(-1)3
228
+ We measure Alice’s X operator, by which we obtain a
229
+ state |+⟩ or |−⟩. This operation does not affect Bob’s
230
+ energy since [X0, V ] = [X0, H1] = 0. Using [P0(µ), V ] =
231
+ 0 and ⟨+| Z |+⟩ = ⟨−| Z |−⟩ = 0, we find that Alice’s
232
+ mean energy to deposit is
233
+ ⟨E0⟩ =
234
+
235
+ µ∈{−1,1}
236
+ ⟨g| P0(µ)HtotP0(µ) |g⟩ =
237
+ h2
238
+
239
+ h2 + k2 .
240
+ (10)
241
+ Alice’s operation can be implemented on a quantum
242
+ circuit in Fig 1 (A). ⟨E0⟩ can be calculated with the out-
243
+ put bit-strings 00, 01, 10, 11. Analytical values ⟨E0⟩ and
244
+ results with quantum computers for different pairs of k
245
+ and h are summarized in Table I.
246
+ C.
247
+ Step 2: Receive Energy
248
+ As soon as Alice observes µ ∈ {0, 1}, she tells her result
249
+ to Bob who operates UB(µ) to his qubit and measures his
250
+ energy. Here UB(µ) is
251
+ U1(µ) = cos θI − iµ sin θY1 = RY (2µθ),
252
+ (11)
253
+ where θ obeys
254
+ cos(2θ) =
255
+ h2 + k2
256
+
257
+ (h2 + 2k2)2 + h2k2
258
+ (12)
259
+ sin(2θ) =
260
+ hk
261
+
262
+ (h2 + 2k2)2 + h2k2 .
263
+ (13)
264
+ The average quantum state ρQET eq.(6) is obtained af-
265
+ ter Bob operates U1(µ) to P0(µ) |g⟩. Then the average
266
+ energy Bob measures is
267
+ ⟨E1⟩ = Tr[ρQET(H1 + V )] = Tr[ρQETHtot] − ⟨E0⟩, (14)
268
+ where we used [U1(µ), H1] = 0. It is important that the
269
+ map �
270
+ µ∈{−1,1} P0(µ) |g⟩ ⟨g| P0(µ) → ρQET is not a uni-
271
+ tary transformation. Therefore eq. (14) can be negative.
272
+ This is in contrast to eq. (A7).
273
+ Now let us explain quantum circuits for the QET pro-
274
+ tocol. Since V and H1 do not commute, measurement on
275
+ those terms should be done separately. In other words,
276
+ Bob measures V and H1 independently and obtains ⟨V ⟩
277
+ and ⟨H1⟩ statistically. As the figures show, ⟨V ⟩ is always
278
+ negative and ⟨H1⟩ is always positive. Therefore is suffi-
279
+ cient for Bob to measure only ⟨V ⟩ to receive energy by
280
+ QET.
281
+ We consider V (µ) = ⟨g| P0(µ)U †
282
+ 1(µ)V U1(µ)P0(µ) |g⟩.
283
+ The quantum circuit to measure V (µ) is shown in the
284
+ right panel of Fig. 1 (B). It is important to note that,
285
+ since Bob knows µ which contains Alice’s information, he
286
+ can obtain VQET(µ) by local measurement only, although
287
+ V is not a local operator. Similarly we can measure H1
288
+ in Z-basis as in the left panel of Fig. 1 (B). The corre-
289
+ sponding quantum circuit is obtained by removing the
290
+ second Hadamard gate from the previous circuit Fig. 1
291
+ (C). On average the circuit generates
292
+ ⟨E1⟩ =
293
+
294
+ µ∈{−1,1}
295
+ ⟨g| P0(µ)U †
296
+ 1(µ)(H1 + V )U1(µ)P0(µ) |g⟩
297
+ = −
298
+ 1
299
+
300
+ h2 + k2 [hk sin(2θ) − (h2 + 2k2)(1 − cos(2θ))].
301
+ (15)
302
+ If θ is small, ⟨E1⟩ is negative.
303
+ Bob receives energy
304
+ ⟨EB⟩ = −⟨E1⟩ on average.
305
+ In Appendix B, we per-
306
+ formed measurement of V (µ) and H1 based on the quan-
307
+ tum circuit Fig. 1 (B) and summarized data in Table II,
308
+ where numerical values are compared with analytical val-
309
+ ues given in eq. (15).
310
+ D.
311
+ QET on Real Quantum Hardware
312
+ Here we describe how to implement the conditional
313
+ operations that may not be natively supported by many
314
+ quantum computers and quantum devices. In the QET
315
+ protocol, Bob’s operation must be selected according to
316
+ the results of Alice’s measurements, as shown in Fig. 1
317
+ (B). Even in environments where conditional statements
318
+ are not supported, QET can be implemented without
319
+ problems through the technique of deferred measure-
320
+ ment.
321
+ We can postpone Alice’s measurement until the end
322
+ of the circuit, and obtain the same results. The condi-
323
+ tional operations can be created by a controlled U gate
324
+ Λ(U) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U and an anti-controlled U
325
+ gate (X ⊗ I)Λ(U)(X ⊗ I). One would find the equiva-
326
+ lence between the following two circuits. We use the right
327
+ circuit enclosed by the orange dashed frame in Fig. 1 (C).
328
+ We performed quantum computation using 6 dif-
329
+ ferent types of IBM quantum hardware ibmq lima,
330
+ ibmq jakarta, ibmq hanoi, ibm cairo, ibm auckland
331
+ and ibmq montreal.
332
+ The properties of each quantum
333
+ computers can be seen from Fig. 2.
334
+ ibmq lima con-
335
+ sists of 5 qubits (Fig. 2 [Left]) and ibmq jakarta has
336
+ 7 qubits (Fig. 2 [Middle]).
337
+ ibm cairo is a 27-qubit
338
+ hardware, and ibmq hanoi, ibm cairo, ibm auckland
339
+ and ibmq montreal have the same graph structure as
340
+ ibm cairo (Fig. 2 [Right]). A direct CNOT gate can be
341
+ applied to two qubits connected at the edge.
342
+ We can
343
+ choose two qubits placed on the graph of the hardware
344
+ to perform a quantum computation. We conducted the
345
+ experiment by choosing two qubits connected at the edge
346
+ with relatively small errors.
347
+ We also performed a simulation using a simulator
348
+ qasm simulator, which can classically emulate gate op-
349
+ erations on the same quantum circuits we used for
350
+ quantum computation.
351
+ We summarize results with
352
+ ibmq lima, ibmq jakarta and ibm cairo in Table I. The
353
+ results using the simulator agreed with the analytical so-
354
+ lution with high accuracy, confirming that the quantum
355
+ circuit was implemented correctly.
356
+ More experimental
357
+
358
+ 4
359
+ FIG. 2: (A) properties of quantum computers we used. Each graph of qubits corresponds to the layout of the hardware. A
360
+ direct CNOT gate can be applied to two qubits connected at the edge. (B) Distribution of states compared with a simulator
361
+ qasm simulator and a quantum computer ibm cairo (raw results and mitigated results)
362
+ results are summarized in Table IV in Appendix D. We
363
+ describe details of machine properties and experimental
364
+ conditions in Table III in Appendix C.
365
+ The most significant achievement in this study is the
366
+ observation of negative energy ⟨E1⟩ < 0. The value of
367
+ ⟨V ⟩ that was closest to the exact analysis value was -
368
+ 0.1079 (h = 1.5, k = 1 with ibmq jakarta), which is
369
+ about 76% accurate.
370
+ As emphasised in Hotta’s origi-
371
+ nal works [5–11, 16], after Alice observes her X0, no
372
+ unitary operation can make ⟨E1⟩ negative (eq. (A7)).
373
+ In order for Bob to obtain the correct ⟨E1⟩, Alice and
374
+ Bob must repeat the experiment an enormous number of
375
+ times, and the correct value of ⟨V ⟩ and ⟨H1⟩ can be ob-
376
+ tained only when Alice and Bob communicate correctly
377
+ in the quantum circuit in Fig. 1 (C). Distributions of
378
+ states obtained by a quantum computer ibm cairo are
379
+ shown in Fig. 2 (B), where distributions of raw results
380
+ and error mitigated results are compared with a simu-
381
+ lator qasm simulator. We used a simple measurement
382
+ error mitigation to determine the effects of measurement
383
+ errors.
384
+ We prepared a list of 4 measurement calibra-
385
+ tion circuits for the full Hilbert space. Then we immedi-
386
+ ately measured them to obtain the probability distribu-
387
+ tions. Then we applied the calibration matrix to correct
388
+ the measured results. The average measurement fidelity
389
+ when using each quantum computer is summarized in
390
+ Table III in Appendix C. The histograms of the observed
391
+ states showed similar tendencies for all other quantum
392
+ computers we used. It can be seen that the histograms
393
+ obtained by the measurement of H agree with the sim-
394
+ ulator results with good accuracy. The improvement of
395
+ the values due to measurement error mitigation is also
396
+ confirmed by the results in Table I. The observation of V
397
+ is of utmost importance in this study. Although the raw
398
+ data from quantum computers deviated from the simula-
399
+ tor results, in some cases error mitigation improved them
400
+ enough to observe negative energy expectation values.
401
+ It should also be emphasized that we observed negative
402
+ ⟨V ⟩ for all parameter (k, h) combinations in all quantum
403
+ computers used. As emphasized in Sec. II C, the amount
404
+ of energy available to Bob is greater if only V is observed,
405
+ since ⟨H1⟩ is always positive (Fig. 3).
406
+ This would be
407
+ enough for practical purposes.. Note that the energy that
408
+ Bob gains becomes smaller when he observes H1.
409
+
410
+ iloa mal lima Error Map
411
+ lomi cairo Emor Map)
412
+ Keidaut: Hror tw
413
+ Heridoun: Hror ta?
414
+ Featour: :Error tw?
415
+ 1
416
+ 2
417
+ 12
418
+ 2.41
419
+ H arrar te ( [avg. : : DuE4s)
420
+ Cl aror hie h avg.
421
+ Distriloution of states when measuring V (ilom cairo, k = 1, h = 1)
422
+ Distriloution of states when measuring H (ilom cairo, k = 1, h = 1)
423
+ raw
424
+ raw
425
+ mitigated
426
+ 0.4
427
+ 0.474
428
+ mitigated
429
+ 0.4702473
430
+ 0.350.349
431
+ 0.362
432
+ 0.330367362
433
+ 0.457
434
+ simullator
435
+ simullator
436
+ 0.45
437
+ 0.3
438
+ Probabilities
439
+ 0.30
440
+ Probal
441
+ 0.2
442
+ 0.139130139
443
+ 0.15
444
+ 0.1
445
+ 0.059
446
+ 04.8
447
+ 0.049
448
+ .040
449
+ 0.027
450
+ 0.026
451
+ 0.00
452
+ 0.0
453
+ 15
454
+ Backend
455
+ (h, k) = (1, 0.2)
456
+ (h, k) = (1, 0.5)
457
+ (h, k) = (1, 1)
458
+ (h, k) = (1.5, 1)
459
+ Analytical value
460
+ ⟨E0⟩
461
+ 0.9806
462
+ 0.8944
463
+ 0.7071
464
+ 1.2481
465
+ qasm simulator
466
+ 0.9827 ± 0.0031
467
+ 0.8941 ± 0.0001
468
+ 0.7088 ± 0.0001
469
+ 1.2437 ± 0.0047
470
+ ibmq lima
471
+ error mitigated
472
+ 0.9423 ± 0.0032
473
+ 0.8169 ± 0.0032
474
+ 0.6560 ± 0.0031
475
+ 1.2480 ± 0.0047
476
+ unmitigated
477
+ 0.9049 ± 0.0017
478
+ 0.8550 ± 0.0032
479
+ 0.6874 ± 0.0031
480
+ 1.4066 ± 0.0047
481
+ ibmq jakarta
482
+ error mitigated
483
+ 0.9299 ± 0.0056
484
+ 0.8888 ± 0.0056
485
+ 0.7039 ± 0.0056
486
+ 1.2318 ± 0.0084
487
+ unmitigated
488
+ 0.9542 ± 0.0056
489
+ 0.9089 ± 0.0056
490
+ 0.7232 ± 0.0056
491
+ 1.2624 ± 0.0083
492
+ ibm cairo
493
+ error mitigated
494
+ 0.9571 ± 0.0032
495
+ 0.8626 ± 0.0031
496
+ 0.7277 ± 0.0031
497
+ 1.2072 ± 0.0047
498
+ unmitigated
499
+ 0.9578 ± 0.0031
500
+ 0.8735 ± 0.0031
501
+ 0.7362 ± 0.0031
502
+ 1.2236 ± 0.0047
503
+ Analytical value
504
+ ⟨H1⟩
505
+ 0.0521
506
+ 0.1873
507
+ 0.2598
508
+ 0.3480
509
+ qasm simulator
510
+ 0.0547 ± 0.0012
511
+ 0.1857 ± 0.0022
512
+ 0.2550 ± 0.0028
513
+ 0.3487 ± 0.0038
514
+ ibmq lima
515
+ error mitigated
516
+ 0.0733 ± 0.0032
517
+ 0.1934 ± 0.0032
518
+ 0.2526 ± 0.0032
519
+ 0.3590 ± 0.0047
520
+ unmitigated
521
+ 0.1295 ± 0.0053
522
+ 0.2422 ± 0.0024
523
+ 0.2949 ± 0.0028
524
+ 0.4302 ± 0.0039
525
+ ibmq jakarta
526
+ error mitigated
527
+ 0.0736 ± 0.0055
528
+ 0.2018 ± 0.0056
529
+ 0.2491 ± 0.0056
530
+ 0.3390 ± 0.0084
531
+ unmitigated
532
+ 0.0852 ± 0.0022
533
+ 0.2975 ± 0.0045
534
+ 0.3365 ± 0.0052
535
+ 0.4871 ± 0.0073
536
+ ibm cairo
537
+ error mitigated
538
+ 0.0674 ± 0.0032
539
+ 0.1653 ± 0.0031
540
+ 0.2579 ± 0.0031
541
+ 0.3559 ± 0.0047
542
+ unmitigated
543
+ 0.0905 ± 0.0014
544
+ 0.1825 ± 0.0022
545
+ 0.2630 ± 0.0027
546
+ 0.3737 ± 0.0037
547
+ Analytical value
548
+ ⟨V ⟩
549
+ -0.0701
550
+ -0.2598
551
+ -0.3746
552
+ -0.4905
553
+ qasm simulator
554
+ −0.0708 ± 0.0012 −0.2608 ± 0.0032 −0.3729 ± 0.0063 −0.4921 ± 0.0038
555
+ ibmq lima
556
+ error mitigated −0.0655 ± 0.0012 −0.2041 ± 0.0031 −0.2744 ± 0.0063 −0.4091 ± 0.0063
557
+ unmitigated
558
+ −0.0538 ± 0.0011 −0.1471 ± 0.0025 −0.1233 ± 0.0041 −0.2737 ± 0.0046
559
+ ibmq jakarta
560
+ error mitigated −0.0515 ± 0.0022 −0.2348 ± 0.0056 −0.3255 ± 0.0112 −0.4469 ± 0.0112
561
+ unmitigated
562
+ −0.0338 ± 0.0021 −0.1371 ± 0.0046 −0.0750 ± 0.0075 −0.2229 ± 0.0083
563
+ ibm cairo
564
+ error mitigated −0.0497 ± 0.0013 −0.1968 ± 0.0031 −0.2569 ± 0.0063 −0.3804 ± 0.0063
565
+ unmitigated
566
+ −0.0471 ± 0.0012 −0.1682 ± 0.0026 −0.1733 ± 0.0038 −0.3089 ± 0.0045
567
+ Analytical value
568
+ ⟨E1⟩
569
+ -0.0180
570
+ -0.0726
571
+ -0.1147
572
+ -0.1425
573
+ qasm simulator
574
+ −0.0161 ± 0.0017 −0.0751 ± 0.00398 −0.1179 ± 0.0069 −0.1433 ± 0.0054
575
+ ibmq lima
576
+ error mitigated
577
+ 0.0078 ± 0.0034
578
+ −0.0107 ± 0.0045 −0.0217 ± 0.0071 −0.0501 ± 0.0079
579
+ unmitigated
580
+ 0.0757 ± 0.0054
581
+ 0.0950 ± 0.0035
582
+ 0.1715 ± 0.0050
583
+ 0.1565 ± 0.0060
584
+ ibmq jakarta
585
+ error mitigated
586
+ 0.0221 ± 0.0059
587
+ −0.0330 ± 0.0079 −0.0764 ± 0.0125 −0.1079 ± 0.0140
588
+ unmitigated
589
+ 0.0514 ± 0.0030
590
+ 0.1604 ± 0.0064
591
+ 0.2615 ± 0.0091
592
+ 0.2642 ± 0.00111
593
+ ibm cairo
594
+ error mitigated
595
+ 0.0177 ± 0.0035
596
+ −0.0315 ± 0.0044
597
+ 0.0010 ± 0.0070
598
+ −0.0245 ± 0.0079
599
+ unmitigated
600
+ 0.0433 ± 0.0018
601
+ 0.0143 ± 0.0034
602
+ 0.0897 ± 0.0047
603
+ 0.0648 ± 0.0058
604
+ TABLE I: Comparison between analytical values of ⟨E0⟩, ⟨H1⟩, ⟨V ⟩, ⟨E1⟩ and results from IBM’s real quantum computers,
605
+ ibmq lima, ibmq jakarta and ibm cairo. We evaluate ⟨E1⟩ = ⟨H1⟩ + ⟨V ⟩. ”error mitigated” means results using measurement
606
+ error mitigation and ”unmitigated” corresponds to results without measurement error mitigation.
607
+ III.
608
+ IMPLICATIONS FOR OUR REAL WORLD
609
+ Our results provide implications for new quantum com-
610
+ munication technologies with respect to different phases
611
+ in the short, medium and long term. It is important to
612
+ note that, like quantum teleportation, energy can also
613
+ be teleported only by LOCC. Reproducing the minimal
614
+ QET model we used in our demonstration in a labora-
615
+ tory system is something that can be tackled in the short
616
+ term with current quantum computing and communica-
617
+ tion technology. A quantum device with 2 qubits and a
618
+ gate depth of 10 would be ready for immediate experi-
619
+ mentation. This is expected to lead to new developments
620
+ in the use of quantum memory [18–20]. Furthermore, ver-
621
+ ifying QET in a variety of quantum systems and materi-
622
+ als beyond the minimal model is an important challenge
623
+ for future applications.
624
+ Quantum energy teleportation without limit of dis-
625
+ tance is also provided [21]. The ability to transfer quan-
626
+ tum energy over long distances will bring about a new
627
+ revolution in quantum communication technology.
628
+ In
629
+ other words, a world in which physical quantities are
630
+ freely and instantaneously transmitted to remote loca-
631
+ tions connected by a large-scale Quantum Internet (Net-
632
+ work) can be realized in the near future. For example
633
+ there is a long-distance (∼158km) SBU/BNL quantum
634
+ network in Long Island, New York [22]. Various quan-
635
+ tum networks have been developed [23–25].
636
+ Realizing
637
+ QET on a quantum network, which is expected to be
638
+
639
+ 6
640
+ in practical use around the 2030s, would be a milestone
641
+ toward realizing QET on a worldwide quantum network.
642
+ The realization of a long-range QET will have impor-
643
+ tant implications beyond the development of information
644
+ and communication technology and quantum physics. In-
645
+ formation and energy are physical, but also economic.
646
+ Allowing physical quantities to be traded concretely on
647
+ the quantum network means that a new economic mar-
648
+ ket will be born [26]. Quantum teleportation is an es-
649
+ tablished technology and is being developed for practical
650
+ use. In addition to this, if QET is put to practical use, it
651
+ will mean that various quantum resources will be at the
652
+ disposal of us. The expected value of the Hermite op-
653
+ erator is called energy, but it need not literally be used
654
+ only as energy.
655
+ Teleported energy can be used as en-
656
+ ergy, as well as for other uses. The ability to teleport a
657
+ concrete physical quantity, energy, means that quantum
658
+ information will have added value. In a quantum market
659
+ where Alice, Bob, and Charlie exist, if Bob can get more
660
+ energy from Charlie than from Alice, Bob may prefer to
661
+ do business with Charlie rather than Alice, and he may
662
+ prefer an entangle state with Charlie. However, depend-
663
+ ing on transaction costs, Bob may choose Alice. A lot
664
+ of such game-theoretic situations can be created [27–31].
665
+ This implies that quantum information economics (which
666
+ does not yet exist) will become a meaningful idea in the
667
+ future.
668
+ Acknowledgement
669
+ I thank David Frenklakh,
670
+ Adrien Florio,
671
+ Sebas-
672
+ tian Grieninger, Fangcheng He, Dmitri Kharzeev, Yuta
673
+ Kikuchi, Vladimir Korepin, Qiang Li, Adam Lowe,
674
+ Shuzhe Shi, Hiroki Sukeno, Tzu-Chieh Wei, Kwangmin
675
+ Yu and Ismail Zahed for fruitful communication and col-
676
+ laboration. I thank Megumi Ikeda for providing the car-
677
+ toons. I acknowledge the use of IBM quantum comput-
678
+ ers. I was supported by the U.S. Department of Energy,
679
+ Office of Science, National Quantum Information Science
680
+ Research Centers, Co-design Center for Quantum Advan-
681
+ tage (C2QA) under Contract No.DESC0012704.
682
+ Author contribution
683
+ All work was performed by the author.
684
+ competing interests
685
+ The author declares that there is no competing finan-
686
+ cial interests.
687
+ References
688
+ [1] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa,
689
+ A. Peres,
690
+ and W. K. Wootters, Phys. Rev. Lett. 70,
691
+ 1895 (1993).
692
+ [2] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A.
693
+ Fuchs, H. J. Kimble, and E. S. Polzik, science 282, 706
694
+ (1998).
695
+ [3] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa,
696
+ and S. L. Braunstein, Nature Photonics 9, 641 (2015),
697
+ arXiv:1505.07831 [quant-ph] .
698
+ [4] S. Takeda, T. Mizuta, M. Fuwa, P. Van Loock,
699
+ and
700
+ A. Furusawa, Nature 500, 315 (2013).
701
+ [5] M. Hotta, Physics Letters A 372, 5671 (2008).
702
+ [6] M. Hotta, Journal of the Physical Society of Japan 78,
703
+ 034001 (2009), arXiv:0803.0348 [quant-ph] .
704
+ [7] J. Trevison and M. Hotta, Journal of Physics A Math-
705
+ ematical General 48, 175302 (2015), arXiv:1411.7495
706
+ [quant-ph] .
707
+ [8] M.
708
+ Hotta,
709
+ Phys.
710
+ Rev.
711
+ A
712
+ 80,
713
+ 042323
714
+ (2009),
715
+ arXiv:0908.2824 [quant-ph] .
716
+ [9] G. Yusa, W. Izumida, and M. Hotta, Phys. Rev. A 84,
717
+ 032336 (2011).
718
+ [10] Y. Nambu and M. Hotta, Phys. Rev. A 82, 042329
719
+ (2010).
720
+ [11] M. Hotta, Journal of Physics A: Mathematical and The-
721
+ oretical 43, 105305 (2010).
722
+ [12] S. Endo, S. C. Benjamin, and Y. Li, Physical Review X
723
+ 8, 031027 (2018), arXiv:1712.09271 [quant-ph] .
724
+ [13] R. Takagi, S. Endo, S. Minagawa, and M. Gu, npj Quan-
725
+ tum Information 8, 114 (2022), arXiv:2109.04457 [quant-
726
+ ph] .
727
+ [14] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Hug-
728
+ gins, Y. Li, J. R. McClean,
729
+ and T. E. O’Brien, arXiv
730
+ e-prints , arXiv:2210.00921 (2022), arXiv:2210.00921
731
+ [quant-ph] .
732
+ [15] M.
733
+ Hotta,
734
+ Physics
735
+ Letters
736
+ A
737
+ 374,
738
+ 3416
739
+ (2010),
740
+ arXiv:1002.0200 [quant-ph] .
741
+ [16] M. Hotta, arXiv e-prints , arXiv:1101.3954 (2011),
742
+ arXiv:1101.3954 [quant-ph] .
743
+ [17] M. Hotta, Phys. Rev. D 78, 045006 (2008).
744
+ [18] S.
745
+ Dhomkar,
746
+ J.
747
+ Henshaw,
748
+ H.
749
+ Jayakumar,
750
+ and
751
+ C. A. Meriles, Science Advances 2, e1600911 (2016),
752
+ https://www.science.org/doi/pdf/10.1126/sciadv.1600911
753
+ .
754
+ [19] H. Kurokawa,
755
+ M. Yamamoto,
756
+ Y. Sekiguchi,
757
+ and
758
+ H. Kosaka, Phys. Rev. Appl. 18, 064039 (2022).
759
+ [20] H. P. Specht,
760
+ C. N¨olleke,
761
+ A. Reiserer,
762
+ M. Uphoff,
763
+
764
+ 7
765
+ E. Figueroa, S. Ritter, and G. Rempe, Nature 473, 190
766
+ (2011).
767
+ [21] M. Hotta, J. Matsumoto,
768
+ and G. Yusa, Phys. Rev. A
769
+ 89, 012311 (2014), arXiv:1305.3955 [quant-ph] .
770
+ [22] D.
771
+ Du,
772
+ P.
773
+ Stankus,
774
+ O.-P.
775
+ Saira,
776
+ M.
777
+ Flament,
778
+ S. Sagona-Stophel, M. Namazi, D. Katramatos,
779
+ and
780
+ E. Figueroa, arXiv e-prints , arXiv:2101.12742 (2021),
781
+ arXiv:2101.12742 [quant-ph] .
782
+ [23] H. J. Kimble, Nature 453, 1023 (2008).
783
+ [24] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K.
784
+ Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen,
785
+ et al., Nature 589, 214 (2021).
786
+ [25] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers,
787
+ P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen,
788
+ M. J. Tiggelman, L. dos Santos Martins, B. Dirkse,
789
+ S. Wehner,
790
+ and R. Hanson, Science 372, 259 (2021),
791
+ https://www.science.org/doi/pdf/10.1126/science.abg1919
792
+ .
793
+ [26] K. Ikeda and S. Aoki, Quantum Information Processing
794
+ 21, 1 (2022).
795
+ [27] K. Ikeda, Quantum Information Processing 19, 25
796
+ (2019), arXiv:1906.09817 [quant-ph] .
797
+ [28] K. Ikeda, Quantum Information Processing (to appear),
798
+ arXiv preprint arXiv:2207.05435 (2022).
799
+ [29] K. Ikeda and S. Aoki, Quantum Information Processing
800
+ 20, 387 (2021), arXiv:2005.05588 [quant-ph] .
801
+ [30] K. Ikeda and A. Lowe, arXiv e-prints , arXiv:2211.02073
802
+ (2022), arXiv:2211.02073 [quant-ph] .
803
+ [31] K. Ikeda, Quantum Information Processing 20, 313
804
+ (2021).
805
+
806
+ 8
807
+ Appendix A: Description of the Model
808
+ 1.
809
+ Quantum Gates and Measurement
810
+ Here we give a self-contained description of the back-
811
+ ground knowledge of the text. We use the following one-
812
+ qubit operators whose matrix representations are given
813
+ as
814
+ X =
815
+
816
+ 0 1
817
+ 1 0
818
+
819
+ , Y =
820
+
821
+ 0 −i
822
+ i
823
+ 0
824
+
825
+ , Z =
826
+
827
+ 1
828
+ 0
829
+ 0 −1
830
+
831
+ ,
832
+ H =
833
+ 1
834
+
835
+ 2
836
+
837
+ 1
838
+ 1
839
+ 1 −1
840
+
841
+ , S =
842
+
843
+ 1 0
844
+ 0 i
845
+
846
+ .
847
+ (A1)
848
+ We use |0⟩ =
849
+ �1
850
+ 0
851
+
852
+ , |1⟩ =
853
+ �0
854
+ 1
855
+
856
+ for the computational
857
+ basis states, which are eigenstates of Z:
858
+ Z |0⟩
859
+ =
860
+ |0⟩ , Z |1⟩ = − |1⟩.
861
+ We also work with another ba-
862
+ sis vectors |±⟩ =
863
+ |0⟩±|1⟩
864
+
865
+ 2
866
+ .
867
+ They are eignestates of X:
868
+ X |−⟩ = − |−⟩ , X |+⟩ = − |+⟩. Note that |±⟩ are created
869
+ by applying H to |0⟩ and |1⟩; H |0⟩ = |+⟩ , H |1⟩ = |−⟩.
870
+ Those are used for measuring Hn, V (n = 1, 2) in the
871
+ QET protocol. For example, Alice finds µ = ±1 by ob-
872
+ serving the eigenvalues ±1 of her local Pauli X operator.
873
+ The rotation of X, Y, Z is defined by
874
+ RX(α) = e−i α
875
+ 2 X, RY (α) = e−i α
876
+ 2 Y , RZ(α) = e−i α
877
+ 2 Z.
878
+ (A2)
879
+ Note that X and Y gates are related in a way that Y =
880
+ SXS†.
881
+ Using those representations, it will be easy to
882
+ check the matrix representation
883
+ exp(−iαX ⊗ Y ) = (I ⊗ S) exp(−iαX ⊗ X)(I ⊗ S†)
884
+ =
885
+
886
+
887
+
888
+
889
+
890
+ cos α
891
+ 0
892
+ 0
893
+ − sin α
894
+ 0
895
+ cos α
896
+ sin α
897
+ 0
898
+ 0
899
+ − sin α cos α
900
+ 0
901
+ sin α
902
+ 0
903
+ 0
904
+ cos α
905
+
906
+
907
+
908
+
909
+
910
+ (A3)
911
+ and the exact form of the ground state eq. (8):
912
+ |g⟩ = exp(−iαX ⊗ Y ) |Φ−⟩
913
+ =
914
+ 1
915
+
916
+ 2(cos α + sin α) |00⟩ − 1
917
+
918
+ 2(cos α − sin α) |11⟩ .
919
+ We use two-qubit gate operations. In general, a control
920
+ U operation Λ(U) is defined by
921
+ Λ(U) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U
922
+ (A4)
923
+ and the corresponding diagram is drwan as
924
+ control U=
925
+ U
926
+ One of the most frequently used controlled gates is a
927
+ CNOT gate CNOT = Λ(X), whose diagram is especially
928
+ drawn as
929
+ CNOT=
930
+ It is convenient to define an anti-control gate, which is
931
+ activated when the control bit is in state |0⟩: |1⟩ ⟨1|⊗I +
932
+ |0⟩ ⟨0| ⊗ U, whose diagram is drawn as
933
+ Anti-control U=
934
+ U
935
+ =
936
+ X
937
+ X
938
+ U
939
+ Now we describe measurement of quantum operators.
940
+ We measure Z1 and X0X1. Measurement of Z1 is done
941
+ by the following circuit
942
+ The output of the measurement is a bit string b0b1 ∈
943
+ {00, 01, 10, 11}. Since the eigenvalues of Z are −1, 1, we
944
+ convert the bit string into 1 − 2b1.
945
+ Let nshot be the
946
+ number of repetitions of the circuit, and countsb0b1 be
947
+ the number of times b0 and b1 are detected. Therefore
948
+ countsb0b1
949
+ nshots
950
+ is the probability that a bit string b0b1 is ob-
951
+ tained. Then the expectation value of Z1 is computed by
952
+ the formula
953
+ ⟨Z1⟩ =
954
+
955
+ b0,b1
956
+ (1 − 2b1)countsb0b1
957
+ nshots
958
+ .
959
+ (A5)
960
+ Measurement of X0X1 is done by the following circuit
961
+ H
962
+ H
963
+ As we described previously,
964
+ H
965
+ maps |0⟩ , |1⟩ to
966
+ |+⟩ , |−⟩, which are eigenvectors of X. The output of the
967
+ measurement is again a bit string b0b1 ∈ {00, 01, 10, 11}.
968
+ They are converted to the eigenvalues of X0X1 by (1 −
969
+ 2b0)(1 − 2b1).
970
+ Then the expectation value of X0X1 is
971
+ computed by the formula
972
+ ⟨X0X1⟩ =
973
+
974
+ b0,b1
975
+ (1 − 2b0)(1 − 2b1)countsb0b1
976
+ nshots
977
+ .
978
+ (A6)
979
+
980
+ 9
981
+ FIG. 3: Heat maps visualizing expectation values ⟨V ⟩ = Tr[ρQETV ] and ⟨H1⟩ = Tr[ρQETH1] by (k, h).
982
+ 2.
983
+ Some details of the model
984
+ Here we describe details of the model we used. For
985
+ more information please refer to Hotta’s original papers.
986
+ First it is important to note that the ground state of
987
+ the total Hamiltonian H is not the ground state of lo-
988
+ cal operators.
989
+ For example, V has three degenerated
990
+ ground states |−+⟩ , |+−⟩ , |−+⟩+|+−⟩
991
+
992
+ 2
993
+ , and the ground
994
+ state energy of V is −2k +
995
+ 2k2
996
+
997
+ h2+k2 .
998
+ It is important
999
+ that V ’s ground state energy is negative for all k > 0.
1000
+ This is also true for Hn, whose ground state energy is
1001
+ −h +
1002
+ h2
1003
+
1004
+ h2+k2 . The expected values of ⟨V ⟩ = Tr[ρQETV ]
1005
+ and ⟨H1⟩ = Tr[ρQETH1] obtained by QET are shown in
1006
+ Fig. 3.
1007
+ To understand the non-triviality of the QET protocol,
1008
+ it is important to note that after Alice’s measurement,
1009
+ no matter what unitary operation W1 is performed on
1010
+ Bob’s qubit, no energy can be extracted. This can be
1011
+ confirmed by
1012
+ Tr[ρW Htot] − ⟨E0⟩ = ⟨g| W †
1013
+ 1 HtotW1 |g⟩ ≥ 0,
1014
+ (A7)
1015
+ where
1016
+ ρW = W †
1017
+ 1
1018
+
1019
+
1020
+
1021
+ µ∈{−1,1}
1022
+ P0(µ) |g⟩ ⟨g| P0(µ)
1023
+
1024
+ � W1.
1025
+ (A8)
1026
+ The inequality in eq. (A7) is guaranteed by eq. (5).
1027
+ If Bob does not perform any operations on his own
1028
+ system after Alice’s measurement, the time evolution of
1029
+ Bob’s local system is as follows
1030
+ ⟨H1(t)⟩ = Tr[ρMeitHH1e−itH] = h2(1 − cos(4kt))
1031
+ 2
1032
+
1033
+ h2 + k2
1034
+ ⟨V (t)⟩ = Tr[ρMeitHV e−itH] = 0,
1035
+ (A9)
1036
+ where ρM = �
1037
+ µ∈{±1} P0(µ) |g⟩ ⟨g| P0(µ).
1038
+ As a result of the natural time evolution of the sys-
1039
+ tem, energy is indeed transferred to Bob’s local system,
1040
+ but this is no more than energy propagation in the usual
1041
+ sense. In QET, energy is not obtained through the nat-
1042
+ ural time evolution of the system, but instantaneously
1043
+ as a result of communication. Since we consider a non-
1044
+ relativistic quantum many-body system, the speed of en-
1045
+ ergy propagation is sufficiently slower than the speed of
1046
+ light. Classical communication, realized by optical com-
1047
+ munication, can convey information to remote locations
1048
+ much faster than the time evolution of physical systems.
1049
+ Hence, QET can be described as a fast energy propaga-
1050
+ tion protocol.
1051
+ It is known that the change in entropy before and after
1052
+ the measurement can be evaluated as follows
1053
+ ∆SAB = SAB −
1054
+
1055
+ µ∈{±1}
1056
+ pµSAB(µ)
1057
+ (A10)
1058
+ ≥ 1 + sin2 ξ
1059
+ 2 cos3 ξ
1060
+ ln 1 + cos ξ
1061
+ 1 − cos ξ
1062
+ EB
1063
+
1064
+ h2 + k2
1065
+ (A11)
1066
+ where pµ is the probability distribution of µ, SAB(µ) is
1067
+ the entanglement entropy after the measurement, ξ =
1068
+ arctan
1069
+ � k
1070
+ h
1071
+
1072
+ and EB is the amount of energy that Bob can
1073
+ receive (EB = −⟨E1⟩ > 0) [16]. Moreover the maximal
1074
+ energy that Bob would receive is bounded below by the
1075
+ difference of entropy:
1076
+ max
1077
+ U1(µ) EB ≥
1078
+ 2
1079
+
1080
+ h2 + k2(
1081
+
1082
+ 4 − 3 cos2 ξ − 2 + cos2 ξ)∆SAB
1083
+ (1 + cos ξ) ln
1084
+
1085
+ 2
1086
+ 1+cos ξ
1087
+
1088
+ + (1 − cos ξ) ln
1089
+
1090
+ 2
1091
+ 1−cos ξ
1092
+ �.
1093
+ (A12)
1094
+ Appendix B: Simulation of Hotta’s original QET
1095
+ protocol
1096
+ Hotta’s original QET protocol, which can be imple-
1097
+ mented by Fig. 1 (B) in the main text, does require the
1098
+ conditional operations based on a signal µ ∈ {−1, +1}
1099
+
1100
+ (V)
1101
+ (H1)
1102
+ 0.0
1103
+ 2.0
1104
+ 0.5
1105
+ 18
1106
+ -
1107
+ 0.1
1108
+ 18
1109
+ 1.6
1110
+ -
1111
+ 16
1112
+ 0.4
1113
+ 0.2
1114
+ E'O-
1115
+ 0.3
1116
+ 10
1117
+ 0.4
1118
+ -
1119
+ 8°0
1120
+ 0.8
1121
+ -
1122
+ 0.2
1123
+ 0.5
1124
+ 0.6
1125
+ -
1126
+ 0.6
1127
+ 0.4
1128
+ 0.1
1129
+ 0.7
1130
+ -
1131
+ 0.0
1132
+ 00.0
1133
+ 0.4
1134
+ 0.6
1135
+ 8:0
1136
+ 10
1137
+ 12
1138
+ 141618
1139
+ 00.0
1140
+ 20
1141
+ 0.4
1142
+ 9'0
1143
+ 8:0
1144
+ 10
1145
+ 12
1146
+ 14
1147
+ 16
1148
+ 18
1149
+ 2.0
1150
+ k
1151
+ k10
1152
+ (h, k)
1153
+ (1,0.1)
1154
+ (1,0.2)
1155
+ (1,0.5)
1156
+ (1,1)
1157
+ (1.5,1)
1158
+ Analytical ⟨E0⟩
1159
+ 0.9950
1160
+ 0.9806
1161
+ 0.8944
1162
+ 0.7071
1163
+ 1.2481
1164
+ qasm simulator ⟨E0⟩
1165
+ 0.9929 ± 0.0010
1166
+ 0.9807 ± 0.0010
1167
+ 0.8948 ± 0.0010
1168
+ 0.7067 ± 0.0010
1169
+ 1.2492 ± 0.0015
1170
+ Analytical ⟨V ⟩
1171
+ -0.0193
1172
+ -0.0701
1173
+ -0.2598
1174
+ -0.3746
1175
+ -0.4905
1176
+ qasm simulator ⟨V ⟩ −0.0194 ± 0.0057 −0.0682 ± 0.0011 −0.2625 ± 0.0061 −0.3729 ± 0.0063 −0.4860 ± 0.0061
1177
+ Analytical ⟨H1⟩
1178
+ 0.0144
1179
+ 0.0521
1180
+ 0.1873
1181
+ 0.2598
1182
+ 0.3480
1183
+ qasm simulator ⟨H1⟩
1184
+ 0.0136 ± 0.0006
1185
+ 0.0501 ± 0.0011
1186
+ 0.1857 ± 0.0022
1187
+ 0.2550 ± 0.0028
1188
+ 0.3493 ± 0.0038
1189
+ Analytical ⟨E1⟩
1190
+ -0.0049
1191
+ -0.0180
1192
+ -0.0726
1193
+ −0.1147
1194
+ -0.1425
1195
+ qasm simulator ⟨E1⟩ −0.0058 ± 0.0057 −0.0181 ± 0.016 −0.0768 ± 0.0064 −0.1179 ± 0.0068 −0.1367 ± 0.0072
1196
+ TABLE II: Comparison between analytical values and numerical values from the quantum circuits with conditional opera-
1197
+ tion (Fig. 1 (B)). Each error corresponds to statistical error of 105 shots. We evaluate ⟨E1⟩ = ⟨H1⟩ + ⟨V ⟩.
1198
+ that Bob receives from Alice. We performed quantum
1199
+ computation on the equivalent circuit (right quantum cir-
1200
+ cuit in Fig. 1) (C) that yielded exactly the same results.
1201
+ Let Λ(U) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U be a controlled U
1202
+ gate. Note that Λ(U(−1)) and (X ⊗ I)Λ(U(+1))(X ⊗ I)
1203
+ commute:
1204
+ U(−1)
1205
+ U(+1)
1206
+ =
1207
+ U(+1)
1208
+ U(−1)
1209
+ Of course, the equivalence of these circuits is theoreti-
1210
+ cally trivial, we used qasm simulator and executed our
1211
+ simulation based on the left quantum circuit in Fig. 1
1212
+ (C), in order to confirm the consistency between them.
1213
+ Table II summarizes the numerical results and shows per-
1214
+ fect agreement with the analytical results as well as re-
1215
+ sults (Table IV) with the right circuit in Fig. 1 (C).
1216
+ Appendix C: Properties of Quantum Hardware
1217
+ Here we describe more on our experiments with IBM
1218
+ quantum computers. Graphs of IBM quantum computers
1219
+ we used are displayed in Fig 4. For example, the layout
1220
+ of ibmq lima corresponds to (A) in Fig. 4 and we used
1221
+ the pair of qubits in [0,1] that had the smallest readout
1222
+ assignment error among all pairs (Fig. 2 (A) [Left]). We
1223
+ can perform a direct CNOT operation between qubits
1224
+ connected at the edge. For ibmq lima, the CNOT error
1225
+ between [1,2] qubits were 0.00510 (Table. III).
1226
+ Appendix D: Additional results with 6 different
1227
+ quantum hardware
1228
+ Here we describe additional results obtained by some
1229
+ other IBM quantum computers. In the main text we fo-
1230
+ cused on best results with ibmq lima and ibmq jakarta,
1231
+ but in fact we also experimented with ibmq hanoi,
1232
+ ibm cairo, ibm auckland, ibmq montreal.
1233
+ Table IV
1234
+ summarizes the complete lists of the best data we ob-
1235
+ FIG. 4:
1236
+ Configurations of qubits on graphs:
1237
+ (A) the lay-
1238
+ out of ibmq lima which has 5 qubits; (B) the layout of
1239
+ ibmq jakarta which has 7 qubits; (C) the layout of 27-qubit
1240
+ hardware including ibmq hanoi, ibm cairo, ibm auckland
1241
+ and ibmq montreal. A direct CNOT gate can be applied to
1242
+ two qubits connected at the edge.
1243
+ tained and Table III summarizes the experimental con-
1244
+ ditions used for each hardware. In the entire circuit, the
1245
+ total number N of qubits is 2 and the circuit depth d(N)
1246
+ that can be executed is 9 (excluding measurement of V )
1247
+ and 10 (including measurement of V ). The quantum vol-
1248
+ ume is defined by QV =
1249
+
1250
+ arg maxn≤N min{n, d(n)}
1251
+ �2.
1252
+ Therefore quantum computers with QV
1253
+ =
1254
+ 128 are
1255
+ enough for this work. Here QV is a metric that quantifies
1256
+ the largest random circuit of equal width and depth that
1257
+ a quantum computer can successfully implement. How-
1258
+ ever, QV may not be a crucial metric in this study, since
1259
+ we are only dealing with 2-qubit, relatively simple quan-
1260
+ tum circuits. Errors in quantum computers result from a
1261
+ combination of various factors, including readout error,
1262
+ CNOT error, etc.. Table IV shows that Alice’s measure-
1263
+ ments of X0 are relatively accurate in almost all cases.
1264
+ With respect to the observation of V , there is a deviation
1265
+
1266
+ 0
1267
+ 2
1268
+ 0
1269
+ 3
1270
+ 3
1271
+ 4
1272
+ 4
1273
+ 5
1274
+ (6)
1275
+ 17
1276
+ 4
1277
+ 10
1278
+ 12
1279
+ 15
1280
+ 18
1281
+ 21
1282
+ 23
1283
+ 13
1284
+ 24
1285
+ 5
1286
+ 8
1287
+ 11
1288
+ 14
1289
+ 16
1290
+ 19
1291
+ 22
1292
+ 25
1293
+ 26
1294
+ 2011
1295
+ Backend
1296
+ ibmq lima
1297
+ ibmq jakarta
1298
+ ibm cairo
1299
+ ibm hanoi
1300
+ ibmq auckland ibmq montreal
1301
+ Ntot
1302
+ 5
1303
+ 7
1304
+ 27
1305
+ 27
1306
+ 27
1307
+ 27
1308
+ Quantum Volume
1309
+ 8
1310
+ 16
1311
+ 64
1312
+ 64
1313
+ 64
1314
+ 128
1315
+ shots
1316
+ 105
1317
+ 3.2 × 104
1318
+ 105
1319
+ 105
1320
+ 105
1321
+ 3.2 × 104
1322
+ Measurement fidelity
1323
+ 0.961075
1324
+ 0.924695
1325
+ 0.961935
1326
+ 0.979530
1327
+ 0.979383
1328
+ 0.957484
1329
+ qubits used
1330
+ [0,1]
1331
+ [3,5]
1332
+ [13,14]
1333
+ [14,16]
1334
+ [14,16]
1335
+ [14,16]
1336
+ CNOT error
1337
+ 0.00510
1338
+ 0.00665
1339
+ 0.00439
1340
+ 0.01996
1341
+ 0.00570
1342
+ 0.00739
1343
+ Gate time (ns)
1344
+ 305.778
1345
+ 291.556
1346
+ 220.444
1347
+ 472.889
1348
+ 355.556
1349
+ 355.556
1350
+ First qubit
1351
+ t1(µs)
1352
+ 75.67
1353
+ 93.53
1354
+ 146.43
1355
+ 219.15
1356
+ 60.97
1357
+ 129.56
1358
+ t2(µs)
1359
+ 141.39
1360
+ 41.09
1361
+ 164.29
1362
+ 25.75
1363
+ 150.49
1364
+ 168.53
1365
+ Frequency (GHz)
1366
+ 5.030
1367
+ 5.178
1368
+ 5.282
1369
+ 5.047
1370
+ 5.167
1371
+ 4.961
1372
+ Anharmonicity (GHz)
1373
+ -0.33574
1374
+ -0.34112
1375
+ -0.33874
1376
+ -0.34412
1377
+ -0.34196
1378
+ -0.32314
1379
+ Pauli X error
1380
+ 2.781 × 10−4 2.140 × 10−4 1.630 × 10−4 2.305 × 10−4 2.4842 × 10−4
1381
+ 1.942 × 10−4
1382
+ Readout assignment error 1.960 × 10−2 2.440 × 10−2 8.500 × 10−3 7.400 × 10−3
1383
+ 8.100 × 10−3
1384
+ 1.310 × 10−2
1385
+ Second qubit
1386
+ t1(µs)
1387
+ 58.03
1388
+ 143.52
1389
+ 94.28
1390
+ 190.07
1391
+ 73.16
1392
+ 83.73
1393
+ t2(µs)
1394
+ 74.97
1395
+ 59.33
1396
+ 186.99
1397
+ 253.46
1398
+ 183.12
1399
+ 39.92
1400
+ Frequency (GHz)
1401
+ 5.128
1402
+ 5.063
1403
+ 5.044
1404
+ 4.883
1405
+ 4.970
1406
+ 5.086
1407
+ Anharmonicity (GHz)
1408
+ -0.31835
1409
+ -0.34129
1410
+ -0.34289
1411
+ -0.34591
1412
+ -0.34389
1413
+ -0.33707
1414
+ Pauli X error
1415
+ 1.469 × 10−4 1.708 × 10−4 1.732 × 10−4 4.708 × 10−4
1416
+ 2.052 × 10−4
1417
+ 2.221 × 10−4
1418
+ Readout assignment error 1.300 × 10−2 2.400 × 10−2 8.000 × 10−3 9.600 × 10−3
1419
+ 7.700 × 10−3
1420
+ 9.800 × 10−3
1421
+ TABLE III: Machine properties of IBM quantum computers and parameters we used.
1422
+ shots is the number of iterations
1423
+ we performed for sampling. Average measurement fidelity was computed when preparing a calibration matrix and used for
1424
+ measurement error mitigation. CNOT error corresponds to the direct CNOT error between two qubits [q0, q1] used. Gate time
1425
+ corresponds to the gate time between [q0, q1]. First and second qubits corresponds to q0 and q1, respectively. t1 is relaxation
1426
+ time and t2 is dephasing time.
1427
+ from the analytical value. It was confirmed that the error
1428
+ mitigation improved the results. In this study, what is
1429
+ important is that negative expectation values ⟨V ⟩ were
1430
+ observed for all cases. It is a noteworthy achievement
1431
+ that negative energy expectation values ⟨E⟩ < 0 were
1432
+ observed by error mitigation. In fact, the histograms of
1433
+ states (Fig. 2 (B)) have improved to approach the ex-
1434
+ act values, indicating that all operations were performed
1435
+ correctly.
1436
+
1437
+ 12
1438
+ Backend
1439
+ (h, k) = (1, 0.2)
1440
+ (h, k) = (1, 0.5)
1441
+ (h, k) = (1, 1)
1442
+ (h, k) = (1.5, 1)
1443
+ Analytical value
1444
+ ⟨E0⟩
1445
+ 0.9806
1446
+ 0.894
1447
+ 0.7071
1448
+ 1.2481
1449
+ ibmq lima
1450
+ error mitigated
1451
+ 0.9423 ± 0.0032
1452
+ 0.8169 ± 0.0032
1453
+ 0.6560 ± 0.0031
1454
+ 1.2480 ± 0.0047
1455
+ unmitigated
1456
+ 0.9049 ± 0.0017
1457
+ 0.8550 ± 0.0032
1458
+ 0.6874 ± 0.0031
1459
+ 1.4066 ± 0.0047
1460
+ ibmq jakarta
1461
+ error mitigated
1462
+ 0.9299 ± 0.0056
1463
+ 0.8888 ± 0.0056
1464
+ 0.7039 ± 0.0056
1465
+ 1.2318 ± 0.0084
1466
+ unmitigated
1467
+ 0.9542 ± 0.0056
1468
+ 0.9089 ± 0.0056
1469
+ 0.7232 ± 0.0056
1470
+ 1.2624 ± 0.0083
1471
+ ibm hanoi
1472
+ error mitigated
1473
+ 1.0685 ± 0.0032
1474
+ 0.9534 ± 0.0032
1475
+ 0.7852 ± 0.0031
1476
+ 1.3728 ± 0.0047
1477
+ unmitigated
1478
+ 1.0670 ± 0.0031
1479
+ 0.9524 ± 0.0031
1480
+ 0.7809 ± 0.0031
1481
+ 1.3663 ± 0.0047
1482
+ ibm cairo
1483
+ error mitigated
1484
+ 0.9571 ± 0.0032
1485
+ 0.8626 ± 0.0031
1486
+ 0.7277 ± 0.0031
1487
+ 1.2072 ± 0.0047
1488
+ unmitigated
1489
+ 0.9578 ± 0.0031
1490
+ 0.8735 ± 0.0031
1491
+ 0.7362 ± 0.0031
1492
+ 1.2236 ± 0.0047
1493
+ ibm auckland
1494
+ error mitigated
1495
+ 0.9766 ± 0.0032
1496
+ 0.8703 ± 0.0032
1497
+ 0.6925 ± 0.0032
1498
+ 1.2482 ± 0.0047
1499
+ unmitigated
1500
+ 0.9771 ± 0.0032
1501
+ 0.8712 ± 0.0032
1502
+ 0.6931 ± 0.0032
1503
+ 1.2487 ± 0.0047
1504
+ ibmq montreal
1505
+ error mitigated
1506
+ 0.8774 ± 0.0056
1507
+ 0.8084 ± 0.0056
1508
+ 0.6315 ± 0.0056
1509
+ 1.1449 ± 0.0084
1510
+ unmitigated
1511
+ 0.9036 ± 0.0056
1512
+ 0.8338 ± 0.0056
1513
+ 0.6564 ± 0.0056
1514
+ 1.1819 ± 0.0084
1515
+ Analytical value
1516
+ ⟨H1⟩
1517
+ 0.0521
1518
+ 0.1873
1519
+ 0.2598
1520
+ 0.3480
1521
+ ibmq lima
1522
+ error mitigated
1523
+ 0.0733 ± 0.0032
1524
+ 0.1934 ± 0.0032
1525
+ 0.2526 ± 0.0032
1526
+ 0.3590 ± 0.0047
1527
+ unmitigated
1528
+ 0.1295 ± 0.0053
1529
+ 0.2422 ± 0.0024
1530
+ 0.2949 ± 0.0028
1531
+ 0.4302 ± 0.0039
1532
+ ibmq jakarta
1533
+ error mitigated
1534
+ 0.0736 ± 0.0055
1535
+ 0.2018 ± 0.0056
1536
+ 0.2491 ± 0.0056
1537
+ 0.3390 ± 0.0084
1538
+ unmitigated
1539
+ 0.0852 ± 0.0022
1540
+ 0.2975 ± 0.0045
1541
+ 0.3365 ± 0.0052
1542
+ 0.4871 ± 0.0073
1543
+ ibm hanoi
1544
+ error mitigated
1545
+ 0.1786 ± 0.0032
1546
+ 0.3256 ± 0.0032
1547
+ 0.4276 ± 0.0032
1548
+ 0.5890 ± 0.0047
1549
+ unmitigated
1550
+ 0.2012 ± 0.0019
1551
+ 0.3427 ± 0.0026
1552
+ 0.4378 ± 0.0031
1553
+ 0.6104 ± 0.0042
1554
+ ibm cairo
1555
+ error mitigated
1556
+ 0.0674 ± 0.0032
1557
+ 0.1653 ± 0.0031
1558
+ 0.2579 ± 0.0031
1559
+ 0.3559 ± 0.0047
1560
+ unmitigated
1561
+ 0.0905 ± 0.0014
1562
+ 0.1825 ± 0.0022
1563
+ 0.2630 ± 0.0027
1564
+ 0.3737 ± 0.0037
1565
+ ibm auckland
1566
+ error mitigated
1567
+ 0.1218 ± 0.0032
1568
+ 0.2004 ± 0.0031
1569
+ 0.2181 ± 0.0032
1570
+ 0.3215 ± 0.0047
1571
+ unmitigated
1572
+ 0.1455 ± 0.0017
1573
+ 0.2205 ± 0.0023
1574
+ 0.2337 ± 0.0027
1575
+ 0.3493 ± 0.0038
1576
+ ibmq montreal
1577
+ error mitigated
1578
+ 0.0897 ± 0.0056
1579
+ 0.1618 ± 0.0056
1580
+ 0.1921 ± 0.0056
1581
+ 0.2816 ± 0.0084
1582
+ unmitigated
1583
+ 0.1603 ± 0.0032
1584
+ 0.2251 ± 0.0041
1585
+ 0.2454 ± 0.0049
1586
+ 0.3704 ± 0.0068
1587
+ Analytical value
1588
+ ⟨V ⟩
1589
+ -0.0701
1590
+ -0.2598
1591
+ -0.3746
1592
+ -0.4905
1593
+ ibmq lima
1594
+ error mitigated −0.0655 ± 0.0012 −0.2041 ± 0.0031 −0.2744 ± 0.0063 −0.4091 ± 0.0063
1595
+ unmitigated
1596
+ −0.0538 ± 0.0011 −0.1471 ± 0.0025 −0.1233 ± 0.0041 −0.2737 ± 0.0046
1597
+ ibmq jakarta
1598
+ error mitigated −0.0515 ± 0.0022 −0.2348 ± 0.0056 −0.3255 ± 0.0112 −0.4469 ± 0.0112
1599
+ unmitigated
1600
+ −0.0338 ± 0.0021 −0.1371 ± 0.0046 −0.0750 ± 0.0075 −0.2229 ± 0.0083
1601
+ ibm hanoi
1602
+ error mitigated −0.1136 ± 0.0013 −0.2820 ± 0.0031 −0.3497 ± 0.0063 −0.5512 ± 0.0063
1603
+ unmitigated
1604
+ −0.1061 ± 0.0011 −0.2494 ± 0.0022 −0.2704 ± 0.0034 −0.4767 ± 0.0038
1605
+ ibm cairo
1606
+ error mitigated −0.0497 ± 0.0013 −0.1968 ± 0.0031 −0.2569 ± 0.0063 −0.3804 ± 0.0063
1607
+ unmitigated
1608
+ −0.0471 ± 0.0012 −0.1682 ± 0.0026 −0.1733 ± 0.0038 −0.3089 ± 0.0045
1609
+ ibm auckland
1610
+ error mitigated −0.0138 ± 0.0012 −0.0854 ± 0.0032 −0.0591 ± 0.0063 −0.1887 ± 0.0063
1611
+ unmitigated
1612
+ −0.0113 ± 0.0012 −0.0665 ± 0.0027 −0.0046 ± 0.0044 −0.1412 ± 0.0049
1613
+ ibmq montreal error mitigated −0.0157 ± 0.0022 −0.1207 ± 0.0056 −0.1275 ± 0.0112 −0.1967 ± 0.0112
1614
+ unmitigated
1615
+ −0.0091 ± 0.0021 −0.0764 ± 0.0048 −0.0043 ± 0.0079 −0.0926 ± 0.0089
1616
+ Analytical value
1617
+ ⟨E1⟩
1618
+ -0.0180
1619
+ -0.0726
1620
+ -0.1147
1621
+ -0.1425
1622
+ ibmq lima
1623
+ error mitigated
1624
+ 0.0078 ± 0.0034
1625
+ −0.0107 ± 0.0045 −0.0217 ± 0.0071 −0.0501 ± 0.0079
1626
+ unmitigated
1627
+ 0.0757 ± 0.0054
1628
+ 0.0950 ± 0.0035
1629
+ 0.1715 ± 0.0050
1630
+ 0.1565 ± 0.0060
1631
+ ibmq jakarta
1632
+ error mitigated
1633
+ 0.0221 ± 0.0059
1634
+ −0.0330 ± 0.0079 −0.0764 ± 0.0125 −0.1079 ± 0.0140
1635
+ unmitigated
1636
+ 0.0514 ± 0.0030
1637
+ 0.1604 ± 0.0064
1638
+ 0.2615 ± 0.0091
1639
+ 0.2642 ± 0.00111
1640
+ ibm hanoi
1641
+ error mitigated
1642
+ 0.065 ± 0.0034
1643
+ 0.0436 ± 0.0044
1644
+ 0.0779 ± 0.0071
1645
+ 1.2481 ± 0.015
1646
+ unmitigated
1647
+ 0.0950 ± 0.0022
1648
+ 0.0933 ± 0.0021
1649
+ 0.1674 ± 0.0046
1650
+ 1.0566 ± 0.015
1651
+ ibm cairo
1652
+ error mitigated
1653
+ 0.0177 ± 0.0035
1654
+ −0.0315 ± 0.0044
1655
+ 0.0010 ± 0.0070
1656
+ −0.0245 ± 0.0079
1657
+ unmitigated
1658
+ 0.0433 ± 0.0018
1659
+ 0.0143 ± 0.0034
1660
+ 0.0897 ± 0.0047
1661
+ 0.0648 ± 0.0058
1662
+ ibm auckland
1663
+ error mitigated
1664
+ 0.1080 ± 0.0034
1665
+ 0.1149 ± 0.0045
1666
+ 0.5877 ± 0.0031
1667
+ 1.2072 ± 0.0047
1668
+ unmitigated
1669
+ 0.1341 ± 0.0021
1670
+ 0.154 ± 0.0035
1671
+ 0.6364 ± 0.0031
1672
+ 1.2236 ± 0.0047
1673
+ ibmq montreal
1674
+ error mitigated
1675
+ 0.0740 ± 0.0060
1676
+ 0.0411 ± 0.0079
1677
+ 0.0645 ± 0.0057
1678
+ 0.0849 ± 0.0140
1679
+ unmitigated
1680
+ 0.1512 ± 0.0038
1681
+ 0.1487 ± 0.0063
1682
+ 0.2411 ± 0.0093
1683
+ 0.2778 ± 0.0112
1684
+ TABLE
1685
+ IV:
1686
+ Results
1687
+ by
1688
+ ibmq lima,
1689
+ ibmq jakarta,
1690
+ ibmq hanoi, ibm cairo, ibm auckland, ibmq montreal.
1691
+
E9E0T4oBgHgl3EQfzAJD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdE2T4oBgHgl3EQfowg5/content/tmp_files/2301.04021v1.pdf.txt ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Need for “special” states in a deterministic
2
+ theory of quantum mechanics
3
+ L. S. Schulman
4
+ Clarkson University, Potsdam, New York 13699-5820, USA
5
+ email: schulman<at>clarkson.edu
6
+ January 11, 2023
7
+ Abstract
8
+ There are several theories or processes which may underlie quantum mechanics and
9
+ make it deterministic. Some references are given in the main text. Any such theory, plus
10
+ a number of reasonable assumptions, implies the existence of what I have called “special”
11
+ states. The assumptions are conservation laws, obedience (up to a point) of Schr¨odinger’s
12
+ equation, and a single world, in the sense of the many worlds interpretation (the last one a
13
+ consequence of any deterministic theory). This article also, for clarity, gives an example of
14
+ a “special” state. There is an experimental test of the “special” state theory.
15
+ 1
16
+ Introduction
17
+ Determinism is a loophole in Bell’s [1] ideas, which he was aware of. I unwittingly exploited it in
18
+ 1984 [18] with what I will call the “special” state theory of measurement. (In Sec. 2 an example
19
+ of a “special” state is given.) The present article reports new motivation for “special” states.
20
+ There have been quite a few attempts to find an underlying process that would make the
21
+ Schr¨odinger equation deterministic. I am not referring to Bohm’s interpretation [2] or that of
22
+ his followers. Rather I have in mind those theories which would restore determinism, such as
23
+ (not exclusively) those of ’tHooft [22, 23], Palmer [16], De la Pena Auerbach and Cetto [13],
24
+ Cavalleri et al. [5], Cufaro-Petroni and Vigier [6] and Marshall [15]. For at least some of these
25
+ the Schr¨odinger equation is an approximation—a good approximation, but an approximation
26
+ nevertheless. There has also been discussion about the consequences of determinism [22, 16, 12,
27
+ 4, 11].
28
+ There is an experimental test of the “special” state theory, which, if successful, would lend
29
+ credence to some of the theories advanced. If negative, it would be challenging to maintain
30
+ determinism.
31
+ 2
32
+ “Special” states
33
+ Most of this section is review. It may be skipped by those familiar with the kind of “special”
34
+ states that I have in mind.
35
+ 1
36
+ arXiv:2301.04021v1 [quant-ph] 8 Jan 2023
37
+
38
+ We take, as an example of a “special” state, a spin, initially pointing in the positive z
39
+ direction with a 50% probability of overturning at some given time, say at 0.15 (since all is
40
+ determined the time of observation is also fixed). Moreover, we don’t deal with “registration” of
41
+ the measurement; that will be accomplished by additional degrees of freedom.1 The Hamiltonian
42
+ is
43
+ H = ε
44
+ 2 (1 + σz) + ωa†a + βσx(a† + a).
45
+ (1)
46
+ The Pauli matrices σx and σz are the operators for the 2-state spin system, a and a† are the
47
+ boson operators and ε, β and ω are parameters.
48
+ “Special” states are particular initial conditions of the bath such that the microscopic final
49
+ state of the spin is (either) all up, (eiφ1
50
+ 0 ), or all down, (
51
+ 0
52
+ eiφ2 ). “Final” refers to the time of
53
+ measurement, namely when (even) more degrees of freedom are involved (we use parameter
54
+ values ϵ = 0.5, ω = 0.1, β = 0.6 and a time of 0.15).
55
+ The system begins in all up and ordinarily at time 0.15 has probability of half up, half down.
56
+ As indicated, that is not the case for these “special” initial conditions. If the probabilities are
57
+ as in Fig. 1a—with fixed phases (not shown)—then the system will be found in an up state. If
58
+ the initial state is as shown in Fig. 1b (again with particular phases, not shown) then the system
59
+ will be found in a down state.
60
+ There are three points to be raised: the first is what about residual amplitudes? The ampli-
61
+ tude for (say) the up state is not perfect and for the given cutoff of the bosons at 250 is about
62
+ 10−4; the same is true for the state which is “fully” decayed. The second question has to do with
63
+ Schr¨odinger’s cat. And the third issue is how do you find these states?
64
+ Now 10−4 is a big number, especially since the final state of one interaction is the initial
65
+ state for the next. I could improve that number if I had better computer power, but I doubt
66
+ if it could be zero. But it doesn’t have to be zero! It only needs to be accurate as far as the
67
+ Schr¨odinger equation has been checked. And I don’t think it has been checked to 10−12 (which I
68
+ am reasonably confident I could get the discrepancy down to).
69
+ The second issue I mentioned is, what about Schr¨odinger cats? The (possibly) decaying spin
70
+ could be the determinant of whether the poison is released.2 With “special” states the cat is
71
+ either alive or dead. It should be noticed that there are only what ’tHooft calls “ontological”
72
+ states [22, 23]. I believe “special” and “ontological” have the same meaning in this case.
73
+ Finally there is question of how “special” states are found.
74
+ You can define a projection
75
+ operator (cf. [19]) on the spin: P ≡ (ψupψ†
76
+ up)⊗1boson bath. Using this operator, the probability of
77
+ being all up at time t is
78
+ Pr(up) = ⟨ψup ⊗ ψbath∣U †PU∣ψup ⊗ ψbath⟩ = ⟨ψup ⊗ ψbath∣PU †PPUP∣ψup ⊗ ψbath⟩,
79
+ (2)
80
+ with U ≡ exp(−iHt/ℏ) and where PP = P is used. Defining A ≡ PUP and using P † = P, we have
81
+ Pr(up) = ⟨ψup⊗ψbath∣A†A∣ψup⊗ψbath⟩. Defining B ≡ A†A, it follows that the issue of whether any
82
+ initial state (of the bath) can lead to a measurement of up, using purely unitary time evolution
83
+ 1The irreversible “registration” of the result of a measurement by the observer has been studied in many
84
+ contexts. For example, in [9] the “measurement” is accompanied by the bath’s (not the same as the bath in
85
+ the current Eq. (1)) changing in an irreversible fashion. Other models of measurement (e.g., [3, 10]) show the
86
+ same feature. As a result, our considerations in the present article do not pursue the registration issue once the
87
+ observer is coupled to the system, that coupling taking place (in our forthcoming example) at 0.15 time units.
88
+ 2I assume familiarity with the Schr¨odinger cat paradox.
89
+ 2
90
+
91
+ is the matter of whether B has eigenvalues equal to one. For any fully decayed states you must
92
+ have an eigenvalue (of B) be zero. (Of course A and B are functions of t, since U is.)
93
+ Remark:
94
+ It also is true that the number of decay states and non-decay (“special”) states is
95
+ roughly equal at time 0.15.
96
+ Figure 1: “Special” time-0 oscillator states. Figure (a) shows the (initial) probability of excitation
97
+ of oscillator states that contribute to the non-decay state. Only shown are even states, since there
98
+ is total amplitude zero for the odd states. Phases of the states are not shown, but are also fixed
99
+ by the non-decay condition. In Figure (b) are shown the probabilities for the state that decays;
100
+ in this case (and for the same reason) only even oscillator states are shown. As in image a, the
101
+ phases, though not shown are crucial to the “special” nature of the state.
102
+ This is the main idea of the “special” state theory: no macroscopic superpositions because
103
+ of particular initial conditions. There is also no entanglement. At time-0.15 the spin state is
104
+ wholly in one state or the other.
105
+ 3
106
+ Determinism implies “special” states
107
+ The title of this section needs a bit of enhancement: you need a few more concessions to reality.
108
+ Besides determinism you need conservation laws and Schr¨odinger’s equation, at least to the
109
+ extent that it’s been checked. It is also understood that there is just one world. These rules,
110
+ together with determinism, imply “special” states.
111
+ You start with a wave function describing some state, say a spin in a Stern-Gerlach experi-
112
+ ment. Then it must go to some particular outcome, say spin up. Presumably there were involved
113
+ other coordinates (such as the bosons in the above example) that fixed its outcome. The final
114
+ state is definite. But the Schr¨odinger equation holds also. Therefore it could only have evolved
115
+ to that final state. How can that be? There must have been a coordination of degrees of freedom
116
+ on the initial state that forced it to its final form. That is, there must have been a “special”
117
+ state.
118
+ 4
119
+ Experiment
120
+ Finally, there is the matter of experiment. In [20] and [21] we have described in detail experi-
121
+ mental tests of the “special” state theory. An example is the double Stern-Gerlach experiment
122
+ 3
123
+
124
+ 0.2
125
+ a
126
+ 0.15
127
+ 0.1
128
+ 0.05
129
+ 0
130
+ 0
131
+ 50
132
+ 100
133
+ state label
134
+ 200
135
+ 2500.07
136
+ b
137
+ 0.06
138
+ 0.05
139
+ probability
140
+ 0.04
141
+ 0.03
142
+ 0.02
143
+ 0.01
144
+ 0
145
+ 0
146
+ 50
147
+ 100
148
+ 200
149
+ 250
150
+ state label([17, 8, 14, 7]) which requires the detection of a magnetic field of 5×10−8 tesla in an environment
151
+ of half a tesla, a challenging experiment. A firm absence of the small magnetic field would in my
152
+ opinion spell the end of efforts to find a deterministic theory (but no-go theorems are made to
153
+ be disproved).
154
+ 5
155
+ Conclusions
156
+ You don’t have to believe in any of the deterministic theories to reach the conclusion that
157
+ “special” states are needed in any theory which is deterministic, goes from one “special” state
158
+ into another, satisfies Schr¨odinger’s equations (as far as has been measured), has a single world
159
+ and satisfies conservation laws. You only have to believe that it’s possible.
160
+ Three points are worth mentioning. First—and this is new—you don’t need to eliminate
161
+ “incorrect” choices (by “special” states) at the level of (say) 10−12, since the Schr¨odinger equa-
162
+ tion has not been checked at that level. Second, there is an experimental test of the special
163
+ state theory. Failure would eliminate deterministic theories (or leave people struggling for an
164
+ explanation), while success would encourage attempts to find deterministic theories. Third, it
165
+ may be that ’tHooft is right, and one should look to extremely small times and distances for
166
+ theoretical support for determinism. However, given the fragmentary understanding of events at
167
+ 10−17 cm I’d be reluctant to make predictions about what happens at 10−33 cm.
168
+ References
169
+ [1] J. S. Bell.
170
+ Speakable and unspeakable in quantum mechanics.
171
+ Cambridge Univ. Press,
172
+ Cambridge, 1987.
173
+ [2] David Bohm. Quntum Theory. Prentice Hall, New Jersey, 1961.
174
+ [3] P. B´ona. A solvable model of particle detection in quantum theory. Acta Facultatis Rerum
175
+ Naturalium Uuniversitatis Comenianae Physica, XX:65–95, 1980.
176
+ [4] C. H. Brans. Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor.
177
+ Phys., 27:219, 1988.
178
+ [5] G. Cavalleri, E. Cesaroni, E. Tonni, and P. Di Sia. About the derivation of Planck’s black
179
+ body spectrum from classical mechanics. in “Physical Interpretations of Relativity Theory
180
+ VI” (Imperial College, London, 15-18 September 2000), Ed. by M.C.Duffy, School of Me-
181
+ chanical Engineering, Sunderland Polytecnic, Chester Road, Sunderland, SR1 3SD, England
182
+ (p. 78), 09 2000.
183
+ [6] N. Cufaro-Petroni and J-P. Vigier. Single-particle trajectories and interferences in quantum
184
+ mechanics. Found. Phys., 22:1–40, 1992.
185
+ [7] R. Frisch, T. E. Phipps, E. Segre, and O. Stern. Process of space quantisation. Nature, 130
186
+ (no. 3293):892–3, 1932.
187
+ 4
188
+
189
+ [8] R. Frisch and E. Segr`e. ¨Uber die Einstellung der Richtungsquantelung. II. Zeitschrift f¨ur
190
+ Physik, 80:610–616, 1933.
191
+ [9] B. Gaveau and L. S. Schulman. Model apparatus for quantum measurements. J. Stat. Phys.,
192
+ 58:1209–1230, 1990.
193
+ [10] H. S. Green. Observation in quantum mechanics. Nuov. Cim., 9:880–889, 1958.
194
+ [11] M. J. W. Hall. Local deterministic model of singlet state correlations based on relaxing
195
+ measurement independence. Phys. Rev. Lett., 105:250404, 2010.
196
+ [12] S. Hossenfelder and T. Palmer. Rethinking superdeterminism. Front. Phys., 8:139, 2020.
197
+ [13] L. De la Pe˜na Auerbach and A. M. Cetto. Stochastic electrodynamics as a foundation for
198
+ quantum mechanics. Phys. Lett., 56A:253–254, 1976.
199
+ [14] E. Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento, 9:43–50, 1932.
200
+ [15] T. W. Marshall. Statistical electrodynamcs. Proc. Camb. Phil. Soc., 61:537–546, 1965.
201
+ [16] T. N. Palmer. The Invariant Set Postulate: a new geometric framework for the foundations
202
+ of quantum theory and the role played by gravity. Proc. Roy. Soc. A, 465:3165–3185, 2009.
203
+ [17] T. E. Phipps and O. Stern. ¨Uber die einstellung der richtungsquantelung. Zeitschrift f¨ur
204
+ Physik, 73:185–191, 1932.
205
+ [18] L. S. Schulman. Definite measurements and deterministic quantum evolution. Phys. Lett.
206
+ A, 102:396–400, 1984.
207
+ [19] L. S. Schulman. Time’s Arrows and Quantum Measurement. Cambridge Univ. Press, New
208
+ York, 1997.
209
+ [20] L. S. Schulman. Experimental test of the “special state” theory of quantum measurement.
210
+ Entropy, 14:665–686, 2012.
211
+ [21] L. S. Schulman and M. G. E. da Luz. Looking for the source of change. Found. Phys.,
212
+ 46:1495–1501, 2016.
213
+ [22] G. ’tHooft. The Cellular Automaton Interpretation of Quantum Mechanics. Springer, Berlin,
214
+ 2016.
215
+ [23] G. ’tHooft. Deterministic quantum mechanics: The mathematical equations. Front. Phys.,
216
+ 8:253, 2020.
217
+ 5
218
+
EdE2T4oBgHgl3EQfowg5/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf,len=286
2
+ page_content='Need for “special” states in a deterministic theory of quantum mechanics L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
3
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
4
+ page_content=' Schulman Clarkson University, Potsdam, New York 13699-5820, USA email: schulman<at>clarkson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
5
+ page_content='edu January 11, 2023 Abstract There are several theories or processes which may underlie quantum mechanics and make it deterministic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
6
+ page_content=' Some references are given in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
7
+ page_content=' Any such theory, plus a number of reasonable assumptions, implies the existence of what I have called “special” states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
8
+ page_content=' The assumptions are conservation laws, obedience (up to a point) of Schr¨odinger’s equation, and a single world, in the sense of the many worlds interpretation (the last one a consequence of any deterministic theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
9
+ page_content=' This article also, for clarity, gives an example of a “special” state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
10
+ page_content=' There is an experimental test of the “special” state theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
11
+ page_content=' 1 Introduction Determinism is a loophole in Bell’s [1] ideas, which he was aware of.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
12
+ page_content=' I unwittingly exploited it in 1984 [18] with what I will call the “special” state theory of measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
13
+ page_content=' (In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
14
+ page_content=' 2 an example of a “special” state is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
15
+ page_content=') The present article reports new motivation for “special” states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
16
+ page_content=' There have been quite a few attempts to find an underlying process that would make the Schr¨odinger equation deterministic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
17
+ page_content=' I am not referring to Bohm’s interpretation [2] or that of his followers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
18
+ page_content=' Rather I have in mind those theories which would restore determinism, such as (not exclusively) those of ’tHooft [22, 23], Palmer [16], De la Pena Auerbach and Cetto [13], Cavalleri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
19
+ page_content=' [5], Cufaro-Petroni and Vigier [6] and Marshall [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
20
+ page_content=' For at least some of these the Schr¨odinger equation is an approximation—a good approximation, but an approximation nevertheless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
21
+ page_content=' There has also been discussion about the consequences of determinism [22, 16, 12, 4, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
22
+ page_content=' There is an experimental test of the “special” state theory, which, if successful, would lend credence to some of the theories advanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
23
+ page_content=' If negative, it would be challenging to maintain determinism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
24
+ page_content=' 2 “Special” states Most of this section is review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
25
+ page_content=' It may be skipped by those familiar with the kind of “special” states that I have in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
26
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
27
+ page_content='04021v1 [quant-ph] 8 Jan 2023 We take, as an example of a “special” state, a spin, initially pointing in the positive z direction with a 50% probability of overturning at some given time, say at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
28
+ page_content='15 (since all is determined the time of observation is also fixed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
29
+ page_content=' Moreover, we don’t deal with “registration” of the measurement;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
30
+ page_content=' that will be accomplished by additional degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
31
+ page_content='1 The Hamiltonian is H = ε 2 (1 + σz) + ωa†a + βσx(a† + a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
32
+ page_content=' (1) The Pauli matrices σx and σz are the operators for the 2-state spin system, a and a† are the boson operators and ε, β and ω are parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
33
+ page_content=' “Special” states are particular initial conditions of the bath such that the microscopic final state of the spin is (either) all up, (eiφ1 0 ), or all down, ( 0 eiφ2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
34
+ page_content=' “Final” refers to the time of measurement, namely when (even) more degrees of freedom are involved (we use parameter values ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
35
+ page_content='5, ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
36
+ page_content='1, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
37
+ page_content='6 and a time of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
38
+ page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
39
+ page_content=' The system begins in all up and ordinarily at time 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
40
+ page_content='15 has probability of half up, half down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
41
+ page_content=' As indicated, that is not the case for these “special” initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
42
+ page_content=' If the probabilities are as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
43
+ page_content=' 1a—with fixed phases (not shown)—then the system will be found in an up state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
44
+ page_content=' If the initial state is as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
45
+ page_content=' 1b (again with particular phases, not shown) then the system will be found in a down state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
46
+ page_content=' There are three points to be raised: the first is what about residual amplitudes?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
47
+ page_content=' The ampli- tude for (say) the up state is not perfect and for the given cutoff of the bosons at 250 is about 10−4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
48
+ page_content=' the same is true for the state which is “fully” decayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
49
+ page_content=' The second question has to do with Schr¨odinger’s cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
50
+ page_content=' And the third issue is how do you find these states?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
51
+ page_content=' Now 10−4 is a big number, especially since the final state of one interaction is the initial state for the next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
52
+ page_content=' I could improve that number if I had better computer power, but I doubt if it could be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
53
+ page_content=' But it doesn’t have to be zero!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
54
+ page_content=' It only needs to be accurate as far as the Schr¨odinger equation has been checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
55
+ page_content=' And I don’t think it has been checked to 10−12 (which I am reasonably confident I could get the discrepancy down to).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
56
+ page_content=' The second issue I mentioned is, what about Schr¨odinger cats?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
57
+ page_content=' The (possibly) decaying spin could be the determinant of whether the poison is released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
58
+ page_content='2 With “special” states the cat is either alive or dead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
59
+ page_content=' It should be noticed that there are only what ’tHooft calls “ontological” states [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
60
+ page_content=' I believe “special” and “ontological” have the same meaning in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
61
+ page_content=' Finally there is question of how “special” states are found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
62
+ page_content=' You can define a projection operator (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
63
+ page_content=' [19]) on the spin: P ≡ (ψupψ† up)⊗1boson bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
64
+ page_content=' Using this operator, the probability of being all up at time t is Pr(up) = ⟨ψup ⊗ ψbath∣U †PU∣ψup ⊗ ψbath⟩ = ⟨ψup ⊗ ψbath∣PU †PPUP∣ψup ⊗ ψbath⟩, (2) with U ≡ exp(−iHt/ℏ) and where PP = P is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
65
+ page_content=' Defining A ≡ PUP and using P † = P, we have Pr(up) = ⟨ψup⊗ψbath∣A†A∣ψup⊗ψbath⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
66
+ page_content=' Defining B ≡ A†A, it follows that the issue of whether any initial state (of the bath) can lead to a measurement of up, using purely unitary time evolution 1The irreversible “registration” of the result of a measurement by the observer has been studied in many contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
67
+ page_content=' For example, in [9] the “measurement” is accompanied by the bath’s (not the same as the bath in the current Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
68
+ page_content=' (1)) changing in an irreversible fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
69
+ page_content=' Other models of measurement (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
70
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
71
+ page_content=', [3, 10]) show the same feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
72
+ page_content=' As a result, our considerations in the present article do not pursue the registration issue once the observer is coupled to the system, that coupling taking place (in our forthcoming example) at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
73
+ page_content='15 time units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
74
+ page_content=' 2I assume familiarity with the Schr¨odinger cat paradox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
75
+ page_content=' 2 is the matter of whether B has eigenvalues equal to one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
76
+ page_content=' For any fully decayed states you must have an eigenvalue (of B) be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
77
+ page_content=' (Of course A and B are functions of t, since U is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
78
+ page_content=') Remark: It also is true that the number of decay states and non-decay (“special”) states is roughly equal at time 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
79
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
80
+ page_content=' Figure 1: “Special” time-0 oscillator states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
81
+ page_content=' Figure (a) shows the (initial) probability of excitation of oscillator states that contribute to the non-decay state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
82
+ page_content=' Only shown are even states, since there is total amplitude zero for the odd states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
83
+ page_content=' Phases of the states are not shown, but are also fixed by the non-decay condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
84
+ page_content=' In Figure (b) are shown the probabilities for the state that decays;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
85
+ page_content=' in this case (and for the same reason) only even oscillator states are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
86
+ page_content=' As in image a, the phases, though not shown are crucial to the “special” nature of the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
87
+ page_content=' This is the main idea of the “special” state theory: no macroscopic superpositions because of particular initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
88
+ page_content=' There is also no entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
89
+ page_content=' At time-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
90
+ page_content='15 the spin state is wholly in one state or the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
91
+ page_content=' 3 Determinism implies “special” states The title of this section needs a bit of enhancement: you need a few more concessions to reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
92
+ page_content=' Besides determinism you need conservation laws and Schr¨odinger’s equation, at least to the extent that it’s been checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
93
+ page_content=' It is also understood that there is just one world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
94
+ page_content=' These rules, together with determinism, imply “special” states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
95
+ page_content=' You start with a wave function describing some state, say a spin in a Stern-Gerlach experi- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
96
+ page_content=' Then it must go to some particular outcome, say spin up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
97
+ page_content=' Presumably there were involved other coordinates (such as the bosons in the above example) that fixed its outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
98
+ page_content=' The final state is definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
99
+ page_content=' But the Schr¨odinger equation holds also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
100
+ page_content=' Therefore it could only have evolved to that final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
101
+ page_content=' How can that be?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
102
+ page_content=' There must have been a coordination of degrees of freedom on the initial state that forced it to its final form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
103
+ page_content=' That is, there must have been a “special” state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
104
+ page_content=' 4 Experiment Finally, there is the matter of experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
105
+ page_content=' In [20] and [21] we have described in detail experi- mental tests of the “special” state theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
106
+ page_content=' An example is the double Stern-Gerlach experiment 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
107
+ page_content='2 a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
108
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
109
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
110
+ page_content='05 0 0 50 100 state label 200 2500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
111
+ page_content='07 b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
112
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
113
+ page_content='05 probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
114
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
115
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
116
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
117
+ page_content='01 0 0 50 100 200 250 state label([17, 8, 14, 7]) which requires the detection of a magnetic field of 5×10−8 tesla in an environment of half a tesla, a challenging experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
118
+ page_content=' A firm absence of the small magnetic field would in my opinion spell the end of efforts to find a deterministic theory (but no-go theorems are made to be disproved).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
119
+ page_content=' 5 Conclusions You don’t have to believe in any of the deterministic theories to reach the conclusion that “special” states are needed in any theory which is deterministic, goes from one “special” state into another, satisfies Schr¨odinger’s equations (as far as has been measured), has a single world and satisfies conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
120
+ page_content=' You only have to believe that it’s possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
121
+ page_content=' Three points are worth mentioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
122
+ page_content=' First—and this is new—you don’t need to eliminate “incorrect” choices (by “special” states) at the level of (say) 10−12, since the Schr¨odinger equa- tion has not been checked at that level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
123
+ page_content=' Second, there is an experimental test of the special state theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
124
+ page_content=' Failure would eliminate deterministic theories (or leave people struggling for an explanation), while success would encourage attempts to find deterministic theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
125
+ page_content=' Third, it may be that ’tHooft is right, and one should look to extremely small times and distances for theoretical support for determinism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
126
+ page_content=' However, given the fragmentary understanding of events at 10−17 cm I’d be reluctant to make predictions about what happens at 10−33 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
127
+ page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
128
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
129
+ page_content=' Bell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
130
+ page_content=' Speakable and unspeakable in quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
131
+ page_content=' Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
132
+ page_content=' Press, Cambridge, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
133
+ page_content=' [2] David Bohm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
134
+ page_content=' Quntum Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
135
+ page_content=' Prentice Hall, New Jersey, 1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
136
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
137
+ page_content=' B´ona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
138
+ page_content=' A solvable model of particle detection in quantum theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
139
+ page_content=' Acta Facultatis Rerum Naturalium Uuniversitatis Comenianae Physica, XX:65–95, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
140
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
141
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
142
+ page_content=' Brans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
143
+ page_content=' Bell’s theorem does not eliminate fully causal hidden variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
144
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
145
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
146
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
147
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
148
+ page_content=', 27:219, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
149
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
150
+ page_content=' Cavalleri, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
151
+ page_content=' Cesaroni, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
152
+ page_content=' Tonni, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
153
+ page_content=' Di Sia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
154
+ page_content=' About the derivation of Planck’s black body spectrum from classical mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
155
+ page_content=' in “Physical Interpretations of Relativity Theory VI” (Imperial College, London, 15-18 September 2000), Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
156
+ page_content=' by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
157
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
158
+ page_content='Duffy, School of Me- chanical Engineering, Sunderland Polytecnic, Chester Road, Sunderland, SR1 3SD, England (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
159
+ page_content=' 78), 09 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
160
+ page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
161
+ page_content=' Cufaro-Petroni and J-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
162
+ page_content=' Vigier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
163
+ page_content=' Single-particle trajectories and interferences in quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
164
+ page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
165
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
166
+ page_content=', 22:1–40, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
167
+ page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
168
+ page_content=' Frisch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
169
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
170
+ page_content=' Phipps, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
171
+ page_content=' Segre, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
172
+ page_content=' Stern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
173
+ page_content=' Process of space quantisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
174
+ page_content=' Nature, 130 (no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
175
+ page_content=' 3293):892–3, 1932.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
176
+ page_content=' 4 [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
177
+ page_content=' Frisch and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
178
+ page_content=' Segr`e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
179
+ page_content=' ¨Uber die Einstellung der Richtungsquantelung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
180
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
181
+ page_content=' Zeitschrift f¨ur Physik, 80:610–616, 1933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
182
+ page_content=' [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
183
+ page_content=' Gaveau and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
184
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
185
+ page_content=' Schulman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
186
+ page_content=' Model apparatus for quantum measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
187
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
188
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
189
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
190
+ page_content=', 58:1209–1230, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
191
+ page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
192
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
193
+ page_content=' Green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
194
+ page_content=' Observation in quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
195
+ page_content=' Nuov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
196
+ page_content=' Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
197
+ page_content=', 9:880–889, 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
198
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
199
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
200
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
201
+ page_content=' Hall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
202
+ page_content=' Local deterministic model of singlet state correlations based on relaxing measurement independence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
203
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
204
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
205
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
206
+ page_content=', 105:250404, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
207
+ page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
208
+ page_content=' Hossenfelder and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
209
+ page_content=' Palmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
210
+ page_content=' Rethinking superdeterminism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
211
+ page_content=' Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
212
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
213
+ page_content=', 8:139, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
214
+ page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
215
+ page_content=' De la Pe˜na Auerbach and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
216
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
217
+ page_content=' Cetto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
218
+ page_content=' Stochastic electrodynamics as a foundation for quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
219
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
220
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
221
+ page_content=', 56A:253–254, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
222
+ page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
223
+ page_content=' Majorana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
224
+ page_content=' Atomi orientati in campo magnetico variabile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
225
+ page_content=' Nuovo Cimento, 9:43–50, 1932.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
226
+ page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
227
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
228
+ page_content=' Marshall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
229
+ page_content=' Statistical electrodynamcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
230
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
231
+ page_content=' Camb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
232
+ page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
233
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
234
+ page_content=', 61:537–546, 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
235
+ page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
236
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
237
+ page_content=' Palmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
238
+ page_content=' The Invariant Set Postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
239
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
240
+ page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
241
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
242
+ page_content=' A, 465:3165–3185, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
243
+ page_content=' [17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
244
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
245
+ page_content=' Phipps and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
246
+ page_content=' Stern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
247
+ page_content=' ¨Uber die einstellung der richtungsquantelung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
248
+ page_content=' Zeitschrift f¨ur Physik, 73:185–191, 1932.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
249
+ page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
250
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
251
+ page_content=' Schulman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
252
+ page_content=' Definite measurements and deterministic quantum evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
253
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
254
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
255
+ page_content=' A, 102:396–400, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
256
+ page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
257
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
258
+ page_content=' Schulman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
259
+ page_content=' Time’s Arrows and Quantum Measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
260
+ page_content=' Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
261
+ page_content=' Press, New York, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
262
+ page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
263
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
264
+ page_content=' Schulman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
265
+ page_content=' Experimental test of the “special state” theory of quantum measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
266
+ page_content=' Entropy, 14:665–686, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
267
+ page_content=' [21] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
268
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
269
+ page_content=' Schulman and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
270
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
271
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
272
+ page_content=' da Luz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
273
+ page_content=' Looking for the source of change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
274
+ page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
275
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
276
+ page_content=', 46:1495–1501, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
277
+ page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
278
+ page_content=' ’tHooft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
279
+ page_content=' The Cellular Automaton Interpretation of Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
280
+ page_content=' Springer, Berlin, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
281
+ page_content=' [23] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
282
+ page_content=' ’tHooft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
283
+ page_content=' Deterministic quantum mechanics: The mathematical equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
284
+ page_content=' Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
285
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
286
+ page_content=', 8:253, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
287
+ page_content=' 5' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EdE2T4oBgHgl3EQfowg5/content/2301.04021v1.pdf'}
EtE1T4oBgHgl3EQf-gZN/content/2301.03569v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8adc1dfe18abb0745bd7432b0ac213aeccc2586111fe60f1f060137f7dfdb017
3
+ size 1280015
EtE1T4oBgHgl3EQf-gZN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98a41592763ea2cb2004b60b2ee5c7f9eed422f208048313188038782a7298f7
3
+ size 8257581
F9E0T4oBgHgl3EQfhQEq/content/2301.02428v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8db78d362f0faf677a848f18b5e063840496385a77673713c907ebe1eab32329
3
+ size 1474844
F9E0T4oBgHgl3EQfhQEq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79be95bc1b41c34ee1078e43a098af244d8437eba816ed0f186e981d6bf69066
3
+ size 82693
FNAzT4oBgHgl3EQfUPz_/content/2301.01265v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2391b20e2e8e857aa7708bfbaef1b9940c36930c69924a7ec910180abcf3fbb5
3
+ size 2320529
FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36cf1a86f76dae14f4907b08581a887271cf6da0b37a1f51a3423b462f0dd6c5
3
+ size 459159
FNE1T4oBgHgl3EQfEwMv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2e4dac9e86f9bd16d1362c48c0a9143c7ffdb4c1a6b9f795cc4af89b9faf93d
3
+ size 1769517
FNE1T4oBgHgl3EQfEwMv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64eae7d788a84c45c34887ddb332836a710668b23467248cbf21440478e09dc
3
+ size 69886
G9E5T4oBgHgl3EQfWA_j/content/2301.05556v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c433dadfefd65f91b5e2b20be4efc21003bae95c0a14c2d2c7a3928ae95e673d
3
+ size 3330918