jackkuo commited on
Commit
b7a79d8
·
verified ·
1 Parent(s): 6f3e32c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E2T4oBgHgl3EQfmgcA/vector_store/index.pkl +3 -0
  2. -9FRT4oBgHgl3EQfsTcg/content/2301.13623v1.pdf +3 -0
  3. -9FRT4oBgHgl3EQfsTcg/vector_store/index.faiss +3 -0
  4. -9FRT4oBgHgl3EQfsTcg/vector_store/index.pkl +3 -0
  5. -dAyT4oBgHgl3EQf3fmN/content/tmp_files/2301.00770v1.pdf.txt +911 -0
  6. -dAyT4oBgHgl3EQf3fmN/content/tmp_files/load_file.txt +0 -0
  7. .gitattributes +62 -0
  8. 0dE2T4oBgHgl3EQf4wg0/vector_store/index.pkl +3 -0
  9. 0tE1T4oBgHgl3EQf4wXL/content/2301.03505v1.pdf +3 -0
  10. 2NAzT4oBgHgl3EQfuP1K/vector_store/index.faiss +3 -0
  11. 3NE0T4oBgHgl3EQfeABh/content/tmp_files/2301.02384v1.pdf.txt +742 -0
  12. 3NE0T4oBgHgl3EQfeABh/content/tmp_files/load_file.txt +0 -0
  13. 3dE4T4oBgHgl3EQf0Q2d/content/2301.05281v1.pdf +3 -0
  14. 3dE4T4oBgHgl3EQf0Q2d/vector_store/index.faiss +3 -0
  15. 3dE4T4oBgHgl3EQf0Q2d/vector_store/index.pkl +3 -0
  16. 3tFQT4oBgHgl3EQfHDWI/content/tmp_files/2301.13247v1.pdf.txt +2357 -0
  17. 3tFQT4oBgHgl3EQfHDWI/content/tmp_files/load_file.txt +0 -0
  18. 4NE1T4oBgHgl3EQfmASv/vector_store/index.faiss +3 -0
  19. 4NE1T4oBgHgl3EQfmASv/vector_store/index.pkl +3 -0
  20. 69E1T4oBgHgl3EQfTgNE/content/2301.03078v1.pdf +3 -0
  21. 69E1T4oBgHgl3EQfTgNE/vector_store/index.faiss +3 -0
  22. 7NE1T4oBgHgl3EQfTgOa/content/tmp_files/2301.03079v1.pdf.txt +1302 -0
  23. 7NE1T4oBgHgl3EQfTgOa/content/tmp_files/load_file.txt +444 -0
  24. 7dAyT4oBgHgl3EQfcvf_/content/tmp_files/2301.00291v1.pdf.txt +1640 -0
  25. 7dAyT4oBgHgl3EQfcvf_/content/tmp_files/load_file.txt +0 -0
  26. 7tE0T4oBgHgl3EQffQCV/content/2301.02402v1.pdf +3 -0
  27. 8tE0T4oBgHgl3EQffgDC/vector_store/index.pkl +3 -0
  28. 8tFST4oBgHgl3EQfaTh3/content/tmp_files/2301.13795v1.pdf.txt +1409 -0
  29. 8tFST4oBgHgl3EQfaTh3/content/tmp_files/load_file.txt +0 -0
  30. 99AyT4oBgHgl3EQfqfgS/content/tmp_files/2301.00542v1.pdf.txt +1774 -0
  31. 99AyT4oBgHgl3EQfqfgS/content/tmp_files/load_file.txt +0 -0
  32. 9dFQT4oBgHgl3EQf5zZD/content/tmp_files/2301.13436v1.pdf.txt +2042 -0
  33. 9dFQT4oBgHgl3EQf5zZD/content/tmp_files/load_file.txt +0 -0
  34. C9E2T4oBgHgl3EQf9QlY/content/tmp_files/2301.04226v1.pdf.txt +3034 -0
  35. C9E2T4oBgHgl3EQf9QlY/content/tmp_files/load_file.txt +0 -0
  36. CNE4T4oBgHgl3EQfeQ0p/content/2301.05097v1.pdf +3 -0
  37. CNE4T4oBgHgl3EQfeQ0p/vector_store/index.pkl +3 -0
  38. CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf +3 -0
  39. CtE1T4oBgHgl3EQfDwP-/vector_store/index.faiss +3 -0
  40. CtE1T4oBgHgl3EQfDwP-/vector_store/index.pkl +3 -0
  41. F9E2T4oBgHgl3EQf-Qn4/vector_store/index.faiss +3 -0
  42. FNAyT4oBgHgl3EQfrPlH/content/2301.00556v1.pdf +3 -0
  43. FNAyT4oBgHgl3EQfrPlH/vector_store/index.faiss +3 -0
  44. FNAyT4oBgHgl3EQfrPlH/vector_store/index.pkl +3 -0
  45. FdE0T4oBgHgl3EQfRAAw/vector_store/index.faiss +3 -0
  46. GdE1T4oBgHgl3EQf_Aah/content/tmp_files/2301.03576v1.pdf.txt +0 -0
  47. GdE1T4oBgHgl3EQf_Aah/content/tmp_files/load_file.txt +0 -0
  48. HNFJT4oBgHgl3EQfuC2G/content/tmp_files/2301.11620v1.pdf.txt +576 -0
  49. HNFJT4oBgHgl3EQfuC2G/content/tmp_files/load_file.txt +391 -0
  50. HdFIT4oBgHgl3EQfXith/vector_store/index.faiss +3 -0
-9E2T4oBgHgl3EQfmgcA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:162de5525ee150d30faa09d5fa436c3ee38ad42c79141b9e38bc32ed1a541199
3
+ size 237447
-9FRT4oBgHgl3EQfsTcg/content/2301.13623v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c498cc5b65077ffffa506914b8a323e7d0823a1bb8657bb0661452a1d73a8bb
3
+ size 211875
-9FRT4oBgHgl3EQfsTcg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0345c827753315c84837d1db0b959bd3490e12e04a0401370b70e1ca569e6e81
3
+ size 2162733
-9FRT4oBgHgl3EQfsTcg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46d29701ba6cb70a3e8dc92a1d2e10ffdcc12cab036b89219fa3d96135c24e12
3
+ size 81925
-dAyT4oBgHgl3EQf3fmN/content/tmp_files/2301.00770v1.pdf.txt ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Abstract— The ability to obtain dynamic control over an
3
+ antenna radiation pattern is one of the main functions, desired in
4
+ a vast range of applications, including wireless communications,
5
+ radars, and many others. Widely used approaches include
6
+ mechanical scanning with antenna apertures and phase switching
7
+ in arrays. Both of those realizations have severe limitations,
8
+ related to scanning speeds and implementation costs. Here we
9
+ demonstrate a solution, where the antenna pattern is switched with
10
+ optical signals. The system encompasses an active element,
11
+ surrounded by a set of cylindrically arranged passive dipolar
12
+ directors, functionalized with tunable impedances. The control
13
+ circuit is realized as a bipolar transistor, driven by a photodiode.
14
+ Light illumination in this case serves as a trigger, capable of either
15
+ closing or opening the transistor, switching the impedance
16
+ between two values. Following this approach, a compact half-a-
17
+ wavelength footprint antenna, capable to switch between 6 dBi
18
+ directional patterns within a few milliseconds’ latency was
19
+ demonstrated. The developed light activation approach allows
20
+ constructing devices with multiple almost non-interacting degrees
21
+ of freedom, as brunched feeding network is not required. The
22
+ capability of MHz and faster switching between multiple
23
+ electromagnetic degrees of freedom open pathways to new wireless
24
+ applications, where fast beam steering and beamforming
25
+ performances are required.
26
+
27
+ Index Terms—steerable antenna, electro-optical control, dual-
28
+ band, compact antenna, latency.
29
+
30
+ I. INTRODUCTION
31
+ HE ABILITY to control the radiation pattern with high
32
+ accuracy allows for establishing efficient point-to-point
33
+ communication, where one or more participants can change
34
+ their locations during the process. A radar, tracking a moving
35
+ target in both azimuth and elevation, is one notable example.
36
+ Recently, the automotive industry raised a demand for high-
37
+ resolution short-range radar-based imaging systems, where
38
+ high-quality fast scanning small aperture antennas are essential
39
+ components [1]–[3]. Another realm is 5G communications,
40
+ where beamforming with millisecond-scale latency is the
41
+ enabling technology to support fast-speed broadband wireless
42
+ communication [4], [5]. In all the beforehand mentioned
43
+ applications, antenna devices are subject to engineering
44
+ tradeoffs where high scanning speed and low cost are
45
+ contradictory requirements. There are several traditional
46
+ approaches to beam steering. The first one is a mechanical scan,
47
+
48
+ (Corresponding
49
+ author:
50
+ Dmytro
51
+ Vovchuk
52
+ e-mail:
53
54
+ Dmytro Vovchuk, Anna Mikhailovskaya, Dmitry Dobrykh, Pavel Ginzburg
55
+ School of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv,
56
+ 69978, Israel (e-mail: [email protected], [email protected] ).
57
+ where a motor controls the angular position of a highly directive
58
+ antenna. This technique is frequently used for implementing
59
+ marine and airport tracking radars, where scanning speeds are
60
+ not the main factor to consider. Another approach to beam
61
+ steering is based on antenna phased arrays. Here multiple
62
+ elements are phased-locked and radiate simultaneously. While
63
+ this architecture allows achieving fast all-electronic scanning,
64
+ the realization of high-quality and directive beams requires
65
+ employing tens or even hundreds of phase-shifting elements.
66
+ This approach is used e.g., in airborne applications, where the
67
+ speed and scan quality requirements predominate over-
68
+ involved costs of realizations. Recently, several approaches,
69
+ complementary to traditional phased arrays have been proposed
70
+ and demonstrated. The ability to tailor and control the laws of
71
+ refraction with the help of artificially structured media
72
+ (metamaterials [6]–[9]) opened a range of new capabilities in
73
+ beam shaping and control. Carefully designed surfaces
74
+ (metasurfaces) can provide capabilities to tailor properties of
75
+ transmitted and reflected waves [6], [10]–[12]. While many
76
+ metasurface studies concentrate on static configurations (e.g.,
77
+ [13]–[15]), introducing fast real-time tunability is the
78
+ demanded feature. Several realizations of dynamically
79
+ reconfigurable metasurfaces and metasurface-based antennas
80
+ have been demonstrated (e.g. [11], [16]–[20]). The key
81
+ underlining concept is typically based on controlling individual
82
+ resonant elements within an array with electronics. For
83
+ example, tunable capacitance allows shifting resonant
84
+ responses of individual elements, and as the result, either
85
+ amplitude or phase switchable screens are achieved [11], [21],
86
+ [22]. While this type of realization does not rely on expensive
87
+ phase shifters, it still requires using numerous (yet simple and
88
+ cheap) electronic elements, and, even more critically, a
89
+ branched set of wires to drive them. While reflect array
90
+ configurations allow hiding wires behind a ground plane [23],
91
+ [24], electric circuitry can significantly affect electromagnetic
92
+ performances in other realizations. For example, a mesh of thin
93
+ wires with subwavelength spacing will have a predominating
94
+ undesired electromagnetic response. A probable solution to this
95
+ problem has been demonstrated in the case of volumetric
96
+ metamaterial-based scatterers [25]. It relies on driving
97
+ individual meta-atoms with light. Light and light guiding
98
+ materials do not interact with cm and mm waves, which enables
99
+ uncoupling of these two phenomena in the design. The
100
+ interaction happens directly within an individual antenna
101
+ Dmytro Vovchuk Department of Radio Engineering and Information
102
+ Security, Yuriy Fedkovych Fernivtsi National University, Chernivtsi, 58012,
103
+ Ukraine (e-mail: [email protected])
104
+ Dmytro Vovchuk and Anna Mikhailovskaya contributed equally to this
105
+ work.
106
+ Dual-band electro-optically steerable antenna
107
+ Dmytro Vovchuk, Anna Mikhailovskaya, Dmitry Dobrykh, and Pavel Ginzburg
108
+ T
109
+
110
+ element, where optical energy is rectified within a
111
+ photoelement to drive electronics. Here we develop the concept
112
+ of electro-optically driven beamforming, which allows fast
113
+ manipulation over radiation patterns by arranging arrays of
114
+ auxiliary optically switchable reflectors and directors around a
115
+ radiating element. The optical link allows for obtaining both
116
+ high switching speeds and modularity, i.e., almost any radiating
117
+ element can be granted with scanning capabilities, as the
118
+ constraints, related to a wired feeding network are relaxed.
119
+ The manuscript is organized as follows – the design and
120
+ implementation of a single reflector are introduced first and
121
+ then followed by its integration into an antenna device. Beam
122
+ steering performances are assessed next along with
123
+ investigating of other antenna characteristics. Measurements of
124
+ the beam steering rates are demonstrated next. The capability to
125
+ grant steering capabilities for several commercial and custom-
126
+ made antennas radiating elements is discussed before the
127
+ Conclusion.
128
+ II. ELECTRO-OPTICALLY DRIVEN ELEMENT
129
+ Quite a few designs of directive antennas are based on
130
+ interference phenomena between several elements. A
131
+ representative example here is Yagi-Uda antenna, where a set
132
+ of passive elements – reflectors and directors, are responsible
133
+ for a narrow beam formation. Each of them introduces a
134
+ different phase lag, which is tuned by controlling lengths of
135
+ elements within the architecture. While physical size of a
136
+ resonant element cannot be controlled dynamically on a
137
+ reasonably fast timescale, electric length can be governed by
138
+ introducing a tunable lumped element. As the first step, we will
139
+ demonstrate a design of wirelessly tunable single element,
140
+ which will be subsequently integrated within a beam steering
141
+ array. Two states – ‘on’ and ‘off’ correspond to either presence
142
+ or absence of the illumination. Our basic component is a half-
143
+ wavelength element (λ/2), formed by a pair of λ/4-lenght wires
144
+ with a gap in between (Fig. 1(a)). The driving circuit consists
145
+ of two photodiodes (BPW34) and a bipolar transistor
146
+ (BFU730F115 NPN-type BJT) as in Fig. 1(b). Two
147
+ photoelements are used to elevate the voltage drop to open the
148
+ transistor. If the illumination power on the circuit is insufficient,
149
+ the element acts as a cut. After passing a threshold, the diode
150
+ become a shortage.
151
+ Figure 1(c) demonstrates the forward scattering spectra of the
152
+ system at its two states. Wire dimensions are length l = 72 mm
153
+ and radius r = 0.5 mm. The gap at the middle is 1mm. Those
154
+ parameters were tuned to make the device complying with
155
+ IEEE 802.11 communication standard (in terms of radiation
156
+ bands). It is worth mentioning that the transistor impedance is
157
+ also considered for both open and short operation states. Fig.
158
+ 1(c) demonstrates the capability to tune the scattering peak from
159
+ 2.2GHz to 1.9 and vice versa upon light illumination. Full-wave
160
+ numerical analysis, including an introduction of lumped
161
+ elements, was done with CST Microwave Studio. The surface
162
+ current distribution on the element strongly depends on the light
163
+ state (insets to Fig. 1(c)), demonstrating the switching between
164
+ dipolar and quadrupolar operation modes. 0.5 pF of the lumped
165
+ element C was found to provide a reliable model to switching
166
+ for the state ‘off’ and a solid λ/2 wire – for the state ‘on’. Slight
167
+ differences between numerical and experimental data come
168
+ from nonvanishing formfactors of active elements, which were
169
+ not considered in simulations.
170
+
171
+ Fig. 1. Optically-switchable passive element – photograph (a) and the
172
+ schematics (b) of the photo-activated driving circuit (BJT – bipolar junction
173
+ transistor, C – collector, B – base and E – emitter). (c) Numerical analysis and
174
+ experimental forward scattering spectra of the device at light ‘on’ and ‘off’
175
+ states. Color lines – responses of individual elements. Inset – current
176
+ distributions along the elements (numerical results).
177
+
178
+ A choice of elements for implementing the driving circuit
179
+ worth a discussion. Among possible architectures (i) varactor +
180
+ photodiode; (ii) PIN-photodiode and (iii) phototransistor or
181
+ transistor + photodiode can be considered. While varactors are
182
+ commonly used in related designs [10], [11], those are not the
183
+ best candidates for the current implementation as they demand
184
+ quite high voltage to provide a pF-scale capacitance tunability.
185
+ 0.7 V for Si and 0.35 V for Ge implementations are requited.
186
+ Phototransistors are typically designed for low-frequency
187
+ applications, e.g., fire protection or motion detection.
188
+ Therefore, we will investigate a combination of a low-cost
189
+ high-frequency BFU730F115 npn-type BJT and BPW34
190
+ photodiodes. The photodiode’s anode is connected to the
191
+ transistor’s base and cathode to the emitter (Fig. 1(b)). The
192
+ collector and emitter of the transistor are the outputs of the
193
+ driving circuit and are soldered to the λ/4 wires. This
194
+ arrangement allows shifting the scattering resonance to higher
195
+ frequencies.
196
+
197
+ driving
198
+ (a)
199
+ (b)
200
+ circuit
201
+ light
202
+ =
203
+ Front view
204
+ Back view
205
+ Photodiodes
206
+ on
207
+ off
208
+ (c)
209
+ on
210
+ off
211
+ Forward scattering, a.u.
212
+ A/m, a.u.
213
+ 0
214
+ 0.5
215
+ dashed-simulations
216
+ solid-experiment
217
+ 0
218
+ 1
219
+ 1.5
220
+ 2
221
+ 2.5
222
+ 3
223
+ Frequency, GHzIII. OPTICALLY STEERABLE ANTENNA
224
+ After designing single elements, those will be assembled to
225
+ form a larger-scale system, which aims on providing beam
226
+ steering capabilities. Six passive director elements were chosen
227
+ to form the geometry. This number, being found beneficial to
228
+ optimize wire bundle scatterers [26]–[29], was chosen as a
229
+ tradeoff between design simplicity and functionality. While this
230
+ configuration fits demands of 6-sector 4G wireless network, it
231
+ can be further tuned per application, i.e., the number of
232
+ scanning
233
+ lobes
234
+ can
235
+ be
236
+ increased,
237
+ and
238
+ various
239
+ 5G
240
+ communication protocols can be implemented.
241
+ The antenna consists of seven elements in overall: one active
242
+ (marked with ‘#’) placed exactly at the center and six passives
243
+ (1-6) are equidistantly placed on an imaginary cylindrical
244
+ surface (Fig. 2). A broadband monopole antenna (W1096),
245
+ covering the investigated frequency range and providing rather
246
+ flat frequency response, was chosen as a feed [30]. This
247
+ commercial element can be replaced by a custom-made
248
+ monopole, tuned per frequency. Before assembling the
249
+ structure, each of six passive elements was calibrated to provide
250
+ the identical response (as in Fig. 1(c)). Here both scattering
251
+ parameters and optical activation power are adjusted. Each
252
+ individual element was checked separately by performing a
253
+ forward scattering experiment. As the element acts as a dipole,
254
+ this parameter almost completely characterizes its response.
255
+ The manual adjustment was done by cutting the wire’s length.
256
+ It is also worth noting that nominals of lumped elements can
257
+ vary from item to item. Hence, an individual calibration is
258
+ required. Fig. 1(c) demonstrates the calibration curves, the
259
+ averaged parameters of which was used as in antenna modeling.
260
+
261
+ Fig. 2. (a) Schematic layout and (b) photograph of the optically steerable
262
+ antenna. On the insets (c) photograph of the top view. (d) S11 parameters of
263
+ antennas – standalone monopole, steering antenna with light ‘on and ‘off’, as
264
+ in the legends.
265
+
266
+ Without a light activation, all six passive elements are
267
+ identical and, as a result, the radiation pattern has no directivity
268
+ in-plane (end-fire). To break the symmetry, several elements
269
+ can be triggered with light. For an initial approximate analysis,
270
+ the elements can be considered as present for 2.2GHz wave if
271
+ the light is “on” and absent if there is no direct illumination on
272
+ them. For 1.8GHz the scenario is reversed. As a result, several
273
+ elements form a directive pattern. A more accurate analysis
274
+ suggests considering impact of non-resonant inactivated
275
+ elements. This was done numerically, and the system
276
+ parameters were additionally optimized. The optimization is
277
+ applied to maximize directivity and gain of the antenna,
278
+ constraining its overall size [31]. While a directivity in a Yagi-
279
+ Uda antenna relies on interference phenomena between several
280
+ directors and reflectors, the proposed realization involves
281
+ multipolar interaction and near-field coupling between
282
+ elements [26]–[28]. The radius of the imaginary cylindrical
283
+ surface (taking into account the cylinder radius R = 20 mm),
284
+ containing optically switchable passive elements, was chosen
285
+ to be 41 mm ≈ 0.26λ. 1.8 and 2.2GHz were chosen quite
286
+ arbitrary within the wireless band and can be tuned per a
287
+ specific application.
288
+ Fig. 3 summarizes the patterns, obtained both numerically
289
+ and experimentally at an anechoic camber. ‘1’ and ‘0’ in the
290
+ figure captions indicate whenever the element was illuminated
291
+ or not, respectively. Antenna matching conditions (S11
292
+ parameters) appear in Fig. 2(d). While the initial design was
293
+ made for a single-element activation (Fig. 3a-d), different
294
+ combinations can be considered as well. Theoretically the
295
+ system has 2N independent degrees of freedom, where N is the
296
+ number of elements. Potentially, 2N antenna patterns can be
297
+ achieved, nevertheless not all of them can be considered as
298
+ practically relevant. Several reports have demonstrated N
299
+ patterns with N tunable elements [24], [32], [33]. While our
300
+ structure was not designed to maximize the number of patterns,
301
+ we found that activating pairs of adjacent elements leads to
302
+ formation of directional beams, shifted by 30° in respect to the
303
+ single-element case (Fig. 3e-h). As a result, we have
304
+ demonstrated 12 directional beams, i.e., 2N useful patterns.
305
+ Furthermore, the device shows a dual band performance – both
306
+ 1.8 and 2.2 GHz with a 10% fractional bandwidth. Activating
307
+ other combination of elements didn’t lead to formation of
308
+ patterns with reasonable directivity.
309
+ Directivity (D) and gain (G) of the antenna will be
310
+ characterized next. As the pattern is formed primarily in-plane,
311
+ the following relation will be used to process the experimental
312
+ data [34]:
313
+ 𝐷(φ, θ = const) =
314
+ 𝑃𝑚𝑎𝑥
315
+ 1
316
+ 2𝜋 ∫
317
+ 𝑃(φ)𝑑φ
318
+ 2𝜋
319
+ 0
320
+ , (1)
321
+ where Pmax is the maximal radiated power of the antenna. The
322
+ assessment is made for a constant elevation angle (θ = 0) and
323
+ for the entire 2π of the azimuth φ. The realized gain GTx is
324
+ extracted by comparing the device with an etalon antenna
325
+ (IDPH-2018 S/N-0807202 horn) with a known gain GRx. Eq. 2
326
+ is used for the analysis [34].
327
+ 𝐺𝑇𝑥 = (
328
+ 4𝜋𝑎
329
+ 𝜆 )
330
+ 2 𝑃𝑅𝑥
331
+ 𝑃𝑇𝑥
332
+ 1
333
+ 𝐺𝑅𝑥 , (2)
334
+ where ‘a’ is the distance between the apertures of the transmit
335
+ Tx and the receive Rx antenas, λ is the operational wavelength
336
+ and PRx/PTx = |S21|2 is the power transmission coefficient.
337
+ To assess the switching parameter, we calculated the
338
+ differential gain values between the ‘on’ and ‘off’ states (Gon
339
+ and Goff), as following:
340
+ 𝐺𝑑𝑖𝑓𝑓 = 𝐺𝑜𝑛 − 𝐺𝑜𝑓𝑓. (3)
341
+ The results are summarized in Table I. The numerical results
342
+
343
+ (a) 16
344
+ 2 # 5
345
+ (b)
346
+ Activeelement-#
347
+ Passive elements-1...6
348
+ C
349
+ Topview
350
+ 0
351
+ S11,
352
+ 20
353
+ Monopole
354
+ Light'OFF
355
+ (d)
356
+ Light ON
357
+ 30
358
+ 1.4
359
+ 1.8
360
+ 2.2
361
+ 2.4
362
+ GHzon directivity are presented for the 2D (φ,θ=0) and 3D (φ,θ)
363
+ cases, while the experiments are shown only for 2D case. One
364
+ can see the difference between the directivity of numerical and
365
+ experimental values, especially at 2.2 GHz. The results can be
366
+ assessed by comparing patterns in Fig. 3. The most pronounced
367
+ difference was found for the data on panels (c) and (d). A
368
+ significant back lobe, being predicted numerically (imperfect
369
+ optimization), was not found in the measurements. The
370
+ opposite behavior was found for the two-element illumination
371
+ at 2.2 GHz – here back lobes were found in the experiment,
372
+ while the numerical prediction suggests rather minor back
373
+ radiation. The reason for this can be several-fold: (i)
374
+ imperfection in elements, affecting the interference phenomena
375
+ and (ii) a parasitic illumination due to the ambient illumination
376
+ and the pollution from nearby light sources – the driving LED
377
+ (as will be discussed hereinafter). Nevertheless, the back lobe
378
+ suppression effect is not dramatic. (iii) Nevertheless, the
379
+ feeding monopole connector has an orientation, perpendicular
380
+ to the antenna axis, it breaks the symmetry between different
381
+ radiation patterns (e.g., yellow, and purple lines in Fig. 3).
382
+ It is worth mentioning that the system cannot perform an
383
+ independent simultaneous beam steering at two different
384
+ frequency bands, as the same photodiodes are in use.
385
+
386
+
387
+ Fig. 3. Radiation patterns – numerical and experimental results. Single (a-d) and double-element (e-h) illumination at the frequencies 1.8 (director case) and
388
+ 2.2 GHz (reflector case). Antenna 3D radiation patterns (numerical results) are in left insets.
389
+
390
+
391
+
392
+
393
+
394
+
395
+ Single-element
396
+ [100000]
397
+ [000100]
398
+ [010000]
399
+ [000010]
400
+ Illumination
401
+ [001000]
402
+ [000001]
403
+ Radiation patterns
404
+ simulations
405
+ measurements
406
+ 90
407
+ 90
408
+ (a)
409
+ 120
410
+ 60
411
+ 1.8 GHz
412
+ 120
413
+ 60
414
+ (b)
415
+ 150
416
+ 30
417
+ 150
418
+ 30
419
+ 180
420
+ 0
421
+ 180
422
+ 0
423
+ 210
424
+ 330
425
+ 210
426
+ 330
427
+ 240
428
+ 300
429
+ 240
430
+ 300
431
+ 270
432
+ 270
433
+ 90
434
+ 90
435
+ (c)
436
+ 120
437
+ 60
438
+ 120
439
+ 60
440
+ (d)
441
+ 2.2 GHz
442
+ 150
443
+ 30
444
+ 150
445
+ 30
446
+ 180
447
+ 0
448
+ 180
449
+ 0
450
+ 210
451
+ 330
452
+ 210
453
+ 330
454
+ 240
455
+ 300
456
+ 240
457
+ 300
458
+ 270
459
+ 270
460
+ 0
461
+ W/m, a.u.
462
+ [110000]
463
+ [000110]
464
+ Two-element
465
+ [011000]
466
+ [000011]
467
+ Illumination
468
+ [001100]
469
+ [100001]
470
+ Radiation patterns
471
+ simulations
472
+ measurements
473
+ 90
474
+ 90
475
+ (e)
476
+ 120
477
+ 60
478
+ 1.8 GHz
479
+ 120
480
+ 60
481
+ (f)
482
+ 150
483
+ 30
484
+ 150
485
+ 30
486
+ 180
487
+ 180
488
+ 0
489
+ 210
490
+ 330
491
+ 210
492
+ 330
493
+ 240
494
+ 300
495
+ 240
496
+ 300
497
+ 270
498
+ 270
499
+ 90
500
+ 90
501
+ (g)
502
+ 120
503
+ 60
504
+ 2.2 GHz
505
+ 120
506
+ 1
507
+ 60
508
+ (h)
509
+ 150
510
+ 30
511
+ 150
512
+ 30
513
+ 180
514
+ 0
515
+ 180
516
+ 0
517
+ 210
518
+ 330
519
+ 210
520
+ 330
521
+ 240
522
+ 300
523
+ 240
524
+ 300
525
+ 270
526
+ 270TABLE I
527
+ The directivity D and differential gain Gdiff.
528
+
529
+ f, GHz
530
+ Numerical
531
+ Experimental
532
+ 2D
533
+ 3D
534
+ 2D
535
+ Single-element
536
+ illumination
537
+ D, dBi
538
+ 1.8
539
+ 2.68
540
+ 5.21
541
+ 3.31
542
+ 2.2
543
+ 2.48
544
+ 5.17
545
+ 4.11
546
+ Gdiff, dBi
547
+ 1.8
548
+
549
+ 2.06
550
+ 2.65
551
+ 2.2
552
+
553
+ 5.68
554
+ 5.56
555
+ Two-element
556
+ illumination
557
+ D, dBi
558
+ 1.8
559
+ 3.36
560
+ 6.01
561
+ 3.37
562
+ 2.2
563
+ 6.17
564
+ 9.27
565
+ 3.85
566
+ Gdiff, dBi
567
+ 1.8
568
+
569
+ 2.49
570
+ 2.2
571
+ 2.2
572
+
573
+ 7.25
574
+ 4.62
575
+
576
+ Free-space illumination of photodiodes requires an extra-
577
+ consideration. The first factor is an ambient radiation, which
578
+ can accidentally bring the system to a threshold. For an
579
+ assessment, we compared chamber conditions with an office
580
+ space and outdoors (direct summer sunlight). In last two cases,
581
+ a light concealment arrangement is required to maintain the
582
+ correct operation of the device. The second factor is undesired
583
+ light from a nearby illuminated element. The distance between
584
+ the LED and the photodiode is 1cm (inset to Fig. 4(a), thus the
585
+ light leakage was found to play no role. In both cases the
586
+ voltage on the diode was measured and compared with 0.7V
587
+ threshold. It is worth noting that introducing integrated optics
588
+ arrangements (e.g., waveguiding devices) are capable to solve
589
+ issues of the undesired overexposure to light.
590
+ One of the main advantages of the proposed design is its
591
+ potentially fast switching rates. 5G standards demand latencies
592
+ as a small as a milli-second. It implies having capabilities of
593
+ sub-MHz beam steering rates. To assess this parameter, the
594
+ following setup have been constructed – a signal from a high-
595
+ frequency generator (N5173B EXG X-Series Microwave
596
+ Analog Signal Generator) is split via ZX10-2-852-S+ Splitter
597
+ into two channels: the first feeds the active element of the
598
+ antenna and the second provides the synchronization signal and
599
+ feeds the local oscillator (LO) input of a mixer ZX05-C24-S+
600
+ at the receiver (Fig. 4(a)). The LF pulse sequences generator
601
+ (81160A Pulse Function Arbitrary Noise Generator) feeds a
602
+ LED SMD5630, which is located close to the antenna
603
+ photodiodes and performs the on/off-switching with a period T
604
+ = 1 ms. 50% duty cycle (τ) was chosen. The receiver includes
605
+ Rx antenna, feeding the RF input of the mixer. The output, after
606
+ a low-pass filter (LPF) BLP-100-75+, is displaced on a scope.
607
+ The digitalized scope’s output allows investigating switching
608
+ properties of the device (antenna under test – AUT). The results
609
+ show that f0 = 1/T at 1 kHz can be obtained (Fig. 4(b)). To
610
+ determine rise (tr) and fall (tf) times, the received signal was
611
+ smoothed and fitted with a sine series (Fig. 4(c)). The extracted
612
+ rise and fall times for the system are ~ 0.1 ms.
613
+
614
+
615
+ Fig. 4. (a) Schematics of the setup for measuring the switching rate. (b)
616
+ Zoomed IF signal on the scope. (c) Post-processed signal - period T = 1 ms
617
+ (50% duty cycle for τ = 0.5 ms), rise tr, and fall tf time.
618
+ IV. BEAM STEERING WITH OTHER ANTENNAS
619
+
620
+ To demonstrate the flexibility of the proposed method, 3
621
+ different antennas have been considered, namely the
622
+ commercial monopole from the previous studies, symmetric
623
+ dipole antenna and a monopole above a ground plane (panels a,
624
+ d, and f in Fig. 5, respectively). Each of those has an omni-
625
+ directional pattern in-plane. Two switching elements has been
626
+ used do demonstrate the concept. As the structures have
627
+ reflection symmetry, only one directional pattern per frequency
628
+ was demonstrated. Yellow and green lines correspond to 2.2
629
+ and 1.8 GHz, respectively. Illuminating one side of the structure
630
+ leads to a creation of directional patterns, which are oppositely
631
+ oriented for both of those frequencies. Switching between the
632
+ illumination side will case the flip in the patters. The
633
+ commercial monopole antenna has slightly better performances
634
+ owing as it underwent a significant optimization by the vendor.
635
+ The dipole demonstrates less directive pattern at 1.8GHz owing
636
+ to the frequency-dependent balun. This aspect does not affect
637
+ the monopole configuration, which also demonstrates good
638
+ switching capabilities.
639
+
640
+ AUT
641
+ 87..0
642
+ Radiation
643
+ direction
644
+ on/off (T)
645
+ top view
646
+ Rx
647
+ 1cm
648
+ LED'S
649
+ RF
650
+ HFsignal
651
+ (f1,2)
652
+ LO
653
+ IFJ
654
+ (a)
655
+ LPF
656
+ ch. 1
657
+ (b)
658
+ ch. 1
659
+ (c)
660
+ zoomed in ch. 1
661
+ n'e
662
+ tr
663
+ tf
664
+ t.ms> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
665
+
666
+ 6
667
+
668
+
669
+ Fig. 5. The concept of granting a radiating element with beam steering
670
+ capabilities. (a), (c), and (e) – photographs of antenna devices. (b), (d), and (f)
671
+ - experimentally obtained (in-plane) radiation patterns. Switching between 2
672
+ sectors has been considered.
673
+ V. CONCLUSION
674
+ A scanning antenna with optical control is demonstrated
675
+ experimentally. The device consists of six passive resonators,
676
+ arranged around the feed. Electromagnetic properties of passive
677
+ elements, serving as either directors or reflectors, are tuned with
678
+ light. The driving circuit, containing photodiodes and bipolar
679
+ transistor, is activated remotely with light. This approach
680
+ allows tuning electromagnetic properties of the system without
681
+ a need of a brunched network of metal wires. The demonstrated
682
+ design provides steering capabilities of directional beams with
683
+ ~5 dBi of the directivity and 6 dBi of the differential gain with
684
+ a switching rate around at sub-MHz rate. The demonstrated
685
+ antenna belongs to the class of compact (2r/λ ≈ 0.5-0.6, where
686
+ r is the radius of an imaginary sphere that surrounds the whole
687
+ antenna [31], [35]) low-cost devices (the active element + six
688
+ passive elements with driving circuits cost around 20$).
689
+ Furthermore, it was shown to provide a dual-band operation at
690
+ frequencies, relevant to wireless communications. Further
691
+ optimization of the electromagnetic design and introduction of
692
+ fast elements (transistors and fast photodiodes) can elevate the
693
+ switching rates towards MHz and higher opening pathways to
694
+ new applications, where fast beam steering and beamforming
695
+ performances are required (e.g., radars and 5G). Frequency
696
+ bands in 5G protocols are quite broad and utilized per
697
+ application, though a capability of fast beam control remains
698
+ essential. Light activation approach allows constructing devices
699
+ with multiple almost non-interacting degrees of freedom, as
700
+ brunched feeding network is not required and, in principle,
701
+ almost any radiating element can be granted with beam steering
702
+ capabilities.
703
+
704
+ ACKNOWLEDGEMENTS
705
+ The work was supported by ERC POC, grant 101061890
706
+ “DeepSight”.
707
+ REFERENCES
708
+ [1]
709
+ S. M. Patole, M. Torlak, D. Wang, and M. Ali,
710
+ “Automotive Radars: A review of signal processing
711
+ techniques,” IEEE Signal Process. Mag., vol. 34, no.
712
+ 2, pp. 22–35, Mar. 2017, doi:
713
+ 10.1109/MSP.2016.2628914.
714
+ [2]
715
+ A. Asensio-López et al., “High range-resolution radar
716
+ scheme for imaging with tunable distance limits,”
717
+ Electron. Lett., vol. 40, no. 17, pp. 1085–1086, Aug.
718
+ 2004, doi: 10.1049/EL:20045552.
719
+ [3]
720
+ MathWorks, “5G Development with MATLAB,”
721
+ MathWorks, 2017, [Online]. Available:
722
+ https://uk.mathworks.com/content/dam/mathworks/tag
723
+ -team/Objects/5/5G_ebook.pdf
724
+ [4]
725
+ “Intel 5G Standards and Spectrum.”
726
+ https://www.intel.com/content/www/us/en/wireless-
727
+ network/5g-technology/standards-and-spectrum.html
728
+ (accessed Jun. 21, 2022).
729
+ [5]
730
+ R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S.
731
+ Rangan, and M. Zorzi, “Achieving Ultra-Low Latency
732
+ in 5G Millimeter Wave Cellular Networks,” IEEE
733
+ Commun. Mag., vol. 55, no. 3, pp. 196–203, Mar.
734
+ 2017, doi: 10.1109/MCOM.2017.1600407CM.
735
+ [6]
736
+ N. Engheta and R. Ziolkowski, Electromagnetic
737
+ Metamaterials: Physics and Engineering
738
+ Explorations. 2006. doi: 10 0-471-76102-8.
739
+ [7]
740
+ D. Filonov, A. Shmidt, A. Boag, and P. Ginzburg,
741
+ “Artificial localized magnon resonances in
742
+ subwavelength meta-particles,” Appl. Phys. Lett., vol.
743
+ 113, no. 12, p. 123505, Sep. 2018, doi:
744
+ 10.1063/1.5047445.
745
+ [8]
746
+ V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A.
747
+ Díaz-Rubio, Y. Ra’Di, and S. A. Tretyakov, “Perfect
748
+ control of reflection and refraction using spatially
749
+ dispersive metasurfaces,” Phys. Rev. B, vol. 94, no. 7,
750
+ p. 075142, Aug. 2016, doi:
751
+ 10.1103/PHYSREVB.94.075142/FIGURES/8/MEDI
752
+ UM.
753
+ [9]
754
+ F. Capolino, “Applications of Metamaterials,” Appl.
755
+ Metamaterials, Dec. 2017, doi:
756
+ 10.1201/9781420054248/APPLICATIONS-
757
+ METAMATERIALS-FILIPPO-CAPOLINO.
758
+ [10]
759
+ N. I. Zheludev and Y. S. Kivshar, “From
760
+ metamaterials to metadevices,” Nature Materials, vol.
761
+ 11, no. 11. Nature Publishing Group, pp. 917–924,
762
+ Oct. 23, 2012. doi: 10.1038/nmat3431.
763
+ [11]
764
+ V. Kozlov, D. Vovchuk, and P. Ginzburg, “Broadband
765
+ radar invisibility with time-dependent metasurfaces,”
766
+ Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–11, Jul.
767
+ 2021, doi: 10.1038/s41598-021-93600-2.
768
+ [12]
769
+ M. Faenzi et al., “Metasurface Antennas: New
770
+ Models, Applications and Realizations,” Sci. Reports
771
+ 2019 91, vol. 9, no. 1, pp. 1–14, Jul. 2019, doi:
772
+ 10.1038/s41598-019-46522-z.
773
+ [13]
774
+ H. Markovich, D. Filonov, I. Shishkin, and P.
775
+ Ginzburg, “Bifocal Fresnel Lens Based on the
776
+ Polarization-Sensitive Metasurface,” IEEE Trans.
777
+ Antennas Propag., vol. 66, no. 5, pp. 2650–2654, May
778
+ 2018, doi: 10.1109/TAP.2018.2811717.
779
+ [14]
780
+ V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg,
781
+ and P. Ginzburg, “Asymmetric backscattering from
782
+ the hybrid magneto-electric meta particle,” Appl.
783
+ Phys. Lett., vol. 109, no. 20, p. 203503, Nov. 2016,
784
+
785
+ Passiveelements
786
+ (a)
787
+ (c)
788
+ (e)
789
+ Active
790
+ element> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
791
+
792
+ 7
793
+ doi: 10.1063/1.4967238.
794
+ [15]
795
+ D. Filonov, V. Kozlov, A. Shmidt, B. Z. Steinberg,
796
+ and P. Ginzburg, “Resonant metasurface with tunable
797
+ asymmetric reflection,” Appl. Phys. Lett., vol. 113, no.
798
+ 9, p. 094103, Aug. 2018, doi: 10.1063/1.5046948.
799
+ [16]
800
+ H.-X. Xu et al., “Tunable microwave metasurfaces for
801
+ high-performance operations: dispersion
802
+ compensation and dynamical switch,” Sci. Rep., vol.
803
+ 6, no. 1, p. 38255, Dec. 2016, doi: 10.1038/srep38255.
804
+ [17]
805
+ D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y.
806
+ Loo, and G. Tangonan, “Two-dimensional beam
807
+ steering using an electrically tunable impedance
808
+ surface,” IEEE Trans. Antennas Propag., vol. 51, no.
809
+ 10, pp. 2713–2722, Oct. 2003, doi:
810
+ 10.1109/TAP.2003.817558.
811
+ [18]
812
+ W. Yang, L. Gu, W. Che, Q. Meng, Q. Xue, and C.
813
+ Wan, “A novel steerable dual-beam metasurface
814
+ antenna based on controllable feeding mechanism,”
815
+ IEEE Trans. Antennas Propag., vol. 67, no. 2, pp.
816
+ 784–793, Feb. 2019, doi: 10.1109/TAP.2018.2880089.
817
+ [19]
818
+ X. Wang and S. Tretyakov, “From Tunable and
819
+ Reconfigurable to Space-Time Modulated
820
+ Multifunctional Metasurfaces,” 2021 IEEE Int. Symp.
821
+ Antennas Propag. North Am. Radio Sci. Meet.
822
+ APS/URSI 2021 - Proc., pp. 1361–1362, 2021, doi:
823
+ 10.1109/APS/URSI47566.2021.9704202.
824
+ [20]
825
+ M. Di Renzo et al., “Smart Radio Environments
826
+ Empowered by Reconfigurable Intelligent Surfaces:
827
+ How It Works, State of Research, and the Road
828
+ Ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
829
+ pp. 2450–2525, Nov. 2020, doi:
830
+ 10.1109/JSAC.2020.3007211.
831
+ [21]
832
+ D. Ramaccia, D. L. Sounas, A. Alu, A. Toscano, and
833
+ F. Bilotti, “Phase-Induced Frequency Conversion and
834
+ Doppler Effect with Time-Modulated Metasurfaces,”
835
+ IEEE Trans. Antennas Propag., vol. 68, no. 3, pp.
836
+ 1607–1617, Mar. 2020, doi:
837
+ 10.1109/TAP.2019.2952469.
838
+ [22]
839
+ J. J. Luther, S. Ebadi, and X. Gong, “A microstrip
840
+ patch electronically steerable parasitic array radiator
841
+ (ESPAR) antenna with reactance-tuned coupling and
842
+ maintained resonance,” IEEE Trans. Antennas
843
+ Propag., vol. 60, no. 4, pp. 1803–1813, Apr. 2012,
844
+ doi: 10.1109/TAP.2012.2186265.
845
+ [23]
846
+ C. Sun, A. Hirata, T. Ohira, and N. C. Karmakar,
847
+ “Fast beamforming of electronically steerable parasitic
848
+ array radiator antennas: Theory and experiment,”
849
+ IEEE Trans. Antennas Propag., vol. 52, no. 7, pp.
850
+ 1819–1832, 2004, doi: 10.1109/TAP.2004.831314.
851
+ [24]
852
+ M. Rzymowski, D. Duraj, L. Kulas, K. Nyka, and P.
853
+ Woznica, “UHF ESPAR antenna for simple angle of
854
+ arrival estimation in UHF RFID applications,” 2016
855
+ 21st Int. Conf. Microwave, Radar Wirel. Commun.
856
+ MIKON 2016, Jun. 2016, doi:
857
+ 10.1109/MIKON.2016.7491984.
858
+ [25]
859
+ D. Dobrykh, A. Mikhailovskaya, P. Ginzburg, and D.
860
+ Filonov, “4D Optically Reconfigurable Volumetric
861
+ Metamaterials,” Phys. status solidi – Rapid Res. Lett.,
862
+ vol. 14, no. 8, p. 2000159, Aug. 2020, doi:
863
+ 10.1002/PSSR.202000159.
864
+ [26]
865
+ D. Vovchuk, S. Kosulnikov, R. E. Noskov, and P.
866
+ Ginzburg, “Wire resonator as a broadband Huygens
867
+ superscatterer,” Phys. Rev. B, vol. 102, no. 9, 2020,
868
+ doi: 10.1103/PhysRevB.102.094304.
869
+ [27]
870
+ S. Kosulnikov et al., “Circular wire-bundle
871
+ superscatterer,” J. Quant. Spectrosc. Radiat. Transf.,
872
+ vol. 279, p. 108065, Mar. 2022, doi:
873
+ 10.1016/J.JQSRT.2022.108065.
874
+ [28]
875
+ K. Grotov et al., “Genetically Designed Wire Bundle
876
+ Super-Scatterers,” IEEE Trans. Antennas Propag., pp.
877
+ 1–1, 2022, doi: 10.1109/TAP.2022.3177531.
878
+ [29]
879
+ R. W. P. King, G. J. Fikioris, and R. B. Mack,
880
+ Cylindrical Antennas and Arrays. Cambridge, 2002.
881
+ [30]
882
+ “W1095X Datasheet(PDF) - Pulse A Technitrol
883
+ Company.” https://www.alldatasheet.com/datasheet-
884
+ pdf/pdf/1320661/PULSE/W1095X.html (accessed
885
+ Jun. 21, 2022).
886
+ [31]
887
+ M. Pigeon, C. Delaveaud, L. Rudant, and K.
888
+ Belmkaddem, “Miniature directive antennas,” Int. J.
889
+ Microw. Wirel. Technol., vol. 6, no. 1, pp. 45–50, Feb.
890
+ 2014, doi: 10.1017/S1759078713001098.
891
+ [32]
892
+ K. P. Lee and H. K. Choi, “Five-element ESPAR
893
+ antenna using the annular ring slot active element,”
894
+ Microw. Opt. Technol. Lett., vol. 58, no. 12, pp. 2800–
895
+ 2804, Dec. 2016, doi: 10.1002/MOP.30155.
896
+ [33]
897
+ Q. Liang, B. Sun, and G. Zhou, “Multiple Beam
898
+ Parasitic Array Radiator Antenna for 2.4 GHz WLAN
899
+ Applications,” IEEE Antennas Wirel. Propag. Lett.,
900
+ vol. 17, no. 12, pp. 2513–2516, Dec. 2018, doi:
901
+ 10.1109/LAWP.2018.2880208.
902
+ [34]
903
+ C. A. Balanis, Antenna Theory: Analysis and Design.
904
+ Wiley-Interscience; 3 edition, 2005.
905
+ [35]
906
+ W. Geyi, “Physical limitations of antenna,” IEEE
907
+ Trans. Antennas Propag., vol. 51, no. 8, pp. 2116–
908
+ 2123, Aug. 2003, doi: 10.1109/TAP.2003.814754.
909
+
910
+
911
+
-dAyT4oBgHgl3EQf3fmN/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -2751,3 +2751,65 @@ QtAyT4oBgHgl3EQfU_dt/content/2301.00135v1.pdf filter=lfs diff=lfs merge=lfs -tex
2751
  BtE5T4oBgHgl3EQfTQ-D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2752
  wNFLT4oBgHgl3EQfki_9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2753
  NNE0T4oBgHgl3EQf0QK5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751
  BtE5T4oBgHgl3EQfTQ-D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2752
  wNFLT4oBgHgl3EQfki_9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2753
  NNE0T4oBgHgl3EQf0QK5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2754
+ fNAyT4oBgHgl3EQfjvgl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2755
+ d9E1T4oBgHgl3EQfyAW2/content/2301.03429v1.pdf filter=lfs diff=lfs merge=lfs -text
2756
+ 0tE1T4oBgHgl3EQf4wXL/content/2301.03505v1.pdf filter=lfs diff=lfs merge=lfs -text
2757
+ YNE3T4oBgHgl3EQfcAqq/content/2301.04522v1.pdf filter=lfs diff=lfs merge=lfs -text
2758
+ 2NAzT4oBgHgl3EQfuP1K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2759
+ 69E1T4oBgHgl3EQfTgNE/content/2301.03078v1.pdf filter=lfs diff=lfs merge=lfs -text
2760
+ VNE_T4oBgHgl3EQfxhzT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2761
+ u9AyT4oBgHgl3EQfafcR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2762
+ _dAzT4oBgHgl3EQfhPzZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2763
+ VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf filter=lfs diff=lfs merge=lfs -text
2764
+ NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf filter=lfs diff=lfs merge=lfs -text
2765
+ ldE4T4oBgHgl3EQfUAxn/content/2301.05012v1.pdf filter=lfs diff=lfs merge=lfs -text
2766
+ UdAzT4oBgHgl3EQflv12/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2767
+ CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf filter=lfs diff=lfs merge=lfs -text
2768
+ nNE2T4oBgHgl3EQfzQjl/content/2301.04130v1.pdf filter=lfs diff=lfs merge=lfs -text
2769
+ QtAyT4oBgHgl3EQfU_dt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2770
+ hdE3T4oBgHgl3EQfIQm9/content/2301.04333v1.pdf filter=lfs diff=lfs merge=lfs -text
2771
+ WdE_T4oBgHgl3EQfyhxs/content/2301.08318v1.pdf filter=lfs diff=lfs merge=lfs -text
2772
+ nNE2T4oBgHgl3EQfzQjl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2773
+ -9FRT4oBgHgl3EQfsTcg/content/2301.13623v1.pdf filter=lfs diff=lfs merge=lfs -text
2774
+ 4NE1T4oBgHgl3EQfmASv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2775
+ F9E2T4oBgHgl3EQf-Qn4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2776
+ WdE_T4oBgHgl3EQfyhxs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2777
+ CtE1T4oBgHgl3EQfDwP-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2778
+ 69E1T4oBgHgl3EQfTgNE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2779
+ HdFIT4oBgHgl3EQfXith/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2780
+ pdAyT4oBgHgl3EQfzfkv/content/2301.00701v1.pdf filter=lfs diff=lfs merge=lfs -text
2781
+ FdE0T4oBgHgl3EQfRAAw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2782
+ dtE0T4oBgHgl3EQfWwBP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2783
+ -9FRT4oBgHgl3EQfsTcg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2784
+ FNAyT4oBgHgl3EQfrPlH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2785
+ jtE4T4oBgHgl3EQfsg2s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2786
+ pdAyT4oBgHgl3EQfzfkv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2787
+ dtE0T4oBgHgl3EQfWwBP/content/2301.02282v1.pdf filter=lfs diff=lfs merge=lfs -text
2788
+ TdAzT4oBgHgl3EQf0v6x/content/2301.01789v1.pdf filter=lfs diff=lfs merge=lfs -text
2789
+ CNE4T4oBgHgl3EQfeQ0p/content/2301.05097v1.pdf filter=lfs diff=lfs merge=lfs -text
2790
+ SNE3T4oBgHgl3EQfzAs2/content/2301.04724v1.pdf filter=lfs diff=lfs merge=lfs -text
2791
+ NNE0T4oBgHgl3EQf0QK5/content/2301.02684v1.pdf filter=lfs diff=lfs merge=lfs -text
2792
+ NtE0T4oBgHgl3EQfTQBT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2793
+ _NAzT4oBgHgl3EQfS_tm/content/2301.01241v1.pdf filter=lfs diff=lfs merge=lfs -text
2794
+ jtE4T4oBgHgl3EQfsg2s/content/2301.05217v1.pdf filter=lfs diff=lfs merge=lfs -text
2795
+ ldE4T4oBgHgl3EQfUAxn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2796
+ 3dE4T4oBgHgl3EQf0Q2d/content/2301.05281v1.pdf filter=lfs diff=lfs merge=lfs -text
2797
+ k9AyT4oBgHgl3EQfYPfO/content/2301.00201v1.pdf filter=lfs diff=lfs merge=lfs -text
2798
+ nNE3T4oBgHgl3EQf6wum/content/2301.04793v1.pdf filter=lfs diff=lfs merge=lfs -text
2799
+ KNAyT4oBgHgl3EQfsfkS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2800
+ 3dE4T4oBgHgl3EQf0Q2d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2801
+ 7tE0T4oBgHgl3EQffQCV/content/2301.02402v1.pdf filter=lfs diff=lfs merge=lfs -text
2802
+ NtAyT4oBgHgl3EQfgviP/content/2301.00364v1.pdf filter=lfs diff=lfs merge=lfs -text
2803
+ g9E2T4oBgHgl3EQfHQbG/content/2301.03667v1.pdf filter=lfs diff=lfs merge=lfs -text
2804
+ LtFOT4oBgHgl3EQf0TSa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2805
+ nNE3T4oBgHgl3EQf6wum/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2806
+ FNAyT4oBgHgl3EQfrPlH/content/2301.00556v1.pdf filter=lfs diff=lfs merge=lfs -text
2807
+ b9E1T4oBgHgl3EQfdgQp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2808
+ WtFQT4oBgHgl3EQfcDb0/content/2301.13326v1.pdf filter=lfs diff=lfs merge=lfs -text
2809
+ atAyT4oBgHgl3EQfv_nZ/content/2301.00642v1.pdf filter=lfs diff=lfs merge=lfs -text
2810
+ g9E2T4oBgHgl3EQfHQbG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2811
+ b9E1T4oBgHgl3EQfdgQp/content/2301.03195v1.pdf filter=lfs diff=lfs merge=lfs -text
2812
+ Q9FJT4oBgHgl3EQf3C2V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2813
+ KNAyT4oBgHgl3EQfsfkS/content/2301.00576v1.pdf filter=lfs diff=lfs merge=lfs -text
2814
+ cdE5T4oBgHgl3EQfEw5P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2815
+ d9AzT4oBgHgl3EQfaPwm/content/2301.01364v1.pdf filter=lfs diff=lfs merge=lfs -text
0dE2T4oBgHgl3EQf4wg0/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ee050084dca9f7ebfbf5739e196dc6f3671419856071cf89e43ccaf61344c5
3
+ size 72741
0tE1T4oBgHgl3EQf4wXL/content/2301.03505v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d31a2c9764906a671394c320b0a8a176fc7371be397b0d96eb83e0fd4321ca39
3
+ size 23603467
2NAzT4oBgHgl3EQfuP1K/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af47a53abfe7a6f9ba5d8fe5c0fca6e3e2830b6d5cf0aa170811ccf0e12bd67b
3
+ size 11272237
3NE0T4oBgHgl3EQfeABh/content/tmp_files/2301.02384v1.pdf.txt ADDED
@@ -0,0 +1,742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02384v1 [cond-mat.mes-hall] 6 Jan 2023
2
+ Universal optical polarizability for plasmonic nanostructures
3
+ Tigran V. Shahbazyan
4
+ Department of Physics, Jackson State University, Jackson, Mississippi 39217 USA
5
+ We develop an analytical model for calculation of optical spectra for metal nanostructures of
6
+ arbitrary shape supporting localized surface plasmons (LSPs). For plasmonic nanostructures with
7
+ characteristic size below the diffraction limit, we obtain the explicit expression for optical polariz-
8
+ ability that describes the lineshape of optical spectra solely in terms of the metal dielectric function
9
+ and LSP frequency. The amplitude of LSP spectral band is determined by the effective system
10
+ volume that, for long wavelength LSPs, can significantly exceed the physical volume of metal nanos-
11
+ tructure. These results can be used to model or interpret the experimental spectra of plasmonic
12
+ nanostructures and to tune their optical properties for various applications.
13
+ Localized surface plasmons (LSPs) are collective elec-
14
+ tron excitation resonantly excited by incident light in
15
+ metal nanostructures with characteristic size below the
16
+ diffraction limit [1–3]. Optical interactions between LSPs
17
+ and excitons in dye molecules or semiconductors un-
18
+ derpin numerous phenomena in plasmon-enhanced spec-
19
+ troscopy, such as surface-enhanced Raman scattering [4],
20
+ plasmon-enhanced fluorescence and luminescence [5–11],
21
+ strong exciton-plasmon coupling [12–25], and plasmonic
22
+ laser [26–29]. Optical properties of metal nanostructures
23
+ of various sizes and shapes are of critical importance for
24
+ numerous plasmonics applications [30–32] and were ex-
25
+ tensively studied experimentally and theoretically [33–
26
+ 39]. The generic optical characteristics that defines the
27
+ response of plasmonic nanostructure to an incident elec-
28
+ tromagnetic (EM) field Eine−iωt as well as the interac-
29
+ tions between LSPs and excitons is the optical polar-
30
+ izability tensor α(ω), where ω is the incident field fre-
31
+ quency. If the characteristic system size is much smaller
32
+ than the radiation wavelength, so that Ein is nearly uni-
33
+ form on the system scale, the induced dipole moment of
34
+ plasmonic structure has the form p(ω) = α(ω)Ein, where
35
+ α(ω) can be calculated, with a good accuracy, within the
36
+ quasistatic approach [3]. Analytical models for α(ω) have
37
+ been available only for highly symmetric systems, such as
38
+ spherical, spheroidal or cylindrical geometries [34]. For
39
+ example, a metal nanosphere of radius a placed in the air
40
+ is characterized by the scalar polarizability
41
+ α(ω) = a3 ε(ω) − 1
42
+ ε(ω) + 2,
43
+ (1)
44
+ where ε(ω) = ε′(ω) + iε′′(ω) is complex dielectric func-
45
+ tion of the metal. However, for more complicated shapes
46
+ used in the experiment, calculations of optical spectra are
47
+ performed using various numerical techniques [34–38].
48
+ On the other hand, for actual structures explored in
49
+ the experiment, analytical or numerical models attempt-
50
+ ing to determine both the LSP frequency and the line-
51
+ shape of optical spectra, as Eq. (1) does, are not even
52
+ necessary due to inevitable uncertainties in the nanos-
53
+ tructure shapes and sizes. Typically, the spectral posi-
54
+ tion of LSP resonance is measured with a reasonably high
55
+ precision, and so the main challenge is to describe or in-
56
+ terpret the lineshape of optical spectra. Therefore, an
57
+ analytical model describing accurately the optical spec-
58
+ tra of plasmonic nanostructures at given LSP frequencies
59
+ would be highly useful. Here, we present such a model.
60
+ Specifically, we show that the optical polarizability of a
61
+ small metal structure of arbitrary shape associated with
62
+ the LSP resonance at a frequency ωp has the form
63
+ αp(ω) = Vp
64
+ ε(ω) − 1
65
+ ε(ω) − ε′(ωp),
66
+ (2)
67
+ where Vp = Vm|χ′(ωp)|sp is the effective volume. Here,
68
+ Vm is the metal volume, χ = (ε−1)/4π is the susceptibil-
69
+ ity (we use Gaussian units), while the parameter sp ≤ 1
70
+ reflects the system geometry but, for dipole LSP modes,
71
+ is independent of its volume. Remarkably, for any system
72
+ geometry, the lineshape of optical spectra is determined
73
+ solely by the metal dielectric function and LSP frequency.
74
+ The polarization (2) can be extended to larger systems
75
+ by including the LSP radiation damping as well.
76
+ LSP modes and the Green function.—We consider
77
+ metal nanostructures supporting LSPs that are localized
78
+ at the length scale much smaller than the radiation wave-
79
+ length. In the absence of retardation effects, each region
80
+ of the structure, metallic or dielectric, is characterized
81
+ by the dielectric function εi(ω), so that the full dielectric
82
+ function is ε(ω, r) = �
83
+ i θi(r)εi(ω), where θi(r) is unit
84
+ step function that vanishes outside the region volume Vi.
85
+ We assume that dielectric regions’ permittivities are con-
86
+ stant and adopt ε(ω) for the metal one. The LSP modes
87
+ are defined by the lossless Gauss’s equation [3],
88
+ ∇ · [ε′(ωp, r)∇Φp(r)] = 0,
89
+ (3)
90
+ where Φp(r) and Ep(r) = −∇Φp(r), which we chose
91
+ real, are the mode’s potential and electric field.
92
+ Note
93
+ that the eigenmodes of Eq. (3) are orthogonal in each
94
+ region [40]:
95
+
96
+ dViEp(r)·Ep′(r) = δpp′ �
97
+ dViE2
98
+ p(r).
99
+ The EM dyadic Green function D(ω; r, r′) satisfies (in
100
+ the operator form) ∇×∇×D−(ω2/c2)εD = (4πω2/c2)I,
101
+ while equation for the longitudinal part of D is obtained
102
+ by applying ∇ to both sides. In the near field, we switch
103
+
104
+ 2
105
+ to the scalar Green function for the potentials D(ω; r, r′),
106
+ defined as D(ω; r, r′) = ∇∇′D(ω; r, r′), satisfying
107
+ ∇ · [ε(ω, r)∇D(ω; r, r′)] = 4πδ(r − r′).
108
+ (4)
109
+ We now adopt the decomposition D = D0 +DLSP, where
110
+ D0 = −|r − r′|−1 is the free-space Green function and
111
+ DLSP is the LSP contribution, satisfying
112
+ ∇·
113
+
114
+ ε(ω, r)∇DLSP(ω; r, r′)
115
+
116
+ = −∇·
117
+
118
+ [ε(ω, r) − 1]∇D0(ω; r, r′)
119
+
120
+ .
121
+ (5)
122
+ Consider first the lossless case and set ε′′ = 0 for now.
123
+ For real dielectric function ε(ω, r), we can expand DLSP
124
+ over the eigenmodes of Eq. (3) as
125
+ DLSP(ω; r, r′) =
126
+
127
+ p
128
+ Dp(ω)Φp(r)Φp(r′),
129
+ (6)
130
+ with real coefficients Dp(ω) [41, 42]. In the next step,
131
+ we apply the operator ∆′ to both sides of Eq. (5),
132
+ and integrate the result over V ′ with the factor Φp(r′).
133
+ Using the LSP Green function expansion (6) and the
134
+ modes’ orthogonality, one can prove the following rela-
135
+ tions,
136
+
137
+ dV ′Φp(r′)∆′DLSP(ω; r, r′) = −DpΦp(r)
138
+
139
+ dV E2
140
+ p
141
+ and � dV ′Φp(r′)∆′D0(ω; r, r′) = 4πΦp(r), to use in the
142
+ left-hand side and right-hand side of Eq. (5), yielding
143
+ Dp∇·
144
+
145
+ ε(ω, r)Ep(r)
146
+
147
+ = 4π ∇·
148
+
149
+ [ε(ω, r) − 1]Ep(r)
150
+
151
+
152
+ dVE2p
153
+ . (7)
154
+ Multiplying Eq. (7) by Φp(r) and integrating the result
155
+ over the system volume, we obtain the coefficients Dp as
156
+ Dp(ω) =
157
+
158
+
159
+ dV E2n(r) −
160
+
161
+
162
+ dV ε(ω, r)E2p(r),
163
+ (8)
164
+ where the first term ensures the boundary condition for
165
+ ε = 1, and will be omitted in the following. Accordingly,
166
+ the LSP dyadic Green function for the electric fields takes
167
+ the form DLSP(ω; r, r′) = �
168
+ p Dp(ω)Ep(r)Ep(r′).
169
+ Note that even though the LSP Green function is ex-
170
+ pressed in terms of real eigenmodes Ep, it is valid for plas-
171
+ monic systems with complex dielectric function ε(ω, r) =
172
+ ε′(ω, r) + iε′′(ω, r) as well. Indeed, if ε′′ is included as
173
+ perturbation, then the first-order (diagonal) correction
174
+ leads to Eq. (8), while the high-order corrections include
175
+ non-diagonal terms of the form ε′′(ω)
176
+
177
+ dVmEp(r)Ep′(r),
178
+ which vanish due to the modes’ orthogonality, and so the
179
+ LSP Green function DLSP with complex coefficients (8)
180
+ is, in fact, exact in all orders.
181
+ We now note that, in the quasistatic approximation,
182
+ the frequency and coordinate dependencies in the LSP
183
+ Green function can be separated out. Using the Gauss’s
184
+ equation in the form � dV ε′(ωp, r)E2
185
+ p(r) = 0, the integral
186
+ in Eq. (8) over the system volume can be presented as
187
+
188
+ dV ε(ω, r)E2
189
+ p(r) = [ε(ω) − ε′(ωp)]
190
+
191
+ dVmE2
192
+ p(r),
193
+ (9)
194
+ where the last integration is now carried over the metal
195
+ volume Vm, while contributions from the dielectric re-
196
+ gions, characterized by constant permittivities, cancel
197
+ out. Finally, the LSP Green function takes the form
198
+ DLSP(ω; r, r′) = −
199
+
200
+ p
201
+
202
+
203
+ dVmE2p
204
+ Ep(r)Ep(r′)
205
+ ε(ω) − ε′(ωp),
206
+ (10)
207
+ which is the basis for our analysis of the optical properties
208
+ of metal nanostructures that follows.
209
+ Plasmon LDOS, DOS, and mode volume.—Using rep-
210
+ resentation (10) for the LSP Green function, we can es-
211
+ tablish some general spectral properties of LSPs. In the
212
+ following, we consider metal nanostructures of arbitrary
213
+ shape in dielectric medium with permittivity εd (we set
214
+ εd = 1 for now). An important quantity that is criti-
215
+ cal in numerous applications is the local density of states
216
+ (LDOS), which describes the number of LSP states in
217
+ unit volume and frequency interval:
218
+ ρ(ω, r) =
219
+ 1
220
+ 2π2ω Im TrDLSP(ω; r, r) =
221
+
222
+ p
223
+ ρp(ω, r). (11)
224
+ Here, ρp(ω, r) is LDOS for the individual LSP mode
225
+ which, using the Green function (10), has the form
226
+ ρp(ω, r) = 2
227
+ πω
228
+ E2
229
+ p(r)
230
+
231
+ dVmE2p
232
+ Im
233
+
234
+ −1
235
+ ε(ω) − ε′(ωp)
236
+
237
+ .
238
+ (12)
239
+ Integration of LDOS over the volume yields the LSP den-
240
+ sity of states (DOS) ρp(ω) =
241
+
242
+ dV ρp(ω, r), describing the
243
+ number of LSP states per unit frequency interval. To elu-
244
+ cidate the LSP states’ distribution, let us compare the
245
+ DOS inside the metal ρm
246
+ p (ω) =
247
+
248
+ dVmρp(ω, r) and in the
249
+ dielectric region ρd
250
+ p(ω) =
251
+
252
+ dVdρp(ω, r). From Eq. (12),
253
+ ρm
254
+ p (ω) is readily obtained as
255
+ ρm
256
+ p (ω) = 2
257
+ πω Im
258
+
259
+ −1
260
+ ε(ω) − ε′(ωp)
261
+
262
+ .
263
+ (13)
264
+ To evaluate ρd
265
+ p(ω), we note that, using the Gauss’s equa-
266
+ tion, the integral over the dielectric region Vd can be pre-
267
+ sented as
268
+
269
+ dVdE2
270
+ p = −ε′(ωp)
271
+
272
+ dVmE2
273
+ p. Since ε′(ωp) < 0,
274
+ we obtain ρd
275
+ p(ω) = |ε′(ωp)|ρm
276
+ p (ω), implying that the LSP
277
+ states are predominantly distributed outside the metal.
278
+ The full LSP DOS ρp(ω) = ρm
279
+ p (ω) + ρd
280
+ p(ω) has the form
281
+ ρp(ω) = 2
282
+ πω Im
283
+
284
+ ε′(ωp) − 1
285
+ ε(ω) − ε′(ωp)
286
+
287
+ ,
288
+ (14)
289
+ which is independent of the nanostructure shape.
290
+ Let us now evaluate the number of LSP states per
291
+ mode, Np = � dωρp(ω).
292
+ Expanding Eq. (14) near the
293
+ LSP pole and evaluating the integral, we obtain
294
+ Np =
295
+ 2|ε′(ωp) − 1|
296
+ ωp∂ε′(ωp)/∂ωp
297
+ ,
298
+ (15)
299
+
300
+ 3
301
+ where we disregarded the corrections ∼ |ε′′/ε′|2 ≪ 1.
302
+ For the Drude form of ε(ω), Eq. (15) yields Np ≈ 1,
303
+ implying that LSP states saturate the oscillator strength.
304
+ However, for the experimental dielectric function, Np can
305
+ be substantially below that value, which has implications
306
+ for the optical spectra (see below).
307
+ Another important quantity that characterizes the lo-
308
+ cal field confinement is LSP mode volume Vp, which is
309
+ related to the LDOS as V−1
310
+ p
311
+ =
312
+
313
+ dωρp(ω, r) = ρp(r),
314
+ where ρp(r) is the LSP spatial density [41, 42]. Perform-
315
+ ing the frequency integration of Eq. (12), we obtain
316
+ Vp(r) = ωp
317
+ ∂ε′(ωp)
318
+ ∂ωp
319
+
320
+ dVmE2
321
+ p
322
+ 2E2p(r) .
323
+ (16)
324
+ Note that the LSP mode volume is a local quantity that
325
+ can be very small [i.e., the density ρp(r) is large] at hot
326
+ spots characterized by large field intensities, but it is
327
+ bound by the relation
328
+
329
+ dV/Vp = Np ≤ 1. Finally, de-
330
+ spite suggestions in the literature to the contrary [43],
331
+ the LSP mode volume (16) is independent of ε′′.
332
+ Optical polarizability.—Consider now a metal nanos-
333
+ tructure in the incident EM field Eine−iωt that is nearly
334
+ uniform on the system scale. The induced dipole mo-
335
+ ment of plasmonic structure is obtained by integrating
336
+ the electric polarization vector over the system volume,
337
+ p(ω) =
338
+
339
+ dV χ(ω, r)E(ω, r), where E(ω, r) is the local
340
+ field inside the nanostructure, given by
341
+ E(ω, r) = Ein +
342
+
343
+ dV ′χ(ω, r′)DLSP(ω; r, r′)Ein. (17)
344
+ Using the LSP Green function (10), we obtain
345
+ E(ω, r) = Ein −
346
+
347
+ p
348
+ 4πEp(r)
349
+
350
+ dVmE2p
351
+ pp(ω)·Ein
352
+ ε(ω) − ε′(ωp),
353
+ (18)
354
+ where pp(ω) =
355
+
356
+ dV χ(ω, r)Ep(r) is dipole moment of the
357
+ LSP mode. Noting that pp(ω) = χ(ω)
358
+
359
+ dVmEp, the local
360
+ field takes the form
361
+ E(ω, r) = Ein −
362
+
363
+ p
364
+ cpEp(r)
365
+ ε(ω) − 1
366
+ ε(ω) − ε′(ωp),
367
+ (19)
368
+ where cp =
369
+
370
+ dVmEp·Ein/
371
+
372
+ dVmE2
373
+ p. Inside the metal, the
374
+ incident field Ein can be expanded over the LSP eigen-
375
+ modes as Ein = �
376
+ p cpEp(r), and we obtain
377
+ E(ω, r) = −
378
+
379
+ p
380
+ cpEp(r)
381
+ ε′(ωp) − 1
382
+ ε(ω) − ε′(ωp).
383
+ (20)
384
+ Multiplying Eq. (20) by χ(ω, r) and integrating over the
385
+ system volume, we obtain the system’s induced dipole
386
+ moment as p(ω) = �
387
+ p αp(ω)Ein, where
388
+ αp(ω) = npnp|χ′(ωp)|
389
+ ��
390
+ dVmEp
391
+ �2
392
+
393
+ dVmE2p
394
+ ε(ω) − 1
395
+ ε(ω) − ε′(ωp)
396
+ (21)
397
+ is polarizability tensor of the LSP mode, while unit vector
398
+ np =
399
+
400
+ dVmEp/|
401
+
402
+ dVmEp| describes the mode’s polariza-
403
+ tion. Finally, introducing the effective volume Vp as
404
+ Vp = Vm|χ′(ωp)|sp,
405
+ sp =
406
+ ��
407
+ dVmEp
408
+ �2
409
+ Vm
410
+
411
+ dVmE2p
412
+ ,
413
+ (22)
414
+ we obtain αp(ω) = αp(ω)npnp, where αp(ω) is given
415
+ by Eq. (2).
416
+ The parameter sp is independent of the
417
+ overall field amplitude and, for the dipole LSP modes,
418
+ of the nanostructure volume as well.
419
+ For spherical or
420
+ spheroidal shape, its exact value is sp = 1, while smaller
421
+ values sp ≲ 1 should be expected for other shapes. For
422
+ a nanosphere of radius a, we have sp = 1, ε′(ωp) = −2,
423
+ and we recover Vp = a3, which is significantly smaller
424
+ than the system volume. However, for long-wavelength
425
+ LSPs characterized by large values of |χ′(ωp)|, the effec-
426
+ tive volume can exceed the metal volume Vm (see below).
427
+ The above expression for the polarizability (2) is valid
428
+ for small nanostructures characterized by weak LSP radi-
429
+ ation damping as compared to the Ohmic losses in metal.
430
+ For larger systems, to satisfy the optical theorem, the
431
+ LSP radiation damping must be included by considering
432
+ the system’s interaction with the radiation field, which
433
+ leads to the replacement αp → αp[1 − (2iω3/3c3)αp]−1,
434
+ where c is the speed of light [44, 45]. Finally, after restor-
435
+ ing the permittivity of surrounding medium εd, the po-
436
+ larizability takes the form
437
+ αp(ω) = Vp
438
+ ε(ω) − εd
439
+ ε(ω) − ε′(ωp) − 2i
440
+ 3 k3Vp[ε(ω) − εd],
441
+ (23)
442
+ where k = √εdω/c is the light wave vector, while the
443
+ system effective volume now has the form
444
+ Vp = Vm|ε′(ωp)/εd − 1|sp/4π.
445
+ (24)
446
+ The optical polarizability (23) is the central result of this
447
+ work which permits accurate description of optical spec-
448
+ tra for diverse plasmonic structures, including those of
449
+ irregular shape, using, as input, only the basic system pa-
450
+ rameters and the LSP frequency. In terms of αp, the ex-
451
+ tinction and scattering cross-sections have the form [45]
452
+ σext(ω) = 4πω
453
+ c |ep|2α′′
454
+ p(ω), σsc(ω) = 8πω4
455
+ 3c4 |ep|2 |αp(ω)|2 ,
456
+ (25)
457
+ where ep = np · Ein/|Ein| is projection of LSP polariza-
458
+ tion on that of incident light. For metal structures with
459
+ multiple LSP resonances, including porous structures
460
+ [46], the polarizability tensor is α(ω) = �
461
+ p αp(ω)npnp,
462
+ where Vp can now be considered as fitting parameters.
463
+ Numerical results.—Below we present the results of nu-
464
+ merical calculations for small gold nanostructures to il-
465
+ lustrate some general features of the LSP optical spectra
466
+ that are common for any system geometry (we use the ex-
467
+ perimental gold dielectric function). In Fig. 1, we plot the
468
+
469
+ 4
470
+ 600
471
+ 700
472
+ 800
473
+ 900
474
+ 1000
475
+ 1100
476
+ 1200
477
+ 0.2
478
+ 0.4
479
+ 0.6
480
+ 0.8
481
+ 1.0
482
+ 600
483
+ 700
484
+ 800
485
+ 900 1000 1100 1200
486
+ 0
487
+ 5
488
+ 10
489
+ 15
490
+ 20
491
+ 25
492
+ Qp
493
+ lp (nm)
494
+ Np
495
+ lp (nm)
496
+ (a)
497
+ 600
498
+ 700
499
+ 800
500
+ 900
501
+ 1000
502
+ 1100
503
+ 1200
504
+ 0
505
+ 1
506
+ 2
507
+ 3
508
+ 4
509
+ 5
510
+ Vp / Vm
511
+ lp (nm)
512
+ (b)
513
+ FIG. 1. (a) Number of LSP states for Au nanostructures is
514
+ plotted against the LSP wavelength. Inset: LSP quality factor
515
+ wavelength dependence. (b) Normalized effective volume is
516
+ plotted against the LSP wavelength.
517
+ number of plasmon states per mode Np and the effective
518
+ volume Vp against the LSP wavelength λp in the interval
519
+ from 550 nm to 1200 nm, i.e., for energies below the inter-
520
+ band transitions onset in gold. With increasing λp, as the
521
+ the system enters the Drude regime, Np increases, albeit
522
+ slowly, towards its maximal value [see Fig. 1(a)]. How-
523
+ ever, for typical LSP wavelengths from 550 nm to 800 nm,
524
+ Np remains substantially below its maximal value, imply-
525
+ ing that the interband transitions can influence the LSP
526
+ states even at frequencies well below the transitions on-
527
+ set; due to the Kramers-Kronig relations, the real part of
528
+ dielectric function ε′(ωp), which defines Np via Eq. (15),
529
+ is determined by ε′′(ω) at all frequencies. Notably, the
530
+ frequency dependence of Np does not follow that of the
531
+ LSP quality factor [3] Qp = ωp[∂ε′(ωp)/∂ωp]/2ε′′(ωp),
532
+ shown in the inset, which peaks at λp ≈ 700 nm due
533
+ to the minimum of ε′′ at this wavelength. In Fig. 1(b),
534
+ we plot the effective volume Vp normalized by the metal
535
+ volume Vm in the same LSP wavelength interval. The
536
+ normalized effective volume increases about tenfold from
537
+ the LSP wavelength value 550 nm, roughly corresponding
538
+ to LSP in gold nanosphere, to the value 1200 nm corre-
539
+ sponding to elongated particles with large aspect ratio,
540
+ implying that the optical spectra of metal nanostructures
541
+ can be tuned in a wide range by altering the system shape
542
+ at the same metal volume.
543
+ 500
544
+ 550
545
+ 600
546
+ 650
547
+ 700
548
+ 750
549
+ 800
550
+ 850
551
+ 900
552
+ 4
553
+ 8
554
+ 12
555
+ 16
556
+ 20
557
+ L = 10 nm
558
+ L = 20 nm
559
+ L = 30 nm
560
+ L = 40 nm
561
+ Im ap / Vm
562
+ l (nm)
563
+ L
564
+ (a)
565
+ 500
566
+ 550
567
+ 600
568
+ 650
569
+ 700
570
+ 750
571
+ 800
572
+ 850
573
+ 900
574
+ 0.0
575
+ 0.2
576
+ 0.4
577
+ 0.6
578
+ 0.8
579
+ 1.0
580
+ Ext
581
+ Scatt
582
+ Normalized spectrum
583
+ l (nm)
584
+ (b)
585
+ FIG. 2. (a) Imaginary part of polarizability for Au structures
586
+ of various sizes in water is shown at various LSP wavelengths.
587
+ (b) Normalized extinction and scattering spectra are shown
588
+ for L = 30 nm nanostructures at the same LSP wavelengths.
589
+ In Fig. 2, we show the optical spectra of gold nanos-
590
+ tructures in water (εd = 1.77) for different values of
591
+ characteristic size L and, accordingly, of metal volume
592
+ Vm = L3, calculated using Eqs. (23)-(25) at the LSP
593
+ wavelength values 550 nm, 610 nm, 670 nm, 730 nm,
594
+ and 790 nm (we set sp = ep = 1).
595
+ The imaginary
596
+ part of polarizability normalized by the metal volume
597
+ increases dramatically in amplitude with the LSP wave-
598
+ length [see Fig. 2(a)], consistent with similar effective
599
+ volume increase in Fig. 1(b). For larger structures, the
600
+ LSP peak amplitudes of α′′
601
+ p(ω)/Vm decrease due to radi-
602
+ ation damping. Although for full α′′
603
+ p(ω), such a decrease
604
+ would be masked by larger Vm values, it is clear that, for
605
+ the same metal volume, radiation damping is stronger
606
+ for long wavelength LSPs since it is also determined by
607
+ the effective volume Vp [see Eq. (23)].
608
+ In Fig. 2(b), we plot the extinction and scattering spec-
609
+ tra, normalized by their respective maxima, for L = 30
610
+ nm gold nanostructures at the same LSP wavelengths
611
+ (for such system size, the extinction is dominated by the
612
+ absorption). For shorter wavelengths (< 700 nm), the
613
+ scattering spectra exhibit apparent redshift relative to
614
+ the extinction spectra despite both are calculated at the
615
+ same LSP wavelength. This redshift is not related to the
616
+ LSP since, at such wavelengths, the LSP states carry only
617
+ about 50% of the full oscillator strength [see Fig. 1(a)].
618
+
619
+ UA5
620
+ In summary, we have developed the analytical model
621
+ for optical polarization of plasmonic nanostructures with
622
+ characteristic size below the diffraction limit. For such
623
+ systems, the lineshape of optical spectra is defined explic-
624
+ itly by the metal dielectric function and LSP frequency
625
+ while their amplitude depends on the system effective
626
+ volume which increases with the LSP wavelength. We
627
+ have also established some general features of LSP opti-
628
+ cal spectroscopy independent of the system geometry.
629
+ Note finally, that the universal form (23) for optical po-
630
+ larizability is valid for metal nanostructures in a dielectric
631
+ medium. For more complex layered systems, including
632
+ core-shell structures, the corresponding expressions for
633
+ polarizability are more cumbersome and, importantly, no
634
+ longer universal, and therefore are not presented here.
635
+ This work was supported in part by the National Sci-
636
+ ence Foundation Grants No. DMR-2000170, No. DMR-
637
+ 1856515, and No. DMR-1826886.
638
+ [1] S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101
639
+ (2005).
640
+ [2] E. Ozbay, Science 311, 189 (2006).
641
+ [3] M. I. Stockman, in Plasmonics:
642
+ Theory and Applica-
643
+ tions, edited by T. V. Shahbazyan and M. I. Stockman
644
+ (Springer, New York, 2013).
645
+ [4] E. C. Le Ru and P. G. Etchegoin, Principles of Surface-
646
+ Enhanced Raman Spectroscopy (Elsevier, Oxford, 2009).
647
+ [5] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A.
648
+ Klar, J. Feldmann, S. A. Levi, F. C. J. M.. van Veggel,
649
+ D. N. Reinhoudt, M. Moller, and D. I. Gittins, Phys.
650
+ Rev. Lett. 89, 203002 (2002).
651
+ [6] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich,
652
+ S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev,
653
+ Nano Lett. 2, 1449 (2002).
654
+ [7] P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev.
655
+ Lett. 96, 113002 (2006).
656
+ [8] S. K¨uhn, U. Hakanson, L. Rogobete, and V. Sandoghdar,
657
+ Phys. Rev. Lett. 97, 017402 (2006).
658
+ [9] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas,
659
+ Nano Lett. 7, 496 (2007).
660
+ [10] R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N.
661
+ J. Halas, ACS Nano 3, 744 (2009).
662
+ [11] T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang,
663
+ and C. Yan, Nano Lett. 9, 3896 (2009).
664
+ [12] J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier,
665
+ Phys. Rev. Lett. 93, 036404 (2004).
666
+ [13] Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdel-
667
+ salam, and P. N. Bartlett, Phys. Rev. Lett. 97, 266808
668
+ (2006).
669
+ [14] G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W.
670
+ Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and
671
+ C. Bower, Nano Lett. 7, 1297 (2007).
672
+ [15] N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P.
673
+ Nordlander, and N. J. Halas, Nano Lett. 8, 3481 (2008).
674
+ [16] T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson,
675
+ H. Tikkanen, H. Kunttu, and P. Torma, Phys. Rev. Lett.
676
+ 103, 053602 (2009).
677
+ [17] D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J.
678
+ Davis, Nano Lett. 10, 274 (2010).
679
+ [18] A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlan-
680
+ der, Nano Lett. 11, 2318 (2011).
681
+ [19] A. Berrier, R. Cools, C. Arnold, P. Offermans, M. Crego-
682
+ Calama, S. H. Brongersma, and J. Gomez-Rivas, ACS
683
+ Nano 5, 6226 (2011).
684
+ [20] A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and
685
+ M. Sukharev, Phys. Rev. Lett. 109, 073002 (2012).
686
+ [21] S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C.
687
+ Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bel-
688
+ lessa, Phys. Rev. Lett. 108, 066401 (2012).
689
+ [22] A. Gonzalez-Tudela, P. A. Huidobro, L. Martin-Moreno,
690
+ C. Tejedor, and F. J. Garcia-Vidal, Theory of Strong
691
+ Coupling between Quantum Emitters and Propagating
692
+ Surface Plasmons, Phys. Rev. Lett. 110, 126801 (2013).
693
+ [23] T. Antosiewicz, S. P. Apell, and T. Shegai, ACS Photon-
694
+ ics, 1, 454 (2014).
695
+ [24] A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S.
696
+ Ravaine, P. Barois, M. Infusino, and G. Strangi, Appl.
697
+ Phys. Lett. 104, 103103 (2014).
698
+ [25] T. V. Shahbazyan Nano Lett. 19, 3273 (2019).
699
+ [26] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett.,
700
+ 90, 027402, (2003).
701
+ [27] M. I. Stockman, Nat. Photonics 2, 327, (2008).
702
+ [28] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.
703
+ M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Su-
704
+ teewong and U. Wiesner, Nature, 460, 1110, (2009).
705
+ [29] T. V. Shahbazyan, ACS Photonics 4, 1003 (2017).
706
+ [30] K. A. Willets and R. P. van Duyne, Annu. Rev. Phys.
707
+ Chem. 58, 267-297 (2007).
708
+ [31] A. B. Taylor and P. Zijlstra, ACS Sens. 2, 1103-1122
709
+ (2017).
710
+ [32] J. Zhou, A. I. Chizhik, S. Chu, and D. Jin, Nature 579,
711
+ 41-50 (2020).
712
+ [33] S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys.
713
+ Chem. B 103, 3073-3077 (1999).
714
+ [34] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz,
715
+ J. Phys. Chem. B 107, 3, 668-677 (2003).
716
+ [35] I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem.
717
+ B 107, 6269-6275 (2003).
718
+ [36] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed,
719
+ J. Phys. Chem. B 110, 14, 7238-7248 (2006).
720
+ [37] C. Noguez J. Phys. Chem. C 111, 3806-3819 (2007).
721
+ [38] V.
722
+ Myroshnychenko,
723
+ J.
724
+ Rodriguez-Fernandez,
725
+ I.
726
+ Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney,
727
+ L. M. Liz-Marzan, and F. J. Garcia de Abajo, Chem.
728
+ Soc. Rev. 37, 1792 (2008).
729
+ [39] J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y.
730
+ Wang, W.-S. Chang, and S. Link, Chem. Soc. Rev. 44,
731
+ 40–57 (2015).
732
+ [40] T. V. Shahbazyan, Phys. Rev. B 103, 045421 (2021).
733
+ [41] T. V. Shahbazyan, Phys. Rev. Lett. 117, 207401 (2016).
734
+ [42] T. V. Shahbazyan, Phys. Rev. B 98, 115401 (2018).
735
+ [43] A. F. Koenderink, Opt. Lett. 35 4208 (2010).
736
+ [44] R. Carminati, J. J. Greffet, C. Henkel, and J. M.
737
+ Vigoureux, Opt. Commun. 261, 368 (2006).
738
+ [45] L. Novotny and B. Hecht, Principles of Nano-Optics
739
+ (CUP, New York, 2012).
740
+ [46] C. Vidal, D. Sivun, J. Ziegler, D. Wang, P. Schaaf, C.
741
+ Hrelescu, and T. A. Klar, Nano Lett. 18, 1269 (2018).
742
+
3NE0T4oBgHgl3EQfeABh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dE4T4oBgHgl3EQf0Q2d/content/2301.05281v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b92fbfda8857c3614dddac2cbf859a477eaf96fde89d59acd8a22dfb0214654
3
+ size 319867
3dE4T4oBgHgl3EQf0Q2d/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:723c6947cc15f77d7f3aea2dd789bf21067767820b39487c8fa6b7775cf61281
3
+ size 2621485
3dE4T4oBgHgl3EQf0Q2d/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107a9513d66144fd11492443f7625c448bbd622227e59283aa8e78a1ff0ba4ed
3
+ size 111031
3tFQT4oBgHgl3EQfHDWI/content/tmp_files/2301.13247v1.pdf.txt ADDED
@@ -0,0 +1,2357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Online Loss Function Learning
2
+ Christian Raymond 1 Qi Chen 1 Bing Xue 1 Mengjie Zhang 1
3
+ Abstract
4
+ Loss function learning is a new meta-learning
5
+ paradigm that aims to automate the essential task
6
+ of designing a loss function for a machine learn-
7
+ ing model. Existing techniques for loss function
8
+ learning have shown promising results, often im-
9
+ proving a model’s training dynamics and final in-
10
+ ference performance. However, a significant limi-
11
+ tation of these techniques is that the loss functions
12
+ are meta-learned in an offline fashion, where the
13
+ meta-objective only considers the very first few
14
+ steps of training, which is a significantly shorter
15
+ time horizon than the one typically used for train-
16
+ ing deep neural networks. This causes significant
17
+ bias towards loss functions that perform well at
18
+ the very start of training but perform poorly at the
19
+ end of training. To address this issue we propose
20
+ a new loss function learning technique for adap-
21
+ tively updating the loss function online after each
22
+ update to the base model parameters. The exper-
23
+ imental results show that our proposed method
24
+ consistently outperforms the cross-entropy loss
25
+ and offline loss function learning techniques on a
26
+ diverse range of neural network architectures and
27
+ datasets.
28
+ 1
29
+ Introduction
30
+ When applying deep neural networks to a given learning
31
+ task, a significant amount of time is typically allocated to-
32
+ wards performing manual tuning of the hyper-parameters to
33
+ achieve competitive learning performances (Bengio, 2012).
34
+ Selection of the appropriate hyper-parameters is critical
35
+ for embedding the relevant inductive biases into the learn-
36
+ ing algorithm (Gordon & Desjardins, 1995). The induc-
37
+ tive biases control both the set of searchable models and
38
+ the learning rules used to find the final model parameters.
39
+ Therefore, the field of meta-learning (Schmidhuber, 1987;
40
+ 1School of Engineering and Computer Science, Victoria Uni-
41
+ versity of Wellington, New Zealand. Correspondence to: Christian
42
+ Raymond <[email protected]>.
43
+ Proceedings of the X th Conference on Machine Learning, City,
44
+ State, Country, Publisher, 2022. Copyright 2022 by the author(s).
45
+ 0.0
46
+ 0.2
47
+ 0.4
48
+ 0.6
49
+ 0.8
50
+ 1.0
51
+ Predicted Probability (y = 1)
52
+ 60
53
+ 40
54
+ 20
55
+ 0
56
+ 20
57
+ 40
58
+ 60
59
+ Learned Loss
60
+ 100000
61
+ 80000
62
+ 60000
63
+ 40000
64
+ 20000
65
+ 0
66
+ Figure 1: An example of an adaptive meta-learned loss
67
+ function generated by AdaLFL on the CIFAR-10 dataset,
68
+ where color represents the current gradient step.
69
+ Vanschoren, 2018; Peng, 2020; Hospedales et al., 2022), as
70
+ well as the closely related field of hyper-parameter optimiza-
71
+ tion (Bergstra et al., 2011; Feurer & Hutter, 2019), aim to
72
+ automate the design and selection of a suitable set of induc-
73
+ tive biases (or a subset of them) and have been long-standing
74
+ areas of interest to the machine learning community.
75
+ One component that has only very recently been receiving
76
+ attention in the meta-learning context is the loss function.
77
+ The loss function (Wang et al., 2022) is one of the most
78
+ central components of any gradient-based supervised learn-
79
+ ing system, as it determines the base learning algorithm’s
80
+ learning path and the selection of the final model (Reed
81
+ & MarksII, 1999). Furthermore, in deep learning, neural
82
+ networks are typically trained through the backpropagation
83
+ of gradients that originate from the loss function (Rumelhart
84
+ et al., 1986; Goodfellow et al., 2016). Given this importance,
85
+ a new and emerging subfield of meta-learning referred to as
86
+ Loss Function Learning (Gonzalez & Miikkulainen, 2020;
87
+ Bechtle et al., 2021; Raymond et al., 2022; Collet et al.,
88
+ 2022) aims to attempt the difficult task of inferring a highly
89
+ performant loss function directly from the given data.
90
+ Loss function learning aims to meta-learn a specialized
91
+ task-specific loss function, which yields improved perfor-
92
+ mance capabilities when utilized in training compared to
93
+ handcrafted loss functions on one or many related tasks,
94
+ i.e., a task distribution (Hospedales et al., 2022). Initial
95
+ approaches to loss function learning have shown promise at
96
+ enhancing various aspects of deep neural network training,
97
+ arXiv:2301.13247v1 [cs.LG] 30 Jan 2023
98
+
99
+ Online Loss Function Learning
100
+ 2
101
+ such as improving the convergence and sample efficiency
102
+ (Gonzalez & Miikkulainen, 2020; Bechtle et al., 2021), as
103
+ well as the generalization (Gonzalez & Miikkulainen, 2021;
104
+ Liu et al., 2020; Li et al., 2022; Leng et al., 2022), and model
105
+ robustness (Gao et al., 2021; 2022). However, one prevail-
106
+ ing limitation of the existing approaches to loss function
107
+ learning is that they have thus far exclusively focused on
108
+ learning a loss function in the offline meta-learning settings.
109
+ In offline loss function learning, training is prototypically
110
+ partitioned into two phases. In the first phase, the base loss
111
+ function is meta-learned via iteratively updating the loss
112
+ function by performing one or a few base training steps
113
+ to approximate the performance. Second, the base model
114
+ is trained using the learned loss function, which is now
115
+ fixed, and is used in place of the conventional handcrafted
116
+ loss function. Unfortunately, this methodology is prone
117
+ to a severe short-horizon bias (Wu et al., 2018) towards
118
+ loss functions which are performant in the early stages of
119
+ training but often have poor performance in the later stages.
120
+ To address the limitation of offline loss function learning,
121
+ we propose a new technique for online loss function learn-
122
+ ing called Adaptive Loss Function Learning (AdaLFL). In
123
+ the proposed technique, the learned loss function is repre-
124
+ sented as a small feed-forward neural network that is trained
125
+ simultaneously with the base learning model. Unlike prior
126
+ methods, AdaLFL can adaptively transform both the shape
127
+ and scale of the loss function throughout the learning pro-
128
+ cess to adapt to what is required at each stage of the learning
129
+ process, as shown in Figure 1. In offline loss function learn-
130
+ ing, the central goal is to improve the performance of a
131
+ model by specializing the loss function to a small set of
132
+ related tasks. Online loss function learning naturally ex-
133
+ tends this general philosophy to instead specialize the loss
134
+ function to each individual gradient step on a single task.
135
+ 1.1
136
+ Contributions
137
+ • We propose a method for efficiently learning adaptive
138
+ loss functions via online meta-learning by utilizing online
139
+ unrolled differentiation to update the meta-learned loss
140
+ function after each update to the base model.
141
+ • We address shortcomings in the design of neural network-
142
+ based loss function parameterizations, which previously
143
+ caused learned loss functions to be biased toward overly
144
+ flat shapes resulting in poor training dynamics.
145
+ • Empirically, we demonstrate that models trained with our
146
+ method has enhanced convergence capabilities and infer-
147
+ ence performance compared to handcrafted loss functions
148
+ and offline loss function learning methods.
149
+ • Finally, we analyze the meta-learned loss functions, high-
150
+ lighting several key trends to explore why our adaptive
151
+ meta-learned loss functions are so performant in contrast
152
+ to traditional handcrafted loss functions.
153
+ 2
154
+ Online Loss Function Learning
155
+ In this work, we aim to automate the design and selection
156
+ of the loss function and improve upon the performance of
157
+ supervised machine learning systems. This is achieved via
158
+ meta-learning an adaptive loss function that transforms both
159
+ its shape and scale throughout the learning process. To
160
+ achieve this, we propose Adaptive Loss Function Learning
161
+ (AdaLFL), an efficient task and model-agnostic approach
162
+ for online adaptation of the base loss function.
163
+ 2.1
164
+ Problem Setup
165
+ In a prototypical supervised learning setup, we are given
166
+ a set of N independently and identically distributed (i.i.d.)
167
+ examples of form D = {(x1, y1), . . . , (xN, yN)}, where
168
+ xi ∈ X is the ith instance’s feature vector and yi ∈ Y is
169
+ its corresponding class label. We want to learn a mapping
170
+ between X and Y using some base learning model, e.g., a
171
+ classifier or regressor, fθ : X → Y, where θ is the base
172
+ model parameters. In this paper, similar to others (Finn et al.,
173
+ 2017; Bechtle et al., 2021; Raymond et al., 2022), we con-
174
+ strain the selection of the base models to those amenable to a
175
+ stochastic gradient descent (SGD) style training procedures
176
+ such that optimization of model parameters θ occurs via
177
+ optimizing some task-specific loss function LT as follows:
178
+ θt+1 = θt − α∇θtLT (y, fθt(x))
179
+ (1)
180
+ where LT is a handcrafted loss function, typically the cross
181
+ entropy between the predicted label and the ground truth
182
+ label in classification or the squared error in regression. The
183
+ principal goal of AdaLFL is to replace this conventional
184
+ handcrafted loss function LT with a meta-learned adaptive
185
+ loss function Mφ, where the meta-parameters φ are learned
186
+ simultaneously with the base parameters θ, allowing for
187
+ online adaptation of the loss function. We formulate the task
188
+ of learning φ and θ as a non-stationary bilevel optimization
189
+ problem, where t is the current time step
190
+ φt+1 = arg min
191
+ φ
192
+ LT (y, fθt+1(x))
193
+ s.t.
194
+ θt+1(φt) = arg min
195
+ θ
196
+ Mφt(y, fθt(x)).
197
+ (2)
198
+ The outer optimization problem aims to meta-learn a per-
199
+ formant loss function Mφ that minimizes the error on the
200
+ given task. The inner optimization problem directly mini-
201
+ mizes the learned loss value produced by Mφ to learn the
202
+ base model parameters θ.
203
+ 2.2
204
+ Loss Function Representation
205
+ In AdaLFL, the choice of loss function parameterization is a
206
+ small feedforward neural network, which is chosen due to its
207
+ high expressiveness and design flexibility. Our meta-learned
208
+ loss function parameterization inspired by (Bechtle et al.,
209
+ 2021) is a small feedforward neural network denoted by ℓφ
210
+
211
+ Online Loss Function Learning
212
+ 3
213
+ Algorithm 1 Loss Function Initialization (Offline)
214
+ Input: LT ← Task loss function (meta-objective)
215
+ 1: Mφ0 ← Initialize parameters of meta learner
216
+ 2: for i ∈ {0, ..., Sinit} do
217
+ 3:
218
+ θ0 ← Reset parameters of base learner
219
+ 4:
220
+ for j ∈ {0, ..., Sinner} do
221
+ 5:
222
+ X, y ← Sample from Dtrain
223
+ 6:
224
+ Mlearned ← Mφi(y, fθj(X))
225
+ 7:
226
+ θj+1 ← θj − α∇θjMlearned
227
+ 8:
228
+ end for
229
+ 9:
230
+ X, y ← Sample from Dvalid
231
+ 10:
232
+ Ltask ← LT (y, fθj+1(X))
233
+ 11:
234
+ φi+1 ← φi − η∇φiLtask
235
+ 12: end for
236
+ with two hidden layers and 40 hidden units each, which is
237
+ applied class/output-wise.
238
+ Mφ(y, fθ(x)) = 1
239
+ C
240
+ �C
241
+ i=0 ℓφ(yi, fθ(x)i)
242
+ (3)
243
+ Crucially, key design decisions are made regarding the ac-
244
+ tivation functions used in ℓφ to enforce desirable behavior.
245
+ In (Bechtle et al., 2021), ReLU activations are used in the
246
+ hidden layers, and the smooth Softplus activation is used
247
+ in the output layer to constrain the loss to be non-negative,
248
+ i.e., ℓφ : R2 → R+
249
+ 0 . Unfortunately, this network architec-
250
+ ture is prone to unintentionally encouraging overly flat loss
251
+ functions, see Appendix A.1. Generally, flat regions in the
252
+ loss function are very detrimental to training as uniform loss
253
+ is given to non-uniform errors. Removal of the Softplus
254
+ activation in the output can partially resolve this flatness
255
+ issue; however, without it, the learned loss functions would
256
+ violate the typical constraint that a loss function should be at
257
+ least C1, i.e., continuous in the zeroth and first derivatives.
258
+ Alternative smooth activations, such as Sigmoid, TanH, Soft-
259
+ Plus, ELU, etc., can be used in the hidden layers instead;
260
+ however, due to their range-bounded limits, they are also
261
+ prone to encouraging loss functions that have large flat re-
262
+ gions when their activations saturate. Therefore, to inhibit
263
+ this behavior, the unbounded leaky ReLU (Maas et al., 2013)
264
+ is combined with the smooth ReLU, i.e., SoftPlus (Dugas
265
+ et al., 2000), as follows:
266
+ ϕhidden(x) = 1
267
+ β log(eβx + 1) · (1 − γ) + γx
268
+ (4)
269
+ This smooth leaky ReLU activation function with leak pa-
270
+ rameter γ and smoothness parameter β has desirable char-
271
+ acteristics for representing a loss function. It is smooth and
272
+ has linear asymptotic behavior necessary for tasks such as
273
+ regression, where extrapolation of the learned loss function
274
+ can often occur. Furthermore, as its output is not bounded,
275
+ it does not encourage flatness in the learned loss function.
276
+ See Appendix A.2 for more details.
277
+ Algorithm 2 Loss Function Adaptation (Online)
278
+ Input: Mφ ← Learned loss function (base-objective)
279
+ Input: LT ← Task loss function (meta-objective)
280
+ 1: θ0 ← Initialize parameters of base learner
281
+ 2: for i ∈ {0, ..., Strain} do
282
+ 3:
283
+ X, y ← Sample from Dtrain
284
+ 4:
285
+ Mlearned ← Mφi(y, fθi(X))
286
+ 5:
287
+ θi+1 ← θi − α∇θiMlearned
288
+ 6:
289
+ X, y ← Sample from Dvalid
290
+ 7:
291
+ Ltask ← LT (y, fθi+1(X))
292
+ 8:
293
+ φi+1 ← φi − η∇φiLtask
294
+ 9: end for
295
+ 2.3
296
+ Loss Function Initialization
297
+ One challenge for online loss function learning is achiev-
298
+ ing a stable and performant initial set of parameters for the
299
+ learned loss function. If φ is initialized poorly, too much
300
+ time is spent on fixing φ in the early stages of the learn-
301
+ ing process, resulting in poor base convergence, or in the
302
+ worst case, fθ to diverge. To address this, offline loss func-
303
+ tion learning using Meta-learning via Learned Loss (ML3)
304
+ (Bechtle et al., 2021) is utilized to fine-tune the initial loss
305
+ function to the base model prior to performing online learn-
306
+ ing. The initialization process is summarized in Algorithm
307
+ 1, where Sinit = 2500. In AdaLFL’s initialization process
308
+ one step on θ is taken for each step in φ, i.e., inner gradient
309
+ steps Sinner = 1. However, if Sinner < 1, implicit gra-
310
+ dients (Lorraine et al., 2020; Gao et al., 2022) can instead
311
+ be utilized to reduce the initialization process’s memory
312
+ footprint and computational overhead.
313
+ 2.4
314
+ Online Meta-Optimization
315
+ To optimize φ, unrolled differentiation is utilized in the outer
316
+ loop to update the learned loss function after each update
317
+ to the base model parameters θ in the inner loop, which
318
+ occurs via vanilla backpropagation. This is conceptually
319
+ the simplest way to optimise φ as all the intermediate it-
320
+ erates generated by the optimizer in the inner loop can be
321
+ stored and then backpropagate through in the outer loop
322
+ (Maclaurin et al., 2015). The full iterative learning pro-
323
+ cess is summarized in Algorithm 2 and proceeds as follows:
324
+ perform a forward pass fθt(x) to obtain an initial set of
325
+ predictions. The learned loss function Mφ is then used to
326
+ produce a base loss value
327
+ Mlearned = Mφt(y, fθt(x)).
328
+ (5)
329
+ Using Mlearned, the current weights θt are updated by
330
+ taking a step in the opposite direction of the gradient of the
331
+ loss with respect to θt, where α is the base learning rate.
332
+ θt+1 = θt − α∇θtMφt(y, fθt(x))
333
+ = θt − α∇θtEX,y
334
+
335
+ Mφt(y, fθt(x))
336
+
337
+ (6)
338
+
339
+ Online Loss Function Learning
340
+ 4
341
+ Meta Update
342
+ Base Update
343
+ Inner Optimization
344
+ Outer Optimization
345
+ Figure 2: Computational graph of AdaLFL, where θ is updated using Mφ in the inner loop (Base Update). The
346
+ optimization path is tracked in the computational graph and then used to update φ based on the meta-objective in the
347
+ outer loop (Meta Update). The dashed lines show the gradients for θ and φ with respect to their given objectives.
348
+ which can be further decomposed via the chain rule as
349
+ shown in Equation (7). Importantly, all the intermediate
350
+ iterates generated by the (base) optimizer at the tth time-
351
+ step when updating θ are stored in memory.
352
+ θt+1 = θt − α∇fMφt(y, fθt(x))∇θtfθt(x)
353
+ (7)
354
+ φt can now be updated to φt+1 based on the learning pro-
355
+ gression made by θ. Using θt+1 as a function of φt, compute
356
+ a forward pass using the updated base weights fθt+1(x) to
357
+ obtain a new set of predictions. The instances can either be
358
+ sampled from the training set or a held-out validation set.
359
+ The new set of predictions is used to compute the task loss
360
+ LT to optimize φt through θt+1
361
+ Ltask = LT (y, fθt+1(x))
362
+ (8)
363
+ where LT is selected based on the respective application.
364
+ For example, the squared error loss for the task of regression
365
+ or the cross-entropy loss for classification. The task loss is a
366
+ crucial component for embedding the end goal task into the
367
+ learned loss function. Optimization of the current meta-loss
368
+ network loss weights φt now occurs by taking the gradient
369
+ of LT , where η is the meta learning rate.
370
+ φt+1 = φt − η∇φtLT (y, fθt+1(x))
371
+ = φt − η∇φtEX,y
372
+
373
+ LT (y, fθt+1(x))
374
+
375
+ (9)
376
+ where the gradient computation is decomposed by applying
377
+ the chain rule as shown in Equation (10) where the gradient
378
+ with respect to the meta-loss network weights φt requires
379
+ the updated model parameters θt+1 from Equation (6).
380
+ φt+1 = φt − η∇fLT ∇θt+1fθt+1∇φtθt+1
381
+ (10)
382
+ This process is repeated for a fixed number of gradient steps
383
+ Strain, which is identical to what would typically be used
384
+ for training fθ. An overview and summary of the full asso-
385
+ ciated data flow between the inner and outer optimization
386
+ of θ and φ, respectively, is given in Figure 2.
387
+ 2.5
388
+ Implicit Tuning of Learning Rate Schedule
389
+ In offline loss function learning, it is known from (Gonzalez
390
+ & Miikkulainen, 2021; Raymond et al., 2022) that there is
391
+ implicit initial learning rate tuning of α when meta-learning
392
+ a loss function since
393
+ ∃α∃φ : θ − α∇θLT ≈ θ − ∇θMφ.
394
+ (11)
395
+ Consequently, an emergent behavior, unique to online loss
396
+ function learning, is that the adaptive loss function generated
397
+ by AdaLFL implicitly embodies multiple different learning
398
+ rates throughout the learning process hence often causing a
399
+ fine-tuning of the fixed learning rate or of a predetermined
400
+ learning rate schedule.
401
+ 3
402
+ Related Work
403
+ The method that we propose in this paper addresses the
404
+ general problem of meta-learning a (base) loss function,
405
+ i.e. loss function learning. Existing loss function learn-
406
+ ing methods can be categorized along two key axes, loss
407
+ function representation and meta-optimization. Frequently
408
+ used representations in loss function learning include para-
409
+ metric (Gonzalez & Miikkulainen, 2020; Raymond et al.,
410
+ 2022) and nonparametric (Liu et al., 2020; Li et al., 2022)
411
+ genetic programming expression trees. In addition to this,
412
+ alternative representations such as truncated Taylor polyno-
413
+ mials (Gonzalez & Miikkulainen, 2021; Gao et al., 2021;
414
+ 2022) and small feed-forward neural networks (Bechtle
415
+ et al., 2021) have also been recently explored. Regard-
416
+ ing meta-optimization, loss function learning methods have
417
+ heavily utilized computationally expensive evolution-based
418
+ methods such as evolutionary algorithms (Koza et al., 1994)
419
+ and evolutionary strategies (Hansen & Ostermeier, 2001).
420
+ While more recent approaches have made use of gradient-
421
+ based approaches unrolled differentiation (Maclaurin et al.,
422
+ 2015), and implicit differentiation (Lorraine et al., 2020).
423
+
424
+ Online Loss Function Learning
425
+ 5
426
+ A common trait among these methods is that, in contrast to
427
+ AdaLFL, they perform offline loss function learning, result-
428
+ ing in a severe short-horizon bias and sub-optimal perfor-
429
+ mance at the end of training. This short-horizon bias arises
430
+ from how the various approaches compute their respective
431
+ meta-objectives. In offline evolution-based approaches, the
432
+ fitness, i.e., meta-objective, is typically calculated by com-
433
+ puting the performance at the end of a partial training ses-
434
+ sion, e.g., ≤ 1000 gradient steps (Gonzalez & Miikkulainen,
435
+ 2021; Raymond et al., 2022). A truncated number of gradi-
436
+ ent steps are required to be used as evolution-based meth-
437
+ ods have to evaluate the performance of a large number of
438
+ candidate solutions, typically L loss function over K iter-
439
+ ations/generations, where 25 ≤ L, K ≤ 100. Therefore,
440
+ performing full training sessions, which can be hundreds
441
+ of thousands or even millions of gradient steps for each
442
+ candidate solution, is infeasible.
443
+ Regarding the existing gradient-based approaches, offline
444
+ unrolled optimization requires the whole optimization path
445
+ to be stored in memory; in practice, this significantly re-
446
+ stricts the number of inner gradient steps before computing
447
+ the meta-objective to only a small number of steps. Methods
448
+ such as implicit differentiation can obviate these memory
449
+ issues; however, it would still require a full training session
450
+ in the inner loop, which is a prohibitive number of forward
451
+ passes to perform in tractable time. Furthermore, the de-
452
+ pendence of the model-parameters on the meta-parameters
453
+ increasingly shrinks and eventually vanishes as the number
454
+ of steps increases (Rajeswaran et al., 2019).
455
+ 3.1
456
+ Online vs Offline Loss Function Learning
457
+ The key algorithmic difference of AdaLFL from prior of-
458
+ fline gradient-based methods (Bechtle et al., 2021; Gao
459
+ et al., 2022) is that φ is updated after each update to θ in
460
+ lockstep in a single phase as opposed to learning θ and φ
461
+ in separate phases. This is achieved by not resetting θ after
462
+ each update to φ (Algorithm 1, line 3), and consequently,
463
+ φ has to adapt to each newly updated timestep such that
464
+ φ = (φ0, φ1, . . . , φStrain). In offline loss function learning,
465
+ φ is learned separately at meta-training time and then is
466
+ fixed for the full duration of the meta-testing phase where θ
467
+ is learned and φ = (φ0). Another crucial difference is that
468
+ in online loss function learning, there is implicit tuning of
469
+ the learning rate schedule, as mentioned in Section 2.5.
470
+ 3.2
471
+ Alternative Paradigms
472
+ Although online loss function learning has not been explored
473
+ in the meta-learning context, some existing research outside
474
+ the subfield has previously explored the possibility of adap-
475
+ tive loss functions, such as in (Li et al., 2019) and (Wang
476
+ et al., 2020). However, we emphasize that these approaches
477
+ are categorically different in that they do not learn the loss
478
+ function from scratch; instead, they interpolate between a
479
+ small subset of handcrafted loss functions, updating the loss
480
+ function after each epoch. Furthermore, in contrast to loss
481
+ function learning which is both task and model-agnostic,
482
+ these techniques are restricted to being task-specific, e.g.,
483
+ face recognition only. Finally, this class of approaches does
484
+ not implicitly tune the base learning rate α, as is the case in
485
+ loss function learning.
486
+ 4
487
+ Experimental Evaluation
488
+ In this section, the experimental setup for evaluating
489
+ AdaLFL is presented. In summary, experiments are con-
490
+ ducted across four open-access datasets and multiple well-
491
+ established network architectures. The performance of the
492
+ proposed method is contrasted against the handcrafted cross-
493
+ entropy loss and AdaLFL’s offline counterpart ML3 Super-
494
+ vised (Bechtle et al., 2021). The experiments were imple-
495
+ mented in PyTorch (Paszke et al., 2017), and Higher
496
+ (Grefenstette et al., 2019), and the code for reproducing the
497
+ experiments can be found at github.com/*redacted*.
498
+ 4.1
499
+ Benchmark Tasks
500
+ Following the established literature on loss function learn-
501
+ ing (Gonzalez & Miikkulainen, 2021; Bechtle et al., 2021;
502
+ Raymond et al., 2022), MNIST (LeCun et al., 1998) is ini-
503
+ tially used as a simple domain to illustrate the capabilities
504
+ of the proposed method. Following this, the more challeng-
505
+ ing tasks of CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
506
+ 2009), and SVHN (Netzer et al., 2011), are employed to
507
+ assess the performance of AdaLFL to determine whether
508
+ the results can generalize to larger, more challenging tasks.
509
+ The original training-testing partitioning is used for all four
510
+ datasets, with 10% of the training instances allocated for
511
+ validation. In addition, standard data augmentation tech-
512
+ niques consisting of normalization, random horizontal flips,
513
+ and cropping are applied to the training data of CIFAR-10,
514
+ CIFAR-100, and SVHN during meta and base training.
515
+ 4.2
516
+ Benchmark Models
517
+ A diverse set of commonly used and well-established bench-
518
+ mark architectures are utilized to evaluate the performance
519
+ of AdaLFL. For MNIST, logistic regression (McCullagh
520
+ et al., 1989), a simple two hidden layer multi-layer per-
521
+ ceptron (MLP) taken from (Baydin et al., 2018), and the
522
+ LeNet-5 (LeCun et al., 1998) architecture is used. Follow-
523
+ ing this experiments are conducted on CIFAR-10, VGG-16
524
+ (Simonyan et al., 2014), AllCNN-C (Springenberg et al.,
525
+ 2014), ResNet-18 (He et al., 2016), and SqueezeNet (Ian-
526
+ dola et al., 2016) are used. For the remaining datasets,
527
+ CIFAR-100 and SVHN, WideResNet 28-10 and WideRes-
528
+ Net 16-8 (Zagoruyko et al., 2016) is employed, respectively.
529
+ 5
530
+ Results and Analysis
531
+ The results in Figure 3 show the average training learning
532
+ curves of AdaLFL compared with the baseline cross-entropy
533
+
534
+ Online Loss Function Learning
535
+ 6
536
+ 0
537
+ 5000
538
+ 10000
539
+ 15000
540
+ 20000
541
+ 25000
542
+ 0.0
543
+ 0.1
544
+ 0.2
545
+ 0.3
546
+ 0.4
547
+ Error Rate
548
+ (a) MNIST + Logistic
549
+ 0
550
+ 5000
551
+ 10000
552
+ 15000
553
+ 20000
554
+ 25000
555
+ 0.00
556
+ 0.05
557
+ 0.10
558
+ 0.15
559
+ 0.20
560
+ Error Rate
561
+ (b) MNIST + MLP
562
+ 0
563
+ 5000
564
+ 10000
565
+ 15000
566
+ 20000
567
+ 25000
568
+ 0.00
569
+ 0.05
570
+ 0.10
571
+ 0.15
572
+ 0.20
573
+ Error Rate
574
+ (c) MNIST + LeNet-5
575
+ 0
576
+ 20000
577
+ 40000
578
+ 60000
579
+ 80000
580
+ 100000
581
+ 0.00
582
+ 0.05
583
+ 0.10
584
+ 0.15
585
+ 0.20
586
+ Error Rate
587
+ (d) CIFAR-10 + VGG-16
588
+ 0
589
+ 20000
590
+ 40000
591
+ 60000
592
+ 80000
593
+ 100000
594
+ 0.00
595
+ 0.05
596
+ 0.10
597
+ 0.15
598
+ 0.20
599
+ Error Rate
600
+ (e) CIFAR-10 + AllCNN-C
601
+ 0
602
+ 20000
603
+ 40000
604
+ 60000
605
+ 80000
606
+ 100000
607
+ 0.00
608
+ 0.05
609
+ 0.10
610
+ 0.15
611
+ 0.20
612
+ Error Rate
613
+ (f) CIFAR-10 + ResNet-18
614
+ 0
615
+ 20000
616
+ 40000
617
+ 60000
618
+ 80000
619
+ 100000
620
+ 0.00
621
+ 0.05
622
+ 0.10
623
+ 0.15
624
+ 0.20
625
+ Error Rate
626
+ (g) CIFAR-10 + SqueezeNet
627
+ 0
628
+ 25000
629
+ 50000
630
+ 75000
631
+ 100000 125000 150000
632
+ 0.00
633
+ 0.05
634
+ 0.10
635
+ 0.15
636
+ 0.20
637
+ Error Rate
638
+ (h) CIFAR-100 + WRN 28-10
639
+ 0
640
+ 25000
641
+ 50000
642
+ 75000
643
+ 100000 125000 150000
644
+ 0.00
645
+ 0.05
646
+ 0.10
647
+ 0.15
648
+ 0.20
649
+ Error Rate
650
+ (i) SVHN + WRN 16-8
651
+ Baseline
652
+ ML3 (Offline)
653
+ AdaLFL (Online)
654
+ Figure 3: Mean learning curves across 10 independent executions of each algorithm on each task + model pair, showing the
655
+ training error rate (y-axis) against gradient steps (x-axis). Best viewed in color.
656
+ loss and ML3 across 10 executions of each method on each
657
+ dataset + model pair. The results show that AdaLFL makes
658
+ clear and consistent gains in convergence speed compared
659
+ to the baseline and offline loss function learning method
660
+ ML3, except on CIFAR-100 where there was difficulty in
661
+ achieving a stable initialization. Furthermore, the errors ob-
662
+ tained by AdaLFL at the end of training are typically better
663
+ (lower) than both of the compared methods, suggesting that
664
+ performance gains are being made in addition to enhanced
665
+ convergence and training speeds.
666
+ Another key observation is that AdaLFL improves upon
667
+ the performance of the baseline on the more challenging
668
+ tasks of CIFAR-10, CIFAR-100, and SVHN, where offline
669
+ loss functions learning method ML3 consistently performs
670
+ poorly. Improved performance on these datasets is achieved
671
+ via AdaLFL adaptively updating the learned loss function
672
+ throughout the learning process to the changes in the train-
673
+ ing dynamics. This is in contrast to ML3, where the loss
674
+ function remains static, resulting in poor performance on
675
+ tasks where the training dynamics at the beginning of train-
676
+ ing vary significantly from those at the end of training.
677
+ 5.1
678
+ Final Inference Testing Performance
679
+ The corresponding final inference testing results reporting
680
+ the average error rate across 10 independent executions of
681
+ each method are shown in Table 1. The results show that
682
+ AdaLFL’s meta-learned loss functions produce superior in-
683
+ ference performance when used in training compared to
684
+ the baseline on all the tested problems. A further observa-
685
+ tion is that the gains achieved by AdaLFL are consistent
686
+ and stable. Notably, in most cases, lower variability than
687
+ the baseline is observed, as shown by the relatively small
688
+ standard deviation in error rate across the independent runs.
689
+ Contrasting the performance of AdaLFL to ML3, similar per-
690
+ formance is obtained on the MNIST experiments, suggest-
691
+ ing that the training dynamics at the beginning of training
692
+ are similar to those at the end; hence the modest difference
693
+ in results. While on the more challenging tasks of CIFAR-
694
+ 10, CIFAR-100, and SVHN, AdaLFL produced significantly
695
+ better results than ML3, demonstrating the scalability of the
696
+ newly proposed loss function learning approach.
697
+ The results attained by AdaLFL are are promising given
698
+ that the base models tested were designed and optimized
699
+ around the cross-entropy loss. We hypothesize that larger
700
+ performance gains may be attained using networks designed
701
+ specifically around meta-learned loss function, similar to
702
+ the results shown in (Kim et al., 2018; Elsken et al., 2020;
703
+ Ding et al., 2022). Thus future work will explore learning
704
+ the loss function in tandem with the network architecture.
705
+
706
+ Online Loss Function Learning
707
+ 7
708
+ Table 1: Results reporting the mean ± standard deviation of final inference testing error rates across 10 independent
709
+ executions of each algorithm on each task + model pair (using no base learning rate scheduler).
710
+ Task
711
+ Model
712
+ Baseline
713
+ ML3 (Offline)
714
+ AdaLFL (Online)
715
+ MNIST
716
+ Logistic (McCullagh et al., 1989)
717
+ 0.0766±0.0009
718
+ 0.0710±0.0010
719
+ 0.0697±0.0010
720
+ MLP (Baydin et al., 2018)
721
+ 0.0203±0.0006
722
+ 0.0185±0.0004
723
+ 0.0184±0.0006
724
+ LeNet-5 (LeCun et al., 1998)
725
+ 0.0125±0.0007
726
+ 0.0094±0.0005
727
+ 0.0091±0.0004
728
+ CIFAR-10
729
+ VGG-16 (Simonyan et al., 2014)
730
+ 0.1036±0.0049
731
+ 0.1027±0.0062
732
+ 0.0903±0.0032
733
+ AllCNN-C (Springenberg et al., 2014)
734
+ 0.1030±0.0062
735
+ 0.1015±0.0055
736
+ 0.0835±0.0050
737
+ ResNet-18 (He et al., 2016)
738
+ 0.0871±0.0057
739
+ 0.0883±0.0041
740
+ 0.0788±0.0035
741
+ SqueezeNet (Iandola et al., 2016)
742
+ 0.1226±0.0080
743
+ 0.1162±0.0052
744
+ 0.1083±0.0049
745
+ CIFAR-100
746
+ WRN 28-10 (Zagoruyko et al., 2016)
747
+ 0.3046±0.0087
748
+ 0.3108±0.0075
749
+ 0.2668±0.0283
750
+ SVHN
751
+ WRN 16-8 (Zagoruyko et al., 2016)
752
+ 0.0512±0.0043
753
+ 0.0500±0.0034
754
+ 0.0441±0.0014
755
+ Table 2: Results reporting the mean ± standard deviation
756
+ of testing error rates when using an increasing number of
757
+ inner gradient steps Sinner with ML3.
758
+ Method
759
+ CIFAR-10 + AllCNN-C
760
+ ML3 (Sinner = 1)
761
+ 0.1015±0.0055
762
+ ML3 (Sinner = 5)
763
+ 0.0978±0.0052
764
+ ML3 (Sinner = 10)
765
+ 0.0985±0.0050
766
+ ML3 (Sinner = 15)
767
+ 0.0989±0.0049
768
+ ML3 (Sinner = 20)
769
+ 0.0974±0.0061
770
+ AdaLFL (Online)
771
+ 0.0835±0.0050
772
+ 5.2
773
+ Inner Gradient Steps
774
+ In ML3, (Bechtle et al., 2021) suggested taking only one
775
+ inner step, i.e., setting Sinner = 1 in Algorithm 1. A rea-
776
+ sonable question to ask is whether increasing the number
777
+ of inner steps to extend the horizon of the meta-objective
778
+ past the first step will reduce the disparity in performance
779
+ between ML3 and AdaLFL. To answer this question, exper-
780
+ iments are performed on CIFAR-10 AllCNN-C with ML3
781
+ setting Sinner = {1, 5, 10, 15, 20}. The results reported
782
+ in Table 2 show that increasing the number of inner steps
783
+ in ML3 up to the limit of what is feasible in memory on
784
+ a consumer GPU does not resolve the short horizon bias
785
+ present in offline loss function learning. Furthermore, the
786
+ results show that increasing the number of inner steps only
787
+ results in marginal improvements in the performance over
788
+ Sinner = 1. Hence, offline loss function learning methods
789
+ that seek to obviate the memory issues of unrolled differen-
790
+ tiation to allow for an increased number of inner steps, such
791
+ as (Gao et al., 2022), which uses implicit differentiation, are
792
+ still prone to a kind of short-horizon bias.
793
+ Table 3: Average run-time of the entire learning process for
794
+ each benchmark method. Each algorithm is run on a single
795
+ Nvidia RTX A5000, and results are reported in hours.
796
+ Task and Model
797
+ Baseline
798
+ Offline
799
+ Online
800
+ MNIST + Logistic
801
+ 0.06
802
+ 0.31
803
+ 0.55
804
+ MNIST + MLP
805
+ 0.06
806
+ 0.32
807
+ 0.56
808
+ MNIST + LeNet-5
809
+ 0.10
810
+ 0.38
811
+ 0.67
812
+ CIFAR-10 + VGG-16
813
+ 1.50
814
+ 1.85
815
+ 5.56
816
+ CIFAR-10 + AllCNN-C
817
+ 1.41
818
+ 1.72
819
+ 5.53
820
+ CIFAR-10 + ResNet-18
821
+ 1.81
822
+ 2.18
823
+ 8.38
824
+ CIFAR-10 + SqueezeNet
825
+ 1.72
826
+ 2.02
827
+ 7.88
828
+ CIFAR-100 + WRN 28-10
829
+ 8.81
830
+ 10.3
831
+ 50.49
832
+ SVHN + WRN 16-8
833
+ 7.32
834
+ 7.61
835
+ 24.75
836
+ 5.3
837
+ Run-time Analysis
838
+ The average run-time of the entire learning process of all
839
+ benchmark methods on all tasks is reported in Table 3. No-
840
+ tably, there are two key reasons why the computational
841
+ overhead of AdaLFL is not as bad as it may at first seem.
842
+ First, the time reported for the baseline does not include
843
+ the implicit cost of manual hyper-parameter selection and
844
+ tuning of the loss function, as well as the initial learning
845
+ rate and learning rate schedule, which is needed prior to
846
+ training in order to attain reasonable performance (Goodfel-
847
+ low et al., 2016). Second, a large proportion of the cost of
848
+ AdaLFL comes from storing a large number of intermediate
849
+ iterates needed for the outer loop. However, the intermedi-
850
+ ate iterates stored in this process are identical to those used
851
+ in other popular meta-learning paradigms (Andrychowicz
852
+ et al., 2016; Finn et al., 2017). Consequently, future work
853
+
854
+ Online Loss Function Learning
855
+ 8
856
+ 0.0
857
+ 0.2
858
+ 0.4
859
+ 0.6
860
+ 0.8
861
+ 1.0
862
+ Predicted Probability (y = 1)
863
+ 15.0
864
+ 12.5
865
+ 10.0
866
+ 7.5
867
+ 5.0
868
+ 2.5
869
+ 0.0
870
+ Learned Loss
871
+ 0.0
872
+ 0.2
873
+ 0.4
874
+ 0.6
875
+ 0.8
876
+ 1.0
877
+ Predicted Probability (y = 0)
878
+ 0.0
879
+ 2.5
880
+ 5.0
881
+ 7.5
882
+ 10.0
883
+ 12.5
884
+ 15.0
885
+ 17.5
886
+ Learned Loss
887
+ 0.0
888
+ 0.2
889
+ 0.4
890
+ 0.6
891
+ 0.8
892
+ 1.0
893
+ Predicted Probability (y = 1)
894
+ 10
895
+ 20
896
+ 30
897
+ 40
898
+ 50
899
+ 60
900
+ Learned Loss
901
+ 0.0
902
+ 0.2
903
+ 0.4
904
+ 0.6
905
+ 0.8
906
+ 1.0
907
+ Predicted Probability (y = 0)
908
+ 80
909
+ 60
910
+ 40
911
+ 20
912
+ 0
913
+ 20
914
+ Learned Loss
915
+ 0
916
+ 20000
917
+ 40000
918
+ 60000
919
+ 80000
920
+ 100000
921
+ Figure 4: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
922
+ a loss function, and the color represents the current gradient step.
923
+ can explore combining AdaLFL with other optimization-
924
+ based meta-learning methods with minimal overhead cost,
925
+ as is the case in methods such as MetaSGD (Li et al., 2017),
926
+ where both the initial parameters and a parameter-wise ma-
927
+ trix of learning rate terms are learned simultaneously.
928
+ 5.4
929
+ Visualizing Learned Loss Functions
930
+ To better understand why the meta-learned loss functions
931
+ produced by AdaLFL are so performant, two of the learned
932
+ loss functions are highlighted in Figure 4, where the learned
933
+ loss function is plotted at equispaced intervals throughout
934
+ the training. See Appendix C for further examples of the
935
+ diverse and creative loss function meta-learned by AdaLFL.
936
+ Analyzing the learned loss functions, it can be observed
937
+ that the loss functions change significantly in their shape
938
+ throughout the learning process. In both cases, the learned
939
+ loss functions attributed strong penalties for severe mis-
940
+ classification at the start of the learning process, and than
941
+ gradually pivoted to a more moderate or minor penalty as
942
+ learning progressed. This behavior enables fast and effi-
943
+ cient learning early on, and reduces the sensitivity of the
944
+ base model to outliers in the later stages of the learning pro-
945
+ cess. A further observation is that the scale of the learned
946
+ loss function changes, confirming that implicit learning rate
947
+ tuning, as noted in Section 3.1, is occurring.
948
+ 5.5
949
+ Implicit Early Stopping
950
+ A unique property observed in the loss functions generated
951
+ by AdaLFL is that often once base convergence is achieved
952
+ the learned loss function will intentionally start to flatten or
953
+ take on a parabolic form, see Figures 7 and 12 in Appendix.
954
+ This is implicitly a type of early stopping, also observed in
955
+ related paradigms such as in hypergradient descent (Baydin
956
+ et al., 2018), which meta-learns base learning rates. In hy-
957
+ pergradient descent the learned learning rate has previously
958
+ been observed to oscillate around 0 near the end of training,
959
+ at times becoming negative, essentially terminating training.
960
+ Implicit early stopping is beneficial as it is known to have a
961
+ regularizing effect on model training (Yao et al., 2007); how-
962
+ ever, if not performed carefully it can also be detrimental to
963
+ training due to terminating training prematurely. Therefore,
964
+ in future work, we aim to further investigate and explore
965
+ regulating this behavior, as a potential avenue for further
966
+ improving performance.
967
+ 6
968
+ Conclusion
969
+ In this work, the first fully online approach to loss function
970
+ learning is proposed. The proposed technique, AdaLFL,
971
+ infers the base loss function directly from the data and adap-
972
+ tively trains it with the base model parameters simultane-
973
+ ously using unrolled differentiation. The results showed that
974
+ models trained with our method have enhanced convergence
975
+ capabilities and inference performance compared with the
976
+ de facto standard cross-entropy loss and offline loss func-
977
+ tion learning method ML3. Further analysis on the learned
978
+ loss functions identified common patterns in the shape of
979
+ the learned loss function, as well revealed unique emergent
980
+ behavior present only in adaptively learned loss functions.
981
+ Namely, implicit tuning of the learning rate schedule as
982
+ well as implicit early stopping. While this work has solely
983
+ set focus on meta-learning the loss function in isolation to
984
+ better understand and analyze its properties, we believe that
985
+ further benefits can be realized upon being combined with
986
+ existing optimization-based meta-learning techniques.
987
+
988
+ Online Loss Function Learning
989
+ 9
990
+ References
991
+ Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
992
+ Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
993
+ Learning to learn by gradient descent by gradient descent.
994
+ Advances in neural information processing systems, 29,
995
+ 2016.
996
+ Antoniou, A., Edwards, H., and Storkey, A. How to train
997
+ your maml. arXiv preprint arXiv:1810.09502, 2018.
998
+ Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M.,
999
+ and Wood, F. Online learning rate adaptation with hyper-
1000
+ gradient descent. In Sixth International Conference on
1001
+ Learning Representations, 2018.
1002
+ Bechtle, S., Molchanov, A., Chebotar, Y., Grefenstette, E.,
1003
+ Righetti, L., Sukhatme, G., and Meier, F. Meta-learning
1004
+ via learned loss. In 2020 25th International Conference
1005
+ on Pattern Recognition (ICPR), pp. 4161–4168. IEEE,
1006
+ 2021.
1007
+ Bengio, Y. Practical recommendations for gradient-based
1008
+ training of deep architectures. In Neural networks: Tricks
1009
+ of the trade, pp. 437–478. Springer, 2012.
1010
+ Bergstra, J., Bardenet, R., Bengio, Y., and K´egl, B. Algo-
1011
+ rithms for hyper-parameter optimization. Advances in
1012
+ neural information processing systems, 24, 2011.
1013
+ Collet, A., Bazco-Nogueras, A., Banchs, A., and Fiore, M.
1014
+ Loss meta-learning for forecasting, 2022. URL https:
1015
+ //openreview.net/forum?id=rczz7TUKIIB.
1016
+ Ding, Y., Wu, Y., Huang, C., Tang, S., Yang, Y., Wei, L.,
1017
+ Zhuang, Y., and Tian, Q. Learning to learn by jointly op-
1018
+ timizing neural architecture and weights. In Proceedings
1019
+ of the IEEE/CVF Conference on Computer Vision and
1020
+ Pattern Recognition, pp. 129–138, 2022.
1021
+ Dugas, C., Bengio, Y., B´elisle, F., Nadeau, C., and Garcia,
1022
+ R. Incorporating second-order functional knowledge for
1023
+ better option pricing. Advances in neural information
1024
+ processing systems, 13, 2000.
1025
+ Elsken, T., Staffler, B., Metzen, J. H., and Hutter, F. Meta-
1026
+ learning of neural architectures for few-shot learning. In
1027
+ Proceedings of the IEEE/CVF conference on computer
1028
+ vision and pattern recognition, pp. 12365–12375, 2020.
1029
+ Feurer, M. and Hutter, F. Hyperparameter optimization. In
1030
+ Automated machine learning, pp. 3–33. Springer, Cham,
1031
+ 2019.
1032
+ Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
1033
+ learning for fast adaptation of deep networks. In Interna-
1034
+ tional conference on machine learning, pp. 1126–1135.
1035
+ PMLR, 2017.
1036
+ Gao, B., Gouk, H., and Hospedales, T. M. Searching for
1037
+ robustness: Loss learning for noisy classification tasks. In
1038
+ Proceedings of the IEEE/CVF International Conference
1039
+ on Computer Vision, pp. 6670–6679, 2021.
1040
+ Gao, B., Gouk, H., Yang, Y., and Hospedales, T. Loss
1041
+ function learning for domain generalization by implicit
1042
+ gradient. In International Conference on Machine Learn-
1043
+ ing, pp. 7002–7016. PMLR, 2022.
1044
+ Gonzalez, S. and Miikkulainen, R. Improved training speed,
1045
+ accuracy, and data utilization through loss function op-
1046
+ timization.
1047
+ In 2020 IEEE Congress on Evolutionary
1048
+ Computation (CEC), pp. 1–8. IEEE, 2020.
1049
+ Gonzalez, S. and Miikkulainen, R. Optimizing loss func-
1050
+ tions through multi-variate taylor polynomial parameteri-
1051
+ zation. In Proceedings of the Genetic and Evolutionary
1052
+ Computation Conference, pp. 305–313, 2021.
1053
+ Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
1054
+ MIT press, 2016.
1055
+ Gordon, D. F. and Desjardins, M. Evaluation and selection
1056
+ of biases in machine learning. Machine learning, 20(1):
1057
+ 5–22, 1995.
1058
+ Grefenstette, E., Amos, B., Yarats, D., Htut, P. M.,
1059
+ Molchanov, A., Meier, F., Kiela, D., Cho, K., and Chin-
1060
+ tala, S. Generalized inner loop meta-learning. arXiv
1061
+ preprint arXiv:1910.01727, 2019.
1062
+ Hansen, N. and Ostermeier, A. Completely derandomized
1063
+ self-adaptation in evolution strategies. Evolutionary com-
1064
+ putation, 9(2):159–195, 2001.
1065
+ He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
1066
+ ing for image recognition. In Proceedings of the IEEE
1067
+ conference on computer vision and pattern recognition,
1068
+ pp. 770–778, 2016.
1069
+ Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
1070
+ A. Meta-learning in neural networks: A survey. IEEE
1071
+ Transactions on Pattern Analysis; Machine Intelligence,
1072
+ 44(09):5149–5169, 2022.
1073
+ Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
1074
+ Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
1075
+ accuracy with 50x fewer parameters and¡ 0.5 mb model
1076
+ size. arXiv preprint arXiv:1602.07360, 2016.
1077
+ Kim, J., Lee, S., Kim, S., Cha, M., Lee, J. K., Choi, Y.,
1078
+ Choi, Y., Cho, D.-Y., and Kim, J. Auto-meta: Auto-
1079
+ mated gradient based meta learner search. arXiv preprint
1080
+ arXiv:1806.06927, 2018.
1081
+ Koza, J. R. et al. Genetic programming II, volume 17. MIT
1082
+ press Cambridge, 1994.
1083
+
1084
+ Online Loss Function Learning
1085
+ 10
1086
+ Krizhevsky, A. and Hinton, G. Learning multiple layers of
1087
+ features from tiny images. 2009.
1088
+ LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
1089
+ based learning applied to document recognition. Proceed-
1090
+ ings of the IEEE, 86(11):2278–2324, 1998.
1091
+ Leng, Z., Tan, M., Liu, C., Cubuk, E. D., Shi, X., Cheng,
1092
+ S., and Anguelov, D. Polyloss: A polynomial expan-
1093
+ sion perspective of classification loss functions. Tenth
1094
+ International Conference on Learning Representations,
1095
+ 2022.
1096
+ Li, C., Yuan, X., Lin, C., Guo, M., Wu, W., Yan, J., and
1097
+ Ouyang, W. Am-lfs: Automl for loss function search. In
1098
+ Proceedings of the IEEE/CVF International Conference
1099
+ on Computer Vision, pp. 8410–8419, 2019.
1100
+ Li, H., Fu, T., Dai, J., Li, H., Huang, G., and Zhu, X.
1101
+ Autoloss-zero: Searching loss functions from scratch
1102
+ for generic tasks. In Proceedings of the IEEE/CVF Con-
1103
+ ference on Computer Vision and Pattern Recognition, pp.
1104
+ 1009–1018, 2022.
1105
+ Li, Z., Zhou, F., Chen, F., and Li, H. Meta-sgd: Learning
1106
+ to learn quickly for few-shot learning. arXiv preprint
1107
+ arXiv:1707.09835, 2017.
1108
+ Liu, P., Zhang, G., Wang, B., Xu, H., Liang, X., Jiang, Y.,
1109
+ and Li, Z. Loss function discovery for object detection
1110
+ via convergence-simulation driven search. In ICLR, 2020.
1111
+ Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing mil-
1112
+ lions of hyperparameters by implicit differentiation. In
1113
+ International Conference on Artificial Intelligence and
1114
+ Statistics, pp. 1540–1552. PMLR, 2020.
1115
+ Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. Rectifier
1116
+ nonlinearities improve neural network acoustic models.
1117
+ In Proc. icml, volume 30, pp. 3. Atlanta, Georgia, USA,
1118
+ 2013.
1119
+ Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
1120
+ based hyperparameter optimization through reversible
1121
+ learning. In International conference on machine learn-
1122
+ ing, pp. 2113–2122. PMLR, 2015.
1123
+ McCullagh, P., Nelder, J. A., et al. Generalized linear
1124
+ models. Routledge, 1989.
1125
+ Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
1126
+ and Ng, A. Y. Reading digits in natural images with
1127
+ unsupervised feature learning. 2011.
1128
+ Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
1129
+ DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
1130
+ A. Automatic differentiation in pytorch. 2017.
1131
+ Peng, H.
1132
+ A comprehensive overview and survey of
1133
+ recent advances in meta-learning.
1134
+ arXiv preprint
1135
+ arXiv:2004.11149, 2020.
1136
+ Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
1137
+ Meta-learning with implicit gradients. Advances in neural
1138
+ information processing systems, 32, 2019.
1139
+ Raymond, C., Chen, Q., Xue, B., and Zhang, M. Learning
1140
+ symbolic model-agnostic loss functions via meta-learning.
1141
+ arXiv preprint arXiv:2209.08907, 2022.
1142
+ Reed, R. and MarksII, R. J. Neural smithing: supervised
1143
+ learning in feedforward artificial neural networks. Mit
1144
+ Press, 1999.
1145
+ Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
1146
+ ing representations by back-propagating errors. nature,
1147
+ 323(6088):533–536, 1986.
1148
+ Schmidhuber, J. Evolutionary Principles in Self-Referential
1149
+ Learning. PhD thesis, Technische Universit¨at M¨unchen,
1150
+ 1987.
1151
+ Simonyan, K., Zisserman, A., et al. Very deep convolu-
1152
+ tional networks for large-scale image recognition. arXiv
1153
+ preprint arXiv:1409.1556, 2014.
1154
+ Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
1155
+ miller, M. Striving for simplicity: The all convolutional
1156
+ net. arXiv preprint arXiv:1412.6806, 2014.
1157
+ Vanschoren, J. Meta-learning: A survey. arXiv preprint
1158
+ arXiv:1810.03548, 2018.
1159
+ Wang, Q., Ma, Y., Zhao, K., and Tian, Y. A comprehensive
1160
+ survey of loss functions in machine learning. Annals of
1161
+ Data Science, 9(2):187–212, 2022.
1162
+ Wang, X., Wang, S., Chi, C., Zhang, S., and Mei, T. Loss
1163
+ function search for face recognition. In International Con-
1164
+ ference on Machine Learning, pp. 10029–10038. PMLR,
1165
+ 2020.
1166
+ Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
1167
+ short-horizon bias in stochastic meta-optimization. arXiv
1168
+ preprint arXiv:1803.02021, 2018.
1169
+ Yao, Y., Rosasco, L., and Caponnetto, A. On early stopping
1170
+ in gradient descent learning. Constructive Approximation,
1171
+ 26(2):289–315, 2007.
1172
+ Zagoruyko, S., Komodakis, N., et al. Wide residual net-
1173
+ works. arXiv preprint arXiv:1605.07146, 2016.
1174
+
1175
+ Online Loss Function Learning
1176
+ 11
1177
+ 0
1178
+ 20000
1179
+ 40000
1180
+ 60000
1181
+ 80000
1182
+ 100000
1183
+ Figure 5: Four example loss functions generated by AdaLFL using the network architecture proposed in (Bechtle et al.,
1184
+ 2021), which uses a softplus activation in the output layer, causing flattening behavior degrading learning performance.
1185
+ A
1186
+ Loss Function Representation
1187
+ The representation of the learned loss function under consideration in AdaLFL is a simple feed-forward neural network. We
1188
+ consider the general case of a feed-forward neural network with one input layer, L hidden layers, and one output layer. A
1189
+ hidden layer refers to a feed-forward mapping between two adjacent layers hφ(l) such that
1190
+ hφ(l)
1191
+
1192
+ hφ(l−1)
1193
+
1194
+ = ϕ(l)�
1195
+ φ(l)Thφ(l−1)
1196
+
1197
+ , ∀l = 1, . . . L,
1198
+ (12)
1199
+ where ϕ(·)(l) refers to the element-wise activation function of the lth layer, and φ(l) is the matrix of interconnecting
1200
+ weights between hφ(l−1) and hφ(l). For the input layer, the mapping is defined as hφ(0)(yi, fθ(x)i), and for the output
1201
+ layer as hφ(out)(hφ(L)). Subsequently, the meta-learned loss function ℓφ parameterized by the set of meta-parameters
1202
+ φ = {φ0, . . . , φl, φout} can be defined as a composition of feed-forward mappings such that
1203
+ ℓφ
1204
+
1205
+ yi, fθ(x)i
1206
+
1207
+ = hφ(out)
1208
+
1209
+ hφ(L)
1210
+
1211
+ . . .
1212
+
1213
+ hφ(0)
1214
+
1215
+ yi, fθ(x)i
1216
+ ��
1217
+ . . .
1218
+ ��
1219
+ (13)
1220
+ which is applied output-wise across the C output channels of the ground truth and predicted labels, e.g., applied to each index
1221
+ of the one-hot encoded class vector in classification, or to each continuous output in regression. The loss value produced by
1222
+ ℓφ is then summed across the output channel to reduce the loss vector into its final scalar form.
1223
+ Mφ(y, fθ(x)) = 1
1224
+ C
1225
+ C
1226
+
1227
+ i=0
1228
+ ℓφ(yi, fθ(x)i)
1229
+ (14)
1230
+ A.1
1231
+ Network Architecture
1232
+ The learned loss function used in our experiments has L = 2 hidden layers and 40 hidden units in each layer, inspired by the
1233
+ network configuration utilized in Meta-Learning via Learned Loss (ML3 Supervised) (Bechtle et al., 2021). We found no
1234
+
1235
+ 600
1236
+ 500
1237
+ Learned Loss
1238
+ 400
1239
+ 300
1240
+ 200
1241
+ 100
1242
+ 0
1243
+ 0.0
1244
+ 0.2
1245
+ 0.4
1246
+ 0.6
1247
+ 0.8
1248
+ 1.0
1249
+ Predicted Probability (y = 1)80
1250
+ Learned Loss
1251
+ 60
1252
+ 40
1253
+ 20
1254
+ 0
1255
+ 0.2
1256
+ 0.4
1257
+ 0.0
1258
+ 0.6
1259
+ 0.8
1260
+ 1.0
1261
+ Predicted Probability (y = 1)100
1262
+ Learned Loss
1263
+ 80
1264
+ 60
1265
+ 40
1266
+ 20
1267
+ 0
1268
+ 0.0
1269
+ 0.2
1270
+ 0.4
1271
+ 0.6
1272
+ 0.8
1273
+ 1.0
1274
+ Predicted Probability (y = 1)600
1275
+ 500
1276
+ Learned Loss
1277
+ 400
1278
+ 300
1279
+ 200
1280
+ 100
1281
+ 0
1282
+ 0.0
1283
+ 0.2
1284
+ 0.4
1285
+ 0.6
1286
+ 0.8
1287
+ 1.0
1288
+ Predicted Probability (y = 1)Online Loss Function Learning
1289
+ 12
1290
+ consistent improvement in performance across our experiments by increasing or decreasing the number of hidden layers
1291
+ or nodes. However, it was found that the choice of non-linear activations used in ML3, was highly prone to encouraging
1292
+ poor-performing loss functions with large flat regions, as shown in Figure 5.
1293
+ In ML3, rectified linear units, ϕReLU(x) = max(0, x), are used in the hidden layers and the smooth SoftPlus ϕsoftplus =
1294
+ log(eβx + 1) is used in the output layer to enforce the optional constraint that Mlearned should be non-negative, i.e.,
1295
+ ∀y∀fθ(x)Mφt(y, fθ(x)) ≥ 0. An adverse side-effect of using the softplus activation in the output is that all negative inputs
1296
+ to the output layer go to 0, resulting in flat regions in the learned loss. Furthermore, removal of the output activation does
1297
+ not resolve this issue, as ReLU, as well as other common activations such as Sigmoid, TanH, and ELU, are also bounded
1298
+ and are prone to causing flatness when their activations saturate, a common occurrence when taking gradients through long
1299
+ unrolled optimization paths (Antoniou et al., 2018).
1300
+ A.2
1301
+ Smooth Leaky ReLU
1302
+ To inhibit the flattening behavior of learned loss functions, a range unbounded activation function should be used. A popular
1303
+ activation function that is unbounded (when the leak parameter γ < 0) is the Leaky ReLU (Maas et al., 2013)
1304
+ ϕleaky(x) = max(γ · x, x)
1305
+ (15)
1306
+ = max(0, x) · (1 − γ) + γx
1307
+ (16)
1308
+ However, it is typically assumed that a loss function should be at least C1, i.e., continuous in the zeroth and first derivatives.
1309
+ Fortunately, there is a smooth approximation to the ReLU, commonly referred to as the SoftPlus activation function (Dugas
1310
+ et al., 2000), where β (typically set to 1) controls the smoothness.
1311
+ ϕsmooth(x) = 1
1312
+ β · log(eβx + 1)
1313
+ (17)
1314
+ The leaky ReLU is combined with the smooth ReLU by taking the term max(0, x) from Equation (16) and substituting it
1315
+ with the smooth SoftPlus defined in Equation (17) to construct a smooth approximation to the leaky ReLU
1316
+ ϕhidden(x) = 1
1317
+ β log(eβx + 1) · (1 − γ) + γx
1318
+ (18)
1319
+ where the derivative of the smooth leaky ReLU with respect to the input x is
1320
+ ϕ′
1321
+ hidden(x) = d
1322
+ dx
1323
+ �log(eβx + 1) · (1 − y)
1324
+ β
1325
+ + γx
1326
+
1327
+ (19)
1328
+ =
1329
+ d
1330
+ dx[log(eβx + 1)] · (1 − y)
1331
+ β
1332
+ + γ
1333
+ (20)
1334
+ =
1335
+ d
1336
+ dx[eβx + 1] · (1 − y)
1337
+ β · eβx + 1
1338
+ + γ
1339
+ (21)
1340
+ = eβx · β · (1 − y)
1341
+ β · eβx + 1
1342
+ + γ
1343
+ (22)
1344
+ = eβx(1 − γ)
1345
+ eβx + 1
1346
+ + γ
1347
+ (23)
1348
+ = eβx(1 − γ)
1349
+ eβx + 1
1350
+ + γ(eβx + 1)
1351
+ eβx + 1
1352
+ (24)
1353
+ = eβx + γ
1354
+ eβx + 1
1355
+ (25)
1356
+ The smooth leaky ReLU and its corresponding derivatives are shown in Figure 6. Early iterations of AdaLFL learned γ
1357
+ and β simultaneously with the network weights φ, however; empirically, we found that setting γ = 0.01 and β = 10 gave
1358
+ adequate inference performance across our experiments.
1359
+ B
1360
+ Experimental Setup
1361
+ To initialize Mφ, Sinit = 2500 steps are taken in offline mode with a meta learning rate of η = 1e − 3. In contrast, in
1362
+ online mode, a meta learning rate of η = 1e − 5 is used (note, a high meta learning rate in online mode can cause a jittering
1363
+
1364
+ Online Loss Function Learning
1365
+ 13
1366
+ 4
1367
+ 2
1368
+ 0
1369
+ 2
1370
+ 4
1371
+ 4
1372
+ 2
1373
+ 0
1374
+ 2
1375
+ 4
1376
+ = 0.0
1377
+ = 0.25
1378
+ = 0.5
1379
+ = 0.75
1380
+ = 1.0
1381
+ (a)
1382
+ 4
1383
+ 2
1384
+ 0
1385
+ 2
1386
+ 4
1387
+ 0.0
1388
+ 0.2
1389
+ 0.4
1390
+ 0.6
1391
+ 0.8
1392
+ 1.0
1393
+ = 0.0
1394
+ = 0.25
1395
+ = 0.5
1396
+ = 0.75
1397
+ = 1.0
1398
+ (b)
1399
+ 4
1400
+ 2
1401
+ 0
1402
+ 2
1403
+ 4
1404
+ 2
1405
+ 0
1406
+ 2
1407
+ 4
1408
+ = 1
1409
+ = 2
1410
+ = 3
1411
+ = 4
1412
+ = 5
1413
+ (c)
1414
+ 4
1415
+ 2
1416
+ 0
1417
+ 2
1418
+ 4
1419
+ 0.5
1420
+ 0.6
1421
+ 0.7
1422
+ 0.8
1423
+ 0.9
1424
+ 1.0
1425
+ = 1
1426
+ = 2
1427
+ = 3
1428
+ = 4
1429
+ = 5
1430
+ (d)
1431
+ 2
1432
+ 0
1433
+ 2
1434
+ 4
1435
+ 2
1436
+ 0
1437
+ 2
1438
+ 4
1439
+ ReLU
1440
+ Leaky ReLU
1441
+ Smooth ReLU
1442
+ Smooth Leaky ReLU
1443
+ (e)
1444
+ Figure 6: The proposed activation function and its corresponding derivatives when shifting γ are shown in (a) and (b),
1445
+ respectively. In (c) and (d) the activation function and its derivatives when shifting β are shown. Finally, in (c), the smooth
1446
+ leaky ReLU is contrasted with the original smooth and leaky variants ReLU.
1447
+ effect in the loss function, which can cause training instability). The popular Adam optimizer is used in the outer loop for
1448
+ both initialization and online adaptation.
1449
+ In the inner-loop, all base models are trained using stochastic gradient descent (SGD) with a base learning rate α = 0.01,
1450
+ and on CIFAR-10, CIFAR-100, and SVHN, Nesterov momentum 0.9, and weight decay 0.0005 are used. The remaining
1451
+ base-model hyper-parameters are selected using their respective values from the literature in an identical setup to (Gonzalez
1452
+ & Miikkulainen, 2021).
1453
+ All experimental results reported show the average results across 10 independent executions on different seeds for the
1454
+ purpose of analysing algorithmic consistency. Importantly, our experiments control for the base initializations such that all
1455
+ methods get identical initial parameters across the same random seed; thus, any difference in variance between the methods
1456
+ can be attributed to the respective algorithms and their loss functions. Furthermore, the choice of hyper-parameters between
1457
+ ML3 and AdaLFL has been standardized to allow for a fair comparison.
1458
+ C
1459
+ Learned Loss Functions (Extended)
1460
+
1461
+ Online Loss Function Learning
1462
+ 14
1463
+ 0.0
1464
+ 0.2
1465
+ 0.4
1466
+ 0.6
1467
+ 0.8
1468
+ 1.0
1469
+ Predicted Probability (y = 1)
1470
+ 5.0
1471
+ 7.5
1472
+ 10.0
1473
+ 12.5
1474
+ 15.0
1475
+ 17.5
1476
+ 20.0
1477
+ 22.5
1478
+ Learned Loss
1479
+ 0.0
1480
+ 0.2
1481
+ 0.4
1482
+ 0.6
1483
+ 0.8
1484
+ 1.0
1485
+ Predicted Probability (y = 0)
1486
+ 10
1487
+ 15
1488
+ 20
1489
+ 25
1490
+ 30
1491
+ Learned Loss
1492
+ 0.0
1493
+ 0.2
1494
+ 0.4
1495
+ 0.6
1496
+ 0.8
1497
+ 1.0
1498
+ Predicted Probability (y = 1)
1499
+ 6
1500
+ 8
1501
+ 10
1502
+ 12
1503
+ 14
1504
+ 16
1505
+ 18
1506
+ Learned Loss
1507
+ 0.0
1508
+ 0.2
1509
+ 0.4
1510
+ 0.6
1511
+ 0.8
1512
+ 1.0
1513
+ Predicted Probability (y = 0)
1514
+ 5
1515
+ 10
1516
+ 15
1517
+ 20
1518
+ 25
1519
+ Learned Loss
1520
+ 0.0
1521
+ 0.2
1522
+ 0.4
1523
+ 0.6
1524
+ 0.8
1525
+ 1.0
1526
+ Predicted Probability (y = 1)
1527
+ 4
1528
+ 6
1529
+ 8
1530
+ 10
1531
+ 12
1532
+ 14
1533
+ 16
1534
+ 18
1535
+ Learned Loss
1536
+ 0.0
1537
+ 0.2
1538
+ 0.4
1539
+ 0.6
1540
+ 0.8
1541
+ 1.0
1542
+ Predicted Probability (y = 0)
1543
+ 5
1544
+ 10
1545
+ 15
1546
+ 20
1547
+ 25
1548
+ Learned Loss
1549
+ 0.0
1550
+ 0.2
1551
+ 0.4
1552
+ 0.6
1553
+ 0.8
1554
+ 1.0
1555
+ Predicted Probability (y = 1)
1556
+ 10.0
1557
+ 12.5
1558
+ 15.0
1559
+ 17.5
1560
+ 20.0
1561
+ 22.5
1562
+ 25.0
1563
+ Learned Loss
1564
+ 0.0
1565
+ 0.2
1566
+ 0.4
1567
+ 0.6
1568
+ 0.8
1569
+ 1.0
1570
+ Predicted Probability (y = 0)
1571
+ 10
1572
+ 15
1573
+ 20
1574
+ 25
1575
+ 30
1576
+ Learned Loss
1577
+ 0
1578
+ 5000
1579
+ 10000
1580
+ 15000
1581
+ 20000
1582
+ 25000
1583
+ Figure 7: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents
1584
+ a loss function, and the color represents the current gradient step.
1585
+
1586
+ Online Loss Function Learning
1587
+ 15
1588
+ 0.0
1589
+ 0.2
1590
+ 0.4
1591
+ 0.6
1592
+ 0.8
1593
+ 1.0
1594
+ Predicted Probability (y = 1)
1595
+ 17.5
1596
+ 15.0
1597
+ 12.5
1598
+ 10.0
1599
+ 7.5
1600
+ 5.0
1601
+ 2.5
1602
+ Learned Loss
1603
+ 0.0
1604
+ 0.2
1605
+ 0.4
1606
+ 0.6
1607
+ 0.8
1608
+ 1.0
1609
+ Predicted Probability (y = 0)
1610
+ 5
1611
+ 0
1612
+ 5
1613
+ 10
1614
+ Learned Loss
1615
+ 0.0
1616
+ 0.2
1617
+ 0.4
1618
+ 0.6
1619
+ 0.8
1620
+ 1.0
1621
+ Predicted Probability (y = 1)
1622
+ 0
1623
+ 2
1624
+ 4
1625
+ 6
1626
+ 8
1627
+ 10
1628
+ Learned Loss
1629
+ 0.0
1630
+ 0.2
1631
+ 0.4
1632
+ 0.6
1633
+ 0.8
1634
+ 1.0
1635
+ Predicted Probability (y = 0)
1636
+ 0
1637
+ 5
1638
+ 10
1639
+ 15
1640
+ 20
1641
+ Learned Loss
1642
+ 0.0
1643
+ 0.2
1644
+ 0.4
1645
+ 0.6
1646
+ 0.8
1647
+ 1.0
1648
+ Predicted Probability (y = 1)
1649
+ 0
1650
+ 2
1651
+ 4
1652
+ 6
1653
+ 8
1654
+ 10
1655
+ 12
1656
+ 14
1657
+ 16
1658
+ Learned Loss
1659
+ 0.0
1660
+ 0.2
1661
+ 0.4
1662
+ 0.6
1663
+ 0.8
1664
+ 1.0
1665
+ Predicted Probability (y = 0)
1666
+ 0
1667
+ 5
1668
+ 10
1669
+ 15
1670
+ 20
1671
+ Learned Loss
1672
+ 0.0
1673
+ 0.2
1674
+ 0.4
1675
+ 0.6
1676
+ 0.8
1677
+ 1.0
1678
+ Predicted Probability (y = 1)
1679
+ 8
1680
+ 10
1681
+ 12
1682
+ 14
1683
+ 16
1684
+ 18
1685
+ 20
1686
+ Learned Loss
1687
+ 0.0
1688
+ 0.2
1689
+ 0.4
1690
+ 0.6
1691
+ 0.8
1692
+ 1.0
1693
+ Predicted Probability (y = 0)
1694
+ 0
1695
+ 5
1696
+ 10
1697
+ 15
1698
+ 20
1699
+ Learned Loss
1700
+ 0
1701
+ 5000
1702
+ 10000
1703
+ 15000
1704
+ 20000
1705
+ 25000
1706
+ Figure 8: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents
1707
+ a loss function, and the color represents the current gradient step.
1708
+
1709
+ Online Loss Function Learning
1710
+ 16
1711
+ 0.0
1712
+ 0.2
1713
+ 0.4
1714
+ 0.6
1715
+ 0.8
1716
+ 1.0
1717
+ Predicted Probability (y = 1)
1718
+ 10
1719
+ 0
1720
+ 10
1721
+ 20
1722
+ 30
1723
+ 40
1724
+ 50
1725
+ 60
1726
+ Learned Loss
1727
+ 0.0
1728
+ 0.2
1729
+ 0.4
1730
+ 0.6
1731
+ 0.8
1732
+ 1.0
1733
+ Predicted Probability (y = 0)
1734
+ 20
1735
+ 40
1736
+ 60
1737
+ 80
1738
+ 100
1739
+ Learned Loss
1740
+ 0.0
1741
+ 0.2
1742
+ 0.4
1743
+ 0.6
1744
+ 0.8
1745
+ 1.0
1746
+ Predicted Probability (y = 1)
1747
+ 10
1748
+ 20
1749
+ 30
1750
+ 40
1751
+ 50
1752
+ Learned Loss
1753
+ 0.0
1754
+ 0.2
1755
+ 0.4
1756
+ 0.6
1757
+ 0.8
1758
+ 1.0
1759
+ Predicted Probability (y = 0)
1760
+ 80
1761
+ 60
1762
+ 40
1763
+ 20
1764
+ 0
1765
+ 20
1766
+ 40
1767
+ 60
1768
+ 80
1769
+ Learned Loss
1770
+ 0.0
1771
+ 0.2
1772
+ 0.4
1773
+ 0.6
1774
+ 0.8
1775
+ 1.0
1776
+ Predicted Probability (y = 1)
1777
+ 10
1778
+ 0
1779
+ 10
1780
+ 20
1781
+ 30
1782
+ 40
1783
+ Learned Loss
1784
+ 0.0
1785
+ 0.2
1786
+ 0.4
1787
+ 0.6
1788
+ 0.8
1789
+ 1.0
1790
+ Predicted Probability (y = 0)
1791
+ 20
1792
+ 40
1793
+ 60
1794
+ 80
1795
+ 100
1796
+ 120
1797
+ Learned Loss
1798
+ 0.0
1799
+ 0.2
1800
+ 0.4
1801
+ 0.6
1802
+ 0.8
1803
+ 1.0
1804
+ Predicted Probability (y = 1)
1805
+ 20
1806
+ 40
1807
+ 60
1808
+ 80
1809
+ 100
1810
+ Learned Loss
1811
+ 0.0
1812
+ 0.2
1813
+ 0.4
1814
+ 0.6
1815
+ 0.8
1816
+ 1.0
1817
+ Predicted Probability (y = 0)
1818
+ 70
1819
+ 60
1820
+ 50
1821
+ 40
1822
+ 30
1823
+ 20
1824
+ 10
1825
+ 0
1826
+ Learned Loss
1827
+ 0
1828
+ 5000
1829
+ 10000
1830
+ 15000
1831
+ 20000
1832
+ 25000
1833
+ Figure 9: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents
1834
+ a loss function, and the color represents the current gradient step.
1835
+
1836
+ Online Loss Function Learning
1837
+ 17
1838
+ 0.0
1839
+ 0.2
1840
+ 0.4
1841
+ 0.6
1842
+ 0.8
1843
+ 1.0
1844
+ Predicted Probability (y = 1)
1845
+ 100
1846
+ 80
1847
+ 60
1848
+ 40
1849
+ 20
1850
+ 0
1851
+ 20
1852
+ Learned Loss
1853
+ 0.0
1854
+ 0.2
1855
+ 0.4
1856
+ 0.6
1857
+ 0.8
1858
+ 1.0
1859
+ Predicted Probability (y = 0)
1860
+ 50
1861
+ 25
1862
+ 0
1863
+ 25
1864
+ 50
1865
+ 75
1866
+ 100
1867
+ Learned Loss
1868
+ 0.0
1869
+ 0.2
1870
+ 0.4
1871
+ 0.6
1872
+ 0.8
1873
+ 1.0
1874
+ Predicted Probability (y = 1)
1875
+ 0
1876
+ 25
1877
+ 50
1878
+ 75
1879
+ 100
1880
+ 125
1881
+ 150
1882
+ Learned Loss
1883
+ 0.0
1884
+ 0.2
1885
+ 0.4
1886
+ 0.6
1887
+ 0.8
1888
+ 1.0
1889
+ Predicted Probability (y = 0)
1890
+ 80
1891
+ 60
1892
+ 40
1893
+ 20
1894
+ 0
1895
+ 20
1896
+ Learned Loss
1897
+ 0.0
1898
+ 0.2
1899
+ 0.4
1900
+ 0.6
1901
+ 0.8
1902
+ 1.0
1903
+ Predicted Probability (y = 1)
1904
+ 20
1905
+ 0
1906
+ 20
1907
+ 40
1908
+ 60
1909
+ 80
1910
+ Learned Loss
1911
+ 0.0
1912
+ 0.2
1913
+ 0.4
1914
+ 0.6
1915
+ 0.8
1916
+ 1.0
1917
+ Predicted Probability (y = 0)
1918
+ 80
1919
+ 60
1920
+ 40
1921
+ 20
1922
+ 0
1923
+ 20
1924
+ 40
1925
+ Learned Loss
1926
+ 0.0
1927
+ 0.2
1928
+ 0.4
1929
+ 0.6
1930
+ 0.8
1931
+ 1.0
1932
+ Predicted Probability (y = 1)
1933
+ 20
1934
+ 40
1935
+ 60
1936
+ 80
1937
+ 100
1938
+ 120
1939
+ Learned Loss
1940
+ 0.0
1941
+ 0.2
1942
+ 0.4
1943
+ 0.6
1944
+ 0.8
1945
+ 1.0
1946
+ Predicted Probability (y = 0)
1947
+ 100
1948
+ 75
1949
+ 50
1950
+ 25
1951
+ 0
1952
+ 25
1953
+ 50
1954
+ 75
1955
+ Learned Loss
1956
+ 0
1957
+ 20000
1958
+ 40000
1959
+ 60000
1960
+ 80000
1961
+ 100000
1962
+ Figure 10: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
1963
+ a loss function, and the color represents the current gradient step.
1964
+
1965
+ Online Loss Function Learning
1966
+ 18
1967
+ 0.0
1968
+ 0.2
1969
+ 0.4
1970
+ 0.6
1971
+ 0.8
1972
+ 1.0
1973
+ Predicted Probability (y = 1)
1974
+ 20
1975
+ 0
1976
+ 20
1977
+ 40
1978
+ 60
1979
+ 80
1980
+ 100
1981
+ 120
1982
+ Learned Loss
1983
+ 0.0
1984
+ 0.2
1985
+ 0.4
1986
+ 0.6
1987
+ 0.8
1988
+ 1.0
1989
+ Predicted Probability (y = 0)
1990
+ 0
1991
+ 20
1992
+ 40
1993
+ 60
1994
+ 80
1995
+ Learned Loss
1996
+ 0.0
1997
+ 0.2
1998
+ 0.4
1999
+ 0.6
2000
+ 0.8
2001
+ 1.0
2002
+ Predicted Probability (y = 1)
2003
+ 60
2004
+ 40
2005
+ 20
2006
+ 0
2007
+ 20
2008
+ 40
2009
+ 60
2010
+ Learned Loss
2011
+ 0.0
2012
+ 0.2
2013
+ 0.4
2014
+ 0.6
2015
+ 0.8
2016
+ 1.0
2017
+ Predicted Probability (y = 0)
2018
+ 60
2019
+ 40
2020
+ 20
2021
+ 0
2022
+ 20
2023
+ 40
2024
+ 60
2025
+ 80
2026
+ 100
2027
+ Learned Loss
2028
+ 0.0
2029
+ 0.2
2030
+ 0.4
2031
+ 0.6
2032
+ 0.8
2033
+ 1.0
2034
+ Predicted Probability (y = 1)
2035
+ 20
2036
+ 0
2037
+ 20
2038
+ 40
2039
+ 60
2040
+ Learned Loss
2041
+ 0.0
2042
+ 0.2
2043
+ 0.4
2044
+ 0.6
2045
+ 0.8
2046
+ 1.0
2047
+ Predicted Probability (y = 0)
2048
+ 20
2049
+ 40
2050
+ 60
2051
+ 80
2052
+ 100
2053
+ 120
2054
+ Learned Loss
2055
+ 0.0
2056
+ 0.2
2057
+ 0.4
2058
+ 0.6
2059
+ 0.8
2060
+ 1.0
2061
+ Predicted Probability (y = 1)
2062
+ 20
2063
+ 40
2064
+ 60
2065
+ 80
2066
+ 100
2067
+ 120
2068
+ Learned Loss
2069
+ 0.0
2070
+ 0.2
2071
+ 0.4
2072
+ 0.6
2073
+ 0.8
2074
+ 1.0
2075
+ Predicted Probability (y = 0)
2076
+ 150
2077
+ 125
2078
+ 100
2079
+ 75
2080
+ 50
2081
+ 25
2082
+ 0
2083
+ 25
2084
+ 50
2085
+ Learned Loss
2086
+ 0
2087
+ 20000
2088
+ 40000
2089
+ 60000
2090
+ 80000
2091
+ 100000
2092
+ Figure 11: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
2093
+ a loss function, and the color represents the current gradient step.
2094
+
2095
+ Online Loss Function Learning
2096
+ 19
2097
+ 0.0
2098
+ 0.2
2099
+ 0.4
2100
+ 0.6
2101
+ 0.8
2102
+ 1.0
2103
+ Predicted Probability (y = 1)
2104
+ 50
2105
+ 40
2106
+ 30
2107
+ 20
2108
+ 10
2109
+ 0
2110
+ 10
2111
+ Learned Loss
2112
+ 0.0
2113
+ 0.2
2114
+ 0.4
2115
+ 0.6
2116
+ 0.8
2117
+ 1.0
2118
+ Predicted Probability (y = 0)
2119
+ 40
2120
+ 30
2121
+ 20
2122
+ 10
2123
+ 0
2124
+ 10
2125
+ 20
2126
+ Learned Loss
2127
+ 0.0
2128
+ 0.2
2129
+ 0.4
2130
+ 0.6
2131
+ 0.8
2132
+ 1.0
2133
+ Predicted Probability (y = 1)
2134
+ 30
2135
+ 20
2136
+ 10
2137
+ 0
2138
+ 10
2139
+ 20
2140
+ 30
2141
+ Learned Loss
2142
+ 0.0
2143
+ 0.2
2144
+ 0.4
2145
+ 0.6
2146
+ 0.8
2147
+ 1.0
2148
+ Predicted Probability (y = 0)
2149
+ 30
2150
+ 20
2151
+ 10
2152
+ 0
2153
+ 10
2154
+ 20
2155
+ 30
2156
+ Learned Loss
2157
+ 0.0
2158
+ 0.2
2159
+ 0.4
2160
+ 0.6
2161
+ 0.8
2162
+ 1.0
2163
+ Predicted Probability (y = 1)
2164
+ 30
2165
+ 20
2166
+ 10
2167
+ 0
2168
+ 10
2169
+ 20
2170
+ 30
2171
+ Learned Loss
2172
+ 0.0
2173
+ 0.2
2174
+ 0.4
2175
+ 0.6
2176
+ 0.8
2177
+ 1.0
2178
+ Predicted Probability (y = 0)
2179
+ 20
2180
+ 10
2181
+ 0
2182
+ 10
2183
+ 20
2184
+ 30
2185
+ Learned Loss
2186
+ 0.0
2187
+ 0.2
2188
+ 0.4
2189
+ 0.6
2190
+ 0.8
2191
+ 1.0
2192
+ Predicted Probability (y = 1)
2193
+ 10
2194
+ 20
2195
+ 30
2196
+ 40
2197
+ 50
2198
+ 60
2199
+ Learned Loss
2200
+ 0.0
2201
+ 0.2
2202
+ 0.4
2203
+ 0.6
2204
+ 0.8
2205
+ 1.0
2206
+ Predicted Probability (y = 0)
2207
+ 30
2208
+ 20
2209
+ 10
2210
+ 0
2211
+ 10
2212
+ 20
2213
+ 30
2214
+ 40
2215
+ Learned Loss
2216
+ 0
2217
+ 20000
2218
+ 40000
2219
+ 60000
2220
+ 80000
2221
+ 100000
2222
+ Figure 12: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
2223
+ a loss function, and the color represents the current gradient step.
2224
+
2225
+ Online Loss Function Learning
2226
+ 20
2227
+ 0.0
2228
+ 0.2
2229
+ 0.4
2230
+ 0.6
2231
+ 0.8
2232
+ 1.0
2233
+ Predicted Probability (y = 1)
2234
+ 20
2235
+ 10
2236
+ 0
2237
+ 10
2238
+ 20
2239
+ 30
2240
+ Learned Loss
2241
+ 0.0
2242
+ 0.2
2243
+ 0.4
2244
+ 0.6
2245
+ 0.8
2246
+ 1.0
2247
+ Predicted Probability (y = 0)
2248
+ 10
2249
+ 0
2250
+ 10
2251
+ 20
2252
+ 30
2253
+ 40
2254
+ 50
2255
+ Learned Loss
2256
+ 0.0
2257
+ 0.2
2258
+ 0.4
2259
+ 0.6
2260
+ 0.8
2261
+ 1.0
2262
+ Predicted Probability (y = 1)
2263
+ 40
2264
+ 30
2265
+ 20
2266
+ 10
2267
+ 0
2268
+ 10
2269
+ 20
2270
+ Learned Loss
2271
+ 0.0
2272
+ 0.2
2273
+ 0.4
2274
+ 0.6
2275
+ 0.8
2276
+ 1.0
2277
+ Predicted Probability (y = 0)
2278
+ 30
2279
+ 20
2280
+ 10
2281
+ 0
2282
+ 10
2283
+ 20
2284
+ 30
2285
+ 40
2286
+ Learned Loss
2287
+ 0.0
2288
+ 0.2
2289
+ 0.4
2290
+ 0.6
2291
+ 0.8
2292
+ 1.0
2293
+ Predicted Probability (y = 1)
2294
+ 20
2295
+ 10
2296
+ 0
2297
+ 10
2298
+ 20
2299
+ 30
2300
+ Learned Loss
2301
+ 0.0
2302
+ 0.2
2303
+ 0.4
2304
+ 0.6
2305
+ 0.8
2306
+ 1.0
2307
+ Predicted Probability (y = 0)
2308
+ 20
2309
+ 10
2310
+ 0
2311
+ 10
2312
+ 20
2313
+ 30
2314
+ 40
2315
+ 50
2316
+ 60
2317
+ Learned Loss
2318
+ 0.0
2319
+ 0.2
2320
+ 0.4
2321
+ 0.6
2322
+ 0.8
2323
+ 1.0
2324
+ Predicted Probability (y = 1)
2325
+ 40
2326
+ 30
2327
+ 20
2328
+ 10
2329
+ 0
2330
+ 10
2331
+ 20
2332
+ Learned Loss
2333
+ 0.0
2334
+ 0.2
2335
+ 0.4
2336
+ 0.6
2337
+ 0.8
2338
+ 1.0
2339
+ Predicted Probability (y = 0)
2340
+ 20
2341
+ 10
2342
+ 0
2343
+ 10
2344
+ 20
2345
+ 30
2346
+ 40
2347
+ 50
2348
+ Learned Loss
2349
+ 0
2350
+ 20000
2351
+ 40000
2352
+ 60000
2353
+ 80000
2354
+ 100000
2355
+ Figure 13: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
2356
+ a loss function, and the color represents the current gradient step.
2357
+
3tFQT4oBgHgl3EQfHDWI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE1T4oBgHgl3EQfmASv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4143fef54587343ef2e6f6641629602b6176a25d33866de1f1431db4f6d2c856
3
+ size 2031661
4NE1T4oBgHgl3EQfmASv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4fbf0264569843970ab7cf8774916fe50dca70c5fb8743f39aedae8590bcc67
3
+ size 82185
69E1T4oBgHgl3EQfTgNE/content/2301.03078v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:893ad4ab0e3be1f6a674a6a3928e109a7c931a480f2f278640009202c075c0d1
3
+ size 1741246
69E1T4oBgHgl3EQfTgNE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81887e2458bea9daa7e0249e555d4a8afe1d38b8ea1bd89591f91b2fde498e11
3
+ size 3473453
7NE1T4oBgHgl3EQfTgOa/content/tmp_files/2301.03079v1.pdf.txt ADDED
@@ -0,0 +1,1302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03079v1 [math.FA] 8 Jan 2023
2
+ Lp simulation for measures
3
+ L. De Carli and E. Liflyand
4
+ Abstract. Being motivated by general interest as well as by certain concrete problems of Fourier
5
+ Analysis, we construct analogs of the Lp spaces for measures. It turns out that most of standard
6
+ properties of the usual Lp spaces for functions are extended to the measure setting. We illustrate
7
+ the obtained results by examples and apply them to obtain a version of the uncertainty principle
8
+ and an integrability result for the Fourier transform of a function of bounded variation.
9
+ 1. Introduction
10
+ Looking through any book devoted to Fourier analysis or just the table of contents, one will see
11
+ that the L1 theory of the Fourier transform or the Hilbert transform goes with the corresponding Lp
12
+ theory. This is not the case for the theories of the corresponding transforms for measures, see, e.g.,
13
+ [3]. A simple curiosity may force one to wonder where the analogs for measures are hidden. We
14
+ have not succeeded to find such a machinery in the literature. However, we have a more concrete
15
+ reason to be interested in the depository of such treasures. Let us consider the following example,
16
+ somewhat sketchy. The cosine Fourier transform of a function of bounded variation on the half-axis,
17
+ to wit f ∈ BV (R+), is
18
+ �fc(x) =
19
+ � ∞
20
+ 0
21
+ f(t) cos(2πxt) dt.
22
+ (1)
23
+ Let f be locally absolutely continuous on (0, ∞); note that here we use not R+ = [0, ∞) but (0, ∞)
24
+ since it is of considerable importance and generality that we can avoid claiming absolute continuity
25
+ at the origin. Let in addition, lim
26
+ t→∞ f(t) = 0 and Hof ′ ∈ L1(R+). Here, for any integrable function
27
+ g on R+,
28
+ Hog(x) = 2
29
+ π
30
+ � ∞
31
+ 0
32
+ tg(t)
33
+ x2 − t2 dt
34
+ (2)
35
+ is the Hilbert transform applied to the odd extension of g; of course, understood in the principle
36
+ value sense. When it is integrable, we will denote the corresponding Hardy space of such functions
37
+ g by H1
38
+ 0(R+). Then the cosine Fourier transform of f in (1) is Lebesgue integrable on R+, with
39
+ ∥�fc∥L1(R+) ≲ ∥f ′∥L1(R+) + ∥Hof ′∥L1(R+) = ∥f ′∥H1
40
+ 0(R+).
41
+ (3)
42
+ 2020 Mathematics Subject Classification. Primary: 28A33; Secondary: 42A38.
43
+ Key words and phrases. Measure; Fourier transform; Hausdorff-Young inequality; Young inequality; uncertainty
44
+ principle.
45
+ 1
46
+
47
+ 2
48
+ L. DE CARLI AND E. LIFLYAND
49
+ For this result as well as many other more advanced ones, see [12] (cf. [5] and [7]; see also [8, Ch.3]
50
+ or more recent [13]). Recall that the derivative of a function of bounded variation exists almost
51
+ everywhere and is Lebesgue integrable. Here and in what follows ϕ ≲ ψ means that ϕ ≤ Cψ with
52
+ C being an absolute constant.
53
+ A natural question arises whether we can relax the assumption of absolute continuity. The first
54
+ step in an eventual proof is obvious: we integrate by parts in the Stieltjes sense in (1) and arrive at
55
+ �fs(x) = − 1
56
+ 2πx
57
+ � ∞
58
+ 0
59
+ sin(2πxt) df(t).
60
+ However, if we try to follow the lines of the proof of (3) and arrive at a version of Hardy’s space
61
+ with integrable Hilbert transform of df, we will fail. The point is that the Hilbert transform of df
62
+ does exist almost everywhere (see, e.g., [3, §8.1 ]) but its integrability leads to absolute continuity,
63
+ the property that we aimed to remove (see, e.g., [4] and references therein).
64
+ On the other hand, there is a scale of handy subspaces of H1
65
+ 0(R+), for which the integrability
66
+ of the cosine Fourier transform is valid, with the norm of f ′ in one of such spaces on the right-hand
67
+ side of (3). More precisely, for 1 < p < ∞, set
68
+ ∥g∥Op =
69
+ � ∞
70
+ 0
71
+ �1
72
+ x
73
+
74
+ x≤t≤2x
75
+ |g(t)|pdt
76
+ � 1
77
+ p
78
+ dx.
79
+ Further, for p = ∞, let
80
+ ∥g∥O∞ =
81
+ � ∞
82
+ 0
83
+ ess sup
84
+ x≤t≤2x
85
+ |g(t)| dx.
86
+ Known are (see, e.g., the above sources) the following relations:
87
+ O∞ ֒→ Op1 ֒→ Op2 ֒→ H1
88
+ 0 ֒→ L1
89
+ (p1 > p2 > 1).
90
+ (4)
91
+ Under the above assumptions, there holds
92
+ ∥�fc∥L1(R+) ≲ ∥f ′∥Op(R+),
93
+ (5)
94
+ provided that the right-hand side is finite for some p > 1. In fact, a different notation is convenient
95
+ for the case where the Op norm is calculated for the derivative: ∥f∥Vp := ∥f ′∥Op. Just this notation
96
+ is appropriate for further generalization. On the one hand, (5) follows from (3) and (4). On the
97
+ other hand, a direct proof for (5) is given in [7], where the main ingredient is the Hausdorff-Young
98
+ inequality. To provide similar reasoning for measures µf generated by functions of bounded variation
99
+ f rather than functions (however, we shall write df rather than dµf), we need a corresponding
100
+ extension of the Hausdorff-Young inequality. And here is the point where our special harmonic
101
+ analysis comes into play. We do not restrict ourselves to finding immediate tools for the above
102
+ problem but try to establish a kind of general and multivariate theory. A variety of relevant issues
103
+ will be introduced and studied.
104
+ 1.1. Basic notions.
105
+ We define an analog of Lp spaces for measures by means of an associated norm. For a given
106
+ p ∈ [1, ∞], we use the notation ∥ · ∥p to denote the standard norm in Lp(Rn) = Lp(Rn, dx), where
107
+ by dx we mean the Lebesgue measure.
108
+
109
+ Lp SIMULATION FOR MEASURES
110
+ 3
111
+ We denote by S(Rn) the Schwartz space of rapidly decreasing C∞ functions, and either by F(f)
112
+ or by �f the Fourier transform of a function f ∈ S(Rn), written
113
+ �f(y) =
114
+
115
+ Rn f(x)e−2πix·y dx,
116
+ where x·y = x1y1+...+xnyn. Recall that F : S(Rn) → S(Rn) is one-to-one, and the inverse Fourier
117
+ transform is ˇf(y) = �f(−y). In this paper, we will not distinguish between Fourier transform and
118
+ inverse Fourier transform, unless it becomes necessary.
119
+ For p ∈ [1, 2], the operator F : Lp(Rn) → Lp′(Rn), with 1
120
+ p+ 1
121
+ p′ = 1, is bounded, with ∥ �f∥p′ ≤ ∥f∥p
122
+ and equality if p = 2. For Lp(Rn), p > 2, the Fourier transform can be defined in the distributional
123
+ sense as
124
+ ⟨ �f, ψ⟩ =
125
+
126
+ Rn f(x) �ψ(x) dx,
127
+ ψ ∈ S(Rn);
128
+ clearly, �f is a function if and only if f = �g for some g ∈ Lp′(Rn). With this observation in mind,
129
+ we give the following definition.
130
+ For a given p ∈ [1, ∞], we let
131
+ �Lp(Rn) = {f ∈ Lp(Rn) : f = �g for some g ∈ Lp′(Rn)}.
132
+ (6)
133
+ In a natural way, we endow �Lp(Rn) with the norm
134
+ ∥f∥�Lp = ∥ �f ∥p′.
135
+ (7)
136
+ With this definition, the Fourier transform
137
+ F : Lp(Rn) → (�Lp′(Rn), ∥ · ∥�Lp′)
138
+ is a one-to-one isometry. When p ∈ [1, 2], the Hausdorff-Young inequality yields ∥f∥�Lp ≤ ∥f∥p,
139
+ with equality if p = 2.
140
+ We denote by M the space of sigma-finite Borel measures on Rn. For every p ∈ [1, ∞], we
141
+ define the functional ∥ · ∥∗
142
+ p : M → [0, ∞] as
143
+ ∥µ∥∗
144
+ p =
145
+ sup
146
+ h∈�
147
+ Lp′ (Rn) :
148
+ ∥h∥�
149
+ Lp′ ≤1
150
+ ����
151
+
152
+ Rn h(t)dµ(t)
153
+ ���� ;
154
+ (8)
155
+ we let
156
+ Mp = {µ ∈ M : ∥µ∥∗
157
+ p < ∞}.
158
+ (9)
159
+ Note that, for every µ ∈ Mp and every h ∈ �Lp′(Rn), we have that
160
+ ����
161
+
162
+ Rn h(x)dµ(x)
163
+ ���� ≤ ∥h∥�Lp′∥µ∥∗
164
+ p.
165
+ (10)
166
+ We do not assume that our measures are positive, or even real-valued.
167
+ For definition and
168
+ properties of non-positive measure see e.g. [9]. With this assumption, the spaces Mp are vector
169
+ spaces, and we will prove in Section 2 that the functional ∥µ∥∗
170
+ p is a norm on Mp.
171
+
172
+ 4
173
+ L. DE CARLI AND E. LIFLYAND
174
+ 1.2. Structure of the paper.
175
+ With ∥µ∥∗
176
+ p and Mp denoted by similarity to Lp, we then establish basic properties of these
177
+ measure spaces.
178
+ We will prove in Section 2 that the spaces Mp have many properties in common with Lp
179
+ spaces. We establish the properties of measures in Mp spaces and the properties of functions in
180
+ spaces �Lp(Rn).
181
+ Discussing then the Fourier transform of a measure, we establish a Hausdorff-
182
+ Young type inequality. Further, for the convolution of a function and a measure, we prove a Young
183
+ type inequality for our setting. We mention that the results in Section 2 are supplemented with
184
+ examples.
185
+ Section 3 is devoted to applications of the introduced machinery. One of them is a development
186
+ of an uncertainty principle for measures. The uncertainty principle in Fourier analysis quantifies
187
+ the intuition that a function and its Fourier transform cannot both be concentrated on small sets.
188
+ Many examples of this principle can be found, e.g., in the book by Havin and J¨oricke [10] and in
189
+ an article by Folland and Sitaram [6]. In Subsection 3.1, using a quantitative version of a result
190
+ in [1], we prove that a finite measure and its Fourier transform cannot both be supported on sets
191
+ of finite Lebesgue measure. Recall that a measure µ is supported in a set E ⊂ Rn if µ(F) = 0
192
+ whenever F is a measurable set that does not intersect E.
193
+ In conclusion, we formulate and prove an analog of (5) for functions of bounded variation without
194
+ assuming absolute continuity. This is Theorem 10. In order to formulate and prove it, as an analog
195
+ of Vp spaces for functions, we introduce the notion f ∈ V ∗
196
+ p for measures, with
197
+ ∥f∥V ∗
198
+ p =
199
+ � ∞
200
+ 0
201
+ x− 1
202
+ p ∥χ(x,2x)µf∥∗
203
+ p dx
204
+ where χE denotes the characteristic function of E. The product of a measure µ and a measurable
205
+ function f is the measure defined by (fµ)(F) =
206
+
207
+ F f dµ for every measurable set F. For 1 < p ≤ 2,
208
+ our new Hausdorff-Young inequality will be helpful, while for p > 2, we prove an analog of (4) and
209
+ use an embedding argument.
210
+ 2. Lp properties of measures
211
+ In this section we establish basic properties of measures in the spaces Mp defined in the intro-
212
+ duction, with p ∈ [1, ∞], that mimic those of functions in Lp spaces. We also establish properties
213
+ of the spaces �Lp(Rn) defined in (6).
214
+ If E is a measurable subset of Rn, with |E| ̸= 0, we let
215
+ ∥µ∥∗
216
+ p,E = ∥χEµ∥∗
217
+ p =
218
+ sup
219
+ h∈�
220
+ Lp′ (Rn) :
221
+ ∥h∥�
222
+ Lp′ ≤1
223
+ ����
224
+
225
+ E
226
+ h(t) dµ(t)
227
+ ���� ,
228
+ (11)
229
+ and Mp,E = {µ : ∥µ∥∗
230
+ p,E < ∞}.
231
+ We can also define
232
+ M1,loc = {µ : ∥µ∥∗
233
+ 1,E < ∞ for every measurable bounded set E}.
234
+ (12)
235
+ The standard Lebesgue measure and the Delta measures are notable examples of Mp measures.
236
+ In the rest of this paper we will use L (or dx in integration) to denote the standard Lebesgue
237
+ measure.
238
+ For a given a ∈ Rn, we let δa be the measure defined as
239
+
240
+ Rn f(x) dδa = f(a).
241
+
242
+ Lp SIMULATION FOR MEASURES
243
+ 5
244
+ Example 1. We show that the standard Lebesgue measure is in M∞ and ∥L∥∗
245
+ ∞ = 1.
246
+ Indeed,
247
+ ∥L∥∗
248
+ ∞ =
249
+ sup
250
+ h∈�
251
+ L1(Rn) :
252
+ ∥h∥�
253
+ L1=∥�h∥∞
254
+ ≤1
255
+ ����
256
+
257
+ Rn h(t) dt
258
+ ���� ≤
259
+ sup
260
+ h∈L1(Rn) :
261
+ ∥h∥1≤1
262
+ ����
263
+
264
+ Rn h(t) dt
265
+ ���� ≤ 1.
266
+ To prove that equality holds, we can consider g = e−π|x|2. It is easy to verify that �g(x) = g(x), and
267
+ so g ∈ �L1(Rn) and ∥g∥�L1 = ∥�g∥∞ = 1. Since 1 = �g(0) =
268
+
269
+ Rn g(t) dt = ∥g∥1, we have that
270
+ ∥L∥∗
271
+ ∞ ≥
272
+
273
+ Rn g(t) dt = 1,
274
+ as desired.
275
+ Example 2. We show that δa ∈ Mp only for p = 1 and ∥δa∥1 = 1. Indeed, assuming a = 0 for
276
+ simplicity, we can easily see that
277
+ ∥δ0∥∗
278
+ 1 =
279
+ sup
280
+ h∈S(Rn):
281
+ ∥h∥�
282
+ L∞ ≤1
283
+ ����
284
+
285
+ Rn h(t) dδ0
286
+ ���� =
287
+ sup
288
+ h∈S(Rn):
289
+ ∥�h ∥1≤1
290
+ |h(0)|
291
+ =
292
+ sup
293
+ h∈S(Rn):
294
+ ∥�h∥1≤1
295
+ ����
296
+
297
+ Rn
298
+ �h(x) dx
299
+ ���� ≤
300
+ sup
301
+ h∈S(Rn):
302
+ ∥�h ∥1≤1
303
+ ∥�h ∥1 = 1.
304
+ To prove that equality holds, we can consider the function g = e−π|x|2 in the previous example
305
+ and verify that ∥δ0∥∗
306
+ 1 ≥ ∥ˆg∥1 = 1. An easy variation of this argument shows that δ0 ̸∈ Mp if p > 1.
307
+ 2.1. H¨older type inequalities.
308
+ We prove the following
309
+ Theorem 1. If µ ∈ Mp and f ∈ �Lq(Rn), and 1
310
+ r = 1
311
+ q + 1
312
+ p, then
313
+ ∥fµ∥∗
314
+ r ≤ ∥f∥�Lq∥µ∥∗
315
+ p.
316
+ (13)
317
+ Proof. Assume ∥f∥�Lq = 1, or else replace f with ˜f =
318
+ f
319
+ ∥f∥�
320
+ Lq . With the notation previously
321
+ introduced,
322
+ ∥fµ∥∗
323
+ r =
324
+ sup
325
+ h∈�
326
+ Lr′ (Rn):
327
+ ∥h∥�
328
+ Lr′ ≤1
329
+ ����
330
+
331
+ Rn h(y)f(y) dµ(y)
332
+ ����.
333
+ Let us show that hf ∈ �Lp′ and ∥hf∥�Lp′ ≤ 1. Indeed, �
334
+ hf = �h ∗ �f (standard convolution). Since
335
+ 1
336
+ r + 1
337
+ q′ = 1 + 1
338
+ p, by Young’s inequality for convolution and the Hausdorff-Young inequality,
339
+ ∥hf∥�Lp′ = ∥�
340
+ hf∥p = ∥�h ∗ �f∥p ≤ ∥�h∥r∥ �f∥q′ = ∥h∥�Lr′∥f∥�Lq ≤ 1.
341
+ Thus, ∥hf∥�Lp′ ≤ 1, and so
342
+ ∥fµ∥∗
343
+ r ≤
344
+ sup
345
+ k∈�
346
+ Lp′ (Rn):
347
+ ∥k∥�
348
+ Lp′ ≤1
349
+ ����
350
+
351
+ Rn k(y) dµ(y)
352
+ ���� = ∥µ∥∗
353
+ p = ∥µ∥∗
354
+ p ∥f∥�Lq,
355
+ as required.
356
+
357
+ Remark 2. When r = 1, for every µ ∈ Mp and f ∈ �Lp′(Rn) we have that
358
+ ∥fµ∥∗
359
+ 1 ≤ ∥f∥�Lp′∥µ∥∗
360
+ p.
361
+ This is the case of (13) that most closely resembles the standard H¨older’s inequality.
362
+
363
+ 6
364
+ L. DE CARLI AND E. LIFLYAND
365
+ Corollary 3. Let E be a bounded subset of Rn. Then Mr,E ⊂ Mp,E whenever 1 ≤ p ≤ r ≤ ∞.
366
+ Proof. Assume p < r, since the case p = r is trivial. Assume also E ⊂ QR = [−R, R]n for
367
+ some R > 0. By (11),
368
+ ∥µ∥∗
369
+ r,E =
370
+ sup
371
+ ∥h∥�
372
+ Lr′ ≤1
373
+ ����
374
+
375
+ E
376
+ h(y) dµ(y)
377
+ ���� =
378
+ sup
379
+ ∥�h∥Lr ≤1
380
+ ����
381
+
382
+ Rn χQ(y)h(y)χE(y) dµ(y)
383
+ ����.
384
+ Let q =
385
+ rp
386
+ r−p. Since r ̸= p, we have q < ∞ and q′ > 1. The Fourier transform of the characteristic
387
+ function of QR is
388
+ �χQR(x) =
389
+ n
390
+
391
+ j=1
392
+ sin(πRxj)
393
+ πxj
394
+ ,
395
+ and so �χQR(x) ∈ Ls(Rn) for every s > 1. We have ∥�χQR∥s = Cn
396
+ s R
397
+ n
398
+ s′ , where
399
+ Cs =
400
+ ����
401
+ sin(π·)
402
+ π·
403
+ ����
404
+ s
405
+ =
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+ 2s′
417
+ π
418
+ � 1
419
+ s,
420
+ 1 < s < 2,
421
+
422
+ 2
423
+ s
424
+ � 1
425
+ 2s,
426
+ 2 ≤ s < ∞
427
+ 1,
428
+ s = ∞,
429
+ is independent of R. In fact, Cs can be taken
430
+
431
+ 2s′
432
+ π
433
+ � 1
434
+ s for all s < ∞. This is calculated by minimal
435
+ means: split the integral
436
+
437
+ R
438
+ ���sin(πt)
439
+ πt
440
+ ���
441
+ s
442
+ dt = 1
443
+ π
444
+
445
+ R
446
+ ���sin(t)
447
+ t
448
+ ���
449
+ s
450
+ dt
451
+ (14)
452
+ into two, over |t| ≤ 1 and over |t| > 1, and replace
453
+ ��� sin(t)
454
+ t
455
+ ��� in the first by 1 and in the second by
456
+ 1
457
+ |t|.
458
+ However, it is known (see [2, Lemma 3] or [14, Ch.VI, 7.5]) that for s ≥ 2, the sharp bound for
459
+ (14) is
460
+
461
+ 2
462
+ s.
463
+ Applying Proposition 1 with f = χQR and χEµ in place of µ, we obtain
464
+ ∥µ∥∗
465
+ p,E ≤ ∥χQR∥�Lq∥µ∥∗
466
+ r,E = Cn
467
+ q R
468
+ n
469
+ q′ ∥µ∥∗
470
+ r,E,
471
+ (15)
472
+ and so ∥µ∥∗
473
+ p,E < ∞ whenever ∥µ∥∗
474
+ r,E < ∞, as required.
475
+
476
+ Corollary 4. For every p ∈ [1, ∞], we have that Mp ⊂ M1,loc.
477
+ Proof. Follows from Corollary 3 and (12).
478
+
479
+ Corollary 5. The functional ∥ ∥∗
480
+ p is a norm on Mp for every p ∈ [1, ∞].
481
+ Proof. It is trivial to verify that for every µ, σ ∈ Mp and every λ ∈ C,
482
+ ∥µ + σ∥∗
483
+ p ≤ ∥µ∥∗
484
+ p + ∥σ∥∗
485
+ p,
486
+ ∥λµ∥∗
487
+ p = |λ| ∥µ∥∗
488
+ p.
489
+ We now prove that ∥µ∥∗
490
+ p = 0 if and only if µ ≡ 0, in the sense that µ(E) = 0 for every µ−measurable
491
+ set E.
492
+
493
+ Lp SIMULATION FOR MEASURES
494
+ 7
495
+ In order to show that µ ≡ 0, it is enough to verify that µ(E) = 0 for every bounded set E.
496
+ Let E be bounded and µ−measurable. Assume that E ⊂ QR for some R > 0. Using (15) and
497
+ Proposition 8, we can see at once that
498
+ µ(E) =
499
+
500
+ E
501
+ dµ(x) =
502
+
503
+ QR
504
+ χEdµ(x) ≤ ∥χQR∥�L∞∥µ∥∗
505
+ p,E ≤ ∥µ∥∗
506
+ p = 0
507
+ and so µ(E) = 0 for every µ−measurable bounded set E.
508
+
509
+ 2.2. Properties of �Lp spaces.
510
+ In this sub-section we will establish properties of the spaces �Lp(Rn) defined in (6). We first
511
+ shows how measures of the form dµ = fdx behave with respect to the norms introduced when
512
+ f ∈ �Lp,
513
+ Theorem 6. Let dµ = fdx, with f ∈ �Lp(Rn) for some p ∈ [1, ∞]; then µ ∈ Mp and
514
+ ∥µ∥∗
515
+ p = ∥f∥�Lp.
516
+ Before discussing Theorem 6, we prove the following
517
+ Lemma 1. S(Rn) is dense in �Lp(Rn) for every p ∈ [1, ∞].
518
+ Proof. Since S(Rn) ⊂ �Lp(Rn) ⊂ Lp(Rn) and S(Rn) is dense in Lp(Rn) for every p ∈ [1, ∞),
519
+ we can see at once that S(Rn) is also dense in �Lp(Rn). To see that S(Rn) is dense also in �L∞(Rn),
520
+ we observe that every f ∈ �L∞(Rn) is the image of g ∈ L1(Rn) via the Fourier transform. We can
521
+ find functions ψn ∈ S(Rn) such that lim
522
+ n→∞ ∥ψn − g∥1 = 0. But
523
+ ∥ψn − g∥1 = ∥ �
524
+ �ψn − �f ∥1 = ∥ �ψn − f∥�L∞,
525
+ and so lim
526
+ n→∞ ∥ �ψn−f∥�L∞ = 0. Since �ψn ∈ S(Rn), we have proved that S(Rn) is dense in �L∞(Rn).
527
+
528
+ Proof of Theorem 6. Since S(Rn) is dense in Lp(Rn) and in �Lp′(Rn), and the Fourier trans-
529
+ form is one-to-one in S(Rn), we can see at once that
530
+ ∥f∥�Lp = ∥ �f∥p′ =
531
+ sup
532
+ g∈S(Rn):
533
+ ∥g∥p≤1
534
+ ����
535
+
536
+ Rn g(t) �f(t) dt
537
+ ���� =
538
+ sup
539
+ g∈S(Rn):
540
+ ∥g∥p≤1
541
+ ����
542
+
543
+ Rn �g(t)f(t) dt
544
+ ����
545
+ =
546
+ sup
547
+ h∈S(Rn):
548
+ ∥�h∥p≤1
549
+ ����
550
+
551
+ Rn h(t)f(t) dt
552
+ ���� =
553
+ sup
554
+ h∈S(Rn):
555
+ ∥h∥�
556
+ Lp′ ≤1
557
+ ����
558
+
559
+ Rn h(t)f(t) dt
560
+ ���� = ∥µ∥∗
561
+ p,
562
+ which completes the proof.
563
+
564
+ Remark 7. If dµ = fdx is as in Theorem 6 and p ∈ [1, 2], then there holds
565
+ ∥µf∥∗
566
+ p = ∥f∥�Lp = ∥ �f∥p′ ≤ ∥f∥p.
567
+ Corollary 8. Let E ⊂ Rn be a (Lebesgue) measurable set.
568
+ a) For every p ∈ [1, ∞], we have
569
+ ∥χE∥�Lp ≤ |E|
570
+ 1
571
+ p.
572
+ (16)
573
+ b) For every 1 ≤ p ≤ q ≤ ∞ and every µ ∈ Mq, we have
574
+ ∥µ∥∗
575
+ p,E ≤ ∥µ∥∗
576
+ q|E|
577
+ 1
578
+ r ,
579
+ where 1
580
+ r = 1
581
+ p − 1
582
+ q.
583
+ We have used the standard convention
584
+ 1
585
+ ∞ = 0. Thus, (16) yields ∥χE∥�L∞ ≤ 1, for every set E.
586
+
587
+ 8
588
+ L. DE CARLI AND E. LIFLYAND
589
+ Proof. We first prove a). When p ∈ [1, 2], Remark 7 yields
590
+ ∥χE∥�Lp ≤ ∥χE∥p = |E|
591
+ 1
592
+ p.
593
+ Assume now p ∈ (2, ∞). By the Hausdorff-Young inequality, we can see at once that
594
+ {f ∈ �Lp′ : ∥f∥�Lp′ = ∥ �f∥p ≤ 1} ⊂ {f ∈ Lp′(Rn) : ∥f∥p′ ≤ 1}.
595
+ In view of this observation and Theorem 6, we can let dσ = χEdx and write the following chain of
596
+ inequalities:
597
+ ∥χE∥�Lp = ∥σ∥∗
598
+ p,E =
599
+ sup
600
+ f∈�
601
+ Lp′(Rn):
602
+ ∥f∥�
603
+ Lp′ ≤1
604
+ ����
605
+
606
+ Rn χE(x)f(x)dx
607
+ ����
608
+
609
+ sup
610
+ f∈Lp′ (Rn):
611
+ ∥f∥p′ ≤1
612
+ ����
613
+
614
+ Rn χE(x)f(x)dx
615
+ ����
616
+ (17)
617
+ ≤ |E|
618
+ 1
619
+ p∥f∥p′ ≤ |E|
620
+ 1
621
+ p.
622
+ We have used H¨older’s inequality in the last step.
623
+ When p = ∞, it follows from (17) that
624
+ sup
625
+ f∈L1(Rn):
626
+ ∥f∥1≤1
627
+ ����
628
+
629
+ Rn χE(x)f(x)dx
630
+ ���� ≤
631
+ sup
632
+ f∈L1(Rn):
633
+ ∥f∥1≤1
634
+
635
+ Rn χE(x)|f(x)|dx ≤ 1.
636
+ Part b) follows from H¨older’s inequality (1) and part a). Indeed, letting r =
637
+ pq
638
+ q−p, we have
639
+ ∥µ∥∗
640
+ p,E = ∥χEµ∥∗
641
+ p ≤ ∥χE∥�Lr∥µ∥∗
642
+ q ≤ |E|
643
+ 1
644
+ r ∥µ∥∗
645
+ q.
646
+ The proof of the corollary is complete.
647
+
648
+ We use Theorem 6 to prove inclusion relations of the �Lp spaces and their duals. Recall that the
649
+ dual of a normed space X, denoted by (X)′, is the set of linear functionals L : V → C such that
650
+ sup∥f∥X≤1 |L(f)| < ∞.
651
+ By definition, �Lp(Rn) = Lp(Rn) when p ∈ [1, 2] but in general �Lp(Rn) is a proper subspace of
652
+ Lp(Rn). For example, the Riemann-Lebesgue Lemma yields that �L∞(Rn) is a space of uniformly
653
+ continuous functions that go to zero at infinity.
654
+ Even though Lp(Rn) = �Lp(Rn) when p ∈ [1, 2], the norms on these spaces are different and so
655
+ the duals of these spaces are different too. When p ≤ 2, the Hausdorff-Young inequality yields,
656
+ ∥f∥�Lp = ∥ ˆf∥p′ ≤ ∥f∥p.
657
+ When p = 2 we have ∥f∥2 = ∥f∥�L2 but when p > 2 the inequality above can be strict.
658
+ We prove the following
659
+ Proposition 1. For every p ∈ [1, ∞], we have
660
+ �Lp′(Rn) ⊂ (�Lp(Rn))′.
661
+ When p ∈ [1, 2], we have �Lp′(Rn) ⊂ (�Lp(Rn))′ ⊂ Lp′(Rn).
662
+
663
+ Lp SIMULATION FOR MEASURES
664
+ 9
665
+ Proof. For a given g ∈ �Lp′(Rn), we let dµ = gdx and we let Lg : �Lp(Rn) → C,
666
+ Lg(f) =
667
+
668
+ Rn f(x)g(x)dx.
669
+ By H¨older’s inequality (13) and Theorem 6
670
+ |Lg(f)| =
671
+ ����
672
+
673
+ Rn f(x)g(x)dx
674
+ ���� ≤ ∥f∥�Lp∥µ∥∗
675
+ p′ = ∥f∥�Lp∥g∥�Lp′
676
+ and so L ∈ (�Lp(Rn))′.
677
+ When p ≤ 2, for every L ∈ (�Lp(Rn))′, we have that
678
+ |L(f)| ≤ C∥f∥�Lp = C∥ ˆf∥p′ ≤ C∥f∥p
679
+ and so L ∈ (Lp(Rn))′ = Lp���(Rn).
680
+
681
+ 2.3. Fourier transform of finite measures. The Fourier transform of a finite Borel measure
682
+ µ is the function defined as
683
+ �µ(y) =
684
+
685
+ Rn e−2πix·ydµ(x).
686
+ (18)
687
+ To distinguish it from the Fourier transform for functions, it is sometimes called the Fourier-Stieltjes
688
+ transform. It is well-known (see, e.g., [3, §5.3] or [15, §4.4]) that the function �µ is continuous and
689
+ bounded. By the Riemann-Lebesgue Lemma, the Fourier transform of an L1 function vanishes at
690
+ infinity, but the Fourier transform of a M1 measure does not need to do so. For example, we have
691
+ shown in Example 2 that the Delta measure µ = δa is in M1; its Fourier transform is �µ(x) = e2πia·x,
692
+ and |�µ(x)| ≡ 1.
693
+ We prove the following analog of the Hausdorff-Young inequality.
694
+ Proposition 2. Let µ ∈ Mp, with 1 ≤ p ≤ 2. Then, �µ ∈ Lp′(Rn), and
695
+ ∥�µ∥p′ ≤ ∥µ∥∗
696
+ p.
697
+ (19)
698
+ Proof. We have observed that the Fourier transform of a finite measure is always bounded,
699
+ so the proposition is trivial for p = 1. When p ∈ (1, 2], we have
700
+ ∥�µ∥p′ =
701
+ sup
702
+ h∈S(Rn):
703
+ ∥h∥p≤1
704
+
705
+ Rn h(y)�µ(y) dy.
706
+ By Fubini’s theorem,
707
+
708
+ Rn h(y)�µ(y) dy =
709
+
710
+ Rn
711
+
712
+ Rn h(y)e−2πix·y dµ(x) dy =
713
+
714
+ Rn
715
+ �h(x) dµ(x).
716
+ (20)
717
+ In view of (20) and the fact that ∥�h ∥p′ ≤ ∥h∥p ≤ 1, we can see at once that
718
+ ∥�µ∥p′ =
719
+ sup
720
+ h∈S(Rn):
721
+ ∥h∥p≤1
722
+
723
+ Rn
724
+ �h(y) µ(y) ≤
725
+ sup
726
+ k∈S(Rn):
727
+ ∥�k ∥p′ ≤1
728
+ ����
729
+
730
+ Rn k(x) dµ(x)
731
+ ���� = ∥µ∥∗
732
+ p,
733
+ which completes the proof.
734
+
735
+
736
+ 10
737
+ L. DE CARLI AND E. LIFLYAND
738
+ Example 3. If µf is generated by the singular function f in [16], we have
739
+ |�
740
+ µf(x)| = O
741
+ � 1
742
+ |x|δ
743
+
744
+ for |x| large, with 0 < δ < 1
745
+ 2. Then �
746
+ µf ∈ Lp′(R), with 1
747
+ δ < p′ < ∞, and correspondingly, 2 < p′ < ∞.
748
+ By this, ∥µf∥∗
749
+ p < ∞, since
750
+ ∥µf∥∗
751
+ p =
752
+ sup
753
+ ∥h∥�
754
+ Lp′ ≤1
755
+ ����
756
+
757
+ R
758
+ h(t) df(t)
759
+ ���� =
760
+ sup
761
+ ∥g∥Lp≤1
762
+ ����
763
+
764
+ R
765
+ �g(x) df(x)
766
+ ����
767
+ =
768
+ sup
769
+ ∥g∥Lp≤1
770
+ ����
771
+
772
+ R
773
+ g(x) �df(x) dx
774
+ ���� < ∞,
775
+ because of g ∈ Lp and �
776
+ µf ∈ Lp′, with 1 < p <
777
+ 1
778
+ 1−δ < 2.
779
+ We have used the pioneer example of a singular function in [16] but there are more subtle ones.
780
+ However, for all of them there is a barrier to L2, like 0 < δ < 1
781
+ 2 above; see, e.g., [11] and references
782
+ therein.
783
+ 2.4. Convolution of a function and a measure. Let µ be a sigma-finite Borel measure,
784
+ and let f : Rn → R be a measurable function such that the function
785
+ x →
786
+
787
+ Rn f(x − y)dµ(y)
788
+ (21)
789
+ is finite for a.e. x ∈ Rn. The convolution of f and µ, denoted by f ∗ µ, is the function defined in
790
+ (21). We prove the following analog of the Young inequality for convolution.
791
+ Proposition 3. If µ ∈ Mp and f ∈ �Lq(Rn) with 1
792
+ p + 1
793
+ q = 1
794
+ r, then f ∗ µ ∈ �Lr(Rn) and
795
+ ∥f ∗ µ∥�Lr ≤ ∥f∥�Lq∥µ∥∗
796
+ p.
797
+ Proof. In view of Proposition 6,
798
+ ∥f ∗ µ∥�Lr = ∥f ∗ µ∥∗
799
+ r =
800
+ sup
801
+ h∈S(Rn):
802
+ ∥h∥�
803
+ Lr′ ≤1
804
+
805
+ Rn h(x)(f ∗ µ)(x) dx.
806
+ (22)
807
+ For every h ∈ S(Rn),
808
+
809
+ Rn h(x)(f ∗ µ)(x) dx =
810
+
811
+ Rn h(x)
812
+
813
+ Rn f(x − y) dµ(y) dx, =
814
+
815
+ Rn h ∗ ˜f(y) dµ(y)
816
+ (23)
817
+ where ˜g(t) = g(−t). By (23) and (10),
818
+
819
+ Rn h ∗ ˜f(y) dµ(y) ≤ ∥h ∗ ˜f∥�Lp′∥µ∥∗
820
+ p = ∥�h �f∥p ∥µ∥∗
821
+ p.
822
+ (24)
823
+ Recalling that 1 + 1
824
+ r = 1
825
+ p + 1
826
+ q, we have 1
827
+ p = 1
828
+ r + 1
829
+ q′. By H¨older’s inequality,
830
+ ∥�h �f∥p ≤ ∥�h ∥r∥ �f ∥q′ = ∥h∥�Lr′∥f∥�Lq
831
+ By (22) and (24), we conclude that
832
+ ∥f ∗ µ∥�Lr ≤ ∥f∥�Lq∥µ∥∗
833
+ p,
834
+ as required.
835
+
836
+
837
+ Lp SIMULATION FOR MEASURES
838
+ 11
839
+ 3. Applications
840
+ As mentioned, in this section we present applications of the obtained results.
841
+ 3.1. Uncertainty principle.
842
+ In this subsection, we show that the uncertainty principle has its embodiment also for measures.
843
+ We prove the following
844
+ Theorem 9. A finite nonzero measure µ ∈ M2 and its Fourier transform �µ cannot both be
845
+ supported in sets of finite Lebesgue measure.
846
+ The proof of the theorem relies on the following
847
+ Lemma 2. Let E, F ⊂ Rn be sets of finite Lebesgue measure. There exists a constant C > 0
848
+ such that for every measure µ ∈ M2, we have
849
+ ∥dµ∥∗
850
+ 2,F ≤ C∥ �µ ∥L2(Ec).
851
+ Proof. Recall the following quantitative form of an uncertainty principle result obtained by
852
+ Amrein and Berthier in [1]: Let E, F ⊂ Rn be sets of finite measure. There exists a constant C > 0
853
+ such that for every function f ∈ L2(Rn),
854
+ ∥ �f ∥L2(F ) ≤ C∥f∥L2(Ec).
855
+ (25)
856
+ Let h ∈ L2(Rn). By (25), the inequality ∥h∥L2(Ec) ≤ 1 yields ∥�h ∥L2(F ) ≤ C. In view of (20), we
857
+ can write the following chain of inequalities:
858
+ ∥ �µ ∥L2(Ec) =
859
+ sup
860
+ h∈L2(Rn):
861
+ ∥h∥L2(Ec)≤1
862
+
863
+ Rn h(x)�µ(x)
864
+ =
865
+ sup
866
+ h∈L2(Rn):
867
+ ∥h∥L2(Ec)≤1
868
+
869
+ Rn
870
+ �h(y) dµ(y) ≥
871
+ sup
872
+ h∈L2(Rn):
873
+ ∥�h ∥L2(F )≤C
874
+
875
+ Rn
876
+ �h(x) dµ(x)
877
+ = 1
878
+ C
879
+ sup
880
+ k∈L2(Rn):
881
+ ∥ �k ∥2≤1
882
+
883
+ F
884
+ k(x)dµ(x) = 1
885
+ C ∥µ∥∗
886
+ 2,F,
887
+ obtaining the required result.
888
+
889
+ Proof of Theorem 9. Assume by contradiction that µ is supported in F and �µ is supported
890
+ in E, where E, F ⊂ Rn are both of finite measure. By Lemma 2, we have ∥µ∥∗
891
+ 2,F = ∥χFµ∥∗
892
+ 2 = 0, and
893
+ Corollary 5 yields χFµ ≡ 0. Since χF cµ ≡ 0 is assumed, we have µ = 0, which is a contradiction.
894
+
895
+ 3.2. The Fourier transform theorem.
896
+ In order to reveal an analogy to the case of absolutely continuous f, we prove a counterpart of
897
+ corresponding embeddings in (4).
898
+ Proposition 4. For p1 > p2 > 1, there holds
899
+ V ∗
900
+ p1 ֒→ V ∗
901
+ p2.
902
+
903
+ 12
904
+ L. DE CARLI AND E. LIFLYAND
905
+ Proof. We are going to apply Corollary 3. Since for E = (x, 2x), we have in (15) that by (16),
906
+ there holds
907
+ ∥χQR∥�Lq ≲ x
908
+ 1
909
+ q ,
910
+ and it follows that
911
+ ∥µf∥∗
912
+ p2,(x,2x) ≲ x
913
+ 1
914
+ q ∥µf∥∗
915
+ p1,(x,2x).
916
+ The corresponding relation
917
+ 1
918
+ p2 = 1
919
+ q + 1
920
+ p1 yields 1
921
+ q = p1−p2
922
+ p1p2 . It remains to observe that
923
+ x− 1
924
+ p2 x
925
+ p1−p2
926
+ p1p2 = x− 1
927
+ p1 ,
928
+ which leads to the needed embedding.
929
+
930
+ With these embeddings and the tools elaborated before, we study, for γ = 0 or 1
931
+ 4, the Fourier
932
+ transforms
933
+ �fγ(x) =
934
+ � ∞
935
+ 0
936
+ f(t) cos 2π(xt − γ) dt.
937
+ (26)
938
+ It is clear that �fγ represents the cosine Fourier transform in the case γ = 0, while taking γ = 1
939
+ 4
940
+ gives the sine Fourier transform.
941
+ Theorem 10. Let f be of bounded variation on R+ and vanishing at infinity, that is, lim
942
+ t→∞ f(t) =
943
+ 0. If f ∈ V ∗
944
+ p , then for x > 0, we have
945
+ �fγ(x) =
946
+ 1
947
+ 2πxf
948
+ �1
949
+ x
950
+
951
+ sin 2πγ + Γ(x),
952
+ where γ = 0 or 1
953
+ 4, and ∥Γ∥L1(R+) ≲ ∥f∥V ∗
954
+ p provided that the last value is finite for some p, 1 < p ≤
955
+ ∞.
956
+ Proof. Splitting the integral in (26) and integrating by parts, we obtain
957
+ �fγ(x) = − 1
958
+ 2πxf
959
+ �1
960
+ x
961
+
962
+ sin 2π(1 − γ)
963
+ +
964
+
965
+ 1
966
+ x
967
+ 0
968
+ f(t) cos 2π(xt − γ) dt −
969
+ 1
970
+ 2πx
971
+ � ∞
972
+ 1
973
+ x
974
+ sin 2π(xt − γ) df(t).
975
+ Further,
976
+
977
+ 1
978
+ x
979
+ 0
980
+ f(t) cos 2π(xt − γ) dt
981
+ =
982
+
983
+ 1
984
+ x
985
+ 0
986
+ [f(t) − f
987
+ �1
988
+ x
989
+
990
+ ] cos 2π(xt − γ) dt +
991
+
992
+ 1
993
+ x
994
+ 0
995
+ f
996
+ �1
997
+ x
998
+
999
+ cos 2π(xt − γ) dt
1000
+ = −
1001
+
1002
+ 1
1003
+ x
1004
+ 0
1005
+ � �
1006
+ 1
1007
+ x
1008
+ t
1009
+ df(s)
1010
+
1011
+ cos 2π(xt − γ) dt
1012
+ +
1013
+ 1
1014
+ 2πxf
1015
+ �1
1016
+ x
1017
+
1018
+ sin 2π(1 − γ) +
1019
+ 1
1020
+ 2πxf
1021
+ �1
1022
+ x
1023
+
1024
+ sin 2πγ
1025
+ =
1026
+ 1
1027
+ 2πxf
1028
+ �1
1029
+ x
1030
+
1031
+ sin 2πγ +
1032
+ 1
1033
+ 2πxf
1034
+ �1
1035
+ x
1036
+
1037
+ sin 2π(1 − γ) + O
1038
+ ��
1039
+ 1
1040
+ x
1041
+ 0
1042
+ s|df(s)|
1043
+
1044
+ .
1045
+ To continue the proof, we need the following
1046
+
1047
+ Lp SIMULATION FOR MEASURES
1048
+ 13
1049
+ Lemma 3. We have the inequality
1050
+ � ∞
1051
+ 0
1052
+ |df(s)| ≲ ∥f∥V ∗
1053
+ p .
1054
+ (27)
1055
+ Proof. There holds
1056
+ ln 2
1057
+ � ∞
1058
+ 0
1059
+ |df(s)| =
1060
+ � ∞
1061
+ 0
1062
+ 1
1063
+ x
1064
+ � 2x
1065
+ x
1066
+ |df(s)| dx
1067
+ =
1068
+ � ∞
1069
+ 0
1070
+ x− 1
1071
+ p
1072
+ ����
1073
+ � 2x
1074
+ x
1075
+ h(s) df(s)
1076
+ ����dx,
1077
+ where h(s) = x− 1
1078
+ p′ sign df(s) if x < s < 2x and zero otherwise. This h is not necessarily of bounded
1079
+ variation; however, since it will always be under the integral sign, we can take an equivalent function
1080
+ that is of bounded variation. This is possible because the number of jumps of f is of measure zero.
1081
+ We will continue to use notation h for such a function.
1082
+ It is easy to see that ∥h∥p′ = 1. Let
1083
+ g(u) = �h(u). We have
1084
+ � ∞
1085
+ 0
1086
+ |g(u)|p du =
1087
+ ��
1088
+ 1
1089
+ x
1090
+ 0
1091
+ +
1092
+ � ∞
1093
+ 1
1094
+ x
1095
+
1096
+ |g(u)|p du
1097
+ ≲ 1
1098
+ x
1099
+ � x
1100
+ x
1101
+ 1
1102
+ p′
1103
+ �p
1104
+ + x− p
1105
+ p′
1106
+ � ∞
1107
+ 1
1108
+ x
1109
+ � ���� h(s)e−ius
1110
+ −iu
1111
+ ���
1112
+ 2x
1113
+ x
1114
+ ���� + 1
1115
+ u
1116
+ � 2x
1117
+ x
1118
+ |dh(s)|
1119
+ �p
1120
+ du.
1121
+ The first term on the right is bounded. Since
1122
+ � ∞
1123
+ 1
1124
+ x
1125
+ du
1126
+ up ≲ x
1127
+ 1
1128
+ p′ ,
1129
+ the definition of h leads to the boundedness of the second term as well.
1130
+ Therefore, h is the Fourier transform of an Lp function g. This leads to the needed right-hand
1131
+ side in (27).
1132
+
1133
+ We return to the proof of the theorem. Since
1134
+ � ∞
1135
+ 0
1136
+
1137
+ 1
1138
+ x
1139
+ 0
1140
+ s|df(s)| dx =
1141
+ � ∞
1142
+ 0
1143
+ |df(s)|,
1144
+ it follows from (27) that to prove the theorem it remains to estimate
1145
+ � ∞
1146
+ 0
1147
+ 1
1148
+ x
1149
+ �����
1150
+ � ∞
1151
+ 1
1152
+ x
1153
+ sin 2π(xt − γ) df(t)
1154
+ ����� dx.
1155
+ We have
1156
+ ln 2
1157
+ � ∞
1158
+ 0
1159
+ 1
1160
+ x
1161
+ ����
1162
+ � ∞
1163
+ 1
1164
+ x
1165
+ sin 2π(xt − γ) df(t)
1166
+ ����dx
1167
+
1168
+ � ∞
1169
+ 0
1170
+ 1
1171
+ u
1172
+ � ∞
1173
+ 1
1174
+ u
1175
+ 1
1176
+ x
1177
+ ����
1178
+ � 2u
1179
+ u
1180
+ sin 2π(xt − γ) df(t)
1181
+ ���� dx du + ln 2
1182
+ � ∞
1183
+ 0
1184
+ 1
1185
+ x
1186
+
1187
+ 2
1188
+ x
1189
+ 1
1190
+ x
1191
+ |df(t)| dx.
1192
+
1193
+ 14
1194
+ L. DE CARLI AND E. LIFLYAND
1195
+ The latter summand on the right is controlled by
1196
+ � ∞
1197
+ 0 |df(t)|. Applying H¨older’s inequality to the
1198
+ integral in x of the first summand, we have to estimate
1199
+ � ∞
1200
+ 0
1201
+ 1
1202
+ u
1203
+ �� ∞
1204
+ 1
1205
+ u
1206
+ x−pdx
1207
+ � 1
1208
+ p �� ∞
1209
+ 0
1210
+ ����
1211
+ � 2u
1212
+ u
1213
+ sin 2π(xt − γ) df(t)
1214
+ ����
1215
+ p′
1216
+ dx
1217
+ � 1
1218
+ p′
1219
+ du
1220
+ =
1221
+ � ∞
1222
+ 0
1223
+ u− 1
1224
+ pI(u) du.
1225
+ (28)
1226
+ where by I(u) the term in the second parenthesis is denoted. We can see that
1227
+ I = 1
1228
+ 2
1229
+ �� ∞
1230
+ 0
1231
+ ����
1232
+
1233
+ R
1234
+
1235
+ e2πi(xt−γ) − e−2πi(xt−γ)�
1236
+ χ(u,2u)(t) df(t)
1237
+ ����
1238
+ p′
1239
+ dx
1240
+ � 1
1241
+ p′
1242
+ = 1
1243
+ 2
1244
+ �� ∞
1245
+ 0
1246
+ �� e2πiγ �
1247
+ χ(u,2u)µf(x) − e−2πiγ �
1248
+ χ(u,2u)µf(−x)
1249
+ ��p′
1250
+ dx
1251
+ � 1
1252
+ p′
1253
+ ≤ ∥ �
1254
+ χ(u,2u)µf∥p′.
1255
+ For 1 < p ≤ 2, applying the Hausdor���-Young inequality (19), we obtain
1256
+ I ≤ ∥ �
1257
+ χ(u,2u)µf∥p′ ≤ ∥χ(u,2u)µf∥∗
1258
+ p,
1259
+ from which we derive that (28) is bounded by
1260
+ � ∞
1261
+ 0
1262
+ u− 1
1263
+ p∥µf∥∗
1264
+ p,(u,2u) du,
1265
+ as desired. For p > 2, Proposition 4 completes the proof.
1266
+
1267
+ Remark 11. There exist analogs of (5) for the multivariate setting; see, e.g., [12] or [13].
1268
+ However, the above one-dimensional result is more transparent and illustrative in the sense that
1269
+ extending it to several dimensions is a plain business with awkward notation and technicalities.
1270
+ References
1271
+ [1] W.O. Amrein and A.M. Berthier, On support properties of Lp-functions and their Fourier transforms, J. Funct.
1272
+ Anal. 24 (1977), 258–267.
1273
+ [2] K. Ball, Cube slicing in Rn, Proc. Amer. Math. Soc. 97 (1986), 465–473.
1274
+ [3] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. Volume 1. One-Dimensional Theory,
1275
+ Academic Press, New York and London, 1971.
1276
+ [4] J.A. Cima, A.L. Matheson and W.T. Ross, The Cauchy transform, Mathematical Surveys and Monographs,
1277
+ 125, Amer. Math. Soc., Providence, RI, 2006.
1278
+ [5] S. Fridli, Hardy Spaces Generated by an Integrability Condition, J. Approx. Theory 113 (2001), 91–109.
1279
+ [6] G. Folland and A. Sitaram, The Uncertainty Principle, J. Fourier Anal. Appl. 3 (1997), 207–238.
1280
+ [7] D.V. Giang and F. M´oricz, On the L1 theory of Fourier transforms and multipliers, Acta Sci. Math. (Szeged)
1281
+ 61 (1995), 293–304.
1282
+ [8] A. Iosevich and E. Liflyand, Decay of the Fourier transform: analytic and geometric aspects, Birkhauser, 2014.
1283
+ [9] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950
1284
+ [10] V.P. Havin and B. J¨oricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.
1285
+ [11] T.W. K¨orner, Fourier transforms of distributions and Hausdorff measures, 20 (2014), 547–565.
1286
+ [12] E. Liflyand, Fourier transforms of functions from certain classes, Anal. Math. 19 (1993), 151–168.
1287
+ [13] E. Liflyand, Functions of Bounded Variation and their Fourier Transforms, Birkh¨auser, 2019.
1288
+ [14] B. Makarov and A. Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer, 2013.
1289
+
1290
+ Lp SIMULATION FOR MEASURES
1291
+ 15
1292
+ [15] H. Reiter and J.D. Stegeman, Classical harmonic analysis and locally compact groups. Second edition, London
1293
+ Mathematical Society Monographs. New Series, 22. The Clarendon Press, Oxford University Press, New York,
1294
+ 2000.
1295
+ [16] N. Wiener and A. Wintner, Fourier-Stieltjes Transforms and Singular Infinite Convolutions, Amer. J. Math.
1296
+ 60 (1938), 513–522.
1297
+ Department of Mathematics and Statistics, Florida International University, Miami, FL, 33199,
1298
+ USA
1299
+ Email address: [email protected]
1300
+ Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
1301
+ Email address: [email protected]
1302
+
7NE1T4oBgHgl3EQfTgOa/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf,len=443
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
3
+ page_content='03079v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
4
+ page_content='FA] 8 Jan 2023 Lp simulation for measures L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
5
+ page_content=' De Carli and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
6
+ page_content=' Liflyand Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
7
+ page_content=' Being motivated by general interest as well as by certain concrete problems of Fourier Analysis, we construct analogs of the Lp spaces for measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
8
+ page_content=' It turns out that most of standard properties of the usual Lp spaces for functions are extended to the measure setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
9
+ page_content=' We illustrate the obtained results by examples and apply them to obtain a version of the uncertainty principle and an integrability result for the Fourier transform of a function of bounded variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
10
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
11
+ page_content=' Introduction Looking through any book devoted to Fourier analysis or just the table of contents, one will see that the L1 theory of the Fourier transform or the Hilbert transform goes with the corresponding Lp theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
12
+ page_content=' This is not the case for the theories of the corresponding transforms for measures, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
13
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
14
+ page_content=', [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
15
+ page_content=' A simple curiosity may force one to wonder where the analogs for measures are hidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
16
+ page_content=' We have not succeeded to find such a machinery in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
17
+ page_content=' However, we have a more concrete reason to be interested in the depository of such treasures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
18
+ page_content=' Let us consider the following example, somewhat sketchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
19
+ page_content=' The cosine Fourier transform of a function of bounded variation on the half-axis, to wit f ∈ BV (R+), is �fc(x) = � ∞ 0 f(t) cos(2πxt) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
20
+ page_content=' (1) Let f be locally absolutely continuous on (0, ∞);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
21
+ page_content=' note that here we use not R+ = [0, ∞) but (0, ∞) since it is of considerable importance and generality that we can avoid claiming absolute continuity at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
22
+ page_content=' Let in addition, lim t→∞ f(t) = 0 and Hof ′ ∈ L1(R+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
23
+ page_content=' Here, for any integrable function g on R+, Hog(x) = 2 π � ∞ 0 tg(t) x2 − t2 dt (2) is the Hilbert transform applied to the odd extension of g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
24
+ page_content=' of course, understood in the principle value sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
25
+ page_content=' When it is integrable, we will denote the corresponding Hardy space of such functions g by H1 0(R+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
26
+ page_content=' Then the cosine Fourier transform of f in (1) is Lebesgue integrable on R+, with ∥�fc∥L1(R+) ≲ ∥f ′∥L1(R+) + ∥Hof ′∥L1(R+) = ∥f ′∥H1 0(R+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
27
+ page_content=' (3) 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
28
+ page_content=' Primary: 28A33;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
29
+ page_content=' Secondary: 42A38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
30
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
31
+ page_content=' Measure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
32
+ page_content=' Fourier transform;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
33
+ page_content=' Hausdorff-Young inequality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
34
+ page_content=' Young inequality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
35
+ page_content=' uncertainty principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
36
+ page_content=' 1 2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
37
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
38
+ page_content=' LIFLYAND For this result as well as many other more advanced ones, see [12] (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
39
+ page_content=' [5] and [7];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
40
+ page_content=' see also [8, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
41
+ page_content='3] or more recent [13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
42
+ page_content=' Recall that the derivative of a function of bounded variation exists almost everywhere and is Lebesgue integrable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
43
+ page_content=' Here and in what follows ϕ ≲ ψ means that ϕ ≤ Cψ with C being an absolute constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
44
+ page_content=' A natural question arises whether we can relax the assumption of absolute continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
45
+ page_content=' The first step in an eventual proof is obvious: we integrate by parts in the Stieltjes sense in (1) and arrive at �fs(x) = − 1 2πx � ∞ 0 sin(2πxt) df(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
46
+ page_content=' However, if we try to follow the lines of the proof of (3) and arrive at a version of Hardy’s space with integrable Hilbert transform of df, we will fail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
47
+ page_content=' The point is that the Hilbert transform of df does exist almost everywhere (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
48
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
49
+ page_content=', [3, §8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
50
+ page_content='1 ]) but its integrability leads to absolute continuity, the property that we aimed to remove (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
51
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
52
+ page_content=', [4] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
53
+ page_content=' On the other hand, there is a scale of handy subspaces of H1 0(R+), for which the integrability of the cosine Fourier transform is valid, with the norm of f ′ in one of such spaces on the right-hand side of (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
54
+ page_content=' More precisely, for 1 < p < ∞, set ∥g∥Op = � ∞ 0 �1 x � x≤t≤2x |g(t)|pdt � 1 p dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
55
+ page_content=' Further, for p = ∞, let ∥g∥O∞ = � ∞ 0 ess sup x≤t≤2x |g(t)| dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
56
+ page_content=' Known are (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
57
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
58
+ page_content=', the above sources) the following relations: O∞ ֒→ Op1 ֒→ Op2 ֒→ H1 0 ֒→ L1 (p1 > p2 > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
59
+ page_content=' (4) Under the above assumptions, there holds ∥�fc∥L1(R+) ≲ ∥f ′∥Op(R+), (5) provided that the right-hand side is finite for some p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
60
+ page_content=' In fact, a different notation is convenient for the case where the Op norm is calculated for the derivative: ∥f∥Vp := ∥f ′∥Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
61
+ page_content=' Just this notation is appropriate for further generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
62
+ page_content=' On the one hand, (5) follows from (3) and (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
63
+ page_content=' On the other hand, a direct proof for (5) is given in [7], where the main ingredient is the Hausdorff-Young inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
64
+ page_content=' To provide similar reasoning for measures µf generated by functions of bounded variation f rather than functions (however, we shall write df rather than dµf), we need a corresponding extension of the Hausdorff-Young inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
65
+ page_content=' And here is the point where our special harmonic analysis comes into play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
66
+ page_content=' We do not restrict ourselves to finding immediate tools for the above problem but try to establish a kind of general and multivariate theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
67
+ page_content=' A variety of relevant issues will be introduced and studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
68
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
69
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
70
+ page_content=' Basic notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
71
+ page_content=' We define an analog of Lp spaces for measures by means of an associated norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
72
+ page_content=' For a given p ∈ [1, ∞], we use the notation ∥ · ∥p to denote the standard norm in Lp(Rn) = Lp(Rn, dx), where by dx we mean the Lebesgue measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
73
+ page_content=' Lp SIMULATION FOR MEASURES 3 We denote by S(Rn) the Schwartz space of rapidly decreasing C∞ functions, and either by F(f) or by �f the Fourier transform of a function f ∈ S(Rn), written �f(y) = � Rn f(x)e−2πix·y dx, where x·y = x1y1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
74
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
75
+ page_content='+xnyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
76
+ page_content=' Recall that F : S(Rn) → S(Rn) is one-to-one, and the inverse Fourier transform is ˇf(y) = �f(−y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
77
+ page_content=' In this paper, we will not distinguish between Fourier transform and inverse Fourier transform, unless it becomes necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
78
+ page_content=' For p ∈ [1, 2], the operator F : Lp(Rn) → Lp′(Rn), with 1 p+ 1 p′ = 1, is bounded, with ∥ �f∥p′ ≤ ∥f∥p and equality if p = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
79
+ page_content=' For Lp(Rn), p > 2, the Fourier transform can be defined in the distributional sense as ⟨ �f, ψ⟩ = � Rn f(x) �ψ(x) dx, ψ ∈ S(Rn);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
80
+ page_content=' clearly, �f is a function if and only if f = �g for some g ∈ Lp′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
81
+ page_content=' With this observation in mind, we give the following definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
82
+ page_content=' For a given p ∈ [1, ∞], we let �Lp(Rn) = {f ∈ Lp(Rn) : f = �g for some g ∈ Lp′(Rn)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
83
+ page_content=' (6) In a natural way, we endow �Lp(Rn) with the norm ∥f∥�Lp = ∥ �f ∥p′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
84
+ page_content=' (7) With this definition, the Fourier transform F : Lp(Rn) → (�Lp′(Rn), ∥ · ∥�Lp′) is a one-to-one isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
85
+ page_content=' When p ∈ [1, 2], the Hausdorff-Young inequality yields ∥f∥�Lp ≤ ∥f∥p, with equality if p = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
86
+ page_content=' We denote by M the space of sigma-finite Borel measures on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
87
+ page_content=' For every p ∈ [1, ∞], we define the functional ∥ · ∥∗ p : M → [0, ∞] as ∥µ∥∗ p = sup h∈� Lp′ (Rn) : ∥h∥� Lp′ ≤1 ���� � Rn h(t)dµ(t) ���� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
88
+ page_content=' (8) we let Mp = {µ ∈ M : ∥µ∥∗ p < ∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
89
+ page_content=' (9) Note that, for every µ ∈ Mp and every h ∈ �Lp′(Rn), we have that ���� � Rn h(x)dµ(x) ���� ≤ ∥h∥�Lp′∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
90
+ page_content=' (10) We do not assume that our measures are positive, or even real-valued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
91
+ page_content=' For definition and properties of non-positive measure see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
92
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
93
+ page_content=' [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
94
+ page_content=' With this assumption, the spaces Mp are vector spaces, and we will prove in Section 2 that the functional ∥µ∥∗ p is a norm on Mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
95
+ page_content=' 4 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
96
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
97
+ page_content=' LIFLYAND 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
98
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
99
+ page_content=' Structure of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
100
+ page_content=' With ∥µ∥∗ p and Mp denoted by similarity to Lp, we then establish basic properties of these measure spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
101
+ page_content=' We will prove in Section 2 that the spaces Mp have many properties in common with Lp spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
102
+ page_content=' We establish the properties of measures in Mp spaces and the properties of functions in spaces �Lp(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
103
+ page_content=' Discussing then the Fourier transform of a measure, we establish a Hausdorff- Young type inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
104
+ page_content=' Further, for the convolution of a function and a measure, we prove a Young type inequality for our setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
105
+ page_content=' We mention that the results in Section 2 are supplemented with examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
106
+ page_content=' Section 3 is devoted to applications of the introduced machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
107
+ page_content=' One of them is a development of an uncertainty principle for measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
108
+ page_content=' The uncertainty principle in Fourier analysis quantifies the intuition that a function and its Fourier transform cannot both be concentrated on small sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
109
+ page_content=' Many examples of this principle can be found, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
110
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
111
+ page_content=', in the book by Havin and J¨oricke [10] and in an article by Folland and Sitaram [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
112
+ page_content=' In Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
113
+ page_content='1, using a quantitative version of a result in [1], we prove that a finite measure and its Fourier transform cannot both be supported on sets of finite Lebesgue measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
114
+ page_content=' Recall that a measure µ is supported in a set E ⊂ Rn if µ(F) = 0 whenever F is a measurable set that does not intersect E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
115
+ page_content=' In conclusion, we formulate and prove an analog of (5) for functions of bounded variation without assuming absolute continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
116
+ page_content=' This is Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
117
+ page_content=' In order to formulate and prove it, as an analog of Vp spaces for functions, we introduce the notion f ∈ V ∗ p for measures, with ∥f∥V ∗ p = � ∞ 0 x− 1 p ∥χ(x,2x)µf∥∗ p dx where χE denotes the characteristic function of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
118
+ page_content=' The product of a measure µ and a measurable function f is the measure defined by (fµ)(F) = � F f dµ for every measurable set F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
119
+ page_content=' For 1 < p ≤ 2, our new Hausdorff-Young inequality will be helpful, while for p > 2, we prove an analog of (4) and use an embedding argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
120
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
121
+ page_content=' Lp properties of measures In this section we establish basic properties of measures in the spaces Mp defined in the intro- duction, with p ∈ [1, ∞], that mimic those of functions in Lp spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
122
+ page_content=' We also establish properties of the spaces �Lp(Rn) defined in (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
123
+ page_content=' If E is a measurable subset of Rn, with |E| ̸= 0, we let ∥µ∥∗ p,E = ∥χEµ∥∗ p = sup h∈� Lp′ (Rn) : ∥h∥� Lp′ ≤1 ���� � E h(t) dµ(t) ���� , (11) and Mp,E = {µ : ∥µ∥∗ p,E < ∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
124
+ page_content=' We can also define M1,loc = {µ : ∥µ∥∗ 1,E < ∞ for every measurable bounded set E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
125
+ page_content=' (12) The standard Lebesgue measure and the Delta measures are notable examples of Mp measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
126
+ page_content=' In the rest of this paper we will use L (or dx in integration) to denote the standard Lebesgue measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
127
+ page_content=' For a given a ∈ Rn, we let δa be the measure defined as � Rn f(x) dδa = f(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
128
+ page_content=' Lp SIMULATION FOR MEASURES 5 Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
129
+ page_content=' We show that the standard Lebesgue measure is in M∞ and ∥L∥∗ ∞ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
130
+ page_content=' Indeed, ∥L∥∗ ∞ = sup h∈� L1(Rn) : ∥h∥� L1=∥�h∥∞ ≤1 ���� � Rn h(t) dt ���� ≤ sup h∈L1(Rn) : ∥h∥1≤1 ���� � Rn h(t) dt ���� ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
131
+ page_content=' To prove that equality holds, we can consider g = e−π|x|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
132
+ page_content=' It is easy to verify that �g(x) = g(x), and so g ∈ �L1(Rn) and ∥g∥�L1 = ∥�g∥∞ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
133
+ page_content=' Since 1 = �g(0) = � Rn g(t) dt = ∥g∥1, we have that ∥L∥∗ ∞ ≥ � Rn g(t) dt = 1, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
134
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
135
+ page_content=' We show that δa ∈ Mp only for p = 1 and ∥δa∥1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
136
+ page_content=' Indeed, assuming a = 0 for simplicity, we can easily see that ∥δ0∥∗ 1 = sup h∈S(Rn): ∥h∥� L∞ ≤1 ���� � Rn h(t) dδ0 ���� = sup h∈S(Rn): ∥�h ∥1≤1 |h(0)| = sup h∈S(Rn): ∥�h∥1≤1 ���� � Rn �h(x) dx ���� ≤ sup h∈S(Rn): ∥�h ∥1≤1 ∥�h ∥1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
137
+ page_content=' To prove that equality holds, we can consider the function g = e−π|x|2 in the previous example and verify that ∥δ0∥∗ 1 ≥ ∥ˆg∥1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
138
+ page_content=' An easy variation of this argument shows that δ0 ̸∈ Mp if p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
139
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
140
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
141
+ page_content=' H¨older type inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
142
+ page_content=' We prove the following Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
143
+ page_content=' If µ ∈ Mp and f ∈ �Lq(Rn), and 1 r = 1 q + 1 p, then ∥fµ∥∗ r ≤ ∥f∥�Lq∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
144
+ page_content=' (13) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
145
+ page_content=' Assume ∥f∥�Lq = 1, or else replace f with ˜f = f ∥f∥� Lq .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
146
+ page_content=' With the notation previously introduced, ∥fµ∥∗ r = sup h∈� Lr′ (Rn): ∥h∥� Lr′ ≤1 ���� � Rn h(y)f(y) dµ(y) ����.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
147
+ page_content=' Let us show that hf ∈ �Lp′ and ∥hf∥�Lp′ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
148
+ page_content=' Indeed, � hf = �h ∗ �f (standard convolution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
149
+ page_content=' Since 1 r + 1 q′ = 1 + 1 p, by Young’s inequality for convolution and the Hausdorff-Young inequality, ∥hf∥�Lp′ = ∥� hf∥p = ∥�h ∗ �f∥p ≤ ∥�h∥r∥ �f∥q′ = ∥h∥�Lr′∥f∥�Lq ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
150
+ page_content=' Thus, ∥hf∥�Lp′ ≤ 1, and so ∥fµ∥∗ r ≤ sup k∈� Lp′ (Rn): ∥k∥� Lp′ ≤1 ���� � Rn k(y) dµ(y) ���� = ∥µ∥∗ p = ∥µ∥∗ p ∥f∥�Lq, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
151
+ page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
152
+ page_content=' When r = 1, for every µ ∈ Mp and f ∈ �Lp′(Rn) we have that ∥fµ∥∗ 1 ≤ ∥f∥�Lp′∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
153
+ page_content=' This is the case of (13) that most closely resembles the standard H¨older’s inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
154
+ page_content=' 6 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
155
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
156
+ page_content=' LIFLYAND Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
157
+ page_content=' Let E be a bounded subset of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
158
+ page_content=' Then Mr,E ⊂ Mp,E whenever 1 ≤ p ≤ r ≤ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
159
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
160
+ page_content=' Assume p < r, since the case p = r is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
161
+ page_content=' Assume also E ⊂ QR = [−R, R]n for some R > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
162
+ page_content=' By (11), ∥µ∥∗ r,E = sup ∥h∥� Lr′ ≤1 ���� � E h(y) dµ(y) ���� = sup ∥�h∥Lr ≤1 ���� � Rn χQ(y)h(y)χE(y) dµ(y) ����.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
163
+ page_content=' Let q = rp r−p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
164
+ page_content=' Since r ̸= p, we have q < ∞ and q′ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
165
+ page_content=' The Fourier transform of the characteristic function of QR is �χQR(x) = n � j=1 sin(πRxj) πxj , and so �χQR(x) ∈ Ls(Rn) for every s > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
166
+ page_content=' We have ∥�χQR∥s = Cn s R n s′ , where Cs = ���� sin(π·) π· ���� s = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � 2s′ π � 1 s, 1 < s < 2, � 2 s � 1 2s, 2 ≤ s < ∞ 1, s = ∞, is independent of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
167
+ page_content=' In fact, Cs can be taken � 2s′ π � 1 s for all s < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
168
+ page_content=' This is calculated by minimal means: split the integral � R ���sin(πt) πt ��� s dt = 1 π � R ���sin(t) t ��� s dt (14) into two, over |t| ≤ 1 and over |t| > 1, and replace ��� sin(t) t ��� in the first by 1 and in the second by 1 |t|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
169
+ page_content=' However, it is known (see [2, Lemma 3] or [14, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
170
+ page_content='VI, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
171
+ page_content='5]) that for s ≥ 2, the sharp bound for (14) is � 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
172
+ page_content=' Applying Proposition 1 with f = χQR and χEµ in place of µ, we obtain ∥µ∥∗ p,E ≤ ∥χQR∥�Lq∥µ∥∗ r,E = Cn q R n q′ ∥µ∥∗ r,E, (15) and so ∥µ∥∗ p,E < ∞ whenever ∥µ∥∗ r,E < ∞, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
173
+ page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
174
+ page_content=' For every p ∈ [1, ∞], we have that Mp ⊂ M1,loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
175
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
176
+ page_content=' Follows from Corollary 3 and (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
177
+ page_content=' □ Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
178
+ page_content=' The functional ∥ ∥∗ p is a norm on Mp for every p ∈ [1, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
179
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
180
+ page_content=' It is trivial to verify that for every µ, σ ∈ Mp and every λ ∈ C, ∥µ + σ∥∗ p ≤ ∥µ∥∗ p + ∥σ∥∗ p, ∥λµ∥∗ p = |λ| ∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
181
+ page_content=' We now prove that ∥µ∥∗ p = 0 if and only if µ ≡ 0, in the sense that µ(E) = 0 for every µ−measurable set E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
182
+ page_content=' Lp SIMULATION FOR MEASURES 7 In order to show that µ ≡ 0, it is enough to verify that µ(E) = 0 for every bounded set E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
183
+ page_content=' Let E be bounded and µ−measurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
184
+ page_content=' Assume that E ⊂ QR for some R > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
185
+ page_content=' Using (15) and Proposition 8, we can see at once that µ(E) = � E dµ(x) = � QR χEdµ(x) ≤ ∥χQR∥�L∞∥µ∥∗ p,E ≤ ∥µ∥∗ p = 0 and so µ(E) = 0 for every µ−measurable bounded set E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
186
+ page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
187
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
188
+ page_content=' Properties of �Lp spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
189
+ page_content=' In this sub-section we will establish properties of the spaces �Lp(Rn) defined in (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
190
+ page_content=' We first shows how measures of the form dµ = fdx behave with respect to the norms introduced when f ∈ �Lp, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
191
+ page_content=' Let dµ = fdx, with f ∈ �Lp(Rn) for some p ∈ [1, ∞];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
192
+ page_content=' then µ ∈ Mp and ∥µ∥∗ p = ∥f∥�Lp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
193
+ page_content=' Before discussing Theorem 6, we prove the following Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
194
+ page_content=' S(Rn) is dense in �Lp(Rn) for every p ∈ [1, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
195
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
196
+ page_content=' Since S(Rn) ⊂ �Lp(Rn) ⊂ Lp(Rn) and S(Rn) is dense in Lp(Rn) for every p ∈ [1, ∞), we can see at once that S(Rn) is also dense in �Lp(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
197
+ page_content=' To see that S(Rn) is dense also in �L∞(Rn), we observe that every f ∈ �L∞(Rn) is the image of g ∈ L1(Rn) via the Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
198
+ page_content=' We can find functions ψn ∈ S(Rn) such that lim n→∞ ∥ψn − g∥1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
199
+ page_content=' But ∥ψn − g∥1 = ∥ � �ψn − �f ∥1 = ∥ �ψn − f∥�L∞, and so lim n→∞ ∥ �ψn−f∥�L∞ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
200
+ page_content=' Since �ψn ∈ S(Rn), we have proved that S(Rn) is dense in �L∞(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
201
+ page_content=' □ Proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
202
+ page_content=' Since S(Rn) is dense in Lp(Rn) and in �Lp′(Rn), and the Fourier trans- form is one-to-one in S(Rn), we can see at once that ∥f∥�Lp = ∥ �f∥p′ = sup g∈S(Rn): ∥g∥p≤1 ���� � Rn g(t) �f(t) dt ���� = sup g∈S(Rn): ∥g∥p≤1 ���� � Rn �g(t)f(t) dt ���� = sup h∈S(Rn): ∥�h∥p≤1 ���� � Rn h(t)f(t) dt ���� = sup h∈S(Rn): ∥h∥� Lp′ ≤1 ���� � Rn h(t)f(t) dt ���� = ∥µ∥∗ p, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
203
+ page_content=' □ Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
204
+ page_content=' If dµ = fdx is as in Theorem 6 and p ∈ [1, 2], then there holds ∥µf∥∗ p = ∥f∥�Lp = ∥ �f∥p′ ≤ ∥f∥p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
205
+ page_content=' Corollary 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
206
+ page_content=' Let E ⊂ Rn be a (Lebesgue) measurable set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
207
+ page_content=' a) For every p ∈ [1, ∞], we have ∥χE∥�Lp ≤ |E| 1 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
208
+ page_content=' (16) b) For every 1 ≤ p ≤ q ≤ ∞ and every µ ∈ Mq, we have ∥µ∥∗ p,E ≤ ∥µ∥∗ q|E| 1 r , where 1 r = 1 p − 1 q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
209
+ page_content=' We have used the standard convention 1 ∞ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
210
+ page_content=' Thus, (16) yields ∥χE∥�L∞ ≤ 1, for every set E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
211
+ page_content=' 8 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
212
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
213
+ page_content=' LIFLYAND Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
214
+ page_content=' We first prove a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
215
+ page_content=' When p ∈ [1, 2], Remark 7 yields ∥χE∥�Lp ≤ ∥χE∥p = |E| 1 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
216
+ page_content=' Assume now p ∈ (2, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
217
+ page_content=' By the Hausdorff-Young inequality, we can see at once that {f ∈ �Lp′ : ∥f∥�Lp′ = ∥ �f∥p ≤ 1} ⊂ {f ∈ Lp′(Rn) : ∥f∥p′ ≤ 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
218
+ page_content=' In view of this observation and Theorem 6, we can let dσ = χEdx and write the following chain of inequalities: ∥χE∥�Lp = ∥σ∥∗ p,E = sup f∈� Lp′(Rn): ∥f∥� Lp′ ≤1 ���� � Rn χE(x)f(x)dx ���� ≤ sup f∈Lp′ (Rn): ∥f∥p′ ≤1 ���� � Rn χE(x)f(x)dx ���� (17) ≤ |E| 1 p∥f∥p′ ≤ |E| 1 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
219
+ page_content=' We have used H¨older’s inequality in the last step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
220
+ page_content=' When p = ∞, it follows from (17) that sup f∈L1(Rn): ∥f∥1≤1 ���� � Rn χE(x)f(x)dx ���� ≤ sup f∈L1(Rn): ∥f∥1≤1 � Rn χE(x)|f(x)|dx ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
221
+ page_content=' Part b) follows from H¨older’s inequality (1) and part a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
222
+ page_content=' Indeed, letting r = pq q−p, we have ∥µ∥∗ p,E = ∥χEµ∥∗ p ≤ ∥χE∥�Lr∥µ∥∗ q ≤ |E| 1 r ∥µ∥∗ q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
223
+ page_content=' The proof of the corollary is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
224
+ page_content=' □ We use Theorem 6 to prove inclusion relations of the �Lp spaces and their duals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
225
+ page_content=' Recall that the dual of a normed space X, denoted by (X)′, is the set of linear functionals L : V → C such that sup∥f∥X≤1 |L(f)| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
226
+ page_content=' By definition, �Lp(Rn) = Lp(Rn) when p ∈ [1, 2] but in general �Lp(Rn) is a proper subspace of Lp(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
227
+ page_content=' For example, the Riemann-Lebesgue Lemma yields that �L∞(Rn) is a space of uniformly continuous functions that go to zero at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
228
+ page_content=' Even though Lp(Rn) = �Lp(Rn) when p ∈ [1, 2], the norms on these spaces are different and so the duals of these spaces are different too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
229
+ page_content=' When p ≤ 2, the Hausdorff-Young inequality yields, ∥f∥�Lp = ∥ ˆf∥p′ ≤ ∥f∥p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
230
+ page_content=' When p = 2 we have ∥f∥2 = ∥f∥�L2 but when p > 2 the inequality above can be strict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
231
+ page_content=' We prove the following Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
232
+ page_content=' For every p ∈ [1, ∞], we have �Lp′(Rn) ⊂ (�Lp(Rn))′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
233
+ page_content=' When p ∈ [1, 2], we have �Lp′(Rn) ⊂ (�Lp(Rn))′ ⊂ Lp′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
234
+ page_content=' Lp SIMULATION FOR MEASURES 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
235
+ page_content=' For a given g ∈ �Lp′(Rn), we let dµ = gdx and we let Lg : �Lp(Rn) → C, Lg(f) = � Rn f(x)g(x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
236
+ page_content=' By H¨older’s inequality (13) and Theorem 6 |Lg(f)| = ���� � Rn f(x)g(x)dx ���� ≤ ∥f∥�Lp∥µ∥∗ p′ = ∥f∥�Lp∥g∥�Lp′ and so L ∈ (�Lp(Rn))′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
237
+ page_content=' When p ≤ 2, for every L ∈ (�Lp(Rn))′, we have that |L(f)| ≤ C∥f∥�Lp = C∥ ˆf∥p′ ≤ C∥f∥p and so L ∈ (Lp(Rn))′ = Lp′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
238
+ page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
239
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
240
+ page_content=' Fourier transform of finite measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
241
+ page_content=' The Fourier transform of a finite Borel measure µ is the function defined as �µ(y) = � Rn e−2πix·ydµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
242
+ page_content=' (18) To distinguish it from the Fourier transform for functions, it is sometimes called the Fourier-Stieltjes transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
243
+ page_content=' It is well-known (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
244
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
245
+ page_content=', [3, §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
246
+ page_content='3] or [15, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
247
+ page_content='4]) that the function �µ is continuous and bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
248
+ page_content=' By the Riemann-Lebesgue Lemma, the Fourier transform of an L1 function vanishes at infinity, but the Fourier transform of a M1 measure does not need to do so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
249
+ page_content=' For example, we have shown in Example 2 that the Delta measure µ = δa is in M1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
250
+ page_content=' its Fourier transform is �µ(x) = e2πia·x, and |�µ(x)| ≡ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
251
+ page_content=' We prove the following analog of the Hausdorff-Young inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
252
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
253
+ page_content=' Let µ ∈ Mp, with 1 ≤ p ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
254
+ page_content=' Then, �µ ∈ Lp′(Rn), and ∥�µ∥p′ ≤ ∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
255
+ page_content=' (19) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
256
+ page_content=' We have observed that the Fourier transform of a finite measure is always bounded, so the proposition is trivial for p = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
257
+ page_content=' When p ∈ (1, 2], we have ∥�µ∥p′ = sup h∈S(Rn): ∥h∥p≤1 � Rn h(y)�µ(y) dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
258
+ page_content=' By Fubini’s theorem, � Rn h(y)�µ(y) dy = � Rn � Rn h(y)e−2πix·y dµ(x) dy = � Rn �h(x) dµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
259
+ page_content=' (20) In view of (20) and the fact that ∥�h ∥p′ ≤ ∥h∥p ≤ 1, we can see at once that ∥�µ∥p′ = sup h∈S(Rn): ∥h∥p≤1 � Rn �h(y) µ(y) ≤ sup k∈S(Rn): ∥�k ∥p′ ≤1 ���� � Rn k(x) dµ(x) ���� = ∥µ∥∗ p, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
260
+ page_content=' □ 10 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
261
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
262
+ page_content=' LIFLYAND Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
263
+ page_content=' If µf is generated by the singular function f in [16], we have |� µf(x)| = O � 1 |x|δ � for |x| large, with 0 < δ < 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
264
+ page_content=' Then � µf ∈ Lp′(R), with 1 δ < p′ < ∞, and correspondingly, 2 < p′ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
265
+ page_content=' By this, ∥µf∥∗ p < ∞, since ∥µf∥∗ p = sup ∥h∥� Lp′ ≤1 ���� � R h(t) df(t) ���� = sup ∥g∥Lp≤1 ���� � R �g(x) df(x) ���� = sup ∥g∥Lp≤1 ���� � R g(x) �df(x) dx ���� < ∞, because of g ∈ Lp and � µf ∈ Lp′, with 1 < p < 1 1−δ < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
266
+ page_content=' We have used the pioneer example of a singular function in [16] but there are more subtle ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
267
+ page_content=' However, for all of them there is a barrier to L2, like 0 < δ < 1 2 above;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
268
+ page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
269
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
270
+ page_content=', [11] and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
271
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
272
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
273
+ page_content=' Convolution of a function and a measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
274
+ page_content=' Let µ be a sigma-finite Borel measure, and let f : Rn → R be a measurable function such that the function x → � Rn f(x − y)dµ(y) (21) is finite for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
275
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
276
+ page_content=' x ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
277
+ page_content=' The convolution of f and µ, denoted by f ∗ µ, is the function defined in (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
278
+ page_content=' We prove the following analog of the Young inequality for convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
279
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
280
+ page_content=' If µ ∈ Mp and f ∈ �Lq(Rn) with 1 p + 1 q = 1 r, then f ∗ µ ∈ �Lr(Rn) and ∥f ∗ µ∥�Lr ≤ ∥f∥�Lq∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
281
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
282
+ page_content=' In view of Proposition 6, ∥f ∗ µ∥�Lr = ∥f ∗ µ∥∗ r = sup h∈S(Rn): ∥h∥� Lr′ ≤1 � Rn h(x)(f ∗ µ)(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
283
+ page_content=' (22) For every h ∈ S(Rn), � Rn h(x)(f ∗ µ)(x) dx = � Rn h(x) � Rn f(x − y) dµ(y) dx, = � Rn h ∗ ˜f(y) dµ(y) (23) where ˜g(t) = g(−t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
284
+ page_content=' By (23) and (10), � Rn h ∗ ˜f(y) dµ(y) ≤ ∥h ∗ ˜f∥�Lp′∥µ∥∗ p = ∥�h �f∥p ∥µ∥∗ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
285
+ page_content=' (24) Recalling that 1 + 1 r = 1 p + 1 q, we have 1 p = 1 r + 1 q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
286
+ page_content=' By H¨older’s inequality, ∥�h �f∥p ≤ ∥�h ∥r∥ �f ∥q′ = ∥h∥�Lr′∥f∥�Lq By (22) and (24), we conclude that ∥f ∗ µ∥�Lr ≤ ∥f∥�Lq∥µ∥∗ p, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
287
+ page_content=' □ Lp SIMULATION FOR MEASURES 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
288
+ page_content=' Applications As mentioned, in this section we present applications of the obtained results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
289
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
290
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
291
+ page_content=' Uncertainty principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
292
+ page_content=' In this subsection, we show that the uncertainty principle has its embodiment also for measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
293
+ page_content=' We prove the following Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
294
+ page_content=' A finite nonzero measure µ ∈ M2 and its Fourier transform �µ cannot both be supported in sets of finite Lebesgue measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
295
+ page_content=' The proof of the theorem relies on the following Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
296
+ page_content=' Let E, F ⊂ Rn be sets of finite Lebesgue measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
297
+ page_content=' There exists a constant C > 0 such that for every measure µ ∈ M2, we have ∥dµ∥∗ 2,F ≤ C∥ �µ ∥L2(Ec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
298
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
299
+ page_content=' Recall the following quantitative form of an uncertainty principle result obtained by Amrein and Berthier in [1]: Let E, F ⊂ Rn be sets of finite measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
300
+ page_content=' There exists a constant C > 0 such that for every function f ∈ L2(Rn), ∥ �f ∥L2(F ) ≤ C∥f∥L2(Ec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
301
+ page_content=' (25) Let h ∈ L2(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
302
+ page_content=' By (25), the inequality ∥h∥L2(Ec) ≤ 1 yields ∥�h ∥L2(F ) ≤ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
303
+ page_content=' In view of (20), we can write the following chain of inequalities: ∥ �µ ∥L2(Ec) = sup h∈L2(Rn): ∥h∥L2(Ec)≤1 � Rn h(x)�µ(x) = sup h∈L2(Rn): ∥h∥L2(Ec)≤1 � Rn �h(y) dµ(y) ≥ sup h∈L2(Rn): ∥�h ∥L2(F )≤C � Rn �h(x) dµ(x) = 1 C sup k∈L2(Rn): ∥ �k ∥2≤1 � F k(x)dµ(x) = 1 C ∥µ∥∗ 2,F, obtaining the required result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
304
+ page_content=' □ Proof of Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
305
+ page_content=' Assume by contradiction that µ is supported in F and �µ is supported in E, where E, F ⊂ Rn are both of finite measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
306
+ page_content=' By Lemma 2, we have ∥µ∥∗ 2,F = ∥χFµ∥∗ 2 = 0, and Corollary 5 yields χFµ ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
307
+ page_content=' Since χF cµ ≡ 0 is assumed, we have µ = 0, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
308
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
309
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
310
+ page_content=' The Fourier transform theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
311
+ page_content=' In order to reveal an analogy to the case of absolutely continuous f, we prove a counterpart of corresponding embeddings in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
312
+ page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
313
+ page_content=' For p1 > p2 > 1, there holds V ∗ p1 ֒→ V ∗ p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
314
+ page_content=' 12 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
315
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
316
+ page_content=' LIFLYAND Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
317
+ page_content=' We are going to apply Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
318
+ page_content=' Since for E = (x, 2x), we have in (15) that by (16), there holds ∥χQR∥�Lq ≲ x 1 q , and it follows that ∥µf∥∗ p2,(x,2x) ≲ x 1 q ∥µf∥∗ p1,(x,2x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
319
+ page_content=' The corresponding relation 1 p2 = 1 q + 1 p1 yields 1 q = p1−p2 p1p2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
320
+ page_content=' It remains to observe that x− 1 p2 x p1−p2 p1p2 = x− 1 p1 , which leads to the needed embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
321
+ page_content=' □ With these embeddings and the tools elaborated before, we study, for γ = 0 or 1 4, the Fourier transforms �fγ(x) = � ∞ 0 f(t) cos 2π(xt − γ) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
322
+ page_content=' (26) It is clear that �fγ represents the cosine Fourier transform in the case γ = 0, while taking γ = 1 4 gives the sine Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
323
+ page_content=' Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
324
+ page_content=' Let f be of bounded variation on R+ and vanishing at infinity, that is, lim t→∞ f(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
325
+ page_content=' If f ∈ V ∗ p , then for x > 0, we have �fγ(x) = 1 2πxf �1 x � sin 2πγ + Γ(x), where γ = 0 or 1 4, and ∥Γ∥L1(R+) ≲ ∥f∥V ∗ p provided that the last value is finite for some p, 1 < p ≤ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
326
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
327
+ page_content=' Splitting the integral in (26) and integrating by parts, we obtain �fγ(x) = − 1 2πxf �1 x � sin 2π(1 − γ) + � 1 x 0 f(t) cos 2π(xt − γ) dt − 1 2πx � ∞ 1 x sin 2π(xt − γ) df(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
328
+ page_content=' Further, � 1 x 0 f(t) cos 2π(xt − γ) dt = � 1 x 0 [f(t) − f �1 x � ] cos 2π(xt − γ) dt + � 1 x 0 f �1 x � cos 2π(xt − γ) dt = − � 1 x 0 � � 1 x t df(s) � cos 2π(xt − γ) dt + 1 2πxf �1 x � sin 2π(1 − γ) + 1 2πxf �1 x � sin 2πγ = 1 2πxf �1 x � sin 2πγ + 1 2πxf �1 x � sin 2π(1 − γ) + O �� 1 x 0 s|df(s)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
329
+ page_content=' To continue the proof, we need the following Lp SIMULATION FOR MEASURES 13 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
330
+ page_content=' We have the inequality � ∞ 0 |df(s)| ≲ ∥f∥V ∗ p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
331
+ page_content=' (27) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
332
+ page_content=' There holds ln 2 � ∞ 0 |df(s)| = � ∞ 0 1 x � 2x x |df(s)| dx = � ∞ 0 x− 1 p ���� � 2x x h(s) df(s) ����dx, where h(s) = x− 1 p′ sign df(s) if x < s < 2x and zero otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
333
+ page_content=' This h is not necessarily of bounded variation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
334
+ page_content=' however, since it will always be under the integral sign, we can take an equivalent function that is of bounded variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
335
+ page_content=' This is possible because the number of jumps of f is of measure zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
336
+ page_content=' We will continue to use notation h for such a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
337
+ page_content=' It is easy to see that ∥h∥p′ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
338
+ page_content=' Let g(u) = �h(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
339
+ page_content=' We have � ∞ 0 |g(u)|p du = �� 1 x 0 + � ∞ 1 x � |g(u)|p du ≲ 1 x � x x 1 p′ �p + x− p p′ � ∞ 1 x � ���� h(s)e−ius −iu ��� 2x x ���� + 1 u � 2x x |dh(s)| �p du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
340
+ page_content=' The first term on the right is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
341
+ page_content=' Since � ∞ 1 x du up ≲ x 1 p′ , the definition of h leads to the boundedness of the second term as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
342
+ page_content=' Therefore, h is the Fourier transform of an Lp function g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
343
+ page_content=' This leads to the needed right-hand side in (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
344
+ page_content=' □ We return to the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
345
+ page_content=' Since � ∞ 0 � 1 x 0 s|df(s)| dx = � ∞ 0 |df(s)|, it follows from (27) that to prove the theorem it remains to estimate � ∞ 0 1 x ����� � ∞ 1 x sin 2π(xt − γ) df(t) ����� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
346
+ page_content=' We have ln 2 � ∞ 0 1 x ���� � ∞ 1 x sin 2π(xt − γ) df(t) ����dx ≤ � ∞ 0 1 u � ∞ 1 u 1 x ���� � 2u u sin 2π(xt − γ) df(t) ���� dx du + ln 2 � ∞ 0 1 x � 2 x 1 x |df(t)| dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
347
+ page_content=' 14 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
348
+ page_content=' DE CARLI AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
349
+ page_content=' LIFLYAND The latter summand on the right is controlled by � ∞ 0 |df(t)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
350
+ page_content=' Applying H¨older’s inequality to the integral in x of the first summand, we have to estimate � ∞ 0 1 u �� ∞ 1 u x−pdx � 1 p �� ∞ 0 ���� � 2u u sin 2π(xt − γ) df(t) ���� p′ dx � 1 p′ du = � ∞ 0 u− 1 pI(u) du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
351
+ page_content=' (28) where by I(u) the term in the second parenthesis is denoted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
352
+ page_content=' We can see that I = 1 2 �� ∞ 0 ���� � R � e2πi(xt−γ) − e−2πi(xt−γ)� χ(u,2u)(t) df(t) ���� p′ dx � 1 p′ = 1 2 �� ∞ 0 �� e2πiγ � χ(u,2u)µf(x) − e−2πiγ � χ(u,2u)µf(−x) ��p′ dx � 1 p′ ≤ ∥ � χ(u,2u)µf∥p′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
353
+ page_content=' For 1 < p ≤ 2, applying the Hausdorff-Young inequality (19), we obtain I ≤ ∥ � χ(u,2u)µf∥p′ ≤ ∥χ(u,2u)µf∥∗ p, from which we derive that (28) is bounded by � ∞ 0 u− 1 p∥µf∥∗ p,(u,2u) du, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
354
+ page_content=' For p > 2, Proposition 4 completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
355
+ page_content=' □ Remark 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
356
+ page_content=' There exist analogs of (5) for the multivariate setting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
357
+ page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
358
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
359
+ page_content=', [12] or [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
360
+ page_content=' However, the above one-dimensional result is more transparent and illustrative in the sense that extending it to several dimensions is a plain business with awkward notation and technicalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
361
+ page_content=' References [1] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
362
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
363
+ page_content=' Amrein and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
364
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
365
+ page_content=' Berthier, On support properties of Lp-functions and their Fourier transforms, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
366
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
367
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
368
+ page_content=' 24 (1977), 258–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
369
+ page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
370
+ page_content=' Ball, Cube slicing in Rn, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
371
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
372
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
373
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
374
+ page_content=' 97 (1986), 465–473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
375
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
376
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
377
+ page_content=' Butzer and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
378
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
379
+ page_content=' Nessel, Fourier Analysis and Approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
380
+ page_content=' Volume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
381
+ page_content=' One-Dimensional Theory, Academic Press, New York and London, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
382
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
383
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
384
+ page_content=' Cima, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
385
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
386
+ page_content=' Matheson and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
387
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
388
+ page_content=' Ross, The Cauchy transform, Mathematical Surveys and Monographs, 125, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
389
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
390
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
391
+ page_content=', Providence, RI, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
392
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
393
+ page_content=' Fridli, Hardy Spaces Generated by an Integrability Condition, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
394
+ page_content=' Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
395
+ page_content=' Theory 113 (2001), 91–109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
396
+ page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
397
+ page_content=' Folland and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
398
+ page_content=' Sitaram, The Uncertainty Principle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
399
+ page_content=' Fourier Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
400
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
401
+ page_content=' 3 (1997), 207–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
402
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
403
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
404
+ page_content=' Giang and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
405
+ page_content=' M´oricz, On the L1 theory of Fourier transforms and multipliers, Acta Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
406
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
407
+ page_content=' (Szeged) 61 (1995), 293–304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
408
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
409
+ page_content=' Iosevich and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
410
+ page_content=' Liflyand, Decay of the Fourier transform: analytic and geometric aspects, Birkhauser, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
411
+ page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
412
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
413
+ page_content=' Halmos, Measure Theory, Van Nostrand, New York, 1950 [10] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
414
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
415
+ page_content=' Havin and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
416
+ page_content=' J¨oricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
417
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
418
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
419
+ page_content=' K¨orner, Fourier transforms of distributions and Hausdorff measures, 20 (2014), 547–565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
420
+ page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
421
+ page_content=' Liflyand, Fourier transforms of functions from certain classes, Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
422
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
423
+ page_content=' 19 (1993), 151–168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
424
+ page_content=' [13] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
425
+ page_content=' Liflyand, Functions of Bounded Variation and their Fourier Transforms, Birkh¨auser, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
426
+ page_content=' [14] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
427
+ page_content=' Makarov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
428
+ page_content=' Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
429
+ page_content=' Lp SIMULATION FOR MEASURES 15 [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
430
+ page_content=' Reiter and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
431
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
432
+ page_content=' Stegeman, Classical harmonic analysis and locally compact groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
433
+ page_content=' Second edition, London Mathematical Society Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
434
+ page_content=' New Series, 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
435
+ page_content=' The Clarendon Press, Oxford University Press, New York, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
436
+ page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
437
+ page_content=' Wiener and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
438
+ page_content=' Wintner, Fourier-Stieltjes Transforms and Singular Infinite Convolutions, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
439
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
440
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
441
+ page_content=' 60 (1938), 513–522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
442
+ page_content=' Department of Mathematics and Statistics, Florida International University, Miami, FL, 33199, USA Email address: decarlil@fiu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
443
+ page_content='edu Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel Email address: liflyand@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
444
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf'}
7dAyT4oBgHgl3EQfcvf_/content/tmp_files/2301.00291v1.pdf.txt ADDED
@@ -0,0 +1,1640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The Functional Wiener Filter
2
+
3
+ Benjamin Colburn, Luis G. Sanchez Giraldo, Jose C. Principe
4
+
5
+ Abstract
6
+ This paper presents a close form solution in Reproducing Kernel Hilbert Space (RKHS) for the
7
+ famed Wiener filter, which we called the functional Wiener filter (FWF). Instead of using the
8
+ Wiener-Hopf factorization theory, here we define a new lagged RKHS that embeds signal statistics
9
+ based on the correntropy function. In essence, we extend Parzen’s work on the autocorrelation
10
+ function RKHS to nonlinear functional spaces. The FWF derivation is also quite different from
11
+ kernel adaptive filtering (KAF) algorithms, which utilize a search approach. The analytic FWF
12
+ solution is derived in the Gaussian kernel RKHS with a constant computational complexity similar
13
+ to the Wiener solution, and never composes nor employs the error as in conventional optimal
14
+ modeling. Because of the lack of congruence between the Gaussian RKHS and the space of time
15
+ series, we compare performance of two pre-imaging algorithms: a fixed-point optimization
16
+ (FWFFP) that finds and approximate solution in the RKHS, and a local model implementation
17
+ named FWFLM. The experimental results show that the FWF performance is on par with the KAF
18
+ for time series modeling, and it requires far less computation.
19
+
20
+ Introduction
21
+
22
+ Norbert Wiener’s 1949 work on minimum mean square error estimation opened the door
23
+ for the theory of optimum filtering [1]. The mathematics to solve integral equations, the Wiener-
24
+ Hopf method [2], were crucial to arrive at the optimal parameter function, however, the
25
+ methodology is rather complex. In digital signal processing using finite impulse response filters,
26
+ the Wiener solution coincides with least squares, as proven by the Wiener-Kinchin theorem [3].
27
+ Therefore, the solution still belongs to the span of the input data i.e., the corresponding filter is
28
+ linear in the parameters and therefore it is not a universal functional approximator.
29
+ In the late 50’s, Emmanuel Parzen [4] presented an alternative approach to solve the
30
+ minimum mean square estimation (MMSE) problem in a Reproducing Kernel Hilbert space
31
+ (RKHS) defined by the autocorrelation function of the data. Since RKHS theory will be
32
+ extensively employed, we define here a RKHS. Let 𝐸 be a non-empty set, and 𝜅(𝑢, 𝑣) a function
33
+ defined on 𝐸 × 𝐸 that is nonnegative definite. Due to the Moore-Aronzsajn theorem [5], 𝜅(𝑢, 𝑣)
34
+ defines uniquely a RKHS, ℋ𝜅, such that 𝜅(⋅, 𝑣) ∈ ℋ𝜅 and for any 𝑔 ∈ ℋ𝜅, 〈𝑔, 𝜅(⋅,𝑣)〉ℋ𝜅 = 𝑔(𝑣).
35
+ Therefore, a RKHS is a special Hilbert vector space associated with a kernel such that it reproduces
36
+ (via the inner product) in the space i.e., 〈 𝜅(⋅,𝑢), 𝜅(⋅,𝑣)〉ℋ𝜅 = 𝜅(𝑢, 𝑣); or equivalently, a space
37
+ where every point evaluation functional is bounded. The history of RKHS applications started in
38
+ physics [6], statistics [7], signal processing [8] and machine learning [12]. Here, it will also be
39
+ clear that the RKHS framework provides a natural link between stochastic processes and
40
+ deterministic functional analysis.
41
+ Parzen introduced for the first time the RKHS methodology in statistical signal-processing
42
+ and time-series analysis in [4]. His essential idea is that there exists a congruence map between
43
+ the set of random variables spanned by the random process {𝑋(𝑡), 𝑡 ∈ 𝑇} with covariance function
44
+ 𝑅(𝑡, 𝑠) = 𝐸[𝑋(𝑡)𝑋(𝑠)] and the RKHS of vectors spanned by the set {𝑅(⋅,𝑡), 𝑡 ∈ 𝑇} denoted as
45
+ ℋ𝑅. Note that the kernel expresses the second-order statistics of the data through the expected
46
+ value (a data-dependent kernel) and Parzen clearly stated that this RKHS offers an elegant
47
+
48
+ functional analysis framework for minimum mean square error (MMSE) solutions such as
49
+ regression coefficients, least squares estimation of random variables, detection of signals in
50
+ Gaussian noise, and others [9],[10],[11]. Unfortunately, ℋ𝑅 is defined in the input data space, so
51
+ yields only linear solutions to the regression problem. Parzen beautiful interpretation did not
52
+ provide any practical improvement, so it was quickly forgotten in signal processing.
53
+ More recent work by Vapnik on support vector machines brought back a lot of interest to
54
+ RKHS theory for pattern recognition [12], where the RKHS is used primarily as a high-
55
+ dimensional feature space and the inner product is efficiently computed by means of the kernel
56
+ trick. A nonnegative definite kernel function (e.g., Gaussian, Laplacian, polynomial, and others
57
+ [13]) nonlinearly projects the data sample-by-sample into a high-dimensional RKHS. This
58
+ development was included in adaptive filtering, yielding the class of kernel adaptive filters (KAF)
59
+ [14], which allows the design of convex universal learning machines (CULMs) [15]. KAFs
60
+ estimate a functional model that approximates the MMSE solution using search techniques in the
61
+ RKHS defined by the Gaussian kernel [14], and the order grows linearly with the number of
62
+ samples, if no sparsification is considered. Another branch of RKHS theory important for this
63
+ paper is kernel Principal Component Analysis (KPCA) [16]. When the kernel function is infinite
64
+ dimensional as the Gaussian, denoted as 𝐺(𝑥𝑖,. ), the eigen decomposition of the empirical
65
+ covariance operator 𝐶 = 1 𝑁 ∑
66
+ 𝐺(𝑥𝑖, . )𝐺(𝑥𝑖,. )𝑇
67
+ 𝑁
68
+ 𝑖=1
69
+
70
+ needs to be truncated (we assume 𝐺(𝑥𝑖,. ) are
71
+ centered in the RKHS). In such cases, a more efficient approach uses only inner products of
72
+ functionals centered at the projected samples, which can be computed in the input space using the
73
+ reproducing property of the kernel (also called the kernel trick). The goal is to rewrite the eigen
74
+ decomposition of the empirical covariance operator 𝐶 through a functional eigenvalue equation as
75
+ 𝐶𝑉 = 𝜆𝑉, where 𝑉 is the eigenfunction 𝑉 = 1 𝑁 ∑
76
+ 𝛼𝑖𝐺(𝑥𝑖,.)
77
+ 𝑁
78
+ 𝑖=1
79
+
80
+ and 𝜆 is a vector of scalars that
81
+ correspond to the eigenvalues. For any nonzero 𝜆, the eigenfunction exists in the span of the RKHS
82
+ defined by the kernel. Since the number of samples is finite this methodology is very appealing
83
+ and efficient. However, the span of the functional space defined by the kernel is much larger than
84
+ the mappings of single mapped samples into the RKHS, which means that the inverse mapping of
85
+ RKHS functionals to the input space cannot be necessarily expressed as the image of a single input
86
+ pattern i.e., given a function 𝜁 in the RKHS span, there is no guarantee that there is exist a 𝑧 ∈ ℝ𝑁
87
+ such that 𝐺(𝑧, . ) = 𝜁. This has been called the preimage problem [17]. We call 𝑧̂ an approximate
88
+ preimage of 𝜁 if ‖𝐺(𝑧, . ) − 𝜁‖2 is small, according to the application. We will see that this pre-
89
+ imaging will be important in our approach.
90
+ This paper takes Parzen’s work one step further, combining it with KAF concepts to yield
91
+ a RKHS defined by the covariance function of the projected data in a Gaussian RKHS, which is
92
+ nonlinearly related to the data space. More specifically, we define a data dependent kernel based
93
+ on the correntropy function [16] that incorporates full data statistics and defines a RKHS of
94
+ deterministic functions, even when the input data is a random variable (r.v.). Correntropy has been
95
+ heavily used for robust cost functions in adaptive signal processing [17], but here its functional
96
+ extension [16] will be employed as a methodology to solve the famous Wiener filter in the space
97
+ of nonlinear functions, without using the Wiener-Hopf spectral factorization. Previous attempts by
98
+ others e.g., the kernel Wiener filter [18], approximate the Wiener solution employing subspace
99
+ projections in RKHS. An early attempt to solve the Wiener-Hopf equations in RKHS was not
100
+ successful [19]. This paper shows how to pose the optimum filtering problem, derive a solution,
101
+ and present a methodology to implement the filter directly from samples, which effectively extends
102
+ MMSE for nonlinear universal approximators. The framework is named the functional Wiener
103
+ filter (FWF) and amazingly, it does not require the use of the error signal as in the traditional
104
+
105
+ Wiener solution to adapt parameters. It takes advantage of the geometry of the RKHS and finds,
106
+ just like Least Squares, the orthogonal projection of the desired response in the space spanned by
107
+ the correntropy function, and in this sense, it is model agnostic. Preliminary results show that
108
+ performance is on par with KLMS but it is worse than KRLS. The major advantage is the simplicity
109
+ in implementation that is similar to the Wiener solution.
110
+
111
+ Review of Linear Prediction of Continuous Time Series in RKHS
112
+
113
+ A stochastic process 𝑋(𝑡, 𝜔) is broadly defined as a collection of random variables on a
114
+ measurable sample space (Ω, ℬΩ), indexed by a set 𝑇. Here, we restrict 𝑋(𝑡,𝜔) to random variables
115
+ taking values in ℝ, 𝑇 ⊂ ℝ, which we call a time-series, {𝑋(𝑡), 𝑡 ∈ 𝑇} and omit the dependence on
116
+ 𝜔. For a time-series with finite second order moments, let 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) denote the space of all
117
+ real valued random variables spanned by the time series, that is, this space consists of all r.v. 𝑈
118
+ that are either linear combinations of finite number of 𝑋(𝑡𝑖) or are limits of such linear
119
+ combinations. The time structure is quantified by the joint probability density 𝑝𝑡,𝑠(𝑥𝑡,𝑥𝑠) of the
120
+ pair of random variables 𝑋(𝑡),𝑋(𝑠) at two points in time 𝑡 and 𝑠. Assuming a strictly stationary
121
+ stochastic model for 𝑋(𝑡), the marginal density 𝑝𝑡(𝑥) is the same for any 𝑡. Normally, the joint
122
+ density 𝑝𝑡,𝑠(𝑥𝑡,𝑥𝑠) is quantified by its mean value, called the autocorrelation function. To simplify
123
+ notation, let us define the time autocorrelation of the finite second order moment time series as:
124
+
125
+ 𝑅(𝑠, 𝑡) = 𝐸[𝑋(𝑠)𝑋(𝑡)]
126
+ (1)
127
+
128
+ This kernel on time sample pairs is positive semi definite, hence by Moore-Aronzsajn
129
+ theorem [5] it defines a RKHS space of functions on 𝑇 × 𝑇, denoted ℋ𝑅. Notice that the functions
130
+ in ℋ𝑅 are deterministic because of the 𝐸[. ] operator, while the inner product in ℋ𝑅 depends on
131
+ the statistics of the data through 𝑋(𝑡).
132
+
133
+ For any r.v. 𝑈, 𝐴 ∈ 𝐿2(𝑋(𝑡),𝑡 ∈ 𝑇), define the inner product between the two as
134
+
135
+ 〈𝑈, 𝐴〉 = 𝐸[𝑈𝐴],
136
+ (2)
137
+
138
+ and the norm of 𝑈 in 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) by the inner product 〈𝑈, 𝑈〉 = 𝐸[𝑈2]. Obviously, this inner
139
+ product coincides with the autocorrelation function if 𝑈 is 𝑋(𝑠) and 𝐴 is 𝑋(𝑡). However, notice
140
+ that 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) is not an RKHS.
141
+
142
+ Explicit Expression for MMSE
143
+ One of the important problems in time series analysis is the representation of an
144
+ unobservable r.v. 𝑍. Let {𝑋(𝑡), 𝑡 ∈ 𝑇} be an observable time series assumed stationary. The goal
145
+ is to create a linear combination of the observable time series that has the smallest mean square
146
+ distance to 𝑍. By the Hilbert projection theorem, there is a unique minimum norm projection
147
+ between the abstract Hilbert space ℋ and any subspace 𝑀 of ℋ. Then, there exists a unique vector
148
+ 𝐴∗ in 𝑀, given by 𝐴∗ = 𝐸∗[𝐴|𝑀], which projects orthogonally a vector 𝐴 in ℋ to 𝑀. For a family
149
+ of vectors {𝑋(𝑡), 𝑡 ∈ 𝑇} the projection becomes
150
+
151
+ 𝐴∗ = 𝐸∗[𝐴|𝑋(𝑡), 𝑡 ∈ 𝑇].
152
+ (3)
153
+
154
+
155
+ Then with 𝐴 = 𝑍, the optimum linear predictor is the unique r.v. in 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) that satisfies
156
+
157
+ 𝐸[𝐸∗[𝑍|𝑋(𝑡),𝑡 ∈ 𝑇]𝑋(𝑠)] = 𝐸[𝑍𝑋(𝑠)]
158
+ (4)
159
+
160
+ This result gives immediately rise to the famous Wiener equation. Indeed, if T is a finite interval
161
+ 𝑇 = {𝑡: 𝑎 ≤ 𝑡 ≤ 𝑏} and w(t) a weighting function in 𝐿2, the integral
162
+ ∫ 𝑋(𝑡)𝑤(𝑡)𝑑𝑡
163
+ 𝑏
164
+ 𝑎
165
+
166
+ (5)
167
+
168
+ represents a r.v. in 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇), then the weighting function of the best linear predictor can be
169
+ written as
170
+
171
+ 𝐸∗[𝑍|𝑋(𝑡), 𝑡 ∈ 𝑇] = ∫ 𝑋(𝑡)𝑤∗(𝑡)𝑑𝑡
172
+ 𝑏
173
+ 𝑎
174
+
175
+
176
+ (6)
177
+
178
+ and must satisfy the generalized Wiener equation:
179
+
180
+ ∫ 𝑤∗(𝑡)𝑅(𝑠, 𝑡)𝑑𝑡 = 𝜌𝑧(𝑠)
181
+ 𝑏
182
+ 𝑎
183
+ (7)
184
+
185
+ in 𝑎 ≤ 𝑠 ≤ 𝑏, with 𝑅(𝑠, 𝑡) = 𝐸[𝑋(𝑠), 𝑋(𝑡)], 𝜌𝑧(𝑠) = 𝐸[𝑍𝑋(𝑠)].
186
+
187
+ This equation states that one can always find a representation for the function 𝜌𝑧(𝑠) in terms of
188
+ the functions {𝑅(𝑠, 𝑡), 𝑡 ∈ 𝑇} such that the minimum mean square error linear predictor
189
+ 𝐸∗[𝑍|𝑋(𝑡), 𝑡 ∈ 𝑇] can be written in terms of the corresponding linear operator on the time series
190
+ {𝑋(𝑡), 𝑡 ∈ 𝑇}.
191
+
192
+ Hilbert Space Representation of Time Series
193
+ First, let us state an important theorem that is very important for this line of work [4].
194
+
195
+ Basic Congruence Theorem. Let ℋ1 and ℋ2 be two abstract Hilbert spaces. Let 𝑇 be an index set
196
+ and let {𝑢𝑡,𝑡 ∈ 𝑇} be a family of vectors spanning ℋ1, and similarly {𝑎𝑡,𝑡 ∈ 𝑇} a family of vectors
197
+ spanning ℋ2. Suppose that for every 𝑠, 𝑡 in 𝑇,
198
+
199
+ 〈𝑢𝑠, 𝑢𝑡〉 ℋ1 = 〈𝑎𝑠, 𝑎𝑡〉 ℋ2
200
+ (8)
201
+
202
+ then there is a congruence (a one-to-one inner product preserving linear mapping) 𝜓 from ℋ1 to
203
+ ℋ2 such that 𝜓(𝑢𝑡) = 𝑎𝑡 for any 𝑡 ∈ 𝑇.
204
+
205
+ Definition: A family of vectors {𝑢𝑡,𝑡 ∈ 𝑇} in a Hilbert space ℋ𝑅 is a representation of a wide sense
206
+ stationary time series {𝑋(𝑡), 𝑡 ∈ 𝑇} if for every s, t in T
207
+
208
+ 〈𝑢𝑠, 𝑢𝑡〉ℋ𝑅 = 𝑅(𝑠,𝑡) = 𝐸[𝑋(𝑠), 𝑋(𝑡)]
209
+ (9)
210
+
211
+ Then there is a congruence 𝜓 between the Hilbert space spanned by {𝑢𝑡,𝑡 ∈ 𝑇} and
212
+ denoted as 𝐿2(𝑢𝑡,𝑡 ∈ 𝑇), onto 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) satisfying 𝜓(𝑢𝑡) = 𝑋(𝑡), and every r.v. 𝑈 in
213
+ 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) may be written 𝑈 = 𝜓(𝑔) for some unique vector 𝑔 in 𝐿2(𝑢𝑡, 𝑡 ∈ 𝑇).
214
+
215
+
216
+ The natural representation of a time series is obtained in the RKHS ℋ𝑅 i.e., a Hilbert space
217
+ where the kernel has two properties:
218
+ 𝑅(⋅,𝑡) ∈ ℋ𝑅
219
+ 〈𝑔, 𝑅(⋅, 𝑡)〉ℋ𝑅 = 𝑔(𝑡)
220
+ (10)
221
+
222
+ This result is the well-known Riez representation theorem, which yields for our
223
+ discussion
224
+
225
+ 𝑅(𝑠, 𝑡) = 〈𝑅(⋅,𝑠), 𝑅(⋅,𝑡)〉ℋ𝑅 = 𝐸[𝑋(𝑠), 𝑋(𝑡)]
226
+
227
+ (11)
228
+
229
+ It can be further shown that for any time series {𝑋(𝑡), 𝑡 ∈ 𝑇} with covariance kernel 𝑅, the family
230
+ of functions {𝑅(⋅, 𝑡),𝑡 ∈ 𝑇} in ℋ𝑅 is a representation of 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇). Indeed, for any two
231
+ vectors 𝑈,𝐴 ∈ 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) such that the congruence is denoted by 𝑈 = 𝜓(𝑔) and 𝐴 = 𝜓(ℎ),
232
+ and 𝐴 = 𝜓(ℎ) = 〈𝑋, ℎ〉ℋ𝑅,
233
+
234
+ 〈𝑋, 𝑅(⋅,𝑡)〉ℋ𝑅 = 𝑋(𝑡)
235
+ 𝐸[〈𝑋, ℎ〉ℋ𝑅〈𝑋, 𝑔〉ℋ𝑅] = 〈ℎ, 𝑔〉ℋ𝑅
236
+
237
+
238
+
239
+
240
+ It is easy to see that if the two vectors ℎ, 𝑔 ∈ ℋ𝑅 correspond to random variables
241
+ 𝑈, 𝐴 ∈ 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇)
242
+ 〈ℎ, 𝑔〉 ℋ𝑅 = ∫
243
+
244
+ ℎ(𝑠)𝑅−1(𝑠, 𝑡)𝑔(𝑡)𝑑𝑠
245
+
246
+ 𝑠∈𝑇
247
+ 𝑑𝑡,
248
+
249
+ 𝑡∈𝑇
250
+
251
+ where 𝑅−1(𝑠, 𝑡) is the kernel of the inverse of the covariance operator 𝑅𝑔 = ∫
252
+ 𝑔(𝑡)𝑅(𝑠, 𝑡)𝑑𝑡
253
+
254
+ 𝑡∈𝑇
255
+ .
256
+ Moreover, if 𝑈 = ∑
257
+ 𝑤𝑔(𝑡𝑖)𝑋(𝑡𝑖)
258
+ 𝑁𝑔
259
+ 𝑖=1
260
+ and 𝐴 = ∑
261
+ 𝑤ℎ(𝑠𝑗)𝑋(𝑠𝑗)
262
+ 𝑁ℎ
263
+ 𝑗=1
264
+ , their inner product in the RKHS
265
+ can be computed in the input space from vectors {𝑤ℎ(𝑠𝑗)}𝑗=1
266
+ 𝑁ℎ and {𝑤𝑔(𝑡𝑖)}𝑖=1
267
+ 𝑁𝑔 (what is now called
268
+ the kernel trick) as
269
+
270
+ 〈ℎ, 𝑔〉 ℋ𝑅 = ∑
271
+
272
+ 𝑤ℎ(𝑠𝑗)𝑅(𝑠𝑗,𝑡𝑖)
273
+ 𝑁𝑔
274
+ 𝑖=1
275
+ 𝑁ℎ
276
+ 𝑗=1
277
+ 𝑤𝑔(𝑡𝑖) = ∑
278
+
279
+ ℎ(𝑠𝑗)𝑟𝑠𝑗,𝑡𝑖
280
+ −1
281
+ 𝑁𝑔
282
+ 𝑖=1
283
+ 𝑁ℎ
284
+ 𝑗=1
285
+ 𝑔(𝑡𝑖) (13)
286
+
287
+ where 𝑟𝑠𝑗,𝑡𝑖
288
+ −1 is the 𝑠𝑗, 𝑡𝑖 element of the inverse of the covariance kernel 𝑅(𝑠𝑖, 𝑡𝑖) i.e., the kernel
289
+ modifies the traditional inner product of vectors in the input space. This explains the nature of
290
+ ℋ𝑅 quite well: because of the mapping 𝑅(𝑠,. ), which contains the statistics of the data, the inner
291
+ product in ℋ𝑅 takes advantage of the data statistics over time instances. Hence, in the input space
292
+ the solution must be a quadratic form employing 𝑅−1 as shown in (13) to meet the congruence.
293
+
294
+ Theorem (from [4]): Let {𝑋(𝑡),𝑡 ∈ 𝑇} be a time series with covariance kernel 𝑅(𝑠, 𝑡), and let ℋ𝑅
295
+ be the corresponding RKHS. Between 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇) and ℋ𝑅 there exists a one-to-one inner
296
+ product preserving linear mapping under which a vector ℎ ∈ {𝑅(⋅,𝑡), 𝑡 ∈ 𝑇} and 𝑈 ∈ 𝐿2(𝑋(𝑡), 𝑡 ∈
297
+ 𝑇) are mapped into one another. Denote by 〈ℎ, 𝑋〉ℋ𝑅 the r.v. in 𝐿2(𝑥𝑡,𝑡 ∈ 𝑇) which corresponds
298
+ to the function ℎ ∈ ℋ𝑅 under the mapping. Then the solution of the prediction problem may be
299
+ written as follows. If 𝑍 is a r.v. with finite second moments and 𝜌𝑍(𝑡) = 𝐸[𝑍𝑋(𝑡)] then
300
+ 𝜌𝑍 ∈ ℋ𝑅, and
301
+ (14)
302
+
303
+
304
+ 𝐸∗[𝑍|𝑋(𝑡), 𝑡 ∈ 𝑇] = 〈𝜌𝑧,𝑋〉ℋ𝑅
305
+
306
+ (15)
307
+
308
+ with prediction mean square error given by
309
+
310
+ 𝐸[(𝑍 − 𝐸∗[𝑍 |𝑋(𝑡), 𝑡 ∈ 𝑇])2] = 𝐸[𝑍2] − 〈𝜌𝑧, 𝜌𝑧〉ℋ𝑅
311
+ (16)
312
+
313
+ The equivalent minimum mean square error solution (15) in the data space, because of
314
+ (13), becomes
315
+
316
+ 𝑌 = 𝐸∗[𝑍|𝑋(𝑡),𝑡 ∈ 𝑇] = 〈𝜌𝑧, 𝑋〉ℋ𝑅 = ∫
317
+
318
+ 𝑅−1(𝑠, 𝑡)𝜌𝑍(𝑠)𝑋(𝑡)𝑑𝑠
319
+
320
+ 𝑠∈𝑇
321
+ 𝑑𝑡
322
+
323
+ 𝑡∈𝑇
324
+ (17)
325
+
326
+ which is exactly the Wiener solution ∫
327
+ 𝑋(𝑡)𝑤∗(𝑡)𝑑𝑡
328
+
329
+ 𝑡∈𝑇
330
+ . Note that the effective role of this inverse
331
+ operator is to decorrelate the input space data and it is a steppingstone for finding the orthogonal
332
+ projection as demonstrated by Wiener. However, in ℋ𝑅 this solution for the prediction problem is
333
+ coordinate free, does not use the approximation error, and directly uses the structure of ℋ𝑅. In
334
+ fact, it is sufficient to compute the linear projection of 𝜌𝑧(𝑠) with the input data because the
335
+ covariance kernel 𝑅(𝑠, 𝑡) provides its statistics, unlike Wiener-Hopf method that requires spectral
336
+ factorization. This coordinate free property of RKHS solutions with the covariance kernel was first
337
+ noted by Loeve [20] who suggested that instead of finding a set of functional projections (e.g.
338
+ Karuhnen Loeve transform [21]) it is sufficient to employ the statistics of 𝑋(𝑡) embedded in the
339
+ structure of the RKHS. Parzen [4] further states that for this reason “RKHS defined by the
340
+ covariance kernel is the natural setting in which to solve problems of statistical inference on time
341
+ series”. These are fundamental results that will be very useful when seeking an extension of the
342
+ theory to nonlinear solutions.
343
+ The fundamental issue with Parzen approach is twofold: first, it does not elucidate efficient
344
+ alternatives to implement the conditional mean operator. Moreover, from (13) we can see that the
345
+ inverse may not always exist, needs to be accurate, and it is computationally expensive because it
346
+ needs to be applied to every test sample. Despite approximations for the inverse, this is
347
+ cumbersome but a necessity for continuous time models. Second, for discrete time signal
348
+ processing, this approach is computationally not competitive with the famous Wiener solution
349
+ 𝑤∗ = 𝑅−1𝜌, where 𝑅 is the autocorrelation matrix (the kernel 𝑅(𝑠, 𝑡) evaluated at a finite set of
350
+ times), which finds the optimal weighting 𝑤∗ only once in the training set using the error, and does
351
+ an inner product in the data space of two vectors in the test set. Hence, we conclude that the
352
+ advantage of the RKHS theory is on the mathematical tools of congruence and representation of
353
+ time series in RKHS, which open the door to seek more general solutions such as the nonlinear
354
+ prediction case. In fact, the advantage of the RKHS theory is that the operations defined in the
355
+ RKHS are independent of the kernel utilized, hence the key goal is to concentrate on designing
356
+ proper kernels when the goal is nonlinear extensions.
357
+
358
+ The Nonlinear Prediction Case
359
+ A. Kernel Adaptive Filtering
360
+ The goal is to construct a function 𝑓: ℝ𝐿 → ℝ based on a real sequence {(𝒙𝑖,𝑑𝑖)}𝑖=1
361
+ 𝑁 of
362
+ examples (𝑥𝑖,𝑑𝑖) ∈ 𝑆 × 𝐷, where 𝐷 is a compact subset of ℝ and 𝑆 a compact subspace of ℝ𝐿.
363
+ As described below, the function 𝑓 ∈ ℋ𝑘 is obtained based on a positive definite kernel 𝜅: 𝑆 × 𝑆 →
364
+ ℝ that defines a RKHS ℋ𝑘. A commonly employed kernel is the Gaussian kernel 𝐺(𝒙, 𝒙𝑖) =
365
+
366
+ exp (−
367
+ ‖𝒙 −𝒙𝑖‖2
368
+ 2𝜎2
369
+ ), where 𝜎 is the kernel size or bandwidth. Kernel adaptive filtering (KAF) [14]
370
+ implements nonlinear filtering on discrete time series by mapping the input sampled data {𝒙𝑖}𝑖=1
371
+ 𝑁
372
+ to ℋ𝐺 using a positive definite kernel 𝐺, and using search techniques based on the gradient and or
373
+ Hessian information to adapt functional parameters.
374
+ The Gaussian kernel maps each embedding vector 𝒙𝑖 of size 𝐿, to a function in ℋ𝐺, which
375
+ we will also denote as 𝐺(𝒙𝑖,⋅), where the “⋅” in the second argument means that a data point is
376
+ represented by a Gaussian function centered at 𝒙𝑖. The inner product in the RKHS of two such
377
+ functions centered at 𝒙𝑖 and 𝒙𝑗 can be easily computed in the input space as a Gaussian kernel
378
+ evaluation i.e., 〈𝐺(𝒙𝑖,⋅),𝐺(𝒙𝑗,⋅)〉ℋ𝐺 = 𝐺(𝒙𝑖,𝒙𝑗). The ℋ𝐺 defined by the Gaussian is infinite
379
+ dimensional and nonlinearly related to the input data space 𝑆 [22]. For the case of samples from a
380
+ stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇}, 𝐺(𝑋(𝑡),⋅) is a random function. One notable example of KAF is
381
+ the kernel least mean square (KLMS) algorithm, for which the non-linear filter output is simply
382
+ given by
383
+
384
+ 𝑦𝑛 = ∑
385
+ 𝜂𝑒𝑖𝐺(𝒙𝑛 − 𝒙𝑖)
386
+ 𝑛−1
387
+ 𝑖=1
388
+
389
+
390
+ (18)
391
+
392
+ where  is the stepsize, 𝑒𝑖 is the error at iteration 𝑖, and {𝒙𝑖}𝑖=1
393
+ 𝑛−1 are the past samples in the training
394
+ set that constitute the “dictionary” to construct the output. This algorithm uses gradient search to
395
+ construct the optimal function Ω∗, such that 𝑓∗(𝒙) = 〈𝐺(𝒙,⋅),Ω∗〉ℋ𝐺, and converges in the mean
396
+ to the optimal least minimum square solution in ℋ𝐺 for small step sizes and large number of data
397
+ samples. The appeal of the KLMS is that it is an online algorithm, does not need explicit
398
+ regularization [23], and is a CULM (convex and universal learning machine) [15]. However,
399
+ because of the nonlinearity of the kernel mapping there is no congruence between the input space
400
+ defined by the span of the time series and the RKHS ℋ𝐺. The solution needs to be expressed in
401
+ terms of observations from the time series, which means that the order of the filter grows linearly
402
+ in time, if no sparsification is included [14]. This is a shortcoming of this class of algorithms
403
+ because it affects the computation complexity in the test set. In KAF, since the kernel evaluations
404
+ are weighted by the error, the algorithm has an automatic way to preserve the scale of the
405
+ representations when applying the kernel trick.
406
+ The ℋ𝐺 defined by the Gaussian kernel differs from the ℋ𝑅 defined by Parzen’s covariance
407
+ kernel in four fundamental ways.
408
+ • First, Parzen used a “linear” kernel ℋ𝑅 yielding a close form optimal linear model in 𝐿2 as
409
+ mentioned above.
410
+ • Second, the Parzen kernel is computed by employing the expected value over data lags 𝑠 =
411
+ 𝑡 − 𝜏 to take advantage of the wide sense stationarity of the time series, unlike the pairwise
412
+ sample set as ℋ𝐺.
413
+ • Third, the map to ℋ𝐺 is stochastic because samples are mapped from a random process rather
414
+ than mapping the elements of the index set 𝑇, directly. In contrast, the map to ℋ𝑅 is
415
+ deterministic because of the congruence.
416
+ • Fourth, ℋ𝐺 is infinite dimensional, while in ℋ𝑅 is a finite dimensional RKHS space defined
417
+ by the number of lags required for the covariance kernel, which is dictated by the input data
418
+ dynamics (normally small).
419
+ Our goal now is to define a new RKHS that preserves the correlation structure defined by
420
+ the data as ℋ𝑅, but also maps the time series by a nonlinear kernel to achieve CULM properties.
421
+ To be practical, this approach uses the kernel trick to perform the computation in the input space.
422
+
423
+
424
+ B. Definition of the Correntropy RKHS
425
+
426
+ Let {𝑋(𝑡),𝑡 ∈ 𝑇} be a strictly stationary stochastic process (i.e., the joint PDF {𝑝𝑠,𝑡(𝑥𝑠,𝑥𝑡) } is
427
+ unaffected by a change of the time origin, that is 𝑝𝑠,𝑡(𝑥𝑠,𝑥𝑡) = 𝑝𝑠−𝜏,𝑡−𝜏(𝑥𝑠,𝑥𝑡) ) with T being an
428
+ index set and 𝑥𝑡 ∈ ℝ𝐿. The autocorrentropy function 𝑣(𝑠, 𝑡) is defined as a function from 𝑇 × 𝑇 →
429
+ ℝ given by
430
+ 𝑣𝜎(𝑠,𝑡) = 𝐸𝑠,𝑡[𝐺𝜎(𝑋(𝑠), 𝑋(𝑡))] = ∬ 𝐺𝜎(𝑥𝑠,𝑥𝑡)𝑝𝑠,𝑡(𝑥𝑠,𝑥𝑡)𝑑𝑥𝑠𝑑𝑥𝑡 (19)
431
+ where 𝐸𝑠,𝑡[⋅] denotes mathematical expectation over a pair of r.v. in the time series {𝑋(𝑡),𝑡 ∈ 𝑇} .
432
+ While it is true that any symmetric positive definite kernel (i.e., Mercer kernel) 𝜅(𝑥𝑠,𝑥𝑡) can be
433
+ employed instead of the Gaussian kernel 𝐺𝜎, the symmetry, scaling, and translation invariant
434
+ properties of 𝐺𝜎, confer additional properties and interpretation to correntropy, which are reviewed
435
+ in the appendix. The autocorrentropy function defined in (19) is a reproducing kernel on the index
436
+ set 𝑇 × 𝑇. We will denote its corresponding RKHS by ℋ𝑣. The functions 𝑣𝜎(𝑠,⋅) are in ℋ𝑣 and
437
+ 𝑣𝜎(𝑠,𝑡) = 〈𝑣𝜎(𝑠,⋅),𝑣𝜎(𝑡,⋅) 〉ℋ𝑣.
438
+
439
+ Another space that can be defined by the composition of the random variable 𝑋(𝑡) and the positive
440
+ definite Gaussian kernel 𝐺𝜎(⋅,⋅) is the span of the set of random elements {𝐺𝜎(𝑋(𝑡),⋅),𝑡 ∈ 𝑇}
441
+ taking values in ℋ𝐺. We will denote this space by ℋ𝑅𝐺 and the inner product between two elements
442
+ 𝑈 = ∑ 𝛼𝑖𝐺𝜎(𝑋(𝑡𝑖),⋅)
443
+ 𝑖
444
+ and 𝐴 = ∑ 𝛽𝑗𝐺𝜎(𝑋(𝑠𝑗),⋅)
445
+ 𝑗
446
+ is given by
447
+
448
+ ⟨𝑈, 𝐴⟩ℋ𝑅𝐺 = 𝐸[〈∑ 𝛼𝑖𝐺𝜎(𝑋(𝑡��),⋅)
449
+ 𝑖
450
+ , ∑ 𝛽𝑗𝐺𝜎(𝑋(𝑠𝑗),⋅)
451
+ 𝑗
452
+ 〉ℋ𝑅𝐺] = ∑ 𝛼𝑖𝛽𝑗𝐸[𝐺𝜎(𝑋(𝑡𝑖), 𝑋(𝑠𝑗))]
453
+ 𝑖𝑗
454
+ .
455
+
456
+ There is a congruence between ℋ𝑅𝐺 and ℋ𝑣. Moreover, we see that for strictly stationary time
457
+ series making 𝑠 = 𝑡 − 𝜏, the function 𝑣𝜎 can also be written as a function of 𝜏 only as follows:
458
+
459
+ 𝑣𝜎(𝜏) = 𝐸𝑡,𝑡−𝜏[𝐺𝜎(𝑋(𝑡), 𝑋(𝑡 − 𝜏))], (20)
460
+
461
+ where any 𝑡 ∈ 𝑇can be used. This shows its similarity with the Parzen covariance kernel of (11),
462
+ except that 𝑣𝜎(𝜏) is computed in ℋ𝑣, a space nonlinearly related to the original time series.
463
+ The autocorrentropy functional can then be interpreted in two vastly different feature
464
+ spaces. One is the RKHS ℋ𝐺 induced by the Gaussian kernel on pairs of observations 𝐺𝜎(⋅,⋅), which
465
+ is widely used in kernel learning. The elements of this RKHS are infinite-dimensional vectors
466
+ expressed by the eigenfunctions of the Gaussian kernel, and they lie on the positive hyperoctant of
467
+ a sphere because ‖𝐺𝜎(𝑥, . )‖2 = 𝐺𝜎(0) = 1/√2𝜋𝜎. The correntropy functional performs statistical
468
+ averages on the functionals in this sphere.
469
+ The second feature space is the RKHS ℋ𝑣 induced by the correntropy kernel 𝑣(𝑠, 𝑡), which
470
+ is defined on the index set of the random variables in the time series. This inner product is defined
471
+ by the correlation of the kernel at two different lags and the mapping produces a single
472
+ deterministic scalar for each element on the index set, that is, the practical dimension of ℋ𝑣 is the
473
+ size of the index set. ℋ𝑣 has very nice properties for statistical signal processing:
474
+
475
+ ℋ𝑣 provides a straightforward way to apply optimal projection algorithms based on mean
476
+ statistical embeddings that are expressed by inner products.
477
+
478
+ The effective dimension of ℋ𝑣 is under the control of the designer by selecting the number
479
+
480
+ of lags (just like with the RKHS defined by the autocorrelation function).
481
+
482
+ Elements of ℋ𝑣 can be readily manipulated algebraically for statistical inference (i.e.
483
+ without taking averages over realizations).
484
+
485
+ ℋ𝑣 is nonlinearly related to the input space, unlike the RKHS defined by the autocorrelation
486
+ of the random process. Therefore, it is in principle very appealing for nonlinear statistical
487
+ signal processing.
488
+
489
+ The table presents the different types of RKHS defined so far that summarize our approach.
490
+ Table I
491
+ RKHS
492
+ Functional Mapping
493
+ Hilbert Space Characteristics
494
+ ℋ𝑅 Parzen
495
+ 𝐸[𝑋(𝑡),. ]
496
+ Linear mapping of data, size of lags,
497
+ deterministic functions
498
+ ℋ𝐺 Gaussian
499
+ 𝐺(𝑥,⋅)
500
+ Nonlinear mappings of data, infinite
501
+ dimensional, random functions
502
+ ℋ𝑅𝐺 Random Gaussian
503
+ 𝐺(𝑋(𝑡),⋅)
504
+ Nonlinear mapping of data, size of lags,
505
+ random functions
506
+ ℋ𝑣 Correntropy
507
+ 𝑣𝜎(𝑡,⋅)
508
+ Nonlinear mapping of data, size of lags,
509
+ deterministic functions
510
+
511
+ Representing an Unobservable Random Variable in ℋ𝑅𝐺
512
+
513
+ Like the original problem where the random variable 𝑍 was approximated by a random variable in
514
+ the span of the time series {𝑋(𝑡),𝑡 ∈ 𝑇} by the Hilbert projection theorem, we can define the
515
+ approximation in the space of random elements ℋ𝐺 as follows
516
+
517
+ 𝜉∗ = argmin
518
+ 𝜉
519
+ 𝐸[‖𝐺(𝑍,⋅) − 𝜉‖ℋ𝐺
520
+ 2 ],
521
+ (21)
522
+
523
+ where 𝜉 is a random element in the span of {𝐺(𝑋(𝑡),⋅),𝑡 ∈ 𝑇}. Solving for 𝜉 gives rise to the
524
+ following equation:
525
+
526
+ 𝐸[〈𝐺𝜎(𝑍,⋅), 𝐺𝜎(𝑋(𝑠),⋅)〉ℋ𝐺] = 𝐸[〈𝜉, 𝐺𝜎(𝑋(𝑠),⋅)〉ℋ𝐺],
527
+ (22)
528
+
529
+ where 𝜉 is expressed as a linear combination of elements in ℋ𝑅𝐺,
530
+
531
+ 𝜉 = ∫ 𝐺𝜎(𝑋(𝑡),⋅)𝑤(𝑡)𝑑𝑡
532
+
533
+ 𝑇
534
+ ,
535
+ (23)
536
+
537
+ Then the weighting function 𝑤∗ of the best predictor must satisfy:
538
+
539
+ 𝐸[∫ 𝑤∗(𝑡)〈𝐺𝜎(𝑋(𝑡),⋅),𝐺𝜎(𝑋(𝑠),⋅)〉ℋ𝐺𝑑𝑡
540
+
541
+ 𝑇
542
+ ] = 𝐸[〈𝐺𝜎(𝑍,⋅),𝐺𝜎(𝑋(𝑠),⋅)〉ℋ𝐺],
543
+
544
+ which gives rise to the functional Wiener equation:
545
+
546
+ ∫ 𝑤∗(𝑡)𝑣𝜎(𝑡,𝑠)𝑑𝑡
547
+
548
+ 𝑇
549
+ = 𝐸[〈𝐺𝜎(𝑍,⋅), 𝐺𝜎(𝑋(𝑠),⋅)〉ℋ𝐺] = 𝜌𝑍(𝑠), (24)
550
+
551
+
552
+ These equations state that one can always find a representation for the function 𝜌𝑧(𝑠) in terms of
553
+ the functions {𝑣𝜎(𝑡,⋅),𝑡 ∈ 𝑇} because the best correntropy predictor is computed in the span of the
554
+ set {𝐺𝜎(𝑋(𝑡),⋅), 𝑡 ∈ 𝑇}. Nevertheless, because this computation is carried out in the correntropy
555
+ RKHS, the best approximation to 𝑍 cannot be directly obtained since the input space where the
556
+ time series lies is nonlinearly related to the correntropy RKHS where we compute the projection.
557
+
558
+ Solution of the Representation Problem in ℋ𝑣
559
+ To solve the representation problem in ℋ𝑣, that is, finding 𝑤∗(𝑡), let us consider the
560
+ representation 𝜁𝑠 in ℋ𝑣 of the random element 𝐺𝜎(𝑋(𝑠),⋅) that can be obtained by the congruence
561
+ between ℋ𝑣 and ℋ𝐺. From equation (24) we have that:
562
+
563
+ 𝜌𝑧(𝑠) = 〈𝜌𝑧, 𝜁𝑠〉ℋ𝑣 = ∫ 𝑤∗(𝑡)〈𝜁𝑡, 𝜁𝑠〉ℋ𝑣𝑑𝑡
564
+
565
+ 𝑇
566
+
567
+
568
+
569
+ (25)
570
+ This defines a close form functional Wiener filter solution in ℋ𝑣. Notice that the formulation is
571
+ the same as (17), the only difference is the structure of the inner product space.
572
+ The relation between ℋ𝑅𝐺 and ℋ𝑣 is rather similar to the relation between ℝ𝐿 and ℋ𝑅 so, for two
573
+ elements ℎ and 𝑔 in ℋ𝑣,
574
+
575
+ 〈ℎ, 𝑔〉ℋ𝑣 = ∫
576
+
577
+ ℎ(𝑠)𝑣𝜎
578
+ −1(𝑠, 𝑡)𝑔(𝑡)𝑑𝑠
579
+
580
+ 𝑠∈𝑇
581
+ 𝑑𝑡,
582
+
583
+ 𝑡∈𝑇
584
+ (26)
585
+
586
+ where 𝑣𝜎
587
+ −1(𝑠, 𝑡) is the element of the inverse of the correntropy operator defined as (𝑉𝜎𝑔)(𝑠) =
588
+
589
+ 𝑔(𝑡)𝑣𝜎(𝑠, 𝑡)𝑑𝑡
590
+
591
+ 𝑡∈𝑇
592
+ . The above form can be used to compute a solution to (25) as,
593
+
594
+ 𝑤∗(𝑡) = ∫
595
+ 𝜌𝑧(𝑠)𝑣𝜎
596
+ −1(𝑠, 𝑡)𝑑𝑠
597
+
598
+ 𝑠∈𝑇
599
+ . (27)
600
+
601
+ In this case the solution is nonlinear in the input space, so this is a very elegant extension of
602
+ Wiener theory. A major difference to KAF and the Wiener filter in the data space, is that this
603
+ solution never uses the error. The reason is that Parzen’s solution decorrelates implicitly the data
604
+ (in this case in ℋ𝑅𝐺) and automatically finds the orthogonal projection on the data manifold.
605
+ However, not everything is perfect with the solution (26), since we cannot extend the
606
+ congruence in (25) to the original time series {𝑋(𝑡), 𝑡 ∈ 𝑇}, i.e.
607
+
608
+ 〈𝜁𝑡, 𝜁𝑠〉 ℋ𝑣 = 𝐸[𝐺𝜎(𝑋(𝑡),𝑋(𝑠))] ≠ 𝐸[𝑋(𝑡)𝑋(𝑠)] (28)
609
+
610
+ because the kernel mapping does not preserve the inner product, i.e. 〈𝑥𝑛,𝑥𝑖〉 ≠
611
+ 〈𝐺(𝑥𝑛,. ), 𝐺(𝑥𝑖,. )〉 ℋ𝐺.
612
+
613
+ C. Computation of the Functional Wiener Filter in ℋ𝐺
614
+
615
+ How can the solution in (26) be implemented from a sample data stream? In this case, we
616
+ restrict our treatment to discrete-time time series. Let us start by assuming that the time series is
617
+ ergodic, such that expected values can be estimated by temporal averages. Second, because of the
618
+ congruence (25), 〈𝜁𝑡, 𝜁𝑡−𝜏〉ℋ𝑣 can be substituted by 𝐸[𝐺𝜎(𝑋(𝑡), 𝑋(𝑡 − 𝜏))] and by ergodicity, it
619
+ can be estimated from samples {𝑥(𝑡)}𝑡=1
620
+ 𝑁 over a window of length 𝑁.
621
+
622
+
623
+
624
+ 𝑣𝜏 =
625
+ 1
626
+ 𝑁 ∑
627
+ 𝐺𝜎(𝑥(𝑡), 𝑥(𝑡 − 𝜏))
628
+ 𝑁
629
+ 𝑡=1
630
+
631
+ (29)
632
+
633
+ For 𝜏 = 0,1,⋯ , 𝐿 − 1, 𝑣𝜏 is the 𝜏th entry of the autocorrentropy vector and can be used to
634
+ construct the autocorrentropy matrix of size 𝐿 × 𝐿 as follows:
635
+
636
+ 𝑉 = [
637
+ 𝑣0
638
+
639
+ 𝑣𝑇−1
640
+
641
+
642
+
643
+ 𝑣𝑇−1
644
+
645
+ 𝑣0
646
+ ]
647
+ (30)
648
+
649
+ This matrix is unlike anything in kernel adaptive filtering, because it is a matrix of scalar
650
+ values that can be computed once from the training set and never changed. This matrix is very
651
+ unusual in kernel filtering, where the filters always increase in size with each new sample. The
652
+ values of the correntropy matrix can be centered in RKHS if necessary [28]:
653
+
654
+ 𝑣̅𝜏 = 𝑣𝜏 −
655
+ 1
656
+ 𝑁2 ∑
657
+
658
+ 𝐺𝜎(𝑥(𝑡), 𝑥(𝑠))
659
+ 𝑁
660
+ 𝑠=1
661
+ 𝑁
662
+ 𝑡=1
663
+
664
+ (31)
665
+
666
+ The other major difference is that in KAF, one needs to transfer vectors of samples to the
667
+ RKHS, where the size of the vector is an estimate of the embedding dimension of the system that
668
+ created the time series, using Takens’ embedding theory. The reason is that the KLMS is a pairwise
669
+ instantaneous algorithm, so if it is applied to each sample of the input data the algorithm loses the
670
+ local time structure of the signal. For FWF, the data can be mapped to RKHS sample by sample,
671
+ just like in the input space, because the formulation uses the correntropy matrix where the lag
672
+ structure is included.
673
+ Let us now show how to estimate the cross correlation functional 𝜌𝑧 in ℋ𝑣. Using the same
674
+ approximations as the ones for the correntropy matrix yields
675
+
676
+ 𝜌̂𝑧(𝜏) =
677
+ 1
678
+ 𝑁 ∑
679
+ 𝐺𝜎(𝑥(𝑡 − 𝜏), 𝑧(𝑡))
680
+ 𝑁
681
+ 𝑡=1
682
+
683
+ (32)
684
+
685
+ This is the only term that relates the target and the input signals, and it only needs to be evaluated
686
+ in the training set. The optimal weighting vector in (27), 𝑤∗ (𝜏) for 𝜏 = 0,2, … , 𝐿 − 1, is obtained
687
+ by solving the system:
688
+
689
+ 𝜌𝑧(ℓ) = ∑
690
+ 𝑉ℓ+1,𝜏+1
691
+ 𝐿−1
692
+ 𝜏=0
693
+ 𝑤(𝜏).
694
+ (33)
695
+
696
+ In other words, 𝑤∗ = 𝑉−1𝜌𝑧 . During testing, the output of the filter corresponds to an instance
697
+ of the random element ∑
698
+ 𝑤∗ (𝜏)𝐺𝜎(𝑋(𝑡 − 𝜏),⋅)
699
+ 𝐿−1
700
+ 𝜏=0
701
+ , which is the best approximation to 𝐺𝜎(𝑍,⋅),
702
+ namely,
703
+
704
+ 𝜉∗ (𝑡) = ∑
705
+ 𝑤∗(𝜏)𝐺𝜎(𝑥test(𝑡 − 𝜏),⋅)
706
+ 𝐿−1
707
+ 𝜏=0
708
+ .
709
+
710
+ (34)
711
+
712
+ where 𝑥test(𝑡) is the test input at time 𝑡. This solution shares the form of (6) in 𝐿2(𝑋(𝑡), 𝑡 ∈ 𝑇)
713
+ and (23) in ℋ𝑅𝐺.The big difference is that the autocorrelation function was substituted by the
714
+ correntropy function, while the input vector [𝑥(𝑡),𝑥(𝑡 − 1),⋯ , 𝑥(𝑡 − 𝐿 + 1)] was substituted by
715
+
716
+ a vector of functions nonlinearly related to the input space (the feature space defined by the
717
+ Gaussian kernel).
718
+ Notice that this solution is quite different from the KAF in several important ways. First, the
719
+ optimal weight vector can be computed in the input space, and it appears as a scale factor to change
720
+ the finite range of the Gaussian to span the values of the target response. Notice that this weighting
721
+ depends on the actual local L sample history of the current input, but it is nonlinear and so it is
722
+ more powerful than the linear weighting in linear Wiener filters. Second, there is no sum over the
723
+ training set samples in the optimal solution like in KAFs. The best approximant is a combination
724
+ of just L Gaussian functions centered at the current test sample, which is a major simplification in
725
+ computation when compared with KAF. This algorithm has the complexity of the Wiener solution,
726
+ and should be an universal approximator when the number of delays grows to infinity, but we have
727
+ not formally proved this statement. Unfortunately, the output of the functional Wiener filter 𝜉∗ (𝑡)
728
+ is still in ℋ𝐺, so the task of implementing a filter in the data space is still not finalized.
729
+
730
+
731
+ D. Preimage to Estimate the FWF output in the input space
732
+
733
+ Ideally, the output of the FWF in the input space would correspond to the inverse map from
734
+ ℋ𝐺 to ℝ𝑑, where 𝑑 = 1 in the simplest. Since (34) expresses the optimal filter solution as a linear
735
+ combination of Gaussian function, the goal is just to evaluate the function at a point in the input
736
+ space, whose image is closest to the optimal solution. However, there is no guarantee such inverse
737
+ map exists, so we must resort to an extra optimization or approximation step to find a pre-image
738
+ [17] of the optimal solution in the input space, as will be explained next.
739
+
740
+ D.1. Preimage using the optimal filter output in 𝓗𝑮
741
+
742
+ For the FWF, the basic concept is to use an approximate pre-image in the input space of
743
+ the optimal filter output in ℋ𝐺 i.e., the approximated FWF output to 𝑦∗(𝑡) will be given by:
744
+
745
+ 𝑦(𝑡) = argmin
746
+ 𝑦 ∈ ℝ𝑑 ‖𝐺𝜎(𝑦,⋅) − 𝜉∗ (𝑡)‖ℋ𝐺
747
+ 2
748
+
749
+ (35)
750
+
751
+ This formulation can be applied in practical settings because in a training set, the optimal
752
+ weight vector can be estimated using the 𝑉 matrix from (33) and the cross correntropy from (32).
753
+ Therefore, and according to (35) it is only required to find the point to evaluate the optimal weight
754
+ function, which is equivalent to find the minimum of
755
+
756
+
757
+ 𝑤∗(𝜏)𝐺𝜎(𝑥test(𝑡 − 𝜏), 𝑦)
758
+ 𝐿−1
759
+ 𝜏=0
760
+ .
761
+
762
+ (36)
763
+
764
+ Making the gradient of (36) with respect to 𝑦 equal to zero yields the fixed-point expression
765
+
766
+
767
+ 𝑦(𝑖+1) =
768
+
769
+ 𝑤∗(𝜏)𝐺𝜎(𝑥test(𝑡−𝜏),𝑦(𝑖))𝑥test(𝑡−𝜏)
770
+ 𝐿−1
771
+ 𝜏=0
772
+
773
+ 𝑤∗(𝜏)𝐺𝜎(𝑥test(𝑡−𝜏),𝑦(𝑖))
774
+ 𝐿−1
775
+ 𝜏=0
776
+ , (37)
777
+
778
+
779
+ where 𝑦(𝑖) denotes the estimate of the preimage at the 𝑖th iteration of the fixed-point update. Notice
780
+ that the nature of the pre-imaging solution involves a search on top of the analytic solution. This
781
+ solution will be named FWFFP.
782
+
783
+ D.2. Preimage using local models
784
+
785
+ Intuitively, the goal is to select training set input samples that, when combined with the
786
+ current test sample, provide functional evaluations in RKHS that approximate the targets in the
787
+ training set. The difficulty is that during testing there is no information about the target value.
788
+ Therefore, one simple option is to use the similarity in the input space to cluster locally the input
789
+ samples that provide the best approximation to the target signal during training. This approach was
790
+ inspired by [29], where a successful table lookup approach was employed to extend linear model
791
+ performance that links input samples to their errors in the training set to create outputs outside the
792
+ span of the input space.
793
+ Here, the approach is to find an input sample 𝑥(𝑚) that when combined with the current
794
+ input 𝑥(𝑖), will produce an output in ℋ𝐺 that is close to its target 𝑧(𝑖). Let us represent 𝑧̂(𝑖) =
795
+
796
+ 𝑤∗(𝜏)𝐺𝜎(𝑥 (𝑖 − 𝜏), 𝑥(𝑚 − 𝜏)).
797
+ 𝐿−1
798
+ 𝜏=0
799
+ The optimization can be written as
800
+
801
+ 𝑎𝑟𝑔 min
802
+ 𝑥(𝑚)∈𝑆 ‖𝑧(𝑖) − 𝑧̂(𝑖)‖
803
+ (38)
804
+
805
+ where S is the training set. So, we need to implement a search (done once), where we find the
806
+ sample pair (𝑥(𝑖),𝑥(𝑚)), 𝑖 = 1,… 𝑁 that produces the closest approximation to the target sample
807
+ 𝑧(𝑖). Once in testing, we find the closest sample 𝑥(𝑖) in the training set to 𝑥(𝑡𝑒𝑠𝑡) and use its
808
+ neighbor 𝑥(𝑚) to plug in (34) to obtain the FWF output as
809
+
810
+ 𝑦(𝑡) =
811
+ 𝑧𝑖
812
+ 𝑧̂𝑖 ∑
813
+ 𝑤∗(𝜏)𝐺𝜎(𝑥 (𝑚 − 𝜏), 𝑥(𝑡))
814
+ 𝐿−1
815
+ 𝜏=0
816
+
817
+ (39)
818
+
819
+ where the ratio 𝑧𝑖 𝑧̂𝑖
820
+ ⁄ enforces the scale. This search needs to be done online for every test
821
+ sample, but if we rank the training set, it can be done quickly with a tree search. This process can
822
+ be repeated K times for a better approximation, where K is a hyper-parameter. The idea is to
823
+ probe the neighborhood of 𝑥(𝑡𝑒𝑠𝑡) with K input samples {𝑥(1),… 𝑥(𝐾)} and use their respective
824
+ neighbors using (38) to compute K approximate targets {𝑧̂(1),… . 𝑧̂(𝐾)} and represent their mean
825
+ by 𝑧̅. The final FWF output will be
826
+
827
+ 𝑦(𝑡) = ∑
828
+ 𝑧𝑘
829
+ 𝑧̅
830
+ 𝐾
831
+ 𝑘=1
832
+
833
+ 𝑤∗(𝜏)𝐺𝜎(𝑥 (𝑘 − 𝜏), 𝑥(𝑡))
834
+ 𝐿−1
835
+ 𝜏=0
836
+ (40)
837
+
838
+ Since the filter computation is so small, this improves performance with a minor increase
839
+ in computation. The computational complexity of FWFFP and FWFLM are compared in the
840
+ following table (i = iterations, M = fixed point updates).
841
+
842
+ Table II
843
+ Filter
844
+ Complexity
845
+ (training/testing)
846
+ Memory
847
+ (training/ testing)
848
+ KLMS
849
+ O(i)
850
+ O(i)
851
+ KRLS
852
+ O(i2)
853
+ O(i2)
854
+
855
+ FWFFP
856
+ O(L2N)/ O(L) + O(LM) O(N+L2)/O(L)
857
+ FWFLM
858
+ O(L2N) + O(N)/
859
+ O(KL) + O(logN)
860
+ O(2N+L2)/
861
+ O(2NL+L2)
862
+
863
+
864
+ E. Experimental Results
865
+
866
+ FWF Implementation Challenges
867
+ There are several challenges for the FWF implementation. The first issue is numeric
868
+ instability and deals with the inverse of the correntropy matrix 𝑉 in (34). Large condition numbers
869
+ will bias the solution and need to be corrected through regularization. The second issue stems from
870
+ the fundamental fact that learning models must generalize well outside the training set. Note that
871
+ there is no error in the FWF methodology, so this presents a different problem than in conventional
872
+ machine learning where the regularization can be controlled by penalty terms in the cost function.
873
+ In the FWF, generalization is controlled by the kernel size, and by the model order, the two hyper-
874
+ parameters in the design. It is easy to see that small kernel sizes yield a correntropy matrix that
875
+ approaches a scaled identity matrix, 𝑎𝐼. This is because when kernel sizes are small, correntropy
876
+ will peak when signals exactly match, and become very small when signals do not match. This
877
+ increases specificity in the training set and also simplifies conditioning of the 𝑉 matrix, but it
878
+ requires a large number of samples in the training set and a huge dynamic range in the computation
879
+ to avoid losing information in the higher lags.
880
+ Therefore, small kernel sizes limit the number of lags that can be used in practice to
881
+ represent the input space data correlations. Hence, in order to capture long time dependencies
882
+ amongst the lags in a stationary signal, we must use larger kernel sizes in ℋ𝐺. However, if the
883
+ kernel size is too large then the behavior of the correntropy function will approach the behavior of
884
+ the auto-correlation function i.e., we lose the specificity provided by the higher order moments of
885
+ the data PDF. The other drawback of employing larger number of lags is that the chances of ill-
886
+ conditioning in the correntropy matrix increase. Hence, these trade-offs mean that kernel size
887
+ selection and regularization of 𝑉 are vital for the performance of the FWF, and the kernel size
888
+ becomes the key parameter for generalization.
889
+
890
+ Regularization of the Correntropy Matrix
891
+ We concluded that larger kernel sizes are needed to preserve information over the lags of
892
+ the 𝑉 matrix. This means that 𝑉 will be more ill-conditioned, which can be quantified by the
893
+ matrix’s condition number. It is important to note that while regularization is helpful, we also need
894
+ to control the number of lags to obtain optimal performance. The regularization of the 𝑉 matrix is
895
+ depicted in equation (41). Our goal is to find a  such that the condition number of Vreg is
896
+ approximately equal to some desired condition number, which becomes a FWF hyper-parameter.
897
+
898
+ 𝑉𝑟𝑒𝑔 = 𝑉 + 𝜆𝐼; 𝜆 = 𝛾. min 𝐸𝑖𝑔𝑉𝑎𝑙𝑢𝑒 (𝑉) (41)
899
+
900
+ Using this framework, we found that condition numbers below 30 worked well, which is
901
+ quite restrictive, but can be expected because we expect tiny errors in prediction to make FWF
902
+ competitive with KAF approaches. These low condition numbers require a large amount of
903
+ regularization, which unfortunately does not utilize all the information in the 𝑉 matrix affecting
904
+ the accuracy of the FWF predictions.
905
+
906
+
907
+ Initial FWF Results: The Mackey-Glass Time Series
908
+
909
+ The Mackey-Glass (MG) times series is a chaotic time series, generated by
910
+
911
+ 𝑑𝑥(𝑡)
912
+ 𝑑𝑡
913
+ = −𝑏𝑥(𝑡) +
914
+ 𝑎𝑥(𝑡 − 𝜏)
915
+ 1 + 𝑥(𝑡 − 𝜏)10
916
+ The MG times series used in the following experiments was generated with b = 0.1, a = 0.2, and
917
+  = 30. Experiments testing the KLMS and KRLS kernel adaptive filters with this time series can
918
+ be found in [14].
919
+
920
+ One of the hyper-parameters of the FWF is number of lags (L). This defines the length of the
921
+ correlation time used to represent each sample, very similar to the Wiener model. Each sample is
922
+ represented by a vector of length L with the form [𝑥(𝑖), … 𝑥(𝑖 − 𝐿 − 1)] 𝑇. This is standard practice
923
+ for time series prediction. The second hyper-parameter is the kernel size of ℋ𝐺. To estimate the
924
+ dependence of performance on hyperparameters, the parameters are scanned and plotted with
925
+ training set data to obtain the performance surface of the FWFLM, with two different local model
926
+ orders (K = 5 and 15). We can see in Figure 1 that the two local model orders provide basically
927
+ the same results. The minimum is obtained around L = 7 delays, and the minimum trough is around
928
+  =  which is much larger than the corresponding KAF filters for the same time series. We
929
+ also see that the best error is on the order of 10-3 (log 10) which is better than the Wiener filter of
930
+ the same order for this data set (MSE = 0.013).
931
+
932
+
933
+ Figure 1. Error performance surface over the two FWF hyper-parameters (kernel size and number of
934
+ lags), estimated with two different local model orders.
935
+
936
+ Experiments with FWFFP and FWFLM
937
+ In this section, the performance of the FWF with both pre-imaging methods described
938
+ above is compared with two well-known KAF methods, kernel recursive least squares (KRLS)
939
+ and KLMS. Figure 2 compares the average test set MSE across 5-folds of cross validation. The
940
+ best kernel size from Figure 1 was employed ( =1.5). The figure shows performance with two
941
+
942
+ TrainingvsKSandLag,N=2000,K=5
943
+ 2.2
944
+ 2.4
945
+ Log Error
946
+ -2.6
947
+ -2.8
948
+ -3.0
949
+ 0.0
950
+ 0.5
951
+ 1.0
952
+ 5
953
+ 10
954
+ 15
955
+ 1.5
956
+ Lags
957
+ 20
958
+ 2.0
959
+ 25TrainingvsKSandLag,N=2000,K=15
960
+ -2.0
961
+ -2.2
962
+ Error
963
+ -2.4
964
+ Log
965
+ -2.6
966
+ -2.8
967
+ -3.0
968
+ 0.0
969
+ 0.5
970
+ 5
971
+ 1.0
972
+ 10
973
+ 15
974
+ 1.5
975
+ Lags
976
+ 20
977
+ 25
978
+ 2.0different values of K for the FWFLM. We also present results with K=1 for a direct comparison
979
+ with the FWFFP. The number of lags considered for FWFLM, was L = 7 the same as embedding for
980
+ KLMS, and KRLS. The performance for the FWFFP is the worst, and it improves slightly with the
981
+ number of lags, therefore the figures below show results with L=25. Notice that FWFLM with K=1
982
+ is much better than the fixed-point update and here rivals the performance for higher number of
983
+ local models. Notice that, as expected, there is no variation with the number of local models in the
984
+ FWFFP because the method uses an optimization to find the minimum, so the solution only depends
985
+ on L, , and the number of samples in the training set. The FWFLM approaches the performance of
986
+ KLMS, but it is far worse than KRL. Remember that the FWF was derived under a strict
987
+ stationarity assumption, which is not fulfilled by the MG time series. Therefore, this result is quite
988
+ reasonable, taking in consideration the FWF much smaller computation complexity.
989
+
990
+ Figure 2. Comparisons of predictions for two different selections of local models (K) as a function of the
991
+ number of samples in the training set. Asymptotic performance occurs after 1000 samples. For K=1
992
+ performance is much better than fixed point pre imaging. More models worsen the prediction results on
993
+ MG.
994
+
995
+ Noisy Mackey-Glass Prediction:
996
+ In this experiment the FWF with both pre-imaging methods, KLMS and KRLS are predicting the
997
+ MG time series, but with white Gaussian noise added to the input signal. Each algorithm is given
998
+ a noisy training and testing input, and the desired signal is the next time point 𝑥(𝑡 + 1) with no
999
+ added noise. White Gaussian noise with standard deviations of 0.01, 0.04, 0.1, and 0.2 were tested.
1000
+ Five-fold cross validation was used for each algorithm at each noise level. The best kernel size is
1001
+ shown for each algorithm. In general, FWFLM is better than KLMS and KRLS at higher noise
1002
+ levels. The number of training samples does not have a great effect on the final MSE. Again, the
1003
+ performance of FWFFP is evaluated at L = 25 while FWFLM use L = 5 and 7.
1004
+
1005
+ MackeyGlass:TestMSE,L=7,K=5
1006
+ 10-2
1007
+ 10-3
1008
+ TestMSE
1009
+ 10-4
1010
+ FWFLM,ks=1.5
1011
+ FWFFp,kS=1.0
1012
+ KLMS,ks=0.25
1013
+ KRLS,kS=0.25
1014
+ 10~5
1015
+ FWFLM,K=1
1016
+ 250
1017
+ 500
1018
+ 750
1019
+ 1000
1020
+ 1250
1021
+ 1500
1022
+ 1750
1023
+ 2000
1024
+ TrainingSamples (N)MackeyGlass:TestMSE,L=7K=15
1025
+ 10-2
1026
+
1027
+ 10-3
1028
+ TestMSE
1029
+ 10-4
1030
+ FWFLM,ks=1.5
1031
+ FWFFP,kS=1.0
1032
+ KLMS,kS=0.25
1033
+ KRLS,kS=0.25
1034
+ 10-5
1035
+ FWFLM,K=1
1036
+ 250
1037
+ 500
1038
+ 750
1039
+ 1000
1040
+ 1250
1041
+ 1500
1042
+ 1750
1043
+ 2000
1044
+ TrainingSamples(N)
1045
+ Figure 3. FWF has better robustness when noise is added to the time series, as we can expect from the use
1046
+ of multiple delays.
1047
+
1048
+ Lorenz Prediction:
1049
+ We decided to test the performance of the FWF in the prediction of a more complex chaotic
1050
+ dynamical system. The Lorenz system is a well-known system introduced in [32]. We use the x
1051
+ component of the Lorenz attractor and to make the problem harder, the model predicts 𝑥(𝑡 + 10)
1052
+ e.g. 10 samples ahead with the last L samples. A version of this experiment can be found in [13].
1053
+ Like the previous experiments, the FWFFP was evaluated at L = 30, which is larger than the other
1054
+ methods. The FWF
1055
+
1056
+ 𝐿𝑀
1057
+ outperforms KLMS for low number of lags. This difference shrinks as we
1058
+ consider more lags. As in the other experiments, FWFFP does not perform well when compared to
1059
+ the other methods. In the Lorenz system, FWFLM performs at the level or better than the KLMS.
1060
+ Notice that this time series is far from stationary.
1061
+
1062
+
1063
+ MackeyGlass:TestMSEvsNoiseVariance,L=7,K=5,N=1oo0
1064
+ 10-2
1065
+
1066
+ Test MSE
1067
+ 10-3
1068
+ FWFLM, kS=1.0
1069
+ 壬壬壬
1070
+ FWFp, ks=1.0
1071
+ KLMS, kS=0.25
1072
+ KRLS, kS=0.5
1073
+ 104
1074
+ 0.025
1075
+ 0.050
1076
+ 0.075
1077
+ 0.100
1078
+ 0.125
1079
+ 0.150
1080
+ 0.175
1081
+ 0.200
1082
+ Noise VarianceMackeyGlass:TestMSEvsNoiseVariance,L=7,K=5,N=2000
1083
+ 10-2
1084
+ Test MSE
1085
+ 103
1086
+
1087
+ FWFLM,kS=1.0
1088
+ 壬壬壬
1089
+ FWFp, ks=1.0
1090
+ KLMS,ks=0.25
1091
+ 10-4
1092
+ KRLS, kS=0.5
1093
+ 0.025
1094
+ 0.050
1095
+ 0.075
1096
+ 0.100
1097
+ 0.125
1098
+ 0.150
1099
+ 0.175
1100
+ 0.200
1101
+ Noise VarianceMackeyGlass:TestMSEvsNoiseVariance,L=5,K=5,N=1oo0
1102
+ Test MSE
1103
+ 102
1104
+
1105
+ FWFLM,ks=1.5
1106
+ 壬壬壬
1107
+ 103
1108
+ FWFfp,ks=1.0
1109
+ KLMS,ks=0.25
1110
+ KRLS,ks=0.25
1111
+ 0.025
1112
+ 0.050
1113
+ 0.075
1114
+ 0.100
1115
+ 0.125
1116
+ 0.150
1117
+ 0.175
1118
+ 0.200
1119
+ Noise VarianceMackeyGlass:TestMSEvsNoiseVariance,L=5,K=5,N=2000
1120
+ Test MSE
1121
+ 10~2
1122
+ FWFLM,ks=1.5
1123
+ 10-3
1124
+ 壬壬壬
1125
+ FWFfp,ks=1.0
1126
+ KLMS,ks=0.25
1127
+ KRLS,kS=0.25
1128
+ 0.025
1129
+ 0.050
1130
+ 0.075
1131
+ 0.100
1132
+ 0.125
1133
+ 0.150
1134
+ 0.175
1135
+ 0.200
1136
+ Noise Variance
1137
+
1138
+ Figure 4. Comparison of performance in the Lorenz time series prediction. For this time series FWFLM
1139
+ performs better than KLMS but by a small margin.
1140
+
1141
+ Further Analysis on Mackey-Glass sample by sample predictions
1142
+ Figures 5 shows the training and testing predictions compared to the desired with L = 7, kernel
1143
+ size of 1.5, and two different local models K = 5 and 100. In both, the prediction is worse in the
1144
+ parts of the Mackey-Glass series that are more non-stationary (the small ripple across the signal),
1145
+ but the smoothing effect of using many local models is clearly visible. This explains why K=1
1146
+ does such a good job in this signal. This makes sense since when the model is more localized, the
1147
+ dependency on the stationarity constraint is reduced.
1148
+
1149
+
1150
+
1151
+ Lorenz:TestMSE.L=10.K=5
1152
+ 100
1153
+
1154
+
1155
+
1156
+
1157
+ 10-1
1158
+ TestMSE
1159
+ 10-2
1160
+ FWFLM, ks=1.5
1161
+ 10-3
1162
+ 壬壬壬
1163
+ FWFFp, kS=1.5
1164
+ KLMS,ks=0.25
1165
+ KRLS,ks=0.25
1166
+ 250
1167
+ 500
1168
+ 750
1169
+ 1000
1170
+ 1250
1171
+ 1500
1172
+ 1750
1173
+ 2000
1174
+ Training Samples (N)Lorenz:TestMSE,L=15,K=5
1175
+ 100
1176
+
1177
+
1178
+
1179
+
1180
+ 10-1
1181
+ TestMSE
1182
+ 10-2
1183
+ FWFLM,ks=0.1
1184
+ FWFFP,ks=1.5
1185
+ 10-3
1186
+ KLMS,kS=0.25
1187
+ KRLS,kS=0.5
1188
+ 250
1189
+ 500
1190
+ 750
1191
+ 1000
1192
+ 1250
1193
+ 1500
1194
+ 1750
1195
+ 2000
1196
+ TrainingSamples(N)Lorenz: Test MSE, L = 7,K =5
1197
+ 100
1198
+
1199
+
1200
+
1201
+
1202
+ T
1203
+ 10-1
1204
+ Test MSE
1205
+
1206
+
1207
+ 10-2
1208
+ FWFLM,ks=0.1
1209
+ FWFFp, kS=1.5
1210
+ 10-3
1211
+ KLMS,ks=0.1
1212
+ KRLS, ks=0.25
1213
+ 250
1214
+ 500
1215
+ 750
1216
+ 1000
1217
+ 1250
1218
+ 1500
1219
+ 1750
1220
+ 2000
1221
+ Training Samples (N)TestingPredictionsvsDesired
1222
+ 0.4
1223
+ 0.2
1224
+ 0.0
1225
+ -0.2
1226
+ -0.4-
1227
+ Desired
1228
+ -0.6
1229
+ Predictions
1230
+ 0
1231
+ 25
1232
+ 50
1233
+ 75
1234
+ 100
1235
+ 125
1236
+ 150
1237
+ 175
1238
+ 200TestingPredictionsvsDesired
1239
+ 0.4
1240
+ 0.2
1241
+ 0.0
1242
+ -0.2
1243
+ -0.4
1244
+ Desired
1245
+ -0.6
1246
+ Predictions
1247
+ 0
1248
+ 25
1249
+ 50
1250
+ 75
1251
+ 100
1252
+ 125
1253
+ 150
1254
+ 175
1255
+ 200Figure 5. Sample by sample comparisons of predictions with the FWFLM. Most of the errors occur in the
1256
+ time varying ripple superimposed in the signal. Notice that less local models perform better.
1257
+
1258
+ Further Prediction Analysis on Lorenz:
1259
+ Figures 6 shows predictions made by the FWFLM on the Lorenz time series described in the above
1260
+ section. The hyperparameters here are L = 7,  = 0.1, with two local models, of order K = 5 and K
1261
+ = 100. It is obvious that when the number of local models increases, samples too far away from
1262
+ the optimal solution will average out the response of the FWF, degrading the prediction. It is also
1263
+ interesting that the errors at the bottom of the signal ae not smooth, showing that there are not
1264
+ enough good neighbors in the training set.
1265
+
1266
+ Figure 6. Averaging effect in the quality of the prediction when too many local models are employed
1267
+ (K=5 left, versus K=100 on the right).
1268
+
1269
+
1270
+ F. Conclusions
1271
+
1272
+ The main objective of this paper is to find a principled way to include the input data statistics in
1273
+ the inner product of a universal RKHS. Recall that KAFs use a data independent kernel (e.g.
1274
+ Gaussian) to project the data to define in the RKHS, the functional that implements the optimal
1275
+ model for the application. At test time for online applications, these functionals grow linearly with
1276
+ the number of samples, which is impractical. In practice, sparcification techniques must be used.
1277
+ The hypothesis is that a data dependent kernel will substitute the current KAF methodologies and
1278
+ simplify a lot the functional form to achieve an equally performing model. Parzen inspired this
1279
+ extension by showing that the ACF of a stationary random process is a positive definite kernel
1280
+ where optimal statistics models can be implemented. Once in this RKHS, a simple orthogonal
1281
+ projection is sufficient to find the optimal solution, unlike the incremental solution of KAF.
1282
+ However, the ACF kernel spans the input data space, so the RKHS solution is still a linear model
1283
+ with complexity higher than the Wiener filter. With this observation, the goal of this paper can be
1284
+ stated as extending Parzen’s work to universal models.
1285
+
1286
+ The paper shows how to accomplish this task by defining the positive definite correntropy kernel
1287
+ as the inner product in a novel RKHS ℋ𝑣. The advantage is that functionals in ℋ𝑣 represent
1288
+ universal mapping functionals (for infinite number of lags), extending Parzen’s result. The
1289
+ dimension of ℋ𝑣 is controlled by the number of delays of the autocorrentropy function, so this
1290
+ space is vastly different from the RKHS created by the Gaussian function, with the promise of
1291
+
1292
+ TestingPredictionsvs Desired
1293
+ 2.0
1294
+ 1.5
1295
+ 1.0
1296
+ 0.5
1297
+ 0.0
1298
+ -0.5
1299
+ -1.0
1300
+ Desired
1301
+ -1.5
1302
+ Predictions
1303
+ 0
1304
+ 25
1305
+ 50
1306
+ 75
1307
+ 100
1308
+ 125
1309
+ 150
1310
+ 175
1311
+ 200TestingPredictionsvsDesired
1312
+ 2.0
1313
+ 1.5
1314
+ 1.0
1315
+ 0.5
1316
+ 0.0
1317
+ 0.5
1318
+ -1.0
1319
+ Desired
1320
+ 1.5
1321
+ Predictions
1322
+ 0
1323
+ 25
1324
+ 50
1325
+ 75
1326
+ 100
1327
+ 125
1328
+ 150
1329
+ 175
1330
+ 200decreasing the computational complexity of the implementation at test time. The paper presents
1331
+ the analytical solution of the FWF in ℋ𝐺, but we were unable to find a way to use the kernel trick
1332
+ to obtain the input space filter. The difficulty is that ℋ𝐺 is not congruent with L2. Two pre-imaging
1333
+ techniques are proposed to implement the FWF in the input space, which are both approximated
1334
+ solutions, but they differ in the method and in the computation. FWFFP uses a fixed-point iteration
1335
+ to find the best solution to evaluate the functional in ℋ𝐺, but since one single Gaussian is unable
1336
+ to model well a sum of Gaussian at different centers, more sophisticated optimization methods are
1337
+ needed for good performance. The training set is never used in this pre-imaging technique. The
1338
+ FWFLM on the other hand uses the training set data to find pairs of samples that approach the best
1339
+ solution in the training set. This requires a search across the training set to find the best sample
1340
+ pairs to match the target response, but the method avoids the difficulty of FWFFP fixed-point
1341
+ iteration by averaging local models obtained in the training set. The simplest of the FWFLM with
1342
+ K = 1 may be applicable for many nonlinear applications. The FWFLM was found experimentally
1343
+ more accurate than the linear Wiener filter and is on par with the KLMS performance, but it is still
1344
+ substantially worse than KRLS. As an advantage, the FWF filter is far more efficient
1345
+ computationally than KAF implementations and uses less memory. Th FWFFP is of the same
1346
+ complexity as the Wiener filter but requires a recursive optimization at each iteration, which is not
1347
+ very expensive computationally. The FWFLM requires a search at the training time to match pairs
1348
+ of samples to find the pre image, and at test time, a search to find the closest training sample to the
1349
+ current test input (which is O(log N) if the input training samples are ordered by amplitude).
1350
+
1351
+ Hence, we conclude that this paper does not solve all the issues and should be considered as a first
1352
+ attempt to develop a new class of universal mappers in RKHS that integrate the data statistics in
1353
+ the kernel. But the novelty of the technique brings fresh ideas to statistical signal processing that
1354
+ need also to be further investigated. For instance, the FWF never employs the error, which is
1355
+ critical in KAFs. Effectively, FWF only works with the minimum norm (orthogonal) projection
1356
+ in RKHS, so it is “model agnostic”: the important step is to create a RKHS that includes the data
1357
+ statistics (in the form of its autocorrentropy function) in the inner product. Of course, this
1358
+ construction requires “parameters” that are the ACF values of the input data and the CCF with the
1359
+ target, and the number of lags, just like least squares. After this construction, the FWF just finds
1360
+ the best local projection in the optimal RKHS functional centered at the current test sample.
1361
+ Therefore, there is no model nor parameters as in conventional optimal filtering and neural
1362
+ networks, just memory of the training set. In a sense, this approach resembles how brains encode
1363
+ and react to the physical world; neurons across life encode the structure and similarities given by
1364
+ the laws of physics, and they react very quickly to implement their response to stimulus, which
1365
+ means that the response must be very easy to compute. The advantage and disadvantages of the
1366
+ new approach are not fully understood at this time. Finally, we should focus on ways to avoid the
1367
+ loss of congruence between the universal RKHS and the input space. The correntropy RKHS has
1368
+ the very nice property that embeds the statistics of the data in the inner product, but there may be
1369
+ other kernels that maintain congruence with the input space, exemplified by our work and others
1370
+ on embedding PDFs in RKHS [33]. Another interesting aspect is that the local linear models seem
1371
+ to go beyond the strict stationarity assumption that supports theoretically the method. More work
1372
+ is required to study further this aspect.
1373
+
1374
+ Acknowledgements: This work was partially supported by ONR grants N00014-21-1-2295 and
1375
+ N00014-21-1-2345
1376
+
1377
+
1378
+ Appendix: Properties of the AutoCorrentropy Function
1379
+
1380
+ The existence of ℋ𝐺 opens new possibilities to extend the work of Parzen on the covariance RKHS
1381
+ that is defined on the Hilbert space of the data. Recall that the autocorrelation function of a time
1382
+ series is a similarity measure quantified by the expected value of the product between two random
1383
+ variables 𝑋(𝑡𝑖), 𝑋(𝑡𝑗) at two different time intervals 𝑡𝑖, 𝑡𝑗 given by their joint distribution. As such
1384
+ it only measures the first moment (the mean) of the joint PDF over time. The first question is how
1385
+ to modify the autocorrelation function, as a similarity measure in such a way that it captures all
1386
+ the statistical information contained in the joint distribution.
1387
+
1388
+ Going Beyond the Autocorrelation Function for Similarity
1389
+ The most general measure of similarity in the joint space of two r.v. 𝑋, 𝑌 is the cross
1390
+ covariance operator [26], defined by the bilinear form
1391
+
1392
+ 𝒞𝑠,𝑡(𝑓, 𝑔) = 𝐸 [𝑓(𝑋)𝑔(𝑌)] − 𝐸 [𝑓(𝑋)]. 𝐸 [𝑔(𝑌)] (A1)
1393
+
1394
+ The covariance operator has been estimated in RKHS ℋ𝐺 as the matrix Σ𝑥𝑠𝑥𝑡 of size equal to
1395
+ number of samples such that
1396
+
1397
+ 〈𝑓, Σ𝑥𝑡𝑥𝑠𝑔〉 ℋ𝐺 = 𝒞𝑠,𝑡(𝑓, 𝑔) (A2)
1398
+
1399
+ where f and g are functional in RKHS that map the samples from the r.v. 𝑥𝑡 and 𝑥𝑠. But this
1400
+ treatment might be overly complicated for a stationary random process. Firstly, the marginals have
1401
+ the same density; secondly, only a scalar similarity over marginals is needed, and the mean
1402
+ embedding operator (20) can be estimated in ℋ𝑣; and thirdly because time establishes an a priori
1403
+ order on the r.v. such that a single variable (the delay) can be employed, instead of pairwise
1404
+ samples. Therefore, we submit that it is not necessary to estimate the full covariance operator for
1405
+ this application, which is computationally very intensive.
1406
+
1407
+ Measures of Similarity in the Joint Space of Densities
1408
+
1409
+ Definition: Given a strictly stationary time series {𝑋𝑡,𝑡 ∈ 𝑇} the equality in probability density
1410
+ between two marginals at s and t i.e., 𝑃(|𝑋(𝑠) − 𝑋(𝑡)| < 𝜀) for an infinitesimally small 𝜀, defines
1411
+ a measure of similarity that can be estimated in ℋ𝐺.
1412
+ In the joint space of 𝑝𝑠,𝑡(𝑥𝑡,𝑥𝑠) we can define a radial marginal as the bisector of the joint
1413
+ space. The density over the line 𝑥𝑡 = 𝑥𝑠 approximates
1414
+ 𝑃(|𝑋(𝑠)−𝑋(𝑡)|<𝜀)
1415
+ 𝜀
1416
+ , which can be estimated as
1417
+
1418
+ 𝐸𝑝𝑠,𝑡[𝛿(𝑋(𝑠) − 𝑋(𝑡))] (A3)
1419
+
1420
+ where 𝛿(. ) is a delta function and we assume that the joint pdf over the lags is smooth along the
1421
+ bisector of the joint space is non-zero. To simplify, the Dirac calculus is used to illustrate the
1422
+ concept.
1423
+ The expected value in (A3) can be written
1424
+
1425
+
1426
+ 𝐸𝑝𝑠,𝑡[𝛿(𝑋(𝑠) − 𝑋(𝑡))] = ∬ 𝛿(𝑥𝑠 − 𝑥𝑡)𝑝𝑠,𝑡(𝑥𝑠,𝑥𝑡)𝑑𝑥𝑠𝑑𝑥𝑡 (A4)
1427
+
1428
+ The meaning of (A3) is quite clear: it is integrating the area under the joint density along the line
1429
+ 𝑥𝑡 = 𝑥𝑠. Therefore, we can write (A4) as a single integral
1430
+
1431
+ 𝐸𝑝𝑠,𝑡[𝛿(𝑋(𝑠) − 𝑋(𝑡))] = ∫ 𝑝𝑠,𝑡(𝑥, 𝑥)𝑑𝑥
1432
+ (A5)
1433
+
1434
+ This reduction to a single integral can be expected by the definition of conditional PDF (see
1435
+ below), and it simplifies the calculation because of the statistical embedding in ℋ𝑣.
1436
+ Note however, that this procedure needs to be repeated for every lag L of interest i.e., it
1437
+ should be written as 𝑡 = 𝑠 − 𝑙, 𝑙 = 0,… 𝐿. Fortunately, the maximum lag L is dictated by the
1438
+ embedding dimension of the real system that produced the time series, which is far smaller than
1439
+ the number of samples we collect from the world. In engineering applications this order can be
1440
+ estimated by Takens’ embedding theory [27], or more practically by selecting the first minimum
1441
+ of the time series autocorrelation function. This computation is much simpler than the covariance
1442
+ matrix in (A1) because we are reducing the matrix to a vector u of size L.
1443
+
1444
+ Correntropy functional as an approximation to the bisector integral
1445
+ An empirical estimator of the natural measure of similarity defined above is given by its
1446
+ inner product (20). It turns out it has been coined in [16] the correntropy functional, which reads
1447
+
1448
+ 𝑉𝜎(𝑡, 𝑠) = 𝐸𝑝𝑡,𝑠[𝐺𝜎(𝑥𝑡 − 𝑥𝑠)] (A6)
1449
+
1450
+ where G(.) is the Gaussian function with bandwidth . As discussed above, correntropy is a mean
1451
+ embedding of the joint pdf of a pair of samples. Rewriting (A6) using the definition of the expected
1452
+ value over the joint distribution, we obtain
1453
+
1454
+ 𝑉𝜎(𝑡, 𝑠) = ∬ 𝐺𝜎(𝑥𝑡 − 𝑥𝑠)𝑝𝑡,𝑠(𝑥𝑡,𝑥𝑠)𝑑𝑥𝑡𝑑𝑥𝑠 = 𝐸[𝐺𝜎(𝑥𝑡 − 𝑥𝑠)] (A7)
1455
+
1456
+ for strictly stationary processes. The best way to interpret this relation is to realize that when 𝑥𝑡 =
1457
+ 𝑥𝑠, i.e. along the bisector of the joint space, the Gaussian kernel function is maximum, i.e.
1458
+ correntropy weights the joint space of samples with Gaussian kernels placed along the bisector of
1459
+ the first quadrant [16]. When the kernel size  approaches 0, it approximates a delta function
1460
+ 𝛿(𝑥𝑡 − 𝑥𝑠), so we obtain an approximation to (A3). Moreover, correntropy is easily computed
1461
+ from samples too. Collect a segment of data of size N from a time series. From (A7) an estimator
1462
+ of correntropy is simply
1463
+
1464
+ 𝑉𝜎(𝜏) =
1465
+ 1
1466
+ 𝑁−𝜏+1 ∑
1467
+ 𝐺𝜎(𝑥𝑖 − 𝑥𝑖−𝜏)
1468
+ 𝑁
1469
+ 𝑖=𝑚
1470
+ (A8)
1471
+
1472
+
1473
+ Hence, correntropy effectively estimates a radial marginal density obtained by integrating
1474
+ along the bisector from samples with linear complexity. This is unsuspected, because we are
1475
+ quantifying similarity in the structure of a time series beyond what we can achieve with the mean
1476
+ value of the product of samples in the autocorrelation. Note that here the kernel size should be
1477
+ made small for fine temporal resolution, but there is a compromise, because if we use a very small
1478
+
1479
+ kernel size, the number of samples N must be sufficiently large to get sufficient number of samples
1480
+ around the bisector of the joint space for accurate statistical estimation.
1481
+
1482
+
1483
+ The Relation between 𝑃(𝑥𝑡1 − 𝑥𝑡2) and the Conditional Density in the Joint Space
1484
+ The Dirac calculus is a short cut and here we provide a more precise derivation of the value of the
1485
+ radial margin as a conditional distribution. As is well known the definition of conditional
1486
+ distribution of the r.v. X given Y is
1487
+ 𝑓(𝑥|𝑦) = 𝑓(𝑥, 𝑦)
1488
+ 𝑓(𝑦) = 𝑓(𝑥|𝑌 = 𝑦0) = 𝑓(𝑥, 𝑌 = 𝑦0)
1489
+ 𝑓(𝑌 = 𝑦0)
1490
+ The meaning of this conditional is that we pick a value for y = y0 and compute the area under the
1491
+ joint pdf at y0. Here we are interested in a radial marginal, which is the bisector of the joint space
1492
+ given by the equality in probability i.e., Y=X, and would like to see how to compute it. Let us start
1493
+ with the distribution function and write the conditional probability as
1494
+
1495
+ 𝐹(𝑥|(𝑥 − 𝛿) < 𝑌 ≤ 𝑥) = 𝑃(𝑋 ≤ 𝑥|(𝑥 − 𝛿) < 𝑌 ≤ 𝑥) =
1496
+ 𝑃(𝑋 ≤ 𝑥,(𝑥 − 𝛿) < 𝑌 ≤ 𝑥)
1497
+ 𝑃((𝑥 − 𝛿) < 𝑌 ≤ 𝑥)
1498
+ = lim
1499
+ 𝛿→0
1500
+
1501
+
1502
+ 𝑓𝑋,𝑌(𝑢, 𝑣)𝑑𝑢𝑑𝑣
1503
+ 𝑥
1504
+ −∞
1505
+ 𝑥
1506
+ 𝑥−𝛿
1507
+
1508
+ 𝑓𝑌(𝑣)𝑑𝑣
1509
+ 𝑥
1510
+ 𝑥−𝛿
1511
+ = 𝑓𝑋,𝑌(𝑥, 𝑥)
1512
+ 𝑓𝑌(𝑥)
1513
+ So, when the concept of the radial margin is employed as a conditional probability, we see that
1514
+ there is a normalizing factor that guarantees that the result adds to one as required for probabilities,
1515
+ but the numerator is exactly what the Dirac calculus quantifies in (A4).
1516
+
1517
+ Approximating 𝑃(𝑥𝑡1 − 𝑥𝑡2) with Correntropy
1518
+ lim
1519
+ 𝜎→0 𝑣𝜎 (𝑡1, 𝑡2) = ∬ 𝛿(𝑥𝑡1 − 𝑥𝑡2)𝑝𝑝𝑡1𝑝𝑡2(𝑥𝑡1,𝑥𝑡2)𝑑𝑥𝑡1𝑑𝑥𝑡2 = ∫ 𝑝𝑝𝑡1𝑝𝑡2(𝑥𝑡1,𝑥𝑡1)𝑑𝑥𝑡1 (A9)
1520
+
1521
+
1522
+
1523
+ In practice, the kernel size is always finite so correntropy does not estimate the probability density
1524
+ over a line in the joint space but the probability on a “Gaussian shaped tunnel” of width  along
1525
+ the radial direction 𝑥𝑡1 = 𝑥𝑡2, which will be approximated by a parallelepiped of width 2 with  ~
1526
+ 1.25. We can write
1527
+
1528
+ 𝑃(|𝑥𝑡1 − 𝑥𝑡2| < 𝜀) = ∫
1529
+
1530
+ 𝑝𝑝𝑡1𝑝𝑡2(𝑥𝑡1, 𝑥𝑡2)𝑑𝑥𝑡1𝑑𝑥𝑡2
1531
+ 𝑥𝑡1+𝜀
1532
+ 𝑥𝑡2=𝑥𝑡1−𝜀
1533
+
1534
+ 𝑥𝑡1=−∞
1535
+ (A10)
1536
+
1537
+ If  is small and 𝑝𝑝𝑡1𝑝𝑡2(𝑥𝑡1,𝑥𝑡2) is continuous at every point along the 𝑥𝑡1 = 𝑥𝑡2 line, the function
1538
+ value does not change a lot along 𝑥(𝑡2) within the interval [𝑥𝑡1 − 𝜀, 𝑥𝑡1 + 𝜀] for any fixed 𝑥(𝑡1).
1539
+ Thus
1540
+
1541
+ 𝑃(|𝑥𝑡1 − 𝑥𝑡2| < 𝜀) ≈ 2𝜀 ∫
1542
+ 𝑝𝑝𝑡1𝑝𝑡2(𝑥𝑡1,𝑥𝑡1)𝑑𝑥𝑡1
1543
+
1544
+ 𝑥(𝑡1)=−∞
1545
+ = 2𝜀𝑣𝜎(𝑡1,𝑡2) (A11)
1546
+
1547
+ And finally, we have
1548
+ 𝑣𝜎(𝑡1,𝑡2) =
1549
+ 𝑃(|𝑥𝑡1−𝑥𝑡2|<𝜀)
1550
+ 2𝜀
1551
+ (A12)
1552
+
1553
+
1554
+ which shows that correntropy estimates indeed the probability density of the event 𝑃(𝑥𝑡1 = 𝑥𝑡2)
1555
+ in the joint sample space for small kernel sizes.
1556
+
1557
+
1558
+ References
1559
+
1560
+ 1. Wiener, Norbert (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time
1561
+ Series. New York: Wiley.
1562
+ 2. N. Wiener, E. Hopf, "Ueber eine Klasse singulärer Integralgleichungen" Sitzungber.
1563
+ Akad. Wiss. Berlin (1931) pp. 696–706
1564
+ 3. Wiener, Norbert (1930). "Generalized Harmonic Analysis". Acta Mathematica. 55: 117-
1565
+ 258
1566
+ 4. E. Parzen, "Statistical inference on time series by Hilbert space methods," Tech. Report
1567
+ 23, Stat. Dept., Stanford Univ., 1959.
1568
+ 5. N. Aronszajn, "The theory of reproducing kernels and their applications," Cambridge
1569
+ Philos. Soc. Proc., vol. 39, pp. 133-153, 1943.
1570
+ 6. Wahba, Grace, Spline Models for Observational Data, SIAM, 1990
1571
+ 7. T. Kailath and H. Weinert, “An RKHS approach to detection and estimation problems–
1572
+ part II: Gaussian signal detection,” IEEE Trans. Inf. Theory, vol. IT-21, no. 1, pp. 15–23,
1573
+ Jan. 1975.
1574
+ 8. T. Kailath and D. Duttweiler, “An RKHS approach to detection and estimation
1575
+ problems–part III: Generalized innovations representations and a likelihood-ratio
1576
+ formula,” IEEE Trans. Inf. Theory, vol. IT-18, no. 6, pp. 730–745, Nov. 1972.
1577
+ 9. D. Duttweiler and T. Kailath, “RKHS approach to detection and estimation problems–
1578
+ part IV: Non-gaussian detection,” IEEE Trans. Inf. Theory, vol. IT-19, no. 1, pp. 19–28,
1579
+ Jan. 1973.
1580
+ 10. D. Duttweiler and T. Kailath,, “RKHS approach to detection and estimation problems–
1581
+ part V: Parameter estimation,” IEEE Trans. Inf. Theory, vol. IT-19, no. 1, pp. 29–37, Jan.
1582
+ 1973.
1583
+ 11. V. N. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998
1584
+ 12. M. G. Genton, “Classes of kernels for machine learning: A statistics perspective,” J.
1585
+ Mach. Learn. Res., vol. 2, pp. 299–312, 2001
1586
+ 13. Liu W., Haykin S., Principe J., “Kernel Adaptive Filtering”, Wiley 2010
1587
+ 14. Principe J., Chen B., “Universal Approximation with Convex Optimization: Gimmick or
1588
+ Reality”, IEEE Computation Intelligent Magazine, vol. 10, no. 2, pp. 68-77, 2015
1589
+ 15. Santamaria I., Pokharel P., Principe J., “Generalized Correlation Function: Definition,
1590
+ Properties and Application to Blind Equalization”, IEEE Trans. Signal Proc. vol 54, no 6,
1591
+ pp 2187- 2186, 2006
1592
+ 16. Liu W., Pokharel P., Principe J., “Correntropy: Properties and Applications in Non
1593
+ Gaussian Signal Processing”, IEEE Trans. Sig. Proc., vol 55; # 11, pages 5286-5298,
1594
+ 2007
1595
+ 17. Schölkopf, Bernhard; Smola, Alex; Müller, Klaus-Robert. "Nonlinear Component
1596
+ Analysis as a Kernel Eigenvalue Problem". Neural Computation. 10 (5): 1299–1319,
1597
+ 1998.
1598
+
1599
+ 18. S. Mika, B. Schölkopf, A. Smola, K. Müller, M. Scholz, and G. Rätsch, “Kernel pca and
1600
+ de-noising in feature spaces,” in Proceedings of the NIPS II. Cambridge, MA, USA: MIT
1601
+ Press, 1999, pp. 536–542
1602
+ 19. I. Constantin, C. Richard, R. Lengelle and L. Soufflet, "Regularized kernel-based Wiener
1603
+ filtering. Application to magnetoencephalographic signals denoising," Proceedings.
1604
+ (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal
1605
+ Processing, 2005., 2005, pp. iv/289-iv/292 Vol. 4
1606
+ 20. Pokharel P., Xu J., Erdogmus D., Principe J., “A Closed Form Solution for a Nonlinear
1607
+ Wiener Filter”, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulose,
1608
+ France
1609
+ 21. Parzen E. “An approach to time series analysis,” Ann. Math. Stat., vol. 32, no. 4, pp.
1610
+ 951–989, Dec. 1961
1611
+ 22. Loève, Michel (1955). Probability Theory. Princeton, New Jersey, USA: D Van
1612
+ Nostrand.
1613
+ 23. Kosambi, D. D. (1943), "Statistics in Function Space", Journal of the Indian
1614
+ Mathematical Society, 7: 76–88,
1615
+ 24. B. Scholkopf and A. Smola, Learning with kernels. Cambridge, MA: MIT Press, 2002
1616
+ 25. Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal
1617
+ Processing, Volume 56, Issue 2, Page(s):543 - 554, 2008.
1618
+ 26. Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
1619
+ Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research,
1620
+ 13(Mar):723–773, 2012
1621
+ 27. F. Takens (1981). "Detecting strange attractors in turbulence". In D. A. Rand and L.-S.
1622
+ Young (ed.). Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol.
1623
+ 898. Springer-Verlag. pp. 366–381
1624
+ 28. Principe J., Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives,
1625
+ Springer 2010
1626
+ 29. Qin Z., Chen B, Zheng N., Principe J., “Augmented Space Linear Models”, IEEE Trans.
1627
+ Signal Proc., vol 68, 2724 – 2738, 2020
1628
+ 30. Chen B., Zhao P., Zhu P., Principe J., Quantized Kernel Least Mean Square Algorithm.
1629
+ IEEE Trans. Neural Netw. Learning Syst. 23(1): 22-32 (2012)
1630
+ 31. Martinsson P., Rokhlin V., Tygert M., “A Fast Algorithm for the Inversion of General
1631
+ Toeplitz Matrices”, Computers and Mathematics with Applications 50 (2005) 741-752
1632
+ 32. Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the
1633
+ Atmospheric Sciences. 20 (2): 130–141.
1634
+ 33. Xu J., Paiva A., Park I., Principe J., “A Reproducing Kernel Hilbert space framework for
1635
+ information-theoretic learning", IEEE Trans. Signal Processing Volume 56, Issue 12,
1636
+ Page(s):5891 - 5902, 2008
1637
+
1638
+
1639
+
1640
+
7dAyT4oBgHgl3EQfcvf_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tE0T4oBgHgl3EQffQCV/content/2301.02402v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:980e5b0242f6d90d6fb4536ed1a49c4a0ce191ece08606cd1ad4cd33f3e9057a
3
+ size 23861722
8tE0T4oBgHgl3EQffgDC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d7f7bc30b82f0ba3736237f5d5d1564c88aba0c20b07db47428985f7f799441
3
+ size 138383
8tFST4oBgHgl3EQfaTh3/content/tmp_files/2301.13795v1.pdf.txt ADDED
@@ -0,0 +1,1409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tunable BCS-BEC crossover, reentrant, and hidden quantum phase transitions in
2
+ two-band superconductors with tunable valence and conduction bands
3
+ Giovanni Midei1 and Andrea Perali2
4
+ 1School of Science and Technology, Physics Division, University of Camerino,
5
+ Via Madonna delle Carceri, 9B, 62032 - Camerino (MC), Italy
6
+ 2School of Pharmacy, Physics Unit, University of Camerino,
7
+ Via Madonna delle Carceri, 9B, 62032 - Camerino (MC), Italy
8
+ Two-band electronic structures with a valence and a conduction band separated by a tunable en-
9
+ ergy gap and with pairing of electrons in different channels can be relevant to investigate the proper-
10
+ ties of two-dimensional multiband superconductors and electron-hole superfluids, as monolayer FeSe,
11
+ recently discovered superconducting bilayer graphene, and double-bilayer graphene electron-hole sys-
12
+ tems. This electronic configuration allows also to study the coexistence of superconductivity and
13
+ charge density waves in connection with underdoped cuprates and transition metal dichalcogenides.
14
+ By using a mean-field approach to study the system above mentioned, we have obtained numerical
15
+ results for superconducting gaps, chemical potential, condensate fractions, coherence lengths, and
16
+ superconducting mean-field critical temperature, considering a tunable band gap and different filling
17
+ of the conduction band, for parametric choice of the pairing interactions. By tuning these quantities,
18
+ the electrons redistribute among valence and conduction band in a complex way, leading to a new
19
+ physics with respect to single-band superconductors, such as density induced and band-selective
20
+ BCS-BEC crossover, quantum phase transitions, and hidden criticalities. At finite temperature,
21
+ this phenomenon is also responsible for the non-monotonic behavior of the superconducting gaps
22
+ resulting in a superconducting-normal state reentrant transition, without the need of disorder or
23
+ magnetic effects.
24
+ I.
25
+ INTRODUCTION
26
+ Multi-band and multi-gap superconductivity is a com-
27
+ plex quantum coherent phenomenon with peculiar fea-
28
+ tures that cannot be found in single-band and single-
29
+ gap superconductors [1]. The increased number of de-
30
+ grees of freedom in the condensate state allows for novel
31
+ quantum effects which are unattainable otherwise, for in-
32
+ stance enriching the physics of the BCS-BEC crossover
33
+ [2–5]. Proximity to the crossover regime of the BCS-BEC
34
+ crossover in multi-band superconductors having deep and
35
+ shallow bands can determine a notable increase of su-
36
+ perconducting gaps and critical temperature (Tc) [6–9],
37
+ associated with an higher mean-field Tc, together with
38
+ optimal conditions for the screening of superconduct-
39
+ ing fluctuations [10–12]. Furthermore, the interplay of
40
+ low-dimensional two-band systems allows for screening
41
+ of fluctuations in systems composed by coupled quasi-2D
42
+ bands or even in the vicinity of a van Hove singularity
43
+ (e.g., in the case of quasi-1D), enabling shrinking of the
44
+ pseudo-gap phase and robust high-critical temperatures
45
+ [13–15].
46
+ Motivated by high temperature superconductivity
47
+ and anomalous metallic state properties in underdoped
48
+ cuprates, interest has grown in the pseudogap physics,
49
+ in which a blurred gap persists in the normal state near
50
+ the Fermi level. There are different models and explana-
51
+ tions for this pseudogap, the simplest one being a smooth
52
+ crossover from the BCS regime towards a Bose-Einstein
53
+ condensation regime in which bound pairs form first at
54
+ higher temperatures, and then below a critical temper-
55
+ ature Tc they condense, with the pseudogap being the
56
+ excitation energy of the quasi-molecular pairs. Another
57
+ explanation relevant for underdoped cuprates is the pres-
58
+ ence of other mechanisms different from pair fluctuations,
59
+ such as charge density waves (CDWs) [16–19] and their
60
+ fluctuations that can modify the energy spectrum with
61
+ opening of (pseudo)gaps and at the same time mediate
62
+ Cooper pairing. Thus, systems in which CDWs and su-
63
+ perconductivity coexist are of primary interest to study
64
+ the BCS-BEC crossover when an energy gap separates
65
+ the electronic spectrum in two bands, determining a va-
66
+ lence and a conduction band.
67
+ In addition to underdoped cuprates, an interesting ex-
68
+ ample is given by the transition metal dichalcogenide
69
+ (TMD) family, MX2, where M = Ti, Nb, Mo, Ta and X
70
+ = S, Se, which exhibits a rich interplay between super-
71
+ conductivity and CDW order [20]. In these materials, su-
72
+ perconductivity occurs in an environment of pre-existing
73
+ CDW order [21, 22], making them an ideal platform to
74
+ study many-body ground states and competing phases
75
+ in the 2D regime. The relationship between CDW and
76
+ superconductivity in such systems is still under investi-
77
+ gation [23, 24]. In general, their mutual interaction is
78
+ competitive, but evidence to the contrary, indicating a
79
+ cooperative interplay, has also been reported in angle-
80
+ resolved photoemission spectroscopy (ARPES) studies
81
+ [22]. Among them, bulk Niobium diselenide (2H-NbSe2)
82
+ undergoes a CDW distortion at T=30 K and becomes su-
83
+ perconducting at 7 K. References [25, 26] reported that
84
+ Tc lowers to 1.9 K in 2H-NbSe2 single-layers and that the
85
+ CDW measured in the bulk is preserved. Theoretical sup-
86
+ port is given by Chao-Sheng Lian et al. [27]: they demon-
87
+ strate enhanced superconductivity in the CDW state of
88
+ monolayer tantalium diselenide (TaSe2) with DFT cal-
89
+ culations. In contrast with 2H-NbSe2, they report that
90
+ arXiv:2301.13795v1 [cond-mat.supr-con] 31 Jan 2023
91
+
92
+ 2
93
+ as TaSe2 is thinned to the monolayer limit, its super-
94
+ conducting critical temperature rises from 0.14 K in the
95
+ bulk to 2 K in the monolayer. Another appealing super-
96
+ conducting material is the monolayer FeSe grown on a
97
+ SrTiO3 substrate, which exhibits a huge increase of Tc
98
+ up to 100 K [28] and it is characterized by a valence and
99
+ a conduction band structure near the Fermi level. Fur-
100
+ thermore, very recently 2D superconductivity has been
101
+ found in bilayer graphene systems, in which conduction
102
+ and valence bands are separated by a small energy band-
103
+ gap (0 ÷ 100 meV) that can be precisely tuned by an
104
+ external electric field [29] (for a review see [30]). Cou-
105
+ pling a monolayer of WSe2 with bilayer graphene has
106
+ been found to enhance superconductivity by an order of
107
+ magnitude in Tc and superconductivity emerges already
108
+ at zero magnetic field [31].
109
+ Finally, it turns out that
110
+ the two-band superconducting system considered in this
111
+ work is in close correspondence with two-band electron-
112
+ hole superfluids in double bilayer graphene [32].
113
+ Therefore, the growing experimental realization of 2D
114
+ superconductors with valence and conduction bands sep-
115
+ arated by a tunable energy gap and electron-hole super-
116
+ fluidity in multilayer systems motivated us to investigate
117
+ the BCS-BEC crossover in this kind of systems. The de-
118
+ tailed analysis of this configuration is lacking in the liter-
119
+ ature to the best of our knowledge. A pioneering work on
120
+ a related system with valence and conduction parabolic
121
+ bands has been done by Nozi`eres and Pistolesi [33] to
122
+ study the phase transition from a semiconducting to a
123
+ superconducting state and the consequent (pseudo)gap
124
+ opening, in the specific case of equal pairing strengths
125
+ for all interaction channels considered. In our work we
126
+ consider a superconductor with two tight-binding bands
127
+ with different intra-band and pair-exchange couplings, in
128
+ order to probe the possibility to have coexisting Cooper
129
+ pairs of different average sizes [34] in the valence and con-
130
+ duction band. However, for most of multi-band supercon-
131
+ ductors the tuning of intra-band and pair-exchange inter-
132
+ actions is rather challenging and their properties cannot
133
+ be studied easily in a continuous way across the BCS-
134
+ BEC crossover. As shown in this work, a different way
135
+ to explore the BCS-BEC crossover in such systems can be
136
+ achieved by tuning the energy gap between the valence
137
+ and the conduction band. In fact, since the number of
138
+ particles in the single bands is not conserved, when the
139
+ energy band gap is modified the number of holes and of
140
+ electrons forming Cooper pair respectively in the valence
141
+ and in the conduction bands changes, allowing for the
142
+ occurrence of a density induced multi-band BCS-BEC
143
+ crossover [35].
144
+ This redistribution of charges between
145
+ the valence and the conduction band leads also to novel
146
+ and interesting quantum phase transitions (QPTs) from
147
+ a superconducting to an insulating state, or hidden crit-
148
+ icalities evidenced by the analysis of the order parame-
149
+ ter coherence lengths [36, 37]. At finite temperature, a
150
+ new type of reentrant superconducting to normal state
151
+ transition has been also found and characterized. The
152
+ results reported and discussed in this work demonstrate
153
+ the richness of the proposed valence and conduction band
154
+ configuration to generate and tune new types of crossover
155
+ phenomena and quantum phases.
156
+ The manuscript is organized as follow. In section II
157
+ we describe the model for the physical system considered
158
+ and the theoretical approach for the evaluation of the
159
+ superconducting state properties. In section III we report
160
+ our results. The conclusions of our work will be reported
161
+ in Section IV.
162
+ II.
163
+ MODEL SYSTEM AND THEORETICAL
164
+ APPROACH
165
+ We consider a two-dimensional (2D) two-band super-
166
+ conductor with a valence and a conduction electronic
167
+ band in a square lattice. The valence and the conduction
168
+ bands are modelled by a tight-binding dispersion given,
169
+ respectively, by Eqs. (1) and (2):
170
+ ε1(k) = 2t[cos(kxa) + cos(kya)] − 8t − Eg
171
+ (1)
172
+ ε2(k) = −2t[cos(kxa) + cos(kya)]
173
+ (2)
174
+ where t is the nearest neighbour hopping parameter as-
175
+ sumed to be the same for both bands, a is the lattice
176
+ parameter and the wave-vectors belong to the first Bril-
177
+ louin zone − π
178
+ a ≤ kx,y ≤ π
179
+ a; Eg is the energy band-gap
180
+ between the conduction and the valence band. The band
181
+ dispersions are reported in Fig. 1. In order to study the
182
+ superconducting state properties of our system, we as-
183
+ sume that Cooper pairs formation is due to an attractive
184
+ interaction between opposite spin electrons.
185
+ The two-
186
+ particle interaction has been approximated by a separa-
187
+ ble potential Vij(k, k′) with an energy cutoff ω0, which
188
+ is given by:
189
+ Vij(k, k′) = −V 0
190
+ ijΘ
191
+
192
+ ω0 − |ξi(k)|
193
+
194
+ Θ
195
+
196
+ ω0 − |ξi(k′)|
197
+
198
+ (3)
199
+ FIG. 1. Electronic band structure of the two-band 2D system
200
+ considered in this work. Eg is the energy gap between the
201
+ valence (i = 1) and the conduction (i = 2) band.
202
+
203
+ CONDUCTION BAND
204
+ 82 = - 2t(cos(akx) + cos(ak,)
205
+ E
206
+ VALENCEBAND
207
+ 81 = 2t(cos(akx) + cos(ak,) - 8t - Eg3
208
+ where V 0
209
+ ij > 0 is the strength of the potential in the
210
+ different pairing channels and i, j label the bands. V 0
211
+ 11
212
+ and V 0
213
+ 22 are the strength of the intra-band pairing inter-
214
+ actions (Cooper pairs are created and destroyed in the
215
+ same band). V 0
216
+ 12 and V 0
217
+ 21 are the strength of the pair-
218
+ exchange interactions (Cooper pairs are created in one
219
+ band and destroyed in the other band, and vice versa),
220
+ so that superconductivity in one band can induce super-
221
+ conductivity in the other band. The same energy cutoff
222
+ ω0 of the interaction for intra-band and pair-exchange
223
+ terms is considered. Through out this work, ω0 is con-
224
+ sidered an energy scale larger than the total bandwidth
225
+ of our system to model an effective pairing of electronic
226
+ origin, or a contact attractive potential. This is a key as-
227
+ sumption to make possible for the system to explore the
228
+ entire BCS-BEC crossover [38]. The terms corresponding
229
+ to Cooper pairs forming from electrons associated with
230
+ different bands (inter-band or cross-band pairing) are not
231
+ considered in this work (see [39]). ξi(k) = εi(k) − µ in
232
+ Eq. (3) is the energy dispersion for the band i with re-
233
+ spect to the chemical potential µ. The superconducting
234
+ state of the system and its evolution with relevant sys-
235
+ tem parameters is studied at a mean-field level.
236
+ The
237
+ BCS equations for the superconducting gaps have to be
238
+ coupled with the density equation which fixes the chemi-
239
+ cal potential, since the self-consistent renormalization of
240
+ the chemical potential is a key feature to account for the
241
+ BCS-BEC crossover physics.
242
+ Zero and finite tempera-
243
+ ture cases have been considered in this work. The BCS
244
+ equations for the superconducting gaps in the two-band
245
+ system at a given temperature T are
246
+ ∆1(k) = − 1
247
+ 2Ω
248
+
249
+ k′
250
+
251
+ V11(k, k′)∆1(k′)
252
+ E1(k′) tanh E1(k′)
253
+ 2T
254
+ + V12(k, k′)∆2(k′)
255
+ E2(k′) tanh E2(k′)
256
+ 2T
257
+
258
+ (4)
259
+ ∆2(k) = − 1
260
+ 2Ω
261
+
262
+ k′
263
+
264
+ V22(k, k′)∆2(k′)
265
+ E2(k′) tanh E2(k′)
266
+ 2T
267
+ + V21(k, k′)∆1(k′)
268
+ E1(k′) tanh E1(k′)
269
+ 2T
270
+
271
+ (5)
272
+ where Ei(k) =
273
+
274
+ ξi(k)2 + ∆i(k)2 is the dispersion of
275
+ single-particle excitations in the superconducting state
276
+ and Ω is the area occupied by the 2D system. ℏ = 1 and
277
+ kB = 1 throughout the manuscript. The superconduct-
278
+ ing gaps have the same energy cutoff of the separable
279
+ interaction:
280
+ ∆i(k) = ∆iΘ
281
+
282
+ ω0 − |ξi(k)|
283
+
284
+ (6)
285
+ The total electron density of the two-band system is fixed
286
+ and given by the sum of the single-band densities, ntot =
287
+ n1 + n2, that can vary instead. The electronic density ni
288
+ in the band (i) at temperature T is given by,
289
+ ni = 2
290
+
291
+
292
+ k
293
+
294
+ vi(k)2f
295
+
296
+ − Ei(k)
297
+
298
+ + ui(k)2f
299
+
300
+ Ei(k)
301
+ ��
302
+ (7)
303
+ where f(E) is the Fermi-Dirac distribution function. The
304
+ BCS coherence weights vi(k) and ui(k) are:
305
+ vi(k)2 = 1
306
+ 2
307
+
308
+ 1 −
309
+ ξi(k)
310
+
311
+ ξi(k)2 + ∆i(k)2
312
+
313
+ (8)
314
+ ui(k)2 = 1 − vi(k)2
315
+ (9)
316
+ For the valence band the definition of the condensate
317
+ fraction is the ratio of the number of Cooper pairs in the
318
+ valence band to the number of holes in the valence band,
319
+ αh
320
+ 1 =
321
+
322
+ k
323
+
324
+ u1(k)v1(k)
325
+ �2
326
+
327
+ k u1(k)2
328
+ (10)
329
+ For the conduction band instead, the expression already
330
+ used in the one-band case is generalized to the number
331
+ of Cooper pairs divided by the total number of carriers
332
+ in the conduction band
333
+ αe
334
+ 2 =
335
+
336
+ k
337
+
338
+ u2(k)v2(k)
339
+ �2
340
+
341
+ k v2(k)2
342
+ (11)
343
+ The intra-pair coherence length ξpairi has the same form
344
+ for both the valence and the conduction bands, that is
345
+ ξ2
346
+ pairi =
347
+
348
+ k
349
+ ��∇
350
+
351
+ ui(k)vi(k)
352
+ ���2
353
+
354
+ k
355
+
356
+ ui(k)vi(k)
357
+ �2
358
+ (12)
359
+ Regarding the superconducting order parameter coher-
360
+ ence length, two characteristic length scales in the spatial
361
+ behavior of superconducting fluctuations are expected,
362
+ since the system is made up by two partial condensates.
363
+ When the pair-exchange interaction is not present, these
364
+ two lengths are simply the order parameter coherence
365
+ lengths of the condensates of the valence ξc1 and of the
366
+ conduction ξc2 band. When the pair-exchange interac-
367
+ tions is different from zero, one has to deal with coupled
368
+ condensates, and these length scales cannot be attributed
369
+ to the single bands involved, describing instead the col-
370
+ lective features of the whole two-component condensate.
371
+ The pair-exchange interactions mix the superconducting
372
+ order parameters of the initially non-interacting bands,
373
+ that acquire mixed character. The soft, or critical, co-
374
+ herence length ξs diverges at the phase transition point,
375
+ while the rigid, or non-critical, coherence length ξr re-
376
+ mains finite. Following the approach in [37], these char-
377
+ acteristic length scales are given by
378
+ ξ2
379
+ s,r = G(T) ±
380
+
381
+ G2(T) − 4K(T)γ(T)
382
+ 2K(T)
383
+ (13)
384
+
385
+ 4
386
+ where ξs corresponds to the solution with the plus and
387
+ ξr to the one with the minus sign and
388
+ G(T) = (V 0
389
+ 12)2�
390
+ ˜g1(T)β2(T) + ˜g2(T)β1(T)
391
+
392
+ +
393
+
394
+ 1 − V 0
395
+ 11˜g1(T)
396
+
397
+ V 0
398
+ 22β2(T)+
399
+
400
+ 1 − V 0
401
+ 22˜g2(T)
402
+
403
+ V 0
404
+ 11β1(T)
405
+ (14)
406
+ K(T) =
407
+
408
+ 1 − V 0
409
+ 11˜g1(T)
410
+ ��
411
+ 1 − V 0
412
+ 22˜g2(T)
413
+
414
+
415
+ (V 0
416
+ 12)2˜g1(T)˜g2(T)
417
+ (15)
418
+ γ(T) =
419
+
420
+ V 0
421
+ 11V 0
422
+ 22 − (V 0
423
+ 12)2�
424
+ β1(T)β2(T)
425
+ (16)
426
+ ˜gi(T) = gi(T) − 3νi(T)
427
+
428
+ ∆i(T)
429
+ �2
430
+ (17)
431
+ gi(T) =
432
+ 1
433
+ 2V
434
+
435
+ k
436
+ 1
437
+ ξi(k) tanh ξi(k)
438
+ 2T
439
+ (18)
440
+ νi(T) =
441
+ − 1
442
+ 2V
443
+
444
+ k
445
+
446
+ ∂|∆i|2
447
+
448
+ 1
449
+ Ei(k) tanh ξi(k)
450
+ 2T
451
+
452
+ ∆i=0
453
+ (19)
454
+ βi(T) = − 1
455
+ 4V
456
+
457
+ k
458
+ ∂2
459
+ ∂q2
460
+ l
461
+
462
+ 1
463
+ ξi(k) + ξi(k − q)
464
+ ×
465
+
466
+ tanh ξi(k)
467
+ 2T
468
+ + tanh ξi(k − q)
469
+ 2T
470
+ ��
471
+ q=0
472
+ (20)
473
+ where l refers to the Cartesian axis in Eq. (20).
474
+ In order to describe the physics of the quantum phase
475
+ transition, the values of the coherence lengths at zero
476
+ temperature have been approximated by choosing a low
477
+ enough temperature so that the superconducting gaps
478
+ and the chemical potential retain the same behavior of
479
+ the zero temperature case. The energies are normalized
480
+ in units of the hopping t and the dimensionless couplings
481
+ λii are defined as λii = NV 0
482
+ ii, where N = 1/4πa2t is
483
+ the density of states at the top / bottom of the valence /
484
+ conduction band, that coincide since the density of states
485
+ is not modified by the concavity of the band. The intra-
486
+ pair coherence lengths ξpairi are normalized using the
487
+ average inter-particle distance in the normal state li =
488
+ 1/√πni, where ni is the density in the band i.
489
+ This
490
+ quantities differ by a factor of
491
+
492
+ 2 by the inverse of the
493
+ respective Fermi wave-vector KF i. The soft ξs and the
494
+ rigid ξr coherence lengths are normalized with respect to
495
+ the lattice constant a, since in the two-band case they
496
+ cannot be attributed to any of the two bands.
497
+ III.
498
+ RESULTS
499
+ In this section we study the properties of the super-
500
+ conducting ground state and give a full characteriza-
501
+ tion of the BCS–BEC crossover in the two-band system
502
+ considered in this work. First, we study the zero tem-
503
+ perature superconducting gaps in the conduction (∆2)
504
+ and in the valence (∆1) band through the BCS-BEC
505
+ crossover, for the case of unbalanced intra-band couplings
506
+ (λ11 ̸= λ22). The results are shown in Fig. 2, in which
507
+ the superconducting gaps are reported as functions of
508
+ the energy band-gap Eg, for different values of the total
509
+ density a2ntot and for different pair-exchange couplings
510
+ λ12 = λ21.
511
+ In the case of an empty conduction band
512
+ 0
513
+ 0.004
514
+ 0.008
515
+ 0.012
516
+ 0.016
517
+ 1.58 1.59 1.6 1.61 1.62
518
+ 0
519
+ 0.6
520
+ 1.2
521
+ 1.8
522
+ 2.4
523
+ 3
524
+ (a)
525
+ Δ2 / t
526
+ (b)
527
+ a2 ntot=2.00
528
+ a2 ntot=2.07
529
+ a2 ntot=2.26
530
+ a2 ntot=2.35
531
+ 0
532
+ 0.2
533
+ 0.4
534
+ 0.6
535
+ 0.8
536
+ 0
537
+ 0.4 0.8 1.2
538
+ 1.6
539
+ 2
540
+ (c)
541
+ Δ1 / t
542
+ Eg / t
543
+ 0
544
+ 0.4 0.8 1.2
545
+ 1.6
546
+ 2
547
+ (d)
548
+ Eg / t
549
+ QCP
550
+ QCP
551
+ QCP
552
+ QCP
553
+ FIG. 2. Superconducting gaps ∆2/t opening in the conduc-
554
+ tion band (a)-(b) and in the valence band ∆1/t (c)-(d) as
555
+ functions of the band-gap energy Eg/t for an energy cutoff
556
+ of the attractive interactions ω0/t = 20. The intra-band cou-
557
+ plings are λ11 = 0.23 and λ22 = 0.75.
558
+ The pair-exchange
559
+ couplings are (λ12 = λ21): (a),(c) (0.001), (b),(d) (0.1). The
560
+ superconducting gaps are reported for different values of the
561
+ total density a2ntot.
562
+ and a completely filled valence band, corresponding to
563
+ a2ntot = 2.00, a quantum phase transition (QPT) to the
564
+ normal state takes place at a specific quantum critical
565
+ point (QCP), that occurs when Eg = E∗
566
+ g. When the car-
567
+ rier concentration in the conduction band is non-zero, the
568
+ phase transition becomes a crossover and superconduc-
569
+ tivity extends for all values of the band gap Eg. However,
570
+ the system presents different behaviors if the value of the
571
+ band gap is smaller or larger of E∗
572
+ g. For finite doping,
573
+ the valence band contributes very weakly to the super-
574
+ conducting state of the system for Eg > E∗
575
+ g.
576
+ In this
577
+ regime the bands are almost decoupled and the super-
578
+ conducting gaps does not depend on Eg.
579
+ However, in
580
+ the case of Fig. 2(c) since the pair-exchange couplings
581
+ are weak the conduction band cannot sustain the super-
582
+ conductivity in the valence band and ∆1 is suppressed.
583
+ Thus, continuously tuning Eg to higher values will result
584
+ in ∆1 << ∆2 so that there is only one significant super-
585
+
586
+ 5
587
+ conducting gap and one significant condensate. In the
588
+ other case instead (Fig.
589
+ 2(d)), the pair-exchange cou-
590
+ plings are stronger and ∆1 is not much suppressed with
591
+ respect to its initial value, since in these cases the su-
592
+ perconductivity in the valence band is sustained by the
593
+ condensate of the conduction band.
594
+ Another interesting feature of this system is that ∆1 is
595
+ enhanced for lower values of the total density as long as
596
+ Eg < E∗
597
+ g. When Eg > E∗
598
+ g instead, the opposite situ-
599
+ ation occurs.
600
+ The value of E∗
601
+ g at which this behavior
602
+ takes place depends on the level of filling of the conduc-
603
+ tion band, shifting to the left when higher total densities
604
+ are considered, and on the pair-exchange couplings that
605
+ shifts E∗
606
+ g to the right when larger interactions strength
607
+ are considered. The reason behind the behavior of the
608
+ 0
609
+ 0.1
610
+ 0.2
611
+ 0.3
612
+ 0.4
613
+ (a)
614
+ a2 n2
615
+ e
616
+ (b)
617
+ 0
618
+ 0.05
619
+ 0.1
620
+ 0.15
621
+ 0.2
622
+ 0
623
+ 0.4 0.8 1.2
624
+ 1.6
625
+ 2
626
+ (c)
627
+ a2 n1
628
+ h
629
+ Eg / t
630
+ 0
631
+ 0.4 0.8
632
+ 1.2
633
+ 1.6
634
+ 2
635
+ (d)
636
+ Eg / t
637
+ a2 ntot=2.00
638
+ a2 ntot=2.07
639
+ a2 ntot=2.26
640
+ a2 ntot=2.35
641
+ FIG. 3. Electron density a2ne
642
+ 2 (a)-(b) in the conduction band
643
+ and hole density a2nh
644
+ 1 (c)-(d) in the valence band as functions
645
+ of the band-gap Eg/t for different values of the total density
646
+ a2ntot, normalized to the area of the unit cell. ω0/t = 20.
647
+ The intra-band couplings are λ11 = 0.23 and λ22 = 0.75.
648
+ The pair-exchange couplings are (λ12 = λ21): (a),(c) (0.001),
649
+ (b),(d) (0.1).
650
+ superconducting gaps can be found by looking at the den-
651
+ sities of particles forming Cooper pairs, which are elec-
652
+ trons in the conduction band and holes in the valence
653
+ band.
654
+ While the total density is fixed, the density in
655
+ each band can vary. In this way, the density of particles
656
+ in the conduction band n2 is no longer controlled only by
657
+ doping as for a single band system, there are instead ad-
658
+ ditional particles excited from the valence band. Never-
659
+ theless, for larger values of Eg the gain in the interaction
660
+ energy due to superconductivity is much smaller than
661
+ the kinetic energy cost for transferring electrons from the
662
+ valence band to the conduction band, so that very few
663
+ electrons (compared to the total density of electrons in
664
+ the valence band) are excited into the conduction band.
665
+ This behavior is shown in Fig. 3. As one can see for
666
+ a2ntot = 2.00 the hole density in the valence band and
667
+ the electron density in the conduction band coincide and
668
+ are monotonically decreasing, both of them vanishing at
669
+ the QCP Eg = E∗
670
+ g. This is a sign that superconductivity
671
+ is due to holes in the valence band and to electrons in
672
+ the conduction band. In the other cases the hole density
673
+ in the valence band is almost zero for Eg > E∗
674
+ g, while the
675
+ electron density in the conduction band is approaching
676
+ the asymptotic value given by the total density minus the
677
+ density of the filled valence band a2n2 = a2ntot − 2.00.
678
+ -6.2
679
+ -5.7
680
+ -5.2
681
+ -4.7
682
+ -4.2
683
+ -3.7
684
+ 0
685
+ 0.4 0.8
686
+ 1.2
687
+ 1.6
688
+ 2
689
+ (a)
690
+ µ / t
691
+ Eg / t
692
+ 0
693
+ 0.4 0.8
694
+ 1.2
695
+ 1.6
696
+ 2
697
+ (b)
698
+ Eg / t
699
+ a2 ntot=2.00
700
+ a2 ntot=2.07
701
+ a2 ntot=2.26
702
+ a2 ntot=2.35
703
+ FIG. 4. Chemical potential µ/t as a function of the band-
704
+ gap Eg/t for ω0/t = 20.
705
+ The pair-exchange couplings are
706
+ λ11 = 0.23 and λ22 = 0.75. The pair-exchange couplings are
707
+ (λ12 = λ21): (a) (0.001),(b) (0.1). The chemical potential µ
708
+ is reported for different total densities a2ntot. The black and
709
+ the magenta dashed lines correspond to the bottom of the
710
+ conduction band and the top of the valence band, respectively.
711
+ In Fig. 4 the chemical potential is reported as a function
712
+ of Eg, for different total densities a2ntot and for different
713
+ pair-exchange couplings. For higher values of the total
714
+ density and of the pair-exchange couplings the chemical
715
+ potential shift toward higher energies, due to the larger
716
+ number of electrons in the conduction band. In particu-
717
+ lar, when Eg is increased, in the low density regime the
718
+ chemical potential starts deep inside the valence band
719
+ and then enters the gap between the two bands, mean-
720
+ ing that the condensate in the valence band spans a wide
721
+ region of the BCS-BEC crossover, while the conduction
722
+ band is always located in the BEC side of the crossover
723
+ regime or in the BEC regime, depending on whether the
724
+ chemical potential lies inside the conduction band or not.
725
+ When Eg > E∗
726
+ g the chemical potential acquires a flat de-
727
+ pendence and is not modified by Eg, in a similar way to
728
+ what happens to the superconducting gaps and the den-
729
+ sities.
730
+ In Fig.
731
+ 5 the condensate fraction is shown as a func-
732
+ tion of Eg, for different a2ntot and for different pair-
733
+ exchange couplings. The usual choice of the boundaries
734
+ between the different pairing regimes has been adopted:
735
+ for α < 0.2 the superconducting state is in the weak-
736
+ coupling BCS regime; for 0.2 < α < 0.8 the system is
737
+ in the crossover regime; for α > 0.8 the system is in
738
+ the strong-coupling BEC regime. Consistently with the
739
+ information obtained from the chemical potential, in the
740
+ low density regime the condensate in the valence band ex-
741
+ plores the entire BCS-BEC crossover by varying Eg. For
742
+ the considered pair-exchange interactions in (Fig. 5(c))
743
+
744
+ 6
745
+ 0
746
+ 0.2
747
+ 0.4
748
+ 0.6
749
+ 0.8
750
+ 1
751
+ (a)
752
+ α2
753
+ e
754
+ (b)
755
+ a2 ntot=2.00
756
+ a2 ntot=2.07
757
+ a2 ntot=2.26
758
+ a2 ntot=2.35
759
+ 0
760
+ 0.2
761
+ 0.4
762
+ 0.6
763
+ 0.8
764
+ 0
765
+ 0.4 0.8
766
+ 1.2
767
+ 1.6
768
+ 2
769
+ (c)
770
+ α1
771
+ h
772
+ Eg / t
773
+ 0
774
+ 0.4 0.8
775
+ 1.2
776
+ 1.6
777
+ 2
778
+ (d)
779
+ Eg / t
780
+ Crossover
781
+ BEC
782
+ BCS
783
+ BEC
784
+ Crossover
785
+ BCS
786
+ BEC
787
+ Crossover
788
+ BCS
789
+ BCS
790
+ Crossover
791
+ BEC
792
+ FIG. 5. Condensate fractions in the conduction band αe
793
+ 2 (a)-
794
+ (b) and in the valence band αh
795
+ 1 (c)-(d) as functions of the
796
+ band-gap Eg/t for ω0/t = 20. The intra-band couplings are
797
+ λ11 = 0.23 and λ22 = 0.75. The pair-exchange couplings are
798
+ (λ12 = λ21): (a),(c) (0.001), (b),(d) (0.1). The condensate
799
+ fractions are reported for different total densities a2ntot. Thin
800
+ grey dashed lines correspond to α = 0.2, 0.8 from bottom to
801
+ top.
802
+ the valence band condensate is in the BCS regime for
803
+ small Eg, while for larger pair-exchange interactions (Fig.
804
+ 5(d)) is in the crossover regime. When the energy gap or
805
+ the total density increases, the valence band condensate
806
+ enters the BEC regime, with the hole condensate fraction
807
+ αh
808
+ 1 approaching unity, indicating that the remaining few
809
+ holes are all in the condensate. The situation in the con-
810
+ duction band is different, since due to the strong intra-
811
+ band coupling the condensate is always located in the
812
+ BEC side of the crossover regime or in the BEC regime.
813
+ In the case a2ntot = 2.00 both the condensate fractions
814
+ suddenly drop to zero when Eg = E∗
815
+ g due to the quantum
816
+ phase transition.
817
+ In Fig. 6 the intra-pair coherence length is reported as a
818
+ function of Eg, for different a2ntot and for different pair-
819
+ exchange couplings.
820
+ Since for low densities and small
821
+ pair-exchange couplings the valence band condensate is
822
+ in the BCS regime (6(a)) when Eg is small, ξpair1 assumes
823
+ initially larger values with respect to the average inter-
824
+ particle distance l1. For larger Eg the system enters the
825
+ BEC regime and ξpair1 becomes much smaller than the
826
+ average inter-particle distance. The valence band con-
827
+ densate goes from the crossover to the BEC regime in a
828
+ small range of band gap values. This behavior is observed
829
+ also for larger values of the total density. The conduction
830
+ band instead, due to the strong intra-band coupling re-
831
+ tains a small value of the intra-pair coherence length with
832
+ respect to the the average inter-particle distance l2 for all
833
+ the considered values of the system density. In this way
834
+ we found Cooper pairs of different size coexisting in the
835
+ system for low density and low pair-exchange couplings
836
+ 0
837
+ 0.1
838
+ 0.2
839
+ 0.3
840
+ (a)
841
+ ξpair2 / l2
842
+ (b)
843
+ 0.5
844
+ 1
845
+ 1.5
846
+ 2
847
+ 0
848
+ 0.4 0.8 1.2
849
+ 1.6
850
+ 2
851
+ (c)
852
+ ξpair1 / l1
853
+ Eg / t
854
+ 0
855
+ 0.4 0.8 1.2
856
+ 1.6
857
+ 2
858
+ (d)
859
+ Eg / t
860
+ a2 ntot=2.00
861
+ a2 ntot=2.07
862
+ a2 ntot=2.26
863
+ a2 ntot=2.35
864
+ FIG. 6. Intra-pair coherence length ξpair2/l2 for the Cooper
865
+ pairs of the conduction band (a)-(b) and intra-pair coherence
866
+ length ξpair1/l1 for the Cooper pairs of the valence band (c)-
867
+ (d) as functions of the band-gap Eg/t for ω0/t = 20. The
868
+ intra-band couplings are λ11 = 0.23 and λ22 = 0.75. The pair-
869
+ exchange couplings are (λ12 = λ21): (a),(c) (0.001), (b),(d)
870
+ (0.1). The intra-pair coherence lengths ξpairi/li are reported
871
+ for different a2ntot.
872
+ values, in the regime of small Eg. For the zero doping
873
+ case the intra-pair coherence length is defined only for
874
+ Eg < E∗
875
+ g, since in this regime the system is not super-
876
+ conducting and a intra-pair coherence length cannot be
877
+ defined. The fact that the intra-pair coherence length is
878
+ approaching zero at the QCP in the BEC regime is dif-
879
+ ferent from Ref. [34], where giant Cooper pairs are found
880
+ in the vicinity of the QCP in the BCS side. In this case
881
+ instead, what we have found is equivalent to the finite-
882
+ density to zero-density QCP of tightly bound molecules.
883
+ Namely, near the present QCP in the BEC side the pair
884
+ size is so small that pairs behave as point-like bosons and
885
+ the system can be described by its bosonic counterpart
886
+ [40].
887
+ In Fig. 7 the order parameter coherence coherence length
888
+ is reported as a function of Eg, for different a2ntot and for
889
+ different pair-exchange couplings. In the case a2ntot =
890
+ 2.00 the soft or critical coherence length ξs diverges when
891
+ the band gap reaches the critical value Eg = E∗
892
+ g, since
893
+ the system undergoes a quantum phase transition to the
894
+ insulating state. In the other cases a2ntot ̸= 2.00, the soft
895
+ coherence length ξs is not diverging, since no quantum
896
+ phase transition occurs in the system for any Eg. In par-
897
+ ticular, in the cases of a2ntot = 2.07 and a2ntot = 2.26 the
898
+ soft coherence length ξs shows a maximum in correspon-
899
+ dence of the respective Eg = E∗
900
+ g, showing its memory
901
+ about the quantum phase transition of the valence band
902
+ condensate, which takes place when the pair-exchange
903
+ interactions are absent. The increase of λ12 = λ21 sup-
904
+ presses the maximum, as shown in Figs. 7(a) and (b),
905
+ since the band-condensates become more coupled. In the
906
+
907
+ 7
908
+ 0
909
+ 2
910
+ 4
911
+ 6
912
+ (a)
913
+ ξs / a
914
+ (b)
915
+ a2 ntot=2.00
916
+ a2 ntot=2.07
917
+ a2 ntot=2.26
918
+ a2 ntot=2.35
919
+ 0
920
+ 0.2
921
+ 0.4
922
+ 0.6
923
+ 0.8
924
+ 1
925
+ 1.2
926
+ 0
927
+ 0.4
928
+ 0.8
929
+ 1.2
930
+ 1.6
931
+ (c)
932
+ ξr / a
933
+ Eg / t
934
+ 0
935
+ 0.4
936
+ 0.8
937
+ 1.2
938
+ 1.6
939
+ (d)
940
+ Eg / t
941
+ HC
942
+ QPT
943
+ QPT
944
+ HC
945
+ HC
946
+ HC
947
+ HC
948
+ HC
949
+ FIG. 7.
950
+ Soft ξs (a)-(b) and rigid ξr (c)-(d) order parame-
951
+ ter coherence length, normalized to the lattice constant a, as
952
+ functions of the band-gap Eg/t between the two bands at tem-
953
+ perature T/t = 0.00065 and for ω0/t = 20. The intra-band
954
+ couplings are λ11 = 0.23 and λ22 = 0.75. The pair-exchange
955
+ couplings are (λ12 = λ21): (a),(c) (0.001), (b),(d) (0.03). The
956
+ coherence lengths ξs,r are reported for different values of the
957
+ total density a2ntot. In the case a2ntot = 2.00 (orange dashed
958
+ line) ξr has been rescaled by a factor of 7 (c) and 4.5 (d) to
959
+ make the plot more visible.
960
+ case of a2ntot = 2.35 instead, since the valence band
961
+ is never superconducting for any Eg when the band-
962
+ condensates are decoupled, there is no quantum phase
963
+ transition and no peak. The rigid coherence length ξr in-
964
+ stead remains finite for all Eg and for all a2ntot. Anyway,
965
+ we find the memory of the quantum phase transition that
966
+ takes place when the conduction band is empty and the
967
+ valence band is filled (anntot = 2.00). In this case in fact,
968
+ also the conduction band returns to the normal state at
969
+ Eg = E∗
970
+ g. Indeed, for zero pair-exchange couplings, the
971
+ rigid coherence length ξr reduces to the coherence length
972
+ of the conduction band ξ2. Even though for finite pair-
973
+ exchange coupling the coherence length is non-diverging,
974
+ it encodes the memory of the quantum phase transition
975
+ of the conduction band. Also the maximum value of the
976
+ rigid coherence length ξr is suppressed by the increase of
977
+ λ12 = λ21 in this case, as shown in Figs. 7(c) and (d).
978
+ We consider now finite temperature effects on the critical
979
+ energy band gap for the case of no doping. The super-
980
+ conducting gaps as functions of temperature for different
981
+ band gaps are reported in Fig. 8. The superconducting
982
+ gaps present a non-monotonic behavior, that is very dif-
983
+ ferent from the temperature dependence of the gaps in
984
+ conventional superconductors. The strong enhancement
985
+ of ∆2 at finite temperature is due to the thermal excita-
986
+ tion of the electrons from the valence band to the con-
987
+ duction band. This behavior becomes more pronounced
988
+ for larger Eg, especially in the case of Fig. 8(c) in which
989
+ the system is initially in the normal state for tempera-
990
+ tures close to zero, and then becomes superconducting for
991
+ 0
992
+ 0.5
993
+ 1
994
+ 1.5
995
+ 2
996
+ 2.5
997
+ (a)
998
+ (b)
999
+ 0
1000
+ 0.2
1001
+ 0.4
1002
+ 0.6
1003
+ 0.8
1004
+ 1
1005
+ (c)
1006
+ Δ / t
1007
+ (d)
1008
+ 0
1009
+ 0.1
1010
+ 0.2
1011
+ 0.3
1012
+ 0.4
1013
+ 0
1014
+ 0.2
1015
+ 0.4
1016
+ 0.6
1017
+ 0.8
1018
+ 1
1019
+ (e)
1020
+ T / Tc
1021
+ 0
1022
+ 0.2
1023
+ 0.4
1024
+ 0.6
1025
+ 0.8
1026
+ 1
1027
+ (f)
1028
+ T / Tc
1029
+ Eg/t = 0
1030
+ Eg/t = 2
1031
+ Eg/t = 3
1032
+ NS
1033
+ SC
1034
+ Δ2
1035
+ Δ2
1036
+ Δ2
1037
+ Δ1
1038
+ Δ1
1039
+ Δ1
1040
+ Δ1
1041
+ Δ1
1042
+ Δ1
1043
+ Δ2
1044
+ Δ2
1045
+ Δ2
1046
+ NS
1047
+ NS
1048
+ NS
1049
+ SC
1050
+ FIG. 8. Superconducting gaps ∆2/t opening in the conduc-
1051
+ tion band and in the valence band ∆1/t as functions of tem-
1052
+ perature T, normalized with respect to the critical tempera-
1053
+ ture Tc, for a2ntot = 2.00. The pair-exchange couplings are
1054
+ (λ12 = λ21): (a), (c), (e) (0.03), (b), (d), (f) (0.1).
1055
+ larger temperatures. This superconducting-normal state
1056
+ reentrant transition that we have found in our two-band
1057
+ system is based on a different mechanism with respect
1058
+ to the reentrant transitions observed in superconductors
1059
+ containing magnetic elements [41] or in granular super-
1060
+ conducting systems [42–45]: in the former it is attributed
1061
+ to the competition of magnetic ordering and supercon-
1062
+ ductivity, while in the latter is attributed to tunneling
1063
+ barriers effect, while in our valence-conduction bands sys-
1064
+ tem the thermal excitation of electrons from the valence
1065
+ into the conduction band play a crucial role. In Fig. 9
1066
+ we report the phase diagram T vs Eg for our system. In
1067
+ Fig. 9 the branch of the phase transition from the su-
1068
+ perconducting to the normal state corresponding to the
1069
+ reentrant behavior results from the second solution at
1070
+ lower temperatures of the linearized self-consistent equa-
1071
+ tions for the superconducting gaps. From the left panel of
1072
+ Fig. 9 it is clear how the reentrant transition is more pro-
1073
+ nounced when the intra-band couplings are unbalanced
1074
+ (λ22 ≃ 3λ11 in the figure), while the reentrance is reduced
1075
+ when the intra-band couplings have similar values. This
1076
+ effect occurs in a less evident manner also when the pair-
1077
+ exchange couplings are increased. Therefore, the most
1078
+ relevant parameter to control the reentrance phenomenon
1079
+ is the intra-band coupling.
1080
+ IV.
1081
+ CONCLUSIONS
1082
+ We have studied the superconducting properties of a
1083
+ two-band system of electrons, interacting through a sep-
1084
+
1085
+ 8
1086
+ λ11 → λ22
1087
+ λ22 → λ11
1088
+ λ22 = 0.75
1089
+ λ11 = 0.23
1090
+ 0.01
1091
+ 0.1
1092
+ 1
1093
+ 0
1094
+ 1
1095
+ 2
1096
+ 3
1097
+ 4
1098
+ T / t
1099
+ Eg / t
1100
+ 0
1101
+ 1
1102
+ 2
1103
+ 3
1104
+ 4
1105
+ Eg / t
1106
+ SC
1107
+ NS
1108
+ SC
1109
+ NS
1110
+ λ12 ↑→
1111
+ FIG. 9.
1112
+ Phase diagrams in the temperature versus energy
1113
+ band gap plane, for the zero doping case. In the left panel the
1114
+ red dashed line is for λ11 = 0.23, λ22 = 0.4, the green dashed
1115
+ line is for λ11 = 0.23, λ22 = 0.75 and the blue dashed line is
1116
+ for λ11 = 0.65, λ22 = 0.75. The pair-exchange couplings are
1117
+ the same for all curves, λ12 = λ21 = 0.1. In the right panel the
1118
+ pair-exchange couplings from left to right are: λ12 = λ21 =
1119
+ 0.03, 0.1, 0.2, while the intra-band couplings are λ11 = 0.23
1120
+ and λ11 = 0.75.
1121
+ arable attractive potential with a large energy cutoff and
1122
+ multiple pairing channels, at a mean-field level. The su-
1123
+ perconducting state properties are studied by varying the
1124
+ energy gap between the bands. We have considered dif-
1125
+ ferent levels of filling for the conduction band, while the
1126
+ valence band is always completely filled. When the band-
1127
+ gap is modified, the density of electrons in the two bands
1128
+ changes, allowing for the occurrence of a density-induced
1129
+ BCS-BEC crossover. When the pair-exchange couplings
1130
+ are small, the condensate in the valence band remains su-
1131
+ perconducting but with a strongly suppressed supercon-
1132
+ ducting gap ∆1 for Eg > E∗
1133
+ g. Therefore, in the regime
1134
+ of small pair-exchange coupling, after E∗
1135
+ g, there is only
1136
+ one significant superconducting gap and one significant
1137
+ condensate. Interestingly, in this case the soft coherence
1138
+ length present a peak as a memory of the quantum phase
1139
+ transition that the valence band condensate undergoes in
1140
+ absence of pair exchanges. This peak is more pronounced
1141
+ if the pair-exchange couplings are sufficiently weak and
1142
+ disappears for higher values of the pair-exchange cou-
1143
+ plings.
1144
+ For higher values of λij, superconductivity in
1145
+ the valence band is sustained by the condensate in the
1146
+ conduction band. Furthermore, in this regime we have
1147
+ found that superconductivity is enhanced in the valence
1148
+ band for increasing doping as long as Eg < E∗
1149
+ g, while for
1150
+ Eg > E∗
1151
+ g superconductivity is enhanced for lower doping.
1152
+ We have also found that superconductivity may occur
1153
+ even when no free carriers exist in the conduction band
1154
+ in the normal state at T = 0, as soon as the gain in super-
1155
+ conducting energy exceeds the cost in producing carriers
1156
+ across the band gap Eg. If the binding energy is larger
1157
+ than the energy band-gap, the system becomes unstable
1158
+ under the formation of Cooper pairs and superconduc-
1159
+ tivity emerges. However, there exists a critical value of
1160
+ the energy band gap E∗
1161
+ g in correspondence of which the
1162
+ process of creating Cooper pairs is not energetically fa-
1163
+ vorable anymore, at this point a quantum phase transi-
1164
+ tion occurs. This quantum phase transition is confirmed
1165
+ by the soft coherence length, which is diverging in corre-
1166
+ spondence of the critical band gap Eg = E∗
1167
+ g. Thus, the
1168
+ ground state is superconducting if Eg < E∗
1169
+ g, insulating
1170
+ if Eg > E∗
1171
+ g. At finite temperature, the value of E∗
1172
+ g is
1173
+ larger than its zero temperature value, because the elec-
1174
+ trons are thermally excited from the valence band. This
1175
+ situation is responsible for the non-monotonic behavior
1176
+ of the superconducting gap opening in the conduction
1177
+ band, which is enhanced at low temperatures because of
1178
+ the electrons that jump from the valence band into the
1179
+ conduction band due to thermal excitation. When there
1180
+ is a finite doping in the system, the sharp phase transi-
1181
+ tion becomes a smooth crossover and superconductivity
1182
+ extends for all Eg. In this case, for Eg > E∗
1183
+ g the va-
1184
+ lence band contributes very weakly to the superconduct-
1185
+ ing state, since the hole density becomes almost zero in
1186
+ this regime.
1187
+ To conclude, we have found that the system explores dif-
1188
+ ferent regimes of the BCS-BEC crossover by tuning the
1189
+ energy band-gap and the total density. The valence-band
1190
+ condensate spans the entire BCS-BEC crossover for low
1191
+ enough density by varying the band-gap Eg. For larger
1192
+ values of the total density, the condensate of the valence
1193
+ band is very dilute and results in the BEC regime for any
1194
+ Eg. The condensate of the conduction band instead re-
1195
+ sides in the BEC side of the crossover or completely inside
1196
+ the BEC regime, due to the strength of the intra-band
1197
+ coupling of electrons in the conduction band. This pic-
1198
+ ture of the BCS-BEC crossover for the system has been
1199
+ found by analyzing the consistent behavior of the chemi-
1200
+ cal potential, the condensate fractions and the coherence
1201
+ lengths. Finally, in the case of zero doping and at finite
1202
+ temperature, an interesting new type of reentrant super-
1203
+ conducting to normal state transition has been numer-
1204
+ ically discovered for unbalanced intra-band couplings,
1205
+ showing that in this configuration superconductivity is
1206
+ assisted instead of being suppressed by increasing tem-
1207
+ perature. This happens because the electrons in the va-
1208
+ lence band are able to jump into the conduction band
1209
+ even for larger values of the zero temperature critical
1210
+ band gap, due to thermal excitation, making the super-
1211
+ conducting state available for a wider range of Eg when
1212
+ the temperature is higher.
1213
+ V.
1214
+ ACKNOWLEDGMENTS
1215
+ We are grateful to Tiago Saraiva (HSE-Moscow) and
1216
+ Hiroyuki Tajima (University of Tokyo) for interesting dis-
1217
+ cussions and a critical reading of the manuscript. G. M.
1218
+ acknowledges INFN for financial support of his Ph.D.
1219
+ grant. This work has been partially supported by PNRR
1220
+ MUR project PE0000023-NQSTI.
1221
+
1222
+ 9
1223
+ [1] Milorad V. Miloˇsevi´c and Andrea Perali, Emergent phe-
1224
+ nomena in multicomponent superconductivity: an intro-
1225
+ duction to the focus issue, Supercond. Sci. Technol. 28,
1226
+ 060201 (2015).
1227
+ [2] D. M. Eagles, Possible Pairing without Superconductiv-
1228
+ ity at Low Carrier Concentrations in Bulk and Thin-Film
1229
+ Superconducting Semiconductors, Phys. Rev. 186, 456
1230
+ (1969).
1231
+ [3] A. J. Leggett, in Modern Trends in the Theory of Con-
1232
+ densed Matter, edited by A. Pekelski and J. Przystawa
1233
+ (Springer-Verlag, Berlin, 1980), p. 13.
1234
+ [4] Q. Chen, J. Stajic, S. Tan, and K. Levin, BCS–BEC
1235
+ crossover: From high temperature superconductors to ul-
1236
+ tracold superfluids, Phys. Rep. 412, 1 (2005).
1237
+ [5] G. C. Strinati, P. Pieri, G. R¨opke, P. Schuck, and M.
1238
+ Urban, The BCS–BEC crossover: From ultra-cold Fermi
1239
+ gases to nuclear systems, Phys. Rep. 738, 1 (2018).
1240
+ [6] A. A. Shanenko, M. D. Croitoru, A. Vagov, and F. M.
1241
+ Peeters, Giant drop in the Bardeen-Cooper-Schrieffer co-
1242
+ herence length induced by quantum size effects in super-
1243
+ conducting nanowires, Phys. Rev. B 82, 104524 (2010).
1244
+ [7] Y. Chen, A. A. Shanenko, A. Perali, and F. M. Peeters,
1245
+ Superconducting nanofilms:
1246
+ molecule-like pairing in-
1247
+ duced by quantum confinement, J. Phys.: Condens. Mat-
1248
+ ter 24, 185701 (2012).
1249
+ [8] D. Innocenti, N. Poccia, A. Ricci, A. Valletta, S. Caprara,
1250
+ A. Perali, and A. Bianconi, Resonant and crossover phe-
1251
+ nomena in a multiband superconductor:
1252
+ Tuning the
1253
+ chemical potential near a band edge, Phys. Rev. B 82,
1254
+ 184528 (2010).
1255
+ [9] M. V. Mazziotti, A. Valletta, G. Campi, D. Innocenti,
1256
+ A. Perali, and A. Bianconi, Possible Fano resonance
1257
+ for high-Tc multi-gap superconductivity in p-Terphenyl
1258
+ doped by K at the Lifshitz transition, Eur. Phys. Lett.
1259
+ 118, 37003 (2017).
1260
+ [10] L. Salasnich, A. A. Shanenko, A. Vagov, J. Albino
1261
+ Aguiar, and A. Perali, Screening of pair fluctuations in
1262
+ superconductors with coupled shallow and deep bands:
1263
+ A route to higher-temperature superconductivity, Phys.
1264
+ Rev. B 100, 064510 (2019).
1265
+ [11] H. Tajima, Y. Yerin, A. Perali, P. Pieri, Enhanced crit-
1266
+ ical temperature, pairing fluctuation effects, and BCS-
1267
+ BEC crossover in a two-band Fermi gas, Phys. Rev. B
1268
+ 99, 180503(R) (2019).
1269
+ [12] H. Tajima, Y. Yerin, P. Pieri, A. Perali, Mechanisms of
1270
+ screening or enhancing the pseudogap throughout the
1271
+ two-band Bardeen-Cooper-Schrieffer to Bose-Einstein
1272
+ condensate crossover, Phys. Rev. B 102, 220504(R)
1273
+ (2020).
1274
+ [13] T. T. Saraiva, P. J. F. Cavalcanti, A. Vagov, A. S.
1275
+ Vasenko, A. Perali, L. Dell’Anna, and A. A. Sha-
1276
+ nenko, Multiband Material with a Quasi-1D Band as a
1277
+ Robust High-Temperature Superconductor, Phys. Rev.
1278
+ Lett. 125, 217003 (2020).
1279
+ [14] T. T. Saraiva, L. I. Baturina, and A. A. Shanenko, Ro-
1280
+ bust Superconductivity in Quasi-one-dimensional Multi-
1281
+ band Materials, The Journal of Physical Chemistry Let-
1282
+ ters 12, 11604 (2021).
1283
+ [15] A. A. Shanenko, T. T. Saraiva, A. Vagov, A. S. Vasenko,
1284
+ and A. Perali, Suppression of fluctuations in a two-
1285
+ band superconductor with a quasi-one-dimensional band,
1286
+ Phys. Rev. B 105, 214527 (2022).
1287
+ [16] Alexander M. Gabovich, and Alexander I. Voitenko,
1288
+ Model for the coexistence of d-wave superconduct-
1289
+ ing and charge-density-wave order parameters in high-
1290
+ temperature cuprate superconductors, Phys. Rev. B 80,
1291
+ 224501 (2009).
1292
+ [17] Alexander M. Gabovich and Alexander I. Voitenko, Co-
1293
+ existence of charge density waves and d-wave supercon-
1294
+ ductivity in cuprates. Sharing of the Fermi surface, Z.
1295
+ Kristallogr. 225, 492 (2010).
1296
+ [18] R. Arpaia, S. Caprara, R. Fumagalli, G. De Vecchi, Y.
1297
+ Y. Peng, E. Andersson, D. Betto, G. M. De Luca, N. B.
1298
+ Brookes, F. Lombardi, M. Salluzzo, L. Braicovich, C. Di
1299
+ Castro, M. Grilli, and G. Ghiringhelli, Dynamical charge
1300
+ density fluctuations pervading the phase diagram of a Cu-
1301
+ based high-Tc superconductor, Science 365, 906 (2019).
1302
+ [19] A. Perali, C. Castellani, C. Di Castro, and M. Grilli, d-
1303
+ wave superconductivity near charge instabilities, Phys.
1304
+ Rev. B 54, 16216 (1996).
1305
+ [20] Rossnagel K., On the origin of charge density waves in
1306
+ select layered transition-metal dichalcogenides, J. Phys.
1307
+ Condens. Matter 23, 213001 (2011).
1308
+ [21] A. H. Castro Neto, Charge Density Wave, Superconduc-
1309
+ tivity, and Anomalous Metallic Behavior in 2D Transition
1310
+ Metal Dichalcogenides, Phys. Rev. Lett. 86, 4382 (2001).
1311
+ [22] T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri,
1312
+ M. Nohara, and H. Takagi, Charge-order-maximized
1313
+ momentum-dependent superconductivity, Nat. Phys. 3,
1314
+ 720 (2007).
1315
+ [23] M. Calandra, I. I. Mazin, and F. Mauri, Effect of di-
1316
+ mensionality on the charge-density wave in few-layer 2H-
1317
+ NbSe2, Phys. Rev. B 80, 241108(R) (2009).
1318
+ [24] Y. Ge, and A. Y. Liu, Effect of dimensionality and spin-
1319
+ orbit coupling on charge-density-wave transition in 2H-
1320
+ TaSe, Phys. Rev. B 86, 104101 (2012).
1321
+ [25] Ugeda M. M. et al., Characterization of collective ground
1322
+ states in single-layer NbSe2, Nat. Phys. 12, 92 (2016).
1323
+ [26] Cao Y. et al., Quality Heterostructures from Two-
1324
+ Dimensional Crystals Unstable in Air by Their Assembly
1325
+ in Inert Atmosphere, Nano Lett. 15, 4914 (2015).
1326
+ [27] Chao-Sheng Lian, Christoph Heil, Xiaoyu Liu, Chen Si,
1327
+ Feliciano Giustino, and Wenhui Duan, Coexistence of
1328
+ Superconductivity with Enhanced Charge-Density Wave
1329
+ Order in the Two-Dimensional Limit of TaSe, J. Phys.
1330
+ Chem. Lett. 10, 4076 (2019).
1331
+ [28] Ge J. F., Liu Z. L., Liu C. et al., Superconductivity above
1332
+ 100 K in single-layer FeSe films on doped SrTiO3, Nature
1333
+ Mater 14, 285 (2015).
1334
+ [29] Zhou H., Holleis L., Saito Y., Cohen L., Huynh W., Pat-
1335
+ terson C.L., Yang F., Taniguchi T., Watanabe K., and
1336
+ Young A.F., Isospin magnetism and spin-polarized su-
1337
+ perconductivity in Bernal bilayer graphene, Science 375,
1338
+ 774 (2022).
1339
+ [30] Pierre A. Pantaleon, Alejandro Jimeno-Pozo, Hector
1340
+ Sainz-Cruz, Tommaso Cea, Vo Tien Phong, and Fran-
1341
+ cisco Guinea, Superconductivity and correlated phases
1342
+ in bilayer,
1343
+ trilayer graphene and related structures,
1344
+ arXiv:2211.02880 (2022).
1345
+ [31] Yiran Zhang, Robert Polski, Alex Thomson, ´Etienne
1346
+ Lantagne-Hurtubise,
1347
+ Cyprian
1348
+ Lewandowski,
1349
+ Haoxin
1350
+ Zhou, Kenji Watanabe, Takashi Taniguchi, Jason Alicea,
1351
+
1352
+ 10
1353
+ and Stevan Nadj-Perge, Spin-Orbit Enhanced Supercon-
1354
+ ductivity in Bernal Bilayer Graphene, arXiv:2205.05087
1355
+ (2022).
1356
+ [32] S. Conti, A. Perali, F. M. Peeters, and D. Neilson, Mul-
1357
+ ticomponent Electron-Hole Superfluidity and the BCS-
1358
+ BEC Crossover in Double Bilayer Graphene, Phys. Rev.
1359
+ Lett. 119, 257002 (2017).
1360
+ [33] P. Nozieres, and F. Pistolesi, From semiconductors to
1361
+ superconductors: a simple model for pseudogaps, Eur.
1362
+ Phys. J. B 10, 649 (1999).
1363
+ [34] Y. Yerin, H. Tajima, P. Pieri, A. Perali, Coexistence of
1364
+ giant Cooper pairs with a bosonic condensate and anoma-
1365
+ lous behavior of energy gaps in the BCS-BEC crossover
1366
+ of a two-band superfluid Fermi gas, Phys. Rev. B 100,
1367
+ 104528 (2019).
1368
+ [35] N. Andrenacci, A. Perali, P. Pieri, and G.C. Strinati,
1369
+ Density-induced BCS to Bose-Einstein crossover, Phys.
1370
+ Rev. B 60, 12410 (1999).
1371
+ [36] Yue-Ran Shi, Wei Zhang, and C. A. R. S´a de Melo, The
1372
+ evolution from BCS to Bose pairing in two-band superflu-
1373
+ ids: Quantum phase transitions and crossovers by tuning
1374
+ band offset and interactions, EPL 139, 36004 (2022).
1375
+ [37] Teet Ord, Kullike Rago, and Artjom Vargunin, Critical
1376
+ and non-critical coherence lengths in a two-band super-
1377
+ conductor, Journal of Superconductivity and Novel Mag-
1378
+ netism 25, 1351 (2012).
1379
+ [38] A. Guidini, A. Perali, Band-edge BCS - BEC crossover
1380
+ in a two-band superconductor: Physical properties and
1381
+ detection parameters, Supercond. Sci. and Technol. 27,
1382
+ 124002 (2014).
1383
+ [39] A. A. Vargas-Paredes, A. A. Shanenko, A. Vagov, M.
1384
+ V. Miloˇsevi´c, and A. Perali, Crossband versus intraband
1385
+ pairing in superconductors: Signatures and consequences
1386
+ of the interplay, Phys.Rev.B 101, 094516 (2020).
1387
+ [40] K. Furutani, A. Perali, and L. Salasnich., Berezinskii-
1388
+ Kosterlitz-Thouless phase transition with Rabi coupled
1389
+ bosons, arXiv:2210.10866, (2022).
1390
+ [41] H. Eisaki, H. Takagi, R.J. Cava, B. Batlogg, 3.J. Kra-
1391
+ jewski, W.F. Perk, Jr., K. Mizuhashi, J.O. Lee, and S.
1392
+ Uchida, Phys. Rev. B 50, 647 (1994).
1393
+ [42] T. Suzuki, T. Tsuboi, H. Takaki, T. Nizusaki, and T.
1394
+ Kusumoto, J. Phys. Soc. Jpn 52, 981 (1983).
1395
+ [43] T.H. Lin, X.Y. Shao, M.K. Wu, P.H. Hor, X.C..]in, and
1396
+ C.W. Chu, Phys. Rev. B 29, 1493 (1984).
1397
+ [44] U.Welp, W.K. Kwok, G.W. Crabtree, H. Claus, K.G.
1398
+ Vandervoort,
1399
+ B.
1400
+ Dabrowski,
1401
+ A.W.
1402
+ Mitchell,
1403
+ D.R.
1404
+ Richards, D.T. Mark, and D.G. Hinks, Physica C 156,
1405
+ 27 (1988).
1406
+ [45] S. M. Chudinov, G. Mancini, M. Minestrini, R. Natali,
1407
+ S. Stizza, and A. Bozhko, J. Phys. Condens. Matter 14,
1408
+ 193 (2002).
1409
+
8tFST4oBgHgl3EQfaTh3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99AyT4oBgHgl3EQfqfgS/content/tmp_files/2301.00542v1.pdf.txt ADDED
@@ -0,0 +1,1774 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Simple reactor model of relativistic runaway electron avalanche development
2
+ Egor Stadnichuk∗
3
+ Moscow Institute of Physics and Technology - 1 “A” Kerchenskaya st., Moscow, 117303, Russian Federation
4
+ HSE University - 20 Myasnitskaya ulitsa, Moscow 101000 Russia
5
+ Daria Zemlianskaya,† Ekaterina Svechnikova,‡ Eduard Kim,§ Alexander Sedelnikov,¶ and Oraz Anuaruly∗∗
6
+ (Dated: January 3, 2023)
7
+ High-energy gamma radiation in the Earth’s atmosphere is associated with the bremsstrahlung
8
+ of Relativistic Runaway Electron Avalanches (RREA) developing in thunderstorm electric fields. In
9
+ this paper, RREA development is studied in the system of two strong electric-field regions within
10
+ thunderstorms, which accelerate runaway electrons toward each other. Such a system is called the
11
+ simple reactor. It is discovered that the propagation of gamma rays and runaway electrons from one
12
+ region to another leads to positive feedback. This feedback called the reactor feedback can make
13
+ RREA self-sustaining, thus effectively multiplying high-energy particles inside thunderstorms con-
14
+ taining the simple reactor. The spectrum and characteristic time scale of the simple reactor gamma
15
+ radiation are in agreement with Terrestrial Gamma-ray Flashes (TGFs) data. The applicability of
16
+ the simple reactor model to TGF is discussed, and the distinguishing observable properties of the
17
+ simple reactor radiation during TGF and Thunderstorm Ground Enhancement are considered.
18
+ I.
19
+ KEYPOINTS
20
+ • RREA development in thunderstorms containing
21
+ the simple reactor is studied
22
+ • Two feedback mechanisms that can make RREA
23
+ self-sustaining in the simple reactor are discovered:
24
+ electron and gamma-ray reactor feedback
25
+ • Characteristics of gamma radiation of the simple
26
+ reactor are in agreement with TGF and TGE ex-
27
+ perimental data
28
+ ∗ 1Moscow Institute of Physics and Technology - 1 “A” Kerchen-
29
+ skaya st., Moscow, 117303, Russian Federation; 2HSE Uni-
30
+ versity
31
+ -
32
+ 20
33
+ Myasnitskaya
34
+ ulitsa,
35
+ Moscow
36
+ 101000
37
+ Russia;
38
39
+ [email protected]; Moscow Institute of Physics and
40
+ Technology - 1 “A” Kerchenskaya st., Moscow, 117303, Russian
41
+ Federation
42
+ Institute for Nuclear Research of RAS - prospekt 60-letiya Ok-
43
+ tyabrya 7a, Moscow 117312
44
+ [email protected]; Institute of Applied Physics of RAS - 46
45
+ Ul’yanov str., 603950, Nizhny Novgorod, Russia
46
+ § Moscow Institute of Physics and Technology - 1 “A” Kerchen-
47
+ skaya st., Moscow, 117303, Russian Federation
48
+ Institute for Nuclear Research of RAS - prospekt 60-letiya Ok-
49
+ tyabrya 7a, Moscow 117312; [email protected]
50
+ ¶ Moscow Institute of Physics and Technology - 1 “A” Kerchen-
51
+ skaya st., Moscow, 117303, Russian Federation
52
+ Lebedev Physical Institute RAS; [email protected]
53
+ ∗∗ Moscow Institute of Physics and Technology - 1 “A” Kerchen-
54
+ skaya st., Moscow, 117303, Russian Federation
55
+ Kurchatov Institute, Russian Research Centre - sq.
56
+ Academi-
57
+ cian Kurchatov, 1, Moscow, 123098, Russian Federation; orazan-
58
59
+ II.
60
+ INTRODUCTION
61
+ Atmospheric physics is rich in mysterious natural phe-
62
+ nomena.
63
+ One of the new directions in atmospheric
64
+ research is high-energy atmospheric physics.
65
+ It sud-
66
+ denly appeared in 1992, when the Burst and Tran-
67
+ sient Source Experiment (BATSE) detector aboard the
68
+ Compton Gamma-Ray Observatory experiment discov-
69
+ ered short and intensive bursts of gamma rays originating
70
+ in the atmosphere of Earth [1]. These energetic bursts
71
+ are called Terrestrial Gamma-ray Flashes (TGFs). It is
72
+ established that the source of TGFs are thunderstorms
73
+ [2]. The characteristic duration of a TGF is 100 µs [3],
74
+ energy of detected TGF gamma-rays is up to 40 MeV
75
+ [4, 5]. Thunderstorm gamma radiation is also detected
76
+ on the Earth’s surface. It is called Thunderstorm Ground
77
+ Enhancement (TGE) [6] or gamma-ray glows [7], and
78
+ its characteristic duration is up to tens of minutes. It
79
+ is important to note that high-energy processes within
80
+ thunderstorms are closely related to lightning. TGE pre-
81
+ cede lightning and are always terminated by lightning
82
+ discharges [8]. TGFs are established to occur at the early
83
+ stage of the lightning leader propagation [9–11]. More-
84
+ over, many other interesting bright phenomena were reg-
85
+ istered in connection with the high-energy radiation from
86
+ thunderstorms [12–14].
87
+ The underlying physics of high-energy atmospheric ra-
88
+ diation is the acceleration of electrons in thunderstorm
89
+ electric fields [2, 15–19]. In strong thunderstorm electric
90
+ fields, relativistic electrons obtain more energy from the
91
+ acceleration in the electric field than they on average lose
92
+ on interactions with atmosphere air molecules. Such elec-
93
+ trons are called runaway electrons [20]. When the electric
94
+ field strength exceeds the critical value, Ec = 276
95
+ kV
96
+ m·atm,
97
+ runaway electrons are Møller scattered by air molecules,
98
+ which leads to the appearance of additional runaway elec-
99
+ trons [21].
100
+ In this way, runaway electrons multiply in
101
+ the process of their propagation along the thunderstorm
102
+ arXiv:2301.00542v1 [physics.ao-ph] 2 Jan 2023
103
+
104
+ 2
105
+ electric field, forming the Relativistic Runaway Electron
106
+ Avalanche (RREA) [16, 17]. To start a RREA an initial
107
+ seed energetic particle is needed to appear within the
108
+ thunderstorm electric field [16, 22]. For example, it can
109
+ be a secondary cosmic ray particle [23] or a seed parti-
110
+ cle generated inside the thunderstorm [24–26]. Charac-
111
+ teristic RREA particle energies range from tens of keV
112
+ to tens of MeV [16].
113
+ Thus, runaway electrons natu-
114
+ rally produce bremsstrahlung gamma rays in collisions
115
+ with air molecules, which is detected as TGF and TGE
116
+ [4, 7, 8, 10, 17, 22].
117
+ The mystery of TGFs is that a large number of high-
118
+ energy particles appear almost instantly inside a thunder-
119
+ cloud [1, 5, 25]. There are two possible ways to explain
120
+ such phenomena. The first possible scenario is the gener-
121
+ ation of a large number of seed electrons within the thun-
122
+ derstorm super strong electric fields, possibly created by
123
+ the lightning leader propagation [18, 24, 25, 27–29]. Also
124
+ it is considered that lightning leader itself can radiate
125
+ synchrotron gamma-rays [30]. These ideas are supported
126
+ by the fact that x-rays are observed in association with
127
+ lightning leader propagation [31, 32]. The second pos-
128
+ sible scenario is the multiplication of RREAs by posi-
129
+ tive feedback mechanisms [21, 26, 33–37]. The relativis-
130
+ tic feedback works in the following way. Bremsstrahlung
131
+ gamma ray radiated by runaway electrons can produce
132
+ electron-positron pairs within thunderstorm supercriti-
133
+ cal electric field region. Positrons are accelerated by the
134
+ electric field in the direction opposite to the runaway
135
+ electrons acceleration direction. In this way, positrons
136
+ reach the beginning of the supercritical region, where
137
+ they produce seed runaway electrons by the Bhabha scat-
138
+ tering [33]. Thus, relativistic positron feedback multiplies
139
+ RREAs and, moreover, can make RREA self-sustaining
140
+ [21]. Similarly bremsstrahlung gamma rays can Compton
141
+ backscatter and thus produce seed runaway electrons at
142
+ the beginning of the supercritical region, which is the rel-
143
+ ativistic gamma ray feedback [38]. RREA models based
144
+ on the positive feedback are supported by the fact that
145
+ their characteristic time and spectrum coincide with the
146
+ characteristic time and spectrum of TGF [2–4, 25]. Nev-
147
+ ertheless, the relativistic feedback requires strong large-
148
+ scale electric fields, which have never been directly ex-
149
+ perimentally observed in thunderstorms [33, 34, 36, 39].
150
+ It has been discovered that non-uniform thunderstorm
151
+ electric field geometry leads to another feedback mech-
152
+ anism called the reactor feedback [26, 40]. Let a thun-
153
+ derstorm consist of several separate electric-field regions
154
+ with electric-field strength sufficient for RREA produc-
155
+ tion.
156
+ Such regions, for simplicity, are called cells [26].
157
+ If a seed electron starts a RREA within one of the
158
+ cells, the following processes occur. A RREA radiates
159
+ bremsstrahlung gamma-rays. Gamma-rays have a large
160
+ attenuation length at thunderstorm altitudes.
161
+ There-
162
+ fore, gamma-ray photons propagate through the thun-
163
+ derstorm and can reach other cells.
164
+ There is a prob-
165
+ ability that a gamma-ray photon will interact with air
166
+ molecules by compton scattering, photoelectric effect of
167
+ electron-positron pair production within a cell, which
168
+ can result in runaway electron generation. A runaway
169
+ electron can produce a RREA. In this way the reac-
170
+ tor gamma-ray feedback works: separate thunderstorm
171
+ cells irradiate each other with gamma radiation, which
172
+ results in RREA multiplication. Another reactor feed-
173
+ back mechanism - runaway electron transport between
174
+ cells. If the cells are close to each other, runaway elec-
175
+ trons are able to penetrate the air layer between them.
176
+ In this way, runaway electrons propagate from one cell
177
+ to another and, thus, multiply RREA. In general, reac-
178
+ tor feedback is defined as the multiplication of RREA by
179
+ high-energy particle exchange between separate thunder-
180
+ storm RREA-accelerating regions. Distant cells amplify
181
+ each other mostly by gamma-ray photon exchange be-
182
+ cause of their high penetrating power in the air. For cells
183
+ located close to each other, the reactor feedback works
184
+ mainly by runaway electron exchange, since RREA con-
185
+ sists mainly of runaway electrons. It has been established
186
+ that reactor feedback can lead to self-sustaining devel-
187
+ opment of RREA, and, moreover, requires lower electric
188
+ field strength in comparison with the relativistic feedback
189
+ [26].
190
+ In this paper, the reactor feedback is studied in the
191
+ simplest case of non-uniform thunderstorm electric field,
192
+ when thunderstorm consists of two cells, oriented in the
193
+ way that they accelerate runaway electrons towards each
194
+ other. The system is called the simple reactor. The re-
195
+ search is motivated by observations of thunderstorm elec-
196
+ tric structures, part of which can be described as the sim-
197
+ ple reactor electric structure [41–47]. In this paper, it has
198
+ been discovered that both gamma-ray reactor feedback
199
+ and runaway electron transport feedback amplify RREA
200
+ in the simple reactor, and these feedback mechanisms
201
+ require a smaller electric field strength to provide self-
202
+ sustaining RREA development in comparison with the
203
+ relativistic feedback. In Section III the feedback mecha-
204
+ nisms of the simple reactor are described. In Section IV
205
+ the reactor feedback is theoretically described. Section V
206
+ provides Monte Carlo simulations of the simple reactor
207
+ using GEANT4. In Section VI the simple reactor is dis-
208
+ cussed as a possible mechanism for TGF and TGE, the
209
+ distinguishing properties of this model that are experi-
210
+ mentally observable are considered.
211
+ III.
212
+ SIMPLE REACTOR MODEL
213
+ The reactor feedback is the intensification of RREA
214
+ development in a thunderstorm supercritical electric field
215
+ region (cell) by the radiation of other cells [26]. The sim-
216
+ plest system capable of demonstrating the reactor feed-
217
+ back is the system of two cells with oppositely directed
218
+ electric fields accelerating electrons toward each other.
219
+ This system is called “the simple reactor” and we con-
220
+ sider it as the next step from uniform electric field mod-
221
+ els to the description of RREA in the electric field of a
222
+ real thundercloud. In the simple reactor, the distribu-
223
+
224
+ 3
225
+ tion of the electric field corresponds to the system of two
226
+ flat capacitors placed one on top of the other.
227
+ It can
228
+ be considered as the approximation of the electric field
229
+ distribution in the region of the cloud with three charge
230
+ layers: a positive middle layer and two negative layers.
231
+ The described electric field distribution can be a part of
232
+ a natural thunderstorm [41–47].
233
+ There are two reactor feedback mechanisms in the sim-
234
+ ple reactor.
235
+ The first mechanism, reactor gamma-ray
236
+ feedback, works in the following way. Let a seed elec-
237
+ tron form a RREA within one of the cells. RREA grows
238
+ towards the opposite cell and radiates bremsstrahlung
239
+ gamma rays [16]. Gamma rays have a significant pene-
240
+ tration power through the atmosphere at thunderstorm
241
+ altitudes. Thus, gamma rays reach the opposite cell and
242
+ propagate through it. Interactions of gamma rays with
243
+ air molecules of the opposite cell generate seed runaway
244
+ electrons. These electrons start a new RREA in the op-
245
+ posite cell. Further, the new RREA propagates towards
246
+ the initial cell, generating gamma rays, which similarly
247
+ produce RREA in the initial cell. In this way, the pro-
248
+ cess loops, and thus gamma-ray reactor feedback makes
249
+ RREA self-sustaining in the simple reactor. The second
250
+ mechanism, runaway electron transport feedback, works
251
+ in the case when cells are close to each other. In this
252
+ case, runaway electrons can penetrate the gap between
253
+ cells, reaching the opposite cell. When a runaway elec-
254
+ tron reaches the opposite cell, it penetrates inside the cell
255
+ until the electric field reverses it. After reversal runaway
256
+ electrons are accelerated toward the initial cell. Thus,
257
+ in the simple reactor, runaway electrons oscillate near
258
+ the border of the cells. During the oscillation, runaway
259
+ electrons are multiplied by the Møller scattering, which
260
+ also leads to a self-sustaining process. It is established
261
+ in this paper, that both feedback mechanisms not only
262
+ can make RREA self-sustaining but also can significantly
263
+ multiply the number of relativistic particles in the thun-
264
+ derstorm containing the simple reactor (Figure 1).
265
+ It
266
+ should be noted that the relativistic feedback naturally
267
+ impacts RREA development in the simple reactor, how-
268
+ ever, further it is shown that the influence of the rela-
269
+ tivistic feedback is negligible compared to the influence
270
+ of the reactor feedback.
271
+ IV.
272
+ ANALYTICAL SIMPLE REACTOR MODEL
273
+ A.
274
+ Gamma-ray reactor feedback
275
+ To describe the simple reactor gamma-ray feedback
276
+ theoretically, it is necessary to study the response of a cell
277
+ to gamma radiation falling into it [26]. Let N gamma-ray
278
+ photons enter the i-th cell (i =1,2) from above, along the
279
+ cell’s electric field vector. In order to find the feedback
280
+ coefficient, it should be calculated how much gamma will
281
+ fly back from the cell towards the other cell. Let λi
282
+ RREA
283
+ be the growth length of an avalanche of runaway elec-
284
+ trons, λi
285
+ − be the decay length of gamma radiation, λi
286
+ γ be
287
+ FIG. 1. The physics of the simple reactor in the GEANT4
288
+ simulation [48]. Green lines - gamma-ray photon tracks, red
289
+ lines - runaway electron tracks. Blue arrows - electric field
290
+ lines, yellow dots - particle interaction points. The simula-
291
+ tion is started with a single seed electron. The simple reactor
292
+ consists of two supercritical electric field regions accelerat-
293
+ ing runaway electrons towards each other. High-energy par-
294
+ ticles exchange between these regions makes the process self-
295
+ sustaining.
296
+ The picture resembles the Eye of Sauron from
297
+ the Lord of the Rings trilogy: runaway electrons oscillating
298
+ near the cell boundary form a pupil, the halo of gamma-ray
299
+ photons and RREAs formed by gamma-ray reactor feedback
300
+ resembles the cornea of the eye.
301
+ the path of a runaway electron before the emission of a
302
+ gamma-ray photon with supercritical energy, λi
303
+ e− be the
304
+ path length of a gamma before the birth of a runaway
305
+ electron, and P i is the probability of a turn of an elec-
306
+ tron with further development of the runaway avalanche.
307
+ These parameters depend on the magnitude of the elec-
308
+ tric field and the density of the air. In the first approxi-
309
+ mation, the values for these parameters can be retrieved
310
+ from the article [34]. In general, the cells of the simple
311
+ reactor are assumed to have different field strengths, air
312
+ density, and cell lengths.
313
+ The gamma entering the cell along the electric field
314
+ will generate electrons with supercritical energy, while
315
+ losing its energy, which leads to an exponential decay of
316
+ the primary gamma flux. On the segment [z, z + dz], the
317
+ flown gammas will give birth to the following number of
318
+ avalanches of runaway electrons:
319
+ df i
320
+ e−(z)
321
+ dz
322
+ dz = NP ie
323
+
324
+ z
325
+ λi
326
+ − dz
327
+ λi
328
+ e−
329
+ (1)
330
+ The dynamics of the number of bremsstrahlung
331
+ gamma-ray photons during RREA propagation along the
332
+ z axis is described by the following equation [34]:
333
+ dNγ = e
334
+ z−z0
335
+ λRREA dz
336
+ λγ
337
+ − Nγ
338
+ dz
339
+ λ−
340
+ (2)
341
+ The first term in 2 describes the production of
342
+ bremsstrahlung gamma-ray photons by runaway elec-
343
+ trons, and the second term describes a decrease in the
344
+
345
+ 4
346
+ number of gamma-rays due to its interaction with air
347
+ molecules. The solution for 2 is 3:
348
+ Nγ(z, z0) =
349
+ λRREAλ−
350
+ λγ(λ− + λRREA) ·
351
+
352
+ e
353
+ z−z0
354
+ λRREA − 1
355
+
356
+ (3)
357
+ Each RREA grows according to the well-known ex-
358
+ ponential law [20], spreading toward the initial gamma
359
+ rays entering the plane. In this case, depending on the
360
+ point of birth of the avalanche, the amount of secondary
361
+ gamma rays that will reach the end of the cell will be
362
+ as follows (since the avalanche born at the point z will
363
+ travel a distance equal to z):
364
+ dF i
365
+ γ(z) =
366
+ df i
367
+ e−(z)
368
+ dz
369
+ dz
370
+ λRREAλ−
371
+ λγ(λ−+λRREA) ·
372
+
373
+ e
374
+ z
375
+ λRREA − 1
376
+
377
+ (4)
378
+ Thus, the gamma-ray local multiplication factor [26]
379
+ can be calculated (Formula 5):
380
+ νi =
381
+ � Li
382
+ 0
383
+ dF i
384
+ γ(z)
385
+ dz
386
+ dz
387
+ N
388
+ (5)
389
+ Integration leads to the following formula for the
390
+ gamma-ray multiplication factor:
391
+ νi =
392
+ P iλi
393
+ RREAλi
394
+
395
+ λi
396
+ e−λiγ(λi
397
+ RREA + λi
398
+ −)
399
+
400
+ λi
401
+ RREAλi
402
+
403
+ λi
404
+ − − λi
405
+ RREA
406
+
407
+ e
408
+ Li λi
409
+ −−λi
410
+ RREA
411
+ λi
412
+ RREAλi
413
+ − − 1
414
+
415
+ − λi
416
+
417
+
418
+ 1 − e
419
+ − Li
420
+ λi
421
+
422
+ ��
423
+ (6)
424
+ The system with positive feedback can be character-
425
+ ized by the feedback coefficient [26, 33, 34].
426
+ For the
427
+ simple reactor, the feedback coefficient shows how many
428
+ times the number of high-energy particles will increase in
429
+ one full reactor feedback cycle, and it is found with the
430
+ following formula:
431
+ Γ = ν1 · ν2
432
+ (7)
433
+ The number of particles in the simple reactor grows ex-
434
+ ponentially with each feedback generation: N(n) = Γn,
435
+ where n is the number of feedback generation [26]. There-
436
+ fore, the criterion for self-sustaining RREA development
437
+ in a simple reactor is as follows:
438
+ Γ = ν1 · ν2 ≥ 1
439
+ (8)
440
+ With the obtained criterion, the thunderstorm condi-
441
+ tions necessary for self-sustaining RREA development by
442
+ the reactor gamma-ray feedback can be calculated. These
443
+ conditions are presented in Figure 2. Conditions are pre-
444
+ sented for 3 types of feedback: relativistic positron feed-
445
+ back [21], simple reactor feedback, and multicell reactor
446
+ FIG. 2. The comparison of self-sustaining positron feedback
447
+ necessary conditions [34] and simple reactor self-sustaining
448
+ feedback necessary conditions (Formula 6, 8). RREA accel-
449
+ erating region length is normalized to λRREA, electric field
450
+ strength is normalized to critical electric field strength (the
451
+ electric field required for RREA development [16]). The sim-
452
+ ple reactor is also compared with necessary conditions for
453
+ self-sustaining gamma-ray feedback in multicell reactor model
454
+ [26]. It can be seen that reactor models require significantly
455
+ lower thunderstorm electric field strengths for self-sustaining
456
+ RREA development than the relativistic feedback. This im-
457
+ portant property of the model comes at expense of the com-
458
+ plexity of the electric field geometry. The more complex elec-
459
+ tric field geometry is, the lower electric field strength is re-
460
+ quired for the feedback to be effective. It should be noted that
461
+ the conditions for the reactor models are presented without
462
+ taking into account runaway electron transport between cells.
463
+ Moreover, it has been discovered that thundercloud hydrome-
464
+ teors can amplify RREA [49]. Thus, the exact self-sustaining
465
+ RREA conditions can be lower than the conditions presented
466
+ on this picture.
467
+ feedback [26]. The coordinates in the figure are chosen so
468
+ that the conditions are invariant with respect to altitude
469
+ [33, 34]. It can be seen from the figure that both the mul-
470
+ ticell and the simple reactor feedback mechanisms require
471
+ significantly lower electric field strength in comparison
472
+ to the relativistic feedback discharge model. This impor-
473
+ tant property of the reactor feedback comes with a price
474
+ of the thunderstorm electric field geometry complexity.
475
+ The most complex electric field geometry, the multicell
476
+ reactor, requires the lowest electric field strength for the
477
+ self-sustaining RREA development, while the simplest re-
478
+ actor structure, the simple reactor, requires the electric
479
+ field strength lying in between the multicell reactor and
480
+ the uniform electric field. It should be noted that if thun-
481
+ dercloud electric field parameters lie above the curve in
482
+ Figure 2 then the number of energetic particles within
483
+ the thundercloud grows exponentially [26, 33, 34]. Oth-
484
+ erwise, provided that there is no external source of seed
485
+ particles, the number of energetic particles decays, and
486
+ the decay rate depends on the feedback coefficient [26].
487
+ Thus, even if the feedback does not make the RREA de-
488
+ velopment self-sustaining, it still increases its duration.
489
+
490
+ Positron feedback
491
+ Multicell reactor
492
+ 103
493
+ Simple reactor
494
+ 102
495
+ 入RREA
496
+ 101
497
+ 100
498
+ 10-1
499
+ 2 ×100
500
+ 3 ×100
501
+ 4×100
502
+ 100
503
+ E5
504
+ B.
505
+ Runaway electron transport between cells in
506
+ the simple reactor
507
+ GEANT4 simulations of the simple reactor showed the
508
+ importance of runaway electron transport between cells
509
+ for the reactor feedback (Figure 1). In this section, it is
510
+ shown that the oscillations of runaway electrons between
511
+ cells in the simple reactor can become self-sustaining and
512
+ even lead to runaway electron multiplication.
513
+ At first
514
+ glance, this effect may seem paradoxical and contrary to
515
+ the law of energy conservation: While a single runaway
516
+ electron move from one cell to another, the total energy
517
+ it receive from the electric field in the full circle of its
518
+ oscillation is zero, and, thus, this runaway electron, on
519
+ average, loses energy in interaction with air. Therefore, a
520
+ single runaway electron will inevitably lose its energy and
521
+ stop. However, it is seen in the simulations that runaway
522
+ electrons oscillate and multiply in the strong electric field
523
+ of the simple reactor. Therefore, the following question
524
+ arises: Where do runaway electrons take energy when the
525
+ feedback becomes self-sustaining?
526
+ Moreover, the total
527
+ length of runaway electron motion between cells back and
528
+ forth cannot be longer than its energy divided by eEc,
529
+ where Ec - critical electric field, e — elementary electric
530
+ charge. This is not more than several tens of meters.
531
+ It turns out that the effect of runaway electron trans-
532
+ port between cells can be physically explained and that
533
+ the energy conservation paradox is resolved by runaway
534
+ electron multiplication. If a runaway electron multiplies
535
+ by Møller scattering [21], the result is that the initial and
536
+ generated runaway electrons receive twice as much energy
537
+ from the electric field compared to the single initial run-
538
+ away electron. When the initial runaway electron stops,
539
+ the secondary electron continues to oscillate and multi-
540
+ ply. The reactor feedback in the simple reactor caused by
541
+ runaway electrons can even become self-sustaining. If the
542
+ thunderstorm electric field is much stronger than the crit-
543
+ ical electric field, the runaway electron interaction with
544
+ the air becomes negligible. Moreover, by the interaction
545
+ with air, runaway electrons will multiply, which leads to
546
+ an enormous growth of the number of relativistic parti-
547
+ cles. Thus, when the electric field strength decreases to
548
+ values comparable to Ec, there is a point where the multi-
549
+ plication of runaway electrons compensates for the energy
550
+ losses in the air interaction. At this point, the runaway
551
+ electron transport feedback becomes self-sustaining.
552
+ An interesting property of the runaway electron trans-
553
+ port feedback is its spatial scale. A runaway electron af-
554
+ ter hitting an adjacent cell cannot propagate within the
555
+ cell deeper than its kinetic energy divided by e(E + Ec),
556
+ where E is the electric field strength of the cell. There-
557
+ fore, runaway electron transport feedback coefficient de-
558
+ pends only on the electric field strength for cell lengths
559
+ longer than runaway electron maximum energy divided
560
+ by e(E + Ec), which is about 100 meters for 10 km alti-
561
+ tude and 40 MeV maximum energy [15, 50]. Thus, run-
562
+ away electron transport occurs near the cell interface,
563
+ which softens the conditions required for self-sustaining
564
+ RREA development in the simple reactor, because long
565
+ cells are not needed as in other types of feedback 2. Nev-
566
+ ertheless, it should be noted that runaway electron feed-
567
+ back works effectively only for cells located close to each
568
+ other since electrons are quickly absorbed by air unless
569
+ they are accelerated by the electric field.
570
+ To theoretically analyze the runaway electron trans-
571
+ port feedback, it should first be understood how run-
572
+ away electrons are decelerated in the electric field of the
573
+ adjustment cell. Decelerated runaway electron attenua-
574
+ tion length can be found by substituting negative electric
575
+ field strength into the empirical formula for the RREA
576
+ e-folding length:
577
+ λdecay = 7300[kV ]
578
+ −E − Ec
579
+ (9)
580
+ In this way, number of runaway electrons in the beam
581
+ will decrease exponentially:
582
+ Nbeam(z) = N0e
583
+ z
584
+ λdecay
585
+ (10)
586
+ This analytic continuation of the RREA growth law
587
+ [21] can be justified in the following way.
588
+ Normalized
589
+ runaway electron spectrum can be described with the
590
+ function:
591
+ dfRREA
592
+
593
+ = 1
594
+ ε0
595
+ e− ε
596
+ ε0
597
+ (11)
598
+ ε0 = 7.3 MeV - runaway electron mean energy [16].
599
+ An electron with energy ε, on average, stops at the coor-
600
+ dinate:
601
+ z(ε) =
602
+ ε
603
+ e(E + Ec)
604
+ (12)
605
+ Number of runaway electrons leaving the beam in the
606
+ interval (z, z + dz) per one primary electron is:
607
+ Nbeam
608
+ dz
609
+ dz = −N0
610
+ dfRREA
611
+
612
+
613
+ dz dz = N0
614
+ E + Ec
615
+ 7300[kV ]e−
616
+ E+Ec
617
+ 7300[kV ] z
618
+ (13)
619
+ Thus, the formula 9 is obtained.
620
+ The runaway electron transport feedback coefficient
621
+ can be defined as the number of runway electrons leav-
622
+ ing the cell per one runaway electron entering the cell
623
+ (analogically to the gamma-ray reactor feedback). The
624
+ number of runaway electrons, which entered the cell, de-
625
+ creases according to the exponential law derived above
626
+ as these runaway electrons propagate into the cell (for-
627
+ mula 9). When a runaway electron leaves this beam it
628
+ can stop or it can reverse and form a RREA, which then
629
+ propagates to the entry plane of the cell.
630
+ If a RREA
631
+ starts at the point z, the number of runaway electrons
632
+ within this RREA reaches e
633
+ z
634
+ λRREA when RREA leaves
635
+
636
+ 6
637
+ the cell [34]. Therefore, if the reversal probability of run-
638
+ away electrons from the primary beam is equal to P, the
639
+ runaway electron transport feedback coefficient can be
640
+ obtained as follows:
641
+ �νe− =
642
+ � L
643
+ 0
644
+ dzPe
645
+ z
646
+ λRREA dNbeam
647
+ dz
648
+ = P
649
+ �λ
650
+ � L
651
+ 0
652
+ dze
653
+ 1
654
+ λRREA − 1
655
+ �λ
656
+ (14)
657
+ Here �λ = −λdecay > 0. Thus, the following formula is
658
+ obtained:
659
+ �νe− =
660
+ PλRREA
661
+ λRREA − �λ
662
+
663
+ 1 − exp
664
+
665
+ L
666
+
667
+ 1
668
+ λRREA
669
+ − 1
670
+ �λ
671
+ ���
672
+ (15)
673
+ This formula can be simplified using the empirical for-
674
+ mula for λRREA [21]:
675
+ λRREA
676
+ λRREA − �λ
677
+ = E + Ec
678
+ 2Ec
679
+ (16)
680
+ Therefore:
681
+ �νe− = P E + Ec
682
+ 2Ec
683
+
684
+ 1 − exp
685
+
686
+ −L
687
+ 2Ec
688
+ 7300[kV ]
689
+ ��
690
+ (17)
691
+ This formula can be further simplified for cells with
692
+ cell length L ≫
693
+ 7300[kV ]
694
+ 2Ec
695
+ , which works for cells larger
696
+ than 100 m:
697
+ �νe− = P E + Ec
698
+ 2Ec
699
+ (18)
700
+ Generally, there is some space between cells within a
701
+ thunderstorm. Runaway electrons lose energy by inter-
702
+ acting with air molecules while propagating through the
703
+ gap between cells. A fraction of runaway electrons be-
704
+ come undercritical and leave the beam.
705
+ This fraction
706
+ can be estimated with the decay length from formula 9
707
+ for E = 0 as exp
708
+
709
+ −l
710
+ Ec
711
+ 7300[kV ]
712
+
713
+ , where l is the gap between
714
+ cells in the simple reactor. Since, in the first approxima-
715
+ tion, all runaway electrons lose the same amount of en-
716
+ ergy in the gap, the shape of their spectrum remains the
717
+ same. Thus, the formula for runaway electron transport
718
+ feedback coefficient, taking into account the gap between
719
+ cells, simply modifies in the following way:
720
+ �νe− = P E + Ec
721
+ 2Ec
722
+
723
+ 1 − exp
724
+
725
+
726
+ 2EcL
727
+ 7300[kV ]
728
+ ��
729
+ ·
730
+ exp
731
+
732
+
733
+ Ecl
734
+ 7300[kV ]
735
+
736
+ (19)
737
+ V.
738
+ GEANT4 SIMULATION
739
+ The Monte Carlo simulation of the simple reactor was
740
+ carried out using Geant4, version 4.10.06.p01. Geant4 is
741
+ recognized as a good tool to model RREA [37, 51]. The
742
+ physics list G4EmStandardPhysics option4 was chosen
743
+ as the reliable physics list for RREA simulations [51].
744
+ This list includes all interactions of electrons, gamma-
745
+ rays and positrons for energies characteristic for RREA
746
+ processes [26, 48]. The energy cut for the particles was
747
+ chosen 50 keV based on the fact that low-energy particles
748
+ will quickly decay, as they do not run away [16], and will
749
+ not contribute to the feedback. The simulated geometry
750
+ is a large world volume filled with air, within which a
751
+ child volume is specified, also filled with air. A simple
752
+ reactor by definition consists of two child volumes: both
753
+ volumes are filled with air with a density of 0.414 kg/m3,
754
+ corresponding to altitude 10 km, and contain electric field
755
+ in the way that both volumes accelerate runaway elec-
756
+ trons towards each other (Figure 1).
757
+ The purpose of the GEANT4 simulation is to find the
758
+ parameters of the system necessary for the self-sustaining
759
+ RREA regime (when the generation of high-energy par-
760
+ ticles within the thunderstorm does not stop until the
761
+ electric field is discharged). The simulation was carried
762
+ out by varying the cell size and the strength of the elec-
763
+ tric field inside of it. At a certain electric field strength,
764
+ the number of gamma-ray photons and runaway electrons
765
+ crossing in both directions the boundary between the
766
+ simple reactor cells will not decrease over time. Thus,
767
+ RREA within the simple reactor will not die out over
768
+ time.
769
+ In this case, self-sustaining feedback is reached.
770
+ Thus, by increasing the electric field with a constant cell
771
+ length, one can find the critical point at which the reactor
772
+ will become self-sustaining. In this way, the achievement
773
+ of critical values is checked, and the conditions are cal-
774
+ culated.
775
+ The most important stage in modeling is the division
776
+ of the high-energy particles into generations. If directly
777
+ two cells are created with an oppositely directed field,
778
+ then it will be quite difficult to divide the process into
779
+ feedback generations, since, under certain conditions, a
780
+ self-sustaining feedback is formed and the simulation will
781
+ not stop. Thus, analogically to the theoretical model, it
782
+ was decided to simultaneously simulate only a half of
783
+ a simple reactor. This approach is possible due to the
784
+ symmetry of the simple reactor. The modeling scheme
785
+ is shown in Figure 3.
786
+ The model consists of a single
787
+ cell filled with air and electric field. At the beginning of
788
+ the cell an air detector is placed — the volume within
789
+ which particles are stopped and registered. In the first
790
+ simulation step, seed particles with an energy of 5 MeV
791
+ are launched from the beginning of the cell along the di-
792
+ rection of the electric field. Seed runaway electrons are
793
+ decelerated by the electric field. Some of them penetrate
794
+ into the cell, reverse, and form RREA towards the de-
795
+ tector. Seed gamma-ray photons propagate through the
796
+ cell and interact with air molecules. This interaction re-
797
+
798
+ 7
799
+ detector
800
+ e-
801
+ FIG. 3. The design of a simple reactor has been simplified
802
+ in the GEANT4 simulation to consider only one cell as in
803
+ the figure. Runaway electrons and gamma-ray photons are
804
+ launched from the right side of the cell along the direction
805
+ of the electric field.
806
+ The interactions of launched particles
807
+ lead to RREA formation, which is accelerated by the electric
808
+ field to the right side of the cell. In the result, generated par-
809
+ ticles reach the detector and registered. In the next stages
810
+ of the simulation, registered particles are launched and new
811
+ generated particles are similarly registered. In this way, each
812
+ reactor feedback generation is studied separately, thus, allow-
813
+ ing the analysis of the model.
814
+ sults in runaway electrons generation, which reverse and
815
+ form RREA, also moving and growing toward the begin-
816
+ ning of the cell. All particles that reach the detector are
817
+ stopped and registered and the simulation stops. In this
818
+ way, the first feedback generation is modeled. In subse-
819
+ quent simulations, the particles registered in the previous
820
+ iteration are launched into the cell accordingly (thus im-
821
+ itating propagation of the high-energy particles from one
822
+ cell into another in the simple reactor). These particles
823
+ interact with the cell, which results in new particles gen-
824
+ erated that reach the detector. For each feedback gen-
825
+ eration this process repeats. Figure 4 shows the number
826
+ of gamma-rays reaching the detector in each simulated
827
+ feedback generation. The graph shows that depending on
828
+ the thunderstorm conditions the number of high-energy
829
+ particles can decay from generation to generation or vice
830
+ versa. The thunderstorm conditions when the number of
831
+ particles does not change are the necessary conditions for
832
+ the self-sustaining development of RREA in the simple
833
+ reactor.
834
+ To calculate the feedback coefficient, the simulation
835
+ was launched with seed runaway electrons. Number of
836
+ generated gamma-ray photons and runaway electrons for
837
+ each feedback generation was registered, thus forming
838
+ plots similar to Figure 4. Each plot was fitted with an
839
+ exponential function. The feedback coefficient 6, 19 is
840
+ obtained from the coefficient in the exponent by adding
841
+ 0
842
+ 2
843
+ 4
844
+ 6
845
+ 8
846
+ 10
847
+ Generation number
848
+ 4
849
+ 5
850
+ 6
851
+ 7
852
+ 8
853
+ 9
854
+ 10
855
+ log(N)
856
+ Dependence of the number of gamma in a generation on its number
857
+ 100kV/m
858
+ 150kV/m
859
+ 170kV/m
860
+ 200kV/m
861
+ 220kV/m
862
+ 240kV/m
863
+ 250kV/m
864
+ 260kV/m
865
+ 300kV/m
866
+ FIG. 4. The dependence of the logarithm of the number of
867
+ gamma-ray photons that propagates from one cell to another
868
+ in the simple reactor depending on the number of feedback
869
+ generation. The number of generation is the number of an
870
+ iteration of a simple reactor simulation (Figure 3). It can be
871
+ seen that the number of gamma-rays produced by the simple
872
+ reactor exponentially grows or exponentially decays depend-
873
+ ing on the electric field strength.
874
+ 1 to it [26]. The obtained dependence of the exponent
875
+ parameter on the electric field strength is shown in Fig-
876
+ ure 5. When the exponent parameter is positive, number
877
+ of high energy particles in the simple reactor thunder-
878
+ storm self-sustainably grows until the electric field is dis-
879
+ charged.
880
+ It is also interesting to calculate the spectrum of the
881
+ gamma-rays produced within the simple reactor and
882
+ compare it with the spectrum of an ordinary RREA
883
+ bremsstrahlung. To obtain the spectrum, a full simple
884
+ reactor with two cells oriented towards each other was
885
+ simulated. This simulation captures the particles with
886
+ their energies in a tracking action. The critical parame-
887
+ ters of the simple reactor were chosen — the field is 300
888
+ kV/m and the length of one cell is 400 m for 10 km alti-
889
+ tude air density.
890
+ Similarly to the previous simulation
891
+ technique, the G4EmStandardPhysics option4 physics
892
+ list was used, and the energy cut for particles is 50 keV.
893
+ The simulation was stopped when the number of high-
894
+ energy particles reached 106, and the spectrum of regis-
895
+ tered gamma rays is obtained. In addition, a simulation
896
+ for a single cell with the same parameters was carried out
897
+ to obtain the spectrum of an ordinary RREA. The result-
898
+ ing spectra are shown in Figure 6. The graph shows that
899
+ the spectra are the same. It should be noted that sin-
900
+ gle cell gamma-ray spectrum contains more pronounced
901
+
902
+ 8
903
+ 100
904
+ 125
905
+ 150
906
+ 175
907
+ 200
908
+ 225
909
+ 250
910
+ 275
911
+ 300
912
+ Field, kV/m
913
+ 0.05
914
+ 0.00
915
+ 0.05
916
+ 0.10
917
+ 0.15
918
+ Exponent parameter
919
+ FIG. 5. The dependence of the feedback generations expo-
920
+ nent parameter on the electric field in the simple reactor for
921
+ the cell length 400 m. Negative exponent parameters means
922
+ the decay of RREA in the simple reactor, while positive ex-
923
+ ponent parameter means self-sustaining RREA development
924
+ with high energy particles generation. The exponent parame-
925
+ ter includes both simple reactor feedback processes: gamma-
926
+ ray reactor feedback and runaway electron oscillations (Fig-
927
+ ure 1). The conditions necessary for self-sustainable regime
928
+ (when exponential parameter equals 0) are in agreement with
929
+ theoretical predictions (Figure 2).
930
+ positron peak.
931
+ However, when gamma rays propagate
932
+ from thunderstorm to the detector registering TGF or
933
+ TGE, they interact with the atmospheric layer and nat-
934
+ urally produce the positron peak. Thus, this peak will
935
+ also be present when the TGF or TGE produced by the
936
+ simple reactor is measured. Nowadays it has been reli-
937
+ ably established that the TGF and TGE source spectrum
938
+ is the RREA spectrum [50, 51]. Thus, the simple reactor
939
+ can be the mechanism for the TGF or TGE.
940
+ VI.
941
+ DISCUSSION
942
+ The discovered mechanism called the simple reactor
943
+ can be applied for a thundercloud containing two regions
944
+ with electric field exceeding the critical value, i.e.
945
+ al-
946
+ lowing the RREA development (for simplicity, such re-
947
+ gions are called cells [26]), electric field is oriented in the
948
+ way that cells accelerate runaway electrons towards each
949
+ other. It was established that there is a positive feed-
950
+ back in this system caused by two mechanisms (besides
951
+ the relativistic feedback [21], which impact is relatively
952
+ low (Figure 2)). The first mechanism is the transport
953
+ of runaway electrons from one strong field region to an-
954
+ other.
955
+ This leads to the effective high-energy electron
956
+ multiplication and runaway electron oscillation near the
957
+ edge between the strong electric-field regions. The elec-
958
+ tron transport feedback coefficient is very high for a small
959
+ gap between cells, and is a dominant RREA multiplica-
960
+ tion mechanism in the case of the small gap. On the other
961
+ FIG. 6. Comparison of the spectra obtained from the sim-
962
+ ulation of the simple reactor and ordinary RREA spectrum,
963
+ obtained from a single cell simulation with a uniform electric
964
+ field.
965
+ The simulation of the simple reactor was turned off
966
+ when enough statistics were collected. It can be seen that the
967
+ spectrum of the simple reactor gamma-radiation is the same
968
+ as the RREA bremsstrahlung spectrum. It is established that
969
+ the thunderstorm gamma-radiation spectrum agrees with the
970
+ RREA spectrum [4, 8]. Thus, the simple reactor can be one
971
+ of the mechanisms of TGF and TGE.
972
+ hand, in the case of a significant gap, when the distance
973
+ between strong field regions exceeds the characteristic
974
+ length of runaway electrons, too few runaway electrons
975
+ propagate through the gap between regions, thus an-
976
+ other feedback mechanism dominates. The second feed-
977
+ back mechanism is the gamma-ray reactor feedback [26].
978
+ RREA bremsstrahlung gamma-rays have high penetra-
979
+ tion rate in the air. Thus, in the simple reactor, gamma-
980
+ rays effectively propagate from one cell to another. When
981
+ a gamma-ray photon propagates through the opposite
982
+ cell, it interacts with air, producing secondary RREAs,
983
+ which is the gamma-ray reactor feedback.
984
+ Both feed-
985
+ back mechanisms can lead to self-sustaining RREA de-
986
+ velopment and, moreover, to rapid multiplication of high-
987
+ energy particles within a thunderstorm.
988
+ The formulas derived in this paper allow one to pre-
989
+ dict the feedback coefficient for both feedback mecha-
990
+ nisms without complicated modeling; the theoretical pre-
991
+ dictions of this paper are verified by GEANT4. The dis-
992
+ covered feedback coefficients completely describe the be-
993
+ havior of the simple reactor, e.g. allow to calculate the
994
+ conditions required for the self-sustaining RREA devel-
995
+ opment (Figure 2). The limitations of the proposed an-
996
+ alytical model are as follows. Firstly, the model is one-
997
+ dimensional and, therefore, does not consider the trans-
998
+ verse dynamics of the avalanche, which affects the feed-
999
+ back coefficients in the case of narrow electric field regions
1000
+ [34]. Second, though the description of runaway electron
1001
+ transport feedback qualitatively matches Geant4 simu-
1002
+ lations, it lacks quantitative accuracy. More theoretical
1003
+
1004
+ 10-1
1005
+ simple reactor
1006
+ onebox
1007
+ 10-2
1008
+ 10-3
1009
+ 102
1010
+ Energy,kev9
1011
+ and modeling research is needed to establish the exact in-
1012
+ fluence of the electron transport feedback on the RREA
1013
+ development.
1014
+ The simple reactor geometry corresponds to the charge
1015
+ distribution with two negative charge layers on both sides
1016
+ of the positive layer.
1017
+ This structure can be a part of
1018
+ a more complicated charge structure of a thunderstorm
1019
+ [41–47]. In the simple reactor, the maximum density of
1020
+ runaway electrons will be on the border between two op-
1021
+ positely directed cells — in the center of the simple re-
1022
+ actor, in the region of the positive charge (it should be
1023
+ noted that the large value of a single positive charge in a
1024
+ region of a cloud can be sufficient for RREA development
1025
+ below and above this region, forming the simple reactor).
1026
+ This feature distinguishes the simple reactor model from
1027
+ models assuming the development of RREA in a single
1028
+ cell with maximum particle density in the cloud top or
1029
+ cloud base. Since in the simple reactor the maximum run-
1030
+ away electron density is located in the center of the reac-
1031
+ tor, it is harder for bremsstrahlung gamma-rays to reach
1032
+ detectors registering TGF or TGE due to the greater
1033
+ thickness of the atmosphere that they must penetrate.
1034
+ However, this does not contradict the observed gamma-
1035
+ ray fluxes, since the reactor feedback increases the num-
1036
+ ber of generated bremsstrahlung gamma-rays within a
1037
+ thunderstorm containing the simple reactor.
1038
+ This in-
1039
+ crease compensates for the decrease in gamma-ray flux
1040
+ by extra atmosphere in has to penetrate.
1041
+ Another distinguishing and important property of the
1042
+ simple reactor is that it generates simultaneous gamma-
1043
+ ray radiation directed upward and downward from a
1044
+ thundercloud (or in other opposite directions if the simple
1045
+ reactor is not oriented vertically). This means that theo-
1046
+ retically it is possible to simultaneously detect a TGF or
1047
+ a TGE from two opposite sides of a thunderstorm, e.g.,
1048
+ from the top and from the bottom. Such observation can
1049
+ be performed, for example, with an airplane containing
1050
+ particle detectors flying over an observatory with particle
1051
+ detectors. Also a TGF generated by the simple reactor
1052
+ can be registered simultaneously from space and ground
1053
+ observatories, but the probability for the space station to
1054
+ be located above the ground observatory at the moment
1055
+ of TGF is very low due to the TGF short duration. It
1056
+ should be noted that the time profile of the gamma-ray
1057
+ flux in measurements from both sides of the thunder-
1058
+ storm must match in order to conclude that upward and
1059
+ downward gamma-ray radiation are connected by the re-
1060
+ actor feedback. This requires a good temporal resolution
1061
+ of the detectors.
1062
+ The simple reactor with a large feedback coefficient can
1063
+ be a source of TGF. Characteristic timescale of the sim-
1064
+ ple reactor is its size divided by the speed of light, which
1065
+ is in order of microsecond. Therefore, the timescale and
1066
+ radiated gamma-ray spectrum satisfy the experimentally
1067
+ observed TGF data [1, 3, 5]. Runaway electron accelera-
1068
+ tion and its bremsstrahlung gamma-ray radiation in the
1069
+ simple reactor precede the lightning leader and should co-
1070
+ incide with the early stage of the lightning initiation. It
1071
+ should be noted that a TGF generated by positive feed-
1072
+ back has a characteristic exponential gamma-ray flux rise
1073
+ time profile. Number of high-energy particles grows ex-
1074
+ ponentially on TGF timescales as thunderstorm electric
1075
+ field remains almost constant on these timescales.
1076
+ At
1077
+ the TGF peak, thunderstorm electric field lowers, thus
1078
+ feedback coefficient drops and the feedback becomes fi-
1079
+ nite: the flux of high-energy particles starts to decay or
1080
+ even abruptly terminates, if the electric field required for
1081
+ RREA development abruptly disappear. The disappear-
1082
+ ance of the electric field can be connected either with lo-
1083
+ cal discharges or with the initiation of a lightning leader.
1084
+ From the rise profile of measured TGF flux the feedback
1085
+ coefficient can be restored. The feedback coefficient is a
1086
+ good source of information on the thunderstorm electric
1087
+ field during the TGF (Formula 6, 19) [34].
1088
+ Another TGF model based on RREA, the relativis-
1089
+ tic feedback discharge model, supposes significant posi-
1090
+ tive feedback (the relativistic feedback) in the most sim-
1091
+ ple thunderstorm geometry - uniform electric field [38].
1092
+ The disadvantage of this model is that it requires very
1093
+ high values of electric field strength extended over a
1094
+ large thunderstorm space [16, 34, 39].
1095
+ The significant
1096
+ feature of the simple reactor is that it requires smaller
1097
+ electric field strength for the self-sustaining RREA de-
1098
+ velopment than it is in the uniform electric field (Fig-
1099
+ ure 2) [26, 34, 38]. Moreover, provided that two strong
1100
+ field regions are formed by the same positive charge layer,
1101
+ the conditions for self-sustaining feedback in the simple
1102
+ reactor are significantly more achievable than for self-
1103
+ sustaining relativistic feedback.
1104
+ For the simple reactor (as for any other RREA model
1105
+ with positive feedback [21, 26]) the following time de-
1106
+ pendence of the gamma radiation flux measured on the
1107
+ ground is possible. Usually during a TGE measurement,
1108
+ the gamma flux slowly increases exponentially [7, 8]. This
1109
+ can be explained by the fact that when the cloud ap-
1110
+ proaches the detector at a constant speed, so the distance
1111
+ from the cloud to the TGE source decreases linearly in
1112
+ time. The measured particle flux decays exponentially
1113
+ with distance, thus, if the distance is decreased linearly,
1114
+ the measured flux grows exponentially [7].
1115
+ If RREAs
1116
+ are self-sustaining within the thunderstorm due to the
1117
+ positive feedback, then their bremsstrahlung gamma-ray
1118
+ flux grows exponentially within the thunderstorm itself
1119
+ (it can grow slowly if the multiplication rate is slightly
1120
+ higher than unity).
1121
+ Moreover, even if the feedback is
1122
+ present but the RREA is not self-sustaining due to the
1123
+ low feedback coefficient, the RREA time profile is mod-
1124
+ ified and its radiation time increases [26].
1125
+ Thus, with
1126
+ the positive feedback, the time profile of the measured
1127
+ gamma-ray flux is exponent superimposed on exponent.
1128
+ The time profile can be more complicated if the electric
1129
+ field within thunderstorm is changing. Such time pro-
1130
+ file was measured during winter thunderstorms gamma-
1131
+ ray glows [7], which supports the hypothesis about the
1132
+ importance of the positive feedback in thunderstorm
1133
+ physics.
1134
+
1135
+ 10
1136
+ Lightning initiation by RREA is a widely discussed
1137
+ problem in the atmospheric electricity science commu-
1138
+ nity [8, 11, 20, 23, 26, 38, 52, 53].
1139
+ Within the simple
1140
+ reactor, RREAs are directed to the center of the system,
1141
+ thus creating the maximal density of RREA electrons
1142
+ and their products in the center. This also leads to max-
1143
+ imum ionization in the middle part of the simple reactor
1144
+ [54, 55]. The described case can be more favorable for
1145
+ streamer initiation when compared to a single strong field
1146
+ region with RREAs directed to the top or to the bottom
1147
+ base of a cloud because the ionization has its maximum
1148
+ at the end of a RREA, on the edge of the strong field
1149
+ region. Moreover, the simple reactor naturally contains
1150
+ more high-energy particles than the uniform electric-field
1151
+ region because of the reactor feedback. Thus, the simple
1152
+ reactor model can be a useful mechanism for lightning
1153
+ initiation research. It should be noted, that if stream-
1154
+ ers are generated with the reactor feedback, it can lead
1155
+ to an exponential growth of radio signal preceding the
1156
+ lightning leader.
1157
+ VII.
1158
+ CONCLUSION
1159
+ This paper studies RREA physics in thunderstorms
1160
+ containing two supercritical electric field regions accel-
1161
+ erating runaway electrons toward each other.
1162
+ Such a
1163
+ system, named the simple reactor, can be a part of a
1164
+ natural thunderstorm.
1165
+ It is discovered that RREA in
1166
+ the simple reactor has positive reactor feedback. The re-
1167
+ actor feedback enhances RREA duration and can lead
1168
+ to self-sustaining RREA development.
1169
+ There are two
1170
+ mechanisms of the reactor feedback in the simple reac-
1171
+ tor. RREA is effectively multiplied by the gamma-ray ex-
1172
+ change between regions even if they are far enough apart.
1173
+ If regions are close to each other, high-energy particles
1174
+ are generated by the runaway electron oscillations near
1175
+ the border between regions. In this case, the small-scale
1176
+ strong electric field is sufficient for self-sustaining RREA
1177
+ development. It is shown that the reactor feedback in the
1178
+ simple reactor requires significantly lower electric field
1179
+ strength for RREA multiplication compared to relativis-
1180
+ tic feedback.
1181
+ The simple reactor in the self-sustaining regime rapidly
1182
+ increases the number of high-energy particles within a
1183
+ thunderstorm and can hypothetically precede or cause
1184
+ lightning initiation. It is established that the time scale
1185
+ and the spectrum of the simple reactor gamma radiation
1186
+ agree with TGF data.
1187
+ The distinguishing property of
1188
+ the simple reactor is that it radiates gamma rays in two
1189
+ opposite directions. This allows simultaneous and cor-
1190
+ related observation of TGF or TGE gamma rays from
1191
+ the top and from the bottom of a thundercloud. More-
1192
+ over, the feedback coefficient can be retrieved from TGF
1193
+ and TGE data, which can be a good source of infor-
1194
+ mation about gamma radiating thunderstorm parame-
1195
+ ters, including electric field strength, supercritical region
1196
+ length, and the electric field geometry.
1197
+ ACKNOWLEDGEMENTS
1198
+ The work of E. Stadnichuk was supported by the Foun-
1199
+ dation for the Advancement of Theoretical Physics and
1200
+ Mathematics “BASIS”. The work of E. Svechnikova was
1201
+ supported by a grant from the Government of the Rus-
1202
+ sian Federation (contract no. 075-15-2019-1892).
1203
+ [1] G. J. Fishman, P. N. Bhat, R. Mallozzi, J. M. Horack,
1204
+ T. Koshut, C. Kouveliotou, G. N. Pendleton, C. A.
1205
+ Meegan, R. B. Wilson, W. S. Paciesas, S. J. Goodman,
1206
+ and H. J. Christian, Discovery of intense gamma-ray
1207
+ flashes of atmospheric origin, Science 264, 1313 (1994),
1208
+ https://www.science.org/doi/pdf/10.1126/science.264.5163.1313.
1209
+ [2] B. G. Mailyan, M. S. Briggs, E. S. Cramer, G. Fitz-
1210
+ patrick, O. J. Roberts, M. Stanbro, V. Connaughton,
1211
+ S. McBreen, P. N. Bhat, and J. R. Dwyer, The spec-
1212
+ troscopy of individual terrestrial gamma-ray flashes:
1213
+ Constraining the source properties, Journal of Geo-
1214
+ physical Research:
1215
+ Space Physics 121, 11,346 (2016),
1216
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA022702.
1217
+ [3] N. Østgaard, T. Neubert, V. Reglero, K. Ullaland,
1218
+ S. Yang,
1219
+ G. Genov,
1220
+ M. Marisaldi,
1221
+ A. Mezentsev,
1222
+ P. Kochkin, N. Lehtinen, D. Sarria, B. H. Qureshi,
1223
+ A. Solberg, C. Maiorana, K. Albrechtsen, C. Budtz-
1224
+ Jørgensen, I. Kuvvetli, F. Christiansen, O. Chanrion,
1225
+ M.
1226
+ Heumesser,
1227
+ J.
1228
+ Navarro-Gonzalez,
1229
+ P.
1230
+ Connell,
1231
+ C. Eyles, H. Christian, and S. Al-nussirat, First 10
1232
+ months of tgf observations by asim, Journal of Geo-
1233
+ physical Research:
1234
+ Atmospheres 124, 14024 (2019),
1235
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031214.
1236
+ [4] A. Lindanger, M. Marisaldi, D. Sarria, N. Østgaard,
1237
+ N. Lehtinen, C. A. Skeie, A. Mezentzev, P. Kochkin,
1238
+ K.
1239
+ Ullaland,
1240
+ S.
1241
+ Yang,
1242
+ G.
1243
+ Genov,
1244
+ B.
1245
+ E.
1246
+ Carlson,
1247
+ C. K¨ohn, J. Navarro-Gonzalez, P. Connell, V. Re-
1248
+ glero, and T. Neubert, Spectral analysis of individual
1249
+ terrestrial gamma-ray flashes detected by asim, Jour-
1250
+ nal
1251
+ of
1252
+ Geophysical
1253
+ Research:
1254
+ Atmospheres
1255
+ 126,
1256
+ e2021JD035347 (2021), e2021JD035347 2021JD035347,
1257
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021JD035347.
1258
+ [5] M. S. Briggs, G. J. Fishman, V. Connaughton, P. N.
1259
+ Bhat,
1260
+ W.
1261
+ S.
1262
+ Paciesas,
1263
+ R.
1264
+ D.
1265
+ Preece,
1266
+ C.
1267
+ Wilson-
1268
+ Hodge, V. L. Chaplin, R. M. Kippen, A. von Kienlin,
1269
+ C. A. Meegan,
1270
+ E. Bissaldi,
1271
+ J. R. Dwyer,
1272
+ D. M.
1273
+ Smith, R. H. Holzworth, J. E. Grove, and A. Chekht-
1274
+ man, First results on terrestrial gamma ray flashes
1275
+ from
1276
+ the
1277
+ fermi
1278
+ gamma-ray
1279
+ burst
1280
+ monitor,
1281
+ Journal
1282
+ of Geophysical Research:
1283
+ Space Physics 115 (2010),
1284
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009JA015242.
1285
+ [6] A. Chilingarian, A. Daryan, K. Arakelyan, A. Hov-
1286
+ hannisyan, B. Mailyan, L. Melkumyan, G. Hovsepyan,
1287
+ S. Chilingaryan, A. Reymers, and L. Vanyan, Ground-
1288
+ based observations of thunderstorm-correlated fluxes of
1289
+ high-energy electrons, gamma rays, and neutrons, Phys.
1290
+
1291
+ 11
1292
+ Rev. D 82, 043009 (2010).
1293
+ [7] Y. Wada, T. Enoto, Y. Nakamura, Y. Furuta, T. Yuasa,
1294
+ K. Nakazawa, T. Morimoto, M. Sato, T. Matsumoto,
1295
+ D. Yonetoku, T. Sawano, H. Sakai, M. Kamogawa,
1296
+ T. Ushio, K. Makishima, and H. Tsuchiya, Gamma-ray
1297
+ glow preceding downward terrestrial gamma-ray flash,
1298
+ Communications Physics 2, 67 (2019).
1299
+ [8] A. Chilingarian, G. Hovsepyan, T. Karapetyan, G. Kara-
1300
+ petyan, L. Kozliner, H. Mkrtchyan, D. Aslanyan, and
1301
+ B. Sargsyan, Structure of thunderstorm ground enhance-
1302
+ ments, Phys. Rev. D 101, 122004 (2020).
1303
+ [9] T.
1304
+ Neubert,
1305
+ N.
1306
+ Østgaard,
1307
+ V.
1308
+ Reglero,
1309
+ O.
1310
+ Chan-
1311
+ rion,
1312
+ M.
1313
+ Heumesser,
1314
+ K.
1315
+ Dimitriadou,
1316
+ F.
1317
+ Chris-
1318
+ tiansen,
1319
+ C.
1320
+ Budtz-Jørgensen,
1321
+ I.
1322
+ Kuvvetli,
1323
+ I.
1324
+ L.
1325
+ Rasmussen,
1326
+ A. Mezentsev,
1327
+ M. Marisaldi,
1328
+ K. Ulla-
1329
+ land, G. Genov, S. Yang, P. Kochkin, J. Navarro-
1330
+ Gonzalez, P. H. Connell, and C. J. Eyles, A terrestrial
1331
+ gamma-ray
1332
+ flash
1333
+ and
1334
+ ionospheric
1335
+ ultraviolet
1336
+ emis-
1337
+ sions powered by lightning, Science 367, 183 (2020),
1338
+ https://www.science.org/doi/pdf/10.1126/science.aax3872.
1339
+ [10] A. Lindanger, C. A. Skeie, M. Marisaldi, I. Bjørge-
1340
+ Engeland,
1341
+ N.
1342
+ Østgaard,
1343
+ A.
1344
+ Mezentsev,
1345
+ D.
1346
+ Sarria,
1347
+ N. Lehtinen, V. Reglero, O. Chanrion, and T. Neu-
1348
+ bert,
1349
+ Production
1350
+ of
1351
+ terrestrial
1352
+ gamma-ray
1353
+ flashes
1354
+ during
1355
+ the
1356
+ early
1357
+ stages
1358
+ of
1359
+ lightning
1360
+ flashes,
1361
+ Jour-
1362
+ nal
1363
+ of
1364
+ Geophysical
1365
+ Research:
1366
+ Atmospheres
1367
+ 127,
1368
+ e2021JD036305 (2022), e2021JD036305 2021JD036305,
1369
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021JD036305.
1370
+ [11] C. A. Skeie, N. Østgaard, A. Mezentsev, I. Bjørge-
1371
+ Engeland,
1372
+ M.
1373
+ Marisaldi,
1374
+ N.
1375
+ Lehtinen,
1376
+ V.
1377
+ Re-
1378
+ glero,
1379
+ and
1380
+ T.
1381
+ Neubert,
1382
+ The
1383
+ temporal
1384
+ relation-
1385
+ ship
1386
+ between
1387
+ terrestrial
1388
+ gamma-ray
1389
+ flashes
1390
+ and
1391
+ associated
1392
+ optical
1393
+ pulses
1394
+ from
1395
+ lightning,
1396
+ Jour-
1397
+ nal
1398
+ of
1399
+ Geophysical
1400
+ Research:
1401
+ Atmospheres
1402
+ 127,
1403
+ e2022JD037128 (2022), e2022JD037128 2022JD037128,
1404
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022JD037128.
1405
+ [12] T. Enoto, Y. Wada, Y. Furuta, K. Nakazawa, T. Yuasa,
1406
+ K. Okuda, K. Makishima, M. Sato, Y. Sato, T. Nakano,
1407
+ D. Umemoto, and H. Tsuchiya, Photonuclear reactions
1408
+ triggered by lightning discharge, Nature 551, 481 (2017).
1409
+ [13] I.
1410
+ Bjørge-Engeland,
1411
+ N.
1412
+ Østgaard,
1413
+ A.
1414
+ Mezentsev,
1415
+ C. A. Skeie, D. Sarria, J. Lapierre, A. Lindanger,
1416
+ T. Neubert,
1417
+ M. Marisaldi,
1418
+ N. Lehtinen,
1419
+ O. Chan-
1420
+ rion,
1421
+ K. Ullaland,
1422
+ S. Yang,
1423
+ G. Genov,
1424
+ F. Chris-
1425
+ tiansen, and V. Reglero, Terrestrial gamma-ray flashes
1426
+ with
1427
+ accompanying
1428
+ elves
1429
+ detected
1430
+ by
1431
+ asim,
1432
+ Jour-
1433
+ nal
1434
+ of
1435
+ Geophysical
1436
+ Research:
1437
+ Atmospheres
1438
+ 127,
1439
+ e2021JD036368 (2022), e2021JD036368 2021JD036368,
1440
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021JD036368.
1441
+ [14] D. Sarria,
1442
+ P. Kochkin,
1443
+ N. Østgaard,
1444
+ N. Lehtinen,
1445
+ A. Mezentsev, M. Marisaldi, B. E. Carlson, C. Maiorana,
1446
+ K. Albrechtsen, T. Neubert, V. Reglero, K. Ullaland,
1447
+ S. Yang, G. Genov, B. H. Qureshi, C. Budtz-Jørgensen,
1448
+ I. Kuvvetli, F. Christiansen, O. Chanrion, M. Heumesser,
1449
+ K. Dimitriadou, J. Navarro-Gonz´alez, P. Connell, and
1450
+ C. Eyles, The first terrestrial electron beam observed by
1451
+ the atmosphere-space interactions monitor, Journal of
1452
+ Geophysical Research: Space Physics 124, 10497 (2019),
1453
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027071.
1454
+ [15] A. Chilingarian, Particle bursts from thunderclouds:
1455
+ Natural particle accelerators above our heads, Phys. Rev.
1456
+ D 83 (2011).
1457
+ [16] L. P. Babich, Relativistic runaway electron avalanche,
1458
+ Physics-Uspekhi 63, 1188 (2020).
1459
+ [17] J. Dwyer, D. Smith, and S. Cummer, High-energy atmo-
1460
+ spheric physics: Terrestrial gamma-ray flashes and re-
1461
+ lated phenomena, Space Sci. Rev. 177, 133 (2012).
1462
+ [18] C. Koehn, G. Diniz, and M. Harakeh, Production mecha-
1463
+ nisms of leptons, photons and hadrons and their possible
1464
+ feedback close to lightning leaders, Journal of Geophysi-
1465
+ cal Research: Atmospheres 122 (2017).
1466
+ [19] M. Tavani, M. Marisaldi, C. Labanti, F. Fuschino, A. Ar-
1467
+ gan, A. Trois, P. Giommi, S. Colafrancesco, C. Pittori,
1468
+ F. Palma, M. Trifoglio, F. Gianotti, A. Bulgarelli, V. Vit-
1469
+ torini, F. Verrecchia, L. Salotti, G. Barbiellini, P. Car-
1470
+ aveo, P. W. Cattaneo, A. Chen, T. Contessi, E. Costa,
1471
+ F. D’Ammando, E. Del Monte, G. De Paris, G. Di Cocco,
1472
+ G. Di Persio, I. Donnarumma, Y. Evangelista, M. Fe-
1473
+ roci, A. Ferrari, M. Galli, A. Giuliani, M. Giusti, I. Lap-
1474
+ shov, F. Lazzarotto, P. Lipari, F. Longo, S. Mereghetti,
1475
+ E. Morelli, E. Moretti, A. Morselli, L. Pacciani, A. Pel-
1476
+ lizzoni, F. Perotti, G. Piano, P. Picozza, M. Pilia, G. Pu-
1477
+ cella, M. Prest, M. Rapisarda, A. Rappoldi, E. Rossi,
1478
+ A. Rubini, S. Sabatini, E. Scalise, P. Soffitta, E. Striani,
1479
+ E. Vallazza, S. Vercellone, A. Zambra, and D. Zanello
1480
+ (AGILE Team), Terrestrial gamma-ray flashes as pow-
1481
+ erful particle accelerators, Phys. Rev. Lett. 106, 018501
1482
+ (2011).
1483
+ [20] A. Gurevich, G. Milikh, and R. Roussel-Dupre, Runaway
1484
+ electron mechanism of air breakdown and precondition-
1485
+ ing during a thunderstorm, Physics Letters A 165, 463
1486
+ (1992).
1487
+ [21] J. R. Dwyer, A fundamental limit on electric fields
1488
+ in
1489
+ air,
1490
+ Geophysical
1491
+ Research
1492
+ Letters
1493
+ 30
1494
+ (2003),
1495
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2003GL017781.
1496
+ [22] A. Chilingarian, G. Hovsepyan, E. Svechnikova, and
1497
+ M. Zazyan, Electrical structure of the thundercloud and
1498
+ operation of the electron accelerator inside it, Astropar-
1499
+ ticle Physics 132, 102615 (2021).
1500
+ [23] A. V. Gurevich and K. P. Zybin, Runaway breakdown
1501
+ and electric discharges in thunderstorms, Uspekhi Fizich-
1502
+ eskikh Nauk (UFN) Journal 44, 1119 (2001).
1503
+ [24] G. D. Moss, V. P. Pasko, N. Liu, and G. Veronis,
1504
+ Monte Carlo model for analysis of thermal runaway
1505
+ electrons in streamer tips in transient luminous events
1506
+ and
1507
+ streamer
1508
+ zones
1509
+ of
1510
+ lightning
1511
+ leaders,
1512
+ Journal
1513
+ of Geophysical Research:
1514
+ Space Physics 111 (2006),
1515
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005JA011350.
1516
+ [25] J. R. Dwyer, Source mechanisms of terrestrial gamma-ray
1517
+ flashes, Journal of Geophysical Research: Atmospheres
1518
+ 113 (2008).
1519
+ [26] E. Stadnichuk, E. Svechnikova, A. Nozik, D. Zem-
1520
+ lianskaya,
1521
+ T. Khamitov,
1522
+ M. Zelenyy, and M. Dol-
1523
+ gonosov,
1524
+ Relativistic
1525
+ runaway
1526
+ electron
1527
+ avalanches
1528
+ within complex thunderstorm electric field structures,
1529
+ Journal of Geophysical Research:
1530
+ Atmospheres 126,
1531
+ e2021JD035278 (2021), e2021JD035278 2021JD035278,
1532
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021JD035278.
1533
+ [27] C. K¨ohn, M. Heumesser, O. Chanrion, K. Nishikawa,
1534
+ V. Reglero, and T. Neubert, The emission of terrestrial
1535
+ gamma ray flashes from encountering streamer coro-
1536
+ nae associated to the breakdown of lightning leaders,
1537
+ Geophysical
1538
+ Research
1539
+ Letters
1540
+ 47,
1541
+ e2020GL089749
1542
+ (2020),
1543
+ e2020GL089749
1544
+ 10.1029/2020GL089749,
1545
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089749.
1546
+ [28] C. K¨ohn, O. Chanrion, K. Nishikawa, L. Babich, and
1547
+ T. Neubert, The emission of energetic electrons from
1548
+ the complex streamer corona adjacent to leader step-
1549
+
1550
+ 12
1551
+ ping, Plasma Sources Science and Technology 29, 035023
1552
+ (2020).
1553
+ [29] S.
1554
+ Celestin,
1555
+ W.
1556
+ Xu,
1557
+ and
1558
+ V.
1559
+ P.
1560
+ Pasko,
1561
+ Terres-
1562
+ trial
1563
+ gamma
1564
+ ray
1565
+ flashes
1566
+ with
1567
+ energies
1568
+ up
1569
+ to
1570
+ 100
1571
+ mev
1572
+ produced
1573
+ by
1574
+ nonequilibrium
1575
+ accelera-
1576
+ tion
1577
+ of
1578
+ electrons
1579
+ in
1580
+ lightning,
1581
+ Journal
1582
+ of
1583
+ Geo-
1584
+ physical
1585
+ Research:
1586
+ Space
1587
+ Physics
1588
+ 117
1589
+ (2012),
1590
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JA017535.
1591
+ [30] N. I. Petrov, Synchrotron mechanism of x-ray and
1592
+ gamma-ray emissions in lightning and spark discharges,
1593
+ Scientific Reports 11, 19824 (2021).
1594
+ [31] J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway,
1595
+ A. Chrest, B. Wright, E. Kozak, J. Jerauld, M. A. Uman,
1596
+ V. A. Rakov, D. M. Jordan, and K. J. Rambo, X-ray
1597
+ bursts associated with leader steps in cloud-to-ground
1598
+ lightning,
1599
+ Geophysical
1600
+ Research
1601
+ Letters
1602
+ 32
1603
+ (2005),
1604
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL021782.
1605
+ [32] J.
1606
+ R.
1607
+ Dwyer,
1608
+ M.
1609
+ Schaal,
1610
+ H.
1611
+ K.
1612
+ Rassoul,
1613
+ M.
1614
+ A.
1615
+ Uman, D. M. Jordan, and D. Hill, High-speed x-ray
1616
+ images
1617
+ of
1618
+ triggered
1619
+ lightning
1620
+ dart
1621
+ leaders,
1622
+ Jour-
1623
+ nal of Geophysical Research: Atmospheres 116 (2011),
1624
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JD015973.
1625
+ [33] J. R. Dwyer, Relativistic breakdown in planetary at-
1626
+ mospheres,
1627
+ Physics
1628
+ of
1629
+ Plasmas
1630
+ 14,
1631
+ 042901
1632
+ (2007),
1633
+ https://doi.org/10.1063/1.2709652.
1634
+ [34] E. Stadnichuk and E. Svechnikova, The criterion for self-
1635
+ sustaining production of relativistic runaway electron
1636
+ avalanches by the positron feedback in thunderstorms,
1637
+ Atmospheric Research 277, 106329 (2022).
1638
+ [35] I. Kutsyk, L. Babich, and E. Donskoi, Self-sustained
1639
+ relativistic-runaway-electron avalanches in the transverse
1640
+ field of lightning leader as sources of terrestrial gamma-
1641
+ ray flashes, JETP Letters 94, 606 (2011), cited By 10.
1642
+ [36] M. Zelenyi, E. Stadnichuk, and A. Nozik, Calculation
1643
+ of gain coefficient in Dwyer relativistic discharge feed-
1644
+ back model of thunderstorm runway breakdown, EPJ
1645
+ Web Conf. 201, 07003 (2019).
1646
+ [37] A. Skeltved, N. Ostgaard, B. Carlson, T. Gjesteland, and
1647
+ S. Celestin, Modelling the relativistic runaway electron
1648
+ avalanche and the feedback mechanism with GEANT4,
1649
+ Journal of Geophysical Research:
1650
+ Space Physics 119
1651
+ (2014).
1652
+ [38] J.
1653
+ R.
1654
+ Dwyer,
1655
+ The
1656
+ relativistic
1657
+ feedback
1658
+ discharge
1659
+ model
1660
+ of
1661
+ terrestrial
1662
+ gamma
1663
+ ray
1664
+ flashes,
1665
+ Journal
1666
+ of Geophysical Research:
1667
+ Space Physics 117 (2012),
1668
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA017160.
1669
+ [39] E. Stadnichuk, M. Zelenyy, A. Nozik, and M. Dolgo-
1670
+ nosov, Monte carlo simulation of the relativistic feedback
1671
+ discharge model (rfdm), in International TEPA Sympo-
1672
+ sium on Thunderstorms and Elementary Particle Accel-
1673
+ eration (CRD Cosmic Ray Division, A Alikhanyan Na-
1674
+ tional Laboratory, Yerevan, Armenia, Armenia, 2019) p.
1675
+ 164, pHYSICS OF ELEMENTARY PARTICLES AND
1676
+ FIELDS.
1677
+ [40] M. Zelenyi, A. Nozik, and E. Stadnichuk, Reactor like
1678
+ TGE model, AIP Conference Proceedings 2163, 060005
1679
+ (2019).
1680
+ [41] M. Stolzenburg and T. Marshall, Testing models of thun-
1681
+ derstorm charge distributions with coulomb’s law, Jour-
1682
+ nal of Geophysical Research 992, 25921 (1994).
1683
+ [42] T. Marshall, W. Rison, W. Rust, M. Stolzenburg, J. Wil-
1684
+ lett, and W. Winn, Rocket and balloon observations of
1685
+ electric field in two thunderstorms, Journal of Geophysi-
1686
+ cal Research 100, 20815 (1995).
1687
+ [43] T. Marshall and M. Stolzenburg, Estimates of cloud
1688
+ charge densities in thunderstorms, Journal of Geophysi-
1689
+ cal Research 1031, 19769 (1998).
1690
+ [44] M. Stolzenburg, W. Rust, and T. Marshall, Electrical
1691
+ structure in thunderstorm convective regions 2. isolated
1692
+ storms, Journal of Geophysical Research 1031, 14079
1693
+ (1998).
1694
+ [45] M. Stolzenburg, W. Rust, and T. Marshall, Electrical
1695
+ structure in thunderstorm convective regions 3. synthesis,
1696
+ Journal of Geophysical Research 103, 14097 (1998).
1697
+ [46] M. Stolzenburg and T. Marshall, Charge precipitation
1698
+ and electric field in two thunderstorms, Journal of Geo-
1699
+ physical Research 1031, 19777 (1998).
1700
+ [47] M. Stolzenburg and T. Marshall, Charge structure and
1701
+ dynamics in thunderstorms, Space Science Reviews -
1702
+ SPACE SCI REV 137, 355 (2008).
1703
+ [48] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai,
1704
+ T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Bar-
1705
+ rand, B. Beck, A. Bogdanov, D. Brandt, J. Brown,
1706
+ H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie,
1707
+ K. Cho, G. Cirrone, G. Cooperman, M. Cort´es-Giraldo,
1708
+ G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher,
1709
+ X. Dong, A. Dotti, V. Elvira, G. Folger, Z. Fran-
1710
+ cis, A. Galoyan, L. Garnier, M. Gayer, K. Genser,
1711
+ V. Grichine, S. Guatelli, P. Gu`eye, P. Gumplinger,
1712
+ A.
1713
+ Howard,
1714
+ I.
1715
+ Hˇrivn´aˇcov´a,
1716
+ S.
1717
+ Hwang,
1718
+ S.
1719
+ Incerti,
1720
+ A. Ivanchenko, V. Ivanchenko, F. Jones, S. Jun, P. Kai-
1721
+ taniemi, N. Karakatsanis, M. Karamitros, M. Kelsey,
1722
+ A. Kimura, T. Koi, H. Kurashige, A. Lechner, S. Lee,
1723
+ F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Men-
1724
+ doza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola,
1725
+ P. Paprocki, J. Perl, I. Petrovi´c, M. Pia, W. Pokorski,
1726
+ J. Quesada, M. Raine, M. Reis, A. Ribon, A. Risti´c Fira,
1727
+ F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey,
1728
+ J. Shin, I. Strakovsky, A. Taborda, S. Tanaka, B. Tom´e,
1729
+ T. Toshito, H. Tran, P. Truscott, L. Urban, V. Uzhin-
1730
+ sky, J. Verbeke, M. Verderi, B. Wendt, H. Wenzel,
1731
+ D. Wright, D. Wright, T. Yamashita, J. Yarba, and
1732
+ H. Yoshida, Recent developments in geant4, Nuclear In-
1733
+ struments and Methods in Physics Research Section A:
1734
+ Accelerators, Spectrometers, Detectors and Associated
1735
+ Equipment 835, 186 (2016).
1736
+ [49] D. Zemlianskaya, E. Stadnichuk, and E. Svechnikova, In-
1737
+ fluence of hydrometeors on relativistic runaway electron
1738
+ avalanches, arXiv:2210.01916 [physics.ao-ph] (2022).
1739
+ [50] D. Sarria,
1740
+ N. Østgaard,
1741
+ P. Kochkin,
1742
+ N. Lehtinen,
1743
+ A. Mezentsev, M. Marisaldi, A. Lindanger, C. Maiorana,
1744
+ B. E. Carlson, T. Neubert, V. Reglero, K. Ullaland,
1745
+ S. Yang, G. Genov, B. H. Qureshi, C. Budtz-Jørgensen,
1746
+ I. Kuvvetli, F. Christiansen, O. Chanrion, J. Navarro-
1747
+ Gonz´alez, P. Connel, and C. Eyles, Constraining spectral
1748
+ models of a terrestrial gamma-ray flash from a terrestrial
1749
+ electron beam observation by the atmosphere-space
1750
+ interactions monitor, Geophysical Research Letters 48,
1751
+ e2021GL093152 (2021), e2021GL093152 2021GL093152,
1752
+ https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021GL093152.
1753
+ [51] A. Chilingarian, G. Hovsepyan, S. Soghomonyan, M. Za-
1754
+ zyan, and M. Zelenyy, Structures of the intracloud elec-
1755
+ tric field supporting origin of long-lasting thunderstorm
1756
+ ground enhancements, Physical Review D 98 (2018).
1757
+ [52] A. Kostinskiy, T. Marshall, and M. Stolzenburg, The
1758
+ mechanism of the origin and development of light-
1759
+ ning from initiating event to initial breakdown pulses
1760
+ (v.2), Journal of Geophysical Research Atmospheres 125
1761
+
1762
+ 13
1763
+ (2020).
1764
+ [53] A. Kostinskiy, T. Marshall, and M. Stolzenburg, The
1765
+ mechanism of the origin and development of lightning
1766
+ from initiating event to initial breakdown pulses, (2019).
1767
+ [54] T. Khamitov, A. Nozik, E. Stadnichuk, E. Svechnikova,
1768
+ and M. Zelenyi, Estimation of number of runaway elec-
1769
+ trons per avalanche in earth's atmosphere, EPL (Euro-
1770
+ physics Letters) 132, 35001 (2020).
1771
+ [55] J. Dwyer and L. Babich, Low-energy electron production
1772
+ by relativistic runaway electron avalanches in air, Journal
1773
+ of Geophysical Research 116 (2011).
1774
+
99AyT4oBgHgl3EQfqfgS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFQT4oBgHgl3EQf5zZD/content/tmp_files/2301.13436v1.pdf.txt ADDED
@@ -0,0 +1,2042 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13436v1 [math-ph] 31 Jan 2023
2
+ Closed Form Expressions for Certain Improper Integrals of
3
+ Mathematical Physics
4
+ B. Ananthanarayan * Tanay Pathak† Kartik Sharma‡
5
+ Centre for High Energy Physics, Indian Institute of Science,
6
+ Bangalore-560012, Karnataka, India
7
+ Abstract
8
+ We present new closed-form expressions for certain improper integrals of Mathematical Physics such as Ising, Box,
9
+ and Associated integrals. The techniques we employ here include (a) the Method of Brackets and its modifications and
10
+ suitable extensions and (b) the evaluation of the resulting Mellin-Barnes representations via the recently discovered
11
+ Conic Hull method. Analytic continuations of these series solutions are then produced using the automated method
12
+ of Olsson. Thus, combining all the recent advances allows for closed-form solutions for the hitherto unknown B3(s)
13
+ and related integrals in terms of multivariable hypergeometric functions. Along the way, we also discuss certain com-
14
+ plications while using the Original Method of Brackets for these evaluations and how to rectify them. The interesting
15
+ cases of C5,k is also studied. It is not yet fully resolved for the reasons we discuss in this paper.
16
+ 1
17
+ Introduction
18
+ In studies of theoretical physics and mathematics, various integrals appear whose symbolic evaluation is sought
19
+ after. Gradshyteyn and Ryzik [1] compiled a long list of such integrals. Recently there have been attempts to provide
20
+ a derivation of a large number of these integrals, specifically the improper integral with limits from 0 to ∞ using the
21
+ Original Method of Brackets (OMOB) [2–7]. Apart from this, some of the present authors have also evaluated the
22
+ integral of quadratic and quartic types and their generalization using the OMOB, which has been reported in [8].
23
+ In the present investigation, we turn to other interesting improper integrals that appear in Mathematical
24
+ Physics, such as the Ising integrals and the Box integrals. Our work is motivated by the need to express them in
25
+ terms of elegant closed-form expression or in terms of known functions of mathematical physics, especially the hyper-
26
+ geometric functions [9,10]. In the recent past, several tools have also been developed to facilitate tasks of symbolic
27
+ evaluation of these integrals. Our results here have been facilitated by the recent development of tools and ad-
28
+ vances in various theoretical treatments. Note for instance, the recently proposed solution to the problem of finding
29
+ the series solution of the N-dimensional Mellin-Barnes (MB) representation [11–13], using what has been termed
30
+ as the Conic Hull Mellin Barnes (CHMB) method. This has also been automated as the MATHEMATICA package
31
+ MBConichulls.wl [14, 15]. The series representation hence obtained, in general, can be written as hypergeometric
32
+ functions or their derivatives. Independently, the issue of finding the analytic continuations (ACs) of the multivari-
33
+ able hypergeometric function using the method of Olsson [16,17], which has also been automated as a MATHEMAT-
34
+ ICA package Olsson.wl [18] have been addressed recently. In this work, we show how these tools together, which
35
+ were primarily directed at solving Feynman integrals, are of sufficient generality to find their use in the evaluation
36
+ of the integrals considered here.
37
+ We will consider the Ising integrals which have been studied in the Ising model [19–22] and also have been in
38
+ the context of OMOB [3]. Apart from the evaluation with these newly developed tools, we will also consider certain
39
+ complications while doing similar evaluations with the OMOB [23]. One of them is the use of regulators for the
40
+ evaluation of the Ising integrals. This arises in the case of Ising integrals C3,1 and C4,1. For the case of C4,1, it is
41
+ further complicated due to the use of two regulators, which, when the proper limiting procedure is applied, will give
42
+ the final result. However, we point out that such a procedure is complicated and thus use the Modified Method of
43
+ Brackets (MMOB) [24] to get the MB-integral. This MB integral can then be evaluated without any introduction
44
+ of such regulators and thus provides an efficient way to deal with these integrals. Using a similar procedure, we
45
46
47
48
+ 1
49
+
50
+ attempt to evaluate the elusive C5,k integral. However, we hit a roadblock for the same, as the resulting series does
51
+ not converge and would require a proper analytic continuation procedure. At present, we find this task beyond the
52
+ reach of the tools at hand, though we provide a possible way to achieve the same. Yet such results still shed some light
53
+ on the form that these integrals can be evaluated to. All the results are provided in the ancillary MATHEMATICA file
54
+ Ising.nb .
55
+ Box integrals [25–28] are another interesting integrals where such techniques can be applied to get new results.
56
+ They do carry a physical meaning in the sense that they provide the expected distance between two randomly chosen
57
+ points over the unit n-cube. We consider the two special cases of them, namely the Bn(s) and the ∆n(s). We use
58
+ the same techniques and derive the closed form results for already known B1(s) and B2(s) and new evaluation for
59
+ B3(s) and B4(s) for general values of s. The results are in terms of multi-variable hypergeometric function. These
60
+ evaluations further require the use of an analytic continuation procedure which has been done using Olsson.wl .
61
+ All the results are provided in the ancillary MATHEMATICA file Box.nb . These results for box integrals can then
62
+ be further used to evaluate the Jellium potential Jn, which can be related to box integral Bn(s) [26, 29]. Finally,
63
+ we give a general MB integral for Bn(s), which can be used to find the closed form result for all values of n and
64
+ s using MbConicHull.wl . With all this, we find new connections between the Box integrals and the multivariable
65
+ hypergeometric functions. All our calculations rely heavily on MATHEMATICA as we try to achieve the symbolic
66
+ results for all the problems.
67
+ The paper is structured as follows: In section (2) using an example given in [4], we point out the problem in the
68
+ OMOB and discuss the alternative to surpass this problem. We then, in section (3), proceed to the evaluation of Ising
69
+ integrals up to n = 4 while contrasting our method with the method used before to achieve the same in [3]. In section
70
+ (4) we attempt to solve the C5,k integral and point out a general integral C5,k(α,β) which gives C5,k as a special case.
71
+ Though we point out that it is not the final result, a proper analytic continuation procedure is required to get C5,k
72
+ from it. We then evaluate box integral Bn(s) for n = 3,4 in section (5). The new results for ∆n(s) and Jn with the above
73
+ new results are also provided. Finally, we conclude the paper with some conclusions and possible future directions
74
+ in section (6). In appendix C, we provide the table for all the MATHEMATICA files that we give and the packages
75
+ required.
76
+ 2
77
+ Method of Brackets revisited
78
+ We will first illustrate the OMOB using a simple example of integral evaluation as given in [4]. We will first evaluate
79
+ the integral by directly using the OMOB, then briefly propose a possible resolution while doing such evaluations, and
80
+ then illustrate the alternative method to do the same.
81
+ We consider the following integral
82
+ H1(a,b) =
83
+ �∞
84
+ 0
85
+ K0(ax)K0(bx)
86
+ (1)
87
+ The integral is introduced to facilitate the evaluation of another integral, which is given by putting a = b
88
+ H(a) =
89
+ �∞
90
+ 0
91
+ K2
92
+ 0(ax)dx
93
+ (2)
94
+ We can express K0(x) using the following series expansion:
95
+ K0(ax) =
96
+
97
+ n1
98
+ φn1
99
+ a2n1Γ(−n1)
100
+ 22n1+1
101
+ x2n1
102
+ (3)
103
+ where φn = (−1)n
104
+ Γ(n+1).
105
+ This expansion uses a divergent series, and we can express the result in the form of an integral representation
106
+ as
107
+ K0(bx) = 1
108
+ 2
109
+ �∞
110
+ 0
111
+ exp
112
+
113
+ −t− b2x2
114
+ 4t
115
+ � dt
116
+ t
117
+ (4)
118
+ Using the OMOB, we get:
119
+ K0(bx) =
120
+
121
+ n2,n3
122
+ φn2,n3
123
+ b2n3 x2n3
124
+ 22n3+1 〈n2 − n3〉
125
+ (5)
126
+ Substituting the bracket series in Eq.(1), we get
127
+ H1(a,b) =
128
+
129
+ n1,n2,n3
130
+ φn1,n2,n3
131
+ a2n1b2n3Γ(−n1)
132
+ 22n1+2n3+2
133
+ 〈n2 − n3〉〈2n1 +2n3 +1〉
134
+ (6)
135
+ 2
136
+
137
+ Now, we need to solve the bracket equations, which involve 2 equations but 3 variables. Evaluating this we get
138
+ following 3 series, Ti where ni is the free variable:
139
+ T1 = 1
140
+ 4a
141
+
142
+ n
143
+ φnΓ(−n)Γ2
144
+
145
+ n+ 1
146
+ 2
147
+ �� b
148
+ a
149
+ �2n
150
+ T2 = 1
151
+ 4a
152
+
153
+ n
154
+ φnΓ(−n)Γ2
155
+
156
+ n+ 1
157
+ 2
158
+ �� b
159
+ a
160
+ �2n
161
+ T3 = 1
162
+ 4a
163
+
164
+ n
165
+ φnΓ(−n)Γ2
166
+
167
+ n+ 1
168
+ 2
169
+ �� b
170
+ a
171
+ �2n
172
+ (7)
173
+ Using the rules of the OMOB, all the 3 series of Eq.(7) have to be discarded as they are divergent.
174
+ A solution to such a problem, as implemented in [4], is to regularize the singularity. This amounts to modifying
175
+ the bracket 〈n2−n3〉 → 〈n2−n3+ǫ〉. With this modification, when n1 is a free variable, one gets the series that contains
176
+ Γ(−n), which is diverging and is thus discarded. While for the other cases, one gets two series with ǫ parameter (in
177
+ the form of Γ(−n + ǫ) and Γ(−n − ǫ)). In these series, when the proper limiting procedure is done, along with the
178
+ condition a = b to ease the calculation, they give the result for the integral of Eq.(2). Thus, the original integral of
179
+ Eq.(1) we started with still remains elusive, as the calculation is much more involved (the limiting procedure) within
180
+ this present framework.
181
+ An alternative to the above evaluation, free from choosing the regulator and doing the tedious limiting procedure,
182
+ is to use the MB representation derived using the MMOB [24]. Using it, we get the following MB representation for
183
+ the integral given by Eq.(1)
184
+ H1(a,b) = 1
185
+ 4
186
+ c+i∞
187
+
188
+ c−i∞
189
+ dz
190
+ 2πi a−2z−1b2zΓ(−z)2Γ
191
+ �1
192
+ 2(2z +1)
193
+ �2
194
+ (8)
195
+ The above MB integral can be readily evaluated in MATHEMATICA to give the following result
196
+ H1(a,b) =
197
+ π
198
+
199
+ a2
200
+ b2 K
201
+
202
+ 1− a2
203
+ b2
204
+
205
+ 2a
206
+ (9)
207
+ where K(x) is the complete elliptic integral of the first kind. Thus we get the value of the original integrals, Eq.(1) we
208
+ started with.
209
+ For the special case of a = b, using K(0) = π
210
+ 2 we get
211
+ H1(a,a) = H(a) = π2
212
+ 4a
213
+ (10)
214
+ So we see that for the simple cases, too, using the MB representation to evaluate these integrals provides an efficient
215
+ way to evaluate these integrals.
216
+ 3
217
+ Ising integrals
218
+ In this section, we will analyze the integrals of the “Ising class". Ising models are extensively used to study the
219
+ statistical nature of ferromagnets [30–32]. The model accounts for the magnetic dipole moments of the spins. The n -
220
+ dimensional integrals are denoted by Cn,Dn,En, where Dn is found in the magnetic susceptibility integrals essential
221
+ to the Ising calculations.
222
+ Dn = 4
223
+ n!
224
+ �∞
225
+ 0
226
+ ···
227
+ �∞
228
+ 0
229
+
230
+ i<j
231
+ � ui−u j
232
+ ui+u j
233
+ �2
234
+ (�n
235
+ j=1(u j +1/u j))2
236
+ du1
237
+ u1
238
+ ··· dun
239
+ un
240
+ (11)
241
+ The integral Dn provides great insights into the symmetry breaking at low-temperature phase and finds great use in
242
+ Quantum Field Theories and condensed matter physics. However, it is difficult to evaluate these integrals computa-
243
+ tionally and analytically. On the other hand, the Cn (Cn = Cn,1) class integrals which are closely related to the Dn
244
+ class, are easier to tackle and can produce closed-form expressions.
245
+ The general Ising integrals Cn,k is defined as
246
+ Cn,k = 4
247
+ n!
248
+ �∞
249
+ 0
250
+ ···
251
+ �∞
252
+ 0
253
+ 1
254
+ (�n
255
+ j=1(u j +1/u j))k+1
256
+ du1
257
+ u1
258
+ ··· dun
259
+ un
260
+ (12)
261
+ 3
262
+
263
+ The above expression can also be expressed as the moments of power of Bessel Function K0 as
264
+ Cn,k = 2n−k+1
265
+ n! k! cn,k := 2n−k+1
266
+ n! k!
267
+ �∞
268
+ 0
269
+ tkKn
270
+ 0 (t)dt
271
+ (13)
272
+ We will now analyze the special case of the Cn,k family with k = 1 using the Method of Brackets [2,3,20] and Mellin-
273
+ Barnes representations. After this, each general integral with Cn,k will be treated using the same procedure. The
274
+ C1,k and C2,k integrals are easily tractable, and the results for them have been given just for completeness’ sake. The
275
+ problem occurs when one considers Cn,k for n ≥ 3. Below we use the MMOB [24] and show that for the evaluation of
276
+ the integrals requiring the use of regulators, it is better to use the MMOB and solve the corresponding integral using
277
+ the CHMB method. The main utility of the method is that the limiting procedure is automatically taken care of while
278
+ finding the residue in the case of CHMB, which is at times difficult, especially when there is more than 1 regulator,
279
+ as in the case of C4,k.
280
+ 3.1
281
+ C1,k
282
+ For n = 1, we have
283
+ C1,k = 4
284
+ 1!
285
+ �∞
286
+ 0
287
+ 1
288
+ (u1 +1/u1)k+1
289
+ du1
290
+ u1
291
+ (14)
292
+ The integral can simply be evaluated to give the general closed form:
293
+ C1,k =
294
+ �π21−kΓ
295
+
296
+ k+1
297
+ 2
298
+
299
+ Γ
300
+
301
+ k
302
+ 2 +1
303
+
304
+ (15)
305
+ 3.2
306
+ C2,k
307
+ For k = 1, we get:
308
+ C2,k = 4
309
+ 2!
310
+ �∞
311
+ 0
312
+ �∞
313
+ 0
314
+ 1
315
+ (u1 +1/u1 + u2 +1/u2)k+1
316
+ du1
317
+ u1
318
+ du2
319
+ u2
320
+ (16)
321
+ This evaluation using the MOB, for k = 1, gives:
322
+ C2,1 = 1
323
+ (17)
324
+ The integral for the general value of k can also be evaluated to give the following closed form:
325
+ C2,k =
326
+ Γ
327
+
328
+ k
329
+ 2 + 1
330
+ 2
331
+ �4
332
+ Γ(k+1)2
333
+ (18)
334
+ 3.3
335
+ C3,k and C3,k(α,β,γ)
336
+ For k = 1, we get:
337
+ C3,1 = 4
338
+ 3!
339
+ �∞
340
+ 0
341
+ �∞
342
+ 0
343
+ �∞
344
+ 0
345
+ 1
346
+ (u1 +1/u1 + u2 +1/u2 + u3 +1/u3)2
347
+ du1
348
+ u1
349
+ du2
350
+ u2
351
+ du3
352
+ u3
353
+ (19)
354
+ We will illustrate the problem encountered in OMOB by writing the bracket series for the generalized case C3,k.
355
+ Taking k = 1 will give us the result for C3,1.
356
+ The following form of the integrand is motivated to maximize the number of brackets series in the expansion, which
357
+ in turn reduces the number of variables:
358
+ C3,k = 2
359
+ 3
360
+ �∞
361
+ 0
362
+ �∞
363
+ 0
364
+ �∞
365
+ 0
366
+ (u1u2u3)k
367
+ (u1u2u3(u1 + u2)+ u3(u1 + u2)+ u1u2u2
368
+ 3 + u1u2)k+1 du1du2du3
369
+ (20)
370
+ Expanding the denominator using the rules of MOB,
371
+
372
+ {n}
373
+ φ{n}(u1u2)n1+n3+n4 zn1+n2+2n3(u1 + u2)n1+n2 〈k+1+ n1 + n2 + n3 + n4〉
374
+ Γ(k+1)
375
+ (21)
376
+ Now, (u1 + u2)n1+n2 has to be further expanded as:
377
+ (u1 + u2)n1+n2 =
378
+
379
+ n5,n6
380
+ φn5,n6un5
381
+ 1 un6
382
+ 2
383
+ 〈−n1 − n2 + n5 + n6〉
384
+ Γ(−n1 − n2)
385
+ (22)
386
+ 4
387
+
388
+ Combining the expansions, the C3,k integral takes the form:
389
+ C3,k =
390
+ 2
391
+ 3Γ(k+1)
392
+
393
+ {n}
394
+ φ{n}
395
+ 〈−n1 − n2 + n5 + n6〉
396
+ Γ(−n1 − n2)
397
+ (23)
398
+ ×〈k+1+ n1 + n3 + n4 + n5〉〈k+1+ n1 + n3 + n4 + n6〉
399
+ ×〈k+1+ n1 + n2 +2n3〉〈k+1+ n1 + n2 + n3 + n4〉
400
+ Now, the rules of MOB demand that we solve the linear equations of the brackets, but that poses the problem of
401
+ giving rise to divergent terms like Γ(−n) and renders the whole procedure useless. To solve the issue, it is suggested
402
+ to introduce regulators. For the case of C3,k, one regulator is enough. In particular, ǫ(→ 0) is introduced in the bracket
403
+ as 〈k+1+n1+n2+2n3〉 → 〈k+1+n1+n2+2n3+ǫ〉 which mimics the effect of introducing a factor of uǫ
404
+ 3 in the integrand.
405
+ Now, with this “new" bracket series, the divergent terms take the form of Γ(−n −ǫ) and are easier to work with. In
406
+ the regime of OMOB, one requires the expansion of Γ(x) around integers to deal with the problem, which increases
407
+ the complexity of the task.
408
+ As n increases, the number of regulators increases monotonically and complicates the limiting procedure. On
409
+ the other hand, MMOB doesn’t call for any regulators and is very computationally friendly. Using the MMOB in the
410
+ above bracket series, we get the following MB representation for the C3,1
411
+ C3,1 = 1
412
+ 3
413
+ c+i∞
414
+
415
+ c−i∞
416
+ dz
417
+ 2πi
418
+ Γ(−z)4 Γ(1+ z)2
419
+ Γ(−2z)
420
+ (24)
421
+ This evaluates to
422
+ C3,1 = 2
423
+ 27
424
+
425
+ 6i
426
+
427
+ 3
428
+
429
+ Li2
430
+
431
+ 1
432
+ 4 − i
433
+
434
+ 3
435
+ 4
436
+
437
+ −Li2
438
+
439
+ i
440
+
441
+ 3
442
+ 4
443
+ + 1
444
+ 4
445
+ ��
446
+
447
+
448
+ 3log(4)−ψ(1)
449
+ �1
450
+ 3
451
+
452
+ +ψ(1)
453
+ �2
454
+ 3
455
+ ��
456
+ (25)
457
+ where ψ(1) is the polygamma function of order 1.
458
+ The generalized integral C3,k can be similarly obtained using the MMOB to give the following MB representation:
459
+ C3,k =
460
+ 1
461
+ 3Γ(k+1)
462
+ c+i∞
463
+
464
+ c−i∞
465
+ dz
466
+ 2πi
467
+ Γ(−z)4 Γ
468
+ � 1
469
+ 2(k+2z +1)
470
+ �2
471
+ Γ(−2z)
472
+ (26)
473
+ The above integral can be evaluated to give
474
+ C3,k =
475
+ 2
476
+ 3k!
477
+
478
+ πG2,3
479
+ 3,3
480
+ �1
481
+ 4
482
+ ����
483
+ 1,1,1
484
+ k+1
485
+ 2 , k+1
486
+ 2 , 1
487
+ 2
488
+
489
+ (27)
490
+ where G is the Meijer-G function.
491
+ A further generalization of C3,k integral namely C3,k(α,β,γ) is given in [3] where the following integral is considered
492
+ C3,k(α,β,γ) =
493
+ �∞
494
+ 0
495
+ �∞
496
+ 0
497
+ �∞
498
+ 0
499
+ xα−1yβ−1zγ−1
500
+ (x+1/x+ y+1/y+ z +1/z)k+1 dxdydz
501
+ (28)
502
+ Using the MMOB, we get the following MB representation
503
+ C3,k(α,β,γ) =
504
+ 1
505
+ 3Γ(k+1)
506
+ c+i∞
507
+
508
+ c−i∞
509
+ dz
510
+ 2πi
511
+ Γ(−z)Γ(−z +α−1)Γ(−z −β+1)Γ(−z +α−β)Γ
512
+ �1
513
+ 2(k+2z −α+β−γ+2)
514
+
515
+ Γ
516
+ � 1
517
+ 2(k+2z −α+β+γ)
518
+
519
+ Γ(−2z +α−β)
520
+ (29)
521
+ The result is given in the MATHEMATICA file Ising.nb and is found to be :
522
+ = − 1
523
+ 3k!π3/2 csc(πγ)2−γ−k−1�
524
+ 4γΓ
525
+ �1
526
+ 2(k−α−β−γ+4)
527
+
528
+ Γ
529
+ �1
530
+ 2(k+α−β−γ+2)
531
+
532
+ Γ
533
+ �1
534
+ 2(k−α+β−γ+2)
535
+
536
+ Γ
537
+ �1
538
+ 2(k+α+β−γ)
539
+
540
+ (30)
541
+ × 4 ˜F3
542
+ �1
543
+ 2(k+α+β−γ), 1
544
+ 2(k−α−β−γ+4), 1
545
+ 2(k+α−β−γ+2), 1
546
+ 2(k−α+β−γ+2); 1
547
+ 2(k−γ+2), 1
548
+ 2(k−γ+3),2−γ; 1
549
+ 4
550
+
551
+ −4Γ
552
+ �1
553
+ 2(k−α−β+γ+2)
554
+
555
+ Γ
556
+ �1
557
+ 2(k+α−β+γ)
558
+
559
+ Γ
560
+ �1
561
+ 2(k−α+β+γ)
562
+
563
+ Γ
564
+ �1
565
+ 2(k+α+β+γ−2)
566
+
567
+ × 4 ˜F3
568
+ �1
569
+ 2(k−α+β+γ), 1
570
+ 2(k+α+β+γ−2), 1
571
+ 2(k−α−β+γ+2), 1
572
+ 2(k+α−β+γ); k+γ
573
+ 2
574
+ , 1
575
+ 2(k+γ+1),γ; 1
576
+ 4
577
+ ��
578
+ 5
579
+
580
+ 3.4
581
+ C4,k and C4,k(α,β,γ,δ)
582
+ For k = 1:
583
+ C4,1 = 4
584
+ 4!
585
+ �∞
586
+ 0
587
+ �∞
588
+ 0
589
+ �∞
590
+ 0
591
+ �∞
592
+ 0
593
+ 1
594
+ (u1 +1/u1 + u2 +1/u2 + u3 +1/u3 + u4 +1/u4)2
595
+ du1
596
+ u1
597
+ du2
598
+ u2
599
+ du3
600
+ u3
601
+ du4
602
+ u4
603
+ (31)
604
+ If one proceeds with the OMOB as in the case of C3,1, one is now required to use 2 regulators, namely ǫ and A [3]. The
605
+ result for C4,1 is then obtained by taking the limit ǫ → 0, A→ 1. The use of two regulators significantly complicates
606
+ the task of doing the limiting procedure. So we again proceed with the use of the MMOB. Using the MOB, we get the
607
+ following MB representation for C4,1:
608
+ C4,1 = 1
609
+ 12
610
+ c+i∞
611
+
612
+ c−i∞
613
+ dz
614
+ 2πi
615
+ Γ(−z)4 Γ(1+ z)4
616
+ Γ(−2z) Γ(2+2z)
617
+ (32)
618
+ This can be evaluated to give
619
+ C4,1 = 7ζ(3)
620
+ 12
621
+ (33)
622
+ The general case for n = 4 can be simplified to the following MB representation:
623
+ C4,k =
624
+ 1
625
+ 12Γ(k+1)
626
+ c+i∞
627
+
628
+ c−i∞
629
+ dz
630
+ 2πi
631
+ Γ(−z)4 Γ
632
+
633
+ k+1
634
+ 2 + z
635
+ �4
636
+ Γ(−2z) Γ(k+2z +1)
637
+ (34)
638
+ This can be evaluated to give the closed-form expression:
639
+ C4,k = π 2−k−1
640
+ 3Γ(k+1)G3,3
641
+ 4,4
642
+
643
+ 1
644
+ ����
645
+ 1,1,1, k+2
646
+ 2
647
+ k+1
648
+ 2 , k+1
649
+ 2 , k+1
650
+ 2 , 1
651
+ 2
652
+
653
+ (35)
654
+ The given expression is of particular interest, as seen from its values when evaluated for any odd values of k. When
655
+ C4,k is evaluated for any odd k, it takes the form of aζ(3) + b function, where a and b are some rational numbers.
656
+ Some of the values are provided for reference in Table 1.
657
+ A further generalization of C4,k integral namely C4,k(α,β,γ,δ) can be considered as follows
658
+ C4,k(α,β,γ,δ) =
659
+ �∞
660
+ 0
661
+ �∞
662
+ 0
663
+ �∞
664
+ 0
665
+ �∞
666
+ 0
667
+ xα−1yβ−1zγ−1wδ−1
668
+ (x+1/x+ y+1/y+ z +1/z + w+1/w)k+1 dxdydzdw
669
+ (36)
670
+ Using the MMOB, we get the following MB representation
671
+ C4,k(α,β,γ) =
672
+ 1
673
+ 12Γ(k+1)
674
+ c+i∞
675
+
676
+ c−i∞
677
+ dz
678
+ 2πi
679
+ Γ(−z)Γ(−z +γ−1)Γ(−z −δ+1)Γ(−z +γ−δ)Γ
680
+ �1
681
+ 2(k+2z −α−β−γ+δ+3)
682
+
683
+ 12Γ(k+1)Γ(−2z +γ−δ)Γ
684
+ � 1
685
+ 2(k+2z −α−β−γ+δ+3)+ 1
686
+ 2(k+2z +α+β−γ+δ−1)
687
+
688
+ ×Γ
689
+ �1
690
+ 2(k+2z +α−β−γ+δ+1)
691
+
692
+ Γ
693
+ �1
694
+ 2(k+2z −α+β−γ+δ+1)
695
+
696
+ Γ
697
+ �1
698
+ 2(k+2z +α+β−γ+δ−1)
699
+
700
+ (37)
701
+ The above integral can be evaluated as before, and the solution has been provided in the accompanying MATHEMAT-
702
+ ICA file Ising.nb.
703
+ We end this section by noting that given an integral, the evaluation of its MB representation obtained using
704
+ the MMOB [24] is more efficient than using the OMOB and its rules to evaluate the same. The regulators and the
705
+ limiting procedure in the OMOB are automatically taken care of in the evaluation of MB integrals while evaluating
706
+ the residue. Alternatively, this suggests that one can try to find a better rule that concerns the elimination of the
707
+ bracket for the OMOB so that one does not require regulators and the result is obtained with their use.
708
+ 4
709
+ An attempt at C5,k
710
+ Using the machinery developed so far, we now attempt to evaluate the C5 integral in the same spirit. Using the MOB,
711
+ we get the following MB representation for C5,k
712
+ C5,k =
713
+ 1
714
+ 60Γ(k+1)
715
+ c1+i∞
716
+
717
+ c1−i∞
718
+ dz1
719
+ 2πi
720
+ c2+i∞
721
+
722
+ c2−i∞
723
+ dz2
724
+ 2πi
725
+ Γ(−z1)4Γ(−z2)4Γ
726
+ � 1
727
+ 2 (k+2z1 +2z2 +1)
728
+ �2
729
+ Γ(−2z1)Γ(−2z2)
730
+ (38)
731
+ 6
732
+
733
+ k
734
+ C4,k
735
+ 0
736
+ 1
737
+ 6πG3,3
738
+ 4,4
739
+
740
+ 1
741
+ ����
742
+ 1,1,1,1
743
+ 1
744
+ 2, 1
745
+ 2, 1
746
+ 2, 1
747
+ 2
748
+
749
+ 1
750
+ 7ζ(3)
751
+ 12
752
+ 2
753
+ 1
754
+ 48πG3,3
755
+ 4,4
756
+
757
+ 1
758
+ ����
759
+ 1,1,1,2
760
+ 3
761
+ 2, 3
762
+ 2, 3
763
+ 2, 1
764
+ 2
765
+
766
+ 3
767
+ 7ζ(3)−6
768
+ 1152
769
+ 4
770
+ 1
771
+ 2304πG3,3
772
+ 4,4
773
+
774
+ 1
775
+ ����
776
+ 1,1,1,3
777
+ 5
778
+ 2, 5
779
+ 2, 5
780
+ 2, 1
781
+ 2
782
+
783
+ 5
784
+ 49ζ(3)−54
785
+ 368640
786
+ 6
787
+ 1
788
+ 276480πG3,3
789
+ 4,4
790
+
791
+ 1
792
+ ����
793
+ 1,1,1,4
794
+ 7
795
+ 2, 7
796
+ 2, 7
797
+ 2, 1
798
+ 2
799
+
800
+ 7
801
+ 63ζ(3)−74
802
+ 15482880
803
+ Table 1: Values of C4,k for k = 0,··· ,7
804
+ Evaluation of the above integral, when done directly using the MBConicHulls.wl, would result in the divergent
805
+ series. A suitable way to approach such evaluation would be by taking two parameters that serve as the variables
806
+ for the series that appear and then evaluating the results with these parameters. For the C5,k integral we have the
807
+ following evaluation
808
+ C5,k(α,β) =
809
+ 1
810
+ 60Γ(k+1)
811
+ c1+i∞
812
+
813
+ c1−i∞
814
+ dz1
815
+ 2πi
816
+ c2+i∞
817
+
818
+ c2−i∞
819
+ dz2
820
+ 2πi (α)z1(β)z2 Γ(−z1)4Γ(−z2)4Γ
821
+ � 1
822
+ 2 (k+2z1 +2z2 +1)
823
+ �2
824
+ Γ(−2z1)Γ(−2z2)
825
+ (39)
826
+ We notice that the integral Eq.(39) has a more general structure than the integral Eq.(38) with the introduction of
827
+ the two parameters. The C5,k can be obtained by putting α = β = 1. The evaluation of the Eq.(39) has been done in
828
+ the accompanying MATHEMATICA file Ising.nb.
829
+ We also note that though we have a result for integral (39), the result is not convergent for the value of interest
830
+ α = β = 1. Proper analytic continuation techniques have to be used to achieve this goal. At present, with the form of
831
+ series that we obtain, the task is not achievable using Olsson.wl . With the form of series at hand we believe that it
832
+ can be written as a derivative of ‘some’ hypergeometric function. Then Olsson.wl can be used to find the ACs of this
833
+ hypergeometric function so that it converges for α = β = 1, and then the derivative can be performed to get the final
834
+ result.
835
+ 7
836
+
837
+ 5
838
+ Box Integrals
839
+ For dimension n, we define the box integral as the expected distance from a fixed point q (can be origin also) of point
840
+ r chosen randomly and independently over the unit n-cube, with parameter s,
841
+ Bn(s) =
842
+ �1
843
+ 0
844
+ ···
845
+ �1
846
+ 0
847
+
848
+ (r1)2 +···+(rn)2�s/2
849
+ dr1 ···drn
850
+ (40)
851
+ ∆n(s) =
852
+ �1
853
+ 0
854
+ ···
855
+ �1
856
+ 0
857
+
858
+ (r1 − q1)2 +···+(rn − qn)2�s/2
859
+ dr1 ···drndq1 ···dqn
860
+ (41)
861
+ For certain special values of parameter s, the above integrals give the following interpretation:
862
+ 1. Bn(1): It gives the expected distance from the origin for a random point of the n-cube.
863
+ 2. ∆n(1): It gives the expected distance between two random points of the n-cube.
864
+ Due to the physical significance of the box integrals and also their use in the electrostatic potential calculations, we
865
+ wanted to evaluate these integrals and give closed-form expressions using the Method of Brackets that has been im-
866
+ plemented throughout the paper.
867
+ Using the quadrature formulae for all complex powers [25,26,29,33,34], we use the functions:
868
+ b(u) =
869
+ �1
870
+ 0
871
+ e−u2x2dx =
872
+ �πerf(u)
873
+ 2u
874
+ (42)
875
+ d(u) =
876
+ �1
877
+ 0
878
+ �1
879
+ 0
880
+ e−u2(x−y)2dydx =
881
+ �πuerf(u)+ e−u2 −1
882
+ u2
883
+ (43)
884
+ which gives us the relation:
885
+ Bn(s) =
886
+ 2
887
+ Γ(−s/2)
888
+ �∞
889
+ 0
890
+ u−s−1bn(u)du
891
+ (44)
892
+ ∆n(s) =
893
+ 2
894
+ Γ(−s/2)
895
+ �∞
896
+ 0
897
+ u−s−1dn(u)du
898
+ (45)
899
+ 5.1
900
+ Bn(s)
901
+ Now, for the method of brackets to be operational, we need integrals of the form with limits from 0 to ∞. We need to
902
+ make an Euler substitution. The following substitution has been found to be the most efficient:
903
+ x →
904
+ a
905
+ 1+ a
906
+ (46)
907
+ which makes the integral
908
+ b(u) =
909
+ �1
910
+ 0
911
+ e−u2x2dx =
912
+ �∞
913
+ 0
914
+ e−u2�
915
+ a
916
+ 1+a
917
+ �2
918
+ 1
919
+ (1+ a)2 da
920
+ (47)
921
+ b(u) =
922
+ �∞
923
+ 0
924
+
925
+
926
+ n=0
927
+ 1
928
+ n!
929
+ � −u2a2
930
+ (1+ a)2
931
+ �n
932
+ 1
933
+ (1+ a)2 da
934
+ (48)
935
+ Substituting this back in Bn(u) and applying MMOB, it is obtained that Bn(s) has a pole at s = −n and we finally
936
+ get:
937
+ B1(s) =
938
+ 1
939
+ s+1,s ̸= −1
940
+ (49)
941
+ B2(s) =
942
+ 2
943
+ s+2 2F1
944
+ �1
945
+ 2,− s
946
+ 2; 3
947
+ 2;−1
948
+
949
+ ,s ̸= −2
950
+ (50)
951
+ The first two cases were easy to handle. The first non-trivial evaluation is that of B3(s). We found two different
952
+ results for the same by using two different methods. Firstly we consider the following representation of B3 [26]:
953
+ B3(s) =
954
+ 3
955
+ 3+ s C2,0(s,1) =
956
+ 6
957
+ (3+ s)(2+ s)
958
+ �π/4
959
+ 0
960
+ ��
961
+ 1+sec2 t
962
+ �s/2+1 −1
963
+
964
+ (51)
965
+ 8
966
+
967
+ The above can interestingly be evaluated in MATHEMATICA using Integrate command.
968
+ Using it, we get the
969
+ following evaluation for the B3(s) integral
970
+ B3(s) =
971
+ 6
972
+ (s+2)(s+3)
973
+
974
+ iF1
975
+
976
+ 1; 1
977
+ 2,− s
978
+ 2;2;2,−2
979
+
980
+ − 2
981
+ s+1
982
+ 2
983
+ s+1 F1
984
+ �1
985
+ 2(−s−1);−1
986
+ 2,− s
987
+ 2; 1− s
988
+ 2
989
+ ; 1
990
+ 2,−1
991
+ 2
992
+
993
+ − i 2F1
994
+
995
+ 1,− s
996
+ 2; 3
997
+ 2;−1
998
+
999
+ +2s/2 2F1
1000
+ �1
1001
+ 2,− s
1002
+ 2; 3
1003
+ 2;−1
1004
+ 2
1005
+
1006
+
1007
+ �π
1008
+
1009
+
1010
+ 1− s
1011
+ 2
1012
+ � 2F1
1013
+
1014
+ − s
1015
+ 2 − 1
1016
+ 2,− s
1017
+ 2;1− s
1018
+ 2;−1
1019
+
1020
+ Γ
1021
+
1022
+ − s
1023
+ 2 − 1
1024
+ 2
1025
+
1026
+ − π
1027
+ 4
1028
+
1029
+ (52)
1030
+ where F1(a;b1,b2;c;x, y) is the Appell F1 function which is defined for |x| < 1∧|y| < 1 as:
1031
+ F1(a;b1,b2;c;x, y) =
1032
+
1033
+
1034
+ m,n=0
1035
+ (a)m+n(b1)m(b2)n
1036
+ (c)m+nm!n!
1037
+ xmyn
1038
+ (53)
1039
+ where (q)n is the Pochhammer symbol.
1040
+ The Eq.(52) requires the evaluation of the Appell F1 outside its region of convergence. Such evaluation requires
1041
+ the use of analytic continuation of F1, which has been done by Olsson [35].
1042
+ Though we got the result using MATHEMATICA , it doesn’t provide many insights so as to aid the computations of
1043
+ other Bn(s). So we proceed to a more systematic evaluation of the B3(s) so that the results can be generalized to other
1044
+ values of n. Using the MMOB [24] we get the following Mellin-Barnes integral for the B3(s)
1045
+ B3(s) =
1046
+ c1+i∞
1047
+
1048
+ c1−i∞
1049
+ c2+i∞
1050
+
1051
+ c2−i∞
1052
+ Γ(−z1)Γ(−z2)Γ(2z1 +1)Γ(2z2 +1)Γ(s−2z1 −2z2 +1)Γ
1053
+
1054
+ − s
1055
+ 2 + z1 + z2
1056
+
1057
+ Γ
1058
+
1059
+ − s
1060
+ 2
1061
+
1062
+ Γ(2z1 +2)Γ(2z2 +2)Γ(s−2z1 −2z2 +2)
1063
+ dz2
1064
+ 2πi
1065
+ dz1
1066
+ 2πi
1067
+ (54)
1068
+ We evaluate the above integral using the MBConicHulls.wl package [14]. The evaluation gives the following result:
1069
+ B3(s) = −
1070
+ π
1071
+ 2
1072
+
1073
+ s2 +5s+6
1074
+ � +
1075
+ �π
1076
+
1077
+ (s+2)2F1
1078
+ � 1
1079
+ 2,− s
1080
+ 2 − 1
1081
+ 2; 3
1082
+ 2;−1
1083
+
1084
+ + 2F1
1085
+
1086
+ − s
1087
+ 2 −1,− s
1088
+ 2 − 1
1089
+ 2;− s
1090
+ 2;−1
1091
+ ��
1092
+ Γ
1093
+
1094
+ − s
1095
+ 2 − 1
1096
+ 2
1097
+
1098
+ Γ(s+2)
1099
+ 2(s+3)Γ
1100
+
1101
+ − s
1102
+ 2
1103
+
1104
+ Γ(s+3)
1105
+ +
1106
+ 1
1107
+ 1+ s F2:1:1
1108
+ 1:1:1
1109
+
1110
+ 
1111
+ −1− s
1112
+ 2
1113
+ , −s
1114
+ 2 : 1
1115
+ 2; 1
1116
+ 2
1117
+ 1− s
1118
+ 2
1119
+ , 1
1120
+ 2
1121
+ : 1
1122
+ 2;−−
1123
+ �������
1124
+ −1,−1
1125
+
1126
+ 
1127
+ (55)
1128
+ Where F2:1:1
1129
+ 1:1:1(x, y) is the KdF function which converges for |�x| + |�y| < 1. So to evaluate it at (−1,−1), one needs
1130
+ its analytic continuations. In the MATHEMATICA file Box.nb, we provide a systematic derivation of the analytic
1131
+ continuation for the same so that it converges at (−1,1).
1132
+ For general Bn(s) we get the following MB-representation
1133
+ Bn(s) =
1134
+ 1
1135
+ Γ
1136
+
1137
+ − s
1138
+ 2
1139
+
1140
+ c1+i∞
1141
+
1142
+ c1−i∞
1143
+ ···
1144
+ cn−1+i∞
1145
+
1146
+ cn−1−i∞
1147
+
1148
+ n−1
1149
+
1150
+ p=1
1151
+ dzp
1152
+ 2πi
1153
+ � ��n−1
1154
+ i=1 Γ(2zi +1)
1155
+
1156
+ Γ
1157
+
1158
+ s−2�n−1
1159
+ j=1 z j +1
1160
+
1161
+ Γ
1162
+ ��n−1
1163
+ k=1 zk − s
1164
+ 2
1165
+
1166
+ ��n−1
1167
+ l=1 Γ(2zl +2)
1168
+
1169
+ Γ
1170
+
1171
+ s−2�n−1
1172
+ m=1 zm +2
1173
+
1174
+ (56)
1175
+ Using the Eq. (56) we obtain following representation for B4(s)
1176
+ B4(s,α,β,γ) =
1177
+ 1
1178
+ Γ
1179
+
1180
+ − s
1181
+ 2
1182
+
1183
+ c1+i∞
1184
+
1185
+ c1−i∞
1186
+ c2+i∞
1187
+
1188
+ c2−i∞
1189
+ c3+i∞
1190
+
1191
+ c3−i∞
1192
+ Γ(−z1)Γ(2z1 +1)Γ(−z2)Γ(2z2 +1)Γ(−z3)Γ(2z3 +1)Γ(s−2z1 −2z2 −2z3 +1)
1193
+ Γ(2z1 +2)Γ(2z2 +2)Γ(2z3 +2)Γ(s−2z1 −2z2 −2z3 +2)
1194
+ ×Γ
1195
+
1196
+ − s
1197
+ 2 + z1 + z2 + z3
1198
+
1199
+ (α)z1(β)z2(γ)z3 dz1dz2dz3
1200
+ (2πi)3
1201
+ (57)
1202
+ The above integral can be again evaluated readily using the MbConicHull.wl package. For the case of B4(s), due to
1203
+ the occurrence of a 3-variable hypergeometric function, the region of convergence analysis is difficult. In the OMOB
1204
+ all the series which converges in the same region of convergence are kept together. For 3 or more variables this
1205
+ analysis becomes complicated and is not always straightforward [9]. Here the CHMB method plays an important role
1206
+ in that it clubs the series converging in the same region of convergence together without prior knowledge of their
1207
+ region of convergence. The evaluation has been provided in the file Ising.nb .
1208
+ 9
1209
+
1210
+ 5.2
1211
+ ∆n(s)
1212
+ We now move on to the evaluation of ∆n integrals (41). Instead of directly doing the evaluation of the δn(s) integral,
1213
+ we refer to [26], to exploit the relation between Bn(s) and ∆n(s). A few instances of the same are as follows:
1214
+ ∆1(s) = 2
1215
+ 1
1216
+ (s+1)(s+2)
1217
+ (58)
1218
+ ∆2(s) = 8
1219
+ 2
1220
+ s
1221
+ 2 +1(s+3)+1
1222
+ (s+2)(s+3)(s+4) +4B2(s)− 4(s+4)
1223
+ s+2 B2(s+2)
1224
+ (59)
1225
+ ∆3(s) = 24
1226
+
1227
+ (s+5)
1228
+
1229
+ 2
1230
+ s
1231
+ 2 +3 −3
1232
+ s
1233
+ 2 +2�
1234
+ +1
1235
+
1236
+ (s+2)(s+4)(s+5)(s+6) + 24
1237
+ s+2 B2(s+2)−
1238
+ 24(s+6)
1239
+ (s+2)(s+4) B2(s+4)− 12(s+5)
1240
+ s+2
1241
+ B3(s+2)
1242
+ (60)
1243
+ + 4(s+6)(s+7)
1244
+ (s+2)(s+4) B3(s+4)+8B3(s)
1245
+ (61)
1246
+ where B2(s) and B3(s) are given by Eq.(50) and Eq.(55). The results for ∆4 and ∆5 are provided in the appendix B.
1247
+ 5.3
1248
+ Jelium Potential
1249
+ As an application of the evaluations done in the previous section, we refer to one more application of such evaluations,
1250
+ the Jellium potential [29]. It arises in the problem of electrostatics. The problem concerns finding the electrostatic
1251
+ potential energy of an electron (having charge -1) at the cube center, given an n-cube of uniformly charged jelly of
1252
+ total charge +1. For the problem, usually one takes the radial potential at a distance r from the electron as Vn(r) as
1253
+ follows
1254
+ V1(r) := r −1/2,
1255
+ V2(r) := log(2r),
1256
+ Vn(r) := 2n−2 −
1257
+ �1
1258
+ r
1259
+ �n−2
1260
+ ,
1261
+ n > 2
1262
+ (62)
1263
+ The n-th Jellium potential is defined as
1264
+ Jn := 〈Vn(r)〉⃗r∈[−1/2,1/2]n
1265
+ (63)
1266
+ All the Jn can be written as a box integral up to an offset. The final result is
1267
+ Jn = 2n−2(1−Bn(2− n)),
1268
+ n > 2
1269
+ (64)
1270
+ Using the result for Bn, J3 can be readily evaluated to:
1271
+ J3 = π
1272
+ 2 +2−6tanh−1
1273
+ � 1
1274
+
1275
+ 3
1276
+
1277
+ (65)
1278
+ 6
1279
+ Conclusion and Discussion
1280
+ We show that using the MMOB [24] for the evaluation of improper integral with limits from 0 to ∞ combined with
1281
+ tools to evaluate such MB integrals such as MbConicHull.wl results in more efficient evaluation of these integrals.
1282
+ This method is particularly helpful to evaluate the integrals when using OMOB; one requires the use of ’regulators’
1283
+ and further a proper limiting procedure to evaluate the integrals. The choice of these regulators is somewhat arbi-
1284
+ trary, and at times more than one regulator has to be used, which further complicates the process. With these tools
1285
+ at hand, we then re-evaluate the Ising integral, which had been already evaluated in [3] but with regulators. We
1286
+ further make an attempt to evaluate the sought-after integral C5,k with all these techniques. We are, though, able to
1287
+ evaluate a more general integral C5,k(α,β) which, when properly analytically continued, will give the result for C5,k.
1288
+ At present we are unable to do so with the techniques at hand. Though we believe that the result can be written as
1289
+ a derivative of some multivariable hypergeometric function. Continuing further we evaluate the B3(s) and B4(s) and
1290
+ give a general MB representation for Bn(s). For the case of B3(s), we use Olsson.wl to find the ACs of the hypergeo-
1291
+ metric functions that appear in the solution. For B4(s), similar techniques would work. It is important to note that
1292
+ though the OMOB and the evaluation of MB representation will give essentially the same number of series, grouping
1293
+ 10
1294
+
1295
+ them in the same ROC is not an easy task. For the case of 3 or more variables, the problem of finding the ROC is
1296
+ still a problem yet to be solved in an efficient manner. This problem is essentially removed in the case of applying
1297
+ the CHMB method, where such grouping is automatically done without prior knowledge of the ROC. As a byproduct
1298
+ of these evaluations, we get the result for associated box integrals ∆n(s) and Jellium potential Jn. We through these
1299
+ evaluation also discover the relations between these integrals and multivariable hypergeometric functions.
1300
+ As a future direction, it would be interesting to modify the rules of the OMOB so that the final evaluation of
1301
+ the bracket series doesn’t require regulators. For the case of C5,k(α,β) evaluated in the present work, one can try
1302
+ to find a way to evaluate the ACs. One way towards this direction is to write the final result as a derivative of a
1303
+ hypergeometric function and then find the ACs of it using Olsson.wl . After finding the ACs, the derivative can be
1304
+ taken to get the final result which converges in the appropriate region. We also note that a similar process can be
1305
+ used to evaluate C6,k, which also gives a 2-fold MB integral. Finally, it would be interesting to derive the result for
1306
+ the various Box integrals Bn(s),∆n(s) and Jellium-potential Jn from the results given here. The result in the present
1307
+ work matches numerically with those results; it would still be interesting to see how they can be obtained from the
1308
+ present work by using various reduction formulas of multivariable hypergeometric functions.
1309
+ 7
1310
+ Acknowledgements
1311
+ TP would like to thank Souvik Bera for his help and his useful comments.
1312
+ A
1313
+ Ruby’s formula
1314
+ Ruby’s formula is another interesting physical problem where the OMOB can still be used. We provide an evaluation
1315
+ of a general integral of which Ruby’s formula is a special case in this Appendix to highlight the application of the
1316
+ OMOB when regulators are not required. Ruby’s formula gives the solid angle subtended at a disk source by a coaxial
1317
+ parallel-disk detector [36]. It is given as follows
1318
+ D = Rd
1319
+ Rs
1320
+ �∞
1321
+ 0
1322
+ J1(kRd)J1(kRs) e−kd
1323
+ k
1324
+ dk
1325
+ (66)
1326
+ where Rd and Rs are the radii of the detector and the source, respectively, d is the distance between the source and
1327
+ the detector, and J1(x) is the order one Bessel’s function of the first kind. We now consider the generalization of
1328
+ integral 66, as discussed in [37]. We will use the MOB to evaluate the integral and show that it reproduces the result,
1329
+ along with two ACs.
1330
+ S =
1331
+ �∞
1332
+ 0
1333
+ kl e−kd
1334
+ N
1335
+
1336
+ j=1
1337
+ Ja j(kR j)dk
1338
+ (67)
1339
+ we can again apply the method of brackets by using the series expansion of the functions
1340
+ Ja j(kR j) = 1
1341
+ 2a j
1342
+
1343
+
1344
+ n j=0
1345
+ φn j
1346
+ (kR j)2n j+a j
1347
+ 22n jΓ(a j + n j +1)
1348
+ e−kd =
1349
+
1350
+
1351
+ np=0
1352
+ φnpknpdnp
1353
+ putting the series expansion in the above integral, we get
1354
+ S =
1355
+ �∞
1356
+ 0
1357
+
1358
+
1359
+ np=0
1360
+ φnpknp+ldnp
1361
+ N
1362
+
1363
+ j=1
1364
+ 1
1365
+ 2a j
1366
+
1367
+
1368
+ n j=0
1369
+ φn j
1370
+ (kR j)2n j+1
1371
+ 22n jΓ(a j + n j +1)
1372
+ dk
1373
+ (68)
1374
+ we can simplify the above by noting that
1375
+ 11
1376
+
1377
+ N
1378
+
1379
+ j=1
1380
+ 1
1381
+ 2a j
1382
+
1383
+
1384
+ n j=1
1385
+ φn j
1386
+ (kR j)2n j+a j
1387
+ 22n jΓ(a j + n j +1)
1388
+ =
1389
+
1390
+
1391
+ n1=0
1392
+ ···
1393
+
1394
+
1395
+ nN=0
1396
+ φ1,2,···,Nk
1397
+ �N
1398
+ j=1(2n j+a j)
1399
+ 2
1400
+ �N
1401
+ j=1(2n j+a j)
1402
+ ×
1403
+ �N
1404
+ j=1(R j)(2n j+a j)
1405
+ �N
1406
+ j=1 Γ(a j + n j +1)
1407
+ putting above value in Eq.(68) gives
1408
+ S =
1409
+ �∞
1410
+ 0
1411
+
1412
+
1413
+ np=0
1414
+ φnpk(np+l+�N
1415
+ j=1(2n j+a j))dnp
1416
+
1417
+
1418
+ n1=0
1419
+ ···
1420
+
1421
+
1422
+ nN=0
1423
+ φ1,2,···,N
1424
+ 2
1425
+ �N
1426
+ j=1(2n j+a j)
1427
+ ×
1428
+ �N
1429
+ j=1(R j)(2n j+a j)
1430
+ �N
1431
+ j=1 Γ(a j + n j +1)
1432
+ dk
1433
+ (69)
1434
+ Using the method of brackets, Eq.(69) can be written as
1435
+ S =
1436
+
1437
+
1438
+ n1=0
1439
+ ···
1440
+
1441
+
1442
+ nN=0
1443
+
1444
+
1445
+ np=0
1446
+ φ1,2,···,N,p〈(np + l +1+
1447
+ N
1448
+
1449
+ j=1
1450
+ (2n j + a j))〉
1451
+ dnp
1452
+ 2
1453
+ �N
1454
+ j=1(2n j+a j)
1455
+ ×
1456
+ �N
1457
+ j=1(R j)(2n j+a j)
1458
+ �N
1459
+ j=1Γ(a j + n j +1)
1460
+ (70)
1461
+ where φ1,2,···,N,p = φn1φn2 ···φnN φnp
1462
+ The solutions to Eq.(70) are determined using the solution to the linear equation.
1463
+ np + l +1+
1464
+ N
1465
+
1466
+ j=1
1467
+ (2n j + a j) = 0
1468
+ (71)
1469
+ above equation has (N +1) variables. There are (N +1) different ways to write solutions to the above equation, taking
1470
+ N free variables each time.
1471
+ Out of (N+1) solutions, the solution with np as the dependent variable gives the Lauricella function of N variables,
1472
+ as we will show. The rest of other solutions give the series representation that is the analytical continuation of the
1473
+ earlier.
1474
+ Denoting the solution to Eq.(71) by n∗
1475
+ i with ni being the dependent variable.
1476
+ The solutions to equation Eq.(71) can be written as
1477
+ n∗
1478
+ p = −(l +1)−
1479
+ N
1480
+
1481
+ j=1
1482
+ (2n j + a j);a = 1
1483
+ n∗
1484
+ i = −
1485
+ (np + l +1)
1486
+ 2
1487
+
1488
+ N
1489
+
1490
+ j=1,i̸=j
1491
+ (n j)−
1492
+ N
1493
+
1494
+ j=1
1495
+ �a j
1496
+ 2
1497
+
1498
+ ;a = 1
1499
+ 2
1500
+ a is the coefficient of the dependent variable if the set of linear equations obtained from brackets are written in the
1501
+ form an+ b = 0
1502
+ where n is the dependent variable, and b includes all the free variables and the constants.
1503
+ Denoting the solution of Eq.(70) by Si obtained by using n∗
1504
+ i (i = 1,2,··· ,N, p).
1505
+ I) With np as the dependent variable
1506
+ 12
1507
+
1508
+ We write the solution to Eq.(70) as
1509
+ Sp = 1
1510
+ a
1511
+
1512
+
1513
+ n1=0
1514
+ ···
1515
+
1516
+
1517
+ nN=0
1518
+ φ1,2,···,NF(n1,n2,··· ,nN,n∗
1519
+ p)Γ(−n∗
1520
+ p)
1521
+ (72)
1522
+ where F(n1,n2,··· ,nN,np) =
1523
+ dnp �N
1524
+ j=1(R j)(2nj +a j)
1525
+ 2
1526
+ �N
1527
+ j=1(2nj +a j) �N
1528
+ j=1 Γ(a j+n j+1)
1529
+ .
1530
+ Putting the values, we get
1531
+ Sp =
1532
+
1533
+
1534
+ n1=0
1535
+ ···
1536
+
1537
+
1538
+ nN=0
1539
+ φ1,2,···,N
1540
+ d−(l+1)−�N
1541
+ j=1(2n j+a j) �N
1542
+ j=1(R j)(2n j+a j)
1543
+ 2
1544
+ �N
1545
+ j=1(2n j+a j) �N
1546
+ j=1Γ(a j + n j +1)
1547
+ Γ
1548
+
1549
+ (l +1)+
1550
+ N
1551
+
1552
+ j=1
1553
+ (2n j + a j)
1554
+
1555
+ (73)
1556
+ Using Legendre’s duplication formula
1557
+ Γ
1558
+
1559
+ 2
1560
+ �l +1
1561
+ 2
1562
+ +
1563
+ N
1564
+
1565
+ j=1
1566
+
1567
+ n j + a j
1568
+ 2
1569
+ ���
1570
+ =
1571
+ 2
1572
+
1573
+ l+�N
1574
+ j=1(2n j+a j)
1575
+
1576
+ Γ
1577
+
1578
+ l+1
1579
+ 2 +�N
1580
+ j=1
1581
+
1582
+ n j +
1583
+ a j
1584
+ 2
1585
+ ��
1586
+ Γ
1587
+
1588
+ l
1589
+ 2 +1+�N
1590
+ j=1
1591
+
1592
+ n j +
1593
+ a j
1594
+ 2
1595
+ ��
1596
+ �π
1597
+ (74)
1598
+ putting above value in equation Eq.(73) and simplifying gives
1599
+ Sp =
1600
+
1601
+
1602
+ n1=0
1603
+ ···
1604
+
1605
+
1606
+ nN=0
1607
+ φ1,2,···,N
1608
+ d−(l+1)−�N
1609
+ j=1(2n j+a j) �N
1610
+ j=1(R j)(2n j+a j)
1611
+ 2
1612
+ �N
1613
+ j=1(2n j+a j) �N
1614
+ j=1 Γ(a j + n j +1)
1615
+ ×
1616
+ Γ
1617
+
1618
+ l+1
1619
+ 2 +�N
1620
+ j=1
1621
+
1622
+ n j +
1623
+ a j
1624
+ 2
1625
+ ��
1626
+ Γ
1627
+
1628
+ l
1629
+ 2 +1+�N
1630
+ j=1
1631
+
1632
+ n j +
1633
+ a j
1634
+ 2
1635
+ ��
1636
+ �π
1637
+ (75)
1638
+ this equation can be written in compact form as follow
1639
+ Sp = 1
1640
+ �π
1641
+ � 2
1642
+ d
1643
+ �l� 1
1644
+ d
1645
+
1646
+ Γ
1647
+ � N
1648
+
1649
+ j=1
1650
+ a j
1651
+ 2 + l +1
1652
+ 2
1653
+
1654
+ Γ
1655
+ � N
1656
+
1657
+ j=1
1658
+ a j
1659
+ 2 + l
1660
+ 2 +1
1661
+ � N
1662
+
1663
+ j=1
1664
+ �R j
1665
+ d
1666
+ �a j
1667
+ ×
1668
+
1669
+
1670
+ n1=0
1671
+ ···
1672
+
1673
+
1674
+ nN=0
1675
+ (−1)
1676
+ �N
1677
+ j=1 n j �N
1678
+ j=1
1679
+ � R j
1680
+ d
1681
+ �2n j
1682
+ �N
1683
+ j=1
1684
+ ��
1685
+ a j +1
1686
+
1687
+ n jΓ(n j +1)
1688
+
1689
+ ×
1690
+ ��N
1691
+ j=1
1692
+ a j
1693
+ 2 + l+1
1694
+ 2
1695
+
1696
+ (�N
1697
+ j=1 n j)
1698
+ ��N
1699
+ j=1
1700
+ a j
1701
+ 2 + l
1702
+ 2 +1
1703
+
1704
+ (�N
1705
+ j=1 n j)
1706
+ �N
1707
+ j=1Γ(a j +1)
1708
+ (76)
1709
+ (a)m is the Pochhammer symbol
1710
+ which exactly matches the series representation obtained in [37] with ROC
1711
+ N
1712
+
1713
+ i=1
1714
+ |R j| < d
1715
+ 13
1716
+
1717
+ The above series corresponds to the Lauricella function of N variables.
1718
+ Sp = 1
1719
+ �π
1720
+ � 2
1721
+ d
1722
+ �l� 1
1723
+ d
1724
+ ��
1725
+ 1
1726
+ �N
1727
+ j=1Γ(a j +1)
1728
+
1729
+ Γ
1730
+ � N
1731
+
1732
+ j=1
1733
+ a j
1734
+ 2 + l +1
1735
+ 2
1736
+
1737
+ Γ
1738
+ � N
1739
+
1740
+ j=1
1741
+ a j
1742
+ 2 + l
1743
+ 2 +1
1744
+ � N
1745
+
1746
+ j=1
1747
+ �R j
1748
+ d
1749
+ �a j
1750
+ ×Fc
1751
+ �� N
1752
+
1753
+ j=1
1754
+ a j
1755
+ 2 + l +1
1756
+ 2
1757
+
1758
+ ,
1759
+ � N
1760
+
1761
+ j=1
1762
+ a j
1763
+ 2 + l
1764
+ 2 +1
1765
+
1766
+ ;(1+ a1),··· ,(1+ aN);−
1767
+ �R1
1768
+ d
1769
+ �2
1770
+ ,··· ,−
1771
+ � RN
1772
+ d
1773
+ �2�
1774
+ (77)
1775
+ where Fc in the above equation is the Lauricella function for N variables.
1776
+ II) With ni as the dependent variable
1777
+ We write the solution to Eq.(70) as
1778
+ Si = 1
1779
+ a
1780
+
1781
+
1782
+ n1=0
1783
+ ···
1784
+
1785
+
1786
+ nN=0
1787
+ φ1,2,···,(i−1),(i+1),···,N,pF(n1,n2,··· ,n∗
1788
+ i ,··· ,nN,np)Γ(−n∗
1789
+ i )
1790
+ (78)
1791
+ putting the values, we get
1792
+ Si = 1
1793
+ 2
1794
+
1795
+
1796
+ n1=0
1797
+ ···
1798
+
1799
+
1800
+ ni−1=0
1801
+
1802
+
1803
+ ni+1=0
1804
+ ···
1805
+
1806
+
1807
+ nN=0
1808
+
1809
+
1810
+ np=0
1811
+ φ1,2,···,(i−1),(i+1),···,N,p
1812
+ dnp
1813
+ ��N
1814
+ j=1,j̸=i(R j)(2n j+a j)�
1815
+
1816
+ 2
1817
+ �N
1818
+ j=1,j̸=i(2n j+a j)���N
1819
+ j=1,j̸=i Γ(a j + n j +1)
1820
+
1821
+ ×
1822
+
1823
+ 1
1824
+
1825
+ Γ(ai −
1826
+ (np+l+1)
1827
+ 2
1828
+ −�N
1829
+ n j=1,i̸=j(n j)−�N
1830
+ j=1
1831
+ � a j
1832
+ 2
1833
+
1834
+ +1
1835
+
1836
+ ��
1837
+ (Ri)−(np+l+1)−�N
1838
+ j=1,i̸=j(2n j)−�N
1839
+ j=1 a j+ai�
1840
+ ×
1841
+
1842
+ 1
1843
+ 2−(np+l+1)−�N
1844
+ j=1,i̸=j(2n j)−�N
1845
+ j=1 a j+ai
1846
+ ��
1847
+ Γ
1848
+ � np + l +1
1849
+ 2
1850
+ +
1851
+ N
1852
+
1853
+ j=1,j̸=i
1854
+ (n j)+
1855
+ N
1856
+
1857
+ j=1
1858
+ �a j
1859
+ 2
1860
+ ���
1861
+ (79)
1862
+ Eq.(79) gives series representation for all values of i = 1,2,··· ,N and is the most general form of all the analytically
1863
+ continued series.
1864
+ B
1865
+ ∆n Relations
1866
+ ∆n can be expressed in terms of Bn as has already been shown in the subsection (5.2). Here, the relations for ∆4 and
1867
+ ∆5 are provided:
1868
+ ∆4(s) = 64
1869
+
1870
+ 3·2
1871
+ s
1872
+ 2 +3 +2s+6 −3
1873
+ s
1874
+ 2 +4�
1875
+ (s+7)+1
1876
+ (s+2)(s+4)(s+6)(s+7)(s+8)
1877
+ +
1878
+ 96
1879
+ (s+2)(s+4) B2(s+4)−
1880
+ 96(s+8)
1881
+ (s+2)(s+4)(s+6) B2(s+6)
1882
+ (80)
1883
+ + 64
1884
+ s+2 B3(s+2)−
1885
+ 96(s+7)
1886
+ (s+2)(s+4) B3(s+4)+
1887
+ 32(s+8)(s+9)
1888
+ (s+2)(s+4)(s+6) B3(s+6)+16B4(s)
1889
+ − 88(s+6)
1890
+ 3(s+2) B4(s+2)+ 8(s+8)(6s+43)
1891
+ 3(s+2)(s+4) B4(s+4)− 8(s+8)(s+9)(s+10)
1892
+ 3(s+2)(s+4)(s+6) B4(s+6)
1893
+ ∆5(s) = 1601+(9+ s)
1894
+
1895
+ 26+s/2 +210+s −54+s/2 −2��35+s/2�
1896
+ (2+ s)(4+ s)(6+ s)(8+ s)(9+ s)(10+ s)
1897
+ +
1898
+ 320
1899
+ (2+ s)(4+ s)(6+ s) B2(6+ s)+
1900
+ 320
1901
+ (2+ s)(4+ s) B3(4+ s)
1902
+ (81)
1903
+
1904
+ 320(10+ s)
1905
+ (2+ s)(4+ s)(6+ s)(8+ s) B2(8+ s)−
1906
+ 480(9+ s)
1907
+ (2+ s)(4+ s)(6+ s) B3(6+ s)+ 160
1908
+ 2+ s B4(2+ s)
1909
+ − 880
1910
+ 3
1911
+ (8+ s)
1912
+ (2+ s)(4+ s) B4(4+ s)+ 80
1913
+ 3
1914
+ (10+ s)(55+6s)
1915
+ (2+ s)(4+ s)(6+ s) B4(6+ s)− 80
1916
+ 3
1917
+ (10+ s)(11+ s)(12+ s)
1918
+ (2+ s)(4+ s)(6+ s)(8+ s) B4(8+ s)
1919
+ +32B5(s)−200(7+ s)
1920
+ 6+3s B5(2+ s)+ 4
1921
+ 3
1922
+ (9+ s)(291+35s)
1923
+ (2+ s)(4+ s)
1924
+ B5(4+ s)− 8
1925
+ 3
1926
+ (10+ s)(11+ s)(47+5s)
1927
+ (2+ s)(4+ s)(6+ s)
1928
+ B5(6+ s)
1929
+ + 4
1930
+ 3
1931
+ (10+ s)(11+ s)(12+ s)(13+ s)
1932
+ (2+ s)(4+ s)(6+ s)(8+ s)
1933
+ B5(8+ s)
1934
+ 14
1935
+
1936
+ C
1937
+ MATHEMATICA files
1938
+ Here, we give a list of the MATHEMATICA files and packages that we provide, which contains the derivation of the
1939
+ various results of the paper.
1940
+ Files Provided
1941
+ Description
1942
+ Ising.nb
1943
+ Contains the evaluation of the Ising integrals C3,k, C4,k, C5,k(α,β) and C6,k(α,β)
1944
+ Box.nb
1945
+ Contains the evaluation of the Box integrals B3(s) and B4(s)
1946
+ MbConicHull.wl
1947
+ Package required to evaluate multidimensional MB integrals. Used in the
1948
+ evaluation of C5,k(α,β), C6,k(α,β), B3(s) and B4(s)
1949
+ MultivariateResidues.m
1950
+ Used by the package MbConicHull.wl internally
1951
+ Olsson.wl
1952
+ Package required for finding the ACs. Used for the case B3(s)
1953
+ ROC2.wl
1954
+ Package required for finding the region of convergence of the 2-variable hypergeometric series.
1955
+ Table 2:
1956
+ References
1957
+ [1] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic
1958
+ press, 2014.
1959
+ [2] Ivan Gonzalez and Victor H. Moll. Definite integrals by the method of brackets. Advances in Applied Mathemat-
1960
+ ics, 45(1):50–73, 2010.
1961
+ [3] Ivan Gonzalez, Victor H. Moll, and Armin Straub. The Method of brackets. Part 2. Examples and applications.
1962
+ 4 2010.
1963
+ [4] Ivan Gonzalez, Karen Kohl, Lin Jiu, and Victor H. Moll. An extension of the method of brackets. part 1. Open
1964
+ Mathematics, 15(1):1181–1211, 2017.
1965
+ [5] Ivan Gonzalez, Lin Jiu, and Victor H. Moll. An extension of the method of brackets. part 2. Open Mathematics,
1966
+ 18(1):983–995, 2020.
1967
+ [6] Ivan Gonzalez, Igor Kondrashuk, Victor H Moll, and Luis M Recabarren.
1968
+ Mellin–barnes integrals and the
1969
+ method of brackets. The European Physical Journal C, 82(1):28, 2022.
1970
+ [7] Ivan Gonzalez, Igor Kondrashuk, Victor H Moll, and Alfredo Vega. Analytic expressions for debye functions and
1971
+ the heat capacity of a solid. Mathematics, 10(10):1745, 2022.
1972
+ [8] B. Ananthanarayan, Sumit Banik, Sudeepan Datta, and Tanay Pathak. Quadratic and quartic integrals using
1973
+ the method of brackets. Scientia, 29:45–59, 2019.
1974
+ [9] Hari M Srivastava and Per Wennerberg Karlsson. Multiple Gaussian hypergeometric series. E. Horwood, 1985.
1975
+ [10] Harold Exton. Multiple hypergeometric functions and applications. Ellis Horwood, 1976.
1976
+ [11] B. Ananthanarayan, Sumit Banik, Samuel Friot, and Shayan Ghosh. Double box and hexagon conformal Feyn-
1977
+ man integrals. Phys. Rev. D, 102(9):091901, 2020.
1978
+ [12] B. Ananthanarayan, Sumit Banik, Samuel Friot, and Shayan Ghosh. Massive One-loop Conformal Feynman
1979
+ Integrals and Quadratic Transformations of Multiple Hypergeometric Series. Phys. Rev. D, 103(9):096008, 2021.
1980
+ [13] Sumit Banik. On Hypergeometric solutions of Feynman integrals using Mellin-Barnes Integrals with Applica-
1981
+ tions. PhD thesis, Bangalore, Indian Inst. Sci., 9 2022.
1982
+ [14] B. Ananthanarayan, Sumit Banik, Samuel Friot, and Shayan Ghosh. Multiple Series Representations of N-fold
1983
+ Mellin-Barnes Integrals. Phys. Rev. Lett., 127(15):151601, 2021.
1984
+ [15] Sumit Banik and Samuel Friot.
1985
+ Multiple Mellin-Barnes integrals with straight contours.
1986
+ Phys. Rev. D,
1987
+ 107(1):016007, 2023.
1988
+ 15
1989
+
1990
+ [16] Olsson, Per O. M. . Integration of the Partial Differential Equations for the Hypergeometric Functions F1 and
1991
+ FD of Two and More Variables. Journal of Mathematical Physics, 5(3):420–430, 1964.
1992
+ [17] B. Ananthanarayan, Souvik Bera, S. Friot, O. Marichev, and Tanay Pathak. On the evaluation of the Appell F2
1993
+ double hypergeometric function. Comput. Phys. Commun., 284:108589, 2023.
1994
+ [18] B. Ananthanarayan, Souvik Bera, S. Friot, and Tanay Pathak. Olsson.wl : a Mathematica package for the
1995
+ computation of linear transformations of multivariable hypergeometric functions. 12 2021.
1996
+ [19] D.H. Bailey and J.M. Borwein.
1997
+ High-precision numerical integration: Progress and challenges.
1998
+ Journal of
1999
+ Symbolic Computation, 46(7):741–754, 2011. Special Issue in Honour of Keith Geddes on his 60th Birthday.
2000
+ [20] David H Bailey, Jonathan M Borwein, and Richard E Crandall. Integrals of the ising class. Journal of Physics
2001
+ A: Mathematical and General, 39(40):12271, 2006.
2002
+ [21] Flavia Stan. On recurrences for ising integrals. Advances in Applied Mathematics, 45(3):334–345, 2010.
2003
+ [22] David H Bailey, David Borwein, Jonathan M Borwein, and Richard E Crandall. Hypergeometric forms for ising-
2004
+ class integrals. Experimental Mathematics, 16(3):257–276, 2007.
2005
+ [23] B. Ananthanarayan, Sumit Banik, Samuel Friot, and Tanay Pathak. On the Method of Brackets. 12 2021.
2006
+ [24] Mario Prausa. Mellin–barnes meets method of brackets: a novel approach to mellin–barnes representations of
2007
+ feynman integrals. The European Physical Journal C, 77(9):1–10, 2017.
2008
+ [25] David H Bailey, Jonathan M Borwein, and Richard E Crandall. Box integrals. Journal of Computational and
2009
+ Applied Mathematics, 206(1):196–208, 2007.
2010
+ [26] D Bailey, J Borwein, and R Crandall. Advances in the theory of box integrals. Mathematics of Computation,
2011
+ 79(271):1839–1866, 2010.
2012
+ [27] R. S. Anderssen, R. P. Brent, D. J. Daley, and P. A. P. Moran. Concerning
2013
+ �1
2014
+ 0 ···
2015
+ �1
2016
+ 0 (x2
2017
+ 1 +···+ x2
2018
+ k)1/2dx1 ··· ,dxk and
2019
+ a taylor series method. SIAM Journal on Applied Mathematics, 30(1):22–30, 1976.
2020
+ [28] Johan Philip. The distance between two random points in a 4-and 5-cube. KTH mathematics, 2008.
2021
+ [29] D.H. Bailey, J.M. Borwein, and R.E. Crandall. Box integrals. Journal of Computational and Applied Mathemat-
2022
+ ics, 206(1):196–208, 2007.
2023
+ [30] WP Orrick, Bernie Nickel, AJ Guttmann, and Jacques HH Perk. The susceptibility of the square lattice ising
2024
+ model: new developments. Journal of Statistical Physics, 102:795–841, 2001.
2025
+ [31] Tai Tsun Wu, Barry M. McCoy, Craig A. Tracy, and Eytan Barouch. Spin-spin correlation functions for the
2026
+ two-dimensional ising model: Exact theory in the scaling region. Phys. Rev. B, 13:316–374, Jan 1976.
2027
+ [32] N Zenine, S Boukraa, S Hassani, and JM Maillard. Square lattice ising model susceptibility: series expansion
2028
+ method and differential equation for χ (3). Journal of Physics A: Mathematical and General, 38(9):1875, 2005.
2029
+ [33] David H Bailey, Jonathan M Borwein, David Broadhurst, and Wadim Zudilin. Experimental mathematics and
2030
+ mathematical physics. Contemp. Math, 517:41–58, 2010.
2031
+ [34] David H Bailey and Jonathan M Borwein.
2032
+ High-precision numerical integration: Progress and challenges.
2033
+ Journal of Symbolic Computation, 46(7):741–754, 2011.
2034
+ [35] Per OM Olsson. Integration of the partial differential equations for the hypergeometric functions f 1 and fd of
2035
+ two and more variables. Journal of Mathematical Physics, 5(3):420–430, 1964.
2036
+ [36] Lawrence Ruby. Further comments on the geometrical efficiency of a parallel-disk source and detector system.
2037
+ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
2038
+ Associated Equipment, 337(2):531–533, 1994.
2039
+ [37] Samuel Friot. On Ruby’s solid angle formula and some of its generalizations. Nucl. Instrum. Meth. A, 773:150–
2040
+ 153, 2015.
2041
+ 16
2042
+
9dFQT4oBgHgl3EQf5zZD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9E2T4oBgHgl3EQf9QlY/content/tmp_files/2301.04226v1.pdf.txt ADDED
@@ -0,0 +1,3034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR IN THE FRAMEWORK OF
2
+ PERIODIC HOMOGENIZATION OR SINGULAR PERTURBATION PROBLEMS
3
+ KAÏS AMMARI AND ALI SILI
4
+ ABSTRACT. In this paper we perform the analysis of the spectrum of a degenerate operator Aε corresponding to the
5
+ stationary heat equation in a ε-periodic composite medium having two components with high contrast diffusivity. We
6
+ prove that although Aε is a bounded self-adjoint operator with compact resolvent, the limits of its eigenvalues when the
7
+ size ε of the medium tends to zero, make up a part of the spectrum of a unbounded operator A0, namely the eigenvalues
8
+ of A0 located on the left of the first eigenvalue of the bi-dimensional Laplacian with homogeneous Dirichlet condition on
9
+ the boundary of the representative cell. We also show that the homogenized problem does not differ in any way from the
10
+ one-dimensional problem obtained in the study of the local reduction of dimension induced by the homogenization.
11
+ CONTENTS
12
+ 1.
13
+ Introduction, setting of the problem and statement of the results
14
+ 1
15
+ 2.
16
+ Proof of the results in the case of a single thin structure: the reduction of dimension 3d − 1d
17
+ 8
18
+ 2.1.
19
+ Apriori estimate on the sequence of eigenvalues and eigenvectors
20
+ 8
21
+ 2.2.
22
+ The limit problem associated to (1.9)
23
+ 9
24
+ 2.3.
25
+ The strong convergence of the eigenvectors
26
+ 11
27
+ 2.4.
28
+ Proof of Theorem 1.3
29
+ 14
30
+ 3.
31
+ Proof of Theorem 1.5
32
+ 18
33
+ References
34
+ 20
35
+ 1. INTRODUCTION, SETTING OF THE PROBLEM AND STATEMENT OF THE RESULTS
36
+ The purpose of the present work is the asymptotic analysis of the eigenelements of a spectral problem in the
37
+ framework of the homogenization of a periodic composite medium made up of a ε-periodic set of parallel vertical
38
+ fibers Fε surrounded by a matrix Mε having better properties; more precisely, we consider the following problem
39
+ (1.1)
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+ Aεuε = λεuε
56
+ in Ω,
57
+ where Aεu = −ε2∆uχFε − ∆uχMε
58
+ ∀ u ∈ D(Aε),
59
+ with D(Aε) =
60
+
61
+ u ∈ Vh, Aεu ∈ L2(Ω),
62
+ ∂u
63
+ ∂nχ∂Fε = − 1
64
+ ε2
65
+ ∂u
66
+ ∂nχ∂Mε
67
+
68
+ ,
69
+ with the following notations:
70
+ ∆ denotes the classical Laplacian operator, Ω denotes a bounded rectangular open set of R3 of the form Ω :=
71
+ ω × (0, L), ω being a domain of R2 and L is a positive number, ∂u
72
+ ∂nχ∂Mε (resp. ∂u
73
+ ∂nχ∂Fε) denotes the outer normal
74
+ to the lateral boundary of Mε (resp. Fε). The space Vh (h stands for homogenization) is defined by
75
+ (1.2)
76
+ Vh :=
77
+
78
+ u ∈ H1(Ω), u(x′, 0) = u(x′, L) = 0 a.e. x′ = (x1, x2) ∈ ω
79
+
80
+ ,
81
+ 2010 Mathematics Subject Classification. 35B25; 35B27; 35B40; 35B45; 35J25; 35J57; 35J70; 35P20.
82
+ Key words and phrases. Spectrum, Degenerate, High contrast, Homogenization, Singular perturbation.
83
+ 1
84
+ arXiv:2301.04226v1 [math.AP] 10 Jan 2023
85
+
86
+ 2
87
+ KAÏS AMMARI AND ALI SILI
88
+ hence, Vh is the subspace of functions in H1(Ω) which vanish on the lower and the upper faces of Ω.
89
+ In the sequel, the two horizontal variables x′ := (x1, x2) or y := (y1, y2) will play a different role from that
90
+ of the vertical variable x3. The gradient and the Laplacian with respect to the horizontal variables will be denoted
91
+ respectively by ∇′ and ∆′.
92
+ We assume that Ω is the reference configuration of a composite medium whose two components are a set Fε
93
+ of vertical cylindrical fibers and its complement, the matrix Mε. Hence, the projection on the horizontal x′-plane
94
+ of the set Fε is made up of a ε-periodic set of disks while the complement of such set represents the projection of
95
+ Mε. The characteristic functions of Fε (resp. Mε) are denoted by χFε (resp. χMε). The fibers are distributed in Ω
96
+ with a period of size ε and the ratio between the conductivity coefficients of the two components is 1
97
+ ε2 . Throughout
98
+ the paper, for a measurable set B we denote by |B| its Lebesgue measure and by χB its characteristic function. A
99
+ generic positive constant the value of which may change from a line to another will be denoted by K.
100
+ Let C be a square of R2 and let D be a disk strictly contained in C. The complement of D in C will be
101
+ denoted by M ′ in such a way that C = M ′ ∪ D. The geometry of the domain is described as follows.
102
+ (1.3)
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+ Ci
135
+ ε = (εC + εi) × (0, L); ω =
136
+
137
+ i∈Iε
138
+ (εC + εi); Ω =
139
+
140
+ i∈Iε
141
+ Y i
142
+ ε = ω × (0, L),
143
+ Fε =
144
+
145
+ i∈Iε
146
+ F i
147
+ ε, F i
148
+ ε = Di
149
+ ε × (0, L) = (εD + εi) × (0, L),
150
+ Mε =
151
+
152
+ i∈Iε
153
+ M i
154
+ ε, M i
155
+ ε = M ′i
156
+ ε × (0, L) = (Ci
157
+ ε \ D
158
+ i
159
+ ε) × (0, L),
160
+ Iε = {i ∈ Z2, Ci
161
+ ε ⊂ Ω},
162
+ Ω = Fε
163
+ � Mε.
164
+ FIGURE 1. The composite structure after dilation which is also the reference cell in the homoge-
165
+ nization setting.
166
+ In Figure 1 we have represented the representative cell C = D ∪ M ′ which represents also the composite
167
+ structure after dilation.
168
+ When dealing with the homogenization of a problem posed on a domain Ω with a geometry given by (1.3), a
169
+ reduction of dimension 3d − 1d appears locally in each cell; it is then natural to study separately such a reduction
170
+ of dimension problem which can be seen as a special case of the homogenization problem. The geometry of the
171
+
172
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
173
+ 3
174
+ reduction of dimension 3d − 1d problem is the following: the composite medium consists of a single fiber Fε :=
175
+ (εD)×(0, L) surrounded by the matrix Mε = εM ′ ×(0, L) =
176
+
177
+ ε(C \D)
178
+
179
+ ×(0, L) in such a way the global domain
180
+ depends now on the small parameter ε; it is defined by Ωε := (εC) × (0, L) = Fε ∪ Mε and it may be viewed as
181
+ the configuration of a thin structure with the characteristic parameter ε.
182
+ In this setting, the spectral problem (1.1) takes the following form
183
+ (1.4)
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+ Aεvε = λεvε
200
+ in Ωε,
201
+ where Aεv = −ε2∆vχFε − ∆vχMε
202
+ ∀ v ∈ D(Aε),
203
+ with D(Aε) =
204
+
205
+ v ∈ V ε
206
+ s , Aεv ∈ L2(Ωε),
207
+ ∂v
208
+ ∂nχ∂(εD) = − 1
209
+ ε2
210
+ ∂v
211
+ ∂nχ∂(εM ′)
212
+
213
+ ,
214
+ where the space V ε
215
+ s (the subscript "s" stands for singular perturbation) is now defined by
216
+ (1.5)
217
+ V ε
218
+ s :=
219
+
220
+ v ∈ H1(Ωε), v(x′, 0) = v(x′, L) = 0 a.e. x′ = (x1, x2) ∈ εC
221
+
222
+ .
223
+ In order to deal with a problem posed on the fixed domain Ω := C ×(0, L), we introduce the classical scaling
224
+ uε(y′, x3) = vε(εy′, x3), y′ ∈ C which implies
225
+ (1.6)
226
+ ∇′
227
+ yuε(y, x3) = ε∇′vε(εy, x3) = ε∇′vε(x′, x3), ∀ (x′, x3) ∈ (εC) × (0, L),
228
+ (this approach is of course not applicable in the homogenization setting in which we have to deal with 1
229
+ ε2 such thin
230
+ structures). This change of variables transforms the problem (1.4) into the following singular perturbation problem,
231
+ (1.7)
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+ Aεu = λεu in Ω,
260
+ where Aεu =
261
+
262
+ −∆′u − ε2 ∂2u
263
+ ∂x2
264
+ 3
265
+
266
+ χD +
267
+
268
+ − 1
269
+ ε2 ∆′u − ∂2u
270
+ ∂x2
271
+ 3
272
+
273
+ χM ′,
274
+ ∀ u ∈ D(Aε),
275
+ with
276
+ D(Aε) =
277
+
278
+ u ∈ Vs, Aεu ∈ L2(Ω),
279
+ ∂u
280
+ ∂nχ∂D = − 1
281
+ ε2
282
+ ∂u
283
+ ∂nχ∂M ′
284
+
285
+ ,
286
+ Vs being the space V ε
287
+ s corresponding to ε = 1 and defined in (1.5).
288
+ Note that the study of the asymptotic behavior of (1.4) is the so-called reduction of dimension problem
289
+ 3d − 1d since when ε goes to zero the three dimensional domain Ωε = (εC) × (0, L) looks like the segment (0, L).
290
+ Remarkably, it appears that the homogenized problem is very similar to the limit problem describing the one-
291
+ dimensional model in the local 3d−1d reduction of dimension as explained in [23] (see also [19, 22]). This similarity
292
+ is essentially due to the absence of oscillations in the vertical direction, whereas oscillations in the horizontal plane
293
+ induce a local reduction of dimension.
294
+ We take advantage of that remark to limit ourselves to the complete study of the 3d − 1d problem which
295
+ is technically simpler than the homogenization problem and we will only state the results within the framework of
296
+ homogenization by referring to [23] for an adaptation of the proofs to the homogenization.
297
+ Homogenization of a medium with high contrast between its components leads in general to a limit model
298
+ described by an equation with significant differences compared with the equation of the media at the scale ε, see [3],
299
+ [4], [7], [12], [9], [19], [22], [24], [25], [28]. Other settings have been studied in [2], [13], [14], [18].
300
+ Of course, this rule also fits for spectral problems, see for instance [28], [17], [23].
301
+ To describe the behavior of the eigenvalues of (1.7) ( 3d − 1d problem) or (1.1) (homogenization) we use
302
+ the variational formulation. Note that for a fixed ε, Aε defined either by (1.1) or by (1.7) is a bounded selfadjoint
303
+ operator with compact resolvent so that one can state the following well known result.
304
+
305
+ 4
306
+ KAÏS AMMARI AND ALI SILI
307
+ Proposition 1.1. Problem (1.1) (or problem (1.7)) admits a sequence of eigenvalues (λk
308
+ ε)k, 0 < λ1
309
+ ε ≤ λ2
310
+ ε ≤ ... ≤
311
+ λn
312
+ ε ≤ ..., with lim
313
+ k→∞ λk
314
+ ε = +∞ while the associate eigenvectors (uk
315
+ ε)k may be chosen as an orthonormal basis of
316
+ L2(Ω).
317
+ Taking into account this result, the variational formulation of (1.1) and of (1.7) are respectively the following
318
+ ones
319
+ (1.8)
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+ uk
334
+ ε ∈ Vh,
335
+
336
+
337
+ (ε2∇uk
338
+ ε∇φχFε + ∇uk
339
+ ε∇φχMε
340
+
341
+ dx = λk
342
+ ε
343
+
344
+
345
+ uk
346
+ εφ dx,
347
+ ∀ φ ∈ Vh,
348
+ (1.9)
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+ uk
369
+ ε ∈ Vs,
370
+
371
+
372
+ ��
373
+ ∇′uk
374
+ ε∇′φ + ε2 ∂uk
375
+ ε
376
+ ∂x3
377
+ ∂φ
378
+ ∂x3
379
+
380
+ χF +
381
+ � 1
382
+ ε2 ∇′uk
383
+ ε∇′φ + ∂uk
384
+ ε
385
+ ∂x3
386
+ ∂φ
387
+ ∂x3
388
+
389
+ χM
390
+
391
+ dy dx3
392
+ = λk
393
+ ε
394
+
395
+
396
+ uk
397
+ εφ dy dx3, ∀ φ ∈ Vs,
398
+ where F := D × (0, L) and M := (C \ D) × (0, L).
399
+ We prove in Theorem 1.3 below that for each k, the limit λk of the sequence of eigenvalues (λk
400
+ ε)ε of (1.7)
401
+ ( 3d − 1d problem) is either equal to the first eigenvalue µ1 of the bidimensional Laplacian in the disk D with
402
+ homogeneous Dirichlet boundary condition or is on the left of µ1; furthermore, if λk fulfills 0 < λk < µ1, then
403
+ s(λk) := λk
404
+
405
+ 1 +
406
+ |D|
407
+ |C \ D| +
408
+ λk
409
+ |C \ D|
410
+
411
+ D
412
+ uk
413
+ 0 dy
414
+
415
+ is an eigenvalue of − d2
416
+ dx2
417
+ 3
418
+ in (0, L) with homogeneous Dirichlet
419
+ boundary condition; more precisely, λk is a solution of the following system
420
+ (1.10)
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+ uk
437
+ 0(y) ∈ H1(C)),
438
+ −∆′
439
+ yuk
440
+ 0 = λkuk
441
+ 0 + 1 in D,
442
+ uk
443
+ 0 = 0
444
+ on ∂D,
445
+ vk ∈ H1
446
+ 0(0, L)),
447
+ −dvk
448
+ dx2
449
+ 3
450
+ = λk
451
+
452
+ 1 +
453
+ |D|
454
+ |C \ D| +
455
+ λk
456
+ |C \ D|
457
+
458
+ D
459
+ uk
460
+ 0 dy
461
+
462
+ vk
463
+ in (0, L).
464
+ Similar results (Theorem 1.5) are obtained for the homogenisation problem; the limit λk of the sequence of
465
+ eigenvalues (λk
466
+ ε)ε of (1.1) is either equal to the first eigenvalue µ1 of the bidimensional Laplacian in the disk D with
467
+ homogeneous Dirichlet boundary condition or is on the left of µ1 and satisfies the system
468
+ (1.11)
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+ uk
493
+ 0 ∈ H1
494
+ #(C),
495
+ −∆′
496
+ yuk
497
+ 0 = λkuk
498
+ 0 + 1 in D,
499
+ uk
500
+ 0 = 0 on ∂D,
501
+ vk ∈ L2(ω; H1
502
+ 0(0, L)),
503
+ −∂2vk
504
+ ∂x2
505
+ 3
506
+ = λk
507
+
508
+ 1 +
509
+ |D|
510
+ |C \ D| +
511
+ λk
512
+ |C \ D|
513
+
514
+ D
515
+ uk
516
+ 0 dy
517
+
518
+ vk
519
+ in Ω.
520
+ Let us notice the very close analogy between the two limit problems. The first equation of (1.11) is exactly
521
+ the first one in (1.10) (the boundary condition uk
522
+ 0 = 0 on ∂D allows to consider uk
523
+ 0 as an element of H1
524
+ #(C) in
525
+ (1.11)) so that the only difference between (1.11) and (1.10) lies in vk arising in (1.11) is a function depending also
526
+
527
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
528
+ 5
529
+ on the variable x′ ∈ ω while in (1.10) it depends only on the vertical variable x3 ∈ (0, L). The dependence of vk
530
+ with respect to x′ in (1.11) is natural and it simply means that the homogenized problem is a duplication through ω
531
+ of the phenomenon occurring in each cell of the horizontal plane.
532
+ On the other hand, the limit system is nonlocal:the main vibrations at the limit are that of the matrix (the stiff
533
+ part of the medium) in which the reduction of dimension occurs; however the vibrations in the fibers must also be
534
+ taken into account at the limit through the term
535
+
536
+ D
537
+ uk
538
+ 0 dy given by the first equation of the system. The last term
539
+ can be seen as a memory term intended to highlight the contribution of the soft part of the medium (here the fiber)
540
+ to the limit vibrations. This situation is in contrast with the one usually occurring with uniformly bounded operators
541
+ with respect to the small parameter leading to limit problems of the same nature as the original ones, see for instance
542
+ [13], [14], [26].
543
+ Note also that the existence and the uniqueness of uk
544
+ 0 in (1.10) is ensured by the fact that λk belongs to the
545
+ resolvent ρ(−∆′
546
+ y) of −∆′
547
+ y since λk < µ1.
548
+ The fact that
549
+
550
+ D
551
+ uk
552
+ 0 dy ̸= 0 will be proved in section 2, see (2.17), using the constant 1
553
+ µ1
554
+ in the Poincaré
555
+ inequality (in fact such value is the best constant for the Poincaré inequality).
556
+ Remark 1.2. It is natural to ask what is the relationship between the problem (1.10) (or the problem (1.11)) and
557
+ the classical formulation of eigenvalue problems. In fact, (1.10) is derived from the system (2.10) which in turn is
558
+ derived from the equation (2.9) satisfied by the pair (uk, vk), see the details of the proof in section 2 below. If one
559
+ integrates the first equation of (2.10) over D, we get an equivalent formulation of (2.10) as follows
560
+ (1.12)
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+ uk(y, x3) ∈ L2((0, L); H1(C)),
577
+ −∆′
578
+ yuk(y, x3) = λkuk in D × (0, L),
579
+ uk = vk
580
+ on ∂D × (0, L),
581
+ vk ∈ H1
582
+ 0(0, L),
583
+ −d2vk
584
+ dx2
585
+ 3
586
+ +
587
+ 1
588
+ |C \ D|
589
+
590
+ ∂D
591
+ ∂uk
592
+ ∂n dσ = λkvk
593
+ in (0, L).
594
+ Another equivalent formulation of (1.12) is the following
595
+ (1.13)
596
+ A0
597
+ �uk
598
+ vk
599
+
600
+ = λk
601
+ �uk
602
+ vk
603
+
604
+ where the operator A0 is defined by A0 : D(A0) → H := L2(Ω) × L2(0, L) with
605
+ (1.14)
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+
619
+
620
+
621
+ D(A0) =
622
+ ��u
623
+ v
624
+
625
+ ∈ L2(0, L; H1(D) × H1
626
+ 0(0, L); A0
627
+ �u
628
+ v
629
+
630
+ ∈ H, u = v on ∂D
631
+
632
+ ,
633
+ A0
634
+ �u
635
+ v
636
+
637
+ =
638
+
639
+
640
+ −∆′
641
+ yu
642
+ −d2v
643
+ dx2
644
+ 3
645
+ +
646
+ 1
647
+ |C \ D|
648
+
649
+ ∂D
650
+ ∂u
651
+ ∂n dσ
652
+
653
+ � ,
654
+
655
+ �u
656
+ v
657
+
658
+ ∈ D(A0).
659
+ We see from (1.13) and (1.14) the sharp difference between the bounded selfadjoint operator Aε and the limit
660
+ operator A0 which is no more a bounded selfadjoint operator.
661
+ Of course, the same remark may be made about the homogenized problem given by (1.11).
662
+ From the technical point of view the main difficulty in the asymptotic analysis comes from the lack of com-
663
+ pactness since we have to consider sequences of eigenvectors not bounded in H1(Ω) so that the strong convergence
664
+ in L2(��) (or strong two-scale convergence in the case of homogenization) which allows to conclude that the limit
665
+ of an eigenvector uk
666
+ ε is still an eigenvector (i.e. ̸= 0) is not straightforward. To overcome this difficulty, we will use
667
+ an extension technique (see [10], [29]) combined with another slightly more intricate argument.
668
+ From now on and based on the previous comments, we will focus on the asymptotic analysis of the singular
669
+ perturbation problem (1.9) (the study of the reduction of dimension occurring in each cell). This kind of problems
670
+ is usually encountered in the study of thin structures, see for instance [16] and [21].
671
+
672
+ 6
673
+ KAÏS AMMARI AND ALI SILI
674
+ Our main results may be stated as follows.
675
+ Theorem 1.3. For each k = 1, 2, ..., the sequence of eigenvalues (λk
676
+ ε)ε of (1.9) is bounded above by the first eigen-
677
+ value µ1 of −∆′ in H1
678
+ 0(D) and the associated sequence of eigenvectors (uk
679
+ ε)ε is bounded in L2(0, L; H1(C)); if for
680
+ a subsequence of ε, λk
681
+ ε → λk with λk ̸= µ1, then there exists a solution (λk, uk
682
+ 0, vk) ∈ (0, µ1[×L2(0, L; H1(C)) ×
683
+ H1
684
+ 0(0, L) of (1.10) with vk ̸= 0 such that for the whole sequence ε, one has
685
+ (1.15)
686
+ λk
687
+ ε → λk,
688
+ (1.16)
689
+ uk
690
+ ε −→ uk(y, x3) := (λkuk
691
+ 0 + 1)vk strongly in L2(0, L; H1(C)),
692
+ (1.17)
693
+ uk
694
+ εχM −→ vkχM strongly in L2(C; H1
695
+ 0(0, L)).
696
+ Any λk such that 0 < λk < µ1 is a simple eigenvalue of the limit operator A0.
697
+ Conversely, problem (1.10) admits non trivial solutions such that 0 < λk < µ1 and any λ ∈ (0, µ1[ which is
698
+ an eigenvalue of (1.10) is a limit of a sequence (λk
699
+ ε)ε of eigenvalues of (1.9).
700
+ The unique accumulation point of the sequence (λk)k is the first eigenvalue µ1 of −∆′
701
+ y; hence
702
+ lim
703
+ k→+∞ λk =
704
+ µ1.
705
+ Remark 1.4. The property vk ̸= 0 may be deduced from the strong convergence (1.16) of the eigenvectors but we
706
+ prefer to write it explicitly to highlight the fact that vk is always an eigenvector of − d2
707
+ dx2
708
+ 3
709
+ with Dirichlet condition.
710
+ Regarding the homogenization problem, the result is in all respects similar to that of 3d − 1d. We state it
711
+ through the following theorem which is the homogenized version of Theorem 1.3. To state the results, we need
712
+ the use of the two-scale convergence, see [1], [20], [28]. We use the notation
713
+ 2−sc
714
+ ⇀ (resp.
715
+ 2−sc
716
+ −→) for the two-scale
717
+ convergence (resp. the strong two-scale convergence).
718
+ Theorem 1.5. For each k = 1, 2, ..., the sequence of eigenvalues (λk
719
+ ε)ε of (1.8) is bounded above by the first eigen-
720
+ value µ1 of −∆′ in H1
721
+ 0(D) and the associated sequence of eigenvectors (uk
722
+ ε)ε is bounded in L2(0, L; H1(ω)); if for
723
+ a subsequence of ε, λk
724
+ ε → λk with λk ̸= µ1, then there exists a solution (λk, uk
725
+ 0, vk) ∈ (µ0, µ1[×L2(0, L; H1
726
+ #(C))×
727
+ L2(ω; H1
728
+ 0(0, L)) of (1.11) with vk ̸= 0 such that for the whole sequence ε, one has
729
+ (1.18)
730
+ λk
731
+ ε → λk,
732
+ (1.19)
733
+ uk
734
+ ε
735
+ 2−sc
736
+ −→ uk(x, y) := (λkuk
737
+ 0 + 1)vk,
738
+ with the following corrector result
739
+ (1.20)
740
+
741
+
742
+ ������ε∇′uk
743
+ ε − ∇′
744
+ yuk
745
+
746
+ x, x′
747
+ ε
748
+ �����
749
+ 2
750
+ + ε2
751
+ ����
752
+ ∂uk
753
+ ε
754
+ ∂x3
755
+ ����
756
+ 2�
757
+ χFε(x′) +
758
+
759
+ ��∇′uk
760
+ ε
761
+ ��2 +
762
+ ����
763
+ ∂uk
764
+ ε
765
+ ∂x3
766
+ − ∂vk
767
+ ∂x3
768
+ ����
769
+ 2�
770
+ χMε(x′)
771
+
772
+ dx → 0.
773
+ Any λk such that 0 < λk < µ1 is a simple eigenvalue of the limit operator A0.
774
+ Conversely, any eigenvalue λ ∈ (0, µ1[ of problem (1.11) is a limit of a sequence (λk
775
+ ε)ε of eigenvalues of
776
+ (1.8).
777
+ The sequence (λk)k converges to µ1.
778
+ Remark 1.6. Note that the structure of the limit spectrum is quite complicated because not only the mean value
779
+
780
+ D
781
+ uk
782
+ 0 dy arising in the second equation of the limit system must be calculated by the use of the first equation of
783
+ the system but the function uk
784
+ 0 itself depends on the corresponding eigenvalue as shown by the first equation; hence,
785
+ λk
786
+
787
+ 1 +
788
+ |D|
789
+ |C \ D| +
790
+ λk
791
+ |C \ D|
792
+
793
+ D
794
+ uk
795
+ 0 dy
796
+
797
+ which is an eigenvalue of − d2
798
+ dx2
799
+ 3
800
+ is not completely known in terms of λk.
801
+
802
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
803
+ 7
804
+ However, we will prove (see (2.41)) that for 0 < λk < µ1, the second equation describing the vibrations of the
805
+ string (0, L) may be written as
806
+ (1.21)
807
+ − d2vk
808
+ dx2
809
+ 3
810
+ = δ(λk)vk with δ(λ) := Cλ + C′
811
+
812
+
813
+ n=1
814
+ c2
815
+ nλ2
816
+ µn − λ,
817
+ where C, C′ denote positive constants and cn :=
818
+
819
+ D
820
+ fndy where (fn)n denotes the orthonormal basis in L2(D)
821
+ made up of the eigenfunctions associated to the increasing sequence (µn)n of eigenvalues of −∆′
822
+ y with Dirichlet
823
+ boundary condition. Of course, the spectrum σ0 of the limit operator A0 contains eigenvalues on the right of µ1; in
824
+ particular, (1.21) shows that any eigenvalue µn of −∆′ such that cn =
825
+
826
+ D
827
+ fndy ̸= 0 is an accumulation point of
828
+ σ0. Our result states that the limits λk make up a part of the spectrum σ0 of A0, namely the values of σ0 located on
829
+ the left of µ1.
830
+ Remark also that in the homogenization setting, the analogous result of the convergence (1.17) is the conver-
831
+ gence
832
+
833
+
834
+ ����
835
+ ∂uk
836
+ ε
837
+ ∂x3
838
+ − ∂vk
839
+ ∂x3
840
+ ����
841
+ 2
842
+ χMε(x′) dx → 0 obtained from the corrector result (1.20). However, the latter does not
843
+ mean that the sequence uk
844
+ εχMε converges strongly in L2(ω; H1
845
+ 0(0, L)) to |C\D|
846
+ |C| vk = |C \ D|vk (we have assumed
847
+ |C| = 1) in which case this convergence would be the exact analogue of (1.17). Unfortunately, because of the
848
+ oscillations induced by the homogenization process, such exact analogue of (1.17) is false. This is one of the few
849
+ differences between the 3d − 1d problem and the homogenization problem.
850
+ Finally we point out other possible scalings of the form εγχFε + εδχMε as addressed in [11], [12], [25]. For
851
+ instance in the static case, one can refer to [11]. The critical case giving rise to a coupled system at the limit is the
852
+ one corresponding to lim εδ−2 = l ∈]0, +∞[ which we consider here.
853
+ In order to highlight the close analogy between the 3d − 1d limit problem and the homogenized problem,
854
+ the macroscopic variable x will be denoted by x = (y, x3), y ∈ C in the study of the 3d − 1d problem for which
855
+ Ω := C × (0, L) while in the homogenization problem x will be denoted by x = (x′, x3), x′ ∈ ω :=
856
+
857
+ i∈Iε
858
+ (εC + εi)
859
+ since Ω :=
860
+
861
+ i∈Iε
862
+ (εC + εi) × (0, L) so that each x′ ∈ ω may be written as x′ = εy + εi, i ∈ Iε. In the case of a
863
+ single thin structure Ωε = (εC) × (0, L), Ω := C × (0, L) is obtained from Ωε by the scaling x′ = εy, y ∈ C, thus
864
+ making our notations homogeneous.
865
+ Before proceeding to prove the results in the next sections, it should be pointed out that the study can be
866
+ extended to the case of operators in divergence form. In that case, we have to take into account at the limit the
867
+ contribution of the anisotropy of the heavy part of the material (here the matrix) as shown in [24]. On the other
868
+ hand, one can consider other scalings of the form εγχFε + εδχMε as addressed in [11], [12], [25] in the static case.
869
+ For instance in the static case and under convenient assumptions on the source term, one can consider coefficients
870
+ of order εδ in the fiber Fε and 1 in Mε, then loosely speaking the structure of the limit problem depends on the
871
+ limit of the ratio εδ−2, the critical case giving rise to a coupled system at the limit is the one corresponding to
872
+ lim εδ−2 = l ∈]0, +∞[. Here we address the critical case in the framework of the Laplacian operator for the sake
873
+ of simplicity and brevity.
874
+ In order to highlight the close analogy between the 3d − 1d limit problem and the homogenized problem,
875
+ the macroscopic variable x will be denoted by x = (y, x3), y ∈ C in the study of the 3d − 1d problem for which
876
+ Ω := C × (0, L) while in the homogenization problem x will be denoted by x = (x′, x3), x′ ∈ ω :=
877
+
878
+ i∈Iε
879
+ (εC + εi)
880
+ since Ω :=
881
+
882
+ i∈Iε
883
+ (εC + εi) × (0, L) so that each x′ ∈ ω may be written as x′ = εy + εi, i ∈ Iε. In the case of a
884
+
885
+ 8
886
+ KAÏS AMMARI AND ALI SILI
887
+ single thin structure Ωε = (εC) × (0, L), Ω := C × (0, L) is obtained from Ωε by the scaling x′ = εy, y ∈ C, thus
888
+ making our notations homogeneous.
889
+ In the following we study in detail the dimension reduction problem and then indicate briefly the few technical
890
+ changes needed in the proofs of the result in the framework of homogenization, see also [23].
891
+ 2. PROOF OF THE RESULTS IN THE CASE OF A SINGLE THIN STRUCTURE: THE REDUCTION OF DIMENSION
892
+ 3d − 1d
893
+ 2.1. Apriori estimate on the sequence of eigenvalues and eigenvectors.
894
+ Proposition 2.1. For each k = 1, 2, ..., the sequence (λk
895
+ ε, uk
896
+ ε) of eigenpairs of (1.9) is bounded in R×L2(0, L; H1(C)).
897
+ There exist (λk, uk, vk) ∈ (0, µ1) × L2(0, L; H1(C)) × H1
898
+ 0(0, L) and a subsequence of ε still denoted by ε such
899
+ that
900
+ (2.1)
901
+ uk
902
+ ε ⇀ uk weakly in L2(0, L; H1(C)) and uk(y, x3) = vk(x3) in M = (C \ D) × (0, L),
903
+ (2.2)
904
+ ∂uk
905
+ ε
906
+ ∂x3
907
+ χM ⇀ dvk
908
+ dx3
909
+ χM
910
+ weakly in L2(Ω),
911
+ (2.3)
912
+ λk
913
+ ε → λk.
914
+ Proof. We first prove an apriori estimate on the sequence of eigenvalues which will play a key role in the sequel.
915
+ Let λ0
916
+ k be the k-th eigenvalue of − d2
917
+ dx2
918
+ 3
919
+ in (0, L) with homogeneous Dirichlet boundary conditions and let µ1 be the
920
+ first eigenvalue of −∆′
921
+ y in D with homogeneous Dirichlet boundary condition.
922
+ We claim that
923
+ (2.4)
924
+ ∀ ε,
925
+ ∀ k = 1, 2, ...,
926
+ λk
927
+ ε ≤ µ1 + ε2λ0
928
+ k.
929
+ Indeed, we use the well known min-max formula giving the k-th eigenvalue λk
930
+ ε of (1.9),
931
+ (2.5)
932
+ λk
933
+ ε = min
934
+ V k⊂Vs
935
+ max
936
+ u∈V k
937
+
938
+
939
+ ��
940
+ ��∇′
941
+ yu
942
+ ��2 + ε2
943
+ ����
944
+ ∂u
945
+ ∂x3
946
+ ����
947
+ 2�
948
+ χF +
949
+
950
+ 1
951
+ ε2
952
+ ��∇′
953
+ yu
954
+ ��2 +
955
+ ����
956
+ ∂u
957
+ ∂x3
958
+ ����
959
+ 2�
960
+ χM
961
+
962
+ dy dx3
963
+
964
+
965
+ |u|2 dy dx3
966
+ ,
967
+ where the space Vs is defined by (1.5) (with ε = 1) and the min runs over all subspaces V k of Vs with finite
968
+ dimension k.
969
+ Let φ(y) be an eigenvector associated to µ1 extended by zero in C \ D. Then φ(y)ψ(x3) belongs to Vs for
970
+ any ψ ∈ H1
971
+ 0(0, L) and φψ = 0 in M := (C \ D) × (0, L).
972
+ Let V k be the subspace of Vs spanned by
973
+
974
+ φv1, φv2, ..., φvk�
975
+ where v1, v2, ..., vk denote the associated
976
+ eigenvectors to the first k eigenvalues λ0
977
+ 1, λ0
978
+ 2, ..., λ0
979
+ k of − d2
980
+ dx2
981
+ 3
982
+ with homogeneous Dirichlet boundary conditions.
983
+
984
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
985
+ 9
986
+ For any u = α1φv1 + ... + αkφvk ∈ V k, we have u = 0 in M and since v1, v2, ..., vk, ..., is an orthonormal
987
+ basis in H1
988
+ 0(0, L) we also have
989
+ (2.6)
990
+
991
+
992
+
993
+
994
+
995
+
996
+
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+ u2dy dx3 =
1048
+
1049
+ D
1050
+ φ2 dy
1051
+ � L
1052
+ 0
1053
+
1054
+ α2
1055
+ 1(v1)2 + ... + α2
1056
+ k(vk)2�
1057
+ dx3
1058
+ =
1059
+
1060
+ α2
1061
+ 1 + ... + α2
1062
+ k
1063
+ � �
1064
+ D
1065
+ φ2 dy,
1066
+
1067
+
1068
+ |∇′
1069
+ yu|2dy dx3 =
1070
+
1071
+ α2
1072
+ 1 + ... + α2
1073
+ k
1074
+ � �
1075
+ D
1076
+ |∇′
1077
+ yφ|2 dy
1078
+ =
1079
+
1080
+ α2
1081
+ 1 + ... + α2
1082
+ k
1083
+
1084
+ µ1
1085
+
1086
+ D
1087
+ |φ|2 dy,
1088
+
1089
+
1090
+ ε2
1091
+ ����
1092
+ ∂u
1093
+ ∂x3
1094
+ ����
1095
+ 2
1096
+ dy dx3 = ε2
1097
+ � L
1098
+ 0
1099
+
1100
+ α2
1101
+ 1
1102
+ ����
1103
+ dv1
1104
+ dx3
1105
+ ����
1106
+ 2
1107
+ + ... + α2
1108
+ k
1109
+ ����
1110
+ dvk
1111
+ dx3
1112
+ ����
1113
+ 2�
1114
+ dx3
1115
+
1116
+ D
1117
+ |φ|2 dy,
1118
+ = ε2�
1119
+ α2
1120
+ 1λ0
1121
+ 1 + ... + α2
1122
+ kλ0
1123
+ k
1124
+ � �
1125
+ D
1126
+ |φ|2 dy ≤ ε2λ0
1127
+ k
1128
+
1129
+ α2
1130
+ 1 + ... + α2
1131
+ k
1132
+ � �
1133
+ D
1134
+ |φ|2 dy.
1135
+ Note that the equality occurring in the fifth line of (2.6) is a consequence of the equation −∆′
1136
+ yφ = µ1φ
1137
+ in D.
1138
+ Hence, using (2.6) in the min-max formula above, we get estimate (2.4).
1139
+ We obtain that λk ∈ (0, µ1) by passing to the limit (for a subsequence of ε) in (2.4).
1140
+ We will prove later that the value µ1 cannot be attained by λk for all k and that the whole sequence (λk)k
1141
+ converges to µ1.
1142
+ Turning back to (1.9) and taking uk
1143
+ ε (with ∥ uk
1144
+ ε ∥L2(Ω)= 1) as a test function, we get
1145
+ (2.7)
1146
+
1147
+
1148
+ ��
1149
+ ��∇′uk
1150
+ ε
1151
+ ��2 + ε2
1152
+ ����
1153
+ ∂uk
1154
+ ε
1155
+ ∂x3
1156
+ ����
1157
+ 2�
1158
+ χF +
1159
+
1160
+ 1
1161
+ ε2
1162
+ ��∇′uk
1163
+ ε
1164
+ ��2 +
1165
+ ����
1166
+ ∂uk
1167
+ ε
1168
+ ∂x3
1169
+ ����
1170
+ 2�
1171
+ χM
1172
+
1173
+ dy dx3 = λk
1174
+ ε ≤ K.
1175
+ The last estimate implies that ∇′uk
1176
+ ε is bounded in L2(Ω) and thus uk
1177
+ ε is bounded in L2(0, L; H1(C)). Hence, there
1178
+ exist a sequence of ε and uk ∈ L2(C; H1
1179
+ 0(0, L)) such that the convergence (2.1) holds true.
1180
+ One has ∇′uk
1181
+ εχM(y) ⇀ ∇′ukχM weakly in L2(Ω). But ∇′uk
1182
+ εχM which is bounded in L2(Ω) by Cε
1183
+ strongly converges to zero in L2(Ω). Hence, ∇′ukχM = 0 which means that uk = vk(x3) for some vk ∈ L2(0, L)
1184
+ a.e. in M. The sequence uk
1185
+ εχM(y) (note that the characteristic functions χF and χM depend only on the horizontal
1186
+ variable y) is bounded in L2(C; H1
1187
+ 0(0, L)) since ∂uk
1188
+ ε
1189
+ ∂x3
1190
+ χM is bounded in L2(Ω) so that for a subsequence ∂uk
1191
+ ε
1192
+ ∂x3
1193
+ χM ⇀
1194
+ ∂uk
1195
+ ∂x3
1196
+ χM = dvk
1197
+ dx3
1198
+ χM
1199
+ weakly in L2(Ω). Hence vk ∈ H1
1200
+ 0(0, L) and the convergence (2.2) holds true. The proof of
1201
+ Proposition 2.1 is complete.
1202
+
1203
+ 2.2. The limit problem associated to (1.9). Choosing a test function in (1.9) in the form φ = ¯u with ¯u =
1204
+ ¯v(x3) in M and (¯u, ¯v) ∈ Vs × H1
1205
+ 0(0, L), we get from (1.9)
1206
+ (2.8)
1207
+
1208
+
1209
+ ��
1210
+ ∇′uk
1211
+ ε∇′¯u + ε2 ∂uk
1212
+ ε
1213
+ ∂x3
1214
+ ∂¯u
1215
+ ∂x3
1216
+
1217
+ χF + ∂uk
1218
+ ε
1219
+ ∂x3
1220
+ d¯v
1221
+ dx3
1222
+ χM
1223
+
1224
+ dy dx3 = λk
1225
+ ε
1226
+
1227
+
1228
+ uk
1229
+ ε ¯u dy dx3.
1230
+
1231
+ 10
1232
+ KAÏS AMMARI AND ALI SILI
1233
+ Passing to the limit in this equation, we get with the help of (2.1)
1234
+ (2.9)
1235
+
1236
+
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+ (uk, vk) ∈ L2(0, L; H1(C)) × H1
1249
+ 0(0, L), uk = vk in M,
1250
+
1251
+
1252
+
1253
+ ∇′uk∇′¯uχF + dvk
1254
+ dx3
1255
+ d¯v
1256
+ dx3
1257
+ χM
1258
+
1259
+ dy dx3 = λk
1260
+
1261
+
1262
+ uk¯u dy dx3,
1263
+ ∀ (¯u, ¯v) ∈ Vs × H1
1264
+ 0(0, L), ¯u = ¯v in M.
1265
+ Finally a density argument allows to extend (2.9) to all test functions ¯u ∈ L2(0, L; H1(C)) such that ¯u = ¯v in M
1266
+ and ¯v ∈ H1
1267
+ 0(0, L).
1268
+ Choosing successively in (2.9) ¯u ∈ L2(0, L; H1(C)) such that ¯u = 0 in M and then ¯u ∈ L2(0, L; H1(C))
1269
+ such that ¯u = ¯v ∈ H1
1270
+ 0(0, L) almost everywhere in Ω and bearing in mind the geometry of Ω := C × (0, L) =
1271
+
1272
+ (C \ D) ∪ D
1273
+
1274
+ × (0, L), we get that the limit problem (2.8) may be split into two equations leading to the following
1275
+ equivalent system
1276
+ (2.10)
1277
+
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+ uk(y, x3) ∈ L2((0, L); H1(C)),
1293
+ −∆′
1294
+ yuk(y, x3) = λkuk in D × (0, L),
1295
+ uk = vk
1296
+ on ∂D × (0, L),
1297
+ vk ∈ H1
1298
+ 0(0, L)),
1299
+ −d2vk
1300
+ dx2
1301
+ 3
1302
+ = λkvk +
1303
+ λk
1304
+ |C \ D|
1305
+
1306
+ D
1307
+ uk dy
1308
+ in (0, L).
1309
+ Remark 2.2. Eigenvectors of (2.10) corresponding to eigenvalues λk < µ1 are pairs (uk, vk) made up of two
1310
+ inseparable elements. In particular, if vk = 0 then uk = 0 as shown by (2.10). Indeed, otherwise uk should be
1311
+ an eigenvector of −∆′
1312
+ y associated to the eigenvalue λk < µ1 which is a contradiction. Conversely if uk = 0 then
1313
+ vk = 0 since almost everywhere in (0, L), we have vk = uk on the boundary of D. Hence, the eigenvectors (uk, vk)
1314
+ of the limit operator are such that uk ̸= 0 and vk ̸= 0.
1315
+ We now prove that (1.10) and (2.10) are equivalent if one defines uk by (2.11) and then we will improve the
1316
+ lower bound of the limit eigenvalues using (1.10).
1317
+ Proposition 2.3. If (λk, uk, vk) solves the system (2.10) with 0 < λk < µ1, then vk ̸= 0 and uk writes as
1318
+ (2.11)
1319
+ uk(y, x3) = (λkuk
1320
+ 0(y) + 1)vk(x3)
1321
+ where (λk, uk
1322
+ 0, vk) solves (1.10). Furthermore, there exists a positive constant µ0 depending both on µ1 and on the
1323
+ first eigenvalue of − d2
1324
+ dx2
1325
+ 3
1326
+ in H1
1327
+ 0(0, L) such that λk ≥ µ0 for all k.
1328
+ Proof. Assume that (uk, vk) is a non trivial solution of (2.10), i.e, (uk, vk) is an eigenvector of the limit operator.
1329
+ Then according to the Remark 2.2 above, vk ̸= 0 and uk ̸= 0.
1330
+ Dividing by vk in the first system of (2.10), one can check easily that wk := uk
1331
+ vk − 1 is the unique solution of
1332
+ (2.12)
1333
+
1334
+
1335
+
1336
+ −∆′
1337
+ ywk = λkwk + λk in D
1338
+ wk = 0
1339
+ on ∂D.
1340
+ Note that the uniqueness of wk is ensured since λk < µ1 belongs to the resolvent of −∆′
1341
+ y. On the other hand, the
1342
+ function λkuk
1343
+ 0 where uk
1344
+ 0 is defined in (1.10) is also a solution of (2.12) so that the equality wk := uk
1345
+ vk − 1 = λkuk
1346
+ 0
1347
+ holds true and therefore (2.11) follows. Using (2.11) in (2.10) we get (1.10).
1348
+ We now make more precise the lower bound of the sequence of eigenvalues and we prove at the meanwhile
1349
+ that
1350
+
1351
+ D
1352
+ uk
1353
+ 0(y) dy > 0.
1354
+
1355
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
1356
+ 11
1357
+ Multiplying the first equation of (1.10) by uk
1358
+ 0 and using 1
1359
+ µ1
1360
+ as the constant (it is in fact the best one) in the
1361
+ Poincaré’s inequality, we get
1362
+ (2.13)
1363
+
1364
+ D
1365
+ uk
1366
+ 0(y) dy =
1367
+
1368
+ D
1369
+ |∇′
1370
+ yuk
1371
+ 0(y)|2 dy − λk
1372
+
1373
+ D
1374
+ |uk
1375
+ 0(y)|2 dy ≥
1376
+
1377
+ 1 − λk
1378
+ µ1
1379
+ � �
1380
+ D
1381
+ |∇′
1382
+ yuk
1383
+ 0(y)|2 dy.
1384
+ On the other hand, the first eigenvalue µ1 is characterized by
1385
+ (2.14)
1386
+ µ1 =
1387
+ inf
1388
+ u∈H1
1389
+ 0(D)
1390
+ ∥ ∇′
1391
+ yu ∥2
1392
+ L2(D)
1393
+ ∥ u ∥2
1394
+ L2(D)
1395
+ .
1396
+ Hence the following estimate holds true
1397
+ (2.15)
1398
+
1399
+ D
1400
+ |∇′
1401
+ yuk
1402
+ 0(y)|2 dy ≥ µ1
1403
+
1404
+ D
1405
+ |uk
1406
+ 0(y)|2 dy.
1407
+ From (2.13), we derive with the help of (2.15)
1408
+ (2.16)
1409
+ (µ1 − λk)
1410
+
1411
+ D
1412
+ |uk
1413
+ 0(y)|2 dy ≤
1414
+
1415
+ D
1416
+ uk
1417
+ 0(y) dy ≤
1418
+
1419
+ |D|
1420
+ ��
1421
+ D
1422
+ |uk
1423
+ 0(y)|2 dy
1424
+ � 1
1425
+ 2 ,
1426
+ and then from (2.16) we deduce
1427
+ (2.17)
1428
+ 0 <
1429
+
1430
+ D
1431
+ uk
1432
+ 0(y) dy ≤
1433
+ |D|
1434
+ µ1 − λk
1435
+ .
1436
+ By virtue of the last equation in (1.10), ˆλk := λk
1437
+
1438
+ 1 +
1439
+ |D|
1440
+ |C \ D| +
1441
+ λk
1442
+ |C \ D|
1443
+
1444
+ D
1445
+ uk
1446
+ 0 dy
1447
+
1448
+ is an eigenvalue of − d2
1449
+ dx2
1450
+ 3
1451
+ so
1452
+ that ˆλk ≥ λ0 where λ0 denotes the first eigenvalue of − d2
1453
+ dx2
1454
+ 3
1455
+ . Using the second inequality of (2.17) we get
1456
+ (2.18)
1457
+ λk
1458
+
1459
+ 1 +
1460
+ |D|
1461
+ |C \ D| + λk
1462
+ |D|
1463
+ |C \ D|(µ1 − λk)
1464
+
1465
+ ≥ ˆλk ≥ λ0.
1466
+ Hence, λk ≥ µ0 := φ−1(λ0) where φ is the continuous increasing function defined on (0, µ1) by
1467
+ φ(t) = t
1468
+
1469
+ 1 +
1470
+ |D|
1471
+ |C \ D| + t
1472
+ |D|
1473
+ |C \ D|(µ1 − t)
1474
+
1475
+ .
1476
+
1477
+ So far, we have not yet proved that (uk, vk) is indeed an eigenvector of the limit operator; this is the purpose
1478
+ of the next subsection.
1479
+ 2.3. The strong convergence of the eigenvectors. We prove the following compactness result
1480
+ Proposition 2.4. For each k, there exists a subsequence of ε such that the sequence of solutions uk
1481
+ ε of (1.9) converges
1482
+ strongly in L2(Ω) to the eigenvector uk of (2.10).
1483
+ Proof. One can extend uk
1484
+ ε from M to the whole Ω in such a way the extension U k
1485
+ ε fulfills U k
1486
+ ε ∈ Vs, U k
1487
+ ε = uk
1488
+ ε in M
1489
+ and
1490
+ (2.19)
1491
+ ∥ ∇′U k
1492
+ ε ∥L2(Ω)≤ K ∥ ∇′uk
1493
+ ε ∥L2(M),
1494
+ ����
1495
+ ∂U k
1496
+ ε
1497
+ ∂x3
1498
+ ����
1499
+ L2(Ω)
1500
+ ≤ K
1501
+ ����
1502
+ ∂uk
1503
+ ε
1504
+ ∂x3
1505
+ ����
1506
+ L2(M)
1507
+ .
1508
+ Note that the extension only affects the horizontal variable y so that the Dirichlet boundary condition on the upper
1509
+ and lower faces of Ω (x3 = 0 or x3 = L ) is preserved, see for instance [6], [10], [29].
1510
+ In addition, one can assume that such extension satisfies the following equation
1511
+ (2.20)
1512
+
1513
+ −∆′
1514
+ yU k
1515
+ ε − ε2 ∂2U k
1516
+ ε
1517
+ ∂x2
1518
+ 3
1519
+ = 0
1520
+ in F.
1521
+
1522
+ 12
1523
+ KAÏS AMMARI AND ALI SILI
1524
+ Indeed, if (2.20) is not true for U k
1525
+ ε , then one can introduce the function W k
1526
+ ε as the unique solution of
1527
+ (2.21)
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+
1538
+
1539
+
1540
+
1541
+
1542
+
1543
+ W k
1544
+ ε ∈ V,
1545
+
1546
+ F
1547
+ � 1
1548
+ ε2 ∇′
1549
+ yW k
1550
+ ε ∇′
1551
+ yφ + ∂W k
1552
+ ε
1553
+ ∂x3
1554
+ ∂φ
1555
+ ∂x3
1556
+
1557
+ dy dx3 =
1558
+
1559
+ F
1560
+ � 1
1561
+ ε2 ∇′
1562
+ yU k
1563
+ ε ∇′
1564
+ yφ + ∂U k
1565
+ ε
1566
+ ∂x3
1567
+ ∂φ
1568
+ ∂x3
1569
+
1570
+ dy dx3
1571
+ ∀ φ ∈ V,
1572
+ where V :=
1573
+
1574
+ u ∈ Vs, u = 0 on ∂D × (0, L)
1575
+
1576
+ (recall that V := V ε
1577
+ s with ε = 1 where V ε
1578
+ s is defined by (1.5)).
1579
+ Hence, V is the subspace of Vs of functions vanishing in M. By the Lax-Milgram Theorem we get existence and
1580
+ uniqueness for W k
1581
+ ε . Choosing φ ∈ C∞
1582
+ 0 (F), the last equation leads to
1583
+ (2.22)
1584
+ − 1
1585
+ ε2 ∆′
1586
+ yW k
1587
+ ε − ∂2W k
1588
+ ε
1589
+ ∂x2
1590
+ 3
1591
+ = − 1
1592
+ ε2 ∆′
1593
+ yU k
1594
+ ε − ∂2U k
1595
+ ε
1596
+ ∂x2
1597
+ 3
1598
+ in F.
1599
+ On the other hand, using equation (2.21) with φ = W k
1600
+ ε , we get the following estimate with the help of (2.19) and
1601
+ (2.7)
1602
+ (2.23)
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+
1609
+
1610
+
1611
+
1612
+
1613
+
1614
+
1615
+
1616
+
1617
+
1618
+ ����
1619
+ 1
1620
+ ε∇′W k
1621
+ ε
1622
+ ����
1623
+ L2(F )
1624
+ +
1625
+ ����
1626
+ ∂W k
1627
+ ε
1628
+ ∂x3
1629
+ ����
1630
+ L2(F )
1631
+ ≤ K
1632
+ �����
1633
+ 1
1634
+ ε∇′U k
1635
+ ε
1636
+ ����
1637
+ L2(F )
1638
+ +
1639
+ ����
1640
+ ∂U k
1641
+ ε
1642
+ ∂x3
1643
+ ����
1644
+ L2(F )
1645
+
1646
+
1647
+ ≤ K
1648
+ �����
1649
+ 1
1650
+ ε∇′uk
1651
+ ε
1652
+ ����
1653
+ L2(M)
1654
+ +
1655
+ ����
1656
+ ∂uk
1657
+ ε
1658
+ ∂x3
1659
+ ����
1660
+ L2(M)
1661
+
1662
+ ≤ K.
1663
+ Multiplying equation (2.22) by ε2, we see that ˜uk
1664
+ ε defined by ˜uk
1665
+ ε = U k
1666
+ ε − W k
1667
+ ε is indeed an extension which fulfills
1668
+ equation (2.20) and preserves the apriori estimate (2.19). Note that functions of V may be extended by zero inside
1669
+ M so that ˜uk
1670
+ ε is still an extension of uk
1671
+ ε from M to the whole Ω.
1672
+ In the sequel, we will still denote the extension of uk
1673
+ ε satisfying (2.19) and (2.20) by U k
1674
+ ε .
1675
+ Consider now the sequence defined in Ω by zk
1676
+ ε = uk
1677
+ ε − U k
1678
+ ε . If we prove that zk
1679
+ ε admits a strongly converging
1680
+ subsequence in L2(Ω) then we can deduce the existence of such subsequence for uk
1681
+ ε since U k
1682
+ ε is bounded in H1(Ω)
1683
+ by virtue of (2.19) and (2.7) and therefore admits a strongly converging subsequence in L2(Ω) according to the
1684
+ Rellich imbedding Theorem.
1685
+ We first derive the following equation on zk
1686
+ ε by the use of (1.7) together with (2.20)
1687
+ (2.24)
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+ zk
1696
+ ε ∈ Vs,
1697
+ −∆′
1698
+ yzk
1699
+ ε − ε2 ∂2zk
1700
+ ε
1701
+ ∂x2
1702
+ 3
1703
+ = λk
1704
+ εzk
1705
+ ε + λk
1706
+ εU k
1707
+ ε
1708
+ in F,
1709
+ zk
1710
+ ε = 0
1711
+ on ∂D × (0, L).
1712
+ Since uk
1713
+ ε and U k
1714
+ ε are bounded respectively in L2(0, L; H1(C)) and H1(Ω), the sequence zk
1715
+ ε is bounded in
1716
+ L2(0, L; H1(C)). Hence, there exist a subsequence and zk ∈ L2(0, L; H1(C)) such that
1717
+ zk
1718
+ ε ⇀ zk weakly in L2(0, L; H1(C)).
1719
+ Therefore, denoting by Uk the weak limit in H1(Ω) of the corresponding subsequence U k
1720
+ ε , one can pass easily to
1721
+ the limit in (2.24) to get the equation
1722
+ (2.25)
1723
+
1724
+
1725
+
1726
+ zk ∈ L2(0, L; H1(C)),
1727
+ −∆′
1728
+ yzk = λkzk + λkUk
1729
+ in F,
1730
+ zk = 0
1731
+ on ∂D × (0, L).
1732
+ Note that by construction, zk
1733
+ ε = 0 in M = (C \ D) × (0, L) so that the convergence
1734
+ zk
1735
+ ε χM(y) ⇀ zkχM(y) weakly in L2(Ω)
1736
+ shows that zk = 0 in M which is equivalently expressed by the boundary condition of (2.25).
1737
+
1738
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
1739
+ 13
1740
+ More generally, given a bounded sequence (fε) in L2(Ω) and f ∈ L2(Ω), we now consider equations of the
1741
+ form
1742
+ (2.26)
1743
+
1744
+
1745
+
1746
+
1747
+
1748
+
1749
+
1750
+ wε ∈ Vs,
1751
+ −∆′
1752
+ ywε − ε2 ∂2wε
1753
+ ∂x2
1754
+ 3
1755
+ = λk
1756
+ εwε + fε
1757
+ in F,
1758
+ wε = 0
1759
+ on ∂D × (0, L),
1760
+ and
1761
+ (2.27)
1762
+
1763
+
1764
+
1765
+ w ∈ L2(0, L; H1(C)),
1766
+ −∆′
1767
+ yw = λkw + f
1768
+ in F,
1769
+ w = 0
1770
+ on ∂D × (0, L).
1771
+ Regarding the sequence of solutions of (2.26), the following lemma holds true.
1772
+ Lemma 2.5. Assume that λk
1773
+ ε → λk with λk < µ1 and that fε ⇀ f weakly in L2(Ω). Then the sequence wε is
1774
+ bounded in L2(0, L; H1(C)) and for the whole sequence ε, wε ⇀ w weakly in L2(0, L; H1(C)) where w is the
1775
+ unique solution of (2.27).
1776
+ Proof. We only have to prove that wε is bounded in L2(0, L; H1(C)), the limit problem (2.27) satisfied by w can
1777
+ be established exactly by the same process already used in the proof of (2.25).
1778
+ The main ingredient to get that apriori estimate relies on the Poincaré inequality
1779
+ (2.28)
1780
+
1781
+ D
1782
+ |u|2 dy ≤ 1
1783
+ µ1
1784
+
1785
+ D
1786
+ |∇′
1787
+ yu|2 dy
1788
+ ∀ u ∈ H1
1789
+ 0(D),
1790
+ combined with the assumption λk < µ1.
1791
+ Multiplying equation (2.26) by wε and integrating, we get
1792
+ (2.29)
1793
+ � L
1794
+ 0
1795
+
1796
+ D
1797
+ |∇′wε|2 dydx3 ≤ λk
1798
+ ε
1799
+ � L
1800
+ 0
1801
+
1802
+ D
1803
+ |wε|2 dydx3+ ∥ fε ∥L2(Ω)∥ wε ∥L2(F ) .
1804
+ Choosing u = wε(., x3) with x3 ∈ (0, L) and integrating (2.28) over (0, L), we infer
1805
+ (2.30)
1806
+ � L
1807
+ 0
1808
+
1809
+ D
1810
+ |wε|2 dydx3 ≤ 1
1811
+ µ1
1812
+ � L
1813
+ 0
1814
+
1815
+ D
1816
+ |∇′
1817
+ ywε|2 dydx3.
1818
+ Let δ > 0 be such that 0 < λk < δ < µ1. Turning back to (2.29) and using (2.30), we get for ε sufficiently small,
1819
+ (2.31)
1820
+
1821
+ 1 − δ
1822
+ µ1
1823
+ � � L
1824
+ 0
1825
+
1826
+ D
1827
+ |∇′wε|2 dydx3 ≤∥ fε ∥L2(Ω)∥ wε ∥L2(F ) .
1828
+ Since fε is bounded in L2(Ω), applying once again inequality (2.30), we derive from (2.31) the estimate
1829
+ (2.32)
1830
+ � L
1831
+ 0
1832
+
1833
+ D
1834
+ |∇′wε|2 dydx3 ≤ K.
1835
+ The estimates (2.30) and (2.32) show that wε is bounded in L2(0, L; H1(D)) and thus in L2(0, L; H1(C)) since wε
1836
+ is equal to zero in C \ D.
1837
+
1838
+ We continue the proof of the Proposition 2.4 in the following way.
1839
+ Multiplying equations (2.24) and (2.26) respectively by wε and by zk
1840
+ ε and integrating we get
1841
+ (2.33)
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+ F
1855
+
1856
+ ∇′zk
1857
+ ε ∇′wε + ε2 ∂zk
1858
+ ε
1859
+ ∂x3
1860
+ ∂wε
1861
+ ∂x3
1862
+
1863
+ dydx3 = λk
1864
+ ε
1865
+
1866
+ F
1867
+ zk
1868
+ ε wε dydx3 + λk
1869
+ ε
1870
+
1871
+ F
1872
+ U k
1873
+ ε wε dydx3 =
1874
+ λk
1875
+ ε
1876
+
1877
+ F
1878
+ wεzk
1879
+ ε dydx3 +
1880
+
1881
+ F
1882
+ fεzk
1883
+ ε dydx3.
1884
+
1885
+ 14
1886
+ KAÏS AMMARI AND ALI SILI
1887
+ Since U k
1888
+ ε is bounded in H1(Ω), there exist a subsequence of ε and Uk ∈ H1(Ω) such that U k
1889
+ ε ⇀ Uk weakly in
1890
+ H1(Ω) and strongly in L2(Ω) by virtue of the Rellich imbedding Theorem. Therefore for that a subsequence, we
1891
+ get from (2.33) with the help of Lemma 2.6
1892
+ (2.34)
1893
+ lim
1894
+ ε→0
1895
+
1896
+ F
1897
+ fεzk
1898
+ ε dydx3 = lim
1899
+ ε→0 λk
1900
+ ε
1901
+
1902
+ F
1903
+ U k
1904
+ ε wε dydx3 = λk
1905
+
1906
+ F
1907
+ Ukw dydx3.
1908
+ On the other hand, one can multiply (2.25) and (2.27) respectively by w and by zk and integrate to obtain
1909
+ (2.35)
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+ F
1921
+ ∇′zk∇′w dydx3 =
1922
+
1923
+ F
1924
+ ∇′w∇′zk dydx3 = λk
1925
+
1926
+ F
1927
+ zkw dydx3 + λk
1928
+
1929
+ F
1930
+ Ukw dydx3
1931
+ = λk
1932
+
1933
+ F
1934
+ wzk dydx3 +
1935
+
1936
+ F
1937
+ fzk dydx3.
1938
+ Combining (2.34) and (2.35), we get
1939
+ (2.36)
1940
+ lim
1941
+ ε→0
1942
+
1943
+ F
1944
+ fεzk
1945
+ ε dydx3 = λk
1946
+
1947
+ F
1948
+ Ukw dydx3 =
1949
+
1950
+ F
1951
+ fzk dydx3.
1952
+ Choosing in particular fε = zk
1953
+ ε which converges weakly in L2(Ω) to f = zk, we obtain
1954
+ (2.37)
1955
+ lim
1956
+ ε→0
1957
+
1958
+ F
1959
+ (zk
1960
+ ε )2 dydx3 =
1961
+
1962
+ F
1963
+ (zk)2 dydx3,
1964
+ which implies the strong convergence of the subsequence zk
1965
+ ε and therefore the strong convergence of the corre-
1966
+ sponding subsequence of uk
1967
+ ε. Hence Proposition 2.4 is proved.
1968
+
1969
+ We now proceed to complete the proof of Theorem 1.3.
1970
+ 2.4. Proof of Theorem 1.3. The strong convergence in L2(Ω) of the eigenvectors when λk < µ1 is proved in
1971
+ Proposition 2.4. We use it to prove the convergence of the sequence of energies from which we obtain immediately
1972
+ (1.16) and (1.17).
1973
+ Consider the sequence
1974
+ (2.38)
1975
+ Jε =
1976
+
1977
+
1978
+ ��
1979
+ ��∇′uk
1980
+ ε − ∇′uk
1981
+ ��2 + ε2
1982
+ ����
1983
+ ∂uk
1984
+ ε
1985
+ ∂x3
1986
+ ����
1987
+ 2�
1988
+ χF +
1989
+
1990
+ 1
1991
+ ε2
1992
+ ��∇′uk
1993
+ ε
1994
+ ��2 +
1995
+ ����
1996
+ ∂uk
1997
+ ε
1998
+ ∂x3
1999
+ − dvk
2000
+ dx3
2001
+ ����
2002
+ 2�
2003
+ χM
2004
+
2005
+ dydx3.
2006
+ Choosing uk
2007
+ ε and (uk, vk) as test functions respectively in (1.9) and in (2.9), we get with the help of the weak
2008
+ convergences proved in Proposition 2.1 and of the strong convergence proved in Proposition 2.4,
2009
+ (2.39)
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+ Jε = λk
2022
+ ε
2023
+
2024
+
2025
+ (|uk
2026
+ ε|2dydx3 + λk
2027
+
2028
+
2029
+ |uk|2dydx3 − 2
2030
+
2031
+
2032
+
2033
+ ∇′uk
2034
+ ε∇′ukχF + ∂uk
2035
+ ε
2036
+ ∂x3
2037
+ dvk
2038
+ dx3
2039
+ χM
2040
+
2041
+ dydx3
2042
+ −→ 2λk
2043
+
2044
+
2045
+ |uk|2dydx3 − 2λk
2046
+
2047
+
2048
+ |uk|2dydx3 = 0.
2049
+ Hence the weak convergences stated in Proposition 2.1 are in fact strong convergences; in particular, keeping in
2050
+ mind Proposition 2.4, we get the strong convergences stated in Theorem 1.3.
2051
+ We have proved above that λk is an eigenvalue of the limit problem (in the sense of (1.13)) if and only if λk
2052
+ satisfies (1.10). In the sequel, a number λ satisfying (1.10) will be called an eigenvalue of the limit problem (1.10).
2053
+ We now prove that there exist non trivial solutions for the system (1.10) and that any λ ∈ (µ0, µ1) which
2054
+ satisfies (1.10) may be attained as a limit of a sequence (λk
2055
+ ε)ε; by this we can conclude that (1.13) has no other
2056
+ eigenvalues on the left of µ1 than those obtained from the limits of the eigenvalues λk
2057
+ ε and thus we can list all its
2058
+ eigenvalues in increasing order. It is then clear that for a fixed k, we cannot have two subsequences ε and ε′ with
2059
+ two different limits for λk
2060
+ ε and λk
2061
+ ε′ since this would lead to add a new element to the set of eigenvalues of (1.10);
2062
+ hence for each k, (1.15) holds for the whole sequence ε.
2063
+
2064
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
2065
+ 15
2066
+ To prove the existence of non trivial solutions
2067
+
2068
+ uk
2069
+ 0
2070
+ vk
2071
+
2072
+ for the system (1.10) with λk < µ1 leading to non
2073
+ trivial solutions
2074
+ �uk
2075
+ vk
2076
+
2077
+ for (1.13)) where uk := (λkuk
2078
+ 0 + 1)vk, it is sufficient to show that one can find solutions
2079
+
2080
+ uk
2081
+ 0
2082
+ vk
2083
+
2084
+ of (1.10) with vk ̸= 0.
2085
+ uk
2086
+ 0 is uniquely determined by the first equation of (1.10) since λk < µ1 and if (fn)n is the orthonormal basis in
2087
+ L2(D) made up of eigenfunctions associated to the increasing sequence (µn)n of eigenvalues of −∆′
2088
+ y, one can get
2089
+ from the first equation of (1.10)
2090
+ (2.40)
2091
+ uk
2092
+ 0 =
2093
+
2094
+
2095
+ n=1
2096
+ cnfn
2097
+ µn − λk
2098
+ ; where cn =
2099
+
2100
+ D
2101
+ fn dy.
2102
+ Replacing the mean value of uk
2103
+ 0 in the second equation of (1.10), we derive
2104
+ (2.41)
2105
+ − d2vk
2106
+ dx2
2107
+ 3
2108
+ = δ(λk)vk; with δ(λ) := Cλ + C′
2109
+
2110
+
2111
+ n=1
2112
+ c2
2113
+ nλ2
2114
+ µn − λ,
2115
+ where C, C′ denote positive constants.
2116
+ Let (γj, vj) be an eigenelement of − d2
2117
+ dx2
2118
+ 3
2119
+ in H1
2120
+ 0(0, L). Since δ is a strictly positive increasing function over
2121
+ (0, µ1), there exists λkj ∈ (0, µ1) such that γj = δ(λkj), so that the second equation of (1.10) may be written
2122
+ as −d2vj
2123
+ dx2
2124
+ 3
2125
+ = δ(λkj)vj, taking vkj := vj. Hence for λk < µ1, the pair (uk
2126
+ 0, vkj) is a non trivial solution for any
2127
+ j = 1, 2, ...
2128
+ We now argue by contradiction to prove that any λ ∈ (µ0, µ1[ which is an eigenvalue of (1.10) may be
2129
+ attained as a limit of a sequence (λk
2130
+ ε)ε for some k.
2131
+ If for any k and for any sequence ε, λk
2132
+ ε does not converge to λ, then there exists a neighborhood of λ which
2133
+ does not contain any λk
2134
+ ε for all k. In other words, λ belongs to the resolvent of the operator Aε defined by (1.7).
2135
+ Hence, for any f ∈ L2(0, L) ⊂ L2(Ω), there exists uε ∈ D(Aε) such that
2136
+ (2.42)
2137
+ Aεuε = λuε + f
2138
+ in Ω.
2139
+ Multiplying (2.42) by φ ∈ Vs and integrating we get
2140
+ (2.43)
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+ ���
2151
+
2152
+ ��
2153
+ ∇′uε∇′φ + ε2 ∂uε
2154
+ ∂x3
2155
+ ∂φ
2156
+ ∂x3
2157
+
2158
+ χF +
2159
+ � 1
2160
+ ε2 ∇′uε∇′φ + ∂uε
2161
+ ∂x3
2162
+ ∂φ
2163
+ ∂x3
2164
+
2165
+ χM
2166
+
2167
+ dy dx3 =
2168
+ λ
2169
+
2170
+
2171
+ uεφ dy dx3 +
2172
+
2173
+
2174
+ fφ dy dx3,
2175
+ ∀ φ ∈ Vs.
2176
+ To get apriori estimates on the sequence uε, we will use the following Poincaré type inequality.
2177
+ Lemma 2.6. There exists a positive constant K such that
2178
+ (2.44)
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+ ∥u∥L2(Ω) ≤ K
2189
+
2190
+ ∥∇′u∥L2(Ω) +
2191
+ ����
2192
+ ∂u
2193
+ ∂x3
2194
+ χM
2195
+ ����
2196
+ L2(Ω)
2197
+
2198
+ ,
2199
+ ∀ u ∈ L2(0, L; H1(C)) ∩ L2(C \ D; H1
2200
+ 0(0, L)).
2201
+ Proof. We argue by contradiction. Assuming inequality (2.44) false, one can find a sequence
2202
+ un ∈ L2(0, L; H1(C)) ∩ L2(C \ D; H1
2203
+ 0(0, L)
2204
+
2205
+ 16
2206
+ KAÏS AMMARI AND ALI SILI
2207
+ such that
2208
+ (2.45)
2209
+ ∥un∥L2(Ω) = 1
2210
+ ∀ n,
2211
+ and
2212
+
2213
+ ∥∇′un∥L2(Ω) +
2214
+ ����
2215
+ ∂un
2216
+ ∂x3
2217
+ χM
2218
+ ����
2219
+ L2(Ω)
2220
+
2221
+ −→ 0.
2222
+ Thanks to the classical Poincaré inequality
2223
+ �����u −
2224
+ 1
2225
+ |C \ D|
2226
+
2227
+ C\D
2228
+ u dy
2229
+ �����
2230
+ L2(C)
2231
+ ≤ K ∥∇′u∥L2(C) applied to u =
2232
+ un(., x3) ∈ H1(C), x3 ∈ (0, L), we get after integrating with respect to x3, (remember that Ω = C × (0, L))
2233
+ (2.46)
2234
+ �����un −
2235
+ 1
2236
+ |C \ D|
2237
+
2238
+ C\D
2239
+ un dy
2240
+ �����
2241
+ L2(Ω)
2242
+ ≤ K ∥∇′un∥L2(Ω) .
2243
+ On the other hand, the one-dimensional Poincaré inequality for functions of H1
2244
+ 0(0, L) applied with u(x3) =
2245
+
2246
+ C\D
2247
+ un(y, x3) dy ∈ H1
2248
+ 0(0, L) leads to the estimate
2249
+ (2.47)
2250
+ �����
2251
+
2252
+ C\D
2253
+ un dy
2254
+ �����
2255
+ L2(Ω)
2256
+ ≤ K
2257
+ ����
2258
+ ∂un
2259
+ ∂x3
2260
+ ����
2261
+ L2(M)
2262
+ .
2263
+ Combining (2.46) and (2.47) with (2.45), we come to a contradiction.
2264
+
2265
+ Taking φ = uε in (2.43) and applying (2.44) with u = uε (note that Vs ⊂ L2(0, L; H1(C)) ∩ L2(C \
2266
+ D; H1
2267
+ 0(0, L)), we get the same apriori estimates as those obtained for the sequence uk
2268
+ ε in (2.7). Indeed all the apriori
2269
+ estimates on the sequence uk
2270
+ ε are based on its L2(Ω)- apriori estimate which still holds true for the sequence uε.
2271
+ Hence by the same arguments that led to (2.10) one can pass to the limit ε → 0 in (2.43) to get at the limit
2272
+ (2.48)
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+ u(y, x3) ∈ L2((0, L); H1(C)),
2289
+ −∆′
2290
+ yu(y, x3) = λu + f in D × (0, L),
2291
+ u = v
2292
+ on ∂D × (0, L),
2293
+ v ∈ H1
2294
+ 0(0, L),
2295
+ −d2v
2296
+ dx2
2297
+ 3
2298
+ = λv +
2299
+ λ
2300
+ |C \ D|
2301
+
2302
+ D
2303
+ u dy +
2304
+ 1
2305
+ |C \ D|
2306
+
2307
+ C
2308
+ f dy
2309
+ in (0, L).
2310
+ Choosing f(y, x3) = g(x3)χC\D(y) (which implies f = 0 in D) with an arbitrary g ∈ L2(0, L), the second
2311
+ equation in (2.48) reduces to
2312
+ (2.49)
2313
+ v ∈ H1
2314
+ 0(0, L),
2315
+ −d2v
2316
+ dx2
2317
+ 3
2318
+ = λv +
2319
+ λ
2320
+ |C \ D|
2321
+
2322
+ D
2323
+ u dy + g
2324
+ in (0, L).
2325
+ Note that v ̸= 0 for g ̸= 0. Indeed if v = 0, the first equation in (2.48) would imply u = 0 since we have chosen f
2326
+ such that f = 0 in D and λ < µ1 is not an eigenvalue of −∆′
2327
+ y. Therefore equation (2.49) would give g = 0 which
2328
+ is a contradiction.
2329
+ Therefore, one can express u as u = (λu0 + 1)v where the pair (λ, u0) solves the first equation of (1.10).
2330
+ Therefore (2.49) takes the form
2331
+ (2.50)
2332
+ v ∈ H1
2333
+ 0(0, L)),
2334
+ −d2v
2335
+ dx2
2336
+ 3
2337
+ = λ
2338
+
2339
+ 1 +
2340
+ |D|
2341
+ |C \ D| +
2342
+ λ
2343
+ |C \ D|
2344
+
2345
+ D
2346
+ u0 dy
2347
+
2348
+ v + g
2349
+ in (0, L).
2350
+ On the other hand, by hypothesis, λ is an eigenvalue of (1.10) so that the last equation of (1.10) with the same u0 as
2351
+ in (2.50) shows that λ
2352
+
2353
+ 1 +
2354
+ |D|
2355
+ |C \ D| +
2356
+ λ
2357
+ |C \ D|
2358
+
2359
+ D
2360
+ u0 dy
2361
+
2362
+ is an eigenvalue of − d2
2363
+ dx2
2364
+ 3
2365
+ . This is a contradiction since
2366
+
2367
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
2368
+ 17
2369
+ equation (2.50) valid for all g ∈ L2(0, L) means that the number λ
2370
+
2371
+ 1 +
2372
+ |D|
2373
+ |C \ D| +
2374
+ λ
2375
+ |C \ D|
2376
+
2377
+ D
2378
+ u0 dy
2379
+
2380
+ belongs
2381
+ to the resolvent of − d2
2382
+ dx2
2383
+ 3
2384
+ .
2385
+ We prove now that
2386
+ lim
2387
+ k→+∞ λk = µ1.
2388
+ Since λk ∈ (µ0, µ1) for any k, the sequence (λk)k admits at least an accumulation point and each accumu-
2389
+ lation point λ is such that µ0 ≤ λ ≤ µ1. Assume that there exists an accumulation point λ such that λ < µ1. There
2390
+ exists a subsequence (λkn, ukn
2391
+ 0 , vkn) of solutions of (1.10) such that
2392
+ lim
2393
+ n→+∞ λkn = λ. Hence the following equation
2394
+ takes place for all n
2395
+ (2.51)
2396
+ − ∆′ukn
2397
+ 0
2398
+ = λknukn
2399
+ 0 + 1
2400
+ in D.
2401
+ Let δ be a positive number such that λ < δ < µ1. For n large enough we have λkn ≤ δ so that applying the Poincaré
2402
+ inequality
2403
+ (2.52)
2404
+
2405
+ D
2406
+ |u|2 dy ≤ 1
2407
+ µ1
2408
+
2409
+ D
2410
+ |∇′
2411
+ yu|2 dy
2412
+ ∀ u ∈ H1
2413
+ 0(D),
2414
+ after multiplying (2.51) by ukn
2415
+ 0 , we get for n large enough
2416
+ (2.53)
2417
+
2418
+ D
2419
+ |∇′
2420
+ yukn
2421
+ 0 |2 dy ≤ δ
2422
+ µ1
2423
+
2424
+ D
2425
+ |∇′
2426
+ yukn
2427
+ 0 |2 dy +
2428
+
2429
+ D
2430
+ |ukn
2431
+ 0 | dy.
2432
+ Applying successively the Cauchy-Schwarz inequality and (2.52) in the last integral of (2.53), we infer
2433
+ (2.54)
2434
+
2435
+ 1 − δ
2436
+ µ1
2437
+ � �
2438
+ D
2439
+ |∇′
2440
+ yukn
2441
+ 0 |2 dy ≤
2442
+
2443
+ |D|
2444
+ � 1
2445
+ µ1
2446
+ ��
2447
+ D
2448
+ |∇′yukn
2449
+ 0 |2 dy.
2450
+ Therefore, (ukn
2451
+ 0 )n is bounded in H1
2452
+ 0(D) and one can assume (possibly for another subsequence) that (ukn
2453
+ 0 )n con-
2454
+ verges weakly to u0 in H1
2455
+ 0(D). In particular we have that
2456
+ lim
2457
+ n→+∞
2458
+
2459
+ D
2460
+ ukn
2461
+ 0
2462
+ dy =
2463
+
2464
+ D
2465
+ u0 dy. On the other hand
2466
+ (λkn, ukn
2467
+ 0 , vkn) being a solution of (1.10), the following equation (recall that vkn ̸= 0 )
2468
+ (2.55)
2469
+ − d2vkn
2470
+ dx2
2471
+ 3
2472
+ = λkn
2473
+
2474
+ 1 +
2475
+ |D|
2476
+ |C \ D| +
2477
+ λkn
2478
+ |C \ D|
2479
+
2480
+ D
2481
+ ukn
2482
+ 0
2483
+ dy
2484
+
2485
+ vkn
2486
+ ∀ n,
2487
+ shows that the number µ defined by µ := λ
2488
+
2489
+ 1 +
2490
+ |D|
2491
+ |C \ D| +
2492
+ λ
2493
+ |C \ D|
2494
+
2495
+ D
2496
+ u0 dy
2497
+
2498
+ is a finite accumulation point of
2499
+ the spectrum of − d2
2500
+ dx2
2501
+ 3
2502
+ since µ =
2503
+ lim
2504
+ n→+∞ µn where µn := λkn
2505
+
2506
+ 1 +
2507
+ |D|
2508
+ |C \ D| +
2509
+ λkn
2510
+ |C \ D|
2511
+
2512
+ D
2513
+ ukn
2514
+ 0
2515
+ dy
2516
+
2517
+ . This is a
2518
+ contradiction since it is well known that such spectrum is in fact an increasing sequence which tends to +∞.
2519
+ The last point which remains to prove is that all the limiting eigenvalues are simple and that uk
2520
+ ε converges
2521
+ to uk for the whole sequence ε. Assuming that λk is a simple eigenvalue, the proof of the convergence of the
2522
+ eigenvectors for the whole sequence ε is known since the work of [26] (see also [10]). We sketch it in the vectorial
2523
+ setting for the convenience of the reader.
2524
+ Assume that
2525
+ �uk
2526
+ vk
2527
+
2528
+ is an eigenvector associated to the simple eigenvalue λk. Using the fact that the eigenval-
2529
+ ues converge for the whole sequence ε, it is easy to check that the multiplicity of λk is equal or greater than that of
2530
+ λk
2531
+ ε; hence λk
2532
+ ε is simple and there are only two eigenvectors satisfying
2533
+
2534
+
2535
+ |uk
2536
+ ε|2 dx = 1, namely uk
2537
+ ε and −uk
2538
+ ε. Among
2539
+ these two eigenvectors, we choose the one satisfying the inequality
2540
+ (2.56)
2541
+
2542
+
2543
+
2544
+ uk
2545
+ εχF uk + uk
2546
+ εχMvk
2547
+
2548
+ dydx3 > 0.
2549
+
2550
+ 18
2551
+ KAÏS AMMARI AND ALI SILI
2552
+ Therefore if ε′ is a subsequence such that
2553
+ �uk
2554
+ ε′χF
2555
+ uk
2556
+ ε′χM
2557
+
2558
+ strongly converges in (L2(Ω))2 to the eigenvector
2559
+ �ˆuχF
2560
+ ˆvχM
2561
+
2562
+ associated to λk , we get by passing to the limit in (2.56),
2563
+ (2.57)
2564
+
2565
+
2566
+ (ˆuχF uk + ˆvχMvk) dydx3 > 0.
2567
+ On the other hand,
2568
+ �ukχF
2569
+ vkχM
2570
+
2571
+ =
2572
+ �ˆukχF
2573
+ ˆvkχM
2574
+
2575
+ or
2576
+ �ukχF
2577
+ vkχM
2578
+
2579
+ = −
2580
+
2581
+ ˆukχF
2582
+ ˆvkχM
2583
+
2584
+ since λk is a simple eigenvalue. The last
2585
+ equality is excluded thanks to (2.57) so that any subsequence is such that
2586
+ �uk
2587
+ ε′χF
2588
+ uk
2589
+ ε′χM
2590
+
2591
+ strongly converges in (L2(Ω))2
2592
+ to
2593
+ �ukχF
2594
+ vkχM
2595
+
2596
+ .
2597
+ Let us now prove that all the limit eigenvalues are simple eigenvalues.
2598
+ Assume that for some k, (1.13) holds true for two orthogonal eigenvectors
2599
+ �uk
2600
+ vk
2601
+
2602
+ and
2603
+ �¯uk
2604
+ ¯vk
2605
+
2606
+ in L2(D) × L2(0, L).
2607
+ By assumption, we have
2608
+ (2.58)
2609
+ � L
2610
+ 0
2611
+
2612
+ D
2613
+ uk¯ukdydx3 + |C \ D|
2614
+ � L
2615
+ 0
2616
+ vk¯vkdx3 = 0.
2617
+ We know that uk and ¯uk are given respectively by uk(y, x3) = (λkuk
2618
+ 0(y) + 1)vk(x3) and ¯uk(y, x3) = (λkuk
2619
+ 0(y) +
2620
+ 1)¯vk(x3) where uk
2621
+ 0(y) given by the first equation of (1.10) depends only on the eigenvalue λk.
2622
+ Turning back to (2.58), we infer
2623
+ (2.59)
2624
+ � L
2625
+ 0
2626
+ ���
2627
+ D
2628
+
2629
+ λkuk
2630
+ 0(y) + 1
2631
+
2632
+ dy
2633
+ �2
2634
+ + |C \ D|
2635
+
2636
+ vk(x3)¯vk(x3)dx3 = 0.
2637
+ As remarked above vk and ¯vk are always eigenvectors of the operator − d2
2638
+ dx2
2639
+ 3
2640
+ with Dirichlet condition so that (2.59)
2641
+ and the second equation of (1.10) would mean that vk and ¯vk eigenvectors associated to the eigenvalue λk
2642
+
2643
+ 1 +
2644
+ |D|
2645
+ |C \ D| +
2646
+ λk
2647
+ |C \ D|
2648
+
2649
+ D
2650
+ uk
2651
+ 0 dy
2652
+
2653
+ are othogonal in L2(0, L). This is a contradiction since all the eigenvalues of − d2
2654
+ dx2
2655
+ 3
2656
+ with Dirichlet condition are simple eigenvalues.
2657
+ The proof of Theorem 1.3 is now complete.
2658
+ Finally, let us indicate briefly in the following short section how to derive the analogous theorem in the
2659
+ homogenization setting using the same approach as in the reduction of dimension.
2660
+ 3. PROOF OF THEOREM 1.5
2661
+ In the spirit of the above section, the natural idea is to choose a test function vanishing outside the set Fε
2662
+ of fibers to get the apriori estimate on the sequence of eigenvalues. To that aim, we consider an eigenvector φ(y)
2663
+ corresponding to the first eigenvalue of −∆′
2664
+ y in H1
2665
+ 0(D). We extend φ by zero over C \ D and then by periodicity to
2666
+ the whole R2. The k-th eigenvalue λk
2667
+ ε of (1.8) is given by the same min-max formula, namely
2668
+ (3.1)
2669
+ λk
2670
+ ε = min
2671
+ V k⊂Vh
2672
+ max
2673
+ u∈V k
2674
+
2675
+
2676
+
2677
+ ε2|∇u|2χFε + |∇u|2χMε
2678
+
2679
+ dx′ dx3
2680
+
2681
+
2682
+ |u|2 dx′ dx3
2683
+ .
2684
+
2685
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
2686
+ 19
2687
+ For each ε, we choose V k
2688
+ ε
2689
+ ⊂ Vh as the subspace spanned by
2690
+
2691
+ φ( x′
2692
+ ε )v1, φ( x′
2693
+ ε )v2, ..., φ( x′
2694
+ ε )vk�
2695
+ with the same
2696
+ v1, v2, ..., vk as those defined in the previous section, i.e., k normalized orthogonal eigenvectors associated to the
2697
+ first k eigenvalues of − d2
2698
+ dx2
2699
+ 3
2700
+ in H1
2701
+ 0(0, L).
2702
+ Hence, by construction, the functions of V k
2703
+ ε vanish in Mε so that making the change of variable x′ :=
2704
+ εy + εi, y ∈ D in each cell, we can perform the same calculations as those of (2.6) to get for u ∈ V k
2705
+ ε ,
2706
+ (3.2)
2707
+
2708
+
2709
+
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+
2731
+
2732
+
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+
2742
+
2743
+
2744
+
2745
+
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+
2752
+
2753
+
2754
+
2755
+
2756
+
2757
+
2758
+
2759
+
2760
+
2761
+
2762
+
2763
+
2764
+
2765
+
2766
+
2767
+
2768
+
2769
+
2770
+ u2dx′ dx3 =
2771
+
2772
+ i∈Iε
2773
+
2774
+ εD+εi
2775
+ φ2
2776
+ �x′
2777
+ ε
2778
+
2779
+ dx′
2780
+ � L
2781
+ 0
2782
+
2783
+ α2
2784
+ 1(v1)2 + ... + α2
2785
+ k(vk)2�
2786
+ dx3
2787
+ =
2788
+
2789
+ α2
2790
+ 1 + ... + α2
2791
+ k
2792
+
2793
+ ε2 �
2794
+ i∈Iε
2795
+
2796
+ D
2797
+ φ2(y) dy,
2798
+
2799
+
2800
+ ε2|∇′
2801
+ x′u|2dx′ dx3 =
2802
+
2803
+ α2
2804
+ 1 + ... + α2
2805
+ k
2806
+ � �
2807
+ i∈Iε
2808
+ ε2
2809
+
2810
+ εD+εi
2811
+ ����∇′
2812
+ x′φ
2813
+ �x′
2814
+ ε
2815
+ �����
2816
+ 2
2817
+ dx′ =
2818
+
2819
+ α2
2820
+ 1 + ... + α2
2821
+ k
2822
+
2823
+ ε4 �
2824
+ i∈Iε
2825
+
2826
+ D
2827
+ 1
2828
+ ε2 |∇′
2829
+ yφ(y)|2dy =
2830
+
2831
+ α2
2832
+ 1 + ... + α2
2833
+ k
2834
+
2835
+ ε2µ1
2836
+
2837
+ i∈Iε
2838
+
2839
+ D
2840
+ |φ(y)|2dy,
2841
+
2842
+
2843
+ ε2
2844
+ ����
2845
+ ∂u
2846
+ ∂x3
2847
+ ����
2848
+ 2
2849
+ dx′ dx3 = ε2
2850
+ � L
2851
+ 0
2852
+
2853
+ α2
2854
+ 1
2855
+ �dv1
2856
+ dx3
2857
+ �2
2858
+ + ... + α2
2859
+ k
2860
+ �dvk
2861
+ dx3
2862
+ �2�
2863
+ dx3 ε2 �
2864
+ i∈Iε
2865
+
2866
+ D
2867
+ |φ(y)|2dy
2868
+ = ε4�
2869
+ α2
2870
+ 1λ0
2871
+ 1 + ... + α2
2872
+ kλ0
2873
+ k
2874
+ � �
2875
+ i∈Iε
2876
+
2877
+ D
2878
+ |φ|2 dy ≤ ε4λ0
2879
+ k
2880
+
2881
+ α2
2882
+ 1 + ... + α2
2883
+ k
2884
+ � �
2885
+ i∈Iε
2886
+
2887
+ D
2888
+ |φ|2dy,
2889
+ in such a way the following estimate holds true
2890
+ (3.3)
2891
+ λk
2892
+ ε ≤
2893
+
2894
+ µ1 + ε2λ0
2895
+ k
2896
+ ��
2897
+ α2
2898
+ 1 + ... + α2
2899
+ k
2900
+
2901
+ ε2 �
2902
+ i∈Iε
2903
+
2904
+ D
2905
+ |φ|2 dy
2906
+ ε2�
2907
+ α2
2908
+ 1 + ... + α2
2909
+ k
2910
+ � �
2911
+ i∈Iε
2912
+
2913
+ D
2914
+ φ2(y) dy
2915
+ = µ1 + ε2λ0
2916
+ k,
2917
+ which is exactly the same estimate as that obtained in (2.4).
2918
+ Remark 3.1. It is interesting to note in the proof of (3.3), we have chosen a test function verifying the same prop-
2919
+ erties as those of the 3d − 1d case, namely: null in the matrix and with the regularity H1
2920
+ 0(0, L) for almost all
2921
+ x′.
2922
+ Remark 3.1 is of general relevance since the other proofs in the homogenization setting are similar in all
2923
+ points to the corresponding ones in the 3d − 1d problem, the main reason being that the vertical variable is not
2924
+ concerned by the homogenization process which occurs only with respect to the horizontal variable x′ in such a
2925
+ way basically, the local 3d − 1d effect is repeated periodically in the horizontal plane. Hence all the proofs take
2926
+ up exactly the 3d-1d case while sticking to two principles: Dirichlet condition on x3 = 0 or x3 = L both for the
2927
+ 3d − 1d problem and the homogenization problem and when x3 plays the role of parameter as it is the case for
2928
+ example in equation (2.25), it is x that will play the role of parameter in the homogenization problem. Indeed for
2929
+ instance, the natural formulation of equation (2.24) in the homogenization setting is the following one
2930
+ (3.4)
2931
+
2932
+
2933
+
2934
+
2935
+
2936
+
2937
+
2938
+ zk
2939
+ ε ∈ Vh,
2940
+ −∆′
2941
+ x′zk
2942
+ ε − ε2 ∂2zk
2943
+ ε
2944
+ ∂x2
2945
+ 3
2946
+ = λk
2947
+ εzk
2948
+ ε + λk
2949
+ εU k
2950
+ ε
2951
+ in Fε,
2952
+ zk
2953
+ ε = 0
2954
+ on ∂Di
2955
+ ε × (0, L),
2956
+
2957
+ 20
2958
+ KAÏS AMMARI AND ALI SILI
2959
+ in such a way passing to the two-scale limit in (3.4), we get the equivalent of (2.25)
2960
+ (3.5)
2961
+
2962
+
2963
+
2964
+ zk ∈ L2(Ω; H1
2965
+ #(C)),
2966
+ −∆′
2967
+ yzk = λkzk + λkUk
2968
+ in Ω × D,
2969
+ zk = 0
2970
+ on Ω × ∂D.
2971
+ The same approach may be applied to the other proofs following exactly the same steps and replacing the weak
2972
+ (resp. strong) convergence in L2(Ω) by the two-scale (resp. strong two-scale) convergence.
2973
+ REFERENCES
2974
+ [1] G. ALLAIRE, Homogenization and Two-Scale Convergence, SIAM J. Math Anal. 23 (1992), 6, 1482-1518,
2975
+ [2] G. ALLAIRE & Y. CAPDEBOSC, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech.
2976
+ Engrg. 187 (2000), 1-2, 91-117,
2977
+ [3] T. ARBOGAST, J. DOUGLAS & U. HORNUNG, Derivation of the double porosity model of single phase flow via homogenization theory,
2978
+ SIAM J. Math. Anal. 21 (1990), 823-836,
2979
+ [4] A. BRAIDES, V-C. PIAT, & A. PIATNITSKI, A variational approach to double-porosity problems, Asympt. Analysis, 39 (2004), No 3-4,
2980
+ 281-308,
2981
+ [5] M. BELLIEUD, Vibrations d’un composite élastique comportant des inclusions granulaires très lourdes: effets de mémoire, C.R. Acad. Sci.,
2982
+ Paris, Série I, 346 (2008), 807-812,
2983
+ [6] H. BRÉZIS, Analyse Fonctionnelle, Théorie et applications, Masson, Paris, 1983,
2984
+ [7] D. CAILLERIE & B. DINARI,
2985
+ A perturbation problem with two small parameters in the framework of the heat conduction of a fiber
2986
+ reinforced body, Partial Differential Equations, Warsaw (1984), 59-78,
2987
+ [8] J. CASADO-DIAZ, Two-scale convergence for nonlinear Dirichlet problems, Proceed. Royal. Soc. Edinburgh, 130 A (2000), 249-276,
2988
+ [9] H. CHAREF & A. SILI, The effective equilibrium law for a highly heterogeneous elastic periodic medium, Proc. Roy. Soc. Edinburgh Sect.
2989
+ A 143A (2013), 507-561,
2990
+ [10] D. CIORANESCU & J. SAINT JEAN PAULIN, Homogenization of reticulated structures, Applied Mathematical Sciences, 139, Springer-
2991
+ Verlag, New York., (1999),
2992
+ [11] A. GAUDIELLO & A. SILI, Limit models for thin heterogeneous structures with high contrast, Jour. Differ. Equat., 302 (2021), 37–63,
2993
+ [12] A. GAUDIELLO & A. SILI, Homogenization of highly oscillating boundaries with strongly contrasting diffusivity, SIAM J. Math. Anal.
2994
+ 47 (2015), 3, 1671–1692,
2995
+ [13] S. KESAVAN, Homogenization of elliptic eigenvalue problems part 1 and 2, Appl. Math. Optim., 5 (1979), 153-167,
2996
+ [14] S. KESAVAN & N. SABU, Two-dimensional approximation of eigenvalue problems in shell theory: Flexural shells, Chin. Anna. of Math.,
2997
+ 21 B:1 (2000), 1-16,
2998
+ [15] M. KREIN & M. RUTMAN, Linear operators leaving invariant a cone in a Banach space, Functional Analysis and Measure Theory, 10
2999
+ (1962),
3000
+ [16] H. LE DRET, Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications, Research in Applied Mathemat-
3001
+ ics, 19, Masson, Paris, (1991),
3002
+ [17] G. LEUGERING, S.A. NAZAROV & J. TASKINEN, The band-gap structures of the spectrum in a periodic medium of Masonry type,
3003
+ Networks and Het. Media., 15, 4 (2020), 555-580,
3004
+ [18] T. A. MEL’NYK & S. A. NAZAROV, Asymptotics of the Neumann spectral problem solution in a domain of “thick comb” type, J. Math.
3005
+ Sci. 85 (1997), 6, 2326-2346,
3006
+ [19] F. MURAT & A. SILI, A remark about the periodic homogenization of certain composite fibered media, Netw. Heterog. Media 15 (2020),1,
3007
+ 125-142,
3008
+ [20] G. NGUETSENG, A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math Anal. 20 (1989),
3009
+ 3, 608-623,
3010
+ [21] G. PANASENKO, Multi-scale modelling for structures and composites. Springer, (2005),
3011
+ [22] R. PARONI & A. SILI, Nonlocal effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers, J.
3012
+ Differential Equations, 260 (2016), no. 3, 2026-2059,
3013
+ [23] A. SILI, On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems,
3014
+ Comptes Rend. Math. 360 (2022), 1-23.
3015
+ [24] A. SILI, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci. 14 (2004), 3,
3016
+ 329-353,
3017
+ [25] A. SILI, A diffusion equation through a highly heterogeneous medium, Applicable Anal. 89 (2010), 893-904,
3018
+ [26] M. VANNINATHAN, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), no. 3,
3019
+ 239-271,
3020
+ [27] D. YIHONG, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol.1: Maximum Principles and Appli-
3021
+ cations, World Scientific (2006),
3022
+
3023
+ ON THE LIMIT SPECTRUM OF A DEGENERATE OPERATOR
3024
+ 21
3025
+ [28] V.V. ZHIKOV, On an extension and application of the two-scale convergence method, Mat. Sb. 191, (2000), 973-1014,
3026
+ [29] V.V. ZHIKOV, S.M. KOZLOV & 0.A. OLEINIK, Homogenization of differential operators and integral functionals, Translated from the
3027
+ Russian by G.A. YOSIFIAN, Springer-Verlag.
3028
+ LR ANALYSIS AND CONTROL OF PDES, LR 22ES03, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES OF MONASTIR,
3029
+ UNIVERSITY OF MONASTIR, TUNISIA
3030
+ Email address: [email protected]
3031
+ INSTITUT DE MATHÉMATIQUES DE MARSEILLE (I2M), UMR 7373, AIX-MARSEILLE UNIVERSITÉ, CNRS, CMI, 39 RUE F.
3032
+ JOLIOT-CURIE, 13453 MARSEILLE CEDEX 13, FRANCE
3033
+ Email address: [email protected]
3034
+
C9E2T4oBgHgl3EQf9QlY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE4T4oBgHgl3EQfeQ0p/content/2301.05097v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0daf73857b0a0462f95e62443b61502f1e404d37f515b550cf5dfc7d210b644
3
+ size 572441
CNE4T4oBgHgl3EQfeQ0p/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cdd78aff0846b978176096f18dbcc0dc9bc6d0b76acba1960a01a25a23c273e
3
+ size 239248
CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e010284ee7a1c67780bd5a6891a187364d69914f3a47d27556002cd38bcb3f4
3
+ size 138326
CtE1T4oBgHgl3EQfDwP-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97853dc4f83686dfe79e50c99cc1742f5c0e806144a8a727737819d8d9247f8e
3
+ size 1769517
CtE1T4oBgHgl3EQfDwP-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:466d0641070a5aec19a6ef729178c8e161f2220beabcebc73d9f8bda7e2167f3
3
+ size 58982
F9E2T4oBgHgl3EQf-Qn4/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19ca58e1bc93a3646aa1068092d528f28634800ab2c04b1009e1f4df2f90d3fa
3
+ size 7012397
FNAyT4oBgHgl3EQfrPlH/content/2301.00556v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c02669acb13f895f404c8f2d8d0ead95cba4decff83706063397289571bf8e15
3
+ size 2728726
FNAyT4oBgHgl3EQfrPlH/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:211c3ba30847c8c24071136cf2c2c2a0a089d97a3b2667be8c074cfefb21eb0e
3
+ size 3145773
FNAyT4oBgHgl3EQfrPlH/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d1a875a218a2c6419cb87d6602536c8c770a747f01c04ab4e849a6415e0ded9
3
+ size 114597
FdE0T4oBgHgl3EQfRAAw/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6dcfacb499f25d29c341c2ea1085559060e5518b13e0481ef76e24fa8543d4
3
+ size 5439533
GdE1T4oBgHgl3EQf_Aah/content/tmp_files/2301.03576v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdE1T4oBgHgl3EQf_Aah/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HNFJT4oBgHgl3EQfuC2G/content/tmp_files/2301.11620v1.pdf.txt ADDED
@@ -0,0 +1,576 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Email: Mandana Kariminejad
2
3
+ Optimization of a Commercial Injection-Moulded component by Using
4
+ DOE and Simulation
5
+
6
+ Mandana Kariminejad, Centre for Precision Engineering, Material and Manufacturing, Institute of Technology Sligo
7
+ David Tormey, Centre for Precision Engineering, Material and Manufacturing, Institute of Technology Sligo
8
+ Saif Huq, School of Computing and Digital Media, London Metropolitan University
9
+ Jim Morrison, Department of Electronics and Mechanical Engineering, Letterkenny Institute of Technology
10
+ Jeff Redmond, Combination Products, Science and Technology, AbbVie Inc.
11
+ Carlos Souto, Engineering Moulding, AbbVie Ballytivnan
12
+ Marion McAfee, Centre for Precision Engineering, Material and Manufacturing, Institute of Technology Sligo
13
+ Abstract
14
+ Injection moulding is an important industry, providing a significant percentage of the demand for plastic
15
+ products throughout the world. The process consists of many variables which directly or indirectly
16
+ influence the part quality and cycle time. The first step in optimizing the process parameters is identifying
17
+ the most significant variables affecting the desired output. For this purpose, various Design of Experiments
18
+ methods (DOE) have been developed to investigate the effect of the experimental variables on the output
19
+ and predict the required settings to achieve the optimal value of the output. In this study we investigate the
20
+ application of DOE for a commercial injection moulded component which suffers from a long cycle time
21
+ and high shrinkage. The Taguchi method has been used to analyze the effect of four input variables on the
22
+ two output variables: cycle time and shrinkage. The component has been simulated in the Moldflow
23
+ software to validate the predicted output and optimized settings of the variables from the DOE.
24
+ Comparison of the simulation result and the predicted value from the DOE illustrated good accordance.
25
+ The calculated optimal setting with the Taguchi method reduced the cycle time from the 40s to about 23s
26
+ and met the shrinkage criteria for this commercial part.
27
+ Key Words: Injection Moulding, Design of Experiment, Taguchi Method, Moldflow Simulation, Cycle time
28
+ 1. INTRODUCTION
29
+ One of the most developed processes for the production of plastic components is injection moulding. In general,
30
+ this process contains three main steps: the filling stage in which melted polymer pellets are injected into the
31
+ cavity, the packing stage which prevents excessive shrinkage by injection of extra polymer, and the cooling stage
32
+ where the polymer solidifies and gets ready for ejection (Kazmer, 2007). During these stages, many process
33
+ parameters such as mould temperature, melt temperature, and injection pressure should be controlled and
34
+ adjusted, directly affecting the part quality and efficiency of the process. Non-optimal process settings not only
35
+ lead to defects in injection moulded parts such as warpage, shrinkage and residual stresses, but also cause long
36
+ cycle time and low process efficiency (Kim et al., 2009; Xu et al., 2015; Zhang & Jiang, 2007).
37
+
38
+ The first step for improving quality and enhancing efficiency is to identify the most significant process parameters
39
+ influencing the quality factors. For this purpose, various Design of Experiment (DOE) methods have been
40
+ developed. One of the developed DOE methods for prediction, optimization, and selection of the key variables
41
+ is the Taguchi method. The main advantage of this method is designing the experiments based on an orthogonal
42
+ array with a minimum number of experiments which saves time and cost (Van Nostrand, 2002). This method has
43
+ been used in injection moulding for optimization of the process in various studies. Ozcelic and Erzurumlu
44
+ (Ozcelik & Erzurumlu, 2006) investigated the effect of seven factors on the warpage of thin shell plastic
45
+ components using the Taguchi method and specified the key parameters influencing the warpage. Zhang et al.
46
+ (Zhang & Jiang, 2007) first used a fractional factorial design to identify the main factors on the part quality and
47
+ then used Taguchi method to optimize these process factors. Altan (Altan, 2010) investigated the impact of
48
+ different process parameters on the shrinkage of polypropylene (PP) and polystyrene (PS) injection moulded
49
+ parts using Taguchi method and ANOVA. They concluded that the most significant factor in the shrinkage is
50
+ packing pressure for PP and melt temperature for the PS. Then a neural network based method was applied to
51
+ predict shrinkage for these two parts based on the optimal process levels from the Taguchi result. Jan et al. (Jan
52
+ et al., 2016) applied Taguchi method and response surface method to predict sink marks in the injection moulding
53
+ process. Moayyedian et al. (Moayyedian et al., 2018) used a combination of Taguchi method and fuzzy logic to
54
+
55
+ Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
56
+
57
+ optimize three key defects: shrinkage, warpage and short shot, in injection moulding. Hentati et al. (Hentati et
58
+ al., 2019) studied the effect of four process parameters on the shear stress in PC/ABS blended part and validated
59
+ the result by simulation in SOLIDWORKS software.
60
+
61
+ The optimization of the cycle time and shrinkage of a commercially moulded component from an industrial
62
+ partner, AbbVie, is studied and presented in this paper. For this purpose, the effect of four input factors, melt
63
+ temperature, mould temperature, injection pressure, and holding time, has been studied with respect to two critical
64
+ outputs: cycle time and shrinkage for this product.
65
+ 2. METHODOLOGY
66
+ 2.1 Part description
67
+ In this study, we investigate a component which we refer to as a ‘clip’. The isometric view of the clip is illustrated
68
+ in Figure 1. The initial process setting for optimization has been provided by AbbVie Ballytivnan, Sligo. The
69
+ material of the Clip component is Delrin 500P NC010 and the dimension is 32.36×26.33×11.9 mm.
70
+
71
+ Figure 1. Isometric view of the Clip injection moulded component
72
+ 2.2. Simulation
73
+ Autodesk Moldflow Insight 2019 software has been used to simulate the injection moulding process and validate
74
+ the data from DOE for the Clip. The simulated part with the designed cooling channels and two cavities and two
75
+ injection locations has been shown in Figure 2. (a). The conventional cooling channels (blue channels) with two
76
+ baffles (yellow channels) at the middle of cooling circuits have been indicated in Figure 2. (a). The baffle is a
77
+ type of cooling channel with a blade at the centre, placed at the hot spots, which causes an increase in the
78
+ turbulency and heat transfer, thus a reduction in the cooling time. Figure 2. (b) shows the simulated component
79
+ with immobile and mobile moulds and ejector pin spots. For the finite element analysis, the Dual-domain mesh
80
+ (fusion) has been selected because of the part geometry and the mesh tool has been applied to eliminate the mesh
81
+ defects.
82
+
83
+
84
+
85
+ Figure 2. (a) Simulated Clip part with the designed cooling channels. (b) The Clip with mould and cavity.
86
+
87
+ In this study, for the initial optimization of the process and saving cost and time, instead of running the designed
88
+ experiments from Taguchi in the real process, each experiment has been run in the simulation. For examining the
89
+ (a)
90
+ (b)
91
+
92
+ Cooling Channels
93
+ BaffleImmobileMould
94
+ MobileMouldKariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
95
+
96
+ trustworthiness of the simulation, the result of a specific injection moulding process setting has been compared
97
+ to the simulation in Moldflow. The result of this comparison has been summarized in Table 1. Figure 3 indicates
98
+ the result from the simulation for the filling time. The relatively small error percentage between the simulation
99
+ and the actual process demonstrates that the simulation can be used for initial optimization instead of the real
100
+ experiment.
101
+
102
+ Table 1. Comparison of the real process and simulation
103
+ Parameters
104
+ Real Process
105
+ Moldflow Simulation
106
+ Error %
107
+ Cycle time (s)
108
+ 40 - 46
109
+ 43.02
110
+ 6.9
111
+ Filling time (s)
112
+ 0.355
113
+ 0.37
114
+ 4.05
115
+ Cooling time (s)
116
+ 30
117
+ 28.03
118
+ 7.02
119
+
120
+
121
+ Figure 3. The result of filling time from Moldflow simulation
122
+ 2.3. Taguchi method
123
+ Taguchi method is a type of Design of Experiments method that can be used not only for the screening of
124
+ variables, but also for optimization. This method is a combination of fractional factorial design and orthogonal
125
+ array. The orthogonal experimental setting in this method refers to an equivalent number of all levels for each
126
+ variable in the designed experiments, ensuring the balance of the array (Butler, 1992; Kr Dwiwedi et al., 2015;
127
+ Van Nostrand, 2002).
128
+
129
+ This method has been used in this study to investigate the effect of injection moulding process parameters on the
130
+ part shrinkage and cycle time. Each of the input factors has three levels based on the primary process setting from
131
+ the industrial partner. Minitab 19 software has been used to find the optimal process parameters via the Taguchi
132
+ method. The detailed description of the input parameters has been summarized in Table 2.
133
+
134
+ Table 2. Input process Parameters details
135
+ Input Parameters
136
+ Level 1
137
+ Level 2
138
+ Level 3
139
+ Mould temperature (°C)
140
+ 75
141
+ 80
142
+ 85
143
+ Melt temperature (°C)
144
+ 215
145
+ 220
146
+ 230
147
+ Injection pressure (bar)
148
+ 470
149
+ 530
150
+ 580
151
+ Holding time (s)
152
+ 3.5
153
+ 4.5
154
+ 5.5
155
+
156
+ The L9 orthogonal array has been used based on the Taguchi method shown in Table 3. The optimal output (𝑅𝑜𝑝𝑡)
157
+ can be calculated from equation (1) for four input variables (A, B, C, and D). 𝑅̅ is the average of all outputs from
158
+ nine experiments and 𝐴̅𝑥, 𝐵̅𝑥, 𝐶̅𝑥 𝑎𝑛𝑑 𝐷̅𝑥 are the average of the desired output at the optimum level of x. As it is
159
+ clear from Table 3, the number of experiments for four input variables and three-levels is just nine with the
160
+ Taguchi method, while for the full factorial design, this number would increase to 34 = 81.
161
+
162
+ 𝑅𝑜𝑝𝑡 = ���̅ + (𝐴̅𝑥 − 𝑅̅) + (𝐵̅𝑥 − 𝑅̅) + (𝐶̅𝑥 − 𝑅̅) + (𝐷̅𝑥 − 𝑅̅)
163
+ (1-a)
164
+
165
+ Filltime
166
+ = 0.3744[s]
167
+ [s]
168
+ 0.3744
169
+ 0.2808
170
+ 0.1872
171
+ 0.0936
172
+ 0.0000
173
+ AUTODESK
174
+ MOLDFLOWINSIGHT
175
+ 27
176
+ scale(1uumm)Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
177
+
178
+ 𝑅̅ = 𝑅1 + 𝑅2 + 𝑅3 + ⋯ + 𝑅9
179
+ 9
180
+
181
+ (1-b)
182
+
183
+ Table 3. L9 orthogonal array Taguchi method
184
+ No.
185
+ Mould Temperature(°C)
186
+ Melt Temperature (°C)
187
+ Injection Pressure (bar)
188
+ Holding time (s)
189
+ 1
190
+ 75
191
+ 215
192
+ 470
193
+ 3.5
194
+ 2
195
+ 75
196
+ 220
197
+ 530
198
+ 4.5
199
+ 3
200
+ 75
201
+ 230
202
+ 580
203
+ 5.5
204
+ 4
205
+ 80
206
+ 215
207
+ 530
208
+ 5.5
209
+ 5
210
+ 80
211
+ 220
212
+ 580
213
+ 3.5
214
+ 6
215
+ 80
216
+ 230
217
+ 470
218
+ 4.5
219
+ 7
220
+ 85
221
+ 215
222
+ 580
223
+ 4.5
224
+ 8
225
+ 85
226
+ 220
227
+ 470
228
+ 5.5
229
+ 9
230
+ 85
231
+ 230
232
+ 530
233
+ 3.5
234
+
235
+ The signal-to-noise ratio is a quality indicator to evaluate the variation of a specific variable on the final output
236
+ (Ross PJ., 1996). In the injection moulding process, the aim is to minimize the cycle time and shrinkage as much
237
+ as possible. Hence, in this study, the Taguchi signal-to-noise ratio 𝑆/𝑁 should be defined as ‘’the-smaller- the-
238
+ better’’ described in Equation 2. ‘n’ is the number of experiments (here 9), and ‘𝑦𝑖’ is the response value for the
239
+ ith experiment.
240
+
241
+ 𝑆/𝑁 = −10𝑙𝑜𝑔10(
242
+
243
+ 𝑦𝑖2
244
+ 𝑛
245
+ 𝑖=1
246
+ 𝑛
247
+ )
248
+ (2)
249
+ 3. RESULTS AND DISSCUSSION
250
+ The designed experiments based on Table 3 have been simulated in the Moldflow software and the result for
251
+ cycle time and shrinkage and the related signal-to-noise ratio have been summarized in Table 4.
252
+
253
+ The cycle time in this simulation is made up of the filling time, packing time, cooling time, and mould open time.
254
+ For the shrinkage simulation, first, the critical dimensions and the related tolerances provided by AbbVie are
255
+ defined. The shrinkage has been examined based on the average linear shrinkage, that is, the equally-weighted
256
+ mean of parallel and perpendicular shrinkage. The nominal parallel and perpendicular shrinkage is 1.934% and
257
+ 2.082% for Delrin 500P NC010, respectively. The shrinkage result should be below these nominal values to
258
+ prevent excessive shrinkage in part.
259
+
260
+ Table 4. Simulation result for L9 orthogonal array
261
+ No.
262
+ Mould
263
+ Temperature(°C)
264
+ Melt
265
+ Temperature
266
+ (°C)
267
+ Injection
268
+ Pressure
269
+ (MPa)
270
+ Holding
271
+ time (s)
272
+ Cycle
273
+ time (s)
274
+ Shrinkage
275
+ (%)
276
+ S/N
277
+ Cycle
278
+ time
279
+ S/N
280
+ shrinkage
281
+ 1
282
+ 75
283
+ 215
284
+ 47
285
+ 3.5
286
+ 49.4161
287
+ 2.2
288
+ -33.87
289
+ -6.84
290
+ 2
291
+ 75
292
+ 220
293
+ 53
294
+ 4.5
295
+ 51.0519
296
+ 2.183
297
+ -34.16
298
+ -6.78
299
+ 3
300
+ 75
301
+ 230
302
+ 58
303
+ 5.5
304
+ 54.4495
305
+ 2.571
306
+ -34.7
307
+ -8.2
308
+ 4
309
+ 80
310
+ 215
311
+ 53
312
+ 5.5
313
+ 29.3798
314
+ 1.992
315
+ -29.36
316
+ -5.98
317
+ 5
318
+ 80
319
+ 220
320
+ 58
321
+ 3.5
322
+ 30.4038
323
+ 2.093
324
+ -29.65
325
+ -6.41
326
+ 6
327
+ 80
328
+ 230
329
+ 47
330
+ 4.5
331
+ 32.3585
332
+ 2.062
333
+ -30.1
334
+ -6.28
335
+ 7
336
+ 85
337
+ 215
338
+ 58
339
+ 4.5
340
+ 22.925
341
+ 1.972
342
+ -27.2
343
+ -5.89
344
+ 8
345
+ 85
346
+ 220
347
+ 47
348
+ 5.5
349
+ 23.4541
350
+ 1.961
351
+ -27.4
352
+ -5.84
353
+ 9
354
+ 85
355
+ 230
356
+ 53
357
+ 3.5
358
+ 24.4298
359
+ 2.144
360
+ -27.75
361
+ -6.62
362
+ 3.1 Screening of input parameters
363
+ The Taguchi method is able to assess the most effective level and the importance rate of each input variable on
364
+ the desired output. The result of average values for cycle time and shrinkage has been summarized in Figure 4.
365
+
366
+ Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
367
+
368
+
369
+ Regarding Figure 4. (a), the most significant factor on cycle time is mould temperature (Tmold). The minimum
370
+ value of cycle time will be obtained if the mould temperature is set to the highest level (85°C). Melt temperature
371
+ (Tmelt), holding time (tholding) and injection pressure (Pinj) also affect cycle time in that order of importance;
372
+ however, their influence is not considerable.
373
+
374
+ Figure 4. (b) indicates mould temperature is also the leading variable affecting shrinkage, and to minimize the
375
+ shrinkage, the mould temperature should be set at the highest level of 85°C. The influence of melt temperature
376
+ is almost major and for the optimization of shrinkage, the minimum level of 215 °C should be adjusted. The
377
+ holding time and injection pressure have similar effects on the linear shrinkage. Injection pressure should be fixed
378
+ at the minimum level (47 MPa) and holding time should be set at the medium level, which is 4.5 s. The importance
379
+ of each input variable on the outputs has been presented in Table 5, where the input with the highest and lowest
380
+ impact has been defined by Rank ‘1’ and Rank ‘4’, respectively.
381
+
382
+
383
+
384
+
385
+ Figure 4. Average values plot for (a) cycle time, (b) Shrinkage at three levels
386
+
387
+ Table 5. The effect of each input variables on the desired outputs
388
+ Desired Outputs
389
+ Mould
390
+ Temperature(°C)
391
+ Melt
392
+ Temperature(°C)
393
+ Injection Pressure (MPa)
394
+ Holding Time(s)
395
+ Cycle Time(s)
396
+ 1
397
+ 2
398
+ 4
399
+ 3
400
+ Shrinkage%
401
+ 1
402
+ 2
403
+ 3
404
+ 4
405
+
406
+ 3.2 Optimization of outputs with Taguchi method and simulation
407
+ The Taguchi method estimates the optimum output based on the optimal setting from screening in section 3.1 by
408
+ Equation 1. For validation of the predicted values from the Taguchi method, the predicted optimal settings were
409
+ simulated in Moldflow. As shown in Table 6, the difference between the prediction from the Taguchi method
410
+ and the Moldflow simulation is below 10% which validates that the Taguchi method can successfully predict
411
+ optimal settings. The shrinkage percentage is below the nominal value of the Delrin 500P NC010, which verifies
412
+ that under this process setting, excessive shrinkage will not occur in the part. Obviously the simulation should be
413
+ followed by optimisation of the settings in the actual process, however based on the Taguchi method (Table 6)
414
+ applied to the simulation environment, the initial mould temperature should be fixed at the highest level and the
415
+ initial melt temperature at the lowest level. Besides that with this optimal setting, the cyle time declined from
416
+ almost 40 s to 23s, improving the process efficiency
417
+
418
+ Table 6. Comparison of the outputs from Taguchi method and Moldflow simulation
419
+ Output
420
+ Parameters
421
+ Mould
422
+ Temperature
423
+ (°C)
424
+ Melt
425
+ Temperature
426
+ (°C)
427
+ Injection
428
+ Pressure
429
+ (MPa)
430
+ Holding
431
+ Time (s)
432
+ Taguchi
433
+ Predicted
434
+ Value
435
+ Moldflow
436
+ Simulation
437
+ Value
438
+ Error
439
+ %
440
+ Cycle Time(s)
441
+ 85
442
+ 215
443
+ 53
444
+ 3.5
445
+ 21.2575
446
+ 22.92
447
+ 7.27
448
+ Shrinkage%
449
+ 85
450
+ 215
451
+ 47
452
+ 4.5
453
+ 1.83
454
+ 1.98
455
+ 7.57
456
+ (a)
457
+ (b)
458
+
459
+ Main Effects Plot for Means
460
+ Data Means
461
+ Tmold (°C)
462
+ Tmelt (C)
463
+ Pini(MPa)
464
+ tholding (s)
465
+ 55
466
+ 50
467
+ Mean of Means
468
+ 45
469
+ 40
470
+ 35
471
+ 30
472
+ 25
473
+ 20 -
474
+ 75
475
+ 80
476
+ 85
477
+ 215
478
+ 220
479
+ 230
480
+ 47
481
+ 53
482
+ 58
483
+ 3.5
484
+ 4.5
485
+ 5.5Main Effects Plot for Means
486
+ Data Means
487
+ Tmold ('C)
488
+ Tmelt('C)
489
+ pini
490
+ (MPa)
491
+ tholding(s)
492
+ 2.35
493
+ 2.30
494
+ (%)
495
+ Mean of Means
496
+ 2.25
497
+ 2.20
498
+ 2.15
499
+ 2.10
500
+ 2.05
501
+ 2.00 -
502
+ 75
503
+ 80
504
+ 85
505
+ 215
506
+ 220
507
+ 230
508
+ 47
509
+ 53
510
+ 58
511
+ 3.5
512
+ 4.5
513
+ 5.5Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
514
+
515
+ 4. CONCLUSION
516
+ In this paper, Taguchi method and simulation are applied together to study the effect of melt temperature, mould
517
+ temperature, packing temperature and holding time on the shrinkage and cycle time of the commercial injection
518
+ moulded part. The experiments were initially simulated in the Moldflow software instead of the actual process to
519
+ save time and cost.
520
+
521
+ The most significant factor on both shrinkage and cycle time is mould temperature. The result indicated that 85°C
522
+ of mould temperature, 215°C of melt temperature, 53 Mpa of injection pressure, and 3.5 s of holding time
523
+ minimize the cycle time to almost 23 s, much less than the current cycle time of the part in the process which is
524
+ about 40 s. The simulation obtained a minimum shrinkage of 1.98% with a mould temperature of 85°C, melt
525
+ temperature of 215°C, injection pressure of 47 Mpa, and 4.5 s of holding time (See Table 6). This value is lower
526
+ than the nominal shrinkage of the material (nominal parallel and perpendicular shrinkage are 1.934% and
527
+ 2.082%). Based on this study, the mould temperature should be set at the highest level and melt temperature at
528
+ the lowest level to optimize shrinkage and cycle time. Changing the injection pressure and holding time is not
529
+ significant on the cycle time, so they should be fixed at the minimum and middle levels for minimum shrinkage,
530
+ respectively.
531
+
532
+ Further research to improve the optimization results includes validation of the simulation data by running the L9
533
+ in the real injection moulding process, increasing the number of experiments from L9 to L27 to investigate the
534
+ interactions between the factors and study other input variables such as ejection temperature, flow rate, coolant
535
+ temperature, gate type and cooling channels on the shrinkage and cycle time.
536
+ 5. REFERENCES
537
+ Altan, M. (2010). Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods.
538
+ Materials & Design, 31(1), 599–604. https://doi.org/10.1016/j.matdes.2009.06.049
539
+ Butler, C. (1992). A primer on the Taguchi method. Computer Integrated Manufacturing Systems, 5(3), 246.
540
+ https://doi.org/10.1016/0951-5240(92)90037-D
541
+ Hentati, F., Hadriche, I., Masmoudi, N., & Bradai, C. (2019). Optimization of the injection molding process for the
542
+ PC/ABS parts by integrating Taguchi approach and CAE simulation. International Journal of Advanced
543
+ Manufacturing Technology, 104(9–12), 4353–4363. https://doi.org/10.1007/s00170-019-04283-z
544
+ Jan, M., Khalid, M. S., Awan, A. A., & Nisar, S. (2016). Optimization of injection molding process for sink marks
545
+ reduction by integrating response surface design methodology &taguchi approach. Journal of Quality and
546
+ Technology Management Volume XII, Issue I, XII(I), 45–79. Retrieved from
547
+ http://pu.edu.pk/images/journal/iqtm/PDF-FILES/02-Optimization_jun_16.pdf
548
+ Kazmer, D. O. (2007). Injection Mold Design Engineering. In Injection Mold Design Engineering (pp. I–XX). München:
549
+ Carl Hanser Verlag GmbH &amp; Co. KG. https://doi.org/10.3139/9783446434196.fm
550
+ Kim, S. Y., Kim, C. H., Kim, S. H., Oh, H. J., & Youn, J. R. (2009). Measurement of residual stresses in film insert
551
+ molded parts with complex geometry. Polymer Testing, 28(5), 500–507.
552
+ https://doi.org/10.1016/j.polymertesting.2009.03.009
553
+ Kr Dwiwedi, A., Kumar, S., Noor Rahbar, N., & Kumar, D. (2015). Practical Application of Taguchi Method for
554
+ Optimization of Process Parameters in Injection Molding Machine for PP Material. International Research Journal
555
+ of Engineering and Technology (IRJET), 2(4), 264–268.
556
+ Moayyedian, M., Abhary, K., & Marian, R. (2018). Optimization of injection molding process based on fuzzy quality
557
+ evaluation and Taguchi experimental design. CIRP Journal of Manufacturing Science and Technology, 21, 150–160.
558
+ https://doi.org/10.1016/j.cirpj.2017.12.001
559
+ Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using
560
+ ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology, 171(3), 437–
561
+ 445. https://doi.org/10.1016/j.jmatprotec.2005.04.120
562
+ Ross PJ. (1996). Taguchi techniques for quality engineering. McGraw Hill. Retrieved from
563
+ https://books.google.ie/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_es
564
+ c=y
565
+ Van Nostrand, R. C. (2002). Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process
566
+ Improvement. Technometrics, 44(3), 289–289. https://doi.org/10.1198/004017002320256440
567
+ Xu, Y., Zhang, Q. W., Zhang, W., & Zhang, P. (2015). Optimization of injection molding process parameters to improve
568
+ the mechanical performance of polymer product against impact. International Journal of Advanced Manufacturing
569
+ Technology, 76(9–12), 2199–2208. https://doi.org/10.1007/s00170-014-6434-y
570
+
571
+ Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee
572
+
573
+ Zhang, Z., & Jiang, B. (2007). Optimal process design of shrinkage and sink marks in injection molding. Journal of
574
+ Wuhan University of Technology-Mater. Sci. Ed., 22(3), 404–407. https://doi.org/10.1007/s11595-006-3404-8
575
+
576
+
HNFJT4oBgHgl3EQfuC2G/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf,len=390
2
+ page_content='Email: Mandana Kariminejad Mandana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
3
+ page_content='kariminejad@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
4
+ page_content='itsligo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
5
+ page_content='ie Optimization of a Commercial Injection-Moulded component by Using DOE and Simulation Mandana Kariminejad,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
6
+ page_content=' Centre for Precision Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
7
+ page_content=' Material and Manufacturing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
8
+ page_content=' Institute of Technology Sligo David Tormey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
9
+ page_content=' Centre for Precision Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
10
+ page_content=' Material and Manufacturing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
11
+ page_content=' Institute of Technology Sligo Saif Huq,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
12
+ page_content=' School of Computing and Digital Media,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
13
+ page_content=' London Metropolitan University Jim Morrison,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
14
+ page_content=' Department of Electronics and Mechanical Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
15
+ page_content=' Letterkenny Institute of Technology Jeff Redmond,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
16
+ page_content=' Combination Products,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
17
+ page_content=' Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
18
+ page_content=' AbbVie Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
19
+ page_content=' Carlos Souto, Engineering Moulding, AbbVie Ballytivnan Marion McAfee, Centre for Precision Engineering, Material and Manufacturing, Institute of Technology Sligo Abstract Injection moulding is an important industry, providing a significant percentage of the demand for plastic products throughout the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
20
+ page_content=' The process consists of many variables which directly or indirectly influence the part quality and cycle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
21
+ page_content=' The first step in optimizing the process parameters is identifying the most significant variables affecting the desired output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
22
+ page_content=' For this purpose, various Design of Experiments methods (DOE) have been developed to investigate the effect of the experimental variables on the output and predict the required settings to achieve the optimal value of the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
23
+ page_content=' In this study we investigate the application of DOE for a commercial injection moulded component which suffers from a long cycle time and high shrinkage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
24
+ page_content=' The Taguchi method has been used to analyze the effect of four input variables on the two output variables: cycle time and shrinkage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
25
+ page_content=' The component has been simulated in the Moldflow software to validate the predicted output and optimized settings of the variables from the DOE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
26
+ page_content=' Comparison of the simulation result and the predicted value from the DOE illustrated good accordance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
27
+ page_content=' The calculated optimal setting with the Taguchi method reduced the cycle time from the 40s to about 23s and met the shrinkage criteria for this commercial part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
28
+ page_content=' Key Words: Injection Moulding, Design of Experiment, Taguchi Method, Moldflow Simulation, Cycle time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
29
+ page_content=' INTRODUCTION One of the most developed processes for the production of plastic components is injection moulding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
30
+ page_content=' In general, this process contains three main steps: the filling stage in which melted polymer pellets are injected into the cavity, the packing stage which prevents excessive shrinkage by injection of extra polymer, and the cooling stage where the polymer solidifies and gets ready for ejection (Kazmer, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
31
+ page_content=' During these stages, many process parameters such as mould temperature, melt temperature, and injection pressure should be controlled and adjusted, directly affecting the part quality and efficiency of the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
32
+ page_content=' Non-optimal process settings not only lead to defects in injection moulded parts such as warpage, shrinkage and residual stresses, but also cause long cycle time and low process efficiency (Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
33
+ page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
34
+ page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
35
+ page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
36
+ page_content=' Zhang & Jiang, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
37
+ page_content=' The first step for improving quality and enhancing efficiency is to identify the most significant process parameters influencing the quality factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
38
+ page_content=' For this purpose, various Design of Experiment (DOE) methods have been developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
39
+ page_content=' One of the developed DOE methods for prediction, optimization, and selection of the key variables is the Taguchi method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
40
+ page_content=' The main advantage of this method is designing the experiments based on an orthogonal array with a minimum number of experiments which saves time and cost (Van Nostrand, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
41
+ page_content=' This method has been used in injection moulding for optimization of the process in various studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
42
+ page_content=' Ozcelic and Erzurumlu (Ozcelik & Erzurumlu, 2006) investigated the effect of seven factors on the warpage of thin shell plastic components using the Taguchi method and specified the key parameters influencing the warpage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
43
+ page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
44
+ page_content=' (Zhang & Jiang, 2007) first used a fractional factorial design to identify the main factors on the part quality and then used Taguchi method to optimize these process factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
45
+ page_content=' Altan (Altan, 2010) investigated the impact of different process parameters on the shrinkage of polypropylene (PP) and polystyrene (PS) injection moulded parts using Taguchi method and ANOVA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
46
+ page_content=' They concluded that the most significant factor in the shrinkage is packing pressure for PP and melt temperature for the PS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
47
+ page_content=' Then a neural network based method was applied to predict shrinkage for these two parts based on the optimal process levels from the Taguchi result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
48
+ page_content=' Jan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
49
+ page_content=' (Jan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
50
+ page_content=', 2016) applied Taguchi method and response surface method to predict sink marks in the injection moulding process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
51
+ page_content=' Moayyedian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
52
+ page_content=' (Moayyedian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
53
+ page_content=', 2018) used a combination of Taguchi method and fuzzy logic to Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee optimize three key defects: shrinkage, warpage and short shot, in injection moulding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
54
+ page_content=' Hentati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
55
+ page_content=' (Hentati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
56
+ page_content=', 2019) studied the effect of four process parameters on the shear stress in PC/ABS blended part and validated the result by simulation in SOLIDWORKS software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
57
+ page_content=' The optimization of the cycle time and shrinkage of a commercially moulded component from an industrial partner, AbbVie, is studied and presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
58
+ page_content=' For this purpose, the effect of four input factors, melt temperature, mould temperature, injection pressure, and holding time, has been studied with respect to two critical outputs: cycle time and shrinkage for this product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
59
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
60
+ page_content=' METHODOLOGY 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
61
+ page_content='1 Part description In this study, we investigate a component which we refer to as a ‘clip’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
62
+ page_content=' The isometric view of the clip is illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
63
+ page_content=' The initial process setting for optimization has been provided by AbbVie Ballytivnan, Sligo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
64
+ page_content=' The material of the Clip component is Delrin 500P NC010 and the dimension is 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
65
+ page_content='36×26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
66
+ page_content='33×11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
67
+ page_content='9 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
68
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
69
+ page_content=' Isometric view of the Clip injection moulded component 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
70
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
71
+ page_content=' Simulation Autodesk Moldflow Insight 2019 software has been used to simulate the injection moulding process and validate the data from DOE for the Clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
72
+ page_content=' The simulated part with the designed cooling channels and two cavities and two injection locations has been shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
73
+ page_content=' (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
74
+ page_content=' The conventional cooling channels (blue channels) with two baffles (yellow channels) at the middle of cooling circuits have been indicated in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
75
+ page_content=' (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
76
+ page_content=' The baffle is a type of cooling channel with a blade at the centre, placed at the hot spots, which causes an increase in the turbulency and heat transfer, thus a reduction in the cooling time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
77
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
78
+ page_content=' (b) shows the simulated component with immobile and mobile moulds and ejector pin spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
79
+ page_content=' For the finite element analysis, the Dual-domain mesh (fusion) has been selected because of the part geometry and the mesh tool has been applied to eliminate the mesh defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
80
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
81
+ page_content=' (a) Simulated Clip part with the designed cooling channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
82
+ page_content=' (b) The Clip with mould and cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
83
+ page_content=' In this study, for the initial optimization of the process and saving cost and time, instead of running the designed experiments from Taguchi in the real process, each experiment has been run in the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
84
+ page_content=' For examining the (a) (b) Cooling Channels BaffleImmobileMould MobileMouldKariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee trustworthiness of the simulation, the result of a specific injection moulding process setting has been compared to the simulation in Moldflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
85
+ page_content=' The result of this comparison has been summarized in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
86
+ page_content=' Figure 3 indicates the result from the simulation for the filling time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
87
+ page_content=' The relatively small error percentage between the simulation and the actual process demonstrates that the simulation can be used for initial optimization instead of the real experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
88
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
89
+ page_content=' Comparison of the real process and simulation Parameters Real Process Moldflow Simulation Error % Cycle time (s) 40 - 46 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
90
+ page_content='02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
91
+ page_content='9 Filling time (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
92
+ page_content='355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
93
+ page_content='37 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
94
+ page_content='05 Cooling time (s) 30 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
95
+ page_content='03 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
96
+ page_content='02 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
97
+ page_content=' The result of filling time from Moldflow simulation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
98
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
99
+ page_content=' Taguchi method Taguchi method is a type of Design of Experiments method that can be used not only for the screening of variables, but also for optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
100
+ page_content=' This method is a combination of fractional factorial design and orthogonal array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
101
+ page_content=' The orthogonal experimental setting in this method refers to an equivalent number of all levels for each variable in the designed experiments, ensuring the balance of the array (Butler, 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
102
+ page_content=' Kr Dwiwedi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
103
+ page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
104
+ page_content=' Van Nostrand, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
105
+ page_content=' This method has been used in this study to investigate the effect of injection moulding process parameters on the part shrinkage and cycle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
106
+ page_content=' Each of the input factors has three levels based on the primary process setting from the industrial partner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
107
+ page_content=' Minitab 19 software has been used to find the optimal process parameters via the Taguchi method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
108
+ page_content=' The detailed description of the input parameters has been summarized in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
109
+ page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
110
+ page_content=' Input process Parameters details Input Parameters Level 1 Level 2 Level 3 Mould temperature (°C) 75 80 85 Melt temperature (°C) 215 220 230 Injection pressure (bar) 470 530 580 Holding time (s) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
111
+ page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
112
+ page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
113
+ page_content='5 The L9 orthogonal array has been used based on the Taguchi method shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
114
+ page_content=' The optimal output (𝑅𝑜𝑝𝑡) can be calculated from equation (1) for four input variables (A, B, C, and D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
115
+ page_content=' 𝑅̅ is the average of all outputs from nine experiments and 𝐴̅𝑥, 𝐵̅𝑥, 𝐶̅𝑥 𝑎𝑛𝑑 𝐷̅𝑥 are the average of the desired output at the optimum level of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
116
+ page_content=' As it is clear from Table 3, the number of experiments for four input variables and three-levels is just nine with the Taguchi method, while for the full factorial design, this number would increase to 34 = 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
117
+ page_content=' 𝑅𝑜𝑝𝑡 = 𝑅̅ + (𝐴̅𝑥 − 𝑅̅) + (𝐵��𝑥 − 𝑅̅) + (𝐶̅𝑥 − 𝑅̅) + (𝐷̅𝑥 − 𝑅̅) (1-a) Filltime = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
118
+ page_content='3744[s] [s] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
119
+ page_content='3744 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
120
+ page_content='2808 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
121
+ page_content='1872 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
122
+ page_content='0936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
123
+ page_content='0000 AUTODESK MOLDFLOWINSIGHT 27 scale(1uumm)Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee 𝑅̅ = 𝑅1 + 𝑅2 + 𝑅3 + ⋯ + 𝑅9 9 (1-b) Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
124
+ page_content=' L9 orthogonal array Taguchi method No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
125
+ page_content=' Mould Temperature(°C) Melt Temperature (°C) Injection Pressure (bar) Holding time (s) 1 75 215 470 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
126
+ page_content='5 2 75 220 530 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
127
+ page_content='5 3 75 230 580 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
128
+ page_content='5 4 80 215 530 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
129
+ page_content='5 5 80 220 580 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
130
+ page_content='5 6 80 230 470 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
131
+ page_content='5 7 85 215 580 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
132
+ page_content='5 8 85 220 470 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
133
+ page_content='5 9 85 230 530 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
134
+ page_content='5 The signal-to-noise ratio is a quality indicator to evaluate the variation of a specific variable on the final output (Ross PJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
135
+ page_content=', 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
136
+ page_content=' In the injection moulding process, the aim is to minimize the cycle time and shrinkage as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
137
+ page_content=' Hence, in this study, the Taguchi signal-to-noise ratio 𝑆/𝑁 should be defined as ‘’the-smaller- the- better’’ described in Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
138
+ page_content=' ‘n’ is the number of experiments (here 9), and ‘𝑦𝑖’ is the response value for the ith experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
139
+ page_content=' 𝑆/𝑁 = −10𝑙𝑜𝑔10( ∑ 𝑦𝑖2 𝑛 𝑖=1 𝑛 ) (2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
140
+ page_content=' RESULTS AND DISSCUSSION The designed experiments based on Table 3 have been simulated in the Moldflow software and the result for cycle time and shrinkage and the related signal-to-noise ratio have been summarized in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
141
+ page_content=' The cycle time in this simulation is made up of the filling time, packing time, cooling time, and mould open time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
142
+ page_content=' For the shrinkage simulation, first, the critical dimensions and the related tolerances provided by AbbVie are defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
143
+ page_content=' The shrinkage has been examined based on the average linear shrinkage, that is, the equally-weighted mean of parallel and perpendicular shrinkage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
144
+ page_content=' The nominal parallel and perpendicular shrinkage is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
145
+ page_content='934% and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
146
+ page_content='082% for Delrin 500P NC010, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
147
+ page_content=' The shrinkage result should be below these nominal values to prevent excessive shrinkage in part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
148
+ page_content=' Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
149
+ page_content=' Simulation result for L9 orthogonal array No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
150
+ page_content=' Mould Temperature(°C) Melt Temperature (°C) Injection Pressure (MPa) Holding time (s) Cycle time (s) Shrinkage (%) S/N Cycle time S/N shrinkage 1 75 215 47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
151
+ page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
152
+ page_content='4161 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
153
+ page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
154
+ page_content='87 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
155
+ page_content='84 2 75 220 53 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
156
+ page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
157
+ page_content='0519 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
158
+ page_content='183 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
159
+ page_content='16 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
160
+ page_content='78 3 75 230 58 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
161
+ page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
162
+ page_content='4495 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
163
+ page_content='571 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
164
+ page_content='7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
165
+ page_content='2 4 80 215 53 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
166
+ page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
167
+ page_content='3798 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
168
+ page_content='992 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
169
+ page_content='36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
170
+ page_content='98 5 80 220 58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
171
+ page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
172
+ page_content='4038 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
173
+ page_content='093 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
174
+ page_content='65 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
175
+ page_content='41 6 80 230 47 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
176
+ page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
177
+ page_content='3585 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
178
+ page_content='062 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
179
+ page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
180
+ page_content='28 7 85 215 58 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
181
+ page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
182
+ page_content='925 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
183
+ page_content='972 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
184
+ page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
185
+ page_content='89 8 85 220 47 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
186
+ page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
187
+ page_content='4541 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
188
+ page_content='961 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
189
+ page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
190
+ page_content='84 9 85 230 53 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
191
+ page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
192
+ page_content='4298 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
193
+ page_content='144 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
194
+ page_content='75 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
195
+ page_content='62 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
196
+ page_content='1 Screening of input parameters The Taguchi method is able to assess the most effective level and the importance rate of each input variable on the desired output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
197
+ page_content=' The result of average values for cycle time and shrinkage has been summarized in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
198
+ page_content=' Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee Regarding Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
199
+ page_content=' (a), the most significant factor on cycle time is mould temperature (Tmold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
200
+ page_content=' The minimum value of cycle time will be obtained if the mould temperature is set to the highest level (85°C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
201
+ page_content=' Melt temperature (Tmelt), holding time (tholding) and injection pressure (Pinj) also affect cycle time in that order of importance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
202
+ page_content=' however, their influence is not considerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
203
+ page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
204
+ page_content=' (b) indicates mould temperature is also the leading variable affecting shrinkage, and to minimize the shrinkage, the mould temperature should be set at the highest level of 85°C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
205
+ page_content=' The influence of melt temperature is almost major and for the optimization of shrinkage, the minimum level of 215 °C should be adjusted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
206
+ page_content=' The holding time and injection pressure have similar effects on the linear shrinkage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
207
+ page_content=' Injection pressure should be fixed at the minimum level (47 MPa) and holding time should be set at the medium level, which is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
208
+ page_content='5 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
209
+ page_content=' The importance of each input variable on the outputs has been presented in Table 5, where the input with the highest and lowest impact has been defined by Rank ‘1’ and Rank ‘4’, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
210
+ page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
211
+ page_content=' Average values plot for (a) cycle time, (b) Shrinkage at three levels Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
212
+ page_content=' The effect of each input variables on the desired outputs Desired Outputs Mould Temperature(°C) Melt Temperature(°C) Injection Pressure (MPa) Holding Time(s) Cycle Time(s) 1 2 4 3 Shrinkage% 1 2 3 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
213
+ page_content='2 Optimization of outputs with Taguchi method and simulation The Taguchi method estimates the optimum output based on the optimal setting from screening in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
214
+ page_content='1 by Equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
215
+ page_content=' For validation of the predicted values from the Taguchi method, the predicted optimal settings were simulated in Moldflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
216
+ page_content=' As shown in Table 6, the difference between the prediction from the Taguchi method and the Moldflow simulation is below 10% which validates that the Taguchi method can successfully predict optimal settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
217
+ page_content=' The shrinkage percentage is below the nominal value of the Delrin 500P NC010, which verifies that under this process setting, excessive shrinkage will not occur in the part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
218
+ page_content=' Obviously the simulation should be followed by optimisation of the settings in the actual process, however based on the Taguchi method (Table 6) applied to the simulation environment, the initial mould temperature should be fixed at the highest level and the initial melt temperature at the lowest level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
219
+ page_content=' Besides that with this optimal setting, the cyle time declined from almost 40 s to 23s, improving the process efficiency Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
220
+ page_content=' Comparison of the outputs from Taguchi method and Moldflow simulation Output Parameters Mould Temperature (°C) Melt Temperature (°C) Injection Pressure (MPa) Holding Time (s) Taguchi Predicted Value Moldflow Simulation Value Error % Cycle Time(s) 85 215 53 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
221
+ page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
222
+ page_content='2575 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
223
+ page_content='92 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
224
+ page_content='27 Shrinkage% 85 215 47 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
225
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
226
+ page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
227
+ page_content='98 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
228
+ page_content='57 (a) (b) Main Effects Plot for Means Data Means Tmold (°C) Tmelt (C) Pini(MPa) tholding (s) 55 50 Mean of Means 45 40 35 30 25 20 - 75 80 85 215 220 230 47 53 58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
229
+ page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
230
+ page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
231
+ page_content="5Main Effects Plot for Means Data Means Tmold ('C) Tmelt('C) pini (MPa) tholding(s) 2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
232
+ page_content='35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
233
+ page_content='30 (%) Mean of Means 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
234
+ page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
235
+ page_content='20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
236
+ page_content='15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
237
+ page_content='10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
238
+ page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
239
+ page_content='00 - 75 80 85 215 220 230 47 53 58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
240
+ page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
241
+ page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
242
+ page_content='5Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
243
+ page_content=' CONCLUSION In this paper, Taguchi method and simulation are applied together to study the effect of melt temperature, mould temperature, packing temperature and holding time on the shrinkage and cycle time of the commercial injection moulded part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
244
+ page_content=' The experiments were initially simulated in the Moldflow software instead of the actual process to save time and cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
245
+ page_content=' The most significant factor on both shrinkage and cycle time is mould temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
246
+ page_content=' The result indicated that 85°C of mould temperature, 215°C of melt temperature, 53 Mpa of injection pressure, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
247
+ page_content='5 s of holding time minimize the cycle time to almost 23 s, much less than the current cycle time of the part in the process which is about 40 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
248
+ page_content=' The simulation obtained a minimum shrinkage of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
249
+ page_content='98% with a mould temperature of 85°C, melt temperature of 215°C, injection pressure of 47 Mpa, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
250
+ page_content='5 s of holding time (See Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
251
+ page_content=' This value is lower than the nominal shrinkage of the material (nominal parallel and perpendicular shrinkage are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
252
+ page_content='934% and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
253
+ page_content='082%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
254
+ page_content=' Based on this study, the mould temperature should be set at the highest level and melt temperature at the lowest level to optimize shrinkage and cycle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
255
+ page_content=' Changing the injection pressure and holding time is not significant on the cycle time, so they should be fixed at the minimum and middle levels for minimum shrinkage, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
256
+ page_content=' Further research to improve the optimization results includes validation of the simulation data by running the L9 in the real injection moulding process, increasing the number of experiments from L9 to L27 to investigate the interactions between the factors and study other input variables such as ejection temperature, flow rate, coolant temperature, gate type and cooling channels on the shrinkage and cycle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
257
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
258
+ page_content=' REFERENCES Altan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
259
+ page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
260
+ page_content=' Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
261
+ page_content=' Materials & Design, 31(1), 599–604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
262
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
263
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
264
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
265
+ page_content='matdes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
266
+ page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
267
+ page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
268
+ page_content='049 Butler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
269
+ page_content=' (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
270
+ page_content=' A primer on the Taguchi method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
271
+ page_content=' Computer Integrated Manufacturing Systems, 5(3), 246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
272
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
273
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
274
+ page_content='1016/0951-5240(92)90037-D Hentati, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
275
+ page_content=', Hadriche, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
276
+ page_content=', Masmoudi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
277
+ page_content=', & Bradai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
278
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
279
+ page_content=' Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
280
+ page_content=' International Journal of Advanced Manufacturing Technology, 104(9–12), 4353–4363.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
281
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
282
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
283
+ page_content='1007/s00170-019-04283-z Jan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
284
+ page_content=', Khalid, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
285
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
286
+ page_content=', Awan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
287
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
288
+ page_content=', & Nisar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
289
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
290
+ page_content=' Optimization of injection molding process for sink marks reduction by integrating response surface design methodology &taguchi approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
291
+ page_content=' Journal of Quality and Technology Management Volume XII, Issue I, XII(I), 45–79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
292
+ page_content=' Retrieved from http://pu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
293
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
294
+ page_content='pk/images/journal/iqtm/PDF-FILES/02-Optimization_jun_16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
295
+ page_content='pdf Kazmer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
296
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
297
+ page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
298
+ page_content=' Injection Mold Design Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
299
+ page_content=' In Injection Mold Design Engineering (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
300
+ page_content=' I–XX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
301
+ page_content=' München: Carl Hanser Verlag GmbH &amp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
302
+ page_content=' Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
303
+ page_content=' KG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
304
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
305
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
306
+ page_content='3139/9783446434196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
307
+ page_content='fm Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
308
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
309
+ page_content=', Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
310
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
311
+ page_content=', Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
312
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
313
+ page_content=', Oh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
314
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
315
+ page_content=', & Youn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
316
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
317
+ page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
318
+ page_content=' Measurement of residual stresses in film insert molded parts with complex geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
319
+ page_content=' Polymer Testing, 28(5), 500–507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
320
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
321
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
322
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
323
+ page_content='polymertesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
324
+ page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
325
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
326
+ page_content='009 Kr Dwiwedi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
327
+ page_content=', Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
328
+ page_content=', Noor Rahbar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
329
+ page_content=', & Kumar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
330
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
331
+ page_content=' Practical Application of Taguchi Method for Optimization of Process Parameters in Injection Molding Machine for PP Material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
332
+ page_content=' International Research Journal of Engineering and Technology (IRJET), 2(4), 264–268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
333
+ page_content=' Moayyedian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
334
+ page_content=', Abhary, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
335
+ page_content=', & Marian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
336
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
337
+ page_content=' Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
338
+ page_content=' CIRP Journal of Manufacturing Science and Technology, 21, 150–160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
339
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
340
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
341
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
342
+ page_content='cirpj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
343
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
344
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
345
+ page_content='001 Ozcelik, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
346
+ page_content=', & Erzurumlu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
347
+ page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
348
+ page_content=' Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
349
+ page_content=' Journal of Materials Processing Technology, 171(3), 437– 445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
350
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
351
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
352
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
353
+ page_content='jmatprotec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
354
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
355
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
356
+ page_content='120 Ross PJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
357
+ page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
358
+ page_content=' Taguchi techniques for quality engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
359
+ page_content=' McGraw Hill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
360
+ page_content=' Retrieved from https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
361
+ page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
362
+ page_content='ie/books/about/Taguchi_Techniques_for_Quality_Engineeri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
363
+ page_content='html?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
364
+ page_content='id=CiunygZ90TsC&redir_es c=y Van Nostrand, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
365
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
366
+ page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
367
+ page_content=' Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
368
+ page_content=' Technometrics, 44(3), 289–289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
369
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
370
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
371
+ page_content='1198/004017002320256440 Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
372
+ page_content=', Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
373
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
374
+ page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
375
+ page_content=', & Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
376
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
377
+ page_content=' Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
378
+ page_content=' International Journal of Advanced Manufacturing Technology, 76(9–12), 2199–2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
379
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
380
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
381
+ page_content='1007/s00170-014-6434-y Kariminejad • Tormey • Huq • Morrison • Redmond • Souto • McAfee Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
382
+ page_content=', & Jiang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
383
+ page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
384
+ page_content=' Optimal process design of shrinkage and sink marks in injection molding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
385
+ page_content=' Journal of Wuhan University of Technology-Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
386
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
387
+ page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
388
+ page_content=', 22(3), 404–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
389
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
390
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
391
+ page_content='1007/s11595-006-3404-8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf'}
HdFIT4oBgHgl3EQfXith/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40580fc9f29a4a679c9cea6b78df65a7341980114297760364b4650c7d4dd12a
3
+ size 5177389