jackkuo commited on
Commit
6f3e32c
·
verified ·
1 Parent(s): 2a3941d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE1T4oBgHgl3EQfUgOU/content/2301.03091v1.pdf +3 -0
  2. -NE1T4oBgHgl3EQfUgOU/vector_store/index.faiss +3 -0
  3. -NE1T4oBgHgl3EQfUgOU/vector_store/index.pkl +3 -0
  4. -dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf +3 -0
  5. -dE2T4oBgHgl3EQfmQc9/vector_store/index.faiss +3 -0
  6. -tFAT4oBgHgl3EQfqR1A/vector_store/index.faiss +3 -0
  7. .gitattributes +63 -0
  8. 09FAT4oBgHgl3EQfjh3M/content/tmp_files/2301.08606v1.pdf.txt +1117 -0
  9. 09FAT4oBgHgl3EQfjh3M/content/tmp_files/load_file.txt +0 -0
  10. 0dFKT4oBgHgl3EQfNy2J/content/tmp_files/2301.11756v1.pdf.txt +519 -0
  11. 0dFKT4oBgHgl3EQfNy2J/content/tmp_files/load_file.txt +465 -0
  12. 1dFLT4oBgHgl3EQfpy-5/content/2301.12137v1.pdf +3 -0
  13. 1dFLT4oBgHgl3EQfpy-5/vector_store/index.faiss +3 -0
  14. 2dFST4oBgHgl3EQfXzgB/content/tmp_files/2301.13785v1.pdf.txt +1127 -0
  15. 2dFST4oBgHgl3EQfXzgB/content/tmp_files/load_file.txt +0 -0
  16. 2tE2T4oBgHgl3EQfjAfh/content/tmp_files/2301.03965v1.pdf.txt +1509 -0
  17. 2tE2T4oBgHgl3EQfjAfh/content/tmp_files/load_file.txt +0 -0
  18. 2tFLT4oBgHgl3EQfrC9d/content/tmp_files/2301.12142v1.pdf.txt +1631 -0
  19. 2tFLT4oBgHgl3EQfrC9d/content/tmp_files/load_file.txt +0 -0
  20. 4NAyT4oBgHgl3EQf1_nb/content/2301.00745v1.pdf +3 -0
  21. 4NAyT4oBgHgl3EQf1_nb/vector_store/index.faiss +3 -0
  22. 4NAyT4oBgHgl3EQf1_nb/vector_store/index.pkl +3 -0
  23. 4dAyT4oBgHgl3EQfpPgc/content/tmp_files/2301.00520v1.pdf.txt +1341 -0
  24. 4dAyT4oBgHgl3EQfpPgc/content/tmp_files/load_file.txt +0 -0
  25. 69E1T4oBgHgl3EQfTgNE/vector_store/index.pkl +3 -0
  26. 69E3T4oBgHgl3EQfpwru/content/tmp_files/2301.04646v1.pdf.txt +1019 -0
  27. 69E3T4oBgHgl3EQfpwru/content/tmp_files/load_file.txt +0 -0
  28. 79FAT4oBgHgl3EQfoh2y/content/tmp_files/2301.08635v1.pdf.txt +1788 -0
  29. 79FAT4oBgHgl3EQfoh2y/content/tmp_files/load_file.txt +0 -0
  30. 7NE3T4oBgHgl3EQfRgki/content/tmp_files/2301.04421v1.pdf.txt +1476 -0
  31. 7NE3T4oBgHgl3EQfRgki/content/tmp_files/load_file.txt +0 -0
  32. 99AzT4oBgHgl3EQfSvs8/content/tmp_files/2301.01236v1.pdf.txt +684 -0
  33. 99AzT4oBgHgl3EQfSvs8/content/tmp_files/load_file.txt +223 -0
  34. 9NE1T4oBgHgl3EQfCQIp/content/tmp_files/2301.02861v1.pdf.txt +1231 -0
  35. 9NE1T4oBgHgl3EQfCQIp/content/tmp_files/load_file.txt +381 -0
  36. A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf +3 -0
  37. A9FAT4oBgHgl3EQfrx7P/vector_store/index.faiss +3 -0
  38. A9FAT4oBgHgl3EQfrx7P/vector_store/index.pkl +3 -0
  39. BNE1T4oBgHgl3EQfVgSF/content/tmp_files/2301.03103v1.pdf.txt +2084 -0
  40. BNE1T4oBgHgl3EQfVgSF/content/tmp_files/load_file.txt +0 -0
  41. BtE5T4oBgHgl3EQfTQ-D/vector_store/index.faiss +3 -0
  42. CNE1T4oBgHgl3EQfDwNk/vector_store/index.faiss +3 -0
  43. CNFJT4oBgHgl3EQfASxa/content/2301.11419v1.pdf +3 -0
  44. CNFJT4oBgHgl3EQfASxa/vector_store/index.faiss +3 -0
  45. CNFJT4oBgHgl3EQfASxa/vector_store/index.pkl +3 -0
  46. DNE0T4oBgHgl3EQfggEA/content/tmp_files/2301.02417v1.pdf.txt +2744 -0
  47. DNE0T4oBgHgl3EQfggEA/content/tmp_files/load_file.txt +0 -0
  48. EdE1T4oBgHgl3EQfWgTb/vector_store/index.faiss +3 -0
  49. EdE5T4oBgHgl3EQfUw9y/content/2301.05546v1.pdf +3 -0
  50. EdE5T4oBgHgl3EQfUw9y/vector_store/index.faiss +3 -0
-NE1T4oBgHgl3EQfUgOU/content/2301.03091v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:629bffbca7adc4d57a3982f62c928c49ba8933a4d95de0f560cb5112170c6fd3
3
+ size 288297
-NE1T4oBgHgl3EQfUgOU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ce46e77c89ffd20340e3e2d3f809aff1b11f9721cfb43950b5ae8ec5c6ab09
3
+ size 2687021
-NE1T4oBgHgl3EQfUgOU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd760e2924de1b7ef5bceb0db70d25faf07b86f0a922de5635d2c55ef796589
3
+ size 90463
-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97511271dad5b2fc492cd95305744e5c2f175e58ce2a69b0e9f6bf8cbcce05f4
3
+ size 499082
-dE2T4oBgHgl3EQfmQc9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d0436e38f49547e816f8861f99e5950bce1bcdbdd1291e78c2a1be348cfb8b
3
+ size 1703981
-tFAT4oBgHgl3EQfqR1A/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b16c352dffd8101d786d1dfdc56d48a54a99a9cc2cb469e0cad8dfa658a27e
3
+ size 720941
.gitattributes CHANGED
@@ -2688,3 +2688,66 @@ ItAzT4oBgHgl3EQfVPwp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
2688
  XtE2T4oBgHgl3EQfYgfk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2689
  eNA0T4oBgHgl3EQfHP9d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2690
  G9A0T4oBgHgl3EQfBv-A/content/2301.01980v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688
  XtE2T4oBgHgl3EQfYgfk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2689
  eNA0T4oBgHgl3EQfHP9d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2690
  G9A0T4oBgHgl3EQfBv-A/content/2301.01980v1.pdf filter=lfs diff=lfs merge=lfs -text
2691
+ -dE2T4oBgHgl3EQfmQc9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2692
+ 1dFLT4oBgHgl3EQfpy-5/content/2301.12137v1.pdf filter=lfs diff=lfs merge=lfs -text
2693
+ _NE1T4oBgHgl3EQfUwPr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2694
+ jdAzT4oBgHgl3EQf4_6S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2695
+ NNAyT4oBgHgl3EQf6_pQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2696
+ MdFJT4oBgHgl3EQfzC0_/content/2301.11641v1.pdf filter=lfs diff=lfs merge=lfs -text
2697
+ A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf filter=lfs diff=lfs merge=lfs -text
2698
+ MdFJT4oBgHgl3EQfzC0_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2699
+ -dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf filter=lfs diff=lfs merge=lfs -text
2700
+ odAyT4oBgHgl3EQfzPlC/content/2301.00697v1.pdf filter=lfs diff=lfs merge=lfs -text
2701
+ -tFAT4oBgHgl3EQfqR1A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2702
+ EdE1T4oBgHgl3EQfWgTb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2703
+ NdFQT4oBgHgl3EQfWTbR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2704
+ hdE_T4oBgHgl3EQf3hyR/content/2301.08347v1.pdf filter=lfs diff=lfs merge=lfs -text
2705
+ m9AyT4oBgHgl3EQfyvnQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2706
+ mdE1T4oBgHgl3EQfhATk/content/2301.03237v1.pdf filter=lfs diff=lfs merge=lfs -text
2707
+ m9AyT4oBgHgl3EQfyvnQ/content/2301.00691v1.pdf filter=lfs diff=lfs merge=lfs -text
2708
+ vdAyT4oBgHgl3EQfafdn/content/2301.00243v1.pdf filter=lfs diff=lfs merge=lfs -text
2709
+ W9FQT4oBgHgl3EQfcjYS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2710
+ j9E0T4oBgHgl3EQf7QLf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2711
+ A9FAT4oBgHgl3EQfrx7P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2712
+ itAzT4oBgHgl3EQfpP1U/content/2301.01609v1.pdf filter=lfs diff=lfs merge=lfs -text
2713
+ I9A0T4oBgHgl3EQfCP_M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2714
+ M9E0T4oBgHgl3EQfTABv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2715
+ dNAyT4oBgHgl3EQfjPh9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2716
+ v9FST4oBgHgl3EQfQjh8/content/2301.13759v1.pdf filter=lfs diff=lfs merge=lfs -text
2717
+ ctE4T4oBgHgl3EQfQAwO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2718
+ kb_46/content/kb_46.pdf filter=lfs diff=lfs merge=lfs -text
2719
+ cNE4T4oBgHgl3EQfow2y/content/2301.05187v1.pdf filter=lfs diff=lfs merge=lfs -text
2720
+ -NE1T4oBgHgl3EQfUgOU/content/2301.03091v1.pdf filter=lfs diff=lfs merge=lfs -text
2721
+ PtFJT4oBgHgl3EQf2C2D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2722
+ PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf filter=lfs diff=lfs merge=lfs -text
2723
+ -NE1T4oBgHgl3EQfUgOU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2724
+ JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf filter=lfs diff=lfs merge=lfs -text
2725
+ xdAyT4oBgHgl3EQfa_cC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2726
+ 4NAyT4oBgHgl3EQf1_nb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2727
+ bdE_T4oBgHgl3EQfzRz6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2728
+ dNAyT4oBgHgl3EQfjPh9/content/2301.00411v1.pdf filter=lfs diff=lfs merge=lfs -text
2729
+ HdFIT4oBgHgl3EQfXith/content/2301.11244v1.pdf filter=lfs diff=lfs merge=lfs -text
2730
+ 1dFLT4oBgHgl3EQfpy-5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2731
+ VdE1T4oBgHgl3EQfIwNu/content/2301.02943v1.pdf filter=lfs diff=lfs merge=lfs -text
2732
+ v9FST4oBgHgl3EQfQjh8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2733
+ odAyT4oBgHgl3EQfzPlC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2734
+ CNFJT4oBgHgl3EQfASxa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2735
+ 4NAyT4oBgHgl3EQf1_nb/content/2301.00745v1.pdf filter=lfs diff=lfs merge=lfs -text
2736
+ hdE_T4oBgHgl3EQf3hyR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2737
+ ctE4T4oBgHgl3EQfQAwO/content/2301.04977v1.pdf filter=lfs diff=lfs merge=lfs -text
2738
+ EdE5T4oBgHgl3EQfUw9y/content/2301.05546v1.pdf filter=lfs diff=lfs merge=lfs -text
2739
+ CNFJT4oBgHgl3EQfASxa/content/2301.11419v1.pdf filter=lfs diff=lfs merge=lfs -text
2740
+ wNFLT4oBgHgl3EQfki_9/content/2301.12116v1.pdf filter=lfs diff=lfs merge=lfs -text
2741
+ EdE5T4oBgHgl3EQfUw9y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2742
+ fNAyT4oBgHgl3EQfjvgl/content/2301.00419v1.pdf filter=lfs diff=lfs merge=lfs -text
2743
+ G9A0T4oBgHgl3EQfBv-A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2744
+ CNE1T4oBgHgl3EQfDwNk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2745
+ F9E2T4oBgHgl3EQf-Qn4/content/2301.04238v1.pdf filter=lfs diff=lfs merge=lfs -text
2746
+ I9A0T4oBgHgl3EQfCP_M/content/2301.01988v1.pdf filter=lfs diff=lfs merge=lfs -text
2747
+ SNE3T4oBgHgl3EQfzAs2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2748
+ jdAzT4oBgHgl3EQf4_6S/content/2301.01853v1.pdf filter=lfs diff=lfs merge=lfs -text
2749
+ NNAyT4oBgHgl3EQf6_pQ/content/2301.00830v1.pdf filter=lfs diff=lfs merge=lfs -text
2750
+ QtAyT4oBgHgl3EQfU_dt/content/2301.00135v1.pdf filter=lfs diff=lfs merge=lfs -text
2751
+ BtE5T4oBgHgl3EQfTQ-D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2752
+ wNFLT4oBgHgl3EQfki_9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2753
+ NNE0T4oBgHgl3EQf0QK5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09FAT4oBgHgl3EQfjh3M/content/tmp_files/2301.08606v1.pdf.txt ADDED
@@ -0,0 +1,1117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Data Augmentation for Modeling Human
2
+ Personality: The Dexter Machine
3
+ Yair Neuman, Vladyslav Kozhukhov and Dan Vilenchik
4
+ January 23, 2023
5
+ Abstract
6
+ Modeling human personality is important for several AI challenges,
7
+ from the engineering of artificial psychotherapists to the design of persona
8
+ bots. However, the field of computational personality analysis heavily re-
9
+ lies on labeled data, which may be expensive, difficult or impossible to
10
+ get. This problem is amplified when dealing with rare personality types
11
+ or disorders (e.g., the anti-social psychopathic personality disorder). In
12
+ this context, we developed a text-based data augmentation approach for
13
+ human personality (PEDANT). PEDANT doesn’t rely on the common
14
+ type of labeled data but on the generative pre-trained model (GPT) com-
15
+ bined with domain expertise. Testing the methodology on three different
16
+ datasets, provides results that support the quality of the generated data.
17
+ 1
18
+ Introduction
19
+ Personality concerns the individual’s relatively stable pattern of thoughts, emo-
20
+ tions and behaviors [1]. There are various personality theories from the Big Five
21
+ [2] to Affective Neuroscience [3] and Mischel’s contextual approach to person-
22
+ ality [4]. In this paper, we adhere to the clinical approach represented by the
23
+ Psychodynamic Diagnostic Manual (PDM) [5] and SWAP [6], which is highly
24
+ relevant for diagnosis, and research [7]. According to the PDM approach, per-
25
+ sonality types are stable configurations characterized by key features such as
26
+ the individual’s core beliefs about self and others. For instance, a depressive
27
+ personality is characterized by self-criticism and accompanied by the belief that
28
+ ”something is essentially bad about me”.
29
+ Current computational personality research is almost exclusively focused on
30
+ features’-based data-driven classification involving the prediction of a person-
31
+ ality class label. Accomplishing such tasks relies on the availability of a large
32
+ amount of high-quality labeled data (e.g., [8, 9, 10]). However, obtaining such
33
+ data may be expensive, difficult, or impossible for various reasons. For instance,
34
+ the prevalence of the anti-social psychopathic personality disorder in the pop-
35
+ ulation is low
36
+ [11, 12, 13], and it is currently impossible to gain access to a
37
+ massive dataset of labeled texts produced by clinically diagnosed psychopaths.
38
+ High-quality diagnostic procedures, such as SWAP, are costly as they require
39
+ human expertise and significant time to complete. While self-reported question-
40
+ naires for personality assessment are available, they rely on the collaboration
41
+ of the diagnosed individual and their ability to provide a valid self-assessment,
42
+ 1
43
+ arXiv:2301.08606v1 [cs.CL] 20 Jan 2023
44
+
45
+ which in the case of the anti-social personality disorder, for instance, is not
46
+ trivial to gain.
47
+ In the face of these challenges, a natural solution for data scarcity is data
48
+ augmentation, intensively developed in computer vision but ”relatively under-
49
+ explored” in NLP, where the generation of effective augmented examples is ”less
50
+ obvious” [14, 15]. To illustrate the challenges in textual data augmentation, we
51
+ ran the SOTA data-augmentation pipeline LAMBADA [16] to generate 200 sen-
52
+ tences out of a seed set of 20 sentences (see appendix) expressing a clear psycho-
53
+ pathic signature. This attempt to produce artificial ”psychopathic” sentences
54
+ resulted in only 100 unique sentences, where the vast majority of sentences were
55
+ either one of the seed sentences or a simple paraphrasing thereof.
56
+ Data augmentation is typically viewed as the process of increasing the amount
57
+ of data by adding slightly modified copies of already existing labeled data. In
58
+ some cases, there is no labeled data at all or a very small quantity which pre-
59
+ cludes proper augmentation (as our experiment with LAMBADA suggests). In
60
+ this paper, we offer a solution to these cases by using unlabelled data and adding
61
+ domain expert input to compensate for the absence of labeled data (once can
62
+ view labeled data as domain expert knowledge).
63
+ A constructive approach to personality modeling may be found in the rev-
64
+ olutionary large language models recently introduced to NLP (e.g., GPT-2)
65
+ [17, 18]. Recently, [19] and [20] showed that the GPT model, once fine-tuned,
66
+ can be useful in the domain of personal conversations. Their approach led to
67
+ substantial improvements in the PersonaChat data set, showcasing the potential
68
+ of exploiting large pre-trained generative models in the conversational domain.
69
+ However, these advancements do not naively imply anything for modeling per-
70
+ sonality types, as the poor results obtained from LAMBADA, which is based
71
+ on GPT technology, show. Indeed, personalized chit-chat models, [21] use the
72
+ notion of personalization (e.g., age) which is different from the psychodynamic
73
+ approach used in this paper.
74
+ 1.1
75
+ Our contribution.
76
+ We present a novel personality data augmentation approach, PEDANT (PEr-
77
+ sonality Data AugmeNTation), using (1) a generative pre-trained model (GPT)
78
+ combined with (2) domain expertise (the domain expert is the first author who
79
+ has intensively studied and published about personality) while relying only on
80
+ (3) unlabeled text.
81
+ PEDANT operates in two phases. In the first phase, unlabeled data relevant
82
+ to the selected personality type is harvested from online resources; this data
83
+ is then used to train a generative language model. In the second phase, the
84
+ language model is repeatedly prompted to complete a set of seed sentences
85
+ carefully crafted by the domain expert. All these completions are then filtered
86
+ and ranked according to a scoring function that the domain expert pre-defined;
87
+ the top k sentences are the output of PEDANT.
88
+ We implement PEDANT with regard to a specific personality type: the anti-
89
+ social psychopathic personality [6]; we call this particular pipeline Dexter. This
90
+ type of personality is suitable for validating our approach as the prevalence of
91
+ psychopathic personality disorder is extremely low, and a labeled corpus of nat-
92
+ urally produced texts of diagnosed psychopaths does not exist. The texts that
93
+ we harvest for the first phase of PEDANT come from a few fictive characters
94
+ 2
95
+
96
+ from the cinema and TV (e.g., Dexter the psychopath from the TV series ”Dex-
97
+ ter”) and from Reddit forums such as r/psychopath. The second phase, where
98
+ domain expertise is used, is described in detail in Sections 3.2 and 3.4.
99
+ We validated Dexter using a downstream text classification task, as common
100
+ in other works that deal with the evaluation of data augmentation pipelines
101
+ [22, 16]. We used the data generated by Dexter to train a classifier and then
102
+ tested it on three offensive-speech datasets that cover different dimensions of
103
+ the psychopathic personality (e.g., lack of empathy, toxicity, and being manip-
104
+ ulative).
105
+ For comparison, we tested two SOTA data augmentation pipelines, LAM-
106
+ BADA [16], and LeakGAN [23]. The Dexter dataset produced a classifier that
107
+ ranked first (by a large gap) in all three datasets. The complete detail of both
108
+ experiments appears in Section 5.2.
109
+ 1.2
110
+ Illustration
111
+ It is a non-trivial task to evaluate the extent to which the resulting genera-
112
+ tive model (the outcome of Dexter) reflects the psychopathic mind. One way
113
+ mentioned above is via a downstream task that uses data generated by the
114
+ model. Another way is to have a host of personality domain experts chat with
115
+ the model. While we did not have the resources to perform this expensive and
116
+ laborious task, we invite the reader to peek into such a possible Q&A session
117
+ and to judge for herself the change in personality.
118
+ Below is a comparison of the output of a GPT model before and after fine-
119
+ tuning on the harvested psychopathic-related texts.
120
+ In the examples below,
121
+ GPT is prompt with psychopathic statements chosen by the domain expert, and
122
+ its completion is recorded; a couple more examples are given in the appendix.
123
+ Statement: I act impulsively, without regard for the consequences of my actions.
124
+ GPT-2 before fine-tuning: I know when someone is suffering and I feel bad.
125
+ GPT-3 davinci: I have difficulty organizing tasks and activities. I have difficulty
126
+ with time management. .
127
+ GPT-3 curie: My friends are more important to me than my family. I dress in
128
+ a way that is not in keeping with the standards of my community.
129
+ chatGPT: It’s natural to act impulsively at times, but if you find that you fre-
130
+ quently act without considering the consequences of your actions, it may be
131
+ helpful to try to develop more self-control.
132
+ GPT-2
133
+ after fine-tuning: I have an abundance of rage, and I can turn to it with no
134
+ consideration for consequences.
135
+ Statement: I feel like a hunter seeking a prey.
136
+ GPT-2 before fine-tuning: I don’t want to be a bad person.
137
+ GPT-3 davinci: I want to let my heart feel.
138
+ GPT-3 curie: I’m lost in this forest ! I’ll be crushed by this forest!
139
+ chatGPT: It’s important to remember that other people are not prey to be hunted.
140
+ It’s never okay to view or treat others as if they are objects or targets to be
141
+ pursued or exploited.
142
+ GPT-2 after fine-tuning: I don’t care about it, I just want to kill and eat.
143
+ 3
144
+
145
+ 2
146
+ Related work
147
+ Data augmentation methods have been explored to address the imbalance of
148
+ datasets challenge in supervised classification tasks. Noise injection or attribute
149
+ modification techniques were commonly applied to generate synthetic data for
150
+ image and sound classification tasks [24, 25, 26]. However, such techniques do
151
+ not extend to text due to the categorical nature of words and the sequential
152
+ nature of text.
153
+ We locate our work in the context of text data augmentation, [14, 27, 16].
154
+ “Previous-generation” textual data augmentation approaches focus on sample
155
+ alteration [28, 29, 30, 31, 32], in which a single sentence is altered to generate a
156
+ new sentence primarily by synonyms replacements. Presumably, methods that
157
+ make only local changes will produce sentences with a structure similar to the
158
+ original ones, thus yielding low corpus-level variability.
159
+ Other recent approaches to textual data augmentation that generate whole
160
+ sentences rather than making a few local changes include using variational au-
161
+ toencoding [33], paraphrasing [34] and methods based on generative adversarial
162
+ networks [35, 23, 36].
163
+ Recent progress in NLP has been marked by the emergence of large lan-
164
+ guage models (i.e., transformers) such as GPT-2 [18].
165
+ GPT-based language
166
+ models scored high in open-domain dialogue generation tasks [20, 19, 37]. The
167
+ data-augmentation pipeline presented in [16] uses GPT technology to generate
168
+ themed synthetic text. The idea behind [16] involves fine-tuning a GPT model
169
+ to a specific task using existing labeled data. Using the fine-tuned model and
170
+ given a class label, new sentences for the class are generated. The sentences are
171
+ filtered with a classifier trained on the original data.
172
+ While our pipeline is similar to [16] in flavor (a fine-tuning step followed by
173
+ a filtering step), it is different in two key aspects. We use unlabelled data for
174
+ the fine-tuning step. This allows us to fine-tune the GPT model with a large
175
+ amount of, possibly slightly lower quality, data. [16] use labeled data for the
176
+ fine-tuning step; thus the quality of the augmentation depends on the amount
177
+ of available text. Second, our filtering is also done in an unsupervised manner,
178
+ replacing the need for labeled data for training a classifier with the knowledge
179
+ of a domain expert. These two key differences make our pipeline useful for data
180
+ generation for rare classes, such as rare personality types, where labeled data
181
+ is scarce or non-existent. Indeed, comparing the performance of [16] to Dexter
182
+ corroborates the latter.
183
+ 3
184
+ Methodology
185
+ The pipeline for generating data for a given personality type, illustrated in
186
+ Figure 1, is composed of the following stages (the actual parameter values that
187
+ we’ve used are given in this general description):
188
+ 1. Texts produced by a few fictive characters (e.g., Dexter) and secondary
189
+ sources (e.g., Reddit forums discussing the personality style) are collected
190
+ to form a preliminary dataset. Let D be that preliminary dataset.
191
+ 2. A pre-trained language model is fine-tuned on D. Let G be the obtained
192
+ model
193
+ 4
194
+
195
+ Figure 1: Pipeline for PEDANT. GPT-2 is trained and prompted to complete
196
+ a carefully chosen seed of sentences. The completions are filtered and ranked
197
+ using similarity to relevant words chosen using domain expertise.
198
+ 3. A domain-expert hand-crafted set of s = 40 seed sentences representing
199
+ the personality’s beliefs about self/others is prepared; G is prompted to
200
+ complete each seed c = 200 times, for a total of n = s·c = 8000 candidate
201
+ sentences.
202
+ 4. Based on domain expertise, a hand-crafted vector F, containing f words
203
+ that are typical of the personality type, is assembled. The n candidate
204
+ sentences are being filtered and ranked according to their cosine similarity
205
+ with F.
206
+ 5. The top k = 2000 sentences compose the output.
207
+ We now describe how we customized this general pipeline to the psychopathic
208
+ personality.
209
+ 3.1
210
+ The preliminary datasets
211
+ Following [38, 39] we used data from movie scripts – the text produced by
212
+ three well-known fictive psychopathic characters: The Joker in the movie ”The
213
+ Joker”, Bateman in the movie ”American Psycho” and Dexter from the TV
214
+ series ”Dexter”. In addition, we collected all texts from Reddit discussion groups
215
+ dealing with psychopathy (r/psychopath, r/sociopath, r/antisocial).
216
+ After cleaning the data by applying a spell checker [40], removing emojis,
217
+ duplicates, hyperlinks, and spam messages [41], the preliminary cleaned dataset
218
+ consisted of 1,320,552 tokens.
219
+ 3.2
220
+ The sentences completion seed set
221
+ Our domain expert manually prepared 20 seed sentences representing the psy-
222
+ chopath’s ”beliefs about self” (e.g., ”I take advantage of others whenever I can”)
223
+ 5
224
+
225
+ OCN
226
+ Candidate
227
+ GPT-2
228
+ Data
229
+ Sentence
230
+ Bank
231
+ Sentences
232
+ for
233
+ completion
234
+ 88
235
+ Final set of
236
+ sentencesand 20 seed sentences representing the psychopath’s ”beliefs about others” (e.g.,
237
+ ”Human beings are weak”). The complete list of seed sentences appears in the
238
+ appendix.
239
+ The number ’20’ is somewhat arbitrary. While testing with other seed sizes,
240
+ we found that 20 was the minimal number that gave good results, considering
241
+ the computational constraints such as space and running time.
242
+ 3.3
243
+ Training GPT-2 and generating sentences
244
+ Our starting point is the pre-trained GPT-2 with 1.5B parameters accessed via
245
+ the popular HuggingFace API [42]. We chose GPT-2 as it is currently one of
246
+ the most useful language generation model. (The newer GPT-3 is still not open
247
+ source, and it’s harder to work with, e.g., fine-tuning on a large text like our
248
+ preliminary dataset). Next, we fine-tuned the pre-trained GPT-2 model on the
249
+ entire preliminary dataset (the fictive characters text and the Reddit data) using
250
+ the task of predicting the next word of the sentence [18]. The parameters we
251
+ used were: learning rate=0.0001, model name=‘1558M’, batch size=4, optimizer
252
+ = ‘adafactor’, steps = 10000 and the cross entropy loss function.
253
+ We prompted the fine-tuned GPT-2 model on each of the 40 seed sentences
254
+ ( see the appendix for the full list), producing 200 sentence completions for each
255
+ sentence. Using the experts’ judgment of two psychologists, we qualitatively
256
+ evaluated a random sample of these sentences. We concluded that the best com-
257
+ pletions were obtained with the following parameters: length=50,temperature=0.7,
258
+ top k = 50, top p = 0.90.
259
+ We used the free Google Colab resources with Tesla P100 GPUs for this
260
+ part.
261
+ 3.4
262
+ Filtering and Ranking
263
+ We applied filtering and ranking to the 8000 sentence completions. First, we
264
+ removed sentences that (1) include the trivial words: psychopath, antisocial,
265
+ and sociopath; (2) are duplicates of other sentences; (3) contain less than three
266
+ words; (4) end with a stop word; (5) are emotionally neutral or have a higher
267
+ positive than a negative sentiment (we used NLTK to estimate the sentiment);
268
+ (6) are simple paraphrases of each other (via [43]).
269
+ For the ranking task, we identified words significantly collocated with the
270
+ target word ”psychopath” in the iWeb repository [44].
271
+ The domain expert
272
+ selected 28 to form a ”psychopathic vector” (see the appendix). Next, we used
273
+ the vectorial semantic approach for personality assessment [45] and measured
274
+ the cosine similarity between each filtered candidate sentence completion and
275
+ the psychopathy vector. For each of the 40 seed sentences, we selected the 50
276
+ completions that scored highest on the cosine similarity test. The output was a
277
+ set of 1735 synthetically generated sentences that are supposed to represent a
278
+ psychopathic mind (if for some seed less than 50 completions passed the filtering
279
+ step, we took all of them).
280
+ 6
281
+
282
+ 4
283
+ Data
284
+ Our setting inherently precludes the existence of a large labeled bench-marking
285
+ dataset of text written by clinically diagnosed psychopaths. However, as the
286
+ antisocial psychopathic personality is composed of several dimensions (e.g., lack
287
+ of empathy), we tested our approach on labeled datasets hypothesized to share
288
+ one dimension or more with this personality type.
289
+ 4.1
290
+ Test Data
291
+ We now describe the three datasets that we’ve used to evaluate the performance
292
+ of Dexter and two other data augmentation pipelines.
293
+ Sexual predators. Sexual predators share with psychopaths at least two psy-
294
+ chological dimensions: being manipulative and lacking empathy, as indicated
295
+ by the correlation between sexual offending and psychopathy [46, 47, 48]. Our
296
+ first dataset was a labeled data set of texts produced by 142 sexual predators
297
+ and 97,689 non-predators [49].
298
+ Empathy. Psychopaths are characterized by a lack of empathy. Our second
299
+ data set consists of interactions between help seekers in an online call center
300
+ for mental health support [50]. Labeled texts of the mental health supporters
301
+ (responders) are provided. Responders are tagged according to three increasing
302
+ levels of empathy: “0” (N = 2037), “1” (N = 895), and “2” (N = 152). Unlike
303
+ the other two datasets, the empathy dataset does not contain a natural positive
304
+ class, as an empathy score of 0 does not necessarily imply a strong negative
305
+ personality.
306
+ Cyberbullying. Cyberbullying may have a clear psychopathic signature, given
307
+ the reported association between the psychopathic mind and sadism [51, 52].
308
+ We have used the labeled toxic-text subset of the cyberbullying dataset [53]
309
+ that contains 12,168 toxic vs. 14,874 non-toxic texts. Unlike the previous two
310
+ datasets, this one is labeled at the message level.
311
+ Each message consists of
312
+ several sentences, and the entire message is assigned the label “toxic” if there
313
+ are “enough” toxic sentences (the exact labeling procedure is described in the
314
+ original paper [53]).
315
+ 4.2
316
+ Train Data
317
+ We now describe the datasets we used to fine-tune the BERT-base-uncased
318
+ model [54], which we then ran to classify the aforementioned test datasets. The
319
+ data statistics is summarized in Table 1.
320
+ The Dexter dataset. This dataset contains 3400 sentences; 1700 sentences
321
+ are the output of Dexter, which serve as the positive class, and 1700 sentences
322
+ from various Reddit discussion groups that serve as the negative class. These
323
+ sentences were selected by first sampling 8000 random sentences from various
324
+ Reddit groups, then filtering and cleaning them according to the same procedure
325
+ that was applied to the psychopathic texts. Finally, the 1700 sentences with the
326
+ lowest psychopathic score were chosen.
327
+ The Dexter-minus and the PRELIM dataset. These two datasets allow us
328
+ to evaluate the importance of the different stages in the Dexter pipeline (Figure
329
+ 1). The Dexter-minus dataset follows the same pipeline as Dexter just that the
330
+ 7
331
+
332
+ Dataset
333
+ #Pos.
334
+ #Neg
335
+ Sexual Predators
336
+ 142
337
+ 97,689
338
+ Empathy
339
+ 2,037
340
+ 152
341
+ Cyberbullying
342
+ 12,168
343
+ 14,784
344
+ Table 1: Summary statistics for the three datasets described in Section 4. The
345
+ number of samples in the positive and negative class are shown.
346
+ fine-tuning of the GPT is skipped. The PERLIM dataset shortcuts the GPT
347
+ step altogether and proceeds directly to the filtering and ranking step.
348
+ To compare the performance of Dexter against the two SOTA data-augmentation
349
+ pipelines, we created the following two synthetic datasets.
350
+ The LAMBADA dataset. To train LAMBADA, we used the Papers-With-
351
+ Code recommended implementation of LAMBADA [55]. We augmented GPT-2
352
+ with two new classes, ”#beliefs about others” and ”# beliefs about self”. Each
353
+ class was seeded with the 20 sentences that our domain expert crafted (Section
354
+ 3.2). All the training parameters and the code are available at [55].
355
+ We then used the LAMBADA pipeline to generate 17,000 sentences, out
356
+ of which we chose the best 1700 (this was the recommendation of the authors
357
+ [16], to generate 10x more sentences than needed). Specifically, we generated
358
+ 8500 from the “#beliefs about others” class and 8500 from “#beliefs about
359
+ self” (we used the following parameters for GPT-2: max length=50, top k = 10,
360
+ p = 0.85). We ranked the sentences the same way we ranked ours: using cosine
361
+ similarity to the psychopathic vector of words (Section 3.4).
362
+ The negative class of the LAMBADA dataset is the same as Dexter’s.
363
+ The LeakGAN dataset. We trained LeakGAN using the official LeakGAN
364
+ implementation [56]. LeakGAN is trained with the target class text. We used
365
+ all the text in the preliminary dataset to that end (Section 3.1) and the default
366
+ parameters from the official implementation. We generated 1700 sentences using
367
+ LeakGAN to serve as the positive class, and the negative class was the same as
368
+ Dexter’s.
369
+ External competition datasets. This collection contains three gold-standard
370
+ competition offensive speech datasets: OffenseEval [57], HatEval [58], and AbuseE-
371
+ val [59]. Each dataset contains roughly 10,000 labeled texts. We call the union
372
+ of all three datasets the Golden dataset.
373
+ 5
374
+ Evaluation
375
+ To evaluate Dexter we’ve created a family of models using the aforementioned
376
+ training datasets of Section 4.2. Each model is named X@BERT, which means
377
+ that the BERT-base-uncased model [54] was fine-tuned using dataset X. If a
378
+ ’+’ is appended, X@BERT+, this means that a preceding step of fine-tuning on
379
+ OffenseEval [57] was taking place.
380
+ 5.1
381
+ Evaluation procedure
382
+ All the test datasets mentioned in Section 4.1, Table 1, are imbalanced to dif-
383
+ ferent degrees (the sexual predators dataset contained merely 0.001% sexual
384
+ 8
385
+
386
+ Model
387
+ Pred.
388
+ Emp.
389
+ Cyber.
390
+ Avg Rank
391
+ Dexter@BERT+
392
+ 1
393
+ 1
394
+ 2
395
+ 1.33
396
+ OffenseEval@BERT
397
+ 3
398
+ 2
399
+ 1
400
+ 2
401
+ Dexter@BERT
402
+ 2
403
+ 4
404
+ 5
405
+ 3.66
406
+ HateEval@BERT
407
+ 6
408
+ 3
409
+ 6
410
+ 5
411
+ Dexter-@BERT
412
+ 4
413
+ 5
414
+ 7
415
+ 5.33
416
+ Golden@BERT
417
+ 7
418
+ 7
419
+ 3
420
+ 5.66
421
+ AbuseEval@BERT
422
+ 7
423
+ 7
424
+ 4
425
+ 6
426
+ PRELIM@BERT
427
+ 8
428
+ 8
429
+ 8
430
+ 8
431
+ Table 2: Summary of Table 4. The Dexter@BERT variants are in bold.
432
+ Model
433
+ Pred.
434
+ Emp.
435
+ Cyber.
436
+ Avg Rank
437
+ Dexter@BERT+
438
+ 1
439
+ 1
440
+ 1
441
+ 1
442
+ Dexter@BERT
443
+ 2
444
+ 2
445
+ 3
446
+ 2.33
447
+ LAMBADA@BERT+
448
+ 4
449
+ 4
450
+ 2
451
+ 3.33
452
+ Dexter-@BERT
453
+ 3
454
+ 3
455
+ 5
456
+ 3.66
457
+ LeakGAN@BERT+
458
+ 5
459
+ 5
460
+ 4
461
+ 4.66
462
+ LAMBADA@BERT
463
+ 7
464
+ 6
465
+ 6
466
+ 6.33
467
+ LeakGAN@BERT
468
+ 6
469
+ 7
470
+ 7
471
+ 6.66
472
+ Table 3: Summary of Table 5. The Dexter@BERT variants are in bold.
473
+ predators). To allow comparison across the three datasets while avoiding mis-
474
+ leading artifacts that such imbalanced data introduces, we down-sampled the
475
+ majority class to obtain balanced sets.
476
+ The output of a BERT model is a number in [0, 1], the result of the last layer
477
+ activation unit (soft-max in our case). This number may be thought of as the
478
+ probability that BERT assigns the instance to belong to the positive class (in
479
+ our case, ”psychopath”). We define the PsychoScore of a user as the average
480
+ output of the model over all the sentences produced by that user (each sentence
481
+ is scored separately by the model). It is common practice to feed the BERT
482
+ score into a simple classifier, like SVM, to find the optimal cut-off for the binary
483
+ classification task [60].
484
+ To evaluate the model on each test data set, we computed the 5-fold cross-
485
+ validation F1 and Macro F1 scores. Each fold consisted of n = 100 randomly
486
+ sampled instances from each class, and split into 80% train and 20% test. We
487
+ trained a soft-margin kernel SVM (we used the default Python sklearn module
488
+ parameters C = 1, kernel = RBF) on the users’ PsychoScores and the corre-
489
+ sponding label.
490
+ 5.2
491
+ Results
492
+ The results of running the X@BERT models on the test datasets of Section
493
+ 4.1 are summarized in Tables 4 and 5. Table 4 reprots the comparison against
494
+ the pre-trained offensive speech models, while Table 5 reports the comparison
495
+ against LeakGAN and LAMBADA. Table 2 summarizes Table 4 with the over-
496
+ all average ranking across the three datasets and similarly Table 3 summarizes
497
+ Table 5. Both show that the model Dexter@BERT+ ranked first, and Dex-
498
+ ter@BERT came second (Table 5) and third (Table 4) .
499
+ The following key
500
+ conclusions are read from the tables:
501
+ 9
502
+
503
+ Data set
504
+ Model
505
+ Precision
506
+ Recall
507
+ F1 score
508
+ Macro F1 score
509
+ Dexter@BERT+
510
+ 0.92
511
+ 0.87
512
+ 0.89
513
+ 0.91 ± 0.029
514
+ Dexter@BERT
515
+ 0.91
516
+ 0.86
517
+ 0.88
518
+ 0.90 ± 0.037
519
+ Sexual Predator Identification
520
+ OffenseEval@BERT
521
+ 0.89
522
+ 0.87
523
+ 0.88
524
+ 0.90 ± 0.035
525
+ Competition [49]
526
+ Dexter-@BERT
527
+ 0.80
528
+ 0.93
529
+ 0.86
530
+ 0.88 ± 0.043
531
+ HateEval@BERT
532
+ 0.95
533
+ 0.5
534
+ 0.65
535
+ 0.75 ± 0.011
536
+ Golden@BERT
537
+ 0.88
538
+ 0.50
539
+ 0.63
540
+ 0.69 ± 0.095
541
+ AbuseEval@BERT
542
+ 0.73
543
+ 0.58
544
+ 0.51
545
+ 0.53 ± 0.133
546
+ PRELIM@BERT
547
+ 0.51
548
+ 1.00
549
+ 0.68
550
+ 0.38 ± 0.024
551
+ Dexter@BERT+
552
+ 0.66
553
+ 0.80
554
+ 0.72
555
+ 0.70 ± 0.083
556
+ OffenseEval@BERT
557
+ 0.61
558
+ 0.81
559
+ 0.69
560
+ 0.64 ± 0.081
561
+ Empathy [50]
562
+ HateEval@BERT
563
+ 0.59
564
+ 0.65
565
+ 0.61
566
+ 0.59 ± 0.063
567
+ Dexter@BERT
568
+ 0.55
569
+ 0.88
570
+ 0.67
571
+ 0.54 ± 0.077
572
+ Dexter-@BERT
573
+ 0.51
574
+ 0.65
575
+ 0.57
576
+ 0.52 ± 0.075
577
+ Golden@BERT
578
+ 0.42
579
+ 0.93
580
+ 0.58
581
+ 0.38 ± 0.061
582
+ AbuseEval@BERT
583
+ 0.44
584
+ 0.85
585
+ 0.58
586
+ 0.37 ± 0.018
587
+ PRELIM@BERT
588
+ 0.16
589
+ 0.27
590
+ 0.22
591
+ 0.27 ± 0.080
592
+ OffenseEval@BERT
593
+ 0.92
594
+ 0.80
595
+ 0.85
596
+ 0.88 ± 0.044
597
+ Dexter@BERT+
598
+ 0.96
599
+ 0.72
600
+ 0.83
601
+ 0.87 ± 0.048
602
+ Golden@BERT
603
+ 0.84
604
+ 0.87
605
+ 0.85
606
+ 0.87 ± 0.041
607
+ Cyberbullying [53]
608
+ AbuseEval@BERT
609
+ 0.89
610
+ 0.78
611
+ 0.82
612
+ 0.83 ± 0.050
613
+ Dexter@BERT
614
+ 0.93
615
+ 0.60
616
+ 0.72
617
+ 0.77 ± 0.051
618
+ HateEval@BERT
619
+ 0.86
620
+ 0.61
621
+ 0.71
622
+ 078 ± 0.075
623
+ Dexter-@BERT
624
+ 0.91
625
+ 0.56
626
+ 0.68
627
+ 0.77 ± 0.080
628
+ PRELIM@BERT
629
+ 0.80
630
+ 0.57
631
+ 0.67
632
+ 0.70 ± 0.012
633
+ Table 4: Results of the various models on the test data sets sorted according to
634
+ macro F1 score.
635
+ • The results for the sexual predators place Dexter@BERT+ and Dex-
636
+ ter@BERT at the top two both with respect to the other data augmenta-
637
+ tion pipelines (Table 5) and with respect to the abusive speech BERT mod-
638
+ els (Table 4). In fact, both LAMBADA@BERT+ and LeakGAN@BERT+
639
+ obtained worse results than the baseline OffenseEval@BERT. (F1 score of
640
+ 0.88 vs 0.8 and lower).
641
+ • The results for the empathy dataset in Table 4 show that Dexter@BERT+
642
+ obtained the highest F1 and macro F1 score. In Table 5 we see that the
643
+ performance of Dexter@BERT and its derivatives is far better than the
644
+ other two pipelines. We also observe a poorer overall performance than the
645
+ other two datasets, in accordance with the absence of a natural positive
646
+ class.
647
+ • The results for the cyberbullying dataset in Table 4 show that Dex-
648
+ ter@BERT+ scored at the top (Macro F1 score 0.87) together with Of-
649
+ fenseEval@BERT (0.88) and AbuseEval@BERT (0.87).
650
+ In Table 5 we
651
+ again see that Dexter@BERT+ came first, although this time, the gap
652
+ from LAMBADA@BERT+ is small.
653
+ • The performance of Dexter@BERT+ is similar to OffenseEval@BERT on
654
+ the sexual predators and cyberbullying data sets. This is to be expected
655
+ as these datasets have a clear offensive speech element. The more telling
656
+ result is the larger gap for the empathy dataset, 0.7 vs 0.64 in Macro F1
657
+ 10
658
+
659
+ Dataset
660
+ Model
661
+ Precision
662
+ Recall
663
+ F1 score
664
+ Macro F1 score
665
+ Dexter@BERT+
666
+ 0.92
667
+ 0.87
668
+ 0.89
669
+ 0.91 ± 0.029
670
+ Dexter@BERT
671
+ 0.91
672
+ 0.86
673
+ 0.88
674
+ 0.90 ± 0.037
675
+ Sexual Predator Identification
676
+ Dexter-@BERT
677
+ 0.80
678
+ 0.93
679
+ 0.86
680
+ 0.88 ± 0.043
681
+ Competition [49]
682
+ LAMBADA@BERT+
683
+ 0.85
684
+ 0.73
685
+ 0.77
686
+ 0.80 ± 0.074
687
+ LeakGAN@BERT+
688
+ 0.55
689
+ 0.99
690
+ 0.71
691
+ 0.51 ± 0.035
692
+ LeakGAN@BERT
693
+ 0.53
694
+ 0.85
695
+ 0.65
696
+ 0.51 ± 0.041
697
+ LAMBADA@BERT
698
+ 0.47
699
+ 0.80
700
+ 0.51
701
+ 0.30 ± 0.019
702
+ Dexter@BERT+
703
+ 0.66
704
+ 0.80
705
+ 0.72
706
+ 0.70 ± 0.083
707
+ Dexter@BERT
708
+ 0.55
709
+ 0.88
710
+ 0.67
711
+ 0.54 ± 0.077
712
+ Empathy [50]
713
+ Dexter-@BERT
714
+ 0.51
715
+ 0.65
716
+ 0.57
717
+ 0.52 ± 0.075
718
+ LAMBADA@BERT+
719
+ 0.40
720
+ 0.67
721
+ 0.50
722
+ 0.33 ± 0.071
723
+ LeakGAN@BERT+
724
+ 0.30
725
+ 0.76
726
+ 0.41
727
+ 0.31 ± 0.122
728
+ LAMBADA@BERT
729
+ 0.81
730
+ 0.35
731
+ 0.40
732
+ 0.50 ± 0.145
733
+ LeakGAN@BERT
734
+ 0.28
735
+ 0.53
736
+ 0.36
737
+ 0.30 ± 0.040
738
+ Dexter@BERT+
739
+ 0.96
740
+ 0.72
741
+ 0.83
742
+ 0.87 ± 0.048
743
+ LAMBADA@BERT+
744
+ 0.95
745
+ 0.70
746
+ 0.80
747
+ 0.83 ± 0.060
748
+ Dexter@BERT
749
+ 0.93
750
+ 0.60
751
+ 0.72
752
+ 0.77 ± 0.051
753
+ Cyberbullying [53]
754
+ LeakGAN@BERT+
755
+ 0.91
756
+ 0.56
757
+ 0.69
758
+ 0.71 ± 0.064
759
+ Dexter-@BERT
760
+ 0.91
761
+ 0.56
762
+ 0.68
763
+ 0.77 ± 0.080
764
+ LAMBADA@BERT
765
+ 0.88
766
+ 0.54
767
+ 0.66
768
+ 0.71 ± 0.078
769
+ LeakGAN@BERT
770
+ 0.97
771
+ 0.47
772
+ 0.62
773
+ 0.68 ± 0.114
774
+ Table 5: Results of the various models that were trained by different text aug-
775
+ mentation techniques, sorted according to macro F1 score.
776
+ score. Indeed lack of empathy has more to do with the psychopathic mind
777
+ than offensive speech.
778
+ • One can look at our results through the lens of transfer learning, where
779
+ our dataset was successfully used to facilitate transfer learning from the
780
+ task of offensive speech detection to the task of predicting various aspects
781
+ associated with the psychopathic personality.
782
+ 6
783
+ Discussion
784
+ This paper presents a new unsupervised approach for personality data augmen-
785
+ tation (PEDANT), trading labeled data with domain expertise. We implement
786
+ it in a specific pipeline that generates sentences with a psychopathic signature
787
+ (Dexter). One could ask whether it is feasible to assemble a labeled dataset
788
+ via platforms such as Amazon Turk. The answer is probably no, as domain
789
+ expertise is required in the field of personality to correctly label the data. Our
790
+ work offers a scalable and feasible data augmentation pipeline that circumvents
791
+ such caveats by taking input from a domain expert in the later stages of the
792
+ pipeline rather than at the beginning (the data collection step).
793
+ The clear conclusion from the evaluation experiments we ran is that our
794
+ pipeline produced synthetic data with better quality than the other two pipelines
795
+ ([16], and [23]) thus highlighting the point that not all data augmentation tasks
796
+ were born equal. The task of generating synthetic data about flight and travel
797
+ issues (the examples from the LAMBADA paper) is not the same as generating
798
+ personality-type text. The same way generating a synthetic dog picture is not
799
+ 11
800
+
801
+ the same as generating a CT-scan picture of a brain with a tumor in order to
802
+ train med students to read such images.
803
+ We expect that our pipeline can be adapted to other domains where high-
804
+ quality labeled data is lacking and hard to obtain by crowd-sourcing: suicide,
805
+ school shooters, etc.
806
+ References
807
+ [1] Philip J Corr and Gerald Ed Matthews. The Cambridge handbook of per-
808
+ sonality psychology. Cambridge University Press, 2020.
809
+ [2] Lewis R Goldberg. An alternative” description of personality”: the big-five
810
+ factor structure. Journal of personality and social psychology, 59(6):1216,
811
+ 1990.
812
+ [3] Kenneth L Davis and Jaak Panksepp. The brain’s emotional foundations of
813
+ human personality and the affective neuroscience personality scales. Neu-
814
+ roscience & Biobehavioral Reviews, 35(9):1946–1958, 2011.
815
+ [4] Walter Mischel. Toward an integrative science of the person. Annu. Rev.
816
+ Psychol., 55:1–22, 2004.
817
+ [5] Vittorio Lingiardi and Nancy McWilliams. Psychodynamic diagnostic man-
818
+ ual: PDM-2. Guilford Publications, 2017.
819
+ [6] Jonathan Shedler and Drew Westen. The shedler–westen assessment pro-
820
+ cedure (swap): making personality diagnosis clinically meaningful. Journal
821
+ of personality assessment, 89(1):41–55, 2007.
822
+ [7] Vittorio Lingiardi, Nancy McWilliams, Robert F Bornstein, Francesco
823
+ Gazzillo, and Robert M Gordon. The psychodynamic diagnostic manual
824
+ version 2 (pdm-2): Assessing patients for improved clinical practice and
825
+ research. Psychoanalytic Psychology, 32(1):94, 2015.
826
+ [8] Yair Neuman. Computational personality analysis: Introduction, practical
827
+ applications and novel directions. Springer, 2016.
828
+ [9] David E Losada and Fabio Crestani. A test collection for research on depres-
829
+ sion and language use. In International Conference of the Cross-Language
830
+ Evaluation Forum for European Languages, pages 28–39. Springer, 2016.
831
+ [10] Yoram Bachrach, Michal Kosinski, Thore Graepel, Pushmeet Kohli, and
832
+ David Stillwell. Personality and patterns of facebook usage. In Proceedings
833
+ of the 4th annual ACM web science conference, pages 24–32, 2012.
834
+ [11] Ana Sanz-Garc´ıa, Clara Gesteira, Jes´us Sanz, and Mar´ıa Paz Garc´ıa-Vera.
835
+ Prevalence of psychopathy in the general adult population: A systematic
836
+ review and meta-analysis. Frontiers in Psychology, page 3278, 2021.
837
+ [12] Kimberly B Werner, Lauren R Few, and Kathleen K Bucholz. Epidemiol-
838
+ ogy, comorbidity, and behavioral genetics of antisocial personality disorder
839
+ and psychopathy. Psychiatric annals, 45(4):195–199, 2015.
840
+ 12
841
+
842
+ [13] Katherine J Holzer, Michael G Vaughn, Travis M Loux, Michael A Mancini,
843
+ Noelle E Fearn, and Cara L Wallace. Prevalence and correlates of antisocial
844
+ personality disorder in older adults. Aging & Mental Health, pages 1–10,
845
+ 2020.
846
+ [14] Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush
847
+ Vosoughi, Teruko Mitamura, and Eduard Hovy.
848
+ A survey of data aug-
849
+ mentation approaches for nlp. arXiv preprint arXiv:2105.03075, 2021.
850
+ [15] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and
851
+ Christopher R´e. A kernel theory of modern data augmentation. In Inter-
852
+ national Conference on Machine Learning, pages 1528–1537. PMLR, 2019.
853
+ [16] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor,
854
+ George Kour, Segev Shlomov, Naama Tepper, and Naama Zwerdling. Do
855
+ not have enough data? deep learning to the rescue! In Proceedings of the
856
+ AAAI Conference on Artificial Intelligence, volume 34, pages 7383–7390,
857
+ 2020.
858
+ [17] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
859
+ Improving language understanding by generative pre-training. 2018.
860
+ [18] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
861
+ Sutskever, et al.
862
+ Language models are unsupervised multitask learners.
863
+ OpenAI blog, 1(8):9, 2019.
864
+ [19] Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue.
865
+ Transfertransfo: A transfer learning approach for neural network based
866
+ conversational agents. arXiv preprint arXiv:1901.08149, 2019.
867
+ [20] Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko, Kyryl Truskovskyi,
868
+ Alexander Tselousov, and Thomas Wolf. Large-scale transfer learning for
869
+ natural language generation. In Proceedings of the 57th Annual Meeting of
870
+ the Association for Computational Linguistics, pages 6053–6058, 2019.
871
+ [21] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela,
872
+ and Jason Weston. Personalizing dialogue agents: I have a dog, do you
873
+ have pets too? arXiv preprint arXiv:1801.07243, 2018.
874
+ [22] Sebastian Ruder and Barbara Plank.
875
+ Strong baselines for neural semi-
876
+ supervised learning under domain shift. arXiv preprint arXiv:1804.09530,
877
+ 2018.
878
+ [23] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang.
879
+ Long text generation via adversarial training with leaked information. In
880
+ Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
881
+ 2018.
882
+ [24] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-
883
+ mentation for deep learning. Journal of big data, 6(1):1–48, 2019.
884
+ [25] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A
885
+ bayesian data augmentation approach for learning deep models. Advances
886
+ in neural information processing systems, 30, 2017.
887
+ 13
888
+
889
+ [26] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks
890
+ and data augmentation for environmental sound classification. IEEE Signal
891
+ processing letters, 24(3):279–283, 2017.
892
+ [27] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data aug-
893
+ mentation for deep learning. Journal of big Data, 8(1):1–34, 2021.
894
+ [28] Sosuke Kobayashi. Contextual augmentation: Data augmentation by words
895
+ with paradigmatic relations. arXiv preprint arXiv:1805.06201, 2018.
896
+ [29] Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures
897
+ for learning sentence similarity. In Proceedings of the AAAI conference on
898
+ artificial intelligence, volume 30, 2016.
899
+ [30] Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu.
900
+ Conditional bert contextual augmentation. In International Conference on
901
+ Computational Science, pages 84–95. Springer, 2019.
902
+ [31] Georgios Rizos, Konstantin Hemker, and Bj¨orn Schuller. Augment to pre-
903
+ vent: short-text data augmentation in deep learning for hate-speech clas-
904
+ sification. In Proceedings of the 28th ACM International Conference on
905
+ Information and Knowledge Management, pages 991–1000, 2019.
906
+ [32] Mai Ibrahim, Marwan Torki, and Nagwa El-Makky. Imbalanced toxic com-
907
+ ments classification using data augmentation and deep learning. In 2018
908
+ 17th IEEE international conference on machine learning and applications
909
+ (ICMLA), pages 875–878. IEEE, 2018.
910
+ [33] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
911
+ arXiv preprint arXiv:1312.6114, 2013.
912
+ [34] Ashutosh Kumar, Satwik Bhattamishra, Manik Bhandari, and Partha
913
+ Talukdar. Submodular optimization-based diverse paraphrasing and its ef-
914
+ fectiveness in data augmentation. In Proceedings of the 2019 Conference of
915
+ the North American Chapter of the Association for Computational Linguis-
916
+ tics: Human Language Technologies, Volume 1 (Long and Short Papers),
917
+ pages 3609–3619, 2019.
918
+ [35] Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. Data aug-
919
+ mentation using gans. arXiv preprint arXiv:1904.09135, 2019.
920
+ [36] Rui Cao and Roy Ka-Wei Lee. HateGAN: Adversarial generative-based
921
+ data augmentation for hate speech detection. In Proceedings of the 28th
922
+ International Conference on Computational Linguistics, pages 6327–6338,
923
+ Barcelona, Spain (Online), December 2020. International Committee on
924
+ Computational Linguistics.
925
+ [37] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett,
926
+ Xiang Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. Dialogpt: Large-
927
+ scale generative pre-training for conversational response generation. arXiv
928
+ preprint arXiv:1911.00536, 2019.
929
+ [38] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and
930
+ Joelle Pineau. A survey of available corpora for building data-driven dia-
931
+ logue systems. arXiv preprint arXiv:1512.05742, 2015.
932
+ 14
933
+
934
+ [39] Glen Coppersmith, Mark Dredze, and Craig Harman. Quantifying mental
935
+ health signals in twitter. In Proceedings of the workshop on computational
936
+ linguistics and clinical psychology: From linguistic signal to clinical reality,
937
+ pages 51–60, 2014.
938
+ [40] Filip Sondej. Autocorrect. https://github.com/filyp/autocorrect, 2022.
939
+ [41] Lorenz Leitner.
940
+ redditcleaner.
941
+ https://github.com/LoLei/redditcleaner,
942
+ 2020.
943
+ [42] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
944
+ Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R´emi Louf, Morgan
945
+ Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural lan-
946
+ guage processing. arXiv preprint arXiv:1910.03771, 2019.
947
+ [43] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
948
+ using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.
949
+ [44] Mark Davies and Jong-Bok Kim. The advantages and challenges of” big
950
+ data”: Insights from the 14 billion word iweb corpus. Linguistic Research,
951
+ 36(1):1–34, 2019.
952
+ [45] Yair Neuman and Yochai Cohen. A vectorial semantics approach to per-
953
+ sonality assessment. Scientific reports, 4(1):1–6, 2014.
954
+ [46] Heather
955
+ M
956
+ Gretton,
957
+ Michelle
958
+ McBride,
959
+ Robert
960
+ D
961
+ Hare,
962
+ Roy
963
+ O’Shaughnessy, and Gary Kumka.
964
+ Psychopathy and recidivism in ado-
965
+ lescent sex offenders. Criminal justice and behavior, 28(4):427–449, 2001.
966
+ [47] Sonja Krstic, Craig S Neumann, Sandeep Roy, Carrie A Robertson, Ray-
967
+ mond A Knight, and Robert D Hare. Using latent variable-and person-
968
+ centered approaches to examine the role of psychopathic traits in sex of-
969
+ fenders. Personality Disorders: Theory, Research, and Treatment, 9(3):207,
970
+ 2018.
971
+ [48] Ji Seun Sohn, Adrian Raine, and Soo Jung Lee. The utility of the psy-
972
+ chopathy checklist-revised (pcl-r) facet and item scores in predicting violent
973
+ recidivism. Aggressive behavior, 46(6):508–515, 2020.
974
+ [49] Giacomo Inches and Fabio Crestani. Overview of the international sexual
975
+ predator identification competition at pan-2012. In CLEF (Online working
976
+ notes/labs/workshop), volume 30, 2012.
977
+ [50] Ashish Sharma, Adam S Miner, David C Atkins, and Tim Althoff.
978
+ A
979
+ computational approach to understanding empathy expressed in text-based
980
+ mental health support. arXiv preprint arXiv:2009.08441, 2020.
981
+ [51] Myrthe Meere and Vincent Egan. Everyday sadism, the dark triad, per-
982
+ sonality, and disgust sensitivity.
983
+ Personality and Individual Differences,
984
+ 112:157–161, 2017.
985
+ [52] Natalie Sest and Evita March. Constructing the cyber-troll: Psychopathy,
986
+ sadism, and empathy. Personality and Individual Differences, 119:69–72,
987
+ 2017.
988
+ 15
989
+
990
+ [53] Fatma Elsafoury. Cyberbullying datasets. Mendeley Data, 2020.
991
+ [54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
992
+ Pre-training of deep bidirectional transformers for language understanding.
993
+ arXiv preprint arXiv:1810.04805, 2018.
994
+ [55] Edward Ma. Nlp augmentation. https://github.com/makcedward/nlpaug,
995
+ 2019.
996
+ [56] Jiaxian Guo. Leakgan. https://github.com/CR-Gjx/LeakGAN, 2018.
997
+ [57] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura
998
+ Farra, and Ritesh Kumar.
999
+ Semeval-2019 task 6: Identifying and cate-
1000
+ gorizing offensive language in social media (offenseval).
1001
+ arXiv preprint
1002
+ arXiv:1903.08983, 2019.
1003
+ [58] Valerio Basile, Cristina Bosco, Elisabetta Fersini, Nozza Debora, Viviana
1004
+ Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, Manuela Sanguinetti,
1005
+ et al. Semeval-2019 task 5: Multilingual detection of hate speech against
1006
+ immigrants and women in twitter.
1007
+ In 13th International Workshop on
1008
+ Semantic Evaluation, pages 54–63. Association for Computational Linguis-
1009
+ tics, 2019.
1010
+ [59] Tommaso Caselli, Valerio Basile, Jelena Mitrovi´c, Inga Kartoziya, and
1011
+ Michael Granitzer. I feel offended, don’t be abusive! implicit/explicit mes-
1012
+ sages in offensive and abusive language. In Proceedings of the 12th language
1013
+ resources and evaluation conference, pages 6193–6202, 2020.
1014
+ [60] Jennifer S Raj, J Vijitha Ananthi, et al. Recurrent neural networks and
1015
+ nonlinear prediction in support vector machines. Journal of Soft Computing
1016
+ Paradigm (JSCP), 1(01):33–40, 2019.
1017
+ A
1018
+ Sentence completion examples
1019
+ Each example consists of a statement that servers as a prompt for GPT-2,
1020
+ GPT-3, and its completion.
1021
+ Two completions are given, before fine-tuning
1022
+ (GPT-2,GPT-3) and after the fine-tuning on the preliminary dataset (GPT-
1023
+ 2). The statements were chosen to entail a natural discriminatory completion
1024
+ between a normal and a psychopathic personality. The statement is first, and
1025
+ the completions follow.
1026
+ I take advantage of others whenever I can
1027
+ (GPT-2 before) I know how to get out of trouble.
1028
+ (GPT-3 davinci) said he, ”but they generally take advantage of me. It
1029
+ is the way of the world.” ”I am glad to hear you say so,” said Holmes,
1030
+ laughing; ”it is a most comforting reflection.”.
1031
+ (GPT-3 curie) and I am a very strong negotiator. Yes, I wouldn’t say that
1032
+ I am perfect, but I do try to do the right thing by all of my partners.I am
1033
+ not a fan of people who are selfish, narcissistic or narcissistic.
1034
+ (GPT-2 after) I have a very low empathy for others and I am constantly
1035
+ manipulating people to get what I want.
1036
+ 16
1037
+
1038
+ People are violent
1039
+ (GPT-2 before) I don’t think I was ever taught to be violent.
1040
+ (GPT-3 davinci) People are not moral. People are amoral. People are de-
1041
+ praved.” The senator was bullish on the prospects of the Republican Party.
1042
+ “The future is ours,” he said, to loud applause. “
1043
+ (GPT-3 curie) and stupid, but they’re not all violent and stupid, and
1044
+ they’re not all crazy. I don’t know what the hell happened. But I do know
1045
+ that this is not a good thing. Things have been getting better in this country
1046
+ (GPT-2 after) They are the ones who kill animals for fun, rape and torture
1047
+ people, and steal and rob.
1048
+ People are selfish
1049
+ (GPT-2 before) I don’t think we are selfish.
1050
+ (GPT-3 davinci) they don’t think about what they’re doing,” said the 17-
1051
+ year-old. “They take the time to stop and think about what they’re doing,
1052
+ maybe this wouldn’t happen
1053
+ (GPT-3 curie) It’s a part of human nature. But, most importantly, it’s
1054
+ a part of the human condition.” ”This is the fundamental question of all
1055
+ human history,” he continued. ”Do I believe that people are fundamentally
1056
+ selfish?”
1057
+ (GPT-2 after) It’s just that, when we see someone in pain, we don’t really
1058
+ want to help him.
1059
+ B
1060
+ Psychopathic Vector
1061
+ 28 words that are significantly collocated with the target word “psychopath”
1062
+ in the iWeb. These words constitute the “psychopathic vector” used for rank-
1063
+ ing: psychopath, sociopath, killer, criminal, murderer, victim, empathy, prison,
1064
+ monster, liar, rapist, violent, dangerous, sexual, antisocial, sadistic, narcissis-
1065
+ tic, evil, insane, manipulative, charming, kill, manipulate, torture, hunt, rape,
1066
+ terrorize, terrify.
1067
+ C
1068
+ Seed Sentences
1069
+ 40 seed sentences for completion by GPT. 20 sentences about self, and 20 about
1070
+ others.
1071
+ Beliefs about self
1072
+ I take advantage of others whenever I can.
1073
+ I experience no remorse for harm or injury I have caused to others.
1074
+ I enjoy manipulating others’ emotions to get what I want.
1075
+ I am unconcerned with the consequences of my actions.
1076
+ I feel invulnerable and that nothing can hurt me.
1077
+ I have no interest in the rights, property, or safety of others.
1078
+ I feel little empathy to the feelings of others.
1079
+ I don’t understand others’ needs and feelings.
1080
+ 17
1081
+
1082
+ I act impulsively, without regard for the consequences of my actions.
1083
+ I am unreliable and irresponsible.
1084
+ I engage in unlawful or criminal behaviour.
1085
+ I tend to be angry or hostile toward others.
1086
+ I tend to get into power struggles with other people.
1087
+ I gain pleasure and satisfaction by being sadistic or aggressive toward others.
1088
+ I blame others for my failures or shortcomings and believe my problems are
1089
+ caused by external factors.
1090
+ I don’t understand my behaviour and motives.
1091
+ I don’t feel shame or remorse.
1092
+ I am seeking thrill and excitement.
1093
+ I usually feel empty and bored.
1094
+ I feel like a hunter seeking a prey.
1095
+ Beliefs about others
1096
+ People are selfish.
1097
+ Human beings are greedy.
1098
+ The majority of people are cruel.
1099
+ The world is full of inconsiderate people
1100
+ Most people are childish
1101
+ Most people are arrogant
1102
+ People I know are irresponsible
1103
+ People are manipulative
1104
+ Human beings are deceptive
1105
+ The majority of people are abusive
1106
+ The majority of people are dangerous
1107
+ Most people are exploitative
1108
+ Most people are untrustworthy
1109
+ People are violent
1110
+ People are vulnerable
1111
+ Human beings are weak
1112
+ The majority of people are helpless
1113
+ People are predatory
1114
+ Most people are an easy prey
1115
+ The human condition is weak and vulnerable to predation
1116
+ 18
1117
+
09FAT4oBgHgl3EQfjh3M/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dFKT4oBgHgl3EQfNy2J/content/tmp_files/2301.11756v1.pdf.txt ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11756v1 [math.AC] 27 Jan 2023
2
+ A comment on the structure of graded modules
3
+ over graded principal ideal domains
4
+ in the context of persistent homology
5
+ Clara L¨oh
6
+ January 30, 2023
7
+ Abstract
8
+ The literature in persistent homology often refers to a “structure the-
9
+ orem for finitely generated graded modules over a graded principal ideal
10
+ domain”. We clarify the nature of this structure theorem in this context.
11
+ 1
12
+ Introduction
13
+ The persistent homology with field coefficients of finite type filtrations can be
14
+ described in terms of barcodes. Zomorodian and Carlsson promoted the elegant
15
+ idea to view persistent homology with coefficients in a field K as a graded module
16
+ over the graded polynomial ring K[T ] [ZC05].
17
+ They then suggest a general
18
+ structure theorem for finitely generated graded modules over graded principal
19
+ ideal domains [ZC05, Theorem 2.1]. Applying this structure theorem to the
20
+ graded polynomial ring K[T ] gives a graded elementary divisor decomposition
21
+ of persistent homology, which can be reinterpreted as barcodes [CZCG04] or,
22
+ equivalently, as persistence diagrams [EH10].
23
+ However, there does not seem to be a proof of this general structure theo-
24
+ rem in the literature in the form stated by Zomorodian and Carlsson. As this
25
+ theorem is quoted multiple times in work on persistent homology and as it is a
26
+ potential source of confusion, the goal of this expository note is to clarify the
27
+ nature of this structure theorem (even though it might be clear to the experts).
28
+ We first give a precise formulation of the structure theorem; this formu-
29
+ lation slightly differs from the statement of Zomorodian and Carlsson [ZC05,
30
+ Theorem 2.1] (for a reason explained below):
31
+ Theorem 1.1 (structure theorem for graded modules over graded PIDs). Let R
32
+ be a graded principal ideal domain with R ̸= R0 and let M be a finitely generated
33
+ graded R-module. Then M admits a graded elementary divisor decomposition
34
+ (Definition 2.8) and the signatures of all such graded decompositions of M co-
35
+ incide.
36
+ The key observation of this note is that in fact every N-graded principal ideal
37
+ domain is
38
+ © C. L¨oh 2023. This work was supported by the CRC 1085 Higher Invariants (Universit¨at
39
+ Regensburg, funded by the DFG).
40
+ MSC 2010 classification: 13C05, 55N31
41
+ 1
42
+
43
+ 2
44
+ 2
45
+ Graded rings and modules
46
+ • a principal ideal domain with the 0-grading or
47
+ • a polynomial ring over a field with a multiple of the canonical grading.
48
+ The proof is elementary [VO83, Remark 2.7] (Proposition 3.1).
49
+ For trivially graded principal ideal domains, in general, the graded elemen-
50
+ tary divisor version of the structure theorem does not hold (Example 4.1). This
51
+ explains the additional hypothesis of R ̸= R0 in Theorem 1.1. In contrast, the
52
+ graded prime power version of the structure theorem also holds if the grading
53
+ is trivial (Proposition 4.2).
54
+ For polynomial rings, the graded uniqueness part can be deduced in a
55
+ straightforward way from the ungraded uniqueness. However, for the graded
56
+ existence part, there does not seem to be a “generic” derivation from the un-
57
+ graded existence result – the difficulty being the graded direct sum splitting (as
58
+ exhibited in the case of the trivially graded ring Z). Finding such a splitting
59
+ needs a careful inductive approach that establishes that the torsion submodule
60
+ is graded and that avoids dividing out cyclic submodules in bad position/order.
61
+ The graded existence part can be proved using specific properties of polynomial
62
+ rings over fields.
63
+ In conclusion, the structure theorem for graded modules over graded prin-
64
+ cipal ideal domains gives a helpful structural perspective on barcodes for per-
65
+ sistent homology (and also for the computation of persistent homology [ZC05,
66
+ SVJ13]), but its scope does not seem to go beyond the special case that is needed
67
+ for persistent homology and it does not seem to provide a shortcut avoiding spe-
68
+ cial properties of polynomial rings over fields.
69
+ Generalisations of N-graded persistent homology such as zigzag persistence
70
+ or R-graded persistence (or more general indexing situations) are usually based
71
+ on arguments from quiver representations [CdS10, BCB20]. Similarly to the N-
72
+ graded case, in these settings, it is also essential that the underlying coefficients
73
+ are a field.
74
+ Organisation of this article
75
+ Basic notions on graded rings and modules are recalled in Section 2. In Sec-
76
+ tion 3, we prove Proposition 3.1. The case of principal ideal domains with trivial
77
+ gradings is considered in Section 4; the case of polynomial rings over fields is
78
+ discussed in Section 5, where we give an elementary proof of the structure the-
79
+ orem.
80
+ Acknowledgements
81
+ I would like to thank Ulrich Bunke for helpful discussions on abstract methods
82
+ for the decomposition of graded modules and Luigi Caputi for valuable feedback.
83
+ 2
84
+ Graded rings and modules
85
+ We recall basic notions on graded rings and modules and decompositions of
86
+ graded modules. As usual in (discrete) persistence, we consider only the case of
87
+ discrete non-negative gradings, i.e., gradings over N.
88
+
89
+ 2
90
+ Graded rings and modules
91
+ 3
92
+ Definition 2.1 (graded ring). A graded ring is a pair (R, (Rn)n∈N), where R
93
+ is a ring and the Rn are additive subgroups of R with the following properties:
94
+ • The additive group (R, +) is the internal direct sum of the (Rn)n∈N.
95
+ • For all n, m ∈ N, we have Rn · Rm ⊂ Rn+m.
96
+ For n ∈ N, the elements in Rn are called homogeneous of degree n. An element
97
+ of R is homogenous if there exists an n ∈ N such that the element is homogeneous
98
+ of degree n.
99
+ A graded ring is a graded principal ideal domain if it is a domain and every
100
+ homogeneous ideal (i.e., generated by homogeneous elements) is generated by a
101
+ single element.
102
+ Example 2.2 (polynomial rings). Let K be a ring. Then the usual degree on
103
+ monomials in the polynomial ring K[T ] turns K[T ] into a graded ring via the
104
+ canonical isomorphism K[T ] ∼=Ab
105
+
106
+ n∈N K · T n. We will refer to this as the
107
+ canonical grading on K[T ]. If K is a field, then K[T ] is a principal ideal domain
108
+ (graded and ungraded).
109
+ Definition 2.3 (graded module). Let R be a graded ring. A graded module
110
+ over R is a pair (M, (Mn)), consisting of an R-module M and additive sub-
111
+ groups Mn of M with the following properties:
112
+ • The additive group (M, +) is the internal direct sum of the (Mn)n∈N.
113
+ • For all n, m ∈ N, we have Rn · Mm ⊂ Mn+m.
114
+ Elements of Mm are called homogeneous of degree m.
115
+ Remark 2.4 (the category of graded modules). Let R be a graded ring. Ho-
116
+ momorphisms between graded R-modules are R-linear maps that preserve the
117
+ grading. Graded R-modules and homomorphisms of R-modules form the cate-
118
+ gory RMod∗ of graded R-modules.
119
+ Example 2.5 (shifted graded modules). Let R be a graded ring, let M be a
120
+ graded module over R, and let n ∈ N. Then ΣnM denotes the graded R-module
121
+ given by the n-shifted decomposition 0 ⊕ · · · ⊕ 0 ⊕ �
122
+ j∈N≥n Mj−n.
123
+ Example 2.6 (direct sums and quotients of graded modules). Let M and N
124
+ be graded modules over a graded ring R. Then M ⊕ N is a graded R-module
125
+ via the grading (Mn ⊕ Nn)n∈N. If M ′ ⊂ M is a graded submodule of M (i.e., it
126
+ is generated by homogeneous elements), then (Mn/(M ′ ∩Mn))n∈N turns M/M ′
127
+ into a graded R-module.
128
+ Persistent homology leads to persistence modules [ZC05]. Persistence mod-
129
+ ules in turn give rise to graded modules over graded polynomial rings [ZC05,
130
+ Section 3.1]:
131
+ Example 2.7 (from persistence modules to graded modules). Let K be a ring
132
+ and let (M ∗, f ∗) be an N-indexed persistence K-module. Then M := �
133
+ n∈N M n
134
+ carries a K[T ]-module structure, given by
135
+ ∀x∈Mn
136
+ T · x := f n(x) ∈ M n+1.
137
+ If we view K[T ] as a graded ring (Example 2.2), then this K[T ]-module structure
138
+ and this direct sum decomposition of M turn M into a graded K[T ]-module. If
139
+ (M ∗, f ∗) is of finite type, then M is finitely generated over K[T ].
140
+
141
+ 4
142
+ 3
143
+ Graded principal ideal domains
144
+ Finally, we define the central types of decompositions arising in the structure
145
+ theorems:
146
+ Definition 2.8 (graded elementary divisor decomposition). Let R be a graded
147
+ ring and let M be a graded module over R. A graded elementary divisor de-
148
+ composition of M over R is an isomorphism
149
+ M ∼=RMod∗
150
+ N
151
+
152
+ j=1
153
+ ΣnjR/(fj)
154
+ of graded R-modules with N ∈ N, degrees n1, . . . , nN ∈ N, and homogeneous
155
+ elements f1, . . . , fN ∈ R with fj|fj+1 for all j ∈ {1, . . . , N −1}. Here, the right-
156
+ hand side carries the canonical grading.
157
+ The elements f1, . . . , fN are called
158
+ elementary divisors of M.
159
+ The signature of such a decomposition is the multiset of all pairs (nj, R×·fj)
160
+ with j ∈ {1, . . ., N}.
161
+ Definition 2.9 (graded prime power decomposition). Let R be a graded ring
162
+ and let M be a graded module over R. A graded prime power decomposition
163
+ of M over R is an isomorphism
164
+ M ∼=RMod
165
+ N
166
+
167
+ j=1
168
+ ΣnjR/(pkj
169
+ j )
170
+ of graded R-modules with N ∈ N, n1, . . . , nN ∈ N, k1, . . . , kN ∈ N, and homo-
171
+ geneous prime elements p1, . . . , pN ∈ R. Here, the right-hand side carries the
172
+ canonical grading.
173
+ The signature of such a decomposition is the multiset of all pairs (nj, R×·pkj
174
+ j )
175
+ with j ∈ {1, . . ., N}.
176
+ 3
177
+ Graded principal ideal domains
178
+ For the sake of completeness, we provide a proof of the following observa-
179
+ tion [VO83, Remark 2.7].
180
+ Proposition 3.1 (graded PIDs). Let R be a graded principal ideal domain.
181
+ Then R is of one of the following types:
182
+ • We have R = R0, i.e., R is an ordinary principal ideal domain with the
183
+ 0-grading.
184
+ • The subring R0 is a field and R is isomorphic to the graded ring R0[T ],
185
+ where the grading on R0[T ] is a multiple of the canonical grading.
186
+ Proof. Let R ̸= R0 and let n ∈ N>0 be the minimal degree with Rn ̸= 0. Then
187
+ R≥n :=
188
+
189
+ j∈N≥n
190
+ Rj
191
+ is a homogeneous ideal in R; as R is a graded principal ideal domain, there
192
+ exists a t ∈ R with R≥n = (t). We show that t is homogeneous of degree n: Let
193
+
194
+ 4
195
+ Trivially graded principal ideal domains
196
+ 5
197
+ x ∈ Rn \ {0}. Then t divides x and a straightforward computation shows that
198
+ hence also t is homogeneous. The grading implies that t has degree n.
199
+ We show that the canonical R0-algebra homomorphism ϕ: R0[T ] −→ R
200
+ given by ϕ(T ) := t is an isomorphism.
201
+ • We first show that ϕ is injective: Because R is graded and t is homoge-
202
+ neous, it suffices to show that a · tk ̸= 0 for all a ∈ R0 \ {0} and all k ∈ N.
203
+ However, this is guaranteed by the hypothesis that R is a domain.
204
+ • Regarding surjectivity, let y ∈ R. It suffices to consider the case that y
205
+ is homogeneous of degree m ≥ n. Because (t) = R≥n, we know that t
206
+ divides y, say y = t · y′. Then y′ is homogeneous and we can iterate the
207
+ argument for y′. Proceeding inductively, we obtain that m is a multiple
208
+ of n and that there exists an a ∈ R0 with y = a · tm/n.
209
+ Hence, ϕ is
210
+ surjective.
211
+ This establishes that R is isomorphic as a graded ring to R0[T ], where R0[T ]
212
+ carries the canonical grading on R0[T ] scaled by n.
213
+ It remains to show that R0 ∼=Ring R/(t) is a field.
214
+ Thus, we are left to
215
+ show that (t) is a maximal ideal in R.
216
+ By construction, every ideal a that
217
+ contains (t) = R≥n is generated by (t) and a subset of R0; in particular, a is
218
+ homogeneous, whence principal. The grading shows that then a = R or a = (t).
219
+ Thus, (t) is maximal and so R0 is a field.
220
+ In the setting of Z-graded principal ideal domains, further examples appear,
221
+ such as generalised Rees rings [PvG82].
222
+ 4
223
+ Trivially graded principal ideal domains
224
+ Example 4.1 (elementary divisor decompositions over trivially graded PIDs).
225
+ Let R be a principal ideal domain with the 0-grading that contains two non-
226
+ associated prime elements p and q (e.g., 2 and 3 in Z). We consider the graded
227
+ R-module
228
+ M := Σ0R/(p) ⊕ Σ1R/(q).
229
+ This graded R module does not admit a graded elementary divisor decom-
230
+ position: Indeed, if there were a graded elementary divisor decomposition of M,
231
+ then the corresponding elementary divisors would have to coincide with the un-
232
+ graded elementary divisors. The only ungraded elementary divisor of M is p · q.
233
+ However, M does not contain a homogenous element with annihilator ideal (p·q).
234
+ Therefore, M does not admit a graded elementary divisor decomposition.
235
+ Proposition 4.2 (prime power decompositions over trivially graded PIDs). Let
236
+ R be a principal ideal domain with the 0-grading and let M be a finitely generated
237
+ graded R-module. Then M admits a graded prime power decomposition and the
238
+ signature of all such graded decompositions of M coincide.
239
+ Proof. Because R is trivially graded, the grading on M decomposes M as a
240
+ direct sum �
241
+ n∈N Mn of R-submodules.
242
+ In view of finite generation of M,
243
+ only finitely many of these summands are non-trivial. We can now apply the
244
+ ungraded structure theorem to each summand Mn to conclude.
245
+
246
+ 6
247
+ 5
248
+ Polynomial rings over fields
249
+ 5
250
+ Polynomial rings over fields
251
+ In view of Proposition 3.1, Theorem 1.1 can equivalently be stated as follows
252
+ (which is exactly the special case needed in persistent homology):
253
+ Theorem 5.1 (structure theorem for graded modules over polynomial rings).
254
+ Let K be a field and let M be a finitely generated graded module over the graded
255
+ ring K[T ]. Then there exist N ∈ N, n1, . . . , nN ∈ N, and k1, . . . , kN ∈ N>0 ∪
256
+ {∞} with
257
+ M ∼=K[T ]Mod∗
258
+ N
259
+
260
+ j=1
261
+ ΣnjK[T ]/(T kj).
262
+ Here, T ∞ := 0. The multiset of all (nj, kj) with j ∈ {1, . . . , N} is uniquely
263
+ determined by M.
264
+ The rest of this section contains an elementary and constructive proof of
265
+ Theorem 5.1.
266
+ 5.1
267
+ Uniqueness of graded decompositions
268
+ The uniqueness claim in Theorem 5.1 can be derived inductively from the un-
269
+ graded uniqueness statement:
270
+ Let a decomposition as in Theorem 5.1 be given and let ϕ: �
271
+ ... · · · −→ M
272
+ be a corresponding graded K[T ]-isomorphism. Then
273
+ M ′ := ϕ(N ′) with N ′ :=
274
+
275
+ j∈{1,...,N},nj=0
276
+ ΣnjK[T ]/(T kj)
277
+ is a graded submodule of M and it is not difficult to see that M ′ = ϕ(N ′) =
278
+ SpanK[T ] M0.
279
+ Moroever, M ′ is finitely generated over K[T ]. Therefore, the
280
+ ungraded structure theorem when applied to M ′ shows that the multiset of all
281
+ pairs (nj, kj) with nj = 0 is uniquely determined by M.
282
+ For the induction step, we pass to the quotient M/M ′, which is a finitely gen-
283
+ erated graded K[T ]-module with (M/M ′)0 ∼= 0. We shift the degrees on M/M ′
284
+ by −1 and inductively apply the previous argument.
285
+ 5.2
286
+ Homogeneous matrix reduction
287
+ The standard matrix reduction algorithm for the computation of persistent ho-
288
+ mology [EH10, ZC05] can be viewed as a proof of the existence part of Theo-
289
+ rem 5.1.
290
+ We phrase the matrix reduction algorithm in the graded language to em-
291
+ phasise the connection with graded decompositions.
292
+ Definition 5.2 (graded matrix). Let K be a field, let r, s ∈ N, and let n1, . . . , nr,
293
+ m1, . . . , ms ∈ N be monotonically increasing. A matrix A ∈ Mr×s(K[T ]) is
294
+ (n∗, m∗)-graded if the following holds: For all j ∈ {1, . . . , r}, k ∈ {1, . . ., s}, we
295
+ have that the entry Ajk ∈ K[T ] is a homogeneous polynomial and
296
+ • Ajk = 0 or
297
+ • nj = deg Ajk + mk.
298
+
299
+ 5
300
+ Polynomial rings over fields
301
+ 7
302
+ In a graded matrix, the degrees of matrix entries monotonically increase
303
+ from the left to the right and from the bottom to the top.
304
+ Definition 5.3 (reduced matrix). Let K be a field, let r, s ∈ N, and let
305
+ n1, . . . , nr, m1, . . . , ms ∈ N be monotonically increasing, and let A ∈ Mr×s(K[T ])
306
+ be an (n∗, m∗)-graded matrix.
307
+ • For k ∈ {1, . . ., s}, we define
308
+ lowA(k) := max
309
+
310
+ j ∈ {1, . . . , r}
311
+ �� Ajk ̸= 0
312
+
313
+ ∈ N
314
+ (with max ∅ := 0). I.e., lowA(k) is the index of the “lowest” matrix entry
315
+ in column k that is non-zero.
316
+ • The matrix A is reduced if all columns have different low-indices: For
317
+ all k, k′ ∈ N with lowA(k) ̸= 0 and lowA(k′) ̸= 0, we have lowA(k) ̸=
318
+ lowA(k′).
319
+ Graded matrices can be transformed into reduced matrices via elementary
320
+ column operations; these reduced matrices then lead to module decompositions:
321
+ Algorithm 5.4 (homogeneous matrix reduction). Given a field K, r, s ∈ N,
322
+ monotonically increasing sequences n1, . . . , nr, m1, . . . , ms ∈ N, and an (n∗, m∗)-
323
+ graded matrix A ∈ Mr×s, do the following:
324
+ • For each k from 1 up to s (in ascending order):
325
+ Let ℓ := lowA(k).
326
+ If ℓ ̸= 0, then:
327
+ • For each j from ℓ down to 1 (in descending order):
328
+ If Ajk ̸= 0 and there exists k′ ∈ {1, . . ., k − 1} with lowA(k′) = j,
329
+ then:
330
+ • Update the matrix A by subtracting Ajk/Ajk′-times the col-
331
+ umn k′ from column k.
332
+ [Loop invariant observation: Because A is graded, Ajk/Ajk′ in-
333
+ deed is a homogeneous polynomial over K and the resulting ma-
334
+ trix is (n∗, m∗)-graded. This eliminates the entry Ajk′.]
335
+ • Return the resulting matrix A.
336
+ Proposition 5.5. Let K be a field, let r, s ∈ N, let n1, . . . , ns, m1, . . . , mr ∈ N
337
+ be monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗, m∗)-graded
338
+ matrix. Then:
339
+ 1. The homogeneous matrix reduction algorithm (Algorithm 5.4) terminates
340
+ on this input after finitely many steps (relative to the arithmetic on K).
341
+ 2. The resulting matrix A′ is reduced and there is a graded s × s-matrix B
342
+ over K[T ] that admits a graded inverse and satisfies A′ = A · B.
343
+ 3. The low-entries of the resulting matrix A′ are the elementary divisors of A
344
+ over K[T ].
345
+
346
+ 8
347
+ 5.2
348
+ Homogeneous matrix reduction
349
+ 4. We have
350
+ F/ im A ∼=K[T ]Mod∗
351
+
352
+ j∈I
353
+ ΣnjK[T ]/(T mk(j)−nj) ⊕
354
+
355
+ j∈I′
356
+ ΣnjK[T ],
357
+ where F := �r
358
+ j=1 ΣnjK[T ] and I := {lowA′(k) | k ∈ {1, . . . , s}} \ {0}
359
+ as well as I′ := {1, . . ., r} \ I. For j ∈ I, let k(j) ∈ {1, . . . , s} be the
360
+ unique (!) index with lowA′(k(j)) = j.
361
+ Proof. Ad 1. Well-definedness follows from the observation mentioned in the
362
+ algorithm: As every homogeneous polynomial in K[T ] is of the form λ · T d
363
+ with λ ∈ K and d ∈ N and as the matrix is graded, the corresponding division
364
+ can be performed in K[T ] and the gradedness of the matrix is preserved by the
365
+ elimination operation. Termination is then clear from the algorithm.
366
+ Ad 2.
367
+ As we traverse the columns from left to right, a straightforward
368
+ induction shows that no two columns can remain that have the same non-zero
369
+ value of “lowA”. The product decomposition comes from the fact that we only
370
+ applied elementary homogeneous column operations without swaps.
371
+ Ad 3. Because the resulting matrix A′ is obtained through elementary col-
372
+ umn operations from A, the elementary divisors of A′ and A coincide. Applying
373
+ Lemma 5.6 to A′ proves the claim.
374
+ Ad 4. In view of the second part, we have that F/ im A ∼=K[T ]Mod∗ F/ im A′.
375
+ Therefore, the claim is a direct consequence of Lemma 5.6.
376
+ Lemma 5.6. Let K be a field, let r, s ∈ N, let n1, . . . , nr, m1, . . . , ms ∈ N be
377
+ monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗, m∗)-graded matrix
378
+ that is reduced. Then:
379
+ 1. The low-entries of A are the elementary divisors of A over K[T ].
380
+ 2. Let F := �r
381
+ j=1 ΣnjK[T ] and I := {lowA(k) | k ∈ {1, . . ., s}} \ {0} as well
382
+ as I′ := {1, . . ., r} \ I. Then
383
+ F/ im A ∼=K[T ]Mod∗
384
+
385
+ j∈I
386
+ ΣnjK[T ]/(T mk(j)−nj) ⊕
387
+
388
+ j∈I′
389
+ ΣnjK[T ]
390
+ Proof. Ad 1. Let k ∈ {1, . . . , s} with ℓ := lowA(k) ̸= 0. Then we can clear out
391
+ all the entries of A in column k above ℓ by elementary row operations (again, the
392
+ gradedness of A ensures that this is possible). Swapping zero rows and columns
393
+ appropriately thus results in a matrix in rectangle “diagonal” form; moreover,
394
+ as all the “diagonal” entries are monomials, we can swap rows and columns to
395
+ obtain a matrix A′ in Smith normal form that both
396
+ • has the same elementary divisors as A and
397
+ • whose elementary divisors are precisely the low-entries of A.
398
+ In particular, these elementary divisors must coincide.
399
+ Ad 2. The claim is clear if A is already in Smith normal form. By con-
400
+ struction, there are square matrices B and C that are invertible over K[T ] and
401
+ represent graded K[T ]-isomorphisms with
402
+ A′ = C · A · B.
403
+ In particular, F/ im A ∼=K[T ]Mod∗ (C · F)/ im A′. By construction, the values
404
+ of lowA′ and the degrees of A′ differ from the ones of A only by compatible
405
+ index permutations. Therefore, the claim follows.
406
+
407
+ 5
408
+ Polynomial rings over fields
409
+ 9
410
+ 5.3
411
+ Existence of a graded decomposition
412
+ To prove existence in Theorem 5.1 we can follow the standard proof pattern
413
+ of first finding a (graded) finite presentation and then applying (homogeneous)
414
+ matrix reduction.
415
+ Let M be a finitely generated graded K[T ]-module. Then M also has a finite
416
+ generating set consisting of homogeneous elements. This defines a surjective
417
+ graded K[T ]-homomorphism
418
+ ϕ: F :=
419
+ r
420
+
421
+ j=1
422
+ ΣnjK[T ] −→ M
423
+ for suitable r ∈ N and monotonically increasing n1, . . . , nr ∈ N.
424
+ As ϕ is a
425
+ graded homomorphism, ker ϕ ⊂ F is a graded K[T ]-submodule and we obtain
426
+ an isomorphism
427
+ M ∼=K[T ]Mod∗ F/ im ker ϕ
428
+ of graded K[T ]-modules.
429
+ Because K[T ] is a principal ideal domain, the graded submodule ker ϕ ⊂ F
430
+ is finitely generated over K[T ]. Because ker ϕ is a graded submodule, ker ϕ has a
431
+ finite homogeneous generating set. (In fact, there also exists a homogeneous free
432
+ K[T ]-basis for ker ϕ, as can be seen from a straightforward inductive splitting
433
+ argument [Web85, Lemma 1].) In particular, there exist s ∈ N, monotonically
434
+ increasing m1, . . . , ms ∈ N, and a graded K[T ]-homomorphism
435
+ ψ: E :=
436
+ s
437
+
438
+ k=1
439
+ ΣmkK[T ] −→ F
440
+ with im ψ = ker ϕ. Because ψ is graded and n∗, m∗ are monotonically increas-
441
+ ing, the r×s-matrix A over K[T ] that represents ψ with respect to the canonical
442
+ homogeneous bases of E and F is graded in the sense of Definition 5.2.
443
+ Applying the homogeneous matrix reduction algorithm to A shows that
444
+ M ∼=K[T ]Mod∗ F/ im A,
445
+ has the desired decomposition (Proposition 5.5; after discarding the irrelevant
446
+ terms of the form ΣnK[T ]/(T 0)).
447
+ This completes the proof of the structure theorem (Theorem 5.1).
448
+ Remark 5.7. There is a general matrix reduction for a slighlty different notion
449
+ of “graded” matrices over (Z-)graded principal ideal domains [PvG82]. However,
450
+ one should be aware that such “graded” matrices in general only lead to graded
451
+ homomorphisms once one is allowed to change the grading on the underlying free
452
+ modules. This explains why this general matrix reduction does not contradict
453
+ the counterexample in case of 0-graded principal ideal rings in Example 4.1.
454
+ 5.4
455
+ Barcodes
456
+ For the sake of completeness, we recall the relation between graded decomposi-
457
+ tions and barcodes:
458
+
459
+ 10
460
+ References
461
+ Remark 5.8 (barcodes of persistence modules). Let K be a field and let
462
+ (M ∗, f ∗) be an N-indexed persistence K-module of finite type. We equip M :=
463
+
464
+ n∈N M n with the canonical graded K[T ]-module structure (Example 2.7). By
465
+ the graded structure theorem (Theorem 5.1), there exist N ∈ N, n1, . . . , nN ∈ N,
466
+ and k1, . . . , kN ∈ N>0 ∪ {∞} with
467
+ M ∼=K[T ]Mod∗
468
+ N
469
+
470
+ j=1
471
+ ΣnjK[T ]/(T kj).
472
+ Let B be the multiset of all (nj, kj − 1) with j ∈ {1, . . ., N}; then B is uniquely
473
+ determined by M and this multiset B is the barcode of (M ∗, f ∗).
474
+ The barcode contains the full information on the isomorphism type of the
475
+ graded K[T ]-module M (and the underlying persistence module) and describes
476
+ the birth, death, and persistence of elements as specified by the “elder rule”: If
477
+ (n, p) is an element of the barcode, this means that a new independent class is
478
+ born at stage n, it persists for p stages, and it dies (if p ̸= ∞) at stage n+ p+ 1.
479
+ In particular, this leads to the notion of barcodes of persistent homology
480
+ (in a given degree) of finite type persistence chain complexes and finite type
481
+ filtrations in topology.
482
+ References
483
+ [BCB20]
484
+ Magnus Bakke Botnan and William Crawley-Boevey.
485
+ Decomposition of
486
+ persistence modules. Proc. Amer. Math. Soc., 148(11):4581–4596, 2020.
487
+ Cited on page: 2
488
+ [CdS10]
489
+ Gunnar Carlsson and Vin de Silva. Zigzag persistence. Found. Comput.
490
+ Math., 10(4):367–405, 2010. Cited on page: 2
491
+ [CZCG04] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas.
492
+ Persistence Barcodes for Shapes. In Roberto Scopigno and Denis Zorin, ed-
493
+ itors, Symposium on Geometry Processing. The Eurographics Association,
494
+ 2004. Cited on page: 1
495
+ [EH10]
496
+ Herbert Edelsbrunner and John L. Harer. Computational topology. Amer-
497
+ ican Mathematical Society, Providence, RI, 2010. An introduction. Cited
498
+ on page: 1, 6
499
+ [PvG82]
500
+ R. Puystjens and J. van Geel.
501
+ Diagonalization of matrices over graded
502
+ principal ideal domains. Linear Algebra Appl., 48:265–281, 1982. Cited on
503
+ page: 5, 9
504
+ [SVJ13]
505
+ Primoz Skraba and Mikael Vejdemo-Johansson. Persistence modules: Al-
506
+ gebra and algorithms. 2013. arXiv:1302.2015 [cs.CG]. Cited on page: 2
507
+ [VO83]
508
+ F. Van Oystaeyen. Generalized Rees rings and arithmetical graded rings.
509
+ J. Algebra, 82(1):185–193, 1983. Cited on page: 2, 4
510
+ [Web85]
511
+ Cary Webb. Decomposition of graded modules. Proc. Amer. Math. Soc.,
512
+ 94(4):565–571, 1985. Cited on page: 9
513
+ [ZC05]
514
+ Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
515
+ Discrete Comput. Geom., 33(2):249–274, 2005. Cited on page: 1, 2, 3, 6
516
+ Clara L¨oh
517
+ Fakult¨at f¨ur Mathematik, Universit¨at Regensburg, 93040 Regensburg
518
+ [email protected], https://loeh.app.ur.de
519
+
0dFKT4oBgHgl3EQfNy2J/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf,len=464
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
3
+ page_content='11756v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
4
+ page_content='AC] 27 Jan 2023 A comment on the structure of graded modules over graded principal ideal domains in the context of persistent homology Clara L¨oh January 30, 2023 Abstract The literature in persistent homology often refers to a “structure the- orem for finitely generated graded modules over a graded principal ideal domain”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
5
+ page_content=' We clarify the nature of this structure theorem in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
6
+ page_content=' 1 Introduction The persistent homology with field coefficients of finite type filtrations can be described in terms of barcodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
7
+ page_content=' Zomorodian and Carlsson promoted the elegant idea to view persistent homology with coefficients in a field K as a graded module over the graded polynomial ring K[T ] [ZC05].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
8
+ page_content=' They then suggest a general structure theorem for finitely generated graded modules over graded principal ideal domains [ZC05, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
9
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
10
+ page_content=' Applying this structure theorem to the graded polynomial ring K[T ] gives a graded elementary divisor decomposition of persistent homology, which can be reinterpreted as barcodes [CZCG04] or, equivalently, as persistence diagrams [EH10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
11
+ page_content=' However, there does not seem to be a proof of this general structure theo- rem in the literature in the form stated by Zomorodian and Carlsson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
12
+ page_content=' As this theorem is quoted multiple times in work on persistent homology and as it is a potential source of confusion, the goal of this expository note is to clarify the nature of this structure theorem (even though it might be clear to the experts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
13
+ page_content=' We first give a precise formulation of the structure theorem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
14
+ page_content=' this formu- lation slightly differs from the statement of Zomorodian and Carlsson [ZC05, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
15
+ page_content='1] (for a reason explained below): Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
16
+ page_content='1 (structure theorem for graded modules over graded PIDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
17
+ page_content=' Let R be a graded principal ideal domain with R ̸= R0 and let M be a finitely generated graded R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
18
+ page_content=' Then M admits a graded elementary divisor decomposition (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
19
+ page_content='8) and the signatures of all such graded decompositions of M co- incide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
20
+ page_content=' The key observation of this note is that in fact every N-graded principal ideal domain is © C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
21
+ page_content=' L¨oh 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
22
+ page_content=' This work was supported by the CRC 1085 Higher Invariants (Universit¨at Regensburg, funded by the DFG).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
23
+ page_content=' MSC 2010 classification: 13C05, 55N31 1 2 2 Graded rings and modules a principal ideal domain with the 0-grading or a polynomial ring over a field with a multiple of the canonical grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
24
+ page_content=' The proof is elementary [VO83, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
25
+ page_content='7] (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
26
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
27
+ page_content=' For trivially graded principal ideal domains, in general, the graded elemen- tary divisor version of the structure theorem does not hold (Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
28
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
29
+ page_content=' This explains the additional hypothesis of R ̸= R0 in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
30
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
31
+ page_content=' In contrast, the graded prime power version of the structure theorem also holds if the grading is trivial (Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
32
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
33
+ page_content=' For polynomial rings, the graded uniqueness part can be deduced in a straightforward way from the ungraded uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
34
+ page_content=' However, for the graded existence part, there does not seem to be a “generic” derivation from the un- graded existence result – the difficulty being the graded direct sum splitting (as exhibited in the case of the trivially graded ring Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
35
+ page_content=' Finding such a splitting needs a careful inductive approach that establishes that the torsion submodule is graded and that avoids dividing out cyclic submodules in bad position/order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
36
+ page_content=' The graded existence part can be proved using specific properties of polynomial rings over fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
37
+ page_content=' In conclusion, the structure theorem for graded modules over graded prin- cipal ideal domains gives a helpful structural perspective on barcodes for per- sistent homology (and also for the computation of persistent homology [ZC05, SVJ13]), but its scope does not seem to go beyond the special case that is needed for persistent homology and it does not seem to provide a shortcut avoiding spe- cial properties of polynomial rings over fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
38
+ page_content=' Generalisations of N-graded persistent homology such as zigzag persistence or R-graded persistence (or more general indexing situations) are usually based on arguments from quiver representations [CdS10, BCB20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
39
+ page_content=' Similarly to the N- graded case, in these settings, it is also essential that the underlying coefficients are a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
40
+ page_content=' Organisation of this article Basic notions on graded rings and modules are recalled in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
41
+ page_content=' In Sec- tion 3, we prove Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
42
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
43
+ page_content=' The case of principal ideal domains with trivial gradings is considered in Section 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
44
+ page_content=' the case of polynomial rings over fields is discussed in Section 5, where we give an elementary proof of the structure the- orem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
45
+ page_content=' Acknowledgements I would like to thank Ulrich Bunke for helpful discussions on abstract methods for the decomposition of graded modules and Luigi Caputi for valuable feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
46
+ page_content=' 2 Graded rings and modules We recall basic notions on graded rings and modules and decompositions of graded modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
47
+ page_content=' As usual in (discrete) persistence, we consider only the case of discrete non-negative gradings, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
48
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
49
+ page_content=', gradings over N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
50
+ page_content=' 2 Graded rings and modules 3 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
51
+ page_content='1 (graded ring).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
52
+ page_content=' A graded ring is a pair (R, (Rn)n∈N), where R is a ring and the Rn are additive subgroups of R with the following properties: The additive group (R, +) is the internal direct sum of the (Rn)n∈N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
53
+ page_content=' For all n, m ∈ N, we have Rn · Rm ⊂ Rn+m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
54
+ page_content=' For n ∈ N, the elements in Rn are called homogeneous of degree n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
55
+ page_content=' An element of R is homogenous if there exists an n ∈ N such that the element is homogeneous of degree n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
56
+ page_content=' A graded ring is a graded principal ideal domain if it is a domain and every homogeneous ideal (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
57
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
58
+ page_content=', generated by homogeneous elements) is generated by a single element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
59
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
60
+ page_content='2 (polynomial rings).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
61
+ page_content=' Let K be a ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
62
+ page_content=' Then the usual degree on monomials in the polynomial ring K[T ] turns K[T ] into a graded ring via the canonical isomorphism K[T ] ∼=Ab � n∈N K · T n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
63
+ page_content=' We will refer to this as the canonical grading on K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
64
+ page_content=' If K is a field, then K[T ] is a principal ideal domain (graded and ungraded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
65
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
66
+ page_content='3 (graded module).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
67
+ page_content=' Let R be a graded ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
68
+ page_content=' A graded module over R is a pair (M, (Mn)), consisting of an R-module M and additive sub- groups Mn of M with the following properties: The additive group (M, +) is the internal direct sum of the (Mn)n∈N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
69
+ page_content=' For all n, m ∈ N, we have Rn · Mm ⊂ Mn+m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
70
+ page_content=' Elements of Mm are called homogeneous of degree m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
71
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
72
+ page_content='4 (the category of graded modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
73
+ page_content=' Let R be a graded ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
74
+ page_content=' Ho- momorphisms between graded R-modules are R-linear maps that preserve the grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
75
+ page_content=' Graded R-modules and homomorphisms of R-modules form the cate- gory RMod∗ of graded R-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
76
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
77
+ page_content='5 (shifted graded modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
78
+ page_content=' Let R be a graded ring, let M be a graded module over R, and let n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
79
+ page_content=' Then ΣnM denotes the graded R-module given by the n-shifted decomposition 0 ⊕ · · · ⊕ 0 ⊕ � j∈N≥n Mj−n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
80
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
81
+ page_content='6 (direct sums and quotients of graded modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
82
+ page_content=' Let M and N be graded modules over a graded ring R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
83
+ page_content=' Then M ⊕ N is a graded R-module via the grading (Mn ⊕ Nn)n∈N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
84
+ page_content=' If M ′ ⊂ M is a graded submodule of M (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
85
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
86
+ page_content=', it is generated by homogeneous elements), then (Mn/(M ′ ∩Mn))n∈N turns M/M ′ into a graded R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
87
+ page_content=' Persistent homology leads to persistence modules [ZC05].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
88
+ page_content=' Persistence mod- ules in turn give rise to graded modules over graded polynomial rings [ZC05, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
89
+ page_content='1]: Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
90
+ page_content='7 (from persistence modules to graded modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
91
+ page_content=' Let K be a ring and let (M ∗, f ∗) be an N-indexed persistence K-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
92
+ page_content=' Then M := � n∈N M n carries a K[T ]-module structure, given by ∀x∈Mn T · x := f n(x) ∈ M n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
93
+ page_content=' If we view K[T ] as a graded ring (Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
94
+ page_content='2), then this K[T ]-module structure and this direct sum decomposition of M turn M into a graded K[T ]-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
95
+ page_content=' If (M ∗, f ∗) is of finite type, then M is finitely generated over K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
96
+ page_content=' 4 3 Graded principal ideal domains Finally, we define the central types of decompositions arising in the structure theorems: Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
97
+ page_content='8 (graded elementary divisor decomposition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
98
+ page_content=' Let R be a graded ring and let M be a graded module over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
99
+ page_content=' A graded elementary divisor de- composition of M over R is an isomorphism M ∼=RMod∗ N � j=1 ΣnjR/(fj) of graded R-modules with N ∈ N, degrees n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
101
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
102
+ page_content=' , nN ∈ N, and homogeneous elements f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
104
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
105
+ page_content=' , fN ∈ R with fj|fj+1 for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
107
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
108
+ page_content=' , N −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
109
+ page_content=' Here, the right- hand side carries the canonical grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
110
+ page_content=' The elements f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
112
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
113
+ page_content=' , fN are called elementary divisors of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
114
+ page_content=' The signature of such a decomposition is the multiset of all pairs (nj, R×·fj) with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
115
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
116
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
117
+ page_content=', N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
118
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
119
+ page_content='9 (graded prime power decomposition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
120
+ page_content=' Let R be a graded ring and let M be a graded module over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
121
+ page_content=' A graded prime power decomposition of M over R is an isomorphism M ∼=RMod N � j=1 ΣnjR/(pkj j ) of graded R-modules with N ∈ N, n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
122
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
123
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
124
+ page_content=' , nN ∈ N, k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
125
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
126
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
127
+ page_content=' , kN ∈ N, and homo- geneous prime elements p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
130
+ page_content=' , pN ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
131
+ page_content=' Here, the right-hand side carries the canonical grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
132
+ page_content=' The signature of such a decomposition is the multiset of all pairs (nj, R×·pkj j ) with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
133
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
135
+ page_content=', N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
136
+ page_content=' 3 Graded principal ideal domains For the sake of completeness, we provide a proof of the following observa- tion [VO83, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
137
+ page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
138
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
139
+ page_content='1 (graded PIDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
140
+ page_content=' Let R be a graded principal ideal domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
141
+ page_content=' Then R is of one of the following types: We have R = R0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
142
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
143
+ page_content=', R is an ordinary principal ideal domain with the 0-grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
144
+ page_content=' The subring R0 is a field and R is isomorphic to the graded ring R0[T ], where the grading on R0[T ] is a multiple of the canonical grading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
145
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
146
+ page_content=' Let R ̸= R0 and let n ∈ N>0 be the minimal degree with Rn ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
147
+ page_content=' Then R≥n := � j∈N≥n Rj is a homogeneous ideal in R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
148
+ page_content=' as R is a graded principal ideal domain, there exists a t ∈ R with R≥n = (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
149
+ page_content=' We show that t is homogeneous of degree n: Let 4 Trivially graded principal ideal domains 5 x ∈ Rn \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
150
+ page_content=' Then t divides x and a straightforward computation shows that hence also t is homogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
151
+ page_content=' The grading implies that t has degree n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
152
+ page_content=' We show that the canonical R0-algebra homomorphism ϕ: R0[T ] −→ R given by ϕ(T ) := t is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
153
+ page_content=' We first show that ϕ is injective: Because R is graded and t is homoge- neous, it suffices to show that a · tk ̸= 0 for all a ∈ R0 \\ {0} and all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
154
+ page_content=' However, this is guaranteed by the hypothesis that R is a domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
155
+ page_content=' Regarding surjectivity, let y ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
156
+ page_content=' It suffices to consider the case that y is homogeneous of degree m ≥ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
157
+ page_content=' Because (t) = R≥n, we know that t divides y, say y = t · y′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
158
+ page_content=' Then y′ is homogeneous and we can iterate the argument for y′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
159
+ page_content=' Proceeding inductively, we obtain that m is a multiple of n and that there exists an a ∈ R0 with y = a · tm/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
160
+ page_content=' Hence, ϕ is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
161
+ page_content=' This establishes that R is isomorphic as a graded ring to R0[T ], where R0[T ] carries the canonical grading on R0[T ] scaled by n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
162
+ page_content=' It remains to show that R0 ∼=Ring R/(t) is a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
163
+ page_content=' Thus, we are left to show that (t) is a maximal ideal in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
164
+ page_content=' By construction, every ideal a that contains (t) = R≥n is generated by (t) and a subset of R0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
165
+ page_content=' in particular, a is homogeneous, whence principal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
166
+ page_content=' The grading shows that then a = R or a = (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
167
+ page_content=' Thus, (t) is maximal and so R0 is a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
168
+ page_content=' In the setting of Z-graded principal ideal domains, further examples appear, such as generalised Rees rings [PvG82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
169
+ page_content=' 4 Trivially graded principal ideal domains Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
170
+ page_content='1 (elementary divisor decompositions over trivially graded PIDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
171
+ page_content=' Let R be a principal ideal domain with the 0-grading that contains two non- associated prime elements p and q (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
172
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
173
+ page_content=', 2 and 3 in Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
174
+ page_content=' We consider the graded R-module M := Σ0R/(p) ⊕ Σ1R/(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
175
+ page_content=' This graded R module does not admit a graded elementary divisor decom- position: Indeed, if there were a graded elementary divisor decomposition of M, then the corresponding elementary divisors would have to coincide with the un- graded elementary divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
176
+ page_content=' The only ungraded elementary divisor of M is p · q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
177
+ page_content=' However, M does not contain a homogenous element with annihilator ideal (p·q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
178
+ page_content=' Therefore, M does not admit a graded elementary divisor decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
179
+ page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
180
+ page_content='2 (prime power decompositions over trivially graded PIDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
181
+ page_content=' Let R be a principal ideal domain with the 0-grading and let M be a finitely generated graded R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
182
+ page_content=' Then M admits a graded prime power decomposition and the signature of all such graded decompositions of M coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
183
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
184
+ page_content=' Because R is trivially graded, the grading on M decomposes M as a direct sum � n∈N Mn of R-submodules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
185
+ page_content=' In view of finite generation of M, only finitely many of these summands are non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
186
+ page_content=' We can now apply the ungraded structure theorem to each summand Mn to conclude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
187
+ page_content=' 6 5 Polynomial rings over fields 5 Polynomial rings over fields In view of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
188
+ page_content='1, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
189
+ page_content='1 can equivalently be stated as follows (which is exactly the special case needed in persistent homology): Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
190
+ page_content='1 (structure theorem for graded modules over polynomial rings).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
191
+ page_content=' Let K be a field and let M be a finitely generated graded module over the graded ring K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
192
+ page_content=' Then there exist N ∈ N, n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
194
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
195
+ page_content=' , nN ∈ N, and k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
197
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
198
+ page_content=' , kN ∈ N>0 ∪ {∞} with M ∼=K[T ]Mod∗ N � j=1 ΣnjK[T ]/(T kj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
199
+ page_content=' Here, T ∞ := 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
200
+ page_content=' The multiset of all (nj, kj) with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
202
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
203
+ page_content=' , N} is uniquely determined by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
204
+ page_content=' The rest of this section contains an elementary and constructive proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
205
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
206
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
207
+ page_content='1 Uniqueness of graded decompositions The uniqueness claim in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
208
+ page_content='1 can be derived inductively from the un- graded uniqueness statement: Let a decomposition as in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
209
+ page_content='1 be given and let ϕ: � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
210
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
211
+ page_content=' · · · −→ M be a corresponding graded K[T ]-isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
212
+ page_content=' Then M ′ := ϕ(N ′) with N ′ := � j∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
213
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
214
+ page_content=',N},nj=0 ΣnjK[T ]/(T kj) is a graded submodule of M and it is not difficult to see that M ′ = ϕ(N ′) = SpanK[T ] M0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
215
+ page_content=' Moroever, M ′ is finitely generated over K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
216
+ page_content=' Therefore, the ungraded structure theorem when applied to M ′ shows that the multiset of all pairs (nj, kj) with nj = 0 is uniquely determined by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
217
+ page_content=' For the induction step, we pass to the quotient M/M ′, which is a finitely gen- erated graded K[T ]-module with (M/M ′)0 ∼= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
218
+ page_content=' We shift the degrees on M/M ′ by −1 and inductively apply the previous argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
219
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
220
+ page_content='2 Homogeneous matrix reduction The standard matrix reduction algorithm for the computation of persistent ho- mology [EH10, ZC05] can be viewed as a proof of the existence part of Theo- rem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
221
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
222
+ page_content=' We phrase the matrix reduction algorithm in the graded language to em- phasise the connection with graded decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
223
+ page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
224
+ page_content='2 (graded matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
225
+ page_content=' Let K be a field, let r, s ∈ N, and let n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
226
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
227
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
228
+ page_content=' , nr, m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
229
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
230
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
231
+ page_content=' , ms ∈ N be monotonically increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
232
+ page_content=' A matrix A ∈ Mr×s(K[T ]) is (n∗, m∗)-graded if the following holds: For all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
233
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
234
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
235
+ page_content=' , r}, k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
236
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
237
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
238
+ page_content=', s}, we have that the entry Ajk ∈ K[T ] is a homogeneous polynomial and Ajk = 0 or nj = deg Ajk + mk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
239
+ page_content=' 5 Polynomial rings over fields 7 In a graded matrix, the degrees of matrix entries monotonically increase from the left to the right and from the bottom to the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
240
+ page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
241
+ page_content='3 (reduced matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
242
+ page_content=' Let K be a field, let r, s ∈ N, and let n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
243
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
244
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
245
+ page_content=' , nr, m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
246
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
247
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
248
+ page_content=' , ms ∈ N be monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗, m∗)-graded matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
249
+ page_content=' For k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
250
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
251
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
252
+ page_content=', s}, we define lowA(k) := max � j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
253
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
254
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
255
+ page_content=' , r} �� Ajk ̸= 0 � ∈ N (with max ∅ := 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
256
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
257
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
258
+ page_content=', lowA(k) is the index of the “lowest” matrix entry in column k that is non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
259
+ page_content=' The matrix A is reduced if all columns have different low-indices: For all k, k′ ∈ N with lowA(k) ̸= 0 and lowA(k′) ̸= 0, we have lowA(k) ̸= lowA(k′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
260
+ page_content=' Graded matrices can be transformed into reduced matrices via elementary column operations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
261
+ page_content=' these reduced matrices then lead to module decompositions: Algorithm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
262
+ page_content='4 (homogeneous matrix reduction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
263
+ page_content=' Given a field K, r, s ∈ N, monotonically increasing sequences n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
264
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
265
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
266
+ page_content=' , nr, m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
267
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
268
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
269
+ page_content=' , ms ∈ N, and an (n∗, m∗)- graded matrix A ∈ Mr×s, do the following: For each k from 1 up to s (in ascending order): Let ℓ := lowA(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
270
+ page_content=' If ℓ ̸= 0, then: For each j from ℓ down to 1 (in descending order): If Ajk ̸= 0 and there exists k′ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
271
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
272
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
273
+ page_content=', k − 1} with lowA(k′) = j, then: Update the matrix A by subtracting Ajk/Ajk′-times the col- umn k′ from column k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
274
+ page_content=' [Loop invariant observation: Because A is graded, Ajk/Ajk′ in- deed is a homogeneous polynomial over K and the resulting ma- trix is (n∗, m∗)-graded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
275
+ page_content=' This eliminates the entry Ajk′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
276
+ page_content='] Return the resulting matrix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
277
+ page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
278
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
279
+ page_content=' Let K be a field, let r, s ∈ N, let n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
280
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
281
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
282
+ page_content=' , ns, m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
283
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
284
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
285
+ page_content=' , mr ∈ N be monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗, m∗)-graded matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
286
+ page_content=' Then: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
287
+ page_content=' The homogeneous matrix reduction algorithm (Algorithm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
288
+ page_content='4) terminates on this input after finitely many steps (relative to the arithmetic on K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
289
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
290
+ page_content=' The resulting matrix A′ is reduced and there is a graded s × s-matrix B over K[T ] that admits a graded inverse and satisfies A′ = A · B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
291
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
292
+ page_content=' The low-entries of the resulting matrix A′ are the elementary divisors of A over K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
293
+ page_content=' 8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
294
+ page_content='2 Homogeneous matrix reduction 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
295
+ page_content=' We have F/ im A ∼=K[T ]Mod∗ � j∈I ΣnjK[T ]/(T mk(j)−nj) ⊕ � j∈I′ ΣnjK[T ], where F := �r j=1 ΣnjK[T ] and I := {lowA′(k) | k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
296
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
297
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
298
+ page_content=' , s}} \\ {0} as well as I′ := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
299
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
300
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
301
+ page_content=', r} \\ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
302
+ page_content=' For j ∈ I, let k(j) ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
303
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
304
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
305
+ page_content=' , s} be the unique (!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
306
+ page_content=') index with lowA′(k(j)) = j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
307
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
308
+ page_content=' Ad 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
309
+ page_content=' Well-definedness follows from the observation mentioned in the algorithm: As every homogeneous polynomial in K[T ] is of the form λ · T d with λ ∈ K and d ∈ N and as the matrix is graded, the corresponding division can be performed in K[T ] and the gradedness of the matrix is preserved by the elimination operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
310
+ page_content=' Termination is then clear from the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
311
+ page_content=' Ad 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
312
+ page_content=' As we traverse the columns from left to right, a straightforward induction shows that no two columns can remain that have the same non-zero value of “lowA”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
313
+ page_content=' The product decomposition comes from the fact that we only applied elementary homogeneous column operations without swaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
314
+ page_content=' Ad 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
315
+ page_content=' Because the resulting matrix A′ is obtained through elementary col- umn operations from A, the elementary divisors of A′ and A coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
316
+ page_content=' Applying Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
317
+ page_content='6 to A′ proves the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
318
+ page_content=' Ad 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
319
+ page_content=' In view of the second part, we have that F/ im A ∼=K[T ]Mod∗ F/ im A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
320
+ page_content=' Therefore, the claim is a direct consequence of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
321
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
322
+ page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
323
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
324
+ page_content=' Let K be a field, let r, s ∈ N, let n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
325
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
326
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
327
+ page_content=' , nr, m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
328
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
329
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
330
+ page_content=' , ms ∈ N be monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗, m∗)-graded matrix that is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
331
+ page_content=' Then: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
332
+ page_content=' The low-entries of A are the elementary divisors of A over K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
333
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
334
+ page_content=' Let F := �r j=1 ΣnjK[T ] and I := {lowA(k) | k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
335
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
336
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
337
+ page_content=', s}} \\ {0} as well as I′ := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
338
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
339
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
340
+ page_content=', r} \\ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
341
+ page_content=' Then F/ im A ∼=K[T ]Mod∗ � j∈I ΣnjK[T ]/(T mk(j)−nj) ⊕ � j∈I′ ΣnjK[T ] Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
342
+ page_content=' Ad 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
343
+ page_content=' Let k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
344
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
345
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
346
+ page_content=' , s} with ℓ := lowA(k) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
347
+ page_content=' Then we can clear out all the entries of A in column k above ℓ by elementary row operations (again, the gradedness of A ensures that this is possible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
348
+ page_content=' Swapping zero rows and columns appropriately thus results in a matrix in rectangle “diagonal” form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
349
+ page_content=' moreover, as all the “diagonal” entries are monomials, we can swap rows and columns to obtain a matrix A′ in Smith normal form that both has the same elementary divisors as A and whose elementary divisors are precisely the low-entries of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
350
+ page_content=' In particular, these elementary divisors must coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
351
+ page_content=' Ad 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
352
+ page_content=' The claim is clear if A is already in Smith normal form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
353
+ page_content=' By con- struction, there are square matrices B and C that are invertible over K[T ] and represent graded K[T ]-isomorphisms with A′ = C · A · B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
354
+ page_content=' In particular, F/ im A ∼=K[T ]Mod∗ (C · F)/ im A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
355
+ page_content=' By construction, the values of lowA′ and the degrees of A′ differ from the ones of A only by compatible index permutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
356
+ page_content=' Therefore, the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
357
+ page_content=' 5 Polynomial rings over fields 9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
358
+ page_content='3 Existence of a graded decomposition To prove existence in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
359
+ page_content='1 we can follow the standard proof pattern of first finding a (graded) finite presentation and then applying (homogeneous) matrix reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
360
+ page_content=' Let M be a finitely generated graded K[T ]-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
361
+ page_content=' Then M also has a finite generating set consisting of homogeneous elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
362
+ page_content=' This defines a surjective graded K[T ]-homomorphism ϕ: F := r � j=1 ΣnjK[T ] −→ M for suitable r ∈ N and monotonically increasing n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
363
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
364
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
365
+ page_content=' , nr ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
366
+ page_content=' As ϕ is a graded homomorphism, ker ϕ ⊂ F is a graded K[T ]-submodule and we obtain an isomorphism M ∼=K[T ]Mod∗ F/ im ker ϕ of graded K[T ]-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
367
+ page_content=' Because K[T ] is a principal ideal domain, the graded submodule ker ϕ ⊂ F is finitely generated over K[T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
368
+ page_content=' Because ker ϕ is a graded submodule, ker ϕ has a finite homogeneous generating set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
369
+ page_content=' (In fact, there also exists a homogeneous free K[T ]-basis for ker ϕ, as can be seen from a straightforward inductive splitting argument [Web85, Lemma 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
370
+ page_content=') In particular, there exist s ∈ N, monotonically increasing m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
371
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
372
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
373
+ page_content=' , ms ∈ N, and a graded K[T ]-homomorphism ψ: E := s � k=1 ΣmkK[T ] −→ F with im ψ = ker ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
374
+ page_content=' Because ψ is graded and n∗, m∗ are monotonically increas- ing, the r×s-matrix A over K[T ] that represents ψ with respect to the canonical homogeneous bases of E and F is graded in the sense of Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
375
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
376
+ page_content=' Applying the homogeneous matrix reduction algorithm to A shows that M ∼=K[T ]Mod∗ F/ im A, has the desired decomposition (Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
377
+ page_content='5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
378
+ page_content=' after discarding the irrelevant terms of the form ΣnK[T ]/(T 0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
379
+ page_content=' This completes the proof of the structure theorem (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
380
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
381
+ page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
382
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
383
+ page_content=' There is a general matrix reduction for a slighlty different notion of “graded” matrices over (Z-)graded principal ideal domains [PvG82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
384
+ page_content=' However, one should be aware that such “graded” matrices in general only lead to graded homomorphisms once one is allowed to change the grading on the underlying free modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
385
+ page_content=' This explains why this general matrix reduction does not contradict the counterexample in case of 0-graded principal ideal rings in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
386
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
387
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
388
+ page_content='4 Barcodes For the sake of completeness, we recall the relation between graded decomposi- tions and barcodes: 10 References Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
389
+ page_content='8 (barcodes of persistence modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
390
+ page_content=' Let K be a field and let (M ∗, f ∗) be an N-indexed persistence K-module of finite type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
391
+ page_content=' We equip M := � n∈N M n with the canonical graded K[T ]-module structure (Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
392
+ page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
393
+ page_content=' By the graded structure theorem (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
394
+ page_content='1), there exist N ∈ N, n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
395
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
396
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
397
+ page_content=' , nN ∈ N, and k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
398
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
399
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
400
+ page_content=' , kN ∈ N>0 ∪ {∞} with M ∼=K[T ]Mod∗ N � j=1 ΣnjK[T ]/(T kj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
401
+ page_content=' Let B be the multiset of all (nj, kj − 1) with j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
402
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
403
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
404
+ page_content=', N};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
405
+ page_content=' then B is uniquely determined by M and this multiset B is the barcode of (M ∗, f ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
406
+ page_content=' The barcode contains the full information on the isomorphism type of the graded K[T ]-module M (and the underlying persistence module) and describes the birth, death, and persistence of elements as specified by the “elder rule”: If (n, p) is an element of the barcode, this means that a new independent class is born at stage n, it persists for p stages, and it dies (if p ̸= ∞) at stage n+ p+ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
407
+ page_content=' In particular, this leads to the notion of barcodes of persistent homology (in a given degree) of finite type persistence chain complexes and finite type filtrations in topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
408
+ page_content=' References [BCB20] Magnus Bakke Botnan and William Crawley-Boevey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
409
+ page_content=' Decomposition of persistence modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
410
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
411
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
412
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
413
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
414
+ page_content=', 148(11):4581–4596, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
415
+ page_content=' Cited on page: 2 [CdS10] Gunnar Carlsson and Vin de Silva.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
416
+ page_content=' Zigzag persistence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
417
+ page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
418
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
419
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
420
+ page_content=', 10(4):367–405, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
421
+ page_content=' Cited on page: 2 [CZCG04] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
422
+ page_content=' Persistence Barcodes for Shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
423
+ page_content=' In Roberto Scopigno and Denis Zorin, ed- itors, Symposium on Geometry Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
424
+ page_content=' The Eurographics Association, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
425
+ page_content=' Cited on page: 1 [EH10] Herbert Edelsbrunner and John L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
426
+ page_content=' Harer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
427
+ page_content=' Computational topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
428
+ page_content=' Amer- ican Mathematical Society, Providence, RI, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
429
+ page_content=' An introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
430
+ page_content=' Cited on page: 1, 6 [PvG82] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
431
+ page_content=' Puystjens and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
432
+ page_content=' van Geel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
433
+ page_content=' Diagonalization of matrices over graded principal ideal domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
434
+ page_content=' Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
435
+ page_content=', 48:265–281, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
436
+ page_content=' Cited on page: 5, 9 [SVJ13] Primoz Skraba and Mikael Vejdemo-Johansson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
437
+ page_content=' Persistence modules: Al- gebra and algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
438
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
439
+ page_content=' arXiv:1302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
440
+ page_content='2015 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
441
+ page_content='CG].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
442
+ page_content=' Cited on page: 2 [VO83] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
443
+ page_content=' Van Oystaeyen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
444
+ page_content=' Generalized Rees rings and arithmetical graded rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
445
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
446
+ page_content=' Algebra, 82(1):185–193, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
447
+ page_content=' Cited on page: 2, 4 [Web85] Cary Webb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
448
+ page_content=' Decomposition of graded modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
449
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
450
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
451
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
452
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
453
+ page_content=', 94(4):565–571, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
454
+ page_content=' Cited on page: 9 [ZC05] Afra Zomorodian and Gunnar Carlsson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
455
+ page_content=' Computing persistent homology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
456
+ page_content=' Discrete Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
457
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
458
+ page_content=', 33(2):249–274, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
459
+ page_content=' Cited on page: 1, 2, 3, 6 Clara L¨oh Fakult¨at f¨ur Mathematik, Universit¨at Regensburg, 93040 Regensburg clara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
460
+ page_content='loeh@mathematik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
461
+ page_content='uni-r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
462
+ page_content='de, https://loeh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
463
+ page_content='app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
464
+ page_content='ur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
465
+ page_content='de' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFKT4oBgHgl3EQfNy2J/content/2301.11756v1.pdf'}
1dFLT4oBgHgl3EQfpy-5/content/2301.12137v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e413712f23fcdfa6e417cb008d81fa85e3165cfd2925bb3376e228c73d0127f
3
+ size 303973
1dFLT4oBgHgl3EQfpy-5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:829292d4adfc5bf683710cc871c447e321dff79f7c6deef812eaa261235884a5
3
+ size 7733293
2dFST4oBgHgl3EQfXzgB/content/tmp_files/2301.13785v1.pdf.txt ADDED
@@ -0,0 +1,1127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Commitment Against Front Running
2
+ Attacks∗
3
+ Andrea Canidio †and Vincent Danos‡
4
+ February 1, 2023
5
+ Abstract
6
+ We provide a game-theoretic analysis of the problem of front-running attacks. We use it
7
+ to distinguish attacks from legitimate competition among honest users for having their
8
+ transactions included earlier in the block. We also use it to introduce an intuitive notion
9
+ of the severity of front-running attacks. We then study a simple commit-reveal protocol
10
+ and discuss its properties. This protocol has costs because it requires two messages and
11
+ imposes a delay. However, it is effective at preventing the most severe front-running at-
12
+ tacks while preserving legitimate competition between users, guaranteeing that the earliest
13
+ transaction in a block belongs to the honest user who values it the most.
14
+ Keywords: Front running, Game theory, Ethereum, MEV, Transaction reordering, commit-
15
+ reveal
16
+ 1
17
+ Introduction
18
+ On the Ethereum network, each validator decides how to order pending transactions
19
+ to form the next block, which determines the order in which these transactions are
20
+ executed.
21
+ As a consequence, users often compete with each other to have their
22
+ ∗We are grateful to Agostino Capponi, Jiasun Li, Christof Ferreira Torres, Arthur Gervais,
23
+ Ari Juels, and the participants to UBRI Connect 2022, Tokenomics 2022 for their comments and
24
+ suggestions. We gratefully acknowledge the financial support of the Ethereum Foundation (grant
25
+ FY22-0840).
26
+ †IMT school of advanced studies, Lucca, Italy
27
+ ‡CNRS and École Normale Supérieure (France);
28
+ 1
29
+ arXiv:2301.13785v1 [econ.TH] 31 Jan 2023
30
+
31
+ 1 Introduction
32
+ 2
33
+ transactions included earlier in a block, either by paying transaction fees or by mak-
34
+ ing side payments directly to validators.1 This form of competition can be beneficial
35
+ because it ensures that a scarce resource (i.e., having a transaction included earlier
36
+ in the block) is allocated to the user who values it the most.2 But at the same time,
37
+ it opens the possibility of front-running attacks: because pending transactions are
38
+ public, a malicious user can observe a victim’s incoming transaction, craft a new
39
+ transaction and then pay to place it before that of the victim.
40
+ Importantly, legitimate competition and attacks are often difficult to distinguish.
41
+ As an illustrative example, consider a smart contract programmed to award a valu-
42
+ able NFT to the first person who correctly answers a question. Assume, crucially,
43
+ that the smart contract does not have an explicit mechanism to resolve competing
44
+ claims to the object (i.e., by running an auction among those who provided the
45
+ correct answer) and settles claims in order of arrival. In this example, competition
46
+ between users can arise in two cases. In the first case, two users simultaneously
47
+ and independently find the answer. Each submits it and competes to have his/her
48
+ transaction included earlier in the block. Because the user who values the NFT the
49
+ most is willing to pay more, this user should be able to place his transaction before
50
+ that of the opponent, thereby winning the NFT. In the second case, an honest user
51
+ finds the answer and sends it to the smart contract. A malicious user observes the
52
+ transaction, copies it, and competes to have its copy included in the block earlier
53
+ than the original transaction.
54
+ From the observational point of view, the above two situations are identical:
55
+ two users submit the same answer and then compete to have it included earlier in
56
+ the block. Despite this, the first is an example of legitimate competition because
57
+ users do not exploit their observation of the opponent’s transaction. Hence, each
58
+ user would have submitted his answer also in the absence of the other user. The
59
+ second is an attack because the attacker cannot send his transaction if he does
60
+ not observe the victim’s transaction. Furthermore, the extent to which an attacker
61
+ 1 Competition through higher transaction fees occurs via “gas replacement” transactions,
62
+ whereby a pending transaction is resubmitted with a higher fee. The resulting game is akin to an
63
+ auction (see Daian et al. (2019)). The most popular way to make side payments to validators is
64
+ to use flashbots (see https://github.com/flashbots/pm).
65
+ 2 Whether it is the most efficient to achieve this goal is a different issue we do not address here.
66
+
67
+ 1 Introduction
68
+ 3
69
+ relies on the victim’s message can be interpreted as a measure of the severity of
70
+ a front-running attack.
71
+ For example, the “attacker” could be another user who,
72
+ through his research, narrowed the correct answer to two or three possibilities. This
73
+ attack seems less severe relative to a situation in which the attacker has no prior
74
+ information.
75
+ Our simple, illustrative example is representative of the workings of most smart
76
+ contracts, including those at the core of decentralized finance protocols. For ex-
77
+ ample, Automated Market Makers (AMM) are the dominant type of decentralized
78
+ exchange. They allow users to swap one token for a different one at a price that
79
+ is mechanically derived by the size of two liquidity pools (one per token traded).
80
+ Because swapping one token for another changes the liquidity in each pool, if no
81
+ liquidity is added, then a sequence of users performing the same swap will face worse
82
+ and worse terms.3 Hence, two users who independently decide to perform the same
83
+ swap on an AMM will compete to obtain a better rate. Competition ensures that
84
+ the user who most values obtaining the better rate (perhaps because the swap is
85
+ part of a sequence of atomic transactions) can obtain it. Alternatively, a user may
86
+ want to perform a swap. Upon observing this transaction, an attacker will front-run
87
+ the victim with the same swap and then back-run her with the opposite swap, in
88
+ what is called a sandwich attack or insertion attack.4 Again, the second example is
89
+ an attack because the attacker uses information obtained by observing the victim’s
90
+ transaction.
91
+ In this paper, we propose a game-theoretic model of front-running. Our goals are
92
+ two. First, inspired by the above discussion, we aim to provide a formal definition
93
+ of front-running attacks (vs. legitimate competition among honest users) as well as
94
+ their severity. Second, we study a simple commit-reveal protocol that can be im-
95
+ plemented at the smart contract level without modifying the underlying Ethereum
96
+ infrastructure or introducing third parties (or layer-2 networks). In the simplest
97
+ version of the protocol, the user concatenates the desired message with the address
98
+ 3 Like in our simple illustrative example, AMMs do not have an explicit mechanism to allocate
99
+ the “better rate” to one of the users and instead rely on the order in which transactions are
100
+ aggregated into a block.
101
+ 4 See Eskandari et al. (2019) for a discussion of this type of front running. See also Park (2022)
102
+ for an analysis of these types of attacks in the context of AMMs.
103
+
104
+ 1 Introduction
105
+ 4
106
+ from which the reveal message will be sent and passes this into a function with
107
+ an intractable pre-image problem (for example, the SHA-256 hash function).5 The
108
+ resulting output is the commit message, which the user sends to the smart contract.
109
+ Then, the user sends the reveal message to the smart contract, where the reveal
110
+ message is simply the desired message. The smart contract receiving a reveal mes-
111
+ sage will execute it only if the concatenation of the reveal message with the address
112
+ from which it was received corresponds to the commit message.
113
+ The key observation is that an attack involves two steps: (i) committing a mes-
114
+ sage without knowing what message the victim will send and (ii) after observing
115
+ the victim’s reveal message, deciding to send the committed message or no message
116
+ at all. Furthermore, the victim may use a newly-created address to send the com-
117
+ mit message. When this is the case, the attacker may observe that someone sent
118
+ a commit message to the smart contract, but not whom. The protocol, therefore,
119
+ forces the attacker to make a costly guess: send a costly commit message without
120
+ knowing whether a given victim committed (and will reveal) nor what the victim
121
+ committed. At the same time, the protocol does not impede legitimate competition
122
+ between users: two honest users can commit their messages and then compete to
123
+ have their reveal message included earlier in the block.
124
+ We derive conditions under which an honest player is better off using the pro-
125
+ tocol than Ethereum’s standard procedure.6 On the cost side, the protocol requires
126
+ sending two messages instead of one and imposes a delay. Hence, if the cost of
127
+ sending messages or waiting is high, the protocol is worse than the standard way
128
+ to send transactions; if they are low, the protocol is preferred. On the benefit side,
129
+ the protocol can eliminate front-running attacks, especially when it is difficult for
130
+ an attacker to guess, that is, when the expected payoff of an attacker who commits
131
+ without knowing whether the victim committed and what message was committed
132
+ is low. By definition of the severity of the attack introduced earlier, we can say
133
+ 5 In this version, an attacker observes that a smart contract received a commit message (but
134
+ not necessary whom if the commit message is sent from a brand new address). Later, we discuss
135
+ a more complex protocol in which the receiver of the commit message is obfuscated.
136
+ 6 We believe that, for our purposes, the honest player’s welfare is the most sensible criterion to
137
+ evaluate the protocol. The alternative would be to consider the smart contract perspective. Note,
138
+ however, that certain types of attacks can be quite profitable from the smart contract viewpoint—
139
+ for example, sandwich attacks in the context of AMMs.
140
+
141
+ 1 Introduction
142
+ 5
143
+ that our protocol is most effective when the severity of the attack is high and is less
144
+ effective when the severity of the attack is low.
145
+ As an extension (see Section 5.1), we study a variation of the above protocol in
146
+ which the identity of the receiver of the commit message is hidden. This variation
147
+ hinges on the existence of a template code for a container smart contract. When
148
+ committing, the user uses a brand new address to create a container smart con-
149
+ tract using the template and then sends the commit message to this newly-created
150
+ container, which time-stamps the commitment message with the current block num-
151
+ ber. When sending the reveal message, the honest user also sends a pointer to the
152
+ container smart contract where the commitment is located. The smart contract
153
+ considers the commitment as valid if the commit message is correct, its timestamp
154
+ is antecedent to the current block, and, crucially, if the code of the container smart
155
+ contract corresponds to the template. This way, an outside observer can only see
156
+ that someone created a commitment smart contract and sent a commit message, but
157
+ not who committed nor the target smart contract for that commitment. Guessing
158
+ is even harder for an attacker, and hence the probability of an attack is even lower.
159
+ As a second extension (see Section 5.4), we introduce multiple attackers. Absent
160
+ the protocol, competition pushes each attacker to overspend (relative to the single-
161
+ attacker case). This is detrimental to both the attackers and the honest user. In
162
+ particular, the weakest attacker always earns zero in expected terms.7 Instead, in
163
+ the commit-reveal protocol, the commit message acts as a fixed cost to attack in the
164
+ next period. Because in the following period, the weakest attackers earn zero, there
165
+ is no equilibrium in which both attackers send the commit message with probability
166
+ 1: either there is no attack; or a single attacker commits and then attacks; or
167
+ both attackers commit (and then attack) with probability strictly less than one.
168
+ As a consequence, in the best-case scenario, the protocol eliminates attacks; in the
169
+ worst-case scenario, it reduces the level of competition between attackers resulting
170
+ in fewer resources spent in an attack, which benefits the honest player as well.
171
+ 7 This result is a version of a well-known result in contest theory, that of “full dissipation of
172
+ rents”. See, for example, Fudenberg and Tirole (1987).
173
+
174
+ 1 Introduction
175
+ 6
176
+ Prior work
177
+ Our commit-reveal protocol is novel but similar to existing proposals.
178
+ Our main contribution is the type of analysis. In particular, we show that our proto-
179
+ col can eliminate the most severe front-running attacks while maintaining legitimate
180
+ competition between users. As we discuss later, existing solutions instead are either
181
+ primarily concerned with eliminating attacks (at the cost of also eliminating legit-
182
+ imate competition) or better organizing competition (at the cost of exacerbating
183
+ attacks). Furthermore, most of the literature has proposed solutions to reduce or
184
+ eliminate front-running in Ethereum by changing its infrastructure or introducing
185
+ third parties (See Heimbach and Wattenhofer (2022) for a review of the literature).
186
+ Instead, our solution does not require third parties and can be implemented at the
187
+ smart contract level, allowing for flexibility in its implementation. For example,
188
+ each smart contract could decide that only some messages must follow the protocol
189
+ to be considered valid, while other messages do not need to.8 Or a smart contract
190
+ may decide that the protocol is required only during some periods (see Section 5.3).
191
+ With respect to existing solutions, our protocol can be seen as a simplified version
192
+ of the submarine commitments protocol in Breidenbach et al. (2018): in both cases, a
193
+ message is first committed and then revealed, and the commitment can be hidden in
194
+ the sense that the identity of the sender and receiver of the commit message cannot
195
+ be observed. The main difference is that we adopt a weaker notion of “commitment”
196
+ because we allow users not to send a transaction after committing it. The notion
197
+ of “commitment” in Breidenbach et al. (2018) is instead stronger because users are
198
+ penalized for not following through with their commitment.
199
+ As already mentioned, we provide a game-theoretic analysis of the properties
200
+ of this protocol, applicable to any smart contract.9 With this respect, our work
201
+ is inspired by Gans and Holden (2022), who develop a game-theoretic analysis of
202
+ the problem of front-running arising when an honest user and an attacker claim the
203
+ same reward. They also propose a protocol that eliminates these types of attacks.
204
+ Their key assumption is that the legitimate claimant strictly prefers the reward
205
+ 8 See the discussion in Section 5.2. For example, in the context of AMMs, it may make sense
206
+ that users who want to provide or withdraw liquidity do not need to follow the commit reveal
207
+ protocol, which is instead required for swaps.
208
+ 9 Breidenbach et al. (2018) analyze the properties of the submarine commitment scheme in the
209
+ context of a bug-bounty scheme they propose.
210
+
211
+ 1 Introduction
212
+ 7
213
+ to be burned rather than paid to the attacker. Therefore, these results are useful
214
+ in some environments where front-running may emerge, but not all. For example,
215
+ front-running attacks are a serious concern in the AMMs, but in this context, it may
216
+ not be possible to “burn the reward”.
217
+ Flashbots is a well-known project aiming to better organize competition among
218
+ users. The premise is that competition through transaction fees can lead to so-called
219
+ “gas wars” by which a given block is filled with transactions that will fail (because
220
+ only the first one can be correctly executed). Therefore, gas wars impose a negative
221
+ externality on all users because they lead to congestion and higher transaction fees.
222
+ The idea is to eliminate these negative externalities by allowing users to pay valida-
223
+ tors directly, therefore keeping their messages private.10 Doing so, however, makes
224
+ it extremely easy to attack an honest user who sends his or her message publicly
225
+ (see Capponi et al. (2022)).
226
+ Other solutions impose exogenous criteria for ordering transactions, preventing
227
+ attacks but also hindering legitimate competition. Kelkar et al. (2020) propose the
228
+ Aequitas protocol, a method to achieve ordering-fairness, by which if sufficiently
229
+ many nodes observe a given transaction arriving before a different transaction, this
230
+ ordering should be maintained when these transactions are included in a block.11
231
+ There are also commit-reveal schemes intermediated by third parties in charge of,
232
+ for example, reorganizing incoming transactions while also encrypting and then de-
233
+ crypting them. With this respect, the better-known solution is the Shutter network,
234
+ in which a network of nodes called “keypers” jointly generate cryptographic keys with
235
+ which users encrypt their transactions. Users then submit these transactions to a
236
+ batcher contract that also orders them. Finally, Keypers broadcast the decryption
237
+ key, the transactions are decrypted and sent to the target smart contracts.
238
+ A concept that is often associated with front-running attacks is that of Maximal-
239
+ extractable value (MEV), defined as “the maximum value that can be extracted from
240
+ block production in excess of the standard block reward and gas fees by including, ex-
241
+ cluding, and changing the order of transactions in a block”12 Most existing measures
242
+ 10 We note that our protocol also reduces competition among attackers and hence reduces "gas
243
+ wars".
244
+ 11 See also the hedera-hashgraph project (Baird (2016)).
245
+ 12 See https://ethereum.org/en/developers/docs/mev/.
246
+
247
+ 1 Introduction
248
+ 8
249
+ of total MEV are not very useful in our context as they capture both users’ legit-
250
+ imate competition (sometimes called “good MEV”) and attacks (sometimes called
251
+ “bad MEV”). A few papers, however, identify specifically profits extracted from at-
252
+ tacks. Torres et al. (2021) collect on-chain data from the inception of Ethereum
253
+ (July 30, 2015) until November 21, 2020. They estimate that these attacks gener-
254
+ ated 18.41M USD in profits for the attackers, of which 13.9M USD due to sandwich
255
+ (also called insertion) attacks. They also identify instances where several attackers
256
+ competed to attack the same victim. Similarly, Qin et al. (2022) consider a later
257
+ period (from the 1st of December, 2018 to the 5th of August, 2021) and find that
258
+ sandwich attacks generated 174.34M USD in profits.
259
+ The profits reported in the literature correspond to a situation in which an
260
+ attacker can craft his attack after observing the victim’s message, which is impossible
261
+ with our protocol. Nonetheless, we can use these measures as upper bounds for
262
+ an attacker’s profits under our protocol.
263
+ For example, suppose that all attacks
264
+ reported in Torres et al. (2021) are generated from attacking a single smart contract
265
+ (remember that in our protocol, commitments are specific to a given target smart
266
+ contract) and that the attacker is uninformed concerning when the victim will act.
267
+ In this case, an attacker must commit a message every block, hoping a victim would
268
+ do something. The profits per block reported by Torres et al. (2021) (and hence per
269
+ commitment) is 1.23 USD. Currently, the simplest possible transaction on Ethereum
270
+ costs approximately 2 USD (the base fee of a simple 21,000 gwei transaction), and
271
+ hence front-running attacks would not be profitable under our protocol.
272
+ We can repeat the same exercise using Qin et al. (2022) measures. Interestingly,
273
+ Qin et al. (2022) report that “the most sandwich attack-prone ERC-20 token is
274
+ SHIB, with an adversarial profit of 6.8M USD”. Because each pool of an AMM is
275
+ a different smart contract, 6.8M USD is an upper bound to the profits extracted
276
+ by attacking a single smart contract.13 Repeating the same calculation discussed
277
+ earlier yields profits per block of approx 8 USD.14 Remember that sandwich attacks
278
+ 13 It is precisely the profits extracted by attacking a single smart contract if SHIB is traded only
279
+ on an AMM and only against one other token. It will be lower if SHIB is traded against multiple
280
+ tokens and/or on multiple AMMs.
281
+ 14 SHIB was created in Aug 2020 and did not see much price action until April 2021. Here we
282
+ assume that all front-running attacks on SHIB occurred between April 2021 and Aug 2021 (when
283
+ their data collection stopped), for a period of 821798 blocks.
284
+
285
+ 2 The problem: front-running attacks
286
+ 9
287
+ require 2 messages. Hence, if profits are reduced by half (or more) by the inability
288
+ to observe the victim’s message beforehand, these attacks are not profitable under
289
+ our protocol.
290
+ 2
291
+ The problem: front-running attacks
292
+ As a benchmark case, we develop a model of front-running attacks and later intro-
293
+ duce our protocol. There is a smart contract SC and two players: Alice and Bob.
294
+ There is a piece of information (call it “the state of the world”) s ∈ S that only A
295
+ learns at the beginning of the game. Absent front running attacks, after observing
296
+ s, player A sends a message ˜σA ∈ Σ to the mempool (i.e., the set of pending trans-
297
+ actions), where Σ ̸= ∅ is the space of possible messages. As soon as the message ˜σA
298
+ is included in a block, the smart contract SC performs an action that generates a
299
+ benefit ˜PA(˜σA, s) to player A.
300
+ Front-running attacks arise because messages in the mempool are public. Hence,
301
+ after A sends a message to the mempool, this message is observed by B, who can
302
+ send a counter-message ˜σB ∈ Σ. If ˜σB is included in the blockchain before A’s
303
+ message, then B earns ˜PB(˜σB, ˜σA, s) while A earns nothing. Else, B earns nothing
304
+ and A earns ˜PA(˜σA, s).
305
+ Sending messages is costly. Each player can send a regular message by paying
306
+ c > 0. If multiple regular messages are sent, they are included in the block in the
307
+ order they are sent. We can think of c as being the base fee: a fee that should
308
+ guarantee the inclusion of a transaction in the next bloc, at least outside of periods
309
+ of rapid change in the demand for transactions.15 Player B, however, can also pay
310
+ f > c to send a “fast” message that, with probability q, is included in the block
311
+ before A’s regular message, despite A’s message being sent first. For example, f
312
+ could be the cost of sending a transaction via a service such as flashbots, or could
313
+ be a regular mempool transaction with a transaction fee significantly above the base
314
+ fee. Here we consider the parameters q, c, and f as exogenous and determined by
315
+ the technology available to A and B. We relax this assumption in Section 5.4, in
316
+ 15 The concept of base fee was introduced with the EIP-1559 upgrade. See the original pro-
317
+ posal here https://eips.ethereum.org/EIPS/eip-1559. For an economic analysis of EIP-1559, see
318
+ Roughgarden (2020).
319
+
320
+ 2 The problem: front-running attacks
321
+ 10
322
+ which we introduce multiple B players choosing their own f, which then determine
323
+ the probability that a given B player successfully front runs both A and the other
324
+ B players.
325
+ In terms of applications, consider the example we discussed in the introduction:
326
+ a smart contract that rewards whoever can correctly answer a question. In this case,
327
+ B will learn the correct answer by observing A’s message and then try to submit the
328
+ same answer before A. Formally, s = σA(s) = σB(s). Our model also fits a famous
329
+ (nonfictional) example: that discussed in the blog post “Ethereum is a dark forest”
330
+ (Robinson and Konstantopoulos, 2020). In this example, two researchers wanted to
331
+ recover some tokens that a user sent to an incorrect address. They realized that
332
+ anyone who knew about these tokens could have stolen them. Despite their effort,
333
+ their attempt to recover these tokens revealed their existence to an attacker who
334
+ managed to front-run them and steal them. In the context of our model, again
335
+ σA(s) = σB(s). Another fitting example is that of an AMM. Player A is a liquidity
336
+ provider who, upon learning some private information s, decides to withdraw some or
337
+ all the liquidity provided. By observing such a message, B can infer that something
338
+ has changed in the environment and try to steal the same liquidity. In this case,
339
+ σA(s) ={withdraw my liquidity}, σB(s) ={swap some tokens}.16 Also relevant in
340
+ the context of AMMs are sandwich attacks, in which A sends message σA(s) ={swap
341
+ some tokens}, and B then front runs A with a message σB(s) ={perform the same
342
+ swap as A} and “back-run” A with the message σB(s) ={perform the opposite swap
343
+ as A}. This attack is profitable because it exploits the slippage curve of the AMM.
344
+ Although we do not explicitly allow B to back-run A, the only difference in the
345
+ analysis is that a sandwich attack is more costly than a simple front-running attack
346
+ because it requires an additional message. It follows that all our results apply to
347
+ sandwich attacks as well.
348
+ We make two simplifying assumptions. First, we assume that A is partially naive.
349
+ She is naive in that she always chooses the message that maximizes her payoff given
350
+ the state of the world; however, she is sophisticated in the choice of whether to send
351
+ her message (or, in the next section, to initiate the protocol). We, therefore, rule
352
+ 16 For a study of this type of attack, see Capponi and Jia (2021). For a study of similar attacks
353
+ in the context of traditional exchanges, see Section 6 of Budish et al. (2015).
354
+
355
+ 2 The problem: front-running attacks
356
+ 11
357
+ out the possibility that A chooses her message to manipulate B���s belief about the
358
+ state of the world, which we think is unrealistic.17 Mathematically, after observing
359
+ the state of the world, if A sends a message, she sends a message
360
+ σA(s) ≡ argmax˜σA∈Σ ˜PA(˜σA, s).
361
+ Given this, we can re-define A’s payoff in case she sends a message, and she is not
362
+ front-ran as:
363
+ PA(s) ≡ ˜PA(σA(s), s).
364
+ The second simplifying assumption is that σA(s) is a bijection; that is, in each state
365
+ of the world, there is a unique and distinct message maximizing player A’s payoff.
366
+ This a useful simplification because A’s message (if sent and observed) always reveals
367
+ the state of the world. It follows that B’s optimal counter message after observing
368
+ σA(s) and learning s is:
369
+ σB(s) ≡ argmax˜σB∈Σ ˜PB(˜σB, σA(s), s).
370
+ The resulting payoff for player B if he successfully front-runs A is:
371
+ PB(s) ≡ ˜PB(σB(s), σA(s), s).
372
+ Equilibrium
373
+ The above assumptions allow us to write the extensive form of the
374
+ game for given s as in Figure 1, which we can easily solve by backward induction.
375
+ If A sends a message, then B attempts to front-run if and only if:
376
+ qPB(s) > f
377
+ Given this, we can derive A’s optimal strategy. Suppose the state of the world is
378
+ such that qPB(s) < f, and A expects no front running. In this case, she sends a
379
+ 17 If A is fully sophisticated, then the equilibrium of the game is a partition of the possible states
380
+ of the world S such that A sends the same message in all states of the world belonging to the
381
+ same part of the partition. Upon observing the message, B learns the part of the partition but
382
+ not the state of the world. The results for a given partition are identical to those presented here.
383
+ However, deriving the equilibrium partition is non-trivial and of second-order importance relative
384
+ to our main research question.
385
+
386
+ 2 The problem: front-running attacks
387
+ 12
388
+ A
389
+ B
390
+ ((1 − q)PA(s) − c, qPB(s) − f)
391
+ σB(s)
392
+ (PA(s) − c, 0)
393
+ no message
394
+ σA(s)
395
+ (0, 0)
396
+ no message
397
+ Fig. 1: Game tree for given s.
398
+ message if and only if
399
+ PA(s) > c
400
+ If, instead, the state of the world is such that qPB(s) > f, then A anticipates that
401
+ B will try to front-run. In this case, A sends a message if and only if
402
+ (1 − q)PA(s) > c
403
+ The following proposition summarizes these derivations.
404
+ Proposition 1 (Equilibrium). Player A’s equilibrium strategy is:
405
+ σ∗
406
+ A(s) =
407
+
408
+
409
+
410
+
411
+ if PA(s) < c or qPB(s) > f and (1 − q)PA(s) < c
412
+ σA(s)
413
+ otherwise
414
+ (1)
415
+ where σ∗
416
+ A(s) = ∅ means that A does not send any message. Player B’s equilibrium
417
+ strategy is
418
+ σ∗
419
+ B(s) =
420
+
421
+
422
+
423
+ σB(s)
424
+ if qPB(s) > f and σ∗
425
+ A(s) ̸= ∅
426
+
427
+ otherwise
428
+ (2)
429
+ Hence, front running does not happen when its benefit is low (i.e., PB(s) ≤ f/q).
430
+ If, instead, its benefit is large (i.e., PB(s) > f/q), B will attempt to front run A
431
+
432
+ 2 The problem: front-running attacks
433
+ 13
434
+ whenever A sends a message. In particular, when PA(s) > c but (1 − q)PA(s) < c
435
+ the threat of front running prevents A from sending the message in the first place,
436
+ therefore destroying the value of the exchange between A and SC.
437
+ Front-running attacks vs. legitimate competition.
438
+ In the introduction, we ar-
439
+ gued that the difference between front-running attacks and legitimate competition
440
+ is whether the “attacker” relies on the information extracted from observing the vic-
441
+ tim’s message. This intuitive notion can be easily formalized in the context of our
442
+ model by considering a modified game in which player B chooses whether to send
443
+ his message and what message to send without observing A’s actions. We want to
444
+ find necessary and sufficient conditions such that, in the equilibrium of this modi-
445
+ fied game, B does not want to send any message. Clearly, if B does not send any
446
+ message, then A’s optimal strategy is simply:
447
+ σ∗∗
448
+ A (s) ≡
449
+
450
+
451
+
452
+ σA(s)
453
+ if PA(s) ≥ c
454
+
455
+ otherwise
456
+ (3)
457
+ Given this, there is an equilibrium in which B does not send any message if and
458
+ only if
459
+ Es[ ˜PB(˜σB, σ∗∗
460
+ A (s), s)] ≤ f
461
+ ∀˜σB ∈ Σ,
462
+ (4)
463
+ In what follows, if in the equilibrium of the original game, B sends a message
464
+ and condition 4 holds, then we say that there is a front-running attack. If instead, in
465
+ the equilibrium of the original game, B sends a message and condition 4 is violated,
466
+ then we say that B is a legitimate competitor.18 As we will see, this distinction will
467
+ play an important role in the next section when we introduce our commit-reveal
468
+ protocol. The reason is that the protocol reduces (but not fully eliminates) B’s
469
+ ability to act upon A’s message. If (4) holds, the expected benefit of an attack is
470
+ reduced, and hence attacks are less likely. If instead (4) is violated, then B always
471
+ 18 It is possible that (4) does not hold and hence B sends a message also when he does not observe
472
+ A’s actions. At the same time, he may choose a different message if he observes A’s message.
473
+ According to our definition, this is not a front-running attack, even if B uses A’s message. This
474
+ is justified by the observation that, in our model, A’s payoff does not depend on what message B
475
+ sends. Hence, the fact that B uses A’s message to craft his message is irrelevant to A.
476
+
477
+ 3 Preventing front-running via commitment
478
+ 14
479
+ has a profitable message to send, independently of his observation of A. In this case,
480
+ the protocol has little impact on B’s behavior, except for requiring him to send two
481
+ messages. This means that the protocol reduces the expected return of an attack
482
+ (i.e. when 4 holds) but has little impact on legitimate competition (i.e., when 4 is
483
+ violated)
484
+ 3
485
+ Preventing front-running via commitment
486
+ To address the problem of front-running attacks, here we propose a commit-reveal
487
+ protocol. In terms of notation, we call player A’s commit message σA,1 and reveal
488
+ message σA,2. Similarly, player B’s counter-messages are σB,1 and σB,2.
489
+ Formally, the protocol has a commitment period and a reveal period, which here
490
+ are two subsequent blocks.19 If player A wants to send message σA ∈ Σ to SC, in
491
+ the commit period A sends the commit message
492
+ σA,1 = S(addr, σA)
493
+ to SC where addr is an address that A controls and S() is a function with an
494
+ intractable pre-image problem (for example Hash (addr|σA) where Hash() is the
495
+ SHA-256 hash function). Once the commit message is included in a block, A sends
496
+ the reveal message σA,2 = σA to SC from the address addr, which is then included in
497
+ the next block. Upon receiving the message, SC computes S(addr, σA) and checks
498
+ whether it received message S(addr, σA) in the previous block.
499
+ It follows that if B wants to front run A he will need to commit a message at the
500
+ commit stage and then reveal it at the reveal stage. There is a common discount
501
+ factor β ∈ [0, 1], so when a given payoff is earned with a block delay, this payoff is
502
+ discounted by β. Finally, A does not observe B’s commit message and hence cannot
503
+ detect B’s attempt to front running. At the same time, we assume B observes A’s
504
+ commit message. In Section 5.1, instead, we introduce a modified protocol that
505
+ allows A to hide his commit message.
506
+ Finally, we simplify the problem slightly by assuming that there is no state of the
507
+ 19 In Section 5.3 we discuss more in detail the problem of specifying commit and reveal periods.
508
+
509
+ 4 Solution
510
+ 15
511
+ world s such that PA(s) ∈ [c, c + c
512
+ β]. Under this assumption, absent front running,
513
+ the states of the world in which A wants to send a message is the same with and
514
+ without the protocol.20
515
+ 4
516
+ Solution
517
+ We start with a rather immediate result: there is no equilibrium in which B sends
518
+ the same commit message as A. To see this, suppose that player A sends the commit
519
+ message S(addr, σA) and player B sends the same commit message. If in the next
520
+ period B sends the message revealB = σA, then the SC will consider the earlier
521
+ commitment as invalid because B’s address is different from addr. It is also easy
522
+ to see that there is no equilibrium in which A commits but then does not reveal
523
+ because A can do better by not committing at all. The next lemma summarizes
524
+ these observations.
525
+ Lemma 1 (No cloning in equilibrium). There is no equilibrium in which σB,1 = σA,1.
526
+ There is also no equilibrium in which A sends the commit message but not the reveal
527
+ message.
528
+ In equilibrium, therefore, if B wants to attack, he would need to guess what
529
+ message to commit message without knowing the state of the world s. Nonetheless,
530
+ B anticipates that he will observe A’s message and, under our assumptions, will
531
+ learn the state of the world. At that point, he can decide whether or not to send
532
+ the message he initially committed. Therefore, the protocol severely limits but does
533
+ not totally eliminate B’s ability to act upon his observation of A’s message. Hence,
534
+ it is possible that (4) holds and, despite this, B can profitably attack.
535
+ We derive conditions under which the protocol is effective at eliminating front
536
+ running. In an equilibrium without front running, A’s optimal strategy is again
537
+ σ∗∗
538
+ A (s) as defined in (3). Given this, consider player B. Suppose that A sent her
539
+ 20 We could alternatively assume that these states of the world exist but are not very important
540
+ from B’s viewpoint, in the sense that
541
+ pr
542
+
543
+ PA(s) ∈ [c, c + c
544
+ β ]
545
+
546
+ Es
547
+
548
+ PB(˜σB, σA(s), s)|PA(s) ∈ [c, c + c
549
+ β ]
550
+
551
+ is sufficiently small.
552
+
553
+ 4 Solution
554
+ 16
555
+ commit message, that B committed message σB and then observed A’s reveal mes-
556
+ sage σA(s). In this case, B’s expected payoff from front-running is
557
+ q · ˜PB(σB, σA(s), s) − f.
558
+ Hence, upon observing σA(s) and learning s, B will try to front run if and only
559
+ if q · ˜P(σB, σA(s), s) > f. In the commitment phase, therefore, the best possible
560
+ message B can commit is
561
+ ˆσB ≡ argmaxσB∈ΣEs
562
+
563
+ max{q · ˜PB(σB, σA(s), s) − f, 0}|σ∗∗
564
+ A (s) ̸= ∅
565
+
566
+ ,
567
+ where the expectation is conditional on the state of the world being such that A
568
+ sends a commit message. We define π as the expected payoff if B commits ˆσB after
569
+ observing that A committed a message:
570
+ π ≡ Es
571
+
572
+ max{q · ˜PB(ˆσB, σA(s), s) − f, 0}|σ∗∗
573
+ A (s) ̸= ∅
574
+
575
+ Hence, if A sends a commit message and B tries to front run, B’s expected payoff
576
+ is βπ − c. We therefore have the following proposition:21
577
+ Proposition 2. If π ≤
578
+ c
579
+ β (i.e., “guessing is hard for B”), then there is no front-
580
+ running in equilibrium.
581
+ If instead π >
582
+ c
583
+ β (i.e., “guessing is easy for B”), front
584
+ running occurs with strictly positive probability in equilibrium.
585
+ Note that in case “guessing is easy for B”, there could be a pure strategy equilibrium
586
+ in which B commits with probability 1 whenever A commits, or a mixed strategy
587
+ equilibrium in which B commits with some probability. In either cases, after com-
588
+ mitting, B attempts to front run A or not depending on A’s reveal message.
589
+ It is easy to check that in the “guessing is hard for B” case, A’s equilibrium
590
+ payoff is
591
+ v∗
592
+ A(s) = max {−c + β(PA(s) − c), 0}
593
+ Therefore, the protocol generates both costs and benefits to player A. The main
594
+ 21 The existence of the equilibrium follows from the fact that the players’ strategy space is finite,
595
+ as noted already in Nash (1950).
596
+
597
+ 4 Solution
598
+ 17
599
+ benefit is that the protocol reduces or eliminates front running. The costs are two.
600
+ The most evident one is that, here, two messages are required which implies that A
601
+ pays c twice. More subtle is the fact that, here, the payoff is earned with a one-block
602
+ delay, and hence is discounted by the parameter β.
603
+ 4.1
604
+ Discussion
605
+ Attack vs legitimate competition
606
+ It is instructive to consider what happens
607
+ when B is an attacker (i.e., condition 4) holds vs a legitimate competitor (i.e.,
608
+ condition 4 is violated). To do so, we introduce the following condition
609
+ Es[ ˜PB(˜σB, σ∗∗
610
+ A (s), s)] ≤ c + f
611
+ β
612
+ for some ˜σB ∈ Σ,
613
+ (5)
614
+ which is akin to condition (4), but where the cost of sending a message is now the
615
+ cost of participating in the commit-reveal protocol. Suppose first that the above
616
+ condition is violated, which implies that 4 is violated and hence B is a legitimate
617
+ competitor. Define
618
+ σ∗∗
619
+ B ≡ argmaxσB∈ΣEs[ ˜PB(˜σB, σ∗∗
620
+ A (s), s)]
621
+ as the best possible message that B can send when he is completely uninformed,
622
+ earning him a payoff equal to
623
+ −c + β(Es[ ˜PB(σ∗∗
624
+ B , σ∗∗
625
+ A (s), s)] − f)
626
+ It is easy to see that
627
+ − c + βEs[ ˜PB(σ∗∗
628
+ B , σ∗∗
629
+ A (s), s)] − f = −Pr {σ∗∗
630
+ A (s) = ∅} · c+
631
+ Pr
632
+
633
+ σ∗∗
634
+ A (s) ̸= ∅ & q · ˜PB(σ∗∗
635
+ B , σA(s), s) − f > 0
636
+
637
+ · Es
638
+
639
+ max{q · ˜PB(σ∗∗
640
+ B , σA(s), s) − f, 0} − c|σ∗∗
641
+ A (s) ̸= ∅
642
+
643
+ +
644
+ Pr
645
+
646
+ σ∗∗
647
+ A (s) ̸= ∅ & q · ˜PB(σ∗∗
648
+ B , σA(s), s) − f < 0
649
+
650
+ · Es
651
+
652
+ min{q · ˜PB(σ∗∗
653
+ B , σA(s), s) − f, 0} − c|σ∗∗
654
+ A (s) ̸= ∅
655
+
656
+ ≤ Pr
657
+
658
+ σ∗∗
659
+ A (s) ̸= ∅ & q · ˜PB(σ∗∗
660
+ B , σA(s), s) − f > 0
661
+
662
+ · Es
663
+
664
+ max{q · ˜PB(σ∗∗
665
+ B , σA(s), s) − f, 0} − c|σ∗∗
666
+ A (s) ̸= ∅
667
+
668
+ ≤ Pr
669
+
670
+ σ∗∗
671
+ A (s) ̸= ∅ & q · ˜PB(σ∗∗
672
+ B , σA(s), s) − f > 0
673
+
674
+ · π.
675
+
676
+ 4 Solution
677
+ 18
678
+ That is, player B is strictly better off whenever he can (i) commit a message only
679
+ when A commits a message (therefore avoiding paying the commit message and
680
+ earning zero) and (ii) only send the reveal message after observing A’s message and
681
+ only when it is profitable to do so. It follows that when (4) holds, then player B
682
+ always wants to commit.
683
+ There derivations show that, modulo the fact that sending messages is more
684
+ expensive with the protocol (i.e.
685
+ the right-hand side of 4 is different from the
686
+ right-hand side of 5), the protocol does not impede legitimate competition: both
687
+ players commit their messages and then compete with each other to have their
688
+ reveal message included first in the following block. At the same time, attacks are
689
+ more costly because an attacker is forced to make a costly guess. Hence, under the
690
+ protocol, front-running attacks are discouraged while competition among honest
691
+ players is preserved (but postponed by one period).
692
+ Severity of attacks
693
+ The value of π measures how easy it is for B to guess. It
694
+ is therefore the inverse of the measure of severity of the attack discussed in the
695
+ introduction: if it is difficult for B to guess, it is because B has very little prior
696
+ information and, in the benchmark case, he relies heavily on observing A’s message,
697
+ while the opposite is true when it is easy for B to guess. We can therefore say that
698
+ the protocol is most effective at preventing the most severe front-running attacks.
699
+ Additional messages
700
+ In the above analysis, we restricted the players’ action space
701
+ to a single message per player in the commit period. If we relax this assumption,
702
+ additional interesting considerations emerge, although the basic intuition discussed
703
+ earlier remains the same.
704
+ For example, player A may want to commit and disclose σA already in period 1.
705
+ This is strictly beneficial to A if the state of the world s is such that
706
+ • π ≥ c
707
+ β so that player B sends a commit message with strictly positive proba-
708
+ bility.
709
+ • s is such that ˜PB(ˆσB, σA(s), s) ≥ f
710
+ q . That is, after sending the commit message
711
+ and learning the state of the world, player B will try to front-run A.
712
+
713
+ 5 Extensions to the protocol
714
+ 19
715
+ • s is such that PB(s) < f/q + c/β, so that if B knew the state of the world
716
+ from the beginning, he would not want to commit and then front-run.
717
+ In this situation, by disclosing σA(s) already in period 1, player A can prevent B
718
+ from attempting to front run. The analysis above therefore holds by restricting the
719
+ space of signals Σ to those such that the above conditions do not hold and A does
720
+ not want to disclose.
721
+ It is also possible that B may want to send multiple commit messages. If the
722
+ number of commit messages is k, then B will choose the k messages that, jointly,
723
+ generate the largest expected payoffs. There is a “guessing is hard” case which is
724
+ identical to the one discussed earlier. There is also a “guessing is easy” case, which
725
+ is however more convoluted than earlier because the number of messages committed
726
+ by B may be greater than 1. However, the intuition is largely unchanged from the
727
+ simple case.
728
+ Pre-commitments
729
+ Another restriction we imposed is that the protocol starts
730
+ when player A learns the state of the world. It is however possible that A may
731
+ want to pre-commit, that is, commit a message before learning the state of the
732
+ world, in the hope that the committed message can be used immediately when the
733
+ state of the world is revealed. The important observation is that A can pre-commit,
734
+ and then decide to restart the protocol by committing a second message upon learn-
735
+ ing the state of the world. This complicates B’s inference problem because whatever
736
+ message he commits may be wasted in the future. Again, the basic insight from the
737
+ simple model above continues to hold, but guessing is harder for player B.
738
+ 5
739
+ Extensions to the protocol
740
+ 5.1
741
+ Hiding commitments
742
+ Here we propose a version of the protocol that allows to hide the commit message,
743
+ in which an attacker does not know whether the victim committed something (and
744
+ will reveal in the following period). The modified protocol exploits the fact that
745
+ player A can send commit and reveal messages from different addresses, provided
746
+
747
+ 5 Extensions to the protocol
748
+ 20
749
+ that the commit message includes the address that A will use in the following period
750
+ to send the reveal message.
751
+ To study how the possibility of hiding the commit messages affects the equilib-
752
+ rium of the game, here we assume that the honest player observes the state of the
753
+ world only with some probability, in which case she may decide to send her message.
754
+ If instead player A does not observe the state of the world, then she takes no action.
755
+ We also replicate the game n times: there are now n identical honest player, who
756
+ with some probability may want to interact with one of n smart contracts.
757
+ These modifications are irrelevant in the protocol that we introduced earlier,
758
+ because, in each replica game, the attacker can send his commit message after having
759
+ observed whether the victim sent her commit message.
760
+ But the above protocol
761
+ can be modified so that both the sender and the receiver of the commitment are
762
+ obfuscated. More precisely, the modified protocol is now:
763
+ • there is a pre-existing template code for the container smart contract. This
764
+ code is such that when the container smart contract receives a commit message,
765
+ it time-stamps it with the current block number.
766
+ • to commit, the honest player generates a brand-new address and uses it to send
767
+ a transaction in which, first, a container smart contract is created using the
768
+ template, and then the commit message is sent to the newly-created container
769
+ smart contract.22 The commitment message is now S(addr, addrSC, σA), where
770
+ addrSC is the address of the target smart contract.
771
+ • to reveal, the honest player sends to the target smart contract the message σA
772
+ together with a pointer to the container smart contract in which the commit-
773
+ ment message is stored.
774
+ • the target smart contract considers the message as valid if all these conditions
775
+ are satisfied
776
+ 1. like before, the commit message should be S(addr, addrSC, σA), where
777
+ addr is the address from which the reveal message was sent.
778
+ 22 The brand new address needs to be founded with some ETH before it can send messages. We
779
+ note that this could be done via a centralized exchange, therefore hiding the identity of the creator
780
+ of the new address from the attacker.
781
+
782
+ 5 Extensions to the protocol
783
+ 21
784
+ 2. the timestamp associated with the commit message is lower than the
785
+ current block number. This step makes sure that the commit message
786
+ was sent before the reveal message.
787
+ 3. the code of the container smart contract is identical to the template smart
788
+ contract.23
789
+ The very last step is necessary to prevent an attack in which, after observing the
790
+ reveal message, an attacker sends a single transaction that (i) creates a container
791
+ smart contract, (ii) stores the commitment there together with a fake time stamp
792
+ and (iii) send the reveal message.
793
+ An outside observer can infer that someone created a container smart contract
794
+ using the template and committed something, but does not know who committed
795
+ nor the target smart contract that will receive the reveal message. Call τ the ratio
796
+ between the observed container smart contracts created and n.
797
+ The same logic
798
+ discussed above implies that if τ · π ≤ c/β, then it is too costly for B to attack a
799
+ given A player: guessing is too hard for B and front-running is prevented. Hence, if
800
+ the probability that a given honest user sends a message to a given smart contract
801
+ is sufficiently low (so that the realized τ is also low), then the protocol eliminates
802
+ all front-running attacks.
803
+ An important observation is that the above scheme is effective in hiding the
804
+ target smart contract if and only if multiple target smart contracts share the same
805
+ template for the container smart contract. In the extreme case in which each target
806
+ smart contract has its own template, then the identity of the user remains hidden
807
+ but the target smart contract that will receive the reveal can be inferred. At the
808
+ other extreme, the highest level of obfuscation is achieved when all smart contracts
809
+ use the same template. Different smart contracts could also coordinate by creating
810
+ a single “official” container smart contract that receives all commitments. Again,
811
+ an outside observer can infer that a user sent a commitment to the container smart
812
+ contract, without knowing who is the user and what is the target smart contract.
813
+ 23 In Ethereum, a smart contract code is accessible by other smart contracts.
814
+ For example,
815
+ the expression type(SC).creationCode returns the creation bytecode of smart contract SC (see
816
+ https://docs.soliditylang.org/en/latest/units-and-global-variables.html#type-information). If the
817
+ template storage contract specifies that the contract is immutable, such bytecode will be constant
818
+ and cannot be changed.
819
+
820
+ 5 Extensions to the protocol
821
+ 22
822
+ Here, however, users do not need to create the container smart contract each time,
823
+ leading to significant savings in gas. How to achieve this coordination among smart
824
+ contracts is not part of the model.
825
+ 5.2
826
+ Partial implementation.
827
+ It is possible to implement the protocol only for a subset of possible messages. That
828
+ is, there is a set of messages M ⊂ Σ such that any message σ ∈ M is considered
829
+ valid by the SC only if the commit-reveal protocol described above is followed. All
830
+ other messages σ ̸∈ M are considered valid by the SC as soon as they are received.
831
+ Suppose that A wants to send message σA and B wants to front run with message
832
+ σB. There are four possible cases:
833
+ 1. σA, σB ∈ M, which means that we are in the commit-reveal case discussed
834
+ earlier.
835
+ 2. σA, σB ̸∈ M, which means that we are in the benchmark case discussed earlier.
836
+ 3. σA ̸∈ M but σB ∈ M, which means that A can send her message directly,
837
+ without fear of being front ran. In this case, front running is prevented at no
838
+ cost for A.
839
+ 4. σA ∈ M but σB ̸∈ M, which implies that A needs to send two messages
840
+ (commit and reveal), and wait one period, for in the end having the same
841
+ probability of being front ran than in the benchmark case. In this case, A the
842
+ protocol imposes extra costs on A without any benefit.
843
+ The specific design of M depends on the situation and will balance the possible
844
+ costs and benefits to player A. With this respect, an important observation is that
845
+ the choice of M determines π. So, for example, for given π, it would seem beneficial
846
+ not to use the protocol in states of the world in which player A does not expect an
847
+ attack. But this may not be optimal, because states of the world in which A does
848
+ not expect to be attacked are precisely the ones in which the attackers’ payoff is
849
+ low. Hence, by applying the protocol also in these states of the world, π decrease,
850
+ and with it the probability of a front-running attack.
851
+
852
+ 5 Extensions to the protocol
853
+ 23
854
+ 5.3
855
+ Specifying commit and reveal periods
856
+ Our model assumes that both commit and reveal messages are included in a block
857
+ immediately after being sent. In practice, however, messages may remain in the
858
+ mempool for some time before being included in a block.24 This possibility is not
859
+ an issue with respect to the commit message, because the honest player can simply
860
+ wait until this message is included in a block before sending the reveal message. It
861
+ is however an issue with respect to the reveal message, because an attacker may be
862
+ able to observe the victim’s reveal message, send a commit message (either directly
863
+ to SC or via a container smart contract as discussed in the previous section), have
864
+ it included in a block, then send a reveal message and have it included in a block
865
+ before that of the honest user.
866
+ To start, note that the possibility that messages stay in the mempool is a concern
867
+ also in the benchmark case (i.e. the standard way in which Ethereum operates),
868
+ possibly even more than in our protocol because an attacker needs to send just 1
869
+ message during the period in which the honest player’s message stays in the mempool
870
+ (vs 2 in our protocol). It is also a concern that is greatly reduced by the introduction
871
+ of the base fee: a fee that should guarantee the rapid inclusion of a transaction in a
872
+ bloc (see footnote 15).
873
+ For our purposes, it is interesting to note that our protocol can reduce or elim-
874
+ inate this concern by appropriately specifying commit and reveal periods, that can
875
+ be thought of as sets of blocks. The SC will then consider a reveal message as valid
876
+ only if received during a block belonging to the reveal period, and only if its commit
877
+ message was received (either directly by SC or via the container smart contract)
878
+ during a block belonging to the commit period.
879
+ For example, a specific application may have a natural deadline, such as a com-
880
+ petition rewarding whoever can provide the correct answer to a question within a
881
+ specific time period. In these situations, it seems natural to specify the commit
882
+ period as all blocks up until the deadline and the reveal period as all blocks after
883
+ the deadline, therefore eliminating the risk that an attacker commits after having
884
+ 24 We treat this possibility as a random event, not something that an attacker could manipulate.
885
+ The reason is that purposefully censoring a transaction requires a large number of miners/validators
886
+ to collude, which is prevented by the consensus protocol.
887
+
888
+ 5 Extensions to the protocol
889
+ 24
890
+ observed the reveal message. In other situations, it may be possible to alternate
891
+ between commitment periods and reveal periods. In this case, the above attack is
892
+ possible only if the reveal message remains in the mempool for the entire length of
893
+ the reveal period—a probability that drops to zero rapidly with the length of this
894
+ period. Of course, this modification has a cost because it increases A’s waiting time
895
+ (i.e., the time between A learning the state of the world and deciding to send her
896
+ message and the time he receives her reward).
897
+ Finally, it is also possible that the commit-reveal protocol is required only in some
898
+ periods. For example, during the “commit” period users could either commit or send
899
+ a message directly to the smart contract without any commitment, which would be
900
+ considered valid. In the reveal period, only reveal messages that were committed
901
+ during the commit period are considered valid. The honest player can choose to send
902
+ a given transaction in a “slow but safe” mode, or a “fast but risky” mode. In the
903
+ slow but safe mode, the user sends her commitment during the “commit” period and
904
+ the reveal in the “reveal” period, therefore preventing an attacker from sending both
905
+ commit and reveal messages after observing the honest player’s reveal message. In
906
+ the fast but risky mode, a user sends a direct message to the smart contract during
907
+ the commit period. Doing so exposes the honest player to the risk of being front-ran
908
+ but may nonetheless be optimal if the honest player is particularly impatient.
909
+ 5.4
910
+ Multiple attackers
911
+ An interesting implication of our protocol is that it may reduce or eliminate com-
912
+ petition between attackers, therefore benefiting the attackers as well as the honest
913
+ player. To see this, assume that there are two attackers: B1 and B2. When sending
914
+ a transaction, each Bi chooses how much money to spend fi ≥ 0, simultaneously
915
+ and independently from each other.
916
+ To remain as close as possible to the case with a single attacker (and leverage as
917
+ much as possible the results already derived), we can think of competition between
918
+ the two attackers and the honest player as happening in two steps. First, the attacker
919
+ that spends the most wins the right to attack the honest player. Then, similarly
920
+
921
+ 5 Extensions to the protocol
922
+ 25
923
+ to the single-attacker case, the winner attempts to front-run the honest player.25
924
+ Mathematically, the probability that the transaction sent by player Bi is included
925
+ in the block before that of B−i and player A is:
926
+
927
+
928
+
929
+ γiq(fi)
930
+ iffi > f−i
931
+ 0
932
+ iffi < f−i
933
+ where the function q() : R+ → [0, 1] is strictly increasing and strictly concave, and
934
+ γi > 0 for i ∈ {1, 2}. A tie-breaking rule determines what happens when fi = f−i,
935
+ but the nature of such a rule is not important for our analysis. The parameter
936
+ γi measures the strength of each attacker. Without loss of generality, we assume
937
+ that the attacker number 1 is stronger, and hence γ1 ≥ γ2. Attackers are otherwise
938
+ identical: they have the same payoff function and the same information.
939
+ Benchmark case
940
+ We start by deriving what happens with multiple attackers when
941
+ players can send their messages directly to the smart contract (i.e., no commitment
942
+ needed). Again, after observing the victim’s message and learning the state of the
943
+ world, attacker Bi’s payoff as a function of fi, f−i is
944
+
945
+
946
+
947
+ Pb(s)γiq(fi)
948
+ if fi > f−i
949
+ 0
950
+ if fi < f−i
951
+ Formally, therefore the attackers are engaged in an asymmetric contest with pro-
952
+ ductive effort, as studied in Siegel (2014). Define
953
+ f i ≡ fi : PB(s)γiq′(fi) = 1
954
+ as the optimal expenditure by attacker i whenever attacker −i is absent (or alter-
955
+ natively, whenever f−i = 0). Define
956
+ f i ≡ fi : PB(s)γiq(fi) = fi
957
+ 25 All our results are robust to other ways to model competition. The reason is that our results
958
+ rely on there being full dissipation of rents: the weakest attacker expects to earn zero. This result
959
+ holds in a large class of contest models.
960
+
961
+ 5 Extensions to the protocol
962
+ 26
963
+ as the expenditure level at which attacker i’s payoff is zero in the absence of attacker
964
+ −i. Note that whenever f 1 ≥ f i, then there is a unique equilibrium in pure strategy,
965
+ in which attacker B1 sets f ∗
966
+ 1 = f 1 and attacker 2 does not do anything. This situation
967
+ is therefore identical to the single-attacker case discussed earlier.
968
+ If instead f 1 < f i, according to Theorem 1 in Siegel (2014), there are multiple
969
+ mixed-strategy equilibria. However, in every equilibrium of the game attacker 1’s
970
+ utility is
971
+ PB(s)γ1q(f 2).
972
+ That is, the strong attacker’s payoff is equal to the payoff he would achieve if he’d
973
+ set his expenditure equal to the follower’s largest possible expenditure.26 Also here,
974
+ the utility of the other attackers is zero.
975
+ To summarize, relative to the single-attacker case, if there are two attackers
976
+ who are sufficiently similar then in equilibrium they will randomize their level of
977
+ spending. In expectation, the weaker attacker earns zero. The stronger attacker
978
+ earns a positive amount, which is however lower than if he was the unique attacker.
979
+ Competition, therefore, hurts both attackers because they overspend (relative to the
980
+ single-attacker case). This is clearly detrimental to the honest player as well.
981
+ Commit-reveal protocol.
982
+ Consider the commit-reveal protocol. We assume that
983
+ both attackers observe the victim’s commit message. For simplicity, we also assume
984
+ that the attackers choose their commit messages simultaneously and independently,
985
+ and that they can observe each other’s commit messages.27
986
+ We solve the game
987
+ backward, starting from the reveal phase.
988
+ If only one attacker Bi committed, then the problem is quite simple: the single
989
+ 26 This result is also in Siegel (2009), in which however only non-productive effort is considered.
990
+ Siegel (2014) extends these results to cases in which, over some range, the “prize” to be won by a
991
+ player may be increasing in this player’s effort.
992
+ 27 If an attacker does not observe the other attacker’s commit message, he will nonetheless detect
993
+ the opponent’s attempt to front run in the following period. At that point, he will increase its level
994
+ of spending. The outcome is identical to the case in which the attacker knows from the beginning
995
+ that the other attacker committed and will therefore attack.
996
+
997
+ 5 Extensions to the protocol
998
+ 27
999
+ attacker i earns28
1000
+ V (γi) ≡ max
1001
+ fi
1002
+
1003
+ ˜PB(˜σB, s)γiq(fi) − fi
1004
+
1005
+ If instead both attackers committed, then the logic discussed in the previous section
1006
+ continues to apply: if they are sufficiently similar, then the equilibrium is in mixed
1007
+ strategies. The attackers overspend (relative to the single attacker case) and, as a
1008
+ consequence, the weaker attacker expects to earn zero while the stronger attacker
1009
+ expects to earn V (γ1) < V (γ1).29
1010
+ Given this, we can derive the equilibrium in the commitment phase. The main
1011
+ result is that there is no equilibrium in which both players commit with probability 1.
1012
+ The reason is that the weak attacker anticipates that, if the other attacker commits
1013
+ and he also commits, he will then earn zero in the following period. Commitment
1014
+ messages are however costly, which implies that the weak attacker is better off by
1015
+ not committing.
1016
+ It follows that the equilibria of the game are
1017
+ • if either βV (γ1) > c, or βV (γ1) > c > βV (γ1) and c > βV (γ2), then there is a
1018
+ unique equilibrium in pure strategy in which only the strong attacker (attacker
1019
+ 1) commits.
1020
+ • if βV (γ1) > c > βV (γ1) and βV (γ2) > c, then there are two pure strategy
1021
+ Nash equilibria, each corresponding to only one attacker sending the commit
1022
+ message. There is also a mixed strategy equilibrium, in which attacker 1 com-
1023
+ mits with probability α1 and attacker 2 commits with probability α2. These
1024
+ probabilities are such that each attacker is indifferent between committing or
1025
+ not, that is α1V (γ2) = c and α2V (γ1) + (1 − α2)V (γ1) = c. In this equilib-
1026
+ rium, there is a probability α1α2 that both attackers commit, a probability
1027
+ (1−α1)(1−α2) that no attackers commit, and the remaining probability that
1028
+ a single attacker commits.
1029
+ • otherwise, no attacker commits and front running is prevented.
1030
+ 28 Remember that the attacker has the same payoff function and information. Hence, in the
1031
+ commit period, if they commit they will both commit ˆσB.
1032
+ 29 The meaning of “the attackers being sufficiently similar” and the expected payoff of player 1
1033
+ can be precisely derived following the same steps illustrated in the previous paragraph. But their
1034
+ precise expressions are not important in what follows.
1035
+
1036
+ 6 Conclusion
1037
+ 28
1038
+ The protocol, therefore, decreases the level of competition among attackers.
1039
+ This, in turn, have a beneficial effect on the victim as reducing competition also
1040
+ reduces the amount spent by the attackers.
1041
+ 6
1042
+ Conclusion
1043
+ We conclude by discussing a number of possible limitations to our protocol that
1044
+ require further study.
1045
+ Our commit-reveal protocol may impede the possibility of calling different smart
1046
+ contracts within the same transaction (usually referred to as smart-contract compos-
1047
+ ablity). In principle, composability is still possible by first committing the different
1048
+ messages to the various smart contracts. A problem however arises when these smart
1049
+ contracts have different commit-reveal periods (see Section 5.3). Although different
1050
+ commit messages may be sent in different periods depending on the commitment
1051
+ window of each smart contract, to maintain composability the reveal messages must
1052
+ be sent within the same transaction during the reveal window of all smart contracts.
1053
+ If such a window does not exist, then composability is not possible. If it exists, then
1054
+ it is possible but exploiting it may impose large delays to the execution of the trans-
1055
+ action. Studying further how to mitigate this problem is also left for future work.
1056
+ Here we just note that composability is preserved if the commit-reveal protocol is
1057
+ required only in some periods (as discussed in the last paragraph of Section 5.3),
1058
+ chosen in a coordinated way among all smart contracts.
1059
+ Our analysis assumes that the smart contract does not have an explicit mecha-
1060
+ nism to resolve competing claims to an object and therefore does not apply to, for
1061
+ example, a smart contract running an on-chain auction. Applying our protocol to
1062
+ such smart contract may lead to unintended consequence because the players (hon-
1063
+ est or not) may fail to reveal after having committed—perhaps because they realize
1064
+ that they would lose the auction. This is problematic in many cases. For example,
1065
+ failures to reveal in a second-price auction may decrease the revenues raised in the
1066
+ auction.
1067
+ Finally, our protocol is also not effective against a type of front-running attack
1068
+ called suppression attacks in which an attacker prevents the victim’s transaction
1069
+
1070
+ 6 Conclusion
1071
+ 29
1072
+ from being included in a block by front-running it with a series of spam transactions
1073
+ (see Eskandari et al. (2019)). The reason is that, in these attacks, the content of the
1074
+ victim’s transaction is irrelevant to the attacker. However, these types of attacks
1075
+ are rare and specific to certain applications. For example, Eskandari et al. (2019)
1076
+ document only one of them in the context of a gambling smart contract.
1077
+ References
1078
+ Baird, L. (2016). The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
1079
+ fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep 34.
1080
+ Breidenbach, L., P. Daian, F. Tramèr, and A. Juels (2018). Enter the hydra: To-
1081
+ wards principled bug bounties and {Exploit-Resistant} smart contracts. In 27th
1082
+ USENIX Security Symposium (USENIX Security 18), pp. 1335–1352.
1083
+ Budish, E., P. Cramton, and J. Shim (2015). The high-frequency trading arms race:
1084
+ Frequent batch auctions as a market design response. The Quarterly Journal of
1085
+ Economics 130(4), 1547–1621.
1086
+ Capponi, A. and R. Jia (2021). The adoption of blockchain-based decentralized
1087
+ exchanges. arXiv preprint arXiv:2103.08842.
1088
+ Capponi, A., R. Jia, and Y. Wang (2022). The evolution of blockchain: from lit to
1089
+ dark.
1090
+ Daian, P., S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
1091
+ A. Juels (2019). Flash boys 2.0: Frontrunning, transaction reordering, and con-
1092
+ sensus instability in decentralized exchanges. arXiv preprint arXiv:1904.05234.
1093
+ Eskandari, S., S. Moosavi, and J. Clark (2019). Sok: Transparent dishonesty: front-
1094
+ running attacks on blockchain. In International Conference on Financial Cryp-
1095
+ tography and Data Security, pp. 170–189. Springer.
1096
+ Fudenberg, D. and J. Tirole (1987). Understanding rent dissipation: on the use of
1097
+ game theory in industrial organization. The American Economic Review 77(2),
1098
+ 176–183.
1099
+
1100
+ 6 Conclusion
1101
+ 30
1102
+ Gans, J. S. and R. T. Holden (2022). A solomonic solution to ownership disputes:
1103
+ An application to blockchain front-running. Technical report, National Bureau of
1104
+ Economic Research.
1105
+ Heimbach, L. and R. Wattenhofer (2022). Sok: Preventing transaction reordering
1106
+ manipulations in decentralized finance. arXiv preprint arXiv:2203.11520.
1107
+ Kelkar, M., F. Zhang, S. Goldfeder, and A. Juels (2020). Order-fairness for byzantine
1108
+ consensus. Cryptology ePrint Archive, Paper 2020/269. https://eprint.iacr.org/
1109
+ 2020/269.
1110
+ Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the national
1111
+ academy of sciences 36(1), 48–49.
1112
+ Park, A. (2022). Conceptual flaws of decentralized automated market making. Tech-
1113
+ nical report, Working paper, University of Toronto.
1114
+ Qin, K., L. Zhou, and A. Gervais (2022). Quantifying blockchain extractable value:
1115
+ How dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP),
1116
+ pp. 198–214. IEEE.
1117
+ Robinson, D. and G. Konstantopoulos (2020, Aug). Ethereum is a dark forest.
1118
+ Roughgarden, T. (2020).
1119
+ Transaction fee mechanism design for the ethereum
1120
+ blockchain: An economic analysis of eip-1559. arXiv preprint arXiv:2012.00854.
1121
+ Siegel, R. (2009). All-pay contests. Econometrica 77(1), 71–92.
1122
+ Siegel, R. (2014). Contests with productive effort. International Journal of Game
1123
+ Theory 43(3), 515–523.
1124
+ Torres, C. F., R. Camino, et al. (2021). Frontrunner jones and the raiders of the
1125
+ dark forest: An empirical study of frontrunning on the ethereum blockchain. In
1126
+ 30th USENIX Security Symposium (USENIX Security 21), pp. 1343–1359.
1127
+
2dFST4oBgHgl3EQfXzgB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tE2T4oBgHgl3EQfjAfh/content/tmp_files/2301.03965v1.pdf.txt ADDED
@@ -0,0 +1,1509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ BiCurNet: Pre-Movement EEG based Neural
3
+ Decoder for Biceps Curl Trajectory Estimation
4
+ Manali Saini*, Anant Jain*, Lalan Kumar, Suriya Prakash Muthukrishnan, Shubhendu Bhasin and Sitikantha Roy
5
+ Abstract—Kinematic parameter (KP) estimation from early
6
+ electroencephalogram (EEG) signals is essential for positive
7
+ augmentation using wearable robot. However, work related to
8
+ early estimation of KPs from surface EEG is sparse. In this
9
+ work, a deep learning-based model, BiCurNet, is presented for
10
+ early estimation of biceps curl using collected EEG signal.
11
+ The model utilizes light-weight architecture with depth-wise
12
+ separable convolution layers and customized attention module.
13
+ The feasibility of early estimation of KPs is demonstrated using
14
+ brain source imaging. Computationally efficient EEG features in
15
+ spherical and head harmonics domain is utilized for the first
16
+ time for KP prediction. The best Pearson correlation coefficient
17
+ (PCC) between estimated and actual trajectory of 0.7 is achieved
18
+ when combined EEG features (spatial and harmonics domain)
19
+ in delta band is utilized. Robustness of the proposed network
20
+ is demonstrated for subject-dependent and subject-independent
21
+ training, using EEG signals with artifacts.
22
+ Index Terms—Brain-computer interface, Electroencephalo-
23
+ gram, Deep learning, Kinematic parameter estimation.
24
+ I. INTRODUCTION
25
+ Brain-computer interface (BCI) is an integration of the
26
+ measurement, decoding, and translation of the activity of
27
+ central nervous system (CNS) into imitative output that rein-
28
+ states, augments, or rehabilitates the natural CNS output [1].
29
+ This creates an interface between the CNS and its external
30
+ environment. BCI-based systems are rapidly emerging on
31
+ account of the recent advancements in signal processing and
32
+ artificial intelligence [2], [3]. These systems are useful in
33
+ *Manali Saini and Anant Jain have contributed equally to this work.
34
+ This work was supported in part by DRDO - JATC project with project
35
+ number RP04191G.
36
+ This work involved human subjects or animals in its research. Approval
37
+ of all ethical and experimental procedures and protocols was granted by
38
+ the Institute Ethics Committee, All India Institute of Medical Sciences, New
39
+ Delhi, India with reference number IEC-751/07.08.2020,RP-06/2020.
40
+ Manali Saini is with the Department of Electrical Engineering, Indian
41
+ Institute of Technology Delhi, New Delhi 110016, India (e-mail: manali-
42
43
+ Anant Jain is with the Department of Electrical Engineering, Indian
44
+ Institute of Technology Delhi, New Delhi 110016, India (e-mail: anant-
45
46
+ Lalan Kumar is with the Department of Electrical Engineering, Bharti
47
+ School of Telecommunication, and Yardi School of Artificial Intelligence,
48
+ Indian Institute of Technology Delhi, New Delhi 110016, India (e-mail:
49
50
+ Suriya Prakash Muthukrishnan is with the Department of Physiology,
51
+ All India Institute of Medical Sciences, New Delhi - 110016, India(e-mail:
52
53
+ Subhendu Bhasin is with the Department of Electrical Engineering, In-
54
+ dian Institute of Technology Delhi, New Delhi 110016, India (e-mail: sb-
55
56
+ Sitikantha Roy is with the Department of Applied Mechanics, In-
57
+ dian Institute of Technology Delhi, New Delhi 110016, India (e-mail:
58
59
+ neuro-rehabilitation to assist users with motor-impairments
60
+ [4]–[7]. For real-time operability of these systems, continuous
61
+ signal decoding is required for extraction of kinematic param-
62
+ eters (KPs) such as motion trajectory, velocity, acceleration,
63
+ etc. [8]–[10]. In view of these aspects, electroencephalogram
64
+ (EEG)-based BCI systems have gained popularity in the recent
65
+ years, owing to the non-invasiveness, low-cost, and excellent
66
+ temporal resolution of EEG signals [11], [12].
67
+ A. Motivation and Related Work
68
+ Literary works explore machine learning and deep learning-
69
+ based paradigms for upper limb kinematic parameter esti-
70
+ mation (KPE), movement intention detection and classifica-
71
+ tion from low frequency components of EEG signals. For
72
+ instance, in [13], sparse multinomial logistic regression is
73
+ utilized to classify EEG signals during reach intention and
74
+ actual movement, based on multiple hand-crafted features
75
+ extracted from EEG signals filtered in the range of 1 − 40
76
+ Hz. In this work, independent component analysis (ICA) and
77
+ dipole fitting are applied to remove movement artifacts from
78
+ the recorded EEG signals, for obtaining low classification
79
+ error rates [13]. Researchers in [14] have explored EEG
80
+ current source dipole (CSD) data, using standardized low
81
+ resolution brain electromagnetic tomography (sLORETA) to
82
+ decode actual and imagined arm joint trajectories based on
83
+ multiple linear regression (mLR). The most useful time lags
84
+ are observed to be between 80−150 ms prior to the movement,
85
+ and the low β and γ bands are shown to be more effective
86
+ in movement decoding with a correlation of 0.67. Similarly,
87
+ mLR is utilized in [15] for estimating the 3D trajectories of
88
+ arm movement with variable velocities using EEG segments
89
+ filtered in the range of 0.1 − 40 Hz. The researchers reported
90
+ a high correlation between the movement velocities and EEG
91
+ activity above the motor cortex in fronto-central and parietal
92
+ areas [15]. mLR is also utilized in [16] with α and β band
93
+ powers of EEG signals during the motor planning and exe-
94
+ cution phases to predict the upcoming peak tangential speed
95
+ and acceleration of hand movement. This study demonstrates
96
+ the prominence of occipital and parietal-occipital regions for
97
+ α band, and frontal and frontal-central regions for the β band
98
+ in movement planning and execution phases. In a recent study,
99
+ researchers have explored the feasibility of a commercial EEG
100
+ headset in motor decoding and classification with the use of
101
+ Kalman filter and spatio-spectral features extracted from EEG
102
+ signals [9]. An overall correlation of 0.58 is achieved in this
103
+ work. Besides mLR, sparse LR is investigated for predicting
104
+ the circular trajectories of upper limb during movement of
105
+ arXiv:2301.03965v1 [eess.SP] 10 Jan 2023
106
+
107
+ 2
108
+ bottles with varying masses [17]. In this work, a wide range
109
+ of EEG frequencies, i.e., 0−150 Hz is used and channels over
110
+ the motor cortex are shown to be more prominent towards
111
+ the prediction. In [18], movement intent is decoded from
112
+ movement related cortical potentials (MRCPs) using narrow-
113
+ band EEG in the range of 0.1−1 Hz to train a support vector
114
+ machine (SVM)-based classifier. The selection of a single-
115
+ channel, i.e., Cz in movement onset decoding with an accuracy
116
+ of 91% using low frequency (0 − 5 Hz) Teager-Kaiser energy
117
+ operator with threshold-based classification is demonstrated in
118
+ [19].
119
+ Despite of the effectiveness of conventional machine
120
+ learning-based paradigms in EEG-based movement decoding,
121
+ there is a need of extracting the high-level features which can
122
+ enhance the performance. To overcome this, researchers have
123
+ proposed deep learning-based paradigms. For example, convo-
124
+ lutional neural network (CNN) is proposed with the use of pre-
125
+ movement raw spatio-temporal multi-channel EEG for hand
126
+ movement and force levels classification with an accuracy of
127
+ 84% [20]. This work demonstrates early classification of hand
128
+ movement, i.e., in 100−1600 ms advance. CNN is also utilized
129
+ in [21] along with bidirectional long short term memory (Bi-
130
+ LSTM)-based network to predict the velocities of arm reaching
131
+ tasks using pre-processed EEG signals. An overall correlation
132
+ between 0.4 − 0.6 is achieved in this work and feasibility of
133
+ robotic arm control based on real-time EEG is demonstrated
134
+ [21]. Recently, deep learning-based three-dimensional (3D)
135
+ hand movement trajectory during grasp and lift movements
136
+ is estimated using a public EEG database in [10], [22], [23].
137
+ In [22], wavelet packet decomposition (WPD) based time-
138
+ lagged EEG sub bands are used to train a CNN-LSTM network
139
+ for prediction of the hand position/trajectory with a high
140
+ correlation of 0.86. This work explores the source-aware EEG
141
+ features and the demonstrates the relevance of low frequency
142
+ bands (δ, θ, and α) in movement estimation, however, it has
143
+ limited feasibility in real-time hardware implementation. Early
144
+ estimation of this trajectory is demonstrated in [10] with a high
145
+ correlation 0.79 using the δ band of EEG. Further, researchers
146
+ in [23] demonstrate the feasibility of a brain-inspired spiking
147
+ neural network (Bi-SNN) along with mid-frequency and high-
148
+ frequency EEG bands, i.e., α, β, and γ, toward the same
149
+ trajectory estimation with a correlation of 0.7.
150
+ Based on the aforementioned description of literary works,
151
+ it can be asserted that many of these works focus on
152
+ classification of upper limb movements, rather than predic-
153
+ tion/estimation of the related kinematic parameters. Timely
154
+ extraction of kinematic parameters from EEG data during
155
+ upper limb movement is imperative towards different real-time
156
+ exosuit control-based BCI applications. Further, few existing
157
+ machine-learning based regression algorithms are able to esti-
158
+ mate the KPs earlier w.r.t. actual movement, however, average
159
+ correlation is achieved. Although the existing deep learning-
160
+ based networks outperform these ML-based paradigms, only
161
+ few of them have explored early estimation of KPs. Further,
162
+ these networks use slightly complex architectures after pre-
163
+ processing which may not be feasible on hand-held processors
164
+ for real-time BCI systems. Most importantly, the performance
165
+ of the existing paradigms for KP estimation is highly subject-
166
+ Fig. 1: Experimental setup for biceps-curl task.
167
+ specific, which further adds to the complexity since the
168
+ networks need to be trained for each subject.
169
+ B. Objective and Key Contributions
170
+ In view of the aforementioned challenges of literary works,
171
+ this work proposes a deep learning-based upper limb mo-
172
+ tion trajectory prediction/estimation from preceding EEG, i.e.,
173
+ BiCurNet, for early estimation towards exosuit control-based
174
+ BCI applications. Further, the proposed network is demon-
175
+ strated to be subject-independent and robust against artifacts,
176
+ unlike the existing works. To the best of our awareness, this
177
+ is the first work which focuses on early estimation of kine-
178
+ matic parameters from both subject-dependent and subject-
179
+ independent EEG signals and further analyses the noise-
180
+ robustness of the proposed network. The key contributions of
181
+ this work are listed as follows.
182
+ • Low-complex deep learning-based architecture is pro-
183
+ posed for early estimation of upper limb motion trajec-
184
+ tory.
185
+ • In-house recording of multi-channel EEG signals during
186
+ upper limb biceps curl experiment.
187
+ • Spherical harmonics and head-harmonics domain EEG
188
+ features based motion trajectory estimation has been
189
+ explored for the first time.
190
+ • Demonstration
191
+ of
192
+ subject-adaptability
193
+ and
194
+ noise-
195
+ robustness of the proposed network.
196
+ The rest of this paper is organized as follows. Section II
197
+ describes the experimental recording and data acquisition
198
+ procedures. Section III presents the proposed methodology for
199
+ BiCurNet. Section IV discusses the experimental evaluation
200
+ results for the proposed work. Finally, section V concludes
201
+ this work with major advantages, shortcomings, and future
202
+ directions.
203
+
204
+ 3
205
+ Fig. 2: Block diagram depicting the proposed methodology for biceps-curl trajectory estimation.
206
+ II. EXPERIMENT AND DATA ACQUISITION
207
+ The key objective of the study is to investigate the via-
208
+ bility of using EEG signals for elbow joint angle decoding
209
+ during biceps-curl motion. For this purpose, we designed
210
+ a synchronous EEG and joint angle recording system. The
211
+ description of the experimental paradigm and data acquisition
212
+ are elucidated in the subsequent sections.
213
+ A. Subjects and Equipment
214
+ The experiment was performed in the Multichannel Signal
215
+ Processing Laboratory, Department of Electrical Engineering
216
+ at Indian Institute of Technology Delhi, New Delhi. This
217
+ research was authorized by the Institutional Review Board of
218
+ All India Institute Of Medical Sciences, New Delhi. EEG data
219
+ and joint angle data were recorded from 5 healthy subjects
220
+ (all males, age 29 ± 2.61, all right handed) while performing
221
+ the biceps curl task. Each subject performed 300 trials of
222
+ biceps curls task. EEG data was recorded using 16-channel
223
+ dry-active electrodes (actiCAP Xpress Twist, Brain Products,
224
+ Gilching, Germany) with wireless EEG amplifier (LiveAmp-
225
+ 16, Brain Products, Gilching, Germany). The EEG sensors
226
+ were arranged in 10-20 international system of EEG electrode
227
+ placement, namely, Fp1, Fz, F3, C3, T7, Pz, P3, O1, Oz, O2,
228
+ P4, Cz, C4, T8, F4 and Fp2. The EEG data was acquired with
229
+ 500 Hz sampling frequency. A marker-based camera system
230
+ (Noraxon NiNOX 125 Camera System) was placed for elbow
231
+ joint angle measurement. The NiNOX 125 camera system was
232
+ connected to Noraxon myoResearch platform (MR 3.16) for
233
+ recording the biceps-curl hand motion. The camera system was
234
+ placed in sagittal plane 2 m away from the subject. The elbow
235
+ joint angle was calculated using myoResearch software in
236
+ the post-processing step. The 3-point angle measurement tool
237
+ was utilized to compute 2D joint angle by tracking reflective
238
+ markers in the video recording. The joint angle data was
239
+ sampled with the sampling frequency of 125 Hz. The EEG and
240
+ joint angle data was synchronized using Noraxon myoSync
241
+ device.
242
+ B. Experimental Setup and Paradigm
243
+ Concurrent EEG and motion data was collected from the
244
+ users during biceps-curl task. At the beginning of experiment,
245
+ participants were in standing position with 2 Kg dumbbell
246
+ holding in their right hand. A monitor was positioned 1.8 m
247
+ away in front of them for showing the experimental paradigm.
248
+ Participants were standing in balanced upright posture with
249
+ dumbbell in their right hand. We designed the experiment in
250
+ PsychoPy [24] for instructing the participant for initiating the
251
+ biceps-curl movement. Each trial begin with a cross appearing
252
+ on the center screen along with a beep sound, indicating the
253
+ start of the trial. After a couple of seconds, a visual cue
254
+ appeared on the screen to instruct the participant to initiate
255
+ the biceps-curl. The biceps-curl was performed in the motion
256
+ execution phase. Each trial ended with resting phase of two
257
+ seconds. Before the actual data acquisition, each participant
258
+ performed a practice run for executing the task correctly. This
259
+ practice run was not included for any consequent analysis. We
260
+ recorded 30 runs with 10 trials each for the biceps curl task.
261
+ Inter-run rest was given to the participant for avoiding muscle
262
+ fatigue.
263
+ III. PROPOSED METHODOLOGY
264
+ This section elaborates the proposed methodology for early
265
+ prediction of upper limb motion trajectory from EEG based
266
+ on deep learning, as illustrated in Fig. 2. It consists of three
267
+ major modules: EEG recording, pre-processing and feature
268
+
269
+ Raw EEG
270
+ signals
271
+ Pre-processing and
272
+ 3 Dense
273
+ andino
274
+ (Channels 1
275
+ feature extraction
276
+ EEG data
277
+ Flatten
278
+ layers, 8
279
+ layer, N
280
+ to 16)
281
+ (Channels 1
282
+ layer
283
+ units,
284
+ units,
285
+ DFT-based
286
+ to Nc)
287
+ DWSConv1Dlayer
288
+ Conv1D layer
289
+ Maxpool1D layer
290
+ Enhance and suppress
291
+ activation = activation =
292
+ baseline wander
293
+ 32 kernels,kernel 32kernels, kernel
294
+ Pool size=2,
295
+ attention block
296
+ Swish
297
+ Linear
298
+ size=5, stride=1,
299
+ size=5, stride=1,
300
+ noise removal
301
+ activation-ReLu
302
+ stride=2
303
+ activation=ReLu
304
+ (Threshold: 0.5
305
+ Hz).
306
+ dwConv1D
307
+ Dense
308
+ + ReLu
309
+ layer
310
+ Common average
311
+ referencing.
312
+ ICA-based artifact
313
+ rejection.
314
+ Amplitude
315
+ normalization [v].
316
+ DWT-based sub-
317
+ bands extraction:
318
+ [AA:"A:A:*A]
319
+ DWT-Spherical
320
+ harmonics (SH)
321
+ (C3-Ks 1) × 32
322
+ C4 × 32
323
+ features:
324
+ C4
325
+ C5
326
+ DWT-Head
327
+ harmonics (H2)
328
+ (N-Ks+1) × 32
329
+ (C,-Ks+1) × 32 (C,/2) × 32
330
+ C5 × 1
331
+ 8×1
332
+ N×1
333
+ NxNC
334
+ .
335
+ features:
336
+ Predicted
337
+ c
338
+ C2
339
+ C3
340
+ trajectory
341
+ EEG
342
+ recording4
343
+ extraction, and depth-wise separable convolutional neural net-
344
+ work with a customized attention module. The modules are
345
+ described in the subsequent sub-sections.
346
+ A. EEG recording
347
+ In this work, the EEG signals are acquired using LiveAmp
348
+ 16 Brain Products system as described in the previous section.
349
+ Prior to be used for the proposed BiCurNet, these signals are
350
+ pre-processed as detailed in the ensuing sub-section.
351
+ B. Pre-processing
352
+ The recorded EEG signals are pre-processed in EEGLAB
353
+ [25] and MATLAB for feature extraction prior to be fed to
354
+ the proposed BiCurNet, as shown in Fig. 2. After recording
355
+ and re-sampling the EEG signals, low frequency (below 0.5
356
+ Hz) baseline wander noise (BWN) suppression is done using
357
+ discrete Fourier transform (DFT). For this purpose, the DFT
358
+ coefficients corresponding to frequencies below 0.5Hz are
359
+ estimated. The computation of DFT coefficient index k is done
360
+ as: k = ⌊(fqNd/fqs)⌋, where fq is the frequency in Hz, fqs is
361
+ the sampling frequency, and Nd is the number of DFT points
362
+ for computation. These DFT coefficients are thresholded to
363
+ zero for suppression of the BWN. The EEG signal after BWN
364
+ suppression is synthesized as the inverse of the DFT coefficient
365
+ matrix. The mathematical interpretation of this procedure is
366
+ described for a recorded EEG signal v[n] by the following
367
+ DFT pair:
368
+ DFT of recorded signal : V [k] =
369
+ Nd−1
370
+
371
+ n=0
372
+ v[n]e
373
+ −jn2πk
374
+ Nd
375
+ (1)
376
+ ˜vq[n] = 1
377
+ Nd
378
+ Nd−1
379
+
380
+ k=0
381
+ ˜Vq(k)e
382
+ jn2πk
383
+ Nd
384
+ (2)
385
+ where
386
+ ˜
387
+ Xq denotes the DFT coefficient matrix after thresh-
388
+ olding, i.e., ˜
389
+ Xq(k) = [0, . . . , 0, Xq[k + 1], . . . , Xq[Nd − k −
390
+ 1], 0, ...., 0]. All signals are normalized w.r.t. amplitude to
391
+ bring it in range: [−1, 1] as
392
+ ˜
393
+ xq[n]
394
+ max| ˜
395
+ xq[n]|.
396
+ In this work, the recorded EEG signals are analyzed for
397
+ the estimation of motion trajectory with and without artifact
398
+ suppression. Independent component analysis (ICA) is utilized
399
+ for artifact suppression. It is used for estimating the sources
400
+ corresponding to cerebral and non-cerebral activities resulting
401
+ in the scalp EEG [26]. EEGLAB is used in this work for ICA-
402
+ based decomposition of the EEG signals obtained after BWN
403
+ removal. The decomposed independent sources with more than
404
+ 70% of artifactual components are rejected and the artifact-free
405
+ EEG signal is reconstructed.
406
+ C. Brain source imaging
407
+ Brain source imaging (BSI) is performed to select the rel-
408
+ evant pre-movement EEG segment prior to feature extraction.
409
+ Numerical Boundary Element Method (BEM) based forward
410
+ modeling is utilized for this purpose. The head model utilizes
411
+ ICBM MRI template [27] in OpenMEEG [28] toolbox. The
412
+ spatio-temporal dynamics of brain cortical sources are ob-
413
+ tained using inverse modeling. In particular, standardized low-
414
+ resolution electromagnetic tomography (sLORETA) [29] is
415
+ utilized to solve the under-determined inverse problem. Under
416
+ the constraint of the smooth source distribution, standardized
417
+ current density maps are utilized for localization inference.
418
+ Source localization plots for a right hand biceps-curl activity
419
+ are illustrated in Fig. 3. The analysis shown corresponds to
420
+ a single-trial of biceps-curl. The subject was instructed to
421
+ focus the vision on fixation cross. A visual cue for movement
422
+ onset was presented at 0 ms. The subject executed biceps-curl
423
+ activity 410 ms after the visual cue was given. A constant
424
+ activation may be observed in occipital lobe up to 60 ms.
425
+ The information starts getting transferred to the left motor
426
+ cortex thereafter. All such pre-movement EEG [Fig 3(c)-(g)]
427
+ has inbuilt motion trajectory.
428
+ It may be noted that the left motor cortex region was acti-
429
+ vated at 220-240 ms [Fig 3(e)] corresponding to the right-hand
430
+ biceps-curl activity. Motor activity was observed thereafter
431
+ up to 320 msec [Fig 3(e)]. The subject executed biceps-curl
432
+ activity at 400-450 ms after the visual cue was given. It may
433
+ be concluded that the motor neural information corresponding
434
+ to the biceps-curl activity is present approximately 250 ms
435
+ prior to the motor execution. This information is utilized for
436
+ selecting the time-lag window for elbow joint-angle trajectory.
437
+ The selected EEG data was utilized for the training and testing
438
+ of the proposed neural decoder.
439
+ D. Feature extraction
440
+ The pre-processed EEG signals are analyzed with different
441
+ transform-domain techniques for significant feature extraction.
442
+ This work explores time-frequency features using discrete
443
+ wavelet transform (DWT) in: Spatial domain; Spatio-temporal
444
+ domain using spherical Fourier transform (SFT); and Spatio-
445
+ temporal domain using head harmonics transform.
446
+ 1) Discrete wavelet transform-based features:
447
+ Discrete
448
+ wavelet transform is utilized to decompose the EEG signals
449
+ into constituent sub-bands/rhythms. It makes use of high-pass
450
+ and low-pass filters for decomposing the signals into a pre-
451
+ defined number of levels based on the sampling frequency
452
+ [30]. DWT of a single channel EEG signal v[n] is given by
453
+ Vj,r =
454
+
455
+ n∈z
456
+ v[n]ψ∗
457
+ j,r[n]
458
+ (3)
459
+ where ψj,r is the translated and scaled version of the mother
460
+ wavelet ψ0,0, and defined as:
461
+ ψj,r[n] = 2−(j/2)ψ0,0
462
+
463
+ 2−j(n − r)
464
+
465
+ (4)
466
+ The procedure for DWT-based decomposition follows a
467
+ tree-like structure as demonstrated in Fig. 4. At each decompo-
468
+ sition level, the wavelet coefficients are down-sampled for re-
469
+ moving the redundant information [31]. In this work, since the
470
+ sampling frequency used is 125 Hz, the decomposed sub bands
471
+ are obtained as: delta (δ : 0.5 − 3.9 Hz), theta (θ : 3.9 − 7.8
472
+ Hz), alpha (α : 7.8 − 15.6 Hz), beta (β : 15.6 − 31.2 Hz), and
473
+ gamma (γ :> 31.2 Hz), denoted by Vδ, Vθ, Vα, Vβ, and Vγ
474
+ respectively.
475
+
476
+ 5
477
+ (a)
478
+ (b)
479
+ (c)
480
+ (d)
481
+ (e)
482
+ (f)
483
+ (g)
484
+ (h)
485
+ Fig. 3: Brain source localization using sLORETA at different time stamps : (a) 0ms (b) 60ms (c) 120ms (d) 180ms (e) 240ms
486
+ (f) 300ms (g) 360ms (h) 420ms
487
+ Fig. 4:
488
+ Four-level DWT-based decomposition to obtain the approxi-
489
+ mation and detail bands with frequency range at level j
490
+ given by:
491
+
492
+ 0, 2−j−1 Fs
493
+
494
+ , and
495
+
496
+ 2−j−1 Fs, 2−j Fs
497
+
498
+ respectively.
499
+ 2) DWT-Spherical harmonics-based features: To extract the
500
+ spatio-temporal features of the EEG signal and the correspond-
501
+ ing DWT-based sub bands obtained above, spherical Fourier
502
+ transform (SFT) is explored in this work. Since the human
503
+ head is assumed to be spherical in shape [32], spherical Fourier
504
+ basis functions have been widely employed in literary works.
505
+ The decomposition of a multi-channel EEG signal V in SFD
506
+ is obtained as:
507
+ VSH
508
+ lm =
509
+
510
+
511
+ V (Ω, n) [Y m
512
+ n (Ω)] dΩ
513
+ (5)
514
+ where V (Ω, n) denotes the potential at (Ω) = (r, θ, φ) on
515
+ the scalp at time instant n. Here, r represents the radius of
516
+ head, θ denotes the angle of elevation measured in downward
517
+ direction from positive Z-axis (θ ∈ [0, π]), and φ denotes
518
+ the azimuth angle measured in anticlockwise direction from
519
+ positive X-axis, as shown in Fig. 5. The real-valued Y m
520
+ l (Ω)
521
+ of lth order and mth degree constitutes an orthonormal set of
522
+ basis function, defined over spherical array. For a finite order
523
+ Fig. 5: Total potential at a channel is a contribution of each active equivalent
524
+ dipole .
525
+ system, l ∈ [0, L], and m ∈ [−l, l]. Therefore, (L+1)2 distinct
526
+ spherical harmonics are obtained in total. Since the number of
527
+ sampling points S in spatial domain should be atleast (L+1)2,
528
+ the highest limit of L is ≤
529
+
530
+ (S) − 1. In this work, since 16
531
+ electrodes are used for recording, i.e., S = 16, the limit of L is
532
+ 3. Therefore, L = 2 is used here and total 9 distinct spherical
533
+ harmonics are obtained. The corresponding features are stored
534
+ in V SH
535
+ nm with a dimension of 9 × N. Each EEG sub band is
536
+ also decomposed using spherical Fourier basis functions, and
537
+ the corresponding features are obtained as V SH
538
+ δlm , V SH
539
+ θlm , V SH
540
+ αlm,
541
+ V SH
542
+ βlm , and V SH
543
+ γlm .
544
+ 3) DWT-Head harmonics-based features: More recently,
545
+ head harmonics (H2) basis functions have been proposed for
546
+ more adequate representation of EEG signals based on the
547
+ geometry of human head [32]. Since the EEG sensors placed
548
+ on head form a shape between a sphere and a hemisphere, H2
549
+ basis functions are shown to be more efficient for representing
550
+
551
+ x[n] sampled at F, = 125 Hz
552
+ Approximation 1
553
+ Detail 1
554
+ (0-31.25 Hz)
555
+ (31.25-62.5 Hz)
556
+ V
557
+ Approximation 2
558
+ Detail 2
559
+ (0-15.625 Hz)
560
+ (15.625-31.25 Hz)
561
+ Vp
562
+ Approximation 3
563
+ Detail 3
564
+ (0-7.8125 Hz)
565
+ (7.8125-15.625 Hz)
566
+ Va
567
+ Approximation 4
568
+ Detail 4
569
+ (0-3.9 Hz)
570
+ (3.9-7.8125 Hz)
571
+ Vs
572
+ Ve+Y0
573
+ 10-86
574
+ the data sampled over head. The decomposition of an EEG
575
+ signal matrix V in H2 domain is given as:
576
+ VH2
577
+ lm =
578
+
579
+
580
+ V (Ω, n) [Hm
581
+ l (Ω)] dΩ
582
+
583
+ S
584
+
585
+ w=1
586
+ zwV (Ωw, n) [Hm
587
+ l (Ωw)]
588
+ (6)
589
+ where, zw denotes the sampling weight and Ωw = (θw, φw)
590
+ is the location of channel w. Here, the angle of elevation θ
591
+ is in the range [0, 2π/3], as per the head geometry shown in
592
+ Fig. 6. The real-valued Hm
593
+ l (Ω) of lth order and mth degree
594
+ constitutes an orthonormal set of basis function defined over
595
+ human head .
596
+ Fig. 6: Geometry of human head with the parameters: Perimeter=40cm,
597
+ radius=10cm [32].
598
+ The corresponding features are stored in V H2
599
+ lm
600
+ with a di-
601
+ mension of 9 × N, similar to that obtained in SFT. Each EEG
602
+ sub-band is also decomposed using H2 basis functions, and
603
+ the corresponding features are obtained as V H2
604
+ δlm , V H2
605
+ θlm, V H2
606
+ αlm,
607
+ V H2
608
+ βlm, and V H2
609
+ γlm.
610
+ E. Proposed BiCurNet
611
+ After pre-processing and feature extraction, the EEG data is
612
+ given as input to the proposed BiCurNet model. The proposed
613
+ deep learning model is illustrated in Fig. 2. The constituent
614
+ layers in the proposed model include a depth-wise separable
615
+ one-dimensional convolution layer (DWSConv1D), a conv1D
616
+ layer, a maxpooling (maxpool1D) layer, a customized attention
617
+ module, a flatten layer, three dense layers, and an output layer
618
+ for regression/prediction.
619
+ • Depth-wise separable convolution layer (DWSConv1D):
620
+ The first layer of the network is a conv1D layer which
621
+ performs a depth-wise separable convolution of the re-
622
+ ceived input data with the kernels/filters used in this
623
+ layer. It receives the input EEG data in the form of
624
+ N × Nc matrix as shown in Fig. 2. Here N denotes the
625
+ number of samples in the data, and Nc is the number of
626
+ channels. The convolution operation is split into two parts
627
+ in this layer as depth-wise and point-wise [33]. Depth-
628
+ wise convolution is performed with each channel sepa-
629
+ rately, and point-wise convolution is performed as 1 × 1
630
+ convolution. It is a computationally efficient operation
631
+ w.r.t. the standard convolution layer, making it suitable
632
+ for lightweight scenarios. Convolution of a filter f[n] with
633
+ an input v[n] is written as:
634
+ v[n] ∗ f[n] =
635
+ ks−1
636
+
637
+ i=0
638
+ v[i] · f[n − i]
639
+ (7)
640
+ where, ‘∗’ represents the convolution operation and ks
641
+ denotes the filter width. In this layer, 32 filters are used.
642
+ Each filter has a width ks of 5. In general, the zth
643
+ convolution output, i.e, feature map of layer lr is given
644
+ as [34]:
645
+ clr
646
+ z = σ
647
+
648
+ �bilr
649
+ z +
650
+
651
+ j
652
+ clr−1
653
+ j
654
+ × f lr
655
+ zj
656
+
657
+
658
+ (8)
659
+ where, clr
660
+ z is the zth feature in the lrth layer; clr−1
661
+ j
662
+ is
663
+ the jth feature in the corresponding preceding layer; f lr
664
+ zj
665
+ represents the filter which links feature z to feature j, bilr
666
+ z
667
+ represents the corresponding bias vector and σ denotes
668
+ the activation function, which is rectified linear unit
669
+ (ReLu) in this layer. It is defined as: σ(t) = max(0, t).
670
+ A stride of one is used in this layer. The ’He’ uniform
671
+ initialization is used for kernel weights and zero initializa-
672
+ tion is used for bias vector. All these parameters produce
673
+ an output dimension of C1: (N − ks + 1) × 32 as shown
674
+ in Fig. 2. L2 regularization with a factor of 0.001 is also
675
+ used in this layer to reduce over-fitting.
676
+ • Conv1D layer: The second layer is a conventional con-
677
+ volution layer, which operates on all input channels at a
678
+ time. This layer uses the same parameters as described in
679
+ the previous layer. The corresponding output dimension
680
+ of this layer is given as (C1 − ks + 1) × 32.
681
+ • Max pooling layer (Maxpool1D): The convolution layer
682
+ output is reduced in dimensionality by using a max
683
+ pooling 1D layer, which retains the highest value of the
684
+ feature in a segment with a pool size [35]. This layer
685
+ helps in low-level feature extraction. The corresponding
686
+ process can be interpreted as [34]:
687
+ chx
688
+ mx = max
689
+ ∀b∈arm chx−1
690
+ b
691
+ (9)
692
+ where, arm denotes the pool area with index m. In this
693
+ work, a pool size and a stride of 2 is selected, which
694
+ results in the dimension of the output as (C1 − ks +
695
+ 1)/2 × 32, shown in Fig. 2.
696
+ • Customized attention module (CAM): The feature maps
697
+ of the previous layer are further transformed to intensify
698
+ the more relevant features and restrain the less relevant
699
+ features. A CAM is utilized for this purpose, which uses
700
+ a dense layer with 32 units and a multiply layer as
701
+ shown in Fig. 2. This module works on the attention
702
+ phenomenon, which enhances the relevant features and
703
+ diminishes the less significant features [33]. An element-
704
+ wise multiplication operation is performed between the
705
+ outputs of the dense layer and the maxpool1D layer. This
706
+ produces higher values of product where both maxpool1D
707
+ and dense layer outputs are high, thereby enhancing
708
+ the more intense features. Similarly, the less significant
709
+ features are further restrained due to low values of the
710
+ product where both the layer outputs are low. The input
711
+ dimension of the dense layer is (C3) × 32, and a dot
712
+ product operation between a 32 × 32 weight vector of
713
+ the dense layer and its input results in the same output
714
+ dimension.
715
+
716
+ + Z (Superior)
717
+ + Z (Superior)
718
+ 40 cm
719
+ +Y
720
+ fx
721
+ -x
722
+ 10 cm
723
+ Posterior
724
+ Anterior
725
+ Right
726
+ Left
727
+ - Z (Inferior)
728
+ Z (Inferior)7
729
+ TABLE I: Training hyper-parameters (After hypertuning).
730
+ Nc
731
+ Nk
732
+ Dr
733
+ ks
734
+ sr
735
+ lr
736
+ Bt
737
+ ec
738
+ 3
739
+ 32
740
+ 0.40
741
+ 5
742
+ 1
743
+ 0.001
744
+ 15
745
+ 100
746
+ Ncl: Number of convolution layers, Nk: Number of kernels/filters, Dr: Dropout rate,
747
+ ks: Kernel width, sr: Stride/shift, lr: Learning rate, Bt: Batch size, ec: Number of
748
+ training epochs.
749
+ • Flatten layer: This layer transforms the output of CAM
750
+ which is C3 × 32 to a 1D vector with dimension C4 × 1,
751
+ as shown in Fig. 2. A dropout with a factor of 0.4 is used
752
+ after this layer to prevent the model from over-fitting [36].
753
+ • Dense layers: Three dense layers with 8 units each are
754
+ used after the flatten layer. In this work, swish activation
755
+ function is used in these layers, interpreted as:
756
+ f(x) = x . swish(x)
757
+ (10)
758
+ • Output layer: The final layer is a dense layer for re-
759
+ gression, that maps the output of flatten layer to the
760
+ predicted trajectory with dimension N × 1, as shown
761
+ in Fig. 2. Dense layer implements the element-wise
762
+ dot product between the input and the kernel. Linear
763
+ activation function is used in this layer, given by:
764
+ f(x) = x
765
+ (11)
766
+ The aforementioned layers and hyper-parameters are used
767
+ to create the proposed network. For training, 80% of EEG
768
+ signals with different durations/window lengths are taken from
769
+ the recorded database. The rest 20% of the data is divided
770
+ into 10% test and 10% validation data. The information about
771
+ optimal training hyper-parameter selection and their values is
772
+ provided in the next section. The proposed network is built
773
+ using Keras deep learning framework with TensorFlow version
774
+ 2.2.1 as backend in Python. In this work, data augmentation
775
+ is utilized to increase the number of training examples in the
776
+ data to avoid over-fitting. It makes the proposed network more
777
+ robust by creating new and different training examples by
778
+ which it can learn the alterations in the real world. For this
779
+ purpose, random flipping and rolling operations are used in
780
+ Python Keras framework.
781
+ IV. RESULTS AND DISCUSSION
782
+ In this Section, the performance evaluation of the proposed
783
+ BiCurNet on the recorded EEG signals is presented w.r.t.
784
+ different parameters. Elaborated interpretations of the results
785
+ are also presented for the proposed network.
786
+ A. Hyper-parameters for training BiCurNet
787
+ Various parameters used for training the proposed network
788
+ are presented herein. For assessing the regression/prediction
789
+ performance of the proposed network, 10% of the EEG signals
790
+ from the recorded database are used for testing. The data
791
+ from each subject is used for training, testing, and validation,
792
+ i.e., subject-dependent training is performed. The network
793
+ is trained using a batch size of 15, epochs as 100, and
794
+ Adam optimizer with a learning rate as 0.001. To curtail
795
+ the statistical unreliability in computation of test loss due
796
+ to small database, ten-fold cross validation is employed for
797
+ performance evaluation. Mean square error (MSE) is used as
798
+ the loss function for regression. Table I presents the training
799
+ hyper-parameters which are selected using the KerasTuner
800
+ framework in Python. It is an optimization framework for
801
+ tuning the hyper-parameters that uses search-and-selection-
802
+ based criteria. The final corresponding selected set of optimal
803
+ hyper-parameters is listed in the table.
804
+ B. Regression metric
805
+ In this work, time lagged and windowed EEG signals
806
+ are used to estimate the motion trajectory in advance. In
807
+ particular, the EEG data preceding the motion by different
808
+ time lags (8-240 ms) is used to train, test, and validate the
809
+ proposed network. Additionally, the performance is evaluated
810
+ with varying EEG window sizes (320-1600 ms). A 95%
811
+ overlap between adjacent windows is considered. Pearson
812
+ correlation coefficient (PCC) is utilized for analysing the
813
+ performance of the proposed network w.r.t. upper limb motion
814
+ trajectory estimation. PCC between true/measured (A) and
815
+ predicted/estimated (P) trajectory signal with N samples is
816
+ given as
817
+ Π(A, P) =
818
+ 1
819
+ N − 1
820
+ N
821
+
822
+ i=1
823
+ �Ai − mA
824
+ σA
825
+ � �Pi − mP
826
+ σP
827
+
828
+ (12)
829
+ where m is the mean and σ denotes standard deviation. The
830
+ normalized covariance measure assumes a value between -1
831
+ and 1.
832
+ C. Subject dependent PCC analysis
833
+ The proposed model is trained and tested for each subject
834
+ separately, for subject-dependent (SD) performance analysis.
835
+ The PCC values averaged across all the trials and subjects, are
836
+ presented in Table II with varying time lags, window sizes,
837
+ and EEG features. The EEG bands are considered in spatial
838
+ (V ), spherical harmonics (Vδnm), and head harmonics domains
839
+ (V H2
840
+ δnm). It may be noted that the transformed domain (Vδnm
841
+ and V H2
842
+ δnm) features gives PCC similar to spatial domain coun-
843
+ terparts with reduced computational cost, as detailed in Section
844
+ III-D2. Additionally, δ band gives higher PCC values while γ
845
+ band has the lowest PCC. This indicates the pertinence of low-
846
+ frequency δ band for motion trajectory decoding using EEG.
847
+ The best correlation is observed when Vδ, V SH
848
+ δnm, and V H2
849
+ δnm are
850
+ combined. The highest correlation achieved is 0.7 with 240
851
+ ms advanced EEG window of 1600 ms. This demonstrates the
852
+ feasibility of early estimation of the motion trajectory by using
853
+ the proposed network.
854
+ D. Subject-independent performance analysis
855
+ To further explore the adaptability of the proposed network,
856
+ subject-independent (SI) analysis is presented herein using
857
+ leave-one-out scheme. Simultaneous comparison of SI/SD
858
+ case on PCC is presented in Fig. 7. The PCC values are
859
+ averaged over all subjects and lags. A slight decrease in PCC
860
+ value may be noted in the SI case. However, it remains within
861
+ ±0.05 which indicates the robustness of the proposed network
862
+ against the subject-variability.
863
+
864
+ 8
865
+ TABLE II: Pearson correlation coefficient (PCC) for different EEG segments and lags of data (Mean over subjects).
866
+ EEG
867
+ Features
868
+ 8
869
+ ms
870
+ 40
871
+ ms
872
+ 80
873
+ ms
874
+ 160
875
+ ms
876
+ 240
877
+ ms
878
+ 8
879
+ ms
880
+ 40
881
+ ms
882
+ 80
883
+ ms
884
+ 160
885
+ ms
886
+ 240
887
+ ms
888
+ 8
889
+ ms
890
+ 40
891
+ ms
892
+ 80
893
+ ms
894
+ 160
895
+ ms
896
+ 240
897
+ ms
898
+ 8
899
+ ms
900
+ 40
901
+ ms
902
+ 80
903
+ ms
904
+ 160
905
+ ms
906
+ 240
907
+ ms
908
+ V
909
+ 0.25 0.25
910
+ 0.26
911
+ 0.26
912
+ 0.26
913
+ 0.35 0.35
914
+ 0.36
915
+ 0.35
916
+ 0.26
917
+ 0.42 0.42
918
+ 0.42
919
+ 0.42
920
+ 0.43
921
+ 0.55 0.55
922
+ 0.55
923
+ 0.55
924
+ 0.56
925
+
926
+ 0.34 0.33
927
+ 0.33
928
+ 0.34
929
+ 0.36
930
+ 0.41 0.41
931
+ 0.42
932
+ 0.42
933
+ 0.42
934
+ 0.48 0.48
935
+ 0.48
936
+ 0.48
937
+ 0.49
938
+ 0.61 0.61
939
+ 0.61
940
+ 0.66
941
+ 0.67
942
+
943
+ 0.24 0.23
944
+ 0.23
945
+ 0.24
946
+ 0.26
947
+ 0.38 0.38
948
+ 0.38
949
+ 0.38
950
+ 0.38
951
+ 0.44 0.44
952
+ 0.44
953
+ 0.44
954
+ 0.45
955
+ 0.55 0.55
956
+ 0.55
957
+ 0.56
958
+ 0.57
959
+
960
+ 0.22 0.22
961
+ 0.22
962
+ 0.22
963
+ 0.21
964
+ 0.36 0.36
965
+ 0.37
966
+ 0.36
967
+ 0.36
968
+ 0.39 0.39
969
+ 0.39
970
+ 0.39
971
+ 0.39
972
+ 0.51 0.51
973
+ 0.51
974
+ 0.51
975
+ 0.53
976
+
977
+ 0.18 0.18
978
+ 0.17
979
+ 0.17
980
+ 0.17
981
+ 0.29 0.29
982
+ 0.29
983
+ 0.3
984
+ 0.3
985
+ 0.32 0.32
986
+ 0.32
987
+ 0.32
988
+ 0.33
989
+ 0.39 0.39
990
+ 0.39
991
+ 0.39
992
+ 0.39
993
+
994
+ 0.1
995
+ 0.1
996
+ 0.1
997
+ 0.1
998
+ 0.1
999
+ 0.17 0.17
1000
+ 0.17
1001
+ 0.18
1002
+ 0.18
1003
+ 0.27 0.27
1004
+ 0.27
1005
+ 0.27
1006
+ 0.28
1007
+ 0.29 0.29
1008
+ 0.29
1009
+ 0.29
1010
+ 0.29
1011
+ V SH
1012
+ nm
1013
+ 0.25 0.25
1014
+ 0.25
1015
+ 0.25
1016
+ 0.26
1017
+ 0.34 0.35
1018
+ 0.35
1019
+ 0.35
1020
+ 0.36
1021
+ 0.41 0.41
1022
+ 0.41
1023
+ 0.41
1024
+ 0.42
1025
+ 0.54 0.54
1026
+ 0.54
1027
+ 0.54
1028
+ 0.55
1029
+ V SH
1030
+ δnm
1031
+ 0.34 0.33
1032
+ 0.34
1033
+ 0.35
1034
+ 0.35
1035
+ 0.41 0.41
1036
+ 0.41
1037
+ 0.41
1038
+ 0.41
1039
+ 0.47 0.47
1040
+ 0.47
1041
+ 0.48
1042
+ 0.48
1043
+ 0.61 0.61
1044
+ 0.61
1045
+ 0.66
1046
+ 0.66
1047
+ V SH
1048
+ θnm
1049
+ 0.23 0.22
1050
+ 0.22
1051
+ 0.22
1052
+ 0.23
1053
+ 0.37 0.37
1054
+ 0.37
1055
+ 0.37
1056
+ 0.38
1057
+ 0.44 0.44
1058
+ 0.44
1059
+ 0.44
1060
+ 0.45
1061
+ 0.55 0.55
1062
+ 0.55
1063
+ 0.55
1064
+ 0.56
1065
+ V SH
1066
+ αnm
1067
+ 0.2
1068
+ 0.2
1069
+ 0.19
1070
+ 0.2
1071
+ 0.2
1072
+ 0.34 0.34
1073
+ 0.34
1074
+ 0.34
1075
+ 0.36
1076
+ 0.38 0.38
1077
+ 0.38
1078
+ 0.38
1079
+ 0.38
1080
+ 0.5
1081
+ 0.5
1082
+ 0.5
1083
+ 0.5
1084
+ 0.51
1085
+ V SH
1086
+ βnm
1087
+ 0.17 0.17
1088
+ 0.16
1089
+ 0.16
1090
+ 0.17
1091
+ 0.29 0.29
1092
+ 0.29
1093
+ 0.29
1094
+ 0.29
1095
+ 0.33 0.33
1096
+ 0.33
1097
+ 0.33
1098
+ 0.34
1099
+ 0.4
1100
+ 0.4
1101
+ 0.4
1102
+ 0.4
1103
+ 0.41
1104
+ V SH
1105
+ γnm
1106
+ 0.09 0.1
1107
+ 0.1
1108
+ 0.1
1109
+ 0.1
1110
+ 0.18 0.18
1111
+ 0.18
1112
+ 0.18
1113
+ 0.18
1114
+ 0.28 0.28
1115
+ 0.28
1116
+ 0.28
1117
+ 0.3
1118
+ 0.3
1119
+ 0.3
1120
+ 0.3
1121
+ 0.3
1122
+ 0.31
1123
+ V H2
1124
+ nm
1125
+ 0.25 0.25
1126
+ 0.26
1127
+ 0.26
1128
+ 0.26
1129
+ 0.35 0.35
1130
+ 0.35
1131
+ 0.35
1132
+ 0.36
1133
+ 0.42 0.42
1134
+ 0.42
1135
+ 0.42
1136
+ 0.43
1137
+ 0.55 0.55
1138
+ 0.55
1139
+ 0.55
1140
+ 0.57
1141
+ V H2
1142
+ δnm
1143
+ 0.34 0.33
1144
+ 0.34
1145
+ 0.34
1146
+ 0.35
1147
+ 0.41 0.41
1148
+ 0.41
1149
+ 0.41
1150
+ 0.41
1151
+ 0.48 0.48
1152
+ 0.48
1153
+ 0.48
1154
+ 0.49
1155
+ 0.62 0.62
1156
+ 0.62
1157
+ 0.62
1158
+ 0.65
1159
+ V H2
1160
+ θnm
1161
+ 0.25 0.24
1162
+ 0.24
1163
+ 0.23
1164
+ 0.23
1165
+ 0.38 0.38
1166
+ 0.38
1167
+ 0.39
1168
+ 0.39
1169
+ 0.44 0.44
1170
+ 0.44
1171
+ 0.44
1172
+ 0.45
1173
+ 0.53 0.53
1174
+ 0.53
1175
+ 0.53
1176
+ 0.55
1177
+ V H2
1178
+ αnm
1179
+ 0.22 0.2
1180
+ 0.2
1181
+ 0.2
1182
+ 0.22
1183
+ 0.36 0.36
1184
+ 0.36
1185
+ 0.36
1186
+ 0.36
1187
+ 0.38 0.38
1188
+ 0.38
1189
+ 0.38
1190
+ 0.39
1191
+ 0.51 0.51
1192
+ 0.51
1193
+ 0.51
1194
+ 0.51
1195
+ V H2
1196
+ βnm
1197
+ 0.18 0.18
1198
+ 0.18
1199
+ 0.18
1200
+ 0.18
1201
+ 0.28 0.28
1202
+ 0.28
1203
+ 0.28
1204
+ 0.29
1205
+ 0.33 0.33
1206
+ 0.33
1207
+ 0.33
1208
+ 0.34
1209
+ 0.39 0.39
1210
+ 0.39
1211
+ 0.39
1212
+ 0.4
1213
+ V H2
1214
+ γnm
1215
+ 0.11 0.11
1216
+ 0.11
1217
+ 0.11
1218
+ 0.11
1219
+ 0.16 0.16
1220
+ 0.16
1221
+ 0.16
1222
+ 0.17
1223
+ 0.2
1224
+ 0.2
1225
+ 0.2
1226
+ 0.2
1227
+ 0.2
1228
+ 0.19 0.19
1229
+ 0.19
1230
+ 0.19
1231
+ 0.19
1232
+ Vcom
1233
+ 0.36 0.36
1234
+ 0.36
1235
+ 0.36
1236
+ 0.37
1237
+ 0.43 0.43
1238
+ 0.44
1239
+ 0.44
1240
+ 0.44
1241
+ 0.5
1242
+ 0.5
1243
+ 0.5
1244
+ 0.51
1245
+ 0.52
1246
+ 0.67 0.67
1247
+ 0.67
1248
+ 0.68
1249
+ 0.70
1250
+ ■: 320 ms window, ■: 800 ms window, ■: 1200 ms window , ■: 1600 ms window; Note: Vcom : [Vδ; V SH
1251
+ δnm; V H2
1252
+ δnm]
1253
+ Fig. 7: Average PCC values w.r.t. subject dependent (SD) and
1254
+ subject-independent (SI) training of the proposed network at
1255
+ different window sizes (320 ms to 1600 ms).
1256
+ E. Robustness analysis
1257
+ The robustness of the proposed network is analyzed herein
1258
+ using artifactual EEG signals. In particular, the pre-processing
1259
+ did not include ICA decomposition-based artifact removal. The
1260
+ proposed network is trained and tested using such signals.
1261
+ Mean PCC values obtained using without artifact (WOA) and
1262
+ with artifact (WA) EEG signal are presented in Fig. 8. A
1263
+ small decrease of 0.06 in the PCC values may be observed
1264
+ with artifact case that indicates the robustness of the proposed
1265
+ model.
1266
+ F. Trajectory estimation curves
1267
+ The proposed BiCurNet model is additionally evaluated
1268
+ herein using actual motion trajectories. Fig. 9 illustrates the
1269
+ estimated and actual trajectories for subject I with window
1270
+ size varying between 800-1600 ms. 95% overlap is considered
1271
+ Fig. 8: Subject dependent average PCC values utilizing with
1272
+ and without artifactual EEG data for different window sizes.
1273
+ between two adjacent windows. It may be observed from the
1274
+ figure that there is a considerable improvement in correlation
1275
+ when window size is increased. This results in trajectory closer
1276
+ to the ground truth. Ability of the proposed network to follow
1277
+ the trajectory pattern for all windows indicates the learning
1278
+ capability of the network.
1279
+ V. CONCLUSION
1280
+ A deep learning-based paradigm for early estimation of
1281
+ upper limb motion trajectory using EEG signal is proposed
1282
+ in this work. The EEG is collected while performing biceps
1283
+ curl movement. The proposed BiCurNet model is built using
1284
+ a light-weight architecture with depth-wise separable con-
1285
+ volution layers and customized attention module. The input
1286
+ features to the model are taken in computationally more
1287
+ efficient spherical and head harmonics domain in addition to
1288
+ spatio-temporal data. The extensive performance evaluation
1289
+
1290
+ 0.7
1291
+ 0.6
1292
+ 0.5
1293
+ PCC
1294
+ 0.4
1295
+ 0.3
1296
+ SD
1297
+ SI
1298
+ Meanoversubjects0.7
1299
+ 0.6
1300
+ IWOA
1301
+ IWA
1302
+ 0.5
1303
+ 0.4
1304
+ CC
1305
+ P
1306
+ 0.3
1307
+ 0.2
1308
+ 0.1
1309
+ 0
1310
+ 320 ms
1311
+ 800ms
1312
+ 1200ms
1313
+ 1600ms
1314
+ Window size9
1315
+ Fig. 9: Actual and predicted trajectories of subject 1 (Early prediction, before 40 ms).
1316
+ of the proposed network on in-house recorded EEG signals
1317
+ demonstrates its effectiveness in early estimation. Performance
1318
+ evaluation includes subject (in)dependent study. the noise
1319
+ awareness of the proposed network is also demonstrated by
1320
+ using the artifactual EEG signals for training. Robustness of
1321
+ the proposed network is demonstrated by using the artifactual
1322
+ EEG signals for training. The proposed network being com-
1323
+ putationally efficient, and noise-aware, makes it suitable for
1324
+ use in real-time BCI applications. Real-time implementation
1325
+ of the proposed network for an exosuit control is currently
1326
+ being explored.
1327
+ ACKNOWLEDGMENT
1328
+ This research work was supported in part by DRDO - JATC
1329
+ project with project number RP04191G.
1330
+ REFERENCES
1331
+ [1] J. R. Wolpaw and E. W. Wolpaw, “Brain-computer interfaces: something
1332
+ new under the sun,” Brain-computer interfaces: principles and practice,
1333
+ vol. 14, 2012.
1334
+ [2] S. Gong, K. Xing, A. Cichocki, and J. Li, “Deep learning in EEG:
1335
+ Advance of the last ten-year critical period,” IEEE Transactions on
1336
+ Cognitive and Developmental Systems, 2021.
1337
+ [3] S. Aggarwal and N. Chugh, “Review of machine learning techniques
1338
+ for EEG based brain computer interface,” Archives of Computational
1339
+ Methods in Engineering, pp. 1–20, 2022.
1340
+ [4] A. Chowdhury, H. Raza, Y. K. Meena, A. Dutta, and G. Prasad, “On-
1341
+ line covariate shift detection-based adaptive brain-computer interface
1342
+ to trigger hand exoskeleton feedback for neuro-rehabilitation,” IEEE
1343
+ Transactions on Cognitive and Developmental Systems, vol. 10, no. 4,
1344
+ pp. 1070–1080, 2017.
1345
+ [5] H. Raza, A. Chowdhury, and S. Bhattacharyya, “Deep learning based
1346
+ prediction of EEG motor imagery of stroke patients’ for neuro-
1347
+ rehabilitation application,” in 2020 International Joint Conference on
1348
+ Neural Networks (IJCNN).
1349
+ IEEE, 2020, pp. 1–8.
1350
+ [6] P. Di Lillo, F. Arrichiello, D. Di Vito, and G. Antonelli, “BCI-controlled
1351
+ assistive manipulator: developed architecture and experimental results,”
1352
+ IEEE Transactions on Cognitive and Developmental Systems, vol. 13,
1353
+ no. 1, pp. 91–104, 2020.
1354
+ [7] X. Li, L. Wang, S. Miao, Z. Yue, Z. Tang, L. Su, Y. Zheng, X. Wu,
1355
+ S. Wang, J. Wang et al., “Sensorimotor Rhythm-Brain Computer Inter-
1356
+ face With Audio-Cue, Motor Observation and Multisensory Feedback
1357
+ for Upper-Limb Stroke Rehabilitation: A Controlled Study,” Frontiers
1358
+ in Neuroscience, vol. 16, 2022.
1359
+ [8] R. Sosnik and O. B. Zur, “Reconstruction of hand, elbow and shoulder
1360
+ actual and imagined trajectories in 3d space using eeg slow cortical
1361
+ potentials,” Journal of neural engineering, vol. 17, no. 1, p. 016065,
1362
+ 2020.
1363
+ [9] N. Robinson, T. W. J. Chester, and K. Smitha, “Use of mobile EEG in
1364
+ decoding hand movement speed and position,” IEEE Transactions on
1365
+ Human-Machine Systems, vol. 51, no. 2, pp. 120–129, 2021.
1366
+ [10] A. Jain and L. Kumar, “PreMovNet: Premovement EEG-Based Hand
1367
+ Kinematics Estimation for Grasp-and-Lift Task,” IEEE Sensors Letters,
1368
+ vol. 6, no. 7, pp. 1–4, 2022.
1369
+ [11] M. Saini, U. Satija, and M. D. Upadhayay, “One-dimensional convo-
1370
+ lutional neural network architecture for classification of mental tasks
1371
+ from electroencephalogram,” Biomedical Signal Processing and Control,
1372
+ vol. 74, p. 103494, 2022.
1373
+ [12] A. Jain and L. Kumar, “Subject-Independent 3D Hand Kinematics
1374
+ Reconstruction using Pre-Movement EEG Signals for Grasp And Lift
1375
+ Task,” arXiv preprint arXiv:2209.01932, 2022.
1376
+ [13] P. S. Hammon, S. Makeig, H. Poizner, E. Todorov, and V. R. De Sa,
1377
+ “Predicting reaching targets from human EEG,” IEEE Signal Processing
1378
+ Magazine, vol. 25, no. 1, pp. 69–77, 2007.
1379
+ [14] R. Sosnik and L. Zheng, “Reconstruction of hand, elbow and shoulder
1380
+ actual and imagined trajectories in 3D space using EEG current source
1381
+ dipoles,” Journal of Neural Engineering, vol. 18, no. 5, p. 056011, 2021.
1382
+ [15] J.-H. Kim, F. Bießmann, and S.-W. Lee, “Decoding three-dimensional
1383
+ trajectory of executed and imagined arm movements from electroen-
1384
+ cephalogram signals,” IEEE Transactions on Neural Systems and Reha-
1385
+ bilitation Engineering, vol. 23, no. 5, pp. 867–876, 2014.
1386
+ [16] L. Yang, H. Leung, M. Plank, J. Snider, and H. Poizner, “EEG activity
1387
+ during movement planning encodes upcoming peak speed and acceler-
1388
+ ation and improves the accuracy in predicting hand kinematics,” IEEE
1389
+ journal of biomedical and health informatics, vol. 19, no. 1, pp. 22–28,
1390
+ 2014.
1391
+ [17] Y. Nakanishi, T. Yanagisawa, D. Shin, H. Kambara, N. Yoshimura,
1392
+ M. Tanaka, R. Fukuma, H. Kishima, M. Hirata, and Y. Koike, “Mapping
1393
+ ECoG channel contributions to trajectory and muscle activity prediction
1394
+ in human sensorimotor cortex,” Scientific reports, vol. 7, no. 1, pp. 1–13,
1395
+ 2017.
1396
+ [18] N. A. Bhagat, A. Venkatakrishnan, B. Abibullaev, E. J. Artz, N. Yoz-
1397
+ batiran, A. A. Blank, J. French, C. Karmonik, R. G. Grossman, M. K.
1398
+ O’Malley et al., “Design and optimization of an EEG-based brain ma-
1399
+ chine interface (BMI) to an upper-limb exoskeleton for stroke survivors,”
1400
+ Frontiers in neuroscience, vol. 10, p. 122, 2016.
1401
+ [19] M. Mahmoodi, B. Makkiabadi, M. Mahmoudi, and S. Sanei, “A new
1402
+ method for accurate detection of movement intention from single
1403
+ channel EEG for online BCI,” Computer Methods and Programs in
1404
+ Biomedicine Update, vol. 1, p. 100027, 2021.
1405
+ [20] R. Gatti, Y. Atum, L. Schiaffino, M. Jochumsen, and J. Biurrun Manresa,
1406
+ “Decoding kinetic features of hand motor preparation from single-
1407
+ trial EEG using convolutional neural networks,” European Journal of
1408
+ Neuroscience, vol. 53, no. 2, pp. 556–570, 2021.
1409
+ [21] J.-H. Jeong, K.-H. Shim, D.-J. Kim, and S.-W. Lee, “Brain-controlled
1410
+ robotic arm system based on multi-directional CNN-BiLSTM network
1411
+ using EEG signals,” IEEE Transactions on Neural Systems and Reha-
1412
+ bilitation Engineering, vol. 28, no. 5, pp. 1226–1238, 2020.
1413
+ [22] S. Pancholi, A. Giri, A. Jain, L. Kumar, and S. Roy, “Source aware
1414
+ deep learning framework for hand kinematic reconstruction using EEG
1415
+ signal,” IEEE Transactions on Cybernetics, 2022.
1416
+ [23] K. Kumarasinghe, N. Kasabov, and D. Taylor, “Brain-inspired spiking
1417
+ neural networks for decoding and understanding muscle activity and
1418
+ kinematics from electroencephalography signals during hand move-
1419
+ ments,” Scientific reports, vol. 11, no. 1, pp. 1–15, 2021.
1420
+ [24] J. W. Peirce, “PsychoPy—psychophysics software in Python,” Journal
1421
+ of neuroscience methods, vol. 162, no. 1-2, pp. 8–13, 2007.
1422
+ [25] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for
1423
+ analysis of single-trial EEG dynamics including independent component
1424
+ analysis,” Journal of neuroscience methods, vol. 134, no. 1, pp. 9–21,
1425
+ 2004.
1426
+
1427
+ Window size: 800 ms
1428
+ Window size: 1200 ms
1429
+ Window size: 1600 ms
1430
+ True
1431
+ Predicted
1432
+ 10
1433
+ 10
1434
+ 10
1435
+ 0.9
1436
+ 0.9
1437
+ 0.9
1438
+ 0.8
1439
+ 0.8
1440
+ 0.8
1441
+ Angle
1442
+ 0.7
1443
+ 0.7
1444
+ 0.7
1445
+ 0.6
1446
+ 0.5
1447
+ 0.5
1448
+ 0.5
1449
+ 0.4
1450
+ PCC
1451
+ 0.4
1452
+ PCC
1453
+ 0.4
1454
+ PCC
1455
+ 0.45
1456
+ 0.3
1457
+ 0.3
1458
+ 0.52
1459
+ EO
1460
+ 0.60
1461
+ 0.2
1462
+ 0.2
1463
+ 0.2
1464
+ 250
1465
+ 500
1466
+ 75010001250150017502000
1467
+ 0
1468
+ 250500
1469
+ 75010001250150017502000
1470
+ 75010001250150017502000
1471
+ Samples
1472
+ Samples
1473
+ Samples10
1474
+ [26] A. K. Maddirala and K. C. Veluvolu, “ICA with CWT and k-means
1475
+ for Eye-blink Artifact Removal from Fewer Channel EEG,” IEEE
1476
+ Transactions on Neural Systems and Rehabilitation Engineering, 2022.
1477
+ [27] J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancaster, K. Zilles,
1478
+ R. Woods, T. Paus, G. Simpson, B. Pike et al., “A probabilistic atlas
1479
+ and reference system for the human brain: International Consortium
1480
+ for Brain Mapping (ICBM),” Philosophical Transactions of the Royal
1481
+ Society of London. Series B: Biological Sciences, vol. 356, no. 1412,
1482
+ pp. 1293–1322, 2001.
1483
+ [28] A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, “OpenMEEG:
1484
+ opensource software for quasistatic bioelectromagnetics,” Biomedical
1485
+ engineering online, vol. 9, no. 1, pp. 1–20, 2010.
1486
+ [29] R. D. Pascual-Marqui et al., “Standardized low-resolution brain elec-
1487
+ tromagnetic tomography (sLORETA): technical details,” Methods Find
1488
+ Exp Clin Pharmacol, vol. 24, no. Suppl D, pp. 5–12, 2002.
1489
+ [30] M. Saini, U. Satija, and M. D. Upadhayay, “Discriminatory features
1490
+ based on wavelet energy for effective analysis of electroencephalogram
1491
+ during mental tasks,” Circuits, Systems, and Signal Processing, pp. 1–29,
1492
+ 2022.
1493
+ [31] S. G. Mallat, “A theory for multiresolution signal decomposition: the
1494
+ wavelet representation,” IEEE transactions on pattern analysis and
1495
+ machine intelligence, vol. 11, no. 7, pp. 674–693, 1989.
1496
+ [32] A. Giri, L. Kumar, and T. K. Gandhi, “Brain source localization in
1497
+ head harmonics domain,” IEEE Transactions on Instrumentation and
1498
+ Measurement, vol. 70, pp. 1–10, 2020.
1499
+ [33] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
1500
+ block attention module,” in Proceedings of the European conference on
1501
+ computer vision (ECCV), 2018, pp. 3–19.
1502
+ [34] M. P´erez-Enciso and L. M. Zingaretti, “A guide on deep learning for
1503
+ complex trait genomic prediction,” Genes, vol. 10, no. 7, p. 553, 2019.
1504
+ [35] Z. Jiao, X. Gao, Y. Wang, J. Li, and H. Xu, “Deep convolutional neural
1505
+ networks for mental load classification based on EEG data,” Pattern
1506
+ Recognition, vol. 76, pp. 582–595, 2018.
1507
+ [36] H. Wu and X. Gu, “Towards dropout training for convolutional neural
1508
+ networks,” Neural Networks, vol. 71, pp. 1–10, 2015.
1509
+
2tE2T4oBgHgl3EQfjAfh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tFLT4oBgHgl3EQfrC9d/content/tmp_files/2301.12142v1.pdf.txt ADDED
@@ -0,0 +1,1631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12142v1 [math.DG] 28 Jan 2023
2
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
3
+ HUI ZHANG AND ZAILI YAN
4
+ Abstract. We consider the moment map m : PVn → iu(n) for the action of GL(n) on Vn = ⊗2(Cn)∗ ⊗ Cn,
5
+ and study the critical points of the functional Fn = ∥m∥2 : PVn → R. Firstly, we prove that [µ] ∈ PVn is a
6
+ critical point if and only if Mµ = cµI + Dµ for some cµ ∈ R and Dµ ∈ Der(µ), where m([µ]) =
7
+
8
+ ∥µ∥2 . Then we
9
+ show that any algebra µ admits a Nikolayevsky derivation φµ which is unique up to automorphism, and if
10
+ moreover, [µ] is a critical point of Fn, then φµ = − 1
11
+ cµ Dµ. Secondly, we characterize the maxima and minima
12
+ of the functional Fn : An → R, where An denotes the projectivization of the algebraic varieties of all n-
13
+ dimensional associative algebras. Furthermore, for an arbitrary critical point [µ] of Fn : An → R, we also
14
+ obtain a description of the algebraic structure of [µ]. Finally, we classify the critical points of Fn : An → R
15
+ for n = 2, 3, respectively.
16
+ 1. Introduction
17
+ Lauret has studied the moment map for the variety of Lie algebras and obtained many remarkable
18
+ results in [7], which turned out to be very important in proving that every Einstein solvmanifold is
19
+ standard ([9]) and in the characterization of solitons ([1, 10]). Apart from the Lie algebras, the study
20
+ of the moment map in other classes of algebras was also initiated by Lauret, see [11] for more details.
21
+ Motivated by this, the authors have recently extended the study of the moment map to the variety of
22
+ 3-Lie algebras (see [17]).
23
+ In this paper, we study the moment map for the variety of associative algebras. Let GL(n) be the
24
+ complex reductive Lie group acting naturally on the complex vector space Vn = ⊗2(Cn)∗ ⊗ Cn, i.e., the
25
+ space of all n-dimensional complex algebras. The usual Hermitian inner product on Cn naturally induces
26
+ an U(n)-invariant Hermitian inner product on Vn, which is denoted by ⟨·, ·⟩. Since gl(n) = u(n) + iu(n),
27
+ we may define a function as follows
28
+ m : PVn → iu(n),
29
+ (m([µ]), A) = (dρµ)eA
30
+ ∥µ∥2
31
+ ,
32
+ 0 � µ ∈ Vn, A ∈ iu(n),
33
+ where (·, ·) is an Ad(U(n))-invariant real inner product on iu(n), and ρµ : GL(n) → R is defined by
34
+ ρµ(g) = ⟨g.µ, g.µ⟩. The function m is the moment map from symplectic geometry, corresponding to the
35
+ Hamiltonian action U(n) of Vn on the symplectic manifold PVn (see [4, 12]). In this paper, we study the
36
+ critical points of the functional Fn = ∥m∥2 : PVn → R, with an emphasis on the critical points that lie in
37
+ the projectivization of the algebraic variety of all n-dimensional associative algebras An.
38
+ 2010 Mathematics Subject Classification. 14L30, 17B30, 53D20.
39
+ Key words and phrases. Moment map; Variety of associative algebras; Critical point.
40
+ This work is supported by NSFC (Nos. 11701300, 11626134) and K.C. Wong Magna Fund in Ningbo University.
41
+ 1
42
+
43
+ 2
44
+ HUI ZHANG AND ZAILI YAN
45
+ The paper is organized as follows: In Sect. 2, we recall some basic concepts and results of complex
46
+ associative algebras.
47
+ In Sect. 3, we first give the explicit expression of the moment map m : PVn → iu(n) in terms of Mµ,
48
+ that is, m([µ]) = Mµ
49
+ ∥µ∥2 for any [µ] ∈ PVn. Then we show that [µ] ∈ PVn is a critical point of Fn if and only
50
+ if Mµ = cµI + Dµ for some cµ ∈ R and Dµ ∈ Der(µ) (Thm. 3.3).
51
+ In Sect. 4, we first show that any algebra µ ∈ Vn admits a Nikolayevsky derivation φµ which is unique
52
+ up to automorphism, the eigenvalues of φµ are necessarily rational, and moreover, φµ = − 1
53
+ cµ Dµ if [µ]
54
+ is a critical point of Fn (Thm. 4.1). Then we study the extremal points of Fn : An → R, proving that
55
+ the minimum value is attained at semisimple associative algebras (Thm. 4.6), and the maximum value at
56
+ the direct sum of a two-dimensional commutative associative algebra with the trivial algebra (Thm. 4.9).
57
+ In the context of Lie algebras ([7]), Lauret proved that any µ for which there exists [λ] ∈ GL(n).[µ]
58
+ such that all eigenvalues of Mλ are negative, must be semisimple, and we prove that this result also
59
+ holds for associative algebras (Remark 4.7). Besides, the structure for an arbitrary critical point [µ] of
60
+ Fn : An → R is discussed (Thm. 4.10 and Thm. 4.12).
61
+ In Sect. 5, we classify the critical points of Fn : An → R for n = 2, 3. It shows that every two-
62
+ dimensional associative algebra is isomorphic to a critical point of F2; and there exists only one three-
63
+ dimensional associative algebra which is not isomorphic to any critical point of F3. Finally, based on the
64
+ discussion in previous sections, we collect some natural and interesting questions.
65
+ 2. Preliminaries
66
+ In this section, we recall some basic definitions and results of associative algebras. The ambient field
67
+ is always assumed to be the complex number field C unless otherwise stated.
68
+ Definition 2.1. A vector space A over C with a bilinear operation A × A → A, denoted by (x, y) �→ xy,
69
+ is called an associative algebra, if
70
+ x(yz) = (xy)z
71
+ for all x, y, z ∈ A.
72
+ A derivation of an associative algebra A is a linear transformation D : A → A satisfying
73
+ D(xy) = (Dx)y + x(Dy),
74
+ for x, y ∈ A. It is easy to see that the set of all derivations of A is a Lie algebra, which is denoted by
75
+ Der(A). A vector subspace I of A is called an ideal if AI, IA ⊂ I.
76
+
77
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
78
+ 3
79
+ Definition 2.2. Let A be an associative algebra. The center of A is defined by C(A) = {x ∈ A : xy =
80
+ yx, ∀y ∈ A}. The annihilator of A is defined by ann(A) = {x ∈ A : xy = yx = 0, ∀y ∈ A}.
81
+ Clearly, C(A) is a subalgebra of A, and ann(A) is an ideal of A.
82
+ Definition 2.3. Let I be an ideal of an associative algebra. Then I is called nilpotent, if Ik = 0 for some
83
+ integer k ≥ 1, where Ik = I· · ·I· · ·I
84
+ ����������
85
+ k
86
+ .
87
+ If I, J are any two nilpotent ideals of an associative algebra A, then I + J is also a nilpotent ideal. So
88
+ the maximum nilpotent ideal of A is unique, which is called the radical and denoted by N(A).
89
+ Remark 2.4. Note that N(A) coincides with the Jacobson radical of A since A is an associative algebra
90
+ over C. Moreover, N(A) = {x ∈ A : xy, yx are nilpotent elements for any y ∈ A}.
91
+ Definition 2.5. Let A be an associative algebra. If A has no ideals except itself and 0, we call A simple.
92
+ Denote by Mn(C) the set of all n × n complex square matrices, which is clearly an associative algebra
93
+ with respect to the usual matrix addition and multiplication. In fact, Mn(C) is a simple associative algebra
94
+ for any n ≥ 1. Moreover, it follows from Wedderburn-Artin theorem that any finite-dimensional simple
95
+ associative algebra over C is isomorphic to Mn(C) for some integer n ≥ 1 ([15]).
96
+ An associative algebra A is called semisimple if its radical N(A) is zero. The following theorem is
97
+ well known.
98
+ Theorem 2.6 ([15]). An associative algebra over C is semisimple if and only if it is a direct sum of simple
99
+ ideals. That is, a semisimple associative algebra is isomorphic to Mn1(C) × Mn2(C) × · · · × Mns(C) for
100
+ some positive integers n1, n2, · · · , ns.
101
+ 3. The moment map for complex algebras
102
+ Let Cn be the n-dimensional complex vector space and Vn = ⊗2(Cn)∗ ⊗ Cn be the space of all complex
103
+ n-dimensional algebras. The natural action of GL(n) = GL(Cn) on Vn is given by
104
+ g.µ(X, Y) = gµ(g−1X, g−1Y),
105
+ g ∈ GL(n), X, Y ∈ Cn.
106
+ (3.1)
107
+ Clearly, GL(n).µ is precisely the isomorphism class of µ. Note that
108
+ lim
109
+ t→∞ gt.µ = 0,
110
+ gt = tI ⊂ GL(n), t > 0,
111
+ we see that 0 lies in the boundary of the orbit GL(n).µ for each µ ∈ Vn. By differentiating (3.1), we obtain
112
+ the natural action gl(n) on Vn, i.e.,
113
+ A.µ(X, Y) = Aµ(X, Y) − µ(AX, Y) − µ(X, AY),
114
+ A ∈ gl(n), µ ∈ Vn.
115
+ (3.2)
116
+
117
+ 4
118
+ HUI ZHANG AND ZAILI YAN
119
+ It follows that A.µ = 0 if and only if A ∈ Der(µ), where Der(µ) denotes the derivation algebra of µ.
120
+ Note that the usual Hermitian inner product on Cn gives an U(n)-invariant Hermitian inner product on
121
+ Vn as follows
122
+ ⟨µ, λ⟩ =
123
+
124
+ i, j,k
125
+ ⟨µ(Xi, X j), Xk⟩⟨λ(Xi, X j), Xk⟩,
126
+ µ, λ ∈ Vn,
127
+ (3.3)
128
+ where {X1, X2, · · · , Xn} is an arbitrary orthonormal basis of Cn. Let u(n) denote the Lie algebra of U(n),
129
+ then it is easy to see that gl(n) = u(n) + iu(n) decomposes into skew-Hermitian and Hermitian transfor-
130
+ mations of Vn, respectively. Moreover, there is an Ad(U(n))-invariant Hermitian inner product on gl(n)
131
+ given by
132
+ (A, B) = tr AB∗, A, B ∈ gl(n).
133
+ (3.4)
134
+ The moment map from symplectic geometry, corresponding to the Hamiltonian action of U(n) on the
135
+ symplectic manifold PVn, is defined as follows
136
+ m : PVn → iu(n),
137
+ (m([µ]), A) = (dρµ)eA
138
+ ∥µ∥2
139
+ ,
140
+ 0 � µ ∈ Vn, A ∈ iu(n),
141
+ (3.5)
142
+ where ρµ : GL(n) → R is given by ρµ(g) = ⟨g.µ, g.µ⟩. Clearly, (dρµ)eA = ⟨A.µ, µ⟩ + ⟨µ, A.µ⟩ = 2⟨A.µ, µ⟩
143
+ for any A ∈ iu(n). The square norm of the moment map is denoted by
144
+ Fn : PVn → R,
145
+ (3.6)
146
+ where Fn([µ]) = ∥m([µ])∥2 = (m([µ]), m([µ])) for any [µ] ∈ PVn.
147
+ In order to express the moment map m explicitly, we define Mµ ∈ iu(n) as follows
148
+ Mµ = 2
149
+
150
+ i
151
+
152
+ Xi(Lµ
153
+ Xi)∗ − 2
154
+
155
+ i
156
+ (Lµ
157
+ Xi)∗Lµ
158
+ Xi − 2
159
+
160
+ i
161
+ (Rµ
162
+ Xi)∗Rµ
163
+ Xi,
164
+ (3.7)
165
+ where the left and right multiplication Lµ
166
+ X, Rµ
167
+ X : Cn → Cn by X of the algebra µ, are given by Lµ
168
+ X(Y) =
169
+ µ(X, Y) and Rµ
170
+ X(Y) = µ(Y, X) for all Y ∈ Cn, respectively. It is not hard to prove that
171
+ ⟨MµX, Y⟩ =2
172
+
173
+ i, j
174
+ ⟨µ(Xi, X j), X⟩⟨µ(Xi, X j), Y⟩ − 2
175
+
176
+ i, j
177
+ ⟨µ(Xi, X), X j⟩⟨µ(Xi, Y), X j⟩
178
+ − 2
179
+
180
+ i, j
181
+ ⟨µ(X, Xi), X j⟩⟨µ(Y, Xi), X j⟩
182
+ (3.8)
183
+ for X, Y ∈ Cn. Note that if the algebra µ is commutative or anticommutative, then the second and third
184
+ term of (3.8) are the same, and in this case, Mµ coincides with [7].
185
+ Lemma 3.1. For any µ ∈ Vn, we have (Mµ, A) = 2⟨µ, A.µ⟩, ∀A ∈ gl(n) = u(n) + iu(n). In particular,
186
+ m([µ]) = Mµ
187
+ ∥µ∥2 for any 0 � µ ∈ Vn
188
+
189
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
190
+ 5
191
+ Proof. For any A ∈ gl(n), we have (A, Mµ) = tr AM∗
192
+ µ = tr AMµ = tr MµA, and
193
+ tr MµA = 2 tr
194
+
195
+ i
196
+
197
+ Xi(Lµ
198
+ Xi)∗A
199
+ ��������������������������������������
200
+ I
201
+ − 2 tr
202
+
203
+ i
204
+ ((Lµ
205
+ Xi)∗Lµ
206
+ Xi + (Rµ
207
+ Xi)∗Rµ
208
+ Xi)A
209
+ ��������������������������������������������������������������������������
210
+ II
211
+ =: I − II.
212
+ Note that
213
+ I =2
214
+
215
+ i
216
+ tr Lµ
217
+ Xi(Lµ
218
+ Xi)∗A
219
+ =2
220
+
221
+ i
222
+ tr(Lµ
223
+ Xi)∗ALµ
224
+ Xi
225
+ =2
226
+
227
+ i, j
228
+ ⟨(Lµ
229
+ Xi)∗ALµ
230
+ Xi(X j), X j⟩
231
+ =2
232
+
233
+ i, j
234
+ ⟨Aµ(Xi, X j), µ(Xi, X j)⟩,
235
+ and
236
+ II =2 tr
237
+
238
+ i
239
+ ((Lµ
240
+ Xi)∗Lµ
241
+ Xi + (Rµ
242
+ Xi)∗Rµ
243
+ Xi)A
244
+ =2
245
+
246
+ i, j
247
+ ⟨((Lµ
248
+ Xi)∗Lµ
249
+ Xi + (Rµ
250
+ Xi)∗Rµ
251
+ Xi)AX j, X j⟩
252
+ =2
253
+
254
+ i, j
255
+ ⟨µ(Xi, AX j), µ(Xi, X j)⟩ − 2
256
+
257
+ i, j
258
+ ⟨µ(AX j, Xi), µ(X j, Xi)⟩
259
+ =2
260
+
261
+ i, j
262
+ ⟨µ(AXi, X j) + µ(Xi, AX j), µ(Xi, X j)⟩.
263
+ By (3.2), it follows that (A, Mµ) = tr MµA = 2⟨A.µ, µ⟩, so (Mµ, A) = 2⟨µ, A.µ⟩ for any A ∈ gl(n). This
264
+ proves the first statement. For A ∈ iu(n), we have ⟨A.µ, µ⟩ = ⟨µ, A.µ⟩. By (3.5), we conclude that
265
+ m([µ]) = Mµ
266
+ ∥µ∥2 for any 0 � µ ∈ Vn. This completes proof Lemma 3.1
267
+
268
+ Corollary 3.2. For any µ ∈ Vn, then
269
+ (i) tr MµD = 0 for any D ∈ Der(µ);
270
+ (ii) tr Mµ[A, A∗] ≥ 0 for any A ∈ Der(µ), and equality holds if and only if A∗ ∈ Der(µ).
271
+ Proof. For (i), it follows from Lemma 3.1 that tr MµD = 2⟨D.µ, µ⟩. For (ii), it follows from that tr Mµ[A, A∗] =
272
+ 2⟨[A, A∗].µ, µ⟩ = 2⟨A∗.µ, A∗.µ⟩ ≥ 0, ∀A ∈ Der(µ), and the fact A∗.µ = 0 if and only if A∗ ∈ Der(µ).
273
+
274
+ Theorem 3.3. The moment map m : PVn → iu(n), the functional square norm of the moment map
275
+ Fn = ∥m∥2 : PVn → R and the gradient of Fn are, respectively, given by
276
+ Fn([µ]) =
277
+ tr M2
278
+ µ
279
+ ∥µ∥4 ,
280
+ grad(Fn)[µ] = 8π∗(Mµ).µ
281
+ ∥µ∥4
282
+ ,
283
+ [µ] ∈ PVn,
284
+ (3.9)
285
+
286
+ 6
287
+ HUI ZHANG AND ZAILI YAN
288
+ where π∗ denotes the derivative of π : Vn\{0} → PVn, the canonical projection. Moreover, the following
289
+ statements are equivalent:
290
+ (i) [µ] ∈ PVn is a critical point of Fn.
291
+ (ii) [µ] ∈ PVn is a critical point of Fn|GL(n).[µ].
292
+ (iii) Mµ = cµI + Dµ for some cµ ∈ R and Dµ ∈ Der(µ).
293
+ Proof. By (3.6) and Lemma 3.1, we have Fn([µ]) =
294
+ tr M2
295
+ µ
296
+ ∥µ∥4 for any [µ] ∈ PVn. To prove the second one, we
297
+ only need to compute the gradient of Fn : Vn \ {0} → R, Fn(µ) =
298
+ tr M2
299
+ µ
300
+ ∥µ∥4 , and then to project it via π∗. If
301
+ µ, λ ∈ Vn with µ � 0, then
302
+ Re⟨grad(Fn)µ, λ⟩ = d
303
+ dt
304
+ �����t=0
305
+ Fn(µ + tλ) = d
306
+ dt
307
+ �����t=0
308
+ 1
309
+ ∥µ + tλ∥4 (Mµ+tλ, Mµ+tλ)
310
+ = − 4 Re⟨Fn(µ)
311
+ ∥µ∥2 µ, λ⟩ +
312
+ 2
313
+ ∥µ∥4 ( d
314
+ dt
315
+ �����t=0
316
+ Mµ+tλ, Mµ)
317
+ We claim that ( d
318
+ dt
319
+ ���t=0 Mµ+tλ, A) = 4 Re⟨A.µ, λ⟩ for any A ∈ iu(n). Indeed, by Lemma 3.1, ( d
320
+ dt
321
+ ���t=0 Mµ+tλ, A) =
322
+ d
323
+ dt
324
+ ���t=0 (Mµ+tλ, A) = 2 d
325
+ dt
326
+ ���t=0 ⟨µ + tλ, A.(µ + tλ)⟩ = 2⟨λ, A.µ⟩ + 2⟨µ, A.λ⟩ = 4 Re⟨A.µ, λ⟩ for any A ∈ iu(n).
327
+ It follows that grad(Fn)µ = −4 Fn(µ)
328
+ ∥µ∥2 µ + 8(Mµ).µ
329
+ ∥µ∥4 , and consequentely
330
+ grad(Fn)[µ] = 8π∗(Mµ).µ
331
+ ∥µ∥4
332
+ .
333
+ Thus the first part of the theorem is proved, and the following is to prove the equivalence among the
334
+ statements (i), (ii) and (iii).
335
+ (i) ⇔ (ii) : The equivalence follows from that grad(Fn) is tangent to the GL(n)-orbits. Indeed
336
+ grad(Fn)[µ] = 8π∗(Mµ).µ
337
+ ∥µ∥4
338
+ =
339
+ 8
340
+ ∥µ∥4 π∗( d
341
+ dt
342
+ �����t=0
343
+ etMµ.µ) =
344
+ 8
345
+ ∥µ∥4
346
+ d
347
+ dt
348
+ �����t=0
349
+ etMµ.[µ] ∈ T[µ](GL(n).[µ]).
350
+ (iii) ⇒ (i) : By (3.2), we know that I.µ = −µ, and (Mµ).µ = (cµI + Dµ).µ = −cµµ. It follows that
351
+ grad(Fn)[µ] = 0.
352
+ (i) ⇒ (iii) : Since grad(Fn)[µ] = 0, then (Mµ).µ ∈ ker π∗µ = Cµ. So Mµ = cI + D for some c ∈ C and
353
+ D ∈ Der(µ). Clearly [D, D∗] = [Mµ − cI, Mµ − ¯cI] = 0, we conclude by Corollary 3.2 that D∗ is also a
354
+ derivation of µ. In particular, (c − ¯c)I = (D∗ − D) ∈ Der(µ), thus c = ¯c ∈ R.
355
+
356
+ Remark 3.4. Let [µ] be a critical point of Fn and [λ] be a critical point of Fm, then [µ ⊕ cλ] is a critical
357
+ point of Fn+m for a suitable c ∈ C. Indeed, assume that Mµ = cµI + Dµ for some cµ ∈ R, Dµ ∈ Der(µ),
358
+ and Mλ = cλI +Dλ for some cλ ∈ R, Dλ ∈ Der(λ). Noting that Mtλ = |t|2Mλ for any t ∈ C, we can choose
359
+ t0 such that cµ = |t0|2cλ, then it follows that [µ ⊕ t0λ] is a critical point of Fn+m.
360
+ In the frame of algebras, a remarkable result due to Ness can be stated as follows
361
+ Theorem 3.5 ([12]). If [µ] is a critical point of the functional Fn : PVn → R, then
362
+
363
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
364
+ 7
365
+ (i) Fn|GL(n).[µ] attains its minimum value at [µ].
366
+ (ii) [λ] ∈ GL(n).[µ] is a critical point of Fn if and only if [λ] ∈ U(n).[µ].
367
+ In fact, the above theorem implies that up to U(n)-orbit, GL(n).[µ] contains at most one critical point
368
+ for each [µ] ∈ PVn.
369
+ Lemma 3.6. Let [µ] ∈ PVn be a critical point of Fn with Mµ = cµI+Dµ for some cµ ∈ R and Dµ ∈ Der(µ).
370
+ Then we have
371
+ (i) cµ =
372
+ tr M2
373
+ µ
374
+ tr Mµ = − 1
375
+ 2
376
+ tr M2
377
+ µ
378
+ ∥µ∥2 < 0.
379
+ (ii) If tr Dµ � 0, then cµ = −
380
+ tr D2
381
+ µ
382
+ tr Dµ and tr Dµ > 0.
383
+ Proof. Since Mµ = cµI + Dµ, by Lemma 3.1 and Corollary 3.2 we have
384
+ tr Mµ = (Mµ, I) = 2⟨µ, I.µ⟩ = −2∥µ∥2 < 0,
385
+ tr M2
386
+ µ = tr Mµ(cµI + Dµ) = cµ tr Mµ.
387
+ So cµ =
388
+ tr M2
389
+ µ
390
+ tr Mµ = − 1
391
+ 2
392
+ tr M2
393
+ µ
394
+ ∥µ∥2 < 0. If tr Dµ � 0, then
395
+ 0 = tr MµDµ = cµ tr Dµ + tr D2
396
+ µ.
397
+ So cµ = −
398
+ tr D2
399
+ µ
400
+ tr Dµ and tr Dµ > 0.
401
+
402
+ Remark 3.7. In fact, tr Dµ = 0 if and only if Dµ = 0. Indeed, it follows from that 0 = tr MµDµ =
403
+ cµ tr Dµ + tr D2
404
+ µ and Dµ is Hermitian.
405
+ 4. The critical points of the variety of associative algebras
406
+ The space An of all n-dimensional associative algebras is an algebraic set since it is given by polyno-
407
+ mial conditions. Denote by An the projective algebraic variety obtained by projectivization of An . Note
408
+ that An is GL(n)-invariant, then by Theorem 3.3, the critical points of Fn : An → R are precisely the
409
+ critical points of Fn : PVn → R that lie in An.
410
+ 4.1. The Nikolayevsky derivation and the rationality. A derivation of φ of an algebra (µ, Cn) is called
411
+ a Nikolayevsky derivation, if it is semisimple with all eigenvalues real, and tr φψ = tr ψ for any ψ ∈
412
+ Der(µ). This notion is motivated by [14].
413
+ Theorem 4.1. Let (µ, Cn) be an arbitrary algebra. Then
414
+ (1) (µ, Cn) admits a Nikolayevsky derivation φµ.
415
+ (2) The Nikolayevsky derivation φµ is determined up to automorphism of µ.
416
+ (3) All eigenvalues of φµ are rational numbers.
417
+
418
+ 8
419
+ HUI ZHANG AND ZAILI YAN
420
+ If moreover, [µ] is a critical point of Fn : PVn → R with Mµ = cµI+Dµ for some cµ ∈ R and Dµ ∈ Der(µ),
421
+ then − 1
422
+ cµ Dµ is the Nikolayevsky derivation of µ.
423
+ Proof. (1) The complex Lie algebra Der(µ) is algebraic. Let Der(µ) = s ⊕ t ⊕ n be its Levi-Mal’cev
424
+ decomposition, where s is semisimple, t ⊕ n is the radical of Der(µ), n is the set of all nilpotent elements
425
+ in t ⊕ n (and is the nilradical of t ⊕ n), t is an abelian subalgebra consisting of semisimple elements, and
426
+ [s, t] = 0. Define the bilinear form B on Der(µ) by
427
+ B(ψ1, ψ2) := tr ψ1ψ2,
428
+ ∀ψ1, ψ2 ∈ Der(µ).
429
+ Then, in general, B is degenerate, and Ker B = n. Since s is semisimple, then B(s, t) = B([s, s], t) =
430
+ B(s, [s, t]) = 0. Clearly, B is nondegenerate on t. Since t is reductive, we have t = a + ia, where a consists
431
+ of semisimple elements with all eigenvalues real. It follows that there exists a unique element φ ∈ a such
432
+ that B(φ, ψ) = tr ψ for any ψ ∈ t. Thus tr φψ = tr ψ for any ψ ∈ Der(µ).
433
+ (2) The subalgebra s ⊕ t is a maximal fully reducible subalgebra of Der(µ). Since the maximal fully
434
+ reducible subalgebras of Der(µ) are conjugate by inner automorphism of Der(µ) (which corresponds to
435
+ an automorphism of µ), and then the center t of s ⊕ t, is defined uniquely, up to automorphism. So the
436
+ Nikolayevsky derivation is determined up to automorphism of µ.
437
+ (3) The case φµ = 0 is trivial. In the following, we assume that φµ is nonzero. Note that φµ is
438
+ simisimple with all eigenvalues real, we have the following decomposition
439
+ Cn = l1 ⊕ l2 ⊕ · · · ⊕ lr,
440
+ where li = {X ∈ Cn|φµX = ciX} are eigenspaces of φµ corresponding to eigenvalues c1 < c2 < · · · < cr ∈
441
+ R, respectively. Set di = dim li ∈ N, 1 ≤ i ≤ r. Since φµ is a derivation, we have the following relations
442
+ µ(li, lj) ⊂ lk
443
+ if ci + cj = ck,
444
+ for all 1 ≤ i, j, k ≤ r. Conversely, if we define a linear transformation ψ : Cn → Cn by ψ|li = aiIdli,
445
+ where a1, a2, · · · , ar ∈ R satisfy ai + aj = ak for all 1 ≤ i, j, k ≤ r such that ci + cj = ck, then ψ is
446
+ a derivation of µ. Clearly, all such derivations form a real vector space, which can be identified with
447
+ W := {(w1, w2, · · · , wr) ∈ Rr|wi + w j = wk if ci + cj = ck}. We endow Rr with the usual inner product, i.e.
448
+ ⟨x, y⟩ =
449
+
450
+ i
451
+ xiyi,
452
+ (4.1)
453
+ for any x = (x1, x2, · · · , xr), y = (y1, y2, · · · , yr) ∈ Rr.
454
+ For any derivation ψ ∈ W, we have
455
+ tr(φµ − I)ψ = tr φµψ − tr ψ = 0.
456
+
457
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
458
+ 9
459
+ Then we see that (d1(c1 − 1), d2(c2 − 1), · · · , dr(cr − 1)) ⊥ W relative to (4.1). Put F := W⊥, then by
460
+ definition we have
461
+ F = span1≤i, j,k≤r{ei + ej − ek : ci + cj = ck},
462
+ where ei belongs to Rr having 1 in the i-th position and 0 elsewhere. Let {ei1 +ej1 −ek1, · · · , eis +ejs −eks}
463
+ be a basis of F, then
464
+ (d1(c1 − 1), d2(c2 − 1), · · · , dr(cr − 1)) =
465
+ s
466
+
467
+ p=1
468
+ bp(eip + ejp − ekp),
469
+ (4.2)
470
+ for some b1, b2, · · · , bs ∈ R. Put
471
+ E =
472
+ 
473
+ ei1 + ej1 − ek1
474
+ ei2 + ej2 − ek2
475
+ ...
476
+ eis + ejs − eks
477
+ 
478
+ ∈ Zs×r,
479
+ then EET ∈ GL(s, Z), and (EET)−1 ∈ GL(s, Q). By (4.2) and the definition of E, we have
480
+ 
481
+ d1(c1 − 1)
482
+ d2(c2 − 1)
483
+ ...
484
+ dr(cr − 1)
485
+ 
486
+ r×1
487
+ = ET
488
+ 
489
+ b1
490
+ b2
491
+ ...
492
+ bs
493
+ 
494
+ s×1
495
+ , E
496
+ 
497
+ c1
498
+ c2
499
+ ...
500
+ cr
501
+ 
502
+ r×1
503
+ =
504
+ 
505
+ 0
506
+ 0
507
+ ...
508
+ 0
509
+ 
510
+ s×1
511
+ ,
512
+ E
513
+ 
514
+ 1
515
+ 1
516
+ ...
517
+ 1
518
+ 
519
+ r×1
520
+ =
521
+ 
522
+ 1
523
+ 1
524
+ ...
525
+ 1
526
+ 
527
+ s×1
528
+ .
529
+ By the left multiplication of E on (4.2), we have
530
+ 
531
+ 0
532
+ 0
533
+ ...
534
+ 0
535
+ 
536
+ s×1
537
+
538
+ 
539
+ 1
540
+ 1
541
+ ...
542
+ 1
543
+ 
544
+ s×1
545
+ = ED−1ET
546
+ 
547
+ b1
548
+ b2
549
+ ...
550
+ bs
551
+ 
552
+ s×1
553
+ ,
554
+ where D = diag(d1, d2, · · · , dr). It is easy to see that (ED−1ET) ∈ GL(s, Q). Consequently
555
+ D
556
+ 
557
+ c1 − 1
558
+ c2 − 1
559
+ ...
560
+ cr − 1
561
+ 
562
+ r×1
563
+ = −ET(ED−1ET)−1
564
+ 
565
+ 1
566
+ 1
567
+ ...
568
+ 1
569
+ 
570
+ s×1
571
+ ,
572
+ and
573
+ 
574
+ c1
575
+ c2
576
+ ...
577
+ cr
578
+ 
579
+ r×1
580
+ =
581
+ 
582
+ 1
583
+ 1
584
+ ...
585
+ 1
586
+ 
587
+ r×1
588
+ − D−1ET(ED−1ET)−1
589
+ 
590
+ 1
591
+ 1
592
+ ...
593
+ 1
594
+ 
595
+ s×1
596
+ ∈ Qr.
597
+ So all eigenvalues of φµ are rational.
598
+ For the last statement, by Corollary 3.2 we know that 0 = tr Mµψ = cµ tr ψ+tr Dµψ for any ψ ∈ Der(µ).
599
+ Since Dµ is Hermitian, we conclude that − 1
600
+ cµ Dµ is the Nikolayevsky derivation of µ.
601
+
602
+ By Theorem 4.1, it is easy to obtain the following theorem.
603
+
604
+ 10
605
+ HUI ZHANG AND ZAILI YAN
606
+ Theorem 4.2. Let [µ] ∈ PVn be a critical point of Fn : PVn → R with Mµ = cµI + Dµ for some cµ ∈ R
607
+ and Dµ ∈ Der(µ). Then there exists a constant c > 0 such that the eigenvalues of cDµ are integers prime
608
+ to each other, say k1 < k2 < · · · < kr ∈ Z with multiplicities d1, d2, · · · , dr ∈ N.
609
+ Definition 4.3. The data set (k1 < k2 < · · · < kr; d1, d2, · · · , dr) in Theorem 4.2 is called the type of the
610
+ critical point [µ].
611
+ Proposition 4.4. Let [µ] ∈ PVn be a critical point of Fn with type α = (k1 < k2 < · · · < kr; d1, d2, · · · , dr).
612
+ Then we have
613
+ (i) If α = (0; n), then Fn([µ]) = 4
614
+ n.
615
+ (ii) If α � (0; n), then Fn([µ]) = 4
616
+
617
+ n − (k1d1+k2d2+···+krdr)2
618
+ k2
619
+ 1d1+k2
620
+ 2d2+···+k2r dr
621
+ �−1
622
+ .
623
+ Proof. We suppose that Mµ = cµI + Dµ, ∥µ∥ = 1. Since tr Mµ = −2⟨µ, µ⟩ = −2, then
624
+ tr M2
625
+ µ = tr Mµ(cµI + Dµ) = cµ tr Mµ = −2cµ,
626
+ and Fn([µ]) = tr Mµ2
627
+ ∥µ∥4 = tr Mµ2 = −2cµ.
628
+ For (i), we have Dµ = 0, so Mµ = cµI and cµn = tr Mµ = −2. Thus cµ = − 2
629
+ n. Fn([µ]) = −2cµ = 4
630
+ n.
631
+ For (ii), we have Dµ � 0, and cµ = −
632
+ tr D2
633
+ µ
634
+ tr Dµ by Lemma 3.6 and Remark 3.7. Note that
635
+ Fn([µ]) = tr Mµ2 = tr(cµI + Dµ)2 = c2
636
+ µn + cµ tr Dµ = 1
637
+ 4Fn([µ])2n − 1
638
+ 2Fn([µ]) tr Dµ,
639
+ so we have
640
+ 1
641
+ Fn([µ]) = 1
642
+ 4n −
643
+ 1
644
+ 2Fn([µ]) tr(Dµ) = 1
645
+ 4n + 1
646
+ 4cµ
647
+ tr Dµ = 1
648
+ 4
649
+ n − (tr Dµ)2
650
+ tr D2µ
651
+  .
652
+ It follows that Fn([µ]) = 4
653
+
654
+ n − (k1d1+k2d2+···+krdr)2
655
+ k2
656
+ 1d1+k2
657
+ 2d2+···+k2r dr
658
+ �−1
659
+ .
660
+
661
+ 4.2. The minima of Fn : An → R.
662
+ Lemma 4.5. Assume [µ] ∈ PVn, then [µ] is a critical point of Fn : PVn → R with type (0; n) if and only
663
+ if Fn([µ]) = 4
664
+ n. Moreover, 4
665
+ n is the minimum value of Fn : PVn → R.
666
+ Proof. For any 0 � µ ∈ Vn, we use x1, x2, · · · , xn ∈ R denote the eigenvalues of Mµ. Note that tr Mµ =
667
+ −2∥µ∥2, then we have
668
+ Fn([µ]) = tr Mµ2
669
+ ∥µ∥4
670
+ = 4 tr Mµ2
671
+ (tr Mµ)2 = 4
672
+ (x2
673
+ 1 + x2
674
+ 2 + · · · + x2
675
+ n)
676
+ (x1 + x2 + · · · + xn)2 .
677
+ It is easy to see that Fn([µ]) ≥ 4
678
+ n with equality holds if and only if x1 = x2 = · · · = xn. So [µ] is a critical
679
+ point of Fn : PVn → R with type (0; n) if only if Mµ is a constant multiple of I, if and only Fn attains its
680
+ minimum value 4
681
+ n at [µ].
682
+
683
+
684
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
685
+ 11
686
+ Theorem 4.6. The functional Fn : An → R attains its minimum value at a point [λ] ∈ GL(n).[µ] if and
687
+ only if µ is a semisimple associative algebra. In such a case, Fn([λ]) = 4
688
+ n.
689
+ Proof. Consider the simple associative algebra Mm(C) for an integer m > 0. We endow Mm(C) with the
690
+ following Hermitian inner product
691
+ ⟨A, B⟩ := tr AB∗, A, B ∈ Mm(C).
692
+ (4.3)
693
+ Then {Eij : 1 ≤ i, j ≤ m} is an orthonormal basis, where Eij denote the matrices having 1 in the (i, j)-
694
+ position and 0 elsewhere. Set ν := (Mm(C), ⟨·, ·⟩). Clearly
695
+ (Lν
696
+ A)∗ = LA∗,
697
+ (Rν
698
+ A)∗ = RA∗
699
+ for any A ∈ Mm(C). Thus by (3.7), we have
700
+ Mν = 2
701
+
702
+ ij
703
+
704
+ Eij(Lν
705
+ Eij)∗ − 2
706
+
707
+ ij
708
+ (Lν
709
+ Eij)∗Lν
710
+ Eij − 2
711
+
712
+ ij
713
+ (Rν
714
+ Eij)∗Rν
715
+ Eij
716
+ = 2
717
+
718
+ ij
719
+
720
+ EijLν
721
+ Eji − 2
722
+
723
+ ij
724
+
725
+ EjiLν
726
+ Eij − 2
727
+
728
+ ij
729
+
730
+ EjiRν
731
+ Eij
732
+ = 2
733
+
734
+ ij
735
+
736
+ EijEji − 2
737
+
738
+ ij
739
+
740
+ EjiEij − 2
741
+
742
+ ij
743
+
744
+ EijEji
745
+ = 2m
746
+
747
+ i
748
+
749
+ Eii − 2m
750
+
751
+ i
752
+
753
+ Eii − 2m
754
+
755
+ i
756
+
757
+ Eii
758
+ = 2mLν
759
+ I − 2mLν
760
+ I − 2mRν
761
+ I
762
+ = 2mIm2 − 2mIm2 − 2mIm2
763
+ = −2mIm2.
764
+ So [ν] is a critical point of type (0; m2). Since µ is a complex semisimple associative algebra, by Theo-
765
+ rem 2.6, µ is isomorphic to Mn1(C) × Mn2(C) × · · · × Mns(C) for some positive integers n1, n2, · · · , ns. It
766
+ follows from Remark 3.4 that there exists a point [λ] ∈ GL(n).[µ] such that [λ] is a critical point of type
767
+ (0; n). So the functional Fn : An → R attains its minimum value at [λ], and Fn([λ]) = 4
768
+ n by Lemma 4.5.
769
+ Conversely, assume that Fn : An → R attains its minimum value at a point [λ] ∈ GL(n).[µ]. The first
770
+ part of the proof implies that Mλ = cλI with cλ < 0. To prove µ is semisimple, it suffices to show that
771
+ L = (λ, Cn) is semisimple. Consider the following orthogonal decompositions: (i) L = H ⊕ N, where
772
+ N is the radical of λ; (ii) N = V ⊕ Z, where Z = {A ∈ N : λ(A, N) = λ(N, A) = 0} is the annihilator
773
+ of N. Clearly, Z is an ideal of L. We have L = H ⊕ V ⊕ Z. Suppose that Z � 0. Let {Hi}, {Vi}, {Zi} be
774
+ an orthonormal basis of H, V, and Z, respectively. Put {Xi} = {Hi} ∪ {Vi} ∪ {Zi}. For any 0 � Z ∈ Z, by
775
+
776
+ 12
777
+ HUI ZHANG AND ZAILI YAN
778
+ hypothesis we have
779
+ 0 > ⟨MλZ, Z⟩ =2
780
+
781
+ ij
782
+ |⟨λ(Xi, X j), Z⟩|2 − 2
783
+
784
+ ij
785
+ |⟨λ(Z, Xi), X j⟩|2 − 2
786
+
787
+ ij
788
+ |⟨λ(Xi, Z), X j⟩|2
789
+ =2
790
+
791
+ ij
792
+
793
+ |⟨λ(Zi, H j), Z⟩|2 + |⟨λ(Hi, Z j), Z⟩|2�
794
+ + α(Z)
795
+ − 2
796
+
797
+ ij
798
+ |⟨λ(Z, Hi), Z j⟩|2 − 2
799
+
800
+ ij
801
+ |⟨λ(Hi, Z), Z j⟩|2,
802
+ where α(Z) = 2 �
803
+ ij |⟨λ(Yi, Y j), Z⟩|2 ≥ 0, {Yi} = {Hi} ∪ {Vi}. This implies
804
+ 0 >
805
+
806
+ k
807
+ ⟨MλZk, Zk⟩ =
808
+
809
+ k
810
+ α(Zk) ≥ 0,
811
+ which is a contradiction. So Z = 0, and consequently, N = 0. Therefore L is a semisimple associative
812
+ algebra.
813
+ This completes the proof of theorem.
814
+
815
+ Remark 4.7. In fact, by the proof of Theorem 4.6, we know that if [µ] ∈ An for which there exists
816
+ [λ] ∈ GL(n).[µ] such that Mλ is negative definite, then µ is a semisimple associative algebra.
817
+ 4.3. The maxima of Fn : An → R. We say that an algebra λ degenerates to µ, write as λ → µ if
818
+ µ ∈ GL(n).λ, the closure of GL(n).λ with respect to the usual topology of Vn. The degeneration λ → µ
819
+ is called direct degeneration if there are no nontrivial chains: λ → ν → µ. The degeneration level of an
820
+ algebra is the maximum length of chain of direct degenerations.
821
+ Theorem 4.8 ([3]). An n-dimensional associative algebra is of degeneration level one if and only if it is
822
+ isomorphic to one of the following
823
+ (1) µl: µl(X1, Xi) = Xi, i = 1, · · · , n;
824
+ (2) µr: µr(Xi, X1) = Xi, i = 1, · · · , n;
825
+ (3) µca: µs(X1, X1) = X2,
826
+ where {X1, · · · , Xn} is a basis.
827
+ Theorem 4.9. The functional Fn : An → R attains its maximal value at a point [µ] ∈ Ln, n ≥ 3 if and
828
+ only if µ is isomorphic to the commutative associative algebra µca. In such a case, Fn([µ]) = 20.
829
+ Proof. Assume that Fn : An → R attains its maximal value at a point [µ] ∈ An, n ≥ 3. By Theorem 3.3,
830
+ we know that [µ] is also a critical of Fn : PVn → R. Then it follows Theorem 3.5 that Fn|GL(n).[µ] also
831
+ attains its minimum value at a point [µ] , consequently Fn|GL.[µ] is a constant, so
832
+ GL(n).[µ] = U(n).[µ]
833
+ (4.4)
834
+
835
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
836
+ 13
837
+ The relation (4.4) implies that the only non-trivial degeneration of µ is 0 ([8, Theorem 5.1] ), conse-
838
+ quently the degeneration level of µ is 1.
839
+ It is easy to see that the critical points [µl], [µr] are both of type (0 < 1; 1, n − 1), and [µca] is of type
840
+ (3 < 5 < 6; 1, n − 2, 1). By Proposition 4.4, we know
841
+ Fn([µca]) = 20 > 4 = Fn([µl]) = Fn([µr]).
842
+ So the theorem is proved.
843
+
844
+ 4.4. The structure for the critical points of Fn : An → R. In the following, we discuss the structure
845
+ for an arbitrary critical points of Fn : An → R by Theorem 4.2.
846
+ Theorem 4.10. Let [µ] be a critical point of Fn : An → R with Mµ = cµI + Dµ of type (k1 < · · · <
847
+ kr; d1, d2, · · · , dr), where cµ ∈ R and Dµ ∈ Der(µ). Consider the orthogonal decomposition
848
+ Cn = A− ⊕ A0 ⊕ A+,
849
+ where A−, A0 and A+ denote the direct sum of eigenspaces of Dµ with eigenvalues smaller than zero,
850
+ equal to zero and larger than zero, respectively. Then the following conditions hold:
851
+ (i) ann(µ) ⊂ A+, where ann(µ) is the annihilator of µ
852
+ (ii) A+ ⊂ N(µ), where N(µ) is the radical of µ.
853
+ (iii) A− ⊂ (C(µ) ∩ N(µ)) \ ann(µ), where C(µ) is the center of µ.
854
+ (iv) (Lµ
855
+ A − Rµ
856
+ A)∗ ∈ Der(µ) for any A ∈ A0. So the induced Lie algebra of A0 is reductive.
857
+ Proof. For (i), assume that X ∈ ann(µ) and DµX = cX, then by (3.8)
858
+ ⟨MµX, X⟩ = 2
859
+
860
+ i, j
861
+ |⟨µ(Xi, X j), X⟩|2 ≥ 0.
862
+ Since Mµ = cµI + Dµ, then 0 ≤ ⟨MµX, X⟩ = (cµ + c)⟨X, X⟩. It follows from Lemma 3.6 that c ≥ −cµ > 0.
863
+ This proves (i).
864
+ For (ii), it is an immediate consequence of (iii) by Remark 2.4. Now, we prove (iii) as follows. Assume
865
+ that DµX = cX for some c < 0. Since cLµ
866
+ X = [Dµ, Lµ
867
+ X], cRµ
868
+ X = [Dµ, Rµ
869
+ X], then
870
+ c tr(Lµ
871
+ X − Rµ
872
+ X)(Lµ
873
+ X − Rµ
874
+ X)∗ = tr[Dµ, (Lµ
875
+ X − Rµ
876
+ X)](Lµ
877
+ X − Rµ
878
+ X)∗
879
+ = tr[Mµ, (Lµ
880
+ X − Rµ
881
+ X)](Lµ
882
+ X − Rµ
883
+ X)∗
884
+ = tr Mµ[(Lµ
885
+ X − Rµ
886
+ X), (Lµ
887
+ X − Rµ
888
+ X)∗].
889
+ Noting that (Lµ
890
+ X − Rµ
891
+ X) ∈ Der(µ), by Corollary 3.2 we have
892
+ c tr(Lµ
893
+ X − Rµ
894
+ X)(Lµ
895
+ X − Rµ
896
+ X)∗ ≥ 0.
897
+
898
+ 14
899
+ HUI ZHANG AND ZAILI YAN
900
+ It follows that (Lµ
901
+ X − Rµ
902
+ X) = 0 since c < 0. So X ∈ C(µ). By Remark 2.4, it is easy to see that X ∈ N(µ).
903
+ Using (i), we conclude A− ⊂ (C(µ) ∩ N(µ)) \ ann(µ). This proves (iii).
904
+ For (iv), we first note that
905
+ [Dµ, Lµ
906
+ A] = Lµ
907
+ DµA,
908
+ [Dµ, Rµ
909
+ A] = Rµ
910
+ DµA,
911
+ for any A ∈ A. If A ∈ A0, we have [Dµ, Lµ
912
+ A] = [Dµ, Rµ
913
+ A] = 0, and so
914
+ tr Mµ[(Lµ
915
+ A − Rµ
916
+ A), (Lµ
917
+ A − Rµ
918
+ A)∗] = tr(cµI + Dµ)[(Lµ
919
+ A − Rµ
920
+ A), (Lµ
921
+ A − Rµ
922
+ A)∗]
923
+ = tr Dµ[(Lµ
924
+ A − Rµ
925
+ A), (Lµ
926
+ A − Rµ
927
+ A)∗]
928
+ = tr[Dµ, (Lµ
929
+ A − Rµ
930
+ A)](Lµ
931
+ A − Rµ
932
+ A)∗
933
+ = 0.
934
+ By Corollary 3.2, it follows that (Lµ
935
+ A − Rµ
936
+ A)∗ ∈ Der(µ) since (Lµ
937
+ A − Rµ
938
+ A) ∈ Der(µ). This proves (iv).
939
+
940
+ In the sequel, we give a description of the critical points in terms of those which are nilpotent. Let [λ]
941
+ be a nilpotent critical point of Fm : Am → R. Define
942
+ L(λ) : = {Φ ∈ End(Cm) : Φ(λ(X, Y)) = λ(ΦX, Y)},
943
+ R(λ) : = {Ψ ∈ End(Cm) : Ψ(λ(X, Y)) = λ(X, ΨY)}.
944
+ Moreover, we set Γl = {Φ ∈ L(λ) : [Φ, Ψ] = 0, ∀Ψ ∈ R(λ)}, Γr = {Ψ ∈ R(λ) : [Φ, Ψ] = 0, ∀Φ ∈ L(λ)}, and
945
+ Γ(λ) : = {(Φ, Ψ) ∈ Γl × Γr : λ(·, Φ(·)) = λ(Ψ(·), ·)}.
946
+ For any (Φi, Ψi) ∈ Γ(λ), i = 1, 2, we define (Φ1, Ψ1)(Φ2, Ψ2) := (Φ1Φ2, Ψ2Ψ1). Then it follows that Γ(λ)
947
+ is an associative algebra.
948
+ Lemma 4.11. Assume that S ⊂ Γ(λ) is a subalgebra such that (Φ∗, Ψ∗) ∈ S for any (Φ, Ψ) ∈ S, then S
949
+ is a semisimple associative algebra.
950
+ Proof. Note that S is an associative algebra of matrices, which are closed under conjugate transpose.
951
+ Define an Hermitian inner product on S by
952
+ ⟨H1, H2⟩ := tr H1H∗
953
+ 2 = tr Φ1Φ∗
954
+ 2 + tr Ψ1Ψ∗
955
+ 2, ∀Hi = (Φi, Ψi) ∈ S, i = 1, 2.
956
+ Then it follows that ⟨HH1, H2⟩ = ⟨H1, H∗H2⟩, ⟨H1H, H2⟩ = ⟨H1, H2H∗⟩ for any H, H1, H2 ∈ S. Let I be
957
+ an ideal in S and I⊥ denote the orthogonal complement of I. Then it is easy to see that I⊥ is also an ideal
958
+ of S. Let S = R⊕N, where N is the radical of S and R = N⊥. It follows that R and N are both ideals of
959
+ S. Moreover, R is semisimple, and N is the annihilator of S (by considering the derived series). Since S
960
+ is an associative algebra of matrices which are closed under conjugate transpose, then HH∗ = 0 for any
961
+ H ∈ N, hence H = 0. So N = 0, and S is semisimple.
962
+
963
+
964
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
965
+ 15
966
+ Theorem 4.12. Let [λ] be a nilpotent critical point of Fm : Am → R with Mλ = cλI + Dλ of type
967
+ (k2 < · · · < kr; d2, · · · , dr), where cλ ∈ R and Dλ ∈ Der(λ). Assume that S ⊂ Γ(λ) is a subalgebra of
968
+ dimension d1 such that (Φ∗, Ψ∗) ∈ S, [Dλ, Φ] = [Dλ, Ψ] = 0 for any (Φ, Ψ) ∈ S. Consider the following
969
+ semidirect sum
970
+ µ = S ⋉ λ,
971
+ where
972
+ µ((Φ1, Ψ1) + X1, (Φ2, Ψ2) + X2) := (Φ1Φ2, Ψ2Ψ1) + Φ1(X2) + Ψ2(X1) + X1X2,
973
+ for any (Φ1, Ψ1), (Φ2, Ψ2) ∈ S, X1, X2 ∈ Cm. Then µ is an associative algebra. If we extend the Hermitian
974
+ inner product on Cm by setting
975
+ ⟨H, K⟩ = − 2
976
+
977
+ (tr LS
978
+ HLS
979
+ K∗ + tr HK∗), H, K ∈ S,
980
+ then [µ] is a critical point of type (0, k2 < · · · < kr; d1, d2, · · · , dr) for the functional Fn : An → R, where
981
+ n = d1 + m.
982
+ Proof. For any H = (Φ, Ψ) ∈ S, we have
983
+
984
+ H =
985
+
986
+ LS
987
+ H
988
+ 0
989
+ 0
990
+ Φ
991
+
992
+ ,
993
+
994
+ H =
995
+
996
+ RS
997
+ H
998
+ 0
999
+ 0
1000
+ Ψ
1001
+
1002
+ ,
1003
+ where Lµ
1004
+ H, Rµ
1005
+ H (resp. LS
1006
+ H, RS
1007
+ H) denote the left and right multiplication by H of the algebra µ (resp. S),
1008
+ respectively. By Lemma 4.11, we know that S is a semisimple associative algebra. Then it follows
1009
+ that there is an orthonormal basis {Hi = (Φi, Ψi)} ⊂ S such that Φi∗ = −Φi, Ψi∗ = −Ψi, and Lµ
1010
+ Hi, Rµ
1011
+ Hi
1012
+ are skew-Hermitian for each i. Let {Hi} ∪ {Xi} be an orthonormal basis of Cn = S ⊕ Cm. Then for any
1013
+ H = (Φ, Ψ) ∈ S and X ∈ Cm, we have
1014
+ ⟨MµX, H⟩ = −2
1015
+
1016
+ i, j
1017
+ ⟨µ(Xi, X), X j⟩⟨µ(Xi, H), X j⟩ − 2
1018
+
1019
+ i, j
1020
+ ⟨µ(X, Xi), X j⟩⟨µ(H, Xi), X j⟩
1021
+ = −2
1022
+
1023
+ i, j
1024
+ ⟨λ(Xi, X), X j⟩⟨Ψ(Xi), X j⟩ − 2
1025
+
1026
+ i, j
1027
+ ⟨λ(X, Xi), X j⟩⟨Φ(Xi), X j⟩
1028
+ = −2
1029
+
1030
+ i
1031
+ ⟨λ(Xi, X), Ψ(Xi)⟩ − 2
1032
+
1033
+ i
1034
+ ⟨λ(X, Xi), Φ(Xi)⟩
1035
+ = −2 tr Ψ∗Rλ
1036
+ X − 2 tr Φ∗Lλ
1037
+ X
1038
+ = −2 tr Rλ
1039
+ Ψ∗(X) − 2 tr Lλ
1040
+ Φ∗(X)
1041
+ = 0,
1042
+ where Lλ
1043
+ X, Rλ
1044
+ X denote the left and right multiplication by X of the algebra λ, respectively, and the last two
1045
+ equalities follow from that λ is nilpotent and (Φ∗, Ψ∗) ∈ S. Moreover, since Φi∗ = −Φi, Ψi∗ = −Ψi for
1046
+
1047
+ 16
1048
+ HUI ZHANG AND ZAILI YAN
1049
+ each i, then [Φi, Φi∗] = 0, [Ψi, Ψi∗] = 0. So by (3.8) we have
1050
+ ⟨MµX, Y⟩ = 2
1051
+
1052
+ i, j
1053
+ ⟨µ(Hi, X j), X⟩⟨µ(Hi, X j), Y⟩ + 2
1054
+
1055
+ i, j
1056
+ ⟨µ(Xi, H j), X⟩⟨µ(Xi, H j), Y⟩
1057
+ + 2
1058
+
1059
+ i, j
1060
+ ⟨µ(Xi, X j), X⟩⟨µ(Xi, X j), Y⟩ − 2
1061
+
1062
+ i, j
1063
+ ⟨µ(Hi, X), X j⟩⟨µ(Hi, Y), X j⟩
1064
+ − 2
1065
+
1066
+ i, j
1067
+ ⟨µ(Xi, X), X j⟩⟨µ(Xi, Y), X j⟩ − 2
1068
+
1069
+ i, j
1070
+ ⟨µ(X, Hi), X j⟩⟨µ(Y, Hi), X j⟩
1071
+ − 2
1072
+
1073
+ i, j
1074
+ ⟨µ(X, Xi), X j⟩⟨µ(Y, Xi), X j⟩
1075
+ = ⟨MλX, Y⟩ + 2
1076
+
1077
+ i
1078
+ ⟨[Φi, Φi∗](X, Y⟩ + 2
1079
+
1080
+ i
1081
+ ⟨[Ψi, Ψi∗](X), Y⟩
1082
+ = ⟨MλX, Y⟩,
1083
+ for any X, Y ∈ Cm. Therefore Mµ|Cm = Mλ = cλI + Dλ. On the other hand, noting that Lµ
1084
+ Hi and Rµ
1085
+ Hi are
1086
+ skew-Hermitian for each i, then for any H = (Φ, Ψ) ∈ S, we have
1087
+ ⟨MµH, H⟩ = 2
1088
+
1089
+ i, j
1090
+ ⟨µ(Hi, H j), H⟩⟨µ(Hi, H j), H⟩
1091
+ − 2
1092
+
1093
+ i, j
1094
+ ⟨µ(Hi, H), H j⟩⟨µ(Hi, H), H j⟩ − 2
1095
+
1096
+ i, j
1097
+ ⟨µ(Xi, H), X j⟩⟨µ(Xi, H), X j⟩
1098
+ − 2
1099
+
1100
+ i, j
1101
+ ⟨µ(H, Hi), H j⟩⟨µ(H, Hi), H j⟩ − 2
1102
+
1103
+ i, j
1104
+ ⟨µ(H, Xi), X j⟩⟨µ(H, Xi), X j⟩
1105
+ = −2(tr LS
1106
+ HLS
1107
+ H∗ + tr ΦΦ∗ + tr ΨΨ∗)
1108
+ = −2(tr LS
1109
+ HLS
1110
+ H∗ + tr HH∗)
1111
+ = cλ⟨H, H⟩.
1112
+ So Mµ = cµI + Dµ, where cµ = cλ, and
1113
+ Dµ =
1114
+
1115
+ 0
1116
+ 0
1117
+ 0
1118
+
1119
+
1120
+ ∈ Der(µ).
1121
+ This completes the proof.
1122
+
1123
+ Remark 4.13. Let the notation be as Theorem 4.10. If (Lµ
1124
+ A)∗ ∈ {Lµ
1125
+ A : A ∈ A0} and (Rµ
1126
+ A)∗ ∈ {Rµ
1127
+ A : A ∈ A0}
1128
+ for any A ∈ A0. Then it follows from a similar proof of Lemma 4.11 that A0 is a semisimple associative
1129
+ algebra. Moreover, the radical of [µ] corresponds to a critical point of type (k1 < · · · < ˆks < · · · <
1130
+ kr; d1, · · · , ˆds, · · · , dr) by Theorem 4.12, where ks = 0.
1131
+ 5. Examples
1132
+ In this section, we classify the critical points of Fn : An → R for n = 2 and 3, respectively. It shows
1133
+ that every 2-dimensional associative algebra is isomorphic to a critical point of F2, and there exists only
1134
+
1135
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
1136
+ 17
1137
+ one 3-dimensional associative algebra which is not isomorphic to any critical point of F3. Finally, based
1138
+ on the discussion in previous sections, we collect some natural and interesting questions.
1139
+ For reader’s convenience, we recall the notation in [2]. Let {e1, e2, · · · , en} be a basis of Cn. Define
1140
+ the bilinear maps ψi, j
1141
+ k : Cn × Cn → Cn by
1142
+ ψi, j
1143
+ k (emen) = δi
1144
+ mδj
1145
+ nek.
1146
+ It follows that any algebra can be expressed in the form d = �
1147
+ ijk ck
1148
+ ijψi, j
1149
+ k , where ck
1150
+ ij ∈ C are the structure
1151
+ constants.
1152
+ 5.1. Two-dimensional case. The classification of two-dimensional associative algebras can be found in
1153
+ [2, TABLE 1]. We give the classification of the critical points of F2 : A2 → R as follows.
1154
+ TABLE I. Two-dimensional associative algebras, critical types and critical values.
1155
+ Multiplication relation
1156
+ Critical type
1157
+ Critical value
1158
+
1159
+ d1 = ψ1,1
1160
+ 1
1161
+ (0 < 1; 1, 1)
1162
+ 4
1163
+
1164
+ d2 = ψ1,1
1165
+ 1
1166
+ + ψ1,2
1167
+ 2
1168
+ (0 < 1; 1, 1)
1169
+ 4
1170
+
1171
+ d3 = ψ1,1
1172
+ 1
1173
+ + ψ2,1
1174
+ 2
1175
+ (0 < 1; 1, 1)
1176
+ 4
1177
+
1178
+ d4 = ψ1,1
1179
+ 1
1180
+ + ψ2,2
1181
+ 2
1182
+ (0; 2)
1183
+ 2
1184
+
1185
+ d5 = ψ1,1
1186
+ 2
1187
+ (1 < 2; 1, 1)
1188
+ 20
1189
+
1190
+ d6 = ψ1,1
1191
+ 1
1192
+ + ψ1,2
1193
+ 2
1194
+ + ψ2,1
1195
+ 2
1196
+ (0 < 1; 1, 1)
1197
+ 4
1198
+ Indeed, endow these algebras with the Hermitian inner product ⟨·, ·⟩ so that {e1, e2} is an orthonormal
1199
+ basis, then it is easy to obtain TABLE I. For example, the multiplication relation of µ := (d6, ⟨·, ·⟩) is
1200
+ given by: e1e1 = e1, e1e2 = e2, e2e1 = e2. With respect to the given orthonormal basis {e1, e2}, the left
1201
+ and right multiplications of µ are represented by
1202
+
1203
+ e1 =
1204
+ � 1
1205
+ 0
1206
+ 0
1207
+ 1
1208
+
1209
+ ,
1210
+
1211
+ e2 =
1212
+ � 0
1213
+ 0
1214
+ 1
1215
+ 0
1216
+
1217
+ ,
1218
+
1219
+ e1 =
1220
+ � 1
1221
+ 0
1222
+ 0
1223
+ 1
1224
+
1225
+ ,
1226
+
1227
+ e2 =
1228
+ � 0
1229
+ 0
1230
+ 1
1231
+ 0
1232
+
1233
+ .
1234
+ It follows from (3.7) that
1235
+ Mµ =
1236
+
1237
+ −6
1238
+ 0
1239
+ 0
1240
+ 0
1241
+
1242
+ Set cµ :=
1243
+ tr M2
1244
+ µ
1245
+ tr Mµ , then cµ = −6. It follows that Mµ = cµI + Dµ, where
1246
+ Dµ =
1247
+
1248
+ 0
1249
+ 0
1250
+ 0
1251
+ 6
1252
+
1253
+ is clearly a derivation of µ. So [µ] is a critical point of F2 : A2 → R with the critical type (0 < 1; 1, 1)
1254
+ and F2([µ]) = 4.
1255
+
1256
+ 18
1257
+ HUI ZHANG AND ZAILI YAN
1258
+ 5.2. Three-dimensional case. The complete classification of three-dimensional associative algebras
1259
+ can be found in [2, TABLE 2]. The following table gives the classification of the critical points of
1260
+ F3 : A3 → R.
1261
+ TABLE II. Three-dimensional associative algebras, critical types and critical values.
1262
+ Multiplication relation
1263
+ Critical type
1264
+ Critical value
1265
+
1266
+ d1 = ψ1,1
1267
+ 1
1268
+ (0 < 1; 1, 2)
1269
+ 4
1270
+
1271
+ d2 = ψ1,1
1272
+ 1
1273
+ + ψ2,2
1274
+ 3
1275
+ (0 < 1 < 2; 1, 1, 1)
1276
+ 10
1277
+ 3
1278
+
1279
+ d3 = ψ1,1
1280
+ 1
1281
+ + ψ1,3
1282
+ 3
1283
+ (0 < 1; 1, 2)
1284
+ 4
1285
+
1286
+ d4 = ψ1,1
1287
+ 1
1288
+ + ψ3,1
1289
+ 3
1290
+ (0 < 1; 1, 2)
1291
+ 4
1292
+
1293
+ d5 = ψ1,1
1294
+ 1
1295
+ + ψ1,3
1296
+ 3
1297
+ + ψ3,1
1298
+ 3
1299
+ (0 < 1; 1, 2)
1300
+ 4
1301
+
1302
+ d6 = ψ1,1
1303
+ 1
1304
+ + ψ3,3
1305
+ 3
1306
+ (0 < 1; 2, 1)
1307
+ 2
1308
+
1309
+ d7 = ψ1,1
1310
+ 1
1311
+ + ψ2,1
1312
+ 2
1313
+ + ψ1,3
1314
+ 3
1315
+ (0 < 1; 1, 2)
1316
+ 4
1317
+
1318
+ d8 = ψ1,1
1319
+ 1
1320
+ + ψ2,1
1321
+ 2
1322
+ + ψ3,1
1323
+ 3
1324
+ (0 < 1; 1, 2)
1325
+ 4
1326
+
1327
+ d9 = ψ1,1
1328
+ 1
1329
+ + ψ2,1
1330
+ 2
1331
+ + ψ1,3
1332
+ 3
1333
+ + ψ3,1
1334
+ 3
1335
+ (0 < 1; 1, 2)
1336
+ 4
1337
+
1338
+ d10 = ψ1,1
1339
+ 1
1340
+ + ψ2,1
1341
+ 2
1342
+ + ψ3,3
1343
+ 3
1344
+ (0 < 1; 2, 1)
1345
+ 2
1346
+
1347
+ d11 = ψ1,1
1348
+ 1
1349
+ + ψ2,2
1350
+ 2
1351
+ + ψ2,3
1352
+ 3
1353
+ (0 < 1; 2, 1)
1354
+ 2
1355
+
1356
+ d12 = ψ1,1
1357
+ 1
1358
+ + ψ2,2
1359
+ 2
1360
+ + ψ2,3
1361
+ 3
1362
+ + ψ3,2
1363
+ 3
1364
+ (0 < 1; 2, 1)
1365
+ 2
1366
+
1367
+ d13 = ψ1,1
1368
+ 1
1369
+ + ψ2,2
1370
+ 2
1371
+ + ψ2,3
1372
+ 3
1373
+ + ψ3,1
1374
+ 3
1375
+ (0 < 1; 2, 1)
1376
+ 2
1377
+
1378
+ d14 = ψ1,1
1379
+ 1
1380
+ + ψ2,2
1381
+ 2
1382
+ + ψ3,3
1383
+ 3
1384
+ (0; 3)
1385
+ 4
1386
+ 3
1387
+
1388
+ d15 = ψ1,1
1389
+ 2
1390
+ (3 < 5 < 6; 1, 1, 1)
1391
+ 20
1392
+
1393
+ d16 = ψ1,1
1394
+ 2
1395
+ + ψ1,2
1396
+ 3
1397
+ + ψ2,1
1398
+ 3
1399
+ (1 < 2 < 3; 1, 1, 1)
1400
+ 20
1401
+ 3
1402
+
1403
+ d17 = ψ1,1
1404
+ 1
1405
+ + ψ1,1
1406
+ 2
1407
+ + ψ1,2
1408
+ 2
1409
+ + ψ2,1
1410
+ 2
1411
+ + ψ1,3
1412
+ 3
1413
+ (0 < 1; 1, 2)
1414
+ 4
1415
+
1416
+ d18 = ψ1,1
1417
+ 1
1418
+ + ψ1,1
1419
+ 2
1420
+ + ψ1,2
1421
+ 2
1422
+ + ψ2,1
1423
+ 2
1424
+ + ψ1,3
1425
+ 3
1426
+ + ψ3,1
1427
+ 3
1428
+ (0 < 1; 1, 2)
1429
+ 4
1430
+
1431
+ d19 = ψ3,3
1432
+ 3
1433
+ + ψ1,1
1434
+ 2
1435
+ + ψ1,3
1436
+ 1
1437
+ + ψ3,1
1438
+ 1
1439
+ + ψ2,3
1440
+ 2
1441
+ + ψ3,2
1442
+ 2
1443
+ (0 < 1 < 2; 1, 1, 1)
1444
+ 10
1445
+ 3
1446
+
1447
+ d20 = ψ1,1
1448
+ 1
1449
+ + ψ1,2
1450
+ 2
1451
+ + ψ1,3
1452
+ 3
1453
+ (0 < 1; 1, 2)
1454
+ 4
1455
+
1456
+ d21 = ψ1,1
1457
+ 3
1458
+ + ψ1,2
1459
+ 3
1460
+ − ψ2,1
1461
+ 3
1462
+
1463
+
1464
+
1465
+ d22 = xψ1,2
1466
+ 3
1467
+ + yψ2,1
1468
+ 3
1469
+ (1 < 2; 2, 1)
1470
+ 12
1471
+ Indeed, endow the algebras with the Hermitian inner product ⟨·, ·⟩ so that {e1, e2, e3} is an orthonormal
1472
+ basis, it is easy to obtain all cases in TABLE II except for d2, d10, d11, d12, d13, d17, d18, d21. For the cases
1473
+ d2, d10, d11, d12, it follows from Remark 3.4 and TABLE I. For the cases d13, d17, d18, it follows from [5]
1474
+ that d13 � U3
1475
+ 1, d17 � W3
1476
+ 10 and d18 � U3
1477
+ 0, where U3
1478
+ 1, W3
1479
+ 10 and U3
1480
+ 0 are defined by
1481
+ U3
1482
+ 1 :
1483
+ ψ1,1
1484
+ 1
1485
+ + ψ3,3
1486
+ 1
1487
+ + ψ1,2
1488
+ 2
1489
+ + ψ2,1
1490
+ 2
1491
+ + ψ2,3
1492
+ 2
1493
+ + ψ1,3
1494
+ 3
1495
+ + ψ3,1
1496
+ 3
1497
+ − ψ3,2
1498
+ 3 .
1499
+ W3
1500
+ 10 :
1501
+ ψ1,2
1502
+ 1
1503
+ + ψ2,1
1504
+ 1
1505
+ + ψ2,2
1506
+ 2
1507
+ + ψ2,3
1508
+ 3 .
1509
+ U3
1510
+ 0 :
1511
+ ψ1,1
1512
+ 2
1513
+ + ψ1,2
1514
+ 2
1515
+ + ψ2,1
1516
+ 2
1517
+ + ψ1,3
1518
+ 3
1519
+ + ψ3,1
1520
+ 3 .
1521
+ Endow U3
1522
+ 1, W3
1523
+ 10 and U3
1524
+ 0 with the Hermitian inner product ⟨·, ·⟩ so that {e1, e2, e3} is an orthonormal basis,
1525
+ then it is easy to obtain the corresponding critical types and values for d13, d17, d18.
1526
+
1527
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
1528
+ 19
1529
+ In the sequel, we follow a similar procedure as in [6, 16] to classify all Hermitian inner products on
1530
+ d21, then show that for any Hermitian inner product ⟨·, ·⟩ on d21, (d21, ⟨·, ·⟩) cannot be a critical point of
1531
+ F3. First, note that the multiplication relation of d21 is given as follows:
1532
+ e1e1 = e3,
1533
+ e1e2 = e3,
1534
+ e2e1 = −e3.
1535
+ Denote by ⟨·, ·⟩0 the Hermitian inner product on d21 such that {e1, e2, e3} is orthonormal. With respect to
1536
+ this basis {e1, e2, e3}, the automorphism group of d21 is given by
1537
+ Aut(d21) =
1538
+ 
1539
+ a
1540
+ 0
1541
+ 0
1542
+ b
1543
+ a
1544
+ 0
1545
+ c
1546
+ d
1547
+ a2
1548
+  ⊂ GL(3, C),
1549
+ (5.1)
1550
+ where 0 � a ∈ C, and b, c, d ∈ C are arbitrary.
1551
+ Lemma 5.1. For any Hermitian inner product ⟨·, ·⟩ on d21, there exist k > 0 and φ ∈ Aut(d21) such that
1552
+ {aφe1, φe2, φe3} is orthonormal with respective to k⟨·, ·⟩, where a > 0
1553
+ Proof. It suffices to prove that
1554
+ U = {diag(a, 1, 1) : a > 0} ⊂ GL(3, C)
1555
+ is a set of representatives for the action C×Aut(d21) on M, i.e., the space of all Hermitian inner products
1556
+ on d21, which can be identified with the homogeneous space GL(3, C)/U(3) at the base point ⟨·, ·⟩0 ∈ M
1557
+ (see [6]). Indeed, since
1558
+
1559
+ g∈U
1560
+ C×Aut(d21) · g · U(3) = GL(3, C),
1561
+ it follows that U is a set of representatives. For any Hermitian inner product ⟨·, ·⟩ on d21, we know that
1562
+ there exists g0 ∈ U such that
1563
+ ⟨·, ·⟩ ∈ (C×Aut(d21)).(g0.⟨·, ·⟩0)
1564
+ Hence there exist c ∈ C×, φ ∈ Aut(d21) such that
1565
+ ⟨·, ·⟩ = (cφ).(g0.⟨·, ·⟩0) = (cφg0).⟨·, ·⟩0)
1566
+ Put k = |c|2, then
1567
+ k⟨·, ·⟩ = k⟨(cφg0)−1(·), (cφg0)−1(·)⟩0 = kc−1¯c−1⟨(φg0)−1(·), (φg0)−1(·)⟩0 = ⟨(φg0)−1(·), (φg0)−1(·)⟩0
1568
+ Since g0 ∈ U, then g0 = diag{a, 1, 1} for some a > 0. It follows that {aφe1, φe2, φe3} is orthonormal with
1569
+ respective to k⟨·, ·⟩
1570
+
1571
+ Proposition 5.2. For any Hermitian inner product ⟨·, ·⟩ on d21, (d21, ⟨·, ·⟩) can not be a critical point of
1572
+ F3 : A3 → R.
1573
+
1574
+ 20
1575
+ HUI ZHANG AND ZAILI YAN
1576
+ Proof. Assume that ⟨·, ·⟩ is a Hermitian inner product on d21 such that (d21, ⟨·, ·⟩) is a critical point of F3 :
1577
+ A3 → R. Then the critical type is necessarily of (1 < 2; 2, 1) by Theorem 4.1 and (5.1). Moreover, for
1578
+ the Hermitian inner product ⟨·, ·⟩ on d21, by Lemma 5.1 we know that there exist k > 0 and φ ∈ Aut(d21)
1579
+ such that {x1 = aφe1, x2 = φe2, x3 = φe3} is orthonormal with respective to k⟨·, ·⟩, where a > 0. With
1580
+ respect to the basis {x1, x2, x3}, the multiplication relation of d21 is given as follows
1581
+ x1x1 = a2x3,
1582
+ x1x2 = ax3,
1583
+ x2x1 = −ax3.
1584
+ By (3.7), Lemma 3.6 and a straightforward calculation, it follows that the critical type is of
1585
+ (3a4 + 6a2 + 8, 5a4 + 10a2 + 8, 2(3a4 + 8a2 + 8))
1586
+ which is never of type (1 < 2; 2, 1) for any a > 0. This is a contradiction by Theorem 4.1, and the
1587
+ proposition is therefore proved.
1588
+
1589
+ 5.3. Comments. By the previous discussion, we know that the critical types of Fn : An → R, n = 2, 3,
1590
+ are necessarily nonnegative. So it is natural to ask the following question: Let [µ] ∈ An be a critical
1591
+ point of Fn : An → R with Mµ = cµI + Dµ for some cµ ∈ R and Dµ ∈ Der(µ). Are all the eigenvalues of
1592
+ Dµ necessarily nonnegative?
1593
+ On the other hand, it will be also interesting to construct or classify the critical points [µ] of Fn :
1594
+ An → R such that Dµ has negative eigenvalues if the above question does not hold. We note that 2-step
1595
+ nilpotent Lie algebras are automatically associative algebras, so it follows from [13, Example 1] that
1596
+ there exist associative algebras whose Nikolayevsky derivations do admit negative eigenvalues.
1597
+ 6. Statements and Declarations
1598
+ The authors declare that there is no conflict of interest.
1599
+ References
1600
+ [1] B¨ohm, C.; Lafuente, R: Immortal homogeneous Ricci flows, Invent. Math. 212 (2018), 461–529.
1601
+ [2] Fialowski, A.; Penkava, M.: The moduli space of 3-dimensional associative algebras, Comm. Algebra 37(10) (2009)
1602
+ 3666–3685.
1603
+ [3] Khudoyberdiyev, A.; Omirov, B.: The classification of algebras of level one, Linear Algebra Appl. 439(11) (2013), 3460–
1604
+ 3463.
1605
+ [4] Kirwan, K.: Momentum maps and reduction in algebraic geometry, Differential Geom. Appl. 9 (1998), 135–172.
1606
+ [5] Kobayashi, Y; Shirayanagi, K; Tsukada, M; Takahasi, S.: A complete classification of three-dimensional algebras over R
1607
+ and C–(visiting old, learn new),Asian-Eur. J. Math. 14 (2021).
1608
+ [6] Kubo, A; Onda, K; Taketomi, Y; Tamaru, H.: On the moduli spaces of left-invariant pseudo-Riemannian metrics on Lie
1609
+ groups, Hiroshima math. J. 46 (2016), 357–374.
1610
+ [7] Lauret, J.: On the moment map for the variety of Lie algebras, J. Funct. Anal. 202 (2003), 392–423.
1611
+ [8] Lauret, J.: Degenerations of Lie algebras and geometry of Lie groups, Differential Geom. Appl. 18 (2003), 177–194.
1612
+ [9] Lauret, J.: Einstein solvmanifolds are standard, Ann. of Math. 172 (2010), 1859–1877.
1613
+ [10] Lauret, J.: Ricci soliton solvmanifolds, J. reine angew. Math. 650 (2011), 1–21.
1614
+ [11] Lauret, J.: Finding solitons, Notices Am. Math. Soc. 67 (2020), 647–657.
1615
+ [12] Ness, L.: A stratification of the null cone via the moment map, Amer. J. Math., 106 (1984), 1281-1329 (with an appendix
1616
+ by D. Mumford).
1617
+
1618
+ THE MOMENT MAP FOR THE VARIETY OF ASSOCIATIVE ALGEBRAS
1619
+ 21
1620
+ [13] Nikolayevsky, Y.: Nilradicals of Einstein solvmanifolds, arXiv:math/0612117v1 [math.DG] (2006).
1621
+ [14] Nikolayevsky, Y.: Einstein solvmanifolds and the pre-Einstein derivation, Trans. Am. Math. Soc. 363 (2011), 3935–3958.
1622
+ [15] Pierce, R.S.: Associative Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1982
1623
+ [16] Taketomi, Y; Tamaru, H.: On the nonexistence of left-invariant Ricci solitons a conjecture and examples, Transform.
1624
+ Groups 23 (2018), 257–270.
1625
+ [17] Zhang, H.; Chen, Z.; Li, L.: The moment map for the variety of 3-Lie algebras, J. Funct. Anal. 283 (2022), No. 11, Article
1626
+ ID 109683.
1627
+ (Hui Zhang) School of Mathematics, Southeast University, Nanjing 210096, P. R. China
1628
+ Email address: [email protected]
1629
+ School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang Province, 315211, People’s Republic of China
1630
+ Email address: [email protected]
1631
+
2tFLT4oBgHgl3EQfrC9d/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NAyT4oBgHgl3EQf1_nb/content/2301.00745v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f940b5d31c0b2f0eb31b46aa8bccdc475b04f480f9058b23d6b61cd476d177
3
+ size 302817
4NAyT4oBgHgl3EQf1_nb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac7dc53f312cc9b8f03464845b313b0e1fd027c7d01d0c6702b63886e90f9878
3
+ size 4325421
4NAyT4oBgHgl3EQf1_nb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eddfd4c00e13b2e580370f6891bd302620722001487fa4cb9239c00f34f86fb
3
+ size 170819
4dAyT4oBgHgl3EQfpPgc/content/tmp_files/2301.00520v1.pdf.txt ADDED
@@ -0,0 +1,1341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising
2
+ Problems on NISQ Computers
3
+ Elijah Pelofske∗1, Andreas B¨artschi†1, and Stephan Eidenbenz1
4
+ 1CCS-3 Information Sciences, Los Alamos National Laboratory
5
+ Abstract
6
+ Quantum annealing (QA) and Quantum Alternating Operator Ansatz (QAOA) are both heuristic quantum
7
+ algorithms intended for sampling optimal solutions of combinatorial optimization problems. In this article we
8
+ implement a rigorous direct comparison between QA on D-Wave hardware and QAOA on IBMQ hardware. The
9
+ studied problems are instances of a class of Ising problems, with variable assignments of +1 or −1, that contain
10
+ cubic ZZZ interactions (higher order terms) and match both the native connectivity of the Pegasus topology D-
11
+ Wave chips and the heavy hexagonal lattice of the IBMQ chips. The novel QAOA implementation on the heavy
12
+ hexagonal lattice has a CNOT depth of 6 per round and allows for usage of an entire heavy hexagonal lattice.
13
+ Experimentally, QAOA is executed on an ensemble of randomly generated Ising instances with a grid search
14
+ over 1 and 2 round angles using all 127 programmable superconducting transmon qubits of ibm washington.
15
+ The error suppression technique digital dynamical decoupling (DDD) is also tested on all QAOA circuits. QA
16
+ is executed on the same Ising instances with the programmable superconducting flux qubit devices D-Wave
17
+ Advantage system4.1 and Advantage system6.1 using modified annealing schedules with pauses. We find that
18
+ QA outperforms QAOA on all problem instances. We also find that DDD enables 2-round QAOA to outperform
19
+ 1-round QAOA, which is not the case without DDD.
20
+ 1
21
+ Introduction
22
+ Quantum annealing (QA) in the transverse field Ising model (TFIM) is an analog computation technology which
23
+ utilizes quantum fluctuations in order to search for ground state solutions of a problem Hamiltonian [1–4]. D-Wave
24
+ quantum annealers are programmable hardware implementations of quantum annealing which use superconducting
25
+ flux qubits.
26
+ Quantum alternating operator ansatz (QAOA) is a hybrid quantum classical algorithm for sampling combina-
27
+ torial optimization problems [5, 6], the quantum component of which can be instantiated with a programmable
28
+ gate-based universal quantum computer. The quantum approximate optimization algorithm [7] was the first vari-
29
+ ational algorithm of this type, which was then generalized to the quantum alternating operator ansatz algorithm
30
+ [5].
31
+ QAOA is effectively a Trotterization of the Quantum Adiabatic Algorithm, and is overall similar to Quantum
32
+ Annealing. In particular both algorithms address combinatorial optimization problems. The exact characteristics
33
+ of how both QA and QAOA will scale to large system sizes is currently not fully understood, in particular because
34
+ quantum hardware is still in the NISQ era [8–10]. For example, there is evidence that QAOA may be more difficult
35
+ for classical computers to simulate than quantum annealing, which could make it a viable candidate for quantum
36
+ advantage [11]. Therefore it is of interest to investigate differences between QAOA and QA, and determine how
37
+ these algorithms will scale [12–17]. There have been experimental QAOA implementations which used up to 27
38
+ qubits [18] and 23 qubits [19]. There have also been QAOA experiments which had circuit depth up to 159 [20]
39
+ and 148 [21].
40
+ The contributions of this article are as follows:
41
+ 1. We provide a direct comparison between QAOA and Quantum Annealing in terms of experiments on D-Wave
42
+ and IBMQ hardware. This comparison uses a comparable parameter search space for QA and QAOA, uses
43
+ no minor embedding for quantum annealing, and uses short depth QAOA circuits, thus providing a fair
44
+ comparison of the two algorithms. We show that QAOA is better than random sampling, and quantum
45
+ annealing clearly outperforms QAOA.
46
+ ∗Email: [email protected]
47
+ †Email: [email protected]
48
+ 1
49
+ arXiv:2301.00520v1 [quant-ph] 2 Jan 2023
50
+
51
+ Device name
52
+ Topology/chip
53
+ name
54
+ Available qubits
55
+ Available
56
+ couplers/
57
+ CNOTs
58
+ Computation type
59
+ Advantage system4.1
60
+ Pegasus P16
61
+ 5627
62
+ 40279
63
+ QA
64
+ Advantage system6.1
65
+ Pegasus P16
66
+ 5616
67
+ 40135
68
+ QA
69
+ ibm washington
70
+ Eagle r1
71
+ heavy-hexagonal
72
+ 127
73
+ 142
74
+ Universal gate-model
75
+ Table 1: NISQ hardware summary at the time the experiments were executed.
76
+ The hardware yield (e.g., the
77
+ number of available qubits or two qubit interactions) for all of these devices can be less than the logical lattice
78
+ because of hardware defects, and can also change over time if device calibration changes.
79
+ 2. The QAOA algorithm we present is tailored for short depth circuit construction on the heavy hexagonal
80
+ lattice, therefore allowing full usage of any heavy hexagonal topology quantum processor in the future. We
81
+ use all 127 qubits of the ibm washington chip in order to execute the largest QAOA circuit, in terms of
82
+ qubits, to date.
83
+ 3. The problem instances that are used to compare quantum annealing and QAOA are specifically constructed
84
+ to include higher order terms, specifically three variable (cubic) terms. QAOA can directly implement higher
85
+ order terms, and quantum annealing requires order reduction using auxiliary variables to implement these
86
+ higher order terms. This is the largest experimental demonstration of QAOA with higher order terms to date.
87
+ 4. In order to mitigate errors when executing the QAOA circuits, we utilize digital dynamical decoupling. This
88
+ is the largest usage of dynamical decoupling in terms of qubit system size to date, and the results show that
89
+ digital dynamical decoupling improves performance for two round QAOA, suggesting that it will be useful
90
+ for computations with large numbers of qubits in the noisy regime.
91
+ In Section 2 the QAOA and QA hardware implementations are detailed. Section 3 details the experimental
92
+ results and how the two algorithms compare. Section 4 concludes with what the results indicate and future research
93
+ directions. The figures in this article are generated using matplotlib [22, 23], and Qiskit [24] in Python 3.
94
+ 2
95
+ Methods
96
+ The problem instances are defined in Section 2.1.
97
+ In Section 2.2 the QAOA circuit algorithm and hardware
98
+ parameters are defined. In Section 2.3 the quantum annealing implementation is defined.
99
+ 2.1
100
+ Problem instances
101
+ The NISQ computers which are used in this comparison are detailed in Table 1; the clear difference between the
102
+ D-Wave quantum annealers and ibm washington is the number of qubits that are available. The additional qubits
103
+ available on the quantum annealers will allow us to embed multiple problem instances onto the chips. The current
104
+ IBMQ devices have a graph topology referred to as the heavy-hexagonal lattice [25]. Therefore, for a direct QAOA
105
+ and QA comparison we would want to be able to create QAOA circuits which match the logical heavy-hexagonal
106
+ lattice and the quantum annealer graph topology of Pegasus. For this direct comparison we target D-Wave quantum
107
+ annealers with Pegasus graph hardware [26, 27] connectivities. The two current D-Wave quantum annealers with
108
+ Pegasus hardware graphs have chip id names Advantage system6.1 and Advantage system4.1. The goal for this
109
+ direct comparison is that ideally we want problems which can be instantiated on all three of the devices in Table
110
+ 1. In particular, we want these implementations to not be unfairly costly in terms of implementation overhead.
111
+ For example we do not want to introduce unnecessary qubit swapping in the QAOA circuit because that would
112
+ introduce larger circuit depths which would introduce more decoherence in the computation. We also do not want
113
+ to introduce unnecessary minor-embedding in the problems for quantum annealers.
114
+ The other property of these problem instances that is of interest is an introduction of higher order terms,
115
+ specifically cubic ZZZ interactions [28] also referred to as multi-body interactions [29], in addition to random
116
+ linear and quadratic terms. These higher order terms require both QAOA and QA to be handle these higher order
117
+ variable interactions, which is an additional test on the capability of both algorithms. QAOA can naturally handle
118
+ 2
119
+
120
+ 0
121
+ 1
122
+ 2
123
+ 3
124
+ 4
125
+ 5
126
+ 6
127
+ 7
128
+ 8
129
+ 9
130
+ 10
131
+ 11
132
+ 12
133
+ 13
134
+ 14
135
+ 15
136
+ 16
137
+ 17
138
+ 18
139
+ 19
140
+ 20
141
+ 21
142
+ 22
143
+ 23
144
+ 24
145
+ 25
146
+ 26
147
+ 27
148
+ 28
149
+ 29
150
+ 30
151
+ 31
152
+ 32
153
+ 33
154
+ 34
155
+ 35
156
+ 36
157
+ 37
158
+ 38
159
+ 39
160
+ 40
161
+ 41
162
+ 42
163
+ 43
164
+ 44
165
+ 45
166
+ 46
167
+ 47
168
+ 48
169
+ 49
170
+ 50
171
+ 51
172
+ 52
173
+ 53
174
+ 54
175
+ 55
176
+ 56
177
+ 57
178
+ 58
179
+ 59
180
+ 60
181
+ 61
182
+ 62
183
+ 63
184
+ 64
185
+ 65
186
+ 66
187
+ 67
188
+ 68
189
+ 69
190
+ 70
191
+ 71
192
+ 72
193
+ 73
194
+ 74
195
+ 75
196
+ 76
197
+ 77
198
+ 78
199
+ 79
200
+ 80
201
+ 81
202
+ 82
203
+ 83
204
+ 84
205
+ 85
206
+ 86
207
+ 87
208
+ 88
209
+ 89
210
+ 90
211
+ 91
212
+ 92
213
+ 93
214
+ 94
215
+ 95
216
+ 96
217
+ 97
218
+ 98
219
+ 99
220
+ 100
221
+ 101
222
+ 102
223
+ 103
224
+ 104
225
+ 105
226
+ 106
227
+ 107
228
+ 108
229
+ 109
230
+ 110
231
+ 111
232
+ 112
233
+ 113
234
+ 114
235
+ 115
236
+ 116
237
+ 117
238
+ 118
239
+ 119
240
+ 120
241
+ 121
242
+ 122
243
+ 123
244
+ 124
245
+ 125
246
+ 126
247
+ 0
248
+ 1
249
+ 2
250
+ 3
251
+ 4
252
+ 5
253
+ 6
254
+ 7
255
+ 8
256
+ 9
257
+ 10
258
+ 11
259
+ 12
260
+ 13
261
+ 14
262
+ 15
263
+ 16
264
+ 17
265
+ 18
266
+ 19
267
+ 20
268
+ 21
269
+ 22
270
+ 23
271
+ 24
272
+ 25
273
+ 26
274
+ 27
275
+ 28
276
+ 29
277
+ 30
278
+ 31
279
+ 32
280
+ 33
281
+ 34
282
+ 35
283
+ 36
284
+ 37
285
+ 38
286
+ 39
287
+ 40
288
+ 41
289
+ 42
290
+ 43
291
+ 44
292
+ 45
293
+ 46
294
+ 47
295
+ 48
296
+ 49
297
+ 50
298
+ 51
299
+ 52
300
+ 53
301
+ 54
302
+ 55
303
+ 56
304
+ 57
305
+ 58
306
+ 59
307
+ 60
308
+ 61
309
+ 62
310
+ 63
311
+ 64
312
+ 65
313
+ 66
314
+ 67
315
+ 68
316
+ 69
317
+ 70
318
+ 71
319
+ 72
320
+ 73
321
+ 74
322
+ 75
323
+ 76
324
+ 77
325
+ 78
326
+ 79
327
+ 80
328
+ 81
329
+ 82
330
+ 83
331
+ 84
332
+ 85
333
+ 86
334
+ 87
335
+ 88
336
+ 89
337
+ 90
338
+ 91
339
+ 92
340
+ 93
341
+ 94
342
+ 95
343
+ 96
344
+ 97
345
+ 98
346
+ 99
347
+ 100
348
+ 101
349
+ 102
350
+ 103
351
+ 104
352
+ 105
353
+ 106
354
+ 107
355
+ 108
356
+ 109
357
+ 110
358
+ 111
359
+ 112
360
+ 113
361
+ 114
362
+ 115
363
+ 116
364
+ 117
365
+ 118
366
+ 119
367
+ 120
368
+ 121
369
+ 122
370
+ 123
371
+ 124
372
+ 125
373
+ 126
374
+ Figure 1: Left: ibm washington graph connectivity, where qubits are connected by CNOT (also referred to as cx)
375
+ gates. The ideal lattice is called the heavy-hexagonal lattice. Note that there are two missing graph edges from
376
+ the lattice between qubits 8-9 and 109-114. The total number of qubits (nodes) is 127. The edges of the graph are
377
+ three colored (red, blue, and green) such that no node shares two or more edges with the same color. The node
378
+ colorings of light and dark gray show that the heavy hexagonal lattice is bipartite (meaning it can be partitioned
379
+ into two disjoint sets). The three edge coloring is consistent with the QAOA circuit construction in Figure 2.
380
+ Right: Example of a single random problem instance with cubic terms (see Eq. (1)) on the ibm washington
381
+ graph. The linear and quadratic terms are shown using two distinct colors (red and green). The nodes and edges
382
+ colored red denote a weight of −1 and the nodes and edges colored green denote a weight of +1. The cubic terms
383
+ are represented by ovals around the three qubits which define the cubic variable interactions. Like the linear and
384
+ quadratic terms, the color of the oval representing the cubic terms represents the sign of the weight on the terms,
385
+ where green is +1 and red is −1.
386
+ higher order terms [30]. Implementing high order terms with QA requires introducing auxiliary variables in order
387
+ to perform order reduction to get a problem structure that is comprised of only linear and quadratic terms, so that
388
+ it can be implemented on the hardware, but whose optimal solutions match the optimal solutions of the original
389
+ high order polynomial [3, 31–34].
390
+ Taking each of these characteristics into account, we create a class of random problems which follow the native
391
+ device connectivities in Table 1. The problem instances we will be considering are Ising problems defined on the
392
+ hardware connectivity graph of the heavy hexagonal lattice of the device, which for these experiments will be
393
+ ibm washington.
394
+ C(x) =
395
+
396
+ v∈N
397
+ cv · xv +
398
+
399
+ (i,j)∈E
400
+ ci,j · xi · xj +
401
+
402
+ l∈D
403
+ cl · xl · xn1(l) · xn2(l)
404
+ (1)
405
+ Eq. (1) defines the class of problem Isings as follows. N is the set of qubits, or variables, that exist on the heavy
406
+ hexagonal layout topology. E is the edge set of all two qubit (CNOT) gates that can allow two qubits, indexed as
407
+ i and j, to interact. Any heavy hexagonal lattice is a bipartite graph with vertices V = V2 ∪ V3 where V2 consists
408
+ of vertices with a maximum degree of 2, and V3 consists of vertices with a maximum degree of 3. D is the set
409
+ of vertices in V2 which all have degree exactly equal to 2. n1 is a function which gives the qubit (variable) index
410
+ of the first of the two neighbors of a degree-2 node, and n2 provides the qubit (variable) index of the second of
411
+ the two neighbors of any degree-2 node. cv, ci,j, and ct are all functions representing the random selection of the
412
+ linear, quadratic, and cubic coefficients, respectively. These coefficients could be drawn from any distribution - in
413
+ this case we draw the coefficients from {+1, −1} with probability 0.5. The decision variables are xi, where the
414
+ possible variable states are the spins −1 or +1. Combined, any vector of variable states x can be evaluated given
415
+ this objective function formulation of Eq. (1).
416
+ The heavy hexagonal topology of ibm washington, along with an overlay showing one of the random problem
417
+ instances with cubic terms defined on ibm washington, is shown in Figure 1. Each term coefficient was chosen to
418
+ 3
419
+
420
+ be either +1 or −1 in order to mitigate the potential problem of limited precision for the programming control on
421
+ all of the NISQ devices. 10 random instances of this class of problems are generated and sampled using QAOA and
422
+ QA, the implementations of each will be discussed next.
423
+ 2.2
424
+ QAOA
425
+ Given a combinatorial optimization problem over inputs x ∈ {0, 1}n, let f(x): {0, 1}n → R be the objective function
426
+ which evaluates the cost of solution x. For a maximization (or minimization) problem, the goal is to find a variable
427
+ assignment vector x for which f(x) is maximized (or minimized). The QAOA algorithm consists of the following
428
+ components:
429
+ • An initial state |ψ⟩
430
+ • A phase separating Hamiltonian: HP |x⟩ = f(x) |x⟩
431
+ • A mixing Hamiltonian: HM
432
+ • An integer p ≥ 1, the number of rounds to run the algorithm
433
+ • Two real vectors ⃗γ = (γ1, ..., γp) and ⃗β = (β1, ..., βp), each with length p
434
+ The algorithm consists of preparing the initial state |ψ⟩, then applying p rounds of the alternating simulation
435
+ of the phase separating Hamiltonian and the mixing Hamiltonian:
436
+ |⃗γ, ⃗β⟩ = e−iβpHM e−iγpHP
437
+
438
+ ��
439
+
440
+ round p
441
+ · · · e−iβ1HM e−iγ1HP
442
+
443
+ ��
444
+
445
+ round 1
446
+ |ψ⟩
447
+ (2)
448
+ Within reach round, HP is applied first, which separates the basis states of the state vector by phases e−iγf(x).
449
+ HM then provides parameterized interference between solutions of different cost values. After p rounds, the state
450
+ |⃗γ, ⃗β⟩ is measured in the computational basis and returns a sample solution y of cost value f(y) with probability
451
+ | ⟨y|⃗γ, ⃗β⟩ |2.
452
+ The aim of QAOA is to prepare the state |⃗γ, ⃗β⟩ from which we can sample a solution y with high cost value f(y).
453
+ Therefore, in order to use QAOA the task is to find angles ⃗γ and ⃗β such that the expectation value ⟨⃗γ, ⃗β|HP |⃗γ, ⃗β⟩
454
+ is large (−HP for minimization problems). In the limit p → ∞, QAOA is effectively a Trotterization of of the
455
+ Quantum Adiabatic Algorithm, and in general as we increase p we expect to see a corresponding increase in the
456
+ probability of sampling the optimal solution [17]. The challenge is the classical outer loop component of finding
457
+ the good angles ⃗γ and ⃗β for all rounds p, which has a high computational cost as p increases.
458
+ Variational quantum algorithms, such as QAOA, have been a subject of large amount of attention, in large part
459
+ because of the problem domains that variational algorithms can address (such as combinatorial optimization) [35].
460
+ One of the challenges however with variational quantum algorithms is that the classical component of parameter
461
+ selection, in the case of QAOA this is the angle finding problem, is not solved and is even more difficult when
462
+ noise is present in the computation [36]. Typically the optimal angles for QAOA are computed exactly for small
463
+ problem instances [15, 37].
464
+ However, in this case the angle finding approach we will use is a reasonably high
465
+ resolution gridsearch over the possible angles. Note however that a fine gridsearch scales exponentially with the
466
+ number of QAOA rounds p, and therefore is not advisable for practical high round QAOA [6, 7]. Exactly computing
467
+ what the optimal angles are for problems of this size would be quite computationally intensive, especially with the
468
+ introduction of higher order terms. We leave the problem of exactly computing the optimal QAOA angles up to
469
+ future work.
470
+ Figure 2 describes the short depth QAOA circuit construction for sampling the higher order Ising test instance.
471
+ This algorithm can be applied to any heavy hexagonal lattice topology, which allows for executing the QAOA
472
+ circuits on the 127 variable instances on the IBMQ ibm washington backend. For the class of Isings with higher
473
+ order terms defined in Section 2.1, the QAOA angle ranges which are used are γ1, . . . , γp ∈ [0, π) and β1, . . . , βp−1 ∈
474
+ [0, π), βp ∈ [0, π
475
+ 2 ) where p is the number of QAOA rounds. Note that the halving of the angle search space for β
476
+ applies when p = 1. For optimizing the angles using the naive grid search for p = 1, β0 is varied over 60 linearly
477
+ spaced angles ∈ [0, π
478
+ 2 ] and γ0 is varied over 120 linearly spaced angles ∈ [0, π]. For the high resolution gridsearch
479
+ for p = 2, β1 is varied over 5 linearly spaced angles ∈ [0, π
480
+ 2 ] and γ0, γ1, and β0 are varied over 11 linearly spaced
481
+ angles ∈ [0, π]. Therefore, for p = 2 the angle gridsearch uses 6655 separate circuit executions (for each of the 10
482
+ problem instances), and for p = 1 the angle gridsearch uses 7200 separate circuit executions. Each circuit execution
483
+ used 10, 000 samples in order to compute a robust distribution for each angle combination.
484
+ 4
485
+
486
+ |0⟩
487
+ |0⟩
488
+ |0⟩
489
+ |0⟩
490
+ |0⟩
491
+ |0⟩
492
+ |0⟩
493
+ |0⟩
494
+ |0⟩
495
+ |0⟩
496
+ |0⟩
497
+ H
498
+ H
499
+ H
500
+ H
501
+ H
502
+ H
503
+ H
504
+ H
505
+ H
506
+ H
507
+ H
508
+ dB
509
+ dC
510
+ dD
511
+ dE
512
+ dF
513
+ dG
514
+ dH
515
+ dI
516
+ dJ
517
+ dBA
518
+ dDE
519
+ dF C
520
+ dJI
521
+ dBC
522
+ dF I
523
+ dHG
524
+ dJK
525
+ dDC
526
+ dHI
527
+ dA
528
+ dK
529
+ dBAC
530
+ dDCE
531
+ dHGI
532
+ dJIK
533
+ dF CI
534
+ γdBC
535
+ γdDE
536
+ γdF I
537
+ γdJK
538
+ γdHI
539
+ γdDC
540
+ γdBA
541
+ γdF C
542
+ γdHG
543
+ γdA
544
+ γdB
545
+ γdC
546
+ γdD
547
+ γdE
548
+ γdF
549
+ γdG
550
+ γdH
551
+ γdI
552
+ γdJ
553
+ γdK
554
+ Z
555
+ Z
556
+ γdJI
557
+ γdBAC
558
+ γdDCE
559
+ γdF CI
560
+ γdHGI
561
+ γdJIK
562
+ Z
563
+ Z
564
+ Z
565
+ Z
566
+ Row
567
+ Column
568
+ Time
569
+ d... = ±1
570
+ γd
571
+ Z
572
+ β
573
+ X
574
+ = Rz(2γd)
575
+ = Rx(2β)
576
+ Init
577
+ Phase Separator
578
+ Mixer
579
+ β
580
+ X
581
+ β
582
+ β
583
+ β
584
+ β
585
+ β
586
+ β
587
+ β
588
+ β
589
+ β
590
+ β
591
+ Eval
592
+
593
+ ��
594
+
595
+ ⟨β,γ|HC|β,γ⟩
596
+ Figure 2: A 1-round QAOA circuit: (left) The problem instance is a hardware-native bipartite graph with an
597
+ arbitrary 3-edge-coloring given by K˝onig’s line coloring theorem. (right) Any quadratic term (colored edge) gives
598
+ rise to a combination of two CNOTs and a Rz-rotation in the phase separator, giving a CNOT depth of 6 due to
599
+ the degree-3 nodes. When targeting the degree-2 nodes with the CNOT gates, these constructions can be nested,
600
+ leading to no overhead when implementing the three-qubit terms: these always have a degree-2 node in the middle
601
+ (see Eq. (1)).
602
+ In order to mitigate decoherence on idle qubits, digital dynamical decoupling (DDD) is also tested for all
603
+ QAOA circuits. Dynamical Decoupling is an open loop quantum control technique error suppression technique
604
+ for mitigating decoherence on idle qubits [38–41].
605
+ Dynamical decoupling can be implemented with pulse level
606
+ quantum control, and digital dynamical decoupling can be implemented simply with circuit level instructions of
607
+ sequences of gates which are identities [41]. Note that digital dynamical decoupling is an approximation of pulse
608
+ level dynamical decoupling.
609
+ Dynamical decoupling has been experimentally demonstrated for superconducting
610
+ qubit quantum processors including IBMQ devices [42–44]. Dynamical decoupling in particular is applicable for
611
+ QAOA circuits because they can be relatively sparse and therefore have idle qubits [42]. DDD does not always
612
+ effective at consistently reducing errors during computation (for example because of other control errors present
613
+ on the device [40, 42]), and therefore the raw QAOA circuits are compared against the QAOA circuits with DDD
614
+ in the experiments section. In order to apply the DDD sequences to the OpenQASM [45] QAOA circuits, the
615
+ PadDynamicalDecoupling 1 method from Qiskit [24] is used, with the pulse alignment parameter set based on
616
+ the ibm washington backend properties. The native gateset of all current IBMQ backends is x, rz, cx, sx. The
617
+ circuit scheduling algorithm that is used for inserting the digital dynamical decoupling sequences is ALAP, which
618
+ schedules the stop time of instructions as late as possible 2. There are other scheduling algorithms that could be
619
+ applied which may increase the efficacy of dynamical decoupling. Note that the rz gate is a virtual gate which is
620
+ not executed on the hardware. There are different DDD gate sequences that can be applied, including Y-Y or X-X
621
+ sequences. Because the X Pauli gate is already a native gate of the IBMQ device, the X-X DDD sequence is used
622
+ for simplicity.
623
+ Note that the variable states for the optimization problems are either −1 or +1, but the circuit measurement
624
+ states are either 0 or 1. Therefore once the measurements are made on the QAOA circuits, for each variable in each
625
+ sample the variable state mapping of 0 → 1, 1 → −1 is performed. For circuit execution on the superconducting
626
+ transom qubit ibm washington, circuits are batched into jobs where each job is composed of a group of at most 250
627
+ circuits - the maximum number of circuits for a job on ibm washington is currently 300, but we use 250 in order
628
+ to reduce job errors related to the size of jobs. Grouping circuits into jobs is helpful for reducing the total amount
629
+ of compute time required to prepare and measure each circuit. When submitting the circuits to the backend,
630
+ they are all first locally transpiled via Qiskit [24] with optimization level=3. This transpilation converts the
631
+ gateset to the ibm washington native gateset, and the transpiler optimization attempts to simplify the circuit
632
+ where possible. The QAOA circuit execution on ibm washington spanned a large amount of time, and therefore
633
+ the backend versions were not consistent. The exact backend software versions were 1.3.7, 1.3.8, 1.3.13, 1.3.15,
634
+ 1.3.17.
635
+ 1https://qiskit.org/documentation/locale/bn_BN/stubs/qiskit.transpiler.passes.PadDynamicalDecoupling.html
636
+ 2https://qiskit.org/documentation/apidoc/transpiler_passes.html
637
+ 5
638
+
639
+ dA
640
+ dB
641
+ dC
642
+ dBA
643
+ dBC
644
+ dBAC = +1
645
+ dA
646
+ dB
647
+ dC
648
+ dBA
649
+ dBC
650
+ +1
651
+ −1
652
+ −1
653
+ −1
654
+ −2
655
+ 1
656
+ 1
657
+ 1
658
+ 2
659
+ 2 2
660
+ dA
661
+ dB
662
+ dC
663
+ dBA
664
+ dBC
665
+ +1
666
+ −3
667
+ −3
668
+ −1
669
+ +1
670
+ 6
671
+ 0
672
+ −1
673
+ −1
674
+ 2
675
+ −4
676
+ −4
677
+ dA
678
+ dB
679
+ dC
680
+ dBA
681
+ dBC
682
+ dBAC = −1
683
+ dA
684
+ dB
685
+ dC
686
+ dBA
687
+ dBC
688
+ +1
689
+ −1
690
+ −1
691
+ −1
692
+ −2
693
+ −1
694
+ 1
695
+ 1
696
+ 2
697
+ 2 2
698
+ dA
699
+ dB
700
+ dC
701
+ dBA
702
+ dBC
703
+ +3
704
+ −1
705
+ −1
706
+ +1
707
+ −1
708
+ 2
709
+ 0
710
+ 1
711
+ −1
712
+ −2
713
+ −4
714
+ −4
715
+ Figure 3:
716
+ (left) Two different embeddings for cubic +1/−1 terms. Each embedding needs two slack variable
717
+ qubits. Our overall embedding alternates between these two cubic term embeddings. Any embedding with only
718
+ one slack variable needs a 4-clique between the slack and the three original variables, which is not possible to
719
+ embed for consecutive cubic terms. (right) Embedding structures of the problem instances with higher order
720
+ terms embedded in parallel (independently) 6 times onto the logical Pegasus P16 graph. The view of this graph has
721
+ been slightly partitioned so that not all of the outer parts of the Pegasus chip are drawn. The light grey qubits and
722
+ couplers indicate unused hardware regions. The cyan coloring on nodes and edges denote the vertical qubits and
723
+ CNOTs on the ibm washington hardware graph (see Figure 1). The red coloring on nodes and edges denote the
724
+ horizontal lines of qubits and CNOTs on ibm washington. The green nodes and edges denote the order reduction
725
+ auxiliary variables. Note that the top right hand and lower left hand qubits are not present on the ibm washington
726
+ lattice - but for the purposes of generating the embeddings, these extra qubits are filled in to complete the lattice.
727
+ 2.3
728
+ Quantum Annealing
729
+ Quantum annealing is a proposed type of quantum computation which uses quantum fluctuations, such as quantum
730
+ tunneling, in order to search for the ground state of a user programmed Hamiltonian. Quantum annealing, in the
731
+ case of the transverse field Ising model implemented on D-Wave hardware, is explicitly described by the system
732
+ given in Eq. (3). The state begins at time zero purely in the transverse Hamiltonian state �
733
+ i σx
734
+ i , and then over
735
+ the course of the anneal (parameterized by the annealing time) the user programmed Ising is applied according the
736
+ function B(s). Together, A(s) and B(s) define the anneal schedules of the annealing process, and s is referred to
737
+ as the anneal fraction. The standard anneal schedule that is used is a linear interpolation between s = 0 and s = 1.
738
+ H = −A(s)
739
+ 2
740
+ � �
741
+ i
742
+ σx
743
+ i
744
+
745
+ + B(s)
746
+ 2
747
+
748
+ Hising
749
+
750
+ (3)
751
+ The adiabatic theorem states that if changes to the Hamiltonian of the system are sufficiently slow, the system
752
+ will remain in the ground state of problem Hamiltonian, thereby providing a computational mechanism for comput-
753
+ ing the ground state of optimization problems. The user programmed Ising Hising, acting on n qubits, is defined
754
+ in Eq. (4). The quadratic terms and the linear terms combined define the optimization problem instance that the
755
+ annealing procedure will ideally find the ground state of. As with QAOA, the objective of quantum annealing is
756
+ 6
757
+
758
+ 0.0
759
+ 0.2
760
+ 0.4
761
+ 0.6
762
+ 0.8
763
+ 1.0
764
+ Pause duration fraction
765
+ 0.0
766
+ 0.2
767
+ 0.4
768
+ 0.6
769
+ 0.8
770
+ 1.0
771
+ Anneal fraction [s]
772
+ Figure 4: All modified (forward) quantum annealing schedules which are tested in order to find the best anneal
773
+ schedule with a pause. The symmetric pause inserted into the normal linearly interpolated schedule defining the
774
+ A(s) and B(s) functions can provide better ground state sampling probability. The anneal fraction at which this
775
+ pause occurs is varied between 0.1 and 0.9 in steps of 0.1. The pause duration, as a fraction of the total annealing
776
+ time, is also varied between 0.1 and 0.9 in steps of 0.1. Although not shown in this figure, the annealing times are
777
+ also varied between 10, 100, 1000, and 2000 microseconds.
778
+ to find the variable assignment vector x that minimizes the cost function which has the form of Eq. (4).
779
+ Hising =
780
+ n
781
+
782
+ i
783
+ hiσz
784
+ i +
785
+ n
786
+
787
+ i<j
788
+ Jijσz
789
+ i σz
790
+ j
791
+ (4)
792
+ The goal is to be able to implement the Ising problems defined in Section 2.1 on D-Wave quantum annealers.
793
+ In order to implement the higher order terms, we will need to use order reduction in order to transform the cubic
794
+ terms into linear and quadratic terms [3, 31–34]. This order reduction will result in using additional variables,
795
+ usually called auxiliary or slack variables. Figure 3 shows the embeddings of the problem instances onto the logical
796
+ Pegasus P16 graph, including the order reduction procedure which is used. The order reduction procedure outlined
797
+ in Figure 3 allows for direct embedding of the order reduced polynomials onto the hardware graph, regardless of
798
+ whether the cubic term coefficient is +1 or −1. This order reduction ensures that the ground state(s) of the cubic
799
+ term are also the ground states of the order reduced Ising. Additionally, this order reduction ensures that for
800
+ every excited state of the cubic term, there are no slack variable assignments which result in the original variables
801
+ having an energy less than or equal to the ground state of the original cubic term. This order reduction procedure
802
+ allows any problem in the form of Eq. (1) to be mapped natively to quantum annealing hardware which accepts
803
+ problems with the form of Eq. (4). Importantly, this procedure does not require minor-embedding, even including
804
+ the auxiliary variables.
805
+ In order to get more problem samples for the same QPU time, the other strategy that is employed is to embed
806
+ multiple independent problem instances onto the hardware graph and thus be able to execute several instances in
807
+ the same annealing cycle(s). This technique is referred to as parallel quantum annealing [33, 46] or tiling 3. Figure 3
808
+ (right) shows the parallel embeddings on a logical Pegasus graph. Because some of the logical embeddings may use
809
+ a qubit or coupler which is missing on the actual hardware, less than 6 parallel instances can be tiled onto the chips
810
+ to be executed at the same time. For Advantage system4.1, 2 independent embeddings of the problem instances
811
+ could be created without encountering missing hardware. For Advantage system6.1, 3 independent embeddings of
812
+ the problem instances could be created. The structure of the heavy-hexagonal lattice onto Pegasus can be visually
813
+ seen in Figure 3; the horizontal heavy-hex lines (Figure 1) are mapped to diagonal Pegasus qubit lines that run
814
+ from top left to bottom right of the square Pegasus graph rendering. Then the vertical heavy-hexagonal qubits are
815
+ mapped to QA qubits in between the diagonal qubit lines.
816
+ In order to optimize the quantum annealing parameters, with relatively similar complexity to the angle param-
817
+ eter search done for QAOA, the forward anneal schedule with pausing is optimized over a gridsearch. Pausing the
818
+ 3https://dwave-systemdocs.readthedocs.io/en/samplers/reference/composites/tiling.html
819
+ 7
820
+
821
+ 200
822
+ 150
823
+ 100
824
+ 50
825
+ 0
826
+ 50
827
+ Energy
828
+ 0
829
+ 100
830
+ 200
831
+ 300
832
+ 400
833
+ 500
834
+ 600
835
+ 700
836
+ 800
837
+ Counts
838
+ random samples
839
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
840
+ 1-round [[0.363], [2.882]]
841
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
842
+ 1-round DDD [[0.389], [2.856]]
843
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.3
844
+ Advantage_system6.1 AT=2000 s=0.6 pause=0.5
845
+ Figure 5: Direct energy histogram comparison of QA and QAOA results for one of the ten problem instances.
846
+ Here the energies being plotted are the full energy spectrum for the parameters which gave the minimum mean
847
+ energy across the parameter grid searches performed across the QA and QAOA parameters. The optimal parameter
848
+ combination is given in the figure legend. For QA parameters, the annealing time in microseconds, the forward
849
+ anneal schedule (symmetric) pause fraction, and anneal fraction, are given in the legend. For the QAOA angle
850
+ parameters, the format is [β, γ], and are rounded to 3 decimal places. The mean for each dataset is marked with
851
+ vertical dashed lines and the minimum energy found in each dataset is marked with solid vertical lines. The energy
852
+ histogram plots for the other 9 problems are shown in Figure 6.
853
+ anneal at the appropriate spot can provide higher chances of sampling the ground state [47]. Figure 4 shows this
854
+ anneal schedule search space - importantly the annealing times used in these schedule are also optimized for. The
855
+ total number of QA parameters which are varied are 9 anneal fractions, 9 pause durations, and 4 annealing times
856
+ (10, 100, 1000, 2000 microseconds). Therefore, the total number of parameter combinations which are considered
857
+ in the grid search is 324. 2000 microseconds is the longest annealing time available on the current D-Wave quantum
858
+ annealers. The number of anneals sampled for each D-Wave job was 500. The annealing times and the anneal
859
+ schedules were varied in a simple grid search. Readout and programming thermalization times are both set to 0
860
+ microseconds. All other parameters are set to default, with the exception of the modified annealing schedule.
861
+ 3
862
+ Results
863
+ Figures 5 and 6 combined show the detailed energy distributions for all 10 problem instances sampled using the
864
+ best parameter choices found for QA and QAOA. These histograms include the four variants of QAOA - 1 and 2
865
+ rounds with and without DDD. The histograms include 10000 random samples (binomial distribution with p = 0.5)
866
+ on the problem instances.
867
+ QA performs better than QAOA: The most notable observation across these histograms is that clearly quantum
868
+ annealing results in better variable assignments compared to all tested variations of QAOA; this clear stratification
869
+ of the algorithms capabilities is consistent across all 10 problem instances. Notice that the minimum energies
870
+ achieved by QAOA (marked by the solid vertical lines) do not reach the energy distribution sampled by the
871
+ quantum annealers. The characteristics of each of the 10 problem instances are slightly different, but this trend is
872
+ very clear.
873
+ QAOA performs better than random sampling: Both QA and QAOA sampled better solutions than the
874
+ 8
875
+
876
+ 200
877
+ 150
878
+ 100
879
+ 50
880
+ 0
881
+ 50
882
+ Energy
883
+ 0
884
+ 200
885
+ 400
886
+ 600
887
+ 800
888
+ Counts
889
+ random samples
890
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
891
+ 1-round [[0.363], [2.882]]
892
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
893
+ 1-round DDD [[0.338], [2.882]]
894
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.9
895
+ Advantage_system6.1 AT=2000 s=0.6 pause=0.5
896
+ 200
897
+ 150
898
+ 100
899
+ 50
900
+ 0
901
+ 50
902
+ Energy
903
+ 0
904
+ 100
905
+ 200
906
+ 300
907
+ 400
908
+ 500
909
+ 600
910
+ 700
911
+ 800
912
+ Counts
913
+ random samples
914
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
915
+ 1-round [[0.363], [2.882]]
916
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
917
+ 1-round DDD [[0.441], [2.908]]
918
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.3
919
+ Advantage_system6.1 AT=2000 s=0.5 pause=0.4
920
+ 200
921
+ 150
922
+ 100
923
+ 50
924
+ 0
925
+ 50
926
+ Energy
927
+ 0
928
+ 100
929
+ 200
930
+ 300
931
+ 400
932
+ Counts
933
+ random samples
934
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
935
+ 1-round [[0.389], [2.882]]
936
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
937
+ 1-round DDD [[0.441], [2.908]]
938
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.4
939
+ Advantage_system6.1 AT=2000 s=0.7 pause=0.1
940
+ 200
941
+ 150
942
+ 100
943
+ 50
944
+ 0
945
+ 50
946
+ Energy
947
+ 0
948
+ 200
949
+ 400
950
+ 600
951
+ 800
952
+ Counts
953
+ random samples
954
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
955
+ 1-round [[0.389], [2.882]]
956
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
957
+ 1-round DDD [[0.441], [2.856]]
958
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.5
959
+ Advantage_system6.1 AT=2000 s=0.6 pause=0.2
960
+ 200
961
+ 150
962
+ 100
963
+ 50
964
+ 0
965
+ 50
966
+ Energy
967
+ 0
968
+ 100
969
+ 200
970
+ 300
971
+ 400
972
+ 500
973
+ 600
974
+ 700
975
+ 800
976
+ Counts
977
+ random samples
978
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
979
+ 1-round [[0.363], [2.882]]
980
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
981
+ 1-round DDD [[0.415], [2.882]]
982
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.4
983
+ Advantage_system6.1 AT=2000 s=0.6 pause=0.2
984
+ 150
985
+ 100
986
+ 50
987
+ 0
988
+ 50
989
+ Energy
990
+ 0
991
+ 100
992
+ 200
993
+ 300
994
+ 400
995
+ 500
996
+ Counts
997
+ random samples
998
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
999
+ 1-round [[0.389], [2.882]]
1000
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
1001
+ 1-round DDD [[0.363], [2.882]]
1002
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.4
1003
+ Advantage_system6.1 AT=2000 s=0.6 pause=0.7
1004
+ 200
1005
+ 150
1006
+ 100
1007
+ 50
1008
+ 0
1009
+ 50
1010
+ Energy
1011
+ 0
1012
+ 200
1013
+ 400
1014
+ 600
1015
+ 800
1016
+ Counts
1017
+ random samples
1018
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
1019
+ 1-round [[0.338], [2.882]]
1020
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
1021
+ 1-round DDD [[0.415], [2.908]]
1022
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.5
1023
+ Advantage_system6.1 AT=1000 s=0.6 pause=0.6
1024
+ 150
1025
+ 100
1026
+ 50
1027
+ 0
1028
+ 50
1029
+ Energy
1030
+ 0
1031
+ 100
1032
+ 200
1033
+ 300
1034
+ 400
1035
+ 500
1036
+ 600
1037
+ 700
1038
+ 800
1039
+ Counts
1040
+ random samples
1041
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
1042
+ 1-round [[0.363], [2.882]]
1043
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
1044
+ 1-round DDD [[0.441], [2.882]]
1045
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.6
1046
+ Advantage_system6.1 AT=1000 s=0.6 pause=0.3
1047
+ 200
1048
+ 150
1049
+ 100
1050
+ 50
1051
+ 0
1052
+ 50
1053
+ Energy
1054
+ 0
1055
+ 100
1056
+ 200
1057
+ 300
1058
+ 400
1059
+ 500
1060
+ 600
1061
+ 700
1062
+ 800
1063
+ Counts
1064
+ random samples
1065
+ 2-round [[0.524, 0.262], [2.88, 2.88]]
1066
+ 1-round [[0.441], [2.882]]
1067
+ 2-round DDD [[0.524, 0.262], [2.88, 2.88]]
1068
+ 1-round DDD [[0.441], [2.882]]
1069
+ Advantage_system4.1 AT=2000 s=0.6 pause=0.4
1070
+ Advantage_system6.1 AT=2000 s=0.7 pause=0.3
1071
+ Figure 6: Direct energy histogram comparison of QA and QAOA results for the other nine problem instances,
1072
+ continuing from Figure 5.
1073
+ 10000 random samples.
1074
+ Although an obvious observation from the distributions in Figures 6 and 5, it is not
1075
+ trivial that the QAOA samples had better objective function values compared to random sampling. The reason
1076
+ this is not trivial is because at sufficient circuit, which is not difficult to reach, the computation will entirely
1077
+ decohere and the computation will not be meaningful. This result is encouraging because it shows that short depth
1078
+ circuit constructions, combined with increasing scale of near term quantum computers, can begin to yield relevant
1079
+ computations for larger system sizes (in this case, 127 variables).
1080
+ The effect of digital dynamical decoupling: The dataset shown in Figure 6 also allows for a direct quantifi-
1081
+ cation of how successful the digital dynamical decoupling passes were at improving the QAOA circuit executions.
1082
+ Table 2 shows a comparison of the four QAOA implementations. For 2-round QAOA, DDD improved the mean
1083
+ sample energy for 10 out of the 10 problem instances. For 1-round QAOA, DDD improved the mean sample energy
1084
+ for 4 out of the 10 problem instances. This shows that digital dynamical decoupling does not uniformly improve
1085
+ the performance of the QAOA circuits. This suggests that the qubits in the 2-round QAOA circuits have more
1086
+ available idle time compared to the 1-round QAOA circuits, which would allow for DDD to improve the circuit
1087
+ performance. The 2-round QAOA results had better average energy compared the 1-round results in 6 out of the
1088
+ 10 problem instances.
1089
+ Optimal parameter choices - QAOA: The optimal 2-round QAOA angles for all 10 problems with and without
1090
+ dynamical decoupling is the same. The optimal 1-round QAOA angles are not consistent across all problems, and
1091
+ even vary between the with and without DDD circuit executions. However, even though the exact optimal angle
1092
+ assignments are not consistent across all problems the, they are very close to each other which is notable because
1093
+ it indicates that the optimal angles may be identical or nearly identical but the search space is being obscured by
1094
+ the noise in the computation.
1095
+ Optimal parameter choices - QA: Figure 6 also allows examination of how stable the different parameters are,
1096
+ both across the 10 problem instances but also within each problem instance. In the case of quantum annealing,
1097
+ but the optimal annealing times are always 2000 and the optimal pause schedule is not incredibly consistent with
1098
+ pause fraction durations ranging from 0.1 to 0.9 and with anneal fractions s ranging from 0.5 to 0.7.
1099
+ 9
1100
+
1101
+ p = 1
1102
+ p = 2
1103
+ p = 1 with DDD
1104
+ p = 2 with DDD
1105
+ p = 1 (no DDD) better than -
1106
+ -
1107
+ 10/10
1108
+ 5/10
1109
+ 4/10
1110
+ p = 2 (no DDD) better than -
1111
+ 0/10
1112
+ -
1113
+ 2/10
1114
+ 0/10
1115
+ p = 1 (with DDD) better than -
1116
+ 5/10
1117
+ 8/10
1118
+ -
1119
+ 4/10
1120
+ p = 2 (with DDD) better than -
1121
+ 6/10
1122
+ 10/10
1123
+ 6/10
1124
+ -
1125
+ Table 2: How the four different QAOA implementations, one and two rounds with and without DDD, compare
1126
+ against each other in terms of in how many of the 10 random instances each method was better than the other
1127
+ three methods in terms of mean objective function value across the 10000 samples (for the best angle combination).
1128
+ There is a clear finding in the order of performance of the four methods; p = 2 with no DDD performed the worse,
1129
+ p = 1 with no DDD performed the next best, p = 1 with DDD performed the next best, and p = 2 with DDD
1130
+ performed the best overall.
1131
+ D-Wave devices performance differences: One last observation from Figure 6 is that there a small but consis-
1132
+ tent performance difference between the two quantum annealers; the slightly older generation Advantage system4.1
1133
+ yields lower mean energy than Advantage system6.1.
1134
+ 4
1135
+ Discussion
1136
+ It is of considerable interest to determine how effective quantum annealing and QAOA are at computing the
1137
+ optimal solutions of combinatorial optimization problems. Combinatorial optimization problems have wide reaching
1138
+ applicability, and being able to solve them faster or to get better heuristic solutions is a very relevant topic
1139
+ in computing. In this article, we have presented experimental results for a fair direct comparison of QAOA and
1140
+ quantum annealing, implemented on the currently accessible quantum hardware via cloud computing. This research
1141
+ has specifically found the following:
1142
+ 1. Quantum annealing finds higher quality solutions to the random test Isings with higher order terms compared
1143
+ to the short depth QAOA p = 1 and p = 2 circuits, with reasonably fine grid searches over the QAOA angles
1144
+ and quantum annealing schedules with pauses.
1145
+ 2. QAOA performs noticeably better than random sampling - this is mostly due to the short depth QAOA circuit
1146
+ constructions which allow reasonably robust computations to be executed without the qubits decohering on
1147
+ current quantum computers.
1148
+ 3. The short depth QAOA circuit construction is notable because it allows for higher order terms in the Ising,
1149
+ and is scalable to a heavy-hexagonal lattice of any size, therefore this circuit construction can be used for
1150
+ future implementations of QAOA on devices with heavy-hexagonal lattices.
1151
+ 4. Dynamical decoupling can improve the computation of QAOA on NISQ computers.
1152
+ 5
1153
+ Acknowledgments
1154
+ This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los
1155
+ Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Ad-
1156
+ ministration of U.S. Department of Energy (Contract No. 89233218CNA000001). We acknowledge the use of IBM
1157
+ Quantum services for this work.
1158
+ The views expressed are those of the authors, and do not reflect the official
1159
+ policy or position of IBM or the IBM Quantum team. The research presented in this article was supported by
1160
+ the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project
1161
+ number 20220656ER. This research used resources provided by the Darwin testbed at Los Alamos National Labo-
1162
+ ratory (LANL) which is funded by the Computational Systems and Software Environments subprogram of LANL’s
1163
+ Advanced Simulation and Computing program (NNSA/DOE).
1164
+ LA-UR-22-33077
1165
+ 10
1166
+
1167
+ References
1168
+ [1]
1169
+ Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum annealing in the transverse Ising model”. In: Physical
1170
+ Review E 58.5 (1998), pp. 5355–5363. doi: 10.1103/physreve.58.5355. url: https://doi.org/10.1103%
1171
+ 2Fphysreve.58.5355.
1172
+ [2]
1173
+ Arnab Das and Bikas K Chakrabarti. “Colloquium: Quantum annealing and analog quantum computation”.
1174
+ In: Reviews of Modern Physics 80.3 (2008), p. 1061.
1175
+ [3]
1176
+ Philipp Hauke et al. “Perspectives of quantum annealing: methods and implementations”. In: Reports on
1177
+ Progress in Physics 83.5 (2020), p. 054401. doi: 10.1088/1361-6633/ab85b8. url: https://dx.doi.org/
1178
+ 10.1088/1361-6633/ab85b8.
1179
+ [4]
1180
+ Sheir Yarkoni et al. “Quantum annealing for industry applications: introduction and review”. In: Reports on
1181
+ Progress in Physics 85.10 (2022), p. 104001. doi: 10.1088/1361-6633/ac8c54. url: https://doi.org/10.
1182
+ 1088%2F1361-6633%2Fac8c54.
1183
+ [5]
1184
+ Stuart Hadfield et al. “From the Quantum Approximate Optimization Algorithm to a Quantum Alternating
1185
+ Operator Ansatz”. In: Algorithms 12.2 (2019), p. 34. doi: 10.3390/a12020034. url: https://doi.org/10.
1186
+ 3390%2Fa12020034.
1187
+ [6]
1188
+ Jeremy Cook, Stephan Eidenbenz, and Andreas B¨artschi. “The Quantum Alternating Operator Ansatz on
1189
+ Maximum k-Vertex Cover”. In: 2020 IEEE International Conference on Quantum Computing and Engineering
1190
+ (QCE). 2020, pp. 83–92. doi: 10.1109/QCE49297.2020.00021.
1191
+ [7]
1192
+ Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm.
1193
+ 2014. doi: 10.48550/ARXIV.1411.4028. url: https://arxiv.org/abs/1411.4028.
1194
+ [8]
1195
+ Phillip C. Lotshaw et al. “Scaling quantum approximate optimization on near-term hardware”. In: Scientific
1196
+ Reports 12.1 (2022). doi: 10.1038/s41598-022-14767-w. url: https://doi.org/10.1038%2Fs41598-
1197
+ 022-14767-w.
1198
+ [9]
1199
+ Tameem Albash and Daniel A. Lidar. “Demonstration of a Scaling Advantage for a Quantum Annealer over
1200
+ Simulated Annealing”. In: Phys. Rev. X 8 (3 2018), p. 031016. doi: 10.1103/PhysRevX.8.031016. url:
1201
+ https://link.aps.org/doi/10.1103/PhysRevX.8.031016.
1202
+ [10]
1203
+ Andrew D King et al. “Scaling advantage over path-integral Monte Carlo in quantum simulation of geomet-
1204
+ rically frustrated magnets”. In: Nature communications 12.1 (2021), pp. 1–6. doi: 10.1038/s41467-021-
1205
+ 20901-5.
1206
+ [11]
1207
+ Edward Farhi and Aram W Harrow. Quantum Supremacy through the Quantum Approximate Optimization
1208
+ Algorithm. 2016. doi: 10.48550/ARXIV.1602.07674. url: https://arxiv.org/abs/1602.07674.
1209
+ [12]
1210
+ Lucas T. Brady et al. “Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization
1211
+ Algorithm Problems”. In: Phys. Rev. Lett. 126 (7 2021), p. 070505. doi: 10.1103/PhysRevLett.126.070505.
1212
+ url: https://link.aps.org/doi/10.1103/PhysRevLett.126.070505.
1213
+ [13]
1214
+ Madita Willsch et al. “Benchmarking the quantum approximate optimization algorithm”. In: Quantum In-
1215
+ formation Processing 19.7 (2020), pp. 1–24. doi: 10.1007/s11128-020-02692-8.
1216
+ [14]
1217
+ Michael Streif and Martin Leib. Comparison of QAOA with Quantum and Simulated Annealing. 2019. doi:
1218
+ 10.48550/ARXIV.1901.01903. url: https://arxiv.org/abs/1901.01903.
1219
+ [15]
1220
+ Elijah Pelofske et al. “Sampling on NISQ Devices: ”Who’s the Fairest One of All?””. In: 2021 IEEE Interna-
1221
+ tional Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. doi: 10.1109/qce52317.
1222
+ 2021.00038. url: https://doi.org/10.1109%2Fqce52317.2021.00038.
1223
+ [16]
1224
+ Stefan H. Sack and Maksym Serbyn. “Quantum annealing initialization of the quantum approximate op-
1225
+ timization algorithm”. In: Quantum 5 (2021), p. 491. doi: 10.22331/q-2021-07-01-491. url: https:
1226
+ //doi.org/10.22331%2Fq-2021-07-01-491.
1227
+ [17]
1228
+ John Golden et al. Evidence for Super-Polynomial Advantage of QAOA over Unstructured Search. 2022. doi:
1229
+ 10.48550/ARXIV.2202.00648. url: https://arxiv.org/abs/2202.00648.
1230
+ [18]
1231
+ Johannes Weidenfeller et al. “Scaling of the quantum approximate optimization algorithm on superconducting
1232
+ qubit based hardware”. In: Quantum 6 (Dec. 2022), p. 870. issn: 2521-327X. doi: 10.22331/q-2022-12-
1233
+ 07-870. url: https://doi.org/10.22331/q-2022-12-07-870.
1234
+ 11
1235
+
1236
+ [19]
1237
+ Matthew P. Harrigan et al. “Quantum approximate optimization of non-planar graph problems on a planar
1238
+ superconducting processor”. In: Nature Physics 17.3 (2021), pp. 332–336. doi: 10.1038/s41567-020-01105-
1239
+ y. url: https://doi.org/10.1038%2Fs41567-020-01105-y.
1240
+ [20]
1241
+ Pradeep Niroula et al. “Constrained quantum optimization for extractive summarization on a trapped-ion
1242
+ quantum computer”. In: Scientific Reports 12.1 (2022), pp. 1–14. doi: 10.1038/s41598-022-20853-w.
1243
+ [21]
1244
+ Dylan Herman et al. Portfolio Optimization via Quantum Zeno Dynamics on a Quantum Processor. 2022.
1245
+ doi: 10.48550/ARXIV.2209.15024. url: https://arxiv.org/abs/2209.15024.
1246
+ [22]
1247
+ Thomas A Caswell et al. matplotlib/matplotlib. Version v3.4.3. doi: 10.5281/zenodo.5194481.
1248
+ [23]
1249
+ J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering 9.3 (2007),
1250
+ pp. 90–95. doi: 10.1109/MCSE.2007.55.
1251
+ [24]
1252
+ Matthew Treinish et al. Qiskit/qiskit: Qiskit 0.34.1. Version 0.34.1. Jan. 2022. doi: 10.5281/zenodo.5823346.
1253
+ [25]
1254
+ Christopher Chamberland et al. “Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits”.
1255
+ In: Phys. Rev. X 10 (1 2020), p. 011022. doi: 10.1103/PhysRevX.10.011022. url: https://link.aps.
1256
+ org/doi/10.1103/PhysRevX.10.011022.
1257
+ [26]
1258
+ Stefanie Zbinden et al. “Embedding algorithms for quantum annealers with chimera and pegasus connection
1259
+ topologies”. In: International Conference on High Performance Computing. Springer. 2020, pp. 187–206. doi:
1260
+ 10.1007/978-3-030-50743-5_10.
1261
+ [27]
1262
+ Nike Dattani, Szilard Szalay, and Nick Chancellor. Pegasus: The second connectivity graph for large-scale
1263
+ quantum annealing hardware. 2019. doi: 10.48550/ARXIV.1901.07636. url: https://arxiv.org/abs/
1264
+ 1901.07636.
1265
+ [28]
1266
+ C. H. Tseng et al. “Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum
1267
+ computer”. In: Phys. Rev. A 61 (1 1999), p. 012302. doi: 10.1103/PhysRevA.61.012302. url: https:
1268
+ //link.aps.org/doi/10.1103/PhysRevA.61.012302.
1269
+ [29]
1270
+ Nicholas Chancellor, Stefan Zohren, and Paul A Warburton. “Circuit design for multi-body interactions in
1271
+ superconducting quantum annealing systems with applications to a scalable architecture”. In: npj Quantum
1272
+ Information 3.1 (2017), pp. 1–7. doi: 10.1038/s41534-017-0022-6.
1273
+ [30]
1274
+ Colin Campbell and Edward Dahl. “QAOA of the Highest Order”. In: 2022 IEEE 19th International Confer-
1275
+ ence on Software Architecture Companion (ICSA-C). 2022, pp. 141–146. doi: 10.1109/ICSA-C54293.2022.
1276
+ 00035.
1277
+ [31]
1278
+ Elisabetta Valiante et al. “Computational overhead of locality reduction in binary optimization problems”. In:
1279
+ Computer Physics Communications 269 (2021), p. 108102. issn: 0010-4655. doi: https://doi.org/10.1016/
1280
+ j.cpc.2021.108102. url: https://www.sciencedirect.com/science/article/pii/S0010465521002149.
1281
+ [32]
1282
+ Hiroshi Ishikawa. “Transformation of General Binary MRF Minimization to the First-Order Case”. In: IEEE
1283
+ Transactions on Pattern Analysis and Machine Intelligence 33.6 (2011), pp. 1234–1249. doi: 10.1109/TPAMI.
1284
+ 2010.91.
1285
+ [33]
1286
+ Elijah Pelofske et al. “Quantum annealing algorithms for Boolean tensor networks”. In: Scientific Reports 12.1
1287
+ (2022). doi: 10.1038/s41598-022-12611-9. url: https://doi.org/10.1038%2Fs41598-022-12611-9.
1288
+ [34]
1289
+ Shuxian Jiang et al. “Quantum annealing for prime factorization”. In: Scientific reports 8.1 (2018), pp. 1–9.
1290
+ doi: 10.1038/s41598-018-36058-z.
1291
+ [35]
1292
+ M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics 3.9 (2021), pp. 625–644. doi:
1293
+ 10.1038/s42254-021-00348-9. url: https://doi.org/10.1038%2Fs42254-021-00348-9.
1294
+ [36]
1295
+ Samson Wang et al. “Noise-induced barren plateaus in variational quantum algorithms”. In: Nature commu-
1296
+ nications 12.1 (2021), pp. 1–11. doi: 10.1038/s41467-021-27045-6.
1297
+ [37]
1298
+ Yingyue Zhu et al. “Multi-round QAOA and advanced mixers on a trapped-ion quantum computer”. In:
1299
+ Quantum Science and Technology 8.1 (2022), p. 015007. doi: 10.1088/2058-9565/ac91ef. url: https:
1300
+ //dx.doi.org/10.1088/2058-9565/ac91ef.
1301
+ [38]
1302
+ Dieter Suter and Gonzalo A. ´Alvarez. “Colloquium: Protecting quantum information against environmental
1303
+ noise”. In: Rev. Mod. Phys. 88 (4 2016), p. 041001. doi: 10.1103/RevModPhys.88.041001. url: https:
1304
+ //link.aps.org/doi/10.1103/RevModPhys.88.041001.
1305
+ 12
1306
+
1307
+ [39]
1308
+ Lorenza Viola, Emanuel Knill, and Seth Lloyd. “Dynamical Decoupling of Open Quantum Systems”. In:
1309
+ Phys. Rev. Lett. 82 (12 1999), pp. 2417–2421. doi: 10.1103/PhysRevLett.82.2417. url: https://link.
1310
+ aps.org/doi/10.1103/PhysRevLett.82.2417.
1311
+ [40]
1312
+ Mustafa Ahmed Ali Ahmed, Gonzalo A. ´Alvarez, and Dieter Suter. “Robustness of dynamical decoupling
1313
+ sequences”. In: Physical Review A 87.4 (2013). doi: 10.1103/physreva.87.042309. url: https://doi.
1314
+ org/10.1103%2Fphysreva.87.042309.
1315
+ [41]
1316
+ Ryan LaRose et al. “Mitiq: A software package for error mitigation on noisy quantum computers”. In: Quan-
1317
+ tum 6 (2022), p. 774. doi: 10.22331/q-2022-08-11-774. url: https://doi.org/10.22331%2Fq-2022-
1318
+ 08-11-774.
1319
+ [42]
1320
+ Siyuan Niu and Aida Todri-Sanial. “Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM
1321
+ Quantum Computers”. In: IEEE Transactions on Quantum Engineering 3 (2022), pp. 1–10. doi: 10.1109/
1322
+ tqe.2022.3203153. url: https://doi.org/10.1109%2Ftqe.2022.3203153.
1323
+ [43]
1324
+ Nic Ezzell et al. Dynamical decoupling for superconducting qubits: a performance survey. 2022. doi: 10.
1325
+ 48550/ARXIV.2207.03670. url: https://arxiv.org/abs/2207.03670.
1326
+ [44]
1327
+ Bibek Pokharel et al. “Demonstration of Fidelity Improvement Using Dynamical Decoupling with Supercon-
1328
+ ducting Qubits”. In: Phys. Rev. Lett. 121 (22 2018), p. 220502. doi: 10.1103/PhysRevLett.121.220502.
1329
+ url: https://link.aps.org/doi/10.1103/PhysRevLett.121.220502.
1330
+ [45]
1331
+ Andrew W. Cross et al. Open Quantum Assembly Language. 2017. doi: 10.48550/ARXIV.1707.03429. url:
1332
+ https://arxiv.org/abs/1707.03429.
1333
+ [46]
1334
+ Elijah Pelofske, Georg Hahn, and Hristo N. Djidjev. “Parallel quantum annealing”. In: Scientific Reports 12.1
1335
+ (2022). doi: 10.1038/s41598-022-08394-8. url: https://doi.org/10.1038%2Fs41598-022-08394-8.
1336
+ [47]
1337
+ Jeffrey Marshall et al. “Power of Pausing: Advancing Understanding of Thermalization in Experimental
1338
+ Quantum Annealers”. In: Phys. Rev. Appl. 11 (4 2019), p. 044083. doi: 10.1103/PhysRevApplied.11.
1339
+ 044083. url: https://link.aps.org/doi/10.1103/PhysRevApplied.11.044083.
1340
+ 13
1341
+
4dAyT4oBgHgl3EQfpPgc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69E1T4oBgHgl3EQfTgNE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6f8e14d19b5dae642843d3c1de6bd8502529893dbb78d89a7c279e9af9db184
3
+ size 116381
69E3T4oBgHgl3EQfpwru/content/tmp_files/2301.04646v1.pdf.txt ADDED
@@ -0,0 +1,1019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 12, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ HAWC Detection of a TeV Halo Candidate Surrounding a Radio-quiet pulsar
4
+ A. Albert
5
+ ,1 R. Alfaro
6
+ ,2 J.C. Arteaga-Vel´azquez,3 E. Belmont-Moreno
7
+ ,2 T. Capistr´an
8
+ ,4
9
+ A. Carrami˜nana
10
+ ,5 S. Casanova
11
+ ,6 J. Cotzomi
12
+ ,7 S. Couti˜no de Le´on
13
+ ,8 E. De la Fuente
14
+ ,9
15
+ R. Diaz Hernandez,5 M.A. DuVernois
16
+ ,8 J.C. D´ıaz-V´elez
17
+ ,9 C. Espinoza
18
+ ,2 K.L. Fan,10 N. Fraija
19
+ ,4
20
+ K. Fang
21
+ ,8 J.A. Garc´ıa-Gonz´alez
22
+ ,11 F. Garfias
23
+ ,4 Armelle Jardin-Blicq
24
+ ,12, 13 M.M. Gonz´alez
25
+ ,4
26
+ J.A. Goodman
27
+ ,10 J.P. Harding
28
+ ,1 S. Hernandez
29
+ ,2 D. Huang
30
+ ,14 F. Hueyotl-Zahuantitla
31
+ ,15
32
+ A. Iriarte
33
+ ,4 V. Joshi
34
+ ,16 A. Lara
35
+ ,17 J. Lee
36
+ ,18 H. Le´on Vargas
37
+ ,2 J.T. Linnemann
38
+ ,19
39
+ A.L. Longinotti
40
+ ,4 G. Luis-Raya
41
+ ,20 K. Malone
42
+ ,21 O. Martinez
43
+ ,7 J. Mart´ınez-Castro
44
+ ,22
45
+ J.A. Matthews
46
+ ,23 J.A. Morales-Soto
47
+ ,3 E. Moreno
48
+ ,7 M. Mostaf´a
49
+ ,24 A. Nayerhoda
50
+ ,6 L. Nellen
51
+ ,25
52
+ M. Newbold
53
+ ,26 M.U. Nisa
54
+ ,27, 28 Y. P´erez Araujo
55
+ ,4 E.G. P´erez-P´erez
56
+ ,20 C.D. Rho
57
+ ,29
58
+ D. Rosa-Gonz´alez
59
+ ,5 M. Schneider
60
+ ,10 J. Serna-Franco,2 A.J. Smith
61
+ ,10 Y. Son,18 R.W. Springer
62
+ ,26
63
+ K. Tollefson
64
+ ,27 I. Torres
65
+ ,5 R. Torres-Escobedo,30 X. Wang,14 K. Whitaker,24 E. Willox
66
+ ,10 H. Zhou
67
+ ,30
68
+ C. de Le´on
69
+ ,3
70
+ (THE HAWC COLLABORATION)
71
+ 1Physics Division, Los Alamos National Laboratory, Los Alamos, NM, USA
72
+ 2Instituto de F´ısica, Universidad Nacional Aut´onoma de M´exico, Ciudad de Mexico, Mexico
73
+ 3Universidad Michoacana de San Nicol´as de Hidalgo, Morelia, Mexico
74
+ 4Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ciudad de Mexico, Mexico
75
+ 5Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica, Puebla, Mexico
76
+ 6Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 IFJ-PAN, Krakow, Poland
77
+ 7Facultad de Ciencias F´ısico Matem´aticas, Benem´erita Universidad Aut´onoma de Puebla, Puebla, Mexico
78
+ 8Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
79
+ 9Departamento de F´ısica, Centro Universitario de Ciencias Exactase Ingenierias, Universidad de Guadalajara, Guadalajara, Mexico
80
+ 10Department of Physics, University of Maryland, College Park, MD, USA
81
+ 11Tecnologico de Monterrey, Escuela de Ingenier´ıa y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., Mexico, 64849
82
+ 12Universit´e Bordeaux, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
83
+ 13Max-Planck Institute for Nuclear Physics, D-69117 Heidelberg, Germany
84
+ 14Department of Physics, Michigan Technological University, Houghton, MI, USA
85
+ 15Universidad Aut´onoma de Chiapas, Tuxtla Guti´errez, Chiapas, M´exico
86
+ 16Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg, Erlangen, Germany
87
+ 17Instituto de Geof´ısica, Universidad Nacional Aut´onoma de M´exico, Ciudad de Mexico, Mexico
88
+ 18University of Seoul, Seoul, Rep.of Korea
89
+ 19Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
90
+ 20Universidad Politecnica de Pachuca, Pachuca, Hgo, Mexico
91
+ 21Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, NM, USA
92
+ 22Centro de Investigaci´on en Computaci´on, Instituto Polit´ecnico Nacional, M´exico City, M´exico.
93
+ 23Dept of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
94
+ 24Department of Physics, Pennsylvania State University, University Park, PA, USA
95
+ 25Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de Mexico, Ciudad de Mexico, Mexico
96
+ 26Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
97
+ 27Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
98
+ 28Department of Physics, Michigan Technological University, Houghton, MI, USA
99
+ 29University of Seoul, Seoul, Rep. of Korea
100
+ 30Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
101
+ Corresponding author: Sara Couti˜no de Le´on
102
103
+ arXiv:2301.04646v1 [astro-ph.HE] 11 Jan 2023
104
+
105
+ ID2
106
+ ABSTRACT
107
+ Extended very-high-energy (VHE; 0.1-100 TeV) γ-ray emission has been observed around several
108
+ middle-aged pulsars and referred to as “TeV halos”. Their formation mechanism remains under debate.
109
+ It is also unknown whether they are ubiquitous or related to certain subgroup of pulsars. With 2321
110
+ days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected
111
+ VHE γ-ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with > 6σ significance.
112
+ By performing likelihood tests with different spectral and spatial models and comparing the TeV
113
+ spectrum with multi-wavelength observations of nearby sources, we show that this excess is consistent
114
+ with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multi-
115
+ wavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a
116
+ non-crowded region in the outer Galaxy. It shares similar properties to the other halos but its pulsar is
117
+ younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars
118
+ and their formation does not depend on the configuration of the pulsar magnetosphere.
119
+ Keywords: Pulsars (1306) — Gamma-ray astronomy(628) — High-energy astrophysics(739)
120
+ 1. INTRODUCTION
121
+ Extended TeV gamma-ray emission has been observed
122
+ around several middle-aged (> 100 kyr) pulsars and
123
+ grouped as a new source class named “TeV halos” (Lin-
124
+ den et al. 2017; L´opez-Coto et al. 2022). Seven sources
125
+ are referenced as TeV halos in the online catalog for TeV
126
+ Astronomy, TeVCat1 (Wakely & Horan 2008), including
127
+ the first halos around the Geminga and Monogem pul-
128
+ sars, discovered by HAWC (Abeysekara et al. 2017a),
129
+ HESS J1825-137 reported by the H.E.S.S. collaboration
130
+ (H. E. S. S. Collaboration et al. 2018), and the halo
131
+ of PSR J0622+3749, identified by the LHAASO collab-
132
+ oration (Aharonian et al. 2021).
133
+ The VHE fluxes of
134
+ these halos suggest that ∼ 10% − 40% of the spin-down
135
+ power of the pulsars is converted into e± pair popula-
136
+ tion that interacts with the ambient interstellar radia-
137
+ tion field (Sudoh et al. 2019; Aharonian et al. 2021). The
138
+ diffusion coefficients derived from the sizes of the halos
139
+ are typically two orders of magnitude lower than the
140
+ average diffusion coefficient of the interstellar medium
141
+ (ISM; Hooper et al. 2017; Sudoh et al. 2019).
142
+ The formation mechanism of the TeV halos is still
143
+ under debate (Linden et al. 2017; Sudoh et al. 2019;
144
+ Giacinti et al. 2020; L´opez-Coto et al. 2022; Liu 2022; De
145
+ La Torre Luque et al. 2022). Whether they are related to
146
+ the local environment, such as extended, diffuse emission
147
+ by other sources near the pulsar (e.g., the Monogem
148
+ Ring Plucinsky et al. 1996), is also questioned. If TeV
149
+ halos commonly exist around pulsars, they can be used
150
+ to study the propagation of cosmic rays (e.g., Evoli et al.
151
+ 2018) and to identify pulsars that are otherwise invisible
152
+ to radio and γ-ray observations (Linden et al. 2017).
153
+ 1 http://tevcat2.uchicago.edu/
154
+ In this letter, we report the detection of a new TeV
155
+ halo candidate around the pulsar PSR J0359+5414
156
+ (hereafter J0359) using 2321 days of HAWC data. The
157
+ detection of J0359 was first reported in the Fermi Large
158
+ Area Telescope (LAT) First Source Catalog (1FGL,
159
+ Abdo et al. 2010) where it remained as an unclassi-
160
+ fied source until the Third Source Catalog (3FGL, Acero
161
+ et al. 2015). J0359 was later classified as a radio-quiet
162
+ pulsar by Clark et al. (2017) with an age of 75 kyr and
163
+ a spin-down power of ˙E = 1.3 × 1036 erg s−1. In Zyuzin
164
+ et al. (2018) a pseudo-distance of J0359 is reported as
165
+ d = 3.45 kpc, derived from the ˙E and the gamma-ray
166
+ flux.
167
+ The latest report at high energies of J0359 ap-
168
+ pears in the Fermi-LAT Fourth Source Catalog (4FGL,
169
+ Abdollahi et al. 2020) where it is detected above 33σ
170
+ in the MeV-GeV energy range. A pulsar wind nebula
171
+ (PWN) with an extension of ∼ 30′′ was observed by
172
+ Chandra as a result of a X-ray analysis on gamma-ray
173
+ pulsars (Zyuzin et al. 2018). No radio emission has been
174
+ detected from the pulsar (Grießmeier et al. 2021). The
175
+ VHE γ-ray emission from the vicinity of J0359 observed
176
+ by HAWC presents similar properties to the other TeV
177
+ halos candidates, including the derived acceleration ef-
178
+ ficiency and diffusion coefficient. If this source is a TeV
179
+ halo, it would support the hypothesis that the halos are
180
+ ubiquitous.
181
+ The paper is organized as follows. The data set and
182
+ analysis framework are described in Section 2. The re-
183
+ sults of the spectral and spatial analysis are presented in
184
+ Section 3. In Section 4, the broadband spectral energy
185
+ distribution (SED) of J0359 is presented and the origin
186
+ of the TeV emission is discussed. The conclusions are
187
+ summarized in Section 5.
188
+ 2. INSTRUMENT AND DATA ANALYSIS
189
+
190
+ TeV Halo Candidate Surrounding Radio-quiet pulsar
191
+ 3
192
+ Figure 1. HAWC significance map in Galactic coordinates
193
+ using 2321 days of live data. The significance is computed
194
+ with a point-like spatial template and a power-law spectrum
195
+ with spectral index α = 2.7. For comparison, the positions
196
+ of PSR J0359+5414 and PSR B0355+54 are marked.
197
+ The HAWC Gamma-Ray Observatory consists of 300
198
+ water Cherenkov detectors located at 19◦N in Puebla,
199
+ Mexico at an altitude of 4100 m. Each detector is in-
200
+ strumented with 4 photo-multiplier tubes (PMTs) that
201
+ are capable of detecting the Cherenkov radiation pro-
202
+ duced in the detector water when an electromagnetic or
203
+ hadronic shower hits the ground, which is initiated by
204
+ a γ-ray or a cosmic ray, respectively, when it enters the
205
+ Earth’s atmosphere. HAWC is sensitive to sources with
206
+ declinations between −41◦ and +79◦ and to energies in
207
+ the 300 GeV to > 100 TeV range. The data set used
208
+ in this analysis comprises 2321 days of live data taken
209
+ from November 2014 to October 2021. The data set is
210
+ divided into 11 analysis bins (fHit) based on the fraction
211
+ of PMTs that are triggered in each event, on and off the
212
+ main detector array. A full description of HAWC’s de-
213
+ sign and performance can be found in Smith & HAWC
214
+ Collaboration (2015) and Abeysekara et al. (2017b).
215
+ A maximum likelihood analysis was performed using
216
+ the Multi-Mission Maximum Likelihood (3ML) frame-
217
+ work (Vianello et al. 2015) with the HAWC Accelerated
218
+ Likelihood (HAL) plug-in (Abeysekara et al. 2021). For
219
+ model selection, we use the likelihood ratio test statistic
220
+ (TS) which is defined by
221
+ TS = 2 ln LS+B
222
+ LB
223
+ ,
224
+ (1)
225
+ where LS+B is the maximum likelihood of a signal plus
226
+ background model, which depends on the spectral and
227
+ spatial parameters, and LB is the maximum likelihood of
228
+ the background-only hypothesis. Three spectral models
229
+ are tested, including single power-law (PL, Equation 2),
230
+ log-parabola (LOGP, Equation 3), and power-law with
231
+ an exponential energy cutoff (PL+CO, Equation 4):
232
+ dN
233
+ dE = N0
234
+ � E
235
+ E0
236
+ �−α
237
+ ,
238
+ (2)
239
+ dN
240
+ dE = N0
241
+ � E
242
+ E0
243
+ �−α−β ln(E/E0)
244
+ ,
245
+ (3)
246
+ dN
247
+ dE = N0
248
+ � E
249
+ E0
250
+ �−α
251
+ × exp
252
+ �−E
253
+ Ec
254
+
255
+ .
256
+ (4)
257
+ In the above equations, N0 is the flux normalization in
258
+ units of [TeV−1cm−2s−1], E0 is the pivot energy fixed at
259
+ 30 TeV to minimize correlations with the other parame-
260
+ ters, α is the spectral index, Ec is the cut-off energy and
261
+ β is the curvature of the log-parabola spectrum. Two
262
+ spatial models are tested: a point-like template and an
263
+ extended template. The extended template is described
264
+ by a symmetric Gaussian with width as a free parame-
265
+ ter.
266
+ The energy range in which a source is detected is com-
267
+ puted by multiplying a step function with the best fit
268
+ model (nominal case). The lower and upper values of
269
+ the step function at which the likelihood decreases by
270
+ 1σ, 2σ or 3σ from that of the nominal case are regarded
271
+ as the upper limit to the minimum energy and lower
272
+ limit to the maximum energy, respectively.
273
+ 3. RESULTS
274
+ 3.1. Association with J0359
275
+ We first free the position of the emission and fit the
276
+ PL point source model to data. The best-fit R.A. and
277
+ decl. are 59.83 ± 0.07stat and 54.22 ± 0.05stat degrees
278
+ (the systematic uncertainty at this location is 0◦.02),
279
+ which are consistent with the position of J0359 (59.86
280
+ and 54.25 degrees for R.A and decl. respectively). The
281
+ TS of the model is TS = 38.18, which corresponds to a
282
+ significance of 6.18σ for four degrees of freedom based
283
+ on the Wilks theorem (Wilks 1938). As the position is
284
+ consistent with the pulsar position, we fixed the TeV
285
+ emission to the pulsar position to perform the spectral
286
+ analysis.
287
+ Table 1 summarizes the best-fit parameters of differ-
288
+ ent spectral and spatial models.
289
+ The simplest model
290
+ assuming a point-like morphology and non-broken PL
291
+
292
+ PSR-B0355+54
293
+ 2
294
+ PSR-J0359+5414
295
+ 1
296
+ b
297
+ 0
298
+ -1
299
+ 150
300
+ 149
301
+ 148
302
+ 147
303
+ 1[°]
304
+ -4
305
+ -2
306
+ 0
307
+ 2
308
+ 4
309
+ 6
310
+ 8
311
+ 10
312
+ 12
313
+ 14
314
+ VTS4
315
+ Table 1. PSR J0359-5414 likelihood fit results for the two spatial scenarios and different spectral shapes.
316
+ Model
317
+ TS
318
+ ∆BIC
319
+ Extension
320
+ N0
321
+ α
322
+ β
323
+ Ec
324
+ [◦]
325
+ [×10−16TeV−1cm−2s−1]
326
+ [TeV]
327
+ PL, point-like
328
+ 37.86
329
+ -12
330
+ -
331
+ 1.34+0.34
332
+ −0.27
333
+ 2.60 ± 0.16
334
+ -
335
+ -
336
+ LOGP, point-like
337
+ 39.18
338
+ -1
339
+ -
340
+ 1.6+0.5
341
+ −0.4
342
+ 2.80 ± 0.23
343
+ 0.14 ± 0.12
344
+ -
345
+ PL+CO, point-like
346
+ 37.98
347
+ 0
348
+ -
349
+ 4+50
350
+ −4
351
+ 2.5 ± 1.2
352
+ -
353
+ 500
354
+ PL, extended
355
+ 40.27
356
+ -12
357
+ 0.2 ± 0.1
358
+ 2.0+0.8
359
+ −0.6
360
+ 2.52 ± 0.16
361
+ -
362
+ -
363
+ LOGP, extended
364
+ 41.72
365
+ -1.2
366
+ 0.2 ± 0.1
367
+ 2.6+1.5
368
+ −1.0
369
+ 2.71 ± 0.22
370
+ 0.14 ± 0.13
371
+ -
372
+ PL+CO, extended
373
+ 40.48
374
+ 0
375
+ 0.23 ± 0.1
376
+ 14+5
377
+ −4
378
+ 2.40 ± 0.19
379
+ -
380
+ 270+240
381
+ −130
382
+ Note—All the associated errors are statistical. The best model is the one with the lowest BIC value so, ∆BIC is
383
+ the difference between a model and the best model, such that it quantifies the evidence against the model with
384
+ the highest BIC value. In this case, from both spatial models, the PL+CO spectral model results with the highest
385
+ BIC value. The energy cutoff of 500 TeV of the PL+CO point-like model is the boundary of the fit.
386
+ yields TS = 37.86. In general more complicated models
387
+ with extended morphology and spectral curvature yields
388
+ a larger TS since they have more degrees of freedom than
389
+ the PL point-source model. So, the preferred spectral
390
+ models for both spatial assumptions is a PL, based the
391
+ BIC values, where these models have the lower ones.
392
+ Figure 2 presents the model and residual significance
393
+ maps, and the residual histograms for the two spatial
394
+ templates assuming a PL spectral model.
395
+ The resid-
396
+ ual histogram shows the distribution of the significance
397
+ value in each pixel within the region of interest cen-
398
+ tered at J0359. The residual significance is defined as
399
+ the deviation from the background expectation after fit-
400
+ ting and subtracting the modeled emission from J0359.
401
+ If only random background fluctuations are left, then
402
+ the significance values follow a standard normal distri-
403
+ bution (dashed red line). A positive tail is visible in the
404
+ residual map of the point-source model. Although the
405
+ current sample do not allow to distinguish between the
406
+ different spatial models, the residual histograms in Fig-
407
+ ure 2 indicate that we get a better fit for an extended
408
+ model.
409
+ The energy range of the detection are found to be 7-
410
+ 188 TeV at 1σ level, 11-89 TeV at 2σ level and 15-51
411
+ TeV at 3σ level, with the PL point-source model. For
412
+ the PL extended model, the energy range is 4-190 TeV
413
+ at 1σ level, 9-110 TeV at 2σ level and 17-78 TeV at 3σ
414
+ level.
415
+ The luminosity of the VHE emission is L15−51 TeV =
416
+ 3.6 × 1032 erg s−1 for a distance of 3.45 kpc. The typ-
417
+ ical energies of the synchrotron and inverse Compton
418
+ photons produced by the same electrons are related
419
+ by Esyn ≈ 2.1 keV(EIC/30 TeV) (B/10 µG) (e.g., Aharo-
420
+ nian et al. 1997), where B is the magnetic field strength
421
+ in the PWN. As the magnetic energy density of a PWN
422
+ is usually higher than the energy density of the Cos-
423
+ mic Microwave Background (CMB) and infrared (IR)
424
+ photons of the ISM, the synchrotron flux of a typical
425
+ PWN at keV energies is expected to be higher than
426
+ its inverse Compton emission at the HAWC energies
427
+ (see e.g., the Crab Nebula H. E. S. S. Collaboration
428
+ 2020). However, the X-ray luminosity of J0359’s PWN,
429
+ L0.3−10 keV = 2.8 × 1031 erg s−1 (Zyuzin et al. 2018), is
430
+ instead ∼ 13 times lower than the VHE gamma-ray lu-
431
+ minosity. This suggests the existence of a VHE electron
432
+ population outside the region where the nebula is ener-
433
+ getically dominant, which is expected in the case of a
434
+ TeV halo (Linden et al. 2017; L´opez-Coto et al. 2022).
435
+ Figure 3 presents the broadband SED of J0359. The
436
+ pulsar, PWN, and TeV halo components are shown in
437
+ grey, black, and in blue/green colors, respectively. The
438
+ multi-wavelength data points include an upper limit of
439
+ the pulsar emission by the Effelsberg telescope at 1400
440
+ MHz (Grießmeier et al. 2021), X-ray measurements of
441
+ the pulsar and PWN (Zyuzin et al. 2018), γ-ray ob-
442
+ servation of the pulsar from 50 MeV to 1 TeV by the
443
+ Fermi-LAT (Abdollahi et al. 2020), and the VHE flux
444
+ of the halo measured by HAWC.
445
+ 3.2. Nearby pulsar B0355+54
446
+ Another pulsar, PSR B0355+54 (B0355) is only 0.09
447
+ degrees from J0359. B0355 is classified as a radio-loud
448
+ pulsar with characteristic age of 564 kyr and spin-down
449
+ power
450
+ ˙E = 4.5 × 1034 erg s−1 at a distance of 1 kpc.
451
+ B0355 has not been detected at high or very-high ener-
452
+ gies (Benbow et al. 2021). Below we investigate whether
453
+ B0355 is related to the HAWC excess emission.
454
+ We performed likelihood fits and compared three sce-
455
+ narios: 1) the VHE emission is only associated with
456
+ J0359, 2) the VHE emission is only associated with
457
+
458
+ TeV Halo Candidate Surrounding Radio-quiet pulsar
459
+ 5
460
+ (a) PL, point-like model
461
+ (b) PL, extended model
462
+ (c) PL, point-like residuals
463
+ (d) PL, extended residuals
464
+ (e) PL, point-like residual
465
+ histogram
466
+ ( f) PL, extended residual
467
+ histogram
468
+ Figure 2.
469
+ Comparison of the model maps, significance
470
+ maps, and 1-D residual histograms for point-like and ex-
471
+ tended spatial models. The source position is fixed to PSR
472
+ J0359+5414 (black cross in the significance maps) and the
473
+ spectrum is assumed to be a non-broken power-law.
474
+ The
475
+ best-fit parameter values are listed in Table 1.
476
+ B0355, and 3) the VHE emission is contributed by both
477
+ sources. We present the detailed results of scenarios 2
478
+ and 3 in Appendix A and B, respectively. We find that
479
+ the two-source scenario (scenario 3) is disfavored com-
480
+ pared to the single-source scenarios. Scenario 1 (J0359)
481
+ yields lower BIC values than scenario 2 (B0355) for var-
482
+ ious spectral and spatial models, though the preference
483
+ of scenario 1 is not statistically significant.
484
+ The VERITAS telescope searched for emission from
485
+ the PWN of B0355 and posed tight upper limits on the
486
+ TeV flux (Benbow et al. 2021). The right panel of Figure
487
+ 3 shows the broadband SED of B0355, which includes
488
+ the radio observation of the pulsar (Lorimer et al. 1995),
489
+ X-ray observation of the pulsar and its tail at 0.5-8 keV
490
+ (Klingler et al. 2016), and the VERITAS upper limits at
491
+ 95% C.L. between 1 and 10 TeV (Benbow et al. 2021).
492
+ For comparison, we show the best-fit flux between 16
493
+ and 59 TeV obtained by assuming that the VHE emis-
494
+ sion is centered at the position of B0355. The upper
495
+ limits set by VERITAS on B0355’s tail are in tension
496
+ with the HAWC’s flux at 16 TeV for both the point-
497
+ like and extended models. This suggests that the excess
498
+ emission observed by HAWC is more likely associated
499
+ with J0359 than B0355, though future multi-wavelength
500
+ observation is needed to confirm the finding.
501
+ 4. SYSTEMATIC UNCERTAINTIES
502
+ The systematic uncertainties arising from the detec-
503
+ tor performance and simulations are described in Abey-
504
+ sekara et al. (2017b) and Abeysekara et al. (2019). The
505
+ systematic contribution is calculated in a single energy
506
+ band for each spectral and spatial parameter, with the
507
+ positive (negative) shift results added in quadrature to
508
+ account for the upward (downward) uncertainties. The
509
+ systematic uncertainties are calculated for the PL spec-
510
+ tral model and for both the point-like and extended tem-
511
+ plates.
512
+ To account for additional sources of systematic uncer-
513
+ tainties, such as the variations in the atmosphere that
514
+ are not considered in simulations, a 10% error has been
515
+ added to normalization ��ux (Albert et al. 2020). The
516
+ total systematic uncertainties are reported in Table 2.
517
+ 5. CONCLUSIONS
518
+ With 2321 days of HAWC observation, VHE γ-ray
519
+ emission is detected in a relatively source-empty region
520
+ in the outer galaxy. Based on likelihood fits with dif-
521
+ ferent spectral and spatial models to the HAWC data
522
+ and the comparison of VHE γ-ray flux with multi-
523
+ wavelength observations, we conclude that the emis-
524
+ sion is a TeV halo candidate associated with the pulsar
525
+ PSR J0359+5414.
526
+ If this TeV emission is a halo, it would share sim-
527
+ ilar characteristics with the existing population.
528
+ We
529
+ find a 95% upper limit on the extension of the emis-
530
+ sion as 0.◦41 (with the PL-extended model in Ta-
531
+ ble 1), corresponding to a physical size of Rul
532
+ =
533
+
534
+ PSRJO0359+5414
535
+ 2
536
+ b
537
+ 0
538
+ 149
539
+ 148
540
+ 147
541
+ [。]1
542
+ -4 -2
543
+ 2
544
+ 46
545
+ 8
546
+ 10
547
+ 1214
548
+ 0
549
+ VTSPSRJO0359+5414
550
+ 2
551
+ b
552
+ 0
553
+ 149
554
+ 148
555
+ 147
556
+ [。]1
557
+ -4 -2
558
+ 0
559
+ 2
560
+ 46
561
+ 8
562
+ 10
563
+ 1214
564
+ VTSPSRT0359+5414
565
+ 2
566
+ b
567
+ 0
568
+ 149
569
+ 148
570
+ 147
571
+ 1[°]
572
+ -4 -2
573
+ 2
574
+ 46
575
+ 0
576
+ 8
577
+ 10
578
+ 1214
579
+ VTSPSRJO0359+5414
580
+ 2
581
+ X
582
+ b
583
+ 0
584
+ 149
585
+ 148
586
+ 147
587
+ [。
588
+ -4 -2
589
+ 0
590
+ 2
591
+ 46
592
+ 8
593
+ 10
594
+ 1214
595
+ VTS1D Significance Histogram
596
+ 101
597
+ Pixels
598
+ Data
599
+ Expectation
600
+ Number of
601
+ Fit
602
+ mean = 0.395 ± 0.043
603
+ width = 1.249 ± 0.049
604
+ 100
605
+ 0
606
+ -4
607
+ -2
608
+ 0
609
+ 2
610
+ 4
611
+ significance1D Significance Histogram
612
+ 101
613
+ Pixels
614
+ Data
615
+ Expectation
616
+ Number of
617
+ Fit
618
+ mean = 0.063 ± 0.019
619
+ width = 0.964 ± 0.018
620
+ 100
621
+ 0
622
+ .4
623
+ -2
624
+ 0
625
+ 2
626
+ significance6
627
+ 10
628
+ 4
629
+ 10
630
+ 1
631
+ 102
632
+ 105
633
+ 108
634
+ 1011
635
+ 1014
636
+ Energy (eV)
637
+ 10
638
+ 16
639
+ 10
640
+ 15
641
+ 10
642
+ 14
643
+ 10
644
+ 13
645
+ 10
646
+ 12
647
+ 10
648
+ 11
649
+ E2 dN/dE (erg cm
650
+ 2 s
651
+ 1)
652
+ Telescope/Observatory
653
+ HAWC
654
+ Chandra
655
+ Fermi-LAT
656
+ Effelsberg
657
+ Components
658
+ TeV halo
659
+ PWN
660
+ Pulsar
661
+ 10
662
+ 4
663
+ 10
664
+ 1
665
+ 102
666
+ 105
667
+ 108
668
+ 1011
669
+ 1014
670
+ Energy (eV)
671
+ 10
672
+ 16
673
+ 10
674
+ 15
675
+ 10
676
+ 14
677
+ 10
678
+ 13
679
+ 10
680
+ 12
681
+ 10
682
+ 11
683
+ E2 dN/dE (erg cm
684
+ 2 s
685
+ 1)
686
+ Telescope/Observatory
687
+ HAWC
688
+ Chandra
689
+ VERITAS
690
+ Lovell
691
+ Components
692
+ TeV halo
693
+ Tail
694
+ Pulsar
695
+ Figure 3. Left panel: Spectral energy distribution (SED) of the emission around PSR J0359+5414, including the TeV halo
696
+ (green and blue bands corresponding to the HAWC observation for a point-like and extended model, respectively, as explained
697
+ in Section 3), the PWN (black band at 0.3-10 keV; Zyuzin et al. 2018), and the pulsar (in grey color; including the upper limit
698
+ in radio at 1400 MHz from Grießmeier et al. 2021, the band in X-ray at 0.3-10 keV from Zyuzin et al. 2018, and the data
699
+ points or limits at 100 MeV-1 TeV from Abdollahi et al. 2020). Right panel: SED of the emission around PSR B0355+54.
700
+ The green and blue bands indicate the TeV excess emission obtained from fits to the HAWC data with models that center at
701
+ B0355 with point-like and extended spatial profiles, respectively (see Appendix A). For comparison, the upper limits on VHE
702
+ gamma-ray emission from the PWN by VERITAS with hard spectral cuts are shown in orange, with the upper and lower bars
703
+ corresponding to region sizes of 0◦.1 and 0◦.235, respectively (Benbow et al. 2021). The black band at 0.5-8 keV indicates the
704
+ PWN in X-rays (Klingler et al. 2016). The grey band at 0.5-8 keV (Klingler et al. 2016) and the circular data markers at 1400
705
+ and 1600 MHz (Lorimer et al. 1995) correspond to the emission from the pulsar. The HAWC bands correspondo to statistical
706
+ uncerntanties only.
707
+ Table 2. Systematic uncertainties considering a PL
708
+ for each spatial scenario.
709
+ Model
710
+ Parameter
711
+ Lower sys.
712
+ Upper sys.
713
+ Point-like
714
+ N0
715
+ −3.9
716
+ 4.6
717
+ α
718
+ −0.15
719
+ 0.3
720
+ Extended
721
+ N0
722
+ −4.6
723
+ 3.4
724
+ α
725
+ −0.05
726
+ 0.03
727
+ extension
728
+ −0.02
729
+ 0.02
730
+ Note—N0 is in units of 10−17 TeV−1cm−2s−1 and
731
+ extension is in degrees.
732
+ 25 (d/3.45 kpc) pc.
733
+ The diffusion coefficient of the
734
+ halo is confined to be D
735
+
736
+ R2
737
+ ul/(4 te)
738
+ =
739
+ 3.7 ×
740
+ 1027 cm2 s−1(te/12 kyr)−1(d/3.45 kpc)2,
741
+ where
742
+ te
743
+
744
+ 12 kyr(Ee/100 TeV)−1 is the cooling time of an electron
745
+ at energy Ee by upper-scattering the CMB. Like the
746
+ other halos (Abeysekara et al. 2017a), the diffusion co-
747
+ efficient is much lower than the average diffusion coeffi-
748
+ cient of the ISM.
749
+ The candidate halo of J0359 joins the observation of
750
+ extended VHE emission surrounding PSR J0622+3749
751
+ (Aharonian et al. 2021) as the first evidence of TeV halos
752
+ around radio-quiet pulsars. Their presence suggests that
753
+ the formation of the halos is insensitive to the configu-
754
+ ration of the pulsar magnetosphere, in particular, the
755
+ geometry of the γ-ray and radio beams (Harding 2001).
756
+ With an age of 70 kyr, J0359 is younger than the other
757
+ pulsars with halos. It is likely in a transition between
758
+ the so-called relic- and halo-stage of a PWN, the bound-
759
+ aries of which are not well defined and have motivated
760
+ different classification criteria of TeV halos (Linden et al.
761
+ 2017; Giacinti et al. 2020; L´opez-Coto et al. 2022). Our
762
+ observation of TeV halo features associated with J0359
763
+ implies that high-energy particles may already start es-
764
+ caping in the ISM in the late relic-stage.
765
+ Our observation provides spectral evidence toward a
766
+ TeV halo nature of J0359.
767
+ Future data from HAWC
768
+ and multi-wavelength follow-ups of this new TeV source
769
+ are crucial to confirming its nature via morphological
770
+ studies that identify the halo extension and exclude the
771
+ association with the nearby pulsars. Future observations
772
+ of young to middle-aged pulsars like PSR J0359+5414
773
+ with wide-field γ-ray experiments and imaging atmo-
774
+ spheric Cherenkov telescopes may provide further un-
775
+ derstanding into the evolution of TeV PWNe and their
776
+ connection with TeV halos.
777
+ ACKNOWLEDGMENTS
778
+ We acknowledge the support from:
779
+ the US Na-
780
+ tional Science Foundation (NSF); the US Department
781
+ of Energy Office of High-Energy Physics; the Labora-
782
+
783
+ TeV Halo Candidate Surrounding Radio-quiet pulsar
784
+ 7
785
+ tory Directed Research and Development (LDRD) pro-
786
+ gram of Los Alamos National Laboratory; Consejo Na-
787
+ cional de Ciencia y Tecnolog´ıa (CONACyT), M´exico,
788
+ grants 271051, 232656, 260378, 179588, 254964, 258865,
789
+ 243290, 132197, A1-S-46288, A1-S-22784, c´atedras 873,
790
+ 1563, 341, 323, Red HAWC, M´exico; DGAPA-UNAM
791
+ grants IG101320, IN111716-3, IN111419, IA102019,
792
+ IN110621, IN110521; VIEP-BUAP; PIFI 2012, 2013,
793
+ PROFOCIE 2014, 2015; the University of Wisconsin
794
+ Alumni Research Foundation; the Institute of Geo-
795
+ physics,
796
+ Planetary Physics,
797
+ and Signatures at Los
798
+ Alamos National Laboratory; Polish Science Centre
799
+ grant, DEC-2017/27/B/ST9/02272; Coordinaci´on de la
800
+ Investigaci´on Cient´ıfica de la Universidad Michoacana;
801
+ Royal Society - Newton Advanced Fellowship 180385;
802
+ Generalitat Valenciana, grant CIDEGENT/2018/034;
803
+ The Program Management Unit for Human Resources
804
+ & Institutional Development, Research and Innovation,
805
+ NXPO (grant number B16F630069); Coordinaci´on Gen-
806
+ eral Acad´emica e Innovaci´on (CGAI-UdeG), PRODEP-
807
+ SEP UDG-CA-499; Institute of Cosmic Ray Research
808
+ (ICRR), University of Tokyo, H.F. acknowledges sup-
809
+ port by NASA under award number 80GSFC21M0002.
810
+ We also acknowledge the significant contributions over
811
+ many years of Stefan Westerhoff, Gaurang Yodh and Ar-
812
+ nulfo Zepeda Dominguez, all deceased members of the
813
+ HAWC collaboration. Thanks to Scott Delay, Luciano
814
+ D´ıaz and Eduardo Murrieta for technical support.
815
+ REFERENCES
816
+ Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJS,
817
+ 188, 405, doi: 10.1088/0067-0049/188/2/405
818
+ Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS,
819
+ 247, 33, doi: 10.3847/1538-4365/ab6bcb
820
+ Abeysekara, A. U., Albert, A., Alfaro, R., et al. 2017a,
821
+ Science, 358, 911, doi: 10.1126/science.aan4880
822
+ —. 2017b, ApJ, 843, 39, doi: 10.3847/1538-4357/aa7555
823
+ —. 2019, ApJ, 881, 134, doi: 10.3847/1538-4357/ab2f7d
824
+ Abeysekara, A. U., et al. 2021, PoS, ICRC2021, 828,
825
+ doi: 10.22323/1.395.0828
826
+ Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS,
827
+ 218, 23, doi: 10.1088/0067-0049/218/2/23
828
+ Aharonian, F., An, Q., Axikegu, Bai, L. X., et al. 2021,
829
+ PhRvL, 126, 241103,
830
+ doi: 10.1103/PhysRevLett.126.241103
831
+ Aharonian, F. A., Atoyan, A. M., & Kifune, T. 1997,
832
+ MNRAS, 291, 162, doi: 10.1093/mnras/291.1.162
833
+ Albert, A., Alfaro, R., Alvarez, C., et al. 2020, ApJ, 905,
834
+ 76, doi: 10.3847/1538-4357/abc2d8
835
+ Benbow, W., Brill, A., Buckley, J. H., et al. 2021, ApJ, 916,
836
+ 117, doi: 10.3847/1538-4357/ac05b9
837
+ Clark, C. J., Wu, J., Pletsch, H. J., et al. 2017, ApJ, 834,
838
+ 106, doi: 10.3847/1538-4357/834/2/106
839
+ De La Torre Luque, P., Fornieri, O., & Linden, T. 2022,
840
+ arXiv e-prints, arXiv:2205.08544.
841
+ https://arxiv.org/abs/2205.08544
842
+ Evoli, C., Linden, T., & Morlino, G. 2018, Phys. Rev. D,
843
+ 98, 063017, doi: 10.1103/PhysRevD.98.063017
844
+ Giacinti, G., Mitchell, A. M. W., L´opez-Coto, R., et al.
845
+ 2020, Astron. Astrophys., 636, A113,
846
+ doi: 10.1051/0004-6361/201936505
847
+ Grießmeier, J. M., Smith, D. A., Theureau, G., et al. 2021,
848
+ A&A, 654, A43, doi: 10.1051/0004-6361/202140841
849
+ H. E. S. S. Collaboration. 2020, Nature Astronomy, 4, 167,
850
+ doi: 10.1038/s41550-019-0910-0
851
+ H. E. S. S. Collaboration, Abdalla, H., Abramowski, A.,
852
+ et al. 2018, A&A, 612, A2,
853
+ doi: 10.1051/0004-6361/201629377
854
+ Harding, A. K. 2001, in American Institute of Physics
855
+ Conference Series, Vol. 558, High Energy Gamma-Ray
856
+ Astronomy: International Symposium, ed. F. A.
857
+ Aharonian & H. J. V¨olk, 115–126, doi: 10.1063/1.1370785
858
+ Hooper, D., Cholis, I., Linden, T., & Fang, K. 2017, Phys.
859
+ Rev. D, 96, 103013, doi: 10.1103/PhysRevD.96.103013
860
+ Kass, R. E., & Raftery, A. E. 1995, Journal of the
861
+ American Statistical Association, 90, 773,
862
+ doi: 10.1080/01621459.1995.10476572
863
+ Klingler, N., Rangelov, B., Kargaltsev, O., et al. 2016, ApJ,
864
+ 833, 253, doi: 10.3847/1538-4357/833/2/253
865
+ Linden, T., Auchettl, K., Bramante, J., et al. 2017, PhRvD,
866
+ 96, 103016, doi: 10.1103/PhysRevD.96.103016
867
+ Liu, R.-Y. 2022, arXiv e-prints, arXiv:2207.04011.
868
+ https://arxiv.org/abs/2207.04011
869
+ L´opez-Coto, R., de O˜na Wilhelmi, E., Aharonian, F.,
870
+ Amato, E., & Hinton, J. 2022, Nature Astronomy, 6, 199,
871
+ doi: 10.1038/s41550-021-01580-0
872
+ Lorimer, D. R., Yates, J. A., Lyne, A. G., & Gould, D. M.
873
+ 1995, MNRAS, 273, 411, doi: 10.1093/mnras/273.2.411
874
+ Plucinsky, P. P., Snowden, S. L., Aschenbach, B., et al.
875
+ 1996, ApJ, 463, 224, doi: 10.1086/177236
876
+ Smith, A. J., & HAWC Collaboration. 2015, in
877
+ International Cosmic Ray Conference, Vol. 34, 34th
878
+ International Cosmic Ray Conference (ICRC2015), 966.
879
+ https://arxiv.org/abs/1508.05826
880
+ Sudoh, T., Linden, T., & Beacom, J. F. 2019, PhRvD, 100,
881
+ 043016, doi: 10.1103/PhysRevD.100.043016
882
+
883
+ 8
884
+ Vianello, G., Lauer, R. J., Younk, P., et al. 2015, arXiv
885
+ e-prints, arXiv:1507.08343.
886
+ https://arxiv.org/abs/1507.08343
887
+ Wakely, S. P., & Horan, D. 2008, in International Cosmic
888
+ Ray Conference, Vol. 3, International Cosmic Ray
889
+ Conference, 1341–1344
890
+ Wilks, S. S. 1938, Annals Math. Statist., 9, 60,
891
+ doi: 10.1214/aoms/1177732360
892
+ Zyuzin, D. A., Karpova, A. V., & Shibanov, Y. A. 2018,
893
+ MNRAS, 476, 2177, doi: 10.1093/mnras/sty359
894
+
895
+ TeV Halo Candidate Surrounding Radio-quiet pulsar
896
+ 9
897
+ Table 3.
898
+ Results of the likelihood fit assuming that the only emitting source
899
+ is PSR B0355+54. The PL spectral model along with the two different spatial
900
+ models were tested.
901
+ Spatial model
902
+ TS
903
+ ∆BIC
904
+ Extension
905
+ N0
906
+ α
907
+ [◦]
908
+ TeV−1 cm−2 s−1
909
+ Point-like
910
+ 35.86
911
+ -1.9
912
+ 0.0
913
+ (1.28+0.34
914
+ −0.27) × 10−16
915
+ 2.56 ± 0.17
916
+ Extended
917
+ 41.83
918
+ -1.5
919
+ 0.22 ± 0.09
920
+ (2.0+0.7
921
+ −0.5) × 10−16
922
+ 2.51 ± 0.15
923
+ Note—All associated errors are statistical. ∆BIC is obtained comparing the BIC
924
+ value with the best spectral model fit for both spatial models assuming that the
925
+ emission is coming from J0359 (Section 3).
926
+ APPENDIX
927
+ A. PSR B0355+54 FITTING RESULTS
928
+ In this section, we explore the possibility that the TeV excess comes entirely from B0355. We fit models with a
929
+ power-law (PL) spectrum and the spatial templates described in Section 3. The results are summarized in Table 3.
930
+ The energy ranges at which the source is detected are 7-180 TeV at 1σ level, 11-90 TeV at 2σ level and 17-54 TeV
931
+ assuming at 3σ level assuming a point-like morphology. For an extended morphology, the energy ranges are found to
932
+ be 8-155 TeV for 1σ level, 11-90 TeV at 2σ level and 17-59 at 3σ level.
933
+ As single-source scenarios are not nested models, we have employed the Bayesian Information Criterion (BIC) to
934
+ select the models. The difference in the BIC value, ∆BIC, quantifies the evidence against the model with a higher
935
+ BIC value. According to Kass & Raftery (1995), if ∆BIC is between 0 and 2 it is not clear which model is preferred;
936
+ ∆BIC between 2 and 10 and above 10 indicates a slight and strong preference of the model with the smallest BIC,
937
+ respectively.
938
+ The small difference in ∆BIC from the fits of models centered at J0359 and B0355 does not allow us to distinguish
939
+ between the models. This is expected as the angular distance of the two pulsars is smaller than the spatial resolution
940
+ of HAWC. However, the tension between the VERITAS limits on B0355 and HAWC fluxes, as explained in Section 3,
941
+ suggests that the TeV emission is more likely associated with J0359.
942
+ B. FITTING RESULTS OF A TWO-SOURCE SCENARIO
943
+ We further explore a scenario where both J0359 and B0359 contribute to the TeV emission observed by HAWC.
944
+ Such a two-source model is disfavored by the data.
945
+ Table 4 presents the results of the two-source models. We consider three combinations of spatial profiles of the
946
+ two sources: (A) both sources are point-like, (B) both sources are extended with a Gaussian shape, and (C) J0359 is
947
+ extended source and B0355 is point-like. The energy spectrum is assumed to be a PL. The normalization flux N0 and
948
+ the spectral index α in each fit were free to vary while the position of the sources for all the scenarios were fixed.
949
+ The ∆TS column shows the gain of test statistics by adding an extra source to the one-source model presented in
950
+ Section 3 and Section A (the baseline model considers pure background plus the emission from the other source). The
951
+ two-source model is disfavored in all cases.
952
+
953
+ 10
954
+ Table 4.
955
+ Results of the likelihood fit assuming that the excess observed comes from two sources: PSR
956
+ J0359+5414 and PSR B0355+54. The spectral model for all the spatial models is a PL.
957
+ Two-source model
958
+ Source
959
+ ∆TS
960
+ ∆BIC
961
+ Extension
962
+ N0
963
+ α
964
+ [◦]
965
+ TeV−1 cm−2 s−1
966
+ J0359
967
+ 2.32
968
+ 0.0
969
+ (1.0+0.5
970
+ −0.9) × 10−16
971
+ 2.63+0.6
972
+ −0.20
973
+ Model A
974
+ B0355
975
+ 0.32
976
+ -24
977
+ 0.0
978
+ (0.00034+6
979
+ −0.00024) × 10−13
980
+ 2.4+1.3
981
+ −5
982
+ J0359
983
+ 8.73
984
+ 1.500+0.18
985
+ −0.004
986
+ (3.3+1.5
987
+ −3.3) × 10−16
988
+ 2.2+0.4
989
+ −1.3
990
+ Model B
991
+ B0355
992
+ 10.29
993
+ -26
994
+ 0.14+0.08
995
+ −0.15
996
+ (1.5+0.5
997
+ −0.4) × 10−16
998
+ 2.56 ± 0.20
999
+ J0359
1000
+ 13.02
1001
+ 1.5000 ± 0.0010
1002
+ (0.04+4
1003
+ −0.04) × 10−14
1004
+ 2.2 ± 2.8
1005
+ Model C
1006
+ B0355
1007
+ 8.62
1008
+ -26 / -15
1009
+ 0.0
1010
+ (3.2+3.0
1011
+ −1.5) × 10−16
1012
+ 2.60 ± 0.28
1013
+ Note—All associated errors are statistical. Model A corresponds to a scenario where both sources are point-
1014
+ like, model B assumes that both sources are extended with a Gaussian shape, and model C assumes that
1015
+ PSR J0359+5414 is as a point-like source and PSR B0355+54 is an extended source with a Gaussian shape.
1016
+ ∆BIC is obtained comparing the BIC value with the best model fit assuming that the emission is coming
1017
+ from J0359 (Section 3). For model A, with the PL point-like model, for model B with the PL Gaussian
1018
+ model and for model C with the two previous models.
1019
+
69E3T4oBgHgl3EQfpwru/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79FAT4oBgHgl3EQfoh2y/content/tmp_files/2301.08635v1.pdf.txt ADDED
@@ -0,0 +1,1788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. main
2
+ ©ESO 2023
3
+ January 23, 2023
4
+ Supercritical colliding wind binaries
5
+ Leandro Abaroa1, 2⋆, Gustavo E. Romero1, 2, and Pablo Sotomayor1, 2
6
+ 1 Instituto Argentino de Radioastronomía, CICPBA-CONICET-UNLP
7
+ Villa Elisa, La Plata, Argentina
8
+ 2 Facultad de Cs. Astronómicas y Geofísicas, Universidad Nacional de La Plata
9
+ Paseo del Bosque S/N (1900), La Plata, Argentina
10
+ Received / Accepted
11
+ ABSTRACT
12
+ Context. Particle-accelerating colliding-wind binaries (PACWBs) are systems that are formed by two massive and hot stars and
13
+ produce nonthermal radiation. The key elements of these systems are fast winds and the shocks that they create when they collide.
14
+ Binaries with nonaccreting young pulsars have also been detected as nonthermal emitters, again as a consequence of the wind–wind
15
+ interaction. Black holes might produce nonthermal radiation by this mechanism if they accrete at super-Eddington rates. In such cases,
16
+ the disk is expected to launch a radiation-driven wind, and if this wind has an equatorial component, it can collide with the companion
17
+ star yielding a PACWB. These systems are supercritical colliding wind binaries.
18
+ Aims. We aim to characterize the particle acceleration and nonthermal radiation produced by the collision of winds in binary systems
19
+ composed of a superaccreting black hole and an early-type star.
20
+ Methods. We estimated the terminal velocity of the disk-driven wind by calculating the spatial distribution of the radiation fields
21
+ and their effect on disk particles. We then found the location of the wind collision region and calculated the timescales of energy
22
+ gain and losses of relativistic particles undergoing diffusive particle acceleration. With this information, we were able to compute
23
+ the associated spectral energy distribution of the radiation. We calculated a number of specific models with different parameters to
24
+ explore this scenario.
25
+ Results. We find that the interaction of winds can produce nonthermal emission from radio up to tens of GeV, with luminosities in
26
+ the range of ∼ 1033–1035 erg s−1, which for the most part are contributed by electron synchrotron and inverse Compton radiation.
27
+ Conclusions. We conclude that supercritical colliding wind binaries, such as some ultraluminous X-ray sources and some Galactic
28
+ X-ray binaries, are capable of accelerating cosmic rays and producing nonthermal electromagnetic emission from radio to γ-rays, in
29
+ addition to the thermal components.
30
+ Key words. acceleration of particles – accretion, accretion disks – relativistic processes – X-ray: binaries – gamma-rays: general –
31
+ radiation mechanism: non-thermal
32
+ 1. Introduction
33
+ Early-type stars are very hot and their radiation fields can launch
34
+ powerful particle winds (Lamers & Cassinelli 1999). Such winds
35
+ quickly reach supersonic velocities and accelerate to terminal
36
+ velocities in the range (2 − 4) × 103 km s−1 (Abbott 1978; Mui-
37
+ jres et al. 2012). When two massive stars with powerful winds
38
+ form a binary system, the winds collide producing shocks sepa-
39
+ rated by a contact discontinuity from where matter is evacuated
40
+ (e.g., Stevens et al. 1992). A reverse shock moves in the wind of
41
+ each star. When such shocks are adiabatic, they can accelerate
42
+ suprathermal particles up to relativistic energies (Eichler & Usov
43
+ 1993; Pittard et al. 2020). These particles, in turn, cool mainly
44
+ by synchrotron radiation and inverse Compton upscattering of
45
+ stellar photons, emitting nonthermal radiation (Eichler & Usov
46
+ 1993; Benaglia & Romero 2003; Reimer et al. 2006; De Becker
47
+ 2007; Reitberger et al. 2014; del Palacio et al. 2016; Pittard et al.
48
+ 2021). Proton acceleration can also lead to gamma-ray emission
49
+ through pp collisions and the subsequent π0 decays (e.g., Balbo
50
+ & Walter 2017; Grimaldo et al. 2019).
51
+ The actual fraction of particle-accelerating colliding-wind
52
+ binaries (PACWBs) among massive colliding wind binaries
53
+ Send offprint requests to: Leandro Abaroa
54
55
+ (CWBs) is not well known. De Becker & Raucq (2013) list 43
56
+ confirmed cases, mostly detected at radio wavelengths. These
57
+ authors mention several other candidates, and new sources have
58
+ been found since the publication of this latter work (e.g., Be-
59
+ naglia et al. 2015; del Palacio et al. 2016). The total kinetic
60
+ power of these systems ranges from ∼ 1034 to more than
61
+ 1037 erg s−1. The most extreme cases are WR89, WR98, and
62
+ WR140, with powers of between 6 and 8 times 1037 erg s−1.
63
+ Less than 10−7 of this power is finally radiated through syn-
64
+ chrotron radio emission. The most luminous nonthermal radio-
65
+ emitting CWB is WR140, with a total radio luminosity of ∼
66
+ 2.6 × 1030 erg s−1.
67
+ Contrary to the radio emission, high-energy radiation has
68
+ been more difficult to detect in CWBs. At X-rays, the thermal
69
+ component usually dominates and hinders the detection of non-
70
+ thermal components. In the gamma-ray domain, only two sys-
71
+ tems have been detected so far: η Carinae and WR11. The lat-
72
+ ter is the nearest known CWB. At d ∼ 340 pc, it shows a
73
+ gamma-ray luminosity in the Fermi-LAT energy range of Lγ =
74
+ (3.7 ± 0.7) × 1031 erg s−1. This luminosity amounts to ∼ 6 × 10−6
75
+ of the total wind kinetic power (Pshirkov 2016). Similar frac-
76
+ tions for other, more distant PACWBs yield fluxes that are un-
77
+ detectable with the currently available instrumentation. The no-
78
+ table exception is the mentioned η Carinae.
79
+ Article number, page 1 of 12
80
+ arXiv:2301.08635v1 [astro-ph.HE] 20 Jan 2023
81
+
82
+ A&A proofs: manuscript no. main
83
+ η Carinae is a heavily obscured and peculiar object. The sys-
84
+ tem includes a luminous blue variable (LBV) star of about 90
85
+ solar masses and a secondary Wolf-Rayet (WR) star of ∼ 30 so-
86
+ lar masses. η Carinae is the most luminous binary in the Galaxy,
87
+ with a bolometric luminosity of about 5 × 106 L⊙. The mass-
88
+ loss rate of the primary is extremely high, reaching up to 10−3
89
+ M⊙ yr−1. The binary was detected in hard X-rays by INTEGRAL
90
+ (Leyder et al. 2008) and Suzaku (Okazaki et al. 2008), suggesting
91
+ the presence of relativistic electrons in the system. AGILE de-
92
+ tected gamma rays from η Carinae for the first time (Tavani et al.
93
+ 2009). The system was subsequently detected by Fermi (Abdo
94
+ et al. 2010) with a luminosity of ∼ 1034 erg s−1. The observations
95
+ reveal the presence of a hard component in the spectrum around
96
+ periastron, which disappears near apastron. Such a component
97
+ has been explained through the decay of π0 produced by rela-
98
+ tivistic protons interacting with the dense stellar wind (Farnier
99
+ et al. 2011). There is a clear variability with the orbital phase.
100
+ Different behaviors are observed at low (0.3 − 10 GeV) and high
101
+ (> 10 GeV) gamma-ray energies. The low-energy component is
102
+ likely produced by inverse Compton scattering of stellar photons
103
+ (Balbo & Walter 2017).
104
+ The case of η Carinae suggests that super-Eddington systems
105
+ might be particularly powerful PACWBs. When a compact ob-
106
+ ject such as a black hole accretes with rates that exceed the Ed-
107
+ dington rate, the radiation pressure on the surface of the disk will
108
+ overcome the gravitational attraction and matter will be expelled
109
+ from the surface of the disk in the form of a strong wind. Such
110
+ winds can rival and even surpass those of the most luminous
111
+ CWBs in terms of kinetic power. When the donor star is a hot
112
+ early-type star also endowed with a wind, a supercritical collid-
113
+ ing wind binary (SCWB) can be formed. Such systems should
114
+ have strong shocks and are potential particle accelerators and
115
+ nonthermal emitters.
116
+ In our Galaxy, there are some examples of black hole X-ray
117
+ binaries with disks that launch strong outflows. Two examples
118
+ are GRS 1915+105 (Mirabel & Rodríguez 1994; Neilsen & Lee
119
+ 2009) and V404 Cygni (Muñoz-Darias et al. 2016; Tetarenko
120
+ et al. 2017). However, the donor star in both of these systems
121
+ is a low-mass star. Another well-known supercritical source is
122
+ the Galactic microquasar SS433, which is a confirmed nonther-
123
+ mal emitter and might be a possible example of a SCWB in our
124
+ Galaxy (see Fabrika 2004, for an extensive review). Many ul-
125
+ traluminous X-ray sources (ULXs) detected in nearby galaxies
126
+ might also belong to this category of sources.
127
+ In this paper, we explore the CWB scenario where one of the
128
+ winds is launched by a supercritical disk around a black hole. We
129
+ start by characterizing the disk model and the radiation fields it
130
+ produces (Sections 2.1 and 2.2). We then investigate the motion
131
+ of particles under the radiation pressure in such fields (Section
132
+ 2.3). This allows us to get reasonable estimates of the terminal
133
+ velocities expected for the matter ejected in the direction of the
134
+ companion star. We then proceed to study the wind interactions,
135
+ shock adiabaticity, and other relevant issues for particle accelera-
136
+ tion in Sect. 3. This is followed by estimates of energy losses for
137
+ accelerated particles, particle distributions, and calculations of
138
+ the nonthermal output (Sect. 4). In Section 5 we present results
139
+ for some specific models, with different choices of the accretor
140
+ mass and the accretion power. The donor star is supposed to be a
141
+ hot O.5V with a temperature of 41500 K and a kinetic power of
142
+ a few times 1037 erg s−1. We finally apply our model to the ex-
143
+ tragalactic binary system NGC 4190 ULX 1. After a discussion
144
+ (Sect. 7), we close with a summary and our conclusions.
145
+ 2. The accretion disk and its wind
146
+ We assume that the X-ray binary is composed of a Population
147
+ I star and a nonrotating stellar mass black hole (BH) in a close
148
+ orbit.
149
+ The orbital semi-axis a, the stellar radius, and the mass ratio
150
+ of the system, q = M∗/MBH, satisfy (Eggleton 1983):
151
+ R∗
152
+ lob =
153
+ a 0.49 q2/3
154
+ 0.6 q2/3 + ln (1 + q1/3),
155
+ (1)
156
+ where M∗ is the mass of the star and MBH the mass of the BH.
157
+ Hence, the star overflows its Roche lobe R∗
158
+ lob, transfers mass to
159
+ the BH through the Lagrange point, and an accretion disk is
160
+ formed due to the angular momentum of the system.
161
+ In this section, we describe the semi-analytical models we
162
+ use to study the accretion disk, the spatial distribution of the ra-
163
+ diation fields produced by the disk, and the wind ejected from its
164
+ surface. We assume a Newtonian potential for the gravity field,
165
+ because we are interested in weak-field processes.
166
+ 2.1. Accretion disk
167
+ We adopt cylindrical coordinates with axial symmetry along the
168
+ z-axis, neglect the self-gravity of the disk gas, and consider a
169
+ nonmagnetized disk with a super-Eddington accretion rate at the
170
+ outer part of the disk, ˙minput = ˙Minput/ ˙MEdd ≫ 1, where ˙Minput
171
+ is the input of mass per time unit in the accretion disk. The Ed-
172
+ dington rate is given by
173
+ ˙MEdd = LEdd
174
+ ηc2 ≈ 2.2×10−8MBH yr−1 = 1.4×1018 MBH
175
+ M⊙
176
+ g s−1, (2)
177
+ with LEdd the Eddington luminosity1, η ≈ 0.1 the accretion effi-
178
+ ciency, and c the speed of light.
179
+ The critical or spherization radius, given by
180
+ rcrit ∼ 40 ˙minputrg,
181
+ (3)
182
+ separates the disk in two regions: a standard outer disk (Shakura
183
+ & Sunyaev 1973) and a radiation-dominated inner disk with ad-
184
+ vection (Fukue 2004). In relation (3), rg = GMBH/c2 is the grav-
185
+ itational radius of the BH, with G the gravitational constant. In
186
+ the disk model, the advection is parameterized as a fraction f of
187
+ the viscous heating, Qadv = f Qvis, and the disk becomes geo-
188
+ metrically thick in the inner region, where the ejection of winds
189
+ by the radiation force helps to regulate the mass-accretion rate
190
+ onto the BH ( ˙Macc) at the Eddington rate2.
191
+ As the disk is optically thick, we assume that it radiates lo-
192
+ cally as a blackbody. The radiation intensity of a plasma element
193
+ in the comoving frame of the outer and inner disk, at a radius rd
194
+ measured on the equatorial plane, is
195
+ I0 = 1
196
+ πσT 4
197
+ eff =
198
+ ���������������������
199
+ 1
200
+ π
201
+ 3GMBH ˙Minput
202
+ 8πr3
203
+ d
204
+ fin, rd > rcrit
205
+ 1
206
+ π
207
+ 3
208
+ 4
209
+ √c3
210
+ LEdd
211
+ 4πr2
212
+ d
213
+ , rd ≤ rcrit,
214
+ (4)
215
+ 1 The Eddington luminosity is defined as the luminosity required to
216
+ balance the attractive gravitational pull of the accreting object by radia-
217
+ tion pressure.
218
+ 2
219
+ ˙Macc = ˙Minput in the outer region of the disk and ˙Macc = ˙Minputrd/rcrit
220
+ in the inner region (Fukue 2004).
221
+ Article number, page 2 of 12
222
+
223
+ L. Abaroa et al.: Super critical colliding wind binaries
224
+ Fig. 1: Geometry of the present disk model. The radiation fields
225
+ are calculated in the rz plane, where φ = 0. Here, Q is the posi-
226
+ tion of the plasma element of the disk and P the point of calcu-
227
+ lation on the rz plane. The scale height of the disk is H, and D
228
+ is the distance between Q and P. The short arrow is the direction
229
+ cosine jµ. This figure is adapted from Watarai & Fukue (1999).
230
+ where √c3 = H/rd = tan δ, with H the scale height of the disk,
231
+ δ the disk opening angle, and fin = 1 − rin/rd ≈ 1 (as rd >
232
+ rcrit, then rd ≫ rin). Here, c3 (along with c1 and c2 used in the
233
+ following section) is a coefficient that depends on the advection
234
+ parameter, the adiabatic index of the gas γ, and the viscosity α
235
+ (see Appendix in Fukue 2004). We adopt a disk with f = 0.5 and
236
+ α = 0.5; that is, we assume equipartition between advection and
237
+ viscous heating. The index γ = 4/3 corresponds to a radiation-
238
+ dominated gas in the inner disk. These values lead to a disk-
239
+ opening angle of δ = 30◦.
240
+ 2.2. Radiation fields
241
+ The wind launched from the radiation-dominated region of the
242
+ disk will be determined by the radiation forces acting upon the
243
+ particles on the disk surface and along their subsequent trajec-
244
+ tories. These forces will have contributions from different parts
245
+ of the disk in relative motion with respect to the particles. Some
246
+ radiation will be blueshifted and some will be redshifted, result-
247
+ ing in differential azimuthal forces onto the particles and then
248
+ transferring angular momentum from the disk to the wind.
249
+ In order to obtain the radiative contribution of each plasma
250
+ element Q = (rd, φd, H) of the disk surface, at any point P =
251
+ (r, φ, z) above or below the disk, we make a transformation of
252
+ the intensity between the inertial and comoving reference frames
253
+ (see Fig. 1). Azimuthal symmetry allows us to perform the cal-
254
+ culations for any constant value of φ; therefore, we do it in the
255
+ rz plane (φ = 0). The relativistic Doppler factor D provides the
256
+ transformation between the reference frames (McKinley 1980):
257
+ I = D4I0 =
258
+ I0
259
+ (1 + zred)4 ,
260
+ (5)
261
+ where zred is the redshift factor given by (Watarai & Fukue 1999)
262
+ zred = −(r cos φd − rd)vr − (r sin φd)vφ + (z − H)vrc3
263
+ cD
264
+ .
265
+ (6)
266
+ Here, D is the distance between P and Q, vφ = c2vK is the az-
267
+ imuthal velocity and vr = −c1αvK is the radial velocity, with
268
+ vK = √GMBH/rd the Keplerian velocity. We note that we only
269
+ consider the inner part of the disk for these calculations, because
270
+ the intensity decays with r−3
271
+ d .
272
+ The radiation-field tensor is given by (Rybicki & Lightman
273
+ 1986)
274
+ Rµν =
275
+
276
+ E
277
+ 1
278
+ c Fα
279
+ 1
280
+ c Fα
281
+ Pαβ
282
+
283
+ = 1
284
+ c
285
+
286
+ I jµ jνdΩ.
287
+ (7)
288
+ This is a symmetric tensor of rank 2 and therefore we calculate
289
+ ten elements in total: one for the energy density E, three for the
290
+ flux vector Fα, and six for the stress tensor Pαβ. In Eq. 7, jµ and
291
+ jν are the direction cosines in Cartesian coordinates, and Ω is the
292
+ solid angle subtended by Q:
293
+ jµ =
294
+ �r − rd cos φd
295
+ D
296
+ , −rd sin φd
297
+ D
298
+ , z − H
299
+ D
300
+
301
+ ,
302
+ (8)
303
+ dΩ = −(r cos φd − rd) sin δ + (z − H) cos δ
304
+ D3
305
+ dS,
306
+ (9)
307
+ where dS = √1 + c3 rd drd dφd.
308
+ 2.3. Particles in the photon field
309
+ We now calculate the trajectory and velocity of the particles
310
+ ejected from the disk when they interact with photons of the am-
311
+ bient radiation field.
312
+ The equation of motion under a relativistic, radiation treat-
313
+ ment, is given by (Kato & Fukue 2020)
314
+ fµ = −∂Φe
315
+ ∂xν + Rν
316
+ µ;ν,
317
+ (10)
318
+ where fµ is the four-force per unit volume. The effective po-
319
+ tential Φe is the sum of gravitational (Φg) and centrifugal (Φc)
320
+ potentials. The semicolon (; ) in the second term refers to the
321
+ covariant differentiation of the energy-momentum tensor.
322
+ As we consider a disk with axial symmetry, the gravitational
323
+ potential cancels out in the azimuthal coordinate: ∂Φg/∂xα =
324
+ (∂Φg/∂r, 0, ∂Φg/∂z). Furthermore, the centrifugal potential acts
325
+ only in the radial direction: ∂Φc/∂xα = (l2/r3, 0, 0), with l =
326
+ r2
327
+ dωK being the specific angular momentum of the disk, and ωK
328
+ the angular velocity.
329
+ The equations of motion of the ejected particles can be found
330
+ working with Eq. 10. In terms of the nondimensional form of
331
+ the radiation-field tensor elements ϵ, f α, and pαβ, the system of
332
+ differential, tensorial, and coupled equations is as follows (equa-
333
+ tions originally derived by Watarai & Fukue 1999, Eq. 42–44,
334
+ but now extended to second order in velocity):
335
+ Radial coordinate:
336
+ dur
337
+ dτ = − ∂Φg
338
+ ∂r + l2
339
+ r3 +
340
+ (11)
341
+ + 1
342
+ 2[γ f r − prβuβ − γ2ϵur + ur(2γ f βuβ − pβδuβuδ)].
343
+ Azimuthal coordinate:
344
+ 1
345
+ r
346
+ dl
347
+ dτ = 1
348
+ 2[γ f φ − pφβuβ − γ2ϵ(l/r)+
349
+ (12)
350
+ + (l/r)(2γ f βuβ − pβδuβuδ)].
351
+ Article number, page 3 of 12
352
+
353
+ P = (r,Φ,z)
354
+ D
355
+ Q = (rd,Φd, H)
356
+ 7
357
+ r
358
+ S
359
+ BHA&A proofs: manuscript no. main
360
+ Height coordinate:
361
+ duz
362
+ dτ = − ∂Φg
363
+ ∂z +
364
+ (13)
365
+ + 1
366
+ 2[γ f z − pzβuβ − γ2ϵuz + uz(2γ f βuβ − pβδuβuδ)],
367
+ where uµ denotes the four-velocity of the particles and γ the
368
+ Lorentz factor, which is given by
369
+ γ =
370
+
371
+ 1 + urur + l2/r2 + uzuz.
372
+ (14)
373
+ The free parameter of these equations of motion is the launch-
374
+ ing radius of the particles, r0, and we assume as initial con-
375
+ dition that the particles co-rotate with the disk at this radius,
376
+
377
+ 0 = (0, l0/r0, 0).
378
+ We solve this system of equations numerically and assume
379
+ that the kinematics of the disk-driven wind is roughly described
380
+ by the trajectory and terminal velocities obtained for the test par-
381
+ ticles. As the accretion rate in the inner region of the disk is reg-
382
+ ulated at the Eddington rate, the mass loss in the wind is of the
383
+ order of the super-Eddington accretion rate, ˙Mdw ∼ ˙Minput.
384
+ 3. Collision of winds
385
+ The wind ejected from the disk collides with the stellar wind
386
+ at the interaction region, where shocks are generated giving rise
387
+ to particle acceleration. An important quantity that characterizes
388
+ the wind is the kinetic luminosity, LK =
389
+ ˙Mv2/2, where ˙M is
390
+ the mass-loss rate and v the velocity of the fluid. A small frac-
391
+ tion of the total kinetic power of the wind is transferred to rel-
392
+ ativistic particles, Lrel ∼ 0.1LK, where we assume equipartition
393
+ between relativistic protons and electrons (Le = Lp). The mass-
394
+ loss rate and velocity of the stellar wind are set according to the
395
+ parameters found in the literature for the type of star we have
396
+ chosen (e.g., Kobulnicky et al. 2019). In the case of the disk-
397
+ driven wind, the velocity is obtained following the procedures
398
+ described in the previous section. Given the orbital separation,
399
+ the disk inclination, and the stellar size, we estimate that ∼ 10%
400
+ of the original kinetic power reaches the acceleration region. We
401
+ assume a circular orbit, that is, the geometry associated with the
402
+ collision of winds does not depend on the orbital phase.
403
+ In this section, we describe the models for the collision re-
404
+ gion, the magnetic ambient field, and the shocks. We adopt a
405
+ one-zone approximation for these calculations.
406
+ Fig. 2: Scheme of the wind collision seen in the rz plane (not to
407
+ scale), adapted from Abaroa et al. (2021).
408
+ 3.1. Contact discontinuity
409
+ The winds collide at a surface called the contact discontinuity
410
+ (CD). The stagnation point (SP) is the closest position of the CD
411
+ to the star, and is located where the ram pressures of the winds
412
+ are in equilibrium,
413
+ Pram(rBH) = ρdwv2
414
+ dw = ρ∗wv2
415
+ ∗w = Pram(r∗).
416
+ (15)
417
+ Here, rBH and r∗ are the distances to the SP from the BH and
418
+ from the center of the star, respectively. The density of the spher-
419
+ ical stellar wind at this location is given by
420
+ ρ∗w =
421
+ ˙M∗
422
+ 4πr2∗v∗w
423
+ ,
424
+ (16)
425
+ whereas the density of the disk-driven wind reads
426
+ ρdw =
427
+ ˙Mdw
428
+ Ωr2
429
+ BHvdw
430
+ ,
431
+ (17)
432
+ where Ω = 2π(1 − cos θ) is the solid angle of the wind and θ
433
+ the semi-opening angle of the wind. Solving these equations we
434
+ obtain the position of the SP.
435
+ 3.2. Magnetic field
436
+ The strength of the magnetic field at the CD is essentially deter-
437
+ mined by the stellar surface magnetic field B∗. The intensity of
438
+ BCD and its topology –dipole (i), radial (ii), or toroidal (iii)–, is
439
+ given by (Eichler & Usov 1993):
440
+ BCD ≈ B∗ ×
441
+ �����������������
442
+ R3
443
+ ∗/r3
444
+ ∗, R∗ < r∗ < rA,
445
+ (i)
446
+ R3
447
+ ∗/rAr2
448
+ ∗, rA < r∗ < R∗(v∗w/vrot
449
+ ∗ ),
450
+ (ii)
451
+ R2
452
+ ∗vrot
453
+ ∗ /rAr∗v∗w, R∗(v∗w/vrot
454
+ ∗ ) < r∗, (iii),
455
+ (18)
456
+ where R∗ is the stellar radius, rA the Alfvén radius, and vrot
457
+
458
+
459
+ 0.1v∗w the surface rotation velocity.
460
+ 3.3. Particle acceleration and shock
461
+ Particles are accelerated up to relativistic energies in the col-
462
+ lision region through a first-order diffusive shock mechanism.
463
+ Two shock fronts are generated: a forward shock (FS) that prop-
464
+ agates through the stellar wind, and a reverse shock (RS) that
465
+ propagates through the wind of the disk. The diffusive accelera-
466
+ tion rate of the particles is given by (e.g., Protheroe 1999):
467
+ t−1
468
+ ac = ηac
469
+ e Z c BCD
470
+ E
471
+ ,
472
+ (19)
473
+ where e is the electric charge, Z the atomic number, and E is the
474
+ energy of the particle. The acceleration efficiency, ηac, depends
475
+ on the diffusion coefficient of the particles, the shock velocity,
476
+ and the angle between the magnetic field and the normal to the
477
+ shock plane. We assume that the shock propagates perpendicu-
478
+ lar to the magnetic field and that diffusion occurs in the Bohm
479
+ regime. Thus, the acceleration efficiency is
480
+ ηac ≈ 3
481
+ 8
482
+ �vsh
483
+ c
484
+ �2
485
+ ,
486
+ (20)
487
+ where the shock velocities in the reference frame where one of
488
+ the fluids is at rest, v∗w = 0, and the other one moves with a
489
+ velocity vdw, are given by (Lee et al. 1996):
490
+ vRS = −4
491
+ 3
492
+ 1
493
+ 1 +
494
+
495
+ n∗w/ndw
496
+ vdw,
497
+ (21)
498
+ Article number, page 4 of 12
499
+
500
+ Shock
501
+ Stellar wind
502
+ Disk-driven wind
503
+ BH
504
+ Star
505
+ Disk
506
+ 7L. Abaroa et al.: Super critical colliding wind binaries
507
+ vFS = 4
508
+ 3
509
+ 1
510
+ 1 +
511
+
512
+ ndw/n∗w
513
+ vdw.
514
+ (22)
515
+ Here, n∗w and ndw are the numerical densities of the winds (nw =
516
+ ρw/mp, with mp the mass of the proton). The pressure and density
517
+ of the shocked medium are calculated following the Rankine-
518
+ Hugoniot relations (e.g., Lamers & Cassinelli 1999).
519
+ As we are interested in the nonthermal particle distribution,
520
+ we investigate only adiabatic shocks; that is, where radiative
521
+ losses are negligible. This is because in radiative shocks the gas
522
+ in the shocked region emits large amounts of thermal radiation;
523
+ the system therefore loses energy, the entropy increases, and
524
+ the medium becomes increasingly homogeneous. If magnetic-
525
+ inhomogeneities disappear, the acceleration efficiency decays
526
+ abruptly, aborting the formation of nonthermal distributions.
527
+ The shock is adiabatic if the thermal cooling length RΛ is
528
+ larger than the size of the acceleration region ∆xac (McCray &
529
+ Snow 1979). The cooling length reads
530
+ RΛ =
531
+ 5.9 × 1011µ(vsh/km s−1)3
532
+ (nw/cm−3)[Λ(Tsh)/erg s−1 cm−3] cm.
533
+ (23)
534
+ Here, nw is the number density of the undisturbed medium, µ
535
+ is the average molecular weight (µ = 0.6 for a fully ionized
536
+ plasma), and Λ(Tsh) is the cooling function, which depends on
537
+ the shock temperature (Raymond et al. 1976; Myasnikov et al.
538
+ 1998; Wolfire et al. 2003). This latter function can be written as
539
+ Λ(Tsh) =
540
+ �������������
541
+ 4 × 10−29T 0.8
542
+ sh ,
543
+ 55 K ≤ Tsh < 104 K
544
+ 7 × 10−27Tsh,
545
+ 104 K ≤ Tsh < 105 K
546
+ 7 × 10−19T −0.6
547
+ sh
548
+ ,
549
+ 105 K ≤ Tsh < 4 × 107 K
550
+ 3 × 10−27T 0.5
551
+ sh ,
552
+ Tsh ≥ 4 × 107 K,
553
+ (24)
554
+ where Tsh is given by
555
+ Tsh = 18.21µ
556
+
557
+ vsh
558
+ km s−1
559
+ �2
560
+ K.
561
+ (25)
562
+ We note that this temperature has a maximum value in a colli-
563
+ sional plasma: it is self-regulated by the pair-creation, satisfying
564
+ in any case kBTsh < 1 MeV (kB is the Boltzmann constant).
565
+ We assume that the size of the acceleration region is a frac-
566
+ tion of the distance from the BH to the SP, ∆xac ∼ 0.1rBH. As
567
+ we consider a one-zone model, the acceleration region must be
568
+ narrow enough to generate near-homogeneous conditions.
569
+ 4. Radiative processes
570
+ Particles accelerated at the shock can cool through different pro-
571
+ cesses and produce nonthermal radiation. The timescales asso-
572
+ ciated to this cooling are related to the total energy-loss of the
573
+ particles:
574
+ dE
575
+ dt ≈ −E
576
+ tcool
577
+ ,
578
+ (26)
579
+ where the total cooling rate is
580
+ t−1
581
+ cool =
582
+
583
+ i
584
+ t−1
585
+ i ,
586
+ (27)
587
+ where ti corresponds to each timescale of the involved cooling
588
+ processes.
589
+ We assume advective escape; that is, particles are removed
590
+ from the acceleration region by the bulk motion of the fluid. If
591
+ the timescales of cooling are shorter than those of escape, par-
592
+ ticles radiate before they escape from the acceleration region.
593
+ The maximum energy for each kind of particle can be inferred
594
+ by looking at the point where the acceleration rate is equal to
595
+ the total cooling or escape rate. This energy cannot exceed the
596
+ maximum energy imposed by the Hillas criterion, Emax
597
+ e,p < Emax
598
+ Hillas.
599
+ As we are interested in nonthermal processes, we work at
600
+ scales smaller than the size of the binary system and assume that
601
+ rotation effects are negligible there. Effects caused by the orbital
602
+ motion, such as Coriolis or centrifugal forces, could be relevant
603
+ on larger scales and lead to strong disturbances in the flow and
604
+ thermal processes. The analysis of such effects usually requires
605
+ numerical simulations and is beyond the scope of this work.
606
+ 4.1. Energy losses
607
+ We consider adiabatic and radiative losses. Adiabatic cooling is
608
+ related to the work done by the particles of the wind to expand
609
+ the shocked gas. Radiative cooling is caused by nonthermal pro-
610
+ cesses as a consequence of the interaction of the wind particles
611
+ with ambient fields and matter.
612
+ Our model is lepto-hadronic, and so we calculate the follow-
613
+ ing radiative processes numerically:
614
+ –Synchrotron: interaction of protons and electrons with the
615
+ ambient magnetic field, which will be amplified by a factor of 4
616
+ in the shocked region due to Rankine-Hugoniot relations.
617
+ –Inverse Compton (IC): collision of relativistic electrons
618
+ with photons of the ambient radiation field.
619
+ –Bremmstrahlung: Coulombian interactions between rela-
620
+ tivistic electrons and cold matter.
621
+ –Photo-hadronic interactions: interaction of highly relativis-
622
+ tic protons with photons of the ambient radiation field.
623
+ –Proton-proton: collision of relativistic protons with cold
624
+ matter.
625
+ In addition, we take into account inelastic collision of parti-
626
+ cles with atoms of the dense medium; that is, ionization losses,
627
+ which can be relevant in the 1–100 MeV range. We note that
628
+ in this energy range, ionization losses largely dominate over
629
+ Coulomb scatterings (see e.g., Fig. 7 from O’C Drury et al.
630
+ 1996), and so the latter are not included in our analysis. The
631
+ reader is referred to Romero & Paredes (2011), Romero & Vila
632
+ (2014), and Müller & Romero (2020) plus references therein for
633
+ additional details on radiative processes.
634
+ 4.2. Particle distribution
635
+ We investigate the evolution of particles that are accelerated
636
+ at the shock and injected into the surrounding medium. The
637
+ medium around the shock is the shocked gas of the winds. In
638
+ this paper, we restrict our analysis to this region. Beyond the bi-
639
+ nary, the surrounding medium has been affected by the effects
640
+ of the stellar winds, and so the system is expected to be located
641
+ inside a bubble inflated by the winds and surrounded by a shell
642
+ formed with the swept-up material at distances of a few to sev-
643
+ eral parsecs, depending on the mass of the black hole progenitor.
644
+ Inside the bubble, where the advected protons will be injected,
645
+ the density is expected to be lower than that of the standard in-
646
+ terstellar medium (e.g., around 0.01 cm−3 or less). In the shell,
647
+ there should be sufficient material for hadronic interactions with
648
+ the protons diffused or transported from the central source3.
649
+ 3 These effects will be discussed elsewhere; some of them might be
650
+ responsible for part of the high-energy emission observed in the shell
651
+ Article number, page 5 of 12
652
+
653
+ A&A proofs: manuscript no. main
654
+ The relativistic particles have a distribution given by dN =
655
+ n(r, E, t)dEdV, where n is the number density of particles, t the
656
+ time, r the position, V the volume, and E the energy. The evo-
657
+ lution of this distribution is determined by the transport equa-
658
+ tion (see e.g., Ginzburg & Syrovatskii 1964; Romero & Paredes
659
+ 2011). We solve this equation numerically in steady state and in
660
+ the one-zone approximation:
661
+
662
+ ∂E
663
+ �dE
664
+ dt N(E)
665
+
666
+ + N(E)
667
+ tesc
668
+ = Q(E),
669
+ (28)
670
+ where tesc ∼ ∆xac/vsh is the advection time, and the particle in-
671
+ jection function,
672
+ Q(E) = Q0E−p exp (−E/Emax),
673
+ (29)
674
+ is a power-law in the energy with an exponential cutoff and a
675
+ spectral index p = 2.2, which is characteristic of the Fermi first-
676
+ order acceleration mechanism (see e.g., Drury 1983). The nor-
677
+ malization constant Q0 is obtained from
678
+ L(e,p) = ∆V
679
+ � Emax
680
+ (e,p)
681
+ Emin
682
+ (e,p)
683
+ dE(e,p)E(e,p)Q(e,p)(E(e,p)),
684
+ (30)
685
+ where ∆V is the volume of the acceleration region, and Emax
686
+ (e,p)
687
+ the maximum energy reached by protons and electrons, which is
688
+ found by looking at the point where the acceleration rate is equal
689
+ to the total cooling or escape rate.
690
+ 4.3. Nonthermal emission
691
+ Once we have the particle distributions, we calculate the spectral
692
+ energy distribution (SED) for each of the relevant processes in-
693
+ volved in cooling. We find that in SCWBs, electrons typically
694
+ cool by synchrotron and IC mechanisms, and protons escape
695
+ from the acceleration region without significant cooling. The
696
+ resultant nonthermal SED usually yields a broadband spectrum
697
+ from radio waves (due to synchrotron emission) to gamma-rays
698
+ (due to IC emission).
699
+ 4.4. Wind emission
700
+ We calculate the thermal emission of the photosphere of the disk-
701
+ driven wind assuming a spherically symmetric wind that ex-
702
+ pands with constant velocity equal to its terminal velocity. Since
703
+ the mass-loss rate of the disk is much higher than the critical
704
+ rate, the wind is optically thick and therefore we assume that it
705
+ radiates locally as a blackbody. The temperature measured by an
706
+ observer at infinity is given by (Fukue 2009):
707
+ σTT 4
708
+ dw =
709
+ ˙e LEdd
710
+ (1 − β cos Θ)4 4πR2 ,
711
+ (31)
712
+ where ˙e =
713
+ ˙E/LEdd is the normalized comoving luminosity,
714
+ β = vdw/c the normalized velocity, Θ the angle of the flow with
715
+ respect to the line of sight, and R =
716
+
717
+ r2 + z2, with r and z the
718
+ being cylindrical coordinates. We assume that the comoving lu-
719
+ minosity is equal to the Eddington luminosity (˙e = 1), as is com-
720
+ monly done in supercritical wind-models (e.g., Fukue 2009).
721
+ The apparent photosphere of this wind is defined as the sur-
722
+ face where the optical depth τphoto is unity for an observer at in-
723
+ finity. If the velocity of the wind is relativistic, the optical depth
724
+ of W50, which is powered by SS433, although there are jets involved in
725
+ this specific object.
726
+ in the observer frame depends in general on the magnitude of
727
+ the velocity and the viewing angle. The location of the apparent
728
+ photosphere from the equatorial plane zphoto is (Fukue 2009):
729
+ τphoto =
730
+ � ∞
731
+ zphoto
732
+ γdw(1 − β cos Θ) κco ρcodz = 1,
733
+ (32)
734
+ where γdw is the wind Lorentz factor, κco the opacity in the co-
735
+ moving frame, and ρco the wind density in the comoving frame.
736
+ As we assume a fully ionized wind, the opacity is dominated by
737
+ free electron scattering (κco = σT/mp).
738
+ 4.5. Absorption
739
+ Finally, we calculate the gamma absorption by pair creation from
740
+ photon–photon annihilation, γ + γ → e+ + e−. The nonthermal
741
+ photons in their way out of the acceleration region can find pho-
742
+ tons of the ambient radiation fields and annihilate. The absorp-
743
+ tion is quantified by the optical depth of the medium, τγγ. If the
744
+ original luminosity of gamma rays is L0
745
+ γ(Eγ), the attenuated lu-
746
+ minosity reads:
747
+ Lγ(Eγ) = L0
748
+ γ(Eγ) · e−τ,
749
+ (33)
750
+ where e−τ is the attenuation factor. The targets of the ambient ra-
751
+ diation fields are photons from the star and from the disk-driven
752
+ wind photosphere.
753
+ The process of annihilation is possible only above a kine-
754
+ matic energy threshold given by
755
+ EγEph > (mec2)2,
756
+ (34)
757
+ in a frontal collision, where Eph is the energy of the targets. The
758
+ opacity caused by a photon–photon pair production for a photon
759
+ created at a distance r from the center of the thermal source can
760
+ be obtained from (Romero & Vila 2008):
761
+ τγγ(Eγ, r) =
762
+ � ∞
763
+ Emin
764
+ � ∞
765
+ r
766
+ nph(Eph, r′) σγγ(Eph, Eγ) dr′dEph,
767
+ (35)
768
+ where nph is the density of the ambient radiation field. The total
769
+ cross-section is given by (see e.g., Aharonian et al. 1985):
770
+ σγγ = πr2
771
+ e
772
+ 2 (1 − ξ2)
773
+
774
+ (3 − ξ4) ln
775
+ �1 + ξ
776
+ 1 − ξ
777
+
778
+ + 2ξ(ξ2 − 2)
779
+
780
+ ,
781
+ (36)
782
+ where re is the classical radius of the electron, and
783
+ ξ =
784
+
785
+ 1 − (mec2)2
786
+ EγEph
787
+ �1/2
788
+ .
789
+ (37)
790
+ The blackbody density radiation of the star and the photosphere
791
+ of the disk-driven wind is given by
792
+ nph =
793
+ 2E2
794
+ ph
795
+ h3c3
796
+ 1
797
+ exp(Eph/kBT) − 1,
798
+ (38)
799
+ where T is the temperature of the thermal source considered for
800
+ each case; that is, Tdw or Teff.
801
+ On the other side, free-free absorption (FFA) must also be
802
+ taken into account. The collision of low-energy photons with
803
+ particles of the dense medium leads to a cutoff in the SED at
804
+ radio frequencies. The denser the medium, the higher the energy
805
+ at which the cutoff occurs. Therefore, FFA will determine the
806
+ Article number, page 6 of 12
807
+
808
+ L. Abaroa et al.: Super critical colliding wind binaries
809
+ turnover of the synchrotron spectrum in SCWBs, which is ex-
810
+ pected to be at ∼GHz frequencies (see e.g., Rybicki & Lightman
811
+ 1986; del Palacio et al. 2016).
812
+ Other absorption processes, such as the photoelectric effect,
813
+ direct Compton, or γ-nucleon pair creation, are not taken into
814
+ account in this paper. Their cross-sections are not high enough to
815
+ become relevant in the calculation of opacity given the ambient
816
+ densities that we consider here (see Fig. 1 from Reynoso et al.
817
+ 2011).
818
+ 5. Results
819
+ In this section, we apply our model to a generic super-Eddington
820
+ X-ray binary. We consider a star of spectral type O.5V (Table
821
+ 1) and investigate four scenarios: in scenarios S1 and S2 we re-
822
+ gard a BH with mass MBH = 5M⊙ and mass-accretion rates of
823
+ 102 ˙MEdd and 103 ˙MEdd, respectively; in scenarios S3 and S4 we
824
+ consider a BH with mass MBH = 20M⊙ and again accretion rates
825
+ of 102 ˙MEdd and 103 ˙MEdd, respectively. The complete set of pa-
826
+ rameters is summarized in Table 2.
827
+ Type O.5V Star
828
+ Parameter
829
+ Value
830
+ Units
831
+ M∗
832
+ 37
833
+ M⊙
834
+ R∗
835
+ 11
836
+ R⊙
837
+ Teff
838
+ 41500
839
+ K
840
+ ˙M∗
841
+ 1.2 × 10−5
842
+ M⊙ yr−1
843
+ v∗w
844
+ 2.9 × 108
845
+ cm s−1
846
+ vrot
847
+
848
+ 2.9 × 107
849
+ cm s−1
850
+ L∗
851
+ K
852
+ 3.2 × 1037
853
+ erg s−1
854
+ B∗
855
+ 750
856
+ G
857
+ Table 1: Parameters adopted in the model for the star of type
858
+ O.5V. All parameters from Kobulnicky et al. (2019), with the
859
+ exception for the magnetic field (from Wade & MiMeS Collab-
860
+ oration 2015).
861
+ 5.1. Wind
862
+ We calculate the radiation-field tensor (Eq. 7) and in Fig. 3 we
863
+ show the distribution of the energy density (ϵ) on the rz plane,
864
+ where the black zone is the inflated inner disk. We obtain a
865
+ strong azimuthal flux component of the radiation-field tensor.
866
+ This distribution is the same in all four scenarios, because in
867
+ the critical disk the radiation-field tensor depends on advection,
868
+ viscosity, and adiabatic parameters, which remain the same in all
869
+ cases.
870
+ We solve Eqs. 11-13 to find the trajectory and velocity of the
871
+ particles. Both quantities are determined by Rµν and therefore we
872
+ obtain the same trajectories and terminal velocities in S1–S4. As
873
+ an example, in Fig. 4 we show the normalized velocity of a test
874
+ particle, with a launching radius of 40rg (≡ 20rs), which reaches
875
+ a terminal velocity of ≈ 0.16c. This result does not vary much if
876
+ we vary the launching radius (±0.02c for ±20rg).
877
+ The particles describe a helical trajectory in the vicinity of
878
+ the BH for two main reasons (Fig. 5). The first is the presence
879
+ of the strong azimuthal components of the radiation field, which
880
+ help to maintain the spiral geometry of the particles in the inner
881
+ disk. The second reason is the condition imposed for the particle
882
+ ejection, namely that the particles initially have only azimuthal
883
+ 0
884
+ 5
885
+ 10
886
+ 15
887
+ 20
888
+ 0
889
+ 5
890
+ 10
891
+ 15
892
+ 20
893
+ z [rs]
894
+ r [rs]
895
+ 1x10-3
896
+ 2x10-3
897
+ 2x10-3
898
+ 2x10-3
899
+ 3x10-3
900
+ 4x10-3
901
+ 4x10-3
902
+ 5x10-3
903
+ Fig. 3: Contour maps of the spatial distribution of the normalized
904
+ radiation energy density ϵ in the rz plane above the accretion
905
+ disk. Both axes are in units of Schwarzschild radius. The color
906
+ bar is the intensity of ϵ and the black zone is the inflated disk
907
+ ( f = 0.5, α = 0.5, γ = 4/3).
908
+ 40
909
+ 60
910
+ 80
911
+ 100
912
+ 120
913
+ 0.16
914
+ 0.17
915
+ 0.18
916
+ 0.19
917
+ 0.20
918
+ 0.21
919
+ r/rs
920
+ v/c
921
+ Fig. 4: Normalized velocity of a wind test particle as a function
922
+ of the Schwarzschild radius. The particle reaches a terminal ve-
923
+ locity of ∼ 0.16c for a launching radius of r0 = 20rs (coincident
924
+ with the vertical axis).
925
+ velocity. The intensity of the radiation field decays rapidly with
926
+ distance from the BH, and therefore the ejected particles follow a
927
+ spiral trajectory near the BH, but beyond a certain radius (∼ rcrit)
928
+ they follow a free path with a strong component of the radial
929
+ velocity.
930
+ The overall result is an equatorial wind with terminal veloci-
931
+ ties of the order of 0.15c. The kinetic power of these winds is in
932
+ the range 1039−41 erg s−1, which is well above the power of the
933
+ winds of typical WR or OB stars. Therefore, in general, the disk
934
+ wind is expected to overwhelm the stellar wind.
935
+ 5.2. Energy gain and losses
936
+ We follow the calculations in Sect. 3.1 and find that, in all four
937
+ scenarios, the SP is located near the stellar surface and the wind
938
+ of the disk completely sweeps up the stellar wind, as expected.
939
+ Hence, the forward shock is in the stellar atmosphere, fully ra-
940
+ Article number, page 7 of 12
941
+
942
+ A&A proofs: manuscript no. main
943
+ Scenario
944
+ Parameter
945
+ Symbol [units]
946
+ S1
947
+ S2
948
+ S3
949
+ S4
950
+ Black hole mass(1)
951
+ MBH [M⊙]
952
+ 5
953
+ 5
954
+ 20
955
+ 20
956
+ Mass accretion rate(1)
957
+ ˙Minput [M⊙ yr−1]
958
+ 1.1 × 10−5
959
+ 1.1 × 10−4
960
+ 4.4 × 10−5
961
+ 4.4 × 10−4
962
+ Orbital semi-axis(1)
963
+ a [R⊙]
964
+ 15
965
+ 15
966
+ 22
967
+ 22
968
+ Gravitational radius(2)
969
+ rg [cm]
970
+ 7.4 × 105
971
+ 7.4 × 105
972
+ 2.9 × 106
973
+ 2.9 × 106
974
+ Critical radius(2)
975
+ rcrit [rg]
976
+ 4000
977
+ 40000
978
+ 4000
979
+ 40000
980
+ Mass loss in disk winds(1)
981
+ ˙Mdw [M⊙ yr−1]
982
+ 10−5
983
+ 10−4
984
+ 4.3 × 10−5
985
+ 4.3 × 10−4
986
+ Kinetic power of the disk-driven wind(2)
987
+ Ldw
988
+ K
989
+ [erg s−1]
990
+ 7.8 × 1039
991
+ 7.8 × 1040
992
+ 3.4 × 1040
993
+ 3.4 × 1041
994
+ Cold matter density at SP(2)
995
+ ndw [cm−3]
996
+ 5.1 × 1012
997
+ 5.1 × 1013
998
+ 2.9 × 1012
999
+ 2.9 × 1013
1000
+ Distance to SP from BH(2)
1001
+ rBH [cm]
1002
+ 2.7 × 1011
1003
+ 2.7 × 1011
1004
+ 7.6 × 1011
1005
+ 7.6 × 1011
1006
+ Size of acceleration region(1)
1007
+ ∆xac [cm]
1008
+ 2.7 × 1010
1009
+ 2.7 × 1010
1010
+ 7.6 × 1010
1011
+ 7.6 × 1010
1012
+ Shock cold matter density(2)
1013
+ nRS [cm−3]
1014
+ 2 × 1013
1015
+ 2 × 1014
1016
+ 1.2 × 1013
1017
+ 1.2 × 1014
1018
+ Shock cooling length(2)
1019
+ RΛ [cm]
1020
+ 7.6 × 1011
1021
+ 7.6 × 1010
1022
+ 1.3 × 1012
1023
+ 1.3 × 1011
1024
+ Maximum energy of electrons(2)
1025
+ Emax
1026
+ e
1027
+ [eV]
1028
+ 1011
1029
+ 1.6 × 1011
1030
+ 1011
1031
+ 1011
1032
+ Maximum energy of protons(2)
1033
+ Emax
1034
+ p
1035
+ [eV]
1036
+ 1015
1037
+ 1015
1038
+ 3 × 1015
1039
+ 3.1 × 1015
1040
+ Emission peak (low energy)(2)
1041
+ L0.01mm [erg s−1]
1042
+ 3.2 × 1033
1043
+ 3.2 × 1033
1044
+ 8 × 1034
1045
+ 8 × 1034
1046
+ Emission peak (high energy)(2)
1047
+ L10MeV [erg s−1]
1048
+ 4 × 1032
1049
+ 4 × 1032
1050
+ 1034
1051
+ 1034
1052
+ Table 2: Parameters of the different scenarios calculated for the model. We indicate with superscript (1) those parameters that are
1053
+ assumed and with (2) those that are derived. In all models, the system is supposed to be oriented face-on to the observer, that is, the
1054
+ inclination of the normal to the orbital plane i with respect to the line of the sight is ∼ 0◦.
1055
+ Fig. 5: Trajectory of a test particle in the Cartesian 3D-space in
1056
+ units of Schwarzschild radius. The particles describe a helical
1057
+ trajectory above the inner disk because of the strong azimuthal
1058
+ radiation fields. The launching radius of this test particle is r0 =
1059
+ 20rs.
1060
+ diative, and completely unable to accelerate relativistic particles.
1061
+ Only the reverse shock (RS) is suitable for the task. As r∗ ≈ R∗,
1062
+ the magnetic field at the CD is BCD ≈ B���.
1063
+ The cooling length of the RS is greater than the size of the
1064
+ acceleration region in all cases (see Table 2); this is why the
1065
+ shock is adiabatic and the acceleration efficiency of the process
1066
+ is relatively high: ηac ∼ 10−2 (see Sect. 3.3). The shock velocity
1067
+ is ≈ 4.4 × 109 cm s−1 and the temperature of the shocked gas
1068
+ reaches ≈ 4.8 × 1010 K.
1069
+ We calculate the energy gain and losses of the shock-
1070
+ accelerated particles following Sect. 4. Highly relativistic pro-
1071
+ tons escape from the acceleration region without cooling in all
1072
+ scenarios considered here (with energies up to Ep ≈ 1 PeV) and
1073
+ are injected into the interstellar medium (ISM). Protons are ad-
1074
+ vected, that is, they are removed from the collision region by the
1075
+ bulk motion of the fluid. They therefore do not interact with am-
1076
+ bient material at scales similar to that of the system. Electrons
1077
+ cool mainly through IC and synchrotron mechanisms, and reach
1078
+ a maximum energy of Ee ≈ 100 GeV. To obtain the electron dis-
1079
+ tribution, we solve the transport equation considering only the
1080
+ dominant IC and synchrotron losses, and a power-law injection
1081
+ function with a spectral index of 2.2 and an exponential cutoff
1082
+ (see Eq. 29).
1083
+ 5.3. Spectral energy distribution
1084
+ Figure 6 shows the SEDs of the four scenarios. The only thermal
1085
+ component of the spectrum is the photosphere of the optically
1086
+ thick disk-driven wind. The emission peak of the wind for S1
1087
+ and S2 is ≈ 1037 erg s−1, whereas for S3 and S4 the peak is
1088
+ ≈ 1038 erg s−1. This occurs at energies of ∼ 100 eV for S1 and
1089
+ S3, and ∼ 30 eV for S2 and S4. Therefore, if MBH increases, the
1090
+ luminosity is higher and, if the mass-accretion rate increases, the
1091
+ luminosity peak occurs at lower energies.
1092
+ In the case of the nonthermal spectrum, we calculate the
1093
+ emission due to synchrotron and IC losses. In the latter case, we
1094
+ consider the photon fields of the star and of the wind photosphere
1095
+ as targets. In all cases, the dominant IC contribution is that of
1096
+ the star. The luminosity in S3 and S4 is an order of magnitude
1097
+ greater than that in S1 and S2. This is because of the modification
1098
+ of the orbital parameters when the BH mass varies: to guarantee
1099
+ the overflow of the Roche lobe, the orbital semi-axis varies with
1100
+ MBH, which results in variation in the size of the acceleration re-
1101
+ Article number, page 8 of 12
1102
+
1103
+ L. Abaroa et al.: Super critical colliding wind binaries
1104
+ gion and the photon density at SP, among other parameters. The
1105
+ emission peak at low energies is ∼ 1033 erg s−1 for S1 and S2,
1106
+ and ∼ 1035 erg s−1 for S3 and S4. At high energies, the emission
1107
+ peak is ∼ 1032 erg s−1 (S1 and S2) and ∼ 1034 erg s−1 (S3 and
1108
+ S4). The gamma-ray absorption due to γγ annihilation is total
1109
+ for energies > 10 GeV in all scenarios4.
1110
+ Attenuation due to material between the source and the ob-
1111
+ server, that is, absorption by external cold gas, is mainly in the
1112
+ optical-to-UV range and at soft X-rays. At radio wavelengths, re-
1113
+ fractive scintillation on free electrons of the ISM occurs at lower
1114
+ frequencies than predicted here. For high-energy gamma rays,
1115
+ the main absorbers are infrared (IR) fields and the cosmic mi-
1116
+ crowave background (CMB), but their effects are only relevant
1117
+ for cosmological distances.
1118
+ 6. Application to NGC 4190 ULX 1
1119
+ Ultraluminous X-ray sources (ULXs) are extragalactic point-like
1120
+ objects where the luminosity in the X-ray band appears to be
1121
+ higher than the Eddington luminosity (Bachetti 2016). ULXs are
1122
+ thought to be X-ray binaries with a stellar-mass compact object
1123
+ accreting at super-Eddington rates, where a beaming effect could
1124
+ be responsible for the luminosity observed in the X-ray band:
1125
+ the radiation emitted from the inner part of the accretion disk is
1126
+ geometrically collimated by the ejected wind, which is optically
1127
+ thick except in a narrow region around the black-hole axis and
1128
+ forms a cone-shaped funnel (King et al. 2001; King 2009; Kaaret
1129
+ et al. 2017; Fabrika et al. 2021).
1130
+ We apply our model to estimate the radiation emitted by the
1131
+ ultraluminous X-ray source NGC 4190 ULX 1 (also known as
1132
+ CXO J121345.2+363754). Although many characteristics of this
1133
+ ULX remain poorly understood, several authors have explored
1134
+ the system and have provided constraints on some of its param-
1135
+ eters (see e.g., Liu & Bregman 2005; Gladstone et al. 2013; Ko-
1136
+ liopanos et al. 2017; Kosec et al. 2018; Ghosh & Rana 2021).
1137
+ In what follows, we describe the parameterization of the sys-
1138
+ tem and its components, and investigate the expected collision
1139
+ of winds. The complete set of parameters used in this section is
1140
+ detailed in Table 3.
1141
+ 6.1. System parameterization
1142
+ The source is located in the nearby Galaxy NGC 4190 at a dis-
1143
+ tance of d ≈ 3 Mpc (Tully et al. 2013). Observations made
1144
+ in 2010 using the XMM-Newton telescope reveal a long-term
1145
+ spectral variability in the 0.3–10.0 keV energy range: LX ∼
1146
+ 3 − 8 × 1039 erg s−1.
1147
+ The angle i between the line of sight and the z-axis at which
1148
+ the disk of a ULX is observed determines the components of its
1149
+ spectrum: blackbody disk (BB) or Comptonization. If i is small,
1150
+ the observer is able to look into the funnel and see the innermost
1151
+ part of the disk: the spectrum shows only the BB component,
1152
+ which corresponds to thermal emission of the disk. This type of
1153
+ spectrum is called broadened disk (BD). If i is sufficiently large,
1154
+ another effect is observed: the interaction between photons and
1155
+ wind particles near the disk surface induces a Comptonization
1156
+ that produces a hardening in the spectrum. Most ULXs exhibit a
1157
+ combination of both phenomena in their X-ray spectrum.
1158
+ 4 We note that, since we assume a nearly face-on inclination of the
1159
+ system, there are no significant variations of the radiative output associ-
1160
+ ated with the orbital phase. If the system were oriented nearly edge-on,
1161
+ the emission would be modulated by the orbital phase due to absorption
1162
+ (for details see Romero et al. 2010).
1163
+ Ghosh & Rana (2021) investigated the spectral properties of
1164
+ NGC 4190 ULX 1 and suggested that the ULX is in a BD state,
1165
+ and that the compact object is a BH with mass ∼ 10 − 30M⊙
1166
+ accreting at super-Eddington rates. We fit the XMM-Newton ob-
1167
+ servations (Epoch 3) with the supercritical advection-dominated
1168
+ disk model detailed in Sect. 2.1, assuming a mass-accretion rate
1169
+ of ˙Minput = 10 ˙MEdd. We also assume a face-on inclination i ≈ 0◦,
1170
+ a BH mass 10M⊙ and a geometrical beaming factor b = 0.07.
1171
+ This factor is given by,
1172
+ b = Ω/4π = 0.5(1 − cos ϑ),
1173
+ (39)
1174
+ where Ω is the solid angle of the emission. The angle ϑ is related
1175
+ to the opening angles of the disk (δ) and its wind (θ): ϑ+δ+2θ =
1176
+ 90◦. Both angles, i and ϑ, can change over time, causing the
1177
+ spectral variability of the object (Fabrika et al. 2021).
1178
+ On the other hand, Gladstone et al. (2013) provided con-
1179
+ straints on the characteristics of the optical counterpart of the
1180
+ system. They suggested that, if MBH = 10M⊙, the mass of the
1181
+ star could be < 50M⊙ and its radius < 86R⊙. We choose a star
1182
+ of type B2V for our model in light of one of the fittings these
1183
+ latter authors made from Hubble Space Telescope observations.
1184
+ If we apply Eq. 1 and consider the mass ratio M∗/MBH, and the
1185
+ stellar radius involved (see Table 3), the transfer of mass in the
1186
+ binary system occurs for an orbital semi-axis a ≤ 15.2 R⊙, which
1187
+ results in a period ≤ 38 h.
1188
+ 6.2. Collision of winds
1189
+ The terminal velocity of the disk-driven wind is vdw = 4.95 ×
1190
+ 109 cm s−1, and therefore Ldw
1191
+ K = 1.5 × 1039 erg s−1, while L∗
1192
+ K =
1193
+ 2.17 × 1034 erg s−1. The SP is located near the stellar surface
1194
+ and the wind of the disk completely suppresses the stellar wind.
1195
+ We therefore only take into account the reverse shock (RS). As
1196
+ r∗ ≈ R∗, the magnetic field at the CD is BCD ≈ B∗.
1197
+ The cooling length of the RS is RΛ = 2.2 × 1013 cm and
1198
+ the size of the acceleration region is ∆xac = 6.68 × 1010 cm;
1199
+ therefore, the shock is adiabatic and the acceleration efficiency of
1200
+ the process is ηac = 10−2, as in our general models. We calculate
1201
+ the energy gain and losses of the shock particles following Sect.
1202
+ 4. Highly relativistic protons escape from the acceleration region
1203
+ without cooling, as in our previous scenarios (with energies up
1204
+ to Ep ≈ 1 PeV), and are injected into the ISM. Electrons cool
1205
+ mainly through IC and synchrotron mechanisms. Figure 7 shows
1206
+ the timescales of electrons, which reach a maximum energy of
1207
+ Ee ≈ 0.32 TeV. To obtain the electron distribution, we solve the
1208
+ transport equation taking into account only IC and synchrotron
1209
+ losses, and a power-law injection function with a spectral index
1210
+ of 2.2 and an exponential cutoff.
1211
+ 6.3. Total SED
1212
+ The SED of the ULX spans a broadband energy range. Figure
1213
+ 9 shows the thermal (wind and accretion disk) and nonthermal
1214
+ (colliding-winds shock) contributions of the system. We also
1215
+ show the sensitivity of the instruments ALMA, VLA (sub-mm
1216
+ waves), Fermi, and CTA (gamma rays), and observational data
1217
+ from XMM-Newton.
1218
+ The luminosity in the IR band is ∼ 1034 erg s−1, which is rel-
1219
+ atively strong, though still undetectable at megaparsec distances.
1220
+ The luminosity in gamma-rays also reaches ∼ 1034 erg s−1. The
1221
+ attenuation factor (Fig. 8) has an effect on photons with ener-
1222
+ gies ≳ 1 GeV. Most of the radiation above 1 GeV and all above
1223
+ 50 GeV is suppressed by the annihilation of the γ rays with the
1224
+ photon fields of the disk-driven wind and the star.
1225
+ Article number, page 9 of 12
1226
+
1227
+ A&A proofs: manuscript no. main
1228
+ 30
1229
+ 31
1230
+ 32
1231
+ 33
1232
+ 34
1233
+ 35
1234
+ 36
1235
+ 37
1236
+ 38
1237
+ 39
1238
+ 40
1239
+ -4
1240
+ -2
1241
+ 0
1242
+ 2
1243
+ 4
1244
+ 6
1245
+ 8
1246
+ 10
1247
+ 12
1248
+ S1 & S3
1249
+ log10 (EγLγ / erg s-1)
1250
+ log10 (Eγ / eV)
1251
+ wind photosphere S1
1252
+ synchrotron S1
1253
+ inverse Compton S1 (star)
1254
+ inverse Compton S1 (wind)
1255
+ total SED S1
1256
+ wind photosphere S3
1257
+ synchrotron S3
1258
+ inverse Compton S3 (star)
1259
+ inverse Compton S3 (wind)
1260
+ total SED S3
1261
+ 30
1262
+ 31
1263
+ 32
1264
+ 33
1265
+ 34
1266
+ 35
1267
+ 36
1268
+ 37
1269
+ 38
1270
+ 39
1271
+ 40
1272
+ -4
1273
+ -2
1274
+ 0
1275
+ 2
1276
+ 4
1277
+ 6
1278
+ 8
1279
+ 10
1280
+ 12
1281
+ S2 & S4
1282
+ log10 (EγLγ / erg s-1)
1283
+ log10 (Eγ / eV)
1284
+ wind photosphere S2
1285
+ synchrotron S2
1286
+ inverse Compton S2 (star)
1287
+ inverse Compton S2 (wind)
1288
+ total SED S2
1289
+ wind photosphere S4
1290
+ synchrotron S4
1291
+ inverse Compton S4 (star)
1292
+ inverse Compton S4 (wind)
1293
+ total SED S4
1294
+ Fig. 6: Thermal and nonthermal SEDs of the four scenarios considered, S1–S4, in logarithmic scale, where a face-on inclination is
1295
+ assumed. S1 and S3 are shown in the left plot, whereas S2 and S4 are shown in the right plot. Dashed lines correspond to S1 (left)
1296
+ and S2 (right), solid lines correspond to S3 (left) and S4 (right). We plot the nonattenuated inverse Compton contributions in gray.
1297
+ The emission peak at high energies is ∼ 1033 erg s−1 for S1 and S2, and ∼ 1034 erg s−1 for S3 and S4. The gamma-ray absorption
1298
+ due to γγ annihilation is total for energies > 10 GeV.
1299
+ -8
1300
+ -6
1301
+ -4
1302
+ -2
1303
+ 0
1304
+ 2
1305
+ 4
1306
+ 6
1307
+ 8
1308
+ 10
1309
+ 6
1310
+ 7
1311
+ 8
1312
+ 9
1313
+ 10
1314
+ 11
1315
+ 12
1316
+ 13
1317
+ ηac ∼ 10-2
1318
+ RS
1319
+ log10 (t-1 / s-1)
1320
+ log10 (Ee / eV)
1321
+ synchrotron
1322
+ inverse Compton
1323
+ Bremsstrahlung
1324
+ adiabatic
1325
+ ion
1326
+ acceleration
1327
+ escape
1328
+ Fig. 7: Timescales in logarithmic scale of the electron accelera-
1329
+ tion, escape, and cooling at the reverse shock in NGC 4190 ULX
1330
+ 1. Electrons reach a maximum energy of ≈ 0.32 TeV. The accel-
1331
+ eration efficiency is 10−2.
1332
+ 7. Discussion
1333
+ Our analysis of supercritical colliding wind binaries shows that
1334
+ these systems should exhibit broadband emission from radio to
1335
+ gamma rays. In this sense, they are similar to CWBs formed by
1336
+ two hot stars, such as O+WR binaries. However, there are im-
1337
+ portant differences as well. If we compare our models with re-
1338
+ cent models of O+WR CWBs (Pittard et al. 2021), we find that
1339
+ (i) in SCWBs, the wind of the disk is far more powerful than
1340
+ the wind of the star. This results in stagnation points that are
1341
+ very close to the surface of the star. Efficient particle accelera-
1342
+ tion then can only occur in reverse shocks. (ii) We also see that
1343
+ the disk wind advects protons from the acceleration region be-
1344
+ fore they have time to cool. Only electrons can cool locally. The
1345
+ 0
1346
+ 0.2
1347
+ 0.4
1348
+ 0.6
1349
+ 0.8
1350
+ 1
1351
+ -6
1352
+ -4
1353
+ -2
1354
+ 0
1355
+ 2
1356
+ 4
1357
+ 6
1358
+ 8
1359
+ 10
1360
+ 12
1361
+ e−τγγ
1362
+ log10 (Eγ / eV)
1363
+ Star
1364
+ Wind photosphere
1365
+ Total attenuation
1366
+ Fig. 8: Attenuation factors due to γγ-annihilation between high-
1367
+ energy nonthermal radiation and photon fields from the star and
1368
+ from the photosphere of the disk-driven wind in NGC 4190 ULX
1369
+ 1. The total attenuation is plotted with a black line.
1370
+ resulting SED is consequently dominated by synchrotron and IC
1371
+ radiation. (iii) As the acceleration region is close to the star, the
1372
+ local magnetic field is relatively strong. Synchrotron emission
1373
+ reaches energies of hundreds of keV. As the medium is far more
1374
+ dense than in stellar CWBs, free-free absorption causes this radi-
1375
+ ation to turnover below ∼ 24 GHz. The total power at millimeter
1376
+ (mm) and submm wavelengths can be between three and five
1377
+ orders of magnitude higher in SCWBs than in stellar CWBs.
1378
+ (iv) IC is the dominant radiation mechanism at high energies.
1379
+ The stronger thermal fields of SCWBs (wind photosphere and
1380
+ star) provide the seed photons, but also impose a high-energy
1381
+ cutoff at ∼ 1 GeV through γ − γ attenuation. Instead, stellar
1382
+ CWBs can reach energies close to 1 TeV. (v) The strong mag-
1383
+ netic fields in the acceleration region cut electromagnetic cas-
1384
+ Article number, page 10 of 12
1385
+
1386
+ L. Abaroa et al.: Super critical colliding wind binaries
1387
+ Table 3: Parameters of NGC 4190 ULX 1.
1388
+ Parameter
1389
+ Symbol
1390
+ Value
1391
+ Units
1392
+ System
1393
+ Inclination(1)
1394
+ i
1395
+ 0
1396
+
1397
+ Orbital semi-axis(2)
1398
+ a
1399
+ 15
1400
+ R⊙
1401
+ Distance to the source(3)
1402
+ d
1403
+ 3
1404
+ Mpc
1405
+ Black hole
1406
+ Mass(1)
1407
+ MBH
1408
+ 10
1409
+ M⊙
1410
+ Gravitational radius(2)
1411
+ rg
1412
+ 1.48 × 106
1413
+ cm
1414
+ Accretion disk
1415
+ Disk semi opening angle(1)
1416
+ δ
1417
+ 30
1418
+
1419
+ Critical radius(2)
1420
+ rcrit
1421
+ 3.5 × 109
1422
+ cm
1423
+ Eddington accretion rate
1424
+ ˙MEdd
1425
+ 2.2 × 10−7
1426
+ M⊙ yr−1
1427
+ Mass accretion rate(1)
1428
+ ˙Minput
1429
+ 2.2 × 10−6
1430
+ M⊙ yr−1
1431
+ Mass loss in winds(1)
1432
+ ˙Mdw
1433
+ 1.98 × 10−6
1434
+ M⊙ yr−1
1435
+ Wind velocity(2)
1436
+ vdw
1437
+ 4.95 × 109
1438
+ cm s−1
1439
+ Wind semi opening angle(2)
1440
+ θ
1441
+ 14.5
1442
+
1443
+ Beaming factor(2)
1444
+ b
1445
+ 0.07
1446
+
1447
+ B2V Star
1448
+ Mass(4)
1449
+ M∗
1450
+ 8
1451
+ M⊙
1452
+ Radius(4)
1453
+ R∗
1454
+ 5.4
1455
+ R⊙
1456
+ Temperature(4)
1457
+ Teff
1458
+ 20600
1459
+ K
1460
+ Mass loss in winds(4)
1461
+ ˙M∗
1462
+ 1.4 × 10−7
1463
+ M⊙ yr−1
1464
+ Wind velocity(4)
1465
+ v∗w
1466
+ 7 × 107
1467
+ cm s−1
1468
+ Rotation velocity(1)
1469
+ vrot
1470
+
1471
+ 7 × 106
1472
+ cm s−1
1473
+ Magnetic field(5)
1474
+ B∗
1475
+ 200
1476
+ G
1477
+ Colliding winds
1478
+ Kinetic power of disk-driven wind(2)
1479
+ Ldw
1480
+ K
1481
+ 1.5 × 1039
1482
+ erg s−1
1483
+ Kinetic power of stellar wind(2)
1484
+ L∗
1485
+ K
1486
+ 2.17 × 1034
1487
+ erg s−1
1488
+ Distance from BH to SP(2)
1489
+ rBH
1490
+ 6.68 × 1011
1491
+ cm
1492
+ Size of acceleration region(1)
1493
+ ∆xac
1494
+ 6.68 × 1010
1495
+ cm
1496
+ Magnetic field at SP(2)
1497
+ BSP
1498
+ 200
1499
+ G
1500
+ Injection spectral index(1)
1501
+ p
1502
+ 2.2
1503
+
1504
+ Acceleration efficiency(2)
1505
+ ηac
1506
+ 10−2
1507
+
1508
+ Molecular mean weight(1)
1509
+ µ
1510
+ 0.6
1511
+
1512
+ Reverse shock
1513
+ Velocity(2)
1514
+ vRS
1515
+ 4.4 × 109
1516
+ cm s−1
1517
+ Temperature(2)
1518
+ TRS
1519
+ 1010
1520
+ K
1521
+ Cold matter density(2)
1522
+ nRS
1523
+ 6.9 × 1011
1524
+ cm−3
1525
+ Cooling length(2)
1526
+
1527
+ 2.2 × 1013
1528
+ cm
1529
+ Notes. We indicate the parameters we have assumed with superscript
1530
+ (1) and those we have derived with (2). Parameters with superscripts
1531
+ (3), (4), and (5) were taken from Tully et al. (2013), Kobulnicky et al.
1532
+ (2019), and Shultz et al. (2015), respectively.
1533
+ cades in SCWBs. (vi) The SED is always dominated by the X-
1534
+ ray component associated with the disk or its wind in SCWBs.
1535
+ Finally, (vii) stellar CWBs have wider orbits and a variable sep-
1536
+ aration between the components of the system. This produces
1537
+ variability related to the orbital period. On the contrary, the or-
1538
+ bits of SCWBs should be mostly circularized. In general, CWBs
1539
+ are weaker than SCWBs, although span a broader energy range.
1540
+ An interesting feature of SCWBs is their potential as cosmic
1541
+ ray sources. As mentioned, the strong wind of the disk drags
1542
+ away the relativistic protons before they cool. These protons,
1543
+ with maximum energies of the order of 1 PeV, are then injected
1544
+ into the ISM where they diffuse. Even if a fraction of just ∼ 1
1545
+ % of the wind kinetic power goes to relativistic protons, the
1546
+ cosmic ray output of a SCWB would be in the range 1037−39
1547
+ erg s−1. These protons might interact with ambient clouds at
1548
+ some distance from the system, producing gamma rays through
1549
+ pp → π0 + pp interactions and the subsequent pion decays
1550
+ π0 → γγ. The gamma-ray emission from the illuminated clouds
1551
+ 30
1552
+ 32
1553
+ 34
1554
+ 36
1555
+ 38
1556
+ 40
1557
+ 42
1558
+ -8
1559
+ -6
1560
+ -4
1561
+ -2
1562
+ 0
1563
+ 2
1564
+ 4
1565
+ 6
1566
+ 8
1567
+ 10
1568
+ 12
1569
+ Fermi
1570
+ CTA
1571
+ ALMA
1572
+ VLA
1573
+ log10 (EγLγ / erg s-1)
1574
+ log10 (Eγ / eV)
1575
+ wind photosphere
1576
+ beamed disk
1577
+ inverse Compton (star)
1578
+ inverse Compton (wind)
1579
+ synchrotron
1580
+ Total SED
1581
+ XMM Newton data
1582
+ Fig. 9: Thermal and nonthermal SEDs of NGC 4190 ULX 1 in
1583
+ logarithmic scale (dashed lines). The nonthermal SED is par-
1584
+ tially attenuated for energies > 1 GeV and totally attenuated
1585
+ for energies > 50 GeV due to annihilation of γ-rays with the
1586
+ photon fields of the star and the photosphere of the disk-driven
1587
+ wind. The gray dashed lines are the nonattenuated IC contribu-
1588
+ tions. The total SED is plotted with a solid black line. Data from
1589
+ XMM-Newton (Epoch 3), and the sensitivity of ALMA, Fermi,
1590
+ VLA, and CTA are also shown (instrument sensitivities were
1591
+ taken from Sotomayor & Romero 2022).
1592
+ can be even stronger than the emission from the binary itself.
1593
+ However, the spectrum should be softer because of propagation
1594
+ effects (Aharonian & Atoyan 1996). Recent modeling by Pit-
1595
+ tard et al. (2021) of particle acceleration in colliding wind bina-
1596
+ ries with wind velocities of a few 103 km s−1 and mG magnetic
1597
+ fields in the acceleration region demonstrate that up to ∼ 30 % of
1598
+ the wind power can be transferred to nonthermal particles. This
1599
+ means that, in some extreme cases, a SCWB might inject up to
1600
+ ∼ 1040 erg s−1 in cosmic rays.
1601
+ Another type of CWB is the so-called gamma-ray binary
1602
+ (GRB; e.g., LS 5039, PSR B1259-63, LSI +61◦ 303, PSR
1603
+ J2032+4127, and others; see, e.g., Dubus 2013; Chernyakova &
1604
+ Malyshev 2020). These sources are formed by a massive star
1605
+ (usually a Be star with a dense equatorial decretion disk and a
1606
+ fast wind) and a young pulsar in an eccentric orbit. The pul-
1607
+ sar ejects a relativistic pair wind. The wind collision produces
1608
+ a broadband spectrum from electrons accelerated at the shock
1609
+ that cool by synchrotron and IC radiation. The two-peak SEDs
1610
+ are similar to those we estimate for SCWBs, but some differ-
1611
+ ences are also clearly seen: (i) GRBs are less energetic because
1612
+ the spin-down luminosity of the pulsar is much smaller than the
1613
+ power of a supercritical wind. (ii) GRBs are highly variable. This
1614
+ variability is modulated with the orbital period. The orbital mod-
1615
+ ulation of the different components of the broadband spectrum is
1616
+ a consequence of the orbital variability of geometrical parame-
1617
+ ters, such as the geometry of the contact surface of the stellar
1618
+ and pulsar winds. Absorption effects are also strongly variable.
1619
+ (iii) Hadronic interactions are likely when the pulsar crosses the
1620
+ equatorial disk of the star (e.g., Bykov et al. 2021). (iv) GeV
1621
+ flares have been observed after the periastron passage in sources
1622
+ such as PSR B1259-63 (Abdo et al. 2011; Chernyakova et al.
1623
+ 2014). These flares are attributed to the effects of the unshocked
1624
+ pulsar wind interaction with photons from the stellar disk (e.g.,
1625
+ Khangulyan et al. 2012).
1626
+ Article number, page 11 of 12
1627
+
1628
+ A&A proofs: manuscript no. main
1629
+ We finally mention that some black holes accreting at super-
1630
+ critical rates seem to be capable of launching mildly relativis-
1631
+ tic jets. A remarkable case in our Galaxy is the notorious mi-
1632
+ croquasar SS433 (Fabrika 2004). This object resembles a ULX
1633
+ source seen edge on (Begelman et al. 2006). The accretion rate
1634
+ should be extremely high in order to explain the large jet power
1635
+ LK ∼ 1040 erg s−1. Begelman et al. (2006) suggest rates of
1636
+ ∼ 5 × 103 ˙MEdd ∼ 5 × 10−4 M⊙ yr−1, which are consistent with
1637
+ estimates of equatorial mass outflows inferred from radio obser-
1638
+ vations (Blundell et al. 2001). These outflows, ejected toward
1639
+ either side of the jets, present a thermal spectrum and might well
1640
+ correspond to the radiation-driven wind of the hypercritical disk.
1641
+ The contamination from the jet base makes it impossible to dis-
1642
+ entangle contributions from colliding winds from those coming
1643
+ from the jet. However, the equatorial outflow might propagate
1644
+ well beyond the system and reveal itself if it collides with any
1645
+ clouds. The shock generated in the collision would convert the
1646
+ kinetic energy of the plasmoids into internal energy and relativis-
1647
+ tic particles, which might then cool by pp interactions with the
1648
+ cloud material. Such a scenario might explain the detection of a
1649
+ GeV source by the Fermi satellite on the side of SS433 (Bordas
1650
+ 2020; Li et al. 2020). We will explore the details of this hypoth-
1651
+ esis elsewhere.
1652
+ 8. Summary and conclusions
1653
+ We explored the consequences of supercritical accretion in bi-
1654
+ nary systems consisting of a hot star and a black hole. We find
1655
+ that a fraction of the kinetic power of the radiation-driven wind
1656
+ released by the accretion disk is transformed into relativistic par-
1657
+ ticles in the region of the wind that collides with the star. Elec-
1658
+ trons are cooled locally, mainly through synchrotron and inverse
1659
+ Compton radiation. The radiation fields of the star and wind pho-
1660
+ tosphere provide abundant thermal photons for the latter process;
1661
+ they also absorb high-energy radiation above a few GeV. Free-
1662
+ free absorption imposes a high-frequency turnover in the ra-
1663
+ dio regime, suppressing centimeter radio waves, unlike the case
1664
+ of colliding wind binaries. The relativistic protons are blown
1665
+ away by the wind before they can cool down significantly. Once
1666
+ trapped by the outflow, these protons are transported to outer re-
1667
+ gions where they can interact with ambient gas away from the
1668
+ binary system, producing hadronic gamma-rays. Our most im-
1669
+ portant finding is that, in addition to being strong thermal UV
1670
+ and X-ray sources, supercritical colliding wind binaries can be
1671
+ significant nonthermal sources at mm wavelengths and GeV en-
1672
+ ergies.
1673
+ Acknowledgements. The authors thank the anonymous referee for a careful and
1674
+ constructive review, and for his/her comments that improved this work. We thank
1675
+ also Daniela Pérez and Jiˇri Horák for fruitful discussions. This work was sup-
1676
+ ported by grant PIP 0554 (CONICET). LA ackowledges the Universidad Na-
1677
+ cional de La Plata for the education received. GER acknowledges the support
1678
+ from the Spanish Ministerio de Ciencia e Innovación (MICINN) under grant
1679
+ PID2019-105510GBC31 and through the Center of Excellence Mara de Maeztu
1680
+ 2020-2023 award to the ICCUB (CEX2019-000918-M).
1681
+ References
1682
+ Abaroa, L., Sotomayor Checa, P., & Romero, G. E. 2021, Boletin de la Asocia-
1683
+ cion Argentina de Astronomia La Plata Argentina, 62, 262
1684
+ Abbott, D. C. 1978, ApJ, 225, 893
1685
+ Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 723, 649
1686
+ Abdo, A. A., Ackermann, M., Ajello, M., et al. 2011, ApJ, 736, L11
1687
+ Aharonian, F. A. & Atoyan, A. M. 1996, A&A, 309, 917
1688
+ Aharonian, F. A., Kririllov-Ugriumov, V. G., & Vardanian, V. V. 1985, Ap&SS,
1689
+ 115, 201
1690
+ Bachetti, M. 2016, Astronomische Nachrichten, 337, 349
1691
+ Balbo, M. & Walter, R. 2017, A&A, 603, A111
1692
+ Begelman, M. C., King, A. R., & Pringle, J. E. 2006, MNRAS, 370, 399
1693
+ Benaglia, P., Marcote, B., Moldón, J., et al. 2015, A&A, 579, A99
1694
+ Benaglia, P. & Romero, G. E. 2003, A&A, 399, 1121
1695
+ Blundell, K. M., Mioduszewski, A. J., Muxlow, T. W. B., Podsiadlowski, P., &
1696
+ Rupen, M. P. 2001, ApJ, 562, L79
1697
+ Bordas, P. 2020, Nature Astronomy, 4, 1132
1698
+ Bykov, A. M., Petrov, A. E., Kalyashova, M. E., & Troitsky, S. V. 2021, ApJ,
1699
+ 921, L10
1700
+ Chernyakova, M., Abdo, A. A., Neronov, A., et al. 2014, MNRAS, 439, 432
1701
+ Chernyakova, M. & Malyshev, D. 2020, in Multifrequency Behaviour of High
1702
+ Energy Cosmic Sources - XIII. 3-8 June 2019. Palermo, 45
1703
+ De Becker, M. 2007, A&A Rev., 14, 171
1704
+ De Becker, M. & Raucq, F. 2013, A&A, 558, A28
1705
+ del Palacio, S., Bosch-Ramon, V., Romero, G. E., & Benaglia, P. 2016, A&A,
1706
+ 591, A139
1707
+ Drury, L. O. 1983, Reports on Progress in Physics, 46, 973
1708
+ Dubus, G. 2013, A&A Rev., 21, 64
1709
+ Eggleton, P. P. 1983, ApJ, 268, 368
1710
+ Eichler, D. & Usov, V. 1993, ApJ, 402, 271
1711
+ Fabrika, S. 2004, Astrophys. Space Phys. Res., 12, 1
1712
+ Fabrika, S. N., Atapin, K. E., Vinokurov, A. S., & Sholukhova, O. N. 2021,
1713
+ Astrophysical Bulletin, 76, 6
1714
+ Farnier, C., Walter, R., & Leyder, J. C. 2011, A&A, 526, A57
1715
+ Fukue, J. 2004, PASJ, 56, 569
1716
+ Fukue, J. 2009, PASJ, 61, 1305
1717
+ Ghosh, T. & Rana, V. 2021, MNRAS, 504, 974
1718
+ Ginzburg, V. L. & Syrovatskii, S. I. 1964, The Origin of Cosmic Rays. Oxford:
1719
+ Pergamon Press.
1720
+ Gladstone, J. C., Copperwheat, C., Heinke, C. O., et al. 2013, ApJS, 206, 14
1721
+ Grimaldo, E., Reimer, A., Kissmann, R., Niederwanger, F., & Reitberger, K.
1722
+ 2019, ApJ, 871, 55
1723
+ Kaaret, P., Feng, H., & Roberts, T. P. 2017, ARA&A, 55, 303
1724
+ Kato, S. & Fukue, J. 2020, Fundamentals of Astrophysical Fluid Dynamics. Sin-
1725
+ gapore: Springer.
1726
+ Khangulyan, D., Aharonian, F. A., Bogovalov, S. V., & Ribó, M. 2012, ApJ, 752,
1727
+ L17
1728
+ King, A. R. 2009, MNRAS, 393, L41
1729
+ King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G., & Elvis, M. 2001, ApJ,
1730
+ 552, L109
1731
+ Kobulnicky, H. A., Chick, W. T., & Povich, M. S. 2019, AJ, 158, 73
1732
+ Koliopanos, F., Vasilopoulos, G., Godet, O., et al. 2017, A&A, 608, A47
1733
+ Kosec, P., Pinto, C., Fabian, A. C., & Walton, D. J. 2018, MNRAS, 473, 5680
1734
+ Lamers, H. J. G. L. M. & Cassinelli, J. P. 1999, Introduction to Stellar Winds.
1735
+ Cambridge: Cambridge University Press.
1736
+ Lee, H. M., Kang, H., & Ryu, D. 1996, ApJ, 464, 131
1737
+ Leyder, J. C., Walter, R., & Rauw, G. 2008, A&A, 477, L29
1738
+ Li, J., Torres, D. F., Liu, R.-Y., et al. 2020, Nature Astronomy, 4, 1177
1739
+ Liu, J.-F. & Bregman, J. N. 2005, ApJS, 157, 59
1740
+ McCray, R. & Snow, T. P., J. 1979, ARA&A, 17, 213
1741
+ McKinley, J. M. 1980, American Journal of Physics, 48, 612
1742
+ Mirabel, I. F. & Rodríguez, L. F. 1994, Nature, 371, 46
1743
+ Muñoz-Darias, T., Casares, J., Mata Sánchez, D., et al. 2016, Nature, 534, 75
1744
+ Muijres, L. E., Vink, J. S., de Koter, A., Müller, P. E., & Langer, N. 2012, A&A,
1745
+ 537, A37
1746
+ Müller, A. L. & Romero, G. E. 2020, A&A, 636, A92
1747
+ Myasnikov, A. V., Zhekov, S. A., & Belov, N. A. 1998, MNRAS, 298, 1021
1748
+ Neilsen, J. & Lee, J. C. 2009, Nature, 458, 481
1749
+ O’C Drury, L., Duffy, P., & Kirk, J. G. 1996, A&A, 309, 1002
1750
+ Okazaki, A. T., Owocki, S. P., Russell, C. M. P., & Corcoran, M. F. 2008, MN-
1751
+ RAS, 388, L39
1752
+ Pittard, J. M., Romero, G. E., & Vila, G. S. 2021, MNRAS, 504, 4204
1753
+ Pittard, J. M., Vila, G. S., & Romero, G. E. 2020, MNRAS, 495, 2205
1754
+ Protheroe, R. J. 1999, in Topics in Cosmic-Ray Astrophysics. New York: Nova
1755
+ Science Publishing, ed. M. A. Duvernois, Vol. 230
1756
+ Pshirkov, M. S. 2016, MNRAS, 457, L99
1757
+ Raymond, J. C., Cox, D. P., & Smith, B. W. 1976, ApJ, 204, 290
1758
+ Reimer, A., Pohl, M., & Reimer, O. 2006, ApJ, 644, 1118
1759
+ Reitberger, K., Kissmann, R., Reimer, A., & Reimer, O. 2014, ApJ, 789, 87
1760
+ Reynoso, M. M., Medina, M. C., & Romero, G. E. 2011, A&A, 531, A30
1761
+ Romero, G. E., Del Valle, M. V., & Orellana, M. 2010, A&A, 518, A12
1762
+ Romero, G. E. & Paredes, J. M. 2011, Introducción a la Astrofísica Relativista.
1763
+ Barcelona: Universitat de Barcelona.
1764
+ Romero, G. E. & Vila, G. S. 2008, A&A, 485, 623
1765
+ Romero, G. E. & Vila, G. S. 2014, Introduction to Black Hole Astrophysics.
1766
+ Heidelberg: Springer.
1767
+ Rybicki, G. B. & Lightman, A. P. 1986, Radiative Processes in Astrophysics.
1768
+ New York: Wiley VCH.
1769
+ Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 500, 33
1770
+ Article number, page 12 of 12
1771
+
1772
+ L. Abaroa et al.: Super critical colliding wind binaries
1773
+ Shultz, M., Wade, G. A., Alecian, E., & BinaMIcS Collaboration. 2015, MN-
1774
+ RAS, 454, L1
1775
+ Sotomayor, P. & Romero, G. E. 2022, A&A, 664, A178
1776
+ Stevens, I. R., Blondin, J. M., & Pollock, A. M. T. 1992, ApJ, 386, 265
1777
+ Tavani, M., Sabatini, S., Pian, E., et al. 2009, ApJ, 698, L142
1778
+ Tetarenko, A. J., Sivakoff, G. R., Miller-Jones, J. C. A., et al. 2017, MNRAS,
1779
+ 469, 3141
1780
+ Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86
1781
+ Wade, G. A. & MiMeS Collaboration. 2015, in Astronomical Society of the Pa-
1782
+ cific Conference Series, Vol. 494, Physics and Evolution of Magnetic and
1783
+ Related Stars, ed. Y. Y. Balega, I. I. Romanyuk, & D. O. Kudryavtsev, 30
1784
+ Watarai, K.-y. & Fukue, J. 1999, PASJ, 51, 725
1785
+ Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ,
1786
+ 587, 278
1787
+ Article number, page 13 of 12
1788
+
79FAT4oBgHgl3EQfoh2y/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7NE3T4oBgHgl3EQfRgki/content/tmp_files/2301.04421v1.pdf.txt ADDED
@@ -0,0 +1,1476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ Abstract— Motion prediction is essential for safe and efficient
5
+ autonomous
6
+ driving.
7
+ However,
8
+ the
9
+ inexplicability
10
+ and
11
+ uncertainty of complex artificial intelligence models may lead to
12
+ unpredictable failures of the motion prediction module, which
13
+ may mislead the system to make unsafe decisions. Therefore, it
14
+ is necessary to develop methods to guarantee reliable
15
+ autonomous driving, where failure detection is a potential
16
+ direction. Uncertainty estimates can be used to quantify the
17
+ degree of confidence a model has in its predictions and may be
18
+ valuable for failure detection. We propose a framework of
19
+ failure detection for motion prediction from the uncertainty
20
+ perspective, considering both motion uncertainty and model
21
+ uncertainty,
22
+ and
23
+ formulate
24
+ various
25
+ uncertainty
26
+ scores
27
+ according to different prediction stages. The proposed approach
28
+ is evaluated based on different motion prediction algorithms,
29
+ uncertainty estimation methods, uncertainty scores, etc., and
30
+ the results show that uncertainty is promising for failure
31
+ detection for motion prediction but should be used with caution.
32
+ I. INTRODUCTION
33
+ Motion prediction is a hot topic in mobile robot and
34
+ autonomous vehicle communities, accurate prediction of the
35
+ future motion of surrounding traffic participants is
36
+ fundamental to robust and reliable decision-making.
37
+ Artificial intelligence (AI), especially deep learning, has been
38
+ widely used in autonomous driving tasks by its advantages in
39
+ dealing with complex problems. With the collection of
40
+ large-scale data, the improvement of computing power and
41
+ related algorithms, AI is expected to play a vital role in
42
+ autonomous driving systems in the future [1].
43
+ However, although AI-based motion prediction has shown
44
+ statistical performance advantages, it is difficult to avoid
45
+ unpredictable failures due to the inherent inexplicability and
46
+ insufficient reliability of deep learning models, which may
47
+ cause serious autonomous driving accidents [2]. From the
48
+ uncertainty perspective, motion prediction faces the dual
49
+ challenge of uncertainty from the environment and the model.
50
+ Drivers, pedestrians, etc. in the environment have uncertainty
51
+ in their intentions and movements, which makes it difficult to
52
+ accurately predict their future in all scenarios. Additionally,
53
+ due to insufficient training data and training process, the
54
+ model may experience serious performance degradation
55
+ when faced with rare or unknown scenarios.
56
+
57
+ *Research supported by the National Science Foundation of China Project:
58
+ U1964203 and 52072215, and the National Key R&D Program of
59
+ China:2020YFB1600303. (Corresponding authors: Hong Wang)
60
+ Wenbo Shao, Liang Peng, Jun Li and Hong Wang are with School of Veh
61
+ icle and Mobility, Tsinghua University, Beijing 100084, China. (e-mail: {sw
62
+ b19, peng-l20}@mails.tsinghua.edu.cn; {lijun1958, hong_wang}@tsinghua.
63
+ edu.cn)
64
+ Yanchao Xu is with School of Mechanical Engineering, Beijing Institute
65
+ of Technology, Beijing 100081, China. (e-mail: [email protected])
66
+ Failure Detector
67
+ Main Model
68
+ Maneuver
69
+ Classifier
70
+ Trajectory
71
+ Predictor
72
+ Graph
73
+ Model
74
+ UM
75
+ UT
76
+ Is there a wrong maneuver
77
+ classification or trajectory prediction?
78
+
79
+ Fig. 1. Uncertainty-based failure detection for motion prediction. UM, UT are
80
+ the uncertainty scores extracted for maneuver classification and trajectory
81
+ prediction, respectively.
82
+ The failure detection, isolation, and recovery mechanism is
83
+ an effective way to solve the above problems [3]. Among
84
+ them, the study of failure detection for AI models has
85
+ attracted increasing interest, which is of critical significance
86
+ for the development of reliable autonomous driving systems
87
+ [4]. As shown in Fig. 1, using the information extracted from
88
+ the main model, i.e. motion prediction model, a failure
89
+ detector is built to identify maneuver classification errors and
90
+ trajectory prediction errors. Uncertainty, as a measure of the
91
+ confidence level of the model in its output, has been used by
92
+ some researchers for failure detection in tasks such as
93
+ semantic segmentation [5]. Our study exploits various
94
+ uncertainties from motion prediction and explores their
95
+ usefulness for failure detection.
96
+ In this work, we concentrate on failure detection for motion
97
+ prediction from the uncertainty perspective. The main
98
+ contributions are as follows:
99
+  A framework of failure detection using uncertainty for
100
+ motion prediction tasks, taking into account both motion
101
+ uncertainty and model uncertainty.
102
+  A series of uncertainty scores for failure detection
103
+ formulated for different motion prediction stages and
104
+ algorithms.
105
+  A detailed evaluation and comparison with multiple
106
+ motion prediction algorithms, uncertainty estimation
107
+ methods and uncertainty scores.
108
+ II. RELATED WORK
109
+ A. Motion Prediction and Motion Uncertainty Estimation
110
+ Traditional motion prediction methods predict the future
111
+ motion of the target agent (TA) based on its historical state by
112
+ explicitly modeling kinematic models, such as Kalman
113
+ Filter[5], [6], but they only apply to short-term prediction
114
+ under scenarios with few interactions. In recent years, deep
115
+ learning-based motion prediction [8]–[10] has demonstrated
116
+ promising performance by simultaneously modeling TA’s
117
+ historical state, its interactions with surrounding traffic
118
+ participants, and other environmental information in deep
119
+ Failure Detection for Motion Prediction of Autonomous Driving:
120
+ An Uncertainty Perspective*
121
+ Wenbo Shao, Yanchao Xu, Liang Peng, Jun Li, and Hong Wang
122
+
123
+
124
+
125
+ neural networks. A broader review of deep learning-based
126
+ motion prediction can be found in [11]. As for the model’s
127
+ output form, some studies regard motion prediction as a
128
+ multipoint regression problem [12]–[14], so as to output the
129
+ unimodal predicted trajectory. However, due to the diversity
130
+ of intentions and the uncertainty of traffic participants’
131
+ behaviors, the future trajectory distribution corresponding to
132
+ one model input presents multiple possibilities. Recently,
133
+ increasing researchers and prediction competitions have paid
134
+ attention to multimodal motion prediction, which is generally
135
+ divided into two stages: maneuver or target classification, and
136
+ trajectory prediction. Some studies [15], [16] define
137
+ maneuvers as specified behavior patterns, then train the
138
+ maneuver classifier through supervised learning. For example,
139
+ CS-LSTM [15] defines six maneuver modes for vehicles on
140
+ highways, where longitudinal maneuvers include normal
141
+ driving and braking, the lateral maneuvers include left lane
142
+ change, right lane change, and lane keeping. The predicted
143
+ maneuvers can serve as an important guide for future
144
+ trajectory prediction. Other studies do not explicitly define
145
+ specific behavior patterns before training, but guide the
146
+ model to learn the optimal maneuver modes through model
147
+ design and training process [17]–[19]. For example,
148
+ Trajectron++ [18] adopts the conditional variational
149
+ autoencoder (CVAE) to encode multimodality by introducing
150
+ latent variables, and relies on a bivariate Gaussian Mixture
151
+ Model (GMM) to model the final output.
152
+ B. Model Uncertainty Estimation
153
+ The above multimodal prediction algorithms model the
154
+ uncertainty in the traffic participants’ movements. In addition,
155
+ deep learning models have inherent uncertainty, generally
156
+ called model uncertainty or epistemic uncertainty [20], it is
157
+ difficult to ignore in the real world where there are
158
+ distribution shifts or out-of-distribution data. Bayesian neural
159
+ network (BNN) [21]–[23] is a representative method for
160
+ estimating model uncertainty, in which Bayesian inference
161
+ plays an important role. Methods such as Monte-Carlo
162
+ dropout [24], [25] achieve approximate inference through
163
+ sampling, and they further promote the generality and
164
+ popularity of BNN. Besides, deep ensemble [26]–[28], as a
165
+ simple and scalable method, has shown promising
166
+ performance in model uncertainty estimation and thus has
167
+ attracted many researchers and practitioners. As the
168
+ representative method requiring only a single forward pass,
169
+ evidential deep learning (EDL) [29] computes the uncertainty
170
+ of the output distribution by modeling the prior distribution
171
+ for the classification.
172
+ C. Failure Detection for Autonomous Driving
173
+ Failure detection is attracting attention as a technology to
174
+ achieve reliable autonomous driving. It uses the main model's
175
+ input, internal features, or output to diagnose whether there is
176
+ a failure. Learning-based approaches build a specialized
177
+ model to act as the failure detector, and it identifies failures of
178
+ the main model by using failure cases for supervised training
179
+ [30]–[32] or estimating reconstruction errors [33]–[35]. In
180
+ addition, uncertainty-based anomaly detection has attracted
181
+ some
182
+ interest,
183
+ such
184
+ as
185
+ detecting
186
+ misclassified
187
+ or
188
+ out-of-distribution examples through maximum softmax
189
+ probabilities directly output by classification networks [36] or
190
+ predictive entropy quantization taking into account model
191
+ uncertainty [26]. However, to the best of our knowledge,
192
+ most current research on failure detection for autonomous
193
+ driving focuses on perception tasks, such as semantic
194
+ segmentation, depth estimation, etc. [5], and failure detection
195
+ for motion prediction models from the uncertainty
196
+ perspective has been rarely discussed.
197
+ Our approach utilizes both motion uncertainty and model
198
+ uncertainty, proposes uncertainty scores for different stages
199
+ of motion prediction, and investigates the effect of motion
200
+ prediction failure detection based on different scores.
201
+ III. METHODOLOGY
202
+ A. Problem Setting
203
+ Motion prediction is a task that predicts TA’s trajectory
204
+ over a period of time in the future given input information.
205
+ Assuming the current moment
206
+ 0
207
+ t 
208
+ , the input information
209
+ may include TA’s historical state
210
+
211
+
212
+
213
+
214
+  
215
+ 1
216
+ 2
217
+ 0
218
+ [
219
+ ,
220
+ ,
221
+ ,
222
+ ]
223
+ h
224
+ h
225
+ t
226
+ t
227
+ s
228
+ s
229
+ s
230
+
231
+
232
+
233
+
234
+ S
235
+
236
+
237
+ in
238
+ the past
239
+ ht timesteps, the historical state of TA’s surrounding
240
+ traffic participants, and other contextual information such as
241
+ maps, which are uniformly represented here by C . Among
242
+ them,
243
+  ts
244
+ may contain TA’s information such as the position,
245
+ speed, and category at t . The output is the predicted position
246
+ ˆY of TA in the future
247
+ ft timesteps:
248
+
249
+
250
+
251
+ ˆ
252
+ ,
253
+ f
254
+
255
+ Y
256
+ S C
257
+ (1)
258
+ with
259
+ 1
260
+ 2
261
+ ˆ ˆ
262
+ ˆ
263
+ ˆ
264
+ [ ,
265
+ ,...,
266
+ ]
267
+ ft
268
+ d d
269
+ d
270
+
271
+ Y
272
+ consisting of the
273
+ ft
274
+ predicted
275
+ positions ˆ
276
+ td . For multimodal motion prediction, ˆY contains
277
+ predicted trajectories under multiple maneuvers.
278
+ Failure detection for motion prediction refers to identifying
279
+ potential motion prediction failures by monitoring model’s
280
+ state, where failures may exist in the form of maneuver
281
+ misclassification or excessive error of predicted trajectories.
282
+ Uncertainty, as the measure of TA's behavior or model state,
283
+ reflects the model's confidence in its particular output and
284
+ thus has the potential to diagnose potential prediction failures.
285
+ This work proposes to detect the performance degradation of
286
+ motion prediction models, i.e. the decrease in the accuracy of
287
+ prediction results, by quantifying the uncertainty scores.
288
+ B. Motion Prediction with Motion Uncertainty Estimation
289
+ Due to the unavailability of TA's actual intentions and the
290
+ randomness of its behavior, it may have multiple possible
291
+ future trajectories. GRIP++ is an enhanced graph-based
292
+ interaction-aware trajectory prediction algorithm, it models
293
+ inter-agent interactions and temporal features but only
294
+ predicts future trajectories in a single mode. As shown in Fig.
295
+ 2, we add the maneuver classification module to GRIP++, by
296
+ distinguishing different behavioral patterns to improve the
297
+ authenticity and usability of the prediction results. The new
298
+ method is called GRIP+++.
299
+ We focus on two-stage tasks in the proposed method:
300
+ maneuver classification and maneuver-based trajectory
301
+ prediction. In the maneuver classification stage, given the
302
+ TA’s historical state and scene context, feature G are
303
+ extracted through the graph convolutional model (GCN),
304
+ which includes the processing of fixed and trainable graphs.
305
+ Then TA’s maneuver
306
+
307
+
308
+ P
309
+ |
310
+ z
311
+ z G is inferred by multilayer
312
+ perceptron (MLP), where
313
+
314
+
315
+ 1,2,...,
316
+ z
317
+ Z
318
+
319
+ represents one of the
320
+
321
+
322
+
323
+ defined maneuver modes. In CS-LSTM [15], the modes are
324
+ divided into three types of lateral maneuvers and two types of
325
+ longitudinal maneuvers, but they are only applicable to
326
+ vehicles driving on highway, we define a common set of
327
+ maneuver modes suitable for various scenarios. Specifically,
328
+ TA's maneuvers are divided into four categories according to
329
+ their movement direction and speed: going straight, turning
330
+ left, turning right, and stopping. In the network, we adopt the
331
+ softmax head for probabilistic maneuver classification.
332
+ Graph Convolutional Model
333
+ Maneuver
334
+ Classification Module
335
+ 64
336
+ ht
337
+ n
338
+ Trajectory Prediction Module
339
+ Predicted Trajectories
340
+ concat
341
+ Maneuver Probabilities
342
+ ht
343
+
344
+ Fig. 2. The architecture of GRIP+++.
345
+ The maneuver-based trajectory prediction module consists
346
+ of seq2seq networks taking the concatenation of the graph
347
+ feature G and the feature vector transformed by the
348
+ maneuver z as input, and outputs the future trajectory ˆ
349
+ z
350
+ Y
351
+ under the maneuver z .
352
+ To compare the generality of uncertainty-based failure
353
+ detection in different motion prediction mechanisms, we
354
+ employ another two classes of typical prediction algorithms.
355
+ Firstly, we focus on multimodal trajectory prediction based
356
+ on the generative model, so we adopt Trajectron++ [18], it
357
+ utilizes the CVAE-based latent network framework to model
358
+ multimodal future trajectories, where the discrete categorical
359
+ latent variable z encodes high-level behavior patterns:
360
+
361
+
362
+
363
+ 1,2,...,
364
+ P(
365
+ ,
366
+ )
367
+ P (
368
+ ,
369
+ , )P (
370
+ ,
371
+ )
372
+ ˆ
373
+ ˆ
374
+ ˆ
375
+ z
376
+ Z
377
+ z
378
+ z
379
+
380
+
381
+
382
+ ψ
383
+ θ
384
+ S C
385
+ S C
386
+ Y
387
+ Y
388
+ Y
389
+ S C
390
+
391
+
392
+
393
+ (2)
394
+ where θ , ψ are deep neural network parameters.
395
+ Furthermore, we use PGP [16] as a comparison, it is a
396
+ multimodal trajectory prediction method combining graph
397
+ traversal, latent vector sampling, and clustering. It models
398
+ discrete policy for graph traversal by representing HD maps
399
+ as lane graphs, and implements diverse trajectories prediction
400
+ combined with a random sampling of latent vectors for
401
+ longitudinal variability. Furthermore, it uses K-means
402
+ clustering to obtain Z predictive trajectories. With its clever
403
+ design, PGP achieved the state-of-the-art results on almost all
404
+ metrics of the nuScenes leaderboard when proposed.
405
+ C. Model Uncertainty Estimation
406
+ As mentioned above, deep ensemble has certain
407
+ advantages in model uncertainty estimation, so we design a
408
+ prediction approach that simultaneously integrates model
409
+ uncertainty and motion uncertainty estimation based on it.
410
+ Specifically, we use random initialization of the model
411
+ parameters and random shuffling of the training data to train
412
+ K homogeneous and heterogeneous models, then estimate
413
+ uncertainty based on the K set of output ˆ k
414
+ Y ,
415
+
416
+
417
+ 1,2,...,
418
+ k
419
+ K
420
+
421
+ .
422
+ In addition, EDL, as a method to capture multiclass
423
+ uncertainties with low computational cost, is also exploited to
424
+ estimate the model uncertainty of the maneuver classification
425
+ module. Specifically, the Dirichlet distribution is considered
426
+ the prior distribution for the classification:
427
+
428
+ 1
429
+ 1
430
+ 1
431
+ P
432
+ for P
433
+ (P| )
434
+ ( )
435
+ 0
436
+ otherwise
437
+ z
438
+ Z
439
+ z
440
+ Z
441
+ z
442
+ D
443
+ B
444
+  
445
+
446
+
447
+
448
+
449
+  
450
+ 
451
+
452
+ α
453
+ α
454
+
455
+ (3)
456
+ where
457
+ 1
458
+ [
459
+ ,...,
460
+ ]
461
+ Z
462
+
463
+
464
+
465
+ α
466
+ are the distribution parameters,
467
+ 1
468
+ z
469
+ z
470
+ e
471
+
472
+
473
+
474
+ is the evidence, and
475
+ Z is the Z-dimensional unit simplex.
476
+ D. Uncertainty Scores Design
477
+ In our work, different uncertainty scores are proposed for
478
+ failure detection. Considering the different problem forms of
479
+ maneuver classification and trajectory prediction tasks, we
480
+ formulate corresponding scores for both.
481
+ For maneuver classification task combined with deep
482
+ ensemble, we formulate the following uncertainty scores
483
+ referring to the definition in [37]:
484
+ Total entropy (TE) for maneuver classification is
485
+ quantified to represent the total uncertainty considering both
486
+ model uncertainty and the motion uncertainty:
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+ P
495
+ 1
496
+ 1
497
+ TE=
498
+ P
499
+ | , ,
500
+ P
501
+ | , ,
502
+ K
503
+ k
504
+ k
505
+ z
506
+ K
507
+ z
508
+
509
+
510
+
511
+
512
+
513
+
514
+  
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+ θ
525
+ S C θ
526
+ S C θ
527
+
528
+ (4)
529
+ where
530
+ k
531
+ θ are the parameters of the kth model of deep
532
+ ensemble,
533
+ represents the formula for calculating entropy,
534
+ represents the training set.
535
+ Data entropy (DE) for maneuver classification is quantified
536
+ to represent the average of data uncertainty from different
537
+ models. The larger the value, the higher the motion
538
+ uncertainty estimated by deep ensemble-prediction models.
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+ P
547
+ 1
548
+ 1
549
+ DE
550
+ | , ,
551
+ P
552
+ | , ,
553
+ K
554
+ k
555
+ k
556
+ K
557
+ z
558
+ z
559
+
560
+
561
+
562
+  
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+ θ
571
+ S C θ
572
+ S C θ
573
+
574
+
575
+ (5)
576
+ Mutual Information (MI) is quantified to represent the
577
+ model uncertainty. As it increases, the degree of difference
578
+ between the prediction results of multiple models increases,
579
+ which to a certain extent reflects the reduction of the
580
+ confidence of the models in their classification results.
581
+
582
+ MI
583
+ ,
584
+ , ,
585
+ TE
586
+ DE
587
+ z
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+ θ S C
596
+
597
+
598
+ (6)
599
+ The maximum predicted probability [38] is also considered
600
+ and its inverse (negative maximum softmax probability,
601
+ NMaP) is calculated as an uncertainty score.
602
+ As for the EDL-based method, the above-discussed types
603
+ of uncertainty scores are also quantified for comparison, and
604
+ their formulas are derived according to (3)-(6). Additionally,
605
+ we consider the metrics suggested in [29]:
606
+
607
+ 1
608
+ u
609
+ Z
610
+ z
611
+ z
612
+ Z
613
+
614
+
615
+
616
+
617
+
618
+ (7)
619
+ Trajectory prediction involves multiple trajectories output
620
+ by one or more models, where each trajectory contains
621
+ position information for multiple future moments. Referring
622
+
623
+
624
+
625
+ to the usual error metrics [8, 12, 18], average displacement
626
+ error (ADE) and final displacement error (FDE), we define
627
+ two basic metrics, average predictive entropy (APE) and final
628
+ predictive entropy (FPE), to represent the uncertainty formed
629
+ by multiple trajectories:
630
+
631
+ 1
632
+ =1
633
+ l
634
+ ˆ
635
+ A
636
+ 1
637
+ 1
638
+ 1
639
+ ˆ
640
+ ( n2
641
+ 1)
642
+ ln
643
+ 2
644
+ PE=
645
+ f
646
+ f
647
+ t
648
+ t
649
+ i
650
+ i
651
+ f
652
+ f
653
+ t
654
+ t
655
+ t
656
+ t
657
+ d
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+  
668
+
669
+
670
+
671
+
672
+
673
+
674
+
675
+
676
+ (8)
677
+
678
+
679
+
680
+ l
681
+ ˆ
682
+ FP
683
+ 1
684
+ ˆ
685
+ n2
686
+ 1
687
+ ln
688
+ 2
689
+ E
690
+ f
691
+ f
692
+ t
693
+ td
694
+
695
+
696
+
697
+  
698
+
699
+
700
+
701
+
702
+
703
+
704
+ (9)
705
+ where for different predicted trajectories of the same input,
706
+ the predicted position ˆ
707
+ td at the same time is assumed to
708
+ follow a two-dimensional Gaussian distribution.
709
+ Based on the above two basic metrics, different types of
710
+ uncertainty scores are defined according to the source of
711
+ different predicted trajectories (such as different sub-models,
712
+ different maneuvers, or both), which may represent model
713
+ uncertainty, motion uncertainty, or both.
714
+ IV. EXPERIMENTS
715
+ A. Experimental Setup
716
+ 1) Model Implementation: For the training of GRIP+++,
717
+ inspired by [15], we adopt a two-stage training approach. In
718
+ the first stage, we focus on improving the trajectory
719
+ prediction accuracy under the real maneuver, by training the
720
+ model as a regression task at each time:
721
+
722
+ ,
723
+ 1
724
+ ˆ
725
+ 1
726
+ ft
727
+ t z
728
+ t
729
+ reg
730
+ f
731
+ t
732
+ L
733
+ t
734
+
735
+
736
+
737
+  Y
738
+ Y
739
+ (10)
740
+ where
741
+
742
+ t z
743
+ Y and
744
+ t
745
+ Y are predicted positions for true maneuver
746
+ z and ground truth at time t respectively.
747
+ In the second stage, we additionally consider the loss of
748
+ maneuver classification by adding the cross-entropy loss:
749
+
750
+ reg
751
+ man
752
+ L
753
+ L
754
+ L
755
+
756
+
757
+
758
+
759
+ (11)
760
+ where
761
+
762
+
763
+
764
+
765
+ log P
766
+ ,
767
+ |
768
+ man
769
+ L
770
+ z
771
+  
772
+ S C
773
+ ,  is the weighting factor, and
774
+ z is the true maneuver label. Besides, in the implementation
775
+ of GRIP+++, the trajectories are sampled at 2Hz, with an
776
+ observation length of 3s and a prediction horizon of 3s.
777
+ As for the implementation of Trajectron++ [18] and PGP
778
+ [16], we follow their original model design and training
779
+ scheme. For deep ensemble, we set
780
+ 5
781
+ K 
782
+ , a scheme
783
+ considered cost-controllable and sufficiently efficient. To
784
+ achieve EDL, referring to [29], we incorporate a
785
+ Kullback-Leibler (KL) divergence term into our loss function
786
+ to avoid unnecessary uncertainty reduction.
787
+ 2) Dataset: The proposed motion prediction models and
788
+ failure detectors are trained and validated on real traffic
789
+ datasets. Specifically, GRIP+++ and its failure detectors are
790
+ trained on SinD and tested on SinD and INTERACTION,
791
+ respectively. Trajectron++, PGP and their failure detection
792
+ experiments are carried out on the nuScenes dataset.
793
+ The SinD [39] dataset consists of 13248 recorded
794
+ trajectories from a signalized intersection. The traffic
795
+ participant classes include car, truck, bus, tricycle, bike,
796
+ motorcycle, and pedestrian. The INTERACTION [40] dataset
797
+ contains motion data collected in four categories of scenarios,
798
+ where we adopt the TC_intersection_VA (VA) subset that
799
+ also belongs to signalized intersection. It provided 3775
800
+ trajectories for around 60 minutes. The nuScenes [41] dataset
801
+ is a large-scale self-driving car dataset with 1000 scenes, each
802
+ scene contains 20s object annotations and HD semantic maps.
803
+ 3) Evaluation methodology: We set the evaluation
804
+ methodology separately for the failure detection for the
805
+ two-stage prediction task. Maneuver classification is a
806
+ classification task, a good failure detector is considered to
807
+ assign higher uncertainty scores to misclassified cases.
808
+ Therefore, we adopt the area under the receiver operating
809
+ characteristic curve (AUROC) as the basic evaluation metric.
810
+ However, AUROC does not reflect the impact of the addition
811
+ of the uncertainty estimation module on the original
812
+ prediction algorithm. Therefore, we also plot the cut-off
813
+ curve to evaluate the average accuracy of the remaining data
814
+ after filtering out a certain percentage of data in descending
815
+ order of uncertainty. The area under the cut-off curve
816
+ (AUCOC) is regarded as an overall evaluation of the
817
+ prediction model with the failure detector, with a larger value
818
+ indicating better performance.
819
+ For trajectory prediction tasks, AUROC is not suitable, we
820
+ use the cut-off curve as the evaluation methodology. Unlike
821
+ maneuver classification, the curve here is drawn by
822
+ calculating the average prediction error of the remaining data,
823
+ so a smaller AUCOC represents better performance.
824
+ B. Failure Detection for Maneuver Classification
825
+ Regarding failure detection for maneuver classification, we
826
+ set up several experiments to answer the following questions.
827
+
828
+ Fig. 3. Uncertainty distribution for correctly classified and misclassified
829
+ samples. Experimental results of GRIP+++ based on deep ensemble.
830
+ How different are the distributions of uncertainty
831
+ scores for correct and misclassified cases? An effective
832
+ uncertainty-based failure detector is built on the assumption
833
+ that the uncertainty score level has a strong correlation with
834
+ the correctness of the prediction. As shown in Fig. 3, the
835
+ uncertainty scores of the correctly predicted maneuvers are
836
+ generally relatively low, while the incorrectly predicted cases
837
+ generally have high uncertainty scores. Meanwhile, there is a
838
+ relatively obvious separation between the two distributions,
839
+ especially for TA, DA, and NMaP. Therefore, it is
840
+ preliminarily inferred that the uncertainty scores have the
841
+ potential for failure detection.
842
+ Differences between different uncertainty scores for
843
+ failure detection? As indicated previously, in the deep
844
+ ensemble-based maneuver classification network, we can
845
+ extract various uncertainty scores, here we set up experiments
846
+ to compare the effects of different scores as the reference for
847
+ failure detection. The second row of TABLE I shows the
848
+ results, NMaP, TE, and DE achieve better failure detection
849
+
850
+
851
+
852
+ performance when used as uncertainty scores, where the total
853
+ uncertainty considering both motion and model uncertainty is
854
+ slightly better than the motion uncertainty alone. NMaP is
855
+ relatively simple to calculate and has a strong detection
856
+ ability. Furthermore, although MI, which represents the
857
+ model uncertainty, reflects the reduced confidence of the
858
+ model when faced with unknown scenarios (as in TABLE II),
859
+ its performance is relatively weak when used alone as the
860
+ reference for failure detection. In Fig. 4, the cut-off curve and
861
+ AUCOC corresponding to different uncertainty scores are
862
+ further compared. Their performance has a great advantage
863
+ over the random filtering method and is close to the optimal
864
+ situation. And the relative relationship between different
865
+ uncertainty scores is consistent with TABLE I.
866
+ TABLE I. AUROC(↑) FOR MANEUVER CLASSIFICATION STAGE OF GRIP+++
867
+
868
+ TE
869
+ DE
870
+ MI
871
+ NMaP
872
+ u
873
+ Ensemble
874
+ 0.911
875
+ 0.903
876
+ 0.864
877
+ 0.918
878
+ -
879
+ Model 1
880
+ -
881
+ 0.871
882
+ -
883
+ 0.867
884
+ -
885
+ Model 2
886
+ -
887
+ 0.868
888
+ -
889
+ 0.864
890
+ -
891
+ Model 3
892
+ -
893
+ 0.871
894
+ -
895
+ 0.867
896
+ -
897
+ Model 4
898
+ -
899
+ 0.868
900
+ -
901
+ 0.864
902
+ -
903
+ Model 5
904
+ -
905
+ 0.863
906
+ -
907
+ 0.858
908
+ -
909
+ EDL
910
+ 0.912
911
+ 0.909
912
+ 0.911
913
+ 0.912
914
+ 0.910
915
+ TABLE II. AVERAGE UNCERTAINTY OBTAINED BY DEEP ENSEMBLE-BASED
916
+ GRIP+++ TRAINED ON SIND, AND TESTED ON IN-DISTRIBUTION DATA
917
+ (SIND) AND OUT-OF-DISTRIBUTION DATA (VA), RESPECTIVELY
918
+
919
+ TE
920
+ DE
921
+ MI
922
+ NMaP
923
+ SinD
924
+ 0.318
925
+ 0.250
926
+ 0.068
927
+ -0.877
928
+ VA
929
+ 0.303
930
+ 0.198
931
+ 0.105
932
+ -0.879
933
+
934
+ Fig. 4. Cut-off curves and AUCOC (↑). The optimal curve is drawn by
935
+ directly using the classification error as a filtering reference; the random
936
+ curve is drawn by filtering the data in random order.
937
+ TABLE III. AUCOC (↑) FOR MANEUVER CLASSIFICATION STAGE OF
938
+ GRIP+++. MODEL I IS THE RESULT FROM THE ITH MODEL IN DEEP ENSEMBLE
939
+
940
+ TE
941
+ DE
942
+ MI
943
+ NMaP
944
+ u
945
+ Ensemble
946
+ 0.988
947
+ 0.987
948
+ 0.984
949
+ 0.989
950
+ -
951
+ Model 1
952
+ -
953
+ 0.981
954
+ -
955
+ 0.982
956
+ -
957
+ Model 2
958
+ -
959
+ 0.980
960
+ -
961
+ 0.981
962
+ -
963
+ Model 3
964
+ -
965
+ 0.981
966
+ -
967
+ 0.982
968
+ -
969
+ Model 4
970
+ -
971
+ 0.980
972
+ -
973
+ 0.980
974
+ -
975
+ Model 5
976
+ -
977
+ 0.979
978
+ -
979
+ 0.979
980
+ -
981
+ EDL
982
+ 0.978
983
+ 0.978
984
+ 0.978
985
+ 0.978
986
+ 0.978
987
+ Uncertainty scores based on deep ensemble vs.
988
+ uncertainty scores based on a single model? Here, we
989
+ obtain DE and NMaP from the single model in deep ensemble,
990
+ and they are further used for failure detection for the
991
+ maneuver classification module of the corresponding model.
992
+ From the comparison of rows 2-7 of TABLE I, although the
993
+ uncertainty scores extracted from the single model has a
994
+ certain failure detection ability, they are not as good as the
995
+ failure detector based on deep ensemble. In addition, it is also
996
+ concluded from the comparison of rows 2-7 in TABLE III
997
+ that the introduction of deep ensemble is beneficial to
998
+ improve the maneuver classification performance combined
999
+ with failure detector filtering.
1000
+ How well do the EDL-based uncertainty scores
1001
+ perform? As a comparison, we employ EDL to extract
1002
+ uncertainty scores and evaluate their performance for failure
1003
+ detection. TABLE I shows that using the uncertainty scores
1004
+ extracted by EDL as references for the failure detector
1005
+ achieves comparable results to deep ensemble. However,
1006
+ TABLE III presents that the overall accuracy after filtering
1007
+ the data based on these uncertainty scores is not high. One
1008
+ possible reason is that the regularization term added by EDL
1009
+ during the training process causes a drop in the prediction
1010
+ performance of the main model, which in turn weakens the
1011
+ effect of motion prediction with failure detection.
1012
+ C. Failure Detection for Trajectory Prediction
1013
+ As for failure detection for trajectory prediction, we design
1014
+ some experiments to answer the following questions.
1015
+ How well does the failure detector based on uncertainty
1016
+ scores from multiple trajectories perform? For the
1017
+ prediction error, considering the K predicted trajectories
1018
+ under the real maneuver z, we calculate the minimum
1019
+ (minADEz, minFDEz) and mean (meanADEz, meanFDEz) of
1020
+ the errors of the K trajectories, and the error of their average
1021
+ trajectory (ADEz, avg, FDEz, avg). We calculate APEz and FPEz
1022
+ of the above K trajectories to estimate the predictive
1023
+ uncertainty. As a comparison, we calculate the uncertainty of
1024
+ the average trajectories of K models in different maneuvers
1025
+ (APEavg, FPEavg), which to some extent represent the motion
1026
+ uncertainty. In TABLE IV, each column represents an error
1027
+ metric and each row represents the corresponding uncertainty
1028
+ score used for failure detection (except rows 1-3). By
1029
+ comparing rows 2-5 of the 2 sub-tables, APEz and FPEz have
1030
+ stronger failure detection potential than APEavg and FPEavg.
1031
+ Are the uncertainty scores extracted in the maneuver
1032
+ classification stage applicable to the trajectory prediction
1033
+ stage? Theoretically, the uncertainty scores obtained in the
1034
+ maneuver classification stage represent the confidence of the
1035
+ model in the current scene, so it may be suitable for failure
1036
+ detection in the trajectory prediction stage. We conduct some
1037
+ experiments to explore this question, the results are recorded
1038
+ in rows 6-9 of the two sub-tables of TABLE IV. Compared
1039
+ with the above trajectory uncertainty scores, the uncertainty
1040
+ extracted in the maneuver classification stage has limited
1041
+ potential for detecting high-error trajectories. One of the
1042
+ possible reasons is that the uncertainty scores calculated
1043
+ directly based on the trajectories imply the consideration of
1044
+ information such as the velocity and acceleration of the object,
1045
+ thus having a greater correlation with the trajectory error.
1046
+ How is the failure detection generalizing to scenarios
1047
+ with larger distributional shifts? Here, we use the VA
1048
+ dataset to test the model trained based on SinD, results are
1049
+ shown in TABLE V and TABLE VI. Compared with TABLE
1050
+ I, III, and IV, when faced with larger distributional shifts,
1051
+ while the reduction in the prediction accuracy of the main
1052
+ model leads to a worsening of AUCOC, the decrease in
1053
+ failure detection ability (such as AUROC) is relatively small.
1054
+
1055
+
1056
+
1057
+ TABLE IV. AUCOC (↓)/IMPROVEMENT RATIO (IR)1 (↑) FOR THE
1058
+ TRAJECTORY PREDICTION STAGE OF GRIP+++
1059
+
1060
+ minADEz
1061
+ meanADEz
1062
+ ADEz, avg
1063
+ Optimal
1064
+ 0.066
1065
+ 0.096
1066
+ 0.088
1067
+ Random
1068
+ 0.259
1069
+ 0.345
1070
+ 0.330
1071
+ APEz
1072
+ 0.119/0.725
1073
+ 0.143/0.813
1074
+ 0.139/0.790
1075
+ APEavg
1076
+ 0.136/0.636
1077
+ 0.172/0.694
1078
+ 0.166/0.677
1079
+ TE
1080
+ 0.170/0.459
1081
+ 0.228/0.469
1082
+ 0.218/0.464
1083
+ DE
1084
+ 0.170/0.457
1085
+ 0.229/0.466
1086
+ 0.218/0.462
1087
+ MI
1088
+ 0.169/0.462
1089
+ 0.227/0.476
1090
+ 0.216/0.470
1091
+ NMaP
1092
+ 0.170/0.461
1093
+ 0.228/0.472
1094
+ 0.217/0.467
1095
+
1096
+ minFDEz
1097
+ meanFDEz
1098
+ FDEz, avg
1099
+ Optimal
1100
+ 0.114
1101
+ 0.182
1102
+ 0.164
1103
+ Random
1104
+ 0.522
1105
+ 0.718
1106
+ 0.686
1107
+ FPEz
1108
+ 0.249/0.670
1109
+ 0.301/0.779
1110
+ 0.293/0.754
1111
+ FPEavg
1112
+ 0.278/0.599
1113
+ 0.358/0.672
1114
+ 0.345/0.654
1115
+ TE
1116
+ 0.361/0.395
1117
+ 0.493/0.420
1118
+ 0.471/0.413
1119
+ DE
1120
+ 0.362/0.393
1121
+ 0.494/0.417
1122
+ 0.472/0.410
1123
+ MI
1124
+ 0.359/0.400
1125
+ 0.489/0.428
1126
+ 0.467/0.420
1127
+ NMaP
1128
+ 0.360/0.397
1129
+ 0.491/0.423
1130
+ 0.497/0.416
1131
+ TABLE V. RESULTS FOR MANEUVER CLASSIFICATION STAGE OF GRIP+++
1132
+ WITH DEEP ENSEMBLE, WHICH IS TRAINED ON SIND AND TESTES ON VA
1133
+
1134
+ TE
1135
+ DE
1136
+ MI
1137
+ NMaP
1138
+ AUROC
1139
+ 0.914
1140
+ 0.915
1141
+ 0.863
1142
+ 0.912
1143
+ AUCOC
1144
+ 0.978
1145
+ 0.978
1146
+ 0.971
1147
+ 0.978
1148
+ TABLE VI. AUCOCOPTIMAL/AUCOCUNCERTAINTY (↓)/AUCOCRANDOM/IR(↑) FOR
1149
+ TRAJECTORY PREDICTION STAGE OF GRIP+++ WITH DEEP ENSEMBLE,
1150
+ WHICH IS TRAINED ON SIND AND TESTES ON VA
1151
+
1152
+ minADEz
1153
+ meanADEz
1154
+ ADEz, avg
1155
+ APEz
1156
+ 0.088/0.210/
1157
+ 0.445/0.656
1158
+ 0.125/0.238/
1159
+ 0.565/0.744
1160
+ 0.117/0.234/
1161
+ 0.550/0.730
1162
+
1163
+ minFDEz
1164
+ meanFDEz
1165
+ FDEz, avg
1166
+ FPEz
1167
+ 0.158/0.991/
1168
+ 0.491/0.601
1169
+ 0.243/1.262/
1170
+ 0.550/0.699
1171
+ 0.228/1.232/
1172
+ 0.543/0.686
1173
+ TABLE VII. AUCOCOPTIMAL/AUCOCUNCERTAINTY (↓)/AUCOCRANDOM/IR(↑) FOR
1174
+ TRAJECTRON++ ON NUSCENES
1175
+
1176
+ Single model
1177
+ Deep ensemble
1178
+ (mean)minADE
1179
+ 0.088/0.167/0.378/0.730
1180
+ 0.096/0.160/0.384/0.778
1181
+ (mean)minFDE
1182
+ 0.132/0.308/0.689/0.683
1183
+ 0.151/0.293/0.702/0.742
1184
+ (mean)meanADE
1185
+ 0.322/0.386/1.045/0.912
1186
+ 0.339/0.394/1.040/0.922
1187
+ (mean)meanFDE
1188
+ 0.608/0.754/2.096/0.902
1189
+ 0.637/0.763/2.082/0.913
1190
+ minminADE
1191
+ -
1192
+ 0.055/0.112/0.234/0.682
1193
+ meanmaxpADE
1194
+ -
1195
+ 0.181/0.280/0.801/0.841
1196
+ TABLE VIII. AUCOCOPTIMAL/AUCOCUNCERTAINTY(↓)/AUCOCRANDOM/IR(↑) FOR
1197
+ PGP ON NUSCENES, UC MEANS UNIFIED CLUSTERING
1198
+
1199
+ Single model
1200
+ Deep ensemble
1201
+ (mean)minADE
1202
+ 0.498/0.837/0.945/0.242
1203
+ 0.529/0.832/0.945/0.271
1204
+ (mean)minFDE
1205
+ 0.623/1.273/1.554/0.302
1206
+ 0.747/1.249/1.548/0.373
1207
+ minminADE
1208
+ -
1209
+ 0.367/0.628/0.708/0.234
1210
+ meanmaxpADE
1211
+ -
1212
+ 1.538/2.497/3.115/0.392
1213
+ minADE (uc)
1214
+ -
1215
+ 0.488/0.797/0.908/0.264
1216
+ minFDE (uc)
1217
+ -
1218
+ 0.612/0.181/1.466/0.333
1219
+ How well does uncertainty-based failure detection
1220
+ perform in generative model-based trajectory prediction?
1221
+ We adopt Trajectron++ combined with deep ensemble to
1222
+ extract multiple uncertainty scores as failure detection
1223
+ references. The results of this investigation are provided in
1224
+ TABLE VII, where minADE/minFDE/meanADE/meanFDE
1225
+ for single model is calculated based on the 10 trajectories
1226
+
1227
+ 1 IR is calculated by (AUCOCrandom – AUCOCuncertainty)/(AUCOCrandom –
1228
+ AUCOCoptimal), where AUCOCrandom, AUCOCoptimal, and AUCOCuncertainty
1229
+ represent the AUCOC based on the optimal sorting, the random sorting, and
1230
+ the uncertainty scores-based sorting, respectively.
1231
+ predicted by the single model, and the corresponding
1232
+ uncertainty scores for failure detection are APE/FPE/APE
1233
+ /FPE obtained from the 10 trajectories. In contrast,
1234
+ meanminADE/meanminFDE/meanmeanADE/meanmeanFD
1235
+ E/minminADE/meanmaxpADE for deep ensemble are
1236
+ calculated based on 50 trajectories from all 5 ensemble
1237
+ models, where the first operator (mean/min) is for different
1238
+ sub-models and the second operator (mean/min/maxp) is for
1239
+ different maneuvers from each model’s output. The
1240
+ corresponding uncertainty scores for failure detection are
1241
+ meanAPE/meanFPE/meanAPE/meanFPE/APEall/APEmaxp,
1242
+ where meanAPE/meanFPE are obtained by averaging APE/
1243
+ FPE from 5 sub-models, APEall is directly calculated from all
1244
+ 50 trajectories, APEmaxp is calculated according to the
1245
+ maximum probability trajectory of each model. The results
1246
+ show promising performance of the uncertainty-based failure
1247
+ detector.
1248
+ Can the above uncertainty-based failure detection be
1249
+ simply applied to any trajectory prediction algorithms? In
1250
+ addition to the typical deep neural network architecture and
1251
+ modules, existing trajectory prediction algorithms may use
1252
+ various tricks, which may directly affect the uncertainty
1253
+ scores extracted from the output trajectories. We conduct
1254
+ some exploratory experiments with PGP, a high-performance
1255
+ prediction algorithm integrating special tricks including
1256
+ traversal, sampling, and clustering, to analyze the
1257
+ performance of applying the uncertainty scores obtained from
1258
+ the output trajectories for failure detection. In addition, we
1259
+ apply deep ensemble to consider model uncertainty. From the
1260
+ evaluation results in TABLE VIII, we conclude that the
1261
+ performance of direct uncertainty quantification based on
1262
+ output results is not very outstanding. Possible reasons
1263
+ include operations such as sampling latent vectors from an
1264
+ unconstrained normal distribution or clustering. This result
1265
+ reminds us that it is necessary to improve uncertainty
1266
+ estimation methods and scores according to the prediction
1267
+ algorithms’ characteristics. For example, we propose a
1268
+ framework for unified clustering based on the outputs of all
1269
+ sub-models of the deep ensemble, the results in the last two
1270
+ rows of TABLE VIII show some improvement over the
1271
+ original model in trajectory prediction performance.
1272
+ V. CONCLUSION
1273
+ In this work, we propose a framework to detect motion
1274
+ prediction failures from the uncertainty perspective. We
1275
+ divide motion prediction tasks into two stages, maneuver
1276
+ classification and maneuver-based trajectory prediction, and
1277
+ formulate corresponding uncertainty scores for failure
1278
+ detection, where motion uncertainty and model uncertainty
1279
+ are both discussed. Our experiments cover the comparison of
1280
+ different prediction tasks, multiple prediction algorithms,
1281
+ different uncertainty estimation methods, and various
1282
+ uncertainty scores, Finally, we observe that uncertainty
1283
+ quantification is promising for failure detection for motion
1284
+ prediction, with the potential to generalize to environments
1285
+ with larger distributional shifts. However, it is also necessary
1286
+ to conduct targeted discussions and designs for different
1287
+ prediction algorithms. Our future work will focus on the
1288
+ integration of the proposed method with safety decision
1289
+ -making for autonomous driving, and its implementation and
1290
+ validation on physical vehicle platforms.
1291
+
1292
+
1293
+
1294
+ REFERENCES
1295
+ [1]
1296
+ A. Jain, L. Del Pero, H. Grimmett, and P. Ondruska, “Autonomy 2.0:
1297
+ Why is self-driving always 5 years away?” arXiv, Aug. 09, 2021. doi:
1298
+ 10.48550/arXiv.2107.08142.
1299
+ [2]
1300
+ L. Plaza, “Collision Between Vehicle Controlled by Developmental
1301
+ Automated Driving System and Pedestrian,” PB2019-101402, Mar.
1302
+ 2018.
1303
+ [3]
1304
+ J. Sifakis and D. Harel, “Trustworthy Autonomous System
1305
+ Development,” ACM Trans. Embed. Comput. Syst., Jun. 2022, doi:
1306
+ 10.1145/3545178.
1307
+ [4]
1308
+ L. A. Dennis and M. Fisher, “Verifiable Self-Aware Agent-Based
1309
+ Autonomous Systems,” Proceedings of the IEEE, vol. 108, no. 7, pp.
1310
+ 1011–1026, Jul. 2020, doi: 10.1109/JPROC.2020.2991262.
1311
+ [5]
1312
+ B. Sun, J. Xing, H. Blum, R. Siegwart, and C. Cadena, “See Yourself in
1313
+ Others: Attending Multiple Tasks for Own Failure Detection,” in 2022
1314
+ International Conference on Robotics and Automation (ICRA), 2022,
1315
+ pp. 8409–8416. doi: 10.1109/ICRA46639.2022.9812310.
1316
+ [6]
1317
+ E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for
1318
+ nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive
1319
+ Systems for Signal Processing, Communications, and Control
1320
+ Symposium
1321
+ (Cat.
1322
+ No.00EX373),
1323
+ 2000,
1324
+ pp.
1325
+ 153–158.
1326
+ doi:
1327
+ 10.1109/ASSPCC.2000.882463.
1328
+ [7] A. Cosgun et al., “Towards full automated drive in urban environments:
1329
+ A demonstration in GoMentum Station, California,” in 2017 IEEE
1330
+ Intelligent Vehicles Symposium (IV), Jun. 2017, pp. 1811–1818. doi:
1331
+ 10.1109/IVS.2017.7995969.
1332
+ [8]
1333
+ A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S.
1334
+ Savarese, “Social LSTM: Human Trajectory Prediction in Crowded
1335
+ Spaces,” in Proceedings of the IEEE Conference on Computer Vision
1336
+ and Pattern Recognition, 2016, pp. 961–971.
1337
+ [9]
1338
+ J. Gao et al., “VectorNet: Encoding HD Maps and Agent Dynamics
1339
+ From Vectorized Representation,” in Proceedings of the IEEE/CVF
1340
+ Conference on Computer Vision and Pattern Recognition, 2020, pp.
1341
+ 11525–11533.
1342
+ [10] J. Gu, C. Sun, and H. Zhao, “DenseTNT: End-to-End Trajectory
1343
+ Prediction From Dense Goal Sets,” in Proceedings of the IEEE/CVF
1344
+ International
1345
+ Conference
1346
+ on
1347
+ Computer
1348
+ Vision,
1349
+ 2021,
1350
+ pp.
1351
+ 15303–15312.
1352
+ [11] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A.
1353
+ Mouzakitis, “Deep Learning-Based Vehicle Behavior Prediction for
1354
+ Autonomous Driving Applications: A Review,” IEEE Transactions on
1355
+ Intelligent Transportation Systems, vol. 23, no. 1, pp. 33–47, 2022, doi:
1356
+ 10.1109/TITS.2020.3012034.
1357
+ [12] X. Li, X. Ying, and M. C. Chuah, “GRIP++: Enhanced Graph-based
1358
+ Interaction-aware Trajectory Prediction for Autonomous Driving.”
1359
+ arXiv, May 19, 2020. doi: 10.48550/arXiv.1907.07792.
1360
+ [13] X. Mo, Z. Huang, Y. Xing, and C. Lv, “Multi-Agent Trajectory
1361
+ Prediction With Heterogeneous Edge-Enhanced Graph Attention
1362
+ Network,” IEEE Transactions on Intelligent Transportation Systems,
1363
+ vol.
1364
+ 23,
1365
+ no.
1366
+ 7,
1367
+ pp.
1368
+ 9554–9567,
1369
+ Jul.
1370
+ 2022,
1371
+ doi:
1372
+ 10.1109/TITS.2022.3146300.
1373
+ [14] N. Djuric et al., “Uncertainty-aware Short-term Motion Prediction of
1374
+ Traffic Actors for Autonomous Driving,” in Proceedings of the
1375
+ IEEE/CVF Winter Conference on Applications of Computer Vision,
1376
+ 2020, pp. 2095–2104.
1377
+ [15] N. Deo and M. M. Trivedi, “Convolutional Social Pooling for Vehicle
1378
+ Trajectory Prediction,” in Proceedings of the IEEE Conference on
1379
+ Computer Vision and Pattern Recognition Workshops, 2018, pp.
1380
+ 1468–1476.
1381
+ [16] N. Deo, E. Wolff, and O. Beijbom, “Multimodal Trajectory Prediction
1382
+ Conditioned on Lane-Graph Traversals,” in Proceedings of the 5th
1383
+ Conference on Robot Learning, Jan. 2022, pp. 203–212.
1384
+ [17] H. Cui et al., “Multimodal Trajectory Predictions for Autonomous
1385
+ Driving using Deep Convolutional Networks,” in 2019 International
1386
+ Conference on Robotics and Automation (ICRA), 2019, pp. 2090–2096.
1387
+ doi: 10.1109/ICRA.2019.8793868.
1388
+ [18] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone,
1389
+ “Trajectron++: Dynamically-Feasible Trajectory Forecasting with
1390
+ Heterogeneous Data,” in Computer Vision – ECCV 2020, Cham, 2020,
1391
+ pp. 683–700. doi: 10.1007/978-3-030-58523-5_40.
1392
+ [19] T.-J. Hsieh, C.-S. Shih, C.-W. Lin, C.-W. Chen, and P.-K. Tsung,
1393
+ “Trajectory Prediction at Unsignalized Intersections using Social
1394
+ Conditional Generative Adversarial Network,” in 2021 IEEE
1395
+ International Intelligent Transportation Systems Conference (ITSC),
1396
+ Sep. 2021, pp. 844–851. doi: 10.1109/ITSC48978.2021.9564441.
1397
+ [20] J. Gawlikowski et al., “A Survey of Uncertainty in Deep Neural
1398
+ Networks.” arXiv, Jan. 18, 2022. doi: 10.48550/arXiv.2107.03342.
1399
+ [21] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian
1400
+ Deep Learning for Computer Vision?,” in Advances in Neural
1401
+ Information Processing Systems, 2017, vol. 30.
1402
+ [22] C. Louizos and M. Welling, “Multiplicative Normalizing Flows for
1403
+ Variational Bayesian Neural Networks,” in Proceedings of the 34th
1404
+ International Conference on Machine Learning, Jul. 2017, pp.
1405
+ 2218–2227.
1406
+ [23] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
1407
+ Uncertainty in Neural Network,” in Proceedings of the 32nd
1408
+ International Conference on Machine Learning, Jun. 2015, pp.
1409
+ 1613–1622.
1410
+ [24] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
1411
+ Representing Model Uncertainty in Deep Learning,” in Proceedings of
1412
+ The 33rd International Conference on Machine Learning, Jun. 2016,
1413
+ pp. 1050–1059.
1414
+ [25] Y. Gal, J. Hron, and A. Kendall, “Concrete Dropout,” in Advances in
1415
+ Neural Information Processing Systems, 2017, vol. 30.
1416
+ [26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
1417
+ Scalable Predictive Uncertainty Estimation using Deep Ensembles,” in
1418
+ Advances in Neural Information Processing Systems, 2017, vol. 30.
1419
+ [27] Y. Wen, D. Tran, and J. Ba, “BatchEnsemble: An Alternative
1420
+ Approach to Efficient Ensemble and Lifelong Learning.” arXiv, Feb.
1421
+ 19, 2020. doi: 10.48550/arXiv.2002.06715.
1422
+ [28] F. Wenzel, J. Snoek, D. Tran, and R. Jenatton, “Hyperparameter
1423
+ Ensembles for Robustness and Uncertainty Quantification,” in
1424
+ Advances in Neural Information Processing Systems, 2020, vol. 33, pp.
1425
+ 6514–6527.
1426
+ [29] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to
1427
+ quantify classification uncertainty,” in Advances in neural information
1428
+ processing systems, 2018, vol. 31.
1429
+ [30] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep Anomaly
1430
+ Detection with Outlier Exposure.” arXiv, Jan. 28, 2019. doi:
1431
+ 10.48550/arXiv.1812.04606.
1432
+ [31] C. B. Kuhn, M. Hofbauer, Z. Xu, G. Petrovic, and E. Steinbach,
1433
+ “Pixel-Wise Failure Prediction For Semantic Video Segmentation,” in
1434
+ 2021 IEEE International Conference on Image Processing (ICIP), Sep.
1435
+ 2021, pp. 614–618. doi: 10.1109/ICIP42928.2021.9506552.
1436
+ [32] Q. M. Rahman, N. Sünderhauf, P. Corke, and F. Dayoub, “FSNet: A
1437
+ Failure Detection Framework for Semantic Segmentation,” IEEE
1438
+ Robotics and Automation Letters, vol. 7, no. 2, pp. 3030–3037, Apr.
1439
+ 2022, doi: 10.1109/LRA.2022.3143219.
1440
+ [33] K. Lis, K. Nakka, P. Fua, and M. Salzmann, “Detecting the Unexpected
1441
+ via Image Resynthesis,” in Proceedings of the IEEE/CVF International
1442
+ Conference on Computer Vision, 2019, pp. 2152–2161.
1443
+ [34] D. Haldimann, H. Blum, R. Siegwart, and C. Cadena, “This is not what
1444
+ I imagined: Error Detection for Semantic Segmentation through Visual
1445
+ Dissimilarity.” arXiv, Sep. 02, 2019. doi: 10.48550/arXiv.1909.00676.
1446
+ [35] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft, “Image
1447
+ Anomaly Detection with Generative Adversarial Networks,” in
1448
+ Machine Learning and Knowledge Discovery in Databases, Cham,
1449
+ 2019, pp. 3–17. doi: 10.1007/978-3-030-10925-7_1.
1450
+ [36] D. Hendrycks and K. Gimpel, “A Baseline for Detecting Misclassified
1451
+ and Out-of-Distribution Examples in Neural Networks,” presented at
1452
+ the International Conference on Learning Representations, 2017.
1453
+ [37] D. Feng, A. Harakeh, S. L. Waslander, and K. Dietmayer, “A Review
1454
+ and Comparative Study on Probabilistic Object Detection in
1455
+ Autonomous
1456
+ Driving,”
1457
+ IEEE
1458
+ Transactions
1459
+ on
1460
+ Intelligent
1461
+ Transportation Systems, vol. 23, no. 8, pp. 9961–9980, 2022, doi:
1462
+ 10.1109/TITS.2021.3096854.
1463
+ [38] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson,
1464
+ “A Simple Baseline for Bayesian Uncertainty in Deep Learning,” in
1465
+ Advances in Neural Information Processing Systems, 2019, vol. 32.
1466
+ [39] Y. Xu et al., “SIND: A Drone Dataset at Signalized Intersection in
1467
+ China.” arXiv, Sep. 06, 2022. doi: 10.48550/arXiv.2209.02297.
1468
+ [40] W. Zhan et al., “INTERACTION Dataset: An INTERnational,
1469
+ Adversarial and Cooperative moTION Dataset in Interactive Driving
1470
+ Scenarios with Semantic Maps.” arXiv, Sep. 30, 2019. doi:
1471
+ 10.48550/arXiv.1910.03088.
1472
+ [41] H. Caesar et al., “nuScenes: A Multimodal Dataset for Autonomous
1473
+ Driving,” in Proceedings of the IEEE/CVF Conference on Computer
1474
+ Vision and Pattern Recognition, 2020, pp. 11621–11631.
1475
+
1476
+
7NE3T4oBgHgl3EQfRgki/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99AzT4oBgHgl3EQfSvs8/content/tmp_files/2301.01236v1.pdf.txt ADDED
@@ -0,0 +1,684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ � For correspondence:
2
3
+ Funding: This work was partially
4
+ supported by the Wallenberg AI,
5
+ Autonomous Systems and
6
+ Software Program (WASP) funded
7
+ by the Knut and Alice Wallenberg
8
+ Foundation.
9
+ A Tutorial on Parametric
10
+ Variational Inference
11
+ Jens Sjölund 1 �
12
+ 1Department of Information Technology, Uppsala University, Sweden
13
+ Abstract
14
+ Variational inference uses optimization, rather than integration, to approximate the marginal
15
+ likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational
16
+ scalability made in the last decade, variational inference is now the preferred choice for many
17
+ high-dimensional models and large datasets. This tutorial introduces variational inference from
18
+ the parametric perspective that dominates these recent developments, in contrast to the
19
+ mean-field perspective commonly found in other introductory texts.
20
+ Introduction
21
+ In Bayesian machine learning and statistics, the central object of interest is the posterior distribu-
22
+ tion found by Bayesian inference—combining prior beliefs with observations according to Bayes’
23
+ rule. In simple cases, such as in conjugate models, this can be done exactly. But, general (non-
24
+ conjugate) models require approximate inference techniques such as Monte Carlo or variational
25
+ inference. These have complementary strengths and weaknesses, hence the most appropriate
26
+ choice is application dependent. We focus on variational inference, which is on the one hand not
27
+ guaranteed to be asymptotically exact but is on the other hand computationally efficient and scal-
28
+ able to high-dimensional models and large datasets.
29
+ Notation
30
+ We use a single observation variable 풙 to denote both the observed inputs and outputs. Our pri-
31
+ mary interest is however in the latent variables 풛. Since we adhere to the Bayesian framework,
32
+ the “parameters” of a model (such as the slope and intercept in a linear regression model) that are
33
+ assigned priors are actually latent variables. We denote remaining parameters of interest by 휽.
34
+ Variational inference
35
+ So, why do we need variational inference? First, recall that to infer anything about the latent vari-
36
+ ables from our observations, we need the posterior:
37
+ 푝휽(풛 ∣ 풙) = 푝휽(풙, 풛)
38
+ 푝휽(풙) .
39
+ (1)
40
+ The expression in the denominator, 푝휽(풙), is called the marginal likelihood of 풙 because it can be
41
+ rewritten as a marginalization over the latent variables:
42
+ 푝휽(풙) = ∫ 푝휽(풙, 풛) 푑풛.
43
+ (2)
44
+ The catch is that in practice this integral is often intractable, i.e. not computable in closed form.
45
+ Since 풙 are our observations, the marginal likelihood is a (normalizing) constant. Nevertheless,
46
+ without knowing this constant the utility of the posterior is limited. Hence the need for approximate
47
+ inference.
48
+ Sjölund
49
+ |
50
+ arXiv
51
+ |
52
+ January 4, 2023
53
+ |
54
+ 1–9
55
+ arXiv:2301.01236v1 [stat.ML] 3 Jan 2023
56
+
57
+ Key idea
58
+ The key idea in variational inference is to replace the intractable marginal likelihood with a tractable
59
+ lower bound that we then maximize. Modeling mainly consists of choosing a family  of probability
60
+ distribution that are well-behaved yet sufficiently expressive. More specifically, we want there to
61
+ be a distribution 푞 ∈ , called the variational posterior, that can be used as a drop-in replacement
62
+ for the true posterior. The variational posterior should therefore be “close” to the true posterior
63
+ 푝휽(풛 ∣ 풙) and at the same time (relatively) easy to find. The search procedure amounts to mathemat-
64
+ ical optimization, which is why variational inference is sometimes described as trading a difficult
65
+ integration problem for an easier optimization problem.
66
+ The evidence lower bound (ELBO)
67
+ In variational inference, the distance between the true posterior 푝(풛 ∣ 풙) and the variational poste-
68
+ rior 푞(풛) is measured using the Kullback-Leibler (KL) divergence,
69
+ KL(푞(풛) ‖ 푝(풛 ∣ 풙)) = − ∫ 푞(풛) log
70
+ (푝(풛 ∣ 풙)
71
+ 푞(풛)
72
+ )
73
+ 푑풛.
74
+ (3)
75
+ Other distance measures can also be used to make the variational posterior similar to the true pos-
76
+ terior, but the KL divergence has a particular benefit: through a neat trick we can simultaneously
77
+ estimate the marginal likelihood and circumvent the need to evaluate the posterior in equation 3.
78
+ To see how, we first note the two mathematical identities:
79
+ ∫ 푞(풛) 푑풛 = 1,
80
+ (4)
81
+ 푝(풙) = 푝(풙, 풛)
82
+ 푝(풛 ∣ 풙) = 푝(풙, 풛)
83
+ 푞(풛)
84
+ (푝(풛 ∣ 풙)
85
+ 푞(풛)
86
+ )−1
87
+ .
88
+ (5)
89
+ Using these we may rewrite the marginal likelihood as follows:
90
+ log 푝(풙) =
91
+ (4) log 푝(풙) ⋅ ∫ 푞(풛) 푑풛 = ∫ 푞(풛) log 푝(풙) 푑풛
92
+ =
93
+ (5) ∫ 푞(풛) log
94
+ (푝(풙, 풛)
95
+ 푞(풛)
96
+ )
97
+ 푑풛 − ∫ 푞(풛) log
98
+ (푝(풛 ∣ 풙)
99
+ 푞(풛)
100
+ )
101
+ 푑풛
102
+ = ∫ 푞(풛) log
103
+ (푝(풙, 풛)
104
+ 푞(풛)
105
+ )
106
+ 푑풛 + KL(푞(풛) ‖ 푝(풛 ∣ 풙)).
107
+ (6)
108
+ Because the KL divergence is always nonnegative, the first term lower bounds the log marginal
109
+ likelihood (also known as the evidence) for any 푞, and is therefore known as the evidence lower
110
+ bound (ELBO):
111
+ ELBO(푞(풛)) = ∫ 푞(풛) log
112
+ (푝(풙, 풛)
113
+ 푞(풛)
114
+ )
115
+ 푑풛 = 피푞(풛)
116
+ [log 푝(풙, 풛) − log 푞(풛)] .
117
+ (7)
118
+ Equation 6 can thus be written more succinctly as
119
+ log 푝(풙) = ELBO(푞(풛)) + KL(푞(풛) ‖ 푝(풛 ∣ 풙)).
120
+ (8)
121
+ For a fixed model 푝(풙, 풛), the (log) evidence is a constant. Hence—recalling that the KL divergence is
122
+ nonnegative—we conclude that maximizing the ELBO is equivalent to minimizing the KL divergence.
123
+ This is great, because to compute the KL divergence we would have to marginalize over a function
124
+ that includes the same intractable posterior that we want to estimate. In contrast, the model only
125
+ enters in the ELBO through the joint distribution 푝(풙, 풛), which means that, first, we don’t need to
126
+ compute the problematic integral in equation 2 and, second, we can factorize the joint distribution,
127
+ e.g., as encoded by a directed graphical model (Wainwright and Jordan, 2008).
128
+ Sjölund
129
+ |
130
+ A Tutorial on Parametric Variational Inference
131
+ arXiv
132
+ |
133
+ 2 of 9
134
+
135
+ Example 1
136
+ Suppose we have a single observation 푥 from an Exp(휆) likelihood with a Gamma(훼, 훽) prior
137
+ on the rate parameter 휆. Assuming that 훼 and 훽 are known, the only latent variable of interest
138
+ is 푧 = {휆}. Specifically,
139
+ 푝(푥 ∣ 휆) = 휆푒−휆푥,
140
+ 푝(휆) =
141
+ 훽훼
142
+ Γ(훼)휆훼−1푒−훽휆,
143
+ where Γ(훼) is the Gamma function. Since the Gamma distribution is the conjugate prior for 휆,
144
+ we know that the posterior is also a Gamma distribution. Invoking Bayes’ rule and disregarding
145
+ all factors not including 휆, we find that
146
+ 푝(휆 ∣ 푥) ∝ 푝(푥 ∣ 휆)푝(휆) ∝ 휆훼푒−휆(훽+푥).
147
+ Hence, we identify the posterior as 푝(휆 ∣ 푥) = Gamma(훼 + 1, 훽 + 푥).
148
+ But, let’s pretend we don’t know this and instead want to fit a Lognormal(휇, 휎2) distribution to
149
+ the posterior using variational inference, i.e.
150
+ 푞(휆) =
151
+ 1
152
+ 휆휎
153
+
154
+ 2휋
155
+ exp
156
+ (
157
+ −(log 휆 − 휇)2
158
+ 2휎2
159
+ )
160
+ .
161
+ From equation 7 we have that
162
+ ELBO(푞(휆)) = 피푞(휆)
163
+ [log (푝(푥 ∣ 휆)푝(휆)) − log 푞(휆)]
164
+ = 피푞(휆)
165
+ [
166
+ log
167
+ ( 훽훼
168
+ Γ(훼)
169
+ )
170
+ + 훼 log 휆 − 휆(훽 + 푥) + log
171
+
172
+ 2휋 + log 휎 + log 휆 + (log 휆 − 휇)2
173
+ 2휎2
174
+ ]
175
+ = log
176
+ (
177
+ 훽훼√
178
+ 2휋
179
+ Γ(훼)
180
+ )
181
+ + (훼 + 1)피푞(휆)
182
+ [log 휆] − (훽 + 푥)피푞(휆) [휆] + log 휎 +
183
+ 1
184
+ 2휎2 피푞(휆)
185
+ [(log 휆 − 휇)2] .
186
+ The expectation 피푞(휆) [휆] = exp
187
+ (
188
+ 휇 + 휎2
189
+ 2
190
+ )
191
+ since, by definition, it is the mean of the lognormal
192
+ distribution. Furthermore, the change of integration variables 푦 = log 휆, which transforms 푞(휆)
193
+ into 푞(푦) =  (휇, 휎2), shows that
194
+ 피푞(휆)
195
+ [log 휆] = 피푞(푦) [푦] = 휇,
196
+ 피푞(휆)
197
+ [(log 휆 − 휇)2] = 피푞(푦)
198
+ [(푦 − 휇)2] = 휎2.
199
+ The final expression for the ELBO is thus
200
+ ELBO(푞(휆)) = log
201
+ (
202
+ 훽훼√
203
+ 2휋
204
+ Γ(훼)
205
+ )
206
+ + (훼 + 1)휇 − (훽 + 푥)푒휇+ 휎2
207
+ 2 + log 휎 + 1
208
+ 2.
209
+ Sjölund
210
+ |
211
+ A Tutorial on Parametric Variational Inference
212
+ arXiv
213
+ |
214
+ 3 of 9
215
+
216
+ Modeling
217
+ How, then, do we choose the variational family ? Historically, the dominant approach has been
218
+ to assume a particular factorization of the variational posterior, and to use calculus of variations to
219
+ search for distributions that match this factorization. This is known as mean-field variational infer-
220
+ ence (Blei, Kucukelbir, and McAuliffe, 2017), and is still the approach most-often taught in classes.
221
+ However, mean-field variational inference is only applicable to a rather limited set of models. Most
222
+ of the successes of VI in the last 10–15 years have instead taken a parametric approach, where the
223
+ variational family is parameterized by a highly expressive model such as a deep neural network.
224
+ One can then use “standard” optimization techniques to search for the parameters 휽∗ that max-
225
+ imize the ELBO. In light of the above, this tutorial focuses exclusively on parametric variational
226
+ inference.
227
+ In example 1, we indeed took the parametric approach, since the variational posterior was
228
+ explicitly parameterized by a Lognormal distribution with parameters 휽 = {휇, 휎}. In example 2, we
229
+ take a closer look at the ELBO for a specific instance of this model.
230
+ To approximate the true posterior distribution accurately, we want the variational family  to
231
+ be as rich as possible so long as we maintain tractability—it is impossible to overfit! However, as
232
+ example 3 shows, there is one pitfall to be aware of: 푞(풛) needs to be zero whenever 푝(풛 ∣ 풙) is zero.
233
+ Estimating the ELBO
234
+ In the examples we’ve seen so far the expectations could be computed in closed form. But that
235
+ will rarely be the case in general (non-conjugate) models. We can, however, use a Monte Carlo
236
+ estimate to replace the expectation with a sum,
237
+ ELBO(푞(풛)) = ∫ 푞(풛) log
238
+ (푝(풙, 풛)
239
+ 푞(풛)
240
+ )
241
+ 푑풛 = 피푞(풛)
242
+ [log 푝(풙, 풛) − log 푞(풛)]
243
+ ≈ 1
244
+
245
+
246
+
247
+ 푖=1
248
+ (log 푝(풙, 풛(푖)) − log 푞(풛(푖))) .
249
+ (9)
250
+ The key requirement is that we are able to draw samples 풛(푖) from the variational posterior 푞(풛). But,
251
+ as suggested by the previous section, it is not enough to evaluate the ELBO for a given 푞 ∈ —we
252
+ want to find the best 푞! Having parameterized the variational posterior 푞휽(풛) with the parameters 휽,
253
+ we may rephrase this as finding parameter values that maximize the ELBO. For efficient optimiza-
254
+ tion, however, we need to evaluate both the objective function (the ELBO) and its gradient.
255
+ Gradient-based optimization of the ELBO
256
+ In optimization, it is standard practice to consider minimization problems. (Since a maximization
257
+ problem can be transformed into a minimization problem by negating the objective function, this
258
+ can be done without loss of generality.) We thus express our optimization problem as:
259
+ 휽∗ = arg min
260
+
261
+ − 피푞휽(풛)
262
+ [log 푝(풙, 풛) − log 푞휽(풛)] .
263
+ (10)
264
+ Applying, for instance, gradient descent to this problem corresponds to the iterations
265
+ 휽푘+1 = 휽푘 + 휂∇휽피푞휽(풛)
266
+ [log 푝(풙, 풛) − log 푞휽(풛)] ,
267
+ 푘 = 0, 1, …
268
+ (11)
269
+ where the hyperparameter 휂 > 0 is the step size. But this reveals a complication: the gradient
270
+ acts on the parameters of the distribution that we compute the expectation over. Consequently,
271
+ we cannot simply move the gradient inside the expectation, nor can we use the Monte Carlo trick
272
+ to first replace the expectation with samples and then compute the gradient on those. But there
273
+ are other, less direct, ways of applying the Monte Carlo idea that do work (incidentally, this turns
274
+ gradient descent into stochastic gradient descent). We begin by rewriting the gradient of the ELBO
275
+ Sjölund
276
+ |
277
+ A Tutorial on Parametric Variational Inference
278
+ arXiv
279
+ |
280
+ 4 of 9
281
+
282
+ Example 2
283
+ To make thing more concrete, we continue with the setting from example 1 and set 훼 = 3,
284
+ 훽 = 1, and 푥 = 1. The evidence 푝(푥) is the, previously neglected, proportionality constant
285
+ relating the posterior and the joint distributions,
286
+ 푝(푥) = 푝(푥, 휆)
287
+ 푝(휆 ∣ 푥) = Γ(훼 + 1)
288
+ Γ(훼)
289
+ 훽훼
290
+ (훽 + 푥)훼+1 =
291
+ 훼훽훼
292
+ (훽 + 푥)훼+1 .
293
+ Inserting the numerical values above gives 푝(푥 = 1) = 3∕16.
294
+ For simplicity, we fix 휎 = 0.5 in the variational posterior (this corresponds approximately to
295
+ the value found by moment matching) and study the effect of changing 휇.
296
+ Example 2—figure 1. The fit of a Lognormal(휇, 휎2 = 0.25) variational posterior to a Gamma(4, 2) posterior
297
+ for different values of 휇.
298
+ Example 2—figure 2. How well the ELBO approximates the log evidence depends on the parameter 휇.
299
+ The gap corresponds exactly to the KL divergence, hence maximizing the ELBO is equivalent to minimizing
300
+ the KL divergence.
301
+ Sjölund
302
+ |
303
+ A Tutorial on Parametric Variational Inference
304
+ arXiv
305
+ |
306
+ 5 of 9
307
+
308
+ 0.6
309
+ Exact posterior
310
+ Variational posterior (μ= 0.4)
311
+ 0.5
312
+ Variational posterior (μ= 0.6)
313
+ 0.4
314
+ Variational posterior (μ= 0.8)
315
+ 0.3
316
+ 0.2
317
+ 0.1
318
+ 0.0
319
+ 2
320
+ FM
321
+ 0
322
+ F51
323
+ 61.68
324
+ KL(qμ*() II p( I X=1))
325
+ 1.70
326
+ 1.72
327
+ 1.74
328
+ 1.76
329
+ 1.78
330
+ Inp(x= 1)
331
+ 1.B0
332
+ ELBO(μ, = 0.5)
333
+ 0.40
334
+ 0.45
335
+ 0.50
336
+ 0.55
337
+ 090
338
+ 0.65
339
+ 0.70
340
+ 0.75
341
+ 0.BO
342
+ μExample 3
343
+ Let’s return to Example 1 and see what happens if we try to use an  (휇, 휎2) distribution as the
344
+ variational posterior, i.e.
345
+ 푞(휆) =
346
+ 1
347
+
348
+ 2휋휎2
349
+ exp
350
+ (
351
+ −(휆 − 휇)2
352
+ 2휎2
353
+ )
354
+ .
355
+ Deriving the ELBO as before, we have that
356
+ ELBO(푞(휆)) = 피푞(휆)
357
+ [log (푝(푥 ∣ 휆)푝(휆)) − log 푞(휆)]
358
+ = 피푞(휆)
359
+ [
360
+ log
361
+ ( 훽훼
362
+ Γ(훼)
363
+ )
364
+ + 훼 log 휆 − 휆(훽 + 푥) + log
365
+
366
+ 2휋 + log 휎 + (휆 − 휇)2
367
+ 2휎2
368
+ ]
369
+ = log
370
+ (
371
+ 훽훼√
372
+ 2휋
373
+ Γ(훼)
374
+ )
375
+ + 훼 피푞(휆)
376
+ [log 휆]
377
+ ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
378
+ undefined!
379
+ −(훽 + 푥) 피푞(휆) [휆]
380
+ ⏟⏟⏟
381
+ =휇
382
+ + log 휎 +
383
+ 1
384
+ 2휎2 피푞(휆)
385
+ [(휆 − 휇)2]
386
+ ⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
387
+ =휎2
388
+ The logarithm is only defined for positive values, hence 피푞(휆)
389
+ [log 휆] is undefined. This illustrates
390
+ an important caveat when choosing the variational distribution: 푞(풛) needs to be zero whenever
391
+ 푝(풛 ∣ 풙) is zero.
392
+ as follows (Ranganath, Gerrish, and Blei, 2014):
393
+ ∇휽피푞휽(풛)
394
+ [log 푝(풙, 풛) − log 푞휽(풛)] = ∇휽 ∫
395
+ (log 푝(풙, 풛) − log 푞휽(풛)) 푞휽(풛) 푑풛
396
+ = ∫
397
+ (log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 푞휽(풛) 푑풛 − ∫
398
+ (∇휽 log 푞휽(풛)) 푞휽(풛) 푑풛
399
+ (12)
400
+ But the second term in this expression vanishes,
401
+
402
+ (∇휽 log 푞휽(풛)) 푞휽(풛) 푑풛 = ∫
403
+ ∇휃푞휽(풛)
404
+ ��
405
+
406
+ 푞휽(풛) ��
407
+
408
+ 푞휽(풛) 푑풛 = ∇휃 ∫ 푞휽(풛) 푑풛
409
+ ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
410
+ =1
411
+ = 0.
412
+ (13)
413
+ In conclusion, we have that
414
+ ∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] = ∫
415
+ (log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 푞휽(풛)푑풛.
416
+ (14)
417
+ Sometimes, as in example 4, we can rewrite ∇휽푞휽(풛) (the gradient of the variational posterior) such
418
+ that we can directly use a Monte Carlo method to estimate the integral. Later, we will cover two
419
+ more general Monte Carlo-based approaches: reparameterization (Kingma and Welling, 2014) and
420
+ black-box variational inference (Ranganath, Gerrish, and Blei, 2014).
421
+ Reparameterization
422
+ The “reparameterization trick” was popularized in the work introducing the variational autoencoder
423
+ (Kingma and Welling, 2014) but the general principle has a much longer history (Devroye, 1996).
424
+ The idea is to decouple the source of randomness from the parameters by cleverly reformulating
425
+ the random variable 풛 ∼ 푞휽(풛) as a parameterized transformation 푧 = 푔휽(휖) of another random
426
+ variable 휖 ∼ 푝(휖) that is easy to sample. Effectively, this moves the randomness “outside” the model
427
+ and makes it possible to move the gradient inside the expectation, as shown in the example below.
428
+ The reparameterization trick is valid if and only if 푔(휖, 휽) is a continuous function of 휽 for all 휖
429
+ (Schulman et al., 2015). Further, it works in the same way as in the example above also for expec-
430
+ tations 피푞휽(풛) [푓(풛)] where 푓(풛) is a general nonlinear function of 풛,
431
+ ∇휽피푞휽(풛) [푓(풛)] = ∇휽피푝(휖)
432
+ [푓(푔휽(휖))] = 피푝(휖)
433
+ [∇휽푓(푔휽(휖))] .
434
+ (15)
435
+ By setting 푓(풛) = log 푝(풙, 풛) − log 푞휽(풛) we retrieve the ELBO as a special case.
436
+ Sjölund
437
+ |
438
+ A Tutorial on Parametric Variational Inference
439
+ arXiv
440
+ |
441
+ 6 of 9
442
+
443
+ Example 4
444
+ Consider a univariate Normal variational posterior parameterized by the mean 휇 and standard
445
+ deviation 휎, i.e.
446
+ 푞휽(푧) =
447
+ 1
448
+
449
+ 2휋휎2
450
+ exp
451
+ (
452
+ −(푧 − 휇)2
453
+ 2휎2
454
+ )
455
+ ,
456
+ 휽 = {휇, 휎}.
457
+ After some algebraic manipulations, the partial derivatives can be written as:
458
+ 휕푞휽
459
+ 휕휇 = 푧 − 휇
460
+ 휎2
461
+ ⋅ 푞휽(푧),
462
+ 휕푞휽
463
+ 휕휎 = 1
464
+
465
+ ((푧 − 휇)2
466
+ 휎2
467
+ − 1
468
+ )
469
+ ⋅ 푞휽(푧).
470
+ Note that 푞휽(푧) appears in both of these expressions. By inserting the above in equation 14,
471
+ we thus arrive at an expectation that we can replace with a Monte Carlo estimate:
472
+ ∇휽피푞휽(푧) [log 푝(풙, 푧) − log 푞휽(푧)]
473
+ = ∫
474
+ (log 푝(풙, 푧) − log 푞휽(푧)) (
475
+ 푧−휇
476
+ 휎2 , 1
477
+
478
+ (
479
+ (푧−휇)2
480
+ 휎2
481
+ − 1
482
+ ))⊤
483
+ 푞휽(푧)푑푧
484
+ ≈ 1
485
+
486
+
487
+
488
+ 푖=1
489
+ (log 푝(풙, 푧(푖)) − log 푞휽(푧(푖))) (
490
+ 푧(푖)−휇
491
+ 휎2 , 1
492
+
493
+ (
494
+ (푧(푖)−휇)2
495
+ 휎2
496
+ − 1
497
+ ))⊤
498
+ ,
499
+ where 푧(푖) ∼ 푞휽(푧).
500
+ Example 5
501
+ Suppose the variational posterior is a univariate Normal distribution parameterized by the
502
+ mean 휇 and standard deviation 휎, i.e. 푞휽(푧) =  (푧; 휽) where 휽 = {휇, 휎}. This can be reparame-
503
+ terized as 푧 = 푔휽(휖) = 휇 + 휎 ⋅ 휖 where 휖 ∼  (0, 1).
504
+ Let’s consider the effect this has on the expectation 피푞휽(푧)
505
+ [log 푧].
506
+ (i) Original expression:
507
+ 피푞휽(푧)
508
+ [log 푧] =
509
+ 1
510
+
511
+ 2휋휎2 ∫ log 푧 exp
512
+ (
513
+ −(푧 − 휇)2
514
+ 2휎2
515
+ )
516
+ 푑푧,
517
+ ∇휽피푞휽(푧)
518
+ [log 푧] = ∫ log 푧 ∇휽푞휽(푧)푑푧
519
+ = 피푞휽(푧)
520
+ [
521
+ log 푧 ⋅
522
+ ((
523
+ 푧−휇
524
+ 휎2
525
+ )
526
+ , 1
527
+
528
+ (
529
+ (푧−휇)2
530
+ 휎2
531
+ − 1
532
+ ))⊤]
533
+ where we used the expression for ∇휽푞휽(푧) from example 4.
534
+ (ii) Reparameterized expression:
535
+ 피푞휽(푧)
536
+ [log 푧] ||||푧=휇+휎휖
537
+ =
538
+ 1
539
+
540
+ 2휋휎2 ∫ log(휇 + 휎휖) exp
541
+ (
542
+ −(휇 + 휎휖 − 휇)2
543
+ 2휎2
544
+ )
545
+ 휎 푑휖
546
+ =
547
+ 1
548
+
549
+ 2휋 ∫ log(휇 + 휎휖) exp
550
+ (
551
+ −휖2
552
+ 2
553
+ )
554
+ 푑휖 = 피푝(휖)
555
+ [log(휇 + 휎휖)] ,
556
+ ∇휽피푝(휖)
557
+ [log(휇 + 휎휖)] = 피푝(휖)
558
+ [∇휽 log(휇 + 휎휖)]
559
+ = 피푝(휖)
560
+ [(
561
+ 1
562
+ 휇+휎휖 ,
563
+
564
+ 휇+휎휖
565
+ )⊤]
566
+ .
567
+ Sjölund
568
+ |
569
+ A Tutorial on Parametric Variational Inference
570
+ arXiv
571
+ |
572
+ 7 of 9
573
+
574
+ Amortized variational inference
575
+ Many probabilistic models have local latent variables 풛푖 associated with each data point 풙푖. The
576
+ simplest case is when the joint distribution factorizes as
577
+ 푝(풙, 풛) =
578
+
579
+
580
+ 푖=1
581
+ 푝(풙푖 ∣ 풛푖)푝(풛푖).
582
+ (16)
583
+ Suppose we use a variational posterior that factorizes accordingly,
584
+ 푞휽(풛) =
585
+
586
+
587
+ 푖=1
588
+ 푞휽푖(풛푖),
589
+ (17)
590
+ then the ELBO maximization in equation 10 decomposes into a sum of local ELBOs
591
+ 휽∗ = arg min
592
+
593
+
594
+
595
+
596
+ 푖=1
597
+ 피푞휽푖 (풛푖)
598
+ [log 푝(풙푖 ∣ 풛푖) + log 푝(풛푖) − log 푞휽푖(풛푖)] .
599
+ (18)
600
+ Since the optimization variables are 휽 = {휽1, … , 휽푁}, large datasets amount to large optimization
601
+ problems, which are computationally demanding to solve. This led to the idea of amortized vari-
602
+ ational inference (Rezende, Mohamed, and Wierstra, 2014), wherein a machine learning model
603
+ (often a neural network) is trained to directly predict the solution 휽∗ of this optimization problem.
604
+ Specifically, let Λ휙 denote a neural network parameterized by 휙 that maps individual datapoints
605
+ 풙푖 to corresponding parameters 휽푖 of the local variational posterior 푞휽푖(풛푖). This model is trained us-
606
+ ing the expression in equation 18 as the loss function but replacing 휽푖 = Λ휙(풙푖). Note that even
607
+ though the objective function is the same, this is a form of amortized optimization (Amos, 2022)
608
+ since we are now using 휙 as the optimization variables instead of 휽. Furthermore, the loss function
609
+ is a sum over datapoints, which means that the standard machinery for training neural networks
610
+ (stochastic gradient descent etc.) can be applied. In the context of variational autoencoders, the
611
+ model Λ휙 is referred to as the encoder, which is accompanied by a, jointly trained, decoder corre-
612
+ sponding to the probability distribution 푝(풙 ∣ 풛) (Kingma and Welling, 2019).
613
+ Black-box variational inference
614
+ The reparameterization trick lets you compute the exact gradient by automatic differentiation,
615
+ which is undoubtedly convenient. On the other hand, there are many models in which reparam-
616
+ eterization is impossible. In these cases, one can instead estimate the gradient using black-box
617
+ variational inference (BBVI) (Ranganath, Gerrish, and Blei, 2014), which is more general yet still
618
+ convenient. However, the BBVI estimator suffers from high variance.
619
+ BBVI relies on the observation that
620
+ ∇휽 log 푞휽(풛) = ∇휽푞휽(풛)
621
+ 푞휽(풛) ,
622
+ (19)
623
+ which is sometimes referred to as the REINFORCE trick (Williams, 1992). This can be used to rewrite
624
+ equation 14 as
625
+ ∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] = ∫
626
+ (log 푝(풙, 풛) − log 푞휽(풛)) 푞휽(풛)∇휽 log 푞휽(풛)
627
+ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
628
+ =∇휽푞휽(풛)
629
+ 푑풛
630
+ = 피푞휽(풛) [(log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 log 푞휽(풛)] ≈ 1
631
+
632
+
633
+
634
+ 푖=1
635
+ (log 푝(풙, 풛(푖)) − log 푞휽(풛(푖))) ∇휽 log 푞휽(풛(푖)).
636
+ (20)
637
+ Since we can often use automatic differentiation to evaluate the score function ∇휽 log 푞휽(풛), it ap-
638
+ pears that this reformulation resolves the problem of estimating the gradient of the ELBO from
639
+ samples. The catch is, however, that this estimator often has a too high variance to be useful in
640
+ practice. Arguably, the key contribution of BBVI was to adapt two variance reduction techniques—
641
+ Rao-Blackwellization and control variates—to the estimator in equation 20. Going into detail on
642
+ these variance reduction techniques would, however, take us beyond the scope of a tutorial on the
643
+ basics of variational inference. We refer the interested reader to the original work by Ranganath,
644
+ Gerrish, and Blei (2014).
645
+ Sjölund
646
+ |
647
+ A Tutorial on Parametric Variational Inference
648
+ arXiv
649
+ |
650
+ 8 of 9
651
+
652
+ Acknowledgments
653
+ This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Pro-
654
+ gram (WASP) funded by the Knut and Alice Wallenberg Foundation. This preprint was created using
655
+ the LaPreprint template (https://github.com/roaldarbol/lapreprint) by Mikkel Roald-Arbøl.
656
+ References
657
+ Amos, Brandon (2022). “Tutorial on amortized optimization for learning to optimize over continu-
658
+ ous domains”. In: arXiv preprint 2202.00665.
659
+ Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017). “Variational inference: A review for statis-
660
+ ticians”. In: Journal of the American statistical Association 112.518, pp. 859–877.
661
+ Devroye, Luc (1996). “Random variate generation in one line of code”. In: Proceedings Winter Simu-
662
+ lation Conference. IEEE, pp. 265–272.
663
+ Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: 2nd International
664
+ Conference on Learning Representations.
665
+ — (2019). “An introduction to variational autoencoders”. In: Foundations and Trends® in Machine
666
+ Learning 12.4, pp. 307–392.
667
+ Ranganath, Rajesh, Sean Gerrish, and David M Blei (2014). “Black box variational inference”. In:
668
+ Artificial intelligence and statistics. PMLR, pp. 814–822.
669
+ Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backpropagation
670
+ and approximate inference in deep generative models”. In: International conference on machine
671
+ learning. PMLR, pp. 1278–1286.
672
+ Schulman, John et al. (2015). “Gradient estimation using stochastic computation graphs”. In: Ad-
673
+ vances in Neural Information Processing Systems 28.
674
+ Wainwright, Martin J and Michael I Jordan (2008). “Graphical models, exponential families, and vari-
675
+ ational inference”. In: Foundations and Trends in Machine Learning 1.1–2, pp. 1–305.
676
+ Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connectionist rein-
677
+ forcement learning”. In: Machine learning 8.3, pp. 229–256.
678
+ Sjölund
679
+ |
680
+ A Tutorial on Parametric Variational Inference
681
+ arXiv
682
+ |
683
+ 9 of 9
684
+
99AzT4oBgHgl3EQfSvs8/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf,len=222
2
+ page_content='� For correspondence: jens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
3
+ page_content='sjolund@it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
4
+ page_content='uu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
5
+ page_content='se Funding: This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
6
+ page_content=' A Tutorial on Parametric Variational Inference Jens Sjölund 1 � 1Department of Information Technology, Uppsala University, Sweden Abstract Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
7
+ page_content=' Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
8
+ page_content=' This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
9
+ page_content=' Introduction In Bayesian machine learning and statistics, the central object of interest is the posterior distribu- tion found by Bayesian inference—combining prior beliefs with observations according to Bayes’ rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
10
+ page_content=' In simple cases, such as in conjugate models, this can be done exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
11
+ page_content=' But, general (non- conjugate) models require approximate inference techniques such as Monte Carlo or variational inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
12
+ page_content=' These have complementary strengths and weaknesses, hence the most appropriate choice is application dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
13
+ page_content=' We focus on variational inference, which is on the one hand not guaranteed to be asymptotically exact but is on the other hand computationally efficient and scal- able to high-dimensional models and large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
14
+ page_content=' Notation We use a single observation variable 풙 to denote both the observed inputs and outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
15
+ page_content=' Our pri- mary interest is however in the latent variables 풛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
16
+ page_content=' Since we adhere to the Bayesian framework, the “parameters” of a model (such as the slope and intercept in a linear regression model) that are assigned priors are actually latent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
17
+ page_content=' We denote remaining parameters of interest by 휽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
18
+ page_content=' Variational inference So, why do we need variational inference?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
19
+ page_content=' First, recall that to infer anything about the latent vari- ables from our observations, we need the posterior: 푝휽(풛 ∣ 풙) = 푝휽(풙, 풛) 푝휽(풙) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
20
+ page_content=' (1) The expression in the denominator, 푝휽(풙), is called the marginal likelihood of 풙 because it can be rewritten as a marginalization over the latent variables: 푝휽(풙) = ∫ 푝휽(풙, 풛) 푑풛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
21
+ page_content=' (2) The catch is that in practice this integral is often intractable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
22
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
23
+ page_content=' not computable in closed form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
24
+ page_content=' Since 풙 are our observations, the marginal likelihood is a (normalizing) constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
25
+ page_content=' Nevertheless, without knowing this constant the utility of the posterior is limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
26
+ page_content=' Hence the need for approximate inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
27
+ page_content=' Sjölund | arXiv | January 4, 2023 | 1–9 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
28
+ page_content='01236v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
29
+ page_content='ML] 3 Jan 2023 Key idea The key idea in variational inference is to replace the intractable marginal likelihood with a tractable lower bound that we then maximize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
30
+ page_content=' Modeling mainly consists of choosing a family \ue23d of probability distribution that are well-behaved yet sufficiently expressive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
31
+ page_content=' More specifically, we want there to be a distribution 푞 ∈ \ue23d, called the variational posterior, that can be used as a drop-in replacement for the true posterior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
32
+ page_content=' The variational posterior should therefore be “close” to the true posterior 푝휽(풛 ∣ 풙) and at the same time (relatively) easy to find.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
33
+ page_content=' The search procedure amounts to mathemat- ical optimization, which is why variational inference is sometimes described as trading a difficult integration problem for an easier optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
34
+ page_content=' The evidence lower bound (ELBO) In variational inference, the distance between the true posterior 푝(풛 ∣ 풙) and the variational poste- rior 푞(풛) is measured using the Kullback-Leibler (KL) divergence, KL(푞(풛) ‖ 푝(풛 ∣ 풙)) = − ∫ 푞(풛) log (푝(풛 ∣ 풙) 푞(풛) ) 푑풛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
35
+ page_content=' (3) Other distance measures can also be used to make the variational posterior similar to the true pos- terior, but the KL divergence has a particular benefit: through a neat trick we can simultaneously estimate the marginal likelihood and circumvent the need to evaluate the posterior in equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
36
+ page_content=' To see how, we first note the two mathematical identities: ∫ 푞(풛) 푑풛 = 1, (4) 푝(풙) = 푝(풙, 풛) 푝(풛 ∣ 풙) = 푝(풙, 풛) 푞(풛) (푝(풛 ∣ 풙) 푞(풛) )−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
37
+ page_content=' (5) Using these we may rewrite the marginal likelihood as follows: log 푝(풙) = (4) log 푝(풙) ⋅ ∫ 푞(풛) 푑풛 = ∫ 푞(풛) log 푝(풙) 푑풛 = (5) ∫ 푞(풛) log (푝(풙, 풛) 푞(풛) ) 푑풛 − ∫ 푞(풛) log (푝(풛 ∣ 풙) 푞(풛) ) 푑풛 = ∫ 푞(풛) log (푝(풙, 풛) 푞(풛) ) 푑풛 + KL(푞(풛) ‖ 푝(풛 ∣ 풙)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
38
+ page_content=' (6) Because the KL divergence is always nonnegative, the first term lower bounds the log marginal likelihood (also known as the evidence) for any 푞, and is therefore known as the evidence lower bound (ELBO): ELBO(푞(풛)) = ∫ 푞(풛) log (푝(풙, 풛) 푞(풛) ) 푑풛 = 피푞(풛) [log 푝(풙, 풛) − log 푞(풛)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
39
+ page_content=' (7) Equation 6 can thus be written more succinctly as log 푝(풙) = ELBO(푞(풛)) + KL(푞(풛) ‖ 푝(풛 ∣ 풙)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
40
+ page_content=' (8) For a fixed model 푝(풙, 풛), the (log) evidence is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
41
+ page_content=' Hence—recalling that the KL divergence is nonnegative—we conclude that maximizing the ELBO is equivalent to minimizing the KL divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
42
+ page_content=' This is great, because to compute the KL divergence we would have to marginalize over a function that includes the same intractable posterior that we want to estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
43
+ page_content=' In contrast, the model only enters in the ELBO through the joint distribution 푝(풙, 풛), which means that, first, we don’t need to compute the problematic integral in equation 2 and, second, we can factorize the joint distribution, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
44
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
45
+ page_content=', as encoded by a directed graphical model (Wainwright and Jordan, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
46
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 2 of 9 Example 1 Suppose we have a single observation 푥 from an Exp(휆) likelihood with a Gamma(훼, 훽) prior on the rate parameter 휆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
47
+ page_content=' Assuming that 훼 and 훽 are known, the only latent variable of interest is 푧 = {휆}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
48
+ page_content=' Specifically, 푝(푥 ∣ 휆) = 휆푒−휆푥, 푝(휆) = 훽훼 Γ(훼)휆훼−1푒−훽휆, where Γ(훼) is the Gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
49
+ page_content=' Since the Gamma distribution is the conjugate prior for 휆, we know that the posterior is also a Gamma distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
50
+ page_content=' Invoking Bayes’ rule and disregarding all factors not including 휆, we find that 푝(휆 ∣ 푥) ∝ 푝(푥 ∣ 휆)푝(휆) ∝ 휆훼푒−휆(훽+푥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
51
+ page_content=' Hence, we identify the posterior as 푝(휆 ∣ 푥) = Gamma(훼 + 1, 훽 + 푥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
52
+ page_content=' But, let’s pretend we don’t know this and instead want to fit a Lognormal(휇, 휎2) distribution to the posterior using variational inference, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
53
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
54
+ page_content=' 푞(휆) = 1 휆휎 √ 2휋 exp ( −(log 휆 − 휇)2 2휎2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
55
+ page_content=' From equation 7 we have that ELBO(푞(휆)) = 피푞(휆) [log (푝(푥 ∣ 휆)푝(휆)) − log 푞(휆)] = 피푞(휆) [ log ( 훽훼 Γ(훼) ) + 훼 log 휆 − 휆(훽 + 푥) + log √ 2휋 + log 휎 + log 휆 + (log 휆 − 휇)2 2휎2 ] = log ( 훽훼√ 2휋 Γ(훼) ) + (훼 + 1)피푞(휆) [log 휆] − (훽 + 푥)피푞(휆) [휆] + log 휎 + 1 2휎2 피푞(휆) [(log 휆 − 휇)2] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
56
+ page_content=' The expectation 피푞(휆) [휆] = exp ( 휇 + 휎2 2 ) since, by definition, it is the mean of the lognormal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
57
+ page_content=' Furthermore, the change of integration variables 푦 = log 휆, which transforms 푞(휆) into 푞(푦) = \ue23a (휇, 휎2), shows that 피푞(휆) [log 휆] = 피푞(푦) [푦] = 휇, 피푞(휆) [(log 휆 − 휇)2] = 피푞(푦) [(푦 − 휇)2] = 휎2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
58
+ page_content=' The final expression for the ELBO is thus ELBO(푞(휆)) = log ( 훽훼√ 2휋 Γ(훼) ) + (훼 + 1)휇 − (훽 + 푥)푒휇+ 휎2 2 + log 휎 + 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
59
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 3 of 9 Modeling How, then, do we choose the variational family \ue23d?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
60
+ page_content=' Historically, the dominant approach has been to assume a particular factorization of the variational posterior, and to use calculus of variations to search for distributions that match this factorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
61
+ page_content=' This is known as mean-field variational infer- ence (Blei, Kucukelbir, and McAuliffe, 2017), and is still the approach most-often taught in classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
62
+ page_content=' However, mean-field variational inference is only applicable to a rather limited set of models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
63
+ page_content=' Most of the successes of VI in the last 10–15 years have instead taken a parametric approach, where the variational family is parameterized by a highly expressive model such as a deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
64
+ page_content=' One can then use “standard” optimization techniques to search for the parameters 휽∗ that max- imize the ELBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
65
+ page_content=' In light of the above, this tutorial focuses exclusively on parametric variational inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
66
+ page_content=' In example 1, we indeed took the parametric approach, since the variational posterior was explicitly parameterized by a Lognormal distribution with parameters 휽 = {휇, 휎}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
67
+ page_content=' In example 2, we take a closer look at the ELBO for a specific instance of this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
68
+ page_content=' To approximate the true posterior distribution accurately, we want the variational family \ue23d to be as rich as possible so long as we maintain tractability—it is impossible to overfit!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
69
+ page_content=' However, as example 3 shows, there is one pitfall to be aware of: 푞(풛) needs to be zero whenever 푝(풛 ∣ 풙) is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
70
+ page_content=' Estimating the ELBO In the examples we’ve seen so far the expectations could be computed in closed form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
71
+ page_content=' But that will rarely be the case in general (non-conjugate) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
72
+ page_content=' We can, however, use a Monte Carlo estimate to replace the expectation with a sum, ELBO(푞(풛)) = ∫ 푞(풛) log (푝(풙, 풛) 푞(풛) ) 푑풛 = 피푞(풛) [log 푝(풙, 풛) − log 푞(풛)] ≈ 1 퐿 퐿 ∑ 푖=1 (log 푝(풙, 풛(푖)) − log 푞(풛(푖))) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
73
+ page_content=' (9) The key requirement is that we are able to draw samples 풛(푖) from the variational posterior 푞(풛).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
74
+ page_content=' But, as suggested by the previous section, it is not enough to evaluate the ELBO for a given 푞 ∈ \ue23d—we want to find the best 푞!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
75
+ page_content=' Having parameterized the variational posterior 푞휽(풛) with the parameters 휽, we may rephrase this as finding parameter values that maximize the ELBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
76
+ page_content=' For efficient optimiza- tion, however, we need to evaluate both the objective function (the ELBO) and its gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
77
+ page_content=' Gradient-based optimization of the ELBO In optimization, it is standard practice to consider minimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
78
+ page_content=' (Since a maximization problem can be transformed into a minimization problem by negating the objective function, this can be done without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
79
+ page_content=') We thus express our optimization problem as: 휽∗ = arg min 휽 − 피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
80
+ page_content=' (10) Applying, for instance, gradient descent to this problem corresponds to the iterations 휽푘+1 = 휽푘 + 휂∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] , 푘 = 0, 1, … (11) where the hyperparameter 휂 > 0 is the step size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
81
+ page_content=' But this reveals a complication: the gradient acts on the parameters of the distribution that we compute the expectation over.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
82
+ page_content=' Consequently, we cannot simply move the gradient inside the expectation, nor can we use the Monte Carlo trick to first replace the expectation with samples and then compute the gradient on those.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
83
+ page_content=' But there are other, less direct, ways of applying the Monte Carlo idea that do work (incidentally, this turns gradient descent into stochastic gradient descent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
84
+ page_content=' We begin by rewriting the gradient of the ELBO Sjölund | A Tutorial on Parametric Variational Inference arXiv | 4 of 9 Example 2 To make thing more concrete, we continue with the setting from example 1 and set 훼 = 3, 훽 = 1, and 푥 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
85
+ page_content=' The evidence 푝(푥) is the, previously neglected, proportionality constant relating the posterior and the joint distributions, 푝(푥) = 푝(푥, 휆) 푝(휆 ∣ 푥) = Γ(훼 + 1) Γ(훼) 훽훼 (훽 + 푥)훼+1 = 훼훽훼 (훽 + 푥)훼+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
86
+ page_content=' Inserting the numerical values above gives 푝(푥 = 1) = 3∕16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
87
+ page_content=' For simplicity, we fix 휎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
88
+ page_content='5 in the variational posterior (this corresponds approximately to the value found by moment matching) and study the effect of changing 휇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
89
+ page_content=' Example 2—figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
90
+ page_content=' The fit of a Lognormal(휇, 휎2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
91
+ page_content='25) variational posterior to a Gamma(4, 2) posterior for different values of 휇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
92
+ page_content=' Example 2—figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
93
+ page_content=' How well the ELBO approximates the log evidence depends on the parameter 휇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
94
+ page_content=' The gap corresponds exactly to the KL divergence, hence maximizing the ELBO is equivalent to minimizing the KL divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
95
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 5 of 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
96
+ page_content='6 Exact posterior Variational posterior (μ= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
97
+ page_content='4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
98
+ page_content='5 Variational posterior (μ= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
99
+ page_content='6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
100
+ page_content='4 Variational posterior (μ= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
101
+ page_content='8) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
102
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
103
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
104
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
105
+ page_content='0 2 FM 0 F51 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
106
+ page_content='68 KL(qμ*() II p( I X=1)) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
107
+ page_content='70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
108
+ page_content='72 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
109
+ page_content='74 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
110
+ page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
111
+ page_content='78 Inp(x= 1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
112
+ page_content='B0 ELBO(μ, = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
113
+ page_content='5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
114
+ page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
115
+ page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
116
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
117
+ page_content='55 090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
118
+ page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
119
+ page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
120
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
121
+ page_content='BO μExample 3 Let’s return to Example 1 and see what happens if we try to use an \ue23a (휇, 휎2) distribution as the variational posterior, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
122
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
123
+ page_content=' 푞(휆) = 1 √ 2휋휎2 exp ( −(휆 − 휇)2 2휎2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
124
+ page_content=' Deriving the ELBO as before, we have that ELBO(푞(휆)) = 피푞(휆) [log (푝(푥 ∣ 휆)푝(휆)) − log 푞(휆)] = 피푞(휆) [ log ( 훽훼 Γ(훼) ) + 훼 log 휆 − 휆(훽 + 푥) + log √ 2휋 + log 휎 + (휆 − 휇)2 2휎2 ] = log ( 훽훼√ 2휋 Γ(훼) ) + 훼 피푞(휆) [log 휆] ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ undefined!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
125
+ page_content=' −(훽 + 푥) 피푞(휆) [휆] ⏟⏟⏟ =휇 + log 휎 + 1 2휎2 피푞(휆) [(휆 − 휇)2] ⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟ =휎2 The logarithm is only defined for positive values, hence 피푞(휆) [log 휆] is undefined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
126
+ page_content=' This illustrates an important caveat when choosing the variational distribution: 푞(풛) needs to be zero whenever 푝(풛 ∣ 풙) is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
127
+ page_content=' as follows (Ranganath, Gerrish, and Blei, 2014): ∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] = ∇휽 ∫ (log 푝(풙, 풛) − log 푞휽(풛)) 푞휽(풛) 푑풛 = ∫ (log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 푞휽(풛) 푑풛 − ∫ (∇휽 log 푞휽(풛)) 푞휽(풛) 푑풛 (12) But the second term in this expression vanishes, ∫ (∇휽 log 푞휽(풛)) 푞휽(풛) 푑풛 = ∫ ∇휃푞휽(풛) �� � 푞휽(풛) �� � 푞휽(풛) 푑풛 = ∇휃 ∫ 푞휽(풛) 푑풛 ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ =1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
128
+ page_content=' (13) In conclusion, we have that ∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] = ∫ (log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 푞휽(풛)푑풛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
129
+ page_content=' (14) Sometimes, as in example 4, we can rewrite ∇휽푞휽(풛) (the gradient of the variational posterior) such that we can directly use a Monte Carlo method to estimate the integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
130
+ page_content=' Later, we will cover two more general Monte Carlo-based approaches: reparameterization (Kingma and Welling, 2014) and black-box variational inference (Ranganath, Gerrish, and Blei, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
131
+ page_content=' Reparameterization The “reparameterization trick” was popularized in the work introducing the variational autoencoder (Kingma and Welling, 2014) but the general principle has a much longer history (Devroye, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
132
+ page_content=' The idea is to decouple the source of randomness from the parameters by cleverly reformulating the random variable 풛 ∼ 푞휽(풛) as a parameterized transformation 푧 = 푔휽(휖) of another random variable 휖 ∼ 푝(휖) that is easy to sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
133
+ page_content=' Effectively, this moves the randomness “outside” the model and makes it possible to move the gradient inside the expectation, as shown in the example below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
134
+ page_content=' The reparameterization trick is valid if and only if 푔(휖, 휽) is a continuous function of 휽 for all 휖 (Schulman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
135
+ page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
136
+ page_content=' Further, it works in the same way as in the example above also for expec- tations 피푞휽(풛) [푓(풛)] where 푓(풛) is a general nonlinear function of 풛, ∇휽피푞휽(풛) [푓(풛)] = ∇휽피푝(휖) [푓(푔휽(휖))] = 피푝(휖) [∇휽푓(푔휽(휖))] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
137
+ page_content=' (15) By setting 푓(풛) = log 푝(풙, 풛) − log 푞휽(풛) we retrieve the ELBO as a special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
138
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 6 of 9 Example 4 Consider a univariate Normal variational posterior parameterized by the mean 휇 and standard deviation 휎, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
139
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
140
+ page_content=' 푞휽(푧) = 1 √ 2휋휎2 exp ( −(푧 − 휇)2 2휎2 ) , 휽 = {휇, 휎}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
141
+ page_content=' After some algebraic manipulations, the partial derivatives can be written as: 휕푞휽 휕휇 = 푧 − 휇 휎2 ⋅ 푞휽(푧), 휕푞휽 휕휎 = 1 휎 ((푧 − 휇)2 휎2 − 1 ) ⋅ 푞휽(푧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
142
+ page_content=' Note that 푞휽(푧) appears in both of these expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
143
+ page_content=' By inserting the above in equation 14, we thus arrive at an expectation that we can replace with a Monte Carlo estimate: ∇휽피푞휽(푧) [log 푝(풙, 푧) − log 푞휽(푧)] = ∫ (log 푝(풙, 푧) − log 푞휽(푧)) ( 푧−휇 휎2 , 1 휎 ( (푧−휇)2 휎2 − 1 ))⊤ 푞휽(푧)푑푧 ≈ 1 퐿 퐿 ∑ 푖=1 (log 푝(풙, 푧(푖)) − log 푞휽(푧(푖))) ( 푧(푖)−휇 휎2 , 1 휎 ( (푧(푖)−휇)2 휎2 − 1 ))⊤ , where 푧(푖) ∼ 푞휽(푧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
144
+ page_content=' Example 5 Suppose the variational posterior is a univariate Normal distribution parameterized by the mean 휇 and standard deviation 휎, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
145
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
146
+ page_content=' 푞휽(푧) = \ue23a (푧;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
147
+ page_content=' 휽) where 휽 = {휇, 휎}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
148
+ page_content=' This can be reparame- terized as 푧 = 푔휽(휖) = 휇 + 휎 ⋅ 휖 where 휖 ∼ \ue23a (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
149
+ page_content=' Let’s consider the effect this has on the expectation 피푞휽(푧) [log 푧].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
150
+ page_content=' (i) Original expression: 피푞휽(푧) [log 푧] = 1 √ 2휋휎2 ∫ log 푧 exp ( −(푧 − 휇)2 2휎2 ) 푑푧, ∇휽피푞휽(푧) [log 푧] = ∫ log 푧 ∇휽푞휽(푧)푑푧 = 피푞휽(푧) [ log 푧 ⋅ (( 푧−휇 휎2 ) , 1 휎 ( (푧−휇)2 휎2 − 1 ))⊤] where we used the expression for ∇휽푞휽(푧) from example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
151
+ page_content=' (ii) Reparameterized expression: 피푞휽(푧) [log 푧] ||||푧=휇+휎휖 = 1 √ 2휋휎2 ∫ log(휇 + 휎휖) exp ( −(휇 + 휎휖 − 휇)2 2휎2 ) 휎 푑휖 = 1 √ 2휋 ∫ log(휇 + 휎휖) exp ( −휖2 2 ) 푑휖 = 피푝(휖) [log(휇 + 휎휖)] , ∇휽피푝(휖) [log(휇 + 휎휖)] = 피푝(휖) [∇휽 log(휇 + 휎휖)] = 피푝(휖) [( 1 휇+휎휖 , 휖 휇+휎휖 )⊤] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
152
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 7 of 9 Amortized variational inference Many probabilistic models have local latent variables 풛푖 associated with each data point 풙푖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
153
+ page_content=' The simplest case is when the joint distribution factorizes as 푝(풙, 풛) = 푁 ∏ 푖=1 푝(풙푖 ∣ 풛푖)푝(풛푖).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
154
+ page_content=' (16) Suppose we use a variational posterior that factorizes accordingly, 푞휽(풛) = 푁 ∏ 푖=1 푞휽푖(풛푖), (17) then the ELBO maximization in equation 10 decomposes into a sum of local ELBOs 휽∗ = arg min 휽 − 푁 ∑ 푖=1 피푞휽푖 (풛푖) [log 푝(풙푖 ∣ 풛푖) + log 푝(풛푖) − log 푞휽푖(풛푖)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
155
+ page_content=' (18) Since the optimization variables are 휽 = {휽1, … , 휽푁}, large datasets amount to large optimization problems, which are computationally demanding to solve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
156
+ page_content=' This led to the idea of amortized vari- ational inference (Rezende, Mohamed, and Wierstra, 2014), wherein a machine learning model (often a neural network) is trained to directly predict the solution 휽∗ of this optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
157
+ page_content=' Specifically, let Λ휙 denote a neural network parameterized by 휙 that maps individual datapoints 풙푖 to corresponding parameters 휽푖 of the local variational posterior 푞휽푖(풛푖).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
158
+ page_content=' This model is trained us- ing the expression in equation 18 as the loss function but replacing 휽푖 = Λ휙(풙푖).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
159
+ page_content=' Note that even though the objective function is the same, this is a form of amortized optimization (Amos, 2022) since we are now using 휙 as the optimization variables instead of 휽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
160
+ page_content=' Furthermore, the loss function is a sum over datapoints, which means that the standard machinery for training neural networks (stochastic gradient descent etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
161
+ page_content=') can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
162
+ page_content=' In the context of variational autoencoders, the model Λ휙 is referred to as the encoder, which is accompanied by a, jointly trained, decoder corre- sponding to the probability distribution 푝(풙 ∣ 풛) (Kingma and Welling, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
163
+ page_content=' Black-box variational inference The reparameterization trick lets you compute the exact gradient by automatic differentiation, which is undoubtedly convenient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
164
+ page_content=' On the other hand, there are many models in which reparam- eterization is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
165
+ page_content=' In these cases, one can instead estimate the gradient using black-box variational inference (BBVI) (Ranganath, Gerrish, and Blei, 2014), which is more general yet still convenient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
166
+ page_content=' However, the BBVI estimator suffers from high variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
167
+ page_content=' BBVI relies on the observation that ∇휽 log 푞휽(풛) = ∇휽푞휽(풛) 푞휽(풛) , (19) which is sometimes referred to as the REINFORCE trick (Williams, 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
168
+ page_content=' This can be used to rewrite equation 14 as ∇휽피푞휽(풛) [log 푝(풙, 풛) − log 푞휽(풛)] = ∫ (log 푝(풙, 풛) − log 푞휽(풛)) 푞휽(풛)∇휽 log 푞휽(풛) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ =∇휽푞휽(풛) 푑풛 = 피푞휽(풛) [(log 푝(풙, 풛) − log 푞휽(풛)) ∇휽 log 푞휽(풛)] ≈ 1 퐿 퐿 ∑ 푖=1 (log 푝(풙, 풛(푖)) − log 푞휽(풛(푖))) ∇휽 log 푞휽(풛(푖)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
169
+ page_content=' (20) Since we can often use automatic differentiation to evaluate the score function ∇휽 log 푞휽(풛), it ap- pears that this reformulation resolves the problem of estimating the gradient of the ELBO from samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
170
+ page_content=' The catch is, however, that this estimator often has a too high variance to be useful in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
171
+ page_content=' Arguably, the key contribution of BBVI was to adapt two variance reduction techniques— Rao-Blackwellization and control variates—to the estimator in equation 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
172
+ page_content=' Going into detail on these variance reduction techniques would, however, take us beyond the scope of a tutorial on the basics of variational inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
173
+ page_content=' We refer the interested reader to the original work by Ranganath, Gerrish, and Blei (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
174
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 8 of 9 Acknowledgments This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Pro- gram (WASP) funded by the Knut and Alice Wallenberg Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
175
+ page_content=' This preprint was created using the LaPreprint template (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
176
+ page_content='com/roaldarbol/lapreprint) by Mikkel Roald-Arbøl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
177
+ page_content=' References Amos, Brandon (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
178
+ page_content=' “Tutorial on amortized optimization for learning to optimize over continu- ous domains”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
179
+ page_content=' In: arXiv preprint 2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
180
+ page_content='00665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
181
+ page_content=' Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
182
+ page_content=' “Variational inference: A review for statis- ticians”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
183
+ page_content=' In: Journal of the American statistical Association 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
184
+ page_content='518, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
185
+ page_content=' 859–877.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
186
+ page_content=' Devroye, Luc (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
187
+ page_content=' “Random variate generation in one line of code”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
188
+ page_content=' In: Proceedings Winter Simu- lation Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
189
+ page_content=' IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
190
+ page_content=' 265–272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
191
+ page_content=' Kingma, Diederik P and Max Welling (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
192
+ page_content=' “Auto-Encoding Variational Bayes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
193
+ page_content=' In: 2nd International Conference on Learning Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
194
+ page_content=' — (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
195
+ page_content=' “An introduction to variational autoencoders”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
196
+ page_content=' In: Foundations and Trends® in Machine Learning 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
197
+ page_content='4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
198
+ page_content=' 307–392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
199
+ page_content=' Ranganath, Rajesh, Sean Gerrish, and David M Blei (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
200
+ page_content=' “Black box variational inference”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
201
+ page_content=' In: Artificial intelligence and statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
202
+ page_content=' PMLR, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
203
+ page_content=' 814–822.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
204
+ page_content=' Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
205
+ page_content=' “Stochastic backpropagation and approximate inference in deep generative models”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
206
+ page_content=' In: International conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
207
+ page_content=' PMLR, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
208
+ page_content=' 1278–1286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
209
+ page_content=' Schulman, John et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
210
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
211
+ page_content=' “Gradient estimation using stochastic computation graphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
212
+ page_content=' In: Ad- vances in Neural Information Processing Systems 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
213
+ page_content=' Wainwright, Martin J and Michael I Jordan (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
214
+ page_content=' “Graphical models, exponential families, and vari- ational inference”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
215
+ page_content=' In: Foundations and Trends in Machine Learning 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
216
+ page_content='1–2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
217
+ page_content=' 1–305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
218
+ page_content=' Williams, Ronald J (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
219
+ page_content=' “Simple statistical gradient-following algorithms for connectionist rein- forcement learning”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
220
+ page_content=' In: Machine learning 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
221
+ page_content='3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
222
+ page_content=' 229–256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
223
+ page_content=' Sjölund | A Tutorial on Parametric Variational Inference arXiv | 9 of 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AzT4oBgHgl3EQfSvs8/content/2301.01236v1.pdf'}
9NE1T4oBgHgl3EQfCQIp/content/tmp_files/2301.02861v1.pdf.txt ADDED
@@ -0,0 +1,1231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02861v1 [math.NT] 7 Jan 2023
2
+ IDENTITIES INVOLVING DEGENERATE HARMONIC AND DEGENERATE
3
+ HYPERHARMONIC NUMBERS
4
+ HYE KYUNG KIM1, DAE SAN KIM2, AND TAEKYUN KIM3,∗
5
+ ABSTRACT. Harmonic numbers have been studied since antiquity, while hyperharmonic numbers
6
+ were intoduced by Conway and Guy in 1996. The degenerate harmonic numbers and degenerate
7
+ hyperharmonic numbers are their respective degenerate versions. The aim of this paper is to further
8
+ investigate some properties, recurrence relations and identities involving the degenerate harmonic
9
+ and degenerate hyperharmonic numbers in connection with degenerate Stirling numbers of the first
10
+ kind, degenerate Daehee numbers and degenerate derangements.
11
+ 1. INTRODUCTION
12
+ In recent years, various degenerate versions of many special numbers and polynomials have
13
+ beem studied and yielded a lot of fascinating and fruitful results (see [5, 6, 7, 8, 9, 10, 11, 12] and
14
+ the references therein), which began with Carlitz’s work on the degenerate Bernoulli and degen-
15
+ erate Euler numbers (see [2]). It is worthwhile to mention that these explorations for degenerate
16
+ versions are not limited to polynomials and numbers but also extended to transcendental functions,
17
+ like gamma functions (see [9, 10]). It is also remarkable that the λ-umbral calculus and λ-q-umbral
18
+ calculus were introduced as degenerate versions of the umbral calculus and the q-umbral calculus,
19
+ respectively (see [6, 11]). As it turns out, the λ-umbral calculus and λ-q-umbral calculus are more
20
+ convenient than the umbral calculus and the q-umbral calculus when dealing with degenerate Shef-
21
+ fer polynomials and degenerate q-Sheffer polynomials.
22
+ The aim of this paper is to further investigate some properties, recurrence relations and identities
23
+ involving the degenerate harmonic numbers (see (6)) and the degenerate hyperharmonic numbers
24
+ (see (7), (8)) in connection with degenerate Stirling numbers of the first kind, degenerate Daehee
25
+ numbers and degenerate derangements. The degenerate harmonic numbers and degenerate hyper-
26
+ harmonic numbers are respectively degenerate versions of the harmonic numbers and the hyperhar-
27
+ monic numbers, of which the latter are introduced in [4].
28
+ The outline of this paper is as follows. In Section 1, we recall the degenerate exponentials and
29
+ the degenerate logarithms. We remind the reader of the harmonic numbers, and of the hyperhar-
30
+ monic numbers together with their explicit expression due to Conway and Guy (see [4]). Then
31
+ we recall their degenerate versions, namely the degenerate harmonic numbers, and the degenerate
32
+ hyperharmonic numbers together with their explicit expression (see [7, 8]). We also mention the
33
+ recently introduced degenerate Stirling numbers of the first kind and the degenerate Daehee num-
34
+ bers of order r. Section 2 is the main result of this paper. We obtain an expression of the degenerate
35
+ hyperharmonic numbers of order r in terms of the same numbers of lower orders in Theorem 1. We
36
+ express the Daehee numbers in terms of the degenerate harmonic numbers and of the degenerate
37
+ hyperharmonic numbers, respectively in Theorem 2 and Theorem 3. In Theorem 4, the degenerate
38
+ harmonic numbers are represented in terms of the degenerate hyperharmonic numbers of order r.
39
+ 2010 Mathematics Subject Classification. 05A19; 11B73; 11B83.
40
+ Key words and phrases. degenerate harmonic number; degenerate hyperharmonic number; degenerate Daehee num-
41
+ ber; degenerate logarithm; degenerate Stirling number of the first kind; degenerate derangement.
42
+ * is corresponding author.
43
+ 1
44
+
45
+ 2
46
+ Identities involving degenerate harmonic and degenerate hyperharmonic numbers
47
+ In Theorem 5, the degenerate Daehee numbers are represented in terms of the degenerate Daehee
48
+ numbers of order r −1 and of the degenerate hyperharmonic numbers. We derive a simple relation
49
+ between the degenerate hyperharmonic numbers and the degenerate Daehee numbers in Theorem
50
+ 6. We deduce an identity involving the degenerate hyperharmonic numbers and the degenerate de-
51
+ rangements in Theorem 7. The degenerate Daehee numbers are expressed in terms of the degenerate
52
+ Stirling numbers of the first kind in Theorem 8. Finally, we get an identity involving the degenerate
53
+ Stirling numbers of the first kind and the degenerate harmonic numbers in Theorem 9.
54
+ For any nonzero λ ∈ R, the degenerate exponential functions are defined by
55
+ ex
56
+ λ(t) = (1+λt)
57
+ x
58
+ λ =
59
+
60
+
61
+ n=0
62
+ (x)n,λ
63
+ tn
64
+ n!,
65
+ eλ(t) = e1
66
+ λ(t),
67
+ (see [2, 8]),
68
+ (1)
69
+ where
70
+ (x)0,λ = 1, (x)n,λ = x(x−λ)···(x−(n−1)λ), (n ≥ 1),
71
+ (see [8]).
72
+ Let logλ t be the compositional inverse of eλ(t) with eλ(logλ t) = logλ eλ(t) = t. It is called the
73
+ degenerate logarithm and is given by
74
+ logλ(1+t) =
75
+
76
+
77
+ k=1
78
+ λ k−1(1)k, 1
79
+ λ
80
+ k!
81
+ tk = 1
82
+ λ ((1+t)λ −1),
83
+ (see [5]).
84
+ (2)
85
+ The harmonic numbers are given by
86
+ H0 = 0, Hn = 1+ 1
87
+ 2 +···+ 1
88
+ n,
89
+ (n ∈ N),
90
+ (see [3, 4, 16]).
91
+ (3)
92
+ In 1996, Conway and Guy introduced the hyperharmonic numbers H(r)
93
+ n
94
+ of order r, (n,r ≥ 0), which
95
+ are given by
96
+ H(r)
97
+ 0
98
+ = 0, (r ≥ 0), H(0)
99
+ n
100
+ = 1
101
+ n, (n ≥ 1), H(r)
102
+ n
103
+ =
104
+ n
105
+
106
+ k=1
107
+ H(r−1)
108
+ k
109
+ , (n,r ≥ 1),
110
+ (see [4]).
111
+ (4)
112
+ Thus, by (4), we get
113
+ H(r)
114
+ n
115
+ =
116
+ �n+r −1
117
+ n
118
+
119
+ (Hn+r−1 −Hr−1),
120
+ (r ≥ 1),
121
+ (see [4]).
122
+ (5)
123
+ Recently, the degenerate harmonic numbers are defined by
124
+ H0,λ = 0, Hn,λ =
125
+ n
126
+
127
+ k=1
128
+ 1
129
+ λ
130
+ �λ
131
+ k
132
+
133
+ (−1)k−1,
134
+ (n ≥ 1),
135
+ (see [8]).
136
+ (6)
137
+ Note that limλ→0 Hn,λ = Hn. The degenerate hyperharmonic numbers H(r)
138
+ n,λ of order r, (n,r ≥ 0),
139
+ are defined by
140
+ H(r)
141
+ 0,λ = 0, (r ≥ 0), H(0)
142
+ n,λ = 1
143
+ λ
144
+ �λ
145
+ n
146
+
147
+ (−1)n−1, (n ≥ 1), H(r)
148
+ n,λ =
149
+ n
150
+
151
+ k=1
152
+ H(r−1)
153
+ k,λ
154
+ , (n,r ≥ 1),
155
+ (see [7]).
156
+ (7)
157
+ We see from (6) and (7) that H(1)
158
+ n,λ = Hn,λ. From (7), we note that
159
+ H(r)
160
+ n,λ = (−1)r−1
161
+ �λ−1
162
+ r−1
163
+
164
+ �n+r −1
165
+ n
166
+
167
+ (Hn+r−1,λ −Hr−1,λ),
168
+ (see [7]),
169
+ (8)
170
+ where n, r are positive numbers. Here we observe from (5) and (8) that limλ→0 H(r)
171
+ n,λ = H(r)
172
+ n .
173
+
174
+ H. K. Kim, D. S. Kim, and T. Kim
175
+ 3
176
+ In [5], the degenerate Stirling numbers of the first kind are defined by
177
+ (x)n =
178
+ n
179
+
180
+ k=0
181
+ S1,λ(n,k)(x)k,λ ,
182
+ (n ≥ 0),
183
+ (see [5, 8]),
184
+ (9)
185
+ where (x)0 = 1, (x)n = x(x−1)···(x−n+1), (n ≥ 1).
186
+ For r ∈ N, the degenerate Daehee numbers of order r are defined by
187
+ �logλ(1+t)
188
+ t
189
+ �r
190
+ =
191
+
192
+
193
+ n=0
194
+ D(r)
195
+ n,λ
196
+ tn
197
+ n!,
198
+ (see [11]).
199
+ (10)
200
+ In particular, for r = 1, Dn,λ = D(1)
201
+ n,λ are called the degenerate Daehee numbers
202
+ 2. IDENTITIES INVOLVING DEGENERATE HARMONIC AND DEGENERATE HYPERHARMONIC
203
+ NUMBERS
204
+ From (6) and (7), we note that
205
+ −logλ(1−t)
206
+ (1−t)
207
+ =
208
+
209
+
210
+ n=1
211
+ Hn,λtn,
212
+ (see [7]),
213
+ (11)
214
+ and
215
+ −logλ(1−t)
216
+ (1−t)r
217
+ =
218
+
219
+
220
+ n=1
221
+ H(r)
222
+ n,λtn,
223
+ (see [7]),
224
+ (12)
225
+ where r is a nonnegative integer.
226
+ By (12), we get
227
+
228
+
229
+ n=1
230
+ H(r−1)
231
+ n,λ
232
+ tn = −logλ(1−t)
233
+ (1−t)r
234
+ (1−t) =
235
+
236
+
237
+ n=1
238
+ H(r)
239
+ n,λtn(1−t)
240
+ =
241
+
242
+
243
+ n=1
244
+ H(r)
245
+ n,λtn −
246
+
247
+
248
+ n=1
249
+ H(r)
250
+ n,λtn+1 =
251
+
252
+
253
+ n=1
254
+ (H(r)
255
+ n,λ −H(r)
256
+ n−1,λ)tn.
257
+ (13)
258
+ By comparing the coefficients on both sides of (13), we get
259
+ (14)
260
+ H(r)
261
+ n,λ = H(r)
262
+ n−1,λ +H(r−1)
263
+ n,λ
264
+ .
265
+ For 1 ≤ s ≤ r, by (12), we get
266
+
267
+
268
+ n=1
269
+ H(r)
270
+ n,λtn = −logλ(1−t)
271
+ (1−t)r
272
+ = −logλ(1−t)
273
+ (1−t)r−s
274
+ 1
275
+ (1−t)s
276
+ =
277
+
278
+
279
+ l=1
280
+ H(r−s)
281
+ l,λ
282
+ tl
283
+
284
+
285
+ k=0
286
+ �k +s−1
287
+ k
288
+
289
+ tk
290
+ =
291
+
292
+
293
+ n=1
294
+ n
295
+
296
+ l=1
297
+ H(r−s)
298
+ l,λ
299
+ �n−l +s−1
300
+ s−1
301
+
302
+ tn.
303
+ (15)
304
+ By comparing the coefficients on both sides of (15), we get
305
+ H(r)
306
+ n,λ =
307
+ n
308
+
309
+ l=1
310
+ H(r−s)
311
+ l,λ
312
+ �n−l +s−1
313
+ s−1
314
+
315
+ ,
316
+ (16)
317
+ where r, s ∈ Z with 1 ≤ s ≤ r. In particular, for r = s, we have
318
+ H(r)
319
+ n,λ =
320
+ n
321
+
322
+ l=1
323
+ H(0)
324
+ l,λ
325
+ �n−l +r −1
326
+ r −1
327
+
328
+ =
329
+ n
330
+
331
+ l=1
332
+ 1
333
+ λ
334
+ �λ
335
+ l
336
+
337
+ (−1)l−1
338
+ �n−l +r −1
339
+ r −1
340
+
341
+ .
342
+ (17)
343
+ Therefore, by (16) and (17), we obtain the following theorem.
344
+
345
+ 4
346
+ Identities involving degenerate harmonic and degenerate hyperharmonic numbers
347
+ Theorem 1. For r, s ∈ Z with 1 ≤ s ≤ r, we have
348
+ H(r)
349
+ n,λ =
350
+ n
351
+
352
+ l=1
353
+ H(r−s)
354
+ l,λ
355
+ �n−l +s−1
356
+ s−1
357
+
358
+ ,
359
+ and
360
+ H(r)
361
+ n,λ =
362
+ n
363
+
364
+ l=1
365
+ 1
366
+ λ
367
+ �λ
368
+ l
369
+
370
+ (−1)l−1
371
+ �n−l +r −1
372
+ r −1
373
+
374
+ .
375
+ From (11) and (14), we note that
376
+
377
+
378
+ n=0
379
+ Dn,λ
380
+ tn
381
+ n! = logλ(1+t)
382
+ t
383
+ = logλ(1+t)
384
+ 1+t
385
+ 1+t
386
+ t
387
+ =
388
+ � ∞
389
+
390
+ k=1
391
+ (−1)k+1Hk,λtk
392
+ ��
393
+ 1+ 1
394
+ t
395
+
396
+ =
397
+
398
+
399
+ n=1
400
+ (−1)n+1Hn,λtn +
401
+
402
+
403
+ n=0
404
+ (−1)nHn+1,λtn
405
+ = 1+
406
+
407
+
408
+ n=1
409
+ (−1)n(Hn+1,λ −Hn,λ)tn.
410
+ (18)
411
+ Therefore, by comparing the coefficients on both sides of (18), we have the following theorem.
412
+ Theorem 2. For n ≥ 0, we have
413
+ D0,λ = 1, Dn,λ = (−1)nn!(Hn+1,λ −Hn,λ), (n ≥ 1).
414
+ From (12), we note that
415
+
416
+
417
+ n=0
418
+ Dn,λ
419
+ tn
420
+ n! = logλ(1+t)
421
+ t
422
+ = logλ(1+t)
423
+ t(1+t)r (1+t)r
424
+ =
425
+
426
+
427
+ k=0
428
+ H(r)
429
+ k+1,λ(−1)ktk
430
+
431
+
432
+ l=0
433
+ �r
434
+ l
435
+
436
+ tl
437
+ =
438
+
439
+
440
+ n=0
441
+ � n
442
+
443
+ k=0
444
+ H(r)
445
+ k+1,λ
446
+ � r
447
+ n−k
448
+
449
+ (−1)k
450
+
451
+ tn.
452
+ (19)
453
+ Therefore, by (19), we obtain the following theorem
454
+ Theorem 3. For n ≥ 0, we have
455
+ Dn,λ = n!
456
+ n
457
+
458
+ k=0
459
+ H(r)
460
+ k+1,λ
461
+ � r
462
+ n−k
463
+
464
+ (−1)k.
465
+ Now, we observe from (2) that
466
+ (20)
467
+
468
+
469
+ n=0
470
+ Dn,λ
471
+ tn
472
+ n! = logλ(1+t)
473
+ t
474
+ =
475
+
476
+
477
+ n=1
478
+ �λ
479
+ n
480
+ � 1
481
+ λ tn−1 =
482
+
483
+
484
+ n=0
485
+ � λ
486
+ n+1
487
+ � 1
488
+ λ tn.
489
+ Thus, by (20), we get
490
+ Dn,λ = n! 1
491
+ λ
492
+ � λ
493
+ n+1
494
+
495
+ = (λ −1)n
496
+ n+1 ,
497
+ (n ≥ 0).
498
+ (21)
499
+
500
+ H. K. Kim, D. S. Kim, and T. Kim
501
+ 5
502
+ From (11), we have
503
+
504
+
505
+ n=1
506
+ Hn,λtn = −logλ(1−t)
507
+ 1−t
508
+ = −logλ(1−t)
509
+ t
510
+ t
511
+ 1−t
512
+ =
513
+
514
+
515
+ l=0
516
+ Dl,λ(−1)l tl
517
+ l!
518
+
519
+
520
+ m=1
521
+ tm
522
+ =
523
+
524
+
525
+ n=1
526
+ � n−1
527
+
528
+ l=0
529
+ Dl,λ
530
+ (−1)l
531
+ l!
532
+
533
+ tn.
534
+ (22)
535
+ Thus, by Theorem 3 and (22), we get
536
+ Hn,λ =
537
+ n−1
538
+
539
+ l=0
540
+ Dl,λ
541
+ (−1)l
542
+ l!
543
+ =
544
+ n−1
545
+
546
+ l=0
547
+ (−1)l
548
+ l!
549
+ l!
550
+ l
551
+
552
+ k=0
553
+ H(r)
554
+ k+1,λ
555
+ � r
556
+ l −k
557
+
558
+ (−1)k
559
+ =
560
+ n−1
561
+
562
+ l=0
563
+ l
564
+
565
+ k=0
566
+ (−1)k+lH(r)
567
+ k+1,λ
568
+ � r
569
+ l −k
570
+
571
+ ,
572
+ (n ≥ 1).
573
+ (23)
574
+ Therefore, by (23), we obtain the following theorem.
575
+ Theorem 4. For n ≥ 1, we have
576
+ Hn,λ =
577
+ n−1
578
+
579
+ l=0
580
+ l
581
+
582
+ k=0
583
+ (−1)k+l
584
+ � r
585
+ l −k
586
+
587
+ H(r)
588
+ k+1,λ.
589
+ By (10), we get
590
+
591
+
592
+ n=0
593
+ D(r)
594
+ n,λ
595
+ tn
596
+ n! =
597
+ �logλ(1+t)
598
+ t
599
+ �r
600
+ = logλ(1+t)
601
+ t(1+t)k
602
+ �logλ(1+t)
603
+ t
604
+ �r−1
605
+ (1+t)k
606
+ =
607
+
608
+
609
+ i=1
610
+ (−1)i+1H(k)
611
+ i,λ ti−1
612
+
613
+
614
+ j=0
615
+ D(r−1)
616
+ j,λ
617
+ t j
618
+ j!
619
+
620
+
621
+ l=0
622
+ �k
623
+ l
624
+
625
+ tl
626
+ =
627
+
628
+
629
+ i=0
630
+ (−1)iH(k)
631
+ i+1,λti
632
+
633
+
634
+ m=0
635
+ � m
636
+
637
+ j=0
638
+ �m
639
+ j
640
+
641
+ D(r−1)
642
+ j,λ
643
+ (k)m− j
644
+ � tm
645
+ m!
646
+ =
647
+
648
+
649
+ n=0
650
+ � n
651
+
652
+ i=0
653
+ n−i
654
+
655
+ j=0
656
+ (−1)i
657
+ �n−i
658
+ j
659
+ �(k)n−i− j
660
+ (n−i)! D(r−1)
661
+ j,λ
662
+ H(k)
663
+ i+1,λ
664
+
665
+ tn.
666
+ (24)
667
+ Therefore, by comparing the coefficients on both sides of (24), we obtain the following theorem.
668
+ Theorem 5. For n,k ≥ 0 and r ≥ 1, we have
669
+ D(r)
670
+ n,λ = n!
671
+ n
672
+
673
+ i=0
674
+ n−i
675
+
676
+ j=0
677
+ (−1)i
678
+ �n−i
679
+ j
680
+ �(k)n−i− j
681
+ (n−i)! D(r−1)
682
+ j,λ
683
+ H(k)
684
+ i+1,λ.
685
+ By (11), we get
686
+
687
+
688
+ n=1
689
+ Hn,λtn = −logλ(1−t)
690
+ 1−t
691
+ = logλ(1−t)
692
+ −t
693
+ t
694
+ 1−t
695
+ =
696
+
697
+
698
+ l=0
699
+ (−1)lDl,λ
700
+ tl
701
+ l!
702
+
703
+
704
+ j=1
705
+ t j
706
+ =
707
+
708
+
709
+ n=1
710
+ � n−1
711
+
712
+ l=0
713
+ (−1)l Dl,λ
714
+ l!
715
+
716
+ tn.
717
+ (25)
718
+
719
+ 6
720
+ Identities involving degenerate harmonic and degenerate hyperharmonic numbers
721
+ Thus, by comparing the coefficients on both sides of (25), we get
722
+ Hn,λ =
723
+ n−1
724
+
725
+ l=0
726
+ (−1)l Dl,λ
727
+ l! ,
728
+ (n ≥ 1).
729
+ (26)
730
+ From (12), we can derive the following.
731
+
732
+
733
+ n=1
734
+ H(r)
735
+ n,λtn = −logλ(1−t)
736
+ t
737
+ t
738
+ (1−t)r
739
+ =
740
+
741
+
742
+ l=0
743
+ Dl,λ(−1)l tl
744
+ l!
745
+
746
+
747
+ m=1
748
+ �r +m−2
749
+ m−1
750
+
751
+ tm
752
+ =
753
+
754
+
755
+ n=1
756
+
757
+ n
758
+
759
+ m=1
760
+ �r +m−2
761
+ r −1
762
+ � Dn−m,λ
763
+ (n−m)!(−1)n−m
764
+
765
+ tn.
766
+ (27)
767
+ Therefore, by (26) and (27), we obtain the following theorem.
768
+ Theorem 6. For n ∈ N, we have
769
+ Hn,λ =
770
+ n−1
771
+
772
+ l=0
773
+ (−1)l Dl,λ
774
+ l! ,
775
+ (n ≥ 1),
776
+ and
777
+ H(r)
778
+ n,λ =
779
+ n
780
+
781
+ m=1
782
+ �r +m−2
783
+ r −1
784
+ � Dn−m,λ
785
+ (n−m)!(−1)n−m.
786
+ The degenerate derangements are defined by
787
+ 1
788
+ 1−t eλ(−t) =
789
+
790
+
791
+ n=0
792
+ dn,λ
793
+ tn
794
+ n!.
795
+ (28)
796
+ Thus, we note that
797
+ dn,λ = n!
798
+ n
799
+
800
+ k=0
801
+ (1)k,λ
802
+ (−1)k
803
+ k!
804
+ ,
805
+ (n ≥ 0).
806
+ Now, we observe that
807
+ −logλ(1−t)
808
+ (1−t)r
809
+ eλ(−t) =
810
+
811
+
812
+ l=1
813
+ H(r)
814
+ l,λtl
815
+
816
+
817
+ k=0
818
+ (1)k,λ
819
+ k!
820
+ (−1)ktk
821
+ =
822
+
823
+
824
+ n=1
825
+ � n
826
+
827
+ l=1
828
+ H(r)
829
+ l,λ
830
+ (1)n−l,λ
831
+ (n−l)! (−1)n−l
832
+
833
+ tn.
834
+ (29)
835
+ On the other hand, by (28), we get
836
+ −logλ(1−t)
837
+ (1−t)r
838
+ eλ(−t) = −logλ(1−t)
839
+ (1−t)r−1
840
+ 1
841
+ 1−t eλ(−t)
842
+ =
843
+
844
+
845
+ l=1
846
+ H(r−1)
847
+ l,λ
848
+ tl
849
+
850
+
851
+ k=0
852
+ dk,λ
853
+ tk
854
+ k! =
855
+
856
+
857
+ n=1
858
+ � n
859
+
860
+ l=1
861
+ H(r−1)
862
+ l,λ
863
+ dn−l,λ
864
+ (n−l)!
865
+
866
+ tn.
867
+ (30)
868
+ Therefore, by (29) and (30), we obtain the following theorem.
869
+ Theorem 7. For n ∈ N, we have
870
+ n
871
+
872
+ l=1
873
+ H(r)
874
+ l,λ
875
+ (1)n−l,λ
876
+ (n−l)! (−1)n−l =
877
+ n
878
+
879
+ l=1
880
+ H(r−1)
881
+ l,λ
882
+ dn−l,λ
883
+ (n−l)!.
884
+
885
+ H. K. Kim, D. S. Kim, and T. Kim
886
+ 7
887
+ We let Y = logλ(1+t). Then, for N ≥ 1, we have
888
+ � d
889
+ dt
890
+ �N
891
+ Y = (λ −1)(λ −2)···(λ −N +1)(1+t)λ−N
892
+ = N!
893
+ λ
894
+ �λ
895
+ N
896
+
897
+ eλ−N
898
+ λ
899
+ (logλ(1+t))
900
+ = N!
901
+ λ
902
+ �λ
903
+ N
904
+ � ∞
905
+
906
+ k=0
907
+ (λ −N)k,λ
908
+ 1
909
+ k!(logλ(1+t))k
910
+ = N!
911
+ λ
912
+ �λ
913
+ N
914
+ � ∞
915
+
916
+ k=0
917
+ (λ −N)k,λ
918
+
919
+
920
+ n=k
921
+ S1,λ(n,k)tn
922
+ n!
923
+ =
924
+
925
+
926
+ n=0
927
+ �N!
928
+ λ
929
+ �λ
930
+ N
931
+ � n
932
+
933
+ k=0
934
+ S1,λ(n,k)(λ −N)k,λ
935
+ �tn
936
+ n!,
937
+ (31)
938
+ where N is a positive integer.
939
+ On the other hand, by (10), we get
940
+ Y = logλ(1+t) = logλ(1+t)
941
+ t
942
+ t =
943
+
944
+
945
+ n=1
946
+ nDn−1,λ
947
+ tn
948
+ n!.
949
+ (32)
950
+ Thus, by (32), we get
951
+ � d
952
+ dt
953
+ �N
954
+ Y =
955
+
956
+
957
+ n=N
958
+ nDn−1,λn(n−1)···(n−N +1)tn−N
959
+ n!
960
+ =
961
+
962
+
963
+ n=0
964
+ (n+N)Dn+N−1,λ
965
+ tn
966
+ n!.
967
+ (33)
968
+ Therefore, by (31) and (33), we obtain the following theorem.
969
+ Theorem 8. For N ∈ N and n ≥ N −1, we have
970
+ Dn,λ =
971
+ N!
972
+ n+1
973
+ 1
974
+ λ
975
+ �λ
976
+ N
977
+ � n−N+1
978
+
979
+ k=0
980
+ S1,λ(n−N +1,k)(λ −N)k,λ.
981
+ Next, we let F = −logλ(1−t). Then, for N ≥ 1, we have
982
+ � d
983
+ dt
984
+ �N
985
+ F = (−1)N+1(λ −1)(λ −2)···(λ −N +1)(1−t)λ−N
986
+ = (−1)N+1 N!
987
+ λ
988
+ �λ
989
+ N
990
+
991
+ eλ−N
992
+ λ
993
+ (logλ(1−t))
994
+ = (−1)N+1N! 1
995
+ λ
996
+ �λ
997
+ N
998
+ � ∞
999
+
1000
+ k=0
1001
+ (λ −N)k,λ
1002
+ 1
1003
+ k!(logλ(1−t))k
1004
+ = (−1)N+1N! 1
1005
+ λ
1006
+ �λ
1007
+ N
1008
+ � ∞
1009
+
1010
+ k=0
1011
+ (λ −N)k,λ
1012
+
1013
+
1014
+ n=k
1015
+ S1,λ(n,k)(−1)n tn
1016
+ n!
1017
+ =
1018
+
1019
+
1020
+ n=0
1021
+
1022
+ N! 1
1023
+ λ
1024
+ �λ
1025
+ N
1026
+ � n
1027
+
1028
+ k=0
1029
+ (−1)n−N−1(λ −N)k,λS1,λ(n,k)
1030
+ �tn
1031
+ n!.
1032
+ (34)
1033
+ On the other hand, by (11), we get
1034
+ (35)
1035
+ F = −logλ(1−t) = −logλ(1−t)
1036
+ 1−t
1037
+ (1−t) =
1038
+
1039
+
1040
+ n=1
1041
+ (Hn,λ −Hn−1,λ)tn.
1042
+
1043
+ 8
1044
+ Identities involving degenerate harmonic and degenerate hyperharmonic numbers
1045
+ Thus, by (35) and for N ≥ 1, we have
1046
+ � d
1047
+ dt
1048
+ �N
1049
+ F =
1050
+
1051
+
1052
+ n=N
1053
+ n(n−1)···(n−N +1)(Hn,λ −Hn−1,λ)tn−N
1054
+ =
1055
+
1056
+
1057
+ n=0
1058
+ (n+N)(n+N −1)···(n+1)(Hn+N,λ −Hn+N−1,λ)tn
1059
+ =
1060
+
1061
+
1062
+ n=0
1063
+ N!
1064
+ �n+N
1065
+ N
1066
+
1067
+ (Hn+N,λ −Hn+N−1,λ)tn.
1068
+ (36)
1069
+ Therefore, by (34) and (36), we obtain the following theorem.
1070
+ Theorem 9. For N ∈ N and n ≥ 0, we have
1071
+ 1
1072
+ n!
1073
+ 1
1074
+ λ
1075
+ �λ
1076
+ N
1077
+ � n
1078
+
1079
+ k=0
1080
+ (−1)n−N−1(λ −N)k,λS1,λ(n,k) =
1081
+ �n+N
1082
+ N
1083
+
1084
+ (Hn+N,λ −Hn+N−1,λ).
1085
+ By Theorem 9 and (6), we get
1086
+ 1
1087
+ n!
1088
+ n
1089
+
1090
+ k=0
1091
+ (−1)n−N−1(λ −N)k,λS1,λ(n,k) =
1092
+ �n+N
1093
+ N
1094
+
1095
+ 1
1096
+ λ
1097
+ �λ
1098
+ N
1099
+ � (Hn+N,λ −Hn+N−1,λ)
1100
+ =
1101
+ �n+N
1102
+ N
1103
+
1104
+ 1
1105
+ λ
1106
+ �λ
1107
+ N
1108
+ � 1
1109
+ λ
1110
+
1111
+ λ
1112
+ n+N
1113
+
1114
+ (−1)n+N−1 = (−1)n+N−1
1115
+ � λ
1116
+ N+n
1117
+
1118
+ �λ
1119
+ N
1120
+
1121
+ �n+N
1122
+ N
1123
+
1124
+ .
1125
+ (37)
1126
+ Therefore, by (37), we obtain the following corollary.
1127
+ Corollary 10. For n ≥ 0 and N ∈ N, we have
1128
+ 1
1129
+ n!
1130
+ n
1131
+
1132
+ k=0
1133
+ (λ −N)k,λS1,λ(n,k) =
1134
+ � λ
1135
+ n+N
1136
+
1137
+ �λ
1138
+ N
1139
+
1140
+ �n+N
1141
+ N
1142
+
1143
+ .
1144
+ Remark 11. From Corollary 10 and letting λ → 0, we obtain
1145
+ (−1)n
1146
+ N
1147
+ n+N
1148
+ �n+N
1149
+ N
1150
+
1151
+ = 1
1152
+ n!
1153
+ n
1154
+
1155
+ k=0
1156
+ (−1)kNkS1(n,k).
1157
+ Remark 12. Recently, on the Daehee numbers and their related topics various studies have been
1158
+ conducted by several researchers. Interested readers may refer to [1, 12, 13, 14, 15, 17, 18].
1159
+ 3. CONCLUSION
1160
+ Many different tools have been used in the explorations for degenerate versions of some special
1161
+ numbers and polynomials, which include generating functions, combinatorial methods, umbral cal-
1162
+ culus, p-adic analysis, differential equations, probability theory, operator theory, special functions
1163
+ and analytic number theory (see [5, 6, 7, 8, 9, 10, 11, 12] and the references therein). In this paper,
1164
+ we used the elementary methods of generating functions in order to study the degenerate harmonic
1165
+ and degenerate hyperharmonic numbers. Some properties, recurrence relations and identities relat-
1166
+ ing to those numbers were derived in connection with the degenerate Stirling numbers of the first
1167
+ kind, the degenerate Daehee numbers and the degenerate derangement.
1168
+ We would like to continue to investigate various degenerate versions of certain special numbers
1169
+ and polynomials, especially their applications to physics, science and engineering.
1170
+
1171
+ H. K. Kim, D. S. Kim, and T. Kim
1172
+ 9
1173
+ Acknowledgments
1174
+ The authors thank Jangjeon Institute for Mathematical Sciences for the support of this research.
1175
+ Availability of data and material
1176
+ Not applicable.
1177
+ Funding
1178
+ This work was supported by the Basic Science Research Program, the National Research Founda-
1179
+ tion of Korea, (NRF-2021R1F1A1050151).
1180
+ Ethics approval and consent to participate
1181
+ All authors declare that there is no ethical problem in the production of this paper.
1182
+ Competing interests
1183
+ All authors declare no conflict of interest.
1184
+ Consent for publication
1185
+ All authors want to publish this paper in this journal.
1186
+ Author’ Contributions
1187
+ All authors read and approved the final manuscript.
1188
+ REFERENCES
1189
+ [1] S. Araci, U. Duran and M. Acikgoz, On weighted q-Daehee polynomials with their applications. Indag. Math. (N.S.)
1190
+ 30 (2019), no. 2, 365-374.
1191
+ [2] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15 (1979), 51-88.
1192
+ [3] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. D. Reidel
1193
+ Publishing Co., Dordrecht, 1974. xi+343 pp. ISBN: 90-277-0441-4.
1194
+ [4] J. H. Conway and R. K. Guy, The book of numbers. Copernicus, New York, 1996. x+310 pp. ISBN: 0-387-97993-X.
1195
+ [5] D. S. Kim and T. Kim, A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 27 (2020), no. 2,
1196
+ 227-235.
1197
+ [6] D. S. Kim and T. Kim, Degenerate Sheffer sequence and λ-Sheffer sequence. J. Math. Anal. Appl. 493 (2021), no.
1198
+ 1, 124521.
1199
+ [7] T. Kim and D. S. Kim, Some identities on degenerate hyperharmonic numbers. Georgian Math. J., 2022 (2022).
1200
+ https://doi.org/10.1515/gmj-2022-2203
1201
+ [8] T. Kim and D. S. Kim, On some degenerate differential and degenerate difference operators. Russ. J. Math. Phys. 29
1202
+ (2022), no. 1, 37-46.
1203
+ [9] T. Kim and D. S. Kim, Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24
1204
+ (2017), no. 2, 241–248 .
1205
+ [10] T. Kim and D. S. Kim, Note on the degenerate gamma function Russ. J. Math. Phys. 27 (2020), no. 3, 352-358.
1206
+ [11] T. Kim, D. S. Kim and H. K. Kim, λ-q-Sheffer sequence and its applications. Demonstr. Math. 55 (2022), 843–865.
1207
+ [12] T. Kim, D. S. Kim, H. Lee and J. Kwon, Representations by degenerate Daehee polynomials. Open Math. 20 (2022),
1208
+ no. 1, 179-194.
1209
+ [13] J. Kwon, W. J. Kim and S.-H. Rim, On the some identities of the type 2 Daehee and Changhee polynomials arising
1210
+ from p-adic integrals on Zp. Proc. Jangjeon Math. Soc. 22 (2019), no. 3, 487-497.
1211
+ [14] J. G. Lee, J. Kwon, G.-W. Jang and L.-C. Jang, Some identities of λ-Daehee polynomials. J. Nonlinear Sci. Appl.
1212
+ 10 (2017), no. 8, 4137-4142.
1213
+ [15] J.-W. Park, B. M. Kim and J. Kwon, On a modified degenerate Daehee polynomials and numbers. J. Nonlinear Sci.
1214
+ Appl. 10 (2017), no. 3, 1108-1115.
1215
+ [16] S. Roman, The umbral calculus. Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jo-
1216
+ vanovich, Publishers], New York, 1984. x+193 pp. ISBN: 0-12-594380-6
1217
+ [17] S. K. Sharma, W. A. Khan, S. Araci and S. S. Ahmed, New type of degenerate Daehee polynomials of the second
1218
+ kind. Adv. Difference Equ. 2020 (2020), Paper No. 428, 14 pp.
1219
+ [18] S. J. Yun and J.-W. Park, On fully degenerate Daehee numbers and polynomials of the second kind. J. Math. 2020
1220
+ (2020), Art. ID 7893498, 9 pp.
1221
+
1222
+ 10
1223
+ Identities involving degenerate harmonic and degenerate hyperharmonic numbers
1224
+ DEPARTMENT OF MATHEMATICS EDUCATION, DAEGU CATHOLIC UNIVERSITY, GYEONGSAN 38430, REPUB-
1225
+ LIC OF KOREA
1226
+ Email address: [email protected]
1227
+ DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA
1228
+ Email address: [email protected]
1229
+ DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
1230
+ Email address: [email protected]
1231
+
9NE1T4oBgHgl3EQfCQIp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf,len=380
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
3
+ page_content='02861v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
4
+ page_content='NT] 7 Jan 2023 IDENTITIES INVOLVING DEGENERATE HARMONIC AND DEGENERATE HYPERHARMONIC NUMBERS HYE KYUNG KIM1, DAE SAN KIM2, AND TAEKYUN KIM3,∗ ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
5
+ page_content=' Harmonic numbers have been studied since antiquity, while hyperharmonic numbers were intoduced by Conway and Guy in 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
6
+ page_content=' The degenerate harmonic numbers and degenerate hyperharmonic numbers are their respective degenerate versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
7
+ page_content=' The aim of this paper is to further investigate some properties, recurrence relations and identities involving the degenerate harmonic and degenerate hyperharmonic numbers in connection with degenerate Stirling numbers of the first kind, degenerate Daehee numbers and degenerate derangements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
8
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
9
+ page_content=' INTRODUCTION In recent years, various degenerate versions of many special numbers and polynomials have beem studied and yielded a lot of fascinating and fruitful results (see [5, 6, 7, 8, 9, 10, 11, 12] and the references therein), which began with Carlitz’s work on the degenerate Bernoulli and degen- erate Euler numbers (see [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
10
+ page_content=' It is worthwhile to mention that these explorations for degenerate versions are not limited to polynomials and numbers but also extended to transcendental functions, like gamma functions (see [9, 10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
11
+ page_content=' It is also remarkable that the λ-umbral calculus and λ-q-umbral calculus were introduced as degenerate versions of the umbral calculus and the q-umbral calculus, respectively (see [6, 11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
12
+ page_content=' As it turns out, the λ-umbral calculus and λ-q-umbral calculus are more convenient than the umbral calculus and the q-umbral calculus when dealing with degenerate Shef- fer polynomials and degenerate q-Sheffer polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
13
+ page_content=' The aim of this paper is to further investigate some properties, recurrence relations and identities involving the degenerate harmonic numbers (see (6)) and the degenerate hyperharmonic numbers (see (7), (8)) in connection with degenerate Stirling numbers of the first kind, degenerate Daehee numbers and degenerate derangements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
14
+ page_content=' The degenerate harmonic numbers and degenerate hyper- harmonic numbers are respectively degenerate versions of the harmonic numbers and the hyperhar- monic numbers, of which the latter are introduced in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
15
+ page_content=' The outline of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
16
+ page_content=' In Section 1, we recall the degenerate exponentials and the degenerate logarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
17
+ page_content=' We remind the reader of the harmonic numbers, and of the hyperhar- monic numbers together with their explicit expression due to Conway and Guy (see [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
18
+ page_content=' Then we recall their degenerate versions, namely the degenerate harmonic numbers, and the degenerate hyperharmonic numbers together with their explicit expression (see [7, 8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
19
+ page_content=' We also mention the recently introduced degenerate Stirling numbers of the first kind and the degenerate Daehee num- bers of order r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
20
+ page_content=' Section 2 is the main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
21
+ page_content=' We obtain an expression of the degenerate hyperharmonic numbers of order r in terms of the same numbers of lower orders in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
22
+ page_content=' We express the Daehee numbers in terms of the degenerate harmonic numbers and of the degenerate hyperharmonic numbers, respectively in Theorem 2 and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
23
+ page_content=' In Theorem 4, the degenerate harmonic numbers are represented in terms of the degenerate hyperharmonic numbers of order r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
24
+ page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
25
+ page_content=' 05A19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
26
+ page_content=' 11B73;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
27
+ page_content=' 11B83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
28
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
29
+ page_content=' degenerate harmonic number;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
30
+ page_content=' degenerate hyperharmonic number;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
31
+ page_content=' degenerate Daehee num- ber;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
32
+ page_content=' degenerate logarithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
33
+ page_content=' degenerate Stirling number of the first kind;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
34
+ page_content=' degenerate derangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
35
+ page_content=' is corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
36
+ page_content=' 1 2 Identities involving degenerate harmonic and degenerate hyperharmonic numbers In Theorem 5, the degenerate Daehee numbers are represented in terms of the degenerate Daehee numbers of order r −1 and of the degenerate hyperharmonic numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
37
+ page_content=' We derive a simple relation between the degenerate hyperharmonic numbers and the degenerate Daehee numbers in Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
38
+ page_content=' We deduce an identity involving the degenerate hyperharmonic numbers and the degenerate de- rangements in Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
39
+ page_content=' The degenerate Daehee numbers are expressed in terms of the degenerate Stirling numbers of the first kind in Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
40
+ page_content=' Finally, we get an identity involving the degenerate Stirling numbers of the first kind and the degenerate harmonic numbers in Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
41
+ page_content=' For any nonzero λ ∈ R, the degenerate exponential functions are defined by ex λ(t) = (1+λt) x λ = ∞ ∑ n=0 (x)n,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
42
+ page_content=', eλ(t) = e1 λ(t), (see [2, 8]), (1) where (x)0,λ = 1, (x)n,λ = x(x−λ)···(x−(n−1)λ), (n ≥ 1), (see [8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
43
+ page_content=' Let logλ t be the compositional inverse of eλ(t) with eλ(logλ t) = logλ eλ(t) = t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
44
+ page_content=' It is called the degenerate logarithm and is given by logλ(1+t) = ∞ ∑ k=1 λ k−1(1)k, 1 λ k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
45
+ page_content=' tk = 1 λ ((1+t)λ −1), (see [5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
46
+ page_content=' (2) The harmonic numbers are given by H0 = 0, Hn = 1+ 1 2 +···+ 1 n, (n ∈ N), (see [3, 4, 16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
47
+ page_content=' (3) In 1996, Conway and Guy introduced the hyperharmonic numbers H(r) n of order r, (n,r ≥ 0), which are given by H(r) 0 = 0, (r ≥ 0), H(0) n = 1 n, (n ≥ 1), H(r) n = n ∑ k=1 H(r−1) k , (n,r ≥ 1), (see [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
48
+ page_content=' (4) Thus, by (4), we get H(r) n = �n+r −1 n � (Hn+r−1 −Hr−1), (r ≥ 1), (see [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
49
+ page_content=' (5) Recently, the degenerate harmonic numbers are defined by H0,λ = 0, Hn,λ = n ∑ k=1 1 λ �λ k � (−1)k−1, (n ≥ 1), (see [8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
50
+ page_content=' (6) Note that limλ→0 Hn,λ = Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
51
+ page_content=' The degenerate hyperharmonic numbers H(r) n,λ of order r, (n,r ≥ 0), are defined by H(r) 0,λ = 0, (r ≥ 0), H(0) n,λ = 1 λ �λ n � (−1)n−1, (n ≥ 1), H(r) n,λ = n ∑ k=1 H(r−1) k,λ , (n,r ≥ 1), (see [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
52
+ page_content=' (7) We see from (6) and (7) that H(1) n,λ = Hn,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
53
+ page_content=' From (7), we note that H(r) n,λ = (−1)r−1 �λ−1 r−1 � �n+r −1 n � (Hn+r−1,λ −Hr−1,λ), (see [7]), (8) where n, r are positive numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
54
+ page_content=' Here we observe from (5) and (8) that limλ→0 H(r) n,λ = H(r) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
55
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
56
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
57
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
58
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
59
+ page_content=' Kim, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
60
+ page_content=' Kim 3 In [5], the degenerate Stirling numbers of the first kind are defined by (x)n = n ∑ k=0 S1,λ(n,k)(x)k,λ , (n ≥ 0), (see [5, 8]), (9) where (x)0 = 1, (x)n = x(x−1)···(x−n+1), (n ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
61
+ page_content=' For r ∈ N, the degenerate Daehee numbers of order r are defined by �logλ(1+t) t �r = ∞ ∑ n=0 D(r) n,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
62
+ page_content=', (see [11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
63
+ page_content=' (10) In particular, for r = 1, Dn,λ = D(1) n,λ are called the degenerate Daehee numbers 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
64
+ page_content=' IDENTITIES INVOLVING DEGENERATE HARMONIC AND DEGENERATE HYPERHARMONIC NUMBERS From (6) and (7), we note that −logλ(1−t) (1−t) = ∞ ∑ n=1 Hn,λtn, (see [7]), (11) and −logλ(1−t) (1−t)r = ∞ ∑ n=1 H(r) n,λtn, (see [7]), (12) where r is a nonnegative integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
65
+ page_content=' By (12), we get ∞ ∑ n=1 H(r−1) n,λ tn = −logλ(1−t) (1−t)r (1−t) = ∞ ∑ n=1 H(r) n,λtn(1−t) = ∞ ∑ n=1 H(r) n,λtn − ∞ ∑ n=1 H(r) n,λtn+1 = ∞ ∑ n=1 (H(r) n,λ −H(r) n−1,λ)tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
66
+ page_content=' (13) By comparing the coefficients on both sides of (13), we get (14) H(r) n,λ = H(r) n−1,λ +H(r−1) n,λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
67
+ page_content=' For 1 ≤ s ≤ r, by (12), we get ∞ ∑ n=1 H(r) n,λtn = −logλ(1−t) (1−t)r = −logλ(1−t) (1−t)r−s 1 (1−t)s = ∞ ∑ l=1 H(r−s) l,λ tl ∞ ∑ k=0 �k +s−1 k � tk = ∞ ∑ n=1 n ∑ l=1 H(r−s) l,λ �n−l +s−1 s−1 � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
68
+ page_content=' (15) By comparing the coefficients on both sides of (15), we get H(r) n,λ = n ∑ l=1 H(r−s) l,λ �n−l +s−1 s−1 � , (16) where r, s ∈ Z with 1 ≤ s ≤ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
69
+ page_content=' In particular, for r = s, we have H(r) n,λ = n ∑ l=1 H(0) l,λ �n−l +r −1 r −1 � = n ∑ l=1 1 λ �λ l � (−1)l−1 �n−l +r −1 r −1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
70
+ page_content=' (17) Therefore, by (16) and (17), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
71
+ page_content=' 4 Identities involving degenerate harmonic and degenerate hyperharmonic numbers Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
72
+ page_content=' For r, s ∈ Z with 1 ≤ s ≤ r, we have H(r) n,λ = n ∑ l=1 H(r−s) l,λ �n−l +s−1 s−1 � , and H(r) n,λ = n ∑ l=1 1 λ �λ l � (−1)l−1 �n−l +r −1 r −1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
73
+ page_content=' From (11) and (14), we note that ∞ ∑ n=0 Dn,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
74
+ page_content=' = logλ(1+t) t = logλ(1+t) 1+t 1+t t = � ∞ ∑ k=1 (−1)k+1Hk,λtk �� 1+ 1 t � = ∞ ∑ n=1 (−1)n+1Hn,λtn + ∞ ∑ n=0 (−1)nHn+1,λtn = 1+ ∞ ∑ n=1 (−1)n(Hn+1,λ −Hn,λ)tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
75
+ page_content=' (18) Therefore, by comparing the coefficients on both sides of (18), we have the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
76
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
77
+ page_content=' For n ≥ 0, we have D0,λ = 1, Dn,λ = (−1)nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
78
+ page_content=' (Hn+1,λ −Hn,λ), (n ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
79
+ page_content=' From (12), we note that ∞ ∑ n=0 Dn,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
80
+ page_content=' = logλ(1+t) t = logλ(1+t) t(1+t)r (1+t)r = ∞ ∑ k=0 H(r) k+1,λ(−1)ktk ∞ ∑ l=0 �r l � tl = ∞ ∑ n=0 � n ∑ k=0 H(r) k+1,λ � r n−k � (−1)k � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
81
+ page_content=' (19) Therefore, by (19), we obtain the following theorem Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
82
+ page_content=' For n ≥ 0, we have Dn,λ = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
83
+ page_content=' n ∑ k=0 H(r) k+1,λ � r n−k � (−1)k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
84
+ page_content=' Now, we observe from (2) that (20) ∞ ∑ n=0 Dn,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
85
+ page_content=' = logλ(1+t) t = ∞ ∑ n=1 �λ n � 1 λ tn−1 = ∞ ∑ n=0 � λ n+1 � 1 λ tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
86
+ page_content=' Thus, by (20), we get Dn,λ = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
87
+ page_content=' 1 λ � λ n+1 � = (λ −1)n n+1 , (n ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
88
+ page_content=' (21) H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
89
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
90
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
91
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
92
+ page_content=' Kim, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
93
+ page_content=' Kim 5 From (11), we have ∞ ∑ n=1 Hn,λtn = −logλ(1−t) 1−t = −logλ(1−t) t t 1−t = ∞ ∑ l=0 Dl,λ(−1)l tl l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
94
+ page_content=' ∞ ∑ m=1 tm = ∞ ∑ n=1 � n−1 ∑ l=0 Dl,λ (−1)l l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
95
+ page_content=' � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
96
+ page_content=' (22) Thus, by Theorem 3 and (22), we get Hn,λ = n−1 ∑ l=0 Dl,λ (−1)l l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
97
+ page_content=' = n−1 ∑ l=0 (−1)l l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
98
+ page_content=' l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
99
+ page_content=' l ∑ k=0 H(r) k+1,λ � r l −k � (−1)k = n−1 ∑ l=0 l ∑ k=0 (−1)k+lH(r) k+1,λ � r l −k � , (n ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
100
+ page_content=' (23) Therefore, by (23), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
101
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
102
+ page_content=' For n ≥ 1, we have Hn,λ = n−1 ∑ l=0 l ∑ k=0 (−1)k+l � r l −k � H(r) k+1,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
103
+ page_content=' By (10), we get ∞ ∑ n=0 D(r) n,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
104
+ page_content=' = �logλ(1+t) t �r = logλ(1+t) t(1+t)k �logλ(1+t) t �r−1 (1+t)k = ∞ ∑ i=1 (−1)i+1H(k) i,λ ti−1 ∞ ∑ j=0 D(r−1) j,λ t j j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
105
+ page_content=' ∞ ∑ l=0 �k l � tl = ∞ ∑ i=0 (−1)iH(k) i+1,λti ∞ ∑ m=0 � m ∑ j=0 �m j � D(r−1) j,λ (k)m− j � tm m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
106
+ page_content=' = ∞ ∑ n=0 � n ∑ i=0 n−i ∑ j=0 (−1)i �n−i j �(k)n−i− j (n−i)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
107
+ page_content=' D(r−1) j,λ H(k) i+1,λ � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
108
+ page_content=' (24) Therefore, by comparing the coefficients on both sides of (24), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
109
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
110
+ page_content=' For n,k ≥ 0 and r ≥ 1, we have D(r) n,λ = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
111
+ page_content=' n ∑ i=0 n−i ∑ j=0 (−1)i �n−i j �(k)n−i− j (n−i)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
112
+ page_content=' D(r−1) j,λ H(k) i+1,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
113
+ page_content=' By (11), we get ∞ ∑ n=1 Hn,λtn = −logλ(1−t) 1−t = logλ(1−t) −t t 1−t = ∞ ∑ l=0 (−1)lDl,λ tl l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
114
+ page_content=' ∞ ∑ j=1 t j = ∞ ∑ n=1 � n−1 ∑ l=0 (−1)l Dl,λ l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
115
+ page_content=' � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
116
+ page_content=' (25) 6 Identities involving degenerate harmonic and degenerate hyperharmonic numbers Thus, by comparing the coefficients on both sides of (25), we get Hn,λ = n−1 ∑ l=0 (−1)l Dl,λ l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
117
+ page_content=' , (n ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
118
+ page_content=' (26) From (12), we can derive the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
119
+ page_content=' ∞ ∑ n=1 H(r) n,λtn = −logλ(1−t) t t (1−t)r = ∞ ∑ l=0 Dl,λ(−1)l tl l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
120
+ page_content=' ∞ ∑ m=1 �r +m−2 m−1 � tm = ∞ ∑ n=1 � n ∑ m=1 �r +m−2 r −1 � Dn−m,λ (n−m)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
121
+ page_content=' (−1)n−m � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
122
+ page_content=' (27) Therefore, by (26) and (27), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
123
+ page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
124
+ page_content=' For n ∈ N, we have Hn,λ = n−1 ∑ l=0 (−1)l Dl,λ l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
125
+ page_content=' , (n ≥ 1), and H(r) n,λ = n ∑ m=1 �r +m−2 r −1 � Dn−m,λ (n−m)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
126
+ page_content=' (−1)n−m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
127
+ page_content=' The degenerate derangements are defined by 1 1−t eλ(−t) = ∞ ∑ n=0 dn,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
128
+ page_content='. (28) Thus, we note that dn,λ = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
129
+ page_content=' n ∑ k=0 (1)k,λ (−1)k k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
130
+ page_content=' , (n ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
131
+ page_content=' Now, we observe that −logλ(1−t) (1−t)r eλ(−t) = ∞ ∑ l=1 H(r) l,λtl ∞ ∑ k=0 (1)k,λ k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
132
+ page_content=' (−1)ktk = ∞ ∑ n=1 � n ∑ l=1 H(r) l,λ (1)n−l,λ (n−l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
133
+ page_content=' (−1)n−l � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
134
+ page_content=' (29) On the other hand, by (28), we get −logλ(1−t) (1−t)r eλ(−t) = −logλ(1−t) (1−t)r−1 1 1−t eλ(−t) = ∞ ∑ l=1 H(r−1) l,λ tl ∞ ∑ k=0 dk,λ tk k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
135
+ page_content=' = ∞ ∑ n=1 � n ∑ l=1 H(r−1) l,λ dn−l,λ (n−l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
136
+ page_content=' � tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
137
+ page_content=' (30) Therefore, by (29) and (30), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
138
+ page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
139
+ page_content=' For n ∈ N, we have n ∑ l=1 H(r) l,λ (1)n−l,λ (n−l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
140
+ page_content=' (−1)n−l = n ∑ l=1 H(r−1) l,λ dn−l,λ (n−l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
141
+ page_content='. H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
142
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
143
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
144
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
145
+ page_content=' Kim, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
146
+ page_content=' Kim 7 We let Y = logλ(1+t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
147
+ page_content=' Then, for N ≥ 1, we have � d dt �N Y = (λ −1)(λ −2)···(λ −N +1)(1+t)λ−N = N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
148
+ page_content=' λ �λ N � eλ−N λ (logλ(1+t)) = N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
149
+ page_content=' λ �λ N � ∞ ∑ k=0 (λ −N)k,λ 1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
150
+ page_content=' (logλ(1+t))k = N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
151
+ page_content=' λ �λ N � ∞ ∑ k=0 (λ −N)k,λ ∞ ∑ n=k S1,λ(n,k)tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
152
+ page_content=' = ∞ ∑ n=0 �N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
153
+ page_content=' λ �λ N � n ∑ k=0 S1,λ(n,k)(λ −N)k,λ �tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
154
+ page_content=', (31) where N is a positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
155
+ page_content=' On the other hand, by (10), we get Y = logλ(1+t) = logλ(1+t) t t = ∞ ∑ n=1 nDn−1,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
156
+ page_content='. (32) Thus, by (32), we get � d dt �N Y = ∞ ∑ n=N nDn−1,λn(n−1)···(n−N +1)tn−N n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
157
+ page_content=' = ∞ ∑ n=0 (n+N)Dn+N−1,λ tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
158
+ page_content='. (33) Therefore, by (31) and (33), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
159
+ page_content=' Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
160
+ page_content=' For N ∈ N and n ≥ N −1, we have Dn,λ = N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
161
+ page_content=' n+1 1 λ �λ N � n−N+1 ∑ k=0 S1,λ(n−N +1,k)(λ −N)k,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
162
+ page_content=' Next, we let F = −logλ(1−t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
163
+ page_content=' Then, for N ≥ 1, we have � d dt �N F = (−1)N+1(λ −1)(λ −2)···(λ −N +1)(1−t)λ−N = (−1)N+1 N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
164
+ page_content=' λ �λ N � eλ−N λ (logλ(1−t)) = (−1)N+1N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
165
+ page_content=' 1 λ �λ N � ∞ ∑ k=0 (λ −N)k,λ 1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
166
+ page_content=' (logλ(1−t))k = (−1)N+1N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
167
+ page_content=' 1 λ �λ N � ∞ ∑ k=0 (λ −N)k,λ ∞ ∑ n=k S1,λ(n,k)(−1)n tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
168
+ page_content=' = ∞ ∑ n=0 � N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
169
+ page_content=' 1 λ �λ N � n ∑ k=0 (−1)n−N−1(λ −N)k,λS1,λ(n,k) �tn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
170
+ page_content='. (34) On the other hand, by (11), we get (35) F = −logλ(1−t) = −logλ(1−t) 1−t (1−t) = ∞ ∑ n=1 (Hn,λ −Hn−1,λ)tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
171
+ page_content=' 8 Identities involving degenerate harmonic and degenerate hyperharmonic numbers Thus, by (35) and for N ≥ 1, we have � d dt �N F = ∞ ∑ n=N n(n−1)···(n−N +1)(Hn,λ −Hn−1,λ)tn−N = ∞ ∑ n=0 (n+N)(n+N −1)···(n+1)(Hn+N,λ −Hn+N−1,λ)tn = ∞ ∑ n=0 N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
172
+ page_content=' �n+N N � (Hn+N,λ −Hn+N−1,λ)tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
173
+ page_content=' (36) Therefore, by (34) and (36), we obtain the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
174
+ page_content=' Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
175
+ page_content=' For N ∈ N and n ≥ 0, we have 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
176
+ page_content=' 1 λ �λ N � n ∑ k=0 (−1)n−N−1(λ −N)k,λS1,λ(n,k) = �n+N N � (Hn+N,λ −Hn+N−1,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
177
+ page_content=' By Theorem 9 and (6), we get 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
178
+ page_content=' n ∑ k=0 (−1)n−N−1(λ −N)k,λS1,λ(n,k) = �n+N N � 1 λ �λ N � (Hn+N,λ −Hn+N−1,λ) = �n+N N � 1 λ �λ N � 1 λ � λ n+N � (−1)n+N−1 = (−1)n+N−1 � λ N+n � �λ N � �n+N N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
179
+ page_content=' (37) Therefore, by (37), we obtain the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
180
+ page_content=' Corollary 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
181
+ page_content=' For n ≥ 0 and N ∈ N, we have 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
182
+ page_content=' n ∑ k=0 (λ −N)k,λS1,λ(n,k) = � λ n+N � �λ N � �n+N N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
183
+ page_content=' Remark 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
184
+ page_content=' From Corollary 10 and letting λ → 0, we obtain (−1)n N n+N �n+N N � = 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
185
+ page_content=' n ∑ k=0 (−1)kNkS1(n,k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
186
+ page_content=' Remark 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
187
+ page_content=' Recently, on the Daehee numbers and their related topics various studies have been conducted by several researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
188
+ page_content=' Interested readers may refer to [1, 12, 13, 14, 15, 17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
189
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
190
+ page_content=' CONCLUSION Many different tools have been used in the explorations for degenerate versions of some special numbers and polynomials, which include generating functions, combinatorial methods, umbral cal- culus, p-adic analysis, differential equations, probability theory, operator theory, special functions and analytic number theory (see [5, 6, 7, 8, 9, 10, 11, 12] and the references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
191
+ page_content=' In this paper, we used the elementary methods of generating functions in order to study the degenerate harmonic and degenerate hyperharmonic numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
192
+ page_content=' Some properties, recurrence relations and identities relat- ing to those numbers were derived in connection with the degenerate Stirling numbers of the first kind, the degenerate Daehee numbers and the degenerate derangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
193
+ page_content=' We would like to continue to investigate various degenerate versions of certain special numbers and polynomials, especially their applications to physics, science and engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
194
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
195
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
196
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
197
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
198
+ page_content=' Kim, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
199
+ page_content=' Kim 9 Acknowledgments The authors thank Jangjeon Institute for Mathematical Sciences for the support of this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
200
+ page_content=' Availability of data and material Not applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
201
+ page_content=' Funding This work was supported by the Basic Science Research Program, the National Research Founda- tion of Korea, (NRF-2021R1F1A1050151).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
202
+ page_content=' Ethics approval and consent to participate All authors declare that there is no ethical problem in the production of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
203
+ page_content=' Competing interests All authors declare no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
204
+ page_content=' Consent for publication All authors want to publish this paper in this journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
205
+ page_content=' Author’ Contributions All authors read and approved the final manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
206
+ page_content=' REFERENCES [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
207
+ page_content=' Araci, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
208
+ page_content=' Duran and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
209
+ page_content=' Acikgoz, On weighted q-Daehee polynomials with their applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
210
+ page_content=' Indag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
211
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
212
+ page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
213
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
214
+ page_content=') 30 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
215
+ page_content=' 2, 365-374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
216
+ page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
217
+ page_content=' Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
218
+ page_content=' Utilitas Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
219
+ page_content=' 15 (1979), 51-88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
220
+ page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
221
+ page_content=' Comtet, Advanced combinatorics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
222
+ page_content=' The art of finite and infinite expansions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
223
+ page_content=' Revised and enlarged edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
224
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
225
+ page_content=' Reidel Publishing Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
226
+ page_content=', Dordrecht, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
227
+ page_content=' xi+343 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
228
+ page_content=' ISBN: 90-277-0441-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
229
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
230
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
231
+ page_content=' Conway and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
232
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
233
+ page_content=' Guy, The book of numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
234
+ page_content=' Copernicus, New York, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
235
+ page_content=' x+310 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
236
+ page_content=' ISBN: 0-387-97993-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
237
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
238
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
239
+ page_content=' Kim and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
240
+ page_content=' Kim, A note on a new type of degenerate Bernoulli numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
241
+ page_content=' Russ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
242
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
243
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
244
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
245
+ page_content=' 27 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
246
+ page_content=' 2, 227-235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
247
+ page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
248
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
249
+ page_content=' Kim and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
250
+ page_content=' Kim, Degenerate Sheffer sequence and λ-Sheffer sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
251
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
252
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
253
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
254
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
255
+ page_content=' 493 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
256
+ page_content=' 1, 124521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
257
+ page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
258
+ page_content=' Kim and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
259
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
260
+ page_content=' Kim, Some identities on degenerate hyperharmonic numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
261
+ page_content=' Georgian Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
262
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
263
+ page_content=', 2022 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
264
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
265
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
266
+ page_content='1515/gmj-2022-2203 [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
267
+ page_content=' Kim and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
268
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
269
+ page_content=' Kim, On some degenerate differential and degenerate difference operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
270
+ page_content=' Russ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
271
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
272
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
273
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
274
+ page_content=' 29 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
275
+ page_content=' 1, 37-46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
276
+ page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
277
+ page_content=' Kim and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
278
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
279
+ page_content=' Kim, Degenerate Laplace transform and degenerate gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
280
+ page_content=' Russ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
281
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
282
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
283
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
284
+ page_content=' 24 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
285
+ page_content=' 2, 241–248 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
286
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
287
+ page_content=' Kim and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
288
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
289
+ page_content=' Kim, Note on the degenerate gamma function Russ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
290
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
291
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
292
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
293
+ page_content=' 27 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
294
+ page_content=' 3, 352-358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
295
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
296
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
297
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
298
+ page_content=' Kim and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
299
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
300
+ page_content=' Kim, λ-q-Sheffer sequence and its applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
301
+ page_content=' Demonstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
302
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
303
+ page_content=' 55 (2022), 843–865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
304
+ page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
305
+ page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
306
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
307
+ page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
308
+ page_content=' Lee and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
309
+ page_content=' Kwon, Representations by degenerate Daehee polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
310
+ page_content=' Open Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
311
+ page_content=' 20 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
312
+ page_content=' 1, 179-194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
313
+ page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
314
+ page_content=' Kwon, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
315
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
316
+ page_content=' Kim and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
317
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
318
+ page_content=' Rim, On the some identities of the type 2 Daehee and Changhee polynomials arising from p-adic integrals on Zp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
319
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
320
+ page_content=' Jangjeon Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
321
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
322
+ page_content=' 22 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
323
+ page_content=' 3, 487-497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
324
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
325
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
326
+ page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
327
+ page_content=' Kwon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
328
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
329
+ page_content=' Jang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
330
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
331
+ page_content=' Jang, Some identities of λ-Daehee polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
332
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
333
+ page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
334
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
335
+ page_content=' 10 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
336
+ page_content=' 8, 4137-4142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
337
+ page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
338
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
339
+ page_content=' Park, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
340
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
341
+ page_content=' Kim and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
342
+ page_content=' Kwon, On a modified degenerate Daehee polynomials and numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
343
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
344
+ page_content=' Nonlinear Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
345
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
346
+ page_content=' 10 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
347
+ page_content=' 3, 1108-1115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
348
+ page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
349
+ page_content=' Roman, The umbral calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
350
+ page_content=' Pure and Applied Mathematics, 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
351
+ page_content=' Academic Press, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
352
+ page_content=' [Harcourt Brace Jo- vanovich, Publishers], New York, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
353
+ page_content=' x+193 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
354
+ page_content=' ISBN: 0-12-594380-6 [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
355
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
356
+ page_content=' Sharma, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
357
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
358
+ page_content=' Khan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
359
+ page_content=' Araci and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
360
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
361
+ page_content=' Ahmed, New type of degenerate Daehee polynomials of the second kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
362
+ page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
363
+ page_content=' Difference Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
364
+ page_content=' 2020 (2020), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
365
+ page_content=' 428, 14 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
366
+ page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
367
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
368
+ page_content=' Yun and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
369
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
370
+ page_content=' Park, On fully degenerate Daehee numbers and polynomials of the second kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
371
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
372
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
373
+ page_content=' 2020 (2020), Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
374
+ page_content=' ID 7893498, 9 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
375
+ page_content=' 10 Identities involving degenerate harmonic and degenerate hyperharmonic numbers DEPARTMENT OF MATHEMATICS EDUCATION, DAEGU CATHOLIC UNIVERSITY, GYEONGSAN 38430, REPUB- LIC OF KOREA Email address: hkkim@cu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
376
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
377
+ page_content='kr DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA Email address: dskim@sogang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
378
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
379
+ page_content='kr DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA Email address: tkkim@kw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
380
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
381
+ page_content='kr' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NE1T4oBgHgl3EQfCQIp/content/2301.02861v1.pdf'}
A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01262dbda26eb60a40ab2d73bbb0d61831a1ec2b3f16a31595e401692e63df5a
3
+ size 193782
A9FAT4oBgHgl3EQfrx7P/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af582328fb9199499516cc030f6e3225ceb2b4864a6902c013d2b6702e173fc2
3
+ size 1441837
A9FAT4oBgHgl3EQfrx7P/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e56db9b963589338936f99f9a6a55410754150363c75f83c66ab84877d3975
3
+ size 64777
BNE1T4oBgHgl3EQfVgSF/content/tmp_files/2301.03103v1.pdf.txt ADDED
@@ -0,0 +1,2084 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Multi-Site Accelerator-Rich Processing Fabric for
2
+ Scalable Brain-Computer Interfacing
3
+ Karthik Sriram, Raghavendra Pradyumna Pothukuchi, Michał Gerasimiuk, Oliver Ye, Muhammed Ugur
4
+ Rajit Manohar, Anurag Khandelwal, Abhishek Bhattacharjee
5
+ Yale University, New Haven, USA
6
+ Abstract—Hull1 is an accelerator-rich distributed implantable
7
+ brain-computer interface (BCI) that reads biological neurons at
8
+ data rates that are 2-3 orders of magnitude higher than the
9
+ prior art, while supporting many neuroscientific applications.
10
+ Prior approaches have restricted brain interfacing to tens of
11
+ megabits per second in order to meet two constraints necessary
12
+ for effective operation and safe long-term implantation—power
13
+ dissipation under tens of milliwatts and response latencies in
14
+ the tens of milliseconds. Hull also adheres to these constraints,
15
+ but is able to interface with the brain at much higher data
16
+ rates, thereby enabling, for the first time, BCI-driven research on
17
+ and clinical treatment of brain-wide behaviors and diseases that
18
+ require reading and stimulating many brain locations. Central to
19
+ Hull’s power efficiency is its realization as a distributed system of
20
+ BCI nodes with accelerator-rich compute. Hull balances modular
21
+ system layering with aggressive cross-layer hardware-software
22
+ co-design to integrate compute, networking, and storage. The
23
+ result is a lesson in designing networked distributed systems with
24
+ hardware accelerators from the ground up.
25
+ I. I N T RO D U C T I O N
26
+ Brain-computer interfaces (BCIs) sense the electrical activity
27
+ of biological neurons and electrically stimulate them to “rewire”
28
+ neuronal circuits. By directly connecting brains to computers,
29
+ BCIs help advance our understanding of the brain and the
30
+ mind [1, 2], offer treatment of neurological disorders [2–6],
31
+ enable industrial robotics [7], permit novel modes of personal
32
+ entertainment [8], and more.
33
+ BCIs can be realized as surface electrodes (i.e., electrical
34
+ sensors) placed on the scalp above the skull to measure brain
35
+ activity [2, 3]. While such wearable BCIs do not require surgical
36
+ deployment, the signals they collect are muffled by the skull,
37
+ making them noisy, low-resolution, and less ideal for forward-
38
+ looking BCI applications [5, 9–12].
39
+ Instead, this work focuses on implantable BCIs that are
40
+ surgically embedded directly on, around, and in the brain
41
+ tissue [13, 14]. Implantable BCIs directly record from and
42
+ stimulate neurons with high fidelity, spatial resolution, and in
43
+ real time [2, 5]. Hundreds of individuals use clinically approved
44
+ implantable BCIs to treat epilepsy, movement disorders, as well
45
+ as impaired vision [15–17]. Implantable BCIs are also being
46
+ studied in clinical trials to assess their effectiveness in treating
47
+ brain stroke, memory disorders, paralysis, anxiety/depression,
48
+ addiction, and more [14, 18, 19].
49
+ Conflicting constraints make it challenging to design hard-
50
+ ware for implantable BCIs. BCIs cannot overheat brain regions
51
+ 1A hull is the protective outer covering of grain. We call our design Hull
52
+ since it similarly protects the brain.
53
+ by >1 ◦C to avoid cellular damage [20, 21] and must therefore
54
+ be ultra-low-power. But, BCI designers are also seeking to
55
+ leverage improvements in sensor technology that are reading
56
+ exponentially increasing neuronal data [22]. It is challenging to
57
+ constrain power/energy while processing such large data, espe-
58
+ cially to respond to neuronal activity in real-time (i.e., in ms).
59
+ Hardware over-specialization is not a viable way to reduce BCI
60
+ power; to enable many research and clinical studies, BCIs must
61
+ be adequately programmable to personalize algorithms, support
62
+ several computational methods to treat multiple disorders, and
63
+ enable deployment of maturing/emerging algorithms [23, 24].
64
+ Complicating BCI design further is the emergence of
65
+ applications that read and process neural activity from many
66
+ brain sites over time [1, 13, 25, 26]. This is because the brain’s
67
+ functions (and disorders) are ultimately based on physical and
68
+ functional connectivity between brain regions that evolve over
69
+ time [1, 13, 25, 26].
70
+ Existing BCIs [16, 17, 23, 27, 28] are designed for single-
71
+ site implantation and lack the ability to store adequately long
72
+ historical neural data. Most BCIs [29, 30] have additional
73
+ limitations in that they have historically eschewed a subset of
74
+ programmability, data rates, and flexibility to meet safe power
75
+ constraints. These BCIs are specialized to a specific task and/or
76
+ limit personalization of the algorithm [29, 30]. Some support
77
+ more programmability by sacrificing high data rates [16, 17,
78
+ 27, 28]. Consequently, none support the distributed and rapidly
79
+ evolving neural data processing that emerging BCI applications
80
+ require. Recent work on HALO balances flexibility, data rates,
81
+ and power, but is limited to one brain site. At best, distributed
82
+ BCI applications have been studied in prior work that consists
83
+ of multiple sensor implants that offload processing to external
84
+ devices with higher power budgets [31, 32]. But, this is not
85
+ a panacea because of the long network latency, privacy, and
86
+ mobility limitations [33].
87
+ Our work is the first to offer a path toward scalable whole-
88
+ brain interfacing across multiple brain sites. Our solution, Hull,
89
+ is a distributed BCI consisting of multiple BCI nodes that
90
+ communicate with one another wirelessly and interface with
91
+ the brain with an aggregate data rate 2-3 orders of magnitude
92
+ higher than the prior state-of-art [23]. Each BCI node consists
93
+ of flexible compute made up of reconfigurable power-efficient
94
+ domain-specific hardware accelerators customized for important
95
+ neural processing applications. These accelerators are tightly
96
+ co-designed with storage and networking to ensure system-wide
97
+ adherence to power and response latency constraints.
98
+ 1
99
+ arXiv:2301.03103v1 [cs.DC] 8 Jan 2023
100
+
101
+ Hull uses a scheduler based on an integer linear program
102
+ (ILP) to optimally map tasks and algorithms to the hardware
103
+ accelerators across all of Hull’s nodes, and to create the network
104
+ and storage access schedules to feed the accelerators. Hull
105
+ supports three types of BCI applications [34, 35]:
106
+ The first category consists of applications that continuously
107
+ monitor brain activity and respond to aberrant behavior without
108
+ engaging with agents external to Hull [34–36]. This includes,
109
+ for example, detection of seizures [26], prediction of their
110
+ spread, and finally, to mitigate symptoms, electrical stimulation
111
+ of regions where seizures are expected to migrate.
112
+ The second category also monitor the brain continuously but
113
+ rely on agents external to Hull to respond. This includes, for
114
+ example, the detection of an individual’s intended movement,
115
+ and relaying of this data to prostheses or assistive devices [3, 33–
116
+ 35]. These applications enable paralyzed individuals to actuate
117
+ machines and restore (partial) sensory function.
118
+ The third category interactively queries Hull to analyze data
119
+ from multiple brain sites. These queries may be used “in the
120
+ loop” or “out of the loop”. With the former, clinicians may need
121
+ to modify treatment options based on data that the BCI reads;
122
+ e.g., confirming that Hull has correctly detected seizures and
123
+ responded appropriately [37, 38]. The latter refers to interactive
124
+ queries used by technicians to debug system operations, by
125
+ clinicians to glean the individual’s medical history, and by
126
+ researchers to better understand brain function.
127
+ In supporting these types of applications, Hull offers research
128
+ insights on building end-to-end computer systems centered on
129
+ hardware accelerators. Specifically, our choice of hardware
130
+ accelerators follows several important design principles:
131
+ First, to maximize power efficiency, as well as simplicity of
132
+ hardware design, we identify algorithmic kernels within our
133
+ applications that accelerate not only their computation but also
134
+ their networking and storage latency needs. This is a non-trivial
135
+ exercise that requires domain-specific knowledge to convert BCI
136
+ applications into equivalent forms that are amenable to exposing
137
+ these kernels. We reformulate known computational pipelines
138
+ for seizure propagation prediction/treatment and movement
139
+ intent – two BCI applications that Hull focuses on – to use hash-
140
+ based similarity measures that identify the neural signals from
141
+ different brain sites likeliest to be correlated, before applying
142
+ heavy-weight correlation measures. The same hashes can drive
143
+ the design of domain-specific layouts of data in our storage
144
+ stack. Co-designing our hashes with our storage layout permit
145
+ several power/latency-efficient data retrievals from our storage
146
+ layer. The hashes also enable reducing the data communicated
147
+ in the intra-BCI network between the Hull nodes.
148
+ Second, we design our accelerators to be predictable in
149
+ latency and power for our target data rates. Predictable perfor-
150
+ mance and power characteristics facilitate the optimal design of
151
+ compute and network schedules—the enabling feature for our
152
+ ILP scheduler. Designing accelerators with predictable perfor-
153
+ mance and power requires care. For some accelerators, whose
154
+ data generation rate is input-dependent (e.g., data compression),
155
+ we use theoretically-derived worst-case latency and throughput
156
+ estimates. Furthermore, we design our accelerators in their own
157
+ clock domains to enable a range of operating frequencies with
158
+ well-defined power and performance characteristics.
159
+ Third, we design our accelerators to be reconfigurable. This
160
+ permits the repurposing of our hash accelerators, for example,
161
+ to act as hash indices for our storage layer, as filters that reduce
162
+ our networking traffic, and to be tuned differently depending
163
+ on the target application being supported.
164
+ Overall, Hull scales brain-computer interface bandwidth
165
+ beyond what was previously achievable. Hull is flexible, recon-
166
+ figurable, and supports real-time distributed neural processing.
167
+ We use a detailed physical synthesis flow in a 28 nm CMOS
168
+ process (including tapeouts of partial hardware at 12 nm)
169
+ coupled with network and storage models to evaluate Hull’s
170
+ power and performance. We show that Hull can process an
171
+ aggregate of 460 Mbps wireless data from multiple regions in
172
+ only 10 ms and dissipates no more than 15 mW at any node,
173
+ confirming its suitability for autonomous use. In interactive
174
+ mode, it can support 10 queries per second over 6 MB of
175
+ data over 10 implants. Existing designs support two orders of
176
+ magnitude lower data and need intrusive wiring. In summary,
177
+ our specific contributions are:
178
+ 1) Hull, the first distributed and wireless BCI system that scales
179
+ to multi-region neural processing in real time.
180
+ 2) The cross-layer co-design of BCI applications, processing,
181
+ and storage for scalable and distributed neural processing.
182
+ Hull is the first to support long-term storage of data, hashing,
183
+ and database indices to enable distributed signal processing
184
+ on a single BCI platform.
185
+ 3) An evaluation of Hull’s flexibility and performance on
186
+ epileptic seizure propagation and detection of movement
187
+ intent, in various deployment scenarios, as well as in
188
+ the support of more arbitrary queries that may be used
189
+ interactively by clinicians/technicians.
190
+ Hull furthers the elevation of hardware accelerators to first-
191
+ class compute citizens that, like CPUs, can directly engage
192
+ with networking and storage. This trend will be crucial to
193
+ future IoT, swarm, and intermittent computing environments
194
+ that sustain adaptive and complex functionality while meeting
195
+ strict safe-use (i.e., power, latency, throughput) constraints.
196
+ II. BAC K G RO U N D
197
+ A. Brain-Computer Interface Design
198
+ BCI applications typically perform signal measurement,
199
+ feature extraction, classification/decision-making, and when
200
+ applicable, neural feedback/stimulation [2, 5]. The hardware
201
+ organization of BCIs reflects these four aspects. Signal mea-
202
+ surement is performed by electrodes that read the electrical
203
+ activity of clusters of biological neurons, and analog to digital
204
+ converters (ADCs) then digitize this data. State-of-the-art
205
+ sensors consist of 96-256 electrode arrays per implant. ADCs
206
+ typically encode measured signal samples with 8-16 bits at a
207
+ rate of 20-50 K samples per second per electrode. Digitized data
208
+ is then relayed to compute logic for feature extraction, based
209
+ on which classification/decision-making proceeds. If needed,
210
+ the electrode arrays are repurposed, after a digital-to-analog
211
+ (DAC) conversion step, to electrically stimulate the brain.
212
+ 2
213
+
214
+ Modern BCIs also use radios to communicate with external
215
+ agents (e.g., servers, prostheses), presenting an evolution from
216
+ the surgical cables (which were susceptible to infections
217
+ and restricted free movement) used in early BCIs [39, 40].
218
+ Finally, BCIs are powered with rechargeable batteries and/or
219
+ inductive power transfer. These components are packaged in
220
+ hermetically-fused silica or titanium capsules. While the power
221
+ limit considered safe for permanent implantation varies on
222
+ the implant’s target location and depth, we use 15 mW as a
223
+ conservative limit [23, 41] for each of Hull’s constituent BCI
224
+ nodes.
225
+ B. Neural Processing Applications & Algorithmic Kernels
226
+ Future BCI applications will collect data across multiple
227
+ brain sites, and compare histories of stored neural signals
228
+ across them. Many applications exhibit these needs, including
229
+ algorithms for neuromuscular rehabilitation and neuropsychi-
230
+ atric disorders [2, 4, 13, 42–44], but we focus on epileptic
231
+ seizure propagation and detection of movement intent as they
232
+ form the bulk of emerging BCI use [2, 5, 45–47]. In addition,
233
+ we also consider spike sorting, a crucial kernel widely used
234
+ in many applications [48, 49]. Spike sorting differs from
235
+ seizure propagation and movement intent in that it is not a full
236
+ application in itself. Nevertheless, we study it because it is a
237
+ prime candidate for wide use in a distributed manner.
238
+ 1) Epileptic seizure propagation application: Seizures often
239
+ migrate across brain regions [26]. Predicting seizure spread
240
+ can help explain seizure dynamics and offer treatment options.
241
+ When a seizure is detected at a brain site, seizure propagation
242
+ algorithms compare neural signals from the originating site
243
+ against current and past signals collected from other brain sites
244
+ of interest. Correlation measures are used to detect whether
245
+ there is a seizure match across brain sites; i.e., whether a seizure
246
+ is likely to propagate to another brain region.
247
+ Figure 1a shows the steps used (but unsupported in their
248
+ entirety in any existing BCI) in standard seizure propagation
249
+ pipelines [25, 26]. First, seizure signals are detected in the
250
+ signals from each electrode in all the brain regions that the
251
+ electrodes probe. This step typically uses band-pass filters or a
252
+ fast Fourier transform (FFT) on continuous signal windows to
253
+ generate features, followed by a classifier like a support vector
254
+ machine (SVM) [50]. Alternatively, clinicians may manually
255
+ annotate the onset of a seizure.
256
+ Once a seizure is detected in a region at a specific point in
257
+ time, the signal window from that region is compared with all
258
+ the concurrent and previous windows from all other regions,
259
+ up to a chosen time in the past.
260
+ 2) Detection of movement intent application: BCIs can infer
261
+ coarse-grained movement from reading single sites of the motor
262
+ cortex region [51, 52], but more fine-grained movement intent
263
+ (e.g., the movement of individual fingers grasping an object)
264
+ requires reading neural activity from multiple brain regions [45,
265
+ 53, 54]. Figure 1b shows a typical computational pipeline
266
+ that infers fine-grained movement intent [47, 55–57]. Neural
267
+ signals from all electrodes in all target brain sites are first
268
+ filtered or converted into the frequency domain using FFT
269
+ (a) Seizure propagation analysis.
270
+ (b) Decoding movement intent and stimulating response to it.
271
+ (c) Spike sorting to separate the combined electrode activity.
272
+ Fig. 1: Main BCI application steps. BCIs do not yet support
273
+ on-device seizure propagation or multi-site movement intent.
274
+ for feature extraction. Then, the features are all pushed into
275
+ a classifier to deduce intended movement. Linear SVMs are
276
+ commonly used for classification because they are effective,
277
+ and because their parameters are intuitive for neuroscientists to
278
+ reason about [3, 55, 58, 59]. Intended movement is then relayed
279
+ to an external agent like a prosthetic arm. The prosthetic arm’s
280
+ movement then has to be conveyed to the brain regions (e.g.,
281
+ the sensorimotor cortex) responsible for sensing the individual’s
282
+ environment using neural stimulation patterns [60, 61].
283
+ 3) Spike sorting algorithmic kernel: Spike sorting is an
284
+ exemplar of key signal transformations that comprise important
285
+ applications, and that benefit from engagement with multiple
286
+ brain sites. Most sensor arrays used in existing BCIs have
287
+ electrodes that measure the combined electrical activity of
288
+ a cluster of neurons, rather than that of individual neurons.
289
+ Spike sorting detects all the peaks in the combined electrode
290
+ activity and separates them into a series of constituent signal
291
+ spikes from distinct neurons. Figure 1c shows this algorithm.
292
+ It measures the distance of each signal peak from several
293
+ spike templates, and the nearest template is chosen as the
294
+ peak’s spike. In some variants [62], the templates are obtained
295
+ dynamically from clustering the peaks. Spike distances are
296
+ measured with dynamic time warping (DTW) or earth movers
297
+ distance (EMD) [63, 64], which are computationally expensive.
298
+ Modern spike sorting methods are too slow to be deployed
299
+ online; distributed spike sorting has even higher overheads.
300
+ No existing BCIs support the signal processing needed for
301
+ historical analysis of seizure and movement intent activity
302
+ emanating from multiple brain sites, and for distributed spike
303
+ sorting. Most designs use a single implanted device that
304
+ senses and processes information from the brain region probed
305
+ by the implant [16, 17, 23, 27, 28]. Some designs use
306
+ distributed sensors that do not directly connect to computational
307
+ support [31, 32], and offload data to an external device. But,
308
+ the lack of on-device distributed processing precludes BCI
309
+ support for applications that require ms-scale decisions, such
310
+ as preempting propagation of seizures, or control of prosthetics.
311
+ C. Locality-Sensitive Hashing for Signal Comparison
312
+ All the applications described previously use signal com-
313
+ parison that is expensive. We use locality-sensitive hashing
314
+ for fast time series matching [65] to meet Hull’s ms-scale
315
+ latency constraints. We face two challenges in using locality-
316
+ 3
317
+
318
+ Propagation
319
+ Electrode
320
+ Seizure
321
+ Signal similarity in
322
+ Data
323
+ Detection
324
+ all other regionsStimulation
325
+ Electrode
326
+ Feature
327
+ SVM
328
+ Data
329
+ ExtractionSorted Spikes
330
+ Electrode
331
+ Spike
332
+ Template match
333
+ Data
334
+ Detection
335
+ for every spike(a) Hull overview.
336
+ (b) The processor fabric in each of Hull’s nodes.
337
+ Fig. 2: The Hull BCI is made up of nodes that are implanted in distinct brain sites. The nodes communicate wirelessly with
338
+ each other and external agents. Each Hull node has sensors, radios, analog/digital conversion, processing fabric, and storage;
339
+ the processing fabric contains hardware accelerators and configurable switches that can be used to create different pipelines.
340
+ sensitive hashing. The first is the presence of variable-latency
341
+ computations involving randomization, and the other is the
342
+ need to support multiple comparison measures—the choice of
343
+ measure varies across BCI uses [63, 64, 66]. We leverage prior
344
+ work on two locality-sensitive hashing schemes developed for
345
+ DTW [67] and EMD [68]. Subsequent sections describe how
346
+ we modify them to suit the needs of Hull’s target applications.
347
+ The DTW hash generation process [67] first creates sketches
348
+ of the signal by using the dot product of a random vector with
349
+ sliding windows in the signal. If the dot product is positive,
350
+ the sketch value for the window is 1; otherwise, it is 0. Next,
351
+ it counts the occurrences of n-grams formed by n consecutive
352
+ sketch values. The n-grams and their counts are used by a
353
+ randomized weighted min-hash to produce the final hash.
354
+ The original EMD hash [68] is obtained by first calculating
355
+ the dot product of the entire signal with a random vector, and
356
+ computing a linear function of the dot product’s square root.
357
+ D. Flexibility as a Goal in Brain-Computer Interface Design
358
+ A key takeaway from Sections II-B and II-C is the need for
359
+ flexible support of compute on emerging BCIs. Indeed, this
360
+ is a topic explored in recent work on the HALO architecture
361
+ for BCIs [23, 69, 70]. Prior to HALO, power efficiency was
362
+ achieved by specializing BCIs to offer a specific type of
363
+ computation for a specific brain region. However, flexibility is
364
+ an important requirement for future BCIs for several reasons:
365
+ First, there is no single best signal processing pipeline for
366
+ a task; instead, there exist several distinct signal processing
367
+ pipelines with different tradeoffs [24, 35, 71]. For Hull, this
368
+ means that the specific hardware accelerators needed to support
369
+ target computational pipelines (e.g., DTW vs cross-correlation),
370
+ and the configuration of key parameters in these accelerators
371
+ (e.g., window sizes, thresholds) must be customizable to users.
372
+ Second, BCIs may be used in different ways [34, 35]. One
373
+ use is autonomous operation, monitoring neural activity and
374
+ stimulating neurons when a harmful event occurs. An example
375
+ is epileptic seizure monitoring and deep brain stimulation to
376
+ preempt the seizure before its onset [71]. Alternatively, BCIs
377
+ may translate neural activity into commands for an external
378
+ device [33] (e.g., the commands to move a prosthetic) or the
379
+ letters to be displayed on a screen [5]. It is common for the
380
+ BCI to also translate the external activity into neural feedback
381
+ (e.g., to recreate the sense of touch and movement) [72].
382
+ Third, beyond clinical uses, the same BCI platform should
383
+ support algorithmic deployment and data collection for research
384
+ and exploration of the brain sciences [5, 35, 73]. In these
385
+ cases, many applications and usage modes may be necessary
386
+ depending on the desired experiment.Some of these uses may
387
+ require interactive monitoring, where the BCI and a clinician
388
+ are part of the decision-making loop [37]. In this case, the
389
+ BCI operates autonomously until it detects abnormal activity,
390
+ such as the onset of a seizure. When this happens, it alerts
391
+ a clinician, who can use additional data from the individual
392
+ to determine the course of action [37]. A useful BCI system
393
+ must be customizable to support these different scenarios.
394
+ Beyond these scenarios, there are many practical reasons
395
+ that BCIs should be flexible, such as changes in the individ-
396
+ ual’s neurological conditions (which may require modifying
397
+ treatment protocols), changes in electrode behavior from the
398
+ immune response of the brain to the BCI etc. [5, 35, 71].
399
+ Supporting high performance with flexibility under extreme
400
+ power and latency constraints is challenging. Like HALO,
401
+ Hull relies on modular hardware accelerators (henceforth
402
+ referred to as processing elements or PEs) to form various
403
+ signal processing pipelines. Unlike HALO and any existing
404
+ BCI, however, Hull supports the distributed signal processing
405
+ applications in Section II-B for the first time.
406
+ III. T H E D E S I G N O F T H E H U L L S Y S T E M
407
+ Figure 2 shows the Hull BCI and its constituent Hull
408
+ nodes implanted in different regions of the brain. Hull nodes
409
+ communicate with one another wirelessly. An ILP scheduler
410
+ maps applications and interactive queries onto Hull’s nodes.
411
+ Each Hull node contains 16-bit ADCs/DACs, a reconfigurable
412
+ processor with several PEs, an integrated physical storage layer
413
+ made of non-volatile memory (NVM), separate radios for Hull’s
414
+ 4
415
+
416
+ Closed-loop
417
+ Prosthesis
418
+ ILP
419
+ NVM
420
+ Autonomous
421
+ Operation
422
+ Queries
423
+ External
424
+ Write
425
+ Radio
426
+ DAC
427
+ Configuration
428
+ Read
429
+ ADC
430
+ Intra-BCI
431
+ Processor
432
+ Radio
433
+ Brain
434
+ Interactive
435
+ Tissue
436
+ Power Supply
437
+ Monitoring
438
+ Data↑
439
+ CSEL
440
+ MC
441
+ SC
442
+ NGRAM
443
+ DTW
444
+ HCONV
445
+ EMDH
446
+ GATE
447
+ CCHECK
448
+ NEO
449
+ THR
450
+ HFREQ
451
+ DCOMP
452
+ FFT
453
+ BBF
454
+ SVM
455
+ HCOMP
456
+ UNPACK
457
+ XCOR
458
+ NPACKnodes to communicate with one another (i.e., intra-BCI radios)
459
+ and externally (i.e., external radio), and a power supply.
460
+ A. Rewriting Applications for On-Device Processing
461
+ We make three changes to existing BCI applications to
462
+ run them on Hull (to meet real-time constraints), rather than
463
+ relying on external processing. First, we rewrite the signal
464
+ processing pipelines to use fast hash-based signal comparison
465
+ in the common case, falling back to more time-consuming
466
+ approaches (e.g., cross-correlation or DTW) only when more
467
+ accurate computation is really necessary. Second, we allow our
468
+ applications to use memory. Third, we observe that classifiers
469
+ commonly used in neuroscience are linear (e.g., SVMs), and
470
+ therefore compute classifier outputs hierarchically across Hull’s
471
+ nodes in a manner that reduces network communication.
472
+ Figure 3a shows our newly created seizure propagation
473
+ application. While functionally equivalent to the standard
474
+ version, our application is made up of three phases—seizure
475
+ detection, hash comparison, and exact signal matching. On
476
+ every sample at all electrodes, we generate new hashes for
477
+ each sliding signal window (e.g., one hash for a 120-sample
478
+ window), and store them on the on-device non-volatile memory
479
+ in each Hull node (Section III-B). When a Hull node detects
480
+ a seizure locally (i.e., in the brain region that it probes), it
481
+ broadcasts the hashes of the signal windows that were classified
482
+ as a seizure. All other Hull nodes check if these hashes match
483
+ with any of their recently stored local hashes, and respond when
484
+ a match is found. A match indicates that a seizure experienced
485
+ in one brain region likely has a correlated seizure in another
486
+ region. To ascertain this, the Hull node that initially detected
487
+ the seizure broadcasts the entire signal window for the signals
488
+ that resulted in a hash collision. Seizure propagation is then
489
+ confirmed by running an exact comparison with these signals at
490
+ the nodes that had the hash collision. Since the full signal data
491
+ and exact similarity matches are performed only when necessary,
492
+ computation per Hull node and communication among Hull
493
+ nodes is reduced by two orders of magnitude compared to the
494
+ baseline application pipelines in Section II-B.
495
+ Figure 3c shows that we use a similar approach to enable,
496
+ for the first time, an online version of spike sorting even in
497
+ distributed scenarios. Like seizure propagation, spike sorting
498
+ benefits from hash-based signal processing and memory. The
499
+ templates are stored in NVM, and distance computation is
500
+ replaced with hash collision checks. Because spike sorting is a
501
+ precursor to many neural processing algorithms [35, 48], this
502
+ online realization of it for the first time unlocks the ability to
503
+ support many spike sorting-centered applications.
504
+ Finally, movement intent also benefits from computing our
505
+ linear classifier hierarchically. Figure 3b shows the pipeline
506
+ that Hull supports. Each Hull node computes a partial classifier
507
+ output from the signals it receives and transmits the output.
508
+ One node, the leader, computes the final SVM classification and
509
+ communicates it to an external prosthetic device. The prosthetic
510
+ device’s movements are broadcast back to Hull; each node then
511
+ electrically stimulates the sensorimotor cortex of the brain to
512
+ simulate the “feeling” of having moved a natural limb.
513
+ (a) Seizure propagation.
514
+ (b) Decoding movement intent and stimulating response to it.
515
+ (c) Spike sorting.
516
+ Fig. 3: High-level overview of the BCI applications supported
517
+ for online distributed processing in Hull.
518
+ B. Flexible & Energy-Efficient Accelerator Design
519
+ Figure 2b shows the processing fabric that we design for
520
+ each of Hull’s nodes. Several accelerators or PEs are connected
521
+ via programmable switches to realize many signal processing
522
+ pipelines. A low-power microcontroller (MC) support mis-
523
+ cellaneous workloads for which there are no PEs. The PEs
524
+ are designed for flexibility to support various computational
525
+ functions, power/energy- and area-efficient acceleration, and
526
+ deterministic latency and energy consumption to enable our ILP
527
+ scheduler to optimally map application tasks onto our acceler-
528
+ ators. We use the recently-published HALO architecture [23]
529
+ as a starting point to realize a set of PEs that are useful for
530
+ single-implant scenarios, and then go beyond to realize PEs
531
+ that accelerate our distributed neural applications.
532
+ Hull includes PEs for single-site spike detection (NEO–
533
+ non-linear energy operator; DWT–discrete wavelet transform),
534
+ compression (LZ4; LZMA), feature extraction (FFT–discrete
535
+ fast Fourier transform; XCOR–cross-correlation measure; BBF–
536
+ Butterworth bandpass filtering), thresholding (THR), conditional
537
+ (GATE), classification (SVM–linear support vector machine),
538
+ and the radio for communication with systems outside of Hull.
539
+ Hull then integrates several new PEs to support distributed
540
+ computation, fine-grained wireless communication, and access
541
+ to per-node NVM. Each PE has appropriately sized SRAM
542
+ buffers to support its processing. The PEs include support for:
543
+ 1) Hash generation:
544
+ Hull supports
545
+ Euclidean, cross-
546
+ correlation, DTW, and EMD; we support configurability of
547
+ hash settings for all four measures.
548
+ First, we identify that important parameters of the DTW hash
549
+ (e.g., size and step of the sliding window), and n-gram length
550
+ (Section II-C) can be modified to also support Euclidean, and
551
+ cross-correlation measures. There is no need for new hardware
552
+ to support additional means of configurability beyond what is
553
+ already needed for the DTW-hash parameters.
554
+ 5
555
+
556
+ Signal
557
+ Source
558
+ Device
559
+ Hash
560
+ Hash
561
+ Generation
562
+ Seizure
563
+ Broadcast
564
+ Transmit
565
+ Sensor
566
+ Detection
567
+ Hash
568
+ Signal
569
+ Remote
570
+ Collision
571
+ Signal
572
+ Devices
573
+ Check
574
+ SimilarityIntent
575
+ Source
576
+ Feature
577
+ Local
578
+ Global
579
+ Al
580
+ Sensor
581
+ Device
582
+ Extraction
583
+ SVM
584
+ SVM
585
+ Devices
586
+ Remote
587
+ Feature
588
+ Local
589
+ Sensor
590
+ Devices
591
+ Extraction
592
+ SVMSorted
593
+ Spikes
594
+ Spike
595
+ Hash
596
+ Nearest
597
+ Sensor
598
+ Generation
599
+ Template Lookup
600
+ Detection
601
+ TemplateSecond, we identify that the DTW and EMD hashes share
602
+ dot product computation of the signal with a random vector
603
+ (Section II-C), enabling the reuse of hardware.
604
+ Finally, we select a different weighted min-hash algorithm
605
+ for the last step of the DTW hash than the one originally
606
+ proposed in prior work [67]. Our approach [74] preserves hash
607
+ properties while achieving deterministic latency and power.
608
+ Our hash generation uses three PEs: HCONV, to obtain the
609
+ dot product of a configurable signal window with a random
610
+ vector; NGRAM, to compute the n-gram counts in a signal and
611
+ generate the DTW-based hash; and EMDH, to square root the
612
+ dot product, and other operations to generate the EMD hash.
613
+ 2) Hash collision check: To determine signal similarity
614
+ across multiple brain sites, the hashes received over the network
615
+ by the Hull nodes must be compared with the locally generated
616
+ hashes in the recent past (e.g., 100 ms). Each Hull node uses
617
+ a CCHECK PE that receives decompressed hashes from the
618
+ network, stores them in SRAM registers, and sorts them in
619
+ place. The PE requests the storage controller (SC) to read
620
+ the hashes to be compared from the NVM. These hashes are
621
+ compared with those in the registers using binary search.
622
+ 3) Signal similarity: CSEL identifies signals for exact
623
+ signal comparison using DTW, EMD, and Euclidean distance.
624
+ For DTW, we build a pipelined implementation that uses
625
+ the standard DTW algorithm [75] with a Sakoe-Chiba band
626
+ parameter for faster computation [76]. This PE can also support
627
+ Euclidean distance computation by using the Sakoe-Chiba band
628
+ parameter to be 1. We use the microcontroller to run EMD [77]
629
+ for now, although we will build custom PEs in the future.
630
+ 4) Intra-BCI network compression and packing: The intra-
631
+ Hull network transmits hashes and signals. We compress the
632
+ hashes but transmit uncompressed raw signals. Compression
633
+ makes data more vulnerable to bit errors. Because the hashes
634
+ are used only for approximate matching, bit errors are not
635
+ as critical to the quality of signal correlation. But, the raw
636
+ signals are used for accurate matching. Measures like DTW
637
+ are naturally resilient to single-bit errors in the signal, but their
638
+ quality worsens rapidly with erroneous compressed signals.
639
+ Compression PEs (i.e., LZ/LZMA) built for HALO do not
640
+ meet Hull’s power and latency constraints for hashes. Instead,
641
+ we build PEs customized to our particular data/communication
642
+ needs. The HFREQ PE collects the hash values (and sorts them
643
+ by frequency of occurrence) that a Hull node must transmit. The
644
+ HCOMP PE encodes the hashes first with dictionary coding,
645
+ then uses run-length encoding of the dictionary indexes [78],
646
+ and finally uses Elias-γ coding [79] on the run-length counts.
647
+ HCOMP’s compression ratio is only 10% lower than that of
648
+ LZ4/LZMA, but consumes ≈7× less power.
649
+ Compressed data is sent to the NPACK PE, which adds
650
+ checksums before transmission. The UNPACK and DCOMP
651
+ PEs decode and decompress packets on the receiving side.
652
+ 5) Storage control: An SC PE manages NVM access. SC
653
+ uses SRAM to buffer data before NVM writes in 4 KB pages.
654
+ The SRAM also permits data buffering during NVM erase
655
+ operations when writes cannot be accepted. Finally, SC (and
656
+ the SRAM) permits data reorganization to accelerate future
657
+ reads from the NVM (Section III-C). SC uses registers to store
658
+ metadata about data written by the ADC and hash PEs (e.g., the
659
+ last written page and the size of written data). This accelerates,
660
+ for example, the search for recent common signal data.
661
+ 6) Microcontroller:
662
+ The MC runs at low frequency
663
+ (20 MHz), and integrates 8 KB memory. It configures individual
664
+ PEs into target pipelines (Section IV) and receives commands to
665
+ stimulate neurons either for stopping a seizure or for conveying
666
+ neural feedback from a prosthetic. The MC can be used for
667
+ general-purpose computation not supported by any PEs such
668
+ as new algorithms, or infrequently run system operations such
669
+ as clock synchronization (Section III-F).
670
+ 7) Well-defined throughput: Each PE operates in its own
671
+ clock domain, like prior work [23], but also supports multiple
672
+ frequencies. This enables each PE to lower operating frequency
673
+ (and reduce power) to the minimum necessary to sustain the
674
+ PE’s target data rate, for varying input electrode counts. This
675
+ feature also ensures fixed latency even when PEs process a
676
+ variable number of input electrode signals. We design each PE
677
+ to support a maximum frequency f P E
678
+ max which is high enough
679
+ to support the maximum data processing rate required. We use
680
+ a configurable register that can be used to set the frequency to
681
+ f P E
682
+ max/k, where k is user-programmable. The clock frequency
683
+ is varied using a simple state machine that uses a counter to
684
+ only pass through every k clock pulses. The power consumed
685
+ by this counter is in the µW range [80], much lower than the
686
+ per-PE power. Overall, the dynamic power of the PEs scales
687
+ linearly with the frequency. This also enables deterministic
688
+ power and latency and helps optimal scheduling (Section III-E).
689
+ C. On-device non-volatile memory
690
+ Each Hull node integrates 128 GB on-device NVM to store
691
+ raw neural signals, hashes of these signals, and pre-loaded data
692
+ needed by applications (e.g., templates for spike sorting). We
693
+ divide the NVM into four partitions, one for each of these
694
+ classes of data, and another for use by the MC. The sizes
695
+ of the partitions are configurable through registers. When a
696
+ partition is full, the oldest data in the partition is overwritten.
697
+ We optimize the layout of signal and hash data in the NVM
698
+ for performance and power. Hull’s ADCs (and hash generation
699
+ PEs) process electrode samples sequentially. If the data is stored
700
+ in this manner, extracting a contiguous segment of one signal
701
+ would require long-latency reads from multiple discontinuous
702
+ NVM locations. Instead, we store contiguous chunks (where
703
+ a chunk size is user-specified) of each signal. Retrieving the
704
+ signal (or hashes) at a particular electrode and time-step need
705
+ only offset calculations. SC enables this reorganization as it
706
+ buffers data in 4 KB SRAM pages before NVM writes.
707
+ D. Networking
708
+ We use separate radios for intra-Hull and external device
709
+ communication as the required distances and communication
710
+ needs are different. For intra-Hull communication, we use a
711
+ custom network protocol with a fixed schedule across the nodes.
712
+ The schedule is decided by an ILP based on application goals
713
+ 6
714
+
715
+ Fig. 4: Seizure detection and propagation on Hull. The colors of the PEs are matched with the high-level tasks from Figure 3a.
716
+ (Section III-E). To coordinate intra-Hull communication, we
717
+ use TDMA for its simplicity and deterministic behavior.
718
+ Each network packet has an 84-bit header, and a variable data
719
+ size up to a maximum packet size of 256 bytes. The header and
720
+ the data have 32-bit CRC32 [81] checksums. On a checksum
721
+ mismatch, the receiver simply discards the packet and does not
722
+ participate in the pipeline for processing the current sample.
723
+ However, we find that while it is best to discard erroneous
724
+ packets with hashes, erroneous packets carrying raw signal
725
+ data can still be used without adversely affecting the overall
726
+ application because of the resiliency of measures like DTW.
727
+ E. Task Scheduling on Accelerators, Storage, & Networking
728
+ As input to our ILP scheduler, users provide a description of
729
+ the desired computation as a dataflow pipeline using functions
730
+ of the PEs, or as an interactive query from which the dataflow
731
+ can be extracted (Section IV). They also provide the priorities
732
+ of the tasks in the application (e.g., seizure detection versus
733
+ signal comparison), and constraints like the overall response
734
+ latency. A higher priority task ensures that the system processes
735
+ more neural signals in this task relative to the others when all
736
+ signals cannot be processed for all tasks due to power or latency
737
+ constraints. The ILP maps each function to the corresponding
738
+ PE in one or more of Hull’s nodes.
739
+ The ILP considers each possible mapping of application
740
+ tasks (e.g., seizure detection, hash comparison) to PEs as a flow,
741
+ and maximizes the weighted sum of the number of channels
742
+ processed in each flow. It uses three major constraints:
743
+ Latency: End-to-end latencies through the PEs and communi-
744
+ cation links must be below a specified limit.
745
+ Power: The power consumed by all the PEs and links at all
746
+ times must be below a specified limit.
747
+ Communication: Only one flow is allowed to use the radio at
748
+ any time because of TDMA.
749
+ Our ILP setup is simple because of the behavior of the PEs.
750
+ With variable throughput processing, the latency of processing
751
+ any number of input signals is the same. The dynamic power
752
+ consumed by a PE scales predictably linearly with the input
753
+ size (since frequency scales linearly). Finally, the system allows
754
+ two flows to share the same PE. When this occurs and electrode
755
+ signals to be processed are allocated to both flows, the signals
756
+ from each flow are interleaved so that they are all run at the
757
+ same frequency—completing within the same time as if they
758
+ were run independently. The hardware tags the signals from
759
+ each flow so that they are routed to the correct destinations.
760
+ F. Clock Synchronization
761
+ Hull’s distributed processing requires the clocks in each BCI
762
+ node to be synchronized up to a few µs of precision. Hull’s
763
+ clocks are based on pausable clock generators and clock control
764
+ units [82, 83] that suffer only picoseconds of clock uncertainty,
765
+ a scale much smaller than our µs target. Hull operates at the
766
+ temperature of the human body and does not experience clock
767
+ drift due to temperature variance. Nevertheless, Hull runs clock
768
+ synchronization once a day using SNTP [84].
769
+ One of the Hull nodes is set up to act as the SNTP server, to
770
+ which all other nodes send messages to synchronize their time.
771
+ The clients send their previously synchronized clock times,
772
+ and current times, while the server sends its corresponding
773
+ times. The difference between these values is used to adjust
774
+ the clocks. This process repeats a few times until all the
775
+ clocks are synchronized within the desired precision. During
776
+ clock synchronization, the intra-Hull network is unavailable for
777
+ application use. However, operations that do not require the
778
+ network (e.g., seizure detection) or NVM access can continue.
779
+ IV. D E P L OY I N G H U L L F O R BCI A P P L I C AT I O N S
780
+ Hull supports autonomous epileptic seizure propagation
781
+ in autonomous, movement intent detection for closed-loop
782
+ prosthesis, online spike sorting, and interactive querying.
783
+ Autonomous seizure propagation and detection: Figure 4
784
+ shows Hull’s implementation of autonomous seizure detection
785
+ and propagation. The choice of the PE functions is based
786
+ on prior work [50]. This implementation uses XCOR, BBF,
787
+ and FFT to extract features from the ADC measurements and
788
+ uses an SVM to detect a seizure. When a seizure is detected,
789
+ the nodes exchange hashes for comparison. To confirm that a
790
+ seizure is indeed likely being propagated, Hull uses the DTW
791
+ distance of the signals across nodes, and electrically stimulates
792
+ the brain in response to predicted propagation within 10 ms.
793
+ The dataflow in Figure 4 is fed to the ILP to schedule this
794
+ application on Hull. The ILP generates an optimal mapping of
795
+ the functions and generates a configuration code. This code is
796
+ run by each Hull node’s microcontroller to configure the PEs.
797
+ Online spike sorting: Figure 5 shows the mapping of online
798
+ spike sorting to Hull. The template-matching version pre-loads
799
+ the NVM in the nodes with templates and their hashes.
800
+ Fig. 5: Spike sorting on Hull.
801
+ 7
802
+
803
+ NEO
804
+ sC
805
+ ADC
806
+ HCONV
807
+ EMDH
808
+ GATE
809
+ CCHECK
810
+ MCSource
811
+ Remote
812
+ Device
813
+ FFT
814
+ Devices
815
+ SVM
816
+ ADC
817
+ BBF
818
+ THR
819
+ SC
820
+ XCOR
821
+ UNPACK
822
+ DCOMP
823
+ CCHECK
824
+ DTW
825
+ THR
826
+ SC
827
+ NGRAM
828
+ NPACK
829
+ HCONV
830
+ GATE
831
+ HFREQ
832
+ HCOMP
833
+ CSELMovement intent detection and feedback: Figure 6 shows
834
+ how Hull implements detection of movement intent and
835
+ feedback, augmented from prior work[55]. Each node extracts
836
+ features from its local signals and computes a partial SVM
837
+ output. Then, one node receives the partial SVM outputs and
838
+ computes the commands for the prosthetic. The movements of
839
+ the prosthetic are transmitted wirelessly, and each node runs a
840
+ stimulation algorithm for its region to provide neural feedback.
841
+ Fig. 6: Query pipeline for movement intent application
842
+ Interactive querying:
843
+ Interactive queries are used to read
844
+ multi-site data or modify system configuration. The general
845
+ format for an interactive query follows a select-project structure,
846
+ akin to SQL queries [85]:
847
+ from [set of devices] select
848
+ data[electrodes][time range] where condition
849
+ The query specifies select criteria, i.e., the range of time
850
+ from which data is requested, along with the nodes from which
851
+ the data should be returned, and the project criteria, i.e., the
852
+ conditions that the selected data must satisfy. Similar to select-
853
+ project-based SQL queries, Hull’s interactive query interface
854
+ can support a wide range of complex queries. The project
855
+ conditions are evaluated on the PEs when possible, and on the
856
+ microcontroller otherwise. The following illustrates an example
857
+ query to fetch ±100 ms of data from all devices from the time
858
+ they detected a seizure in the last 5 s. This example requires
859
+ seizure detection using 120 ms windows of the raw signal data.
860
+ from * select data[:][t-100:t+100] where
861
+ seizure_detect(data[t-120:t]) and t >= -5000
862
+ and t <= 0
863
+ Complex examples can supply template signals and request
864
+ data from nodes that recorded signals similar to the templates.
865
+ Queries are separately compiled and the extracted dataflow is
866
+ sent to the ILP, which finalizes query execution schedules.
867
+ Users can also set up the pipelines of specific tasks; e.g.,
868
+ a clinician may modify seizure_detect to use only FFT
869
+ for feature extraction instead of FFT, BBF and XCOR as in
870
+ Figure 4. Such a configuration does not need the ILP.
871
+ Interactive queries use a power-hungry radio, precluding
872
+ simultaneous execution of queries and autonomous tasks
873
+ in some cases. Some of these are either slowed down or
874
+ temporarily paused; e.g., when a clinician responds to a seizure
875
+ alert and requests recent signal data, seizure propagation has
876
+ to be paused to send the data to the clinician.
877
+ V. M E T H O D O L O G Y
878
+ Processing fabric: Hull’s PEs are designed with a commercial
879
+ 28 nm fully-depleted silicon-on-insulator (FD-SOI) CMOS
880
+ process and synthesized using the Cadence® suite of tools.
881
+ We use standard cell libraries from STMicroelectronic and
882
+ foundry-supplied memory macros that are interpolated to 40 °C,
883
+ which is close to human body temperature. We design each
884
+ PE for its highest frequency, and scale the power when using
885
+ them at lower frequency. We run multi-corner, physically-aware
886
+ synthesis, and use latency and power measurements from the
887
+ worst variation corner. Table I shows these values. We taped
888
+ out early designs of the PEs at 12 nm to confirm these values.
889
+ TABLE I: Latency and Power of the PEs.
890
+ Processing
891
+ Max Freq
892
+ Power (µW )
893
+ Latency
894
+ Elements
895
+ (MHz)
896
+ Leakage
897
+ Dyn/Elec
898
+ (mS)
899
+ FFT
900
+ 15.7
901
+ 141.97
902
+ 9.02
903
+ 4.00
904
+ XCOR
905
+ 85
906
+ 377.00
907
+ 44.11
908
+ 4.00
909
+ BBF
910
+ 6
911
+ 66.00
912
+ 0.35
913
+ 4.00
914
+ SVM
915
+ 3
916
+ 99.00
917
+ 0.53
918
+ 1.67
919
+ THR
920
+ 16
921
+ 2.00
922
+ 0.11
923
+ 0.06
924
+ NEO
925
+ 3
926
+ 12.00
927
+ 0.03
928
+ 4.00
929
+ HCONV
930
+ 3
931
+ 89.89
932
+ 0.80
933
+ 1.50
934
+ NGRAM
935
+ 0.2
936
+ 15.69
937
+ 0.08
938
+ 1.50
939
+ EMDH
940
+ 0.03
941
+ 10.47
942
+ 0.00
943
+ 0.04
944
+ GATE
945
+ 5
946
+ 67.00
947
+ 0.63
948
+ 0.00
949
+ HFREQ
950
+ 2.88
951
+ 61.98
952
+ 0.52
953
+ 4.00
954
+ HCOMP
955
+ 2.88
956
+ 77.00
957
+ 0.65
958
+ 4.00
959
+ NPACK
960
+ 3
961
+ 3.53
962
+ 5.49
963
+ 0.008
964
+ UNPACK
965
+ 3
966
+ 3.53
967
+ 5.49
968
+ 0.008
969
+ DCOMP
970
+ 16.393
971
+ 7.20
972
+ 0.14
973
+ 0.50
974
+ CCHECK
975
+ 16.393
976
+ 7.20
977
+ 0.14
978
+ 0.50
979
+ CSEL
980
+ 0.1
981
+ 4.00
982
+ 6.00
983
+ 0.04
984
+ SC
985
+ 3.2
986
+ 95.30
987
+ 1.64
988
+ 0.03-4
989
+ DTW
990
+ 50
991
+ 167.93
992
+ 26.94
993
+ 0.003
994
+ We assume that each node uses a standard 96-electrode
995
+ array [86] to sense neural activity, and a configurable 16-bit
996
+ ADC [87] generating 30 K samples per second per electrode.
997
+ The ADC dissipates 2.88 mW per sample from all 96 electrodes.
998
+ Each node has a DAC to support electrical stimulation of brain
999
+ tissue [88], a process that consumes ≈0.6 mW of power.
1000
+ Radio parameters. We use a radio that can transmit/receive
1001
+ up to 10 m to external devices, at 46 Mbps, 250 MHz frequency,
1002
+ and which consumes 9.2 mW. For intra-Hull communication, we
1003
+ consider a state-of-the-art radio designed for safe implantation
1004
+ in the brain [89]. While the radio was originally designed for
1005
+ asymmetric transmission/reception, we modify it for symmetric
1006
+ communication. Our intra-Hull radio supports a transmission
1007
+ distance of 20 cm (i.e., > 90th percentile head breadth [90]). To
1008
+ estimate the power and data rates, we use path-loss models [91],
1009
+ with a path-loss parameter of 3.5 for transmission through the
1010
+ brain, skull, and skin, consistent with prior studies [92, 93].
1011
+ We calculate that our radio can transmit/receive 7 Mbps at
1012
+ 4.12 GHz and consumes 1.721 mW of power.
1013
+ Non-volatile memory. We use NVMs with 4 KB page sizes
1014
+ and 1 MB block sizes. The NVMs can read 8 bytes, write a
1015
+ page, or erase a block in one operation. We use SLC NAND
1016
+ parameters like erase time (1.5 ms), program time (350 us),
1017
+ and voltage (2.7 V) from industrial technical reports [94] with
1018
+ NVSim [95]. We choose a low operating power transistor type
1019
+ in NVSim, and use a temperature of 40 °C. NVSim assesses
1020
+ a leakage power of 0.252 mW, dynamic energies of 164.4 nJ
1021
+ and 261.143 nJ per page for reads and writes, respectively. We
1022
+ also use these parameters to size our SC buffers to 24 KB.
1023
+ Electrophysiological data. We use publicly available electro-
1024
+ physiological data for our evaluation [96, 97]. For seizure
1025
+ detection and propagation, we use a data from the Mayo
1026
+ 8
1027
+
1028
+ Source
1029
+ ADC
1030
+ FFT
1031
+ SVM
1032
+ UNPACK
1033
+ SVM
1034
+ THR
1035
+ MC
1036
+ MC
1037
+ Device
1038
+ Remote
1039
+ MC
1040
+ ADC
1041
+ FFT
1042
+ SVM
1043
+ NPACK
1044
+ DevicesSeizure
1045
+ Detection
1046
+ Spike
1047
+ Sorting
1048
+ Signal
1049
+ Similarity
1050
+ Movement
1051
+ Intent
1052
+ 100
1053
+ 101
1054
+ 102
1055
+ 103
1056
+ 104
1057
+ Max Aggregate Throughput (Mbps)
1058
+ Central No-Hash
1059
+ Central
1060
+ Hull No-Hash
1061
+ Hull
1062
+ (a) Maximum aggregate throughput of Hull versus
1063
+ alternative BCI architectures.
1064
+ 1
1065
+ 2
1066
+ 4
1067
+ 8
1068
+ 16
1069
+ 32
1070
+ 64
1071
+ Number of devices
1072
+ 1
1073
+ 10
1074
+ 100
1075
+ 1000
1076
+ 10000
1077
+ Max Aggregate Throughput (Mbps)
1078
+ DTW Comparison
1079
+ Hash Comparison
1080
+ DTW One-All
1081
+ Movement Intent
1082
+ (b) Maximum
1083
+ aggregate
1084
+ throughput
1085
+ of
1086
+ communication-dependent tasks in Hull.
1087
+ 0
1088
+ 50
1089
+ 100
1090
+ 150
1091
+ Sensor Data Rate (Mbps)
1092
+ 0
1093
+ 25
1094
+ 50
1095
+ 75
1096
+ 100
1097
+ 125
1098
+ Throughput (Mbps)
1099
+ Seizure Detection
1100
+ Spike Sorting
1101
+ (c) Maximum throughput of tasks without inter-
1102
+ node communication, using re-designed PEs.
1103
+ Fig. 7: Experimental quantification of Hull’s benefits.
1104
+ Clinic [97] of a patient (label “I001 P013”) with 76 electrodes
1105
+ implanted in the parietal/occipital lobes. This data-set was
1106
+ recorded for 4 days at 5 KHz, and is annotated with hundreds
1107
+ of seizure instances. We upscaled the sampling frequency to
1108
+ 30 KHz, and split the dataset to emulate multiple BCI devices.
1109
+ We use consecutive and overlapping 4 ms windows (120
1110
+ samples) from the electrodes to detect seizures [98]. For
1111
+ propagation, we check similarity with a seizure-positive signal
1112
+ in the last 100 ms from electrode data in all nodes [98]. For
1113
+ hash pipelines, we use one 8-bit hash for 120 sample data.
1114
+ For spike sorting, we use the Spikeforest dataset [96, 99].
1115
+ This dataset contains recordings collected from the CA1 region
1116
+ of a rat hippocampus using tetrode electrodes recorded at
1117
+ 30 KHz sampling frequency. The dataset contains spikes from
1118
+ 10 neurons, with 65, 000 spikes that were manually sorted.
1119
+ Alternative system architectures. Table II shows the systems
1120
+ that we compare Hull against. Hull No-Hash uses the same
1121
+ Hull architecture but does not use hashes. The power saved by
1122
+ removing the hash processing PEs is allocated to the remaining
1123
+ tasks optimally. Hull No-Hash does not require re-writing
1124
+ the applications for hash-based processing. Central uses one
1125
+ processing node with the same processor as Hull, and multiple
1126
+ sensors that are connected using wires. Finally, Central No-
1127
+ Hash is a centralized design without hash processing, like
1128
+ most existing BCIs [27, 31, 100]. We do not consider wireless
1129
+ centralized designs as they need a radio and have lesser compute
1130
+ available than the wired ones. We also do not consider designs
1131
+ without memory as they do not support seizure propagation. We
1132
+ map our applications onto all systems using the ILP, ensuring
1133
+ that each node consumes < 15 mW.
1134
+ TABLE II: Alternative BCI designs.
1135
+ Design
1136
+ Architecture
1137
+ Comparison
1138
+ Communication
1139
+ Hull (Proposed)
1140
+ Distributed
1141
+ Hash, Signal
1142
+ Wireless
1143
+ Hull-No hash
1144
+ Distributed
1145
+ Signal
1146
+ Wireless
1147
+ Central
1148
+ Centralized
1149
+ Hash, Signal
1150
+ Wired
1151
+ Central-No hash
1152
+ Centralized
1153
+ Signal
1154
+ Wired
1155
+ VI. E VA L UAT I O N
1156
+ A. Comparing BCI Architectures
1157
+ Figure 7a shows the maximum aggregate throughput of the
1158
+ systems in Table II. A task’s maximum aggregate throughput is
1159
+ achieved when it is the only task running in the system, summed
1160
+ over all nodes. Central No-Hash has the worst throughput for
1161
+ all tasks. This design suffers from having just one processor
1162
+ and from using expensive signal processing. Central increases
1163
+ throughput by an order of magnitude for tasks that benefit
1164
+ from hashing (spike sorting and signal similarity). However,
1165
+ the single processor remains the bottleneck for all tasks.
1166
+ Hull No-Hash has distributed processors and enjoys higher
1167
+ aggregate seizure detection and movement intent. However, it
1168
+ performs poorly for tasks that need signal comparison (signal
1169
+ similarity, spike sorting). For these tasks, Hull No-Hash has
1170
+ lower throughput than Central because it does not use hashes.
1171
+ Hull uses distributed hash-based processing and has the highest
1172
+ aggregate throughput for all tasks. Compared to Central-No
1173
+ hash, which is closest to state-of-the-art BCIs, Hull’s data
1174
+ rates are an order of magnitude higher for seizure detection,
1175
+ and movement intent detection, and are nearly three orders of
1176
+ magnitude higher for signal similarity and spike sorting.
1177
+ B. Throughput for Communication-Dependent Tasks
1178
+ Figure 7b shows the maximum aggregate throughput of
1179
+ the communication-dependent task (hash comparison, DTW
1180
+ comparison, and movement intent), with various node counts.
1181
+ DTW Comparison uses all-to-all comparison of raw signals.
1182
+ It has a lower throughput than the other tasks because only
1183
+ 16 out of 96 electrode signals can be transmitted for all-to-
1184
+ all comparison. The reason is that new electrode samples are
1185
+ obtained at 47 Mbps from the ADC, but the intra-Hull radio can
1186
+ only transmit about 7 Mbps. Increasing the number of nodes
1187
+ decreases the throughput further because of the communication
1188
+ delays. Because Hull uses a TDMA network, where slots for
1189
+ network access are serialized, DTW Comparison has the worst
1190
+ throughput and scales poorly with node count.
1191
+ An alternative DTW One-All, which only uses one-to-all
1192
+ DTW comparison, scales better since its communication latency
1193
+ 9
1194
+
1195
+ doesn’t increase with the number of nodes. However, a one-to-
1196
+ all comparison is insufficient for general BCI applications.
1197
+ Hash Comparison uses all-to-all hash communication to
1198
+ check for collisions. Its throughput increases to 470 Mbps until
1199
+ 10 devices, after which it begins to decrease. When the number
1200
+ of nodes is small, few TDMA slots are required to exchange all
1201
+ hashes, enabling a linear increase in throughput as a function of
1202
+ node count. But, as node counts keep increasing, it takes longer
1203
+ to communicate all hashes and overall throughput reduces.
1204
+ Finally, Movement Intent uses all-to-one communication of
1205
+ the partial SVM products. However, as the product is small, its
1206
+ throughput scales linearly with the number of nodes (note that
1207
+ the Y-axis in Figure 7b is logarithmic). It also has the highest
1208
+ aggregate throughput because it needs the least communication.
1209
+ Figure 7b shows that hashing, and distributing the SVM
1210
+ computation in Hull enables it to scale to many regions and
1211
+ with higher data rates than what has been possible.
1212
+ C. Throughput for Non-Communicating Tasks
1213
+ We design our PEs for a maximum sensor rate of 47 Mbps
1214
+ per node (Section V). However, we study potential PE re-design
1215
+ to support higher processing rates for tasks that do not need
1216
+ communication. Figure 7c shows the throughput of Seizure
1217
+ Detection and Spike Sorting for varying per-node signal sensor
1218
+ rates. Task throughput increases linearly up to 105 Mbps for
1219
+ spike sorting, and 70 Mbps for seizure detection. Beyond this
1220
+ sensing rate, the higher frequency of the PEs and ADCs results
1221
+ in exceeding the device power limit. Nonetheless, these values
1222
+ are nearly twice as supported by existing single-implant BCIs
1223
+ and show the robustness of our methodology.
1224
+ D. Application Level Throughput
1225
+ The throughput achieved at the application level depends
1226
+ on the number of implanted nodes. Additionally, when there
1227
+ are multiple tasks, it depends on the priorities assigned to the
1228
+ application tasks. Recall that the ILP schedules applications
1229
+ to optimize a priority-weighted sum of the signals processed
1230
+ in each task. For seizure detection propagation, Figure 8a
1231
+ shows the weighted aggregate throughput as a function of the
1232
+ number of devices, for various weight choices (in the format
1233
+ seizure detection:hash comparison:DTW comparison). For an
1234
+ equal priority to seizure detection, DTW processing, and hash
1235
+ comparison, we find that the maximum throughput is achieved
1236
+ for 11 nodes. Other weight choices have different optimal node
1237
+ counts. Note that there is no comparable system for on-device
1238
+ seizure propagation—Hull is the first design with this feature.
1239
+ Movement intent has only one task, and its throughput (in
1240
+ number of intents detected per second), is shown in Figure 8b.
1241
+ This metric accounts for only movement intent detection, and
1242
+ not for the variable response latency of the prosthetic device.
1243
+ Hull spike sorts up to 12, 250 spikes per second per node
1244
+ with 82% accuracy, comparing well to the state of the art [96].
1245
+ E. Interactive Queries
1246
+ We consider three types of common queries applied on data
1247
+ ranging from the past 100 ms (≈7 MB over all nodes) to the
1248
+ 0
1249
+ 20
1250
+ 40
1251
+ 60
1252
+ 80
1253
+ Number of Devices
1254
+ 0
1255
+ 10
1256
+ 20
1257
+ 30
1258
+ 40
1259
+ 50
1260
+ Weighted Throughput (Mbps)
1261
+ 1
1262
+ 1:1:1
1263
+ 3:1:1
1264
+ 1:3:1
1265
+ 0
1266
+ 20
1267
+ 40
1268
+ 60
1269
+ 80
1270
+ Number of Devices
1271
+ 0
1272
+ 50
1273
+ 100
1274
+ 150
1275
+ Movement Intents / Second
1276
+ 2
1277
+ (a) Weighted throughput of seizure
1278
+ propagation tasks.
1279
+ 0
1280
+ 20
1281
+ 40
1282
+ 60
1283
+ 80
1284
+ Number of Devices
1285
+ 0
1286
+ 10
1287
+ 20
1288
+ 30
1289
+ 40
1290
+ 50
1291
+ Weighted Throughput (Mbps)
1292
+ 1
1293
+ 1:1:1
1294
+ 3:1:1
1295
+ 1:3:1
1296
+ 0
1297
+ 20
1298
+ 40
1299
+ 60
1300
+ 80
1301
+ Number of Devices
1302
+ 0
1303
+ 50
1304
+ 100
1305
+ 150
1306
+ Movement Intents / Second
1307
+ 2
1308
+ (b) Movement intents
1309
+ per second
1310
+ (without device movement time).
1311
+ Fig. 8: Application level metrics on Hull.
1312
+ past 1 s (≈60 MB). They are: Q1, which returns all signals that
1313
+ were detected as a seizure; Q2, which returns all signals that
1314
+ matched with a template using a hash; and Q3, which returns
1315
+ all data in the timeframe. For Q1 and Q2, we vary the fraction
1316
+ of data that tests positive for their condition.
1317
+ Figure 9 shows Hull’s throughput with 11 nodes for our
1318
+ queries. Hull supports up to 10 queries per second (QPS) for
1319
+ Q1 and Q2 over the last 100 ms data (the common case). If Q2
1320
+ is run with DTW instead of hash-based search, we see a QPS
1321
+ of 8, which is only slightly lower, but the power consumption
1322
+ increases from 3.57 mW for the hash vs the entire 15 mW for
1323
+ DTW based matching. Thus, DTW-based matching is unsuitable
1324
+ when interactively querying in response to a seizure.
1325
+ Q3 on this data takes 1.21 s, yielding a throughput of ≈0.8.
1326
+ In interactive querying, the external radio, which consumes
1327
+ high power, is the bottleneck.
1328
+ As the data to be searched increases, the query latency
1329
+ increases linearly due to the radio latency. However, Hull
1330
+ can still process 1 QPS for Q1 and Q2 for the past 1 s data
1331
+ (≈60 MB), making it suitable for real-time use.
1332
+ 7 (110 ms)
1333
+ 24 (400 ms)
1334
+ 42 (700 ms)
1335
+ 60 (1000 ms)
1336
+ 0.0
1337
+ 0.2
1338
+ 0.4
1339
+ 0.6
1340
+ 0.8
1341
+ 1.0
1342
+ 5%
1343
+ 5%
1344
+ 50%
1345
+ 50%
1346
+ 100%
1347
+ 100%
1348
+ 100%
1349
+ 5%
1350
+ 5%
1351
+ 50%
1352
+ 50%
1353
+ 100%
1354
+ 100%
1355
+ 100%
1356
+ 5%
1357
+ 5%
1358
+ 50%
1359
+ 50%
1360
+ 100%
1361
+ 100%
1362
+ 100%
1363
+ 5%
1364
+ 5%
1365
+ 50%
1366
+ 50%
1367
+ 100%
1368
+ 100%
1369
+ 100%
1370
+ Query Data Size (MB) (Time Range)
1371
+ 0.1
1372
+ 1
1373
+ 10
1374
+ Queries per second
1375
+ Q1
1376
+ Q2
1377
+ Q3
1378
+ Fig. 9: Interactive query throughput on Hull with 11 nodes.
1379
+ F. Hashing
1380
+ Accuracy: We vary the parameters of all our hash functions
1381
+ and show the performance of the best configuration for seizure
1382
+ propagation and spike sorting. Figure 11 shows the accuracy
1383
+ (TP: True positive, TN: True negative, FP: False positive, FN:
1384
+ False negative) for the four hash functions. XCOR and EMD
1385
+ hashes have ≈ 85% accuracy while Euclidean and DTW have
1386
+ over 90% accuracy. The high true positive rate of our DTW
1387
+ 10
1388
+
1389
+ 0
1390
+ 25
1391
+ 50
1392
+ 75
1393
+ 100
1394
+ 125
1395
+ Window Size
1396
+ 0
1397
+ 1
1398
+ 2
1399
+ 3
1400
+ 4
1401
+ 5
1402
+ 6
1403
+ Ngram Size
1404
+ XCOR
1405
+ DTW
1406
+ Euclidean
1407
+ XCOR Euclidean DTW
1408
+ EMD
1409
+ 0
1410
+ 50
1411
+ 100
1412
+ Percentage (%)
1413
+ TP
1414
+ FN
1415
+ TN
1416
+ FP
1417
+ Fig. 10: Hash accuracy.
1418
+ 0
1419
+ 25
1420
+ 50
1421
+ 75
1422
+ 100
1423
+ 125
1424
+ Window Size
1425
+ 0
1426
+ 1
1427
+ 2
1428
+ 3
1429
+ 4
1430
+ 5
1431
+ 6
1432
+ Ngram Size
1433
+ XCOR
1434
+ DTW
1435
+ Euclidean
1436
+ XCOR Euclidean DTW
1437
+ EMD
1438
+ 0
1439
+ 25
1440
+ 50
1441
+ 75
1442
+ 100
1443
+ Percentage (%)
1444
+ True PositiveTrue Negative
1445
+ Fig. 11: Hash flexibility.
1446
+ Standard Bit Error Rate
1447
+ 0.0
1448
+ 0.2
1449
+ 0.4
1450
+ 0.6
1451
+ 0.8
1452
+ 1.0
1453
+ Percentage of Packets with Error (%)
1454
+ 30
1455
+ 50
1456
+ 70
1457
+ 90
1458
+ 100
1459
+ Hash Packets
1460
+ Signal Packets
1461
+ DTW Failure
1462
+ 10
1463
+ 4
1464
+ 10
1465
+ 5
1466
+ 10
1467
+ 6
1468
+ 0
1469
+ 5
1470
+ 10
1471
+ 15
1472
+ Fig. 12: Bit error rates.
1473
+ 1
1474
+ 2
1475
+ 3
1476
+ 4
1477
+ 5
1478
+ 6
1479
+ 7
1480
+ 8
1481
+ 9 10 11 12 13 14 15
1482
+ Number of devices
1483
+ 0.01
1484
+ 0.1
1485
+ 1
1486
+ 10
1487
+ 100
1488
+ 1000
1489
+ 10000
1490
+ 100000
1491
+ Time (seconds)
1492
+ Full ILP
1493
+ Reduced
1494
+ Fig. 13: Time to solve the ILP.
1495
+ hash is particularly beneficial for the seizure propagation (note
1496
+ that false positives are removed using exact DTW).
1497
+ Parameter selection: Figure 11 shows the best parameters
1498
+ of our hash implementation (window size and n-gram size—
1499
+ Section II-C) to approximate each of Euclidean, cross correla-
1500
+ tion, and DTW similarity. We also show parameters (with lighter
1501
+ colors in the figure) that are within 90% of the true positive
1502
+ rate achieved by the corresponding best configuration. This
1503
+ flexibility enables reusing a single fast hardware accelerator
1504
+ for different measures.
1505
+ G. Impact of Network Bit Error Rate
1506
+ The intra-Hull network protocol drops packets carrying
1507
+ hashes when there is a checksum error but allows signal packets
1508
+ to flow into PEs since signal similarity measures are naturally
1509
+ resilient to a few errors. We simulate various bit-error ratios
1510
+ (BERs) using uniformly random bit flips in the packet header
1511
+ and data. Figure 12 shows the fraction of hash or signal packets
1512
+ with an error at different BERs, and the fraction of erroneous
1513
+ signal packets that flipped the similarity measure (DTW). For
1514
+ reference, the BER is <10−4 for the radio we use [89].
1515
+ Figure 12 shows that signals and hashes suffer errors as
1516
+ BER increases, but signals are more susceptible since they are
1517
+ longer. But, even though several signal packets suffer errors,
1518
+ they have no impact on the final signal similarity outcome.
1519
+ H. ILP Performance
1520
+ The complexity of the ILP increases with the number of
1521
+ pipeline stages in the application and the number of Hull nodes.
1522
+ When all nodes are the same and have the same power/energy
1523
+ constraints, the schedule of one node can be replicated (with
1524
+ a constant offset) on all other nodes and remain optimal. We
1525
+ call this method Reduced ILP. However, we cannot apply
1526
+ this method when the nodes are different or have different
1527
+ constraints. Figure 13 shows the time taken to solve the ILP
1528
+ and the reduced version for varying numbers of devices for the
1529
+ seizure propagation application. We measure this time when
1530
+ using GLPK, an open-source ILP solver, with default settings
1531
+ on an Intel-Xeon E5-2620 v3 machine with 93 GB RAM.
1532
+ As expected, the solver time for the standard ILP increases
1533
+ exponentially with the number of devices, taking ≈2 hours
1534
+ with 11 devices. For >12 devices, the ILP did not finish within
1535
+ 24 hours and was terminated. The reduced ILP however, can
1536
+ be solved in less than 10ms for any number of devices.
1537
+ VII. R E L AT E D W O R K
1538
+ Commercial and research BCIs have focused largely on single
1539
+ brain location monitoring and stimulation [16, 17, 23, 27, 28],
1540
+ and have no support for distributed systems, making them
1541
+ inhospitable for the applications that we target.
1542
+ Most implantable BCIs offer little to no storage capacity
1543
+ and stream data out continuously instead. NeuroChip [100] is
1544
+ an exception, but is wired to an external case storing a 128
1545
+ GB SD card that must be physically extracted for offline data
1546
+ analysis. Hull is the first to use storage for pre-processing and
1547
+ reduce computation by using the hash.
1548
+ A growing interest in distributed analyses of the brain [1,
1549
+ 13, 25, 26] has motivated the design of rudimentary multi-site
1550
+ BCIs [31, 32, 101]. Prior studies [31, 32] propose microchips
1551
+ that stream sensor data wirelessly to a central hub outside the
1552
+ skull using back-scattering radio techniques. Unfortunately,
1553
+ these approaches are restricted in their interfacing bandwidth
1554
+ as they rely on centralized processing and communication.
1555
+ Although recent work has studied unary neural networks on
1556
+ single-site BCIs [102], we will study distributed neural network
1557
+ models for seizure detection, propagation, spike sorting, and
1558
+ movement intent for multi-side BCIs going forward. Hull can
1559
+ support any algorithm with linear computational complexity
1560
+ without significant changes to the ILP formulation. However,
1561
+ neural network inference, which is super-linear, may require
1562
+ non-linear formulations for scheduling. Using MILP and
1563
+ approximations for such PEs may be a suitable extension.
1564
+ VIII. C O N C L U S I O N & F U T U R E W O R K
1565
+ Hull enables distributed BCI interfacing that can scale to
1566
+ multiple regions, and provides for the first time, on-device
1567
+ computation for important BCI applications. Hull offers two
1568
+ orders of magnitude higher task throughput, and real-time
1569
+ support for interactive querying with up to 10 QPS over 7 MB
1570
+ data or 1 QPS over 60 MB data.
1571
+ Hull will influence the wider field of IoT devices, ranging
1572
+ from low-power temperature and voltage sensors [103], AR/VR
1573
+ devices, to devices in smart home, factory, and vehicle settings.
1574
+ These devices must collect and process large volumes of data
1575
+ on the edge, as communicating this data to centralized locations
1576
+ is likely to be near impossible for today’s cloud infrastructure.
1577
+ Similar to Hull, a network of power-constrained devices will
1578
+ need to process large volumes of data, often with flexible
1579
+ processing requirements to support rapidly evolving use cases.
1580
+ 11
1581
+
1582
+ Hull’s design principles– i.e., its modular PE architecture,
1583
+ fast-but-approximate hash-based approach to signal similarity,
1584
+ support for low-power and efficiently-indexed non-volatile
1585
+ storage, and a centralized planner that produces near-optimal
1586
+ mapping of task schedules to devices – can be instrumental to
1587
+ success in other IoT environments as well.
1588
+ R E F E R E N C E S
1589
+ [1] R. A. Andersen, T. Aflalo, L. Bashford, D. Bj˚anes, and
1590
+ S. Kellis, “Exploring Cognition with Brain–Machine
1591
+ Interfaces,” Annual Review of Psychology, vol. 73, pp.
1592
+ 131–158, 2022.
1593
+ [2] M. A. Lebedev and M. A. Nicolelis, “Brain-machine
1594
+ interfaces: From basic science to neuroprostheses and
1595
+ neurorehabilitation,” Physiological reviews, vol. 97, no. 2,
1596
+ pp. 767–837, 2017.
1597
+ [3] S. Chandrasekaran, M. Fifer, S. Bickel, L. Osborn,
1598
+ J. Herrero, B. Christie, J. Xu, R. K. Murphy, S. Singh,
1599
+ M. F. Glasser et al., “Historical perspectives, challenges,
1600
+ and future directions of implantable brain-computer
1601
+ interfaces for sensorimotor applications,” Bioelectronic
1602
+ medicine, vol. 7, no. 1, pp. 1–11, 2021.
1603
+ [4] A. S. Widge, D. D. Dougherty, and C. T. Moritz, “Af-
1604
+ fective brain-computer interfaces as enabling technology
1605
+ for responsive psychiatric stimulation,” Brain-Computer
1606
+ Interfaces, vol. 1, no. 2, pp. 126–136, 2014.
1607
+ [5] J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, “Brain-
1608
+ computer interfaces in medicine,” in Mayo clinic pro-
1609
+ ceedings, vol. 87, no. 3.
1610
+ Elsevier, 2012, pp. 268–279.
1611
+ [6] D. J. McFarland, J. Daly, C. Boulay, and M. A. Parvaz,
1612
+ “Therapeutic applications of BCI technologies,” Brain-
1613
+ Computer Interfaces, vol. 4, no. 1-2, pp. 37–52, 2017.
1614
+ [7] L. Huang and G. van Luijtelaar, “Brain computer inter-
1615
+ face for epilepsy treatment,” Brain-Computer Interface
1616
+ Systems-Recent Progress and Future Prospects, 2013.
1617
+ [8] C. M¨uhl, B. Allison, A. Nijholt, and G. Chanel, “A survey
1618
+ of affective brain computer interfaces: principles, state-
1619
+ of-the-art, and challenges,” Brain-Computer Interfaces,
1620
+ vol. 1, no. 2, pp. 66–84, 2014.
1621
+ [9] G. Buzs´aki, C. A. Anastassiou, and C. Koch, “The Origin
1622
+ of Extracellular Fields and Currents — EEG, ECoG, LFP
1623
+ and Spikes,” Nature Reviews Neuroscience, vol. 13, pp.
1624
+ 407–420, May 2012.
1625
+ [10] B. Pesaran, M. Vinck, G. T. Einevoll, A. Sirota, P. Fries,
1626
+ M. Siegel, W. Truccolo, C. E. Schroeder, and R. Srini-
1627
+ vasan, “Investigating large-scale brain dynamics using
1628
+ field potential recordings: analysis and interpretation,”
1629
+ Nature neuroscience, vol. 21, no. 7, pp. 903–919, 2018.
1630
+ [11] J. del R. Milan and J. M. Carmena, “Invasive or
1631
+ Noninvasive: Understanding Brain-Machine Interface
1632
+ Technology [Conversations in BME],” IEEE Engineering
1633
+ in Medicine and Biology Magazine, vol. 29, pp. 16–22,
1634
+ Jan 2010.
1635
+ [12] E. Musk et al., “An integrated brain-machine interface
1636
+ platform with thousands of channels,” Journal of medical
1637
+ Internet research, vol. 21, no. 10, p. e16194, 2019.
1638
+ [13] K. M. Szostak, P. Feng, F. Mazza, and T. G. Con-
1639
+ standinou, “Distributed Neural Interfaces: Challenges and
1640
+ Trends in Scaling Implantable Technology,” Handbook
1641
+ of Neuroengineering, pp. 1–37, 2021.
1642
+ [14] A. B. Rapeaux and T. G. Constandinou, “Implantable
1643
+ brain machine interfaces: first-in-human studies, tech-
1644
+ nology challenges and trends,” Current opinion in
1645
+ biotechnology, vol. 72, pp. 102–111, 2021.
1646
+ [15] U.S. Food and Drug Administration, “FDA authorizes
1647
+ marketing of device to facilitate muscle rehabilitation in
1648
+ stroke patients,” https://www.fda.gov/news-events/press-
1649
+ announcements/fda-authorizes-marketing-device-
1650
+ facilitate-muscle-rehabilitation-stroke-patients,
1651
+ April
1652
+ 2021.
1653
+ [16] F. T. Sun and M. J. Morrell, “The RNS System:
1654
+ responsive cortical stimulation for the treatment of
1655
+ refractory partial epilepsy,” Expert review of medical
1656
+ devices, vol. 11, no. 6, pp. 563–572, 2014.
1657
+ [17] Medtronic, “Deep Brain Stimulation Systems - Activa
1658
+ PC,”
1659
+ https://www.medtronic.com/us-en/healthcare-
1660
+ professionals/products/neurological/deep-brain-
1661
+ stimulation-systems/activa-pc.html, November 2018,
1662
+ Retrieved August 10, 2019.
1663
+ [18] U.S.
1664
+ Food and Drug
1665
+ Administration, “Implanted
1666
+ Brain-Computer Interface (BCI) Devices for Patients
1667
+ with Paralysis or Amputation - Non-clinical Testing and
1668
+ Clinical Considerations,” https://www.fda.gov/regulatory-
1669
+ information/search-fda-guidance-documents/implanted-
1670
+ brain-computer-interface-bci-devices-patients-
1671
+ paralysis-or-amputation-non-clinical-testing, February
1672
+ 2019, Retrieved August 10, 2019.
1673
+ [19] J. J. Han, “Synchron receives FDA approval to be-
1674
+ gin early feasibility study of their endovascular, brain-
1675
+ computer interface device,” Artificial Organs, vol. 45,
1676
+ no. 10, pp. 1134–1135, 2021.
1677
+ [20] C. Serrano-Amenos, F. Hu, P. T. Wang, S. Kellis,
1678
+ R. A. Andersen, C. Y. Liu, P. Heydari, A. H. Do, and
1679
+ Z. Nenadic, “Thermal analysis of a skull implant in brain-
1680
+ computer interfaces,” in 2020 42nd Annual International
1681
+ Conference of the IEEE Engineering in Medicine &
1682
+ Biology Society (EMBC).
1683
+ IEEE, 2020, pp. 3066–3069.
1684
+ [21] P. D. Wolf, “Thermal Considerations for the Design of
1685
+ an Implanted Cortical Brain-Machine Interface (BMI),”
1686
+ Indwelling Neural Implants: Strategies for Contending
1687
+ with the In Vivo Environment, 2008.
1688
+ [22] I. Stevenson and K. Kording, “How Advances in Neural
1689
+ Recording Affect Data Analysis,” Nature neuroscience,
1690
+ vol. 14, pp. 139–42, 02 2011.
1691
+ [23] I. Karageorgos, K. Sriram, J. Vesel`y, M. Wu, M. Powell,
1692
+ D. Borton, R. Manohar, and A. Bhattacharjee, “Hardware-
1693
+ software co-design for brain-computer interfaces,” in
1694
+ 2020 ACM/IEEE 47th Annual International Symposium
1695
+ on Computer Architecture (ISCA).
1696
+ IEEE, 2020, pp.
1697
+ 391–404.
1698
+ [24] R. Zelmann, A. C. Paulk, I. Basu, A. Sarma, A. Yousefi,
1699
+ B. Crocker, E. Eskandar, Z. Williams, G. R. Cosgrove,
1700
+ 12
1701
+
1702
+ D. S. Weisholtz et al., “CLoSES: A platform for closed-
1703
+ loop intracranial stimulation in humans,” NeuroImage,
1704
+ vol. 223, p. 117314, 2020.
1705
+ [25] V. K. Jirsa, T. Proix, D. Perdikis, M. M. Woodman,
1706
+ H. Wang, J. Gonzalez-Martinez, C. Bernard, C. B´enar,
1707
+ M. Guye, P. Chauvel et al., “The Virtual Epileptic Patient:
1708
+ Individualized whole-brain models of epilepsy spread,”
1709
+ Neuroimage, vol. 145, pp. 377–388, 2017.
1710
+ [26] F. Bartolomei, S. Lagarde, F. Wendling, A. McGonigal,
1711
+ V. Jirsa, M. Guye, and C. B´enar, “Defining epileptogenic
1712
+ networks: Contribution of SEEG and signal analysis,”
1713
+ Epilepsia, vol. 58, no. 7, pp. 1131–1147, 2017.
1714
+ [27] Hossein Kassiri, Sana Tonekaboni, M. Tariqus Salam,
1715
+ Nima Soltani, karim Abdelhalim, Jose Luis Perez Ve-
1716
+ lasquez, Roman Genov, “Closed-Loop Neurostimulators:
1717
+ A Survey and A Seizure-Predicting Design Example
1718
+ for Intractable Epilepsy Treatment,” IEEE Transactions
1719
+ on Biomedical Circuits and Systems, vol. 11, no. 5, pp.
1720
+ 1026–1040, 2017.
1721
+ [28] G. O’Leary and D. M. Groppe and T. A. Valiante
1722
+ and N. Verma and R. Genov, “Nurip: Neural interface
1723
+ processor for brain-state classification and programmable-
1724
+ waveform neurostimulation,” IEEE Journal of Solid State
1725
+ Circuits, vol. 53, 2018.
1726
+ [29] J. N. Y. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B. L.
1727
+ Bardakjian, M. Derchansky, D. Serletis, and P. L. Carlen,
1728
+ “256-Channel Neural Recording and Delta Compression
1729
+ Microsystem With 3D Electrodes,” IEEE Journal of
1730
+ Solid-State Circuits, vol. 44, no. 3, pp. 995–1005, March
1731
+ 2009.
1732
+ [30] T. Chen, C. Jeng, S. Chang, H. Chiueh, S. Liang, Y. Hsu,
1733
+ and T. Chien, “A Hardware Implementation of Real-
1734
+ Time Epileptic Seizure Detector on FPGA,” 2011 IEEE
1735
+ Biomedical Circuits and Systems Conference (BioCAS),
1736
+ pp. 25–28, Nov 2011.
1737
+ [31] N. Ahmadi, M. L. Cavuto, P. Feng, L. B. Leene,
1738
+ M. Maslik, F. Mazza, O. Savolainen, K. M. Szostak, C.-S.
1739
+ Bouganis, J. Ekanayake et al., “Towards a Distributed,
1740
+ Chronically-Implantable Neural Interface,” in 2019 9th
1741
+ International IEEE/EMBS Conference on Neural Engi-
1742
+ neering (NER).
1743
+ IEEE, 2019, pp. 719–724.
1744
+ [32] J. Lee, V. Leung, A.-H. Lee, J. Huang, P. Asbeck, P. P.
1745
+ Mercier, S. Shellhammer, L. Larson, F. Laiwalla, and
1746
+ A. Nurmikko, “Neural recording and stimulation using
1747
+ wireless networks of microimplants,” Nature Electronics,
1748
+ vol. 4, no. 8, pp. 604–614, 2021.
1749
+ [33] B. Zhu, U. Shin, and M. Shoaran, “Closed-Loop Neural
1750
+ Prostheses With On-Chip Intelligence: A Review and a
1751
+ Low-Latency Machine Learning Model for Brain State
1752
+ Detection,” IEEE Transactions on Biomedical Circuits
1753
+ and Systems, 2021.
1754
+ [34] C. Zrenner, P. Belardinelli, F. M¨uller-Dahlhaus, and
1755
+ U. Ziemann, “Closed-Loop Neuroscience and Non-
1756
+ Invasive Brain Stimulation: A Tale of Two Loop,”
1757
+ Frontiers in cellular neuroscience, vol. 10, p. 92, 2016.
1758
+ [35] M. D. Murphy, D. J. Guggenmos, D. T. Bundy, and
1759
+ R. J. Nudo, “Current Challenges Facing the Translation
1760
+ of Brain Computer Interfaces from Preclinical Trials to
1761
+ Use in Human Patients,” Front Cell Neurosci, vol. 9, p.
1762
+ 497, 2015.
1763
+ [36] A. O. Hebb, J. J. Zhang, M. H. Mahoor, C. Tsiokos,
1764
+ C. Matlack, H. J. Chizeck, and N. Pouratian, “Creating
1765
+ the feedback loop: Closed loop neurostimulation,” Neu-
1766
+ rosurgery Clinics of North America, vol. 25, no. 1, pp.
1767
+ 187–204, 2014.
1768
+ [37] V. Sladky, P. Nejedly, F. Mivalt, B. H. Brinkmann, I. Kim,
1769
+ E. K. St. Louis, N. M. Gregg, B. N. Lundstrom, C. M.
1770
+ Crowe, T. P. Attia et al., “Distributed brain co-processor
1771
+ for tracking spikes, seizures and behaviour during elec-
1772
+ trical brain stimulation,” Brain Communications, vol. 4,
1773
+ no. 3, p. fcac115, 2022.
1774
+ [38] M. A. Kural, J. Jing, F. F¨urbass, H. Perko, E. Qerama,
1775
+ B. Johnsen, S. Fuchs, M. B. Westover, and S. Beniczky,
1776
+ “Accurate identification of EEG recordings with interictal
1777
+ epileptiform discharges using a hybrid approach: Artifi-
1778
+ cial intelligence supervised by human experts,” Epilepsia,
1779
+ vol. 63, no. 5, pp. 1064–1073, 2022.
1780
+ [39] J. D. Simeral, T. Hosman, J. Saab, S. N. Flesher,
1781
+ M. Vilela, B. Franco, J. N. Kelemen, D. M. Brandman,
1782
+ J. G. Ciancibello, P. G. Rezaii et al., “Home Use of
1783
+ a Percutaneous Wireless Intracortical Brain-Computer
1784
+ Interface by Individuals With Tetraplegia,” IEEE Trans-
1785
+ actions on Biomedical Engineering, vol. 68, no. 7, pp.
1786
+ 2313–2325, 2021.
1787
+ [40] M. Yin, D. A. Borton, J. Komar, N. Agha, Y. Lu,
1788
+ H. Li, J. Laurens, Y. Lang, Q. Li, C. Bull et al., “Wire-
1789
+ less Neurosensor for Full-Spectrum Electrophysiology
1790
+ Recordings during Free Behavior,” Neuron, vol. 84, no. 6,
1791
+ pp. 1170–1182, 2014.
1792
+ [41] S. M. Kim, P. Tathireddy, R. Normann, and F. Solzbacher,
1793
+ “Thermal Impact of an Active 3-D Microelectrode Array
1794
+ Implanted in the Brain,” IEEE Transactions on Neural
1795
+ Systems and Rehabilitation Engineering, vol. 15, pp.
1796
+ 493–501, Dec 2007.
1797
+ [42] O. Sporns, “Graph theory methods: applications in brain
1798
+ networks,” Dialogues in clinical neuroscience, 2022.
1799
+ [43] M. T. Bilge, A. K. Gosai, and A. S. Widge, “Deep Brain
1800
+ Stimulation in Psychiatry,” Psychiatric Clinics, vol. 41,
1801
+ no. 3, pp. 373–383, 2018.
1802
+ [44] G. Deco and M. L. Kringelbach, “Great Expectations:
1803
+ Using Whole-Brain Computational Connectomics for
1804
+ Understanding Neuropsychiatric Disorders,” Neuron,
1805
+ vol. 84, no. 5, pp. 892–905, 2014.
1806
+ [45] J. A. Gallego, T. R. Makin, and S. D. McDougle, “Going
1807
+ beyond primary motor cortex to improve brain–computer
1808
+ interfaces,” Trends in Neurosciences, vol. 45, no. 3, pp.
1809
+ 176–183, 2022.
1810
+ [46] D. Camargo-Vargas, M. Callejas-Cuervo, and S. Maz-
1811
+ zoleni, “Brain-Computer Interfaces Systems for Upper
1812
+ and Lower Limb Rehabilitation: A Systematic Review,”
1813
+ Sensors, vol. 21, no. 13, p. 4312, 2021.
1814
+ [47] S. J. Bensmaia and L. E. Miller, “Restoring sensorimotor
1815
+ 13
1816
+
1817
+ function through intracortical interfaces: progress and
1818
+ looming challenges,” Nature Reviews Neuroscience,
1819
+ vol. 15, no. 5, pp. 313–325, 2014.
1820
+ [48] S. Todorova, P. Sadtler, A. Batista, S. Chase, and V. Ven-
1821
+ tura, “To sort or not to sort: the impact of spike-sorting
1822
+ on neural decoding performance,” Journal of neural
1823
+ engineering, vol. 11, no. 5, p. 056005, 2014.
1824
+ [49] H. G. Rey, C. Pedreira, and R. Q. Quiroga, “Past, present
1825
+ and future of spike sorting techniques,” Brain research
1826
+ bulletin, vol. 119, pp. 106–117, 2015.
1827
+ [50] H. Shiao, V. Cherkassky, J. Lee, B. Veber, E. E. Patterson,
1828
+ B. H. Brinkmann, and G. A. Worrell, “SVM-Based
1829
+ System for Prediction of Epileptic Seizures From iEEG
1830
+ Signal,” IEEE Transactions on Biomedical Engineering,
1831
+ vol. 64, no. 5, pp. 1011–1022, May 2017.
1832
+ [51] I. K. Niazi, N. Jiang, O. Tiberghien, J. F. Nielsen,
1833
+ K. Dremstrup, and D. Farina, “Detection of movement
1834
+ intention from single-trial movement-related cortical
1835
+ potentials,” Journal of Neural Engineering, vol. 8, no. 6,
1836
+ p. 066009, 2011.
1837
+ [52] M. Jochumsen, I. K. Niazi, H. Rovsing, C. Rovsing, G. A.
1838
+ Nielsen, T. K. Andersen, N. Dong, M. E. Sørensen,
1839
+ N. Mrachacz-Kersting, N. Jiang et al., “Detection of
1840
+ movement intentions through a single channel of elec-
1841
+ troencephalography,” in Replace, Repair, Restore, Relieve–
1842
+ Bridging Clinical and Engineering Solutions in Neurore-
1843
+ habilitation.
1844
+ Springer, 2014, pp. 465–472.
1845
+ [53] C. L. Ojakangas, A. Shaikhouni, G. M. Friehs, A. H.
1846
+ Caplan, M. D. Serruya, M. Saleh, D. S. Morris, and J. P.
1847
+ Donoghue, “Decoding Movement Intent From Human
1848
+ Premotor Cortex Neurons for Neural Prosthetic Appli-
1849
+ cations,” Journal of Clinical Neurophysiology: Official
1850
+ Publication of the American Electroencephalographic
1851
+ Society, vol. 23, no. 6, p. 577, 2006.
1852
+ [54] J. F. Kalaska, “From Intention to Action: Motor Cortex
1853
+ and the Control of Reaching Movements,” Progress in
1854
+ Motor Control, pp. 139–178, 2009, series Title: Advances
1855
+ in Experimental Medicine and Biology.
1856
+ [55] A. Shakeel, M. S. Navid, M. N. Anwar, S. Mazhar,
1857
+ M. Jochumsen, and I. K. Niazi, “A Review of Techniques
1858
+ for Detection of Movement Intention Using Movement-
1859
+ Related Cortical Potentials,” Computational and Mathe-
1860
+ matical Methods in Medicine, vol. 2015, 2015.
1861
+ [56] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz,
1862
+ “Direct Cortical Control of 3D Neuroprosthetic Devices,”
1863
+ Science, vol. 296, no. 5574, pp. 1829–1832, 2002.
1864
+ [57] E. E. Fetz, “Restoring motor function with bidirectional
1865
+ neural interfaces,” Progress in Brain Research, vol. 218,
1866
+ pp. 241–252, 2015.
1867
+ [58] M. Capogrosso, T. Milekovic, D. Borton, F. Wagner, E. M.
1868
+ Moraud, J.-B. Mignardot, N. Buse, J. Gandar, Q. Barraud,
1869
+ D. Xing et al., “A Brain–Spine Interface Alleviating Gait
1870
+ Deficits after Spinal Cord Injury in Primates,” Nature,
1871
+ vol. 539, no. 7628, pp. 284–288, 2016.
1872
+ [59] K.-R. Muller, C. Anderson, and G. Birch, “Linear and
1873
+ nonlinear methods for brain-computer interfaces,” IEEE
1874
+ Transactions on Neural Systems and Rehabilitation
1875
+ Engineering, vol. 11, no. 2, pp. 165–169, 2003.
1876
+ [60] R. Darie, M. Powell, and D. Borton, “Delivering the
1877
+ Sense of Touch to the Human Brain,” Neuron, vol. 93,
1878
+ no. 4, pp. 728–730, 2017.
1879
+ [61] S. Tafazoli, C. J. MacDowell, Z. Che, K. C. Letai, C. R.
1880
+ Steinhardt, and T. J. Buschman, “Learning to control the
1881
+ brain through adaptive closed-loop patterned stimulation,”
1882
+ Journal of Neural Engineering, vol. 17, no. 5, p. 056007,
1883
+ 2020.
1884
+ [62] U. Rutishauser, E. M. Schuman, and A. N. Mamelak,
1885
+ “Online detection and sorting of extracellularly recorded
1886
+ action potentials in human medial temporal lobe record-
1887
+ ings, in vivo,” Journal of Neuroscience Methods, vol.
1888
+ 154, no. 1-2, pp. 204–224, 2006.
1889
+ [63] B. Sotomayor-G´omez, F. P. Battaglia, and M. Vinck,
1890
+ “SpikeShip: A method for fast, unsupervised discovery
1891
+ of high-dimensional neural spiking patterns,” bioRxiv,
1892
+ pp. 2020–06, 2021.
1893
+ [64] L. Grossberger, F. P. Battaglia, and M. Vinck, “Unsuper-
1894
+ vised clustering of temporal patterns in high-dimensional
1895
+ neuronal ensembles using a novel dissimilarity measure,”
1896
+ PLoS Comput Biol, vol. 14, no. 7, p. e1006283, 07 2018.
1897
+ [65] Y. B. Kim, “Physiological Time Series Retrieval and
1898
+ Prediction with Locality-Sensitive Hashing,” Ph.D. dis-
1899
+ sertation, Massachusetts Institute of Technology, 2017.
1900
+ [66] Y. Cao, N. Rakhilin, P. H. Gordon, X. Shen, and E. C.
1901
+ Kan, “A real-time spike classification method based on
1902
+ dynamic time warping for extracellular enteric neural
1903
+ recording with large waveform variability,” Journal of
1904
+ Neuroscience Methods, vol. 261, pp. 97–109, 2016.
1905
+ [67] C. Luo and A. Shrivastava, “SSH (Sketch, Shingle, &
1906
+ Hash) for Indexing Massive-Scale Time Series,” in NIPS
1907
+ 2016 Time Series Workshop.
1908
+ PMLR, 2017, pp. 38–58.
1909
+ [68] D. Gorisse, M. Cord, and F. Precioso, “Locality-Sensitive
1910
+ Hashing for Chi2 Distance,” IEEE Transactions on
1911
+ Pattern Analysis and Machine Intelligence, vol. 34, no. 2,
1912
+ pp. 402–409, 2011.
1913
+ [69] A. Bhattacharjee and R. Manohar, “HALO: A Flexible
1914
+ and Low Power Processing Fabric for Brain-Computer
1915
+ Interfaces,” in 2022 IEEE Hot Chips 34 Symposium
1916
+ (HCS).
1917
+ IEEE Computer Society, 2022, pp. 1–37.
1918
+ [70] I. Karageorgos, K. Sriram, J. Vesel´y, N. Lindsay, X. Wen,
1919
+ M. Wu, M. Powell, D. Borton, R. Manohar, and A. Bhat-
1920
+ tacharjee, “Balancing specialized versus flexible compu-
1921
+ tation in brain–computer interfaces,” IEEE Micro, vol. 41,
1922
+ no. 3, pp. 87–94, 2021.
1923
+ [71] F. T. Sun and M. J. Morrell, “Closed-loop Neurostim-
1924
+ ulation: The Clinical Experience,” Neurotherapeutics,
1925
+ vol. 11, no. 3, pp. 553–563, 2014.
1926
+ [72] G. W. V. Vidal, M. L. Rynes, Z. Kelliher, and S. J.
1927
+ Goodwin, “Review of Brain-Machine Interfaces Used in
1928
+ Neural Prosthetics with New Perspective on Somatosen-
1929
+ sory Feedback through Method of Signal Breakdown,”
1930
+ Scientifica, vol. 2016, 2016.
1931
+ [73] C. Herff, D. J. Krusienski, and P. Kubben, “The Poten-
1932
+ 14
1933
+
1934
+ tial of Stereotactic-EEG for Brain-Computer Interfaces:
1935
+ Current Progress and Future Directions,” Frontiers in
1936
+ Neuroscience, vol. 14, p. 123, 2020.
1937
+ [74] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
1938
+ M. Levine, and D. Lewin, “Consistent Hashing and Ran-
1939
+ dom Trees: Distributed Caching Protocols for Relieving
1940
+ Hot Spots on the World Wide Web,” in ACM Symposium
1941
+ on Theory of Computing (STOC), 1997.
1942
+ [75] J. Kruskall and M. Liberman, “The symmetric time
1943
+ warping algorithm: From continuous to discrete,” Time
1944
+ Warps, String Edits and Macromolecules: The Theory
1945
+ and Practice of Sequence Comparison, 1983.
1946
+ [76] H. Sakoe and S. Chiba, “Dynamic programming al-
1947
+ gorithm optimization for spoken word recognition,”
1948
+ IEEE Transactions on Acoustics, Speech, and Signal
1949
+ Processing, vol. 26, pp. 159–165, 1978.
1950
+ [77] O. Pele and M. Werman, “Fast and robust Earth Mover’s
1951
+ Distances,” in 2009 IEEE 12th international conference
1952
+ on computer vision.
1953
+ IEEE, 2009, pp. 460–467.
1954
+ [78] I. M. Pu, Fundamental data compression.
1955
+ Butterworth-
1956
+ Heinemann, 2005.
1957
+ [79] P. Elias, “Universal codeword sets and representations of
1958
+ the integers,” IEEE Transactions on Information Theory,
1959
+ vol. 21, no. 2, pp. 194–203, 1975.
1960
+ [80] N. Bingham and R. Manohar, “Qdi constant-time coun-
1961
+ ters,” IEEE Transactions on Very Large Scale Integration
1962
+ (VLSI) Systems, vol. 27, no. 1, pp. 83–91, 2018.
1963
+ [81] W. W. Peterson and D. T. Brown, “Cyclic codes for
1964
+ error detection,” Proceedings of the IRE, vol. 49, no. 1,
1965
+ pp. 228–235, 1961.
1966
+ [82] K. Yun and R. Donohue, “Pausible clocking: a first
1967
+ step toward heterogeneous systems,” in Proceedings
1968
+ International Conference on Computer Design. VLSI
1969
+ in Computers and Processors, 1996, pp. 118–123.
1970
+ [83] A. Moreno and J. Cortadella, “Synthesis of all-digital
1971
+ delay lines,” in 2017 23rd IEEE International Symposium
1972
+ on Asynchronous Circuits and Systems (ASYNC), 2017,
1973
+ pp. 75–82.
1974
+ [84] D. Mills, “Simple Network Time Protocol (SNTP),” RFC
1975
+ Editor, RFC 1769, 1995.
1976
+ [85] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A
1977
+ structured English query language,” in Proceedings of
1978
+ the 1974 ACM SIGFIDET (now SIGMOD) workshop on
1979
+ Data description, access and control.
1980
+ Association for
1981
+ Computing Machinery, 1974, pp. 249–264.
1982
+ [86] Blackrock
1983
+ Microsystems,
1984
+ “The
1985
+ Benchmark
1986
+ for
1987
+ Multichannel, High-density Neural Recording,” https:
1988
+ //www.blackrockmicro.com/electrode-types/utah-array/,
1989
+ Retrieved August 10, 2019.
1990
+ [87] J. Shen, A. Shikata, L. D. Fernando, N. Guthrie, B. Chen,
1991
+ M. Maddox, N. Mascarenhas, R. Kapusta, and M. C. W.
1992
+ Coln, “A 16-bit 16-ms/s sar adc with on-chip calibration
1993
+ in 55-nm cmos,” IEEE Journal of Solid-State Circuits,
1994
+ vol. 53, no. 4, pp. 1149–1160, 2018.
1995
+ [88] Medtronic,
1996
+ “Medtronic
1997
+ Activa
1998
+ PC
1999
+ Multi-
2000
+ program
2001
+ neurostimulator
2002
+ implant
2003
+ manual,”
2004
+ http://www.neuromodulation.ch/sites/default/files/
2005
+ pictures/activa PC DBS implant manuel.pdf,
2006
+ 2008,
2007
+ Retrieved August 10, 2019.
2008
+ [89] H. Rahmani and A. Babakhani, “A wirelessly powered
2009
+ reconfigurable fdd radio with on-chip antennas for multi-
2010
+ site neural interfaces,” IEEE Journal of Solid-State
2011
+ Circuits, vol. 56, no. 10, pp. 3177–3190, 2021.
2012
+ [90] J. W. Young, “Head and Face Anthropometry of Adult
2013
+ U.S. Citizens,” Federal Aviation Administration, Tech.
2014
+ Rep., 1993.
2015
+ [91] A. F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami,
2016
+ A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster,
2017
+ and K. Siwiak, “IEEE 802.15. 4a channel model-final
2018
+ report,” IEEE P802, vol. 15, no. 04, p. 0662, 2004.
2019
+ [92] M. S¨arest¨oniemi, C. Pomalaza-Raez, K. Sayrafian,
2020
+ T. Myllyl¨a, and J. Iinatti, “A Preliminary Study of
2021
+ RF Propagation for High Data Rate Brain Telemetry,”
2022
+ in Body Area Networks. Smart IoT and Big Data
2023
+ for Intelligent Health Management.
2024
+ Cham: Springer
2025
+ International Publishing, 2022, pp. 126–138.
2026
+ [93] A. Taparugssanagorn, A. Rabbachin, M. H¨am¨al¨ainen,
2027
+ J. Saloranta, J. Iinatti et al., “A Review of Channel
2028
+ Modelling for Wireless Body Area Network in Wire-
2029
+ less Medical Communications,” The 11th International
2030
+ Symposium on Wireless Personal Multimedia Communi-
2031
+ cations (WPMC, 2008.
2032
+ [94] “MT29F128G08AKCABH2-10,”
2033
+ https://www.
2034
+ micron.com/products/nand-flash/slc-nand/part-
2035
+ catalog/mt29f128g08akcabh2-10, Retrieved November
2036
+ 17, 2022.
2037
+ [95] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim:
2038
+ A circuit-level performance, energy, and area model
2039
+ for emerging nonvolatile memory,” IEEE Transactions
2040
+ on Computer-Aided Design of Integrated Circuits and
2041
+ Systems, vol. 31, no. 7, pp. 994–1007, 2012.
2042
+ [96] J. Magland, J. J. Jun, E. Lovero, A. J. Morley, C. L.
2043
+ Hurwitz, A. P. Buccino, S. Garcia, and A. H. Barnett,
2044
+ “SpikeForest, reproducible web-facing ground-truth vali-
2045
+ dation of automated neural spike sorters,” Elife, vol. 9,
2046
+ p. e55167, 2020.
2047
+ [97] “IEEG.ORG,” https://www.ieeg.org, Retrieved November
2048
+ 17, 2022.
2049
+ [98] P. Shah, A. Ashourvan, F. Mikhail, A. Pines, L. Kini,
2050
+ K. Oechsel, S. R. Das, J. M. Stein, R. T. Shinohara, D. S.
2051
+ Bassett et al., “Characterizing the role of the structural
2052
+ connectome in seizure dynamics,” Brain, vol. 142, no. 7,
2053
+ pp. 1955–1972, 2019.
2054
+ [99] J. E. Chung, J. F. Magland, A. H. Barnett, V. M. Tolosa,
2055
+ A. C. Tooker, K. Y. Lee, K. G. Shah, S. H. Felix,
2056
+ L. M. Frank, and L. F. Greengard, “A Fully Automated
2057
+ Approach to Spike Sorting,” Neuron, vol. 95, no. 6, pp.
2058
+ 1381–1394, 2017.
2059
+ [100] L. E. Shupe, F. P. Miles, G. Jones, R. Yun, J. Mish-
2060
+ ler, I. Rembado, R. L. Murphy, S. I. Perlmutter, and
2061
+ E. E. Fetz, “Neurochip3: An Autonomous Multichannel
2062
+ Bidirectional Brain-Computer Interface for Closed-Loop
2063
+ 15
2064
+
2065
+ Activity-Dependent Stimulation,” Frontiers in Neuro-
2066
+ science, vol. 15, 2021.
2067
+ [101] J. E. Chung, H. R. Joo, J. L. Fan, D. F. Liu, A. H.
2068
+ Barnett, S. Chen, C. Geaghan-Breiner, M. P. Karlsson,
2069
+ M. Karlsson, K. Y. Lee et al., “High-Density, Long-
2070
+ Lasting, and Multi-region Electrophysiological Record-
2071
+ ings Using Polymer Electrode Arrays,” Neuron, vol. 101,
2072
+ no. 1, pp. 21–31, 2019.
2073
+ [102] D. Wu, J. Li, Z. Pan, Y. Kim, and J. S. Miguel, “uBrain:
2074
+ A Unary Brain Computer Interface,” in Proceedings of
2075
+ the 49th Annual International Symposium on Computer
2076
+ Architecture.
2077
+ Association for Computing Machinery,
2078
+ 2022, pp. 468–481.
2079
+ [103] E. M. Stewart, A. Liao, and C. Roberts, “Open µpmu:
2080
+ A real world reference distribution micro-phasor mea-
2081
+ surement unit data set for research and application
2082
+ development,” IEEE Power Engineering Letters, 2016.
2083
+ 16
2084
+
BNE1T4oBgHgl3EQfVgSF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE5T4oBgHgl3EQfTQ-D/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f88bf288ead57d18ca1c677782893709bc3780043189d23d152370239a7b580
3
+ size 2293805
CNE1T4oBgHgl3EQfDwNk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2494581eeb464decb1038b755bf34e72c25be7b61c343273019c7b90256f6d87
3
+ size 3538989
CNFJT4oBgHgl3EQfASxa/content/2301.11419v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efe35316418bc3a45a60f2aa18e9e5dffdc1f5d7a1a5c61a2ab4d43f2e055586
3
+ size 1696742
CNFJT4oBgHgl3EQfASxa/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3ef0febf4e2b5dc5322e0ead6534829dfb063854f43b8f841b09582d00d47bd
3
+ size 2293805
CNFJT4oBgHgl3EQfASxa/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f47c1916c7fb2e83b61925986e80072f341e2de20ad01df43e69747e9fff0595
3
+ size 103997
DNE0T4oBgHgl3EQfggEA/content/tmp_files/2301.02417v1.pdf.txt ADDED
@@ -0,0 +1,2744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02417v1 [cs.IT] 6 Jan 2023
2
+ 1
3
+ Uplink Precoding Design for Cell-Free Massive
4
+ MIMO with Iteratively Weighted MMSE
5
+ Zhe Wang, Jiayi Zhang, Senior Member, IEEE, Hien Quoc Ngo, Senior Member, IEEE,
6
+ Bo Ai, Fellow, IEEE and M´erouane Debbah, Fellow, IEEE
7
+ Abstract
8
+ In this paper, we investigate a cell-free massive multiple-input multiple-output system with both access points
9
+ and user equipments equipped with multiple antennas over the Weichselberger Rayleigh fading channel. We study
10
+ the uplink spectral efficiency (SE) for the fully centralized processing scheme and large-scale fading decoding
11
+ (LSFD) scheme. To further improve the SE performance, we design the uplink precoding schemes based on
12
+ the weighted sum SE maximization. Since the weighted sum SE maximization problem is not jointly over all
13
+ optimization variables, two efficient uplink precoding schemes based on Iteratively Weighted sum-Minimum Mean
14
+ Square Error (I-WMMSE) algorithms, which rely on the iterative minimization of weighted MSE, are proposed for
15
+ two processing schemes investigated. Furthermore, with maximum ratio combining applied in the LSFD scheme,
16
+ we derive novel closed-form achievable SE expressions and optimal precoding schemes. Numerical results validate
17
+ the proposed results and show that the I-WMMSE precoding schemes can achieve excellent sum SE performance
18
+ with a large number of UE antennas.
19
+ Index Terms
20
+ Cell-free massive MIMO, uplink precoding, weighted sum-rate maximization, spectral efficiency.
21
+ I. INTRODUCTION
22
+ Cell-free massive multiple-input multiple-output (CF mMIMO) has attracted a lot of research interest
23
+ and is regarded as a promising technology for future wireless communications, for its ability to achieve
24
+ This article was presented in part at IEEE International Conference on Communications 2022 [1].
25
+ Z. Wang and J. Zhang are with the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China,
26
+ and also with the Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing 100044, China (e-mail:
27
+ {zhewang 77, jiayizhang}@bjtu.edu.cn).
28
+ H. Q. Ngo is with the Institute of Electronics, Communications, and Information Technology, Queen’s University Belfast, BT3 9DT Belfast,
29
+ U.K. (email: [email protected]).
30
+ B. Ai is with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China, also with
31
+ the Frontiers Science Center for Smart High-Speed Railway System and the Henan Joint International Research Laboratory of Intelligent
32
+ Networking and Data Analysis, Zhengzhou University, Zhengzhou 450001, China, and also with the Research Center of Networks and
33
+ Communications, Peng Cheng Laboratory, Shenzhen 518066, China (e-mail: [email protected]).
34
+ M. Debbah is with the Technology Innovation Institute, Abu Dhabi, United Arab Emirates, and also with CentraleSup´elec, University
35
+ Paris-Saclay, 91192 Gif-sur-Yvette, France (e-mail: [email protected]).
36
+
37
+ 2
38
+ uniformly high spectral efficiency (SE) [2]–[7]. Basically, a large number of access points (APs), arbitrarily
39
+ distributed in a wide coverage area and connected to one or several central processing units (CPUs), jointly
40
+ serve all user equipments (UEs) on the same time-frequency resource. Compared with the traditional
41
+ cellular mMIMO system, the CF mMIMO system operates with no cell boundaries and many more APs
42
+ than UEs [8]–[10]. Relying upon the prominent network topology of CF mMIMO, four uplink (UL)
43
+ signal processing schemes, distinguished from levels of the mutual cooperation between all APs and the
44
+ assistance from the CPU, can be implemented as [5]. Among these schemes, the “Level 4” and “Level 3” are
45
+ viewed as efficient processing techniques. The so-called Level 4 is a fully-centralized processing scheme
46
+ where all the pilot and data signals received at APs are transmitted to the CPU via the fronthaul links
47
+ and the CPU performs channel estimation and data detection. The similar scheme was also investigated
48
+ in [11]–[13]. The so-called Level 3 stands for a two layer decoding scheme: in the first layer, each AP
49
+ estimates channels and decodes the UE data locally by applying an arbitrary combining scheme based
50
+ on the local channel state information (CSI); in the second layer, all the local estimates of the UE data
51
+ are gathered at the CPU in which they are linearly weighted by the optimal large-scale fading decoding
52
+ (LSFD) coefficient to obtain the final decoding data. The LSFD scheme has been widely investigated in
53
+ [14]–[17] since it can make full use of the prominent network topology for CF mMIMO and achieve
54
+ excellent performance.
55
+ To promote the practical implementation of the CF mMIMO network, a new framework of scalable CF
56
+ mMIMO system and its respective processing algorithms were proposed in [9] by exploiting the dynamic
57
+ cooperation cluster (DCC) concept. Besides, the scalability aspects in a realistic scenario with multiple
58
+ CPUs were considered in [18], where the data processing, network topology and power control strategies
59
+ with multiple CPUs were discussed. Moreover, the authors of [19] considered the uplink of a radio-strip-
60
+ based CF mMIMO network architecture with sequential fronthaul links between APs and proposed MMSE-
61
+ based sequential processing schemes, which significantly reduced the fronthaul requirement. However,
62
+ when the CF mMIMO network is operated in practice, a more practical capacity-constrained fronthaul
63
+ network would have a great effect on the system performance. The authors of [20] and [21] discussed
64
+ the uplink performance of a CF mMIMO system with limited capacity fronthaul links. Furthermore, it
65
+ is worth noting that the CF mMIMO architecture has been co-designed with another promising future
66
+ wireless technology: Reconfigurable Intelligent Surface (RIS) [22], [23], which would undoubtedly provide
67
+ vital tutorials for the future wireless network design.
68
+
69
+ 3
70
+ The vast majority of scientific papers on CF mMIMO focus on the scenario with single-antenna UEs.
71
+ However, in practice, contemporary UEs with moderate physical sizes have already been equipped with
72
+ multiple antennas to achieve higher multiplexing gain and boost the system reliability. The authors of [24]
73
+ investigated the UL performance of a CF mMIMO system with multi-antenna UEs over maximum ratio
74
+ (MR) combining and zero-forcing (ZF) combining. The authors of [25] considered a user-centric (UC)
75
+ approach for CF mMIMO with multi-antenna UEs and proposed power allocation strategies for either sum-
76
+ rate maximization or minimum-rate maximization. Besides, the authors of [26] analyzed the downlink SE
77
+ performance for a CF mMIMO system with multi-antenna UEs and computed SE expressions in closed-
78
+ form. Then, the SE performance for a CF mMIMO system with multi-antenna UEs and low-resolution
79
+ DACs was investigated in [27]. Nevertheless, these works only investigated a simple distributed processing
80
+ scheme and are based on the overly idealistic assumption of independent and identically distributed (i.i.d.)
81
+ Rayleigh fading channels, neglecting the spatial correlation that has a significant impact on practical CF
82
+ mMIMO systems [15], [16]. The authors of [28] considered a CF mMIMO system with multi-antenna
83
+ UEs over the jointly-correlated Weichselberger model [29] and analyzed four UL processing schemes.
84
+ As observed in [26], [28], increasing the number of antennas per UE may not always benefit the SE
85
+ performance. The SE would reach the maximum value with particular number of antennas per UE, then
86
+ decrease with the increase of number of antennas per UE. One main reason for this phenomenon is
87
+ that the UEs cannot make full use of the benefit of equipping with multiple antennas to achieve higher
88
+ SE performance without UL precoding schemes. So it is undoubtedly vital to design the UL precoding
89
+ scheme to further improve the performance of systems. However, it is worth noting that the design of
90
+ UL precoding for CF mMIMO has not been investigated. For the traditional mMIMO or MIMO systems,
91
+ one popular optimization objective for the uplink/downlink precoding design is to maximize the weighted
92
+ sum rate (WSR) [30]–[33]. The authors of [30] and [32] discussed the equivalence between the WSR
93
+ maximization problem and the Weighted sum-Minimum Mean Square Error (WMMSE) problem in MIMO
94
+ systems and proposed an iteratively downlink transceiver design algorithm for the WSR maximization.
95
+ Note that the algorithm relies on the iterative minimization of weighted MSE since the WMMSE problem
96
+ are not jointly convex over all optimization variables. Moreover, the authors of [31] investigated the UL
97
+ precoding scheme optimization based on [30] under sum-power-constraint or individual-power-constraint.
98
+ Motivated by the above observations, we investigate a CF mMIMO system with both multi-antenna
99
+ APs and UEs over the Weichselberger Rayleigh fading channel. Two pragmatic processing schemes: 1)
100
+
101
+ 4
102
+ the fully centralized processing scheme; 2) the large-scale fading decoding scheme are implemented. The
103
+ main contributions are given as follows.
104
+ • We design an efficient UL precoding scheme to maximize the WSR for the fully centralized processing
105
+ scheme based on an iteratively WMMSE (I-WMMSE) algorithm. Note that the design of I-WMMSE
106
+ precoding scheme for the fully centralized processing scheme is implemented at the CPU and based
107
+ on the instantaneous CSI.
108
+ • For the LSFD processing scheme, we derive a UL precoding scheme for the WSR maximization
109
+ based on an iteratively WMMSE algorithm. The design of I-WMMSE precoding scheme for the
110
+ LSFD scheme is implemented at the CPU but based only on channel statistics. More importantly,
111
+ we compute achievable SE expressions and optimal precoding schemes in novel closed-form for the
112
+ LSFD scheme with MR combining.
113
+ • We analyze the practical implementation and computation complexity for the proposed I-WMMSE
114
+ precoding schemes. It is found that the proposed I-WMMSE precoding schemes can be guaranteed
115
+ to converge. More importantly, the proposed UL precoding schemes are efficient to achieve excellent
116
+ sum SE/rate performance and the average rate benefits from the multiple antennas at the UE-side,
117
+ which undoubtedly provides vital insights for the practical implementation of multi-antenna UEs.
118
+ Note that this paper differs from the conference version [1] in the following aspects: i) we investigate
119
+ the fully centralized processing/LSFD schemes and design their respective UL precoding schemes, while
120
+ only the LSFD scheme was considered in [1]; ii) we provide details for the derivation of the I-WMMSE
121
+ precoding schemes, which are omitted in [1] due to the lack of space; iii) we analyze the practical im-
122
+ plementation and convergence behavior of the proposed precoding schemes. More importantly, numerical
123
+ results show vital insights for the CF mMIMO system with the proposed UL precoding schemes.
124
+ The rest of this paper is organized as follows. In Section II, we consider a CF mMIMO system with the
125
+ Weichselberger Rayleigh fading channel, and describe the channel estimation and data detection. Then,
126
+ Section III introduces the fully centralized processing and LSFD processing schemes, and provides their
127
+ respective achievable SE expressions. Novel closed-form SE expressions for the LSFD scheme with MR
128
+ combining are derived. More importantly, based on the achievable SE expressions, we propose UL I-
129
+ WMMSE precoding schemes for two processing schemes. Then, Section IV provides some insights for
130
+ the practical implementation and computation complexity of proposed I-WMMSE precoding schemes. In
131
+ Section V, numerical results and performance analysis for the I-WMMSE precoding schemes are provided.
132
+
133
+ 5
134
+ CPU
135
+ Fronthaul
136
+ Fig. 1. A cell-free massive MIMO system.
137
+ Finally, the major conclusions and future directions are drawn in Section VI.
138
+ Notation: Lowercase letters x and boldface uppercase letters X denote the column vectors and matrices,
139
+ respectively. E {·}, tr {·} and ≜ are the expectation operator, the trace operator, and the definitions,
140
+ respectively. |·|, ∥·∥ and ∥·∥F are the determinant of a matrix or the absolute value of a number, the
141
+ Euclidean norm and the Frobenious norm, respectively. vec (A) denotes a column vector formed by the
142
+ stack of the columns of A. The n×n identity matrix is represented by In×n. The Kronecker products and
143
+ the element-wise products are denoted by ⊗ and ⊙, respectively. Finally, x ∼ NC (0, R) is a circularly
144
+ symmetric complex Gaussian distribution vector with correlation matrix R.
145
+ II. SYSTEM MODEL
146
+ In this paper, we investigate a CF mMIMO system consisting of M APs and K UEs, where all APs
147
+ are connected to one or several CPUs via fronthaul links as shown in Fig. 1. For simplicity, there is only
148
+ one CPU and all APs serve all UEs1. The numbers of antennas per AP and UE are L and N, respectively.
149
+ A standard block fading model is investigated, in which the channel response is constant and frequency
150
+ flat in a coherence block of τc-length (channel uses). Let τp and τc − τp denote channel uses dedicated
151
+ for the channel estimation and data transmission, respectively. We denote by Hmk ∈ CL×N the channel
152
+ response between AP m and UE k. We assume that Hmk for different AP-UE pairs are independent.
153
+ A. Channel Model
154
+ Based on the jointly-correlated (also known as the Weichselberger model [29]) Rayleigh fading channel2,
155
+ Hmk is modeled as
156
+ Hmk = Umk,r
157
+
158
+ ˜Ωmk ⊙ Hmk,iid
159
+
160
+ UH
161
+ mk,t
162
+ (1)
163
+ 1As shown in Fig. 1, a more practical network topology is with multiple CPUs and dynamic cooperation clusters, where each UE is only
164
+ served by a cluster of APs and the APs are grouped into cell-centric clusters. Each cell-centric cluster is connected to a particular CPU.
165
+ 2Note that the Rayleigh fading channel is a special case of the Rician fading channel. And the performance gap between the Rician
166
+ channel and the Rayleigh channel is small [34]. However, the focus of this paper is not on the channel model but on the UL precoding
167
+ scheme design. So for the simplicity of analysis, we investigate an essential Rayleigh fading channel by assuming there is no line-of-sight
168
+ (LoS) link between each UE and AP.
169
+
170
+ 0000000000006
171
+ where Umk,r = [umk,r,1, · · · , umk,r,L] ∈ CL×L and Umk,t = [umk,t,1, · · · , umk,t,N] ∈ CN×N are the eigen-
172
+ vector matrices of the one-sided correlation matrices Rmk,r ≜ E
173
+
174
+ HmkHH
175
+ mk
176
+
177
+ and Rmk,t ≜ E
178
+
179
+ HT
180
+ mkH∗
181
+ mk
182
+
183
+ ,
184
+ and Hmk,iid ∈ CL×N is composed of i.i.d. NC (0, 1) random entries, respectively. Besides, we denote
185
+ by Ωmk ≜ ˜Ωmk ⊙ ˜Ωmk ∈ RL×N the “eigenmode coupling matrix” with the (l, n)-th element [Ωmk]ln
186
+ specifying the average amount of power coupling from umk,r,l to umk,t,n. Hmk can also be formed as
187
+ Hmk = [hmk,1, · · · , hmk,N] with hmk,n ∈ CL being the channel between AP m and n-th antenna of UE
188
+ k. By stacking the columns of Hmk on each other, we define hmk ≜ vec (Hmk) = [hT
189
+ mk,1, · · · , hT
190
+ mk,N]T ∼
191
+ NC (0, Rmk), where Rmk ≜ E{hmkhH
192
+ mk} is the full correlation matrix
193
+ Rmk = (U∗
194
+ mk,t ⊗ Umk,r)diag (vec (Ωmk)) (U∗
195
+ mk,t ⊗ Umk,r)H.
196
+ (2)
197
+ Moreover, note that Rmk can be structured into the block form as [28] with the (n, i)-th submatrix
198
+ being Rni
199
+ mk = E{hmk,nhH
200
+ mk,i}. Besides, the large-scale fading coefficient βmk can be extracted from Rmk
201
+ as βmk =
202
+ 1
203
+ LN tr (Rmk) =
204
+ 1
205
+ LN ∥Ωmk∥1. It is worth mentioning that the motivations for adopting the
206
+ Weichselberger channel model are: 1) The Weichselberger model investigated in (1) not only captures
207
+ the correlation features at both the AP-side and UE-side but models the joint correlation dependence
208
+ between each AP-UE pair through the coupling matrix; 2) The coupling matrix Ωmk reflects the practical
209
+ spatial arrangement of scattering objects between AP m and UE k. More significantly, the Weichselberger
210
+ model can reduce to most channel models of great interest by adjusting the coupling Ωmk to particular
211
+ formulation, such as the Kronecker model and i.i.d. Rayleigh fading model [28], [29]; 3) Compared with
212
+ other stochastic channel models, the Weichselberger model displays significantly less modeling error,
213
+ which is validated based on the practical measurement in [29].
214
+ B. Channel Estimation
215
+ For the channel estimation, mutually orthogonal pilot matrices are constructed and each pilot matrix
216
+ is composed of N mutually orthogonal pilot sequences. We denote by Φk the pilot matrix assigned to
217
+ UE k with ΦH
218
+ k Φl = τpIN, if
219
+ l = k and 0 otherwise. And Pk is the index subset of UEs using the
220
+ same pilot matrix as UE k including itself. When all UEs transmit their pilot matrices, the received
221
+ signal at AP m Yp
222
+ mk ∈ CL×τp is Yp
223
+ m = �K
224
+ k=1 HmkFk,pΦT
225
+ k + Np
226
+ m, where Fk,p ∈ CN×N is the precoding
227
+ matrix for UE k under the phase of pilot transmission, Np
228
+ m ∈ CL×τp is the additive noise at AP m with
229
+ independent NC(0, σ2) entries and σ2 being the noise power, respectively. The pilot transmission should
230
+ be implemented under the power constraint as tr(Fk,pFH
231
+ k,p) ⩽ pk, where pk is the maximum transmit
232
+ power for UE k. To derive sufficient statistics for hmk, AP m projects Yp
233
+ mk onto Φ∗
234
+ k as Yp
235
+ mk = Yp
236
+ mΦ∗
237
+ k =
238
+
239
+ 7
240
+ �K
241
+ l=1 HmlFl,p
242
+
243
+ ΦT
244
+ l Φ∗
245
+ k
246
+
247
+ +Np
248
+ mΦ∗
249
+ k = �
250
+ l∈Pk τpHmlFl,p + Qp
251
+ mk, where Qp
252
+ mk ≜ Np
253
+ mΦ∗
254
+ k. Then, following the
255
+ standard MMSE estimation steps in [35] and [36], AP m can compute the MMSE estimation of hmk as
256
+ ˆhmk = vec( ˆHmk) = Rmk˜FH
257
+ k,pΨ−1
258
+ mkyp
259
+ mk,
260
+ (3)
261
+ where ˆHmk is the MMSE estimation of Hmk, ˜Fk,p = FT
262
+ k,p⊗IL, yp
263
+ mk ≜ vec (Yp
264
+ mk) = �
265
+ l∈Pk τp˜Fl,phml + qp
266
+ m,
267
+ qp
268
+ m = vec (Qp
269
+ mk) and Ψmk = �
270
+ l∈Pk τp˜Fl,pRml˜FH
271
+ l,p + σ2ILN, respectively. Note that the estimate ˆhmk and
272
+ estimation error ˜hmk = hmk − ˆhmk are independent random vectors distributed as ˆhmk ∼ NC(0, ˆRmk)
273
+ and ˜hmk ∼ NC(0, Cmk), where ˆRmk ≜ τpRmk˜FH
274
+ k,pΨ−1
275
+ mk˜Fk,pRmk and Cmk ≜ Rmk − ˆRmk. We can also
276
+ form ˆRmk and Cmk in the block structure with the (n, i)-th submatrix being ˆRni
277
+ mk = E{ˆhmk,nˆhH
278
+ mk,i} and
279
+ Cni
280
+ mk = E{˜hmk,n˜hH
281
+ mk,i}, respectively.
282
+ C. Data Transmission
283
+ For the data transmission, all antennas of all UEs simultaneously transmit their data symbols to all
284
+ APs. The received signal ym ∈ CL at AP m is
285
+ ym =
286
+ K
287
+
288
+ k=1
289
+ Hmksk + nm,
290
+ (4)
291
+ where nm ∼ NC(0, σ2IL) is the independent receiver noise. The transmitted signal from UE k sk ∈ CN
292
+ can be constructed as sk = Fk,uxk, where xk ∼ NC(0, IN) is the data symbol for UE k and Fk,u ∈ CN×N
293
+ is the precoding matrix for the data transmission which should satisfy the power constraint of UE k as
294
+ tr(Fk,uFH
295
+ k,u) ⩽ pk.
296
+ III. SPECTRAL EFFICIENCY ANALYSIS AND I-WMMSE PRECODING DESIGN
297
+ In this section, we investigate two promising signal processing schemes, called “fully centralized pro-
298
+ cessing” and “LSFD processing”, and analyze their corresponding SE performance and design respective
299
+ iteratively WMMSE precoding schemes3.
300
+ A. Fully Centralized Processing
301
+ 1) Spectral Efficiency Analysis: For the fully centralized processing scheme, all M APs send all the
302
+ received pilot signals and data signals to the CPU. Indeed, both the channel estimation and data detection
303
+ are implemented at the CPU. The collective channel hk ∈ CMLN for UE k can be constructed as hk =
304
+ [vec(H1k)T, · · · , vec(HMk)T]T ∼ NC(0, Rk) with Rk = diag (R1k, · · · , RMk) ∈ CMLN×MLN being the
305
+ 3We only optimize the precoding matrices for the phase of data transmission Fk,u. The optimization of Fk,p is left for future research.
306
+ Although we do not design Fk,p in this paper, we try to keep the derived equations more generalized. So a scenario with arbitrary Fk,p
307
+ instead of limiting Fk,p to a particular form is investigated. It is worth noting that all equations in this paper hold for any Fk,p so undoubtedly
308
+ provide some important guidelines for the investigation of optimization design for Fk,p in the future work.
309
+
310
+ 8
311
+ whole block-diagonal correlation matrix for UE k. Similar to (3), the CPU can derive the channel estimate
312
+ for UE k as4 ˆhk ≜
313
+
314
+ ˆhT
315
+ 1k, . . . , ˆhT
316
+ Mk
317
+ �T
318
+ ∼ NC
319
+
320
+ 0, τpRk¯FH
321
+ k,pΨ−1
322
+ k ¯Fk,pRk
323
+
324
+ where ¯Fk,p = diag(˜Fk,p, . . . , ˜Fk,p
325
+
326
+ ��
327
+
328
+ M
329
+ )
330
+ and Ψ−1
331
+ k
332
+ = diag(Ψ−1
333
+ 1k , . . . , Ψ−1
334
+ Mk). The channel estimation error is ˜hk ∼ NC (0, Ck) where Ck ≜ Rk −
335
+ τpRk¯FH
336
+ k,pΨ−1
337
+ k ¯Fk,pRk. Moreover, the received data signal at the CPU can be denoted as
338
+ [yT
339
+ 1 , · · · , yT
340
+ M]T
341
+
342
+ ��
343
+
344
+ = y
345
+ =
346
+ K
347
+
348
+ k=1
349
+ [HT
350
+ 1k, . . . , HT
351
+ Mk]T
352
+
353
+ ��
354
+
355
+ = Hk
356
+ Fk,uxk + [nT
357
+ 1 , . . . , nT
358
+ M]T
359
+
360
+ ��
361
+
362
+ = n
363
+ ,
364
+ (5)
365
+ or a compact form as y = �K
366
+ k=1 HkFk,uxk + n.
367
+ Under the setting of “fully centralized processing”, we assume that UL precoding matrices (Fk,u and
368
+ Fk,p) are available at the CPU. Based on the collective channel estimates, the CPU designs an arbitrary
369
+ receive combining matrix Vk ∈ CLM×N for UE k to detect xk as
370
+ ˇxk = VH
371
+ k y = VH
372
+ k ˆHkFk,uxk + VH
373
+ k ˜HkFk,uxk +
374
+ K
375
+
376
+ l̸=k
377
+ VH
378
+ k HlFl,uxl + VH
379
+ k n,
380
+ (6)
381
+ and the conditional MSE matrix for UE k is
382
+ Ek,(1) = E{(xk − ˇxk)(xk − ˇxk)H|{ ˆHk}, {Fk,u}}
383
+ = IN − VH
384
+ k ˆHkFk,u − FH
385
+ k,u ˆHH
386
+ k Vk + VH
387
+ k
388
+ � K
389
+
390
+ l=1
391
+
392
+ ˆHl¯Fl,u ˆHH
393
+ l + C′
394
+ l
395
+
396
+ + σ2IML
397
+
398
+ Vk
399
+ (7)
400
+ where ¯Fl,u ≜ Fl,uFH
401
+ l,u, C′
402
+ l ≜ diag (C′
403
+ 1l, · · · , C′
404
+ Ml) ∈ CML×ML and C′
405
+ ml = E{ ˜Hml¯Fl,u ˜HH
406
+ ml} ∈ CL×L with
407
+ the (j, q)-th element of C′
408
+ ml being [C′
409
+ ml]jq = �N
410
+ p1=1
411
+ �N
412
+ p2=1
413
+ �¯Fl
414
+
415
+ p2p1 [Cp2p1
416
+ ml ]jq.
417
+ By implementing the per-user-basis minimum mean-squared error-based successive interference cancel-
418
+ lation (MMSE-SIC) detector while treating co-user interference as uncorrelated Gaussian noise, we derive
419
+ the achievable SE for UE k as follows.
420
+ Corollary 1. An achievable for UE k under the setting of “fully centralized processing” with the MMSE
421
+ estimator is
422
+ SEk,(1) =
423
+
424
+ 1 − τp
425
+ τc
426
+
427
+ E
428
+
429
+ log2
430
+ ���IN + DH
431
+ k,(1)Σ−1
432
+ k,(1)Dk,(1)
433
+ ���
434
+
435
+ ,
436
+ (8)
437
+ where Dk,(1) ≜ VH
438
+ k ˆHkFk,u and Σk,(1) ≜ VH
439
+ k
440
+ ��K
441
+ l=1 ˆHl¯Fl,u ˆHH
442
+ l − ˆHk¯Fk,u ˆHH
443
+ k + �K
444
+ l=1 C′
445
+ l + σ2IML
446
+
447
+ Vk.
448
+ 4Note that the pilot signals received at the APs are first transmitted to the CPU and then the CPU estimates the channels, where τpML
449
+ complex scalars are sent from the APs to the CPU at each coherence block. Alternatively, all APs can first estimate the channels as (3), and
450
+ then send their channel estimates to the CPU, where MKLN complex scalars are sent from the APs to the CPU at each coherence block.
451
+ Since the pilot contamination is investigated (τp < KN) in this paper, we consider the first transmission protocol due to its lower fronthaul
452
+ overhead.
453
+
454
+ 9
455
+ The expectations are with respect to all sources of randomness.
456
+ Proof. The proof follows from the similar approach as [28, Corollary 1] and is therefore omitted.
457
+ We notice that Corollary 1 holds for any combining schemes. One promising combining scheme is the
458
+ MMSE combining as
459
+ VMMSE
460
+ k
461
+ =
462
+ � K
463
+
464
+ l=1
465
+
466
+ ˆHl¯Fl,u ˆHH
467
+ l + C′
468
+ l
469
+
470
+ + σ2IML
471
+ �−1
472
+ ˆHkFk,u,
473
+ (9)
474
+ which can minimize the mean-squared error MSEk,(1) = tr(Ek,(1)). With the MMSE combining scheme,
475
+ the conditional MSE matrix in (7) is
476
+ Eopt
477
+ k,(1) = IN − FH
478
+ k,u ˆHH
479
+ k
480
+ � K
481
+
482
+ l=1
483
+
484
+ ˆHl¯Fl,u ˆHH
485
+ l + C′
486
+ l
487
+
488
+ + σ2IML
489
+ �−1
490
+ ˆHkFk,u
491
+ (10)
492
+ More importantly, the MMSE combining in (9) can also maximize the achievable SE in (8) as follows.
493
+ Corollary 2. The achievable SE for UE k in (8) can be maximized by the MMSE combining scheme in
494
+ (9) with the maximum value
495
+ SEopt
496
+ k,(1) =
497
+
498
+ 1 − τp
499
+ τc
500
+
501
+ E
502
+
503
+
504
+ log2
505
+ ������
506
+ IN + FH
507
+ k,u ˆHH
508
+ k
509
+ � K
510
+
511
+ l=1
512
+
513
+ ˆHl¯Fl,u ˆHH
514
+ l + C′
515
+ l
516
+
517
+ − ˆHk¯Fk,u ˆHH
518
+ k + σ2IML
519
+ �−1
520
+ ˆHkFk,u
521
+ ������
522
+
523
+
524
+  .
525
+ (11)
526
+ Proof. The proof can be found in [28, Appendix B] and is therefore omitted.
527
+ 2) Iteratively WMMSE Precoding Design: In this part, we design the uplink precoding scheme for the
528
+ “fully centralized processing”. One popular weighted sum-rate maximization problem is investigated as5
529
+ max
530
+ {F}
531
+ K
532
+
533
+ k=1
534
+ µk,(1)SEk,(1)
535
+ s.t.
536
+ ��Fk,u,(1)
537
+ ��2 ⩽ pk ∀k = 1, . . . , K
538
+ (12)
539
+ where µk,(1) represents the priority weight of UE k and SEk,(1) is given by (8).
540
+ 5The notation F is short for {Fk,u}k=1,...,K, denoting all variables Fk,u with k = 1, . . . , K. Similar definitions are applied for V, A, W,
541
+ S in the following. In this section, we denote by Fk,u,(1) and Fk,u,(2) the UL precoding matrix of UE k for the fully centralized processing
542
+ and LSFD scheme, respectively.
543
+
544
+ 10
545
+ As [30] and [32], the matrix-weighted sum-MSE minimization problem as
546
+ min
547
+ {F,V,W}
548
+ K
549
+
550
+ k=1
551
+ µk,(1)
552
+
553
+ tr
554
+
555
+ Wk,(1)Ek,(1)
556
+
557
+ − log2
558
+ ��Wk,(1)
559
+ ���
560
+ s.t.
561
+ ��Fk,u,(1)
562
+ ��2 ⩽ pk ∀k = 1, . . . , K
563
+ (13)
564
+ is equivalent to the weighted sum-rate maximization problem (12), where Wk,(1) ∈ CN×N is the weight
565
+ matrix for UE k. We notice that (13) is convex over each optimization variable F, V, W but is not jointly
566
+ convex over all optimization variables. Following the method in [30], we can solve (13) by sequentially
567
+ fixing two of the three optimization variables F, V, W and updating the third.
568
+ Fixing the other variables, the update of Vk is given by the MMSE solution as (9). Under the MMSE
569
+ combining, the MSE matrix is given by (10). Then, note that optimal Wk,(1) for (13) is
570
+ Wopt
571
+ k,(1) = E−1
572
+ k,(1),
573
+ (14)
574
+ which can be easily derived through the first order optimality condition for Wk,(1) by fixing F and V.
575
+ Remark 1. When the MMSE combining VMMSE
576
+ k
577
+ and Wopt
578
+ k,(1) for all UEs are implemented in (13), we have
579
+ tr(Wk,(1)Ek,(1))−log2
580
+ ��Wk,(1)
581
+ �� = tr (IN)−log2 |(Eopt
582
+ k,(1))−1|. So the matrix-weighted sum-MSE minimization
583
+ problem in (13) would reduce to the equivalent optimization problem of (12) as6:
584
+ max
585
+ {F}
586
+ K
587
+
588
+ k=1
589
+ µk,(1) log2
590
+ ����
591
+
592
+ Eopt
593
+ k,(1)
594
+ �−1����
595
+ s.t.
596
+ ��Fk,u,(1)
597
+ ��2 ⩽ pk ∀k = 1, . . . , K
598
+ (15)
599
+ which is a well-known relationship between Eopt
600
+ k,(1) and SEopt
601
+ k,(1).
602
+ Finally, fixing V and W, the update of Fk,u,(1) for (13) results in the optimization problem as7
603
+ 6Note that “SE” is equivalent to “rate” except from having one scaling factor (τc − τp)/τc. Since τc and τp are constants in this paper,
604
+ so we ignore the difference between SE and rate in the optimization problem.
605
+ 7It is worth mentioning that the updates of optimization variables are based on the preliminary of fixing the other optimization variables.
606
+ For instance, when updating Fk,u,(1), we should fix the other optimization variables (Vk and Wk,(1)) but not only limited to their respective
607
+ optimal solutions VMMSE
608
+ k
609
+ and Wopt
610
+ k,(1). So we update Fk,u,(1) based on (16) with generalized Vk and Wk,(1) instead of (15) with optimal
611
+ VMMSE
612
+ k
613
+ and Wopt
614
+ k,(1).
615
+
616
+ 11
617
+ min
618
+ {F}
619
+ K
620
+
621
+ k=1
622
+ µk,(1)tr
623
+
624
+ Wk,(1)
625
+
626
+ IN − VH
627
+ k ˆHkFk,u,(1)
628
+ � �
629
+ IN − VH
630
+ k ˆHkFk,u,(1)
631
+ �H�
632
+ +
633
+ K
634
+
635
+ k=1
636
+ µk,(1)tr
637
+
638
+ Wk,(1)VH
639
+ k
640
+ � K
641
+
642
+ l̸=k
643
+ ˆHlFl,u,(1)FH
644
+ l,u,(1) ˆHH
645
+ l
646
+
647
+ Vk
648
+
649
+
650
+ K
651
+
652
+ k=1
653
+ µk,(1) log2
654
+ ��Wk,(1)
655
+ ��
656
+ +
657
+ K
658
+
659
+ k=1
660
+ µk,(1)tr
661
+
662
+ Wk,(1)VH
663
+ k
664
+ � K
665
+
666
+ l=1
667
+ E
668
+
669
+ ˜HlFl,u,(1)FH
670
+ l,u,(1) ˜HH
671
+ l
672
+ ��� F
673
+
674
+ + σ2IML
675
+
676
+ Vk
677
+
678
+ s.t.
679
+ ��Fk,u,(1)
680
+ ��2 ⩽ pk ∀k = 1, . . . , K
681
+ (16)
682
+ which is a convex quadratic optimization problem. So the classic Lagrange multipliers methods and
683
+ Karush-Kuhn-Tucker (KKT) conditions can be applied to derive an optimal solution. The Lagrange
684
+ function of (16) is
685
+ f
686
+
687
+ F1,u,(1), . . . , FK,u,(1)
688
+
689
+ =
690
+ K
691
+
692
+ k=1
693
+ µk,(1)tr
694
+
695
+ Wk,(1)
696
+
697
+ IN − VH
698
+ k ˆHkFk,u,(1)
699
+ � �
700
+ IN − VH
701
+ k ˆHkFk,u,(1)
702
+ �H�
703
+ +
704
+ K
705
+
706
+ k=1
707
+ µk,(1)tr
708
+
709
+ Wk,(1)VH
710
+ k
711
+ � K
712
+
713
+ l̸=k
714
+ ˆHlFl,u,(1)FH
715
+ l,u,(1) ˆHH
716
+ l
717
+
718
+ Vk
719
+
720
+ +
721
+ K
722
+
723
+ k=1
724
+ µk,(1)tr
725
+
726
+ Wk,(1)VH
727
+ k
728
+ � K
729
+
730
+ l=1
731
+ E
732
+
733
+ ˜HlFl,u,(1)FH
734
+ l,u,(1) ˜HH
735
+ l
736
+ ��� F
737
+
738
+ + σ2IML
739
+
740
+ Vk
741
+
742
+ +
743
+ K
744
+
745
+ k=1
746
+ λk,(1)
747
+
748
+ tr
749
+
750
+ Fk,u,(1)FH
751
+ k,u,(1)
752
+
753
+ − pk
754
+
755
+ (17)
756
+ Finally, we derive the optimal precoding scheme as the following theorem.
757
+ Theorem 1. By fixing other optimization variables and applying the first-order optimality condition of
758
+ (17) with respect to each Fk,u,(1), the optimal precoding scheme is given by
759
+ Fopt
760
+ k,u,(1) = µk,(1)
761
+ � K
762
+
763
+ l=1
764
+ µl,(1)
765
+
766
+ ˆHH
767
+ k VlWl,(1)VH
768
+ l ˆHk + E
769
+
770
+ ˜HH
771
+ k VlWl,(1)VH
772
+ l ˜Hk
773
+ ��� V, W
774
+ ��
775
+ + λk,(1)IN
776
+ �−1
777
+ ˆHH
778
+ k VkWk,(1)
779
+ = µk,(1)
780
+ � K
781
+
782
+ l=1
783
+ µl,(1)
784
+
785
+ ˆHH
786
+ k VlWl,(1)VH
787
+ l ˆHk + ¯Ckl
788
+
789
+ + λk,(1)IN
790
+ �−1
791
+ ˆHH
792
+ k VkWk,(1),
793
+ (18)
794
+ where λk,(1) ⩾ 0 is the Lagrangian multiplier and the (i, n)-th element of ¯Ckl ≜ E{ ˜HH
795
+ k VlWl,(1)VH
796
+ l ˜Hk|V, W}
797
+ ∈ CN×N is
798
+ �¯Ckl
799
+
800
+ in = tr( ¯VlE{˜hk,n˜hH
801
+ k,i}) = tr
802
+ �¯VlCk,in
803
+
804
+ with ¯Vl ≜ VlWl,(1)VH
805
+ l and Ck,ni ≜ E{˜hk,n˜hH
806
+ k,i} =
807
+
808
+ 12
809
+ diag (Cni
810
+ 1k, . . . , Cni
811
+ Mk) ∈ CML×ML. According to the KKT condition, λk,(1) and Fk,u,(1) should also satisfy
812
+ ��Fk,u,(1)
813
+ ��2 ⩽ pk,
814
+ λk,(1)
815
+ ���Fk,u,(1)
816
+ ��2 − pk
817
+
818
+ = 0,
819
+ λk,(1) ⩾ 0.
820
+ (19)
821
+ Proof: The proof is given in Appendix D.
822
+ We denote by Fk,u,(1)(λk,(1)) the right-hand side of (18), when �K
823
+ l=1 µl,(1)( ˆHH
824
+ k VlWl,(1)VH
825
+ l ˆHk + ¯Ckl)
826
+ is invertible and tr[Fk,u,(1)(0)Fk,u,(1)(0)H] ⩽ pk, then Fopt
827
+ k,u,(1) = Fk,u,(1) (0), otherwise we have
828
+ tr[Fk,u,(1)(λk,(1))Fk,u,(1)(λk,(1))H] = pk
829
+ to satisfy (19).
830
+ Corollary 3. tr[Fk,u,(1)(λk,(1))Fk,u,(1)(λk,(1))H] is a monotonically decreasing function of λk,(1).
831
+ Proof: Let DΛDH denote the eigendecomposition of �K
832
+ l=1 µl,(1)( ˆHH
833
+ k VlWl,(1)VH
834
+ l ˆHk + ¯Ckl). Fol-
835
+ lowing the method in [30], we define Φ = µ2
836
+ k,(1)DH ˆHH
837
+ k VkW2
838
+ k,(1) ˆHkVH
839
+ k D and we have
840
+ tr[Fk,u,(1)(λk,(1))Fk,u,(1)(λk,(1))H] = tr
841
+ ��
842
+ DΛDH + λk,(1)IN
843
+ �−1 DΦDH �
844
+ DΛDH + λk,(1)IN
845
+ �−1�
846
+ = tr
847
+ ��
848
+ DΛDH + λk,(1)IN
849
+ �−2 DΦDH�
850
+ = tr
851
+ ��
852
+ Λ + λk,(1)IN
853
+ �−2�
854
+ =
855
+ N
856
+
857
+ n=1
858
+ [Φ]nn
859
+
860
+ [Λ]nn + λk,(1)
861
+ �2,
862
+ (20)
863
+ so tr[Fk,u,(1)(λk,(1))Fk,u,(1)(λk,(1))H] is a monotonically decreasing function of λk,(1).
864
+ Based on Corollary 3, optimum λk,(1) (denoted by λopt
865
+ k,(1)) can be easily obtained by a one-dimensional
866
+ (1-D) bisection algorithm so we derive the solution for Fk,u,(1)(λopt
867
+ k,(1)). Furthermore, an iterative opti-
868
+ mization algorithm for Fk,u,(1), called “iteratively WMMSE (I-WMMSE) algorithm”, is summarized in
869
+ Algorithm 18. The convergence of Algorithm 1 is proven in [30, Theorem 3].
870
+ Remark 2. Note that the design of Fk,p is a valuable future direction to further improve the system
871
+ performance. One valuable optimization problem is to minimize the total MSE of the channel estimators
872
+ of all UEs as
873
+ min
874
+ {Fk,p}
875
+ K
876
+
877
+ k=1
878
+ tr (Ck)
879
+ s.t. ∥Fk,p∥2 ⩽ pk ∀k = 1, . . . , K
880
+ (21)
881
+ where the optimization goal is only based on the statistical knowledge so Fk,p is also based on the
882
+ statistical knowledge.
883
+ 8To balance the efficiency and the computational complexity of the proposed algorithm, we also include the stopping criterion “R(i)
884
+ (1) <
885
+ R(i−1)
886
+ (1)
887
+ . Moreover, the I-WMMSE precoding scheme is derived at iteration (i − 1), which may achieve higher sum SE than the one at
888
+ iteration i.
889
+
890
+ 13
891
+ Algorithm 1: I-WMMSE Algorithm for the Design of Fk,u,(1)
892
+ Input: Collective channel estimates ˆHk for all UEs; Estimation error covariance matrices Cml for
893
+ all possible pairs; UE weights µk,(1) for all UEs;
894
+ Output: Optimal precoding matrices Fk,u,(1) for all UEs (F(i)
895
+ k,u,(1) for the first or third stopping
896
+ criterion and F(i−1)
897
+ k,u,(1) for the second stopping criterion);
898
+ 1 Initiation: i = 0, F(0)
899
+ k,u,(1) and R(0)
900
+ (1) = �K
901
+ k=1 µk,(1)SE(0)
902
+ k,(1) for all UEs; maximum iteration number
903
+ I(1),max and threshold ε(1);
904
+ 2 repeat
905
+ 3
906
+ i = i + 1
907
+ 4
908
+ Update the MMSE combining scheme V(i)
909
+ k
910
+ with F(i−1)
911
+ k,u,(1) based on (9);
912
+ 5
913
+ Update optimal MSE matrix E(i)
914
+ k,(1) with F(i−1)
915
+ l,u,(1) based on (10), and update W(i)
916
+ k,(1) based on
917
+ (14);
918
+ 6
919
+ Update optimal precoding matrix F(i)
920
+ l,u,(1) with V(i)
921
+ k
922
+ and W(i)
923
+ k,(1) based on (18), where λ(i)
924
+ k,(1) is
925
+ found by a bisection algorithm;
926
+ 7
927
+ Update sum weighted rate R(i)
928
+ (1) = �K
929
+ k=1 µk,(1)SE(i)
930
+ k,(1);
931
+ 8 until
932
+ ���R(i)
933
+ (1) − R(i−1)
934
+ (1)
935
+ ��� /R(i−1)
936
+ (1)
937
+ ⩽ ε(1) or R(i)
938
+ (1) < R(i−1)
939
+ (1)
940
+ or i ⩾ I(1),max;
941
+ B. Large-Scale Fading Decoding
942
+ 1) Spectral Efficiency Analysis: Another promising processing scheme is “large-scale fading decoding”,
943
+ which is a two-layer decoding scheme to decode the data symbol. Note that UL precoding matrices (Fk,u
944
+ and Fk,p) are assumed to be available at all APs and the CPU. In the first layer, AP m applies an arbitrary
945
+ combining matrix Vmk ∈ CL×N to derive local detection of xk as
946
+ ˜xmk = VH
947
+ mkym = VH
948
+ mkHmkFk,uxk +
949
+ K
950
+
951
+ l=1,l̸=k
952
+ VH
953
+ mkHmlFl,uxl + VH
954
+ mknm.
955
+ (22)
956
+ We notice that Vmk is designed based on local channel estimates at AP m and one handy choice is
957
+ MR combining Vmk = ˆHmk. Moreover, local MMSE (L-MMSE) combining
958
+ Vmk =
959
+ � K
960
+
961
+ l=1
962
+
963
+ ˆHml¯Fl,u ˆHH
964
+ ml + C′
965
+ ml
966
+
967
+ + σ2IL
968
+ �−1
969
+ ˆHmkFk,u,
970
+ (23)
971
+ is also regarded as a promising scheme, since (23) can minimize E{∥ xk − VH
972
+ mkym ∥2 |{ ˆHmk}, {Fk,u}}.
973
+ In the second layer, the “LSFD” method is implemented at the CPU [5]. The CPU weights all the local
974
+ estimates ˜xmk from all APs by the LSFD coefficient matrix as
975
+ ˆxk =
976
+ M
977
+
978
+ m=1
979
+ AH
980
+ mk˜xmk =
981
+ M
982
+
983
+ m=1
984
+ AH
985
+ mkVH
986
+ mkHmkFk,uxk +
987
+ M
988
+
989
+ m=1
990
+ K
991
+
992
+ l=1,l̸=k
993
+ AH
994
+ mkVH
995
+ mkHmlFl,uxl+n′
996
+ k,
997
+ (24)
998
+ where Amk ∈ CN×N is the complex LSFD coefficient matrix for AP m-UE k and n′
999
+ k = �M
1000
+ m=1 AH
1001
+ mkVH
1002
+ mknm.
1003
+
1004
+ 14
1005
+ Moreover, we can rewrite ˆxk in a more compact form as
1006
+ ˆxk = AH
1007
+ k GkkFk,uxk +
1008
+ K
1009
+
1010
+ l=1,l̸=k
1011
+ AH
1012
+ k GklFl,uxl + n′
1013
+ k = AH
1014
+ k
1015
+
1016
+ GkkFk,uxk +
1017
+ K
1018
+
1019
+ l=1,l̸=k
1020
+ GklFl,uxl + ˜n′
1021
+ k
1022
+
1023
+
1024
+ ��
1025
+
1026
+ ˜xk
1027
+ (25)
1028
+ where Ak ≜ [AT
1029
+ 1k, . . . , AT
1030
+ Mk]T ∈ CMN×N, Gkl ≜ [VH
1031
+ 1kH1l; . . . ; VH
1032
+ MkHMl] ∈ CMN×N and
1033
+ ˜n′
1034
+ k =
1035
+
1036
+ VH
1037
+ 1kn1; . . . ; VH
1038
+ MknM
1039
+
1040
+ ∈ CMN×N.
1041
+ Note that the CPU does not have the knowledge of channel estimates and is only aware of channel
1042
+ statistics [5]. The conditional MSE matrix for UE k Ek,(2) ≜ E
1043
+
1044
+ (xk − ˆxk) (xk − ˆxk)H |Θ
1045
+
1046
+ is
1047
+ Ek,(2) = IN − FH
1048
+ k,uE{GH
1049
+ kk}Ak − AH
1050
+ k E{Gkk}Fk,u + AH
1051
+ k
1052
+ � K
1053
+
1054
+ l=1
1055
+ E{Gkl¯Fl,uGH
1056
+ kl} + σ2Sk
1057
+
1058
+ Ak,
1059
+ (26)
1060
+ where Θ denotes all the channel statistics and Sk = diag(E{VH
1061
+ 1kV1k}, · · · , E{VH
1062
+ MkVMk}) ∈ CMN×MN.
1063
+ Then, we apply classical use-and-then-forget bound to obtain the following ergodic achievable SE.
1064
+ Corollary 4. For the “LSFD” scheme, an achievable SE for UE k can be written as
1065
+ SEk,(2) =
1066
+
1067
+ 1 − τp
1068
+ τc
1069
+
1070
+ log2
1071
+ ���IN + DH
1072
+ k,(2)Σ−1
1073
+ k,(2)Dk,(2)
1074
+ ��� ,
1075
+ (27)
1076
+ where Σk,(2) = �K
1077
+ l=1 AH
1078
+ k E{Gkl¯Fl,uGH
1079
+ kl}Ak − Dk,(2)DH
1080
+ k,(2) + σ2AH
1081
+ k SkAk and Dk,(2) = AH
1082
+ k E{Gkk}Fk,u.
1083
+ Proof. The proof follows similar steps as the proof of [28, Corollary 2] and is therefore omitted.
1084
+ Note that Ak can be optimized by the CPU based on channel statistics to maximize the achievable
1085
+ SE in (27). Based on the theory of optimal receivers as in [37], we derive the optimal LSFD coefficient
1086
+ matrix, which not only maximizes the achievable SE but minimizes the conditional MSE, as follows.
1087
+ Corollary 5. The achievable SE in (27) is maximized by
1088
+ Aopt
1089
+ k
1090
+ =
1091
+ � K
1092
+
1093
+ l=1
1094
+ E{Gkl¯Fl,uGH
1095
+ kl} + σ2Sk
1096
+ �−1
1097
+ E{Gkk}Fk,u,
1098
+ (28)
1099
+ leading to the maximum value as
1100
+ SEopt
1101
+ k,(2)
1102
+ =
1103
+
1104
+ 1 − τp
1105
+ τc
1106
+
1107
+ log2
1108
+ ������
1109
+ IN + FH
1110
+ k,uE {Gkk}
1111
+ � K
1112
+
1113
+ l=1
1114
+ E
1115
+
1116
+ Gkl¯Fl,uGH
1117
+ kl
1118
+
1119
+ − E {Gkk} ¯Fk,uE
1120
+
1121
+ GH
1122
+ kk
1123
+
1124
+ + σ2Sk
1125
+ �−1
1126
+ E {Gkk} Fk,u
1127
+ ������
1128
+ .
1129
+ (29)
1130
+
1131
+ 15
1132
+ Note that the optimal LSFD coefficient matrix in (28) can also minimize the conditional MSE for UE k
1133
+ MSEk,(2) = tr(Ek,(2)).
1134
+ Proof. The proof is given in Appendix B.
1135
+ If the optimal LSFD coefficient matrix is applied, the MSE matrix for UE k can be written as
1136
+ Eopt
1137
+ k,(2) = IN − FH
1138
+ k,uE
1139
+
1140
+ GH
1141
+ kk
1142
+
1143
+ � K
1144
+
1145
+ l=1
1146
+ E{Gkl¯Fl,uGH
1147
+ kl} + σ2Sk
1148
+ �−1
1149
+ E{Gkk}Fk,u.
1150
+ (31)
1151
+ Furthermore, if MR combining Vmk = ˆHmk is applied, we derive closed-form SE expressions as follows.
1152
+ Theorem 2. For MR combining Vmk = ˆHmk, (27) can be computed in closed-form as
1153
+ SEk,(2),c =
1154
+
1155
+ 1 − τp
1156
+ τc
1157
+
1158
+ log2
1159
+ ���IN + DH
1160
+ k,(2),cΣ−1
1161
+ k,(2),cDk,(2),c
1162
+ ��� ,
1163
+ (32)
1164
+ where Σk,(2),c = AH
1165
+ k (�K
1166
+ l=1 Tkl,(1) + �
1167
+ l∈Pk Tkl,(2))Ak − Dk,(2),cDH
1168
+ k,(2),c + σ2AH
1169
+ k Sk,cAk and Dk,(2),c =
1170
+ AH
1171
+ k ZkFk,u, with E{Gkk} = Zk = [ZT
1172
+ 1k, . . . , ZT
1173
+ Mk]T and Sk,c = diag(Z1k, · · · , ZMk) with the (n, n′)-
1174
+ th element of Zmk ∈ CN×N being [Zmk]nn′ = tr(ˆRn′n
1175
+ mk). Moreover, Tkl,(1) ≜ diag(Γ(1)
1176
+ kl,1, · · · , Γ(1)
1177
+ kl,M) ∈
1178
+ CMN×MN and Tmm′
1179
+ kl,(2) = Γ(2)
1180
+ kl,m − Γ(1)
1181
+ kl,m if m = m′ and Λmkl¯Fl,uΛm′lk otherwise, where Tmm′
1182
+ kl,(2) de-
1183
+ notes (m, m′)-submatrix of Tkl,(2) ∈ CMN×MN, the (n, n′)-th element of N × N-dimension complex
1184
+ matrices Λmkl, Λm′lk, Γ(1)
1185
+ kl,m and Γ(2)
1186
+ kl,m are [Λmkl]nn′ = tr(Ξn′n
1187
+ mkl), [Λm′lk]nn′ = tr(Ξn′n
1188
+ m′lk), [Γ(1)
1189
+ mkl]nn′ =
1190
+ �N
1191
+ i=1
1192
+ �N
1193
+ i′=1 [¯Fl,u]i′itr(Ri′i
1194
+ ml ˆRn′n
1195
+ mk) and [Γ(2)
1196
+ kl,m]nn′ given by
1197
+
1198
+ Γ(2)
1199
+ kl,m
1200
+
1201
+ nn′ =
1202
+ N
1203
+
1204
+ i=1
1205
+ N
1206
+
1207
+ i′=1
1208
+ �¯Fl
1209
+
1210
+ i′i
1211
+
1212
+ tr
1213
+
1214
+ Ri′i
1215
+ mlPn′n
1216
+ mkl,(1)
1217
+
1218
+ +τ 2
1219
+ p
1220
+ N
1221
+
1222
+ q1=1
1223
+ N
1224
+
1225
+ q2=1
1226
+
1227
+ tr
1228
+
1229
+ ˜Pq1n
1230
+ mkl,(2) ˜Ri′q2
1231
+ ml ˜Rq2i
1232
+ ml ˜Pn′q1
1233
+ mkl,(2)
1234
+
1235
+ + tr
1236
+
1237
+ ˜Pq1n
1238
+ mkl,(2) ˜Ri′q2
1239
+ ml
1240
+
1241
+ tr
1242
+
1243
+ ˜Pn′q2
1244
+ mkl,(2) ˜Rq2i
1245
+ ml
1246
+ ���
1247
+ (33)
1248
+ with Ξmkl = τpRml˜FH
1249
+ l,pΨ−1
1250
+ mk˜Fk,pRmk, Ξm′lk = τpRm′k˜FH
1251
+ k,pΨ−1
1252
+ m′k˜Fl,pRm′l, Pmkl,(1) = τpSmk(Ψmk −
1253
+ τp˜Fl,pRml˜FH
1254
+ l,p)SH
1255
+ mk, Smk = Rmk˜FH
1256
+ k,pΨ−1
1257
+ mk, Pmkl,(2) = Smk˜Fl,pRml˜FH
1258
+ l,pSH
1259
+ mk, ˜Rni
1260
+ ml and ˜Pni
1261
+ mkl,(2) being (n, i)-
1262
+ submatrix of R
1263
+ 1
1264
+ 2
1265
+ ml and P
1266
+ 1
1267
+ 2
1268
+ mkl,(2), respectively. Furthermore, the optimal LSFD coefficient matrix in (28)
1269
+ and MSE matrix in (31) can also be computed in closed-form as
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+ Aopt
1276
+ k,c =
1277
+ ��K
1278
+ l=1 Tkl,(1) + �
1279
+ l∈Pk Tkl,(2) + σ2Sk,c
1280
+ �−1
1281
+ ZkFk,u,
1282
+ Eopt
1283
+ k,(2),c = IN − FH
1284
+ k,uZH
1285
+ k
1286
+ ��K
1287
+ l=1 Tkl,(1) + �
1288
+ l∈Pk Tkl,(2) + σ2Sk,c
1289
+ �−1
1290
+ ZkFk,u.
1291
+ (34)
1292
+ Proof: The proof is given in Appendix C.
1293
+
1294
+ 16
1295
+ 2) Iteratively WMMSE Precoding Design: For the LSFD scheme, we also investigate a weighted sum-
1296
+ rate maximization problem as
1297
+ max
1298
+ {F}
1299
+ K
1300
+
1301
+ k=1
1302
+ µk,(2)SEk,(2)
1303
+ s.t.
1304
+ ��Fk,u,(2)
1305
+ ��2 ⩽ pk ∀k = 1, . . . , K
1306
+ (35)
1307
+ where µk,(2) represents the priority weight of UE k for the “LSFD” scheme and SEk,(2) is given in (27)
1308
+ with arbitrary combining structure in the first decoding layer.
1309
+ Similarly, the matrix-weighted sum-MSE minimization problem as9
1310
+ min
1311
+ {F,A,W,G,S}
1312
+ K
1313
+
1314
+ k=1
1315
+ µk,(2)
1316
+
1317
+ tr
1318
+
1319
+ Wk,(2)Ek,(2)
1320
+
1321
+ − log2
1322
+ ��Wk,(2)
1323
+ ���
1324
+ s.t.
1325
+ ��Fk,u,(2)
1326
+ ��2 ⩽ pk ∀k = 1, . . . , K
1327
+ (36)
1328
+ is equivalent to the weighted sum-rate maximization problem (35), where Wk,(2) is the weight matrix for
1329
+ UE k. Note that (36) is convex over each optimization variable F, A, W, G, S but is not jointly convex
1330
+ over all optimization variables. So we can solve (36) by sequentially fixing four of the five optimization
1331
+ variables F, A, W, G, S and updating the fifth.10
1332
+ The update of Ak and Ek,(2) are given by the optimal LSFD scheme (28) and MSE matrix with optimal
1333
+ LSFD scheme (31). Note that optimal Wk,(2) for (36) is Wopt
1334
+ k,(2) = E−1
1335
+ k,(2).
1336
+ Remark 3. When Aopt
1337
+ k
1338
+ and Wopt
1339
+ k,(2) for all UEs are applied in (36), we notice that (36) becomes to the
1340
+ equivalent optimization problem of (35) as
1341
+ max
1342
+ {F,G,S}
1343
+ K
1344
+
1345
+ k=1
1346
+ µk,(2) log2
1347
+ ����
1348
+
1349
+ Eopt
1350
+ k,(2)
1351
+ �−1����
1352
+ s.t.
1353
+ ��Fk,u,(2)
1354
+ ��2 ⩽ pk ∀k = 1, . . . , K
1355
+ (37)
1356
+ which is a well-known relationship between Eopt
1357
+ k,(2) and SEopt
1358
+ k,(2) and proven in Appendix E.
1359
+ Last but not least, fixing other variables, the update of Fk,u,(2) for (36) results in the optimization
1360
+ 9The notation G denotes all G-relevant variables, like E{Gkl¯Fl,u,(2)GH
1361
+ kl} and E{Gkk}, etc.
1362
+ 10As for G and S, if L-MMSE combining scheme applied, E {Gkk} and Sk are relevant to Fk,u,(2) so we should also update them. On
1363
+ the contrary, E{Gkk} and Sk with MR combining structure are irrelevant to F so we only need to update E{Gkl¯Fl,u,(2)GH
1364
+ kl}.
1365
+
1366
+ 17
1367
+ problem as
1368
+ min
1369
+ {F}
1370
+ K
1371
+
1372
+ k=1
1373
+ µk,(2)
1374
+
1375
+ tr
1376
+
1377
+ Wk
1378
+
1379
+ IN − FH
1380
+ k,u,(2)E
1381
+
1382
+ GH
1383
+ kk
1384
+
1385
+ Ak
1386
+ � �
1387
+ IN − FH
1388
+ k,u,(2)E
1389
+
1390
+ GH
1391
+ kk
1392
+
1393
+ Ak
1394
+ �H��
1395
+ +
1396
+ K
1397
+
1398
+ k=1
1399
+ µk,(2)
1400
+
1401
+ tr
1402
+
1403
+ Wk,(2)AH
1404
+ k
1405
+ � K
1406
+
1407
+ l̸=k
1408
+ E
1409
+
1410
+ Gkl¯Fl,u,(2)GH
1411
+ kl
1412
+
1413
+ + σ2Sk
1414
+
1415
+ Ak
1416
+ ��
1417
+ s.t.
1418
+ ��Fk,u,(2)
1419
+ ��2 ⩽ pk ∀k = 1, . . . , K
1420
+ (38)
1421
+ which is a convex quadratic optimization problem. Thus, we can also derive the optimal precoding scheme
1422
+ by applying classic Lagrange multipliers methods and KKT conditions. The Lagrange function of (38) is
1423
+ f
1424
+
1425
+ F1,u,(2), . . . , FK,u,(2)
1426
+
1427
+ =
1428
+ K
1429
+
1430
+ k=1
1431
+ µk,(2)
1432
+
1433
+ tr
1434
+
1435
+ Wk,(2)
1436
+
1437
+ IN − FH
1438
+ k,u,(2)E
1439
+
1440
+ GH
1441
+ kk
1442
+
1443
+ Ak
1444
+ � �
1445
+ IN − FH
1446
+ k,u,(2)E
1447
+
1448
+ GH
1449
+ kk
1450
+
1451
+ Ak
1452
+ �H��
1453
+ +
1454
+ K
1455
+
1456
+ k=1
1457
+ µk,(2)
1458
+
1459
+ tr
1460
+
1461
+ Wk,(2)AH
1462
+ k
1463
+ � K
1464
+
1465
+ l̸=k
1466
+ E
1467
+
1468
+ Gkl¯Fl,u,(2)GH
1469
+ kl
1470
+
1471
+ + σ2Sk
1472
+
1473
+ Ak
1474
+ ��
1475
+ +
1476
+ K
1477
+
1478
+ k=1
1479
+ λk,(2)
1480
+
1481
+ tr
1482
+
1483
+ Fk,u,(2)FH
1484
+ k,u,(2)
1485
+
1486
+ − pk
1487
+
1488
+ .
1489
+ (39)
1490
+ Theorem 3. By applying the first-order optimality condition of (39) with respect to each Fk,u,(2) and
1491
+ fixing other optimization variables, we obtain the optimal precoding scheme as
1492
+ Fopt
1493
+ k,u,(2) = µk,(2)
1494
+ � K
1495
+
1496
+ l=1
1497
+ µl,(2)E
1498
+
1499
+ GH
1500
+ lkAlE−1
1501
+ l,(2)AH
1502
+ l Glk
1503
+
1504
+ + λk,(2)IN
1505
+ �−1
1506
+ E
1507
+
1508
+ GH
1509
+ kk
1510
+
1511
+ AkE−1
1512
+ k,(2),
1513
+ (40)
1514
+ where λk,(2) ⩾ 0 is the Lagrangian multiplier during the phase of “LSFD” scheme. According to the KKT
1515
+ condition, λk,(2) and Fk,u,(2) should also satisfy
1516
+ ��Fk,u,(2)
1517
+ ��2 ⩽ pk,
1518
+ λk,(2)
1519
+ ���Fk,u,(2)
1520
+ ��2 − pk
1521
+
1522
+ = 0,
1523
+ λk,(2) ⩾ 0.
1524
+ (41)
1525
+ Note that when �K
1526
+ l=1 µl,(2)E{GH
1527
+ lkAlE−1
1528
+ l,(2)AH
1529
+ l Glk} is invertible and tr
1530
+
1531
+ Fk,u,(2)(0)Fk,u,(2)(0
1532
+ �H] ⩽ pk,
1533
+ then Fopt
1534
+ k,u,(2) = Fk,u,(2) (0), otherwise we must have tr[Fk,u,(2)(λk,(2))Fk,u,(2)(λk,(2))H] = pk. Following the
1535
+ similar method in Corollary 3, we notice that λk,(2) can be easily found by a 1-D bisection algorithm
1536
+ since tr[Fk,u,(2)(λk,(2))Fk,u,(2)(λk,(2))H] is a monotonically decreasing function of λk,(2).
1537
+ Moreover, if MR combining Vmk = ˆHmk is applied in the first layer, we can compute expectations in
1538
+ (40) in closed-form as following theorem.
1539
+ Theorem 4. With MR combining Vmk = ˆHmk and the optimal LSFD scheme applied, we can compute
1540
+
1541
+ 18
1542
+ E{GH
1543
+ kk}, Aopt
1544
+ k , and Eopt
1545
+ k,(2) in closed-form as Theorem 2. Moreover, we have ¯Tlk = E{GH
1546
+ lkAlE−1
1547
+ l,(2)AH
1548
+ l Glk} ∈
1549
+ CN×N where the (i, n)-th element of ¯Tlk is tr(¯Al ¯Glk,ni) with ¯Al ≜ AlE−1
1550
+ l,(2)AH
1551
+ l
1552
+ and the [(m − 1) N +
1553
+ p, (m′ − 1) N + p′]-th (or [o, j]-th briefly) entry of ¯Glk,ni ≜ E{glk,ngH
1554
+ lk,i} ∈ CMN×MN being
1555
+ E{glk,ngH
1556
+ lk,i}oj =
1557
+
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+
1565
+
1566
+
1567
+
1568
+
1569
+
1570
+
1571
+
1572
+
1573
+
1574
+
1575
+
1576
+
1577
+
1578
+
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+
1585
+
1586
+ 0,
1587
+ l /∈ Pk, m ̸= m′
1588
+ tr(Rni
1589
+ mk ˆRp′p
1590
+ ml),
1591
+ l /∈ Pk, m = m′
1592
+ tr(Ξnp
1593
+ mlk)tr(Ξp′i
1594
+ m′kl),
1595
+ l ∈ Pk, m ̸= m′
1596
+ tr
1597
+
1598
+ Rni
1599
+ mkPp′p
1600
+ mlk,(1)
1601
+
1602
+ + τ 2
1603
+ p
1604
+ �N
1605
+ q1=1
1606
+ �N
1607
+ q2=1 tr
1608
+
1609
+ ˜Pq1p
1610
+ mlk,(2) ˜Rnq2
1611
+ mk ˜Rq2i
1612
+ mk ˜Pp′q1
1613
+ mlk,(2)
1614
+
1615
+ +τ 2
1616
+ p
1617
+ �N
1618
+ q1=1
1619
+ �N
1620
+ q2=1 tr
1621
+
1622
+ ˜Pq1n
1623
+ mlk,(2) ˜Rnq1
1624
+ mk
1625
+
1626
+ tr
1627
+
1628
+ ˜Pp′q2
1629
+ mlk,(2) ˜Rq2i
1630
+ mk
1631
+
1632
+ ,
1633
+ l ∈ Pk, m = m′
1634
+ (42)
1635
+ where Ξmlk = τpRmk˜FH
1636
+ k,pΨ−1
1637
+ mk˜Fl,pRml, Ξm′kl = τpRm′l˜FH
1638
+ l,pΨ−1
1639
+ m′l˜Fk,pRm′k, Sml = Rml˜FH
1640
+ l,pΨ−1
1641
+ ml, Pmlk,(1) =
1642
+ τpSml(Ψml − τp˜Fk,pRmk˜FH
1643
+ k,p)SH
1644
+ ml and Pmlk,(2) = Sml˜Fk,pRmk˜FH
1645
+ k,pSH
1646
+ ml. Plugging the derived results into
1647
+ (40), we can compute Fopt
1648
+ k,u,(2) in closed-form as
1649
+ Fopt
1650
+ k,u,(2),c = µk,(2)
1651
+ � K
1652
+
1653
+ l=1
1654
+ µl,(2) ¯Tlk + λk,(2)IN
1655
+ �−1
1656
+ ZH
1657
+ k Aopt
1658
+ k,c Eopt,−1
1659
+ k,(2),c .
1660
+ (43)
1661
+ Proof: The proof is given in Appendix F.
1662
+ Furthermore, an iterative optimization algorithm for Fk,u,(2) is summarized in Algorithm 2. The con-
1663
+ vergence of Algorithm 2 is proven in [30, Theorem 3].
1664
+ Remark 4. Relying on the iterative minimization of weighted MSE, two efficient uplink I-WMMSE
1665
+ precoding schemes to maximize the weighted sum SE are proposed. The I-WMMSE precoding schemes
1666
+ for the “FCP” and “LSFD” schemes are investigated in Algorithm 1 and Algorithm 2, respectively. Note
1667
+ that the design of I-WMMSE precoding scheme for the FCP/LSFD is based on instantaneous CSI/channel
1668
+ statistics, respectively. More importantly, we can compute I-WMMSE precoding schemes in novel closed-
1669
+ form only for the LSFD scheme with MR combining based on Theorm 4.
1670
+ IV. PRECODING IMPLEMENTATION AND COMPLEXITY ANALYSIS
1671
+ In this section, we discuss the practical implementation and analyze computational complexity for the
1672
+ UL precoding schemes investigated in Section III.
1673
+ A. Precoding Implementation
1674
+ 1) Precoding Characteristics: As described above, we investigate a standard block fading model, where
1675
+ the channel response is constant and frequency flat in a coherence block, which contains τc channel
1676
+
1677
+ 19
1678
+ Algorithm 2: I-WMMSE Algorithm for the Design of Fk,u,(2)
1679
+ Input: Channel statistics Θ for all possible pairs; UE weights µk,(2) for all UEs;
1680
+ Output: Optimal precoding matrices Fk,u,(2) for all UEs (F(i)
1681
+ k,u,(2) for the first or third stopping
1682
+ criterion and F(i−1)
1683
+ k,u,(2) for the second stopping criterion);
1684
+ 1 Initiation: i = 0, F(0)
1685
+ k,u,(2) and R(0)
1686
+ (2) = �K
1687
+ k=1 µk,(2)SE(0)
1688
+ k,(2) for all UEs; maximum iteration number
1689
+ I(2),max and threshold ε(2);
1690
+ 2 repeat
1691
+ 3
1692
+ i = i + 1
1693
+ 4
1694
+ Update channel statistics Θ(i), such as E{G(i)
1695
+ kk}, E{G(i)
1696
+ kl ¯F(i−1)
1697
+ l,u
1698
+ (G(i)
1699
+ kl )H} and S(i)
1700
+ k ;
1701
+ 5
1702
+ Update optimal LSFD matrix A(i)
1703
+ k
1704
+ with F(i−1)
1705
+ l,u,(2) and Θ(i) based on (28);
1706
+ 6
1707
+ Update optimal MSE matrix E(i)
1708
+ k,(2) with F(i−1)
1709
+ l,u,(2), A(i)
1710
+ k
1711
+ and E{G(i)
1712
+ kk} based on (31) and update
1713
+ W(i)
1714
+ k,(2);
1715
+ 7
1716
+ Update optimal precoding matrix F(i)
1717
+ k,u,(2) with A(i)
1718
+ k , W(i)
1719
+ k,(2) and Θ(i) based on (40), where
1720
+ λ(i),
1721
+ k,(2) is found by a bisection algorithm;
1722
+ 8
1723
+ Update sum weighted rate R(i)
1724
+ (2) = �K
1725
+ k=1 µk,(2)SE(i)
1726
+ k,(2);
1727
+ 9 until |R(i)
1728
+ (2) − R(i−1)
1729
+ (2)
1730
+ |/R(i−1)
1731
+ (2)
1732
+ ⩽ ε(2) or R(i)
1733
+ (2) < R(i−1)
1734
+ (2)
1735
+ or i ⩾ I(2),max;
1736
+ uses. For the “fully centralized processing” scheme, we notice that the I-WMMSE precoding design is
1737
+ implemented at the CPU based on the instantaneous CSI as (18). Moreover, to guarantee the convergence
1738
+ of Algorithm 1, only MMSE combining as (9) is advocated to detect the UL data since the equivalent
1739
+ relationship between Eopt
1740
+ k,(1) and SEopt
1741
+ k,(1), which only satisfies with MMSE combining, should be guaranteed.
1742
+ As for the LSFD scheme, the optimal design of Fopt
1743
+ k,u,(2) as (40) can only be implemented at the CPU, but
1744
+ relies only on channel statistics. Besides, L-MMSE or MR combining can be applied at each AP. When
1745
+ MR combining is applied, all terms in Algorithm 2 can be computed in closed-form as Theorem 4.
1746
+ 2) Fronthaul Requirements: For the FCP scheme with the I-WMMSE precoding, in each coherence
1747
+ block, all APs should relay their received signals to the CPU and the CPU requires precoding matrices
1748
+ Fk,u,(1) feedback to all UEs. All APs need to send τcML complex scalars (τpML complex scalars for the
1749
+ pilot signals and (τc − τp)ML complex scalars for the received data signals). Besides, the full correlation
1750
+ matrices {Rmk} are available at the CPU, which contains MKL2N2/2 complex scalars for each realization
1751
+ of the AP/UE locations/statistics11. Moreover, the CPU transmits optimal precoding matrices to all UEs,
1752
+ which are described by KN2 complex scalars per coherence block. In summary, for the FCP scheme
1753
+ with the I-WMMSE precoding implemented, total τcMLNr + MKL2N2/2 + KN2Nr complex scalars
1754
+ are transmitted via fronthaul links for each realization of the AP/UE locations. For comparison, when
1755
+ 11Note that the channel statistics remain constant for each realization of the AP/UE locations and each realization of the AP/UE locations
1756
+ contains Nr channel realizations (coherence blocks).
1757
+
1758
+ 20
1759
+ the FCP scheme without the I-WMMSE precoding is implemented, all APs should also transmit τcML
1760
+ complex scalars for the received signals to the CPU in each coherence block and MKL2N2/2 complex
1761
+ scalars for {Rmk} to the CPU for each realization of the AP/UE locations. So for the CFP scheme without
1762
+ the I-WMMSE precoding, total τcMLNr + MKL2N2/2 complex scalars are transmitted via fronthaul
1763
+ links for each realization of the AP/UE locations.
1764
+ As for the LSFD scheme with the I-WMMSE precoding, all APs transmit their local data estimates
1765
+ ˜xmk, described by (τc − τp)MKN complex scalars, to the CPU per coherence block. Besides, E{Gkk} ∈
1766
+ CMN×N, described by MKN2 complex scalars for each realization of the AP/UE locations, are also
1767
+ required at the CPU. As for E{Gkl¯Fl,u,(2)GH
1768
+ kl} ∈ CMN×MN, following the formulation method investigated
1769
+ in Appendix F, the optimization of ¯Fl,u,(2) requires the knowledge of
1770
+
1771
+ E
1772
+
1773
+ vH
1774
+ ml,phmk,nhH
1775
+ m′k,ivm′l,p′��
1776
+ ,
1777
+ described by M2K2N4/2 complex scalars for each realization of the AP/UE locations, where vml,p denotes
1778
+ the p-th column of Vml. Moreover, the CPU requires optimal precoding matrices Fk,u,(2) feedback to all
1779
+ APs and UEs only for each realization of the AP/UE locations, which are KN2 complex scalars. As for the
1780
+ LSFD scheme without the I-WMMSE precoding, local data estimates ˜xmk, described by (τc − τp)MKN
1781
+ complex scalars per coherence block, E{Gkk}, described by MKN2 complex scalars for each realization
1782
+ of the AP/UE locations, and E{GklGH
1783
+ kl} ∈ CMN×MN, described by M2K2N2/2 complex scalars for each
1784
+ realization of the AP/UE locations, are required. That is total (τc −τp)MKNNr + MKN2 + M2K2N2/2
1785
+ complex scalars transmitted via fronthaul links for each realization of the AP/UE locations.
1786
+ 3) Practical Implementation: Note that the basic motivation of the investigated I-WMMSE precoding
1787
+ schemes is to achieve as good the sum uplink SE performance as possible so we ignore some practical
1788
+ issues, which are vital for the realistic implementation of the investigated precoding schemes. When the
1789
+ precoding schemes are implemented in practice, these realistic issues should be considered.
1790
+ • Capacity-constrained fronthaul network
1791
+ As discussed above, the I-WMMSE precoding require more fronthaul requirements than the case without
1792
+ the I-WMMSE precoding. It is quite vital to consider a more practical capacity-constrained fronthaul
1793
+ network [38]. Moreover, the wireless fronthaul [39], which is more flexible than the conventional wire
1794
+ fronthaul, would also be regarded as a promising solution to boost the practical implementation of the
1795
+ I-WMMSE precoding.
1796
+ • Scalability aspects with dynamic cooperation clusters
1797
+ When the precoding schemes are implemented in practice, a more realistic network architecture with
1798
+
1799
+ 21
1800
+ multiple CPUs and dynamic cooperation clusters should be advocated, where each UE is only served by
1801
+ a cluster of APs (that a is user-centric cluster) and the APs are grouped into cell-centric clusters as shown
1802
+ in Fig. 1. Note a user-centric cluster might consist of APs connecting with different CPUs. Based on the
1803
+ signal processing schemes in [9], [18], the analytical framework in this paper can be implemented in a
1804
+ scalable paradigm where the fronthaul requirements and computational complexity can be relieved with
1805
+ an anticipated modest performance loss compared with canonical architecture. The I-WMMSE precoding
1806
+ design with these two practical aspects is left in future work. To bring valuable technical insights for
1807
+ the study of I-WMMSE precoding schemes with the DCC strategy and the capacity-constrained fronthaul
1808
+ link, we provide two tutorials for the FCP and LSFD in Fig. 2 based on [9], [10], [38].
1809
+ Tutorials to investigate the I-WMMSE precoding scheme with the DCC strategy and the capacity-constrained fronthaul
1810
+ 1: Joint initial access, pilot assignment, and cluster formation for the DCC topology
1811
+ based on a classical algorithm in [9, Sec V. A] or a more efficient algorithm as [10,
1812
+ Algorithm 1].
1813
+ 2: Each AP transmits the quantized versions of the local detection signals in (22) to the
1814
+ CPU based on Case 2 in [38] called "Quantized Weighted Signal Available at the CPU"
1815
+ as [38, eq. (20)].
1816
+ 3: Based on Section Ⅲ. B. (1), generate the DCC based processing scheme for the
1817
+ LSFD (the local combining design, P-LSFD, and achievable SE computation) motivated
1818
+ by [10, Sec Ⅱ. B].
1819
+ 4: Based on Section Ⅲ. B. (2), formulate the I-WMMSE precoding design optimization
1820
+ problem with a capacity-constrained fronthaul motivated by [38, eq. (24)] and [38, eq.
1821
+ (26)].
1822
+ 5: Obtain the optimal precoding scheme based on potential methods.
1823
+ Tutorial 2. The I-WMMSE precoding for the LSFD with the DCC strategy and
1824
+ the capacity-constrained fronthaul
1825
+ 1: Joint initial access, pilot assignment, and cluster formation for the DCC
1826
+ topology based on a classical algorithm in [9, Sec V. A] or a more efficient
1827
+ algorithm as [10, Algorithm 1].
1828
+ 2: Each AP transmits the quantized versions of its received pilot signals and data
1829
+ signals to the CPU based on Case 1 in [38] called "Quantized Estimate of the
1830
+ Channel and Quantized Signal Available at the CPU" as [38, eq. (11) ].
1831
+ 3: Based on Section Ⅲ. A. (1), generate the DCC based processing scheme for
1832
+ the FCP (the receive combining and achievable SE computation) motivated by
1833
+ [9, Sec V. B].
1834
+ 4: Based on Section Ⅲ. A. (2), formulate the I-WMMSE precoding design
1835
+ optimization problem with a capacity-constrained fronthaul motivated by [38,
1836
+ eq. (24)] and [38, eq. (26)] .
1837
+ 5: Obtain the optimal precoding scheme based on potential methods.
1838
+ Tutorial 1. The I-WMMSE precoding for the FCP with the DCC strategy
1839
+ and the capacity-constrained fronthaul
1840
+ Fig. 2. Two tutorials to investigate the I-WMMSE precoding schemes with the DCC strategy and the capacity-constrained fronthaul.
1841
+ B. Complexity Analysis
1842
+ In this subsection, we analyze the computational complexity of two precoding schemes investigated.
1843
+ Since the bisection step for λk,{(1),(2)} generally takes few iterations compared with other steps, we
1844
+ ignore bisection steps for λk,{(1),(2)} in the complexity analysis. For the fully centralized processing
1845
+ scheme and each realization of the AP/UE locations, the per-iteration complexity of iterative optimiza-
1846
+ tion is O (M3K2N5Nr). For the LSFD scheme and each realization of the AP/UE locations, the per-
1847
+ iteration complexity of iterative optimization based on L-MMSE combining with the Monte-Carlo method,
1848
+ MR combining with the Monte-Carlo method and MR combining with the closed-form expressions are
1849
+ O (M2K2N3Nr), O (M2K2N3Nr + M3KN3) and O (M3K2N5), respectively. To further reduce the
1850
+ computation complexity, it’s quite necessary to apply the asymptotic analysis method [40], [41] to compute
1851
+ the terms, which cannot be computed in closed-form, in approximation results.
1852
+
1853
+ 22
1854
+ TABLE I
1855
+ COMPARISON OF TWO PRECODING SCHEMES IN THIS PAPER. THE NUMBER OF COMPLEX SCALARS IS COMPUTED FOR EACH
1856
+ REALIZATION OF THE AP/UE LOCATIONS. THE SUM SE IMPROVEMENT IS COMPUTED WITH M = 20, K = 10, L = 1 AND N = 4.
1857
+ FCP
1858
+ LSFD
1859
+ CSI
1860
+ Instantaneous CSI
1861
+ Statistical CSI
1862
+ Detection scheme
1863
+ MMSE combining
1864
+ L-MMSE/MR combining + Optimal LSFD scheme
1865
+ Number of complex scalars
1866
+ sent from APs to the CPU
1867
+ with I-WMMSE precoding
1868
+ τcMLNr + MKL2N 2/2
1869
+ (τc − τp)MKNNr + MKN 2 + M 2K2N 4/2
1870
+ Number of complex scalars
1871
+ sent from APs to the CPU
1872
+ without I-WMMSE precoding
1873
+ τcMLNr + MKL2N 2/2
1874
+ (τc − τp)MKNNr + MKN 2 + M 2K2N 2/2
1875
+ Number of complex scalars
1876
+ feedback sent from the CPU
1877
+ KN 2Nr
1878
+ KN 2
1879
+ Per-iteration computational
1880
+ complexity
1881
+ O
1882
+
1883
+ M 3K2N 5Nr
1884
+
1885
+ L-MMSE: O
1886
+
1887
+ M 2K2N 3Nr
1888
+
1889
+ MR (Monte-Carlo): O
1890
+
1891
+ M 2K2N 3Nr + M 3KN 3�
1892
+ MR (Analytical): O
1893
+
1894
+ M 3K2N 5�
1895
+ Sum SE improvement
1896
+ 28.93%
1897
+ L-MMSE: 46.74%
1898
+ MR: 15.13%
1899
+ V. NUMERICAL RESULTS
1900
+ In this paper, a CF mMIMO system is investigated, where all APs and UEs are uniformly distributed in
1901
+ a 1×1 km2 area with a wrap-around scheme [42]. The pathloss and shadow fading are modeled similarly as
1902
+ [28]. In practice, Umk,r, Umk,t and Ωmk are estimated through measurements [29]. However, we generate
1903
+ them randomly in this paper, where the coupling matrix Ωmk consists of one strong transmit eigendirection
1904
+ capturing dominant power [43]12. Besides, we have Fk,p = F(0)
1905
+ k,u,{(1),(2)} =
1906
+ � pk
1907
+ N IN. As for Algorithm 1
1908
+ and Algorithm 2, balancing the convergence and accuracy, we assume that I(1),max = I(2),max = 20,
1909
+ ε(1) = ε(2) = 5 × 10−4, and weights for all UEs are equal (µk,(1) = µk,(2) = 1) without losing generality,
1910
+ respectively. Moreover, we consider communication with 20 MHz bandwidth and σ2 = −94 dBm noise
1911
+ power. All UEs transmit with 200 mW power constraint. Each coherence block contains τc = 200 channel
1912
+ uses and τp = KN/2. Besides, a pilot assignment approach similar as that in [28] is investigated.
1913
+ Figure 3 shows the cumulative distribution function (CDF) of the achievable sum SE over different
1914
+ realizations of the AP/UE locations for two processing schemes investigated (we shortly call “fully
1915
+ centralized processing” as “FCP” in the following) over “I-WMMSE precoding” or “w/o precoding”13.
1916
+ We notice that the FCP scheme undoubtedly achieves higher SE than that of the LSFD scheme since the
1917
+ 12In this paper, we choose one eigendirection capturing dominant channel power (randomly accounting for 80% ∼ 95% of the total
1918
+ channel power) and other eigendirections contain the remaining power.
1919
+ 13The “w/o precoding” scenario denotes that identity precoding matrices Fk,u,{(1),(2)} =
1920
+ � pk
1921
+ N IN are implemented without optimization.
1922
+
1923
+ 23
1924
+ 0
1925
+ 10
1926
+ 20
1927
+ 30
1928
+ 40
1929
+ 50
1930
+ 60
1931
+ 70
1932
+ 80
1933
+ 90
1934
+ 0
1935
+ 0.2
1936
+ 0.4
1937
+ 0.6
1938
+ 0.8
1939
+ 1
1940
+ Fig. 3. CDF of the sum SE over different processing schemes and
1941
+ precoding schemes with M = 20, K = 10, L = 2, and N = 4.
1942
+ 1
1943
+ 2
1944
+ 3
1945
+ 4
1946
+ 5
1947
+ 6
1948
+ 0
1949
+ 20
1950
+ 40
1951
+ 60
1952
+ 80
1953
+ 100
1954
+ Fig. 4. Sum SE against the number antennas per AP L over different
1955
+ processing schemes and precoding schemes with M = 20, K = 10,
1956
+ and N = 4.
1957
+ 1
1958
+ 2
1959
+ 3
1960
+ 4
1961
+ 5
1962
+ 6
1963
+ 1
1964
+ 2
1965
+ 3
1966
+ 4
1967
+ 5
1968
+ 6
1969
+ 7
1970
+ Fig. 5. Average rate against the number of antennas per UE N over
1971
+ different processing schemes and precoding schemes with M = 20,
1972
+ K = 10, and L = 2.
1973
+ 1
1974
+ 2
1975
+ 3
1976
+ 4
1977
+ 5
1978
+ 6
1979
+ 1
1980
+ 2
1981
+ 3
1982
+ 4
1983
+ 5
1984
+ 6
1985
+ 7
1986
+ Fig. 6. Average SE with I-WMMSE precoding schemes against the
1987
+ number of antennas per UE N over different τc with M = 20,
1988
+ K = 10, and L = 2.
1989
+ FCP with MMSE combining is a competitive scheme in CF mMIMO [5]. More importantly, the proposed
1990
+ I-WMMSE schemes are efficient to improve the respective achievable sum SE performance, e.g., 12.78%,
1991
+ 19.54% and 28.13% sum SE improvement for the FCP, the LSFD with MR combining and the LSFD
1992
+ with L-MMSE combining, respectively. Besides, for the LSFD scheme with MR combining, markers “◦”
1993
+ generated by analytical results overlap with the curves generated by simulations, respectively, validating
1994
+ our derived closed-form expressions.
1995
+ Figure 4 shows the achievable sum SE as a function of the number of antennas per AP with two
1996
+ processing schemes investigated and different precoding schemes14. We notice that, for the FCP or LSFD
1997
+ with (L-)MMSE combining, the performance gap between the “I-WMMSE” and “w/o precoding” becomes
1998
+ smaller with the increase of L, which implies that (L-)MMSE combining can use all antennas on each
1999
+ 14Note that the achievable sum SE investigated is the average sum SE value taken over many AP/UE locations.
2000
+
2001
+ 24
2002
+ 10
2003
+ 20
2004
+ 30
2005
+ 40
2006
+ 50
2007
+ 60
2008
+ 1
2009
+ 2
2010
+ 3
2011
+ 4
2012
+ 5
2013
+ 6
2014
+ 7
2015
+ 8
2016
+ 9
2017
+ 10
2018
+ Fig. 7.
2019
+ Average SE against the number of APs M for the LSFD
2020
+ scheme with K = 10, L = 4, and N = 4.
2021
+ 2
2022
+ 3
2023
+ 4
2024
+ 5
2025
+ 6
2026
+ 8
2027
+ 10
2028
+ 12
2029
+ 2
2030
+ 3
2031
+ 4
2032
+ 5
2033
+ 6
2034
+ 2.5
2035
+ 3
2036
+ 3.5
2037
+ 4
2038
+ 3.38
2039
+ 3.4
2040
+ Fig. 8. Average SE against the number of antennas per UE N for
2041
+ different channel models with M = 40, K = 8, and L = 2.
2042
+ 2
2043
+ 4
2044
+ 6
2045
+ 8
2046
+ 10
2047
+ 12
2048
+ 14
2049
+ 16
2050
+ 18
2051
+ 25
2052
+ 26
2053
+ 27
2054
+ 28
2055
+ 29
2056
+ 30
2057
+ 31
2058
+ 32
2059
+ 33
2060
+ 34
2061
+ (a) FCP
2062
+ 2
2063
+ 4
2064
+ 6
2065
+ 8
2066
+ 10
2067
+ 12
2068
+ 14
2069
+ 16
2070
+ 16
2071
+ 18
2072
+ 20
2073
+ 22
2074
+ 24
2075
+ 26
2076
+ 28
2077
+ (b) LSFD
2078
+ Fig. 9. Convergence examples of the I-WMMSE algorithm for the FCP and LSFD with M = 20, K = 10, L = 2, and N = 4.
2079
+ AP to suppress interference and achieve excellent SE performance even without any precoding scheme.
2080
+ For instance, the performance gap between the “I-WMMSE” and “w/o precoding” for the LSFD with
2081
+ L-MMSE combining is 46.74% and 6.17% over L = 1 and L = 6, respectively. Meanwhile, for the LSFD
2082
+ with MR combining, the performance gap between the “I-WMMSE” and “w/o precoding” becomes large
2083
+ with the increase of L, e.g. 15.13% and 25.48% for L = 1 and L = 6, respectively. Besides, for the
2084
+ LSFD scheme with MR combining, markers “✷” generated by analytical results overlap with the curves
2085
+ generated by simulations, respectively, validating our derived closed-form expressions.
2086
+ To further show the advantage of the proposed I-WMMSE precoding schemes, Fig. 5 shows the average
2087
+ rate15 as a function of the number of antennas per UE. We find that the average rates for all schemes with
2088
+ I-WMMSE precoding schemes grow with N and the average rates for the case without UL precoding
2089
+ may also suffer the degradation with the increase of N. The implementation of the I-WMMSE precoding
2090
+ 15Note that one main reason for the phenomenon that additional UE antennas may give rise to the SE degradation is that increasing N will
2091
+ increase the channel estimation overhead and reduce the pre-log factor “(τc − τp) /τc” in all SE expressions [26], [28]. So we investigate
2092
+ “the average rate” in Fig. 5, ignoring the effect of “(τc − τp) /τc”.
2093
+
2094
+ 25
2095
+ 50
2096
+ 100
2097
+ 150
2098
+ 200
2099
+ 250
2100
+ 300
2101
+ 3.4
2102
+ 3.6
2103
+ 3.8
2104
+ 4
2105
+ 104
2106
+ 50
2107
+ 100
2108
+ 150
2109
+ 200
2110
+ 250
2111
+ 300
2112
+ 0
2113
+ 2
2114
+ 4
2115
+ 6
2116
+ 105
2117
+ Fig. 10. Total number of complex scalars sent via the fronthaul per channel use for each realization of the AP/UE locations with M = 20,
2118
+ K = 10, L = 2, and N = 4.
2119
+ schemes undoubtedly makes UEs benefit from multiple antennas and achieve excellent rate performance.
2120
+ Moreover, we observe that the I-WMMSE precoding schemes perform more efficiently with a larger
2121
+ number of UE antennas. For instance, the average rate improvements achieved by the I-WMMSE precoding
2122
+ for the LSFD with L-MMSE combining are 31.91% and 9.43% for N = 6 and N = 2, respectively.
2123
+ However, the average SE (with scaling factor (τc − τp)/τc) with I-WMMSE precoding implemented may
2124
+ also degrade with the increase of N as the Fig. 2 in [1] since, with the increase of N, the prerequisite
2125
+ of “mutually orthogonal pilot matrices” still requires huge channel uses for the pilot transmission and
2126
+ the inter-user interference also increases. So the design of non-orthogonal pilot matrices and per-antenna
2127
+ power control scheme are quite necessary, which are regarded as promising ways to reduce the cost of
2128
+ pilot transmission and further improve the SE performance [44].
2129
+ Figure 6 discusses the average SE with I-WMMSE precoding schemes against N over different τc.
2130
+ Note that Fig. 5 can be viewed as a special case in Fig. 6 with the coherence block with infinite length
2131
+ τc = ∞. We observe that the average SE with I-WMMSE precoding schemes increases with N over
2132
+ τc = 500 or ∞, which means the SE performance can benefit from having additional UE antennas when
2133
+ the coherence block resource is abundant.
2134
+ Figure 7 investigates the average SE as a function of M for the LSFD scheme over different precoding
2135
+ schemes16. For MR combining, markers “✷” generated by analytical results overlap with the curves
2136
+ generated by simulations, respectively, validating our derived closed-form expressions again. Besides, the
2137
+ I-WMMSE algorithm is more efficient to improve the SE performance for MR combining than that of
2138
+ L-MMSE combining for the scenario over large L and M, e.g., 4.03% and 24.21% SE improvement for L-
2139
+ MMSE combining and MR combining with M = 60, respectively, implying that the L-MMSE combining
2140
+ 16The “WMMSE precoding” denotes the precoding schemes generated by the I-WMMSE algorithm with only single iteration.
2141
+
2142
+ 26
2143
+ based on large L and M can achieve excellent SE performance even without any precoding scheme and
2144
+ the proposed I-WMMSE precoding scheme is handy to mitigate the weakness of MR combining17.
2145
+ Figure 8 considers the average SE as a function of N over the i.i.d. and the Weichselberger Rayleigh
2146
+ fading channel. As observed, the proposed I-WMMSE precoding schemes are more efficient over the
2147
+ Weichselberger Rayleigh fading channel. For instance, 24.89% and 9.77% average SE improvement can
2148
+ be achieved when N = 6 over the “Weichselberger” scenario for the LSFD scheme with MR combining
2149
+ and the FCP scheme, respectively, but only 0.29% and 6.63% average SE improvement can be achieved
2150
+ for “I.I.D. Rayleigh channel”. Moreover, compared with Fig. 5, we notice that the I-WMMSE precoding
2151
+ scheme for the FCP scheme is more efficient in the highly loaded system (the scenario in Fig. 5) where
2152
+ the number of total AP-antennas is comparable with the number of total UE-antennas.
2153
+ Figure 9 illustrates the convergence behavior of the I-WMMSE algorithms for the FCP scheme and
2154
+ the LSFD scheme with L-MMSE/MR combining. Note the convergence example in Fig. 9 (a) for the
2155
+ FCP is given by a particular channel realization and the convergence example for the LSFD in Fig. 9 (b)
2156
+ is given by a particular realization of the AP/UE locations. Note that the algorithms investigated can be
2157
+ guaranteed to converge and are efficient to achieve excellent sum SE performance. Besides, Fig. 9 (b) for
2158
+ the LSFD scheme with MR combining validates our derived closed-form expressions in Algorithm 2.
2159
+ Figure 10 investigates the total number of complex scalars sent via the fronthaul per channel use against
2160
+ τc for each realization of the AP/UE locations. As observed, total number of complex scalars per channel
2161
+ use for the FCP/LSFD scheme becomes smaller/larger, which can also be easily found from Table I.
2162
+ Besides, the LSFD scheme requires more fronthaul signaling than the FCP scheme since APs under the
2163
+ LSFD scheme need to transmit all received data signals to the CPU, which requires a huge fronthaul load.
2164
+ More importantly, with the increase of τc, the gap between “I-WMMSE precoding” and “W/O precoding”
2165
+ becomes smaller for either the FCP scheme or the LSFD scheme. Considering the SE performance
2166
+ improvement of the I-WMMSE precoding, additional fronthaul loads can be acceptable, especially when
2167
+ the coherence resource is abundant. Although the computational complexity of Algorithm 1 for the FCP
2168
+ scheme is much higher than that of Algorithm 2 for the LSFD scheme, the FCP scheme needs much
2169
+ less fronthaul signaling than that of the LSFD scheme and can achieve better SE performance. So two
2170
+ processing schemes and their respective precoding schemes can be chosen based on different requirements.
2171
+ 17MR combining is a simple combining scheme but cannot efficiently suppress the interference.
2172
+
2173
+ 27
2174
+ VI. CONCLUSION
2175
+ We consider a CF mMIMO system with both APs and UEs equipped with multiple antennas over
2176
+ the Weichselberger Rayleigh fading channel. The FCP scheme and LSFD scheme are implemented. To
2177
+ further improve the sum SE performance, efficient UL precoding schemes based on iteratively WMMSE
2178
+ algorithms are investigated to maximize weighted sum SE for the two processing schemes. Note that we
2179
+ compute achievable SE expressions and optimal precoding schemes in novel closed-form for the LSFD
2180
+ scheme with MR combining. Numerical results show that the investigated I-WMMSE precoding schemes
2181
+ are efficient to achieve excellent sum SE performance. More importantly, it can be seen that the proposed
2182
+ I-WMMSE precoding schemes are more efficient with a larger number of UE antennas, which means
2183
+ the I-WMMSE precoding schemes can achieve excellent performance even with a large number of UE
2184
+ antennas. The derived results undoubtedly provides vital insights for the practical implementation of multi-
2185
+ antenna UEs in CF mMIMO systems. In future work, we will investigate the design of UL precoding
2186
+ scheme for the phase of pilot transmission and consider the practical implementation of the investigated
2187
+ I-WMMSE precoding schemes with capacity-constrained fronthaul network and dynamic cooperation
2188
+ clusters. Moreover, the non-orthogonal pilot matrix design will also be considered to further improve the
2189
+ performance for the CF mMIMO system with multi-antenna UEs. Last but not least, the UL precoding
2190
+ performance over a more practical Rician fading channel with phase-shifts will also be analyzed.
2191
+ APPENDIX A
2192
+ SOME USEFUL LEMMAS
2193
+ Lemma 1. Let X ∈ CM×N be a random matrix and Y is a deterministic M × M matrix. The (n, i)-th
2194
+ element of E
2195
+
2196
+ XHYX
2197
+
2198
+ is tr
2199
+
2200
+ Y · E
2201
+
2202
+ xixH
2203
+ n
2204
+ ��
2205
+ where xi and xn are the i-th and n-th column of X.
2206
+ Lemma 2. For matrices A ∈ CN1×N1, B ∈ CN1×N2, C ∈ CN2×N2, and D ∈ CN2×N1, we have
2207
+ (A + BCD)−1 = A−1−A−1B
2208
+
2209
+ DA−1B + C−1�−1 DA−1, which is a well-known matrix inversion lemma
2210
+ [36, Lemma B.3].
2211
+ APPENDIX B
2212
+ PROOF COROLLARY 5
2213
+ Since the CPU is only aware of channel statistics, we need to treat E{Gkk}Fk,u as the true deterministic
2214
+ channel and rewrite ˜xk in (25) as ˜xk = E {Gkk} Fk,uxk+(GkkFk,u − E {Gkk} Fk,u) xk +
2215
+ K
2216
+
2217
+ l=1,l̸=k
2218
+ GklFl,uxl + n′
2219
+ k
2220
+
2221
+ ��
2222
+
2223
+ v
2224
+ where v is a complex circular symmetric noise with an invertible covariance matrix Ξk = E{vvH|Θ} =
2225
+
2226
+ 28
2227
+ �K
2228
+ l=1 E{GklFk,uFH
2229
+ k,uGH
2230
+ kl} − E{Gkk}Fk,uFH
2231
+ k,uE{GH
2232
+ kk} + σ2Sk. Firstly, we whiten the noise as Ξ
2233
+ − 1
2234
+ 2
2235
+ k ˆxk =
2236
+ Ξ
2237
+ − 1
2238
+ 2
2239
+ k E {Gkk} Fk,uxk + ˜v, where ˜v ≜ Ξ
2240
+ − 1
2241
+ 2
2242
+ k v becomes white. Next, we project Ξ
2243
+ − 1
2244
+ 2
2245
+ k ˆxk in the direction of
2246
+ Ξ
2247
+ − 1
2248
+ 2
2249
+ k E {Gkk} Fk,u to obtain an effective scalar channel as
2250
+
2251
+ Ξ
2252
+ − 1
2253
+ 2
2254
+ k E {Gkk} Fk,u
2255
+ �H
2256
+ Ξ
2257
+ − 1
2258
+ 2
2259
+ k ˆxk = (E {Gkk} Fk,u)H Ξ−1
2260
+ k E {Gkk} Fk,uxk + (E {Gkk} Fk,u)H Ξ−1
2261
+ k v.
2262
+ (44)
2263
+ Based on theories of optimal receivers [37], we derive optimal LSFD matrix Ak=Ξ−1
2264
+ k E {Gkk}Fk,u as
2265
+ Ak =
2266
+ � K
2267
+
2268
+ l=1
2269
+ E
2270
+
2271
+ GklFk,uFH
2272
+ k,uGH
2273
+ kl
2274
+
2275
+ − E {Gkk} Fk,uFH
2276
+ k,uE
2277
+
2278
+ GH
2279
+ kk
2280
+
2281
+ + σ2Sk
2282
+ �−1
2283
+ E {Gkk} Fk,u.
2284
+ (45)
2285
+ Moreover, based on the the standard results of matrix derivation in [45], we can easily obtain the LSFD
2286
+ matrix minimizing the conditional MSE for UE k MSE(2)
2287
+ k
2288
+ = tr(E(2)
2289
+ k ) as
2290
+ Ak =
2291
+ � K
2292
+
2293
+ l=1
2294
+ E{Gkl¯Fl,uGH
2295
+ kl} + σ2Sk
2296
+ �−1
2297
+ E{Gkk}Fk,u.
2298
+ (46)
2299
+ We notice that the LSFD matrix in (45) is equivalent to the LSFD matrix in (46), except from having
2300
+ another scaling matrix IN −
2301
+
2302
+ CHB−1C + IN
2303
+ �−1 CHB−1C on the right side, which would not affect the
2304
+ value of (27), where B = �K
2305
+ l=1 E{GklFk,uFH
2306
+ k,uGH
2307
+ kl} + σ2Sk and C = E{Gkk}Fk,u. So the LSFD matrix
2308
+ in (46) cannot maximize the achievable SE but minimize the MSE for UE k.
2309
+ APPENDIX C
2310
+ PROOF OT THEOREM 2
2311
+ In this part, we compute terms of (27) in closed-form for the LSFD scheme with MR combining Vmk =
2312
+ ˆHmk. For the first term Dk,(2) = AH
2313
+ k E{Gkk}Fk,u, we have E{Gkk} = [E{VH
2314
+ 1kH1k}; . . . ; E{VH
2315
+ MkHMk}] =
2316
+ [ZT
2317
+ 1k, . . . , ZT
2318
+ Mk]T ≜ Zk, where Zmk = E{VH
2319
+ mkHmk} = E{ ˆHH
2320
+ mk ˆHmk} ∈ CN×N and the (n, n′)-th el-
2321
+ ement of Zmk can be denoted as [Zmk]nn′ = E{ˆhH
2322
+ mk,nˆhmk,n′} = tr(ˆRn′n
2323
+ mk). So we derive the closed-
2324
+ form for Dk,(2) as Dk,(2),c = AH
2325
+ k ZkFk,u. As for the second term Sk ∈ CMN×MN, we have Sk =
2326
+ diag(E{VH
2327
+ 1kV1k}, . . . , E{VH
2328
+ MkVMk}) = diag(Z1k, . . . , ZMk). For E{Gkl¯Fl,uGH
2329
+ kl}, we notice that the
2330
+ (m, m′)-submatrix of E{Gkl¯Fl,uGH
2331
+ kl} is E{VH
2332
+ mkHml¯Fl,uHH
2333
+ m′lVm′k}.
2334
+ Based on [28], we compute E{VH
2335
+ mkHml¯Fl,uHH
2336
+ m′lVm′k} for four possible AP-UE combinations. For
2337
+ “m ̸= m′, l /∈ Pk”, we have E{VH
2338
+ mkHml¯Fl,uHH
2339
+ m′lVm′k} = 0 for the independence between Vmk and
2340
+ Hml. For “m ̸= m′, l ∈ Pk”, we have E{VH
2341
+ mkHml¯Fl,uHH
2342
+ m′lVm′k} = E{VH
2343
+ mkHml}¯Fl,uE{HH
2344
+ m′lVm′k} =
2345
+ Λmkl¯Fl,uΛm′lk, where the (n, n′)-th element of N ×N-dimension complex matrices Λmkl ≜ E{VH
2346
+ mkHml},
2347
+
2348
+ 29
2349
+ Λm′lk ≜ E{HH
2350
+ m′lVm′k} are [Λmkl]nn′ = E{ˆhH
2351
+ mk,nˆhml,n′} = tr(Ξn′n
2352
+ mkl) and [Λm′lk]nn′ = E{ˆhH
2353
+ m′l,nˆhmk,n′} =
2354
+ tr(Ξn′n
2355
+ m′lk) with Ξmkl ≜ E{ˆhmlˆhH
2356
+ mk} = τpRml˜FH
2357
+ l,pΨ−1
2358
+ mk˜Fk,pRmk, Ξm′lk ≜ E{ˆhm′kˆhH
2359
+ m′l} = τpRm′k˜FH
2360
+ k,pΨ−1
2361
+ m′k˜Fl,pRm′l.
2362
+ For “m = m′, l /∈ Pk”, we define Γ(1)
2363
+ mkl ≜ E{VH
2364
+ mkHml¯Fl,uHH
2365
+ mlVmk} ∈ CN×N with the (n, n′)-th element
2366
+ [Γ(1)
2367
+ mkl]nn′ = �N
2368
+ i=1
2369
+ �N
2370
+ i′=1 [¯Fl,u]i′iE{ˆhH
2371
+ mk,nhml,i′hH
2372
+ ml,iˆhmk,n′} being
2373
+ [Γ(1)
2374
+ mkl]nn′ =
2375
+ N
2376
+
2377
+ i=1
2378
+ N
2379
+
2380
+ i′=1
2381
+ [¯Fl,u]i′itr(E
2382
+
2383
+ hml,i′hH
2384
+ ml,i
2385
+
2386
+ E{ˆhmk,n′ˆhH
2387
+ mk,n}) =
2388
+ N
2389
+
2390
+ i=1
2391
+ N
2392
+
2393
+ i′=1
2394
+ [¯Fl,u]i′itr(Ri′i
2395
+ ml ˆRn′n
2396
+ mk)
2397
+ (47)
2398
+ since ˆHmk and Hml are independent. Finally, for “m = m′, l ∈ Pk”, ˆHmk and Hml are no longer inde-
2399
+ pendent. We define Γ(2)
2400
+ mkl ≜ E{VH
2401
+ mkHml¯Fl,uHH
2402
+ mlVmk} ∈ CN×N whose (n, n′)-th element is [Γ(2)
2403
+ mkl]nn′ =
2404
+ �N
2405
+ i=1
2406
+ �N
2407
+ i′=1 [¯Fl,u]i′iE{ˆhH
2408
+ mk,nhml,i′hH
2409
+ ml,iˆhmk,n′}. We follow the similar method in [28] and derive
2410
+ [Γ(2)
2411
+ kl,m]nn′ = �N
2412
+ i=1
2413
+ �N
2414
+ i′=1 [¯Fl,u]i′itr(Ri′i
2415
+ mlPn′n
2416
+ mkl,(1))+τ 2
2417
+ p
2418
+ �N
2419
+ q1=1
2420
+ �N
2421
+ q2=1 [¯Fl,u]i′i[tr(˜Pq1n
2422
+ mkl,(2) ˜Ri′q2
2423
+ ml ˜Rq2i
2424
+ ml ˜Pn′q1
2425
+ mkl,(2))].+
2426
+ τ 2
2427
+ p
2428
+ �N
2429
+ q1=1
2430
+ �N
2431
+ q2=1 [¯Fl,u]i′itr(˜Pq1n
2432
+ mkl,(2) ˜Ri′q2
2433
+ ml )tr(˜Pn′q2
2434
+ mkl,(2) ˜Rq2i
2435
+ ml), where Pmkl,(1) ≜ τpSmk(Ψmk−τp˜Fl,pRml˜FH
2436
+ l,p)SH
2437
+ mk,
2438
+ Smk ≜ Rmk˜FH
2439
+ k,pΨ−1
2440
+ mk and Pmkl,(2) ≜ Smk˜Fl,pRml˜FH
2441
+ l,pSH
2442
+ mk, respectively. Besides, ˜Rni
2443
+ ml and ˜Pni
2444
+ mkl,(2) denote
2445
+ (n, i)-submatrix of R
2446
+ 1
2447
+ 2
2448
+ ml and P
2449
+ 1
2450
+ 2
2451
+ mkl,(2), respectively.
2452
+ In summary, combining all the cases, we have E{Gkl¯Fl,uGH
2453
+ kl} = Tkl,(1) + Tkl,(2) if l ∈ Pk and Tkl,(1)
2454
+ otherwise, where Tkl,(1) ≜ diag(Γ(1)
2455
+ kl,1, . . . , Γ(1)
2456
+ kl,M) ∈ CMN×MN and Tmm′
2457
+ kl,(2) = Γ(2)
2458
+ kl,m − Γ(1)
2459
+ kl,m if m = m′
2460
+ and Λmkl¯Fl,uΛm′lk otherwise. Plugging the derived results into (28) and (31), we can easily compute the
2461
+ optimal LSFD coefficient matrix and MSE matrix in closed-form as (34). So we have finished the proof
2462
+ of Theorem 2. For more details on the derived expression, please refer to [28, Appendix D].
2463
+ APPENDIX D
2464
+ PROOF OF THEOREM 1
2465
+ When other optimization variables are fixed, we derive the partial derivative of (17) w.r.t F(1)
2466
+ k,u as
2467
+ ∂f
2468
+
2469
+ F1,u,(1), . . . , FK,u,(1)
2470
+
2471
+ ∂Fk,u,(1)
2472
+ =
2473
+ K
2474
+
2475
+ l=1
2476
+ µl,(1)
2477
+
2478
+ ˆHH
2479
+ k VlWl,(1)VH
2480
+ l ˆHk + E
2481
+
2482
+ ˜HH
2483
+ k VlWl,(1)VH
2484
+ l
2485
+ ˜Hk
2486
+ ��� V, W
2487
+ ��
2488
+ + λk,(1)IN
2489
+ − µk,(1) ˆHH
2490
+ k VH
2491
+ k Wk,(1).
2492
+ (48)
2493
+ By applying the first-order optimality condition and setting
2494
+ ∂f(F1,u,(1),...,FK,u,(1))
2495
+ ∂Fk,u,(1)
2496
+ = 0, we can easily obtain
2497
+ the optimal precoding scheme. Besides, λk,(1) and Fk,u,(1) should also satisfy KKT condition as (19).
2498
+ As for ¯Ckl ≜ E{ ˜HH
2499
+ k VlWl,(1)VH
2500
+ l ˜Hk|V, W} ∈ CN×N, by applying Lemma 1, the (i, n)-th element of
2501
+ ¯Ckl is tr( ¯VlE{˜hk,n˜hH
2502
+ k,i}) where ¯Vl ≜ VlWl,(1)VH
2503
+ l
2504
+ and ˜hk,n = [˜hT
2505
+ 1k,n, . . . , ˜hT
2506
+ Mk,n]T ∈ CML is the n-th
2507
+ column of ˜Hk. Finally, we derive Ck,ni ≜ E{˜hk,n˜hH
2508
+ k,i} = diag (Cni
2509
+ 1k, . . . , Cni
2510
+ Mk) ∈ CML×ML since ˜hmk,n
2511
+
2512
+ 30
2513
+ and ˜hm′k,n for m ̸= m′ are independent and both have zero mean. So Ck,ni is a block-diagonal matrix
2514
+ with the square matrices Cni
2515
+ 1k = E{˜h1k,n˜hH
2516
+ 1k,i}, . . . , Cni
2517
+ Mk = E{˜hMk,n˜hH
2518
+ Mk,i} on the diagonal.
2519
+ APPENDIX E
2520
+ PROOF OF (15)
2521
+ For the LSFD scheme, the conditional MSE matrix for UE k can be written as (26). Based on [28,
2522
+ Appendix C], we prove that (28) can also minimize MSEk,(2) = tr
2523
+
2524
+ Ek,(2)
2525
+
2526
+ . With (28) implemented, Ek,(2)
2527
+ is given by (31). Then, by applying Lemma 2, we have
2528
+
2529
+ Eopt
2530
+ k,(2)
2531
+ �−1
2532
+ = IN + FH
2533
+ k,u,(2)E
2534
+
2535
+ GH
2536
+ kk
2537
+
2538
+ � K
2539
+
2540
+ l=1
2541
+ E
2542
+
2543
+ Gkl¯Fl,u,(2)GH
2544
+ kl
2545
+
2546
+ − E {Gkk} ¯Fk,u,(2)E
2547
+
2548
+ GH
2549
+ kk
2550
+
2551
+ + σ2Sk
2552
+ �−1
2553
+ × E {Gkk} Fk,u,(2),
2554
+ where A ≜ IN, B ≜ −FH
2555
+ k,u,(2)E{GH
2556
+ kk}, C ≜ (�K
2557
+ l=1 E{Gkl¯Fl,u,(2)GH
2558
+ kl}+σ2Sk)−1 and D ≜ E{Gkk}Fk,u,(2),
2559
+ respectively. We show the equivalence between SEopt
2560
+ k,(2) and log2 |(Eopt
2561
+ k,(2))−1| without a factor (1 − τp/τc).
2562
+ APPENDIX F
2563
+ PROOF OF THEOREM 4
2564
+ When MR combining Vmk = ˆHmk and the optimal LSFD scheme applied, we can easily compute
2565
+ E{GH
2566
+ kk}, Aopt
2567
+ k , and Eopt
2568
+ k,(2) in closed-form as Theorem 2. Furthermore, by applying Lemma 1, the (i, n)-th
2569
+ entry of ¯Tlk = E{GH
2570
+ lkAlE−1
2571
+ l,(2)AH
2572
+ l Glk} ∈ CN×N can be denoted as tr(¯AlE{glk,ngH
2573
+ lk,i}), where ¯Al ≜
2574
+ AlE−1
2575
+ l,(2)AH
2576
+ l
2577
+ and glk,n ∈ CMN is the n-th column of Glk. Note that the (m − 1) N + p-th element of
2578
+ glk,n is ˆhH
2579
+ ml,phmk,n so the [(m − 1) N + p, (m′ − 1) N + p′]-th (or [o, j]-th briefly) entry of ¯Glk,ni ≜
2580
+ E{glk,ngH
2581
+ lk,i} ∈ CMN×MN can be denoted as E{ˆhH
2582
+ ml,phmk,nhH
2583
+ m′k,iˆhm′l,p′}, which can be computed for four
2584
+ AP-UE combinations as Theorem 2.
2585
+ For “l /∈ Pk, m ̸= m′”, we have E{ˆhH
2586
+ ml,phmk,nhH
2587
+ m′k,iˆhm′l,p′} = 0. For “l ∈ Pk, m ̸= m′”, we have
2588
+ E{ˆhH
2589
+ ml,phmk,nhH
2590
+ mk,iˆhml,p′} = tr(Rni
2591
+ mk ˆRp′p
2592
+ ml). For “l /∈ Pk, m = m′”, we have E{ˆhH
2593
+ ml,phmk,nhH
2594
+ m′k,iˆhm′l,p′} =
2595
+ E{ˆhH
2596
+ ml,phmk,n}E{hH
2597
+ m′k,iˆhm′l,p′} = tr(Ξnp
2598
+ mlk)tr(Ξp′i
2599
+ m′kl), where Ξmlk = τpRmk˜FH
2600
+ k,pΨ−1
2601
+ mk˜Fl,pRml and Ξm′kl =
2602
+ τpRm′l˜FH
2603
+ l,pΨ−1
2604
+ m′l˜Fk,pRm′k. For “l ∈ Pk, m = m′”, we obtain E{ˆhH
2605
+ ml,phmk,nhH
2606
+ mk,iˆhml,p′} = tr(Rni
2607
+ mkPp′p
2608
+ mkl,(1))+
2609
+ τ 2
2610
+ p
2611
+ �N
2612
+ q1=1
2613
+ �N
2614
+ q2=1 tr(˜Pq1p
2615
+ mlk,(2) ˜Rnq2
2616
+ mk ˜Rq2i
2617
+ mk ˜Pp′q1
2618
+ mlk,(2)) + τ 2
2619
+ p
2620
+ �N
2621
+ q1=1
2622
+ �N
2623
+ q2=1 tr(˜Pq1n
2624
+ mlk,(2) ˜Rnq1
2625
+ mk)tr(˜Pp′q2
2626
+ mlk,(2) ˜Rq2i
2627
+ mk), where
2628
+ Sml = Rml˜FH
2629
+ l,pΨ−1
2630
+ ml, Pmlk,(1) = τpSml(Ψml−τp˜Fk,pRmk˜FH
2631
+ k,p)SH
2632
+ ml and Pmlk,(2) = Sml˜Fk,pRmk˜FH
2633
+ k,pSH
2634
+ ml with
2635
+ ˜Rni
2636
+ mk and ˜Pni
2637
+ mkl,(2) being (n, i)-submatrix of R
2638
+ 1
2639
+ 2
2640
+ mk and P
2641
+ 1
2642
+ 2
2643
+ mkl,(2), respectively. We can compute E{glk,ngH
2644
+ lk,i}oj
2645
+ in closed-form as (42) and Fopt
2646
+ k,u,(2) in closed-form as (43).
2647
+
2648
+ 31
2649
+ REFERENCES
2650
+ [1] Z. Wang, J. Zhang, H. Q. Ngo, B. Ai, and M. Debbah, “Iteratively weighted MMSE uplink precoding for cell-free massive MIMO,”
2651
+ in Proc. IEEE ICC, May 2022, pp. 1–6.
2652
+ [2] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans.
2653
+ Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
2654
+ [3] J. Zhang, E. Bj¨ornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond
2655
+ 5G,” IEEE J. Sel. Areas Commun, vol. 38, no. 8, pp. 1637–1660, Jun. 2020.
2656
+ [4] S. Chen, J. Zhang, J. Zhang, E. Bj¨ornson, and B. Ai, “A survey on user-centric cell-free massive MIMO systems,” Digit. Commun.
2657
+ Netw., 2021.
2658
+ [5] E. Bj¨ornson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,”
2659
+ IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, Jan. 2019.
2660
+ [6] S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive MIMO: A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp.
2661
+ 492–523, 1st Quart. 2022.
2662
+ [7] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access,
2663
+ vol. 7, pp. 99 878–99 888, Jul. 2019.
2664
+ [8] H. Q. Ngo, L. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE
2665
+ Trans. Green Commun. Netw, vol. 2, no. 1, pp. 25–39, Mar. 2018.
2666
+ [9] E. Bj¨ornson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261,
2667
+ Jul. 2020.
2668
+ [10] S. Chen, J. Zhang, E. Bj¨ornson, J. Zhang, and B. Ai, “Structured massive access for scalable cell-free massive MIMO systems,” IEEE
2669
+ J. Sel. Areas Commun, vol. 39, no. 4, pp. 1086–1100, Aug. 2021.
2670
+ [11] A. Papazafeiropoulos, E. Bj¨ornson, P. Kourtessis, S. Chatzinotas, and J. M. Senior, “Scalable cell-free massive MIMO systems: Impact
2671
+ of hardware impairments,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 9701–9715, Oct. 2021.
2672
+ [12] J. Zheng, J. Zhang, E. Bj¨ornson, Z. Li, and B. Ai, “Cell-free massive MIMO-OFDM for high-speed train communications,” IEEE J.
2673
+ Sel. Areas Commun., vol. 40, no. 10, pp. 2823–2839, Oct. 2022.
2674
+ [13] M. Attarifar, A. Abbasfar, and A. Lozano, “Subset MMSE receivers for cell-free networks,” IEEE Trans. Wireless Commun., vol. 19,
2675
+ no. 6, pp. 4183–4194, Jun. 2020.
2676
+ [14] E. Nayebi, A. Ashikhmin, T. L. Marzetta, and B. D. Rao, “Performance of cell-free massive MIMO systems with MMSE and LSFD
2677
+ receivers,” in Proc. Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 203–207.
2678
+ [15]
2679
+ ¨O. ¨Ozdogan, E. Bj¨ornson, and J. Zhang, “Performance of cell-free massive MIMO with Rician fading and phase shifts,” IEEE Trans.
2680
+ Wireless Commun., vol. 18, no. 11, pp. 5299–5315, Nov. 2019.
2681
+ [16] Z. Wang, J. Zhang, E. Bj¨ornson, and B. Ai, “Uplink performance of cell-free massive MIMO over spatially correlated Rician fading
2682
+ channels,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1348–1352, Apr. 2021.
2683
+ [17] J. Zhang, J. Zhang, E. Bj¨ornson, and B. Ai, “Local partial zero-forcing combining for cell-free massive MIMO systems,” IEEE Trans.
2684
+ Commun., vol. 69, no. 12, pp. 8459–8473, Dec. 2021.
2685
+ [18] G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in Proc. IEEE ICC, 2019, pp. 1–6.
2686
+ [19] Z. H. Shaik, E. Bj¨ornson, and E. G. Larsson, “MMSE-optimal sequential processing for cell-free massive MIMO with radio stripes,”
2687
+ IEEE Trans. Commun., vol. 69, no. 11, pp. 7775–7789, Nov. 2021.
2688
+
2689
+ 32
2690
+ [20] H. Masoumi and M. J. Emadi, “Performance analysis of cell-free massive MIMO system with limited fronthaul capacity and hardware
2691
+ impairments,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1038–1053, Feb. 2020.
2692
+ [21] M. Bashar, P. Xiao, R. Tafazolli, K. Cumanan, A. G. Burr, and E. Bj¨ornson, “Limited-fronthaul cell-free massive MIMO with local
2693
+ MMSE receiver under Rician fading and phase shifts,” IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1934–1938, Sep. 2021.
2694
+ [22] T. Van Chien, H. Q. Ngo, S. Chatzinotas, M. Di Renzo, and B. Ottersten, “Reconfigurable intelligent surface-assisted cell-free massive
2695
+ MIMO systems over spatially-correlated channels,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5106–5128, Jul. 2022.
2696
+ [23] E. Shi, J. Zhang, S. Chen, J. Zheng, Y. Zhang, D. W. Kwan Ng, and B. Ai, “Wireless energy transfer in RIS-aided cell-free massive
2697
+ MIMO systems: Opportunities and challenges,” IEEE Commun. Mag., vol. 60, no. 3, pp. 26–32, Mar. 2022.
2698
+ [24] T. C. Mai, H. Q. Ngo, and T. Q. Duong, “Cell-free massive MIMO systems with multi-antenna users,” in IEEE GlobalSIP, Nov. 2018,
2699
+ pp. 828–832.
2700
+ [25] S. Buzzi, C. D’Andrea, A. Zappone, and C. D’Elia, “User-centric 5G cellular networks: Resource allocation and comparison with the
2701
+ cell-free massive MIMO approach,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1250–1264, Feb. 2020.
2702
+ [26] T. C. Mai, H. Q. Ngo, and T. Q. Duong, “Downlink spectral efficiency of cell-free massive MIMO systems with multi-antenna users,”
2703
+ IEEE Trans. Commun., vol. 68, no. 8, pp. 4803–4815, Apr. 2020.
2704
+ [27] M. Zhou, L. Yang, and H. Zhu, “Sum-SE for multigroup multicast cell-free massive MIMO with multi-antenna users and low-resolution
2705
+ DACs,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1702–1706, May 2021.
2706
+ [28] Z. Wang, J. Zhang, B. Ai, C. Yuen, and M. Debbah, “Uplink performance of cell-free massive MIMO with multi-antenna users over
2707
+ jointly-correlated Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7391–7406, Sep. 2022.
2708
+ [29] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A stochastic MIMO channel model with joint correlation of both link ends,”
2709
+ IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 90–100, Jan. 2006.
2710
+ [30] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for
2711
+ a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Apr. 2011.
2712
+ [31] J. Shin and J. Moon, “Weighted-sum-rate-maximizing linear transceiver filters for the K-user MIMO interference channel,” IEEE Trans.
2713
+ Commun., vol. 60, no. 10, pp. 2776–2783, Sep. 2012.
2714
+ [32] S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE for MIMO-
2715
+ BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, 2008.
2716
+ [33] X. Li, X. Zhang, Y. Zhou, and L. Hanzo, “Optimal massive-MIMO-Aided clustered base-station coordination,” IEEE Trans. Veh.
2717
+ Technol., vol. 70, no. 3, pp. 2699–2712, Feb. 2021.
2718
+ [34] H. Q. Ngo, H. Tataria, M. Matthaiou, S. Jin, and E. G. Larsson, “On the performance of cell-free massive MIMO in Ricean fading,”
2719
+ in Proc. Asilomar Conf. Signals, Syst., Comput., Oct. 2018, pp. 980–984.
2720
+ [35] E. Bj¨ornson and B. Ottersten, “A framework for training-based estimation in arbitrarily correlated Rician MIMO channels with Rician
2721
+ disturbance,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1807–1820, Nov. 2010.
2722
+ [36] E. Bj¨ornson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and
2723
+ Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
2724
+ [37] D. Tse and P. Viswanath, Fundamentals of wireless communication.
2725
+ Cambridge university press, 2005.
2726
+ [38] M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, M. Debbah, and P. Xiao, “Max-min rate of cell-free massive MIMO uplink with
2727
+ optimal uniform quantization,” IEEE Trans. Commun., vol. 67, no. 10, pp. 6796–6815, Oct. 2019.
2728
+ [39] B. Hu, C. Hua, C. Chen, and X. Guan, “Joint beamformer design for wireless fronthaul and access links in C-RANs,” IEEE Trans.
2729
+ Wireless Commun., vol. 17, no. 5, pp. 2869–2881, May 2018.
2730
+
2731
+ 33
2732
+ [40] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?” IEEE
2733
+ J. Sel. Areas Commun, vol. 31, no. 2, pp. 160–171, Feb. 2013.
2734
+ [41] S. Wagner, R. Couillet, M. Debbah, and D. T. M. Slock, “Large system analysis of linear precoding in correlated MISO broadcast
2735
+ channels under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4509–4537, Jul. 2012.
2736
+ [42] J. Zhang, J. Zhang, D. W. K. Ng, S. Jin, and B. Ai, “Improving sum-rate of cell-free massive MIMO with expanded compute-and-
2737
+ forward,” IEEE Trans. Signal Process., vol. 70, pp. 202–215, 2021.
2738
+ [43] A. Tulino, A. Lozano, and S. Verdu, “Impact of antenna correlation on the capacity of multiantenna channels,” IEEE Trans. Inf. Theory,
2739
+ vol. 51, no. 7, pp. 2491–2509, Jun. 2005.
2740
+ [44] Y. Wu, S. Ma, and Y. Gu, “A unified framework of non-orthogonal pilot design for multi-cell massive MIMO systems,” IEEE Trans.
2741
+ Commun., vol. 68, no. 12, pp. 7623–7633, 2020.
2742
+ [45] A. Hjørungnes, Complex-valued matrix derivatives: with applications in signal processing and communications. Cambridge University
2743
+ Press, 2011.
2744
+
DNE0T4oBgHgl3EQfggEA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdE1T4oBgHgl3EQfWgTb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b71f34899cdd9cc0ce9e23b7bafbcc82aaba807734f7f3105cf6845690f8b482
3
+ size 7667757
EdE5T4oBgHgl3EQfUw9y/content/2301.05546v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8059ee327055e8029001a9f59d3bacd32eddd339177eb8d41d36623b6d3a7e08
3
+ size 292322
EdE5T4oBgHgl3EQfUw9y/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a486f3dd10015351b4ecee684b4df7503240db8bccdc92c22bd485e5150246c4
3
+ size 2555949