jackkuo commited on
Commit
b2f90c9
·
verified ·
1 Parent(s): b7a79d8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E2T4oBgHgl3EQfmgcA/content/2301.03998v1.pdf +3 -0
  2. -9E2T4oBgHgl3EQfmgcA/vector_store/index.faiss +3 -0
  3. .gitattributes +48 -0
  4. 0dE2T4oBgHgl3EQf4wg0/content/2301.04183v1.pdf +3 -0
  5. 1NE1T4oBgHgl3EQf5AWE/content/2301.03507v1.pdf +3 -0
  6. 1NE1T4oBgHgl3EQf5AWE/vector_store/index.faiss +3 -0
  7. 1NE1T4oBgHgl3EQf5AWE/vector_store/index.pkl +3 -0
  8. 1dFPT4oBgHgl3EQfUjQc/content/2301.13057v1.pdf +3 -0
  9. 1dFPT4oBgHgl3EQfUjQc/vector_store/index.pkl +3 -0
  10. 29FKT4oBgHgl3EQf8C4w/vector_store/index.faiss +3 -0
  11. 39E4T4oBgHgl3EQfAwsS/vector_store/index.pkl +3 -0
  12. 49E1T4oBgHgl3EQf6QXo/content/tmp_files/2301.03522v1.pdf.txt +515 -0
  13. 49E1T4oBgHgl3EQf6QXo/content/tmp_files/load_file.txt +383 -0
  14. 4NE1T4oBgHgl3EQfmASv/content/2301.03293v1.pdf +3 -0
  15. 59AyT4oBgHgl3EQfQfYL/content/2301.00044v1.pdf +3 -0
  16. 59AyT4oBgHgl3EQfQfYL/vector_store/index.pkl +3 -0
  17. 5NE2T4oBgHgl3EQfkAfy/content/2301.03975v1.pdf +3 -0
  18. 5NE2T4oBgHgl3EQfkAfy/vector_store/index.faiss +3 -0
  19. 5NE2T4oBgHgl3EQfkAfy/vector_store/index.pkl +3 -0
  20. 6dE3T4oBgHgl3EQfRAnz/content/tmp_files/2301.04418v1.pdf.txt +2455 -0
  21. 6dE3T4oBgHgl3EQfRAnz/content/tmp_files/load_file.txt +0 -0
  22. 7dE2T4oBgHgl3EQf7gj3/content/2301.04211v1.pdf +3 -0
  23. 7dE2T4oBgHgl3EQf7gj3/vector_store/index.faiss +3 -0
  24. 7dE2T4oBgHgl3EQf7gj3/vector_store/index.pkl +3 -0
  25. 89AzT4oBgHgl3EQfFPox/content/tmp_files/2301.01006v1.pdf.txt +1086 -0
  26. 89AzT4oBgHgl3EQfFPox/content/tmp_files/load_file.txt +0 -0
  27. 8dFAT4oBgHgl3EQfpB03/content/tmp_files/2301.08637v1.pdf.txt +2871 -0
  28. 8dFAT4oBgHgl3EQfpB03/content/tmp_files/load_file.txt +0 -0
  29. 8tE0T4oBgHgl3EQffgDC/content/2301.02406v1.pdf +3 -0
  30. 8tE0T4oBgHgl3EQffgDC/vector_store/index.faiss +3 -0
  31. 99FAT4oBgHgl3EQfqB0k/content/2301.08643v1.pdf +3 -0
  32. 99FAT4oBgHgl3EQfqB0k/vector_store/index.pkl +3 -0
  33. 9NAyT4oBgHgl3EQfQ_Zv/content/tmp_files/2301.00057v1.pdf.txt +975 -0
  34. 9NAyT4oBgHgl3EQfQ_Zv/content/tmp_files/load_file.txt +0 -0
  35. A9FJT4oBgHgl3EQfry2f/content/tmp_files/2301.11610v1.pdf.txt +1308 -0
  36. A9FJT4oBgHgl3EQfry2f/content/tmp_files/load_file.txt +0 -0
  37. C9E1T4oBgHgl3EQfEANP/content/tmp_files/2301.02884v1.pdf.txt +1531 -0
  38. C9E1T4oBgHgl3EQfEANP/content/tmp_files/load_file.txt +0 -0
  39. CNE2T4oBgHgl3EQfnwjC/content/2301.04012v1.pdf +3 -0
  40. CNE2T4oBgHgl3EQfnwjC/vector_store/index.pkl +3 -0
  41. CNE4T4oBgHgl3EQfeQ0p/vector_store/index.faiss +3 -0
  42. CdAzT4oBgHgl3EQfGftE/content/tmp_files/2301.01028v1.pdf.txt +0 -0
  43. CdAzT4oBgHgl3EQfGftE/content/tmp_files/load_file.txt +0 -0
  44. CdE1T4oBgHgl3EQfpwUV/content/tmp_files/2301.03334v1.pdf.txt +763 -0
  45. CdE1T4oBgHgl3EQfpwUV/content/tmp_files/load_file.txt +521 -0
  46. CdE5T4oBgHgl3EQfTw8s/content/tmp_files/2301.05538v1.pdf.txt +1387 -0
  47. CdE5T4oBgHgl3EQfTw8s/content/tmp_files/load_file.txt +0 -0
  48. CdFQT4oBgHgl3EQf_DcV/content/2301.13456v1.pdf +3 -0
  49. CdFQT4oBgHgl3EQf_DcV/vector_store/index.pkl +3 -0
  50. EdE2T4oBgHgl3EQfSgfT/content/tmp_files/2301.03794v1.pdf.txt +983 -0
-9E2T4oBgHgl3EQfmgcA/content/2301.03998v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b5b077718f1009f42b04b2b1a380756e13b8c2a6c5f80d9fcb96bc4a51f000e
3
+ size 5220526
-9E2T4oBgHgl3EQfmgcA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def3ce3dbad2ed412713eefefe449f62c0d8d6cf01d779df9432f3c13e2a6195
3
+ size 7209005
.gitattributes CHANGED
@@ -2813,3 +2813,51 @@ Q9FJT4oBgHgl3EQf3C2V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
2813
  KNAyT4oBgHgl3EQfsfkS/content/2301.00576v1.pdf filter=lfs diff=lfs merge=lfs -text
2814
  cdE5T4oBgHgl3EQfEw5P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2815
  d9AzT4oBgHgl3EQfaPwm/content/2301.01364v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813
  KNAyT4oBgHgl3EQfsfkS/content/2301.00576v1.pdf filter=lfs diff=lfs merge=lfs -text
2814
  cdE5T4oBgHgl3EQfEw5P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2815
  d9AzT4oBgHgl3EQfaPwm/content/2301.01364v1.pdf filter=lfs diff=lfs merge=lfs -text
2816
+ atAyT4oBgHgl3EQfv_nZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2817
+ jNAzT4oBgHgl3EQfNPst/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2818
+ VdE1T4oBgHgl3EQfIwNu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2819
+ L9E3T4oBgHgl3EQfBAkx/content/2301.04262v1.pdf filter=lfs diff=lfs merge=lfs -text
2820
+ 8tE0T4oBgHgl3EQffgDC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2821
+ x9E0T4oBgHgl3EQftQFo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2822
+ x9E0T4oBgHgl3EQftQFo/content/2301.02589v1.pdf filter=lfs diff=lfs merge=lfs -text
2823
+ _NAzT4oBgHgl3EQfS_tm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2824
+ odE0T4oBgHgl3EQf8wK3/content/2301.02793v1.pdf filter=lfs diff=lfs merge=lfs -text
2825
+ 4NE1T4oBgHgl3EQfmASv/content/2301.03293v1.pdf filter=lfs diff=lfs merge=lfs -text
2826
+ 99FAT4oBgHgl3EQfqB0k/content/2301.08643v1.pdf filter=lfs diff=lfs merge=lfs -text
2827
+ 0dE2T4oBgHgl3EQf4wg0/content/2301.04183v1.pdf filter=lfs diff=lfs merge=lfs -text
2828
+ d9E1T4oBgHgl3EQfyAW2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2829
+ KdE4T4oBgHgl3EQf7w5t/content/2301.05342v1.pdf filter=lfs diff=lfs merge=lfs -text
2830
+ 5NE2T4oBgHgl3EQfkAfy/content/2301.03975v1.pdf filter=lfs diff=lfs merge=lfs -text
2831
+ q9AzT4oBgHgl3EQfcPzN/content/2301.01401v1.pdf filter=lfs diff=lfs merge=lfs -text
2832
+ tdAzT4oBgHgl3EQf6v4U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2833
+ -9E2T4oBgHgl3EQfmgcA/content/2301.03998v1.pdf filter=lfs diff=lfs merge=lfs -text
2834
+ HtE0T4oBgHgl3EQfhwE8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2835
+ HtE0T4oBgHgl3EQfhwE8/content/2301.02435v1.pdf filter=lfs diff=lfs merge=lfs -text
2836
+ 8tE0T4oBgHgl3EQffgDC/content/2301.02406v1.pdf filter=lfs diff=lfs merge=lfs -text
2837
+ odE0T4oBgHgl3EQf8wK3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2838
+ 1NE1T4oBgHgl3EQf5AWE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2839
+ KdE4T4oBgHgl3EQf7w5t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2840
+ CNE4T4oBgHgl3EQfeQ0p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2841
+ zdE2T4oBgHgl3EQf4Qh4/content/2301.04179v1.pdf filter=lfs diff=lfs merge=lfs -text
2842
+ TdAzT4oBgHgl3EQf0v6x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2843
+ otE3T4oBgHgl3EQf7gto/content/2301.04799v1.pdf filter=lfs diff=lfs merge=lfs -text
2844
+ 1NE1T4oBgHgl3EQf5AWE/content/2301.03507v1.pdf filter=lfs diff=lfs merge=lfs -text
2845
+ IdE5T4oBgHgl3EQfWw_6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2846
+ q9AzT4oBgHgl3EQfcPzN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2847
+ w9AzT4oBgHgl3EQfCfoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2848
+ 1dFPT4oBgHgl3EQfUjQc/content/2301.13057v1.pdf filter=lfs diff=lfs merge=lfs -text
2849
+ cdE5T4oBgHgl3EQfEw5P/content/2301.05416v1.pdf filter=lfs diff=lfs merge=lfs -text
2850
+ WtFQT4oBgHgl3EQfcDb0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2851
+ CNE2T4oBgHgl3EQfnwjC/content/2301.04012v1.pdf filter=lfs diff=lfs merge=lfs -text
2852
+ 5NE2T4oBgHgl3EQfkAfy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2853
+ CdFQT4oBgHgl3EQf_DcV/content/2301.13456v1.pdf filter=lfs diff=lfs merge=lfs -text
2854
+ otE3T4oBgHgl3EQf7gto/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2855
+ t9FJT4oBgHgl3EQfdywM/content/2301.11549v1.pdf filter=lfs diff=lfs merge=lfs -text
2856
+ -9E2T4oBgHgl3EQfmgcA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2857
+ adE1T4oBgHgl3EQfdAQO/content/2301.03189v1.pdf filter=lfs diff=lfs merge=lfs -text
2858
+ 7dE2T4oBgHgl3EQf7gj3/content/2301.04211v1.pdf filter=lfs diff=lfs merge=lfs -text
2859
+ 59AyT4oBgHgl3EQfQfYL/content/2301.00044v1.pdf filter=lfs diff=lfs merge=lfs -text
2860
+ 7dE2T4oBgHgl3EQf7gj3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2861
+ KdFRT4oBgHgl3EQf0zhG/content/2301.13654v1.pdf filter=lfs diff=lfs merge=lfs -text
2862
+ 29FKT4oBgHgl3EQf8C4w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2863
+ zdE2T4oBgHgl3EQf4Qh4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dE2T4oBgHgl3EQf4wg0/content/2301.04183v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30ff07465d69ebbb48d81c93b2c01225ae01080e5bb95e5ea2e81e1dd3dc6e08
3
+ size 1821500
1NE1T4oBgHgl3EQf5AWE/content/2301.03507v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9109ce208e54758d1e8f1dc6c2ef0127b1431d9c4a8f592f64657c74ee52e40d
3
+ size 1124794
1NE1T4oBgHgl3EQf5AWE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e24deac02572a32d982ea811afaefe50f76c7510e76a69e86ff077e719a6331
3
+ size 3407917
1NE1T4oBgHgl3EQf5AWE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8100b6dcd2b36e9c8861b983d90f24039e48db89a476397a9c67bd6a8b29097f
3
+ size 129395
1dFPT4oBgHgl3EQfUjQc/content/2301.13057v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155b0bafa7de00ffc16bb0a1a179792f60a8e35b2b5cb53be27f9a0a7fe14c60
3
+ size 10204018
1dFPT4oBgHgl3EQfUjQc/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4066bd94f6657d20476545544d7f2441f3ca45f76b7761e63cbd0f08d2962c1f
3
+ size 150721
29FKT4oBgHgl3EQf8C4w/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba38b650a54f1d82395c67b356bfacb4f2b41af9d638c772b5a503de21395f54
3
+ size 3735597
39E4T4oBgHgl3EQfAwsS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3384deba1be1b2903b7399c313253d73b6f11738e951e783ad02c7235dfdf9
3
+ size 813959
49E1T4oBgHgl3EQf6QXo/content/tmp_files/2301.03522v1.pdf.txt ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03522v1 [gr-qc] 9 Jan 2023
2
+ A Comment on “Traversable wormhole dynamics
3
+ on a quantum processor”
4
+ Galina Weinstein
5
+ Reichman University, The Efi Arazi School of Computer Science, Herzliya;
6
+ University of Haifa, The Department of Philosophy, Haifa, Israel.
7
+ January 10, 2023
8
+ Abstract
9
+ There has been a lot of buzz surrounding the latest Nature paper,
10
+ ”Traversable wormhole dynamics on a quantum processor”. The Nature
11
+ paper discusses an experiment in which Google’s Sycamore quantum pro-
12
+ cessor is used to simulate a sparsified version of an SYK model. It is shown
13
+ that the simplified model preserves the key gravitational characteristics of
14
+ the original SYK model and that it is sufficient to produce a traversable
15
+ wormhole behavior. The experiment does not create an actual wormhole.
16
+ Rather, the team of researchers shows an equivalence between a gravity
17
+ picture and a quantum information picture. This paper gives an account
18
+ of the experiment and addresses philosophical questions arising from the
19
+ theoretical and experimental work.
20
+ 1
21
+ Quantum chaos and scrambling
22
+ Let us begin with the quantum butterfly effect, which is essential for the under-
23
+ standing of the experiment. The butterfly effect implies scrambling [5]. Quan-
24
+ tum scrambling is the quantum analog of chaotic dynamics in classical systems.
25
+ Scrambling describes many-body dynamics which, though ultimately unitary,
26
+ scatter initially localized quantum information across all of the system’s avail-
27
+ able degrees of freedom. Black holes are the fastest scramblers in the universe
28
+ and are therefore the most chaotic bodies in the cosmos [14]; [1].
29
+ More specifically, quantum information present in a small local area of space
30
+ spreads out, and we must search a large region to recover the information.
31
+ This is the scrambling of the quantum information while the system evolves.
32
+ Heisenberg’s operators evolve in a way that reminds the chaotic butterfly effect:
33
+ they were first local, and now they are spread over many regions in space. This
34
+ is the butterfly effect in quantum systems.
35
+ It should be stressed that when we speak about black holes, we are not
36
+ talking about black holes that form from gravitational collapse. Rather what
37
+ 1
38
+
39
+ is meant by black holes here and thereafter is eternal black holes (two-sided
40
+ black holes) or two anti-de Sitter space (Ads) black holes. The eternal black
41
+ hole is dual to two copies of the original conformal field theory (CFT) in the
42
+ thermofield double (TFD) state.
43
+ The TFD state is an entangled pure state
44
+ between two identical copies of the quantum system (CFT):
45
+ 1
46
+
47
+
48
+ |T FDβ⟩ = eβ(HL+HR) |nn⟩L,R .
49
+ (1)
50
+ Tracing out one of the copies HL (the SYK Hamiltonian applied to the
51
+ left system) or HR (the SYK Hamiltonian applied to the right system) gives a
52
+ thermal state (with Majorana fermions). In other words, tracing out either copy
53
+ produces the thermal density matrix at inverse temperature β. The |nn⟩L,R is
54
+ the thermofield double state at an infinite temperature.
55
+ The left and right
56
+ external bulk regions of the eternal black hole are joined through a wormhole
57
+ and are thus dual to the TFD state [10].
58
+ The models for the onset and dynamics of quantum chaos are called the
59
+ Sachdev-Ye-Kitaev (SYK) models. The SYK models lead to scrambling and
60
+ spreading of the information among the quantum many-body system. But the
61
+ SYK models possess gravity duals.
62
+ They are also a paradigm for quantum
63
+ holographic matter and the gravitational interpretation through the holographic
64
+ principle or duality (the AdS/CFT correspondence or gauge/gravity duality);
65
+ the equivalence between two descriptions of the same system: quantum gravity
66
+ in (d+1) dimensions, on the one hand, and quantum field theory in d dimensions,
67
+ on the other.
68
+ The above characteristics of the SYK Hamiltonian for N fermions have led
69
+ to realizing holographic physics in the laboratory, what is called quantum gravity
70
+ in the lab. I will further discuss quantum gravity in the lab in section 9.
71
+ An SYK model becomes extremely chaotic at the very beginning of its devel-
72
+ opment. In the SYK model, the out-of-time-order correlation (OTOC) functions
73
+ are used to diagnose quantum chaos, and measure the growth of operators in
74
+ space, unitarily evolving (in the Heisenberg interpretation of quantum mechan-
75
+ ics) as a function of time. With chaotic time evolution, the butterfly effect will
76
+ cause most of the OTOC functions in the average to decay exponentially [5].
77
+ In the semi-classical limit (in quantum systems with many degrees of free-
78
+ dom), this scrambling of information and operator growth due to chaotic behav-
79
+ ior is exponential and is measured using the quantum Lyapunov exponent. But
80
+ unlike the classical Lyapunov exponent, there exists a bound on the quantum
81
+ Lyapunov exponent. This is additionally measured by the butterfly velocity, the
82
+ very equivalent measure of the classical chaotic butterfly effect. The quantum
83
+ Lyapunov exponent and the scrambling rate are the ones that characterize the
84
+ beginning and appearance of quantum chaos in this system [11].
85
+ It should be noted that an interesting characteristic of the SYK model, which
86
+ is related to the quantum Lyapunov exponent and the OTOC, is that the model
87
+ exhibits maximally chaotic behavior. It means that like eternal black holes, the
88
+ SYK model is a very fast scrambler of information. There is another important
89
+ 2
90
+
91
+ quantity called, Loschmidt echo, which is intimately tied to quantum chaos. The
92
+ echo is defined as the probability that the chaotic system would return to its
93
+ initial state.
94
+ As said above, we characterize quantum scrambling and quantum chaos by
95
+ measuring the OTOC function. However, OTOCs do not generally discriminate
96
+ between quantum scrambling and the effects of both ordinary quantum deco-
97
+ herence and experimental noise: quantum scrambling and classical noise lead
98
+ the OTOC to decay exponentially with time. It is a major problem if quantum
99
+ scrambling is indistinguishable from quantum decoherence and noise, where the
100
+ information in a system is lost to the environment [9];[15].
101
+ Isolated systems are idealized models but unfortunately, realistic systems
102
+ are open systems and are in interaction with the environment. Suppose there
103
+ is a system of n qubits.
104
+ This system is not an isolated and closed system.
105
+ The n qubits are interacting with many interfering particles in the complex
106
+ environment. It is almost impossible to follow the dynamics of each particle,
107
+ so what we have here is a system that is many-body system, and decoherence
108
+ induced by the environment. As the system evolves, the n qubits get entangled
109
+ with the many-body system of the environment, and there are more disturbances
110
+ and perturbations and more degrees of freedom. Decoherence happens naturally
111
+ to quantum computers since like scrambling, qubits can’t be perfectly isolated
112
+ from the environment.
113
+ It was found that a quantum teleportation protocol enables one to differen-
114
+ tiate between scrambling and decoherence. Thus using teleportation one can
115
+ verify scrambling behavior even in the face of decoherence and experimental
116
+ imperfection [1];[15].
117
+ 2
118
+ SYK models and holography
119
+ The SYK Hamiltonian is a model for quantum chaos and holography. That
120
+ is, there is correspondence between the SYK model and scrambling/quantum
121
+ chaotic behavior on the one hand, and eternal black holes, on the other. This
122
+ dual possibility led a team of researchers to the realization that they might
123
+ be able to create a model of teleportation through a traversable wormhole.
124
+ They discovered that a process called unscrambling comes after scrambling in a
125
+ wormhole. The discovery of a process of scrambling followed by unscrambling
126
+ has boosted the possibility of realizing a quantum mechanism called size wind-
127
+ ing in the lab. This process completely goes against everything we know from
128
+ classical chaos and irreversibility. The size-winding mechanism is reminiscent
129
+ of Poincare’s Recurrence Theorem of classical physics. But in the dual gravi-
130
+ tational interpretation, size-winding leads to the interesting conclusion that a
131
+ particle can pass through a wormhole (a holographic wormhole).
132
+ The protocol is the following: on the left side of the wormhole, the infor-
133
+ mation is scrambled. Since the two sides, right and left of the wormhole are
134
+ connected (coupled), the information, i.e., qubits, is unscrambled and pops up
135
+ on the right side. Two essential things enable traversability: the two sides of
136
+ 3
137
+
138
+ the wormhole must be entangled before sending the information and the two
139
+ sides must be coupled after sending the message.
140
+ It was thought that it was possible to study the dynamics of a wormhole,
141
+ through which a qubit can pass, by simulating the SYK model of N Majorana
142
+ fermions. It was suggested that realizing the holographic SYK model on the
143
+ Google Sycamore chip might open a window to an understanding of the quantum
144
+ gravity of holographic traversable wormholes.
145
+ The SYK models of a quantum many-body system simulate the scrambling-
146
+ unscrambling method.
147
+ According to the holographic principle, systems that
148
+ are not gravitational but are entangled will exhibit properties that are identical
149
+ to quantum gravity. Hence, reasoned the team of researchers, an experiment
150
+ implementing the entanglement of qubits can be performed in the laboratory
151
+ to test theories of quantum gravity. This experiment consists of two entangled
152
+ systems of n qubits, on the right and n qubits on the left. In this protocol
153
+ obviously, the dynamics of the system are chaotic (quantum mechanically) and
154
+ is described by the SYK model.
155
+ One inserts a qubit (the message) on the left side of the system (L subsys-
156
+ tem), and it evolves in time. The qubit is entangled with one of the qubits on
157
+ the L subsystem. It means that the qubit begins to spread among the n qubits
158
+ (a small number of qubits) on the left side, and in all parts of the subsystem.
159
+ After a certain time, the qubit is entangled with the qubits of the L subsystem.
160
+ But then the qubit suddenly reappears, is unscrambled, and recoheres on the
161
+ other side, the right side (R), very far from the L side, where it was scrambled.
162
+ There is something that caused the original qubit, which entered on the
163
+ far-left side, to suddenly be focused on the far-right side at a future time, even
164
+ though it was completely mixed up on the left side.
165
+ It is bizarre from the quantum mechanical point of view, says the team of
166
+ researchers, but what makes things less weird is that it may be explained or in-
167
+ terpreted using the paradigm of quantum gravity and the holographic principle:
168
+ a traversable wormhole protocol is equivalent to the above quantum information
169
+ protocol [2].
170
+ We start from two separated black holes, the so-called scramblers. The tele-
171
+ ported signal reappears on the right side when the two black holes are connected
172
+ by a wormhole. In the quantum system, we speak of the method of scrambling-
173
+ unscrambling. But with respect to a wormhole, the above mechanism is called
174
+ teleportation-by-size, a protocol of quantum teleportation through the worm-
175
+ hole, i.e., information transmission is dependent on operator-size growth.
176
+ So, argues the team of researchers, if we imagine that the two sides of the
177
+ system represent two sides of the eternal black holes (L and R) that are con-
178
+ nected by a wormhole, then the explanation for the phenomenon is simpler. A
179
+ teleported message is sent through an emergent wormhole: it is injected into L
180
+ and arrives at R later due to a coupling operator [2].
181
+ 4
182
+
183
+ 3
184
+ Perfect size winding
185
+ The above scenario requires perfect size winding. The team of researchers first
186
+ describes size-winding purely from the boundary point of view and then applies
187
+ it to the traversable wormholes (in the bulk).
188
+ In the Heisenberg picture, near the scrambling time (just before the onset of
189
+ the chaotic behavior) for the SYK model, a thermal operator P is inserted at a
190
+ negative time into the left boundary (the left side L). Recall that the growth
191
+ of the size of an operator is a basic manifestation of quantum chaos and com-
192
+ plexity of the system. The operator-size distribution is winding in the clockwise
193
+ direction. A coupling is applied between the two subsystems L and R. The
194
+ LR coupling unwinds the complex winding of the operator size distribution, it
195
+ winds the size distribution in the opposite direction, accurately reversing the
196
+ winding direction. The thermal operator P from the left side will be exactly
197
+ mapped to its right side. We obtain a counterclockwise size distribution corre-
198
+ sponding to a thermal operator P inserted on the other boundary (the right side
199
+ R) at a positive time [2]. The team of researchers stresses: ”We explicitly show
200
+ size-winding of thermal operators near the scrambling time for the SYK model,
201
+ and we conjecture that the phenomenon can also be found in other holographic
202
+ systems” [13].
203
+ Perfect size winding provides a necessary condition for traversable wormhole
204
+ behavior. It occurs in the ground state, the state of lowest possible energy where
205
+ the temperature is zero (low temperature through the wormhole).
206
+ The team of researchers expects systems with a holographic dual to exhibit
207
+ perfect size winding [13]. In other words, the SYK model is dual to a traversable
208
+ wormhole only in the low-temperature regime, and it exhibits perfect size wind-
209
+ ing in the low-temperature limit. But this applies to large N Majorana fermions
210
+ interacting with large q other Majorana fermions (teleportation of q fermions).
211
+ The team of researchers then pondered: What is the most simplified Hamil-
212
+ tonian that preserves the gravitational physics of the original SYK model? How
213
+ many qubits do we need to simulate this Hamiltonian on a quantum device? It
214
+ was shown that N = 10 was sufficient to produce the traversable wormhole be-
215
+ havior. The team employed learning techniques to construct a sparsified version
216
+ of the SYK model. Sparsification reduces the complexity of the system.
217
+ A simplified learned Hamiltonian was constructed. Its ground state was close
218
+ to a TFD state. Techniques from machine learning (and a kind of approximation
219
+ called Trotterization) were applied to optimize the procedure. The techniques
220
+ were performed on a classical computer. The sparsification procedure reduced
221
+ the SYK model to a sparse N = 10 SYK model. ”We choose q = 4” fermions
222
+ interacting with N other fermions of the simplified version of the SYK Hamil-
223
+ tonian, ”and demonstrate gravitational physics at sufficiently small N”, where
224
+ N = 7.
225
+ Since ”The wormhole teleportation protocol also introduces a pair
226
+ of entangled qubits, i.e., a reference qubit that is entangled with the injected
227
+ qubit”, then ”the total circuit has 9 qubits”. Hence, the sparsified SYK model
228
+ was experimentally realized with N = 9 qubits [6].
229
+ It should be mentioned that at about the same time, Leonard Susskind and
230
+ 5
231
+
232
+ a team of researchers were working on what seems like a bigger project, a sparse
233
+ SYK model that recovers the global physics of ordinary SYK models. In par-
234
+ ticular, at low temperatures, their model exhibits a gravitational sector that is
235
+ maximally chaotic. The sparsity of the model, so writes the team, ”consider-
236
+ ably reduces the cost of quantum simulation algorithms”. This, so claims the
237
+ team, makes their sparse SYK model ”the most efficient currently known route
238
+ to simulate a holographic model of quantum gravity”. The team of researchers
239
+ add: ”On a practical level, sparse systems typically admit much more efficient
240
+ computer simulations—both classical and quantum. By significantly reducing
241
+ the resources needed to simulate black holes in holographic models of quantum
242
+ gravity, these results bring us closer to the goal of studying ’quantum gravity
243
+ in the lab’” [16].
244
+ 4
245
+ Majorana fermions versus transmons
246
+ The sparse Hamiltonian is doubled to give left HL and right HR Hamiltonians
247
+ with N Majorana fermions on each side. Each side is a simulation of the SYK
248
+ model, the learned Hamiltonian.
249
+ The wormhole experiment was realized with superconducting qubits on the
250
+ Google Sycamore. I would like to emphasize that I am not speaking now of
251
+ claims related to quantum supremacy. The Sycamore consists of an array of
252
+ 54 superconducting qubits called transmons (transmission-line shunted plasma
253
+ oscillation qubits).
254
+ The transmon is closely related to the charge qubits or
255
+ Cooper–Pair–Box (CPB) (Cooper pairs that are tunneling in a Josephson junc-
256
+ tion). The transmon fixes the weakness of the CPB and as compared to the
257
+ CPB, it greatly reduces charge noise sensitivity in the qubit [8].
258
+ That said, the team of researchers is speaking of the Majorana SYK model
259
+ with N fermions with which they produce evidence of gravitational physics
260
+ in the sparsified SYK system: ”To encode 7 Majorana fermions on the left
261
+ system and 7 Majorana fermions on the right system, we require 7 qubits (two
262
+ fermions per qubit)” [6]. The team of researchers also writes: ”we assume that
263
+ the total number of qubits (or fermions) on each side is n, and the number
264
+ of message qubits (or fermions) that are transmitted by the state transfer or
265
+ operator transfer protocols is m” [13].
266
+ This is problematic because it is not at all clear whether one superconducting
267
+ transmon qubit represents two Majorana fermions or rather, one transmon qubit
268
+ represents one Majorana fermion.
269
+ 5
270
+ The quantum information picture
271
+ The practical steps of the teleportation protocol (step-by-step) in the quantum
272
+ information picture (without gravity) are as follows (based on [2]):
273
+ 1) Two identical copies of the quantum system are prepared: a system of 7
274
+ qubits on the left (side L) and a system of 7 qubits on the right (side R). The
275
+ 6
276
+
277
+ two subsystems are entangled in the TFD state; that is, we have entangled Bell
278
+ pairs shared between L and R.
279
+ 2) We evolve all the qubits on the side L “backward in time” by acting with
280
+ the inverse of the time-evolution operator (exp+iHt).
281
+ 3) A qubit Q (the message) is injected into L at a certain time (swapped into
282
+ side L: a SWAP gate). Now we evolve subsystem L “forward in time” using the
283
+ time-evolution operator (exp−iHt). As a result, Q is entangled with a reference
284
+ qubit P; Q is then scrambled with P and among the 7 qubits on the subsystem
285
+ L (the carrier qubits).
286
+ 4) We now weakly couple side L to side R (at t = 0), applying a coupling
287
+ operator (expiµV , where V is the interaction term and µ represents the coupling
288
+ interaction). The coupling is applied suddenly: All the 7 qubits on side L are
289
+ now coupled to the 7 qubits on the side R.
290
+ 5) We now evolve side R “forward in time” using the time-evolution oper-
291
+ ator (exp−iHt). Side R is subsequently measured. The qubit Q (the message)
292
+ reappears unscrambled, it arrives unscathed at R and there is no need to de-
293
+ code it (a final SWAP gate: extract qubit Q from R). The message has been
294
+ teleported while being first scrambled and then unscrambled. The teleported
295
+ qubit is highly error-protected [4].
296
+ The team of researchers distinguishes between two mechanisms of transmis-
297
+ sion with the wormhole circuit [2]:
298
+ 1) The low-temperature teleportation: If µ < 0, the qubit Q experiences a
299
+ time advance and is rescued on the side R. This is wormhole teleportation.
300
+ 2) On the other hand, when µ > 0 the qubit is entangled with the qubits of
301
+ side L but is not unscrambled and its destiny is oblivion.
302
+ 6
303
+ The gravity picture
304
+ According to Occam’s razor, the simplest explanation for the above mecha-
305
+ nism is teleportation-by-size, i.e., holographic teleportation. Thus in the grav-
306
+ ity picture, a message has been teleported through a semi-classical holographic
307
+ traversable wormhole [2]. Holographically, the above coupled LR quantum sys-
308
+ tem is dual to a wormhole that connects the two sides of the eternal black hole.
309
+ The LR coupling renders the wormhole traversable; if µ < 0, the coupling oper-
310
+ ator generates a negative energy shockwave in the bulk, modifying the geometry
311
+ of the wormhole and allowing traversability. When µ > 0 the coupling generates
312
+ a positive energy shockwave and the qubit falls into the singularity. The team
313
+ of researchers writes: ”we observe increased teleportation when the interaction
314
+ introduces a negative energy shockwave rather than a positive one. The asym-
315
+ metric signature is consistent with the physical interpretation that the qubit
316
+ underwent teleportation through the wormhole” [6].
317
+ The point is that for very low temperatures, the information does not vanish
318
+ and the original entanglement between Q and T does not get destroyed by
319
+ chaotic perturbations.
320
+ How is this possible?
321
+ Although there is scrambling
322
+ and quantum chaotic behavior, the weak coupling interaction between L and
323
+ 7
324
+
325
+ R entangles L and R, and the qubit Q is unscrambled. This is perfect size
326
+ winding which causes teleportation around the scrambling time. In the perfect
327
+ size winding protocol of scrambling followed by unscrambling the teleported
328
+ qubit is highly error-protected [4]. I further discuss this issue in section 9.
329
+ 7
330
+ Why should we believe the gravity picture?
331
+ In the new experiment performed with the Sycamore chip, the team of re-
332
+ searchers shows that their coarse-grained SYK model preserves key properties
333
+ of the traversable wormhole physics: perfect size winding, coupling interac-
334
+ tion on either side of the wormhole that is consistent with a negative energy
335
+ shock wave, a Shapiro time delay, causal time-order of signals emerging from
336
+ the wormhole, and scrambling [6].
337
+ Besides sending a single qubit from left to right, another qubit is inserted
338
+ from right to left. The result is time-ordered teleportation, which is interpreted
339
+ as a demonstration of gravitational teleportation. At time −t0, a qubit Q is
340
+ swapped into L. Simultaneously, a qubit R is swapped into R. At the time
341
+ t1, the team of researchers performs a measurement and compares the two pro-
342
+ cesses.
343
+ They found that the presence of R delayed the arrival of the signal traveling
344
+ left to right, and interpreted this delay observed in the learned Hamiltonian as
345
+ due to a Shapiro time delay. It is also demonstrated that in the high-temperature
346
+ regime, non-gravitational teleportation occurs, and there is no size winding [6].
347
+ Working with collaborators from Caltech, Fermilab, and Harvard, the quan-
348
+ tum system was subjected to numerous tests to determine if it showed quantum
349
+ gravitational behavior. The above signatures were verified on classical com-
350
+ puters, so claims the team of researchers, confirming that the dynamics of the
351
+ quantum system were consistent with a quantum gravity interpretation and the
352
+ holographic principle [17].
353
+ 8
354
+ Scientific explanation is not truth
355
+ We usually proceed from the success of an experiment to the conclusion that
356
+ our explanation is likely to be approximately true, or true. We think that if an
357
+ explanation is the best among the competing explanations of the experiment,
358
+ then it is probably true. But it should be stressed that the fit between the
359
+ simplified SYK model and the explanation in terms of an emergent wormhole
360
+ does not mean that the latter explanation is literally true. Neither does it mean
361
+ that holographic wormholes exist or that they are real. What is meant by saying
362
+ that this explanation is the simplest among the other hypotheses is mainly that,
363
+ it is the best fit for the experimental setup, and that holographic teleportation
364
+ fits the teleportation mechanism at the basis of the said experiment.
365
+ The point is that according to the ER = EPR hypothesis, the gravity picture
366
+ is equivalent to the quantum information picture, and ”The traversable worm-
367
+ 8
368
+
369
+ hole expressed as a quantum circuit, equivalent to the gravitational picture in
370
+ the semiclassical limit of an infinite number of qubits” [6]. But although the
371
+ analogy between the experimental setup and the emergent geometry is sugges-
372
+ tive, it does not follow from the experiment that the wormhole gravitational
373
+ picture is real. We can only say that teleportation-by-size is the hypothesis
374
+ that explains the experiment best. This is so even if it explains the evidence.
375
+ ”Truth” requires a step beyond the judgment that the holographic wormhole
376
+ hypothesis fits the experimental setup and the data and is better than all of its
377
+ rivals.
378
+ 9
379
+ Quantum gravity in the lab
380
+ Advocates of the ”quantum gravity in the Lab” program argue: ”The ‘quan-
381
+ tum gravity in the lab’ program does not need to wait for large error-corrected
382
+ quantum computers. Progress can be made even in the Noisy Intermediate-Scale
383
+ Quantum (NISQ) era” [13]. There is a problem with this statement.
384
+ As is well known, quantum computers are prone to many errors and the
385
+ Sycamore quantum device has a large error rate [7]. In this state of affairs, ”If,
386
+ at any point in time, a small error occurs, the chaotic dynamics will not undo
387
+ themselves, and the particle will not make it through the wormhole” [17].
388
+ At large times, a small perturbation can destroy the correlations between the
389
+ two sides L and R of the quantum system that would otherwise exist without
390
+ the perturbation. Although the qubits of the Sycamore processor are cooled
391
+ down to cryogenic temperatures and are held in an ultra-high vacuum chamber,
392
+ the entangled qubits can decohere quickly due to interaction (entanglement)
393
+ with the environment (incoherent errors). The team of researchers writes: ”In
394
+ general, errors can include coherent errors [crosstalk errors and qubit phase] and
395
+ incoherent sources of noise; in simulations, we assume fully incoherent errors and
396
+ observe agreement with experimental data” [6].
397
+ A team of researchers trained a quantum neural network (in a quantum
398
+ machine learning context). An appropriate ansatz can mitigate coherent errors
399
+ for only a small number of qubits (18) on the Sycamore quantum device [12].
400
+ Proponents of the ”quantum gravity in the Lab” program show that ”with some
401
+ caveats we can use a finite fraction of the fermions” [13]. So in order to reduce
402
+ the coherent errors, ”the total circuit has 9 qubits” [6]. Recall that in practice,
403
+ only 7 qubits were used to simulate a ”wormhole-like teleportation”. The other
404
+ two qubits served as the teleported qubits [6] (see sections 3 and 5).
405
+ Using
406
+ machine learning, the team of researchers was able to make the quantum model
407
+ simple enough to preserve the key gravitational properties, so that it could be
408
+ realized with a circuit with 164 two-qubit gates [6]. A more complex model
409
+ would increase the number of gates, and consequently also the error rate.
410
+ In the Caltech press release, it is said that the team of researchers found a
411
+ quantum system, a “baby” SYK-like model, prepared to preserve the key prop-
412
+ erties of a gravitational wormhole. To achieve this, the team had to first reduce
413
+ the SYK model to a simplified form, a feat they achieved using machine learn-
414
+ 9
415
+
416
+ ing tools on conventional computers. They employed learning techniques to find
417
+ and prepare a simple SYK-like quantum system that could be encoded in the
418
+ Sycamore quantum architecture, and that would preserve the key gravitational
419
+ property: the negative energy shockwave. The greatest achievement was sim-
420
+ plifying the microscopic description of the SYK quantum system and studying
421
+ the resulting effective model that the team found on the Sycamore quantum
422
+ processor. The team of researchers found it “curious and surprising how the
423
+ optimization on one characteristic of the model [the negative energy shockwave
424
+ or LR coupling] preserved the other characteristics” [3].
425
+ Reducing the SYK model to a simplified form is an achievement that is to
426
+ be celebrated. But this demonstrates the amazing capabilities of conventional
427
+ computers. It is important to stress that no wormhole was created in the lab,
428
+ and moreover, no one has ever observed or found any evidence of any wormhole.
429
+ Acknowledgement
430
+ This work is supported by ERC advanced grant number 834735.
431
+ References
432
+ [1]
433
+ M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M. Kreikebaum, D.
434
+ Dahlen, A. Morvan, B. Yoshida, N. Y. Yao and I. Siddiqi (2021). ”Quantum
435
+ Information Scrambling in a Superconducting Qutrit Processor.” Physical
436
+ Review X 10, pp. 021010-1- 021010-21.
437
+ [2]
438
+ A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G.
439
+ Salton, L. Susskind, B. Swingle and M. Walter (2019). ”Quantum Gravity
440
+ in the Lab: Teleportation by Size and Traversable Wormholes.” arXiv:
441
+ 1911.06314v2 [quant-ph]
442
+ [3]
443
+ Clavin, W. (2022). ”Physicists observe wormhole dynamics using a quan-
444
+ tum computer.” Caltech.
445
+ [4]
446
+ P. Gao and D. L. Jafferis (2021). ”A traversable wormhole teleportation
447
+ protocol in the SYK model.” Journal of High Energy Physics 2021, pp.
448
+ 1-43.
449
+ [5]
450
+ P. Hosur, X-L. Qi, D. A. Roberts, and B. Yoshida, (2016). ”Chaos in Quan-
451
+ tum Channels,” Journal of High Energy Physics 2016, pp. 1-48.
452
+ [6]
453
+ D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer, S. I. Davis, N.
454
+ Lauk, H. Neven, and M. Spiropulu (2022). ”Traversable wormhole dynamics
455
+ on a quantum processor.” Nature 612, pp. 51–55.
456
+ [7]
457
+ G.
458
+ Kalai,
459
+ Y.
460
+ Rinott,
461
+ T.
462
+ Shoham
463
+ (2022).
464
+ ”Google’s
465
+ 2019
466
+ ’Quan-
467
+ tum
468
+ Supremacy’
469
+ Claims:
470
+ Data,
471
+ Documentation,
472
+ and
473
+ Discussion.”
474
+ arXiv:2210.12753v2 [quant-ph], pp. 1-34.
475
+ 10
476
+
477
+ [8]
478
+ J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A.
479
+ Blais, M. H. Devoret, S. M. Girvin and R. J. Schoelkopf (2007). ”Charge-
480
+ insensitive qubit design derived from the Cooper pair box.” Physical Review
481
+ A 76, pp. 042319-1-042319-19.
482
+ [9]
483
+ K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y.
484
+ Yao, and C. Monroe (2019). ”Verified quantum information scrambling.”
485
+ Nature 567, pp. 61–65.
486
+ [10] J.
487
+ Maldacena
488
+ and
489
+ X.-L.
490
+ Qi
491
+ (2018)
492
+ Eternal
493
+ traversable
494
+ wormhole,
495
+ arXiv:1804.00491v3 [hep-th], pp. 1-74.
496
+ [11] J. Maldacena, S. H. Shenker and D. Stanford, (2016). ”A Bound on Chaos.”
497
+ Journal of High Energy Physics (2016), pp. 1-16.
498
+ [12] M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyan-
499
+ skyi, and H. Neven (2022). ”Entangling Quantum Generative Adversarial
500
+ Networks.”Physical Review Letters 128.220505.
501
+ [13] S. Nezami, H. W. Lin, A. R. Brown, H. Gharibyan, S. Leichenauer, G.
502
+ Salton, L. Susskind, B. Swingle and M. Walter (2022). ”Quantum Gravity
503
+ in the Lab: Teleportation by Size and Traversable Wormholes, Part II.”
504
+ arXiv: 2102.01064v1 [quant-ph]
505
+ [14] Y. Sekino and L. Susskind (2008). ”Fast scramblers.” Journal of High En-
506
+ ergy Physics 10, pp. 1-14.
507
+ [15] B. Yoshida and N. Y. Yao (2019). ”Disentangling Scrambling and Deco-
508
+ herence via Quantum Teleportation.” Physical Review X 9, pp. 011006-1-
509
+ 011006-17.
510
+ [16] S. Xu, L. Susskind, Y. Su, B. Swingle (2020). ”A Sparse Model of Quantum
511
+ Holography.” arXiv:2008.02303v1 [cond-mat.str-el], pp. 1-55.
512
+ [17] Zlokapa, A. (2022). ”Making a Traversable Wormhole with a Quantum
513
+ Computer.” Google Research.
514
+ 11
515
+
49E1T4oBgHgl3EQf6QXo/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf,len=382
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
3
+ page_content='03522v1 [gr-qc] 9 Jan 2023 A Comment on “Traversable wormhole dynamics on a quantum processor” Galina Weinstein Reichman University, The Efi Arazi School of Computer Science, Herzliya;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
4
+ page_content=' University of Haifa, The Department of Philosophy, Haifa, Israel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
5
+ page_content=' January 10, 2023 Abstract There has been a lot of buzz surrounding the latest Nature paper, ”Traversable wormhole dynamics on a quantum processor”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
6
+ page_content=' The Nature paper discusses an experiment in which Google’s Sycamore quantum pro- cessor is used to simulate a sparsified version of an SYK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
7
+ page_content=' It is shown that the simplified model preserves the key gravitational characteristics of the original SYK model and that it is sufficient to produce a traversable wormhole behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
8
+ page_content=' The experiment does not create an actual wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
9
+ page_content=' Rather, the team of researchers shows an equivalence between a gravity picture and a quantum information picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
10
+ page_content=' This paper gives an account of the experiment and addresses philosophical questions arising from the theoretical and experimental work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
11
+ page_content=' 1 Quantum chaos and scrambling Let us begin with the quantum butterfly effect, which is essential for the under- standing of the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
12
+ page_content=' The butterfly effect implies scrambling [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
13
+ page_content=' Quan- tum scrambling is the quantum analog of chaotic dynamics in classical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
14
+ page_content=' Scrambling describes many-body dynamics which, though ultimately unitary, scatter initially localized quantum information across all of the system’s avail- able degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
15
+ page_content=' Black holes are the fastest scramblers in the universe and are therefore the most chaotic bodies in the cosmos [14];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
16
+ page_content=' [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
17
+ page_content=' More specifically, quantum information present in a small local area of space spreads out, and we must search a large region to recover the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
18
+ page_content=' This is the scrambling of the quantum information while the system evolves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
19
+ page_content=' Heisenberg’s operators evolve in a way that reminds the chaotic butterfly effect: they were first local, and now they are spread over many regions in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
20
+ page_content=' This is the butterfly effect in quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
21
+ page_content=' It should be stressed that when we speak about black holes, we are not talking about black holes that form from gravitational collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
22
+ page_content=' Rather what 1 is meant by black holes here and thereafter is eternal black holes (two-sided black holes) or two anti-de Sitter space (Ads) black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
23
+ page_content=' The eternal black hole is dual to two copies of the original conformal field theory (CFT) in the thermofield double (TFD) state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
24
+ page_content=' The TFD state is an entangled pure state between two identical copies of the quantum system (CFT): 1 √ Zβ |T FDβ⟩ = eβ(HL+HR) |nn⟩L,R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
25
+ page_content=' (1) Tracing out one of the copies HL (the SYK Hamiltonian applied to the left system) or HR (the SYK Hamiltonian applied to the right system) gives a thermal state (with Majorana fermions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
26
+ page_content=' In other words, tracing out either copy produces the thermal density matrix at inverse temperature β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
27
+ page_content=' The |nn⟩L,R is the thermofield double state at an infinite temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
28
+ page_content=' The left and right external bulk regions of the eternal black hole are joined through a wormhole and are thus dual to the TFD state [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
29
+ page_content=' The models for the onset and dynamics of quantum chaos are called the Sachdev-Ye-Kitaev (SYK) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
30
+ page_content=' The SYK models lead to scrambling and spreading of the information among the quantum many-body system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
31
+ page_content=' But the SYK models possess gravity duals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
32
+ page_content=' They are also a paradigm for quantum holographic matter and the gravitational interpretation through the holographic principle or duality (the AdS/CFT correspondence or gauge/gravity duality);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
33
+ page_content=' the equivalence between two descriptions of the same system: quantum gravity in (d+1) dimensions, on the one hand, and quantum field theory in d dimensions, on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
34
+ page_content=' The above characteristics of the SYK Hamiltonian for N fermions have led to realizing holographic physics in the laboratory, what is called quantum gravity in the lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
35
+ page_content=' I will further discuss quantum gravity in the lab in section 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
36
+ page_content=' An SYK model becomes extremely chaotic at the very beginning of its devel- opment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
37
+ page_content=' In the SYK model, the out-of-time-order correlation (OTOC) functions are used to diagnose quantum chaos, and measure the growth of operators in space, unitarily evolving (in the Heisenberg interpretation of quantum mechan- ics) as a function of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
38
+ page_content=' With chaotic time evolution, the butterfly effect will cause most of the OTOC functions in the average to decay exponentially [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
39
+ page_content=' In the semi-classical limit (in quantum systems with many degrees of free- dom), this scrambling of information and operator growth due to chaotic behav- ior is exponential and is measured using the quantum Lyapunov exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
40
+ page_content=' But unlike the classical Lyapunov exponent, there exists a bound on the quantum Lyapunov exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
41
+ page_content=' This is additionally measured by the butterfly velocity, the very equivalent measure of the classical chaotic butterfly effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
42
+ page_content=' The quantum Lyapunov exponent and the scrambling rate are the ones that characterize the beginning and appearance of quantum chaos in this system [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
43
+ page_content=' It should be noted that an interesting characteristic of the SYK model, which is related to the quantum Lyapunov exponent and the OTOC, is that the model exhibits maximally chaotic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
44
+ page_content=' It means that like eternal black holes, the SYK model is a very fast scrambler of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
45
+ page_content=' There is another important 2 quantity called, Loschmidt echo, which is intimately tied to quantum chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
46
+ page_content=' The echo is defined as the probability that the chaotic system would return to its initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
47
+ page_content=' As said above, we characterize quantum scrambling and quantum chaos by measuring the OTOC function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
48
+ page_content=' However, OTOCs do not generally discriminate between quantum scrambling and the effects of both ordinary quantum deco- herence and experimental noise: quantum scrambling and classical noise lead the OTOC to decay exponentially with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
49
+ page_content=' It is a major problem if quantum scrambling is indistinguishable from quantum decoherence and noise, where the information in a system is lost to the environment [9];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
50
+ page_content='[15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
51
+ page_content=' Isolated systems are idealized models but unfortunately, realistic systems are open systems and are in interaction with the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
52
+ page_content=' Suppose there is a system of n qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
53
+ page_content=' This system is not an isolated and closed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
54
+ page_content=' The n qubits are interacting with many interfering particles in the complex environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
55
+ page_content=' It is almost impossible to follow the dynamics of each particle, so what we have here is a system that is many-body system, and decoherence induced by the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
56
+ page_content=' As the system evolves, the n qubits get entangled with the many-body system of the environment, and there are more disturbances and perturbations and more degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
57
+ page_content=' Decoherence happens naturally to quantum computers since like scrambling, qubits can’t be perfectly isolated from the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
58
+ page_content=' It was found that a quantum teleportation protocol enables one to differen- tiate between scrambling and decoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
59
+ page_content=' Thus using teleportation one can verify scrambling behavior even in the face of decoherence and experimental imperfection [1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
60
+ page_content='[15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
61
+ page_content=' 2 SYK models and holography The SYK Hamiltonian is a model for quantum chaos and holography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
62
+ page_content=' That is, there is correspondence between the SYK model and scrambling/quantum chaotic behavior on the one hand, and eternal black holes, on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
63
+ page_content=' This dual possibility led a team of researchers to the realization that they might be able to create a model of teleportation through a traversable wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
64
+ page_content=' They discovered that a process called unscrambling comes after scrambling in a wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
65
+ page_content=' The discovery of a process of scrambling followed by unscrambling has boosted the possibility of realizing a quantum mechanism called size wind- ing in the lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
66
+ page_content=' This process completely goes against everything we know from classical chaos and irreversibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
67
+ page_content=' The size-winding mechanism is reminiscent of Poincare’s Recurrence Theorem of classical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
68
+ page_content=' But in the dual gravi- tational interpretation, size-winding leads to the interesting conclusion that a particle can pass through a wormhole (a holographic wormhole).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
69
+ page_content=' The protocol is the following: on the left side of the wormhole, the infor- mation is scrambled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
70
+ page_content=' Since the two sides, right and left of the wormhole are connected (coupled), the information, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
71
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
72
+ page_content=', qubits, is unscrambled and pops up on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
73
+ page_content=' Two essential things enable traversability: the two sides of 3 the wormhole must be entangled before sending the information and the two sides must be coupled after sending the message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
74
+ page_content=' It was thought that it was possible to study the dynamics of a wormhole, through which a qubit can pass, by simulating the SYK model of N Majorana fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
75
+ page_content=' It was suggested that realizing the holographic SYK model on the Google Sycamore chip might open a window to an understanding of the quantum gravity of holographic traversable wormholes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
76
+ page_content=' The SYK models of a quantum many-body system simulate the scrambling- unscrambling method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
77
+ page_content=' According to the holographic principle, systems that are not gravitational but are entangled will exhibit properties that are identical to quantum gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
78
+ page_content=' Hence, reasoned the team of researchers, an experiment implementing the entanglement of qubits can be performed in the laboratory to test theories of quantum gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
79
+ page_content=' This experiment consists of two entangled systems of n qubits, on the right and n qubits on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
80
+ page_content=' In this protocol obviously, the dynamics of the system are chaotic (quantum mechanically) and is described by the SYK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
81
+ page_content=' One inserts a qubit (the message) on the left side of the system (L subsys- tem), and it evolves in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
82
+ page_content=' The qubit is entangled with one of the qubits on the L subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
83
+ page_content=' It means that the qubit begins to spread among the n qubits (a small number of qubits) on the left side, and in all parts of the subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
84
+ page_content=' After a certain time, the qubit is entangled with the qubits of the L subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
85
+ page_content=' But then the qubit suddenly reappears, is unscrambled, and recoheres on the other side, the right side (R), very far from the L side, where it was scrambled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
86
+ page_content=' There is something that caused the original qubit, which entered on the far-left side, to suddenly be focused on the far-right side at a future time, even though it was completely mixed up on the left side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
87
+ page_content=' It is bizarre from the quantum mechanical point of view, says the team of researchers, but what makes things less weird is that it may be explained or in- terpreted using the paradigm of quantum gravity and the holographic principle: a traversable wormhole protocol is equivalent to the above quantum information protocol [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
88
+ page_content=' We start from two separated black holes, the so-called scramblers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
89
+ page_content=' The tele- ported signal reappears on the right side when the two black holes are connected by a wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
90
+ page_content=' In the quantum system, we speak of the method of scrambling- unscrambling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
91
+ page_content=' But with respect to a wormhole, the above mechanism is called teleportation-by-size, a protocol of quantum teleportation through the worm- hole, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
92
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
93
+ page_content=', information transmission is dependent on operator-size growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
94
+ page_content=' So, argues the team of researchers, if we imagine that the two sides of the system represent two sides of the eternal black holes (L and R) that are con- nected by a wormhole, then the explanation for the phenomenon is simpler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
95
+ page_content=' A teleported message is sent through an emergent wormhole: it is injected into L and arrives at R later due to a coupling operator [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
96
+ page_content=' 4 3 Perfect size winding The above scenario requires perfect size winding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
97
+ page_content=' The team of researchers first describes size-winding purely from the boundary point of view and then applies it to the traversable wormholes (in the bulk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
98
+ page_content=' In the Heisenberg picture, near the scrambling time (just before the onset of the chaotic behavior) for the SYK model, a thermal operator P is inserted at a negative time into the left boundary (the left side L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
99
+ page_content=' Recall that the growth of the size of an operator is a basic manifestation of quantum chaos and com- plexity of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
100
+ page_content=' The operator-size distribution is winding in the clockwise direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
101
+ page_content=' A coupling is applied between the two subsystems L and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
102
+ page_content=' The LR coupling unwinds the complex winding of the operator size distribution, it winds the size distribution in the opposite direction, accurately reversing the winding direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
103
+ page_content=' The thermal operator P from the left side will be exactly mapped to its right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
104
+ page_content=' We obtain a counterclockwise size distribution corre- sponding to a thermal operator P inserted on the other boundary (the right side R) at a positive time [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
105
+ page_content=' The team of researchers stresses: ”We explicitly show size-winding of thermal operators near the scrambling time for the SYK model, and we conjecture that the phenomenon can also be found in other holographic systems” [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
106
+ page_content=' Perfect size winding provides a necessary condition for traversable wormhole behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
107
+ page_content=' It occurs in the ground state, the state of lowest possible energy where the temperature is zero (low temperature through the wormhole).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
108
+ page_content=' The team of researchers expects systems with a holographic dual to exhibit perfect size winding [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
109
+ page_content=' In other words, the SYK model is dual to a traversable wormhole only in the low-temperature regime, and it exhibits perfect size wind- ing in the low-temperature limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
110
+ page_content=' But this applies to large N Majorana fermions interacting with large q other Majorana fermions (teleportation of q fermions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
111
+ page_content=' The team of researchers then pondered: What is the most simplified Hamil- tonian that preserves the gravitational physics of the original SYK model?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
112
+ page_content=' How many qubits do we need to simulate this Hamiltonian on a quantum device?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
113
+ page_content=' It was shown that N = 10 was sufficient to produce the traversable wormhole be- havior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
114
+ page_content=' The team employed learning techniques to construct a sparsified version of the SYK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
115
+ page_content=' Sparsification reduces the complexity of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
116
+ page_content=' A simplified learned Hamiltonian was constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
117
+ page_content=' Its ground state was close to a TFD state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
118
+ page_content=' Techniques from machine learning (and a kind of approximation called Trotterization) were applied to optimize the procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
119
+ page_content=' The techniques were performed on a classical computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
120
+ page_content=' The sparsification procedure reduced the SYK model to a sparse N = 10 SYK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
121
+ page_content=' ”We choose q = 4” fermions interacting with N other fermions of the simplified version of the SYK Hamil- tonian, ”and demonstrate gravitational physics at sufficiently small N”, where N = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
122
+ page_content=' Since ”The wormhole teleportation protocol also introduces a pair of entangled qubits, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
123
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
124
+ page_content=', a reference qubit that is entangled with the injected qubit”, then ”the total circuit has 9 qubits”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
125
+ page_content=' Hence, the sparsified SYK model was experimentally realized with N = 9 qubits [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
126
+ page_content=' It should be mentioned that at about the same time, Leonard Susskind and 5 a team of researchers were working on what seems like a bigger project, a sparse SYK model that recovers the global physics of ordinary SYK models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
127
+ page_content=' In par- ticular, at low temperatures, their model exhibits a gravitational sector that is maximally chaotic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
128
+ page_content=' The sparsity of the model, so writes the team, ”consider- ably reduces the cost of quantum simulation algorithms”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
129
+ page_content=' This, so claims the team, makes their sparse SYK model ”the most efficient currently known route to simulate a holographic model of quantum gravity”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
130
+ page_content=' The team of researchers add: ”On a practical level, sparse systems typically admit much more efficient computer simulations—both classical and quantum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
131
+ page_content=' By significantly reducing the resources needed to simulate black holes in holographic models of quantum gravity, these results bring us closer to the goal of studying ’quantum gravity in the lab’” [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
132
+ page_content=' 4 Majorana fermions versus transmons The sparse Hamiltonian is doubled to give left HL and right HR Hamiltonians with N Majorana fermions on each side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
133
+ page_content=' Each side is a simulation of the SYK model, the learned Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
134
+ page_content=' The wormhole experiment was realized with superconducting qubits on the Google Sycamore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
135
+ page_content=' I would like to emphasize that I am not speaking now of claims related to quantum supremacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
136
+ page_content=' The Sycamore consists of an array of 54 superconducting qubits called transmons (transmission-line shunted plasma oscillation qubits).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
137
+ page_content=' The transmon is closely related to the charge qubits or Cooper–Pair–Box (CPB) (Cooper pairs that are tunneling in a Josephson junc- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
138
+ page_content=' The transmon fixes the weakness of the CPB and as compared to the CPB, it greatly reduces charge noise sensitivity in the qubit [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
139
+ page_content=' That said, the team of researchers is speaking of the Majorana SYK model with N fermions with which they produce evidence of gravitational physics in the sparsified SYK system: ”To encode 7 Majorana fermions on the left system and 7 Majorana fermions on the right system, we require 7 qubits (two fermions per qubit)” [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
140
+ page_content=' The team of researchers also writes: ”we assume that the total number of qubits (or fermions) on each side is n, and the number of message qubits (or fermions) that are transmitted by the state transfer or operator transfer protocols is m” [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
141
+ page_content=' This is problematic because it is not at all clear whether one superconducting transmon qubit represents two Majorana fermions or rather, one transmon qubit represents one Majorana fermion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
142
+ page_content=' 5 The quantum information picture The practical steps of the teleportation protocol (step-by-step) in the quantum information picture (without gravity) are as follows (based on [2]): 1) Two identical copies of the quantum system are prepared: a system of 7 qubits on the left (side L) and a system of 7 qubits on the right (side R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
143
+ page_content=' The 6 two subsystems are entangled in the TFD state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
144
+ page_content=' that is, we have entangled Bell pairs shared between L and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
145
+ page_content=' 2) We evolve all the qubits on the side L “backward in time” by acting with the inverse of the time-evolution operator (exp+iHt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
146
+ page_content=' 3) A qubit Q (the message) is injected into L at a certain time (swapped into side L: a SWAP gate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
147
+ page_content=' Now we evolve subsystem L “forward in time” using the time-evolution operator (exp−iHt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
148
+ page_content=' As a result, Q is entangled with a reference qubit P;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
149
+ page_content=' Q is then scrambled with P and among the 7 qubits on the subsystem L (the carrier qubits).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
150
+ page_content=' 4) We now weakly couple side L to side R (at t = 0), applying a coupling operator (expiµV , where V is the interaction term and µ represents the coupling interaction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
151
+ page_content=' The coupling is applied suddenly: All the 7 qubits on side L are now coupled to the 7 qubits on the side R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
152
+ page_content=' 5) We now evolve side R “forward in time” using the time-evolution oper- ator (exp−iHt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
153
+ page_content=' Side R is subsequently measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
154
+ page_content=' The qubit Q (the message) reappears unscrambled, it arrives unscathed at R and there is no need to de- code it (a final SWAP gate: extract qubit Q from R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
155
+ page_content=' The message has been teleported while being first scrambled and then unscrambled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
156
+ page_content=' The teleported qubit is highly error-protected [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
157
+ page_content=' The team of researchers distinguishes between two mechanisms of transmis- sion with the wormhole circuit [2]: 1) The low-temperature teleportation: If µ < 0, the qubit Q experiences a time advance and is rescued on the side R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
158
+ page_content=' This is wormhole teleportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
159
+ page_content=' 2) On the other hand, when µ > 0 the qubit is entangled with the qubits of side L but is not unscrambled and its destiny is oblivion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
160
+ page_content=' 6 The gravity picture According to Occam’s razor, the simplest explanation for the above mecha- nism is teleportation-by-size, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
161
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
162
+ page_content=', holographic teleportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
163
+ page_content=' Thus in the grav- ity picture, a message has been teleported through a semi-classical holographic traversable wormhole [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
164
+ page_content=' Holographically, the above coupled LR quantum sys- tem is dual to a wormhole that connects the two sides of the eternal black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
165
+ page_content=' The LR coupling renders the wormhole traversable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
166
+ page_content=' if µ < 0, the coupling oper- ator generates a negative energy shockwave in the bulk, modifying the geometry of the wormhole and allowing traversability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
167
+ page_content=' When µ > 0 the coupling generates a positive energy shockwave and the qubit falls into the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
168
+ page_content=' The team of researchers writes: ”we observe increased teleportation when the interaction introduces a negative energy shockwave rather than a positive one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
169
+ page_content=' The asym- metric signature is consistent with the physical interpretation that the qubit underwent teleportation through the wormhole” [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
170
+ page_content=' The point is that for very low temperatures, the information does not vanish and the original entanglement between Q and T does not get destroyed by chaotic perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
171
+ page_content=' How is this possible?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
172
+ page_content=' Although there is scrambling and quantum chaotic behavior, the weak coupling interaction between L and 7 R entangles L and R, and the qubit Q is unscrambled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
173
+ page_content=' This is perfect size winding which causes teleportation around the scrambling time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
174
+ page_content=' In the perfect size winding protocol of scrambling followed by unscrambling the teleported qubit is highly error-protected [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
175
+ page_content=' I further discuss this issue in section 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
176
+ page_content=' 7 Why should we believe the gravity picture?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
177
+ page_content=' In the new experiment performed with the Sycamore chip, the team of re- searchers shows that their coarse-grained SYK model preserves key properties of the traversable wormhole physics: perfect size winding, coupling interac- tion on either side of the wormhole that is consistent with a negative energy shock wave, a Shapiro time delay, causal time-order of signals emerging from the wormhole, and scrambling [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
178
+ page_content=' Besides sending a single qubit from left to right, another qubit is inserted from right to left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
179
+ page_content=' The result is time-ordered teleportation, which is interpreted as a demonstration of gravitational teleportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
180
+ page_content=' At time −t0, a qubit Q is swapped into L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
181
+ page_content=' Simultaneously, a qubit R is swapped into R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
182
+ page_content=' At the time t1, the team of researchers performs a measurement and compares the two pro- cesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
183
+ page_content=' They found that the presence of R delayed the arrival of the signal traveling left to right, and interpreted this delay observed in the learned Hamiltonian as due to a Shapiro time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
184
+ page_content=' It is also demonstrated that in the high-temperature regime, non-gravitational teleportation occurs, and there is no size winding [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
185
+ page_content=' Working with collaborators from Caltech, Fermilab, and Harvard, the quan- tum system was subjected to numerous tests to determine if it showed quantum gravitational behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
186
+ page_content=' The above signatures were verified on classical com- puters, so claims the team of researchers, confirming that the dynamics of the quantum system were consistent with a quantum gravity interpretation and the holographic principle [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
187
+ page_content=' 8 Scientific explanation is not truth We usually proceed from the success of an experiment to the conclusion that our explanation is likely to be approximately true, or true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
188
+ page_content=' We think that if an explanation is the best among the competing explanations of the experiment, then it is probably true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
189
+ page_content=' But it should be stressed that the fit between the simplified SYK model and the explanation in terms of an emergent wormhole does not mean that the latter explanation is literally true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
190
+ page_content=' Neither does it mean that holographic wormholes exist or that they are real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
191
+ page_content=' What is meant by saying that this explanation is the simplest among the other hypotheses is mainly that, it is the best fit for the experimental setup, and that holographic teleportation fits the teleportation mechanism at the basis of the said experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
192
+ page_content=' The point is that according to the ER = EPR hypothesis, the gravity picture is equivalent to the quantum information picture, and ”The traversable worm- 8 hole expressed as a quantum circuit, equivalent to the gravitational picture in the semiclassical limit of an infinite number of qubits” [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
193
+ page_content=' But although the analogy between the experimental setup and the emergent geometry is sugges- tive, it does not follow from the experiment that the wormhole gravitational picture is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
194
+ page_content=' We can only say that teleportation-by-size is the hypothesis that explains the experiment best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
195
+ page_content=' This is so even if it explains the evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
196
+ page_content=' ”Truth” requires a step beyond the judgment that the holographic wormhole hypothesis fits the experimental setup and the data and is better than all of its rivals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
197
+ page_content=' 9 Quantum gravity in the lab Advocates of the ”quantum gravity in the Lab” program argue: ”The ‘quan- tum gravity in the lab’ program does not need to wait for large error-corrected quantum computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
198
+ page_content=' Progress can be made even in the Noisy Intermediate-Scale Quantum (NISQ) era” [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
199
+ page_content=' There is a problem with this statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
200
+ page_content=' As is well known, quantum computers are prone to many errors and the Sycamore quantum device has a large error rate [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
201
+ page_content=' In this state of affairs, ”If, at any point in time, a small error occurs, the chaotic dynamics will not undo themselves, and the particle will not make it through the wormhole” [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
202
+ page_content=' At large times, a small perturbation can destroy the correlations between the two sides L and R of the quantum system that would otherwise exist without the perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
203
+ page_content=' Although the qubits of the Sycamore processor are cooled down to cryogenic temperatures and are held in an ultra-high vacuum chamber, the entangled qubits can decohere quickly due to interaction (entanglement) with the environment (incoherent errors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
204
+ page_content=' The team of researchers writes: ”In general, errors can include coherent errors [crosstalk errors and qubit phase] and incoherent sources of noise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
205
+ page_content=' in simulations, we assume fully incoherent errors and observe agreement with experimental data” [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
206
+ page_content=' A team of researchers trained a quantum neural network (in a quantum machine learning context).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
207
+ page_content=' An appropriate ansatz can mitigate coherent errors for only a small number of qubits (18) on the Sycamore quantum device [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
208
+ page_content=' Proponents of the ”quantum gravity in the Lab” program show that ”with some caveats we can use a finite fraction of the fermions” [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
209
+ page_content=' So in order to reduce the coherent errors, ”the total circuit has 9 qubits” [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
210
+ page_content=' Recall that in practice, only 7 qubits were used to simulate a ”wormhole-like teleportation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
211
+ page_content=' The other two qubits served as the teleported qubits [6] (see sections 3 and 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
212
+ page_content=' Using machine learning, the team of researchers was able to make the quantum model simple enough to preserve the key gravitational properties, so that it could be realized with a circuit with 164 two-qubit gates [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
213
+ page_content=' A more complex model would increase the number of gates, and consequently also the error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
214
+ page_content=' In the Caltech press release, it is said that the team of researchers found a quantum system, a “baby” SYK-like model, prepared to preserve the key prop- erties of a gravitational wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
215
+ page_content=' To achieve this, the team had to first reduce the SYK model to a simplified form, a feat they achieved using machine learn- 9 ing tools on conventional computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
216
+ page_content=' They employed learning techniques to find and prepare a simple SYK-like quantum system that could be encoded in the Sycamore quantum architecture, and that would preserve the key gravitational property: the negative energy shockwave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
217
+ page_content=' The greatest achievement was sim- plifying the microscopic description of the SYK quantum system and studying the resulting effective model that the team found on the Sycamore quantum processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
218
+ page_content=' The team of researchers found it “curious and surprising how the optimization on one characteristic of the model [the negative energy shockwave or LR coupling] preserved the other characteristics” [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
219
+ page_content=' Reducing the SYK model to a simplified form is an achievement that is to be celebrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
220
+ page_content=' But this demonstrates the amazing capabilities of conventional computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
221
+ page_content=' It is important to stress that no wormhole was created in the lab, and moreover, no one has ever observed or found any evidence of any wormhole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
222
+ page_content=' Acknowledgement This work is supported by ERC advanced grant number 834735.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
223
+ page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
224
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
225
+ page_content=' Blok, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
226
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
227
+ page_content=' Ramasesh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
228
+ page_content=' Schuster, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
229
+ page_content=' O’Brien, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
230
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
231
+ page_content=' Kreikebaum, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
232
+ page_content=' Dahlen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
233
+ page_content=' Morvan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
234
+ page_content=' Yoshida, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
235
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
236
+ page_content=' Yao and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
237
+ page_content=' Siddiqi (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
238
+ page_content=' ”Quantum Information Scrambling in a Superconducting Qutrit Processor.” Physical Review X 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
239
+ page_content=' 021010-1- 021010-21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
240
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
241
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
242
+ page_content=' Brown, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
243
+ page_content=' Gharibyan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
244
+ page_content=' Leichenauer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
245
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
246
+ page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
247
+ page_content=' Nezami, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
248
+ page_content=' Salton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
249
+ page_content=' Susskind, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
250
+ page_content=' Swingle and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
251
+ page_content=' Walter (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
252
+ page_content=' ”Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes.” arXiv: 1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
253
+ page_content='06314v2 [quant-ph] [3] Clavin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
254
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
255
+ page_content=' ”Physicists observe wormhole dynamics using a quan- tum computer.” Caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
256
+ page_content=' [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
257
+ page_content=' Gao and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
258
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
259
+ page_content=' Jafferis (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
260
+ page_content=' ”A traversable wormhole teleportation protocol in the SYK model.” Journal of High Energy Physics 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
261
+ page_content=' 1-43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
262
+ page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
263
+ page_content=' Hosur, X-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
264
+ page_content=' Qi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
265
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
266
+ page_content=' Roberts, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
267
+ page_content=' Yoshida, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
268
+ page_content=' ”Chaos in Quan- tum Channels,” Journal of High Energy Physics 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
269
+ page_content=' 1-48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
270
+ page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
271
+ page_content=' Jafferis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
272
+ page_content=' Zlokapa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
273
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
274
+ page_content=' Lykken, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
275
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
276
+ page_content=' Kolchmeyer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
277
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
278
+ page_content=' Davis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
279
+ page_content=' Lauk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
280
+ page_content=' Neven, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
281
+ page_content=' Spiropulu (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
282
+ page_content=' ”Traversable wormhole dynamics on a quantum processor.” Nature 612, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
283
+ page_content=' 51–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
284
+ page_content=' [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
285
+ page_content=' Kalai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
286
+ page_content=' Rinott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
287
+ page_content=' Shoham (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
288
+ page_content=' ”Google’s 2019 ’Quan- tum Supremacy’ Claims: Data, Documentation, and Discussion.” arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
289
+ page_content='12753v2 [quant-ph], pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
290
+ page_content=' 1-34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
291
+ page_content=' 10 [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
292
+ page_content=' Koch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
293
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
294
+ page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
295
+ page_content=' Gambetta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
296
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
297
+ page_content=' Houck, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
298
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
299
+ page_content=' Schuster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
300
+ page_content=' Majer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
301
+ page_content=' Blais, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
302
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
303
+ page_content=' Devoret, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
304
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
305
+ page_content=' Girvin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
306
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
307
+ page_content=' Schoelkopf (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
308
+ page_content=' ”Charge- insensitive qubit design derived from the Cooper pair box.” Physical Review A 76, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
309
+ page_content=' 042319-1-042319-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
310
+ page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
311
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
312
+ page_content=' Landsman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
313
+ page_content=' Figgatt, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
314
+ page_content=' Schuster, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
315
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
316
+ page_content=' Linke, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
317
+ page_content=' Yoshida, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
318
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
319
+ page_content=' Yao, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
320
+ page_content=' Monroe (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
321
+ page_content=' ”Verified quantum information scrambling.” Nature 567, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
322
+ page_content=' 61–65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
323
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
324
+ page_content=' Maldacena and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
325
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
326
+ page_content=' Qi (2018) Eternal traversable wormhole, arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
327
+ page_content='00491v3 [hep-th], pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
328
+ page_content=' 1-74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
329
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
330
+ page_content=' Maldacena, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
331
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
332
+ page_content=' Shenker and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
333
+ page_content=' Stanford, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
334
+ page_content=' ”A Bound on Chaos.” Journal of High Energy Physics (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
335
+ page_content=' 1-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
336
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
337
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
338
+ page_content=' Niu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
339
+ page_content=' Zlokapa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
340
+ page_content=' Broughton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
341
+ page_content=' Boixo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
342
+ page_content=' Mohseni, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
343
+ page_content=' Smelyan- skyi, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
344
+ page_content=' Neven (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
345
+ page_content=' ”Entangling Quantum Generative Adversarial Networks.”Physical Review Letters 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
346
+ page_content='220505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
347
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
348
+ page_content=' Nezami, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
349
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
350
+ page_content=' Lin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
351
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
352
+ page_content=' Brown, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
353
+ page_content=' Gharibyan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
354
+ page_content=' Leichenauer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
355
+ page_content=' Salton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
356
+ page_content=' Susskind, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
357
+ page_content=' Swingle and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
358
+ page_content=' Walter (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
359
+ page_content=' ”Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes, Part II.” arXiv: 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
360
+ page_content='01064v1 [quant-ph] [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
361
+ page_content=' Sekino and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
362
+ page_content=' Susskind (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
363
+ page_content=' ”Fast scramblers.” Journal of High En- ergy Physics 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
364
+ page_content=' 1-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
365
+ page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
366
+ page_content=' Yoshida and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
367
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
368
+ page_content=' Yao (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
369
+ page_content=' ”Disentangling Scrambling and Deco- herence via Quantum Teleportation.” Physical Review X 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
370
+ page_content=' 011006-1- 011006-17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
371
+ page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
372
+ page_content=' Xu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
373
+ page_content=' Susskind, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
374
+ page_content=' Su, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
375
+ page_content=' Swingle (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
376
+ page_content=' ”A Sparse Model of Quantum Holography.” arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
377
+ page_content='02303v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
378
+ page_content='str-el], pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
379
+ page_content=' 1-55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
380
+ page_content=' [17] Zlokapa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
381
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
382
+ page_content=' ”Making a Traversable Wormhole with a Quantum Computer.” Google Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
383
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49E1T4oBgHgl3EQf6QXo/content/2301.03522v1.pdf'}
4NE1T4oBgHgl3EQfmASv/content/2301.03293v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927fd2d350d090c796b118f84ad73bb144109846f072b4281ddc501ee9b97a62
3
+ size 21013693
59AyT4oBgHgl3EQfQfYL/content/2301.00044v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33d526c3b10c7eccffd873849452068b99bcc8baab6880715887540e62277910
3
+ size 3386934
59AyT4oBgHgl3EQfQfYL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afde17c9025f7f1b41080ce6615f90b2f2cc07f9f88c9defc76ed37e801be0c7
3
+ size 170745
5NE2T4oBgHgl3EQfkAfy/content/2301.03975v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6512a824269bb06c39f9fa79054d54347aa061cd181b01dffddfcdf9e93cf0c6
3
+ size 575754
5NE2T4oBgHgl3EQfkAfy/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ef9ec3da4cd1310bf194dc1041d887c1bf1dc838531a21302f876400c3f00b
3
+ size 12124205
5NE2T4oBgHgl3EQfkAfy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fdd832fef34bb5f8b3983dc61e530cd847ba41c6b750a02f40ffc8638060d15
3
+ size 336097
6dE3T4oBgHgl3EQfRAnz/content/tmp_files/2301.04418v1.pdf.txt ADDED
@@ -0,0 +1,2455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–15 (0000)
2
+ Preprint 12 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ The comptonizing medium of the black-hole X-ray binary
5
+ MAXI J1535−571 through type-C quasi-periodic oscillations
6
+ Divya Rawat1⋆, Mariano M´endez2, Federico Garc´ıa2,3,4, Diego Altamirano5, Konstantinos Karpouzas2,5,
7
+ Liang Zhang5, Kevin Alabarta2,5, Tomaso M. Belloni6, Pankaj Jain7, Candela Bellavita4
8
+ 1Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007, India
9
+ 2Kapteyn Astronomical Institute, University of Groningen, PO BOX 800, Groningen NL-9700 AV, the Netherlands
10
+ 3Instituto Argentino de Radioastronom´ıa (CCT La Plata, CONICET; CICPBA; UNLP), C.C.5, (1894) Villa Elisa, Buenos Aires, Argentina
11
+ 4Facultad de Ciencias Astron´omicas y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina
12
+ 5School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
13
+ 6INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807, Merate, Italy
14
+ 7Department of physics, IIT Kanpur, Kanpur, Uttar Pradesh 208016, India
15
+ Accepted XXX. Received YYY; in original form ZZZ
16
+ ABSTRACT
17
+ We present a detailed spectral and temporal analysis of the black-hole candidate MAXI J1535−571 using NICER
18
+ observations in September and October 2017. We focus specifically on observations in the hard-intermediate state
19
+ when the source shows type-C quasi-periodic oscillations (QPOs). We fitted the time-averaged spectrum of the source
20
+ and the rms and phase-lag spectra of the QPO with a one-component time-dependent Comptonization model. We
21
+ found that the corona contracts from ∼ 104 to ∼ 3 × 103 km as the QPO frequency increases from ∼ 1.8 Hz to
22
+ ∼ 9.0 Hz. The fits suggest that the system would consists of two coronas, a small one that dominates the time-
23
+ averaged spectrum and a larger one, possibly the jet, that dominates the rms and lag spectra of the QPO. We found
24
+ a significant break in the relation of the spectral parameters of the source and the properties of the QPO, including
25
+ its lag spectra, with QPO frequency. The change in the relations happens when the QPO frequency crosses a critical
26
+ frequency νc ≈ 3.0 Hz. Interestingly, the QPO reaches this critical frequency simultaneously as the radio emission
27
+ from the jet in this source is quenched.
28
+ Key words: accretion, accretion discs — black hole physics — X-rays: binaries — X-rays: individual: MAXI J1535−571
29
+ 1 INTRODUCTION
30
+ In the outburst, the transient black-hole X-ray binary
31
+ (BHXB) system shows substantial X-ray variability (Belloni
32
+ & Stella 2014). These systems spend long periods in qui-
33
+ escence, with sporadic outbursts lasting weeks to months,
34
+ during which the X-ray flux increases by up to three orders
35
+ of magnitude compared to the quiescent phase (Remillard
36
+ & McClintock 2006). During an outburst, transient BHXBs
37
+ initially appear in the low-hard state (LHS) and, as the
38
+ outburst progresses, move to the high-soft state (HSS) via
39
+ the hard-intermediate (HIMS) and soft-intermediate state
40
+ (SIMS) (Belloni et al. 2005, 2011, and references within).
41
+ Finally, before returning to the quiescent state, BHXBs
42
+ transition from the HSS to the LHS. In the LHS, a hard
43
+ component due to Comptonization from an electron plasma
44
+ with temperature 50 − 100 keV appears in the X-ray spec-
45
+ trum as a power law with photon index 1.5–2.0 (Gilfanov
46
+ 2010). In contrast, the HSS spectrum is dominated by an
47
+ optically thick thermal component generally modelled with a
48
+ ⋆ E-mail: [email protected] (DR)
49
+ multi-temperature disc blackbody, occasionally accompanied
50
+ by a soft power-law-like component with Γ ≥2 (M´endez
51
+ & van der Klis 1997; Done et al. 2007). The evolution of
52
+ the outburst of a BHXB can be best characterised in a
53
+ hardness-intensity diagram (HID), where typically systems
54
+ trace a well-defined path often shaped as a “q” (Fender et al.
55
+ 2004, Belloni et al. 2005).
56
+ These systems show complex fast-time variability, which
57
+ is strongly state-dependent. This variability takes the form
58
+ of broadband noise components on top of which, in specific
59
+ states, quasi-periodic oscillations (QPOs) can be observed
60
+ (e.g. Chen et al. 1997; Takizawa et al. 1997; Psaltis et al.
61
+ 1999; Nowak 2000; Casella et al. 2004, 2005; Belloni et al.
62
+ 2005). The QPOs appear in the power density spectrum
63
+ (PDS; van der Klis & Jansen 1985) as relatively narrow
64
+ peaks. The QPOs have been broadly divided into three
65
+ categories, the mHz QPO with QPO frequency ranging from
66
+ few mHz to Hz (e.g., Dewangan et al. 2006, Koljonen et al.
67
+ 2011, Altamirano & Strohmayer 2012, Pasham et al. 2013),
68
+ low-frequency QPOs (LFQPOs) with frequencies ranging
69
+ from just below 1 Hz up to 20 Hz (e.g., Motta et al. 2015),
70
+ © 0000 The Authors
71
+ arXiv:2301.04418v1 [astro-ph.HE] 11 Jan 2023
72
+
73
+ 2
74
+ Rawat et. al.
75
+ and
76
+ high-frequency
77
+ QPOs
78
+ (HFQPOs)
79
+ with
80
+ frequencies
81
+ above 100 Hz and up to ∼500 Hz (e.g., Miller et al. 2001,
82
+ Strohmayer 2001, Belloni et al. 2012, M´endez et al. 2013,
83
+ Belloni & Stella 2014). LFQPOs appear in different spectral
84
+ states and have been further classified as type A, B, and C
85
+ (Wijnands et al. 1999, Homan et al. 2001, Remillard et al.
86
+ 2002, Casella et al. 2004). Among the three types, type-C
87
+ is the one that is most often observed, showing a high rms
88
+ amplitude, between 1% and 20%, and a quality factor1
89
+ usually larger than 6.0 (Wijnands et al. 1999; Casella et al.
90
+ 2004; Belloni & Stella 2014, see Ingram & Motta 2019, for a
91
+ review).
92
+ MAXI J1535−571 (hereafter MAXI J1535) is a galactic
93
+ transient, initially detected by MAXI/GSC (Negoro et al.
94
+ 2017a) and SWIFT/BAT (Kennea et al. 2017, Markwardt
95
+ et al. 2017) on September 2, 2017. The X-ray variability
96
+ (Negoro et al. 2017b), optical (Scaringi & ASTR211 Stu-
97
+ dents 2017) and near-infrared (Din¸cer 2017) properties of the
98
+ source suggest that MAXI J1535 is a low-mass X-ray binary
99
+ (LMXB) source. Radio observations with the Australia
100
+ Telescope Compact Array (ATCA) show a signature of a
101
+ compact radio jet (Russell et al. 2017); this and the observed
102
+ luminosity suggest that this system harbours a black hole
103
+ (Negoro et al. 2017b). Study of radio (Chauhan et al. 2019)
104
+ and X-ray (Sridhar et al. 2019) observations suggest that the
105
+ distance to the source is 4–6 kpc, and the jet inclination angle
106
+ is constrained to ≤ 45◦ (Russell et al. 2019). X-ray spectral
107
+ studies suggest that the system harbours a near-maximally
108
+ spinning black hole (Gendreau et al. 2017, Xu et al. 2018,
109
+ Miller et al. 2018). There are some conflicting estimates of
110
+ the mass of the black hole in the system (Sreehari et al.
111
+ 2019, Sridhar et al. 2019), but they are all based on fits to
112
+ the X-ray spectrum and are therefore model dependent. No
113
+ dynamical mass measurement from optical observations is
114
+ available.
115
+ A state transition study of MAXI J1535 during outburst,
116
+ from September 2017 to April 2018 (Nakahira et al. 2018)
117
+ shows that the source behaved like other BHXB systems
118
+ tracing a q-shape in the HID (Tao et al. 2018). In the LHS
119
+ and HIMS, starting from September 9-18, 2017, MAXI J1535
120
+ showed a type-C QPO with a centroid frequency in the
121
+ 0.2-3.4 Hz range (Gendreau et al. 2017, Mereminskiy et al.
122
+ 2018, Stiele & Kong 2018, Huang et al. 2018, Bhargava et al.
123
+ 2019). The source transitioned to the SIMS and then to
124
+ the HSS from September 19-26, 2017. The stable and weak
125
+ type A/B LFQPO appears in the SIMS (Stiele & Kong
126
+ 2018, Stevens et al. 2018, Huang et al. 2018). In the HIMS
127
+ and LHS, the type-C QPO reappears from September 26
128
+ to October 9, 2017. After the end of the main outburst
129
+ in mid-May 2018, five re-brightening events were reported
130
+ by Parikh et al. (2019). A state transition during these
131
+ re-flares was reported by C´uneo et al. (2020) using NICER
132
+ observations.
133
+ Kumar & Misra (2014) proposed a model to study the
134
+ Comptonisation medium of neutron-star X-ray binary sys-
135
+ 1 Quality factor=QPO frequency/QPO width
136
+ tems, which was later extended by Karpouzas et al. (2020).
137
+ This model was originally developed for high-frequency
138
+ QPOs in accreting neutron-star systems. Still, it has been
139
+ recently extended by Bellavita et al. (2022) to LFQPOs
140
+ in BHXBs and was applied to the type-C QPO in GRS
141
+ 1915+105 by Karpouzas et al. (2021) and M´endez et al.
142
+ (2022), and the type-B QPO in MAXI J1348−630 (Garc´ıa
143
+ et al. 2021; Bellavita et al. 2022). Zhang et al. (2022) has
144
+ applied the same model using Insight-HXMT observations
145
+ of the type-C QPO in MAXI J1535 up to 150 keV. The
146
+ rationale behind applying this model to type-C in BHXB
147
+ is that the fractional rms amplitude of these QPOs can be
148
+ as large as ∼ 15% up to ∼200 keV (Ma et al. 2021). At
149
+ those energies, Comptonization dominates the emission in
150
+ these systems (e.g., the disc and the reflection component
151
+ peak at, respectively, ∼1−3 keV and ∼ 20−25 keV and both
152
+ drop quickly above that), and hence Comptonization is most
153
+ likely responsible for the rms amplitude and lags of the QPO.
154
+ In this paper, we report the results of the spectro-temporal
155
+ analysis of MAXI J1535 using NICER observations. To study
156
+ the Comptonization medium of the source, we fit the rms and
157
+ phase-lag spectra of the QPO with a one-component time-
158
+ dependent Comptonization model, vkompthdk (Karpouzas
159
+ et al. 2020; Bellavita et al. 2022). In Section 2, we describe the
160
+ observations and data analysis techniques, and in Section 3
161
+ we present the results of our analysis and the fits of the model
162
+ to the rms and lag spectra of the type-C QPO. Finally, we
163
+ discuss our findings in Section 4 and summarise our results
164
+ in Section 5.
165
+ 2 OBSERVATION AND DATA ANALYSIS
166
+ We used observations of MAXI J1535 obtained in September
167
+ and October 2017 with the Neutron Star Interior Composi-
168
+ tion Explorer (NICER Gendreau et al. 2012). The observa-
169
+ tions ID’s used are 1050360101-1050360120 & 1130360101-
170
+ 1130360114. NICER’s XTI (X-ray Timing Instrument Gen-
171
+ dreau et al. 2016) covers the 0.2-12.0 keV band and has an
172
+ effective area of >2000 cm2 at 1.5 keV. The energy and time
173
+ resolutions are 85 eV at 1 keV and 4 ×10−8 s (hereafter
174
+ ∆tnicer), respectively. We used the nicerl22 task to process
175
+ each observation applying the standard calibration process
176
+ and screening. We used only those intervals for which the
177
+ exposure time was > 100 s after running the nicerl2 task.
178
+ For some intervals, we found that the source flux was vary-
179
+ ing significantly. To make sure we are not averaging features
180
+ of two spectrally and temporally different states, we divided
181
+ a single observation into segments with a more or less con-
182
+ stant source count rate and studied the temporal and spectral
183
+ properties of each segment independently. The details of each
184
+ observation and segment are given in Table 1.
185
+ 2.1 Timing analysis
186
+ We extracted the fractional rms amplitude (root-mean
187
+ square) normalised (Belloni & Hasinger 1990) PDS for each
188
+ 2 https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_
189
+ threads/nicerl2/
190
+ MNRAS 000, 1–15 (0000)
191
+
192
+ Comptonizing medium of MAXI J1535−571
193
+ 3
194
+ Figure 1. Left panel: NICER light curve of MAXI J1535−571 in the 0.5-10.0 keV band. The shaded area represents the approximate time
195
+ when the radio emission was quenched (Russell et al. 2019). Right panel: Hardness intensity diagram (HID) using NICER observations.
196
+ In the HID, the line shows the general movement of the source in this diagram as the outburst progressed, with the start and end points
197
+ of the outburst at, (HR = 0.27, Intensity = 8000) and (HR = 0.22, Intensity = 8000), respectively. In both panels, each point corresponds
198
+ to 100 sec, and the colour scale panels indicate the frequency of the QPO.
199
+ Table 1. Observation log of MAXI J1535, including timing parameters. The columns are the observation number, the NICER ObsID, the
200
+ start and end time of the observation, the 0.5-10.0 keV count rate, the standard deviation of the count rate, σcount, the hardness ratio,
201
+ HR, the standard deviation of the hardness ratio, σHR, the QPO centroid frequency and the QPO fractional rms amplitude. The errors
202
+ are at 1σ. The observations with an asterisk are those for which the QPO was insignificant in the lowest energy bands.
203
+ Obs no.
204
+ ObsID
205
+ Tstart
206
+ Tstop
207
+ count rate
208
+ σcount
209
+ HR
210
+ σHR
211
+ QPO frequency
212
+ QPO Fractional
213
+ (M.J.D)
214
+ (M.J.D)
215
+ (0.5-10.0 keV)
216
+ (5−10keV)
217
+ (0.5−2.0keV)
218
+ (Hz)
219
+ rms (%)
220
+ 1
221
+ 1050360105
222
+ 58008.988
223
+ 58009.126
224
+ 8140 ± 5
225
+ 48
226
+ 0.272
227
+ 0.002
228
+ 2.74 ± 0.01
229
+ 7.0 ± 0.2
230
+ 2
231
+ 1050360105
232
+ 58009.165
233
+ 58009.193
234
+ 7847 ± 4
235
+ 36
236
+ 0.280
237
+ 0.002
238
+ 2.44 ± 0.01
239
+ 6.5 ± 0.2
240
+ 3
241
+ 1050360105
242
+ 58009.229
243
+ 58009.301
244
+ 7676 ± 6
245
+ 30
246
+ 0.285
247
+ 0.004
248
+ 2.32 ± 0.01
249
+ 6.7 ± 0.2
250
+ 4
251
+ 1050360105
252
+ 58009.807
253
+ 58009.945
254
+ 7327 ± 4
255
+ 65
256
+ 0.307
257
+ 0.003
258
+ 1.83 ± 0.01
259
+ 7.3 ± 0.2
260
+ 5
261
+ 1050360106
262
+ 58010.001
263
+ 58010.525
264
+ 7364 ± 1
265
+ 138
266
+ 0.311
267
+ 0.005
268
+ 1.81 ± 0.00
269
+ 7.2 ± 0.1
270
+ 6
271
+ 1050360107
272
+ 58011.865
273
+ 58011.940
274
+ 8654 ± 7
275
+ 47
276
+ 0.299
277
+ 0.002
278
+ 2.15 ± 0.01
279
+ 6.9 ± 0.2
280
+ 7
281
+ 1050360108
282
+ 58012.187
283
+ 58012.258
284
+ 9134 ± 3
285
+ 130
286
+ 0.294
287
+ 0.006
288
+ 2.41 ± 0.01
289
+ 7.4 ± 0.2
290
+ 8
291
+ 1050360108
292
+ 58012.316
293
+ 58012.583
294
+ 9492 ± 2
295
+ 320
296
+ 0.285
297
+ 0.002
298
+ 2.77 ± 0.01
299
+ 7.3 ± 0.2
300
+ 9
301
+ 1050360109
302
+ 58013.216
303
+ 58013.222
304
+ 10088 ± 1
305
+ 4
306
+ 0.285
307
+ 0.004
308
+ 2.75 ± 0.02
309
+ 7.0 ± 0.2
310
+ 10
311
+ 1050360109
312
+ 58013.281
313
+ 58013.410
314
+ 10922 ± 4
315
+ 191
316
+ 0.275
317
+ 0.008
318
+ 3.27 ± 0.02
319
+ 7.0 ± 0.3
320
+ 11
321
+ 1050360109
322
+ 58013.481
323
+ 58013.740
324
+ 11290 ± 2
325
+ 227
326
+ 0.282
327
+ 0.005
328
+ 3.19 ± 0.03
329
+ 6.7 ± 0.3
330
+ 12
331
+ 1050360109
332
+ 58013.988
333
+ 58013.998
334
+ 10461 ± 5
335
+ 71
336
+ 0.288
337
+ 0.001
338
+ 2.72 ± 0.01
339
+ 6.7 ± 0.2
340
+ 13
341
+ 1050360110
342
+ 58014.053
343
+ 58014.063
344
+ 10744 ± 1
345
+ 5
346
+ 0.286
347
+ 0.002
348
+ 2.84 ± 0.01
349
+ 7.5 ± 0.2
350
+ 14
351
+ 1050360110
352
+ 58014.824
353
+ 58014.835
354
+ 13795 ± 1
355
+ 5
356
+ 0.269
357
+ 0.003
358
+ 4.75 ± 0.01
359
+ 5.7 ± 0.1
360
+ 15
361
+ 1050360111
362
+ 58015.276
363
+ 58015.669
364
+ 16992 ± 3
365
+ 161
366
+ 0.257
367
+ 0.005
368
+ 9.01 ± 0.04
369
+ 1.7 ± 0.1
370
+ 16
371
+ ∗1050360112
372
+ 58016.240
373
+ 58016.957
374
+ 17040 ± 9
375
+ 31
376
+ 0.256
377
+ 0.010
378
+ 7.55 ± 0.06
379
+ 2.6 ± 0.2
380
+ 17
381
+ 1050360113
382
+ 58017.011
383
+ 58017.858
384
+ 16995 ± 1
385
+ 7
386
+ 0.244
387
+ 0.017
388
+ 7.45 ± 0.03
389
+ 2.9 ± 0.1
390
+ 18
391
+ ∗1130360103
392
+ 58026.726
393
+ 58026.814
394
+ 14304 ± 2
395
+ 445
396
+ 0.235
397
+ 0.002
398
+ 7.09 ± 0.03
399
+ 2.4 ± 0.1
400
+ 19
401
+ 1130360104
402
+ 58027.755
403
+ 58027.779
404
+ 12363 ± 3
405
+ 105
406
+ 0.240
407
+ 0.002
408
+ 5.42 ± 0.01
409
+ 4.7 ± 0.1
410
+ 20
411
+ 1130360105
412
+ 58028.720
413
+ 58028.872
414
+ 12321 ± 2
415
+ 213
416
+ 0.237
417
+ 0.002
418
+ 5.73 ± 0.01
419
+ 4.5 ± 0.0
420
+ 21
421
+ ∗1130360106
422
+ 58029.749
423
+ 58029.836
424
+ 12527 ± 2
425
+ 151
426
+ 0.229
427
+ 0.002
428
+ 6.77 ± 0.02
429
+ 3.5 ± 0.1
430
+ 22
431
+ 1130360107
432
+ 58030.715
433
+ 58030.865
434
+ 10831 ± 2
435
+ 381
436
+ 0.238
437
+ 0.004
438
+ 4.57 ± 0.01
439
+ 4.6 ± 0.1
440
+ 23
441
+ 1130360108
442
+ 58031.361
443
+ 58031.894
444
+ 11163 ± 2
445
+ 370
446
+ 0.234
447
+ 0.006
448
+ 4.82 ± 0.01
449
+ 3.5 ± 0.0
450
+ 24
451
+ 1130360113
452
+ 58036.498
453
+ 58036.695
454
+ 9747 ± 10
455
+ 19
456
+ 0.206
457
+ 0.007
458
+ 5.19 ± 0.03
459
+ 3.0 ± 0.2
460
+ 25
461
+ 1130360114
462
+ 58037.032
463
+ 58037.677
464
+ 8767 ± 4
465
+ 183
466
+ 0.224
467
+ 0.004
468
+ 4.50 ± 0.01
469
+ 5.0 ± 0.1
470
+ segment using the General High-energy Aperiodic Timing
471
+ Software (GHATS)3 version 2.1.0. The 0.2-10.0 keV data
472
+ were re-binned in time by a factor of 62500, such that the
473
+ time resolution was 0.0025 s, corresponding to a Nyquist
474
+ frequency of 200 Hz, and PDS were produced from intervals
475
+ 3 http://www.brera.inaf.it/utenti/belloni/GHATS_Package/
476
+ Home.html
477
+ of 8192 points (20.48 s). For each segment, the PDS for
478
+ the intervals were averaged. We fitted the PDS in the
479
+ frequency 100-200 Hz, where the source shows no intrinsic
480
+ variability, with a constant representing the Poisson noise,
481
+ which we then subtracted. We ended up with an averaged,
482
+ Poisson-noise subtracted PDS for each segment that we
483
+ re-binned logarithmically such that each frequency bin is
484
+ larger than the previous one by a factor exp(1/100). We
485
+ MNRAS 000, 1–15 (0000)
486
+
487
+ • without type-C QPOs
488
+ ·with type-C QPOs18000
489
+ 9
490
+ •without type-C QPOs
491
+ ·with type-C QPOs
492
+ 16000
493
+ 8
494
+ 14000
495
+ 7
496
+ [zH]
497
+ Intensity [counts s'
498
+ 12000
499
+ 6
500
+ 5
501
+ 10000
502
+ 4
503
+ 8000
504
+ 3
505
+ 2
506
+ 0.18
507
+ 0.20
508
+ 0.22
509
+ 0.24
510
+ 0.26
511
+ 0.28
512
+ 0.30
513
+ 0.32
514
+ HR [(5-10 keV)/(0.5-2 keV)4
515
+ Rawat et. al.
516
+ Table 2. Time-averaged spectra and corona model parameters of MAXI J1535. The columns are the observation number, the hydrogen
517
+ column density, NH, the power-law photon index of nthcomp, Γ, the inner disc temperature, kTin, the seed photon temperature of
518
+ vkompthdk, kTs, the size of the corona, L, the fraction of the flux of the seed-photon source due to feedback from the corona, η, and
519
+ the amplitude of the variability of the external heating rate, δ ˙Hext. The errors are at 1σ. The observations with an asterisk are those for
520
+ which the QPO was insignificant in the lowest energy bands.
521
+ Obs no.
522
+ NH
523
+ Γ
524
+ kTin
525
+ kTs
526
+ L
527
+ η
528
+ δ ˙Hext
529
+ χ2
530
+ ν(dof)
531
+ 1022 cm−2
532
+ (keV)
533
+ (keV)
534
+ ( 103 km)
535
+ %
536
+ 1
537
+ 2.19 ± 0.01
538
+ 2.43 ± 0.02
539
+ 0.68 ± 0.01
540
+ 0.35 ± 0.05
541
+ 5.1 ± 1.0
542
+ 0.62 ± 0.05
543
+ 12.2 ± 0.6
544
+ 231.4 (243)
545
+ 2
546
+ 2.19 ± 0.01
547
+ 2.29 ± 0.01
548
+ 0.62 ± 0.01
549
+ 0.29 ± 0.03
550
+ 8.3 ± 1.1
551
+ 0.75 ± 0.09
552
+ 12.0 ± 0.5
553
+ 191.9 (242)
554
+ 3
555
+ 2.18 ± 0.01
556
+ 2.26 ± 0.01
557
+ 0.61 ± 0.01
558
+ 0.23 ± 0.04
559
+ 8.7 ± 1.1
560
+ 0.82+0.18
561
+ −0.38
562
+ 11.3 ± 1.1
563
+ 240.5 (243)
564
+ 4
565
+ 2.17 ± 0.01
566
+ 2.12 ± 0.01
567
+ 0.55 ± 0.01
568
+ 0.14 ± 0.01
569
+ 12.6 ± 0.5
570
+ 1.00 − 0.04
571
+ 11.1 ± 0.4
572
+ 219.8 (243)
573
+ 5
574
+ 2.16 ± 0.01
575
+ 2.11 ± 0.00
576
+ 0.55 ± 0.01
577
+ 0.15 ± 0.01
578
+ 13.2 ± 0.4
579
+ 1.00 − 0.45
580
+ 11.5 ± 0.3
581
+ 242.3 (243)
582
+ 6
583
+ 2.15 ± 0.01
584
+ 2.18 ± 0.01
585
+ 0.60 ± 0.01
586
+ 0.24 ± 0.03
587
+ 9.1 ± 1.0
588
+ 0.79 ± 0.12
589
+ 12.2 ± 0.7
590
+ 177.9 (243)
591
+ 7
592
+ 2.17 ± 0.01
593
+ 2.27 ± 0.01
594
+ 0.64 ± 0.01
595
+ 0.36 ± 0.05
596
+ 6.6 ± 1.2
597
+ 0.64 ± 0.07
598
+ 15.0 ± 0.7
599
+ 173.2 (243)
600
+ 8
601
+ 2.15 ± 0.01
602
+ 2.67 ± 0.04
603
+ 0.79 ± 0.01
604
+ 0.33 ± 0.04
605
+ 5.7 ± 0.9
606
+ 0.76 ± 0.07
607
+ 11.2 ± 0.7
608
+ 234.8 (243)
609
+ 9
610
+ 2.19 ± 0.01
611
+ 2.34 ± 0.02
612
+ 0.68 ± 0.01
613
+ 0.47 ± 0.07
614
+ 4.8 ± 0.9
615
+ 0.59 ± 0.05
616
+ 14.4 ± 0.9
617
+ 169.3 (243)
618
+ 10
619
+ 2.21 ± 0.01
620
+ 2.48 ± 0.02
621
+ 0.74 ± 0.01
622
+ 0.39 ± 0.07
623
+ 4.4 ± 1.2
624
+ 0.55 ± 0.07
625
+ 13.5 ± 1.0
626
+ 155.1 (243)
627
+ 11
628
+ 2.19 ± 0.01
629
+ 2.85 ± 0.11
630
+ 0.85 ± 0.02
631
+ 0.36 ± 0.05
632
+ 5.5 ± 1.2
633
+ 0.77 ± 0.11
634
+ 10.5 ± 0.9
635
+ 192.2 (222)
636
+ 12
637
+ 2.20 ± 0.01
638
+ 2.33 ± 0.01
639
+ 0.67 ± 0.01
640
+ 0.37 ± 0.04
641
+ 6.5 ± 0.8
642
+ 0.66 ± 0.05
643
+ 13.3 ± 0.5
644
+ 152.4 (243)
645
+ 13
646
+ 2.20 ± 0.01
647
+ 2.36 ± 0.01
648
+ 0.69 ± 0.01
649
+ 0.37 ± 0.04
650
+ 6.4 ± 0.8
651
+ 0.69 ± 0.06
652
+ 14.3 ± 0.5
653
+ 176.3 (243)
654
+ 14
655
+ 2.23 ± 0.01
656
+ 2.61 ± 0.06
657
+ 0.98 ± 0.02
658
+ 0.43 ± 0.05
659
+ 3.8 ± 0.5
660
+ 0.73 ± 0.06
661
+ 14.1 ± 0.8
662
+ 168.4 (242)
663
+ 15
664
+ 2.30 ± 0.01
665
+ 2.49 ± 0.17
666
+ 1.18 ± 0.01
667
+ 0.56 ± 0.04
668
+ 4.0 ± 0.5
669
+ 1.00 − 0.11
670
+ 17.3 ± 2.0
671
+ 195.8 (239)
672
+ 16
673
+ 2.29 ± 0.01
674
+ 2.60 ± 0.14
675
+ 1.13 ± 0.02
676
+ 0.52 ± 0.07
677
+ 3.7 ± 1.0
678
+ 0.69 ± 0.18
679
+ 15.6 ± 2.4
680
+ 165.0 (236)
681
+ 17
682
+ 2.29 ± 0.00
683
+ 2.40 ± 0.24
684
+ 1.19 ± 0.01
685
+ 0.39 ± 0.04
686
+ 3.4 ± 0.2
687
+ 0.88 ± 0.04
688
+ 20.6 ± 1.2
689
+ 177.0 (242)
690
+ 18
691
+ 2.27 ± 0.01
692
+ 2.71 ± 0.10
693
+ 1.05 ± 0.02
694
+ 0.55 ± 0.04
695
+ 3.0 ± 0.3
696
+ 0.60 ± 0.06
697
+ 11.7 ± 0.8
698
+ 244.4 (229)
699
+ 19
700
+ 2.24 ± 0.00
701
+ 2.61 ± 0.08
702
+ 0.95 ± 0.02
703
+ 0.46 ± 0.04
704
+ 3.8 ± 0.5
705
+ 0.65 ± 0.05
706
+ 14.3 ± 1.1
707
+ 203.6 (242)
708
+ 20
709
+ 2.30 ± 0.01
710
+ 3.03 ± 0.02
711
+ 0.85 ± 0.01
712
+ 0.63 ± 0.02
713
+ 4.0 ± 0.2
714
+ 0.57 ± 0.03
715
+ 14.1 ± 0.4
716
+ 204.5 (240)
717
+ 21
718
+ 2.31 ± 0.01
719
+ 3.38 ± 0.05
720
+ 0.92 ± 0.01
721
+ 0.76 ± 0.04
722
+ 2.7 ± 0.2
723
+ 0.44 ± 0.03
724
+ 13.5 ± 0.8
725
+ 198.2 (215)
726
+ 22
727
+ 2.31 ± 0.02
728
+ 2.66 ± 0.03
729
+ 0.71 ± 0.02
730
+ 0.57 ± 0.03
731
+ 4.8 ± 0.4
732
+ 0.51 ± 0.04
733
+ 13.3 ± 0.6
734
+ 258.0 (219)
735
+ 23
736
+ 2.28 ± 0.01
737
+ 3.07 ± 0.04
738
+ 0.85 ± 0.01
739
+ 0.55 ± 0.03
740
+ 4.5 ± 0.4
741
+ 0.66 ± 0.05
742
+ 9.1 ± 0.5
743
+ 223.1 (238)
744
+ 24
745
+ 2.21 ± 0.00
746
+ 2.69 ± 0.08
747
+ 0.96 ± 0.02
748
+ 0.40 ± 0.05
749
+ 6.2 ± 1.5
750
+ 1.00 − 0.33
751
+ 12.8 ± 1.9
752
+ 191.4 (241)
753
+ 25
754
+ 2.23 ± 0.00
755
+ 2.58 ± 0.03
756
+ 0.82 ± 0.02
757
+ 0.43 ± 0.03
758
+ 5.5 ± 0.7
759
+ 0.67 ± 0.08
760
+ 15.9 ± 0.5
761
+ 174.9 (242)
762
+ fitted all the PDS with a model consisting of up to five
763
+ Lorentzians to represent the broadband noise component
764
+ and the QPOs. Each Lorentzian has three parameters: the
765
+ centroid frequency, ν0, the full-width at half-maximum,
766
+ FWHM, and the total power, equal to the integral of the
767
+ Lorentzian function over the full frequency range. We only
768
+ included a Lorentzian in the model if its total power was at
769
+ least 3σ different from zero, given the error of this parameter.
770
+ We visually inspected the PDS from all segments and used
771
+ only those with a clear type-C QPO.
772
+ Next, we extracted PDS in 10 energy bands, 1.0–1.5, 1.5–
773
+ 1.9, 1.9–2.3, 2.3–3.0, 3.0–3.5, 3.5–4.0, 4.0–5.0, 5.0–6.0, 6.0–
774
+ 8.0, and 8.0–12.0 keV that we normalised to fractional rms for
775
+ each band. To extract phase/time lags, we computed FFTs
776
+ from the data in the ten energy bands and measured the lags
777
+ using the phases of the cross-spectra with the 2.0–3.0 keV
778
+ band as a reference, following the procedure of Nowak et al.
779
+ (1999b). To calculate the lags of the QPO, we averaged the
780
+ cross spectra within one full-width half-maximum around the
781
+ centroid frequency of the QPO for each segment in which we
782
+ detected a significant QPO. For 4 segments, marked with an
783
+ asterisk in Table 1, the QPO was insignificant in the lowest
784
+ energy bands. We merged some low-energy bands in those
785
+ cases and extracted the rms and lag spectra for 7 energy
786
+ bands (1.0–2.3, 2.3–3.5, 3.5–4.0, 4.0–5.0, 5.0–6.0, 6.0–8.0, and
787
+ 8.0–12.0 keV).
788
+ 2.2 Spectral analysis
789
+ We produced the spectra and background files using the
790
+ NICER background estimator tool 3C 50 RGv54. The
791
+ background-subtracted
792
+ spectrum
793
+ for
794
+ each
795
+ segment
796
+ was
797
+ re-binned using grppha such that each spectral bin had
798
+ at least 30 counts and the bins over-sampled the spectral
799
+ resolution of the detector by a factor 3. We used Heasoft
800
+ version 6.30 and CALDB version 20210707 to create the re-
801
+ sponse (rmf) and ancillary response (arf) files. We fitted the
802
+ time-averaged spectrum of the source in the 1.0 − 10.0 keV
803
+ band using the model tbabs*(diskbb+gauss+nthcomp)
804
+ in xspec. The Tbabs models the interstellar absorption.
805
+ We used the cross-section tables of Verner et al. (1996)
806
+ and the abundances of Wilms et al. (2000) and left the
807
+ hydrogen column density as a free parameter. The diskbb
808
+ component models the thermal emission from an optically
809
+ thick and geometrically thin accretion disc (Mitsuda et al.
810
+ 1984, Makishima et al. 1986) while nthcomp (Zdziarski
811
+ et al. 1996, ˙Zycki et al. 1999) models the Comptonised
812
+ emission from the X-ray corona. We kept both the diskbb
813
+ parameters, the temperature at inner disk radius, kTin, and
814
+ the normalisation free. The nthcomp model parameters
815
+ are the power-law photon index, Γ, electron temperature,
816
+ kTe, seed photon temperature, kTbb, and normalization.
817
+ 4 https://heasarc.gsfc.nasa.gov/docs/nicer/tools/nicer_
818
+ bkg_est_tools.html
819
+ MNRAS 000, 1–15 (0000)
820
+
821
+ Comptonizing medium of MAXI J1535−571
822
+ 5
823
+ The seed-photon temperature kTbb was tied to kTin of
824
+ the diskbb component. We have fitted a relatively broad
825
+ iron line present in the residuals with a Gaussian, gauss
826
+ in xspec. In addition to the broad line, the spectra show
827
+ narrow residuals at ∼6.4 keV. We have added one more
828
+ gauss component to account for the narrow line (if required).
829
+ We fit the rms with the model vkompthdk*dilution5
830
+ (Karpouzas et al. 2020; Bellavita et al. 2022) and the lag
831
+ spectra with the model vkompthdk at the QPO frequency.
832
+ vkompthdk can compute both the time-dependent and
833
+ the time-averaged spectrum. The time-dependent version of
834
+ vkompthdk is the one that fits the rms and lags. The time-
835
+ averaged version of vkompthdk is the same as nthcomp.
836
+ The parameters of vkompthdk are hence the temperature of
837
+ the seed photon source, kTs, the temperature of the corona,
838
+ kTe, the power-law index, Γ (all of them identical to kTbb,
839
+ kTe and Γ of nthcomp), plus the size of the corona, L, the
840
+ feedback fraction, η (between 0 to 1), the amplitude of the
841
+ variability of the external heating rate, δ ˙Hext, and the lag of
842
+ the model in the 2–3 keV energy band, reflag. These param-
843
+ eters can be used to compute the fraction of the corona flux,
844
+ ηint, that returns to the disc (see Karpouzas et al. 2020 for
845
+ details). The parameters L, η, δ ˙Hext, and reflag are only rel-
846
+ evant for the fits to the rms and lag spectra and do not affect
847
+ the time-averaged version of the vkompthdk. The parame-
848
+ ter reflag is an additive normalisation that allows the model
849
+ to match the data, given that the observer is free to choose
850
+ the reference energy band of the lags. We froze the electron
851
+ temperature of nthcomp and vkompthdk at kTe = 21 keV
852
+ (Sridhar et al. 2019) because the 1.0-10.0 keV energy band
853
+ is not suitable to constrain it. The dilution component is
854
+ a function of energy (E). It accounts for the fact that the
855
+ rms amplitude we observe is diluted by the emission of the
856
+ other components that we assume do not vary. The dilution
857
+ component is therefore defined as;
858
+ dilution(E) =
859
+ nthcomp(E)
860
+ diskbb(E) + gauss(E) + nthcomp(E)
861
+ (See details in Bellavita et al. (2022).) Because NH towards
862
+ the source is high, any emission below 1 keV could be at-
863
+ tributed to calibration artefacts; therefore, we have decided
864
+ to exclude data below 1.0 keV in our fits. Using HXMT data
865
+ in the 2–100 keV range, Zhang et al. (2022) reported a hydro-
866
+ gen column density, NH=5.6*1022 cm−2, that is higher than
867
+ the value we have obtained here using NICER in the 1–10
868
+ keV range.
869
+ 3 RESULTS
870
+ The left panel of Figure 1 shows the NICER light curve
871
+ of MAXI J1535 during its 2017 outburst. While the right
872
+ panel of Figure 1 shows the evolution of the source in the
873
+ HID. Here intensity is defined as the source count rate in
874
+ the 0.5–10.0 keV band, and hardness ratio (HR) is the ratio
875
+ of the source intensity in the 5.0–10.0 keV and 0.5–2.0 keV
876
+ bands. The colour scale shown at the right of both Figures
877
+ represents the QPO frequency range 1.8–9.0 Hz, with red
878
+ 5 https://github.com/candebellavita/vkompth
879
+ being the lowest and navy blue being the highest end of the
880
+ QPO frequency range. The source’s X-ray count rate and
881
+ HR and their respective standard deviation values for each
882
+ segment are given in Table 1.
883
+ 3.1 Spectral fits
884
+ From the fits to the time-averaged spectrum, the rms and
885
+ phase-lag spectra of the QPO for each segment, we find that
886
+ during the first two days of our observations, the inner disc
887
+ temperature, kTin, and the photon index, Γ, of the Comp-
888
+ tonised component first drop (Figure 2) as the source moves
889
+ to the right in the HID (Figure 1 right panel), from hardness
890
+ ratio ∼ 0.27 to hardness ratio ∼ 0.31. Between MJD 58010
891
+ and MJD 58012, the source intensity increases, and the spec-
892
+ trum softens again. The source starts to move up and to the
893
+ left in the HID, and kTin and Γ increase very quickly for
894
+ about five days. At the end of this period, the source reaches
895
+ the highest intensity in our observations. The accretion disc
896
+ is the hottest, kTin ≈ 1.1 − 1.2 keV, and the Comptonised
897
+ component is described with Γ ≈ 2.7 − 2.8. At this point, the
898
+ source enters the HSS and the PDS show no QPOs. When
899
+ the source transitions back to the SIMS and the HIMS, at
900
+ around MJD 58025, kTin and Γ are approximately correlated
901
+ with the X-ray flux (see Figures 1 and 2). We give each seg-
902
+ ment’s spectral parameters and goodness of fit in Table 2. In
903
+ a few segments the reduced χ2 is less than 1 (last column of
904
+ Table 2). The low χ2 values come from the fit to the steady-
905
+ state spectra (SSS). We provide the χ2 and the number of
906
+ channels for the fits to the individual spectra and the total
907
+ χ2 and the number of degree of freedom in Table A.1. Un-
908
+ less otherwise specified, the errors represent the 1σ confidence
909
+ (68%) interval for the corresponding parameter.
910
+ 3.2 Power Density Spectra
911
+ Following Belloni et al. (2002), we fit the PDS with a
912
+ 0-centred Lorentzian to represent the broadband noise
913
+ component and three separate Lorentzians to fit the narrow
914
+ QPO, its harmonic component, and the high-frequency
915
+ noise. The features in the PDS have a frequency in the
916
+ ratio of 1:2, and we, therefore, identify the strongest peak
917
+ as the fundamental and the other as the second harmonic.
918
+ The PDS also shows a low-frequency noise component when
919
+ the strongest QPO peak was at a frequency above 4.0 Hz
920
+ (Figure 3). Therefore, we used an additional Lorentzian to
921
+ fit the low-frequency noise component whenever required.
922
+ We have studied the QPO fractional rms amplitude in the
923
+ 0.5–10.0 keV energy band as a function of QPO frequency
924
+ (left panel of Figure 4) and confirmed that the QPO we
925
+ have identified as fundamental followed a similar relation to
926
+ the one found for GRS 1915+105 (Zhang et al. 2020). The
927
+ type-C QPO appears in the LHS and HIMS as a narrow
928
+ peak with high rms amplitude in the PDS. The properties
929
+ of the observed broadband noise and the QPO justify the
930
+ identification of the QPO as type-C (Casella et al. 2004).
931
+ We fitted the PDS for three different energy bands (0.5–2.0
932
+ KeV, 2.0–4.0 keV, 4.0–10.0 keV) when the type-C QPO was
933
+ at 1.8 Hz, 4.5 Hz, and 7.0 Hz. We show the fitted PDS and
934
+ their respective frequency lag spectra in Figure 3. The lag
935
+ MNRAS 000, 1–15 (0000)
936
+
937
+ 6
938
+ Rawat et. al.
939
+ Figure 2. The evolution of Γ of the corona (left panel) and kTin of the disc (right panel) of MAXI J1535−571. The values of Γ and kTin
940
+ are obtained from the fits to the time-averaged spectra, the rms and phase-lag spectra of the QPO.
941
+ and rms values at the QPO frequency are given in Appendix
942
+ Table A.2. When the QPO frequency is higher than 7.0
943
+ Hz, the QPO fractional rms amplitude decreases, and the
944
+ harmonic component becomes insignificant.
945
+ The evolution of the QPO centroid frequency is shown in
946
+ the right panel of Figure 4. The QPO frequency first decreases
947
+ from 2.7 to 1.8 Hz and then increases to its maximum value of
948
+ 9.0 Hz. After that, the QPO frequency varies in the 4.5 − 7.5
949
+ Hz range. The QPO frequency and fractional rms amplitude
950
+ in the 0.5 − 10.0 keV band for each observation are given in
951
+ Table 1. We have plotted Γ and kTin as a function of QPO
952
+ frequency as shown in Figure 5. We found that both Γ and
953
+ kTin increase with QPO frequency.
954
+ To extract the rms spectrum, we fit the PDS in 10 energy
955
+ bands, fixing the QPO centroid frequency and FWHM to the
956
+ best-fitting values in the 2.0–10.0 keV PDS. The rms and
957
+ phase lag spectra when the QPO frequency was 1.8 Hz, 4.5
958
+ Hz, and 7.0 Hz are shown in the top and bottom panels of Ap-
959
+ pendix Figure A1. While the fractional rms amplitude of the
960
+ QPO increases with photon energy for all QPO frequencies,
961
+ the rms spectrum steepens as the QPO frequency increases
962
+ from 1.8 Hz to 7.0 Hz (see upper panels in Appendix Fig-
963
+ ure A1). The change of the slope of the rms spectrum of the
964
+ QPO is driven by a factor ∼ 3 drop of the rms amplitude at
965
+ the lowest energies when the QPO is at low frequencies. In
966
+ contrast, the rms amplitude at the highest energies remains
967
+ more or less constant as the QPO frequency changes by a
968
+ factor of ∼ 4. Although, in general, the low-energy photons
969
+ at the QPO frequency lag behind the high-energy photons for
970
+ all QPO frequencies, the lag spectrum of the QPO changes
971
+ with QPO frequency. When the QPO frequency is between
972
+ 1.8 Hz and 2.4 Hz, the lag spectrum shows a minimum at ∼ 4
973
+ keV, with the photons at low and high energies lagging the
974
+ 4–5 keV photons by 0.1 − 0.3 rad. As the QPO frequency in-
975
+ creases, the minimum of the lag spectrum of the QPO moves
976
+ to higher energies, with the minimum reaching ∼ 9 − 10 keV
977
+ at the highest QPO frequency, and the low-energy photons
978
+ lag the high-energy ones by up to ∼ 0.8 rad. The rms and
979
+ phase-lag spectra of the QPO in MAXI J1535 in these obser-
980
+ vations with NICER are consistent with the pattern observed
981
+ for the type-C QPO by Rawat et al. (2019) in GRS 1915+105
982
+ and Garg et al. (2022) in MAXI J1535 with AstroSat, over
983
+ the common energy range of both instruments.
984
+ 3.3 One component time-dependent Comptonization model
985
+ To understand the changes observed in the rms and lag spec-
986
+ tra of the QPO (see Section 3.2), we fitted the rms and
987
+ lag spectra of the QPO at each QPO frequency with the
988
+ vkompthdk model. During the fits we linked kTe and Γ of
989
+ nthcomp to kTe and Γ of vkompthdk. We first linked kTs
990
+ of vkompthdk to kTin of diskbb, and we found large resid-
991
+ uals in the fits of the phase-lag spectra (Figure 6) because
992
+ vkompthdk fails to reproduce the minimum of the lags. We
993
+ subsequently let kTin and kTs vary independently, and the
994
+ fits improve significantly (Figure 6). The simultaneous fitted
995
+ time-averaged spectra, rms spectra and lag spectra when the
996
+ QPO frequency was ∼1.8 Hz and the residuals of the best-
997
+ fitting model are shown in Figure 7 (The peak in the residuals
998
+ of the time-averaged spectra at 1.84 keV corresponds to the
999
+ absorption edge features of silicon.). We show a similar plot
1000
+ for the QPO frequencies 4.5 Hz and 7.0 Hz (for which we
1001
+ show a PDS in Figure 3) in the Appendix Figures A2 and
1002
+ A3. We discuss the implication of letting kTin and kTs free
1003
+ in Section 4.3. The best-fitting parameters and χ2 of the fits
1004
+ are given in Table 2.
1005
+ We plotted the model parameters as a function of QPO fre-
1006
+ quency in Figure 8. The size of the corona decreases from
1007
+ ∼ 104 km (which corresponds to 670 Rg for a 10 M⊙ black
1008
+ hole ) to ∼ 3×103 km (201 Rg) while the temperature of the
1009
+ seed photon source, kTs, increases from ∼ 0.1 keV to ∼ 0.4
1010
+ keV as the QPO frequency increases from 1.8 Hz to ∼3.0 Hz.
1011
+ At QPO frequencies ≥3.0 Hz, the size of the corona and the
1012
+ temperature of the seed photon source remain more or less
1013
+ constant at respectively ∼ 3 − 6 × 103 km and 0.5 keV. The
1014
+ error bars on η are large, and it is hard to follow any trend if
1015
+ present, although η appears to decrease from ∼0.8 to ∼0.6 as
1016
+ the QPO frequency increases as shown in Appendix Figure
1017
+ A4. The best-fitting values of η imply that ηint is in the range
1018
+ of 10−25%. Comparing the trends in Figures 5 and 8, it is
1019
+ apparent that there is a sudden change of the properties of
1020
+ the source when the QPO frequency is below and above ∼ 3.0
1021
+ Hz. The change of behaviour of all the quantities appears to
1022
+ occur at the same QPO frequency, which we call critical fre-
1023
+ MNRAS 000, 1–15 (0000)
1024
+
1025
+ Comptonizing medium of MAXI J1535−571
1026
+ 7
1027
+ 0.0010
1028
+ 0.0100
1029
+ P(f)*f
1030
+ QPO= 1.824 ± 0.004 Hz
1031
+ 0.5-2.0 keV
1032
+ 0.0010
1033
+ 0.0100
1034
+ QPO= 1.820 ± 0.004 Hz
1035
+ 2.0-4.0 keV
1036
+ 0.0010
1037
+ 0.0100
1038
+ 0.1000
1039
+ QPO= 1.824 ± 0.004 Hz
1040
+ 4.0-10.0 keV
1041
+ 0.1
1042
+ 1.0
1043
+ 10.0
1044
+ frequency (Hz)
1045
+ − 0.2
1046
+ 0.0
1047
+ 0.2
1048
+ Phase lag (rad)
1049
+ 0.1
1050
+ 1.0
1051
+ 10.0
1052
+ frequenc (Hz)
1053
+ − 0.2
1054
+ 0.0
1055
+ 0.2
1056
+ 0.1
1057
+ 1.0
1058
+ 10.0
1059
+ frequenc (Hz)
1060
+ − 0.2
1061
+ 0.0
1062
+ 0.2
1063
+ 0.0010
1064
+ 0.0100
1065
+ P(f)*f
1066
+ QPO= 4.43 ± 0.03 Hz
1067
+ 0.5-2.0 keV
1068
+ 0.0010
1069
+ 0.0100
1070
+ QPO= 4.48 ± 0.02 Hz
1071
+ 2.0-4.0 keV
1072
+ 0.0010
1073
+ 0.0100
1074
+ QPO= 4.51 ± 0.02 Hz
1075
+ 4.0-10.0 keV
1076
+ 0.1
1077
+ 1.0
1078
+ 10.0
1079
+ frequency (Hz)
1080
+ − 0.25
1081
+ 0.00
1082
+ 0.25
1083
+ Phase lag (rad)
1084
+ 0.1
1085
+ 1.0
1086
+ 10.0
1087
+ freq ency (Hz)
1088
+ − 0.25
1089
+ 0.00
1090
+ 0.25
1091
+ 0.1
1092
+ 1.0
1093
+ 10.0
1094
+ freq ency (Hz)
1095
+ − 0.25
1096
+ 0.00
1097
+ 0.25
1098
+ 0.0000
1099
+ 0.0001
1100
+ 0.0010
1101
+ 0.0100
1102
+ P(f)*f
1103
+ QPO= 6.9 ± 0.1 Hz
1104
+ 0.5-2.0 keV
1105
+ 0.0000
1106
+ 0.0001
1107
+ 0.0010
1108
+ 0.0100
1109
+ QPO= 7.06 ± 0.04 Hz
1110
+ 2.0-4.0 keV
1111
+ 0.0000
1112
+ 0.0001
1113
+ 0.0010
1114
+ 0.0100
1115
+ QPO= 7.13 ± 0.03 Hz
1116
+ 4.0-10.0 keV
1117
+ 0.1
1118
+ 1.0
1119
+ 10.0
1120
+ frequency (Hz)
1121
+ − 0.25
1122
+ 0.00
1123
+ 0.25
1124
+ Phase lag ( ad)
1125
+ 0.1
1126
+ 1.0
1127
+ 10.0
1128
+ f equency (Hz)
1129
+ − 0.25
1130
+ 0.00
1131
+ 0.25
1132
+ 0.1
1133
+ 1.0
1134
+ 10.0
1135
+ f equency (Hz)
1136
+ − 0.25
1137
+ 0.00
1138
+ 0.25
1139
+ Figure 3. The top panels show the power density spectra (power multiplied by frequency) of MAXI J1535−571 for three QPO frequencies,
1140
+ 1.8 Hz, 4.5 Hz, and 7.0 Hz, and three different energy bands. The PDS is fitted with three to five Lorentzians. The bottom panels show
1141
+ the frequency phase-lag spectra. The reference energy band is 0.5-10.0 keV here. The vertical dashed lines indicate the ranges over which
1142
+ the QPO fundamental lags we measured (ν ± FWHM/2).
1143
+ MNRAS 000, 1–15 (0000)
1144
+
1145
+ 8
1146
+ Rawat et. al.
1147
+ 2
1148
+ 3
1149
+ 4
1150
+ 5
1151
+ 6
1152
+ 7
1153
+ 8
1154
+ 9
1155
+ QPO frequency (Hz)
1156
+ 2
1157
+ 3
1158
+ 4
1159
+ 5
1160
+ 6
1161
+ 7
1162
+ QPO fractional rm (0.5-10.0 keV)
1163
+ 10
1164
+ 15
1165
+ 20
1166
+ 25
1167
+ 30
1168
+ 35
1169
+ time (days since MJD=58000)
1170
+ 1
1171
+ 2
1172
+ 3
1173
+ 4
1174
+ 5
1175
+ 6
1176
+ 7
1177
+ 8
1178
+ 9
1179
+ 10
1180
+ QPO frequency (Hz)
1181
+ Figure 4. Left panel: QPO fractional rms amplitude in the 0.5–10.0 keV energy band as a function of QPO frequency for MAXI J1535−571.
1182
+ Right panel: Evolution of the QPO frequency of MAXI 1535-571. The shaded area represents the radio jet quenching interval (Russell
1183
+ et al. 2019).
1184
+ 2
1185
+ 3
1186
+ 4
1187
+ 5
1188
+ 6
1189
+ 7
1190
+ 8
1191
+ 9
1192
+ QPO frequency (Hz)
1193
+ 2.0
1194
+ 2.2
1195
+ 2.4
1196
+ 2.6
1197
+ 2.8
1198
+ 3.0
1199
+ 3.2
1200
+ 3.4
1201
+ 3.6
1202
+ Γ
1203
+ 2
1204
+ 3
1205
+ 4
1206
+ 5
1207
+ 6
1208
+ 7
1209
+ 8
1210
+ 9
1211
+ QPO frequency (Hz)
1212
+ 0.5
1213
+ 0.6
1214
+ 0.7
1215
+ 0.8
1216
+ 0.9
1217
+ 1.0
1218
+ 1.1
1219
+ 1.2
1220
+ kTin (keV)
1221
+ Figure 5. The dependence of Γ (left panel) and kTin (right panel) upon QPO frequency in MAXI J1535−571. The values of Γ and kTin
1222
+ are obtained from the fits to the time-averaged spectra, the rms and phase-lag spectra of the QPO.
1223
+ quency, νc.
1224
+ To estimate the critical frequency, we assume that the break
1225
+ in the relation of the disc and corona model parameters, and
1226
+ time lags as a function of QPO frequency, happens at the
1227
+ same QPO frequency, i.e., νc. In Figure 8 we show fits with a
1228
+ power-law (red) and broken power-law (blue) to the relation
1229
+ of L, kTs, time lag, kTin with QPO frequency. The parame-
1230
+ ters of the broken power law are the power-law indices α1 and
1231
+ α2 below and above the break frequency νc and a normalisa-
1232
+ tion parameter. We have calculated the F-test probability for
1233
+ the fits with a power law and a broken power-law and found
1234
+ that the probability ranges from (0.2−1)×10−4, which indi-
1235
+ cates that a broken power-law in general fits the data better
1236
+ than a power law. (To account for the dispersion of the data
1237
+ points around the model was larger than the statistical errors,
1238
+ we have added a systematic of 6%.) The break for each indi-
1239
+ vidual fit is in the range 2.7–2.8 Hz, and the break appears
1240
+ to be at the same QPO frequency in all cases. Since there is
1241
+ a hint of a break in the relationship of the time lags and kTin
1242
+ with QPO frequency, we fitted all the four relations (L, kTs,
1243
+ time lag, kTin) together with a broken power law model as
1244
+ shown in Figure 8, with the critical frequency tied. We got
1245
+ Table 3. Broken power-law best-fitting parameters to the relations
1246
+ of L, kTs, time lags of the QPO and kTin vs. QPO frequency
1247
+ shown in Figure 8. The parameters α1 and α2 are the power-law
1248
+ indices for νQP O ≤ νc and νQP O > νc, respectively.
1249
+ Parameter
1250
+ α1
1251
+ α2
1252
+ bknpower norm
1253
+ L (km)
1254
+ 1.8 ± 0.4
1255
+ 0.5 ± 0.2
1256
+ (3.8 ± 1.3) × 104
1257
+ kTs (keV)
1258
+ -2.2 ± 0.5
1259
+ -0.3 ± 0.2
1260
+ 0.04 ± 0.01
1261
+ kTin (keV)
1262
+ -0.6 ± 0.2
1263
+ -0.4 ± 0.1
1264
+ 0.7 ± 0.1
1265
+ time lag (m sec)
1266
+ 0.6 ± 0.4
1267
+ 1.2 ± 0.2
1268
+ 0.007 ± 0.002
1269
+ Note: The best-fitting parameters values shown above are for the
1270
+ joint fits of all the parameter vs. QPO frequency plot with νc tied.
1271
+ νc = 3.0±0.4 Hz. If we let νc vary separately for each fit, the
1272
+ χ2 changes from 141.84 (dof=88) to 133.38 (dof=85) with an
1273
+ F-test probability of ∼ 0.15. This confirms that the best fit
1274
+ does not improve significantly if we let νc free. We conclude
1275
+ that the break is consistent with being at the same frequency
1276
+ in all relations plotted in Figures 5 and 8. The details of the
1277
+ best-fitting parameters are given in Table 3.
1278
+ MNRAS 000, 1–15 (0000)
1279
+
1280
+ Comptonizing medium of MAXI J1535−571
1281
+ 9
1282
+ 0.0
1283
+ 0.1
1284
+ 0.2
1285
+ 0.3
1286
+ Phase lag (rad)
1287
+ kTin and kTs free
1288
+ kTs=kTin
1289
+ 1.0
1290
+ 10.0
1291
+ Energy (keV)
1292
+ −5
1293
+ 0
1294
+ 5
1295
+ (data-model)/error
1296
+ Figure 6. The phase-lag spectra of the QPO of MAXI J1535−571
1297
+ fitted with the vkompthdk model keeping kTin and kTs tied to
1298
+ each other (red), and free (black). The bottom panel shows the
1299
+ respective residuals of the fits. The data corresponds to obs ID
1300
+ 1050360105 with QPO frequency∼1.8 Hz
1301
+ 4 DISCUSSION
1302
+ We have analysed NICER observations of MAXI J1535−571
1303
+ during the initial phase of the outburst in September and
1304
+ October 2017. The rms and lag spectrum of the type-C
1305
+ QPO, the spectral parameters deduced from fits to the
1306
+ time-averaged energy spectra of the source (the temperature
1307
+ of the accretion disc, kTin), and the parameters from fits
1308
+ to the rms and lag spectra of the QPO (the size of the
1309
+ corona, L, the temperature of the source that provides the
1310
+ seed photons that inverse-Compton scatter in the corona,
1311
+ kTs, all change in a similar manner as the frequency of the
1312
+ type-C QPO increases from 1.8 Hz to 9 Hz. While some of
1313
+ these quantities increase (kTin, kTs, phase lags) and others
1314
+ decrease (rms amplitude of the QPO, L ) with increasing
1315
+ QPO frequency, we find that all these quantities show a sig-
1316
+ nificant break in the relation at a QPO frequency νc ∼ 3.0 Hz.
1317
+ At low QPO frequencies, the lag spectrum of the type-C
1318
+ QPO in MAXI J1535 increases at low and high energies
1319
+ and is minimum at ∼ 4 keV. This is similar to what is
1320
+ observed for the type-B QPO in the black hole candidate
1321
+ MAXI J1348−630 (Belloni et al. 2020, Garc´ıa et al. 2021). In
1322
+ the case of MAXI J1348−630, Belloni et al. (2020) proposed
1323
+ that the fact that photons at energies below ∼ 3 keV lag
1324
+ behind photons at ∼ 3 keV is due to down scattering of
1325
+ the photons emitted by the disc in the corona, that they
1326
+ assume is the jet. To reach these conclusions, instead of a
1327
+ black body-like seed spectrum, Belloni et al. (2020) assumed
1328
+ a simplified seed-source spectrum that is flat between 2 and
1329
+ 3 keV and does not emit at other energies. Such a spectrum,
1330
+ however, neglects the dilution of the lags caused by black
1331
+ body photons emitted below 2 keV that escape without
1332
+ being up-/down-scattered in the corona. If one considers
1333
+ a more realistic (a black body or a disc) seed spectrum of
1334
+ equivalent temperature, the lags turn out to be flat below
1335
+ ∼ 2 − 3 keV, different from what is observed (Kylafis et al.
1336
+ 2021). On the other hand, using the model of Karpouzas
1337
+ et al. (2020), Garc´ıa et al. (2021) showed that the shape
1338
+ of the lag spectrum (and the rms spectrum as well) of
1339
+ MAXI J1348−630 can be explained by corona photons that
1340
+ impinge back onto the accretion disc and emerge later and at
1341
+ energies below those of the photons that were up-scattered in
1342
+ the corona. This feedback loop between the corona and the
1343
+ disc is the reason for the positive lags between the photons
1344
+ with energies below ∼ 2 − 3 keV and those with energies of
1345
+ ∼ 2 − 3 keV. At the same time, inverse Compton scattering
1346
+ in the corona explains that photons with energies above
1347
+ ∼ 2 − 3 keV lag behind the 2 − 3 keV photons. Our fits to
1348
+ the rms and lag spectra of the QPO in MAXI J1535 here
1349
+ show the same.
1350
+ 4.1 Connection of critical frequency with radio jet quenching
1351
+ Using AstroSat, and swift observation of the period MJD
1352
+ 58008 − 58013 and 58004 − 58017, Mereminskiy et al. (2018)
1353
+ and Bhargava et al. (2019) found a tight correlation between
1354
+ the QPO frequency and the power-law index that models
1355
+ the hard component in the energy spectrum. Using nicer
1356
+ observation of the period MJD 58008.99 − 58037.68, we, on
1357
+ the other hand, found a significant break in the spectral and
1358
+ corona parameters as a function of QPO frequency. The rms
1359
+ and lag spectra of the QPO below and above νc are also
1360
+ significantly different. The break in the relation between the
1361
+ QPO lags and QPO frequency at νc ∼3.0 Hz in MAXI J1535
1362
+ is similar to the break found by Zhang et al. (2020) in GRS
1363
+ 1915+105 when the QPO frequency is ∼2 Hz, and to the
1364
+ one in GX 339-4 (Zhang et al. 2017) at a QPO frequency of
1365
+ ∼1.7 Hz.
1366
+ Interestingly, the frequency of the QPO in MAXI J1535
1367
+ crosses the value of 3.0 Hz on September 17 2017 (MJD
1368
+ 58013; see Figure 4 and Table 1). This date coincides
1369
+ with the time at which the radio emission from the jet
1370
+ in this source is quenched (Russell et al. 2019), which we
1371
+ marked by the shaded area in Figure 4. Indeed, the radio
1372
+ emission of the jet in MAXI J1535 quenches in the period
1373
+ MJD 58013.60 − 58014.18; after that, in the period MJD
1374
+ 58014.18 − 58015.37 (Table 1 Russell et al. 2019) the source
1375
+ makes a transition from the hard intermediate to the soft
1376
+ intermediate state. A similar behaviour has been observed
1377
+ by M´endez et al. (2022) for GRS 1915+105, i.e., a low radio
1378
+ emission at or above a QPO frequency of ∼2.0 Hz, and
1379
+ increased radio emission below that QPO frequency, the
1380
+ QPO frequency at which Zhang et al. (2020) found that the
1381
+ lags of the QPO change from soft to hard.
1382
+ 4.2 Size of the corona
1383
+ From fits to the rms and lag spectra of the QPO with
1384
+ the vkompthdk, here we find that the size of the corona
1385
+ decreases very rapidly from ∼ 104 km to ∼ 4000 − 5000 km
1386
+ MNRAS 000, 1–15 (0000)
1387
+
1388
+ 10
1389
+ Rawat et. al.
1390
+ 1
1391
+ 10
1392
+ 100
1393
+ counts s−1 keV−1
1394
+ 0.1
1395
+ 0.05
1396
+ Fractional rms
1397
+ 1
1398
+ 10
1399
+ 2
1400
+ 5
1401
+ −0.2
1402
+ 0
1403
+ 0.2
1404
+ Phase lags (rad)
1405
+ Energy (keV)
1406
+ −2
1407
+ 0
1408
+ 2
1409
+ (data−model)/error
1410
+ −2
1411
+ −1
1412
+ 0
1413
+ 1
1414
+ 2
1415
+ (data−model)/error
1416
+ 1
1417
+ 10
1418
+ 2
1419
+ 5
1420
+ −1
1421
+ 0
1422
+ 1
1423
+ (data−model)/error
1424
+ Energy (keV)
1425
+ Figure 7. Fits of the vkompthdk model to the data of MAXI J1535—571. From top to bottom, the left panel shows the time-averaged
1426
+ spectrum of the source fitted with the model tbabs*(diskbb+gauss+nthcomp), the rms spectrum of the QPO fitted with the model
1427
+ vkompthdk*dilution, and the phase-lag spectrum of the QPO fitted with the model vkompthdk when the QPO frequency was at ∼1.8
1428
+ Hz. The right panels show the respective residuals of the best-fitting model to the data. The 2.0–3.0 keV band is the reference band for
1429
+ the phase lag spectra.
1430
+ when the QPO frequency increases from ∼ 1.8 Hz to ∼ 3.2
1431
+ Hz; from that point on the corona size remains more or less
1432
+ constant or decreases slightly from ∼ 4000 − 5000 km down
1433
+ to ∼ 3000 km as the QPO frequency increases from ∼ 3.2 Hz
1434
+ up to ∼ 9 Hz. Figure 4 shows that the QPO frequency does
1435
+ not increase monotonically during these observations. In
1436
+ contrast, from Figures 4 and 8, it is apparent that the size of
1437
+ the corona first increases from ∼ 2000 km to ∼ 104 km, and
1438
+ it then decreases back to ∼ 3000 km (first 10 points in the
1439
+ right panel of Figure 4). At this time, coincident with the
1440
+ time that the radio emission from the jet is quenched (Russell
1441
+ et al. 2019), the size of the corona continues decreasing but
1442
+ at a lower rate than before. Assuming that MAXI J1535
1443
+ harbours a 10-solar mass black hole, the maximum and mini-
1444
+ mum size of the corona are, respectively, ∼ 670 and ∼ 201 Rg.
1445
+ At low QPO frequency, the trends of the corona size and
1446
+ feedback fraction as a function of QPO frequency reported
1447
+ in this work are similar to those in Zhang et al. (2022), and
1448
+ both in their work and ours the relation between the size
1449
+ of the corona and the frequency of the QPO shows a break
1450
+ at νQP O ≈ 3 − 4 Hz. The difference between their and our
1451
+ corona sizes in the common range of QPO frequency comes
1452
+ from the coverage down to lower energies with NICER in our
1453
+ case than in Zhang et al. (2022) with HXMT: The magnitude
1454
+ of the lags of the QPO increases as energy decreases, and the
1455
+ size of the corona in the vkompth model is driven by the
1456
+ magnitude of the lags. Since we go to lower QPO frequencies
1457
+ than Zhang et al. (2022), we find that the size of the corona
1458
+ continues increasing as the QPO frequency decreases below
1459
+ ∼ 2 Hz, where they do not have data. At QPO frequencies
1460
+ above ∼ 4 Hz Zhang et al. (2022) find an increase of the
1461
+ corona size, whereas here we find that the size continues
1462
+ decreasing with QPO frequency, albeit at a slower rate than
1463
+ below ∼ 3 − 4 Hz. We note that Zhang et al. (2022) did not
1464
+ include the effect of dilution of the non-variable components
1465
+ MNRAS 000, 1–15 (0000)
1466
+
1467
+ Comptonizing medium of MAXI J1535−571
1468
+ 11
1469
+ 2
1470
+ 3
1471
+ 4
1472
+ 6
1473
+ 9
1474
+ QPO frequency (H )
1475
+ 104
1476
+ 3 × 103
1477
+ 4 × 103
1478
+ 6 × 103
1479
+ L (km)
1480
+ broken power-law
1481
+ power-law
1482
+ 2
1483
+ 3
1484
+ 4
1485
+ 6
1486
+ 9
1487
+ QPO frequency (Hz)
1488
+ 10−1
1489
+ 100
1490
+ 2 10−1
1491
+ 3 10−1
1492
+ 4 10−1
1493
+ 6 10−1
1494
+ kTs (keV)
1495
+ broken power-law
1496
+ power-law
1497
+ 2
1498
+ 3
1499
+ 4
1500
+ 6
1501
+ 9
1502
+ QPO freq ency (Hz)
1503
+ 10−3
1504
+ 6 × 10−4
1505
+ 2 × 10−3
1506
+ 3 × 10−3
1507
+ 4 × 10−3
1508
+ time lag (secs)
1509
+ broken power-law
1510
+ power-law
1511
+ 2
1512
+ 3
1513
+ 4
1514
+ 6
1515
+ 9
1516
+ QPO frequency (Hz)
1517
+ 100
1518
+ 6 10−1
1519
+ kTin (keV)
1520
+ broken power-law
1521
+ power-law
1522
+ Figure 8. Dependence of L, kTs, time lags of the QPO and kTin upon QPO frequency in MAXI J1535 −571. The red and blue dotted
1523
+ lines show the best-fitting power law and a broken power-law to the data. The best-fitting parameters for each relation are given in Table
1524
+ 3. The time lags are between photons in the 1.0–12.0 keV and 2.0–6.0 keV bands at the QPO frequency. The vertical dotted dashed line
1525
+ represents the best-fitting break frequency, νc = 3.0 Hz.
1526
+ the rms amplitude of the QPO in their model, and that
1527
+ dilution is more important at high QPO frequency, where
1528
+ the contribution of the accretion disc to the total emission
1529
+ increases.
1530
+ Our result is similar to previous findings in other BHXBs
1531
+ (e.g. Kara et al. 2019, Karpouzas et al. 2021). In contrast to
1532
+ Kara et al. (2019) where a change of the vertical size of the
1533
+ corona is proposed to explain the shorter reverberation lags
1534
+ for MAXI J1820+070, De Marco et al. (2021) infer a change
1535
+ in the inner accretion disc radius leading to smaller coronal
1536
+ size than reported in this work. Using the JED-SAD model
1537
+ for the same source, Marino et al. (2021) reported that the
1538
+ size of the jet emitting region, which plays the corona role
1539
+ in their model, of 30-60 Rg. Axelsson & Veledina (2021)
1540
+ showed that the variability of the iron line feature could
1541
+ not be explained using the lamp-post geometry assumed
1542
+ by Kara et al. (2019) and, instead, a truncated inner hot
1543
+ flow geometry is required. Using a spectral-timing model
1544
+ based on propagating fluctuations and incorporating the
1545
+ reverberation from the variable Comptonisation components,
1546
+ Kawamura et al. (2022) further supported a truncated inner
1547
+ hot flow geometry. However, we note that the mass accretion
1548
+ rate propagation fluctuation mechanism used by Kawamura
1549
+ et al. (2022) can only explain the hard lags, and a separate
1550
+ mechanism is required to explain to soft lags in MAXI
1551
+ J1820+070 and in the QPO of MAXI J1535−571 and other
1552
+ sources.
1553
+ The trend of the size of the corona vs QPO frequency is
1554
+ similar in MAXI J1535−571 and GRS 1915+105 (see Figure
1555
+ 8, and the supplementary Figure 4 in M´endez et al. 2022
1556
+ and figure 5 in Garc´ıa et al. 2022). Using a reverberation
1557
+ model for the lags of the broadband noise component in the
1558
+ power spectrum, Wang et al. (2021) found a corona that
1559
+ is ≳300 Rg in the hard to soft state transition of MAXI
1560
+ J1820+070. Similarly, using polarimetry measurements with
1561
+ PoGO+, Chauvin et al. (2018) found that the corona in
1562
+ Cyg X-1 is ≳100 Rg, while they exclude a corona of ∼6 Rg
1563
+ obtained from the lamp post model. The sizes reported in
1564
+ this work are consistent with the values published by Kylafis
1565
+ & Reig (2019), Kylafis et al. (2021), Reig & Kylafis (2021),
1566
+ who used Monte Carlo simulations of Comptonization in
1567
+ a jet. The Comptonization model used in this work has
1568
+ some simplifications; for instance, the corona is spherically
1569
+ symmetric with constant temperature and optical depth.
1570
+ MNRAS 000, 1–15 (0000)
1571
+
1572
+ 12
1573
+ Rawat et. al.
1574
+ This was discussed in Karpouzas et al. (2021), and Garc´ıa
1575
+ et al. (2021) and, as explained in M´endez et al. (2022), since
1576
+ the actual geometry of the corona is likely different, the
1577
+ values given by the model should be considered as a char-
1578
+ acteristic size of the corona rather than the actual radius of
1579
+ a spherical corona (see M´endez et al. 2022; Garc´ıa et al. 2022).
1580
+ The size of the corona that we infer from our model is
1581
+ larger than the values obtained from fits to the energy spec-
1582
+ tra of black-hole systems with models that consider reflection
1583
+ off the accretion disc from a corona that is assumed to be a
1584
+ lamppost emitter (e.g., Vincent et al. 2016). These spectral
1585
+ fits yield corona sizes of 1−20 Rg (Fabian et al. 2012). Using
1586
+ the average soft lags over a broad frequency range in the
1587
+ power spectrum and light travel-time arguments, Wang et al.
1588
+ (2022) found that corona sizes in a dozen black-hole systems
1589
+ in the hard-intermediate state, during the transition from
1590
+ the low-hard to the soft-intermediate state, are comparable,
1591
+ within a factor of a few, to the ones we infer here (see also
1592
+ Wang et al. 2021). Suppose the assumption that the lags of
1593
+ the broadband noise reflect the light travel time from the
1594
+ corona to the disc is correct. In that case, the corona sizes in
1595
+ Wang et al. (2022) are, in fact, lower limits for two reasons:
1596
+ (i) Wang et al. (2022) estimate the corona sizes based on
1597
+ the average time lag over a broad frequency range, whereas
1598
+ the magnitudes of the soft lags are larger than the average
1599
+ over a large range of QPO frequencies (see, for instance,
1600
+ their Fig. 3, panel h). (ii) Wang et al. (2022) measured the
1601
+ lags between the bands 0.5 − 1 and 2 − 5 keV. Suppose the
1602
+ lags are minimum at around ∼ 2 keV and increase both at
1603
+ energies below and above that (see their Fig. 3, panel g). In
1604
+ that case, the magnitude of the time lags between photons
1605
+ at ∼ 2 and ∼ 0.5 keV, and hence the light travel distance
1606
+ from the corona to the disc will be larger than what they
1607
+ report. Notice, however, that in Kara et al. 2019, Wang
1608
+ et al. 2021 and Wang et al. 2022, the authors estimate the
1609
+ characteristic height of the lamppost corona above the disc.
1610
+ Notice that it is not straightforward to infer sizes from
1611
+ simple light travel-time arguments applied to the time
1612
+ lags of the broadband noise components because: (i) The
1613
+ broadband noise component in the power spectrum of
1614
+ accreting black-hole and neutron-star systems is, in fact,
1615
+ the combination of multiple Lorentzians (e.g., Psaltis et al.
1616
+ 1999, Nowak 2000). Since the properties of these Lorentzians
1617
+ are correlated with each other (e.g., frequency-frequency
1618
+ correlations in Psaltis et al. 1999) and with the source
1619
+ spectral parameters (e.g., Vignarca et al. 2003; Mereminskiy
1620
+ et al. 2018; Agrawal 2006 and references therein), therefore,
1621
+ most likely, these Lorentzians are not just an empirical
1622
+ description of the power spectrum, but each of them rep-
1623
+ resents a relatively well-defined, over a limited frequency
1624
+ range, variability component of the physical properties of
1625
+ the accretion flow. Suppose this decomposition is correct (as
1626
+ suggested by the works cited above). In that case, a more
1627
+ logical and accurate way is to compute the phase lag that
1628
+ results from the combined cross spectra of these Lorentzians
1629
+ in the Fourier real and imaginary space. The phase-lag
1630
+ calculated like that can be different from computed from the
1631
+ average of the cross-spectrum over a broad frequency range
1632
+ (as has been done in many works before, see, e.g. Nowak
1633
+ et al. 1999a; Reig et al. 2000; Altamirano & M´endez 2015;
1634
+ Wang et al. 2022). If the lags calculated from the Lorentzian
1635
+ decomposition, as suggested above, were due to light travel
1636
+ time, the magnitude of time lags (see, for instance, Fig. 6)
1637
+ imply large corona sizes. So even combining the lags of the
1638
+ Lorentzians in Fourier space will lead to big corona sizes.
1639
+ ii) It needs to be clarified how to convert time lags into
1640
+ distances using simple light travel-time arguments because
1641
+ the lags depend strongly upon Fourier frequency (e.g., Fig.
1642
+ 3 panel h of Wang et al. 2022). Therefore, there is no single
1643
+ Fourier frequency at which the time lag would represent the
1644
+ correct light travel time that should be used to infer the
1645
+ corona size. (We note that models like RELTRANS, Ingram
1646
+ et al. (2019) calculate the full variability self consistently
1647
+ instead of using simple light travel-time arguments.)
1648
+ Given the typical magnitudes of the lags of the QPO (this
1649
+ paper; Karpouzas et al. 2020; Garc´ıa et al. 2021; Karpouzas
1650
+ et al. 2021; Bellavita et al. 2022) or of the broadband noise
1651
+ component (Wang et al. 2022; but see above for the caveats
1652
+ of these measurements) in these systems, any variability
1653
+ model that interprets the observed lags as delays of photons
1654
+ travelling through a medium around a compact object would
1655
+ necessarily yield large corona sizes since time lags of a few
1656
+ hundredths to a few tenths of seconds translate into light
1657
+ travel distances of a few thousand to a few 10,000 km.
1658
+ While propagation of accretion-rate fluctuations (Ar´evalo &
1659
+ Uttley 2006) would yield smaller sizes of the comptonizing
1660
+ region because, in this case, the viscous time scale is at play,
1661
+ propagation of accretion-rate fluctuations only account for
1662
+ hard lags. In contrast, the broadband noise component and
1663
+ the QPOs often show soft lags.
1664
+ Our results are not necessarily inconsistent with the QPO
1665
+ frequency being due to Lense-Thirring Precession (LTP,
1666
+ Stella & Vietri 1998; but see Mastichiadis et al. 2022). For
1667
+ instance, Ingram et al. (2016) fitted the energy spectra of
1668
+ the BHXRB H1743−322 over the cycle of a ∼4–5 QPO
1669
+ and concluded that the results are consistent with LTP of
1670
+ an inner hot torus in this source. However, as explained by
1671
+ Ingram et al. (2016), their data could be reproduced equally
1672
+ well if the torus was fixed and it was the disc the one that
1673
+ processed at the Lense–Thirring precession frequency. Their
1674
+ choice of one geometry over the other was based on the fact
1675
+ that the rms spectrum of the QPO is hard, and hence the
1676
+ emission at the QPO frequency could not come from the disc.
1677
+ In the model of Karpouzas et al. (2020), the rms spectrum of
1678
+ the QPO is a consequence of inverse-Compton scattering of
1679
+ soft disc photons in the corona (the torus in the scenario of
1680
+ Ingram et al. 2016), such that the high rms amplitude values
1681
+ of the QPO at high energies may reflect the variability of the
1682
+ soft disc emission at the Lense–Thirring precession frequency
1683
+ that is inverse-Compton scattered in the corona. This, plus
1684
+ the feedback from the corona to the disc, naturally explain
1685
+ the variability of the iron line discussed by Ingram et al.
1686
+ (2016) and the rms spectrum of the QPO. The LTP model
1687
+ and the reverberation model for the lags of the QPO in GRS
1688
+ 1915+105 (Nathan et al. 2022) also yield a large corona
1689
+ (unless one considers an extra lag due to thermalisation;
1690
+ see Nathan et al. 2022). Therefore, the LTP model needs to
1691
+ explain how a large corona, which should necessarily extend
1692
+ beyond the disc’s inner truncation radius, can precess as
1693
+ a solid body. However, whether the QPO frequency is due
1694
+ to LTP is a matter of debate that needs to be addressed
1695
+ MNRAS 000, 1–15 (0000)
1696
+
1697
+ Comptonizing medium of MAXI J1535−571
1698
+ 13
1699
+ by general relativistic magneto-hydrodynamic (GRMHD)
1700
+ simulations, which is beyond the scope of this paper.
1701
+ 4.3 A Dual Corona
1702
+ When we tied the inner-disc temperature of the time-
1703
+ averaged spectra, kTin, to the seed-photon temperature of
1704
+ the vkompthdk model, kTs, our fits could not reproduce
1705
+ the shape of the lag spectrum. Letting these two parameters
1706
+ free yields a significant improvement in the fit statistics
1707
+ (see Section 3.3 and Figure 6). We speculate that this
1708
+ difference between the seed photon temperature of nthcomp
1709
+ and vkompthdk is due to a more complex structure of
1710
+ the comptonizing region than that described by a uniform
1711
+ corona. Sridhar et al. (2019), Bhargava et al. (2019) & Garg
1712
+ et al. (2022) used AstroSat observations of MAXI J1535 that
1713
+ coincide with the first few days of the NICER observations
1714
+ reported in this work. They modelled the combined SXT and
1715
+ LAXPC spectra and reported a lower inner disc temperature
1716
+ (kTin=0.20–0.35 keV) than we found in this work. It should
1717
+ be noted that Bhargava et al. (2019) and Garg et al. (2022)
1718
+ modelled the spectra in the 1-30 keV energy range. Also, the
1719
+ source is highly absorbed, and the spectrum drops at low
1720
+ energies, so the reported inner disc temperature may not
1721
+ be accurate. Sreehari et al. (2019) used the same AstroSat
1722
+ observation and modelled the broadband spectra in the
1723
+ 0.3-80.0 keV band and reported electron temperatures with
1724
+ nthcomp in the range 21-63 keV. Using the same AstroSat
1725
+ observation, Sridhar et al. (2019) reported an electron
1726
+ temperature of ∼21 keV. As the 0.8-10.0 keV spectra of
1727
+ NICER could not constrain the electron temperature, we
1728
+ chose to fix it to the values reported by Sreehari et al.
1729
+ (2019) and Sridhar et al. (2019). The electron temperature
1730
+ (∼90–108 keV) reported by Garg et al. 2022 is higher than
1731
+ the value (∼21 keV) we have used in this work. It should be
1732
+ noted that in Garg et al. (2022), they are fixed the optical
1733
+ depth of the corona, which together with Γ gives kTe.
1734
+ Using a dual-component comptonization model for type-
1735
+ B QPOs, Garc´ıa et al. (2021) and Peirano et al. (2022) ar-
1736
+ gued that the comptonizing medium of the BHXB sources,
1737
+ MAXI J1348−630 and GX 339−4 consist of two coronas. A
1738
+ relatively small corona of ∼300 km, close to the black hole
1739
+ dominates the time-averaged spectra, and a large corona of
1740
+ ∼18000 km, possibly the jet, dominates the lag spectrum
1741
+ (Peirano et al. 2022). Their best-fitting results yield a lower
1742
+ seed photon temperature of the large corona compared to the
1743
+ small corona, with the seed photon temperature of the small
1744
+ corona linked to kTbb of nthcomp. Peirano et al. (2022) pro-
1745
+ posed that this difference is due to the fact that the seed pho-
1746
+ tons for the small corona come from the inner, hotter parts,
1747
+ of the disc whereas the seed photons for the large corona
1748
+ come from the outer, cooler parts, of the disc. A similar
1749
+ dual-corona geometry could explain the difference between
1750
+ kTin of the diskbb (linked to kTbb of nthcomp) and kTs of
1751
+ vkompthdk in our fits. Since we find that kTbb > kTs, also in
1752
+ MAX J1535−571 the small corona would dominate the emis-
1753
+ sion of the time-averaged spectra, whereas the big corona
1754
+ would dominate the lags. We found that the rms spectra do
1755
+ not change much between the two fits (kTs=kTin or kTs free),
1756
+ so we conclude that the rms amplitude is not affected much
1757
+ by the size of the corona. The fraction of the corona flux that
1758
+ returns to the disc is ηint 10–25 % in all the cases. This and
1759
+ the large corona size further indicate that the large corona is
1760
+ the jet.
1761
+ 5 SUMMARY AND CONCLUSIONS
1762
+ We
1763
+ have
1764
+ analysed
1765
+ all
1766
+ NICER
1767
+ observation
1768
+ of
1769
+ MAXI
1770
+ J1535−571 taken on September and October 2017. We fit
1771
+ the energy spectra of the source and the rms and lag spectra
1772
+ of the type-C QPO in this source with the one-component
1773
+ time dependent Comptonization model vkompthdk. Below
1774
+ we summarize our results:
1775
+ • The size of the corona of MAXI J1535−571 decreases
1776
+ from 104 km when the QPO frequency is ≥2 Hz to ∼3000
1777
+ km when the QPO frequency is ∼9.0 Hz.
1778
+ • The behaviour of all the spectral parameters and the rms
1779
+ and lag spectra of the QPO changes above and below a critical
1780
+ QPO frequency, νc =3.0±0.4 Hz. Interestingly, the time at
1781
+ which this critical frequency happens coincide with the period
1782
+ when the radio jet emission quenches for this source.
1783
+ • Comparing our results with those in previous work, the
1784
+ data are consistent with a dual corona: a small corona lying
1785
+ close to the black hole and a larger one, possibly the jet.
1786
+ ACKNOWLEDGEMENTS
1787
+ This research is part of a project proposed for the COSPAR
1788
+ PCB fellowship program. We would like to thank the ref-
1789
+ eree for constructive comments that helped improve this
1790
+ paper. DR would like to thank COSPAR, ISRO and Pro-
1791
+ fessor Diego Altamirano for jointly funding the academic
1792
+ visit to the University of Southampton. MM, FG and KK
1793
+ acknowledge support from the research programme Athena
1794
+ with project number 184.034.002, which is (partly) financed
1795
+ by the Dutch Research Council (NWO). FG acknowledges
1796
+ support from PIP 0102 and PIP 0113 (CONICET). FG is a
1797
+ CONICET researcher. This work received financial support
1798
+ from PICT-2017-2865 (ANPCyT). KA acknowledges support
1799
+ from a UGC-UKIERI Phase 3 Thematic Partnership (UGC-
1800
+ UKIERI-2017-18-006; PI: P. Gandhi). TMB acknowledges fi-
1801
+ nancial contribution from PRIN INAF 2019 n.15. CB is a
1802
+ fellow of Consejo Interuniversitario Nacional (CIN).
1803
+ DATA AVAILABILITY
1804
+ The NICER XTI observations used in this work are available
1805
+ at NICER Archive6.
1806
+ REFERENCES
1807
+ Agrawal P. C., 2006, Advances in Space Research, 38, 2989
1808
+ Altamirano D., M´endez M., 2015, MNRAS, 449, 4027
1809
+ Altamirano D., Strohmayer T., 2012, ApJ, 754, L23
1810
+ Ar´evalo P., Uttley P., 2006, MNRAS, 367, 801
1811
+ 6 https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_archive.
1812
+ html
1813
+ MNRAS 000, 1–15 (0000)
1814
+
1815
+ 14
1816
+ Rawat et. al.
1817
+ Axelsson M., Veledina A., 2021, MNRAS, 507, 2744
1818
+ Bellavita C., Garc´ıa F., M´endez M., Karpouzas K., 2022, MNRAS,
1819
+ 515, 2099
1820
+ Belloni T., Hasinger G., 1990, A&A, 230, 103
1821
+ Belloni T. M., Stella L., 2014, Space Sci. Rev., 183, 43
1822
+ Belloni T., Psaltis D., van der Klis M., 2002, ApJ, 572, 392
1823
+ Belloni T., Homan J., Casella P., van der Klis M., Nespoli E.,
1824
+ Lewin W. H. G., Miller J. M., M´endez M., 2005, A&A, 440,
1825
+ 207
1826
+ Belloni T. M., Motta S. E., Mu˜noz-Darias T., 2011, Bulletin of the
1827
+ Astronomical Society of India, 39, 409
1828
+ Belloni T. M., Sanna A., M´endez M., 2012, MNRAS, 426, 1701
1829
+ Belloni T. M., Zhang L., Kylafis N. D., Reig P., Altamirano D.,
1830
+ 2020, MNRAS, 496, 4366
1831
+ Bhargava Y., Belloni T., Bhattacharya D., Misra R., 2019, MN-
1832
+ RAS, 488, 720
1833
+ Casella P., Belloni T., Homan J., Stella L., 2004, A&A, 426, 587
1834
+ Casella P., Belloni T., Stella L., 2005, ApJ, 629, 403
1835
+ Chauhan J., et al., 2019, MNRAS, 488, L129
1836
+ Chauvin M., et al., 2018, Nature Astronomy, 2, 652
1837
+ Chen X., Swank J. H., Taam R. E., 1997, ApJ, 477, L41
1838
+ C´uneo V. A., et al., 2020, MNRAS, 496, 1001
1839
+ De Marco B., Zdziarski A. A., Ponti G., Migliori G., Belloni T. M.,
1840
+ Segovia Otero A., Dzie�lak M. A., Lai E. V., 2021, A&A, 654,
1841
+ A14
1842
+ Dewangan G. C., Titarchuk L., Griffiths R. E., 2006, ApJ, 637,
1843
+ L21
1844
+ Din¸cer T., 2017, The Astronomer’s Telegram, 10716, 1
1845
+ Done C., Gierli´nski M., Kubota A., 2007, A&A Rev., 15, 1
1846
+ Fabian A. C., et al., 2012, MNRAS, 424, 217
1847
+ Fender R. P., Belloni T. M., Gallo E., 2004, MNRAS, 355, 1105
1848
+ Garc´ıa F., M´endez M., Karpouzas K., Belloni T., Zhang L., Al-
1849
+ tamirano D., 2021, MNRAS, 501, 3173
1850
+ Garc´ıa F., Karpouzas K., M´endez M., Zhang L., Zhang Y., Belloni
1851
+ T., Altamirano D., 2022, MNRAS, 513, 4196
1852
+ Garg A., Misra R., Sen S., 2022, MNRAS, 514, 3285
1853
+ Gendreau K. C., Arzoumanian Z., Okajima T., 2012, in Takahashi
1854
+ T., Murray S. S., den Herder J.-W. A., eds, Society of Photo-
1855
+ Optical Instrumentation Engineers (SPIE) Conference Series
1856
+ Vol. 8443, Space Telescopes and Instrumentation 2012: Ultra-
1857
+ violet to Gamma Ray. p. 844313, doi:10.1117/12.926396
1858
+ Gendreau K. C., et al., 2016, in den Herder J.-W. A., Takahashi T.,
1859
+ Bautz M., eds, Society of Photo-Optical Instrumentation Engi-
1860
+ neers (SPIE) Conference Series Vol. 9905, Space Telescopes and
1861
+ Instrumentation 2016: Ultraviolet to Gamma Ray. p. 99051H,
1862
+ doi:10.1117/12.2231304
1863
+ Gendreau K., et al., 2017, The Astronomer’s Telegram, 10768, 1
1864
+ Gilfanov M., 2010, in Belloni T., ed., , Vol. 794, Lecture Notes
1865
+ in Physics, Berlin Springer Verlag. Springer Berlin Heidelberg,
1866
+ p. 17, doi:10.1007/978-3-540-76937-8 2
1867
+ Homan J., Wijnands R., van der Klis M., Belloni T., van Paradijs
1868
+ J., Klein-Wolt M., Fender R., M´endez M., 2001, ApJS, 132,
1869
+ 377
1870
+ Huang Y., et al., 2018, ApJ, 866, 122
1871
+ Ingram A. R., Motta S. E., 2019, New A Rev., 85, 101524
1872
+ Ingram A., van der Klis M., Middleton M., Done C., Altamirano
1873
+ D., Heil L., Uttley P., Axelsson M., 2016, MNRAS, 461, 1967
1874
+ Kara E., et al., 2019, Nature, 565, 198
1875
+ Karpouzas K., M´endez M., Ribeiro E. M., Altamirano D., Blaes
1876
+ O., Garc´ıa F., 2020, MNRAS, 492, 1399
1877
+ Karpouzas K., M´endez M., Garc´ıa F., Zhang L., Altamirano D.,
1878
+ Belloni T., Zhang Y., 2021, MNRAS, 503, 5522
1879
+ Kawamura T., Done C., Axelsson M., Takahashi T., 2022, arXiv
1880
+ e-prints, p. arXiv:2209.14492
1881
+ Kennea J. A., Evans P. A., Beardmore A. P., Krimm H. A., Ro-
1882
+ mano P., Yamaoka K., Serino M., Negoro H., 2017, The As-
1883
+ tronomer’s Telegram, 10700, 1
1884
+ Koljonen K. I. I., Hannikainen D. C., McCollough M. L., 2011,
1885
+ MNRAS, 416, L84
1886
+ Kumar N., Misra R., 2014, MNRAS, 445, 2818
1887
+ Kylafis N. D., Reig P., 2019, in High Energy Phenomena in Rela-
1888
+ tivistic Outflows VII. p. 37 (arXiv:1911.11975)
1889
+ Kylafis N. D., Tr¨umper J. E., Loudas N. A., 2021, A&A, 655, A39
1890
+ Ma X., et al., 2021, Nature Astronomy, 5, 94
1891
+ Makishima K., Maejima Y., Mitsuda K., Bradt H. V., Remillard
1892
+ R. A., Tuohy I. R., Hoshi R., Nakagawa M., 1986, ApJ, 308,
1893
+ 635
1894
+ Marino A., et al., 2021, A&A, 656, A63
1895
+ Markwardt C. B., Burrows D. N., Cummings J. R., Kennea J. A.,
1896
+ Marshall F. E., Page K. L., Palmer D. M., Siegel M. H., 2017,
1897
+ GRB Coordinates Network, 21788, 1
1898
+ Mastichiadis A., Petropoulou M., Kylafis N. D., 2022, A&A, 662,
1899
+ A118
1900
+ M´endez M., van der Klis M., 1997, ApJ, 479, 926
1901
+ M´endez M., Altamirano D., Belloni T., Sanna A., 2013, MNRAS,
1902
+ 435, 2132
1903
+ M´endez M., Karpouzas K., Garc´ıa F., Zhang L., Zhang Y., Belloni
1904
+ T. M., Altamirano D., 2022, Nature Astronomy, 6, 577
1905
+ Mereminskiy I. A., Grebenev S. A., Prosvetov A. V., Semena A. N.,
1906
+ 2018, Astronomy Letters, 44, 378
1907
+ Miller J. M., et al., 2001, ApJ, 563, 928
1908
+ Miller J. M., et al., 2018, ApJ, 860, L28
1909
+ Mitsuda K., et al., 1984, PASJ, 36, 741
1910
+ Motta S. E., Casella P., Henze M., Mu˜noz-Darias T., Sanna A.,
1911
+ Fender R., Belloni T., 2015, MNRAS, 447, 2059
1912
+ Nakahira S., et al., 2018, PASJ, 70, 95
1913
+ Nathan E., et al., 2022, MNRAS, 511, 255
1914
+ Negoro H., et al., 2017a, The Astronomer’s Telegram, 10699, 1
1915
+ Negoro H., et al., 2017b, The Astronomer’s Telegram, 10708, 1
1916
+ Nowak M. A., 2000, MNRAS, 318, 361
1917
+ Nowak M. A., Dove J. B., Vaughan B. A., Wilms J., Begelman
1918
+ M. C., 1999a, Nuclear Physics B Proceedings Supplements, 69,
1919
+ 302
1920
+ Nowak M. A., Vaughan B. A., Wilms J., Dove J. B., Begelman
1921
+ M. C., 1999b, ApJ, 510, 874
1922
+ Parikh A. S., Russell T. D., Wijnands R., Miller-Jones J. C. A.,
1923
+ Sivakoff G. R., Tetarenko A. J., 2019, ApJ, 878, L28
1924
+ Pasham D. R., Strohmayer T. E., Mushotzky R. F., 2013, ApJ,
1925
+ 771, L44
1926
+ Peirano V., M´endez M., Garc´ıa F., Belloni T., 2022, arXiv e-prints,
1927
+ p. arXiv:2212.00062
1928
+ Psaltis D., Belloni T., van der Klis M., 1999, ApJ, 520, 262
1929
+ Rawat D., et al., 2019, ApJ, 870, 4
1930
+ Reig P., Kylafis N. D., 2021, A&A, 646, A112
1931
+ Reig P., Belloni T., van der Klis M., M´endez M., Kylafis N. D.,
1932
+ Ford E. C., 2000, ApJ, 541, 883
1933
+ Remillard R. A., McClintock J. E., 2006, ARA&A, 44, 49
1934
+ Remillard R. A., Sobczak G. J., Muno M. P., McClintock J. E.,
1935
+ 2002, ApJ, 564, 962
1936
+ Russell T. D., Miller-Jones J. C. A., Sivakoff G. R., Tetarenko A. J.,
1937
+ Jacpot Xrb Collaboration 2017, The Astronomer’s Telegram,
1938
+ 10711, 1
1939
+ Russell T. D., et al., 2019, ApJ, 883, 198
1940
+ Scaringi S., ASTR211 Students 2017, The Astronomer’s Telegram,
1941
+ 10702, 1
1942
+ Sreehari H., Ravishankar B. T., Iyer N., Agrawal V. K., Katoch
1943
+ T. B., Mandal S., Nandi A., 2019, MNRAS, 487, 928
1944
+ Sridhar N., Bhattacharyya S., Chandra S., Antia H. M., 2019, MN-
1945
+ RAS, 487, 4221
1946
+ Stella L., Vietri M., 1998, ApJ, 492, L59
1947
+ Stevens A. L., et al., 2018, ApJ, 865, L15
1948
+ Stiele H., Kong A. K. H., 2018, ApJ, 868, 71
1949
+ Strohmayer T. E., 2001, ApJ, 552, L49
1950
+ Takizawa M., et al., 1997, ApJ, 489, 272
1951
+ Tao L., et al., 2018, MNRAS, 480, 4443
1952
+ MNRAS 000, 1–15 (0000)
1953
+
1954
+ Comptonizing medium of MAXI J1535−571
1955
+ 15
1956
+ Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G., 1996,
1957
+ ApJ, 465, 487
1958
+ Vignarca F., Migliari S., Belloni T., Psaltis D., van der Klis M.,
1959
+ 2003, A&A, 397, 729
1960
+ Vincent F. H., R´o˙za´nska A., Zdziarski A. A., Madej J., 2016, A&A,
1961
+ 590, A132
1962
+ Wang J., et al., 2021, ApJ, 910, L3
1963
+ Wang J., et al., 2022, ApJ, 930, 18
1964
+ Wijnands R., Homan J., van der Klis M., 1999, ApJ, 526, L33
1965
+ Wilms J., Allen A., McCray R., 2000, ApJ, 542, 914
1966
+ Xu Y., et al., 2018, ApJ, 852, L34
1967
+ Zdziarski A. A., Johnson W. N., Magdziarz P., 1996, MNRAS, 283,
1968
+ 193
1969
+ Zhang L., Wang Y., M´endez M., Chen L., Qu J., Altamirano D.,
1970
+ Belloni T., 2017, ApJ, 845, 143
1971
+ Zhang L., et al., 2020, MNRAS, 494, 1375
1972
+ Zhang Y., et al., 2022, MNRAS, 512, 2686
1973
+ ˙Zycki P. T., Done C., Smith D. A., 1999, MNRAS, 309, 561
1974
+ van der Klis M., Jansen F. A., 1985, Nature, 313, 768
1975
+ APPENDIX A:
1976
+ MNRAS 000, 1–15 (0000)
1977
+
1978
+ 16
1979
+ Rawat et. al.
1980
+ Table A.1. The columns are the observation number, the chi-square of the fit to the steady-state spectrum (χ2
1981
+ SSS), rms spectrum (χ2
1982
+ rms),
1983
+ lag spectrum (χ2
1984
+ lag) with, in each case, the number of channels in each spectrum and the total reduced chi-square of the combined fit with
1985
+ degree of freedom.
1986
+ Obs no.
1987
+ χ2
1988
+ SSS (channel)
1989
+ χ2
1990
+ rms (channel)
1991
+ χ2
1992
+ lag (channel)
1993
+ χ2
1994
+ total (dof)
1995
+ 1
1996
+ 206.9 (238)
1997
+ 15.5 (10)
1998
+ 9.0 (10)
1999
+ 231.4 (243)
2000
+ 2
2001
+ 176.5 (237)
2002
+ 7.8 (10)
2003
+ 7.6 (10)
2004
+ 191.9 (242)
2005
+ 3
2006
+ 219.5 (238)
2007
+ 7.7 (10)
2008
+ 13.3 (10)
2009
+ 240.5 (243)
2010
+ 4
2011
+ 205.6 (238)
2012
+ 4.7 (10)
2013
+ 9.4 (10)
2014
+ 219.8 (243)
2015
+ 5
2016
+ 206.8 (238)
2017
+ 13.8 (10)
2018
+ 21.8 (10)
2019
+ 242.3 (243)
2020
+ 6
2021
+ 167.9 (238)
2022
+ 5.1 (10)
2023
+ 4.8 (10)
2024
+ 177.9 (243)
2025
+ 7
2026
+ 165.9 (238)
2027
+ 5.0 (10)
2028
+ 2.4 (10)
2029
+ 173.2 (243)
2030
+ 8
2031
+ 227.7 (238)
2032
+ 4.8 (10)
2033
+ 2.3 (10)
2034
+ 234.8 (243)
2035
+ 9
2036
+ 157.1 (238)
2037
+ 5.0 (10)
2038
+ 7.2 (10)
2039
+ 169.3 (243)
2040
+ 10
2041
+ 146.1 (238)
2042
+ 4.7 (10)
2043
+ 4.3 (10)
2044
+ 155.1 (243)
2045
+ 11
2046
+ 176.4 (217)
2047
+ 13.0 (10)
2048
+ 2.7 (10)
2049
+ 192.2 (222)
2050
+ 12
2051
+ 129.3 (238)
2052
+ 10.6 (10)
2053
+ 12.5 (10)
2054
+ 152.4 (243)
2055
+ 13
2056
+ 157.3 (238)
2057
+ 7.3 (10)
2058
+ 11.8 (10)
2059
+ 176.3 (243)
2060
+ 14
2061
+ 147.0 (238)
2062
+ 17.7 (10)
2063
+ 3.8 (10)
2064
+ 168.4 (242)
2065
+ 15
2066
+ 183.9 (235)
2067
+ 9.3 (10)
2068
+ 2.7 (10)
2069
+ 195.8 (239)
2070
+ 16
2071
+ 146.9 (238)
2072
+ 13.3 (7)
2073
+ 4.8 (7)
2074
+ 165.0 (236)
2075
+ 17
2076
+ 142.4 (238)
2077
+ 23.0 (10)
2078
+ 11.6 (10)
2079
+ 177.0 (242)
2080
+ 18
2081
+ 240.5 (231)
2082
+ 3.0 (7)
2083
+ 0.9 (7)
2084
+ 244.4 (229)
2085
+ 19
2086
+ 184.0 (238)
2087
+ 10.5 (10)
2088
+ 9.1 (10)
2089
+ 203.6 (242)
2090
+ 20
2091
+ 185.3 (235)
2092
+ 3.7 (10)
2093
+ 15.5 (10)
2094
+ 204.5 (240)
2095
+ 21
2096
+ 181.6 (216)
2097
+ 11.6 (7)
2098
+ 5.1 (7)
2099
+ 198.2 (215)
2100
+ 22
2101
+ 211.3 (214)
2102
+ 23.1 (10)
2103
+ 23.6 (10)
2104
+ 258.0 (219)
2105
+ 23
2106
+ 183.8 (232)
2107
+ 26.2 (10)
2108
+ 13.1 (11)
2109
+ 223.1 (238)
2110
+ 24
2111
+ 184.1 (238)
2112
+ 5.0 (10)
2113
+ 2.3 (9)
2114
+ 191.4 (241)
2115
+ 25
2116
+ 159.6 (238)
2117
+ 5.2 (10)
2118
+ 10.1 (10)
2119
+ 174.9 (242)
2120
+ Note: Notice that some parameters are linked in the combined fits and therefore we cannot give the number of degrees of freedom for
2121
+ each individual fit. So, channel numbers for individual spectra are given here.
2122
+ Figure A1. The top and bottom panels show respectively the fractional rms and phase-lag spectra of the type-C QPO in MAXI J1535−571
2123
+ fitted with vkompthdk model. The 2.0–3.0 keV band is the reference band for the phase lag spectra.
2124
+ MNRAS 000, 1–15 (0000)
2125
+
2126
+ Comptonizing medium of MAXI J1535−571
2127
+ 17
2128
+ Table A.2. The columns are the observation number, QPO frequency, QPO fractional rms amplitude and time lags at the QPO frequency
2129
+ of MAXI J1535−571. Here rms1 and lag1 are in the 0.5–2.0 keV band, rms2 and lag2 are in the 2.0–4.0 keV band, and rms3 and lag3 are
2130
+ in the 4.0–10.0 keV band. The reference band for lags is 0.5–10.0 keV.
2131
+ Obs no.
2132
+ QPO frequency
2133
+ QPO fractional
2134
+ lag1
2135
+ QPO fractional
2136
+ lag2
2137
+ QPO fractional
2138
+ lag3
2139
+ (Hz)
2140
+ rms1 (%)
2141
+ (msec)
2142
+ rms2 (%)
2143
+ (msec)
2144
+ rms3 (%)
2145
+ (msec)
2146
+ 1
2147
+ 2.74 ± 0.01
2148
+ 5.2 ± 0.1
2149
+ 10.2 ± 1.0
2150
+ 7.3 ± 0.2
2151
+ −1.49 ± 0.38
2152
+ 9.4 ± 0.3
2153
+ −6.4 ± 0.7
2154
+ 2
2155
+ 2.44 ± 0.01
2156
+ 5.0 ± 0.2
2157
+ 12.5 ± 0.9
2158
+ 6.7 ± 0.2
2159
+ −2.22 ± 0.41
2160
+ 8.7 ± 0.3
2161
+ −7.1 ± 0.7
2162
+ 3
2163
+ 2.32 ± 0.01
2164
+ 5.5 ± 0.2
2165
+ 12.7 ± 1.2
2166
+ 6.8 ± 0.3
2167
+ −3.20 ± 0.54
2168
+ 8.8 ± 0.4
2169
+ −6.0 ± 1.1
2170
+ 4
2171
+ 1.83 ± 0.01
2172
+ 5.8 ± 0.1
2173
+ 12.5 ± 0.8
2174
+ 7.4 ± 0.2
2175
+ −4.63 ± 0.38
2176
+ 8.7 ± 0.3
2177
+ −2.7 ± 0.7
2178
+ 5
2179
+ 1.81 ± 0.00
2180
+ 5.8 ± 0.1
2181
+ 12.1 ± 0.5
2182
+ 7.4 ± 0.1
2183
+ −4.20 ± 0.22
2184
+ 9.2 ± 0.1
2185
+ −3.2 ± 0.4
2186
+ 6
2187
+ 2.15 ± 0.01
2188
+ 5.6 ± 0.2
2189
+ 14.0 ± 0.9
2190
+ 7.1 ± 0.2
2191
+ −3.24 ± 0.39
2192
+ 8.6 ± 0.3
2193
+ −7.1 ± 0.7
2194
+ 7
2195
+ 2.41 ± 0.01
2196
+ 5.8 ± 0.2
2197
+ 13.3 ± 1.2
2198
+ 7.7 ± 0.3
2199
+ −1.59 ± 0.47
2200
+ 9.8 ± 0.4
2201
+ −9.4 ± 0.9
2202
+ 8
2203
+ 2.77 ± 0.01
2204
+ 5.5 ± 0.2
2205
+ 12.6 ± 1.1
2206
+ 7.6 ± 0.2
2207
+ −2.05 ± 0.42
2208
+ 9.5 ± 0.4
2209
+ −6.9 ± 0.9
2210
+ 9
2211
+ 2.75 ± 0.02
2212
+ 5.3 ± 0.2
2213
+ 12.3 ± 1.3
2214
+ 7.2 ± 0.2
2215
+ −1.35 ± 0.57
2216
+ 10.0 ± 0.4
2217
+ −8.4 ± 1.1
2218
+ 10
2219
+ 3.27 ± 0.02
2220
+ 4.9 ± 0.2
2221
+ 9.1 ± 1.5
2222
+ 7.1 ± 0.3
2223
+ −1.44 ± 0.54
2224
+ 10.6 ± 0.4
2225
+ −5.5 ± 1.0
2226
+ 11
2227
+ 3.19 ± 0.03
2228
+ 5.3 ± 0.3
2229
+ 12.6 ± 1.7
2230
+ 7.0 ± 0.3
2231
+ −1.42 ± 0.65
2232
+ 10.5 ± 0.5
2233
+ −7.1 ± 1.1
2234
+ 12
2235
+ 2.72 ± 0.01
2236
+ 4.7 ± 0.2
2237
+ 13.7 ± 0.9
2238
+ 6.9 ± 0.2
2239
+ −1.79 ± 0.33
2240
+ 9.3 ± 0.3
2241
+ −8.1 ± 0.6
2242
+ 13
2243
+ 2.84 ± 0.01
2244
+ 5.4 ± 0.2
2245
+ 13.1 ± 0.9
2246
+ 7.6 ± 0.2
2247
+ −2.10 ± 0.32
2248
+ 10.4 ± 0.3
2249
+ −6.7 ± 0.6
2250
+ 14
2251
+ 4.75 ± 0.01
2252
+ 3.2 ± 0.3
2253
+ 9.3 ± 0.8
2254
+ 5.6 ± 0.1
2255
+ 0.23 ± 0.24
2256
+ 9.7 ± 0.2
2257
+ −6.2 ± 0.4
2258
+ 15
2259
+ 9.01 ± 0.04
2260
+ −−
2261
+ 4.4 ± 0.4
2262
+ 1.5 ± 0.1
2263
+ 0.07 ± 0.15
2264
+ 3.7 ± 0.1
2265
+ −3.2 ± 0.2
2266
+ 16
2267
+ 7.54 ± 0.05
2268
+ 1.4 ± 0.4
2269
+ 6.4 ± 0.6
2270
+ 2.2 ± 0.3
2271
+ 0.50 ± 0.26
2272
+ 6.0 ± 0.2
2273
+ −4.7 ± 0.3
2274
+ 17
2275
+ 7.54 ± 0.06
2276
+ 1.3 ± 0.2
2277
+ 5.3 ± 0.5
2278
+ 2.8 ± 0.1
2279
+ 0.20 ± 0.14
2280
+ 5.9 ± 0.2
2281
+ −3.9 ± 0.2
2282
+ 18
2283
+ 7.09 ± 0.03
2284
+ 1.1 ± 0.1
2285
+ 4.8 ± 0.4
2286
+ 2.2 ± 0.1
2287
+ 0.01 ± 0.12
2288
+ 5.3 ± 0.1
2289
+ −3.6 ± 0.2
2290
+ 19
2291
+ 5.42 ± 0.01
2292
+ 2.7 ± 0.1
2293
+ 7.9 ± 0.5
2294
+ 4.6 ± 0.1
2295
+ −0.21 ± 0.17
2296
+ 9.3 ± 0.2
2297
+ −4.6 ± 0.2
2298
+ 20
2299
+ 5.73 ± 0.01
2300
+ 2.6 ± 0.1
2301
+ 8.3 ± 0.2
2302
+ 4.4 ± 0.1
2303
+ −0.40 ± 0.08
2304
+ 9.1 ± 0.1
2305
+ −4.3 ± 0.1
2306
+ 21
2307
+ 6.77 ± 0.02
2308
+ 1.9 ± 0.1
2309
+ 6.4 ± 0.3
2310
+ 3.3 ± 0.1
2311
+ −0.24 ± 0.10
2312
+ 7.6 ± 0.1
2313
+ −3.7 ± 0.1
2314
+ 22
2315
+ 4.57 ± 0.01
2316
+ 2.8 ± 0.1
2317
+ 10.8 ± 0.4
2318
+ 4.6 ± 0.1
2319
+ −0.91 ± 0.13
2320
+ 8.2 ± 0.2
2321
+ −5.6 ± 0.2
2322
+ 23
2323
+ 4.82 ± 0.01
2324
+ 2.0 ± 0.1
2325
+ 9.5 ± 0.5
2326
+ 4.0 ± 0.0
2327
+ −0.39 ± 0.13
2328
+ 6.3 ± 0.1
2329
+ −5.3 ± 0.2
2330
+ 24
2331
+ 5.19 ± 0.03
2332
+ 2.0 ± 0.2
2333
+ 7.7 ± 1.7
2334
+ 2.9 ± 0.2
2335
+ −0.23 ± 0.51
2336
+ 7.2 ± 0.3
2337
+ −4.6 ± 0.8
2338
+ 25
2339
+ 4.50 ± 0.01
2340
+ 3.1 ± 0.1
2341
+ 9.1 ± 0.6
2342
+ 5.2 ± 0.1
2343
+ −0.69 ± 0.22
2344
+ 9.2 ± 0.2
2345
+ −5.1 ± 0.4
2346
+ MNRAS 000, 1–15 (0000)
2347
+
2348
+ 18
2349
+ Rawat et. al.
2350
+ 0.1
2351
+ 1
2352
+ 10
2353
+ 100
2354
+ 1000
2355
+ 104
2356
+ counts s−1 keV−1
2357
+ 0.1
2358
+ 0.02
2359
+ 0.05
2360
+ Fractional rms
2361
+ 1
2362
+ 10
2363
+ 2
2364
+ 5
2365
+ 0
2366
+ 0.5
2367
+ Phase lags (rad)
2368
+ Energy (keV)
2369
+ −2
2370
+ 0
2371
+ 2
2372
+ (data−model)/error
2373
+ −2
2374
+ −1
2375
+ 0
2376
+ 1
2377
+ 2
2378
+ (data−model)/error
2379
+ 1
2380
+ 10
2381
+ 2
2382
+ 5
2383
+ −2
2384
+ 0
2385
+ 2
2386
+ (data−model)/error
2387
+ Energy (keV)
2388
+ Figure A2. The same plot as shown in Figure 7 at ∼4.5 Hz QPO frequency in MAXI J1535−571.
2389
+ MNRAS 000, 1–15 (0000)
2390
+
2391
+ Comptonizing medium of MAXI J1535−571
2392
+ 19
2393
+ 0.1
2394
+ 1
2395
+ 10
2396
+ 100
2397
+ 1000
2398
+ 104
2399
+ counts s−1 keV−1
2400
+ 0.01
2401
+ 0.1
2402
+ 0.02
2403
+ 0.05
2404
+ Fractional rms
2405
+ 1
2406
+ 10
2407
+ 2
2408
+ 5
2409
+ −0.2
2410
+ 0
2411
+ 0.2
2412
+ 0.4
2413
+ Phase lags (rad)
2414
+ Energy (keV)
2415
+ −2
2416
+ 0
2417
+ 2
2418
+ (data−model)/error
2419
+ −2
2420
+ −1
2421
+ 0
2422
+ 1
2423
+ 2
2424
+ (data−model)/error
2425
+ 1
2426
+ 10
2427
+ 2
2428
+ 5
2429
+ −1
2430
+ 0
2431
+ 1
2432
+ (data−model)/error
2433
+ Energy (keV)
2434
+ Figure A3. The same plot as shown in Figure 7 at ∼7.0 Hz QPO frequency in MAXI J1535−571.
2435
+ 2
2436
+ 3
2437
+ 4
2438
+ 5
2439
+ 6
2440
+ 7
2441
+ 8
2442
+ 9
2443
+ QPO frequency (Hz)
2444
+ 0.4
2445
+ 0.5
2446
+ 0.6
2447
+ 0.7
2448
+ 0.8
2449
+ 0.9
2450
+ 1.0
2451
+ η
2452
+ Figure A4. Dependence of the η upon QPO frequency in MAXI J1535−571. The values of η are obtained from the fits to the time-averaged
2453
+ spectra, the rms and phase-lag spectra of the QPO.
2454
+ MNRAS 000, 1–15 (0000)
2455
+
6dE3T4oBgHgl3EQfRAnz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dE2T4oBgHgl3EQf7gj3/content/2301.04211v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f374a1fcc81edc96ccb03793fac8a0ceb9e21441f02e5fd441d61ac7dfadf209
3
+ size 629639
7dE2T4oBgHgl3EQf7gj3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d655f504d34cb13fcf1d8926b435af2efc8a87debeb20a28a62c1d128efd16cc
3
+ size 2490413
7dE2T4oBgHgl3EQf7gj3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18faade68acb72c68248083b7f891edbd95bfb610da13a0a8c6d80cbec7a7843
3
+ size 105677
89AzT4oBgHgl3EQfFPox/content/tmp_files/2301.01006v1.pdf.txt ADDED
@@ -0,0 +1,1086 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ POLICY PRE-TRAINING FOR AUTONOMOUS DRIVING
2
+ VIA SELF-SUPERVISED GEOMETRIC MODELING
3
+ Penghao Wu1,2∗ Li Chen1 Hongyang Li1,3† Xiaosong Jia1,3∗ Junchi Yan1,3 Yu Qiao1
4
+ 1OpenDriveLab, Shanghai AI Laboratory
5
+ 2UC San Diego
6
+ 3Shanghai Jiao Tong University
7
+ ABSTRACT
8
+ Witnessing the impressive achievements of pre-training techniques on large-scale
9
+ data in the field of computer vision and natural language processing, we won-
10
+ der whether this idea could be adapted in a grab-and-go spirit, and mitigate the
11
+ sample inefficiency problem for visuomotor driving. Given the highly dynamic
12
+ and variant nature of the input, the visuomotor driving task inherently lacks view
13
+ and translation invariance, and the visual input contains massive irrelevant in-
14
+ formation for decision making, resulting in predominant pre-training approaches
15
+ from general vision less suitable for the autonomous driving task. To this end,
16
+ we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive
17
+ and straightforward fully self-supervised framework curated for the policy pre-
18
+ training in visuomotor driving. We aim at learning policy representations as a
19
+ powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled
20
+ and uncalibrated YouTube driving videos. The proposed PPGeo is performed in
21
+ two stages to support effective self-supervised training. In the first stage, the
22
+ geometric modeling framework generates pose and depth predictions simulta-
23
+ neously, with two consecutive frames as input. In the second stage, the visual
24
+ encoder learns driving policy representation by predicting the future ego-motion
25
+ and optimizing with the photometric error based on current visual observation
26
+ only. As such, the pre-trained visual encoder is equipped with rich driving pol-
27
+ icy related representations and thereby competent for multiple visuomotor driv-
28
+ ing tasks. As a side product, the pre-trained geometric modeling networks could
29
+ bring further improvement to the depth and odometry estimation tasks. Extensive
30
+ experiments covering a wide span of challenging scenarios have demonstrated
31
+ the superiority of our proposed approach, where improvements range from 2%
32
+ to even over 100% with very limited data. Code and models will be available at
33
+ https://github.com/OpenDriveLab/PPGeo.
34
+ 1
35
+ INTRODUCTION
36
+ Policy learning refers to the learning process of an autonomous agent acquiring the decision-making
37
+ policy to perform a certain task in a particular environment. Visuomotor policy learning (Mnih et al.,
38
+ 2015; Levine et al., 2016; Hessel et al., 2018; Laskin et al., 2020; Toromanoff et al., 2020) takes as
39
+ input raw sensor observations and predicts the action, simultaneously cooperating and training the
40
+ perception and control modules in an end-to-end fashion. For visuomotor policy models, learning
41
+ tabula rasa is difficult, where it usually requires a prohibitively large corpus of labeled data or en-
42
+ vironment interactions to achieve satisfactory performance (Espeholt et al., 2018; Wijmans et al.,
43
+ 2019; Yarats et al., 2020).
44
+ To mitigate the sample efficiency caveat in visuomotor policy learning, pre-training the visual per-
45
+ ception network in advance is a promising solution. Recent studies (Shah & Kumar, 2021; Parisi
46
+ et al., 2022; Xiao et al., 2022; Radosavovic et al., 2022; Shah et al., 2022) have demonstrated that
47
+ applying popular visual pre-training approaches, including ImageNet (Deng et al., 2009) classifica-
48
+ tion, contrastive learning (He et al., 2020; Chen et al., 2020c), masked image modeling (MIM) (He
49
+ et al., 2022; Xie et al., 2022), and language-vision pre-training (Radford et al., 2021), could guar-
50
+ antee superior representation for robotic policy learning tasks, e.g., dexterous manipulation, motor
51
+ ∗Work done during internship at Shanghai AI Laboratory.
52
+ †Corresponding author. Email to: [email protected]
53
+ 1
54
+ arXiv:2301.01006v1 [cs.CV] 3 Jan 2023
55
+
56
+ Figure 1: Uniqueness of visuomotor driving policy learning. The planned trajectory is shown as red
57
+ points. (a) static obstacles and background buildings (objects in yellow rectangles) are irrelevant to
58
+ the driving decision; (b) the traffic signal in the visual input (marked with the green box) is extremely
59
+ difficult to recognize and yet deterministic for control outputs; (c) the pre-trained visual encoder has
60
+ to be robust to different light and weather conditions. Photo credit from (Caesar et al., 2020).
61
+ control skills and visual navigation. However, for one crucial and challenging visuomotor task in
62
+ particular, namely end-to-end autonomous driving1, the aforementioned predominant pre-training
63
+ methods may not be the optimal choice (Yamada et al., 2022; Zhang et al., 2022b).
64
+ In this paper, we aim to investigate why ever-victorious pre-training approaches for general computer
65
+ vision tasks and robotic control tasks are prone to fail in case of end-to-end autonomous driving.
66
+ For conventional pre-training methods in general vision tasks, e.g., classification, segmentation and
67
+ detection, they usually adopt a wide range of data augmentations to achieve translation and view
68
+ invariance (Zhang et al., 2016; Wu et al., 2018). For robotic control tasks, the input sequence is
69
+ generally of small resolution; the environment setting is simple and concentrated on objects (Parisi
70
+ et al., 2022; Radosavovic et al., 2022). We argue that the visuomotor driving investigated in this
71
+ paper, is sensitive to geometric relationships and usually comprises complex scenarios.
72
+ As described in Fig. 1(a), the input data often carry irrelevant information, such as background
73
+ buildings, far-away moving vehicles, nearby static obstacles, etc., which are deemed as noises for
74
+ the decision making task. To obtain a good driving policy, we argue that the desirable model should
75
+ only concentrate on particular parts/patterns of the visual input. That is, taking heed of direct or
76
+ deterministic relation to the decision making, e.g., traffic signals in Fig. 1(b). However, concurrent
77
+ pre-training approaches fail to fulfill such a requirement. There comes a natural and necessary
78
+ demand to formulate a pre-training scheme curated for end-to-end autonomous driving. We attempt
79
+ to pre-train a visual encoder with a massive amount of driving data crawled freely from the web,
80
+ such that given limited labeled data, downstream applications could generalize well and quickly
81
+ adapt to various driving environments as depicted in Fig. 1(c).
82
+ The pivotal question is how to introduce driving-decision awareness into the pre-training process
83
+ to help the visual encoder concentrate on crucial visual cues for driving policy. One may resort
84
+ to directly predicting ego-motion based on single frame sensor input, constraining the network on
85
+ learning policy-related features. Previous literature tackles the supervision problem with pseudo
86
+ labeling training on either an open dataset (Zhang et al., 2022b) or the target domain data (Zhang
87
+ et al., 2022a). However, pseudo labeling approaches suffer from noisy predictions from poorly
88
+ calibrated models - this is true especially when there exists distinct domain gap such as geographical
89
+ locations and traffic complexities (Rizve et al., 2020).
90
+ To address the bottleneck aforementioned, we propose PPGeo (Policy Pre-training via Geometric
91
+ modeling), a fully self-supervised driving policy pre-training framework to learn from unlabeled
92
+ and uncalibrated driving videos. It models the 3D geometric scene by jointly predicting ego-motion,
93
+ depth, and camera intrinsics. Since directly learning ego-motion based on single frame input along
94
+ with depth and intrinsics training from scratch is too difficult, it is necessary to separate the visual en-
95
+ coder pre-training from depth and intrinsics learning in two stages. In the first stage, the ego-motion
96
+ is predicted based on consecutive frames as does in conventional depth estimation frameworks (Go-
97
+ dard et al., 2017; 2019). In the second stage, the future ego-motion is estimated based on the single
98
+ frame by a visual encoder, and could be optimized with the depth and camera intrinsics network
99
+ well-learned in the first stage. As such, the visual encoder is capable of inferring future ego-motion
100
+ based on current input alone. The pre-trained visual encoder could be well adopted for downstream
101
+ driving tasks since it captures driving policy related information. As a side product, the depth and
102
+ 1We use end-to-end autonomous driving and visuomotor autonomous driving interchangeably in this paper.
103
+ 2
104
+
105
+ Irrelevant Object
106
+ Deterministic Signal
107
+ Light/Weather Variation
108
+ (a)
109
+ (b)
110
+ (c)𝐼𝑡+1
111
+ 𝐼𝑡
112
+ PoseNet
113
+ DepthNet
114
+ Visual Encoder
115
+ (Our Focus)
116
+ Depth 𝐷𝑡
117
+ (a) Self-supervised Visuomotor Policy Pre-training
118
+ (b) Downstream Tasks
119
+ Intrinsic K
120
+ Ego Motion T
121
+ Photometric
122
+ Reconstruction
123
+ Ego Motion T
124
+ Photometric
125
+ Reconstruction
126
+ 𝐼𝑡
127
+ a.1 Stage One
128
+ a.2 Stage Two
129
+ - Single frame input
130
+ - Since a car is ahead
131
+ - We need to STOP
132
+ - Consecutive frames input
133
+ - Since frames barely change
134
+ - We need to STOP
135
+ frozen
136
+ Visual Encoder
137
+ (Fine-tuned)
138
+ Policy Learning
139
+ Visual Input
140
+ Figure 2: Overview of PPGeo. (a) We focus on pre-training an effective visual encoder to encode
141
+ driving policy related information by predicting ego-motion based on single frame input (a.2 Stage
142
+ Two). As achieving such a goal without labels is non-trivial, the visual encoder is obtained with the
143
+ aid of a preceding procedure (a.1 Stage One) with temporal inputs and two sub-networks (pose and
144
+ depth). In this illustrative example, the ego-vehicle needs to take action of STOP. The ego-motion
145
+ in (a.1) is inferred by judging two consecutive frames barely change; whilst the ego-motion in (a.2)
146
+ is predicted based on single visual input - focusing on driving policy related information. As such,
147
+ the visual encoder could be fine-tuned and applied to a wide span of downstream tasks in (b).
148
+ pose networks could be utilized as new initial weights for depth and odometry estimation tasks,
149
+ bringing in an additional performance gain. To sum up, our key contributions are three-fold:
150
+ • We propose a pre-training paradigm curated for various visuomotor driving tasks. To the best of
151
+ our knowledge, this is the first attempt to achieve a fully self-supervised framework without any
152
+ need of pseudo-labels2, leveraging the effect of pre-training by large-scale data to the full extent.
153
+ • We devise a visual encoder capable of predicting ego-motion based on single visual input, being
154
+ able to extract feature representations closely related to driving policy. Such a design of visual
155
+ encoder is flexible to extend to various downstream applications.
156
+ • We demonstrate the superiority of our approach on a set of end-to-end driving scenarios, covering
157
+ different types and difficulty levels. The performance in terms of various metrics is improved from
158
+ 2% to even over 100% in challenging cases with very limited data.
159
+ 2
160
+ METHODOLOGY
161
+ 2.1
162
+ OVERVIEW
163
+ The visuomotor policy learning for autonomous driving targets generating a policy π, such that it
164
+ makes driving decisions, e.g., control actions or planned trajectory, from visual observation x. Our
165
+ goal is to pre-train a visual encoder φ(x), which maps the raw image input to a compact repre-
166
+ sentation containing important information for driving decision making. The representation is then
167
+ utilized by the policy π(φ(x)) to perform driving tasks. As shown in Fig. 2, our pre-training method
168
+ pre-trains the visual encoder on unlabeled driving videos via two stages in a self-supervised manner.
169
+ 2.2
170
+ TWO-STAGE SELF-SUPERVISED TRAINING
171
+ Stage One: Self-supervised Geometric Modeling. During the first stage, given a target image It
172
+ and source images It′ in a sequence, we jointly estimate the depth of the target image, the intrinsics
173
+ of the camera, and the 6-DoF ego-motion between these two frames. Given the estimations, we are
174
+ able to model the 3D geometry of the scene, and reconstruct the target image by projecting pixels in
175
+ 2Pseudo-labels here mean using another model trained on additional labeled data to create “artificial” labels
176
+ for the unlabeled dataset.
177
+ 3
178
+
179
+ the source images. Formally, the pixel-wise correspondence between It and It′ is calculated as:
180
+ pt′ = KTt→t′Dt(pt)K−1pt,
181
+ (1)
182
+ where pt and pt′ are the homogeneous coordinates of the pixel in It and It′ respectively, K is the
183
+ predicted camera intrinsic matrix, and Dt(pt) represents the predicted depth value at pixel pi in
184
+ It. With this relationship, the target image It′→t could be reconstructed with pixels in It′, and be
185
+ optimized by the photometric reconstruction error. Following Godard et al. (2019), we choose two
186
+ images adjacent to the current frame as the source images, i.e., t′ ∈ {t − 1, t + 1}.
187
+ The DepthNet consists of a common encoder-decoder structure (Godard et al., 2019) and estimates
188
+ the depth map of the input image. Two images are stacked together and fed into the encoder of
189
+ the PoseNet, whose bottleneck feature is then utilized to predict the camera intrinsics and the ego-
190
+ motion via two separate MLP-based heads. For camera intrinsics estimation, optical center (cx, cy)
191
+ and focal lengths fx, fy are regressed similarly as in Gordon et al. (2019); Chanduri et al. (2021).
192
+ Stage Two: Visuomotor Policy Pre-training. After the first stage of training, the DepthNet and
193
+ PoseNet are well trained and fitted to the driving video data. Then, in the second stage, we replace
194
+ the PoseNet for ego-motion estimation with the visual encoder φ(x) prepared for downstream driv-
195
+ ing policy learning tasks. Now the visual encoder only takes a single frame image as input and
196
+ predicts ego-motion between the current frame and subsequent frame.
197
+ Specifically, the visual encoder estimates the ego-motion Tt→t+1 based on It alone and Tt→t−1
198
+ based on It−1 followed by an inverse operation, respectively. The visual encoder is optimized
199
+ by the photometric reconstruction error similar to the first stage, aside from a modification where
200
+ the DepthNet and the intrinsics estimation are frozen and not backpropagated. This is empirically
201
+ observed towards better performance. By doing so, the visual encoder is enforced to learn the actual
202
+ driving policy, since the ego-motion between two consecutive frames is straightforwardly related to
203
+ the driving decision or action taken at the current timestamp.
204
+ One might argue that the PoseNet trained in the first stage could provide pseudo motion labels, with
205
+ which the visual encoder could be directly supervised. However, the ego-motion predicted from
206
+ the PoseNet is too sparse compared with the geometric projection approach. In our pipeline, every
207
+ pixel provides supervision for the visual encoder so that inaccurate depth estimation in some pixels
208
+ could be mitigated by the accurate ones, i.e., it constructs a “global” optimization. In contrast, direct
209
+ supervision from the PoseNet would be greatly affected by the undesirable prediction inaccuracy
210
+ and noise results. This is especially true for diverse uncalibrated online videos (Zhang et al., 2022a).
211
+ Thus far, the backbone of visual encoder φ(x) has gained knowledge about the driving policy from
212
+ the diverse driving videos. It can then be applied to downstream visuomotor autonomous driving
213
+ tasks as the initial weights. Besides, the DepthNet and PoseNet trained on this large corpus of
214
+ uncalibrated video data could also be utilized in depth and odometry estimation tasks.
215
+ 2.3
216
+ LOSS FUNCTION
217
+ Following Godard et al. (2019), the loss function is comprised of the photometric loss and the
218
+ smoothness loss. The photometric error is comprised of an ℓ1 term and an SSIM (structural similarity
219
+ index measure) term (Wang et al., 2004):
220
+ ℓpe = α
221
+ 2 (1 − SSIM(It, It′→t)) + (1 − α)ℓ1(It, It′→t),
222
+ (2)
223
+ where we set α = 0.85 following the practice (Godard et al., 2017; 2019). The smooth loss is:
224
+ ℓs = |∂xd∗
225
+ t |e−|∂xIt| + |∂yd∗
226
+ t |e−|∂yIt|,
227
+ (3)
228
+ where d∗
229
+ t is the mean-normalized inverse depth map. We also adopt the minimum reprojection loss
230
+ and auto-masking scheme (Godard et al., 2019) to improve self-supervised depth estimation.
231
+ 3
232
+ EXPERIMENTS
233
+ All pre-training experiments are conducted on the hours-long unlabeled YouTube driving
234
+ videos (Zhang et al., 2022b). It covers different driving conditions e.g., geographical locations and
235
+ weather. We sample 0.8 million frames in total at 1 Hz for training. For the first stage in PPGeo
236
+ 4
237
+
238
+ pipeline, we train the model for 30 epochs by Adam (Kingma & Ba, 2015) optimizer with a learning
239
+ rate of 10−4 which drops to 10−5 after 25 epochs. For the second stage, the encoder is trained for 20
240
+ epochs using the AdamW (Loshchilov & Hutter, 2017) optimizer. A cyclic learning rate scheduler
241
+ is applied with the learning rate ranging from 10−6 to 10−4. The batch size for both stages is 128.
242
+ We use data augmentations including ColorJitter, RamdomGrayScale, and GaussianBlur.
243
+ 3.1
244
+ DESCRIPTION ON COMPARED BASELINES
245
+ We use ResNet-34 (He et al., 2016) as the encoder and load different pre-trained weights for the
246
+ initialization of downstream tasks. We compare PPGeo with pre-training methods including:
247
+ Random. We use the default Kaiming initialization (He et al., 2015) for convolution layers and
248
+ constant initialization for batchnorms.
249
+ ImageNet. We use the model weight provided by Torchvision (Marcel & Rodriguez, 2010), which
250
+ is pre-trained with the classification task on ImageNet (Deng et al., 2009).
251
+ MIM. The model is pre-trained with the masked image modeling method on the YouTube driving
252
+ video, which tries to reconstruct images with random masked-out patches. SimMIM (Xie et al.,
253
+ 2022) is adopted as it is suitable for convolutional networks.
254
+ MoCo. We pre-train the model using MoCo-v2 (Chen et al., 2020c) on the YouTube driving videos.
255
+ We exclude RandomResizedCrop and RandomHorizontalFlip augmentations as they are not suitable
256
+ for the driving task.
257
+ ACO. Following Zhang et al. (2022b), it is pre-trained using action-conditioned contrastive learning
258
+ on the YouTube driving videos. ACO trains an inverse dynamic model to generate pseudo steer
259
+ labels for driving videos, based on which steer-based discrimination is added on top of MoCo-v2.
260
+ SelfD. SelfD (Zhang et al., 2022a) is not a pre-training method strictly since it needs to train the
261
+ whole policy model on the driving video for each task, while other pre-training methods aforemen-
262
+ tioned provide a general pre-training visual model for all tasks. We still include it for comparison
263
+ due to its close relationship to our target. Specifically, we follow Zhang et al. (2022a) to train the
264
+ model for each task with the following pipeline: training on the task data → training on the YouTube
265
+ data with pseudo-label → fine-tuning on the task data.
266
+ 3.2
267
+ DESCRIPTION ON DOWNSTREAM AUTONOMOUS DRIVING TASKS
268
+ We carry out experiments under (1) three imitation learning based closed-loop driving tasks in
269
+ CARLA (Dosovitskiy et al., 2017), (2) one reinforcement learning based driving task in CARLA,
270
+ and (3) an open-loop planning task on real-world autonomous driving dataset nuScenes (Caesar
271
+ et al., 2020), to fully validate the effectiveness of PPGeo. We briefly describe each task below.
272
+ Navigation.
273
+ It corresponds to the goal-conditioned navigation task in the CoRL2017 bench-
274
+ mark (Dosovitskiy et al., 2017). The agent is trained in Town01 and tested in Town02 with unseen
275
+ weather, and there are no other traffic participants. We use different sizes of training data (from
276
+ 4K to 40K) following Zhang et al. (2022b) to evaluate the generalization ability of pre-trained vi-
277
+ sual encoders when labeled data is limited and conduct the closed-loop evaluation. The evaluation
278
+ metric is success rate, denoting the portion of 50 pre-defined routes finished without any collision.
279
+ And traffic lights are ignored here. CILRS (Codevilla et al., 2019), a classic image based end-to-end
280
+ autonomous driving model, is adopted for training and evaluation.
281
+ Navigation Dynamic. This is the navigation dynamic task in the CoRL2017 benchmark (Dosovit-
282
+ skiy et al., 2017). The setting differentiates from Navigation that there are other dynamic objects
283
+ such as randomly generated vehicles, which substantially increases the difficulty of driving safety.
284
+ Leaderboard Town05-long. This challenging and realistic benchmark corresponds to the Leader-
285
+ Board benchmark (CARLA, 2022). We collect 40K training data in Town01, 03, 04, 06 and eval-
286
+ uate on 10 routes in the unseen Town05 (Prakash et al., 2021). Due to the challenging scenarios
287
+ in this task, we evaluate different pre-training approaches with the state-of-the-art image-based au-
288
+ tonomous driving model TCP (Wu et al., 2022). The major metrics of this task are Driving Score,
289
+ Route Completion, and Infraction Score (all the higher the better). Route Completion denotes the
290
+ portion of the route completed by the agent. Infraction Score is the number of infractions made
291
+ 5
292
+
293
+ Table 1: The Successful Rate results of the closed-loop Navigation task (mean by 3 random trials).
294
+ Pre-train Method
295
+ Navigation - # of training samples
296
+ 10% (4K)
297
+ 20% (8K)
298
+ 40% (16K)
299
+ 100% (40K)
300
+ Random
301
+ 0.0 ± 0.0
302
+ 9.6 ± 5.2
303
+ 15.3 ± 4.5
304
+ 73.3 ± 2.3
305
+ ImageNet
306
+ 24.7± 2.0
307
+ 42.0 ± 2.0
308
+ 69.3 ± 6.4
309
+ 87.3 ± 4.6
310
+ MIM
311
+ 4.7 ± 1.2
312
+ 8.0 ± 0.0
313
+ 31.3 ± 2.3
314
+ 57.3 ± 3.1
315
+ MoCo
316
+ 7.7 ± 2.1
317
+ 39.3 ± 9.2
318
+ 48.7 ± 4.2
319
+ 69.3 ± 1.2
320
+ ACO
321
+ 24.0 ± 2.0
322
+ 44.0 ± 1.2
323
+ 71.3 ± 1.2
324
+ 92.0 ± 3.5
325
+ SelfD
326
+ 12.0± 0.0
327
+ 32.0 ± 0.0
328
+ 50.7 ± 2.3
329
+ 62.7 ± 1.2
330
+ PPGeo (ours)
331
+ 42.0 ± 2.0
332
+ 73.3 ± 6.1
333
+ 91.3 ± 1.2
334
+ 96.7 ± 1.2
335
+ along the route including pedstrain collisions, vehicle collisions, red light infractions, etc. And the
336
+ main metric Driving Score is the product of Route Completion and Infraction Score.
337
+ Reinforcement Learning. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is used
338
+ to train the CILRS (Codevilla et al., 2019) model initialized with different pre-trained weights in
339
+ CARLA Town01 environment. The reward shaping details follow Roach (Zhang et al., 2021). We
340
+ also conduct experiments to freeze the pre-trained visual encoder during training to further study the
341
+ effectiveness of the pre-trained feature representations.
342
+ nuScenes Planning. This task involves trajectory planning in real-world dataset nuScenes (Caesar
343
+ et al., 2020). Given the current visual input, the model plans a 3-second trajectory (0.5 Hz), and the
344
+ planned trajectory is compared with the ground truth log. We also calculate the collision rate, where
345
+ a collision is defined as overlaps with future vehicles and pedestrians based on planned waypoints.
346
+ The metric of this tasks includes (1) the L2 distance between predicted trajectory and ground truth
347
+ trajectory, and (2) the collision rate. Metrics are measured at different time lengths from 1s to 3s.
348
+ The planning model used here is comprised of a visual encoder and a GRU-based planner to predict
349
+ each waypoint auto-regressively. We use the official train-val split for training and evaluation.
350
+ 3.3
351
+ NUMERIC COMPARISON ON DOWNSTREAM TASKS
352
+ For imitation learning based closed-loop driving tasks, the evaluation results are shown in Table 1-
353
+ 3. We present the plot between episode return and environment steps of each method in Fig. 3 for
354
+ the reinforcement learning experiments. The open-loop nuScenes planning results are provided in
355
+ Table 4. We could observe that PPGeo outperforms other baselines by a large margin in all tasks.
356
+ Note that the model is tested under a different number of fine-tuning samples from 10% (4K) to full
357
+ 40K in the Navigation and Navigation Dynamic tasks. In the case of the particularly small size of
358
+ training samples, PPGeo still demonstrates competitive performance and has a larger improvement
359
+ gap of over 100%. This validates the generalization ability of the pre-trained visual encoder, which
360
+ is important when adapting to a new environment with very limited labeled data. In the more chal-
361
+ lenging and real-world style Leaderboard Town05-long task in Table 3, the model pre-trained with
362
+ our method achieves the highest driving score and infraction score. PPGeo well handles cases where
363
+ the agent needs to stop, leading to much fewer vehicle collisions and red light infractions.
364
+ Since ACO considers steering angles only during pre-training, its performance degrades on more
365
+ challenging scenarios where brake and throttles are also important. SelfD performs slightly better
366
+ than ACO in complex cases while it significantly degenerates when the task data is limited, as
367
+ affected by the unsatisfying pseudo labeling model. ImageNet pre-training also shows competitive
368
+ performance, which might credit to its ability of finding salient objects in the scene when the input
369
+ contains little irrelevant information (see examples in Sec. 3.5).
370
+ 3.4
371
+ DEPTH AND ODOMETRY ESTIMATION
372
+ In this part, we explore whether the large-scale training on uncalibrated data could benefit the depth
373
+ and odometry estimation models as well and validate the effectiveness of first-stage training. Specif-
374
+ ically, we employ the DepthNet and PoseNet trained after the first stage as initial weights for Mon-
375
+ odepthv2 (Godard et al., 2019), and conduct experiments on KITTI (Geiger et al., 2012). Results
376
+ in Table 5 indicate that pre-training on large-scale driving videos could bring performance improve-
377
+ 6
378
+
379
+ Table 2: The Successful Rate results of the closed-loop Navigation Dynamic (mean by 3 random
380
+ trials).
381
+ Pre-train Method
382
+ Navigation Dynamic - # of training samples
383
+ 10% (4K)
384
+ 20% (8K)
385
+ 40% (16K)
386
+ 100% (40K)
387
+ Random
388
+ 0.0 ± 0.0
389
+ 2.0 ± 0.0
390
+ 10.0 ± 0.0
391
+ 32.0 ± 8.0
392
+ ImageNet
393
+ 10.7± 1.2
394
+ 28.7 ± 5.0
395
+ 64.7 ± 2.3
396
+ 72.7 ± 1.2
397
+ MIM
398
+ 7.3 ± 1.2
399
+ 10.3 ± 2.5
400
+ 14.7 ± 3.1
401
+ 58.7 ± 1.2
402
+ MoCo
403
+ 4.7 ± 1.2
404
+ 12.0 ± 4.0
405
+ 28.0 ± 5.3
406
+ 66.7 ± 2.3
407
+ ACO
408
+ 8.0 ± 1.2
409
+ 12.0 ± 0.0
410
+ 22.0 ± 2.0
411
+ 47.3 ± 5.0
412
+ SelfD
413
+ 8.0 ± 0.0
414
+ 29.3 ± 1.2
415
+ 38.0 ± 1.6
416
+ 59.3 ± 6.4
417
+ PPGeo (ours)
418
+ 23.3 ± 1.2
419
+ 34.0 ± 5.3
420
+ 71.3 ± 1.2
421
+ 84.0 ± 5.3
422
+ Table 3: Closed-loop Leaderboard Town05-long task results. Besides three main metrics, infraction
423
+ details are also reported (all the lower the better). Evaluation repeats 3 times with the mean reported.
424
+ Pre-train
425
+ Method
426
+ Driving
427
+ Score
428
+ Infraction
429
+ Score
430
+ Route
431
+ Completion
432
+ Collisions
433
+ pedestrian
434
+ Collisions
435
+ vehicle
436
+ Collisions
437
+ layout
438
+ Off-road
439
+ violations
440
+ Agent
441
+ blocked
442
+ Red light
443
+ violations
444
+ Random
445
+ 33.50±1.67
446
+ 0.65±0.02
447
+ 60.49±2.93
448
+ 0.09±0.07
449
+ 1.16±0.40
450
+ 0.00±0.00
451
+ 0.44±0.13
452
+ 0.97±0.09
453
+ 0.53±0.12
454
+ ImageNet
455
+ 41.29±3.20
456
+ 0.77±0.03
457
+ 57.52±4.87
458
+ 0.00±0.00
459
+ 0.71±0.20
460
+ 0.11±0.15
461
+ 0.15±0.01
462
+ 1.01±0.16
463
+ 0.29±0.10
464
+ MIM
465
+ 36.39±0.21
466
+ 0.72±0.04
467
+ 61.75±2.26
468
+ 0.14±0.11
469
+ 0.91±0.12
470
+ 0.04±0.07
471
+ 0.18±0.17
472
+ 0.87±0.03
473
+ 0.14±0.11
474
+ MoCo
475
+ 32.10±2.04
476
+ 0.65±0.02
477
+ 64.09±4.01
478
+ 0.13±0.11
479
+ 0.79±0.16
480
+ 0.00±0.00
481
+ 0.49±0.07
482
+ 0.81±0.15
483
+ 0.45±0.13
484
+ ACO
485
+ 33.05±3.05
486
+ 0.67±0.06
487
+ 59.52±3.21
488
+ 0.00±0.00
489
+ 0.69±0.28
490
+ 0.05±0.07
491
+ 0.54±0.05
492
+ 0.94±0.08
493
+ 0.73±0.10
494
+ SelfD
495
+ 38.76±3.02
496
+ 0.65±0.03
497
+ 68.72±7.36
498
+ 0.17±0.07
499
+ 0.84±0.18
500
+ 0.00±0.00
501
+ 0.32±0.03
502
+ 0.75±0.15
503
+ 0.12±0.08
504
+ PPGeo
505
+ 47.44±5.63
506
+ 0.79±0.08
507
+ 65.05±5.11
508
+ 0.04±0.05
509
+ 0.54±0.29
510
+ 0.00±0.00
511
+ 0.16±0.11
512
+ 0.76±0.10
513
+ 0.04±0.05
514
+ 100
515
+ 200
516
+ 300
517
+ 400
518
+ 500
519
+ 600
520
+ 700
521
+ 800
522
+ Steps (K)
523
+ 100
524
+ 0
525
+ 100
526
+ 200
527
+ 300
528
+ 400
529
+ 500
530
+ Episode Return
531
+ Visual Encoder Fine-tuning
532
+ ImageNet
533
+ MoCo
534
+ ACO
535
+ PPGeo
536
+ 100
537
+ 200
538
+ 300
539
+ 400
540
+ 500
541
+ 600
542
+ 700
543
+ 800
544
+ Steps (K)
545
+ 100
546
+ 200
547
+ 300
548
+ 400
549
+ Episode Return
550
+ Visual Encoder Frozen
551
+ ImageNet
552
+ MoCo
553
+ ACO
554
+ PPGeo
555
+ Figure 3: Learning curves of the RL agents using PPGeo and three other best pre-training baselines.
556
+ Left: the pre-trained visual encoder is jointly fine-tuned during RL training; Right: the visual en-
557
+ coder is frozen during RL training. The episode return is the mean with standard deviation in shade
558
+ across three runs with different random seeds.
559
+ Table 4: Open-loop nuScenes planning results. We evaluate the ℓ2 distance between model predic-
560
+ tions and the ground truth trajectory and collision rate in horizons from 1 second to 3 seconds.
561
+ Pre-train Method
562
+ L2 (m) ↓
563
+ Collision Rate (%) ↓
564
+ 1s
565
+ 2s
566
+ 3s
567
+ 1s
568
+ 2s
569
+ 3s
570
+ Random
571
+ 1.621
572
+ 2.722
573
+ 3.851
574
+ 0.550
575
+ 1.779
576
+ 3.375
577
+ ImagNet
578
+ 1.331
579
+ 2.202
580
+ 3.086
581
+ 0.315
582
+ 0.550
583
+ 1.366
584
+ MIM
585
+ 1.412
586
+ 2.357
587
+ 3.331
588
+ 0.297
589
+ 0.622
590
+ 1.507
591
+ MoCo
592
+ 1.528
593
+ 2.545
594
+ 3.585
595
+ 0.560
596
+ 1.235
597
+ 2.390
598
+ ACO
599
+ 1.496
600
+ 2.496
601
+ 3.519
602
+ 0.446
603
+ 1.178
604
+ 2.223
605
+ SelfD
606
+ 1.419
607
+ 2.359
608
+ 3.316
609
+ 0.353
610
+ 0.923
611
+ 2.044
612
+ PPGeo (ours)
613
+ 1.302
614
+ 2.154
615
+ 3.018
616
+ 0.270
617
+ 0.425
618
+ 0.941
619
+ 7
620
+
621
+ Table 5: Improvement from our pre-training method on depth and odometry estimation tasks.
622
+ Pre-train
623
+ Method
624
+ Depth Estimation
625
+ Odometry Estimation
626
+ abs rel ↓
627
+ sq rel ↓
628
+ rmse ↓
629
+ rmse log ↓
630
+ a1 ↑
631
+ a2 ↑
632
+ a3 ↑
633
+ Sequence 09 ↓
634
+ Sequence 10 ↓
635
+ ImageNet
636
+ 0.118
637
+ 0.902
638
+ 4.873
639
+ 0.196
640
+ 0.871
641
+ 0.958
642
+ 0.981
643
+ 0.017±0.010
644
+ 0.015±0.010
645
+ PPGeo
646
+ 0.114
647
+ 0.805
648
+ 4.599
649
+ 0.186
650
+ 0.874
651
+ 0.962
652
+ 0.984
653
+ 0.016±0.009
654
+ 0.013±0.009
655
+ Ours
656
+ ACO
657
+ ImageNet
658
+ MoCo
659
+ Origin
660
+ Figure 4: Eigen-Cam (Muhammad & Yeasin, 2020) activation maps of the learned representation
661
+ from different pre-training methods on the driving video data.
662
+ Table 6: Ablative study on key designs of PPGeo on the Navigation task.
663
+ #
664
+ Experiment
665
+ Navigation - # of training samples
666
+ 10% (4K)
667
+ 20% (8K)
668
+ 40% (16K)
669
+ 100% (40K)
670
+ 1
671
+ Single stage
672
+ 24.2 ± 2.0
673
+ 53.3 ± 1.2
674
+ 79.3 ± 4.2
675
+ 92.7 ± 2.3
676
+ 2
677
+ No frozen in 2nd stage
678
+ 32.7 ± 1.2
679
+ 58.0 ± 2.0
680
+ 86.0 ± 2.1
681
+ 92.0 ± 2.0
682
+ 3
683
+ PoseNet direct supervision
684
+ 18.0 ± 2.0
685
+ 52.0 ± 2.0
686
+ 76.7 ± 1.2
687
+ 90.0 ± 0.0
688
+ 4
689
+ PPGeo
690
+ 42.0 ± 2.0
691
+ 73.3 ± 6.1
692
+ 91.3 ± 1.2
693
+ 96.7 ± 1.2
694
+ ment to both depth and odometry estimation tasks, which is an additional harvest of our pre-training
695
+ framework. We refer readers to Godard et al. (2019) for details about the metrics of these tasks.
696
+ 3.5
697
+ VISUALIZATION RESULTS
698
+ Here we provide heatmaps of the feature representations learned by different pre-training methods
699
+ using Eigen-Cam (Muhammad & Yeasin, 2020) to show the attended regions in Fig. 4. In many
700
+ cases (Row 1&2), our model mainly concentrates on the lane in front of the ego vehicle, which is
701
+ highly related to driving. And our model PPGeo well captures the specific cues causing the brake
702
+ action including front vehicles (Row 3&4) and traffic lights (Row 5). We also observe that the model
703
+ pre-trained with ImageNet classification tends to capture salient objects in the image. This is helpful
704
+ when the salient objects are straightforwardly related to the driving decision (Row 4); but it may
705
+ focus on wrong objects when the input contains other irrelevant information (Row 2&3).
706
+ 3.6
707
+ ABLATIVE STUDY
708
+ We conduct ablative study as to different designs of PPGeo on the Navigation task in Table 6. Train-
709
+ ing the visual encoder and DepthNet in a single stage simultaneously (Row 1) leads to an inferior
710
+ performance, indicating that it is quite challenging for the visual encoder to learn the correct ego-
711
+ motion if depth estimation is also trained from scratch. Moreover, jointly optimizing the DepthNet
712
+ in the second stage (Row 2, not frozen) degrades the depth estimation quality and harms the per-
713
+ formance. In Row 3, we observe that utilizing the PoseNet obtained in the first stage to provide
714
+ 8
715
+
716
+ pseudo label supervision directly leads to inferior results, since an inaccurate pseudo label impairs
717
+ the learning process to great extent.
718
+ 4
719
+ RELATED WORK
720
+ Pre-training for NLP and General Vision. Pre-training or representation learning has proved to be
721
+ an essential key to the success of artificial intelligence. In the field of Natural Language Processing
722
+ (NLP), with the powerful capability of Transformer (Vaswani et al., 2017), pre-training on large-
723
+ scale datasets with large models then fine-tuning on downstream tasks has become the dominant
724
+ paradigm (Kenton & Toutanova, 2019; Brown et al., 2020). As for the field of Computer Vision,
725
+ training specific downstream tasks with the supervised pre-trained weights of visual encoder via
726
+ ImageNet classification task is widely adopted. Recently, unsupervised and self-supervised learn-
727
+ ing methods such as contrastive learning (He et al., 2020; Chen et al., 2020c;b) and masked im-
728
+ age modeling (Bao et al., 2021; He et al., 2022; Xie et al., 2022; Peng et al., 2022) have gained
729
+ impressive improvement over ImageNet pre-training on various vision benchmarks. Very recent
730
+ vision-language co-training approaches (Radford et al., 2021; Wang et al., 2022) demonstrate their
731
+ extraordinary potential in the domain of multi-modal learning and applications. Yet, these generic
732
+ representation learning methods adopt various data augmentation techniques to achieve translation
733
+ and view invariance, while visuomotor driving sets in a highly dynamic environment. In this work,
734
+ we show that the ever-victorious pre-training methods may not be the optimal choice, and introduce
735
+ a curated paradigm for visuomotor driving policy learning.
736
+ Pre-training for Visuomotor Applications. Learning a control policy directly from raw visual
737
+ input is challenging since the model needs to reason about visual pixels and dynamic behaviors
738
+ simultaneously. Moreover, training visuomotor models from scratch usually requires tons of labeled
739
+ data or environment interactions. To this end, recently, Shah & Kumar (2021) shows that feature
740
+ representations from ResNet (He et al., 2016) pre-trained on ImageNet classification is helpful for
741
+ RL-based dexterous manipulation tasks. Parisi et al. (2022) conducts extensive experiments on
742
+ applying “off-the-shelf” pre-trained vision models in diverse control domains and validates their
743
+ benefits to train control policies. CLIP (Radford et al., 2021) is also adopted in some embodied
744
+ AI and robot navigation problems (Shah et al., 2022). Besides borrowing pre-trained weights for
745
+ visuomotor tasks, researchers in robotics now desire a paradigm learning policy representations
746
+ from raw data directly. Xiao et al. (2022); Radosavovic et al. (2022); Seo et al. (2022); Gupta et al.
747
+ (2022) inherit the MIM spirit to realize visual pre-training for control tasks. Yang & Nachum (2021)
748
+ investigates unsupervised representation learning objectives from D4RL environments (Fu et al.,
749
+ 2020), and Yamada et al. (2022) further adopts task-induced approaches to learn from prior tasks.
750
+ However, compared with visuomotor driving, the visual inputs of such control tasks are less diverse
751
+ which usually concentrate on objects and are much more compact.
752
+ To our best knowledge, ACO (Zhang et al., 2022b) is the only pre-training method customized
753
+ for autonomous driving. By first training an inverse dynamic model on nuScenes (Caesar et al.,
754
+ 2020), they get pseudo steer labels of the driving videos and then construct the steer-conditioned
755
+ discrimination for contrastive learning following MoCo. However, ACO ignores other crucial driv-
756
+ ing factors such as throttle and brakes, and its performance is largely limited by the inverse dynamic
757
+ model. SelfD (Zhang et al., 2022a) is not strictly designed for pre-training while it also makes
758
+ use of vast amounts of videos to learn driving policies via semi-supervised learning. It acquires the
759
+ pseudo labeling knowledge from the target domain. These two methods both depend on the accuracy
760
+ of pseudo labeling. In contrast, we realize fully self-supervised learning through dense geometric
761
+ reconstruction, evading the possible adverse effect.
762
+ Policy Learning for Autonomous Driving. Visuomotor autonomous driving learns a driving pol-
763
+ icy directly from sensor inputs in an end-to-end manner (Codevilla et al., 2018; 2019; Liang et al.,
764
+ 2018; Chen et al., 2020a; Prakash et al., 2021; Chen et al., 2021; Wu et al., 2022; Shao et al., 2022).
765
+ In essence, the inherent difficulty of the urban-style autonomous driving tasks makes such meth-
766
+ ods data-hungry. Interfuser (Shao et al., 2022), the current top-1 method on the CARLA Leader-
767
+ board (CARLA, 2022), requires 3 million labeled data samples for imitation learning (behavior
768
+ cloning specifically). RL-based model MaRLn (Toromanoff et al., 2020) needs 20 million environ-
769
+ ment steps of interaction. The sample efficiency problem greatly impedes the real-world application
770
+ of such approaches. In this work, we propose a self-supervised pre-training pipeline to learn driving
771
+ 9
772
+
773
+ policy related representations on unlabeled driving videos, and pave the way for these visuomotor
774
+ autonomous driving models to further achieve satisfying performance.
775
+ 5
776
+ CONCLUSION AND DISCUSSION
777
+ In this work, we have proposed a fully self-supervised visuomotor driving policy pre-training
778
+ paradigm PPGeo by modeling the 3D geometry of large-scale unlabeled driving videos. Taking
779
+ a direct approach to infer the ego-motion and benefiting from the two-stage pre-training pipeline,
780
+ we enable the visual encoder to learn driving policies based on single visual input. Our method out-
781
+ performs the peer pre-training approaches by a large margin on a series of visuomotor driving tasks.
782
+ For its limitation, our method currently only considers the ego-motion for a single time step, and a
783
+ future direction is to devise the framework to perform multi-step motion prediction which contains
784
+ more information about driving decisions.
785
+ REFERENCES
786
+ Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
787
+ In ICLR, 2021. 9
788
+ Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
789
+ Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
790
+ few-shot learners. In NeurIPS, 2020. 9
791
+ Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
792
+ Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
793
+ autonomous driving. In CVPR, 2020. 2, 5, 6, 9
794
+ CARLA. CARLA autonomous driving leaderboard. https://leaderboard.carla.org/,
795
+ 2022. 5, 9
796
+ Sai Shyam Chanduri, Zeeshan Khan Suri, Igor Vozniak, and Christian M¨uller. Camlessmonodepth:
797
+ Monocular depth estimation with unknown camera parameters. arXiv preprint arXiv:2110.14347,
798
+ 2021. 4
799
+ Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
800
+ in-the-wild” human videos. In RSS, 2021. 9
801
+ Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Kr¨ahenb¨uhl. Learning by cheating. In CoRL,
802
+ 2020a. 9
803
+ Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
804
+ contrastive learning of visual representations. In ICML, 2020b. 9
805
+ Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
806
+ contrastive learning. arXiv preprint arXiv:2003.04297, 2020c. 1, 5, 9
807
+ Felipe Codevilla, Matthias M¨uller, Antonio L´opez, Vladlen Koltun, and Alexey Dosovitskiy. End-
808
+ to-end driving via conditional imitation learning. In ICRA, 2018. 9
809
+ Felipe Codevilla, Eder Santana, Antonio M L´opez, and Adrien Gaidon. Exploring the limitations of
810
+ behavior cloning for autonomous driving. In ICCV, 2019. 5, 6, 9, 14
811
+ Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
812
+ hierarchical image database. In CVPR, 2009. 1, 5
813
+ Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
814
+ An open urban driving simulator. In CoRL, 2017. 5
815
+ Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
816
+ Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
817
+ importance weighted actor-learner architectures. In ICML, 2018. 1
818
+ 10
819
+
820
+ Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
821
+ data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. 9
822
+ Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
823
+ vision benchmark suite. In CVPR, 2012. 6
824
+ Cl´ement Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocular depth esti-
825
+ mation with left-right consistency. In CVPR, 2017. 2, 4
826
+ Cl´ement Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow. Digging into self-
827
+ supervised monocular depth prediction. In ICCV, 2019. 2, 4, 6, 8, 14
828
+ Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. Depth from videos in the wild:
829
+ Unsupervised monocular depth learning from unknown cameras. In ICCV, 2019. 4
830
+ Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Mart´ın-Mart´ın, and Li Fei-Fei.
831
+ Maskvit: Masked visual pre-training for video prediction.
832
+ arXiv preprint arXiv:2206.11894,
833
+ 2022. 9
834
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
835
+ human-level performance on imagenet classification. In ICCV, 2015. 5
836
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
837
+ nition. In CVPR, 2016. 5, 9, 14
838
+ Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.
839
+ Momentum contrast for
840
+ unsupervised visual representation learning. In CVPR, 2020. 1, 9
841
+ Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick.
842
+ Masked
843
+ autoencoders are scalable vision learners. In CVPR, 2022. 1, 9
844
+ Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
845
+ Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
846
+ deep reinforcement learning. In AAAI, 2018. 1
847
+ Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
848
+ bidirectional transformers for language understanding. In NAACL-HLT, 2019. 9
849
+ Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 5
850
+ Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
851
+ forcement learning with augmented data. In NeurIPS, 2020. 1
852
+ Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
853
+ motor policies. JMLR, 2016. 1
854
+ Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative reinforcement
855
+ learning for vision-based self-driving. In ECCV, 2018. 9
856
+ Ilya Loshchilov and Frank Hutter.
857
+ Decoupled weight decay regularization.
858
+ arXiv preprint
859
+ arXiv:1711.05101, 2017. 5
860
+ S´ebastien Marcel and Yann Rodriguez.
861
+ Torchvision the machine-vision package of torch.
862
+ In
863
+ ACMMM, 2010. 5
864
+ Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
865
+ mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
866
+ control through deep reinforcement learning. Nature, 2015. 1
867
+ Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-cam: Class activation map using
868
+ principal components. In IJCNN, 2020. 8
869
+ Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Kumar Gupta. The unsur-
870
+ prising effectiveness of pre-trained vision models for control. In ICML, 2022. 1, 2, 9
871
+ 11
872
+
873
+ Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2: Masked image modeling
874
+ with vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366, 2022. 9
875
+ Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-
876
+ end autonomous driving. In CVPR, 2021. 5, 9
877
+ Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
878
+ Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
879
+ models from natural language supervision. In ICML, 2021. 1, 9
880
+ Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
881
+ Real world robot learning with masked visual pre-training. In CoRL, 2022. 1, 2, 9
882
+ Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of pseudo-
883
+ labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning.
884
+ In ICLR, 2020. 2
885
+ John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
886
+ optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 6
887
+ Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
888
+ Abbeel. Masked world models for visual control. arXiv preprint arXiv:2206.14244, 2022. 9
889
+ Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic navigation with
890
+ large pre-trained models of language, vision, and action. In CoRL, 2022. 1, 9
891
+ Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In ICML,
892
+ 2021. 1, 9
893
+ Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
894
+ driving using interpretable sensor fusion transformer. In CoRL, 2022. 9
895
+ Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforcement
896
+ learning for urban driving using implicit affordances. In CVPR, 2020. 1, 9
897
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
898
+ Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017. 9
899
+ Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
900
+ Owais Khan Mohammed, Saksham Singhal, Subhojit Som, and Furu Wei. Image as a foreign lan-
901
+ guage: Beit pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442,
902
+ 2022. 9
903
+ Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
904
+ from error visibility to structural similarity. TIP, 2004. 4
905
+ Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
906
+ and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
907
+ arXiv preprint arXiv:1911.00357, 2019. 1
908
+ Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided
909
+ control prediction for end-to-end autonomous driving: A simple yet strong baseline. In NeurIPS,
910
+ 2022. 5, 9, 14
911
+ Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
912
+ parametric instance discrimination. In CVPR, 2018. 2
913
+ Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
914
+ motor control. arXiv preprint arXiv:2203.06173, 2022. 1, 9
915
+ Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
916
+ Simmim: A simple framework for masked image modeling. In CVPR, 2022. 1, 5, 9
917
+ Jun Yamada, Karl Pertsch, Anisha Gunjal, and Joseph J Lim. Task-induced representation learning.
918
+ In ICLR, 2022. 2, 9
919
+ 12
920
+
921
+ Mengjiao Yang and Ofir Nachum. Representation matters: offline pretraining for sequential decision
922
+ making. In ICML, 2021. 9
923
+ Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
924
+ deep reinforcement learning from pixels. In ICLR, 2020. 1
925
+ Jimuyang Zhang, Ruizhao Zhu, and Eshed Ohn-Bar. Selfd: Self-learning large-scale driving policies
926
+ from the web. In CVPR, 2022a. 2, 4, 5, 9
927
+ Qihang Zhang, Zhenghao Peng, and Bolei Zhou. Learning to drive by watching youtube videos:
928
+ Action-conditioned contrastive policy pretraining. In ECCV, 2022b. 2, 4, 5, 9
929
+ Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016. 2
930
+ Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. End-to-end urban
931
+ driving by imitating a reinforcement learning coach. In ICCV, 2021. 6
932
+ 13
933
+
934
+ POLICY PRE-TRAINING FOR AUTONOMOUS DRIVING
935
+ VIA SELF-SUPERVISED GEOMETRIC MODELING
936
+ Supplementary Materials
937
+ In this Supplementary document, we first provide detailed network structures in Sec. A. More de-
938
+ scription and visual illustrations of the downstream tasks are discussed in Sec. B. Last, we discuss
939
+ limitations and common failure cases in Sec. C.
940
+ A
941
+ NETWORK DETAILS
942
+ For all experiments, the backbone of the visual encoder is ResNet-34 (He et al., 2016), and the
943
+ detailed structure of it is provided in Table 7. For DepthNet and PoseNet, we follow the same model
944
+ structure as Godard et al. (2019) with a two-layer MLP focal length head and a two-layer MLP
945
+ optical center head added to the bottleneck of the PoseNet to predict the intrinsic matrix. Please
946
+ refer to Godard et al. (2019) for model details.
947
+ For the Navigation, Navigation Dynamic, and Reinforcement Learning tasks, we use CILRS (Codev-
948
+ illa et al., 2019) and the model details are provided in Table 8. For the Leaderboard Town05-long
949
+ task, TCP (Wu et al., 2022) is chosen as our agent, and we refer readers to Wu et al. (2022) for model
950
+ details. For the nuScenes Planning, the trajectory planning model structure is shown in Table 9.
951
+ Table 7: Detailed structure of the visual encoder.
952
+ Layer Type
953
+ Channels
954
+ Stride
955
+ Kernel Size
956
+ Activation Function
957
+ Image Encoder
958
+ ResNet-34
959
+ Measurement Encoder
960
+ Conv
961
+ 256
962
+ 1
963
+ 1
964
+ ReLU
965
+ Conv
966
+ 256
967
+ 3
968
+ 1
969
+ ReLU
970
+ Conv
971
+ 256
972
+ 3
973
+ 1
974
+ ReLU
975
+ Conv
976
+ 6
977
+ 1
978
+ 1
979
+ ReLU
980
+ Average Pooling
981
+ Table 8: Detailed structure of the CILRS model.
982
+ Layer Type
983
+ Dims in
984
+ Dims out
985
+ Activation Function
986
+ Image Encoder
987
+ ResNet-34
988
+ 512
989
+ Speed Encoder
990
+ FC
991
+ 1
992
+ 256
993
+ ReLU
994
+ FC
995
+ 256
996
+ 512
997
+ -
998
+ Speed Pred Head
999
+ FC
1000
+ 512
1001
+ 256
1002
+ ReLU
1003
+ FC
1004
+ 256
1005
+ 256
1006
+ ReLU
1007
+ FC
1008
+ 256
1009
+ 256
1010
+ ReLU
1011
+ Control Pred Head
1012
+ FC
1013
+ 512
1014
+ 256
1015
+ ReLU
1016
+ FC
1017
+ 256
1018
+ 256
1019
+ ReLU
1020
+ FC
1021
+ 256
1022
+ 3
1023
+ Sigmoid
1024
+ 14
1025
+
1026
+ Table 9: Detailed structure of the trajectory planning model.
1027
+ Image Encoder
1028
+ ResNet-34
1029
+ Bottleneck
1030
+ Layer Type
1031
+ Dims in
1032
+ Dims out
1033
+ Activation Function
1034
+ FC
1035
+ 512
1036
+ 256
1037
+ ReLU
1038
+ FC
1039
+ 256
1040
+ 256
1041
+ -
1042
+ Decoder
1043
+ Layer Type
1044
+ Hidden dim
1045
+ Input Dim
1046
+ Output Dim
1047
+ GRU
1048
+ 256
1049
+ 2
1050
+ 2
1051
+ B
1052
+ DOWNSTREAM TASKS DETAILS
1053
+ For Navigation and Navigation Dynamic, training data is collected in Town01, and the closed-loop
1054
+ testing is conducted in Town02. The maps of Town01 and Town02 are shown in Fig. 5. The agent
1055
+ needs to follow a series of sparse waypoints to navigate from the start point to the end point and
1056
+ avoid collisions. The difference between Navigation and Navigation Dynamic is that there are other
1057
+ dynamic vehicles and pedestrians in the town. Examples are provided in Fig. 6.
1058
+ The Leaderboard-Town05-long task is more close to real-world urban driving, with different chal-
1059
+ lenging scenarios added to the route. The map of Town05 is shown in Fig. 5.
1060
+ Town 01
1061
+ Town 02
1062
+ Town 05
1063
+ Figure 5: Maps of Town01, Town02, and Town05.
1064
+ Navigation
1065
+ Navigation Dynamic
1066
+ Figure 6: Examples of the front view image for Navigation and Navigation Dynamic tasks.
1067
+ 15
1068
+
1069
+ C
1070
+ LIMITATIONS
1071
+ In this part, we analyze some failure cases and limitations of our method. Since the visual encoder
1072
+ need to predict the future motion based on a single front-view image, there might be some factors
1073
+ that directly influence the driving decision not shown in the image (e.g., vehicles behind the ego
1074
+ vehicle, factors related to the driver, navigation information). Some of such cases are provided
1075
+ in Fig. 7. In these cases, the visual encoder does not get enough information to make the correct
1076
+ prediction. These samples during training may hamper the learning process. After training, one
1077
+ may use the difference between the prediction from PoseNet and that from visual encoder to filter
1078
+ out these samples, and re-train the visual encoder.
1079
+ 𝐼𝑡
1080
+ 𝐼𝑡+1
1081
+ Figure 7: Failure cases where the driving decision/future motion can not be inferred from It. For the
1082
+ cases in Row 1 and Row 2, by comparing It and It+1, we know that the ego vehicle stops. However,
1083
+ there is no clear clue in It indicating it should stop. For the case in Row 3, the ego vehicle is turning
1084
+ left, while we could hardly tell the turning direction from It alone.
1085
+ 16
1086
+
89AzT4oBgHgl3EQfFPox/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8dFAT4oBgHgl3EQfpB03/content/tmp_files/2301.08637v1.pdf.txt ADDED
@@ -0,0 +1,2871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN
2
+ OPERATOR
3
+ FRIEDRICH PHILIPP, MANUEL SCHALLER, KARL WORTHMANN, SEBASTIAN PEITZ, AND FELIKS N ¨USKE
4
+ ABSTRACT. We consider the data-driven approximation of the Koopman operator for stochastic differen-
5
+ tial equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the
6
+ data are collected from long-term ergodic simulations. We derive both an exact expression for the variance
7
+ of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds
8
+ for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in
9
+ the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS,
10
+ we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck
11
+ process illustrate our results.
12
+ 1. INTRODUCTION
13
+ The Koopman operator [23] has become an essential tool in the modeling process of complex dy-
14
+ namical systems based on simulation or measurement data. The philosophy of the Koopman approach
15
+ is that for a (usually non-linear) dynamical system on a finite-dimensional space, the time-evolution of
16
+ expectation values of observable functions satisfies a linear differential equation. Hence, after “lifting”
17
+ the dynamical system into an infinite-dimensional function space of observables, linear methods become
18
+ available for its analysis. The second step is then to notice that traditional Galerkin approximations of the
19
+ Koopman operator can be consistently estimated from simulation or measurement data, establishing the
20
+ fundamental connection between the Koopman approach and modern data science. Koopman methods
21
+ have found widespread application in system identification [4], control [24, 42, 25, 17, 49], sensor place-
22
+ ment [31], molecular dynamics [50, 44, 35, 36, 18, 56], and many other fields. We refer to [19, 33, 5] for
23
+ comprehensive reviews of the state of the art.
24
+ The fundamental numerical method for the Koopman approach is Extended Dynamic Mode Decom-
25
+ position (EDMD) [54], which allows to learn a Galerkin approximation of the Koopman operator from
26
+ finite (simulation or measurement) data on a subspace spanned by a finite set of observables, often called
27
+ dictionary. An appropriate choice of said dictionary is a challenging problem. In light of this issue,
28
+ representations of the Koopman operator on large approximation spaces have been considered in recent
29
+ years, including deep neural networks [29, 32], tensor product spaces [21, 37], and reproducing kernel
30
+ Hilbert spaces (RKHS) [55, 11, 20]. In the work [20] it was shown that by means of the integral operator
31
+ associated to an RKHS, it is possible to construct a type of Galerkin approximation of the Koopman
32
+ operator. The central object are (cross-)covariance operators, which can be estimated from data, using
33
+ only evaluations of the feature map. Due to the relative simplicity of the resulting numerical algorithms
34
+ on the one hand, and the rich approximation properties of reproducing kernels on the other hand, kernel
35
+ methods have emerged as a promising candidate to overcome the fundamental problem of dictionary
36
+ selection.
37
+ A key question is the quantification of the estimation error for (compressed1) Koopman operators. For
38
+ finite dictionaries and independent, identically distributed (i.i.d.) samples, error estimates were provided
39
+ in [26, 38], see also [58] for the ODE case and [49] for an extension to control-affine systems. The
40
+ 1A compression of a linear operator T to a subspace M is given by PT|M, where P denotes a projection onto M.
41
+ 1
42
+ arXiv:2301.08637v1 [math.DS] 20 Jan 2023
43
+
44
+ 2
45
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
46
+ estimation error for cross-covariance operators on kernel spaces was considered in [34], where general
47
+ concentration inequalities were employed. The data were also allowed to be correlated, and mixing
48
+ coefficients were used to account for the lack of independence. In this article, we take a different route
49
+ and follow the approach of our previous paper [38], where we, in addition, also derived error estimates
50
+ for the Koopman generator and operator for finite dictionaries and data collected from long-term, ergodic
51
+ trajectories. This setting is relevant in many areas of science, where sampling i.i.d. from an unknown
52
+ stationary distribution is practically infeasible, e.g., in fluid or molecular dynamics. The centerpiece of
53
+ our results was an exact expression for the variance of the finite-data estimator, which can be bounded
54
+ by an asymptotic variance. The asymptotic variance by itself is a highly interesting dynamical quantity,
55
+ which can also be described in terms of Poisson equations for the generator [27, Section 3].
56
+ We consider the Koopman semigroup (Kt)t≥0 generated by a stochastic differential equation on the
57
+ space L2
58
+ µ, where µ is a probability measure which is invariant w.r.t. the associated Markov process. We
59
+ study the action of Kt on observables in an RKHS H which is densely and compactly embedded in L2
60
+ µ. If
61
+ this action is considered through the “lens” of the kernel integral operator E : L2
62
+ µ → H (see Section 2.2),
63
+ we arrive at a family of operators Ct
64
+ H = EKtE∗ (cf. Figure 1). The action of Ct
65
+ H : H → H is that of a
66
+ cross-covariance operator:
67
+ Ct
68
+ Hψ =
69
+
70
+ (Ktψ)(x)k(x, ·) dµ(x),
71
+ ψ ∈ H,
72
+ where k(·, ·) is the kernel generating the RKHS H. These operators possess canonical empirical estima-
73
+ tors based on finite simulation data, which only require evaluations of the feature map.
74
+ L2
75
+ µ
76
+ L2
77
+ µ
78
+ H
79
+ H
80
+ Kt
81
+ E
82
+ E∗
83
+ Ct
84
+ H
85
+ FIGURE 1. Diagram illustrating the different operators involved
86
+ Our contribution, illustrated in Figure 2, is two-fold. In our first main result, Theorem 3.1, we provide
87
+ an exact formula for the Hilbert-Schmidt variance of the canonical empirical estimator �Cm,t
88
+ H
89
+ of the cross-
90
+ covariance operator Ct
91
+ H, for m data points sampled from a long ergodic simulation. This result extends
92
+ the findings in [38] to the kernel setting and no longer depends on the dictionary size (which would
93
+ be infinite, at any rate). Due to the infinite-dimensional setting, additional assumptions are required,
94
+ in particular, a spectral decomposition of the Koopman generator. Our result allows for probabilistic
95
+ estimates for the error ∥ �Cm,t
96
+ H
97
+ − Ct
98
+ H∥HS, see Proposition 3.4.
99
+ As a second main result, we propose an empirical estimator for the restriction of the Koopman op-
100
+ erator Kt to H, truncated to finitely many terms of its estimated Mercer series expansion, and prove a
101
+ probabilistic bound for the resulting estimation error in Theorem 4.1, measured in the operator norm
102
+ for bounded linear maps from H to L2
103
+ µ. This result can be seen as a bound on the prediction error for
104
+ the RKHS-based Koopman operator due to the use of finite data. In the situation where the RKHS is
105
+ invariant under the Koopman operator we are able to complement the preceding error analysis with a
106
+ bound on the full approximation error in Theorem 4.5.
107
+ Finally, we illustrate our results for a one-dimensional Ornstein-Uhlenbeck (OU) process. For this
108
+ simple test case, all quantities appearing in our error estimates are known analytically and can be well
109
+ approximated numerically. Therefore, we are able to provide a detailed comparison between the error
110
+ bound obtained from our results and the actual errors observed for finite data. Our experiments show that
111
+
112
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
113
+ 3
114
+ our bounds for the estimation error of the cross-covariance operator are accurate, and that the corrections
115
+ we introduced to account for the inter-dependence of the data are indeed required. Concerning the
116
+ prediction error, we find our theoretical bounds still far too conservative, which reflects the problem of
117
+ accounting for the effect of inverting the mass matrix in traditional EDMD. This finding indicates that
118
+ additional research is required on this end.
119
+ Full Koopman
120
+ Approximation Error
121
+ Projection error
122
+ Theorem 4.5
123
+ Variance representation
124
+ of empirical estimator
125
+ Theorem 3.1
126
+ Estimation error
127
+ Theorem 4.1
128
+ i.i.d. sampling
129
+ Ergodic sampling
130
+ Cross-covariance bound
131
+ Proposition 3.4
132
+ ∥Ct
133
+ ℍ −
134
+ ̂
135
+ C m,t
136
+ ℍ ∥HS
137
+ ∥Kt
138
+ N −
139
+ ̂
140
+ K m,t
141
+ N ∥ℍ→L2μ(X)
142
+ ∥Kt −
143
+ ̂
144
+ K m,t
145
+ N ∥ℍ→L2μ(X)
146
+ ∥Kt − Kt
147
+ N∥ℍ→L2μ(X)
148
+ FIGURE 2. Illustration of main results
149
+ The paper is structured as follows: the setting is introduced in Section 2. The result concerning the
150
+ variance of the empirical cross-covariance operator, Theorem 3.1, is presented and proved in Section 3,
151
+ while our bound for the prediction error is part of Theorem 4.1 in Section 4. Numerical experiments are
152
+ shown in Section 5, conclusions are drawn in Section 6.
153
+ 2. PRELIMINARIES
154
+ In this section, we provide the required background on stochastic differential equations (Section 2.1),
155
+ reproducing kernel Hilbert spaces (Section 2.2), Koopman operators (Section 2.3), and their representa-
156
+ tions on an RKHS (Section 2.4).
157
+ 2.1. Stochastic differential equations. Let X ⊂ Rd and let a stochastic differential equation (SDE)
158
+ with drift vector field b : X → Rd and diffusion matrix field σ : X → Rd×d be given, i.e.,
159
+ dXt = b(Xt) dt + σ(Xt) dWt,
160
+ (2.1)
161
+ where Wt is d-dimensional Brownian motion. We assume that both b and σ are Lipschitz-continuous and
162
+ that (1 + ∥ · ∥2)−1[∥b∥2 + ∥σ∥F ] is bounded on X. Then [39, Theorem 5.2.1] guarantees the existence
163
+ of a unique solution (Xt)t≥0 to (2.1).
164
+ The solution (Xt)t≥0 constitutes a continuous-time Markov process whose transition kernel will be
165
+ denoted by ρt : X ×BX → R, where BX denotes the Borel σ-algebra on X. Then ρt(x, ·) is a probability
166
+ measure for all x ∈ X, and for each A ∈ BX we have that ρt(·, A) is a representative of the conditional
167
+ probability for A containing Xt given X0 = · , i.e.,
168
+ ρt(x, A) = P(Xt ∈ A|X0 = x)
169
+ for µ-a.e. x ∈ X.
170
+ Throughout, we will assume the existence of an invariant (Borel) probability measure µ for the Markov
171
+ process (Xt)t≥0, i.e., we have
172
+
173
+ ρt(x, A) dµ(x) = µ(A)
174
+ (2.2)
175
+ for all t ≥ 0.
176
+ In addition to being invariant, we will often assume that µ is ergodic, meaning that for any t > 0
177
+ every ρt-invariant set A (that is, ρt(x, A) = 1 for all x ∈ A) satisfies µ(A) ∈ {0, 1}. In this case, the
178
+ Birkhoff ergodic theorem [15, Theorem 9.6] (see also (D.1)) and its generalizations apply, and allow us
179
+ to calculate expectations w.r.t. µ using long-time averages over simulation data.
180
+ We let ∥ · ∥p denote the Lp
181
+ µ(X)-norm, 1 ≤ p < ∞. In the particular case p = 2, scalar product and
182
+ norm on the Hilbert space L2
183
+ µ(X) will be denoted by ⟨· , ·⟩µ and ∥ · ∥µ, respectively.
184
+
185
+ 4
186
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
187
+ 2.2. Reproducing kernel Hilbert spaces. In what follows, let k : X × X → R be a continuous and
188
+ symmetric positive definite kernel, that is, we have k(x, y) = k(y, x) for all x, y ∈ X and
189
+ m
190
+
191
+ i,j=1
192
+ k(xi, xj)cicj ≥ 0
193
+ for all choices of x1, . . . , xm ∈ X and c1, . . . , cm ∈ R. It is well known that k generates a so-called
194
+ reproducing kernel Hilbert space (RKHS) [1, 6, 40] (H, ⟨· , ·⟩) of continuous functions, such that for
195
+ ψ ∈ H the reproducing property
196
+ ψ(x) = ⟨ψ, Φ(x)⟩,
197
+ x ∈ X,
198
+ (2.3)
199
+ holds, where Φ : X → H denotes the so-called feature map corresponding to the kernel k, i.e.,
200
+ Φ(x) = k(x, ·),
201
+ x ∈ X.
202
+ In the sequel, we shall denote the norm on H by ∥ · ∥ and the kernel diagonal by ϕ:
203
+ ϕ(x) = k(x, x),
204
+ x ∈ X.
205
+ Then for x ∈ X we have
206
+ ∥Φ(x)∥2 = ⟨Φ(x), Φ(x)⟩ = ⟨k(x, ·), k(x, ·)⟩ = k(x, x) = ϕ(x).
207
+ We shall frequently make use of the following estimate:
208
+ |k(x, y)| = |⟨Φ(x), Φ(y)⟩| ≤ ∥Φ(x)∥∥Φ(y)∥ =
209
+
210
+ ϕ(x)ϕ(y).
211
+ In particular, it shows that k is bounded if and only if its diagonal ϕ is bounded.
212
+ By Lp
213
+ µ(X), p ∈ [1, ∞), we denote the space of all functions (not equivalence classes) on X with a
214
+ finite p-norm ∥ · ∥p. Henceforth, we shall impose the following
215
+ Compatibility Assumptions:
216
+ (A1) ϕ ∈ L2
217
+ µ(X).
218
+ (A2) If ψ ∈ L2
219
+ µ(X) such that
220
+ � �
221
+ k(x, y)ψ(x)ψ(y) dµ(x) dµ(y) = 0, then ψ = 0.
222
+ (A3) If ψ ∈ H such that ψ(x) = 0 for µ-a.e. x ∈ X, then ψ(x) = 0 for all x ∈ X.
223
+ Many of the statements in this subsection can also be found in [52, Chapter 4]. However, as we aim
224
+ to present the contents in a self-contained way, we provide the proofs in Appendix A.
225
+ The following lemma explains the meaning of the compatibility assumptions (A1) and (A2).
226
+ Lemma 2.1. Under the assumption that ϕ ∈ L1
227
+ µ(X) (in particular, under assumption (A1)), we have
228
+ that H ⊂ L2
229
+ µ(X) with
230
+ ∥ψ∥µ ≤
231
+
232
+ ∥ϕ∥1 · ∥ψ∥,
233
+ ψ ∈ H,
234
+ (2.4)
235
+ and assumption (A2) is equivalent to the density of H in L2
236
+ µ(X).
237
+ We have meticulously distinguished between functions and equivalence classes as there might be
238
+ distinct functions φ, ψ ∈ H, which are equal µ-almost everywhere2, i.e., φ = ψ in L2
239
+ µ(X). The com-
240
+ patibility assumption (A3) prohibits this situation so that H can in fact be seen as a subspace of L2
241
+ µ(X),
242
+ which is then densely and continuously embedded.
243
+ 2For example, if µ = δa and φ(a) = ψ(a)
244
+
245
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
246
+ 5
247
+ Remark 2.2. (a) Condition (A1) implies k ∈ L4
248
+ µ⊗µ(X × X), where µ ⊗ µ is the product measure on
249
+ X × X.
250
+ (b) The density of H in L2
251
+ µ(X) is strongly related to the term universality in the literature, see [53].
252
+ (c) Condition (A3) holds if supp µ = X, cf. [52, Exercise 4.6].
253
+ It immediately follows from
254
+
255
+ |ψ(x)|∥Φ(x)∥ dµ(x) ≤ ∥ψ∥µ∥ϕ∥1/2
256
+ 1
257
+ ,
258
+ (2.5)
259
+ for ψ ∈ L2
260
+ µ(X) that the linear operator E : L2
261
+ µ(X) → H, defined by
262
+ Eψ :=
263
+
264
+ ψ(x)Φ(x) dµ(x),
265
+ ψ ∈ L2
266
+ µ(X),
267
+ is well defined (as a Bochner integral in H) and bounded with operator norm not larger than ∥ϕ∥1/2
268
+ 1
269
+ .
270
+ Remark 2.3. The so-called kernel mean embedding Ek, mapping probability measures ν on X to the
271
+ RKHS H, is defined by Ekν =
272
+
273
+ Φ(x) dν(x), see, e.g., [51]. Hence, we have Eψ = Ekν with dν = ψ dµ.
274
+ Note that the operator E is not an embedding in strict mathematical terms. The terminology embedding
275
+ rather applies to its adjoint E∗. Indeed, the operator E enjoys the simple but important property:
276
+ ⟨Eψ, η⟩ =
277
+
278
+ ψ(x)⟨Φ(x), η⟩ dµ(x) =
279
+
280
+ ψ(x)η(x) dµ(x) = ⟨ψ, η⟩µ
281
+ (2.6)
282
+ for ψ ∈ L2
283
+ µ(X) and η ∈ H. This implies that the adjoint operator E∗ : H → L2
284
+ µ(X) is the inclusion
285
+ operator from H into L2
286
+ µ(X), i.e.,
287
+ E∗η = η,
288
+ η ∈ H.
289
+ (2.7)
290
+ We shall further define the covariance operator3
291
+ CH := EE∗ ∈ L(H).
292
+ Recall that a linear operator T ∈ L(H) on a Hilbert space H is trace class if for some (and hence for
293
+ each) orthonormal basis (ej)j∈N of H we have that �∞
294
+ j=1⟨(T ∗T)1/2ei, ei⟩ < ∞. A linear operator
295
+ S ∈ L(H, K) between Hilbert spaces H and K is said to be Hilbert-Schmidt [12, Chapter III.9] if S∗S is
296
+ trace class, i.e., ∥S∥2
297
+ HS := �∞
298
+ j=1 ∥Sei∥2 < ∞ for some (and hence for each) orthonormal basis (ej)j∈N.
299
+ Lemma 2.4. Let the Compatibility Assumptions (A1)–(A3) be satisfied. Then the following hold.
300
+ (a) The operator E is an injective Hilbert-Schmidt operator with
301
+ ∥E∥2
302
+ HS = ∥ϕ∥1.
303
+ (b) The space H is densely and compactly embedded in L2
304
+ µ(X).
305
+ (c) The operator CH is an injective non-negative selfadjoint trace class operator.
306
+ The next theorem is due to Mercer and can be found in, e.g., [45]. It shows the existence of a particular
307
+ orthonormal basis (ej)∞
308
+ j=1 of L2
309
+ µ(X) composed of eigenfunctions of E∗E, which we shall henceforth call
310
+ the Mercer basis corresponding to the kernel k. Again for the sake of self-containedness, we give a short
311
+ proof in Appendix A.
312
+ 3In what follows, by L(H, K) we denote the set of all bounded (i.e., continuous) linear operators between Hilbert spaces H
313
+ and K. As usual, we also set L(H) := L(H, H).
314
+
315
+ 6
316
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
317
+ Theorem 2.5 (Mercer’s Theorem). There exists an orthonormal basis (ej)∞
318
+ j=1 of L2
319
+ µ(X) consisting of
320
+ eigenfunctions of E∗E with corresponding eigenvalues λj > 0 such that �∞
321
+ j=1 λj = ∥ϕ∥1 < ∞. Fur-
322
+ thermore, (fj)∞
323
+ j=1 with fj =
324
+
325
+ λjej constitutes an orthonormal basis of H consisting of eigenfunctions
326
+ of CH with corresponding eigenvalues λj. Moreover, for all x, y ∈ X,
327
+ k(x, y) =
328
+
329
+ j
330
+ fj(x)fj(y) =
331
+
332
+ j
333
+ λjej(x)ej(y),
334
+ the series converges absolutely.
335
+ 2.3. The Koopman semigroup. The Koopman semigroup (Kt)t≥0 associated with the SDE (2.1) is
336
+ defined by
337
+ (Ktψ)(x) = E[ψ(Xt)|X0 = x] =
338
+
339
+ ψ(y) ρt(x, dy),
340
+ for ψ ∈ B(X), the set of all bounded Borel-measurable functions on X, and ρt(x, dy) = dρt(x, ·)(y). It
341
+ is easy to see that the invariance of µ is equivalent to the identity
342
+
343
+ Ktψ dµ =
344
+
345
+ ψ dµ
346
+ (2.8)
347
+ for all t ≥ 0 and ψ ∈ B(X) (which easily extends to functions ψ ∈ L1
348
+ µ(X), see Proposition 2.7).
349
+ Remark 2.6. Note that in the case σ = 0 the SDE (2.1) reduces to the deterministic ODE ˙x = b(x).
350
+ Then (2.8) implies
351
+
352
+ |ψ(φ(t, x))|2 dµ(x) =
353
+
354
+ |ψ(x)|2 dµ(x) for all t ≥ 0 and all ψ ∈ B(X), where
355
+ φ(·, x) is the solution of the initial value problem ˙y = b(y), y(0) = x. Hence, the composition operator
356
+ Kt : ψ �→ ψ ◦ φ(t, ·) is unitary in L2
357
+ µ(X). However, we shall require below (see Theorem 3.1) that Kt
358
+ has its spectrum in the interior of the unit circle. Therefore, we assume throughout that σ ̸= 0.
359
+ The proofs of the following two propositions can be found in Appendix A.
360
+ Proposition 2.7. For each p ∈ [1, ∞] and t ≥ 0, Kt extends uniquely to a bounded operator from
361
+ Lp
362
+ µ(X) to itself with operator norm ∥Kt∥Lp
363
+ µ→Lp
364
+ µ ≤ 1.
365
+ By Cb(X) we denote the set of all bounded continuous functions on X. As the measure µ is finite, we
366
+ have Cb(X) ⊂ B(X) ⊂ Lp
367
+ µ(X) for all p ∈ [1, ∞]. In fact, Cb(X) is dense in each Lp
368
+ µ(X), p ∈ [1, ∞),
369
+ see [48, Theorem 3.14].
370
+ Proposition 2.8. (Kt)t≥0 is a C0-semigroup of contractions in Lp
371
+ µ(X) for each p ∈ [1, ∞).
372
+ The infinitesimal generator of the C0-semigroup (Kt)t≥0 is the (in general unbounded) operator in
373
+ L2
374
+ µ(X), defined by
375
+ Lψ = L2
376
+ µ- lim
377
+ t→0
378
+ Ktψ − ψ
379
+ t
380
+ ,
381
+ (2.9)
382
+ whose domain dom L is the set of all ψ ∈ L2
383
+ µ(X) for which the above limit exists. By Proposition 2.8
384
+ and the Lumer-Phillips theorem (see [28]), the operator L is densely defined, closed4, dissipative (i.e.,
385
+ Re⟨Lψ, ψ⟩µ ≤ 0 for all ψ ∈ dom L), and its spectrum is contained in the closed left half-plane.
386
+ Lemma 2.9. The constant function 1 is contained in dom L and L1 = 0. Moreover, if M := span{1} ⊂
387
+ L2
388
+ µ(X), then both M and M⊥ are invariant under L and all Kt, t ≥ 0.
389
+ 4Recall that a linear operator T, defined on a subspace dom T of a Hilbert space H, which maps to a Hilbert space K, is
390
+ closed if its graph is closed in H × K.
391
+
392
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
393
+ 7
394
+ Proof. It is easy to see that Kt1 = 1 for each t ≥ 0 and hence 1 ∈ dom L with L1 = 0. Hence KtM ⊂
395
+ M for all t ≥ 0 and LM ⊂ M. Now, if ψ ⊥ 1, then ⟨Ktψ, 1⟩µ =
396
+
397
+ Ktψ dµ =
398
+
399
+ ψ dµ = ⟨ψ, 1⟩µ = 0,
400
+ which shows that also KtM⊥ ⊂ M⊥. The relation LM⊥ ⊂ M⊥ follows from (2.9).
401
+
402
+ 2.4. Representation of Koopman Operators on the RKHS. Using the integral operator E, it is possi-
403
+ ble to represent the Koopman operator with the aid of a linear operator on H, which is based on kernel
404
+ evaluations. This construction mimics the well-known kernel trick used frequently in machine learning.
405
+ To begin with, for any x, y ∈ X define the rank-one operator Cxy : H → H by
406
+ Cxyψ := ⟨ψ, Φ(y)⟩Φ(x) = ψ(y)Φ(x).
407
+ For t ≥ 0 and ψ ∈ H we further define the cross-covariance operator Ct
408
+ H : H → H by
409
+ Ct
410
+ Hψ :=
411
+ � �
412
+ Cxyψ ρt(x, dy) dµ(x) =
413
+
414
+ (Ktψ)(x)Φ(x) dµ(x) = EKtψ = EKtE∗ψ.
415
+ Thus, we have
416
+ Ct
417
+ H = EKtE∗.
418
+ (2.10)
419
+ In other words, the cross-covariance operator Ct
420
+ H represents the action of the Koopman semigroup
421
+ through the lens of the RKHS integral operator E (see [20] for details). Being the product of the two
422
+ Hilbert-Schmidt operators EKt and E∗, the operator Ct
423
+ H is trace class for all t ≥ 0 (cf. [16, p. 521]).
424
+ Note that due to ρ0(x, · ) = δx, for t = 0 this reduces to the already introduced covariance operator
425
+ � �
426
+ Cxy ρ0(x, dy) dµ(x) =
427
+
428
+ Cxx dµ(x) = EE∗ = CH.
429
+ The identity (2.10) shows that for all η, ψ ∈ H we have
430
+ ⟨η, Ct
431
+ Hψ⟩ = ⟨η, Ktψ⟩µ,
432
+ (2.11)
433
+ which shows that the role of Ct
434
+ H is analogous to that of the stiffness matrix in a traditional finite-
435
+ dimensional approximation of the Koopman operator. In this analogy, the covariance operator CH plays
436
+ the role of the mass matrix.
437
+ 2.5. Empirical estimators. Next, we introduce empirical estimators for Ct
438
+ H based on finite data (xk, yk),
439
+ k = 1, . . . , m. We consider two sampling scenarios for fixed t > 0:
440
+ (1) The xk are drawn i.i.d. from µ, and each yk ∼ µ is obtained from the conditional distribution
441
+ ρt(xk, ·), i.e., yk|(xk = x) ∼ ρt(x, ·) for µ-a.e. x ∈ X. For example, yk can be obtained by
442
+ simulating the SDE (2.1) starting from xk until time t.
443
+ (2) µ is ergodic and both xk and yk are obtained from a single (usually long-term) simulation of the
444
+ dynamics Xt at discrete integration time step ∆t > 0, using a sliding-window estimator, i.e.,
445
+ x0 = X0 ∼ µ,
446
+ xk = Xk∆t,
447
+ and
448
+ yk = Xk∆t+t.
449
+ Moreover, we assume that there exists a Riesz basis (ψj)∞
450
+ j=0 of L2
451
+ µ(X) consisting of eigenfunc-
452
+ tions of the generator L with corresponding eigenvalues µj satisfying �∞
453
+ j=0 e2(Re µj)∆t < ∞.
454
+ Remark 2.10. It easily follows from the discussion in Appendix B that the last assumption on the
455
+ generator L and on the decay of its eigenvalues µj is equivalent to the similarity of L to an (unbounded)
456
+ normal operator N such that eN∆t ∈ L(L2
457
+ µ(X)) is Hilbert-Schmidt. If the assumption holds with
458
+ ψj = Sej, where (ej) is an orthonormal basis of L2
459
+ µ(X), the operator N is given by N = �
460
+ j µj⟨ · , ej⟩ej
461
+ with dom N = {ψ : (µj⟨ψ, ej⟩) ∈ ℓ2} and L = SNS−1. The condition �∞
462
+ j=0 e2(Re µj)∆t < ∞ then
463
+ obviously means that the eigenvalues of eN∆t form an ℓ2 sequence.
464
+
465
+ 8
466
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
467
+ Recall that the joint distribution of two random variables X and Y is given by
468
+ dPX,Y (x, y) = dPY |X=x(y) · dPX(x).
469
+ Set X = xk and Y = yk. Then, in both cases (1) and (2), we have PX = µ and
470
+ PY |X=x(B) = P(yk ∈ B|xk = x) = P(Xt ∈ B|X0 = x) = ρt(x, B).
471
+ In other words, for the joint distribution µ0,t of xk and yk we have
472
+ dµ0,t(x, y) = dρt(x, ·)(y) · dµ(x) = ρt(x, dy) · dµ(x).
473
+ More explicitly,
474
+ µ0,t(A × B) =
475
+
476
+ A
477
+ ρt(x, B) dµ(x).
478
+ Now, since
479
+ Ct
480
+ H =
481
+ � �
482
+ Cxy ρt(x, dy) dµ(x) =
483
+
484
+ Cxy dµ0,t(x, y) = E
485
+
486
+ Cxk,yk
487
+
488
+ ,
489
+ for the empirical estimator for Ct
490
+ H we choose the expression
491
+ �Cm,t
492
+ H
493
+ = 1
494
+ m
495
+ m−1
496
+
497
+ k=0
498
+ Cxk,yk.
499
+ (2.12)
500
+ 3. VARIANCE OF THE EMPIRICAL ESTIMATOR
501
+ In case (1), the law of large numbers [3, Theorem 2.4] and, in case (2), ergodicity [2] ensures the
502
+ expected behavior
503
+ lim
504
+ m→∞ ∥ �Cm,t
505
+ H
506
+ − Ct
507
+ H∥HS = 0
508
+ a.s.
509
+ However, this is a purely qualitative result, and nothing is known a priori on the rate of this convergence.
510
+ The main result of this section, Theorem 3.1, contains an exact expression for the Hilbert-Schmidt vari-
511
+ ance of the empirical estimator �Cm,t
512
+ H
513
+ based on m data points, which then yields probabilistic estimates
514
+ for the expression ∥ �Cm,t
515
+ H
516
+ − Ct
517
+ H∥HS, see Proposition 3.4. Here, our focus is on the estimation from a
518
+ single ergodic trajectory, i.e., case (2) above. While the broader line of reasoning partially resembles that
519
+ of our previous paper [38], we require additional steps due to the infinite-dimensional setting introduced
520
+ by the RKHS.
521
+ In Theorem 3.1 and its proof, we will be concerned with evolving kernels kt : X × X → R, defined
522
+ by
523
+ kt(x, x′) :=
524
+ � �
525
+ k(y, y′) ρt(x, dy) ρt(x′, dy′).
526
+ We have
527
+ kt(x, x′) =
528
+ � �
529
+ ⟨Φ(y), Φ(y′)⟩ ρt(x, dy) ρt(x′, dy′) =
530
+ ��
531
+ Φ(y) ρt(x, dy),
532
+
533
+ Φ(y′) ρt(x′, dy′)
534
+
535
+ .
536
+ The integrals in the last expression are well defined as limits in H for µ-a.e. x, x′ ∈ X as
537
+ � �
538
+ ∥Φ(y)∥ ρt(x, dy) dµ(x) =
539
+ � � �
540
+ ϕ(y) ρt(x, dy) dµ(x) =
541
+ � �
542
+ ϕ(x) dµ(x) ≤ ∥ϕ∥1/2
543
+ 1
544
+ ,
545
+ see (2.8). This shows that kt is well defined ((µ ⊗ µ)-a.e.) and that it is a positive definite kernel on its
546
+ domain. Moreover, k0 = k and
547
+ |kt(x, x′)| ≤
548
+ � �
549
+ ϕ(y′)
550
+ � �
551
+ ϕ(y) ρt(x, dy) ρt(x′, dy′) = (Kt√ϕ)(x) · (Kt√ϕ)(x′).
552
+
553
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
554
+ 9
555
+ In particular, kt ∈ L2
556
+ µ⊗µ(X 2) with ∥kt∥L2
557
+ µ⊗µ ≤ ∥ϕ∥1. By Φt we denote the corresponding feature map,
558
+ i.e.,
559
+ Φt(x) = kt(x, ·).
560
+ Note that not necessarily Φt(x) ∈ H. Finally, we define
561
+ Φt,x := Φ(x)Φt(x).
562
+ We are now in the position to formulate our first main result.
563
+ Theorem 3.1. Setting zk = (xk, yk), k = 1, . . . , m, the Hilbert-Schmidt variance of the empirical
564
+ estimator can be written as
565
+ E
566
+
567
+ ∥ �Cm,t
568
+ H
569
+ − Ct
570
+ H∥2
571
+ HS
572
+
573
+ = 1
574
+ m
575
+
576
+ E0(t) + 2
577
+ m−1
578
+
579
+ k=1
580
+ m−k
581
+ m
582
+ · E
583
+
584
+ ⟨Czk − Ct
585
+ H, Cz0 − Ct
586
+ H⟩HS
587
+
588
+
589
+ ,
590
+ (3.1)
591
+ where
592
+ E0(t) := E
593
+
594
+ ∥Cz0 − Ct
595
+ H∥2
596
+ HS
597
+
598
+ = ⟨Ktϕ, ϕ⟩µ − ⟨k, kt⟩L2
599
+ µ⊗µ.
600
+ In case (1), E
601
+
602
+ ∥ �Cm,t
603
+ H
604
+ − Ct
605
+ H∥2
606
+ HS
607
+
608
+ = 1
609
+ mE0(t), whereas in case (2) we have
610
+ E
611
+
612
+ ∥ �Cm,t
613
+ H
614
+ − Ct
615
+ H∥2
616
+ HS
617
+
618
+ = 1
619
+ m
620
+
621
+ �E0(t) + 2
622
+
623
+
624
+ j=1
625
+ dj,tqj
626
+ 1 − qj
627
+
628
+ 1 − 1
629
+ m ·
630
+ 1 − qm
631
+ j
632
+ 1 − qj
633
+ ��
634
+ � ,
635
+ (3.2)
636
+ with
637
+ qj = eµj∆t,
638
+ dj,t = ⟨cj,t, ψj⟩µ,
639
+ and
640
+ cj,t(x) = ⟨Φt,x, �ψj⟩µ.
641
+ Before proving Theorem 3.1 in Subsection 3.1 below, let us comment on its statements and draw some
642
+ conclusions.
643
+ Remark 3.2. (a) Note that, by ergodicity of the invariant measure µ, the generator L has no eigenvalues
644
+ on the imaginary axis, except the simple zero eigenvalue (see Proposition D.1 in the Appendix). In
645
+ contrast, if we drop the ergodicity assumption, we have
646
+ E
647
+
648
+ ∥ �Cm,t
649
+ H
650
+ − Ct
651
+ H∥2
652
+ HS
653
+
654
+ = 1
655
+ m
656
+
657
+ �E0(t) + 2
658
+
659
+
660
+ j=ν0
661
+ dj,tqj
662
+ 1 − qj
663
+
664
+ 1 − 1
665
+ m ·
666
+ 1 − qm
667
+ j
668
+ 1 − qj
669
+ ��
670
+ � + m − 1
671
+ m
672
+ ν0−1
673
+
674
+ j=1
675
+ dj,t,
676
+ where ν0 = #{j : µj ∈ 2πi
677
+ ∆t Z} is the number of eigenvalues of L of the form 2kπi
678
+ ∆t , k ∈ Z, counting
679
+ multiplicities. Obviously, the last term does not decay to zero as m → ∞ if �ν0−1
680
+ j=1 dj,t ̸= 0.
681
+ (b) The definition of cj,t requires Φt,x to be in L2
682
+ µ(X) for µ-a.e. x ∈ X. This will in fact be proved in
683
+ Lemma 3.6 below.
684
+ In the following, we let
685
+ σ2
686
+ m := E0(t) + 2
687
+
688
+
689
+ j=1
690
+ dj,tqj
691
+ 1 − qj
692
+
693
+ 1 − 1
694
+ m ·
695
+ 1 − qm
696
+ j
697
+ 1 − qj
698
+
699
+ and
700
+ σ2
701
+ ∞ := E0(t) + 2
702
+
703
+
704
+ j=1
705
+ dj,tqj
706
+ 1 − qj
707
+ .
708
+ Then
709
+ E
710
+
711
+ ∥ �Cm,t
712
+ H
713
+ − Ct
714
+ H∥2
715
+ HS
716
+
717
+ = σ2
718
+ m
719
+ m
720
+ and σ2
721
+ m → σ2
722
+ ∞ as m → ∞. Both infinite series converge absolutely as (qj) ∈ ℓ2 by assumption, and
723
+ (dj,t) ∈ ℓ2 as shown in the proof of Theorem 3.1. We can therefore interpret σ2
724
+ ∞ as asymptotic variance
725
+ of the estimator ˆCm,t
726
+ H , similar to our previous results in [38, Lemma 6].
727
+ An upper bound on the variance can be obtained as follows:
728
+
729
+ 10
730
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
731
+ Corollary 3.3. In case (2), for all m ∈ N we have
732
+ σ2
733
+ m ≤ ⟨Ktϕ, ϕ⟩µ
734
+
735
+ 1 + 4B
736
+ Aδq
737
+ ∥q∥ℓ2
738
+
739
+ ,
740
+ (3.3)
741
+ where A and B denote the lower and upper Riesz bounds of (ψj), respectively,
742
+ q = (qj)∞
743
+ j=1 ,
744
+ and
745
+ δq = inf
746
+ j≥1 |1 − qj| > 0.
747
+ Proof. First of all, by Lemma 3.6,
748
+ E0(t) = ⟨Ktϕ, ϕ⟩µ − ⟨k, kt⟩L2
749
+ µ⊗µ ≤ ⟨Ktϕ, ϕ⟩µ.
750
+ We have |1 − qj| ≥ δq and |qj| ≤ 1 for all j ≥ 1 and hence
751
+ 1
752
+ |1 − qj| ·
753
+ ����1 − 1
754
+ m ·
755
+ 1 − qm
756
+ j
757
+ 1 − qj
758
+ ���� ≤ 1
759
+ δq
760
+
761
+ 1 + 1
762
+ m
763
+ m−1
764
+
765
+ k=0
766
+ |qj|k
767
+
768
+ ≤ 2
769
+ δq
770
+ .
771
+ This and (3.7) imply (3.3).
772
+
773
+ Proposition 3.4. We have the following probabilistic bound on the estimation error:
774
+ P
775
+
776
+ ∥Ct
777
+ H − �Cm,t
778
+ H ∥HS > ε
779
+
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+
788
+
789
+
790
+
791
+
792
+
793
+
794
+ σ2
795
+ m
796
+ mε2 ,
797
+ in case (2),
798
+ (3.4)
799
+ E0(t)
800
+ mε2 ,
801
+ in case (1),
802
+ (3.5)
803
+ 2 e
804
+
805
+ mε2
806
+ 8∥k∥2∞ ,
807
+ in case (1) with bounded kernel.
808
+ (3.6)
809
+ In particular, the above also holds upon replacing the left-hand side by P
810
+
811
+ ∥EKtψ − �Cm,t
812
+ H ψ∥ > ε
813
+
814
+ for
815
+ ψ ∈ H, ∥ψ∥ = 1.
816
+ Proof. The inequalities (3.4) and (3.5) are an immediate consequence of Markov’s inequality, applied to
817
+ the random variable ∥Ct
818
+ H − �Cm,t
819
+ H ∥2
820
+ HS. The inequality (3.6) follows from Ct
821
+ H − �Cm,t
822
+ H
823
+ = 1
824
+ m
825
+ �m−1
826
+ k=0 (Ct
827
+ H −
828
+ Czk), Hoeffding’s inequality for Hilbert space-valued random variables [43, Theorem 3.5] (see also [30,
829
+ Theorem A.5.2]), and (cf. Lemma 3.6 below)
830
+ ∥Ct
831
+ H − Cxy∥HS ≤ ∥Ct
832
+ H∥HS + ∥Cxy∥HS =
833
+
834
+ ⟨k, kt⟩L2
835
+ µ⊗µ +
836
+
837
+ ϕ(x)ϕ(y) ≤ 2∥k∥∞,
838
+ since also ∥kt∥∞ ≤ ∥k∥∞. The estimate
839
+ ∥EKtψ − �Cm,t
840
+ H ψ∥ = ∥EKtE∗ψ − �Cm,t
841
+ H ψ∥ = ∥(Ct
842
+ H − �Cm,t
843
+ H )ψ∥ ≤ ∥Ct
844
+ H − �Cm,t
845
+ H ∥HS
846
+ finally yields the last claim.
847
+
848
+ Remark 3.5. Under additional assumptions (boundedness of the kernel, mixing, etc.), other concen-
849
+ tration inequalities than Markov’s, such as, e.g., [3, Theorem 2.12] (α-mixing) or [46, Th´eor`eme 3.1]
850
+ (β-mixing), might lead to better estimates than (3.4).
851
+ 3.1. Proof of Theorem 3.1.
852
+ Lemma 3.6. Let t ≥ 0. Then Φt,x ∈ L2
853
+ µ(X) for µ-a.e. x ∈ X with
854
+ ∥Φt,x∥2
855
+ µ ≤ ϕ(x)(Ktϕ)(x) · ⟨Ktϕ, ϕ⟩µ.
856
+ Moreover, for every t ≥ 0 we have
857
+ ∥Cxy∥2
858
+ HS = ϕ(x)ϕ(y)
859
+ and
860
+ ∥Ct
861
+ H∥2
862
+ HS = ⟨k, kt⟩L2
863
+ µ⊗µ =
864
+ � �
865
+ Φt,x(y) dµ(y) dµ(x).
866
+
867
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
868
+ 11
869
+ Proof. We estimate
870
+ |Φt,x(x′)|2 = |k(x, x′)kt(x, x′)|2 ≤ ϕ(x)ϕ(x′)(Kt√ϕ)2(x) · (Kt√ϕ)2(x′)
871
+ ≤ ϕ(x)(Ktϕ)(x) · ϕ(x′)(Ktϕ)(x′),
872
+ where we have applied Jensen’s inequality to (Kt√ϕ)(x). This proves the first inequality. Next, if
873
+ (fj) ⊂ H denotes the Mercer basis corresponding to k, then
874
+ ⟨Cxy, Cx′y′⟩HS =
875
+
876
+ i
877
+ ⟨Cxyfi, Cx′y′fi⟩ =
878
+
879
+ i
880
+ fi(y)fi(y′)k(x, x′) = k(x, x′)k(y, y′)
881
+ This proves ∥Cxy∥2
882
+ HS = ϕ(x)ϕ(y). Moreover, it yields
883
+ ∥Ct
884
+ H∥2
885
+ HS =
886
+ ����
887
+
888
+ Cxy dµ0,t(x, y)
889
+ ����
890
+ 2
891
+ HS
892
+ =
893
+ � �
894
+ k(x, x′)k(y, y′) dµ0,t(x, y) dµ0,t(x′, y′)
895
+ =
896
+ � �
897
+ k(x, x′)
898
+ �� �
899
+ k(y, y′) ρt(x, dy) ρt(x′, dy′)
900
+
901
+ dµ(x′) dµ(x) = ⟨k, kt⟩L2
902
+ µ⊗µ,
903
+ as claimed.
904
+
905
+ Proof of Theorem 3.1. First of all, we have
906
+ E
907
+
908
+ ∥ �Cm,t
909
+ H
910
+ − Ct
911
+ H∥2
912
+ HS
913
+
914
+ = E
915
+ ���� 1
916
+ m
917
+ m−1
918
+
919
+ k=0
920
+ (Czk − Ct
921
+ H)
922
+ ���
923
+ 2
924
+ HS
925
+
926
+ = E
927
+ � 1
928
+ m2
929
+ m−1
930
+
931
+ k,ℓ=0
932
+
933
+ Czk − Ct
934
+ H, Czℓ − Ct
935
+ H
936
+
937
+ HS
938
+
939
+ = E
940
+
941
+ 1
942
+ m2
943
+ m−1
944
+
945
+ k=0
946
+ ∥Czk − Ct
947
+ H∥2
948
+ HS + 2
949
+ m2
950
+ m−1
951
+
952
+ k=0
953
+ m−1
954
+
955
+ ℓ=k+1
956
+
957
+ Czk − Ct
958
+ H, Czℓ − Ct
959
+ H
960
+
961
+ HS
962
+
963
+ = 1
964
+ mE
965
+
966
+ ∥Cz0 − Ct
967
+ H∥2
968
+ HS
969
+
970
+ + 2
971
+ m2
972
+ m−1
973
+
974
+ k=1
975
+ (m − k)E
976
+
977
+ ⟨Czk − Ct
978
+ H, Cz0 − Ct
979
+ H⟩HS
980
+
981
+ .
982
+ where we exploited that E[⟨Czk − Ct
983
+ H, Czℓ − Ct
984
+ H⟩HS] only depends on the difference ℓ − k.
985
+ Let us compute the first term. Since E[Cz0] = Ct
986
+ H and thus E[⟨Cz0, Ct
987
+ H⟩HS] = ∥Ct
988
+ H∥2
989
+ HS,
990
+ E
991
+
992
+ ∥Cz0 − Ct
993
+ H∥2
994
+ HS
995
+
996
+ = E
997
+
998
+ ∥Cz0∥2
999
+ HS
1000
+
1001
+ − ∥Ct
1002
+ H∥2
1003
+ HS.
1004
+ For ψ ∈ H we have
1005
+ ∥Cz0ψ∥2 = ∥ψ(y0)Φ(x0)∥2 = ψ(y0)2ϕ(x0).
1006
+ Using the Mercer basis (fi) ⊂ H corresponding to k in H (cf. Theorem 2.5), we obtain
1007
+ E
1008
+
1009
+ ∥Cz0∥2
1010
+ HS
1011
+
1012
+ = E
1013
+ � �
1014
+ i
1015
+ ∥Cz0fi∥2�
1016
+ = E
1017
+ � �
1018
+ i
1019
+ fi(y0)2ϕ(x0)
1020
+
1021
+ = E[ϕ(x0)ϕ(y0)].
1022
+ Note that the latter equals (ϕ(x) = k(x, x) by definition)
1023
+ E[ϕ(x0)ϕ(y0)] =
1024
+
1025
+ ϕ(x)
1026
+
1027
+ ϕ(y) ρt(x, dy) dµ(x) =
1028
+
1029
+ ϕ(x)(Ktϕ)(x) dµ(x) = ⟨Ktϕ, ϕ⟩µ.
1030
+ We obtain
1031
+ E
1032
+
1033
+ ∥Cz0 − Ct
1034
+ H∥2
1035
+ HS
1036
+
1037
+ = E[ϕ(x0)ϕ(y0)] − ⟨k, kt⟩L2
1038
+ µ⊗µ = ⟨Ktϕ, ϕ⟩µ − ⟨k, kt⟩L2
1039
+ µ⊗µ = E0(t)
1040
+ and thus (3.1).
1041
+ Case (1). In this case, zk and zℓ are independent for k ̸= ℓ, so that
1042
+ E
1043
+
1044
+ ⟨Czk − Ct
1045
+ H, Czℓ − Ct
1046
+ H⟩HS
1047
+
1048
+ = 0.
1049
+
1050
+ 12
1051
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
1052
+ Hence, the statement of the theorem for case (1) follows.
1053
+ Case (2). Here, the cross terms do not vanish. In fact,
1054
+ E
1055
+
1056
+ ⟨Czk − Ct
1057
+ H, Cz0 − Ct
1058
+ H⟩HS
1059
+
1060
+ = E[⟨Czk, Cz0⟩HS] − ∥Ct
1061
+ H∥2
1062
+ HS = E
1063
+ � �
1064
+ i
1065
+ ⟨Czkfi, Cz0fi⟩
1066
+
1067
+ − ∥Ct
1068
+ H∥2
1069
+ HS
1070
+ = E
1071
+ �� �
1072
+ i
1073
+ fi(yk)fi(y0)
1074
+
1075
+ k(xk, x0)
1076
+
1077
+ − ∥Ct
1078
+ H∥2
1079
+ HS
1080
+ = E
1081
+
1082
+ k(yk, y0)k(xk, x0)
1083
+
1084
+ − ∥Ct
1085
+ H∥2
1086
+ HS.
1087
+ Now,
1088
+ E
1089
+
1090
+ k(yk, y0)k(xk, x0)
1091
+
1092
+ =
1093
+ � � � �
1094
+ k(y′, y)k(x′, x) ρt(x′, dy′) ρk∆t(x, dx′) ρt(x, dy) dµ(x)
1095
+ =
1096
+ � �
1097
+ k(x, x′)
1098
+ �� �
1099
+ k(y, y′) ρt(x, dy) ρt(x′, dy′)
1100
+
1101
+ ρk∆t(x, dx′) dµ(x)
1102
+ =
1103
+ � �
1104
+ k(x, x′)kt(x, x′) ρk∆t(x, dx′) dµ(x)
1105
+ =
1106
+ � ��
1107
+ [Φ(x)Φt(x)](x′) ρk∆t(x, dx′)
1108
+
1109
+ dµ(x)
1110
+ =
1111
+
1112
+ [Kk∆tΦt,x](x) dµ(x).
1113
+ Hence,
1114
+ E
1115
+
1116
+ ⟨Czk − Ct
1117
+ H, Cz0 − Ct
1118
+ H⟩HS
1119
+
1120
+ =
1121
+
1122
+ (Kk∆tΦt,x)(x) dµ(x) − ⟨k, kt⟩L2
1123
+ µ⊗µ.
1124
+ Let us now exploit the assumptions on the spectral properties of the generator L in case (2). For µ-a.e.
1125
+ x ∈ X, we have
1126
+ Φt,x =
1127
+
1128
+
1129
+ j=0
1130
+ cj,t(x)ψj,
1131
+ the series converging in L2
1132
+ µ(X). Therefore,
1133
+ KsΦt,x =
1134
+
1135
+
1136
+ j=0
1137
+ cj,t(x)Ksψj =
1138
+
1139
+
1140
+ j=0
1141
+ cj,t(x)eµjsψj,
1142
+ and thus (for k ≥ 1)
1143
+ � �
1144
+ Kk∆tΦt,x
1145
+
1146
+ (x) dµ(x) =
1147
+
1148
+
1149
+
1150
+ j=0
1151
+ cj,t(x)eµjk∆tψj(x) dµ(x) =
1152
+
1153
+
1154
+ j=0
1155
+ dj,t · eµjk∆t =
1156
+
1157
+
1158
+ j=0
1159
+ dj,t · qk
1160
+ j .
1161
+ This series converges absolutely for each t ≥ 0 due to our assumption that �
1162
+ j |qj|2 < ∞ and since for
1163
+ each j ∈ N0 we have by Lemma 3.6 that
1164
+
1165
+
1166
+ j=0
1167
+ |dj,t|2 ≤ B2
1168
+
1169
+
1170
+ j=0
1171
+ ∥cj,t∥2
1172
+ µ = B2
1173
+
1174
+
1175
+
1176
+ j=0
1177
+ |⟨Φt,x, �ψj⟩µ|2 dµ(x)
1178
+ ≤ B2
1179
+ A2
1180
+
1181
+ ∥Φt,x∥2
1182
+ µ dµ(x) ≤ B2
1183
+ A2 ⟨Ktϕ, ϕ⟩2
1184
+ µ,
1185
+ (3.7)
1186
+ where A and B are the Riesz bounds of (ψj).
1187
+
1188
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
1189
+ 13
1190
+ Without loss of generality, we may assume that µ0 = 0 with ψ0 = 1 and µ1, . . . , µν0−1 ∈ 2πi
1191
+ ∆t Z,
1192
+ and ψk ∈ 1⊥ for k ≥ 1, see Lemma 2.9. The duality relations then imply �ψ0 = 1. Now, c0,t(x) =
1193
+ ⟨Φt,x, 1⟩µ =
1194
+
1195
+ k(x, y)kt(x, y) dµ(y) and hence
1196
+ d0,t = ⟨c0,t, 1⟩µ =
1197
+
1198
+ c0,t(x) dµ(x) =
1199
+ � �
1200
+ k(x, y)kt(x, y) dµ(y) dµ(x) = ⟨k, kt⟩L2
1201
+ µ⊗µ.
1202
+ (3.8)
1203
+ This implies
1204
+ E
1205
+
1206
+ ⟨Czk − Ct
1207
+ H, Cz0 − Ct
1208
+ H⟩HS
1209
+
1210
+ =
1211
+
1212
+
1213
+ j=0
1214
+ dj,t · qk
1215
+ j − ⟨k, kt⟩L2
1216
+ µ⊗µ =
1217
+
1218
+
1219
+ j=1
1220
+ dj,t · qk
1221
+ j
1222
+ and therefore
1223
+ E
1224
+
1225
+ ∥ �Cm,t
1226
+ H
1227
+ − Ct
1228
+ H∥2
1229
+ HS
1230
+
1231
+ = 1
1232
+ mE0(t) + 2
1233
+ m
1234
+
1235
+
1236
+ j=1
1237
+ dj,t
1238
+ m−1
1239
+
1240
+ k=1
1241
+ (1 − k
1242
+ m)qk
1243
+ j
1244
+ = 1
1245
+ m
1246
+
1247
+ �E0(t) + 2
1248
+ ν0−1
1249
+
1250
+ j=1
1251
+ dj,t
1252
+ m−1
1253
+
1254
+ k=1
1255
+ (1 − k
1256
+ m)qk
1257
+ j + 2
1258
+
1259
+
1260
+ j=ν0
1261
+ dj,t
1262
+ m−1
1263
+
1264
+ k=1
1265
+ (1 − k
1266
+ m)qk
1267
+ j
1268
+
1269
+ � .
1270
+ The identity
1271
+ m−1
1272
+
1273
+ k=1
1274
+
1275
+ 1 − k
1276
+ m
1277
+
1278
+ qk =
1279
+
1280
+ q
1281
+ 1−q
1282
+
1283
+ 1 − 1
1284
+ m · 1−qm
1285
+ 1−q
1286
+
1287
+ if q ̸= 1
1288
+ m−1
1289
+ 2
1290
+ if q = 1
1291
+ finally yields (3.2).
1292
+
1293
+ 4. BOUND ON THE KOOPMAN PREDICTION ERROR
1294
+ The kernel cross-covariance operator Ct
1295
+ H can also be used to approximate the predictive capabilities
1296
+ of the Koopman operator, for observables in H. Approximating the full Koopman operator involves
1297
+ the inverse of the co-variance operator, which becomes an unbounded operator on a dense domain of
1298
+ definition in the infinite-dimensional RKHS case. Moreover, its empirical estimator �Cm
1299
+ H is finite-rank and
1300
+ thus not even injective. While Fukumizu et al. tackle this problem in [10] by means of a regularization
1301
+ procedure, we choose to use pseudo-inverses instead (cf. Remark 4.2). We truncate the action of the
1302
+ Koopman operator using N terms of the Mercer series expansion and derive a bound for the prediction
1303
+ error for fixed truncation parameter N. While we use similar ideas as presented in [11], we heavily
1304
+ rely on our new results on the cross-covariance operator, cf. Section 3. Afterwards, we deal with the
1305
+ case of Koopman-invariance of the RKHS [22]. Here, we establish an estimate for the truncation error,
1306
+ which then yields a bound on the deviation from the full Koopman operator. We emphasize that this
1307
+ error bound is extremely useful in comparison to its prior counterparts based on the assumption that the
1308
+ space spanned by a finite number of so-called observables (dictionary) is invariant under the Koopman
1309
+ operator. The latter essentially requires to employ only Koopman eigenfunctions as observables, see,
1310
+ e.g., [25, 14].
1311
+ Let (ej) be the Mercer orthonormal basis of L2
1312
+ µ(X) corresponding to the kernel k and let λj = ∥Eej∥µ
1313
+ as well as fj :=
1314
+
1315
+ λjej (cf. Theorem 2.5). We arrange the Mercer eigenvalues in a non-increasing way,
1316
+ i.e.,
1317
+ λ1 ≥ λ2 ≥ . . . .
1318
+ Let ψ ∈ H. Then
1319
+ Ktψ =
1320
+
1321
+
1322
+ j=1
1323
+ ⟨Ktψ, ej⟩µej =
1324
+
1325
+
1326
+ j=1
1327
+ ⟨Ct
1328
+ Hψ, ej⟩ej =
1329
+ N
1330
+
1331
+ j=1
1332
+ ⟨Ct
1333
+ Hψ, ej⟩ej +
1334
+
1335
+
1336
+ j=N+1
1337
+ ⟨Ct
1338
+ Hψ, ej⟩ej.
1339
+ (4.1)
1340
+
1341
+ 14
1342
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
1343
+ 4.1. Estimation error. In the next theorem, we estimate the probabilistic error between the first sum-
1344
+ mand
1345
+ Kt
1346
+ Nψ =
1347
+ N
1348
+
1349
+ j=1
1350
+ ⟨Ct
1351
+ Hψ, ej⟩ej,
1352
+ ψ ∈ H,
1353
+ and its empirical estimator, which is of the form �N
1354
+ j=1⟨ �Cm,t
1355
+ H ψ, �ej⟩�ej with approximations �ej of the ej.
1356
+ Theorem 4.1. Assume that the eigenvalues λj of CH are simple, i.e., λj+1 > λj for all j. Fix an
1357
+ arbitrary N ∈ N and let
1358
+ δN =
1359
+ min
1360
+ j=1,...,N
1361
+ λj − λj+1
1362
+ 2
1363
+ .
1364
+ (4.2)
1365
+ Further, let ε ∈ (0, δN) and δ ∈ (0, 1) be arbitrary and fix some5 m ≥ max{N, 2σ2
1366
+ m
1367
+ ε2δ }. Let now
1368
+ �λ1 ≥ . . . ≥ �λm denote the largest m eigenvalues of �Cm
1369
+ H in descending order and let �e1, . . . , �em be
1370
+ corresponding eigenfunctions, respectively, such that ∥�ej∥ = �λ−1/2
1371
+ j
1372
+ for j = 1, . . . , m. If we define
1373
+ �Km,t
1374
+ N ψ =
1375
+ N
1376
+
1377
+ j=1
1378
+ ⟨ �Cm,t
1379
+ H ψ, �ej⟩�ej,
1380
+ ψ ∈ H,
1381
+ (4.3)
1382
+ then, with probability at least 1 − δ, we have that
1383
+ ∥Kt
1384
+ N − �Km,t
1385
+ N ∥H→L2µ(X) ≤
1386
+
1387
+ 1
1388
+ √λN
1389
+ + N + 1
1390
+ δNλN
1391
+ (1 + ∥ϕ∥1)∥ϕ∥1/2
1392
+ 1
1393
+
1394
+ ε.
1395
+ (4.4)
1396
+ All of the above statements equally apply to case (1) upon replacing σm by E0(t).
1397
+ Remark 4.2. (a) If we set �fj = �λ1/2
1398
+ j
1399
+ · �ej, then
1400
+ �Cm
1401
+ H =
1402
+ m
1403
+
1404
+ j=1
1405
+ �λj⟨ · , �fj⟩ �fj,
1406
+ and thus
1407
+ N
1408
+
1409
+ j=1
1410
+ ⟨ · , �ej⟩�ej =
1411
+ N
1412
+
1413
+ j=1
1414
+ 1
1415
+ �λj
1416
+ ⟨ · , �fj⟩ �fj = ( �Cm
1417
+ H )† �QN,
1418
+ where �QN = �N
1419
+ j=1⟨ · , �fj⟩ �fj is the orthogonal projector onto the span of the first N eigenfunctions of
1420
+ �Cm
1421
+ H in H. Therefore,
1422
+ �Km,t
1423
+ N ψ =
1424
+ m
1425
+
1426
+ j=1
1427
+ ⟨ �Cm,t
1428
+ H ψ, �ej⟩�ej = ( �Cm
1429
+ H )† �QN �Cm,t
1430
+ H ψ.
1431
+ In particular, for N = m we have �Km,t
1432
+ N
1433
+ = ( �Cm
1434
+ H )† �Cm,t
1435
+ H , which surely is one of the first canonical choices
1436
+ for an empirical estimator of Kt.
1437
+ (b) The functions �ej have unit length in the empirical L2
1438
+ µ-norm:
1439
+ 1
1440
+ m
1441
+ m
1442
+
1443
+ k=1
1444
+ �ej(xk)�ej(xk) =
1445
+
1446
+ �Cm
1447
+ H �ej, �ej
1448
+
1449
+ = 1.
1450
+ Therefore, projecting onto the first N empirical Mercer features is the whitening transformation com-
1451
+ monly used in traditional EDMD [19].
1452
+ 5By Corollary 3.3, an amount of at least m ≥ max
1453
+
1454
+ N ,
1455
+ 2∥ϕ∥2
1456
+ µ
1457
+ ε2δ
1458
+
1459
+ 1 +
1460
+ 4B
1461
+ Aδq ∥q∥ℓ2
1462
+ ��
1463
+ data points suffices.
1464
+
1465
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
1466
+ 15
1467
+ Proof of Theorem 4.1. By Proposition 3.4, both events ∥Ct
1468
+ H − �Cm,t
1469
+ H ∥HS ≤ ε and ∥CH − �Cm
1470
+ H ∥HS ≤ ε
1471
+ occur with probability at least 1 − δ/2, respectively. Hence, they occur simultaneously with probability
1472
+ at least 1 − δ.
1473
+ In the remainder of this proof we assume that both events occur. Then all the statements deduced in
1474
+ the following hold with probability at least 1 − δ.
1475
+ Let us define the intermediate approximation
1476
+ �Km,t
1477
+ N ψ =
1478
+ N
1479
+
1480
+ j=1
1481
+ ⟨ �Cm,t
1482
+ H ψ, ej⟩ej,
1483
+ ψ ∈ H.
1484
+ Let ψ ∈ H be arbitrary. Setting C := Ct
1485
+ H − �Cm,t
1486
+ H , we have
1487
+ ∥Kt
1488
+ N�� − �Km,t
1489
+ N ψ∥2
1490
+ µ =
1491
+ �����
1492
+ N
1493
+
1494
+ j=1
1495
+
1496
+ Cψ, ej
1497
+
1498
+ ej
1499
+ �����
1500
+ 2
1501
+ µ
1502
+ =
1503
+ N
1504
+
1505
+ j=1
1506
+ ���
1507
+ Cψ, ej
1508
+ ���2 =
1509
+ N
1510
+
1511
+ j=1
1512
+ ���
1513
+ ψ, C∗ej
1514
+ ���2
1515
+ ≤ ∥ψ∥2
1516
+ N
1517
+
1518
+ j=1
1519
+ ∥C∗ej∥2 ≤ ∥ψ∥2
1520
+ N
1521
+
1522
+ j=1
1523
+ 1
1524
+ λj
1525
+ ∥C∗fj∥2 ≤ ∥ψ∥2
1526
+ λN
1527
+ N
1528
+
1529
+ j=1
1530
+ ∥C∗fj∥2
1531
+ ≤ ∥ψ∥2
1532
+ λN
1533
+
1534
+
1535
+ j=1
1536
+ ∥C∗fj∥2 = ∥ψ∥2
1537
+ λN
1538
+ · ∥Ct
1539
+ H − �Cm,t
1540
+ H ∥2
1541
+ HS,
1542
+ and thus,
1543
+ ∥Kt
1544
+ Nψ − �Km,t
1545
+ N ψ∥µ ≤ ∥ψ∥
1546
+ √λN
1547
+ · ε.
1548
+ Next, we aim at estimating the remaining error
1549
+ �Km,t
1550
+ N ψ − �Km,t
1551
+ N ψ =
1552
+ N
1553
+
1554
+ j=1
1555
+ ⟨ �Cm,t
1556
+ H ψ, ej⟩ej −
1557
+ N
1558
+
1559
+ j=1
1560
+ ⟨ �Cm,t
1561
+ H ψ, �ej⟩�ej
1562
+ =
1563
+ N
1564
+
1565
+ j=1
1566
+ λ−1
1567
+ j ⟨ �Cm,t
1568
+ H ψ, fj⟩fj −
1569
+ N
1570
+
1571
+ j=1
1572
+ �λ−1
1573
+ j ⟨ �Cm,t
1574
+ H ψ, �fj⟩ �fj
1575
+ =
1576
+ N
1577
+
1578
+ j=1
1579
+ λ−1
1580
+ j ⟨f, fj⟩fj −
1581
+ N
1582
+
1583
+ j=1
1584
+ �λ−1
1585
+ j ⟨f, �fj⟩ �fj
1586
+ =
1587
+ N
1588
+
1589
+ j=1
1590
+
1591
+ λ−1
1592
+ j Pjf − �λ−1
1593
+ j
1594
+ �Pjf
1595
+
1596
+ =
1597
+ N
1598
+
1599
+ j=1
1600
+ λ−1
1601
+ j (Pj − �Pj)f +
1602
+ N
1603
+
1604
+ j=1
1605
+ (λ−1
1606
+ j
1607
+ − �λ−1
1608
+ j ) �Pjf,
1609
+ where f = �Cm,t
1610
+ H ψ,
1611
+ Pjf = ⟨f, fj⟩fj
1612
+ and
1613
+ �Pjf = ⟨f, �fj⟩ �fj.
1614
+ By (2.4), it suffices to estimate the above error in the ∥ · ∥-norm. By Theorem C.3, the first summand can
1615
+ be estimated as
1616
+ ���
1617
+ N
1618
+
1619
+ j=1
1620
+ λ−1
1621
+ j (Pj − �Pj)f
1622
+ ��� ≤
1623
+ N
1624
+
1625
+ j=1
1626
+ 1
1627
+ λj
1628
+ ∥Pj − �Pj∥∥f∥ ≤ N · ∥CH − �Cm
1629
+ H ∥
1630
+ λNδN
1631
+ ∥f∥ ≤
1632
+ N
1633
+ λNδN
1634
+ ∥f∥ε.
1635
+
1636
+ 16
1637
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
1638
+ For the second summand we have
1639
+ ���
1640
+ N
1641
+
1642
+ j=1
1643
+ (λ−1
1644
+ j
1645
+ − �λ−1
1646
+ j ) �Pjf
1647
+ ���
1648
+ 2
1649
+ =
1650
+ N
1651
+
1652
+ j=1
1653
+ |λ−1
1654
+ j
1655
+ − �λ−1
1656
+ j |2∥ �Pjf∥2 =
1657
+ N
1658
+
1659
+ j=1
1660
+ |λj − �λj|2
1661
+ λ2
1662
+ j�λ2
1663
+ j
1664
+ ∥ �Pjf∥2.
1665
+ Now, note that ϵ < δN by assumption and therefore ∥CH − �Cm
1666
+ H ∥HS ≤ δN ≤ λN−λN+1
1667
+ 2
1668
+ ≤ λN
1669
+ 2 . For
1670
+ j = 1, . . . , N, according to Theorem C.1 this implies
1671
+ �λj ≥ λj − |λj − �λj| ≥ λj − ∥CH − �Cm
1672
+ H ∥HS ≥ λj − λN
1673
+ 2
1674
+ ≥ λj
1675
+ 2 .
1676
+ Hence,
1677
+ ���
1678
+ N
1679
+
1680
+ j=1
1681
+ (λ−1
1682
+ j
1683
+ − �λ−1
1684
+ j ) �Pjf
1685
+ ���
1686
+ 2
1687
+ ≤ 4
1688
+ N
1689
+
1690
+ j=1
1691
+ |λj − �λj|2
1692
+ λ4
1693
+ j
1694
+ ∥ �Pjf∥2 ≤ 4∥CH − �Cm
1695
+ H ∥2
1696
+ HS
1697
+ λ4
1698
+ N
1699
+ ∥ �QNf∥2,
1700
+ and thus,
1701
+ ���
1702
+ N
1703
+
1704
+ j=1
1705
+ (λ−1
1706
+ j
1707
+ − �λ−1
1708
+ j ) �Pjf
1709
+ ��� ≤
1710
+ 2
1711
+ λ2
1712
+ N
1713
+ ∥f∥ε ≤
1714
+ 1
1715
+ λNδN
1716
+ ∥f∥ε.
1717
+ From
1718
+ ∥ �Cm,t
1719
+ H ∥ ≤ ∥ �Cm,t
1720
+ H
1721
+ − Ct
1722
+ H∥ + ∥Ct
1723
+ H∥ ≤ ∥ �Cm,t
1724
+ H
1725
+ − Ct
1726
+ H∥HS + ∥EKtE∗∥ ≤ ε + ∥ϕ∥1
1727
+ we conclude
1728
+ �� �Km,t
1729
+ N ψ − �Km,t
1730
+ N ψ
1731
+ �� ≤ N + 1
1732
+ λNδN
1733
+ ∥ �Cm,t
1734
+ H ψ∥ε ≤ N + 1
1735
+ λNδN
1736
+ (ε + ∥ϕ∥1)∥ψ∥ε.
1737
+ All together, we obtain (recall (2.4))
1738
+ ∥Kt
1739
+ Nψ − �Km,t
1740
+ N ψ∥µ ≤ ∥Kt
1741
+ Nψ − �Km,t
1742
+ N ψ∥µ + ∥ϕ∥1/2
1743
+ 1
1744
+ ∥ �Km,t
1745
+ N ψ − �Km,t
1746
+ N ψ∥
1747
+ ≤ ∥ψ∥
1748
+ √λN
1749
+ · ε + N + 1
1750
+ λNδN
1751
+ (ε + ∥ϕ∥1)∥ϕ∥1/2
1752
+ 1
1753
+ ∥ψ∥ε
1754
+ =
1755
+
1756
+ 1
1757
+ √λN
1758
+ + N + 1
1759
+ δNλN
1760
+ (1 + ∥ϕ∥1)∥ϕ∥1/2
1761
+ 1
1762
+
1763
+ ε · ∥ψ∥,
1764
+ which implies (4.4).
1765
+
1766
+ 4.2. Projection error in case of Koopman-invariance of the RKHS. In the preceeding section, we
1767
+ have seen that the empirical operator �Km,t
1768
+ N
1769
+ can be written as ( �Cm
1770
+ H )† �Cm,t
1771
+ H
1772
+ if m = N. In the limit m → ∞,
1773
+ we would arrive at the operator C−1
1774
+ H Ct
1775
+ H, which is not even well-defined for all ψ ∈ H, in general.
1776
+ However, if the RKHS is invariant under Kt, the above operator limit is well-defined as a bounded
1777
+ operator on H. In this situation we are able to extend Theorem 4.1 to an estimate on the full error made
1778
+ by our empirical estimator.
1779
+ We start by defining the operator
1780
+ Kt
1781
+ H := C−1
1782
+ H Ct
1783
+ H
1784
+ on its natural domain
1785
+ dom Kt
1786
+ H := {ψ ∈ H : Ct
1787
+ Hψ ∈ ran CH}.
1788
+ (4.5)
1789
+ We consider Kt
1790
+ H as an operator from H into itself (with domain of definition in H).
1791
+ Lemma 4.3. We have
1792
+ dom Kt
1793
+ H = {ψ ∈ H : Ktψ ∈ H},
1794
+ (4.6)
1795
+ and Kt
1796
+ H is closed.
1797
+
1798
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
1799
+ 17
1800
+ Proof. Note that Ct
1801
+ Hψ ∈ ran CH if and only if EKtψ = CHφ for some φ ∈ H. Since CHφ = Eφ and
1802
+ ker E = {0}, the latter is equivalent to Ktψ = φ ∈ H, which proves the representation of the domain.
1803
+ As to the closedness of Kt
1804
+ H, let (ψn) ⊂ dom Kt
1805
+ H and φ ∈ H such that ψn → ψ in H and Kt
1806
+ Hψn → φ in
1807
+ H as n → ∞. The latter implies Ct
1808
+ Hψn → CHφ, while the first implies Ct
1809
+ Hψn → Ct
1810
+ Hψ in H as n → ∞,
1811
+ from which we conclude that Ct
1812
+ Hψ = CHφ, i.e., ψ ∈ dom Kt
1813
+ H and Kt
1814
+ Hψ = φ.
1815
+
1816
+ If the Koopman operator leaves the RKHS H invariant (i.e., KtH ⊂ H), Kt
1817
+ H is defined on all of H.
1818
+ Moreover, since the canonical inclusion map E∗ : H → L2(µ) is injective, it possesses an unbounded
1819
+ inverse on its range H, and therefore:
1820
+ C−1
1821
+ H Ct
1822
+ Hφ = C−1
1823
+ H EKtE∗φ = (EE∗)−1EE∗(E∗)−1KtE∗φ = (E∗)−1KtE∗φ.
1824
+ (4.7)
1825
+ Remarkably, invariance of H under the Koopman operator implies that the left-hand side not only repro-
1826
+ duces the Koopman operator on H, but actually defines a bounded operation.
1827
+ Parts of the next proposition can be found in [22, Theorem 5.3] and [8, Theorem 1].
1828
+ Proposition 4.4. For t > 0, the following statements are equivalent:
1829
+ (i) KtH ⊂ H.
1830
+ (ii) Kt
1831
+ H ∈ L(H).
1832
+ (iii) ran Ct
1833
+ H ⊂ ran CH.
1834
+ Proof. With regard to the two representations (4.5) and (4.6) of the domain, it is immediate that both (i)
1835
+ and (iii) are equivalent to dom Kt
1836
+ H = H. The equivalence of the latter to (ii) follows from the closed
1837
+ graph theorem.
1838
+
1839
+ Note that if one of (i)–(iii) holds, then Kt
1840
+ H = Kt|H.
1841
+ Theorem 4.5. In addition to the assumptions in Theorem 4.1, assume that H is invariant under the
1842
+ Koopman operator Kt. For fixed N ∈ N, let δN be as in (4.2), choose ε, δ, and m as in Theorem 4.1
1843
+ and define the empirical estimator �Km,t
1844
+ N
1845
+ as in (4.3). Then, with probability at least 1 − δ we have that
1846
+ ∥Kt − �Km,t
1847
+ N ∥H→L2µ(X) ≤
1848
+
1849
+ λN+1 ∥Kt
1850
+ H∥ +
1851
+
1852
+ 1
1853
+ √λN
1854
+ + N + 1
1855
+ δNλN
1856
+ (1 + ∥ϕ∥1)∥ϕ∥1/2
1857
+ 1
1858
+
1859
+ ε.
1860
+ (4.8)
1861
+ Proof. First of all, Theorem 4.1 implies that
1862
+ ∥Kt − �Km,t
1863
+ N ∥H→L2µ(X) ≤ ∥Kt − Kt
1864
+ N∥H→L2µ(X) + ∥Kt
1865
+ N − �Km,t
1866
+ N ∥H→L2µ(X)
1867
+ ≤ ∥Kt − Kt
1868
+ N∥H→L2µ(X) +
1869
+
1870
+ 1
1871
+ √λN
1872
+ + N + 1
1873
+ δNλN
1874
+ (1 + ∥ϕ∥1)∥ϕ∥1/2
1875
+ 1
1876
+
1877
+ ε.
1878
+ Now, for ψ ∈ H,
1879
+ ∥Ktψ − Kt
1880
+ Nψ∥2
1881
+ µ =
1882
+ �����
1883
+
1884
+
1885
+ j=N+1
1886
+ ⟨Ct
1887
+ Hψ, ej⟩ej
1888
+ �����
1889
+ 2
1890
+ µ
1891
+ =
1892
+
1893
+
1894
+ j=N+1
1895
+ |⟨Ct
1896
+ Hψ, ej⟩|2 =
1897
+
1898
+
1899
+ j=N+1
1900
+ 1
1901
+ λj
1902
+ |⟨Ct
1903
+ Hψ, fj⟩|2
1904
+ =
1905
+
1906
+
1907
+ j=N+1
1908
+ 1
1909
+ λj
1910
+ |⟨Kt
1911
+ Hψ, CHfj⟩|2 =
1912
+
1913
+
1914
+ j=N+1
1915
+ λj|⟨Kt
1916
+ Hψ, fj⟩|2 ≤ λN+1∥Kt
1917
+ Hψ∥2,
1918
+ which proves the theorem.
1919
+
1920
+ We have just proved that the projection error ∥Ktψ − Kt
1921
+ Nψ∥µ decays at least as fast as the square
1922
+ roots of the eigenvalues of CH. Recall that (λj)j∈N ∈ ℓ1(N), since CH is trace class with �∞
1923
+ j=1 λj =
1924
+ Tr(CH) = ∥E∗∥2
1925
+ HS = ∥ϕ∥1, see Lemma 2.4(c).
1926
+
1927
+ 18
1928
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
1929
+ 5. ILLUSTRATION WITH THE ORNSTEIN-UHLENBECK PROCESS
1930
+ For the numerical illustration of our results, we consider the Ornstein-Uhlenbeck (OU) process on
1931
+ X = R, which is given by the SDE
1932
+ dXt = −αXt dt + dWt,
1933
+ where α > 0 is a positive parameter.
1934
+ 5.1. Analytical Results. Since all relevant properties of the OU process are available in analytical form,
1935
+ we can exactly calculate all of the terms appearing in our theoretical error bounds. Moreover, we can
1936
+ also compute the exact estimation and prediction errors for finite data in closed form. Let us begin by
1937
+ recapping the analytical results required for our analysis, which can be found in [41].
1938
+ The invariant measure µ, and the density of the stochastic transition kernel ρt, are given by
1939
+ dµ(x) =
1940
+ �α
1941
+ π e−αx2 dx
1942
+ and
1943
+ dρt(x, y) =
1944
+ � α
1945
+ πv2
1946
+ t
1947
+ exp
1948
+
1949
+ − α
1950
+ v2
1951
+ t
1952
+ (y − e−αtx)2�
1953
+ dx dy,
1954
+ with v2
1955
+ t = (1 − e−2αt)/2α. The Koopman operators Kt are self-adjoint in L2
1956
+ µ(R), their eigenvalues and
1957
+ corresponding eigenfunctions are given by
1958
+ qj = e−αjt
1959
+ and
1960
+ ψj(x) =
1961
+ 1
1962
+
1963
+ 2jαjj!
1964
+ Hj(
1965
+
1966
+ 2αx),
1967
+ j ∈ N0,
1968
+ where Hj are the physicist’s Hermite polynomials.
1969
+ We consider the Gaussian radial basis function (RBF) kernel with bandwidth σ > 0, i.e.,
1970
+ k(x, y) = exp
1971
+
1972
+ −(x − y)2
1973
+ σ2
1974
+
1975
+ .
1976
+ Let us quickly verify that this choice of the kernel satisfies the compatibility assumptions (A1)–(A3).
1977
+ Indeed, (A1) is trivial as k(x, x) = 1 and (A3) follows easily from the continuity of the functions in H.
1978
+ To see that H is dense in L2
1979
+ µ(R) (i.e., (A2)), let ψ ∈ L2
1980
+ µ(R) be such that ⟨ψ, Φ(y)⟩µ = 0 for all y ∈ R.
1981
+ The latter means that φ∗ϕσ = 0, where φ(x) = ψ(x)e−αx2 and ϕσ(x) = e−x2/σ2. We apply the Fourier
1982
+ transform and obtain �φ · �
1983
+ ϕσ = 0. Noting that the Fourier transform of a Gaussian is again a Gaussian,
1984
+ we get �φ = 0 and thus ψ = 0.
1985
+ The Mercer eigenvalues and features with respect to the invariant measure µ of the OU process, i.e.,
1986
+ the eigenvalues and eigenfunctions of the integral operator E∗E in L2
1987
+ µ(R), are also available in analytical
1988
+ form [9]. They are given by
1989
+ λi =
1990
+ � α
1991
+ C1
1992
+
1993
+ 1
1994
+ σ2C1
1995
+ �i
1996
+ and
1997
+ ϕi(x) = γie−ζ2x2Hi
1998
+ �√αηx
1999
+
2000
+ ,
2001
+ i ∈ N0,
2002
+ using the following constants:
2003
+ η =
2004
+
2005
+ 1 +
2006
+ 4
2007
+ ασ2
2008
+ �1/4
2009
+ ,
2010
+ γi =
2011
+
2012
+ η
2013
+ 2iΓ(i + 1)
2014
+ �1/2
2015
+ ,
2016
+ ζ2 = α
2017
+ 2 (η2 − 1),
2018
+ C1 = α + ζ2 + σ−2.
2019
+ With these results, we can compute the variance of the empirical estimator for Ct
2020
+ H as described in The-
2021
+ orem 3.1. The eigenvalues qj were already given above. The coefficients dj,t can be calculated using
2022
+ Mercer’s theorem as
2023
+ dj,t =
2024
+ � �
2025
+ k(x, x′)k(y, y′)ψj(x)ψj(x′) dµ0,t(x, y) dµ0,t(x′, y′)
2026
+
2027
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
2028
+ 19
2029
+ =
2030
+
2031
+ k,ℓ
2032
+ λkλℓ
2033
+ ��
2034
+ ϕk(x)ϕℓ(y)ψj(x) dµ0,t(x, y)
2035
+ �2
2036
+ .
2037
+ The series needs to be truncated at a finite number of terms and the integrals can be calculated by numer-
2038
+ ical integration. As d0,t = ⟨k, kt⟩L2
2039
+ µ⊗µ = ∥Ct
2040
+ H∥2
2041
+ HS (cf. (3.8)), and hence
2042
+ ∥Ct
2043
+ H∥2
2044
+ HS =
2045
+
2046
+ k,ℓ
2047
+ λkλℓ
2048
+ ��
2049
+ ϕk(x)ϕℓ(y) dµ0,t(x, y)
2050
+ �2
2051
+ ,
2052
+ (5.1)
2053
+ the Hilbert-Schmidt norm of the cross-covariance operator Ct
2054
+ H can be computed similarly. Since, for the
2055
+ Gaussian RBF kernel, we have ϕ(x) = k(x, x) = 1 for all x, we therefore find
2056
+ E0(t) =
2057
+
2058
+ Ktϕ, ϕ
2059
+
2060
+ µ − ∥Ct
2061
+ H∥2
2062
+ HS = 1 − ∥Ct
2063
+ H∥2
2064
+ HS,
2065
+ completing the list of terms required by Theorem 3.1. In addition, we notice that upon replacing ei-
2066
+ ther one or two of the integrals in (5.1) by finite-data averages, we can also calculate ∥ ˆCm,t
2067
+ H ∥2
2068
+ HS and
2069
+ ⟨Ct
2070
+ H, ˆCm,t
2071
+ H ⟩HS. Therefore, the estimation error for finite data {(xk, yk)}m
2072
+ k=1 can be obtained by simply
2073
+ expanding the inner product
2074
+ ∥Ct
2075
+ H − ˆCm,t
2076
+ H ∥2
2077
+ HS = ∥Ct
2078
+ H∥2
2079
+ HS + ∥ ˆCm,t
2080
+ H ∥2
2081
+ HS − 2⟨ ˆCm,t
2082
+ H , Ct
2083
+ H⟩HS,
2084
+ allowing us to precisely compare the estimation error to the error bounds obtained in Theorem 3.1.
2085
+ Besides the estimation error for Ct
2086
+ H, we are also interested in the prediction error, which is bounded
2087
+ according to Theorem 4.1. We will compare these bounds to the actual error ∥(Kt
2088
+ N − ˆKm,t
2089
+ N )φ∥L2µ(X), for
2090
+ a specific observable φ ∈ H and a fixed number of N Mercer features. For the OU process, it is again
2091
+ beneficial to consider Gaussian observables φ:
2092
+ φ(x) =
2093
+ 1
2094
+
2095
+ 2πσ2
2096
+ 0
2097
+ exp
2098
+
2099
+ −(x − m0)2
2100
+ 2σ2
2101
+ 0
2102
+
2103
+ .
2104
+ Application of the Koopman operator leads to yet another, unnormalized Gaussian observable, which is
2105
+ given by
2106
+ Ktφ(x) =
2107
+ 1
2108
+
2109
+ 2πσ2
2110
+ t
2111
+ exp
2112
+
2113
+ −(m0 − e−αtx)2
2114
+ 2σ2
2115
+ t
2116
+
2117
+ ,
2118
+ σ2
2119
+ t = σ2
2120
+ 0 + v2
2121
+ t .
2122
+ The inner products of Ktφ with the Mercer eigenfunctions ϕi can be evaluated by numerical integration,
2123
+ providing full access to the truncated observable Kt
2124
+ Nφ. On the other hand, the empirical approximation
2125
+ ˆKm,t
2126
+ N φ can be computed directly based on the data. We note that
2127
+ ˆKm,t
2128
+ N φ =
2129
+ N
2130
+
2131
+ j=1
2132
+
2133
+ ˆCm,t
2134
+ H φ, ˆej
2135
+
2136
+ ˆej = 1
2137
+ m
2138
+ m
2139
+
2140
+ k=1
2141
+ φ(yk)
2142
+ N
2143
+
2144
+ j=1
2145
+ ⟨Φ(xk), ˆej⟩ ˆej = 1
2146
+ m
2147
+ m
2148
+
2149
+ k=1
2150
+ φ(yk)
2151
+ N
2152
+
2153
+ j=1
2154
+ ˆej(xk)ˆej.
2155
+ The functions ˆej can be obtained from the eigenvalue decomposition of the standard kernel Gramian
2156
+ matrix
2157
+ 1
2158
+ mKX := 1
2159
+ m [k(xk, xl)]m
2160
+ k,l=1 ,
2161
+ as the latter is the matrix representation of the empirical covariance operator ˆCm
2162
+ H on the subspace
2163
+ span{Φ(xk)}m
2164
+ k=1. If 1
2165
+ mKX = V ΛV ⊤ is the spectral decomposition of the Gramian, then
2166
+ ˆej =
2167
+ 1
2168
+ m1/2ˆλj
2169
+ m
2170
+
2171
+ l=1
2172
+ VljΦ(xl)
2173
+
2174
+ 20
2175
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
2176
+ are the correctly normalized eigenfunctions according to Theorem 4.1. Plugging this into the above, we
2177
+ find
2178
+ ˆKm,t
2179
+ N φ(x) = 1
2180
+ m
2181
+ m
2182
+
2183
+ k=1
2184
+ φ(yk)
2185
+ N
2186
+
2187
+ j=1
2188
+ 1
2189
+ m1/2ˆλj
2190
+ m
2191
+
2192
+ l=1
2193
+ Vljk(xl, xk)
2194
+ 1
2195
+ m1/2ˆλj
2196
+ m
2197
+
2198
+ r=1
2199
+ Vrjk(xr, x)
2200
+ = 1
2201
+ mφ(Y )⊤ 1
2202
+ mKX
2203
+
2204
+ VNΛ−2
2205
+ N V ⊤
2206
+ N
2207
+
2208
+ KX,x
2209
+ = 1
2210
+ mφ(Y )⊤VNΛ−1
2211
+ N V ⊤
2212
+ N KX,x,
2213
+ where φ(Y ) = [φ(yk)]m
2214
+ k=1, KX,x = [k(xk, x)]m
2215
+ k=1, VN = V [IN 0m−N]⊤, ΛN = diag(�λj)N
2216
+ j=1.
2217
+ 5.2. Numerical Results. For the actual numerical experiments, we set α = 1, choose the elementary
2218
+ integration time step as ∆t = 10−2, and set the lag time to t = 0.05. We compute the exact variance
2219
+ E[∥Ct
2220
+ H− ˆCm,t
2221
+ H ∥2
2222
+ HS] by the expression given in Theorem 3.1, and also the coarser estimate for the variance
2223
+ given in Corollary 3.3. We test three different kernel bandwidths, σ ∈ {0.05, 0.1, 0.5}. All Mercer series
2224
+ are truncated after the first 10 terms for σ ∈ {0.1, 0.5}, and 20 terms for σ = 0.05, while Koopman
2225
+ eigenfunction expansions are truncated after 15 terms.
2226
+ In the first set of experiments, we use Chebyshev’s inequality to compute the maximal estimation
2227
+ error ∥Ct
2228
+ H − ˆCm,t
2229
+ H ∥HS that can be guaranteed with confidence 1 − δ = 0.9, for a range of data sizes
2230
+ m between m = 20 and m = 50.000. As a comparison, we generate 200 independent simulations of
2231
+ length m +
2232
+ t
2233
+ ∆t , corresponding to the sliding-window estimator with m data points, for each data size.
2234
+ We then compute the resulting estimation error using the expressions given in the previous section. We
2235
+ extract the 1 − δ-percentile of the estimation error for all trajectories, i.e., the maximal error that is not
2236
+ exceeded by 100 ∗ (1 − δ) percent of the trajectories. In addition, we also use Chebyshev’s inequality
2237
+ with the i.i.d. variance 1
2238
+ mE0(t) to predict the estimation error. The comparison of these results for all
2239
+ data sizes m and the different kernel bandwidths is shown in Figure 3. We observe that the bound from
2240
+ Theorem 3.1 is quite accurate, over-estimating the actual error by about a factor three, and captures the
2241
+ detailed qualitative dependence of the estimation error on m. The coarser bound from Corollary 3.3,
2242
+ however, appears to discard too much information, it over-estimates the error by one to two orders of
2243
+ magnitude, and also does not capture the initial slope for small m. Finally, we note that for the larger
2244
+ kernel bandwidths, the i.i.d. variance is indeed too small, leading to an under-estimation of the error.
2245
+ This observation confirms that it is indeed necessary to take the effect of the correlation between data
2246
+ points into account.
2247
+ In a second set of experiments, we test the performance of our theoretical bounds concerning the
2248
+ prediction of expectations for individual observables, obtained in Theorem 4.1. For the same three
2249
+ Gaussian RBF kernels as in the first set of experiments, we consider the observable φ = ϕ0, i.e., the first
2250
+ Mercer feature, and choose N = 10 in the Mercer series expansion Kt
2251
+ Nφ and its empirical approximation
2252
+ ˆKm,t
2253
+ N φ. Note that φ is a different observable depending on the bandwidth. Again, we set 1 − δ = 0.9,
2254
+ and use the bound from Theorem 4.1 to bound the L2
2255
+ µ-error between Kt
2256
+ Nφ and ˆKm,t
2257
+ N φ. As a comparison,
2258
+ we compute the actual L2
2259
+ µ-error by numerical integration, using the fact that we can evaluate Kt
2260
+ Nφ and
2261
+ ˆKm,t
2262
+ N φ based on the discussion above. We repeat this procedure 15 times and provide average errors
2263
+ and standard deviations. The results for all three kernels are shown in Figure 4, and we find that our
2264
+ theoretical bounds are much too pessimistic in all cases. This finding highlights our previous observation
2265
+ that bounding the prediction error outside the RKHS still requires more in-depth research.
2266
+
2267
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
2268
+ 21
2269
+ 102
2270
+ 103
2271
+ 104
2272
+ m
2273
+ 10
2274
+ 2
2275
+ 10
2276
+ 1
2277
+ 100
2278
+ 101
2279
+ (m)
2280
+ Error for Ct , t = 0.05,
2281
+ = 0.050
2282
+ T 3.1
2283
+ C 3.3
2284
+ i.i.d.
2285
+ Data
2286
+ 102
2287
+ 103
2288
+ 104
2289
+ m
2290
+ 10
2291
+ 2
2292
+ 10
2293
+ 1
2294
+ 100
2295
+ 101
2296
+ (m)
2297
+ Error for Ct , t = 0.05,
2298
+ = 0.100
2299
+ T 3.1
2300
+ C 3.3
2301
+ i.i.d.
2302
+ Data
2303
+ 102
2304
+ 103
2305
+ 104
2306
+ m
2307
+ 10
2308
+ 2
2309
+ 10
2310
+ 1
2311
+ 100
2312
+ 101
2313
+ (m)
2314
+ Error for Ct , t = 0.05,
2315
+ = 0.500
2316
+ T 3.1
2317
+ C 3.3
2318
+ i.i.d.
2319
+ Data
2320
+ FIGURE 3. Probabilistic error estimates for Ct
2321
+ H associated to the OU process, at lag time
2322
+ t = 0.05, and the Gaussian RBF kernel with different bandwidths σ ∈ {0.05, 0.1, 0.05}
2323
+ (corresponding to left, center and right panels). The blue and green curves show the es-
2324
+ timated error using the fine and coarse bounds from Theorem 4.1 and Corollary 3.3, re-
2325
+ spectively, while the purple curves represent the bound obtained from the i.i.d.-variance
2326
+ 1
2327
+ mE0(t). The red curve shows the 0.9-percentile of the estimation error based on 200
2328
+ independent simulations.
2329
+ 102
2330
+ 103
2331
+ m
2332
+ 10
2333
+ 1
2334
+ 101
2335
+ 103
2336
+ 105
2337
+ 107
2338
+ Prediction Error t = 0.05,
2339
+ = 0.050
2340
+ Prediction N = 10
2341
+ Data Bound N = 10
2342
+ 102
2343
+ 103
2344
+ m
2345
+ 10
2346
+ 1
2347
+ 101
2348
+ 103
2349
+ 105
2350
+ 107
2351
+ Prediction Error t = 0.05,
2352
+ = 0.100
2353
+ Prediction N = 10
2354
+ Data Bound N = 10
2355
+ 102
2356
+ 103
2357
+ m
2358
+ 10
2359
+ 1
2360
+ 101
2361
+ 103
2362
+ 105
2363
+ 107
2364
+ Prediction Error t = 0.05,
2365
+ = 0.500
2366
+ Prediction N = 10
2367
+ Data Bound N = 10
2368
+ FIGURE 4. Comparison of the theoretical bound on the prediction error ∥Kt
2369
+ Nφ −
2370
+ ˆKm,t
2371
+ N φ∥µ, if φ is chosen as the first Mercer feature ϕ0, using N = 10 in the Mercer
2372
+ series representation. The predicted error is shown in blue, error bars for the actual error
2373
+ obtained from 15 independent data sets are shown in red. Different panels correspond
2374
+ to the same kernel bandwidths as in Figure 3 above.
2375
+ 6. CONCLUSIONS
2376
+ We have analyzed the finite-data estimation error for data-driven approximations of the Koopman
2377
+ operator on reproducing kernel Hilbert spaces. More specifically, we have provided an exact expression
2378
+ for the variance of empirical estimators for the cross-covariance operator, if a sliding-window estimator
2379
+ is applied to a long ergodic trajectory of the dynamical system. This setting is relevant for many complex
2380
+ systems, such as molecular dynamics simulations. Our results present a significant improvement over
2381
+ the state of the art, since they concern a setting where the notorious problem of dictionary selection
2382
+ can be circumvented, and therefore no longer depend on the dictionary size. We have also extended
2383
+ the concept of asymptotic variance to an infinite-dimensional approximation space for the Koopman
2384
+ operator. Our numerical study on the Ornstein Uhlenbeck process has shown that, even using a simple
2385
+ mass concentration inequality, accurate bounds on the estimation error can be obtained.
2386
+ In our second result, we have extended our estimates to a uniform bound on the prediction error for
2387
+ observables in the RKHS. Thereby, we have circumvented dealing with an unbounded inverse of the
2388
+ covariance operator by applying a finite-dimensional truncation of the associated Mercer series. In case
2389
+ of Koopman-invariance of the RKHS, however, we were able to find a bound on the truncation error
2390
+ which then yields estimates for the full approximation error.
2391
+
2392
+ 22
2393
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
2394
+ Still, the resulting error bounds have proven very conservative in the numerical examples. Therefore,
2395
+ obtaining sharper bounds on the prediction error constitutes a primary goal for future research.
2396
+ REFERENCES
2397
+ [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
2398
+ [2] A. Beck, and J. T. Schwartz, A vector-valued random ergodic theorem, Proc. Amer. Math. Soc. 8(6) (1957), 1049–1059.
2399
+ [3] D. Bosq, Linear Processes in Function Spaces – Theory and Applications, Springer-Verlag New York, Inc., 2000.
2400
+ [4] S. L. Brunton, J.L. Proctor, and J.N. Kutz, Discovering governing equations from data by sparse identification of nonlin-
2401
+ ear dynamical systems, Proc. Natl. Acad. Sci. 113 (2016), 3932–3937.
2402
+ [5] S. L. Brunton, M. Budisic, E. Kaiser, J. N. Kutz, Modern Koopman theory for dynamical systems, SIAM Rev. 64(2)
2403
+ (2022), 229–340.
2404
+ [6] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic
2405
+ Publishers, 2004.
2406
+ [7] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Springer International Publishing Switzerland,
2407
+ 2016.
2408
+ [8] R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc.
2409
+ 17 (1966), 413–415.
2410
+ [9] G. E. Fasshauer and M. J. McCourt, Stable Evaluation of Gaussian Radial Basis Function Interpolants SIAM J. Sci.
2411
+ Comput. 2012 34:2, A737–A762.
2412
+ [10] K. Fukumizu, L. Song, and A. Gretton, Kernel Bayes’ Rule: Bayesian inference with positive definite kernels, J. Mach.
2413
+ Learn. Res. 14 (2013), 3753–3783.
2414
+ [11] D. Giannakis, Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl. Comput. Har-
2415
+ mon. Anal, 47(2) (2019), 338–396.
2416
+ [12] I.C. Gohberg and M.G. Krein, Introduction To The Theory of Linear Nonselfadjoint Operators, volume 18 of Translations
2417
+ of Mathematical Monographs. American Mathematical Society, 1969.
2418
+ [13] M. Hairer, Ergodic properties of Markov processes, Lecture notes, https://www.hairer.org/notes/Markov.pdf
2419
+ [14] M. Haseli and J. Cort´es, Learning Koopman eigenfunctions and invariant subspaces from data: Symmetric subspace
2420
+ decomposition, IEEE Trans. Automat. Control 67(7) (2022), 3442-3457.
2421
+ [15] O. Kallenberg, Foundations of modern probability, Springer-Verlag, New York, 1997.
2422
+ [16] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag Berlin Heidelberg, 1995.
2423
+ [17] E. Kaiser, J. N. Kutz, S. L. Brunton, Data-driven discovery of Koopman eigenfunctions for control, Mach. Learn. Sci.
2424
+ Technol. 2 (2021), 035023.
2425
+ [18] S. Klus, P. Koltai, and C. Sch¨utte, On the numerical approximation of the Perron–Frobenius and Koopman operator, J.
2426
+ Comput. Dyn. 1(3) (2016), 51–79.
2427
+ [19] S. Klus, F. N¨uske, P. Koltai, H. Wu, I. Kevrekidis, C. Sch¨utte, and F. No´e, Data-driven model reduction and transfer
2428
+ operator approximation, J. Nonlinear Sci. 28(3) (2018), 985–1010.
2429
+ [20] S. Klus, I. Schuster, K. Muandet, Eigendecompositions of transfer operators in reproducing kernel Hilbert spaces, J.
2430
+ Nonlinear Sci. 30(1) (2020), 283–315.
2431
+ [21] S. Klus, and C. Sch¨utte, Towards tensor-based methods for the numerical approximation of the Perron–Frobenius and
2432
+ Koopman operator, J. Comput. Dyn. 3(2) (2016), 139–161.
2433
+ [22] II. Klebanov, I. Schuster, and T.J. Sullivan, A rigorous theory of conditional mean embeddings, SIAM J. Math. Data Sci.
2434
+ 2 (2020), 583–606.
2435
+ [23] B. O. Koopman, Hamiltonian Systems and Transformations in Hilbert Space, Proc. Natl. Acad. Sci. 5 (17) (1931),
2436
+ 315–318.
2437
+ [24] M. Korda and I. Mezi´c, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive
2438
+ control, Automatica 93 (2018), 149–160.
2439
+ [25] M. Korda and I. Mezi´c, Optimal construction of Koopman eigenfunctions for prediction and control, IEEE Trans. Au-
2440
+ tomat. Control 65 (12) (2020), 5114–5129.
2441
+ [26] A. J. Kurdila and P. Bobade, Koopman theory and linear approximation spaces, Preprint, arXiv:1811.10809 (2018).
2442
+ [27] T. Leli`evre, and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numer. 25
2443
+ (2016), 681–880.
2444
+ [28] G. Lumer and R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679–698.
2445
+ [29] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat.
2446
+ Commun. 9(1) (2018), 1–10.
2447
+ [30] M. Mollenhauer, On the Statistical Approximation of Conditional Expectation Operators, Dissertation, Freie Universit¨at
2448
+ Berlin, 2021.
2449
+
2450
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
2451
+ 23
2452
+ [31] K. Manohar, B. W. Brunton, J. N. Kutz, S. L. Brunton, Data-driven sparse sensor placement for reconstruction: Demon-
2453
+ strating the benefits of exploiting known patterns. IEEE Control Systems Magazine, 38(3) (2018), 63–86.
2454
+ [32] A. Mardt, L. Pasquali, H. Wu, and F. No´e, VAMPnets for deep learning of molecular kinetics, Nat. Commun. 9, 5 (2018).
2455
+ [33] A. Mauroy, Y. Susuki, and I. Mezi´c, Koopman operator in systems and control, Springer International Publishing, Berlin,
2456
+ 2020.
2457
+ [34] M. Mollenhauer, S. Klus, C. Sch¨utte, and P. Koltai, Kernel autocovariance operators of stationary processes: Estimation
2458
+ and convergence, J. Mach. Learn. Res. 23(327) (2022), 1–34.
2459
+ [35] F. No´e and F. N¨uske, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale
2460
+ Model. Simul. 11 (2013), 635–655.
2461
+ [36] F. N¨uske, B. G. Keller, G. P´erez-Hern´andez, A. S. J. S. Mey, and F. No´e, Variational approach to molecular kinetics, J.
2462
+ Chem. Theory Comput. 10 (2014), 1739–1752.
2463
+ [37] F. N¨uske, P. Gelß, S. Klus, and C. Clementi, Tensor-based computation of metastable and coherent sets, Physica D 427
2464
+ (2021), 133018.
2465
+ [38] F. N¨uske, S. Peitz, F. Philipp, M. Schaller, and K. Worthmann, Finite-data error bounds for Koopman-based prediction
2466
+ and control, J. Nonlinear Sci. 33 (2023), 1–34.
2467
+ [39] B. Øksendal, Stochastic Differential Equations, An Introduction with Applications, Fifth Edition, Corrected Printing,
2468
+ Springer-Verlag Heidelberg New York, 2000.
2469
+ [40] V. Paulsen, An introduction to the theory of reproducing kernel Hilbert spaces, https://www.math.uh.edu/ vern/rkhs.pdf
2470
+ [41] G. A. Pavliotis, Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations,
2471
+ Texts in Applied Mathematics, vol. 60, Springer, 2014.
2472
+ [42] S. Peitz, and S. Klus, Koopman operator-based model reduction for switched-system control of PDEs, Automatica 106
2473
+ (2019), 184–191.
2474
+ [43] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, The Annals of Probability 22 (1994),
2475
+ 1679–1706.
2476
+ [44] J. H. Prinz, H. Wu, M. Sarich, B. G. Keller, M. Senne, M. Held, J. D. Chodera, C. Sch¨utte, and F. No´e, Markov models
2477
+ of molecular kinetics: Generation and validation, J. Chem. Phys. 17(134) (2011), 174105.
2478
+ [45] F. Riesz and B. Nagy, Functional Analysis, Blackie & Son Ltd., Glasgow, Bombay, Toronto, 1955.
2479
+ [46] N. Rhomari, Approximation et in´egalit´es exponentielles pour les sommes des vecteurs al´eatoires d´ependants, Comptes
2480
+ rendus de l’Acad´emie des science, S´erie 1, 334 (2002), 149–154.
2481
+ [47] W. Rudin, Functional Analysis, Second edition, McGraw-Hill, Inc., 1991.
2482
+ [48] W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, Inc., 1987.
2483
+ [49] M. Schaller, K. Worthmann, F. Philipp, S. Peitz, and F. N¨uske, Towards reliable data-based optimal and predictive control
2484
+ using extended DMD, IFAC PapersOnLine, to appear, arXiv preprint arXiv:2202.09084.
2485
+ [50] C. Sch¨utte, A. Fischer, W. Huisinga, and P. Deuflhard, A direct approach to conformational dynamics based on hybrid
2486
+ Monte Carlo, J. Comput. Phys. 1(151) (1999), 146–168.
2487
+ [51] A. Smola, A. Gretton, L. Song, and B. Sch¨olkopf, A Hilbert Space Embedding for Distributions, in: M. Hutter, R.A.
2488
+ Servedio, and E. Takimoto (Eds.): ALT 2007, Lecture Notes in Computer Science, vol. 4754, pp. 13–31, 2007. Springer,
2489
+ Berlin, Heidelberg.
2490
+ [52] I. Steinwart and A. Christmann, Support Vector Machines, Springer Science+Business Media, LLC, 2008.
2491
+ [53] B.K. Sriperumbudur, K. Fukumizu, and G.R.G. Lanckriet, Universality, characteristic kernels and RKHS embedding of
2492
+ measures, J. Mach. Learn. Res. 12 (2011), 2389–2410.
2493
+ [54] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending
2494
+ dynamic mode decomposition, J. Nonlinear Sci. 25(6) (2015), 1307–1346
2495
+ [55] M. O. Williams, C. W. Rowley, and I Kevrekidis, A kernel-based method for data-driven Koopman spectral analysis, J.
2496
+ Comput. Dyn. 2(2) (2015), 247–265.
2497
+ [56] H. Wu, and F. No´e, Variational approach for learning Markov processes from time series data, J. Nonlinear Sci. 30(1)
2498
+ (2020), 23–66.
2499
+ [57] Y. Yu, T. Wang, and R. J. Samworth, A useful variant of the Davis-Kahan theorem for statisticians, Biometrika 102
2500
+ (2015), 315–323.
2501
+ [58] C. Zhang and E. Zuazua, A quantitative analysis of Koopman operator methods for system identification and predictions,
2502
+ Comptes Rendus. M´ecanique, Online first (2023), 1–31.
2503
+
2504
+ 24
2505
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
2506
+ APPENDIX A. PROOFS
2507
+ Proof of Lemma 2.1. Let ψ ∈ H. Then (2.4) follows from
2508
+
2509
+ |ψ(x)|2 dµ(x) =
2510
+
2511
+ |⟨ψ, Φ(x)⟩|2 dµ(x) ≤ ∥ψ∥2
2512
+
2513
+ ϕ(x) dµ(x) = ∥ψ∥2∥ϕ∥1.
2514
+ Assume that (A2) holds and that ψ ∈ L2
2515
+ µ(X) is such that ⟨ψ, Φ(x)⟩µ = 0 for all x ∈ X. Then
2516
+ 0 =
2517
+
2518
+ ⟨ψ, Φ(x)⟩µψ(x) dµ(x) =
2519
+ � �
2520
+ k(x, y)ψ(x)ψ(y) dµ(x) dµ(y).
2521
+ Hence, ψ = 0 by (A2). Conversely, assume that H is dense in L2
2522
+ µ(X). Let ψ ∈ L2
2523
+ µ(X) such that
2524
+ � �
2525
+ k(x, y)ψ(x)ψ(y) dµ(x) dµ(y) = 0.
2526
+ Since the integrand equals ⟨ψ(x)Φ(x), ψ(y)Φ(y)⟩ and the
2527
+ integral
2528
+
2529
+ ψ(x)Φ(x) dµ(x) exists by (2.5), we obtain
2530
+
2531
+ ψ(x)Φ(x) dµ(x) = 0H.
2532
+ This implies that
2533
+ ⟨ψ, Φ(y)⟩µ =
2534
+
2535
+ ψ(x)k(x, y) dµ(x) = 0 for each y ∈ X. Hence, ⟨ψ, φ⟩µ = 0 for each φ ∈ H :=
2536
+ span{Φ(x) : x ∈ X}. Now, let φ ∈ H. Then there exists a sequence (φn) ⊂ H such that ∥φn − φ∥ → 0
2537
+ as n → ∞. Therefore,
2538
+ |⟨ψ, φ⟩µ| = |⟨ψ, φ − φn⟩µ| ≤ ∥ψ∥µ∥φ − φn∥µ ≤ ∥ψ∥µ
2539
+
2540
+ ∥ϕ∥1∥φ − φn∥.
2541
+ Hence, ⟨ψ, φ⟩µ = 0, and the density of H in L2
2542
+ µ(X) implies ψ = 0.
2543
+
2544
+ Proof of Lemma 2.4. (a) For ψ ∈ L2
2545
+ µ(X) we have
2546
+ ∥Eψ∥2 =
2547
+ � �
2548
+ ψ(x)ψ(y)⟨Φ(x), Φ(y)⟩ dµ(x) dµ(y) =
2549
+ � �
2550
+ k(x, y)ψ(x)ψ(y) dµ(x) dµ(y).
2551
+ Hence, the injectivity of E follows from (A2). If (ei) is an orthonormal basis of H, then
2552
+
2553
+ i
2554
+ ∥E∗ei∥2
2555
+ µ =
2556
+
2557
+ i
2558
+ ∥ei∥2
2559
+ µ =
2560
+
2561
+ i
2562
+
2563
+ |ei(x)|2 dµ(x) =
2564
+
2565
+ i
2566
+
2567
+ |⟨Φ(x), ei⟩|2 dµ(x) =
2568
+
2569
+ ∥Φ(x)∥2 dµ(x).
2570
+ The claim is now a consequence of ∥Φ(x)∥2 = ϕ(x).
2571
+ (b) By Lemma 2.1, H is dense in L2
2572
+ µ(X). Moreover, E∗ is compact by (a) and Schauder’s theorem
2573
+ [47, Theorem 4.19].
2574
+ (c) This follows from (a) and ker CH = ker EE∗ = ker E∗ = {0} by (A3).
2575
+
2576
+ Proof of Theorem 2.5. By Lemma 2.4, the operator E∗E ∈ B(L2
2577
+ µ(X)) is a positive self-adjoint trace-
2578
+ class operator. Hence, by the well known spectral theory of compact operators (see, e.g., [12]) there
2579
+ exists an orthonormal basis (ej)∞
2580
+ j=1 of L2
2581
+ µ(X) consisting of eigenfunctions of E∗E corresponding to a
2582
+ summable sequence (λj)∞
2583
+ j=1 of strictly positive eigenvalues. Since E∗ψ = ψ for ψ ∈ H, we have
2584
+ Eej = λjej and thus ej ∈ H for all j and CHej = EE∗ej = Eej = λjej. Moreover, ⟨fi, fj⟩ =
2585
+
2586
+ λj/λi⟨Eei, ej⟩ =
2587
+
2588
+ λj/λi⟨ei, ej⟩µ = δij by (2.6) so that the fj indeed form an orthonormal system in
2589
+ H. The completeness of (fj) in H follows from the injectivity of E. Finally, �∞
2590
+ j=1 λj = Tr CH = ∥ϕ∥1
2591
+ and
2592
+ k(x, y) = ⟨Φ(x), Φ(y)⟩ =
2593
+
2594
+ j
2595
+ ⟨Φ(x), fj⟩⟨fj, Φ(y)⟩ =
2596
+
2597
+ j
2598
+ fj(x)fj(y),
2599
+ which completes the proof.
2600
+
2601
+ Proof of Proposition 2.7. Let ψ ∈ B(X). For p = ∞ we have |(Ktψ)(x)| = |Ex[ψ(Xt)]| ≤ Ex[|ψ(Xt)|] ≤
2602
+ ∥ψ∥∞. If p < ∞, by Jensen’s inequality, for every convex φ : R → R we have φ ◦ Ktψ ≤ Kt(φ ◦ ψ)
2603
+ and thus |Ktψ|p ≤ Kt|ψ|p, which, by invariance of µ, leads to
2604
+ ∥Ktψ∥p
2605
+ p =
2606
+
2607
+ |Ktψ|p dµ ≤
2608
+
2609
+ Kt|ψ|p dµ =
2610
+
2611
+ |ψ|p dµ = ∥ψ∥p
2612
+ p.
2613
+
2614
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
2615
+ 25
2616
+ The claim now follows by density of B(X) in Lp
2617
+ µ(X).
2618
+
2619
+ Proof of Proposition 2.8. Let ψ ∈ Cb(X) and fix x ∈ X. Denote the stochastic solution process of the
2620
+ SDE (2.1) with initial value x by Xx
2621
+ t . Since Xx
2622
+ t (ω) is continuous in t for P-a.e. ω ∈ Ω (see [39, Theorem
2623
+ 5.2.1]), ψ(Xx
2624
+ t (ω)) → ψ(Xx
2625
+ 0 (ω)) = ψ(x) as t → 0 for P-a.e. ω ∈ Ω. Hence, by dominated convergence,
2626
+ Ktψ(x) = E[ψ(Xx
2627
+ t )] =
2628
+
2629
+ ψ(Xx
2630
+ t (ω)) dP(ω) → ψ(x)
2631
+ as t → 0. It now follows from Proposition 2.7 and, again, dominated convergence that ∥Ktψ −ψ∥p → 0
2632
+ as t → 0. If ψ ∈ Lp
2633
+ µ(X) and ε > 0, there exists η ∈ Cb(X) such that ∥ψ − η∥p < ε/3. Choose δ > 0
2634
+ such that ∥Ktη − η∥p < ε/3 for t < δ. Then
2635
+ ∥Ktψ − ψ∥p ≤ ∥Kt(ψ − η)∥p + ∥Ktη − η∥p + ∥η − ψ∥p < ε
2636
+ for t < δ, which proves the claim.
2637
+
2638
+ APPENDIX B. RIESZ BASES
2639
+ Recall that a Riesz basis [7] of a Hilbert space H is a sequence (ψj) ⊂ H satisfying span{ψj} = H
2640
+ and for which there exist A, B > 0 such that for all c ∈ ℓ2,
2641
+ A∥c∥2 ≤
2642
+ ���
2643
+
2644
+ j
2645
+ cjψj
2646
+ ���
2647
+ H ≤ B∥c∥2.
2648
+ The constant A (B, resp.) is called a lower (upper, resp.) Riesz bound of the basis. Also recall that to
2649
+ every Riesz basis (ψj) there exists a dual Riesz basis ( �ψj) such that ⟨ψj, �ψk⟩H = δjk. If (ψj) has the
2650
+ bounds A and B, then ( �ψj) has bounds 1/B and 1/A. Every element f of H admits a representation
2651
+ f = �
2652
+ j⟨f, �ψj⟩Hψj = �
2653
+ j⟨f, ψj⟩H �ψj and
2654
+ A2∥f∥2
2655
+ H ≤
2656
+
2657
+ j
2658
+ |⟨f, ψj⟩|2 ≤ B2∥f∥2
2659
+ H
2660
+ and
2661
+ B−2∥f∥2
2662
+ H ≤
2663
+
2664
+ j
2665
+ |⟨f, �ψj⟩|2 ≤ A−2∥f∥2
2666
+ H.
2667
+ It can furthermore be easily seen that a sequence (ψj) ⊂ H is a Riesz basis of H if and only if there
2668
+ exists a boundedly invertible linear operator S ∈ L(H) and an orthonormal basis (ej) of H such that
2669
+ ψj = Sej for all j. Then �ψj = (S−1)∗ej for all j, B = ∥S∥, and A = ∥S−1∥−1.
2670
+ APPENDIX C. SOME FACTS FROM SPECTRAL THEORY
2671
+ In this section, let H be a Hilbert space. If P is an orthogonal projection in H, we set P ⊥ = I − P.
2672
+ For v ∈ H, ∥v∥ = 1, denote by Pv the rank-one orthogonal projection onto span{v}.
2673
+ We say that a linear operator on H is non-negative if it is self-adjoint and its spectrum is contained
2674
+ in [0, ∞). For a non-negative compact operator T on H we denote by λ1(T) ≥ λ2(T) ≥ . . . the
2675
+ eigenvalues of T in descending order (counting multiplicities). We set λj(T) = 0 if j > rank(T).
2676
+ Moreover, if T has only simple eigenvalues6, we let Pj(T) denote the orthogonal projection onto the
2677
+ eigenspace ker(T − λj(T)) and Qn(T) = �n
2678
+ j=1 Pj(T) the spectral projection corresponding to the n
2679
+ largest eigenvalues of T.
2680
+ Theorem C.1 ([12, Cor. II.2.3]). If T and �T are two non-negative compact operators on H, then for all
2681
+ j ∈ N,
2682
+ |λj(T) − λj( �T)| ≤ ∥T − �T∥.
2683
+ 6i.e., dim ker(T − λ) = 1 for each eigenvalue λ of T
2684
+
2685
+ 26
2686
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
2687
+ Lemma C.2. For v, w ∈ H with ∥v∥ = ∥w∥ = 1 we have
2688
+ ∥Pv − Pw∥ = ∥P ⊥
2689
+ w Pv∥ =
2690
+
2691
+ 1 − |⟨v, w⟩|2.
2692
+ (C.1)
2693
+ Proof. First of all, the second equation in (C.1) is clear, since
2694
+ ∥P ⊥
2695
+ w Pvf∥2 = ∥⟨f, v⟩P ⊥
2696
+ w v∥2 = |⟨f, v⟩|2(1 − ∥Pwv∥2) = |⟨f, v⟩|2(1 − |⟨v, w⟩|2).
2697
+ Second, if Pv,w denotes the orthogonal projection onto Hv,w := span{v, w}, we have
2698
+ ∥Pv − Pw∥ = ∥(Pv − Pw)Pv,w∥ = ∥(Pv − Pw)|Hv,w∥ =
2699
+ sup
2700
+ x∈Hv,w, ∥x∥=1
2701
+ ∥(Pv − Pw)x∥,
2702
+ which is a two-dimensional problem in Hv,w. Now, if x ∈ Hv,w, ∥x∥ = 1, we write x = av + bw and
2703
+ obtain a2 + 2abγ + b2 = 1, where γ = ⟨v, w⟩. Moreover, ⟨x, v⟩ = a + bγ, ⟨x, w⟩ = aγ + b and so
2704
+ ∥(Pv − Pw)x∥2 = ∥⟨x, v⟩v − ⟨x, w⟩w∥2 = ∥(a + bγ)v − (aγ + b)w∥2
2705
+ = (a + bγ)2 − 2(a + bγ)(aγ + b)γ + (aγ + b)2
2706
+ = a2 + 2abγ + b2γ2 − 2γ(a2γ + abγ2 + ab + b2γ) + a2γ2 + 2abγ + b2
2707
+ = (1 − γ2)a2 + 2abγ − 2abγ3 + b2(1 − γ2)
2708
+ = (1 − γ2)(a2 + b2 + 2abγ)
2709
+ = 1 − |⟨v, w⟩|2.
2710
+ Hence, the objective function is constant on {x ∈ Hv,w : ∥x∥ = 1} and (C.1) is proved.
2711
+
2712
+ The next theorem is a variant of the Davis-Kahan sin(Θ) theorem (cf. [57]).
2713
+ Theorem C.3. Let T and �T be non-negative Hilbert-Schmidt operators on H, let n ∈ N, assume that
2714
+ the largest n + 1 eigenvalues of T are simple, and set
2715
+ δ =
2716
+ min
2717
+ j=1,...,n
2718
+ λj(T) − λj+1(T)
2719
+ 2
2720
+ .
2721
+ If ∥T − �T∥HS < δ, then for j = 1, . . . , n we have
2722
+ ∥Pj(T) − Pj( �T)∥ ≤ ∥T − �T∥
2723
+ δ
2724
+ .
2725
+ Proof. For j ∈ N put λj = λj(T), Pj = Pj(T), �λj = λj( �T), and �Pj = Pj( �T). By Theorem C.1, we
2726
+ have |λj − �λj| ≤ ∥T − �T∥HS < δ for all j, hence �λj is contained in the interval Ij = (λj − δ, λj + δ)
2727
+ for j = 1, . . . , n + 1. By assumption, sup Ij+1 ≤ inf Ij for j = 1, . . . , n. In particular, the intervals
2728
+ I1, . . . , In+1 are pairwise disjoint.
2729
+ Now, let j ∈ {1, . . . , n}. Then for k ∈ N \ {j} we have |�λk − λj| > δ. Therefore, we have
2730
+ dist(λj, σ( �T)\{�λj}) ≥ δ and thus, for f ∈ �P ⊥
2731
+ j H,
2732
+ ∥( �T − λj)f∥ ≥ dist
2733
+
2734
+ λj, σ( �T| �P ⊥
2735
+ j H)
2736
+
2737
+ ∥f∥ = dist(λj, σ( �T)\{�λj})∥f∥ ≥ δ∥f∥.
2738
+ As TPj = λjPj and �P ⊥
2739
+ j �T = �T �P ⊥
2740
+ j , we obtain
2741
+ ∥T − �T∥ ≥ ∥ �P ⊥
2742
+ j ( �T − T)Pj∥ = ∥ �P ⊥
2743
+ j �TPj − �P ⊥
2744
+ j TPj∥ = ∥( �T − λj) �P ⊥
2745
+ j Pj∥ ≥ δ∥ �P ⊥
2746
+ j Pj∥.
2747
+ The claim now follows from Lemma C.2.
2748
+
2749
+
2750
+ ERROR BOUNDS FOR KERNEL-BASED APPROXIMATIONS OF THE KOOPMAN OPERATOR
2751
+ 27
2752
+ APPENDIX D. ERGODICITY AND THE GENERATOR
2753
+ In this section, we prove the following proposition on the spectral properties of the generator L under
2754
+ the ergodicity assumption.
2755
+ Proposition D.1. Assume that the invariant measure µ is ergodic. Then ker L = span{1} and ker(L −
2756
+ iωI) = {0} for ω ∈ R\{0}.
2757
+ Proof. First of all, it is worth mentioning that Lψ = 0 implies Ktψ = ψ for all t ≥ 0 and that Lψ = iωψ,
2758
+ ω ∈ R \ {0}, implies K2π/ωψ = ψ. Therefore, it suffices to show that Ktψ = ψ for some t > 0 and
2759
+ ψ ∈ L2
2760
+ µ(X) is only possible for constant ψ. For this, we consider the Markov process (Xnt)∞
2761
+ n=0. For
2762
+ convenience, we assume w.l.o.g. that t = 1 holds. By invariance of µ, the process (Xn)∞
2763
+ n=0 is stationary,
2764
+ i.e., (Xn)∞
2765
+ n=0 and (Xn+1)∞
2766
+ n=0 are equally distributed as X N0-valued random variables. According to
2767
+ [15, Lemma 9.2] there exist X-valued random variables X−k, k ∈ N, such that X := (Xn)n∈Z is also
2768
+ stationary. By Pµ denote the law of the X Z-valued random variable X.
2769
+ On S := X Z define the left shift T : S → S by T(xn)n∈Z := (xn+1)n∈Z. Stationarity of X means
2770
+ that also TX ∼ Pµ.
2771
+ A set A ∈ BZ
2772
+ X := �
2773
+ k∈Z BX is called shift-invariant if T −1A = A. It is easy to see that the set of
2774
+ shift-invariant sets forms a sub-σ-algebra I of BZ
2775
+ X . Now, by [13, Corollary 5.11] and the ergodicity of
2776
+ µ we have Pµ(A) ∈ {0, 1} for any A ∈ I. Now, Birkhoff’s Ergodic Theorem [15, Theorem 9.6] states
2777
+ that
2778
+ lim
2779
+ n→∞
2780
+ 1
2781
+ n
2782
+ n−1
2783
+
2784
+ k=0
2785
+ f(T kX) = E
2786
+
2787
+ f(X)|X−1I
2788
+
2789
+ (D.1)
2790
+ almost surely and in L1(Ω) for any f ∈ L1(S). Given ψ ∈ L1
2791
+ µ(X), let us apply this theorem to the
2792
+ function f = ψ ◦ π0, where the projection π0 : S → X is defined by π0(xn)n∈Z = x0. First of all,
2793
+
2794
+ |f| dPµ =
2795
+
2796
+ |ψ(x0)| dPµ((xn)n∈Z) =
2797
+
2798
+ |ψ(x)| dµ(x) < ∞
2799
+ as Pµ ◦ π−1
2800
+ 0
2801
+ = µ. Hence, we have f ∈ L1(S). Furthermore, we compute f(T kX) = ψ(π0(T kX)) =
2802
+ ψ(Xk). For A ∈ I we have P(X−1A) = Pµ(A) ∈ {0, 1}. Thus, we obtain
2803
+ lim
2804
+ n→∞
2805
+ 1
2806
+ n
2807
+ n−1
2808
+
2809
+ k=0
2810
+ ψ(Xk) = E[f(X)] =
2811
+
2812
+ f dPµ =
2813
+
2814
+ ψ ◦ π0 dPµ =
2815
+
2816
+ ψ dµ
2817
+ almost surely and in L1(Ω).
2818
+ Therefore, if ψ ∈ L2
2819
+ µ(X) such that Ktψ = ψ, then Kktψ = ψ for all k ∈ N0, hence for µ-a.e. x ∈ X
2820
+ we have
2821
+ ψ(x) = 1
2822
+ n
2823
+ n−1
2824
+
2825
+ k=0
2826
+ ψ(x) = 1
2827
+ n
2828
+ n−1
2829
+
2830
+ k=0
2831
+ Kktψ(x) = 1
2832
+ n
2833
+ n−1
2834
+
2835
+ k=0
2836
+ E[ψ(Xkt)|X0 = x]
2837
+ = E
2838
+
2839
+ 1
2840
+ n
2841
+ n−1
2842
+
2843
+ k=0
2844
+ ψ(Xkt)
2845
+ ����� X0 = x
2846
+
2847
+ n→∞
2848
+ −→
2849
+
2850
+ ψ dµ.
2851
+ Thus, ψ must indeed be (µ-essentially) constant.
2852
+
2853
+
2854
+ 28
2855
+ F. PHILIPP, M. SCHALLER, K. WORTHMANN, S. PEITZ, AND F. N ¨USKE
2856
+ AUTHOR AFFILIATIONS
2857
+ F. Philipp TECHNISCHE UNIVERSIT ¨AT ILMENAU, INSTITUTE FOR MATHEMATICS, WEIMARER STRASSE 25, D-98693
2858
+ ILMENAU, GERMANY
2859
+ Email address: [email protected]
2860
+ M. Schaller TECHNISCHE UNIVERSIT ¨AT ILMENAU, INSTITUTE FOR MATHEMATICS, WEIMARER STRASSE 25, D-
2861
+ 98693 ILMENAU, GERMANY
2862
+ Email address: [email protected]
2863
+ K. Worthmann TECHNISCHE UNIVERSIT ¨AT ILMENAU, INSTITUTE FOR MATHEMATICS, WEIMARER STRASSE 25,
2864
+ D-98693 ILMENAU, GERMANY
2865
+ Email address: [email protected]
2866
+ S. Peitz PADERBORN UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, DATA SCIENCE FOR ENGINEERING, GER-
2867
+ MANY
2868
+ Email address: [email protected]
2869
+ F. N¨uske MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS, MAGDEBURG, GERMANY
2870
+ Email address: [email protected]
2871
+
8dFAT4oBgHgl3EQfpB03/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE0T4oBgHgl3EQffgDC/content/2301.02406v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74ffd0e3bc4dfcd0dd56094f2ea3397fdfa29d7e02dfb8b38c5c6579078c99b2
3
+ size 883166
8tE0T4oBgHgl3EQffgDC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906f8c350a3f6165d7f5b902595137a36b821bf6b0fa07a174b6abe4ed4030a7
3
+ size 4390957
99FAT4oBgHgl3EQfqB0k/content/2301.08643v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:089f02c007abaabec17f7b24f6964bf8a4fbc55dd963603a733f03e5710405fc
3
+ size 383017
99FAT4oBgHgl3EQfqB0k/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5a5f0d45cff6d8e24ae59e3d7d2aa965b92065bf5353b5d7798171c164c4adf
3
+ size 188840
9NAyT4oBgHgl3EQfQ_Zv/content/tmp_files/2301.00057v1.pdf.txt ADDED
@@ -0,0 +1,975 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Mapping of Assurance Techniques for Learning Enabled
2
+ Autonomous Systems to the Systems Engineering Lifecycle
3
+ Christian Ellis1, Maggie Wigness2, and Lance Fiondella1
4
+ Abstract—Learning enabled autonomous systems provide in-
5
+ creased capabilities compared to traditional systems. However,
6
+ the complexity of and probabilistic nature in the underlying
7
+ methods enabling such capabilities present challenges for current
8
+ systems engineering processes for assurance, and test, evalua-
9
+ tion, verification, and validation (TEVV). This paper provides
10
+ a preliminary attempt to map recently developed technical
11
+ approaches in the assurance and TEVV of learning enabled
12
+ autonomous systems (LEAS) literature to a traditional systems
13
+ engineering v-model. This mapping categorizes such techniques
14
+ into three main approaches: development, acquisition, and
15
+ sustainment. We review the latest techniques to develop safe,
16
+ reliable, and resilient learning enabled autonomous systems,
17
+ without recommending radical and impractical changes to exist-
18
+ ing systems engineering processes. By performing this mapping,
19
+ we seek to assist acquisition professionals by (i) informing
20
+ comprehensive test and evaluation planning, and (ii) objectively
21
+ communicating risk to leaders.
22
+ I. INTRODUCTION
23
+ It is widely recognized [1] that the complexity and resulting
24
+ capabilities of autonomous systems created using machine
25
+ learning methods, which we refer to as learning enabled
26
+ autonomous systems (LEAS), pose new challenges to sys-
27
+ tems engineering compared to their traditional counterparts.
28
+ Moreover, the inability to translate qualitative assessments
29
+ to quantitative metrics which measure system performance
30
+ hinder adoption. Such limitations make it difficult to produce
31
+ reliable systems, and even harder to assure [2]. Without under-
32
+ standing the capabilities and limitations of existing assurance
33
+ techniques, defining safety and performance requirements that
34
+ are both clear and testable remains out of reach.
35
+ Mature test, evaluation, verification, and validation (TEVV)
36
+ methods have been in use for decades to ensure the safety
37
+ analysis and acquisition of hardware systems [3], but fewer
38
+ TEVV methods for software are available, and even fewer
39
+ for software that improves itself through learning [4]. Initial
40
+ approaches to autonomous systems use control theory to
41
+ physically model the world and its underlying dynamics [5],
42
+ while LEAS infer and generalize statistical patterns, which
43
+ lead to the achievement of goals from a sample of pre-
44
+ collected training data points. However, due to the nature of
45
+ the environments where LEAS are fielded and the massive
46
+ size of their underlying state spaces, systems will likely
47
+ encounter states during operation they have never experienced
48
+ before, yet still being required to take action.
49
+ 1 Christian Ellis is a PhD Student and Lance Fiondella is an Asso-
50
+ ciate Professor in the Department of Electrical and Computer Engineer-
51
+ ing at the University of Massachusetts Dartmouth, USA. cellis3,
52
53
+ 2 Maggie Wigness is a researcher at the United States Army Research
54
+ Laboratory (ARL).
55
+ Fig. 1: Recent work in assurance for LEAS is mapped to
56
+ relevant stages of the MITRE systems engineering lifecy-
57
+ cle [6], into 3 distinct categories—development, acquisition,
58
+ and sustainment.
59
+ Early work from the autonomy community identified issues
60
+ that arise from incorporating learning into autonomous sys-
61
+ tems [4] including state space explosion, operation in unpre-
62
+ dictable environments, emergent behavior, and effective hu-
63
+ man machine interaction. Assurance methods such as formal
64
+ methods [7], or reliability analysis [8] seek to provide either
65
+ certain or probabilistic guarantees on system performance.
66
+ Formal methods support verification by exhaustively search
67
+ and identifying dangerous regions of the state space and
68
+ provide techniques to avoid such states. Reliability analysis
69
+ supports test and evaluation by quantifying the probability
70
+ a system will be operational at a point in time from oper-
71
+ ational data collected throughout the systems lifecycle. The
72
+ aforementioned state space explosion makes formal methods
73
+ challenging to scale, and reliability analysis difficult to ac-
74
+ curately predict estimates. A different field of research seeks
75
+ to develop methods which explicitly consider safety during
76
+ the learning and operational stages [9]. Lastly, investments
77
+ such as the DARPA Assured Autonomy program1 seeks to
78
+ continually assure learning enabled cyber-physical systems
79
+ by constructing formal methods that assure correctness at
80
+ design time and perform runtime monitoring at operation
81
+ time. While this program has advanced the state of the
82
+ 1https://www.darpa.mil/program/assured-autonomy
83
+ arXiv:2301.00057v1 [cs.SE] 30 Dec 2022
84
+
85
+ Transition
86
+ Concept
87
+ Operation&
88
+ Development
89
+ Maintenance
90
+ Requirements
91
+ Test&
92
+ Engineering
93
+ Evaluation
94
+ System
95
+ System
96
+ Architecture
97
+ Integration
98
+ SystemDesign
99
+ &Development
100
+ Development
101
+ Acquisition
102
+ Sustainmentart in formal methods [10] and runtime monitoring [11], a
103
+ systematic approach to identify outstanding gaps will remain
104
+ unclear unless the community makes explicit and coordinated
105
+ efforts to understand how such methods may be incorporated
106
+ into the broader systems engineering process.
107
+ Our work seeks to communicate recent technical devel-
108
+ opments in LEAS assurance with a focus on autonomous
109
+ vehicles, accompanying recent literature reviews [12] [13], by
110
+ mapping such developments to distinct steps of a well known
111
+ systems engineering model chosen due to its prevalence,
112
+ namely the v-model. Fig. 1 shows the mapping and identifies
113
+ three top level lifecycle phases: development, acquisition, and
114
+ sustainment. For each top level lifecycle phase, a section of
115
+ the paper has been dedicated to outlining recent technical de-
116
+ velopments and how they contribute to the goals of the phase.
117
+ This representation helps identify where the latest methods for
118
+ TEVV fit in the broader systems engineering process while
119
+ also enabling systematic consideration of potential sources of
120
+ defects, faults, and attacks. Note that we use the v-model only
121
+ to assist the classification of where TEVV methods fit. This is
122
+ not a recommendation to use a certain software development
123
+ lifecycle over another.
124
+ The remainder of the paper is organized as follows. Sec-
125
+ tion II outlines the specific scientific fields supporting LEAS.
126
+ Section III provides an overview of the mapping between tra-
127
+ ditional systems engineering and the state of the art in assur-
128
+ ance for LEAS. Section IV maps assurance techniques, which
129
+ assist development to design and development, and system
130
+ integration in the systems engineering lifecycle. Section V
131
+ maps assurance techniques, which assist acquisition to test
132
+ and evaluation. Section VI maps assurance techniques, which
133
+ assist sustainment to transition, operation, & maintenance.
134
+ Lastly, section VII concludes with areas this mapping can
135
+ impact.
136
+ II. METHODS SUPPORTING THE DEVELOPMENT OF
137
+ LEARNING ENABLED AUTONOMOUS SYSTEMS
138
+ This section seeks to define the fields of engineering
139
+ with significant impact on development of LEAS with a
140
+ focus on vehicles and their corresponding challenges for
141
+ assurance. In later sections (Sec. IV—VI), solutions to such
142
+ challenges are identified and categorized according to where
143
+ they reside within the systems engineering lifecycle such as
144
+ development, acquisition, or sustainment. Rather than seek to
145
+ obtain an exhaustive list of engineering fields, of which there
146
+ are many, we first provide an overview of learning enabled
147
+ autonomous vehicles and then review two key contributing
148
+ fields, including machine learning and reinforcement learning.
149
+ While there are other non-learning methods such as optimal
150
+ control theory [14], which have made large and long lasting
151
+ impacts on the development on LEAS, they are not considered
152
+ in this paper.
153
+ LEAS normally follow one of two design approaches, end-
154
+ to-end (E2E) or modular. In the E2E approach [15], a system’s
155
+ sensors act as the input to a learning algorithm. For example, a
156
+ deep neural network outputs the corresponding actions such as
157
+ steering wheel angle (lateral control) [16], torque (longitudi-
158
+ nal control) [17], or both [18]. In the modular approach [19], a
159
+ system’s sensors act as input to a perception sub-system which
160
+ is responsible for building a map and model of the world.
161
+ Such subsystems commonly include perception components
162
+ that use ML techniques such as semantic segmentation [20] or
163
+ object detection [21]. This model is then used by a planning
164
+ subsystem, which outputs a kinematically feasible trajectory
165
+ to which controls are applied [22], [23].
166
+ While it may be possible to break down layers of E2E
167
+ neural networks into sub-components using interpretability
168
+ techniques [24], this paper specifically focuses on the modular
169
+ approach for two reasons: i) it is clear to a human what the
170
+ responsibility of each component is (increased interpretabil-
171
+ ity), and ii) the modular approach is currently more common
172
+ in autonomous vehicle designs in industry and government
173
+ implementations. While some of the underlying problems for
174
+ assurance are the same for both approaches, including those
175
+ previously mentioned [4], we explicitly consider software
176
+ assurance methods which are applicable to either perception
177
+ or planning components, or the joint-combination thereof.
178
+ A. Machine Learning
179
+ In machine learning (ML), tasks are completed by training
180
+ a model from data to perform function approximation using
181
+ a combination of mathematical optimization and statistical
182
+ techniques [25]. This results in computer programs which are
183
+ able to complete a task without constructing a set of exact
184
+ solution instructions ahead of time. There are three main
185
+ forms of learning, including supervised, unsupervised, and
186
+ reinforcement learning. In supervised learning, each training
187
+ sample from the dataset is associated with a set of features and
188
+ a corresponding label to train a model. For example, a neural
189
+ network can be trained on a dataset of images containing
190
+ handwritten digits, where each sample’s corresponding label
191
+ is 0 through 9. In unsupervised learning, each training sample
192
+ is only represented by a set of extracted features, which are
193
+ subsequently used to identify the underlying feature patterns
194
+ throughout the dataset. For example, clustering techniques
195
+ divide a dataset into k distinct groups, where all data points
196
+ in a group are similar with respect to some distance measure.
197
+ Finally, in reinforcement learning, an autonomous agent learns
198
+ the optimal way to act over time via interaction with the
199
+ environment, such as an autonomous robot learning how to
200
+ move its actuators and joints to navigate in an environment
201
+ without hitting obstacles.
202
+ Although the ability to perform complex tasks solely from
203
+ data has made ML highly successful, it is for this same
204
+ reason that ML models are difficult to assure. Among other
205
+ factors, a model’s performance depends on the data experi-
206
+ enced during training and the environment in which it was
207
+ trained [26]. Naive metrics such as the model’s accuracy
208
+ on a test set may be perceived as overconfident because
209
+ they assume most future data will be like the experienced
210
+ data. This is especially true in complex systems such as
211
+ government systems tasked with operating in contested op-
212
+
213
+ erational environments, demonstrating the need for metrics
214
+ to assess model performance in new environments. Another
215
+ assurance challenge includes determining relevant test cases
216
+ given the state space explosion and curse of dimensionality
217
+ problems, of which the Range Adversarial Planning Tool has
218
+ been proposed [27]. Furthermore, such models are brittle to
219
+ perturbations in input, which may come from sources such as,
220
+ sensor noise or adversarial attacks [28]. Lastly, it is inevitable
221
+ that such models will fail from time to time, and explanations
222
+ of why they fail (interpretability techniques) and how to fail
223
+ gracefully (resilience techniques) are also valuable. Although
224
+ there are a variety of new assurance techniques [12] [13] that
225
+ seek to alleviate such issues, a framework does not exist to
226
+ assess their thoroughness and relative effectiveness.
227
+ B. Reinforcement Learning
228
+ Reinforcement learning (RL) is given a dedicated subsec-
229
+ tion because it is an enabler of intelligent-like capabilities
230
+ required for complex autonomous systems. Reinforcement
231
+ learning provides a framework for autonomous agents to make
232
+ decisions under uncertainty and learn from environmental
233
+ interaction [29]. Specified by a reward function, an agent
234
+ seeks to obtain an optimal policy which maximizes its reward
235
+ by taking actions over a time horizon in an environment. A
236
+ policy is a function that maps the current state to the single
237
+ action that maximizes the expected future reward. Formally,
238
+ this structure is part of a Markov Decision Process (MDP)
239
+ consisting of a state space S, an action space A, a state
240
+ transition distribution over next states T(st+1|st, a), and a
241
+ reward function R(s, a, s′) whose solution is the optimal
242
+ policy which maximizes the expected future reward π∗. Exact
243
+ RL seeks to converge to the optimal policy using tabular
244
+ techniques, requiring an agent to visit each state many times.
245
+ Conversely, approximate techniques such as deep RL [30]
246
+ allow an agent to operate in large (possibly infinite) state
247
+ and action spaces without explicitly visiting each state by
248
+ obtaining a parameterized policy.
249
+ Although RL has demonstrated its ability to mimic intel-
250
+ ligent capabilities such as beating players at Go [31], and
251
+ autonomous driving [32], there are limitations. Designing
252
+ reward functions explicitly by hand is a challenging task
253
+ that can lead to a misalignment between the reward function
254
+ specified and the true reward function the algorithm designer
255
+ intended [33]. Such value misalignment leads to unintended
256
+ consequences such as reward hacking [34], where the robot
257
+ maximizes reward in a way that the algorithm designer did
258
+ not intend while often failing to meet its goals. Furthermore,
259
+ many solutions sample inefficiently and are often brittle [35],
260
+ limiting their real world applicability. Lastly, RL can cause
261
+ a disconnect between how a programmer may interpret what
262
+ an agent has learned and the true learned concept [36]. For
263
+ example, a programmer may believe an agent has learned to
264
+ traverse to a goal grid cell, but because of the environment
265
+ setup, the agent may have actually simply learned to traverse
266
+ to a green grid cell. For systems incorporating RL, such limi-
267
+ tations and corresponding tests for each should be considered
268
+ explicitly in the assurance process.
269
+ III. OVERVIEW OF MAPPING
270
+ This paper provides a preliminary attempt to map recently
271
+ developed technical approaches in the assurance and TEVV
272
+ of learning enabled autonomous systems (LEAS) literature
273
+ to a traditional systems engineering v-model. The mapping
274
+ identifies three top level lifecycle phases: development, ac-
275
+ quisition, and sustainment. Proceeding according to the colors
276
+ in Fig. 1, the stages surrounded in the black box, including
277
+ system design & development, and system integration, assist
278
+ development and therefore are mapped to methods which
279
+ explicitly provide safety assurance during the learning process
280
+ (Sec. IV). The stage in the green box, test and evaluation,
281
+ assists the acquisition of systems and therefore is mapped to
282
+ TEVV analysis techniques which quantify the performance
283
+ of an already built system, or component (Sec. V). The stage
284
+ in the orange box, transition operation & maintenance, is
285
+ mapped to safety assurance techniques which aid sustainment
286
+ by monitoring or adapt performance of a fielded system
287
+ (Sec. VI). For each stage, applicable classes of techniques
288
+ are organized by respective subsections.
289
+ In addition to the stage of the system engineering lifecycle,
290
+ this mapping also seeks to categorize technical developments
291
+ according to their granularity. When evaluating different ap-
292
+ proaches to the same problem, the choice of performance
293
+ metrics depend on the scope of the unit under test—whole
294
+ system, learning enabled component, or a traditional com-
295
+ ponent. Interfaces at various lifecycle levels of granularity
296
+ promote systems thinking [37] about architecture. Namely, the
297
+ way a system’s components and subsystems relate, interact,
298
+ and work over time. By understanding the input paths that
299
+ contribute to a unit’s decisions, the outputs that may lead to
300
+ failures within the larger system become clearer.
301
+ Generally speaking, there are two main approaches to as-
302
+ sure LEAS—white-box techniques and black-box techniques.
303
+ White-box techniques require either a model of the system
304
+ under test, or direct access to the source code. In contrast,
305
+ black-box techniques only look at the inputs and outputs of
306
+ the system under test, and are unaware of the underlying
307
+ methods of how the system generates the outputs. White-
308
+ box techniques are better for component level assurance,
309
+ while black-box techniques are often better for system-wide
310
+ assurance.
311
+ The implementation of assurance techniques and their
312
+ accompanying metrics to quantify system performance and
313
+ safety (Sec. IV—Sec. VI) can all be used as supporting
314
+ evidence for a safety assurance case [38] to determine system
315
+ readiness level and maturity. Tools which automate trace-
316
+ ability and reproducibility throughout the system lifecycle
317
+ such as [39] can reduce the burden of collecting evidence.
318
+ The appropriate choice of assurance methods and associated
319
+ metrics is dependent on the system maturity. Initial project
320
+ milestones may focus on demonstrating anti-fragility, while
321
+ later milestones may focus on demonstrating the ability to
322
+
323
+ accomplish a mission and accompanying capabilities. Fur-
324
+ thermore, quantitative metrics may only be applicable at
325
+ certain levels of system granularity. For example, an entire
326
+ system may be best evaluated by the outcomes of a pre-
327
+ determined mission and supporting data, while a learning
328
+ enabled component may be better evaluated by measures
329
+ specific to machine learning such as uncertainty quantifica-
330
+ tion, robustness to environmental shift, and the ability to fail
331
+ gracefully and recover from faults. Metrics which are able
332
+ to capture the performance of all approaches under test may
333
+ be preferred over metrics that measure the performance of a
334
+ certain class of algorithms. Lastly, if performance data can
335
+ be collected during the development process, one could also
336
+ perform a quantitative analysis of a system at any given time
337
+ using traditional reliability [8] and defect removal [40].
338
+ IV. ASSURANCE ACTIVITIES TO SUPPORT SYSTEM
339
+ DEVELOPMENT
340
+ This section maps assurance methods which assist de-
341
+ velopment to system design and development, and system
342
+ integration in the systems engineering lifecycle.
343
+ A. Artificial Intelligence Safety
344
+ AI safety is a sub-field of AI which seeks to ensure that a
345
+ deployed AI systems (i) operates as the designer intended
346
+ and (ii) completes its task without harming humans. The
347
+ importance of AI safety is backed by impactful institutions
348
+ such as the Future of Life Institute2 and Machine Intelligence
349
+ Research Institute3. In the academic literature, AI safety
350
+ has been popularized by the agenda of Amodedi et al. [9],
351
+ who discuss five failure modes for AI; negative side effects,
352
+ reward hacking, scalable supervision, safe exploration, and
353
+ distributional shift. Moreover, in the context of RL, the
354
+ value alignment problem arises due to a gap in the specified
355
+ reward function and what the human actually intended [41].
356
+ Specifically, Taylor et al. [42] discuss eight different ap-
357
+ proaches focusing on two areas of value alignment—reward
358
+ specification and techniques to avoid side effects. Burden et
359
+ al. [43] argue that the scope of AI safety problems residing
360
+ in a specific system can be characterized by three quantitative
361
+ factors; generality, capability, and control. For a literature
362
+ review of AI safety, the reader is directed to [44].
363
+ While the works above seek to obtain safer agents by
364
+ altering the underlying methodologies, the focus is on agents
365
+ in artificial environments rather than physical robots, thereby
366
+ creating a gap between theoretical and applied research.
367
+ Moreover, most approaches assume that the system is fol-
368
+ lowing a RL paradigm, demonstrating the importance to
369
+ understand the underlying learning paradigm employed by a
370
+ project. Lastly, although AI safety approaches alone will not
371
+ be sufficient for LEAS assurance, if the methods are applied
372
+ during the learning process, such approaches are likely to
373
+ perform and test better than their non-safe counterparts,
374
+ leading to higher assurance measures.
375
+ 2https://futureoflife.org/
376
+ 3https://intelligence.org/
377
+ B. Learning from Human Feedback
378
+ Incorporating human interaction can positively impact the
379
+ performance of a LEAS because it is often easier to provide
380
+ feedback on desired behavior rather than explicitly defining it.
381
+ This is one solution to the value alignment problem mentioned
382
+ in Sec. IV-A. Such human interaction may include learning
383
+ from demonstration, intervention, or evaluation [45]. In learn-
384
+ ing from demonstration [46], the human provides a dataset
385
+ of examples mimicking how the system should operate. In
386
+ learning from intervention [47], the system operates fully
387
+ autonomously and the human takes over as required to correct
388
+ system behavior. In learning from human evaluation [48],
389
+ [49], the system completes various tasks fully autonomously,
390
+ and then a human ranks the tasks. This ranking may be
391
+ from best to worst, or answering the yes/no question, “Was
392
+ this the behavior you wanted to see the system perform?”
393
+ All of the methods mentioned fall into a sub-field known
394
+ as imitation learning [50]. Lastly, recent developments in
395
+ imitation learning attempt to incorporate safety as part of the
396
+ learning process using uncertainty quantification, creating a
397
+ new sub field known as safe imitation learning [51], [52].
398
+ C. Uncertainty Estimation
399
+ System requirements often demand that a learning en-
400
+ abled autonomous system make a prediction, classification,
401
+ or decision at every time-step during operation. Since many
402
+ implementations contain perception systems that will likely
403
+ never be 100% accurate, the certainty or lack thereof, of a
404
+ prediction may assist in the final decision made—especially if
405
+ the outcome of such a prediction may lead to risky behavior.
406
+ The ability for a system to measure what it does and does
407
+ not know can be captured by quantifying uncertainty with
408
+ Bayesian analysis techniques [53]. There are two main types
409
+ of uncertainty, aleatoric and epistemic. Aleatoric uncertainty
410
+ measures the variance between samples in a population.
411
+ This type of uncertainty cannot be reduced with more data.
412
+ An example is the outcome of a fair coin flip. Epistemic
413
+ uncertainty measures the lack of knowledge of a population,
414
+ which is often captured in a system’s parameters. This type
415
+ of uncertainty can be alleviated by collecting more data.
416
+ An understanding of the different types of uncertainty helps
417
+ system designers understand if performance can be increased
418
+ by simply collecting more data. Additional details can be
419
+ found in the reviews on uncertainty quantification applied to
420
+ machine learning [54], neural networks [55], and computer
421
+ vision [56]. Such techniques aid at the learning enabled com-
422
+ ponent level, and can be used to quantify system confidence in
423
+ the current operational environment and thereby communicate
424
+ uncertainty (risk) to the system end users.
425
+ D. Cost-sensitive Learning
426
+ At the system level, the impact of a learning enabled
427
+ component on the whole system is measured in terms of
428
+ its ability to assist in the completion of a task. Additional
429
+ failure modes introduced by such components must be ex-
430
+ plicitly considered. Cost-sensitive learning [57] is applicable
431
+
432
+ in classification problems where the cost associated with the
433
+ misclassification is not equal among classes. For example,
434
+ in the context of commercial autonomous vehicles, a false
435
+ positive resulting in the vehicle stopping when it did not need
436
+ to likely has lower cost than a false negative resulting in a
437
+ vehicle colliding with a pedestrian.
438
+ E. Formal Methods
439
+ Static analysis techniques such as formal methods are able
440
+ to provide guarantees on system performance without ever
441
+ operating the system [58]. Rather than attempting to discover
442
+ faults while the system is placed under operation, claims about
443
+ a system are proved or disproved algorithmically using rig-
444
+ orous mathematical methods. Such methods develop a model
445
+ of the system being tested, such as a finite-state automaton,
446
+ and then test that model against a set of specifications defined
447
+ in a formal language. There are two main approaches, formal
448
+ verification [7], which checks if a given system satisfies a set
449
+ of specifications, while program synthesis seeks to construct a
450
+ system from a set of specifications [59]. For a literature review
451
+ of formal methods in the context of autonomous robotics, the
452
+ reader is directed to [60].
453
+ In the context of LEAS, the system is often complex
454
+ and safety is critical, thereby making formal methods an
455
+ attractive solution. Specifically, synthesis methods provide a
456
+ “correct-by-construction” approach [61], where capabilities
457
+ and required operating conditions such as safety constraints
458
+ are described as specifications and act as input to a synthesis
459
+ algorithm which outputs the appropriate system model and
460
+ optimal control policy. The vehicle’s actions are thereby guar-
461
+ anteed to stay within the operating conditions determined by
462
+ the obtained policy. However, many approaches are currently
463
+ limited to static environments, meaning a robot which is
464
+ guaranteed to satisfy the specifications in one environment
465
+ does not necessarily carry over to other environments. More-
466
+ over, many formal methods have issues scaling to large state
467
+ spaces [62] due to their exhaustive nature. However, solutions
468
+ have been proposed using clever optimization techniques such
469
+ as
470
+ [63] [64]. Nevertheless, synthesis methods can be used
471
+ to assure safety during a systems development phase, while
472
+ formal verification techniques such as model checking [7]
473
+ may be more applicable at the acquirement level.
474
+ V. ASSURANCE ACTIVITIES TO SUPPORT SYSTEM
475
+ ACQUISITION
476
+ This section maps assurance activities to support system
477
+ acquisition to test and evaluation in the systems engineering
478
+ lifecycle.
479
+ A. Autonomy Standards
480
+ Standards seek to provide safety assurances, verify capa-
481
+ bilities, and promote understanding. Several standards have
482
+ been developed to assist the design and development of
483
+ commercial autonomous vehicles such as ISO 26262 [65] and
484
+ IEC 61508 [66]. Specifically, UL 4600 [67] and ISO/PAS
485
+ 21448 [68] explicitly consider autonomous vehicle capabil-
486
+ ities incorporating learning. UL 4600 employs the idea of
487
+ safety assurance cases, where system performance is argued
488
+ like a court case given evidence. Minimizing risk is the
489
+ goal while also accepting that it cannot be eliminated all to-
490
+ gether. Military focused standards include ALFUS [69] paired
491
+ with the updated ARP6128 [70], and MIL-STD-882E [71].
492
+ Most recently, IEEE 2817 [72] (in development) seeks to
493
+ standardize verification methods specifically for autonomous
494
+ systems. Although this discussion is part of the development
495
+ subsection, the standards listed here may also be applicable
496
+ to the other two lifecycle categories identified in Figure 1.
497
+ B. Software Testing
498
+ Capabilities of autonomous systems are enabled by soft-
499
+ ware. There is no debate on the importance of software
500
+ testing, when acknowledging the severity of historic software
501
+ failures such as the patriot missile or Boeing 737 MAX.
502
+ Traditional methods such as those outlined in [73] seek
503
+ to partition the input space using graph or logic coverage
504
+ to exhaustively test a program. While traditional methods
505
+ may work for testing traditional software systems, exhaustive
506
+ methods are rendered infeasible due to the state space ex-
507
+ plosion problem. Moreover, for statistical learning algorithms
508
+ commonly applied in machine learning methods, the set of
509
+ all possible samples is often much larger than the number
510
+ of samples collected. For example, the set of all possible
511
+ images a camera may sense using the RGB spectrum with
512
+ an image size of 256 × 256 is 16, 777, 216(256∗256). This
513
+ demonstrates the importance of analyzing dataset features
514
+ and their associated effectiveness [74] to obtain a generalized
515
+ model.
516
+ In regards to software engineering—a machine learning
517
+ model is similar to traditional components, they both have
518
+ inputs and outputs. The difference is the size of the input
519
+ space and that the outputs may change on the same input at
520
+ different points in time if the model is continually learning.
521
+ However, if the model is not learning from new data, it can
522
+ be considered as a deterministic component. An inaccurate
523
+ prediction from a model can be thought of as equivalent to
524
+ a software fault [75]. However, due to the large state space,
525
+ the issue remains in the detection of such faults. The next
526
+ subsection that follows seek to identify such faults.
527
+ C. Automated Test Generation
528
+ Automated test case generation seeks to increase the ef-
529
+ fectiveness of test and evaluation by minimizing testing time,
530
+ and identifying the most impactful test cases which are likely
531
+ to contain faults. A survey of automatic test-case generation
532
+ [76] identifies five main categories—structural testing, model-
533
+ based testing, combinatorial testing, random testing, and
534
+ search-based testing. Aforementioned for LEAS, the number
535
+ of configurations is often intractable and therefore exhaustive
536
+ or tree methods are infeasible. Search-based methods seek to
537
+ alleviate this issue by using clever optimization techniques,
538
+ which identify test cases in areas (boundaries) of a systems
539
+
540
+ configuration space that are likely to lead to system failure.
541
+ Therefore, this subsection focuses on search-based methods.
542
+ Most relevant to LEAS, Mullins et al. [27] provide a tool
543
+ which automatically identifies test cases for a system under
544
+ test with a search based optimization approach dependent on
545
+ a set of mission scenario configurations and a performance
546
+ score for each configuration. A case study using the afore-
547
+ mentioned tool in an autonomous surface vessel domain can
548
+ be found in [77]. Bridging the gap between formal verification
549
+ and automated test case generation, Akellea et al. [78] provide
550
+ a black-box method to identify test cases which do not satisfy
551
+ a provided temporal logic specification based on a dataset of
552
+ observed demonstrations. Most recently, Badithela et al. [79]
553
+ identify test cases for mission objectives by constructing a
554
+ set of constraints given a user-defined sequence of waypoints
555
+ and a reachability objective. In conclusion, recent research in
556
+ search-based automated test generation is able to handle the
557
+ state space explosion problem, while also finding the most
558
+ impactful test cases. The results from such test cases help
559
+ provide impactful evidence towards, or against the construc-
560
+ tion of safety case (UL 4600).
561
+ D. Metrics for Machine Learning
562
+ Metrics provide a quantitative analysis of performance,
563
+ clearly identifying the best solution out of a set of possible
564
+ solutions. Performance is best measured by the system’s abil-
565
+ ity to accurately make predictions in the current operational
566
+ environment which positively contribute to the larger mission
567
+ goals. Initial metrics in supervised machine learning focused
568
+ on confusion matrices and receiver operating characteristics
569
+ (ROC) with metrics such as accuracy, sensitivity, specificity,
570
+ precision, and F1 score. For regression models, statistical
571
+ measures such as mean absolute error or mean squared error
572
+ were sufficient. In the context of neural network regression,
573
+ the statistical significance of input features and an accompany-
574
+ ing statistical test may be identified [80]. In the reinforcement
575
+ learning framework, Chan et al. [81] provide a set of test and
576
+ evaluation metrics to statistically measure the variability and
577
+ risk of RL algorithms both during and after training.
578
+ Agnostic to the task (classification, regression, clustering,
579
+ etc.), neuron coverage was introduced [82], as a testing metric
580
+ analogous to code coverage [83] for traditional systems. Code
581
+ coverage measures the percentage of a code base that has been
582
+ covered by tests. High code coverage implies that few soft-
583
+ ware bugs remain, and vice versa. Similarly, neural coverage
584
+ measures the percentage neuron activations occur from the
585
+ testing dataset, seeking to obtain the same implications of
586
+ code coverage. However, recent research [84] [85] has shown
587
+ that neuron coverage is an insufficient metric for testing.
588
+ Wang et al. [86] seek to address this limitation by quantifying
589
+ the value of a test set. Addition metrics research is needed to
590
+ quantitatively measure the assurance problems outlined in [4].
591
+ VI. ASSURANCE ACTIVITIES TO SUPPORT SYSTEM
592
+ SUSTAINMENT
593
+ This section maps assurance activities which support sys-
594
+ tem sustainment to transition, operating, and maintenance in
595
+ the systems engineering lifecycle.
596
+ A. Runtime Monitoring
597
+ Runtime monitoring observes the current state of a system
598
+ and determines if the system is satisfying or violating a set
599
+ of pre-determined specifications. This is similar to the formal
600
+ methods approach outlined in Sec. IV-E. However, runtime
601
+ monitoring occurs online (while the system is operating),
602
+ whereas most techniques from formal methods occur offline.
603
+ Kane et al. introduced EgMon [87], which detects the vio-
604
+ lation of specifications using propositional metric temporal
605
+ logic. Similarly, Zapridou et al. [88] develop an adaptive
606
+ cruise control system in the CARLA simulator and perform
607
+ runtime monitoring using signal temporal logic. Yel et al. [89]
608
+ provide a runtime monitoring technique using neural networks
609
+ for safe motion planning. In the U.S. government sector,
610
+ a Boeing team as part of the DARPA assured autonomy
611
+ program, implemented runtime monitoring in a flight simula-
612
+ tor [11]. For an overview of runtime monitoring techniques,
613
+ the reader is directed to [90].
614
+ B. Resilience Engineering
615
+ Resilience engineering techniques seek to build systems
616
+ which remain operational subject to faults and distur-
617
+ bances [91]. Such techniques quantify the impact of degraded
618
+ performance and robustness to faults while providing predic-
619
+ tions such as the expected time until recovery [92]. In the con-
620
+ text of LEAS, resilience techniques can accommodate sensor
621
+ inaccuracies which may come from measurement limitations
622
+ in the hardware, dust or debris, and adversarial attacks [28].
623
+ Resilience monitoring enables a system to recognize that
624
+ performance is degraded, and then adapt appropriately, such
625
+ as moving from perception based navigation to odometry
626
+ based navigation. At the time of writing there is little technical
627
+ research on the incorporation of resilience techniques to
628
+ LEAS [93], However, [94] offers an initial taxonomy on
629
+ resilience for multi-robot systems.
630
+ VII. CONCLUSION
631
+ This paper provides preliminary attempt to map recently
632
+ developed technical approaches for the assurance of LEAS
633
+ to a traditional systems engineering v-model. By doing so,
634
+ we seek to improve the acquisition process by: (i) informing
635
+ comprehensive assurance planning, (ii) promoting detailed
636
+ analysis of alternatives, and (iii) objectively communicating
637
+ risk to leaders. As indicated by the number of references in
638
+ each section, most research has been done in the development
639
+ of methods which explicitly consider safety assurance, while
640
+ further research is needed in methods which aid the acquire-
641
+ ment, and sustainment of such systems. Future work seeks
642
+ to perform a case study assuring a LEAS using some of the
643
+ methodologies referenced in this paper.
644
+
645
+ REFERENCES
646
+ [1] L. Freeman, “Test and evaluation for artificial intelligence,” INSIGHT,
647
+ vol. 23, no. 1, pp. 27–30, 2020.
648
+ [2] E. Denney, G. Pai, and M. Johnson, “Towards a rigorous basis for
649
+ specific operations risk assessment of uas,” in 2018 IEEE/AIAA 37th
650
+ Digital Avionics Systems Conference (DASC).
651
+ IEEE, 2018, pp. 1–10.
652
+ [3] Test and Evaluation Management Guide, 6th ed.
653
+ Defense Acquisition
654
+ University, 2016.
655
+ [4] M. Clark, J. Alley, P. Deal, J. DePriest, E. Hansen, C. Heitmeyer,
656
+ R. Nameth, M. Steinberg, C. Turner, S. Young et al., “Autonomy
657
+ community of interest (coi) test and evaluation, verification and val-
658
+ idation (tevv) working group: Technology investment strategy 2015-
659
+ 2018,” Office of the Assistant Secretary of Defense for Research and
660
+ Engineering, Tech. Rep., 2015.
661
+ [5] N. S. Nise, Control systems engineering, 8th ed.
662
+ John Wiley & Sons,
663
+ 2020.
664
+ [6] L. S. Metzger, G. Rebovich Jr, R. A. Cormier, S. J. T. Norman,
665
+ D. L. Schuh, P. A. Smyton, R. S. Swarz, and F. C. Wendt, “Systems
666
+ engineering guide: Collected wisdom from mitres systems engineering
667
+ experts,” MITRE CORP BEDFORD MA United States, Tech. Rep.,
668
+ 2014.
669
+ [7] C. Baier and J.-P. Katoen, Principles of model checking.
670
+ MIT press,
671
+ 2008.
672
+ [8] K. S. Trivedi and A. Bobbio, Reliability and availability engineering:
673
+ modeling, analysis, and applications.
674
+ Cambridge University Press,
675
+ 2017.
676
+ [9] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
677
+ and D. Man´e, “Concrete problems in ai safety,” arXiv preprint
678
+ arXiv:1606.06565, 2016.
679
+ [10] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener,
680
+ “Efficient verification of relu-based neural networks via dependency
681
+ analysis,” in Proceedings of the AAAI Conference on Artificial Intelli-
682
+ gence, vol. 34, no. 04, 2020, pp. 3291–3299.
683
+ [11] S. Beland, I. Chang, A. Chen, M. Moser, J. Paunicka, D. Stuart, J. Vian,
684
+ C. Westover, and H. Yu, “Towards assurance evaluation of autonomous
685
+ systems,” in Proceedings of the 39th International Conference on
686
+ Computer-Aided Design, 2020, pp. 1–6.
687
+ [12] F. A. Batarseh, L. Freeman, and C.-H. Huang, “A survey on artificial
688
+ intelligence assurance,” Journal of Big Data, vol. 8, no. 1, pp. 1–30,
689
+ 2021.
690
+ [13] D. J. Porter and J. W. Dennis, “Test & evaluation of ai-enabled and
691
+ autonomous systems: A literature review,” 2020.
692
+ [14] D. E. Kirk, Optimal control theory: an introduction.
693
+ Courier Corpo-
694
+ ration, 2004.
695
+ [15] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad,
696
+ “A survey of end-to-end driving: Architectures and training methods,”
697
+ IEEE Transactions on Neural Networks and Learning Systems, 2020.
698
+ [16] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
699
+ P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
700
+ to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
701
+ 2016.
702
+ [17] L. George, T. Buhet, E. Wirbel, G. Le-Gall, and X. Perrotton, “Imitation
703
+ learning for end to end vehicle longitudinal control with forward
704
+ camera,” arXiv preprint arXiv:1812.05841, 2018.
705
+ [18] H. Yu, S. Yang, W. Gu, and S. Zhang, “Baidu driving dataset and
706
+ end-to-end reactive control model,” in 2017 IEEE Intelligent Vehicles
707
+ Symposium (IV).
708
+ IEEE, 2017, pp. 341–346.
709
+ [19] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
710
+ autonomous driving: Common practices and emerging technologies,”
711
+ IEEE access, vol. 8, pp. 58 443–58 469, 2020.
712
+ [20] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
713
+ D. Terzopoulos, “Image segmentation using deep learning: A survey,”
714
+ IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
715
+ [21] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
716
+ survey,” arXiv preprint arXiv:1905.05055, 2019.
717
+ [22] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
718
+ J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
719
+ in urban environments: Boss and the urban challenge,” Journal of Field
720
+ Robotics, vol. 25, no. 8, pp. 425–466, 2008.
721
+ [23] E. Guizzo, “How google’s self-driving car works,” IEEE Spectrum,
722
+ vol. 18, no. 7, pp. 1132–1141, 2011.
723
+ [24] F.-L. Fan, J. Xiong, M. Li, and G. Wang, “On interpretability of
724
+ artificial neural networks: A survey,” IEEE Transactions on Radiation
725
+ and Plasma Medical Sciences, 2021.
726
+ [25] C. M. Bishop, Pattern recognition and Machine Learning.
727
+ Springer,
728
+ 2006.
729
+ [26] “Enabling ai data readiness in the department of defense.”
730
+ [27] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, J. D. Appler, M. H.
731
+ Biggins, K. Chiou, M. A. Huntley, J. D. Stewart, and A. S. Watkins,
732
+ “Delivering test and evaluation tools for autonomous unmanned vehi-
733
+ cles to the fleet,” Johns Hopkins APL technical digest, vol. 33, no. 4,
734
+ pp. 279–288, 2017.
735
+ [28] T. B. Brown, D. Man´e, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
736
+ patch,” arXiv preprint arXiv:1712.09665, 2017.
737
+ [29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
738
+ MIT press, 2018.
739
+ [30] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
740
+ “Deep reinforcement learning: A brief survey,” IEEE Signal Processing
741
+ Magazine, vol. 34, no. 6, pp. 26–38, 2017.
742
+ [31] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
743
+ Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
744
+ M. Lanctot et al., “Mastering the game of go with deep neural networks
745
+ and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.
746
+ [32] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
747
+ gamani, and P. P´erez, “Deep reinforcement learning for autonomous
748
+ driving: A survey,” IEEE Transactions on Intelligent Transportation
749
+ Systems, 2021.
750
+ [33] S. Russell, Human compatible: Artificial intelligence and the problem
751
+ of control.
752
+ Penguin, 2019.
753
+ [34] J.
754
+ Clark
755
+ and
756
+ D.
757
+ Amodei,
758
+ “Faulty
759
+ reward
760
+ functions
761
+ in
762
+ the
763
+ wild,”
764
+ Dec
765
+ 2016.
766
+ [Online].
767
+ Available:
768
+ https://openai.com/blog/
769
+ faulty-reward-functions/
770
+ [35] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
771
+ policy maximum entropy deep reinforcement learning with a stochastic
772
+ actor,” in International conference on machine learning. PMLR, 2018,
773
+ pp. 1861–1870.
774
+ [36] J. Koch, L. Langosco, J. Pfau, J. Le, and L. Sharkey, “Objective robust-
775
+ ness in deep reinforcement learning,” arXiv preprint arXiv:2105.14111,
776
+ 2021.
777
+ [37] E. Rechtin and M. W. Maier, The art of systems architecting.
778
+ CRC
779
+ press, 2010.
780
+ [38] P. Koopman, U. Ferrell, F. Fratrik, and M. Wagner, “A safety standard
781
+ approach for fully autonomous vehicles,” in International Conference
782
+ on Computer Safety, Reliability, and Security.
783
+ Springer, 2019, pp.
784
+ 326–332.
785
+ [39] C. Hartsell, N. Mahadevan, S. Ramakrishna, A. Dubey, T. Bapty,
786
+ T. Johnson, X. Koutsoukos, J. Sztipanovits, and G. Karsai, “Cps design
787
+ with learning-enabled components: A case study,” in Proceedings of the
788
+ 30th International Workshop on Rapid System Prototyping (RSP’19),
789
+ 2019, pp. 57–63.
790
+ [40] M. Nafreen, M. Luperon, L. Fiondella, V. Nagaraju, Y. Shi, and
791
+ T. Wandji, “Connecting software reliability growth models to software
792
+ defect tracking,” in 2020 IEEE 31st International Symposium on
793
+ Software Reliability Engineering (ISSRE).
794
+ IEEE, 2020, pp. 138–147.
795
+ [41] D. Hadfield-Menell, “The principal-agent alignment problem in artifi-
796
+ cial intelligence,” Ph.D. dissertation, University of California, Berkeley,
797
+ 2021.
798
+ [42] J. Taylor, E. Yudkowsky, P. LaVictoire, and A. Critch, “Alignment for
799
+ advanced machine learning systems,” Ethics of Artificial Intelligence,
800
+ pp. 342–382, 2016.
801
+ [43] J. Burden and J. Hern´andez-Orallo, “Exploring ai safety in degrees:
802
+ Generality, capability and control,” in SafeAI@ AAAI, 2020.
803
+ [44] T. Everitt, G. Lea, and M. Hutter, “Agi safety literature review,” in
804
+ IJCAI, 2018.
805
+ [45] N. R. Waytowich, V. G. Goecks, and V. J. Lawhern, “Cycle-of-
806
+ learning for autonomous systems from human interaction,” in AI-HRI
807
+ Symposium, AAAI Fall Symposium Series, 2018.
808
+ [46] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
809
+ advances in robot learning from demonstration,” Annual Review of
810
+ Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330, 2020.
811
+ [47] W. Saunders, G. Sastry, A. Stuhlm¨uller, and O. Evans, “Trial without
812
+ error: Towards safe reinforcement learning via human intervention,”
813
+ in Proceedings of the 17th International Conference on Autonomous
814
+ Agents and MultiAgent Systems, 2018, pp. 2067–2069.
815
+
816
+ [48] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
817
+ D. Amodei, “Deep reinforcement learning from human preferences,”
818
+ in NIPS, 2017.
819
+ [49] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone, “Deep tamer:
820
+ Interactive agent shaping in high-dimensional state spaces,” in Thirty-
821
+ Second AAAI Conference on Artificial Intelligence, 2018.
822
+ [50] T. Osa, J. Pajarinen, G. Neumann, J. Bagnell, P. Abbeel, and J. Peters,
823
+ “An algorithmic perspective on imitation learning,” Foundations and
824
+ Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.
825
+ [51] D. Brown, R. Coleman, R. Srinivasan, and S. Niekum, “Safe imitation
826
+ learning via fast bayesian reward inference from preferences,” in
827
+ International Conference on Machine Learning.
828
+ PMLR, 2020, pp.
829
+ 1165–1177.
830
+ [52] C. Ellis, M. Wigness, J. G. Rogers III, C. Lennon, and L. Fiondella,
831
+ “Risk averse bayesian reward learning for autonomous navigation
832
+ from human demonstration,” in International Conference on Intelligent
833
+ Robots and Systems, Prague Czech Republic, 2021.
834
+ [53] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data
835
+ analysis, 3rd ed.
836
+ Chapman and Hall/CRC, 2013.
837
+ [54] E. H¨ullermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
838
+ in machine learning: An introduction to concepts and methods,” Ma-
839
+ chine Learning, vol. 110, no. 3, pp. 457–506, 2021.
840
+ [55] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
841
+ M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al.,
842
+ “A review of uncertainty quantification in deep learning: Techniques,
843
+ applications and challenges,” Information Fusion, 2021.
844
+ [56] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
845
+ deep learning for computer vision?” in NIPS, 2017.
846
+ [57] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and
847
+ G. Bing, “Learning from class-imbalanced data: Review of methods
848
+ and applications,” Expert Systems with Applications, vol. 73, pp. 220–
849
+ 239, 2017.
850
+ [58] X. Rival and K. Yi, Introduction to static analysis: an abstract
851
+ interpretation perspective.
852
+ Mit Press, 2020.
853
+ [59] S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,” Foun-
854
+ dations and Trends® in Programming Languages, vol. 4, no. 1-2, pp.
855
+ 1–119, 2017.
856
+ [60] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
857
+ “Formal specification and verification of autonomous robotic systems:
858
+ A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–41,
859
+ 2019.
860
+ [61] U. Topcu, “Formal specification and correct-by-construction synthesis
861
+ of control protocols for adaptable, human-embedded autonomous sys-
862
+ tems,” Trustees of The University of Pennsylvania Philadelphia United
863
+ States, Tech. Rep., 2019.
864
+ [62] M. Fisher, L. Dennis, and M. Webster, “Verifying autonomous systems,”
865
+ Communications of the ACM, vol. 56, no. 9, pp. 84–93, 2013.
866
+ [63] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
867
+ A modern probabilistic model checker,” in International Conference on
868
+ Computer Aided Verification.
869
+ Springer, 2017, pp. 592–600.
870
+ [64] M. Suilen, N. Jansen, M. Cubuktepe, and U. Topcu, “Robust policy
871
+ synthesis for uncertain pomdps via convex optimization.” International
872
+ Joint Conferences on Artificial Intelligence, 2020.
873
+ [65] I. ISO, “26262: Road vehicles-functional safety,” International Orga-
874
+ nization for Standardization/FDIS, vol. 26262, 2011.
875
+ [66] I. IEC, “61508: Functional safety of electrical/electronic/programmable
876
+ electronic safety-related system,” International Electrotechnical Com-
877
+ mission, 2010.
878
+ [67] U. UL, “4600: Standard for safety for the evaluation of autonomous
879
+ vehicles and other products,” Underwriters Laboratories, vol. 4600,
880
+ 2019.
881
+ [68] I. ISO, “21448: road vehicles-safety of the intended functionality,”
882
+ International Organization for Standardization, 2019.
883
+ [69] H.-M. Huang, K. Pavek, B. Novak, J. Albus, and E. Messin, “A frame-
884
+ work for autonomy levels for unmanned systems (alfus),” Proceedings
885
+ of the AUVSI’s unmanned systems North America, pp. 849–863, 2005.
886
+ [70] SAE, “Unmanned systems terminology based on the alfus framework,”
887
+ vol. ARP6128, 2019.
888
+ [71] U. D. of Defense, “System saftey,” vol. MIL-STD-882E, 2012.
889
+ [72] I. S. Association, “Guide for verification of autonomous systems,” vol.
890
+ P2817, 2019.
891
+ [73] A. P. Mathur, Foundations of software testing, 2/e.
892
+ Pearson Education
893
+ India, 2013.
894
+ [74] P. Barbiero, G. Squillero, and A. Tonda, “Modeling generalization in
895
+ machine learning: A methodological and computational study,” arXiv
896
+ preprint arXiv:2006.15680, 2020.
897
+ [75] A. Gula, C. Ellis, S. Bhattacharya, and L. Fiondella, “Software and
898
+ system reliability engineering for autonomous systems incorporating
899
+ machine learning,” in 2020 Annual Reliability and Maintainability
900
+ Symposium (RAMS).
901
+ IEEE, 2020, pp. 1–6.
902
+ [76] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
903
+ W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn, A. Bertolino
904
+ et al., “An orchestrated survey of methodologies for automated software
905
+ test case generation,” Journal of Systems and Software, vol. 86, no. 8,
906
+ pp. 1978–2001, 2013.
907
+ [77] P. G. Stankiewicz and G. E. Mullins, “Improving evaluation method-
908
+ ology for autonomous surface vessel colregs compliance,” in OCEANS
909
+ 2019-Marseille.
910
+ IEEE, 2019, pp. 1–7.
911
+ [78] P. Akella, M. Ahmadi, R. M. Murray, and A. D. Ames, “Formal
912
+ test synthesis for safety-critical autonomous systems based on control
913
+ barrier functions,” in 2020 59th IEEE Conference on Decision and
914
+ Control (CDC).
915
+ IEEE, 2020, pp. 790–795.
916
+ [79] A. Badithela and R. M. Murray, “Synthesis of static test environments
917
+ for observing sequence-like behaviors in autonomous systems,” arXiv
918
+ preprint arXiv:2108.05911, 2021.
919
+ [80] E. Horel and K. Giesecke, “Significance tests for neural networks,”
920
+ Journal of Machine Learning Research, vol. 21, no. 227, pp. 1–29,
921
+ 2020.
922
+ [81] S. C. Chan, S. Fishman, J. Canny, A. Korattikara, and S. Guadarrama,
923
+ “Measuring the reliability of reinforcement learning algorithms,” in
924
+ International Conference on Learning Representations, Addis Ababa,
925
+ Ethiopia, 2020.
926
+ [82] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
927
+ testing of deep learning systems,” in proceedings of the 26th Symposium
928
+ on Operating Systems Principles, 2017, pp. 1–18.
929
+ [83] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
930
+ computer programs,” Communications of the ACM, vol. 6, no. 2, pp.
931
+ 58–63, 1963.
932
+ [84] S. Abrecht, M. Akila, S. S. Gannamaneni, K. Groh, C. Heinzemann,
933
+ S. Houben, and M. Woehrle, “Revisiting neuron coverage and its ap-
934
+ plication to test generation,” in International Conference on Computer
935
+ Safety, Reliability, and Security.
936
+ Springer, 2020, pp. 289–301.
937
+ [85] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim,
938
+ “Is neuron coverage a meaningful measure for testing deep neural
939
+ networks?” in Proceedings of the 28th ACM Joint Meeting on European
940
+ Software Engineering Conference and Symposium on the Foundations
941
+ of Software Engineering, 2020, pp. 851–862.
942
+ [86] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
943
+ “Robot: Robustness-oriented testing for deep learning systems,” in 2021
944
+ IEEE/ACM 43rd International Conference on Software Engineering
945
+ (ICSE).
946
+ IEEE, 2021, pp. 300–311.
947
+ [87] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study on
948
+ runtime monitoring of an autonomous research vehicle (arv) system,”
949
+ in Runtime Verification.
950
+ Springer, 2015, pp. 102–117.
951
+ [88] E. Zapridou, E. Bartocci, and P. Katsaros, “Runtime verification of
952
+ autonomous driving systems in carla,” in International Conference on
953
+ Runtime Verification.
954
+ Springer, 2020, pp. 172–183.
955
+ [89] E. Yel, T. J. Carpenter, C. Di Franco, R. Ivanov, Y. Kantaros, I. Lee,
956
+ J. Weimer, and N. Bezzo, “Assured runtime monitoring and planning:
957
+ toward verification of neural networks for safe autonomous operations,”
958
+ IEEE Robotics & Automation Magazine, vol. 27, no. 2, pp. 102–116,
959
+ 2020.
960
+ [90] I. Cassar, A. Francalanza, L. Aceto, and A. Ing´olfsd´ottir, “A survey
961
+ of runtime monitoring instrumentation techniques,” arXiv preprint
962
+ arXiv:1708.07229, 2017.
963
+ [91] A. M. Madni and S. Jackson, “Towards a conceptual framework for
964
+ resilience engineering,” IEEE Systems Journal, vol. 3, no. 2, pp. 181–
965
+ 191, 2009.
966
+ [92] S. Hosseini, K. Barker, and J. E. Ramirez-Marquez, “A review of
967
+ definitions and measures of system resilience,” Reliability Engineering
968
+ & System Safety, vol. 145, pp. 47–61, 2016.
969
+ [93] S. Johnsen and S. Kilskar, “A review of resilience in autonomous
970
+ transport to improve safety and security.”
971
+ ESREL, 2020.
972
+ [94] A. Prorok, M. Malencia, L. Carlone, G. S. Sukhatme, B. M. Sadler,
973
+ and V. Kumar, “Beyond robustness: A taxonomy of approaches towards
974
+ resilient multi-robot systems,” arXiv preprint arXiv:2109.12343, 2021.
975
+
9NAyT4oBgHgl3EQfQ_Zv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9FJT4oBgHgl3EQfry2f/content/tmp_files/2301.11610v1.pdf.txt ADDED
@@ -0,0 +1,1308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Eigenvalues of QCD Dirac matrix with improved staggered quarks in the continuum
2
+ limit
3
+ Olaf Kaczmarek,1 Ravi Shanker,2, ∗ and Sayantan Sharma2
4
+ 1Fakult¨at f¨ur Physik, Universit¨at Bielefeld, D-33615 Bielefeld, Germany
5
+ 2The Institute of Mathematical Sciences, a CI of Homi Bhabha National Institute, Chennai, 600113, India
6
+ We calculate the eigenmodes of the Highly Improved Staggered Quark (HISQ) matrix near the
7
+ chiral crossover transition in QCD with 2 + 1 flavors with the aim to gain more insights into its
8
+ temperature dependence.
9
+ On performing the continuum extrapolation, we do not observe any
10
+ gap opening up in the infrared part of the eigenvalue density of QCD Dirac operator, instead we
11
+ observe a peak.
12
+ The existence of the peak and oscillations of the infrared eigenmodes can be
13
+ understood in terms of an interacting ensemble of instantons. From the properties of the continuum
14
+ extrapolated eigen spectrum we further show that the anomalous UA(1) part of the chiral symmetry
15
+ is not effectively restored simultaneously along with its non-singlet counterpart.
16
+ We provide an
17
+ explanation for this observation, further showing interesting connections between the anomalous
18
+ UA(1) restoration and the change in the infrared part of the eigenvalue distribution.
19
+ PACS numbers:
20
+ 12.38.Gc, 11.15.Ha, 11.30.Rd, 11.15.Kc
21
+ Introduction The eigenvalue spectrum of the quark
22
+ Dirac operator contains valuable information about the
23
+ fundamental properties of Quantum Chromodynamics
24
+ (QCD). The chiral condensate which acts as a (pseudo)
25
+ order parameter for the chiral (crossover) transition in
26
+ QCD is related to the density of near-zero eigenvalues [1].
27
+ In fact it was shown from very general considerations that
28
+ the formation of the chiral condensate is related to the
29
+ occurrence of small eigenvalues that scale proportional
30
+ to the volume [2]. The breaking of the non-singlet part
31
+ of chiral symmetry i.e. SUA(2) × SUV (2) → SUV (2) of
32
+ QCD with physical quark masses at the crossover tem-
33
+ perature Tc = 156.5 ± 1.5 MeV [3] can also be explained
34
+ in terms of modifications in the deep infrared part of the
35
+ eigenvalue density. The flavor-singlet UA(1) part of the
36
+ chiral symmetry on the other hand, is anomalous yet is
37
+ believed to play an important role in determining the
38
+ nature of the chiral phase transition [4–6]. The temper-
39
+ ature dependence of the amount of UA(1) breaking near
40
+ the chiral crossover transition in QCD can be only deter-
41
+ mined using non-perturbative lattice techniques and is a
42
+ topic of contemporary interest in lattice QCD see for e.g.
43
+ Ref. [7, 8] for recent reviews. Whereas there are some
44
+ very compelling evidence that show UA(1) remains effec-
45
+ tively broken in 2 + 1 flavor QCD with physical quark
46
+ mass m
47
+ [9–15], even when m → 0 [16], there are lat-
48
+ tice studies which also favor an effective restoration at
49
+ Tc [17–22].
50
+ The eigenvalue spectrum of the QCD Dirac matrix also
51
+ encodes within it some remarkable universal properties.
52
+ It was shown that the route towards achieving thermo-
53
+ dynamic limit for the infrared modes of the Dirac op-
54
+ erator is universal [23], for any number of light quark
55
+ flavors.
56
+ The existence of a non-zero chiral condensate
57
+ leads to a sum rule involving sum of inverse squares of
58
+ ∗Electronic address: [email protected]
59
+ these small eigenvalues [2]. These sum rules are univer-
60
+ sal irrespective of the details of the nature and type of
61
+ gauge interactions [23, 24] and could be derived from chi-
62
+ ral random matrix theory [25]. A good agreement was
63
+ demonstrated for the distribution of the small eigenvalues
64
+ and the spectral density of lattice QCD Dirac operator
65
+ and chiral random matrix theory at zero temperature on
66
+ small lattice volumes [26]. In fact universal correlations
67
+ between higher order spectral functions in a random ma-
68
+ trix theory has been derived [27] and its connection to
69
+ QCD was discussed. At finite temperature the universal
70
+ features of infrared eigenvalues can be also accounted for
71
+ within a random matrix theory [28–30]. Additionally the
72
+ infrared eigenvalue spectrum of QCD has more subtle
73
+ features. A near-zero peak of localized eigenvalues has
74
+ been observed for finite lattices, mixing with but very
75
+ different from the delocalized bulk modes whose spectral
76
+ density follows random matrix statistics [7, 31]. Whether
77
+ or not such a feature survives in the continuum limit is
78
+ yet to be ascertained. Previous studies of quark Dirac
79
+ spectrum in an instanton liquid ensemble [29, 32] at zero
80
+ temperature have observed similar peak-like feature.
81
+ With increasing temperature the localized modes
82
+ starts separating out from the random bulk modes lead-
83
+ ing to the opening up of a mobility edge [31]. The corre-
84
+ sponding temperature where a finite mobility edge sepa-
85
+ rates the bulk modes from the localized one was initially
86
+ estimated from lattice studies to be identical to Tc in dy-
87
+ namical [33–38] as well as in quenched QCD [39], remi-
88
+ niscent of an Anderson-like transition that is observed in
89
+ disordered semi-metals [40]. However independent lat-
90
+ tice studies do discuss another possible scenario where
91
+ the opening of a finite mobility edge may occur at tem-
92
+ peratures higher that Tc [41], with an intermediate phase
93
+ consisting of scale-invariant infinitely extended infrared
94
+ modes [42, 43] strongly interacting with the bulk modes
95
+ leading to a singularity at the mobility edge.
96
+ Most of the previous lattice QCD studies were ei-
97
+ ther performed in the quenched limit or with dynam-
98
+ arXiv:2301.11610v1 [hep-lat] 27 Jan 2023
99
+
100
+ 2
101
+ ical quarks but away from the physical point and for
102
+ finite lattice spacings. On a finite lattice, the most of-
103
+ ten used lattice discretization i.e. the staggered fermions
104
+ only has a remnant of the continuum chiral symmetry
105
+ group due to mixing of spin and flavor degrees of free-
106
+ dom.
107
+ Furthermore the anomalous part of the chiral
108
+ symmetry in the continuum is not realized exactly by
109
+ the staggered/Wilson quarks and is expected to be re-
110
+ covered only in the continuum limit. We, for the first
111
+ time study the properties of the eigenvalue spectrum of
112
+ (highly) improved dynamical staggered Dirac operator
113
+ in large volume lattices by carefully performing a con-
114
+ tinuum extrapolation. We show that the deep infrared
115
+ spectrum of QCD Dirac operator has indeed a peak of
116
+ near-zero modes which survives in continuum. These are
117
+ distinct from other infrared modes which has a linearly
118
+ rising density and a quadratic level repulsion similar to a
119
+ certain class of random matrix theories. These so-called
120
+ bulk modes are delocalized in volume as compared to the
121
+ near-zero modes and they tend to distinctly disentangle
122
+ from each other at a temperature ∼ 1.15 Tc, which is also
123
+ where UA(1) is effectively restored.
124
+ In the subsequent
125
+ sections we discuss our results and also provide a unified
126
+ physical explanation of these phenomena we observe.
127
+ Numerical Details In this work we use the gauge
128
+ configurations for 2 + 1 flavor QCD with physical quark
129
+ masses generated by the HotQCD collaboration using
130
+ Highly Improved Staggered quark (HISQ) discretization
131
+ for the fermions and tree-level Symanzik improved gauge
132
+ action. These ensembles have been previously used to
133
+ measure the equation of state of QCD both at zero and
134
+ finite baryon density [3, 44]. The Goldstone pion mass is
135
+ set to 140 MeV and the kaon mass is 435 MeV for these
136
+ configurations. We focus on five different temperatures,
137
+ one below Tc and others above Tc.
138
+ For most of these
139
+ temperatures we consider three different lattice spacings
140
+ corresponding to Nτ = 8, 12, 16, details of which are men-
141
+ tioned in Table I in Appendix A. The number of spatial
142
+ lattice sites was chosen to be Ns = 4Nτ such that the
143
+ spatial volume in each case was about 4 fm, which en-
144
+ sures that the system is close to the thermodynamic limit.
145
+ We next measure the eigenvalues of the massless HISQ
146
+ Dirac matrix on these gauge ensembles using conjugate
147
+ gradient method based algorithms.
148
+ General features of the eigenvalue spectrum of
149
+ QCD using HISQ Dirac operator in continuum
150
+ limit In this section we study in detail the eigenvalue
151
+ density ρ(λ) of the fermions in 2 + 1 flavor QCD by
152
+ performing a continuum extrapolation of the parame-
153
+ ters characterizing the eigenspectrum calculated on the
154
+ lattice with Highly Improved Staggered Quarks (HISQ)
155
+ discretization.
156
+ We first study the eigenvalue spectrum
157
+ for four different temperatures above Tc in order to un-
158
+ derstand whether the flavor singlet and non-singlet parts
159
+ of the chiral symmetry is effectively and simultaneously
160
+ restored or not.
161
+ At zero temperature it is known from chiral perturba-
162
+ tion theory [45] that the bulk eigenvalue density is
163
+ ρ(λ) = ⟨0| ¯ψψ|0⟩
164
+ π
165
+ + |λ|⟨0| ¯ψψ|0⟩2
166
+ N 2
167
+ f − 4
168
+ 32π2NfF 4π
169
+ + ..
170
+ (1)
171
+ The intercept of the eigenvalue density gives the chiral
172
+ condensate. The ratio of the slope and the intercept of
173
+ the density as a function of λ should be proportional
174
+ to the chiral condensate. We first focus on the intercept
175
+ and the slope (linear in λ) of the eigenvalue density at the
176
+ lowest temperature T = 145 MeV, shown in the left panel
177
+ of Fig. 1, and compare with the expectations from Eq. 1.
178
+ At this temperature we could only obtain a continuum
179
+ estimate of the slope and intercept as we have data for
180
+ two lattice spacings. From the continuum estimate of the
181
+ intercept we obtain a chiral condensate ⟨0| ¯ψψ|0⟩/T 3 =
182
+ 18.4. From the slope we could similarly extract its square
183
+ and hence the chiral condensate (normalized by T 3) to be
184
+ 17.3 which is consistent with the one extracted from the
185
+ intercept. Thus leading features of the eigenvalue density
186
+ of QCD at 145 MeV are indeed very well represented
187
+ within chiral perturbation theory.
188
+ The bulk eigenvalue density in the chirally symmetric
189
+ phase has been studied very recently [46]. Most generally,
190
+ it can be expressed as a function of λ as
191
+ ρ(λ)
192
+ T 3
193
+ = ρ0
194
+ T 3 + λ
195
+ T .c1(T, m)
196
+ T 2
197
+ + λ2
198
+ T 2 .c2(T, m)
199
+ T
200
+ + λ3
201
+ T 3 c3(T, m) .
202
+ (2)
203
+ Here c1 is the coefficient that characterizes the leading-
204
+ order growth of the eigenvalue spectrum in the deep infra-
205
+ red and c2 is its next-to leading order coefficient which
206
+ eventually has a λ3-dependence predicted from perturba-
207
+ tion theory. The intercept ρ0 gives the the chiral conden-
208
+ sate. The coefficients c1,2,3 can in general be a function
209
+ of the temperature T and the light-quark mass m.
210
+ The results of the eigenvalue density ρ(λ)/T 3 as a func-
211
+ tion of λ for T > Tc are shown in the middle and right
212
+ panel of Fig. 1. On the finest available Nτ = 16 lattice,
213
+ we observe two distinct features in the eigenvalue spec-
214
+ trum, a peak of near-zero eigenvalues and the linearly
215
+ rising part, which we call as bulk modes. For T ≲ Tc, the
216
+ near-zero and the bulk eigenvalues overlap strongly mak-
217
+ ing it impossible to distinguish them apart. At higher
218
+ temperatures, the bulk eigenvalues separate out from the
219
+ deep-infrared part of the spectrum allowing for near-zero
220
+ modes to be distinctly visible.
221
+ Comparing the results
222
+ of different lattice spacings, we observe the same trend
223
+ at each temperature above Tc i.e. near-zero peak gets
224
+ smeared with the bulk for coarser lattices and becomes
225
+ more prominent in the continuum limit. This is thus a
226
+ physical feature of the eigen spectrum and not a lattice
227
+ artifact. In order to interpret its origin we recall that in
228
+ the instanton liquid model (ILM) at zero temperature,
229
+ the scaled eigenvalue (cλ) density of the Dirac operator
230
+ for Nf flavors and zero topological charge sector is dis-
231
+ tributed according to [47],
232
+ ρ(cλ) = cλ
233
+ 2
234
+
235
+ J2
236
+ Nf (cλ) − JNf +1(cλ)JNf −1(cλ)
237
+
238
+ .
239
+ (3)
240
+
241
+ 3
242
+ 0
243
+ 2
244
+ 4
245
+ 6
246
+ 8
247
+ 10
248
+ 0
249
+ 0.05
250
+ 0.1
251
+ 0.15
252
+ 0.2
253
+ 0.25
254
+ ρ(λ)/Τ3
255
+ λ/T
256
+ 145 MeV
257
+ Nτ= 12
258
+ = 16
259
+ 0
260
+ 2
261
+ 4
262
+ 6
263
+ 8
264
+ 10
265
+ 0
266
+ 0.1
267
+ 0.2
268
+ 0.3
269
+ 0.4
270
+ 0.5
271
+ ρ(λ)/Τ3
272
+ λ/T
273
+ 166 MeV
274
+ Nτ = 8
275
+ = 12
276
+ = 16
277
+ 0
278
+ 2
279
+ 4
280
+ 6
281
+ 8
282
+ 10
283
+ 0
284
+ 0.1
285
+ 0.2
286
+ 0.3
287
+ 0.4
288
+ 0.5
289
+ ρ(λ)/Τ3
290
+ λ/T
291
+ 171 MeV
292
+ Nτ = 8
293
+ = 12
294
+ = 16
295
+ Fig. 1: Eigenvalue spectrum for HISQ Dirac operator for 3 different lattice spacings corresponding to Nτ = 8, 12, 16 at
296
+ T = 166, 171 MeV (center, right) and for two different lattice spacings, Nτ = 12, 16 respectively at T = 145 MeV (left).
297
+ 0
298
+ 0.1
299
+ 0.2
300
+ 0.3
301
+ 0.4
302
+ 0.5
303
+ 0.6
304
+ 0.7
305
+ 0
306
+ 2
307
+ 4
308
+ 6
309
+ 8
310
+ 10
311
+ 12
312
+ 14
313
+ 16
314
+ 18
315
+ ρ(cλ)
316
+
317
+ Nτ=16
318
+ ILM prediction
319
+ T = 162 MeV
320
+ = 166 MeV
321
+ = 171 MeV
322
+ Fig. 2: Near-zero (scaled) eigenvalue density for HISQ Dirac
323
+ operator at T = 162, 166, 171 MeV for the finest lattice spac-
324
+ ing corresponding to Nτ = 16 and its comparison with ILM
325
+ prediction available at T = 0.
326
+ To compare our data with the above formula, we take
327
+ c = V ⟨0| ¯ψψ|0⟩/T, where V is the spatial volume of the
328
+ system and Nf = 3. A comparison of near zero modes for
329
+ three different temperatures, T = 162, 166, 171 MeV, is
330
+ shown in Fig. 2 by removing the contribution of the bulk
331
+ intercept ρ0. We observe a good agreement with ILM for
332
+ T = 171 MeV, in particular, the initial few oscillations
333
+ of the small eigenvalue density as a function of cλ.
334
+ Now focusing on the bulk modes, it was shown us-
335
+ ing chiral Ward identities that in the symmetry restored
336
+ phase, the sufficient condition for UA(1) restoration ev-
337
+ ident from the degeneracy of up to 6-point correlation
338
+ functions in the scalar-pseudo-scalar sector are c1 =
339
+ O(m2) +... and c3 = c30 +O(m2)+.... The perturbative
340
+ λ3-growth in Eq. 2 can have a mass-independent coeffi-
341
+ cient which however does not lead to UA(1) breaking. We
342
+ verify whether indeed it is true even non-perturbatively
343
+ by performing a fit to the bulk part i.e. all eigenvalues
344
+ λ > λ0 with ρ(λ)
345
+ T 3 = λ
346
+ T . c1(T,m)
347
+ T 2
348
+ + ρ0
349
+ T 3 . This ansatz neglects
350
+ higher powers in λ which is well justified since we are
351
+ in the deep infrared of the eigen spectrum, represented
352
+ by O(100) eigenvalues out of a total million available on
353
+ such lattice sizes. The results of the fit are discussed in
354
+ Table II. The extracted slope c1 for each temperature
355
+ T > Tc, at three different values of Nτ then allows us
356
+ to perform a continuum (∼ 1/N 2
357
+ τ ) extrapolation of this
358
+ coefficient. We next study the m-dependence of this con-
359
+ tinuum extrapolated coefficient c1(m, T). The results of
360
+ the fits are shown in Fig. 3. It is evident from the fit
361
+ that it is more favorable that c1 is proportional to T 2
362
+ (χ2/d.o.f=0.6) to leading order rather than c1 is propor-
363
+ tional to m2 (χ2/d.o.f=0.1). From the fit we obtain the
364
+ value of c1(m, T)/T 2 = 16.8(4).
365
+ 12
366
+ 14
367
+ 16
368
+ 18
369
+ 20
370
+ 22
371
+ 24
372
+ 1.02
373
+ 1.04
374
+ 1.06
375
+ 1.08
376
+ 1.1
377
+ 1.12
378
+ 1.14
379
+ c1(m,T)/T2
380
+ T/Tc
381
+ Fig. 3: Continuum estimates for c1(m, T)/T 2 for T > Tc ob-
382
+ tained after fitting the points with a m-independent constant
383
+ (orange band) and a sum of quadratic (m2/T 2) and quartic
384
+ (m4/T 4) dependence (gray band).
385
+ This result for the slope in the continuum limit has
386
+ a very important consequence, i.e. the m-independent
387
+ term in c1 ensures that the UA(1) part of the chiral sym-
388
+ metry will remain effectively broken in the chiral limit in
389
+ the symmetry-restored phase. The coefficient of linear-
390
+ in-λ term at finite temperature is significantly larger than
391
+ its zero temperature value of 0.63 in units of T 2
392
+ c obtained
393
+ from Eq. 1. For extracting the later we have used the
394
+ latest data for the chiral condensate and Fπ from the
395
+ FLAG review [48], for Nf = 3. A significant thermal en-
396
+ hancement in the slope of the eigen spectrum is observed
397
+ above Tc.
398
+ Moreover the slope of the eigen density for
399
+ T ≲ 1.12 Tc is distinctly different from the perturbative
400
+
401
+ 4
402
+ λ3 rise implying significant non-perturbative effects.
403
+ The fate of UA(1) breaking in the continuum
404
+ limit Since the flavor singlet part of the chiral sym-
405
+ metry is anomalous it has no corresponding order pa-
406
+ rameter. Hence to measure whether this singlet part of
407
+ the chiral symmetry is simultaneously (and effectively)
408
+ restored along with the non-singlet part, it has been
409
+ suggested [49] to look at the degeneracies of the in-
410
+ tegrated correlators of mesons i.e., χπ − χδ.
411
+ In the
412
+ continuum, the integrated meson correlators are related
413
+ to each others through the following relations, χδ =
414
+ χσ − 4χdisc and χπ = χη + 4χ5disc. These integrated me-
415
+ son correlators are defined as χπ =
416
+
417
+ d4x ⟨πi(x)πi(0)⟩,
418
+ χσ =
419
+
420
+ d4x ⟨σ(x)σ(0)⟩, χδ =
421
+
422
+ d4x ⟨δi(x)δi(0)⟩ and
423
+ χη =
424
+
425
+ d4x ⟨η(x)η(0)⟩ where i = 1, 2, 3.
426
+ We measure
427
+ (χπ − χδ)/T 2 at the four different temperatures above
428
+ Tc, and perform a ∼ 1/N 2
429
+ τ continuum extrapolation at
430
+ each temperature, results of which are shown in Fig. 4.
431
+ For the highest temperature we have only two data points
432
+ available corresponding to Nτ = 8, 12 for continuum ex-
433
+ trapolation hence assigned a 40% and 20% error in slope
434
+ and the intercept obtained from the fit, similar to that
435
+ obtained for the previous temperature. It is evident that
436
+ the continuum extrapolated values of this integrated cor-
437
+ relator drops to 1/6 when T/Tc changes from 1.04-1.12
438
+ and a naive linear extrapolation of the intercept gives a
439
+ temperature around 1.14 Tc when this observable goes to
440
+ zero. In fact the values of this observable increase when
441
+ the lattice spacings are made finer. Performing contin-
442
+ uum estimates with finer lattice sizes Nτ = 16, 12 at
443
+ each temperature, gives a higher intercept than the cor-
444
+ responding extrapolation considering all three Nτ-values.
445
+ Hence the finiteness of this observable is quite robust and
446
+ we conclude that UA(1) does not get effectively restored
447
+ at Tc.
448
+ 20
449
+ 40
450
+ 60
451
+ 80
452
+ 100
453
+ 120
454
+ 140
455
+ 160
456
+ 180
457
+ 200
458
+ 0
459
+ 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
460
+ (χπ - χδ)/T2
461
+ 1/Nτ
462
+ 2
463
+ 162 MeV
464
+ 166 MeV
465
+ 171 MeV
466
+ 176 MeV
467
+ Fig. 4: The continuum estimates for χπ − χδ normalized by
468
+ the square of temperature for HISQ fermions from 3 dif-
469
+ ferent lattice spacings corresponding to Nτ = 8, 12, 16 at
470
+ T = 162, 166, 171 MeV respectively and from Nτ = 12, 16
471
+ data at T = 176 MeV.
472
+ In the chiral symmetry restored phase, χσ = χπ and
473
+ χδ = χη hence one obtaines χπ − χδ = 4χ5,disc. Using
474
+ chiral Ward identities it is known that χ5,disc = χt/m2
475
+ where χt is the topological susceptibility of QCD. This
476
+ allows relating the UA(1) breaking parameter to the
477
+ topological susceptibility through the relation, 1/4(χπ −
478
+ χδ)m2
479
+ l /T 4 = χt/T 4. A comparison of these two observ-
480
+ ables is shown in Fig. 5. From the figure it is evident
481
+ that for T > 1.05 Tc, when chiral symmetry is effectively
482
+ restored, the two quantities agree with each other within
483
+ errors. This is particularly interesting since for staggered
484
+ quarks, even though the chiral and taste symmetries are
485
+ intermixed at finite lattice spacing, the symmetries of
486
+ QCD and related chiral Ward identities are recovered in
487
+ the continuum limit.
488
+ 0
489
+ 0.005
490
+ 0.01
491
+ 0.015
492
+ 0.02
493
+ 0.025
494
+ 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13
495
+ T/Tc
496
+ (χπ-χδ)ml
497
+ 2/4T4
498
+ χt/T4
499
+ Fig. 5: A comparison of the integrated renormalized correla-
500
+ tor (χπ −χδ)m2
501
+ l /4T 4 with the topological susceptibility (mea-
502
+ sured independently using gradient flow in Ref. [50]) for tem-
503
+ peratures > Tc.
504
+ Distribution of the smallest eigenvalue at finite
505
+ temperature The probability distribution of the small-
506
+ est eigenvalue of the QCD Dirac operator λmin has in-
507
+ herent information about the microscopic degrees of free-
508
+ dom. For a random matrix ensemble (at zero tempera-
509
+ ture) the smallest eigenvalue is distributed according to,
510
+ P(cλmin) =
511
+ �π
512
+ 2 (cλmin)3/2I3/2(cλmin)e− 1
513
+ 2 (cλmin)2 ,
514
+ (4)
515
+ At the lowest temperature T = 145 MeV, we calcu-
516
+ late the probability distribution of the smallest eigen-
517
+ value λmin at different lattice spacings and perform a
518
+ continuum estimate of the distributions, details of which
519
+ are given in Appendix B. The final outcome of the fit is
520
+ given in Fig. 6. The continuum extrapolation of the dis-
521
+ tribution shown as the orange band agrees well with the
522
+ distribution of a chiral Gaussian unitary random matrix
523
+ ensemble. In contrast, we also plot the distribution of
524
+ the lowest eigenvalue at T = 171 MeV whose continuum
525
+ extrapolation is shown as a blue band in Fig. 6. It is
526
+ evident that the lowest eigenvalue which is a part of the
527
+ near-zero peak follows a very different statistics rather
528
+ than known from a chiral RMT.
529
+
530
+ 5
531
+ 0
532
+ 0.1
533
+ 0.2
534
+ 0.3
535
+ 0.4
536
+ 0.5
537
+ 0.6
538
+ 0.7
539
+ 0
540
+ 1
541
+ 2
542
+ 3
543
+ 4
544
+ 5
545
+ 6
546
+ P(cλmin)
547
+ cλmin
548
+ T=145 MeV
549
+ =171 MeV
550
+ RMT prediction
551
+ Fig. 6: The continuum extrapolated probability distribution
552
+ of smallest eigenvalue for T = 145, 171 MeV shown as orange
553
+ and blue bands respectively and its comparison with the RMT
554
+ prediction.
555
+ Why is UA(1) effectively restored at tempera-
556
+ ture above Tc? The next question we ask is whether the
557
+ near-zero modes which arise due to interactions among
558
+ instantons can distinctly disentangle out of the bulk
559
+ modes. A similar phenomena occurs in disordered semi-
560
+ metals leading to an Anderson-like transition. In such
561
+ systems, with increasing strength of the disorder poten-
562
+ tial, there is a dynamical transition from a phase of delo-
563
+ calized electron states to that of localized states, with a
564
+ certain energy threshold i.e., the mobility edge separating
565
+ them. It is also known that near such an Anderson-like
566
+ transition, the eigenvalue spacing distribution of the dis-
567
+ ordered states follows a similar behavior as RMTs for all
568
+ spacing values except at the tails of the distribution due
569
+ to the effects of the localized states. We observe the same
570
+ features for the QCD Dirac eigen spacing distribution for
571
+ our finest Nτ = 16 lattices, detailed in Appendix C. In
572
+ addition we have performed a systematic measurement
573
+ of level-spacing distributions at different temperatures
574
+ above Tc for different lattice spacings and extracted the
575
+ parameters that characterize its functional dependence
576
+ in the same Appendix. We find that the bulk modes (ex-
577
+ cept at its higher tails) agree very well with the results
578
+ obtained for random matrices belonging to Gaussian Uni-
579
+ tary ensemble (GUE). Having shown the distinct features
580
+ of near-zero and bulk modes, we have elaborated on how
581
+ reliably we can estimate the temperature at which these
582
+ modes separate in Appendix D. We obtain the tempera-
583
+ ture of ∼ 1.15(3) Tc, which is similar to a mobility edge
584
+ that separates the near-zero from the bulk modes.
585
+ In order to interpret these results, one could visualize
586
+ the quarks moving in the background of an interacting
587
+ ensemble of instantons, where the strength of the inter-
588
+ actions changes as a function of temperature.
589
+ At the
590
+ microscopic level it is conjectured that the instantons
591
+ remain strongly correlated below Tc, subsequently tran-
592
+ sitioning to a liquid-like phase with a finite correlation
593
+ length [51] just above Tc, and eventually to a gas-like
594
+ phase at 2 Tc [13, 15]. Below Tc the intercept of the in-
595
+ frared eigenvalue density quantifies the chiral condensate
596
+ which corresponds to the breaking of the non-singlet part
597
+ of the chiral symmetry. Due to very strong correlations
598
+ the microscopic details of the interactions are lost and the
599
+ eigenvalues repel strongly similar to random matrices of
600
+ a GU ensemble.
601
+ As the temperature is increased, the
602
+ interactions weaken and indeed at ∼ 171 MeV, the near-
603
+ zero eigenvalues with an oscillating behavior, as predicted
604
+ from instanton liquid model, start to become prominent.
605
+ These eventually separate from the bulk at ∼ 1.15 Tc
606
+ analogous to opening of a mobility edge. Earlier studies
607
+ have observed screening of inter-instanton interactions
608
+ and build-up of local pockets of Polyakov loop fluctua-
609
+ tions [38, 52] above such temperatures. This is also the
610
+ region where the constituent dyons of the closely-spaced
611
+ instantons interact semi-classically and thus start to be-
612
+ come detectable [53–56].
613
+ Incidentally this suppression of long range instanton
614
+ interactions also weakens the strength of UA(1) breaking,
615
+ allowing for its effective restoration at T ≲ 1.15 Tc. Lat-
616
+ tice studies [57, 58] have reported a jump in the electrical
617
+ conductivity around this temperature. This also suggests
618
+ that the strength of the attractive potential due to in-
619
+ stantons changes from liquid-like correlations to sparse
620
+ local hot-spots, leaving most of the quark momentum
621
+ states beyond the mobility edge to be delocalized thus
622
+ enhancing the electrical charge transport.
623
+ Conclusions In this letter we have addressed a long-
624
+ standing question of whether the flavor singlet UA(1) sub-
625
+ group of the chiral symmetry gets effectively restored si-
626
+ multaneously with the non-singlet part for QCD with two
627
+ light quark flavors at Tc. The effective restoration of the
628
+ anomalous UA(1) symmetry is a non-perturbative phe-
629
+ nomenon driven by the deep infra-red part of the QCD
630
+ Dirac eigenvalue spectrum. By carefully performing the
631
+ continuum extrapolation of the staggered Dirac spectrum
632
+ on the lattice and studying in detail its properties, we ex-
633
+ plicitly demonstrate that UA(1) remains effectively bro-
634
+ ken in the chirally symmetric phase for T ≲ 1.15 Tc. We
635
+ also provide arguments for why this conclusion should
636
+ remain unchanged even in the chiral limit.
637
+ With the increase in temperature the strength of in-
638
+ teractions between the instantons starts weakening due
639
+ to which the deep infrared part of the spectrum is sepa-
640
+ rated out of the bulk modes which happens to be around
641
+ T ∼ 1.15 Tc. The tunneling probability due to instantons
642
+ also decreases with increasing temperature which results
643
+ in lowering of the height of near-zero peak of eigenvalue
644
+ density. We show for the first time that both these phe-
645
+ nomena are possibly the reason behind the UA(1) restora-
646
+ tion, which also surprisingly happens to be around the
647
+ same temperature. Observations of such rich interplay of
648
+ phenomena in QCD matter above Tc should be quite ro-
649
+ bust, since these are made after performing a continuum
650
+ extrapolation. It will be interesting to observe further
651
+ finer details of chiral transition in the massless limit with
652
+
653
+ 6
654
+ QCD Dirac operators which have exact chiral symmetry
655
+ on the lattice.
656
+ Acknowledgements The authors acknowledge sup-
657
+ port by the Deutsche Forschungsgemeinschaft (DFG,
658
+ German Research Foundation) through the CRC-TR 211
659
+ ’Strong-interaction matter under extreme conditions’–
660
+ Project no. 315477589 – TRR 211. S.S. acknowledges
661
+ support by the Department of Science and Technology,
662
+ Govt. of India through a Ramanujan Fellowship. The
663
+ numerical computations in this work were performed on
664
+ the GPU cluster at Bielefeld University. We thank the
665
+ Bielefeld HPC.NRW team for their support. We thank
666
+ the HotQCD Collaboration, specially Christian Schmidt
667
+ for sharing the gauge configurations and software with us.
668
+ We also acknowledge the contribution of Hiroshi Ohno
669
+ who was involved during the early stages of the project.
670
+ S.S. is grateful to Frithjof Karsch for helpful discussions
671
+ and his kind hospitality when this work was finalized. A
672
+ part of this work is based on the MILC collaboration’s
673
+ public lattice gauge theory code [59].
674
+ Appendix A: Details of the lattice calculations
675
+ of the eigenvalue spectrum
676
+ 0
677
+ 2
678
+ 4
679
+ 6
680
+ 8
681
+ 10
682
+ 0
683
+ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
684
+ ρ(λ)/Τ3
685
+ λ/T
686
+ 162 MeV
687
+ Nτ = 8
688
+ = 12
689
+ = 16
690
+ 0
691
+ 2
692
+ 4
693
+ 6
694
+ 8
695
+ 10
696
+ 0
697
+ 0.1
698
+ 0.2
699
+ 0.3
700
+ 0.4
701
+ 0.5
702
+ 0.6
703
+ ρ(λ)/Τ3
704
+ λ/T
705
+ 176 MeV
706
+ Nτ = 8
707
+ = 12
708
+ Fig. 7: The eigenvalue spectrum for HISQ Dirac operator at
709
+ three different lattice spacings corresponding to Nτ = 8, 12, 16
710
+ for T = 162 MeV and at Nτ = 8, 12 for T = 176 MeV.
711
+ We first tabulate the lattice sizes, gauge couplings and
712
+ the number of configurations that we have studied for
713
+ each temperature value from 145-176 MeV in Table I. As
714
+ mentioned earlier, it is important that we take the contin-
715
+ uum limit appropriately hence for each temperature we
716
+ performed calculations with three different lattice extents
717
+ Nτ = 8, 12, 16 in order to perform continuum extrapola-
718
+ tion of the parameters characterizing the eigenvalue den-
719
+ sity. We then calculated the first 60, 100, 200 eigenvalues
720
+ of the massless HISQ Dirac matrix for Nτ = 16, 12, 8 re-
721
+ spectively. We have fixed the bin size λa = 0.001 for each
722
+ Nτ for measuring the eigenvalue density and performed a
723
+ jack-knife analysis to remove any auto-correlation effects
724
+ among the data in the bins. We then fit the bulk part
725
+ i.e. all eigenvalues above an infrared cut-off λ > λ0 with
726
+ the fit ansatz ρ(λ)
727
+ T 3 = λ
728
+ T . c1(T,m)
729
+ T 2
730
+ + ρ0
731
+ T 3 . The results of the
732
+ fit and the choice of cut-off at different temperatures are
733
+ mentioned in Table II.
734
+ T (MeV)
735
+ β Ns Nτ Nconfs
736
+ 145
737
+ 6.285 48 12
738
+ 1530
739
+ 145
740
+ 7.010 64 16
741
+ 2860
742
+ 162
743
+ 6.423 32
744
+ 8
745
+ 250
746
+ 162
747
+ 6.825 48 12
748
+ 1960
749
+ 162
750
+ 7.130 64 16
751
+ 3390
752
+ 166
753
+ 6.445 32
754
+ 8
755
+ 400
756
+ 166
757
+ 6.850 48 12
758
+ 2100
759
+ 166
760
+ 7.156 64 16
761
+ 2190
762
+ 171
763
+ 6.474 32
764
+ 8
765
+ 280
766
+ 171
767
+ 6.880 48 12
768
+ 1980
769
+ 171
770
+ 7.188 64 16
771
+ 1040
772
+ 176
773
+ 6.500 32
774
+ 8
775
+ 240
776
+ 176
777
+ 6.910 48 12
778
+ 330
779
+ Tab. I: The parameters for the lattice calculations
780
+ T [MeV] Nτ λ0/T
781
+ c1
782
+ T 2
783
+ ρ0/T 3
784
+ 145
785
+ 12
786
+ 0.1
787
+ 9.0(5) 7.30(7)
788
+ 145
789
+ 16
790
+ 0.05
791
+ 9(1)
792
+ 6.67(9)
793
+ 162
794
+ 8
795
+ 0.2
796
+ 8.8(3)
797
+ 4.1(1)
798
+ 162
799
+ 12
800
+ 0.15 13.2(2) 2.69(5)
801
+ 162
802
+ 16
803
+ 0.1
804
+ 17.5(5) 1.93(7)
805
+ 166
806
+ 8
807
+ 0.2
808
+ 8.9(1) 3.31(5)
809
+ 166
810
+ 12
811
+ 0.15 13.3(3) 1.92(6)
812
+ 166
813
+ 16
814
+ 0.1
815
+ 16.6(8) 1.4(1)
816
+ 171
817
+ 8
818
+ 0.2
819
+ 9.3(1) 2.38(5)
820
+ 171
821
+ 12
822
+ 0.15 12.9(1) 1.19(3)
823
+ 171
824
+ 16
825
+ 0.1
826
+ 17.0(5) 0.45(8)
827
+ 176
828
+ 8
829
+ 0.2
830
+ 9.5(1) 1.67(4)
831
+ 176
832
+ 12
833
+ 0.15 13.0(2) 0.36(6)
834
+ Tab. II: Lattice size (N 3
835
+ σ × Nτ), temperature (T), the esti-
836
+ mated values of c1/T 2 and ρ0/T 3 after the fit of the bulk
837
+ modes by taking the lower cutoff at λ0/T.
838
+
839
+ 7
840
+ We have shown the eigenvalue distributions for three
841
+ different temperatures at 145, 166, 171 MeV in Fig. 1. We
842
+ also have measured the eigenvalue densities at two other
843
+ temperatures at 166, 176 MeV which we show in Fig. 7.
844
+ Appendix B: Details of the calculation per-
845
+ formed for the smallest eigenvalues for T < Tc
846
+ First we have extracted the smallest eigenvalue from
847
+ each configuration for Nτ = 12, 16 and later re-scaled
848
+ to the dimensionless quantity cλmin, where the value of
849
+ ⟨ ¯ψψ⟩ at finite temperature is obtained from Ref. [60].
850
+ Keeping the bin size constant we obtained the probabil-
851
+ ity distribution of cλmin for each Nτ and then performed
852
+ a spline interpolation by taking appropriate weights pro-
853
+ portional to the errors for each data point in order to
854
+ have a smoother interpolating curve. Next we performed
855
+ a continuum extrapolation at each value of cλmin of the
856
+ interpolating function with the ansatz c + d/N 2
857
+ τ . We as-
858
+ signed a 15% error for T = 145 MeV, as we only had
859
+ two points while performing the continuum extrapola-
860
+ tion. In Fig. 6 we find a good agreement between the
861
+ continuum extrapolated distribution of the lowest eigen-
862
+ value at T = 145 MeV and the RMT predictions from
863
+ a Gaussian Unitary ensemble. A slight discrepancy exist
864
+ for lower and higher values of cλmin. This can be due to
865
+ the fact that we use a very low but finite convergence cri-
866
+ terion while calculating the eigenvalue spectrum. Hence
867
+ we do not have any data for cλmin < 0.6. Since we are
868
+ plotting a probability distribution (of the smallest eigen-
869
+ value), the area under the curve must be unity. To pre-
870
+ serve this criterion the values of the probability densities
871
+ along the higher end of the tail lie above the RMT curve
872
+ in order to compensate for the relatively lower values in
873
+ the lower portion of the tail.
874
+ Appendix C: The level spacing distribution for
875
+ bulk modes
876
+ Next we look at the level spacing distribution of the
877
+ bulk modes.
878
+ To study the universal properties of the
879
+ eigenvalue level spacing fluctuations one has to remove
880
+ the system dependent mean. This is done by a method
881
+ called unfolding. Let λ represent eigenvalues in the as-
882
+ cending sequence for any particular gauge configuration.
883
+ The average density of the eigenvalues in the sequence i.e.
884
+ the reciprocal of the average spacing as a function of λ
885
+ is represented as ¯ρ(λ). The eigenvalue sequence can then
886
+ be unfolded using the average level-staircase function,
887
+ ¯η(λ) =
888
+ � λ
889
+ λ0 dλ′¯ρ(λ′) which tells us how many eigenvalues
890
+ in this sequence are less than λ on an average. Here λ0
891
+ labels the eigenvalue beyond which all the higher eigen-
892
+ values are bulk modes and below which are the near-zero
893
+ modes. The unfolded sequence is labeled by λuf
894
+ i
895
+ = ¯η(λi),
896
+ where the index i labels the original eigenvalue whose un-
897
+ folding is performed.
898
+ When appropriately normalized,
899
+ the average spacing between the unfolded eigenvalues
900
+ equals unity. The nearest neighbor spacing distribution
901
+ is constructed by calculating the differences between con-
902
+ secutive unfolded eigenvalues λuf
903
+ i+1 − λuf
904
+ i
905
+ and organizing
906
+ them into histogram bins. This gives us a picture of how
907
+ the eigenvalue spacings fluctuate about the average which
908
+ we have plotted in Fig. 8 for four different temperatures
909
+ T = 162, 166, 171, 176 MeV and at each temperature, for
910
+ the three different lattice sizes Nτ = 8, 12, 16 except for
911
+ T = 176 MeV. We have then estimated the functional de-
912
+ pendence of these nearest neighbor spacing distributions
913
+ by two different fit ansatz, shown as solid and dotted
914
+ lines in Fig. 8. The dotted curves were obtained after
915
+ performing a fit to the lattice data points with the func-
916
+ tion f(s) = asbe−cs2, motivated by the Wigner surmise.
917
+ The solid curves on the other hand, were obtained after
918
+ fitting the points to an ansatz function f(s) = ps2e−qs2.
919
+ The values of these parameters a, b, c, p, q after perform-
920
+ ing the fits are given in Table III. It is evident that the
921
+ level repulsion between the bulk modes is quadratic simi-
922
+ lar to that of random matrices belonging to the Gaussian
923
+ unitary ensemble (GuE). However for the Nτ = 16 lat-
924
+ tices, due to the contamination with the near-zero modes
925
+ the fit of the tail is not good and can not be explained by
926
+ RMT prediction. In order to account for the long tail of
927
+ the spacing distribution we fit it to a semi-Poisson distri-
928
+ bution P(s) ∼ s2 exp (−αs) which shows strong repulsion
929
+ at small values of s but falls off slowly at large values of
930
+ s parameterized by a fit parameter α. After performing
931
+ the fit of the level separation with this ansatz, we obtain
932
+ the value of α = 3.02(7), 3.17(9), 3.3(1) for temperatures
933
+ T = 162, 166, 171 MeV respectively.
934
+ The lattice data
935
+ now do agree to this new fit ansatz reasonably well for
936
+ Nτ = 16 at all temperatures above Tc, which is evident
937
+ in Fig. 9.
938
+ T (MeV) Nτ
939
+ a
940
+ b
941
+ c
942
+ p
943
+ q
944
+ 162
945
+ 8 2.91(5) 1.85(3) 1.19(1) 3.16(7) 1.26(2)
946
+ 162
947
+ 12
948
+ 2.6(1) 1.69(6) 1.13(3)
949
+ 3.2(1) 1.29(3)
950
+ 162
951
+ 16
952
+ 2.1(4)
953
+ 1.2(2)
954
+ 1.0(1)
955
+ 4.0(6)
956
+ 1.6(1)
957
+ 166
958
+ 8 2.78(5) 1.78(2) 1.16(1) 3.13(9) 1.26(2)
959
+ 166
960
+ 12
961
+ 2.6(2) 1.66(7) 1.12(4)
962
+ 3.2(2) 1.30(4)
963
+ 166
964
+ 16
965
+ 2.1(5)
966
+ 1.2(2)
967
+ 1.1(2)
968
+ 4.5(8)
969
+ 1.8(2)
970
+ 171
971
+ 8 2.74(7) 1.76(3) 1.15(2)
972
+ 3.2(1) 1.27(2)
973
+ 171
974
+ 12
975
+ 2.5(2)
976
+ 1.6(1) 1.11(6)
977
+ 3.4(3) 1.35(6)
978
+ 171
979
+ 16
980
+ 1.6(4)
981
+ 0.8(2)
982
+ 1.0(2)
983
+ 5(1)
984
+ 2.0(3)
985
+ 176
986
+ 8 2.77(7) 1.77(4) 1.16(2) 3.15(9) 1.27(2)
987
+ 176
988
+ 12
989
+ 2.3(3)
990
+ 1.4(1) 1.07(8)
991
+ 3.5(3) 1.39(7)
992
+ Tab. III: The estimated values of the parameters after the fit
993
+ to different unfolded level spacing distributions.
994
+ Appendix D: Details of extraction of the mobil-
995
+ ity edge
996
+ Next, in order to estimate when these bulk modes sep-
997
+ arate from the deep-infrared peak of eigenvalues, we cal-
998
+ culate at what temperature the functional fit of the bulk
999
+ eigenvalue spectrum has a non-zero intercept along the
1000
+ λ-axis which is larger than the typical width of the near-
1001
+ zero peak.
1002
+ In the continuum, we have already calcu-
1003
+ lated the slope of the bulk eigenvalue density, which is
1004
+ c1(m, T)/T 2 = 16.8(4). Looking at the eigenvalue distri-
1005
+ butions in Fig.1, we can choose a typical value of λ at
1006
+
1007
+ 8
1008
+ 0
1009
+ 0.1
1010
+ 0.2
1011
+ 0.3
1012
+ 0.4
1013
+ 0.5
1014
+ 0.6
1015
+ 0.7
1016
+ 0.8
1017
+ 0.9
1018
+ 1
1019
+ 0
1020
+ 0.5
1021
+ 1
1022
+ 1.5
1023
+ 2
1024
+ 2.5
1025
+ 3
1026
+ P(s)
1027
+ Spacing s
1028
+ T=162 MeV
1029
+ Nτ=16
1030
+ =12
1031
+ =8
1032
+ 0
1033
+ 0.1
1034
+ 0.2
1035
+ 0.3
1036
+ 0.4
1037
+ 0.5
1038
+ 0.6
1039
+ 0.7
1040
+ 0.8
1041
+ 0.9
1042
+ 1
1043
+ 0
1044
+ 0.5
1045
+ 1
1046
+ 1.5
1047
+ 2
1048
+ 2.5
1049
+ 3
1050
+ P(s)
1051
+ Spacing s
1052
+ T=166 MeV
1053
+ Nτ=16
1054
+ =12
1055
+ =8
1056
+ 0
1057
+ 0.1
1058
+ 0.2
1059
+ 0.3
1060
+ 0.4
1061
+ 0.5
1062
+ 0.6
1063
+ 0.7
1064
+ 0.8
1065
+ 0.9
1066
+ 1
1067
+ 0
1068
+ 0.5
1069
+ 1
1070
+ 1.5
1071
+ 2
1072
+ 2.5
1073
+ 3
1074
+ P(s)
1075
+ Spacing s
1076
+ T=171 MeV
1077
+ Nτ=16
1078
+ = 12
1079
+ =8
1080
+ 0
1081
+ 0.1
1082
+ 0.2
1083
+ 0.3
1084
+ 0.4
1085
+ 0.5
1086
+ 0.6
1087
+ 0.7
1088
+ 0.8
1089
+ 0.9
1090
+ 1
1091
+ 0
1092
+ 0.5
1093
+ 1
1094
+ 1.5
1095
+ 2
1096
+ 2.5
1097
+ 3
1098
+ P(s)
1099
+ Spacing s
1100
+ T=176 MeV
1101
+ Nτ=12
1102
+ =8
1103
+ Fig. 8: Unfolded level spacing distribution of bulk eigenvalues modes for different temperatures shown as a function of different
1104
+ lattice spacings or equivalently, Nτ. The solid lines in each plot correspond to the two-parameter fit and the dotted curves for
1105
+ three-parameter fits inspired from the Wigner surmise for Gaussian unitary random matrix ensembles.
1106
+ 0
1107
+ 0.1
1108
+ 0.2
1109
+ 0.3
1110
+ 0.4
1111
+ 0.5
1112
+ 0.6
1113
+ 0.7
1114
+ 0.8
1115
+ 0.9
1116
+ 1
1117
+ 0
1118
+ 0.5
1119
+ 1
1120
+ 1.5
1121
+ 2
1122
+ 2.5
1123
+ 3
1124
+ 3.5
1125
+ P(s)
1126
+ Spacing s
1127
+ Nτ=16
1128
+ T=162 MeV
1129
+ =166 MeV
1130
+ =171 MeV
1131
+ Fig. 9: A fit to the eigenvalue level spacing distribution using
1132
+ a mixed ansatz for Nτ = 16 at T = 162, 166, 171 MeV.
1133
+ -1
1134
+ -0.5
1135
+ 0
1136
+ 0.5
1137
+ 1
1138
+ 1.5
1139
+ 2
1140
+ 2.5
1141
+ 1
1142
+ 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18
1143
+ ρ0/T3
1144
+ T/Tc
1145
+ Fig. 10: Continuum extrapolation of the bulk intercept for
1146
+ eigenvalue densities at different temperatures above Tc. The
1147
+ horizontal line corresponds to ρ0/T 3 = −1.34 for the bulk
1148
+ spectrum when it is completely separates from near zero
1149
+ modes.
1150
+ which the near-zero and bulk modes separate out, which
1151
+ is most evident for the Nτ = 16 lattices at λ0/T ∼ 0.08.
1152
+ Using these inputs and that the bulk modes have a linear-
1153
+ in-λ dependence we can calculate the value of bulk inter-
1154
+ cept ρ0/T 3 = −1.34 at λ = 0. Next we take the values
1155
+ of the intercept of bulk mode density for all T > Tc
1156
+ from Table II and perform a continuum extrapolation
1157
+ with the function ρ0/T 3 + d/N 2
1158
+ τ . The continuum values,
1159
+ ρ0/T 3 so-obtained are shown in Fig. 10 for all T > Tc.
1160
+ At the highest temperature T = 176 MeV a 10% error is
1161
+ assigned to the data point since we could perform a con-
1162
+ tinuum estimate with the data available only for two Nτ
1163
+ values. Now fitting the continuum extrapolated values,
1164
+ ρ0/T 3 with the ansatz ρ0/T 3 = d1(T/Tc) + d2 we obtain
1165
+ d1 = −23.1(3) and d2 = 25.3(3). Using this parametric
1166
+ dependence of the continuum value of the intercept as
1167
+ a function of temperature, we extract a T/Tc = 1.15(3)
1168
+ when the value of ρ0/T 3 = −1.34 i.e., when the near-zero
1169
+ modes distinctly emerge out from the bulk spectrum.
1170
+ [1] T. Banks and A. Casher, Nucl. Phys. B 169, 103 (1980).
1171
+ [2] H. Leutwyler and A. V. Smilga, Phys. Rev. D 46, 5607
1172
+ (1992).
1173
+ [3] A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15
1174
+ (2019), 1812.08235.
1175
+ [4] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338
1176
+
1177
+ 9
1178
+ (1984).
1179
+ [5] A. Butti, A. Pelissetto, and E. Vicari, JHEP 08, 029
1180
+ (2003), hep-ph/0307036.
1181
+ [6] A. Pelissetto and E. Vicari, Phys. Rev. D 88, 105018
1182
+ (2013), 1309.5446.
1183
+ [7] S. Sharma (HotQCD), PoS CPOD2017, 086 (2018).
1184
+ [8] M. P. Lombardo and A. Trunin, Int. J. Mod. Phys. A 35,
1185
+ 2030010 (2020), 2005.06547.
1186
+ [9] A. Bazavov et al. (HotQCD), Phys. Rev. D 86, 094503
1187
+ (2012), 1205.3535.
1188
+ [10] M. I. Buchoff et al., Phys. Rev. D 89, 054514 (2014),
1189
+ 1309.4149.
1190
+ [11] T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001
1191
+ (2014), 1402.5175.
1192
+ [12] V. Dick, F. Karsch, E. Laermann, S. Mukherjee, and
1193
+ S. Sharma, Phys. Rev. D 91, 094504 (2015), 1502.06190.
1194
+ [13] P. Petreczky, H.-P. Schadler, and S. Sharma, Phys. Lett.
1195
+ B 762, 498 (2016), 1606.03145.
1196
+ [14] A. Bazavov et al., Phys. Rev. D 100, 094510 (2019),
1197
+ 1908.09552.
1198
+ [15] H. T. Ding, S. T. Li, S. Mukherjee, A. Tomiya, X. D.
1199
+ Wang, and Y. Zhang, Phys. Rev. Lett. 126, 082001
1200
+ (2021), 2010.14836.
1201
+ [16] O. Kaczmarek, L. Mazur, and S. Sharma, Phys. Rev. D
1202
+ 104, 094518 (2021), 2102.06136.
1203
+ [17] G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko,
1204
+ H. Matsufuru, and J.-I. Noaki, Phys. Rev. D 87, 114514
1205
+ (2013),
1206
+ [Erratum:
1207
+ Phys.Rev.D 88,
1208
+ 019901 (2013)],
1209
+ 1304.6145.
1210
+ [18] T.-W. Chiu, W.-P. Chen, Y.-C. Chen, H.-Y. Chou,
1211
+ and T.-H. Hsieh (TWQCD), PoS LATTICE2013, 165
1212
+ (2014), 1311.6220.
1213
+ [19] A. Tomiya, G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto,
1214
+ T. Kaneko, and J. Noaki, Phys. Rev. D 96, 034509
1215
+ (2017), [Addendum:
1216
+ Phys.Rev.D 96, 079902 (2017)],
1217
+ 1612.01908.
1218
+ [20] B. B. Brandt, A. Francis, H. B. Meyer, O. Philipsen,
1219
+ D. Robaina, and H. Wittig, JHEP 12, 158 (2016),
1220
+ 1608.06882.
1221
+ [21] S. Aoki, Y. Aoki, G. Cossu, H. Fukaya, S. Hashimoto,
1222
+ T. Kaneko, C. Rohrhofer, and K. Suzuki (JLQCD), Phys.
1223
+ Rev. D 103, 074506 (2021), 2011.01499.
1224
+ [22] S. Aoki, Y. Aoki, H. Fukaya, S. Hashimoto, C. Rohrhofer,
1225
+ and K. Suzuki (JLQCD), PTEP 2022, 023B05 (2022),
1226
+ 2103.05954.
1227
+ [23] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A
1228
+ 560, 306 (1993), hep-th/9212088.
1229
+ [24] J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 70,
1230
+ 3852 (1993), hep-th/9303012.
1231
+ [25] J. J. M. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994),
1232
+ hep-th/9401059.
1233
+ [26] M. E. Berbenni-Bitsch, S. Meyer, A. Schafer, J. J. M.
1234
+ Verbaarschot, and T. Wettig, Phys. Rev. Lett. 80, 1146
1235
+ (1998), hep-lat/9704018.
1236
+ [27] G. Akemann, P. H. Damgaard, U. Magnea, and S. Nishi-
1237
+ gaki, Nucl. Phys. B 487, 721 (1997), hep-th/9609174.
1238
+ [28] A. D. Jackson, M. K. Sener, and J. J. M. Verbaarschot,
1239
+ Nucl. Phys. B 506, 612 (1997), hep-th/9704056.
1240
+ [29] A. M. Garcia-Garcia and J. J. M. Verbaarschot, Nucl.
1241
+ Phys. B 586, 668 (2000), hep-th/0003159.
1242
+ [30] G. Akemann and T. R. W¨urfel, JHEP 12, 128 (2021),
1243
+ 2110.03617.
1244
+ [31] M. Giordano and T. G. Kovacs, Universe 7, 194 (2021),
1245
+ 2104.14388.
1246
+ [32] J. J. M. Verbaarschot, Nucl. Phys. B 427, 534 (1994),
1247
+ hep-lat/9402006.
1248
+ [33] A. M. Garcia-Garcia and J. C. Osborn, Phys. Rev. D 75,
1249
+ 034503 (2007), hep-lat/0611019.
1250
+ [34] T. G. Kovacs and F. Pittler, Phys. Rev. Lett. 105, 192001
1251
+ (2010), 1006.1205.
1252
+ [35] T. G. Kovacs and F. Pittler, Phys. Rev. D 86, 114515
1253
+ (2012), 1208.3475.
1254
+ [36] M. Giordano, T. G. Kovacs, and F. Pittler, Phys. Rev.
1255
+ Lett. 112, 102002 (2014), 1312.1179.
1256
+ [37] M. Giordano, S. D. Katz, T. G. Kovacs, and F. Pittler,
1257
+ JHEP 02, 055 (2017), 1611.03284.
1258
+ [38] L. Holicki, E.-M. Ilgenfritz, and L. von Smekal, PoS
1259
+ LATTICE2018, 180 (2018), 1810.01130.
1260
+ [39] T. G. Kovacs and R. A. Vig, Phys. Rev. D 97, 014502
1261
+ (2018), 1706.03562.
1262
+ [40] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
1263
+ [41] A. Alexandru and I. Horv´ath, Phys. Lett. B 833, 137370
1264
+ (2022), 2110.04833.
1265
+ [42] A. Alexandru and I. Horv´ath, Phys. Rev. D 100, 094507
1266
+ (2019), 1906.08047.
1267
+ [43] A. Alexandru and I. Horv´ath, Phys. Rev. Lett. 127,
1268
+ 052303 (2021), 2103.05607.
1269
+ [44] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017),
1270
+ 1701.04325.
1271
+ [45] A. V. Smilga and J. Stern, Phys. Lett. B 318, 531 (1993).
1272
+ [46] S. Aoki, H. Fukaya, and Y. Taniguchi, Phys. Rev. D 86,
1273
+ 114512 (2012), 1209.2061.
1274
+ [47] J. J. M. Verbaarschot, Nucl. Phys. B Proc. Suppl. 53, 88
1275
+ (1997), hep-lat/9607086.
1276
+ [48] Y.
1277
+ Aoki
1278
+ et
1279
+ al.
1280
+ (Flavour
1281
+ Lattice
1282
+ Averaging
1283
+ Group
1284
+ (FLAG)), Eur. Phys. J. C 82, 869 (2022), 2111.09849.
1285
+ [49] E. V. Shuryak, Comments Nucl. Part. Phys. 21, 235
1286
+ (1994), hep-ph/9310253.
1287
+ [50] L. Mazur, Ph.D. thesis, Bielefeld U. (2021).
1288
+ [51] T. Sch¨afer and E. V. Shuryak, Rev. Mod. Phys. 70, 323
1289
+ (1998), hep-ph/9610451.
1290
+ [52] F. Bruckmann, T. G. Kovacs, and S. Schierenberg, Phys.
1291
+ Rev. D 84, 034505 (2011), 1105.5336.
1292
+ [53] V. G. Bornyakov, E. M. Ilgenfritz, B. V. Martemyanov,
1293
+ and M. M¨uller-Preussker, Phys. Rev. D 93, 074508
1294
+ (2016), 1512.03217.
1295
+ [54] R. N. Larsen, S. Sharma, and E. Shuryak, Phys. Lett. B
1296
+ 794, 14 (2019), 1811.07914.
1297
+ [55] R. N. Larsen, S. Sharma, and E. Shuryak, Phys. Rev. D
1298
+ 102, 034501 (2020), 1912.09141.
1299
+ [56] R. N. Larsen, S. Sharma, and E. Shuryak, Phys. Rev. D
1300
+ 105, L071501 (2022), 2112.04537.
1301
+ [57] A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands,
1302
+ and J.-I. Skullerud, Phys. Rev. Lett. 111, 172001 (2013),
1303
+ 1307.6763.
1304
+ [58] G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands,
1305
+ and J.-I. Skullerud, JHEP 02, 186 (2015), 1412.6411.
1306
+ [59] http://physics.utah.edu/~detar/milc.html.
1307
+ [60] P. Steinbrecher, Ph.D. thesis, U. Bielefeld (main) (2018).
1308
+
A9FJT4oBgHgl3EQfry2f/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9E1T4oBgHgl3EQfEANP/content/tmp_files/2301.02884v1.pdf.txt ADDED
@@ -0,0 +1,1531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TunesFormer: Forming Tunes with Control Codes
2
+ Shangda Wu
3
+ Music AI and Information Technology
4
+ Central Conservatory of Music
5
+ Beijing, China
6
7
+ Maosong Sun
8
+ Computer Science and Technology
9
+ Tsinghua University
10
+ Beijing, China
11
12
+ ABSTRACT
13
+ In recent years, deep learning techniques have been applied
14
+ to music generation systems with promising results. How-
15
+ ever, one of the main challenges in this field has been the
16
+ lack of annotated datasets, making it difficult for models to
17
+ learn musical forms in compositions. To address this issue,
18
+ we present TunesFormer1, a Transformer-based melody gen-
19
+ eration system that is trained on a large dataset of 285,449
20
+ ABC tunes. By utilizing specific symbols commonly found
21
+ in ABC notation to indicate section boundaries, Tunes-
22
+ Former can understand and generate melodies with given
23
+ musical forms based on control codes. Our objective evalu-
24
+ ations demonstrate the effectiveness of the control codes in
25
+ achieving controlled musical forms, and subjective experi-
26
+ ments show that the generated melodies are of comparable
27
+ quality to human compositions. Our results also provide in-
28
+ sights into the optimal placement of control codes and their
29
+ impact on the generated melodies. TunesFormer presents
30
+ a promising approach for generating melodies with desired
31
+ musical forms through the use of deep learning techniques.
32
+ Author Keywords
33
+ Transformer, controllable melody generation, musical form,
34
+ control codes, ABC notation
35
+ CCS Concepts
36
+ •Computing methodologies → Neural networks; •Applied
37
+ computing → Sound and music computing;
38
+ 1.
39
+ INTRODUCTION
40
+ Musical form plays a crucial role in shaping the aesthetic
41
+ and expressive qualities of music.
42
+ Examples of musical
43
+ forms include verse-chorus, ABAB, and sonata forms, which
44
+ are commonly found in popular and classical music. The
45
+ ability to generate melodies with specific musical forms is a
46
+ highly sought-after feature in music generation systems, as
47
+ it allows users to create music that adheres to specific mu-
48
+ sical conventions and styles. This can be particularly useful
49
+ for music producers, composers, and educators seeking to
50
+ generate music that follows a specific form.
51
+ Deep learning techniques have gained widespread atten-
52
+ tion in recent years as a means of generating music with di-
53
+ verse styles and properties. Various approaches have been
54
+ proposed, including the use of recurrent neural networks
55
+ (RNNs) [9, 8, 22, 25], generative adversarial networks (GANs)
56
+ 1https://github.com/sander-wood/tunesformer
57
+ [5, 24, 26], and Transformer models [4, 6, 13]. Among these
58
+ approaches, Transformer models [21] have proven particu-
59
+ larly effective for music generation due to their ability to
60
+ model long-range dependencies, handle variable-length in-
61
+ put sequences, and generate coherent and consistent output.
62
+ While deep learning techniques have shown promising re-
63
+ sults in generating music, a major challenge faced by mu-
64
+ sic generation systems is the ability to generate melodies
65
+ with predefined musical forms. Previous related work has
66
+ achieved some level of melody generation based on struc-
67
+ tural information, but there are limitations such as a focus
68
+ only on harmony or section length [1, 17, 28], considera-
69
+ tion of only bar-level structure [23, 29], or reliance on rules
70
+ to generate phrases and sections [3, 16]. Accurately iden-
71
+ tifying specific musical forms can be difficult for rules or
72
+ algorithms, and manually labelling this type of data is ex-
73
+ pensive due to the time and resources required, as well as
74
+ the high level of musical knowledge and understanding re-
75
+ quired. Thus, the problem of effectively teaching models to
76
+ learn musical forms from datasets remains largely unsolved.
77
+ To address the challenge of melody generation conditioned
78
+ on musical forms, we introduce TunesFormer, a Transformer-
79
+ based melody generation system trained on a large dataset
80
+ of 285,449 ABC tunes. ABC notation is a widely used text-
81
+ based representation of music that is more comprehensive
82
+ and expressive than MIDI. In addition to the symbols used
83
+ to represent pitches and rhythms, ABC notation also in-
84
+ cludes symbols to represent section boundaries and other
85
+ structural elements.
86
+ Based on these symbols, we design
87
+ several control codes that allow TunesFormer to generate
88
+ melodies with specific musical forms based on user input.
89
+ We present a thorough evaluation of TunesFormer through
90
+ both objective and subjective experiments. Our objective
91
+ evaluations demonstrate the effectiveness of the control codes
92
+ in achieving controlled musical forms, while subjective ex-
93
+ periments show that the control codes for edit distance sim-
94
+ ilarity are relevant to human subjective perception, and the
95
+ quality of the generated melodies is comparable to that of
96
+ human compositions as evaluated by professional musicians.
97
+ These experimental results also provide insight into the op-
98
+ timal placement of control codes and their impact on the
99
+ generated melodies. Overall, our results highlight the po-
100
+ tential of TunesFormer as a powerful and flexible tool for
101
+ generating melodies with desired musical forms.
102
+ The main contributions of this paper are:
103
+ • The introduction of TunesFormer, a Transformer-based
104
+ melody generation system that generates melodies with
105
+ specific musical forms using control codes.
106
+ • TunesFormer is trained on a large ABC notation dataset,
107
+ allowing it to learn a more comprehensive representa-
108
+ tion of music notation compared to systems trained
109
+ on MIDI datasets.
110
+ arXiv:2301.02884v1 [cs.SD] 7 Jan 2023
111
+
112
+ • We conduct both objective and subjective experiments
113
+ to comprehensively evaluate TunesFormer, demonstrat-
114
+ ing the effectiveness of the control codes.
115
+ 2.
116
+ RELATED WORK
117
+ There has been a significant amount of research dedicated
118
+ to music generation using deep learning techniques. Much
119
+ of this work has focused on the use of deep neural networks
120
+ to model complex patterns in symbolic music generation,
121
+ but a significant challenge remains in generating full-length
122
+ music with consistent long-term structure.
123
+ Chen et al. explored the use of explicit structure encod-
124
+ ing in neural networks for symbolic music generation [1].
125
+ They found that incorporating explicit structure encoding
126
+ significantly improved the quality and structure of the gen-
127
+ erated music. However, this approach relies on harmony to
128
+ guide the model in generating melodies with good structure,
129
+ without considering the actual musical form.
130
+ PopMNet [23], a model for generating structured pop mu-
131
+ sic melodies, consists of a Structure Generation Net (SGN)
132
+ and a Melody Generation Net (MGN), with the SGN gen-
133
+ erating melody structures based on pairwise relations be-
134
+ tween bars (repetition and sequence) and the MGN gener-
135
+ ating melodies based on these structures and chord progres-
136
+ sions. MELONS [29], a framework based on Transformer
137
+ for generating melodies with long-term structures, also con-
138
+ sists of a structure generation net and a melody generation
139
+ net, which are used to factor the melody generation process
140
+ into two sub-problems: structure generation and structure-
141
+ conditional melody generation. While these approaches are
142
+ able to generate melodies with clearer structures compared
143
+ to other models, they are limited to generating melodies
144
+ with pairwise relations between bars, rather than more com-
145
+ plex structural patterns.
146
+ MusicFrameworks [3] is a hierarchical music structure
147
+ representation and a multi-step generative process for cre-
148
+ ating full-length melodies guided by long-term repetitive
149
+ structure, chord, melodic contour, and rhythm constraints.
150
+ This approach allows for the customization of chords, ba-
151
+ sic melody, and rhythm structure, providing more control
152
+ over the generated melodies. However, this method requires
153
+ structural information to be extracted from existing songs
154
+ to generate new ones, which relies on hand-crafted rules and
155
+ may not always be available.
156
+ MeloForm [16] utilizes an expert system to generate a
157
+ melody by developing musical elements from motifs to phrases,
158
+ and then to sections with repetitions and variations ac-
159
+ cording to a given musical form. However, the generated
160
+ melodies may lack musical richness, so the approach also
161
+ utilizes a Transformer-based refinement model to improve
162
+ the melody without altering its musical form. While this ap-
163
+ proach allows for precise control of musical form, the model
164
+ does not learn the concept of musical form from the data
165
+ and relies on an expert system in the generation process.
166
+ A predictive deep network [2] models polyphonic music
167
+ using a novel graphical representation, inspired by tonnetz
168
+ from music theory, in a deep neural network. This tonnetz-
169
+ inspired representation is evaluated using a dataset of clas-
170
+ sical music and is found to produce musical sequences that
171
+ are more tonally stable and contain more repeated patterns
172
+ than sequences generated by pianoroll-based models. CM-
173
+ HRNN [8], a conditional melody generation model based on
174
+ a hierarchical recurrent neural network, generates melodies
175
+ with long-term structures based on given chord accompani-
176
+ ments. Both approaches learn long-term dependencies, re-
177
+ sulting in the implicit generation of melodies with repetitive
178
+ patterns, although these patterns do not represent specific
179
+ musical forms.
180
+ MorpheuS [10] is a music generation system that can gen-
181
+ erate polyphonic pieces with a given tension profile and
182
+ long- and short-term repeated pattern structures. A math-
183
+ ematical model for tonal tension is used to quantify the
184
+ tension profile and state-of-the-art pattern detection algo-
185
+ rithms are utilized to extract repeated patterns in a tem-
186
+ plate piece. These patterns are then used to constrain long-
187
+ term structure in the generated pieces. However, this ap-
188
+ proach is limited to the generation of music with predefined
189
+ tension profiles and does not consider the incorporation of
190
+ additional constraints or variables in the music generation
191
+ process.
192
+ Zhang et al.
193
+ proposed a harmony-aware learning ap-
194
+ proach [28] for generating structured pop music, which can
195
+ improve the structure and quality of the generated music.
196
+ Naruse et al. developed a method for generating pop mu-
197
+ sic with controllable phrase lengths [17] using a deep neu-
198
+ ral network and adding PHRASE and BAR COUNTDOWN events.
199
+ However, neither of these approaches explicitly captures the
200
+ relationships between sections.
201
+ 3.
202
+ METHODOLOGY
203
+ 3.1
204
+ Data Representation
205
+ In this research, we aim to generate score information for
206
+ music [7, 20], rather than performance information [12, 18].
207
+ Thus, the data representation used must effectively encode
208
+ sheet music.
209
+ The three most commonly used symbolic music formats
210
+ are ABC notation, MusicXML, and MIDI. ABC notation is
211
+ designed for simplicity and was originally intended for use
212
+ with folk music, while MusicXML is geared towards the ex-
213
+ change of musical notation. MIDI, on the other hand, is
214
+ focused on the sequencing of instrument sounds at a low
215
+ level, rather than higher-level musical concepts. Most pre-
216
+ vious works on symbolic music information retrieval and
217
+ generation [11, 13, 27] utilize MIDI as the data represen-
218
+ tation due to its popularity.
219
+ However, in this study, we
220
+ adopt ABC notation as our data representation due to its
221
+ advantages for score-oriented music generation over MIDI.
222
+ One advantage of ABC notation is that it can distinguish
223
+ enharmonic notes (e.g., B#3 and C4), while MIDI assigns
224
+ numerical codes to specific pitches without considering note
225
+ names.
226
+ This means that MIDI is unable to differentiate
227
+ between enharmonic notes.
228
+ Additionally, for music generation tasks, ABC notation
229
+ can accurately represent complex durations, while MIDI re-
230
+ quires a trade-off between accuracy and sequence length
231
+ or vocabulary size. This can result in quantization errors
232
+ where certain notes cannot be accurately represented due
233
+ to pre-defined time resolution (e.g., 16th notes).
234
+ Furthermore, ABC notation includes a comprehensive set
235
+ of musical symbols found in sheet music, including impor-
236
+ tant elements like ornamentation and articulation that are
237
+ not explicitly represented in MIDI, as shown in Fig.
238
+ 1.
239
+ More importantly, some symbols used to indicate section
240
+ boundaries in ABC notation can serve as the basis for con-
241
+ trol codes. While MusicXML also has these advantages over
242
+ MIDI, it is based on XML, which can be more complex and
243
+ time-consuming to work with compared to ABC notation,
244
+ which is based on ASCII and therefore easier to use with
245
+ fewer errors.
246
+ Overall, the use of ABC notation for score-oriented mu-
247
+ sic generation allows for a more accurate and comprehen-
248
+ sive representation of music while maintaining simplicity,
249
+ enabling the generation of more complex and musically co-
250
+
251
+ (a) ABC notation
252
+ (b) MusicXML
253
+ (c) MIDI
254
+ Figure 1: Excerpts from Nocturne Op. 9 No. 2 (E Flat Major) rendered by MuseScore 4 in different formats. While (a) and
255
+ (b) are essentially the same, (c) does not distinguish between enharmonic notes and loses many musical symbols.
256
+ herent melodies. This makes ABC notation a better choice
257
+ for music generation systems compared to MIDI, partic-
258
+ ularly for tasks that require a greater level of detail and
259
+ control over the generated music.
260
+ 3.2
261
+ Control Codes
262
+ Control codes are symbols that are added to the ABC no-
263
+ tation representation to indicate the desired musical form
264
+ of the generated melodies.
265
+ The most important information in musical forms lies in
266
+ the number of sections and the similarity between the indi-
267
+ vidual sections. For example, the musical form ABA’ refers
268
+ to a structure with three sections, where there is a main
269
+ section A followed by a contrasting section B (dissimilar)
270
+ and then the main section reappears as the recapitulation
271
+ A’ (similar) but with some slight variation.
272
+ Incorporating control codes that specify the number of
273
+ bars in each section can provide an additional level of con-
274
+ trol. These control codes can effectively influence the pacing
275
+ and flow of the music, as the number of bars in each sec-
276
+ tion can significantly impact the overall structure and form
277
+ of the piece. For instance, melodies with the same struc-
278
+ ture but different numbers of bars in each section, such as
279
+ A8B8A8 and A4B8A4, exhibit distinct musical characteristics
280
+ due to the varied length of their sections.
281
+ Based on the above reasons, we add the following control
282
+ codes to each ABC tune in the dataset through an auto-
283
+ mated process to indicate its musical form:
284
+ • Number of Bars (NB): controls the number of bars
285
+ in a section of the melody. For example, users could
286
+ specify that they want a section to contain 8 bars, and
287
+ TunesFormer would generate a section that fits within
288
+ that structure. It counts on the bar symbol |.
289
+ • Number of Sections (NS): controls the number of sec-
290
+ tions in the entire melody. This can be used to create a
291
+ sense of structure and coherence within the melody, as
292
+ different sections can be used to create musical themes
293
+ or motifs. It counts on several symbols that are com-
294
+ monly used in ABC notation and can be used to rep-
295
+ resent section boundaries: [|,||,|],|:,::, and :|.
296
+ • Edit Distance Similarity (EDS): controls the similar-
297
+ ity level between the current section c and a previous
298
+ section p in the melody.
299
+ It is based on the Leven-
300
+ shtein distance [14] lev(c, p), and can be formalised as
301
+ follows:
302
+ eds(c, p) = 1 −
303
+ lev(c, p)
304
+ max(|c|, |p|)
305
+ (1)
306
+ where |c| and |p| are the string length of two sections.
307
+ The EDS control code is discretized into 11 levels,
308
+ ranging from 0 (no match at all) to 10 (exact match).
309
+ To investigate the impact of different placements of these
310
+ control codes on generated melodies, we designed the fol-
311
+ lowing five placements:
312
+ • Global Placement (GP): all control codes are placed at
313
+ the beginning of the ABC notation.
314
+ • Section-based Placement (SP): NB and EDS control
315
+ codes are placed at the beginning of each section to
316
+ indicate the number of bars and the similarity of the
317
+ edit distances in that section.
318
+ • Section Countdown Placement (SCP): similar to section-
319
+ based placement, but NS control codes are also placed
320
+ at the beginning of each section to indicate the num-
321
+ ber of sections remaining in the piece.
322
+ • Bar Countdown Placement (BCP): similar to section-
323
+ based placement, but NB control codes are placed at
324
+ the beginning of each bar to indicate the number of
325
+ bars remaining in the section.
326
+ • Section & Bar Countdown Placement (SBCP): a com-
327
+ bination of SCP and BCP, with NS control codes placed
328
+ at the beginning of each section and NB control codes
329
+ placed at the beginning of each bar. This placement
330
+ allows for both the countdown of sections and bars to
331
+ be presented in the piece.
332
+ Fig. 2 shows an example of an ABC tune with control
333
+ codes using the GP. Other placements of control codes can
334
+ be found in Appendix A. The tune header includes the time
335
+ signature and key signature, and the tune body consists of
336
+ three sections, each with 8 bars.
337
+ The first control code
338
+ [SECS_3] specifies there are 3 sections in the tune, and
339
+
340
+ a tempo
341
+ fpatempo
342
+ fp3Tune Body I
343
+ [SECS_3][BARS_8][SIM_3][BARS_8][SIM_10][SIM_3][BARS_8]
344
+ L:1/4
345
+ M:4/4
346
+ K:C
347
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
348
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 ||
349
+ “C” e e“G” d d/d/ |“Am” c A“Em” G E | “F” F3/2 G/ A F |“C” E/E/G/G/ c G |
350
+ e e“G” d d/d/ |“Am” c A“Em” G E |“F” F3/2 G/“G” A B | “C” d c c2 ||
351
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
352
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 |]
353
+ Control Codes
354
+ Tune Header
355
+ Tune Body II
356
+ Tune Body III
357
+ Figure 2: An example of the GP. For the purpose of demon-
358
+ stration, it is separated into several sections.
359
+ the following control code [BARS_8] indicates the first sec-
360
+ tion has 8 bars. The next two control codes [SIM_3] and
361
+ [BAR_8] indicate that the EDS between tune body II and
362
+ tune body I is approximately 0.3, and tune body II has 8
363
+ bars. The last three control codes [SIM_10], [SIM_3] and
364
+ [BARS_8] specify that tune body III is identical to tune
365
+ body I while dissimilar to tune body II, and has 8 bars.
366
+ 3.3
367
+ Model Architecture
368
+ TunesFormer is a Transformer-based language model that
369
+ utilizes the GPT-2 small [19] architecture as its basis, which
370
+ is a decoder-only, unidirectional Transformer. The GPT-2
371
+ small architecture is a deep learning model that consists of
372
+ 12 layers, each with a hidden size of 768 and 12 attention
373
+ heads.
374
+ This allows TunesFormer to effectively learn and
375
+ recognize complex patterns and structures in ABC notation.
376
+ To accurately represent the independent semantics of each
377
+ character in ABC notation, we employ character-level tok-
378
+ enization. In addition, we also include control codes as spe-
379
+ cial tokens. During inference, these control codes can either
380
+ be provided by users as prompts or generated by Tunes-
381
+ Former itself, allowing for a high degree of flexibility in the
382
+ music generation process.
383
+ We trained TunesFormer from scratch using the learning
384
+ rate α = 10−4, with a 1,000-step linear warmup and learning
385
+ rate decay. We trained a total of 30 epochs with a batch
386
+ size of 32, using the AdamW [15] optimizer with β1 = 0.9,
387
+ β2 = 0.999, ϵ = 10−8, and a weight decay coefficient of
388
+ 0.01.
389
+ We also use automatic mixed precision to improve
390
+ the efficiency of the training process.
391
+ 4.
392
+ EXPERIMENTS
393
+ 4.1
394
+ Dataset
395
+ The dataset used to train and evaluate TunesFormer is
396
+ collected from two sources: The Session2 and ABCnota-
397
+ tion.com3. The Session is a community website focused on
398
+ Irish traditional music, while ABCnotation.com is a website
399
+ that provides a standard for folk and traditional music nota-
400
+ tion in the form of ASCII text files. The combined dataset
401
+ consists of 285,449 ABC tunes, with 99% (282,595) of the
402
+ tunes used as the training set and the remaining 1% (2854)
403
+ used as the evaluation set.
404
+ To ensure consistency and standardization among the ABC
405
+ tunes in the dataset, we first converted them all into Mu-
406
+ sicXML format and then re-converted them back into ABC
407
+ notation. In order to focus solely on the musical content,
408
+ we removed any natural language elements (such as titles,
409
+ composers, and lyrics) and unnecessary information (such
410
+ as reference numbers and sources).
411
+ 2https://thesession.org
412
+ 3https://abcnotation.com
413
+ 0.0000
414
+ 0.1000
415
+ 0.2000
416
+ 0.3000
417
+ 0.4000
418
+ 0.5000
419
+ 0.6000
420
+ 0.7000
421
+ 0.8000
422
+ 0.9000
423
+ 1.0000
424
+ GP
425
+ SP
426
+ SCP
427
+ BCP
428
+ SBCP
429
+ Eval Set
430
+ Figure 3: Results of bar length accuracy at different settings.
431
+ As depicted in Fig. 4, in this dataset, 99.4% of the pieces
432
+ have no more than 8 sections and 99.1% of the sections have
433
+ no more than 32 bars. Therefore, we set an upper limit of
434
+ 8 for the number of sections and 32 for the number of bars.
435
+ 4.2
436
+ Objective Experiments
437
+ We present the objective experimental results to evaluate
438
+ the effectiveness of TunesFormer in generating controlled
439
+ musical forms. We measured the bar length accuracy, sec-
440
+ tion number accuracy, bar number accuracy, and Edit Dis-
441
+ tance Similarity (EDS) of the generated tunes in each of
442
+ the five placements: Global Placement (GP), Section-based
443
+ Placement (SP), Section Countdown Placement (SCP), Bar
444
+ Countdown Placement (BCP), and Section & Bar Count-
445
+ down Placement (SBCP). The evaluation set consisted of
446
+ 2854 tunes, which were used as a benchmark for compari-
447
+ son. To provide context for our evaluation, we analyzed the
448
+ distribution of the number of sections, number of bars per
449
+ section, and EDS of the tunes in the dataset.
450
+ We first measure the bar length accuracy at different set-
451
+ tings to evaluate the grammatical correctness of the tunes
452
+ generated by TunesFormer. Bar length accuracy refers to
453
+ the correctness of the number of beats in each bar in a tune,
454
+ as defined by the time signature. For example, in a 4/4 time
455
+ signature, there are 4 beats per bar and the quarter note re-
456
+ ceives one beat. To maintain grammatical correctness, the
457
+ total number of beats in each bar must match the time sig-
458
+ nature. Bar length accuracy is therefore a measure of how
459
+ well TunesFormer can generate melodies that adhere to the
460
+ specified time signature.
461
+ In order to evaluate the bar length accuracy of Tunes-
462
+ Former, we generated 100 tunes in each setting and com-
463
+ pared them to 2854 tunes from the evaluation set. Upon
464
+ manual examination, we found that almost all inaccuracies
465
+ in the generated tunes were due to incomplete bars at the
466
+ beginning and end of sections, which are still grammati-
467
+ cally correct.
468
+ We conducted independent samples t-tests
469
+ and found that there were no statistically significant dif-
470
+ ferences between the accuracy of the generated tunes in
471
+ each setting and the evaluation set, with the exception of
472
+ the SCP and BCP settings which had slightly lower accu-
473
+ racy. However, this difference was not statistically signifi-
474
+ cant as indicated by a p-value> 0.05. These results suggest
475
+ that TunesFormer is able to generate grammatically correct
476
+ tunes under all settings.
477
+ To verify the effectiveness of the control codes for different
478
+ placements, we conducted three separate experiments:
479
+ • Bar number accuracy: we used the NS and NB control
480
+ codes to specify the number of sections (1 section) and
481
+ the number of bars (1-32 bars), while the EDS control
482
+ codes were generated by TunesFormer itself. To de-
483
+ termine the accuracy of the bar number, we compared
484
+
485
+ 0
486
+ 0.1
487
+ 0.2
488
+ 0.3
489
+ 0.4
490
+ 0.5
491
+ 0.6
492
+ 0.7
493
+ 1
494
+ 2
495
+ 3
496
+ 4
497
+ 5
498
+ 6
499
+ 7
500
+ 8
501
+ 0
502
+ 0.1
503
+ 0.2
504
+ 0.3
505
+ 0.4
506
+ 0.5
507
+ 0.6
508
+ 0.7
509
+ 0.8
510
+ 0.9
511
+ 1
512
+ 1
513
+ 2
514
+ 3
515
+ 4
516
+ 5
517
+ 6
518
+ 7
519
+ 8
520
+ GP
521
+ SP
522
+ SCP
523
+ BCP
524
+ SBCP
525
+ (b) Section Number Accuracy
526
+ (e) Section Number Distribution
527
+ 0
528
+ 0.1
529
+ 0.2
530
+ 0.3
531
+ 0.4
532
+ 0.5
533
+ 0.6
534
+ 0.7
535
+ 0.8
536
+ 0.9
537
+ 1
538
+ 0
539
+ 1
540
+ 2
541
+ 3
542
+ 4
543
+ 5
544
+ 6
545
+ 7
546
+ 8
547
+ 9
548
+ 10
549
+ GP
550
+ SP
551
+ SCP
552
+ BCP
553
+ SBCP
554
+ EDS
555
+ 0
556
+ 0.1
557
+ 0.2
558
+ 0.3
559
+ 0.4
560
+ 0.5
561
+ 0.6
562
+ 0.7
563
+ 0.8
564
+ 0.9
565
+ 1
566
+ 1
567
+ 3
568
+ 5
569
+ 7
570
+ 9
571
+ 11
572
+ 13
573
+ 15
574
+ 17
575
+ 19
576
+ 21
577
+ 23
578
+ 25
579
+ 27
580
+ 29
581
+ 31
582
+ GP
583
+ SP
584
+ SCP
585
+ BCP
586
+ SBCP
587
+ 0
588
+ 0.05
589
+ 0.1
590
+ 0.15
591
+ 0.2
592
+ 0.25
593
+ 0.3
594
+ 0.35
595
+ 1
596
+ 3
597
+ 5
598
+ 7
599
+ 9
600
+ 11 13 15 17 19 21 23 25 27 29 31
601
+ (a) Bar Number Accuracy
602
+ (c) Edit Distance Similarity Comparison
603
+ (d) Bar Number Distribution
604
+ (f) Edit Distance Similarity Distribution
605
+ 0
606
+ 0.05
607
+ 0.1
608
+ 0.15
609
+ 0.2
610
+ 0.25
611
+ 0.3
612
+ 0
613
+ 1
614
+ 2
615
+ 3
616
+ 4
617
+ 5
618
+ 6
619
+ 7
620
+ 8
621
+ 9
622
+ 10
623
+ Figure 4: Evaluating the effectiveness of control codes in TunesFormer for generating controlled musical forms. The green
624
+ dotted line in (c) is the theoretical EDS values at each level.
625
+ the actual number of bars generated to the NB con-
626
+ trol codes. For each setting, we generated 100 tunes,
627
+ resulting in a total of 5 placements × 32 bar numbers
628
+ × 100 tunes = 16,000 tunes.
629
+ • Section number accuracy: we used the NS control code
630
+ to specify the number of sections (1-8 sections), while
631
+ the NB and EDS control codes were generated by
632
+ TunesFormer itself. To determine the accuracy of the
633
+ section number, we compared the actual number of
634
+ sections generated to the NS control code. For each
635
+ setting, we generated 100 tunes, resulting in a total
636
+ of 5 placements × 8 section numbers × 100 tunes =
637
+ 4000 tunes.
638
+ • Edit distance similarity comparison: we used the NS
639
+ and EDS control codes to specify the number of sec-
640
+ tions (2 sections) and the similarity level (0-10 levels),
641
+ while the NB control codes were generated by Tunes-
642
+ Former itself. To compare the average edit distance
643
+ similarity values at each EDS level, we compared them
644
+ to the theoretical EDS values. For each setting, we
645
+ generated 100 tunes, resulting in a total of 5 place-
646
+ ments × 11 levels × 100 tunes = 5500 tunes.
647
+ The results are provided in Fig. 4, which includes plots
648
+ for bar number accuracy (Fig. 4a), section number accuracy
649
+ (Fig. 4b), and edit distance similarity comparison (Fig. 4c).
650
+ In Fig. 4a, it is shown that TunesFormer generally has high
651
+ accuracy in generating the correct number of bars when the
652
+ number specified is 17 or less for all placements. However,
653
+ when the number of bars specified exceeds 17, there is a
654
+ noticeable decrease in accuracy for the GP, SP, and SCP.
655
+ This decrease in accuracy is likely due to the distribution of
656
+ the number of bars in the dataset, as shown in Fig. 4d. A
657
+ higher proportion of a certain number of bars corresponds
658
+ to more of its NB control codes being learned by Tunes-
659
+ Former, resulting in a more robust representation of those
660
+ control codes. Both the BCP and SBCP, which insert NB
661
+ control codes before each bar, have higher accuracy in gen-
662
+ erating the correct number of bars regardless of the number
663
+ specified.
664
+ Fig. 4b demonstrates a similar trend in section number
665
+ accuracy: TunesFormer can generate the correct number of
666
+ sections almost 100% of the time for all placements, except
667
+ the GP, SP, and BCP when the number of specified sec-
668
+ tions is greater than 6. This is also due to the distribution
669
+ of the number of sections in the dataset, as shown in Fig.
670
+ 4e. Both the SCP and SBCP, which insert NS control codes
671
+ before each section, have higher accuracy in generating the
672
+ correct number of sections regardless of the number speci-
673
+ fied. However, because the distribution of section numbers
674
+ is not as concentrated as bar numbers, not using the section
675
+ countdown does not have as much of an impact on accuracy
676
+ as the bar countdown.
677
+ Fig. 4c presents the results of the EDS comparison. The
678
+ ability of TunesFormer to generate sections with specified
679
+ levels of similarity to the reference sections was evaluated by
680
+ comparing the average EDS values of the generated tunes
681
+ to the specified EDS levels. Overall, TunesFormer performs
682
+ well at most EDS levels for all placements, with the av-
683
+ erage EDS values consistently close to the specified levels.
684
+ However, for EDS levels less than 2, all placements except
685
+ for GP exhibit a statistically significant difference from the
686
+ theoretical EDS values. This deviation from the expected
687
+ results is not due to the distribution of EDS levels in the
688
+ dataset, as levels 0 and 1 outnumber level 2. Rather, it is
689
+ likely caused by the fact that when the EDS between two
690
+ sections is at a low level, their bar lengths are often signif-
691
+ icantly different. The model is more likely to capture this
692
+ pattern when all control codes are placed at the beginning
693
+ (GP). This suggests that the placement of control codes
694
+ has a significant impact on the ability of TunesFormer to
695
+ generate sections with a low level of EDS similarity.
696
+ Overall, the SBCP performs well in both bar and section
697
+ number accuracy, while the GP performs best in EDS.
698
+ 4.3
699
+ Subjective Experiments
700
+ In our subjective experiments, we sought to assess the qual-
701
+ ity of generated tunes in various settings and evaluate the
702
+ relevance of the EDS control code to human subjective per-
703
+
704
+ 1
705
+ 1.5
706
+ 2
707
+ 2.5
708
+ 3
709
+ 3.5
710
+ 4
711
+ 4.5
712
+ 0
713
+ 1
714
+ 2
715
+ 3
716
+ 4
717
+ 5
718
+ 6
719
+ 7
720
+ 8
721
+ 9
722
+ Subjective Similarity Score
723
+ Similarity Level
724
+ Figure 5: Subjective similarity scores of selected tunes from
725
+ the evaluation set.
726
+ ception. We recruited music school students who majored
727
+ in music as participants.
728
+ We randomly selected 100 tunes with two sections from
729
+ our evaluation set, with 10 tunes at each level of similarity
730
+ ranging from 0 to 9. We excluded tunes with a similarity
731
+ level of 10, as two identical sections would be the same in
732
+ terms of subjective perception. For each tune, participants
733
+ were asked to rate its similarity to the control code on a scale
734
+ of 1 (completely dissimilar) to 5 (exact match), resulting in
735
+ a total of 100 ratings.
736
+ Participants were presented with
737
+ sheet music for the selected tunes, with section boundaries
738
+ marked, as well as audio of the tunes. They were asked to
739
+ select the most appropriate description of the tune from five
740
+ options based on their subjective perception:
741
+ • Completely dissimilar: the two sections have no simi-
742
+ larity in terms of melody, rhythm, or structure, or the
743
+ two sections are too far apart in length.
744
+ • Mildly dissimilar: the two sections do not share the
745
+ motif or theme and are significantly different in the
746
+ overall structure and melody.
747
+ • Moderately similar: the two sections have a similar
748
+ structure and some shared motifs, but there are still
749
+ significant differences in terms of rhythm and pitch.
750
+ • Highly similar: the two sections have a very similar
751
+ structure and many shared motifs, but with noticeable
752
+ differences in rhythm or pitch.
753
+ • Exact match: the two sections are identical in every
754
+ aspect, including melody, rhythm, and structure.
755
+ As shown in Fig. 5, the subjective similarity scores ob-
756
+ tained from our study participants were strongly correlated
757
+ with the calculated similarity levels.
758
+ The Pearson corre-
759
+ lation coefficient for this relationship was 0.948, indicating
760
+ that EDS can be used as a reliable measure of similarity in
761
+ melody generation, as it is closely related to the subjective
762
+ perception of similarity.
763
+ Furthermore, Fig. 5 shows that when the EDS similarity
764
+ level is below 4, the two sections are perceived as dissimilar
765
+ by our participants, and vice versa. Based on these findings,
766
+ we can conclude that setting the EDS control codes to a
767
+ similarity level above 4 will result in the target section being
768
+ perceived as similar to the reference section, while setting
769
+ the control codes to a level below 4 will result in the target
770
+ section being perceived as dissimilar to the reference section.
771
+ To evaluate the quality of the tunes generated by Tunes-
772
+ Former under different settings, we conducted a subjective
773
+ evaluation in which participants rated 10 randomly selected
774
+ tunes from the evaluation set and 10 tunes generated from
775
+ 1
776
+ 1.5
777
+ 2
778
+ 2.5
779
+ 3
780
+ 3.5
781
+ 4
782
+ 4.5
783
+ GP
784
+ SP
785
+ SCP
786
+ BCP
787
+ SBCP
788
+ Eval Set
789
+ Figure 6: Results of subjective ratings for generated tunes
790
+ quality compared to the evaluation set.
791
+ scratch for each placement on a scale ranging from 1 (poor
792
+ quality) to 5 (excellent quality).
793
+ The results, depicted in Fig. 6, show that the mean rat-
794
+ ings of the generated tunes were generally similar across
795
+ all placement settings, with values ranging from 3.03 to
796
+ 3.47. However, the insertion of control codes before each bar
797
+ (BCP) resulted in a statistically significantly lower mean
798
+ rating compared to the evaluation set, with a p-value <
799
+ 0.05. This suggests that the BCP may negatively impact
800
+ the perceived quality of the generated tunes. In contrast,
801
+ when the section countdown was introduced (SBCP), the
802
+ ratings increased.
803
+ This may be because the insertion of
804
+ too many NB control codes can reduce the quality of the
805
+ generation, while NS control codes enhance TunesFormer’s
806
+ understanding of the relationships between sections while
807
+ only slightly increasing the sequence length.
808
+ The evalu-
809
+ ation set had a higher mean rating compared to all other
810
+ placements, although the difference was not statistically sig-
811
+ nificant.
812
+ These results demonstrate that TunesFormer is
813
+ capable of generating tunes of comparable quality to those
814
+ in the evaluation set under all settings (except BCP).
815
+ 5.
816
+ CONCLUSIONS
817
+ In this paper, we present TunesFormer, a melody gener-
818
+ ation system that leverages the power of Transformer and
819
+ is trained on a large dataset of 282,595 ABC notation tunes.
820
+ By utilizing control codes, TunesFormer can generate melodies
821
+ that match a given musical form. Our results indicate that
822
+ TunesFormer can generate high-quality melodies that are
823
+ comparable to those in the evaluation set.
824
+ Through objective experiments, we demonstrate the ef-
825
+ fectiveness of these control codes in achieving the desired
826
+ number of sections and bars, as well as in achieving a spe-
827
+ cific level of edit distance similarity. Subjective experiments
828
+ also show that edit distance similarity is highly relevant to
829
+ the human subjective perception of similarity.
830
+ However,
831
+ we also find that the insertion of control codes before ev-
832
+ ery bar may negatively impact the perceived quality of the
833
+ generated melodies. On the other hand, the introduction
834
+ of a small number of NS control codes can enhance Tunes-
835
+ Former’s understanding of the relationships between sec-
836
+ tions and improve the quality of the generated melodies.
837
+ These findings have important implications for the design
838
+ and development of melody generation systems, and have
839
+ the potential to facilitate the creation of more controlled
840
+ and expressive musical forms.
841
+ 6.
842
+ REFERENCES
843
+
844
+ [1] K. Chen, W. Zhang, S. Dubnov, and G. Xia. The
845
+ effect of explicit structure encoding of deep neural
846
+ networks for symbolic music generation. CoRR,
847
+ abs/1811.08380, 2018.
848
+ [2] C. Chuan and D. Herremans. Modeling temporal
849
+ tonal relations in polyphonic music through deep
850
+ networks with a novel image-based representation. In
851
+ S. A. McIlraith and K. Q. Weinberger, editors,
852
+ Proceedings of the Thirty-Second AAAI Conference
853
+ on Artificial Intelligence, (AAAI-18), the 30th
854
+ innovative Applications of Artificial Intelligence
855
+ (IAAI-18), and the 8th AAAI Symposium on
856
+ Educational Advances in Artificial Intelligence
857
+ (EAAI-18), New Orleans, Louisiana, USA, February
858
+ 2-7, 2018, pages 2159–2166. AAAI Press, 2018.
859
+ [3] S. Dai, Z. Jin, C. Gomes, and R. B. Dannenberg.
860
+ Controllable deep melody generation via hierarchical
861
+ music structure representation. In J. H. Lee, A. Lerch,
862
+ Z. Duan, J. Nam, P. Rao, P. van Kranenburg, and
863
+ A. Srinivasamurthy, editors, Proceedings of the 22nd
864
+ International Society for Music Information Retrieval
865
+ Conference, ISMIR 2021, Online, November 7-12,
866
+ 2021, pages 143–150, 2021.
867
+ [4] S. Di, Z. Jiang, S. Liu, Z. Wang, L. Zhu, Z. He,
868
+ H. Liu, and S. Yan. Video background music
869
+ generation with controllable music transformer. In
870
+ H. T. Shen, Y. Zhuang, J. R. Smith, Y. Yang,
871
+ P. C´esar, F. Metze, and B. Prabhakaran, editors, MM
872
+ ’21: ACM Multimedia Conference, Virtual Event,
873
+ China, October 20 - 24, 2021, pages 2037–2045.
874
+ ACM, 2021.
875
+ [5] H. Dong, W. Hsiao, L. Yang, and Y. Yang. Musegan:
876
+ Multi-track sequential generative adversarial networks
877
+ for symbolic music generation and accompaniment. In
878
+ S. A. McIlraith and K. Q. Weinberger, editors,
879
+ Proceedings of the Thirty-Second AAAI Conference
880
+ on Artificial Intelligence, (AAAI-18), the 30th
881
+ innovative Applications of Artificial Intelligence
882
+ (IAAI-18), and the 8th AAAI Symposium on
883
+ Educational Advances in Artificial Intelligence
884
+ (EAAI-18), New Orleans, Louisiana, USA, February
885
+ 2-7, 2018, pages 34–41. AAAI Press, 2018.
886
+ [6] J. Ens and P. Pasquier. MMM : Exploring conditional
887
+ multi-track music generation with the transformer.
888
+ CoRR, abs/2008.06048, 2020.
889
+ [7] C. Geerlings and A. Merono-Penuela. Interacting with
890
+ gpt-2 to generate controlled and believable musical
891
+ sequences in abc notation. In Proceedings of the 1st
892
+ Workshop on NLP for Music and Audio
893
+ (NLP4MusA), pages 49–53, 2020.
894
+ [8] Z. Guo, D. Makris, and D. Herremans. Hierarchical
895
+ recurrent neural networks for conditional melody
896
+ generation with long-term structure. In International
897
+ Joint Conference on Neural Networks, IJCNN 2021,
898
+ Shenzhen, China, July 18-22, 2021, pages 1–8. IEEE,
899
+ 2021.
900
+ [9] G. Hadjeres, F. Pachet, and F. Nielsen. Deepbach: a
901
+ steerable model for bach chorales generation. In
902
+ D. Precup and Y. W. Teh, editors, Proceedings of the
903
+ 34th International Conference on Machine Learning,
904
+ ICML 2017, Sydney, NSW, Australia, 6-11 August
905
+ 2017, volume 70 of Proceedings of Machine Learning
906
+ Research, pages 1362–1371. PMLR, 2017.
907
+ [10] D. Herremans and E. Chew. Morpheus: generating
908
+ structured music with constrained patterns and
909
+ tension. CoRR, abs/1812.04832, 2018.
910
+ [11] W. Hsiao, J. Liu, Y. Yeh, and Y. Yang. Compound
911
+ word transformer: Learning to compose full-song
912
+ music over dynamic directed hypergraphs. In
913
+ Thirty-Fifth AAAI Conference on Artificial
914
+ Intelligence, AAAI 2021, Thirty-Third Conference on
915
+ Innovative Applications of Artificial Intelligence,
916
+ IAAI 2021, The Eleventh Symposium on Educational
917
+ Advances in Artificial Intelligence, EAAI 2021,
918
+ Virtual Event, February 2-9, 2021, pages 178–186.
919
+ AAAI Press, 2021.
920
+ [12] C. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon,
921
+ C. Hawthorne, N. Shazeer, A. M. Dai, M. D.
922
+ Hoffman, M. Dinculescu, and D. Eck. Music
923
+ transformer: Generating music with long-term
924
+ structure. In 7th International Conference on
925
+ Learning Representations, ICLR 2019, New Orleans,
926
+ LA, USA, May 6-9, 2019. OpenReview.net, 2019.
927
+ [13] Y. Huang and Y. Yang. Pop music transformer:
928
+ Beat-based modeling and generation of expressive pop
929
+ piano compositions. In C. W. Chen, R. Cucchiara,
930
+ X. Hua, G. Qi, E. Ricci, Z. Zhang, and
931
+ R. Zimmermann, editors, MM ’20: The 28th ACM
932
+ International Conference on Multimedia, Virtual
933
+ Event / Seattle, WA, USA, October 12-16, 2020,
934
+ pages 1180–1188. ACM, 2020.
935
+ [14] V. I. Levenshtein et al. Binary codes capable of
936
+ correcting deletions, insertions, and reversals. In
937
+ Soviet physics doklady, volume 10, pages 707–710.
938
+ Soviet Union, 1966.
939
+ [15] I. Loshchilov and F. Hutter. Decoupled weight decay
940
+ regularization. In 7th International Conference on
941
+ Learning Representations, ICLR 2019, New Orleans,
942
+ LA, USA, May 6-9, 2019. OpenReview.net, 2019.
943
+ [16] P. Lu, X. Tan, B. Yu, T. Qin, S. Zhao, and T. Liu.
944
+ Meloform: Generating melody with musical form
945
+ based on expert systems and neural networks. CoRR,
946
+ abs/2208.14345, 2022.
947
+ [17] D. Naruse, T. Takahata, Y. Mukuta, and T. Harada.
948
+ Pop music generation with controllable phrase
949
+ lengths. In Proc. of the 23rd Int. Society for Music
950
+ Information Retrieval Conf., Bengaluru, India, 2022.
951
+ [18] S. Oore, I. Simon, S. Dieleman, D. Eck, and
952
+ K. Simonyan. This time with feeling: learning
953
+ expressive musical performance. Neural Comput.
954
+ Appl., 32(4):955–967, 2020.
955
+ [19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
956
+ I. Sutskever, et al. Language models are unsupervised
957
+ multitask learners. OpenAI blog, 1(8):9, 2019.
958
+ [20] B. L. Sturm, J. F. Santos, O. Ben-Tal, and
959
+ I. Korshunova. Music transcription modelling and
960
+ composition using deep learning. CoRR,
961
+ abs/1604.08723, 2016.
962
+ [21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
963
+ L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
964
+ Attention is all you need. In I. Guyon, U. von
965
+ Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
966
+ S. V. N. Vishwanathan, and R. Garnett, editors,
967
+ Advances in Neural Information Processing Systems
968
+ 30: Annual Conference on Neural Information
969
+ Processing Systems 2017, December 4-9, 2017, Long
970
+ Beach, CA, USA, pages 5998–6008, 2017.
971
+ [22] J. Wu, C. Hu, Y. Wang, X. Hu, and J. Zhu. A
972
+ hierarchical recurrent neural network for symbolic
973
+ melody generation. CoRR, abs/1712.05274, 2017.
974
+ [23] J. Wu, X. Liu, X. Hu, and J. Zhu. Popmnet:
975
+ Generating structured pop music melodies using
976
+ neural networks. Artif. Intell., 286:103303, 2020.
977
+ [24] L. Yang, S. Chou, and Y. Yang. Midinet: A
978
+
979
+ convolutional generative adversarial network for
980
+ symbolic-domain music generation. In S. J.
981
+ Cunningham, Z. Duan, X. Hu, and D. Turnbull,
982
+ editors, Proceedings of the 18th International Society
983
+ for Music Information Retrieval Conference, ISMIR
984
+ 2017, Suzhou, China, October 23-27, 2017, pages
985
+ 324–331, 2017.
986
+ [25] R. Yang, D. Wang, Z. Wang, T. Chen, J. Jiang, and
987
+ G. Xia. Deep music analogy via latent representation
988
+ disentanglement. In A. Flexer, G. Peeters, J. Urbano,
989
+ and A. Volk, editors, Proceedings of the 20th
990
+ International Society for Music Information Retrieval
991
+ Conference, ISMIR 2019, Delft, The Netherlands,
992
+ November 4-8, 2019, pages 596–603, 2019.
993
+ [26] Y. Yu, F. Harsco¨et, S. Canales, G. R. M, S. Tang, and
994
+ J. Jiang. Lyrics-conditioned neural melody generation.
995
+ In Y. M. Ro, W. Cheng, J. Kim, W. Chu, P. Cui,
996
+ J. Choi, M. Hu, and W. D. Neve, editors, MultiMedia
997
+ Modeling - 26th International Conference, MMM
998
+ 2020, Daejeon, South Korea, January 5-8, 2020,
999
+ Proceedings, Part II, volume 11962 of Lecture Notes
1000
+ in Computer Science, pages 709–714. Springer, 2020.
1001
+ [27] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T. Liu.
1002
+ Musicbert: Symbolic music understanding with
1003
+ large-scale pre-training. In C. Zong, F. Xia, W. Li,
1004
+ and R. Navigli, editors, Findings of the Association
1005
+ for Computational Linguistics: ACL/IJCNLP 2021,
1006
+ Online Event, August 1-6, 2021, volume
1007
+ ACL/IJCNLP 2021 of Findings of ACL, pages
1008
+ 791–800. Association for Computational Linguistics,
1009
+ 2021.
1010
+ [28] X. Zhang, J. Zhang, Y. Qiu, L. Wang, and J. Zhou.
1011
+ Structure-enhanced pop music generation via
1012
+ harmony-aware learning. In J. Magalh˜aes, A. D.
1013
+ Bimbo, S. Satoh, N. Sebe, X. Alameda-Pineda,
1014
+ Q. Jin, V. Oria, and L. Toni, editors, MM ’22: The
1015
+ 30th ACM International Conference on Multimedia,
1016
+ Lisboa, Portugal, October 10 - 14, 2022, pages
1017
+ 1204–1213. ACM, 2022.
1018
+ [29] Y. Zou, P. Zou, Y. Zhao, K. Zhang, R. Zhang, and
1019
+ X. Wang. Melons: generating melody with long-term
1020
+ structure using transformers and structure graph,
1021
+ 2021.
1022
+ APPENDIX
1023
+ A.
1024
+ EXAMPLES OF VARIOUS PLACEMENTS
1025
+ [SECS_3]
1026
+ L:1/4
1027
+ M:4/4
1028
+ K:C
1029
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
1030
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 ||
1031
+ “C” e e“G” d d/d/ |“Am” c A“Em” G E | “F” F3/2 G/ A F |“C” E/E/G/G/ c G |
1032
+ e e“G” d d/d/ |“Am” c A“Em” G E |“F” F3/2 G/“G” A B | “C” d c c2 ||
1033
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
1034
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 |]
1035
+ Control Codes
1036
+ Tune Header
1037
+ Tune Body II
1038
+ [SIM_10][SIM_3][BARS_8]
1039
+ [BARS_8]
1040
+ [SIM_3][BARS_8]
1041
+ Control Codes
1042
+ Control Codes
1043
+ Control Codes
1044
+ Tune Body I
1045
+ Tune Body III
1046
+ Figure 7: Section-based Placement (SP): NB and EDS con-
1047
+ trol codes are inserted before each section of the tune.
1048
+ L:1/4
1049
+ M:4/4
1050
+ K:C
1051
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
1052
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 ||
1053
+ “C” e e“G” d d/d/ |“Am” c A“Em” G E | “F” F3/2 G/ A F |“C” E/E/G/G/ c G |
1054
+ e e“G” d d/d/ |“Am” c A“Em” G E |“F” F3/2 G/“G” A B | “C” d c c2 ||
1055
+ “C” E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/ F A |“G” A G“C” C2 |
1056
+ E3/2 D/“G” G3/2“C” E/ | c G E G |“G” D3/2 E/“D” F D |“G” A G“C” C2 |]
1057
+ Tune Header
1058
+ Tune Body II
1059
+ [SECS_1][SIM_10][SIM_3][BARS_8]
1060
+ [SECS_3][BARS_8]
1061
+ [SECS_2][SIM_3][BARS_8]
1062
+ Control Codes
1063
+ Control Codes
1064
+ Control Codes
1065
+ Tune Body I
1066
+ Tune Body III
1067
+ Figure 8: Section Countdown Placement (SCP): NS control
1068
+ codes are inserted before each section of the tune as a count-
1069
+ down of the number of sections remaining in the tune.
1070
+ [SECS_3]
1071
+ L:1/4
1072
+ M:4/4
1073
+ K:C
1074
+ [BARS_8] “C” E3/2 D/“G” G3/2“C” E/ |
1075
+ [BARS_7] c G E G |
1076
+ [BARS_6] “G” D3/2 E/ F A |
1077
+ [BARS_5] “G” A G“C” C2 |
1078
+ [BARS_4] E3/2 D/“G” G3/2“C” E/ |
1079
+ [BARS_3] c G E G |
1080
+ [BARS_2] “G” D3/2 E/“D” F D |
1081
+ [BARS_1] “G” A G“C” C2 ||
1082
+ Control Codes
1083
+ Tune Header
1084
+ [SIM_3]
1085
+ Control Codes
1086
+ Tune Body I
1087
+ &
1088
+ Control Codes
1089
+ Tune Body II
1090
+ &
1091
+ Control Codes
1092
+ [BARS_8] “C” e e“G” d d/d/ |
1093
+ [BARS_7] “Am” c A“Em” G E |
1094
+ [BARS_6] “F” F3/2 G/ A F |
1095
+ [BARS_5] “C” E/E/G/G/ c G |
1096
+ [BARS_4] e e“G” d d/d/ |
1097
+ [BARS_3] “Am” c A“Em” G E |
1098
+ [BARS_2] “F” F3/2 G/“G” A B |
1099
+ [BARS_1] “C” d c c2 ||
1100
+ [SIM_10][SIM_3]
1101
+ Control Codes
1102
+ [BARS_8] “C” E3/2 D/“G” G3/2“C” E/ |
1103
+ [BARS_7] c G E G |
1104
+ [BARS_6] “G” D3/2 E/ F A |
1105
+ Tune Body III
1106
+ &
1107
+ Control Codes
1108
+
1109
+ Figure 9:
1110
+ Bar Countdown Placement (BCP): NB control
1111
+ codes are inserted before each bar of the tune as a count-
1112
+ down of the number of bars remained in the section.
1113
+ [SECS_3]
1114
+ L:1/4
1115
+ M:4/4
1116
+ K:C
1117
+ [BARS_8] “C” E3/2 D/“G” G3/2“C” E/ |
1118
+ [BARS_7] c G E G |
1119
+ [BARS_6] “G” D3/2 E/ F A |
1120
+ [BARS_5] “G” A G“C” C2 |
1121
+ [BARS_4] E3/2 D/“G” G3/2“C” E/ |
1122
+ [BARS_3] c G E G |
1123
+ [BARS_2] “G” D3/2 E/“D” F D |
1124
+ [BARS_1] “G” A G“C” C2 ||
1125
+ Control Codes
1126
+ Tune Header
1127
+ [SECS_2][SIM_3]
1128
+ Control Codes
1129
+ Tune Body I
1130
+ &
1131
+ Control Codes
1132
+ Tune Body II
1133
+ &
1134
+ Control Codes
1135
+ [BARS_8] “C” e e“G” d d/d/ |
1136
+ [BARS_7] “Am” c A“Em” G E |
1137
+ [BARS_6] “F” F3/2 G/ A F |
1138
+ [BARS_5] “C” E/E/G/G/ c G |
1139
+ [BARS_4] e e“G” d d/d/ |
1140
+ [BARS_3] “Am” c A“Em” G E |
1141
+ [BARS_2] “F” F3/2 G/“G” A B |
1142
+ [BARS_1] “C” d c c2 ||
1143
+ [SECS_1][SIM_10][SIM_3]
1144
+ Control Codes
1145
+ [BARS_8] “C” E3/2 D/“G” G3/2“C” E/ |
1146
+ [BARS_7] c G E G |
1147
+ [BARS_6] “G” D3/2 E/ F A |
1148
+ Tune Body III
1149
+ &
1150
+ Control Codes
1151
+
1152
+ Figure 10: Section & Bar Countdown Placement (SBCP):
1153
+ NS and NB control codes are inserted before each section
1154
+ and bar of the tune respectively, which allows for both the
1155
+ countdown of sections and bars to be presented in the piece.
1156
+
1157
+ 0
1158
+ 1
1159
+ 2
1160
+ 3
1161
+ 4
1162
+ 5
1163
+ 6
1164
+ 7
1165
+ 8
1166
+ 9
1167
+ 10
1168
+ 11
1169
+ 12
1170
+ 13
1171
+ 14
1172
+ 15
1173
+ 16
1174
+ 17
1175
+ 18
1176
+ 19
1177
+ 20
1178
+ 21
1179
+ 22
1180
+ 23
1181
+ 24
1182
+ 25
1183
+ 26
1184
+ 27
1185
+ 28
1186
+ 29
1187
+ 30
1188
+ 31
1189
+ 32
1190
+ 33
1191
+ 34
1192
+ 35
1193
+ 36
1194
+ 37
1195
+ 38
1196
+ 0
1197
+ 1
1198
+ 2
1199
+ 3
1200
+ 4
1201
+ 5
1202
+ 6
1203
+ 7
1204
+ 8
1205
+ 9
1206
+ 10
1207
+ 11
1208
+ 12
1209
+ 13
1210
+ 14
1211
+ 15
1212
+ 16
1213
+ 17
1214
+ 18
1215
+ 19
1216
+ 20
1217
+ 21
1218
+ 22
1219
+ 23
1220
+ 24
1221
+ 25
1222
+ 26
1223
+ 27
1224
+ 28
1225
+ 29
1226
+ 30
1227
+ 31
1228
+ 32
1229
+ 33
1230
+ 34
1231
+ 35
1232
+ 36
1233
+ 37
1234
+ 38
1235
+ 0.2
1236
+ 0.3
1237
+ 0.4
1238
+ 0.5
1239
+ 0.6
1240
+ 0.7
1241
+ 0.8
1242
+ 0.9
1243
+ 1.0
1244
+ 0
1245
+ 1
1246
+ 2
1247
+ 3
1248
+ 4
1249
+ 5
1250
+ 6
1251
+ 7
1252
+ 8
1253
+ 9
1254
+ 10
1255
+ 11
1256
+ 12
1257
+ 13
1258
+ 14
1259
+ 15
1260
+ 16
1261
+ 17
1262
+ 18
1263
+ 19
1264
+ 20
1265
+ 21
1266
+ 22
1267
+ 23
1268
+ 24
1269
+ 25
1270
+ 26
1271
+ 27
1272
+ 28
1273
+ 29
1274
+ 30
1275
+ 31
1276
+ 32
1277
+ 33
1278
+ 34
1279
+ 35
1280
+ 36
1281
+ 37
1282
+ 38
1283
+ 0
1284
+ 1
1285
+ 2
1286
+ 3
1287
+ 4
1288
+ 5
1289
+ 6
1290
+ 7
1291
+ 8
1292
+ 9
1293
+ 10
1294
+ 11
1295
+ 12
1296
+ 13
1297
+ 14
1298
+ 15
1299
+ 16
1300
+ 17
1301
+ 18
1302
+ 19
1303
+ 20
1304
+ 21
1305
+ 22
1306
+ 23
1307
+ 24
1308
+ 25
1309
+ 26
1310
+ 27
1311
+ 28
1312
+ 29
1313
+ 30
1314
+ 31
1315
+ 32
1316
+ 33
1317
+ 34
1318
+ 35
1319
+ 36
1320
+ 37
1321
+ 38
1322
+ 0.2
1323
+ 0.3
1324
+ 0.4
1325
+ 0.5
1326
+ 0.6
1327
+ 0.7
1328
+ 0.8
1329
+ 0.9
1330
+ 1.0
1331
+ (a) Hey Jude - NB Control Codes Only
1332
+ (b) Hey Jude - NB and NS Control Codes Only
1333
+ 0
1334
+ 1
1335
+ 2
1336
+ 3
1337
+ 4
1338
+ 5
1339
+ 6
1340
+ 7
1341
+ 8
1342
+ 9
1343
+ 10
1344
+ 11
1345
+ 12
1346
+ 13
1347
+ 14
1348
+ 15
1349
+ 16
1350
+ 17
1351
+ 18
1352
+ 19
1353
+ 20
1354
+ 21
1355
+ 22
1356
+ 23
1357
+ 24
1358
+ 25
1359
+ 26
1360
+ 27
1361
+ 28
1362
+ 29
1363
+ 30
1364
+ 31
1365
+ 32
1366
+ 33
1367
+ 34
1368
+ 35
1369
+ 36
1370
+ 37
1371
+ 38
1372
+ 0
1373
+ 1
1374
+ 2
1375
+ 3
1376
+ 4
1377
+ 5
1378
+ 6
1379
+ 7
1380
+ 8
1381
+ 9
1382
+ 10
1383
+ 11
1384
+ 12
1385
+ 13
1386
+ 14
1387
+ 15
1388
+ 16
1389
+ 17
1390
+ 18
1391
+ 19
1392
+ 20
1393
+ 21
1394
+ 22
1395
+ 23
1396
+ 24
1397
+ 25
1398
+ 26
1399
+ 27
1400
+ 28
1401
+ 29
1402
+ 30
1403
+ 31
1404
+ 32
1405
+ 33
1406
+ 34
1407
+ 35
1408
+ 36
1409
+ 37
1410
+ 38
1411
+ 0.2
1412
+ 0.3
1413
+ 0.4
1414
+ 0.5
1415
+ 0.6
1416
+ 0.7
1417
+ 0.8
1418
+ 0.9
1419
+ 1.0
1420
+ 0
1421
+ 1
1422
+ 2
1423
+ 3
1424
+ 4
1425
+ 5
1426
+ 6
1427
+ 7
1428
+ 8
1429
+ 9
1430
+ 10
1431
+ 11
1432
+ 12
1433
+ 13
1434
+ 14
1435
+ 15
1436
+ 16
1437
+ 17
1438
+ 18
1439
+ 19
1440
+ 20
1441
+ 21
1442
+ 22
1443
+ 23
1444
+ 24
1445
+ 25
1446
+ 26
1447
+ 27
1448
+ 28
1449
+ 29
1450
+ 30
1451
+ 31
1452
+ 32
1453
+ 33
1454
+ 34
1455
+ 35
1456
+ 36
1457
+ 37
1458
+ 38
1459
+ 0
1460
+ 1
1461
+ 2
1462
+ 3
1463
+ 4
1464
+ 5
1465
+ 6
1466
+ 7
1467
+ 8
1468
+ 9
1469
+ 10
1470
+ 11
1471
+ 12
1472
+ 13
1473
+ 14
1474
+ 15
1475
+ 16
1476
+ 17
1477
+ 18
1478
+ 19
1479
+ 20
1480
+ 21
1481
+ 22
1482
+ 23
1483
+ 24
1484
+ 25
1485
+ 26
1486
+ 27
1487
+ 28
1488
+ 29
1489
+ 30
1490
+ 31
1491
+ 32
1492
+ 33
1493
+ 34
1494
+ 35
1495
+ 36
1496
+ 37
1497
+ 38
1498
+ 0.2
1499
+ 0.3
1500
+ 0.4
1501
+ 0.5
1502
+ 0.6
1503
+ 0.7
1504
+ 0.8
1505
+ 0.9
1506
+ 1.0
1507
+ (c) Hey Jude - All Control Codes
1508
+ (d) Hey Jude - Original
1509
+ Figure 11: Visualisations of the self-similarity matrices of “Hey Jude” with form A9A’9B12A"9. (a), (b) and (c) are generated
1510
+ by TunesFormer with A9 (the first 9 bars) from the original composition (d) as the prompt.
1511
+ B.
1512
+ CASE STUDY OF CONTROL CODES
1513
+ Fig. 11 presents visualizations of the self-similarity matrices of several melodies. Fig. 11a-c were generated by TunesFormer-
1514
+ GP using the first nine bars of the original tune “Hey Jude” (Fig. 11d) as the prompt with different control codes specified.
1515
+ Fig. 11a was generated using only the NB control codes, which indicate the number of bars in the melody. The resulting
1516
+ melody exhibits a less cohesive structure than the original tune, with fewer clear phrase boundaries and a less distinct musical
1517
+ form. This suggests that while the NB control codes are important in generating melodies with a certain number of bars,
1518
+ they are not sufficient in achieving the same level of structural cohesiveness as the original tune.
1519
+ Fig. 11b specifies the NB and NS control codes, which indicate the number of sections and the number of bars within
1520
+ each section, respectively.
1521
+ The EDS control codes, which indicate the relationships between sections, are generated by
1522
+ TunesFormer itself. This generation strategy is similar to the approach used in [17], but the resulting self-similarity matrix
1523
+ is significantly different from the original tune as TunesFormer is not specified in terms of the relationships between sections.
1524
+ Fig. 11c uses all control codes from the original tune to form the structure of the generated tune. It is clear that Fig. 11c
1525
+ is very close to Fig. 11d, demonstrating the importance of EDS control codes for constructing well-structured melodies. It
1526
+ should be noted that the use of the same musical form does not mean that the content of the original tune is also copied.
1527
+ Overall, Fig. 11a-c show that while the NB control codes are important in generating melodies with a certain number
1528
+ of bars, they are not sufficient in achieving the same level of structural cohesiveness as the original tune. The introduction
1529
+ of NS control codes improves the structure of the generated melodies, but the EDS control codes are crucial in achieving a
1530
+ melody with a similar structure to the original tune.
1531
+
C9E1T4oBgHgl3EQfEANP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE2T4oBgHgl3EQfnwjC/content/2301.04012v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1129992afef4b7f1419aedc41511a503ef1d50df02b81967cf091d9c7c2fea73
3
+ size 2796862
CNE2T4oBgHgl3EQfnwjC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4705642eb279609fa0b3762bff43537b55d7e37218b52b385f97ed07228150d1
3
+ size 158935
CNE4T4oBgHgl3EQfeQ0p/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568fabcc7de700ac6f4f0961944f7019de32911e9d8d3e0ec4e8a3f273dbc6aa
3
+ size 6553645
CdAzT4oBgHgl3EQfGftE/content/tmp_files/2301.01028v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdAzT4oBgHgl3EQfGftE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdE1T4oBgHgl3EQfpwUV/content/tmp_files/2301.03334v1.pdf.txt ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Time-optimal universal quantum gates on superconducting circuits
2
+ Ze Li,1 Ming-Jie Liang,1 and Zheng-Yuan Xue1, 2, ∗
3
+ 1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics
4
+ and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
5
+ 2Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics,
6
+ South China Normal University, Guangzhou 510006, China
7
+ (Dated: January 10, 2023)
8
+ Decoherence is an inevitable problem when targeting to increase the fidelity of quantum gates, and thus
9
+ is one of the main obstacles for large-scale quantum computation. The longer a gate operation is, the more
10
+ decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent prob-
11
+ lem to be solved. To this end, time-optimal control based on solving the quantum brachistochron equation
12
+ is a straightforward solution. Here, based on time-optimal control, we propose a scheme to realize universal
13
+ quantum gates on superconducting qubits, in a two-dimensional square lattice configuration, and the two-qubit
14
+ gate fidelity can be higher than 99.7%. Meanwhile, we can further accelerate the z-axis gate considerably by
15
+ adjusting the time-independent detuning. Finally, in order to reduce the influence of the dephasing error, deco-
16
+ herence free subspace is also incorporated in our physical implementation. Therefore, we present a promising
17
+ fast scheme for large-scale quantum computation.
18
+ I.
19
+ INTRODUCTION
20
+ Due to the intrinsic superposition nature, quantum compu-
21
+ tation can not only greatly shorten the calculation time of cer-
22
+ tain problems, but also deal with some hard problems that are
23
+ hard for classical computers. Recently, quantum computation
24
+ has been implemented in a variety of systems [1–4], among
25
+ which, the superconducting quantum circuits system is one
26
+ of the most promising candidates [5–9]. However, besides
27
+ the existence of operational errors, a quantum system will in-
28
+ evitably couple to its surrounding environment, and thus lead
29
+ to an increase in the distortion of quantum states or opera-
30
+ tions. Therefore, how to achieve high fidelity quantum gates
31
+ in quantum systems is an urgent problem to be solved.
32
+ In the presence of noise, precise quantum control can be
33
+ realized by the fastest possible evolution.
34
+ Therefore, find-
35
+ ing a shorter gate evolution path to shorten the gate-time
36
+ has become an effective means to achieve high fidelity quan-
37
+ tum gates. Time-optimal control (TOC) based on solving the
38
+ quantum brachistochrone equation (QBE) [10] is an effective
39
+ scheme to shorten the evolution time [11]. Recently, TOC
40
+ based schemes for unitary operations have been proposed
41
+ [11–17] and experimental demonstrated [18–23], where the
42
+ needed time for specific quantum gate operations has been re-
43
+ duced significantly. However, universal quantum control with
44
+ analytical solution can only be possible for specific cases [12].
45
+ Here, based on TOC, we propose a scheme to realize uni-
46
+ versal quantum gates on superconducting transmon qubits, ar-
47
+ ranged in a two-dimensional (2D) square lattice configuration,
48
+ which is capable for large-scale universal quantum computa-
49
+ tion. In our scheme, controlling the time-dependent frequency
50
+ of the qubits, we can achieve the tunable coupling between
51
+ two transmon qubits [24, 25].
52
+ Meanwhile, we can further
53
+ shorten the evolution time of the Z-axis gate by adjusting the
54
+ time-independent detuning. Furthermore, to eliminate the ef-
55
56
+ fect of dephasing, which is another important factor affecting
57
+ the quantum gate fidelity, decoherence-free subspaces (DFS)
58
+ encoding [26–28] has been incorporated and the robustness of
59
+ our gates with respect to the decoherence is presented. There-
60
+ fore, our work realized high fidelity universal quantum gate
61
+ on superconducting circuits, which is a promising alternation
62
+ for future large-scale quantum computation.
63
+ II.
64
+ THE GENERAL THEORY
65
+ For a general two-level system, denoted by {|0⟩
66
+ =
67
+ (1, 0)† , |1⟩ = (0, 1)†}, assuming ℏ = 1 hereafter, when under
68
+ the driving of an external field, its general interaction Hamil-
69
+ tonian is
70
+ H(t) = 1
71
+ 2
72
+
73
+ δ(t)
74
+ Ω(t)e−iφ(t)
75
+ Ω(t)eiφ(t)
76
+ −δ(t)
77
+
78
+ ,
79
+ (1)
80
+ where Ω(t) and φ(t) is the time-dependent coupling strength
81
+ and phase of the driving field, δ(t) is the time-dependent
82
+ detuning between the qubit frequency and the driving field
83
+ frequency.
84
+ Assuming there are two mutually orthogo-
85
+ nal evolution states |Ψ±(t)⟩ that satisfy the time-dependent
86
+ Schr¨odinger equation of Hamiltonian in Eq. (1). The evolu-
87
+ tion operator can be written as
88
+ U(t) = Tei
89
+
90
+ H(t)dt
91
+ = |Ψ+(t)⟩ ⟨Ψ+(0)| + |Ψ−(t)⟩ ⟨Ψ−(0)| ,
92
+ (2)
93
+ where T is the time-ordering operator.
94
+ In order to con-
95
+ struct a particular evolution operator, we need to define a set
96
+ of auxiliary basis vectors |ψ±(t)⟩ = e−iγ±(t) |Ψ±(t)⟩ with
97
+ γ±(0) = 0 and γ+(t) = −γ−(t), which satisfy the boundary
98
+ condition of |ψ±(τ)⟩ = |ψ±(0)⟩ = |Ψ±(0)⟩. We select a pair
99
+ of dressed states
100
+ |ψ+(t)⟩ = cos χ(t)
101
+ 2 |0⟩ + sin χ(t)
102
+ 2 eiξ(t)|1⟩,
103
+ |ψ−(t)⟩ = sin χ(t)
104
+ 2 e−iξ(t)|0⟩ − cos χ(t)
105
+ 2 |1⟩,
106
+ (3)
107
+ arXiv:2301.03334v1 [quant-ph] 9 Jan 2023
108
+
109
+ 2
110
+ as a set of auxiliary basis vectors, which are the eigenstates of
111
+ the Lewis-Riesenfeld invariant [29] of Eq. (1),
112
+ I(t) = µ
113
+ 2
114
+
115
+ cos χ(t)
116
+ sin χ(t)e−iξ(t)
117
+ sin χ(t)eiξ(t)
118
+ − cos χ(t)
119
+
120
+ ,
121
+ (4)
122
+ where µ is an arbitrary constant. The auxiliary basis vectors
123
+ |ψ±(t)⟩ shows their evolutionary details on the Bloch sphere
124
+ through the time-dependent parameters ξ(t) and χ(t).
125
+ Then,
126
+ by
127
+ solving
128
+ dynamic
129
+ invariant
130
+ equation
131
+ of
132
+ i∂I(t)/∂t − [H(t), I(t)] = 0, the parameter {ξ(t), χ(t)} of
133
+ |ψ±(t)⟩ are decided by the parameters {Ω(t), φ(t), δ(t)} of
134
+ the Hamiltonian in Eq. (1) as [29–31]
135
+ ˙ξ(t) = δ(t) − Ω(t) cot χ(t) cos[φ(t) − ξ(t)],
136
+ ˙χ(t) = Ω(t) sin[φ(t) − ξ(t)].
137
+ (5)
138
+ After an evolution time τ, by solving the Schr¨odinger equa-
139
+ tion H(t) |Ψ±(t)⟩ = iℏ ∂
140
+ ∂t |Ψ±(t)⟩, we can obtain the overall
141
+ phase as
142
+ γ(τ) =
143
+ � τ
144
+ 0
145
+ 2 ˙ξ(t) sin2 [χ(t)/2] − δ(t)
146
+ 2 cos χ(t)
147
+ dt.
148
+ (6)
149
+ By setting χ(t) to be a constant, we can get a general evolution
150
+ operator of the process as
151
+ U(τ) = cos γ′
152
+
153
+ e−iξ−
154
+ 0
155
+ 0
156
+ eiξ−
157
+
158
+ +i sin γ′
159
+
160
+ cos χe−iξ−
161
+ sin χe−iξ+
162
+ sin χeiξ+
163
+ − cos χeiξ−
164
+
165
+ ,
166
+ (7)
167
+ where γ′ = γ(τ) + ξ− and ξ± = [ξ(τ) − ξ(0)]/2. We can get
168
+ the appropriate parameters γ, χ and ξ(t) to construct target
169
+ quantum gates by controlling the coupling strength Ω(t) and
170
+ the phase φ(t).
171
+ For realistic physical implementation, the interaction term
172
+ in Eq. (1), Hc(t) = Ω(t) [cos φ(t)σx + sin φ(t)σy] /2, needs
173
+ to satisfy the following two conditions.
174
+ Firstly, the cou-
175
+ pling strength is limited, here we set the maximum of Ω(t)
176
+ as Ω = [Ω(t)]max, that is, we need to satisfy f1(Hc(t)) =
177
+ [Tr(Hc(t))2 − Ω2/2]/2 = 0. Then, the form of the inter-
178
+ action Hamiltonian is usually not arbitrary. Here, indepen-
179
+ dent σz operator can’t be achieved, so it is necessary to satisfy
180
+ f2(Hc(t)) = Tr(Hc(t)σz) = 0. Considering the these two
181
+ conditions, based on the QBE of
182
+ dF
183
+ dt = −i[H(t), F],
184
+ (8)
185
+ where
186
+ F=
187
+ ∂LC
188
+ ∂Hc(t) =
189
+
190
+ ��
191
+ j=1,2 λjfj(Hc(t))
192
+
193
+ ∂Hc(t)
194
+ = λ1Hc(t) + λ2σz,
195
+ (9)
196
+ and Lagrange multiplier λj is defined as λ1 = 1/Ω and
197
+ λ2 = −c/2, we can obtain φ(t) = φ0 + φ′(t), φ′(t) =
198
+ � t
199
+ 0 [cΩ + δ] dt′ = ηt, where η and c are the constant. Fi-
200
+ nally, in order to implement TOC based quantum operations,
201
+ (a)
202
+ (b)
203
+ (c)
204
+ 1
205
+ 2
206
+ 3
207
+ 4
208
+ FIG. 1. Illustration of our proposed scheme. (a) A scalable 2D square
209
+ lattice consists of transmon qubits, where adjacent qubits are capac-
210
+ itively coupled. Two physical qubits of the same color encoded as
211
+ a DFS logical qubit. (b) The energy levels of two adjacent coupled
212
+ qubits Ti and Tj, where different excitation subspaces can be used
213
+ to implement different quantum gate. (c) Illustration of the evolution
214
+ path of the TOC based scheme (red line) on the Bloch sphere, where
215
+ χ is the angle between the direction of the auxiliary basis vector and
216
+ the vertical axis, and ξ(τ) − ξ(0) is the horizontal angle shift of the
217
+ auxiliary basis vector at a specific time τ.
218
+ the coupling strength, detuning and phase need to satisfy con-
219
+ ditions of ˙Ω = 0, ˙δ = 0 and ˙φ = η, respectively.
220
+ Now, we calculated the gate operation time τ by solving the
221
+ Eq. (5) and Eq. (6). The gate time of H, S, and T gates can
222
+ be expressed as
223
+ τH =
224
+
225
+
226
+ 2Ω ,
227
+ τS =
228
+ π
229
+ 2(Ω2 + δ2)
230
+ ��
231
+ 16δ2 + 7Ω2 − 3δ
232
+
233
+ ,
234
+ τT =
235
+ π
236
+ 4(Ω2 + δ2)
237
+ ��
238
+ 64δ2 + 15Ω2 − 7δ
239
+
240
+ ,
241
+ (10)
242
+ which indicate that δ can be adjusted to further accelerate the
243
+ S and T gates, due to the extra freedom on χ.
244
+ III.
245
+ PHYSICAL IMPLEMENTATION
246
+ Here, in this section, we implemented our TOC-based
247
+ scheme in the 2D square superconducting qubit lattice, as
248
+ shown in Fig. 1(a), where the coupling strength between two
249
+ adjacent transmons is fixed.
250
+ A.
251
+ Parametric Tunable Coupling
252
+ In order to control single-logical-qubit units and two-
253
+ logical-qubits units independently and construct the targeted
254
+ quantum gates exactly, tunable interactions between any two
255
+ transmon qubits should be implemented. For two adjacent
256
+ transmon qubits Ti and Tj, the interaction Hamiltonian can be
257
+ expressed as
258
+ H0
259
+ ij =
260
+
261
+ k=i,j
262
+ [ωk|1⟩k ⟨1 |+ (2ωk − αk)| 2⟩k ⟨2|]
263
+ (11)
264
+ + gij(|10⟩ij⟨01| +
265
+
266
+ 2|11⟩ij⟨02| +
267
+
268
+ 2|20⟩ij⟨11| + H.c.),
269
+
270
+ <10/:(0S
271
+ 100)
272
+ 0
273
+ 2.0
274
+ 0'4
275
+ bobnjgfiou
276
+ 24.0
277
+ 2.0
278
+ .0
279
+ a.0100)
280
+ 0
281
+ 2.0
282
+ 0'4
283
+ bobnjgfiou
284
+ 24.0
285
+ 2.0
286
+ .0
287
+ a.0s(t)-(0)1
288
+ HH
289
+ m
290
+ HH
291
+ 2
292
+ HH
293
+ 4
294
+ H[0] L1/1(T)S(O)3
295
+ where ωi,j and αi,j are the frequency and anharmonicity of
296
+ the i,j-th transmon qubit Ti and Tj, respectively, |CD⟩ij =
297
+ |C⟩i ⊗ |D⟩j. To achieve tunable coupling between Ti and Tj,
298
+ we added a frequency modulation in the form of ωj = ωj0 +
299
+ ϵj cos[νjt+φj(t)] for qubit Tj, with the driving frequency and
300
+ phase being νj and φj(t), respectively. Meanwhile, frequency
301
+ of Ti is fixed, which is written as ωi = ωi0 for the same layout
302
+ as ωj. Moving into the interaction picture with respect to
303
+ U I
304
+ ij = U I
305
+ i × U I
306
+ j ,
307
+ (12)
308
+ with
309
+ U I
310
+ i = exp[−i(ωi0b+
311
+ i bi − αi
312
+ 2 b+
313
+ i b+
314
+ i bibi)t],
315
+ (13)
316
+ U I
317
+ j = exp{−i[ωj0t + Γj sin(vjt + φj(t))]b+
318
+ j bj
319
+ −αj
320
+ 2 b+
321
+ j b+
322
+ j bjbjt},
323
+ (14)
324
+ with bi,j = (|0⟩i,j⟨1| +
325
+
326
+ 2|1⟩i,j⟨2|), Γj = ϵj/[νj + ˙φj(t)],
327
+ and then using Jacobi-Anger identity, exp(−iΓ sin θ)
328
+ =
329
+
330
+ n Jn(Γ) exp(−inθ), with Jn is the n−th Bessel function,
331
+ the transformed Hamiltonian can be written as
332
+ HI
333
+ ij = gijei∆ij
334
+ +∞
335
+
336
+ n=−∞
337
+ Jn(Γj)e[−in(νjt+φj(t))]{|10⟩ij⟨01|
338
+ +
339
+
340
+ 2eiαjt|11⟩ij⟨02|
341
+ +
342
+
343
+ 2e−iαit|20⟩ij⟨11|} + H.c.,
344
+ (15)
345
+ where ∆ij = −∆ji = ωi0 − ωj0 is the frequency difference
346
+ between Ti and Tj. The energy level diagram is shown in
347
+ Fig. 1(b), in which any two adjacent levels can be used to
348
+ realize quantum computation. In addition, Γj can be tuned
349
+ to achieve adjustable coupling between Ti and Tj, then we
350
+ can select appropriate parameters of the modulation filed to
351
+ construct target quantum gates.
352
+ B.
353
+ Single-Logical-Qubit gate based on TOC
354
+ In order to decrease dephasing which is a type of the deco-
355
+ herence, the DFS encoding can be incorporated in our scheme.
356
+ Set two adjacent transmon qubits in Eq. (15) to be qubits
357
+ T1 and T2 as shown in Fig. 1(a), where the logical qubits
358
+ {|0⟩L, |1⟩L} can be encoded in their single excitation sub-
359
+ space, i.e., S1 = Span{|0⟩L = |10⟩12, |1⟩L = |01⟩12}. In
360
+ order to obtain a Hamiltonian in the form of Eq. (1) for con-
361
+ structing universal quantum gates. It is natural to go into the
362
+ rotating frame with respect to
363
+ UA = exp
364
+
365
+
366
+ 2t(|0⟩L⟨0| − |1⟩L⟨1|)
367
+
368
+ ,
369
+ (16)
370
+ the transformed Hamiltonian of Eq. (15) can be written as
371
+ H′
372
+ 12 = δ
373
+ 2(|0⟩L⟨0| − |1⟩L⟨1|),
374
+ + g12[K12ei(∆12−δ)t|0⟩L⟨1| + H.c.]
375
+ (17)
376
+ (a)
377
+ (b)
378
+ (c)
379
+ (d)
380
+ (f)
381
+ (e)
382
+ FIG. 2. The gate fidelity as a function of the qubits’ frequency dif-
383
+ ferences ∆12 and the coupling strength g12. The numerical result of
384
+ H, S and T gates are shown in (a), (c) and (e), respectively. The
385
+ dynamics of the state population and fidelity of H, S and T gates are
386
+ shown in (b), (d) and (f), respectively.
387
+ where K12 = �+∞
388
+ n=−∞ Jn (Γ2) exp{−in(ν2t+φ2)}. Choose
389
+ the modulating frequency to meet ν2 = ∆12 − δ in Eq. (17),
390
+ after the rotational wave approximation, we obtain the Hamil-
391
+ tonian in the logical basis S1 as
392
+ Heff
393
+ 12 = 1
394
+ 2
395
+
396
+ δ
397
+ Ωe−iφ2
398
+ Ωeiφ2
399
+ −δ
400
+
401
+ ,
402
+ (18)
403
+ where Ω = 2g12J1(Γ2). Therefore, according to the general
404
+ theory in the last section, we can use TOC based scheme to
405
+ construct arbitrary single-logical-qubit quantum gates. We set
406
+ different parameters of the physical qubits for H, S and T
407
+ gates. For H gate, which is correspond to γ′H = π
408
+ 2 , ξ+
409
+ H =
410
+ ξ−
411
+ H = π and χH = π
412
+ 4 . For S and T gates, which is correspond
413
+ to γ′S = γ′T = π, ξ−
414
+ S = −3π/4 and ξ−
415
+ T = −7π/8. Based on
416
+ TOC and solving Eq. (15), here, ξ(t) is in the form of a linear
417
+ function and χ is a constant, whose path in Bloch sphere is
418
+ intuitive shown in Fig. 1(c).
419
+ Next, we use the Lindblad master equation of
420
+ ˙ρ = −i [H(t), ρ] + r−
421
+ 2 A (b−) + rz
422
+ 2 A (bz) ,
423
+ (19)
424
+ to simulate the performance of our scheme for the single-
425
+ logical-qubit gates, where ρ is density operator of the quan-
426
+ tum system, A(b) = 2bρb+ − ρb+b − b+bρ is the Lindblad
427
+ operator, r1
428
+ − = r2
429
+ − = r− and r1
430
+ z = r2
431
+ z = rz are the decay and
432
+ dephasing rates of the two transmons qubits T1 and T2, re-
433
+ spectively, with b− = �
434
+ k=1,2(|0⟩k⟨1|+
435
+
436
+ 2|1⟩k⟨2|) and bz =
437
+
438
+ (sHM).
439
+ J0
440
+ J2
441
+ SO
442
+ 300
443
+ 400
444
+ sHM)
445
+ 200
446
+ Q00JO
447
+ J2
448
+ SO
449
+ 300
450
+ 400
451
+ (≤HM)
452
+ 200
453
+ e00Tt
454
+ 0
455
+ 2.0
456
+ 0
457
+ bobjsou
458
+ 2.0Tt
459
+ 0
460
+ 2.0
461
+ 5.0
462
+ 04
463
+ bobjsou
464
+ 0.0
465
+ 8.0T.2.H
466
+ 0
467
+ 2.0
468
+ 0'4
469
+ oitsluqo
470
+ 0.0
471
+ 8.0Tt
472
+ 0
473
+ .0
474
+ 5.0
475
+ 04
476
+ bobjsrlou
477
+ 0.0
478
+ 8.0Qe.0
479
+ see.0
480
+ te.0
481
+ Qee.0
482
+ 8ee.0
483
+ J
484
+ avs
485
+ 10
486
+ 12
487
+ SO
488
+ 500
489
+ (sHM)
490
+ 400
491
+ eo0o(sHM)sr
492
+ J0
493
+ J2
494
+ SO
495
+ 300
496
+ 400
497
+ (sHM)
498
+ 200
499
+ Q004
500
+ (a)
501
+ (b)
502
+ (c)
503
+ (d)
504
+ FIG. 3. (a) Comparative results for the gate robustness. Frequency drift error of TOC based (solid line) and S-L based gates (dot line). (b) The
505
+ operation time τ2 in unit of 1/Ω with respect to the rotation angle γ(τ2) and δ2/Ω. (c) State fidelity as the function of the qubits frequency
506
+ differences ∆24 and capacitive coupling strength g24. (d) Considering the adjacent interactions from T1 and T3, state population and fidelity
507
+ dynamics of the CP-gate process with prescribed parameters as presented in the maintext.
508
+
509
+ k=1,2(|1⟩k⟨1| + 2|2⟩k⟨2|). Setting r = r− = rz = 2π × 4
510
+ kHz [8], as shown in Fig. 2, taking g12 and ∆12 as variables,
511
+ we numerically obtain the fidelity of the H, S and T gates,
512
+ which are defined as F = Tr(U †U ′)/Tr(U †U), where U ′ rep-
513
+ resents the evolution matrix under decoherence. For typical
514
+ examples, we consider the parameters of the physical qubits as
515
+ follow. The qubit frequency difference ∆12 = 2π×520 MHz,
516
+ the capacitive coupling strength g12 = 2π×14.5 MHz, the de-
517
+ tuning of H, S and T gates are modulated to δH = 2π×29.58
518
+ MHz, δS = 2π × 25 MHz, δT = 2π × 15 MHz, Γ2 is set as
519
+ 1.5, and Ω = 2π × 16.18 MHz. With those settings, fidelities
520
+ of the H, S, and T gates can reach FH=99.89%, FS=99.97%,
521
+ and FT =99.97%, respectively.
522
+ Next, to test the gate robustness of our scheme, we con-
523
+ sider the frequency drift error of the two transmons qubits T1
524
+ and T2, which is the main error source of the superconduct-
525
+ ing qubit lattice and is in the form of ω1,β = ω1 + βΩ and
526
+ ω2,β = ω2 − βΩ. Under the interaction picture, the interac-
527
+ tion Hamiltonian with error can be expressed as
528
+ H′
529
+ 12,β = HI
530
+ 12 + βΩ
531
+
532
+ b+
533
+ 1 b1 − b+
534
+ 2 b2
535
+
536
+ (20)
537
+ As shown in Fig. 3(a), we found that under the effect of qubit
538
+ frequency drift, our scheme exhibits a better resistance than
539
+ the single-loop (S-L) based gate scheme [32].
540
+ C.
541
+ Two-Logical-Qubit gate based on TOC
542
+ We next consider the implementation of the controlled
543
+ phase gate (CP-gate), which is an important element for the
544
+ universal quantum gates. As shown in Fig. 1(a), we consider
545
+ a two-logical qubits unit with two pairs of transmon qubits, T1
546
+ and T2, T3 and T4. Assuming |CDEF⟩ = |C⟩i ⊗|D⟩j ⊗|E⟩k ⊗
547
+ |F⟩l, there exists a four-dimensional DFS S2 = Span{|00⟩L =
548
+ |1010⟩, |01⟩L = |1001⟩, |10⟩L = |0110⟩, |11⟩L = |0101⟩}.
549
+ In addition, an auxiliary state |a⟩ = |0200⟩ is needed to assist
550
+ the implementation of the CP-gate. We consider the interac-
551
+ tion between two adjacent physical qubits T2 and T4. Similar
552
+ to the single-logical-qubit case, frequency of the T2 qubit ω2
553
+ needs to be modulated as ω2 = ω20 + ϵ2 cos(ν2t + φ2) to
554
+ achieve tunable coupling between qubits T2 and T4, in the
555
+ subspace of {|a⟩, |11⟩L}, the interacting Hamiltonian can be
556
+ written as
557
+ H′
558
+ 42 = δ
559
+ 2(|a⟩⟨a| − |11⟩L⟨11|)
560
+ + [
561
+
562
+ 2g42K42ei(∆42+α2+δ)t|11⟩L⟨a| + H.c. ], (21)
563
+ where K42 = �+∞
564
+ n=−∞ Jn (Γ′
565
+ 2) exp [−in (ν2t + φ2)]. When
566
+ we choose the resonance frequency ν2 = ∆24 − α2 − δ2, see
567
+ Eq. (15), assume Ω = 2g42J1(Γ2), Γ′
568
+ 2 = 1.6 and φ = φ2 +π,
569
+ then the Hamiltonian in Eq. (21) reduces to
570
+ Heff
571
+ 42 = 1
572
+ 2
573
+
574
+ δ
575
+ Ωe−iφ
576
+ Ωeiφ
577
+ −δ
578
+
579
+ ,
580
+ (22)
581
+ where |a⟩ and |11⟩L form the set of orthogonal basis vectors,
582
+ and φ2 = ηt is a linear function according to TOC solution.
583
+ The evolution operator is shown in Eq. (7). When we set
584
+ γ′ = π, we can obtain the evolution operator in the subspace
585
+ S2 as
586
+ U(τ2) =
587
+
588
+
589
+
590
+
591
+ 1 0 0
592
+ 0
593
+ 0 1 0
594
+ 0
595
+ 0 0 1
596
+ 0
597
+ 0 0 0 eiγ(τ2)
598
+
599
+
600
+
601
+ � ,
602
+ (23)
603
+ where γ(τ2) = ξ−
604
+ 2 + π. In this way, the CP gate can be ob-
605
+ tained. The gate time can be solved as
606
+ τ2 =
607
+ 2
608
+ Ω2 + δ2 {δ[γ(τ2) − π]
609
+ +
610
+
611
+ π2δ2 − Ω2[γ(τ2)2 − 2πγ(τ2)]
612
+
613
+ .
614
+ (24)
615
+ Similar to the S and T gates, the detuning δ2 can also be used
616
+ to further accelerate the gate time, as shown in Fig. 3(b),
617
+ where we have set γ(τ2) = π/2, δ2 = 2π × 27 MHz and
618
+ δ2/Ω = 2.3929.
619
+ In order to properly evaluate the performance of the CP-
620
+ gate, with the initial state |ψin⟩ = (|10⟩L + |11⟩L)/
621
+
622
+ 2, the
623
+ effect of frequency difference ∆24 and coupling strength g12
624
+ on the gate fidelity is shown in Fig.
625
+ 3(c).
626
+ When the pa-
627
+ rameters are set as ∆24 = 2π × 600 MHz, g24 = 2π × 7
628
+ MHz, α2 = 2π × 210 MHz and α4 = 2π × 230 MHz,
629
+ the fidelity of CP-gate can reach 99.88%. Actually, the leak-
630
+ age about two adjacent qubits T1 and T3 should be consid-
631
+ ered as well, when we set ∆12 = ∆34 = 2π × 900 MHz,
632
+
633
+ 0
634
+ -3
635
+ 0
636
+ -J
637
+ 216
638
+ 0
639
+ J
640
+ 3(sHM)
641
+ 1
642
+ 2
643
+ JO
644
+ J2
645
+ 300
646
+ ce.0
647
+ e.0
648
+ 400
649
+ re.0
650
+ (≤HM)
651
+ 200
652
+ 8e.0
653
+ Q00
654
+ Qe.0
655
+ 1000
656
+ .0
657
+ 0
658
+ bobjsIou
659
+ [10)[
660
+ .0
661
+ -lo1)7
662
+ -100)F
663
+ VilsbiH-B
664
+ 1.0-
665
+ 0
666
+ O'J
667
+ 8e.0
668
+ I-2 T- - -
669
+ 28Q.0
670
+ 1-2 2--
671
+ --H2-1
672
+ OOT T
673
+ Qe.0
674
+ OOT 2
675
+ OOT H-
676
+ Qe.0
677
+ 125
678
+ α1 = 2π × 200 MHz, α3 = 2π × 220 MHz, the fidelity
679
+ of CP gate can reach 99.72%. The state evolution process
680
+ is shown in Fig. 3(d), Lindblad master equation in Eq. (19)
681
+ should be considered as b− = �4
682
+ k=1(|0⟩k⟨1| +
683
+
684
+ 2|1⟩k⟨2|),
685
+ bz = �4
686
+ k=1(|1⟩k⟨1| + 2|2⟩k⟨2|), and the rates of decay and
687
+ dephasing for each transmon qubit is set as r = rk
688
+ − = rk
689
+ z =
690
+ 2π × 4 kHz.
691
+ IV.
692
+ CONCLUSION
693
+ In conclusion, we propose a scheme with TOC combined
694
+ with DFS, and implement a universal quantum gate set on
695
+ superconducting transmon qubits. For S, T and CP gates,
696
+ by adjusting the detuning, the gate operations can be com-
697
+ pleted in an extremely short time. Thus, our scheme provides
698
+ a promising way towards the practical realization of fast quan-
699
+ tum gates.
700
+ ACKNOWLEDGMENTS
701
+ This work was supported by the Key-Area Research and
702
+ Development Program of GuangDong Province (Grant No.
703
+ 2018B030326001), the National Natural Science Foundation
704
+ of China (Grant No. 12275090), and Guangdong Provincial
705
+ Key Laboratory (Grant No. 2020B1212060066).
706
+ [1] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
707
+ [2] Q. A. Turchette, C. J. Hood and W. Lange, Phys. Rev. Lett. 75,
708
+ 4710 (1995).
709
+ [3] G. K. Brennen, C. M. Caves and P. S. Jessen, Phys. Rev. Lett.
710
+ 82, 1060 (1999).
711
+ [4] D. Jaksch, H. J. Briegel and J. I. Cirac, Phys. Rev. Lett. 82, 1975
712
+ (1999).
713
+ [5] Y. Makhlin, G. Sch¨on and A. Shrman, Rev. Mod. Phys. 73, 357
714
+ (2001).
715
+ [6] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).
716
+ [7] J. Q. You and F. Nori, Nature 474, 589 (2011).
717
+ [8] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
718
+ [9] X. Gu, A. F. Kockum and A. Miranowicz, Phys. Rep. 718, 1102
719
+ (2017).
720
+ [10] H. J. Sussmann and J. C. Willems, IEEE Control Syst. Mag. 17,
721
+ 32 (1997).
722
+ [11] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev.
723
+ Lett. 96, 060503 (2006).
724
+ [12] A. Carlini and T. Koike, J. Phys. A. 46, 045307 (2013).
725
+ [13] X.-T. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo, and M.
726
+ Mohseni, Phys. Rev. Lett. 114, 170501 (2015).
727
+ [14] T. Chen and Z.-Y. Xue, Phys. Rev. Appl. 14, 064009 (2020).
728
+ [15] T. Chen, P. Shen and Z.-Y. Xue, Phys. Rev. Appl. 14, 034038
729
+ (2020).
730
+ [16] B.-J. Liu, Z.-Y. Xue, and M.-H. Yung, arXiv:2001.05182.
731
+ [17] G. O. Alves and E. Sj¨oqvist, Phys. Rev. A 106, 032406 (2022).
732
+ [18] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny,
733
+ Phys. Rev. Lett. 104, 083001 (2010).
734
+ [19] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo,
735
+ D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O.
736
+ Morsch, Nat. Phys. 8, 147 (2012).
737
+ [20] C. Avinadav, R. Fischer, P. London, and D. Gershoni, Phys.
738
+ Rev. B 89, 245311 (2014).
739
+ [21] J. Geng, Y. Wu, X.-T. Wang, K. Xu, F. Shi, Y. Xie, X. Rong,
740
+ and J. Du, Phys. Rev. Lett. 117, 170501 (2016).
741
+ [22] Z. Han, Y. Dong, B. Liu, X. Yang, S. Song, L. Qiu, D. Li, J.
742
+ Chu, W. Zheng, J. Xu, T. Huang, Z. Wang, X. Yu, X. Tan, D.
743
+ Lan, M.-H. Yung, and Y. Yu arXiv:2004.10364
744
+ [23] Y. Dong, C. Feng, Y. Zheng, X.-D. Chen, G.-C. Guo, and F.-W.
745
+ Sun, Phys. Rev. Res. 3, 043177 (2021).
746
+ [24] X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P.
747
+ Song, Z.-Y. Xue, Z.-Q. Yin, and L. Sun, Phys. Rev. Appl. 10,
748
+ 054009 (2018).
749
+ [25] J. Chu, D. Li, X. Yang, S. Song, Z. Han, Z. Yang, Y. Dong, W.
750
+ Zheng, Z. Wang, X. Yu, D. Lan, X. Tan, and Y. Yu, Phys. Rev.
751
+ Appl. 13, 064012 (2020).
752
+ [26] L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 79, 1953 (1997).
753
+ [27] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
754
+ [28] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett.
755
+ 81, 2594 (1998).
756
+ [29] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458
757
+ (1969).
758
+ [30] X. Chen, E. Torrontegui, and J. G. Muga, Phys. Rev. A. 83,
759
+ 062116 (2011).
760
+ [31] A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, New J.
761
+ Phys. 14, 093040 (2012).
762
+ [32] T. Chen and Z.-Y. Xue, Phys. Rev. Appl. 10, 054051 (2018).
763
+
CdE1T4oBgHgl3EQfpwUV/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf,len=520
2
+ page_content='Time-optimal universal quantum gates on superconducting circuits Ze Li,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
3
+ page_content='1 Ming-Jie Liang,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
4
+ page_content='1 and Zheng-Yuan Xue1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
5
+ page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
6
+ page_content=' ∗ 1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
7
+ page_content=' and School of Physics and Telecommunication Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
8
+ page_content=' South China Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
9
+ page_content=' Guangzhou 510006,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
10
+ page_content=' China 2Guangdong-Hong Kong Joint Laboratory of Quantum Matter,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
11
+ page_content=' and Frontier Research Institute for Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
12
+ page_content=' South China Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
13
+ page_content=' Guangzhou 510006,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
14
+ page_content=' China (Dated: January 10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
15
+ page_content=' 2023) Decoherence is an inevitable problem when targeting to increase the fidelity of quantum gates,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
16
+ page_content=' and thus is one of the main obstacles for large-scale quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
17
+ page_content=' The longer a gate operation is, the more decoherence-induced gate infidelity will be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
18
+ page_content=' Therefore, how to shorten the gate time becomes an urgent prob- lem to be solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
19
+ page_content=' To this end, time-optimal control based on solving the quantum brachistochron equation is a straightforward solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
20
+ page_content=' Here, based on time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits, in a two-dimensional square lattice configuration, and the two-qubit gate fidelity can be higher than 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
21
+ page_content='7%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
22
+ page_content=' Meanwhile, we can further accelerate the z-axis gate considerably by adjusting the time-independent detuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
23
+ page_content=' Finally, in order to reduce the influence of the dephasing error, deco- herence free subspace is also incorporated in our physical implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
24
+ page_content=' Therefore, we present a promising fast scheme for large-scale quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
25
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
26
+ page_content=' INTRODUCTION Due to the intrinsic superposition nature, quantum compu- tation can not only greatly shorten the calculation time of cer- tain problems, but also deal with some hard problems that are hard for classical computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
27
+ page_content=' Recently, quantum computation has been implemented in a variety of systems [1–4], among which, the superconducting quantum circuits system is one of the most promising candidates [5–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
28
+ page_content=' However, besides the existence of operational errors, a quantum system will in- evitably couple to its surrounding environment, and thus lead to an increase in the distortion of quantum states or opera- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
29
+ page_content=' Therefore, how to achieve high fidelity quantum gates in quantum systems is an urgent problem to be solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
30
+ page_content=' In the presence of noise, precise quantum control can be realized by the fastest possible evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
31
+ page_content=' Therefore, find- ing a shorter gate evolution path to shorten the gate-time has become an effective means to achieve high fidelity quan- tum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
32
+ page_content=' Time-optimal control (TOC) based on solving the quantum brachistochrone equation (QBE) [10] is an effective scheme to shorten the evolution time [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
33
+ page_content=' Recently, TOC based schemes for unitary operations have been proposed [11–17] and experimental demonstrated [18–23], where the needed time for specific quantum gate operations has been re- duced significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
34
+ page_content=' However, universal quantum control with analytical solution can only be possible for specific cases [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
35
+ page_content=' Here, based on TOC, we propose a scheme to realize uni- versal quantum gates on superconducting transmon qubits, ar- ranged in a two-dimensional (2D) square lattice configuration, which is capable for large-scale universal quantum computa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
36
+ page_content=' In our scheme, controlling the time-dependent frequency of the qubits, we can achieve the tunable coupling between two transmon qubits [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
37
+ page_content=' Meanwhile, we can further shorten the evolution time of the Z-axis gate by adjusting the time-independent detuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
38
+ page_content=' Furthermore, to eliminate the ef- ∗ zyxue83@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
39
+ page_content='com fect of dephasing, which is another important factor affecting the quantum gate fidelity, decoherence-free subspaces (DFS) encoding [26–28] has been incorporated and the robustness of our gates with respect to the decoherence is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
40
+ page_content=' There- fore, our work realized high fidelity universal quantum gate on superconducting circuits, which is a promising alternation for future large-scale quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
41
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
42
+ page_content=' THE GENERAL THEORY For a general two-level system, denoted by {|0⟩ = (1, 0)† , |1⟩ = (0, 1)†}, assuming ℏ = 1 hereafter, when under the driving of an external field, its general interaction Hamil- tonian is H(t) = 1 2 � δ(t) Ω(t)e−iφ(t) Ω(t)eiφ(t) −δ(t) � , (1) where Ω(t) and φ(t) is the time-dependent coupling strength and phase of the driving field, δ(t) is the time-dependent detuning between the qubit frequency and the driving field frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
43
+ page_content=' Assuming there are two mutually orthogo- nal evolution states |Ψ±(t)⟩ that satisfy the time-dependent Schr¨odinger equation of Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
44
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
45
+ page_content=' The evolu- tion operator can be written as U(t) = Tei � H(t)dt = |Ψ+(t)⟩ ⟨Ψ+(0)| + |Ψ−(t)⟩ ⟨Ψ−(0)| , (2) where T is the time-ordering operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
46
+ page_content=' In order to con- struct a particular evolution operator, we need to define a set of auxiliary basis vectors |ψ±(t)⟩ = e−iγ±(t) |Ψ±(t)⟩ with γ±(0) = 0 and γ+(t) = −γ−(t), which satisfy the boundary condition of |ψ±(τ)⟩ = |ψ±(0)⟩ = |Ψ±(0)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
47
+ page_content=' We select a pair of dressed states |ψ+(t)⟩ = cos χ(t) 2 |0⟩ + sin χ(t) 2 eiξ(t)|1⟩, |ψ−(t)⟩ = sin χ(t) 2 e−iξ(t)|0⟩ − cos χ(t) 2 |1⟩, (3) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
48
+ page_content='03334v1 [quant-ph] 9 Jan 2023 2 as a set of auxiliary basis vectors, which are the eigenstates of the Lewis-Riesenfeld invariant [29] of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
49
+ page_content=' (1), I(t) = µ 2 � cos χ(t) sin χ(t)e−iξ(t) sin χ(t)eiξ(t) − cos χ(t) � , (4) where µ is an arbitrary constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
50
+ page_content=' The auxiliary basis vectors |ψ±(t)⟩ shows their evolutionary details on the Bloch sphere through the time-dependent parameters ξ(t) and χ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
51
+ page_content=' Then, by solving dynamic invariant equation of i∂I(t)/∂t − [H(t), I(t)] = 0, the parameter {ξ(t), χ(t)} of |ψ±(t)⟩ are decided by the parameters {Ω(t), φ(t), δ(t)} of the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
52
+ page_content=' (1) as [29–31] ˙ξ(t) = δ(t) − Ω(t) cot χ(t) cos[φ(t) − ξ(t)], ˙χ(t) = Ω(t) sin[φ(t) − ξ(t)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
53
+ page_content=' (5) After an evolution time τ, by solving the Schr¨odinger equa- tion H(t) |Ψ±(t)⟩ = iℏ ∂ ∂t |Ψ±(t)⟩, we can obtain the overall phase as γ(τ) = � τ 0 2 ˙ξ(t) sin2 [χ(t)/2] − δ(t) 2 cos χ(t) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
54
+ page_content=' (6) By setting χ(t) to be a constant, we can get a general evolution operator of the process as U(τ) = cos γ′ � e−iξ− 0 0 eiξ− � +i sin γ′ � cos χe−iξ− sin χe−iξ+ sin χeiξ+ − cos χeiξ− � , (7) where γ′ = γ(τ) + ξ− and ξ± = [ξ(τ) − ξ(0)]/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
55
+ page_content=' We can get the appropriate parameters γ, χ and ξ(t) to construct target quantum gates by controlling the coupling strength Ω(t) and the phase φ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
56
+ page_content=' For realistic physical implementation, the interaction term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
57
+ page_content=' (1), Hc(t) = Ω(t) [cos φ(t)σx + sin φ(t)σy] /2, needs to satisfy the following two conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
58
+ page_content=' Firstly, the cou- pling strength is limited, here we set the maximum of Ω(t) as Ω = [Ω(t)]max, that is, we need to satisfy f1(Hc(t)) = [Tr(Hc(t))2 − Ω2/2]/2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
59
+ page_content=' Then, the form of the inter- action Hamiltonian is usually not arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
60
+ page_content=' Here, indepen- dent σz operator can’t be achieved, so it is necessary to satisfy f2(Hc(t)) = Tr(Hc(t)σz) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
61
+ page_content=' Considering the these two conditions, based on the QBE of dF dt = −i[H(t), F], (8) where F= ∂LC ∂Hc(t) = ∂ �� j=1,2 λjfj(Hc(t)) � ∂Hc(t) = λ1Hc(t) + λ2σz, (9) and Lagrange multiplier λj is defined as λ1 = 1/Ω and λ2 = −c/2, we can obtain φ(t) = φ0 + φ′(t), φ′(t) = � t 0 [cΩ + δ] dt′ = ηt, where η and c are the constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
62
+ page_content=' Fi- nally, in order to implement TOC based quantum operations, (a) (b) (c) 1 2 3 4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
63
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
64
+ page_content=' Illustration of our proposed scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
65
+ page_content=' (a) A scalable 2D square lattice consists of transmon qubits, where adjacent qubits are capac- itively coupled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
66
+ page_content=' Two physical qubits of the same color encoded as a DFS logical qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
67
+ page_content=' (b) The energy levels of two adjacent coupled qubits Ti and Tj, where different excitation subspaces can be used to implement different quantum gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
68
+ page_content=' (c) Illustration of the evolution path of the TOC based scheme (red line) on the Bloch sphere, where χ is the angle between the direction of the auxiliary basis vector and the vertical axis, and ξ(τ) − ξ(0) is the horizontal angle shift of the auxiliary basis vector at a specific time τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
69
+ page_content=' the coupling strength, detuning and phase need to satisfy con- ditions of ˙Ω = 0, ˙δ = 0 and ˙φ = η, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
70
+ page_content=' Now, we calculated the gate operation time τ by solving the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
71
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
72
+ page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
73
+ page_content=' The gate time of H, S, and T gates can be expressed as τH = √ 2π 2Ω , τS = π 2(Ω2 + δ2) �� 16δ2 + 7Ω2 − 3δ � , τT = π 4(Ω2 + δ2) �� 64δ2 + 15Ω2 − 7δ � , (10) which indicate that δ can be adjusted to further accelerate the S and T gates, due to the extra freedom on χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
74
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
75
+ page_content=' PHYSICAL IMPLEMENTATION Here, in this section, we implemented our TOC-based scheme in the 2D square superconducting qubit lattice, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
76
+ page_content=' 1(a), where the coupling strength between two adjacent transmons is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
77
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
78
+ page_content=' Parametric Tunable Coupling In order to control single-logical-qubit units and two- logical-qubits units independently and construct the targeted quantum gates exactly, tunable interactions between any two transmon qubits should be implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
79
+ page_content=' For two adjacent transmon qubits Ti and Tj, the interaction Hamiltonian can be expressed as H0 ij = � k=i,j [ωk|1⟩k ⟨1 |+ (2ωk − αk)| 2⟩k ⟨2|] (11) + gij(|10⟩ij⟨01| + √ 2|11⟩ij⟨02| + √ 2|20⟩ij⟨11| + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
80
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
81
+ page_content='), <10/:(0S 100) 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
82
+ page_content="0 0'4 bobnjgfiou 24." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
83
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
84
+ page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
85
+ page_content='0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
86
+ page_content='0100) 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
87
+ page_content="0 0'4 bobnjgfiou 24." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
88
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
89
+ page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
90
+ page_content='0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
91
+ page_content='0s(t)-(0)1 HH m HH 2 HH 4 H[0] L1/1(T)S(O)3 where ωi,j and αi,j are the frequency and anharmonicity of the i,j-th transmon qubit Ti and Tj, respectively, |CD⟩ij = |C⟩i ⊗ |D⟩j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
92
+ page_content=' To achieve tunable coupling between Ti and Tj, we added a frequency modulation in the form of ωj = ωj0 + ϵj cos[νjt+φj(t)] for qubit Tj, with the driving frequency and phase being νj and φj(t), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
93
+ page_content=' Meanwhile, frequency of Ti is fixed, which is written as ωi = ωi0 for the same layout as ωj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
94
+ page_content=' Moving into the interaction picture with respect to U I ij = U I i × U I j ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
95
+ page_content=' (12) with U I i = exp[−i(ωi0b+ i bi − αi 2 b+ i b+ i bibi)t],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
96
+ page_content=' (13) U I j = exp{−i[ωj0t + Γj sin(vjt + φj(t))]b+ j bj −αj 2 b+ j b+ j bjbjt},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
97
+ page_content=' (14) with bi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
98
+ page_content='j = (|0⟩i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
99
+ page_content='j⟨1| + √ 2|1⟩i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
100
+ page_content='j⟨2|),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
101
+ page_content=' Γj = ϵj/[νj + ˙φj(t)],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
102
+ page_content=' and then using Jacobi-Anger identity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
103
+ page_content=' exp(−iΓ sin θ) = � n Jn(Γ) exp(−inθ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
104
+ page_content=' with Jn is the n−th Bessel function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
105
+ page_content=' the transformed Hamiltonian can be written as HI ij = gijei∆ij +∞ � n=−∞ Jn(Γj)e[−in(νjt+φj(t))]{|10⟩ij⟨01| + √ 2eiαjt|11⟩ij⟨02| + √ 2e−iαit|20⟩ij⟨11|} + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
106
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
107
+ page_content=', (15) where ∆ij = −∆ji = ωi0 − ωj0 is the frequency difference between Ti and Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
108
+ page_content=' The energy level diagram is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
109
+ page_content=' 1(b), in which any two adjacent levels can be used to realize quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
110
+ page_content=' In addition, Γj can be tuned to achieve adjustable coupling between Ti and Tj, then we can select appropriate parameters of the modulation filed to construct target quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
111
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
112
+ page_content=' Single-Logical-Qubit gate based on TOC In order to decrease dephasing which is a type of the deco- herence, the DFS encoding can be incorporated in our scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
113
+ page_content=' Set two adjacent transmon qubits in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
114
+ page_content=' (15) to be qubits T1 and T2 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
115
+ page_content=' 1(a), where the logical qubits {|0⟩L, |1⟩L} can be encoded in their single excitation sub- space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
116
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
117
+ page_content=', S1 = Span{|0⟩L = |10⟩12, |1⟩L = |01⟩12}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
118
+ page_content=' In order to obtain a Hamiltonian in the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
119
+ page_content=' (1) for con- structing universal quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
120
+ page_content=' It is natural to go into the rotating frame with respect to UA = exp � iδ 2t(|0⟩L⟨0| − |1⟩L⟨1|) � , (16) the transformed Hamiltonian of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
121
+ page_content=' (15) can be written as H′ 12 = δ 2(|0⟩L⟨0| − |1⟩L⟨1|), + g12[K12ei(∆12−δ)t|0⟩L⟨1| + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
122
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
123
+ page_content='] (17) (a) (b) (c) (d) (f) (e) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
124
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
125
+ page_content=' The gate fidelity as a function of the qubits’ frequency dif- ferences ∆12 and the coupling strength g12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
126
+ page_content=' The numerical result of H, S and T gates are shown in (a), (c) and (e), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
127
+ page_content=' The dynamics of the state population and fidelity of H, S and T gates are shown in (b), (d) and (f), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
128
+ page_content=' where K12 = �+∞ n=−∞ Jn (Γ2) exp{−in(ν2t+φ2)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
129
+ page_content=' Choose the modulating frequency to meet ν2 = ∆12 − δ in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
130
+ page_content=' (17), after the rotational wave approximation, we obtain the Hamil- tonian in the logical basis S1 as Heff 12 = 1 2 � δ Ωe−iφ2 Ωeiφ2 −δ � , (18) where Ω = 2g12J1(Γ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
131
+ page_content=' Therefore, according to the general theory in the last section, we can use TOC based scheme to construct arbitrary single-logical-qubit quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
132
+ page_content=' We set different parameters of the physical qubits for H, S and T gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
133
+ page_content=' For H gate, which is correspond to γ′H = π 2 , ξ+ H = ξ− H = π and χH = π 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
134
+ page_content=' For S and T gates, which is correspond to γ′S = γ′T = π, ξ− S = −3π/4 and ξ− T = −7π/8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
135
+ page_content=' Based on TOC and solving Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
136
+ page_content=' (15), here, ξ(t) is in the form of a linear function and χ is a constant, whose path in Bloch sphere is intuitive shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
137
+ page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
138
+ page_content=' Next, we use the Lindblad master equation of ˙ρ = −i [H(t), ρ] + r− 2 A (b−) + rz 2 A (bz) , (19) to simulate the performance of our scheme for the single- logical-qubit gates, where ρ is density operator of the quan- tum system, A(b) = 2bρb+ − ρb+b − b+bρ is the Lindblad operator, r1 − = r2 − = r− and r1 z = r2 z = rz are the decay and dephasing rates of the two transmons qubits T1 and T2, re- spectively, with b− = � k=1,2(|0⟩k⟨1|+ √ 2|1⟩k⟨2|) and bz = (sHM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
139
+ page_content=' J0 J2 SO 300 400 sHM) 200 Q00JO J2 SO 300 400 (≤HM) 200 e00Tt 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
140
+ page_content='0 0 bobjsou 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
141
+ page_content='0Tt 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
142
+ page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
143
+ page_content='0 04 bobjsou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
144
+ page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
145
+ page_content='0T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
146
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
147
+ page_content='H 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
148
+ page_content="0 0'4 oitsluqo 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
149
+ page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
150
+ page_content='0Tt 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
151
+ page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
152
+ page_content='0 04 bobjsrlou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
153
+ page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
154
+ page_content='0Qe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
155
+ page_content='0 see.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
156
+ page_content='0 te.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
157
+ page_content='0 Qee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
158
+ page_content='0 8ee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
159
+ page_content='0 J avs 10 12 SO 500 (sHM) 400 eo0o(sHM)sr J0 J2 SO 300 400 (sHM) 200 Q004 (a) (b) (c) (d) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
160
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
161
+ page_content=' (a) Comparative results for the gate robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
162
+ page_content=' Frequency drift error of TOC based (solid line) and S-L based gates (dot line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
163
+ page_content=' (b) The operation time τ2 in unit of 1/Ω with respect to the rotation angle γ(τ2) and δ2/Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
164
+ page_content=' (c) State fidelity as the function of the qubits frequency differences ∆24 and capacitive coupling strength g24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
165
+ page_content=' (d) Considering the adjacent interactions from T1 and T3, state population and fidelity dynamics of the CP-gate process with prescribed parameters as presented in the maintext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
166
+ page_content=' � k=1,2(|1⟩k⟨1| + 2|2⟩k⟨2|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
167
+ page_content=' Setting r = r− = rz = 2π × 4 kHz [8], as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
168
+ page_content=' 2, taking g12 and ∆12 as variables, we numerically obtain the fidelity of the H, S and T gates, which are defined as F = Tr(U †U ′)/Tr(U †U), where U ′ rep- resents the evolution matrix under decoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
169
+ page_content=' For typical examples, we consider the parameters of the physical qubits as follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
170
+ page_content=' The qubit frequency difference ∆12 = 2π×520 MHz, the capacitive coupling strength g12 = 2π×14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
171
+ page_content='5 MHz, the de- tuning of H, S and T gates are modulated to δH = 2π×29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
172
+ page_content='58 MHz, δS = 2π × 25 MHz, δT = 2π × 15 MHz, Γ2 is set as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
173
+ page_content='5, and Ω = 2π × 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
174
+ page_content='18 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
175
+ page_content=' With those settings, fidelities of the H, S, and T gates can reach FH=99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
176
+ page_content='89%, FS=99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
177
+ page_content='97%, and FT =99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
178
+ page_content='97%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
179
+ page_content=' Next, to test the gate robustness of our scheme, we con- sider the frequency drift error of the two transmons qubits T1 and T2, which is the main error source of the superconduct- ing qubit lattice and is in the form of ω1,β = ω1 + βΩ and ω2,β = ω2 − βΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
180
+ page_content=' Under the interaction picture, the interac- tion Hamiltonian with error can be expressed as H′ 12,β = HI 12 + βΩ � b+ 1 b1 − b+ 2 b2 � (20) As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
181
+ page_content=' 3(a), we found that under the effect of qubit frequency drift, our scheme exhibits a better resistance than the single-loop (S-L) based gate scheme [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
182
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
183
+ page_content=' Two-Logical-Qubit gate based on TOC We next consider the implementation of the controlled phase gate (CP-gate), which is an important element for the universal quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
184
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
185
+ page_content=' 1(a), we consider a two-logical qubits unit with two pairs of transmon qubits, T1 and T2, T3 and T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
186
+ page_content=' Assuming |CDEF⟩ = |C⟩i ⊗|D⟩j ⊗|E⟩k ⊗ |F⟩l, there exists a four-dimensional DFS S2 = Span{|00⟩L = |1010⟩, |01⟩L = |1001⟩, |10⟩L = |0110⟩, |11⟩L = |0101⟩}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
187
+ page_content=' In addition, an auxiliary state |a⟩ = |0200⟩ is needed to assist the implementation of the CP-gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
188
+ page_content=' We consider the interac- tion between two adjacent physical qubits T2 and T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
189
+ page_content=' Similar to the single-logical-qubit case, frequency of the T2 qubit ω2 needs to be modulated as ω2 = ω20 + ϵ2 cos(ν2t + φ2) to achieve tunable coupling between qubits T2 and T4, in the subspace of {|a⟩, |11⟩L}, the interacting Hamiltonian can be written as H′ 42 = δ 2(|a⟩⟨a| − |11⟩L⟨11|) + [ √ 2g42K42ei(∆42+α2+δ)t|11⟩L⟨a| + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
190
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
191
+ page_content=' ], (21) where K42 = �+∞ n=−∞ Jn (Γ′ 2) exp [−in (ν2t + φ2)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
192
+ page_content=' When we choose the resonance frequency ν2 = ∆24 − α2 − δ2, see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
193
+ page_content=' (15), assume Ω = 2g42J1(Γ2), Γ′ 2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
194
+ page_content='6 and φ = φ2 +π, then the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
195
+ page_content=' (21) reduces to Heff 42 = 1 2 � δ Ωe−iφ Ωeiφ −δ � , (22) where |a⟩ and |11⟩L form the set of orthogonal basis vectors, and φ2 = ηt is a linear function according to TOC solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
196
+ page_content=' The evolution operator is shown in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
197
+ page_content=' (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
198
+ page_content=' When we set γ′ = π, we can obtain the evolution operator in the subspace S2 as U(τ2) = � � � � 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 eiγ(τ2) � � � � , (23) where γ(τ2) = ξ− 2 + π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
199
+ page_content=' In this way, the CP gate can be ob- tained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
200
+ page_content=' The gate time can be solved as τ2 = 2 Ω2 + δ2 {δ[γ(τ2) − π] + � π2δ2 − Ω2[γ(τ2)2 − 2πγ(τ2)] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
201
+ page_content=' (24) Similar to the S and T gates, the detuning δ2 can also be used to further accelerate the gate time, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
202
+ page_content=' 3(b), where we have set γ(τ2) = π/2, δ2 = 2π × 27 MHz and δ2/Ω = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
203
+ page_content='3929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
204
+ page_content=' In order to properly evaluate the performance of the CP- gate, with the initial state |ψin⟩ = (|10⟩L + |11⟩L)/ √ 2, the effect of frequency difference ∆24 and coupling strength g12 on the gate fidelity is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
205
+ page_content=' 3(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
206
+ page_content=' When the pa- rameters are set as ∆24 = 2π × 600 MHz, g24 = 2π × 7 MHz, α2 = 2π × 210 MHz and α4 = 2π × 230 MHz, the fidelity of CP-gate can reach 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
207
+ page_content='88%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
208
+ page_content=' Actually, the leak- age about two adjacent qubits T1 and T3 should be consid- ered as well, when we set ∆12 = ∆34 = 2π × 900 MHz, 0 3 0 J 216 0 J 3(sHM) 1 2 JO J2 300 ce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
209
+ page_content='0 e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
210
+ page_content='0 400 re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
211
+ page_content='0 (≤HM) 200 8e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
212
+ page_content='0 Q00 Qe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
213
+ page_content='0 1000 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
214
+ page_content='0 0 bobjsIou [10)[ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
215
+ page_content='0 lo1)7 100)F VilsbiH-B 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
216
+ page_content="0- 0 O'J 8e." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
217
+ page_content='0 I-2 T- - - 28Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
218
+ page_content='0 1-2 2-- --H2-1 OOT T Qe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
219
+ page_content='0 OOT 2 OOT H- Qe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
220
+ page_content='0 125 α1 = 2π × 200 MHz, α3 = 2π × 220 MHz, the fidelity of CP gate can reach 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
221
+ page_content='72%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
222
+ page_content=' The state evolution process is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
223
+ page_content=' 3(d), Lindblad master equation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
224
+ page_content=' (19) should be considered as b− = �4 k=1(|0⟩k⟨1| + √ 2|1⟩k⟨2|), bz = �4 k=1(|1⟩k⟨1| + 2|2⟩k⟨2|), and the rates of decay and dephasing for each transmon qubit is set as r = rk − = rk z = 2π × 4 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
225
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
226
+ page_content=' CONCLUSION In conclusion, we propose a scheme with TOC combined with DFS, and implement a universal quantum gate set on superconducting transmon qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
227
+ page_content=' For S, T and CP gates, by adjusting the detuning, the gate operations can be com- pleted in an extremely short time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
228
+ page_content=' Thus, our scheme provides a promising way towards the practical realization of fast quan- tum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
229
+ page_content=' ACKNOWLEDGMENTS This work was supported by the Key-Area Research and Development Program of GuangDong Province (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
230
+ page_content=' 2018B030326001), the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
231
+ page_content=' 12275090), and Guangdong Provincial Key Laboratory (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
232
+ page_content=' 2020B1212060066).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
233
+ page_content=' [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
234
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
235
+ page_content=' Cirac and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
236
+ page_content=' Zoller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
237
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
238
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
239
+ page_content=' 74, 4091 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
240
+ page_content=' [2] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
241
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
242
+ page_content=' Turchette, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
243
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
244
+ page_content=' Hood and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
245
+ page_content=' Lange, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
246
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
247
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
248
+ page_content=' 75, 4710 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
249
+ page_content=' [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
250
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
251
+ page_content=' Brennen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
252
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
253
+ page_content=' Caves and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
254
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
255
+ page_content=' Jessen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
256
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
257
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
258
+ page_content=' 82, 1060 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
259
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
260
+ page_content=' Jaksch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
261
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
262
+ page_content=' Briegel and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
263
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
264
+ page_content=' Cirac, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
265
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
266
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
267
+ page_content=' 82, 1975 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
268
+ page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
269
+ page_content=' Makhlin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
270
+ page_content=' Sch¨on and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
271
+ page_content=' Shrman, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
272
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
273
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
274
+ page_content=' 73, 357 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
275
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
276
+ page_content=' Clarke and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
277
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
278
+ page_content=' Wilhelm, Nature 453, 1031 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
279
+ page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
280
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
281
+ page_content=' You and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
282
+ page_content=' Nori, Nature 474, 589 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
283
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
284
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
285
+ page_content=' Devoret and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
286
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
287
+ page_content=' Schoelkopf, Science 339, 1169 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
288
+ page_content=' [9] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
289
+ page_content=' Gu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
290
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
291
+ page_content=' Kockum and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
292
+ page_content=' Miranowicz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
293
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
294
+ page_content=' 718, 1102 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
295
+ page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
296
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
297
+ page_content=' Sussmann and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
298
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
299
+ page_content=' Willems, IEEE Control Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
300
+ page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
301
+ page_content=' 17, 32 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
302
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
303
+ page_content=' Carlini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
304
+ page_content=' Hosoya, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
305
+ page_content=' Koike, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
306
+ page_content=' Okudaira, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
307
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
308
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
309
+ page_content=' 96, 060503 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
310
+ page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
311
+ page_content=' Carlini and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
312
+ page_content=' Koike, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
313
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
314
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
315
+ page_content=' 46, 045307 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
316
+ page_content=' [13] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
317
+ page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
318
+ page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
319
+ page_content=' Allegra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
320
+ page_content=' Jacobs, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
321
+ page_content=' Lloyd, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
322
+ page_content=' Lupo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
323
+ page_content=' Mohseni, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
324
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
325
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
326
+ page_content=' 114, 170501 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
327
+ page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
328
+ page_content=' Chen and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
329
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
330
+ page_content=' Xue, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
331
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
332
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
333
+ page_content=' 14, 064009 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
334
+ page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
335
+ page_content=' Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
336
+ page_content=' Shen and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
337
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
338
+ page_content=' Xue, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
339
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
340
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
341
+ page_content=' 14, 034038 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
342
+ page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
343
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
344
+ page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
345
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
346
+ page_content=' Xue, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
347
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
348
+ page_content=' Yung, arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
349
+ page_content='05182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
350
+ page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
351
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
352
+ page_content=' Alves and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
353
+ page_content=' Sj¨oqvist, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
354
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
355
+ page_content=' A 106, 032406 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
356
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
357
+ page_content=' Lapert, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
358
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
359
+ page_content=' Braun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
360
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
361
+ page_content=' Glaser, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
362
+ page_content=' Sugny, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
363
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
364
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
365
+ page_content=' 104, 083001 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
366
+ page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
367
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
368
+ page_content=' Bason, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
369
+ page_content=' Viteau, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
370
+ page_content=' Malossi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
371
+ page_content=' Huillery, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
372
+ page_content=' Arimondo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
373
+ page_content=' Ciampini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
374
+ page_content=' Fazio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
375
+ page_content=' Giovannetti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
376
+ page_content=' Mannella, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
377
+ page_content=' Morsch, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
378
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
379
+ page_content=' 8, 147 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
380
+ page_content=' [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
381
+ page_content=' Avinadav, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
382
+ page_content=' Fischer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
383
+ page_content=' London, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
384
+ page_content=' Gershoni, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
385
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
386
+ page_content=' B 89, 245311 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
387
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
388
+ page_content=' Geng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
389
+ page_content=' Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
390
+ page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
391
+ page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
392
+ page_content=' Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
393
+ page_content=' Shi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
394
+ page_content=' Xie, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
395
+ page_content=' Rong, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
396
+ page_content=' Du, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
397
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
398
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
399
+ page_content=' 117, 170501 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
400
+ page_content=' [22] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
401
+ page_content=' Han, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
402
+ page_content=' Dong, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
403
+ page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
404
+ page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
405
+ page_content=' Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
406
+ page_content=' Qiu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
407
+ page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
408
+ page_content=' Chu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
409
+ page_content=' Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
410
+ page_content=' Xu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
411
+ page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
412
+ page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
413
+ page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
414
+ page_content=' Tan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
415
+ page_content=' Lan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
416
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
417
+ page_content=' Yung, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
418
+ page_content=' Yu arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
419
+ page_content='10364 [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
420
+ page_content=' Dong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
421
+ page_content=' Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
422
+ page_content=' Zheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
423
+ page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
424
+ page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
425
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
426
+ page_content=' Guo, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
427
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
428
+ page_content=' Sun, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
429
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
430
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
431
+ page_content=' 3, 043177 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
432
+ page_content=' [24] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
433
+ page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
434
+ page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
435
+ page_content=' Han, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
436
+ page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
437
+ page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
438
+ page_content=' Cai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
439
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
440
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
441
+ page_content=' Song, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
442
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
443
+ page_content=' Xue, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
444
+ page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
445
+ page_content=' Yin, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
446
+ page_content=' Sun, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
447
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
448
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
449
+ page_content=' 10, 054009 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
450
+ page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
451
+ page_content=' Chu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
452
+ page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
453
+ page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
454
+ page_content=' Song, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
455
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
456
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
457
+ page_content=' Dong, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
458
+ page_content=' Zheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
459
+ page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
460
+ page_content=' Yu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
461
+ page_content=' Lan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
462
+ page_content=' Tan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
463
+ page_content=' Yu, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
464
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
465
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
466
+ page_content=' 13, 064012 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
467
+ page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
468
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
469
+ page_content=' Duan and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
470
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
471
+ page_content=' Guo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
472
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
473
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
474
+ page_content=' 79, 1953 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
475
+ page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
476
+ page_content=' Zanardi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
477
+ page_content=' Rasetti, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
478
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
479
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
480
+ page_content=' 79, 3306 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
481
+ page_content=' [28] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
482
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
483
+ page_content=' Lidar, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
484
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
485
+ page_content=' Chuang, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
486
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
487
+ page_content=' Whaley, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
488
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
489
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
490
+ page_content=' 81, 2594 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
491
+ page_content=' [29] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
492
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
493
+ page_content=' Lewis and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
494
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
495
+ page_content=' Riesenfeld, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
496
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
497
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
498
+ page_content=' 10, 1458 (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
499
+ page_content=' [30] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
500
+ page_content=' Chen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
501
+ page_content=' Torrontegui, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
502
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
503
+ page_content=' Muga, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
504
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
505
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
506
+ page_content=' 83, 062116 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
507
+ page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
508
+ page_content=' Ruschhaupt, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
509
+ page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
510
+ page_content=' Alonso, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
511
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
512
+ page_content=' Muga, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
513
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
514
+ page_content=' 14, 093040 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
515
+ page_content=' [32] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
516
+ page_content=' Chen and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
517
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
518
+ page_content=' Xue, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
519
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
520
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
521
+ page_content=' 10, 054051 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf'}
CdE5T4oBgHgl3EQfTw8s/content/tmp_files/2301.05538v1.pdf.txt ADDED
@@ -0,0 +1,1387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PMFault: Faulting and Bricking Server CPUs
2
+ through Management Interfaces
3
+ Or: A Modern Example of Halt and Catch Fire
4
+ Zitai Chen1 and David Oswald2
5
+ 1 University of Birmingham, Birmingham, UK, [email protected]
6
+ 2 University of Birmingham, Birmingham, UK, [email protected]
7
+ Abstract. Apart from the actual CPU, modern server motherboards contain other
8
+ auxiliary components, for example voltage regulators for power management. Those
9
+ are connected to the CPU and the separate Baseboard Management Controller
10
+ (BMC) via the I2C-based PMBus. In this paper, using the case study of the widely
11
+ used Supermicro X11SSL motherboard, we show how remotely exploitable software
12
+ weaknesses in the BMC (or other processors with PMBus access) can be used to access
13
+ the PMBus and then perform hardware-based fault injection attacks on the main
14
+ CPU. The underlying weaknesses include insecure firmware encryption and signing
15
+ mechanisms, a lack of authentication for the firmware upgrade process and the IPMI
16
+ KCS control interface, as well as the motherboard design (with the PMBus connected
17
+ to the BMC and SMBus by default). First, we show that undervolting through the
18
+ PMBus allows breaking the integrity guarantees of SGX enclaves, bypassing Intel’s
19
+ countermeasures against previous undervolting attacks like Plundervolt/V0ltPwn.
20
+ Second, we experimentally show that overvolting outside the specified range has the
21
+ potential of permanently damaging Intel Xeon CPUs, rendering the server inoperable.
22
+ We assess the impact of our findings on other server motherboards made by Supermicro
23
+ and ASRock. Our attacks, dubbed PMFault, can be carried out by a privileged
24
+ software adversary and do not require physical access to the server motherboard or
25
+ knowledge of the BMC login credentials. We responsibly disclosed the issues reported
26
+ in this paper to Supermicro and discuss possible countermeasures at different levels.
27
+ To the best of our knowledge, the 12th generation of Supermicro motherboards, which
28
+ was designed before we reported PMFault to Supermicro, is not vulnerable.
29
+ Keywords: fault injection · software-based faults · Intel SGX · under/overvolting
30
+ 1
31
+ Introduction
32
+ In recent years, the security implications of software-exposed power and clock manage-
33
+ ment features have received substantial attention by the research community. Several
34
+ attacks including CLKSCREW [TSS17], Plundervolt [MOG+20], V0ltPwn [KFG+20],
35
+ and VoltJockey [QWLQ19] showed that undervolting or overclocking from software can
36
+ be used to inject faults (e.g., bitflips) into computations and break Trusted Execution
37
+ Environments (TEEs) like Intel Software Guard Extensions (SGX) and ARM TrustZone.
38
+ Subsequent attacks like VoltPillager [CVM+21] and the work by Buhren et al. [BJKS21]
39
+ showed that similar attacks can be mounted with direct access to the computer hardware,
40
+ physically connecting to the control interface of the Voltage Regulator (VR).
41
+ In particular, Chen et al. targeted the Serial Voltage Identification (SVID) interface
42
+ used by Intel CPUs to set the desired supply voltage. However, apart from SVID, many
43
+ systems, in particular servers, support a second interface, the so-called Power Management
44
+ Bus (PMBus), to control the Voltage Regulator Module (VRM). PMBus is an open
45
+ arXiv:2301.05538v1 [cs.CR] 13 Jan 2023
46
+
47
+ 2
48
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
49
+ standard for digital power management [pmb] and has been adopted by more than 40
50
+ companies. It is based on the Inter-Integrated Circuit (I2C) bus and offers monitoring
51
+ features apart from voltage and current control.
52
+ Another component usually presents on server motherboards is the Baseboard Manage-
53
+ ment Controller (BMC). This chip, intended to remotely manage the server even if e.g.,
54
+ the main CPU has crashed or is powered down, has connections to several buses and chips
55
+ on the motherboard, including the I2C bus on which the VRM resides.
56
+ Previous research on x86 platforms has focused on the software-hardware interface
57
+ provided by the Central Processing Unit (CPU) itself and on the security within the
58
+ perimeter of each individual component, e.g., the BMC [PGC18] or Intel Management
59
+ Engine (Intel ME) [TW09, MIT17, GE17]. There is a lack of board-level security analysis
60
+ that reviews the system and motherboard design and interactions between the different
61
+ components: even if an individual part of the system is secure within its individual threat
62
+ model, the combination of it with other parts can cause security risks. In our PMFault
63
+ attacks, the privileged position of the BMC, combined with its large attack surface, makes
64
+ it interesting from an adversary’s perspective to exploit vulnerabilities of the system via
65
+ power management features.
66
+ 1.1
67
+ Our Contribution
68
+ Our main contributions in this paper are:
69
+ PMBus-based under/overvolting against server platforms:
70
+ We first analyse the VRM
71
+ management interface at the hardware level. We discovered that the semi-standardised
72
+ PMBus can be used to control the CPU voltage. Using the case study of a widely-used
73
+ server motherboard, the Supermicro X11SSL-CF, we explore this attack surface and
74
+ show that software vulnerabilities in the BMC (or another programmable chip connected
75
+ to the PMBus) can have severe consequences for the security and safety of the server
76
+ platform. To determine if the vulnerabilities can affect other server motherboards, we
77
+ also investigated the PMBus connections and usage on an ASRock E3C246D4I-2T and a
78
+ Supermicro X12DPi-NT6.
79
+ PMBus access through BMC exploits: We then study the BMC firmware and—based
80
+ on prior work in [Ecl18, Rak15, Nie20]—found that it can indeed be exploited to send
81
+ arbitrary PMBus commands to control the voltage of the CPU. More precisely, several
82
+ software vulnerabilities in the BMC, including incorrect firmware encryption and signing
83
+ mechanisms, a lack of authentication for firmware upgrades and control interfaces, an
84
+ attacker can manipulate the CPU voltage remotely because the PMBus is connected to
85
+ the BMC and the System Management Bus (SMBus) by default.
86
+ PMBus-based undervolting against SGX enclaves: With this, we observed the same
87
+ faults as with Plundervolt/V0ltPwn (CVE-2019-11157), including for code running inside
88
+ an SGX enclave. As the BMC has an independent, external flash chip for its firmware,
89
+ SGX attestation currently does not have the ability to verify its status. Crucially, because
90
+ the software voltage-control interface in Model Specific Register (MSR) 0x150 is not used,
91
+ Intel’s fix for CVE-2019-11157 does not address this attack.
92
+ Permanent denial-of-service through overvolting:
93
+ We also discovered a novel overvolting
94
+ attack: by sending a certain sequence of PMBus commands, we can set the CPU voltage
95
+ outside the specification (as high as 2.84 V) and permanently brick the Xeon CPU used in
96
+ our experiments.
97
+ Countermeasures and mitigations: Finally, we develop the PMBusDetect tool for
98
+ detecting if the VRM is connected to the PMBus, and then discuss countermeasures and
99
+ challenges in securing server platforms. Importantly, we point out that TEEs like SGX
100
+ must not only rely on the security of the CPU itself, but also of that of management
101
+ components the hardware design of the platform.
102
+
103
+ Zitai Chen and David Oswald
104
+ 3
105
+ The details of our experiments and source code can be found at: https://github.com/
106
+ zt-chen/PMFault. CVE number CVE-2022-43309 has been reserved for PMFault.
107
+ 1.2
108
+ Adversary Model
109
+ In this paper, we assume a privileged software attacker, i.e., who has obtained root on the
110
+ host CPU. This is the standard adversary model in the case of TEEs like SGX, and is also
111
+ realistic in the case of overvolting to permanently destroy the CPU, which could be e.g.,
112
+ exploited by ransomware with root rights. Notably, our attacks do not require physical
113
+ access (for additional hardware to be added to the system) and can thus be conducted
114
+ remotely e.g., over SSH.
115
+ 1.3
116
+ Responsible Disclosure
117
+ We have responsibly disclosed our findings to Intel and Supermicro in April 2022. We
118
+ discussed the details of our methods in several calls with Supermicro, and they acknowledge
119
+ the existence of the issue and are looking into deploying fixes for their 11th generation
120
+ products like the Supermicro X11SSL-CF. Supermicro highlighted that the attacks do
121
+ not replicate on their 12th generation, which e.g., include secure boot and update for
122
+ the BMC and filtering on PMBus commands. Both of these features break the attack
123
+ chains described in the paper. Intel considered the issue in the context of their own server
124
+ motherboards and did not find them vulnerable. Intel did not comment on the impact on
125
+ SGX.
126
+ 1.4
127
+ Related Work
128
+ Since Boneh et al.’s seminal work on fault injection [BDL97], the research community
129
+ has devoted substantial efforts to investigating fault attacks and developing according
130
+ countermeasures (cf. e.g., [BECN+06] for an overview).
131
+ Software-based Fault Injection
132
+ Often, fault injection was considered a technique limited
133
+ to attacks with physical access to the target. However, with the discovery of the Rowhammer
134
+ effect [KDK+14], it was shown that faults can also be injected from software (through
135
+ specific memory access patterns in the case of Rowhammer). Then, in 2017, Tang et al.
136
+ showed that the clock management features of ARM processors can be exploited to inject
137
+ faults into computations shielded inside a TEE like ARM TrustZone [TSS17]. Similarly,
138
+ Plundervolt, V0ltPwn, and VoltJockey [MOG+20, KFG+20, QWLQ19] (all tracked via
139
+ CVE-2019-11157) use the software-exposed voltage control MSR in Intel processors to
140
+ break the integrity guarantees of SGX enclaves. In response, Intel deployed a microcode
141
+ update that disables the undervolting interface in MSR 0x150 and allows remote parties to
142
+ verify correct configuration through SGX’s remote attestation. Thus, purely software-based
143
+ undervolting attacks against Intel processors were considered no longer possible.
144
+ Hardware-based Fault Injection on TEEs
145
+ The second generation of undervolting attacks
146
+ on TEEs like SGX and AMD Secure Encrypted Virtualization (SEV) require physical
147
+ access to the target motherboard. In the case of VoltPillager [CVM+21], the adversary
148
+ attaches two wires to the data and clock lines of the SVID bus and can then control the
149
+ VRM external to the CPU, enabling undervolting even if Intel’s microcode fixes for CVE-
150
+ 2019-11157 are installed. For AMD SEV, the adversary does not glitch the actual CPU,
151
+ but the separate security co-processor, the AMD Secure Processor (SP) [BJKS21]. The
152
+ adversary then proceeds to upload custom firmware to the SP to leak memory encryption
153
+ keys and also endorsement secrets, which ultimately enable attacks without permanent
154
+ physical access.
155
+
156
+ 4
157
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
158
+ Security of servers and BMCs
159
+ Independent of hardware-based attacks, the security of
160
+ server platforms has received attention in the research community and wider society. In
161
+ 2018, Bloomberg published a—since widely disproven—article that incorrectly claimed
162
+ the inclusion of small backdoor chips on Supermicro motherboards [RR18]. However, at
163
+ the same time, researchers at Eclypsium showed that it is indeed possible to maliciously
164
+ manipulate the BMC firmware of Supermicro motherboards from 8th to 11th genera-
165
+ tion [Ecl18], without the need to add a hardware implant. They also demonstrated how
166
+ flashing corrupted BMC firmware can “brick” the server system by preventing it to boot.
167
+ Niewöhner [Nie20] subsequently published a tool to exploit the (weak) firmware en-
168
+ cryption of Supermicro BMCs. Other work, for example by Waisman et al. [WS18] and
169
+ Périgaud et al. [PGC18], has shown that software weaknesses in BMCs are not limited to
170
+ Supermicro motherboards, but also applied to Dell, HP, and Lenovo systems.
171
+ However, the implications of direct access to the PMBus from a compromised BMC
172
+ have not been deeply studied to our knowledge.
173
+ 1.5
174
+ Paper Outline
175
+ The remainder of this paper is structured as follows: in Section 2, we review the PMBus
176
+ protocol and analyse its specific implementation and usage on Supermicro motherboards.
177
+ Then, in Section 3, we describe Supermicro’s BMC implementation and methods to modify
178
+ the firmware. In Section 4, we experimentally investigate how a compromised BMC can
179
+ interact with the VRM through the PMBus. We then use this to develop over/undervolting
180
+ attacks in Section 5, before concluding in Section 7.
181
+ 2
182
+ Analysis of Power Management Bus
183
+ We started our work by analysing how the PMBus is used on practical server mother-
184
+ boards. PMBus is an interface that is used to control the VRM, supplying the power
185
+ to the CPU. The most recent public available specification is version 1.3 [pmb]. This
186
+ specification standardises the physical interface, packet structure, and command set of
187
+ the PMBus. However, some commands are left as “manufacturer specified”, so that each
188
+ VRM manufacturer can have a slightly different implementation of the command set. This
189
+ matches what we found during our investigation of the MP2955 VRM on the Supermicro
190
+ X11SSL-CF platform described in the following.
191
+ 2.1
192
+ Experimental Setup
193
+ We carried out initial experiments with an Intel Xeon E3-1220 v6 (CPU family: 6, model:
194
+ 158, microcode version: 0xea) on a Supermicro X11SSL-CF Rev 1.01 motherboard (BMC
195
+ microcontroller ASPEED AST2400, firmware revision 01.63, BIOS version: 2.4).We used 64-
196
+ bit Ubuntu 18.04.3 LTS with a stock 5.4.0-107-generic kernel, Intel SGX driver V2.11.0, and
197
+ Intel SGX-SDK V2.15.100.3. We refer to this system as E3-1220V6-X11SSL-CF throughout
198
+ the paper. An overview of the server motherboard representative for Supermicro’s 11th
199
+ generation products is shown in Figure 1. The target of the PMFault attack is an Intel CPU
200
+ with SGX technology. As mentioned, our actual attacks do not require additional hardware
201
+ or physical access to the system, though we soldered some wires to the motherboard during
202
+ the analysis phase.
203
+ On Intel platforms, the voltage of the CPU is controlled by an external VRM Integrated
204
+ Circuit (IC). The CPU connects to the VRM via the SVID bus to control the voltage
205
+ supplied by it. This interface for CPU voltage control is present on all desktop and server
206
+ motherboards.
207
+
208
+ Zitai Chen and David Oswald
209
+ 5
210
+ CPU
211
+ Voltage
212
+ Regulator
213
+ (VRM)
214
+ Board
215
+ Management
216
+ Controller (BMC)
217
+ SVID
218
+ Other I2C
219
+ Devices
220
+ SMBus/I2C Bus
221
+ Ethernet 0
222
+ KCS
223
+ PMBus
224
+ Management
225
+ Ethernet
226
+ BMC Flash
227
+ Chip
228
+ Figure 1: Overview of the connections on the server motherboard.
229
+ However, server VRMs—including the Supermicro X11SSL-CF—often have an ad-
230
+ ditional I2C-based communication interface called PMBus. This interface allows e.g.,
231
+ overclocking or fine-tuning of the CPU voltage. One of the crucial steps in the PMFault
232
+ is to get access to this interface and understand the communication protocol, so that we
233
+ gain full control of the CPU voltage.
234
+ One of the design issues we found on our server motherboard is that the PMBus can
235
+ be directly connected to the more general SMBus. There are various components on the
236
+ system on that bus, including the CPU, BMC, and other I2C devices. A compromise of
237
+ any of these components leads to the takeover of PMBus and thus control of the CPU
238
+ voltage.
239
+ In this paper, we use the BMC as the starting point of the attack, as it commonly
240
+ exists on server platforms. In order to analyse the attack surface of the BMC, we further
241
+ investigated its connection and hardware design on the Supermicro X11SSL-CF. First, we
242
+ found that its firmware is stored in a Serial Peripheral Interface (SPI) flash chip, separate
243
+ from the BIOS flash. We also found there are two Ethernet ports on the system for
244
+ communication with the BMC: one is called “Management Ethernet” and is dedicated
245
+ for server management. The other port can be shared between CPU and BMC so that
246
+ devices on this Ethernet port can communicate with both CPU and BMC. Finally, the
247
+ BMC also has a Keyboard Controller Style (KCS) interface that enables direct access from
248
+ the Operating System (OS) running on the CPU. These management interfaces open a
249
+ large attack surface on the BMC, and make remote attacks possible.
250
+ 2.2
251
+ Protocol Structure
252
+ To be able to eavesdrop and forge PMBus commands, knowledge of the protocol structure
253
+ shown in Figure 2 is necessary. The PMBus is an I2C-based protocol (with clock speed
254
+ of 100 kHz–1 MHz and an open-drain data pin) and uses a master-slave communication
255
+ mechanism. The master device can query or change the setting of the slave device. Each
256
+ slave device is assigned a unique 7-bit device address.
257
+ The master device first sends a starting bit to initiate a transmission. During transmis-
258
+ sion, every group of 9 bits forms a segment, with the 9th bit indicating ACK (0) or NACK
259
+ (1) for every 8 bits received. The starting bit and the (N)ACK mechanism are handled at
260
+ hardware level and do not need to be handled manually.
261
+ The first segment is always sent by the master. The first 7 bits are the address of the
262
+ target slave, and the 8th bit indicates whether this transmission is a read (1) or write (0).
263
+
264
+ 6
265
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
266
+ S
267
+ R
268
+ /
269
+ W
270
+ A
271
+ C
272
+ K
273
+ A
274
+ C
275
+ K
276
+ A
277
+ C
278
+ K
279
+ Device
280
+ Address
281
+ Command or
282
+ Register Addr
283
+ Data
284
+ A
285
+ C
286
+ K
287
+ . . . . . .
288
+ 0
289
+ 1
290
+ 8
291
+ 9
292
+ 10
293
+ 18
294
+ 19
295
+ 27
296
+ 28
297
+ Master Device -> Slave Device Control bit
298
+ Data bits
299
+ Slave Device -> Master Device
300
+ Figure 2: PMBus protocol structure
301
+ The second segment is the register address to operate on. In the PMBus specification, this
302
+ segment is called the PMBus command. The segments after the second one contain the
303
+ data read from or written to the register.
304
+ Interaction between PMBus and SVID
305
+ Although the functionality of the PMBus pro-
306
+ tocol is similar to SVID, they have different specifications for the digital signal interface
307
+ and command sets. A VRM can have both SVID and PMBus interfaces, with the SVID
308
+ interface directly connected to the CPU and the PMBus interface connected to the SMBus.
309
+ Both interfaces can be used to control the voltage of the CPU, and some implementations
310
+ of the PMBus specification also have commands to override the voltages set through the
311
+ SVID interface.
312
+ 2.3
313
+ PMBus Commands
314
+ For an adversary to communicate with the VRM and e.g., configure voltage levels, they
315
+ also need to know the specific PMBus commands. As mentioned, the PMBus specification
316
+ allows manufacturers to have custom implementations of PMBus commands. The E3-
317
+ 1220V6-X11SSL-CF motherboard features an Monolithic Power MP2955 voltage regulator.
318
+ To understand the PMBus implementation of this VRM, we first started looking for its
319
+ datasheet, but unfortunately, found that it is not publicly available. However, on the
320
+ Monolithic Power website1, we found the datasheet of an alternative VRM (MP2965) [Mon].
321
+ As both chips are manufactured by the same company, we used this datasheet as a reference
322
+ and starting point to discover the available PMBus commands by analysing the PMBus
323
+ traffic on the Supermicro X11SSL-CF.
324
+ We found the relevant PMBus commands by reading and analysing the response
325
+ (ACK or NACK) of the registers, and validating found commands according to the PMBus
326
+ specification and the MP2965 datasheet : Table 1 gives the command name, command code,
327
+ and description of each commands. The first three commands in the table are implemented
328
+ according to the PMBus 1.3 specification [pmb], while the rest are manufacturer-specific.
329
+ Table 1: Discovered PMBus commands on E3-1220V6-X11SSL-CF.
330
+ Command name
331
+ Command code
332
+ Usage
333
+ CMD_PAGE
334
+ 0x00
335
+ Switch between different voltage rails
336
+ CMD_OPERATION
337
+ 0x01
338
+ PMBus override
339
+ VOUT_COMMAND
340
+ 0x21
341
+ Output voltage settings
342
+ READ_VOUT
343
+ 0x8B
344
+ Voltage reading from sensor
345
+ MFR_VR_CONFIG
346
+ 0xE4
347
+ Enable overclock mode
348
+ MFR_OCP_TOTAL_SET
349
+ 0xEE
350
+ Over-current protection configuration
351
+ 1https://www.monolithicpower.com/
352
+
353
+ Zitai Chen and David Oswald
354
+ 7
355
+ With CMD_OPERATION, we can configure the operation mode of the VRM. By setting
356
+ bit 1 of this register, we can enable the PMBus override mode. In this mode, the voltage
357
+ configured in the VOUT_COMMAND register will override the voltage configuration from the
358
+ SVID bus.
359
+ Another command that is useful for PMFault is READ_VOUT, as it allows
360
+ us to read the current voltage of the CPU and establish a baseline for undervolting.
361
+ The MFR_VR_CONFIG register is manufacturer-specific. By setting bit 3 or bit 10 and
362
+ configuring CMD_OPERATION, we could enable the tracking or fixed voltage overclocking
363
+ mode, respectively.
364
+ Bit 8 VID_STEP_SEL of MFR_VR_CONFIG also allow us to use an
365
+ alternative mode of SVID. In this mode, the VRM uses 10 mV Voltage Identifier (VID)
366
+ steps instead of the default of 5 mV. This makes overvolting up to 3 V possible, which is well
367
+ beyond the operating voltage range of the E3-1220 V6 Intel CPU, with a maximum voltage
368
+ of 1.52 V [Cor18]. We also discovered that the VRM has an Over Current Protection (OCP)
369
+ circuit, which can be configured or disabled by another manufacturer-specific register
370
+ (MFR_OCP_TOTAL_SET). Some VRM also support multiple voltage output rails. CMD_PAGE
371
+ command is used to select the target rail to send the commands to.
372
+ With these discovered commands, we can now control the CPU voltage through the
373
+ PMBus. In Section 4.1, we detail how this interface is used as part of attack chains for
374
+ undervolting and overvolting attacks.
375
+ 2.4
376
+ Jumper Settings
377
+ On the Supermicro X11SSL-CF motherboard, there are several jumpers that control
378
+ different functionalities, including the connection of the VRM to other parts of the system.
379
+ We kept all jumpers in the default status as delivered by the vendor. To avoid confusion,
380
+ we still list the jumper settings in Table 2. During inspection of the jumper settings, we
381
+ discovered that the SMBDAT_VRM and SMBCLK_VRM jumpers are neither mentioned in the user
382
+ manual [Supb] nor in the quick reference guide [Supa]. Using an oscilloscope while sending
383
+ PMBus commands, we found that these two jumpers can be used for (dis)connecting
384
+ the VRM from/to the PMBus. The experiments and attacks described in this paper are
385
+ conducted under the “connected” setting of both jumpers, which according to Supermicro
386
+ is the default.
387
+ We also found server motherboard without such jumpers, e.g., Supermicro X11SPG-TF
388
+ and ASRock E3C246D4I-2T. For those, the VRM is always connected to the BMC. We
389
+ detail our finding on other motherboards in Section 6. It is worth mentioning that to the
390
+ best of our knowledge, SGX attestation does not have the functionality to include the
391
+ configuration of these (external) jumpers.
392
+ Table 2: Jumper settings on Supermicro X11SSL-CF.
393
+ Jumper name
394
+ Description
395
+ JPME2
396
+ Manufacturer mode normal (Default)
397
+ JPB1
398
+ BMC enabled (Default)
399
+ SMBDAT_VRM
400
+ Connect VRM data line to PMBus
401
+ SMBCLK_VRM
402
+ Connect VRM clock line to PMBus
403
+ 3
404
+ Supermicro’s BMC and Server Management Interface
405
+ Having understood the basic PMBus protocol and commands, we next look at different
406
+ ways to gain access to the PMBus and send commands to the VRM. To achieve that, an
407
+ attacker needs access to the SMBus. As described in Section 2.1, on E3-1220V6-X11SSL-
408
+ CF, one of the devices on the SMBus is the ASPEED AST2400 BMC controller. In this
409
+
410
+ 8
411
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
412
+ section, we introduce the functionalities and vulnerabilities in these management interfaces
413
+ that allow us to achieve our main goal—to take control of the SMBus.
414
+ During the initial investigation of the BMC, we found there are mainly three services
415
+ available: there is a web service running on port 80 (HTTP) and 443 (HTTPS), an
416
+ Intelligent Platform Management Interface (IPMI) over LAN service on port 623, and the
417
+ SSH service on port 22. Besides, we also found that the IPMI service can be accessed
418
+ through the KCS interface from the CPU.
419
+ Some of these interfaces require authentication: to use HTTP, HTTPS, SSH, and IPMI
420
+ -over-LAN, all exposed through Ethernet, one has to authenticate to the BMC. The used
421
+ credentials in this authentication process are individual for each Supermicro motherboard.
422
+ However, the IPMI-over-KCS interface does not require any authentication to the BMC.
423
+ Instead, having root privileges on the host OS running on the CPU is sufficient to access
424
+ this interface. One can also use the IPMI-over-KCS interface to add/remove/modify BMC
425
+ credentials to subsequently login to the Ethernet-exposed interfaces.
426
+ 3.1
427
+ SSH Shell
428
+ Since SSH is one of the most common interfaces that allows us to get a shell and possibly
429
+ take over the system, we first started our investigation with it. However, the SSH service
430
+ on E3-1220V6-X11SSL-CF provides a custom shell called “ATEN SMASH-CLP System
431
+ Management Shell”. It only provides limited commands that enable server monitoring
432
+ and basic management. Previously, a vulnerability was reported in [Vaz13]: the command
433
+ shell sh allows gaining root access from this shell, however, this command was not
434
+ available on our system-under-investigation.
435
+ 3.2
436
+ BMC Firmware Analysis
437
+ To further investigate the services running on the BMC and check if it is possible to
438
+ enable an SSH root shell, we dumped the firmware of the BMC with a CH341A SPI flash
439
+ programmer as shown in Figure 3. This procedure is only used once to assist our analysis,
440
+ and is not necessary to execute the actual attack.
441
+ Figure 3: Dumping BMC firmware with a flash programmer.
442
+ We found that the firmware stored in the SPI flash is neither encrypted nor signed.
443
+ There are five partitions in the firmware, where the second one contains a Linux operating
444
+ system. The SMASH shell is provided by /SMASH/msh and it is possible to change it to a
445
+ different shell by replacing this file.
446
+ The Linux operating system also has an I2C kernel module installed, which provides an
447
+ interface to communicate with the SMBus. However, during our testing in Section 4.1, we
448
+ found that the API provided by this kernel module is not compatible with the commonly
449
+
450
+ 0000
451
+ C
452
+ C
453
+ C
454
+ O
455
+ O
456
+ SOP16
457
+ 014
458
+ 13
459
+ 12
460
+ O
461
+ O
462
+ 100
463
+ O
464
+ C
465
+ 1.27MM
466
+ O
467
+ 90
468
+ C
469
+ D
470
+ GOAET
471
+ 25XX24XX
472
+
473
+
474
+ 4683
475
+ S9Zitai Chen and David Oswald
476
+ 9
477
+ used libi2c in i2c-tool2. As the result, in Section 4.1, we opted to write a custom
478
+ library to use the I2C interface of the BMC and communicate with the VRM.
479
+ 3.3
480
+ Firmware Upgrade
481
+ After analysing the firmware, we conclude that it is possible to enable an SSH shell by
482
+ modifying the firmware. We then started to look for software methods to re-flash the BMC
483
+ SPI flash chip. We found that the firmware upgrade functionality of the BMC provides a
484
+ way to do this. There are two interfaces for firmware upgrade: one is through the web
485
+ interface, the other through the KCS interface.
486
+ Through Web Interface
487
+ The web interface has a firmware upgrade page that can switch
488
+ the BMC into upgrade mode and allows the user to upload a BMC firmware update
489
+ package. To prevents unauthorised user from upgrading the firmware, there is a login
490
+ portal. The user is authenticated by the BMC. As the BMC is a system independent from
491
+ the OS running on the CPU, users do not need to have privileged access to the OS to be
492
+ able to use this method. Besides, this web interface can be accessed remotely through
493
+ Ethernet. The remote BMC firmware upgrade attack chain described in Section 4.3 uses
494
+ this method to upgrade the firmware.
495
+ Through IPMI-over-KCS Interface
496
+ Crucially, the BMC firmware can also be updated
497
+ through the KCS interface, using the following command: AlUpdate -f firmware.bin
498
+ -i kcs -r y. As mentioned, the KCS interface can be accessed from the OS running on
499
+ the CPU, only requiring root access to the OS, but not the BMC credentials.
500
+ Firmware Upgrade Package
501
+ After finding the firmware upgrade interface, the next step
502
+ is to produce an upgrade package that can be uploaded to the BMC. We started with the
503
+ analysis of the structure of the upgrade package. Figure 4 shows the layout of a firmware
504
+ upgrade package. Previous work by [Ecl18] founds that in the firmware upgrade package,
505
+ there is a region that contains a magic value (ATENs_FW), a half-length CRC checksum,
506
+ and the length of each section. We call this part the firmware footer. There is also a
507
+ region containing metadata of the firmware image, including the name of each region and
508
+ their length and CRC, starting with “[img]”. We refer to this region as firmware table.
509
+ In the X11 series, the firmware table, the file system header of the root file system and the
510
+ website files system header are AES-CBC encrypted. However, the files in these regions
511
+ are not encrypted, but only LZMA compressed. As a result, the key of the AES-CBC
512
+ encryption can be recovered from the ipmi.so file on the root file system.
513
+ With this information, we can modify the firmware and construct a valid firmware up-
514
+ grade package for the web interface. We discuss firmware repacking in detail in Section 4.2.
515
+ 3.4
516
+ IPMI I2C functionality
517
+ When exploring the functionalities of IPMI, we also found that the interface also allows
518
+ direct sending I2C packets with the ipmitool i2c command. This can be used either
519
+ through the Ethernet or KCS IPMI channel. The authentication requirement for using
520
+ IPMI-controlled I2C is the same as those described in Section 3.3. As shown in Section 4.3,
521
+ we can use this functionality for direct access to the SMBus/PMBus without modifying
522
+ BMC firmware.
523
+ 2https://git.kernel.org/pub/scm/utils/i2c-tools/i2c-tools.git/
524
+
525
+ 10
526
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
527
+ Figure 4: Layout of the BMC firmware upgrade package.
528
+ The NVRAM region stores the current
529
+ configuration of the BMC, the rootFS is a LZMA-compressed cramFS file system with only its header
530
+ encrypted. The kernel region stores a Linux kernel image, while the BMC website FS is another compressed
531
+ file system with only the file system header encrypted. The FW Footer starts with a magic value ATENs_FW
532
+ and contain information about the firmware version, checksum, etc. The FW Table is an encrypted region
533
+ and stores a table of the image layout. All encrypted region of the firmware can be decrypted with a key
534
+ extracted from ipmi.so on the rootFS.
535
+ 4
536
+ Practical Experiments
537
+ Finally, using the results from the previous sections, we explain how to construct practical
538
+ Proof-of-Concept (PoC) attacks for PMFault. Some of our experiments require physical
539
+ access to the system to understand the hardware configuration (with an overview shown
540
+ in Figure 5). Note however that physical access is not required when performing PMFault
541
+ attacks on a real-world system, as the hardware components and connections are identical
542
+ for a given motherboard model.
543
+ Oscilloscope
544
+ connected to
545
+ PMBus
546
+ Oscilloscope
547
+ to monitor
548
+ CPU voltage
549
+ BMC flash chip
550
+ soldered out
551
+ PMBus connection
552
+ for Raspberry Pi
553
+ Management
554
+ Ethernet
555
+ Connection
556
+ BMC
557
+ micro-controller
558
+ Power Button
559
+ Figure 5: Setup of the E3-1220V6-X11SSL-CF for practical experiments. These connections are for
560
+ experiments only; physical access is not required in the actual attack.
561
+ 4.1
562
+ PMBus-based Voltage Control
563
+ To understand the configuration and capabilities of using the PMBus to control the CPU
564
+ voltage, we conducted two experiments. Firstly, we used the “probe and verify” method to
565
+ find the I2C address of the VRM. Then we tried different ways of sending commands to
566
+ VRM to change the voltage.
567
+
568
+ ipmi.so
569
+ Decompressed
570
+ Files of RootFS
571
+ C
572
+ BMC
573
+ rootFS
574
+ FW
575
+ FW
576
+ NVRAM
577
+ kernel
578
+ WebsiteFS
579
+ (Compressed)
580
+ Footer
581
+ Table
582
+ (Compressed)ROHSZitai Chen and David Oswald
583
+ 11
584
+ Discovering the VRM Address
585
+ Finding the I2C address of the VRM is the first step
586
+ of PMFault. The easiest way to explore the I2C buses is to use the interface provided
587
+ by the OS. There are two I2C buses that can be used from the OS running on the CPU:
588
+ i2c-0 is shown by default, while i2c-1 requires the i2c_i801 kernel module to be loaded.
589
+ To find all available devices on both I2C buses, we ran the i2cdetect tool on them. We
590
+ found that there are 12 devices in total connected to the I2C bus. The full list of device
591
+ addresses can be found in Appendix A.
592
+ To then determine which device is a VRM, we use the result of the standard PMBus
593
+ command, READ_VOUT, as an indicator. The Plundervolt [MOG+20] attack showed that
594
+ the normal operating voltage of the CPU should be greater than 0.55 V, thus, if the
595
+ voltage read by READ_VOUT is within this range, it may be a VRM. Of the 12 devices
596
+ detected, only one device with address 0x20 on I2C bus 1 responded with a value in this
597
+ voltage range. We hence suspect this device is the VRM. To verify the result, we also
598
+ used MFR_ADDR_PMBUS (0xE1) command found in the MP2965 datasheet [Mon] to read the
599
+ PMBus address of the device. The result is 0x20, which confirms our finding.
600
+ Changing CPU Voltage with PMBus Commands
601
+ Having identified the VRM, one can
602
+ next attempt to send commands to change the CPU voltage.
603
+ Set target voltage to
604
+ VOUT_COMMAND
605
+ Configure VOUT_OPERATION
606
+ with PMBus Override Mode
607
+ Set Bit 3 of MFR_VR_CONFIG
608
+ Figure 6: Command sequence to change the voltage via PMBus.
609
+ In the datasheet of the MP2965 [Mon], we found an “overclocking” procedure that can
610
+ be used for this purpose. There are two overclocking modes, tracking mode and fix mode.
611
+ In PMFault, we mainly use the fix mode to set a defined voltage.
612
+ In the fix overclocking mode, the VRM uses the VID configured with the PMBus
613
+ command VOUT_COMMAND and ignores the configuration from the SVID bus. Figure 6 shows
614
+ the steps of using this mode to change voltage. First, we need to configure two registers:
615
+ The first one is VOUT_OPERATION; by setting the first bit of this register, we enable PMBus
616
+ override mode. We also have to set bit 3 of MFR_VR_CONFIG to make the VRM act on
617
+ these changes. After this, the voltage supplied to the CPU will be changed according to
618
+ the configuration in VOUT_COMMAND. To send this PMBus command sequence and change
619
+ the CPU voltage, we wrote a PoC with the libi2c. This PoC can be compiled and run
620
+ under Linux.
621
+ “Stalls” caused by PMBus Commands
622
+ The experiments in Section 4.1 also show that
623
+ the VRM responds to the PMBus commands sent from the CPU. One may thus assume
624
+ that it would then be straightforward to directly send PMBus commands to change the
625
+ CPU voltage with this method. However, we found that the CPU stalls after sending the
626
+ MFR_VR_CONFIG command to actually configure the VRM to use the new voltage. This
627
+ will make the CPU voltage being kept at the changed value with no way to change it back.
628
+ This phenomenon raised two questions: Is the CPU stall caused by a crash or a recoverable
629
+ halt? If it is caused by a recoverable halt, will this protect against targeted undervolting
630
+ fault injection?
631
+ To answer this, we connected a Raspberry Pi to the PMBus to directly control the
632
+ VRM. The I2C interface to the VRM is exposed with two pins, SDA and SCL. As shown in
633
+ Figure 5, we connected the I2C interface of the Raspberry Pi to these pins.
634
+ In the first experiment, we sent a command to disable overclocking after the stall
635
+ happens. It appears that with the VRM reconfigured to normal mode, the CPU recovers
636
+ from the stall situation if the undervolting value is not too low. This shows that the stall is
637
+
638
+ 12
639
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
640
+ caused by a recoverable halt and not a crash. The second experiment is used to find out if
641
+ the halt will prevent the fault from happening. In this experiment, we used the CRT-RSA
642
+ PoC of the Plundervolt attack. With the CPU running this PoC, we used Raspberry Pi
643
+ to send PMBus commands to produce voltage glitches. We found that with glitches with
644
+ gradually lower voltage, an exploitable fault happens with the CRT-RSA calculation.
645
+ Hence, in summary, the “stall” phenomenon will prevent the PMBus attack from being
646
+ conducted by the CPU-VRM I2C interface, but it does not prevent the fault caused by
647
+ undervolting from having an impact on CPU calculations.
648
+ Voltage Control with BMC
649
+ Because our attempt of voltage glitching failed with the
650
+ PoC running on the CPU, we started to look into the BMC-VRM I2C interface. In the
651
+ BMC firmware dumped in Section 3.1, we found the i2c.ko kernel module, which provides
652
+ a driver for the I2C interface. However, this module does not implement a standard
653
+ ioctl() for I2C devices, which is required for using libi2c. This means that the above
654
+ PoC, which uses this standard I2C library, cannot be used to communicate with this kernel
655
+ module.
656
+ As the kernel module in the firmware did not implement the standard I2C API, we
657
+ had to find another way to utilize the BMC’s I2C interface. With the help of the I2C
658
+ driver in the latest Linux kernel [astb, asta], we found that there are 14 I2C interfaces
659
+ on the AST2400 BMC controller. Each has a set of memory-mapped registers to control
660
+ the interface. We also found the setup and message sending/receiving sequence of the
661
+ I2C interface. We then created a small library to directly write these registers and send
662
+ I2C bus commands from the BMC CPU to the address of the VRM. By monitoring
663
+ the I2C activity with an oscilloscope (this was only required for debugging and during
664
+ development), we found that the I2C bus 2 (counted from bus 0) of the BMC has the
665
+ VRM connected.
666
+ 4.2
667
+ Enabling SSH Access and Firmware Repacking
668
+ Modification of the firmware can be used to obtain a root shell on the BMC. With the
669
+ “Supermicro BMC firmware image decryptor” [Nie20] and a modified version of the “ipmi
670
+ firmware tool” [Rak15] with added support for X11 images, we were able to extract the
671
+ firmware encryption key and decrypt the file system header. With these, we can unpack
672
+ and modify the full root file system.
673
+ As described in Section 3.2, /SMASH/msh provides the shell for SSH service. To enable
674
+ full root shell access, we replaced this file with a shell script with a single line to execute
675
+ /bin/sh.
676
+ Besides, as the SSH service is running with root privileges, with the shell
677
+ redirected to sh, we could obtain a root shell once connected to the SSH.
678
+ To repack the image, we modified the “Supermicro BMC firmware image decryptor”
679
+ tool to add firmware encryption support and constructed a firmware package with a valid
680
+ footer and firmware table. We successfully tested and installed this modified firmware
681
+ package both with the web firmware upgrade interface and the IPMI firmware upgrade
682
+ interface via the AlUpdate tool.
683
+ 4.3
684
+ Attack Chains for PMBus Access
685
+ In this section, we discuss three possible attack chains to take over the PMBus with the
686
+ techniques shown in the previous sections. The attacker can use any of these attack chains
687
+ and change the CPU voltage to perform PMFault attacks, i.e., to over/undervolt the CPU.
688
+ Remote BMC Firmware Upgrade
689
+ The first attack chain assumes a malicious insider
690
+ threat model. This attack chain makes use of the web or IPMI interface through the BMC
691
+ Ethernet connection. To use this interface, the attacker needs to have access to the BMC
692
+
693
+ Zitai Chen and David Oswald
694
+ 13
695
+ management Ethernet port or the shared management Ethernet port eth0 on the system.
696
+ Besides, the attacker needs to obtain valid credentials to login to the BMC.
697
+ In detail, the attacker can first use the method described in Section 4.2 to repack
698
+ the SMT_X11_163 firmware upgrade package from [bmc] to enable SSH root access to
699
+ the BMC. Then, they can upload the firmware with the web management interface or
700
+ the IPMI management interface over Ethernet. With the SSH interface enabled, the
701
+ attacker can cross-compile the voltage-changing PoC described in Section 4.1 for the
702
+ BMC, and then upload and execute it to send PMBus commands. We used base64 -d >
703
+ /tmp/i2c-pmbus-send to upload our exploit code due to the unavailability of the SCP
704
+ service on the BMC OS.
705
+ Local BMC Firmware Upgrade
706
+ Similar to the first, this attack chain also involves a
707
+ firmware upgrade for code execution on the BMC. However, we use the KCS interface
708
+ discussed in Section 3.3 to upgrade the firmware. The attacker does not require access to
709
+ the management Ethernet plane, instead, only root privileges on the OS running on the
710
+ CPU is required. This is e.g., relevant for data centers that host bare metal machines for
711
+ customers or for malware/ransomware that has obtained root through other exploits.
712
+ IPMI Interface
713
+ The third attack chain uses the IPMI I2C functionality. An attacker
714
+ with root access on the CPU OS or access to the management port of the BMC can use
715
+ this interface to send commands to any I2C device that is connected to the BMC. The
716
+ command used for sending the raw I2C packets is shown in Listing 1. The I2C mapping
717
+ of this interface is the same as found during the initial investigation in Section 4.1. The
718
+ VRM is at address 0x20 on bus 2. However, since the last bit of the first packet of I2C
719
+ indicates the type of operation (read or write), we need to shift the device address left by
720
+ one bit and set the last bit accordingly when using this interface to control PMBus.
721
+ ipmitool
722
+ i2c bus=2 0x40 <PMBus
723
+ Command > <PMBus Data >
724
+ Listing 1: IPMI command for sending I2C packets.
725
+ 5
726
+ Undervolting and Overvolting Attacks
727
+ In this section, we show how under/overvolting through the PMBus leads to attacks on
728
+ SGX and also permanent physical damage to the CPU. The attack requires any flaw that
729
+ gives a software attacker access to the PMBus. As mentioned in Section 4.3, this can
730
+ e.g., be a malicious firmware upgrade or the use of the IPMI-to-I2C functionality. The
731
+ attack is generic in the sense that various flaws can lead to the same outcome: remote
732
+ fault injection attacks on SGX and bricking the CPU. Figure 7 shows an overview of the
733
+ attacks.
734
+ 5.1
735
+ Undervolting Attack against Intel SGX
736
+ Adversary Model
737
+ As mentioned in Section 1.2, we assume a threat model where an
738
+ attacker (including a malicious insider) has full software access to the system but no
739
+ (or limited) physical access. More precisely, the attacker has root access to the OS and
740
+ software access to the BMC via the KCS interface or Ethernet. All attack chains described
741
+ in Section 4.3 can generally be used under this threat model. It is worth mentioning that
742
+ the attack that uses ipmitool through the KCS interface does not require knowledge of
743
+ the BMC credentials. A privileged local user on a compromised host CPU can thus use
744
+ ipmitool to inject fault into SGX purely from software.
745
+
746
+ 14
747
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
748
+ BMC
749
+ PMBus
750
+ Overvolting
751
+ Undervolting
752
+ Brick CPU
753
+ Fault Injection to
754
+ SGX
755
+ Firmware Upgrade
756
+ to Enable SSH
757
+ IPMI I2C Command
758
+ Code Execution
759
+ in BMC
760
+ Remotely Executable Action (Management LAN)
761
+ Locally Executable Action on OS (With root)
762
+ Result of Attack
763
+ Voltage Control
764
+ Entity or Connection
765
+ Legend
766
+ Figure 7: Overview of the PMFault attack. With root access to the OS or access to the BMC via Ethernet
767
+ or KCS, the attacker can perform a malicious firmware upgrade of the BMC and then takeover the PMBus.
768
+ The attacker can also use the ipmi i2c command to directly control the PMBus via BMC. With control
769
+ over the CPU voltage, the attacker can overvolt to brick the CPU or undervolt to inject faults into SGX.
770
+ Proof of Concept
771
+ We used the same PoC code as Plundervolt/VoltPillager [MOG+20].
772
+ Before injecting the voltage glitch, we use the attack chain described in Section 4.3 to gain
773
+ control of the PMBus.
774
+ To start with, we used the multiply operation as the first target, as it is a simple target
775
+ to fault. By gradually lowering the CPU voltage with the PMBus commands sent by
776
+ the BMC while running the Plundervolt/VoltPillager PoC on the CPU, we successfully
777
+ injected faults into the multiply operation (in our experiments at voltage 0.845 V with the
778
+ CPU running at 2 GHz.
779
+ To verify the fault injection also works for encryption operations running in SGX, we
780
+ ran the CRT-RSA signature PoC from Plundervolt/VoltPillager, with an RSA signature
781
+ computed inside an enclave using the Intel Integrated Performance Primitives (Intel IPP)
782
+ cryptography library functions [Cor]. Again, we could obtain faulty signatures as shown
783
+ in Listing 2. Furthermore, we confirmed that these faulty values could be used to factor
784
+ the RSA modulus and recover the private RSA key using the Lenstra attack [BDL97].
785
+ // Faulty
786
+ calculation 1
787
+ 0x3f , 0xe0 , 0xb8 , 0x74 , 0x04 , 0x18 , 0x9c , 0xed , 0x91 , 0x1a , 0x02 , 0x12 , 0x2a ,
788
+ 0xce , 0x89 , 0xf8 , 0x32 , 0x00 , 0xdc , 0x05 , 0x15 , 0x53 , 0x72 , 0x8d , 0x84 , 0x00 ,
789
+ 0xd3 , 0x67 , 0xbe , 0xa1 , 0xc2 , 0x40 , 0x76 , 0xbc , 0x8c , 0xd8 , 0xfe , 0xb1 , 0x00 ,
790
+ 0xd7 , 0x9e , 0x0e , 0xb6 , 0xac , 0x61 , 0xc0 , 0xec , 0x9c , 0xf7 , 0x7e , 0xbc , 0x4b ,
791
+ 0xde , 0x18 , 0xa5 , 0xa4 , 0x1c , 0x74 , 0xc4 , 0xb5 , 0x6a , 0x8d , 0xd3 , 0xb1 , 0x35 ,
792
+ 0xf9 , 0xad , 0x0b , 0xe3 , 0x4a , 0x01 , 0x52 , 0xd4 , 0xc6 , 0xb2 , 0x95 , 0xbc , 0xdc ,
793
+ 0xad , 0x61 , 0x8e , 0x07 , 0x84 , 0x4d , 0xe3 , 0xa7 , 0xff , 0xf0 , 0xd1 , 0xa0 , 0xd4 ,
794
+ 0x58 , 0x9f , 0xbc , 0x37 , 0x0b , 0xa8 , 0x91 , 0x83 , 0x15 , 0x7b , 0xee , 0x28 , 0x83 ,
795
+ 0x12 , 0x4a , 0x89 , 0x61 , 0x1e , 0x2c , 0xe1 , 0x02 , 0x2f , 0x08 , 0x4d , 0x5b , 0x04 ,
796
+ 0x92 , 0x5e , 0x31 , 0xd0 , 0x7e , 0x94 , 0x85 , 0xd0 , 0xce , 0x75 , 0x4a , 0x00 , 0x00 ,
797
+ 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
798
+ [...
799
+ zeroes
800
+ left
801
+ out
802
+ ...]
803
+ Incorrect
804
+ result!
805
+ Listing 2: Faulty CRT-RSA decryptions/signatures generated by the respective ipps functions.
806
+ Reproducibility of CRT-RSA Fault Injection
807
+ To further evaluate the reproducibility of
808
+ the attack, we setup an automated testing environment by connecting a Raspberry Pi to
809
+ an Ethernet port (eth0) and the power button of the motherboard. We ran a Python
810
+ script to repeat the following steps numerous times:
811
+ 1. Upload the exploit for controlling the CPU voltage to BMC via an SSH connection.
812
+
813
+ Zitai Chen and David Oswald
814
+ 15
815
+ 2. SSH into the OS running on the host CPU and trigger CRT-RSA signing in an SGX
816
+ enclave.
817
+ 3. Run the PMFault exploit on the BMC to gradually lower the CPU voltage while the
818
+ signature is computed in the SGX enclave.
819
+ 4. Stop lowering the CPU voltage when a fault occurs.
820
+ 5. Record the result and cleanup.
821
+ 6. If no faulty result is output, the system may have crashed due to too low voltage. In
822
+ this case, we use the connection to the motherboard power button to reboot the system
823
+ and wait to allow the system to boot into a stable status.
824
+ In total, we conducted 253 tests within 545 min. Of those, faults occurred in 194 tests.
825
+ 66 of these faulty results could be used to successfully recover the correct RSA private key
826
+ using the Lenstra attack, which translates to a success rate of 26%. On average, a useful
827
+ fault could be obtained within 9 minutes.
828
+ 5.2
829
+ Overvolting to Permanently Brick a CPU
830
+ Apart from the undervolting attack to extract keys from an SGX enclave, we also discovered
831
+ another attack, which is an overvolting attack that can permanently destroy the CPU.
832
+ Adversary Model
833
+ In this attack, as described in Section 1.2, we assume an attacker who
834
+ has root privilege on the host CPU. For example, this could be in the case that an attacker
835
+ has placed ransomware on a system and threatens to damage the CPU unless a ransom is
836
+ paid. Clearly, root should have full control of all software running on the CPU, but should
837
+ not be able to cause any physical damage to the system. The attack chain described in
838
+ Section 4.3 using ipmitool with KCS can be used within this threat model.
839
+ Proof of Concept
840
+ To overvolt the CPU, we firstly configure the MFR_VR_CONFIG register
841
+ of the VRM to use the 10 mV SVID table. This allows changing the CPU voltage up to
842
+ 3 V. We also disabled the over-current protection by reconfiguring the MFR_OCP_TOTAL_SET
843
+ register. Then we used the voltage changing procedure to change the CPU voltage to a
844
+ value much higher than the normal operating voltage.
845
+ We found that this procedure allows changing the CPU voltage up to ∼2.84 V for
846
+ ∼1 ms, which is outside the typical operating range of Intel CPUs. By increasing the
847
+ voltage beyond the specified operating voltage range (0.55 V–1.52 V) [Cor18] of a 7th Gen
848
+ Intel E3-1220V6 CPU two times, we permanently destroyed the CPU and left the system
849
+ in an unbootable state within a few seconds. We successfully repeated the experiment
850
+ with a second, identical CPU. An example of overvolting is shown in Figure 8.
851
+ For environmental and financial reasons, we were satisfied after successfully destroying
852
+ two CPUs and decided to not perform further experiments in that regard.
853
+ 6
854
+ Evaluation of other Server Motherboards
855
+ As we found the PMBus to be a common interface present on server motherboard, we
856
+ decided to investigate other manufacturers as well. To facilitate larger-scale testing of
857
+ this, we wrote a tool called PMBusDetect. With this tool, we scan the system for a
858
+ PMBus connection and try to detect the VRM address. We applied this tool to several
859
+ other systems, including an ASRock rack motherboard (ASRock E3C246D4I-2T) and a
860
+ Supermicro X12DPi-NT6 motherboard (kindly provided by Supermicro for testing). We
861
+ then conducted further analysis of these systems to check if they are vulnerable to any
862
+ PMBus-related attack.
863
+
864
+ 16
865
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
866
+ Figure 8: Oscillocope capture of voltage change during overvolting, VOUT_COMMAND set to 0xFF (with 10 mV
867
+ VID table). Yellow: PMBus clock, blue: Vcpu. Vcpu shoots up to 2.84 V during overvolting.
868
+ PMBusDetect Tool for VRM Detection
869
+ Based on the VRM detection process mentioned
870
+ in Section 4.1, we built the PMBusDetect tool to automatically scan all addresses of a
871
+ specified I2C bus for VRMs. During testing, we found that the implementation of PMBus
872
+ and usage of the VRM is different between motherboard, and the most stable command to
873
+ identify a VRM is READ_TEMPERATURE (0x8d). We use the response to this command as
874
+ an initial indicator to identify whether a VRM is present, and then use the VRM detection
875
+ process from Section 4.1 to verify the result.
876
+ Moreover, as the capabilities and voltage changing sequence can differ between VRM
877
+ vendor, we added an additional procedure to detect the vendor of the VRM. For this, we
878
+ use the result of reading ISL_DEVICE_ID (0xad) as an indicator for Intersil VRMs and
879
+ SVID_VENDOR_PRODUCT_ID (0xbf) for MPS, respectively. Detection based on ipmi i2c is
880
+ also implemented for detecting the connection between VRM and the BMC as mentioned
881
+ in Section 4.3. An example output of PMBusDetect with Supermicro X11SSL-CF is shown
882
+ in Appendix B, while Table 3 shows a summary of the motherboard tested and the scan
883
+ result for VRMs with PMBusDetect. We are aware that our testing—restricted by (lack
884
+ of) access to server hardware— only gives a very limited picture of the use of PMBus and
885
+ VRMs on server hardware. We hence decided to open-source PMBusDetect and build on
886
+ community efforts in the future to obtain a better view of the PMBus landscape.
887
+ Table 3: Tested motherboards and their VRM detection result.
888
+ Name
889
+ BMC
890
+ Chipset
891
+ VRM Address
892
+ PMBus Connects to
893
+ Supermicro X11SSL-CF
894
+ AST2400
895
+ C232
896
+ 0x20
897
+ BMC & CPU
898
+ Supermicro X12DPi-NT6
899
+ AST2600
900
+ C621A
901
+ 0x30 & 0x34
902
+
903
+ ASRock E3C246D4I-2T
904
+ AST2500
905
+ C246
906
+ 0x60
907
+ BMC & CPU
908
+ 6.1
909
+ ASRock Power-Down Attack
910
+ The ASRock E3C246D4I-2T motherboard uses an Intel Xeon E-2124 CPU with an
911
+ Intel C246 Chipset and ASPEED AST2500 BMC with login credentials defaulting to
912
+ ADMIN:ADMIN. We used the PMBusDetect tool together with manual probing and found
913
+ that the VRM of this motherboard is connected to both the BMC and I2C bus of the
914
+ CPU. In the following attack, we assume that the attacker is a user on a baremetal server
915
+ with root access in the OS.
916
+ The VRM used on this motherboard is an ISL69138. Because it is made by a different
917
+
918
+ RIGOL
919
+ WAIT
920
+ H
921
+ 1.00ms
922
+ 250MSa/s
923
+ 3.00M pts
924
+ 4.00000000ms
925
+ [1
926
+ 2.68V
927
+ Horizonta
928
+ Coupling
929
+ DC
930
+ Period
931
+ BW Limit
932
+ 20M
933
+ Freg
934
+ Probe
935
+ 10X
936
+ Rise Time
937
+ Invert
938
+ OFF
939
+ Fall Tirme
940
+ Volts/Div
941
+ 4
942
+ Coarse
943
+ +width
944
+ Unit
945
+ [V]
946
+ width
947
+ DV#1→2=*****
948
+ tmax=-1.210ms
949
+ Max=2.84 #
950
+ Vupper=2.58 y
951
+ AW=1.25 *
952
+ 2.00 v
953
+ 50.0 V
954
+ .
955
+ 1.00 V
956
+ :500mv日Zitai Chen and David Oswald
957
+ 17
958
+ manufacture compared to the MP2955, the voltage changing PMBus command sequence
959
+ used for the MP2955 does not work with this VRM. Due to lack of documentation of this
960
+ procedure, we at the moment could not precisely overvolt or undervolt the CPU via the
961
+ PMBus. Yet, we discovered a new attack to disable the VRM and force power-down the
962
+ CPU, leaving the system in a (temporary) inoperable state.
963
+ PMBusDetect shows that the VRM is at address 0x60 on I2C bus 2 of the host CPU.
964
+ Different to the findings for the Supermicro X11SSL-CF, this VRM uses PMBus registers
965
+ on page 0x1 instead of the default 0x0. We then issue the ON_OFF_CONFIG (0x02) and
966
+ OPERATION (0x01) commands: We configure the OPERATION to “Immediate Off” and set
967
+ the “source of enable” only to ON_OFF_CONFIG. This results in a immediate power-off of
968
+ the VRM and crashes the system.
969
+ During testing, we found the PMBus is only writable from the CPU with IPMI over
970
+ KCS interface, but not from the BMC with ipmi i2c commands. As the result, it is not
971
+ possible for the administrator of the system to remotely configure the VRM back to a
972
+ normal state. Simply issuing the ipmi powercycle command with IPMI over LAN will
973
+ leave the system in a infinite boot loop. To recover from this attack, the administrator
974
+ has to physically power-cycle the system, which might increase downtime in a Denial-of-
975
+ Service (DoS) scenario.
976
+ This shows that PMBus as an attack vector does not only affect Supermicro X11SSL-
977
+ CF, but also can have impact on servers from other manufacturers. Besides we believe that
978
+ it might also be possible to conduct CPU bricking attacks if the PMBus voltage changing
979
+ sequence of Intersil VRM is known. We leave this for future work.
980
+ 6.2
981
+ Other Supermicro X11 Motherboards
982
+ We also ran the PMBusDetect tool on X11SPG-TF and X11SSE-F Supermicro server
983
+ motherboards—in both cases, the VRM was reachable in the default configuration. To
984
+ test if they are vulnerable to PMFault, we sent PMBus commands through ipmi i2c
985
+ commands and successfully undervolted them to crash the system. This shows that the
986
+ attack chain through the IPMI interface is valid on these systems. As the systems were
987
+ provided by a third party for remote testing, we were not able to attempt overvolting and
988
+ similar, destructive experiments, but believe these motherboards to be equally affected.
989
+ 6.3
990
+ Supermicro X12 Motherboards
991
+ We disclosed the vulnerability to Supermicro in May 2022. They confirmed the issue
992
+ and also provided a X12 generation Server for further testing. This system, Supermicro
993
+ X12DPi-NT6, features a dual Intel Xeon Gold 6330 CPU, Intel C621A Chipset, and
994
+ AST2600 BMC. Our investigation shows that mitigations has already been implemented
995
+ on this motherboard to break the attack chain of PMFault before we reported the attack
996
+ to Supermicro. Firstly, the firmware upgrade package is properly signed with RSA and
997
+ verified during the firmware upgrade process, which prevents malicious firmware uploads to
998
+ the BMC via IPMI. This breaks the attack chain though firmware upgrade. Secondly, I2C
999
+ packet filtering has been implemented in the BMC, which prevents IPMI commands to
1000
+ directly send packets to the PMBus. Moreover, our PMBusDetect tool shows that the VR
1001
+ is not connected to the CPU, which prevents an attack directly from the operating system.
1002
+ In conclusion, to the best of our knowledge, we believe that Supermicro X12DPi-NT6
1003
+ is not directly vulnerable to the attacks described in this paper. However, we note that
1004
+ as-of-yet unknown vulnerabilities might remain in the firmware update process and the
1005
+ complex software stack running on the BMC, which warrants further investigation.
1006
+
1007
+ 18
1008
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
1009
+ 7
1010
+ Conclusions and Countermeasures
1011
+ In this paper, we demonstrated two remote attacks that use the PMBus interface to control
1012
+ the CPU voltage. An undervolting attack can be used to inject fault to the SGX enclave of
1013
+ the CPU and e.g., recover a secret key used in cryptography algorithms. The overvolting
1014
+ attack causes permanent damage to the CPU.
1015
+ The attack affects, to our knowledge, all 11th generation Supermicro systems. It also
1016
+ impacts ASRock (tested with ASRock E3C246D4I-2T), though as described the VRM
1017
+ behaves differently to Supermicro. We suspect that the attack might also affect other
1018
+ vendors (given that BMCs are often similar), but could not further investigate this and
1019
+ thus leave it for future work.
1020
+ 7.1
1021
+ Server Platform Security and Embedded System Security
1022
+ We first discuss the security considerations for server platforms. Previous security research
1023
+ on computer platforms were mainly focused on the security of the software (either running
1024
+ on the CPU or the management controller). However, each subsystem on a server platform
1025
+ does not act in isolation. Instead, they may interact with each other via the physical
1026
+ connections on the motherboard. In our attacks, we show that the hardware design of
1027
+ the system with a correctly implemented ipmitool can lead to severe security issues and
1028
+ damage to the system.
1029
+ Apart from the components on the motherboard, one should also take “plugin” devices
1030
+ into consideration when analysing the security of server platforms. During our investigation
1031
+ of the system, we found that when a Peripheral Component Interconnect Express (PCI-E)
1032
+ device is plugged onto the motherboard, it is also connected to the I2C bus of the
1033
+ motherboard. However, if the firmware of a PCI-E device is compromised, it can gain
1034
+ access to the PMBus to perform the same attacks described in this paper. On E3-1220V6-
1035
+ X11SSL-CF, this connection can be configured with a jumper named JI2C. Although this
1036
+ jumper is disconnected by default, the user may not be aware of the security implications
1037
+ of connecting this jumper.
1038
+ In summary, the server platform is a system that has multiple components and mi-
1039
+ crocontrollers. The security of the platforms is not only down to ensuring the security of
1040
+ the software running on it, but the overall design of the hardware and embedded systems
1041
+ on the motherboard should also go through a thorough security review. Securing such a
1042
+ system needs collaborative effort of both software developers and hardware engineers.
1043
+ 7.2
1044
+ SGX Security
1045
+ Our attack on SGX enclaves shows that a privileged local attacker can inject a fault to the
1046
+ enclave and recover secret information with the server management interface, effectively
1047
+ reviving Plundervolt-like software undervolting attacks on Supermicro X11 motherboards.
1048
+ We also demonstrate that a malicious service provider (e.g., cloud hoster) can use the
1049
+ attack chains described in the paper to break the security guarantee provided by SGX.
1050
+ Moreover, the vulnerability currently cannot be detected/mitigated by SGX attestation,
1051
+ because the BMC and its firmware are not within the scope of SGX attestation.
1052
+ A supply chain attack is also possible: as the firmware is not securely verified, it is
1053
+ possible for a third party to implant malware into the BMC and later launch remote
1054
+ attacks on SGX and/or damage the CPU. Such a firmware modification is also conceivable
1055
+ while the device is being shipped to the end user. Detecting such attack would be hard, as
1056
+ the firmware of the BMC is stored in a separate flash chip. The software running on the
1057
+ BMC is thus usually out-of-scope of traditional malware detection methods.
1058
+
1059
+ Zitai Chen and David Oswald
1060
+ 19
1061
+ 7.3
1062
+ Countermeasures
1063
+ Overvolting Attack
1064
+ According to our experiments, PMBus-based overvolting can lead
1065
+ to permanent damage to the CPU and thus permanent DoS of the system.
1066
+ The fundamental issue that leads to this attack is the lack of a hardcoded voltage
1067
+ limit of the VRM. Simply adding signature verification of the BMC firmware or using
1068
+ secure boot to break the attack chain might not be sufficient to prevent overvolting, as
1069
+ other, future attacks might also yield PMBus access. Besides, configuring software-based
1070
+ PMBus read/write limitations of the VRM through the MFR_PWD_USER command is also
1071
+ insufficient to stop the attack. This is because this features only sets a 16-bit passcode,
1072
+ which is prone to brute force attack. We suggest the following mitigations be implemented
1073
+ for this attack to break the attack chain:
1074
+ 1. In the short term, the user manual of the relevant system(s) should be updated to
1075
+ describe the usage and suggested configuration of the SMBDAT_VRM and SMBCLK_VRM
1076
+ jumpers, if they are present on a specific model.
1077
+ 2. In the long term, an alternative VRM with a hardwired voltage safety limit should be
1078
+ used to replace the current VRM.
1079
+ 3. Another mitigation would be implementing an I2C filter to detect and block malicious
1080
+ PMBus packets. MFR_VR_CONFIG, which can be used to set a 10 mV VID table, is one
1081
+ of the main commands that need to be blocked. Optionally, other commands that
1082
+ involved in the overclocking procedure could be blocked, however, this may affect users
1083
+ who actually want to use this feature. Such a filter could be implemented in a small
1084
+ microcontroller that listens to the I2C bus and “jams” malicious commands by actively
1085
+ pulling the bus low once the command has been detected but before its transmission
1086
+ has been completed.
1087
+ PMBus-based SGX Undervolting
1088
+ To the best of our knowledge, PMFault represents
1089
+ the first attack that directly breaches integrity guarantees in the Intel SGX security
1090
+ architecture through the PMBus interface. We believe that the fix currently deployed by
1091
+ Intel against Plundervolt/V0ltPwn (CVE-2019-11157)—disabling the SVID undervolting
1092
+ interface—is insufficient when a remote attacker can get access to the PMBus through
1093
+ the BMC or I2C interface of the CPU, as is the case for Supermicro X11 motherboards.
1094
+ We note that there might be many other devices connected to the bus, including PCI-E
1095
+ devices like graphic cards. It is thus also possible for a compromised PCI-E device to send
1096
+ malicious commands to control the CPU voltage.
1097
+ Given the potential impact of our findings regarding fault injection into SGX enclaves,
1098
+ in the short term, we recommend inserting software-based fault injection countermeasures
1099
+ into cryptographic computations in enclaves (e.g., the quoting enclave). However, we note
1100
+ that such fixes can only serve as mitigations, but not fully eliminate this attack vector.
1101
+ We would like to highlight that in our opinion, this attack surface cannot be easily
1102
+ addressed by jumpers to disconnect the VRM from the SMBus or adding signature
1103
+ verification of the BMC firmware, as we believe that SGX attestation cannot independently
1104
+ verify the relevant system configurations:
1105
+ 1. The existence of a PMBus/SMBus interface to the VRM and whether it can be controlled
1106
+ through the I2C interface of the CPU;
1107
+ 2. The existence of an external microcontroller on the motherboard and if it has the
1108
+ functionality to control the VRM (e.g., BMC or other PCI-E devices);
1109
+ 3. The firmware security status of the BMC and other devices on the PMBus.
1110
+ This will make it impossible to give SGX assurance of the trust status of the system.
1111
+ We believe that in the long term, appropriate hardware countermeasures inside the
1112
+ CPU package is required: this could on the one hand include continuous monitoring
1113
+ of the received supply voltage, as recently presented by Intel for critical parts of their
1114
+ systems [NT22], and on the other the use of fully-integrated voltage regulators.
1115
+
1116
+ 20
1117
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
1118
+ Acknowledgements
1119
+ This research is partially funded by the Engineering and Physical Sciences Research Council
1120
+ (EPSRC) under grants EP/R012598/1, EP/R008000/1, and EP/V000454/1. The results
1121
+ feed into DsbDtech. We would also like to thank Supermicro for providing a X12DPi-NT6
1122
+ server for further investigation of the issue.
1123
+ A
1124
+ i2cdetect Result for Supermicro X11SSL-CF
1125
+ ~$ sudo
1126
+ i2cdetect 0
1127
+ 0
1128
+ 1
1129
+ 2
1130
+ 3
1131
+ 4
1132
+ 5
1133
+ 6
1134
+ 7
1135
+ 8
1136
+ 9
1137
+ a
1138
+ b
1139
+ c
1140
+ d
1141
+ e
1142
+ f
1143
+ [00 -20]: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
1144
+ 30:
1145
+ -- -- -- -- -- -- -- 37 -- -- -- -- -- -- -- --
1146
+ 40:
1147
+ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
1148
+ 50:
1149
+ 50 -- -- -- -- -- -- -- 58 -- -- -- -- -- -- --
1150
+ 60:
1151
+ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
1152
+ 70:
1153
+ -- -- -- -- -- -- -- --
1154
+ ~$ sudo
1155
+ i2cdetect 1
1156
+ 0
1157
+ 1
1158
+ 2
1159
+ 3
1160
+ 4
1161
+ 5
1162
+ 6
1163
+ 7
1164
+ 8
1165
+ 9
1166
+ a
1167
+ b
1168
+ c
1169
+ d
1170
+ e
1171
+ f
1172
+ 00:
1173
+ -- -- -- -- -- 08 -- -- -- -- -- -- --
1174
+ 10: 10 -- -- -- -- -- -- -- -- 19 -- -- -- -- -- --
1175
+ 20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
1176
+ 30: 30 -- -- -- -- 35 36 -- -- -- -- -- -- -- -- --
1177
+ 40: -- -- -- -- 44 -- -- -- -- -- -- -- -- -- -- --
1178
+ 50: -- 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --
1179
+ 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
1180
+ 70: -- -- -- -- -- -- -- --
1181
+ B
1182
+ PMBusDetect Result for Supermicro X11SSL-CF
1183
+ $ sudo
1184
+ modprobe
1185
+ i2c_i801
1186
+ $ sudo ./ pmbusdetect -d /dev/i2c -1
1187
+ Device 0x20
1188
+ READ_TEMPERATURE
1189
+ success: 0019
1190
+ !!!!!!!!!!!
1191
+ Detected! Device
1192
+ addr: 20 !!!!!!!!!!!
1193
+ Device 0x20
1194
+ SVID_VENDOR_PRODUCT_ID
1195
+ success , data: 2555
1196
+ This
1197
+ device is likely to be a MPS VRM
1198
+ Device 0x20 : 00
1199
+ READ_PAGE
1200
+ success
1201
+ # Save the page
1202
+ Page: 00
1203
+ Device 0x20 : 00
1204
+ WRITE_PAGE
1205
+ success
1206
+ Device 0x20 : 00
1207
+ READ_VOUT
1208
+ success: 00D8
1209
+ Page: 01
1210
+ Device 0x20 : 01
1211
+ WRITE_PAGE
1212
+ success
1213
+ Device 0x20 : 01
1214
+ READ_VOUT
1215
+ success: 0001
1216
+ Device 0x20 : 00
1217
+ WRITE_PAGE
1218
+ success # Restore
1219
+ the page
1220
+
1221
+ Zitai Chen and David Oswald
1222
+ 21
1223
+ References
1224
+ [asta]
1225
+ Aspeed
1226
+ 24XX/25XX
1227
+ I2C
1228
+ Controller
1229
+ Linux
1230
+ Kernel
1231
+ 5.16
1232
+ Driver.
1233
+ https://elixir.bootlin.com/linux/latest/source/drivers/i2c/
1234
+ busses/i2c-aspeed.c. visited on 2022-09-16.
1235
+ [astb]
1236
+ Linux device tree file:
1237
+ aspeed-g4.dtsi.
1238
+ https://github.com/torvalds/
1239
+ linux/blob/133d9c53c9dcbb1b8f317e402e79c44d9eb725c9/arch/arm/
1240
+ boot/dts/aspeed-g4.dtsi#L438. visited on 2022-09-16.
1241
+ [BDL97]
1242
+ Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the Importance
1243
+ of Checking Computations. In Proceedings of Eurocrypt’97, pages 37 – 51,
1244
+ 1997.
1245
+ [BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
1246
+ Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
1247
+ IEEE, 94(2):370–382, 2006.
1248
+ [BJKS21]
1249
+ Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
1250
+ One Glitch to Rule Them All: Fault Injection Attacks Against AMD’s Secure
1251
+ Encrypted Virtualization. In Proceedings of the 2021 ACM SIGSAC Confer-
1252
+ ence on Computer and Communications Security, CCS ’21, page 2875–2889,
1253
+ New York, NY, USA, 2021. Association for Computing Machinery.
1254
+ [bmc]
1255
+ https://drunkencat.net/misc/SupermicroBIOS.html. visited on 2022-11-
1256
+ 18.
1257
+ [Cor]
1258
+ Intel
1259
+ Corporation.
1260
+ Cryptography
1261
+ for
1262
+ Intel
1263
+ Integrated
1264
+ Perfor-
1265
+ mance
1266
+ Primitives
1267
+ Developer
1268
+ Reference—RSA
1269
+ Primitives.
1270
+ https:
1271
+ //www.intel.com/content/www/us/en/develop/documentation/ipp-
1272
+ crypto-reference/top/public-key-cryptography-functions/rsa-
1273
+ algorithm-functions/rsa-primitives.html. visited on 2023-01-05.
1274
+ [Cor18]
1275
+ Intel Corporation. Intel Xeon Processor E3-1200 v6 Product Family for S
1276
+ Platforms, 01 2018. https://www.intel.co.uk/content/dam/www/public/
1277
+ us/en/documents/datasheets/xeon-e3-1200v6-vol-1-datasheet.pdf.
1278
+ visited on 2022-09-16.
1279
+ [CVM+21]
1280
+ Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald,
1281
+ and Flavio D. Garcia. VoltPillager: Hardware-based fault injection attacks
1282
+ against intel SGX enclaves using the SVID voltage scaling interface. In 30th
1283
+ USENIX Security Symposium (USENIX Security 21), pages 699–716. USENIX
1284
+ Association, August 2021.
1285
+ [Ecl18]
1286
+ Eclypsium. Insecure firmware updates in server management systems, Sep
1287
+ 2018. https://eclypsium.com/2018/09/06/insecure-firmware-updates-
1288
+ in-server-management-systems/. visited on 2022-09-10.
1289
+ [GE17]
1290
+ Maxim Goryachy and Mark Ermolov. How to Hack a Turned-Off Computer,
1291
+ or Running Unsigned Code in Intel Management Engine, November
1292
+ 2017.
1293
+ Black Hat Europe 2017, https://www.blackhat.com/docs/eu-17/
1294
+ materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-
1295
+ Running-Unsigned-Code-In-Intel-Management-Engine.pdf. Visited on
1296
+ 2022-01-06.
1297
+
1298
+ 22
1299
+ PMFault: Faulting and Bricking Server CPUs through Management Interfaces
1300
+ [KDK+14]
1301
+ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
1302
+ Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
1303
+ without accessing them: An experimental study of DRAM disturbance errors.
1304
+ In ISCA, 2014.
1305
+ [KFG+20]
1306
+ Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-
1307
+ Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity from Software.
1308
+ In USENIX Security ’20, Boston, August 2020. USENIX Association.
1309
+ [MIT17]
1310
+ MITRE. CVE-2017-5689, February 2017. https://cve.mitre.org/cgi-bin/
1311
+ cvename.cgi?name=CVE-2017-5689. visited on 2022-01-06.
1312
+ [MOG+20]
1313
+ Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
1314
+ and Frank Piessens. Plundervolt: Software-based Fault Injection Attacks
1315
+ against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security
1316
+ and Privacy (S&P’20), 2020.
1317
+ [Mon]
1318
+ Monolithic
1319
+ Power
1320
+ Systems,
1321
+ Inc.
1322
+ MP2965
1323
+ Datasheet.
1324
+ https://
1325
+ www.monolithicpower.com/en/mp2965.html. visited on 2022-09-10.
1326
+ [Nie20]
1327
+ Michael Niewöhner. Supermicro BMC firmware image decryptor, 2020. https:
1328
+ //github.com/c0d3z3r0/smcbmc. visited on 2022-09-08.
1329
+ [NT22]
1330
+ Daniel Nemiroff and Carlos Tokunaga. Whitepaper: Fault Injection Counter-
1331
+ measures, Deployed at Scale. Technical report, 2022.
1332
+ [PGC18]
1333
+ Fabien Périgaud, Alexandre Gazet, and Joffrey Czarny. Subverting your
1334
+ server through its BMC: the HPE iLO4 case. In Recon Brussels ’18, 2018.
1335
+ [pmb]
1336
+ PMBus Power System Management Protocol Specification, Part II – Com-
1337
+ mand Language. https://470q2hhkn9g15l4bc2btbal1-wpengine.netdna-
1338
+ ssl.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-
1339
+ 1-Part-II-20150313.pdf. visited on 2022-09-11.
1340
+ [QWLQ19]
1341
+ P. Qiu, D. Wang, Y. Lyu, and G. Qu. VoltJockey: Breaking SGX by Software-
1342
+ Controlled Voltage-Induced Hardware Faults. In AsianHOST ’19, pages 1–6,
1343
+ 2019.
1344
+ [Rak15]
1345
+ Brian Rak. Github repo: ipmi_firmware_tools, 2015. https://github.com/
1346
+ devicenull/ipmi_firmware_tools. visited on 2022-09-15.
1347
+ [RR18]
1348
+ Jordan Robertson and Michael Riley. The Big Hack: How China Used a Tiny
1349
+ Chip to Infiltrate U.S. Companies, Oct 2018. https://www.bloomberg.com/
1350
+ news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-
1351
+ chip-to-infiltrate-america-s-top-companies#xj4y7vzkg. visited on
1352
+ 2022-09-19.
1353
+ [Supa]
1354
+ Supermicro.
1355
+ X11SSL-CF(-nF)
1356
+ Quick
1357
+ Reference
1358
+ Guide.
1359
+ https://
1360
+ www.supermicro.com/QuickRefs/motherboard/C232/QRG-1782.pdf. visited
1361
+ on 2022-09-13.
1362
+ [Supb]
1363
+ Supermicro. X11SSL-CF X11SSL-nF USER MANUAL Revision 1.1. https:
1364
+ //www.supermicro.com/manuals/motherboard/C232/MNL-1782.pdf. visited
1365
+ on 2022-09-10.
1366
+ [TSS17]
1367
+ Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW:
1368
+ Exposing the perils of security-oblivious energy management. In USENIX
1369
+ Security ’17, pages 1057–1074, Vancouver, BC, August 2017. USENIX Associ-
1370
+ ation.
1371
+
1372
+ Zitai Chen and David Oswald
1373
+ 23
1374
+ [TW09]
1375
+ Alexander Tereshkin and Rafal Wojtczuk.
1376
+ Introducing ring -3 rootkits,
1377
+ 2009. Black Hat USA, https://www.blackhat.com/presentations/bh-usa-
1378
+ 09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf. visited on
1379
+ 2023-01-06.
1380
+ [Vaz13]
1381
+ Juan Vazquez. Exploiting the Supermicro Onboard IPMI Controller, Nov
1382
+ 2013. https://www.rapid7.com/blog/post/2013/11/15/exploiting-the-
1383
+ supermicro-onboard-ipmi-controller/. visited on 2022-09-12.
1384
+ [WS18]
1385
+ Nico Waisman and Matias Sebastian Soler. The Unbearable Lightness of
1386
+ BMC’s. In BlackHat ’18, 2018.
1387
+
CdE5T4oBgHgl3EQfTw8s/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdFQT4oBgHgl3EQf_DcV/content/2301.13456v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0e160df3d9557bc921cd6fe8084667a793b479406ad1a1fd55181e8d0e7db9e
3
+ size 468879
CdFQT4oBgHgl3EQf_DcV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da39243b2f0ec79847c520a395aae51de8954454df0c11f765718d439f97640
3
+ size 227639
EdE2T4oBgHgl3EQfSgfT/content/tmp_files/2301.03794v1.pdf.txt ADDED
@@ -0,0 +1,983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+ 1
6
+
7
+ Compensation of anisotropy in spin-Hall devices for neuromorphic
8
+ applications
9
+ Pankaj Sethi*, Dédalo Sanz-Hernández, Florian Godel, Sachin Krishnia, Fernando Ajejasa),
10
+ Alice Mizrahi, Vincent Cros, Danijela Marković and Julie Grollier
11
+
12
+ Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France
13
+
14
+
15
+ Spintronic nano-oscillators with reduced non-linearity could offer key benefits for
16
+ realizing neuromorphic applications such as spike-based neurons and frequency multiplexing
17
+ in neural networks. Here, we experimentally demonstrate the reduction in non-linearity of a
18
+ spin-Hall nano-oscillator (SHNO) by compensation of its effective magnetic anisotropy. The
19
+ study involves optimization of Co/Ni multilayer growth to achieve the compensation, followed
20
+ by spin diode measurements on patterned microstrips to quantify their anisotropy. The relation
21
+ between the second (Hk2 = 0.47 mT) and the first order (Hk1eff = ̶ 0.8 mT) anisotropy fields
22
+ reveals the existence of an easy cone, thereby validating the presence of compensation.
23
+ Furthermore, we demonstrate a synapse based on the compensated spin diode which has a fixed
24
+ frequency when the input power is varied. We then study the current-induced auto-oscillation
25
+ properties of SHNOs on compensated films by patterning nano-constrictions of widths 200 and
26
+ 100 nm. The invariance of the resonance frequency and linewidth of the compensated SHNO
27
+ with applied dc current indicates the absence of non-linearity. This independence is maintained
28
+ irrespective of the applied external fields and its orientations. The compensated SHNO obtained
29
+ has a linewidth of 1.1 MHz and a peak output power of up to 1 pW/MHz emulating a nano-
30
+ neuron with a low linewidth and a fixed frequency.
31
+
32
+ a) Present address: Department of Physics and Center for Advanced Nanoscience, University of
33
+ California, San Diego, La Jolla, CA, 92093, USA
34
+ *Corresponding author: [email protected], [email protected]
35
+
36
+
37
+
38
+
39
+
40
+
41
+ 2
42
+
43
+ I. INTRODUCTION
44
+ Spintronic nano-oscillators with their low device footprint, rich dynamics and
45
+ multifunctionality can provide an energy efficient solution to realize neuromorphic
46
+ applications [1–4]. Non-linearity is prevalent in the magnetization dynamics of such nano-
47
+ oscillators. In a non-linear auto-oscillator, the frequency, f, has a component which depends on
48
+ the precession amplitude or the effective magnetization given by,
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+ f = fFMR + Np,
57
+ (1)
58
+
59
+ where fFMR is the frequency at ferromagnetic resonance, N is the non-linear frequency shift
60
+ coefficient and p is the term related to the amplitude of precession [5]. This non-linearity
61
+ emerges from an effective anisotropy in the system, which results in non-circular trajectory of
62
+ the precessing magnetization. It leads to a large frequency tunability with current which
63
+ provides multifunctionality to these nano-oscillators such as the possibility to be modulated or
64
+ synchronized. This has been exploited in realizing numerous applications relevant to data
65
+ communication [6–10] and neuromorphic computing [3,4,11,12]. However, there are certain
66
+ systems where it is possible to reduce the effective anisotropy and, as a result, the non-linearity.
67
+ In such compensated systems, the anisotropy field is counterbalanced by the demagnetization
68
+ field, resulting in circular trajectories of the precessing magnetization. The absence of
69
+ nonlinearity, which results in a constant frequency with respect to the injected input power or
70
+ current, also offers key benefits for realizing neuromorphic applications. For instance, multiply-
71
+ and-accumulate (MAC) operations using spintronic resonators employ frequency multiplexing
72
+ to uniquely address input radio frequency (RF) signals from neurons to the corresponding
73
+ resonators [13,14]. This requires the neurons and the corresponding spin diode-based synapses
74
+ to resonate at a relatively fixed frequency independent of the injected RF power, which can be
75
+ accomplished by compensating anisotropy in spintronic nano-oscillators and spin diodes,
76
+ respectively. Secondly, an absence of non-linearity can reduce the phase noise of the nano-
77
+ oscillator by removing the effect of amplitude noise on it. The phase noise, Δf, of an auto-
78
+ oscillator is given by,
79
+
80
+
81
+ Δf = Δfthermal (1+ N2/Γeff2),
82
+ (2)
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+ 3
91
+
92
+ where Δfthermal is the contribution from the thermal generation linewidth and Γeff is the effective
93
+ damping [5]. The second term, which is the contribution from the amplitude noise, can be
94
+ neglected if N is very small. Thus, a neuron with low linewidth and a relatively fixed frequency
95
+ can be realized using anisotropy compensation. A third application is the realization of spike-
96
+ based neurons which was recently demonstrated via macro-spin approach and micromagnetic
97
+ simulations [15]. It was shown that anisotropy compensation in a spin Hall geometry results in
98
+ circular trajectories of the precessing magnetization and the resulting output is a chain of spikes
99
+ emulating the biological neurons. Thus, it is important to study systems with compensated
100
+ anisotropy.
101
+ Recently, Jiang et al. have demonstrated a linewidth reduction of spin-valve based spin-
102
+ torque nano-oscillators (STNOs) by controlling the perpendicular magnetic anisotropy (PMA)
103
+ of their films using He-ion irradiation [16]. An alternate planar geometry based on heavy metal
104
+ and ferromagnetic layers, which utilizes spin current injected from the heavy metal by spin Hall
105
+ effect to sustain precession in the ferromagnet, benefits from ease of fabrication [17–19].
106
+ Moreover, spin Hall nano-oscillators (SHNOs), in the form of a nano-constriction geometry of
107
+ these layers, exhibit auto-oscillations by way of mode confinement in a potential well formed
108
+ by non-uniform magnetic field [20–22]. Divinskiy et al. demonstrated the suppression of
109
+ nonlinear damping by compensation of in-plane dipolar anisotropy with PMA in Co/Ni based
110
+ disks patterned on Pt heavy metal [23]. However, the detection of auto-oscillations was
111
+ performed by optical methods which are less suitable for on chip applications.
112
+ Here, we experimentally demonstrate, by all-electrical measurements, a reduction of non-
113
+ linearity and linewidth of an SHNO, based on Co/Ni multilayers with compensated anisotropy
114
+ and a Pt heavy metal layer. Compensation is achieved by tuning the thicknesses of the Co/Ni
115
+ multilayers. The effective anisotropy is estimated using spin diode measurements performed on
116
+ microstrip waveguides. The relation between the second and the first order anisotropy terms
117
+ indicate the presence of an easy cone state [24–26] which validates the existence of
118
+ compensation. The compensated spin diode thus obtained, does not show variation of its
119
+ frequency with the injected RF power and can function as a synapse. Nano-constriction based
120
+ SHNOs with different widths are then patterned on the compensated stacks and the output
121
+ microwave spectra are analysed. The frequency is found to remain nearly constant as a function
122
+ of dc current for a wide range of magnetic field strengths and orientations. Moreover, an
123
+ extremely low linewidth close to 1 MHz (quality factor = 7500) is obtained, which does not
124
+ increase significantly at large applied dc currents. Control SHNO fabricated with an in-plane
125
+ anisotropy Ni81Fe19/Pt stack exhibits significant shift of frequency and linewidth with the
126
+
127
+
128
+
129
+
130
+
131
+ 4
132
+
133
+ applied dc current. The compensated SHNOs can thus operates as a neuron with a fixed
134
+ frequency and a low linewidth.
135
+
136
+ II. COMPENSATION OF ANISOTROPY IN SPIN HALL DEVICES
137
+ A. Sample preparation
138
+ The stacks consisting of Ta (5) /Pt (6) /[Co (x) /Ni (y)]5 /Co (x) /Al (2) (thicknesses are in
139
+ nm) are deposited on high resistivity Silicon (001) substrates (resistivity > 10000 Ω-cm) by dc-
140
+ magnetron sputtering at room temperature. Ta is used as a seed layer to promote adhesion
141
+ between silicon and the subsequent layer and Pt serves as the heavy metal layer. Co/Ni
142
+ multilayers are chosen for their large PMA and spin polarization which can be tuned by varying
143
+ layer thicknesses [27], as demonstrated previously for domain-wall based devices [28,29]. A
144
+ Co/Ni multilayer repetition of five was chosen to obtain a sizeable absolute magnetization [30].
145
+ FIG. 1. Alternating gradient magnetometry measurements for Ta (5) /Pt (6)/ [Co (x) / Ni (y)]5/
146
+ Co (x)/ Al (2) (thicknesses are in nm) films with (a) in-plane anisotropy (x = 0.5, y = 0.8), (b)
147
+ compensated anisotropy (x = 0.4, y = 0.9) and (c) perpendicular anisotropy (x = 0.4, y = 0.8).
148
+
149
+ (a)
150
+ Co 0.5/Ni 0.8
151
+ 1.0
152
+ 0.5
153
+ 0.0
154
+ Norm.
155
+ -0.5
156
+ OOP
157
+ -1.0
158
+ IP
159
+ (b)
160
+ LCo 0.4/Ni 0.9
161
+ 0.5
162
+ 0.0
163
+ -0.5
164
+ OOP
165
+ -1.0
166
+ IP
167
+ (c
168
+ Co 0.4/Ni 0.8
169
+ 0.5
170
+ 0.0
171
+ Norm.I
172
+ -0.5
173
+ OOP
174
+ -1.0
175
+ IP
176
+ -500
177
+ -250
178
+ 0
179
+ 250
180
+ 500
181
+ Hext (mT)
182
+
183
+
184
+
185
+ 5
186
+
187
+ Thicknesses of Co (x) and Ni (y) are varied to tune the anisotropy and the corresponding M-H
188
+ loops are measured for in-plane (IP) and out-of-plane (OOP) field orientations using alternating
189
+ gradient force magnetometry (AGFM). Starting with in-plane anisotropy (IPA) for Co (0.5 nm)
190
+ and Ni (0.8 nm) [Fig. 1(a)], the thickness of Co is reduced to 0.4 nm and PMA is obtained [Fig.
191
+ 1(c)] due to interfacial anisotropy overcoming the demagnetization field. Henceforth, in this
192
+ article, Co (0.5 nm) /Ni (0.8 nm) and Co (0.4 nm) /Ni (0.8 nm) multilayers are referred to as
193
+ IPA and PMA stacks, respectively. Further, when the thickness of Ni is increased to 0.9 nm,
194
+ the PMA reduces but the anisotropy is neither fully in-plane nor out-of-plane [Fig. 1(b)]. As
195
+ will be described in what follows, the intermediate anisotropy obtained with Co (0.4 nm) and
196
+ Ni (0.9 nm) has been compensated and this film is referred to as the compensated stack. The
197
+ anisotropy fields were extracted using spin diode measurements [18,31]. To carry out the
198
+ measurements, the multilayers were patterned into microstrip waveguides of width 10 µm and
199
+ length 25 µm using optical lithography and Ar ion beam etching techniques. Ti (15 nm)/Au
200
+ (150 nm) metal stacks are deposited as electrodes and patterned into coplanar waveguides
201
+ overlaying the microstrips using optical lithography and lift-off techniques. The resulting
202
+ samples are henceforth referred as IPA, PMA and compensated devices, respectively.
203
+
204
+ B. Spin-diode measurements and estimation of effective anisotropy
205
+ Figure 2 shows the spin-diode measurement set-up. A microwave current with a power of
206
+ 8 mW (9 dBm) is injected into the microstrip device to generate microwave frequency spin-
207
+ orbit torque (SOT) on the ferromagnetic layers due to the heavy metal Pt [18]. The mixing
208
+ between the oscillating magneto-resistance and the microwave current produces a dc rectified
209
+ voltage, Vdc, at the ferromagnetic resonance, which is detected by using a lock-in amplifier.
210
+ The external field is swept close to the OOP direction for the PMA device (θ = 5 deg) and is
211
+ swept in-plane (φ = 45 deg) for the compensated and IPA devices. By keeping the field
212
+ FIG. 2. Schematic illustration of spin-diode measurement set-up
213
+
214
+ sΦ x
215
+
216
+
217
+
218
+ 6
219
+
220
+ orientation close to the anisotropy of the devices we can eliminate the artefacts due to geometry
221
+ induced local anisotropy variation and simplify the analysis [32]. All measurements are
222
+ performed at room temperature. Resonance plots obtained for the PMA, the compensated and
223
+ the IPA devices are shown in Figures 3 (a), (b) and (c), respectively. The amplitudes observed
224
+ in the resonance plots are not corrected for the non-flat frequency response of the wire bonds
225
+ and the cabling in the set-up. However, in our analysis we are only interested in the estimation
226
+ of the resonance fields which are independent of amplitude losses. The plots can be well fit by
227
+ FIG. 3. Spin diode resonance plots at different injected microwave frequencies for (a) PMA,
228
+ (b) compensated and (c) IPA stacks based microstrip waveguides. Resonance frequency as a
229
+ function of the resonance field for (d) PMA, (e) compensated and (f) IPA stacks based
230
+ microstrip waveguides. Solid red lines are Kittel fits and dotted blue lines, plotted for
231
+ guidance, corresponds to Meff = 0.
232
+
233
+ a)
234
+ 60
235
+ (d)
236
+ ExtractedPeaks
237
+ 4 GHz
238
+ 50
239
+ (GHz)
240
+ Kittel Fit
241
+ 5 GHz
242
+ - Meft = 0
243
+ 6 GHz
244
+ 40
245
+ 7 GHz
246
+ Meff=-35mT
247
+ 30
248
+ 8 GHz
249
+ 6
250
+ Meff
251
+ &
252
+ 20
253
+ 5
254
+ 10
255
+ 0
256
+ 100
257
+ 200
258
+ 300
259
+ 400
260
+ 120
261
+ 160
262
+ 200
263
+ 240
264
+ 280
265
+ Hext (mT)
266
+ Hext (mT)
267
+ (b)
268
+ 50
269
+ (e) 8
270
+ ExtractedPeaks
271
+ (GHz)
272
+ Kittel Fit
273
+ + -Mer= 0
274
+ (Λr)
275
+ -50
276
+ Frequency
277
+ 6
278
+ 3 GHz
279
+ 4 GHz
280
+ 5
281
+ Meff
282
+ >-100
283
+ 5 GHz
284
+ Meff=0.5mT
285
+ 6GHz
286
+ -150
287
+ 7 GHz
288
+ 4
289
+ 8GHz
290
+ 3
291
+ -200
292
+ 100
293
+ 200
294
+ 300
295
+ 400
296
+ 80
297
+ 120
298
+ 160200240280
299
+ Hext (mT)
300
+ Hext (mT)
301
+ (c) 100
302
+ (f)
303
+ ..
304
+ Extractedpeaks
305
+ (GHz)
306
+ Fit
307
+ 0
308
+ - Mef = 0
309
+ 3 GHz
310
+ Frequency
311
+ 6
312
+ Mof=86.6mT
313
+ 4 GHz
314
+ 5 GHz
315
+ 5
316
+ -200
317
+ 6 GHz
318
+ 7 GHz
319
+ 4
320
+ -300
321
+ 8 GHz
322
+ 3
323
+ 100
324
+ 200
325
+ 300
326
+ 400
327
+ 80
328
+ 120
329
+ 160
330
+ 200
331
+ 240
332
+ Hext (mT)
333
+ Hext (mT)
334
+
335
+
336
+
337
+ 7
338
+
339
+ the sum of symmetric and antisymmetric Lorentzian curves [18]. The resonance field, Hr is
340
+ extracted for each of the injected microwave frequency (fres) and the Kittel functions (fres vs Hr)
341
+ are plotted for each of the three configurations. The linear relation obtained in Figure 3 (d) for
342
+ the PMA device is well explained by the Kittel formula, fres = γ/2π(Hr ̶ µ0Meff ) [33], where
343
+ µ0Meff = µ0Ms – Hk, is the effective anisotropy field. The fit of the equation yields an Meff = ̶
344
+ 35 mT. The negative sign of Meff confirms the existence of PMA. Figures 3 (e) and (f) depict
345
+ the fres vs Hr plots for the compensated and the IPA devices, respectively which are well fit with
346
+ the equation, fres= γ/2π[Hr(Hr + µ0Meff)]1/2 [18]. The extracted values of Meff are 0.5 mT and
347
+ +86.6 mT for the compensated and the IPA devices, respectively. As a comparison, the Kittel
348
+ function corresponding to Meff = 0 is also plotted together with the as obtained fits for each of
349
+ the three devices. Clearly, the compensated stack-based device is closest to the near zero
350
+ effective anisotropy.
351
+ Given that the first order anisotropy is close to zero in the compensated device, the possible
352
+ influence of the second order anisotropy needs to be taken into consideration. The following
353
+ equations are the more generalized forms which take the second order anisotropy into
354
+ consideration,
355
+
356
+
357
+
358
+
359
+ f = γ/2π(H1H2)1/2
360
+ (3)
361
+ with
362
+ H1 = Hr cos(θH ̶ θM) + Hk1eff cos2θM ̶ Hk2cos4θM,
363
+
364
+ H2 = Hr cos(θH ̶ θM) + Hk1effcos 2θM ̶ Hk2/2(cos 2θM + cos 4θM),
365
+ (4)
366
+
367
+ where θH, θM correspond to the angle of the external magnetic field and the magnetization angle
368
+ measured from the sample normal, respectively. Hk1eff and Hk2 correspond to the first and the
369
+ second order effective anisotropy fields, respectively [34]. By adopting Hk1eff, Hk2 and γ as
370
+ adjustable parameters, the θH dependence of Hr yields the first and the second order anisotropy
371
+ fields. The energy minimum conditions ∂F/∂θM = 0 and ∂2F/∂θM2 > 0 are used to extract the
372
+ value for θM, where F is the magnetic energy density [34].
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+ 8
381
+
382
+
383
+
384
+ Spin-diode measurements are performed by sweeping the magnetic field at different out-
385
+ of-plane angles, θH, in the y-z plane as shown in the schematic of Figure 4. In this geometry,
386
+ the signal strength of the output voltage is larger due to the spin pumping contributions [35].
387
+ The resonance fields, Hr, are extracted from the sum of symmetric and antisymmetric
388
+ Lorentzians for each of the angles. The measurements are first performed for the IPA and the
389
+ PMA devices. The extracted Hr as a function of θH are shown in Figures 5 (a) and (b), with
390
+ input microwave frequencies fixed at 3 GHz and 4 GHz for the IPA and the PMA devices,
391
+ respectively. The curves display a monotonic behaviour, where the Hr is minimum close to the
392
+ in-plane angle (θH = ±90 deg) for the IPA device and close to the out-of-plane angle (θH = 0
393
+ deg) for the PMA device. The nature of the curves is independent of the input microwave
394
+ frequency, different values are selected for the two devices based on the signal quality. The
395
+ measurements have been performed for the compensated device at a frequency of 5 GHz and
396
+ the corresponding Hr vs θH plots are shown in Figure 5 (c). The curves display a non-monotonic
397
+ FIG. 4. Schematic illustration of spin-diode measurement set-up when external field is rotated
398
+ out-of-plane.
399
+ FIG. 5. Resonance field vs field angle for the microstrip waveguide with (a) IPA stack,
400
+ microwave frequency fixed at 3 GHz (b) PMA stack, microwave frequency fixed at 4 GHz and
401
+ (c) compensated stack, microwave frequency fixed at 5 GHz.
402
+
403
+ Bias-tee
404
+ Input
405
+ Lod:
406
+ am:(a)
407
+ (b)
408
+ (c)
409
+ In-Plane
410
+ PMA
411
+ Compensated
412
+ 240
413
+ 240
414
+ Exp.
415
+ 240
416
+ Fit
417
+ 200
418
+ E
419
+ 200
420
+ 220
421
+ 160
422
+ H
423
+ 160
424
+ 200
425
+ 120
426
+ 80
427
+ 3 GHz
428
+ 120
429
+ 4 GHz
430
+ 180
431
+ 5 GHz
432
+ -90
433
+ -60-30
434
+ 0
435
+ 30
436
+ 60
437
+ 90
438
+ -90
439
+ -60
440
+ -30
441
+ 0
442
+ 30
443
+ 60
444
+ 90
445
+ -90-60-30
446
+ 0
447
+ 30
448
+ 60
449
+ 90
450
+ Angle (deg)
451
+ Angle (deg)
452
+ Angle Qμ (deg)
453
+
454
+
455
+
456
+ 9
457
+
458
+ behaviour, where the Hr is minimum at an intermediate angle close to 50 deg. This is referred
459
+ to as the cone angle and its existence is an indication of compensation of the anisotropy [24,36].
460
+ The curves are well fit with (4) and are used to extract Hk1eff = ̶ 0.8 mT and Hk2 = 0.47 mT.
461
+ The obtained parameters also satisfy the following conditions for the existence of an easy cone:
462
+ Hk1eff < 0; Hk2 >0 and Hk2 > ̶ Hk1eff/2 [24].These measurements thus demonstrate that a device
463
+ with compensated anisotropy has been fabricated that can be employed to realize a synapse
464
+ with a fixed frequency.
465
+
466
+
467
+
468
+ FIG. 6. (a) Comparison of shift in resonance field as a function of input rf power for a spin
469
+ diode in IPA, compensated and PMA configuration. (b) Resonance curves as a function of input
470
+ rf power for (b) IPA and (c) compensated (synapse) spin diodes
471
+
472
+ (a)1.5
473
+ In-Piane
474
+ Comp.
475
+ 1.0
476
+ PMA
477
+ 0.5
478
+ res
479
+ 0.0
480
+ -0.5
481
+ -1.0
482
+ -1.5
483
+ 2345678910
484
+ RFpower(mW)
485
+ (b)
486
+ 40
487
+ UncompensatedDevice(IPA)
488
+ 0
489
+ 0
490
+ (μV)
491
+ -40
492
+ -4
493
+ -80
494
+ >
495
+ -8
496
+ RFpower
497
+ -120
498
+ -12
499
+ 1mW
500
+ -160
501
+ 10mW
502
+ -16
503
+ 45
504
+ 60
505
+ 75
506
+ 90
507
+ (c) 80
508
+ Hext (mT)
509
+ 8
510
+ 40
511
+ CompensatedDevice
512
+ 0
513
+ 0
514
+ -40
515
+ -4
516
+ -80
517
+ -8
518
+ %-120
519
+ -12
520
+ -160
521
+ FRFpower
522
+ -16
523
+ -200
524
+ 1mW
525
+ -20
526
+ -240
527
+ 10mW
528
+ -24
529
+ 75
530
+ 90
531
+ 105
532
+ 120
533
+ Hext (mT)
534
+
535
+
536
+
537
+ 10
538
+
539
+ C. Input independent spin-Hall synapse with fixed frequency
540
+ A synapse can be realized using spin-diodes. Leroux et al. demonstrated a MAC operation
541
+ using magnetic tunnel junctions as spin diodes [14]. In a MAC operation, the output voltage Uj
542
+ can be represented by a weighted sum of the input power, Uj = ΣPiWji. The above equation can
543
+ be mapped to a spin-diode equation in the linear zone close to resonance, where the weights are
544
+ represented by the resonator frequencies. During the frequency multiplexing in a MAC
545
+ operation, each injected input power Pi, should be able to uniquely address the corresponding
546
+ synapse by its frequency. This imposes a constraint on the frequency of the synapse which
547
+ should not change with the injected rf power. In a spintronic resonator, this criterion is usually
548
+ not satisfied on account of the inherent non-linearity. However, the compensated spin diode can
549
+ be operated as an input independent synapse with a fixed frequency. Figure 6 (a) shows the
550
+ shift in Hr as a function of the injected input rf power for the IPA, the compensated and the
551
+ PMA spin diodes. Starting at the minimum input power ( = 1 mW), the shift is normalized to 0
552
+ for all the three devices. As the input power is increased, the IPA and the PMA devices exhibit
553
+ an increase in the shift of Hr, whereas, the compensated device shows a negligible shift in Hr.
554
+ Figure 6 (b) and (c) show the comparison of the resonance plots for the IPA and the
555
+ compensated devices, respectively, as a function of the input power. Clearly, there is no visible
556
+ shift in the resonance field and the equivalent frequency with the injected rf power for the
557
+ compensated device as compared to the IPA device. Thus, the compensated spin diode can
558
+ function as an input independent spin-Hall synapse.
559
+
560
+ III. AUTO-OSCILLATIONS IN COMPENSATED SPIN HALL DEVICES –
561
+ NEURON OPERATION
562
+ A. Device fabrication and measurement set-up
563
+ Nano-constrictions with widths of 100 nm and 200 nm are fabricated on the compensated
564
+ Co/Ni stacks using electron-beam lithography and Ar ion beam etching. Ti (15 nm)/Au (150
565
+ nm) metal stacks are deposited as electrodes and patterned into coplanar waveguides overlaying
566
+ the nano-constrictions using optical lithography and lift-off. The device geometry is similar to
567
+ the one used in previous reports for realizing an SHNO [21,22]. As a comparison, in-plane
568
+ SHNO based on Py/Pt stacks are also patterned into nano-constrictions (Py = Permalloy =
569
+ Ni81Fe19).
570
+ The scanning electron microscopy image of a 200 nm nano-constriction along with the
571
+ measurement set-up to detect the auto-oscillations is shown in Figure 7 (a). A dc current, Idc, is
572
+
573
+
574
+
575
+
576
+
577
+
578
+ 11
579
+
580
+
581
+
582
+
583
+ FIG. 7. (a) SEM image of 200 nm nano-constriction and a schematic to study the microwave
584
+ emission from the SHNO. (b) Auto-oscillation spectra for the compensated Co/Ni SHNO obtained
585
+ at Idc = + 2.8 mA, Hext = 300 mT (θH = 15 deg, ϕH = 50 deg). (c) Auto-oscillation spectra for the in-
586
+ plane Py/Pt SHNO obtained at Idc = ̶ 3.5 mA, Hext = 50 mT (θH = 85 deg, ϕH = 42 deg). Linewidth
587
+ as a function of Idc sweep for (d) compensated Co/Ni SHNO and (e) in-plane Py/Pt SHNO. Power
588
+ spectral density plots showing frequency vs Idc sweep for (f) compensated Co/Ni SHNO and (g) in-
589
+ plane Py/Pt SHNO.
590
+
591
+
592
+ 300 nm
593
+ t,xy
594
+ 8.0
595
+ 20
596
+ 1.0
597
+ ee
598
+ 200
599
+ 9150
600
+ Frequency (GHz)
601
+ 7.8
602
+ (zHW/Md)
603
+ 0.8
604
+ Af=1.1MHz
605
+ 6
606
+ 10
607
+ 0.6
608
+ Compensated
609
+ (zHW)
610
+ 5
611
+ 7.6
612
+ -3.0 -3.5
613
+ Pt/(Co/Ni)5
614
+ 0
615
+ alove
616
+ 0.4
617
+ 7.4
618
+ PSD
619
+ -10
620
+ 0.2
621
+ 7.2
622
+ Ise
623
+ 0.0
624
+ 20
625
+ 7.00
626
+ 7.25
627
+ 7.50
628
+ 7.75
629
+ 8.00
630
+ -3.0
631
+ -3.5
632
+ -4.0
633
+ -4.5
634
+ -5.0
635
+ 2.5-3.0-3.5-4.0-4.5-5.0
636
+ Frequency (GHz)
637
+ Idc (mA)
638
+ (c)
639
+ (e)
640
+ 'dc (mA)
641
+ 0.5
642
+ 300
643
+ Emitted
644
+ 20
645
+ 0.4
646
+ 250
647
+ (GHz)
648
+ 6.0
649
+ (zHW/Md)
650
+ Af=7.85MHz
651
+ 10
652
+ In-plane
653
+ 200
654
+ 0.3
655
+ (zHW)
656
+ Frequency
657
+ 5.8
658
+ 150
659
+ Py 5/Pt 5
660
+ 5.6
661
+ 0
662
+ 0.2
663
+ PSD
664
+ 100
665
+ -10
666
+ 0.1
667
+ 5.4
668
+ noise
669
+ 50
670
+ 0.0
671
+ 0
672
+ 5.2
673
+ 20°
674
+ B
675
+ 5.00
676
+ 5.25
677
+ 5.50
678
+ 5.75
679
+ 6.00
680
+ 2.5
681
+ 3.0
682
+ 3.5
683
+ 4.0
684
+ 4.5
685
+ 5.0
686
+ 2.5
687
+ 3.0
688
+ 3.54.0
689
+ 4.5
690
+ 5.0
691
+ Frequency (GHz)
692
+ Idc (mA)
693
+ Idc (mA)
694
+
695
+
696
+
697
+ 12
698
+
699
+ injected into the nano-constriction via the dc port of a bias-tee. An external magnetic field is
700
+ applied at an in-plane angle, ϕH and an out-of-plane angle, θH. The SHNO emits microwave
701
+ power which is extracted from the rf port of the bias-tee and amplified by 38 dB using a low
702
+ noise wide-band amplifier. The output spectra are sampled using a spectrum analyzer. All
703
+ measurements are performed at room temperature.
704
+
705
+ B. Electrical microwave measurements for compensated and in-plane devices
706
+ Figure 7 (b) shows the emission spectra for the 200 nm SHNO realized using the
707
+ compensated Co/Ni stack at Idc = ̶ 2.8 mA (+ x-direction) and Hext = 300 mT (θH = 15 deg, ϕH
708
+ = 50 deg). The linewidth (Δf) obtained from the Lorentz fit is 1.1 MHz with the peak power
709
+ spectral density (PSD), after subtracting the amplifier gain, as high as 1 pW/MHz. To the best
710
+ of our knowledge, the quality factor (Q ≈ 7500) obtained is more than the highest reported
711
+ using a single constriction based SHNO [3,37]. As a comparison, the above measurements are
712
+ also performed on Py/Pt based SHNO devices. Figure 7 (c) shows the corresponding spectra
713
+ obtained at Idc = +3.5 mA and Hext = 50 mT (θH = 85 deg, ϕH = 42 deg). It is worth noting that
714
+ the field orientation is maintained close to the in-plane direction for this device to excite the in-
715
+ plane modes and the sign of Idc is positive as the SOT is from the top interface. The minimum
716
+ linewidth obtained from the Lorentz fit is 7.85 MHz and is much larger than that achieved using
717
+ the compensated Co/Ni SHNO. The above observations can be explained from (2), which
718
+ indicate a reduction of Δf if N reduces. To further validate this claim, we sweep the injected Idc
719
+ and record the variation of the frequency and Δf for the two SHNOs at the above-mentioned
720
+ external fields and orientations, respectively. Figures 7 (d) and (e) show Δf as a function of Idc
721
+ for the compensated Co/Ni and the in-plane Py/Pt SHNOs, respectively. Figure 7 (d) is plotted
722
+ for Idc larger than the critical current of auto-oscillations (Ic = ̶ 2.7 mA), which is the region of
723
+ interest, and the inset shows the data for I < Ic as well. When Idc < Ic, Δf increases with the
724
+ reduction in current for both the devices, as expected. At large Idc, the Py/Pt SHNO shows an
725
+ increase in Δf due to the inherent non-linearity, which is not the case with the compensated
726
+ Co/Ni SHNO which shows a near constant Δf. The evidence for the absence of non-linearity in
727
+ the compensated Co/Ni SHNO becomes stronger when we compare its frequency vs Idc shown
728
+ in the power spectral density plots in Figure 7 (f) to that obtained for Py/Pt SHNO in Figure 7
729
+ (g). Clearly, the rate of change of frequency with the current (df/dI) is minimal for the
730
+ compensated Co/Ni SHNO (= 10 MHz/ mA) and significant for the in-plane Py/Pt SHNO (=
731
+ 500 MHz/mA). However, for Idc > ̶ 4.5 mA, some non-linearity can be observed in Figure 7
732
+
733
+
734
+
735
+
736
+
737
+
738
+ 13
739
+
740
+
741
+ (f), which could be ascribed to the device heating or frequency shift due to the Oersted field or
742
+ the field-like torque [30]. The above observations are a direct validation of a reduction in the
743
+ non-linearity as indicated in (1). The measurements are repeated at different applied external
744
+ magnetic fields to the compensated Co/Ni SHNO and are shown in Figure 8. As is the case, the
745
+ FIG. 8. Auto-oscillation frequency as a function of Idc sweep for compensated Co/Ni SHNO
746
+ performed at external fields of 165 mT, 300 mT and 500 mT.
747
+ FIG. 9. (a) Linewidth as a function of Idc sweep at Hext = 180 mT (θH = 15 deg, ϕH = 50 deg) for
748
+ the compensated Co/Ni SHNO with 100 nm width. (b) Comparison of frequency vs Idc sweep
749
+ when Hext = 180 mT is applied along out-of-plane angles of 22, 30 and 46 deg to the 100 nm
750
+ compensated Co/Ni SHNO
751
+
752
+
753
+ 11
754
+ 10
755
+ 9
756
+ 8
757
+ 7
758
+ 6
759
+ 165mT
760
+ 5
761
+ 300mT
762
+ 500 mT
763
+ 4
764
+ 3
765
+ -2.5
766
+ -3.0
767
+ -3.5
768
+ -4.0
769
+ -4.5
770
+ Idc (mA)a)
771
+ 35
772
+ 250
773
+ 30
774
+ 150
775
+ 25
776
+ 15
777
+ 10
778
+ 5
779
+ 0
780
+ -2.0
781
+ -2.4
782
+ -2.8
783
+ -3.2
784
+ -3.6
785
+ Idc (mA)
786
+ (b)
787
+ 6.4
788
+ 6.2
789
+ 6.0
790
+ Out-of-plane angle
791
+ 22deg
792
+ 5.8
793
+ 30deg
794
+ 46deg
795
+ 5.6
796
+ 5.4
797
+ -1.5
798
+ -2.0
799
+ -2.5
800
+ -3.0
801
+ -3.5
802
+ Idc (mA)
803
+
804
+
805
+
806
+ 14
807
+
808
+ external fields only change the frequency of the ferromagnetic resonance and not the slope
809
+ which are nearly zero for the compensated Co/Ni SHNO.
810
+ To further validate the existence of compensation across different devices, the
811
+ measurements are repeated on a 100 nm constriction. Figure 9 (a) shows the variation of ∆f vs
812
+ Idc for this device, performed at Hext = 180 mT (θH = 15 deg, ϕH = 50 deg). The plot indicates a
813
+ high ∆f for Idc < Ic (= ̶ 1.8 mA), as shown in the inset, upon which it does not increase
814
+ significantly at higher currents. A larger ∆f in excess of 5 MHz as opposed to 1.1 MHz is
815
+ obtained when the width of the constriction is reduced from 200 to 100 nm, which is expected
816
+ due to a smaller mode volume. We also performed frequency vs Idc for this device at different
817
+ orientations of the external magnetic field (Hext = 180 mT). The measurements are performed
818
+ for three different angles, θH = 22, 30 and 46 degrees, respectively keeping ϕH fixed at 90 deg.
819
+ Figure 9 (b) shows the results of frequency vs Idc at different out-of-plane angles of the external
820
+ field. At each angle, the frequency is different as expected, and is minimum at 46 deg which is
821
+ close to the cone angle of precession. However, the frequency remains nearly constant with
822
+ respect to Idc, even at different angles, thus providing a strong evidence for the absence of non-
823
+ linearity in the compensated SHNO device.
824
+
825
+
826
+ IV. CONCLUSION
827
+ In summary, we experimentally demonstrate a strong reduction of non-linearity in the
828
+ magnetization dynamics of an SHNO by compensation of its effective magnetic anisotropy.
829
+ Co/Ni multilayers with a Pt heavy metal form the system for the study. The thicknesses of Co
830
+ and Ni are tuned to change the magnetization anisotropy, which is estimated using spin-diode
831
+ measurements. An easy cone anisotropy is obtained for the compensated stack when the PMA
832
+ is counterbalanced by the demagnetization field. The relation between the second and the first
833
+ order anisotropy fields thus obtained, satisfies the condition for the existence of an easy cone.
834
+ The spin-diode signal is shown to be independent of the input power as required to operate as
835
+ a synapse in neuromorphic computing applications. Auto-oscillations in the SHNO are
836
+ examined using nano-constrictions fabricated from the compensated stacks and are compared
837
+ with the emission spectra of Py/Pt based SHNO with an in-plane anisotropy. The frequency and
838
+ the linewidth are found to be independent of the applied dc current for the compensated SHNO
839
+ even at different external fields and orientations. The linewidth obtained is as low as 1.1 MHz
840
+ and the peak emission power is as high as 1 pW/MHz. Thus, the compensated SHNO can
841
+ operate as an artificial neuron with a fixed frequency and a low linewidth. This study opens up
842
+
843
+
844
+
845
+
846
+
847
+ 15
848
+
849
+ a possibility of realizing neuromorphic applications such as frequency multiplexing in a
850
+ multiply-and-accumulate (MAC) operation, and spike-based neurons exploiting easy-plane
851
+ oscillations in a compensated SHNO.
852
+
853
+ ACKNOWLEDGMENTS
854
+ This work is supported by the Agence Nationale de la Recherche Project ANR-20-CE24-0002
855
+ (SpinSpike). J.G. and D. H. S. acknowledge support from Q-MEEN-C, an Energy Frontier
856
+ Research Center funded by the U. S. Department of Energy, Office of Science, Basic Energy
857
+ Science, under Grant No. DE-SC0019273, for work on neuromorphic computing with SHNO.
858
+
859
+ [1]
860
+ J. Torrejon et al., Neuromorphic Computing with Nanoscale Spintronic Oscillators,
861
+ Nature 547, 428 (2017).
862
+ [2]
863
+ M. Zahedinejad, H. Fulara, R. Khymyn, A. Houshang, M. Dvornik, S. Fukami, S. Kanai,
864
+ H. Ohno, and J. Åkerman, Memristive Control of Mutual Spin Hall Nano-Oscillator
865
+ Synchronization for Neuromorphic Computing, Nat Mater 21, 81 (2022).
866
+ [3]
867
+ M. Zahedinejad, A. A. Awad, S. Muralidhar, R. Khymyn, H. Fulara, H. Mazraati, M.
868
+ Dvornik, and J. Åkerman, Two-Dimensional Mutually Synchronized Spin Hall Nano-
869
+ Oscillator Arrays for Neuromorphic Computing, Nat Nanotechnol 15, 47 (2020).
870
+ [4]
871
+ M. Romera et al., Vowel Recognition with Four Coupled Spin-Torque Nano-Oscillators,
872
+ Nature 563, 230 (2018).
873
+ [5]
874
+ A. Slavin and V. Tiberkevich, Nonlinear Auto-Oscillator Theory of Microwave
875
+ Generation by Spin-Polarized Current, IEEE Trans Magn 45, 1875 (2009).
876
+ [6]
877
+ A. S. Jenkins, L. S. E. Alvarez, P. P. Freitas, and R. Ferreira, Digital and Analogue
878
+ Modulation and Demodulation Scheme Using Vortex-Based Spin Torque Nano-
879
+ Oscillators, Sci Rep 10, (2020).
880
+ [7]
881
+ H. S. Lee, S. H. Kim, T. H. Jang, H. G. Park, B. C. Min, S. Y. Park, and C. S. Park,
882
+ Power-Efficient Spin-Torque Nano-Oscillator-Based Wireless Communication with
883
+ CMOS High-Gain Low-Noise Transmitter and Receiver, IEEE Trans Magn 55, (2019).
884
+ [8]
885
+ R. Sharma, R. Mishra, T. Ngo, Y. X. Guo, S. Fukami, H. Sato, H. Ohno, and H. Yang,
886
+ Electrically Connected Spin-Torque Oscillators Array for 2.4 GHz WiFi Band
887
+ Transmission and Energy Harvesting, Nat Commun 12, (2021).
888
+ [9]
889
+ A. Litvinenko et al., Ultrafast Sweep-Tuned Spectrum Analyzer with Temporal
890
+ Resolution Based on a Spin-Torque Nano-Oscillator, Nano Lett 20, 6104 (2020).
891
+ [10] A. Litvinenko, P. Sethi, C. Murapaka, A. Jenkins, V. Cros, P. Bortolotti, R. Ferreira, B.
892
+ Dieny, and U. Ebels, Analog and Digital Phase Modulation and Signal Transmission
893
+ with Spin-Torque Nano-Oscillators, Phys Rev Appl 16, (2021).
894
+
895
+
896
+
897
+
898
+
899
+ 16
900
+
901
+ [11] S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji, A. Fukushima, S. Yuasa,
902
+ and H. Kubota, Physical Reservoir Computing Based on Spin Torque Oscillator with
903
+ Forced Synchronization, Appl Phys Lett 114, (2019).
904
+ [12] M. Romera et al., Binding Events through the Mutual Synchronization of Spintronic
905
+ Nano-Neurons, Nat Commun 13, (2022).
906
+ [13] A. Ross et al., Multilayer Spintronic Neural Networks with Radio-Frequency
907
+ Connections, ArXiv Preprint ArXiv:2211.03659 (2022).
908
+ [14] N. Leroux, D. Marković, E. Martin, T. Petrisor, D. Querlioz, A. Mizrahi, and J. Grollier,
909
+ Radio-Frequency Multiply-and-Accumulate Operations with Spintronic Synapses, Phys
910
+ Rev Appl 15, (2021).
911
+ [15] D. Marković, M. W. Daniels, P. Sethi, A. D. Kent, M. D. Stiles, and J. Grollier, Easy-
912
+ Plane Spin Hall Nano-Oscillators as Spiking Neurons for Neuromorphic Computing,
913
+ Phys Rev B 105, (2022).
914
+ [16] S. Jiang, R. Khymyn, S. Chung, T. Q. Le, L. H. Diez, A. Houshang, M. Zahedinejad, D.
915
+ Ravelosona, and J. Åkerman, Reduced Spin Torque Nano-Oscillator Linewidth Using
916
+ He + Irradiation, Appl Phys Lett 116, (2020).
917
+ [17] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion of Spin Current into Charge
918
+ Current at Room Temperature: Inverse Spin-Hall Effect, Appl Phys Lett 88, (2006).
919
+ [18] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Spin-Torque Ferromagnetic
920
+ Resonance Induced by the Spin Hall Effect, Phys Rev Lett 106, 36601 (2011).
921
+ [19] J. E. Hirsch, Spin Hall Effect, Phys Rev Lett 83, 1834 (1999).
922
+ [20] H. Mazraati, S. Chung, A. Houshang, M. Dvornik, L. Piazza, F. Qejvanaj, S. Jiang, T.
923
+ Q. Le, J. Weissenrieder, and J. Åkerman, Low Operational Current Spin Hall Nano-
924
+ Oscillators Based on NiFe/W Bilayers, Appl Phys Lett 109, 242402 (2016).
925
+ [21] V. E. Demidov, S. Urazhdin, A. Zholud, A. v. Sadovnikov, and S. O. Demokritov,
926
+ Nanoconstriction-Based Spin-Hall Nano-Oscillator, Appl Phys Lett 105, (2014).
927
+ [22] B. Divinskiy, V. E. Demidov, A. Kozhanov, A. B. Rinkevich, S. O. Demokritov, and S.
928
+ Urazhdin, Nanoconstriction Spin-Hall Oscillator with Perpendicular Magnetic
929
+ Anisotropy, Appl Phys Lett 111, (2017).
930
+ [23] B. Divinskiy, S. Urazhdin, S. O. Demokritov, and V. E. Demidov, Controlled Nonlinear
931
+ Magnetic Damping in Spin-Hall Nano-Devices, Nat Commun 10, (2019).
932
+ [24] A. Okada, S. Kanai, S. Fukami, H. Sato, and H. Ohno, Electric-Field Effect on the Easy
933
+ Cone Angle of the Easy-Cone State in CoFeB/MgO Investigated by Ferromagnetic
934
+ Resonance, Appl Phys Lett 112, (2018).
935
+ [25] B. M. S. Teixeira, A. A. Timopheev, N. Caçoilo, S. Auffret, R. C. Sousa, B. Dieny, and
936
+ N. A. Sobolev, Stabilization of the Easy-Cone Magnetic State in Free Layers of Magnetic
937
+ Tunnel Junctions, Phys Rev B 100, (2019).
938
+
939
+
940
+
941
+
942
+
943
+ 17
944
+
945
+ [26] Y. Fu, I. Barsukov, J. Li, A. M. Gonçalves, C. C. Kuo, M. Farle, and I. N. Krivorotov,
946
+ Temperature Dependence of Perpendicular Magnetic Anisotropy in CoFeB Thin Films,
947
+ Appl Phys Lett 108, (2016).
948
+ [27] G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder, Prediction and Confirmation
949
+ of Perpendicular Magnetic Anisotropy in Co/Ni Multilayers, Phys Rev Lett 68, 682
950
+ (1992).
951
+ [28] P. Sethi, C. Murapaka, G. J. Lim, and W. S. Lew, In-Plane Current Induced Domain
952
+ Wall Nucleation and Its Stochasticity in Perpendicular Magnetic Anisotropy Hall Cross
953
+ Structures, Appl Phys Lett 107, 192401 (2015).
954
+ [29] S. Fukami, Y. Nakatani, T. Suzuki, K. Nagahara, N. Ohshima, and N. Ishiwata, Relation
955
+ between Critical Current of Domain Wall Motion and Wire Dimension in
956
+ Perpendicularly Magnetized Co/Ni Nanowires, Appl Phys Lett 95, 232504 (2009).
957
+ [30] N. Figueiredo-Prestes et al., Magnetization Switching and Deterministic Nucleation in
958
+ Co/Ni Multilayered Disks Induced by Spin–Orbit Torques, Appl Phys Lett 119, 032410
959
+ (2021).
960
+ [31] A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.
961
+ D. Djayaprawira, N. Watanabe, and S. Yuasa, Spin-Torque Diode Effect in Magnetic
962
+ Tunnel Junctions, Nature 438, 339 (2005).
963
+ [32] J. G. Choi, J. Park, M. G. Kang, D. Kim, J. S. Rieh, K. J. Lee, K. J. Kim, and B. G. Park,
964
+ Voltage-Driven Gigahertz Frequency Tuning of Spin Hall Nano-Oscillators, Nat
965
+ Commun 13, (2022).
966
+ [33] J.-M. Beaujour, D. Ravelosona, I. Tudosa, E. E. Fullerton, and A. D. Kent,
967
+ Ferromagnetic Resonance Linewidth in Ultrathin Films with Perpendicular Magnetic
968
+ Anisotropy, Phys Rev B 80, 180415 (2009).
969
+ [34] A. Okada, S. Kanai, M. Yamanouchi, S. Ikeda, F. Matsukura, and H. Ohno, Electric-
970
+ Field Effects on Magnetic Anisotropy and Damping Constant in Ta/CoFeB/MgO
971
+ Investigated by Ferromagnetic Resonance, Appl Phys Lett 105, (2014).
972
+ [35] A. Okada, Y. Takeuchi, K. Furuya, C. Zhang, H. Sato, S. Fukami, and H. Ohno, Spin-
973
+ Pumping-Free Determination of Spin-Orbit Torque Efficiency from Spin-Torque
974
+ Ferromagnetic Resonance, Phys Rev Appl 12, (2019).
975
+ [36] Y. Fu, I. Barsukov, J. Li, A. M. Gonçalves, C. C. Kuo, M. Farle, and I. N. Krivorotov,
976
+ Temperature Dependence of Perpendicular Magnetic Anisotropy in CoFeB Thin Films,
977
+ Appl Phys Lett 108, (2016).
978
+ [37] T. Chen, R. K. Dumas, A. Eklund, P. K. Muduli, A. Houshang, A. A. Awad, P.
979
+ Dürrenfeld, B. G. Malm, A. Rusu, and J. Åkerman, Spin-Torque and Spin-Hall Nano-
980
+ Oscillators, Proceedings of the IEEE 104, 1919 (2016).
981
+
982
+
983
+