jackkuo commited on
Commit
ac6b675
·
verified ·
1 Parent(s): dc25306

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9AyT4oBgHgl3EQf3vkG/content/2301.00772v1.pdf +3 -0
  2. -9AyT4oBgHgl3EQf3vkG/vector_store/index.pkl +3 -0
  3. -9AzT4oBgHgl3EQfFvoN/content/2301.01014v1.pdf +3 -0
  4. -9AzT4oBgHgl3EQfFvoN/vector_store/index.faiss +3 -0
  5. -9AzT4oBgHgl3EQfFvoN/vector_store/index.pkl +3 -0
  6. -tFQT4oBgHgl3EQfKTWv/content/tmp_files/2301.13260v1.pdf.txt +1193 -0
  7. -tFQT4oBgHgl3EQfKTWv/content/tmp_files/load_file.txt +0 -0
  8. .gitattributes +70 -0
  9. 0NAzT4oBgHgl3EQfRPtW/vector_store/index.faiss +3 -0
  10. 19E2T4oBgHgl3EQf5QiW/content/2301.04189v1.pdf +3 -0
  11. 19E2T4oBgHgl3EQf5QiW/vector_store/index.faiss +3 -0
  12. 1NFAT4oBgHgl3EQfCxwU/vector_store/index.pkl +3 -0
  13. 2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf +3 -0
  14. 2tE1T4oBgHgl3EQfSAOy/vector_store/index.pkl +3 -0
  15. 3tE4T4oBgHgl3EQf0g0b/content/2301.05282v1.pdf +3 -0
  16. 3tE4T4oBgHgl3EQf0g0b/vector_store/index.faiss +3 -0
  17. 49E2T4oBgHgl3EQfkAeM/content/2301.03974v1.pdf +3 -0
  18. 49E2T4oBgHgl3EQfkAeM/vector_store/index.pkl +3 -0
  19. 4NFQT4oBgHgl3EQf4Dar/content/tmp_files/2301.13430v1.pdf.txt +1001 -0
  20. 4NFQT4oBgHgl3EQf4Dar/content/tmp_files/load_file.txt +0 -0
  21. 59E4T4oBgHgl3EQfcAxC/content/2301.05079v1.pdf +3 -0
  22. 59E4T4oBgHgl3EQfcAxC/vector_store/index.pkl +3 -0
  23. 5dE1T4oBgHgl3EQfmgRl/vector_store/index.faiss +3 -0
  24. 6dE2T4oBgHgl3EQfkgfV/vector_store/index.faiss +3 -0
  25. 7NE1T4oBgHgl3EQfnATd/vector_store/index.faiss +3 -0
  26. 7NE1T4oBgHgl3EQfnATd/vector_store/index.pkl +3 -0
  27. 7dAyT4oBgHgl3EQf2vnp/content/2301.00758v1.pdf +3 -0
  28. 7dAyT4oBgHgl3EQf2vnp/vector_store/index.faiss +3 -0
  29. 7dAyT4oBgHgl3EQf2vnp/vector_store/index.pkl +3 -0
  30. 8dE0T4oBgHgl3EQfwgEX/content/tmp_files/2301.02632v1.pdf.txt +714 -0
  31. 8dE0T4oBgHgl3EQfwgEX/content/tmp_files/load_file.txt +421 -0
  32. 8dE2T4oBgHgl3EQf8Ait/vector_store/index.faiss +3 -0
  33. 9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf +3 -0
  34. 9NE4T4oBgHgl3EQf3Q1N/vector_store/index.pkl +3 -0
  35. BNFKT4oBgHgl3EQfWi5i/content/2301.11792v1.pdf +3 -0
  36. BNFKT4oBgHgl3EQfWi5i/vector_store/index.faiss +3 -0
  37. BNFKT4oBgHgl3EQfWi5i/vector_store/index.pkl +3 -0
  38. C9E4T4oBgHgl3EQfeg2i/content/tmp_files/load_file.txt +0 -0
  39. DNAzT4oBgHgl3EQfiP3j/content/tmp_files/2301.01498v1.pdf.txt +3983 -0
  40. DNAzT4oBgHgl3EQfiP3j/content/tmp_files/load_file.txt +0 -0
  41. EdFJT4oBgHgl3EQfCCz-/content/tmp_files/2301.11428v1.pdf.txt +0 -0
  42. EdFJT4oBgHgl3EQfCCz-/content/tmp_files/load_file.txt +0 -0
  43. FNE1T4oBgHgl3EQf-gbR/content/2301.03571v1.pdf +3 -0
  44. FNE1T4oBgHgl3EQf-gbR/vector_store/index.faiss +3 -0
  45. FdAzT4oBgHgl3EQfUfww/vector_store/index.faiss +3 -0
  46. H9E1T4oBgHgl3EQfFgPu/content/2301.02904v1.pdf +3 -0
  47. H9E1T4oBgHgl3EQfFgPu/vector_store/index.faiss +3 -0
  48. H9E1T4oBgHgl3EQfFgPu/vector_store/index.pkl +3 -0
  49. INE4T4oBgHgl3EQfhA00/content/tmp_files/2301.05121v1.pdf.txt +0 -0
  50. INE4T4oBgHgl3EQfhA00/content/tmp_files/load_file.txt +0 -0
-9AyT4oBgHgl3EQf3vkG/content/2301.00772v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0bdf311b0d8cce468dfadf6e1cd2c17b735bd34f41c03f8ece290ad266bdcc2
3
+ size 1804163
-9AyT4oBgHgl3EQf3vkG/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d009e35b2e844857978d33bac970b3f27551d41e24a9ed988d1fe95f70ca7494
3
+ size 297873
-9AzT4oBgHgl3EQfFvoN/content/2301.01014v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef5ecbd1c9a0ae0a41f12bdeb72cf2b02f879fdcbf1eece4d88526ec70aee17
3
+ size 324099
-9AzT4oBgHgl3EQfFvoN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:104aabb5add0ee219ad1dce28cfd287c740e10081fc87754774f2fe006d42a54
3
+ size 3866669
-9AzT4oBgHgl3EQfFvoN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02593ddbaf5f542dced25d5ea33ff1cd75093d1c3f361733802c66bded96346a
3
+ size 156888
-tFQT4oBgHgl3EQfKTWv/content/tmp_files/2301.13260v1.pdf.txt ADDED
@@ -0,0 +1,1193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version February 3, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ A gap-sharing planet pair shaping the crescent in HD 163296: a disk sculpted by a resonant chain
4
+ Juan Garrido-Deutelmoser
5
+ ,1, 2 Cristobal Petrovich
6
+ ,1, 3 Carolina Charalambous
7
+ ,4
8
+ Viviana V. Guzm´an
9
+ ,1, 2 and Ke Zhang
10
+ 5
11
+ 1Instituto de Astrof´ısica, Pontificia Universidad Cat´olica de Chile, Av. Vicu˜na Mackenna 4860, 782-0436 Macul, Santiago, Chile
12
+ 2N´ucleo Milenio de Formaci´on Planetaria (NPF), Chile
13
+ 3Millennium Institute for Astrophysics, Chile
14
+ 4naXys, Department of Mathematics, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
15
+ 5Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706, USA
16
+ ABSTRACT
17
+ ALMA observations of the disk around HD 163296 have resolved a crescent-shape substructure at
18
+ around 55 au, inside and off-center from a gap in the dust that extends from 38 au to 62 au. In this
19
+ work we propose that both the crescent and the dust rings are caused by a compact pair (period ratio
20
+ ≃ 4 : 3) of sub-Saturn-mass planets inside the gap, with the crescent corresponding to dust trapped
21
+ at the L5 Lagrange point of the outer planet. This interpretation also reproduces well the gap in the
22
+ gas recently measured from the CO observations, which is shallower than what is expected in a model
23
+ where the gap is carved by a single planet. Building on previous works arguing for outer planets at
24
+ ≈ 86 and ≈ 137 au, we provide with a global model of the disk that best reproduces the data and
25
+ show that all four planets may fall into a long resonant chain, with the outer three planets in a 1:2:4
26
+ Laplace resonance. We show that this configuration is not only an expected outcome from disk-planet
27
+ interaction in this system, but it can also help constraining the radial and angular position of the
28
+ planet candidates using three-body resonances.
29
+ Keywords: protoplanetary disks — planet–disk interactions — hydrodynamics — planets and satellites:
30
+ dynamical evolution and stability — radiative transfer
31
+ 1. INTRODUCTION
32
+ Substructures are ubiquitous in protoplanetary disks,
33
+ particularly in the dust density distribution exhibited
34
+ by high angular resolution observations (Andrews 2020;
35
+ Bae et al. 2022). The Atacama Large Millimeter Ar-
36
+ ray (ALMA) has revealed a variety of substructures,
37
+ whereas a large population of rings and gaps are shown
38
+ in continuum observations, to a lesser extent, in molec-
39
+ ular line emissions (e.g., van der Marel et al. 2019).
40
+ The advances in spatial resolution have been able to
41
+ resolve non-axisymmetric substructures within gaps, in-
42
+ cluding systems such as PDS 70 (Benisty et al. 2021),
43
+ HD 163296 (Isella et al. 2018), HD 100546 (P´erez et al.
44
+ 2020), HD 97048 (Pinte et al. 2019), and LkCa 15 (Long
45
+ et al. 2022). These substructures may be due to embed-
46
+ ded planets induced by gravitational interactions (e.g.,
47
+ Bae et al. 2022), which vary depending on the emis-
48
+ sion shape.
49
+ Point-like emissions are generally associ-
50
+ ated with an accreting planet surrounded by a circum-
51
+ planetary disk (CPD) (Perez et al. 2015; Szul´agyi et al.
52
+ 2018), while crescent shapes may be related to the sta-
53
+ ble Lagrange points L4 and L5 of a star-planet system
54
+ (Rodenkirch et al. 2021; Long et al. 2022) or vortices.
55
+ These hypotheses frequently assume that a single sub-
56
+ structure is caused by a single planet, often in a Jo-
57
+ vian mass regime.
58
+ However, we have recently shown
59
+ in Garrido-Deutelmoser et al. (2022), that a pair of
60
+ lower-mass and gap-sharing planets can sculpt compact
61
+ and/or elongated vortices within the gap that last for
62
+ several thousands orbits.
63
+ The disk surrounding HD 163296 contains ringed
64
+ structures in the mm-continuum (Isella et al. 2018) and
65
+ several molecular tracers (Law et al. 2021; Zhang et al.
66
+ 2021). In particular, inside the dust density gap that ex-
67
+ tends from 38 to 62 au, a crescent-shaped substructure
68
+ resides at around 55 au (Teague et al. 2021). Recently,
69
+ it was suggested that the emission comes from the dust
70
+ trapped around the stable point L5 of a Jupiter mass
71
+ planet orbiting at 48 au (Rodenkirch et al. 2021). Even
72
+ though this method seems to reproduce the broad fea-
73
+ tures of the dust continuum distribution, two aspects
74
+ remain unclear:
75
+ arXiv:2301.13260v1 [astro-ph.EP] 30 Jan 2023
76
+
77
+ ID2
78
+ Garrido-Deutelmoser, et al.
79
+ 1. the crescent feature resides at 55 au, off-center
80
+ from the dust gap, while the L5 point is co-orbital
81
+ to the planet at 48 au. Varying the planet’s eccen-
82
+ tricity to account for this shift is unlikely to help
83
+ as the stability of the crescent is damaged, leading
84
+ to its prompt disruption.
85
+ 2. the Jupiter-mass planet needed to retain observ-
86
+ able amounts of dust at L5 and open a wide enough
87
+ gap in the dust, is expected to open a deep gap1
88
+ (Duffell 2020). This prediction disagrees with the
89
+ recent results provided by Zhang et al. (2021), who
90
+ found that the dust density gap has a correspond-
91
+ ing CO gap ∼ 10 times shallower than the predic-
92
+ tions involving a Jupiter. The local gas depletion
93
+ depends on the planetary mass (∝ m−2
94
+ p ) (Kana-
95
+ gawa et al. 2015), whereby opting for a lower mass
96
+ planet to carve a shallower gap, may not produce
97
+ a sufficient gravitational interaction to enforce the
98
+ dust trapping at L5.
99
+ In this work, we propose a that a compact pair of
100
+ sub-Saturn-mass planets can solve these issues, simul-
101
+ taneously accounting for the dust emission (the shifted
102
+ crescent and dust rings) and shallow gap in the CO.
103
+ This scenario is largely motivated by our recent work in
104
+ Garrido-Deutelmoser et al. (2022) where we showed that
105
+ a compact pair of gap-sharing planets generally lead to
106
+ nonaxisymmetric substructures like that observed in HD
107
+ 163296.
108
+ 2. SETUP
109
+ The hydrodynamics simulations and radiative trans-
110
+ fer calculations in this work largely follow the scheme
111
+ in Rodenkirch et al. (2021) and are only briefly sum-
112
+ marized here. We carried out 2D hydrodynamic simu-
113
+ lations using the FARGO3D multifluid code (Ben´ıtez-
114
+ Llambay et al. 2019; Masset 2000; Weber et al. 2019)
115
+ to produce gas and dust density distribution for a fidu-
116
+ cial disk model. The resulting density maps are read
117
+ into the RADMC3D code (Dullemond et al. 2012) to
118
+ calculate the radiative transfer image at λ ∼ 1.25 mm.
119
+ We use this image and the HD 163296 template (that
120
+ contain all the technical properties of the observation)
121
+ in the SIMIO2 package to achieve the synthetic ALMA
122
+ observation comparable to the dust continuum observa-
123
+ tion provided by Isella et al. (2018).
124
+ 1 An increase in the local viscosity to produce a much shallower gap
125
+ comes at the expense of reducing the lifetime of the L5 crescent,
126
+ or even prevent its formation in the first place (Rodenkirch et al.
127
+ 2021).
128
+ 2 https://www.nicolaskurtovic.com/simio
129
+ 2.1. Hydrodynamic Simulations
130
+ The initial surface density profiles for the gas (sub-
131
+ index g) and dust (sub-index d) are given by
132
+ Σg/d = Σg/d,0
133
+ � r
134
+ r0
135
+ �−0.8
136
+ exp
137
+
138
+
139
+
140
+ r
141
+ rc,g/d
142
+ �γg/d�
143
+ ,
144
+ (1)
145
+ where we set r0 = 48 au, the initial surface density
146
+ Σg,0 = 37.4 gr cm−2, the cut-off radius rc,g = 165 au,
147
+ and the exponent γg = 1.
148
+ Similarly, for the dust we
149
+ set Σd,0 = Σg,0/100 = 0.374 gr cm−2, rc,d = 90 au,
150
+ and γd = 2. We include the evolution for five indepen-
151
+ dent dust species. These grains have sizes in cm of 0.02,
152
+ 0.071, 0.13, 0.26, and 1.92. We use an aspect ratio of
153
+ h(r) = h0(r/r0)f with h0 = 0.05 and a flaring index
154
+ f = 0.25, which implies a mid-plane temperature profile
155
+ described by T = 25(r/r0)−0.5 K. This setup coincides
156
+ with that from Rodenkirch et al. (2021).
157
+ The disk extends from rin = 5 au to rout = 197 au,
158
+ implying an initial disk mass of ∼ 0.15 M⊙. The compu-
159
+ tational domain is composed of nr = 512 logarithmically
160
+ spaced radial cells and nθ = 768 equally spaced cells in
161
+ the azimuthal [0, 2π] domain. We include a radially vari-
162
+ able viscosity of the standard parameter α (Shakura &
163
+ Sunyaev 1973) as
164
+ α(r) = αin − αin − αout
165
+ 2
166
+
167
+ 1 + tanh
168
+ �r − ξ
169
+ σr0
170
+ ��
171
+ ,
172
+ (2)
173
+ where the inner and outer viscosities are αin = 1 × 10−4
174
+ and αout = 5 × 10−3, ξ = 144 au indicate the midpoint
175
+ of the transition and σ = 1.25 defines the slope. Similar
176
+ to the values provided by Liu et al. (2018).
177
+ A system of 4 planets was embedded. The location of
178
+ the two outer ones is indicated in Teague et al. (2018)
179
+ through kinematic detections. The third planet’s posi-
180
+ tion (i.e., the inner planet of the outer pair) is strongly
181
+ associated with the potential velocity kink reported by
182
+ (Pinte et al. 2020). The two inner planets are tightly
183
+ packed and their parameters (masses and orbits) were
184
+ derived numerically guided by the results in Garrido-
185
+ Deutelmoser et al. (2022), where it was found that the
186
+ planets should be gap-sharing with forming vortices at
187
+ their Lagrange points, implying a condition in the plan-
188
+ etary separation3 of:
189
+ ∆a ≲ 4.6H ≃ 11.5 au,
190
+ (3)
191
+ where H the scale high of the disk. In turn, the masses
192
+ are constrained by the width of the gap. After a few
193
+ 3 This expression has been tested for planets with masses near the
194
+ thermal mass of Mth = M⋆h3 ∼ 0.25MJ ≃ 80M⊕.
195
+
196
+ HD 163296: crescent and resonant chain
197
+ 3
198
+ dozen simulations attempting to match disk morphol-
199
+ ogy in continuum observations at the ∼ 48 au region,
200
+ we choose to place the planets at a1 = 46, a2 = 54,
201
+ a3 = 84.5, and a4 = 137 au with their respective masses
202
+ of M1 = 85M⊕, M2 = 60M⊕, M3 = 0.4MJup, and
203
+ M4 = 1MJup. The four bodies can gravitationally in-
204
+ teract between them, but they do not feel the disk. We
205
+ ran an extra model to compare against previous works,
206
+ substituting a Jupiter at 48 au instead of the inner pack-
207
+ age of planets. Both cases were evolved for 0.48 Myrs,
208
+ equivalent to 2000 orbits of the innermost planet.
209
+ 2.2. Radiative Transfer
210
+ We convert the 2D dust surface density into a 3D vol-
211
+ ume density assuming the vertical approximation given
212
+ by
213
+ ρdj(r, φ, θ) = Σ(r, φ)
214
+
215
+ 2πHdj
216
+ exp
217
+
218
+ − z2
219
+ 2H2
220
+ dj
221
+
222
+ ,
223
+ (4)
224
+ where z = r cos(θ) and the dust settling follows the diffu-
225
+ sion model Hdj =
226
+
227
+ Dz/(Dz + Stj)H, with Dz = 0.6α
228
+ the vertical diffusion coefficient, and Stj the Stokes num-
229
+ ber of the species j (Weber et al. 2022). We assume an
230
+ intrinsic volume density for the particles ρs = 2 gr cm−3
231
+ and a power law for the grain size distribution, such that
232
+ n(a) ∝ a−3.5. We assumed a dust composition of 20%
233
+ amorphous carbon, 20% water ices and 60% silicates,
234
+ where the corresponding dust opacities were computed
235
+ with the code provided by (Bohren & Huffman 1983).
236
+ The polar direction is distributed in 64 equally spaced
237
+ cells and extended in [80.6◦, 99.4◦] inclination domain.
238
+ We use nphot = 108 photon packages to calculate the
239
+ dust temperature, and nscatt = 107 photon packages to
240
+ trace the thermal emission. We use a full anisotropic
241
+ scattering with polarization treatment. The system is
242
+ assumed to be at a distance of 101 pc with a central star
243
+ of mass 1.9 M⊙ and effective temperature Teff = 9, 330
244
+ K. The inclination is taken to be i = 46◦ and position
245
+ angle PA= 133◦.
246
+ 2.3. Synthetic Observations
247
+ We use SIMIO that contains a suit of functions for
248
+ CASA 5.6.2. We select the template designed for HD
249
+ 163296 to create images with the same uv-coverage as
250
+ observation from Isella et al. (2018). We set the rescale
251
+ flux option in 0.4 to get similar intensities. In addition,
252
+ we add simple thermal noise4 of level 12mJy to finally
253
+ get RMS noise of 0.022 mJy beam−1.
254
+ 4 https://simio-continuum.readthedocs.io/en/main/tutorials/
255
+ tutorial 3.html
256
+ 3. LOCAL GAP DEPLETION
257
+ Figure 1 shows the surface density after ∼ 0.5 Myr
258
+ (2,000 orbits) for the single-Jovian case (panel a) and the
259
+ two sub-Saturns with masses 85M⊕ and 60M⊕ (panel
260
+ b). The corresponding azimuthally-averaged profiles in
261
+ panel (c) show that ∼ 95% of gas is depleted for the
262
+ single-Jovian, while only ∼ 55% is depleted for the two-
263
+ planet case. Despite of their lower masses the planets
264
+ pair creates the same gap width as the Jovian.
265
+ This
266
+ shallower gaps for fixed gap width are expected in com-
267
+ pact multi-planet systems due the planet lower masses
268
+ (depth Σgap/Σ0 ∝ M −2
269
+ p ) and angular flux transferred by
270
+ the neighbouring planets (Duffell & Dong 2015; Garrido-
271
+ Deutelmoser et al. 2022).
272
+ As argued by Zhang et al. (2021), if a Jupiter-mass
273
+ planet had opened the corresponding CO gap, it would
274
+ be 10 times deeper than what is actually observed. In-
275
+ stead, by embedding two planets we can alleviate these
276
+ differences and largely reduce this discrepancy as shown
277
+ in panel (c). Therefore, the depletion values would be
278
+ closer to the results from observations. In order to bet-
279
+ ter quantify this, we compare the CO column density
280
+ gaps with the surface density from both models5. As
281
+ shown in Figure 2, this approach reproduces the gas gap
282
+ reasonably well in the two-planet case, largely matching
283
+ the depths and widths with a small offset of the peaks
284
+ by ∼ 4 au. In turn, the single-Jovian case is too deep
285
+ compared to the observations as expected.
286
+ Beyond the third planet at ∼ 85 au, neither of the two
287
+ models (single Jovian or compact pair) is able to repro-
288
+ duce the gas gaps.
289
+ This was already noted in Zhang
290
+ et al. (2021) when comparing with the models from
291
+ Teague et al. (2021) and it may partly be explained by
292
+ the presence of a CO snowline at 65 au. Outside the
293
+ mid-plane CO snowline, CO freezes out at the disk mid-
294
+ plane and therefore the CO gap properties (e.g., width
295
+ and depth) may deviate from that of gas gaps due to
296
+ vertical temperature and CO abundance variations. We
297
+ recall that our work mostly focuses on the gap and cres-
298
+ cent at ∼ 50 au where these issues can be more securely
299
+ avoided.
300
+ 4. THE CRESCENT FEATURE
301
+ A closely-packed planet pair can directly affect the
302
+ gas around each other’s coorbital regions by deposit-
303
+ ing angular momentum from wave steepening and sub-
304
+ sequent shocks. These shocks may strengthen the vor-
305
+ tencity around the stable L4 and L5 Lagrange points,
306
+ 5 The Σ profiles were processed under smooth function methodol-
307
+ ogy described described in Appendix A.
308
+
309
+ 4
310
+ Garrido-Deutelmoser, et al.
311
+ 100
312
+ 50
313
+ 0
314
+ 50
315
+ 100
316
+ x [au]
317
+ 100
318
+ 50
319
+ 0
320
+ 50
321
+ 100
322
+ y [au]
323
+ (a)
324
+ 100
325
+ 50
326
+ 0
327
+ 50
328
+ 100
329
+ x [au]
330
+ (b)
331
+ 0
332
+ 30
333
+ 60
334
+ 90
335
+ 120
336
+ 150
337
+ 180
338
+ r [au]
339
+ 0.1
340
+ 1.0
341
+ � /
342
+ 0
343
+
344
+ (c)
345
+ single-planet gap
346
+ two-planets gap
347
+ 0.2
348
+ 0.5
349
+ 0.8
350
+ 1.1
351
+ 1.4
352
+ 1.7
353
+ 2.0
354
+ 2.3
355
+ log10( )
356
+ [gr cm 2]
357
+ Figure 1. Panels show a time evolution after 2000 orbits at 48 au (∼ 4.8 × 105 yrs). (a) Surface density Σ maps in log-scale for
358
+ a single Jupiter planet at 48 au. (b) The same as (a), but for a two-planet system with 85M⊕ and 60M⊕ instead the Jupiter.
359
+ The crosses denote the position of the planets and the white lines indicate their orbits. The disk rotates in a clockwise direction.
360
+ (c) Azimuthally averaged Σ/Σ0 profiles for both models.
361
+ thus enabling the effective gas and dust trapping for at
362
+ least thousands of orbital periods (Garrido-Deutelmoser
363
+ et al. 2022).
364
+ The overdensity around either L4 or L5 for the inner
365
+ and outer planet is a highly dynamic problem, with the
366
+ most prominent structure chaotically alternating loca-
367
+ tion. This said, we observe that for several combina-
368
+ tions of parameters (surface density, aspect ratio, plan-
369
+ etary masses, and so on), the outer planet often retains
370
+ large amounts of material around L5. The depicted be-
371
+ havior would leave an off-center substructure inside the
372
+ gap that greatly reproduces the distinctive emission in
373
+ the disk as shown in Figure 3. More quantitatively, our
374
+ models matches the observed azimuthal extent of ∼ 45◦
375
+ and the radial intensity profiles passing through the cres-
376
+ cent (peaks and troughs inside the ring at ∼ 68 au; see
377
+ Appendix B for more details).
378
+ 4.1. Dynamical behavior
379
+ Figure 4 compares the gas and dust density distribu-
380
+ tion for different dust grain sizes. All the dust species
381
+ show a clear shared gap between the two inner planets.
382
+ In the largest size, the co-orbital regions of each one
383
+ display an overdensity at L5, but the more prominent
384
+ substructure belongs to the second planet.
385
+ This out-
386
+ put has taken into account two conditions. The choice
387
+ of planetary masses in the inner system must be lower
388
+ for the body orbiting the substructure, and the pres-
389
+ ence of the two outer planets. If we neglect either, the
390
+ Lagrange points can still trap dust, but the mass dis-
391
+ tribution may change to make some L4 or the inner L5
392
+ the most prominent. As shown in Garrido-Deutelmoser
393
+ et al. (2022), this evolution is highly dynamic and ir-
394
+ regular so that the overdensities around L4 and L5 con-
395
+ 0
396
+ 30
397
+ 60
398
+ 90
399
+ 120
400
+ 150
401
+ 180
402
+ 210
403
+ 240
404
+ r [au]
405
+ 0.2
406
+ 0.4
407
+ 0.6
408
+ 0.8
409
+ 1.0
410
+ 1.2
411
+ 1.4
412
+ Normalized gap depth
413
+ CO gaps in Ke Zhang 2021
414
+ single-planet gas gaps
415
+ two-planets gas gaps
416
+ Figure 2. Comparison of column density gap in C18O (2−1)
417
+ line observation found by Zhang et al. (2021) with gas gaps
418
+ derived from surface density profiles in this work.
419
+ stantly change. However, the final morphology in our
420
+ configuration comes from the early stages of evolution.
421
+ Theoretically, the stable Lagrange point L5 is located
422
+ at 60◦ from the planet at its trailing position.
423
+ How-
424
+ ever, our model shows that the center of the crescent is
425
+ slightly shifted and can vary between 65◦ and 85◦ for
426
+ reason we still do not understand and deserve further
427
+ investigation. Accordingly, the position of the proposed
428
+ planet will be also slightly shifted from the Lagrange
429
+ point. Finally, we observe that azimuthal extent of the
430
+ crescent remains roughly constant and equal to ∼ 45◦
431
+ similar to the observations.
432
+ 4.2. Behavior for different dust species
433
+
434
+ HD 163296: crescent and resonant chain
435
+ 5
436
+ In our fiducial model, the vortensity for L5 of the outer
437
+ planet is stronger than that of the inner one (not shown).
438
+ Therefore, the dust accumulation is generally expected
439
+ to be greater around the orbit of the outer planet for all
440
+ sizes. This is especially true for small sizes that are well
441
+ coupled to the gas and librate with larger amplitudes
442
+ around L5 (panels b and c in Fig. 4). As the size of the
443
+ grains increases (Stokes numbers approach unity, panels
444
+ d to f), the dust distribution becomes compact toward
445
+ the center of the Lagrange point (Montesinos et al. 2020)
446
+ and we can even see some tenuous accumulation around
447
+ the inner planet’s L5 point at 1.9 cm (panel f).
448
+ 5. A LAPLACE RESONANCE CHAIN
449
+ Our fiducial simulation has 4 planets with period ra-
450
+ tios P2/P1 = (54/46)3/2 = 1.27, (84.5/54)3/2 = 1.96,
451
+ and (137/84.5)3/2 = 2.06.
452
+ Therefore, the three outer
453
+ planets lie near a 1 : 2 : 4 commensurability, which be-
454
+ comes nearly exact (within 1%) if planet 3 changes from
455
+ 84.5 au to 86 au. This fact begs the question of whether
456
+ disk-driven migration may have placed the planets in
457
+ their current, near resonant, orbits6.
458
+ From Figure 1, the planets carved relatively shallow
459
+ gaps, so we may estimate the rate of orbital migration
460
+ following Kanagawa & Szuszkiewicz 2020 as:
461
+ τa ≡
462
+ ���a
463
+ ˙a
464
+ ��� ≃
465
+ �M⋆
466
+ Mp
467
+ � �
468
+ M⋆
469
+ Σmina2p
470
+ � h2
471
+ p
472
+ ΩK,p
473
+ ,
474
+ ≃ 0.4 Myr
475
+ �10 gr cm−2
476
+ Σmin
477
+ � �100 au
478
+ ap
479
+ �1/2
480
+ �2M⊙
481
+ M⋆
482
+ � �1MJ
483
+ Mp
484
+ � � hp
485
+ 0.1
486
+ �2
487
+ .
488
+ (5)
489
+ where Σmin corresponds to the local density at the base
490
+ of the density gap. Using the fiducial planetary parame-
491
+ ters and M⋆ = 1.9 M⊙, a fix aspect ratio h = 0.1 and the
492
+ surface density constraints from Zhang et al. (2021, Ta-
493
+ ble 5 therein), we observe that the migration timescales
494
+ are all comparable to the age of the system making mi-
495
+ gration a plausible scenario.
496
+ As a proof of concept, in Figure 5 we show an N-body
497
+ integration using REBOUND (Rein & Liu 2012) and pre-
498
+ scribing the damping timescales τa and τe ≡ e/| ˙e| for
499
+ each planet in order to mimic planet-disk interactions
500
+ in the REBOUNDx library (Tamayo et al. 2019). We set
501
+ τa/τe = 100 with τa computed using Eq. 5, see values
502
+ for the orbital decay timescales in Table 1. We begin
503
+ 6 We note that a disk-driven migration may also lead to offsets
504
+ from the exact commensurabilities by either wake-planet interac-
505
+ tions (Baruteau & Papaloizou 2013), disk-driven precession (e.g.,
506
+ Tamayo et al. 2015) or resonant repulsion (e.g., Papaloizou 2011).
507
+ the simulations with the planets further away from their
508
+ current positions and let them migrate due to their in-
509
+ teraction with the gaseous component of the disk, where
510
+ kinematic evidence has been detected in the gas at ∼ 260
511
+ au (Pinte et al. 2020; Teague et al. 2021), and extensions
512
+ in CO (2-1) up to ∼ 500 au (Zhang et al. 2021). The
513
+ evolution shows that all planet pairs are captured into a
514
+ long resonant chain after ∼ 0.5 × 106 yrs. These corre-
515
+ spond to a two-body 4:3 mean-motion resonance (MMR)
516
+ for the innermost planets, and a double 2:1 - 2:1 MMR
517
+ for the two outer pairs, finally leading to the libration
518
+ of the following three-body angles:
519
+ φ123 = 3λ1 − 5λ2 + 2λ3, and
520
+ (6)
521
+ φ234 = 2λ2 − 6λ3 + 4λ4.
522
+ (7)
523
+ Both φ123 and φ234 have small-amplitude libration
524
+ (∼ 2◦) and their libration centers are 187◦ and 218◦, re-
525
+ spectively. Note that when the four planets reach the re-
526
+ ported semi-major axis at approximately the same time
527
+ ∼ 106 yrs (gray vertical line in panel b), they are al-
528
+ ready captured in the two- and three-planet resonances,
529
+ showing that the proposed configuration with our hydro-
530
+ dynamical simulations presented in the previous sections
531
+ is possible.
532
+ 5.1. Predicting the position angle (PA) of the planet
533
+ candidates using 3-body resonances
534
+ Because the orbits of planets i are coplanar and nearly
535
+ circular (ei ≲ 0.07), the mean longitudes λi are close to
536
+ the true longitudes ϖi +fi and will likely librate around
537
+ the same angles. Defining an arbitrary reference frame,
538
+ rotated by PA0 we write the position angles (PAs) as
539
+ PAi = ϖi + fi + PA0, and define the following three-
540
+ body angle, frame-independent7, combinations:
541
+ PA123 = 3PA1 − 5PA2 + 2PA3,
542
+ and
543
+ (8)
544
+ PA234 = 2PA2 − 6PA3 + 4PA4.
545
+ (9)
546
+ From panel (e) in Figure 5, we observe that these an-
547
+ gles librate around PA123 ∼ 185◦ and PA234 ∼ 210◦ sim-
548
+ ilar to φ123 and φ234, but with larger amplitudes (near
549
+ 100◦ in both cases). This is expected due to the non-zero
550
+ eccentricities.
551
+ Assuming that we know two angles, say PA2 due to
552
+ the crescent and PA3 due to a velocity kink, we can use
553
+ the above relations to constrain PA1 and PA4 as:
554
+ PA1 ∼ 1
555
+ 3PA123 + 5
556
+ 3PA2 − 2
557
+ 3PA3,
558
+ and
559
+ (10)
560
+ PA4 ∼ 1
561
+ 4PA234 − 1
562
+ 2PA2 + 3
563
+ 2PA3.
564
+ (11)
565
+ 7 Since the critical angles satisfy the D’Alembert property, these
566
+ combinations are independent of the reference frame.
567
+
568
+ 6
569
+ Garrido-Deutelmoser, et al.
570
+ 1.5
571
+ 1.0
572
+ 0.5
573
+ 0.0
574
+ -0.5
575
+ -1.0
576
+ -1.5
577
+ RA [arcsec]
578
+ 1.5
579
+ 1.0
580
+ 0.5
581
+ 0.0
582
+ 0.5
583
+ 1.0
584
+ 1.5
585
+ Dec [arcsec]
586
+ 180◦
587
+ 90◦
588
+ 0◦
589
+ 270◦
590
+ ALMA Band 6
591
+ 1.5
592
+ 1.0
593
+ 0.5
594
+ 0.0
595
+ -0.5
596
+ -1.0
597
+ -1.5
598
+ RA [arcsec]
599
+ Synthetic Observation
600
+ 0.01
601
+ 0.1
602
+ 0.4
603
+ 1.0
604
+ 2.0
605
+ Intensity [mJy beam 1]
606
+ Figure 3. Band 6 (λ ∼1.25 mm) comparison between dust continuum image from ALMA observation (Isella et al. 2018) and
607
+ our synthetic observation after ≈ 4.8 × 105 yrs. The synthesized beam are the same for both images (0.038′′ × 0.048′′, 82.5◦),
608
+ represented by white ellipse at the bottom left corner for each image. The synthetic image is projected with an inclination
609
+ i = 46◦ and a position angle PA= 133◦. The enumerated white dots indicate the position of potential planets associated with:
610
+ (1) and (4) resonance angles in Laplace chains (see §5.1), (2) Lagrange point L5 from the simulation, (3) velocity kink reported
611
+ by Pinte et al. (2020). The white dashed lines denote the orbits of planets in the simulation. The right bottom Cartesian
612
+ coordinate describe the prescription to estimate the azimuthal angles. The disk rotates in a clockwise direction.
613
+ Our model indicates that planet 2 (54 au) is ∼ 75◦ ±
614
+ 10◦ ahead of the crescent center8, which corresponds to
615
+ PA2 ≃ 32◦.
616
+ In addition, as reported by Pinte et al.
617
+ (2020), the planet 3 at 86 au has PA3 ≃ 357◦ associated
618
+ with a velocity kink. Thus, our model predicts that the
619
+ planets at 46 au and 137 au should have position angles
620
+ of PA1 ∼ 237◦ and PA4 ∼ 212◦ respectively (see the left
621
+ panel in Figure 3).
622
+ Quite recently9, Alarc´on et al. (2022) localized strong
623
+ kinematic deviation in C I line emission. The position
624
+ of this structure lies inside the gap at 48 au, which
625
+ azimuthally coincides with our predicted planet 1 at
626
+ PA1 ∼ 237◦. We note that this predicted planet differs
627
+ from the one proposed by Isella et al. (2018) and in-
628
+ correctly quoted by Alarc´on et al. (2022) as coincident
629
+ with the outflow. The reason is that the disk rotates
630
+ in a clockwise direction so the proposed planet invoked
631
+ to explain the crescent as a L5 feature, similar to Ro-
632
+ denkirch et al. (2021), will actually show ahead of the
633
+ crescent. In this way, the C I deviation cannot be ex-
634
+ plained by a co-rotational planet that is also responsible
635
+ 8 Due to the clockwise rotation of the disk, our angle convention
636
+ PA is given the coordinate axes at the bottom of Figure 3.
637
+ 9 After the submission of our manuscript to the journal.
638
+ Table 1. Migration rate estimates
639
+
640
+
641
+
642
+
643
+ ap
644
+ Mp
645
+ Σmin [gr/cm/cm]
646
+ τa [Myr]
647
+ 46 au
648
+ 85 M⊕
649
+ 12
650
+ 1.8
651
+ 54 au
652
+ 60 M⊕
653
+ 19
654
+ 1.5
655
+ 84.5 au
656
+ 127 M⊕
657
+ 9.3
658
+ 1.1
659
+ 137 au
660
+ 317 M⊕
661
+ 4.2
662
+ 0.8
663
+ Note—The values of Σmin are taken from Table 5 in
664
+ Zhang et al. (2021), except for the innermost one
665
+ provided by our model.
666
+ for the crescent, unless the dust accumulation around
667
+ L4 becomes more prominent than that of L5, which is
668
+ unlikely (Rodenkirch et al. 2021; Garrido-Deutelmoser
669
+ et al. 2022).
670
+ 5.2. Resonances in other systems
671
+ We remark that resonances may be a common out-
672
+ come in these young systems, including the embedded
673
+ planets in PDS 70 (Bae et al. 2019), as well as young,
674
+ but disk-free systems, like HR 8799 also in a long reso-
675
+
676
+ 2
677
+ 3
678
+ 1
679
+ 4HD 163296: crescent and resonant chain
680
+ 7
681
+ 100
682
+ 50
683
+ 0
684
+ 50
685
+ 100
686
+ y [au]
687
+ Gas
688
+ (a)
689
+ 0.2 mm
690
+ (b)
691
+ 100
692
+ 50
693
+ 0
694
+ 50
695
+ 100
696
+ y [au]
697
+ 0.7 mm
698
+ (c)
699
+ 1.3 mm
700
+ (d)
701
+ 100
702
+ 50
703
+ 0
704
+ 50
705
+ 100
706
+ x [au]
707
+ 100
708
+ 50
709
+ 0
710
+ 50
711
+ 100
712
+ y [au]
713
+ 2.6 mm
714
+ (e)
715
+ 100
716
+ 50
717
+ 0
718
+ 50
719
+ 100
720
+ x [au]
721
+ 1.9 cm
722
+ (f)
723
+ 0
724
+ 50
725
+ 100
726
+ 150
727
+ 0.0
728
+ 0.5
729
+ 1.0
730
+ 1.5
731
+ 0.0
732
+ 0.5
733
+ 1.0
734
+ 1.5
735
+ 2.0
736
+ 0
737
+ 1
738
+ 2
739
+ 3
740
+ 0
741
+ 1
742
+ 2
743
+ 3
744
+ 4
745
+ 5
746
+ 0
747
+ 10
748
+ 20
749
+ 30
750
+ Figure 4. Face-on gas and dust surface density Σ from the
751
+ hydrodynamic model after ≈ 4.8×105 yrs (2000 orbits at 48
752
+ au). The panels correspond to different fluids. The crosses
753
+ denote the position of the planets and the white dashed lines
754
+ indicate their orbits. The disk rotates in a clockwise direc-
755
+ tion.
756
+ nance chain involving four planets (Go´zdziewski & Mi-
757
+ gaszewski 2020).
758
+ Similar to our work, a compact multi-planet system
759
+ has been proposed using the axisymmetric dust gaps
760
+ and rings of HL Tau (ALMA Partnership et al. 2015),
761
+ where a resonant configuration may promote the sys-
762
+ tem’s dynamical stability (Tamayo et al. 2015). In our
763
+ case, we use not only the system’s migration history and
764
+ dust rings and gaps, but also add the constraints from
765
+ the crescent shape structure and the CO gas emission.
766
+ 6. CONCLUSIONS
767
+ We have provided a global model for HD 163296 with
768
+ four planets (semi-major axes in the range of 40 − 140
769
+ au) that can reproduce the rings and gaps in the dust
770
+ continuum and the shallow gaps in the gas constrained
771
+ by the CO emission. A key ingredient in our model is
772
+ the presence of two sub-Saturn-mass planets near the
773
+ 4:3 resonance opening the gap at ∼ 48 au, where the
774
+ Time [Myr]
775
+ 1.3
776
+ 1.6
777
+ 1.9
778
+ 2.2
779
+ 2.5
780
+ period ratio
781
+ 2 : 1
782
+ 4 : 3
783
+ (a)
784
+ P4/P3
785
+ P3/P2
786
+ P2/P1
787
+ Time [Myr]
788
+ 0
789
+ 100
790
+ 200
791
+ 300
792
+ 400
793
+ a [au]
794
+ (b)
795
+ a4
796
+ a3
797
+ a2
798
+ a1
799
+ Time [Myr]
800
+ 0.00
801
+ 0.03
802
+ 0.06
803
+ 0.09
804
+ e
805
+ (c)
806
+ e4
807
+ e3
808
+ e2
809
+ e1
810
+ Time [Myr]
811
+ 0
812
+ 90
813
+ 180
814
+ 270
815
+ 360
816
+ 3pl [deg]
817
+ 187
818
+ 218
819
+ (d)
820
+ 123
821
+ 234
822
+ 0.0
823
+ 0.5
824
+ 1.0
825
+ 1.5
826
+ 2.0
827
+ 2.5
828
+ 3.0
829
+ 3.5
830
+ 4.0
831
+ Time [Myr]
832
+ 0
833
+ 90
834
+ 180
835
+ 270
836
+ 360
837
+ PA3pl [deg]
838
+ 185
839
+ 210
840
+ (e)
841
+ PA123
842
+ PA234
843
+ Figure 5.
844
+ Potential migratory history of the four-planet
845
+ system locking the planets in a long orbital resonance chain
846
+ leaving the outer three planets near a consecutive 2:1 com-
847
+ mensurability and the innermost pair near 4:3 (panels a and
848
+ b). The eccentricities remain small after the capture (panel
849
+ c) and the three-body resonant angles φ123 = 3λ1−5λ2+2λ3
850
+ and φ234 = 2λ2 − 6λ3 + 4λ4 undergo small-amplitude libra-
851
+ tion (panel d). The bottom panel exhibits the corresponding
852
+ combinations of the position angles in the system: PA123 =
853
+ 3PA1 − 5PA2 + 2PA3 and PA234 = 2PA2 − 6PA3 + 4PA4.
854
+ crescent corresponds to the L5 Lagrange point of the
855
+ outer planet at 54 au.
856
+ We show that the four-planet system may be part of
857
+ a long resonance chain with the inner two in a 4:3 MMR
858
+ and the outer three in a 1:2:4 Laplace resonance chain,
859
+ consistent with a history of convergent migration within
860
+ the disk. Our proposed three-body resonances allow to
861
+ relate the planetary radial and angular positions, and
862
+ based on the crescent location at 55 au and the proposed
863
+ location by Pinte et al. (2020) for the planet at ≃ 86 au,
864
+ our model predicts two planets: i) a sub-Saturn at 46
865
+ au and PA ∼ 237◦; ii) a Jovian at 137 au and PA ∼
866
+ 212◦(Figure 3).
867
+ Overall, our work shows that tightly-spaced planetary
868
+ systems, often found at small orbital distances in tran-
869
+
870
+ XXXXXX8
871
+ Garrido-Deutelmoser, et al.
872
+ siting surveys, may leave detectable imprints in proto-
873
+ planetary disks at much larger separations.
874
+ Acknowledgements The authors would like to thank
875
+ Andrew Youdin, Kaitlin Kratter, Diego Mu˜noz, Matt
876
+ Russo, Pablo Ben´ıtez-Llambay, Sim´on Cassasus, and Xi-
877
+ mena S. Ramos for helpful discussions that improved the
878
+ quality of this work and Juan Veliz for his support with
879
+ the cluster logistics. Finally we thank the anonymous re-
880
+ viewer for the thorough and useful report. J.G. acknowl-
881
+ edge support by ANID, – Millennium Science Initiative
882
+ Program – NCN19 171 and FONDECYT Regular grant
883
+ 1210425. The Geryon cluster at the Centro de Astro-
884
+ Ingenieria UC was extensively used for the calculations
885
+ performed in this paper. BASAL CATA PFB-06, the
886
+ Anillo ACT-86, FONDEQUIP AIC-57, and QUIMAL
887
+ 130008 provided funding for several improvements to
888
+ the Geryon cluster.
889
+ C.P. acknowledges support from
890
+ ANID Millennium Science Initiative-ICN12 009, CATA-
891
+ Basal AFB-170002, ANID BASAL project FB210003,
892
+ FONDECYT Regular grant 1210425, CASSACA grant
893
+ CCJRF2105, and ANID+REC Convocatoria Nacional
894
+ subvencion a la instalacion en la Academia convocatoria
895
+ 2020 PAI77200076. C.C. acknowledges FNRS Grant No.
896
+ F.4523.20 (DYNAMITE MIS-project). V.V.G. acknowl-
897
+ edges support from FONDECYT Regular 1221352,
898
+ ANID project Basal AFB-170002, and ANID, – Mil-
899
+ lennium Science Initiative Program – NCN19 171. K.Z.
900
+ acknowledges the support of the Office of the Vice Chan-
901
+ cellor for Research and Graduate Education at the Uni-
902
+ versity of Wisconsin – Madison with funding from the
903
+ Wisconsin Alumni Research Foundation.
904
+ Software: Fargo3D (Ben´ıtez-Llambay et al. 2019),
905
+ Numpy (van der Walt et al. 2011), Matplotlib
906
+ (Hunter 2007). Rebound (Rein & Liu 2012), Re-
907
+ boundX (Tamayo et al. 2019), RADMC3D (Dullemond
908
+ et al. 2012).
909
+ REFERENCES
910
+ Alarc´on, F., Bergin, E. A., & Teague, R. 2022, ApJL, 941,
911
+ L24, doi: 10.3847/2041-8213/aca6e6
912
+ ALMA Partnership, Brogan, C. L., P´erez, L. M., et al.
913
+ 2015, ApJL, 808, L3, doi: 10.1088/2041-8205/808/1/L3
914
+ Andrews, S. M. 2020, ARA&A, 58, 483,
915
+ doi: 10.1146/annurev-astro-031220-010302
916
+ Bae, J., Isella, A., Zhu, Z., et al. 2022, arXiv e-prints,
917
+ arXiv:2210.13314. https://arxiv.org/abs/2210.13314
918
+ Bae, J., Zhu, Z., Baruteau, C., et al. 2019, ApJL, 884, L41,
919
+ doi: 10.3847/2041-8213/ab46b0
920
+ Baruteau, C., & Papaloizou, J. C. B. 2013, ApJ, 778, 7,
921
+ doi: 10.1088/0004-637X/778/1/7
922
+ Benisty, M., Bae, J., Facchini, S., et al. 2021, ApJL, 916,
923
+ L2, doi: 10.3847/2041-8213/ac0f83
924
+ Ben´ıtez-Llambay, P., Krapp, L., & Pessah, M. E. 2019,
925
+ ApJS, 241, 25, doi: 10.3847/1538-4365/ab0a0e
926
+ Bohren, C. F., & Huffman, D. R. 1983, Absorption and
927
+ scattering of light by small particles
928
+ Duffell, P. C. 2020, ApJ, 889, 16,
929
+ doi: 10.3847/1538-4357/ab5b0f
930
+ Duffell, P. C., & Dong, R. 2015, ApJ, 802, 42,
931
+ doi: 10.1088/0004-637X/802/1/42
932
+ Dullemond, C. P., Juhasz, A., Pohl, A., et al. 2012,
933
+ RADMC-3D: A multi-purpose radiative transfer tool.
934
+ http://ascl.net/1202.015
935
+
936
+ HD 163296: crescent and resonant chain
937
+ 9
938
+ Garrido-Deutelmoser, J., Petrovich, C., Krapp, L., Kratter,
939
+ K. M., & Dong, R. 2022, arXiv e-prints,
940
+ arXiv:2204.09074. https://arxiv.org/abs/2204.09074
941
+ Go´zdziewski, K., & Migaszewski, C. 2020, ApJL, 902, L40,
942
+ doi: 10.3847/2041-8213/abb881
943
+ Hunter, J. D. 2007, Computing in Science and Engineering,
944
+ 9, 90, doi: 10.1109/MCSE.2007.55
945
+ Isella, A., Huang, J., Andrews, S. M., et al. 2018, ApJL,
946
+ 869, L49, doi: 10.3847/2041-8213/aaf747
947
+ Kanagawa, K. D., & Szuszkiewicz, E. 2020, ApJ, 894, 59,
948
+ doi: 10.3847/1538-4357/ab862f
949
+ Kanagawa, K. D., Tanaka, H., Muto, T., Tanigawa, T., &
950
+ Takeuchi, T. 2015, MNRAS, 448, 994,
951
+ doi: 10.1093/mnras/stv025
952
+ Law, C. J., Loomis, R. A., Teague, R., et al. 2021, ApJS, in
953
+ press. https://arxiv.org/abs/2109.06210
954
+ Liu, S.-F., Jin, S., Li, S., Isella, A., & Li, H. 2018, ApJ,
955
+ 857, 87, doi: 10.3847/1538-4357/aab718
956
+ Long, F., Andrews, S. M., Zhang, S., et al. 2022, ApJL,
957
+ 937, L1, doi: 10.3847/2041-8213/ac8b10
958
+ Masset, F. 2000, A&AS, 141, 165, doi: 10.1051/aas:2000116
959
+ Montesinos, M., Garrido-Deutelmoser, J., Olofsson, J.,
960
+ et al. 2020, A&A, 642, A224,
961
+ doi: 10.1051/0004-6361/202038758
962
+ Papaloizou, J. C. B. 2011, Celestial Mechanics and
963
+ Dynamical Astronomy, 111, 83,
964
+ doi: 10.1007/s10569-011-9344-4
965
+ Perez, S., Dunhill, A., Casassus, S., et al. 2015, ApJL, 811,
966
+ L5, doi: 10.1088/2041-8205/811/1/L5
967
+ P´erez, S., Casassus, S., Hales, A., et al. 2020, ApJL, 889,
968
+ L24, doi: 10.3847/2041-8213/ab6b2b
969
+ Pinte, C., van der Plas, G., M´enard, F., et al. 2019, Nature
970
+ Astronomy, 3, 1109, doi: 10.1038/s41550-019-0852-6
971
+ Pinte, C., Price, D. J., M´enard, F., et al. 2020, ApJL, 890,
972
+ L9, doi: 10.3847/2041-8213/ab6dda
973
+ Rein, H., & Liu, S. F. 2012, A&A, 537, A128,
974
+ doi: 10.1051/0004-6361/201118085
975
+ Rodenkirch, P. J., Rometsch, T., Dullemond, C. P., Weber,
976
+ P., & Kley, W. 2021, A&A, 647, A174,
977
+ doi: 10.1051/0004-6361/202038484
978
+ Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 500, 33
979
+ Szul´agyi, J., Plas, G. v. d., Meyer, M. R., et al. 2018,
980
+ MNRAS, 473, 3573, doi: 10.1093/mnras/stx2602
981
+ Tamayo, D., Rein, H., Shi, P., & Hernandez, D. M. 2019,
982
+ Monthly Notices of the Royal Astronomical Society, 491,
983
+ 2885–2901, doi: 10.1093/mnras/stz2870
984
+ Tamayo, D., Triaud, A. H. M. J., Menou, K., & Rein, H.
985
+ 2015, ApJ, 805, 100, doi: 10.1088/0004-637X/805/2/100
986
+ Teague, R., Bae, J., Bergin, E. A., Birnstiel, T., &
987
+ Foreman-Mackey, D. 2018, ApJL, 860, L12,
988
+ doi: 10.3847/2041-8213/aac6d7
989
+ Teague, R., Bae, J., Aikawa, Y., et al. 2021, ApJS, 257, 18,
990
+ doi: 10.3847/1538-4365/ac1438
991
+ van der Marel, N., Dong, R., di Francesco, J., Williams,
992
+ J. P., & Tobin, J. 2019, ApJ, 872, 112,
993
+ doi: 10.3847/1538-4357/aafd31
994
+ van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011,
995
+ Computing in Science and Engineering, 13, 22,
996
+ doi: 10.1109/MCSE.2011.37
997
+ Weber, P., Casassus, S., & P´erez, S. 2022, MNRAS, 510,
998
+ 1612, doi: 10.1093/mnras/stab3438
999
+ Weber, P., P´erez, S., Ben´ıtez-Llambay, P., et al. 2019, ApJ,
1000
+ 884, 178, doi: 10.3847/1538-4357/ab412f
1001
+ Zhang, K., Booth, A. S., Law, C. J., et al. 2021, ApJS, 257,
1002
+ 5, doi: 10.3847/1538-4365/ac1580
1003
+
1004
+ 10
1005
+ Garrido-Deutelmoser, et al.
1006
+ APPENDIX
1007
+ A. GAS GAP CALCULATION
1008
+ r [au]
1009
+ 101
1010
+ 102
1011
+ [gr cm 2]
1012
+ (a)
1013
+ 6
1014
+ 10
1015
+ 20
1016
+ 30
1017
+ 60
1018
+ 100
1019
+ 200
1020
+ 300
1021
+ 0
1022
+ 30
1023
+ 60
1024
+ 90
1025
+ 120
1026
+ 150
1027
+ 180
1028
+ r [au]
1029
+ 101
1030
+ 102
1031
+ [gr cm 2]
1032
+ (b)
1033
+ 6
1034
+ 10
1035
+ 20
1036
+ 30
1037
+ 60
1038
+ 100
1039
+ 200
1040
+ 300
1041
+
1042
+ convolved
1043
+
1044
+ regions {r}
1045
+ smooth fit
1046
+ Figure 6. Black line denote the convolved surface density
1047
+ profile of models and grey dashed line the respective smooth
1048
+ function. Panel (a) and (b) represent the single-planet case
1049
+ and two-planet case respectively. The crosses indicate the
1050
+ position of the planets.
1051
+ In Zhang et al. (2021) a smooth function was sub-
1052
+ tracted from NCO column density profiles to better char-
1053
+ acterize substructures in the residual values. To com-
1054
+ pare these results with our models, we follow the same
1055
+ procedure. First, the Σ maps from hydrodynamic simu-
1056
+ lations were convolved with a circular Gaussian beam of
1057
+ 0.15′′, which has the same size as MAPS CO (2-1) line
1058
+ observations. Then, their azimuthally averaged profiles
1059
+ were interpolated every 2 au. In addition, the radial re-
1060
+ gion {r [au] : 0 < r0 < 35, 59 < r1 < 72, 98 < r2 <
1061
+ 110, r3 > 170} was selected to describe the gaps. Both
1062
+ were taken as input for the smoothfit10 module. The
1063
+ Figure 6 shows the outputs of smoothed profile repre-
1064
+ 10 https://pypi.org/project/smoothfit/
1065
+ 30
1066
+ 60
1067
+ 90
1068
+ 120
1069
+ 150
1070
+ 180
1071
+ r [au]
1072
+ 0.0
1073
+ 0.5
1074
+ 1.0
1075
+ 1.5
1076
+ 2.0
1077
+ 2.5
1078
+ �Intensity
1079
+
1080
+ [mJy beam 1]
1081
+ 180◦
1082
+ 90◦
1083
+ 0◦
1084
+ 270◦
1085
+ 350◦
1086
+ 300◦
1087
+ ALMA Band 6
1088
+ Synthetic Obs.
1089
+ Figure 7. Azimuthally averaged intensity profiles for syn-
1090
+ thetic and ALMA observations after ≈ 4.8 × 105 yrs. The
1091
+ crosses denote the semi-major axes of the planets. The insert
1092
+ shows the ALMA observation in Band 6 with contours that
1093
+ reproduce the crescent and rings as well as the angular slice
1094
+ used for the azimuthal average denoted by ˆφ.
1095
+ sented by the grey dashed line and the convolved sur-
1096
+ face density profile in black lines. The cyan dots denote
1097
+ the regions in which the function acts. The Figure 2
1098
+ shows the residual between lines to provide a reasonable
1099
+ comparison with CO gaps observations.
1100
+ B. RADIAL INTENSITY
1101
+ We quantify the intensity around the substructure re-
1102
+ gion of our synthetic model with the ALMA observation.
1103
+ First, we deproject the images obtaining a face-on view
1104
+ to convert them to polar coordinates and then generate a
1105
+ radial profile by taking the azimuthal average between
1106
+ PA of 300◦ and 350◦. This extension fully covers the
1107
+ emission from the crescent. The results are shown in
1108
+ the Figure 7, which is accompanied by a diagram show-
1109
+ ing the angular slice.
1110
+ Figure 7 show that radial intensity through the cres-
1111
+ cent region reaches amplitudes higher than those ob-
1112
+ served by a factor of 1.2 at 55 au. The emission from
1113
+ the substructure is clearly off-centered on the gap and
1114
+ resolved in spatial resolution, showing a gap in intensity
1115
+ between it and the ring. The first ring reproduces the
1116
+ intensities in a good way, while the second is noticeably
1117
+ 1.7 times fainter.
1118
+
1119
+ HD 163296: crescent and resonant chain
1120
+ 11
1121
+ 2 /3
1122
+ /3
1123
+ 0
1124
+ /3
1125
+ 2 /3
1126
+ [rad]
1127
+ 0.02 cm
1128
+ Feel Disk = YES
1129
+ 0.02 cm
1130
+ Feel Disk = NO
1131
+ 30
1132
+ 40
1133
+ 50
1134
+ 60
1135
+ 70
1136
+ r [au]
1137
+ 2 /3
1138
+ /3
1139
+ 0
1140
+ /3
1141
+ 2 /3
1142
+ [rad]
1143
+ 1.9 cm
1144
+ 30
1145
+ 40
1146
+ 50
1147
+ 60
1148
+ 70
1149
+ r [au]
1150
+ 1.9 cm
1151
+ 0.2
1152
+ 0.4
1153
+ 0.6
1154
+ 0.8
1155
+ 1.0
1156
+ 1.2
1157
+ 1.4
1158
+ 1.6
1159
+ [gr cm
1160
+ 2]
1161
+ 0.02
1162
+ 0.04
1163
+ 0.06
1164
+ 0.08
1165
+ 0.10
1166
+ [gr cm
1167
+ 2]
1168
+ Figure 8. Dust surface density Σ for 0.02 cm and 1.9 cm
1169
+ grain sizes. The crosses denote the position of the planets.
1170
+ The upper and bottom white rectangles, indicate the La-
1171
+ grange points L4 and L5 respect to the outer planet.
1172
+ C. EFFECT FROM DISK GRAVITY ACTING ON
1173
+ PLANETS
1174
+ We briefly test whether turning on the full disk-planet
1175
+ interaction may lead to morphological changes in the
1176
+ structure of the crescent. We recall that in our fiducial
1177
+ simulation (see §2.1), while the disk do feel the planets’
1178
+ gravity, the planets do not feel the disk.
1179
+ We perform two-planet simulations considering only
1180
+ the inner planet pair near the 4:3 commensurability (46
1181
+ au and 55 au) for up to 2000 orbits of the inner planet.
1182
+ The initial density has been reduced by a factor of 100
1183
+ to avoid significant migration. In figure 8 we show the
1184
+ density distribution for two dust fluids of 0.02 cm and
1185
+ 1.9 cm grain sizes in two cases: the full disk-planet in-
1186
+ teraction is considered (left panels, displaying a slight
1187
+ inward migration at the ∼ 10% level), and the disk grav-
1188
+ ity acting on the planets is ignored (right panels, with
1189
+ no migration). Despite of the slight orbital migration,
1190
+ we do not observe any significant changes regarding the
1191
+ amount and distribution of captured material at the L4
1192
+ and L5 Lagrange points.
1193
+
-tFQT4oBgHgl3EQfKTWv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -5847,3 +5847,73 @@ gtFLT4oBgHgl3EQfZS_m/content/2301.12069v1.pdf filter=lfs diff=lfs merge=lfs -tex
5847
  8dE2T4oBgHgl3EQf8Ait/content/2301.04215v1.pdf filter=lfs diff=lfs merge=lfs -text
5848
  6dE2T4oBgHgl3EQfkgfV/content/2301.03980v1.pdf filter=lfs diff=lfs merge=lfs -text
5849
  a9E_T4oBgHgl3EQfzByO/content/2301.08321v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5847
  8dE2T4oBgHgl3EQf8Ait/content/2301.04215v1.pdf filter=lfs diff=lfs merge=lfs -text
5848
  6dE2T4oBgHgl3EQfkgfV/content/2301.03980v1.pdf filter=lfs diff=lfs merge=lfs -text
5849
  a9E_T4oBgHgl3EQfzByO/content/2301.08321v1.pdf filter=lfs diff=lfs merge=lfs -text
5850
+ PdE5T4oBgHgl3EQfYg_i/content/2301.05575v1.pdf filter=lfs diff=lfs merge=lfs -text
5851
+ 3tE4T4oBgHgl3EQf0g0b/content/2301.05282v1.pdf filter=lfs diff=lfs merge=lfs -text
5852
+ udE1T4oBgHgl3EQfQwM3/content/2301.03043v1.pdf filter=lfs diff=lfs merge=lfs -text
5853
+ X9FIT4oBgHgl3EQfjCvs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5854
+ K9FRT4oBgHgl3EQf1Th-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5855
+ LtAzT4oBgHgl3EQfkf1m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5856
+ zdFQT4oBgHgl3EQfzDZw/content/2301.13411v1.pdf filter=lfs diff=lfs merge=lfs -text
5857
+ m9FST4oBgHgl3EQfKzjA/content/2301.13738v1.pdf filter=lfs diff=lfs merge=lfs -text
5858
+ udE1T4oBgHgl3EQfQwM3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5859
+ p9FKT4oBgHgl3EQfHS2t/content/2301.11729v1.pdf filter=lfs diff=lfs merge=lfs -text
5860
+ 3tE4T4oBgHgl3EQf0g0b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5861
+ edA0T4oBgHgl3EQfHP-i/content/2301.02059v1.pdf filter=lfs diff=lfs merge=lfs -text
5862
+ jdAyT4oBgHgl3EQfkfjo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5863
+ uNFJT4oBgHgl3EQfdyz5/content/2301.11550v1.pdf filter=lfs diff=lfs merge=lfs -text
5864
+ c9AyT4oBgHgl3EQfXfd-/content/2301.00184v1.pdf filter=lfs diff=lfs merge=lfs -text
5865
+ -9AyT4oBgHgl3EQf3vkG/content/2301.00772v1.pdf filter=lfs diff=lfs merge=lfs -text
5866
+ xNFST4oBgHgl3EQfSDhf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5867
+ gtAyT4oBgHgl3EQfxfkk/content/2301.00666v1.pdf filter=lfs diff=lfs merge=lfs -text
5868
+ gtFLT4oBgHgl3EQfZS_m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5869
+ FNE1T4oBgHgl3EQf-gbR/content/2301.03571v1.pdf filter=lfs diff=lfs merge=lfs -text
5870
+ H9E1T4oBgHgl3EQfFgPu/content/2301.02904v1.pdf filter=lfs diff=lfs merge=lfs -text
5871
+ 6dE2T4oBgHgl3EQfkgfV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5872
+ QdFJT4oBgHgl3EQfJizI/content/2301.11461v1.pdf filter=lfs diff=lfs merge=lfs -text
5873
+ PdFJT4oBgHgl3EQf1y2a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5874
+ FdAzT4oBgHgl3EQfUfww/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5875
+ 19E2T4oBgHgl3EQf5QiW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5876
+ -9AzT4oBgHgl3EQfFvoN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5877
+ uNE1T4oBgHgl3EQf3wXV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5878
+ Y9E0T4oBgHgl3EQf3wL_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5879
+ 8dE2T4oBgHgl3EQf8Ait/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5880
+ 59E4T4oBgHgl3EQfcAxC/content/2301.05079v1.pdf filter=lfs diff=lfs merge=lfs -text
5881
+ n9A0T4oBgHgl3EQfJ_86/content/2301.02097v1.pdf filter=lfs diff=lfs merge=lfs -text
5882
+ 7NE1T4oBgHgl3EQfnATd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5883
+ nNE1T4oBgHgl3EQf1QWH/content/2301.03466v1.pdf filter=lfs diff=lfs merge=lfs -text
5884
+ FNE1T4oBgHgl3EQf-gbR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5885
+ 7dAyT4oBgHgl3EQf2vnp/content/2301.00758v1.pdf filter=lfs diff=lfs merge=lfs -text
5886
+ 0NAzT4oBgHgl3EQfRPtW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5887
+ H9E1T4oBgHgl3EQfFgPu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5888
+ p9FKT4oBgHgl3EQfHS2t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5889
+ BNFKT4oBgHgl3EQfWi5i/content/2301.11792v1.pdf filter=lfs diff=lfs merge=lfs -text
5890
+ 19E2T4oBgHgl3EQf5QiW/content/2301.04189v1.pdf filter=lfs diff=lfs merge=lfs -text
5891
+ L9E4T4oBgHgl3EQf8g5c/content/2301.05348v1.pdf filter=lfs diff=lfs merge=lfs -text
5892
+ 49E2T4oBgHgl3EQfkAeM/content/2301.03974v1.pdf filter=lfs diff=lfs merge=lfs -text
5893
+ VtFLT4oBgHgl3EQfSS81/content/2301.12040v1.pdf filter=lfs diff=lfs merge=lfs -text
5894
+ 9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf filter=lfs diff=lfs merge=lfs -text
5895
+ _dFJT4oBgHgl3EQfqSzu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5896
+ S9FJT4oBgHgl3EQfMCwG/content/2301.11471v1.pdf filter=lfs diff=lfs merge=lfs -text
5897
+ 5dE1T4oBgHgl3EQfmgRl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5898
+ UNE3T4oBgHgl3EQfzwvz/content/2301.04732v1.pdf filter=lfs diff=lfs merge=lfs -text
5899
+ a9E_T4oBgHgl3EQfzByO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5900
+ edA0T4oBgHgl3EQfHP-i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5901
+ vdE_T4oBgHgl3EQf-xwz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5902
+ -9AzT4oBgHgl3EQfFvoN/content/2301.01014v1.pdf filter=lfs diff=lfs merge=lfs -text
5903
+ BNFKT4oBgHgl3EQfWi5i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5904
+ _dFJT4oBgHgl3EQfqSzu/content/2301.11604v1.pdf filter=lfs diff=lfs merge=lfs -text
5905
+ gNAyT4oBgHgl3EQfj_gw/content/2301.00423v1.pdf filter=lfs diff=lfs merge=lfs -text
5906
+ 2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf filter=lfs diff=lfs merge=lfs -text
5907
+ uNFJT4oBgHgl3EQfdyz5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5908
+ L9E4T4oBgHgl3EQf8g5c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5909
+ ttE3T4oBgHgl3EQfNQnH/content/2301.04382v1.pdf filter=lfs diff=lfs merge=lfs -text
5910
+ S9FJT4oBgHgl3EQfMCwG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5911
+ cdAzT4oBgHgl3EQfLfvk/content/2301.01117v1.pdf filter=lfs diff=lfs merge=lfs -text
5912
+ LNE0T4oBgHgl3EQfzwJL/content/2301.02676v1.pdf filter=lfs diff=lfs merge=lfs -text
5913
+ cdAzT4oBgHgl3EQfLfvk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5914
+ 7dAyT4oBgHgl3EQf2vnp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5915
+ dtE1T4oBgHgl3EQfeASf/content/2301.03202v1.pdf filter=lfs diff=lfs merge=lfs -text
5916
+ u9E8T4oBgHgl3EQfaxWZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5917
+ QdFJT4oBgHgl3EQfJizI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5918
+ ddAyT4oBgHgl3EQfwvlY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5919
+ pdE3T4oBgHgl3EQfLgnu/content/2301.04365v1.pdf filter=lfs diff=lfs merge=lfs -text
0NAzT4oBgHgl3EQfRPtW/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e71201b1cd0a73cdf2e148a93277d68387fb6e235741e290dfed5ec5a06e2b0d
3
+ size 2293805
19E2T4oBgHgl3EQf5QiW/content/2301.04189v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9ee2262e77af92d83eb96b32c559dded71e12885c9b446527e1e5ba5dd9e149
3
+ size 6902568
19E2T4oBgHgl3EQf5QiW/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d042d91b3af0d0faf883a5729db17cfbdf559f7d4d662b43a91178c5fd30b218
3
+ size 2687021
1NFAT4oBgHgl3EQfCxwU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf27bf297938338842c5f56a2d3b94da6eeadaa1541fdebe6f27957e77c56c8b
3
+ size 127035
2tE1T4oBgHgl3EQfSAOy/content/2301.03061v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a4de93c7ab0d4661ed21a9ff2e47aa3a2ec86bf31a15c454b7b35801d3bd374
3
+ size 1532580
2tE1T4oBgHgl3EQfSAOy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a8c83baac47c2a058a131c757a17bf3fa36f3d4db9d636b147d36d8c8b79f2
3
+ size 164201
3tE4T4oBgHgl3EQf0g0b/content/2301.05282v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe3cb330bd51176e7569b01f0c1917cc4dd97325b6a5c8b58c1cd89dc730a564
3
+ size 2093088
3tE4T4oBgHgl3EQf0g0b/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d707b8394678ee2cb1ee954260da2400b04a3187f2ec01997414b1146c8c15a
3
+ size 7209005
49E2T4oBgHgl3EQfkAeM/content/2301.03974v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4852e5cc8ab6c83aba4cbe93de63cbfb13654fb21bd2d6e6ac58afd1376f9c3
3
+ size 1191291
49E2T4oBgHgl3EQfkAeM/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7acbf1a3a72dbf1e28bb49cd1f94aeb32596577bc48f376afe2e749c156b7152
3
+ size 151387
4NFQT4oBgHgl3EQf4Dar/content/tmp_files/2301.13430v1.pdf.txt ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Published as a conference paper at ICLR 2023
2
+ GENEFACE:
3
+ GENERALIZED
4
+ AND
5
+ HIGH-FIDELITY
6
+ AUDIO-DRIVEN 3D TALKING FACE SYNTHESIS
7
+ Zhenhui Ye1∗, Ziyue Jiang1∗, Yi Ren2, Jinglin Liu1, JinZheng He1, Zhou Zhao1†
8
+ 1Zhejiang University
9
+ {zhenhuiye,jiangziyue,jinglinliu,jinzhenghe,zhaozhou}@zju.edu.cn
10
+ 2Bytedance
11
12
+ ABSTRACT
13
+ Generating photo-realistic video portrait with arbitrary speech audio is a crucial
14
+ problem in film-making and virtual reality. Recently, several works explore the us-
15
+ age of neural radiance field in this task to improve 3D realness and image fidelity.
16
+ However, the generalizability of previous NeRF-based methods to out-of-domain
17
+ audio is limited by the small scale of training data. In this work, we propose Gene-
18
+ Face, a generalized and high-fidelity NeRF-based talking face generation method,
19
+ which can generate natural results corresponding to various out-of-domain audio.
20
+ Specifically, we learn a variaitional motion generator on a large lip-reading cor-
21
+ pus, and introduce a domain adaptative post-net to calibrate the result. Moreover,
22
+ we learn a NeRF-based renderer conditioned on the predicted facial motion. A
23
+ head-aware torso-NeRF is proposed to eliminate the head-torso separation prob-
24
+ lem. Extensive experiments show that our method achieves more generalized and
25
+ high-fidelity talking face generation compared to previous methods1 .
26
+ 1
27
+ INTRODUCTION
28
+ Audio-driven face video synthesis is an important and challenging problem with several applications
29
+ such as digital humans, virtual reality (VR), and online meetings. Over the past few years, the com-
30
+ munity has exploited Generative Adversarial Networks (GAN) as the neural renderer and promoted
31
+ the frontier from only predicting the lip movement Prajwal et al. (2020)Chen et al. (2019) to gener-
32
+ ating the whole face Zhou et al. (2021)Lu et al. (2021). However, GAN-based renderers suffer from
33
+ several limitations such as unstable training, mode collapse, difficulty in modelling delicate details
34
+ Suwajanakorn et al. (2017)Thies et al. (2020), and fixed static head pose Pham et al. (2017)Taylor
35
+ et al. (2017)Cudeiro et al. (2019). Recently, Neural Radiance Field (NeRF) Mildenhall et al. (2020)
36
+ has been explored in talking face generation. Compared with GAN-based rendering techniques,
37
+ NeRF renderers could preserve more details and provide better 3D naturalness since it models a
38
+ continuous 3D scene in the hidden space.
39
+ Recent NeRF-based works Guo et al. (2021)Liu et al. (2022)Yao et al. (2022) manage to learn an
40
+ end-to-end audio-driven talking face system with only a few-minutes-long video. However, the
41
+ current end-to-end framework is faced with two challenges. 1) The first challenge is the weak
42
+ generalizability due to the small scale of training data, which only consists of about thousands-many
43
+ audio-image pairs. This deficiency of training data makes the trained model not robust to out-of-
44
+ domain (OOD) audio in many applications (such as cross-lingual Guo et al. (2021)Liu et al. (2022) or
45
+ singing voice). 2) The second challenge is the so-called ”mean face” problem. Note that the audio
46
+ to its corresponding facial motion is a one-to-many mapping, which means the same audio input
47
+ may have several correct motion patterns. Learning such a mapping with a regression-based model
48
+ leads to over-smoothing and blurry results Ren et al. (2021); specifically, for some complicated
49
+ ∗Authors contribute equally to this work.
50
+ †Corresponding author
51
+ 1Video samples and source code are available at https://geneface.github.io
52
+ 1
53
+ arXiv:2301.13430v1 [cs.CV] 31 Jan 2023
54
+
55
+ Published as a conference paper at ICLR 2023
56
+ audio with several potential outputs, it tends to generate an image with a half-opened and blurry
57
+ mouth, which leads to unsatisfying image quality and bad lip-synchronization. To summarize, the
58
+ current NeRF-based methods are challenged with the weak generalizability problem due to the lack
59
+ of audio-to-motion training data and the ”mean face” results due to the one-to-many mapping.
60
+ In this work, we develop a talking face generation system called GeneFace to address these two
61
+ challenges. To handle the weak generalizability problem, we devise an audio-to-motion model to
62
+ predict the 3D facial landmark given the input audio. We utilize hundreds of hours of audio-motion
63
+ pairs from a large-scale lip reading datasetAfouras et al. (2018) to learn a robust mapping. As for
64
+ the ”mean face” problem, instead of using the regression-based model, we adopt a variational auto-
65
+ encoder (VAE) with a flow-based prior as the architecture of the audio-to-motion model, which
66
+ helps generate accurate and expressive facial motions. However, due to the domain shift between
67
+ the generated landmarks (in the multi-speaker domain) and the training set of NeRF (in the target
68
+ person domain), we found that the NeRF-based renderer fails to generate high-fidelity frames given
69
+ the predicted landmarks. Therefore, a domain adaptation process is proposed to rig the predicted
70
+ landmarks into the target person’s distribution. To summarize, our system consists of three stages:
71
+ 1 Audio-to-motion. We present a variational motion generator to generate accurate and expressive
72
+ facial landmark given the input audio.
73
+ 2 Motion domain adaptation. To overcome the domain shift, we propose a semi-supervised ad-
74
+ versarial training pipeline to train a domain adaptative post-net, which refines the predicted 3D
75
+ landmark from the multi-speaker domain into the target person domain.
76
+ 3 Motion-to-image. We design a NeRF-based renderer to render high-fidelity frames conditioned
77
+ on the predicted 3D landmark.
78
+ The main contributions of this paper are summarized as follows:
79
+ • We present a three-stage framework that enables the NeRF-based talking face system to enjoy
80
+ the large-scale lip-reading corpus and achieve high generalizability to various OOD audio. We
81
+ propose an adversarial domain adaptation pipeline to bridge the domain gap between the large
82
+ corpus and the target person video.
83
+ • We are the first work that analyzes the ”mean face” problem induced by the one-to-many audio-
84
+ to-motion mapping in the talking face generation task. To handle this problem, we design a varia-
85
+ tional motion generator to generate accurate facial landmarks with rich details and expressiveness.
86
+ • Experiments show that our GeneFace outperforms other state-of-the-art GAN-based and NeRF-
87
+ based baselines from the perspective of objective and subjective metrics.
88
+ 2
89
+ RELATED WORK
90
+ Our approach is a 3D talking face system that utilizes a generative model to predict the 3DMM-
91
+ based motion representation given the driving audio and employs a neural radiance field to render
92
+ the corresponding images of a human head. It is related to recent approaches to audio-driven talking
93
+ head generation methods and scene representation networks for the human portrait.
94
+ Audio-driven Talking Head Generation
95
+ Generating talking faces in line with input audio has
96
+ long attracted the attention of the computer vision community. Earlier works focus on synthesizing
97
+ the lip motions on a static facial imageJamaludin et al. (2019)Tony Ezzat & Poggio (2002)Vou-
98
+ gioukas et al. (2020)Wiles et al. (2018). Then the frontier is promoted to synthesize the full headYu
99
+ et al. (2020)Zhou et al. (2019)Zhou et al. (2020). However, free pose control is not feasible in these
100
+ methods due to the lack of 3D modeling. With the development of 3D face reconstruction tech-
101
+ niquesDeng et al. (2019), many works explore extracting 3D Morphable Model (3DMM)Paysan
102
+ et al. (2009) from the monocular video to represent the facial movementTero Karras & Lehtinen
103
+ (2017)Yi et al. (2020) in the talking face system, which is named as model-based methods. With
104
+ 3DMM, a coarse 3D face mesh M can be represented as an affine model of facial expression and
105
+ identity code:
106
+ M = M + Bidi + Bexpe,
107
+ (1)
108
+ 2
109
+
110
+ Published as a conference paper at ICLR 2023
111
+ Driving
112
+ Audio
113
+ HuBERT
114
+ Features
115
+ Variational Motion Generator
116
+ 𝑧~𝑁 0,1
117
+ Enhanced
118
+ Latent
119
+ Generated
120
+ Landmark
121
+ Domain Adaptative Post-net
122
+ Conv 1D
123
+ BN
124
+ ReLU
125
+ x N
126
+ +
127
+ Refined
128
+ Landmark
129
+ 3DMM NeRF Renderer
130
+ Head-NeRF
131
+ Torso-NeRF
132
+ Rendered
133
+ Head
134
+ Rendered
135
+ Frame
136
+ WaveNet-
137
+ like Decoder
138
+ Flow-based
139
+ Prior
140
+ Figure 1: The inference process of GeneFace. BN denotes batch normalization.
141
+ where M is the average face shape; Bid and Bexp are the PCA bases of identity and expression; i
142
+ and e are known as identity and expression codes.
143
+ By modeling the 3D geometry with 3DMM, the model-based works manage to manipulate the head
144
+ pose and facial movement. However, 3DMM could only define a coarse 3D mesh of the human
145
+ head, and delicate details (such as hair, wrinkle, teeth, etc.) are ignored. It raises challenges for
146
+ GAN-based methods to obtain realistic results. Recent advances in neural rendering have created
147
+ a prospect: instead of refining the geometry of 3DMM or adding more personalized attributes as
148
+ auxiliary conditions for GAN-based renderers, we could leave these delicate details to be modeled
149
+ implicitly by the hidden space of the neural radiance field.
150
+ Neural Radiance Field for Rendering Face
151
+ The recent proposed neural radiance field
152
+ (NeRF)Mildenhall et al. (2020)Kellnhofer et al. (2021)Pumarola et al. (2021)Sitzmann et al. (2019)
153
+ has attracted much attention in the human portrait rendering field since it could render high-fidelity
154
+ images with rich details such as hair and wrinkles. For instance, Sitzmann et al. (2019) presents
155
+ a compositional NeRF for generating each part of the upper body. NerFaceGafni et al. (2021) and
156
+ Pumarola et al. (2021) propose pose-expression-conditioned dynamic NeRFs for modeling the dy-
157
+ namics of a human face. EG3DChan et al. (2022) proposes a hybrid explicit–implicit tri-plane
158
+ representation to achieve fast and geometry-aware human face rendering. HeadNeRFHong et al.
159
+ (2022) proposes a real-time NeRF-based parametric head model.
160
+ Several works have also applied NeRF in the audio-driven talking face generation task. Zhang et al.
161
+ (2021) devise an implicit pose code to modularize audio-visual representations. AD-NeRF Guo
162
+ et al. (2021) first presents an end-to-end audio-driven NeRF to generate face images conditioned on
163
+ Deepspeech Hannun et al. (2014) audio features. Recently, SSP-NeRF Liu et al. (2022) proposed
164
+ a semantic-aware dynamic ray sampling module to improve the sample efficiency and design a
165
+ torso deformation module to stabilize the large-scale non-rigid torso motions. DFA-NeRF Yao et al.
166
+ (2022) introduces two disentangled representations (eye and mouth) to provide improved conditions
167
+ for NeRF. To achieve few-shot training, DFRFShen et al. (2022) conditions the face radiance field
168
+ on 2D reference images to learn the face prior, thus greatly reducing the required data scale (tens
169
+ of seconds of video) and improve the convergence speed (about 40k iterations). However, all of the
170
+ previous NeRF-based work focuses on better image quality or reducing the training cost, while the
171
+ generalizability to out-of-domain audio is relatively an oversight.
172
+ Our GeneFace could be regarded as bridging the advantages of the aforementioned two types of
173
+ works. Compared with previous 3DMM-based methods, our work could enjoy good 3D naturalness
174
+ and high image quality brought by the NeRF-based renderer. Compared with previous end-to-end
175
+ NeRF-based methods, we improve the generalizabity to out-of-domain audio via introducing a gen-
176
+ erative audio-to-motion model trained on a large lip reading corpus.
177
+ 3
178
+ GENEFACE
179
+ In this section, we introduce our proposed GeneFace. As shown in Fig. 1, GeneFace is composed of
180
+ three parts: 1) a variational motion generator that transforms HuBERT features Hsu et al. (2021) into
181
+ 3D facial landmarks; 2) a post-net to refine the generated motion into the target person domain; 3)
182
+ a NeRF-based renderer to synthesize high-fidelity frames. We describe the designs and the training
183
+ process of these three parts in detail in the following subsections.
184
+ 3
185
+
186
+ Published as a conference paper at ICLR 2023
187
+ Large Video Corpus
188
+ Deep 3D Recon
189
+ 3DMM Landmark
190
+ HuBERT
191
+ Features
192
+ WaveNet-like
193
+ Encoder
194
+ WaveNet-like
195
+ Decoder
196
+ Flow-based
197
+ Prior
198
+ 𝜇, 𝜎
199
+ Variational Motion Generator
200
+ Generated
201
+ Landmark
202
+ Pretrained
203
+ SyncNet
204
+ Training of Audio2motion
205
+ Audio
206
+ Figure 2: The structure of variational motion generator. Dashed arrows means the process is only
207
+ performed during training; and only the dashed rectangle part is used during inference.
208
+ 3.1
209
+ VARIATIONAL MOTION GENERATOR
210
+ To achieve expressive and diverse 3D head motion generation, we introduce a variational auto-
211
+ encoder (VAE) to perform a generative and expressive audio-to-motion transform, namely the vari-
212
+ ational motion generator, as shown in Fig. 2.
213
+ Audio and motion representation
214
+ To better extract the semantic information, we utilize Hu-
215
+ BERT, a state-of-the-art ASR model, to obtain audio features from the input wave and use it as the
216
+ condition of the variational motion generator. As for the motion representation, to represent detailed
217
+ facial movement in Euclidean space, we select 68 key points from the reconstructed 3D head mesh
218
+ and use their position as the action representations. Specifically,
219
+ LM3D = {(M − M)i|i ∈ I},
220
+ (2)
221
+ where LM3D ∈ R68×3, M and M are the 3DMM mesh and mean mesh defined in Equation (1), I
222
+ is the index of the key landmark in the mesh. In this paper, we name this action representation 3D
223
+ landmarks for abbreviation.
224
+ Dilated convolutional encoder and decoder
225
+ Inspired by WaveNet, to better extract features from
226
+ the audio sequence and construct long-term temporal relationships in the output sample, we design
227
+ the encoder and decoder as fully convolutional networks where the convolutional layers have incre-
228
+ mentally increased dilation factors that allow its receptive field to grow exponentially with depth.
229
+ In contrast to previous works, which typically divide the input audio sequence into sliding windows
230
+ to obtain a smooth result, we manage to synthesize the whole sequence of arbitrary length within
231
+ a single forward. To further improve the temporal stability of the predicted landmark sequence, a
232
+ Gaussian filter is performed to eliminate tiny fluctuations in the result.
233
+ Flow-based Prior
234
+ We also notice that the gaussian prior of vanilla VAE limits the performance of
235
+ our 3D landmark sequence generation process from two prospectives: 1) the datapoint of each time
236
+ index is independent of each other, which induces noise to the sequence generation task where there
237
+ is a solid temporal correlation among frames. 2) optimizing VAE prior push the posterior distribution
238
+ towards the mean, limiting diversity and hurting the generative power. To this end, following Ren
239
+ et al. (2021), we utilize a normalizing flow to provide a complex and time-related distribution as the
240
+ prior distribution of the VAE. Please refer to Appendix A.1 for more details.
241
+ Training Process
242
+ Due to the introduction of prior flow, the closed-form ELBO is not feasible,
243
+ hence we use the Monte-Carlo ELBO loss Ren et al. (2021) to train the VAE model. Besides,
244
+ inspired by Prajwal et al. (2020), we independently train a sync-expert Dsync that measures the
245
+ possibility that the input audio and 3D landmarks are in-sync, whose training process can be found in
246
+ Appendix A.2 . The trained sync-expert is then utilized to guide the training of VAE. To summarize,
247
+ the training loss of our variational motion generator (VG) is as follows:
248
+ LVG(φ, θ, ϵ) = −Eqφ(z|l,a)[log pθ(l|z, a)]+KL(qφ(z|l, a)|pϵ(z|a))−Eˆl∼pθ(l|z,c)[log Dsync(ˆl)] (3)
249
+ where φ, θ, ϵ denote the model parameters of the encoder, decoder and the prior, respectively. c
250
+ denotes the condition features of VAE. The ground truth and predicted 3D landmarks are represented
251
+ by l and ˆl, respectively.
252
+ 4
253
+
254
+ ::.DPublished as a conference paper at ICLR 2023
255
+ HuBERT
256
+ Features
257
+ Large Video Corpus
258
+ Variational
259
+ Motion
260
+ Generator
261
+ HuBERT
262
+ Features
263
+ Target Person Video
264
+ Domain Adaptive
265
+ Post-net
266
+ Generated Landmark
267
+ +
268
+ +
269
+ Refined Landmark
270
+ MLP-based
271
+ Disc.
272
+ as neg.
273
+ sample
274
+ as neg.
275
+ sample
276
+ GT target person
277
+ 3DMM Landmark
278
+ MSE
279
+ as positive sample
280
+ Training of PostNet
281
+ Pretrained
282
+ SyncNet
283
+ Figure 3: The training process of Domain Adaptative Post-net.
284
+ 3.2
285
+ DOMAIN ADAPTIVE POST-NET
286
+ As we train the variational motion generator on a large multi-speaker dataset, the model can general-
287
+ ize well with various audio inputs. However, as the scale of the target person video is relatively tiny
288
+ (about 4-5 minutes) compared with the multi-speaker lip reading dataset (about hundreds of hours),
289
+ there exists a domain shift between the predicted 3D landmarks and the target person domain. As a
290
+ consequence, the NeRF-based renderer cannot generalize well with the predicted landmark, which
291
+ results in blurry or unrealistic rendered images. To this end, A naive solution is to fine-tune the
292
+ variational generator in the target person dataset. The challenge is that we generally only have a
293
+ short personalized video, and the generalizability of the model may be lost after the fine-tuning.
294
+ Under such circumstances, we design a semi-supervised adversarial training pipeline to perform a
295
+ domain adaptation. To be specific, we learn a post-net to refine the VAE-predicted 3D landmarks into
296
+ the personalized domain. We consider two requirements for this mapping: 1) it should preserve the
297
+ temporal consistency and lip-synchronization of the input sequence; 2) it should correctly map each
298
+ frame into the target person’s domain. To fulfill the first point, we utilize 1D CNN as the structure
299
+ of post-net and adopt the sync-expert to supervise the lip-synchronization; for the second point, we
300
+ jointly train an MLP-structured frame-level discriminator that measures the identity similarity of
301
+ each landmark frame to the target person. The detailed structure of the post-net and discriminator
302
+ can be found in Appendix A.3.
303
+ Training Process
304
+ The training process of post-net is shown in Fig.3. During training, the MLP
305
+ discriminator tries to distinguish between the ground truth landmark l′ extracted from the target
306
+ person’s video and the refined samples Gω(ˆl) generated from the large-scale dataset. We use the
307
+ LSGAN loss to update the discriminator :
308
+ LD(δ) = Eˆl∼pθ(l|z,c)[(Dδ(PNω(ˆl)) − 0)2] + El′∼p′(l)[(Dδ(l′) − 1)2]
309
+ (4)
310
+ where ω and δ are the parameters of the post-net PN and discriminator D. l′ is the ground truth
311
+ 3DMM landmark of the target person dataset, and ˆl is the 3D landmarks refined by the post-net.
312
+ As for the training of post-net, the post-net competes with the discriminator while being guided by
313
+ the pre-trained sync-expert to maintain lip synchronization. Besides, we utilize the target person
314
+ dataset to provide a weak supervised signal to help the adversarial training. Specifically, we extract
315
+ the audio c′ of the target person video for VAE to predict the landmarks ˆl′ ∼ pθ(l|z, c′) and en-
316
+ courage the refined landmarks PNω(ˆl′) to approximate the ground truth expression l′. Finally, the
317
+ training loss of post-net is:
318
+ LPN(ω) = Eˆe∼pθ(l|z,c)[(Dδ(PNω(ˆl)) − 1)2] + Eˆl∼pθ(l|z,c)[Dsync(ˆl)]
319
+ +Eˆl′∼pθ(l|z,c′)[((PNω(ˆl′) − l′)2]
320
+ (5)
321
+ 3.3
322
+ NERF-BASED RENDERER
323
+ We obtain a robust and diverse audio-to-motion mapping through the variational motion generator
324
+ and post-net. Next, we design a NeRF-based renderer to render high-fidelity frames conditioned on
325
+ the predicted 3D landmarks.
326
+ 5
327
+
328
+ DPublished as a conference paper at ICLR 2023
329
+ Training of NeRF
330
+ Target Person Video
331
+ Deep 3D Recon
332
+ 3DMM Landmark
333
+ Landmark
334
+ Encoder
335
+ Head Color
336
+ Encoder
337
+ Head
338
+ Pose
339
+ Head
340
+ NeRF
341
+ Torso
342
+ NeRF
343
+ Rendered
344
+ Head
345
+ Rendered
346
+ Frame
347
+ 3DMM NeRF Renderer
348
+ Figure 4: The training process of NeRF-based renderer.
349
+ 3D landmark-conditioned NeRF
350
+ Inspired by Guo et al. (2021), we present a conditional NeRF
351
+ to represent the dynamic talking head. Apart from viewing direction d and 3D location x, the
352
+ 3D landmarks l will act as the condition to manipulate the color and geometry of the implicitly
353
+ represented head. Specifically, the implicit function F can be formulated as follows:
354
+ Fθ : (x, d, l) → (c, σ)
355
+ (6)
356
+ where c and σ denote the color and density in the radiance field. To improve the continuity between
357
+ adjacent frames, we use the 3D landmarks from the three neighboring frames to represent the facial
358
+ shape, i.e., l ∈ R3×204. We notice that some facial landmarks only change in a small range, which
359
+ numerically raises challenges for NeRF to learn the high-frequency image details. Therefore, we
360
+ normalize the input 3D landmarks point-wisely, which is necessary to achieve better visual quality.
361
+ Following the setting of volume rendering, to render each pixel, we emit a camera ray r(t) = o+t·d
362
+ in the radiance field, with camera center o, viewing direction d. The final color C is calculated by
363
+ aggregating the color c along the ray:
364
+ C(r, l; θ) =
365
+ � tf
366
+ tn
367
+ σθ(r(t), l) · cθ(r(t), l, d) · T(t)dt
368
+ (7)
369
+ where tn and tr is the near bound and far bound of ray r; cθ and σθ are the output of the implicit
370
+ function Fθ, T(t) is the accumulated transmittance along the ray from tn to t, which is defined as:
371
+ T(t) = exp(−
372
+ � t
373
+ tn
374
+ σθ(r(τ))dτ)
375
+ (8)
376
+ Head-aware Torso-NeRF
377
+ To better model the head and torso movement, we train two NeRFs to
378
+ render the head and torso parts, respectively. As shown in Fig. 4, we first train a head-NeRF to
379
+ render the head part, then train a torso-NeRF to render the torso part with the rendering image of the
380
+ head-NeRF as background. Following Guo et al. (2021), we assume the torso part is in canonical
381
+ space and provide the head pose h to torso-NeRF as a signal to infer the torso movement. The
382
+ torso-NeRF implicitly learns to expect the location of the rendered head, then rigid the torso from
383
+ canonical space to render a natural result.
384
+ However, this cooperation between head-NeRF and torso-NeRF is fragile since the torso-NeRF
385
+ cannot observe the head-NeRF’s actual output. Consequently, several recent works report that the
386
+ torso-NeRF produces head-torso separation artifacts Liu et al. (2022)Yao et al. (2022) when the head
387
+ pose is relatively large. Based on the analysis above, we propose to provide the torso-NeRF with a
388
+ perception of the rendering result of the head-NeRF. Specifically, we use the output color Chead of
389
+ the head-NeRF as a pixel-wise condition of the torso-NeRF. The torso’s implicit function Ftorso is
390
+ expressed as:
391
+ Ftorso : (x, Chead; d0, Π, l) → (c, σ)
392
+ (9)
393
+ where d0 is view direction in the canonical space, Π ∈ R3×4 is the head pose that composed of a
394
+ rotation matrix and a transform vector.
395
+ Training Process
396
+ We extract 3D landmarks from the video frames and use these landmark-image
397
+ pairs to train our NeRF-based renderer. The optimization target of head-NeRF and torso-NeRF is
398
+ to reduce the photo-metric reconstruction error between rendered and ground-truth images. Specifi-
399
+ cally, the loss function can be formulated as:
400
+ LNeRF (θ) =
401
+
402
+ r∈R
403
+ ||Cθ(r, l) − Cg||2
404
+ 2
405
+ (10)
406
+ 6
407
+
408
+ Published as a conference paper at ICLR 2023
409
+ where R is the set of camera rays, Cg is the color of the ground image.
410
+ 4
411
+ EXPERIMENTS
412
+ 4.1
413
+ DATASET PREPARATION AND PREPROCESSING
414
+ Dataset preparation.
415
+ Our method aims to synthesize high-fidelity talking face images with great
416
+ generalizability to out-domain audio. To learn robust audio-to-motion mapping, a large-scale lip-
417
+ reading corpus is needed. Hence we use LRS3-TEDAfouras et al. (2018) to train our variational
418
+ generator and post-net 2. Additionally, a certain person’s speaking video of a few minutes in length
419
+ with an audio track is needed to learn a NeRF-based person portrait renderer. To be specific, in order
420
+ to compare with the state-of-the-art method, we utilize the data set of Lu et al. (2021) and Guo et al.
421
+ (2021), which consist of 5 videos of an average length of 6,000 frames in 25 fps.
422
+ Data preprocessing.
423
+ As for the audio track, we downsample the speech wave into the sampling
424
+ rate of 16000 and process it with a pretrained HuBERT model. For the video frames of LRS3 and
425
+ the target person videos, we resample them into 25 fps and use Deng et al. (2019) to extract the head
426
+ pose and 3D landmarks. As for the target person videos, they are cropped into 512x512 and each
427
+ frame is processed with the help of an automatic parsing method Lee et al. (2020) for segmenting
428
+ the head and torso part and extracting a clean background.
429
+ 4.2
430
+ EXPERIMENTAL SETTINGS
431
+ Comparison baselines.
432
+ We compare our GeneFace with several remarkable works: 1) Wav2Lip
433
+ Prajwal et al. (2020), which pretrain a sync-expert to improve the lip-synchronization performance;
434
+ 2) MakeItTalk Zhou et al. (2020), which also utilize 3D landmark as the action representation; 3)
435
+ PC-AVS Zhou et al. (2021), which first modularize the audio-visual representation. 4) LiveSpeech-
436
+ Portriat Lu et al. (2021), which achieves photorealistic results at over 30fps; 5) AD-NeRF Guo et al.
437
+ (2021), which first utilize NeRF to achieve talking head generation. For Wav2Lip, PC-AVS, and
438
+ MakeItTalk, the LRS3-TED dataset is used to train the model, and a reference clip of the target
439
+ person video is used during the inference stage; for LSP, both of LRS3-TED dataset and the target
440
+ person video is used to train the model; for the NeRF-based method, AD-NeRF, only the target
441
+ person video is used to train an end-to-end audio-to-image renderer.
442
+ Implementation Details.
443
+ We train the GeneFace on 1 NVIDIA RTX 3090 GPU, and the detailed
444
+ training hyper-parameters of the variational generator, post-net, and NeRF-based are listed in Ap-
445
+ pendix B. For variational generator and post-net, it takes about 40k and 12k steps to converge (about
446
+ 12 hours). For the NeRF-based renderer, we train each model for 800k iterations (400k for head and
447
+ 400k for the torso, respectively), which takes about 72 hours.
448
+ 4.3
449
+ QUANTITATIVE EVALUATION
450
+ Evaluation Metrics
451
+ We employ the FID score Heusel et al. (2017) to measure image quality. We
452
+ utilize the landmark distance (LMD)Chen et al. (2018) and syncnet confidence score Prajwal et al.
453
+ (2020) to evaluate lip synchronization. Furthermore, to evaluate the generalizability, we additionally
454
+ test all methods with a set of out-of-domain (OOD) audio, which consists of cross-lingual, cross-
455
+ gender, and singing voice audios.
456
+ Evaluation Results
457
+ The results are shown in Table 1. We have the following observations. (1) Our
458
+ GeneFace achieves good lip-synchronization with high generalizability. Since Wav2Lip is jointly
459
+ trained with SyncNet, it achieves the highest sync score that is higher than the ground truth video.
460
+ Our method performs best in LMD and achieves a better sync score than other baselines. When
461
+ tested with out-of-domain audios, while the sync-score of person-specific methods (LSP and AD-
462
+ NeRF) significantly drops, GeneFace maintains good performance. (2) Our GeneFace achieves the
463
+ best visual quality. We observe that one-shot methods (Wav2Lip, MakeItTalk, and PC-AVS) perform
464
+ 2we select samples of good quality in the LRS3-TED dataset, the selected subset contains 19,775 short
465
+ videos from 3,231 speakers and is about 120 hours-long.
466
+ 7
467
+
468
+ Published as a conference paper at ICLR 2023
469
+ Method
470
+ FID ↓
471
+ LMD↓
472
+ Sync ↑
473
+ FID(OOD) ↓
474
+ Sync(OOD) ↑
475
+ Wav2Lip
476
+ 71.40
477
+ 3.988
478
+ 9.212
479
+ 68.05
480
+ 9.645
481
+ MakeitTalk
482
+ 57.96
483
+ 4.848
484
+ 4.981
485
+ 53.33
486
+ 4.933
487
+ PC-AVS
488
+ 96.81
489
+ 5.812
490
+ 6.239
491
+ 98.31
492
+ 6.156
493
+ LSP
494
+ 29.30
495
+ 4.589
496
+ 6.119
497
+ 35.21
498
+ 4.320
499
+ AD-NeRF
500
+ 27.52
501
+ 4.199
502
+ 4.894
503
+ 35.69
504
+ 4.225
505
+ Ground Truth
506
+ 0.00
507
+ 0.000
508
+ 8.733
509
+ N/A
510
+ N/A
511
+ GeneFace (ours)
512
+ 22.88
513
+ 3.933
514
+ 6.987
515
+ 27.38
516
+ 6.212
517
+ Table 1: Quantitative evaluation with different methods. Best results are in bold.
518
+ /ɔɪ/
519
+ /um/
520
+ /f/
521
+ /um/
522
+ /ʃ/
523
+ GeneFace
524
+ AD-NeRF
525
+ /i/
526
+ /w/
527
+ /s/
528
+ /ɒ/
529
+ /ju:/
530
+ Audio
531
+ Figure 5: The comparison of generated key frame results. We show the phonetic symbol of the
532
+ key frame and the corresponding synthesized talking heads of AD-NeRF and GeneFace. We mark
533
+ the head-torso separation artifact, blurry mouth, un-sync results with brown, blue, and red arrow,
534
+ respectively. Please zoom in for better visualization. More qualitative comparisons can be found
535
+ in demo video.
536
+ poorly on FID due to low image fidelity. Since we use 3D landmarks as the condition of the NeRF
537
+ renderer, it address the mean face problem and leads to better lip syncronization and visual quality
538
+ than AD-NeRF.
539
+ 4.4
540
+ QUALITATIVE EVALUATION
541
+ To compare the generated results of each method, we show the keyframes of two clips in Fig.5. Due
542
+ to space limitations, we only compare our GeneFace with AD-NeRF here and provide full results
543
+ with all baselines in Appendix C.1. We observe that although both methods manage to generate
544
+ high-fidelity results, GeneFace solves several problems that AD-NeRF has: 1) head-torso separation
545
+ (brown arrow) due to the separate generation pipeline of head and torso part; 2) blurry mouth images
546
+ due to the one-to-many audio-to-lip mapping; 3) unsynchronized lip due to the weak generalizability.
547
+ User Study
548
+ We conduct user studies to test the quality of audio-driven portraits. Specifically, we
549
+ sample 10 audio clips from English, Chinese, and German for all methods to generate the videos,
550
+ and then involve 20 attendees for user studies. We adopt the Mean Opinion score (MOS) rating
551
+ protocol for evaluation, which is scaled from 1 to 5. The attendees are required to rate the videos
552
+ based on three aspects: (1) lip-sync accuracy; (2) video realness; (3) image quality.
553
+ We compute the average score for each method, and the results are shown in Table 2. We have
554
+ the following observations: 1) Our GeneFace achieves comparatively high lip-sync accuracy with
555
+ Wav2LipPrajwal et al. (2020) since both of them learn a generalized audio-to-motion mapping on a
556
+ large dataset with guidance from a sync-expert. 2) As for the video realness and image quality, the
557
+ Person-specific methods (LSP, AD-NeRF, and GeneFace) outperform one-shot methods (Wav2Lip,
558
+ MakeItTalk, and PC-AVS). Although LSP has slightly better image quality than GeneFace, our
559
+ method achieves the highest video realness and lip-sync accuracy score.
560
+ 4.5
561
+ ABLATION STUDY
562
+ In this section, we perform ablation study to prove the necessity of each component in GeneFace.
563
+ 8
564
+
565
+ Published as a conference paper at ICLR 2023
566
+ Methods
567
+ Wav2Lip
568
+ MakeItTalk
569
+ PC-AVS
570
+ LSP
571
+ AD-NeRF
572
+ GeneFace (ours)
573
+ Lip-sync Accuracy
574
+ 3.77±0.25
575
+ 2.86±0.33
576
+ 3.11±0.30
577
+ 3.65±0.20
578
+ 3.05±0.26
579
+ 3.82±0.24
580
+ Image Quality
581
+ 3.38±0.19
582
+ 2.84±0.20
583
+ 2.73±0.25
584
+ 3.92±0.13
585
+ 3.44±0.22
586
+ 3.87±0.16
587
+ Video Realness
588
+ 3.27±0.26
589
+ 2.52±0.30
590
+ 2.46±0.28
591
+ 3.62±0.24
592
+ 3.31±0.24
593
+ 3.87±0.16
594
+ Table 2: User study with different methods. The error bars are 95% confidence interval.
595
+ Setting
596
+ FID↓
597
+ LMD↓
598
+ Sync↑
599
+ FID(OOD)↓
600
+ Sync(OOD)↑
601
+ GeneFace
602
+ 22.88
603
+ 3.933
604
+ 6.987
605
+ 27.38
606
+ 6.212
607
+ w/o prior flow
608
+ 24.71
609
+ 4.063
610
+ 6.404
611
+ 29.55
612
+ 5.831
613
+ w/o sync-expert
614
+ 24.02
615
+ 4.151
616
+ 5.972
617
+ 30.77
618
+ 5.549
619
+ w/o post-net
620
+ 30.26
621
+ 4.532
622
+ 5.085
623
+ 35.58
624
+ 5.248
625
+ w. fine-tune
626
+ 25.75
627
+ 4.227
628
+ 6.875
629
+ 29.30
630
+ 5.966
631
+ w/o head-aware
632
+ 26.34
633
+ 3.948
634
+ 6.899
635
+ 28.89
636
+ 6.167
637
+ Table 3: Ablation study results. The ablation settings are described in Sec. 4.5.
638
+ Varaiational motion generator
639
+ We test two settings on the variational motion generator: (1) w/o
640
+ prior flow, where we replace the flow-based prior with a gaussian prior. The results are shown in
641
+ Table 3 (line 2), where the Sync score drops by a relatively large margin. This observation suggests
642
+ that the temporal enhanced latent variable contributes to the stability of the predicted landmark se-
643
+ quence. (2) w/o sync-expert (line 3), where the variational motion generator is no longer supervised
644
+ by a pretrained sync-expert. We observe that it leads to a significant degradation in Sync score.
645
+ Domain adaptative post-net
646
+ In the setting w/o post-net, we remove the domain adaptative post-
647
+ net, the results are shown in Table 3 (line 4). It can be seen that directly using the 3D landmarks
648
+ predicted by the variational motion generator leads to a significant performance drop in FID and
649
+ Sync scores. To further investigate the efficacy of post-net, we utilize T-SNE to visualize the land-
650
+ marks of different domains in Fig. 10. The visualization results prove that there exists a significant
651
+ domain gap between the LRS3 dataset and the target person video, and our post-net successfully
652
+ rigs the predicted landmarks from the LRS3 domain into the target person domain. We also try to
653
+ replace the post-net with directly fine-tuning on the target person video (line 5), although it achieves
654
+ a competitive sync score on in-domain audios, its performance in OOD audio is worse.
655
+ Head-aware torso-NeRF
656
+ In the w/o head-ware setting, we remove head image condition of the
657
+ torso-NeRF. The results are shown in Table 3 (line 6). Due to the unawareness of the head’s location,
658
+ the head-torso separation occurs occasionally, which results in a drop in the FID score.
659
+ 5
660
+ CONCLUSION
661
+ In this paper, we propose GeneFace for talking face generation, which aims to solve the weak gen-
662
+ eralizability and mean face problem faced by previous NeRF-based methods. A variational motion
663
+ generator is proposed to construct a generic audio-to-motion mapping based on a large corpus. We
664
+ then introduce a domain adaptative post-net with an adversarial training pipeline to rig the predicted
665
+ motion representation into the target person domain. Moreover, a head-aware torso-NeRF is present
666
+ to address the head-torso separation issue. Extensive experiments show that our method achieves
667
+ more generalized and high-fidelity talking face generation compared to previous methods. Due to
668
+ space limitations, we discuss the limitations and future work in Appendix D.
669
+ ACKNOWLEDGMENT
670
+ This work was supported in part by the National Natural Science Foundation of China Grant No.
671
+ 62222211, Zhejiang Electric Power Co.,Ltd.Science and Technology Project No.5211YF22006 and
672
+ Yiwise.
673
+ 9
674
+
675
+ Published as a conference paper at ICLR 2023
676
+ ETHICS STATEMENT
677
+ GeneFace improves the lip synchronization and expressiveness of the synthesized talking head
678
+ video. With the development of talking face generation techniques, it is much easier for people
679
+ to synthesize fake videos of arbitrary persons. In most situations, they utilize these techniques to
680
+ facilitate the movie and entertainment industry and reduce the bandwidth of video streaming by
681
+ sending audio signals only. However, the talking face generation techniques can be misused. As it is
682
+ more difficult for people to distinguish synthesized videos, the algorithm may be utilized to spread
683
+ fake information or obtain illegal profits. Potential solutions like digital face forensics methods to
684
+ detect deepfakes must be considered. We also plan to include restrictions in the open-source license
685
+ of the GeneFace project to prevent ”deepfake”-related abuse. We hope the public is aware of the
686
+ potential risks of misusing new techniques.
687
+ REFERENCES
688
+ Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. Lrs3-ted: a large-scale dataset for
689
+ visual speech recognition. arXiv preprint arXiv:1809.00496, 2018.
690
+ Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
691
+ Orazio Gallo, Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon
692
+ Wetzstein. Efficient geometry-aware 3d generative adversarial networks. In CVPR, pp. 16123–
693
+ 16133, June 2022.
694
+ Lele Chen, Zhiheng Li, Ross K Maddox, Zhiyao Duan, and Chenliang Xu. Lip movements genera-
695
+ tion at a glance. In ECCV, pp. 520–535, 2018.
696
+ Lele Chen, Ross K Maddox, Zhiyao Duan, and Chenliang Xu. Hierarchical cross-modal talking
697
+ face generation with dynamic pixel-wise loss. In CVPR, pp. 7832–7841, 2019.
698
+ Daniel Cudeiro, Timo Bolkart, Cassidy Laidlaw, Anurag Ranjan, and Michael J Black. Capture,
699
+ learning, and synthesis of 3d speaking styles. In CVPR, pp. 10101–10111, 2019.
700
+ Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. Accurate 3d face
701
+ reconstruction with weakly-supervised learning: From single image to image set. In CVPRW,
702
+ 2019.
703
+ Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias Niessner. Dynamic neural radiance fields
704
+ for monocular 4d facial avatar reconstruction. In CVPR, pp. 8649–8658, June 2021.
705
+ Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun Bao, and Juyong Zhang. Ad-nerf: Audio
706
+ driven neural radiance fields for talking head synthesis. In ICCV, pp. 5784–5794, 2021.
707
+ Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
708
+ Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end
709
+ speech recognition. arXiv preprint arXiv:1412.5567, 2014.
710
+ Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
711
+ Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
712
+ neural information processing systems, 30, 2017.
713
+ Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong Zhang. Headnerf: A real-time nerf-
714
+ based parametric head model. In CVPR, pp. 20374–20384, June 2022.
715
+ Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
716
+ and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
717
+ prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
718
+ 29:3451–3460, 2021.
719
+ Amir Jamaludin, Joon Son Chung, and Andrew Zisserman. You said that?: Synthesising talking
720
+ faces from audio. International Journal of Computer Vision, 127(11):1767–1779, 2019.
721
+ 10
722
+
723
+ Published as a conference paper at ICLR 2023
724
+ Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. Neu-
725
+ ral lumigraph rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
726
+ Pattern Recognition, pp. 4287–4297, 2021.
727
+ Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
728
+ facial image manipulation. In CVPR, pp. 5549–5558, 2020.
729
+ Xian Liu, Yinghao Xu, Qianyi Wu, Hang Zhou, Wayne Wu, and Bolei Zhou.
730
+ Semantic-aware
731
+ implicit neural audio-driven video portrait generation. arXiv preprint arXiv:2201.07786, 2022.
732
+ Yuanxun Lu, Jinxiang Chai, and Xun Cao. Live speech portraits: real-time photorealistic talking-
733
+ head animation. ACM Transactions on Graphics, 40(6):1–17, 2021.
734
+ Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
735
+ Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, pp.
736
+ 405–421. Springer, 2020.
737
+ Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A 3d face
738
+ model for pose and illumination invariant face recognition. In 2009 sixth IEEE international
739
+ conference on advanced video and signal based surveillance, pp. 296–301. Ieee, 2009.
740
+ Hai X Pham, Samuel Cheung, and Vladimir Pavlovic.
741
+ Speech-driven 3d facial animation with
742
+ implicit emotional awareness: a deep learning approach. In CVPRW, pp. 80–88, 2017.
743
+ KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is
744
+ all you need for speech to lip generation in the wild. In ACM MM, pp. 484–492, 2020.
745
+ Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
746
+ radiance fields for dynamic scenes. In CVPR, pp. 10318–10327, 2021.
747
+ Yi Ren, Jinglin Liu, and Zhou Zhao. Portaspeech: Portable and high-quality generative text-to-
748
+ speech. NIPS, 34:13963–13974, 2021.
749
+ Shuai Shen, Wanhua Li, and Zheng Zhu. Learning dynamic facial radiance fields for few-shot
750
+ talking head synthesis. In ECCV, pp. 666–682, October 2022.
751
+ Vincent Sitzmann, Michael Zollh¨ofer, and Gordon Wetzstein. Scene representation networks: Con-
752
+ tinuous 3d-structure-aware neural scene representations. NIPS, 32, 2019.
753
+ Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman. Synthesizing obama:
754
+ learning lip sync from audio. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.
755
+ Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anastasio Garcia Rodriguez,
756
+ Jessica Hodgins, and Iain Matthews. A deep learning approach for generalized speech animation.
757
+ ACM Transactions on Graphics (TOG), 36(4):1–11, 2017.
758
+ Samuli Laine Antti Herva Tero Karras, Timo Aila and Jaakko Lehtinen. Audio-driven facial ani-
759
+ mation by joint endto-end learning of pose and emotion. ACM Transactions on Graphics, 36(4),
760
+ 2017.
761
+ Justus Thies, Mohamed Elgharib, Ayush Tewari, Christian Theobalt, and Matthias Nießner. Neural
762
+ voice puppetry: Audio-driven facial reenactment. In ECCV, pp. 716–731. Springer, 2020.
763
+ Gadi Geiger Tony Ezzat and Tomaso Poggio. Trainable videorealistic speech animation. ACM
764
+ Transactions on Graphics, 21(3), 2002.
765
+ Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Realistic speech-driven facial anima-
766
+ tion with gans. International Journal of Computer Vision, 128(5):1398–1413, 2020.
767
+ Olivia Wiles, A Koepke, and Andrew Zisserman. X2face: A network for controlling face generation
768
+ using images, audio, and pose codes. In ECCV, pp. 670–686, 2018.
769
+ Shunyu Yao, RuiZhe Zhong, Yichao Yan, Guangtao Zhai, and Xiaokang Yang. Dfa-nerf: Person-
770
+ alized talking head generation via disentangled face attributes neural rendering. arXiv preprint
771
+ arXiv:2201.00791, 2022.
772
+ 11
773
+
774
+ Published as a conference paper at ICLR 2023
775
+ Conv1D + ReLU
776
+ +Layer Norm
777
+ Non-Causal
778
+ WavNet
779
+ 𝜇, 𝜎
780
+ ℎ𝑢𝑏𝑒𝑟𝑡
781
+ 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘
782
+ 𝑧~𝑁 𝜇, 𝜎
783
+ (a) Encoder
784
+ Non-Causal
785
+ WavNet
786
+ TransposedConv1D
787
+ + ReLU +Layer Norm
788
+ ℎ𝑢𝑏𝑒𝑟𝑡
789
+ 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘
790
+ 𝑧
791
+ (b) Decoder
792
+ Flip
793
+ Conv1D
794
+ Coupling Layer
795
+ ℎ𝑢𝑏𝑒𝑟𝑡
796
+ x N
797
+ 𝑧~𝑁 0,1
798
+ 𝑧!
799
+ 𝑧"
800
+ (c) Flow-based Prior
801
+ Figure 6: The structure of encoder, decoder, and flow-based prior in variational motion generator.
802
+ Ran Yi, Zipeng Ye, Juyong Zhang, Hujun Bao, and Yong-Jin Liu. Audio-driven talking face video
803
+ generation with learning-based personalized head pose. arXiv preprint arXiv:2002.10137, 2020.
804
+ Lingyun Yu, Jun Yu, Mengyan Li, and Qiang Ling. Multimodal inputs driven talking face gener-
805
+ ation with spatial–temporal dependency. IEEE Transactions on Circuits and Systems for Video
806
+ Technology, 31(1):203–216, 2020.
807
+ Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan.
808
+ Flow-guided one-shot talking face
809
+ generation with a high-resolution audio-visual dataset. In CVPR, pp. 3661–3670, 2021.
810
+ Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. Talking face generation by adver-
811
+ sarially disentangled audio-visual representation. In AAAI, volume 33, pp. 9299–9306, 2019.
812
+ Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu. Pose-
813
+ controllable talking face generation by implicitly modularized audio-visual representation. In
814
+ CVPR, pp. 4176–4186, 2021.
815
+ Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, Evangelos Kalogerakis, and Dingzeyu
816
+ Li. Makelttalk: speaker-aware talking-head animation. ACM Transactions on Graphics (TOG),
817
+ 39(6):1–15, 2020.
818
+ A
819
+ DETAILS OF MODELS
820
+ A.1
821
+ VARIATIONAL MOTION GENERATOR
822
+ Following PortaSpeech, our variational motion generator consists of an encoder, a decoder, and
823
+ a flow-based prior model. The encoder, as shown in Fig. 6a, is composed of a 1D-convolution
824
+ followed by ReLU activation and layer normalization, and a non-causal WaveNet. The decoder, as
825
+ shown in Fig. 6b, consists of a non-causal WaveNet and a 1D transposed convolution followed by
826
+ ReLU and layer normalization. The prior model, as shown in Fig. 6c, is a normalizing flow, which is
827
+ composed of a 1D-convolution coupling layer and a channel-wise flip operation. HuBERT features
828
+ are utilized as the audio condition of these three modules.
829
+ A.2
830
+ SYNC-EXPERT
831
+ Our sync-expert inputs a window of Tl consecutive 3D landmark frames and an audio feature clip of
832
+ size Ta × D, where Tl and Ta are the lengths of the video and audio clip respectively, and D is the
833
+ dimension of HuBERT features. The sync-expert is trained to discriminate whether the input audio
834
+ and landmarks are synchronized. It consists of a landmark encoder and an audio encoder, as shown
835
+ in Fig. 7, both of which are comprised of a stack of 1D-convolutions followed by batch normal-
836
+ ization and ReLU. We use cosine-similarity with binary cross-entropy loss to train the sync-expert.
837
+ Specifically, we compute cosine-similarity for the landmark embedding l and audio embedding a
838
+ 12
839
+
840
+ Published as a conference paper at ICLR 2023
841
+ Conv1D+BN
842
+ ReLU
843
+ x N
844
+ ℎ𝑢𝑏𝑒𝑟𝑡 𝑐𝑙𝑖𝑝
845
+ Conv1D+BN
846
+ ReLU
847
+ x N
848
+ 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 𝑐𝑙𝑖𝑝
849
+ cosine
850
+ similarity
851
+ Pos/Neg?
852
+ Figure 7: The structure of sync-expert.
853
+ Conv1D + ReLU
854
+ +Batch Norm
855
+ 𝑐𝑜𝑎𝑟𝑠𝑒 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘
856
+ 𝑟𝑒𝑓𝑖𝑛𝑒𝑑 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘
857
+ +
858
+ x N
859
+ Figure 8: The structure of post-net.
860
+ to represent the probability that the input audio-landmark pair is synchronized. The training loss of
861
+ sync-expert can be represented as:
862
+ Lsync = CE(
863
+ a · l
864
+ max(||a||2 · ||l||2, ϵ))
865
+ (11)
866
+ A.3
867
+ DOMAIN ADAPTATIVE POST-NET AND DISCRIMINATOR
868
+ The domain adaptative post-net, as shown in Fig.
869
+ 8, is composed of a stack of residual 1D-
870
+ convolution followed by ReLU and batch normalization. The discriminator is a MLP composed
871
+ of a stack of fully connected layers followed with ReLU and dropout.
872
+ B
873
+ DETAILED EXPERIMENTAL SETTINGS
874
+ B.1
875
+ MODEL CONFIGURATIONS
876
+ We list the hyper-parameters of GeneFace in Tab. 4.
877
+ C
878
+ ADDITIONAL EXPERIMENTS
879
+ C.1
880
+ QUALITATIVE RESULTS WITH ALL BASELINES
881
+ To compare the generated results of each method, we show the keyframes of one in-domain audio
882
+ clip in Fig.9. We have the following observations: 1) Wav2Lip achieves competitive lip-sync perfor-
883
+ mance yet generates blurry mouth results; 2) MakeItTalk and PC-AVS fail to preserve the speaker’s
884
+ identity, leading to unrealistic generated results; 3) LSP generates unnatural lip movement during the
885
+ transition phase of different syllables. Please see our supplementary video for better visualization.
886
+ 13
887
+
888
+ Published as a conference paper at ICLR 2023
889
+ Table 4: Hyper-parameter list
890
+ Hyper-parameter
891
+ GeneFace
892
+ Variational Motion Generator
893
+ Encoder Layers
894
+ 8
895
+ Decoder Layers
896
+ 4
897
+ Encoder/Decoder Conv1D Kernel
898
+ 5
899
+ Encoder/Decoder Conv1D Channel Size
900
+ 192
901
+ Latent Size
902
+ 16
903
+ Prior Flow Layers
904
+ 4
905
+ Prior Flow Conv1D Kernel
906
+ 3
907
+ Prior Flow Conv1D Channel Size
908
+ 64
909
+ Sync-expert Layers
910
+ 14
911
+ Sync-expert Channel Size
912
+ 512
913
+ Post-net and Discriminator
914
+ Post-net Layers
915
+ 8
916
+ Post-net Conv1D Kernel
917
+ 3
918
+ Post-net Conv1D Channel Size
919
+ 256
920
+ Discrimnator Layers
921
+ 5
922
+ Discrimnator Linear Hidden Size
923
+ 256
924
+ Discrimnator Dropout Rate
925
+ 0.25
926
+ NeRF-based Renderer
927
+ Head/Torso-NeRF Layers
928
+ 11
929
+ Head/Torso-NeRF Hidden Size
930
+ 256
931
+ Landmark/Head Color Encoder Layers
932
+ 3
933
+ Landmark/Head Color Encoder Hidden Size
934
+ 128
935
+ Setting
936
+ L2 error on 3D landmark↓
937
+ LMD↓
938
+ GeneFace (VAE + Flow + landmark NeRF)
939
+ 0.0371
940
+ 3.933
941
+ vanilla VAE + landmark NeRF
942
+ 0.0385
943
+ 4.063
944
+ Regression Model + landmark NeRF
945
+ 0.0424
946
+ 4.305
947
+ AD-NeRF
948
+ N/A
949
+ 4.199
950
+ Table 5: Ablation study on 3D Landmark L2 error.
951
+ C.2
952
+ EVALUATION ON 3D LANDMARK L2 ERROR
953
+ To evaluate the contribution of the variational generator to the quality of the predicted landmark, we
954
+ adopt L2 error on the predicted 3D landmarks as the metric. We compare our vairiaitonal generator
955
+ (VAE+Flow) against vanilla VAE and a simple regression model trained with MSE loss. The results
956
+ are listed in Table 5. It can be seen that removing the prior flow or using a regression-based model
957
+ leads to a performance drop.
958
+ C.3
959
+ T-SNE VISUALIZATION FOR DOMAIN ADAPTATION
960
+ To further investigate the efficacy of post-net, we utilize T-SNE to visualize the landmarks of dif-
961
+ ferent domains in Fig. 10. The visualization results prove that there exists a significant domain
962
+ gap between the LRS3 dataset and the target person video, and our post-net successfully rigs the
963
+ predicted landmarks from the LRS3 domain into the target person domain.
964
+ D
965
+ LIMITATIONS AND FUTURE WORK
966
+ There are mainly two limitations of the proposed approach. Firstly, we found the landmark sequence
967
+ generated by variational motion generator and post-net occasionally has tiny fluctuations, which
968
+ results in some artifacts such as shaking hairs, etc. Currently, we utilize a heuristic post-processing
969
+ method (Gaussian filter) to alleviate this problem. In future work, we will explore better modeling
970
+ the temporal information in the network architecture to further improve the stability. Secondly, the
971
+ current NeRF-based renderer is majorly based on the setting of vanilla NeRF, which results in a long
972
+ training and inference time. In future work, we will try to enhance the performance of the NeRF
973
+ backend by combining recent progress in accelerated and light-weight NeRF.
974
+ 14
975
+
976
+ Published as a conference paper at ICLR 2023
977
+ GeneFace
978
+ AD-NeRF
979
+ GT
980
+ LSP
981
+ PC-AVS
982
+ MakeItTalk
983
+ Wav2Lip
984
+ /i/
985
+ /w/
986
+ /s/
987
+ /ɒ/
988
+ /ju:/
989
+ Audio
990
+ Figure 9: The comparison of generated key frame results. We show the phonetic symbol of the
991
+ key frame and the corresponding synthesized talking heads of all baselines. Please zoom in for
992
+ better visualization. More qualitative comparisons can be found in demo video.
993
+ Figure 10: The T-SNE visualization of 3DMM landmarks in different datasets. The green and blue
994
+ points denote the ground truth landmarks in LRS3 dataset and the target person video; The red and
995
+ yellow points represent the predicted landmarks without/with the domain adaptation.
996
+ 15
997
+
998
+ person_train
999
+ postnet
1000
+ pred_Irs3
1001
+ vae
4NFQT4oBgHgl3EQf4Dar/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59E4T4oBgHgl3EQfcAxC/content/2301.05079v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89569c030b9196a435c7750d179214b6085bfe4504b8761f14e9f0c92a021c50
3
+ size 1715097
59E4T4oBgHgl3EQfcAxC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48aa80485c6c4acfc32743fbb9ca3fa543e5fc6ecb92f758d5e80b0a14db646f
3
+ size 160522
5dE1T4oBgHgl3EQfmgRl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7885db492bc294cb7eaad21650984408a55bf4fe05d552bb112e39119d9394c7
3
+ size 10092589
6dE2T4oBgHgl3EQfkgfV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adeed028a1203c2052998147ce08ab24c44f9dc4fb811f28656a86af29dca46f
3
+ size 1310765
7NE1T4oBgHgl3EQfnATd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:041151c75f0ac0aaf37771db3533406313d6bdb687beed1e1f21259f5cead7df
3
+ size 2228269
7NE1T4oBgHgl3EQfnATd/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e379a34c02c9e791fdbf4c5372b94d83819b98c6e16e2ea06c8982d9ba2963
3
+ size 107953
7dAyT4oBgHgl3EQf2vnp/content/2301.00758v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:255d4f1d7910f35a2b53e20e20e8267a834ed22c4cc6a782c340dfbde9d40ce4
3
+ size 1362702
7dAyT4oBgHgl3EQf2vnp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291d3caf027cb4a48903d6496d752557cd5e423a3d733ec1ff9c9e5b341ebc5a
3
+ size 3276845
7dAyT4oBgHgl3EQf2vnp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07c2b6163522316532e2cd7240a2a19b324d24b972decfd74ad0addc3f7ff6f6
3
+ size 138097
8dE0T4oBgHgl3EQfwgEX/content/tmp_files/2301.02632v1.pdf.txt ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02632v1 [math.GM] 30 Nov 2022
2
+ A NOTE ON LP-KENMOTSU MANIFOLDS ADMITTING
3
+ RICCI-YAMABE SOLITONS
4
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
5
+ Abstract. In the current note, we study Lorentzian para-Kenmotsu (in brief,
6
+ LP -Kenmotsu) manifolds admitting Ricci-Yamabe solitons (RYS) and gradi-
7
+ ent Ricci-Yamabe soliton (gradient RYS). At last by constructing a 5-dimensional
8
+ non-trivial example we illustrate our result.
9
+ 2010 Mathematics Subject Classification. 53C20, 53C21, 53C25, 53E20.
10
+ Keywords. Lorentzian para-Kenmotsu manifolds, Ricci-Yamabe solitons, Einstein
11
+ manifolds, ν-Einstein manifolds.
12
+ 1. Introduction
13
+ In 2019, a scalar combination of Ricci and Yamabe flows was proposed by the
14
+ authors G¨uler and Crasmareanu [6], this advanced class of geometric flows called
15
+ Ricci-Yamabe (RY) flow of type (σ, ρ) and is defined by
16
+
17
+ ∂tg(t) + 2σS(g(t)) + ρr(t)g(t) = 0,
18
+ g(0) = g0
19
+ for some scalars σ and ρ.
20
+ A solution to the RY flow is called RYS if it depends only on one parameter group
21
+ of diffeomorphism and scaling. A Riemannian (or semi-Riemannian) manifold M
22
+ is said to have a RYS if
23
+ £Kg + 2σS + (2Λ − ρr)g = 0,
24
+ (1.1)
25
+ where σ, ρ, Λ ∈ R (the set of real numbers).
26
+ If K is the gradient of a smooth
27
+ function v on M, then (1.1) is called the gradient Ricci-Yamabe soliton (gradient
28
+ RYS) and hence (1.1) turns to
29
+ ∇2v + σS + (Λ − ρr
30
+ 2 )g = 0,
31
+ (1.2)
32
+ where ∇2v is the Hessian of v. It is to be noted that a RYS of types (σ, 0) and
33
+ (0, ρ) are known as σ−Ricci soliton and ρ−Yamabe soliton, respectively. A RYS
34
+ is said to be shrinking , steady or expanding if Λ < 0, = 0 or > 0, respectively. A
35
+ RYS is said to be a
36
+ • Ricci soliton [7] if σ = 1, ρ = 0,
37
+ • Yamabe soliton [8] if σ = 0, ρ = 1,
38
+ • Einstein soliton [3] if σ = 1, ρ = −1,
39
+ As a continuation of this study, we tried to study RYS in the frame-work of
40
+ LP-Kenmotsu manifolds of dimension n. We recommend the papers [1, 2, 5, 9, 10,
41
+ 13, 15, 16, 17, 18, 19] and the references therein for more details about the related
42
+ studies.
43
+ 1
44
+
45
+ 2
46
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
47
+ 2. Preliminaries
48
+ An n-dimensional differentiable manifold M with structure (ϕ, ζ, ν, g) is said to
49
+ be a Lorentzian almost paracontact metric manifold, if it admits a (1, 1)-tensor field
50
+ ϕ, a contravariant vector field ζ, a 1-form ν and a Lorentzian metric g satisfying
51
+ (2.1)
52
+ ν(ζ) + 1 = 0,
53
+ (2.2)
54
+ ϕ2E = E + ν(E)ζ,
55
+ (2.3)
56
+ ϕζ = 0,
57
+ ν(ϕE) = 0,
58
+ (2.4)
59
+ g(ϕE, ϕF) = g(E, F) + ν(E)ν(F),
60
+ (2.5)
61
+ g(E, ζ) = ν(E),
62
+ (2.6)
63
+ ϕ(E, F) = ϕ(F, E) = g(E, ϕF)
64
+ for any vector fields E, F ∈ χ(M), where χ(M) is the Lie algebra of vector fields
65
+ on M.
66
+ If ζ is a killing vector field, the (para) contact structure is called a K-(para) contact.
67
+ In such a case, we have
68
+ (2.7)
69
+ ∇Eζ = ϕE.
70
+ Recently, the authors Haseeb and Prasad defined and studied the following notion:
71
+ Definition 2.1. A Lorentzian almost paracontact manifold M is called Lorentzian
72
+ para-Kenmostu manifold if [11]
73
+ (2.8)
74
+ (∇Eϕ)F = −g(ϕE, F)ζ − ν(F)ϕE
75
+ for any E, F on M.
76
+ In an LP-Kenmostu manifold, we have
77
+ (2.9)
78
+ ∇Eζ = −E − ν(E)ζ,
79
+ (2.10)
80
+ (∇Eν)F = −g(E, F) − ν(E)ν(F),
81
+ where ∇ denotes the Levi-Civita connection respecting to the Lorentzian metric g.
82
+ Furthermore, in an LP-Kenmotsu manifold, the following relations hold [11]:
83
+ (2.11)
84
+ g(R(E, F)G, ζ) = ν(R(E, F)G) = g(F, G)ν(E) − g(E, G)ν(F),
85
+ (2.12)
86
+ R(ζ, E)F = −R(E, ζ)F = g(E, F)ζ − ν(F)E,
87
+ (2.13)
88
+ R(E, F)ζ = ν(F)E − ν(E)F,
89
+ (2.14)
90
+ R(ζ, E)ζ = E + ν(E)ζ,
91
+ (2.15)
92
+ S(E, ζ) = (n − 1)ν(E), S(ζ, ζ) = −(n − 1),
93
+ (2.16)
94
+ Qζ = (n − 1)ζ
95
+ for any E, F, G ∈ χ(M), where R, S and Q represent the curvature tensor, the Ricci
96
+ tensor and the Q Ricci operator, respectively.
97
+
98
+ A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS
99
+ 3
100
+ Definition 2.2. [21] An LP-Kenmotsu manifold M is said to be ν-Einstein man-
101
+ ifold if its S(̸= 0) is of the form
102
+ (2.17)
103
+ S(E, F) = ag(E, F) + bν(E)ν(F),
104
+ where a and b are smooth functions on M. In particular, if b = 0, then M is termed
105
+ as an Einstein manifold.
106
+ Remark 2.3. [12] In an LP-Kenmotsu manifold of n-dimension, S is of the form
107
+ (2.18)
108
+ S(E, F) = (
109
+ r
110
+ n − 1 − 1)g(E, F) + (
111
+ r
112
+ n − 1 − n)ν(E)ν(F),
113
+ where r is the scalar curvature of the manifold.
114
+ Lemma 2.4. In an n-dimensional LP-Kenmotsu manifold, we have
115
+ (2.19)
116
+ ζ(r) = 2(r − n(n − 1)),
117
+ (2.20)
118
+ (∇EQ)ζ = QE − (n − 1)E,
119
+ (2.21)
120
+ (∇ζQ)E = 2QE − 2(n − 1)E
121
+ for any E on M.
122
+ Proof. Equation (2.18) yields
123
+ (2.22)
124
+ QE = (
125
+ r
126
+ n − 1 − 1)E + (
127
+ r
128
+ n − 1 − n)ν(E)ζ.
129
+ Taking the covariant derivative of (2.22) with respect to F and making use of (2.9)
130
+ and (2.10), we lead to
131
+ (∇F Q)E = F(r)
132
+ n − 1(E + ν(E)ζ) − (
133
+ r
134
+ n − 1 − n)(g(E, F)ζ + ν(E)F + 2ν(E)ν(F)ζ).
135
+ By contracting F in the foregoing equation and using trace {F → (∇F Q)E} =
136
+ 1
137
+ 2E(r), we find
138
+ n − 3
139
+ 2(n − 1)E(r) =
140
+ � ζ(r)
141
+ n − 1 − (r − n(n − 1))
142
+
143
+ ν(E),
144
+ which by replacing E by ζ and using (2.1) gives (2.19). We refer the readers to see
145
+ [14] for the proof of (2.20) and (2.21).
146
+
147
+ Remark 2.5. From the equation (2.19), it is noticed that if an n-dimensional
148
+ LP-Kenmotsu manifold possesses the constant scalar curvature, then r = n(n − 1)
149
+ and hence (2.18) reduces to S(E, F) = (n − 1)g(E, F). Thus, the manifold under
150
+ consideration is an Einstein manifold.
151
+ 3. Ricci-Yamabe solitons on LP-Kenmotsu manifolds
152
+ Let the metric of an n-dimensional LP-Kenmotsu manifold be a Ricci-Yamabe
153
+ soliton (g, K, Λ, σ, ρ), then (1.1) holds. By differentiating (1.1) covariantly with
154
+ resprct to G, we have
155
+ (∇G£Kg)(E, F)
156
+ =
157
+ −2σ(∇GS)(E, F) + ρ(Gr)g(E, F).
158
+ (3.1)
159
+ Since ∇g = 0, then the following formula [20]
160
+ (£K∇Eg −∇E£Kg −∇[K,E]g)(F, G) = −g((£K∇)(E, F), G)−g((£K∇)(E, G), F)
161
+
162
+ 4
163
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
164
+ turns to
165
+ (∇E£Kg)(F, G) = g((£K∇)(E, F), G) + g((£K∇)(E, G), F).
166
+ Since the operator £K∇ is symmetric, therefore we have
167
+ 2g((£K∇)(E, F), G) = (∇E£Kg)(F, G) + (∇F £Kg)(E, G) − (∇G£Kg)(E, F),
168
+ which by using (3.1) takes the form
169
+ 2g((£K∇)(E, F), G)
170
+ =
171
+ −2σ[(∇ES)(F, G) + (∇F S)(G, E) + (∇GS)(E, F)]
172
+ +ρ[(Er)g(F, G) + (Fr)g(G, E) + (Gr)g(E, F)].
173
+ (3.2)
174
+ Putting F = ζ in (3.2) and using (2.5), we find
175
+ 2g((£K∇)(E, ζ), G)
176
+ =
177
+ −2σ[(∇ES)(ζ, G) + (∇ζS)(G, E) − (∇GS)(E, ζ)]
178
+ +ρ[(Er)ν(G) + 2(r − n(n − 1))g(E, G) − (Gr)ν(E)]
179
+ (3.3)
180
+ By virtue of (2.20) and (2.21), (3.3) leads to
181
+ 2g((£K∇)(E, ζ), G)
182
+ =
183
+ −4σ[S(E, G) − (n − 1)g(E, G)]
184
+ +ρ[(Er)ν(G) + 2(r − n(n − 1))g(E, G) − (Gr)ν(E)].
185
+ By eliminating G from the foregoing equation, we have
186
+ 2(£K∇)(F, ζ)
187
+ =
188
+ ρg(Dr, F)ζ − ρ(Dr)ν(F) − 4σQF
189
+ (3.4)
190
+ +[4σ(n − 1) + 2ρ(r − n(n − 1))]F.
191
+ If we take r as constant, then from (2.19) we find r = n(n − 1), and hence (3.4)
192
+ reduces to
193
+ (£K∇)(F, ζ)
194
+ =
195
+ −2σQF + 2σ(n − 1)F.
196
+ (3.5)
197
+ Taking covariant derivative of (3.5) with respect to E, we have
198
+ (∇E£K∇)(F, ζ)
199
+ =
200
+ (£K∇)(F, E) − 2σν(E)[QF − (n − 1)F]
201
+ (3.6)
202
+
203
+ 2σ(∇EQ)F.
204
+ Again from [20], we have
205
+ (£KR)(E, F)G = (∇E£K∇)(F, G) − (∇F £K∇)(E, G),
206
+ which by putting G = ζ and using (3.6) takes the form
207
+ (£KR)(E, F)ζ
208
+ =
209
+ 2σν(F)(QE − (n − 1)E) − 2σν(E)(QF − (n − 1)F)
210
+ (3.7)
211
+ −2σ((∇EQ)F − (∇F Q)E).
212
+ Putting F = ζ in (3.7) then using (2.1), (2.2), (2.20) and (2.21), we arrive at
213
+ (£KR)(E, ζ)ζ = 0.
214
+ (3.8)
215
+ The Lie derivative of R(E, ζ)ζ = −E − ν(E)ζ along K leads to
216
+ (£KR)(E, ζ)ζ − g(E, £Kζ)ζ + 2ν(£Kζ)E = −(£Kν)(E)ζ.
217
+ (3.9)
218
+ From (3.8) and (3.9), we have
219
+ (£Kν)(E)ζ = −2ν(£Kζ)E + g(E, £Kζ)ζ.
220
+ (3.10)
221
+ Taking the Lie derivative of g(E, ζ) = ν(E), we find
222
+ (£Kν)(E) = g(E, £Kζ) + (£Kg)(E, ζ).
223
+ (3.11)
224
+ By putting F = ζ in (1.1) and using (2.15), we have
225
+ (£Kg)(E, ζ) = −{2σ(n − 1) + 2Λ − ρn(n − 1)}ν(E),
226
+ (3.12)
227
+
228
+ A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS
229
+ 5
230
+ where r = n(n − 1) being used.
231
+ The Lie derivative of g(ζ, ζ) = −1 along K we lead to
232
+ (£Kg)(ζ, ζ) = −2ν(£Kζ).
233
+ (3.13)
234
+ From (3.12) and (3.16), we find
235
+ ν(£Kζ) = −{σ(n − 1) + Λ − ρn(n − 1)
236
+ 2
237
+ }.
238
+ (3.14)
239
+ Now, combining the equations (3.10), (3.11), (3.12) and (3.17), we find
240
+ Λ = ρn(n − 1)
241
+ 2
242
+ − σ(n − 1).
243
+ (3.15)
244
+ Thus, we have
245
+ Theorem 3.1. Let (M, g) be an n-dimensional LP-Kenmotsu manifold admitting
246
+ Ricci-Yamabe soliton (g, K, Λ, σ, ρ) with constant scalar curvature tensor, then Λ =
247
+ ρn(n−1)
248
+ 2
249
+ − σ(n − 1).
250
+ For σ = 1 and ρ = 0, from (3.15) we have Λ = −(n − 1). Thus, we have the
251
+ following:
252
+ Corollary 3.2. If an n-dimensional LP-Kenmotsu manifold admits a Ricci soliton
253
+ with constant scalar curvature, then the soliton is shrinking.
254
+ For σ = 0 and ρ = 1, from (3.15) we have Λ =
255
+ n(n−1)
256
+ 2
257
+ . Thus, we have the
258
+ following:
259
+ Corollary 3.3. If an n-dimensional LP-Kenmotsu manifold admits a Yamabe
260
+ soliton with constant scalar curvature, then the soliton is shrinking.
261
+ For σ = 1 and ρ = −1, from (3.15) we have Λ = − (n2−1)
262
+ 2
263
+ . Thus, we have the
264
+ following:
265
+ Corollary 3.4. If an n-dimensional LP-Kenmotsu manifold admits an Einstein
266
+ soliton with constant scalar curvature, then the soliton is shrinking.
267
+ Now, we consider the metric of an n-dimensional LP-Kenmotsu manifold as a
268
+ Ricci-Yamabe soliton (g, ζ, Λ, σ, ρ), then from (1.1) and (2.9) we have
269
+ S(E, F) = − 1
270
+ σ (Λ − 1 − ρr
271
+ 2 )g(E, F) + 1
272
+ σ ν(E)ν(F),
273
+ where σ ̸= 0.
274
+ (3.16)
275
+ By putting F = ζ in (3.16) and using (2.15), we find
276
+ Λ = ρr
277
+ 2 − σ(n − 1).
278
+ (3.17)
279
+ Now, comparing (2.18) and (3.17), we have r = n−1
280
+ σ
281
+ + n(n − 1), which by using in
282
+ (3.17) it follows that Λ = −σ(n − 1) + ρ(n−1)(1+nσ)
283
+
284
+ . Thus, we have the following
285
+ theorem:
286
+ Theorem 3.5. An n-dimensional LP-Kenmotsu manifold with constant scalar
287
+ curvature admitting Ricci-Yamabe soliton (g, ζ, Λ, σ, ρ) is an ν-Einstein manifold.
288
+ Moreover, the soliton is expanding, steady or shrinking according to ρ
289
+ σ > 2σ − ρn,
290
+ ρ
291
+ σ = 2σ �� ρn, or ρ
292
+ σ < 2σ − ρn.
293
+
294
+ 6
295
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
296
+ 4. Gradient Ricci-Yamabe solitons on LP-Kenmotsu manifolds
297
+ Definition 4.1. A Riemannian (or semi-Riemannian) metric g on M is called a
298
+ gradient RYS, if
299
+ Hessv + σS + (Λ − ρr
300
+ 2 )g = 0,
301
+ (4.1)
302
+ where Hessv denotes the Hessian of a smooth function v on M and defined by
303
+ Hessv = ∇∇v.
304
+ Let M be an n-dimensional LP-Kenmotsu manifold with g as a gradient RYS.
305
+ Then equation (4.1) can be written as
306
+ ∇EDv + σQE + (Λ − ρr
307
+ 2 )E = 0,
308
+ (4.2)
309
+ for all vector fields E on M, where D denotes the gradient operator of g. Taking
310
+ the covariant derivative of (4.2) with respect to F, we have
311
+ ∇F ∇EDv = −σ{(∇F Q)E + Q(∇F E)} + ρF(r)
312
+ 2
313
+ E − (Λ − ρr
314
+ 2 )∇F E.
315
+ (4.3)
316
+ Interchanging E and F in (4.3), we lead to
317
+ ∇E∇F Dv = −σ{(∇EQ)F + Q(∇EF)} + ρE(r)
318
+ 2
319
+ F − (Λ − ρr
320
+ 2 )∇EF.
321
+ (4.4)
322
+ By making use of (4.2)-(4.4), we find
323
+ R(E, F)Dv = σ{(∇F Q)E − (∇EQ)F} + ρ
324
+ 2{E(r)F − F(r)E}.
325
+ (4.5)
326
+ Now, from (2.18), we find
327
+ QE = (
328
+ r
329
+ n − 1 − 1)E + (
330
+ r
331
+ n − 1 − n)ν(E)ζ,
332
+ which on taking covariant derivative with repect to F leads to
333
+ (∇F Q)E
334
+ =
335
+ F(r)
336
+ n − 1(E + ν(E)ζ) − (
337
+ r
338
+ n − 1 − n)(g(E, F)ζ
339
+ (4.6)
340
+ +2ν(E)ν(F)ζ + ν(E)F).
341
+ By using (4.6) in (4.5), we have
342
+ R(E, F)Dv
343
+ =
344
+ (n − 1)ρ − 2σ
345
+ 2(n − 1)
346
+ {E(r)F − F(r)E} +
347
+ σ
348
+ n − 1{F(r)ν(E)ζ − E(r)ν(F)ζ}
349
+ −σ(
350
+ r
351
+ n − 1 − n)(ν(E)F − ν(F)E).
352
+ (4.7)
353
+ Contracting forgoing equation along E gives
354
+ S(F, Dv)
355
+ =
356
+ �(n − 1)2ρ − 2σ(n − 2)
357
+ n − 1
358
+
359
+ F(r)
360
+ (4.8)
361
+ +σ(n − 3)(r − n(n − 1))
362
+ n − 1
363
+ ν(F).
364
+ From the equation (2.18), we can write
365
+ S(F, Dv) = (
366
+ r
367
+ n − 1 − 1)F(v) + (
368
+ r
369
+ n − 1 − n)ν(F)ζ(v).
370
+ (4.9)
371
+
372
+ A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS
373
+ 7
374
+ Now, by equating (4.8) and (4.9), then putting F = ζ and using (2.1), (2.19), we
375
+ find
376
+ ζ(v) = r − n(n − 1)
377
+ n − 1
378
+ {2(n − 1)ρ − σ(5n − 13)
379
+ n − 1
380
+ }.
381
+ (4.10)
382
+ Taking the inner product of (4.7) with ζ, we get
383
+ F(v)ν(E) − E(v)ν(F) = ρ
384
+ 2{E(r)ν(F) − F(r)ν(E)},
385
+ which by replacing E by ζ and using (2.19), (4.10), we infer
386
+ F(v) = −(r − n(n − 1)){3ρ − σ(5n − 13)
387
+ (n − 1)2 }ν(F) − ρ
388
+ 2F(r).
389
+ (4.11)
390
+ If we take r as constant, then from Remark 2.5, we get r = n(n − 1). Thus, (4.11)
391
+ leads to F(v) = 0. This implies that v is constant. Thus, the soliton under the
392
+ consideration is trivial. Hence we state:
393
+ Theorem 4.2. If the metric of an LP-Kenmotsu manifold of constant scalar curva-
394
+ ture tensor admitting a special type of vector field is gradient RYS, then the soliton
395
+ is trivial.
396
+ For v constant, (1.2) turns to
397
+ σQE = −(Λ − ρr
398
+ 2 )E,
399
+ which leads to
400
+ S(E, F) = − 1
401
+ σ (Λ − ρn(n − 1)
402
+ 2
403
+ )g(E, F),
404
+ σ ̸= 0.
405
+ (4.12)
406
+ By putting E = F = ζ in (4.12) and using (2.15), we obtain
407
+ Λ = ρn(n − 1)
408
+ 2
409
+ − σ(n − 1).
410
+ (4.13)
411
+ Corollary 4.3. If an n-dimensional LP-Kenmotsu manifold admits a gradient
412
+ Ricci soliton with the constant scalar curvature, then the manifold under the con-
413
+ sideration is an Einstein manifold and Λ = ρn(n−1)
414
+ 2
415
+ − σ(n − 1).
416
+ For σ = 1 and ρ = 0, from (4.13) we find Λ = −(n − 1). Thu, we have the
417
+ following:
418
+ Corollary 4.4. If an n-dimensional LP-Kenmotsu manifold admits a gradient
419
+ Ricci soliton with the constant scalar curvature, then the soliton is shrinking.
420
+ For σ = 1 and ρ = −1, from (4.13) we have Λ = − (n−1)(n+2)
421
+ 2
422
+ . Thus, we have
423
+ the following:
424
+ Corollary 4.5. If an n-dimensional LP-Kenmotsu manifold admits an gradient
425
+ Einstein soliton with constant scalar curvature, then the soliton is shrinking.
426
+ Example. We consider the 5-dimensional manifold M 5 =
427
+
428
+ (x1, x2, x3, x4, x5) ∈ R5 : x5 > 0
429
+
430
+ ,
431
+ where (x1, x2, x3, x4, x5) are the standard coordinates in R5. Let ̺1, ̺2, ̺3, ̺4 and
432
+ ̺5 be the vector fields on M 5 given by
433
+ ̺1 = ex5 ∂
434
+ ∂x1
435
+ , ̺2 = ex5 ∂
436
+ ∂x2
437
+ , ̺3 = ex5 ∂
438
+ ∂x3
439
+ , ̺4 = ex5 ∂
440
+ ∂x4
441
+ , ̺5 =
442
+
443
+ ∂x5
444
+ = ζ,
445
+
446
+ 8
447
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
448
+ which are linearly independent at each point of M 5. Let g be the Lorentzian metric
449
+ defined by
450
+ g(̺i, ̺i) = 1,
451
+ for
452
+ 1 ≤ i ≤ 4
453
+ and
454
+ g(̺5, ̺5) = −1,
455
+ g(̺i, ̺j) = 0,
456
+ for
457
+ i ̸= j,
458
+ 1 ≤ i, j ≤ 5.
459
+ Let ν be the 1-form defined by ν(E) = g(E, ̺5) = g(̺, ζ) for all E ∈ χ(M 5), and
460
+ let ϕ be the (1, 1)-tensor field defined by
461
+ ϕ̺1 = −̺2, ϕ̺2 = −̺1, ϕ̺3 = −̺4, ϕ̺4 = −̺3, ϕ̺5 = 0.
462
+ By applying linearity of ϕ and g, we have
463
+ ν(ζ) = g(ζ, ζ) = −1, ϕ2E = E + ν(E)ζ and g(ϕE, ϕF) = g(E, F) + ν(E)ν(F)
464
+ for all E, F ∈ χ(M 5). Thus for ̺5 = ζ, the structure (ϕ, ζ, ν, g) defines a Lorentzian
465
+ almost paracontact metric structure on M 5. Then we have
466
+ [̺i, ̺j] = −̺i,
467
+ for
468
+ 1 ≤ i ≤ 4, j = 5,
469
+ [̺i, ̺j] = 0,
470
+ otherwise.
471
+ By using Koszul’s formula, we can easily find we obtain
472
+ ∇̺i̺j =
473
+
474
+
475
+
476
+
477
+
478
+ −̺5,
479
+ 1 ≤ i = j ≤ 4,
480
+ −̺i,
481
+ 1 ≤ i ≤ 4, j = 5,
482
+ 0,
483
+ otherwise.
484
+ Also one can easily verify that
485
+ ∇Eζ = −E − η(E)ζ
486
+ and
487
+ (∇Eϕ)F = −g(ϕE, F)ζ − ν(F)ϕE.
488
+ Therefore, the manifold is an LP-Kenmotsu manifold.
489
+ From the above results, we can easily obtain the non-vanishing components of R
490
+ as follows:
491
+ R(̺1, ̺2)̺1 = −̺2, R(̺1, ̺2)̺2 = ̺1, R(̺1, ̺3)̺1 = −̺3, R(̺1, ̺3)̺3 = ̺1,
492
+ R(̺1, ̺4)̺1 = −v4, R(̺1, ̺4)̺4 = ̺1, R(̺1, ̺5)̺1 = −̺5, R(̺1, ̺5)̺5 = −̺1,
493
+ R(̺2, ̺3)̺2 = −̺3, R(̺2, ̺3)̺3 = ̺2, R(̺2, ̺4)̺2 = −̺4, R(̺2, ̺4)̺4 = ̺2,
494
+ R(̺2, ̺5)̺2 = −̺5, R(̺2, ̺5)̺5 = −̺2, R(̺3, ̺4)̺3 = −̺4, R(̺3, ̺4)̺4 = ̺3,
495
+ R(̺3, ̺5)̺3 = −̺5, R(̺3, ̺5)̺5 = −̺3, R(̺4, ̺5)̺4 = −̺5, R(̺4, ̺5)̺5 = −̺4.
496
+ Also, we calculate the Ricci tensors as follows:
497
+ S(̺1, ̺1) = S(̺2, ̺2) = S(̺3, ̺3) = S(̺4, ̺4) = 4,
498
+ S(̺5, ̺5) = −4.
499
+ Therefore, we have
500
+ r = S(̺1, ̺1) + S(̺2, ̺2) + S(̺3, ̺3) + S(̺4, ̺4) − S(̺5, ̺5) = 20.
501
+ Now by taking Dv = (̺1v)̺1 + (̺2v)̺2 + (̺3v)̺3 + (̺4v)̺4 + (̺5v)̺5, we have
502
+ ∇̺1Dv = (̺1(̺1v) − (̺5v))̺1 + (̺1(̺2v))̺2 + (̺1(̺3v))̺3 + (̺1(̺4v))̺4 + (̺1(̺5v) − (̺1v))̺5,
503
+ ∇̺2Dv = (̺2(̺1v))̺1 + (̺2(̺2v) − (̺5v))̺2 + (̺2(̺3v))̺3 + (̺2(̺4v))̺4 + (̺2(̺5v) − (̺2v))̺5,
504
+ ∇̺3Dv = (̺3(̺1v))̺1 + (̺3(̺2v))̺2 + (̺3(̺3v) − (̺5v))̺3 + (̺3(̺4v))̺4 + (̺3(̺5v) − (̺3v))̺5,
505
+ ∇̺4Dv = (̺4(̺1v))̺1 + (̺4(̺2v))̺2 + (̺4(̺3v))̺3 + (̺4(̺4v) − (̺5v))̺4 + (̺4(̺5v) − (̺4v))̺5,
506
+ ∇̺5Dv = (̺5(̺1v))̺1 + (̺5(̺2v))̺2 + (̺5(̺3v))̺3 + (̺5(̺4v))̺4 + (̺5(̺5v))̺5.
507
+
508
+ A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS
509
+ 9
510
+ Thus, by virtue of (4.2), we obtain
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+ ̺1(̺1v) − ̺5v = −(Λ + 4σ − 10ρ),
555
+ ̺2(̺2v) − ̺5v = −(Λ + 4σ − 10ρ),
556
+ ̺3(̺3v) − ̺5v = −(Λ + 4σ − 10ρ),
557
+ ̺4(̺4v) − ̺5v = −(Λ + 4σ − 10ρ),
558
+ ̺5(̺5v) = −(Λ + 4σ − 10ρ),
559
+ ̺1(̺2v) = ̺1(̺3v) = ̺1(̺4v) = 0,
560
+ ̺2(̺1v) = ̺2(̺3v) = ̺2(̺4v) = 0,
561
+ ̺3(̺1v) = ̺3(̺2v) = ̺3(̺4v) = 0,
562
+ ̺4(̺1v) = ̺4(̺2v) = ̺4(̺3v) = 0,
563
+ ̺1(̺5v) − (̺1v) = ̺2(̺5v) − (̺2v) = 0,
564
+ ̺3(̺5v) − (̺3v) = ̺4(̺5v) − (̺4v) = 0.
565
+ (4.14)
566
+ Thus, the equations in (4.14) are respectively amounting to
567
+ e2x5 ∂2v
568
+ ∂x2
569
+ 1
570
+ − ∂v
571
+ ∂x5
572
+ = −(Λ + 4σ − 10ρ),
573
+ e2x5 ∂2v
574
+ ∂x2
575
+ 2
576
+ − ∂v
577
+ ∂x5
578
+ = −(Λ + 4σ − 10ρ),
579
+ e2x5 ∂2v
580
+ ∂x2
581
+ 3
582
+ − ∂v
583
+ ∂x5
584
+ = −(Λ + 4σ − 10ρ),
585
+ e2x5 ∂2v
586
+ ∂x2
587
+ 4
588
+ − ∂v
589
+ ∂x5
590
+ = −(Λ + 4σ − 10ρ),
591
+ ∂2v
592
+ ∂x2
593
+ 5
594
+ = −(Λ + 4σ − 10ρ),
595
+ ∂2v
596
+ ∂x1∂x2
597
+ =
598
+ ∂2v
599
+ ∂x1∂x3
600
+ =
601
+ ∂2v
602
+ ∂x1∂x4
603
+ =
604
+ ∂2v
605
+ ∂x2∂x3
606
+ =
607
+ ∂2v
608
+ ∂x2∂x4
609
+ =
610
+ ∂2v
611
+ ∂x3∂x4
612
+ = 0,
613
+ ex5
614
+ ∂2v
615
+ ∂x5∂x1
616
+ + ∂v
617
+ ∂x1
618
+ = ex5
619
+ ∂2v
620
+ ∂x5∂x2
621
+ + ∂v
622
+ ∂x2
623
+ = ex5
624
+ ∂2v
625
+ ∂x5∂x3
626
+ + ∂v
627
+ ∂x3
628
+ = ex5
629
+ ∂2v
630
+ ∂x5∂x4
631
+ + ∂v
632
+ ∂x4
633
+ = 0.
634
+ From the above equations it is observed that v is constant for Λ = −4σ + 10ρ.
635
+ Hence, equation (4.2) is satisfied. Thus, g is a gradient RYS with the soliton vector
636
+ field K = Dv, where v is constant and Λ = −4σ + 10ρ. Hence, Theorem 4.2 is
637
+ verified.
638
+ References
639
+ [1] Blaga, A. M., Solitons and geometrical structure in a perfect fluid spacetime, Rocky Mt. J.
640
+ Math. (2020).
641
+ [2] Blaga, A. M., Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom.
642
+ Symmetry Phys., 52 (2019), 17-26.
643
+ [3] Catino, G. and Mazzieri, L., Gradient Einstein solitons, Nonlinear Anal., 132(2016), 66-94.
644
+ [4] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C. and Mazzieri, L., The Ricci Bour-
645
+ guignon flow, Pacific J. Math., 28(2017), 337-370.
646
+
647
+ 10
648
+ MOBIN AHMAD, GAZALA AND MOHD BILAL
649
+ [5] Chidananda,
650
+ S.,
651
+ and
652
+ Venkatesha,
653
+ V.,
654
+ Yamabe
655
+ soliton
656
+ and
657
+ Riemann
658
+ soli-
659
+ ton
660
+ on
661
+ Lorentzian
662
+ para-Sasakian
663
+ manifold,
664
+ Commun.
665
+ Korean
666
+ Math.
667
+ Soc.,
668
+ https://doi.org/10.4134/CKMS.c200365.
669
+ [6] G¨uler, S. and Crasmareanu, M., Ricci-Yamabe maps for Riemannian flows and their volume
670
+ variation and volume entropy, Turk. J. Math., 43 (2019), 2631-2641.
671
+ [7] Hamilton, R. S., Lectures on Geometric Flows (Unpublished manuscript, 1989).
672
+ [8] Hamilton, R. S., The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa
673
+ Cruz, CA, 1986), Contemp. Math., A.M.S., 71 (1988), 237-262.
674
+ [9] Haseeb, A. and De, U. C., η-Ricci solitons in ǫ-Kenmotsu manifolds, J. Geom. 110, 34 (2019).
675
+ [10] Haseeb, A. and Almusawa, H., Some results on Lorentzian para-Kenmotsu manifolds admit-
676
+ ting η-Ricci solitons, Palestine Journal of Mathematics, 11(2)(2022), 205-213.
677
+ [11] Haseeb, A. and Prasad, R., Certain results on Lorentzian para-Kenmotsu manifolds, Bol.
678
+ Soc. Parana. Mat., 39(3) (2021), 201-220.
679
+ [12] Haseeb, A. and Prasad, R., Some results on Lorentzian para-Kenmotsu manifolds, Bull.
680
+ Transilvania Univ. of Brasov, 13(62) (2020), no. 1, 185-198.
681
+ [13] Haseeb, A., Prasad, R. and Mofarreh, F., Sasakian manifolds admitting ∗-η-Ricci-Yamabe
682
+ solitons, Advances in Mathematical Physics, Vol. 2022, Article ID 5718736, 7 pages. doi:
683
+ https:// doi.org/10.1155/2022/5718736
684
+ [14] Li, Y., Haseeb, A. and Ali, M., LP -Kenmotsu manifolds admitting η-Ricci solitons and
685
+ spacetime, Journal of Mathematics, 2022, Article ID 6605127, 10 pages.
686
+ [15] Lone, M. A. and Harry, I. F., Ricci Solitons on Lorentz-Sasakian space forms, Journal of
687
+ Geometry and Physics, 104547, doi: https://doi.org/10.1016/j.geomphys.2022.104547.
688
+ [16] Pankaj, Chaubey, S. K and Prasad, R., Three dimensional Lorentzian para-Kenmotsu mani-
689
+ folds and Yamabe soliton, Honam Mathematical J., 43(4) (2021), 613-626.
690
+ [17] Singh, J. P. and Khatri, M., On Ricci-Yamabe soliton and geometrical structure in a perfect
691
+ fluid spacetime, Afr. Mat., 32(2021), 1645-1656.
692
+ [18] Venkatesha, Kumara, H. A., Ricci soliton and geometrical structure in a perfect fluid space-
693
+ time with torse-forming vector field, Afr. Mat. 30 (2019), 725-736
694
+ [19] Yoldas, H. I., On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons,Int. J. Geom. Met.
695
+ Mod. Phy., 18(12) (2021), 2150189.
696
+ [20] Yano, K., Integral Formulas in Riemannian geometry, Pure and Applied Mathematics, Vol.
697
+ I, Marcel Dekker, New York, 1970.
698
+ [21] Yano, K. and Kon, M., Structures on manifolds, World Scientific, (1984).
699
+ Mobin Ahmad
700
+ Department of Mathematics,
701
+ Integral University, Kursi Road,
702
+ Lucknow-226026.
703
+ Email : [email protected]
704
+ Gazala
705
+ Department of Mathematics,
706
+ Integral University, Kursi Road,
707
+ Lucknow-226026.
708
+ Email : [email protected]
709
+ Mohd. Bilal
710
+ Department of Mathematical Sciences,
711
+ Umm Ul Qura University,
712
+ Makkah, Saudi Arabia.
713
714
+
8dE0T4oBgHgl3EQfwgEX/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf,len=420
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
3
+ page_content='02632v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
4
+ page_content='GM] 30 Nov 2022 A NOTE ON LP-KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS MOBIN AHMAD, GAZALA AND MOHD BILAL Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
5
+ page_content=' In the current note, we study Lorentzian para-Kenmotsu (in brief, LP -Kenmotsu) manifolds admitting Ricci-Yamabe solitons (RYS) and gradi- ent Ricci-Yamabe soliton (gradient RYS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
6
+ page_content=' At last by constructing a 5-dimensional non-trivial example we illustrate our result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
7
+ page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
8
+ page_content=' 53C20, 53C21, 53C25, 53E20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
9
+ page_content=' Keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
10
+ page_content=' Lorentzian para-Kenmotsu manifolds, Ricci-Yamabe solitons, Einstein manifolds, ν-Einstein manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
12
+ page_content=' Introduction In 2019, a scalar combination of Ricci and Yamabe flows was proposed by the authors G¨uler and Crasmareanu [6], this advanced class of geometric flows called Ricci-Yamabe (RY) flow of type (σ, ρ) and is defined by ∂ ∂tg(t) + 2σS(g(t)) + ρr(t)g(t) = 0, g(0) = g0 for some scalars σ and ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
13
+ page_content=' A solution to the RY flow is called RYS if it depends only on one parameter group of diffeomorphism and scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
14
+ page_content=' A Riemannian (or semi-Riemannian) manifold M is said to have a RYS if £Kg + 2σS + (2Λ − ρr)g = 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
15
+ page_content='1) where σ, ρ, Λ ∈ R (the set of real numbers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
16
+ page_content=' If K is the gradient of a smooth function v on M, then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
17
+ page_content='1) is called the gradient Ricci-Yamabe soliton (gradient RYS) and hence (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
18
+ page_content='1) turns to ∇2v + σS + (Λ − ρr 2 )g = 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
19
+ page_content='2) where ∇2v is the Hessian of v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
20
+ page_content=' It is to be noted that a RYS of types (σ, 0) and (0, ρ) are known as σ−Ricci soliton and ρ−Yamabe soliton, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
21
+ page_content=' A RYS is said to be shrinking , steady or expanding if Λ < 0, = 0 or > 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
22
+ page_content=' A RYS is said to be a Ricci soliton [7] if σ = 1, ρ = 0, Yamabe soliton [8] if σ = 0, ρ = 1, Einstein soliton [3] if σ = 1, ρ = −1, As a continuation of this study, we tried to study RYS in the frame-work of LP-Kenmotsu manifolds of dimension n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
23
+ page_content=' We recommend the papers [1, 2, 5, 9, 10, 13, 15, 16, 17, 18, 19] and the references therein for more details about the related studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
24
+ page_content=' 1 2 MOBIN AHMAD, GAZALA AND MOHD BILAL 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
25
+ page_content=' Preliminaries An n-dimensional differentiable manifold M with structure (ϕ, ζ, ν, g) is said to be a Lorentzian almost paracontact metric manifold, if it admits a (1, 1)-tensor field ϕ, a contravariant vector field ζ, a 1-form ν and a Lorentzian metric g satisfying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
26
+ page_content='1) ν(ζ) + 1 = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
27
+ page_content='2) ϕ2E = E + ν(E)ζ, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
28
+ page_content='3) ϕζ = 0, ν(ϕE) = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
29
+ page_content='4) g(ϕE, ϕF) = g(E, F) + ν(E)ν(F), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
30
+ page_content='5) g(E, ζ) = ν(E), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
31
+ page_content='6) ϕ(E, F) = ϕ(F, E) = g(E, ϕF) for any vector fields E, F ∈ χ(M), where χ(M) is the Lie algebra of vector fields on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
32
+ page_content=' If ζ is a killing vector field, the (para) contact structure is called a K-(para) contact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
33
+ page_content=' In such a case, we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
34
+ page_content='7) ∇Eζ = ϕE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
35
+ page_content=' Recently, the authors Haseeb and Prasad defined and studied the following notion: Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
36
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
37
+ page_content=' A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmostu manifold if [11] (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
38
+ page_content='8) (∇Eϕ)F = −g(ϕE, F)ζ − ν(F)ϕE for any E, F on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
39
+ page_content=' In an LP-Kenmostu manifold, we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
40
+ page_content='9) ∇Eζ = −E − ν(E)ζ, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
41
+ page_content='10) (∇Eν)F = −g(E, F) − ν(E)ν(F), where ∇ denotes the Levi-Civita connection respecting to the Lorentzian metric g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
42
+ page_content=' Furthermore, in an LP-Kenmotsu manifold, the following relations hold [11]: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
43
+ page_content='11) g(R(E, F)G, ζ) = ν(R(E, F)G) = g(F, G)ν(E) − g(E, G)ν(F), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
44
+ page_content='12) R(ζ, E)F = −R(E, ζ)F = g(E, F)ζ − ν(F)E, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
45
+ page_content='13) R(E, F)ζ = ν(F)E − ν(E)F, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
46
+ page_content='14) R(ζ, E)ζ = E + ν(E)ζ, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
47
+ page_content='15) S(E, ζ) = (n − 1)ν(E), S(ζ, ζ) = −(n − 1), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
48
+ page_content='16) Qζ = (n − 1)ζ for any E, F, G ∈ χ(M), where R, S and Q represent the curvature tensor, the Ricci tensor and the Q Ricci operator, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
49
+ page_content=' A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS 3 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
50
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
51
+ page_content=' [21] An LP-Kenmotsu manifold M is said to be ν-Einstein man- ifold if its S(̸= 0) is of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
52
+ page_content='17) S(E, F) = ag(E, F) + bν(E)ν(F), where a and b are smooth functions on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
53
+ page_content=' In particular, if b = 0, then M is termed as an Einstein manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
54
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
55
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
56
+ page_content=' [12] In an LP-Kenmotsu manifold of n-dimension, S is of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
57
+ page_content='18) S(E, F) = ( r n − 1 − 1)g(E, F) + ( r n − 1 − n)ν(E)ν(F), where r is the scalar curvature of the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
58
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
59
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
60
+ page_content=' In an n-dimensional LP-Kenmotsu manifold, we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
61
+ page_content='19) ζ(r) = 2(r − n(n − 1)), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
62
+ page_content='20) (∇EQ)ζ = QE − (n − 1)E, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
63
+ page_content='21) (∇ζQ)E = 2QE − 2(n − 1)E for any E on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
64
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
65
+ page_content=' Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
66
+ page_content='18) yields (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
67
+ page_content='22) QE = ( r n − 1 − 1)E + ( r n − 1 − n)ν(E)ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
68
+ page_content=' Taking the covariant derivative of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
69
+ page_content='22) with respect to F and making use of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
70
+ page_content='9) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
71
+ page_content='10), we lead to (∇F Q)E = F(r) n − 1(E + ν(E)ζ) − ( r n − 1 − n)(g(E, F)ζ + ν(E)F + 2ν(E)ν(F)ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
72
+ page_content=' By contracting F in the foregoing equation and using trace {F → (∇F Q)E} = 1 2E(r), we find n − 3 2(n − 1)E(r) = � ζ(r) n − 1 − (r − n(n − 1)) � ν(E), which by replacing E by ζ and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
73
+ page_content='1) gives (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
74
+ page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
75
+ page_content=' We refer the readers to see [14] for the proof of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
76
+ page_content='20) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
77
+ page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
78
+ page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
79
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
80
+ page_content=' From the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
81
+ page_content='19), it is noticed that if an n-dimensional LP-Kenmotsu manifold possesses the constant scalar curvature, then r = n(n − 1) and hence (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
82
+ page_content='18) reduces to S(E, F) = (n − 1)g(E, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
83
+ page_content=' Thus, the manifold under consideration is an Einstein manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
84
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
85
+ page_content=' Ricci-Yamabe solitons on LP-Kenmotsu manifolds Let the metric of an n-dimensional LP-Kenmotsu manifold be a Ricci-Yamabe soliton (g, K, Λ, σ, ρ), then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
86
+ page_content='1) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
87
+ page_content=' By differentiating (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
88
+ page_content='1) covariantly with resprct to G, we have (∇G£Kg)(E, F) = −2σ(∇GS)(E, F) + ρ(Gr)g(E, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
89
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
90
+ page_content='1) Since ∇g = 0, then the following formula [20] (£K∇Eg −∇E£Kg −∇[K,E]g)(F, G) = −g((£K∇)(E, F), G)−g((£K∇)(E, G), F) 4 MOBIN AHMAD, GAZALA AND MOHD BILAL turns to (∇E£Kg)(F, G) = g((£K∇)(E, F), G) + g((£K∇)(E, G), F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
91
+ page_content=' Since the operator £K∇ is symmetric, therefore we have 2g((£K∇)(E, F), G) = (∇E£Kg)(F, G) + (∇F £Kg)(E, G) − (∇G£Kg)(E, F), which by using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
92
+ page_content='1) takes the form 2g((£K∇)(E, F), G) = −2σ[(∇ES)(F, G) + (∇F S)(G, E) + (∇GS)(E, F)] +ρ[(Er)g(F, G) + (Fr)g(G, E) + (Gr)g(E, F)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
93
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
94
+ page_content='2) Putting F = ζ in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
95
+ page_content='2) and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
96
+ page_content='5), we find 2g((£K∇)(E, ζ), G) = −2σ[(∇ES)(ζ, G) + (∇ζS)(G, E) − (∇GS)(E, ζ)] +ρ[(Er)ν(G) + 2(r − n(n − 1))g(E, G) − (Gr)ν(E)] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
97
+ page_content='3) By virtue of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
98
+ page_content='20) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
99
+ page_content='21), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
100
+ page_content='3) leads to 2g((£K∇)(E, ζ), G) = −4σ[S(E, G) − (n − 1)g(E, G)] +ρ[(Er)ν(G) + 2(r − n(n − 1))g(E, G) − (Gr)ν(E)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
101
+ page_content=' By eliminating G from the foregoing equation, we have 2(£K∇)(F, ζ) = ρg(Dr, F)ζ − ρ(Dr)ν(F) − 4σQF (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
102
+ page_content='4) +[4σ(n − 1) + 2ρ(r − n(n − 1))]F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
103
+ page_content=' If we take r as constant, then from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
104
+ page_content='19) we find r = n(n − 1), and hence (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
105
+ page_content='4) reduces to (£K∇)(F, ζ) = −2σQF + 2σ(n − 1)F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
106
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
107
+ page_content='5) Taking covariant derivative of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
108
+ page_content='5) with respect to E, we have (∇E£K∇)(F, ζ) = (£K∇)(F, E) − 2σν(E)[QF − (n − 1)F] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
109
+ page_content='6) − 2σ(∇EQ)F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
110
+ page_content=' Again from [20], we have (£KR)(E, F)G = (∇E£K∇)(F, G) − (∇F £K∇)(E, G), which by putting G = ζ and using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
111
+ page_content='6) takes the form (£KR)(E, F)ζ = 2σν(F)(QE − (n − 1)E) − 2σν(E)(QF − (n − 1)F) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
112
+ page_content='7) −2σ((∇EQ)F − (∇F Q)E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
113
+ page_content=' Putting F = ζ in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
114
+ page_content='7) then using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
115
+ page_content='1), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
116
+ page_content='2), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
117
+ page_content='20) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
118
+ page_content='21), we arrive at (£KR)(E, ζ)ζ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
119
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
120
+ page_content='8) The Lie derivative of R(E, ζ)ζ = −E − ν(E)ζ along K leads to (£KR)(E, ζ)ζ − g(E, £Kζ)ζ + 2ν(£Kζ)E = −(£Kν)(E)ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
121
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
122
+ page_content='9) From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
123
+ page_content='8) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
124
+ page_content='9), we have (£Kν)(E)ζ = −2ν(£Kζ)E + g(E, £Kζ)ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
125
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
126
+ page_content='10) Taking the Lie derivative of g(E, ζ) = ν(E), we find (£Kν)(E) = g(E, £Kζ) + (£Kg)(E, ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
127
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
128
+ page_content='11) By putting F = ζ in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
129
+ page_content='1) and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
130
+ page_content='15), we have (£Kg)(E, ζ) = −{2σ(n − 1) + 2Λ − ρn(n − 1)}ν(E), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
131
+ page_content='12) A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS 5 where r = n(n − 1) being used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
132
+ page_content=' The Lie derivative of g(ζ, ζ) = −1 along K we lead to (£Kg)(ζ, ζ) = −2ν(£Kζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
133
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
134
+ page_content='13) From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
135
+ page_content='12) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
136
+ page_content='16), we find ν(£Kζ) = −{σ(n − 1) + Λ − ρn(n − 1) 2 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
137
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
138
+ page_content='14) Now, combining the equations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
139
+ page_content='10), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
140
+ page_content='11), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
141
+ page_content='12) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
142
+ page_content='17), we find Λ = ρn(n − 1) 2 − σ(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
143
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
144
+ page_content='15) Thus, we have Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
145
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
146
+ page_content=' Let (M, g) be an n-dimensional LP-Kenmotsu manifold admitting Ricci-Yamabe soliton (g, K, Λ, σ, ρ) with constant scalar curvature tensor, then Λ = ρn(n−1) 2 − σ(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
147
+ page_content=' For σ = 1 and ρ = 0, from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
148
+ page_content='15) we have Λ = −(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
149
+ page_content=' Thus, we have the following: Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
150
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
151
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits a Ricci soliton with constant scalar curvature, then the soliton is shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
152
+ page_content=' For σ = 0 and ρ = 1, from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
153
+ page_content='15) we have Λ = n(n−1) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
154
+ page_content=' Thus, we have the following: Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
155
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
156
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits a Yamabe soliton with constant scalar curvature, then the soliton is shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
157
+ page_content=' For σ = 1 and ρ = −1, from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
158
+ page_content='15) we have Λ = − (n2−1) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
159
+ page_content=' Thus, we have the following: Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
160
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
161
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits an Einstein soliton with constant scalar curvature, then the soliton is shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
162
+ page_content=' Now, we consider the metric of an n-dimensional LP-Kenmotsu manifold as a Ricci-Yamabe soliton (g, ζ, Λ, σ, ρ), then from (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
163
+ page_content='1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
164
+ page_content='9) we have S(E, F) = − 1 σ (Λ − 1 − ρr 2 )g(E, F) + 1 σ ν(E)ν(F), where σ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
165
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
166
+ page_content='16) By putting F = ζ in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
167
+ page_content='16) and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
168
+ page_content='15), we find Λ = ρr 2 − σ(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
169
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
170
+ page_content='17) Now, comparing (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
171
+ page_content='18) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
172
+ page_content='17), we have r = n−1 σ + n(n − 1), which by using in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
173
+ page_content='17) it follows that Λ = −σ(n − 1) + ρ(n−1)(1+nσ) 2σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
174
+ page_content=' Thus, we have the following theorem: Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
175
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
176
+ page_content=' An n-dimensional LP-Kenmotsu manifold with constant scalar curvature admitting Ricci-Yamabe soliton (g, ζ, Λ, σ, ρ) is an ν-Einstein manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
177
+ page_content=' Moreover, the soliton is expanding, steady or shrinking according to ρ σ > 2σ − ρn, ρ σ = 2σ − ρn, or ρ σ < 2σ − ρn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
178
+ page_content=' 6 MOBIN AHMAD, GAZALA AND MOHD BILAL 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
179
+ page_content=' Gradient Ricci-Yamabe solitons on LP-Kenmotsu manifolds Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
180
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
181
+ page_content=' A Riemannian (or semi-Riemannian) metric g on M is called a gradient RYS, if Hessv + σS + (Λ − ρr 2 )g = 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
182
+ page_content='1) where Hessv denotes the Hessian of a smooth function v on M and defined by Hessv = ∇∇v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
183
+ page_content=' Let M be an n-dimensional LP-Kenmotsu manifold with g as a gradient RYS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
184
+ page_content=' Then equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
185
+ page_content='1) can be written as ∇EDv + σQE + (Λ − ρr 2 )E = 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
186
+ page_content='2) for all vector fields E on M, where D denotes the gradient operator of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
187
+ page_content=' Taking the covariant derivative of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
188
+ page_content='2) with respect to F, we have ∇F ∇EDv = −σ{(∇F Q)E + Q(∇F E)} + ρF(r) 2 E − (Λ − ρr 2 )∇F E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
189
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
190
+ page_content='3) Interchanging E and F in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
191
+ page_content='3), we lead to ∇E∇F Dv = −σ{(∇EQ)F + Q(∇EF)} + ρE(r) 2 F − (Λ − ρr 2 )∇EF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
192
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
193
+ page_content='4) By making use of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
194
+ page_content='2)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
195
+ page_content='4), we find R(E, F)Dv = σ{(∇F Q)E − (∇EQ)F} + ρ 2{E(r)F − F(r)E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
196
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
197
+ page_content='5) Now, from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
198
+ page_content='18), we find QE = ( r n − 1 − 1)E + ( r n − 1 − n)ν(E)ζ, which on taking covariant derivative with repect to F leads to (∇F Q)E = F(r) n − 1(E + ν(E)ζ) − ( r n − 1 − n)(g(E, F)ζ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
199
+ page_content='6) +2ν(E)ν(F)ζ + ν(E)F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
200
+ page_content=' By using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
201
+ page_content='6) in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
202
+ page_content='5), we have R(E, F)Dv = (n − 1)ρ − 2σ 2(n − 1) {E(r)F − F(r)E} + σ n − 1{F(r)ν(E)ζ − E(r)ν(F)ζ} −σ( r n − 1 − n)(ν(E)F − ν(F)E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
203
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
204
+ page_content='7) Contracting forgoing equation along E gives S(F, Dv) = �(n − 1)2ρ − 2σ(n − 2) n − 1 � F(r) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
205
+ page_content='8) +σ(n − 3)(r − n(n − 1)) n − 1 ν(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
206
+ page_content=' From the equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
207
+ page_content='18), we can write S(F, Dv) = ( r n − 1 − 1)F(v) + ( r n − 1 − n)ν(F)ζ(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
208
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
209
+ page_content='9) A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS 7 Now, by equating (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
210
+ page_content='8) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
211
+ page_content='9), then putting F = ζ and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
212
+ page_content='1), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
213
+ page_content='19), we find ζ(v) = r − n(n − 1) n − 1 {2(n − 1)ρ − σ(5n − 13) n − 1 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
214
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
215
+ page_content='10) Taking the inner product of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
216
+ page_content='7) with ζ, we get F(v)ν(E) − E(v)ν(F) = ρ 2{E(r)ν(F) − F(r)ν(E)}, which by replacing E by ζ and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
217
+ page_content='19), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
218
+ page_content='10), we infer F(v) = −(r − n(n − 1)){3ρ − σ(5n − 13) (n − 1)2 }ν(F) − ρ 2F(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
219
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
220
+ page_content='11) If we take r as constant, then from Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
221
+ page_content='5, we get r = n(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
222
+ page_content=' Thus, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
223
+ page_content='11) leads to F(v) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
224
+ page_content=' This implies that v is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
225
+ page_content=' Thus, the soliton under the consideration is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
226
+ page_content=' Hence we state: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
227
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
228
+ page_content=' If the metric of an LP-Kenmotsu manifold of constant scalar curva- ture tensor admitting a special type of vector field is gradient RYS, then the soliton is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
229
+ page_content=' For v constant, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
230
+ page_content='2) turns to σQE = −(Λ − ρr 2 )E, which leads to S(E, F) = − 1 σ (Λ − ρn(n − 1) 2 )g(E, F), σ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
231
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
232
+ page_content='12) By putting E = F = ζ in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
233
+ page_content='12) and using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
234
+ page_content='15), we obtain Λ = ρn(n − 1) 2 − σ(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
235
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
236
+ page_content='13) Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
237
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
238
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits a gradient Ricci soliton with the constant scalar curvature, then the manifold under the con- sideration is an Einstein manifold and Λ = ρn(n−1) 2 − σ(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
239
+ page_content=' For σ = 1 and ρ = 0, from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
240
+ page_content='13) we find Λ = −(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
241
+ page_content=' Thu, we have the following: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
242
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
243
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits a gradient Ricci soliton with the constant scalar curvature, then the soliton is shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
244
+ page_content=' For σ = 1 and ρ = −1, from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
245
+ page_content='13) we have Λ = − (n−1)(n+2) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
246
+ page_content=' Thus, we have the following: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
247
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
248
+ page_content=' If an n-dimensional LP-Kenmotsu manifold admits an gradient Einstein soliton with constant scalar curvature, then the soliton is shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
249
+ page_content=' Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
250
+ page_content=' We consider the 5-dimensional manifold M 5 = � (x1, x2, x3, x4, x5) ∈ R5 : x5 > 0 � , where (x1, x2, x3, x4, x5) are the standard coordinates in R5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
251
+ page_content=' Let ̺1, ̺2, ̺3, ̺4 and ̺5 be the vector fields on M 5 given by ̺1 = ex5 ∂ ∂x1 , ̺2 = ex5 ∂ ∂x2 , ̺3 = ex5 ∂ ∂x3 , ̺4 = ex5 ∂ ∂x4 , ̺5 = ∂ ∂x5 = ζ, 8 MOBIN AHMAD, GAZALA AND MOHD BILAL which are linearly independent at each point of M 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
252
+ page_content=' Let g be the Lorentzian metric defined by g(̺i, ̺i) = 1, for 1 ≤ i ≤ 4 and g(̺5, ̺5) = −1, g(̺i, ̺j) = 0, for i ̸= j, 1 ≤ i, j ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
253
+ page_content=' Let ν be the 1-form defined by ν(E) = g(E, ̺5) = g(̺, ζ) for all E ∈ χ(M 5), and let ϕ be the (1, 1)-tensor field defined by ϕ̺1 = −̺2, ϕ̺2 = −̺1, ϕ̺3 = −̺4, ϕ̺4 = −̺3, ϕ̺5 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
254
+ page_content=' By applying linearity of ϕ and g, we have ν(ζ) = g(ζ, ζ) = −1, ϕ2E = E + ν(E)ζ and g(ϕE, ϕF) = g(E, F) + ν(E)ν(F) for all E, F ∈ χ(M 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
255
+ page_content=' Thus for ̺5 = ζ, the structure (ϕ, ζ, ν, g) defines a Lorentzian almost paracontact metric structure on M 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
256
+ page_content=' Then we have [̺i, ̺j] = −̺i, for 1 ≤ i ≤ 4, j = 5, [̺i, ̺j] = 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
257
+ page_content=' By using Koszul’s formula, we can easily find we obtain ∇̺i̺j = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 −̺5, 1 ≤ i = j ≤ 4, −̺i, 1 ≤ i ≤ 4, j = 5, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
258
+ page_content=' Also one can easily verify that ∇Eζ = −E − η(E)ζ and (∇Eϕ)F = −g(ϕE, F)ζ − ν(F)ϕE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
259
+ page_content=' Therefore, the manifold is an LP-Kenmotsu manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
260
+ page_content=' From the above results, we can easily obtain the non-vanishing components of R as follows: R(̺1, ̺2)̺1 = −̺2, R(̺1, ̺2)̺2 = ̺1, R(̺1, ̺3)̺1 = −̺3, R(̺1, ̺3)̺3 = ̺1, R(̺1, ̺4)̺1 = −v4, R(̺1, ̺4)̺4 = ̺1, R(̺1, ̺5)̺1 = −̺5, R(̺1, ̺5)̺5 = −̺1, R(̺2, ̺3)̺2 = −̺3, R(̺2, ̺3)̺3 = ̺2, R(̺2, ̺4)̺2 = −̺4, R(̺2, ̺4)̺4 = ̺2, R(̺2, ̺5)̺2 = −̺5, R(̺2, ̺5)̺5 = −̺2, R(̺3, ̺4)̺3 = −̺4, R(̺3, ̺4)̺4 = ̺3, R(̺3, ̺5)̺3 = −̺5, R(̺3, ̺5)̺5 = −̺3, R(̺4, ̺5)̺4 = −̺5, R(̺4, ̺5)̺5 = −̺4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
261
+ page_content=' Also, we calculate the Ricci tensors as follows: S(̺1, ̺1) = S(̺2, ̺2) = S(̺3, ̺3) = S(̺4, ̺4) = 4, S(̺5, ̺5) = −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
262
+ page_content=' Therefore, we have r = S(̺1, ̺1) + S(̺2, ̺2) + S(̺3, ̺3) + S(̺4, ̺4) − S(̺5, ̺5) = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
263
+ page_content=' Now by taking Dv = (̺1v)̺1 + (̺2v)̺2 + (̺3v)̺3 + (̺4v)̺4 + (̺5v)̺5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
264
+ page_content=' we have ∇̺1Dv = (̺1(̺1v) − (̺5v))̺1 + (̺1(̺2v))̺2 + (̺1(̺3v))̺3 + (̺1(̺4v))̺4 + (̺1(̺5v) − (̺1v))̺5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
265
+ page_content=' ∇̺2Dv = (̺2(̺1v))̺1 + (̺2(̺2v) − (̺5v))̺2 + (̺2(̺3v))̺3 + (̺2(̺4v))̺4 + (̺2(̺5v) − (̺2v))̺5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
266
+ page_content=' ∇̺3Dv = (̺3(̺1v))̺1 + (̺3(̺2v))̺2 + (̺3(̺3v) − (̺5v))̺3 + (̺3(̺4v))̺4 + (̺3(̺5v) − (̺3v))̺5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
267
+ page_content=' ∇̺4Dv = (̺4(̺1v))̺1 + (̺4(̺2v))̺2 + (̺4(̺3v))̺3 + (̺4(̺4v) − (̺5v))̺4 + (̺4(̺5v) − (̺4v))̺5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
268
+ page_content=' ∇̺5Dv = (̺5(̺1v))̺1 + (̺5(̺2v))̺2 + (̺5(̺3v))̺3 + (̺5(̺4v))̺4 + (̺5(̺5v))̺5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
269
+ page_content=' A NOTE ON LP -KENMOTSU MANIFOLDS ADMITTING RICCI-YAMABE SOLITONS 9 Thus, by virtue of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
270
+ page_content='2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
271
+ page_content=' we obtain \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ̺1(̺1v) − ̺5v = −(Λ + 4σ − 10ρ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
272
+ page_content=' ̺2(̺2v) − ̺5v = −(Λ + 4σ − 10ρ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
273
+ page_content=' ̺3(̺3v) − ̺5v = −(Λ + 4σ − 10ρ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
274
+ page_content=' ̺4(̺4v) − ̺5v = −(Λ + 4σ − 10ρ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
275
+ page_content=' ̺5(̺5v) = −(Λ + 4σ − 10ρ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
276
+ page_content=' ̺1(̺2v) = ̺1(̺3v) = ̺1(̺4v) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
277
+ page_content=' ̺2(̺1v) = ̺2(̺3v) = ̺2(̺4v) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
278
+ page_content=' ̺3(̺1v) = ̺3(̺2v) = ̺3(̺4v) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
279
+ page_content=' ̺4(̺1v) = ̺4(̺2v) = ̺4(̺3v) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
280
+ page_content=' ̺1(̺5v) − (̺1v) = ̺2(̺5v) − (̺2v) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
281
+ page_content=' ̺3(̺5v) − (̺3v) = ̺4(̺5v) − (̺4v) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
282
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
283
+ page_content='14) Thus, the equations in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
284
+ page_content='14) are respectively amounting to e2x5 ∂2v ∂x2 1 − ∂v ∂x5 = −(Λ + 4σ − 10ρ), e2x5 ∂2v ∂x2 2 − ∂v ∂x5 = −(Λ + 4σ − 10ρ), e2x5 ∂2v ∂x2 3 − ∂v ∂x5 = −(Λ + 4σ − 10ρ), e2x5 ∂2v ∂x2 4 − ∂v ∂x5 = −(Λ + 4σ − 10ρ), ∂2v ∂x2 5 = −(Λ + 4σ − 10ρ), ∂2v ∂x1∂x2 = ∂2v ∂x1∂x3 = ∂2v ∂x1∂x4 = ∂2v ∂x2∂x3 = ∂2v ∂x2∂x4 = ∂2v ∂x3∂x4 = 0, ex5 ∂2v ∂x5∂x1 + ∂v ∂x1 = ex5 ∂2v ���x5∂x2 + ∂v ∂x2 = ex5 ∂2v ∂x5∂x3 + ∂v ∂x3 = ex5 ∂2v ∂x5∂x4 + ∂v ∂x4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
285
+ page_content=' From the above equations it is observed that v is constant for Λ = −4σ + 10ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
286
+ page_content=' Hence, equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
287
+ page_content='2) is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
288
+ page_content=' Thus, g is a gradient RYS with the soliton vector field K = Dv, where v is constant and Λ = −4σ + 10ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
289
+ page_content=' Hence, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
290
+ page_content='2 is verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
291
+ page_content=' References [1] Blaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
292
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
293
+ page_content=', Solitons and geometrical structure in a perfect fluid spacetime, Rocky Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
294
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
295
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
296
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
297
+ page_content=' [2] Blaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
298
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
299
+ page_content=', Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
300
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
301
+ page_content=' Symmetry Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
302
+ page_content=', 52 (2019), 17-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
303
+ page_content=' [3] Catino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
304
+ page_content=' and Mazzieri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
305
+ page_content=', Gradient Einstein solitons, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
306
+ page_content=', 132(2016), 66-94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
307
+ page_content=' [4] Catino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
308
+ page_content=', Cremaschi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
309
+ page_content=', Djadli, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
310
+ page_content=', Mantegazza, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
311
+ page_content=' and Mazzieri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
312
+ page_content=', The Ricci Bour- guignon flow, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
313
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
314
+ page_content=', 28(2017), 337-370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
315
+ page_content=' 10 MOBIN AHMAD, GAZALA AND MOHD BILAL [5] Chidananda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
316
+ page_content=', and Venkatesha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
317
+ page_content=', Yamabe soliton and Riemann soli- ton on Lorentzian para-Sasakian manifold, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
318
+ page_content=' Korean Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
319
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
320
+ page_content=', https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
321
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
322
+ page_content='4134/CKMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
323
+ page_content='c200365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
324
+ page_content=' [6] G¨uler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
325
+ page_content=' and Crasmareanu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
326
+ page_content=', Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
327
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
328
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
329
+ page_content=', 43 (2019), 2631-2641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
330
+ page_content=' [7] Hamilton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
331
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
332
+ page_content=', Lectures on Geometric Flows (Unpublished manuscript, 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
333
+ page_content=' [8] Hamilton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
334
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
335
+ page_content=', The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
336
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
337
+ page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
338
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
339
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
340
+ page_content=', 71 (1988), 237-262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
341
+ page_content=' [9] Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
342
+ page_content=' and De, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
343
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
344
+ page_content=', η-Ricci solitons in ǫ-Kenmotsu manifolds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
345
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
346
+ page_content=' 110, 34 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
347
+ page_content=' [10] Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
348
+ page_content=' and Almusawa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
349
+ page_content=', Some results on Lorentzian para-Kenmotsu manifolds admit- ting η-Ricci solitons, Palestine Journal of Mathematics, 11(2)(2022), 205-213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
350
+ page_content=' [11] Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
351
+ page_content=' and Prasad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
352
+ page_content=', Certain results on Lorentzian para-Kenmotsu manifolds, Bol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
353
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
354
+ page_content=' Parana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
355
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
356
+ page_content=', 39(3) (2021), 201-220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
357
+ page_content=' [12] Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
358
+ page_content=' and Prasad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
359
+ page_content=', Some results on Lorentzian para-Kenmotsu manifolds, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
360
+ page_content=' Transilvania Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
361
+ page_content=' of Brasov, 13(62) (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
362
+ page_content=' 1, 185-198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
363
+ page_content=' [13] Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
364
+ page_content=', Prasad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
365
+ page_content=' and Mofarreh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
366
+ page_content=', Sasakian manifolds admitting ∗-η-Ricci-Yamabe solitons, Advances in Mathematical Physics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
367
+ page_content=' 2022, Article ID 5718736, 7 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
368
+ page_content=' doi: https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
369
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
370
+ page_content='1155/2022/5718736 [14] Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
371
+ page_content=', Haseeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
372
+ page_content=' and Ali, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
373
+ page_content=', LP -Kenmotsu manifolds admitting η-Ricci solitons and spacetime, Journal of Mathematics, 2022, Article ID 6605127, 10 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
374
+ page_content=' [15] Lone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
375
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
376
+ page_content=' and Harry, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
377
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
378
+ page_content=', Ricci Solitons on Lorentz-Sasakian space forms, Journal of Geometry and Physics, 104547, doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
379
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
380
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
381
+ page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
382
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
383
+ page_content='104547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
384
+ page_content=' [16] Pankaj, Chaubey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
385
+ page_content=' K and Prasad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
386
+ page_content=', Three dimensional Lorentzian para-Kenmotsu mani- folds and Yamabe soliton, Honam Mathematical J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
387
+ page_content=', 43(4) (2021), 613-626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
388
+ page_content=' [17] Singh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
389
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
390
+ page_content=' and Khatri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
391
+ page_content=', On Ricci-Yamabe soliton and geometrical structure in a perfect fluid spacetime, Afr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
392
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
393
+ page_content=', 32(2021), 1645-1656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
394
+ page_content=' [18] Venkatesha, Kumara, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
395
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
396
+ page_content=', Ricci soliton and geometrical structure in a perfect fluid space- time with torse-forming vector field, Afr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
397
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
398
+ page_content=' 30 (2019), 725-736 [19] Yoldas, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
399
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
400
+ page_content=', On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons,Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
401
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
402
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
403
+ page_content=' Met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
404
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
405
+ page_content=' Phy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
406
+ page_content=', 18(12) (2021), 2150189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
407
+ page_content=' [20] Yano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
408
+ page_content=', Integral Formulas in Riemannian geometry, Pure and Applied Mathematics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
409
+ page_content=' I, Marcel Dekker, New York, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
410
+ page_content=' [21] Yano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
411
+ page_content=' and Kon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
412
+ page_content=', Structures on manifolds, World Scientific, (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
413
+ page_content=' Mobin Ahmad Department of Mathematics, Integral University, Kursi Road, Lucknow-226026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
414
+ page_content=' Email : mobinahmad68@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
415
+ page_content='com Gazala Department of Mathematics, Integral University, Kursi Road, Lucknow-226026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
416
+ page_content=' Email : gazala.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
417
+ page_content='math@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
418
+ page_content='com Mohd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
419
+ page_content=' Bilal Department of Mathematical Sciences, Umm Ul Qura University, Makkah, Saudi Arabia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
420
+ page_content=' Email: mohd7bilal@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
421
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8dE0T4oBgHgl3EQfwgEX/content/2301.02632v1.pdf'}
8dE2T4oBgHgl3EQf8Ait/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bca9bbbdd16dbf3866c6c237999e1e7ef23a0879bbb0cd9a269efeb7a2275a
3
+ size 10158125
9NE4T4oBgHgl3EQf3Q1N/content/2301.05304v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e933a15fa938b297d9bdf549f3fbd9d6961d406eb5ebeabe48e4e88e82445888
3
+ size 329137
9NE4T4oBgHgl3EQf3Q1N/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df30ed90acca80cf896aa608846ba33abc0675e4bb3b2a406bc30318e96a607
3
+ size 137048
BNFKT4oBgHgl3EQfWi5i/content/2301.11792v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:007005ed76b563d42b0139378d29f0d0a629236e7a374412c0986be56c851a63
3
+ size 1198277
BNFKT4oBgHgl3EQfWi5i/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63669ae94ccd5b9dee727062ae897db7a320492dff8ccaccc69fa80dce1c3051
3
+ size 2359341
BNFKT4oBgHgl3EQfWi5i/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8246c11ecf2fc6da8c547547c926a21b3933eac45d877dcbadc08da8185da0e8
3
+ size 94187
C9E4T4oBgHgl3EQfeg2i/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNAzT4oBgHgl3EQfiP3j/content/tmp_files/2301.01498v1.pdf.txt ADDED
@@ -0,0 +1,3983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01498v1 [math.RT] 4 Jan 2023
2
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
3
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
4
+ Abstract. g-fan of a finite dimensional algebra is a fan in its real Grothendieck group defined
5
+ by tilting theory.
6
+ We give a classification of complete g-fans of rank 2.
7
+ More explicitly, our
8
+ first main result asserts that every complete sign-coherent fan of rank 2 is a g-fan of some
9
+ finite dimensional algebra. Our proof is based on three fundamental results, Gluing Theorem,
10
+ Rotation Theorem and Subdivision Theorem, which realize basic operations on fans in the level
11
+ of finite dimensional algebras. Our second main result gives a necessary and sufficient condition
12
+ for algebras of rank 2 to be g-convex.
13
+ Contents
14
+ 1.
15
+ Introduction
16
+ 1
17
+ 2.
18
+ Preliminaries
19
+ 5
20
+ 2.1.
21
+ Preliminaries on fans
22
+ 5
23
+ 2.2.
24
+ Sign-coherent fans of rank 2
25
+ 6
26
+ 3.
27
+ Basic results in silting theory
28
+ 10
29
+ 3.1.
30
+ Preliminaries
31
+ 10
32
+ 3.2.
33
+ Silting complexes in terms of matrices
34
+ 12
35
+ 3.3.
36
+ Uniserial property of g-finite algebras
37
+ 14
38
+ 4.
39
+ Gluing, Rotation and Subdivision of g-fans
40
+ 15
41
+ 4.1.
42
+ Gluing fans
43
+ 15
44
+ 4.2.
45
+ Rotation and Mutation
46
+ 17
47
+ 4.3.
48
+ Subdivision and Extension
49
+ 19
50
+ 4.4.
51
+ Proof of Theorem 1.3
52
+ 22
53
+ 4.5.
54
+ Gluing fans II
55
+ 23
56
+ 5.
57
+ g-Convex algebras of rank 2
58
+ 26
59
+ 5.1.
60
+ Characterizations of g-convex algebras of rank 2
61
+ 26
62
+ 5.2.
63
+ Proof of Theorem 5.1
64
+ 27
65
+ Acknowledgments
66
+ 29
67
+ References
68
+ 29
69
+ 1. Introduction
70
+ The notion of tilting complexes is central to control equivalences of derived categories. The
71
+ class of silting complexes [KV] gives a completion of the class of tilting complexes with respect to
72
+ mutation, which is an operation to replace a direct summand of a given silting complex to construct
73
+ a new silting complex [AI]. The subclass of 2-term silting complexes enjoys remarkable properties
74
+ [AIR, DF]. They give rise to a fan in the real Grothendieck group of a finite dimensional algebra
75
+ A, see e.g. [H1, H2, Pl, B, DIJ, BST, As].
76
+ In our previous article [AHIKM1], we introduced a g-fan Σ(A) of A and established a basic
77
+ theory of g-fans and the associated g-polytopes. A g-fan of each finite dimensional algebra A
78
+ belongs to the following special class of nonsingular fans [AHIKM1, Proposition 4.12].
79
+ Definition 1.1. A sign-coherent fan is a pair (Σ, σ+) satisfying the following conditions.
80
+ 1
81
+
82
+ 2
83
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
84
+ (a) Σ is a nonsingular fan in Rd.
85
+ (b) σ+, −σ+ ∈ Σd.
86
+ (c) Take a Z-basis e1, . . . , ed of Zd such that σ+ = cone{ei | 1 ≤ i ≤ d}, and denote the orthant
87
+ corresponding to ǫ ∈ {±1}d by
88
+ Rd
89
+ ǫ := cone{ǫ(1)e1, . . . , ǫ(d)ed} = {x1e1 + · · · + xded | ǫ(i)xi ≥ 0 for each 1 ≤ i ≤ d}.
90
+ Then for each σ ∈ Σ, there exists ǫ ∈ {±1}d such that σ ⊆ Rd
91
+ ǫ.
92
+ We denote by Fansc(d) the set of complete sign-coherent fans in Rd, and by k-Fan(d) the set of
93
+ complete g-fans of finite dimensional k-algebras of rank d. Note that a g-fan Σ(A) is complete if
94
+ and only if A is g-finite (Proposition 3.9). Then we have
95
+ Fansc(d) ⊃ k-Fan(d).
96
+ It is very natural to study the following problem.
97
+ Problem 1.2. Characterize complete sign-coherent fans in Rd which can be realized as a g-fan of
98
+ some finite dimensional algebra.
99
+ This paper is devoted to give a complete answer to this problem for the case d = 2. The result
100
+ was very simple and came as a surprise to us.
101
+ Theorem 1.3 (Theorem 4.13). For each field k, we have
102
+ Fansc(2) = k-Fan(2).
103
+ Thus any complete sign-coherent fan in R2 can be realized as a g-fan of some finite dimensional
104
+ k-algebra.
105
+ We explain our method to prove Theorem 1.3. Each sign-coherent fan of rank 2 is obtained by
106
+ gluing two fans of the following form.
107
+ Σ =
108
+ •+
109
+
110
+ ❄❄❄❄❄
111
+ ⑧⑧⑧⑧⑧
112
+ ❄❄❄❄❄
113
+ Σ′ =
114
+ •+
115
+
116
+ ❄❄❄❄❄
117
+ ⑧⑧⑧⑧⑧
118
+ ❄❄❄❄❄
119
+ Recall that a finite dimensional k-algbera Λ is elementary if the k-algebra Λ/JΛ is isomorphic to
120
+ a product of k. This is automatic if Λ is basic and k is algebraically closed. We prove Gluing
121
+ Theorem 4.1, which asserts that if both Σ and Σ′ are g-fans of finite dimensional elementary k-
122
+ algebras, then so is their gluing. Therefore by symmetry, it suffices to consider sign-coherent fans
123
+ Σ of the form above. Now such Σ can be obtained from the fan
124
+ •+
125
+
126
+ ❄❄❄❄❄
127
+ ⑧⑧⑧⑧⑧
128
+ ❄❄❄❄❄
129
+ ⑧⑧⑧⑧⑧
130
+ by applying subdivision in the fourth quadrant repeatedly. We prove Rotation Theorem 4.3 and
131
+ Subdivision Theorem 4.7, which imply that if Σ is a g-fan of a finite dimensional k-algebra, then
132
+ so are the subdivisions of Σ in the fourth quadrant.
133
+ Figure 1 gives fans in Fan+−
134
+ sc (2) with at most 8 facet, where each edge shows a subdivision.
135
+ Figure 2 gives examples of algebras whose g-fans are given in Figure 1.
136
+ For each finite dimensional algebra A, we define a g-polytope P(A) by gluing each simplex
137
+ associated with the cones in Σ(A).
138
+ If P(A) is convex, we call Σ(A) convex and A g-convex.
139
+ For example, Brauer tree algebras A are g-convex, and this fact plays an important role in the
140
+ classification of 2-term tilting complexes of A [AMN]. From tilting theoretic point of view, g-convex
141
+ algebras are the most fundamental. Therefore it is important to study the following problem.
142
+ Problem 1.4. Classify convex g-fans in Rd.
143
+
144
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
145
+ 3
146
+ Σ00
147
+ Σ111
148
+ Σ2121
149
+ Σ1212
150
+ Σ31221
151
+ Σ22131
152
+ Σ12213
153
+ Σ21312
154
+ Σ13122
155
+ Σ412221
156
+ Σ321321
157
+ Σ313131
158
+ Σ312312
159
+ Σ231231
160
+ Σ222141
161
+ Σ221412
162
+ Σ122214
163
+ Σ123123
164
+ Σ214122
165
+ Σ131313
166
+ Σ213213
167
+ Σ132132
168
+ Σ141222
169
+ Figure 1. Fans in Fan+−
170
+ sc (2) with at most 8 facets
171
+ An answer to the case d = 2 was given in [AHIKM1, Theorem 6.3]. There are precisely 7 convex
172
+ g-fans up to isomorphism of g-fans.
173
+ •+
174
+
175
+ ❄❄❄❄❄
176
+ ⑧⑧⑧⑧⑧
177
+ ❄❄❄❄❄
178
+ ⑧⑧⑧⑧⑧
179
+ •+
180
+
181
+ ❄❄❄❄❄
182
+ ❄❄❄❄❄
183
+ ⑧⑧⑧⑧⑧
184
+ ❄❄❄❄❄
185
+ •+
186
+
187
+ ❄❄❄❄❄
188
+ ❄❄❄❄❄
189
+ ❄❄❄❄❄
190
+ ❄❄❄❄❄
191
+ •+
192
+
193
+ ⑧⑧⑧⑧⑧
194
+ ❄❄❄❄❄
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+ ❄❖❖❖❖❖❖❖
204
+ ❄❄❄❄❄
205
+ •+
206
+
207
+ ❄❄❄❄❄
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+ ❄❄❄❄❄
218
+ ❖❖❖❖❖❖❖
219
+ ❄❄❄❄❄
220
+ •+
221
+
222
+ ❄❄❄❄❄❄❄❄❄
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+ ❄❄❄❄❄
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+ ❖❖❖❖❖❖❖
241
+ ❄❄❄❄❄
242
+ •+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+ ❄❄❄❄❄
258
+ ✴✴✴✴✴✴✴
259
+ ❄❄❄❄❄
260
+ ❖❖❖❖❖❖❖
261
+ ❄❄❄❄❄
262
+ More precisely, in the last Section 5, we show that there are 16 convex g-fans in Fansc(2)
263
+ Σa;b with a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.
264
+ We also give a characterization of algebras whose g-fans are one of them. Let t(ΛM) (respectively,
265
+ t(MΛ)) be the minimal number of generators of a left (respectively, right) Λ-module M.
266
+
267
+ 4
268
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
269
+ Σ00
270
+ k [ •
271
+ • ]
272
+ Σ111
273
+ k
274
+
275
+
276
+
277
+ a �
278
+
279
+ Σ2121
280
+ k
281
+
282
+
283
+
284
+ a �
285
+ c
286
+
287
+
288
+ ⟨c2⟩
289
+ Σ1212
290
+ k
291
+
292
+
293
+
294
+ a �
295
+ c
296
+
297
+
298
+ ⟨c2⟩
299
+ Σ31221
300
+ k
301
+
302
+ 
303
+
304
+
305
+ a �
306
+ c1
307
+
308
+ c2
309
+
310
+
311
+ 
312
+ ⟨c2
313
+ 1, c2
314
+ 2, c2c1, ac2⟩
315
+ Σ22131
316
+ k
317
+
318
+ 
319
+
320
+
321
+ a �
322
+ b
323
+
324
+ c0
325
+
326
+ c1
327
+
328
+
329
+ 
330
+ �b2, c2
331
+ 0, c2
332
+ 1, c1c0,
333
+ ba − ac0
334
+
335
+ Σ12213
336
+ k
337
+
338
+ 
339
+
340
+
341
+ a �
342
+ c1 �
343
+ c2
344
+
345
+
346
+ 
347
+
348
+ c2
349
+ 1, c2
350
+ 2, c1c2, c2a
351
+
352
+ Σ21312
353
+ k
354
+
355
+
356
+
357
+ a �
358
+ b
359
+
360
+ c
361
+
362
+
363
+ ⟨b2, c2, bac⟩
364
+ Σ13122
365
+ k
366
+
367
+ 
368
+
369
+
370
+ a �
371
+ c0 �
372
+ c1
373
+
374
+ b
375
+
376
+
377
+ 
378
+ �b2, c2
379
+ 0, c2
380
+ 1, c0c1,
381
+ ab − c0a
382
+
383
+ Σ412221
384
+ k
385
+
386
+ 
387
+
388
+
389
+ a �
390
+ c1
391
+
392
+ c2
393
+
394
+ c3
395
+
396
+
397
+ 
398
+ �c2
399
+ 1, c2
400
+ 2, c2
401
+ 3, c3c2, c3c1,
402
+ c2c1, c1c3, ac2, ac3
403
+
404
+ Σ321321
405
+ k
406
+
407
+ 
408
+
409
+
410
+ a �
411
+ b
412
+
413
+ c0
414
+
415
+ c1
416
+
417
+ c2
418
+
419
+
420
+ 
421
+ � b2, c2
422
+ 0, c2
423
+ 1, c2
424
+ 2, ac0,
425
+ ac2, c2c1, c2c0, c0c2,
426
+ c0c1c0, ba − ac1c0
427
+
428
+ Σ313131
429
+ k
430
+
431
+ 
432
+
433
+
434
+ a �
435
+ b
436
+
437
+ c0
438
+
439
+ c1
440
+
441
+ c2
442
+
443
+
444
+ 
445
+
446
+ b2, c2
447
+ 0, c2
448
+ 1, c2
449
+ 2, ac2,
450
+ c2c1, c2c0, c1c0, c0c2,
451
+ c0c1c2, ba − ac0
452
+
453
+ Σ312312
454
+ k
455
+
456
+ 
457
+
458
+
459
+ a �
460
+ b
461
+
462
+ c1
463
+
464
+ c2
465
+
466
+
467
+ 
468
+ �b2, c2
469
+ 1, c2
470
+ 2, ac2,
471
+ bac1, c2c1
472
+
473
+ Σ231231
474
+ k
475
+
476
+ 
477
+
478
+
479
+ a �
480
+ b0 �
481
+ b1
482
+
483
+ c0
484
+
485
+ c1
486
+
487
+ c2
488
+
489
+
490
+ 
491
+ �b2
492
+ 0, b2
493
+ 1, c2
494
+ 0, c2
495
+ 1, c2
496
+ 2, ac2, b1b0,
497
+ c2c1c2, c2c0, c1c0, c0c2,
498
+ b0a − ac0, b1a − ac1c2
499
+
500
+ Σ222141
501
+ k
502
+
503
+ 
504
+
505
+
506
+ a �
507
+ b0 �
508
+ b1
509
+
510
+ c0
511
+
512
+ c1
513
+
514
+ c2
515
+
516
+
517
+ 
518
+ �b2
519
+ 0, b2
520
+ 1, c2
521
+ 0, c2
522
+ 1, c2
523
+ 2, b1b0,
524
+ c2c1, c2c0, c1c0, c0c2
525
+ b0a − ac0, b1a − ac1
526
+
527
+ Σ221412
528
+ k
529
+
530
+ 
531
+
532
+
533
+ a �
534
+ b0 �
535
+ b1
536
+
537
+ c0
538
+
539
+ c1
540
+
541
+
542
+ 
543
+ �b2
544
+ 0, b2
545
+ 1, c2
546
+ 0, c2
547
+ 1, b1b0,
548
+ b0b1, c1c0, b1ac0,
549
+ b1ac1, b0a − ac0
550
+
551
+ Σ122214
552
+ k
553
+
554
+ 
555
+
556
+
557
+ a �
558
+ c1 �
559
+ c2
560
+
561
+ c3
562
+
563
+
564
+ 
565
+ �c2
566
+ 1, c2
567
+ 2, c2
568
+ 3, c2c3, c1c3
569
+ c1c2, c3c1, c2a, c3a
570
+
571
+ Σ123123
572
+ k
573
+
574
+ 
575
+
576
+
577
+ a �
578
+ c0 �
579
+ c1
580
+
581
+ c2
582
+
583
+ b
584
+
585
+
586
+ 
587
+ � b2, c2
588
+ 0, c2
589
+ 1, c2
590
+ 2, c0a,
591
+ c2a, c1c2, c0c2, c2c0,
592
+ c0c1c0, ab − c0c1a
593
+
594
+ Σ214122
595
+ k
596
+
597
+ 
598
+
599
+
600
+ a �
601
+ c0 �
602
+ c1
603
+
604
+ b0
605
+
606
+ b1
607
+
608
+
609
+ 
610
+ �b2
611
+ 0, b2
612
+ 1, c2
613
+ 0, c2
614
+ 1, b0b1,
615
+ b1b0, c0c1, c0ab1,
616
+ c1ab1, ab0 − c0a
617
+
618
+ Σ131313
619
+ k
620
+
621
+ 
622
+
623
+
624
+ a �
625
+ c0 �
626
+ c1
627
+
628
+ c2
629
+
630
+ b
631
+
632
+
633
+ 
634
+
635
+ b2, c2
636
+ 0, c2
637
+ 1, c2
638
+ 2, c2a,
639
+ c1c2, c0c2, c0c1, c2c0,
640
+ c2c1c0, ab − c0a
641
+
642
+ Σ213213
643
+ k
644
+
645
+ 
646
+
647
+
648
+ a �
649
+ c1 �
650
+ c2
651
+
652
+ b
653
+
654
+
655
+ 
656
+ �b2, c2
657
+ 1, c2
658
+ 2, c2a,
659
+ c1ab, c1c2
660
+
661
+ Σ132132
662
+ k
663
+
664
+ ���
665
+
666
+
667
+ a �
668
+ c0 �
669
+ c1
670
+
671
+ c2
672
+
673
+ b0
674
+
675
+ b1
676
+
677
+
678
+ 
679
+ �b2
680
+ 0, b2
681
+ 1, c2
682
+ 0, c2
683
+ 1, c2
684
+ 2, c2a, b0b1,
685
+ c2c1c2, c0c2, c0c1, c2c0,
686
+ ab0 − c0a, ab1 − c2c1a
687
+
688
+ Σ141222
689
+ k
690
+
691
+ 
692
+
693
+
694
+ a �
695
+ c0 �
696
+ c1
697
+
698
+ c2
699
+
700
+ b0
701
+
702
+ b1
703
+
704
+
705
+ 
706
+ �b2
707
+ 0, b2
708
+ 1, c2
709
+ 0, c2
710
+ 1, c2
711
+ 2, b0b1,
712
+ c2c0, c1c2, c0c2, c0c1,
713
+ ab0 − c0a, ab1 − c1a
714
+
715
+ Figure 2. Algebras whose g-fans are given in Figure 1
716
+
717
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
718
+ 5
719
+ Theorem 1.5 (Theorem 5.1). Let A be a basic finite dimensional algebra, {e1, e2} a complete set
720
+ of primitive orthogonal idempotents in A, and Pi = eiA (i = 1, 2).
721
+ (a) A is g-convex if and only if Σ(A) = Σa;b for some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.
722
+ (b) Let (l, r) := (t(e1Ae1e1Ae2), t(e1Ae2e2Ae2)). Then we have the following statements.
723
+ • Σ(A) = Σ00;b for some b if and only if (l, r) = (0, 0).
724
+ • Σ(A) = Σ111;b for some b if and only if (l, r) = (1, 1).
725
+ • Σ(A) = Σ1212;b for some b if and only if (l, r) = (1, 2) and t(Rxe1Ae1) = 2 hold for some
726
+ left generator x of e1Ae2 and Rx := {a ∈ e1Ae1 | ax ∈ xAe2}.
727
+ • Σ(A) = Σ2121;b for some b if and only if (l, r) = (2, 1) and t(e2Ae2Lx) = 2 hold for some
728
+ right generator x of e1Ae2 and Lx := {b ∈ e2Ae2 | xb ∈ e1Ax}.
729
+ Σ00;b
730
+
731
+ P2
732
+ P1
733
+ ❄❄❄❄❄❄
734
+
735
+
736
+
737
+
738
+
739
+
740
+ ⑧⑧⑧⑧⑧⑧
741
+ Σ111;b
742
+
743
+ P2
744
+ P1
745
+
746
+
747
+
748
+
749
+
750
+
751
+ ❄❄❄❄❄❄
752
+
753
+
754
+
755
+
756
+
757
+
758
+ Σ1212;b
759
+
760
+ P2
761
+ P1
762
+
763
+
764
+
765
+
766
+
767
+
768
+ ✴✴✴✴✴✴✴✴✴
769
+ ❄❄❄❄❄❄
770
+
771
+
772
+
773
+
774
+
775
+
776
+ ❄❄❄❄❄❄
777
+ Σ2121;b
778
+
779
+ P2
780
+ P1
781
+
782
+
783
+
784
+
785
+
786
+
787
+
788
+
789
+
790
+
791
+
792
+
793
+
794
+
795
+
796
+ ❄❄❄❄❄❄
797
+
798
+
799
+
800
+
801
+
802
+
803
+ ❄❄❄❄❄❄
804
+ Further, in a forthcoming paper [AHIKM2], we will give a complete answer to Problem 1.4 for
805
+ d = 3.
806
+ 2. Preliminaries
807
+ 2.1. Preliminaries on fans. We recall some fundamental materials on fans. We refer the reader
808
+ to e.g. [F, BR, BP] for these materials.
809
+ A convex polyhedral cone σ is a set of the form σ = {�s
810
+ i=1 rivi | ri ≥ 0}, where v1, . . . , vs ∈ Rd.
811
+ We denote it by σ = cone{v1, . . . , vs}. Note that {0} is regarded as a convex polyhedral cone. We
812
+ collect some notions concerning convex polyhedral cones. Let σ be a convex polyhedral cone.
813
+ • The dimension of σ is the dimension of the linear space generated by σ.
814
+ • We say that σ is strongly convex if σ ∩ (−σ) = {0} holds, i.e., σ does not contain a linear
815
+ subspace of positive dimension.
816
+ • We call σ rational if each vi can be taken from Qd.
817
+ • We denote by ⟨·, ·⟩ the usual inner product.
818
+ A supporting hyperplane of σ is a hyperplane
819
+ {v ∈ σ | ⟨u, v⟩ = 0} in Rd given by some u ∈ Rd satisfying σ ⊂ {v ∈ Rd | ⟨u, v⟩ ≥ 0}.
820
+ • A face τ of σ is the intersection of σ with a supporting hyperplane of σ.
821
+ In what follows, a cone means a strongly convex rational polyhedral cone for short.
822
+ Definition 2.1. A fan Σ in Rd is a collection of cones in Rd such that
823
+ (a) each face of a cone in Σ is also contained in Σ, and
824
+ (b) the intersection of two cones in Σ is a face of each of those two cones.
825
+ For each i ≥ 0, we denote by Σi the subset of cones of dimension i. For example, Σ0 consists of
826
+ the trivial cone {0}. We call each element in Σ1 a ray of Σ.
827
+ We collect some notions concerning fans used in this paper. Let Σ be a fan in Rd.
828
+ • We call Σ finite if it consists of a finite number of cones.
829
+ • We call Σ complete if �
830
+ σ∈Σ σ = Rd.
831
+ • We call Σ nonsingular (or smooth) if each maximal cone in Σ is generated by a Z-basis for Zd.
832
+ We prepare some notions which will be used in this paper.
833
+ Definition 2.2. Let Σ be a nonsingular fan in Rd. We call Σ pairwise positive if the following
834
+ condition is satisfied.
835
+
836
+ 6
837
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
838
+ • For each two adjacent maximal cones σ, τ ∈ Σd, take Z-basis {v1, . . . , vd−1, vd} and {v1, . . . , vd−1, v′
839
+ d}
840
+ of Zd such that σ = cone{v1, . . . , vd−1, vd} and τ = cone{v1, . . . , vd−1, v′
841
+ d}. Then vd + v′
842
+ d belongs
843
+ to cone{v1, . . . , vd−1}.
844
+ Definition 2.3. Let Σ and Σ′ be fans in Rd and Rd′ respectively.
845
+ (1) An isomorphism Σ ≃ Σ′ of fans is an isomorphism Zd ≃ Zd′ of abelian groups such that
846
+ the induced linear isomorphism Rd → Rd′ gives a bijection Σ ≃ Σ′ between cones.
847
+ (2) Let (Σ, σ+) and (Σ′, σ′
848
+ +) be sign-coherent fans in Rd and Rd′ respectively. An isomorphism
849
+ of sign-coherent fans is an isomorphism f : Σ ≃ Σ′ of fans such that {f(σ+), f(−σ+)} =
850
+ {σ′
851
+ +, −σ′
852
+ +}.
853
+ 2.2. Sign-coherent fans of rank 2. In this subsection, we introduce some terminologies of sign-
854
+ coherent fans of rank 2, and discuss some fundamental properties.
855
+ Let Σ be a complete nonsingular fan of rank 2. We denote the rays of Σ by
856
+ v1, v2, . . . , vn−1, vn = v0
857
+ (2.1)
858
+ which are indexed in a clockwise orientation. For each 1 ≤ i ≤ n, since Σ is nonsingular, there
859
+ exists an integer ai satisfying
860
+ aivi = vi−1 + vi+1 for each 1 ≤ i ≤ n.
861
+ We call the sequence of integers
862
+ s(Σ) = (a1, . . . , an)
863
+ (2.2)
864
+ the defining sequence of Σ. In fact, Σ is uniquely determined by its defining sequence. A fan with
865
+ defining sequence (a1, . . . , an) is denoted by
866
+ Σ(a1, . . . , an).
867
+ Remark 2.4. [F, Section 2.5] An integer sequence (a1, . . . , an) is a defining sequence of nonsingular
868
+ complete fan of rank 2 if and only if it satisfies
869
+ n
870
+
871
+ i=1
872
+ ai = 3n − 12 and
873
+ �0
874
+ −1
875
+ 1
876
+ a1
877
+ � �0
878
+ −1
879
+ 1
880
+ a2
881
+
882
+ · · ·
883
+ �0
884
+ −1
885
+ 1
886
+ an
887
+
888
+ =
889
+ �1
890
+ 0
891
+ 0
892
+ 1
893
+
894
+ .
895
+ Definition 2.5. We denote by Fansc(2) the set of all (possibly infinite) fans Σ satisfying that
896
+ • Σ is a sign-coherent fans (Definition 1.1) of rank 2 with positive and negative cones
897
+ σ+ := cone{(1, 0), (0, 1)} and σ− := cone{(−1, 0), (0, −1)} respectively,
898
+ • each ray is a face of precisely two facets.
899
+ We denote the subset of complete fans by
900
+ Fansc(2) ⊂ Fansc(2).
901
+ For Σ ∈ Fansc(2), we denote the rays of Σ in a clockwise orientation by
902
+ Σ1 = {v1 := (1, 0), v2, . . . , vn−1, vn = v0 := (0, 1)}.
903
+ Then there exists 2 ≤ i ≤ n − 2 such that vi = (0, −1) and vi+1 = (−1, 0).
904
+
905
+ vn=v0=(0,1)
906
+ v1=(1,0)
907
+ vi=(0,−1)
908
+ vi+1=(−1,0)
909
+ +
910
+
911
+ ❄❄❄❄❄❄
912
+
913
+
914
+
915
+
916
+
917
+
918
+ In this case, it is more convenient to rewrite (2.2) as
919
+ s(Σ) = (a1, a2, . . . , ai; an, an−1, . . . , ai+1).
920
+ Thus we mainly use the notation
921
+ Σ(a1, . . . , ai; an, . . . , ai+1) = Σa1,...,ai;an,...,ai+1
922
+
923
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
924
+ 7
925
+ instead of Σ(a1, . . . , an).
926
+ We consider subsets
927
+ Fan
928
+ +−
929
+ sc (2)
930
+
931
+ Fansc(2)
932
+
933
+
934
+ Fan+−
935
+ sc (2)
936
+
937
+ Fansc(2)
938
+ which consist of fans Σ containing σ−+ := cone{(−1, 0), (0, 1)}, i.e. Σ has the following form.
939
+
940
+ σ−+
941
+ +
942
+
943
+ ❄❄❄❄❄❄
944
+
945
+
946
+
947
+
948
+
949
+
950
+
951
+
952
+
953
+
954
+
955
+
956
+ Thus the rays and the facets of Σ ∈ Fan+−
957
+ sc (2) are written as
958
+ Σ1
959
+ =
960
+ {v1 = (1, 0), v2, . . . , vn−2 = (0, −1), vn−1 = (−1, 0), vn = v0 = (0, 1)},
961
+ (2.3)
962
+ Σ2
963
+ =
964
+ {σ1, . . . , σn−3, σn−2 = σ−, σn−1 = σ−+, σn = σ+}.
965
+ (2.4)
966
+ Similarly, we define Fan
967
+ −+
968
+ sc (2) and Fan−+
969
+ sc (2) as the subsets of Fansc(2) and Fansc(2) respectively
970
+ which consist of fans containing σ+− := cone{(1, 0), (0, −1)}.
971
+ The following observations are clear.
972
+ Lemma 2.6. The following assertions hold.
973
+ (1) The correspondence Σ �→ {−σ | σ ∈ Σ} gives bijections Fan
974
+ +−
975
+ sc (2) → Fan
976
+ −+
977
+ sc (2) and Fan+−
978
+ sc (2) →
979
+ Fan−+
980
+ sc (2).
981
+ (2) Let Σ ∈ Fansc(2). Then Σ ∈ Fan+−
982
+ sc (2) (respectively, Σ ∈ Fan−+
983
+ sc (2)) holds if and only if s(Σ)
984
+ has the form
985
+ (b1, . . . , bm; 0, 0) (respectively, (0, 0; b1, . . . , bm)).
986
+ In this case, bi ≥ 0 holds for any 1 ≤ i ≤ m.
987
+ Definition 2.7. For Σ ∈ Fan
988
+ +−
989
+ sc (2) and Σ′ ∈ Fan
990
+ −+
991
+ sc (2), we define Σ ∗ Σ′ ∈ Fansc(2) by
992
+ (Σ ∪ Σ′)1
993
+ :=
994
+ Σ1 ∪ Σ′
995
+ 1
996
+ (Σ ∪ Σ′)2
997
+ :=
998
+ (Σ2 \ {σ−+}) ∪ (Σ′
999
+ 2 \ {σ+−}) .
1000
+ Σ =
1001
+
1002
+ +
1003
+
1004
+ ?
1005
+ σ−+
1006
+ ❄❄❄❄❄❄
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+ Σ′ =
1020
+
1021
+ +
1022
+
1023
+ !
1024
+ σ+−
1025
+ ❄❄❄❄❄❄
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+ Σ ∗ Σ′ =
1039
+
1040
+ +
1041
+
1042
+ ?
1043
+ !
1044
+ ❄❄❄❄❄❄
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+
1051
+ Then, we clearly have
1052
+ Fansc(2)
1053
+ =
1054
+ Fan
1055
+ +−
1056
+ sc (2) ∗ Fan
1057
+ −+
1058
+ sc (2) := {Σ ∗ Σ′ | Σ ∈ Fan
1059
+ +−
1060
+ sc (2), Σ′ ∈ Fan
1061
+ −+
1062
+ sc (2)},
1063
+ Fansc(2)
1064
+ =
1065
+ Fan+−
1066
+ sc (2) ∗ Fan−+
1067
+ sc (2) := {Σ ∗ Σ′ | Σ ∈ Fan+−
1068
+ sc (2), Σ′ ∈ Fan−+
1069
+ sc (2)}.
1070
+ (2.5)
1071
+ Definition 2.8. Let Σ be a (possibly infinite) nonsingular fan of rank 2. For a cone σ := cone{u, v}
1072
+ of Σ, we define a new nonsingular fan Dσ(Σ) by
1073
+ Dσ(Σ)1
1074
+ =
1075
+ Σ1 ∪ {cone{u + v}},
1076
+ Dσ(Σ)2
1077
+ =
1078
+ (Σ2 \ {σ}) ⊔ {cone{u, u + v}, cone{v, u + v}}.
1079
+ We call Dσ(Σ) the subdivision of Σ at σ.
1080
+ Σ =
1081
+
1082
+ ..........................................
1083
+ σ
1084
+
1085
+
1086
+
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+ Dσ(Σ) =
1099
+
1100
+ .......................................... ❨
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+
1108
+
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+ ❡❡❡❡❡❡❡
1115
+ ❨❨❨❨❨❨❨
1116
+
1117
+ 8
1118
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
1119
+ For a sequence a = (a1 . . . , an) and 1 ≤ i ≤ n, we define a new sequence by
1120
+ Di(a) = (a1, . . . , ai−1, ai + 1, 1, ai+1 + 1, ai+2, . . . , an).
1121
+ (2.6)
1122
+ For a complete nonsingular fan Σ with rays (2.1) and σi := cone{vi, vi+1} for 1 ≤ i ≤ n, we have
1123
+ s ◦ Dσi(Σ) = Di ◦ s(Σ).
1124
+ (2.7)
1125
+ Example 2.9. Figure 1 gives fans in Fan+−
1126
+ sc (2) with at most 8 facets, where
1127
+ Σa1,...,an := Σ(a1, . . . , an; 0, 0)
1128
+ and each edge shows a subdivision. Figure 2 gives examples of algebras whose g-fans are given
1129
+ in Figure 1. For example, Σ111 is the g-vector fan of a cluster algebra of type A2 [FZ1, FZ2].
1130
+ Similarly, Σ1212 and Σ2121 are the g-vector fans of cluster algebras of type B2, and Σ131313 and
1131
+ Σ313131 are the g-vector fans of cluster algebras of type G2.
1132
+ Later we need the following observation (cf. [F, Section 4.3]).
1133
+ Proposition 2.10. Each fan in Fan+−
1134
+ sc (2) can be obtained from Σ(0, 0; 0, 0) by a sequence of
1135
+ subdivisions.
1136
+ Σ(0, 0; 0, 0) =
1137
+ •+
1138
+
1139
+ ❄❄❄❄❄
1140
+ ⑧⑧⑧⑧⑧
1141
+ ❄❄❄❄❄
1142
+ ⑧⑧⑧⑧⑧
1143
+ To prove this, we need the following preparation.
1144
+ Lemma 2.11 (cf. [F, p.43]). Let Σ ∈ Fan+−
1145
+ sc (2) and s(Σ) = (a1, . . . , an−2; 0, 0). If n ≥ 5, then
1146
+ there exists 2 ≤ i ≤ n − 3 satisfying ai = 1.
1147
+ Proof. Let vi = (xi, yi) ∈ Z2 for 1 ≤ i ≤ n. Assume that n ≥ 5 and ai ≥ 2 for any 2 ≤ i ≤ n − 3.
1148
+ We claim that xi+1 ≥ xi holds for each 1 ≤ i ≤ n − 3. In fact, n ≥ 5 implies x2 ≥ 1 = x1. Then
1149
+ we have
1150
+ xi+1 = aixi − xi−1 ≥ 2xi − xi−1 ≥ xi
1151
+ for each 2 ≤ i ≤ n − 3, and the claim follows inductively. Consequently 1 = x1 ≤ x2 ≤ · · · ≤
1152
+ xn−2 = 0 holds, a contradiction.
1153
+
1154
+ We are ready to prove Proposition 2.10.
1155
+ Proof of Proposition 2.10. Let F ⊂ Fan+−
1156
+ sc (2) be the set of fans obtained from Σ(0, 0; 0, 0) by a
1157
+ sequence of subdivisions. It suffices to show Fan+−
1158
+ sc (2) = F.
1159
+ We will show that each Σ ∈ Fan+−
1160
+ sc (2) belongs to F by using induction on n = #Σ2.
1161
+ Clearly n ≥ 4 holds. If n = 4, then Σ = Σ(0, 0; 0, 0) ∈ F.
1162
+ Suppose that Σ with #Σ2 = n ≥ 5 belongs to Fan+−
1163
+ sc (2). In terms of (2.3) and (2.4), there
1164
+ exists 2 ≤ i ≤ n − 3 satisfying vi = vi−1 + vi+1 by Lemma 2.11. Since vi−1, vi+1 forms a Z-basis
1165
+ of Z2, we obtain a new fan Σ′ ∈ Fan+−
1166
+ sc (2) by
1167
+ Σ′
1168
+ 1
1169
+ :=
1170
+ Σ1 \ {vi},
1171
+ Σ′
1172
+ 2
1173
+ :=
1174
+ (Σ2 \ {σi−1, σi}) ∪ {σ} for σ := cone{vi−1, vi+1}.
1175
+ Since #Σ′
1176
+ 2 = n − 1, the induction hypothesis implies Σ′ ∈ F. Thus Σ = Dσ(Σ′) ∈ F holds.
1177
+
1178
+ Remark 2.12. For each n ≥ 1, we have a bijection
1179
+ {Σ ∈ Fan+−
1180
+ sc (2) | #Σ2 = n + 3} ≃ {the ways to parenthesize n factors completely},
1181
+ where parentheses show how cones in the fourth quadrant are obtained by iterated subdivisions.
1182
+ For example, Σ141222 in Figure 1 has 5 cones σ1, . . . , σ5 in the fourth quadrant in terms of (2.4),
1183
+ and they are parenthesized as σ1(((σ2σ3)σ4)σ5). In particular, we have
1184
+ #{Σ ∈ Fan+−
1185
+ sc (2) | #Σ2 = n + 3} = 1
1186
+ n
1187
+ �2n − 2
1188
+ n − 1
1189
+
1190
+ .
1191
+
1192
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
1193
+ 9
1194
+ We also have a bijection
1195
+ {Σ ∈ Fan+−
1196
+ sc (2) | #Σ2 = n + 3} ≃ {Triangulations of a regular (n + 1)-gon},
1197
+ where Σa1,...,an+1 corresponds to a triangulation satisfying the following condition: Let 1, 2, . . ., n+
1198
+ 1 be the vertices of the regular (n + 1)-gon in a clockwise direction, and ai (1 ≤ i ≤ n + 1) the
1199
+ number of triangles containing the vertex i in the triangulation. For example, Σ141222 corresponds
1200
+ to the following triangulation, where 1 is the top vertex.
1201
+ We introduce piecewise linear transformation of sign coherent fan of rank 2. This is a general-
1202
+ ization of mutation of g-vectors of cluster algebras of rank 2 [FZ2, NZ], and also a special case of
1203
+ so called combinatorial mutation [ACGK, FH].
1204
+ Definition 2.13. For Σ ∈ Fan
1205
+ +−
1206
+ sc (2) with σ+ = cone{(0, 1), (1, 0)}, take σ = cone{(1, 0), (ℓ, −1)} ∈
1207
+ Σ2. Define a new sign-coherent fan Σ′ by
1208
+ Σ′
1209
+ 1
1210
+ :=
1211
+ (Σ1 \ {(0, 1)}) ∪ {(−ℓ, 1)}
1212
+ Σ′
1213
+ 2
1214
+ :=
1215
+ (Σ2 \ {σ+, σ−+}) ∪ {−σ, cone{(−ℓ, 1), (1, 0)}},
1216
+ where the positive and negative cones of Σ′ are σ and −σ respectively.
1217
+ Σ =
1218
+
1219
+ (0,1)
1220
+ (1,0)
1221
+ (ℓ,−1)
1222
+ (0,−1)
1223
+ (−1,0)
1224
+ +
1225
+
1226
+ σ
1227
+ σ−+
1228
+ ❄❄❄❄❄❄
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+
1236
+
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+ ❄❄❄❄❄❄
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+
1255
+
1256
+
1257
+
1258
+ ρ(Σ) ≃ Σ′ =
1259
+
1260
+ (−ℓ,1)
1261
+ (1,0)
1262
+ (ℓ,−1)
1263
+ (0,−1)
1264
+ (−1,0)
1265
+ +
1266
+
1267
+ σ
1268
+ −σ
1269
+ ❄❄❄❄❄❄
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+
1293
+
1294
+
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+
1314
+
1315
+
1316
+
1317
+
1318
+
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+ We define the rotation ρ(Σ) ∈ Fan
1332
+ +−
1333
+ sc (2) of Σ as the image of Σ′ by a linear transformation of R2
1334
+ mapping (1, 0) �→ (0, 1) and (ℓ, −1) �→ (1, 0).
1335
+ We give basic properties of rotation, where the name “rotation” is explained by (a) below.
1336
+ Proposition 2.14. Let Σ ∈ Fan+−
1337
+ sc (2) with facets (2.4) and s(Σ) = (a1, . . . , an−2; 0, 0).
1338
+ (a) We have
1339
+ s(ρ(Σ)) = (a2, . . . , an−2, a1; 0, 0).
1340
+ In particular, ρn−2(Σ) = Σ holds, and therefore ρ is an invertible operation.
1341
+ (b) For each 1 ≤ i ≤ n − 3, we have
1342
+ Dσi(Σ) = ρn−3−i ◦ Dσn−3 ◦ ρi+1(Σ).
1343
+ Proof. (a) Recall Σ1 = {v1, . . . , vn} and aivi = vi−1 + vi+1 for 1 ≤ i ≤ n. Moreover
1344
+ ρ(Σ)1 = {w1, . . . , wn} where wi := vi+1 (i ̸= n − 1), wn−1 := −v2.
1345
+ Hence we have
1346
+ wi−1 + wi+1
1347
+ =
1348
+ vi + vi+2 = ai+1vi+1 = ai+1wi for i ̸= n − 2, n,
1349
+ wn−1 + w1
1350
+ =
1351
+ −v2 + v2 = 0 · wn,
1352
+ wn−3 + wn−1
1353
+ =
1354
+ vn−2 − v2 = −(vn + v2) = −a1v1 = a1vn−1 = a1wn−2.
1355
+ Thus s(ρ(Σ)) = (a2, . . . , an−2, a1; 0, 0) as desired.
1356
+ (b) By (a), we have s ◦ ρi+1(Σ) = (ai+2, . . . , an−2, a1, . . . , ai+1; 0, 0). Thus
1357
+ s ◦ Dσn−3 ◦ ρi+1(Σ)
1358
+ (2.7)
1359
+ = Dn−3 ◦ s ◦ ρi+1(Σ) = (ai+2, . . . , an−2, a1, . . . , ai−1, ai + 1, 1, ai+1 + 1; 0, 0).
1360
+
1361
+ 10
1362
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
1363
+ By (a) again, we have
1364
+ s ◦ ρn−3−i ◦ Dσn−3 ◦ ρi+1(Σ)
1365
+ =
1366
+ (a1, . . . , ai−1, ai + 1, 1, ai+1 + 1, ai+2, . . . , an−2; 0, 0)
1367
+ =
1368
+ Di ◦ s(Σ)
1369
+ (2.7)
1370
+ = s ◦ Dσi(Σ).
1371
+ Since a fan is uniquely determined by its defining sequence, the assertion follows.
1372
+
1373
+ 3. Basic results in silting theory
1374
+ 3.1. Preliminaries. Let A be a finite dimensional algebra over a field k. Let K0(proj A) be the
1375
+ Grothendieck group of the additive category proj A, which is identified with the Grothendieck
1376
+ group of the triangulated category Kb(proj A).
1377
+ We recall basic results on silting theory from
1378
+ [AI, AIR, AHIKM1]. First we recall the definition of 2-term silting complexes.
1379
+ Definition 3.1. Let T = (T i, di) ∈ Kb(proj A).
1380
+ (a) T is called presilting if HomKb(proj A)(T, T [ℓ]) = 0 for all positive integers ℓ.
1381
+ (b) T is called silting if it is presilting and Kb(proj A) = thick T .
1382
+ (c) T is called 2-term if T i = 0 for all i ̸= 0, −1. In this case, the class [T ] = [T 0] − [T −1] ∈
1383
+ K0(proj A) of T is called the g-vector of T .
1384
+ (d) An element of K0(proj A) is rigid if it is a g-vector of some 2-term presilting complex.
1385
+ We denote by siltA (respectively, psiltA, 2-siltA, 2-psiltA) the set of isomorphism classes of basic
1386
+ silting (respectively, presilting, 2-term silting, 2-term presilting) complexes of Kb(proj A). Note
1387
+ that a 2-term presilting complex T is silting if and only if |T | = |A| holds.
1388
+ For T, U ∈ siltA, we write T ≥ U if HomKb(proj A)(T, U[ℓ]) = 0 holds for all positive integers ℓ.
1389
+ Then (siltA, ≥) is a partially ordered set [AI].
1390
+ In this paper, the subposet (2-siltA, ≥) of (siltA, ≥) plays a central role.
1391
+ It is known that
1392
+ Hasse(2-siltA) is n-regular for n := |A|. More precisely, let T = T1 ⊕ · · · ⊕ Tn ∈ 2-siltA with
1393
+ indecomposable Ti. For each 1 ≤ i ≤ n, there exists precisely one T ′ ∈ 2-siltA such that T ′ =
1394
+ T ′
1395
+ i ⊕ (�
1396
+ j̸=i Tj) for some T ′
1397
+ i ̸= Ti. In this case, we call T ′ mutation of T at Ti and write
1398
+ T ′ = µTi(T ) = µi(T ).
1399
+ In this case, either T > T ′ or T ′ < T holds. We denote T ′ by µ−
1400
+ i (T ) (respectively, µ+
1401
+ i (T )) if
1402
+ T > T ′ and call it left mutation (respectively, right mutation). The following result is fundamental
1403
+ in silting theory.
1404
+ Proposition 3.2. Let T, T ′ ∈ 2-siltA. Take a decomposition T = T1⊕· · ·⊕Tn with indecomposable
1405
+ Ti. Then the following conditions are equivalent.
1406
+ (a) T > T ′, and T and T ′ are mutation of each other.
1407
+ (b) There is an arrow T → T ′ in Hasse(2-siltA).
1408
+ (c) T ′ = T ′
1409
+ i ⊕ (�
1410
+ j̸=i Tj) and there is a triangle
1411
+ Ti
1412
+ f−→ Ui → T ′
1413
+ i → Ti[1]
1414
+ such that f is a minimal left (add �
1415
+ j̸=i Tj)-approximation.
1416
+ (d) T ′ = T ′
1417
+ i ⊕ (�
1418
+ j̸=i Tj) and there is a triangle
1419
+ Ti → Ui
1420
+ g−→ T ′
1421
+ i → Ti[1]
1422
+ such that g is a minimal right (add �
1423
+ j̸=i Tj)-approximation.
1424
+ The triangles in (c) and (d) are isomorphic, and called an exchange triangle.
1425
+ To introduce the g-fan of a finite dimensional k-algebra A, we consider the real Grothendieck
1426
+ group of A:
1427
+ K0(proj A)R := K0(proj A) ⊗Z R ≃ R|A|.
1428
+
1429
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
1430
+ 11
1431
+ Definition 3.3. For T = T1 ⊕ · · · ⊕ Tℓ ∈ 2-psiltA with indecomposable Ti, let
1432
+ C(T )
1433
+ :=
1434
+ {
1435
+
1436
+
1437
+ i=1
1438
+ ai[Ti] | a1, . . . , aℓ ≥ 0} ⊂ K0(proj A)R,
1439
+ C≤1(T )
1440
+ :=
1441
+ {
1442
+
1443
+
1444
+ i=1
1445
+ ai[Ti] | a1, . . . , aℓ ≥ 0,
1446
+
1447
+
1448
+ i=1
1449
+ ai ≤ 1} ⊂ K0(proj A)R.
1450
+ We call the set
1451
+ Σ(A) := {C(T ) | T ∈ 2-psiltA}
1452
+ of cones the g-fan of A. We also define the g-polytope P(A) of A by
1453
+ P(A) :=
1454
+
1455
+ T ∈2-siltA
1456
+ C≤1(T ).
1457
+ We say that A is g-convex if the g-polytope P(A) is convex.
1458
+ Notice that Σ(A) can be an infinite set. We give the following basic properties of g-fans.
1459
+ Proposition 3.4. Let A be a finite dimensional algebra over a field k and n := |A|.
1460
+ (a) Σ is a pairwise positive sign-coherent fan whose positive (respectively, negative) cone is given
1461
+ by σ+ := C(A) (respectively, σ− := C(A[1])).
1462
+ (b) Any cone in Σ(A) is a face of a cone of dimension n.
1463
+ (c) Any cone in Σ(A) of dimension n − 1 is a face of precisely two cones of dimension n.
1464
+ The following basic observation will be used frequently.
1465
+ Proposition 3.5. Let Λ be a finite dimensional algebra with orthogonal primitive idempotents
1466
+ 1 = e1 + e2. Under the identification P1 = (1, 0) and P2 = (0, 1), the following assertions hold.
1467
+ (a) cone{(−1, 0), (0, 1)} ∈ Σ(Λ) if and only if e2Λe1 = 0.
1468
+ (b) cone{(1, 0), (0, −1)} ∈ Σ(Λ) if and only if e1Λe2 = 0.
1469
+ Proposition 3.5 is explained by the following picture.
1470
+ e2Λe1 = 0 ⇔
1471
+
1472
+ +
1473
+
1474
+ P1
1475
+ P2
1476
+ ❄❄❄❄❄❄
1477
+
1478
+
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+
1488
+
1489
+ e2Λe1 = 0 ⇔
1490
+
1491
+ +
1492
+
1493
+ P1
1494
+ P2
1495
+ ❄❄❄❄❄❄
1496
+
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+ Proof. We only prove (a): Σ(A) ∈ Fan+−
1509
+ sc (2) if and only if P1[1] ⊕ P2 ∈ 2-siltA if and only if
1510
+ HomKb(proj A)(P1, P2) = 0 if and only if e2Λe1 = 0.
1511
+
1512
+ We end this subsection with recalling the sign decomposition technique studied in [Ao, AHIKM1].
1513
+ We have to introduce the following notations.
1514
+ Definition 3.6. Let A be a basic finite dimensional algebra over a field k with |A| = n, and
1515
+ 1 = e1 + · · · + en the orthogonal primitive idempotents. For ǫ ∈ {±1}n, we define
1516
+ K0(proj A)ǫ,R := cone(ǫi[eiA] | i ∈ {1, . . ., n})
1517
+ and a subfan of Σ(A) by
1518
+ Σǫ(A) := {σ ∈ Σ(A) | σ ⊂ K0(proj A)ǫ,R}.
1519
+ Define idempotents of A by
1520
+ e+
1521
+ ǫ :=
1522
+
1523
+ ǫi=1
1524
+ ei and e−
1525
+ ǫ :=
1526
+
1527
+ ǫi=−1
1528
+ ei.
1529
+ We denote by Aǫ the subalgebra of A given by
1530
+ Aǫ :=
1531
+ � e+
1532
+ ǫ Ae+
1533
+ ǫ
1534
+ e+
1535
+ ǫ Ae−
1536
+ ǫ
1537
+ 0
1538
+ e−
1539
+ ǫ Ae−
1540
+ ǫ
1541
+
1542
+ .
1543
+
1544
+ 12
1545
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
1546
+ Define an ideal Iǫ of Aǫ by
1547
+ Iǫ :=
1548
+ � rad(e+
1549
+ ǫ Ae+
1550
+ ǫ ) ∩ Anne+
1551
+ ǫ Ae+
1552
+ ǫ (e+
1553
+ ǫ Ae−
1554
+ ǫ )
1555
+ 0
1556
+ 0
1557
+ rad(e−
1558
+ ǫ Ae−
1559
+ ǫ ) ∩ Ann(e+
1560
+ ǫ Ae−
1561
+ ǫ )e−
1562
+ ǫ Ae−
1563
+ ǫ
1564
+
1565
+ .
1566
+ The following result is often very useful to calculate Σǫ(A).
1567
+ Proposition 3.7. [AHIKM1, Example 4.26] For each ideal I of Aǫ contained in Iǫ, the isomor-
1568
+ phisms − ⊗Aǫ A : K0(proj Aǫ)R ≃ K0(proj A)R and − ⊗Aǫ (Aǫ/I) : K0(proj Aǫ)R ≃ K0(proj Aǫ/I)R
1569
+ gives an isomorphism of fans
1570
+ Σǫ(A) ≃ Σǫ(Aǫ/I).
1571
+ The following finiteness condition plays a central role in this paper.
1572
+ Definition 3.8. Let A be a finite dimensional algebra over a field k. We say that A is g-finite if
1573
+ #2-siltA < ∞. (This is called τ-tilting finite in [DIJ].)
1574
+ Proposition 3.9. A is g-finite (or equivalently, Σ(A) is finite) if and only if Σ(A) is complete.
1575
+ 3.2. Silting complexes in terms of matrices. In this subsection, we give basic properties of
1576
+ 2-term presilting complexes. Throughout this subsection, we assume the following.
1577
+ Assumption 3.10. For rings A and B and an Aop ⊗k B-module X which is finitely generated on
1578
+ both sides, let
1579
+ Λ :=
1580
+ � A
1581
+ X
1582
+ 0
1583
+ B
1584
+
1585
+ .
1586
+ Equivalently, Λ is a ring with orthogonal idempotents 1 = e1 + e2 satisfying e2Λe1 = 0. In fact,
1587
+ we can recover Λ from A := e1Λe1, B := e2Λe2 and X := e1Λe2 by the equality above.
1588
+ Consider projective Λ-modules
1589
+ P1 := [A X], P2 := [0 B] ∈ proj Λ.
1590
+ For s, t ≥ 0, we denote by Ms,t(X) the set of s × t matrices with entries in X. Then we have an
1591
+ isomorphism
1592
+ Ms,t(X) ≃ HomΛ(P ⊕t
1593
+ 2 , P ⊕s
1594
+ 1 )
1595
+ sending x ∈ Ms,t(X) to the left multiplication x(·) : P ⊕t
1596
+ 2
1597
+ → P ⊕s
1598
+ 1 . Thus we have a 2-term complex
1599
+ Px := (P ⊕t
1600
+ 2
1601
+ x(·)
1602
+ −−→ P ⊕s
1603
+ 1 ) ∈ per Λ.
1604
+ The following observation is basic.
1605
+ Proposition 3.11. Let s, t, u, v ≥ 0, x ∈ Ms,t(X) and y ∈ Mu,v(X).
1606
+ (a) Then we have an exact sequence
1607
+ Mu,s(A) ⊕ Mv,t(B)
1608
+ [(·)x y(·)]
1609
+ −−−−−−→ Mu,t(X) → Homper Λ(Px, Py[1]) → 0.
1610
+ (b) In particular, Px is presilting if and only if Ms,t(X) = Ms(A)x + xMt(B) holds.
1611
+ Proof. The assertion (a) follows from an exact sequence
1612
+ HomΛ(P ⊕s
1613
+ 1
1614
+ , P ⊕u
1615
+ 1
1616
+ ) ⊕ HomΛ(P ⊕t
1617
+ 2 , P ⊕v
1618
+ 2
1619
+ )
1620
+ [(·)x y(·)]
1621
+ −−−−−−→ HomΛ(P ⊕t
1622
+ 2 , P ⊕u
1623
+ 1
1624
+ ) → Homper Λ(Px, Py[1]) → 0.
1625
+ The assertion (b) is immediate from (a).
1626
+
1627
+ The following construction of silting complexes of Λ will be used frequently, where t(XB) (re-
1628
+ spectively, t(AX)) is the minimal number of generators of X as a right B-module (respectively,
1629
+ left A-module).
1630
+ Proposition 3.12. In Assumption 3.10, assume that A and B are local k-algebras.
1631
+ (a) Σ(Λ) contains cone{(0, −1), (1, −r)} for r := t(XB) = dim(X/XJB)B/JB.
1632
+ (b) Σ(Λ) contains cone{(1, 0), (ℓ, −1)} for ℓ := t(AX) = dimA/JA(X/JAX).
1633
+
1634
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
1635
+ 13
1636
+ (c) Let g1, . . . , gr be a minimal set of generators of the B-module X. Then µ+
1637
+ 1 (Λ[1]) = Pg ⊕P2[1] ∈
1638
+ 2-siltΛ holds for g := [g1 · · · gr] ∈ M1,r(X).
1639
+ (d) Let h1, . . . , hℓ a minimal set of generators of the Aop-module X. Then µ−
1640
+ 2 (Λ) = P1 ⊕ Ph ∈
1641
+ 2-siltΛ holds for h :=
1642
+ � h1
1643
+ ...
1644
+ hℓ
1645
+
1646
+ ∈ Mℓ,1(X).
1647
+ By Propositions 3.5 and 3.12, a part of Σ(Λ) has the following form.
1648
+ Σ(Λ) =
1649
+
1650
+ P2
1651
+ P1
1652
+ Ph=ℓP1−P2
1653
+ Pg=P1−rP2
1654
+ P2[1]
1655
+ P1[1]
1656
+ +
1657
+
1658
+ µ−
1659
+ 2 (Λ)
1660
+ µ+
1661
+ 1 (Λ[1])
1662
+ ❄❄❄❄❄❄
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+
1670
+
1671
+
1672
+
1673
+
1674
+
1675
+
1676
+
1677
+
1678
+ ❄❄❄❄❄❄
1679
+
1680
+
1681
+
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+ ✯✯✯✯✯✯✯✯✯✯✯✯✯
1693
+ ✴✴✴✴✴✴✴✴✴
1694
+ Proof. We only prove (a)(c) since (b)(d) are the duals. A minimal right (add P2[1])-approximation
1695
+ of P1[1] is given by
1696
+ g(·) : P2[1]⊕r → P1[1].
1697
+ Thus the mutation of Λ[1] at P1[1] is Pg ⊕ P2.
1698
+
1699
+ Now we assume that B is a local algebra. We fix a minimal set of generators g1, . . . , gr of the
1700
+ right B-module X and set
1701
+ g := [g1 · · · gr] ∈ M1,r(X) and g := [g1 · · · gr] ∈ M1,r(X/XJB),
1702
+ where (·) is a canonical surjection X ։ X/XJB. Then we have an isomorphism
1703
+ g(·) : Mr,1(B/JB) ≃ X/XJB,
1704
+ and we define a map π : X → Mr,1(B/JB) by
1705
+ π := (X
1706
+ (·)
1707
+ −→ X/XJB
1708
+ (g(·))−1
1709
+ −−−−−→ Mr,1(B/JB)).
1710
+ For each s, t ≥ 0, an entry-wise application of π gives a map
1711
+ π : Ms,t(X) → Ms,t(Mr,1(B/JB)) = Mrs,t(B/JB).
1712
+ In other words, for the identity matrix Is ∈ Ms(k) and gIs :=
1713
+ � g
1714
+ O
1715
+ ...
1716
+ O
1717
+ g
1718
+
1719
+ ∈ Ms(M1,r(k)) =
1720
+ Ms,rs(k), we have
1721
+ x = (gIs)π(x) for each x ∈ Ms,t(X).
1722
+ (3.1)
1723
+ Define a morphism of k-algebras
1724
+ φ : Ms(A) → Mrs(B/JB) by a(gIs) = (gIs)φ(a).
1725
+ Later we will use the following observation.
1726
+ Proposition 3.13. In Assumption 3.10, assume that B is a local algebra. Let s, t ≥ 0.
1727
+ (a) π : Ms,t(X) → Mrs,t(B/JB) is a morphism of Ms(A)op ⊗k Mt(B)-modules, where we regard
1728
+ Mrs,t(B/JB) as an Ms(A)op-module via φ.
1729
+ (b) Let x ∈ Ms,t(X). If Px is presilting, then π(x) ∈ Mrs,t(B/JB) has full rank.
1730
+ Proof. (a) For any a ∈ Ms(A), x ∈ Ms,t(X) and b ∈ Mt(B), we need to show π(axb) = φ(a)π(x)b.
1731
+ In fact,
1732
+ (gIs)φ(a)π(x)b = a(gIs)π(x)b
1733
+ (3.1)
1734
+ = axb = axb
1735
+ (3.1)
1736
+ = (gIs)π(axb)
1737
+ gives the desired equality since gIs(·) is injective.
1738
+
1739
+ 14
1740
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
1741
+ (b) By Proposition 3.11(b), we have Ms,t(X) = Ms(A)x + xMt(B). Applying π, we have
1742
+ Mrs,t(B/JB) = π(Ms(A)x + xMt(B))
1743
+ (a)
1744
+ =
1745
+ φ(Ms(A))π(x) + π(x)Mt(B)
1746
+
1747
+ Mrs(B/JB)π(x) + π(x)Mt(B/JB).
1748
+ Thus the right-hand side is Mrs,t(B/JB). This clearly implies that π(x) has full rank.
1749
+
1750
+ For completeness, we also give the dual statement of Proposition 3.13. Now we assume that A
1751
+ is a local algebra. We fix a minimal set of generators h1, . . . , hℓ of the left A-module X and set
1752
+ h :=
1753
+ � h1
1754
+ ...
1755
+ hℓ
1756
+
1757
+ ∈ Mℓ,1(X) and h :=
1758
+ � h1
1759
+ ...
1760
+ hℓ
1761
+
1762
+ ∈ Mℓ,1(X/JAX),
1763
+ where by abuse of notations, (·) is a canonical surjection X ։ X/JAX. Then we have an isomor-
1764
+ phism (·)h : M1,ℓ(A/JA) ≃ X/JAX. By abuse of notations, let
1765
+ π := (X
1766
+ (·)
1767
+ −→ X/JAX
1768
+ ((·)h)−1
1769
+ −−−−−→ M1,ℓ(A/JA)).
1770
+ For each s, t ≥ 0, an entry-wise application of π gives a map
1771
+ π : Ms,t(X) → Ms,t(M1,ℓ(A/JA)) = Ms,ℓt(A/JA).
1772
+ Define a morphism of k-algebras
1773
+ φ : Mt(B) → Mℓt(A/JA) by (hIt)b = φ(b)(hIs).
1774
+ We have the following dual of Proposition 3.13.
1775
+ Proposition 3.14. In Assumption 3.10, assume that A is a local algebra. Let s, t ≥ 0.
1776
+ (a) π : Ms,t(X) → Ms,ℓt(A/JA) is a morphism of Ms(A)op ⊗k Mt(B)-modules, where we regard
1777
+ Ms,ℓt(A/JA) as an Mt(B)-module via φ.
1778
+ (b) Let x ∈ Ms,t(X). If Px is presilting, then π(x) ∈ Ms,ℓt(A/JA) has full rank.
1779
+ 3.3. Uniserial property of g-finite algebras. As an application of results in the previous sub-
1780
+ section, we prove the following result, which is not used in the rest of this paper.
1781
+ Theorem 3.15. Let Λ be a finite dimensional elementary k-algebra, and 1 = e1 + · · · + en the
1782
+ orthogonal primitive idempotents. If Λ is g-finite, then for each 1 ≤ i ̸= j ≤ n, eiΛej/eiΛejJΛej
1783
+ is a uniserial (eiΛei)op-module and eiΛej/eiJΛeiJΛej is a uniserial ejΛej-module.
1784
+ Thanks to sign decomposition, we can deduce Theorem 3.15 from the following result.
1785
+ Theorem 3.16. Let A and B be local k-algebras with k ≃ A/JA ≃ B/JB. If X is a Aop ⊗k B-
1786
+ module such that
1787
+
1788
+ A
1789
+ X
1790
+ 0
1791
+ B
1792
+
1793
+ is g-finite, then X/XJB is a uniserial Aop-module and X/JAX is a
1794
+ uniserial B-module.
1795
+ Proof of Theorem 3.16⇒Theorem 3.15. Since Λ is g-finite, so is Γ := (ei + ej)Λ(ei + ej).
1796
+ By
1797
+ Proposition 3.7, Γ+− =
1798
+ � eiΛei
1799
+ eiΛej
1800
+ 0
1801
+ ejΛej
1802
+
1803
+ is also g-finite. Thus the assertion follows from Theorem
1804
+ 3.16.
1805
+
1806
+ In the rest of this subsection, we prove Theorem 3.16.
1807
+ The following observation plays a key role in the proof, where we identify K0(proj Λ) with Z2
1808
+ via [A X] �→ (1, 0), [0 B] �→ (0, 1).
1809
+ Lemma 3.17. Let Λ :=
1810
+ � A
1811
+ X
1812
+ 0
1813
+ k
1814
+
1815
+ . Assume that (1, −1) ∈ K0(proj Λ) is rigid.
1816
+ (a) There exists h ∈ X such that X = Ah.
1817
+
1818
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
1819
+ 15
1820
+ (b) Let Λ′ :=
1821
+ � A
1822
+ JAX
1823
+ 0
1824
+ k
1825
+
1826
+ and t ≥ 1. If (1, −t) ∈ K0(proj Λ) is rigid, then (1, 1 − t) ∈ K0(proj Λ′)
1827
+ is rigid.
1828
+ Proof. (a) By Proposition 3.11(b), there exists h ∈ X satisfying X = Ah + hk = Ah.
1829
+ (b) By Proposition 3.11(b), there exists [x1 x2 · · · xt] ∈ M1,t(X) such that
1830
+ M1,t(X) = A[x1 · · · xt] + [x1 · · · xt]Mt(k).
1831
+ (3.2)
1832
+ As in Section 3.2, the element h gives surjections
1833
+ π := (X
1834
+ (·)
1835
+ −→ X/JAX
1836
+ ((·)h)−1
1837
+ −−−−−→ A/JA = k) and π : M1,t(X) → M1,t(k).
1838
+ By Proposition 3.14, π(x) ∈ M1,t(k) has full rank. By changing indices if necessary, we can assume
1839
+ x1 ∈ A×h. Multiplying an element in A× from left, we can assume x1 = h. Multiplying an element
1840
+ in GLt(k) from right, we can assume xi ∈ JAh for each 2 ≤ i ≤ t. We claim
1841
+ M1,t−1(JAX) = A[x2 · · · xt] + [x2 · · · xt]Mt−1(k).
1842
+ In fact, fix any [y2 · · · yt] ∈ M1,t−1(JAX). By (3.2) there exist a ∈ A and b = [bij]1≤i,j≤t ∈ Mt(k)
1843
+ such that
1844
+ [0 y2 · · · yt] = a[h x2 · · · xt] + [h x2 · · · xt]b.
1845
+ (3.3)
1846
+ Applying π, we obtain
1847
+ [0 0 · · · 0] = a[1 0 · · · 0] + [1 0 · · · 0]b in M1,t(k).
1848
+ Thus we obtain b12 = · · · = b1t = 0. Looking at the i-th entries for 2 ≤ i ≤ t of (3.3), we have
1849
+ [y2 · · · yt] = a[x2 · · · xt] + [x2 · · · xt][bij]2≤i,j≤n.
1850
+ Thus the claim follows.
1851
+
1852
+ We are ready to prove Theorem 3.16.
1853
+ Proof of Theorem 3.16. We prove that X/XJB is a uniserial Aop-module under a weaker assump-
1854
+ tion that (1, −t) ∈ K0(proj Λ) is rigid for each t ≥ 1. Since Λ :=
1855
+ � A
1856
+ X/XJB
1857
+ 0
1858
+ k
1859
+
1860
+ is a factor
1861
+ algebra of Λ, the element (1, −t) ∈ K0(proj Λ) is rigid for each t ≥ 1. Replacing Λ by Λ, we can
1862
+ assume that
1863
+ B = k and Λ =
1864
+ � A
1865
+ X
1866
+ 0
1867
+ k
1868
+
1869
+ .
1870
+ We use induction on dimk X.
1871
+ By Lemma 3.17(a), the Aop-module X has a unique maximal
1872
+ submodule JAX. Let Λ′ =
1873
+ � A
1874
+ JAX
1875
+ 0
1876
+ k
1877
+
1878
+ . By Lemma 3.17(b), (1, −t) ∈ K0(proj Λ′) is rigid for
1879
+ each t ≥ 1.
1880
+ By induction hypothesis, JAX is a uniserial Aop-module.
1881
+ Therefore X is also a
1882
+ uniserial Aop-module.
1883
+
1884
+ 4. Gluing, Rotation and Subdivision of g-fans
1885
+ 4.1. Gluing fans. Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal primitive
1886
+ idempotents 1 = e1 + e2 ∈ Λ and 1 = e′
1887
+ 1 + e′
1888
+ 2 ∈ Λ′. In this subsection, we prove the following
1889
+ Gluing Theorem, where we identify K0(proj Λ) and K0(proj Λ′) with Z2 by e1Λ = (1, 0) = e′
1890
+ 1Λ′ and
1891
+ e2Λ = (0, 1) = e′
1892
+ 2Λ′.
1893
+ Theorem 4.1 (Gluing Theorem). Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal
1894
+ primitive idempotents 1 = e1 + e2 ∈ Λ and 1 = e′
1895
+ 1 + e′
1896
+ 2 ∈ Λ′. Assume e1Λe2 = 0 and e′
1897
+ 2Λ′e′
1898
+ 1 = 0,
1899
+ or equivalently, Σ(Λ) ∈ Fan
1900
+ +−
1901
+ sc (2) and Σ(Λ′) ∈ Fan
1902
+ −+
1903
+ sc (2) (Proposition 3.5). Then, there exists an
1904
+ elementary k-algebra Γ such that
1905
+ Σ(Γ) = Σ(Λ) ∗ Σ(Λ′).
1906
+ (4.1)
1907
+
1908
+ 16
1909
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
1910
+ Theorem 4.1 is explained by the following picture.
1911
+ Σ(Λ) =
1912
+
1913
+ +
1914
+
1915
+ ?
1916
+ ❄❄❄❄❄❄
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+ Σ(Λ′) =
1930
+
1931
+ +
1932
+
1933
+ !
1934
+ ❄❄❄❄❄❄
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+ Σ(Γ) =
1948
+
1949
+ +
1950
+
1951
+ ?
1952
+ !
1953
+ ❄❄❄❄❄❄
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+ The construction of Γ is as follows: We can write
1961
+ Λ =
1962
+
1963
+ A
1964
+ X
1965
+ 0
1966
+ B
1967
+
1968
+ and Λ′ =
1969
+
1970
+ C
1971
+ 0
1972
+ Y
1973
+ D
1974
+
1975
+ ,
1976
+ where A, B, C, D are local k-algebras, X is an Aop ⊗k B-module, and Y is an Dop ⊗k C-module.
1977
+ Since Λ and Λ′ are elementary, we have k ≃ A/JA ≃ B/JB ≃ C/JC ≃ D/JD. Let A ×k C be a
1978
+ fiber product of canonical surjections (·) : A → k and (·) : C → k, that is,
1979
+ A ×k C := {(a, c) ∈ A × C | a = c}.
1980
+ Let B ×k D be a fibre product of (·) : B → k and (·) : D → k. Using the projections A ×k C → A
1981
+ and B ×k D → B, we regard X as an (A ×k C)op ⊗k (B ×k D)-module, and using the projections
1982
+ A ×k C → C and B ×k D → D, we regard Y as an (B ×k D)op ⊗k (A ×k C)-module.
1983
+ We prove that the algebra
1984
+ Γ :=
1985
+ � A ×k C
1986
+ X
1987
+ Y
1988
+ B ×k D
1989
+
1990
+ satisfies Σ(Γ) = Σ(Λ) ∗ Σ(Λ′), where the multiplication of the elements of X and those of Y are
1991
+ defined to be zero.
1992
+ Proof of Theorem 4.1. It suffices to prove
1993
+ Σ+−(Γ) = Σ+−(Λ) and Σ−+(Γ) = Σ−+(Λ′).
1994
+ For ǫ = (+, −), we have Γǫ =
1995
+
1996
+ A ×k C
1997
+ X
1998
+ 0
1999
+ B ×k D
2000
+
2001
+ . The ideal I :=
2002
+
2003
+ rad C
2004
+ 0
2005
+ 0
2006
+ rad D
2007
+
2008
+ of Γǫ is
2009
+ contained in Iǫ, and we have an isomorphism Γǫ/I ≃ Λ of k-algebras. Applying Proposition 3.7 to
2010
+ Γ, we get Σ+−(Γ) = Σ+−(Λ). By the same argument, Σ−+(Γ) = Σ−+(Λ′) holds, as desired.
2011
+
2012
+ Example 4.2. Let Λ and Λ′ be the following algebras.
2013
+ Λ :=
2014
+ k
2015
+
2016
+ 
2017
+ 1
2018
+ 2
2019
+ a3 �
2020
+ a4
2021
+
2022
+ a2
2023
+
2024
+ a1
2025
+
2026
+
2027
+ 
2028
+ ⟨a2
2029
+ 1, a2
2030
+ 2, a2
2031
+ 4, a2a1, a2a3 − a3a4⟩,
2032
+ Λ′ :=
2033
+ k
2034
+
2035
+ 1
2036
+ 2
2037
+ b1
2038
+
2039
+ b2
2040
+
2041
+
2042
+ ⟨b2
2043
+ 2⟩
2044
+ By Examples 4.6 and 4.11 below, we have
2045
+ Σ(Λ) = Σ13122;00 =
2046
+ Σ(Λ′) = Σ00;1212 =
2047
+ Let A = e1Λe1, X = e1Λe2, B = e2Λe2, C = e1Λ′e1, Y = e2Λ′e1, D = e2Λ′e2 and Γ =
2048
+ � A ×k C
2049
+ X
2050
+ Y
2051
+ B ×k D
2052
+
2053
+ . Then
2054
+ Γ =
2055
+ k
2056
+
2057
+ 
2058
+ 1
2059
+ 2
2060
+ a3 �
2061
+ a4
2062
+
2063
+ a2
2064
+
2065
+ a1
2066
+ � b1
2067
+
2068
+ b2
2069
+
2070
+
2071
+ 
2072
+ ⟨a2
2073
+ 1, a2
2074
+ 2, a2
2075
+ 4, a2a1, a2a3 − a3a4, b2
2076
+ 2⟩ + ⟨aibj, bjai | i ∈ {1, 2, 3, 4}, j ∈ {1, 2}⟩
2077
+
2078
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
2079
+ 17
2080
+ By Gluing Theorem 4.1, we have
2081
+ Σ(Γ) = Σ(Λ) ∗ Σ(Λ′) = Σ13122;1212 =
2082
+ 4.2. Rotation and Mutation. In this subsection, we explain a connection between the rotation
2083
+ of a fan given in Definition 2.13 and mutation of a 2-term silting complex.
2084
+ The following main result in this section shows that mutation of an algebra induce the rotation
2085
+ of the g-fan, where we identify K0(proj Λ) with Z2 by e1Λ = (1, 0) and e2Λ = (0, 1).
2086
+ Theorem 4.3 (Rotation Theorem). Let Λ be a finite dimensional k-algebra of rank 2 with or-
2087
+ thogonal primitive idempotents 1 = e1 + e2. Assume e1Λe2 = 0, or equivalently, Σ(Λ) ∈ Fan
2088
+ +−
2089
+ sc (2)
2090
+ (Proposition 3.5). Then, there exists a finite dimensional k-algebra Γ such that
2091
+ Σ(Γ) = ρ(Σ(Λ)).
2092
+ Furthermore, if Λ is elementary, then Γ can be taken to be elementary.
2093
+ Theorem 4.3 is explained by the following picture.
2094
+ Σ(Λ) =
2095
+
2096
+ +
2097
+
2098
+ ❄❄❄❄❄❄
2099
+
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+ ❄❄❄❄❄❄
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+ Σ(Γ) ≃
2129
+
2130
+ +
2131
+ −❄❄❄❄❄❄
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+ To prove Theorem 4.3, we need the following preparation.
2194
+ Let A be a basic finite dimensional algebra over a field k with |A| = n, and 1 = e1 + · · · + en
2195
+ the orthogonal primitive idempotents. For 1 ≤ i ≤ n and δ ∈ {±1}, consider a half space
2196
+ Rn
2197
+ i,δ := {x1e1 + · · · + xden ∈ Rn | δxi ≥ 0}
2198
+ and define a subfan of Σ by
2199
+ Σi,δ := {σ ∈ Σ | σ ⊂ Rn
2200
+ i,δ}.
2201
+ On the other hand, for elements T ≥ T ′ in siltA, we consider the interval
2202
+ [T ′, T ] := {U ∈ siltA | T ≥ U ≥ T ′}.
2203
+ The following result provides a correspondence of a part of two g-fans.
2204
+ Proposition 4.4. For 1 ≤ i ≤ n, let B := EndA(µ−
2205
+ i (A)), where µ−
2206
+ i (A) = Ti ⊕ (�
2207
+ j̸=i P A
2208
+ j ).
2209
+ (a) [AHIKM1, Threom 4.26] There exists a triangle functor F : Kb(proj A) → Kb(proj B) which
2210
+ satisfies F(Ti) ≃ P B
2211
+ i
2212
+ and F(P A
2213
+ j ) ≃ P B
2214
+ j
2215
+ for each j ̸= i and gives an isomorphism K0(proj A) ≃
2216
+ K0(proj B) and an isomorphism of fans
2217
+ Σi,−(A) ≃ Σi,+(B).
2218
+ (b) There are isomorphisms (1 − ei)A(1 − ei) ≃ (1 − ei)B(1 − ei) and A/(1 − ei) ≃ B/(1 − ei) of
2219
+ k-algebras.
2220
+ Proof. (b) Although this is known to experts, we give a proof for convenience of the reader. The first
2221
+ isomorphism is clear. To prove the second one, notice that A/(1 − ei) = EndKb(proj A)(P A
2222
+ i )/[A/P A
2223
+ i ]
2224
+ and B/(1−ei) = EndKb(proj A)(Ti)/[T/Ti] hold, where [X] denotes the ideal consisting of morphisms
2225
+ factoring through add X. Let Pi
2226
+ f−→ Q
2227
+ g−→ Ti
2228
+ h−→ Pi[1] be an exchange triangle. Let a ∈ eiAei =
2229
+ EndKb(proj A)(Pi). Since f is a minimal left (add A/Pi)-approximation of Pi, we obtain the following
2230
+ commutative diagram.
2231
+ Pi
2232
+ f
2233
+
2234
+ a�
2235
+ Q
2236
+ g
2237
+
2238
+
2239
+ Ti
2240
+ h �
2241
+ b�
2242
+ Pi[1]
2243
+ a[1]
2244
+
2245
+ Pi
2246
+ f
2247
+ � Q
2248
+ g
2249
+ � Ti
2250
+ h � Pi[1]
2251
+
2252
+ 18
2253
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
2254
+ It is routine to check that the desired isomorphism A/(1 − ei)A = EndKb(proj A)(P A
2255
+ i )/[A/P A
2256
+ i ] ≃
2257
+ B/(1 − ei) = EndKb(proj A)(Ti)/[T/Ti] is given by a �→ b.
2258
+
2259
+ We are ready to prove Theorem 4.3.
2260
+ Proof of Theorem 4.3. Let T = P Λ
2261
+ 1 ⊕ T2 := µ−
2262
+ 2 (Λ) and E := EndKb(proj Λ)(T ). By Proposition
2263
+ 4.4(a), we have a triangle functor F : Kb(proj Λ) → Kb(proj E) which satisfies
2264
+ F(P Λ
2265
+ 1 ) = P E
2266
+ 1
2267
+ and F(T2) = P E
2268
+ 2
2269
+ and induces an isomorphism F : K0(proj Λ) ≃ K0(proj E) and an isomorphism of fans
2270
+ F : Σ2,−(Λ) ≃ Σ2,+(E).
2271
+
2272
+ Σ(Λ)
2273
+ P Λ
2274
+ 2
2275
+ P Λ
2276
+ 1
2277
+ T2
2278
+ T
2279
+ +
2280
+
2281
+ ❄❄❄❄❄❄
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+ ❄❄❄❄❄❄
2298
+
2299
+
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+ Σ(E)
2313
+ P E
2314
+ 2 [1]
2315
+ P E
2316
+ 1
2317
+ P E
2318
+ 2
2319
+ P E
2320
+ 1 [1]
2321
+ +
2322
+
2323
+ E
2324
+ E[1]
2325
+ ❄❄❄❄❄❄
2326
+
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+ Σ(Γ)
2372
+ P Γ
2373
+ 2 [1]
2374
+ P Γ
2375
+ 1
2376
+ P Γ
2377
+ 2
2378
+ P Γ
2379
+ 1 [1]
2380
+ +
2381
+
2382
+ Γ
2383
+ Γ[1]
2384
+ ❄❄❄❄❄❄
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+ Applying Theorem 3.7 to E, we obtain a k-algebra Γ := E−+ such that
2447
+ e1Γe2 = 0 and Σ−+(Γ) = Σ−+(E).
2448
+ Therefore under the isomorphism K0(proj Γ) ≃ Z2 given by P Γ
2449
+ 1 �→ (0, 1) and P Γ
2450
+ 2 �→ (1, 0), we have
2451
+ Σ(Γ) = ρ(Σ(Λ)), as desired.
2452
+ It remains to prove the last assertion. By Proposition 4.4(a), we have isomorphisms e1Ee1 ≃
2453
+ e1Λe1 and Λ/(e1) ≃ E/(e1) of k-algebras. Thus, if Λ is elementary, then so are E and Γ.
2454
+
2455
+ We give two examples of Theorem 4.3. The first one satisfies E = Γ.
2456
+ Example 4.5. Let Λ be the following algebra. Then Σ(Λ) is the following fan by Example 4.11
2457
+ below.
2458
+ Λ =
2459
+ k
2460
+
2461
+ 1
2462
+ 2
2463
+ a �
2464
+ b
2465
+
2466
+
2467
+ ⟨b2⟩
2468
+ Σ(Λ) = Σ1212 =
2469
+ We set µ2(Λ) = T = T1 ⊕ T2 := [e2Λ
2470
+
2471
+ −→ e1Λ] ⊕ e1Λ and E := EndKb(proj Λ)(T ). Then we have
2472
+ Γ = E =
2473
+ k
2474
+
2475
+ 1
2476
+ 2
2477
+ a �
2478
+ b
2479
+
2480
+
2481
+ ⟨b2⟩
2482
+ and Σ(Γ) = ρ(Σ(Λ)) = Σ2121 =
2483
+ The second example satisfies E ̸= Γ.
2484
+ Example 4.6. Let Λ be the following algebra. Then Σ(Λ) is the following fan by Example 4.12
2485
+ below.
2486
+ Λ =
2487
+ k
2488
+
2489
+ 1
2490
+ 2
2491
+ a �
2492
+ b
2493
+
2494
+ c
2495
+
2496
+
2497
+ ⟨b2, c2, bac⟩
2498
+ Σ(Λ) = Σ21312 =
2499
+ We set µ2(Λ) = T = T1 ⊕ T2 := [e2Λ ( a·
2500
+ ac·)
2501
+ −−−−→ e1Λ⊕2] ⊕ e1Λ and E := EndKb(proj Λ)(T ), where we
2502
+ switch the indices 1 and 2 unlike the proof of Theorem 4.3. Then
2503
+ E =
2504
+ k
2505
+
2506
+ 1
2507
+ 2
2508
+ a �
2509
+ a′
2510
+
2511
+ b
2512
+
2513
+
2514
+ ⟨b2, a′b, a′aa′⟩
2515
+ and Σ(E) = Σ13122;111 =
2516
+
2517
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
2518
+ 19
2519
+ where new arrows a, a′ and b are morphisms in Kb(proj Λ) given by commutative diagrams
2520
+ 0
2521
+ e1Λ
2522
+ e2Λ
2523
+ e1Λ⊕2
2524
+
2525
+
2526
+ ( a·
2527
+ ac·) �
2528
+ ( 0
2529
+ 1)
2530
+
2531
+ e2Λ
2532
+ e1Λ⊕2
2533
+ 0
2534
+ e1Λ
2535
+ ( a·
2536
+ ac·) �
2537
+
2538
+
2539
+ ( 0 b· )
2540
+
2541
+ e2Λ
2542
+ e1Λ⊕2
2543
+ e2Λ
2544
+ e1Λ⊕2
2545
+ ( a·
2546
+ ac·) �
2547
+ c· �
2548
+ ( a·
2549
+ ac·) �
2550
+ ( 0 1
2551
+ 0 0)
2552
+
2553
+ respectively. Let Γ := E+− =
2554
+ � e1Ee1
2555
+ e1Ee2
2556
+ 0
2557
+ e2Ee2
2558
+
2559
+ =
2560
+ � ⟨e1, b, aa′, baa′⟩k
2561
+ ⟨a, ba, aa′a, baa′a⟩k
2562
+ 0
2563
+ ⟨e2, a′a⟩k
2564
+
2565
+ .
2566
+ Then
2567
+ Γ =
2568
+ k
2569
+
2570
+ 
2571
+ 1
2572
+ 2
2573
+ a �
2574
+ c
2575
+
2576
+ b
2577
+
2578
+ b′
2579
+
2580
+
2581
+ 
2582
+ ⟨b2, b′2, c2, b′b, b′a − ac⟩ and Σ(Γ) = ρ(Σ(Λ)) = Σ13122 =
2583
+ where b′ := aa′ and c := a′a.
2584
+ 4.3. Subdivision and Extension. In this section, we realize subdivisions of g-fans of rank 2 by
2585
+ extensions of algebras. The following theorem is a main result of this section, where we identify
2586
+ K0(proj Λ) with Z2 by e1Λ = (1, 0) and e2Λ = (0, 1).
2587
+ Theorem 4.7 (Subdivision Theorem). Let Λ be a finite dimensional elementary k-algebra with
2588
+ orthogonal primitive idempotents 1 = e1+e2. Assume e1Λe2 = 0, or equivalently, Σ(Λ) ∈ Fan
2589
+ +−
2590
+ sc (2)
2591
+ (Proposition 3.5). Then, for cones σ = C(µ+
2592
+ 1 (Λ[1])) and σ′ := C(µ−
2593
+ 2 (Λ)) of Σ(Λ), there exist finite
2594
+ dimensional elementary k-algebras Γ and Γ′ such that
2595
+ Σ(Γ) = Dσ(Σ(Λ)) and Σ(Γ′) = Dσ′(Σ(Λ)).
2596
+ Theorem 4.7 is explained by the following picture.
2597
+ Σ(Λ) =
2598
+
2599
+ P2
2600
+ P1
2601
+ P2[1]
2602
+ P1[1]
2603
+ +
2604
+
2605
+ µ−
2606
+ 2 (Λ)
2607
+ µ+
2608
+ 1 (Λ[1])
2609
+ ❄❄❄❄❄❄
2610
+
2611
+
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+
2620
+
2621
+
2622
+
2623
+
2624
+
2625
+ ❄❄❄❄❄❄
2626
+
2627
+
2628
+
2629
+
2630
+
2631
+
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+ ✯✯✯✯✯✯✯✯✯✯✯✯✯
2640
+ ✴✴✴✴✴✴✴✴✴
2641
+ Σ(Γ) =
2642
+
2643
+ +
2644
+
2645
+ ❄❄❄❄❄❄
2646
+
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+ ❄❄❄❄❄❄
2662
+
2663
+
2664
+
2665
+
2666
+
2667
+
2668
+
2669
+
2670
+
2671
+
2672
+
2673
+
2674
+
2675
+ ✯✯✯✯✯✯✯✯✯✯✯✯✯
2676
+ ✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬
2677
+ ✯✯✯✯✯✯✯✯✯✯✯✯✯
2678
+ Σ(Γ′) =
2679
+
2680
+ +
2681
+
2682
+ ❄❄❄❄❄❄
2683
+
2684
+
2685
+
2686
+
2687
+
2688
+
2689
+ ❄❄❄❄❄❄
2690
+
2691
+
2692
+
2693
+
2694
+
2695
+
2696
+
2697
+
2698
+
2699
+
2700
+
2701
+
2702
+
2703
+ ✯✯✯✯✯✯✯✯✯✯✯✯✯
2704
+
2705
+
2706
+
2707
+
2708
+
2709
+
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+
2731
+
2732
+
2733
+
2734
+ ✴✴✴✴✴✴✴✴✴
2735
+ In the rest, we only prove the existence of Γ since the existence of Γ′ is the dual.
2736
+ The construction of Γ is as follows:
2737
+ Construction 4.8. By Proposition 3.5, we can write
2738
+ Λ =
2739
+ � A
2740
+ X
2741
+ 0
2742
+ B
2743
+
2744
+ .
2745
+ where A, B are local k-algebras and X is an Aop ⊗k B-module. Since Λ is elementary, we have
2746
+ k ≃ A/JA ≃ B/JB. Let
2747
+ X := X/XJB.
2748
+ Then the k-dual DX is an A-module, and we regard it as an Aop-module by using the action of k
2749
+ through the natural surjection A → k. Let
2750
+ C := A ⊕ DX
2751
+ be a trivial extension algebra of A by DX. Let
2752
+ (·) : A → k, (·) : B → k and (·) : X → X
2753
+
2754
+ 20
2755
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
2756
+ be canonical surjections. We regard
2757
+ Y :=
2758
+ � k
2759
+ X
2760
+
2761
+ as a Cop ⊗k B-module by
2762
+ (a, f) · [ α
2763
+ x ] · b :=
2764
+
2765
+ aαb+f(x)b
2766
+ axb
2767
+
2768
+ for (a, f) ∈ C = A ⊕ DX, [ α
2769
+ x ] ∈ Y =
2770
+ � k
2771
+ X
2772
+
2773
+ and b ∈ B.
2774
+ Then we set
2775
+ Γ :=
2776
+
2777
+ C
2778
+ Y
2779
+ 0
2780
+ B
2781
+
2782
+ .
2783
+ In the rest of this subsection, we prove Theorem 4.7. We set
2784
+ Q1 := [C Y ], Q2 := [0 B] ∈ proj Γ.
2785
+ For y ∈ Ms,t(Y ) ≃ HomΓ(Q⊕t
2786
+ 2 , Q⊕s
2787
+ 1 ), we define
2788
+ Qy := [Q⊕t
2789
+ 2
2790
+ y(·)
2791
+ −−→ Q⊕s
2792
+ 1 ] ∈ Kb(proj Γ).
2793
+ We fix a minimal set of generators g1, . . . , gr of the B-module X. Then (g1, . . . , gr) forms a
2794
+ k-basis of X = X/XJB. Set
2795
+ g := [g1 · · · gr] ∈ M1,r(X) and g := [g1 · · · gr] ∈ M1,r(X/XJB).
2796
+ We need the following easy observation.
2797
+ Lemma 4.9. Σ(Γ) contains cone{(0, 1), (1, −r−1)} and cone{(1, −r−1), (1, −r)}. More explicitly,
2798
+ let
2799
+ � 0
2800
+ g
2801
+
2802
+ ∈ M1,r(Y ) and
2803
+ � 0 1
2804
+ g 0
2805
+
2806
+ ∈ M1,r+1(Y ).
2807
+ Then Q� 0 1
2808
+ g 0
2809
+ � ⊕ Q2[1] and Q� 0
2810
+ g
2811
+ � ⊕ Q� 0 1
2812
+ g 0
2813
+ � belong to 2-siltΓ.
2814
+ Proof. A minimal set of generators of the B-module Y is given by the r+1 columns of
2815
+ � 0 1
2816
+ g 0
2817
+
2818
+ . Thus
2819
+ Q� 0 1
2820
+ g 0
2821
+ � ⊕ Q2[1] ∈ 2-siltΓ holds by Proposition 3.12.
2822
+ In the rest, we prove that T := Q� 0
2823
+ g
2824
+ � ��� Q� 0 1
2825
+ g 0
2826
+ � is basic silting. By the first statement, Q� 0 1
2827
+ g 0
2828
+
2829
+ is indecomposable. If Q� 0
2830
+ g
2831
+ � is not indecomposable, then |T | is bigger than two, a contradiction.
2832
+ Thus T is basic.
2833
+ We will show that T is presilting by using Proposition 3.11(b). By our choice of g, we have
2834
+ gMr,1(B) = X and (DX)g = M1,r(k).
2835
+ Thus we have
2836
+ � 0
2837
+ g
2838
+
2839
+ Mr(B) = M1,r([ 0
2840
+ X ]) and (DX)
2841
+ � 0
2842
+ g
2843
+
2844
+ = M1,r([ k
2845
+ 0 ]), and hence
2846
+ C
2847
+ � 0
2848
+ g
2849
+
2850
+ +
2851
+ � 0
2852
+ g
2853
+
2854
+ Mr(B) ⊃ (DX)
2855
+ � 0
2856
+ g
2857
+
2858
+ +
2859
+ � 0
2860
+ g
2861
+
2862
+ Mr(B) = M1,r([ 0
2863
+ X ]) + M1,r([ k
2864
+ 0 ]) = M1,r(Y ).
2865
+ This clearly implies
2866
+ C
2867
+ � 0
2868
+ g
2869
+
2870
+ +
2871
+ � 0 1
2872
+ g 0
2873
+
2874
+ Mr+1,r(B) = M1,r(Y ),
2875
+ and a similar argument implies
2876
+ C
2877
+ � 0 1
2878
+ g 0
2879
+
2880
+ +
2881
+ � 0
2882
+ g
2883
+
2884
+ Mr,r+1(B) = M1,r+1(Y ).
2885
+ Thus Proposition 3.11(b) implies that T is presilting, as desired.
2886
+
2887
+ As in Section 3.2, the element g gives a surjection
2888
+ π := (X
2889
+ (·)
2890
+ −→ X
2891
+ (g(·))−1
2892
+ −−−−−→ Mr,1(B) = Mr,1(k)),
2893
+ which extends to the map π : Ms,t(X) → Mrs,t(k) for each s, t ≥ 0.
2894
+ The following observation is crucial.
2895
+ Proposition 4.10. Let s, t ≥ 0. For x ∈ Ms,t(X), consider [ 0
2896
+ x ] ∈ Ms,t(Y ).
2897
+
2898
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
2899
+ 21
2900
+ (a) Px is indecomposable in Kb(proj Λ) if and only if Q[ 0
2901
+ x] is indecomposable in Kb(proj Γ).
2902
+ (b) If Q[ 0
2903
+ x] is a presilting complex of Γ, then Px is a presilting complex of Λ.
2904
+ (c) The converse of (b) holds if t ≤ rs.
2905
+ (d) The restriction of Σ(Γ) to {(x, y) ∈ R2 | 0 ≤ −y ≤ rx} coincides with that of Σ(Λ).
2906
+ Proof. Notice that Γ is the trivial extension Λ ⊕ I of Λ by the following ideal I of Γ:
2907
+ I :=
2908
+
2909
+ DX
2910
+ k
2911
+ 0
2912
+ 0
2913
+
2914
+ .
2915
+ (a) Since Px ≃ Q[ 0
2916
+ x] ⊗Γ Λ and Q[ 0
2917
+ x] ≃ Px ⊗Λ Γ, the assertion follows immediately.
2918
+ (b) Since Λ = Γ/I and Q[ 0
2919
+ x] ⊗Γ Λ ≃ Px, the assertion follows.
2920
+ (c) Assume that Px is a presilting complex of Λ. Then by Proposition 3.11(b), we have
2921
+ Ms,t(X) = Ms(A)x + xMt(B).
2922
+ (4.2)
2923
+ Again by Proposition 3.11(b), it suffices to show the equality
2924
+ V := Ms(C) [ 0
2925
+ x ] + [ 0
2926
+ x ] Mt(B) = Ms,t(
2927
+ � k
2928
+ X
2929
+
2930
+ ).
2931
+ Since V ⊃ Ms(A) [ 0
2932
+ x ] + [ 0
2933
+ x ] Mt(B)
2934
+ (4.2)
2935
+ = Ms,t([ 0
2936
+ X ]) holds, it suffices to show
2937
+ V ⊃ Ms,t([ k
2938
+ 0 ]).
2939
+ (4.3)
2940
+ By our assumption t ≤ rs and Proposition 3.13(b), π(x) has rank t and the map
2941
+ (·)π(x) : Ms,rs(k) → Ms,t(k)
2942
+ (4.4)
2943
+ is surjective. We denote by g∗
2944
+ 1, . . . , g∗
2945
+ r the basis of DX which is dual to g1, . . . , gr. Then the map
2946
+ (·)
2947
+ � g∗
2948
+ 1
2949
+ ...
2950
+ g∗
2951
+ r
2952
+
2953
+ : M1,r(k) ≃ DX is a bijection, and we denote its inverse by
2954
+ π′ : DX ≃ M1,r(k).
2955
+ It gives a bijection π′ : Ms(DX) ≃ Ms,rs(k). We have a commutative diagram
2956
+ Ms(DX) × Ms,t(X)
2957
+ π′×π
2958
+
2959
+ eval.
2960
+ �❱
2961
+
2962
+
2963
+
2964
+
2965
+
2966
+
2967
+
2968
+
2969
+
2970
+
2971
+
2972
+
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+
2981
+ Ms,rs(k) × Mrs,t(k)
2982
+ mult.
2983
+
2984
+ Ms,t(k)
2985
+ where eval. is given by the evaluation map DX × X → DX × X → k. Thus the commutativity of
2986
+ the diagram above and the surjectivity of (4.4) shows that the map
2987
+ (·)x : Ms(DX) → Ms,t(k)
2988
+ is also surjective. Therefore the desired claim (4.3) follows from
2989
+ V ⊃ Ms(C) [ 0
2990
+ x ] ⊃ Ms(DX) [ 0
2991
+ x ] = Ms,t([ k
2992
+ 0 ]).
2993
+
2994
+ (d) Immediate from (c).
2995
+ We are ready to prove Theorem 4.7.
2996
+ Proof of Theorem 4.7. The assertion follows from Lemma 4.9 and Proposition 4.10(d).
2997
+
2998
+ We give two examples of Subdivision Theorem 4.7.
2999
+
3000
+ 22
3001
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
3002
+ Example 4.11. Let Λ be the following algebra. Then Σ(Λ) is the following fan.
3003
+ Λ = k[1 → 2]
3004
+ Σ(Λ) = Σ111 =
3005
+ Applying Theorem 4.7 to Λ, we get
3006
+ Γ :=
3007
+
3008
+ k ⊕ Dk
3009
+ � k
3010
+ k
3011
+
3012
+ 0
3013
+ k
3014
+
3015
+ =
3016
+ k
3017
+
3018
+ 1
3019
+ 2
3020
+
3021
+ b
3022
+
3023
+
3024
+ ⟨b2⟩
3025
+ and Σ(Γ) = D3(Σ(Λ)) = Σ1212 =
3026
+ Example 4.12. Let Λ be the following algebra. Then Σ(Λ) is the following fan by Example 4.5.
3027
+ Λ =
3028
+ k
3029
+
3030
+ 1
3031
+ 2
3032
+ a �
3033
+ b
3034
+
3035
+
3036
+ ⟨b2⟩
3037
+ Σ(Λ) = Σ2121 =
3038
+ Applying Theorem 4.7 to Λ, we get
3039
+ Γ :=
3040
+
3041
+ k ⊕ D(ka)
3042
+
3043
+ k
3044
+ ⟨a,ab⟩k
3045
+
3046
+ 0
3047
+ ⟨e2, b⟩k
3048
+
3049
+ =
3050
+ k
3051
+
3052
+ 1
3053
+ 2
3054
+ a �
3055
+ c
3056
+
3057
+ b
3058
+
3059
+
3060
+ ⟨b2, c2, cab⟩
3061
+ and Σ(Γ) = D4(Σ(Λ)) = Σ21312 =
3062
+ 4.4. Proof of Theorem 1.3. Let k be a field. For a finite dimensional k-algebras Λ of rank 2,
3063
+ we regard the g-fan Σ(Λ) as a fan in R2 by isomorphism K0(proj Λ) ≃ R2 given by P1 �→ (1, 0) and
3064
+ P2 �→ (0, 1). We denote by
3065
+ k-Fan(2)
3066
+ the subset of Fansc(2) consisting of g-fans of finite dimensional k-algebras of rank 2. Let k-Fanel(2)
3067
+ be the subset of k-Fan(2) consisting of g-fans of finite dimensional elementary k-algebras of rank
3068
+ 2.
3069
+ The following is a main result of this paper.
3070
+ Theorem 4.13. For any field k, we have
3071
+ k-Fanel(2) = k-Fan(2) = Fansc(2).
3072
+ (4.5)
3073
+ That is, any sign-coherent fan in R2 can be realized as a g-fan Σ(Λ) of some finite dimensional
3074
+ elementary k-algebra Λ.
3075
+ Proof. It suffices to show Fansc(2) = k-Fanel(2). Let
3076
+ k-Fan+−
3077
+ el (2) := k-Fanel(2) ∩ Fan+−
3078
+ sc (2) and k-Fan−+
3079
+ el (2) := k-Fanel(2) ∩ Fan−+
3080
+ sc (2).
3081
+ By Gluing Theorem 4.1, we have
3082
+ k-Fanel(2) = k-Fan+−
3083
+ el (2) ∗ k-Fan−+
3084
+ el (2).
3085
+ By Rotation Theorem 4.3, k-Fan+−
3086
+ el (2) is closed under rotations. By Theorem 4.7 and Proposition
3087
+ 2.14(b), k-Fan+−
3088
+ el (2) is closed under subdivisions. Since Σ(0, 0; 0, 0) = Σ(k × k) ∈ k-Fan+−
3089
+ el (2),
3090
+ Proposition 2.10 implies
3091
+ k-Fan+−
3092
+ el (2) = Fan+−
3093
+ sc (2).
3094
+ Similarly, we have k-Fan−+
3095
+ el (2) = Fan−+
3096
+ sc (2). Consequently, we have
3097
+ Fansc(2)
3098
+ (2.5)
3099
+ = Fan+−
3100
+ sc (2) ∗ Fan−+
3101
+ sc (2) = k-Fan+−
3102
+ el (2) ∗ k-Fan−+
3103
+ el (2) = k-Fanel(2).
3104
+
3105
+ For given Σ ∈ Fansc(2), our proof of Theorem 4.13 gives a concrete algorithm to construct a
3106
+ finite dimensional k-algebra Λ satisfying Σ(Λ) = Σ. We demonstrate it in the following example.
3107
+ Example 4.14. We construct a finite dimensional k-algebra Γ satisfying Σ(Γ) = Σ13122;1212 by
3108
+ the following three steps.
3109
+
3110
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
3111
+ 23
3112
+ (I) We obtain a finite dimensional k-algebra
3113
+ Λ =
3114
+ k
3115
+
3116
+ 
3117
+ 1
3118
+ 2
3119
+ a3 �
3120
+ a4
3121
+
3122
+ a2
3123
+
3124
+ a1
3125
+
3126
+
3127
+ 
3128
+ ⟨a2
3129
+ 1, a2
3130
+ 2, a2
3131
+ 4, a2a1, a2a3 − a3a4⟩
3132
+ satisfying Σ(Λ) = Σ13122;00 by using Rotation Theorem 4.3 and Subdivision Theorem 4.7 as
3133
+ follows.
3134
+ Σ00
3135
+ D2
3136
+
3137
+ Σ111
3138
+ D3
3139
+ Ex.4.11
3140
+
3141
+ Σ1212
3142
+ ρ
3143
+ Ex.4.5
3144
+
3145
+ Σ2121
3146
+ D4
3147
+ Ex.4.12
3148
+
3149
+ Σ21312
3150
+ ρ
3151
+ Ex.4.6
3152
+
3153
+ Σ13122
3154
+ (II) Similarly, we obtain a finite dimensional k-algebra
3155
+ Λ′ :=
3156
+ k
3157
+
3158
+ 1
3159
+ 2
3160
+ b1
3161
+
3162
+ b2
3163
+
3164
+
3165
+ ⟨b2
3166
+ 2⟩
3167
+ satisfying Σ(Λ′) = Σ(0, 0; 1, 2, 1, 2).
3168
+ (III) We obtain a finite dimensional k-algebra
3169
+ Γ =
3170
+ k
3171
+
3172
+ 
3173
+ 1
3174
+ 2
3175
+ a3 �
3176
+ a4
3177
+
3178
+ a2
3179
+
3180
+ a1
3181
+ � b1
3182
+
3183
+ b2
3184
+
3185
+
3186
+ 
3187
+ ⟨a2
3188
+ 1, a2
3189
+ 2, a2
3190
+ 4, a2a1, a2a3 − a3a4, b2
3191
+ 2⟩ + ⟨aibj, bjai | i ∈ {1, 2, 3, 4}, j ∈ {1, 2}⟩
3192
+ satisfying Σ(Γ) = Σ(1, 3, 1, 2, 2; 1, 2, 1, 2) by applying Gluing Theorem 4.1 to Λ and Λ′, see
3193
+ Example 4.2.
3194
+ Σ(Λ) =
3195
+ Σ(Λ′) =
3196
+ Σ(Γ) = Σ(Λ) ∗ Σ(Λ′) =
3197
+ 4.5. Gluing fans II. In this subsection, we study another type of gluing g-fans. Results in this
3198
+ subsection will not be used in the rest of this paper.
3199
+ Theorem 4.15. Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal primitive idem-
3200
+ potents 1 = e1 + e2 ∈ Λ and 1 = e′
3201
+ 1 + e′
3202
+ 2 ∈ Λ′ satisfying e1Λe2 = 0, e′
3203
+ 1Λ′e′
3204
+ 2 = 0,
3205
+ σ = cone{(0, −1), (1, −1)} ∈ Σ(Λ)
3206
+ and σ′ = cone{(1, −1), (1, 0)} ∈ Σ(Λ′).
3207
+ (4.6)
3208
+ Then, there exists an elementary k-algebra Γ such that
3209
+ Σ2(Γ) = (Σ2(Λ) \ {σ}) ∪ (Σ2(Λ′) \ {σ′}).
3210
+ Theorem 4.15 is explained by the following picture.
3211
+ Σ(Λ) =
3212
+
3213
+ +
3214
+
3215
+ ?
3216
+ P1
3217
+ P2
3218
+ σ
3219
+ ❄❄❄❄❄❄
3220
+
3221
+
3222
+
3223
+
3224
+
3225
+
3226
+
3227
+
3228
+
3229
+
3230
+
3231
+
3232
+
3233
+
3234
+
3235
+
3236
+
3237
+
3238
+ Σ(Λ′) =
3239
+
3240
+ +
3241
+
3242
+ !
3243
+ P ′
3244
+ 1
3245
+ P ′
3246
+ 2
3247
+ σ′
3248
+ ❄❄❄❄❄❄
3249
+
3250
+
3251
+
3252
+
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+
3261
+
3262
+
3263
+
3264
+
3265
+
3266
+
3267
+ Σ(Γ) =
3268
+
3269
+ +
3270
+
3271
+ !
3272
+ ?
3273
+ Q1
3274
+ Q2
3275
+ ❄❄❄❄❄❄
3276
+
3277
+
3278
+
3279
+
3280
+
3281
+
3282
+
3283
+
3284
+
3285
+
3286
+
3287
+
3288
+
3289
+
3290
+
3291
+
3292
+
3293
+
3294
+
3295
+ 24
3296
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
3297
+ The assumption (4.6) is equivalent to that the defining sequences can be written as
3298
+ Σ(Λ) = Σ(a1, . . . , an−1, 1; 0, 0) and Σ(Λ′) = Σ(1, b2, . . . , bm; 0, 0).
3299
+ In this case, the defining sequence of Σ(Γ) is given by
3300
+ Σ(Γ) = Σ(a1, . . . , an−2, an−1 + b2 − 1, b3, . . . , bm; 0, 0).
3301
+ The rest of this section is devoted to proving Theorem 4.15. By our assumption, we can write
3302
+ Λ =
3303
+
3304
+ A
3305
+ X
3306
+ 0
3307
+ B
3308
+
3309
+ and P1 := [A X], P2 := [0 B] ∈ proj Λ,
3310
+ Λ′ =
3311
+ � C
3312
+ Y
3313
+ 0
3314
+ D
3315
+
3316
+ and P ′
3317
+ 1 := [C Y ], P ′
3318
+ 2 := [0 D] ∈ proj Λ′,
3319
+ where
3320
+ • A, B, C, D are local k-algebras such that k ≃ A/JA ≃ B/JB ≃ C/JC ≃ D/JD.
3321
+ • X is an Aop ⊗k B-module and Y is an Cop ⊗k D-module.
3322
+ • There exist g ∈ X and h ∈ Y such that X = gB ̸= 0 and Y = Ch ̸= 0 by Proposition 3.12.
3323
+ The construction of Γ is as follows: Let A ×k C (respectively, B ×k D) be a fibre product of
3324
+ canonical surjections A → k and C → k (respectively, B → k and D → k). As in Section 3.2, we
3325
+ consider maps
3326
+ π : X → X/XJB
3327
+ (g(·))−1
3328
+ −−−−−→ B/JB = k and π′ : Y → Y/JCY
3329
+ ((·)h)−1
3330
+ −−−−−→ C/JC = k.
3331
+ (4.7)
3332
+ Let X×kY be a fibre product of π : X → k and π′ : Y → k. Then X×kY is a (A×kC)op⊗k(B×kD)-
3333
+ module, and let
3334
+ Γ :=
3335
+ � A ×k C
3336
+ X ×k Y
3337
+ 0
3338
+ B ×k D
3339
+
3340
+ and Q1 := [A ×k C X ×k Y ], Q2 := [0 B ×k D] ∈ proj Γ.
3341
+ Consider ideals of Γ by
3342
+ I =
3343
+ � JC
3344
+ JCY
3345
+ 0
3346
+ JD
3347
+
3348
+ and I′ =
3349
+ � JA
3350
+ XJB
3351
+ 0
3352
+ JB
3353
+
3354
+ .
3355
+ Then there exist isomorphisms of k-algebras
3356
+ Γ/I ≃ Λ and Γ/I′ ≃ Λ′.
3357
+ (4.8)
3358
+ As in Section 3.2, for s, t ≥ 0, x ∈ Ms,t(X), y ∈ Ms,t(Y ) and (x′, y′) ∈ Ms,t(X ×k Y ), we define
3359
+ Px
3360
+ :=
3361
+ (P ⊕t
3362
+ 2
3363
+ x(·)
3364
+ −−→ P ⊕s
3365
+ 1 ) ∈ per Λ,
3366
+ P ′
3367
+ y
3368
+ :=
3369
+ (P ′
3370
+ 2
3371
+ ⊕t
3372
+ y(·)
3373
+ −−→ P ′
3374
+ 1
3375
+ ⊕s) ∈ per Λ′
3376
+ Q(x,y)
3377
+ :=
3378
+ (Q⊕t
3379
+ 2
3380
+ (x′,y′)(·)
3381
+ −−−−−−→ Q⊕s
3382
+ 1 ) ∈ per Γ.
3383
+ Proposition 4.16. Let s, t ≥ 0 and (x, y) ∈ Ms,t(X ×k Y ). If Q(x,y) is a presilting complex of Γ,
3384
+ then Px is a presilting complex of Λ and P ′
3385
+ y is a presilting complex of Λ′.
3386
+ Proof. By (4.8) and Q(x,y) ⊗Γ Λ = Px, the complex Px is presilting. The complex P ′
3387
+ y is presilting
3388
+ similarly.
3389
+
3390
+ Define maps (·) : A → C and (·) : B → D as the compositions of canonical maps
3391
+ (·) : A
3392
+ (·)
3393
+ −→ k ⊂ C and (·) : B
3394
+ (·)
3395
+ −→ k ⊂ D.
3396
+ Using π and π′ in (4.7), define maps (·) : X → Y and (·) : Y → X by
3397
+ (·) : X
3398
+ π−→ k
3399
+ (·)h
3400
+ −−→ kh ⊂ Y
3401
+ and (·) : Y
3402
+ π′
3403
+ −→ k
3404
+ (·)g
3405
+ −−→ kg ⊂ X.
3406
+ (4.9)
3407
+ Then the first projection X ×k Y → X, (x, y) �→ x has a section given by
3408
+ X → X ×k Y, x �→ (x, x),
3409
+
3410
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
3411
+ 25
3412
+ and the second projection X ×k Y → Y , (x, y) �→ y has a section given by
3413
+ Y → X ×k Y, y �→ (y, y).
3414
+ The following is a crucial result.
3415
+ Proposition 4.17. The following assertions hold.
3416
+ (a) Let s ≥ t. For x ∈ Ms,t(X), consider (x, x) ∈ Ms,t(X ⊗k Y ). Then Px is a presilting complex
3417
+ of Λ if and only if Q(x,x) is a presilting complex of Γ.
3418
+ (b) Let s ≤ t. For y ∈ Ms,t(Y ), consider (y, y) ∈ Mc,d(X ⊗k Y ). Then P ′
3419
+ y is a presilting complex
3420
+ of Λ′ if and only if Q(y,y) is a presilting complex of Γ.
3421
+ Proof. It suffices to prove (a) since (b) is dual to (a).
3422
+ The “if” part is clear from Proposition 4.16.
3423
+ We prove the “only if” part. By Proposition 3.11, it suffices to show
3424
+ Ms,t(X ×k Y ) = Ms(A ×k C)(x, x) + (x, x)Mt(B ×k D).
3425
+ Since
3426
+ X ×k Y = {(0, y) | y ∈ JCY } + {(z, z) | z ∈ X},
3427
+ it suffices to show the following assertions.
3428
+ (i) For each y ∈ Ms,t(JCY ), we have (0, y) ∈ Ms(A ×k C)(x, x).
3429
+ (ii) For each z ∈ Ms,t(X), we have (z, z) ∈ Ms(A ×k C)(x, x) + (x, x)Mt(B ×k D).
3430
+ We prove (i). Since Px is presilting, π(x) ∈ Ms,t(k) has full rank by Proposition 3.13. Since s ≥ t,
3431
+ the map (·)π(x) : Ms(k) → Ms,t(k) is surjective. Applying JC ⊗k −, the map (·)π(x) : Ms(JC) →
3432
+ Ms,t(JC) is also surjective, and so is the composition
3433
+ (·)x
3434
+ (4.9)
3435
+ = (·)π(x)h : Ms(JC)
3436
+ (·)π(x)
3437
+ −−−−→ Ms,t(JC)
3438
+ (·)h
3439
+ −−→ Ms,t(JCY ).
3440
+ Therefore there exists c ∈ Ms(JC) such that y = cx. Then (0, c) ∈ Ms(A ×k C) satisfies
3441
+ (0, c)(x, x) = (0, y).
3442
+ We prove (ii). Since Px is presilting, we have Ms,t(X) = Ms(A)x + xMt(B) by Proposition 3.11.
3443
+ Thus there exist a ∈ Ms(A) and b ∈ Mt(B) such that z = ax + xb. Then
3444
+ (a, a)(x, x) + (x, x)(b, b) = (ax + xb, ax + xb) = (z, z).
3445
+ Thus the assertion follows.
3446
+
3447
+ Now we are ready to prove Theorem 4.15.
3448
+ Proof of Theorem 4.15. By Proposition 3.5, each of Σ(Λ), Σ(Λ′) and Σ(Γ) contains cone{(−1, 0), (0, 1)}.
3449
+ By Propositions 4.16 and 4.17, the following assertions hold.
3450
+ (i) Let s ≥ t. Then there exists x ∈ Ms,t(X) such that Px is presilting if and only if there exists
3451
+ (x, y) ∈ Ms,t(X ×k Y ) such that Q(s,t) is presilting.
3452
+ (ii) Let s ≤ t. Then there exists y ∈ Ms,t(Y ) such that P ′
3453
+ y is presilting if and only if there exists
3454
+ (x, y) ∈ Ms,t(X ×k Y ) such that Q(s,t) is presilting.
3455
+ Therefore the claim follows.
3456
+
3457
+ Example 4.18. Let Λ and Λ′ be the following algebras.
3458
+ Λ :=
3459
+ k
3460
+
3461
+ 1
3462
+ 2
3463
+ a �
3464
+ b
3465
+
3466
+
3467
+ ⟨b2⟩
3468
+ Λ′ :=
3469
+ k
3470
+
3471
+ 
3472
+ 1
3473
+ 2
3474
+ a �
3475
+ d
3476
+
3477
+ c1
3478
+
3479
+ c2
3480
+
3481
+
3482
+ 
3483
+ ⟨c2
3484
+ 1, c2
3485
+ 2, d2, c1c2, c1a − ad⟩
3486
+
3487
+ 26
3488
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
3489
+ By Examples 4.5 and 4.6, we have
3490
+ Σ(Λ) = Σ2121 =
3491
+ Σ(Λ′) = Σ13122 =
3492
+ Let Γ :=
3493
+ � e1Λe1 ×k e1Λ′e1
3494
+ e1Λe2 ×k e1Λ′e2
3495
+ 0
3496
+ e2Λe2 ×k e2Λ′e2
3497
+
3498
+ . Then we have
3499
+ Γ =
3500
+ k
3501
+
3502
+ 
3503
+ 1
3504
+ 2
3505
+ a �
3506
+ b
3507
+
3508
+ d
3509
+
3510
+ c1
3511
+
3512
+ c2
3513
+
3514
+
3515
+ 
3516
+ ⟨b2, c2
3517
+ 1, c2
3518
+ 2, d2, c1c2, c1a − ad, c2ab, bd, db⟩ and Σ(Γ) = Σ214122 =
3519
+ 5. g-Convex algebras of rank 2
3520
+ In this section, we will characterize algebras of rank 2 which have convex g-polygons.
3521
+ 5.1. Characterizations of g-convex algebras of rank 2. Let e, e′ be pairwise orthogonal prim-
3522
+ itive idempotents in A and x ∈ eAe′. Then we use the following notations.
3523
+ • x ∈ eAe′ is a left generator (respectively, right generator) of eAe′ if eAx = eAe′ (respectively,
3524
+ xAe′ = eAe′).
3525
+ • Define subalgebras Lx ⊂ e′Ae′ and Rx ⊂ eAe as follows (see Lemma 5.5).
3526
+ Rx := {a ∈ eAe | ax ∈ xAe′} and Lx := {a ∈ e′Ae′ | xa ∈ eAx}.
3527
+ Recall that, for an algebra Λ and a right (respectively, left) Λ-module M, we denote by t(MΛ)
3528
+ (respectively, t(ΛM)) the minimal number of generators of M.
3529
+ Theorem 5.1. Let A be a basic finite dimensional algebra, {e1, e2} a complete set of primitive
3530
+ orthogonal idempotents in A and Pi = eiA (i = 1, 2).
3531
+ (a) A is g-convex if and only if Σ(A) = Σa;b for some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.
3532
+ (b) Let (l, r) := (t(e1Ae1e1Ae2), t(e1Ae2e2Ae2)). Then we have the following statements.
3533
+ • Σ(A) = Σ00;b for some b if and only if (l, r) = (0, 0).
3534
+ • Σ(A) = Σ111;b for some b if and only if (l, r) = (1, 1).
3535
+ • Σ(A) = Σ1212;b for some b if and only if (l, r) = (1, 2) and t(Rxe1Ae1) = 2 hold for some
3536
+ left generator x of e1Ae2.
3537
+ • Σ(A) = Σ2121;b for some b if and only if (l, r) = (2, 1) and t(e2Ae2Lx) = 2 hold for some
3538
+ right generator x of e1Ae2.
3539
+ Σ00;b
3540
+
3541
+ P2
3542
+ P1
3543
+ ❄❄❄❄❄❄
3544
+
3545
+
3546
+
3547
+
3548
+
3549
+
3550
+ ⑧⑧⑧⑧⑧⑧
3551
+ Σ111;b
3552
+
3553
+ P2
3554
+ P1
3555
+
3556
+
3557
+
3558
+
3559
+
3560
+
3561
+ ❄❄❄❄❄❄
3562
+
3563
+
3564
+
3565
+
3566
+
3567
+
3568
+ Σ1212;b
3569
+
3570
+ P2
3571
+ P1
3572
+
3573
+
3574
+
3575
+
3576
+
3577
+
3578
+ ✴✴✴✴✴✴✴✴✴
3579
+ ❄❄❄❄❄❄
3580
+
3581
+
3582
+
3583
+
3584
+
3585
+
3586
+ ❄❄❄❄❄❄
3587
+ Σ2121;b
3588
+
3589
+ P2
3590
+ P1
3591
+
3592
+
3593
+
3594
+
3595
+
3596
+
3597
+
3598
+
3599
+
3600
+
3601
+
3602
+
3603
+
3604
+
3605
+
3606
+ ❄❄❄❄❄❄
3607
+
3608
+
3609
+
3610
+
3611
+
3612
+
3613
+ ❄❄❄❄❄❄
3614
+ Remark 5.2. For a left (respectively, right) generator x of e1Ae2, Rx (respectively, Lx) is unique
3615
+ up to conjugacy. In particular, t(Rxe1Ae1) (respectively, t(e2Ae2Lx)) does not depend on the choice
3616
+ of a left (respectively, right) generator x.
3617
+
3618
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
3619
+ 27
3620
+ Example 5.3. (a) Here, we give algebras which realize 7 convex g-fans up to isomorphism of
3621
+ g-fans. We define Ai = kQ/I (i ∈ {1, 2, 3, 4, 5, 6, 7}) as follows.
3622
+ A1 =
3623
+ k
3624
+
3625
+ 1
3626
+ 2
3627
+ a �
3628
+ b�
3629
+ c
3630
+
3631
+ d
3632
+
3633
+
3634
+ ⟨ab, ad, ba, bc, c2, d2⟩
3635
+ A2 =
3636
+ k
3637
+
3638
+ 1
3639
+ 2
3640
+ a �
3641
+ b�
3642
+ d
3643
+
3644
+
3645
+ ⟨ab, ba, d2⟩
3646
+ A3 =
3647
+
3648
+ 1
3649
+ 2
3650
+ a �
3651
+ b�
3652
+ d
3653
+
3654
+
3655
+ ⟨ab, ba, ad, d2⟩
3656
+ A4 =
3657
+ k
3658
+
3659
+ 1
3660
+ 2
3661
+ b�
3662
+ d
3663
+
3664
+
3665
+ ⟨d2⟩
3666
+ A5 =
3667
+ k
3668
+
3669
+ 1
3670
+ 2
3671
+ a �
3672
+ b�
3673
+
3674
+ ⟨ab, ba⟩
3675
+ A6 = k
3676
+
3677
+ 1
3678
+ 2
3679
+ b�
3680
+
3681
+ A7 = k
3682
+
3683
+ 1 2
3684
+
3685
+ Then the g-fans Σ(Ai) (i ∈ {1, 2, 3, 4, 5, 6, 7}) are given by the following table.
3686
+ i
3687
+ 1
3688
+ 2
3689
+ 3
3690
+ 4
3691
+ 5
3692
+ 6
3693
+ 7
3694
+ Σ(Ai)
3695
+ •+
3696
+
3697
+ ❄❄❄❄❄
3698
+ ❄❄❄❄❄
3699
+ ❄❄❄❄❄
3700
+ ❄❄❄❄❄
3701
+ ❄❄❄❄❄
3702
+ ✴✴✴✴✴✴✴
3703
+ ❄❄❄❄❄
3704
+ ❖❖❖❖❖❖❖
3705
+ •+
3706
+
3707
+ ❄❄❄❄❄
3708
+ ❄❄❄❄❄
3709
+ ❄❄❄❄❄
3710
+ ❄❄❄❄❄
3711
+
3712
+
3713
+
3714
+
3715
+
3716
+
3717
+
3718
+ ❄❄❄❄❄
3719
+ ❄❄❄❄❄
3720
+ ❖❖❖❖❖❖❖
3721
+ •+
3722
+
3723
+ ❄❄❄❄❄
3724
+ ❄❄❄❄❄
3725
+ ❄❄❄❄❄
3726
+ ❄❄❄❄❄
3727
+ ❄❄❄❄❄
3728
+ ❖❖❖❖❖❖❖
3729
+ •+
3730
+
3731
+ ❄❄❄❄❄
3732
+ ⑧⑧⑧⑧⑧
3733
+ ❄❄❄❄❄
3734
+ ❄❄❄❄❄
3735
+ ❄❄❄❄❄
3736
+ ❖❖❖❖❖❖❖
3737
+ •+
3738
+
3739
+ ❄❄❄❄❄
3740
+ ❄❄❄❄❄
3741
+ ❄❄❄❄❄
3742
+ ❄❄❄❄❄
3743
+ •+
3744
+
3745
+ ❄❄❄❄❄
3746
+ ⑧⑧⑧⑧⑧
3747
+ ❄❄❄❄❄
3748
+ ❄❄❄❄❄
3749
+ •+
3750
+
3751
+ ❄❄❄❄❄
3752
+ ⑧⑧⑧⑧⑧
3753
+ ⑧⑧⑧⑧⑧
3754
+ ❄❄❄❄❄
3755
+ (b) Let K/k be a field extension with degree two, and A be a k-algebra
3756
+ �k
3757
+ K
3758
+ 0
3759
+ K
3760
+
3761
+ with e1 =
3762
+ �1
3763
+ 0
3764
+ 0
3765
+ 0
3766
+
3767
+ ,
3768
+ e2 =
3769
+ �0
3770
+ 0
3771
+ 0
3772
+ 1
3773
+
3774
+ . We write K = k(t) and set x :=
3775
+ �0
3776
+ 1
3777
+ 0
3778
+ 0
3779
+
3780
+ ∈ e1Ae2, u =
3781
+ �0
3782
+ 0
3783
+ 0
3784
+ t
3785
+
3786
+ ∈ e2Ae2. Then we
3787
+ have Lx =
3788
+ �0
3789
+ 0
3790
+ 0
3791
+ k
3792
+
3793
+ , u ̸∈ Lx, and the following equations hold.
3794
+ • e1Ae2 =
3795
+
3796
+ 0
3797
+ K
3798
+ 0
3799
+ 0
3800
+
3801
+ = xAe2 = e1Ax + e1Axu
3802
+ • e2Ae2 =
3803
+ �0
3804
+ 0
3805
+ 0
3806
+ K
3807
+
3808
+ = Lx + uLx
3809
+ Further, we have e2Ae1 = 0. Therefore, Theorem 5.1 implies that Σ(A) has the following form.
3810
+
3811
+ P2
3812
+ P1
3813
+
3814
+
3815
+
3816
+
3817
+
3818
+
3819
+
3820
+
3821
+
3822
+
3823
+
3824
+
3825
+
3826
+
3827
+
3828
+ ❄❄❄❄❄❄
3829
+
3830
+
3831
+
3832
+
3833
+
3834
+
3835
+ ❄❄❄❄❄❄
3836
+ ⑧⑧⑧⑧⑧⑧
3837
+ 5.2. Proof of Theorem 5.1. In this subsection, we prove Theorem 5.1. The following observation
3838
+ shows Theorem 5.1(a) and gives another proof of [AHIKM1, Theorem 6.3].
3839
+ Proposition 5.4. Let A be as in Theorem 5.1. Then A is g-convex if and only if Σ(A) = Σa;b for
3840
+ some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.
3841
+ Proof. The “if” part is clear.
3842
+ Conversely, assume that A is g-convex and Σ(A) = Σa;b with
3843
+ a = (a1, . . . , an) and b = (b1, . . . , bm). Then ai ≤ 2 and bj ≤ 2 hold for each i, j. Using Proposition
3844
+ 2.10, it is easy to check that a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)} holds (see Figure 1).
3845
+
3846
+ Next we show the following.
3847
+ Lemma 5.5. Let x ∈ e1Ae2. Then Lx is a subalgebra of e2Ae2, and Rx is a subalgebra of e1Ae1.
3848
+ Proof. This is a special case of the following easy fact: Let A, B be rings, M an (A, B)-module,
3849
+ and x ∈ M. Then {b ∈ B | xb ∈ Ax} is a subring of B.
3850
+
3851
+ Now we give a key observation. As in Section 3.2, for s, t ≥ 0, x ∈ Ms,t(e1Ae2), we define
3852
+ Px := (e2A⊕t
3853
+ x(·)
3854
+ −−→ e1A⊕s) ∈ Kb(proj A).
3855
+ Proposition 5.6. Assume t(e1Ae1e1Ae2) = 1.
3856
+ For a left generator x ∈ e1Ae2, the following
3857
+ conditions are equivalent.
3858
+
3859
+ 28
3860
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
3861
+ (1) Σ(A) contains cone{(1, −1), (1, −2)}.
3862
+ (2) t(Rxe1Ae2) = 2.
3863
+ (3) e1Ay + xM1,2(e2Ae2) = M1,2(e1Ae2) holds for some u ∈ e1Ae1 \ Rx and y := [x ux].
3864
+ Proof. Notice that Px is indecomposable presilting by Proposition 3.12.
3865
+ (1)⇒(2) If t(Rxe1Ae1) = 1, then e1Ae1 = Rx holds. Thus e1Ae2 = e1Ax ⊂ xAe2 holds, and
3866
+ thus x is a right generator. By Proposition 3.12, Px ⊕ P2[1] ∈ 2-siltA holds, a contradiction to
3867
+ cone{(1, −1), (1, −2)} ∈ Σ(A). Thus it suffices to prove t(Rxe1Ae1) ≤ 2.
3868
+ Since cone{(1, −1), (1, −2)} ∈ Σ(A), there exists y = [x1 x2] ∈ M1,2(e1Ae2) such that Px ⊕ Py
3869
+ is silting. By Proposition 3.11, we have
3870
+ M1,2(e1Ae2) = e1Ay + yM2,2(e2Ae2),
3871
+ (5.1)
3872
+ M1,2(e1Ae2) = e1Ay + xM1,2(e2Ae2).
3873
+ (5.2)
3874
+ Looking at the first entry of (5.1), at least one of x1 and x2 does not belong to rade1Ae1 e1Ae2.
3875
+ Without loss of generality, assume x1 /∈ rade1Ae1 e1Ae2. Then there exists a ∈ (e1Ae1)× such that
3876
+ x = ax1. Since Py ≃ Pay, we can assume x1 = x by replacing y by ay. Since x is a left generator,
3877
+ there exists u ∈ e1Ae1 such that x2 = ux. Consequently, we can assume
3878
+ y = [x ux].
3879
+ For each a ∈ e1Ae1, (5.2) implies that there exist a′ ∈ e1Ae1 and b, b′ ∈ e2Ae2 such that
3880
+ [0 ax] = a′[x ux] + x[b b′].
3881
+ Then a′ and a−a′u are in Rx, and hence a = a′u+(a−a′u) ∈ Rxu+Rx. Thus e1Ae1 = Rx +Rxu
3882
+ and t(Rxe1Ae1) ≤ 2 hold, as desired.
3883
+ (2)⇒(3) Since t(Rxe1Ae2) = 2 and Rx ̸⊂ radRx e1Ae1, there exists u ∈ e1Ae1 \ Rx such that
3884
+ Rxu + Rx = e1Ae1.
3885
+ Multiplying x from the right, we have Rxux + Rxx = e1Ax = e1Ae2. Since Rxx ⊂ xAe2, we
3886
+ have
3887
+ Rxux + xAe2 = e1Ae2.
3888
+ (5.3)
3889
+ To prove (3), take any [z w] ∈ M1,2(e1Ae2). Since x is a left generator, there exists a ∈ e1Ae1
3890
+ such that z = ax. By (5.3), there exist r ∈ Rx and b ∈ e2Ae2 such that w − aux = rux + xb. By
3891
+ definition of Rx, there exists c ∈ e2Ae2 such that rx = xc. Then we have
3892
+ [z w] = (a + r)[x ux] + x[−c b] ∈ e1Ay + xM1,2(e2Ae2).
3893
+ (3)⇒(1) By Proposition 3.11, the following assertions hold.
3894
+ • Px is presilting if and only if (i) e1Ax + xAe2 = e1Ae2.
3895
+ • Py is presilting if and only if (ii) e1Ay + yM2,2(e2Ae2) = M1,2(e1Ae2).
3896
+ • HomKb(proj A)(Px, Py[1]) = 0 if and only if (iii) e1Ax + yM2,1(e2Ae2) = e1Ae2.
3897
+ • HomKb(proj A)(Py, Px[1]) = 0 if and only if (iv) e1Ay + xM1,2(e2Ae2) = M1,2(e1Ae2).
3898
+ It is clear that (iv) implies (ii), and (i) implies (iii). By looking at the first entry of the row vector,
3899
+ (iv) implies (i).
3900
+ Our assumption (3) implies that (iv) holds, and hence (i)-(iii) also hold.
3901
+ Thus Px ⊕ Py is
3902
+ presilting. It remains to show that Py is indecomposable. Suppose that Py is decomposable. By
3903
+ considering g-vector, we have that Py ≃ e2A[1] ⊕ Pz for some z ∈ e1Ae2. Since [Pz] = [Px], we
3904
+ have Pz ≃ Px by [DIJ, Theorem 6.5(a)]. This shows that e2A[1] ⊕ Px is silting. By Proposition
3905
+ 3.12, we have xAe2 = e1Ae2 and Rx = eAe. This contradicts u ̸∈ Rx.
3906
+
3907
+ We are ready to prove Theorem 5.1(b).
3908
+ Proof of Theorem 5.1(b). The first and second statements follow from Proposition 3.5 and Propo-
3909
+ sition 3.12.
3910
+
3911
+ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2
3912
+ 29
3913
+ We prove the third statement. By Proposition 3.12, cone{(1, 0), (1, −1)} ∈ Σ(A) if and only if
3914
+ t(e1Ae1e1Ae2) = 1, and cone{(0, −1), (1, −2)} ∈ Σ(A) if and only if t(e1Ae2e2Ae2) = 2. Thus the
3915
+ assertion follows from Proposition 5.6.
3916
+ The fourth statement is the dual of the third statement.
3917
+
3918
+ Acknowledgments
3919
+ T.A is supported by JSPS Grants-in-Aid for Scientific Research JP19J11408. A.H is supported
3920
+ by JSPS Grant-in-Aid for Scientists Research (C) 20K03513. O.I is supported by JSPS Grant-
3921
+ in-Aid for Scientific Research (B) 16H03923, (C) 18K3209 and (S) 15H05738. R.K is supported
3922
+ by JSPS Grant-in-Aid for Young Scientists (B) 17K14169. Y.M is supported by Grant-in-Aid for
3923
+ Scientific Research (C) 20K03539.
3924
+ References
3925
+ [ACGK] M. Akhtar, T. Coates, S. Galkin, and A. M. Kasprzyk. Minkowski polynomials and mutations. SIGMA.
3926
+ Symmetry, Integrability and Geometry: Methods and Applications, 8:094, 2012.
3927
+ [AIR] T. Adachi, O. Iyama, I. Reiten, τ-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
3928
+ [AI] T. Aihara, O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3,
3929
+ 633–668.
3930
+ [AMN] H. Asashiba, Y. Mizuno, K. Nakashima, Simplicial complexes and tilting theory for Brauer tree algebras, J.
3931
+ Algebra 551 (2020), 119–153.
3932
+ [Ao] T. Aoki, Classifying torsion classes for algebras with radical square zero via sign decomposition, J. Algebra
3933
+ 610 (2022), 167–198.
3934
+ [AHIKM1] T. Aoki, A. Higashitani, O. Iyama, R. Kase, Y. Mizuno, Fans and polytopes in tilting theory I: Founda-
3935
+ tions, arXiv:2203.15213
3936
+ [AHIKM2] T. Aoki, A. Higashitani, O. Iyama, R. Kase, Y. Mizuno, Fans and polytopes in tilting theory III:
3937
+ Classification of convex g-fans of rank 3, in preparation.
3938
+ [As] S. Asai, The wall-chamber structures of the real Grothendieck groups, Adv. Math. 381 (2021), 107615.
3939
+ [BP] V. Buchstaber, T. Panov, Toric topology, Mathematical Surveys and Monographs, 204. American Mathemat-
3940
+ ical Society, Providence, RI, 2015.
3941
+ [BR] M. Beck, S. Robins, Computing the continuous discretely. Integer-point enumeration in polyhedra, Second
3942
+ edition. With illustrations by David Austin. Undergraduate Texts in Mathematics. Springer, New York, 2015.
3943
+ [B] T. Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), no. 5,
3944
+ 523–561.
3945
+ [BST] T. Br¨ustle, D. Smith, H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math.
3946
+ 354 (2019), 106746.
3947
+ [DIJ] L. Demonet, O. Iyama, G. Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not. IMRN
3948
+ 2019, no. 3, 852–892.
3949
+ [DF] H. Derksen, J. Fei, General presentations of algebras, Adv. Math. 278 (2015), 210–237.
3950
+ [FZ1] S. Fomin, A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1,
3951
+ 63–121.
3952
+ [FZ2] S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112–164.
3953
+ [FH] N. Fujita, A. Higashitani, Newton–Okounkov bodies of flag varieties and combinatorial mutations, Int. Math.
3954
+ Res. Not. IMRN 2021, no. 12, 9567–9607.
3955
+ [F] W. Fulton, Introduction to Toric Varieties, Ann of Math. Studies 131, Princeton Univ. Press, 1993.
3956
+ [H1] L. Hille, On the volume of a tilting module, Abh. Math. Sem. Univ. Hamburg 76 (2006), 261–277.
3957
+ [H2] L. Hille, Tilting Modules over the Path Algebra of Type A, Polytopes, and Catalan Numbers, Lie algebras and
3958
+ related topics, 91–101, Contemp. Math., 652, Amer. Math. Soc., Providence, RI, 2015.
3959
+ [KV] B. Keller, D. Vossieck, Aisles in derived categories, Deuxi`eme Contact Franco-Belge en Alg`ebre (Faulx-les-
3960
+ Tombes, 1987). Bull. Soc. Math. Belg. S´er. A 40 (1988), no. 2, 239–253.
3961
+ [NZ] T. Nakanishi, A. Zelevinsky, On tropical dualities in cluster algebras, Algebraic groups and quantum groups,
3962
+ 217–226, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012.
3963
+ [Pl] P. Plamondon, Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN 2013,
3964
+ no. 10, 2368–2420.
3965
+
3966
+ 30
3967
+ TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO
3968
+ Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita,
3969
+ Osaka 565-0871, Japan
3970
+ Email address: [email protected]
3971
+ Department of Pure and Applied Mathematics, Graduate School of Information Science and Tech-
3972
+ nology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
3973
+ Email address: [email protected]
3974
+ Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo
3975
+ 153-8914, Japan
3976
+ Email address: [email protected]
3977
+ Department of Information Science and Engineering, Okayama University of Science, 1-1 Ridaicho,
3978
+ Kita-ku, Okayama 700-0005, Japan
3979
+ Email address: [email protected]
3980
+ Faculty of Liberal Arts, Sciences and Global Education / Graduate School of Science, Osaka Met-
3981
+ ropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
3982
+ Email address: [email protected]
3983
+
DNAzT4oBgHgl3EQfiP3j/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdFJT4oBgHgl3EQfCCz-/content/tmp_files/2301.11428v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdFJT4oBgHgl3EQfCCz-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FNE1T4oBgHgl3EQf-gbR/content/2301.03571v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3892fc0bbd8d6e721948991c521227219ae767c07c85fa5e74daa5be7bb44ed
3
+ size 6247905
FNE1T4oBgHgl3EQf-gbR/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:945e120d38d08b7065fbd8f8ad17ab5f618adad8d1b5b2910c607bb14913c08f
3
+ size 5570605
FdAzT4oBgHgl3EQfUfww/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2349103e933c9da015374f78f0ba20e8cc10a49b7fba01d4954d1e8b7a2d5f1e
3
+ size 11599917
H9E1T4oBgHgl3EQfFgPu/content/2301.02904v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:466e16a44350ae9819ecd78efe79861c7bd3d3949608a1687d5715d60af36f7c
3
+ size 759204
H9E1T4oBgHgl3EQfFgPu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f659d209fb592470982c5744a31ace5793e1dbf32f8d3778e532019e9f3781f
3
+ size 2687021
H9E1T4oBgHgl3EQfFgPu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5759fb80300afe61d347b2aa463d489398ffe1645a74df96e580a8b44fc9392e
3
+ size 108652
INE4T4oBgHgl3EQfhA00/content/tmp_files/2301.05121v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
INE4T4oBgHgl3EQfhA00/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff