jackkuo commited on
Commit
87089c3
·
verified ·
1 Parent(s): dd3413c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +56 -0
  2. 19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf +3 -0
  3. 19AzT4oBgHgl3EQfRvso/vector_store/index.faiss +3 -0
  4. 19AzT4oBgHgl3EQfRvso/vector_store/index.pkl +3 -0
  5. 2NE3T4oBgHgl3EQfnwo5/content/tmp_files/2301.04627v1.pdf.txt +390 -0
  6. 2NE3T4oBgHgl3EQfnwo5/content/tmp_files/load_file.txt +162 -0
  7. 3NAzT4oBgHgl3EQfR_tE/vector_store/index.faiss +3 -0
  8. 3NAzT4oBgHgl3EQfR_tE/vector_store/index.pkl +3 -0
  9. 49E3T4oBgHgl3EQfQQn6/vector_store/index.faiss +3 -0
  10. 49E3T4oBgHgl3EQfQQn6/vector_store/index.pkl +3 -0
  11. 49FJT4oBgHgl3EQfkSwi/content/2301.11578v1.pdf +3 -0
  12. 49FJT4oBgHgl3EQfkSwi/vector_store/index.faiss +3 -0
  13. 5tE2T4oBgHgl3EQf6wj3/content/tmp_files/2301.04204v1.pdf.txt +0 -0
  14. 5tE2T4oBgHgl3EQf6wj3/content/tmp_files/load_file.txt +0 -0
  15. 6tE0T4oBgHgl3EQffABm/content/tmp_files/2301.02398v1.pdf.txt +900 -0
  16. 6tE0T4oBgHgl3EQffABm/content/tmp_files/load_file.txt +0 -0
  17. 6tE3T4oBgHgl3EQfpwpy/content/tmp_files/2301.04645v1.pdf.txt +656 -0
  18. 6tE3T4oBgHgl3EQfpwpy/content/tmp_files/load_file.txt +185 -0
  19. 7NE3T4oBgHgl3EQfqApm/content/tmp_files/load_file.txt +0 -0
  20. 8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf +3 -0
  21. 8NFAT4oBgHgl3EQfox1h/vector_store/index.faiss +3 -0
  22. 8NFAT4oBgHgl3EQfox1h/vector_store/index.pkl +3 -0
  23. 9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf +3 -0
  24. 9NFJT4oBgHgl3EQfoSxe/vector_store/index.faiss +3 -0
  25. 9NFJT4oBgHgl3EQfoSxe/vector_store/index.pkl +3 -0
  26. 9dE4T4oBgHgl3EQfdwwo/content/tmp_files/2301.05093v1.pdf.txt +2293 -0
  27. 9dE4T4oBgHgl3EQfdwwo/content/tmp_files/load_file.txt +0 -0
  28. ANFIT4oBgHgl3EQf-iyR/content/tmp_files/2301.11411v1.pdf.txt +1626 -0
  29. ANFIT4oBgHgl3EQf-iyR/content/tmp_files/load_file.txt +0 -0
  30. B9E4T4oBgHgl3EQfFQzj/content/tmp_files/2301.04885v1.pdf.txt +422 -0
  31. B9E4T4oBgHgl3EQfFQzj/content/tmp_files/load_file.txt +513 -0
  32. BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf +3 -0
  33. BdE0T4oBgHgl3EQfyAIA/vector_store/index.faiss +3 -0
  34. BdE3T4oBgHgl3EQftAtl/vector_store/index.faiss +3 -0
  35. BdE3T4oBgHgl3EQftAtl/vector_store/index.pkl +3 -0
  36. DNAyT4oBgHgl3EQfSPdR/vector_store/index.faiss +3 -0
  37. E9E0T4oBgHgl3EQfQwCg/vector_store/index.pkl +3 -0
  38. F9E3T4oBgHgl3EQfWAol/vector_store/index.faiss +3 -0
  39. F9E3T4oBgHgl3EQfWAol/vector_store/index.pkl +3 -0
  40. FtAyT4oBgHgl3EQfrPm5/content/2301.00558v1.pdf +3 -0
  41. FtFJT4oBgHgl3EQfDSx3/content/tmp_files/2301.11433v1.pdf.txt +2271 -0
  42. FtFJT4oBgHgl3EQfDSx3/content/tmp_files/load_file.txt +0 -0
  43. FtFLT4oBgHgl3EQfGS-3/content/tmp_files/2301.11991v1.pdf.txt +904 -0
  44. FtFLT4oBgHgl3EQfGS-3/content/tmp_files/load_file.txt +478 -0
  45. GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf +3 -0
  46. GNE1T4oBgHgl3EQfFANy/vector_store/index.faiss +3 -0
  47. GNE1T4oBgHgl3EQfFANy/vector_store/index.pkl +3 -0
  48. GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf +3 -0
  49. GtE5T4oBgHgl3EQfWA9Z/vector_store/index.pkl +3 -0
  50. JNFAT4oBgHgl3EQfvB44/vector_store/index.pkl +3 -0
.gitattributes CHANGED
@@ -3276,3 +3276,59 @@ FdE1T4oBgHgl3EQf-wYy/content/2301.03572v1.pdf filter=lfs diff=lfs merge=lfs -tex
3276
  YNE5T4oBgHgl3EQfdQ-k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3277
  itFLT4oBgHgl3EQfbC-l/content/2301.12077v1.pdf filter=lfs diff=lfs merge=lfs -text
3278
  M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276
  YNE5T4oBgHgl3EQfdQ-k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3277
  itFLT4oBgHgl3EQfbC-l/content/2301.12077v1.pdf filter=lfs diff=lfs merge=lfs -text
3278
  M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf filter=lfs diff=lfs merge=lfs -text
3279
+ FtAyT4oBgHgl3EQfrPm5/content/2301.00558v1.pdf filter=lfs diff=lfs merge=lfs -text
3280
+ itFAT4oBgHgl3EQf-B4t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3281
+ KtFOT4oBgHgl3EQfzTRj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3282
+ M9AzT4oBgHgl3EQfWPwO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3283
+ ZdFST4oBgHgl3EQfAjil/content/2301.13699v1.pdf filter=lfs diff=lfs merge=lfs -text
3284
+ PNAzT4oBgHgl3EQfWvwu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3285
+ BdE0T4oBgHgl3EQfyAIA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3286
+ 49FJT4oBgHgl3EQfkSwi/content/2301.11578v1.pdf filter=lfs diff=lfs merge=lfs -text
3287
+ YNE5T4oBgHgl3EQfdQ-k/content/2301.05610v1.pdf filter=lfs diff=lfs merge=lfs -text
3288
+ rdE0T4oBgHgl3EQfrQFV/content/2301.02563v1.pdf filter=lfs diff=lfs merge=lfs -text
3289
+ itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf filter=lfs diff=lfs merge=lfs -text
3290
+ PdAyT4oBgHgl3EQf7fpb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3291
+ F9E3T4oBgHgl3EQfWAol/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3292
+ 49FJT4oBgHgl3EQfkSwi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3293
+ qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf filter=lfs diff=lfs merge=lfs -text
3294
+ _tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf filter=lfs diff=lfs merge=lfs -text
3295
+ itFLT4oBgHgl3EQfbC-l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3296
+ 19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf filter=lfs diff=lfs merge=lfs -text
3297
+ ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf filter=lfs diff=lfs merge=lfs -text
3298
+ 8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf filter=lfs diff=lfs merge=lfs -text
3299
+ ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf filter=lfs diff=lfs merge=lfs -text
3300
+ _dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf filter=lfs diff=lfs merge=lfs -text
3301
+ BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf filter=lfs diff=lfs merge=lfs -text
3302
+ p9FLT4oBgHgl3EQfiS8Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3303
+ Q9AzT4oBgHgl3EQfI_tW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3304
+ otAzT4oBgHgl3EQfAfoQ/content/2301.00925v1.pdf filter=lfs diff=lfs merge=lfs -text
3305
+ 8NFAT4oBgHgl3EQfox1h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3306
+ ttFKT4oBgHgl3EQf2y5g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3307
+ PNAzT4oBgHgl3EQfWvwu/content/2301.01305v1.pdf filter=lfs diff=lfs merge=lfs -text
3308
+ otAzT4oBgHgl3EQfAfoQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3309
+ 19AzT4oBgHgl3EQfRvso/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3310
+ 49E3T4oBgHgl3EQfQQn6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3311
+ _tE2T4oBgHgl3EQfQwb6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3312
+ htE1T4oBgHgl3EQfMwMt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3313
+ GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf filter=lfs diff=lfs merge=lfs -text
3314
+ rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf filter=lfs diff=lfs merge=lfs -text
3315
+ DNAyT4oBgHgl3EQfSPdR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3316
+ BdE3T4oBgHgl3EQftAtl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3317
+ GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf filter=lfs diff=lfs merge=lfs -text
3318
+ rdE0T4oBgHgl3EQfrQFV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3319
+ 3NAzT4oBgHgl3EQfR_tE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3320
+ ltFAT4oBgHgl3EQfbx2O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3321
+ GNE1T4oBgHgl3EQfFANy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3322
+ ktE1T4oBgHgl3EQf0gVV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3323
+ jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf filter=lfs diff=lfs merge=lfs -text
3324
+ VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf filter=lfs diff=lfs merge=lfs -text
3325
+ XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf filter=lfs diff=lfs merge=lfs -text
3326
+ btFIT4oBgHgl3EQfmivq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3327
+ _9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf filter=lfs diff=lfs merge=lfs -text
3328
+ VNFJT4oBgHgl3EQfOCw1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3329
+ _dE3T4oBgHgl3EQfTAmK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3330
+ 9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf filter=lfs diff=lfs merge=lfs -text
3331
+ T9E5T4oBgHgl3EQfbA-t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3332
+ cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf filter=lfs diff=lfs merge=lfs -text
3333
+ S9AyT4oBgHgl3EQfVfdE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3334
+ 9NFJT4oBgHgl3EQfoSxe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9064fbb227d78d46ee299bd50005750ed5e2e082099badc416b279a5b12c105b
3
+ size 2440332
19AzT4oBgHgl3EQfRvso/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9818161c70edba4fbc8eb999309741aa3a35d9794a5143a69ff8ee3268d416df
3
+ size 4718637
19AzT4oBgHgl3EQfRvso/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:690cbdfb3c089f959c45c331babfe97d51f34bb874c6a74ba085faae1c709f94
3
+ size 195177
2NE3T4oBgHgl3EQfnwo5/content/tmp_files/2301.04627v1.pdf.txt ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04627v1 [quant-ph] 11 Jan 2023
2
+ An Improved Approximation for Sparse Fermionic Hamiltonians
3
+ Daniel Hothem∗,
4
+ Ojas Parekh† and Kevin Thompson‡
5
+ Abstract
6
+ We give a classical 1/(qk+1)-approximation for the maximum eigenvalue of k-sparse fermionic
7
+ Hamiltonians with q-local terms as well as a 1/(4k + 1)-approximation when the Hamiltonian
8
+ has both 2-local and 4-local terms.
9
+ We consider approximations for extremal eigenvalues of a k-sparse fermionic Hamiltonian:
10
+ H =
11
+
12
+ Γ
13
+ HΓcΓ.
14
+ (1)
15
+ Here H is a fermionic Hamiltonian with real coefficients HΓ, where ignoring phase factors, each
16
+ term cΓ is a product of q Majorana operators (i.e. H is q-local with q even) and each Majorana
17
+ operator appears in at most k non-zero terms (i.e. H is k-sparse). We let m = �
18
+ Γ |HΓ|.
19
+ Herasymenko, Stroeks, Helsen, and Terhal [2] show that λmax(H) ≥ m/Q, where λmax(H) is the
20
+ largest eigenvalue of H and Q = q(q−1)(k−1)2+q(k−1)+2. We demonstrate that this is true with
21
+ Q = qk + 1 and also that Q = 4k + 1 is attainable for k-sparse H with a mix of 2-local and 4-local
22
+ terms. All of these results are obtained by efficient classical algorithms producing descriptions of
23
+ Gaussian states. We refer the reader to [2] for further background, motivation, and applications to
24
+ the SYK model.
25
+ Results of the above flavor were obtained for traceless k-sparse qubit Hamiltonians with constant
26
+ locality by Harrow and Montanaro [1], who show that λmax(H) ≥ Ω(m/k) using product states,
27
+ where m is defined analogously as above. They also give an improved bound with respect to the
28
+ operator norm instead of the maximum eigenvalue: ∥H∥ ≥ Ω(m/
29
+
30
+ k). In the fermionic case, we
31
+ give a 2-local example with λmax(H) = ∥H∥ = Θ(m/k), showing that such an improvement is not
32
+ possible.
33
+ We specify our algorithm for the case when H has 2-local and 4-local terms and point out how it
34
+ generalizes when terms are q-local. Concretely, we are given n fermionic modes and corresponding
35
+ traceless Majorana operators {ci}2n
36
+ i=1 satisfying the canonical anticommutation rules {ci, cj} = 2δij.
37
+ We assume that in Equation (1), each Γ corresponds to a subset of [2n]: Γ = {j1, j2, ..., jq} ⊆ [2n]
38
+ with q ∈ {2, 4} and j1 < j2 < ... < jq. The local terms are defined as cΓ = icj1cj2 if q = 2 and
39
+ cΓ = cj1cj2cj3cj4 if q = 4. We let E = {Γ | HΓ ̸= 0}. As noted above, we assume H is k-sparse, i.e.
40
+ for all i ∈ [2n], |{Γ ∈ E | i ∈ Γ}| ≤ k.
41
+ Theorem 1. There is a classical polynomial time algorithm that given as input the weights {HΓ},
42
+ returns a description of a quantum state ρ achieving energy
43
+ Tr(Hρ) ≥
44
+ 1
45
+ 4k + 1
46
+
47
+ Γ
48
+ |HΓ| ≥
49
+ 1
50
+ 4k + 1λmax(H).
51
+ ∗Sandia National Laboratories, email: [email protected]
52
+ †Sandia National Laboratories, email: [email protected]
53
+ ‡Sandia National Laboratories, email: [email protected]
54
+ 1
55
+
56
+ Proof. Define a graph G = (V, E) with vertices corresponding to the nonzero terms in the Hamilto-
57
+ nian, i.e. V = E. The graph G may contain vertices corresponding to 2-local or 4-local terms. We
58
+ include an edge (vΓ, vΓ′) ∈ E if and only if one of the following conditions is met:
59
+ (i) cΓ and cΓ′ share one or more Marjorana operators, i.e. Γ ∩ Γ′ ̸= ∅, or
60
+ (ii) Γ and Γ′ are disjoint and Γ ∪ Γ′ ∈ E.
61
+ If there are m nonzero terms in the Hamiltonian then the graph G has m vertices, and the degree
62
+ of a vertex in the graph is at most 4k. We can see the latter as follows. Fix some vertex vΓ. By
63
+ construction,
64
+ deg(vΓ) = |{(Γ, Γ′) ∈ E × E | Γ and Γ′ satisfy (i) or (ii)}|.
65
+ (2)
66
+ We consider two cases:
67
+ - Γ is 4-local. Consider an edge (vΓ, vΓ′). As H contains no 6-local or 8-local terms, Γ ∩ Γ′ ̸= ∅.
68
+ As H is k sparse, there are at most 4k Γ′ for which this can occur.
69
+ - Γ is 2-local. Let a equal the number of 4-local Hamiltonian terms overlapping with Γ, and let
70
+ b equal the number of 2-local terms overlapping with Γ. We claim that the degree of vΓ is at
71
+ most 2a + b.
72
+ There are b 2-local Γ′ satisfying (i) with Γ. Each 2-local Γ′ satisfying (ii) results in a unique
73
+ 4-local Γ ∪ Γ′ ∈ E overlapping with Γ, hence there at most a such Γ′. Finally, no 4-local Γ′
74
+ may satisfy (ii), and there are a 4-local Γ′ satisfying (i).
75
+ Since Γ overlaps with at most 2k Γ′, we have a + b ≤ 2k so that 2a + b ≤ 4k.
76
+ By Brooks Theorem we can in polynomial time find a coloring of the vertices of G with at
77
+ most 4k + 1 colors. This means we can partition the vertices into at most 4k + 1 independent sets,
78
+ {S1, ..., St}, with one of these sets having at least a 1/(4k + 1) fraction of the sum of the absolute
79
+ values of the weights:
80
+
81
+ Γ
82
+ |HΓ| =
83
+
84
+ Si
85
+
86
+ Γ∈Si
87
+ |HΓ| ≤ (4k + 1) max
88
+ i
89
+
90
+ Γ∈Si
91
+ |HΓ|.
92
+ (3)
93
+ It follows from Equation (3) that
94
+ max
95
+ i
96
+
97
+ Γ∈Si
98
+ |HΓ| ≥
99
+ 1
100
+ (4k + 1)
101
+
102
+ Γ
103
+ |HΓ|.
104
+ Define Sj = arg maxj
105
+
106
+ Γ∈Sj |HΓ|, and consider the following state:
107
+ ρ = 1
108
+ 2n
109
+
110
+ Γ∈Sj
111
+ (I + sign(HΓ)cΓ).
112
+ (4)
113
+ We claim that ρ is a valid quantum state and obtains objective �
114
+ Γ∈Sj |HΓ|. The state ρ is
115
+ proportional to a projector on a stabilizer state with stabilizer generators given by cΓ for Γ ∈ Sj:
116
+ Observe that [cΓ, cΓ′] = 0 for all Γ, Γ′ ∈ Sj since Sj is an independent set. Hence, ρ is the product
117
+ of commuting projectors and must be positive semidefinite.
118
+ We expand the product in Equation (4) as a sum and consider products of two or more terms,
119
+ σ = �
120
+ p cΓp for Γp ∈ Sj. If any of the Γp are 4-local or p ≥ 3, σ cannot be proportional to a term of
121
+ 2
122
+
123
+ H since the Γ ∈ Sj are disjoint, and no cancellation in products of Majorona operators can occur.
124
+ The remaining case is a product of two 2-local operators. For any such Γ, Γ′ ∈ Sj, by (ii) and
125
+ because Sj is an independent set, the product cΓcΓ′ cannot be proportional to cΓ′′ for any Γ′′ ∈ E.
126
+ Hence we have
127
+ Tr(Iρ) = 1,
128
+ Tr(cΓρ) = sign(HΓ)
129
+ ∀Γ ∈ Sj, and
130
+ Tr(cΓρ) = 0
131
+ ∀Γ ∈ E \ Sj.
132
+ This yields the desired claim that ρ is a normalized state for which
133
+ Tr(Hρ) =
134
+
135
+ Γ
136
+ HΓTr(cΓρ) =
137
+
138
+ Γ∈Sj
139
+ HΓTr(cΓρ) =
140
+
141
+ Γ∈Sj
142
+ |HΓ| ≥
143
+ 1
144
+ 4k + 1
145
+
146
+ Γ
147
+ |HΓ|.
148
+ Gaussian states.
149
+ The ρ constructed in Theorem 1 is, in fact, a mixture of Gaussian states. This
150
+ is proven in the following lemma. This implies the existence of a Gaussian state with at least the
151
+ same objective as ρ.
152
+ Lemma 2. The state ρ defined in Equation (4) is a mixture of Gaussian states.
153
+ Proof. For each Γ ∈ Sj let MΓ be the perfect matching of the operators in Γ induced by the lexico-
154
+ graphic ordering of Γ, and let M be a perfect matching of the Majorana operators in {c1, ...c2n}\{ci |
155
+ ∃Γ ∈ Sj with i ∈ Γ} induced by the lexicographic ordering. Define the following Gaussian state:
156
+ ρ′(z) = 1
157
+ 2n
158
+
159
+ Γ∈Sj
160
+
161
+ gh∈MΓ
162
+ (I + zgh icgch)
163
+
164
+ rs∈M
165
+ (I + zrs icrcs),
166
+ (5)
167
+ where all zgh, zrs ∈ {±1}.
168
+ Consider the state ρ′′ = Ez[ρ′(z)] where for each Γ the set {zgh}gh∈MΓ is uniformly random
169
+ distributed over {±1}|MΓ| subject to the constraint:
170
+ sign
171
+
172
+
173
+
174
+  �
175
+ gh∈MΓ
176
+ zgh icgch
177
+
178
+  cΓ
179
+
180
+  = sign(HΓ)
181
+ ∀Γ ∈ Sj,
182
+ (6)
183
+ where sign(±I) is defined as ±1. In other words, {zgh}gh∈MΓ is chosen as the uniform distribution
184
+ over strings in {±1}|MΓ| which satisfy Equation (6). We will assume further that {zgh}gh∈MΓ is
185
+ independent of all other {zgh}gh∈MΓ′ and that each zrs for rs ∈ M is uniform and independent of
186
+ all other random variables.
187
+ We claim that ρ = ρ′′. Begin by using independence to push the expectation past the first and
188
+ third products in Equation (5):
189
+ ρ′′ = 1
190
+ 2n
191
+
192
+ Γ∈Sj
193
+
194
+ Ez
195
+
196
+
197
+ gh∈MΓ
198
+ (I + zgh icgch)
199
+ �� �
200
+ rs∈M
201
+
202
+ Ez
203
+
204
+ (I + zrs icrcs)
205
+ ��
206
+ ,
207
+ (7)
208
+ We first focus on the final product. Observe that:
209
+
210
+ rs∈M
211
+
212
+ Ez
213
+
214
+ (I + zrs icrcs)
215
+ ��
216
+ = I
217
+ (8)
218
+ 3
219
+
220
+ This follows from the independence of the {zrs | rs ∈ M} and because Ez[zrs] = 0 for all rs ∈ M.
221
+ Hence:
222
+ ρ′′ = 1
223
+ 2n
224
+
225
+ Γ∈Sj
226
+
227
+ Ez
228
+
229
+
230
+ gh∈MΓ
231
+ (I + zgh icgch)
232
+ ��
233
+ .
234
+ (9)
235
+ For fixed Γ ∈ Sj, we claim that:
236
+ Ez
237
+
238
+
239
+ gh∈MΓ
240
+ (I + zgh icgch)
241
+
242
+ = I + sign(HΓ)cΓ.
243
+ (10)
244
+ Lemma 2 follows immediately from Equation (10). For any strict subset Γ′ ⊊ Γ, define
245
+ MΓ′∩Γ := {gh ∈ MΓ : g ∈ Γ′, h ∈ Γ′}.
246
+ We may then expand the left-hand side of Equation (10) as:
247
+ Ez
248
+
249
+
250
+ gh∈MΓ
251
+ (I + zgh icgch)
252
+
253
+ = I +
254
+
255
+ Γ′⊊Γ
256
+ Ez
257
+
258
+
259
+ gh∈MΓ′∩Γ
260
+ zgh icgch
261
+
262
+ + Ez
263
+
264
+
265
+ gh∈MΓ
266
+ zgh icgch
267
+
268
+ (11)
269
+ = I + sign(HΓ)cΓ
270
+ (12)
271
+ The final expectation in Equation (11) evaluates to sign(HΓ)cΓ due to constraint 6. The sum of
272
+ expectations in Equation (11) disappears as the marginal distribution of the z when restricted to
273
+ a matching on a strict subset Γ′ ⊊ Γ of size |MΓ′∩Γ| = p is totally uniform over {±1}p. Therefore
274
+ Ez[zgh] = 0 for any such matching.
275
+ Although ρ′(z) in Lemma 2 is a Gaussian state for any z, the state ρ′′ is a mixture of Gaussian
276
+ states by definition. However, we may derandomize the choice of z to obtain a Gaussian state.
277
+ We only require pairwise independence of the elements of z, hence using standard derandomization
278
+ approaches, we can obtain a Gaussian state ρ′(z) in polynomial time such that Tr(Hρ′(z)) ≥
279
+ Tr(Hρ′′).
280
+ Extension to strictly q-local Hamiltonians.
281
+ A simple modification of the proof of Theorem 1
282
+ produces a 1/(qk + 1)-approximation to k-sparse Hamiltonians where each term is q-local. In this
283
+ case we only need to include edges in G between vΓ and vΓ′ precisely when condition (i) holds, since
284
+ (ii) is vacuous. Consequently we may omit the second case below Equation (2) and simply bound
285
+ the degree as qk. We then effectively replace “4” with q in the remaining proof.
286
+ Extension to Hamiltonians with terms of different sizes.
287
+ An additional modification of the
288
+ proof of Theorem 1 produces a 1/O(qk2)-approximation to a k-sparse Hamiltonian with terms of
289
+ different sizes, where q = maxΓ∈E(|Γ|). In this case we need an appropriate generalization of (ii).
290
+ Let us start by defining G using only the condition (i); the maximum possible degree in G is qk.
291
+ The purpose of (ii) in the proof is to ensure that for Γ, Γ′ in the independent set Sj, cΓcΓ′ cannot
292
+ be proportional to cΓ′′ for any Γ′′ ∈ E. Note that if this happens, then Γ′′ must contain both Γ and
293
+ Γ′. Thus it would suffice for our independent set Sj in G to satisfy the additional property that
294
+ no vΓ, vΓ′ ∈ Sj could have a common neighbor vΓ′′ ∈ V with Γ, Γ′ ⊂ Γ′′. We could satisfy this by
295
+ adding an edge in G between all pairs vΓ and vΓ′ with such a common neighbor. By k-sparsity, the
296
+ vertex vΓ has at most k neighbors vΓ′′ in G with Γ ⊂ Γ′′. Since any such vΓ′′ has degree at most
297
+ qk, the degree of vΓ increases by at most k(qk − 1), and maximum degree in the resulting graph G′
298
+ is O(qk2). Applying Brook’s Theorem in G′ produces the desired approximation.
299
+ 4
300
+
301
+ Optimality.
302
+ For k-sparse H where all terms are q-local, since ∥H∥ ≥ λmax(H), our results show
303
+ that
304
+ ∥H∥ ≥ λmax(H) ≥
305
+ m
306
+ qk + 1,
307
+ where we recall m = �
308
+ Γ |HΓ|. We give an explicit family of fermionic 2-local n-sparse Hamiltonians
309
+ {Hn}∞
310
+ n=1 demonstrating this bound is asymptotically tight (i.e., cannot be improved for all q and
311
+ k, up to constant factors).
312
+ Each Hn is expressed as a sum of monomials in 2n Majorana operators {c1, c2, ..., c2n} satisfying
313
+ the usual canonical anti-commutation relations. For each n, partition [2n] evenly into A = {1, ..., n}
314
+ and B = {n + 1, ..., 2n}. Then:
315
+ Hn :=
316
+
317
+ a∈A,b∈B
318
+ icacb = i
319
+ ��
320
+ a∈A
321
+ ca
322
+ � ��
323
+ b∈B
324
+ cb
325
+
326
+ .
327
+ The eigenvalues of Hn are easy to determine, define R ∈ O(2n) as some orthogonal matrix
328
+ satisfying:
329
+ Ra,1 = 1/√n
330
+ ∀a ∈ A and Rb,2 = 1/√n
331
+ ∀b ∈ B.
332
+ Note that this is well defined since the first two columns are orthonormal. We can then define a
333
+ new set of Majorana operators (also satisfying the canonical anti-commutation relations) by:
334
+ ˜ci =
335
+ 2n
336
+
337
+ i=1
338
+ Rj,icj.
339
+ In particular, we have
340
+ ˜c1 =
341
+ 1
342
+ √n
343
+
344
+ a∈A
345
+ ca and ˜c2 =
346
+ 1
347
+ √n
348
+
349
+ b∈B
350
+ cb,
351
+ so
352
+ H = ni ˜c1 ˜c2.
353
+ Since i ˜c1 ˜c2 is Hermitian and satisfies (i ˜c1 ˜c2)2 = I, it has eigenvalues in {±1}. Thus the eigenvalues
354
+ of Hn are {±n}. Note that Hn is n-sparse, m = n2, and ∥Hn∥ = λmax(Hn) so that
355
+ ∥Hn∥ = λmax(Hn) = n = Θ
356
+
357
+ n2
358
+ 2n + 1
359
+
360
+ = Θ
361
+
362
+ m
363
+ qk + 1
364
+
365
+ .
366
+ Acknowledgements
367
+ We thank Yaroslav Herasymenko for an insightful contribution to Lemma 2.
368
+ This article has been authored by an employee of National Technology & Engineering Solutions
369
+ of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE).
370
+ The employee owns all right, title and interest in and to the article and is solely responsible for
371
+ its contents. The United States Government retains and the publisher, by accepting the article
372
+ for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
373
+ irrevocable, world-wide license to publish or reproduce the published form of this article or allow
374
+ others to do so, for United States Government purposes.
375
+ The DOE will provide public access
376
+ to these results of federally sponsored research in accordance with the DOE Public Access Plan
377
+ https://www.energy.gov/downloads/doe-public-access-plan.
378
+ 5
379
+
380
+ This material is based upon work supported by the U.S. Department of Energy, Office of Science,
381
+ Office of Advanced Scientific Computing Research, National Quantum Information Science Research
382
+ Centers, Exploratory Research for Extreme Scale Science program. Support is also acknowledged
383
+ from the Accelerated Research in Quantum Computing program under the same office.
384
+ References
385
+ [1] Aram W. Harrow and Ashley Montanaro. Extremal eigenvalues of local Hamiltonians. Quantum,
386
+ 1:6, April 2017. doi:10.22331/q-2017-04-25-6.
387
+ [2] Yaroslav Herasymenko, Maarten Stroeks, Jonas Helsen, and Barbara Terhal. Optimizing sparse
388
+ fermionic hamiltonians. arXiv preprint arXiv:2211.16518, 2022.
389
+ 6
390
+
2NE3T4oBgHgl3EQfnwo5/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf,len=161
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
3
+ page_content='04627v1 [quant-ph] 11 Jan 2023 An Improved Approximation for Sparse Fermionic Hamiltonians Daniel Hothem∗, Ojas Parekh† and Kevin Thompson‡ Abstract We give a classical 1/(qk+1)-approximation for the maximum eigenvalue of k-sparse fermionic Hamiltonians with q-local terms as well as a 1/(4k + 1)-approximation when the Hamiltonian has both 2-local and 4-local terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
4
+ page_content=' We consider approximations for extremal eigenvalues of a k-sparse fermionic Hamiltonian: H = � Γ HΓcΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
5
+ page_content=' (1) Here H is a fermionic Hamiltonian with real coefficients HΓ, where ignoring phase factors, each term cΓ is a product of q Majorana operators (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
6
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
7
+ page_content=' H is q-local with q even) and each Majorana operator appears in at most k non-zero terms (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
8
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
9
+ page_content=' H is k-sparse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
10
+ page_content=' We let m = � Γ |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
11
+ page_content=' Herasymenko, Stroeks, Helsen, and Terhal [2] show that λmax(H) ≥ m/Q, where λmax(H) is the largest eigenvalue of H and Q = q(q−1)(k−1)2+q(k−1)+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
12
+ page_content=' We demonstrate that this is true with Q = qk + 1 and also that Q = 4k + 1 is attainable for k-sparse H with a mix of 2-local and 4-local terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
13
+ page_content=' All of these results are obtained by efficient classical algorithms producing descriptions of Gaussian states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
14
+ page_content=' We refer the reader to [2] for further background, motivation, and applications to the SYK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
15
+ page_content=' Results of the above flavor were obtained for traceless k-sparse qubit Hamiltonians with constant locality by Harrow and Montanaro [1], who show that λmax(H) ≥ Ω(m/k) using product states, where m is defined analogously as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
16
+ page_content=' They also give an improved bound with respect to the operator norm instead of the maximum eigenvalue: ∥H∥ ≥ Ω(m/ √ k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
17
+ page_content=' In the fermionic case, we give a 2-local example with λmax(H) = ∥H∥ = Θ(m/k), showing that such an improvement is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
18
+ page_content=' We specify our algorithm for the case when H has 2-local and 4-local terms and point out how it generalizes when terms are q-local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
19
+ page_content=' Concretely, we are given n fermionic modes and corresponding traceless Majorana operators {ci}2n i=1 satisfying the canonical anticommutation rules {ci, cj} = 2δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
20
+ page_content=' We assume that in Equation (1), each Γ corresponds to a subset of [2n]: Γ = {j1, j2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
21
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
22
+ page_content=', jq} ⊆ [2n] with q ∈ {2, 4} and j1 < j2 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
23
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
24
+ page_content=' < jq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
25
+ page_content=' The local terms are defined as cΓ = icj1cj2 if q = 2 and cΓ = cj1cj2cj3cj4 if q = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
26
+ page_content=' We let E = {Γ | HΓ ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
27
+ page_content=' As noted above, we assume H is k-sparse, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
28
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
29
+ page_content=' for all i ∈ [2n], |{Γ ∈ E | i ∈ Γ}| ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
30
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
31
+ page_content=' There is a classical polynomial time algorithm that given as input the weights {HΓ}, returns a description of a quantum state ρ achieving energy Tr(Hρ) ≥ 1 4k + 1 � Γ |HΓ| ≥ 1 4k + 1λmax(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
32
+ page_content=' ∗Sandia National Laboratories, email: dhothem@sandia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
33
+ page_content='gov †Sandia National Laboratories, email: odparek@sandia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
34
+ page_content='gov ‡Sandia National Laboratories, email: kevthom@sandia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
35
+ page_content='gov 1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
36
+ page_content=' Define a graph G = (V, E) with vertices corresponding to the nonzero terms in the Hamilto- nian, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
37
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
38
+ page_content=' V = E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
39
+ page_content=' The graph G may contain vertices corresponding to 2-local or 4-local terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
40
+ page_content=' We include an edge (vΓ, vΓ′) ∈ E if and only if one of the following conditions is met: (i) cΓ and cΓ′ share one or more Marjorana operators, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
41
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
42
+ page_content=' Γ ∩ Γ′ ̸= ∅, or (ii) Γ and Γ′ are disjoint and Γ ∪ Γ′ ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
43
+ page_content=' If there are m nonzero terms in the Hamiltonian then the graph G has m vertices, and the degree of a vertex in the graph is at most 4k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
44
+ page_content=' We can see the latter as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
45
+ page_content=' Fix some vertex vΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
46
+ page_content=' By construction, deg(vΓ) = |{(Γ, Γ′) ∈ E × E | Γ and Γ′ satisfy (i) or (ii)}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
47
+ page_content=' (2) We consider two cases: Γ is 4-local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
48
+ page_content=' Consider an edge (vΓ, vΓ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
49
+ page_content=' As H contains no 6-local or 8-local terms, Γ ∩ Γ′ ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
50
+ page_content=' As H is k sparse, there are at most 4k Γ′ for which this can occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
51
+ page_content=' Γ is 2-local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
52
+ page_content=' Let a equal the number of 4-local Hamiltonian terms overlapping with Γ, and let b equal the number of 2-local terms overlapping with Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
53
+ page_content=' We claim that the degree of vΓ is at most 2a + b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
54
+ page_content=' There are b 2-local Γ′ satisfying (i) with Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
55
+ page_content=' Each 2-local Γ′ satisfying (ii) results in a unique 4-local Γ ∪ Γ′ ∈ E overlapping with Γ, hence there at most a such Γ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
56
+ page_content=' Finally, no 4-local Γ′ may satisfy (ii), and there are a 4-local Γ′ satisfying (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
57
+ page_content=' Since Γ overlaps with at most 2k Γ′, we have a + b ≤ 2k so that 2a + b ≤ 4k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
58
+ page_content=' By Brooks Theorem we can in polynomial time find a coloring of the vertices of G with at most 4k + 1 colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
59
+ page_content=' This means we can partition the vertices into at most 4k + 1 independent sets, {S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
60
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
61
+ page_content=', St}, with one of these sets having at least a 1/(4k + 1) fraction of the sum of the absolute values of the weights: � Γ |HΓ| = � Si � Γ∈Si |HΓ| ≤ (4k + 1) max i � Γ∈Si |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
62
+ page_content=' (3) It follows from Equation (3) that max i � Γ∈Si |HΓ| ≥ 1 (4k + 1) � Γ |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
63
+ page_content=' Define Sj = arg maxj � Γ∈Sj |HΓ|, and consider the following state: ρ = 1 2n � Γ∈Sj (I + sign(HΓ)cΓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
64
+ page_content=' (4) We claim that ρ is a valid quantum state and obtains objective � Γ∈Sj |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
65
+ page_content=' The state ρ is proportional to a projector on a stabilizer state with stabilizer generators given by cΓ for Γ ∈ Sj: Observe that [cΓ, cΓ′] = 0 for all Γ, Γ′ ∈ Sj since Sj is an independent set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
66
+ page_content=' Hence, ρ is the product of commuting projectors and must be positive semidefinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
67
+ page_content=' We expand the product in Equation (4) as a sum and consider products of two or more terms, σ = � p cΓp for Γp ∈ Sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
68
+ page_content=' If any of the Γp are 4-local or p ≥ 3, σ cannot be proportional to a term of 2 H since the Γ ∈ Sj are disjoint, and no cancellation in products of Majorona operators can occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
69
+ page_content=' The remaining case is a product of two 2-local operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
70
+ page_content=' For any such Γ, Γ′ ∈ Sj, by (ii) and because Sj is an independent set, the product cΓcΓ′ cannot be proportional to cΓ′′ for any Γ′′ ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
71
+ page_content=' Hence we have Tr(Iρ) = 1, Tr(cΓρ) = sign(HΓ) ∀Γ ∈ Sj, and Tr(cΓρ) = 0 ∀Γ ∈ E \\ Sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
72
+ page_content=' This yields the desired claim that ρ is a normalized state for which Tr(Hρ) = � Γ HΓTr(cΓρ) = � Γ∈Sj HΓTr(cΓρ) = � Γ∈Sj |HΓ| ≥ 1 4k + 1 � Γ |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
73
+ page_content=' Gaussian states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
74
+ page_content=' The ρ constructed in Theorem 1 is, in fact, a mixture of Gaussian states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
75
+ page_content=' This is proven in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
76
+ page_content=' This implies the existence of a Gaussian state with at least the same objective as ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
77
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
78
+ page_content=' The state ρ defined in Equation (4) is a mixture of Gaussian states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
79
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
80
+ page_content=' For each Γ ∈ Sj let MΓ be the perfect matching of the operators in Γ induced by the lexico- graphic ordering of Γ, and let M be a perfect matching of the Majorana operators in {c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
81
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
82
+ page_content='c2n}\\{ci | ∃Γ ∈ Sj with i ∈ Γ} induced by the lexicographic ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
83
+ page_content=' Define the following Gaussian state: ρ′(z) = 1 2n � Γ∈Sj � gh∈MΓ (I + zgh icgch) � rs∈M (I + zrs icrcs), (5) where all zgh, zrs ∈ {±1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
84
+ page_content=' Consider the state ρ′′ = Ez[ρ′(z)] where for each Γ the set {zgh}gh∈MΓ is uniformly random distributed over {±1}|MΓ| subject to the constraint: sign \uf8ee \uf8f0 \uf8eb \uf8ed � gh∈MΓ zgh icgch \uf8f6 \uf8f8 cΓ \uf8f9 \uf8fb = sign(HΓ) ∀Γ ∈ Sj, (6) where sign(±I) is defined as ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
85
+ page_content=' In other words, {zgh}gh∈MΓ is chosen as the uniform distribution over strings in {±1}|MΓ| which satisfy Equation (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
86
+ page_content=' We will assume further that {zgh}gh∈MΓ is independent of all other {zgh}gh∈MΓ′ and that each zrs for rs ∈ M is uniform and independent of all other random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
87
+ page_content=' We claim that ρ = ρ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
88
+ page_content=' Begin by using independence to push the expectation past the first and third products in Equation (5): ρ′′ = 1 2n � Γ∈Sj � Ez � � gh∈MΓ (I + zgh icgch) �� � rs∈M � Ez � (I + zrs icrcs) �� , (7) We first focus on the final product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
89
+ page_content=' Observe that: � rs∈M � Ez � (I + zrs icrcs) �� = I (8) 3 This follows from the independence of the {zrs | rs ∈ M} and because Ez[zrs] = 0 for all rs ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
90
+ page_content=' Hence: ρ′′ = 1 2n � Γ∈Sj � Ez � � gh∈MΓ (I + zgh icgch) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
91
+ page_content=' (9) For fixed Γ ∈ Sj, we claim that: Ez � � gh∈MΓ (I + zgh icgch) � = I + sign(HΓ)cΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
92
+ page_content=' (10) Lemma 2 follows immediately from Equation (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
93
+ page_content=' For any strict subset Γ′ ⊊ Γ, define MΓ′∩Γ := {gh ∈ MΓ : g ∈ Γ′, h ∈ Γ′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
94
+ page_content=' We may then expand the left-hand side of Equation (10) as: Ez � � gh∈MΓ (I + zgh icgch) � = I + � Γ′⊊Γ Ez � � gh∈MΓ′∩Γ zgh icgch � + Ez � � gh∈MΓ zgh icgch � (11) = I + sign(HΓ)cΓ (12) The final expectation in Equation (11) evaluates to sign(HΓ)cΓ due to constraint 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
95
+ page_content=' The sum of expectations in Equation (11) disappears as the marginal distribution of the z when restricted to a matching on a strict subset Γ′ ⊊ Γ of size |MΓ′∩Γ| = p is totally uniform over {±1}p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
96
+ page_content=' Therefore Ez[zgh] = 0 for any such matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
97
+ page_content=' Although ρ′(z) in Lemma 2 is a Gaussian state for any z, the state ρ′′ is a mixture of Gaussian states by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
98
+ page_content=' However, we may derandomize the choice of z to obtain a Gaussian state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
99
+ page_content=' We only require pairwise independence of the elements of z, hence using standard derandomization approaches, we can obtain a Gaussian state ρ′(z) in polynomial time such that Tr(Hρ′(z)) ≥ Tr(Hρ′′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
100
+ page_content=' Extension to strictly q-local Hamiltonians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
101
+ page_content=' A simple modification of the proof of Theorem 1 produces a 1/(qk + 1)-approximation to k-sparse Hamiltonians where each term is q-local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
102
+ page_content=' In this case we only need to include edges in G between vΓ and vΓ′ precisely when condition (i) holds, since (ii) is vacuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
103
+ page_content=' Consequently we may omit the second case below Equation (2) and simply bound the degree as qk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
104
+ page_content=' We then effectively replace “4” with q in the remaining proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
105
+ page_content=' Extension to Hamiltonians with terms of different sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
106
+ page_content=' An additional modification of the proof of Theorem 1 produces a 1/O(qk2)-approximation to a k-sparse Hamiltonian with terms of different sizes, where q = maxΓ∈E(|Γ|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
107
+ page_content=' In this case we need an appropriate generalization of (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
108
+ page_content=' Let us start by defining G using only the condition (i);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
109
+ page_content=' the maximum possible degree in G is qk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
110
+ page_content=' The purpose of (ii) in the proof is to ensure that for Γ, Γ′ in the independent set Sj, cΓcΓ′ cannot be proportional to cΓ′′ for any Γ′′ ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
111
+ page_content=' Note that if this happens, then Γ′′ must contain both Γ and Γ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
112
+ page_content=' Thus it would suffice for our independent set Sj in G to satisfy the additional property that no vΓ, vΓ′ ∈ Sj could have a common neighbor vΓ′′ ∈ V with Γ, Γ′ ⊂ Γ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
113
+ page_content=' We could satisfy this by adding an edge in G between all pairs vΓ and vΓ′ with such a common neighbor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
114
+ page_content=' By k-sparsity, the vertex vΓ has at most k neighbors vΓ′′ in G with Γ ⊂ Γ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
115
+ page_content=' Since any such vΓ′′ has degree at most qk, the degree of vΓ increases by at most k(qk − 1), and maximum degree in the resulting graph G′ is O(qk2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
116
+ page_content=' Applying Brook’s Theorem in G′ produces the desired approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
117
+ page_content=' 4 Optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
118
+ page_content=' For k-sparse H where all terms are q-local, since ∥H∥ ≥ λmax(H), our results show that ∥H∥ ≥ λmax(H) ≥ m qk + 1, where we recall m = � Γ |HΓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
119
+ page_content=' We give an explicit family of fermionic 2-local n-sparse Hamiltonians {Hn}∞ n=1 demonstrating this bound is asymptotically tight (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
120
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
121
+ page_content=', cannot be improved for all q and k, up to constant factors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
122
+ page_content=' Each Hn is expressed as a sum of monomials in 2n Majorana operators {c1, c2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
123
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
124
+ page_content=', c2n} satisfying the usual canonical anti-commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
125
+ page_content=' For each n, partition [2n] evenly into A = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
126
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
127
+ page_content=', n} and B = {n + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
128
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
129
+ page_content=', 2n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
130
+ page_content=' Then: Hn := � a∈A,b∈B icacb = i �� a∈A ca � �� b∈B cb � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
131
+ page_content=' The eigenvalues of Hn are easy to determine, define R ∈ O(2n) as some orthogonal matrix satisfying: Ra,1 = 1/√n ∀a ∈ A and Rb,2 = 1/√n ∀b ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
132
+ page_content=' Note that this is well defined since the first two columns are orthonormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
133
+ page_content=' We can then define a new set of Majorana operators (also satisfying the canonical anti-commutation relations) by: ˜ci = 2n � i=1 Rj,icj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
134
+ page_content=' In particular, we have ˜c1 = 1 √n � a∈A ca and ˜c2 = 1 √n � b∈B cb, so H = ni ˜c1 ˜c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
135
+ page_content=' Since i ˜c1 ˜c2 is Hermitian and satisfies (i ˜c1 ˜c2)2 = I, it has eigenvalues in {±1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
136
+ page_content=' Thus the eigenvalues of Hn are {±n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
137
+ page_content=' Note that Hn is n-sparse, m = n2, and ∥Hn∥ = λmax(Hn) so that ∥Hn∥ = λmax(Hn) = n = Θ � n2 2n + 1 � = Θ � m qk + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
138
+ page_content=' Acknowledgements We thank Yaroslav Herasymenko for an insightful contribution to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
139
+ page_content=' This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
140
+ page_content=' DE-NA0003525 with the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
141
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
142
+ page_content=' Department of Energy (DOE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
143
+ page_content=' The employee owns all right, title and interest in and to the article and is solely responsible for its contents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
144
+ page_content=' The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
145
+ page_content=' The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
146
+ page_content='energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
147
+ page_content='gov/downloads/doe-public-access-plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
148
+ page_content=' 5 This material is based upon work supported by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
149
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
150
+ page_content=' Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, National Quantum Information Science Research Centers, Exploratory Research for Extreme Scale Science program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
151
+ page_content=' Support is also acknowledged from the Accelerated Research in Quantum Computing program under the same office.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
152
+ page_content=' References [1] Aram W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
153
+ page_content=' Harrow and Ashley Montanaro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
154
+ page_content=' Extremal eigenvalues of local Hamiltonians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
155
+ page_content=' Quantum, 1:6, April 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
156
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
157
+ page_content='22331/q-2017-04-25-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
158
+ page_content=' [2] Yaroslav Herasymenko, Maarten Stroeks, Jonas Helsen, and Barbara Terhal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
159
+ page_content=' Optimizing sparse fermionic hamiltonians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
160
+ page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
161
+ page_content='16518, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
162
+ page_content=' 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NE3T4oBgHgl3EQfnwo5/content/2301.04627v1.pdf'}
3NAzT4oBgHgl3EQfR_tE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37369ebda28f2db84169c6efb0533985fe7ffedf620f1283fff0aaca034db33b
3
+ size 5046317
3NAzT4oBgHgl3EQfR_tE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddfe613fc2ea5bab6e78beefbb5d2ec35732919adb03307ca2a7acbd8114cc1e
3
+ size 193215
49E3T4oBgHgl3EQfQQn6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4663a535a87efab53cd7d7a66c6b1a402e26107c1e65068a22cf4b3a2bf09b95
3
+ size 4522029
49E3T4oBgHgl3EQfQQn6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91ffb889cb30ecd89e43e54fe1937b86f5ca63dec3d971654f0b2ec8de30325
3
+ size 160072
49FJT4oBgHgl3EQfkSwi/content/2301.11578v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed8fd31498059a88d0775668033949c6dc3c05e9ac5dfadddafcba0d619ee328
3
+ size 4756190
49FJT4oBgHgl3EQfkSwi/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff05b19030603bf984a06e73ffb506a73ba132671e11ffca0167b466b361d3e4
3
+ size 5832749
5tE2T4oBgHgl3EQf6wj3/content/tmp_files/2301.04204v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tE2T4oBgHgl3EQf6wj3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE0T4oBgHgl3EQffABm/content/tmp_files/2301.02398v1.pdf.txt ADDED
@@ -0,0 +1,900 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02398v1 [gr-qc] 6 Jan 2023
2
+ Glitch subtraction from gravitational wave data
3
+ using adaptive spline fitting
4
+ Soumya D. Mohanty, Mohammad A. T. Chowdhury
5
+ Department of Physics and Astronomy, University of Texas Rio Grande Valley, One
6
+ West University Blvd., Brownsville, Texas 78520, USA
7
+ E-mail: [email protected]
8
+ E-mail: [email protected]
9
+ Abstract.
10
+ Transient signals of instrumental and environmental origins (“glitches”)
11
+ in gravitational wave data elevate the false alarm rate of searches for astrophysical
12
+ signals and reduce their sensitivity. Glitches that directly overlap astrophysical signals
13
+ hinder their detection and worsen parameter estimation errors.
14
+ As the fraction of
15
+ data occupied by detectable astrophysical signals will be higher in next generation
16
+ detectors, such problematic overlaps could become more frequent. These adverse effects
17
+ of glitches can be mitigated by estimating and subtracting them out from the data,
18
+ but their unpredictable waveforms and large morphological diversity pose a challenge.
19
+ Subtraction of glitches using data from auxiliary sensors as predictors works but not
20
+ for the majority of cases. Thus, there is a need for nonparametric glitch mitigation
21
+ methods that do not require auxiliary data, work for a large variety of glitches, and have
22
+ minimal effect on astrophysical signals in the case of overlaps. In order to cope with
23
+ the high rate of glitches, it is also desirable that such methods be computationally fast.
24
+ We show that adaptive spline fitting, in which the placement of free knots is optimized
25
+ to estimate both smooth and non-smooth curves in noisy data, offers a promising
26
+ approach to satisfying these requirements for broadband short-duration glitches, the
27
+ type that appear quite frequently. The method is demonstrated on glitches drawn
28
+ from three distinct classes in the Gravity Spy database as well as on the glitch that
29
+ overlapped the double neutron star signal GW170817. The impact of glitch subtraction
30
+ on the GW170817 signal, or those like it injected into the data, is seen to be negligible.
31
+ 1. Introduction
32
+ In a fairly short time since the first direct detection of a gravitational wave (GW) signal
33
+ (GW150914) in 2015 [1] by the twin LIGO [2] detectors, GW astronomy has emerged as
34
+ an information-rich field that will revolutionize our understanding of compact objects
35
+ such as black holes and neutron stars. By now, the network of LIGO and Virgo [3]
36
+ detectors has reported 90 confirmed detections of GW signals from compact binary
37
+ coalescences (CBCs) across the first observing run (O1) [4] to the third (O3) [5]. The
38
+ majority of these are binary black hole (BBH) mergers but the haul also includes a
39
+ double neutron star (DNS) system (GW170817) [6].
40
+
41
+ Adaptive spline glitch removal
42
+ 2
43
+ The rate of detectable GW signals will grow as more detectors, namely KAGRA [7]
44
+ and LIGO-India [8], join the network and increase its distance reach for GW sources.
45
+ Design studies are already underway for the successors to the current generation of GW
46
+ detectors [9, 10, 11] with the goal of achieving an order of magnitude improvement in
47
+ sensitivity across the current operational frequency band. In addition, next-generation
48
+ detectors will seek to expand the operational range to lower frequencies (≈ 1 Hz),
49
+ thereby increasing the duration of in-band GW signals across the board: for example, a
50
+ DNS signal starting at ≈ 10 Hz will last for days compared to the ≈ 1 min for GW170817.
51
+ Thus, future detectors will not only see a higher rate but also longer signals, raising the
52
+ prospect [12] that there will be no data segment free of detectable GW signals.
53
+ The false alarm rate, hence the sensitivity, of searches for CBCs as well as generic
54
+ short duration GW signals, or bursts, is dominated [13] by transient non-GW signals
55
+ of instrumental or environmental origins, commonly called glitches.
56
+ This is because
57
+ glitches that populate the same frequency band as CBC or burst signals and happen to
58
+ be transient in duration can falsely trigger the respective search pipelines. A glitch has
59
+ a particularly adverse effect if it overlaps with a GW signal, as happened in the case of
60
+ GW170817 [6], and causes the glitch rejection step of a search pipeline to also discard
61
+ the signal. Even a non-overlapping glitch can severely degrade parameter estimation
62
+ if it is close enough to a GW signal [14]. In the third observing run of the LIGO and
63
+ Virgo detectors, ≈ 20% of detected GW signals overlapped with glitches [15] due to the
64
+ high rate of the latter. For future detectors, the frequency of chance overlaps will be
65
+ enhanced by the higher rate of detectable GW signals as well as, for CBC signals, their
66
+ longer durations.
67
+ Glitches have dissimilar and unpredictable waveforms but many of the observed ones
68
+ tend to fall into distinct morphological classes. This has motivated the investigation
69
+ of automated glitch classification using machine learning where a range of different
70
+ methods have been proposed, such as Support Vector Machine [16], t-Sne [17], random
71
+ forests [16], S-means [18], and Deep Convolutional Neural Networks [19]. The Gravity
72
+ Spy [20] project uses a citizen science approach to engage the lay public in labeling
73
+ glitches by visual inspection of their constant Q-transform [21, 22] images. This has
74
+ created a high quality training dataset for machine learning methods. By now, there
75
+ exist more than 20 named glitch classes in the Gravity Spy database, collected over
76
+ multiple observing runs of the LIGO detectors [17].
77
+ Several different approaches have been developed to mitigate the adverse effects
78
+ of glitches on GW searches.
79
+ GW search pipelines typically compute secondary
80
+ functionals, called vetoes, of the data besides the primary detection statistic that help
81
+ in distinguishing genuine GW signals from glitches. A well-known example is the Chi-
82
+ square [23] veto used in CBC search pipelines. For LIGO-Virgo data, a set of Data
83
+ Quality flags have been developed that use information from a large number of auxiliary
84
+ sensors to quantify the safety of analyzing a given segment of GW strain data [24]. For
85
+ glitches that overlap a GW signal, the gating [25] method excises the rectangular time-
86
+ frequency block, or just the time interval, containing an identified glitch from the data.
87
+
88
+ Adaptive spline glitch removal
89
+ 3
90
+ Cross-channel regression using data from auxiliary sensors
91
+ [26, 27, 28, 29] has been
92
+ used to reduce excess broadband noise and a few types of glitches [30].
93
+ A relatively recent approach is that of estimating the waveform of a glitch
94
+ from the data time series itself and subtracting it out.
95
+ Glitch subtraction was of
96
+ critical importance in the case of GW170817 and has been shown to be an important
97
+ requirement in reducing bias in the estimation of GW signal parameters [31].
98
+ The
99
+ GW170817 glitch subtraction was carried out using the multi-detector BayesWave
100
+ pipeline [32, 33], which has also been used for other types of glitches [15]. Another
101
+ method, Glitschen [34], follows the approach of constructing parametrized waveform
102
+ models for identified glitch classes using principal component analysis of training sets.
103
+ A strong motivation for developing glitch estimation and subtraction methods is that
104
+ one could, in principle, preprocess the data to clean out every sufficiently loud glitch of
105
+ a known type and make glitch rejection in all downstream GW searches safer.
106
+ In this paper, we present a method for the estimation and subtraction of broadband,
107
+ short-duration glitches that have appeared frequently in the observation runs of the
108
+ LIGO detectors.
109
+ The method is computationally cheap, works with single-detector
110
+ data, does not require a training set of pre-identified glitches, and is not predicated on
111
+ auxiliary sensor data. The core component of the method is SHAPES (Swarm Heuristics
112
+ based Adaptive and Penalized Estimation of Splines), an adaptive spline curve fitting
113
+ algorithm introduced in [35]‡. SHAPES uses splines with free placement of knots to fit
114
+ both smooth and non-smooth curves in noisy data. In particular, point discontinuities
115
+ in the curve or its derivatives (up to some order) can be accommodated in the fit by
116
+ allowing knots to merge. The ability to handle both sharp and slow changes in a curve
117
+ is a built-in form of multiresolution analysis in SHAPES and a critical requirement for
118
+ effective estimation of broadband glitches. We examine the performance of our glitch
119
+ subtraction method on the GW170817 glitch in LIGO-Livingston data and instances of
120
+ glitches from three morphologically distinct classes, namely, Blip, Koi Fish, and Tomte,
121
+ in the Gravity Spy database. In each of the latter three cases, we inject a DNS signal
122
+ overlapping with the glitch to mimic the case of GW170817. We find that the impact
123
+ of glitch subtraction on the signals, real or injected, is negligible.
124
+ The rest of the paper is organized as follows. Sec. 2 reviews SHAPES with the
125
+ goal of providing a self-contained description of the algorithm that is pertinent to this
126
+ paper. Further details, such as the motivation and justification for certain features of
127
+ the algorithm, can be found in [35]. Sec. 3 describes the dataset used in this paper and
128
+ the details of how SHAPES is used for glitch subtraction. Sec. 4 presents the results.
129
+ Our conclusions and discussion of future work are presented in Sec. 5.
130
+ ‡ The SHAPES code is available from the Github repository mohanty-sd/SHAPES.git.
131
+
132
+ Adaptive spline glitch removal
133
+ 4
134
+ 2. Adaptive spline fitting: the SHAPES algorithm
135
+ SHAPES is derived under the following models for the noisy data, y, and the signal
136
+ s(θ).
137
+ y = s(θ) + ǫ ,
138
+ (1)
139
+ where y, s, and ǫ are row vectors with N elements, yi = y(ti) and si(θ) = s(ti; θ),
140
+ i = 0, 1, . . . , N −1, are samples taken at ti = i/fs with fs being the sampling frequency,
141
+ and θ denotes the set of signal parameters that need to be estimated from the data.
142
+ The noise samples, ǫi, are drawn independently from the zero mean and unit variance
143
+ normal (Gaussian) probability density function N(0, 1). This assumption, namely, that
144
+ of a white Gaussian noise process does not entail a loss of generalization since GW data
145
+ can always be whitened using the estimated noise power spectral density (PSD).
146
+ The signal s(t; θ) is assumed to be a spline of polynomial order k and, as such, can
147
+ be represented by a linear combination of B-spline functions [36],
148
+ s (t; θ = {α, τ}) =
149
+ P −k−1
150
+
151
+ j=0
152
+ αjBj,k(t; τ) ,
153
+ (2)
154
+ where α = (α0, α1, . . . , αP −k−1), and τ = (τ0, τ1, . . . , τP −1), τi+1 ≥ τi, is a sequence of P
155
+ knots that marks the end points of the contiguous intervals containing the polynomial
156
+ pieces of the spline. Note that knots are allowed to be equal, leading to knots with
157
+ multiplicity higher than one. Repeating knots create discontinuity in either the value
158
+ of a B-spline function or its derivatives (up to order k − 2). This allows the s(t; θ) in
159
+ Eq. 2 to model signals with point discontinuities in value or derivatives. In the rest of
160
+ the paper, we will set k = 4, making s(t; θ) a cubic spline.
161
+ The best fit spline parameters, �α and �τ, are the ones that minimize a penalized
162
+ least-squares function,
163
+ Lλ(α, τ) = L(α, τ) + λR(α) ,
164
+ (3)
165
+ L(α, τ) =
166
+ N−1
167
+
168
+ i=0
169
+ (yi − si(α, τ))2 ,
170
+ (4)
171
+ where the penalty term,
172
+ R(α) =
173
+ P −k−1
174
+
175
+ j=0
176
+ α2
177
+ j ,
178
+ (5)
179
+ is found to be useful in the suppression of spurious clustering of the knots.
180
+ These
181
+ clusters are observed when the method tries to minimize Lλ(α, τ) by fitting out outlier
182
+ data points arising from the noise alone. The strength of the penalty is controlled by
183
+ the gain factor λ, with higher values of λ leading to smoother estimates.
184
+ The optimization of Lλ(α, τ) over the non-linear parameters τ has been a long-
185
+ standing computational barrier [37, 38, 39, 40] for adaptive spline fitting. At the same
186
+ time, the benefits of optimizing the placement of knots have also been demonstrated
187
+ extensively [38, 41]. It was shown in [42], and independently in [43], that Particle Swarm
188
+ Optimization (PSO) [44, 45], a widely used nature-inspired metaheuristic for global
189
+
190
+ Adaptive spline glitch removal
191
+ 5
192
+ optimization, has good performance on the free knot placement problem. Moreover,
193
+ being a continuous optimization method, PSO can explore all arrangements of knots,
194
+ including the ones where knots are sufficiently close to be merged into a single knot of
195
+ higher multiplicity. This allows the fitting of functions that have a mix of smooth and
196
+ non-smooth parts.
197
+ There are many variations [46] among the algorithms that fall under the umbrella
198
+ of the PSO metaheuristic but they all share the following common features. (i) The
199
+ function to be optimized, called the fitness function, is sampled at multiple locations,
200
+ called particles, that move iteratively to explore the domain, called the search space, over
201
+ which the the global optimum of the fitness is to be found. The set of particles is called
202
+ a swarm. (ii) The location of each particle is updated following a dynamical rule that
203
+ incorporates randomness. The rule typically uses the best location found by a particle
204
+ in its history, called its personal best, and the best location found by the particles in
205
+ its neighborhood, called its local best. Here, the fitness value at a location defines how
206
+ good it is: for a minimization problem, the lower the fitness, the better the location.
207
+ (iii) Each particle explores the search space independently but is constantly attracted
208
+ towards the personal and local bests. This leads to a form of communication between
209
+ the particles that speeds up convergence to a promising region, followed by refinement
210
+ of the solution until the iterations are terminated.
211
+ The best location among all the particles at termination is the final solution found
212
+ by the swarm for the global optimum. While there is no guarantee that the final solution
213
+ is the true global optimum, the probability of successful convergence can be boosted
214
+ exponentially by running multiple independent runs of PSO and picking the one with
215
+ the best final solution. Most of the parameters involved in the PSO algorithm, such
216
+ as the number of particles or the weights attached to the attractive forces, have very
217
+ robust values across a wide variety of benchmark optimization problems [47] and rarely
218
+ need to be changed. In our experience, there are typically only two quantities that
219
+ need tuning: the number of iterations, Niter, to termination and the hyper-parameter
220
+ Nruns, the number of independent PSO runs. In this paper, we fix Niter = 2000 and
221
+ Nruns = 8 throughout. The number of particles is always set to 40 and the settings for
222
+ the remaining parameters, as well as the definition of the neighborhood used for the
223
+ local best, are described in [35].
224
+ The description above was for the case where the number of knots, P, is fixed. The
225
+ complete SHAPES algorithm incorporates model selection using the Akaike Information
226
+ Criterion (AIC) [48], where the optimum number of knots minimizes,
227
+ AIC = 4P + Lλ(�α, �τ) .
228
+ (6)
229
+ While, given sufficient computing resources, model selection could be performed over all
230
+ values of P until the minimum value of AIC is found, practical considerations dictate
231
+ that the set of knot numbers used be a finite and small one. In this paper, for example,
232
+ we use knot numbers in the set starting at 5 and ending at 60 in increments of 5. It is
233
+ important to note that this restriction of knot numbers is not a fundamental limitation
234
+
235
+ Adaptive spline glitch removal
236
+ 6
237
+ but a technical one meant to manage the computational burden of model selection.
238
+ Thus, the only significant free parameter that needs to be set by the user in the current
239
+ version of SHAPES is λ.
240
+ Since SHAPES assumes that the noise in the data is white, GW strain data must
241
+ be whitened prior to glitch estimation and subtraction. The data conditioning steps
242
+ involved are as follows (in sequential order).
243
+ (a) Suppression of the seismic noise
244
+ below 10 Hz, (b) robust estimation of the power spectral density (PSD) noise floor,
245
+ (c) whitening of the noise floor using the estimated PSD [49], and (d) automated
246
+ identification of high-power narrowband noise features (“lines”) and their suppression
247
+ using notch filters. These steps are common to all GW search pipelines, so they do not
248
+ need to be elaborated further here.
249
+ 3. Demonstration data
250
+ The glitches considered in this paper for demonstrating the performance of SHAPES are
251
+ listed in Table 1. The corresponding GW strain data files can be located and downloaded
252
+ from the Gravitational Wave Open Science Center (GWOSC) [50] using the information
253
+ provided in this table. We have used the standard 4096 sec long GWOSC data files
254
+ sampled at 4 kHz.
255
+ The GW170817 glitch presents a particularly interesting example of the deleterious
256
+ effect of glitches on GW searches. The GW signal appeared in both LIGO-Hanford (H1)
257
+ and LIGO-Livingston (L1) with a combined network signal to noise ratio (SNR) of 32.4.
258
+ Such a strong signal would have been detected easily in coincidence across L1 and H1
259
+ by the GW search pipelines in operation at the time. However, a coincident detection
260
+ was prevented by a large overlapping glitch in L1 causing the release of only an unusual
261
+ single-detector GW detection alert to the astronomical community. About 11 hours
262
+ elapsed between the initial alert and the release of the skymap localizing GW170817, a
263
+ process that included the subtraction of the glitch using BayesWave.
264
+ In addition to the GW170817 glitch, we have taken three representative glitches
265
+ from the Blip, Koi Fish, and Tomte, classes in the Gravity Spy [20] database [51].
266
+ These glitches were selected by taking the loudest 5 events, in terms of their signal-to-
267
+ noise ratio (SNR) as given in the Gravity Spy database, for each class and then picking
268
+ the first one in this list for which the corresponding GWOSC file had 100% science data
269
+ that was also reasonably stationary. As can be seen from Table 1, this results in the
270
+ selected glitches spanning a wide range in SNR.
271
+ After conditioning the data, we use the start time of a glitch, recorded in Table 1,
272
+ to locate the glitch. Starting from the peak of the glitch, the data time series is scanned
273
+ visually in both directions to identify a segment, containing the glitch, that tapers off
274
+ at both its boundaries to the general noise level of the conditioned data.
275
+ To mimic the case of GW170817 and to study the effect of glitch subtraction on
276
+ an overlapping GW signal, we injected a whitened restricted-2PN circularized binary
277
+ inspiral signal with equal 1.4 M⊙ components in the conditioned data. The SNR (in
278
+
279
+ Adaptive spline glitch removal
280
+ 7
281
+ Glitch Name
282
+ GPS start (sec)
283
+ SNR
284
+ Detector
285
+ run
286
+ GW170817 glitch
287
+ 1187008880
288
+
289
+ L1
290
+ O2
291
+ Blip
292
+ 1182397347
293
+ 109.1
294
+ H1
295
+ O2
296
+ Koi Fish
297
+ 1169847108
298
+ 608.1
299
+ H1
300
+ O2
301
+ Tomte
302
+ 1173086299
303
+ 19.6
304
+ H1
305
+ O2
306
+ Table 1. Glitches considered in this paper along with their GPS start times, SNRs,
307
+ the detectors in which they appeared, and the observation runs. For the Blip, Koi Fish,
308
+ and Tomte glitches, the start times are taken from the Gravity Spy database. To the
309
+ best of our knowledge, there is no SNR available in the literature for the GW170817
310
+ glitch.
311
+ white noise with unit variance) of the injected signal is set at 37.3, which is an ad
312
+ hoc factor of
313
+
314
+ 2 higher than the observed SNR of 26.4 of GW170817 in L1 [6]. The
315
+ enhancement in SNR allows clearer visibility of the signal in time-frequency images
316
+ while also posing a stronger challenge to SHAPES in terms how well it ignores the GW
317
+ signal when estimating a glitch. The segment containing the glitch, taken from the
318
+ conditioned data with the injected signal, is passed to SHAPES for estimation of the
319
+ glitch waveform followed by its subtraction.
320
+ 4. Results
321
+ In common with other papers on glitch estimation and subtraction, we present our
322
+ results in the form of constant Q-transform (CQT) time-frequency images and time
323
+ series plots. These are obtained by taking projections of the data on a set of windowed
324
+ sinusoids. The width of the window decreases with an increase in the carrier frequency,
325
+ fc, such that Q = fc/∆f, where ∆f is the −3 dB bandwidth of the Fourier transform
326
+ of the window, remains constant. We use the CQT code provided in the librosa [52]
327
+ Python package for audio processing. For each glitch, we show CQTs of the conditioned
328
+ data with injected signal and the residual after subtraction of the glitch estimate.
329
+ Fig. 1 shows the data segments that were processed using SHAPES and the
330
+ corresponding estimated glitch waveforms. Except for GW170817, each segment was
331
+ processed as a whole to obtain the glitch estimate. In the case of GW170817, SHAPES
332
+ was applied independently to three separate but contiguous time intervals to estimate
333
+ the complete glitch. This was necessitated by the presence of extended wings, preceding
334
+ and trailing the core broadband (and rapidly varying) part in the middle, that dominate
335
+ the conditioned data for ≈ 0.5 sec on each side. Applying SHAPES to the complete
336
+ segment would have required using a very large number of knots (> 60), making it
337
+ unnecessarily expensive computationally given that splitting the segment achieves a
338
+ good solution.
339
+ As mentioned in Sec. 2, the penalty gain λ controls the smoothness of the estimate
340
+ and is a user-specified parameter of the SHAPES algorithm. Typically, when a glitch
341
+ is loud and has a complex shape, λ = 0.01 allows SHAPES to provide a better fit. For
342
+
343
+ Adaptive spline glitch removal
344
+ 8
345
+ 932.67
346
+ 932.68
347
+ 932.69
348
+ 932.7
349
+ 932.71
350
+ -60
351
+ -40
352
+ -20
353
+ 0
354
+ 20
355
+ 40
356
+ 60
357
+ 80
358
+ Data
359
+ Estimate
360
+ 839.1
361
+ 839.12
362
+ 839.14
363
+ 839.16
364
+ Time (sec)
365
+ -100
366
+ -50
367
+ 0
368
+ 50
369
+ 100
370
+ 150
371
+ Whitened Strain
372
+ Data
373
+ Estimate
374
+ 93.04
375
+ 93.06
376
+ 93.08
377
+ 93.1
378
+ 93.12
379
+ 93.14
380
+ Time (sec)
381
+ -4
382
+ -2
383
+ 0
384
+ 2
385
+ 4
386
+ Data
387
+ Estimate
388
+ 370
389
+ 370.5
390
+ 371
391
+ -100
392
+ -50
393
+ 0
394
+ 50
395
+ 100
396
+ Whitened Strain
397
+ Data
398
+ Estimate
399
+ Figure 1. The conditioned strain data and the glitch waveform estimated by SHAPES
400
+ for each of the glitches considered in this paper. Top row: GW170817 (left) and Blip
401
+ (right). Bottom row: Koi Fish (left) and Tomte (right). The X-axis in each plot shows
402
+ the time (sec) since the start of the open data file containing the glitch as provided
403
+ by GWOSC. For GW170817, the dashed vertical lines demarcate the three adjacent
404
+ segments that were analyzed separately.
405
+ low SNR and simple glitch waveforms, or if the data is just plain white noise, λ = 0.1
406
+ does an adequate job. In general, estimates from SHAPES are not sensitive to small
407
+ variations of λ around these values because the model selection is able to compensate
408
+ for a lower value of λ by selecting a higher knot number and vice versa. Without much
409
+ fine tuning, we found that the values of λ listed in Table 2 work well for the glitches
410
+ studied in this paper. We have also listed in this table the number of knots for the best
411
+ fit models selected by the AIC.
412
+ Fig. 2 to Fig. 5 show the CQTs of the conditioned data and residuals after glitch
413
+ subtraction for the glitches in the sequence GW170817, Blip, Koi Fish, and Tomte,
414
+ respectively. In all cases, we see that the subtraction of the glitch does not affect the
415
+ overlapping GW signal (real or injected) in any significant way. Some overfitting to the
416
+ data, seen as very small CQT values, is visible in the residual for the GW170817 glitch at
417
+ frequencies below ≈ 32 Hz but this band has no overlap with the signal. The overfitted
418
+ parts are the two wings of the GW170817 glitch mentioned earlier. The CQTs of the
419
+ residuals for the Blip and Tomte glitches show near perfect removal of the glitch. (For
420
+
421
+ Adaptive spline glitch removal
422
+ 9
423
+ Glitch Name
424
+ Penalty gain (λ)
425
+ Number of knots
426
+ GW170817 glitch
427
+ 0.1, 0.01, 0.1
428
+ 60,40,50
429
+ Blip
430
+ 0.01
431
+ 15
432
+ Koi Fish
433
+ 0.01
434
+ 30
435
+ Tomte
436
+ 0.1
437
+ 15
438
+ Table 2. The penalty gain λ used for the glitches and the number of knots in the best
439
+ fit model. For the GW170817 glitch, there are three segments with the middle one
440
+ containing the principal glitch and adjacent ones containing the wings. The penalty
441
+ gains and best fit model are listed for all three segments in sequential order from left
442
+ to right.
443
+ Tomte, the coalescence time of the GW signal was kept further away from the glitch
444
+ in order to create an overlap between the signal track and the glitch.) The residual for
445
+ Koi Fish shows effective removal of the glitch with the exception of a transient and low
446
+ frequency narrowband component. This leftover component does not overlap with the
447
+ signal.
448
+ The principal computational cost in SHAPES is the global optimization of the
449
+ fitness function in Eq. 3. The time taken by the current MATLAB [53] code for a single
450
+ PSO run on a segment with ≈ 300 samples and knot numbers P ∈ [10, 60] (in steps of
451
+ 5) is < 10 min on an Intel Xeon E5 processor (clock rate 3 GHz). The runtime increases
452
+ with the number of knots used, mainly due to an increase in the number of B-spline
453
+ functions that need to be computed. With a code currently under construction in the
454
+ C language, and implementation of further hardware acceleration (e.g., using Graphics
455
+ Processing Units), the runtime is expected to decrease substantially. We also note that
456
+ the segments containing glitches can be processed in parallel since SHAPES is a purely
457
+ time-domain method. Hence, the computational cost will scale slower than linearly with
458
+ the number of glitches when analyzing data containing multiple glitches.
459
+ 5. Discussion and Conclusions
460
+ We have presented a new approach to glitch subtraction using an adaptive spline fitting
461
+ method called SHAPES. The method was demonstrated on the GW170817 glitch as
462
+ well as other representative short duration and broadband glitches. In a single detector
463
+ and in the absence of strong prior information about the signal, it is not possible to
464
+ distinguish a GW signal from a glitch in the part where they overlap.
465
+ Hence, it is
466
+ expected that the signal power will be removed in that part along with the glitch when
467
+ the latter is estimated and subtracted out. Nonetheless, as far as the DNS signal used
468
+ in this paper is concerned, we observe very little impact on the signal across a wide
469
+ range of glitch SNRs. While this conclusion will be quantified in future studies using a
470
+ much larger number of glitches, it is clear that SHAPES is effective at addressing glitch
471
+ subtraction.
472
+ SHAPES is not well adapted to fitting highly oscillatory waveforms since these
473
+
474
+ Adaptive spline glitch removal
475
+ 10
476
+ 0
477
+ 1.5
478
+ 3
479
+ 4.5
480
+ 6
481
+ 7.5
482
+ 9
483
+ 10.5
484
+ 12
485
+ Time (sec)
486
+ 16
487
+ 32
488
+ 64
489
+ 128
490
+ 256
491
+ 512
492
+ Frequency (Hz)
493
+ 1
494
+ 2
495
+ 3
496
+ 4
497
+ 5
498
+ 0
499
+ 1.5
500
+ 3
501
+ 4.5
502
+ 6
503
+ 7.5
504
+ 9
505
+ 10.5
506
+ 12
507
+ Time (sec)
508
+ 16
509
+ 32
510
+ 64
511
+ 128
512
+ 256
513
+ 512
514
+ Frequency (Hz)
515
+ 1
516
+ 2
517
+ 3
518
+ 4
519
+ Figure 2. Subtraction of the GW170817 Glitch. The top and bottom panels show
520
+ the CQT of the data and residual, respectively. The glitch is the vertical feature at
521
+ ≈ 10.5 sec. In order to show both the glitch and the signal in the same image, a
522
+ threshold has been applied to the CQT as indicated by the maximum value in the
523
+ colorbar of the top panel.
524
+ are are not represented well by splines without using an inordinate number of knots.
525
+ Therefore, the direct use of SHAPES for glitches in the Gravity Spy database such as
526
+ whistlers or wandering lines is not viable. However, chirp signals such as these could be
527
+ estimated using the method proposed in [54, 55], where adaptive splines figure indirectly
528
+
529
+ Adaptive spline glitch removal
530
+ 11
531
+ 0
532
+ 1
533
+ 2
534
+ 3
535
+ 4
536
+ 5
537
+ 6
538
+ 7
539
+ 8
540
+ Time (sec)
541
+ 16
542
+ 32
543
+ 64
544
+ 128
545
+ 256
546
+ 512
547
+ Frequency (Hz)
548
+ 1
549
+ 2
550
+ 3
551
+ 4
552
+ 5
553
+ 0
554
+ 1
555
+ 2
556
+ 3
557
+ 4
558
+ 5
559
+ 6
560
+ 7
561
+ 8
562
+ Time (sec)
563
+ 16
564
+ 32
565
+ 64
566
+ 128
567
+ 256
568
+ 512
569
+ Frequency (Hz)
570
+ 1
571
+ 2
572
+ 3
573
+ 4
574
+ 5
575
+ Figure 3. Subtraction of the Blip Glitch. The top and bottom panels show the CQT
576
+ of the data and residual, respectively. The glitch is the vertical feature at ≈ 6 sec. In
577
+ order to show both the glitch and the signal in the same image, a threshold has been
578
+ applied to the CQT as indicated by the maximum value in the colorbar of the top
579
+ panel.
580
+ in a non-linear signal model. This is an interesting direction that will be pursued in
581
+ future work.
582
+ Other current limitations of SHAPES, which are technical in nature, are that the
583
+ penalty gain parameter λ as well as the segment length to be processed must be specified
584
+
585
+ Adaptive spline glitch removal
586
+ 12
587
+ 0
588
+ 1.5
589
+ 3
590
+ 4.5
591
+ 6
592
+ 7.5
593
+ 9
594
+ 10.5
595
+ Time (sec)
596
+ 16
597
+ 32
598
+ 64
599
+ 128
600
+ 256
601
+ 512
602
+ Frequency (Hz)
603
+ 1
604
+ 2
605
+ 3
606
+ 4
607
+ 5
608
+ 0
609
+ 1.5
610
+ 3
611
+ 4.5
612
+ 6
613
+ 7.5
614
+ 9
615
+ 10.5
616
+ Time (sec)
617
+ 16
618
+ 32
619
+ 64
620
+ 128
621
+ 256
622
+ 512
623
+ Frequency (Hz)
624
+ 1
625
+ 2
626
+ 3
627
+ 4
628
+ 5
629
+ Figure 4.
630
+ Subtraction of the Koi Fish glitch.
631
+ The top and bottom panels show
632
+ the CQT of the data and residual, respectively. The glitch is the vertical feature at
633
+ ≈ 9.0 sec.
634
+ In order to show both the glitch and the signal in the same image, a
635
+ threshold has been applied to the CQT as indicated by the maximum value in the
636
+ colorbar of the top panel.
637
+ by the user. The choice of the latter, along with the nature of the data, influences the
638
+ number of knots used in the fit and led to the necessity of breaking up the data for the
639
+ GW170817 glitch into three ad hoc parts. Work is in progress to address both of these
640
+ limitations.
641
+
642
+ Adaptive spline glitch removal
643
+ 13
644
+ 0
645
+ 2
646
+ 4
647
+ 6
648
+ 8
649
+ 10
650
+ 12
651
+ 14
652
+ Time (sec)
653
+ 16
654
+ 32
655
+ 64
656
+ 128
657
+ 256
658
+ 512
659
+ Frequency (Hz)
660
+ 1
661
+ 2
662
+ 3
663
+ 4
664
+ 5
665
+ 0
666
+ 5
667
+ 10
668
+ 15
669
+ Time (sec)
670
+ 16
671
+ 32
672
+ 64
673
+ 128
674
+ 256
675
+ 512
676
+ Frequency (Hz)
677
+ 1
678
+ 2
679
+ 3
680
+ 4
681
+ 5
682
+ Figure 5. Subtraction of the Tomte Glitch. The top and bottom panels show the CQT
683
+ of the data and residual, respectively. The glitch is the vertical feature at ≈ 8.0 sec.
684
+ In order to show both the glitch and the signal in the same image, a threshold has
685
+ been applied to the CQT as indicated by the maximum value in the colorbar of the
686
+ top panel.
687
+ Our results show that SHAPES is a promising addition to the toolbox of glitch
688
+ subtraction methods that will become increasingly important as GW detectors become
689
+ more sensitive. SHAPES is computationally inexpensive, taking on the order of a few
690
+ minutes for each glitch, and will be made much faster by planned code improvements.
691
+
692
+ Adaptive spline glitch removal
693
+ 14
694
+ This could allow, in principle, the subtraction of a large number of broadband glitches
695
+ of known types as part of data conditioning and provide significantly cleaner data for
696
+ any type of GW search.
697
+ Acknowledgments
698
+ S.D.M is supported by U.S. National Science Foundation (NSF) grant PHY-2207935 and
699
+ partially supported by the U.S. Department of Defense grant W911NF2110169. MATC
700
+ acknowledges support from the Presidential Graduate Research Award at the University
701
+ of Texas Rio Grande Valley. We acknowledge the Texas Advanced Computing Center
702
+ (TACC) at the University of Texas at Austin (www.tacc.utexas.edu) for providing high
703
+ performance computing resources.
704
+ References
705
+ [1] B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Physical
706
+ Review Letters, 116:061102, Feb 2016.
707
+ [2] P. Fritschel.
708
+ Second generation instruments for the Laser Interferometer Gravitational Wave
709
+ Observatory (LIGO).
710
+ In M. Cruise and P. Saulson, editors, Gravitational-Wave Detection,
711
+ volume 4856 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
712
+ pages 282–291, March 2003.
713
+ [3] J. Degallaix, T. Accadia, F. Acernese, M. Agathos, A. Allocca, et al.
714
+ Advanced Virgo Status.
715
+ In G. Auger, P. Bin´etruy, and E. Plagnol, editors, 9th LISA Symposium, volume 467 of
716
+ Astronomical Society of the Pacific Conference Series, page 151, January 2013.
717
+ [4] BP Abbott, R Abbott, TD Abbott, S Abraham, F Acernese, K Ackley, C Adams, RX Adhikari,
718
+ VB Adya, C Affeldt, et al. Gwtc-1: A gravitational-wave transient catalog of compact binary
719
+ mergers observed by ligo and virgo during the first and second observing runs. Physical Review
720
+ X, 9(3):031040, 2019.
721
+ [5] The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration,
722
+ R. Abbott, et al.
723
+ GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo
724
+ During the Second Part of the Third Observing Run. arXiv e-prints, page arXiv:2111.03606,
725
+ 2021.
726
+ [6] B. P. Abbott et al. GW170817: Observation of gravitational waves from a binary neutron star
727
+ inspiral. Physical Review Letters, 119:161101, Oct 2017.
728
+ [7] K. Somiya. Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector.
729
+ Classical and Quantum Gravity, 29(12):124007, June 2012.
730
+ [8] C. S. Unnikrishnan. Indigo and ligo-india: Scope and plans for gravitational wave research and
731
+ precision metrology in india. International Journal of Modern Physics D, 22(01):1341010, 2013.
732
+ [9] M Punturo et al.
733
+ The Einstein Telescope: a third-generation gravitational wave observatory.
734
+ Classical and Quantum Gravity, 27(19):194002, 2010.
735
+ [10] Sheila Dwyer, Daniel Sigg, Stefan W. Ballmer, Lisa Barsotti, Nergis Mavalvala, and Matthew
736
+ Evans.
737
+ Gravitational wave detector with cosmological reach.
738
+ Physical Review D, 91:082001,
739
+ Apr 2015.
740
+ [11] Benjamin P Abbott, R Abbott, TD Abbott, MR Abernathy, K Ackley, C Adams, P Addesso,
741
+ RX Adhikari, VB Adya, C Affeldt, et al.
742
+ Exploring the sensitivity of next generation
743
+ gravitational wave detectors. Classical and Quantum Gravity, 34(4):044001, 2017.
744
+ [12] Tania Regimbau, Thomas Dent, Walter Del Pozzo, Stefanos Giampanis, Tjonnie G. F. Li, Craig
745
+ Robinson, Chris Van Den Broeck, Duncan Meacher, Carl Rodriguez, B. S. Sathyaprakash, and
746
+
747
+ Adaptive spline glitch removal
748
+ 15
749
+ Katarzyna W´ojcik. Mock data challenge for the einstein gravitational-wave telescope.
750
+ Phys.
751
+ Rev. D, 86:122001, 2012.
752
+ [13] B P Abbott et al. Effects of data quality vetoes on a search for compact binary coalescences in
753
+ advanced LIGO’s first observing run. Classical and Quantum Gravity, 35:065010, 2018.
754
+ [14] Jade Powell. Parameter estimation and model selection of gravitational wave signals contaminated
755
+ by transient detector noise glitches. Classical and Quantum Gravity, 35(15):155017, 2018.
756
+ [15] Derek Davis, TB Littenberg, IM Romero-Shaw, M Millhouse, J McIver, F Di Renzo, and G Ashton.
757
+ Subtracting glitches from gravitational-wave detector data during the third observing run. arXiv
758
+ preprint arXiv:2207.03429, 2022.
759
+ [16] Rahul Biswas, Lindy Blackburn, Junwei Cao, Reed Essick, Kari Alison Hodge, Erotokritos
760
+ Katsavounidis, Kyungmin Kim, Young-Min Kim, Eric-Olivier Le Bigot, Chang-Hwan Lee,
761
+ John J. Oh, Sang Hoon Oh, Edwin J. Son, Ye Tao, Ruslan Vaulin, and Xiaoge Wang. Application
762
+ of machine learning algorithms to the study of noise artifacts in gravitational-wave data. Phys.
763
+ Rev. D, 88:062003, Sep 2013.
764
+ [17] S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevin, J.R. Smith, V. Kalogera, and
765
+ A. Katsaggelos. Machine learning for gravity spy: Glitch classification and dataset. Information
766
+ Sciences, 444:172–186, 2018.
767
+ [18] S Mukherjee, R Obaid, and B Matkarimov.
768
+ Classification of glitch waveforms in gravitational
769
+ wave detector characterization. Journal of Physics: Conference Series, 243:012006, aug 2010.
770
+ [19] Daniel George, Hongyu Shen, and E. A. Huerta. Classification and unsupervised clustering of ligo
771
+ data with deep transfer learning. Phys. Rev. D, 97:101501, 2018.
772
+ [20] Michael Zevin, Scott Coughlin, Sara Bahaadini, Emre Besler, Neda Rohani, Sarah Allen, Miriam
773
+ Cabero, Kevin Crowston, Aggelos K Katsaggelos, Shane L Larson, et al.
774
+ Gravity spy:
775
+ integrating advanced ligo detector characterization, machine learning, and citizen science.
776
+ Classical and Quantum Gravity, 34(6):064003, 2017.
777
+ [21] Judith C Brown. Calculation of a constant Q spectral transform. The Journal of the Acoustical
778
+ Society of America, 89(1):425–434, 1991.
779
+ [22] S Chatterji, L Blackburn, G Martin, and E Katsavounidis.
780
+ Multiresolution techniques for the
781
+ detection of gravitational-wave bursts. Classical and Quantum Gravity, 21(20):S1809, 2004.
782
+ [23] Bruce Allen. χ2 time-frequency discriminator for gravitational wave detection. Physical Review
783
+ D, 71:062001, Mar 2005.
784
+ [24] BP Abbott et al.
785
+ Characterization of transient noise in advanced ligo relevant to gravitational
786
+ wave signal GW150914. Classical and Quantum Gravity, 33(13):134001, 2016.
787
+ [25] S. A. Usman et al. An improved pipeline to search for gravitational waves from compact binary
788
+ coalescence. Classical and quantum gravity, 33:215004, 2016.
789
+ [26] B. Allen, W. Hua, and A. Ottewill. Automatic cross-talk removal from multi-channel data. ArXiv
790
+ General Relativity and Quantum Cosmology e-prints, September 1999.
791
+ [27] Jennifer C Driggers, Matthew Evans, Keenan Pepper, and Rana Adhikari.
792
+ Active noise
793
+ cancellation in a suspended interferometer.
794
+ Review of Scientific Instruments, 83(2):024501,
795
+ 2012.
796
+ [28] V Tiwari, M Drago, V Frolov, S Klimenko, G Mitselmakher, V Necula, G Prodi, V Re, F Salemi,
797
+ G Vedovato, and I Yakushin.
798
+ Regression of environmental noise in ligo data.
799
+ Classical and
800
+ Quantum Gravity, 32(16):165014, 2015.
801
+ [29] G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel, M. J. Szczepa´nczyk, and S. Vitale.
802
+ Machine-learning nonstationary noise out of gravitational-wave detectors.
803
+ Phys. Rev. D,
804
+ 101:042003, Feb 2020.
805
+ [30] J. C. Driggers et al. Improving astrophysical parameter estimation via offline noise subtraction
806
+ for Advanced LIGO. Phys. Rev. D, 99:042001, Feb 2019.
807
+ [31] Chris Pankow, Katerina Chatziioannou, Eve A. Chase, Tyson B. Littenberg, Matthew Evans,
808
+ Jessica McIver, Neil J. Cornish, Carl-Johan Haster, Jonah Kanner, Vivien Raymond, Salvatore
809
+ Vitale, and Aaron Zimmerman. Mitigation of the instrumental noise transient in gravitational-
810
+
811
+ Adaptive spline glitch removal
812
+ 16
813
+ wave data surrounding gw170817. Phys. Rev. D, 98:084016, Oct 2018.
814
+ [32] Neil J Cornish and Tyson B Littenberg.
815
+ Bayeswave: Bayesian inference for gravitational wave
816
+ bursts and instrument glitches. Classical and Quantum Gravity, 32(13):135012, 2015.
817
+ [33] Katerina Chatziioannou, Neil Cornish, Marcella Wijngaarden, and Tyson B. Littenberg. Modeling
818
+ compact binary signals and instrumental glitches in gravitational wave data.
819
+ Phys. Rev. D,
820
+ 103:044013, Feb 2021.
821
+ [34] JD Merritt, Ben Farr, Rachel Hur, Bruce Edelman, and Zoheyr Doctor. Transient glitch mitigation
822
+ in advanced ligo data. Physical Review D, 104(10):102004, 2021.
823
+ [35] Soumya D Mohanty and Ethan Fahnestock.
824
+ Adaptive spline fitting with particle swarm
825
+ optimization. Computational Statistics, pages 1–37, 2020.
826
+ [36] Carl de Boor.
827
+ On calculating with b-splines.
828
+ Journal of Approximation Theory, 6(1):50 – 62,
829
+ 1972.
830
+ [37] Svante Wold. Spline functions in data analysis. Technometrics, 16(1):1–11, 1974.
831
+ [38] Hermann G Burchard. Splines (with optimal knots) are better. Applicable Analysis, 3(4):309–319,
832
+ 1974.
833
+ [39] David LB Jupp. Approximation to data by splines with free knots. SIAM Journal on Numerical
834
+ Analysis, 15(2):328–343, 1978.
835
+ [40] Zhen Luo and Grace Wahba.
836
+ Hybrid adaptive splines.
837
+ Journal of the American Statistical
838
+ Association, 92(437):107–116, 1997.
839
+ [41] Satoshi Miyata and Xiaotong Shen. Adaptive free-knot splines. Journal of Computational and
840
+ Graphical Statistics, 12(1):197–213, 2003.
841
+ [42] Akemi G´alvez and Andr´es Iglesias. Efficient particle swarm optimization approach for data fitting
842
+ with free knot b-splines. Computer-Aided Design, 43(12):1683–1692, 2011.
843
+ [43] Soumya D. Mohanty. Particle swarm optimization and regression analysis I. Astronomical Review,
844
+ 7(2):29–35, 2012.
845
+ [44] J. Kennedy and R. C. Eberhart.
846
+ Particle swarm optimization.
847
+ In Proceedings of the IEEE
848
+ International Conference on Neural Networks: Perth, WA, Australia, volume 4, page 1942.
849
+ IEEE, 1995.
850
+ [45] Soumya D. Mohanty.
851
+ Swarm Intelligence Methods for Statistical Regression.
852
+ Chapman and
853
+ Hall/CRC, 2018.
854
+ [46] Andries P Engelbrecht.
855
+ Fundamentals of computational swarm intelligence, volume 1.
856
+ Wiley
857
+ Chichester, 2005.
858
+ [47] Daniel Bratton and James Kennedy.
859
+ Defining a standard for particle swarm optimization.
860
+ In
861
+ Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 120–127. IEEE, 2007.
862
+ [48] Hirotogu Akaike. Information theory and an extension of the maximum likelihood principle. In
863
+ Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.
864
+ [49] S Mukherjee. Median-based noise floor tracker (MNFT): robust estimation of noise floor drifts in
865
+ interferometric data. Classical and Quantum Gravity, 20(17):S925, 2003.
866
+ [50] Michele Vallisneri, Jonah Kanner, Roy Williams, Alan Weinstein, and Branson Stephens.
867
+ The
868
+ ligo open science center. In Journal of Physics: Conference Series, volume 610, page 012021.
869
+ IOP Publishing, 2015.
870
+ [51] Scott Coughlin, Michael Zevin, Sara Bahaadini, Neda Rohani, Sara Allen, Christopher Berry,
871
+ Kevin Crowston, Mabi Harandi, Corey Jackson, Vicky Kalogera, Aggelos Katsaggelos, Vahid
872
+ Noroozi, Carsten Osterlund, Oli Patane, Joshua Smith, Siddharth Soni, and Laura Trouille.
873
+ Gravity Spy Machine Learning Classifications of LIGO Glitches from Observing Runs O1, O2,
874
+ O3a, and O3b, Zenodo v1.0.0 https://doi.org/10.5281/zenodo.5649212, November 2021.
875
+ [52] Brian McFee, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar, Eric Battenberg, and
876
+ Oriol Nieto.
877
+ librosa: Audio and music signal analysis in python.
878
+ In Proceedings of the 14th
879
+ python in science conference, volume 8, pages 18–25, 2015.
880
+ [53] Matlab
881
+ Release2020b.
882
+ The
883
+ MathWorks,
884
+ Inc.,
885
+ Natick,
886
+ Massachusetts,
887
+ United
888
+ States.;
889
+ http://www.mathworks.com/.
890
+
891
+ Adaptive spline glitch removal
892
+ 17
893
+ [54] Soumya D. Mohanty.
894
+ Spline based search method for unmodeled transient gravitational wave
895
+ chirps. Physical Review D, 96:102008, Nov 2017.
896
+ [55] S. D. Mohanty.
897
+ Detection and estimation of unmodeled chirps.
898
+ In 2018 26th European Signal
899
+ Processing Conference (EUSIPCO), pages 2643–2647, Sep. 2018.
900
+
6tE0T4oBgHgl3EQffABm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE3T4oBgHgl3EQfpwpy/content/tmp_files/2301.04645v1.pdf.txt ADDED
@@ -0,0 +1,656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04645v1 [math.CA] 11 Jan 2023
2
+ VERTICAL PROJECTIONS IN THE HEISENBERG GROUP FOR
3
+ SETS OF DIMENSION BETWEEN 2 AND 3
4
+ TERENCE L. J. HARRIS
5
+ Abstract. It is shown that vertical projections in the Heisenberg group al-
6
+ most surely do not decrease Hausdorff dimension for Borel sets of dimension
7
+ between 2 and 3.
8
+ The proof uses the method of point-plate incidences in-
9
+ troduced by F¨assler and Orponen, and uses a similar approach to a recent
10
+ theorem of Zahl.
11
+ 1. Introduction
12
+ Let H be the Heisenberg group, identified as a set with C × R, and equipped
13
+ with the group law
14
+ (z, t) ∗ (ζ, τ) =
15
+
16
+ z + ζ, t + τ + 1
17
+ 2ω(z, ζ)
18
+
19
+ ,
20
+ where
21
+ ω(x + iy, u + iv) := xv − uy.
22
+ For each θ ∈ [0, π), let
23
+ Vθ =
24
+ ��
25
+ λeiθ, 0
26
+
27
+ : λ ∈ R
28
+
29
+ ,
30
+ and let V⊥
31
+ θ be the Euclidean orthogonal complement of Vθ. Each (z, t) ∈ H can be
32
+ uniquely decomposed as a product
33
+ (z, t) = PV⊥
34
+ θ (z, t) ∗ PVθ(z, t),
35
+ of an element of V⊥
36
+ θ on the left, with an element of Vθ on the right. This defines
37
+ the vertical projection maps PV⊥
38
+ θ . Let dH be the Kor´anyi metric on H, given by
39
+ dH((z, t), (ζ, τ)) =
40
+ ��(ζ, τ)−1 ∗ (z, t)
41
+ ��
42
+ H ,
43
+ where
44
+ ∥(z, t)∥H =
45
+
46
+ |z|4 + 16t2�1/4 .
47
+ The Kor´anyi metric is bi-Lipschitz equivalent to the more natural Carnot-Carath´eodory
48
+ metric on H, and thus induces the same Hausdorff dimension. Let dim refer to the
49
+ Hausdorff dimension of a set in H with respect to the Kor´anyi metric. This work
50
+ gives a proof of the following theorem.
51
+ Theorem 1. Let A be an analytic subset of H. Then
52
+ dim PV⊥
53
+ θ (A) ≥ min{dim A, 3}
54
+ for a.e. θ ∈ [0, π).
55
+ 2020 Mathematics Subject Classification. 28A78; 28A80.
56
+ Key words and phrases. Heisenberg group, Hausdorff dimension, vertical projections.
57
+ 1
58
+
59
+ 2
60
+ TERENCE L. J. HARRIS
61
+ This was first conjectured by Balogh, Durand-Caragena, F¨assler, Mattila and
62
+ Tyson [1, Conjecture 1.5], who proved the conjecture in the range dim A ≤ 1.
63
+ Recently, this conjecture was proved for dim A ∈ [0, 2]∪{3} by F¨assler and Orponen
64
+ (and thus also for dim A > 3, though Conjecture 1.5 in [1] also predicts positive area
65
+ in this range). They introduced a method of point-plate incidences, and proved
66
+ (1) in the case dim A = 3 by using a square function estimate for the cone of
67
+ Guth, Wang and Zhang [4] to control the average L2 norm of pushforwards of 3-
68
+ dimensional measures. The point-line duality principle they used is due to Liu [5].
69
+ Theorem 1 resolves the conjecture in the remaining range dim A ∈ (2, 3). The proof
70
+ of Theorem 1 uses the incidence approach of F¨assler and Orponen, but rather than
71
+ using the square function estimate for the cone, it uses a broad-narrow approach
72
+ to Kakeya-type inequalities for tubes arranged in fractal families of planks. This is
73
+ based on recent work of Zahl [6], which used a broad-narrow approach to Kakeya-
74
+ type inequalities for fractal families of tubes.
75
+ Acknowledgements
76
+ I thank Shaoming Guo for some discussion in the earlier stages of working on
77
+ this problem, when I visited UW Madison in October 2022. I also thank UW for
78
+ their hospitality.
79
+ 2. Preliminaries
80
+ For each θ ∈ [0, π] let H2 be the 2-dimensional Lebesgue measure on V⊥
81
+ θ . A line
82
+ ℓ in H is called horizontal if it is a left translate of a horizontal subgroup Vθ for
83
+ some θ ∈ [0, π); meaning that there exists p ∈ H such that ℓ = p ∗ Vθ. For each
84
+ horizontal line ℓ ⊆ H, let H1 be the Lebesgue measure on ℓ with respect to the
85
+ Euclidean metric. Given a non-negative Borel function f and a horizontal line ℓ,
86
+ define
87
+ Xf(ℓ) =
88
+
89
+
90
+ f dH1.
91
+ Given a measure µ on H, let
92
+ cα(µ) =
93
+ sup
94
+ x∈H,r>0
95
+ µ (BH(x, r))
96
+
97
+ .
98
+ More generally, given δ > 0, define
99
+ cα,δ(µ) =
100
+ sup
101
+ x∈H,r>δ
102
+ µ (BH(x, r))
103
+
104
+ .
105
+ Definition 1. Define ℓ∗ : H → P(R3) by
106
+ ℓ∗(x, y, t) = (0, x, t − xy/2) + Ly,
107
+ where
108
+ Ly =
109
+
110
+ λ(1, −y, y2/2) : λ ∈ R
111
+
112
+ .
113
+ Define ℓ : R3 → P(H) by
114
+ ℓ(a, b, c) = {(as + b, s, (bs)/2 + c) : s ∈ R} .
115
+ The following lemma is the point-line duality principle.
116
+ Lemma 1 ([3, Lemma 4.11]). Let p∗ ∈ H and let p ∈ R3. Then
117
+ p ∈ ℓ∗(p∗)
118
+ if and only if
119
+ p∗ ∈ ℓ(p).
120
+
121
+ VERTICAL PROJECTIONS IN THE HEISENBERG GROUP
122
+ 3
123
+ Lemma 2. Given a non-negative continuous function f supported in the unit ball
124
+ of H, let µf be the measure whose Radon-Nikodym derivative with respect to the
125
+ Lebesgue measure on H is equal to f. Then for any q ∈ (1, ∞) and ε > 0,
126
+ � π−ε
127
+ ε
128
+ ���PV⊥
129
+ θ #µf
130
+ ���
131
+ q
132
+ Lq(H2) dθ ∼q,ε
133
+
134
+
135
+ |Xf(ℓ(p))|q dH3(p),
136
+ where Uǫ is the set of p ∈ R3 such that ℓ(p) is a horizontal line with corresponding
137
+ angle in [ε, π − ε].
138
+ Proof. This is outlined in [3, Eq. 4.15] in the case q = 2. One version of the proof
139
+ uses the coarea formula, and the formula for L2 norms in terms of the distribution
140
+ function, which naturally extends to the case q ∈ (1, ∞).
141
+
142
+ Lemma 3. Let f be a non-negative continuous function supported in the unit ball
143
+ of H, let µf be the measure whose Radon-Nikodym derivative with respect to the
144
+ Lebesgue measure on H is equal to f. Then for any q ∈ (1, ∞) and any p ∈ BH(0, 1),
145
+ � π
146
+ 0
147
+ ���PV⊥
148
+ θ # (Lp#µf)
149
+ ���
150
+ q
151
+ Lq(H2) dθ
152
+ � π
153
+ 0
154
+ ���PV⊥
155
+ θ #µf
156
+ ���
157
+ q
158
+ Lq(H2) dθ ∼q,
159
+ where Lp(z, t) = p ∗ (z, t).
160
+ Proof. The Radon-Nikodym derivative of Lp#µf is f ◦ L−1
161
+ p , since left translation
162
+ has Jacobian equal to 1. Hence
163
+ � π
164
+ 0
165
+ ���PV⊥
166
+ θ # (Lp#µf)
167
+ ���
168
+ q
169
+ Lq(H2) dθ ∼
170
+ � ����
171
+
172
+
173
+ (f ◦ L−1
174
+ p ) dH1
175
+ ����
176
+ q
177
+ dh(ℓ),
178
+ where h is the natural left-invariant measure on the set of horizontal lines; see [3,
179
+ Eq. 4.14]. If ℓ is such that the integrand is nonzero, then ℓ = (z, t) ∗ Vθ for some
180
+ θ ∈ [0, π) and (z, t) ∈ V⊥
181
+ θ with dH((z, t), 0) ≲ 1 (since f is supported in the unit
182
+ ball), which implies that the Euclidean measure H1 is equivalent to the Heisenberg
183
+ Hausdorff measure H1
184
+ H on ℓ. Similarly, these two measures are equivalent on p ∗ ℓ
185
+ (which is also a horizontal line). Since H1
186
+ H is left-invariant, and h is left-invariant,
187
+ it follows that
188
+ � ����
189
+
190
+
191
+ (f ◦ L−1
192
+ p ) dH1
193
+ ����
194
+ q
195
+ dh(ℓ) ∼
196
+ � ����
197
+
198
+
199
+ f dH1
200
+ ����
201
+ q
202
+ dh(ℓ) ∼
203
+ � π
204
+ 0
205
+ ���PV⊥
206
+ θ # (µf)
207
+ ���
208
+ q
209
+ Lq(H2) dθ.
210
+
211
+ 3. Main results
212
+ For the statement of the following theorem, let dθ refer to the Lebesgue measure
213
+ on [0, π). Let
214
+
215
+ ∗ refer to the lower integral (this is only used to avoid measurability
216
+ issues in the statement).
217
+ Theorem 2. Let t ∈ [0, 3], and let µ be a Borel measure supported in the unit
218
+ Heisenberg ball, with ct(µ) ≤ 1. Let ǫ > 0. Let δ > 0, and suppose that for each θ,
219
+ Dθ is a disjoint collection of at most δ
220
+ √ǫ−tµ(H) Heisenberg δ-balls in V⊥
221
+ θ . Then
222
+
223
+
224
+
225
+ PV⊥
226
+ θ #µ
227
+ � � �
228
+ D∈Dθ
229
+ D
230
+
231
+ dθ ≲ǫ δǫµ(H).
232
+ Before proving Theorem 2, it will be shown that it implies Theorem 1.
233
+
234
+ 4
235
+ TERENCE L. J. HARRIS
236
+ Proof of Theorem 1. Measurability issues will be ignored since they can be easily
237
+ adjusted for. By scaling it may be assumed that A is contained in the unit ball.
238
+ Let ǫ > 0, and (using Frostman’s lemma) let µ be a Borel probability measure on
239
+ A with cα(µ) < ∞, where α = dim A − ǫ. Let E ⊆ [0, π) be a compact set such
240
+ that dim PV⊥
241
+ θ (supp µ) < α − ǫ for all θ ∈ E. Let ε > 0, and for each θ ∈ E,
242
+ let Dθ = {BH(pj(θ), rj(θ))}j be a finitely overlapping cover of PV⊥
243
+ θ (supp µ) by
244
+ Heisenberg balls of dyadic radii at most ε, such that
245
+ (1)
246
+
247
+ j
248
+ rj(θ)α−ǫ < cα(µ)−1.
249
+ For each k, let Dθ,k be the subcollection of balls in Dθ with dyadic radii equal to
250
+ 2−k. Then for each θ ∈ E,
251
+ 1 ≤
252
+
253
+ k
254
+
255
+ PV⊥
256
+ θ #µ
257
+
258
+
259
+
260
+
261
+ D∈Dθ,k
262
+ D
263
+
264
+  .
265
+ Integrating over E gives
266
+ H1(E) ≤
267
+
268
+ k
269
+
270
+ E
271
+
272
+ PV⊥
273
+ θ #µ
274
+
275
+
276
+
277
+
278
+ D∈Dθ,k
279
+ D
280
+
281
+  dθ.
282
+ By (1), each set Dθ,k satisfies
283
+ |Dθ,k| ≲ 2k(α−ǫ)cα(µ)−1.
284
+ By applying Theorem 2 and summing the geometric series, this yields
285
+ H1(E) ≤
286
+
287
+ k
288
+
289
+ E
290
+
291
+ PV⊥
292
+ θ #µ
293
+
294
+
295
+
296
+
297
+ D∈Dθ,k
298
+ D
299
+
300
+  dθ ≲ cα(µ)
301
+
302
+ k≥| log2 ε|
303
+ 2−kǫ2 ≲ cα(µ)εǫ2,
304
+ Letting ε → 0 gives H1(E) = 0. By inner regularity of the Lebesgue measure on
305
+ [0, π), it follows that
306
+ dim PV⊥
307
+ θ (A) ≥ dim PV⊥
308
+ θ (supp µ) ≥ α − ǫ ≥ dim A − 2ǫ.
309
+ for a.e. θ ∈ [0, π). Since the outer parts of this inequality hold for any ǫ > 0, this
310
+ implies the theorem.
311
+
312
+ It remains to prove Theorem 2.
313
+ Proof of Theorem 2. Let φ be a fixed non-negative bump function supported in the
314
+ unit Euclidean ball of H around the origin, such that
315
+
316
+ φ = 1 and such that φ ≳ 1
317
+ on BE(0, 1/10). For each λ > 0 let φλ = λ−3φ(x/λ). Define ν by the Euclidean
318
+ convolution ν = µ ∗ φδ2, and let
319
+ q = 3 + t
320
+ 1 + t ∈ [3/2, 3].
321
+ By H¨older’s inequality with respect to the Lebesgue measure on each plane V⊥
322
+ θ ,
323
+ and the fact that the vertical projections are uniformly 1
324
+ 2-H¨older continuous when
325
+ considered as maps from (H, dE) to (H, dH),
326
+
327
+
328
+
329
+ PV⊥
330
+ θ #µ
331
+ � � �
332
+ D∈Dθ
333
+ D
334
+
335
+ dθ ≲ µ(H)1− 1
336
+ q δ(3+√ǫ−t)(1− 1
337
+ q)
338
+ �� π
339
+ 0
340
+ ���PV⊥
341
+ θ #ν
342
+ ���
343
+ q
344
+ Lq(H2)
345
+ �1/q
346
+ .
347
+
348
+ VERTICAL PROJECTIONS IN THE HEISENBERG GROUP
349
+ 5
350
+ Therefore, it suffices to prove that
351
+ (2)
352
+ � π
353
+ 0
354
+ ���PV⊥
355
+ θ #ν
356
+ ���
357
+ q
358
+ Lq(H2) dθ ≲ǫ ν(H)ct,δ(ν)q−1δ−ǫ−(3−t)(q−1),
359
+ for any δ > 0, whenever ν = µ ∗ φδ2 for some finite Borel measure µ supported in
360
+ the unit Heisenberg ball. This will be shown via induction on δ. Thus, let δ > 0
361
+ be given and assume that (2) holds for all �δ < δ1−ǫ2, for any finite Borel measure
362
+ µ supported in the unit Heisenberg ball.
363
+ It will now be shown that (2) holds for δ. By scaling, it may be assumed that ν
364
+ is a probability measure. By rotational symmetry, it may be assumed that
365
+ � π
366
+ 0
367
+ ���PV⊥
368
+ θ #ν
369
+ ���
370
+ q
371
+ Lq(H2) dθ ≲
372
+ � 3π/4
373
+ π/4
374
+ ���PV⊥
375
+ θ #ν
376
+ ���
377
+ q
378
+ Lq(H2) dθ.
379
+ By pigeonholing, it may be assumed that
380
+ ν =
381
+ 1
382
+ ω3|B|δ6
383
+
384
+ B∈B
385
+ χB,
386
+ where B is a disjoint collection of Euclidean δ2-balls in BH(0, c), for a small constant
387
+ c (to be chosen in a moment) and ω3 = 4π
388
+ 3 is the volume of the unit Euclidean ball
389
+ in R3. Following the argument in [3, Proof of Theorem 5.2]:
390
+ � 3π/4
391
+ π/4
392
+ ���PV⊥
393
+ θ #ν
394
+ ���
395
+ q
396
+ Lq(H2) dθ ∼
397
+
398
+ L∠
399
+ |Xν(ℓ)|q dm(ℓ)
400
+
401
+ 1
402
+ |B|qδ6q
403
+
404
+ L∠
405
+ �����
406
+
407
+ B∈B
408
+ H1(ℓ ∩ B)
409
+ �����
410
+ q
411
+ dm(ℓ)
412
+
413
+ 1
414
+ |B|qδ4q
415
+
416
+ {p:ℓ(p)∈L∠}
417
+ |{B ∈ B : B ∩ ℓ(p) ̸= ∅}|q dH3(p)
418
+ (3)
419
+
420
+ 1
421
+ |B|q δ4q
422
+ �����
423
+
424
+ B∈B
425
+ χℓ∗(B)
426
+ �����
427
+ q
428
+ Lq(B(0,1))
429
+ ,
430
+ where the integration restricts to B(0, 1) if c is small enough. Let ρ = δǫ2. Let {τ}
431
+ be a covering of Γ by boxes of dimensions ρ × ρ2 × 1 in the standard way, where
432
+ Γ = {(ξ, |ξ|) ∈ R3 : ξ ∈ B2(0, 1)}.
433
+ Call x ∈ B(0, 1) “narrow” if there is a 2-dimensional subspace V of R3 (depending
434
+ on x), such that at least half of the tubes ℓ∗(B) passing through x have direction
435
+ vectors in a ρ2-neighbourhood of V . If x is narrow, then because of the curvature
436
+ of Γ,
437
+
438
+ B∈B
439
+ χℓ∗(B)(x) ≲
440
+ ��
441
+ τ
442
+ |{B ∈ B : dir(ℓ∗(B)) ∈ τ and x ∈ ℓ∗(B)}|q
443
+ �1/q
444
+ .
445
+
446
+ 6
447
+ TERENCE L. J. HARRIS
448
+ If x is not narrow then it is called “broad”. If x is a broad point, then
449
+
450
+ B∈B
451
+ χℓ∗(B)(x) ≲ ρ−100×
452
+ � �
453
+ B1∈B
454
+
455
+ B2∈B
456
+
457
+ B3∈B
458
+ χℓ∗(B1)χℓ∗(B2)χℓ∗(B3)
459
+ ��uℓ∗(B1) ∧ uℓ∗(B2) ∧ uℓ∗(B3)
460
+ ��
461
+ �1/3
462
+ .
463
+ Clearly
464
+ (4)
465
+ �����
466
+
467
+ B∈B
468
+ χℓ∗(B)
469
+ �����
470
+ Lq(B(0,1))
471
+
472
+ �����χbroad
473
+
474
+ B∈B
475
+ χℓ∗(B)
476
+ �����
477
+ Lq(B(0,1))
478
+ +
479
+ �����χnarrow
480
+
481
+ B∈B
482
+ χℓ∗(B)
483
+ �����
484
+ Lq(B(0,1))
485
+ .
486
+ If the broad part dominates in (4), then using q ≥ 3/2 and applying the trilinear
487
+ Kakeya theorem (see e.g. [2, Theorem 1]) gives
488
+ �����χbroad
489
+
490
+ B∈B
491
+ χℓ∗(B)
492
+ �����
493
+ q
494
+ Lq(R3)
495
+ ≲ ρ−100
496
+ � 
497
+
498
+
499
+ B1,B2,B3∈B
500
+ χℓ∗(B1)χℓ∗(B2)χℓ∗(B3) |u(ℓ∗(B1)) ∧ u(ℓ∗(B2)) ∧ u(ℓ∗(B3))|
501
+
502
+
503
+ q/3
504
+ ≲ ρ−100 |B|q− 3
505
+ 2
506
+ � 
507
+
508
+
509
+ B1,B2,B3∈B
510
+ χℓ∗(B1)χℓ∗(B2)χℓ∗(B3) |u(ℓ∗(B1)) ∧ u(ℓ∗(B2)) ∧ u(ℓ∗(B3))|
511
+
512
+
513
+ 1/2
514
+ ,
515
+ ≲ ρ−100 |B|q δ6−ǫ
516
+ = ρ−100 |B|q δ4q−(q−1)(3−t)−ǫ,
517
+ by the definition of q. That ν is a probability measure implies that ct,δ(ν) ≳ 1, so
518
+ this proves (2) when the broad part dominates.
519
+ If the narrow part dominates in (4), then
520
+ �����
521
+
522
+ B∈B
523
+ χℓ∗(B)
524
+ �����
525
+ q
526
+ Lq(R3)
527
+
528
+
529
+ τ
530
+ ������
531
+
532
+ B∈B:dir(ℓ∗(B))∈τ
533
+ χℓ∗(B)
534
+ ������
535
+ q
536
+ q
537
+ .
538
+ For each cap τ, let Tτ be a finitely overlapping cover of physical space by ∼ ρ×ρ2×1
539
+ planks dual to τ. If δ is smaller than some absolute constant, then each δ2-tube
540
+ ℓ∗(B) with dir(ℓ∗(B)) ∈ τ is contained in at least 1 plank from Tτ, and intersects
541
+ ≲ 1 planks from Tτ. We associate each ℓ∗(B) with exactly one plank T ∈ Tτ such
542
+ that dir(ℓ∗(B)) ∈ τ and ℓ∗(B) ⊆ T , and abbreviate this by writing ℓ∗(B) ≤ T .
543
+ Then
544
+
545
+ τ
546
+ ������
547
+
548
+ B∈B:dir(ℓ∗(B))∈τ
549
+ χℓ∗(B)
550
+ ������
551
+ q
552
+ q
553
+
554
+
555
+ τ
556
+
557
+ T ∈Tτ
558
+ ������
559
+
560
+ B∈B:ℓ∗(B)≤T
561
+ χℓ∗(B)
562
+ ������
563
+ q
564
+ q
565
+ .
566
+
567
+ VERTICAL PROJECTIONS IN THE HEISENBERG GROUP
568
+ 7
569
+ The point-line duality argument at Eq. (3) is reversible provided the Euclidean
570
+ balls are enlarged by a factor of 2. This gives
571
+ � 3π/4
572
+ π/4
573
+ ���PV⊥
574
+ θ #ν
575
+ ���
576
+ q
577
+ Lq(H2) dθ ≲
578
+
579
+ τ
580
+
581
+ T ∈Tτ
582
+ � 3π/4
583
+ π/4
584
+ ���PV⊥
585
+ θ #νT
586
+ ���
587
+ q
588
+ Lq(H2) dθ,
589
+ where
590
+ νT =
591
+ 1
592
+ |B|6δ6
593
+
594
+ B∈B:ℓ∗(B)≤T
595
+ χ2B.
596
+ Each measure νT is essentially the restriction of ν to a Heisenberg ball of radius
597
+ ρ. By left translation (using Lemma 3), followed by a Heisenberg dilation (which
598
+ commutes with vertical projections), and then by applying the induction hypothesis,
599
+
600
+ τ
601
+
602
+ T ∈Tτ
603
+ � 3π/4
604
+ π/4
605
+ ���PV⊥
606
+ θ #νT
607
+ ���
608
+ q
609
+ Lq(H2) dθ
610
+
611
+
612
+ τ
613
+
614
+ T ∈Tτ
615
+ ρ(t−3)(q−1)ct,δ(ν)q−1ν
616
+
617
+
618
+
619
+ B∈B:ℓ∗(B)≤T
620
+ B
621
+
622
+  (δ/ρ)−ǫ−(3−t)(q−1)
623
+ ≲ ρǫν(H)ct,δ(ν)q−1δ−ǫ−(3−t)(q−1).
624
+ The power of ρ is positive, so the induction closes provided δ is sufficiently small
625
+ (depending only on ǫ). For the rescaled measures, the Euclidean δ2-balls are sent
626
+ to δ2/ρ × δ2/ρ × δ2/ρ2 ellipsoids, which are essentially unions of (δ/ρ)2-balls. This
627
+ means that the rescaled measures can be convolved with φδ/ρ without significantly
628
+ affecting their properties (at least on Heisenberg balls of radius ≥ δ/ρ).
629
+
630
+ References
631
+ [1] Balogh, Z. M., Durand-Cartagena, E, F¨assler, K., Mattila, P., Tyson, J. T.: The effect of
632
+ projections on dimension in the Heisenberg group. Rev. Mat. Iberoam. 29, 381–432 (2013)
633
+ [2] Carbery, A., Valdimarsson, S. I.: The endpoint multilinear Kakeya theorem via the Borsuk-
634
+ Ulam theorem. J. Funct. Anal. 264, 1643–1663 (2013)
635
+ [3] F¨assler, K., Orponen, T.: Vertical projections in the Heisenberg group via cinematic functions
636
+ and point-plate incidences. arXiv:2210.00458v2 (2022)
637
+ [4] Guth. L., Wang. H., Zhang, R.: A sharp square function estimate for the cone in R3. Ann. of
638
+ Math. (2) 192, 551–581 (2020)
639
+ [5] Liu,
640
+ J.:
641
+ On
642
+ the
643
+ dimension
644
+ of
645
+ Kakeya
646
+ sets
647
+ in
648
+ the
649
+ first
650
+ Heisenberg
651
+ group.
652
+ Proc. Amer. Math. Soc. 150, 3445–3455 (2022)
653
+ [6] Zahl, J.: Unions of lines in Rn. To appear in Mathematika. arXiv:2208.02913v1 (2022)
654
+ Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
655
+ Email address: [email protected]
656
+
6tE3T4oBgHgl3EQfpwpy/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf,len=184
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
3
+ page_content='04645v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
4
+ page_content='CA] 11 Jan 2023 VERTICAL PROJECTIONS IN THE HEISENBERG GROUP FOR SETS OF DIMENSION BETWEEN 2 AND 3 TERENCE L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
5
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
6
+ page_content=' HARRIS Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
7
+ page_content=' It is shown that vertical projections in the Heisenberg group al- most surely do not decrease Hausdorff dimension for Borel sets of dimension between 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
8
+ page_content=' The proof uses the method of point-plate incidences in- troduced by F¨assler and Orponen, and uses a similar approach to a recent theorem of Zahl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
9
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
10
+ page_content=' Introduction Let H be the Heisenberg group, identified as a set with C × R, and equipped with the group law (z, t) ∗ (ζ, τ) = � z + ζ, t + τ + 1 2ω(z, ζ) � , where ω(x + iy, u + iv) := xv − uy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
11
+ page_content=' For each θ ∈ [0, π), let Vθ = �� λeiθ, 0 � : λ ∈ R � , and let V⊥ θ be the Euclidean orthogonal complement of Vθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
12
+ page_content=' Each (z, t) ∈ H can be uniquely decomposed as a product (z, t) = PV⊥ θ (z, t) ∗ PVθ(z, t), of an element of V⊥ θ on the left, with an element of Vθ on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
13
+ page_content=' This defines the vertical projection maps PV⊥ θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
14
+ page_content=' Let dH be the Kor´anyi metric on H, given by dH((z, t), (ζ, τ)) = ��(ζ, τ)−1 ∗ (z, t) �� H , where ∥(z, t)∥H = � |z|4 + 16t2�1/4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
15
+ page_content=' The Kor´anyi metric is bi-Lipschitz equivalent to the more natural Carnot-Carath´eodory metric on H, and thus induces the same Hausdorff dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
16
+ page_content=' Let dim refer to the Hausdorff dimension of a set in H with respect to the Kor´anyi metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
17
+ page_content=' This work gives a proof of the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
18
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
19
+ page_content=' Let A be an analytic subset of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
20
+ page_content=' Then dim PV⊥ θ (A) ≥ min{dim A, 3} for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
21
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
22
+ page_content=' θ ∈ [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
23
+ page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
24
+ page_content=' 28A78;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
25
+ page_content=' 28A80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
26
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
27
+ page_content=' Heisenberg group, Hausdorff dimension, vertical projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
28
+ page_content=' 1 2 TERENCE L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
29
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
30
+ page_content=' HARRIS This was first conjectured by Balogh, Durand-Caragena, F¨assler, Mattila and Tyson [1, Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
31
+ page_content='5], who proved the conjecture in the range dim A ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
32
+ page_content=' Recently, this conjecture was proved for dim A ∈ [0, 2]∪{3} by F¨assler and Orponen (and thus also for dim A > 3, though Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
33
+ page_content='5 in [1] also predicts positive area in this range).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
34
+ page_content=' They introduced a method of point-plate incidences, and proved (1) in the case dim A = 3 by using a square function estimate for the cone of Guth, Wang and Zhang [4] to control the average L2 norm of pushforwards of 3- dimensional measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
35
+ page_content=' The point-line duality principle they used is due to Liu [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
36
+ page_content=' Theorem 1 resolves the conjecture in the remaining range dim A ∈ (2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
37
+ page_content=' The proof of Theorem 1 uses the incidence approach of F¨assler and Orponen, but rather than using the square function estimate for the cone, it uses a broad-narrow approach to Kakeya-type inequalities for tubes arranged in fractal families of planks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
38
+ page_content=' This is based on recent work of Zahl [6], which used a broad-narrow approach to Kakeya- type inequalities for fractal families of tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
39
+ page_content=' Acknowledgements I thank Shaoming Guo for some discussion in the earlier stages of working on this problem, when I visited UW Madison in October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
40
+ page_content=' I also thank UW for their hospitality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
41
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
42
+ page_content=' Preliminaries For each θ ∈ [0, π] let H2 be the 2-dimensional Lebesgue measure on V⊥ θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
43
+ page_content=' A line ℓ in H is called horizontal if it is a left translate of a horizontal subgroup Vθ for some θ ∈ [0, π);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
44
+ page_content=' meaning that there exists p ∈ H such that ℓ = p ∗ Vθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
45
+ page_content=' For each horizontal line ℓ ⊆ H, let H1 be the Lebesgue measure on ℓ with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
46
+ page_content=' Given a non-negative Borel function f and a horizontal line ℓ, define Xf(ℓ) = � ℓ f dH1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
47
+ page_content=' Given a measure µ on H, let cα(µ) = sup x∈H,r>0 µ (BH(x, r)) rα .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
48
+ page_content=' More generally, given δ > 0, define cα,δ(µ) = sup x∈H,r>δ µ (BH(x, r)) rα .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
49
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
50
+ page_content=' Define ℓ∗ : H → P(R3) by ℓ∗(x, y, t) = (0, x, t − xy/2) + Ly, where Ly = � λ(1, −y, y2/2) : λ ∈ R � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
51
+ page_content=' Define ℓ : R3 → P(H) by ℓ(a, b, c) = {(as + b, s, (bs)/2 + c) : s ∈ R} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
52
+ page_content=' The following lemma is the point-line duality principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
53
+ page_content=' Lemma 1 ([3, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
54
+ page_content='11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
55
+ page_content=' Let p∗ ∈ H and let p ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
56
+ page_content=' Then p ∈ ℓ∗(p∗) if and only if p∗ ∈ ℓ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
57
+ page_content=' VERTICAL PROJECTIONS IN THE HEISENBERG GROUP 3 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
58
+ page_content=' Given a non-negative continuous function f supported in the unit ball of H, let µf be the measure whose Radon-Nikodym derivative with respect to the Lebesgue measure on H is equal to f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
59
+ page_content=' Then for any q ∈ (1, ∞) and ε > 0, � π−ε ε ���PV⊥ θ #µf ��� q Lq(H2) dθ ∼q,ε � Uǫ |Xf(ℓ(p))|q dH3(p), where Uǫ is the set of p ∈ R3 such that ℓ(p) is a horizontal line with corresponding angle in [ε, π − ε].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
60
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
61
+ page_content=' This is outlined in [3, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
62
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
63
+ page_content='15] in the case q = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
64
+ page_content=' One version of the proof uses the coarea formula, and the formula for L2 norms in terms of the distribution function, which naturally extends to the case q ∈ (1, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
65
+ page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
66
+ page_content=' Let f be a non-negative continuous function supported in the unit ball of H, let µf be the measure whose Radon-Nikodym derivative with respect to the Lebesgue measure on H is equal to f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
67
+ page_content=' Then for any q ∈ (1, ∞) and any p ∈ BH(0, 1), � π 0 ���PV⊥ θ # (Lp#µf) ��� q Lq(H2) dθ � π 0 ���PV⊥ θ #µf ��� q Lq(H2) dθ ∼q, where Lp(z, t) = p ∗ (z, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
68
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
69
+ page_content=' The Radon-Nikodym derivative of Lp#µf is f ◦ L−1 p , since left translation has Jacobian equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
70
+ page_content=' Hence � π 0 ���PV⊥ θ # (Lp#µf) ��� q Lq(H2) dθ ∼ � ���� � ℓ (f ◦ L−1 p ) dH1 ���� q dh(ℓ), where h is the natural left-invariant measure on the set of horizontal lines;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
71
+ page_content=' see [3, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
72
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
73
+ page_content='14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
74
+ page_content=' If ℓ is such that the integrand is nonzero, then ℓ = (z, t) ∗ Vθ for some θ ∈ [0, π) and (z, t) ∈ V⊥ θ with dH((z, t), 0) ≲ 1 (since f is supported in the unit ball), which implies that the Euclidean measure H1 is equivalent to the Heisenberg Hausdorff measure H1 H on ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
75
+ page_content=' Similarly, these two measures are equivalent on p ∗ ℓ (which is also a horizontal line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
76
+ page_content=' Since H1 H is left-invariant, and h is left-invariant, it follows that � ���� � ℓ (f ◦ L−1 p ) dH1 ���� q dh(ℓ) ∼ � ���� � ℓ f dH1 ���� q dh(ℓ) ∼ � π 0 ���PV⊥ θ # (µf) ��� q Lq(H2) dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
77
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
78
+ page_content=' Main results For the statement of the following theorem, let dθ refer to the Lebesgue measure on [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
79
+ page_content=' Let � ∗ refer to the lower integral (this is only used to avoid measurability issues in the statement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
80
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
81
+ page_content=' Let t ∈ [0, 3], and let µ be a Borel measure supported in the unit Heisenberg ball, with ct(µ) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
82
+ page_content=' Let ǫ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
83
+ page_content=' Let δ > 0, and suppose that for each θ, Dθ is a disjoint collection of at most δ √ǫ−tµ(H) Heisenberg δ-balls in V⊥ θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
84
+ page_content=' Then � ∗ � PV⊥ θ #µ � � � D∈Dθ D � dθ ≲ǫ δǫµ(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
85
+ page_content=' Before proving Theorem 2, it will be shown that it implies Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
86
+ page_content=' 4 TERENCE L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
87
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
88
+ page_content=' HARRIS Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
89
+ page_content=' Measurability issues will be ignored since they can be easily adjusted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
90
+ page_content=' By scaling it may be assumed that A is contained in the unit ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
91
+ page_content=' Let ǫ > 0, and (using Frostman’s lemma) let µ be a Borel probability measure on A with cα(µ) < ∞, where α = dim A − ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
92
+ page_content=' Let E ⊆ [0, π) be a compact set such that dim PV⊥ θ (supp µ) < α − ǫ for all θ ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
93
+ page_content=' Let ε > 0, and for each θ ∈ E, let Dθ = {BH(pj(θ), rj(θ))}j be a finitely overlapping cover of PV⊥ θ (supp µ) by Heisenberg balls of dyadic radii at most ε, such that (1) � j rj(θ)α−ǫ < cα(µ)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
94
+ page_content=' For each k, let Dθ,k be the subcollection of balls in Dθ with dyadic radii equal to 2−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
95
+ page_content=' Then for each θ �� E, 1 ≤ � k � PV⊥ θ #µ � \uf8eb \uf8ed � D∈Dθ,k D \uf8f6 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
96
+ page_content=' Integrating over E gives H1(E) ≤ � k � E � PV⊥ θ #µ � \uf8eb \uf8ed � D∈Dθ,k D \uf8f6 \uf8f8 dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
97
+ page_content=' By (1), each set Dθ,k satisfies |Dθ,k| ≲ 2k(α−ǫ)cα(µ)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
98
+ page_content=' By applying Theorem 2 and summing the geometric series, this yields H1(E) ≤ � k � E � PV⊥ θ #µ � \uf8eb \uf8ed � D∈Dθ,k D \uf8f6 \uf8f8 dθ ≲ cα(µ) � k≥| log2 ε| 2−kǫ2 ≲ cα(µ)εǫ2, Letting ε → 0 gives H1(E) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
99
+ page_content=' By inner regularity of the Lebesgue measure on [0, π), it follows that dim PV⊥ θ (A) ≥ dim PV⊥ θ (supp µ) ≥ α − ǫ ≥ dim A − 2ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
100
+ page_content=' for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
101
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
102
+ page_content=' θ ∈ [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
103
+ page_content=' Since the outer parts of this inequality hold for any ǫ > 0, this implies the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
104
+ page_content=' □ It remains to prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
105
+ page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
106
+ page_content=' Let φ be a fixed non-negative bump function supported in the unit Euclidean ball of H around the origin, such that � φ = 1 and such that φ ≳ 1 on BE(0, 1/10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
107
+ page_content=' For each λ > 0 let φλ = λ−3φ(x/λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
108
+ page_content=' Define ν by the Euclidean convolution ν = µ ∗ φδ2, and let q = 3 + t 1 + t ∈ [3/2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
109
+ page_content=' By H¨older’s inequality with respect to the Lebesgue measure on each plane V⊥ θ , and the fact that the vertical projections are uniformly 1 2-H¨older continuous when considered as maps from (H, dE) to (H, dH), � ∗ � PV⊥ θ #µ � � � D∈Dθ D � dθ ≲ µ(H)1− 1 q δ(3+√ǫ−t)(1− 1 q) �� π 0 ���PV⊥ θ #ν ��� q Lq(H2) �1/q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
110
+ page_content=' VERTICAL PROJECTIONS IN THE HEISENBERG GROUP 5 Therefore, it suffices to prove that (2) � π 0 ���PV⊥ θ #ν ��� q Lq(H2) dθ ≲ǫ ν(H)ct,δ(ν)q−1δ−ǫ−(3−t)(q−1), for any δ > 0, whenever ν = µ ∗ φδ2 for some finite Borel measure µ supported in the unit Heisenberg ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
111
+ page_content=' This will be shown via induction on δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
112
+ page_content=' Thus, let δ > 0 be given and assume that (2) holds for all �δ < δ1−ǫ2, for any finite Borel measure µ supported in the unit Heisenberg ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
113
+ page_content=' It will now be shown that (2) holds for δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
114
+ page_content=' By scaling, it may be assumed that ν is a probability measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
115
+ page_content=' By rotational symmetry, it may be assumed that � π 0 ���PV⊥ θ #ν ��� q Lq(H2) dθ ≲ � 3π/4 π/4 ���PV⊥ θ #ν ��� q Lq(H2) dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
116
+ page_content=' By pigeonholing, it may be assumed that ν = 1 ω3|B|δ6 � B∈B χB, where B is a disjoint collection of Euclidean δ2-balls in BH(0, c), for a small constant c (to be chosen in a moment) and ω3 = 4π 3 is the volume of the unit Euclidean ball in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
117
+ page_content=' Following the argument in [3, Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
118
+ page_content='2]: � 3π/4 π/4 ���PV⊥ θ #ν ��� q Lq(H2) dθ ∼ � L∠ |Xν(ℓ)|q dm(ℓ) ∼ 1 |B|qδ6q � L∠ ����� � B∈B H1(ℓ ∩ B) ����� q dm(ℓ) ≲ 1 |B|qδ4q � {p:ℓ(p)∈L∠} |{B ∈ B : B ∩ ℓ(p) ̸= ∅}|q dH3(p) (3) ∼ 1 |B|q δ4q ����� � B∈B χℓ∗(B) ����� q Lq(B(0,1)) , where the integration restricts to B(0, 1) if c is small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
119
+ page_content=' Let ρ = δǫ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
120
+ page_content=' Let {τ} be a covering of Γ by boxes of dimensions ρ × ρ2 × 1 in the standard way, where Γ = {(ξ, |ξ|) ∈ R3 : ξ ∈ B2(0, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
121
+ page_content=' Call x ∈ B(0, 1) “narrow” if there is a 2-dimensional subspace V of R3 (depending on x), such that at least half of the tubes ℓ∗(B) passing through x have direction vectors in a ρ2-neighbourhood of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
122
+ page_content=' If x is narrow, then because of the curvature of Γ, � B∈B χℓ∗(B)(x) ≲ �� τ |{B ∈ B : dir(ℓ∗(B)) ∈ τ and x ∈ ℓ∗(B)}|q �1/q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
123
+ page_content=' 6 TERENCE L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
124
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
125
+ page_content=' HARRIS If x is not narrow then it is called “broad”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
126
+ page_content=' If x is a broad point, then � B∈B χℓ∗(B)(x) ≲ ρ−100× � � B1∈B � B2∈B � B3∈B χℓ∗(B1)χℓ∗(B2)χℓ∗(B3) ��uℓ∗(B1) ∧ uℓ∗(B2) ∧ uℓ∗(B3) �� �1/3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
127
+ page_content=' Clearly (4) ����� � B∈B χℓ∗(B) ����� Lq(B(0,1)) ≲ �����χbroad � B∈B χℓ∗(B) ����� Lq(B(0,1)) + �����χnarrow � B∈B χℓ∗(B) ����� Lq(B(0,1)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
128
+ page_content=' If the broad part dominates in (4), then using q ≥ 3/2 and applying the trilinear Kakeya theorem (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
129
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
130
+ page_content=' [2, Theorem 1]) gives �����χbroad � B∈B χℓ∗(B) ����� q Lq(R3) ≲ ρ−100 � \uf8eb \uf8ed � B1,B2,B3∈B χℓ∗(B1)χℓ∗(B2)χℓ∗(B3) |u(ℓ∗(B1)) ∧ u(ℓ∗(B2)) ∧ u(ℓ∗(B3))| \uf8f6 \uf8f8 q/3 ≲ ρ−100 |B|q− 3 2 � \uf8eb \uf8ed � B1,B2,B3∈B χℓ∗(B1)χℓ∗(B2)χℓ∗(B3) |u(ℓ∗(B1)) ∧ u(ℓ∗(B2)) ∧ u(ℓ∗(B3))| \uf8f6 \uf8f8 1/2 , ≲ ρ−100 |B|q δ6−ǫ = ρ−100 |B|q δ4q−(q−1)(3−t)−ǫ, by the definition of q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
131
+ page_content=' That ν is a probability measure implies that ct,δ(ν) ≳ 1, so this proves (2) when the broad part dominates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
132
+ page_content=' If the narrow part dominates in (4), then ����� � B∈B χℓ∗(B) ����� q Lq(R3) ≲ � τ ������ � B∈B:dir(ℓ∗(B))∈τ χℓ∗(B) ������ q q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
133
+ page_content=' For each cap τ, let Tτ be a finitely overlapping cover of physical space by ∼ ρ×ρ2×1 planks dual to τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
134
+ page_content=' If δ is smaller than some absolute constant, then each δ2-tube ℓ∗(B) with dir(ℓ∗(B)) ∈ τ is contained in at least 1 plank from Tτ, and intersects ≲ 1 planks from Tτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
135
+ page_content=' We associate each ℓ∗(B) with exactly one plank T ∈ Tτ such that dir(ℓ∗(B)) ∈ τ and ℓ∗(B) ⊆ T , and abbreviate this by writing ℓ∗(B) ≤ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
136
+ page_content=' Then � τ ������ � B∈B:dir(ℓ∗(B))∈τ χℓ∗(B) ������ q q ≲ � τ � T ∈Tτ ������ � B∈B:ℓ∗(B)≤T χℓ∗(B) ������ q q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
137
+ page_content=' VERTICAL PROJECTIONS IN THE HEISENBERG GROUP 7 The point-line duality argument at Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
138
+ page_content=' (3) is reversible provided the Euclidean balls are enlarged by a factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
139
+ page_content=' This gives � 3π/4 π/4 ���PV⊥ θ #ν ��� q Lq(H2) dθ ≲ � τ � T ∈Tτ � 3π/4 π/4 ���PV⊥ θ #νT ��� q Lq(H2) dθ, where νT = 1 |B|6δ6 � B∈B:ℓ∗(B)≤T χ2B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
140
+ page_content=' Each measure νT is essentially the restriction of ν to a Heisenberg ball of radius ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
141
+ page_content=' By left translation (using Lemma 3), followed by a Heisenberg dilation (which commutes with vertical projections), and then by applying the induction hypothesis, � τ � T ∈Tτ � 3π/4 π/4 ���PV⊥ θ #νT ��� q Lq(H2) dθ ≲ � τ � T ∈Tτ ρ(t−3)(q−1)ct,δ(ν)q−1ν \uf8eb \uf8ed � B∈B:ℓ∗(B)≤T B \uf8f6 \uf8f8 (δ/ρ)−ǫ−(3−t)(q−1) ≲ ρǫν(H)ct,δ(ν)q−1δ−ǫ−(3−t)(q−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
142
+ page_content=' The power of ρ is positive, so the induction closes provided δ is sufficiently small (depending only on ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
143
+ page_content=' For the rescaled measures, the Euclidean δ2-balls are sent to δ2/ρ × δ2/ρ × δ2/ρ2 ellipsoids, which are essentially unions of (δ/ρ)2-balls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
144
+ page_content=' This means that the rescaled measures can be convolved with φδ/ρ without significantly affecting their properties (at least on Heisenberg balls of radius ≥ δ/ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
145
+ page_content=' □ References [1] Balogh, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
146
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
147
+ page_content=', Durand-Cartagena, E, F¨assler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
148
+ page_content=', Mattila, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
149
+ page_content=', Tyson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
150
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
151
+ page_content=': The effect of projections on dimension in the Heisenberg group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
152
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
153
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
154
+ page_content=' Iberoam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
155
+ page_content=' 29, 381–432 (2013) [2] Carbery, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
156
+ page_content=', Valdimarsson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
157
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
158
+ page_content=': The endpoint multilinear Kakeya theorem via the Borsuk- Ulam theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
159
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
160
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
161
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
162
+ page_content=' 264, 1643–1663 (2013) [3] F¨assler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
163
+ page_content=', Orponen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
164
+ page_content=': Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
165
+ page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
166
+ page_content='00458v2 (2022) [4] Guth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
167
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
168
+ page_content=', Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
169
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
170
+ page_content=', Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
171
+ page_content=': A sharp square function estimate for the cone in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
172
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
173
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
174
+ page_content=' (2) 192, 551–581 (2020) [5] Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
175
+ page_content=': On the dimension of Kakeya sets in the first Heisenberg group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
176
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
177
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
178
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
179
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
180
+ page_content=' 150, 3445–3455 (2022) [6] Zahl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
181
+ page_content=': Unions of lines in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
182
+ page_content=' To appear in Mathematika.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
183
+ page_content=' arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
184
+ page_content='02913v1 (2022) Department of Mathematics, Cornell University, Ithaca, NY 14853, USA Email address: tlh236@cornell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
185
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf'}
7NE3T4oBgHgl3EQfqApm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f125477c8ec2fbbb68dd708f890209cca754ca712a1dca39d49653f61199d7e3
3
+ size 2355900
8NFAT4oBgHgl3EQfox1h/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3374b5c96d80f9a5daeb4c8009ba98282e2b1de3e6f32570c94a9c75b8a623
3
+ size 2490413
8NFAT4oBgHgl3EQfox1h/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b9c27493a68d83bd258bc4470baac7a3d9a254e8c21173374c711b6c5d137a7
3
+ size 86574
9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3c68fb000cff4b0ebddda5a133063e38bdea31ef0b0f8a97f024b6930f0b17e
3
+ size 152918
9NFJT4oBgHgl3EQfoSxe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c40474fd57eda4638204a79f347acbed475b755efe3fcc83ff99d2d1b96e26f
3
+ size 2687021
9NFJT4oBgHgl3EQfoSxe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:766cef507a1bddc761324a08361780b04398bf1ec81cec1a21b9b9802d5173f4
3
+ size 92565
9dE4T4oBgHgl3EQfdwwo/content/tmp_files/2301.05093v1.pdf.txt ADDED
@@ -0,0 +1,2293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wave function-based emulation for nucleon-nucleon scattering in momentum space
2
+ A. J. Garcia
3
+ ,1, ∗ C. Drischler
4
+ ,2, 3, † R. J. Furnstahl
5
+ ,1, ‡ J. A. Melendez
6
+ ,1, § and Xilin Zhang
7
+ 3, ¶
8
+ 1Department of Physics, The Ohio State University, Columbus, OH 43210, USA
9
+ 2Department of Physics and Astronomy and Institute of Nuclear and Particle Physics, Ohio University, Athens, OH 45701, USA
10
+ 3Facility for Rare Isotope Beams, Michigan State University, MI 48824, USA
11
+ (Dated: January 13, 2023)
12
+ Emulators for low-energy nuclear physics can provide fast & accurate predictions of bound-state
13
+ and scattering observables for applications that require repeated calculations with different param-
14
+ eters, such as Bayesian uncertainty quantification. In this paper, we extend a scattering emulator
15
+ based on the Kohn variational principle (KVP) to momentum space (including coupled channels)
16
+ with arbitrary boundary conditions, which enable the mitigation of spurious singularities known as
17
+ Kohn anomalies. We test it on a modern chiral nucleon-nucleon (NN) interaction, including emu-
18
+ lation of the coupled channels. We provide comparisons between a Lippmann-Schwinger equation
19
+ emulator and our KVP momentum-space emulator for a representative set of neutron-proton (np)
20
+ scattering observables, and also introduce a quasi-spline-based approach for the KVP-based emula-
21
+ tor. Our findings show that while there are some trade-offs between accuracy and speed, all three
22
+ emulators perform well. Self-contained Jupyter notebooks that generate the results and figures in
23
+ this paper are publicly available.
24
+ I.
25
+ INTRODUCTION
26
+ Nucleon-nucleon (NN) scattering has long been used
27
+ to fix parameters of microscopic Hamiltonians designed
28
+ for ab initio few- and many-body calculations. But the
29
+ uncertainty in most existing nuclear models has been un-
30
+ derestimated because they have lacked two key ingredi-
31
+ ents: a rigorous accounting of Hamiltonian uncertainty
32
+ and a complete estimate of parameter uncertainty.
33
+ In the case of chiral effective field theory (χEFT) [1–
34
+ 4], Hamiltonian uncertainty manifests as a truncation er-
35
+ ror, which has been statistically modeled in Refs. [5–8].
36
+ A holistic parameter estimation study would then both
37
+ account for truncation errors in the likelihood, and esti-
38
+ mate and propagate all plausible values of the low-energy
39
+ constants (LECs) rather than finding a single parame-
40
+ ter value maximizing the likelihood. Bayesian statisti-
41
+ cal methods are particularly suitable for these tasks [9–
42
+ 13], but are computationally demanding, especially when
43
+ generalizing to include few-body forces.
44
+ Emulators—
45
+ surrogate models that allow for fast & accurate (but ap-
46
+ proximate) model predictions—have the potential to al-
47
+ leviate some of these demands [14]. In this paper, we
48
+ extend our recent explorations of emulators for NN scat-
49
+ tering [15–17] to momentum-space wave functions and
50
+ coupled channels, and test against a representative set of
51
+ neutron-proton (np) scattering observables.
52
+ The demand for emulators has led nuclear physics to
53
+ the general field of parametric model order reduction
54
+ (PMOR), where the goal is to extract the relevant in-
55
+ formation from a model while reducing the computa-
56
57
58
59
60
61
+ tional cost significantly.
62
+ An efficient offline-online de-
63
+ composition is crucial to construct an efficient emula-
64
+ tor.
65
+ In the offline stage, the emulator is trained with
66
+ high-fidelity calculations1 for selected sets of parameters,
67
+ also known as snapshots, while making predictions for
68
+ any other set of parameters are performed in the online
69
+ stage. The end result is a reduced-order model (ROM)
70
+ that serves as an emulator. For general overviews of the
71
+ literature on PMOR techniques and their applications,
72
+ we refer the reader to Refs. [19, 20]. A pedagogical intro-
73
+ duction to projection-based emulators for both scatter-
74
+ ing and bound-state calculations, including interactive,
75
+ open-source Python code, can be found in Refs. [21, 22].
76
+ A particular snapshot-based ROM known as the re-
77
+ duced basis method (RBM)2 has emerged as an efficient
78
+ emulator for the prediction of both bound state and scat-
79
+ tering observables [15, 23, 24]. The foundation of the first
80
+ emulators for scattering is the Kohn variational princi-
81
+ ple (KVP) [e.g., for the K matrix], whose snapshots are
82
+ based on scattering solutions to the Schr¨odinger equa-
83
+ tion [25, 26].
84
+ It has been demonstrated for a variety
85
+ of real and optical potentials that such emulators can be
86
+ trained for two- and three-body3 scattering in coordinate
87
+ space, then evaluated in the form of matrix inversions
88
+ with low-dimensional matrices [15, 16, 27].
89
+ Subsequently, an emulator of the Lippmann-Schwinger
90
+ (LS) equation using the Newton variational principle
91
+ (NVP) [28] was introduced in Ref. [17]. In contrast to the
92
+ KVP emulator, the variational trial basis is composed of
93
+ 1 Following the terminology of Ref. [18], we will refer to the cal-
94
+ culational machinery that generates high-fidelity solutions (e.g.,
95
+ LS equation solver) as a simulator.
96
+ 2 The RBM has been rediscovered in the low-energy nuclear theory
97
+ community as eigenvector continuation (EC). See Ref. [19] for
98
+ more details.
99
+ 3 In Ref. [27], the offline training stage involves calculations in both
100
+ momentum and coordinate space.
101
+ arXiv:2301.05093v1 [nucl-th] 12 Jan 2023
102
+
103
+ ID2
104
+ TABLE I. Notation used in this work.
105
+ Notation
106
+ Description
107
+ θ
108
+ vector of parameters; θi are the parameters
109
+ for the ith snapshot
110
+ s, s′
111
+ indices for the exit and entrance channels of
112
+ the scattering process, e.g., 3S1 and 3D1
113
+ t, t′
114
+ indices for available channels (summation
115
+ convention implied)
116
+ ψs
117
+ i
118
+ wave function in the channel s used for train-
119
+ ing and associated with the ith snapshot with
120
+ θi [high-fidelity solution of Eq. (1)]
121
+ �ψs
122
+ snapshot-based trial wave function in the
123
+ channel s (3) applied to the KVP func-
124
+ tional (2)
125
+ Lss′
126
+ E
127
+ a generic scattering matrix at energy E
128
+ Lss′[ �ψ]
129
+ a functional whose stationary point is an ap-
130
+ proximation of the generic L-matrix; i.e.,
131
+ L[ �ψ + δ �ψ] = Lss′
132
+ E + O(δL2)
133
+ βi
134
+ to-be-determined coefficient of the ith snap-
135
+ shot in the trial wave function with �
136
+ i βi = 1
137
+ ∆�U ss′
138
+ ij (θ)
139
+ nb × nb kernel matrix defined in Eq. (5)
140
+ scattering matrices (e.g., K matrices) rather than scat-
141
+ tering wave functions. Both approaches were shown to
142
+ quickly and accurately predict the np phase shifts from a
143
+ chiral Hamiltonian across a range of parameter values. In
144
+ this paper, we compare a momentum-space KVP-based
145
+ emulator, including emulation of coupled channels and
146
+ allowing for arbitrary boundary conditions, to the NVP
147
+ emulator for a representative set of np observables. For a
148
+ comparison of the KVP and NVP emulators in a Galerkin
149
+ framework and a survey on other emulators see Ref. [21].
150
+ The paper is organized as follows. In Sec. II, we review
151
+ the underlying formalism of the KVP emulators and its
152
+ extension to momentum space and coupled channels. We
153
+ then show results for the momentum-space KVP emula-
154
+ tor and compare them to the K matrix (NVP) emulator
155
+ in Sec. III. We demonstrate that spurious singularities
156
+ known as Kohn (or Schwartz) anomalies [29, 30] are mit-
157
+ igated using methods from Ref. [16]. Section IV has a
158
+ summary and outlook and additional details of the im-
159
+ plementation are given in several appendices. The self-
160
+ contained set of codes that generate all results and figures
161
+ shown in this paper is publicly available [31].
162
+ II.
163
+ FORMALISM
164
+ Our goal is to emulate the partial-wave Schr¨odinger
165
+ equation for NN scattering at the center-of-mass energy
166
+ E > 0
167
+ �H(θ) |ψs⟩ ≡
168
+ � �T + �V (θ)
169
+
170
+ |ψs⟩ = E |ψs⟩ ,
171
+ (1)
172
+ where the vector θ is composed of parameters used by
173
+ the theoretical model to match results with experimen-
174
+ tal observations (e.g., the LECs of χEFT). Building our
175
+ snapshot-based MOR emulator begins by writing Eq. (1)
176
+ in integral form.
177
+ Here we choose the general (con-
178
+ strained4) KVP, which is based on the functional [16, 32]
179
+ Lss′[ �ψ] = �Lss′
180
+ E − 2µk0
181
+ det u ⟨ �ψs| �H(θ) − E| �ψs′⟩ ,
182
+ (2)
183
+ where �ψ is a trial scattering wave function, �Lss′
184
+ E
185
+ is a
186
+ generic trial scattering matrix, u is a non-singular ma-
187
+ trix [16, 32] used to parameterize the asymptotic bound-
188
+ ary condition associated with �Lss′
189
+ E (see Appendix A), and
190
+ k0 = √2µE is the on-shell energy with µ being the re-
191
+ duced mass.5 More details can be found in Ref. [16] and
192
+ Appendix A. Table I summarizes the notation we use in
193
+ this work. Note that we adopt the convention that the
194
+ wave functions in a bra symbol ⟨·| in bra-ket notation are
195
+ not complex conjugated [e.g., ⟨ �ψs| in Eq. (2)] [15, 16, 34].
196
+ In Eq. (2), the superscripts s and s′ index the coupled
197
+ channels (e.g., 3S1 and 3D1); for the uncoupled case this
198
+ reduces to a single equation with s′ = s. Each combi-
199
+ nation of (s′, s) will have their own, distinct emulator in
200
+ our formulation. As an example, for a coupled-channel
201
+ np interaction in Eq. (2), the (s′, s) pair could be one
202
+ of 3S1–3S1, 3S1–3D1, 3D1–3S1, or 3D1–3D1, and for an
203
+ uncoupled channel s′ = s could be 1S0.
204
+ We use the
205
+ np spin-triplet coupled channels as an exemplary case,
206
+ but the general emulation procedure applies to general
207
+ channel coupling (including spin-singlet spin-triplet np
208
+ coupling [35]).
209
+ The functional (2) yields Lss′[ �ψ] = Lss′
210
+ E
211
+ when �ψ is the
212
+ exact wave function, and provides a stationary approxi-
213
+ mation otherwise: Lss′[ �ψ + δ �ψ] = Lss′
214
+ E + O(δL2). Rather
215
+ than finding a wave function |ψ⟩ that satisfies Eq. (1),
216
+ our task has now changed to finding a wave function that
217
+ makes Eq. (2) stationary for a given choice of E.
218
+ The key to creating an efficient PMOR emulator from
219
+ Eq. (2) is to use a snapshot trial wave function,
220
+ | �ψs⟩ ≡
221
+ nb
222
+
223
+ i=1
224
+ βi |ψs
225
+ i ⟩ ,
226
+ (3)
227
+ where nb is the number of parameter vectors {θi}nb
228
+ i=1 in
229
+ the training set and {|ψs
230
+ i ⟩}nb
231
+ i=1 the associated high-fidelity
232
+ solutions to Eq. (1), obtained by solving the LS equation
233
+ directly (see also Sec. III). These solutions are determined
234
+ once in the offline stage. The to-be-determined basis co-
235
+ efficients ⃗β will not be the same for all the channels, re-
236
+ sulting in independent emulators for each (s′, s) pair (see
237
+ Appendix B for more details).
238
+ For the np spin-triplet
239
+ 4 For a description of constrained and unconstrained emulators see
240
+ Ref. [21]
241
+ 5 Throughout this paper we use boldface symbols to indicate vec-
242
+ tors in parameter-space, arrows to indicate vectors in snapshot-
243
+ space, natural units in which ℏ = c = 1, and follow the conven-
244
+ tions for scattering matrices in Refs. [26, 33].
245
+
246
+ 3
247
+ coupled channels, this will result in three distinct varia-
248
+ tional principles being enforced: one for each of angular
249
+ momentum s′ = s = j ± 1 and one for the off-diagonal
250
+ component.
251
+ The other off-diagonal component can be
252
+ inferred through the unitarity of the S matrix.6
253
+ Upon inserting the snapshot trial wave function (3)
254
+ into the functional (2), the functional takes the form [15]
255
+ Lss′[⃗β ] = βiLss′
256
+ E,i − 1
257
+ 2βi∆�U ss′
258
+ ij βj,
259
+ (4)
260
+ with the symmetric matrix
261
+ ∆�U ss′
262
+ ij (θ) ≡ 2µk0
263
+ det u
264
+
265
+ ⟨ψs
266
+ i | �H(θ) − E|ψs′
267
+ j ⟩ + (i ↔ j)
268
+
269
+ = 2µk0
270
+ det u
271
+
272
+ ⟨ψs
273
+ i |�V (θ) − �Vj|ψs′
274
+ j ⟩ + (i ↔ j)
275
+
276
+ ,
277
+ (5)
278
+ where, as in Eq. (2), s′ and s correspond to the entrance
279
+ and exit channels. Equation (4) is a stationary approx-
280
+ imation to the generic L-matrix at one energy, hence
281
+ we build independent emulators for each value of an en-
282
+ ergy grid. Equation (5) is obtained [15] by adding and
283
+ subtracting �Vi ≡ �V (θi) and �Vj ≡ �V (θj) and applying
284
+ Eq. (1). In this form, the constant terms in the poten-
285
+ tials, such as a long-range Coulomb interaction (assuming
286
+ the fine-structure constant is not varied), will cancel, and
287
+ the matrix elements will only involve short-range physics.
288
+ Emulating the scattering wave function [via Eq. (3)],
289
+ and hence Lss′
290
+ E ≈ Lss′[ �ψ] [via Eq. (4)], has now been re-
291
+ duced to choosing an appropriate training set {θi} and
292
+ then determining the values of βi that make Eq. (4) sta-
293
+ tionary under the constraint that �
294
+ i βi = 1. The latter
295
+ is a consequence of maintaining a consistent asymptotic
296
+ normalization for the scattering wave functions in Eq. (3)
297
+ as required by the constrained KVP [15, 21]. A numeri-
298
+ cally robust solution can be found by introducing a La-
299
+ grange multiplier λ, and solving the matrix equation [16]
300
+
301
+ ∆�U ss′ ⃗1
302
+ ⃗1 ⊺
303
+ 0
304
+ � �⃗β⋆
305
+ λ⋆
306
+
307
+ =
308
+ �⃗Lss′
309
+ E
310
+ 1
311
+
312
+ ,
313
+ (6)
314
+ where ⃗1 is an nb × 1 vector of ones, ⃗Lss′
315
+ E
316
+ are the basis
317
+ states used in the offline stage, and ⃗β⋆ is a vector of co-
318
+ efficients of the trial wave function associated with the
319
+ KVP’s stationary approximation. Since Eq. (6) is a lin-
320
+ ear system, it will be a highly computationally efficient
321
+ emulator for scattering systems if the number nb of basis
322
+ functions is much smaller than the size of the high-fidelity
323
+ wave function ψ.
324
+ Thus far we have not specified whether the matrix el-
325
+ ements ∆�U ss′
326
+ ij
327
+ are to be calculated in coordinate space
328
+ or momentum space. The only difference between these
329
+ 6 For (complex-valued) optical potentials with two coupled chan-
330
+ nels, one has four (instead of three) distinct variational principles
331
+ because the S matrix is not unitary.
332
+ implementations is the way we obtain the basis functions
333
+ ψi used to construct the trial ansatz in Eq. (3), and thus
334
+ the manner in which ∆�U ss′ is evaluated. To formulate a
335
+ momentum-space wave function approach to MOR emu-
336
+ lators for scattering, we initially solve for the K matrix
337
+ and relate ψ to K before using Eq. (5). The scattering
338
+ wave function in momentum space takes the form [36]
339
+ ψst(k; k0) = 1
340
+ k2 δ(k − k0)δst + 2
341
+ π PKst(k, k0)/k0
342
+ k2 − k2
343
+ 0
344
+ ,
345
+ (7)
346
+ which vanishes as k → ∞, but is singular at k = k0 =
347
+ √2µE (the superscripts used for the K matrix in Eq. (7)
348
+ are opposite Ref. [36]). Here, Kst is the reactance ma-
349
+ trix (or just the K matrix), k0 the on-shell energy, P the
350
+ Cauchy principal value, and the labeling st indicates the
351
+ partial-wave or reaction channels.
352
+ One can also write
353
+ Eq. (5) in the momentum-space representation by insert-
354
+ ing complete sets of states,7 resulting in
355
+ ∆�U ss′
356
+ ij (θ) =
357
+ ¨ ∞
358
+ 0
359
+ dk dp k2p2�
360
+ ψts
361
+ i (k)V tt′
362
+ θ,j(k, p)ψt′s′
363
+ j
364
+ (p)
365
+ + (i ↔ j)
366
+
367
+ ,
368
+ (8)
369
+ with
370
+ V tt′
371
+ θ,j(k, p) ≡ 2µk0
372
+ det u
373
+
374
+ V tt′(k, p; θ) − V tt′
375
+ j
376
+ (k, p)
377
+
378
+ ,
379
+ (9)
380
+ where t and t′ are summed over the available channels
381
+ and the dependence of ψ on k0 is left implicit. Moving
382
+ forward, we will drop the channel superscripts on ∆�U.
383
+ This is the general form of the momentum-space ∆ ˜U
384
+ matrix. Note the ordering of the channel indices (t, s)
385
+ in the left-hand wave function in Eq. (8), which follows
386
+ from ψts(k) ≡ ⟨kt|ψs⟩ and the convention that ⟨ψ| = |ψ⟩⊺
387
+ (without a complex conjugate), so that ψts(k) = ⟨ψs|kt⟩.
388
+ Thus, if ψ has outgoing (ψ(+)), incoming (ψ(−)), or
389
+ standing wave (ψ(0)) boundary conditions, then the same
390
+ version of ψ(x) is used for both ψ(k) and ψ(p) in Eq. (8).
391
+ No modification of Eq. (8) is needed in the case of optical
392
+ potentials, where again the left-hand wave function is not
393
+ conjugated relative to the right-hand wave function. For
394
+ more details on how to build the general KVP emulator
395
+ we refer the reader to Appendix C. Different boundary
396
+ conditions will be used below to mitigate Kohn anomalies
397
+ (see Sec. III B).
398
+ The efficient evaluation of ∆�U across a range of θ val-
399
+ ues is critical to the applicability of the emulator. If the
400
+ Hamiltonian operators have an affine (i.e., factorizable)
401
+ parameter dependence, denoted as
402
+ �H(θ) =
403
+
404
+ n
405
+ hn(θ) �Hn,
406
+ (10)
407
+ 7 For example, for np scattering as in Sec. III, the complete set
408
+ of states are relative-momentum partial-wave states with orbital
409
+ angular momentum and spin coupled to total J and MJ.
410
+
411
+ 4
412
+ then matrix elements of the Hn operators in a given basis
413
+ only need to be calculated once in the offline stage rather
414
+ than for every parameter set θi. Chiral NN interactions
415
+ have the form of Eq. (10) and, when varying only the
416
+ contact LECs, can even be cast into the form8
417
+ �V (θ) = �V 0 + θ · �V 1,
418
+ (11)
419
+ so that Eq. (5) can then be written as
420
+ ∆�U(θ) = ∆�U 0 + θ · ∆ �U 1.
421
+ (12)
422
+ The matrices �V 0 and ∆�U 0 and vectors of matrices �V 1
423
+ and ∆ �U 1, can now be pre-calculated during the emu-
424
+ lator’s offline stage, allowing for considerable speed-up
425
+ factors in the online stage where the value of ∆�U(θ) at
426
+ any new parameter value is efficiently constructed.
427
+ III.
428
+ RESULTS
429
+ In this section, we apply the KVP momentum-space
430
+ emulator to calculate np scattering observables. We use
431
+ the Reinert et al. semilocal momentum-space (SMS) reg-
432
+ ularized chiral potential at N4LO+ with the momentum
433
+ cutoff Λ = 450 MeV [37], which is a state-of-the-art chiral
434
+ NN interaction. The parameters θ are composed of the
435
+ NN contact LECs contributing to this potential.
436
+ A.
437
+ Emulator overview
438
+ The snapshots used in the offline stage are the scatter-
439
+ ing solutions given by Eq. (7). The K matrices used to
440
+ calculate the second term in Eq. (7) are obtained from
441
+ numerically solving the LS equation. The LS equation is
442
+ reduced to a set of linear equations by approximating the
443
+ integral as a sum over N quadrature points obtained from
444
+ a Gauss–Legendre rule with corresponding weights (see
445
+ Refs. [36, 38]). If the potential was calculated merely on
446
+ the quadrature points, without appending the on-shell
447
+ values, interpolation must be performed to obtain the
448
+ (half-)on-shell potential so that one can (1) account for
449
+ the singularity of the Green’s function when solving the
450
+ LS equation [38], and (2) integrate the delta distribution
451
+ in Eq (7) (explained in next paragraph). To generate the
452
+ figures in this paper, we use a compound Gauss-Legendre
453
+ quadrature mesh of N = 80 momentum points. For the
454
+ observables, we use a lab energy range of 0 to 350 MeV
455
+ with 350 points. For the partial waves plots, we use a fine
456
+ 8 Note that hn(θ) would include higher-order polynomials when
457
+ also emulating the pion-nucleon coupling c2 (at N3LO) and axial
458
+ coupling constant gA (already at LO). Nevertheless, the Hamil-
459
+ tonian remains affine and thus the emulators discussed here are
460
+ directly applicable.
461
+ energy mesh of 3500 points over the same energy range
462
+ previously mentioned.
463
+ When performing the KVP emulation, we calculate
464
+ Eq. (5) two different ways.
465
+ The first is by inserting
466
+ Eq. (7) into Eq. (5) and analytically integrating the delta
467
+ distribution, which corresponds to appending the exact
468
+ on-shell value of the potential. The remaining integrals
469
+ are then solved numerically (see Appendix C). We re-
470
+ fer to this method as the Standard method. The second
471
+ is based on the global Gl¨ockle spline interpolation [39],
472
+ which belongs to the family of quasi-spline methods that
473
+ perform the mapping
474
+
475
+ k
476
+ f(k)Sk(k0) ≈ f(k0),
477
+ (13)
478
+ for smooth functions f(k) sampled on a grid k that en-
479
+ compasses k0 using the cubic spline polynomials Sk(k0)
480
+ constructed in Ref. [39].
481
+ This allows us to calculate
482
+ Sk(k0) once in the offline stage and save the result for
483
+ the online stage since it has no dependence on f(k) it-
484
+ self. Using this method, we interpolate the solutions to
485
+ the integrals that appear in Eq. (5) (i.e., k0 does not need
486
+ to be appended to the mesh as opposed to the Standard
487
+ method), thus decreasing the computational cost needed
488
+ in the offline stage significantly at the expense of accu-
489
+ racy. We compare the KVP emulator results using the
490
+ Gl¨ockle and Standard method and compare those results
491
+ to the NVP emulator described in Ref. [17].
492
+ To reduce numerical errors in both the simulator and
493
+ emulator, we compute snapshots {Ki} of the LS equation
494
+ using non-interpolated potentials for partial waves that
495
+ have a LEC-dependence and interpolated potentials for
496
+ LEC-independent partial waves. When referring to in-
497
+ terpolated potentials, we mean calculating the potential
498
+ using only the momentum mesh and then using an in-
499
+ terpolation method (such as the bivariate Gl¨ockle spline
500
+ method) to interpolate the potential to k0.
501
+ By non-
502
+ interpolated, we mean that each k0 is appended to the
503
+ momentum mesh and the potential evaluated at these
504
+ points, which improves the accuracy of our potentials
505
+ compared to interpolating the potential to k0. We chose
506
+ to use non-interpolated potentials for the LEC-dependent
507
+ partial waves since these are the only ones used to cal-
508
+ culate Eq. (5) in the offline phase.
509
+ The same LEC-
510
+ independent partial waves are employed by the simulator
511
+ and emulator. All potentials used for the emulators and
512
+ simulator are pre-calculated for efficiency.
513
+ The simulator used in this paper numerically solves
514
+ the LS equation for each partial wave.
515
+ The accuracy
516
+ of our simulator was tested by comparing the simulator
517
+ results to the analytical solution of a Gaussian separable
518
+ potential, producing relative errors of ≈ 10−7 or better.
519
+ Additionally, the simulator’s speed was roughly 4x slower
520
+ when we doubled the mesh size from N = 80 to N = 160
521
+ quadrature points.
522
+ The accuracy of emulated observables depends on the
523
+ size of the basis (see Sec. III C); here we use a basis size
524
+ nb = 2na, where na is the number of LECs associated
525
+
526
+ 5
527
+ with a given partial wave channel. The training points
528
+ θi are randomly sampled within an interval of [−5, 5]
529
+ using a Latin-hypercube for each partial wave, with the
530
+ fitted coupling constants and appropriate units given in
531
+ Ref. [37].
532
+ The matrix ∆�U is increasingly ill-conditioned as the
533
+ basis size nb increases. One can reduce numerical noise
534
+ by (1) adding a regularization parameter (“nugget”) to
535
+ the diagonal elements of the near-singular matrix [15], or
536
+ (2) using a solver that performs some type of regulariza-
537
+ tion. For the KVP emulator results in the figures, we use
538
+ NumPy’s least-squares solver linalg.lstsq() [40] with
539
+ a cut-off ratio for small singular values of 10−10 [16]. For
540
+ the NVP emulator, we add a nugget of 10−10 to the di-
541
+ agonal and use NumPy’s linalg.solve().
542
+ The general KVP functional may not always provide
543
+ a (unique) stationary approximation, giving rise to spu-
544
+ rious singularities known as Kohn (or Schwartz) anoma-
545
+ lies [29, 30]. The energies at which those anomalies occur
546
+ depends on the training parameters θ used in the offline
547
+ stage and the evaluation set used in the online stage.
548
+ Reference [16] proposed detecting and mitigating these
549
+ numerical instabilities by considering an array of KVPs
550
+ with different boundary conditions (i.e., scattering ma-
551
+ trices) within a partial wave and using the emulator so-
552
+ lutions to obtain an estimated S matrix by a weighted
553
+ sum of averages [see also Refs. [32, 41]].
554
+ For our KVP emulator, the mitigation process involves
555
+ first calculating Eq. (5) using the K matrix boundary
556
+ condition. Once we have calculated ∆�U, the terms in
557
+ Eq. (4) are rescaled to match the boundary conditions
558
+ we want to emulate (here, L = K, K−1, and T). The
559
+ anomalies are then detected by applying a consistency
560
+ check to the (independent) emulated solutions of the dif-
561
+ ferent boundary conditions. The emulator solutions that
562
+ do not pass this check are discarded while those that
563
+ pass are averaged to obtain an anomaly-free scattering
564
+ matrix (here, the S matrix). All KVP emulator results
565
+ in this paper are shown with anomaly mitigation unless
566
+ otherwise stated. So far, such a mitigation protocol has
567
+ not been implemented for the NVP emulator. However,
568
+ one approach would be to use multiple emulators based
569
+ on different variational principles [21] instead of multiple
570
+ boundary conditions. See Appendix A for our implemen-
571
+ tation and Ref. [16] for more information on emulation
572
+ with arbitrary boundary conditions and ways to mitigate
573
+ Kohn anomalies.
574
+ B.
575
+ Emulation of phase shifts
576
+ We first apply the emulators to the uncoupled 1S0
577
+ channel using Eq. (5) to calculate ∆�U (see Appendix C
578
+ for explicit expressions).
579
+ At N4LO+, this channel de-
580
+ pends on na = 3 non-redundant LECs [37], and thus
581
+ we choose our basis to be composed of nb = 6 training
582
+ points. Figure 1 shows the phase shifts calculated using
583
+ our simulator (black line) and the KVP emulator Stan-
584
+ FIG. 1. Simulated (black solid line) and KVP emulated Stan-
585
+ dard method (orange dots) 1S0 phase shifts for the N4LO+
586
+ SMS potential with Λ = 450 MeV (top panel). The bottom
587
+ panel shows the relative errors between the simulated and em-
588
+ ulated phase shifts for the Gl¨ockle method (red dashed line),
589
+ Standard method (blue solid line), and NVP emulator (green
590
+ dotted line), respectively. The spike at Elab ≈ 270 MeV is
591
+ due to the phase shift crossing zero.
592
+ dard method prediction (orange dots) as a function of
593
+ the laboratory energy in the top panel. The phase shifts
594
+ associated with the training points are depicted by the
595
+ light gray lines. In addition, the bottom panel shows the
596
+ relative errors
597
+ Rel. Error = 2
598
+ ����
599
+ Simulator − Emulator
600
+ Simulator + Emulator
601
+ ����
602
+ (14)
603
+ between the simulated and emulated phase shifts for
604
+ the Gl¨ockle method (red dashed line), Standard method
605
+ (blue solid line), and NVP emulator (blue dotted line).
606
+ We find that our KVP emulator accurately reproduces
607
+ the high-fidelity phase shifts over a large energy range
608
+ for both methods, but the Standard method is much
609
+ more accurate than the Gl¨ockle method.
610
+ On average,
611
+ the relative error for the Gl¨ockle method is on the order
612
+ of ≈ 10−6 −10−5, while the Standard method has a rela-
613
+ tive error on the order of ≈ 10−12 for the same basis size.
614
+ The NVP emulator’s relative error is similar to the KVP
615
+ Standard method, with an error of ≈ 10−13.
616
+ We now turn to the coupled 3S1–3D1 channel. This
617
+ channel depends on na = 6 non-redundant LECs [37]
618
+ at N4LO+, which means that our basis will be com-
619
+ posed of nb = 12 training points. Figure 2 shows the
620
+ on-shell K matrix for the simulator calculation (black
621
+ lines) and KVP emulator prediction (orange dots) as
622
+ a function of the laboratory energy for each different
623
+ partial-wave component. The errors are similar to the
624
+
625
+ Basis
626
+ - Simulator
627
+ oooEmulator
628
+ 200
629
+ [deg]
630
+ 100
631
+ 0
632
+ -100
633
+ 100
634
+ Glockle
635
+ Standard
636
+ NVP
637
+ 4
638
+ 10
639
+ Error
640
+ 0
641
+ 100
642
+ 200
643
+ 300
644
+ Eiab
645
+ [MeV]6
646
+ FIG. 2. As in Fig. 1, but for the on-shell K matrix in the coupled 3S1–3D1 as a function of the laboratory energy. From left
647
+ to right: pure D–wave, pure S–wave, and mixed S–D-wave component.
648
+ 1S0 channel, with the Standard method being much more
649
+ accurate than the Gl¨ockle method, and the NVP emula-
650
+ tor’s relative error being slightly better than the Stan-
651
+ dard method. In all cases, we see a spike in the relative
652
+ error at Elab ≈ 20 MeV where the K matrix is singular.
653
+ The small spikes seen in the Standard method error are
654
+ not Kohn anomalies, but can be attributed to a numerical
655
+ instability of the principal value integral in the LS equa-
656
+ tion. These spikes are mesh-dependent and appear when
657
+ a k0 value is close to a momentum mesh point, thus caus-
658
+ ing the denominator of the Green’s function to approach
659
+ zero faster than the numerator. A way to decrease the
660
+ relative error produced by these spikes is to not allow the
661
+ k0 values to be close to momentum mesh points by mov-
662
+ ing energies that are close to any momentum mesh point
663
+ until the relative distance is greater than some threshold
664
+ value; e.g., ε ≳ 10−2 MeV (see Appendix D for details).
665
+ The oscillations that appear in the Gl¨ockle method’s rel-
666
+ ative errors plots are potential-dependent, and increase
667
+ in number, but decrease in separation, when increasing
668
+ the mesh size.
669
+ Overall, the emulators accurately predict the partial
670
+ waves for the uncoupled 1S0 and coupled 3S1–3D1 chan-
671
+ nels.
672
+ When comparing the Gl¨ockle method emulation
673
+ with the Standard method, we see that the relative error
674
+ for the Standard method is much less than the Gl¨ockle
675
+ method. For both partial waves shown, the NVP emula-
676
+ tor is the one that most accurately reproduces its high-
677
+ fidelity solution. Results for the other channels are sim-
678
+ ilar to the ones presented here, with the only difference
679
+ being that the relative error decreases as na gets smaller.
680
+ This can be further explored with the Jupyter notebooks
681
+ provided [31].
682
+ C.
683
+ Emulation of scattering observables
684
+ Next, we examine the performance of the emulator for
685
+ nuclear observables. As a demonstration, we use the SMS
686
+ regularized chiral potential at N4LO+ for np scatter-
687
+ ing with partial waves having total momentum quantum
688
+ numbers j ⩽ jmax = 20. Overall, there are a total of 25
689
+ parameters in θ that are being sampled using a Latin-
690
+ hypercube design.
691
+ As previously mentioned, the basis
692
+ size is chosen as nb = 2na, where na is the number of
693
+ LECs associated with the specific partial-wave, for a to-
694
+ tal of 50 training points. Since these parameters are only
695
+ present in the channels j ⩽ 4, the emulator only needs to
696
+ be trained over these channels. The remaining channels
697
+ do not change as the parameters are varied, therefore,
698
+ they do not undergo a training process and need to be
699
+ calculated only once by solving the LS equation directly.
700
+ The emulation of observables is carried out by com-
701
+ bining multiple emulators across different partial-wave
702
+ channels. The total np cross section can be calculated
703
+ using
704
+ σtot(k0) =
705
+ π
706
+ 2k2
707
+ 0
708
+ jmax
709
+
710
+ j=0
711
+ (2j + 1) Re{Tr[Sj(k0) − 14]},
712
+ (15)
713
+ where Sj = 14 − 2i(1 − iKj)−1Kj is the S matrix, Kj
714
+ is the predicted on-shell K matrix, and Tr[·] denotes the
715
+ trace. Both Sj and Kj are 4 × 4 matrices that contain
716
+ both the triplet-triplet and the singlet-triplet channels.
717
+ Figure 3 shows the simulator and emulator prediction
718
+ for the total np cross section, which are calculated us-
719
+ ing the fit values for the LECs determined in Ref. [37].
720
+ The inset in Fig. 3 depicts the mean relative errors for
721
+ all three emulators when randomly sampling 500 differ-
722
+ ent combinations of np LECs (chosen within the same
723
+ range as the training points), using these to calculate the
724
+ emulated and simulated total cross section, and compar-
725
+ ing the results.
726
+ On average, the relative errors for all
727
+ three emulators are similar to those for the partial-wave
728
+ calculations discussed in Sec. III B. Although the mean
729
+ relative errors for the Standard method and NVP emula-
730
+ tors are very similar, the NVP emulator seems to be the
731
+ one that most accurately reproduces its simulator.
732
+
733
+ Basis
734
+ 1
735
+ K
736
+ K+
737
+ Simulator
738
+ (oy)M
739
+ ·o Emulator
740
+ IOOOI
741
+ Glockle
742
+ 2
743
+ 10°
744
+ Standard
745
+ NVP
746
+ 10
747
+ Rel.
748
+ 10-16
749
+ 0
750
+ 100
751
+ 200
752
+ 300
753
+ 0
754
+ 100
755
+ 200
756
+ 300
757
+ 0
758
+ 100
759
+ 200
760
+ 300
761
+ Eiab [MeV]
762
+ Eiab[MeV]
763
+ Eiab [MeV]7
764
+ FIG. 3.
765
+ Simulated (black solid line) and emulated (orange
766
+ dots) np cross section with jmax = 20 for the N4LO+ SMS
767
+ potential with Λ = 450 MeV as a function of the laboratory
768
+ energy.
769
+ The inset shows the relative mean errors between
770
+ the emulator and the simulator using the Gl¨ockle, Standard
771
+ method, and NVP emulator for 500 different sets of np LECs
772
+ obtained from Latin-hypercube sampling. See the main text
773
+ for details.
774
+ As mentioned in Sec. III A and following Ref. [16],
775
+ the Kohn anomalies found in the calculation were mit-
776
+ igated by emulating with different boundary conditions
777
+ and building the estimated S matrix. Figure 6 in Ap-
778
+ pendix D shows a total cross section emulation result
779
+ with one boundary condition, hence no anomaly mitiga-
780
+ tion. From the figure, we see that anomalies contribute
781
+ to the Standard method mean relative error at higher en-
782
+ ergies with a magnitude of approximately 10−3. These
783
+ spikes are reduced to approximately 10−9 with mitiga-
784
+ tion. The Gl¨ockle method result exhibits anomaly con-
785
+ tributions of order 10−3 at lower energies, which get re-
786
+ duced to approximately 10−5–10−7 with mitigation. For
787
+ additional information, see the discussion in Appendix D.
788
+ Although the NVP emulator is subject to anomalies, they
789
+ are not evident in the figures shown in this section, even
790
+ though no mitigation strategy was applied. An example
791
+ of noticeable anomaly contributions as large as 10−3 in
792
+ the NVP emulation are seen in Fig. 7 in Appendix D.
793
+ The remaining spikes in Fig. 3 (e.g., at Elab
794
+
795
+ 140 MeV) can be traced back to singularities in the on-
796
+ shell K matrix for the 3S1–3D1 channel at those energies
797
+ and are only seen for a few (specific) LEC values out
798
+ of the 500 sampled (see also Fig. 2). The mesh-induced
799
+ spikes seen in the Standard method relative error were
800
+ also reduced in magnitude by preventing the on-shell k0
801
+ value from being too close to a momentum mesh value
802
+ (see Fig. 8 for result comparisons).
803
+ We now turn our attention to spin-dependent observ-
804
+ ables for non-identical particles. A detailed description
805
+ of NN observables and their different conventions can be
806
+ found in Refs. [35, 42–46]. In general, one can write the
807
+ spin observables in terms of Saclay parameters, which are
808
+ complex functions of the center-of-mass energy and an-
809
+ gle θ. Here we only consider the differential cross section
810
+ and analyzing power:
811
+
812
+ dΩ = 1
813
+ 2
814
+
815
+ |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f|2�
816
+ ,
817
+ (16)
818
+
819
+ dΩAy = Re(a∗ e + b∗ f),
820
+ (17)
821
+ where dσ/dΩ is the unpolarized differential cross sec-
822
+ tion and Ay the analyzing power (also known as Pb).
823
+ For identical particles, one has f = 0. More informa-
824
+ tion on the description of the spin observables can be
825
+ found in Refs. [44, 45]; see also Appendix D, which con-
826
+ tains our emulation results for more spin observables.
827
+ The Saclay parameters can be obtained from the spin-
828
+ scattering M = M(θ, φ) matrix written in singlet-triplet
829
+ space,
830
+ M =
831
+
832
+
833
+
834
+
835
+ M11
836
+ M10e−iφ M1−1e−2iφ MST e−iφ
837
+ M01eiφ
838
+ M00
839
+ M0−1e−iφ
840
+ 0
841
+ M−11e2iφ M−10eiφ
842
+ M−1−1
843
+ MST eiφ
844
+ MST eiφ
845
+ 0
846
+ −MST e−iφ
847
+ MSS
848
+
849
+
850
+
851
+ � ,
852
+ (18)
853
+ where the subscripts SS and ST represent the singlet-
854
+ singlet and singlet-triplet channel,
855
+ respectively [43].
856
+ Equation (18) can be calculated using spherical harmon-
857
+ ics and Clebsch-Gordan coefficients, and can be related
858
+ to the Saclay parameters from the expressions:
859
+ a = 1
860
+ 2(M11 + M00 − M1−1),
861
+ (19)
862
+ b = 1
863
+ 2(M11 + Mss − M1−1),
864
+ (20)
865
+ c = 1
866
+ 2(M11 − Mss − M1−1),
867
+ (21)
868
+ d = −
869
+ 1
870
+
871
+ 2 sin θ(M01 + M01),
872
+ (22)
873
+ e = i
874
+ 2(M10 − M01),
875
+ (23)
876
+ f = −i
877
+
878
+ 2MST .
879
+ (24)
880
+ The emulation process is performed similarly to the
881
+ one for the total cross section, where multiple trained em-
882
+ ulators are combined across different partial-wave chan-
883
+ nels. Figures 4 and 5 show the simulator and emulator
884
+ prediction for the differential cross section and analyzing
885
+ power at three different energies calculated using the fit
886
+ values for the LECs determined in Ref. [37]. The relative
887
+ mean errors shown are obtained by randomly sampling
888
+ 500 different combinations of np LECs (the same LECs
889
+ used for the sampled relative error calculation in Fig. 3)
890
+ and comparing them against their respective simulator
891
+
892
+ Standard
893
+ Glockle
894
+ NVP
895
+ Error
896
+ 10-
897
+ Mean Rel.
898
+ 10-7
899
+ mb
900
+ 11
901
+ 10
902
+ Otot
903
+ -15
904
+ 10-
905
+ 0
906
+ 100
907
+ 200
908
+ 300
909
+ Eiab[MeV]
910
+ 10
911
+ 01010101010101010
912
+ Simulator
913
+ Emulator
914
+ 000
915
+ 101
916
+ 0
917
+ 100
918
+ 200
919
+ 300
920
+ Eiab[MeV]8
921
+ FIG. 4. Simulated (solid lines) and emulated (dots) unpolar-
922
+ ized differential cross section for the N4LO+ SMS potential
923
+ with Λ = 450 MeV as a function of the center-of-mass angle
924
+ at the three energies 60, 160, and 320 MeV (top panel). The
925
+ bottom panel shows the mean relative errors between the em-
926
+ ulators and their respective simulators for 500 different sets
927
+ of np LECs obtained from Latin-hypercube sampling. The
928
+ colors for the relative mean errors correspond to the energies
929
+ in the top panel. The gray arrows point from the label asso-
930
+ ciated with the emulator to its error. See the main text for
931
+ details.
932
+ calculation. On average, the spin observables emulator
933
+ has a relative mean error on the order of ≈ 10−5 when
934
+ employing the Gl¨ockle method and ≈ 10−14–10−11 when
935
+ using the Standard method and NVP emulators, which
936
+ are similar to the total cross section results. The results
937
+ are similar to those obtained over the entire energy grid
938
+ and for other observables (see Appendix. D).
939
+ Table II details the angle-averaged relative errors be-
940
+ tween the simulator and KVP emulators (based-10 log-
941
+ arithm) for different spin observables with varying ba-
942
+ sis size at a variety of energies. As can be seen, when
943
+ training the emulator with basis size nb = na both the
944
+ Standard and Gl¨ockle method emulators have large rela-
945
+ tive errors of roughly 10−1 when compared to the high-
946
+ fidelity model calculation. However, if we increase the
947
+ basis size by doubling the parameters used per partial-
948
+ wave, nb = 2na, the relative mean errors are signifi-
949
+ cantly smaller, roughly 10−12–10−9 and 10−6–10−3, re-
950
+ spectively.
951
+ According to Ref. [47], the relative errors
952
+ given by nb = 2na are below experimental uncertainties.
953
+ When increasing the basis size to nb = 4na, the mean er-
954
+ rors have mostly saturated and the improvement in accu-
955
+ racy is insignificant compared to the basis size nb = 2na.
956
+ Note that although only four energies are shown, these
957
+ results are similar over the entire energy grid.
958
+ FIG. 5. As in Fig. 4, but for the analyzing power Ay (also
959
+ known as Pb). See the main text for details.
960
+ The speed-up between the emulators and the simu-
961
+ lator is highly implementation dependent (e.g., to-be-
962
+ considered factors are the desired accuracy, idiosyncrasies
963
+ of the solver, programming language, level of paralleliza-
964
+ tion, hardware, etc.).
965
+ The emulator speed-up will de-
966
+ pend on the size of the quadrature mesh used by the
967
+ simulator to obtain the high-fidelity solution. For repro-
968
+ ducing the total cross section using the NVP emulator,
969
+ Ref. [17] states an emulator speed-up factor of > 300x
970
+ faster than the simulator in CPU time. When doubling
971
+ the quadrature mesh size this factor becomes > 1000x.
972
+ When comparing the KVP and NVP emulator speeds
973
+ using one boundary condition (no anomaly checking) for
974
+ the 1S0 uncoupled partial wave, the KVP emulator is
975
+ slightly slower due to the Lagrange multiplier in Eq. (6)
976
+ and numerical operations needed to solve Eq.(4). Mitiga-
977
+ tion of Kohn anomalies (by emulating multiple boundary
978
+ conditions) will further contribute to slowing down the
979
+ KVP emulator, or any other emulator.
980
+ IV.
981
+ SUMMARY AND OUTLOOK
982
+ We showed that the coordinate space KVP emulator
983
+ for NN scattering [15, 16] can be extended to momen-
984
+ tum space and coupled channels, and demonstrated its
985
+ efficiency in accurately reproducing phase shifts and np
986
+ observables using a modern chiral interaction at N4LO+.
987
+ In addition, we provided two methods to implement the
988
+ emulator, with the Gl¨ockle spline interpolation method
989
+ having a faster offline stage, but less accurate online stage
990
+ than the Standard method. By emulating (independent)
991
+ scattering solutions associated with different asymptotic
992
+
993
+ 60 MeV
994
+ 160 MeV
995
+ 320 MeV
996
+ 15.0
997
+ do/d2[mb/sr]
998
+ 10.0
999
+ 5.0
1000
+ 0.0
1001
+ Glockle/NVP/Standard
1002
+ Error
1003
+ Mean Rel.
1004
+ 10
1005
+ 10-15
1006
+ 0
1007
+ 50
1008
+ 100
1009
+ 150
1010
+ Ocm [deg]60 MeV
1011
+ 160 MeV
1012
+ 320 MeV
1013
+ 0.5
1014
+ 0.2
1015
+ 9
1016
+ 0.0
1017
+ -0.2
1018
+ Glockle/NVP/Standard
1019
+ Error
1020
+ 10
1021
+ Tean Rel.
1022
+ 10
1023
+ 10
1024
+ 0
1025
+ 50
1026
+ 100
1027
+ 150
1028
+ Ocm [deg]9
1029
+ TABLE II. Comparison of the angle-averaged relative errors (base-10 logarithm) between high-fidelity model and emulator
1030
+ for various angular observables with different basis size for 500 sets of np LECs using the N4LO+ SMS potential [37] with
1031
+ momentum cutoff Λ = 450 MeV (rounded to two significant figures). These results are similar over the entire energy mesh.
1032
+ Here, “Std.” refers to the Standard method emulator. See the main text for details.
1033
+ dσ/dΩ
1034
+ D
1035
+ Ay
1036
+ Ayy
1037
+ A
1038
+ Basis size
1039
+ E [MeV]
1040
+ Std.
1041
+ Gl¨ockle
1042
+ Std.
1043
+ Gl¨ockle
1044
+ Std.
1045
+ Gl¨ockle
1046
+ Std.
1047
+ Gl¨ockle
1048
+ Std.
1049
+ Gl¨ockle
1050
+ nb = na
1051
+ 5
1052
+ −1.2
1053
+ −1.2
1054
+ −0.93
1055
+ −0.93
1056
+ −0.46
1057
+ −0.46
1058
+ −0.72
1059
+ −0.72
1060
+ −0.78
1061
+ −0.78
1062
+ 100
1063
+ −0.73
1064
+ −0.73
1065
+ −0.47
1066
+ −0.47
1067
+ −0.12
1068
+ −0.12
1069
+ −0.20
1070
+ −0.20
1071
+ −0.28
1072
+ −0.28
1073
+ 200
1074
+ −0.54
1075
+ −0.64
1076
+ −0.30
1077
+ −0.30
1078
+ −0.028
1079
+ −0.028
1080
+ −0.035
1081
+ −0.035
1082
+ −0.12
1083
+ −0.12
1084
+ 300
1085
+ −0.49
1086
+ −0.49
1087
+ −0.24
1088
+ −0.24
1089
+ −0.066
1090
+ −0.066
1091
+ −0.037
1092
+ −0.037
1093
+ −0.043
1094
+ −0.043
1095
+ nb = 2na
1096
+ 5
1097
+ −10
1098
+ ���7.0
1099
+ −8.8
1100
+ −6.1
1101
+ −8.8
1102
+ −5.6
1103
+ −8.5
1104
+ −5.8
1105
+ −8.3
1106
+ −5.9
1107
+ 100
1108
+ −12
1109
+ −6.3
1110
+ −11
1111
+ −5.1
1112
+ −10
1113
+ −4.9
1114
+ −10
1115
+ −4.9
1116
+ −11
1117
+ −5.3
1118
+ 200
1119
+ −10
1120
+ −4.0
1121
+ −8.8
1122
+ −3.2
1123
+ −7.8
1124
+ −2.7
1125
+ −8.4
1126
+ −2.9
1127
+ −8.0
1128
+ −3.0
1129
+ 300
1130
+ −12
1131
+ −4.9
1132
+ −11
1133
+ −4.0
1134
+ −11
1135
+ −3.9
1136
+ −9.9
1137
+ −3.8
1138
+ −11
1139
+ −3.9
1140
+ nb = 4na
1141
+ 5
1142
+ −10
1143
+ −7.3
1144
+ −8.8
1145
+ −6.4
1146
+ −8.8
1147
+ −6.1
1148
+ −8.5
1149
+ −6.4
1150
+ −8.3
1151
+ −6.1
1152
+ 100
1153
+ −13
1154
+ −6.5
1155
+ −12
1156
+ −5.3
1157
+ −11
1158
+ −5.1
1159
+ −11
1160
+ −5.0
1161
+ −11
1162
+ −5.4
1163
+ 200
1164
+ −10
1165
+ −4.4
1166
+ −9.3
1167
+ −3.6
1168
+ −8.5
1169
+ −3.0
1170
+ −8.8
1171
+ −3.3
1172
+ −8.8
1173
+ −3.3
1174
+ 300
1175
+ −12
1176
+ −5.1
1177
+ −11
1178
+ −4.0
1179
+ −10
1180
+ −4.1
1181
+ −10
1182
+ −3.8
1183
+ −11
1184
+ −4.0
1185
+ boundary conditions in each partial wave and weighting
1186
+ the results (e.g., for the S-matrix), spurious singularities
1187
+ known as Kohn anomalies were successfully mitigated for
1188
+ the KVP-based emulators [16].
1189
+ We also constructed an NVP-based emulator and as-
1190
+ sessed how well the three emulators reproduced their re-
1191
+ spective high-fidelity solution for the 1S0 and 3S1–3D1
1192
+ partial-waves, total and differential cross sections, and
1193
+ analyzing powers. While all emulators produced errors
1194
+ well below experimental errors [47], the KVP Standard
1195
+ method and NVP emulators most closely reproduced the
1196
+ simulator, while the KVP Gl¨ockle spline interpolation
1197
+ emulator was overall the least accurate. The KVP emula-
1198
+ tor was found to have a slower online stage than the NVP
1199
+ emulator because it has to evaluate a higher-dimensional
1200
+ matrix and perform overall more numerical operations.
1201
+ We stress, however, that the emulators’ speed-ups are
1202
+ highly implementation dependent and should be further
1203
+ investigated. Extensions of the NVP-based emulator for
1204
+ anomaly mitigation with minimal computational cost,
1205
+ similar to the KVP-based emulators, should also be in-
1206
+ vestigated [17].
1207
+ An alternative procedure for mitigat-
1208
+ ing anomalies would be constructing the estimated S
1209
+ matrix using solutions from emulator based on differ-
1210
+ ent variational principles, as opposed to emulating mul-
1211
+ tiple boundary conditions. Reference [21] provides fur-
1212
+ ther perspectives regarding different emulators (KVP-
1213
+ and NVP-based included) and efficient offline-online de-
1214
+ compositions.
1215
+ Although we considered here only χEFT NN potentials
1216
+ for np scattering, the constructed emulators are gener-
1217
+ ally applicable to two-body scattering, including pp scat-
1218
+ tering and nuclear reactions with complex-valued opti-
1219
+ cal potentials.
1220
+ To help implement these fast & accu-
1221
+ rate scattering emulators in Bayesian parameter estima-
1222
+ tions, we provide self-contained set of codes that gener-
1223
+ ate all results and figures shown in this paper [31]. Fur-
1224
+ thermore, we have written a pedagogical introduction to
1225
+ projection-based emulators [21] with interactive, open-
1226
+ source Python code [22] to facilitate implementations of
1227
+ fast & accurate emulators even further. However, taking
1228
+ full advantage of emulators for UQ in nuclear scattering
1229
+ and reaction calculations will require generalizations to
1230
+ higher-body scattering and non-affine potentials. Recent
1231
+ advances in this direction are already promising [27].
1232
+ ACKNOWLEDGMENTS
1233
+ We thank Evgeny Epelbaum for sharing a code that
1234
+ generates the SMS chiral potentials, Kyle Wendt for shar-
1235
+ ing a code that generates the spin obbservables, and
1236
+ Filomena Nunes for fruitful discussions. This work was
1237
+ supported in part by the National Science Foundation
1238
+ Award Nos.
1239
+ PHY-1913069 and PHY-2209442 and the
1240
+ NSF CSSI program under award number OAC-2004601
1241
+ (BAND Collaboration [48]), and the NUCLEI SciDAC
1242
+ Collaboration under U.S. Department of Energy MSU
1243
+ subcontract RC107839-OSU.
1244
+ This material is based
1245
+ upon work supported by the U.S. Department of Energy,
1246
+ Office of Science, Office of Nuclear Physics, under the
1247
+ FRIB Theory Alliance award DE-SC0013617.
1248
+ Appendix A: Mitigating Kohn anomalies
1249
+ We follow the method developed in Ref. [16] to detect
1250
+ and mitigate Kohn anomalies (see also Ref. [32]). The
1251
+
1252
+ 10
1253
+ estimated S matrix is calculated from the emulator so-
1254
+ lutions by using a weighted sum of averages. Letting L1
1255
+ and L2 be two independent KVP functional solutions,
1256
+ this weighted sum is computed by first calculating the
1257
+ relative residuals
1258
+ γrel(L1, L2) = max
1259
+ ������
1260
+ S(L1)
1261
+ S(L2) − 1
1262
+ �����,
1263
+ �����
1264
+ S(L2)
1265
+ S(L1) − 1
1266
+ �����
1267
+
1268
+ ,
1269
+ (A1)
1270
+ for all emulated KVP solutions without repetitions to
1271
+ avoid the trivial case where L1 = L2. Using a consistency
1272
+ check, γrel < ϵrel, with ϵrel = 10−1, we select the set
1273
+ of pairs P = {(L1, L2)} that satisfies this check. If at
1274
+ least one consistency check passes, the S matrix is now
1275
+ estimated by the weighted sum of averages
1276
+ [S](mixed)
1277
+ KVP
1278
+ =
1279
+
1280
+ (L1,L2)∈P
1281
+ ω(L1, L2)S(L1) + S(L2)
1282
+ 2
1283
+ ,
1284
+ (A2)
1285
+ ω(L1, L2) =
1286
+ γrel(L1, L2)−1
1287
+
1288
+ (L′
1289
+ 1,L′
1290
+ 2)∈P γrel(L′
1291
+ 1, L′
1292
+ 2)−1 .
1293
+ (A3)
1294
+ If no consistency check passes, one could change the ba-
1295
+ sis size to shift the position of the Kohn anomalies in the
1296
+ parameter space. However, we found that using Eq. (A2)
1297
+ was sufficient to mitigate Kohn anomalies in our appli-
1298
+ cations.
1299
+ We first calculate Eq. (5) using Eq. (7), then rescale
1300
+ Eq. (5) using the relations from Appendix B of Ref. [16],
1301
+ ∆�U (u′) = C
1302
+ ′−1(Li) C
1303
+ ′−1(Lj) det u
1304
+ det u′ ∆�U (u),
1305
+ (A4)
1306
+ C′(L) = det u
1307
+ det u′
1308
+ u′
1309
+ 11 − u′
1310
+ 10K(L)
1311
+ u11 − u10K(L).
1312
+ (A5)
1313
+ Here, u and u′ are nonsingular matrices parameterizing
1314
+ the scattering boundary conditions; the K, K−1, and T
1315
+ scattering matrices, respectively, are given by
1316
+ uK =
1317
+
1318
+ 1 0
1319
+ 0 1
1320
+
1321
+ ,
1322
+ uK−1 =
1323
+
1324
+ 0 1
1325
+ 1 0
1326
+
1327
+ ,
1328
+ uT =
1329
+
1330
+ 1 0
1331
+ i 1
1332
+
1333
+ .
1334
+ (A6)
1335
+ The u matrix parameterizes the initial boundary condi-
1336
+ tion associated with L, while the u′ parameterizes the
1337
+ final boundary condition associated with L′.
1338
+ The snapshots used in the emulator’s offline stage are
1339
+ transformed using the M¨obius transform [16]
1340
+ L′(L) = −u′
1341
+ 01 + u′
1342
+ 00K(L)
1343
+ u′
1344
+ 11 − u′
1345
+ 10K(L) .
1346
+ (A7)
1347
+ Once we obtain an emulator solution, we transform that
1348
+ solution back into its K matrix form using
1349
+ K(L) = u01 + u11L
1350
+ u00 + u10L.
1351
+ (A8)
1352
+ For the estimated S calculation, the KVP solution
1353
+ pairs (L1, L2) being evaluated are the K matrix solu-
1354
+ tions obtained from the different boundary conditions
1355
+ used [e.g., γrel(K(K), K(K−1)), γrel(K(K), K(T)), and
1356
+ γrel(K(K−1), K(T))]. See Ref. [16] for more details.
1357
+ Appendix B: Formalism details
1358
+ Here we provide clarifying remarks about how Eq. (4)
1359
+ arises in the coupled case.
1360
+ In particular, we focus on
1361
+ two questions about the specific manner in which the
1362
+ coefficients ⃗β enter into Eq. (4).
1363
+ Why can Lss′ be emulated separately for each ss′ pair
1364
+ rather than with one global set of coefficients for the cou-
1365
+ pled block?
1366
+ For uncoupled channels, each partial wave is inde-
1367
+ pendent of one another, thus they can be emulated
1368
+ individually using trial wave functions and coefficients
1369
+ that are specific to the channel under consideration.
1370
+ Without loss of generality, let us consider two uncoupled
1371
+ channels labeled as s = 0 and s = 1, and let ⃗β(0)
1372
+ and ⃗β(1) denote the independent sets of coefficients
1373
+ found by making each channel’s KVP stationary.
1374
+ To
1375
+ move toward the coupled regime, imagine adiabatically
1376
+ turning on the coupling between these two originally
1377
+ uncoupled channels.
1378
+ The coefficients for each channel
1379
+ should remain nearly fixed to their previously uncoupled
1380
+ values, but the coupling will introduce a new set of
1381
+ coefficients ⃗β(01) ̸= ⃗β(0) ̸= ⃗β(1) that must be determined.
1382
+ Hence, each independent channel in the coupled case
1383
+ will have its own set of coefficients. Attempting to force
1384
+ a global set of coefficients for a coupled system would be
1385
+ inconsistent with the treatment in the uncoupled case
1386
+ and also degrade accuracy in general. A more technical
1387
+ answer follows from the (Petrov-)Galerkin procedure
1388
+ described below.
1389
+ Should not each of |ψs′⟩ and ⟨ψs| have its own basis
1390
+ expansion with their own independent coefficients?
1391
+ No, there is only one set of coefficients that en-
1392
+ ter quadratically in Eq. (4).
1393
+ A way of understanding
1394
+ how the coefficients enter in Eq. (4) follows from the
1395
+ (Petrov-)Galerkin orthogonalization procedure (see also
1396
+ Ref. [21]). Rather than starting with a variational prin-
1397
+ ciple, the (Petrov-)Galerkin approach starts with the
1398
+ Schr¨odinger equation. Like the variational approach, it
1399
+ expands |ψs′⟩ as a linear combination of known functions,
1400
+ but determines the basis coefficients by enforcing orthog-
1401
+ onality against a set of test functions. For the diagonal
1402
+ channels, the test functions are chosen to have the same
1403
+ exit channel as the trial functions (standard Galerkin ap-
1404
+ proach). On the other hand, the test functions for the
1405
+ off-diagonal channels are chosen to have a different exit
1406
+ channel (s) than the trial functions (s′) (Petrov-Galerkin
1407
+ approach). The resulting set of linear equations is equiv-
1408
+ alent to those that follow from making the KVP station-
1409
+ ary for each combination of (s′, s) independently. Thus
1410
+ by following the (Petrov-)Galerkin procedure we can de-
1411
+ termine how the coefficients are to enter in Eq. (4).
1412
+ This discussion will follow closely that of Ref. [21],
1413
+ however using coupled-channel notation and more gen-
1414
+ eral boundary conditions consistent with the general
1415
+
1416
+ 11
1417
+ KVP. Starting from (the strong form of) the Schr¨odinger
1418
+ equation
1419
+ �H(θ) |ψs′⟩ = E |ψs′⟩ ,
1420
+ (B1)
1421
+ we can derive its weak form after multiplying by a test
1422
+ function ⟨ψs|
1423
+ ⟨ψs| �H(θ) − E|ψs′⟩ = 0.
1424
+ (B2)
1425
+ This can be considered a Petrov-Galerkin approach be-
1426
+ cause s ̸= s′ in general. The boundary conditions can be
1427
+ made explicit via the relationship
1428
+ 0 = ⟨ψs| �H(θ) − E|ψs′⟩
1429
+ = ⟨ψs| �H†(θ) − E|ψs′⟩ −
1430
+
1431
+ t
1432
+ W(rψts, rψts′; r)
1433
+
1434
+ �����
1435
+
1436
+ r=0
1437
+ ,
1438
+ (B3)
1439
+ where �H† denotes the operator acting to the left (via
1440
+ integration by parts) and where we have used ψts(r) =
1441
+ ⟨rt|ψs⟩ = ⟨ψs|rt⟩ and defined the Wronskian
1442
+ W(φ, ψ; r) ≡ φ(r)ψ′(r) − φ′(r)ψ(r).
1443
+ (B4)
1444
+ The wave function rψ vanishes at the origin, so that only
1445
+ the limit as r → �� contributes. By adding Eqs. (B3)
1446
+ and (B2), we have
1447
+ ⟨ψs| �H(θ) − E|ψs′⟩ + ⟨ψs| �H†(θ) − E|ψs′⟩
1448
+ =
1449
+
1450
+ t
1451
+ W(rψts, rψts′; r)
1452
+
1453
+ �����
1454
+
1455
+ r=0
1456
+ .
1457
+ (B5)
1458
+ This is the weak form for general |ψs′⟩ and ⟨ψs|. We can
1459
+ arrive at the discrete form by inserting basis states |ψs
1460
+ i ⟩
1461
+ that satisfy the asymptotic boundary conditions
1462
+ ψst(r) −−−→
1463
+ r→∞ δst ¯φ(0)
1464
+ s (r) + Lst ¯φ(1)
1465
+ s (r) ,
1466
+ (B6)
1467
+ where
1468
+
1469
+ ¯φ(0)
1470
+ ℓ (r)
1471
+ ¯φ(1)
1472
+ ℓ (r)
1473
+
1474
+
1475
+
1476
+ u00 u01
1477
+ u10 u11
1478
+ � �
1479
+ jℓ(qr)
1480
+ ηℓ(qr)
1481
+
1482
+ .
1483
+ (B7)
1484
+ With this substitution, we have, for i ∈ [1, nb],
1485
+ ∆�U ss′
1486
+ ij βj = Lss′
1487
+ i
1488
+
1489
+ j
1490
+ βj − Ls′s
1491
+ j βj,
1492
+ (B8)
1493
+ where the expression for ∆�U ss′
1494
+ ij
1495
+ is given by Eq. (5). We
1496
+ must now implement the constraint �
1497
+ j βj = 1, which is
1498
+ performed here by a Lagrange multiplier λ mimicking a
1499
+ variational approach (see Ref. [19] for details):
1500
+ λ + ∆�U ss′
1501
+ ij βj = Lss′
1502
+ i
1503
+
1504
+ j
1505
+ βj − Ls′s
1506
+ j βj.
1507
+ (B9)
1508
+ The sum multiplying Lss′
1509
+ i
1510
+ can be evaluated using the
1511
+ constraint �
1512
+ j βj = 1, and we can make the redefinition
1513
+ λ′ ≡ λ + �
1514
+ j βjLs′s
1515
+ j
1516
+ without impacting the solution be-
1517
+ cause this term does not depend on i. Thus, we have
1518
+ λ′ − ⃗L(E) + ∆�U ⃗β⋆ = 0,
1519
+ (B10)
1520
+ which is exactly Eq. (6) found by making the KVP sta-
1521
+ tionary. This simplification can be understood by not-
1522
+ ing that if {⃗β⋆, λ⋆} satisfy Eq. (B9), then we know that
1523
+ {⃗β⋆, λ′
1524
+ ⋆} is the unique solution to Eq. (B10). Therefore,
1525
+ we can solve Eq. (B10) to obtain ⃗β⋆ rather than Eq. (B9).
1526
+ In conclusion, using the Petrov-Galerkin projection of the
1527
+ homogeneous Schr¨odinger equation with trial and test
1528
+ bases of |ψs′
1529
+ i ⟩ and ⟨ψs
1530
+ i |, respectively, we were able to ob-
1531
+ tain the same coefficients as the KVP in Eq. (6), which
1532
+ yield the same on-shell Lss′ matrix when used in Eq. (4).
1533
+ Appendix C: KVP emulator construction details
1534
+ For single channel scattering over a k × p momentum
1535
+ grid using the K matrix (det u = 1), Eq. (8) becomes
1536
+ ∆�Uij(θ) =
1537
+
1538
+ ¨
1539
+ 0
1540
+ dk dp k2p2�
1541
+ ψi(k)Vθ,j(k, p)ψj(p) + (i ↔ j)
1542
+
1543
+ ,
1544
+ (C1)
1545
+ with Vθ,j(k, p) defined as in Eq (9). We drop the super-
1546
+ scripts for the uncoupled case since s′ = s. Note that ψi
1547
+ is not complex conjugated. For the Gl¨ockle method, one
1548
+ would simply substitute Eq. (7) into Eq. (C1) and inter-
1549
+ polate the solutions to the integrals with the cubic spline
1550
+ polynomials Sk(k0). For the Standard method, the Dirac
1551
+ delta distribution is analytically integrated; thus we ob-
1552
+ tain the following expression for ∆�Uij
1553
+ ∆�Uij(θ) = Vθ,j(k0, k0) + 2
1554
+ π (I1
1555
+ ij + I2
1556
+ ij) + 4
1557
+ π2 I3
1558
+ ij + (i ↔ j),
1559
+ (C2)
1560
+ with I1
1561
+ ij, I2
1562
+ ij, and I3
1563
+ ij defined as
1564
+ I1
1565
+ ij = P
1566
+
1567
+ ˆ
1568
+ 0
1569
+ dk k2
1570
+ k0
1571
+ Ki(k0, k)
1572
+ k2 − k2
1573
+ 0
1574
+ Vθ,j(k, k0),
1575
+ (C3)
1576
+ I2
1577
+ ij = P
1578
+
1579
+ ˆ
1580
+ 0
1581
+ dp p2
1582
+ k0
1583
+ Vθ,j(k0, p)Kj(p, k0)
1584
+ p2 − k2
1585
+ 0
1586
+ ,
1587
+ (C4)
1588
+ I3
1589
+ ij = P
1590
+
1591
+ ¨
1592
+ 0
1593
+ dk dp k2p2
1594
+ k2
1595
+ 0
1596
+ Ki(k0, k)
1597
+ k2 − k2
1598
+ 0
1599
+ Vθ,j(k, p)Kj(p, k0)
1600
+ p2 − k2
1601
+ 0
1602
+ .
1603
+ (C5)
1604
+
1605
+ 12
1606
+ If V has an affine dependence on the parameters θ,
1607
+ applying Eq. (11) and Eq. (12) produces
1608
+ ∆�U 0
1609
+ ij =
1610
+
1611
+ ¨
1612
+ 0
1613
+ dk dp k2p2�
1614
+ ψi(k)V 0
1615
+ j (k, p)ψj(p) + (i ↔ j)
1616
+
1617
+ ,
1618
+ (C6)
1619
+ ∆ �U 1
1620
+ ij =
1621
+
1622
+ ¨
1623
+ 0
1624
+ dk dp k2p2�
1625
+ ψi(k)V 1(k, p)ψj(p) + (i ↔ j)
1626
+
1627
+ ,
1628
+ (C7)
1629
+ with
1630
+ V 0
1631
+ j (k, p) ≡ 2µk0
1632
+
1633
+ V 0(k, p) − Vj(k, p)
1634
+
1635
+ .
1636
+ (C8)
1637
+ For coupled-channel interactions (s′ ̸= s), the details
1638
+ of the emulation are more complex. In this case, we apply
1639
+ Eq. (4) to each individual channel in a partial-wave, but
1640
+ the real difference lies in how Eq. (5) is calculated. The
1641
+ usual way of solving for the phase shifts and mixing angle
1642
+ for the coupled channels involves building a 2 × 2 block
1643
+ matrix for the potential,
1644
+ V =
1645
+
1646
+ V 00 V 01
1647
+ V 10 V 11
1648
+
1649
+ .
1650
+ (C9)
1651
+ The same process can be applied to the emulator calcu-
1652
+ lation when calculating Eq. (5),
1653
+ ∆�U =
1654
+
1655
+ ∆�U 00 ∆�U 01
1656
+ ∆�U 10 ∆�U 11
1657
+
1658
+ .
1659
+ (C10)
1660
+ Each of the four blocks in ∆�U has a separate functional,
1661
+ although there are contributions from the different wave
1662
+ functions and potentials (e.g., for the 3S1–3D1 partial
1663
+ wave ∆�U 00 depends on the 3S1–3S1, 3S1–3D1, and 3D1–
1664
+ 3D1 wave functions and potentials).
1665
+ Additionally, Eq. (7) tells us that we can consider the
1666
+ momentum-space wave function for the individual chan-
1667
+ nels ψst. Using Eq. (8) with Eq. (9), the functionals for
1668
+ the individual channels in a coupled-channel calculation
1669
+ (using the 3S1–3D1 as an example) will be
1670
+ ∆�U ss′
1671
+ ij
1672
+ =
1673
+ ¨ ∞
1674
+ 0
1675
+ dk dp k2p2�
1676
+ ∆uss′
1677
+ ij + (i ↔ j)
1678
+
1679
+ ,
1680
+ (C11)
1681
+ with
1682
+ ∆u00
1683
+ ij = ψ00
1684
+ i (V 00
1685
+ θ,jψ00
1686
+ j + V 01
1687
+ θ,jψ10
1688
+ j )
1689
+ + ψ10
1690
+ i (V 10
1691
+ θ,jψ00
1692
+ j + V 11
1693
+ θ,jψ10
1694
+ j ),
1695
+ (C12)
1696
+ ∆u01
1697
+ ij = ψ00
1698
+ i (V 00
1699
+ θ,jψ01
1700
+ j + V 01
1701
+ θ,jψ11
1702
+ j )
1703
+ + ψ10
1704
+ i (V 10
1705
+ θ,jψ01
1706
+ j + V 11
1707
+ θ,jψ11
1708
+ j ),
1709
+ (C13)
1710
+ ∆u10
1711
+ ij = ψ01
1712
+ i (V 00
1713
+ θ,jψ00
1714
+ j + V 01
1715
+ θ,jψ10
1716
+ j )
1717
+ + ψ11
1718
+ i (V 10
1719
+ θ,jψ00
1720
+ j + V 11
1721
+ θ,jψ10
1722
+ j ),
1723
+ (C14)
1724
+ ∆u11
1725
+ ij = ψ01
1726
+ i (V 00
1727
+ θ,jψ01
1728
+ j + V 01
1729
+ θ,jψ11
1730
+ j )
1731
+ + ψ11
1732
+ i (V 10
1733
+ θ,jψ01
1734
+ j + V 11
1735
+ θ,jψ11
1736
+ j ),
1737
+ (C15)
1738
+ where we have suppressed the arguments for compact-
1739
+ ness.
1740
+ Note that the weights βi in Eq. (4) are differ-
1741
+ ent for each channel (i.e., ∆�U 00, ∆�U 11, and ∆�U 01 =
1742
+ ∆�U 10), and are determined independently of one an-
1743
+ other. Once Eqs. (C12) through (C15) are calculated,
1744
+ the steps for the uncoupled channel calculation are ap-
1745
+ plied to each ∆�U ss′
1746
+ ij
1747
+ to obtain the emulator prediction,
1748
+ in particular Eqs. (C2) through (C5), and the separation
1749
+ of ∆�U ss′(θ) into parameter-dependent and parameter-
1750
+ independent pieces as described by Eq. (12).
1751
+ Appendix D: Additional results
1752
+ FIG. 6.
1753
+ As in Fig. 3, but only emulating with the K ma-
1754
+ trix.
1755
+ The mesh-induced spikes have been removed for this
1756
+ calculation.
1757
+ Figure 6 shows the relative mean error for the total
1758
+ cross section using only the K matrix boundary condi-
1759
+ tion. Comparing to Fig. 3, where we apply the weighted
1760
+ sum (mixed) S approach, we see that for one bound-
1761
+ ary condition the relative mean error has Kohn anoma-
1762
+ lies (see Elab ≈ 270 MeV and ≈ 315 MeV for the stan-
1763
+ dard method and Elab ≈ 40 MeV and ≈ 130 MeV for
1764
+ the Gl¨ockle method) and a more spread-out error. From
1765
+ Fig. 8 and comparing to Fig. 3 and 6, we conclude that
1766
+ the mixed S approach is indeed successful in mitigating
1767
+ the Kohn anomalies.
1768
+ Figure 7 shows the relative mean error for the to-
1769
+ tal cross section with momentum cutoff 550 MeV. The
1770
+ weighted sum (mixed) S approach is used for the KVP
1771
+ emulator results. Here, the anomalies found in the NVP
1772
+ emulation are noticeable.
1773
+ Figure 8 shows the relative errors for the KVP emula-
1774
+ tors in the 1S0 channel. The figure on the left shows the
1775
+
1776
+ Standard
1777
+ Glockle
1778
+ NVP
1779
+ Error
1780
+ Mean Rel.
1781
+ 10-7
1782
+ mb
1783
+ 11
1784
+ 10
1785
+ Otot
1786
+ 0
1787
+ 100
1788
+ 200
1789
+ 300
1790
+ Eiab[MeV]
1791
+ 10
1792
+ 101001010101010101
1793
+ Simulator
1794
+ Emulator
1795
+ 000
1796
+ 101
1797
+ 100
1798
+ 0
1799
+ 200
1800
+ 300
1801
+ Eiab [MeV]13
1802
+ FIG. 7.
1803
+ As in Fig. 3, but for cutoff Λ = 550 MeV.
1804
+ relative error when emulating with the K−1 boundary
1805
+ condition and the one on the right shows the weighted
1806
+ sum (mixed) S errors. In the figure on the left we can
1807
+ see a spike around Elab ≈ 65 MeV, which disappears
1808
+ when using the weighted sum S approach.
1809
+ This is a
1810
+ clear example of the weighted sum S approach helping to
1811
+ mitigate these anomalies. Additionally, there are other
1812
+ smaller mesh-induced spikes (i.e., not anomalies) present
1813
+ throughout the energy grid in the figure on the left that
1814
+ are not in the figure on the right. These were mitigated
1815
+ by not allowing the k0 values to be close to any mo-
1816
+ mentum mesh points. See Sec. III for a more detailed
1817
+ description.
1818
+ Figures 9 through 12 show emulator results for the
1819
+ following spin observables:
1820
+
1821
+ dΩD = 1
1822
+ 2
1823
+
1824
+ |a|2 + |b|2 − |c|2 − |d|2 + |e|2 + |f|2�
1825
+ , (D1)
1826
+
1827
+ dΩA = − Re(a∗ b − e∗ f) sin(α + θ
1828
+ 2)
1829
+ + Re(c∗ d) sin(α − θ
1830
+ 2)
1831
+ − Im(b∗ e + a∗ f) cos(α + θ
1832
+ 2),
1833
+ (D2)
1834
+
1835
+ dΩAxx = Re(a∗ d) cos(θ) + Re(b∗ c) − Im(d∗ e) sin(θ),
1836
+ (D3)
1837
+
1838
+ dΩAyy = 1
1839
+ 2
1840
+
1841
+ |a|2 + |b|2 − |c|2 − |d|2 + |e|2 + |f|2�
1842
+ , (D4)
1843
+ where D is the depolarization parameter, A is the spin-
1844
+ flip amplitude, Axx and Ayy are the spin-correlation am-
1845
+ plitudes, and α a relativistic spin rotating angle that van-
1846
+ ishes in the non-relativistic case [8]. For identical parti-
1847
+ cles, f = 0. The results and conclusions are similar to
1848
+ those described in Sec. III C.
1849
+ Figure 13 shows emulator results for the total cross
1850
+ section for the N4LO+ SMS potential with momentum
1851
+ cutoff 550 MeV. The results and conclusions are similar
1852
+ to the ones described in the text for the 450 MeV mo-
1853
+ mentum cutoff (see Sec. III C).
1854
+ Figures 14 and 15 shows emulator results for the dif-
1855
+ ferential cross section and analyzing power Ay for the
1856
+ N4LO+ SMS potential with momentum cutoff 550 MeV.
1857
+ The results and conclusions are similar to the ones de-
1858
+ scribed in the text for the 450 MeV momentum cutoff
1859
+ (see Sec. III C). These results and conclusions also ex-
1860
+ tend down to momentum cutoff 400 MeV. The spin ob-
1861
+ servables at 500 MeV show larger errors on order of 10−7
1862
+ for the NVP emulator at particular energies, which may
1863
+ come from Kohn anomalies at one or more of the sam-
1864
+ pled parameter sets (see Fig. 7); nevertheless, the errors
1865
+ are still well below experimental uncertainties [47].
1866
+
1867
+ Standard
1868
+ Glockle
1869
+ NVP
1870
+ 010101010101
1871
+ Error
1872
+ Mean Rel.
1873
+ 10-
1874
+ mb
1875
+ 1
1876
+ 10
1877
+ Otot
1878
+ 0
1879
+ 100
1880
+ 200
1881
+ 300
1882
+ Eiab[MeV]
1883
+ 10
1884
+ Simulator
1885
+ Emulator
1886
+ 000
1887
+ 101
1888
+ 0
1889
+ 100
1890
+ 200
1891
+ 300
1892
+ Eiab [MeV]14
1893
+ FIG. 8. Relative error of the 1S0 channel for a basis size of nb = 2na + 1 for the N4LO+ SMS potential with Λ = 450 MeV
1894
+ as a function of the laboratory energy.
1895
+ The left panel shows the relative error for an emulator using the K−1 boundary
1896
+ condition. There is a Kohn anomaly at Elab ≈ 65 MeV for both the Standard and Gl¨ockle emulators and mesh-induced spikes
1897
+ present throughout the energy grid. The right panel shows the relative error for the mixed S-matrix approach presented by
1898
+ Reference [16] with care taken to avoid the k0 values that correspond with a mesh point as described in Sec. III B. When
1899
+ comparing both graphs, the Kohn anomaly is no longer present and the mesh-induced spikes are much smaller in the right
1900
+ panel.
1901
+
1902
+ Glockle
1903
+ Standard
1904
+ Mixed S
1905
+ emu.
1906
+ R
1907
+ Error
1908
+ 10°
1909
+ Rel
1910
+ 10-9
1911
+ 10-12
1912
+ LA
1913
+ 10-15
1914
+ 0
1915
+ 50
1916
+ 200 0
1917
+ 50
1918
+ 100
1919
+ 200
1920
+ 100
1921
+ 150
1922
+ 150
1923
+ Eiab [MeV]
1924
+ Eiab [MeV]15
1925
+ FIG. 9. As in Fig. 4, but for the depolarization D.
1926
+ FIG. 10. As in Fig. 4, but for the spin-flip amplitude A.
1927
+ FIG. 11. As in Fig. 4, but for the spin-correlation amplitude
1928
+ Axx.
1929
+ FIG. 12. As in Fig. 4, but for the spin-correlation amplitude
1930
+ Ayy.
1931
+
1932
+ 60 MeV
1933
+ 160 MeV
1934
+ 320 MeV
1935
+ 1.0
1936
+ 0.5
1937
+ 0.0
1938
+ -0.5
1939
+ Glockle/NVP/Standard
1940
+ Error
1941
+ Tean Rel.
1942
+ 10
1943
+ 0
1944
+ 50
1945
+ 100
1946
+ 150
1947
+ cm [deg]60 MeV
1948
+ 160 MeV
1949
+ 320 MeV
1950
+ 1.0
1951
+ 0.5
1952
+ 0.0
1953
+ -0.5
1954
+ Giockle/NVP/Standard
1955
+ Error
1956
+ Tean Rel.
1957
+ 10
1958
+ 10-
1959
+ 10-15
1960
+ 0
1961
+ 50
1962
+ 100
1963
+ 150
1964
+ Ocm [deg]60 MeV
1965
+ 160 MeV
1966
+ 320 MeV
1967
+ 0.5
1968
+ 0.0
1969
+ -0.5
1970
+ -1.0
1971
+ Glockle/NVP/Standard
1972
+ Error
1973
+ 10
1974
+ Tean Rel.
1975
+ 10
1976
+ 10-15
1977
+ 0
1978
+ 50
1979
+ 100
1980
+ 150
1981
+ Ocm [deg]60 MeV
1982
+ 160 MeV
1983
+ 320 MeV
1984
+ 1.0
1985
+ 0.5
1986
+ 0.0
1987
+ -0.5
1988
+ -1.0
1989
+ Glockle/NVP/Standard
1990
+ Error
1991
+ 10
1992
+ Rel.
1993
+ 10
1994
+ Mean
1995
+ 11
1996
+ 10°
1997
+ 0
1998
+ 50
1999
+ 100
2000
+ 150
2001
+ Ocm [deg]16
2002
+ FIG. 13.
2003
+ As in Fig. 3, but for cutoff Λ = 550 MeV.
2004
+ FIG. 14. As in Fig. 3, but for cutoff Λ = 550 MeV.
2005
+ FIG. 15. As in Fig. 3, but for cutoff Λ = 550 MeV.
2006
+
2007
+ Standard
2008
+ Glockle
2009
+ NVP
2010
+ Error
2011
+ Mean Rel.
2012
+ 10-
2013
+ mb
2014
+ Otot
2015
+ 0
2016
+ 100
2017
+ 200
2018
+ 300
2019
+ Eiab [MeV]
2020
+ 10
2021
+ 0101001010101010
2022
+ Simulator
2023
+ Emulator
2024
+ 000
2025
+ 101
2026
+ 100
2027
+ 0
2028
+ 200
2029
+ 300
2030
+ Eiab[MeV]60 MeV
2031
+ 160 MeV
2032
+ 320 MeV
2033
+ 15.0
2034
+ do/d2[mb/sr]
2035
+ 10.0
2036
+ 5.0
2037
+ 0.0
2038
+ Glockle/NVP/Standard
2039
+ Error
2040
+ Mean Rel.
2041
+ 10
2042
+ 10-15
2043
+ 0
2044
+ 50
2045
+ 100
2046
+ 150
2047
+ Ocm [deg]60 MeV
2048
+ 160 MeV
2049
+ 320 MeV
2050
+ 0.5
2051
+ 0.2
2052
+ 9
2053
+ 0.0
2054
+ -0.2
2055
+ Glockle/NVP/Standard
2056
+ Error
2057
+ 3
2058
+ 10°
2059
+ Tean Rel.
2060
+ 10
2061
+ 10-
2062
+ 10-15
2063
+ 0
2064
+ 50
2065
+ 100
2066
+ 150
2067
+ Ocm [deg]17
2068
+ [1] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Mod-
2069
+ ern Theory of Nuclear Forces, Rev. Mod. Phys. 81, 1773
2070
+ (2009), arXiv:0811.1338.
2071
+ [2] R. Machleidt and D. R. Entem, Chiral effective field
2072
+ theory and nuclear forces, Phys. Rept. 503, 1 (2011),
2073
+ arXiv:1105.2919.
2074
+ [3] H.-W. Hammer, S. K¨onig, and U. van Kolck, Nuclear
2075
+ effective field theory: status and perspectives, Rev. Mod.
2076
+ Phys. 92, 025004 (2020), arXiv:1906.12122.
2077
+ [4] E.
2078
+ Epelbaum,
2079
+ H.
2080
+ Krebs,
2081
+ and
2082
+ P.
2083
+ Reinert,
2084
+ High-
2085
+ precision nuclear forces from chiral EFT: State-of-the-
2086
+ art, challenges and outlook, Front. Phys. 8, 98 (2020),
2087
+ arXiv:1911.11875.
2088
+ [5] R.
2089
+ J.
2090
+ Furnstahl,
2091
+ N.
2092
+ Klco,
2093
+ D.
2094
+ R.
2095
+ Phillips,
2096
+ and
2097
+ S. Wesolowski, Quantifying truncation errors in effec-
2098
+ tive field theory, Phys. Rev. C 92, 024005 (2015),
2099
+ arXiv:1506.01343.
2100
+ [6] J. A. Melendez, S. Wesolowski, and R. J. Furnstahl,
2101
+ Bayesian truncation errors in chiral effective field theory:
2102
+ nucleon-nucleon observables, Phys. Rev. C 96, 024003
2103
+ (2017), arXiv:1704.03308.
2104
+ [7] J. A. Melendez, R. J. Furnstahl, D. R. Phillips, M. T.
2105
+ Pratola, and S. Wesolowski, Quantifying Correlated
2106
+ Truncation Errors in Effective Field Theory, Phys. Rev.
2107
+ C 100, 044001 (2019), arXiv:1904.10581.
2108
+ [8] J. Melendez, Effective Field Theory Truncation Errors
2109
+ and Why They Matter, Ph.D. thesis, Ohio State U.
2110
+ (2020).
2111
+ [9] D. Higdon, J. D. McDonnell, N. Schunck, J. Sarich, and
2112
+ S. M. Wild, A Bayesian Approach for Parameter Estima-
2113
+ tion and Prediction using a Computationally Intensive
2114
+ Model, J. Phys. G 42, 034009 (2015), arXiv:1407.3017.
2115
+ [10] S. Wesolowski, R. J. Furnstahl, J. A. Melendez, and D. R.
2116
+ Phillips, Exploring Bayesian parameter estimation for
2117
+ chiral effective field theory using nucleon–nucleon phase
2118
+ shifts, J. Phys. G 46, 045102 (2019), arXiv:1808.08211.
2119
+ [11] D. R. Phillips, R. J. Furnstahl, U. Heinz, T. Maiti,
2120
+ W. Nazarewicz, F. M. Nunes, M. Plumlee, M. T. Pra-
2121
+ tola, S. Pratt, F. G. Viens, and S. M. Wild, Get on the
2122
+ BAND Wagon: A Bayesian Framework for Quantifying
2123
+ Model Uncertainties in Nuclear Dynamics, J. Phys. G 48,
2124
+ 072001 (2021), arXiv:2012.07704 [nucl-th].
2125
+ [12] J. A. Melendez, R. J. Furnstahl, H. W. Grießhammer,
2126
+ J. A. McGovern, D. R. Phillips, and M. T. Pratola, De-
2127
+ signing Optimal Experiments: An Application to Pro-
2128
+ ton Compton Scattering, Eur. Phys. J. A 57, 81 (2021),
2129
+ arXiv:2004.11307 [nucl-th].
2130
+ [13] I. Svensson, A. Ekstr¨om, and C. Forss´en, Bayesian esti-
2131
+ mation of the low-energy constants up to fourth order in
2132
+ the nucleon-nucleon sector of chiral effective field theory,
2133
+ (2022), arXiv:2206.08250 [nucl-th].
2134
+ [14] C. Drischler and X. Zhang, Few-body emulators based on
2135
+ eigenvector continuation, in Nuclear Forces for Precision
2136
+ Nuclear Physics: A Collection of Perspectives, Vol. 63,
2137
+ edited by I. Tews, Z. Davoudi, A. Ekstr¨om, and J. D.
2138
+ Holt (2022) Chap. 8, pp. 29–36, arXiv:2202.01105.
2139
+ [15] R. J. Furnstahl, A. J. Garcia, P. J. Millican, and
2140
+ X. Zhang, Efficient emulators for scattering using eigen-
2141
+ vector continuation, Phys. Lett. B 809, 135719 (2020),
2142
+ arXiv:2007.03635 [nucl-th].
2143
+ [16] C. Drischler, M. Quinonez, P. G. Giuliani, A. E. Lovell,
2144
+ and F. M. Nunes, Toward emulating nuclear reactions us-
2145
+ ing eigenvector continuation, Phys. Lett. B 823, 136777
2146
+ (2021), arXiv:2108.08269 [nucl-th].
2147
+ [17] J. Melendez, C. Drischler, A. Garcia, R. Furnstahl, and
2148
+ X. Zhang, Fast & accurate emulation of two-body scat-
2149
+ tering observables without wave functions, Phys. Lett. B
2150
+ 821, 136608 (2021).
2151
+ [18] L. S. Bastos and A. O’Hagan, Diagnostics for Gaussian
2152
+ Process Emulators, Technometrics 51, 425 (2009).
2153
+ [19] J. A. Melendez, C. Drischler, R. J. Furnstahl, A. J.
2154
+ Garcia, and X. Zhang, Model reduction methods for
2155
+ nuclear
2156
+ emulators,
2157
+ J.
2158
+ Phys.
2159
+ G
2160
+ 49,
2161
+ 102001
2162
+ (2022),
2163
+ arXiv:2203.05528 [nucl-th].
2164
+ [20] E. Bonilla, P. Giuliani, K. Godbey, and D. Lee, Training
2165
+ and projecting: A reduced basis method emulator for
2166
+ many-body physics, Phys. Rev. C 106, 054322 (2022),
2167
+ arXiv:2203.05284 [nucl-th].
2168
+ [21] C. Drischler, J. A. Melendez, R. J. Furnstahl, A. J. Gar-
2169
+ cia, and X. Zhang, BUQEYE Guide to Projection-Based
2170
+ Emulators in Nuclear Physics (2022) arXiv:2212.04912
2171
+ [nucl-th].
2172
+ [22] BUQEYE collaboration, (2022), https://github.com/
2173
+ buqeye/frontiers-emulator-review.
2174
+ [23] D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj,
2175
+ Eigenvector continuation with subspace learning, Phys.
2176
+ Rev. Lett. 121, 032501 (2018), arXiv:1711.07090.
2177
+ [24] S.
2178
+ K¨onig,
2179
+ A.
2180
+ Ekstr¨om,
2181
+ K.
2182
+ Hebeler,
2183
+ D.
2184
+ Lee,
2185
+ and
2186
+ A. Schwenk, Eigenvector Continuation as an Efficient and
2187
+ Accurate Emulator for Uncertainty Quantification, Phys.
2188
+ Lett. B 810, 135814 (2020), arXiv:1909.08446 [nucl-th].
2189
+ [25] W. Kohn, Variational Methods in Nuclear Collision Prob-
2190
+ lems, Phys. Rev. 74, 1763 (1948).
2191
+ [26] J. R. Taylor, Scattering Theory: The Quantum Theory
2192
+ of Nonrelativistic Collisions (Dover, 2006).
2193
+ [27] X. Zhang and R. J. Furnstahl, Fast emulation of quantum
2194
+ three-body scattering, Phys. Rev. C 105, 064004 (2021),
2195
+ arXiv:2110.04269 [nucl-th].
2196
+ [28] R. G. Newton, Scattering theory of waves and particles
2197
+ (Dover, 2002).
2198
+ [29] C. Schwartz, Electron scattering from hydrogen, Phys.
2199
+ Rev. 124, 1468 (1961).
2200
+ [30] R. Nesbet, Variational methods in electron-atom scat-
2201
+ tering theory, Physics of atoms and molecules (Plenum
2202
+ Press, 1980).
2203
+ [31] BUQEYE
2204
+ collaboration,
2205
+ (2022),
2206
+ https://buqeye.
2207
+ github.io/software/.
2208
+ [32] R. R. Lucchese, Anomalous singularities in the complex
2209
+ kohn variational principle of quantum scattering theory,
2210
+ Phys. Rev. A 40, 6879 (1989).
2211
+ [33] M.
2212
+ A.
2213
+ Morrison
2214
+ and
2215
+ A.
2216
+ N.
2217
+ Feldt,
2218
+ Through
2219
+ scat-
2220
+ tering theory with gun and camera:
2221
+ Coping with
2222
+ conventions
2223
+ in
2224
+ collision
2225
+ theory,
2226
+ Am.
2227
+ J.
2228
+ Phys.
2229
+ 75,
2230
+ https://doi.org/10.1119/1.2358156 (2007).
2231
+ [34] M. Kamimura, Chapter V. A Coupled Channel Varia-
2232
+ tional Method for Microscopic Study of Reactions be-
2233
+ tween Complex Nuclei, Progress of Theoretical Physics
2234
+ Supplement 62, 236 (1977).
2235
+ [35] V. G. J. Stoks and J. J. de Swart, The Magnetic moment
2236
+ interaction in nucleon-nucleon phase shift analyses, Phys.
2237
+ Rev. C42, 1235 (1990).
2238
+
2239
+ 18
2240
+ [36] M. I. Haftel and F. Tabakin, Nuclear saturation and the
2241
+ smoothness of nucleon-nucleon potentials, Nucl. Phys. A
2242
+ 158, 1 (1970).
2243
+ [37] P. Reinert,
2244
+ H. Krebs, and E. Epelbaum, Semilocal
2245
+ momentum-space regularized chiral two-nucleon poten-
2246
+ tials up to fifth order, Eur. Phys. J. A 54, 86 (2018),
2247
+ arXiv:1711.08821.
2248
+ [38] R. H. Landau, Quantum Mechanics II, 2nd ed. (John
2249
+ Wiley & Sons, Inc., New York, 1996).
2250
+ [39] W. Gl¨ockle, G. Hasberg, and A. R. Neghabian, Numerical
2251
+ treatment of few body equations in momentum space by
2252
+ the spline method, Z. Phys. A-Hadron Nucl. 305, 217
2253
+ (1982).
2254
+ [40] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
2255
+ mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-
2256
+ lor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
2257
+ M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R´ıo,
2258
+ M. Wiebe, P. Peterson, P. G´erard-Marchant, K. Shep-
2259
+ pard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
2260
+ and T. E. Oliphant, Array programming with NumPy,
2261
+ Nature 585, 357 (2020).
2262
+ [41] M. Viviani, A. Kievsky, and S. Rosati, The Kohn vari-
2263
+ ational principle for elastic proton deuteron scattering
2264
+ above deuteron breakup threshold, Few Body Syst. 30,
2265
+ 39 (2001), arXiv:nucl-th/0102048.
2266
+ [42] B. D. Carlsson, A. Ekstr¨om, C. Forss´en, D. F. Str¨omberg,
2267
+ G. R. Jansen, O. Lilja, M. Lindby, B. A. Mattsson, and
2268
+ K. A. Wendt, Uncertainty analysis and order-by-order
2269
+ optimization of chiral nuclear interactions, Phys. Rev. X
2270
+ 6, 011019 (2016), arXiv:1506.02466.
2271
+ [43] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester,
2272
+ and J. J. de Swart, Partial-wave analysis of all nucleon-
2273
+ nucleon scattering data below 350 mev, Phys. Rev. C 48,
2274
+ 792 (1993).
2275
+ [44] J. Bystricky, F. Lehar, and P. Winternitz, Formalism
2276
+ of Nucleon-Nucleon Elastic Scattering Experiments, J.
2277
+ Phys.(France) 39, 1 (1978).
2278
+ [45] P. La France and P. Winternitz, Scattering formalism
2279
+ for nonidentical spinor particles, Journal de Physique 41,
2280
+ 1391 (1980).
2281
+ [46] M. J. Moravcsik, J. Pauschenwein, and G. R. Gold-
2282
+ stein, Amplitude systems for spin-1/2 particles, Journal
2283
+ de Physique 50, 1167 (1989).
2284
+ [47] R. Navarro P´erez, J. E. Amaro, and E. Ruiz Arriola,
2285
+ Partial Wave Analysis of Nucleon-Nucleon Scattering be-
2286
+ low pion production threshold, Phys. Rev. C 88, 024002
2287
+ (2013), [Erratum:
2288
+ Phys. Rev. C 88, 069902 (2013)],
2289
+ arXiv:1304.0895.
2290
+ [48] Bayesian Analysis of Nuclear Dynamics (BAND) Frame-
2291
+ work project (2020) https://bandframework.github.
2292
+ io/.
2293
+
9dE4T4oBgHgl3EQfdwwo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFIT4oBgHgl3EQf-iyR/content/tmp_files/2301.11411v1.pdf.txt ADDED
@@ -0,0 +1,1626 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Anisotropic Electron Heating in an Electron Cyclotron Resonance
2
+ Thruster with Magnetic Nozzle
3
+ J. Porto,1, 2 P.Q. Elias,1 and A. Ciardi2
4
+ 1)Physics - Instrumentation and Space Department, ONERA/DPHY, Université Paris Saclay
5
+ F-91123 Palaiseau – France.
6
+ 2)Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, CNRS UMR 8112
7
+ 75005 Paris – France.
8
+ (*Electronic mail: [email protected])
9
+ (*Electronic mail: [email protected])
10
+ (Dated: 30 January 2023)
11
+ In a grid-less Electron Cyclotron Resonance (ECR) plasma thruster with a diverging magnetic nozzle, the magnitude
12
+ of the ambipolar field accelerating the positive ions depends of the perpendicular energy gained by the electrons. This
13
+ work investigates the heating of the electrons by electromagnetic waves, taking their bouncing motion into account in
14
+ a confining well formed by the magnetic mirror force and the electrostatic potential of the thruster. An electromagnetic
15
+ Particle-In-Cell (PIC) code is used to simulate the plasma in a magnetic field tube. The code’s Maxwell solver is based
16
+ on a semi-Lagrangian scheme known as the Constrained Interpolation Profile (CIP) which enables larger time steps.
17
+ The results show that anisotropic plasma heating takes place exclusively inside the coaxial chamber, along a Doppler-
18
+ broadened zone. It is also shown that a trapped population of electrons with a larger perpendicular energy exists in the
19
+ plume.
20
+ I.
21
+ INTRODUCTION
22
+ Electric thrusters play a fundamental role in the field of
23
+ space propulsion. Their main advantage lies in an efficient
24
+ use of the propellant mass, and therefore a reduced consump-
25
+ tion of propellant. Hall Effect Thrusters or Gridded Ion En-
26
+ gines are examples of the most well-known and flight-proven
27
+ technologies in the current propulsion market nowadays. Both
28
+ technologies eject an ion beam which is subsequently neutral-
29
+ ized to prevent the spacecraft from charging. Several compo-
30
+ nents of these technologies, such as the acceleration grid or
31
+ the neutralizer, are subject to erosion and wear and for this
32
+ reason, meeting the challenging lifetime targets requires care-
33
+ ful optimization and demanding testing1. The complexity of
34
+ some of the components has driven the investigation of al-
35
+ ternative concepts of propulsion devices that require neither
36
+ a grid nor a neutralizer. The Electron Cyclotron Resonance
37
+ (ECR) plasma thruster2,3 is one of these concepts and it is the
38
+ subject of the present study.
39
+ The ECR plasma thruster consists of a semi-open chamber
40
+ where a quasi-neutral plasma is heated by electron cyclotron
41
+ resonant microwaves at 2.45GHz, and accelerated by a mag-
42
+ netic nozzle. This concept was first proposed in the 1960s in
43
+ the works of Miller et al. 4 and Nagatomo 5, then further de-
44
+ veloped by Sercel 6. These studies used a prototype with a
45
+ wave-guide structure to couple the microwaves to the plasma.
46
+ Their results showed that it was possible to achieve specific
47
+ impulses and thrust values high enough to be of interest for
48
+ space propulsion applications6. Nonetheless, the inefficiency,
49
+ size and weight of the micro-wave sources and electromag-
50
+ nets at that time led to a stagnation of the research on ECR
51
+ thrusters for several years. Interest for this technology arose
52
+ again recently with experimental works7,8. In particular, the
53
+ use of coaxial microwave coupling structures and compact
54
+ rare-earth permanent magnets were instrumental in designing
55
+ compact sources (a schematic of the design is shown in Fig.
56
+ 1a).
57
+ More experimental and theoretical efforts has since been
58
+ made in order to get a deeper understanding of the phys-
59
+ ical phenomena governing the plasma heating and acceler-
60
+ ation in the thruster. Experimental characterizations of the
61
+ plasma properties have been carried out using different mea-
62
+ surement techniques such as Langmuir and Faraday probes,
63
+ Laser Induced Fluorescence diagnostics, diamagnetic loops
64
+ and thrust balances2,9–12. Unfortunately, most of the exper-
65
+ imental studies so far have been limited to survey the plasma
66
+ outside the thruster coaxial chamber.
67
+ Recently, a resonant
68
+ probe was developed to measure an electron density of about
69
+ 1×1011 cm−3 at the source exit plane, close to the coaxial
70
+ chamber13. In the source, it is likely that the plasma density is
71
+ higher (∼ 1×1012 cm−3) with electron temperatures of a few
72
+ tens of eV.
73
+ From a theoretical point of view, as a first step, global
74
+ models describing the energy balance in the plasma source
75
+ were proposed as a means to obtain the key parameters of
76
+ the thruster14,15.
77
+ While this approach yielded good agree-
78
+ ment with measured electron temperature at high mass flow
79
+ rate or high pressure, they failed at the lower mass-flow rate
80
+ where the thruster achieves its best performance. Indeed, the
81
+ assumptions of uniform electron temperature and isotropic
82
+ Maxwellian electron distribution are too crude approxima-
83
+ tions when collisionality decreases and the electron mean free
84
+ path becomes much larger than the source length: in that range
85
+ non-local effects become prevalent, as electrons undergo a
86
+ bouncing motion along the magnetic field line. Those elec-
87
+ trons which cross the ECR surface can gain energy depending
88
+ on their phase in the gyromotion16, which leads to a strong
89
+ anisotropy of the distribution function. An attempt to account
90
+ for this stochastic heating in the plasma was made by consid-
91
+ ering the electron heating as a random walk in phase space17.
92
+ arXiv:2301.11411v1 [physics.plasm-ph] 26 Jan 2023
93
+
94
+ 2
95
+ While this model provided a qualitative agreement with the
96
+ measured ion energies, it could not account for the plasma
97
+ feedback on the waves (assumed constant) and the collisions
98
+ along the bouncing motion. Recently Sánchez-Villar et al. 18
99
+ performed 2D axisymmetric simulations of the thruster with
100
+ a hybrid model consisting of particle-in-cell (PIC) ions and a
101
+ fluid model for the mass-less electrons. One of the main find-
102
+ ings of this study was the identification of different regions in
103
+ the source where the waves are either propagating or evanes-
104
+ cent, with most of the power absorption taking place close to
105
+ the inner conductor, near the ECR surface. By acting as a
106
+ sink for the plasma, the inner conductor induces a decrease
107
+ of the plasma density in its vicinity, enabling the propaga-
108
+ tion of electromagnetic waves downstream of the ECR sur-
109
+ face. These features lead to the formation of a hot electron
110
+ beam close to the inner conductor, with a colder plasma in the
111
+ bulk of the source. While these 2D results provided important
112
+ insights on the operation of the thruster, some assumptions
113
+ of the fluid model limit the validity of the results obtained
114
+ from these simulations. The most important one being the
115
+ assumption of isotropic electron temperature which excludes
116
+ anisotropic heating in the directions parallel and perpendicu-
117
+ lar to the magnetostatic field.
118
+ This latter point is still an open question for this technology.
119
+ Indeed, ECR heating is expected to lead to anisotropic heating
120
+ of the electron translation modes. This difference affects the
121
+ power losses near the source walls and the potential drop in
122
+ the magnetic nozzle19. However, most of the electron temper-
123
+ ature measurements performed in the thruster plume did not
124
+ differentiate perpendicular and parallel electron temperature
125
+ (with respect to the local magnetic field direction). A way to
126
+ measure the electron temperature anisotropy is, for example,
127
+ incoherent Thomson scattering20, but this type of measure-
128
+ ment is not presently available in the ECR source. At any
129
+ rate, this heating is intimately linked to the absorption of the
130
+ electromagnetic waves in the coaxial source.
131
+ Another issue is the non-local transport due to the bounc-
132
+ ing magnetized electrons in the nozzle (the electron mean free
133
+ path is greater than the source radius). In particular, the pro-
134
+ duction and the heating of the electrons are not necessarily at
135
+ the same location.
136
+ While gaining a better understanding of these issues should
137
+ firstly rely on experimental measurements, the challenges as-
138
+ sociated with such an investigation are a strong incentive to
139
+ use numerical models, even if simplified, to investigate the
140
+ main physical processes at play in ECR thrusters.
141
+ In par-
142
+ ticular, such a model should be able to account for the self-
143
+ consistent wave absorption and the anistropic heating, as well
144
+ as the non-local effects and bouncing motion of the parti-
145
+ cles. Electromagnetic kinetic models, such as Particle-In-Cell
146
+ (PIC) or Vlasov methods, are natural candidates for this task.
147
+ There are currently a few works using kinetic simulations of
148
+ propulsion devices exploiting the ECR phenomenon, however
149
+ the majority of these developments are concerned with grid-
150
+ ded ion thrusters with ECR heating21–24, where the plasma
151
+ acceleration is achieved by a grid-imposed electric field and
152
+ not the plasma expansion in the magnetic nozzle, as in our
153
+ design. Takao et al. 23 successfully modelled a gridded ion
154
+ thruster where the ions are produced in an ECR source at 4.2
155
+ GHz. The authors used a Particle-In-Cell (PIC) code consid-
156
+ ering the microwave electric field as a temporal modulation
157
+ of its initial amplitude obtained by simulating the microwave
158
+ propagation without plasma. Therefore, in this approach the
159
+ plasma feedback on the wave was considered negligible.
160
+ The main purpose of the our study is to perform full-PIC
161
+ electromagnetic simulations of the plasma in the thruster, tak-
162
+ ing into account the plasma feedback on the wave propaga-
163
+ tion, and to investigate the heating and confinement of the
164
+ electrons.
165
+ For this purpose it is necessary to simulate the
166
+ microwave propagation and its interaction with the charged
167
+ particles in the source and the nozzle region. However, due
168
+ to the complexity and computational cost of simulating a full
169
+ 3D configuration (which should include the nozzle region),
170
+ we restrict our investigation to the simplified case of an iso-
171
+ lated magnetic flux tube. This approximation effectively re-
172
+ stricts the phase space to 4 dimensions (1 dimension in space,
173
+ 3 dimensions in velocity space), and a 1D3V electromagnetic
174
+ Particle-In-Cell can be used to model the ECR thruster.
175
+ We show that the electron heating takes place over a
176
+ broad region in the thruster source and leads to a signifi-
177
+ cant anisotropy (ratio Te⊥/Te∥ ∈ [2.5,7.5]). The perpendicular
178
+ electron temperature reaches a first maximum in the source
179
+ and, surprisingly, has a second maximum in the downstream
180
+ region. The explanation for these features lies in the confine-
181
+ ment of electrons in the potential well formed by the com-
182
+ bination of the diverging magnetic field and the electrostatic
183
+ potential.
184
+ II.
185
+ NUMERICAL MODEL
186
+ A.
187
+ The Quasi-One-Dimensional Approach
188
+ In the coaxial ECR thruster, an axially magnetized cylindri-
189
+ cal permanent magnet creates a diverging static magnetic field
190
+ BMS in the source and in the plume region12,14. This shape
191
+ for the magnetostatic field was chosen to ensure a magnetic
192
+ confinement at the close end of the coaxial chamber (called
193
+ backplate in Fig. 1) while allowing the electrons to get accel-
194
+ erated in the plume thanks to the divergence of the magnetic
195
+ field lines.
196
+ In fact, the ECR uses a diverging magnetic field whose
197
+ magnitude decreases from approximately 100 mT at the back
198
+ of the source to around 5 mT 10 cm downstream of the thruster
199
+ exit plane. Under these conditions, assuming an electron tem-
200
+ perature around Te ≃ 10eV, the Larmor radius of the elec-
201
+ trons is between rL ≃ 0.07mm − 1.4mm. Thus electrons are
202
+ strongly magnetized in the source and in the near-field plume
203
+ region, while ions remain mostly unmagnetized. As a conse-
204
+ quence, before the onset of plasma detachment, electrons and
205
+ ions are bound to the magnetic field tube. Several mechanisms
206
+ may account for the plasma detachment25 : collisions, stretch-
207
+ ing of the magnetic field lines, electron demagnetization and
208
+ plume instabilities. While it is out of the scope of this work to
209
+ study the dominant mechanisms, several recent works have in-
210
+ vestigated some of these effect in 2D PIC simulations26–28.In
211
+
212
+ 3
213
+ (a)
214
+ (b)
215
+ FIG. 1: ECR thruster: (a) Schematic view of the coaxial
216
+ source. The magnetic field lines are shown in red. The
217
+ dashed surface corresponds to the flux tube (b) Schematic
218
+ view flux tube used for the quasi-1D model. The exit plane of
219
+ the coaxial source of length LS is represented by the dashed
220
+ line. The end of the computational domain is reached at
221
+ x = L. The axial magnetic profile and tube cross section
222
+ along the axis are shown in red and blue, respectively.
223
+ this work, we decided to rely on experimental evidence to de-
224
+ fine the section of the nozzle where the plasma remains bound
225
+ to the field lines. Recently, Little and Choueiri 29 have mapped
226
+ the plasma potential in a magnetic nozzle to show that a good
227
+ criterion for detachment is χp = rL/L∇B ≃ 0.1, where rL is the
228
+ electron Larmor radius and L∇B = (∇B/B)−1 is the character-
229
+ istic length scale of the magnetic field gradient. In the region
230
+ of the nozzle where χp = rL/L∇B < 0.1, the plasma remains
231
+ attached to the magnetic field. In our case, we considered a
232
+ magnetic field with L∇B ≃ 5 − 10cm. Under this condition,
233
+ we have χp < 0.1 up to L = 10cm downstream of the nozzle,
234
+ and it is a reasonable assumption to consider that electrons do
235
+ not detach from the magnetic field tube over this distance.
236
+ As a consequence of this assumption, we decided to con-
237
+ sider the creation and formation of the plasma enclosed in a
238
+ magnetic field tube of length L = 10cm. More precisely, a
239
+ portion of the thruster chamber and plume was represented
240
+ by a quasi-1D model of a magnetic field tube with a varying
241
+ cross-sectional area, as seen in Fig. 1b. There are several ex-
242
+ amples of the use of quasi-1D models in the space propulsion
243
+ field. Niewood and Martinez-Sanchez 30 used it to model a
244
+ Magnetoplasmadynamic thruster, while De Giorgi and Fonta-
245
+ narosa 31 studied a Vaporizing Liquid Microthruster with this
246
+ approach. Recently, Saini and Ganesh 32 also used this ap-
247
+ proach to model plasma expansion in a Radio-Frequency
248
+ thruster. The moderate computational cost of a 1D3V model
249
+ of the thruster facilitates the analysis of the plasma behavior in
250
+ both the coaxial chamber and in the magnetic nozzle, and im-
251
+ portantly, taking into account the nozzle is critical to resolve
252
+ the bouncing motion of the electrons.
253
+ The quasi-1D model assumes that the electrons and the ions
254
+ are confined within a diverging magnetic flux tube, whose area
255
+ is related to the axial magnetic field intensity through the con-
256
+ servation of the magnetic flux:
257
+ A(x)Bx(x) = A0B0
258
+ (1)
259
+ The model further assumes that the electromagnetic fields and
260
+ all the plasma properties are constant across the section of the
261
+ flux tube. For the ECR thruster under consideration12,14, the
262
+ shape of the magnetic field lines close to the antenna is well
263
+ approximated by an exponential function. For the sake of sim-
264
+ plicity we approximated the magnetic field as:
265
+ Bx(x) = B0 exp
266
+
267
+ − x
268
+ LB
269
+
270
+ (2)
271
+ In addition, we considered cylindrical symmetry for the static
272
+ magnetic field around the field tube centerline.
273
+ These assumptions mean that the particles guiding centers
274
+ remain on the centerline. Since the plasma is assumed uni-
275
+ form in the cross section, this approach does not allow the
276
+ formation of a diamagnetic current and E ×B drifts.
277
+ From now on, the term parallel and the subscript ∥ will
278
+ refer to the direction parallel to the magnetostatic field lines.
279
+ Similarly, perpendicular and the subscript ⊥ refer to the direc-
280
+ tion perpendicular to the magnetostatic field lines. The source
281
+ region, which corresponds to the coaxial cavity in Fig. 1b,
282
+ was defined by 0 ≤ x ≤ LS, where LS is the coaxial source
283
+ length. The plume region, which corresponds to the plasma
284
+ expansion in vacuum, was defined by x ≥ LS.
285
+ B.
286
+ Particle-In-Cell Code overview
287
+ The simulations were carried out with the Particle-In-Cell
288
+ (PIC) code Rhei, which was developed to simulate low pres-
289
+ sure cold plasmas and is adapted to parallel architectures. It
290
+
291
+ 4
292
+ can be run with either a pure MPI or a hybrid MPI/OpenMp
293
+ parallelization. The code integrates a Monte-Carlo Collision
294
+ (MCC) module to simulate the collisions between the charged
295
+ particles and a prescribed neutral background. At each it-
296
+ eration, once the electrostatic and the electromagnetic fields
297
+ were computed, the position of each macro particle labeled
298
+ “p” was updated using dxp/dt = vp, and the velocity using
299
+ Eq. 3. Each macro-particle represents W physical particles.
300
+ The value of W used in the simulation is given in table I.
301
+ ms
302
+ dvp
303
+ dt = qs
304
+
305
+ EESp +EEMp +vp ×
306
+
307
+ BMSp +BEMp
308
+ ��
309
+ (3)
310
+ In Eq. 3, qs is the charge of the particle, ms the mass, xp
311
+ the position, and vp the velocity. Regarding the fields, they
312
+ were computed at the location of the particle p using linear
313
+ interpolation function, where EESp is electrostatic field from
314
+ the charge distribution, BMSp is magnetostatic field from the
315
+ permanent magnets and EEMp and BEMp are electromagnetic
316
+ fields produced by the microwave source and by the plasma
317
+ itself.
318
+ The equations of motion were integrated using the leap-frog
319
+ method and the Boris scheme to get the v × B rotation from
320
+ the Lorentz force33. Details of the integration in the context
321
+ of the quasi-1D model are provided in appendix A. Particle
322
+ quantities were projected on a uniform grid using linear shape
323
+ functions.
324
+ The Rhei code development follows a test-driven approach
325
+ to ensure the robustness and the maintainability of the code
326
+ over time. Additionally, several test cases were run as a val-
327
+ idation of the code. The first elementary test was the simu-
328
+ lation of a magnetic bottle. The simulation domain, with a
329
+ converging-diverging parabolic magnetic field, was uniformly
330
+ loaded with a Maxwellian electron population. At the end of
331
+ the simulation the electron distribution in velocity space v∥,v⊥
332
+ was plotted to verify that the loss cone angle is coherent with
333
+ the expected theoretical value arcsin
334
+ ��
335
+ B0/BMax
336
+
337
+ . The sec-
338
+ ond elementary test concerned the electromagnetic modes in
339
+ a one-dimensional magnetized plasma. The simulation do-
340
+ main was initialized with a uniform Maxwellian distribution
341
+ of electrons and cold ions. The random fluctuations excited
342
+ the modes of the plasma. The resulting dispersion curves were
343
+ obtained by computing the discrete 2D Fourier transform of
344
+ the electric fields during the simulation. This was compared
345
+ to the expected theoretical description of the extraordinary and
346
+ the ordinary wave. Finally, the third test case was the classi-
347
+ cal capacitively coupled discharge in Helium, which verified
348
+ in particular the collision module34.
349
+ 1.
350
+ Collisions
351
+ The Monte-Carlo Collision module used the Null Collision
352
+ technique35 to speed-up the computation of the collisions by
353
+ removing the velocity dependency of the total collision cross-
354
+ section. Assuming Np collision processes defined by their re-
355
+ spective cross sections σi(v),i = 1..Np, a null collision cross-
356
+ section is defined as σ0(v) such that:
357
+ σ0(v) = max
358
+ v≥0
359
+ � Np
360
+
361
+ i=1
362
+ σi(v)
363
+
364
+
365
+ Np
366
+
367
+ i=1
368
+ σi(v)
369
+ (4)
370
+ A first test over all the particles of species s found the
371
+ fraction of particles which undergo a collision with the back-
372
+ ground. In that case the total cross section σT = ∑i=0 Npσi(v)
373
+ (including the null collision process) did not depend on the
374
+ velocity (thus avoiding a costly interpolation to get the cross
375
+ section for all the particles). Then a second test among those
376
+ selected particles computed all the collision cross sections
377
+ for their given relative velocity and determined which cross
378
+ section to use (including the null collision). When this test
379
+ pointed to the null-collision cross section, then the particle
380
+ did not experience an actual collision and was left unchanged.
381
+ When the test pointed to another cross section, the the parti-
382
+ cles experienced a collision.
383
+ For the collisions of electrons with Xenon neutrals, we con-
384
+ sidered a simplified set of three processes: elastic, ionization,
385
+ and excitation. Excitation processes were lumped into a single
386
+ process. Electron impact ionization and excitation were taken
387
+ from the Morgan (Kinema Research & Software) database,
388
+ while the total elastic scattering is from Ref. 36. For all elec-
389
+ tronic processes, we assumed an isotropic scattering of the rel-
390
+ ative velocity vector between the electron and the target dur-
391
+ ing the collision. For the ionization collisions, the kinetic en-
392
+ ergy of the projectile electron was equally split (after subtract-
393
+ ing the threshold energy) between the secondaries. For the
394
+ collisions of Xenon ions with Xenon neutrals, we considered
395
+ isotropic scattering and backscattering34. Ion cross sections
396
+ comes from Ref. 37. All electronic and ionic processes con-
397
+ served momentum and total energy (kinetic plus internal). In
398
+ order to start with a simplified description simulating weakly
399
+ ionized plasmas, in which the collisions with the neutral par-
400
+ ticles are the dominant process, Coulomb collisions were not
401
+ considered in the code. Indeed, the electron-ion collision fre-
402
+ quency νei, for Maxwellian electrons, is given by:
403
+ νei = ωp
404
+ Λei
405
+ lnΛei
406
+ (5)
407
+ Here, ωp is the plasma frequency and lnΛ is the Coulomb log-
408
+ arithm. For the typical simulation conditions in the thruster
409
+ source, as it will be shown below, the maximum plasma den-
410
+ sity was ne ∼ 1×1011 cm−3, the electron temperature was
411
+ Te ∼ 10eV and the electron-neutral elastic collision frequency
412
+ was νen ∼ 1×107 s−1.
413
+ This gave lnΛ ∼ 12 − 15, ωp ∼
414
+ 1.8×1010 rads−1. Consequently, the maximum electron-ion
415
+ collision frequency was νei ∼ 1×105 s−1, much less than the
416
+ the electron-neutral collision frequency νen.
417
+ The neutral gas in the thruster is injected at the backplate
418
+ (see Fig. 1a) and expands in the source resulting in a decreas-
419
+ ing density. Since there is no measurement of the neutral gas
420
+ density profile in the thruster, and to avoid a costly particle
421
+ simulation of the neutral particles, we modelled this expansion
422
+ heuristically by assuming that the neutral background density
423
+
424
+ 5
425
+ followed an exponential profile:
426
+ nn(x) = nn0 exp
427
+
428
+ − x
429
+ Ln
430
+
431
+ (6)
432
+ where nn0 is the maximum density of neutrals found at the
433
+ close end of the source, and Ln is the neutrals density char-
434
+ acteristic length. The assumption of a time-independent neu-
435
+ tral gas density profile means that the simulation did not con-
436
+ serve the total mass, momentum and energy. In addition, it
437
+ means that the neutral gas depletion due to ionizing collisions
438
+ was not considered. However, both of those limitations are
439
+ acceptable in the frame of this work which does not seek to
440
+ compute the total thrust and energy balance but is concerned
441
+ with the particle heating and trapping. To estimate the neutral
442
+ depletion we note that the ion removal is driven by their ve-
443
+ locity (at most 10kms−1), while the neutral removal is driven
444
+ by their thermal speed, ∼ 200ms−1. From mass balance, the
445
+ neutral inflow is balanced by the ion flux and the neutral out-
446
+ flow. Using the characteristic speeds and the typical parame-
447
+ ters for the gas density ng ∼ 1×1014 cm−3, and plasma den-
448
+ sity nmax
449
+ e
450
+ ∼ 3×1011 cm−3, gives a neutral depletion of at most
451
+ 10%, indicating that the assumption of a static background
452
+ remained consistent with the assumed density profile.
453
+ 2.
454
+ Fields solvers
455
+ The Rhei code solved the Poisson equation to compute the
456
+ electrostatic space potential Φ and the electric field (EES =
457
+ Exx) using Eq.
458
+ 7 where the charge density is ρs.
459
+ The
460
+ solver implements a second order finite difference discretiza-
461
+ tion and the resulting linear system is inverted using an itera-
462
+ tive method (GMRES)38.
463
+ ∇2Φ(x,t) = −ρs(x,t)
464
+ ε
465
+ (7)
466
+ In addition, an electromagnetic solver computed the fields
467
+ produced by the microwave source and by the plasma itself:
468
+ EEM = Eyy + Ezz and BEM = Byy + Bzz.
469
+ This solver was
470
+ based on the Constrained Interpolation Profile (CIP) method
471
+ explained in detail in Ref. 39. This method considers not
472
+ only the electromagnetic fields but also their spatial deriva-
473
+ tives, therefore suppressing instabilities and providing lower
474
+ numerical dispersion even when using coarse grids and large
475
+ time steps40. The use of this method is a novel solution for a
476
+ PIC code since most of the electromagnetic solvers are based
477
+ on conventional approaches like the finite-difference time-
478
+ domain method (FDTD). It was shown that it provides higher
479
+ accuracy than the latter under the condition of identical cell
480
+ size41.
481
+ The CIP method is a semi-Lagrangian scheme that
482
+ circumvents the Courant-Friedrichs-Lewy (CFL) stability
483
+ condition42,43, i.e., (u∆t/∆x) < 1 where u is the magnitude
484
+ of the velocity, ∆t is the time-step, and ∆x the length inter-
485
+ val. This feature allows computations with CFL values ≥ 1.0,
486
+ as can be seen in Ref.
487
+ 44 and 45 where the authors per-
488
+ formed simulations using a CFL value of 2.6 in a Cartesian
489
+ coordinate system. The gain in computational time, that is
490
+ afforded by using high CFL values, is a key factor that en-
491
+ ables the self-consistent kinetic simulations presented here to
492
+ reach steady-state. In this paper, CFL values close to 3 were
493
+ used for the simulations. As a check, simulations were also
494
+ run with CFL=0.6 and compared to the results obtained with
495
+ larger time steps. The results were identical to the one at larger
496
+ time-steps, within small variations due to the noise inherent to
497
+ the statistical nature of the PIC simulations.
498
+ Finally, the CIP scheme does not necessarily maintain the
499
+ divergence-free condition for the dynamic field BEM. How-
500
+ ever, BEM is smaller than the magnetostatic field (which has
501
+ divergence equal to zero by construction, see appendix A) by
502
+ several orders of magnitude, over the whole computational do-
503
+ main. Therefore, the resulting error on the total divergence
504
+ was considered to be negligible.
505
+ 3.
506
+ Boundary conditions
507
+ As it was shown in Fig. 1b when describing the model, the
508
+ domain goes from x = 0 at the left side which corresponds
509
+ to the backplate and the microwave input, to the right-end at
510
+ x = L, as discussed in II A.
511
+ Electrostatic: At the right end of the computational do-
512
+ main x = L, we imposed a Dirichlet boundary condition, with
513
+ Φ(L) = 0, to simulate the presence of a grounded vacuum
514
+ chamber wall. The dielectric backplate, at x = 0, is in con-
515
+ tact with the plasma and therefore its surface voltage ΦBP is
516
+ changed by the collection of charged particles. This can be
517
+ modeled as a capacitor. Hence, the evolution of ΦBP is given
518
+ by ∆ΦBP = ∆Q/(C∆t), where ∆Q is the charge deposited at
519
+ the backplate at each time step, and C is an equivalent ca-
520
+ pacitance under the assumption that the backplate is in con-
521
+ tact with a grounded conductor.
522
+ This capacitance is com-
523
+ puted by considering that the backplate is a plane capacitor,
524
+ its value is of a few picoFarads. Changing its magnitude mod-
525
+ ifies the charging rate of the backplate and thus the transient
526
+ phase of the computation. However, its does not affect the
527
+ steady-state voltage of the backplate. This approach guaran-
528
+ tees that at steady-state, the ion flux equates the electron flux
529
+ on the backplate. In principle the steady-state value of the
530
+ backplate potential is also affected by other processes such as
531
+ secondary electron emission or charge migration. However,
532
+ for this study, these processes were neglected.
533
+ Electromagnetic: In the coaxial ECR thruster, the mi-
534
+ crowaves are injected as Transverse Electro-Magnetic (TEM)
535
+ mode. For this 1D simulation, the TEM mode can be seen
536
+ as a linearly polarized wave, where the radial component of
537
+ the electric field is along the transverse y axis, the azimuthal
538
+ magnetic field defines the z axis and the wavevector direction
539
+ is along the longitudinal x axis. Therefore, the microwaves
540
+ were injected at the backplate as a propagating wave with a
541
+ linear polarization along the y-axis. The incident wave was
542
+ parametrized by its power per unit area Pin and its frequency
543
+ fEM = ω/2π. The electric fields from the injected linearly
544
+ polarized wave were computed as Ey = √µcPin sin(ωt) and
545
+ Ez = 0.
546
+
547
+ 6
548
+ The injected microwave input power per unit area Pin could
549
+ be fixed, or it could be adapted to keep a roughly constant pre-
550
+ defined number of particles Ntarget during the transient phase.
551
+ This feature was intended to speed up the simulations by re-
552
+ producing a faster plasma response to a given variation in the
553
+ simulation’s parameters. The value of Pin can be regulated
554
+ with an attenuation factor α ≤ 1 varying with the number of
555
+ particles in the domain: α = exp(−Nparticles/Ntarget). A run
556
+ performed without this regulation confirmed that it did not
557
+ have an effect on the final steady state but only on the duration
558
+ of the transient phase.
559
+ Particles: We imposed a loss condition at both ends of the
560
+ domain, for both ions and electrons. Particles crossing these
561
+ boundaries are suppressed from the simulation. As a simpli-
562
+ fying assumption, secondary emission processes on the back-
563
+ plate were not considered in this first approach.
564
+ 4.
565
+ Cross field diffusion loss model
566
+ Electron cross-field diffusion is an important mechanism to
567
+ model to get a more accurate representation of the discharge
568
+ loss mechanisms. Previous works using PIC codes for elec-
569
+ tric thrusters took it into account as wall losses by artificially
570
+ increasing the collision rate or by using a profile of the cross
571
+ field diffusion based on empirical evidence46,47. The electron
572
+ balance equation is:
573
+ ∂ne(r,t)
574
+ ∂t
575
+ +∇⊥ ·neu⊥ +∇∥ ·neu∥ = kionne(r,t)
576
+ (8)
577
+ Where u⊥ and u∥ are the electron macroscopic velocity per-
578
+ pendicular and parallel to the local magnetic field, respec-
579
+ tively, and kion is the ionization rate.
580
+ For our 1D3V simulations, the transport along the magnetic
581
+ field is taken into account by the kinetic model. However, the
582
+ perpendicular transport cannot be modeled with a 1D model.
583
+ Therefore we simulated the particle losses into the coaxial
584
+ chamber walls using a phenomenological, Monte Carlo loss
585
+ model, as shown in Fig. 1b. The probability of an electron im-
586
+ pacting the walls of the coaxial chamber was calculated from
587
+ the diffusion equation of electrons across the magnetic field
588
+ based on the assumption that their number density profile in
589
+ the radial direction was independent of time and axial posi-
590
+ tion. In a cylindrical coordinate system it can be expressed
591
+ as the product ne(x,r,t) = ne0(x,t)g(r). The balance equation
592
+ (for a constant diffusion coefficient D) integrated over the ra-
593
+ dius of the flux tube rmax was then given by:
594
+ ∂ne0(x,t)
595
+ ∂t
596
+ + ∂ne0(x,t)ux(x,t)
597
+ ∂x
598
+ = −νLne0(x,t)+kionne0(x,t)
599
+ (9)
600
+ With the loss frequency given by:
601
+ νL = −rmax
602
+ g′(rmax)
603
+ S
604
+ D
605
+ (10)
606
+ Where rmax is the radius of the flux tube, and the weighted
607
+ cross section S is given by:
608
+ S =
609
+ � rmax
610
+ 0
611
+ rg(r)dr
612
+ and
613
+ (11)
614
+ A first choice for the diffusion coefficient D would be a co-
615
+ efficient based on classical diffusion obtained from theories on
616
+ standard electron-neutral collisions. It can be seen in Eq. 12
617
+ where τ = 1/ν is the collision period with the neutral back-
618
+ ground. However, the electron mobility tends to be higher
619
+ than the value predicted by this classical diffusion approach48.
620
+ The cause of this discrepancy is an active area of research in
621
+ the electric propulsion field49,50. As a consequence, we de-
622
+ cided to use the Bohm coefficient, which is a phenomenologi-
623
+ cal coefficient accounting for the anomalous cross-field diffu-
624
+ sion.
625
+ DBohm = 1
626
+ 16
627
+ kBTe
628
+ eB
629
+ or
630
+ Dclassical =
631
+ ωcτ
632
+ 1+(ωcτ)2
633
+ kBTe
634
+ eB
635
+ (12)
636
+ The probability for a given particle to be lost between t and
637
+ t + ∆t is given by pL = νL∆t. In our quasi-1D model, the
638
+ flux conservation relates the magnetostatic field to the cross-
639
+ sectional area of the magnetic field tube as shown in Eq. 1.
640
+ In this work we assumed g(r) = J0(k0r/rmax), with k0 the first
641
+ zero of the Bessel function. Then Eq. 10 has the form νL ∝
642
+ k2
643
+ 0/r2
644
+ maxD. Since D ∝ B−1 and in the model BS = Bπr2
645
+ max is a
646
+ constant, the loss probability does not depend on the position
647
+ along the flux tube and is given by:
648
+ pL(x) = 2
649
+ 3
650
+ π
651
+ 16k2
652
+ 0
653
+ �1
654
+ 2m⟨v(x)2⟩
655
+
656
+ dt
657
+ eA0B0
658
+ (13)
659
+ Where ∆t is the time step, m⟨v(x)2⟩/2 is the electron’s mean
660
+ kinetic energy, and A0 = A(0) is the cross-section of the mag-
661
+ netic field tube at x = 0. The losses are computed at each
662
+ time-step. For all electrons in the source (such as x ≤ LS, LS
663
+ being the length of the coaxial chamber as shown in Fig. 1b),
664
+ the probability pL is computed using equation 13. A random
665
+ number x is drawn from a uniform distribution. If x ≤ pL, the
666
+ electron and a neighboring ion are removed from the simula-
667
+ tion.
668
+ C.
669
+ Simulation Setup
670
+ The electron dynamics and the electromagnetic solver were
671
+ updated every iteration. For these one-dimensional calcula-
672
+ tions the real Xenon mass for the ions was used and to speed
673
+ up the calculations a subcycling was used so the ion’s position
674
+ and velocity that were updated every 10 time steps as given by
675
+ ∆tions in Table I. The collisions were also computed every 10
676
+ time steps as given by ∆tcoll. The charged particle’s population
677
+ was seeded using a uniform density distribution (N ∼ 103).
678
+ The electron’s initial energy along each of the x-y-z axis was
679
+ set to Te = 20eV, while ions were assumed cold Ti = 0.03eV.
680
+ These values were intended to reproduce a non-equilibrium
681
+ plasma at low density. The choice of the initial electron tem-
682
+ perature Te = 20eV is somewhat arbitrary. Checks run with
683
+ several energy values between 10 eV and 30 eV showed no
684
+ impact of the initial electron energy on the final characteristic
685
+ of the steady state. To sustain the plasma at the beginning,
686
+ a plasma source located at 2 mm from the backplate injected
687
+ electrons at 3×105 ms−1 and ions at 3×102 ms−1 during the
688
+
689
+ 7
690
+ first 150 ns of the simulation. These velocities were specified
691
+ along each of the x-y-z axis. Here the idea was to sustain the
692
+ initial plasma long enough for the ionization to pick up and
693
+ the plasma density to grow. The conditions for the simulation
694
+ presented below are shown in table I. With this choice of mag-
695
+ netic field profile, the resonance condition fEM = eB/2πm
696
+ was met at x = 6.7mm.
697
+ TABLE I: Simulation parameters for the electromagnetic full
698
+ PIC simulations using the quasi-one-dimensional model.
699
+ Parameter
700
+ Description
701
+ Value
702
+ ∆t
703
+ Time step
704
+ 1.6 ps
705
+ ∆x
706
+ Mesh spacing
707
+ 167 µm
708
+ C
709
+ CFL condition
710
+ 2.87
711
+ fEM
712
+ Microwave frequency
713
+ 2.45 GHz
714
+ LS
715
+ Coaxial chamber length
716
+ 20 mm
717
+ xECR
718
+ ECR surface position
719
+ 6.7 mm
720
+ W
721
+ Weight for the charged particles
722
+ 2×105
723
+ LD
724
+ Computational domain length
725
+ 100 mm
726
+ nn0
727
+ Maximum number density of neutrals
728
+ 8×1019m−3
729
+ Ln
730
+ Neutral density characteristic length
731
+ 1.0 cm
732
+ AL
733
+ Cross-sectional area for the loss module
734
+ 1cm2
735
+ ∆tions
736
+ Time step to push the ions
737
+ 10∆t
738
+ ∆tcoll
739
+ Time step for collisions
740
+ 10∆t
741
+ The simulation was run until it reached a steady state, usu-
742
+ ally after around 30µs which represents between 5 to 8 ion
743
+ transit times. The definition of this steady state was done by
744
+ following up the variation of the total number of particles in
745
+ the domain, its mean kinetic energy, and the particle flux at
746
+ the backplate and the plume since an equal number of ions
747
+ and electrons must be impacting both surfaces, as shown in
748
+ Fig. 2. At the end of the simulation, when the steady state
749
+ was reached, the plasma properties were obtained by calcu-
750
+ lating the time average for each parameter over several time
751
+ steps. Overall, the wall time of the simulation was 44 hours,
752
+ with 12 OpenMP threads.
753
+ III.
754
+ RESULTS
755
+ Figure 3 shows the steady-state plasma potential distribu-
756
+ tion over the whole computational domain. Except for slight
757
+ random fluctuations on the instantaneous potential, no large
758
+ scale fluctuations were observed. Time-averaging improved
759
+ the signal to noise ratio but did not blur the shape of the pro-
760
+ file. The backplate reached a positive steady state potential
761
+ of around 70V. The peak of the plasma potential was 105V,
762
+ and it was reached at around 3 mm, interestingly not at the
763
+ ECR surface (indicated with a vertical dashed line). Indeed,
764
+ the shapes of the plasma density and potential are driven by
765
+ the ionization rate. For this simulation, the ionization rate
766
+ was monotonically decreasing, because the background den-
767
+ sity decrease was faster than the ionization rate increase due
768
+ to the plasma heating. As a consequence, the maximum ion-
769
+ ization was upstream of the ECR surface. This peak in the
770
+ plasma potential formed a barrier. As a result, ions collected
771
+ FIG. 2: Time evolution of simulation quantities. Top frame :
772
+ total number of macro-particles (ions and electrons) in the
773
+ simulation. Middle frame : Mean kinetic energy of the
774
+ electrons. Bottom frame : particle fluxes at the boundaries
775
+ (backplate and outlet) and particle source and sink terms in
776
+ the whole computational domain. The volume loss gives the
777
+ average number of particle lost per timestep due to the Bohm
778
+ loss model. For the steady-state analysis, the particles
779
+ quantities are sampled after t = 30µs
780
+ on the backplate were necessarily created in a region where
781
+ x ≤ 3mm, while ions collected downstream were created in
782
+ a region where x ≥ 3mm and accelerated into the nozzle
783
+ by the ambipolar electric field. Sheaths were formed at the
784
+ backplate and the vacuum chamber wall. The plasma sheath
785
+ width on the backplate was ∼ 0.1mm. At the downstream
786
+ end x = L of the domain, as shown by Fig. 4, the plasma
787
+ sheath began at around 90 mm. This size was consistent with
788
+ a Debye length λD ∼ 1 − 5mm for a plasma density around
789
+ 1×108 cm−3. The electron and ion peak number density was
790
+ 1.12×1011 cm−3 at x = 1.5mm. Recall that the ECR condi-
791
+ tion is met at x = 6.7mm.
792
+ In Fig. 5 we plotted the electron’s mean kinetic energy in
793
+ both the axial (e∥) and the perpendicular (e⊥) direction as a
794
+ function of the axial position on the domain. First, we ob-
795
+ served that the mean parallel kinetic energy remained nearly
796
+ constant, around 4−5eV, over the whole simulation domain.
797
+
798
+ e losses
799
+ backplate
800
+ ionization rate
801
+ outlet
802
+ Electrons
803
+ Ions8
804
+ FIG. 3: Plasma potential. The vertical dashed line indicates
805
+ the ECR surface location. The horizontal dashed line shows
806
+ the backplate potential ΦBP. The two colored zones delineate
807
+ the regions where the plasma potential is above (∆Φ >> 0 or
808
+ below (∆Φ < 0) the backplate potential.
809
+ FIG. 4: Electron (solid) and ion (dashed) number densities.
810
+ The dashed line indicates the ECR surface location.
811
+ The perpendicular energy was higher than the parallel com-
812
+ ponent, which underlined the anisotropic heating of the elec-
813
+ trons in this thruster. More precisely, the mean perpendicular
814
+ kinetic energy e⊥ reached a first peak at around x = 9mm and
815
+ then decreased before reaching a global maximum of 25 eV at
816
+ x = 45mm. After this point, e⊥ decreased until the end of the
817
+ simulation domain. Over the whole simulation domain, the
818
+ anisotropy ratio Te,⊥/Te,∥ was found to vary between 2.5 and
819
+ 7.5. Given that the ECR heating increases the perpendicular
820
+ energy of the electrons, it was expected to see an anisotropic
821
+ behavior depending on the direction parallel or perpendicular
822
+ to the magnetic field lines. However, the second broad en-
823
+ FIG. 5: Electron’s mean kinetic energies: e∥ longitudinal
824
+ (blue line) and e⊥ perpendicular (red line) directions. The
825
+ location of the ECR surface is shown by the dashed line.
826
+ ergy peak in the downstream part of the magnetic nozzle was
827
+ puzzling. To get a better understanding of these feature, it
828
+ was necessary to evaluate the energy deposition by the elec-
829
+ tromagnetic field.
830
+ A.
831
+ Electromagnetic Energy deposition in the source
832
+ To understand how the field energy was transferred to the
833
+ particles, we considered the energy balance equation, includ-
834
+ ing the Poynting flux (its derivation is provided in appendix
835
+ B).
836
+ ∂εEM +ε
837
+ ∂t
838
+ +∇·(Q+Π) = Scoll
839
+ (14)
840
+ In this equation, ε and εEM stands for the electron kinetic en-
841
+ ergy density and the electromagnetic energy density, respec-
842
+ tively. Q and Π are the kinetic energy flux and electromag-
843
+ netic energy flux; Scoll, whose expression is given in Eq. B4,
844
+ is the volume power loss term due to the collisions and the
845
+ diffusion. This latter term account for the energy lost by elas-
846
+ tic and inelastic collisions with the neutral background and by
847
+ the particles removed by the loss model. Since we were inter-
848
+ ested in the steady state regime, and considering that the field
849
+ quantities depend on x only, this was further simplified to:
850
+ 1
851
+ A
852
+
853
+ ∂xA(Qe +Qi +Π) = Se,coll +Si,coll
854
+ (15)
855
+ where we separated the time-averaged total energy flux into a
856
+ kinetic contribution due to the electrons Qe , the ions Qi and
857
+ the electromagnetic contribution Π. The kinetic energy flux of
858
+ the electron was further separated into a flux of parallel energy
859
+ Qe,∥ and perpendicular energy Qe,⊥ (see appendix B).
860
+ To quantify the magnitude and direction of the energy ex-
861
+ changes between the electromagnetic field and the particles,
862
+ the different terms of Eq. 15 were evaluated. To do so, the
863
+ particles and field quantities were sampled in the steady state
864
+ phase (after t = 30µs, see fig. 2). First, particles were sorted
865
+ in 120 spatial bins equally spaced along the axial direction. In
866
+
867
+ △Φ<0
868
+ △Φ>0ell
869
+ el9
870
+ each bin, the moments of particle distribution provided the to-
871
+ tal energy flux Qe and Qi, as detailed in appendix B. Second,
872
+ the cross product of the electric and magnetic field provided
873
+ the axial component of the Poynting vector. This vector was
874
+ time-averaged over a period corresponding to an integer num-
875
+ ber of wave periods.
876
+ FIG. 6: Energy source terms of eq. 15 along the axial
877
+ direction. The location of the ECR surface is shown by the
878
+ dashed line.
879
+ FIG. 7: Perpendicular and parallel energy source terms for
880
+ the electrons along the axial direction. The location of the
881
+ ECR surface is shown by the vertical dashed line.
882
+ The results, plotted in Fig.
883
+ 6, showed first that the en-
884
+ ergy source terms are negligible in the plume region (x ≥
885
+ 20mm) compared to the source region (x < 20mm). In the
886
+ plume region, the magnitude of the source terms is below
887
+ 1×104 Wm−3. For that magnitude, the signal is dominated
888
+ by the statistical noise of the PIC simulation.
889
+ This noise
890
+ drowns the finer features of the source terms, especially for
891
+ the electrons which are more prone to statistical noise. Never-
892
+ theless, this underlines that most of the energy exchanges take
893
+ place in the source region and cannot explain the secondary
894
+ peak for mean perpendicular kinetic energy e⊥ observed in
895
+ the plume region (Fig. 5).
896
+ Second, the collision source term is negative over the whole
897
+ source region. Its magnitude is maximum near the backplate,
898
+ where the neutral and plasma densities are higher, and de-
899
+ creases along the source axis. This behaviour is not unex-
900
+ pected, since this term lumps together the contribution of in-
901
+ elastic collisions and the diffusion model: these two processes
902
+ are loss mechanisms for the plasma. Given that the plasma
903
+ density and the neutral gas density decrease as we move away
904
+ from the backplate, the collision frequency drops and the mag-
905
+ nitude of the energy loss decreases.
906
+ Third, the sign and magnitude of the source terms reveal
907
+ different phenomena. For x ≤ 3mm, the terms linked to the
908
+ Poynting vector are positive, while the source term due to the
909
+ electron energy flux is negative. This indicates an energy con-
910
+ version from the electron kinetic energy to the field energy. In
911
+ parallel, the ion source term is positive, which points to a gain
912
+ of energy in the sheath. For the 3mm < x ≤ 10mm range,
913
+ the Poynting source term shows a negative peak, while the
914
+ source term due to the electron energy flux is positive, with
915
+ a peak centered on the ECR surface location. In that case,
916
+ there is a transfer of energy from the field to the electrons.
917
+ This latter feature corresponds to the ECR heating of the per-
918
+ pendicular energy mode of the electrons. In fact, this appears
919
+ when considering the parallel and perpendicular contributions
920
+ to the source term in Fig. 7. The perpendicular source term
921
+ dominates over the parallel source term, with a peak centered
922
+ on the ECR surface. The axial extent of this peak shows that
923
+ the perpendicular mode of the electrons is heated in a zone of
924
+ about ∆xECR ≈ 6mm, i.e., from x = 3mm to x = 9mm. Con-
925
+ sidering that the ECR condition is only met on a specific sur-
926
+ face, the presence of an extended region may seem surprising.
927
+ However, as will be discussed later, most of the electrons in
928
+ the magnetic field tube are confined and undergo a bouncing
929
+ motion in the potential well formed by the electrostatic field
930
+ and the magnetic mirror force. These bouncing electrons can
931
+ cross the resonance surface with a significant parallel velocity,
932
+ thus one may expect a shift of the resonance condition due to
933
+ the Doppler effect. The width ∆xECR can be compared with
934
+ the expected value for a Doppler broadened resonance ∆xD in
935
+ Eq. 1651.
936
+ ∆xD =
937
+
938
+
939
+
940
+
941
+ 2πv∥
942
+ ωc
943
+ BMS
944
+ ���
945
+ ∂BMS
946
+ ∂x
947
+ ���
948
+ (16)
949
+ Using
950
+ the
951
+ electrons’
952
+ mean
953
+ axial
954
+ velocity
955
+ v∥
956
+ is
957
+ 1.1×106 ms−1 we obtain ∆xD = 4.7mm.
958
+ However, as
959
+ it will be shown later in Fig. 8, there is a high dispersion
960
+ for the values of v∥. Therefore, we can expect a much larger
961
+ Doppler broadening for the fastest electrons. The electrons’
962
+ axial velocity can reach values up to 3.0×106 ms−1 around
963
+ the ECR zone. With this velocity, we can compute a max-
964
+ imum Doppler broadening of 7.8mm, which means that
965
+ 4.8mm < ∆xD < 7.8mm. The ECR heating zone obtained in
966
+ the simulations is consistent with the one expected analyti-
967
+ cally, indicating that the Doppler effect is a good candidate to
968
+ explain the width of the heating zone observed in Fig. 6.
969
+
970
+ 1
971
+ AQ
972
+ Ao x
973
+ 1
974
+ AQi
975
+ Ao x
976
+ 1
977
+ AII
978
+ Ao
979
+ X
980
+ S
981
+ coll0
982
+ AQe.ll
983
+ Ao x
984
+ 1 0
985
+ AQe,1
986
+ Ao x
987
+ A(Qe. lI +Qe,↓)10
988
+ Because of Doppler-broadening, ECR heating of the elec-
989
+ trons can even occur when the ECR surface is outside the
990
+ plasma source. Indeed, the fact that the plasma in the thruster
991
+ can be sustained even with an ECR zone outside the coax-
992
+ ial chamber was demonstrated experimentally by Vialis 52,
993
+ where the location of the resonance surface was placed at x =
994
+ −0.17mm and x = −0.77mm. Doppler broadening is a pos-
995
+ sible explanation to this finding and this hypothesis was tested
996
+ in simulations using the same parameters described in Table
997
+ I but with an input microwave frequency of fEM = 2.9GHz.
998
+ It was possible to sustain a discharge for this frequency even
999
+ though the ECR condition was meet at x = −1.78mm (i.e.,
1000
+ upstream of the plasma source).
1001
+ In summary, the analysis of the power deposition shows that
1002
+ the energy transfer occurs mainly in the source region. The
1003
+ electrons absorb the wave energy over a Doppler-broadened
1004
+ volume. This energy goes preferentially to the perpendicu-
1005
+ lar energy mode and leads to an anisotropy ratio Te,⊥/Te,∥ ∈
1006
+ [2.5,7.5]. This energy deposition from the field to the perpen-
1007
+ dicular energy mode can explain the first peak in perpendicu-
1008
+ lar energy seen in Fig. 5. However, the source terms are neg-
1009
+ ligible in the plume region and thus cannot explain the broad
1010
+ peak observed in this region.
1011
+ B.
1012
+ Electron confinement in the magnetic nozzle
1013
+ To determine the factors driving the evolution of the mean
1014
+ electron energy, we considered the electron distribution in the
1015
+ nozzle region. In Fig. 8 we plotted the normalized electron
1016
+ distribution in the velocity space v∥,v⊥ plane. The distribution
1017
+ was plotted at different locations in the computational domain.
1018
+ The results in Fig. 8 show that as we move downstream into
1019
+ the nozzle, we see an increased electron population with high
1020
+ energies in the perpendicular direction. To understand this
1021
+ phenomenon, we must first get a more detailed description of
1022
+ the electron confinement, i.e., how they get trapped and under
1023
+ which conditions they can leave the thruster.
1024
+ Three loss pathways are identified for the electrons pro-
1025
+ duced in the source.
1026
+ 1. Cross field losses : electrons can diffuse across the mag-
1027
+ netic field, due to anomalous transport, collision, etc.
1028
+ This is modeled by the phenomenological cross-field
1029
+ diffusion model presented in section II B 4.
1030
+ 2. Losses at the downstream of the nozzle electrons which
1031
+ have a kinetic energy sufficient to overcome the confin-
1032
+ ing potential well are lost, alongside ions accelerated by
1033
+ this same potential drop.
1034
+ 3. Electrons than can overcome both the repelling poten-
1035
+ tial of the plasma sheath at the close-end of the source
1036
+ and the mirror-force are collected on the dielectric plate
1037
+ and will contribute to its surface charge.
1038
+ While the first loss mechanism does not depend on the ki-
1039
+ netic energy of a single electron but rather on the mean kinetic
1040
+ energy at a given location, the two other mechanisms depend
1041
+ on the electron kinetic energy. An electron moving along the
1042
+ magnetic field will see both an electrostatic potential Φ (Fig.
1043
+ 3) and the magnetostatic field B. Depending on its initial ki-
1044
+ netic and potential energies, its trajectory might have turning
1045
+ points (where v∥ = 0) within the domain, or out of the domain.
1046
+ In the first case, this electron is confined in the potential well.
1047
+ In the latter case, the electron is lost, either downstream (loss
1048
+ pathway 2) or at the backplate (loss pathway 3). Now the lim-
1049
+ iting case between confined / unconfined electrons is when the
1050
+ turning points are located at the boundaries. This will define
1051
+ the necessary conditions for the electrons confinement. Let
1052
+ us note ΦBP the potential of the backplate. Neglecting the
1053
+ plasma-wave interaction, and noting µ the magnetic moment,
1054
+ the equation for the total energy of an electron is:
1055
+ Etotal = 1
1056
+ 2mv2
1057
+ ∥ + µB−eΦ
1058
+ (17)
1059
+ From Eq. 17 we can say that the electron is oscillating in
1060
+ an effective potential given by Uef f = µB − eΦ, where µB
1061
+ represents the magnetic confinement as the electron moves
1062
+ towards the backplate while −eΦ is the electrostatic confine-
1063
+ ment given by the plasma potential. It can be seen in Fig. 9 for
1064
+ different arbitrary values of the magnetic moment taken from
1065
+ the results of the simulation. Its concave shape explains the
1066
+ confinement of the electrons in the ECR thruster inside this
1067
+ potential well.
1068
+ Let us now consider an electron moving from an arbitrary
1069
+ initial point to a turning point at a position x0 along the longi-
1070
+ tudinal direction, such that v∥(x0) = 0. The energy conserva-
1071
+ tion between any initial location and the turning point gives:
1072
+ v2
1073
+ ∥ +v2
1074
+
1075
+
1076
+ 1− Bx0
1077
+ B
1078
+
1079
+ = −2e
1080
+ m ∆Φ
1081
+ (18)
1082
+ Where ∆Φ = Φx0 − Φ. Now let us consider the loss path-
1083
+ ways 2 and 3 identified above.
1084
+ For an electron lost to the downstream boundary (pathway
1085
+ 2), the confinement condition is obtained by setting x0 = L. In
1086
+ that case, given the divergence of the magnetic field, we have
1087
+ 0 < 1−B(L)/B < 1 and ∆Φ < 0. Thus equation 18 describes
1088
+ an ellipse in the v∥ − v⊥ plane. Electrons in the ellipse have
1089
+ there turning points x0 ≤ L and remain confined by the elec-
1090
+ trostatic well. Electrons out of the ellipse can overcome this
1091
+ electrostatic confinement and are lost downstream.
1092
+ For an electron lost to the backplate (pathway 3), the con-
1093
+ finement condition is obtained by setting x0 = 0. Because the
1094
+ magnetic field is monotonically decreasing, 1 − B(0)/B < 0.
1095
+ In addition, Φ(0) = ΦBP. We define the loss cone angle as:
1096
+ sin(θ) =
1097
+
1098
+ B
1099
+ B(0)
1100
+ (19)
1101
+ Equation 18 can be recast as:
1102
+ v2
1103
+ ⊥ = tan2(θ)
1104
+
1105
+ v2
1106
+ ∥ + 2e
1107
+ m ∆Φ
1108
+
1109
+ (20)
1110
+ Depending on the sign of ∆Φ, three cases are possible:
1111
+
1112
+ 11
1113
+ (a)
1114
+ (b)
1115
+ (c)
1116
+ FIG. 8: Electrons distribution in the velocity space v∥,v⊥
1117
+ plane at different locations on the simulation domain. The
1118
+ number of electrons has been normalized by the total number
1119
+ of electrons for each case independently. For each case, we
1120
+ also plotted what we call the confinement boundaries
1121
+ described by an analytical model (Eq. 19 and 20). The dotted
1122
+ line is the magnetic confinement, the dashed line the
1123
+ electrostatic potential at the backplate, and the solid line is
1124
+ the electrostatic confinement on the plume. (a) x = 5 mm, (b)
1125
+ 20 mm, (c) x = 80 mm.
1126
+ FIG. 9: Schematic view of the effective potential profile for
1127
+ arbitrary values of the magnetic moment.
1128
+ • ∆Φ = ΦBP − Φ = 0: The confinement of the electron
1129
+ at the backplate is given exclusively for the topology of
1130
+ the magnetostatic field according to the loss cone angle
1131
+ θ. Those electrons with values for v∥,v⊥ such as they
1132
+ are located in the loss cone and will therefore be lost at
1133
+ the backplate (Fig. 10a).
1134
+ • ∆Φ = ΦBP −Φ < 0: The backplate potential repels the
1135
+ negative charges and thus confines the electron. Conse-
1136
+ quently, a fraction of the electron in the loss cone will
1137
+ be reflected back and stay confined (Fig. 10b).
1138
+ • ∆Φ = ΦBP −Φ > 0: The backplate potential attracts the
1139
+ electrons. Thus, even electrons out of the loss cone are
1140
+ collected. Therefore, the confined electrons are those
1141
+ that meet two conditions: they are not on the loss cone
1142
+ for the magnetic field, and they are energetic enough
1143
+ in the perpendicular direction to avoid being lost at
1144
+ the backplate thanks to the electrostatic acceleration to-
1145
+ wards it (Fig. 10c).
1146
+ Fig. 3, displays the sign of ∆Φ in the nozzle. The combina-
1147
+ tion of the loss conditions at the backplate (pathway 3) and
1148
+ downstream (pathway 2) delimits a confinement volume in
1149
+ phase space where electrons are confined, as shown in Fig.
1150
+ 10. Pitch-angle scattering, either caused by collisions with the
1151
+ neutral background or by the electromagnetic field, enables
1152
+ electrons to cross the confinement volume boundaries. De-
1153
+ pending on which boundary is crossed, electrons are lost at the
1154
+ backplate or at the downstream side of the nozzle. Indeed, it is
1155
+ important to recall that the electron deconfinement is mainly
1156
+ driven by these two phenomena in the source region. Since
1157
+ the neutral background density decreases exponentially, most
1158
+ of the collisions occur in the source. In addition, as shown
1159
+ above, wave absorption happens over a few millimeters in the
1160
+ source. As a consequence, the electron deconfinement rate is
1161
+ driven by the wave interaction and the collisions:
1162
+ • Interaction with the electromagnetic wave is akin to a
1163
+ scattering of the electron momentum53. After several
1164
+ passages through the ECR heating zone, the electron
1165
+ may gain enough energy to overcome the electrostatic
1166
+ barrier and escape into the plume.
1167
+
1168
+ 12
1169
+ (a)
1170
+ (b)
1171
+ (c)
1172
+ FIG. 10: Confinement boundaries in velocity space on the
1173
+ v∥,v⊥ plane where the orange colored zones describe the
1174
+ electrons being trapped in the ECR thruster. Solid line for the
1175
+ plume electrostatic confinement, and dashed (electrostatic)
1176
+ plus dotted (magnetic) lines for the backplate confinement.
1177
+ Where: (a) ∆Φ = 0, (b) ∆Φ < 0, and (c) ∆Φ > 0.
1178
+ • If the electron undergoes an elastic collision, it will ran-
1179
+ domly scatter its velocity vector. If the electron scat-
1180
+ tered momentum falls in the loss region defined by Eq.
1181
+ 20 and shown in Fig. 10, the particle is lost at the back-
1182
+ plate.
1183
+ If we now go back to the results in Fig. 8 for the elec-
1184
+ tron distribution in the velocity space v∥,v⊥ plane, we notice
1185
+ that as we move downstream into the plume, the confinement
1186
+ boundaries change. There is a transition from a confinement
1187
+ boundary as the one in Fig. 10b (∆Φ < 0) to the one in Fig.
1188
+ 10c (∆Φ > 0). This transition is a consequence of the fact
1189
+ that, as shown in Fig. 3 the plasma potential is greater than the
1190
+ backplate potential in the source Φ > ΦBP and lesser than ΦBP
1191
+ downstream. Thus, inside the coaxial chamber, the plasma po-
1192
+ tential is such that ∆Φ = ΦBP − Φ < 0 (Fig. 10b), and in the
1193
+ plume section it is such that ∆Φ = ΦBP − Φ > 0 (Fig. 10c).
1194
+ As a consequence, as we move downstream into the magnetic
1195
+ nozzle, the mean perpendicular kinetic energy can increase.
1196
+ However, this is not given by an additional heating phase but
1197
+ as a result of confining only a highly energetic electron pop-
1198
+ ulation in the perpendicular direction. Those electrons with a
1199
+ low perpendicular kinetic energy (i.e., below the dashed line)
1200
+ are lost at the backplate as previously described. It can be
1201
+ seen as a filtering process where only the hot electrons are
1202
+ confined, and this is what we see when plotting the electron
1203
+ perpendicular kinetic energy in Fig. 5. Further downstream
1204
+ of the magnetic nozzle, the magnitude of the potential well to
1205
+ the end of the nozzle decreases, while the magnitude of the at-
1206
+ tracting potential drop to the backplate increases. This results
1207
+ in a narrower distribution for the confined population and fi-
1208
+ nally a decrease in the mean perpendicular kinetic energy.
1209
+ IV.
1210
+ CONCLUSIONS
1211
+ We have performed electromagnetic full-PIC simulations
1212
+ of the ECR thruster using a 1D3V model that allowed us
1213
+ to shed light onto some of its working principles. The re-
1214
+ sults confirmed the expected anisotropic behavior for the elec-
1215
+ trons’ energies in the direction perpendicular and parallel to
1216
+ the magnetic field lines and a peak for the mean perpendic-
1217
+ ular energy near the resonance zone. The microwave energy
1218
+ injected at the backplate of the thruster propagates through
1219
+ the coaxial chamber while being absorbed by the electrons
1220
+ increasing their kinetic energy perpendicular to the magnetic
1221
+ field lines. The absorption takes place exclusively inside the
1222
+ coaxial chamber on a zone of 6 mm around the resonance
1223
+ condition.
1224
+ This zone is coherent with the predicted value
1225
+ from Doppler broadening. The width of this heating zone
1226
+ may explain why the thruster works even with a configura-
1227
+ tion in which the resonance condition is met outside the coax-
1228
+ ial chamber52. From a practical point of view, this feature
1229
+ improves the reliability of the thruster, since it means that the
1230
+ thruster can still operate even when the magnetostatic field de-
1231
+ creases, for example due to excessive heating of the magnets.
1232
+ The results also show, unexpectedly, that the electrons’
1233
+ mean perpendicular energy has a second peak in the plume
1234
+ due to the confinement of highly energetic electrons.
1235
+ The
1236
+ confinement is determined by the backplate’s potential, the
1237
+ magnetostatic field, and the potential drop on the plume. As
1238
+ a consequence, there is a population of trapped electrons
1239
+ with significant perpendicular kinetic energy in the down-
1240
+ stream region of the magnetic nozzle. The existence of dou-
1241
+ bly trapped electron population has been investigated using
1242
+ a kinetic model with a paraxial approximation similar to this
1243
+ work54. While this work was assuming the shape of the initial
1244
+ distribution function, it has also been seen in the case of an
1245
+ anistropic distribution that the perpendicular electron temper-
1246
+
1247
+ = arcsin(V B,)
1248
+ 0-2e△Φ
1249
+ V=
1250
+ m2e△Φ
1251
+ *
1252
+ Vi = tan(0)
1253
+ m13
1254
+ ature could increase in the diverging part of the nozzle55. We
1255
+ can speculate that these high temperature electrons trapped in
1256
+ the plume could be important to drive some instabilities ob-
1257
+ served in the plume that are thought to enhance cross-field
1258
+ transport of electrons and thus play a role in the detachment.
1259
+ In particular, Lower Hybrid drift instabilities have been re-
1260
+ cently observed in diverging magnetic nozzle. In these ex-
1261
+ periments, diamagnetic drift vD = ∇pe⊥ ×B/enB2 was iden-
1262
+ tified for the primary energy source for the instability56. The
1263
+ trapped electrons could enhance the radial gradient in perpen-
1264
+ dicular pressure and thus enhance the diamagnetic drift.
1265
+ Appendix A: Electron motion integration in the Quasi-1D
1266
+ model
1267
+ On one hand, the model assumes that the axial static mag-
1268
+ netic field in the flux tube depends on x only
1269
+ dBx
1270
+ dx = α(x)
1271
+ (A1)
1272
+ In the quasi-1D model, the field remains constant across the
1273
+ section of the tube. On the other hand, in the ECR thruster
1274
+ the electromagnetic part of the magnetic field (the part due
1275
+ to the propagation of the electromagnetic power injected in
1276
+ the source) remains negligible compared to the static part.
1277
+ Indeed, assuming a locally plane wave, the Poynting vector
1278
+ S = E × B/µ0. Since E ≃ cB and S ≃ 1Wcm−2, the order
1279
+ of magnitude for the electromagnetic component of the mag-
1280
+ netic field is B ≃ 1×10−2 mT. The static part of the ��eld is
1281
+ between 10 mT and 10 mT, much greater than the electromag-
1282
+ netic component. Therefore, using the divergence equation
1283
+ for the static magnetic field and neglecting the electromag-
1284
+ netic component, it is possible to obtain the radial component
1285
+ of the magnetic field :
1286
+ Br(x,r) = −α(x)r
1287
+ 2
1288
+ (A2)
1289
+ Assuming this value for the radial part of the magnetic field
1290
+ ensures that the divergence condition is automatically en-
1291
+ forced for the static part of the field. The electron guiding
1292
+ center is on the flux tube centerline. The Larmor radius of the
1293
+ electrons is given by:
1294
+ rL(x) = V⊥(x)
1295
+ ωc(x)
1296
+ (A3)
1297
+ Where V⊥ =
1298
+
1299
+ v2y +v2z, ωc(x) = eBx(x)/me. The gyromotion
1300
+ of the electron is shown in Fig. 11. Thus, knowing the parti-
1301
+ cle velocities it is possible to obtain the phase angle θ in its
1302
+ gyromotion, as given in Eq. A5.
1303
+ cos(θ) =
1304
+ y
1305
+ rL(x) = vz
1306
+ V⊥
1307
+ (A4)
1308
+ sin(θ) =
1309
+ z
1310
+ rL(x) = − vy
1311
+ V⊥
1312
+ (A5)
1313
+ Knowing the phase angle, sine and cosine, the By an Bz com-
1314
+ ponents can be deduced from eqs. A2 and A5.
1315
+ FIG. 11: Gyromotion in the plane normal to the axial static
1316
+ field Bx.
1317
+ Appendix B: Energy equation
1318
+ For the energy equation for the particles we consider the
1319
+ second order moment of the Vlasov equation. Multiplying the
1320
+ Vlasov equation for the electrons by
1321
+ � mev2/2, we obtain:
1322
+
1323
+ ∂t
1324
+ � mev2
1325
+ 2
1326
+ fed3v+ ∂
1327
+ ∂x ·
1328
+ � mev2
1329
+ 2
1330
+ v fed3v
1331
+ (B1)
1332
+ +qe
1333
+ � v2
1334
+ 2 (E+v×B)· ∂ fe
1335
+ ∂v d3v =
1336
+ � mev2
1337
+ 2
1338
+ �∂ fe
1339
+ ∂t
1340
+
1341
+ col
1342
+ d3v
1343
+ Where the right hand side lumps the contribution of colli-
1344
+ sions and the loss model detailed in section II B 1 and II B 4,
1345
+ respectively. Eq. B1 can be rewritten as:
1346
+ ∂εe
1347
+ ∂t +∇·Qe =−je ·E+ScollQe =
1348
+ � mev2
1349
+ 2
1350
+ v fed3v (B2)
1351
+ εe =
1352
+ � mev2
1353
+ 2
1354
+ fed3vr
1355
+ (B3)
1356
+ Se,coll =
1357
+ � mev2
1358
+ 2
1359
+
1360
+ ∂ fe
1361
+ ∂t
1362
+
1363
+ coll d3v
1364
+ (B4)
1365
+ The same procedure can be applied to the ions:
1366
+ ∂εi
1367
+ ∂t +∇·Qi =−ji ·E+ScollQi =
1368
+ � Miv2
1369
+ 2
1370
+ vfid3v (B5)
1371
+ εi =
1372
+ � Miv2
1373
+ 2
1374
+ fid3v
1375
+ (B6)
1376
+ Si,coll =
1377
+ � Miv2
1378
+ 2
1379
+
1380
+ ∂ fi
1381
+ ∂t
1382
+
1383
+ coll d3v
1384
+ (B7)
1385
+ Considering the electron population, the total heat flux can be
1386
+ written as:
1387
+ Qe = qe +Pe ·ue +neue(eK +EK)
1388
+ (B8)
1389
+
1390
+ 14
1391
+ Where the density is given by ne =
1392
+ � fed3v and the macro-
1393
+ scopic velocity by neue =
1394
+ � fevd3v. The random part of the
1395
+ velocity is c = v−ue The different terms are then:
1396
+ qe =
1397
+ � me
1398
+ 2 c2cd3c
1399
+ (B9)
1400
+ Pe =
1401
+
1402
+ meccd3c
1403
+ (B10)
1404
+ EK = 1
1405
+ 2meu2
1406
+ e
1407
+ (B11)
1408
+ eK =
1409
+ � me
1410
+ 2 c2d3c
1411
+ (B12)
1412
+ Considering the one-dimensional approximation, we are con-
1413
+ sidering only the axial (parallel) part of the total heat flux.
1414
+ Thus, after averaging over a period of the incoming wave :
1415
+ < ... >= 1
1416
+ T
1417
+ � ...dt, we obtain:
1418
+
1419
+ ∂xA(x)
1420
+
1421
+ qe∥
1422
+
1423
+ +A
1424
+
1425
+ Pe∥u∥ +Pe⊥u⊥
1426
+
1427
+ +A(x)
1428
+
1429
+ ue∥ +neue;∥(eK +EK)
1430
+
1431
+ = −A(x)⟨je ·E⟩+A(x)
1432
+
1433
+ Se,coll
1434
+
1435
+ (B13)
1436
+ A similar expression can be written for the ions. if we make
1437
+ use of the Poynting theorem, we can relate the time averaged
1438
+ joule term to the divergence of the pointing flux Π = E×B
1439
+ µ0 :
1440
+ A(x)⟨(je +ji)·E⟩+ ∂
1441
+ ∂x ⟨Π⟩ = 0
1442
+ (B14)
1443
+ If we drop the < ... > symbol for simplicity, recalling that
1444
+ all quantities are time-averaged, one obtains equation (15).
1445
+ 1K. Holste, P. Dietz, S. Scharmann, K. Keil, T. Henning, D. Zschätzsch,
1446
+ M. Reitemeyer, B. Nauschütt, F. Kiefer, F. Kunze, J. Zorn, C. Heiliger,
1447
+ N. Joshi, U. Probst, R. Thüringer, C. Volkmar, D. Packan, S. Peterschmitt,
1448
+ K. T. Brinkmann, H.-G. Zaunick, M. H. Thoma, M. Kretschmer, H. J.
1449
+ Leiter, S. Schippers, K. Hannemann, and P. J. Klar, “Ion thrusters for elec-
1450
+ tric propulsion: Scientific issues developing a niche technology into a game
1451
+ changer,” Review of Scientific Instruments 91, 061101 (2020), publisher:
1452
+ American Institute of Physics.
1453
+ 2J. Jarrige, P.-Q. Elias, F. Cannat, and D. Packan, “Characterization of a
1454
+ coaxial ECR plasma thruster,” in 44th AIAA Plasmadynamics and Lasers
1455
+ Conference (2013).
1456
+ 3T. Vialis, J. Jarrige, and D. Packan, “Geometry optimization and effect of
1457
+ gas propellant in an electron cyclotron resonance plasma thruster,” in 35th
1458
+ International Electric Propulsion Conference (2017) pp. 1–12.
1459
+ 4D. B. Miller, E. F. Gibbons, P. Gloersen,
1460
+ and D. J. BenDaniel, “Cy-
1461
+ clotron resonance propulsion system,” AIAA Electric Propulsion Confer-
1462
+ ence (1963).
1463
+ 5M. Nagatomo, “Plasma Acceleration by High Frequency Electromagnetic
1464
+ Wave in Static Magnetic Field Gradient AlAA Electric Pronulsion and Plas-
1465
+ madynamics Conference,” AIAA Electric Propulsion and Plasmadynamics
1466
+ Conference (1967).
1467
+ 6J. C. Sercel, An experimental and theoretical study of the ECR plasma en-
1468
+ gine, phd, California Institute of Technology (1993).
1469
+ 7J. Jarrige, P.-Q. Elias, D. Packan,
1470
+ and F. Cannat, “Characterization of
1471
+ a coaxial ECR plasma thruster,” 44th AIAA Plasmadynamics and Lasers
1472
+ Conference , AIAA paper 2013–2628 (2013).
1473
+ 8J. Jarrige, P.-Q. Elias, and D. Packan, “Performance Comparison of an ECR
1474
+ Plasma Thruster using Argon and Xenon as Propellant Gas,” Internationl
1475
+ Electric Propulsion Conference , 420 (2013).
1476
+ 9S. T. Hepner, T. Collard, and B. A. Jorns, “Low Frequency Wave Detec-
1477
+ tion in the Plume of a Low Temperature Magnetic Nozzle,” in 2018 Joint
1478
+ Propulsion Conference (American Institute of Aeronautics and Astronau-
1479
+ tics, Cincinnati, Ohio, 2018).
1480
+ 10S. Correyero, J. Jarrige, D. Packan, and E. Ahedo, “Plasma beam charac-
1481
+ terization along the magnetic nozzle of an ECR thruster,” Plasma Sources
1482
+ Science and Technology 28, 095004 (2019).
1483
+ 11S. Correyero, M. Merino, P.-Q. Elias, J. Jarrige, D. Packan, and E. Ahedo,
1484
+ “Characterization of diamagnetism inside an ECR thruster with a diamag-
1485
+ netic loop,” Physics of Plasmas 26, 053511 (2019).
1486
+ 12T. Vialis, J. Jarrige, A. Aanesland, and D. Packan, “Direct Thrust Mea-
1487
+ surement of an Electron Cyclotron Resonance Plasma Thruster,” Journal of
1488
+ Propulsion and Power , 1–11 (2018).
1489
+ 13F. Boni, J. Jarrige, V. Désangles, and T. Minea, “The curling probe: A
1490
+ numerical and experimental study. Application to the electron density mea-
1491
+ surements in an ECR plasma thruster,” Review of Scientific Instruments 92
1492
+ (2021), 10.1063/5.0040175.
1493
+ 14F. Cannat, T. Lafleur, J. Jarrige, P. Chabert, P. Elias, and D. Packan, “Opti-
1494
+ mization of a coaxial electron cyclotron resonance plasma thruster with an
1495
+ analytical model,” Physics of Plasmas, American Institute of Physics, 2015
1496
+ 053503 (2015), 10.1063/1.4920966.
1497
+ 15A. Verma, A. Ganguli, D. Sahu, R. Narayanan, and R. D. Tarey, “Thrust
1498
+ evaluation of compact ECR plasma source using 2-zone global model
1499
+ and plasma measurements,” Plasma Sources Science and Technology 29,
1500
+ 085007 (2020), publisher: IOP Publishing.
1501
+ 16M. A. Lieberman and A. J. Lichtenberg, “Theory of electron cyclotron res-
1502
+ onance heating. II. Long time and stochastic effects,” Plasma Physics 15,
1503
+ 125–150 (1973).
1504
+ 17S. Peterschmitt, J. C. Porto, P.-q. Elias, and D. Packan, “A diffusion model
1505
+ in velocity space to describe the electron dynamics in an ECR plasma
1506
+ thruster with magnetic nozzle,” in 8th European Conference for Aeronau-
1507
+ tics and Space Sciences (Madrid, Spain, 2019).
1508
+ 18A. Sánchez-Villar, J. Zhou, E. Ahedo, and M. Merino, “Coupled plasma
1509
+ transport and electromagnetic wave simulation of an ecr thruster,” Plasma
1510
+ Sources Science and Technology 30, 045005 (2021).
1511
+ 19E. B. Hooper, “Plasma flow resulting from electron cyclotron resonance
1512
+ heating on a magnetic hill,” Physics of Plasmas 2, 4563–4569 (1995).
1513
+ 20B. Vincent, S. Tsikata, S. Mazouffre, T. Minea, and J. Fils, “A compact
1514
+ new incoherent Thomson scattering diagnostic for low-temperature plasma
1515
+ studies,” Plasma Sources Science and Technology 27, 055002 (2018), pub-
1516
+ lisher: IOP Publishing.
1517
+ 21K. Nishiyama and H. Kuninaka, “20-cm ECR plasma generator for xenon
1518
+ ion propulsion,” Thin Solid Films 506-507, 588–591 (2006).
1519
+ 22M. Shen, H. Fang, Y. Chao, S. Tam, and Y. Li, “Development of a Micro
1520
+ ECR Ion Thruster for Space Propulsion,” Electric Propulsion Conference ,
1521
+ 1–8 (2017).
1522
+ 23Y. Takao, H. Koizumi, K. Komurasaki, K. Eriguchi, and K. Ono, “Three-
1523
+ dimensional particle-in-cell simulation of a miniature plasma source for a
1524
+ microwave discharge ion thruster,” Plasma Sources Science and Technol-
1525
+ ogy (2014), 10.1088/0963-0252/23/6/064004.
1526
+ 24Y. Yamashita, Y. Tani, R. Tsukizaki, D. Koda, and K. Nishiyama, “Nu-
1527
+ merical investigation of plasma properties for the microwave discharge ion
1528
+ thruster µ10 using PIC-MCC simulation,” Physics of Plasmas 26 (2019),
1529
+ 10.1063/1.5097661.
1530
+ 25E. Ahedo and M. Merino, “On plasma detachment in propulsive magnetic
1531
+ nozzles,” Physics of Plasmas 18, 053504 (2011).
1532
+ 26S. Andrews, S. Di Fede, and M. Magarotto, “Fully kinetic model of plasma
1533
+ expansion in a magnetic nozzle,” 31, 035022.
1534
+ 27Y. Hu, Z. Huang, Y. Cao, and Q. Sun, “Kinetic insights into thrust genera-
1535
+ tion and electron transport in a magnetic nozzle,” 30, 075006.
1536
+ 28K. Emoto, K. Takahashi, and Y. Takao, “Numerical investigation of internal
1537
+ plasma currents in a magnetic nozzle,” 28, 093506.
1538
+ 29J. M. Little and E. Y. Choueiri, “Electron Demagnetization in a Magnet-
1539
+ ically Expanding Plasma,” Physical Review Letters 123, 145001 (2019),
1540
+ publisher: American Physical Society.
1541
+ 30E. H. Niewood and M. Martinez-Sanchez, “Quasi-one-dimensional numer-
1542
+ ical simulation of magnetoplasmadynamic thrusters,” Journal of Propulsion
1543
+ and Power 8, 1031–1039 (1992).
1544
+ 31M. G. De Giorgi and D. Fontanarosa, “A novel quasi-one-dimensional
1545
+ model for performance estimation of a Vaporizing Liquid Microthruster,”
1546
+ Aerospace Science and Technology 84, 1020–1034 (2019).
1547
+ 32V. Saini and R. Ganesh, “Double layer formation and thrust generation in
1548
+ an expanding plasma using 1D-3V PIC simulation,” Physics of Plasmas 27,
1549
+ 093505 (2020).
1550
+
1551
+ 15
1552
+ 33A. L. C.K. Birdsall, Computer Physics Communications, institute ed.,
1553
+ Vol. 42 (IOP Publishing, 1986) pp. 151–152, arXiv:arXiv:1011.1669v3.
1554
+ 34M. M. Turner, A. Derzsi, Z. Donkó, D. Eremin, S. J. Kelly, T. Lafleur,
1555
+ and T. Mussenbrock, “Simulation benchmarks for low-pressure plasmas:
1556
+ Capacitive discharges,” Physics of Plasmas 20 (2013), 10.1063/1.4775084,
1557
+ arXiv:1211.5246.
1558
+ 35H. R. Skullerud, “The stochastic computer simulation of ion motion in a
1559
+ gas subjected to a constant electric field,” Journal of Physics D: Applied
1560
+ Physics 1, 1567–1568 (1968).
1561
+ 36R. McEachran and A. Stauffer, “Momentum transfer cross sections for the
1562
+ heavy noble gases,” The European Physical Journal D 68, 153 (2014).
1563
+ 37D. Piscitelli, A. V. Phelps, J. de Urquijo, E. Basurto, and L. C. Pitchford,
1564
+ “Ion mobilities in Xe/Ne and other rare-gas mixtures,” Physical Review E
1565
+ 68, 046408 (2003), publisher: American Physical Society.
1566
+ 38J. Stoer and R. Bulirsch, “Iterative Methods for the Solution of Large Sys-
1567
+ tems of Linear Equations. Additional Methods,” in Introduction to Numer-
1568
+ ical Analysis, Texts in Applied Mathematics, edited by J. Stoer and R. Bu-
1569
+ lirsch (Springer, New York, NY, 2002) pp. 619–729.
1570
+ 39J. Porto and P.-q. Elias, “Axisymmetric Electromagnetic Wave Propa-
1571
+ gation Computation Using the Constrained Interpolation Profile Scheme
1572
+ With Large Time Steps,” IEEE TRANSACTIONS ON ANTENNAS AND
1573
+ PROPAGATION, VOL. 69, NO. 7 69, 4049–4057 (2021).
1574
+ 40K. Kajita, Y. Baba, N. Nagaoka,
1575
+ and A. Ametani, “Computation of
1576
+ lightning electromagnetic pulses using the constrained interpolation profile
1577
+ method,” Electric Power Systems Research 115, 94–101 (2014).
1578
+ 41K. Okubo and N. Takeuchi, “Analysis of an electromagnetic field created by
1579
+ line current using constrained interpolation profile method,” IEEE Transac-
1580
+ tions on Antennas and Propagation 55, 111–119 (2007).
1581
+ 42T. Yabe, F. Xiao, and T. Utsumi, “The Constrained Interpolation Profile
1582
+ Method for Multiphase Analysis,” Journal of Computational Physics 169,
1583
+ 556–593 (2001).
1584
+ 43P.K.Smolarkiewicz and J.A.Pudykiewicz, “A Class of Semi- Lagrangian
1585
+ Approximations for Fluids,” Atmospheric Sciences, Vol.49, pp.2028-2096
1586
+ (1992).
1587
+ 44Y. Nie, K. Fu, and X. Lv, “CIP Method of Characteristics for the Solution
1588
+ of Tide Wave Equations,” Advances in Mathematical Physics 2018 (2018),
1589
+ 10.1155/2018/3469534.
1590
+ 45Y. Tachioka, Y. Yasuda, and T. Sakuma, “Application of the constrained
1591
+ interpolation profile method to room acoustic problems: Examination of
1592
+ boundary modeling and spatial/time discretization,” Acoustical Science and
1593
+ Technology 33, 21–32 (2012).
1594
+ 46V. Blateau, PIC simulation of a ceramic-lined Hall-effect thruster, phdthe-
1595
+ sis (2000).
1596
+ 47J. M. Fox, Advances in Fully-Kinetic PIC Simulations of a Near-Vacuum
1597
+ Hall Thruster and Other Plasma Systems, phdthesis (2003).
1598
+ 48F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd ed.
1599
+ (Springer International Publishing Switzerland, 2016).
1600
+ 49L. Garrigues, J. Prez-Luna, J. Lo, G. J. Hagelaar, J. P. Boeuf, and S. Ma-
1601
+ zouffre, “Empirical electron cross-field mobility in a Hall effect thruster,”
1602
+ Applied Physics Letters 95 (2009), 10.1063/1.3242336.
1603
+ 50V. Croes, T. Lafleur, Z. Bonaventura, A. Bourdon, and P. Chabert, “2D
1604
+ particle-in-cell simulations of the electron drift instability and associated
1605
+ anomalous electron transport in Hall-effect thrusters,” Plasma Sources Sci-
1606
+ ence and Technology 26 (2017), 10.1088/1361-6595/aa550f.
1607
+ 51M. C. Williamson, A. J. Lichtenberg,
1608
+ and M. A. Lieberman, “Self-
1609
+ consistent electron cyclotron resonance absorption in a plasma with varying
1610
+ parameters,” Journal of Applied Physics 72, 3924–3933 (1992).
1611
+ 52T. Vialis, Développement d’un propulseur plasma à résonance cyclotron
1612
+ électronique pour les satellites, Ph.d. thesis, Sorbonne Université (2018).
1613
+ 53I. Kaganovich, M. Mišina, S. V. Berezhnoi,
1614
+ and R. Gijbels, “Electron
1615
+ Boltzmann kinetic equation averaged over fast electron bouncing and pitch-
1616
+ angle scattering for fast modeling of electron cyclotron resonance dis-
1617
+ charge,” 61, 1875–1889 (2000).
1618
+ 54E. Ahedo, S. Correyero, J. Navarro-Cavallé, and M. Merino, “Macroscopic
1619
+ and parametric study of a kinetic plasma expansion in a paraxial magnetic
1620
+ nozzle,” 29, 045017.
1621
+ 55S. Correyero Plaza, “Physics of plasma plumes accelerated by magnetic
1622
+ nozzles: An experimental and theoretical research,” (2020).
1623
+ 56S. Hepner, B. Wachs, and B. Jorns, “Wave-driven non-classical electron
1624
+ transport in a low temperature magnetically expanding plasma,” Applied
1625
+ Physics Letters 116, 263502 (2020).
1626
+
ANFIT4oBgHgl3EQf-iyR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9E4T4oBgHgl3EQfFQzj/content/tmp_files/2301.04885v1.pdf.txt ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multiplexed random-access optical memory in warm cesium vapor
2
+ Leon Meßner,1, 2, a) Elizabeth Robertson,2, 3 Luisa Esguerra,2, 3 Kathy L¨udge,4 and Janik Wolters2, 3
3
+ 1)Institut f¨ur Physik, Humboldt-Universit¨at zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
4
+ 2)Deutsches Zentrum f¨ur Luft- und Raumfahrt e.V. (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin,
5
+ Germany.
6
+ 3)Technische Universit¨at Berlin, Institut f¨ur Optik und Atomare Physik, Str. des 17 Juni 135, 10623 Berlin,
7
+ Germany
8
+ 4)Technische Universit¨at Ilmenau, Institut f¨ur Physik, Weimarer Straße 25, 98693 Ilmenau,
9
+ Germany
10
+ (Dated: 13 January 2023)
11
+ The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum
12
+ computation and communication technologies. However, research for multiplexed quantum memories has been focused
13
+ on systems that show good performance only after an elaborate preparation of the storage media. This makes it generally
14
+ more difficult to apply outside a laboratory environment. In this work, we demonstrate a multiplexed random-access
15
+ memory to store up to four optical pulses using electromagnetically induced transparency in warm cesium vapor. Using
16
+ a Λ-System on the hyperfine transitions of the Cs D1 line, we achieve a mean internal storage efficiency of 36% and a
17
+ 1/e lifetime of 3.2 µs. In combination with future improvements, this work facilitates the implementation of multiplexed
18
+ memories in future quantum communication and computation infrastructures.
19
+ I.
20
+ INTRODUCTION
21
+ Quantum memories are considered to be a main component for the realization of many future second generation quantum
22
+ technologies. Their potential use ranges from synchronizing inputs into various types of quantum systems1 to re-configurable
23
+ optical reservoir computing2. They enable on-demand operation of otherwise probabilistic single-photon sources and quantum
24
+ gates3, which will significantly enhance their rate of operation4. Moreover, they have been identified as an essential device
25
+ required to realize a quantum repeater5, a key technology needed for long-distance quantum communication. When specifically
26
+ considering the implementation of a global quantum communication network, satellite based quantum communication has been
27
+ hallmarked as a most promising system if enhanced with a multiplexed quantum memory. It has been shown that a significant
28
+ increase in communication rate is already achievable with around 1000 randomly accessible storage modes6,7. Consequently,
29
+ the realization of suitable multiplexed quantum memories will be an important milestone in extending quantum communication
30
+ over long distances.
31
+ Quantum memories have been demonstrated using a variety of storage protocols in a number of single emitter and ensemble-
32
+ based matter systems. These include solid state systems, ultra-cold atoms and warm atomic vapors1. Although the routine
33
+ formation of subnanokelvin Bose-Einstein condensates in earth’s orbit has been demonstrated8 and is pursued in future projects9,
34
+ reducing the technological requirements for space-borne quantum memories is a key step. This makes memories based on warm
35
+ atomic vapors favored for applications, as they require no vacuum, laser cooling or strong magnetic fields.
36
+ The memory used in this experiment utilizes the effect of electromagnetically induced transparency (EIT) on the Λ-system
37
+ composed by the 62S1/2F=3, F=4 and the 62P1/2F=3 atomic hyperfine levels of an ensemble of cesium atoms to map optical
38
+ excitations to a long-lived spin-wave, i.e. a coherence of the two hyperfine ground states of the atomic ensemble10,11. Due to its
39
+ coherent ensemble origin, this spin-wave shows comparatively low dephasing and loss. Subsequent retrieval of the spin-wave
40
+ excitation into the input optical mode can then be performed at some chosen time that is smaller than the spin-wave lifetime.
41
+ Light storage for up to 1 s12 and single-photon operation13,14 have been demonstrated in separate experiments in warm atomic
42
+ vapors.
43
+ For a quantum memory to be most useful within a quantum communication system, the memory must be scaleable with
44
+ the possibility to access individual storage modes in a way that is not significantly limited by the used technology. Various
45
+ forms of quantum memory multiplexing have been studied in the past, including time bin15, orbital angular momentum16, and
46
+ spatial17,18 multiplexing. Among these approaches, Ref.18 shows a clear foreseeable path to achieving the required number of
47
+ 1000 randomly accessible modes. However, the technological overhead of a cold atom setup complicates operating these outside
48
+ of a laboratory. In this work we demonstrate a memory that combines the advantages of using warm vapor with a path towards
49
+ scaleable multi-rail operation.
50
+ a)Electronic mail: [email protected]
51
+ arXiv:2301.04885v1 [quant-ph] 12 Jan 2023
52
+
53
+ 2
54
+ FIG. 1. Memory scheme. a) Scheme of the Cs D1 energy levels’ hyperfine structure that forms the Λ-system used. Signal and control fields
55
+ are red detuned from resonance by ∆ and have angular frequencies ωs and ωc respectively. The transition F = 4 → F ′ = 4 is resonantly
56
+ driven by the pump field with angular frequency ωp. b) Time traces from an experiment for writing a signal pulse onto an atomic spin-wave at
57
+ time t0 = 0 and retrieving it at t0 + 0.4 µs. The bottom panel shows the operation performed on the memory (W: write, R: read).
58
+ II.
59
+ EXPERIMENT
60
+ The multi-rail memory presented here uses an EIT memory scheme19 on the hyperfine ground state transitions of the Cs
61
+ D1 line, as shown in Fig. 1(a). The control and signal lasers (14-pin butterfly external cavity diode laser (ECDL) modules by
62
+ Sacher Lasertechnik) are set on the F=4 → F ′=3 and the F=3 → F ′=3 transitions respectively. To stabilize the frequency
63
+ difference between signal and control laser to the Cs ground state hyperfine splitting, light from both lasers is superimposed
64
+ on a fast photodiode (Electro Optics Technology, ET-3500FEXR) and their beat frequency is offset locked20 using a RedPitaya
65
+ FPGA-board running the Linien21 locking software. We generate Gaussian signal and control pulses with a full width at half
66
+ maximum (FWHM) of 25 ns and 43.75 ns respectively using an arbitrary function generator (AFG, Tek AFG31152). These
67
+ pulses are modulated onto cw laser beams with electro-optic amplitude modulators (EOMs, Jenoptik AM905). The experiment
68
+ is designed such that the signal and control pulses have linear and orthogonal polarization to each other to reduce the control
69
+ light leaking into the detection path.
70
+ The atomic storage medium is confined to a cylindrical, 25x75 mm anti-reflection coated cesium vapor cell filled with 5 torr
71
+ N2 of buffer gas. It is kept at 60°C and shielded from ambient magnetic fields by a double-layered mu-metal housing. Spatial
72
+ addressing of different rails within the cell is performed by one acousto-optic deflector (AOD) in front and one behind the vapor
73
+ cell. The AODs (AA MT200-B100A0,5-800) have an aperture of 0.5x2 mm2 and a measured deflection of 0.2 mrad/MHz.
74
+ Each of them is driven by the frequency sum of an arbitrary function generator (AFG, Tek AFG31152) and a local oscillator
75
+ (Mini-Circuits, ZOS-300+) resulting in 200±50 MHz of carrier frequency. We refer to the position of memory rails by the
76
+ AOD driving frequency used to deflect the beam to that position; the distance between rails is thus expressed as the difference
77
+ in driving frequency. Changing the AOD driving frequency by 8 MHz changes the lateral position of the deflected beam by
78
+ 270 µm, equaling one signal beam radius.
79
+ While the signal pulses enter the memory unmodified after their generation, the control laser pulses are amplified by a self-
80
+ made tapered amplifier (TA, see22) and then spectrally filtered by a dielectric bandpass interference filter (IF) with a 1 nm
81
+ FWHM. This results in 200 mW of coupled cw power. To increase the control laser’s on-off ratio, the TA diode’s driving current
82
+ is only switched on for 120 ns, centered on the optical pulse, using a 4 A dc-coupled input follower driver with 2 ns rise/fall
83
+ time. This reduces the unwanted interaction between control laser and atoms in times when no control pulse is generated.
84
+ The beam paths of the cross-polarized signal and control lasers are overlapped at a polarizing beam splitter (PBS) on one side
85
+ of the memory and then propagate collinearly through the cesium cell, and both AODs. At the position of the cell, control and
86
+ signal beam have a 1/e2-level radius of 350 µm and 270 µm respectively. This yields an atomic transit time of ∆t = 3.7 µs for
87
+ one signal beam radius when using a 2D diffusion model of ∆x =
88
+
89
+ 4D∆t for the diffusion length and an assumed diffusion
90
+ constant of D0 = 0.24 cm2s−123 at T0 = 0 K and P0 = 760 torr. After traversing the second AOD, the signal and control
91
+ beams are split by a second PBS and are then individually coupled to fibers and detected by either a Si photodiode (Thorlabs
92
+ DET10A2) or a Si avalanche photodiode (Menlo Systems APD210).
93
+ Optical pumping of the Cs atoms into the 62S1/2F=3 state is performed by a third ECDL laser locked to the 62S1/2F=4 →
94
+
95
+ a)
96
+ b)
97
+ 5.
98
+ SIGNAL
99
+ 62P1/ 2
100
+ F'= 4
101
+ F'= 3
102
+ [arb.]
103
+ CONTROL
104
+ Intensity
105
+ m
106
+ m
107
+ dm
108
+ DETECTOR
109
+ F= 4
110
+ 62S1/ 2
111
+ 9.2 GHz
112
+ F= 3
113
+ PUMP
114
+ W
115
+ R
116
+ R
117
+ - 0.5
118
+ 0.0
119
+ 0.5
120
+ 1.0
121
+ Time [μs]3
122
+ FIG. 2. Sketch of the experiment with A) laser sources, spectroscopy and optical pulse shaping, B) TA based pulse amplification, C) multi-rail
123
+ storage system and D) CCD image of the four used rails, with the camera at the place of the Cs cell. HWP: half-wave plate, QWP: quarter-wave
124
+ plate, DET: detector, (P)BS: (polarizing) beam splitter, L1;L2/L3: aspheric/cylindrical lens, AOD: acousto-optic deflector, EOM: electro-optic
125
+ modulator, AFG: arbitrary function generator, IF: interference filter, OL: offset lock.
126
+ 62P1/2F=4 transition by saturated absorption spectroscopy. The pump light power is controlled via transmission through an
127
+ electrically pulsed semiconductor optical amplifier (SOA) and illuminates each memory rail with 20 mW of optical power for
128
+ 900 ns prior to the memory experiment sequence.
129
+ Figure 1(b) shows a typical time trace for a single-rail storage experiment and a sketch of the experimental setup can be seen
130
+ in Fig. 2. Several features of storage within an EIT medium can be observed in the time trace. At t = 0 µs a signal pulse enters
131
+ the atomic medium and is partly mapped to an atomic spin wave by the control laser field. The portion of that signal pulse that
132
+ is transmitted through the atomic vapor is detected by the photodiode as leakage. After 0.4 µs the control laser field is switched
133
+ on again and retrieves the spin-wave excitation back into the signal beams optical mode. A third pulse of the control laser at
134
+ t = 0.8 µs serves to determine if all the excitation has been retrieved and also allows to estimate the signal noise induced by
135
+ the control laser field. Not having a significant detection event during this last pulse, we conclude that nearly all the spin-wave
136
+ excitation is mapped backed to optical and signal to noise ratio is not a limiting factor for this experiment with aforementioned
137
+ laser pulses.
138
+ III.
139
+ RESULTS
140
+ Prior to performing multi-rail storage, we first identify optimal operating conditions for the multi-rail memory by assessing
141
+ the influence of rail separation on the interactions between two memory rails, and subsequently minimizing the cross-talk. For
142
+ comparison of the single and multi-rail operation, we measure the 1/e lifetime and memory efficiency per rail.
143
+ To assess the influence of rail separation on their interaction, multiple storage experiments at different rail separations are
144
+ conducted. For effective operation of a memory, we require that operations on a given memory rail do not affect its neighbors.
145
+ To determine the minimal separation that shows no cross-talk, we write into a rail fixed at 190 MHz, read from a neighboring rail,
146
+ and then read from the 190 MHz rail again. This write/read/read sequence is depicted in the inset of Fig. 3. The rail separation
147
+ is varied from 0 to 25 MHz at steps of 1 MHz, and the retrieval peak intensities after the first and second read are measured. The
148
+ results are depicted in Fig. 3. Below 5 to 8 MHz of separation no excitation is left for the second retrieval pulse and both read
149
+ pulses address the same ensemble of atoms. At a separation of 20 MHz the influence of the read operation on the neighboring
150
+ rail is no longer visible.
151
+ The AOD device used has a 100 MHz bandwidth and a 25% reduced diffraction efficiency at the edges of the frequency range;
152
+ consequently we chose to limit this experiment to four memory rails spaced by 20 MHz. A CCD image of the four rails, taken
153
+ at the position of the Cs cell, is shown in Fig. 2(D). A straightforward method to increase the number of rails, is to use AODs
154
+ with a higher number of resolvable spots.
155
+ The 1/e storage lifetime per rail is determined by performing storage experiments with increasing time delay between the
156
+ memory write and read operation, for each rail. The delay was varied between 0.4 µs and 11.2 µs in steps of 400 ns, and for each
157
+
158
+ A)
159
+ duwnd
160
+ EOM
161
+ C)
162
+ signal
163
+ HWP
164
+ AOD
165
+ L2
166
+ AOD
167
+ HWP
168
+ PBS
169
+ HwP
170
+ L1
171
+ QWP
172
+ DET
173
+ LASER
174
+ to AWG
175
+ BS
176
+ PBS
177
+ PBS
178
+ to OL
179
+ control
180
+ HWP
181
+ PBS
182
+ LASER
183
+ EOM
184
+ D)
185
+ B)
186
+ BP
187
+ HWP
188
+ 1nm HWP
189
+ PBS
190
+ 20 MHz
191
+ 『』 TA-diode L2L3
192
+ opt, isolator
193
+ PD
194
+ 625 um4
195
+ Peak 1
196
+ Peak 2
197
+ 0
198
+ 5
199
+ 10
200
+ 15
201
+ 20
202
+ 25
203
+ 0.00
204
+ 0.02
205
+ 0.04
206
+ 0.06
207
+ 0.08
208
+ 0.10
209
+ Rail separation [MHz]
210
+ Intensity [arb.]
211
+ 0.0
212
+ 0.5
213
+ 1.0
214
+ Time [µs]
215
+ W
216
+ R
217
+ R
218
+ FIG. 3. Cross-talk estimation. Intensities detected in the first (Peak 1, orange rail) and second (Peak 2, green rail) read peak depending on the
219
+ rail separation for the experiment sequence depicted in the inset. For a difference of 20 MHz in AOD driving frequency (rail separation), the
220
+ influence between neighboring rails vanishes. The inset shows the used experiment sequence consisting of a write on the green rail at t = 0, a
221
+ read on a neighboring orange rail at t = 0.4 µs and finally a read on the green rail at t = 0.8 µs.
222
+ delay, we measure the retrieved peak intensities, averaged over 500 repetitions. Uncertainties are given by the standard deviation
223
+ of the intensities. The intensities were fitted with an exponential function to extract the 1/e lifetime. Measured retrieval peak
224
+ intensities and fit function are displayed in Fig. 4.
225
+ The resulting lifetime values per rail are shown in Table I together with the achieved internal memory efficiencies ηmem at
226
+ t = 0.
227
+ Since the measured lifetimes are consistent with the estimate using the simple diffusion model presented earlier, it is reasonable
228
+ to assume that diffusion is the most important lifetime-limiting process for the beam diameters chosen in this work.
229
+ Independent investigation on a single rail setup also showed that spin polarization lifetimes at least on the order of several
230
+ hundred microseconds are possible with larger beam diameters.
231
+ The memory efficiencies are calculated by extrapolating the pulse energy of a retrieved pulse after t = 0 µs of storage from a
232
+ retrieved pulse after t = 0.4 µs of storage using the memory lifetime. This is then divided by the energy of a normalization pulse
233
+ to yield the efficiency. To obtain the normalization pulse, we set the signal laser frequency 2 GHz below the F=3 → F ′=3
234
+ transition frequency, block the control beam and record the transmitted signal pulse. Under these conditions, we assume the
235
+ pulses not to be absorbed by the atoms.
236
+ Using the insights and results from the measurements on lifetime, efficiency and rail separation, we now explore the possibility
237
+ of random-access operation in the memory setup. For this purpose an experimental sequence was designed that highlights
238
+ important criteria for use as a random-access quantum memory. Figure 5 illustrates this experiment.
239
+ The bottom panel depicts the operation performed on each specific rail and the top panel shows the intensity detected by
240
+ the APD over a time span of about 5 µs. The experimental sequence contains 12 operations, either read (r) or write (w). We
241
+ define three features which are necessary for use as a memory: a) that reading or writing to a rail should not affect its neighbors
242
+ (interaction-free), b) rails which have not been written to should not return a retrieved pulse (empty state) and c) a read should
243
+ leave the memory empty; a subsequent read pulse should yield no excitation (full retrieval).
244
+ Rail (MHz)
245
+ 170
246
+ 190
247
+ 210
248
+ 230 Mean
249
+ Lifetime (µs)
250
+ 4.3(5) 5.4(7) 3.3(3) 2.6(3) 3.2(2)
251
+ Efficiency (%)
252
+ 32
253
+ 35
254
+ 39
255
+ 36
256
+ 36
257
+ TABLE I. Measured 1/e-lifetime and retrieval efficiency for each rail and weighted mean.
258
+
259
+ 5
260
+ FIG. 4. Measured retrieval amplitudes for storage times between 0.4 and 11.4 µs together with an exponential fit to the values. The inset shows
261
+ the per rail 1/e storage lifetime deduced from the fit.
262
+ 0.00
263
+ 0.05
264
+ 0.10
265
+ 0.15
266
+ 0.20
267
+ 1
268
+ 2
269
+ 3
270
+ 4
271
+ 5
272
+ 6
273
+ 7
274
+ 8
275
+ 9
276
+ 10
277
+ 11
278
+ 12
279
+ Intensity [arb.]
280
+ Operation #
281
+ 0
282
+ 1
283
+ 2
284
+ 3
285
+ 4
286
+ 230MHz
287
+ 210MHz
288
+ 190MHz
289
+ 170MHz
290
+ W
291
+ W
292
+ R
293
+ R
294
+ W
295
+ R
296
+ W
297
+ R
298
+ R
299
+ R
300
+ W
301
+ R
302
+ Time [µs]
303
+ FIG. 5. Storage experiment in the random-access memory using four rails with detected intensity in the signal path in the top and performed
304
+ operations (read/write) in the bottom panel. A total of 12 operations are performed over a span of 5 µs.
305
+
306
+ 0.20
307
+ 1/e Lifetime [μus]
308
+ 0.15
309
+ 4
310
+ Intensity [arb.]
311
+ 3
312
+
313
+ 0.10
314
+ 2
315
+ 170
316
+ 190
317
+ 210
318
+ 230
319
+ Rail [MHz]
320
+ 0.05
321
+ 0.00F
322
+ 0
323
+ 2
324
+ 4
325
+ 6
326
+ 8
327
+ 10
328
+ 12
329
+ Time [μs]6
330
+ Interaction-free operation is ensured by choosing an adequate rail separation and then confirmed by looking at the storage
331
+ performance of a specific rail while there are operations performed on the neighboring rails. The rails at 230 MHz (blue) and
332
+ 190 MHz (green) can be used to show that operations are interaction free. Between the write (t = 1.6 µs) and read (t = 3.6 µs)
333
+ operation on the 190 MHz rail, four operations are performed on the neighboring rails and there is no visible impact on the read
334
+ peak shape or height. On the 230 MHz rail a pulse is written at t = 0 and then retrieved during the last operation on the memory
335
+ at t = 4.4 µs. Taking into account the 2.6 µs lifetime of this rail, the high remaining intensity of the retrieval peak clearly shows
336
+ that there is no significant detrimental influence from multi-rail operation.
337
+ Reading an empty rail should not result in a significant amount of intensity. We verify this by reading the 210 MHz and
338
+ 170 MHz rail in a state that should not have excitation. In the 210 MHz rail a pulse is written to the memory at t = 0.4 µs
339
+ and then this rail is immediately read twice. The second read operation at t = 0.8 µs yields negligible intensity compared to
340
+ the first read operation at 0.6 µs. Additionally the same rail is read again at 3.2 µs to observe the amount of noise, which is
341
+ found to be comparable to the read at 1.2 µs. The first operation on the 190 MHz rail at t = 2 µs is a read of a rail that has
342
+ not been used before. This allows us to determine how well the memory was initialized by the pumping that is performed prior
343
+ to the experimental sequence. Observing a larger intensity peak would point to insufficient polarization of the medium. As the
344
+ observed peak is similar to the other reads of an empty rail mentioned above, we conclude that pumping is sufficient and reading
345
+ an empty rail, regardless of its history, does not lead to the detection of a significant peak. In combination with the measurements
346
+ on lifetime and rail interaction it follows that this setup allows random-access storage and retrieval of optical pulses for times
347
+ comparable to the mean rail lifetime of 3.2 µs.
348
+ IV.
349
+ CONCLUSION
350
+ We have presented a multiplexed optical random-access memory, realised within a single vapor cell at a temperature of 60°C.
351
+ Using an EIT based storage scheme in a Λ-system on the cesium hyperfine transitions, we achieved a mean storage lifetime
352
+ and internal efficiency of 3.2(2) µs and 36% respectively in multi-rail operation. According to the chosen rail separation of
353
+ 20 MHz, we performed random-access storage and retrieval in four parallel rails without observing reciprocal in��uence between
354
+ the different rails.
355
+ The time between successive operations was chosen to be 400 ns for the sake of simplifying experiment control. This time
356
+ could be reduced considerably with the lower bound determined by the AODs switching time of 48 ns. Increasing the storage
357
+ lifetime and number of addressable rails is possible by increasing the beam diameters and using AODs that have a higher
358
+ time-bandwidth product respectively. This step will be important for applications in quantum communication and repeater
359
+ networks. Reaching beyond the threshold number of 1000 individually addressable modes is possible by using 2-axis AODs and
360
+ multiplexing into a two dimensional grid of parallel storage modes.
361
+ FUNDING
362
+ This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number
363
+ 445183921. E.R. acknowledges funding through the Helmholtz Einstein International Berlin Research School in Data Science
364
+ (HEIBRiDS).
365
+ DISCLOSURES
366
+ The authors declare no conflicts of interest.
367
+ DATA AVAILABILITY
368
+ The data presented in this paper is available from the authors upon reasonable request.
369
+ REFERENCES
370
+ 1K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and
371
+ recent advances,” Journal of Modern Optics 63, 2005–2028 (2016), arXiv:1511.04018.
372
+ 2L. Jaurigue, E. Robertson, J. Wolters, and K. L¨udge, “Reservoir computing with delayed input for fast and easy optimisation,” Entropy (Basel, Switzerland)
373
+ 23 (2021), 10.3390/e23121560.
374
+
375
+ 7
376
+ 3R. Finkelstein, E. Poem, O. Michel, O. Lahad, and O. Firstenberg, “Fast, noise-free memory for photon synchronization at room temperature,” Science
377
+ Advances 4, eaap8598 (2018), https://www.science.org/doi/pdf/10.1126/sciadv.aap8598.
378
+ 4M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lonˇcar, D. D. Sukachev, and M. D. Lukin,
379
+ “Experimental demonstration of memory-enhanced quantum communication,” Nature 580, 60–64 (2020).
380
+ 5H.-J. Briegel, W. D¨ur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Physical Review
381
+ Letters 81, 5932–5935 (1998).
382
+ 6M. G¨undo˘gan, J. S. Sidhu, V. Henderson, L. Mazzarella, J. Wolters, D. K. L. Oi, and M. Krutzik, “Proposal for space-borne quantum memories for global
383
+ quantum networking,” npj Quantum Information 7 (2021), 10.1038/s41534-021-00460-9.
384
+ 7J. Walln¨ofer, F. Hahn, M. G¨undo˘gan, J. S. Sidhu, F. Wiesner, N. Walk, J. Eisert, and J. Wolters, “Simulating quantum repeater strategies for multiple satellites,”
385
+ Communications Physics 5, 169 (2022), arXiv:2110.15806.
386
+ 8D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer, J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F. Shotwell, N. Yu, and R. J. Thompson,
387
+ “Observation of Bose–Einstein condensates in an Earth-orbiting research lab,” Nature 582, 193–197 (2020).
388
+ 9K. Frye, S. Abend, W. Bartosch, A. Bawamia, D. Becker, H. Blume, C. Braxmaier, S.-W. Chiow, M. A. Efremov, W. Ertmer, P. Fierlinger, T. Franz,
389
+ N. Gaaloul, J. Grosse, C. Grzeschik, O. Hellmig, V. A. Henderson, W. Herr, U. Israelsson, J. Kohel, M. Krutzik, C. K¨urbis, C. L¨ammerzahl, M. List,
390
+ D. L¨udtke, N. Lundblad, J. P. Marburger, M. Meister, M. Mihm, H. M¨uller, H. M¨untinga, A. M. Nepal, T. Oberschulte, A. Papakonstantinou, J. Perovˇsek,
391
+ A. Peters, A. Prat, E. M. Rasel, A. Roura, M. Sbroscia, W. P. Schleich, C. Schubert, S. T. Seidel, J. Sommer, C. Spindeldreier, D. Stamper-Kurn, B. K. Stuhl,
392
+ M. Warner, T. Wendrich, A. Wenzlawski, A. Wicht, P. Windpassinger, N. Yu, and L. W¨orner, “The Bose-Einstein Condensate and Cold Atom Laboratory,”
393
+ EPJ Quantum Technology 8, 1 (2021).
394
+ 10M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of Modern Physics 77,
395
+ 633–673 (2005).
396
+ 11A. V. Gorshkov, A. Andr´e, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Physical
397
+ Review Letters 98, 1–4 (2007).
398
+ 12O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nature Communications 9, 2074 (2018).
399
+ 13L. Esguerra, L. Meßner, E. Robertson, N. V. Ewald, M. G¨undo˘gan, and J. Wolters, “Optimization and readout-noise analysis of a hot vapor EIT memory on
400
+ the Cs D1 line,” arXiv:2203.06151v1 (2022), 10.48550/ARXIV.2203.06151.
401
+ 14G. Buser, R. Mottola, B. Cotting, J. Wolters, and P. Treutlein, “Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory,” PRX Quantum 3,
402
+ 020349 (2022), arXiv:2204.12389.
403
+ 15I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nature
404
+ Communications 1, 12 (2010), arXiv:1002.3782.
405
+ 16D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum Storage of Orbital Angular Momentum
406
+ Entanglement in an Atomic Ensemble,” Physical Review Letters 114, 050502 (2015), arXiv:1404.0439.
407
+ 17S. Langenfeld, O. Morin, M. K¨orber,
408
+ and G. Rempe, “A network-ready random-access qubits memory,” npj Quantum Information 6, 86 (2020),
409
+ arXiv:2011.00811.
410
+ 18C. Li, S. Zhang, Y.-K. Wu, N. Jiang, Y.-F. Pu, and L.-M. Duan, “Multicell Atomic Quantum Memory as a Hardware-Efficient Quantum Repeater Node,” PRX
411
+ Quantum 2, 040307 (2021).
412
+ 19M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of Modern Physics 77,
413
+ 633–673 (2005).
414
+ 20U. Sch¨unemann, H. Engler, R. Grimm, M. Weidem¨uller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Review
415
+ of Scientific Instruments 70, 242–243 (1999).
416
+ 21B. Wiegand, B. Leykauf, R. J¨ordens,
417
+ and M. Krutzik, “Linien: A versatile, user-friendly, open-source fpga-based tool for frequency stabilization and
418
+ spectroscopy parameter optimization,” Review of Scientific Instruments 93, 063001 (2022), https://doi.org/10.1063/5.0090384.
419
+ 22V. Schkolnik, Probing gravity with quantum sensors, Ph.D. thesis, Humboldt-Universit¨at zu Berlin, Mathematisch-Naturwissenschaftliche Fakult¨at (2017).
420
+ 23S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High
421
+ efficiency Raman memory by suppressing radiation trapping,” New Journal of Physics 19, 063034 (2017), arXiv:1610.03743.
422
+
B9E4T4oBgHgl3EQfFQzj/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf,len=512
2
+ page_content='Multiplexed random-access optical memory in warm cesium vapor Leon Meßner,1, 2, a) Elizabeth Robertson,2, 3 Luisa Esguerra,2, 3 Kathy L¨udge,4 and Janik Wolters2, 3 1)Institut f¨ur Physik, Humboldt-Universit¨at zu Berlin, Newtonstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
3
+ page_content=' 15, 12489 Berlin, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
4
+ page_content=' 2)Deutsches Zentrum f¨ur Luft- und Raumfahrt e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
5
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
6
+ page_content=' (DLR), Institute of Optical Sensor Systems, Rutherfordstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
7
+ page_content=' 2, 12489 Berlin, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
8
+ page_content=' 3)Technische Universit¨at Berlin, Institut f¨ur Optik und Atomare Physik, Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
9
+ page_content=' des 17 Juni 135, 10623 Berlin, Germany 4)Technische Universit¨at Ilmenau, Institut f¨ur Physik, Weimarer Straße 25, 98693 Ilmenau, Germany (Dated: 13 January 2023) The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum computation and communication technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
10
+ page_content=' However, research for multiplexed quantum memories has been focused on systems that show good performance only after an elaborate preparation of the storage media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
11
+ page_content=' This makes it generally more difficult to apply outside a laboratory environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
12
+ page_content=' In this work, we demonstrate a multiplexed random-access memory to store up to four optical pulses using electromagnetically induced transparency in warm cesium vapor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
13
+ page_content=' Using a Λ-System on the hyperfine transitions of the Cs D1 line, we achieve a mean internal storage efficiency of 36% and a 1/e lifetime of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
14
+ page_content='2 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
15
+ page_content=' In combination with future improvements, this work facilitates the implementation of multiplexed memories in future quantum communication and computation infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
16
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
17
+ page_content=' INTRODUCTION Quantum memories are considered to be a main component for the realization of many future second generation quantum technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
18
+ page_content=' Their potential use ranges from synchronizing inputs into various types of quantum systems1 to re-configurable optical reservoir computing2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
19
+ page_content=' They enable on-demand operation of otherwise probabilistic single-photon sources and quantum gates3, which will significantly enhance their rate of operation4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
20
+ page_content=' Moreover, they have been identified as an essential device required to realize a quantum repeater5, a key technology needed for long-distance quantum communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
21
+ page_content=' When specifically considering the implementation of a global quantum communication network, satellite based quantum communication has been hallmarked as a most promising system if enhanced with a multiplexed quantum memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
22
+ page_content=' It has been shown that a significant increase in communication rate is already achievable with around 1000 randomly accessible storage modes6,7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
23
+ page_content=' Consequently, the realization of suitable multiplexed quantum memories will be an important milestone in extending quantum communication over long distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
24
+ page_content=' Quantum memories have been demonstrated using a variety of storage protocols in a number of single emitter and ensemble- based matter systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
25
+ page_content=' These include solid state systems, ultra-cold atoms and warm atomic vapors1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
26
+ page_content=' Although the routine formation of subnanokelvin Bose-Einstein condensates in earth’s orbit has been demonstrated8 and is pursued in future projects9, reducing the technological requirements for space-borne quantum memories is a key step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
27
+ page_content=' This makes memories based on warm atomic vapors favored for applications, as they require no vacuum, laser cooling or strong magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
28
+ page_content=' The memory used in this experiment utilizes the effect of electromagnetically induced transparency (EIT) on the Λ-system composed by the 62S1/2F=3, F=4 and the 62P1/2F=3 atomic hyperfine levels of an ensemble of cesium atoms to map optical excitations to a long-lived spin-wave, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
29
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
30
+ page_content=' a coherence of the two hyperfine ground states of the atomic ensemble10,11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
31
+ page_content=' Due to its coherent ensemble origin, this spin-wave shows comparatively low dephasing and loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
32
+ page_content=' Subsequent retrieval of the spin-wave excitation into the input optical mode can then be performed at some chosen time that is smaller than the spin-wave lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
33
+ page_content=' Light storage for up to 1 s12 and single-photon operation13,14 have been demonstrated in separate experiments in warm atomic vapors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
34
+ page_content=' For a quantum memory to be most useful within a quantum communication system, the memory must be scaleable with the possibility to access individual storage modes in a way that is not significantly limited by the used technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
35
+ page_content=' Various forms of quantum memory multiplexing have been studied in the past, including time bin15, orbital angular momentum16, and spatial17,18 multiplexing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
36
+ page_content=' Among these approaches, Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
37
+ page_content='18 shows a clear foreseeable path to achieving the required number of 1000 randomly accessible modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
38
+ page_content=' However, the technological overhead of a cold atom setup complicates operating these outside of a laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
39
+ page_content=' In this work we demonstrate a memory that combines the advantages of using warm vapor with a path towards scaleable multi-rail operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
40
+ page_content=' a)Electronic mail: messner@physik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
41
+ page_content='tu-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
42
+ page_content='de arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
43
+ page_content='04885v1 [quant-ph] 12 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
44
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
45
+ page_content=' Memory scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
46
+ page_content=' a) Scheme of the Cs D1 energy levels’ hyperfine structure that forms the Λ-system used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
47
+ page_content=' Signal and control fields are red detuned from resonance by ∆ and have angular frequencies ωs and ωc respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
48
+ page_content=' The transition F = 4 → F ′ = 4 is resonantly driven by the pump field with angular frequency ωp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
49
+ page_content=' b) Time traces from an experiment for writing a signal pulse onto an atomic spin-wave at time t0 = 0 and retrieving it at t0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
50
+ page_content='4 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
51
+ page_content=' The bottom panel shows the operation performed on the memory (W: write, R: read).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
52
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
53
+ page_content=' EXPERIMENT The multi-rail memory presented here uses an EIT memory scheme19 on the hyperfine ground state transitions of the Cs D1 line, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
54
+ page_content=' 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
55
+ page_content=' The control and signal lasers (14-pin butterfly external cavity diode laser (ECDL) modules by Sacher Lasertechnik) are set on the F=4 → F ′=3 and the F=3 → F ′=3 transitions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
56
+ page_content=' To stabilize the frequency difference between signal and control laser to the Cs ground state hyperfine splitting, light from both lasers is superimposed on a fast photodiode (Electro Optics Technology, ET-3500FEXR) and their beat frequency is offset locked20 using a RedPitaya FPGA-board running the Linien21 locking software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
57
+ page_content=' We generate Gaussian signal and control pulses with a full width at half maximum (FWHM) of 25 ns and 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
58
+ page_content='75 ns respectively using an arbitrary function generator (AFG, Tek AFG31152).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
59
+ page_content=' These pulses are modulated onto cw laser beams with electro-optic amplitude modulators (EOMs, Jenoptik AM905).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
60
+ page_content=' The experiment is designed such that the signal and control pulses have linear and orthogonal polarization to each other to reduce the control light leaking into the detection path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
61
+ page_content=' The atomic storage medium is confined to a cylindrical, 25x75 mm anti-reflection coated cesium vapor cell filled with 5 torr N2 of buffer gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
62
+ page_content=' It is kept at 60°C and shielded from ambient magnetic fields by a double-layered mu-metal housing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
63
+ page_content=' Spatial addressing of different rails within the cell is performed by one acousto-optic deflector (AOD) in front and one behind the vapor cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
64
+ page_content=' The AODs (AA MT200-B100A0,5-800) have an aperture of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
65
+ page_content='5x2 mm2 and a measured deflection of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
66
+ page_content='2 mrad/MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
67
+ page_content=' Each of them is driven by the frequency sum of an arbitrary function generator (AFG, Tek AFG31152) and a local oscillator (Mini-Circuits, ZOS-300+) resulting in 200±50 MHz of carrier frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
68
+ page_content=' We refer to the position of memory rails by the AOD driving frequency used to deflect the beam to that position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
69
+ page_content=' the distance between rails is thus expressed as the difference in driving frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
70
+ page_content=' Changing the AOD driving frequency by 8 MHz changes the lateral position of the deflected beam by 270 µm, equaling one signal beam radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
71
+ page_content=' While the signal pulses enter the memory unmodified after their generation, the control laser pulses are amplified by a self- made tapered amplifier (TA, see22) and then spectrally filtered by a dielectric bandpass interference filter (IF) with a 1 nm FWHM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
72
+ page_content=' This results in 200 mW of coupled cw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
73
+ page_content=' To increase the control laser’s on-off ratio, the TA diode’s driving current is only switched on for 120 ns, centered on the optical pulse, using a 4 A dc-coupled input follower driver with 2 ns rise/fall time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
74
+ page_content=' This reduces the unwanted interaction between control laser and atoms in times when no control pulse is generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
75
+ page_content=' The beam paths of the cross-polarized signal and control lasers are overlapped at a polarizing beam splitter (PBS) on one side of the memory and then propagate collinearly through the cesium cell, and both AODs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
76
+ page_content=' At the position of the cell, control and signal beam have a 1/e2-level radius of 350 µm and 270 µm respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
77
+ page_content=' This yields an atomic transit time of ∆t = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
78
+ page_content='7 µs for one signal beam radius when using a 2D diffusion model of ∆x = √ 4D∆t for the diffusion length and an assumed diffusion constant of D0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
79
+ page_content='24 cm2s−123 at T0 = 0 K and P0 = 760 torr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
80
+ page_content=' After traversing the second AOD, the signal and control beams are split by a second PBS and are then individually coupled to fibers and detected by either a Si photodiode (Thorlabs DET10A2) or a Si avalanche photodiode (Menlo Systems APD210).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
81
+ page_content=' Optical pumping of the Cs atoms into the 62S1/2F=3 state is performed by a third ECDL laser locked to the 62S1/2F=4 → a) b) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
82
+ page_content=" SIGNAL 62P1/ 2 F'= 4 F'= 3 [arb." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
83
+ page_content='] CONTROL Intensity m m dm DETECTOR F= 4 62S1/ 2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
84
+ page_content='2 GHz F= 3 PUMP W R R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
85
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
86
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
87
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
88
+ page_content='0 Time [μs]3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
89
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
90
+ page_content=' Sketch of the experiment with A) laser sources, spectroscopy and optical pulse shaping, B) TA based pulse amplification, C) multi-rail storage system and D) CCD image of the four used rails, with the camera at the place of the Cs cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
91
+ page_content=' HWP: half-wave plate, QWP: quarter-wave plate, DET: detector, (P)BS: (polarizing) beam splitter, L1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
92
+ page_content='L2/L3: aspheric/cylindrical lens, AOD: acousto-optic deflector, EOM: electro-optic modulator, AFG: arbitrary function generator, IF: interference filter, OL: offset lock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
93
+ page_content=' 62P1/2F=4 transition by saturated absorption spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
94
+ page_content=' The pump light power is controlled via transmission through an electrically pulsed semiconductor optical amplifier (SOA) and illuminates each memory rail with 20 mW of optical power for 900 ns prior to the memory experiment sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
95
+ page_content=' Figure 1(b) shows a typical time trace for a single-rail storage experiment and a sketch of the experimental setup can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
96
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
97
+ page_content=' Several features of storage within an EIT medium can be observed in the time trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
98
+ page_content=' At t = 0 µs a signal pulse enters the atomic medium and is partly mapped to an atomic spin wave by the control laser field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
99
+ page_content=' The portion of that signal pulse that is transmitted through the atomic vapor is detected by the photodiode as leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
100
+ page_content=' After 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
101
+ page_content='4 µs the control laser field is switched on again and retrieves the spin-wave excitation back into the signal beams optical mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
102
+ page_content=' A third pulse of the control laser at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
103
+ page_content='8 µs serves to determine if all the excitation has been retrieved and also allows to estimate the signal noise induced by the control laser field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
104
+ page_content=' Not having a significant detection event during this last pulse, we conclude that nearly all the spin-wave excitation is mapped backed to optical and signal to noise ratio is not a limiting factor for this experiment with aforementioned laser pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
105
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
106
+ page_content=' RESULTS Prior to performing multi-rail storage, we first identify optimal operating conditions for the multi-rail memory by assessing the influence of rail separation on the interactions between two memory rails, and subsequently minimizing the cross-talk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
107
+ page_content=' For comparison of the single and multi-rail operation, we measure the 1/e lifetime and memory efficiency per rail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
108
+ page_content=' To assess the influence of rail separation on their interaction, multiple storage experiments at different rail separations are conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
109
+ page_content=' For effective operation of a memory, we require that operations on a given memory rail do not affect its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
110
+ page_content=' To determine the minimal separation that shows no cross-talk, we write into a rail fixed at 190 MHz, read from a neighboring rail, and then read from the 190 MHz rail again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
111
+ page_content=' This write/read/read sequence is depicted in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
112
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
113
+ page_content=' The rail separation is varied from 0 to 25 MHz at steps of 1 MHz, and the retrieval peak intensities after the first and second read are measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
114
+ page_content=' The results are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
115
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
116
+ page_content=' Below 5 to 8 MHz of separation no excitation is left for the second retrieval pulse and both read pulses address the same ensemble of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
117
+ page_content=' At a separation of 20 MHz the influence of the read operation on the neighboring rail is no longer visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
118
+ page_content=' The AOD device used has a 100 MHz bandwidth and a 25% reduced diffraction efficiency at the edges of the frequency range;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
119
+ page_content=' consequently we chose to limit this experiment to four memory rails spaced by 20 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
120
+ page_content=' A CCD image of the four rails, taken at the position of the Cs cell, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
121
+ page_content=' 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
122
+ page_content=' A straightforward method to increase the number of rails, is to use AODs with a higher number of resolvable spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
123
+ page_content=' The 1/e storage lifetime per rail is determined by performing storage experiments with increasing time delay between the memory write and read operation, for each rail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
124
+ page_content=' The delay was varied between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
125
+ page_content='4 µs and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
126
+ page_content='2 µs in steps of 400 ns, and for each A) duwnd EOM C) signal HWP AOD L2 AOD HWP PBS HwP L1 QWP DET LASER to AWG BS PBS PBS to OL control HWP PBS LASER EOM D) B) BP HWP 1nm HWP PBS 20 MHz 『』 TA-diode L2L3 opt, isolator PD 625 um4 Peak 1 Peak 2 0 5 10 15 20 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
127
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
128
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
129
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
130
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
131
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
132
+ page_content='10 Rail separation [MHz] Intensity [arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
133
+ page_content='] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
134
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
135
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
136
+ page_content='0 Time [µs] W R R FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
137
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
138
+ page_content=' Cross-talk estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
139
+ page_content=' Intensities detected in the first (Peak 1, orange rail) and second (Peak 2, green rail) read peak depending on the rail separation for the experiment sequence depicted in the inset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
140
+ page_content=' For a difference of 20 MHz in AOD driving frequency (rail separation), the influence between neighboring rails vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
141
+ page_content=' The inset shows the used experiment sequence consisting of a write on the green rail at t = 0, a read on a neighboring orange rail at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
142
+ page_content='4 µs and finally a read on the green rail at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
143
+ page_content='8 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
144
+ page_content=' delay, we measure the retrieved peak intensities, averaged over 500 repetitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
145
+ page_content=' Uncertainties are given by the standard deviation of the intensities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
146
+ page_content=' The intensities were fitted with an exponential function to extract the 1/e lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
147
+ page_content=' Measured retrieval peak intensities and fit function are displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
148
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
149
+ page_content=' The resulting lifetime values per rail are shown in Table I together with the achieved internal memory efficiencies ηmem at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
150
+ page_content=' Since the measured lifetimes are consistent with the estimate using the simple diffusion model presented earlier, it is reasonable to assume that diffusion is the most important lifetime-limiting process for the beam diameters chosen in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
151
+ page_content=' Independent investigation on a single rail setup also showed that spin polarization lifetimes at least on the order of several hundred microseconds are possible with larger beam diameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
152
+ page_content=' The memory efficiencies are calculated by extrapolating the pulse energy of a retrieved pulse after t = 0 µs of storage from a retrieved pulse after t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
153
+ page_content='4 µs of storage using the memory lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
154
+ page_content=' This is then divided by the energy of a normalization pulse to yield the efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
155
+ page_content=' To obtain the normalization pulse, we set the signal laser frequency 2 GHz below the F=3 → F ′=3 transition frequency, block the control beam and record the transmitted signal pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
156
+ page_content=' Under these conditions, we assume the pulses not to be absorbed by the atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
157
+ page_content=' Using the insights and results from the measurements on lifetime, efficiency and rail separation, we now explore the possibility of random-access operation in the memory setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
158
+ page_content=' For this purpose an experimental sequence was designed that highlights important criteria for use as a random-access quantum memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
159
+ page_content=' Figure 5 illustrates this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
160
+ page_content=' The bottom panel depicts the operation performed on each specific rail and the top panel shows the intensity detected by the APD over a time span of about 5 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
161
+ page_content=' The experimental sequence contains 12 operations, either read (r) or write (w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
162
+ page_content=' We define three features which are necessary for use as a memory: a) that reading or writing to a rail should not affect its neighbors (interaction-free), b) rails which have not been written to should not return a retrieved pulse (empty state) and c) a read should leave the memory empty;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
163
+ page_content=' a subsequent read pulse should yield no excitation (full retrieval).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
164
+ page_content=' Rail (MHz) 170 190 210 230 Mean Lifetime (µs) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
165
+ page_content='3(5) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
166
+ page_content='4(7) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
167
+ page_content='3(3) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
168
+ page_content='6(3) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
169
+ page_content='2(2) Efficiency (%) 32 35 39 36 36 TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
170
+ page_content=' Measured 1/e-lifetime and retrieval efficiency for each rail and weighted mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
171
+ page_content=' 5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
172
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
173
+ page_content=' Measured retrieval amplitudes for storage times between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
174
+ page_content='4 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
175
+ page_content='4 µs together with an exponential fit to the values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
176
+ page_content=' The inset shows the per rail 1/e storage lifetime deduced from the fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
177
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
178
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
179
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
180
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
181
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
182
+ page_content='20 1 2 3 4 5 6 7 8 9 10 11 12 Intensity [arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
183
+ page_content='] Operation # 0 1 2 3 4 230MHz 210MHz 190MHz 170MHz W W R R W R W R R R W R Time [µs] FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
184
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
185
+ page_content=' Storage experiment in the random-access memory using four rails with detected intensity in the signal path in the top and performed operations (read/write) in the bottom panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
186
+ page_content=' A total of 12 operations are performed over a span of 5 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
187
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
188
+ page_content='20 1/e Lifetime [μus] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
189
+ page_content='15 4 Intensity [arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
190
+ page_content='] 3 王 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
191
+ page_content='10 2 170 190 210 230 Rail [MHz] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
192
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
193
+ page_content='00F 0 2 4 6 8 10 12 Time [μs]6 Interaction-free operation is ensured by choosing an adequate rail separation and then confirmed by looking at the storage performance of a specific rail while there are operations performed on the neighboring rails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
194
+ page_content=' The rails at 230 MHz (blue) and 190 MHz (green) can be used to show that operations are interaction free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
195
+ page_content=' Between the write (t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
196
+ page_content='6 µs) and read (t = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
197
+ page_content='6 µs) operation on the 190 MHz rail, four operations are performed on the neighboring rails and there is no visible impact on the read peak shape or height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
198
+ page_content=' On the 230 MHz rail a pulse is written at t = 0 and then retrieved during the last operation on the memory at t = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
199
+ page_content='4 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
200
+ page_content=' Taking into account the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
201
+ page_content='6 µs lifetime of this rail, the high remaining intensity of the retrieval peak clearly shows that there is no significant detrimental influence from multi-rail operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
202
+ page_content=' Reading an empty rail should not result in a significant amount of intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
203
+ page_content=' We verify this by reading the 210 MHz and 170 MHz rail in a state that should not have excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
204
+ page_content=' In the 210 MHz rail a pulse is written to the memory at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
205
+ page_content='4 µs and then this rail is immediately read twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
206
+ page_content=' The second read operation at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
207
+ page_content='8 µs yields negligible intensity compared to the first read operation at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
208
+ page_content='6 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
209
+ page_content=' Additionally the same rail is read again at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
210
+ page_content='2 µs to observe the amount of noise, which is found to be comparable to the read at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
211
+ page_content='2 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
212
+ page_content=' The first operation on the 190 MHz rail at t = 2 µs is a read of a rail that has not been used before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
213
+ page_content=' This allows us to determine how well the memory was initialized by the pumping that is performed prior to the experimental sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
214
+ page_content=' Observing a larger intensity peak would point to insufficient polarization of the medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
215
+ page_content=' As the observed peak is similar to the other reads of an empty rail mentioned above, we conclude that pumping is sufficient and reading an empty rail, regardless of its history, does not lead to the detection of a significant peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
216
+ page_content=' In combination with the measurements on lifetime and rail interaction it follows that this setup allows random-access storage and retrieval of optical pulses for times comparable to the mean rail lifetime of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
217
+ page_content='2 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
218
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
219
+ page_content=' CONCLUSION We have presented a multiplexed optical random-access memory, realised within a single vapor cell at a temperature of 60°C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
220
+ page_content=' Using an EIT based storage scheme in a Λ-system on the cesium hyperfine transitions, we achieved a mean storage lifetime and internal efficiency of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
221
+ page_content='2(2) µs and 36% respectively in multi-rail operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
222
+ page_content=' According to the chosen rail separation of 20 MHz, we performed random-access storage and retrieval in four parallel rails without observing reciprocal influence between the different rails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
223
+ page_content=' The time between successive operations was chosen to be 400 ns for the sake of simplifying experiment control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
224
+ page_content=' This time could be reduced considerably with the lower bound determined by the AODs switching time of 48 ns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
225
+ page_content=' Increasing the storage lifetime and number of addressable rails is possible by increasing the beam diameters and using AODs that have a higher time-bandwidth product respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
226
+ page_content=' This step will be important for applications in quantum communication and repeater networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
227
+ page_content=' Reaching beyond the threshold number of 1000 individually addressable modes is possible by using 2-axis AODs and multiplexing into a two dimensional grid of parallel storage modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
228
+ page_content=' FUNDING This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number 445183921.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
229
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
230
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
231
+ page_content=' acknowledges funding through the Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
232
+ page_content=' DISCLOSURES The authors declare no conflicts of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
233
+ page_content=' DATA AVAILABILITY The data presented in this paper is available from the authors upon reasonable request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
234
+ page_content=' REFERENCES 1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
235
+ page_content=' Heshami, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
236
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
237
+ page_content=' England, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
238
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
239
+ page_content=' Humphreys, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
240
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
241
+ page_content=' Bustard, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
242
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
243
+ page_content=' Acosta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
244
+ page_content=' Nunn, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
245
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
246
+ page_content=' Sussman, “Quantum memories: emerging applications and recent advances,” Journal of Modern Optics 63, 2005–2028 (2016), arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
247
+ page_content='04018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
248
+ page_content=' 2L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
249
+ page_content=' Jaurigue, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
250
+ page_content=' Robertson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
251
+ page_content=' Wolters, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
252
+ page_content=' L¨udge, “Reservoir computing with delayed input for fast and easy optimisation,” Entropy (Basel, Switzerland) 23 (2021), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
253
+ page_content='3390/e23121560.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
254
+ page_content=' 7 3R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
255
+ page_content=' Finkelstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
256
+ page_content=' Poem, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
257
+ page_content=' Michel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
258
+ page_content=' Lahad, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
259
+ page_content=' Firstenberg, “Fast, noise-free memory for photon synchronization at room temperature,” Science Advances 4, eaap8598 (2018), https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
260
+ page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
261
+ page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
262
+ page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
263
+ page_content='aap8598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
264
+ page_content=' 4M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
265
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
266
+ page_content=' Bhaskar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
267
+ page_content=' Riedinger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
268
+ page_content=' Machielse, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
269
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
270
+ page_content=' Levonian, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
271
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
272
+ page_content=' Nguyen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
273
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
274
+ page_content=' Knall, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
275
+ page_content=' Park, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
276
+ page_content=' Englund, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
277
+ page_content=' Lonˇcar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
278
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
279
+ page_content=' Sukachev, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
280
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
281
+ page_content=' Lukin, “Experimental demonstration of memory-enhanced quantum communication,” Nature 580, 60–64 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
282
+ page_content=' 5H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
283
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
284
+ page_content=' Briegel, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
285
+ page_content=' D¨ur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
286
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
287
+ page_content=' Cirac, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
288
+ page_content=' Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Physical Review Letters 81, 5932–5935 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
289
+ page_content=' 6M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
290
+ page_content=' G¨undo˘gan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
291
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
292
+ page_content=' Sidhu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
293
+ page_content=' Henderson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
294
+ page_content=' Mazzarella, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
295
+ page_content=' Wolters, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
296
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
297
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
298
+ page_content=' Oi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
299
+ page_content=' Krutzik, “Proposal for space-borne quantum memories for global quantum networking,” npj Quantum Information 7 (2021), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
300
+ page_content='1038/s41534-021-00460-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
301
+ page_content=' 7J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
302
+ page_content=' Walln¨ofer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
303
+ page_content=' Hahn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
304
+ page_content=' G¨undo˘gan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
305
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
306
+ page_content=' Sidhu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
307
+ page_content=' Wiesner, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
308
+ page_content=' Walk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
309
+ page_content=' Eisert, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
310
+ page_content=' Wolters, “Simulating quantum repeater strategies for multiple satellites,” Communications Physics 5, 169 (2022), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
311
+ page_content='15806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
312
+ page_content=' 8D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
313
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
314
+ page_content=' Aveline, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
315
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
316
+ page_content=' Williams, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
317
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
318
+ page_content=' Elliott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
319
+ page_content=' Dutenhoffer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
320
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
321
+ page_content=' Kellogg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
322
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
323
+ page_content=' Kohel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
324
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
325
+ page_content=' Lay, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
326
+ page_content=' Oudrhiri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
327
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
328
+ page_content=' Shotwell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
329
+ page_content=' Yu, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
330
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
331
+ page_content=' Thompson, “Observation of Bose–Einstein condensates in an Earth-orbiting research lab,” Nature 582, 193–197 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
332
+ page_content=' 9K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
333
+ page_content=' Frye, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
334
+ page_content=' Abend, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
335
+ page_content=' Bartosch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
336
+ page_content=' Bawamia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
337
+ page_content=' Becker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
338
+ page_content=' Blume, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
339
+ page_content=' Braxmaier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
340
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
341
+ page_content=' Chiow, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
342
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
343
+ page_content=' Efremov, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
344
+ page_content=' Ertmer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
345
+ page_content=' Fierlinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
346
+ page_content=' Franz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
347
+ page_content=' Gaaloul, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
348
+ page_content=' Grosse, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
349
+ page_content=' Grzeschik, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
350
+ page_content=' Hellmig, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
351
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
352
+ page_content=' Henderson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
353
+ page_content=' Herr, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
354
+ page_content=' Israelsson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
355
+ page_content=' Kohel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
356
+ page_content=' Krutzik, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
357
+ page_content=' K¨urbis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
358
+ page_content=' L¨ammerzahl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
359
+ page_content=' List, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
360
+ page_content=' L¨udtke, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
361
+ page_content=' Lundblad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
362
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
363
+ page_content=' Marburger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
364
+ page_content=' Meister, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
365
+ page_content=' Mihm, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
366
+ page_content=' M¨uller, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
367
+ page_content=' M¨untinga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
368
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
369
+ page_content=' Nepal, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
370
+ page_content=' Oberschulte, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
371
+ page_content=' Papakonstantinou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
372
+ page_content=' Perovˇsek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
373
+ page_content=' Peters, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
374
+ page_content=' Prat, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
375
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
376
+ page_content=' Rasel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
377
+ page_content=' Roura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
378
+ page_content=' Sbroscia, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
379
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
380
+ page_content=' Schleich, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
381
+ page_content=' Schubert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
382
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
383
+ page_content=' Seidel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
384
+ page_content=' Sommer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
385
+ page_content=' Spindeldreier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
386
+ page_content=' Stamper-Kurn, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
387
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
388
+ page_content=' Stuhl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
389
+ page_content=' Warner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
390
+ page_content=' Wendrich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
391
+ page_content=' Wenzlawski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
392
+ page_content=' Wicht, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
393
+ page_content=' Windpassinger, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
394
+ page_content=' Yu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
395
+ page_content=' W¨orner, “The Bose-Einstein Condensate and Cold Atom Laboratory,” EPJ Quantum Technology 8, 1 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
396
+ page_content=' 10M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
397
+ page_content=' Fleischhauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
398
+ page_content=' Imamoglu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
399
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
400
+ page_content=' Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of Modern Physics 77, 633–673 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
401
+ page_content=' 11A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
402
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
403
+ page_content=' Gorshkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
404
+ page_content=' Andr´e, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
405
+ page_content=' Fleischhauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
406
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
407
+ page_content=' Sørensen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
408
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
409
+ page_content=' Lukin, “Universal approach to optimal photon storage in atomic media,” Physical Review Letters 98, 1–4 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
410
+ page_content=' 12O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
411
+ page_content=' Katz and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
412
+ page_content=' Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nature Communications 9, 2074 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
413
+ page_content=' 13L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
414
+ page_content=' Esguerra, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
415
+ page_content=' Meßner, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
416
+ page_content=' Robertson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
417
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
418
+ page_content=' Ewald, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
419
+ page_content=' G¨undo˘gan, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
420
+ page_content=' Wolters, “Optimization and readout-noise analysis of a hot vapor EIT memory on the Cs D1 line,” arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
421
+ page_content='06151v1 (2022), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
422
+ page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
423
+ page_content='2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
424
+ page_content='06151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
425
+ page_content=' 14G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
426
+ page_content=' Buser, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
427
+ page_content=' Mottola, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
428
+ page_content=' Cotting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
429
+ page_content=' Wolters, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
430
+ page_content=' Treutlein, “Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory,” PRX Quantum 3, 020349 (2022), arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
431
+ page_content='12389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
432
+ page_content=' 15I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
433
+ page_content=' Usmani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
434
+ page_content=' Afzelius, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
435
+ page_content=' de Riedmatten, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
436
+ page_content=' Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nature Communications 1, 12 (2010), arXiv:1002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
437
+ page_content='3782.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
438
+ page_content=' 16D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
439
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
440
+ page_content=' Ding, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
441
+ page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
442
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
443
+ page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
444
+ page_content=' Shi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
445
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
446
+ page_content=' Xiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
447
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
448
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
449
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
450
+ page_content=' Jiang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
451
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
452
+ page_content=' Shi, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
453
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
454
+ page_content=' Guo, “Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble,” Physical Review Letters 114, 050502 (2015), arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
455
+ page_content='0439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
456
+ page_content=' 17S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
457
+ page_content=' Langenfeld, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
458
+ page_content=' Morin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
459
+ page_content=' K¨orber, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
460
+ page_content=' Rempe, “A network-ready random-access qubits memory,” npj Quantum Information 6, 86 (2020), arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
461
+ page_content='00811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
462
+ page_content=' 18C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
463
+ page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
464
+ page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
465
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
466
+ page_content=' Wu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
467
+ page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
468
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
469
+ page_content=' Pu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
470
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
471
+ page_content=' Duan, “Multicell Atomic Quantum Memory as a Hardware-Efficient Quantum Repeater Node,” PRX Quantum 2, 040307 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
472
+ page_content=' 19M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
473
+ page_content=' Fleischhauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
474
+ page_content=' Imamoglu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
475
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
476
+ page_content=' Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of Modern Physics 77, 633–673 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
477
+ page_content=' 20U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
478
+ page_content=' Sch¨unemann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
479
+ page_content=' Engler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
480
+ page_content=' Grimm, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
481
+ page_content=' Weidem¨uller, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
482
+ page_content=' Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Review of Scientific Instruments 70, 242–243 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
483
+ page_content=' 21B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
484
+ page_content=' Wiegand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
485
+ page_content=' Leykauf, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
486
+ page_content=' J¨ordens, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
487
+ page_content=' Krutzik, “Linien: A versatile, user-friendly, open-source fpga-based tool for frequency stabilization and spectroscopy parameter optimization,” Review of Scientific Instruments 93, 063001 (2022), https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
488
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
489
+ page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
490
+ page_content='0090384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
491
+ page_content=' 22V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
492
+ page_content=' Schkolnik, Probing gravity with quantum sensors, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
493
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
494
+ page_content=' thesis, Humboldt-Universit¨at zu Berlin, Mathematisch-Naturwissenschaftliche Fakult¨at (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
495
+ page_content=' 23S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
496
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
497
+ page_content=' Thomas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
498
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
499
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
500
+ page_content=' Munns, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
501
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
502
+ page_content=' Kaczmarek, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
503
+ page_content=' Qiu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
504
+ page_content=' Brecht, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
505
+ page_content=' Feizpour, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
506
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
507
+ page_content=' Ledingham, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
508
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
509
+ page_content=' Walmsley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
510
+ page_content=' Nunn, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
511
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
512
+ page_content=' Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New Journal of Physics 19, 063034 (2017), arXiv:1610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
513
+ page_content='03743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf'}
BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ad482cad59cf94b1607d6d138558d9ffa1d1157004cbd487b4dbd1ce6fdc6ae
3
+ size 974035
BdE0T4oBgHgl3EQfyAIA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:629136cf23393d4546e95ac98d135f8e1331eb01ec132af8d09b6f1cdd584cfb
3
+ size 2424877
BdE3T4oBgHgl3EQftAtl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f87c4d51abaeec0f0cac82beba6b316a61fb8d34c9a66b445749b5a2b3a74039
3
+ size 3735597
BdE3T4oBgHgl3EQftAtl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6bd68b53415445e81e0622253f1fb54a079f03983d8314d315e8cf8adb948c4
3
+ size 128498
DNAyT4oBgHgl3EQfSPdR/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a61ab1e2bd34b3a922defe180b8b4b0c2d44ca364fdab0cddb3ddc006a1f6c
3
+ size 14024749
E9E0T4oBgHgl3EQfQwCg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:510bbdcc3444f2fb5da5d0cab3195235b7e46e523e5c920cb8e318d505450324
3
+ size 192447
F9E3T4oBgHgl3EQfWAol/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26893d13f346cef4255641d649e067dff298648cdc981eedb6f346362a014bd6
3
+ size 393261
F9E3T4oBgHgl3EQfWAol/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deee875429578a44cf5aa6cae2bc2a4f4119648dbb0f27874d09089067f19df8
3
+ size 16793
FtAyT4oBgHgl3EQfrPm5/content/2301.00558v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4cd0b61b23508877474db28497958bf12bfbcca1cb39b1461b5d8af11bf46f4
3
+ size 6179301
FtFJT4oBgHgl3EQfDSx3/content/tmp_files/2301.11433v1.pdf.txt ADDED
@@ -0,0 +1,2271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 30, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX63
3
+ Strong Variability in AzV 493, an Extreme Oe-Type Star in the SMC
4
+ M. S. Oey,1 N. Castro,2 M. Renzo,3 I. Vargas-Salazar,1 M. W. Suffak,4 M. Ratajczak,5 J. D. Monnier,1
5
+ M. K. Szymanski,5 G. D. Phillips,1 N. Calvet,1 A. Chiti,6, 7 G. Micheva,1, 8 K. C. Rasmussen,1, 9 and
6
+ R. H. D. Townsend10
7
+ 1Astronomy Department, University of Michigan, 1085 South University Ave., Ann Arbor, MI, 48109, USA
8
+ 2Leibniz-Institut f¨ur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany
9
+ 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA
10
+ 4Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
11
+ 5Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
12
+ 6Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA
13
+ 7Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
14
+ 8Present address: Leibniz-Institut f¨ur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany
15
+ 9Present address: Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA
16
+ 10Astronomy Department, University of Wisconsin, Madison, WI 53706, USA
17
+ (Accepted January 23, 2023; to appear in the Astrophysical Journal)
18
+ ABSTRACT
19
+ We present 18 years of OGLE photometry together with spectra obtained over 12 years, revealing that
20
+ the early Oe star AzV 493 shows strong photometric (∆I < 1.2 mag) and spectroscopic variability with
21
+ a dominant, 14.6-year pattern and ∼40-day oscillations. We estimate stellar parameters Teff = 42000
22
+ K, log L/L⊙ = 5.83 ± 0.15, M/M⊙ = 50 ± 9, and v sin i = 370 ± 40 km s−1. Direct spectroscopic
23
+ evidence shows episodes of both gas ejection and infall. There is no X-ray detection, and it is likely
24
+ a runaway star. AzV 493 may have an unseen companion on a highly eccentric (e > 0.93) orbit.
25
+ We propose that close interaction at periastron excites ejection of the decretion disk, whose variable
26
+ emission-line spectrum suggests separate inner and outer components, with an optically thick outer
27
+ component obscuring both the stellar photosphere and the emission-line spectrum of the inner disk at
28
+ early phases in the
29
+ photometric cycle. It is plausible that AzV 493’s mass and rotation have been
30
+ enhanced by binary interaction followed by the core-collapse supernova explosion of the companion,
31
+ which now could be either a black hole or neutron star. This system in the Small Magellanic Cloud
32
+ can potentially shed light on OBe decretion disk formation and evolution, massive binary evolution,
33
+ and compact binary progenitors.
34
+ Keywords: early-type stars — Oe stars — Be stars — high-mass X-ray binary stars — circumstellar
35
+ disks — stellar pulsations — interacting binary stars — compact objects — runaway stars
36
+ — variable stars — Small Magellanic Cloud
37
+ 1. INTRODUCTION
38
+ Binary interactions are now understood to be a funda-
39
+ mental component of massive star evolution, and they
40
+ are the progenitors of a wide variety of energetic phe-
41
+ nomena including high-mass X-ray binaries (HMXBs),
42
+ ultra-luminous X-ray sources (ULXs), stripped-envelope
43
+ core-collapse supernovae (SNe), and gravitational wave
44
+ events. A consensus is emerging that classical OBe stars
45
+ appear to originate from close massive binary systems,
46
+ wherein they have spun up through mass and angular
47
+ momentum transfer from their mass donors (e.g, Pols
48
+ et al. 1991; Vinciguerra et al. 2020; Bodensteiner et al.
49
+ 2020, see also Rivinius et al. 2013 for a review). When
50
+ donor stars subsequently explode as supernovae, result-
51
+ ing post-explosion bound binaries are more likely to
52
+ be eccentric, since they result from tight binaries (e.g.,
53
+ Brandt & Podsiadlowski 1995; Tauris & Takens 1998;
54
+ Renzo et al. 2019). Thus, a substantial subset of classi-
55
+ cal OBe stars are likely to have eccentric orbits. In this
56
+ paper, we present photometric and spectrocopic time-
57
+ series data showing that the star AzV 493 exhibits dra-
58
+ matic variability and may be an eccentric binary system.
59
+ AzV 493 (Azzopardi et al. 1975) or [M2002]SMC-
60
+ 77616 (Massey 2002) was identified as an extreme, clas-
61
+ arXiv:2301.11433v1 [astro-ph.SR] 26 Jan 2023
62
+
63
+ 2
64
+ sical Oe star by Golden-Marx et al. (2016).
65
+ In that
66
+ work, it was found to be the earliest classical Oe star
67
+ in our sample of field OB stars in the Small Magel-
68
+ lanic Cloud (SMC), based on a spectrum obtained in
69
+ 2009 that shows double-peaked emission, not only in
70
+ the Balmer lines, but also in He i and He ii λ4686, the
71
+ latter feature being rarely observed in other Oe stars
72
+ (Conti & Leep 1974). Specifically, it is classified as an
73
+ Ope star, indicating that the He i absorption lines show
74
+ infilled emission (Sota et al. 2011).
75
+ As an extreme object, AzV 493 offers unique oppor-
76
+ tunities to study massive binary evolution and decre-
77
+ tion disk formation, structure, and dynamics. Section 2
78
+ presents the unusual light curve and periodicity, and
79
+ Section 3 presents our multi-epoch spectroscopy with
80
+ resulting derived stellar parameters and individual spec-
81
+ tral features. We then present two possible models for
82
+ the AzV 493 system in Sections 4 and 5, one based on
83
+ ejection of an optically thick disk near periastron; and
84
+ another based on disk growth and disruption. Section 6
85
+ discusses the likely binary origin of the system, and Sec-
86
+ tion 7 summarizes our findings.
87
+ 2. PHOTOMETRIC LIGHT CURVE
88
+ 2.1. Long-term light curve
89
+ The I and V -band light curves of AzV 493 from the
90
+ OGLE Project (Udalski et al. 2008, 2015) are presented
91
+ in Figure 1. The I-band shows a short eruption with
92
+ the peak of the light curve on
93
+ MJD 52212, followed
94
+ by an abrupt decline of approximately 1.2 mag, to a
95
+ minimum on MJD 52303 in early 2002. After this, the
96
+ star eventually recovers its original luminosity. Another
97
+ photometric minimum is seen in 2016 on MJD 57626,
98
+ followed by the same brightening pattern.
99
+ The gray
100
+ symbols in Figure 1 show the I-band photometry from
101
+ the 2016 cycle overplotted on the data from 2002 cy-
102
+ cle. This shows that the minimum luminosity and subse-
103
+ quent increase are quantitatively identical, although the
104
+ photometry immediately preceding the minimum differs.
105
+ Cross-correlating these segments yields a long-cycle pe-
106
+ riod of 5311 days (14.55 years). There is no evidence of
107
+ a similar eruption preceding the minimum in the 2016
108
+ cycle on the same 91-day timescale, although the pho-
109
+ tometry is incomplete in this range.
110
+ After the minimum, the brightness increases and then
111
+ starts to gradually decrease again, over a period of sev-
112
+ eral years. Approximately in 2008, AzV 493 appears to
113
+ go into a multiple outburst event. After this, the light
114
+ curve drastically changes, showing a multi-mode pulsa-
115
+ tion behavior that evolves with time (Section 2.2). The
116
+ pulsation ends with another 0.2 – 0.3 mag drop, followed
117
+ by a steady increase, repeating the light curve cycle that
118
+ started in 2002, 14.55 years before.
119
+ 2.2. Photometric Oscillations
120
+ Figure 2 shows short-term variability on the order of
121
+ 30 – 45 days. We quantify the evolution of these oscil-
122
+ lations seen in the I-band light curve using Generalized
123
+ Lomb-Scargle periodograms (Zechmeister & K¨urster
124
+ 2009) for the six contiguous OGLE datasets from 2010 –
125
+ 2016 (Figure 1). The individual fits to these six ranges
126
+ are shown in Appendix A. Comparison of the periods
127
+ shown in Figure 3 with the light curve (Figure 1) shows
128
+ that they qualitatively appear to correlate with stellar
129
+ brightness.
130
+ The OGLE survey provides V -band magnitudes for
131
+ a subset of the survey epochs, which are shown in red
132
+ in Figure 1. Figure 4 displays the color-magnitude dia-
133
+ gram (CMD) in V vs V − I for those days where both
134
+ bands were observed.
135
+ Figure 4a compares AzV 493’s
136
+ color variations with data for the remainder of the RI-
137
+ OTS4 sample stars (Lamb et al. 2016). The latter corre-
138
+ spond to single-epoch photometry from the OGLE cat-
139
+ alog of Poleski et al. (2012). Those stars classified as
140
+ OBe stars by Lamb et al. (2016) are marked in the plot.
141
+ The blue plume of non-emission-line stars is clearly sepa-
142
+ rated from the cloud of OBe stars at redder colors in the
143
+ CMD, a phenomenon already known from different pho-
144
+ tometric bands (e.g., Bonanos et al. 2010; Castro et al.
145
+ 2018). The color variation of AzV 493 spans almost the
146
+ entire range of V − I colors covered by the emission-line
147
+ stars.
148
+ Figure 4b shows a zoom in the CMD with the path of
149
+ AzV 493 traced out. The star appears red during the
150
+ broad peak of the light curve around 2006 (Figure 1),
151
+ and then moves to bluer colors reaching the bluest V −I
152
+ color during the pulsation phase.
153
+ Approximately in
154
+ 2017, when the light curve is brightening after the mini-
155
+ mum, AzV 493 shows redder colors again, moving to the
156
+ original position observed in 2005 with V − I ∼ 0.18.
157
+ Similar, semi-periodic variability with timescales on
158
+ the order of weeks to months is seen in many other OBe
159
+ stars, and their origin is unknown (e.g., Labadie-Bartz
160
+ et al. 2017).
161
+ Proposed explanations include forms of
162
+ non-radial pulsations of the star and transitory or orbit-
163
+ ing density enhancements in the disk, which may be the
164
+ most likely scenario. The associated cyclical variation in
165
+ the CMD (Figure 4) is also consistent with some kind of
166
+ stellar radial pulsation. This is supported by the corre-
167
+ lation between period and luminosity (cf. Figures 3 and
168
+ 4). In that case, the relatively long period implies that
169
+ they could be an induced gravity mode or pulsational
170
+ instability. However, there are many other possible ex-
171
+
172
+ 3
173
+ Figure 1. AzV 493 OGLE light curves in I (black) and V (red) bands. The last segment of the I-band curve is overplotted
174
+ (light grey dots) on the beginning of the dataset phase 14.6 years (5311 days) earlier. V − I is shown in the lower panel. The
175
+ dashed lines mark the epochs for the observed spectra, assigned alphabetically in chronological sequence. The green shaded
176
+ regions show consecutive 2656-day segments starting with the light curve maximum in 2001.
177
+ Figure 2. Zoom on light curve (top) showing ∼ 40-day oscillations, and color variation (bottom).
178
+
179
+ Time [year]
180
+ 2002
181
+ 2004
182
+ 2006
183
+ 2008
184
+ 2010
185
+ 2012
186
+ 2014
187
+ 2016
188
+ 2018
189
+ 2020
190
+ 2022
191
+ D
192
+ H
193
+ 13.65
194
+ E
195
+ F
196
+ 13.80
197
+ B
198
+ C
199
+ G
200
+ 13.95
201
+ @ 14.10
202
+ nitude
203
+ 14.25
204
+ Magr
205
+ 14.40
206
+ 14.55
207
+ 14.70-
208
+ I band
209
+ 14.85
210
+ V band
211
+ I band shifted -14 years
212
+ C
213
+ 0.2
214
+ :
215
+ 0.1
216
+ io
217
+ 0.0
218
+ -0.1 -
219
+ 53000
220
+ 54000
221
+ 55000
222
+ 56000
223
+ 57000
224
+ 58000
225
+ 59000
226
+ MJD [days]Time [year]
227
+ 2010.4
228
+ 2010.6
229
+ 2010.8
230
+ 2011.0
231
+ 2011.2
232
+ 2011.4
233
+ 2011.6
234
+ 2011.8
235
+ 2012.0
236
+ 2012.2
237
+ I band
238
+ 14.24-
239
+ V band
240
+ 14.32
241
+ .
242
+ 3
243
+ 14.40
244
+ .
245
+ .
246
+ .
247
+ .
248
+ ::
249
+ .
250
+ .
251
+ :
252
+ i
253
+ 14.64
254
+ .
255
+ .
256
+ 14.72
257
+ 14.80
258
+ 0.025
259
+ 0.000
260
+ .
261
+ -0.050
262
+ .
263
+ -0.075
264
+ C
265
+ -0.100
266
+ 55300
267
+ 55400
268
+ 55500
269
+ 55600
270
+ 55700
271
+ 55800
272
+ 55900
273
+ 56000
274
+ MjD[days]4
275
+ Figure 3.
276
+ Fitted periods for the six contiguous OGLE
277
+ datasets between ∼ 2010 – 2016, as a function of time.
278
+ planations, perhaps including interactions with another
279
+ star in a close orbit. We note that de Wit et al. (2006,
280
+ see also Rivinius et al. 2013) reported similar loop-like
281
+ excursions in the CMD of other OBe stars, and ascribed
282
+ the anti-clockwise variation to the formation and dissi-
283
+ pation of the circumstellar decretion disks in those ob-
284
+ jects.
285
+ 2.3. Light curve period
286
+ It is possible that the multiple-outburst event in 2008
287
+ – 2009 may represent another periastron. Figure 1 shows
288
+ the 5311-day cycle initiated at the light-curve peak at
289
+ MJD 52212 instead of at the minima. We see that the
290
+ mid-cycle occurs during this multiple-outburst event, al-
291
+ though due to the OGLE observing cadence, it is unclear
292
+ whether it occurs near the end or near the middle. In
293
+ Section 3 below, we show that the spectrum obtained
294
+ around this time, Epoch A (Figure 1), shows an un-
295
+ usually strong emission-line spectrum, consistent with
296
+ maximum disk activation and flaring. However, the light
297
+ curve does not repeat the cycle minimum seen in 2002
298
+ and 2016, and OBe stars are known to show temporary
299
+ outbursts of activity (e.g., Labadie-Bartz et al. 2017;
300
+ Baade et al. 2018).
301
+ Thus, it is not clear whether 2008 – 2009 corresponds
302
+ to the mid-cycle or not. The light curve does not repeat
303
+ regularly in detail, and we caution that the period, if the
304
+ system is a binary, is uncertain. Assuming that there is
305
+ indeed a fundamental physical period, the same phases
306
+ may not all generate the same observational signatures,
307
+ which may depend on other factors such as disk orienta-
308
+ tion and/or varying physical processes. In what follows,
309
+ we adopt a system period of 5311 (2656) days, or 14.55
310
+ (7.28) years, where the values in parentheses allow for
311
+ the possibility that the period may be half of the long
312
+ cycle.
313
+ 3. SPECTROSCOPY
314
+ Spectroscopic observations of AzV 493 were obtained
315
+ in the course of the RIOTS4 spectroscopic survey of
316
+ field OB stars in the SMC (Lamb et al. 2016), and
317
+ follow-up radial velocity monitoring of the SMC Wing
318
+ region (Vargas-Salazar et al. 2023, in preparation). The
319
+ observations were carried out using the Magellan tele-
320
+ scopes at Las Campanas, Chile. Three different spectro-
321
+ graphs were used: IMACS (Bigelow & Dressler 2003),
322
+ MIKE (Bernstein et al. 2003) and M2FS (Mateo et al.
323
+ 2012). Table 1 gives details of our spectroscopic observa-
324
+ tions, including the modified Julian day (MJD), signal-
325
+ to-noise, spectral resolution, spectral range, phase in the
326
+ light curve cycle, radial velocity, Hβ peak separation
327
+ (Section 3.2), and instrument used. Figure 5 displays
328
+ the 11 spectra in chronological sequence, labeled A – K
329
+ as shown.
330
+ IMACS was operated by default in multi-slit mode
331
+ with the f/4 camera and 1200 lines/mm grating, which
332
+ provides a resolving power of R ∼ 3000 and a wave-
333
+ length coverage spanning ∼3800 – 5200 ˚A. One obser-
334
+ vation (Epoch I) was observed with the f/2 camera, re-
335
+ sulting in lower resolution (Table 1). The reduction was
336
+ performed using the cosmos pipeline1. MIKE data were
337
+ obtained using a 1′′ slit width for a spectral resolution
338
+ of R ∼ 28000, covering the wavelength range ∼3600
339
+ – 10000 ˚A. The spectra were processed with the the
340
+ Carnegie Python (CarPy2) pipeline software (Kelson
341
+ et al. 2000; Kelson 2003), except for Epoch B, which was
342
+ extracted using IRAF3. M2FS data were observed us-
343
+ ing a custom filter yielding ∼4080 – 4470 ˚A wavelength
344
+ coverage at R ∼ 28000. The data were processed follow-
345
+ ing the standard steps in fiber spectroscopic reduction
346
+ using IRAF/PyRAF tasks implemented within python
347
+ and designed for this instrument (see Walker et al. 2015).
348
+ Figure 5 shows strong variability in the spectrum of
349
+ AzV 493. The weaker epochs show a typical OBe spec-
350
+ trum, with only Hβ showing double-peaked emission,
351
+ and Hγ and Hδ absorption features showing evidence
352
+ of infill; whereas Epochs A, B, and K show stronger
353
+ emission-line spectra, with Hγ and He i often in emis-
354
+ sion. Epoch F shows strong, high-order Balmer emis-
355
+ sion and inverse P-Cygni features. These epochs will be
356
+ discussed in Sections 3.3 – 3.4.
357
+ 1 http://code.obs.carnegiescience.edu/cosmos.
358
+ 2 http://code.obs.carnegiescience.edu/mike
359
+ 3 IRAF was distributed by the National Optical Astronomy Obser-
360
+ vatory, which was managed by the Association of Universities for
361
+ Research in Astronomy (AURA) under a cooperative agreement
362
+ with the National Science Foundation.
363
+
364
+ 44
365
+ 42
366
+ 40
367
+ [days]
368
+ 38
369
+ Period
370
+ 36
371
+ 34
372
+ 32
373
+ 30
374
+ 55500 55750 56000 56250 56500 56750 57000 57250
375
+ MJD [days]5
376
+ Figure 4. Color-magnitude diagram (CMD) based on available V - and I-band OGLE photometry (see Figure 1). The variation
377
+ of AzV 493 in the CMD is colored according to the MJD, and compared to single-epoch OGLE photometry (Poleski et al. 2012)
378
+ for the RIOTS4 OB-star sample (Lamb et al. 2016) (grey dots). Objects classified as OBe by Lamb et al. (2016) are highlighted
379
+ with circles. The right panel is a zoom of the same data around the track of AzV 493.
380
+ Table 1. Spectroscopic Observations of AzV 493
381
+ Epoch
382
+ Date [UTC]
383
+ MJD
384
+ S/N
385
+ R
386
+ Wavelength
387
+ Phasea
388
+ RV
389
+ ∆v(Hβ)b
390
+ Instrument
391
+ Range [˚A]
392
+ (km s−1)
393
+ (km s−1)
394
+ A
395
+ 2009-08-26T01:43:36.0
396
+ 55069.071944
397
+ 140
398
+ 3000
399
+ 3825–5422
400
+ 0.538 (0.076)
401
+ 152 ± 200
402
+ 279
403
+ IMACS
404
+ B
405
+ 2015-01-14T02:12:03.0
406
+ 57036.091701
407
+ 120
408
+ 28000
409
+ 3362–9397
410
+ 0.908 (0.817)
411
+ 192 ± 18
412
+ (213)c
413
+ MIKE
414
+ C
415
+ 2016-06-15T07:47:54.3
416
+ 57554.324935
417
+ 130
418
+ 3000
419
+ 3879–5479
420
+ 0.006 (0.012)
421
+ 171 ± 60
422
+ 346
423
+ IMACS
424
+ D
425
+ 2016-09-08T01:42:08.0
426
+ 57639.070926
427
+ 60
428
+ 28000
429
+ 4079–4466
430
+ 0.022 (0.044)
431
+ 217 ± 50
432
+ · · ·
433
+ M2FS
434
+ E
435
+ 2016-09-11T02:49:33.0
436
+ 57642.117743
437
+ 90
438
+ 28000
439
+ 4080–4465
440
+ 0.022 (0.045)
441
+ 239 ± 46
442
+ · · ·
443
+ M2FS
444
+ F
445
+ 2016-09-22T05:36:51.0
446
+ 57653.233924
447
+ 150
448
+ 28000
449
+ 3538–9397
450
+ 0.024 (0.049)
451
+ 192 ± 29
452
+ 334
453
+ MIKE
454
+ G
455
+ 2016-12-04T04:09:41.5
456
+ 57726.173397
457
+ 110
458
+ 3000
459
+ 3862–5458
460
+ 0.038 (0.076)
461
+ 243 ± 38
462
+ 319
463
+ IMACS
464
+ H
465
+ 2017-06-05T06:35:11.2
466
+ 57909.274435
467
+ 50
468
+ 3000
469
+ 3871–5471
470
+ 0.073 (0.145)
471
+ 235 ± 54
472
+ 322
473
+ IMACS
474
+ I
475
+ 2017-06-07T08:08:18.9
476
+ 57911.339108
477
+ 130
478
+ 1300
479
+ 3900–8000
480
+ 0.073 (0.146)
481
+ 231 ± 83
482
+ 295
483
+ IMACSd
484
+ J
485
+ 2017-07-10T09:05:00.5
486
+ 57944.378478
487
+ 190
488
+ 3000
489
+ 3854–5468
490
+ 0.079 (0.159)
491
+ 181 ± 39
492
+ 303
493
+ IMACS
494
+ K
495
+ 2021-09-25T07:38:18.0
496
+ 59482.318264
497
+ 210
498
+ 28000
499
+ 3362–9397
500
+ 0.369 (0.738)
501
+ 183 ± 17
502
+ 289
503
+ MIKE
504
+ aPhase relative to the light curve peak at MJD 52212 (54868), adopting a period of 5311 (2655.5) days.
505
+ b Hβ peak separation obtained by fitting two gaussians with fixed width of 2 ˚A (∼ 120 km s−1).
506
+ c Epoch B does not show a double-peaked profile (see Figure 7 and Section 3.4); the value for ∆v(Hβ) assumes that two
507
+ components exist, as they do for other epochs.
508
+ dEpoch I was observed with the f/2 camera while the other IMACS observations were obtained with the f/4 camera.
509
+
510
+ 13.0
511
+ O
512
+ 13.5
513
+ O
514
+ O
515
+ 14.0
516
+ O
517
+ > 14.5
518
+ O
519
+ O
520
+ O
521
+ 0
522
+ 15.0
523
+ 8
524
+ O
525
+ 0
526
+ O
527
+ 0
528
+ 15.5
529
+ O
530
+ 16.0
531
+ -0.3
532
+ -0.2
533
+ -0.1
534
+ 0.0
535
+ 0.1
536
+ 0.2
537
+ 0.3
538
+ 0.4
539
+ V-I14.0
540
+ 57600
541
+ 14.1
542
+ 57000
543
+ 14.2
544
+ 56400
545
+ 14.3
546
+ MJD [days]
547
+ 55800
548
+ > 14.4
549
+ 55200
550
+ Q
551
+ 14.5
552
+ 00
553
+ 54600
554
+ 14.6
555
+ 00
556
+ 54000
557
+ 14.7
558
+ O
559
+ 53400
560
+ 14.8
561
+ -0.10
562
+ -0.05
563
+ 0.00
564
+ 0.05
565
+ 0.10
566
+ 0.15
567
+ 0.20
568
+ 0.25
569
+ V-I6
570
+ Figure 5. AzV 493 multi-epoch spectroscopic observations sorted by MJD and normalized to the continuum. Epoch I is low
571
+ resolution (Table 1).
572
+
573
+ M
574
+ H
575
+ normalized flux
576
+ G
577
+ F
578
+ E
579
+ D
580
+ C
581
+ B
582
+ A
583
+ 1
584
+ He lI
585
+ He llI
586
+ He ll
587
+ 4600
588
+ 4000
589
+ 4200
590
+ 4400
591
+ 4800
592
+ 5000
593
+ wavelength [A]7
594
+ 3.1. Stellar fundamental parameters
595
+ The photospheric He ii lines λ4200, λ4541, and λ5411
596
+ lines at all epochs confirm the early O spectral type
597
+ assigned by Golden-Marx et al. (2016). To improve S/N
598
+ in the He ii λ4541 absorption line, we combine epochs
599
+ C, G, H and J, which are all IMACS spectra obtained
600
+ in 2016 – 2017.
601
+ We use this composite spectrum to
602
+ estimate the projected rotational velocity (υ sin i) using
603
+ the iacob-broad code (Sim´on-D´ıaz & Herrero 2014,
604
+ 2007). We obtain υ sin i = 370±40 km s−1. As discussed
605
+ in Section 4, the angle of inclination i is likely high,
606
+ based on the amount of obscuration from the disk, and
607
+ so the rotational velocity might be ≲ 450 km s−1.
608
+ The combined spectrum was modelled using the stellar
609
+ atmosphere code fastwind (Santolaya-Rey et al. 1997;
610
+ Puls et al. 2005; Rivero Gonz´alez et al. 2012), using
611
+ the same technique and stellar grid described in Cas-
612
+ tro et al. (2018).
613
+ The cores of the Balmer lines are
614
+ omitted from the fit to ameliorate contamination from
615
+ disk emission. Our best model yields effective tempera-
616
+ ture Teff = 42000 K and surface gravity log g = 3.4 dex,
617
+ which reproduce the main He i and He ii lines (Figure 6).
618
+ Since He i photospheric features are not detected, this
619
+ Teff may be a lower limit. The derived temperature is
620
+ consistent with an O3-5 spectral type (Martins & Pala-
621
+ cios 2021), matching the early O-type classification of
622
+ AzV 493 (Lamb et al. 2016). However, we caution that
623
+ the wings of the Balmer lines, which are the main spec-
624
+ troscopic anchors for deriving the surface gravity, may
625
+ be affected by the circumstellar emission, resulting in an
626
+ underestimate of log g, as found for OBe stars by Castro
627
+ et al. (2018).
628
+ The stellar luminosity was calculated using the optical
629
+ and IR photometry for AzV 493 (Massey 2002; Skrut-
630
+ skie et al. 2006), adopting a distance to the SMC of
631
+ 62.1 kpc (Graczyk et al. 2014) and the synthetic fast-
632
+ wind spectral energy distribution (SED) derived above.
633
+ We explored the extinction curves published by Fitz-
634
+ patrick & Massa (2007) until the observed photometry
635
+ was reproduced by the fastwind synthetic SED. We
636
+ obtain a luminosity log L/L⊙ = 5.83 ± 0.15 and radius
637
+ R⋆/R⊙ = 15±3, in agreement with the expected values
638
+ for an early O-type star of luminosity class III – V (e.g.
639
+ Martins et al. 2005). We compare the position of AzV
640
+ 493 in the Hertzsprung–Russell diagram with the rotat-
641
+ ing evolutionary tracks by Brott et al. (2011) for SMC
642
+ metallicity. Based on the Teff and L/L⊙ and their re-
643
+ spective uncertainties, we estimate that the stellar mass
644
+ is M/M⊙ = 50±9. If the observed luminosity is overes-
645
+ timated by the inferred log g, or includes a contribution
646
+ from a non-compact binary companion and/or the disk
647
+ continuum, then the stellar mass may be somewhat over-
648
+ estimated; for reference, a factor of two overestimate in
649
+ luminosity implies M/M⊙ ∼ 40.
650
+ 3.2. Hβ emission-line profile
651
+ Variability in the emission lines is a common charac-
652
+ teristic of the Be phenomenon (e.g., Rivinius et al. 2013;
653
+ Richardson et al. 2021). One effect is the violet-to-red
654
+ (V/R) variations, which are cycles that can last weeks
655
+ or decades. The V/R variations describe changes in the
656
+ dominant peak strength for double-peaked emission lines
657
+ observed in some stars. These cycles are attributed to
658
+ variation in the morphology and density of the circum-
659
+ stellar disks (Poeckert 1982; Okazaki 1991).
660
+ Figure 7 shows Hβ profiles in the spectroscopic epochs
661
+ where this line is available, and Gaussian models used to
662
+ disentangle the V and R components. The two peaks are
663
+ clearly resolved in all our observations of Hβ, except for
664
+ Epoch B, which instead shows a P-Cygni profile (Fig-
665
+ ures 5, 7; see Section 3.4). Table 1 gives the peak separa-
666
+ tions ∆Hβ fitted in Figure 7. The V peak is usually more
667
+ prominent than R. There may be a long-timescale V/R
668
+ cycle, but further spectroscopic monitoring is needed to
669
+ determine whether V/R indeed oscillates, or whether
670
+ there is any trend in ∆Hβ with phase.
671
+ 3.3.
672
+ Epochs A and K: Evidence of disk evolution
673
+ Epoch A is observed at a phase of 0.54 (0.08), soon
674
+ after the apparent eruption event in 2009 (Figure 1, Ta-
675
+ ble 1). This spectrum shows the strongest helium line
676
+ emission (Figure 5), although we have no other spec-
677
+ troscopic observations within several years of this data
678
+ point. Only photospheric He ii is seen in absorption in
679
+ this spectrum; the H i and He i lines are all in emission
680
+ or filled in. Moreover, He ii λ4686 is also in emission,
681
+ which prompted Golden-Marx et al. (2016), to identify
682
+ this spectrum as the hottest-known observation of the
683
+ OBe phenomenon. Nebular He ii is only generated by
684
+ the very hottest O stars (e.g., Martins & Palacios 2021).
685
+ All of the emission lines in Epoch A are double peaked.
686
+ Hβ and Hγ show larger peak separations than the He i
687
+ and He ii emission lines. For a Keplerian disk, this would
688
+ imply that the higher-temperature species is dominated
689
+ by larger radii than the Hβ and Hγ emission. Figure 5
690
+ shows that the emission is slightly redshifted relative to
691
+ the photospheric Balmer absorption.
692
+ Epoch K, observed at phase 0.37 (0.74) (Figure 5; Ta-
693
+ ble 1) shows the opposite relation between ionization
694
+ and disk radius. Here, the He i lines have larger peak
695
+ separations than Hβ, implying that the hotter species
696
+ dominates at smaller radii, unlike Epoch A. We also
697
+ see that the Hβ and Hγ line profiles show high-velocity
698
+ wings that are not observed at other epochs, consistent
699
+
700
+ 8
701
+ Figure 6. Spectroscopic analysis of the composite IMACS spectrum from epochs C, G, H and J (black; cf. Fig. 5). The
702
+ best fastwind (Santolaya-Rey et al. 1997; Puls et al. 2005; Rivero Gonz´alez et al. 2012) stellar atmosphere synthetic model is
703
+ overplotted (red). The main transitions used in the analysis are marked.
704
+ Figure 7. Hβ emission-line profiles from our spectra of AzV 493. The best-fit photospheric model (Figure 6) is subtracted,
705
+ after which the violet and red components are fitted by two Gaussian profiles having fixed widths of 2 ˚A. The figure shows
706
+ the data overplotted by these summed fitted Gaussians. The resulting peak values are shown by the vertical lines, and their
707
+ separations are given in Table 1. Epoch I has low spectral resolution and is not included in this figure.
708
+ with high-velocity gas at smaller orbital radii. Epoch K
709
+ is similar in emission-line strength
710
+ to Epoch A and
711
+ shows He i in emission, but He ii λ4686 is in absorption
712
+ in this observation, as it is in all the other observations
713
+ of this line.
714
+ 3.4. Epochs B and F: Gas Outflow and Infall
715
+ Epoch B shows P-Cygni emission-line profiles in Hβ
716
+ and Hγ (Figures 5, 7), suggesting an outflow episode.
717
+ This is also the only spectrum obtained during the pe-
718
+ riod where the strong pulsations dominate the flux (Fig-
719
+ ure 1), and it is observed at the latest phase, 0.91 (0.82).
720
+ Figure 13 shows that the observation coincides with a
721
+ local minimum in the light curve. Thus the P-Cygni fea-
722
+ tures could suggest that the pulsations may be directly
723
+ linked to mass ejection, since it coincides with the star
724
+ reaching its smallest radius.
725
+ The spectrum of Epoch F is dramatically different
726
+ from most of the other spectra (Figure 5).
727
+ It shows
728
+ strong, asymmetric Balmer and He i emission that show
729
+ remarkable, inverse P-Cygni line profiles, with red-
730
+ shifted absorption and blue-shifted emission. Figure 8
731
+
732
+ 1.3
733
+ He lI
734
+ He lI
735
+ He ll
736
+ He l
737
+ Hel
738
+ Hel
739
+ Hel
740
+ 1.2
741
+ 1.1
742
+ 1
743
+ 1.0
744
+ 0.9
745
+ 0.8-
746
+ 0.7
747
+ 0.6.
748
+ 4000
749
+ 4100
750
+ 4200
751
+ 4300
752
+ 4400
753
+ 4500
754
+ 4600
755
+ 4700
756
+ 1.3
757
+ Hel
758
+ He llI
759
+ 1.2
760
+ ≤ 1.1
761
+ 1.0
762
+ 0.9
763
+ 0.8
764
+ 0.7
765
+ 0.6
766
+ 4800
767
+ 4900
768
+ 5000
769
+ 5100
770
+ 5200
771
+ 5300
772
+ 5400
773
+ 5500
774
+ wavelength [A]1.3
775
+ 3
776
+ 1.3
777
+ 1.3
778
+ B
779
+ C
780
+ A
781
+ 1.2
782
+ 1.2
783
+ 1.2
784
+ 1.1
785
+ 1.1
786
+ 1.1
787
+ 1.1
788
+ 1.0
789
+ 1.0
790
+ 1.0
791
+ 1.0
792
+ 0.9
793
+ 0.9
794
+ 0.9
795
+ 0.9
796
+ 0.8
797
+ 0.8
798
+ 0.8
799
+ 0.8
800
+ -500
801
+ 500
802
+ -500
803
+ 0
804
+ 500
805
+ -500
806
+ 0
807
+ 500
808
+ -500
809
+ 0
810
+ 500
811
+ 0
812
+ velocity - 200 [kms-1]
813
+ 1.3
814
+ 1.3
815
+ 1.3
816
+ 1.3
817
+ G
818
+ H
819
+ K
820
+ 1.2
821
+ 1.2
822
+ 1.2
823
+ 1.2
824
+ 1.1
825
+ 1.1
826
+ 1.1
827
+ 1.0
828
+ 1.0
829
+ 1.0
830
+ 1.0
831
+ 0.9
832
+ 0.9
833
+ 0.9
834
+ 0.9
835
+ 0.8
836
+ 0.8
837
+ 0.8
838
+ 0.8
839
+ -500
840
+ 0
841
+ 500
842
+ -500
843
+ 0
844
+ 500
845
+ -500
846
+ 0
847
+ 500
848
+ -500
849
+ 0
850
+ 5009
851
+ 1.8
852
+ 1.6
853
+ 1.4
854
+ 1.2
855
+ 1
856
+ -2000
857
+ -1000
858
+ 0
859
+ Velocity (km/s)
860
+ 1000
861
+ 2000
862
+
863
+ 1.2
864
+ 1.15
865
+ 1.1
866
+ 1.05
867
+ 1
868
+ .95
869
+ _._ _ _ _ _
870
+ ___._
871
+ _ _ _ _
872
+ __. _ _ _ _ _
873
+ .__ _ _ _ _
874
+ ..__ _ _ _ _
875
+ _.___.
876
+ -3000
877
+ -2000
878
+ -1000
879
+ 0
880
+ 1000
881
+ Velocity (km/s)
882
+ 2000
883
+ 3000
884
+
885
+ 1.2
886
+ 1.15
887
+ 1.1
888
+ 1.05
889
+ 1
890
+ .95
891
+ -3000
892
+ -2000
893
+ -1000
894
+ 0
895
+ Velocity (km/s)
896
+ 1000
897
+ 2000
898
+ 3000
899
+
900
+ 1.2
901
+ 1.1
902
+ 1
903
+ . 9
904
+ -7500
905
+ -5000
906
+ -2500
907
+ 0
908
+ Velocity (km/s)
909
+ 2500
910
+ 5000
911
+
912
+ He I 4026
913
+ 1.15
914
+ 1.1
915
+ 1.05
916
+ 1
917
+ .95
918
+ -3000
919
+ -2000
920
+ -1000
921
+ 0
922
+ 1000
923
+ Velocity (km/s)
924
+ 2000
925
+ 3000
926
+ He I 4471
927
+ Figure 8. Epoch F line profiles for Balmer and He i emission lines, as shown, centered at the systemic velocity obtained from
928
+ the He ii absorption. This Magellan/MIKE observation was obtained on 2016 September 22 (Table 1).
929
+ shows the line profiles relative to the systemic velocity of
930
+ the He ii photospheric lines. Such observations are usu-
931
+ ally interpreted as infall of matter (e.g., Hartmann et al.
932
+ 2016), which appears to imply a re-absorption of decre-
933
+ tion disk material. The free-fall velocity at the stellar
934
+ surface for our adopted stellar parameters (Section 3.1)
935
+ is ∼ 800 km s−1, which is consistent with the red edge
936
+ of the absorption trough seen in Hδ and He i λ4471.
937
+ The Balmer emission-line intensities do not follow the
938
+ Balmer decrement and are almost uniform (Figures 6
939
+ and 8), indicating optically thick emission. This sug-
940
+ gests that the infalling material is also likely dense, and
941
+ thus has high emissivity.
942
+ Although Epochs D and E are taken only 14 and 11
943
+ days before Epoch F, respectively, Epochs D and E show
944
+ most lines in absorption with no sign of these features.
945
+ Similarly, Epoch G is obtained only 73 days after Epoch
946
+ F, and also shows primarily an absorption spectrum.
947
+ Thus, this infall episode corresponds to a short-lived
948
+ event, which we fortuitously captured with this MIKE
949
+ observation. In the spectra observed before and after
950
+ Epoch F, the Balmer emission, which presumably origi-
951
+ nates from the disk, does not seem substantially different
952
+ in intensity. This suggests that the reabsorbed material
953
+ corresponds to a negligible fraction of the disk mass.
954
+ The timing of Epoch F is at a very early phase, 0.024
955
+ (0.05), only 27 days after the light curve minimum on
956
+
957
+ 10
958
+ MJD 57626. There is no significant feature in the pho-
959
+ tometry near the time of Epoch F, and the light curve is
960
+ gradually brightening during this phase. This similarly
961
+ implies that the continuum luminosity is dominated by
962
+ the star and/or disk sources unrelated to the P-Cygni
963
+ event.
964
+ 4. DISK EJECTION SCENARIO
965
+ The distinctive shape of the light curve seen in 2002
966
+ – 2004, and again in 2016 – 2018, showing a strong
967
+ drop in brightness followed by gradual increase (Fig-
968
+ ure 1), is seen in some other emission-line stars (Riv-
969
+ inius et al. 2013). We suggest that this may be due to
970
+ the repeated ejection of an optically thick circumstel-
971
+ lar decretion disk, perhaps related to interaction with
972
+ a binary companion.
973
+ The exact reproduction of this
974
+ part of the light curve across two cycles, starting with
975
+ a 1.2-magnitude drop in brightness, suggests a geomet-
976
+ ric extinction effect caused by an optically thick disk.
977
+ This event’s pattern in photometry and Hβ line profile
978
+ is consistent with a disk ejection outburst, similar to,
979
+ e.g., HD 38708 (Labadie-Bartz et al. 2017).
980
+ Assuming that an optically thick disk is indeed ex-
981
+ pelled to generate the deep light-curve mimima (I ∼
982
+ 14.85) in 2002 and 2016, we can estimate the geometric
983
+ obscuration by considering the maximum flux following
984
+ these minima, which peaks around I ∼ 14.0. The differ-
985
+ ence of 0.85 mag corresponds to reduction in flux by a
986
+ factor of ∼ 0.46, or over half, assuming that all of this
987
+ difference is due to obscuration. This suggests not only
988
+ a fairly high angle of inclination, but also a thick, or in
989
+ particular, a geometrically flared disk, which is consis-
990
+ tent with spectroscopic evidence (Section 3.3).
991
+ In this model, most of the emission lines originate from
992
+ an inner disk region that experiences variable obscura-
993
+ tion to our line of sight from a thicker outer disk or
994
+ torus. The weaker spectroscopic epochs in Figure 5 with
995
+ the typical OBe spectrum are the most obscured, while
996
+ Epochs A, B, and K are less obscured and therefore show
997
+ stronger emission-line spectra. Epoch C is observed in
998
+ 2016 at a phase of 0.01 (0.01), and thus near the same
999
+ phase as the light curve peak in late 2001 (2009) (Fig-
1000
+ ure 1; Table 1). However, as noted above (Section 2.1),
1001
+ although the light curve repeats the disk ejection pat-
1002
+ tern, there is no evidence of a corresponding peak pre-
1003
+ ceding this sequence on the same timescale as that in
1004
+ 2002.
1005
+ The Epoch C Hβ profile (Figure 7) is consis-
1006
+ tent with the optically thick disk already having formed.
1007
+ Epochs D and E, observed immediately after this min-
1008
+ imum, are similarly unremarkable, although they cover
1009
+ a much shorter spectral range. Since we see that a pu-
1010
+ tative disk ejection apparently occurred in 2016, it may
1011
+ be that the system has precessed such that an associ-
1012
+ ated photometric outburst is obscured by the ejection
1013
+ process.
1014
+ The emission lines in Epoch A are dominated by
1015
+ higher temperature species at larger radii, whereas
1016
+ Epoch K shows the opposite effect (Section 3.3).
1017
+ Epoch A is consistent with very dense, optically thick
1018
+ disks that have extended vertical flaring, as shown in
1019
+ models by, e.g., Sigut et al. (2009), where the emission,
1020
+ including from harder radiation, is dominated by this
1021
+ outer region. In contrast, the disk geometry at Epoch K
1022
+ is dominated by high-density gas near the center and
1023
+ no flaring, thus differing significantly from Epoch A.
1024
+ Epoch A is observed at a phase of 0.54 (0.08), and
1025
+ Epoch K shows the system at a phase of 0.37 (0.74;
1026
+ Table 1, Figure 1). This suggests that the disk changes
1027
+ between having a large, flared outer region at Epoch A
1028
+ that contributes significantly to the emission, and a con-
1029
+ figuration where flaring is insignificant and emission is
1030
+ dominated by a dense central region at Epoch K, per-
1031
+ haps also reaccreting material onto the star. The exis-
1032
+ tence of two different components dominated by inner
1033
+ and outer regions, respectively, could also be due to disk
1034
+ tearing, resulting in an inner disk and outer, expanding
1035
+ annulus with different inclinations (Suffak et al. 2022;
1036
+ Marr et al. 2022).
1037
+ The decreasing Hβ peak separations seen from Epoch
1038
+ C (346 km s−1) to Epoch J (303 km s−1) and to Epoch
1039
+ K (289 km s−1; Table 1) suggest that the emission is
1040
+ weighted toward increasing radii over this period, which
1041
+ is consistent with the inner disk dissipating or forming
1042
+ an annular disk with an expanding inner radius. How-
1043
+ ever, this scenario does not explain the strong line emis-
1044
+ sion in Epochs A and K (Figure 5), which have the min-
1045
+ imum Hβ peak separations. If the inner radius is indeed
1046
+ expanding, then the emitting region either must become
1047
+ dense, or the disk must precess to lower inclination an-
1048
+ gles to reveal stronger line emission. The latter could
1049
+ also contribute to a model in which the decreasing peak
1050
+ separation is due to decreasing obscuration of the disk,
1051
+ allowing emission at larger radii to dominate. This is
1052
+ consistent with the system’s increasing brightness over
1053
+ this period (Figure 1). The extinction may result from
1054
+ the outer component, or optically thick torus or flare in
1055
+ the disk which either precesses or dissipates. However,
1056
+ we caution that such a fast precession rate may not be
1057
+ feasible. Moreover, if the long-term photometric cycle is
1058
+ due to precession, the light curve should be symmetric
1059
+ around the minima, whereas the observed strong, sud-
1060
+ den drops (Figure 1) are difficult to explain with such a
1061
+ model.
1062
+
1063
+ 11
1064
+ The outflow and inflow episodes described in Sec-
1065
+ tion 3.4 apparently are not significant in mass relative to
1066
+ the entire disk. If the minima of the 14-year light curve
1067
+ indeed correspond to the bulk of disk ejection, followed
1068
+ by gradual disk dissipation, then the mass ejection as-
1069
+ sociated with the P-Cygni features in Epoch B are not
1070
+ likely to be a dominant source of disk material. How-
1071
+ ever, we note that pulsations have been suggested to be
1072
+ important in replenishing the disk in other OBe systems
1073
+ (e.g., Baade et al. 2016, 2018).
1074
+ The timing of Epoch F is 27 days after the light curve
1075
+ minimum on MJD 57626. Although there are 3 other
1076
+ intermediate spectroscopic epochs between the putative
1077
+ disk ejection and Epoch F, this still takes place dur-
1078
+ ing what we assume is the heavily obscured phase in
1079
+ the light curve. The lack of any photometric event near
1080
+ the appearance of inverse P-Cygni features in epoch F
1081
+ suggests that the reabsorbed material is an insignificant
1082
+ portion of the disk material. The disk is therefore sub-
1083
+ stantial and can plausibly provide material that may fall
1084
+ back to the star. This is consistent with the optically
1085
+ thick conditions indicated by the Balmer decrement in
1086
+ Epoch F.
1087
+ Thus, this model is driven by repeated ejection of a
1088
+ flared, optically thick disk whose outer region gradually
1089
+ dissipates, revealing the inner, line-emitting region. A
1090
+ flared disk is most clearly implied by the ionization and
1091
+ emission-line peak separation in Epoch A (Section 3.3),
1092
+ and is also consistent with a maximum geometric ob-
1093
+ scuration that may be > 50% implied by this model.
1094
+ The spectroscopic variation could also be caused by
1095
+ disk tearing or precession of the system. The decreas-
1096
+ ing trend in Hβ peak separations with increasing flux
1097
+ suggests that more light from larger radii can be seen
1098
+ (Section 3.2). Additionally, the high-amplitude, semi-
1099
+ regular pulsations with the ∼month-long period become
1100
+ visible at low extinction (Figure 1). Other photometric
1101
+ and spectral variations may be due to contributions from
1102
+ the inner disk’s radial expansion, reabsorption, or evap-
1103
+ oration/ionization, and possible geometric distortion or
1104
+ warping of the disk system.
1105
+ 5. DISK GROWTH SCENARIO
1106
+ However, some observations seem inconsistent with a
1107
+ disk ejection model. For example, the system is bluest
1108
+ when faintest (Figure 1), contrary to expectations for
1109
+ reddening.
1110
+ As noted above, the strong emission-line
1111
+ spectra at Epochs A and K seem inconsistent with a
1112
+ dissipating inner disk scenario implied by the trend in
1113
+ ∆Hβ. If the long-period cycle is attributed to disk pre-
1114
+ cession, it would require an additional mechanism to
1115
+ explain the assymmetric light curve, and also a third,
1116
+ external massive star that is not seen, to torque the
1117
+ disk. Thus, alternative models for the AzV 493 system
1118
+ should also be considered.
1119
+ Some other Be stars such as δ Sco (Suffak et al. 2020)
1120
+ and ω CMa (Ghoreyshi et al. 2018) show long-term pho-
1121
+ tometric variability in which the increasing flux is due to
1122
+ contributions from a growing disk, while the minima rep-
1123
+ resent episodes of disk destruction by the secondary at
1124
+ periastron. Such a model is therefore opposite to the one
1125
+ presented above. In this alternative scenario, the light
1126
+ curve minima of AzV 493 in 2002 and 2016 (Figure 1)
1127
+ correspond to episodes with the lowest disk contribu-
1128
+ tion. The disk then grows and brightens, recovering its
1129
+ full size around 2005. In this case, the decreasing trend
1130
+ in Hβ peak separation with increasing flux is simply due
1131
+ to the disk growth itself. This scenario is consistent with
1132
+ the blue color at the light curve minimum in 2016 (Fig-
1133
+ ure 1), and the weak emission-line spectra near the 2016
1134
+ minimum (epochs C – J; Figure 5).
1135
+ If the disk is responsible for the factor of 2.2 increase in
1136
+ flux, then the equivalent width (EW) of stellar absorp-
1137
+ tion features should decrease proportionately. Figure 9
1138
+ shows the EW of He ii λ4200 and λ4540 as a function of
1139
+ V and I magnitude. A slight trend is indeed apparent,
1140
+ although not as large as a factor of two in amplitude.
1141
+ These lines are in the B-band, and thus not in the range
1142
+ of our photometry. Figure 1 shows that the amplitude
1143
+ of the photometric variations may be smaller at bluer
1144
+ wavelengths, although with the given V -band sampling
1145
+ it is not entirely clear. It may be challenging for the
1146
+ alternative model to produce and maintain the viscous
1147
+ disk necessary to generate continuum luminosities that
1148
+ compete with those of the star, given the harsh circum-
1149
+ stellar environment of an extreme, early-type O-star.
1150
+ The extinction-dominated model is supported by the
1151
+ lack of correlation between the strength of the emission-
1152
+ line spectrum and photometric flux from the sys-
1153
+ tem. There is no significant variation between spectral
1154
+ Epochs C – J (Figure 5), which should correspond to the
1155
+ period of strong disk growth in this model, whereas the
1156
+ obscuration-dominated model implies dissipation (Sec-
1157
+ tion 3.3). The one exception showing spectral variation,
1158
+ Epoch F, has P-Cygni emission and stronger emission-
1159
+ line features, yet it is photometrically unremarkable
1160
+ (Section 3.4).
1161
+ Another issue is that the photometric
1162
+ minimum corresponds to the bluest color (Figure 1),
1163
+ which is more consistent with the alternative model.
1164
+ However, the star itself may be changing substantially in
1165
+ magnitude and color. Blueing is also caused by scatter-
1166
+ ing in high-extinction conditions, as seen in the UXOR
1167
+ class of Herbig Ae stars (Natta & Whitney 2000).
1168
+
1169
+ 12
1170
+ Figure 9.
1171
+ Equivalent width of He ii λ4200 (red) and λ4540
1172
+ (blue) as a function of V (bottom) and I (top) magnitude.
1173
+ A constant value of 0.5 ˚A is shown for reference.
1174
+ The overall shape of the light curve for AzV 493
1175
+ is rather different from those of δ Sco and ω CMa,
1176
+ which show extended minima with more top-hat-like
1177
+ light curves (Ghoreyshi et al. 2018; Suffak et al. 2020).
1178
+ In contrast, AzV 493 shows sharp minima (Figure 1),
1179
+ implying very rapid disk destruction and immediate,
1180
+ regular regrowth in the alternative model. It seems hard
1181
+ to explain such sudden dissipation of a several-AU dense,
1182
+ viscous disk by a neutron star or black hole (Section 6)
1183
+ during the brief periastron passage. Moreover, the exact
1184
+ reproduction of the photometric cycle’s initial segment
1185
+ (Section 2.1) is unusual and may be harder to explain
1186
+ with a disk-growth model.
1187
+ Overall, the fundamental nature of the light curve and
1188
+ disk evolution remain unclear. Tailored modeling of this
1189
+ system and further multimode observational monitoring
1190
+ is needed to clarify the relationship between the decre-
1191
+ tion disk and interaction with a secondary star.
1192
+ 6. AN EXTREME INTERACTING BINARY
1193
+ The fast surface rotation for this evolved O star is
1194
+ a natural signature of accretion during a mass transfer
1195
+ event (e.g., Packet 1981; Cantiello et al. 2007; Renzo
1196
+ & G¨otberg 2021), consistent with an interacting binary
1197
+ scenario.
1198
+ If the disk is induced by a periastron pas-
1199
+ sage of an undetected companion, then this may imply
1200
+ a long, 14.6 (7.3)-year period, and hence a large and
1201
+ highly eccentric orbit. For the AzV 493 stellar parame-
1202
+ ters obtained in Section 3.1, a neutron star companion
1203
+ of mass 1.4 M⊙ would require e ∼ 0.95 (0.93) and apas-
1204
+ tron of ∼ 43 (27) AU for a typical OBe star periastron
1205
+ distance of 40R⋆. These orbital parameters are similar
1206
+ to those of the Be star δ Sco (e.g., Che et al. 2012).
1207
+ The unseen companion could also be a somewhat more
1208
+ massive main-sequence or stripped star, or a black hole.
1209
+ The eccentricity may be lower, but if a binary compan-
1210
+ ion is responsible for disk ejection, then periastron must
1211
+ be small and the eccentricity high. The nominal peri-
1212
+ astron value used here would likely be an upper limit,
1213
+ since δ Sco showed no disk ejection at periastron (Che
1214
+ et al. 2012).
1215
+ 6.1. Neutron star or black hole?
1216
+ Thus, if a binary companion excites disk ejection or
1217
+ is otherwise responsible for the observed properties of
1218
+ AzV 493, then it is probably an eccentric system, and
1219
+ the most likely explanation for such an orbit is that the
1220
+ companion has already experienced core collapse, receiv-
1221
+ ing a strong kick. Large natal kicks are routinely invoked
1222
+ in core-collapse events that form neutron stars (e.g., Ar-
1223
+ zoumanian et al. 2002; Podsiadlowski et al. 2004; Ver-
1224
+ bunt et al. 2017; Janka 2017). Natal kicks during black
1225
+ hole formation are still highly debated (e.g., Dray et al.
1226
+ 2005; Janka 2013; Mandel 2016; Repetto et al. 2017;
1227
+ Atri et al. 2019; Renzo et al. 2019; Callister et al. 2020),
1228
+ but not excluded. Assuming a large 450 km s−1 kick,
1229
+ Brandt & Podsiadlowski (1995) found a broad correla-
1230
+ tion between eccentricity and orbital period of binaries
1231
+ surviving the first core-collapse. This is in agreement
1232
+ with the high e and long period we find for AzV 493.
1233
+ The present-day mass of AzV 493 can be used to con-
1234
+ strain the nature of a putative compact object. Assum-
1235
+ ing a flat distribution in initial mass ratio, the average
1236
+ initial binary mass ratio q = M2/M1 ≃ 0.5 (e.g., Moe &
1237
+ Di Stefano 2017). Without any accretion during mass
1238
+ transfer, the present-day mass of AzV 493, M2 ≃ 50 M⊙,
1239
+ would suggest M1 ≃ 100 M⊙, which at SMC metallicity
1240
+ implies that the compact object should be a black hole
1241
+ (e.g., Sukhbold et al. 2016; Couch et al. 2020; Zapartas
1242
+ et al. 2021). In this case, however, the rapid rotation of
1243
+ AzV 493 would need to be primordial.
1244
+ Instead, it is more likely that mass transfer has oc-
1245
+ curred, in which case M1 is likely to be quite different,
1246
+ depending on the mass transfer efficiency. A mass trans-
1247
+ fer phase during the donor’s main sequence (Case A) is
1248
+ expected to be slower and more conservative, possibly
1249
+ causing significant mass growth of the accretor with-
1250
+ out extreme chemical pollution. This scenario has been
1251
+ invoked to explain the formation of low-mass compact
1252
+ objects in very young regions (Belczynski et al. 2008),
1253
+ and in particular, the origin of very massive companions
1254
+ (van der Meij et al. 2021), such as we have for AzV 493.
1255
+ In this case, the zero-age-main-sequence (ZAMS) mass
1256
+ of M1 ∼ 30 − 40 M⊙ for the adopted q, also accounting
1257
+ for the final donor core mass.
1258
+ However, mass trans-
1259
+ fer is far more likely to occur after the donor main se-
1260
+
1261
+ 1.2
1262
+ 1.0
1263
+ 0.8
1264
+ [y]
1265
+ O
1266
+ EW
1267
+ 0.6
1268
+ 0.4
1269
+ :
1270
+ 0.2
1271
+ 0.0
1272
+ 14.0
1273
+ 14.2
1274
+ 14.4
1275
+ 14.6
1276
+ 14.8
1277
+ I[mag]
1278
+ 1.2
1279
+ 1.0
1280
+ 0.8
1281
+ EW
1282
+ 0.6
1283
+ 0.4
1284
+ 8
1285
+ 0.2
1286
+ 0.0
1287
+ 14.35
1288
+ 14.40
1289
+ 14.45
1290
+ 14.50
1291
+ 14.55
1292
+ 14.60
1293
+ 14.65
1294
+ V [mag]13
1295
+ quence (Case B), due to the star’s expansion (e.g., van
1296
+ den Heuvel 1969). It then takes place rapidly, on the
1297
+ thermal or He core-burning nuclear timescale (Klencki
1298
+ et al. 2022), and system mass loss is far more likely,
1299
+ implying a higher ZAMS mass for M1.
1300
+ Although post-SN outcomes are stochastic, black hole
1301
+ production is expected to dominate for Z⊙ progenitors
1302
+ with initial masses ≳ 20 M⊙. This nominal threshold
1303
+ ZAMS mass is expected to decrease for lower metallicity
1304
+ (e.g., Zhang et al. 2008; O’Connor & Ott 2011; Sukhbold
1305
+ et al. 2016), which in principle enhances the likelihood
1306
+ that the compact object should be a black hole. The
1307
+ high eccentricity in AzV 493 strongly suggests that a SN
1308
+ occurred. While this implies that the companion is more
1309
+ likely to be a neutron star, black holes can form from
1310
+ fall-back if the SN is insufficient to unbind the ejecta,
1311
+ which is more likely to happen at low metallicity (e.g.,
1312
+ Zhang et al. 2008). There are multiple mechanisms to
1313
+ produce core-collapse black holes, and if mass-loss oc-
1314
+ curs, a SN and/or kick to the system may result (e.g.,
1315
+ Janka 2013).
1316
+ We note that M1 ∼ 20 − 40 M⊙ is a
1317
+ range that has been extensively simulated and where
1318
+ explodability and fallback are uncertain (e.g., O’Connor
1319
+ & Ott 2011; Sukhbold et al. 2016; Janka 2013; Zhang
1320
+ et al. 2008). Establishing that a neutron star or black
1321
+ hole resulted from this ZAMS range, with some kind
1322
+ of kick, would provide an important empirical reference
1323
+ for theoretical models of the explosion and the binary
1324
+ interactions preceding it.
1325
+ Follow-up observations at subsequent periastra could
1326
+ more firmly establish whether AzV 493 has a compan-
1327
+ ion, and whether it is a black hole vs a neutron star. A
1328
+ 74.33 ksec Chandra/HRC observation on 2012 February
1329
+ 12 (MJD 55969) of a field including AzV 493 (ObsID
1330
+ 14054) shows no detection. Given the tiny orbital inter-
1331
+ val during which the two stars interact, no significant ac-
1332
+ cretion onto the compact object is expected, explaining
1333
+ why the system is not a known high-mass X-ray binary.
1334
+ However, well-timed X-ray observations near periastron
1335
+ may be able to catch a brief flare event.
1336
+ 6.2. Radial Velocities
1337
+ We also measure the radial velocity (RV) for the ob-
1338
+ tained spectra to search for evidence of a companion.
1339
+ This is challenging, since AzV 493 is a luminous, fast-
1340
+ rotating, early-type O-star, with few photospheric fea-
1341
+ tures, several of which are often in emission. We carried
1342
+ out cross-correlations against the FASTWIND model
1343
+ spectra for the entire observed spectral range using the
1344
+ iSpec code (Blanco-Cuaresma et al. 2014), as well as de-
1345
+ terminations based on cross-correlations against PoWR
1346
+ model spectra (Hainich et al. 2019) for only the He ii
1347
+ lines (λ4200, λ4540 lines, and λ4686), which are the
1348
+ only clean features appearing in all epochs.
1349
+ The lat-
1350
+ ter are carried out with the Markov Chain Monte Carlo
1351
+ code of Becker et al. (2015), and since they yield better
1352
+ results, we adopt these RV measurements (Table 1).
1353
+ We find that the mean systemic radial velocity is
1354
+ 202 ± 9 km s−1, weighted inversely by the errors. We
1355
+ caution that the quoted standard error on this value
1356
+ underestimates the uncertainty if there is true variation.
1357
+ Given the difficulty of these measurements, with median
1358
+ error on individual epochs of 46 km s−1, it is difficult to
1359
+ evaluate any variability (Figure 10). There is possible
1360
+ evidence for very short-term RV variations; however, the
1361
+ data are ambiguous.
1362
+ We compute RV models for a possible periastron sug-
1363
+ gested in Section 2.3 at MJD 57523, which is near the
1364
+ second minimum in the light curve (Figure 1). For this
1365
+ 7.3-year period, and the above, nominal periastron dis-
1366
+ tance of 40R⋆, the eccentricity e ∼ 0.93 and apastron
1367
+ ∼ 28 AU. For this scenario, Figure 10 demonstrates that
1368
+ the RV signature of a neutron-star companion at perias-
1369
+ tron is very brief, on the order of 0.01 in orbital phase,
1370
+ and moreover, the observational uncertainties are larger
1371
+ than the expected amplitude. This is the case even for
1372
+ e = 0.99. Thus, our existing RV measurements do not
1373
+ strongly constrain whether MJD 57523 corresponds to
1374
+ a periastron, nor the existence and properties of a com-
1375
+ panion,
1376
+ 6.3. Proper Motion
1377
+ A post-SN bound system can be expected to have been
1378
+ accelerated from its original rest frame. Relative to the
1379
+ blue stars from Massey (2002) within a 5′ radius, the
1380
+ Gaia EDR3 (Gaia Collaboration et al. 2021) residual
1381
+ proper motions of AzV 493 show two potential velocity
1382
+ vectors. Figure 11 provides the velocity histograms of
1383
+ these local field stars, showing strong bimodality in the
1384
+ R.A. components. These define two possible local ve-
1385
+ locity fields implying R.A. and Dec residual velocity for
1386
+ AzV 493 of either (vα, vδ) = (53 ± 11, 3 ± 12) km s−1;
1387
+ or (vα, vδ) = (−11 ± 11, 12 ± 13) km s−1. These yield
1388
+ total projected transverse velocities of 54±11 km s−1 or
1389
+ 16 ± 12 km s−1.
1390
+ Figure 12 shows a wide-field view of the surround-
1391
+ ing environment, with the two possible proper motion
1392
+ vectors superposed.
1393
+ We see that the nearest massive
1394
+ star-forming region is the N84 complex (Henize 1956)
1395
+ about 15′ − 20′ or ∼ 300 pc to the west. If the velocity
1396
+ measurements are correct, the faster, east-bound veloc-
1397
+ ity is consistent with AzV 493 originating in N84 and
1398
+ traveling for ≳ 5 Myr. The lifetime itself of a 50 M⊙
1399
+ star with v sin i ∼ 500 km s−1 is about 5 Myr (Brott
1400
+
1401
+ 14
1402
+ Figure 10. Left: Heliocentric radial velocities measured from He ii photospheric absorption vs MJD for all epochs. Epoch A
1403
+ has only one available line of low quality, and hence has a very large uncertainty. The vertical dashed lines show the possible
1404
+ periastra at MJD 54686 and 57523. Right: Zoom for the same data showing RV models for eccentricities of 0.93 (dashed lines)
1405
+ and 0.99 (solid lines), assuming a periastron occurs at MJD 57523; and for inclination angles of 90◦ (black) and 45◦ (blue), for
1406
+ the 50 M⊙ primary and assuming a 3 M⊙ secondary. If a periastron is closer to the light curve minimum at MJD 57626, the
1407
+ models would shift to 103 days later.
1408
+ Figure 11. Distribution of Gaia proper motion velocities in R.A. (left) and Dec (right) for stars from Massey (2002) within 5′
1409
+ of AzV 493. The bimodal R.A. distribution defines two kinematic groups. The first group has 13 stars with median velocity
1410
+ (vα, vδ) = (254 ± 7, −378 ± 9) km s−1 and the second has 10 stars with (vα, vδ) = (318 ± 6, −386 ± 11) km s−1. The one star
1411
+ between the two groups in vα is included in both. The median velocities for these groups are shown with the vertical green and
1412
+ blue lines, together with the velocity of AzV 493 (red).
1413
+ et al. 2011), and for a SN ejection, its travel time would
1414
+ only be the post-SN lifetime. However, since the star
1415
+ presumably acquired its total mass and spin later in
1416
+ life, the system may have been ejected earlier by dy-
1417
+ namical processes as a tight, non-compact binary. If so,
1418
+ it would have been reaccelerated by the SN explosion,
1419
+ therefore implying that it may be a two-step ejection
1420
+ (Pflamm-Altenburg & Kroupa 2010). Supernova accel-
1421
+ erations are typically weaker than dynamical ejections
1422
+ (e.g., Renzo et al. 2019), and so the dominant velocity
1423
+ component could still be due to a dynamical ejection
1424
+ from N84. A dynamically active past in a dense stellar
1425
+ environment of N84 may also help to explain the eccen-
1426
+ tricity (e.g., Sim´on-D´ıaz et al. 2015), although it would
1427
+ seem unlikely that the system could maintain its highly
1428
+ eccentric configuration for 5 Myr. On the other hand,
1429
+ we note that the inferred runaway velocity, orbital ec-
1430
+ centricity, and period are still consistent with being due
1431
+
1432
+ AzV 493
1433
+ 350
1434
+ (km/sec)
1435
+ 300
1436
+ E
1437
+ 250
1438
+ -
1439
+ B
1440
+ D
1441
+ 200
1442
+ --
1443
+ K
1444
+ RV
1445
+ A
1446
+ Heliocentric
1447
+ 150
1448
+ 100
1449
+ -
1450
+ 50
1451
+ 0
1452
+ 50
1453
+ --
1454
+ 55000
1455
+ 56000
1456
+ 57000
1457
+ 58000
1458
+ 59000
1459
+ 60000
1460
+ Date (MJD)Example RV Curves
1461
+ 260
1462
+ e=0.99
1463
+ e=0.94
1464
+ 240
1465
+ Primary RV (km/s)
1466
+ 220
1467
+ 200
1468
+ 180
1469
+ 160
1470
+ 140
1471
+ -200
1472
+ 0
1473
+ 200
1474
+ 400
1475
+ 600
1476
+ Days around Periastron = MJD 5752377616 field v RA plot
1477
+ 77616 field v DEC plot
1478
+ 6
1479
+ 8
1480
+ 7
1481
+ 5
1482
+ 6
1483
+ 4
1484
+ (stars)
1485
+ 3
1486
+ 4
1487
+ N
1488
+ N
1489
+ 2
1490
+ 2
1491
+ 1
1492
+ 1
1493
+ 0
1494
+ 0
1495
+ 200
1496
+ 250
1497
+ 300
1498
+ 350
1499
+ -450
1500
+ -400
1501
+ -350
1502
+ -300
1503
+ Velocity (km/s)
1504
+ Velocity (km/s)15
1505
+ Figure 12. Location of AzV 493 in the SMC field, with the green and blue proper motion vectors corresponding to the two
1506
+ field velocities indicated with the same color coding in Figure 11, superposed on an Hα images from Smith et al. (2005). The
1507
+ nearest massive star-forming region is the N84 complex (Henize 1956), indicated. For the adopted SMC distance, 10′ = 181 pc.
1508
+ solely to SN acceleration (e.g., Brandt & Podsiadlowski
1509
+ 1995). Thus, in order to explain both the long travel
1510
+ time and high eccentricity, the most plausible scenario
1511
+ may be the two-step ejection.
1512
+ There is also a small possibility that the slow, alterna-
1513
+ tive proper motion vector (Figure 12) is correct. How-
1514
+ ever, this would mean that the AzV 493 system formed
1515
+ in isolation since there is no corresponding young clus-
1516
+ ter whence it could have originated (Figure 11). Vargas-
1517
+ Salazar et al. (2020) find that < 5% of OB stars, if any,
1518
+ formed in the field, and this is especially unlikely for
1519
+ AzV 493, given its high mass.
1520
+ We caution that the ve-
1521
+ locity errors do not include unknown systematic errors,
1522
+ and so these measurements need to be confirmed. Thus,
1523
+ although AzV 493 indeed appears to be a runaway star,
1524
+ this does not provide especially useful information to
1525
+ constrain its binary interaction history.
1526
+ 6.4. Similar systems
1527
+ A comprehensive study by Marr et al. (2022) shows
1528
+ that the B8 Vpe star Pleione (HD 23862) has a light
1529
+ curve with a similar long-term pattern of slow growth
1530
+ with sudden drops, and similar variations in the Balmer
1531
+ emission-line profiles. It is a triple system with a close
1532
+ companion on a 218-day orbit (Katahira et al. 1996;
1533
+ Nemravov´a et al. 2010). Marr et al. (2022) suggest that
1534
+ the photometric drops correspond to the decretion disk
1535
+ tearing into two components, where one remains aligned
1536
+ with the star’s equatorial plane and the other is mis-
1537
+ aligned due to tidal torque from the close companion.
1538
+ Pleione’s long-term photometric cycle is 34 years, simi-
1539
+ lar in magnitude to that of AzV 493. Nemravov´a et al.
1540
+ (2010) find that the close companion is on an eccentric
1541
+ orbit with e > 0.7.
1542
+ AzV 493’s initial peak brightness and subsequent drop
1543
+ in 2001 (Figure 1) qualitatively resemble the photomet-
1544
+ ric pattern characteristic of heartbeat stars. These are a
1545
+ rare class of interacting binary systems with high eccen-
1546
+ tricities such that the periastron passage tidally induces
1547
+ regular photometric outbursts. However, the observed
1548
+ pattern in AzV 493 cannot be induced by this type of
1549
+ tidal interaction; preliminary simulations using new ca-
1550
+ pabilities in the GYRE stellar oscillation code (Sun et al.
1551
+ 2023) suggest that the combined amplitude and width of
1552
+ the periastron pulse cannot be reproduced by eccentric
1553
+ tidal models. Nevertheless, given that AzV 493 seems
1554
+ likely to be a massive eccentric binary system, massive
1555
+ heartbeat stars thus share some similarities with this
1556
+
1557
+ 53.5±10.9 km/s
1558
+ 73°00'00"
1559
+ 16.0±12.1 km/s
1560
+ 10'00"
1561
+ Dec (J2000)
1562
+ N84
1563
+ 20'00"
1564
+ 30'00"
1565
+ 20°00'00"
1566
+ 19°00'00"
1567
+ 18°00'00"
1568
+ RA (12000)16
1569
+ object if a companion indeed interacts with the primary
1570
+ and/or its disk.
1571
+ Examples include the non-Be binary
1572
+ system ι Ori (O9 III + B1 III/IV), which has orbital
1573
+ period 29 d and eccentricity e = 0.764, as determined by
1574
+ Pablo et al. (2017). They find that the two components
1575
+ have masses of 23.2 and 13.4 M⊙, respectively, generat-
1576
+ ing tidally excited oscillations with periods on the order
1577
+ of ∼ 1 day. MACHO 80.7443.1718 is another heartbeat
1578
+ system with two stars of type B0 Iae and O9.5 V and
1579
+ masses of 35 and 16 M⊙, respectively (Jayasinghe et al.
1580
+ 2021).
1581
+ The B0.5 Ve star δ Sco is has a B2 V star companion
1582
+ in an eccentric (e = 0.94) orbit with period 10.7 years
1583
+ (e.g., Tango et al. 2009; Tycner et al. 2011). The two
1584
+ components have masses of 13.9 M⊙ and 6 M⊙ (Che
1585
+ et al. 2012). This system shows a long-term photomet-
1586
+ ric cycle somewhat similar to that of AzV 493, although
1587
+ much more poorly defined. There is no obvious link be-
1588
+ tween the disk properties and binary interaction (Suffak
1589
+ et al. 2020; Che et al. 2012), but the long-term pho-
1590
+ tometry has a timescale similar to that of the orbital
1591
+ period.
1592
+ H 1145–619 is a Be X-ray binary whose primary is a
1593
+ B0.2e III star estimated to be 18.5 M⊙ (Alfonso-Garz´on
1594
+ et al. 2017), and the secondary is an X-ray pulsar. As
1595
+ shown by Alfonso-Garz´on et al. (2017), H 1145–619 has
1596
+ a light curve with a ∼ 10-year cycle together with un-
1597
+ explained multiple modes of much shorter periods (∼ 1
1598
+ year), qualitatively similar to what we see for AzV 493,
1599
+ which has a long cycle of 14.6 (7.3) years and short oscil-
1600
+ lations of ∼ 40 days. While it remains unclear whether
1601
+ the light curves of H 1145–619 and AzV 493 have fun-
1602
+ damental similarities, both stars are massive OBe stars.
1603
+ If they are related, the fact that H 1145–619 has a con-
1604
+ firmed compact binary companion may suggest that the
1605
+ unusual variability of AzV 493 may have a similar origin.
1606
+ These objects provide a context for AzV 493 that sup-
1607
+ ports this object being a member of this broad class of
1608
+ binary, massive OBe systems with high eccentricities.
1609
+ At 50 M⊙, AzV 493 is more massive than any of these
1610
+ similar objects.
1611
+ It is also one of the earliest O stars
1612
+ in the SMC, since there is no photospheric He i. Thus,
1613
+ AzV 493 may be the most extreme such object known,
1614
+ in terms of its mass and effective temperature. Its vari-
1615
+ ability amplitudes are also among the largest known.
1616
+ We note that, based on only the Epoch A spectrum
1617
+ (Figure 5), Golden-Marx et al. (2016) suggested that
1618
+ AzV 493 is a normal, but extremely early, classical Oe
1619
+ star. Given the strong spectroscopic and photometric
1620
+ variability, the nature of this spectrum may be some-
1621
+ what different than inferred in that work, and the origin
1622
+ of the strong line emission seen in this particular spec-
1623
+ trum is unclear (Section 3.3). Still, its status as a post-
1624
+ SN binary where the observed star was likely spun up
1625
+ by mass transfer from the compact object progenitor, is
1626
+ consistent with the origin of classical OBe stars. Indeed,
1627
+ given that most of the massive OBe stars are post-SN
1628
+ systems (e.g., Dallas & Oey 2022; Dorigo Jones et al.
1629
+ 2020), we can expect that more of them are likely to be
1630
+ high-eccentricity, compact-object binaries.
1631
+ 6.5. Alternative Companion Scenarios
1632
+ We now consider alternative scenarios for a putative
1633
+ binary component. First, such a companion might be
1634
+ an unexploded former donor in an interacting binary. In
1635
+ this case, it could be a stripped star (e.g., Schootemeijer
1636
+ et al. 2018; G¨otberg et al. 2017), which can be elusive to
1637
+ detect. Wang et al. (2021) identified hot, stripped star
1638
+ companions to Be stars based on FUV spectral cross-
1639
+ correlations; however, the extremely hot temperature of
1640
+ AzV 493, which is commensurate with the hottest O
1641
+ stars, poses a serious challenge for this method. If the
1642
+ observed star has previously experienced accretion from
1643
+ binary mass transfer, then its surface might be He- and
1644
+ N-enriched (e.g., Blaauw 1993; Renzo & G¨otberg 2021),
1645
+ although whether this occurs depends on the accretion
1646
+ efficiency and mixing processes in the accretor’s enve-
1647
+ lope. Since early O stars have few metal lines, it is again
1648
+ difficult to evaluate any enrichment, especially in a fast
1649
+ rotator like AzV 493. There is no immediate evidence
1650
+ for any unusual abundances in this star. Moreover, a
1651
+ non-degenerate companion does not naturally explain
1652
+ the high observed eccentricity, which would then have
1653
+ to be primordial, avoiding tidal dissipation, or of dy-
1654
+ namical origin.
1655
+ Alternatively, the high rotation rate and variability of
1656
+ AzV 493 might be caused by a non-standard internal
1657
+ structure of the star because of a merger.
1658
+ These are
1659
+ common among massive stars, occurring in 22+26
1660
+ −9 % of
1661
+ isolated massive binaries (Renzo et al. 2019), with an
1662
+ even higher rate if accounting for the presence of further
1663
+ companions (e.g. Toonen et al. 2020). For example, η
1664
+ Car has been suggested to originate from a merger in
1665
+ a hierarchical triple system, resulting in a present-day
1666
+ eccentric binary (e.g., Hirai et al. 2021). However, η Car
1667
+ is a luminous blue variable star and has other substantial
1668
+ differences from AzV 493.
1669
+ Yet another possibility is that AzV 493 might be a
1670
+ triple system with a third, also invisible, star on a
1671
+ shorter-period orbit.
1672
+ This speculative scenario might
1673
+ help to explain how the strong, 40-day pulsations are
1674
+ maintained (Section 2.2). It also might help explain the
1675
+ apparently sporadic ejection and accretion events seen
1676
+ in Epochs B and F (Section 3.4). Such a system would
1677
+
1678
+ 17
1679
+ be unstable, but the brief interaction phase with the sec-
1680
+ ondary may enhance its longevity. We note that the sys-
1681
+ tem is unlikely to be a triple in which the third star has
1682
+ an even larger orbit than the secondary. Although high
1683
+ orbital eccentricities can be produced by Kozai-Lidov
1684
+ cycles in such a system, this high-eccentricity phase of
1685
+ the cycle is short in duration. Thus, such extreme eccen-
1686
+ tricity may require a triple or higher-order multiple-star
1687
+ interaction in the system’s birth cluster, and may be
1688
+ linked to a dynamical ejection of AzV 493 into the field.
1689
+ Overall, however, it is challenging to explain AzV 493 in
1690
+ terms of a triple-star scenario. Unfortunately, RV mon-
1691
+ itoring is complicated due to the technical difficulty and
1692
+ possible presence of varying stellar pulsations, so it will
1693
+ be hard to evaluate whether the system consists of more
1694
+ than two stars.
1695
+ 7. SUMMARY
1696
+ We present 18 years of OGLE Project photometric
1697
+ data and spectroscopic data over 12 years, revealing the
1698
+ remarkable variability of AzV 493. This is perhaps the
1699
+ earliest known classical Oe star, with Teff = 42000 K,
1700
+ log L/L⊙ = 5.83 ± 0.15, and R⋆/R⊙ = 15 ± 3. These
1701
+ parameters imply a mass of 50 ± 9 M⊙.
1702
+ The domi-
1703
+ nant photometric pattern is reproduced after 14.6 years.
1704
+ There are also large, semi-regular ∼ 40-day pulsations of
1705
+ unknown origin, as well as other structure in the light
1706
+ curve. It is not a known HMXB. The observed v sin i
1707
+ = 370± 40 km s−1, with a high inferred sin i, suggesting
1708
+ a rotational velocity of 400 − 450 km s−1. The system
1709
+ is ∼ 300 pc from the nearest massive star-forming com-
1710
+ plex and its proper motion shows that it is likely a run-
1711
+ away star from that region, with a transverse velocity
1712
+ of 54 ± 11 km s−1, possibly having experienced two-step
1713
+ acceleration.
1714
+ Altogether, the data suggest that this object is likely
1715
+ an eccentric, interacting binary system with an unde-
1716
+ tected compact companion.
1717
+ If so, the orbital period
1718
+ could correspond to the 14.6 (7.3)-year period, imply-
1719
+ ing a high eccentricity of at least e ∼ 0.95 (0.93) and
1720
+ apastron ∼ 43 (28) AU. If this binary scenario is cor-
1721
+ rect, AzV 493 would be among the most extreme sys-
1722
+ tems known, in terms of its early spectral type, high
1723
+ mass, and extreme eccentricity.
1724
+ In our favored model, an optically thick decretion disk
1725
+ is regularly ejected, likely by a periastron encounter. A
1726
+ two-component disk system forms, with the outer re-
1727
+ gion responsible for the 0.85-magnitude drop in I-band
1728
+ flux, while the inner disk is the origin of most of the
1729
+ observed emission-line spectrum. The spectra appear to
1730
+ show varying relative contributions from the inner and
1731
+ outer regions, consistent with the optically thick outer
1732
+ region dissipating over the cycle. The outer region may
1733
+ correspond to a flared disk, torus, or possibly, a separate
1734
+ inclined annulus formed by tearing from the inner disk.
1735
+ We see direct spectroscopic evidence for episodes of both
1736
+ matter ejection and infalling reabsorption of dense disk
1737
+ material onto the star. The lack of exact regularity of
1738
+ photometric and spectroscopic variations in the cycle
1739
+ implies that the geometry and/or mechanics of the disk
1740
+ ejection may vary. An alternative, opposite model seen
1741
+ in some Be stars, in which the brightness increases due
1742
+ to contribution from growing disk emission (e.g., Suf-
1743
+ fak et al. 2020; Ghoreyshi et al. 2018), should also be
1744
+ considered.
1745
+ If AzV 493 indeed has a highly eccentric orbit, it would
1746
+ suggest that the system experienced a strong SN kick,
1747
+ implying that the unseen companion is a neutron star
1748
+ or black hole. The high v sin i also suggests that mass
1749
+ transfer occurred before this event.
1750
+ For conservative,
1751
+ Case A mass transfer, the progenitor donor’s ZAMS
1752
+ mass would be 30 − 40 M⊙ for a typical q ∼ 0.5, and
1753
+ larger for non-conservative Case B mass transfer. This
1754
+ mass range is well within that suggested by models to
1755
+ produce black holes, although the occurrence of strong
1756
+ natal kicks in cases of black hole formation is less clear.
1757
+ Alternatively, the donor could be a stripped star; how-
1758
+ ever, this scenario cannot explain the extreme eccentric-
1759
+ ity, which would have to be dynamical or primordial.
1760
+ The system could also be a merger, but the eruptions
1761
+ and long-term pulsations seem less consistent with this
1762
+ scenario.
1763
+ AzV 493 could possibly be a triple system,
1764
+ which might explain how the strong photometric oscil-
1765
+ lations are maintained (Section 6.5).
1766
+ Establishing the existence and nature of the unseen
1767
+ companion(s) can provide important constraints on bi-
1768
+ nary evolution, core explodability, and the origin of
1769
+ compact binaries. AzV 493 may offer an opportunity
1770
+ to directly observe the relationship between the binary
1771
+ companion’s dynamical interaction and the disk ejec-
1772
+ tion. Since many classical OBe stars are massive, post-
1773
+ SN objects, it suggests a likely link between OBe stars
1774
+ and massive, eccentric systems. Further study of this
1775
+ fascinating object can more definitively confirm its sta-
1776
+ tus and exploit the opportunities it offers to learn about
1777
+ massive binary evolution and disk ejection.
1778
+
1779
+ 18
1780
+ ACKNOWLEDGMENTS
1781
+ We benefited from useful discussions with many peo-
1782
+ ple, including Jon Bjorkman, Paul Crowther, Julian
1783
+ Deman, Jim Fuller, Jay Gallagher, Carol Jones, Max
1784
+ Moe, Megan Reiter, Steve Shore, and Drew Weisser-
1785
+ man.
1786
+ Many thanks to Juliette Becker for the use of
1787
+ her code, and to Traci Johnson, Mario Mateo, and the
1788
+ M2FS Team for help with observing runs.
1789
+ We also
1790
+ thank the anonymous referees for valuable comments
1791
+ that greatly improved this paper. This work was sup-
1792
+ ported by NSF grant AST-1514838 to M.S.O. and by the
1793
+ University of Michigan. N. Castro acknowledges funding
1794
+ from the Deutsche Forschungsgemeinschaft (DFG), CA
1795
+ 2551/1-1; M.R. is supported by EUH2020 OPTICON
1796
+ RadioNet Pilot grant No.
1797
+ 101004719; and R.H.D.T.
1798
+ is supported by NASA grant 80NSSC20K0515.
1799
+ This
1800
+ research made use of Astropy, a community-developed
1801
+ core Python package for Astronomy (Astropy Collabo-
1802
+ ration et al. 2013). M.S.O. acknowledges MDRS, LLC,
1803
+ for pandemic hospitality.
1804
+ Facilities: Magellan, OGLE, Gaia
1805
+
1806
+ 19
1807
+ REFERENCES
1808
+ Alfonso-Garz´on, J., Fabregat, J., Reig, P., et al. 2017,
1809
+ A&A, 607, A52
1810
+ Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. 2002,
1811
+ ApJ, 568, 289
1812
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
1813
+ et al. 2013, A&A, 558, A33
1814
+ Atri, P., Miller-Jones, J. C. A., Bahramian, A., et al. 2019,
1815
+ MNRAS, 489, 3116
1816
+ Azzopardi, M., Vigneau, J., & Macquet, M. 1975, A&AS,
1817
+ 22, 285
1818
+ Baade, D., Rivinius, T., Pigulski, A., et al. 2016, A&A, 588,
1819
+ A56
1820
+ Baade, D., Pigulski, A., Rivinius, T., et al. 2018, A&A, 610,
1821
+ A70
1822
+ Becker, J. C., Johnson, J. A., Vanderburg, A., & Morton,
1823
+ T. D. 2015, ApJS, 217, 29
1824
+ Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008,
1825
+ ApJS, 174, 223
1826
+ Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki,
1827
+ S., & Athey, A. E. 2003, in Instrument Design and
1828
+ Performance for Optical/Infrared Ground-based
1829
+ Telescopes. Edited by Iye, Masanori; Moorwood, Alan F.
1830
+ M. Proceedings of the SPIE, Volume 4841, pp. 1694-1704
1831
+ (2003)., Vol. 4841, 1694–1704
1832
+ Bigelow, B. C., & Dressler, A. M. 2003, in Instrument
1833
+ Design and Performance for Optical/Infrared
1834
+ Ground-based Telescopes. Edited by Iye, Masanori;
1835
+ Moorwood, Alan F. M. Proceedings of the SPIE, Volume
1836
+ 4841, pp. 1727-1738 (2003)., Vol. 4841, 1727–1738
1837
+ Blaauw, A. 1993, in Astronomical Society of the Pacific
1838
+ Conference Series, Vol. 35, Massive Stars: Their Lives in
1839
+ the Interstellar Medium, ed. J. P. Cassinelli & E. B.
1840
+ Churchwell, 207
1841
+ Blanco-Cuaresma, S., Soubiran, C., Heiter, U., & Jofr´e, P.
1842
+ 2014, A&A, 569, A111
1843
+ Bodensteiner, J., Shenar, T., & Sana, H. 2020, A&A, 641,
1844
+ A42
1845
+ Bonanos, A. Z., Lennon, D. J., K¨ohlinger, F., et al. 2010,
1846
+ AJ, 140, 416
1847
+ Brandt, N., & Podsiadlowski, P. 1995, MNRAS, 274, 461
1848
+ Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A,
1849
+ 530, A115
1850
+ Callister, T. A., Farr, W. M., & Renzo, M. 2020, arXiv
1851
+ e-prints, arXiv:2011.09570
1852
+ Cantiello, M., Yoon, S., Langer, N., & Livio, M. 2007,
1853
+ A&A, 465, L29
1854
+ Castro, N., Oey, M. S., Fossati, L., & Langer, N. 2018,
1855
+ ApJ, 868, 57
1856
+ Che, X., Monnier, J. D., Tycner, C., et al. 2012, ApJ, 757,
1857
+ 29
1858
+ Conti, P. S., & Leep, E. M. 1974, ApJ, 193, 113
1859
+ Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020,
1860
+ ApJ, 890, 127
1861
+ Dallas, M. M., & Oey, M. S. 2022, ApJ, in press
1862
+ de Wit, W. J., Lamers, H. J. G. L. M., Marquette, J. B., &
1863
+ Beaulieu, J. P. 2006, A&A, 456, 1027
1864
+ Dorigo Jones, J., Oey, M. S., Paggeot, K., Castro, N., &
1865
+ Moe, M. 2020, ApJ, 903, 43
1866
+ Dray, L. M., Dale, J. E., Beer, M. E., Napiwotzki, R., &
1867
+ King, A. R. 2005, MNRAS, 364, 59
1868
+ Fitzpatrick, E. L., & Massa, D. 2007, ApJ, 663, 320
1869
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.
1870
+ 2021, A&A, 649, A1
1871
+ Ghoreyshi, M. R., Carciofi, A. C., R´ımulo, L. R., et al.
1872
+ 2018, MNRAS, 479, 2214
1873
+ Golden-Marx, J. B., Oey, M. S., Lamb, J. B., Graus, A. S.,
1874
+ & White, A. S. 2016, ApJ, 819, 55
1875
+ G¨otberg, Y., de Mink, S. E., & Groh, J. H. 2017, A&A,
1876
+ 608, A11
1877
+ Graczyk, D., Pietrzy´nski, G., Thompson, I. B., et al. 2014,
1878
+ ApJ, 780, 59
1879
+ Hainich, R., Ramachandran, V., Shenar, T., et al. 2019,
1880
+ A&A, 621, A85
1881
+ Hartmann, L., Herczeg, G., & Calvet, N. 2016, ARA&A,
1882
+ 54, 135
1883
+ Henize, K. G. 1956, ApJS, 2, 315
1884
+ Hirai, R., Podsiadlowski, P., Owocki, S. P., Schneider, F.
1885
+ R. N., & Smith, N. 2021, MNRAS, 503, 4276
1886
+ Janka, H.-T. 2013, MNRAS, 434, 1355
1887
+ —. 2017, ApJ, 837, 84
1888
+ Jayasinghe, T., Kochanek, C. S., Strader, J., et al. 2021,
1889
+ MNRAS, 506, 4083
1890
+ Katahira, J.-I., Hirata, R., Ito, M., et al. 1996, PASJ, 48,
1891
+ 317
1892
+ Kelson, D. D. 2003, Publications of the Astronomical
1893
+ Society of the Pacific, 115, 688
1894
+ Kelson, D. D., Illingworth, G. D., van Dokkum, P. G., &
1895
+ Franx, M. 2000, ApJ, 531, 159
1896
+ Klencki, J., Istrate, A., Nelemans, G., & Pols, O. 2022,
1897
+ A&A, 662, A56
1898
+ Labadie-Bartz, J., Pepper, J., McSwain, M. V., et al. 2017,
1899
+ AJ, 153, 252
1900
+ Lamb, J. B., Oey, M. S., Segura-Cox, D. M., et al. 2016,
1901
+ ApJ, 817, 113
1902
+ Mandel, I. 2016, MNRAS, 456, 578
1903
+ Marr, K. C., Jones, C. E., Tycner, C., Carciofi, A. C., &
1904
+ Silva, A. C. F. 2022, ApJ, 928, 145
1905
+
1906
+ 20
1907
+ Martins, F., & Palacios, A. 2021, A&A, 645, A67
1908
+ Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436,
1909
+ 1049
1910
+ Massey, P. 2002, The Astrophysical Journal Supplement
1911
+ Series, 141, 81
1912
+ Mateo, M., Bailey, J. I., Crane, J., et al. 2012, in
1913
+ Proceedings of the SPIE, Volume 8446, id. 84464Y 19 pp.
1914
+ (2012)., Vol. 8446, 84464Y
1915
+ Moe, M., & Di Stefano, R. 2017, ApJS, 230, 15
1916
+ Natta, A., & Whitney, B. A. 2000, A&A, 364, 633
1917
+ Nemravov´a, J., Harmanec, P., Kub´at, J., et al. 2010, A&A,
1918
+ 516, A80
1919
+ O’Connor, E., & Ott, C. D. 2011, ApJ, 730, 70
1920
+ Okazaki, A. T. 1991, Publications of the Astronomical
1921
+ Society of Japan, 43, 75
1922
+ Pablo, H., Richardson, N. D., Fuller, J., et al. 2017,
1923
+ MNRAS, 467, 2494
1924
+ Packet, W. 1981, A&A, 102, 17
1925
+ Pflamm-Altenburg, J., & Kroupa, P. 2010, MNRAS, 404,
1926
+ 1564
1927
+ Podsiadlowski, P., Langer, N., Poelarends, A. J. T., et al.
1928
+ 2004, ApJ, 612, 1044
1929
+ Poeckert, R. 1982, in Be Stars, Vol. 98, 453–477
1930
+ Poleski, R., Soszy´nski, I., Udalski, A., et al. 2012, AcA, 62,
1931
+ 1
1932
+ Pols, O. R., Cote, J., Waters, L. B. F. M., & Heise, J. 1991,
1933
+ A&A, 241, 419
1934
+ Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A,
1935
+ 435, 669
1936
+ Renzo, M., & G¨otberg, Y. 2021, arXiv e-prints,
1937
+ arXiv:2107.10933
1938
+ Renzo, M., Zapartas, E., de Mink, S. E., et al. 2019, A&A,
1939
+ 624, A66
1940
+ Repetto, S., Igoshev, A. P., & Nelemans, G. 2017, MNRAS,
1941
+ 467, 298
1942
+ Richardson, N. D., Thizy, O., Bjorkman, J. E., et al. 2021,
1943
+ arXiv e-prints, arXiv:2109.11026
1944
+ Rivero Gonz´alez, J. G., Puls, J., Massey, P., & Najarro, F.
1945
+ 2012, A&A, 543, A95
1946
+ Rivinius, T., Carciofi, A. C., & Martayan, C. 2013,
1947
+ Astronomy and Astrophysics Review, 21, 69
1948
+ Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A,
1949
+ 323, 488
1950
+ Schootemeijer, A., G¨otberg, Y., de Mink, S. E., Gies, D., &
1951
+ Zapartas, E. 2018, A&A, 615, A30
1952
+ Sigut, T. A. A., McGill, M. A., & Jones, C. E. 2009, ApJ,
1953
+ 699, 1973
1954
+ Sim´on-D´ıaz, S., & Herrero, A. 2007, A&A, 468, 1063
1955
+ —. 2014, A&A, 562, A135
1956
+ Sim´on-D´ıaz, S., Caballero, J. A., Lorenzo, J., et al. 2015,
1957
+ ApJ, 799, 169
1958
+ Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ,
1959
+ 131, 1163
1960
+ Smith, R. C., Points, S. D., Chu, Y. H., et al. 2005, in
1961
+ American Astronomical Society Meeting Abstracts, Vol.
1962
+ 207, American Astronomical Society Meeting Abstracts,
1963
+ 25.07
1964
+ Sota, A., Ma´ız Apell´aniz, J., Walborn, N. R., et al. 2011,
1965
+ ApJS, 193, 24
1966
+ Suffak, M., Jones, C. E., & Carciofi, A. C. 2022, MNRAS,
1967
+ 509, 931
1968
+ Suffak, M. W., Jones, C. E., Tycner, C., et al. 2020, ApJ,
1969
+ 890, 86
1970
+ Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., &
1971
+ Janka, H.-T. 2016, ApJ, 821, 38
1972
+ Sun, M., Townsend, R. H. D., & Guo, Z. 2023, arXiv
1973
+ e-prints, arXiv:2301.06599
1974
+ Tango, W. J., Davis, J., Jacob, A. P., et al. 2009, MNRAS,
1975
+ 396, 842
1976
+ Tauris, T. M., & Takens, R. J. 1998, A&A, 330, 1047
1977
+ Toonen, S., Portegies Zwart, S., Hamers, A. S., &
1978
+ Bandopadhyay, D. 2020, A&A, 640, A16
1979
+ Tycner, C., Ames, A., Zavala, R. T., et al. 2011, ApJL, 729,
1980
+ L5
1981
+ Udalski, A., Szymanski, M. K., Soszynski, I., & Poleski, R.
1982
+ 2008, AcA, 58, 69
1983
+ Udalski, A., Szyma´nski, M. K., & Szyma´nski, G. 2015,
1984
+ AcA, 65, 1
1985
+ van den Heuvel, E. P. J. 1969, AJ, 74, 1095
1986
+ van der Meij, V., Guo, D., Kaper, L., & Renzo, M. 2021,
1987
+ arXiv e-prints, arXiv:2108.12918
1988
+ Vargas-Salazar, I., Oey, M. S., Barnes, J. R., et al. 2020,
1989
+ ApJ, 903, 42
1990
+ Verbunt, F., Igoshev, A., & Cator, E. 2017, A&A, 608, A57
1991
+ Vinciguerra, S., Neijssel, C. J., Vigna-G´omez, A., et al.
1992
+ 2020, MNRAS, 498, 4705
1993
+ Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2015,
1994
+ ApJ, 808, 108
1995
+ Wang, L., Gies, D. R., Peters, G. J., et al. 2021, AJ, 161,
1996
+ 248
1997
+ Zapartas, E., Renzo, M., Fragos, T., et al. 2021, arXiv
1998
+ e-prints, arXiv:2106.05228
1999
+ Zechmeister, M., & K¨urster, M. 2009, A&A, 496, 577
2000
+ Zhang, W., Woosley, S. E., & Heger, A. 2008, ApJ, 679, 639
2001
+
2002
+ APPENDIX
2003
+ A. GENERALIZED LOMB-SCARGLE PERIODOGRAMS
2004
+ Figure 13 shows the individual generalized Lomb-Scargle periodograms (Zechmeister & K¨urster 2009) and ancillary
2005
+ information for the six, roughly contiguous, OGLE datasets during ∼ 2010 – 2016 (Section 2.2).
2006
+
2007
+ 22
2008
+ Figure 13. Top panels show the generalized Lomb-Scargle periodogram for light curves shown in the middle-left panels. The
2009
+ fitted light curves are shown in the middle-right panels, with each cycle superposed according to color from the middle-left
2010
+ panel. Residuals are shown in the bottom panels, as a function of MJD and phase, as shown. The middle and bottom panels
2011
+ have the same x-axes. The fitted period is shown in the top panel as the inverse of the frequency f. The observation time of
2012
+ spectroscopic epoch B is shown by the vertical dashed line in the plots for the fifth dataset.
2013
+
2014
+ Period [day]
2015
+ 100
2016
+ 20
2017
+ (ZK)
2018
+ 1/f=37.3±0.2[day]
2019
+ Power
2020
+ 0.5
2021
+ 0.0
2022
+ 0.01
2023
+ 0.02
2024
+ 0.03
2025
+ 0.04
2026
+ 0.05
2027
+ 0.06
2028
+ 0.07
2029
+ 0.08
2030
+ 0.09
2031
+ Frequency f[day-1]
2032
+ A
2033
+ 14.4
2034
+ 14.6
2035
+ Residuals
2036
+ 0.1
2037
+ 0.0
2038
+ 55350
2039
+ 55400
2040
+ 55450
2041
+ 55500
2042
+ 55550
2043
+ 0
2044
+ 5
2045
+ 10
2046
+ 15
2047
+ 20
2048
+ 25
2049
+ 30
2050
+ 35
2051
+ MJD [day]
2052
+ PhasePeriod [day]
2053
+ 100
2054
+ 20
2055
+ (ZK)
2056
+ 1/f=31.8±0.1[day]
2057
+ Power
2058
+ 0.5
2059
+ 0.0
2060
+ 0.01
2061
+ 0.02
2062
+ 0.03
2063
+ 0.04
2064
+ 0.05
2065
+ 0.06
2066
+ 0.07
2067
+ 0.08
2068
+ 0.09
2069
+ Frequency f[day-1]
2070
+ 14.4
2071
+ [mag]
2072
+ 14.6
2073
+ 0.05
2074
+ Residuals
2075
+ 08
2076
+ 00
2077
+ 0.00
2078
+ .
2079
+ 0.05
2080
+ :
2081
+ 55700
2082
+ 55750
2083
+ 5580055850
2084
+ 55900
2085
+ 55950
2086
+ 0
2087
+ 5
2088
+ 10
2089
+ 15
2090
+ 20
2091
+ 25
2092
+ 30
2093
+ MJD [day]
2094
+ Phase23
2095
+ Figure 13. (Continued)
2096
+
2097
+ Period [day]
2098
+ 100
2099
+ 20
2100
+ (ZK)
2101
+ 1/f=30.8±0.3[day]
2102
+ 0.5
2103
+ Power
2104
+ 0.0
2105
+ 0.01
2106
+ 0.02
2107
+ 0.03
2108
+ 0.04
2109
+ 0.05
2110
+ 0.06
2111
+ 0.07
2112
+ 0.08
2113
+ 0.09
2114
+ Frequency f [day-1]
2115
+ AA
2116
+ 14.5
2117
+ ma
2118
+ :
2119
+ 14.6
2120
+ 14.7
2121
+ Residuals
2122
+ 0.05
2123
+ .
2124
+ :
2125
+ .
2126
+ ..
2127
+ 0.00
2128
+ .
2129
+ .
2130
+ .
2131
+ .
2132
+ 0.05
2133
+ :
2134
+ 56100
2135
+ 56150
2136
+ 56200
2137
+ 56250
2138
+ 56300
2139
+ 0
2140
+ 5
2141
+ 10
2142
+ 15
2143
+ 20
2144
+ 25
2145
+ 30
2146
+ MJD [day]
2147
+ PhasePeriod [day]
2148
+ 100
2149
+ 20
2150
+ (ZK)
2151
+ 1/f = 34.5±1.2 [day]
2152
+ 0.2
2153
+ Power
2154
+ 0.0
2155
+ 0.01
2156
+ 0.02
2157
+ 0.03
2158
+ 0.04
2159
+ 0.05
2160
+ 0.06
2161
+ 0.07
2162
+ 0.08
2163
+ 0.09
2164
+ Frequency f[day-1]
2165
+ 14.4
2166
+ 14.5
2167
+ Residuals
2168
+ 0.1
2169
+ 0.0
2170
+ 0.1
2171
+ 56500
2172
+ 56550
2173
+ 56600
2174
+ 56650
2175
+ 0
2176
+ 5
2177
+ 10
2178
+ 15
2179
+ 20
2180
+ 25
2181
+ 30
2182
+ MJD [day]
2183
+ Phase24
2184
+ Figure 13. (Continued)
2185
+
2186
+ Period [day]
2187
+ 100
2188
+ 20
2189
+ 10
2190
+ (ZK)
2191
+ 0.5
2192
+ 1/f=43.6±0.8[day]
2193
+ Power
2194
+ 0.0
2195
+ 0.01
2196
+ 0.02
2197
+ 0.03
2198
+ 0.04
2199
+ 0.05
2200
+ 0.06
2201
+ 0.07
2202
+ 0.08
2203
+ 0.09
2204
+ 0.10
2205
+ Frequency f[day-1]
2206
+ iB
2207
+ [ma
2208
+ 6
2209
+ 14.6
2210
+ 0.1
2211
+ Residuals
2212
+ 159
2213
+ !
2214
+ 0.0
2215
+ b60
2216
+ iB
2217
+ 0.1
2218
+ iB
2219
+ 56800
2220
+ 56850
2221
+ 56900
2222
+ 56950
2223
+ 57000
2224
+ 57050
2225
+ 10
2226
+ 0
2227
+ 20
2228
+ 30
2229
+ 40
2230
+ MJD [day]
2231
+ PhasePeriod [day]
2232
+ 100
2233
+ 20
2234
+ (ZK)
2235
+ 0.4
2236
+ 1/f= 42.3±1.2[day]
2237
+ Power
2238
+ 0.2
2239
+ 0.0
2240
+ 0.01
2241
+ 0.02
2242
+ 0.03
2243
+ 0.04
2244
+ 0.05
2245
+ 0.06
2246
+ 0.07
2247
+ 0.08
2248
+ 0.09
2249
+ Frequency f[day-1]
2250
+ [ma
2251
+ 14.6
2252
+ Residuals
2253
+ 0.1
2254
+ "
2255
+ 0.0
2256
+ .
2257
+ 000
2258
+ :
2259
+ U.
2260
+ 57200
2261
+ 57250
2262
+ 57300
2263
+ 57350
2264
+ 57400
2265
+ 0
2266
+ 10
2267
+ 20
2268
+ 30
2269
+ 40
2270
+ MJD [day]
2271
+ Phase
FtFJT4oBgHgl3EQfDSx3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtFLT4oBgHgl3EQfGS-3/content/tmp_files/2301.11991v1.pdf.txt ADDED
@@ -0,0 +1,904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Real-time non-perturbative dynamics of jet production:
2
+ quantum entanglement and vacuum modification
3
+ Adrien Florio,1, ∗ David Frenklakh,2, † Kazuki Ikeda,2, 3, ‡ Dmitri Kharzeev,1, 2, 3, §
4
+ Vladimir Korepin,4, ¶ Shuzhe Shi,2, ∗∗ and Kwangmin Yu5, ††
5
+ 1Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6
+ 2Center for Nuclear Theory, Department of Physics and Astronomy,
7
+ Stony Brook University, Stony Brook, New York 11794-3800, USA
8
+ 3Co-design Center for Quantum Advantage, Department of Physics and Astronomy,
9
+ Stony Brook University, Stony Brook, New York 11794-3800, USA
10
+ 4C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York, 11794-3840, USA
11
+ 5Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
12
+ The production of jets should allow to test the real-time response of the QCD vacuum disturbed
13
+ by the propagation of high-momentum color charges. Addressing this problem theoretically requires
14
+ a real-time, non-perturbative method. As a step in developing such an approach, we report here on
15
+ fully quantum simulations of a massive Schwinger model coupled to external sources representing
16
+ quark and antiquark jets as produced in e+e− annihilation. It is well known that the Schwinger
17
+ model [QED in (1 + 1) dimensions] shares many common properties with QCD, including confine-
18
+ ment, chiral symmetry breaking and the existence of vacuum fermion condensate. This allows us to
19
+ study, for the first time, the modification of the vacuum chiral condensate by the propagating jets,
20
+ and the quantum entanglement between the fragmenting jets. Our results indicate strong entangle-
21
+ ment between the fragmentation products of the two jets at rapidity separations ∆η ≤ 2 that can
22
+ potentially be studied in experiment.
23
+ Introduction:
24
+ The discovery of jets played a crucial
25
+ role in establishing Quantum Chromodynamics (QCD)
26
+ as the theory of strong interactions, see [1, 2] for reviews.
27
+ The production of the initial high momentum partons is
28
+ a short-distance process that can be described in pertur-
29
+ bative QCD due to asymptotic freedom. However, as the
30
+ initial partons keep radiating gluons and quark-antiquark
31
+ pairs as described by QCD evolution equations, the char-
32
+ acteristic virtuality decreases, and non-perturbative phe-
33
+ nomena should come into play.
34
+ In particular, one expects that the propagating color
35
+ charges will disturb the non-perturbative QCD vacuum,
36
+ and the corresponding real-time response should contain
37
+ valuable information about the vacuum structure. More-
38
+ over, the initial partons should be entangled by the pro-
39
+ duction process, but whether any trace of this entangle-
40
+ ment can be found in fragmenting jets is not clear. The
41
+ answers to these questions lie outside of the realm of per-
42
+ turbative QCD, and finding them requires a real-time,
43
+ non-perturbative method.
44
+ Such an approach is enabled by the advent of quantum
45
+ simulations. Unfortunately, the case of real (3+1) dimen-
46
+ sional QCD is still out of reach for the existing quantum
47
+ hardware, as well as for real-time simulations on classical
48
+ computers. However one can start developing real-time
49
+ non-perturbative methods using simpler models in lower
50
+ number of space-time dimensions.
51
+ In this respect QED in (1 + 1) dimensions (the
52
+ Schwinger model [3]) holds a special place: just like QCD,
53
+ it possesses confinement, chiral symmetry breaking, and
54
+ fermion condensate [4]. In the massless fermion limit, the
55
+ theory is exactly solvable by bosonization, and admits a
56
+ dual description in terms of a free massive scalar theory.
57
+ In 1974, Casher, Kogut, and Susskind [5] proposed to
58
+ model quark-antiquark production in e+e− annihilation
59
+ by coupling Schwinger model to external sources propa-
60
+ gating along the light cone.
61
+ An explicit analytical solution of this model has been
62
+ found in [6, 7], where this setup was also used to de-
63
+ scribe jet quenching in heavy ion collisions by introducing
64
+ in-medium scattering of the sources, and the anomalous
65
+ enhancement of soft photon production in jet fragmenta-
66
+ tion [8] observed by the DELPHI Collaboration [9].
67
+ A more realistic extension of this approach is based
68
+ on a massive Schwinger model, which in the bosonized
69
+ description is dual to an interacting meson theory. In this
70
+ case, the model is no longer analytically solvable, and so
71
+ a numerical approach is necessary. The first study of this
72
+ setup was carried out in [10] using a numerical classical-
73
+ statistical approach. Coupling the Schwinger model to an
74
+ external Yukawa theory has also been used to mimic the
75
+ propagation of jets through a thermal environment [11].
76
+ Various other aspects of the Schwinger model have also
77
+ been addressed using quantum simulations, see [12–17]
78
+ for examples and [18] for a recent review of quantum
79
+ simulations.
80
+ In this work, using the massive Schwinger model cou-
81
+ pled to external sources, we perform the first fully quan-
82
+ tum simulation of jet production. In particular, we focus
83
+ on real-time, non-perturbative effects that have not been
84
+ studied before: the modification of the vacuum structure
85
+ and the entanglement between the produced jets.
86
+ The model:
87
+ We use the massive Schwinger model
88
+ Hamiltonian in temporal gauge A0 = 0 in the presence
89
+ arXiv:2301.11991v1 [hep-ph] 27 Jan 2023
90
+
91
+ 2
92
+ of an external current jµ
93
+ ext describing the produced jets:
94
+ HC = HC
95
+ S + HC
96
+ ext ,
97
+ (1)
98
+ HC
99
+ S =
100
+
101
+ dx
102
+ �1
103
+ 2E2 + ¯ψ(−iγ1∂1 + gγ1A1 + m)ψ
104
+
105
+ , (2)
106
+ HC
107
+ ext =
108
+
109
+ dx j1
110
+ extA1 ,
111
+ (3)
112
+ where Aµ is the U(1) gauge potential, E = − ˙A1 is
113
+ the corresponding electric field, ψ is a two-component
114
+ fermionic field, m is the fermion mass, and γµ are two-
115
+ dimensional γ-matrices satisfying Clifford algebra; we use
116
+ ηµν = diag(1, −1) as our metric.
117
+ The superscript C
118
+ stands for “continuum”.
119
+ The effect on the theory of the interaction with the
120
+ external source Hext is to modify Gauss law to
121
+ ∂1E − j0 = j0
122
+ ext .
123
+ (4)
124
+ with j0 = g ¯ψγ0ψ. In other words, the theory is gauge
125
+ invariant up to the presence of the external charge j0
126
+ ext;
127
+ the external current is a “defect” of the U(1) gauge trans-
128
+ formation.
129
+ To mimic production of a pair of jets in e+e− annihila-
130
+ tion, we choose the external current to represent charges
131
+ of opposite sign flying apart along the light cone:
132
+ j0
133
+ ext(x, t) = g[δ(∆x − ∆t) − δ(∆x + ∆t)]θ(∆t) ,
134
+ j1
135
+ ext(x, t) = g[δ(∆x − ∆t) + δ(∆x + ∆t)]θ(∆t) ,
136
+ (5)
137
+ where (t0, x0) is the time and position of a point where
138
+ the jet pair is produced, and ∆x ≡ x−x0 and ∆t ≡ t−t0
139
+ are the space and time distance from this position.
140
+ Note that in principle one could replace the external
141
+ probe charges by “hard” dynamical fermions, which can,
142
+ for instance, be produced by short lived pulses of electric
143
+ fields. This has been done in [10], where it was found
144
+ that, at least within the semiclassics, the use of exter-
145
+ nal charges is a very good approximation to a pair of
146
+ dynamical relativistic “hard” fermions. This motivates
147
+ us to restrict ourselves to the simpler case of external
148
+ currents.
149
+ Our goal is to study the modification of the vacuum
150
+ due to the presence of the external sources (5). To this
151
+ end, we evolve the ground state of the massive Schwinger
152
+ model with the time-dependent Hamiltonian (1). In or-
153
+ der to solve this problem, we need to discretize space-
154
+ time and approximate the theory by a finite-dimensional
155
+ Hilbert space.
156
+ Lattice model: We begin by discretizing space in a lat-
157
+ tice of N points with lattice spacing a. We choose to
158
+ work with staggered fermions χn [19, 20]. We use a non-
159
+ compact formulation for the U(1) gauge fields, and in-
160
+ troduce a lattice electric field operator Ln = E(an)/g, a
161
+ lattice vector potential φn = ag A1(an), and a link opera-
162
+ tor Un = e−iagA1(an). We further impose open-boundary
163
+ conditions (OBC) χN+1 = LN = 0 on the fermion and
164
+ gauge fields. Using the Dirac matrices γ0 = σz, γ1 = i σy,
165
+ the Hamiltonian is
166
+ HL(t) = HL
167
+ S + HL
168
+ ext(t) ,
169
+ (6)
170
+ HL
171
+ S = − i
172
+ 2a
173
+ N−1
174
+
175
+ n=1
176
+
177
+ U †
178
+ nχ†
179
+ nχn+1 − Unχ†
180
+ n+1χn
181
+
182
+ + ag2
183
+ 2
184
+ N−1
185
+
186
+ n=1
187
+ L2
188
+ n + m
189
+ N
190
+
191
+ n=1
192
+ (−1)nχ†
193
+ nχn ,
194
+ (7)
195
+ HL
196
+ ext(t) = 1
197
+ g
198
+ N−1
199
+
200
+ n=1
201
+ j1
202
+ ext(a n, t)φn ,
203
+ (8)
204
+ where the superscript L stands for “lattice”. Even in the
205
+ presence of point charges, Gauss law is well defined when
206
+ integrated over a lattice spacing and reads
207
+ Ln − Ln−1 − Qn = 1
208
+ g
209
+ � (n+1/2)a
210
+ (n−1/2)a
211
+ dx j0
212
+ ext(x, t) ,
213
+ (9)
214
+ with Qn = χ†
215
+ nχn (1 − (−1)n) the lattice charge density
216
+ operator. For the rest of this work, we insert the sources
217
+ at the center of our lattice, x0 = a
218
+ � N+1
219
+ 2
220
+
221
+ , at time t0
222
+ a = 1.
223
+ Before proceeding with the time evolution, we take
224
+ advantage of the fact that the gauge fields are non-
225
+ dynamical in (1+1) dimensions to express them in terms
226
+ of fermionic operators through Gauss law. This has the
227
+ advantage of drastically reducing the size of the discrete
228
+ Hilbert space needed down to 2N, at the cost of intro-
229
+ ducing non-localities. The former turns out to outweigh
230
+ the latter for the method we use (direct diagonalization,
231
+ or “exact diagonalization” of the Hamiltonian), see also
232
+ the Supplementary Material.
233
+ We then use the remaining freedom to perform a space-
234
+ only dependent gauge transformation to set all gauge
235
+ links to unity. The explicit gauge transformation which
236
+ achieves this result is Ω1 = 1, Ωn = �n−1
237
+ i=1 U †
238
+ i [17]. Note
239
+ that the existence of such a transformation is a pecu-
240
+ liarity of (1 + 1) dimensions and is related to the fact
241
+ that the gauge field is not dynamical. We then rewrite
242
+ Ln = Ldyn,n + Lext,n and solve Gauss law (9) as follows:
243
+ Ldyn,n =
244
+ n
245
+
246
+ i=1
247
+ Qi ,
248
+ (10)
249
+ Lext,n(t) = −θ
250
+
251
+ t − t0 −
252
+ ���x − x0 + a
253
+ 2
254
+ ���
255
+
256
+ .
257
+ (11)
258
+ The non-locality is contained in the dynamical gauge field
259
+ and the external sources create a chain of electric fluxes
260
+ between them.
261
+ The Hamiltonian (6) is now directly suitable for di-
262
+ agonalization.
263
+ However, having in mind future quan-
264
+ tum computing applications, we have used an equivalent
265
+ form in terms of Pauli matrices X, Y, Z, or “spin” degrees
266
+
267
+ 3
268
+ t/a
269
+ A B
270
+ 2-
271
+ 3-
272
+ 4-
273
+ 5-
274
+ 6-
275
+ 7-
276
+ 8-
277
+ 9-
278
+ 10-
279
+ source
280
+ fermion
281
+ anti-fermion
282
+ electric charge
283
+ dynamical
284
+ electric field
285
+ 0
286
+ 5
287
+ 10
288
+ 15
289
+ Eele,t - Eele,0
290
+ a g2 / 2
291
+ external only
292
+ 0.0
293
+ 0.5
294
+ 1.0
295
+ 1.5
296
+ νt - ν0
297
+ 0.4
298
+ 0.6
299
+ 0.8
300
+ 1.0
301
+ SEE
302
+ 0
303
+ 2
304
+ 4
305
+ 6
306
+ 8
307
+ 10
308
+ 0.0
309
+ 0.1
310
+ t / a
311
+ Qt
312
+ FIG. 1.
313
+ (Left) Time evolution of the local charge density (vertical bars) and of the electric field (arrows), with vacuum
314
+ expectation values subtracted. Black(white) even(odd)-sites correspond to (anti)fermions. The position of the external sources
315
+ is shown above each configuration. From top to bottom, the rows are for time values (in units of lattice spacing a) t/a = 2−
316
+ to 10−, where n− ≡ n − ε with ε being an arbitrarily small positive number. (Right) (from top to bottom) Time evolution
317
+ of electric energy, scalar fermion density, entanglement entropy, and electric charge. Dotted lines in the first panel show the
318
+ electric energy generated by the external sources.
319
+ of freedom. We employ the Jordan–Wigner transforma-
320
+ tion [21]
321
+ χn = Xn − iYn
322
+ 2
323
+ n−1
324
+
325
+ j=1
326
+ (−iZj),
327
+ χ†
328
+ n = Xn + iYn
329
+ 2
330
+ n−1
331
+
332
+ j=1
333
+ (iZj),
334
+ (12)
335
+ to obtain
336
+ HL(t) = 1
337
+ 4a
338
+ N−1
339
+
340
+ n=1
341
+ (XnXn+1 + YnYn+1) + m
342
+ 2
343
+ N
344
+
345
+ n=1
346
+ (−1)nZn
347
+ + ag2
348
+ 2
349
+ N−1
350
+
351
+ n=1
352
+ (Ldyn,n + Lext,n(t))2 .
353
+ (13)
354
+ Our simulations then proceed as follows.
355
+ We start
356
+ by finding the ground state |Ψ0⟩ of the usual massive
357
+ Schwinger model HL(0).
358
+ We then compute the state
359
+ |Ψt⟩ = T e−i
360
+ � t
361
+ 0 HL(t′)dt′ |Ψ0⟩ corresponding to the evolu-
362
+ tion under the time-dependent Hamiltonian HL(t), with
363
+ T being the time-ordering operator. The system is ef-
364
+ fectively “quenched” at
365
+ t
366
+ a = t0
367
+ a = 1, when the external
368
+ sources are introduced. We then compute different time-
369
+ dependent expectation values ⟨O⟩t ≡ ⟨Ψt| O |Ψt⟩ where
370
+ O are the operators corresponding to observables of in-
371
+ terest.
372
+ Vacuum modification and quantum entanglement be-
373
+ tween the jets: We measure the local electric charge den-
374
+ sity, the total electric charge, the scalar fermion density
375
+ ⟨ ¯ψψ⟩, the local electric field strength, and the electric
376
+ field energy, that are given respectively by
377
+ qn,t ≡ ⟨ψ†(a n)ψ(a n)⟩t = ⟨Zn⟩t + (−1)n
378
+ 2a
379
+ ,
380
+ (14)
381
+ Qt ≡
382
+
383
+ ⟨ψ†(x)ψ(x)⟩t dx = a
384
+ N
385
+
386
+ n=1
387
+ qn,t,
388
+ (15)
389
+ νn,t ≡ ⟨ ¯ψ(a n)ψ(a n)⟩t = (−1)n⟨Zn⟩t
390
+ 2a
391
+ ,
392
+ (16)
393
+ νt ≡
394
+
395
+ ⟨ ¯ψ(x)ψ(x)⟩t dx = a
396
+ N
397
+
398
+ n=1
399
+ νn,t,
400
+ (17)
401
+ Πn,t ≡ ⟨E(a n)⟩t = g ⟨Ln⟩t,
402
+ (18)
403
+ Eele,t ≡ 1
404
+ 2
405
+
406
+ ⟨E2(x)⟩t dx = a g2
407
+ 2
408
+ N−1
409
+
410
+ n=1
411
+ ⟨L2
412
+ n⟩t.
413
+ (19)
414
+ We also compute the entanglement entropy between the
415
+ left- and the right-hand sides of the chain
416
+ SEE(t) = −TrA(ρt,A log ρt,A),
417
+ (20)
418
+ with A = {1, · · · , N/2} and B = {N/2 + 1, · · · , N}. The
419
+ operator ρt,A = TrBρt is the partial trace of the time
420
+ dependent density matrix ρt ≡ |Ψt⟩ ⟨Ψt| over B [see il-
421
+ lustration in Fig. 1(left)].
422
+ In Fig. 1, we show the time evolution of local and
423
+ global observables respectively, for parameters N = 20,
424
+ m = 0.25/a, and g = 0.5/a. In the left panel, we show
425
+ the full time evolution of our quantum state.
426
+ We ob-
427
+ serve that both the gauge fields and the fermion fields
428
+
429
+ 4
430
+ are excited by the external sources, and their effects are
431
+ constrained within the light cone spanned by them. In
432
+ the right panel, we observe a step-like increase in electric
433
+ field energy. The growth of νt − ν0 shown in Fig. 1 indi-
434
+ cates destruction of the (negative) vacuum chiral conden-
435
+ sate ν0 by the propagating jets [22]. This destruction is
436
+ due to the pair production from the vacuum that also re-
437
+ sults in the screening of the electric energy which appears
438
+ smaller than the contribution from external sources.
439
+ Since we can access the entire quantum state, we are
440
+ able to compute also for the first time the entanglement
441
+ entropy between the jets. The growth of this entangle-
442
+ ment entropy (third panel) results from the pair creation.
443
+ Lastly, as a consistency check, we also show in the lower
444
+ panel the total electric charge, which remains zero, as
445
+ expected.
446
+ Observing quantum entanglement between the jets:
447
+ With an eye towards possible experimental studies of
448
+ quantum entanglement between the produced jets, we
449
+ measure the two-point correlation of scalar fermion den-
450
+ sity operators with the vacuum expectation value sub-
451
+ tracted,
452
+ ⟨∆νN/2+ℓ ∆νN/2+1−ℓ⟩,
453
+ (21)
454
+ where ∆νn ≡ νn − ⟨νn⟩vac.
455
+ The motivation behind this study is the following.
456
+ In the bosonization dictionary of the massive Schwinger
457
+ model, the correlation between the scalar fermion densi-
458
+ ties translates into the correlation among the boson pairs
459
+ (and higher order correlations). Therefore we hope that
460
+ this correlation function may be used to infer informa-
461
+ tion about quantum entanglement between the pion pairs
462
+ produced in jet fragmentation. A concrete proposal of an
463
+ observable correlation between pion pairs produced in jet
464
+ fragmentation has been put forward in [23].
465
+ To isolate the effect of entanglement between the jets,
466
+ we measure the correlation function for the cases of cor-
467
+ related and uncorrelated sources of fermion-antifermion
468
+ pairs. Because the entanglement should stem from the
469
+ correlation between the sources, the case of uncorrelated
470
+ sources provides the classical baseline for the correlation
471
+ functions.
472
+
473
+
474
+ 1
475
+ 2
476
+ l=3
477
+ (a) correlated:
478
+ (b) left:
479
+ (c) right:
480
+ FIG. 2. Illustration of correlated and uncorrelated measure-
481
+ ments of two point correlation functions. The uncorrelated
482
+ setup is obtained as an uncorrelated linear superposition of
483
+ jets created by a single (anti)fermion source moving to the
484
+ (left)right.
485
+ 0
486
+ 1
487
+ 2
488
+ 3
489
+ 4
490
+ l = 3
491
+ 5
492
+ 7
493
+ 9
494
+ 4
495
+ 6
496
+ 8
497
+ correlated
498
+ 0
499
+ 2
500
+ 4
501
+ 6
502
+ 8
503
+ 10
504
+ 0.0
505
+ 0.1
506
+ 0.2
507
+ 0.3
508
+ 0.4
509
+ t / a
510
+ uncorrelated
511
+ 102 × 〈ΔνN/2+l ΔνN/2+1-l〉
512
+ 0.0
513
+ 0.5
514
+ 1.0
515
+ 1.5
516
+ 0
517
+ 1
518
+ 2
519
+ 3
520
+ 4
521
+ ηs
522
+ uncorrelated
523
+ correlated
524
+ t = 10 a
525
+ 102 × 〈Δν-ηs Δν+ηs〉
526
+ FIG. 3.
527
+ Time evolution of two-point correlation functions
528
+ with various separations.
529
+ The upper(lower) panel is for a
530
+ correlated(uncorrelated) setup. The large difference between
531
+ the two cases is a signature of quantum entanglement in the
532
+ produced pairs. (Insert) Spatial-rapidity dependence of the
533
+ two-point correlation at the end of the evolution.
534
+ Our method of preparation of two uncorrelated quan-
535
+ tum systems is illustrated in Fig. 2 (b, c).
536
+ In one of
537
+ these systems, there is only an antifermion source mov-
538
+ ing to the left while the fermion source sits still at the
539
+ origin.
540
+ We denote the quantum state of such a sys-
541
+ tem as |ψL⟩.
542
+ We then define its counterpart, |ψR⟩,
543
+ corresponding to the setup of Fig. 2(c), with fermion
544
+ source moving to the right and the antifermion source
545
+ fixed at the origin.
546
+ The uncorrelated state is defined
547
+ as the superposition of left and right state with a ran-
548
+ dom phase, |ψuncorr⟩ =
549
+ 1
550
+
551
+ 2 |ψL⟩ + eiϕ
552
+
553
+ 2 |ψR⟩, and the ex-
554
+ pectation value of any observable is obtained by aver-
555
+ aging over this random phase, ⟨⟨ψuncorr|O|ψuncorr⟩⟩ ≡
556
+
557
+ ⟨ψuncorr|O|ψuncorr⟩ dϕ
558
+ 2π = ⟨ψL|O|ψL⟩
559
+ 2
560
+ + ⟨ψR|O|ψR⟩
561
+ 2
562
+ .
563
+ The correlation function (21) is designed to measure
564
+ the points that are symmetric with respect to the jet
565
+ production vertex. We measure the two-point correlation
566
+ function with different separation distances as functions
567
+ of time, and the results are presented in Fig. 3. We find
568
+ that the correlation functions measured for the correlated
569
+ state are an order of magnitude greater than those for the
570
+ uncorrelated state. Note that it is non-zero in the latter
571
+ case because of the classical correlation between the par-
572
+ ticle production in left- and right-moving jets which is
573
+ similar to the correlation that would be induced by the
574
+ propagation of sound along the jets’ axes.
575
+ Meanwhile, for the quantum correlated state, we ob-
576
+ serve the propagation of a similar pattern for odd ℓ’s and
577
+
578
+ 5
579
+ similarly for even ℓ’s, which is driven by the correlated
580
+ moving sources. After a sufficiently large time, we take
581
+ a snapshot and present the space dependence of the cor-
582
+ relation functions in Fig. 3 (insert), where we have con-
583
+ verted the site separation to spatial rapidity separation,
584
+ ηs ≡ arctanh z
585
+ t = arctanh (ℓ−1/2)a
586
+ t
587
+ .
588
+ One can clearly see a big difference between the strong
589
+ quantum correlation for the quantum state and the near
590
+ absence of correlations for the uncorrelated baseline.
591
+ This difference is especially pronounced for moderate ra-
592
+ pidity separations ∆ηs = 2ηs ≤ 2. Using the approxi-
593
+ mate equality of space-time and momentum space rapidi-
594
+ ties in jet fragmentation, this suggests that one should
595
+ look for quantum entanglement among the pions pro-
596
+ duced in the fragmentation of the two jets at rapidity
597
+ separation ∆η ≤ 2. An observation of correlations among
598
+ these pion pairs would constitute a direct signature of en-
599
+ tanglement between the jets.
600
+ Specifically, it would be interesting to study the quan-
601
+ tum correlations between the “handedness” of the pion
602
+ pairs produced in the fragmentation of the quark and
603
+ antiquark jets [23].
604
+ Some hints of such correlations
605
+ had been reported in the data from DELPHI Collabo-
606
+ ration [24].
607
+ To summarize, we have performed a real-time, non-
608
+ perturbative study of jet fragmentation using a massive
609
+ Schwinger model with external sources. Strong distortion
610
+ of the vacuum chiral condensate by the propagating jets
611
+ has been observed. We have also found strong quantum
612
+ entanglement between the fragmenting jets for rapidity
613
+ separation ∆η ≤ 2. We hope that this result will moti-
614
+ vate dedicated experimental studies. Our work also paves
615
+ the way for quantum simulations of jet fragmentation us-
616
+ ing quantum hardware; we plan to address this problem
617
+ in the near future.
618
+ ACKNOWLEDGEMENT
619
+ We thank Jo˜ao Barata, Fangcheng He, Yuta Kikuchi,
620
+ Semeon Valgushev, Tzu-Chieh Wei, and Ismail Zahed
621
+ for useful discussions and communications.
622
+ This work
623
+ was supported by the U.S. Department of Energy, Of-
624
+ fice of Science, National Quantum Information Science
625
+ Research Centers, Co-design Center for Quantum Ad-
626
+ vantage (C2QA) under Contract No.DE-SC0012704 (AF,
627
+ KI, VK), and the U.S. Department of Energy, Office of
628
+ Science, Office of Nuclear Physics, Grants Nos.
629
+ DE-
630
+ FG88ER41450 (DF, DK, SS) and DE-SC0012704 (AF,
631
+ DK, KY). This research used resources of the National
632
+ Energy Research Scientific Computing Center, a DOE
633
+ Office of Science User Facility supported by the Office of
634
+ Science of the U.S. Department of Energy under Contract
635
+ No. DE-AC02-05CH11231 using NERSC award NERSC
636
+ DDR-ERCAP0022229.
637
+ ∗ afl[email protected]
638
639
640
641
642
643
644
+ [1] G. F. Sterman, “QCD and jets,” in Theoretical
645
+ Advanced Study Institute in Elementary Particle
646
+ Physics: Physics in D ≧ 4, pp. 67–145. 12, 2004.
647
+ arXiv:hep-ph/0412013.
648
+ [2] Y. L. Dokshitzer, “QCD and hadron dynamics,” Phil.
649
+ Trans. Roy. Soc. Lond. A 359 (2001) 309–324,
650
+ arXiv:hep-ph/0106348.
651
+ [3] J. S. Schwinger, “Gauge Invariance and Mass. 2.,”
652
+ Phys. Rev. 128 (1962) 2425–2429.
653
+ [4] S. R. Coleman, R. Jackiw, and L. Susskind, “Charge
654
+ Shielding and Quark Confinement in the Massive
655
+ Schwinger Model,” Annals Phys. 93 (1975) 267.
656
+ [5] A. Casher, J. B. Kogut, and L. Susskind, “Vacuum
657
+ polarization and the absence of free quarks,” Phys. Rev.
658
+ D 10 (1974) 732–745.
659
+ [6] F. Loshaj and D. E. Kharzeev, “LPM effect as the
660
+ origin of the jet fragmentation scaling in heavy ion
661
+ collisions,” Int. J. Mod. Phys. E 21 (2012) 1250088,
662
+ arXiv:1111.0493 [hep-ph].
663
+ [7] D. E. Kharzeev and F. Loshaj, “Jet energy loss and
664
+ fragmentation in heavy ion collisions,” Phys. Rev. D 87
665
+ no. 7, (2013) 077501, arXiv:1212.5857 [hep-ph].
666
+ [8] D. E. Kharzeev and F. Loshaj, “Anomalous soft photon
667
+ production from the induced currents in Dirac sea,”
668
+ Phys. Rev. D 89 no. 7, (2014) 074053, arXiv:1308.2716
669
+ [hep-ph].
670
+ [9] DELPHI Collaboration, J. Abdallah et al., “Study of
671
+ the Dependence of Direct Soft Photon Production on
672
+ the Jet Characteristics in Hadronic Z0 Decays,” Eur.
673
+ Phys. J. C 67 (2010) 343–366, arXiv:1004.1587
674
+ [hep-ex].
675
+ [10] F. Hebenstreit and J. Berges, “Connecting real-time
676
+ properties of the massless Schwinger model to the
677
+ massive case,” Phys. Rev. D 90 no. 4, (2014) 045034,
678
+ arXiv:1406.4273 [hep-ph].
679
+ [11] W. A. de Jong, K. Lee, J. Mulligan, M. P�losko´n,
680
+ F. Ringer, and X. Yao, “Quantum simulation of
681
+ nonequilibrium dynamics and thermalization in the
682
+ Schwinger model,” Phys. Rev. D 106 no. 5, (2022)
683
+ 054508, arXiv:2106.08394 [quant-ph].
684
+ [12] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D.
685
+ Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski,
686
+ and M. J. Savage, “Quantum-classical computation of
687
+ Schwinger model dynamics using quantum computers,”
688
+ Phys. Rev. A 98 no. 3, (2018) 032331,
689
+ arXiv:1803.03326 [quant-ph].
690
+ [13] N. Butt, S. Catterall, Y. Meurice, R. Sakai, and
691
+ J. Unmuth-Yockey, “Tensor network formulation of the
692
+ massless Schwinger model with staggered fermions,”
693
+ Phys. Rev. D 101 no. 9, (2020) 094509,
694
+ arXiv:1911.01285 [hep-lat].
695
+ [14] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio,
696
+ F. V. Pepe, and E. Ercolessi, “Real Time Dynamics and
697
+ Confinement in the Zn Schwinger-Weyl lattice model
698
+
699
+ 6
700
+ for 1+1 QED,” Quantum 4 (2020) 281,
701
+ arXiv:1909.04821 [quant-ph].
702
+ [15] A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe,
703
+ “Quantum Algorithms for Simulating the Lattice
704
+ Schwinger Model,” Quantum 4 (2020) 306,
705
+ arXiv:2002.11146 [quant-ph].
706
+ [16] D. E. Kharzeev and Y. Kikuchi, “Real-time chiral
707
+ dynamics from a digital quantum simulation,” Phys.
708
+ Rev. Res. 2 no. 2, (2020) 023342, arXiv:2001.00698
709
+ [hep-ph].
710
+ [17] K. Ikeda, D. E. Kharzeev, and Y. Kikuchi, “Real-time
711
+ dynamics of Chern-Simons fluctuations near a critical
712
+ point,” Phys. Rev. D 103 no. 7, (2021) L071502,
713
+ arXiv:2012.02926 [hep-ph].
714
+ [18] C. W. Bauer et al., “Quantum Simulation for High
715
+ Energy Physics,” arXiv:2204.03381 [quant-ph].
716
+ [19] J. B. Kogut and L. Susskind, “Hamiltonian Formulation
717
+ of Wilson’s Lattice Gauge Theories,” Phys. Rev. D 11
718
+ (1975) 395–408.
719
+ [20] L. Susskind, “Lattice Fermions,” Phys. Rev. D 16
720
+ (1977) 3031–3039.
721
+ [21] P. Jordan and E. P. Wigner, “About the Pauli exclusion
722
+ principle,” Z. Phys. 47 (1928) 631–651.
723
+ [22] For the case of static sources, partial destruction of the
724
+ chiral condensate in Schwinger model was studied in [?
725
+ ].
726
+ [23] A. Efremov and D. Kharzeev, “CP violating effect of
727
+ QCD vacuum in quark fragmentation,” Phys. Lett. B
728
+ 366 (1996) 311–315, arXiv:hep-ph/9506412.
729
+ [24] “A Measurement of Quark Spin Correlations in
730
+ Hadronic Z Decays,”.
731
+ [25] M. Bruno, The energy scale of the 3-flavour Lambda
732
+ parameter. PhD thesis, Humboldt-Universit¨at zu Berlin,
733
+ Mathematisch-Naturwissenschaftliche Fakult¨at, 2016.
734
+
735
+ 7
736
+ Supplementary Material
737
+ In the main text, we study the evolution of the Schwinger model Hamiltonian in the presence of external charges
738
+ moving on the light-cone. In this supplemental material, we show that despite the relatively modest lattice sizes,
739
+ the volume dependence and effect of open-boundary conditions are well under control for the quantities and set of
740
+ parameters we studied.
741
+ 0.0
742
+ 0.5
743
+ 1.0
744
+ 1.5
745
+ νt - ν0
746
+ N=6, Λ=3
747
+ N=20
748
+ 16
749
+ 12
750
+ 8
751
+ 0
752
+ 2
753
+ 4
754
+ 6
755
+ 8
756
+ 10
757
+ 12
758
+ Eele,t - Eele,0
759
+ a g2 / 2
760
+ 0
761
+ 2
762
+ 4
763
+ 6
764
+ 8
765
+ 10
766
+ 0.4
767
+ 0.6
768
+ 0.8
769
+ 1.0
770
+ t / a
771
+ SEE,t
772
+ -0.32
773
+ -0.30
774
+ -0.28
775
+ -0.26
776
+ -0.24
777
+ -0.22
778
+ νn [1/a]
779
+ m=0.25/a
780
+ g=0.5/a
781
+ 0
782
+ 5
783
+ 10
784
+ 15
785
+ 20
786
+ 0.05
787
+ 0.10
788
+ 0.15
789
+ 0.20
790
+ 0.25
791
+ n
792
+ Eele,n [1/a]
793
+ -0.47
794
+ -0.46
795
+ -0.45
796
+ -0.44
797
+ -0.43
798
+ νn [1/a]
799
+ m=1/a
800
+ g=1/a
801
+ periodic, dynamical
802
+ open, Gauss' law
803
+ 0
804
+ 2
805
+ 4
806
+ 6
807
+ 8
808
+ 10
809
+ 1.7
810
+ 1.8
811
+ 1.9
812
+ 2.0
813
+ 2.1
814
+ 2.2
815
+ n
816
+ Eele,n [10-3/a]
817
+ FIG. 4.
818
+ (Left) Time evolution of total electric field energy, mass creation, and entanglement entropy for periodic boundary
819
+ condition with dynamical gauge field with N = 6 and Λ = 3 (black dotted) versus open boundary condition with gauge field
820
+ fixed by the Gauss’ law with lattice size from 8(red) to 20 (purple). (Middle) Comparison of local electric field energy and
821
+ chiral condensate. Black dotted lines are determined by the bulk values. In both left and middle panels, parameters are set to
822
+ be N = 20, m = 0.25/a, and g = 0.5/a. (Right) Same as middle but with parameters with parameters N = 10, m = 1/a, and
823
+ g = 1/a. Red dots correspond to open boundary condition with gauge field fixed by the Gauss’ law, whereas black lines are for
824
+ periodic boundary condition with dynamical gauge field.
825
+ In the left-hand side of Fig. 4, plain colored lines show the time evolution of the chiral condensate, electric field
826
+ energy and entanglement entropy for different lattice sizes. The maximal time until which a simulation is meaningful
827
+ is set by half the lattice site plus one unit of time, as after this the point sources exit the system. As illustrated by
828
+ the agreement of the different curves, finite size effects are minimal.
829
+ We also assess the effect of using open-boundary conditions. We expect that the introduction of a physical boundary
830
+ to have the same effect as the introduction of a defect. Excitations localize on the boundary and affect the system in a
831
+ “boundary zone” of order the correlation length of the system, see for instance [25]. We can see in the middle panel of
832
+ Fig. 4 that this is indeed what happens. We show in the upper(lower) panel the value of the chiral condensate(electric
833
+ energy density) as a function of lattice sites in the ground state. In both cases, we can clearly observe a boundary
834
+ zone extending over approximately 4-5 lattice sites.
835
+ It also matches the naive estimate of the correlation length
836
+ ξ ∼ 1
837
+ m = 4a.
838
+ To further crosscheck our results, we also decided to implement simulations with periodic-boundary conditions,
839
+ χN+1 = χ1 and χ†
840
+ N+1 = χ†
841
+ 1, and to keep the gauge field as independent operators. The Hamiltonian reads
842
+ HPBC = 1
843
+ 8a
844
+ N
845
+
846
+ n=1
847
+
848
+ (Un + U †
849
+ n) ⊗ (XnXn+1 + YnYn+1) + i(Un − U †
850
+ n) ⊗ (XnYn+1 − YnXn+1)
851
+
852
+ + m
853
+ 2
854
+ N
855
+
856
+ n=1
857
+ (−1)nZn + a g2
858
+ 2
859
+ N
860
+
861
+ n=1
862
+ L2
863
+ n + 1
864
+ g
865
+ N
866
+
867
+ n=1
868
+ j1
869
+ ext(xn)φn ,
870
+ (22)
871
+ where XN+1 ≡ (−1)
872
+ N
873
+ 2 X1
874
+ �N−1
875
+ m=2 Zm, and likewise for YN+1. We implement the electric-field operator and the link
876
+
877
+ 8
878
+ operator as
879
+ Ln =
880
+ Λ
881
+
882
+ ϵ=−Λ
883
+ ϵ |ϵ⟩n ⟨ϵ|n ,
884
+ (23)
885
+ Un = |Λ⟩n ⟨−Λ|n +
886
+ Λ−1
887
+
888
+ ϵ=−Λ
889
+ |ϵ⟩n ⟨ϵ + 1|n ,
890
+ (24)
891
+ where Λ is a cutoff [15], the eigenbasis |ϵ⟩n of electric field operator Ln.
892
+ The size of the discrete Hilbert space for a truncation Λ is (2Λ + 1)N 2N, namely it is (2Λ + 1)N times larger than
893
+ in the case of open boundary conditions after integrating out the gauge fields through Gauss law. This also means
894
+ that only smaller lattices can be simulated in this set-up.
895
+ We show results of the chiral condensate and electric field energy for N = 6 and Λ = 3 as black dotted lines in the
896
+ left-hand side of Fig. 4. No deviations from the open-boundary conditions can be seen.
897
+ We also investigated the space-dependence of observables. In particular, we expect the bulk value of the open-
898
+ boundary conditions to equal the periodic boundary condition average. Unfortunately, we could not directly verify
899
+ this for the parameters used in the main text as the lattice size required are not achievable not integrating out gauge
900
+ fields. As an alternative, we verified it for a larger mass and larger coupling ma = ga = 1 such that the boundary
901
+ zone is smaller. The results are shown in the right-hand side panel of Fig. 4. Again, the two lattice sites affected by
902
+ the boundary is in agreement with naive expectations. And as expected, the bulk value of the open-boundary system
903
+ matches the value of the periodic one.
904
+
FtFLT4oBgHgl3EQfGS-3/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf,len=477
2
+ page_content='Real-time non-perturbative dynamics of jet production: quantum entanglement and vacuum modification Adrien Florio,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
3
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
4
+ page_content=' ∗ David Frenklakh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
5
+ page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
6
+ page_content=' † Kazuki Ikeda,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
7
+ page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
8
+ page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
9
+ page_content=' ‡ Dmitri Kharzeev,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
10
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
11
+ page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
12
+ page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
13
+ page_content=' § Vladimir Korepin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
14
+ page_content='4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
15
+ page_content=' ¶ Shuzhe Shi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
16
+ page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
17
+ page_content=' ∗∗ and Kwangmin Yu5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
18
+ page_content=' †† 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
19
+ page_content=' Brookhaven National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
20
+ page_content=' Upton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
21
+ page_content=' New York 11973-5000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
22
+ page_content=' USA 2Center for Nuclear Theory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
23
+ page_content=' Department of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
24
+ page_content=' Stony Brook University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
25
+ page_content=' Stony Brook,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
26
+ page_content=' New York 11794-3800,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
27
+ page_content=' USA 3Co-design Center for Quantum Advantage,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
28
+ page_content=' Department of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
29
+ page_content=' Stony Brook University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
30
+ page_content=' Stony Brook,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
31
+ page_content=' New York 11794-3800,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
32
+ page_content=' USA 4C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
33
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
34
+ page_content=' Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York, 11794-3840, USA 5Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973-5000, USA The production of jets should allow to test the real-time response of the QCD vacuum disturbed by the propagation of high-momentum color charges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
35
+ page_content=' Addressing this problem theoretically requires a real-time, non-perturbative method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
36
+ page_content=' As a step in developing such an approach, we report here on fully quantum simulations of a massive Schwinger model coupled to external sources representing quark and antiquark jets as produced in e+e− annihilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
37
+ page_content=' It is well known that the Schwinger model [QED in (1 + 1) dimensions] shares many common properties with QCD, including confine- ment, chiral symmetry breaking and the existence of vacuum fermion condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
38
+ page_content=' This allows us to study, for the first time, the modification of the vacuum chiral condensate by the propagating jets, and the quantum entanglement between the fragmenting jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
39
+ page_content=' Our results indicate strong entangle- ment between the fragmentation products of the two jets at rapidity separations ∆η ≤ 2 that can potentially be studied in experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
40
+ page_content=' Introduction: The discovery of jets played a crucial role in establishing Quantum Chromodynamics (QCD) as the theory of strong interactions, see [1, 2] for reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
41
+ page_content=' The production of the initial high momentum partons is a short-distance process that can be described in pertur- bative QCD due to asymptotic freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
42
+ page_content=' However, as the initial partons keep radiating gluons and quark-antiquark pairs as described by QCD evolution equations, the char- acteristic virtuality decreases, and non-perturbative phe- nomena should come into play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
43
+ page_content=' In particular, one expects that the propagating color charges will disturb the non-perturbative QCD vacuum, and the corresponding real-time response should contain valuable information about the vacuum structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
44
+ page_content=' More- over, the initial partons should be entangled by the pro- duction process, but whether any trace of this entangle- ment can be found in fragmenting jets is not clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
45
+ page_content=' The answers to these questions lie outside of the realm of per- turbative QCD, and finding them requires a real-time, non-perturbative method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
46
+ page_content=' Such an approach is enabled by the advent of quantum simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
47
+ page_content=' Unfortunately, the case of real (3+1) dimen- sional QCD is still out of reach for the existing quantum hardware, as well as for real-time simulations on classical computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
48
+ page_content=' However one can start developing real-time non-perturbative methods using simpler models in lower number of space-time dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
49
+ page_content=' In this respect QED in (1 + 1) dimensions (the Schwinger model [3]) holds a special place: just like QCD, it possesses confinement, chiral symmetry breaking, and fermion condensate [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
50
+ page_content=' In the massless fermion limit, the theory is exactly solvable by bosonization, and admits a dual description in terms of a free massive scalar theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
51
+ page_content=' In 1974, Casher, Kogut, and Susskind [5] proposed to model quark-antiquark production in e+e− annihilation by coupling Schwinger model to external sources propa- gating along the light cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
52
+ page_content=' An explicit analytical solution of this model has been found in [6, 7], where this setup was also used to de- scribe jet quenching in heavy ion collisions by introducing in-medium scattering of the sources, and the anomalous enhancement of soft photon production in jet fragmenta- tion [8] observed by the DELPHI Collaboration [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
53
+ page_content=' A more realistic extension of this approach is based on a massive Schwinger model, which in the bosonized description is dual to an interacting meson theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
54
+ page_content=' In this case, the model is no longer analytically solvable, and so a numerical approach is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
55
+ page_content=' The first study of this setup was carried out in [10] using a numerical classical- statistical approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
56
+ page_content=' Coupling the Schwinger model to an external Yukawa theory has also been used to mimic the propagation of jets through a thermal environment [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
57
+ page_content=' Various other aspects of the Schwinger model have also been addressed using quantum simulations, see [12–17] for examples and [18] for a recent review of quantum simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
58
+ page_content=' In this work, using the massive Schwinger model cou- pled to external sources, we perform the first fully quan- tum simulation of jet production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
59
+ page_content=' In particular, we focus on real-time, non-perturbative effects that have not been studied before: the modification of the vacuum structure and the entanglement between the produced jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
60
+ page_content=' The model: We use the massive Schwinger model Hamiltonian in temporal gauge A0 = 0 in the presence arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
61
+ page_content='11991v1 [hep-ph] 27 Jan 2023 2 of an external current jµ ext describing the produced jets: HC = HC S + HC ext , (1) HC S = � dx �1 2E2 + ¯ψ(−iγ1∂1 + gγ1A1 + m)ψ � , (2) HC ext = � dx j1 extA1 , (3) where Aµ is the U(1) gauge potential, E = − ˙A1 is the corresponding electric field, ψ is a two-component fermionic field, m is the fermion mass, and γµ are two- dimensional γ-matrices satisfying Clifford algebra;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
62
+ page_content=' we use ηµν = diag(1, −1) as our metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
63
+ page_content=' The superscript C stands for “continuum”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
64
+ page_content=' The effect on the theory of the interaction with the external source Hext is to modify Gauss law to ∂1E − j0 = j0 ext .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
65
+ page_content=' (4) with j0 = g ¯ψγ0ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
66
+ page_content=' In other words, the theory is gauge invariant up to the presence of the external charge j0 ext;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
67
+ page_content=' the external current is a “defect” of the U(1) gauge trans- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
68
+ page_content=' To mimic production of a pair of jets in e+e− annihila- tion, we choose the external current to represent charges of opposite sign flying apart along the light cone: j0 ext(x, t) = g[δ(∆x − ∆t) − δ(∆x + ∆t)]θ(∆t) , j1 ext(x, t) = g[δ(∆x − ∆t) + δ(∆x + ∆t)]θ(∆t) , (5) where (t0, x0) is the time and position of a point where the jet pair is produced, and ∆x ≡ x−x0 and ∆t ≡ t−t0 are the space and time distance from this position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
69
+ page_content=' Note that in principle one could replace the external probe charges by “hard” dynamical fermions, which can, for instance, be produced by short lived pulses of electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
70
+ page_content=' This has been done in [10], where it was found that, at least within the semiclassics, the use of exter- nal charges is a very good approximation to a pair of dynamical relativistic “hard” fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
71
+ page_content=' This motivates us to restrict ourselves to the simpler case of external currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
72
+ page_content=' Our goal is to study the modification of the vacuum due to the presence of the external sources (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
73
+ page_content=' To this end, we evolve the ground state of the massive Schwinger model with the time-dependent Hamiltonian (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
74
+ page_content=' In or- der to solve this problem, we need to discretize space- time and approximate the theory by a finite-dimensional Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
75
+ page_content=' Lattice model: We begin by discretizing space in a lat- tice of N points with lattice spacing a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
76
+ page_content=' We choose to work with staggered fermions χn [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
77
+ page_content=' We use a non- compact formulation for the U(1) gauge fields, and in- troduce a lattice electric field operator Ln = E(an)/g, a lattice vector potential φn = ag A1(an), and a link opera- tor Un = e−iagA1(an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
78
+ page_content=' We further impose open-boundary conditions (OBC) χN+1 = LN = 0 on the fermion and gauge fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
79
+ page_content=' Using the Dirac matrices γ0 = σz, γ1 = i σy, the Hamiltonian is HL(t) = HL S + HL ext(t) , (6) HL S = − i 2a N−1 � n=1 � U † nχ† nχn+1 − Unχ† n+1χn � + ag2 2 N−1 � n=1 L2 n + m N � n=1 (−1)nχ† nχn , (7) HL ext(t) = 1 g N−1 � n=1 j1 ext(a n, t)φn , (8) where the superscript L stands for “lattice”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
80
+ page_content=' Even in the presence of point charges, Gauss law is well defined when integrated over a lattice spacing and reads Ln − Ln−1 − Qn = 1 g � (n+1/2)a (n−1/2)a dx j0 ext(x, t) , (9) with Qn = χ† nχn (1 − (−1)n) the lattice charge density operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
81
+ page_content=' For the rest of this work, we insert the sources at the center of our lattice, x0 = a � N+1 2 � , at time t0 a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
82
+ page_content=' Before proceeding with the time evolution, we take advantage of the fact that the gauge fields are non- dynamical in (1+1) dimensions to express them in terms of fermionic operators through Gauss law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
83
+ page_content=' This has the advantage of drastically reducing the size of the discrete Hilbert space needed down to 2N, at the cost of intro- ducing non-localities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
84
+ page_content=' The former turns out to outweigh the latter for the method we use (direct diagonalization, or “exact diagonalization” of the Hamiltonian), see also the Supplementary Material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
85
+ page_content=' We then use the remaining freedom to perform a space- only dependent gauge transformation to set all gauge links to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
86
+ page_content=' The explicit gauge transformation which achieves this result is Ω1 = 1, Ωn = �n−1 i=1 U † i [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
87
+ page_content=' Note that the existence of such a transformation is a pecu- liarity of (1 + 1) dimensions and is related to the fact that the gauge field is not dynamical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
88
+ page_content=' We then rewrite Ln = Ldyn,n + Lext,n and solve Gauss law (9) as follows: Ldyn,n = n � i=1 Qi , (10) Lext,n(t) = −θ � t − t0 − ���x − x0 + a 2 ��� � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
89
+ page_content=' (11) The non-locality is contained in the dynamical gauge field and the external sources create a chain of electric fluxes between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
90
+ page_content=' The Hamiltonian (6) is now directly suitable for di- agonalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
91
+ page_content=' However, having in mind future quan- tum computing applications, we have used an equivalent form in terms of Pauli matrices X, Y, Z, or “spin” degrees 3 t/a A B 2- 3- 4- 5- 6- 7- 8- 9- 10- source fermion anti-fermion electric charge dynamical electric field 0 5 10 15 Eele,t - Eele,0 a g2 / 2 external only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
92
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
93
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
94
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
95
+ page_content='5 νt - ν0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
96
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
97
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
98
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
99
+ page_content='0 SEE 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
100
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
101
+ page_content='1 t / a Qt FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
102
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
103
+ page_content=' (Left) Time evolution of the local charge density (vertical bars) and of the electric field (arrows), with vacuum expectation values subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
104
+ page_content=' Black(white) even(odd)-sites correspond to (anti)fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
105
+ page_content=' The position of the external sources is shown above each configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
106
+ page_content=' From top to bottom, the rows are for time values (in units of lattice spacing a) t/a = 2− to 10−, where n− ≡ n − ε with ε being an arbitrarily small positive number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
107
+ page_content=' (Right) (from top to bottom) Time evolution of electric energy, scalar fermion density, entanglement entropy, and electric charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
108
+ page_content=' Dotted lines in the first panel show the electric energy generated by the external sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
109
+ page_content=' of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
110
+ page_content=' We employ the Jordan–Wigner transforma- tion [21] χn = Xn − iYn 2 n−1 � j=1 (−iZj), χ† n = Xn + iYn 2 n−1 � j=1 (iZj), (12) to obtain HL(t) = 1 4a N−1 � n=1 (XnXn+1 + YnYn+1) + m 2 N � n=1 (−1)nZn + ag2 2 N−1 � n=1 (Ldyn,n + Lext,n(t))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
111
+ page_content=' (13) Our simulations then proceed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
112
+ page_content=' We start by finding the ground state |Ψ0⟩ of the usual massive Schwinger model HL(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
113
+ page_content=' We then compute the state |Ψt⟩ = T e−i � t 0 HL(t′)dt′ |Ψ0⟩ corresponding to the evolu- tion under the time-dependent Hamiltonian HL(t), with T being the time-ordering operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
114
+ page_content=' The system is ef- fectively “quenched” at t a = t0 a = 1, when the external sources are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
115
+ page_content=' We then compute different time- dependent expectation values ⟨O⟩t ≡ ⟨Ψt| O |Ψt⟩ where O are the operators corresponding to observables of in- terest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
116
+ page_content=' Vacuum modification and quantum entanglement be- tween the jets: We measure the local electric charge den- sity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
117
+ page_content=' the total electric charge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
118
+ page_content=' the scalar fermion density ⟨ ¯ψψ⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
119
+ page_content=' the local electric field strength,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
120
+ page_content=' and the electric field energy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
121
+ page_content=' that are given respectively by qn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
122
+ page_content='t ≡ ⟨ψ†(a n)ψ(a n)⟩t = ⟨Zn⟩t + (−1)n 2a ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
123
+ page_content=' (14) Qt ≡ � ⟨ψ†(x)ψ(x)⟩t dx = a N � n=1 qn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
124
+ page_content='t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
125
+ page_content=' (15) νn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
126
+ page_content='t ≡ ⟨ ¯ψ(a n)ψ(a n)⟩t = (−1)n⟨Zn⟩t 2a ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
127
+ page_content=' (16) νt ≡ � ⟨ ¯ψ(x)ψ(x)⟩t dx = a N � n=1 νn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
128
+ page_content='t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
129
+ page_content=' (17) Πn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
130
+ page_content='t ≡ ⟨E(a n)⟩t = g ⟨Ln⟩t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
131
+ page_content=' (18) Eele,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
132
+ page_content='t ≡ 1 2 � ⟨E2(x)⟩t dx = a g2 2 N−1 � n=1 ⟨L2 n⟩t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
133
+ page_content=' (19) We also compute the entanglement entropy between the left- and the right-hand sides of the chain SEE(t) = −TrA(ρt,A log ρt,A), (20) with A = {1, · · · , N/2} and B = {N/2 + 1, · · · , N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
134
+ page_content=' The operator ρt,A = TrBρt is the partial trace of the time dependent density matrix ρt ≡ |Ψt⟩ ⟨Ψt| over B [see il- lustration in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
135
+ page_content=' 1(left)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
136
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
137
+ page_content=' 1, we show the time evolution of local and global observables respectively, for parameters N = 20, m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
138
+ page_content='25/a, and g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
139
+ page_content='5/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
140
+ page_content=' In the left panel, we show the full time evolution of our quantum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
141
+ page_content=' We ob- serve that both the gauge fields and the fermion fields 4 are excited by the external sources, and their effects are constrained within the light cone spanned by them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
142
+ page_content=' In the right panel, we observe a step-like increase in electric field energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
143
+ page_content=' The growth of νt − ν0 shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
144
+ page_content=' 1 indi- cates destruction of the (negative) vacuum chiral conden- sate ν0 by the propagating jets [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
145
+ page_content=' This destruction is due to the pair production from the vacuum that also re- sults in the screening of the electric energy which appears smaller than the contribution from external sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
146
+ page_content=' Since we can access the entire quantum state, we are able to compute also for the first time the entanglement entropy between the jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
147
+ page_content=' The growth of this entangle- ment entropy (third panel) results from the pair creation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
148
+ page_content=' Lastly, as a consistency check, we also show in the lower panel the total electric charge, which remains zero, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
149
+ page_content=' Observing quantum entanglement between the jets: With an eye towards possible experimental studies of quantum entanglement between the produced jets, we measure the two-point correlation of scalar fermion den- sity operators with the vacuum expectation value sub- tracted, ⟨∆νN/2+ℓ ∆νN/2+1−ℓ⟩, (21) where ∆νn ≡ νn − ⟨νn⟩vac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
150
+ page_content=' The motivation behind this study is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
151
+ page_content=' In the bosonization dictionary of the massive Schwinger model, the correlation between the scalar fermion densi- ties translates into the correlation among the boson pairs (and higher order correlations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
152
+ page_content=' Therefore we hope that this correlation function may be used to infer informa- tion about quantum entanglement between the pion pairs produced in jet fragmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
153
+ page_content=' A concrete proposal of an observable correlation between pion pairs produced in jet fragmentation has been put forward in [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
154
+ page_content=' To isolate the effect of entanglement between the jets, we measure the correlation function for the cases of cor- related and uncorrelated sources of fermion-antifermion pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
155
+ page_content=' Because the entanglement should stem from the correlation between the sources, the case of uncorrelated sources provides the classical baseline for the correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
156
+ page_content=' … … 1 2 l=3 (a) correlated: (b) left: (c) right: FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
157
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
158
+ page_content=' Illustration of correlated and uncorrelated measure- ments of two point correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
159
+ page_content=' The uncorrelated setup is obtained as an uncorrelated linear superposition of jets created by a single (anti)fermion source moving to the (left)right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
160
+ page_content=' 0 1 2 3 4 l = 3 5 7 9 4 6 8 correlated 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
161
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
162
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
163
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
164
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
165
+ page_content='4 t / a uncorrelated 102 × 〈ΔνN/2+l ΔνN/2+1-l〉 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
166
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
167
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
168
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
169
+ page_content='5 0 1 2 3 4 ηs uncorrelated correlated t = 10 a 102 × 〈Δν-ηs Δν+ηs〉 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
170
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
171
+ page_content=' Time evolution of two-point correlation functions with various separations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
172
+ page_content=' The upper(lower) panel is for a correlated(uncorrelated) setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
173
+ page_content=' The large difference between the two cases is a signature of quantum entanglement in the produced pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
174
+ page_content=' (Insert) Spatial-rapidity dependence of the two-point correlation at the end of the evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
175
+ page_content=' Our method of preparation of two uncorrelated quan- tum systems is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
176
+ page_content=' 2 (b, c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
177
+ page_content=' In one of these systems, there is only an antifermion source mov- ing to the left while the fermion source sits still at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
178
+ page_content=' We denote the quantum state of such a sys- tem as |ψL⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
179
+ page_content=' We then define its counterpart, |ψR⟩, corresponding to the setup of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
180
+ page_content=' 2(c), with fermion source moving to the right and the antifermion source fixed at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
181
+ page_content=' The uncorrelated state is defined as the superposition of left and right state with a ran- dom phase, |ψuncorr⟩ = 1 √ 2 |ψL⟩ + eiϕ √ 2 |ψR⟩, and the ex- pectation value of any observable is obtained by aver- aging over this random phase, ⟨⟨ψuncorr|O|ψuncorr⟩⟩ ≡ � ⟨ψuncorr|O|ψuncorr⟩ dϕ 2π = ⟨ψL|O|ψL⟩ 2 + ⟨ψR|O|ψR⟩ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
182
+ page_content=' The correlation function (21) is designed to measure the points that are symmetric with respect to the jet production vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
183
+ page_content=' We measure the two-point correlation function with different separation distances as functions of time, and the results are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
184
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
185
+ page_content=' We find that the correlation functions measured for the correlated state are an order of magnitude greater than those for the uncorrelated state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
186
+ page_content=' Note that it is non-zero in the latter case because of the classical correlation between the par- ticle production in left- and right-moving jets which is similar to the correlation that would be induced by the propagation of sound along the jets’ axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
187
+ page_content=' Meanwhile, for the quantum correlated state, we ob- serve the propagation of a similar pattern for odd ℓ’s and 5 similarly for even ℓ’s, which is driven by the correlated moving sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
188
+ page_content=' After a sufficiently large time, we take a snapshot and present the space dependence of the cor- relation functions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
189
+ page_content=' 3 (insert), where we have con- verted the site separation to spatial rapidity separation, ηs ≡ arctanh z t = arctanh (ℓ−1/2)a t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
190
+ page_content=' One can clearly see a big difference between the strong quantum correlation for the quantum state and the near absence of correlations for the uncorrelated baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
191
+ page_content=' This difference is especially pronounced for moderate ra- pidity separations ∆ηs = 2ηs ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
192
+ page_content=' Using the approxi- mate equality of space-time and momentum space rapidi- ties in jet fragmentation, this suggests that one should look for quantum entanglement among the pions pro- duced in the fragmentation of the two jets at rapidity separation ∆η ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
193
+ page_content=' An observation of correlations among these pion pairs would constitute a direct signature of en- tanglement between the jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
194
+ page_content=' Specifically, it would be interesting to study the quan- tum correlations between the “handedness” of the pion pairs produced in the fragmentation of the quark and antiquark jets [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
195
+ page_content=' Some hints of such correlations had been reported in the data from DELPHI Collabo- ration [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
196
+ page_content=' To summarize, we have performed a real-time, non- perturbative study of jet fragmentation using a massive Schwinger model with external sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
197
+ page_content=' Strong distortion of the vacuum chiral condensate by the propagating jets has been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
198
+ page_content=' We have also found strong quantum entanglement between the fragmenting jets for rapidity separation ∆η ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
199
+ page_content=' We hope that this result will moti- vate dedicated experimental studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
200
+ page_content=' Our work also paves the way for quantum simulations of jet fragmentation us- ing quantum hardware;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
201
+ page_content=' we plan to address this problem in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
202
+ page_content=' ACKNOWLEDGEMENT We thank Jo˜ao Barata, Fangcheng He, Yuta Kikuchi, Semeon Valgushev, Tzu-Chieh Wei, and Ismail Zahed for useful discussions and communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
203
+ page_content=' This work was supported by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
204
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
205
+ page_content=' Department of Energy, Of- fice of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Ad- vantage (C2QA) under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
206
+ page_content='DE-SC0012704 (AF, KI, VK), and the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
207
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
208
+ page_content=' Department of Energy, Office of Science, Office of Nuclear Physics, Grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
209
+ page_content=' DE- FG88ER41450 (DF, DK, SS) and DE-SC0012704 (AF, DK, KY).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
210
+ page_content=' This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
211
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
212
+ page_content=' Department of Energy under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
213
+ page_content=' DE-AC02-05CH11231 using NERSC award NERSC DDR-ERCAP0022229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
214
+ page_content=' ∗ aflorio@bnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
215
+ page_content='gov † david.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
216
+ page_content='frenklakh@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
217
+ page_content='edu ‡ kazuki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
218
+ page_content='ikeda@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
219
+ page_content='edu § dmitri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
220
+ page_content='kharzeev@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
221
+ page_content='edu ¶ vladimir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
222
+ page_content='korepin@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
223
+ page_content='edu ∗∗ shuzhe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
224
+ page_content='shi@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
225
+ page_content='edu †† kyu@bnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
226
+ page_content='gov [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
227
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
228
+ page_content=' Sterman, “QCD and jets,” in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics in D ≧ 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
229
+ page_content=' 67–145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
230
+ page_content=' 12, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
231
+ page_content=' arXiv:hep-ph/0412013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
232
+ page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
233
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
234
+ page_content=' Dokshitzer, “QCD and hadron dynamics,” Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
235
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
236
+ page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
237
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
238
+ page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
239
+ page_content=' A 359 (2001) 309–324, arXiv:hep-ph/0106348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
240
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
241
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
242
+ page_content=' Schwinger, “Gauge Invariance and Mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
243
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
244
+ page_content=',” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
245
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
246
+ page_content=' 128 (1962) 2425–2429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
247
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
248
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
249
+ page_content=' Coleman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
250
+ page_content=' Jackiw, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
251
+ page_content=' Susskind, “Charge Shielding and Quark Confinement in the Massive Schwinger Model,” Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
252
+ page_content=' 93 (1975) 267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
253
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
254
+ page_content=' Casher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
255
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
256
+ page_content=' Kogut, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
257
+ page_content=' Susskind, “Vacuum polarization and the absence of free quarks,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
258
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
259
+ page_content=' D 10 (1974) 732–745.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
260
+ page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
261
+ page_content=' Loshaj and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
262
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
263
+ page_content=' Kharzeev, “LPM effect as the origin of the jet fragmentation scaling in heavy ion collisions,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
264
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
265
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
266
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
267
+ page_content=' E 21 (2012) 1250088, arXiv:1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
268
+ page_content='0493 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
269
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
270
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
271
+ page_content=' Kharzeev and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
272
+ page_content=' Loshaj, “Jet energy loss and fragmentation in heavy ion collisions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
273
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
274
+ page_content=' D 87 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
275
+ page_content=' 7, (2013) 077501, arXiv:1212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
276
+ page_content='5857 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
277
+ page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
278
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
279
+ page_content=' Kharzeev and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
280
+ page_content=' Loshaj, “Anomalous soft photon production from the induced currents in Dirac sea,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
281
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
282
+ page_content=' D 89 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
283
+ page_content=' 7, (2014) 074053, arXiv:1308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
284
+ page_content='2716 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
285
+ page_content=' [9] DELPHI Collaboration, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
286
+ page_content=' Abdallah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
287
+ page_content=', “Study of the Dependence of Direct Soft Photon Production on the Jet Characteristics in Hadronic Z0 Decays,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
288
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
289
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
290
+ page_content=' C 67 (2010) 343–366, arXiv:1004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
291
+ page_content='1587 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
292
+ page_content=' [10] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
293
+ page_content=' Hebenstreit and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
294
+ page_content=' Berges, “Connecting real-time properties of the massless Schwinger model to the massive case,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
295
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
296
+ page_content=' D 90 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
297
+ page_content=' 4, (2014) 045034, arXiv:1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
298
+ page_content='4273 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
299
+ page_content=' [11] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
300
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
301
+ page_content=' de Jong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
302
+ page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
303
+ page_content=' Mulligan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
304
+ page_content=' P�losko´n, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
305
+ page_content=' Ringer, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
306
+ page_content=' Yao, “Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
307
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
308
+ page_content=' D 106 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
309
+ page_content=' 5, (2022) 054508, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
310
+ page_content='08394 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
311
+ page_content=' [12] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
312
+ page_content=' Klco, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
313
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
314
+ page_content=' Dumitrescu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
315
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
316
+ page_content=' McCaskey, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
317
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
318
+ page_content=' Morris, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
319
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
320
+ page_content=' Pooser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
321
+ page_content=' Sanz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
322
+ page_content=' Solano, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
323
+ page_content=' Lougovski, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
324
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
325
+ page_content=' Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
326
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
327
+ page_content=' A 98 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
328
+ page_content=' 3, (2018) 032331, arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
329
+ page_content='03326 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
330
+ page_content=' [13] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
331
+ page_content=' Butt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
332
+ page_content=' Catterall, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
333
+ page_content=' Meurice, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
334
+ page_content=' Sakai, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
335
+ page_content=' Unmuth-Yockey, “Tensor network formulation of the massless Schwinger model with staggered fermions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
336
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
337
+ page_content=' D 101 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
338
+ page_content=' 9, (2020) 094509, arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
339
+ page_content='01285 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
340
+ page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
341
+ page_content=' Magnifico, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
342
+ page_content=' Dalmonte, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
343
+ page_content=' Facchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
344
+ page_content=' Pascazio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
345
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
346
+ page_content=' Pepe, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
347
+ page_content=' Ercolessi, “Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model 6 for 1+1 QED,” Quantum 4 (2020) 281, arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
348
+ page_content='04821 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
349
+ page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
350
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
351
+ page_content=' Shaw, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
352
+ page_content=' Lougovski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
353
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
354
+ page_content=' Stryker, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
355
+ page_content=' Wiebe, “Quantum Algorithms for Simulating the Lattice Schwinger Model,” Quantum 4 (2020) 306, arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
356
+ page_content='11146 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
357
+ page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
358
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
359
+ page_content=' Kharzeev and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
360
+ page_content=' Kikuchi, “Real-time chiral dynamics from a digital quantum simulation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
361
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
362
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
363
+ page_content=' 2 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
364
+ page_content=' 2, (2020) 023342, arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
365
+ page_content='00698 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
366
+ page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
367
+ page_content=' Ikeda, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
368
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
369
+ page_content=' Kharzeev, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
370
+ page_content=' Kikuchi, “Real-time dynamics of Chern-Simons fluctuations near a critical point,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
371
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
372
+ page_content=' D 103 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
373
+ page_content=' 7, (2021) L071502, arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
374
+ page_content='02926 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
375
+ page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
376
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
377
+ page_content=' Bauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
378
+ page_content=', “Quantum Simulation for High Energy Physics,” arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
379
+ page_content='03381 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
380
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
381
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
382
+ page_content=' Kogut and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
383
+ page_content=' Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
384
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
385
+ page_content=' D 11 (1975) 395–408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
386
+ page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
387
+ page_content=' Susskind, “Lattice Fermions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
388
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
389
+ page_content=' D 16 (1977) 3031–3039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
390
+ page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
391
+ page_content=' Jordan and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
392
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
393
+ page_content=' Wigner, “About the Pauli exclusion principle,” Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
394
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
395
+ page_content=' 47 (1928) 631–651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
396
+ page_content=' [22] For the case of static sources, partial destruction of the chiral condensate in Schwinger model was studied in [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
397
+ page_content=' ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
398
+ page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
399
+ page_content=' Efremov and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
400
+ page_content=' Kharzeev, “CP violating effect of QCD vacuum in quark fragmentation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
401
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
402
+ page_content=' B 366 (1996) 311–315, arXiv:hep-ph/9506412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
403
+ page_content=' [24] “A Measurement of Quark Spin Correlations in Hadronic Z Decays,”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
404
+ page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
405
+ page_content=' Bruno, The energy scale of the 3-flavour Lambda parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
406
+ page_content=' PhD thesis, Humboldt-Universit¨at zu Berlin, Mathematisch-Naturwissenschaftliche Fakult¨at, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
407
+ page_content=' 7 Supplementary Material In the main text, we study the evolution of the Schwinger model Hamiltonian in the presence of external charges moving on the light-cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
408
+ page_content=' In this supplemental material, we show that despite the relatively modest lattice sizes, the volume dependence and effect of open-boundary conditions are well under control for the quantities and set of parameters we studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
409
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
410
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
411
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
412
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
413
+ page_content='5 νt - ν0 N=6, Λ=3 N=20 16 12 8 0 2 4 6 8 10 12 Eele,t - Eele,0 a g2 / 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
414
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
415
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
416
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
417
+ page_content='0 t / a SEE,t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
418
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
419
+ page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
420
+ page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
421
+ page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
422
+ page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
423
+ page_content='22 νn [1/a] m=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
424
+ page_content='25/a g=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
425
+ page_content='5/a 0 5 10 15 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
426
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
427
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
428
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
429
+ page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
430
+ page_content='25 n Eele,n [1/a] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
431
+ page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
432
+ page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
433
+ page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
434
+ page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
435
+ page_content="43 νn [1/a] m=1/a g=1/a periodic, dynamical open, Gauss' law 0 2 4 6 8 10 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
436
+ page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
437
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
438
+ page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
439
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
440
+ page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
441
+ page_content='2 n Eele,n [10-3/a] FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
442
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
443
+ page_content=' (Left) Time evolution of total electric field energy, mass creation, and entanglement entropy for periodic boundary condition with dynamical gauge field with N = 6 and Λ = 3 (black dotted) versus open boundary condition with gauge field fixed by the Gauss’ law with lattice size from 8(red) to 20 (purple).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
444
+ page_content=' (Middle) Comparison of local electric field energy and chiral condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
445
+ page_content=' Black dotted lines are determined by the bulk values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
446
+ page_content=' In both left and middle panels, parameters are set to be N = 20, m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
447
+ page_content='25/a, and g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
448
+ page_content='5/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
449
+ page_content=' (Right) Same as middle but with parameters with parameters N = 10, m = 1/a, and g = 1/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
450
+ page_content=' Red dots correspond to open boundary condition with gauge field fixed by the Gauss’ law, whereas black lines are for periodic boundary condition with dynamical gauge field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
451
+ page_content=' In the left-hand side of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
452
+ page_content=' 4, plain colored lines show the time evolution of the chiral condensate, electric field energy and entanglement entropy for different lattice sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
453
+ page_content=' The maximal time until which a simulation is meaningful is set by half the lattice site plus one unit of time, as after this the point sources exit the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
454
+ page_content=' As illustrated by the agreement of the different curves, finite size effects are minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
455
+ page_content=' We also assess the effect of using open-boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
456
+ page_content=' We expect that the introduction of a physical boundary to have the same effect as the introduction of a defect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
457
+ page_content=' Excitations localize on the boundary and affect the system in a “boundary zone” of order the correlation length of the system, see for instance [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
458
+ page_content=' We can see in the middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
459
+ page_content=' 4 that this is indeed what happens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
460
+ page_content=' We show in the upper(lower) panel the value of the chiral condensate(electric energy density) as a function of lattice sites in the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
461
+ page_content=' In both cases, we can clearly observe a boundary zone extending over approximately 4-5 lattice sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
462
+ page_content=' It also matches the naive estimate of the correlation length ξ ∼ 1 m = 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
463
+ page_content=' To further crosscheck our results, we also decided to implement simulations with periodic-boundary conditions, χN+1 = χ1 and χ† N+1 = χ† 1, and to keep the gauge field as independent operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
464
+ page_content=' The Hamiltonian reads HPBC = 1 8a N � n=1 � (Un + U † n) ⊗ (XnXn+1 + YnYn+1) + i(Un − U † n) ⊗ (XnYn+1 − YnXn+1) � + m 2 N � n=1 (−1)nZn + a g2 2 N � n=1 L2 n + 1 g N � n=1 j1 ext(xn)φn , (22) where XN+1 ≡ (−1) N 2 X1 �N−1 m=2 Zm, and likewise for YN+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
465
+ page_content=' We implement the electric-field operator and the link 8 operator as Ln = Λ � ϵ=−Λ ϵ |ϵ⟩n ⟨ϵ|n , (23) Un = |Λ⟩n ⟨−Λ|n + Λ−1 � ϵ=−Λ |ϵ⟩n ⟨ϵ + 1|n , (24) where Λ is a cutoff [15], the eigenbasis |ϵ⟩n of electric field operator Ln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
466
+ page_content=' The size of the discrete Hilbert space for a truncation Λ is (2Λ + 1)N 2N, namely it is (2Λ + 1)N times larger than in the case of open boundary conditions after integrating out the gauge fields through Gauss law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
467
+ page_content=' This also means that only smaller lattices can be simulated in this set-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
468
+ page_content=' We show results of the chiral condensate and electric field energy for N = 6 and Λ = 3 as black dotted lines in the left-hand side of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
469
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
470
+ page_content=' No deviations from the open-boundary conditions can be seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
471
+ page_content=' We also investigated the space-dependence of observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
472
+ page_content=' In particular, we expect the bulk value of the open- boundary conditions to equal the periodic boundary condition average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
473
+ page_content=' Unfortunately, we could not directly verify this for the parameters used in the main text as the lattice size required are not achievable not integrating out gauge fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
474
+ page_content=' As an alternative, we verified it for a larger mass and larger coupling ma = ga = 1 such that the boundary zone is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
475
+ page_content=' The results are shown in the right-hand side panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
476
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
477
+ page_content=' Again, the two lattice sites affected by the boundary is in agreement with naive expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
478
+ page_content=' And as expected, the bulk value of the open-boundary system matches the value of the periodic one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf'}
GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efcebfee50cb9ec709919ddbb91fc3faf8b77618061f4984f3e276c0b2d14494
3
+ size 782974
GNE1T4oBgHgl3EQfFANy/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97160bc0203ce58cbe3213aa232b86f89edeb5c123efb8260801d09bcb1f986b
3
+ size 3342381
GNE1T4oBgHgl3EQfFANy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:182ffe57cc64d3046b8e793b96d5310535920bf0002305bf1de027c93d17f2d0
3
+ size 110685
GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:432e3af55cc118250df922ed0979ed0f3c86fdd1f1c9bb57f145b5620760c02b
3
+ size 2475014
GtE5T4oBgHgl3EQfWA9Z/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be73b49a36c617d78cb3473166e018d64740dcedc9accc632c3139dedc945e56
3
+ size 164244
JNFAT4oBgHgl3EQfvB44/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91625bfa13ee27b327b5f97cc69577092698c6ae0a7fb3432a97d60584dd4992
3
+ size 120307