jackkuo commited on
Commit
dd3413c
·
verified ·
1 Parent(s): dc5213d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +57 -0
  2. 0dAyT4oBgHgl3EQfoPiS/content/tmp_files/2301.00504v1.pdf.txt +747 -0
  3. 0dAyT4oBgHgl3EQfoPiS/content/tmp_files/load_file.txt +0 -0
  4. 0tE4T4oBgHgl3EQfzA1I/content/tmp_files/2301.05270v1.pdf.txt +958 -0
  5. 0tE4T4oBgHgl3EQfzA1I/content/tmp_files/load_file.txt +0 -0
  6. 1NFAT4oBgHgl3EQfjx2F/content/tmp_files/2301.08607v1.pdf.txt +445 -0
  7. 1NFAT4oBgHgl3EQfjx2F/content/tmp_files/load_file.txt +246 -0
  8. 1NFKT4oBgHgl3EQfOi14/content/tmp_files/2301.11759v1.pdf.txt +827 -0
  9. 1NFKT4oBgHgl3EQfOi14/content/tmp_files/load_file.txt +0 -0
  10. 2dE2T4oBgHgl3EQfNgaR/content/tmp_files/2301.03738v1.pdf.txt +1817 -0
  11. 2dE2T4oBgHgl3EQfNgaR/content/tmp_files/load_file.txt +0 -0
  12. 49E3T4oBgHgl3EQfQQn6/content/2301.04412v1.pdf +3 -0
  13. 49FJT4oBgHgl3EQfkSwi/vector_store/index.pkl +3 -0
  14. 79E1T4oBgHgl3EQf7gUu/vector_store/index.faiss +3 -0
  15. 89E4T4oBgHgl3EQfdgwn/content/tmp_files/2301.05091v1.pdf.txt +736 -0
  16. 89E4T4oBgHgl3EQfdgwn/content/tmp_files/load_file.txt +0 -0
  17. 8NE1T4oBgHgl3EQfngRF/vector_store/index.faiss +3 -0
  18. 8NE1T4oBgHgl3EQfngRF/vector_store/index.pkl +3 -0
  19. BdE0T4oBgHgl3EQfyAIA/vector_store/index.pkl +3 -0
  20. CdE4T4oBgHgl3EQf5g79/content/tmp_files/2301.05325v1.pdf.txt +516 -0
  21. CdE4T4oBgHgl3EQf5g79/content/tmp_files/load_file.txt +428 -0
  22. CtAzT4oBgHgl3EQfTvyL/content/tmp_files/2301.01255v1.pdf.txt +0 -0
  23. CtAzT4oBgHgl3EQfTvyL/content/tmp_files/load_file.txt +0 -0
  24. CtE0T4oBgHgl3EQfyQKJ/content/tmp_files/2301.02657v1.pdf.txt +2101 -0
  25. CtE0T4oBgHgl3EQfyQKJ/content/tmp_files/load_file.txt +0 -0
  26. DNAzT4oBgHgl3EQfGfv5/content/tmp_files/2301.01031v1.pdf.txt +401 -0
  27. DNAzT4oBgHgl3EQfGfv5/content/tmp_files/load_file.txt +557 -0
  28. DtAzT4oBgHgl3EQfT_x1/content/2301.01259v1.pdf +3 -0
  29. DtAzT4oBgHgl3EQfT_x1/vector_store/index.pkl +3 -0
  30. FdE0T4oBgHgl3EQfRAAw/content/2301.02200v1.pdf +3 -0
  31. FdE0T4oBgHgl3EQfRAAw/vector_store/index.pkl +3 -0
  32. FdE1T4oBgHgl3EQf-wYy/content/2301.03572v1.pdf +3 -0
  33. FdE1T4oBgHgl3EQf-wYy/vector_store/index.faiss +3 -0
  34. FtAyT4oBgHgl3EQfrPm5/vector_store/index.faiss +3 -0
  35. FtAyT4oBgHgl3EQfrPm5/vector_store/index.pkl +3 -0
  36. G9E1T4oBgHgl3EQf_QZd/content/tmp_files/2301.03578v1.pdf.txt +0 -0
  37. GNAyT4oBgHgl3EQffPgF/content/2301.00334v1.pdf +3 -0
  38. GNAyT4oBgHgl3EQffPgF/vector_store/index.faiss +3 -0
  39. GNAyT4oBgHgl3EQffPgF/vector_store/index.pkl +3 -0
  40. GtE3T4oBgHgl3EQftwtJ/content/tmp_files/2301.04678v1.pdf.txt +0 -0
  41. GtE3T4oBgHgl3EQftwtJ/content/tmp_files/load_file.txt +0 -0
  42. HNAzT4oBgHgl3EQfxf6-/vector_store/index.faiss +3 -0
  43. HdAyT4oBgHgl3EQfS_fF/content/tmp_files/2301.00098v1.pdf.txt +1705 -0
  44. HdAyT4oBgHgl3EQfS_fF/content/tmp_files/load_file.txt +0 -0
  45. JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf +3 -0
  46. JdE3T4oBgHgl3EQfXQrW/vector_store/index.faiss +3 -0
  47. KtE0T4oBgHgl3EQfigGw/content/tmp_files/2301.02447v1.pdf.txt +1331 -0
  48. KtE0T4oBgHgl3EQfigGw/content/tmp_files/load_file.txt +0 -0
  49. KtFOT4oBgHgl3EQfzTRj/content/2301.12931v1.pdf +3 -0
  50. KtFOT4oBgHgl3EQfzTRj/vector_store/index.pkl +3 -0
.gitattributes CHANGED
@@ -3219,3 +3219,60 @@ YNE1T4oBgHgl3EQfwAWP/content/2301.03406v1.pdf filter=lfs diff=lfs merge=lfs -tex
3219
  INE2T4oBgHgl3EQf_Qm3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3220
  ddE4T4oBgHgl3EQfQQxz/content/2301.04980v1.pdf filter=lfs diff=lfs merge=lfs -text
3221
  cNFIT4oBgHgl3EQfnCvP/content/2301.11312v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219
  INE2T4oBgHgl3EQf_Qm3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3220
  ddE4T4oBgHgl3EQfQQxz/content/2301.04980v1.pdf filter=lfs diff=lfs merge=lfs -text
3221
  cNFIT4oBgHgl3EQfnCvP/content/2301.11312v1.pdf filter=lfs diff=lfs merge=lfs -text
3222
+ YtFRT4oBgHgl3EQf_ziQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3223
+ JdE3T4oBgHgl3EQfXQrW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3224
+ ddE4T4oBgHgl3EQfQQxz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3225
+ uNE3T4oBgHgl3EQfNgmR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3226
+ idE0T4oBgHgl3EQf6wL5/content/2301.02769v1.pdf filter=lfs diff=lfs merge=lfs -text
3227
+ ptE1T4oBgHgl3EQfPQMl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3228
+ d9E2T4oBgHgl3EQfxQgW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3229
+ FdE1T4oBgHgl3EQf-wYy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3230
+ mtE5T4oBgHgl3EQfHw5U/content/2301.05442v1.pdf filter=lfs diff=lfs merge=lfs -text
3231
+ c9AyT4oBgHgl3EQfwfnU/content/2301.00651v1.pdf filter=lfs diff=lfs merge=lfs -text
3232
+ htE1T4oBgHgl3EQfMwMt/content/2301.02992v1.pdf filter=lfs diff=lfs merge=lfs -text
3233
+ idE0T4oBgHgl3EQf6wL5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3234
+ JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf filter=lfs diff=lfs merge=lfs -text
3235
+ GNAyT4oBgHgl3EQffPgF/content/2301.00334v1.pdf filter=lfs diff=lfs merge=lfs -text
3236
+ dtFPT4oBgHgl3EQfyzWo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3237
+ T9E4T4oBgHgl3EQfLwz0/content/2301.04942v1.pdf filter=lfs diff=lfs merge=lfs -text
3238
+ mtE5T4oBgHgl3EQfHw5U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3239
+ btE5T4oBgHgl3EQffA_l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3240
+ d9E2T4oBgHgl3EQfxQgW/content/2301.04108v1.pdf filter=lfs diff=lfs merge=lfs -text
3241
+ cNFIT4oBgHgl3EQfnCvP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3242
+ y9FRT4oBgHgl3EQfjTfQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3243
+ gtE_T4oBgHgl3EQf3ByR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3244
+ y9FRT4oBgHgl3EQfjTfQ/content/2301.13590v1.pdf filter=lfs diff=lfs merge=lfs -text
3245
+ btFRT4oBgHgl3EQfSDcU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3246
+ N9E0T4oBgHgl3EQfjgF4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3247
+ qNE4T4oBgHgl3EQfUgxS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3248
+ DtAzT4oBgHgl3EQfT_x1/content/2301.01259v1.pdf filter=lfs diff=lfs merge=lfs -text
3249
+ gtE_T4oBgHgl3EQf3ByR/content/2301.08344v1.pdf filter=lfs diff=lfs merge=lfs -text
3250
+ Q9AzT4oBgHgl3EQfI_tW/content/2301.01071v1.pdf filter=lfs diff=lfs merge=lfs -text
3251
+ d9E2T4oBgHgl3EQfGQZm/content/2301.03655v1.pdf filter=lfs diff=lfs merge=lfs -text
3252
+ HNAzT4oBgHgl3EQfxf6-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3253
+ btFRT4oBgHgl3EQfSDcU/content/2301.13527v1.pdf filter=lfs diff=lfs merge=lfs -text
3254
+ gdE4T4oBgHgl3EQfrA0Y/content/2301.05204v1.pdf filter=lfs diff=lfs merge=lfs -text
3255
+ ZNA0T4oBgHgl3EQfFv_a/content/2301.02038v1.pdf filter=lfs diff=lfs merge=lfs -text
3256
+ FtAyT4oBgHgl3EQfrPm5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3257
+ 79E1T4oBgHgl3EQf7gUu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3258
+ GNAyT4oBgHgl3EQffPgF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3259
+ FdE0T4oBgHgl3EQfRAAw/content/2301.02200v1.pdf filter=lfs diff=lfs merge=lfs -text
3260
+ ttAzT4oBgHgl3EQfr_2o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3261
+ PdAyT4oBgHgl3EQf7fpb/content/2301.00839v1.pdf filter=lfs diff=lfs merge=lfs -text
3262
+ T9E4T4oBgHgl3EQfLwz0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3263
+ gdE4T4oBgHgl3EQfrA0Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3264
+ NdE0T4oBgHgl3EQfTQAI/content/2301.02232v1.pdf filter=lfs diff=lfs merge=lfs -text
3265
+ sNE4T4oBgHgl3EQfwg2l/content/2301.05251v1.pdf filter=lfs diff=lfs merge=lfs -text
3266
+ d9E2T4oBgHgl3EQfGQZm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3267
+ ZNA0T4oBgHgl3EQfFv_a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3268
+ QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf filter=lfs diff=lfs merge=lfs -text
3269
+ KtFOT4oBgHgl3EQfzTRj/content/2301.12931v1.pdf filter=lfs diff=lfs merge=lfs -text
3270
+ 49E3T4oBgHgl3EQfQQn6/content/2301.04412v1.pdf filter=lfs diff=lfs merge=lfs -text
3271
+ sNE4T4oBgHgl3EQfwg2l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3272
+ qNE4T4oBgHgl3EQfUgxS/content/2301.05016v1.pdf filter=lfs diff=lfs merge=lfs -text
3273
+ ZdFST4oBgHgl3EQfAjil/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3274
+ 8NE1T4oBgHgl3EQfngRF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3275
+ FdE1T4oBgHgl3EQf-wYy/content/2301.03572v1.pdf filter=lfs diff=lfs merge=lfs -text
3276
+ YNE5T4oBgHgl3EQfdQ-k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3277
+ itFLT4oBgHgl3EQfbC-l/content/2301.12077v1.pdf filter=lfs diff=lfs merge=lfs -text
3278
+ M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf filter=lfs diff=lfs merge=lfs -text
0dAyT4oBgHgl3EQfoPiS/content/tmp_files/2301.00504v1.pdf.txt ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Spectral Bandwidth Recovery of Optical Coherence
4
+ Tomography Images using Deep Learning
5
+ TIMOTHY T. YU1,4, DA MA2,1*, JAYDEN COLE1, MYEONG JIN JU3,4, MIRZA F. BEG1, AND
6
+ MARINKO V. SARUNIC1,5,6*
7
+ 1Engineering Science, Simon Fraser University, Burnaby BC V5A1S6, Canada
8
+ 2Wake Forest University School of Medicine, Winston-Salem, NC, 27151, USA
9
+ 3Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada
10
+ 4School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada
11
+ 5School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada
12
+ 5Institute of Ophthalmology, University College London, London, UK
13
+ 6Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
14
+
15
16
17
+ 1. Abstract
18
+ Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring,
19
+ and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition
20
+ often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally,
21
+ image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more
22
+ recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-
23
+ scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based
24
+ approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-
25
+ field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in
26
+ their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel
27
+ approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
28
+ 2. Introduction
29
+ Optical coherence tomography (OCT) is a non-invasive imaging modality that allows for high-resolution
30
+ volumetric visualization of the retina, the light-sensitive tissue at the back of the eye. OCT is the gold standard
31
+ diagnostic for diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME),
32
+ but is not a widely accepted modality for diabetic retinopathy (DR) diagnosis and monitoring due to the
33
+ limited field of view (FOV) 1. OCT facilitates the characterization of retinal thickness changes and
34
+ abnormalities that are indicative of DR which if integrated as a secondary diagnostic modality, may benefit
35
+ the outcome of patients with DR. We have previously demonstrated that the vasculature outside the parafovea
36
+ contains features indicative of early changes from DR 2. Hence, technology is advancing towards wide-field
37
+ OCT systems to capture more details of the retina.
38
+ As the OCT hardware advancements move towards capturing a wider FOV on the retina, there is an
39
+ effort to minimize motion artefacts and patient discomfort that often accompany the longer acquisition from
40
+ an increased FOV. Increasing the speed of the acquisition system often results in engineering compromises
41
+ that reduce the spectral bandwidth of the OCT system, and hence lower the axial resolution. Methods like
42
+ montaging 3 and motion-tracking software 4 are some techniques that have been explored to minimize the
43
+ negative implications of wide-field OCT systems. In addition, machine learning has been explored for feature
44
+ reconstruction of OCT-angiography (OCTA) to improve the image quality for clinical utility 5.
45
+ In this study, we simulate the narrower spectral bandwidth on OCT volumes and investigate the use of
46
+ a generative adversarial network (GAN). For image-to-image generation, many implementations use a pixel-
47
+ to-pixel (pix2pix) GAN, which has the encoder/decoder in the generator. We used a pix2pix approach
48
+ leveraging a modified super-resolution GAN (SRGAN) 6 architecture to recover high-resolution features in
49
+ the OCT B-scans. The SRGAN is comprised of a VGG-19 style discriminator and a generator with residual
50
+ blocks and subpixel convolutional layers. We have modified the SRGAN architecture by deepening the
51
+ discriminator and generator and removed the pixel up-sampling layers from the generator for our pix2pix
52
+ implementation.
53
+
54
+ 2
55
+
56
+ We were limited by the size of our dataset and leveraged transfer learning from an open-source natural
57
+ flower dataset 7, referencing a similar SRGAN approach used to upscale radiographs 8, to facilitate the
58
+ convergence of our deep neural networks (DNNs). The flower dataset contains images with dense and well-
59
+ defined edges from complex features of different flowers, petals, and seeds. These features exaggerate the
60
+ blurring process and may prove useful when used as initialized weights for our OCT-SRGAN.
61
+ The original architecture was designed to upscale images and reconstruct features lost from downsizing.
62
+ Rather than utilizing the OCT-SRGAN to reconstruct a larger image from a resized smaller image, we
63
+ investigate the use of an OCT-SRGAN to reconstruct reduced spectral resolution in the axial direction (A-
64
+ scan blurring) through transfer learning and demonstrate the ability to reconstruct lost features using learning-
65
+ based approaches. Our findings suggest that DNNs may benefit clinicians if developed in parallel with wide-
66
+ field OCT systems by reconstructing features lost due to the reduced narrower spectral bandwidth that often
67
+ accompanies OCT systems with faster A-scan line rates. Our main contribution is to adapt the feature
68
+ recovery using an SRGAN for the super-resolution of OCT B-scans. We present our preliminary results while
69
+ we continue to develop our OCT-SRGAN and will branch into alternative learning-based methods like
70
+ feature pyramid networks. This experiment was done in a two-step approach as described in Figure 1: (1)
71
+ preliminary dataset consisting of 16 eyes to understand the impact of transfer learning; (2) utilize the full
72
+ dataset of 35 eyes to compare the performance of reconstruction in the spatial versus spectral domain.
73
+
74
+
75
+ Figure 1
76
+ Parallel schematics comparing the spatial and spectral super-resolution GAN processing pipeline.
77
+ 3. Methods
78
+ OCT dataset and preparation
79
+ This study included 35 eyes (including pathological) 27 unique patients, each imaged on a ~2x2mm FOV
80
+ centered on the fovea using a 1060nm swept source OCT prototype adaptive optics system. We utilized B-
81
+ scans that visualize the retinal cross-section. An initial subset of this dataset consisted of 16 eyes was initially
82
+ used to validate transfer learning from natural images. Each B-scan was cropped from 1024x400 to 240x400
83
+ (axial x lateral position) for the preliminary experiment and were cropped to 470x400 and processed as strips
84
+ of 20 A-scans for the spatial domain portion of the second experiment. The image dimensions for the spectral
85
+ domain GAN were unchanged before evaluation. The full dataset of 35 eyes consisted of 14,000 B-scan
86
+ samples or 5,600,000 independent A-scan samples. The dataset was split into 60%, 20%, 20% for training,
87
+ validation, and testing, respectively. 21 eyes were used for training (8,400 B-scans or 3,360,000 A-scans), 7
88
+ eyes for validation (2,800 B-scans or 1,120,000 A-scans), and 7 eyes (2,800 B-scans or 1,120,000 A-scans)
89
+ were allocated for testing. Adjacent B-scans contain similar information. Thus, every 8 B-scan was used to
90
+
91
+ Preprocessing
92
+ SRGAN
93
+ 470x400
94
+ .UNP Binary
95
+ OCT
96
+ Normalize
97
+ Dataformat
98
+ Processing
99
+ [-1,1]
100
+ Discriminator:VGG-base
101
+ Gaussian
102
+ 2-D IFFT →>
103
+ Generator:SRGAN
104
+ Windowing
105
+ abs()→crop
106
+ Augmentations:Flips
107
+ Loss: MSE
108
+ 1024x400
109
+ Preprocessing
110
+ SRGAN
111
+ Postprocessing
112
+ 470x400
113
+ .UNP Binary
114
+ OCT
115
+ Normalize
116
+ Data format
117
+ Processing
118
+ [-1, 1]
119
+ 2-D IFFT >
120
+ Gaussian
121
+ abs()→crop
122
+ Windowing
123
+ 1024x400
124
+ Discriminator:VGG-base
125
+ Generator:ResUNet-a
126
+ Augmentations:None
127
+ Loss: MSE3
128
+
129
+ allow enough spacing between acquisitions to minimize the chance of overfitting to repeating consecutive
130
+ scans. The images were shuffled within the training set prior to training. Special attention was made to ensure
131
+ that eyes from the same patient was used for either training, validation, or testing. Since the flower images
132
+ were 3-channel RGB images, when training the neural networks on the flower images, we selected the first
133
+ channel to form a 1-channel input to replicate the domain of OCT images.
134
+ The axial resolution in OCT images is related to the spectral characteristics of the light source. A
135
+ commonly used expression for the axial resolution is the coherence length, lc, given by 𝑙𝑐 = 𝜆𝑜
136
+ 2/Δ𝜆, where
137
+ 𝜆𝑜 is the central wavelength, and Δ𝜆 is the spectral bandwidth. By using our swept source OCT prototype
138
+ system, we had access to data in the wavelength domain and performed Gaussian windowing on the spectrum
139
+ and hence reduced the axial resolution. We utilized the MATLAB function gausswin with α = 8, chosen
140
+ based on earlier trials of training and the appearance of the OCT B-scan image output, where the coefficients
141
+ of a gaussian window (w) are as described in1. This gaussian windowing mask was element-wise multiplied
142
+ with the spectral domain OCT data, as shown in Figure 2.
143
+
144
+ Figure 2
145
+ Windowing process of our OCT data in the spectral domain (A). A gaussian windowing mask (B) is used to reduce the
146
+ axial resolution with α = 4 to generate spectral domain gaussian windowed data (C).
147
+ Flower Dataset and Preparation
148
+ We used an open-sourced flower dataset compiled by the team at TensorFlow 7 to initialize the weights of
149
+ our OCT-SRGAN. The flower dataset is comprised of 3,670 flower images. The black borders surrounding
150
+ the floral images were removed and the images were reshaped to 240x400 and randomly shuffled before
151
+ being allocated for training (3303) and testing (367).
152
+ The artefacts introduced to the flower dataset should mimic the appearance of the reduced axial
153
+ resolution OCT B-scans. Hence, we generated the low-resolution images by convolving the original high-
154
+ resolution (HR) inputs with a 1xn mean filter to smoothen each pixel vertically with n values of 3, 5, 7, 9,
155
+ and 11 pixels, as shown in Figure 3.
156
+
157
+ 1 https://www.mathworks.com/help/signal/ref/gausswin.html
158
+
159
+ A
160
+ B
161
+ c4
162
+
163
+
164
+ Figure 3. Graphical representation of the windowing process of high-resolution flower images (A) using a vertical 1xn, in this case
165
+ n=11, mean filter (B) to generate mono-directional (vertical) smoothened images (C).
166
+ Data Augmentation and GAN Training Techniques
167
+ In reconstructing in the spatial domain, data augmentation was achieved through horizontal and vertical flip
168
+ using the ImgAug library to increase the effective dataset size and improve the generalizability. Since the
169
+ data experienced smoothening in A-scans (vertical direction) only, rotations were not considered.
170
+ Additionally, random noise was not introduced through augmentation to not interfere with the reconstruction
171
+ of the speckle pattern in OCT B-scans. In both domains, the data was augmented during preprocessing and
172
+ the did not undergo further augmentations during training. These augmentations performed on the spectral
173
+ domain fringe data included a random center and width of the Gaussian windowing filter, as demonstrated
174
+ in Figure 4.
175
+
176
+
177
+ A
178
+ B
179
+ CA
180
+ B
181
+ C
182
+ D5
183
+
184
+ Figure 4
185
+ An illustration of the random augmentations performed during the preprocessing of the spectral domain fringe data: (A &
186
+ C) original Gaussian windowed fringe data; (B) center-shifted; (D) center-shifted and widened.
187
+ We refer to the previous literature 9–13 for neural network training procedures to improve our GAN
188
+ framework and encourage convergence. Soft labels are used in classification neural networks to decrease the
189
+ error rate and have been adapted to the adversarial component of a GAN 9–11. Instance noise is a technique
190
+ where the discriminator’s training labels are randomly flipped 12, 13. Both techniques were implemented to
191
+ improve the stability of GAN training by reducing the ambiguity between the generated and ground truth
192
+ samples which promotes training convergence. We implemented soft labelling by randomly distributing real
193
+ labels between (0-0.1) and generated labels from (0.9-1). In addition, instance noise was introduced by
194
+ randomly, with a 5 percent chance, providing the discriminator with an incorrect label. The discriminator
195
+ was trained on an entire batch of the real ground truth data and followed by a batch of the generated data.
196
+ This minibatch feature approach allowed the discriminator to compare an example of a minibatch of
197
+ generated samples to the real samples and allowed the discriminator to detect similarities across the
198
+ minibatches 9, 14.
199
+ Neural Network Design
200
+ Spatial-domain Feature Recovery Network
201
+ In the first step, we propose a variation of the SRGAN proposed in the Literature 6. Instead of to upscales the
202
+ smaller image to a larger image through subpixel convolutional layers (PixelShuffler x2), our implementation
203
+ of the SRGAN removes the subpixel resolution layers and instead, utilizes the SRGAN architecture for a
204
+ pix2pix application to preserve the B-scan resolution, as shown in Figure 5.
205
+
206
+ Figure 5 Super-resolution Generative Adversarial Network (SRGAN) architecture. Architecture (A) is the discriminator based off
207
+ VGG networks and architecture (B) is the generator comprised of residual of blocks. The loss functions are the discriminator ground
208
+ truth (lGT) and generated image (lGenerated) binary cross entropy loss and generated/ground truth mean squared error (lMSE).
209
+ Compared to the SRGAN 6, we used a deeper discriminator and generator because deeper networks have
210
+ been shown to yield better results with the tradeoff of being more difficult to train 15. The discriminator
211
+ consisted of convolutional blocks that contain 2D convolutional layers that utilizes more filters in deeper
212
+ layers followed by batch normalization and a Leaky Rectified Linear Unit (LeakyReLU). Batch
213
+ normalization has been found to improve the optimization of GANs 9, 16 and LeakyReLU has been found to
214
+ generate better results, especially for higher resolution implementations 16. In the generator, we used a
215
+ parametric ReLU which is a LeakyReLU with a learnable negative slope along with batch normalization and
216
+ skip connections through element-wise addition to form a residual block. Skip connections allow the network
217
+ to pass forward simple features that may be difficult to learn through convolutional filters 6, 17.
218
+
219
+ Convolution
220
+ Flatten
221
+ ReL
222
+ Dense
223
+ Sigmoid
224
+ Dense
225
+ eaky
226
+ Batci
227
+ Batch Normalization
228
+ Batch Normalization
229
+ Element-Wise Sum
230
+ ReLU
231
+ zation
232
+ ReLU
233
+ Sum
234
+ ReLU
235
+ Convolution
236
+ Convolution
237
+ Convolution
238
+ Parametric
239
+ Parametric
240
+ Elemen
241
+ Cor
242
+ Batch
243
+ e6
244
+
245
+ Spectral-Domain Feature Recovery Network
246
+ In the second step of the study comparing super-resolution in the spatial versus spectral domain, all the
247
+ components within the neural network including convolutional filters, pooling filters, among others, utilized
248
+ vertical 1-D filters. This ensured that the neural network would explicitly process the A-scans independently.
249
+ The method of Gaussian windowing was only performed on A-scans, and each was independent from the
250
+ others.
251
+ The spectral domain reconstruction processed of images with relevant information near the center of the
252
+ B-scan with Gaussian-distributed diminishing intensity towards the end of the image. The generator was
253
+ updated to account for the distance between pixels using dilation rates in the convolutional layer, which
254
+ increase the spacing of the convolutional filters. Referencing the published ResUnet-a architecture 18, a wide
255
+ range of dilation rates were leveraged in parallel where each block of batch normalization and activation
256
+ layers were followed by a 1D convolutional layer with different dilation rates. Upwards of 8 parallel blocks
257
+ were leveraged, each with different dilation rates, to allow the neural network to explore the relationship
258
+ between pixels that were higher in distance. The parallel convolutional blocks with different dilation rates
259
+ are combined through addition with an identity function through skip connections. Figure 6 graphically
260
+ outlines the different building blocks used including the application of dilation rates in parallel to construct
261
+ the ResUNet-a generator, as shown in Figure 7.
262
+
263
+
264
+
265
+
266
+ Figure 6 ResUNet-a building blocks as described 18.
267
+
268
+ Batch Normalization
269
+ ParametricReLU
270
+ d [1,3,15,31,51,71,121,251]
271
+ Convolution
272
+ n32k3s1
273
+ Batch Normalization
274
+ ParametricReLU
275
+ Addition
276
+ Convolution1X
277
+ n;rk1s1d1
278
+ Concatenate
279
+ Convolution
280
+ 2X
281
+ 4X
282
+ 8x
283
+ Max Pooling
284
+ kx
285
+ Upsampling
286
+ kx
287
+ ConvolutionConvolution
288
+ n512k1s1d1
289
+ ResUNet-a block
290
+ Concatenate
291
+ (n512k3s1,d=(1))
292
+ ParametricReLU
293
+ 2x Upsampling7
294
+
295
+
296
+ Figure 7 ResUNet-a architecture used for reconstructing in the spectral domain.
297
+ Experimental Settings for Training Feature Recovery Network
298
+ DNN training for both experiments were implemented in a similar manner. The optimizer used was Adam
299
+ with β1 = 0.5. The optimal learning rate was found through quick training sessions with different learning
300
+ rate schedules. For all experiments, the optimal initial learning rates of 1x10-4 were used in both the
301
+ discriminator and generator. For the preliminary experiment, the SRGAN was trained for 200 epochs with a
302
+ batch size of 32. The second experiment was performed on images of size 1024x400 and was trained on 100
303
+ epochs with a batch size of 10. The SRGAN was trained and evaluated within 24 hours and 52 hours for the
304
+ preliminary experiment and second experiment, respectively.
305
+ The content loss (lMSE) was calculated through pixel-wise mean squared error (MSE). The
306
+ discriminator was trained separately on minibatches of ground truth and generated images and resulted in
307
+ two binary cross-entropy losses (lGT, lgenerated) which refers to the generator’s ability to fool the
308
+ discriminator. Models that improved with a lower generator lMSE loss, higher discriminator lGT, or higher
309
+ lgenerated loss, were saved. The preliminary experiment leveraged the SRGAN trained on the natural flower
310
+ dataset that was used to initialize the weights for OCT B-scan training; all the neural network parameters
311
+ were trainable. All DNNs were developed and evaluated in TensorFlow and the Keras API using Python
312
+ 3.6.3 on Canadian supercomputer “Cedar” nodes powered by the NVIDIA Tesla V100-SXM2 GPU and
313
+ 32GB RAM.
314
+ Evaluation
315
+ The evaluation of GANs is often qualitative as there are minor artefacts that may drastically impact evaluation
316
+ metrics like MSE, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) 19 among others. For
317
+
318
+ Convolution
319
+ PSP
320
+ Convolution
321
+ Pooling
322
+ ndino
323
+ ndul
324
+ ResUNet-a block
325
+ (n32k3s1, d={1))
326
+ ResUNet-ablock(n32k3s1,
327
+ d={1,3,15,31,51,71,121,251))
328
+ Convolution
329
+ ResUNet-a block
330
+ (n64k3s1, d=(1))
331
+ ResUNet-a block (n64k3s1)
332
+ d=(1,3,15,31,51,71,121,251))
333
+ ResUNet-a block
334
+ Convolution
335
+ (n128k3s1,d=(1))
336
+ ResUNet-a block (n128k3s1,
337
+ d=(1,3,15,31,51))
338
+ ResUNet-a block
339
+ Convolution
340
+ (n256k3s1,d=(1))
341
+ ResUNet-a block
342
+ (n256k3s1, d=(1,3,15)
343
+ ResUNet-a block
344
+ Convolution
345
+ (n512k3s1,d=(1))
346
+ ResUNet-a block
347
+ (n512k3s1,d={1))
348
+ Combine
349
+ Convolution
350
+ ResUNet-a block
351
+ PSP Pooling
352
+ 2x Upsampling
353
+ (n1024k3s1, d=(1))8
354
+
355
+ example, in our implementation of reconstructing features, we may weigh the exact intensity of an image
356
+ less than the sharpness of an OCT layer boundary and some evaluation metrics may weigh according to the
357
+ neural network’s function. Hence, one approach is to enlist human annotators to grade the performance of
358
+ the GAN, also called the mean opinion score (MOS), based on the function and objective of the study 8, 9.
359
+ To improve the qualitative evaluation of the generated outputs, we cropped regions of the images near
360
+ the retinal layers and enlarged the image using nearest-neighbour interpolation to preserve the pixel
361
+ resolution and qualitatively compared to the ground truth and windowed/mean filtered images to better
362
+ visualize and compare features. The models were quantitatively evaluated using MSE, PSNR, and SSIM
363
+ across the entire test set for the entire image of the preliminary experiment. RMSE and SSIM were leveraged
364
+ to evaluate the experiment on the full dataset.
365
+ 4. Results – Preliminary Transfer Learning
366
+ A range of filter sizes (1x3, 1x5, 1x7, 1x11) was utilized to introduce vertical blurring to the flower neural
367
+ network. The SRGAN trained on the 1x11 smoothened flower images yielded the best results when used as
368
+ initialized weights for OCT B-scans. Therefore, in the transfer learning experiment, the neural network was
369
+ initialized on the 1x11 smoothened flower image.
370
+ Qualitative Evaluation
371
+ Our direct implementation of the OCT-SRGAN to reconstruct high-axial-resolution from low-axial-
372
+ resolution B-scans successfully sharpened the features of the OCT image. As shown in Figure 9 (A - C), the
373
+ same region is cropped and enlarged using nearest-neighbor interpolation for qualitative evaluation.
374
+ The results of our flower SRGAN and the performance of reconstructing vertical smoothening using a
375
+ 1x11 mean filter, as shown in Figure 8, shows promising utility in recovering features lost from smoothening.
376
+
377
+ Figure 8
378
+ Flower SRGAN comparison between (A) 1x11 mean filtered, (B) ground truth, and (C) generated images from the test set.
379
+
380
+
381
+ A
382
+ B9
383
+
384
+
385
+ Figure 9
386
+ Results of SRGAN for OCT B-scan images. Samples from the generated images from the test set. Comparison between (A)
387
+ windowed, (B) ground truth, and (C) generated B-scans without transfer learning, and (D) generated B-scans with transfer learning.
388
+ Quantitative Evaluation
389
+ The whole OCT B-scan image was evaluated for similarities across the test set post-contrast adjustment
390
+ between the generated and ground truth image using MSE and SSIM, as shown in Table 1. This was compared
391
+ to the baseline comparison of the Gaussian windowed/vertically smoothened and ground truth images.
392
+ While it is difficult to quantitatively evaluate the performance of a generated output as the function or
393
+ goal is often subjective, by standardizing the image and enhancing the contrast of all images using the same
394
+ pipeline, the issues of differences in intensities were minimized. By doing so, we effectively catered our
395
+ metrics to weigh the features more heavily than the absolute intensity. Table 1 shows that across the
396
+ evaluation metrics, the generated B-scans more resembled the original high-resolution B-scans.
397
+ Table 1.
398
+ Quantitative evaluation of the generated images (GEN) comparing the OCT-only with the natural images transfer learning
399
+ approach. Mean values are shown with standard deviation in parentheses. This portion of the experiment was performed on a subset
400
+ (16 eyes) of the entire dataset (35 eyes).
401
+
402
+ Best value between generated and windowed for the specific test is bolded.
403
+ Mean squared error (MSE) and structural similarity (SSIM).
404
+ Ground truth (GT)
405
+ 5. Results – Reconstruction in the Spatial Versus Spectral Domain
406
+ The method of preprocessing significantly affected the comparison between the training on the preliminary
407
+ dataset compared to the full dataset since a different cropping algorithm was utilize. This section leverages
408
+ the entire 1024x400 B-scan; conversely, the preliminary experiment cropped the images into 470x400 B-
409
+
410
+ B
411
+ D10
412
+
413
+ scans. However, within this experiment, the method of evaluation was consistent between both the spatial
414
+ and spectral domain with minor differences in functions used for some final processing and evaluation steps.
415
+ Qualitative Evaluation
416
+ For the spatial SRGAN, the full set of 35 eyes from 27 unique patients were used without transfer learning
417
+ and cropped regions of two scans from the test set capturing the retinal layers are shown in Figure 10.
418
+
419
+ Figure 10. Results of spatial SRGAN without transfer learning on the full OCT B-scan dataset (35 eyes). Samples from the generated
420
+ images from the test set. Comparison between (A & D) windowed, (B & E) ground truth, and (C & F) generated B-scans. The red
421
+ circles highlight a region of interest.
422
+ The full dataset reconstructed from the spectral domain was used to train a model and a cropped region
423
+ of an eye from the test set is shown in Figure 11. Another example from the test set can be seen in the Figure
424
+ 12. The data is independent across A-scans and should be further explored as so. Figure 13 graphically
425
+ compares the intensity of the fringe data.
426
+
427
+ A
428
+ B
429
+ C
430
+ D
431
+ E
432
+ F11
433
+
434
+
435
+ Figure 11. Results of the spectral SRGAN trained on the spectral fringes of OCT B-scan images on the full dataset (35 eyes). Samples
436
+ from the generated images from the test set. Comparison between (A) windowed fringe data, (B) ground truth fringe data, (C)
437
+ generated fringe data, (D) windowed spatial domain data, (E) spatial domain data which is Fourier-transformed from the ground truth
438
+ spectral data, and (F) spatial domain data which is Fourier-transformed from the generated spectral data.
439
+
440
+ A
441
+ B
442
+ C12
443
+
444
+
445
+ Figure 12. Potential failure case of the SRGAN trained on the spectral fringes of OCT B-scan images on the full dataset (35 eyes).
446
+ Samples from the generated images from the test set. Comparison between (A) windowed fringe data, (B) ground truth fringe data, (C)
447
+ generated fringe data, (D) windowed spatial domain data, (E) ground truth spatial domain data, (F) generated spatial domain data, (G)
448
+ cropped windowed, (H) cropped ground truth, and (I) cropped generated.
449
+
450
+
451
+ B
452
+ c
453
+ E
454
+ G13
455
+
456
+
457
+ Figure 13. Results of SRGAN trained on the spectral fringes of OCT B-scan images on the full dataset (35 eyes). Samples from the
458
+ generated images from the test set. The generated A-scans, in yellow, are compared to the ground truth (GT) in orange and windowed
459
+ fringe in blue. (A) presents the B-scan and the A-scan of interested highlighted by the red arrows. (B) shows the full A-scan in the
460
+ spectral domain. (C) examines the top half of the image to provide understanding on the generator’s performance nearing the edge of
461
+ the fringes (normally represent high-frequency signal and spectral noise). (D) examines the central 300 pixels.
462
+ Quantitative Evaluation
463
+ This experiment was performed on the entire dataset and was more comprehensive in the evaluation than the
464
+ preliminary study. The spatial versus spectral reconstruction was evaluated for PSNR and the MSE was
465
+ normalized, and square rooted to provide a more standardized range to compare models with different scales.
466
+ Table 2 quantitatively compares the performance of the reconstruction in the spectral against the spatial
467
+ domain.
468
+
469
+ 150
470
+ 120
471
+ A
472
+ B
473
+ Windowed
474
+ C
475
+ Windowed
476
+ GT
477
+ GT
478
+ Generated
479
+ Generated
480
+ 100
481
+ 100
482
+ 80
483
+ Intensity
484
+ Intensity
485
+ 60
486
+ 50
487
+ 40
488
+ 20
489
+ 0
490
+ 200
491
+ 400
492
+ 600
493
+ 800
494
+ 1000
495
+ 0
496
+ 100
497
+ 200
498
+ 300
499
+ 400
500
+ 500
501
+ Vertical Position
502
+ Vertical Position
503
+ 150
504
+ D
505
+ Windowed
506
+ GT
507
+ Generated
508
+ 100
509
+ Intensity
510
+ 50
511
+ 400
512
+ 500
513
+ 600
514
+ 700
515
+ Vertical Position14
516
+
517
+ Table 2.
518
+ Quantitative evaluation of the generative adversarial network (GAN) images comparing reconstructing in the spectral
519
+ domain versus in the spatial domain. The spectral domain images were transformed to the spatial domain before the evaluation. Mean
520
+ values are shown with standard deviation in parentheses.
521
+
522
+ Best value between generated and windowed for the specific test is bolded. Abbreviation: Normalized Root Mean
523
+ squared error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Ground truth (GT)
524
+
525
+ 6. Discussion
526
+ As OCT hardware moves towards capturing larger field of view including more peripheral parts of the retina,
527
+ the axial resolution may be compromised to minimize the increase in acquisition time for patient comfort and
528
+ reduced motion artefacts. The resulting reduced bandwidth in the spectral domain hinders the micrometer-
529
+ resolution which is one of the benefits of utilizing this modality. This study simulates the reduced axial
530
+ resolution and aims to reconstruct lost features. The contributions of this study are as follows: (1) the effect
531
+ of transfer learning from a natural dataset for initializing the OCT-SRGAN; and (2) the comparison between
532
+ reconstructing in the spectral versus spatial domain.
533
+ Published studies have investigated the use of an SRGAN on OCT data. GANs have been leveraged for
534
+ super-resolution through reconstructing features lost through downsampling in the spatial domain 20, speckle
535
+ removal 21–23, domain adaptation 24, 25, and synthesizing retinal diseases 26 or other imaging modalities 27
536
+ among other applications. Recently, groups have begun utilizing GANs for super-resolution. They have
537
+ simulated low axial resolution OCT data by windowing in the spectral domain and reconstructed in the spatial
538
+ domain 28–31. To the best of our knowledge, this study is the first to leverage a GAN to reconstruct a simulated
539
+ reduced spectral bandwidth in the spectral domain for ophthalmic OCT data.
540
+ The preliminary step of this experiment was performed to understand the effect of transfer learning on a
541
+ GAN-based reconstruction of OCT data. As shown in Figure 9, the SRGAN leveraging the pre-trained
542
+ weights on the flower dataset successfully reconstructed the OCT data. The features were sharpened
543
+ especially in the speckle texture of the retinal layers. However, when compared to the evident effect of the
544
+ GAN on reconstructing the smoothened features on the flower dataset, the effect is minor (comparing Figure
545
+ 9 C and D). The quantitative evaluation mirrored this sentiment. . By leveraging transfer learning to initialize
546
+ the SRGAN on natural flower images, the generated images are slightly better in MSE but slightly worse in
547
+ SSIM than the OCT-only approach. However, all metrics are well within one standard deviation between the
548
+ two approaches. These results were promising and provided us the confidence to move forward with the
549
+ entire dataset.
550
+ As the preliminary trial progressed, different windowing alpha values were utilized when reducing the
551
+ spectral bandwidth. The alpha value of 8 was sufficient to visualize the effect of reduced axial resolution.
552
+ Transfer learning from the floral dataset was relatively successful and the flower-initialized neural network
553
+ was able to slightly reduce training time. However, the flower dataset was convolved by a mean filter to
554
+ simulate the effects of reduced axial resolution in the spatial OCT images. For a fair comparison, the spectral
555
+ domain neural network must also transfer knowledge from a similar domain. The differences in the two
556
+ approaches supported an approach without transfer learning. The trials that leveraged transfer learning had
557
+ superior mean values of the evaluation metrics. However, it also resulted in a higher standard deviation for
558
+ both MSE and SSIM. We decided to approach the second experiment without transfer learning due to the
559
+ lower variance of the performance and the flexibility it provided. If transfer learning was utilized, each
560
+ alteration to the neural network would require the same changes to be retrained on the flower dataset.
561
+
562
+ 15
563
+
564
+ The floral dataset was selected as proposed in the Literature 8 for reconstructing reduced resolution in
565
+ radiographs. The complex textures and patterns in the flower petals provided high contrast edges. When
566
+ convolving the image with a vertical filter, the effect of blurring is more evident than one performed on a
567
+ more homogenous image. Further exploration into transfer learning from a more similar domain, such as
568
+ ultrasound, should be performed. This will allow us to understand the impact of transfer learning from a
569
+ similar domain compared to a dataset selected to exaggerate the desired effect.
570
+ The secondary experiment compared reconstruction in the spatial and spectral domain. Both experiments
571
+ allocated the same eyes for training, validation, and testing. The preprocessing and evaluation were
572
+ performed using the same functions. However, differences in rounding, saving formats, and the order of the
573
+ pipeline resulted in minor changes to the images, as shown in Table 2. The column setting the baseline of
574
+ evaluation metrics comparing the windowed and ground truth images ideally would be identical since the
575
+ GAN has no impact on either set of images. However, the data was saved as an image for training at different
576
+ stages in the spectral and spatial domains. Training also required standardization to [-1, 1] before training
577
+ and [0, 1] for evaluation. All of the differences in the order of standardization, rounding, and processing must
578
+ be considered when comparing the two domains. To replicate the changes that occur to the generated images,
579
+ the GT and windowed fringes were also subject to the same processing pipeline.
580
+ When evaluating the reconstruction qualitatively, both approaches were successful in reconstructing lost
581
+ features. In the spatial domain, as shown in Figure 10, the images appear sharper in both the speckle pattern
582
+ in the background and the retinal layers. However, slight intensity changes are visible even after intensity
583
+ normalization. When referencing Figure 10 (D-F), a vertical line in the choroidal region (highlighted by the
584
+ red circle) is approximately 3 pixels long in the ground truth image. In the corresponding windowed and
585
+ generated images, the feature appears to be 4-5 pixels and 3-4 pixels long, respectively. In the spectral
586
+ domain, as shown in Figure 11, the generated fringe data (C) is capable of reconstructing features towards
587
+ the tails of the Gaussian window. Figure 13 graphically shows a randomly selected A-scan highlighted by
588
+ the arrows in (A). The zoomed-in view of the center of an edge of the A-scan (C) and the center of the A-
589
+ scan (D) confirms that the generator can reconstruct the features lost from Gaussian windowing. Near the
590
+ center presented in (D), the generated signal is capable of reconstructing patterns in the ground truth. By
591
+ examining (C), which is the top half of the signal, the signals appear to be similar up until 200 pixels from
592
+ the center whereas the windowed signal has nearly reached zero intensity. Thus, we conclude that the minor
593
+ signals remaining in the windowed image paired with the patterns found near the center of the image are
594
+ sufficient for the GAN to reconstruct features that have been suppressed through Gaussian windowing.
595
+ When evaluating the mean of the metrics, shown in Table 2, the spatial GAN outperforms the spectral
596
+ GAN in both NRMSE and PSNR and the spectral GAN is superior in SSIM. However, the trends are evident
597
+ in the right column comparing the windowed and ground truth images. The differences between the two
598
+ approaches when evaluating the generated images are also within one standard deviation. Thus, we conclude
599
+ that both approaches are comparable and effective for reconstructing features lost from the reduced spectral
600
+ bandwidth.
601
+ The spectral domain models were optimized within 15 epochs or approximately 100,000 training
602
+ iterations. A failure case can be seen in Figure 14 demonstrating the effect of overfitting at 19 epochs. The
603
+ fringe data contained cyclical vertical streaking patterns upon inspection and when converted into the spatial
604
+ domain, regions above the retina were removed. Conversely, the spatial GANs were able to train up to
605
+ approximately 80 epochs without overfitting. This issue should be further explored as it could be a result of
606
+ the similarities between fringe data or the necessity of revising the learning rate scheduler.
607
+
608
+ 7. Limitations and Future Works
609
+ The SRGAN study was limited by the lack of comparison to a traditional ‘deconvolution’ method. We have
610
+ compared the performance of a model that leveraged transfer learning from a natural floral dataset, but lack
611
+ a fair comparison to other conventional programming reconstruction techniques. The study would also
612
+ benefit from exploring reconstruction in the spectral domain and investigating other methods of qualitative
613
+ evaluation. Some groups have adapted a qualitative evaluation into a quantitative evaluation through a mean
614
+ opinion score, where a group of experts are randomly polled to select the best between the generated,
615
+ windowed, and other alternative methods. This is a potential avenue of evaluating the benefit and
616
+
617
+ 16
618
+
619
+ performance of the generated super-resolution images. However, this requires the opinion of experts, and the
620
+ process may be time-consuming. Another method of evaluation, inspired by my previous work 24, could be
621
+ through other processing tools by biasing a layer segmentation tool towards the high-resolution domain and
622
+ evaluating the generated super-resolution image by the performance of the segmentation.
623
+ A potential failure case was examined in Figure 12 where the fringe data contained vertical line artefacts.
624
+ The SRGAN was still able to reconstruct the features despite the visually unappealing lines. Upon visual
625
+ inspection, the bandwidth did not seem to increase as drastically as other examples. However, when we
626
+ transform the image into the spatial domain, it is evident that the GAN was still successful in reconstructing
627
+ the lost features.
628
+
629
+ Figure 14. Results of an overfit SRGAN (19 epochs) trained on the spectral fringes of OCT B-scan images on the full dataset (35
630
+ eyes). Samples from the generated images from the test set. Comparison between (A) windowed fringe data, (B) ground truth fringe
631
+ data, (C) generated fringe data, (D) windowed spatial domain data, (E) ground truth spatial domain data, and (F) generated spatial
632
+ domain data.
633
+ Future works includes incorporating the spatial domain A-scans as part of the loss function in the spectral
634
+ domain GAN, and vice versa. Additional future works include combining GANs from both domains into one
635
+ processing pipeline, exploring transfer learning from a similar domain of data such as ultrasound or frequency
636
+ signals from music, and investigating the use of the ResUNet-a architecture on the spatial domain.
637
+ 8. Conflict of Interest
638
+ MVS: Seymour Vision, Inc. (I).
639
+
640
+ 9. References
641
+
642
+ 1.
643
+ Kwan CC, Fawzi AA. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Curr Diab Rep.
644
+ 2019;19(10). doi:10.1007/s11892-019-1226-2
645
+ 2.
646
+ Karst SG, Heisler M, Lo J, et al. Evaluating signs of microangiopathy secondary to diabetes in different areas of the retina
647
+ with swept source OCTA. Investig Ophthalmol Vis Sci. 2020;61(5). doi:10.1167/IOVS.61.5.8
648
+
649
+ A
650
+ B
651
+ C
652
+ D
653
+ E
654
+ F17
655
+
656
+ 3.
657
+ Wang J, Camino A, Hua X, et al. Invariant features-based automated registration and montage for wide-field OCT
658
+ angiography. Biomed Opt Express. 2019;10(1). doi:10.1364/boe.10.000120
659
+ 4.
660
+ Zhang Q, Huang Y, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based
661
+ microangiography provided by motion tracking. J Biomed Opt. 2015;20(6). doi:10.1117/1.jbo.20.6.066008
662
+ 5.
663
+ Gao M, Guo Y, Hormel TT, Sun J, Hwang TS, Jia Y. Reconstruction of high-resolution 6×6-mm OCT angiograms using
664
+ deep learning. Biomed Opt Express. 2020;11(7):3585. doi:10.1364/boe.394301
665
+ 6.
666
+ Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. In:
667
+ Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. Vol 2017-January. ; 2017.
668
+ doi:10.1109/CVPR.2017.19
669
+ 7.
670
+ TensorFlow. Flowers. Published online 2019.
671
+ 8.
672
+ Moran MBH, Faria MDB, Giraldi GA, Bastos LF, Conci A. Using super-resolution generative adversarial network models
673
+ and transfer learning to obtain high resolution digital periapical radiographs. Comput Biol Med. 2021;129.
674
+ doi:10.1016/j.compbiomed.2020.104139
675
+ 9.
676
+ Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs. In:
677
+ Advances in Neural Information Processing Systems. ; 2016.
678
+ 10.
679
+ Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit number recognition from street view imagery using deep
680
+ convolutional neural networks. In: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track
681
+ Proceedings. ; 2014.
682
+ 11.
683
+ Perturbations, Optimization, and Statistics.; 2018. doi:10.7551/mitpress/10761.001.0001
684
+ 12.
685
+ Sønderby CK, Caballero J, Theis L, Shi W, Huszár F. Amortised map inference for image super-resolution. In: 5th
686
+ International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings. ; 2017.
687
+ 13.
688
+ Jenni S, Favaro P. On stabilizing generative adversarial training with noise. In: Proceedings of the IEEE Computer Society
689
+ Conference on Computer Vision and Pattern Recognition. Vol 2019-June. ; 2019. doi:10.1109/CVPR.2019.01242
690
+ 14.
691
+ Goodfellow IJ, Pouget-abadie J, Mirza M, Xu B, Warde-farley D. Generative Modeling Generative Modeling. Annu Plant
692
+ Rev. Published online 2016.
693
+ 15.
694
+ Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 3rd International
695
+ Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. ; 2015.
696
+ 16.
697
+ Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial
698
+ networks. 4th Int Conf Learn Represent ICLR 2016 - Conf Track Proc. Published online 2016:1-16.
699
+ 17.
700
+ He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: European Conference on Computer Vision.
701
+ ; 2016:630-645.
702
+ 18.
703
+ Diakogiannis FI, Waldner F, Caccetta P, Wu C. ResUNet-a: A deep learning framework for semantic segmentation of
704
+ remotely sensed data. ISPRS J Photogramm Remote Sens. 2020;162:94-114. doi:10.1016/j.isprsjprs.2020.01.013
705
+ 19.
706
+ Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity.
707
+ IEEE Trans Image Process. 2004;13(4). doi:10.1109/TIP.2003.819861
708
+ 20.
709
+ Huang Y, Lu Z, Shao Z, et al. Simultaneous denoising and super-resolution of optical coherence tomography images based
710
+ on generative adversarial network. Opt Express. 2019;27(9). doi:10.1364/oe.27.012289
711
+ 21.
712
+ Dong Z, Liu G, Ni G, Jerwick J, Duan L, Zhou C. Optical coherence tomography image denoising using a generative
713
+ adversarial network with speckle modulation. J Biophotonics. 2020;13(4). doi:10.1002/jbio.201960135
714
+ 22.
715
+ Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P. DN-GAN: Denoising generative adversarial networks for speckle
716
+ noise reduction in optical coherence tomography images. Biomed Signal Process Control. 2020;55. doi:10.1016/j.bspc.2019.101632
717
+ 23.
718
+ Cheong H, Krishna Devalla S, Chuangsuwanich T, et al. OCT-GAN: single step shadow and noise removal from optical
719
+ coherence tomography images of the human optic nerve head. Biomed Opt Express. 2021;12(3). doi:10.1364/boe.412156
720
+ 24.
721
+ Ricky Chen, Timothy T. Yu, Gavin Xu, Da Ma, Marinko V. Sarunic MFB. Domain Adaptation via CycleGAN for Retina
722
+ Segmentation in Optical Coherence Tomography. arXiv:210702345 [eessIV]. Published online 2021.
723
+ 25.
724
+ Zhang T, Cheng J, Fu H, et al. Noise adaptation generative adversarial network for medical image analysis. IEEE Trans
725
+ Med Imaging. 2020;39(4). doi:10.1109/TMI.2019.2944488
726
+ 26.
727
+ Zheng C, Xie X, Zhou K, et al. Assessment of generative adversarial networks model for synthetic optical coherence
728
+ tomography images of retinal disorders. Transl Vis Sci Technol. 2020;9(2). doi:10.1167/tvst.9.2.29
729
+ 27.
730
+ Lee CS, Tyring AJ, Wu Y, et al. Generating retinal flow maps from structural optical coherence tomography with artificial
731
+ intelligence. Sci Rep. 2019;9(1):5694. doi:10.1038/s41598-019-42042-y
732
+ 28.
733
+ Zhang Y, Liu T, Singh M, et al. Neural network-based image reconstruction in swept-source optical coherence tomography
734
+ using undersampled spectral data. Light Sci Appl. 2021;10(1). doi:10.1038/s41377-021-00594-7
735
+ 29.
736
+ Lichtenegger A, Salas M, Sing A, et al. Reconstruction of visible light optical coherence tomography images retrieved
737
+ from discontinuous spectral data using a conditional generative adversarial network. Biomed Opt Express. 2021;12(11).
738
+ doi:10.1364/boe.435124
739
+ 30.
740
+ Cao S, Yao X, Koirala N, et al. Super-resolution technology to simultaneously improve optical & digital resolution of
741
+ optical coherence tomography via deep learning. In: Proceedings of the Annual International Conference of the IEEE Engineering in
742
+ Medicine and Biology Society, EMBS. Vol 2020-July. ; 2020. doi:10.1109/EMBC44109.2020.9175777
743
+ 31.
744
+ Yu TT, Ma D, Cole J, Jin Ju M, Faisal Beg M, Sarunic M V. Spectral bandwidth recovery of optical coherence tomography
745
+ images using deep learning. In: International Symposium on Image and Signal Processing and Analysis, ISPA. Vol 2021-September. ;
746
+ 2021. doi:10.1109/ISPA52656.2021.9552122
747
+
0dAyT4oBgHgl3EQfoPiS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tE4T4oBgHgl3EQfzA1I/content/tmp_files/2301.05270v1.pdf.txt ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05270v1 [math.DG] 12 Jan 2023
2
+ ON A PRE-ORDERING OF COMPACT PSC MANIFOLDS AND PSC
3
+ RIEMANNIAN METRICS
4
+ MOHAMMED LARBI LABBI
5
+ Abstract. We study the 1-parameter family of nested curvature conditions Riemt(g) > 0 on a Rie-
6
+ mannian n-manifold (M, g) that interpolates between positive scalar curvature (t = 0) and positive
7
+ constant sectional curvature (t =
8
+ �n
9
+ 2
10
+
11
+ ). We define the metric invariant Riem(g) to be the supremum
12
+ of parameters t for which the condition Riemt(g) > 0 is allowed on (M, g). The smooth invariant
13
+ Riem(M) ∈ (0,
14
+ �n
15
+ 2
16
+
17
+ )] is by definition the supremum of Riem(g) over the set of all psc Riemannian
18
+ metrics g on M. This invariant allows in particular to (pre) order psc compact manifolds.
19
+ We show that on the top, compact manifolds with Riem =
20
+ �2
21
+ n
22
+
23
+ are positive space forms. Next,
24
+ Sn−1×S1, connected sums of these and connected sums of positive space forms have Riem =
25
+ �n−1
26
+ 2
27
+
28
+ .
29
+ For 1 ≤ p ≤ n − 2 ≤ 5, Sn−p × T p have the intermediate value of Riem =
30
+ �n−p
31
+ 2
32
+
33
+ .
34
+ From the bottom, we prove that simply connected (resp. 2-connected) compact manifolds of di-
35
+ mension ≥ 5 (resp. ≥ 7) have Riem ≥ 1 (resp. ≥ 3.) The proof of the two last results is based
36
+ on a result of this paper where we prove that the smooth Riem invariant doesn’t decrease after a
37
+ surgery on the manifold with sufficiently high codimension.
38
+ Keywords: PSC manifolds, Riem invariants, surgery theorem.
39
+ Contents
40
+ 1.
41
+ Introduction and Statement of the main results
42
+ 2
43
+ 1.1.
44
+ Introduction
45
+ 2
46
+ 1.2.
47
+ Statement of the main results of the paper
48
+ 4
49
+ 1.3.
50
+ Plan of the paper
51
+ 6
52
+ 2.
53
+ Relations with other curvature conditions: Proof of Theorems D and E
54
+ 6
55
+ 2.1.
56
+ Proof of Theorem D
57
+ 7
58
+ 2.2.
59
+ Positive Cp intermediate curvature condition: Proof of Theorem E
60
+ 8
61
+ 2.3.
62
+ Proof of Theorem E
63
+ 9
64
+ 3.
65
+ The Riem of total spaces of Riemannian submersions: Proof of Theorem A and
66
+ Proposition 1.1
67
+ 9
68
+ 3.1.
69
+ Proof of Proposition 1.1
70
+ 9
71
+ 2020 Mathematics Subject Classification. 53C21, 53C18 .
72
+ 1
73
+
74
+ 3.2.
75
+ Proof of Theorem A
76
+ 9
77
+ 4.
78
+ The Riem invariant and surgeries: Proof of Theorems B, B′ and Corollary B
79
+ 10
80
+ 4.1.
81
+ Proof of Theorem B
82
+ 10
83
+ 4.2.
84
+ Proof of Corollary B
85
+ 11
86
+ 4.3.
87
+ Proof of Theorem B′
88
+ 12
89
+ 5.
90
+ Vanishing theorems: Proof of Theorems C and C′
91
+ 12
92
+ 5.1.
93
+ Proof of Theorem C
94
+ 12
95
+ 5.2.
96
+ Proof of Theorem C′
97
+ 12
98
+ 6.
99
+ Miscellaneous results
100
+ 13
101
+ 6.1.
102
+ Positive Γ2(R) curvature
103
+ 13
104
+ 6.2.
105
+ The small Riem invariant
106
+ 14
107
+ 6.3.
108
+ The Riem invariant of a conformal class
109
+ 15
110
+ 6.4.
111
+ Minimal vs. Maximal PSC compact manifolds: open questions
112
+ 15
113
+ References
114
+ 16
115
+ 1. Introduction and Statement of the main results
116
+ 1.1. Introduction. Throughout this paper, (M, g) denotes a closed connected Riemannian mani-
117
+ fold of dimension n. We denote by R and Scal respectively the Riemann curvature tensor and the
118
+ scalar curvature of (M, g). We define a string of curvature tensors on (M, g) as follows
119
+ (1)
120
+ Riemt(g) := Scal g2
121
+ 2 − 2tR,
122
+ Where t is a constant real number, and g2 is the square of g with respect to the Kulkarni-Nomizu
123
+ product. These curvatures are defined in a similar way as the tensors Eink in [8]. We are interested
124
+ in the positivity properties of these curvature tensors. In order to ensure that their positivity is
125
+ stronger then positive scalar curvature, we restrict the parameter t to be less than n(n − 1)/2. In
126
+ fact, one can easily show that the full trace of Riemt equals
127
+
128
+ (n(n − 1) − 2t
129
+
130
+ Scal.
131
+ We remark that for a compact Riemannian n-manifold (M, g) with positive scalar curvature and
132
+ for 0 < t < n(n − 1)/2, the tensor Riemt(g) is positive definite if and only if at each point of M
133
+ one has
134
+ (2)
135
+ t < Scal
136
+ 2λmax
137
+ ,
138
+ 2
139
+
140
+ where λmax denotes the maximal eigenvalue of the Riemann curvature operator at the correspond-
141
+ ing point.
142
+ A straightforward consequence of the above charecterisation of the positivity of the tensors
143
+ Riemt(g) is the following descent positivity property
144
+ (3)
145
+ For 0 < t < s < n(n − 1)/2, Riems > 0 ⇒ Riemt > 0 ⇒ Scal > 0.
146
+ We therefore define the metric invariant
147
+ (4)
148
+ Riem(g) := sup{t ∈ (0, n(n − 1)/2 : Riemt(g) > 0}.
149
+ We set Riem(g) = 0 if the scalar curvature of g is not positive. An immediate consequence of
150
+ property (2), is that for a metric g of positive scalar curvature one has
151
+ (5)
152
+ Riem(g) = inf
153
+ M
154
+ Scal(g)
155
+ 2λmax(g).
156
+ The above formula shows in particular that the metric invariant Riem(g) is re-scale invariant, That
157
+ is for any positive real number t, one has
158
+ (6)
159
+ Riem(tg) = Riem(g).
160
+ Example 1.1.
161
+ (1) For a compact Riemannian n-manifold (M, g) of positive constant sectional
162
+ curvature, one has Riem(g) = n(n−1)
163
+ 2
164
+ . It has the maximal possible value. Conversely, if
165
+ Riem(g) = n(n−1)
166
+ 2
167
+ then g has positive constant sectional curvature.
168
+ (2) For the standard product metric g on the product Sn−p ×T p of a round sphere of curvature
169
+ 1 with a flat torus one has Riem(g) = (n−p)(n−p−1)
170
+ 2
171
+ .
172
+ (3) For the standard product metric g on the product Sn−p×Hp of a round sphere of curvature
173
+ 1 with a hyperbolic space of curvature −1 one has Riem(g) = (n−1)(n−2p)
174
+ 2
175
+ .
176
+ (4) For the standard Fubiny-Study metric g on CPn one has Scal(g) = 4n(n+1) and λmax(g) =
177
+ 2n + 2 [2], and consequently Riem(g) = n.
178
+ (5) For the standard Fubiny-Study metric g on HPn one has Scal(g) = 16n(n+2) and λmax(g) =
179
+ 4n [2], and consequently Riem(g) = 2n + 4.
180
+ The metric Riem invariant defines a pre-order on the set of Riemannian metrics on M as follows
181
+ (7)
182
+ g1 ⪯ g2 if Riem(g1) ≤ Riem(g2).
183
+ This lead us naturally to the study of maximal metrics with respect to the above pre-order.
184
+ We define then a smooth invariant Riem(M) to be
185
+ (8)
186
+ Riem(M) = sup{Riem(g): g ∈ M},
187
+ where M denotes the space of all Riemannian metrics on M. We set Riem(M) = 0 if M has
188
+ no psc metrics. For the seek to provide the reader a better feeling of this invariant, we provide
189
+ (prematurely) the following examples whose proofs will be provided later in this paper.
190
+ 3
191
+
192
+ Example 1.2.
193
+ (1) For all n ≥ 2, It is easy to see that Riem(Sn) = Riem(RPn) =
194
+ �n
195
+ 2
196
+
197
+ .
198
+ (2) For r ≥ 2, connected sums of r-copies of (RPn) has Riem =
199
+ �n−1
200
+ 2
201
+
202
+ .
203
+ (3) For all n ≥ 2, Riem(Sn−1 × S1) =
204
+ �n−1
205
+ 2
206
+
207
+ . Furthermore, the connected sum of arbitrary r
208
+ copies of the previous manifold satisfies Riem(#r(Sn−1 × S1) =
209
+ �n−1
210
+ 2
211
+
212
+ .
213
+ (4) For 2 ≤ n ≤ 7, Riem(Sn−p × T p) =
214
+ �n−p
215
+ 2
216
+
217
+ .
218
+ In the literature one finds several notions of intermediate curvature conditions which are useful
219
+ in different directions. The author beleives that the curvature conditions that are stable under
220
+ surgeries, satisfy the ideal property with respect to the Cartesian product of manifolds and have a
221
+ fibre bundle property (as below) are subtle and deserve a special attention. The point is that the
222
+ above three properties are the keys to convert geometrical classification problems to topological
223
+ ones. The typical example is of course positive scalar curvature condition and this approch was
224
+ initiated by Gromov and Lawson [6].
225
+ We will prove in the first part of this paper that the condition Riem > t satisfies all the three
226
+ conditions. In the second part we shall show that the condition Riem > t imposes several restriction
227
+ on the topology of the manifold.
228
+ 1.2. Statement of the main results of the paper. The first result shows that the condition
229
+ Riem > t satisfies an ideal property with respect to Cartesian products
230
+ Proposition 1.1. Let M1 and M2 be compact manifolds, then
231
+ Riem(M1 × M2) ≥ max{Riem(M1), Riem(M2)}.
232
+ The above property is still true for general Riemannian submersions. In particular, we show
233
+ that the condition Riem > t satisfies a fibre bundle property
234
+ Theorem A. Let π : M → B be a fibre bundle with fibre F of dimension p and structure group G.
235
+ Suppose M and B are compact and that the fibre F admits a G-invariant metric ˆg with Riem(ˆg) > t
236
+ for some t ∈ [0, p(p − 1)/2). Then Riem(M) > t.
237
+ In particular, if compact manifolds M and N are respectively the total spaces of a CP2 bundle
238
+ and an HP2 bundle with structure group the group of isometries of their Fubiny-Study metrics,
239
+ then Riem(M) > 2 and Riem(N) > 8.
240
+ The next theorem shows the stability under surgeries of the above condition
241
+ Theorem B. Let p, n be integers such that 1 ≤ p ≤ n − 2. Let M be a compact n-manifold with
242
+ p(p−1)
243
+ 2
244
+ < Riem(M) ≤ p(p+1)
245
+ 2
246
+ . If a compact manifold �
247
+ M is obtained from M by surgeries of codi-
248
+ mensions ≥ p + 2 then Riem(�
249
+ M) ≥ Riem(M).
250
+ One important consequence of the previous results is the following gap theorem
251
+ 4
252
+
253
+ Theorem B′.
254
+ (1) For a compact simply connected manifold M of dimension ≥ 5 one has:
255
+ Riem(M) > 0 =⇒ Riem(M) ≥ 1.
256
+ (2) For a compact 2-connected manifold M of dimension ≥ 7 one has:
257
+ Riem(M) > 0 =⇒ Riem(M) ≥ 3.
258
+ Another consequence of the surgery theorem is the stablity under connected sums of the condi-
259
+ tion Riem(Mn) > t for the values of t between 0 and (n−1)(n−2)/2. The same theorem guarantees
260
+ the stability under surgeries of codimensions n−1 or n of Riem(Mn) > t for the values of t between
261
+ 0 and (n − 2)(n − 3)/2. As a consequence of this last result, we prove that for t ∈ [0, (n−2)(n−3)
262
+ 2
263
+ ),
264
+ the condition Riem(M) > t does not impose any restrictions on the fundamental group of M.
265
+ Corollary B. Let π be a finitely presented group.
266
+ Then for every n ≥ 4 and for every t ∈
267
+ [o, (n−2)(n−3)
268
+ 2
269
+ ), there exists a compact n-manifold M with Riem(M) > t and π1(M) = π.
270
+ It turns out that for values of t higher than (n−2)(n−3)
271
+ 2
272
+ (that is the limit value of t that allows
273
+ surgeries!), the condition Riem(Mn) > t imposes many restrictions on the topology of the manifold.
274
+ The first obstruction result is a vanishing theorem of Betti numbers of the manifold
275
+ Theorem C. Let M be a compact connected manfold with dimension n ≥ 3. Then one has
276
+ Riem(M) > (n − 1)(n − 2)
277
+ 2
278
+ =⇒ b1(M) = bn−1(M) = 0.
279
+ Here b1(M) denotes the first Betti number of M. In particular, The standard metric of the product
280
+ Sn−1 × S1 is maximal and one has
281
+ a) Riem(Sn−1 × S1) = (n−1)(n−2)
282
+ 2
283
+ .
284
+ b) The connected sum of arbitrary r copies of Sn−1 × S1 satisfies
285
+ Riem(#r(Sn−1 × S1) = (n − 1)(n − 2)
286
+ 2
287
+ .
288
+ In this paper we prove generalizations of the above theorem to all the higher Betti numbers.
289
+ In particular, we prove that
290
+ Theorem C′. Let M be a compact connected manfold with dimension n ≥ 4 and bk(M) denotes
291
+ the k-th betti number of M. Then one has
292
+ Riem(M) > n(n − 1)
293
+ 2
294
+ − (n − 2) =⇒ bk(M) = 0, for 1 ≤ k ≤ n − 1.
295
+ In particular, M is a homology sphere.
296
+ The next theorem is a weaker version of a theorem due to B¨ohm and Wilking [3] and a second
297
+ theorem due to Ni-Wu [14]. It shows in particular that no compact n-manifolds, n ≥ 3, can have
298
+ their Riem within the interval (N − 2, N) where N = n(n − 1)/2.
299
+ Theorem D. Let M be a compact manifold of dimension n ≥ 3.
300
+ 5
301
+
302
+ (1) if Riem(M) > n(n−1)
303
+ 2
304
+ − 2 then Riem(M) = n(n−1)
305
+ 2
306
+ .
307
+ Moreover, M has a metric g with constant sectionnal curvature and Riem(M) = Riem(g).
308
+ (2) If Riem(M) = n(n−1)
309
+ 2
310
+ − 2 = Riem(g) for some Riemannian metric g on M, then either M
311
+ is locally symmetric or its universal cover is isometric to a product.
312
+ The following theorem shows that taking a cartesian product with a torus does not increase the
313
+ Riem. This result combined with the ideal property allowed us to compute the Riem invariant
314
+ for products of spheres with tori. Precisely we have
315
+ Theorem E. Let n ≥ 3 and 1 ≤ p ≤ n − 1 be two integers. Let N n−p be an arbitrary compact
316
+ manifold of dimension n − p and T p be the p-dimentional torus. Then for n ≤ 7 one has
317
+ Riem(N n−p × T p) ≤
318
+ �n − p
319
+ 2
320
+
321
+ .
322
+ In particular, if Sn−p is a positive spherical space form then one has
323
+ Riem(Sn−p × T p) =
324
+ �n − p
325
+ 2
326
+
327
+ .
328
+ The proof of the above theorem is based on a recent result by Brendle-Hirsch-Johne [4].
329
+ 1.3. Plan of the paper. Theorem A is proved in section 3 and Theorems B and B′ in section 4.
330
+ Theorems C and C′ are proved in section 5 and Theorems D and E in section 2.
331
+ In the last section 6, we first show as a consequence of Theorem E that the product S2 × T p,
332
+ for p ≤ 5, does not admit any Riemannian metric with both σ1(R) > 0 and σ2(R) > 0. Where
333
+ σk(R) denotes the k-th elementary symmetric function in the eigenvalues of the Riemann curvature
334
+ operator. Next, we introduce an analogous but weaker smooth invariant, namely riem invariant.
335
+ We prove that it remains unchanged under surgeries in most of codimensions. Then we briefly
336
+ define the Riem of a conformal class of metrics, and we determine the Riem of the conformal class
337
+ of the product metric on the product of two space forms with opposite signs. At the end of this
338
+ section we included some open related questions.
339
+ 2. Relations with other curvature conditions: Proof of Theorems D and E
340
+ Let M be a compact manifold and g a Riemannian metric on M.
341
+ If dim M = 2, then Riemt(g) = (1 − t)Scal g2
342
+ 2 is determined by the scalar curvature and Riem(M)
343
+ is either 0 or 1. In 3 dimensions, it is determined by the Ricci curvature. It is easy to see that
344
+ in three dimensions the eigenvalues of Riemt(g) are equal to (1 − t)Scal + 2tρi, for i = 1, 2, 3, and
345
+ where ρi is an eigenvalue of Ricci curvature operator. In particular, Riem(M) > 1 =⇒ Ric > 0.
346
+ Consequently, by the classification of PSC compact 3-dimensional manifolds, Riem(M) can take
347
+ only the values 0, 1 and 3.
348
+ In higher dimensions, still we don’t know whether Riem takes only integer values. As a first step in
349
+ 6
350
+
351
+ this direction, we will show in this paper that there are gaps in the range of Riem in all dimensions.
352
+ The next proposition shows a relation between our curvature condition and positive Ricci
353
+ curvature condition and k-positive Riemann tensor.
354
+ Proposition 2.1. Let g be a Riemannian metric on a compact n-manifold and let N = n(n−1)/2.
355
+ (1) For any integer t ∈ (0, N), the tensor Riemt(g) is t-positive (resp. t-nonnegative) if and only
356
+ if the Riemann curvature operator R of g is (N − t)-positive (resp. (N − t)-nonnegative).
357
+ In particular,
358
+ • The Riemann curvature operator R is positive (resp.
359
+ nonnegative) if and only if
360
+ Riem(N−1)(g) is (N − 1)-positive (resp. (N − 1)-nonnegative).
361
+ • The Riemann curvature operator R is k-positive (resp. k-nonnegative) if and only if
362
+ Riem(N−k)(g) is (N − k)-positive (resp. (N − k)-nonnegative).
363
+ (2) Riem(g) > (n−1)(n−2)
364
+ 2
365
+ =⇒ Ric > 0.
366
+ (3) Riem(g) = (n−1)(n−2)
367
+ 2
368
+ =⇒ Ric ≥ 0.
369
+ Proof. To prove the first part, we take the sum of arbitrary t eigenvalues of Riemt(g) and get
370
+ tScal − 2t
371
+
372
+ i∈I
373
+ λi = 2t
374
+ N
375
+
376
+ i=1
377
+ λi − 2t
378
+
379
+ i∈I
380
+ λi = 2t
381
+
382
+ i∈Ic
383
+ λi,
384
+ where N = n(n − 1)/2, I is a set of indices in {1, 2, ..., N} of length t and λi are the eigenvalues
385
+ of the Riemann curvature operator. For the second part, let e1 be a given unit tangent vector and
386
+ complete by {e2, ..., en} to get an orthonormal basis of the corresponding tangent space, then for
387
+ t = (n−1)(n−2)
388
+ 2
389
+ one has
390
+
391
+ i,j̸=1
392
+ Riemt(ei, ej, ei, ej) = (n − 1)(n − 2)Scal − 2t
393
+ ��
394
+ Scal − 2Ric(e1, e1)
395
+
396
+ = 4tRic(e1, e1).
397
+ Finally, if Riem(g) = (n−1)(n−2)
398
+ 2
399
+ then it is easy to show that Riemt(g) ≥ 0 for t = (n−1)(n−2)
400
+ 2
401
+ and
402
+ the last result follows.
403
+
404
+ 2.1. Proof of Theorem D.
405
+ Proof. Let N =
406
+ n(n−1)
407
+ 2
408
+ .
409
+ By assumption there exists a Riemannian metric g on M such that
410
+ Riem(g) > N − 2. Then RiemN−2(g) > 0, in particular it is (N − 2) − positive. Proposition
411
+ 2.1 shows then that the the Riemann curvature operator is 2-positive. The theorem follows from
412
+ B¨ohm-Wilking Theorem 1 in [3].
413
+ For the second part, let Riem(M) = n(n−1)
414
+ 2
415
+ − 2 = Riem(g), for some Riemannian metric g on
416
+ M. Consequently one has RiemN−2(g) ≥ 0. Proposition 2.1 shows that the Riemann curvature
417
+ operator is 2-nonnegative. Then by a theorem of Ni-Wu [14], M is locally symmetric or its universal
418
+ cover is isometric to a product.
419
+
420
+ 7
421
+
422
+ 2.2. Positive Cp intermediate curvature condition: Proof of Theorem E. Brendle, Hirch
423
+ and Johne defined in [4] the notion of p-intermediate curvature denoted Cp. It is defined on the
424
+ Grassmannian of tangent p-planes of a Riemannian manifold as follows. For a tangent p-plane P,
425
+ let {e1, ..., ep} be any orthonormal basis of P and set
426
+ Cp(P) :=
427
+ p
428
+
429
+ i=1
430
+ n
431
+
432
+ j=i+1
433
+ Sec(ei, ej),
434
+ where Sec(ei, ej) denotes the sectional curvature of the plane spanned by {ei, ej}.
435
+ A simple manipulation shows that
436
+ Cp(P) =
437
+ n
438
+
439
+ i=1
440
+ n
441
+
442
+ j=i+1
443
+ Sec(ei, ej) −
444
+ n
445
+
446
+ i=p+1
447
+ n
448
+
449
+ j=i+1
450
+ Sec(ei, ej)
451
+ =
452
+ n
453
+
454
+ i,j=1
455
+ i<j
456
+ Sec(ei, ej) −
457
+ n
458
+
459
+ i,j=p+1
460
+ i<j
461
+ Sec(ei, ej)
462
+ =1
463
+ 2Scal − 1
464
+ 2sp(P),
465
+ (9)
466
+ where sp(P) is the p-curvature of the plane P [11].
467
+ The next theorem shows the existence of a metric with positive Cp curvature on a given n-manifold
468
+ M provided that Riem(M) > (n−p)(n−p−1)
469
+ 2
470
+ .
471
+ Theorem 2.2. Let M be a compact manifold of dimension n ≥ 3 and p be an integer such that
472
+ 1 ≤ p ≤ n − 1. If the manifold M has no Riemannian metrics with positive Cp curvature then
473
+ Riem(M) ≤
474
+ �n−p
475
+ 2
476
+
477
+ .
478
+ Proof. Suppose that Riem(M) >
479
+ �n−p
480
+ 2
481
+
482
+ . Then M has a Riemannian metric g with Riemt(g) > 0
483
+ with t = (n−p)(n−p−1)
484
+ 2
485
+ . We shall prove that the Cp curvature of g is positive.
486
+ Recall that
487
+ 1
488
+ 2sp is the sectional curvature of the tensor ∗ gn−p−2
489
+ (n−p−2)!R, here we are using double
490
+ forms formalism [10], in particular ∗ is the double Hodge star operator acting on double forms.
491
+ Consequently, the Cp curvature is the sectional curvature of the tensor
492
+ 1
493
+ 2Scalgp
494
+ p! − ∗
495
+ gn−p−2
496
+ (n − p − 2)!R =1
497
+ 2Scal(∗ gn−p
498
+ (n − p)!) − ∗
499
+ gn−p−2
500
+ (n − p − 2)!R
501
+ = ∗
502
+
503
+ 1
504
+ (n − p)(n − p − 1)
505
+ gn−p−2
506
+ (n − p − 2)!
507
+
508
+ Scalg2
509
+ 2 − (n − p)(n − p − 1)R
510
+ ��
511
+ =2
512
+ t ∗
513
+
514
+ gn−p−2
515
+ (n − p − 2)!Riemt(g)
516
+
517
+ =
518
+ 2
519
+ t(n − p − 2)!
520
+
521
+ cn−p−2�
522
+ ∗ Riemt(g)
523
+
524
+
525
+ .
526
+ (10)
527
+ Where t = (n−p)(n−p−1)
528
+ 2
529
+ and c denotes the contraction map of double forms. In the last step we used
530
+ the identity ∗(gkω) = ck(∗ω) which is valid for any symmetric double form ω, see [10]. In particular,
531
+ 8
532
+
533
+ the Cp curvature is up to a positive factor the sectional curvature of the p-curvature tensor of Riemt.
534
+ Now, it is easy to see that the positivity of Riemt implies the positivity of ∗Riemt and the positivity
535
+ of all contractions of Riemt. The positivity of Cp follows as the sectionnal curvature of a positive
536
+ symmetric double form. This completes the proof.
537
+
538
+ 2.3. Proof of Theorem E.
539
+ Proof. For n ≤ 7, the product N n−p × T p has no Riemannian metrics with positive Cp curvature
540
+ by a recent result of Brendle-Hirch-Johne in [4]. The above theorem 2.2 in this paper implies that
541
+ Riem(N n−p×T p) ≤ (n−p)(n−p−1)
542
+ 2
543
+ . To prove the second part recall that the Riem of standard metric
544
+ on Sn−p equals (n−p)(n−p−1)
545
+ 2
546
+ . The ideal property of proposition 1.1 shows that Riem(Sn−p ×T p) ≥
547
+ (n−p)(n−p−1)
548
+ 2
549
+ . This completes the proof.
550
+
551
+ Remark.
552
+ (1) The natural question whether the previous Theorem E remains true for all n ≥ 8,
553
+ is an open question. This is clearly true for p = 1 and p = n − 1 by Theorem C.
554
+ (2) The previous theorem shows clearly an interaction between Gromov’s macroscopic dimen-
555
+ sion of the universal cover of the manifold and its Riem invariant.
556
+ This suggests the
557
+ following conjecture
558
+ Let dimmc(M) denotes the macroscopic dimension of the universal cover of a compact man-
559
+ ifold M and d be an integer such that 1 ≤ d ≤ n − 1. Then
560
+ Riem(M) > (n − d)(n − d − 1)
561
+ 2
562
+ =⇒ dimmc(M) < d.
563
+ This is a generalization of Gromov’s conjecture obtained for d = n − 1.
564
+ 3. The Riem of total spaces of Riemannian submersions: Proof of Theorem A and
565
+ Proposition 1.1
566
+ 3.1. Proof of Proposition 1.1.
567
+ Proof. We will show that the Riem of the Cartesian product of two manifolds M1 and M2 cannot
568
+ be less then the Riem of M1 or M2.
569
+ If Riem(M1) = Riem(M2) = 0, the result is trivial. If Riem(M1) > 0, then M1 possesses a metric
570
+ g1 with Riem(g1) > 0. Then one can amplify the metric g1 by multiplying it by t > 0 and use the
571
+ compactness to show that Riem(M1 × M2) ≥ Riem(M1). The proof can be then completed easily
572
+ after considering the cases Riem(M2) = 0 and Riem(M2) > 0.
573
+
574
+ 3.2. Proof of Theorem A. Theorem A is a special case of the following more general theorem
575
+ Theorem 3.1. Let M be compact and be the total space of a Riemannian submersion π : (M, g) →
576
+ (B, ˇg) with totally geodesic fibers Fx, x ∈ B. Let p = dim Fx and k ∈ [0, p(p − 1)/2). Suppose that
577
+ the induced metric on the fibers satisfy Riem(g|Fx) > k for all x ∈ B then Riem(M) > k.
578
+ 9
579
+
580
+ Proof. We use the canonical variation gt of the metric g, that is the metric obtained by re-scaling
581
+ g in the vertical directions by t2. We shall prove that there exists t > 0 such that Riem(gt) > k,
582
+ and consequently one has Riem(M) > k as desired.
583
+ Let U, V, W, W ′ be vertical vectors of gt-length 1 and X, Y, Z, Z′ be arbitrary forizontal vectors. We
584
+ shall index by t all the invariants of the metric gt and put under a hat the invariants of the fibers
585
+ with the induced metric. We omitt the index t in case t = 1. O’Neill’s formulas for Riemannian
586
+ submersions show that, see for instance chapter 9 in [1] or chapter 2 in [12]
587
+ Rt(U ∧ V, W ∧ W ′) = t2 ˆR(U ∧ V, W ∧ W ′),
588
+ Rt(U ∧ V, W ∧ X) = 0,
589
+ Rt(X ∧ U, Y ∧ V ) = O(1),
590
+ Rt(U ∧ V, X ∧ Y ) = O(1),
591
+ Rt(X ∧ Y, Z ∧ U) = o(t),
592
+ Rt(X ∧ Y, Z ∧ Z′) = O(1).
593
+ Here the Riemann tensor is seen as a (2, 2) double form, ˆR is the double form associated to the
594
+ Riemann tensor of the fibre metric ˆg = g|Fx.
595
+ Let now φ be any 2-form of gt-unit length in ∧2M and denote by ˆφ its pointwise ortogonal projection
596
+ onto ∧2F, then the above formulas show that
597
+ Rt(φ, φ) = t2 ˆR(ˆφ, ˆφ) + O(1).
598
+ Suppose the maximum eigenvalue of the curvature operator Rt is λt
599
+ max = Rt(φ, φ) for some gt-unit
600
+ length 2-form φ. Then one has at each point of M the following
601
+ λt
602
+ max = 1
603
+ t2 ˆR(t2 ˆφ, t2 ˆφ) + O(1) ≤ 1
604
+ t2 ˆλmax + O(1).
605
+ Here ˆλmax denotes the maximum eigenvalue of the curvature operator ˆR. In the last argument, we
606
+ used the fact that ||t2 ˆφ|| = ||ˆφ||t ≤ ||φ||t = 1.
607
+ To complete the proof just remark that
608
+ Scal(gt)
609
+ 2λtmax
610
+ ≥ Scal(ˆg) + O(t2)
611
+ 2ˆλmax + O(t2)
612
+ .
613
+ Where we used the fact that Scal(gt) =
614
+ Scal(ˆg)
615
+ t2
616
+ + O(1).
617
+ Consequently, at each point of M, if
618
+ k < Scal(ˆg)
619
+ 2ˆλmax then there exists t > 0 such k < Scal(gt)
620
+ 2λtmax . We conclude using the compactness of M.
621
+
622
+ 4. The Riem invariant and surgeries: Proof of Theorems B, B′ and Corollary B
623
+ 4.1. Proof of Theorem B. The following theorem is a reformulation of Theorem B.
624
+ Theorem 4.1. Let M be a compact n-manifold with 0 < Riem(M) ≤ (q−1)(q−2)
625
+ 2
626
+ for some integer
627
+ q such that 3 ≤ q ≤ n. If a compact manifold �
628
+ M is obtained from M by surgeries of codimensions
629
+ 10
630
+
631
+ ≥ q then Riem(�
632
+ M) ≥ Riem(M).
633
+ Proof. The theorem follows directly from Hoelzel’s general surgery theorem [7]. We use the same
634
+ notations as in [7]. Let CB(Rn) denote the vector space of algebraic curvature operators Λ2Rn →
635
+ Λ2Rn satisfying the first Bianchi identity and endowed with the canonical inner product.
636
+ For
637
+ 0 < t < n(n − 1)/2, let
638
+ CRiemt>0 := {R ∈ CB(Rn) : Riemt(R) > 0},
639
+ here Riemt(R) = Scal(R) − 2tR. The subset CRiemt>0 is clearly open, convex and it is an O(n)-
640
+ invariant cone. Furthermore, it is easy to check that Riemt(Sq−1 × Rn−q+1) > 0 if t < (q−1)(q−2)
641
+ 2
642
+ and q ≥ 3. This completes the proof.
643
+
644
+ We come now to the proof of Theorem B as follows.
645
+ Proof. We use the same notations as in the proof of the above theorem. From one side the condition
646
+ 0 < 2t < (q − 1)(q − 2) is equivalent to 2q > 3 + √1 + 8t and q ≥ 3. From the other side, the
647
+ condition p(p−1)
648
+ 2
649
+ < Riem(M) ≤ p(p+1)
650
+ 2
651
+ implies the existence of a Riemannian metric g such that
652
+ Riemt(g) > 0 for all t such that p(p − 1)/2 ≤ t < Riem(g).These values of t satisfy in particular
653
+ the following inequalities
654
+ p(p − 1) ≤ 2t < p(p + 1),
655
+ (2p − 1)2 ≤8t + 1 < (2p + 1)2,
656
+ p + 1 ≤3 + √1 + 8t
657
+ 2
658
+ < p + 2.
659
+ So clearly the desired condition is q ≥ p + 2.
660
+
661
+ The following corollary follows directly from the above Theorem
662
+ Corollary 4.2.
663
+ a) Let M1 and M2 be two compact manifolds of dimensions n ≥ 3 and such
664
+ that 0 < Riem(M1) ≤ (n−1)(n−2)
665
+ 2
666
+ and Riem(M2) ≥ Riem(M1). Then their connected sum
667
+ satisfies
668
+ Riem(M1#M2) ≥ Riem(M1).
669
+ b) Let M be a compact n-manifold with n ≥ 4 and 0 < Riem(M) ≤
670
+ (n−3)(n−2)
671
+ 2
672
+ .
673
+ If a
674
+ compact manifold �
675
+ M is obtained from M by surgeries of codimensions ≥ n − 1 then
676
+ Riem(�
677
+ M) ≥ Riem(M).
678
+ 4.2. Proof of Corollary B.
679
+ Proof. Corollary B results from the above corollary 4.2. The proof follows word by word the proof
680
+ of an analogous result for the Ein invariant in [8]. We will not reproduce it here.
681
+
682
+ 11
683
+
684
+ 4.3. Proof of Theorem B′.
685
+ Proof. We prove the first part as follows. Let M be a compact simply connected spin (resp. non-
686
+ spin) manifold of dimension ≥ 5. Gromov and Lawson [6] proved that if M is spin cobordant (resp.
687
+ oriented cobordant) to a compact manifold M1 then M can be obtained from M1 by surgeries of
688
+ codimensions ≥ 3.
689
+ From another side, according to a result by F¨uhr [5], a closed oriented manifold of dimension ≥ 5 is
690
+ always oriented cobordant to the total space M1 of CP2 bundle with structure group the isometry
691
+ group of the Fubiny-Study metric of CP2. Theorem A shows that Riem(M1) ≥ 2. It follows from
692
+ the surgery theorem B that Riem(M) ≥ 1. This completes the proof for the non-spin case.
693
+ If M is spin with Riem > 0 then it has a positive scalar curvature metric. A theorem of Stolz [17]
694
+ guarantees that M is spin cobordant to the total space M1 of an HP2 bundle with structure group
695
+ the isometry group of the Fubiny-Study metric of HP2. Theorem A shows that Riem(M1) ≥ 8
696
+ and then Riem(M) ≥ 1 by the surgery theorem B. This completes the proof of the first part.
697
+ Next we prove the second part of the Theorem. Let M be compact and 2-conncted with Riem > 0
698
+ and dimension ≥ 7. Then M has a canonical spin structure and has a metric with positive scalar
699
+ curvature. The above mentioned theorem of Stolz shows that M is spin cobordant to a manifold
700
+ M1 with Riem(M1) ≥ 8. On the other hand, a previous result of the author [11] asserts that M
701
+ can be obtained from M1 by surgeries of codimension ≥ 4. The surgery theorem B shows that
702
+ Riem(M) ≥ 3. This completes the proof of the Theorem.
703
+
704
+ 5. Vanishing theorems: Proof of Theorems C and C′
705
+ 5.1. Proof of Theorem C.
706
+ Proof. Let s = (n−1)(n−2)
707
+ 2
708
+ . The condition Riem(M) > s guarantees the existence of a Riemannian
709
+ metric g on M such that Riems(g) > 0. It follows from Proposition 2.1 that the Ricci curvature
710
+ of g is positive and therefore the Betti numbers b1 and bn−1 of M vanish. As a consequence, one
711
+ immediately has Riem(Sn−1 × S1) ≤ s. To prove equality, we recall that the standard product
712
+ metric has Riem equal to s. This proves the a) part of Theorem C. We prove part b) in a similar
713
+ way. From one side from corollary 4.2 we have Riem
714
+
715
+ #r(Sn−1 × S1)
716
+
717
+ ≥ s. From another side it
718
+ cannot be strictly higher than s because of the above positive Ricci curvature obstruction.
719
+
720
+ 5.2. Proof of Theorem C′. We prove the following more general version of Theorem C′.
721
+ Theorem 5.1. Let M be a compact connected manfold with dimension n ≥ 3 and let p be an
722
+ integer such that 2 ≤ p ≤ n − 2. We denote by bk(M) as usual the k-th betti number of M, then
723
+ one has
724
+ Riem(M) > n(n − 1)
725
+ 2
726
+ − p(n − p)
727
+ 2
728
+ =⇒ bk(M) = 0, for p ≤ k ≤ n − p.
729
+ 12
730
+
731
+ Proof. We shall use double forms formalism for the Weitzenb¨ock cuvature term [13]. The curvature
732
+ term in Weitzenb¨ock formula once applied to p-forms takes the form
733
+ Wp =
734
+ gp−1
735
+ (p − 1)!Ric − 2 gp−2
736
+ (p − 2)!R.
737
+ On the other hand we have
738
+ gp−2
739
+ (p − 2)!Riemt =
740
+ gp−2
741
+ (p − 2)!
742
+
743
+ Scalg2
744
+ 2 − 2tR
745
+
746
+ = p(p − 1)Scal
747
+ 2
748
+ gp
749
+ p! − 2t gp−2
750
+ (p − 2)!R.
751
+ Consequently, for t > 0 we get
752
+ tWp =
753
+ gp−2
754
+ (p − 2)!Riemt +
755
+ gp−1
756
+ (p − 1)!
757
+
758
+ tRic − (p − 1)Scal
759
+ 2
760
+ g
761
+
762
+ .
763
+ We will show that under the theorem hypothesis where t > n(n−1)
764
+ 2
765
+ − p(n−p)
766
+ 2
767
+ the second term in
768
+ the last sum is posiitve as well. This amounts to proving that the sum of the lowest p eigenvalues
769
+ of tRic − (p−1)Scal
770
+ 2
771
+ g is positive. Recall that the condition Riem(M) > t implies the existence of a
772
+ Riemannian metric on M with Riemt > 0. After taking the trace, one can see that (n − 1)Scal g −
773
+ 2tRic > 0. Taking the sum of (n − p) eigenvalues of the later, we see that
774
+ (n − 1)(n − p)Scal − 2t(Scal −
775
+
776
+ ı∈I
777
+ ρi) > 0,
778
+ where ρi denotes the eigenvalues of Ricci and I ⊂ {1, 2, ..., n} is any subset of indices of length p.
779
+ Therefore, we get
780
+ 2t
781
+
782
+ ı∈I
783
+ ρi − p(p − 1) > 2t − (n − 1)(n − p) − p(p − 1) > 0.
784
+ This completes the proof of the theorem.
785
+
786
+ Remark. Let t = (n−1)(n−2)
787
+ 2
788
+ + p. The condition Riem(M) > t implies the existence of a Rie-
789
+ mannian metric on M with Riemt > 0. Proposition 2.1 implies then that the Riemann curvature
790
+ tensor of g is (n(n−1)
791
+ 2
792
+ − t)-positive, that is (n − (p + 1))-positive. Since p ≤ n−2
793
+ 2
794
+ then p + 1 ≤ n/2
795
+ and therefore a vanishing theorem of Petersen-Wink [16] shows the vanishing of Betti numbers
796
+ bk(M) = 0 for 1 ≤ k ≤ p + 1 and n − p − 1 ≤ k ≤ n − 1.
797
+ 6. Miscellaneous results
798
+ 6.1. Positive Γ2(R) curvature. Let σ1(R) and σ2(R) be the first two elementary symmetric
799
+ functions in the eigenvalues of the Riemann curvature operator. If σ1(R) > 0 and σ2(R) > 0, we
800
+ shall write Γ2(R) > 0. Note that σ1(R) = Scal(R)
801
+ 2
802
+ and 8σ2(R) = Scal2(R) − 4||R||2. In particular,
803
+ Γ2(R) > 0 ⇐⇒ Scal(R) > 2||R||.
804
+ The following theorem shows in particular that the product S2 × T p has positive scalar curvature
805
+ but does not allow at the same time both Scal > 0 and σ2(R) > 0.
806
+ 13
807
+
808
+ Theorem 6.1. If a Riemannian manifold (M, g) has positive Γ2(R) curvature then Riem(M) > 1.
809
+ In particular, the product S2 × T p does not support any metric with positive Γ2(R) curvature (at
810
+ least for p ≤ 5).
811
+ Proof. We remark that the first Newton transformation of the curvature operator is t1(R) = Scal
812
+ 4 g2−
813
+ R = 1
814
+ 2(Riem1(g). It is classic that if σ1 and σ2 of an operator are positive then its first Newton
815
+ transformation is positive. Then Riem1(g) > 0, that is Riem(g) > 1. This cannot take place for
816
+ the products S2 × T p with p ≤ 5 by Theorem E. This completes the proof.
817
+
818
+ Remark.
819
+ • The author belives that Dirac operator techniques may help to prove that the
820
+ positivity of Scal − 2||R|| is not allowed on products of S2 × T q, for all q, these are some
821
+ how partially enlargeable manifolds.
822
+ • The previous theorem is still true for products of a compact surface with a torus T p again
823
+ by theorem E.
824
+ 6.2. The small Riem invariant. For a fixed Riemannian metric g on a compact n-manifold M
825
+ and for s < t < 0, the tensors Riemt(g) enjoy the following descent propoerty
826
+ Riems > 0 =⇒ Riemt > 0 =⇒ Scal > 0.
827
+ We therefore define the metric invariant
828
+ riem(g) := inf{t < 0 : Riemt(g) > 0}.
829
+ We set it equal to −∞ if the above set is unbounded below and equal to zero if that set is empty.
830
+ It is not difficult to see that riem(g) = −∞ if and only if the Riemann tensor R is nonnegative and
831
+ with positive scalar curvature.
832
+ We define the smooth invariant riem(M) := inf{riem(g): g ∈ M}, where M denotes the space
833
+ of all Riemannian metrics on M. It is remarkable that this invariant remains unchanged after
834
+ surgeries, precisely we have
835
+ Theorem 6.2. Let M be a compact manifold of dimension n ≥ 4. If a compact manifold �
836
+ M is
837
+ obtained from M by surgeries of codimensions ≥ 3 but not equal to n−1 then riem(�
838
+ M) = riem(M).
839
+ Proof. Using Hoelzel’s surgery theorem [7], it is easy, as in the proof of Theorem B, to see that
840
+ riem(�
841
+ M) ≥ riem(M) as far as the codimension of the surgery is ≥ 3. To prove equality we apply
842
+ a reversed surgery as in [15]. In fact one can recover the initial manifold M from the new manifold
843
+
844
+ M by applying a surgery of codimension n − q + 1. Consequently one gets riem(M) ≥ riem(�
845
+ M)
846
+ if the new codimension n − q + 1 ≥ 3. Consequently, the riem is unchanged if 3 ≤ q ≤ n − 2. The
847
+ case of q = n can be ruled out, as in this cas �
848
+ M is diffeomorphic to the connected sum of M with
849
+ the product S1 × Sn−1. One can then recover M by killing the circle by the mean of a surgery of
850
+ codimension only n − 1 ≥ 3. This completes the proof.
851
+
852
+ 14
853
+
854
+ One consequence of this theorem is that simply connected compact PSC manifolds of dimen-
855
+ sions ≥ 5 have their riem equal to −∞.
856
+ 6.3. The Riem invariant of a conformal class. Let [g] denotes the conformal class of the metric
857
+ g. We define the Riem of the conformal class [g] as
858
+ Riem([g]) = sup{Riem(g) : g ∈ [g]}.
859
+ As above, we set it equal to zero if the conformal class does not contain a psc metric. We prove
860
+ the following vanishing theorem and a consequence of it which determines the conformal Riem for
861
+ some conformally flat classes.
862
+ Theorem 6.3. Let (M, g) be a compact oriented conformally flat n-manifold and p an integer such
863
+ that 0 < p ≤ n/2. Then one has
864
+ Riem([g]) > (n − 1)(n − 2p)
865
+ 2
866
+ =⇒ bk(M) = 0, for p ≤ k ≤ n − p.
867
+ In particular, for any n > 2p ≥ 2, let g0 denotes the product metric on the product of two space
868
+ forms of opposite signs Sn−p × Hp, then one has
869
+ Riem([g0]) = Riem(g0) = (n − 1)(n − 2p)
870
+ 2
871
+ .
872
+ Proof. In what follows, products of tensors are Kulkarni-Nomizu products. Recall tor a conformally
873
+ flat metric g one has R = gA, where A is the Schouten tensor. Consequently, the Riemt tensor is
874
+ determined by the Ricci tensor as follows
875
+ (n − 2)Riemt(g) =
876
+ �(n − 1)(n − 2) + 2t
877
+ n − 1
878
+
879
+ Scalg2
880
+ 2 − 2tg Ric
881
+ =
882
+ �(n − 1)(n − 2) + 2t
883
+ 2(n − 1)
884
+
885
+ g EinT .
886
+ (11)
887
+ Here, EinT = Scalg − T Ric and T =
888
+ 4t(n−1)
889
+ (n−1)(n−2)+2t. At this stage we use a vanishing theorem for
890
+ the Ein invariant [9], which gurantees the vanishing of the bk(M) as in the Theorem that we are
891
+ proving under the condition that T > (n−1)(n−2p)
892
+ n−p−1
893
+ . It is straighforward to see that this last condition
894
+ is equivalent to t > (n−1)(n−2p)
895
+ 2
896
+ . This proves the first part. For the second part, note that from one
897
+ hand the p-th Betti number of the above product is not zero therefore Riem([g0]) ≤ (n−1)(n−2p)
898
+ 2
899
+ . On
900
+ the other hand the product metric satisfies Riem(g0) = (n−1)(n−2p)
901
+ 2
902
+ . This completes the proof.
903
+
904
+ 6.4. Minimal vs. Maximal PSC compact manifolds: open questions. The smooth Riem
905
+ invariant defines a pre-order on the set of all compact PSC manifolds with a fixed dimenion n. The
906
+ maximal manifolds are by B¨ohm-Wilking theorem (see Theorem D) the manifolds with constant
907
+ positive sectional curvature (space forms). In the other extreme, one may ask the following ques-
908
+ tions: What are the PSC compact n-manifolds with minimal Riem ?.
909
+ What are the PSC compact
910
+ simply connected (resp. 2-connected) manifolds with minimal Riem ?.
911
+ For instance, these are more specefic questions:
912
+ 15
913
+
914
+ �� Are there compact manifolds with 0 < Riem < 1? Is S2×T n−2 minimal among all compact
915
+ PSC n-manifolds?
916
+ • Are there compact simply connected manifolds with 0 < Riem < 2?
917
+ The problem is very well understood in dimension 3. In fact, it results from the classification of
918
+ compact PSC 3-manifolds that the minimal PSC manifolds are those with Riem = 1 and they are
919
+ either S2 × S1 or connected sums of copies of the later with spherical space forms.
920
+ It would be interesting as well to identify PSC manifolds with fixed Riem = k, for some fixed
921
+ intermediate k ∈ (0, n(n − 1)/2).
922
+ 6.4.1. Best PSC Riemannian metrics on a given PSC manifold. Let M be a PSC compact n-
923
+ manifold. We shall say that a Riemannian metric g on M is a best PSC metric if Riem(g) =
924
+ Riem(M). We have seen in this paper several examples where the standard metrics are the best
925
+ ones. The following questions seems to the author natural and legitimate to ask:
926
+ • Which compact PSC manifolds have best PSC Riemannian metrics?
927
+ • Is there any variational characterization of these best metrics?
928
+ References
929
+ [1] Besse A. L., Einstein Manifolds, Springer, Berlin-New York (1987).
930
+ [2] J.-P. Bourguignon, H. Karcher, Curvature operators: pinching estimates and geometric examples, Ann. Sci. E.N.S.
931
+ Paris, 11 (1978), 71–92.
932
+ [3] B¨ohm C., Wilking B., Manifolds with positive curvature operators are space forms, Annals of Mathematics, 167,
933
+ 1079-1097, (2008).
934
+ [4] Brendle S., Hirsch S., Johne F., A generalization of Geroch’s conjecture, arXiv:2207.08617 [math.DG], (2022).
935
+ [5] Sven F¨uhring S., Bordism and projective space bundles, arXiv:2006.15394 [math.GT], (2020).
936
+ [6] Gromov M. and Lawson H. B., The classification of simply connected manifolds of positive scalar curvature, Ann.
937
+ of Math. 111, (1980), 423-434.
938
+ [7] Hoelzel S., Surgery stable curvature conditions, Math. Ann. 365, 13-47 (2016).
939
+ [8] Labbi M. L., On modified Einstein tensors and two smooth invariants of compact manifolds, Transactions of the
940
+ American Mathematical Society, to appear, (2023).
941
+ [9] Labbi M. L., On the conformal Ein invariants, arXiv:2009.11601v2 [math.DG] (2020)
942
+ [10] Labbi M. L., Double forms, curvature structures and the (p, q)-curvatures. Transactions of the American Math-
943
+ ematical Society 357 (10), 3971-3992, (2005).
944
+ [11] Labbi M.L., Stability of the p-curvature positivity under surgeries and manifolds with positive Einstein tensor,
945
+ Annals of Global analysis and geometry, 15: 299-312, 1997.
946
+ [12] Labbi M. L., Vari´et´es riemanniennes `a p-courbure positive, PhD thesis, Montpellier University (1995).
947
+ [13] Labbi M., On Weitzenbock curvature operators, Mathematische Nachrichten 288 (4), 402-411 (2015).
948
+ [14] Ni L. and Wu B., Complete manifolds with nonnegative curvature operator, Proceedings of the American Math-
949
+ ematical Society, 135, 9, 3021-3028, (2007).
950
+ [15] Petean J., Computations of the Yamabe invariant, Mathematical Research Letters 5, 703–709 (1998).
951
+ [16] Petersen P., Wink M., New curvature conditions for the Bochner Technique, Invent. math. 224, 33–54, (2021).
952
+ [17] Stolz S., Simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 136 (1992), no. 3, 511-540.
953
+ 16
954
+
955
+ Department of Mathematics, College of Science, University of Bahrain, 32038, Bahrain.
956
+ Email address: [email protected]
957
+ 17
958
+
0tE4T4oBgHgl3EQfzA1I/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NFAT4oBgHgl3EQfjx2F/content/tmp_files/2301.08607v1.pdf.txt ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pion condensation at lower than physical quark masses
2
+ Bastian B. Brandt,𝑎 Volodymyr Chelnokov,𝑏,∗ Francesca Cuteri𝑏 and Gergely
3
+ Endrődi𝑎
4
+ 𝑎Institute for Theoretical Physics, University of Bielefeld,
5
+ D-33615 Bielefeld, Germany
6
+ 𝑏Institut für Theoretische Physik, Goethe-Universität Frankfurt
7
+ Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
8
9
10
+ In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes
11
+ place, separated from the normal phase by a phase transition. From previous studies the location
12
+ of the BEC line at the physical point is known. In the chiral limit the condensation happens
13
+ already at infinitesimally small isospin chemical potential for zero temperature according to chiral
14
+ perturbation theory. The thermal chiral transition at zero density might then be affected, depending
15
+ on the shape of the BEC boundary, by its proximity. As a first step towards the chiral limit, we
16
+ perform simulations of 2+1 flavors QCD at half the physical quark masses. The position of the
17
+ BEC transition is then extracted and compared with the results at physical masses.
18
+ The 39th International Symposium on Lattice Field Theory (Lattice2022),
19
+ 8-13 August, 2022
20
+ Bonn, Germany
21
+ ∗Speaker
22
+ © Copyright owned by the author(s) under the terms of the Creative Commons
23
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
24
+ https://pos.sissa.it/
25
+ arXiv:2301.08607v1 [hep-lat] 20 Jan 2023
26
+
27
+ Pion condensation at lower than physical quark masses
28
+ Volodymyr Chelnokov
29
+ 1.
30
+ Introduction
31
+ The phase structure of QCD continues to be an object of great interest for both experimental
32
+ and theoretical studies. There is currently a wealth of numerical simulation results at zero quark
33
+ density, from which we know, in particular, that the chiral symmetry restoration at physical quark
34
+ masses is a continuous crossover [1]. Studying the theory in the chiral limit is complicated by the
35
+ appearance of zero modes of the Dirac operator, and the need to go to the continuum limit to restore
36
+ chiral symmetry with Wilson or staggered fermions, or to employ computationally much costlier
37
+ chiral symmetric fermion discretizations. Nevertheless, there is a recent progress in this region
38
+ which, in particular, suggests that in the limit 𝑚ud = 0 the chiral transition is of second order (for
39
+ 𝑁 𝑓 = 2, 3) and becomes a crossover at arbitrarily small nonzero quark masses [2].
40
+ Extending the QCD phase diagram to nonzero densities is confounded by the sign problem
41
+ – the Boltzmann weight of the lattice configuration becomes complex at nonzero 𝜇𝐵, preventing
42
+ straightforward use of importance sampling. Different ways to overcome this problem were proposed
43
+ (see [3, 4] for a review), but still the problem is far from being solved.
44
+ Another possible extension of the QCD phase diagram is to the region of nonzero isospin
45
+ density at 𝜇𝐼 ≠ 0, potentially relevant for early Universe cosmology [5], for instance. At pure
46
+ isospin chemical potential 𝜇𝐼 ≠ 0, 𝜇𝐵 = 0, the theory is sign problem-free and the standard Monte-
47
+ Carlo simulations can be performed [6]. The recent study [7] shows that the deconfinement transition
48
+ remains a crossover for 𝜇𝐼 ≤ 𝑚 𝜋/2, until it intersects with the second order pion condensation line,
49
+ which is found to be approximately vertical at small enough 𝑇 (see Figure 1). The 𝜇𝐼-𝑇 plane can
50
+ also be used to check the methods targeted at studying QCD at finite 𝜇𝐵 – since we can compare
51
+ Figure 1: The QCD phase diagram in 𝑇-𝜇𝐼 plane at physical quark masses, obtained in [7].
52
+ 2
53
+
54
+ Pion condensation at lower than physical quark masses
55
+ Volodymyr Chelnokov
56
+ their results with the results of direct simulation, that is possible here [8]. Additionally, the ability
57
+ to numerically sample the theory in the 𝜇𝐼-𝑇 plane can be exploited to perform the reweighting to
58
+ nonzero 𝜇𝐵 [9].
59
+ The phase diagram shown in Figure 1 has an interesting implication concerning the chiral
60
+ phase diagram. At zero temperature, the pion condensation happens at 𝜇𝐼 = 𝑚 𝜋/2. When the
61
+ light quark mass goes to zero, the pion mass also goes to zero as 𝑚 𝜋 ∼ √𝑚ud according to chiral
62
+ perturbation theory. Thus at least at zero temperature in the chiral limit pion condensation happens
63
+ already at arbitrarily small isospin chemical potential. From Figure 1 we see that at physical mass
64
+ the isospin transition line remains vertical up until it meets the chiral crossover line. If that holds
65
+ also at 𝑚ud = 0, then in the chiral limit the pion condensation line would lie on the 𝜇𝐼 = 0 axis up
66
+ to 𝑇 = 𝑇𝑐 – i.e. up to the chiral phase transition temperature. In this scenario the pion condensate
67
+ in the chiral limit at 𝑇 = 𝑇𝑐 exists at arbitrarily small isospin chemical potential, affecting the chiral
68
+ phase transition at zero chemical potential (Figure 2, left). Alternatively, the phase transition line
69
+ can start bending towards larger 𝜇𝐼 as the quark masses are reduced, resulting in a different phase
70
+ structure (Figure 2, right). Previous studies using the Nambu-Jona-Lasinio model [10], as well as
71
+ the functional renormalization group [11], support the first phase picture. To verify this, direct
72
+ Monte Carlo QCD simulations are necessary.
73
+ Figure 2: Two possibilities for the phase diagram in 𝑇-𝜇𝐼 plane at the chiral limit.
74
+ As a first step, in this work we perform the simulation of QCD at nonzero isospin density for
75
+ 𝑚ud = 𝑚ud,phys/2, comparing the position of the pion condensation transition with the results at
76
+ physical masses at a series of temperatures.
77
+ 2.
78
+ Simulation setup
79
+ We study 2 + 1-flavour QCD using staggered fermions on a 243 × 8 lattice. The setup is the
80
+ same as the one used in [7], with the light quark masses changed to half their physical value. The
81
+ partition function of the theory has the form
82
+ Z =
83
+
84
+ D𝑈𝜇 𝑒−𝛽𝑆𝐺 (det Mud)1/4 (det Ms)1/4 ,
85
+ (1)
86
+ 3
87
+
88
+ deconfinement
89
+ T
90
+ pion condensation
91
+ μIdeconfinement
92
+ pioncondensation
93
+ μIPion condensation at lower than physical quark masses
94
+ Volodymyr Chelnokov
95
+ where 𝑆𝐺 is the tree-level Symanzik improved gauge action, Mud and Ms are, correspondingly,
96
+ light and strange quark matrices
97
+ Mud =
98
+
99
+ /𝐷(𝜇𝐼) + 𝑚ud
100
+ 𝜆𝜂5
101
+ −𝜆𝜂5
102
+ /𝐷(−𝜇𝐼) + 𝑚ud
103
+
104
+ ,
105
+ M𝑠 = /𝐷(0) + 𝑚𝑠 .
106
+ (2)
107
+ Here 𝜆 is a pion source term which explicitly breaks the 𝑈𝜏3(1) symmetry of the action, which both
108
+ allows us to see the pion condensate on the finite volume lattice, and, at the same time, improves the
109
+ condition number of the light quark matrix. To get physically meaningful results, the limit 𝜆 → 0
110
+ must be taken.
111
+ The Boltzmann weight defined by (1) is positive, which is obvious for the gauge action and
112
+ the strange quark determinant. The positiveness of the light quark determinant follows from the
113
+ generalized 𝜂5-hermiticity relation that the Dirac operator satisfies,
114
+ 𝜂5 /𝐷(−𝜇𝐼)𝜂5 = /𝐷(𝜇𝐼)† .
115
+ (3)
116
+ Now, taking the matrix 𝐵 = diag(1, 𝜂5) in flavour space, that has a unit determinant, we get
117
+ 𝐵Mud𝐵 =
118
+
119
+ /𝐷(𝜇𝐼) + 𝑚ud
120
+ 𝜆
121
+ −𝜆
122
+ � /𝐷(𝜇𝐼) + 𝑚ud
123
+ �†
124
+
125
+ ,
126
+ det Mud = det (𝐵Mud𝐵) = det
127
+ ��� /𝐷(𝜇𝐼) + 𝑚ud
128
+ ��2 + 𝜆2�
129
+ > 0 .
130
+ (4)
131
+ To locate the pion condensation onset, we measure the pion condensate
132
+ Σ𝜋 = 𝑚𝑢𝑑
133
+ 𝑚2𝜋 𝑓 2𝜋
134
+
135
+ 𝜋±�
136
+ ,
137
+ (5)
138
+
139
+ 𝜋±�
140
+ = 𝑇
141
+ 𝑉
142
+ 𝜕 log Z
143
+ 𝜕𝜆
144
+ = 𝑇
145
+ 2𝑉
146
+
147
+ Tr
148
+ 𝜆
149
+ | /𝐷(𝜇𝐼) + 𝑚ud|2 + 𝜆2
150
+
151
+ ,
152
+ (6)
153
+ where the trace can be calculated using noisy estimators. The multiplicative renormalization term
154
+ in (5) depends on the light quark mass 𝑚𝑢𝑑, the pion mass 𝑚 𝜋 that corresponds to 𝑚𝑢𝑑, and the pion
155
+ decay constant 𝑓𝜋. The chiral perturbation theory predicts that 𝑚 𝜋 ∼ √𝑚𝑢𝑑 when the light quark
156
+ mass goes to zero, so assuming this relation holds for physical light quark mass we can approximate
157
+ the renormalization (5) as
158
+ Σ𝜋 = 𝑚𝑢𝑑,phys
159
+ 𝑚2
160
+ 𝜋,phys 𝑓 2𝜋
161
+
162
+ 𝜋±�
163
+ ,
164
+ (7)
165
+ where 𝑚𝑢𝑑,phys and 𝑚 𝜋,phys are physical light quark and pion masses.
166
+ The pion condensate estimated using Eq. (5) at 𝑇 = 114 MeV, for three different values of 𝜆
167
+ can be seen in Figure 3. We see that even for the smallest value of 𝜆 we are still far from the limiting
168
+ regime 𝜆 → 0. Unfortunately, the simulations at smaller 𝜆 values become prohibitively expensive
169
+ due to very large condition numbers of the light quark matrix, that causes a sharp increase of
170
+ iterations needed for matrix inversion. At even smaller 𝜆 values this results in a loss of convergence
171
+ of the conjugate gradient method.
172
+ 4
173
+
174
+ Pion condensation at lower than physical quark masses
175
+ Volodymyr Chelnokov
176
+ 0.2
177
+ 0.4
178
+ 0.6
179
+ 0.8
180
+ 1.0
181
+ I/m
182
+ 0.0
183
+ 0.2
184
+ 0.4
185
+ 0.6
186
+ 0.8
187
+ 1.0
188
+ /mud = 1.01
189
+ /mud = 0.73
190
+ /mud = 0.45
191
+ /mud = 1.01, impr.
192
+ /mud = 0.73, impr.
193
+ /mud = 0.45, impr.
194
+ Figure 3: Comparison of the improved and the unimproved pion condensate at 𝑇 = 114 MeV for three
195
+ different values of 𝜆.
196
+ 3.
197
+ Improved pion condensate
198
+ We can improve the convergence to the 𝜆 → 0 limit by using the Banks-Casher type relation
199
+ for the pion condensate (6), that was obtained in [7]
200
+
201
+ 𝜋±�
202
+ = 𝑇
203
+ 2𝑉
204
+
205
+ Tr
206
+ 𝜆
207
+ | /𝐷(𝜇𝐼) + 𝑚ud|2 + 𝜆2
208
+
209
+ = 𝑇
210
+ 2𝑉
211
+ �∑︁
212
+ 𝑛
213
+ 𝜆
214
+ 𝜉2𝑛 + 𝜆2
215
+
216
+ ,
217
+ (8)
218
+ where 𝜉𝑛 is the 𝑛-th singular value of the Dirac operator:
219
+ � /𝐷(𝜇𝐼) + 𝑚ud
220
+ �† � /𝐷(𝜇𝐼) + 𝑚ud
221
+ � 𝜙𝑛 = 𝜉2
222
+ 𝑛𝜙𝑛 .
223
+ (9)
224
+ In the infinite volume limit, the summation can be replaced by integration
225
+
226
+ 𝜋±�
227
+ = 𝜆
228
+ 2
229
+ �∫
230
+ d𝜉 𝜌(𝜉)(𝜉2 + 𝜆2)−1
231
+
232
+ ,
233
+ (10)
234
+ and taking the limit 𝜆 → 0 we get
235
+
236
+ 𝜋±�
237
+ = 𝜋
238
+ 4 ⟨𝜌(0)⟩ .
239
+ (11)
240
+ Thus, the limit 𝜆 → 0 of the pion condensate is proportional to the singular value density at zero.
241
+ Due to the finite size of the lattice the singular values form a discrete set, but we can approximate
242
+ the density by calculating the fraction of the singular values lying in the interval [0, 𝜉], and then
243
+ extrapolating to 𝜉 = 0
244
+ 𝜌(0) = 𝑇
245
+ 𝑉 lim
246
+ 𝜉→0
247
+ 𝑛(𝜉)
248
+ 𝜉
249
+ ,
250
+ (12)
251
+ The behavior of such “averaged densities” for three regimes – finite spectral gap at 𝜇𝐼/𝑚 𝜋 < 0.5,
252
+ 𝜌(0) ≈ 0 at 𝜇𝐼/𝑚 𝜋 ≈ 0.5, and 𝜌(0) > 0 at 𝜇𝐼/𝑚 𝜋 > 0.5, is shown on Figure 4.
253
+ 5
254
+
255
+ Pion condensation at lower than physical quark masses
256
+ Volodymyr Chelnokov
257
+ 0.00
258
+ 0.02
259
+ 0.04
260
+ 0.06
261
+ 0.08
262
+ 0.10
263
+ 0.0
264
+ 0.5
265
+ 1.0
266
+ T
267
+ 4V
268
+ n( )
269
+ /m = 0.38
270
+ 0.00
271
+ 0.02
272
+ 0.04
273
+ 0.06
274
+ 0.08
275
+ 0.10
276
+ 0.0
277
+ 0.5
278
+ 1.0
279
+ T
280
+ 4V
281
+ n( )
282
+ /m = 0.77
283
+ 0.00
284
+ 0.02
285
+ 0.04
286
+ 0.06
287
+ 0.08
288
+ 0.10
289
+ 0.0
290
+ 0.5
291
+ 1.0
292
+ T
293
+ 4V
294
+ n( )
295
+ /m = 0.57
296
+ Figure 4: The integrated spectral density dependence on the integration region 𝜉 for 𝜇𝐼 /𝑚 𝜋 < 0.5 (left),
297
+ 𝜇𝐼 /𝑚 𝜋 > 0.5 (right), and 𝜇𝐼 /𝑚 𝜋 ≈ 0.5 (bottom) (𝑇 = 132 MeV).
298
+ To perform the extrapolation to 𝜉 = 0 we perform a polynomial fit of the integrated spectral
299
+ density in a given region, obtaining a value of ⟨𝜌(0)⟩ and then take a weighted median of all the
300
+ fit results with the weight exp(−𝜒2
301
+ 𝑟), where 𝜒2
302
+ 𝑟 is the (correlated) chi-squared statistic of the fit per
303
+ degree of freedom. The error estimate of ⟨𝜌(0)⟩ is then taken as a value Δ𝜌, for which the interval
304
+ [⟨𝜌(0)⟩ − Δ𝜌, ⟨𝜌(0)⟩ + Δ𝜌] contains 0.68 of the total weight of the estimates.
305
+ We can further improve the convergence of the improved pion condensate observable to the
306
+ limit 𝜆 → 0 by approximating ⟨𝜌(0)⟩0 (the expectation value of 𝜌(0) with respect to the 𝜆 = 0
307
+ partition function) using the leading order reweighting, expanding the Boltzmann weight of a given
308
+ configuration in a Taylor series in 𝜆,
309
+ ⟨𝜌(0)⟩0 = ⟨𝜌(0)𝑊(𝜆)⟩𝜆
310
+ ⟨𝑊(𝜆)⟩𝜆
311
+ ,
312
+ 𝑊(𝜆) =
313
+ � det M𝑢𝑑,0
314
+ det M𝑢𝑑,𝜆
315
+ �1/4
316
+ ≈ exp
317
+
318
+ −𝜆𝑉
319
+ 2𝑇 𝜋±
320
+
321
+ .
322
+ (13)
323
+ In Figure 5 we show the values of improved and unimproved pion condensate at the point close
324
+ to 𝜇/𝑚 𝜋 = 0.5 together with an extrapolation of the improved condensate to 𝜆 = 0. We can see that
325
+ the improved pion condensate value is much smaller and less sensitive to the 𝜆 than the unimproved
326
+ condensate. This picture can be compared with the extrapolaton done in Figure 6 (top) in [7],
327
+ which has a similar behavior for large 𝜆, but also provides enough data points at small 𝜆 to actually
328
+ perform the extrapolation of both the unimproved and improved pion condensates and confirm that
329
+ 6
330
+
331
+ Pion condensation at lower than physical quark masses
332
+ Volodymyr Chelnokov
333
+ 0.00
334
+ 0.25
335
+ 0.50
336
+ 0.75
337
+ 1.00
338
+ 1.25
339
+ /mud
340
+ 0.2
341
+ 0.4
342
+ 0.6
343
+ 0.8
344
+ improved
345
+ unimproved
346
+ Figure 5: Extrapolation of the improved and unimproved pion condensate to 𝜆 = 0 at 𝑇 = 114 MeV,
347
+ 𝜇/𝑚 𝜋 = 0.54.
348
+ they reach the same value at 𝜆 = 0. Since in that study the linear extrapolation of the improved pion
349
+ condensate worked well for 𝜆/𝑚𝑢𝑑 ≤ 1.3, we rely on it also in this study.
350
+ 4.
351
+ Results and summary
352
+ In Figure 6 we show our preliminary results on the value of the pion condensate and the location
353
+ of the pion condensation line at four different values of the temperature. The interpolation was done
354
+ using a cubic polynomial for the temperatures where we have enough points (𝑇 = 114 MeV, 132
355
+ MeV), and a quadratic polynomial otherwise. Location of the transition point was determined as a
356
+ point where the interpolation line intersects zero. In all cases all points giving a positive value of the
357
+ pion condensate were included in the fit. The error estimates for the fit line and the transition point
358
+ were obtained by taking the standard deviation of the fit result for 100 simulated sets of condensate
359
+ values normally distributed around the “true” values with the known standard deviation.
360
+ The results show that the vertical direction of the pion condensation line is preserved when
361
+ going to smaller light quark masses, preferring the scenario shown in the left panel of the Figure 2:
362
+ the location of the condensation line is compatible with the zero temperature location 𝜇 = 𝑚 𝜋/2.
363
+ As mentioned earlier, these results are based on the linear extrapolation to 𝜆 = 0 from the data
364
+ measured at nonzero values of the pion source parameter. To be able to check the validity of this
365
+ extrapolation, we are currently performing further simulations at smaller values of 𝜆. Additionally,
366
+ a 𝑇 scan at several values of 𝜇𝐼 > 𝑚 𝜋/2 is being performed in order to locate the “horizontal” part
367
+ of the pion condensation line as well.
368
+ 7
369
+
370
+ Pion condensation at lower than physical quark masses
371
+ Volodymyr Chelnokov
372
+ 0.2
373
+ 0.4
374
+ 0.6
375
+ 0.8
376
+ /m
377
+ 0.0
378
+ 0.2
379
+ 0.4
380
+ 0.6
381
+ 0.8
382
+ 1.0
383
+ T=114.37 MeV
384
+ T=123.04 MeV
385
+ T=132.24 MeV
386
+ T=141.96 MeV
387
+ 0.3
388
+ 0.4
389
+ 0.5
390
+ 0.6
391
+ 0.7
392
+ /m
393
+ 120
394
+ 130
395
+ 140
396
+ T
397
+ Figure 6: The value of the improved pion condensate (left) and the location of the pion condensation point
398
+ (right) for four different values of temperature, obtained from the 243×8 lattice (no continuum extrapolation).
399
+ Acknowledgments
400
+ This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
401
+ Foundation) – project number 315477589 – TRR 211. The authors acknowledge the use of the
402
+ Goethe-HLR cluster and thank the computing staff for their support.
403
+ References
404
+ [1] Y. Aoki, G. Endrődi, Z. Fodor, S. Katz, K. Szabo, The Order of the quantum chromodynam-
405
+ ics transition predicted by the standard model of particle physics, Nature 443 (2006) 675
406
+ [arXiv:hep-lat/0611014 ]
407
+ [2] F. Cuteri, O. Philipsen, A. Sciarra, On the order of the QCD chiral phase transition for different
408
+ numbers of quark flavours, JHEP 11 (2021) 141 [arXiv:2107.12739]
409
+ [3] P.
410
+ de
411
+ Forcrand,
412
+ Simulating
413
+ QCD
414
+ at
415
+ finite
416
+ density,
417
+ PoS
418
+ LAT2009
419
+ (2009)
420
+ 010
421
+ [arXiv:1005.0539]
422
+ [4] K. Nagata, Finite-density lattice QCD and sign problem: Current status and open problems,
423
+ Prog.Part.Nucl.Phys. 127 (2022) 103991 [arXiv:2108.12423]
424
+ [5] V. Vovchenko, B. B. Brandt, F. Cuteri, G. Endrődi, F. Hajkarim and J. Schaffner-Bielich, Pion
425
+ Condensation in the Early Universe at Nonvanishing Lepton Flavor Asymmetry and Its Grav-
426
+ itational Wave Signatures, Phys. Rev. Lett. 126 (2021) no.1, 012701 [arXiv:2009.02309].
427
+ [6] D. Son, M. Stephanov, QCD at finite isospin density, Phys.Rev.Lett. 86 (2001) 592
428
+ [arXiv:hep-ph/0005225]
429
+ [7] B. Brandt, G. Endrődi, S. Schmalzbauer, QCD phase diagram for nonzero isospin-asymmetry,
430
+ Phys.Rev.D 97 (2018) 5, 054514 [arXiv:1712.08190]
431
+ [8] B. Brandt, G. Endrődi, Reliability of Taylor expansions in QCD, Phys.Rev.D 99 (2019) 5,
432
+ 014518 [arXiv:1810.11045]
433
+ 8
434
+
435
+ Pion condensation at lower than physical quark masses
436
+ Volodymyr Chelnokov
437
+ [9] B. Brandt, F. Cuteri, G. Endrődi, S. Schmalzbauer, Exploring the QCD phase dia-
438
+ gram via reweighting from isospin chemical potential, PoS LATTICE2019 (2019) 189
439
+ [arXiv:1911.12197]
440
+ [10] L. He, M. Jin, P. Zhuang, Pion Superfluidity and Meson Properties at Finite Isospin Density,
441
+ Phys.Rev.D 71 (2005) 1160001 [arXiv:hep-ph/0503272]
442
+ [11] E. Svanes, J. Andersen, Functional renormalization group at finite density and Bose conden-
443
+ sation, Nucl.Phys.A 857 (2011) 16 [arXiv:1009.0430]
444
+ 9
445
+
1NFAT4oBgHgl3EQfjx2F/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf,len=245
2
+ page_content='Pion condensation at lower than physical quark masses Bastian B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
3
+ page_content=' Brandt,𝑎 Volodymyr Chelnokov,𝑏,∗ Francesca Cuteri𝑏 and Gergely Endrődi𝑎 𝑎Institute for Theoretical Physics, University of Bielefeld, D-33615 Bielefeld, Germany 𝑏Institut für Theoretische Physik, Goethe-Universität Frankfurt Max-von-Laue-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
4
+ page_content=' 1, 60438 Frankfurt am Main, Germany E-mail: brandt@physik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
5
+ page_content='uni-bielefeld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
6
+ page_content='de, chelnokov@itp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
7
+ page_content='uni-frankfurt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
8
+ page_content='de, cuteri@itp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
9
+ page_content='uni-frankfurt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
10
+ page_content='de, endrodi@physik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
11
+ page_content='uni-bielefeld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
12
+ page_content='de In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
13
+ page_content=' From previous studies the location of the BEC line at the physical point is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
14
+ page_content=' In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
15
+ page_content=' The thermal chiral transition at zero density might then be affected, depending on the shape of the BEC boundary, by its proximity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
16
+ page_content=' As a first step towards the chiral limit, we perform simulations of 2+1 flavors QCD at half the physical quark masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
17
+ page_content=' The position of the BEC transition is then extracted and compared with the results at physical masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
18
+ page_content=' The 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022 Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
19
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
20
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
21
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
22
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
23
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
24
+ page_content='08607v1 [hep-lat] 20 Jan 2023 Pion condensation at lower than physical quark masses Volodymyr Chelnokov 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
25
+ page_content=' Introduction The phase structure of QCD continues to be an object of great interest for both experimental and theoretical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
26
+ page_content=' There is currently a wealth of numerical simulation results at zero quark density, from which we know, in particular, that the chiral symmetry restoration at physical quark masses is a continuous crossover [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
27
+ page_content=' Studying the theory in the chiral limit is complicated by the appearance of zero modes of the Dirac operator, and the need to go to the continuum limit to restore chiral symmetry with Wilson or staggered fermions, or to employ computationally much costlier chiral symmetric fermion discretizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
28
+ page_content=' Nevertheless, there is a recent progress in this region which, in particular, suggests that in the limit 𝑚ud = 0 the chiral transition is of second order (for 𝑁 𝑓 = 2, 3) and becomes a crossover at arbitrarily small nonzero quark masses [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
29
+ page_content=' Extending the QCD phase diagram to nonzero densities is confounded by the sign problem – the Boltzmann weight of the lattice configuration becomes complex at nonzero 𝜇𝐵, preventing straightforward use of importance sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
30
+ page_content=' Different ways to overcome this problem were proposed (see [3, 4] for a review), but still the problem is far from being solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
31
+ page_content=' Another possible extension of the QCD phase diagram is to the region of nonzero isospin density at 𝜇𝐼 ≠ 0, potentially relevant for early Universe cosmology [5], for instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
32
+ page_content=' At pure isospin chemical potential 𝜇𝐼 ≠ 0, 𝜇𝐵 = 0, the theory is sign problem-free and the standard Monte- Carlo simulations can be performed [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
33
+ page_content=' The recent study [7] shows that the deconfinement transition remains a crossover for 𝜇𝐼 ≤ 𝑚 𝜋/2, until it intersects with the second order pion condensation line, which is found to be approximately vertical at small enough 𝑇 (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
34
+ page_content=' The 𝜇𝐼-𝑇 plane can also be used to check the methods targeted at studying QCD at finite 𝜇𝐵 – since we can compare Figure 1: The QCD phase diagram in 𝑇-𝜇𝐼 plane at physical quark masses, obtained in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
35
+ page_content=' 2 Pion condensation at lower than physical quark masses Volodymyr Chelnokov their results with the results of direct simulation, that is possible here [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
36
+ page_content=' Additionally, the ability to numerically sample the theory in the 𝜇𝐼-𝑇 plane can be exploited to perform the reweighting to nonzero 𝜇𝐵 [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
37
+ page_content=' The phase diagram shown in Figure 1 has an interesting implication concerning the chiral phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
38
+ page_content=' At zero temperature, the pion condensation happens at 𝜇𝐼 = 𝑚 𝜋/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
39
+ page_content=' When the light quark mass goes to zero, the pion mass also goes to zero as 𝑚 𝜋 ∼ √𝑚ud according to chiral perturbation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
40
+ page_content=' Thus at least at zero temperature in the chiral limit pion condensation happens already at arbitrarily small isospin chemical potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
41
+ page_content=' From Figure 1 we see that at physical mass the isospin transition line remains vertical up until it meets the chiral crossover line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
42
+ page_content=' If that holds also at 𝑚ud = 0, then in the chiral limit the pion condensation line would lie on the 𝜇𝐼 = 0 axis up to 𝑇 = 𝑇𝑐 – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
43
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
44
+ page_content=' up to the chiral phase transition temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
45
+ page_content=' In this scenario the pion condensate in the chiral limit at 𝑇 = 𝑇𝑐 exists at arbitrarily small isospin chemical potential, affecting the chiral phase transition at zero chemical potential (Figure 2, left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
46
+ page_content=' Alternatively, the phase transition line can start bending towards larger 𝜇𝐼 as the quark masses are reduced, resulting in a different phase structure (Figure 2, right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
47
+ page_content=' Previous studies using the Nambu-Jona-Lasinio model [10], as well as the functional renormalization group [11], support the first phase picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
48
+ page_content=' To verify this, direct Monte Carlo QCD simulations are necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
49
+ page_content=' Figure 2: Two possibilities for the phase diagram in 𝑇-𝜇𝐼 plane at the chiral limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
50
+ page_content=' As a first step, in this work we perform the simulation of QCD at nonzero isospin density for 𝑚ud = 𝑚ud,phys/2, comparing the position of the pion condensation transition with the results at physical masses at a series of temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
51
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
52
+ page_content=' Simulation setup We study 2 + 1-flavour QCD using staggered fermions on a 243 × 8 lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
53
+ page_content=' The setup is the same as the one used in [7], with the light quark masses changed to half their physical value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
54
+ page_content=' The partition function of the theory has the form Z = ∫ D𝑈𝜇 𝑒−𝛽𝑆𝐺 (det Mud)1/4 (det Ms)1/4 , (1) 3 deconfinement T pion condensation μIdeconfinement pioncondensation μIPion condensation at lower than physical quark masses Volodymyr Chelnokov where 𝑆𝐺 is the tree-level Symanzik improved gauge action, Mud and Ms are, correspondingly, light and strange quark matrices Mud = � /𝐷(𝜇𝐼) + 𝑚ud 𝜆𝜂5 −𝜆𝜂5 /𝐷(−𝜇𝐼) + 𝑚ud � , M𝑠 = /𝐷(0) + 𝑚𝑠 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
55
+ page_content=' (2) Here 𝜆 is a pion source term which explicitly breaks the 𝑈𝜏3(1) symmetry of the action, which both allows us to see the pion condensate on the finite volume lattice, and, at the same time, improves the condition number of the light quark matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
56
+ page_content=' To get physically meaningful results, the limit 𝜆 → 0 must be taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
57
+ page_content=' The Boltzmann weight defined by (1) is positive, which is obvious for the gauge action and the strange quark determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
58
+ page_content=' The positiveness of the light quark determinant follows from the generalized 𝜂5-hermiticity relation that the Dirac operator satisfies, 𝜂5 /𝐷(−𝜇𝐼)𝜂5 = /𝐷(𝜇𝐼)† .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
59
+ page_content=' (3) Now, taking the matrix 𝐵 = diag(1, 𝜂5) in flavour space, that has a unit determinant, we get 𝐵Mud𝐵 = � /𝐷(𝜇𝐼) + 𝑚ud 𝜆 −𝜆 � /𝐷(𝜇𝐼) + 𝑚ud �† � , det Mud = det (𝐵Mud𝐵) = det ��� /𝐷(𝜇𝐼) + ��ud ��2 + 𝜆2� > 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
60
+ page_content=' (4) To locate the pion condensation onset, we measure the pion condensate Σ𝜋 = 𝑚𝑢𝑑 𝑚2𝜋 𝑓 2𝜋 � 𝜋±� , (5) � 𝜋±� = 𝑇 𝑉 𝜕 log Z 𝜕𝜆 = 𝑇 2𝑉 � Tr 𝜆 | /𝐷(𝜇𝐼) + 𝑚ud|2 + 𝜆2 � , (6) where the trace can be calculated using noisy estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
61
+ page_content=' The multiplicative renormalization term in (5) depends on the light quark mass 𝑚𝑢𝑑, the pion mass 𝑚 𝜋 that corresponds to 𝑚𝑢𝑑, and the pion decay constant 𝑓𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
62
+ page_content=' The chiral perturbation theory predicts that 𝑚 𝜋 ∼ √𝑚𝑢𝑑 when the light quark mass goes to zero, so assuming this relation holds for physical light quark mass we can approximate the renormalization (5) as Σ𝜋 = 𝑚𝑢𝑑,phys 𝑚2 𝜋,phys 𝑓 2𝜋 � 𝜋±� , (7) where 𝑚𝑢𝑑,phys and 𝑚 𝜋,phys are physical light quark and pion masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
63
+ page_content=' The pion condensate estimated using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
64
+ page_content=' (5) at 𝑇 = 114 MeV, for three different values of 𝜆 can be seen in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
65
+ page_content=' We see that even for the smallest value of 𝜆 we are still far from the limiting regime 𝜆 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
66
+ page_content=' Unfortunately, the simulations at smaller 𝜆 values become prohibitively expensive due to very large condition numbers of the light quark matrix, that causes a sharp increase of iterations needed for matrix inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
67
+ page_content=' At even smaller 𝜆 values this results in a loss of convergence of the conjugate gradient method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
68
+ page_content=' 4 Pion condensation at lower than physical quark masses Volodymyr Chelnokov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
69
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
70
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
71
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
72
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
73
+ page_content='0 I/m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
74
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
75
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
76
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
77
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
78
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
79
+ page_content='0 /mud = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
80
+ page_content='01 /mud = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
81
+ page_content='73 /mud = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
82
+ page_content='45 /mud = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
83
+ page_content='01, impr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
84
+ page_content=' /mud = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
85
+ page_content='73, impr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
86
+ page_content=' /mud = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
87
+ page_content='45, impr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
88
+ page_content=' Figure 3: Comparison of the improved and the unimproved pion condensate at 𝑇 = 114 MeV for three different values of 𝜆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
89
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
90
+ page_content=' Improved pion condensate We can improve the convergence to the 𝜆 → 0 limit by using the Banks-Casher type relation for the pion condensate (6), that was obtained in [7] � 𝜋±� = 𝑇 2𝑉 � Tr 𝜆 | /𝐷(𝜇𝐼) + 𝑚ud|2 + 𝜆2 � = 𝑇 2𝑉 �∑︁ 𝑛 𝜆 𝜉2𝑛 + 𝜆2 � , (8) where 𝜉𝑛 is the 𝑛-th singular value of the Dirac operator: � /𝐷(𝜇𝐼) + 𝑚ud �† � /𝐷(𝜇𝐼) + 𝑚ud � 𝜙𝑛 = 𝜉2 𝑛𝜙𝑛 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
91
+ page_content=' (9) In the infinite volume limit, the summation can be replaced by integration � 𝜋±� = 𝜆 2 �∫ d𝜉 𝜌(𝜉)(𝜉2 + 𝜆2)−1 � , (10) and taking the limit 𝜆 → 0 we get � 𝜋±� = 𝜋 4 ⟨𝜌(0)⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
92
+ page_content=' (11) Thus, the limit 𝜆 → 0 of the pion condensate is proportional to the singular value density at zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
93
+ page_content=' Due to the finite size of the lattice the singular values form a discrete set, but we can approximate the density by calculating the fraction of the singular values lying in the interval [0, 𝜉], and then extrapolating to 𝜉 = 0 𝜌(0) = 𝑇 𝑉 lim 𝜉→0 𝑛(𝜉) 𝜉 , (12) The behavior of such “averaged densities” for three regimes – finite spectral gap at 𝜇𝐼/𝑚 𝜋 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
94
+ page_content='5, 𝜌(0) ≈ 0 at 𝜇𝐼/𝑚 𝜋 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
95
+ page_content='5, and 𝜌(0) > 0 at 𝜇𝐼/𝑚 𝜋 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
96
+ page_content='5, is shown on Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
97
+ page_content=' 5 Pion condensation at lower than physical quark masses Volodymyr Chelnokov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
98
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
99
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
100
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
101
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
102
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
103
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
104
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
105
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
106
+ page_content='0 T 4V n( ) /m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
107
+ page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
108
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
109
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
110
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
111
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
112
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
113
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
114
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
115
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
116
+ page_content='0 T 4V n( ) /m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
117
+ page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
118
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
119
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
120
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
121
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
122
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
123
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
124
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
125
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
126
+ page_content='0 T 4V n( ) /m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
127
+ page_content='57 Figure 4: The integrated spectral density dependence on the integration region 𝜉 for 𝜇𝐼 /𝑚 𝜋 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
128
+ page_content='5 (left), 𝜇𝐼 /𝑚 𝜋 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
129
+ page_content='5 (right), and 𝜇𝐼 /𝑚 𝜋 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
130
+ page_content='5 (bottom) (𝑇 = 132 MeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
131
+ page_content=' To perform the extrapolation to 𝜉 = 0 we perform a polynomial fit of the integrated spectral density in a given region, obtaining a value of ⟨𝜌(0)⟩ and then take a weighted median of all the fit results with the weight exp(−𝜒2 𝑟), where 𝜒2 𝑟 is the (correlated) chi-squared statistic of the fit per degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
132
+ page_content=' The error estimate of ⟨𝜌(0)⟩ is then taken as a value Δ𝜌, for which the interval [⟨𝜌(0)⟩ − Δ𝜌, ⟨𝜌(0)⟩ + Δ𝜌] contains 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
133
+ page_content='68 of the total weight of the estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
134
+ page_content=' We can further improve the convergence of the improved pion condensate observable to the limit 𝜆 → 0 by approximating ⟨𝜌(0)⟩0 (the expectation value of 𝜌(0) with respect to the 𝜆 = 0 partition function) using the leading order reweighting, expanding the Boltzmann weight of a given configuration in a Taylor series in 𝜆, ⟨𝜌(0)⟩0 = ⟨𝜌(0)𝑊(𝜆)⟩𝜆 ⟨𝑊(𝜆)⟩𝜆 , 𝑊(𝜆) = � det M𝑢𝑑,0 det M𝑢𝑑,𝜆 �1/4 ≈ exp � −𝜆𝑉 2𝑇 𝜋± � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
135
+ page_content=' (13) In Figure 5 we show the values of improved and unimproved pion condensate at the point close to 𝜇/𝑚 𝜋 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
136
+ page_content='5 together with an extrapolation of the improved condensate to 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
137
+ page_content=' We can see that the improved pion condensate value is much smaller and less sensitive to the 𝜆 than the unimproved condensate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
138
+ page_content=' This picture can be compared with the extrapolaton done in Figure 6 (top) in [7], which has a similar behavior for large 𝜆, but also provides enough data points at small 𝜆 to actually perform the extrapolation of both the unimproved and improved pion condensates and confirm that 6 Pion condensation at lower than physical quark masses Volodymyr Chelnokov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
139
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
140
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
141
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
142
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
143
+ page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
144
+ page_content='25 /mud 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
145
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
146
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
147
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
148
+ page_content='8 improved unimproved Figure 5: Extrapolation of the improved and unimproved pion condensate to 𝜆 = 0 at 𝑇 = 114 MeV, 𝜇/𝑚 𝜋 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
149
+ page_content='54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
150
+ page_content=' they reach the same value at 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
151
+ page_content=' Since in that study the linear extrapolation of the improved pion condensate worked well for 𝜆/𝑚𝑢𝑑 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
152
+ page_content='3, we rely on it also in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
153
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
154
+ page_content=' Results and summary In Figure 6 we show our preliminary results on the value of the pion condensate and the location of the pion condensation line at four different values of the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
155
+ page_content=' The interpolation was done using a cubic polynomial for the temperatures where we have enough points (𝑇 = 114 MeV, 132 MeV), and a quadratic polynomial otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
156
+ page_content=' Location of the transition point was determined as a point where the interpolation line intersects zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
157
+ page_content=' In all cases all points giving a positive value of the pion condensate were included in the fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
158
+ page_content=' The error estimates for the fit line and the transition point were obtained by taking the standard deviation of the fit result for 100 simulated sets of condensate values normally distributed around the “true” values with the known standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
159
+ page_content=' The results show that the vertical direction of the pion condensation line is preserved when going to smaller light quark masses, preferring the scenario shown in the left panel of the Figure 2: the location of the condensation line is compatible with the zero temperature location 𝜇 = 𝑚 𝜋/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
160
+ page_content=' As mentioned earlier, these results are based on the linear extrapolation to 𝜆 = 0 from the data measured at nonzero values of the pion source parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
161
+ page_content=' To be able to check the validity of this extrapolation, we are currently performing further simulations at smaller values of 𝜆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
162
+ page_content=' Additionally, a 𝑇 scan at several values of 𝜇𝐼 > 𝑚 𝜋/2 is being performed in order to locate the “horizontal” part of the pion condensation line as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
163
+ page_content=' 7 Pion condensation at lower than physical quark masses Volodymyr Chelnokov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
164
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
165
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
166
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
167
+ page_content='8 /m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
168
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
169
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
170
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
171
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
172
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
173
+ page_content='0 T=114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
174
+ page_content='37 MeV T=123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
175
+ page_content='04 MeV T=132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
176
+ page_content='24 MeV T=141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
177
+ page_content='96 MeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
178
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
179
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
180
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
181
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
182
+ page_content='7 /m 120 130 140 T Figure 6: The value of the improved pion condensate (left) and the location of the pion condensation point (right) for four different values of temperature, obtained from the 243×8 lattice (no continuum extrapolation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
183
+ page_content=' Acknowledgments This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 315477589 – TRR 211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
184
+ page_content=' The authors acknowledge the use of the Goethe-HLR cluster and thank the computing staff for their support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
185
+ page_content=' References [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
186
+ page_content=' Aoki, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
187
+ page_content=' Endrődi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
188
+ page_content=' Fodor, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
189
+ page_content=' Katz, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
190
+ page_content=' Szabo, The Order of the quantum chromodynam- ics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [arXiv:hep-lat/0611014 ] [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
191
+ page_content=' Cuteri, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
192
+ page_content=' Philipsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
193
+ page_content=' Sciarra, On the order of the QCD chiral phase transition for different numbers of quark flavours, JHEP 11 (2021) 141 [arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
194
+ page_content='12739] [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
195
+ page_content=' de Forcrand, Simulating QCD at finite density, PoS LAT2009 (2009) 010 [arXiv:1005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
196
+ page_content='0539] [4] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
197
+ page_content=' Nagata, Finite-density lattice QCD and sign problem: Current status and open problems, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
198
+ page_content='Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
199
+ page_content='Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
200
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
201
+ page_content=' 127 (2022) 103991 [arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
202
+ page_content='12423] [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
203
+ page_content=' Vovchenko, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
204
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
205
+ page_content=' Brandt, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
206
+ page_content=' Cuteri, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
207
+ page_content=' Endrődi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
208
+ page_content=' Hajkarim and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
209
+ page_content=' Schaffner-Bielich, Pion Condensation in the Early Universe at Nonvanishing Lepton Flavor Asymmetry and Its Grav- itational Wave Signatures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
210
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
211
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
212
+ page_content=' 126 (2021) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
213
+ page_content='1, 012701 [arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
214
+ page_content='02309].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
215
+ page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
216
+ page_content=' Son, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
217
+ page_content=' Stephanov, QCD at finite isospin density, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
218
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
219
+ page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
220
+ page_content=' 86 (2001) 592 [arXiv:hep-ph/0005225] [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
221
+ page_content=' Brandt, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
222
+ page_content=' Endrődi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
223
+ page_content=' Schmalzbauer, QCD phase diagram for nonzero isospin-asymmetry, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
224
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
225
+ page_content='D 97 (2018) 5, 054514 [arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
226
+ page_content='08190] [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
227
+ page_content=' Brandt, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
228
+ page_content=' Endrődi, Reliability of Taylor expansions in QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
229
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
230
+ page_content='D 99 (2019) 5, 014518 [arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
231
+ page_content='11045] 8 Pion condensation at lower than physical quark masses Volodymyr Chelnokov [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
232
+ page_content=' Brandt, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
233
+ page_content=' Cuteri, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
234
+ page_content=' Endrődi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
235
+ page_content=' Schmalzbauer, Exploring the QCD phase dia- gram via reweighting from isospin chemical potential, PoS LATTICE2019 (2019) 189 [arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
236
+ page_content='12197] [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
237
+ page_content=' He, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
238
+ page_content=' Jin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
239
+ page_content=' Zhuang, Pion Superfluidity and Meson Properties at Finite Isospin Density, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
240
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
241
+ page_content='D 71 (2005) 1160001 [arXiv:hep-ph/0503272] [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
242
+ page_content=' Svanes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
243
+ page_content=' Andersen, Functional renormalization group at finite density and Bose conden- sation, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
244
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
245
+ page_content='A 857 (2011) 16 [arXiv:1009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
246
+ page_content='0430] 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFAT4oBgHgl3EQfjx2F/content/2301.08607v1.pdf'}
1NFKT4oBgHgl3EQfOi14/content/tmp_files/2301.11759v1.pdf.txt ADDED
@@ -0,0 +1,827 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Reduction by invariants, stratifications, foliations,
2
+ fibrations and relative equilibria, a short survey.
3
+ J.C. van der Meer
4
+ Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven,
5
+ PObox 513, 5600 MB Eindhoven, The Netherlands.
6
+ January 30, 2023
7
+ Abstract
8
+ In this note we will consider reduction techniques for Hamiltonian systems that are
9
+ invariant under the action of a compact Lie group G acting by symplectic diffeo-
10
+ morphisms and the related work on stability of relative equilibria. We will focus
11
+ on reduction by invariants in which case it is possible to describe a reduced phase
12
+ space within the orbit space by constructing an orbit map using a Hilbert basis of
13
+ invariants for the symmetry group G. Results considering the stratification, folia-
14
+ tion and fibration of the phase space and the orbit space are considered. Finally
15
+ some remarks are made concerning relative equilibria and bifurcations of periodic
16
+ solutions. We will combine results from a wide variety of papers.
17
+ 1
18
+ Introduction
19
+ In Hamiltonian systems the symmetry is usually given by a symmetry group acting on
20
+ the phase space and leaving the system invariant. The symmetry group determines the
21
+ geometry of the phase space and therefore also determines the behavior of systems having
22
+ this symmetry. One of the tools to understand symmetric systems is reduction by dividing
23
+ out the symmetry, which allows to study the dynamics on a lower dimensional space. The
24
+ main questions are then how this reduced dynamics reconstructs to the original unreduced
25
+ phase space and which part of the dynamics persists under non-symmetric perturbations.
26
+ In this note we will consider reduction, especially singular reduction. After a short review
27
+ we will focus on reduction by invariants. By constructing an orbit map also singular
28
+ reduction can be considered. Given a symmetry group G, fulfilling the right conditions,
29
+ one can consider the orbit type stratification of the phase space and orbit space, the
30
+ 1
31
+ arXiv:2301.11759v1 [math.DS] 27 Jan 2023
32
+
33
+ foliation by symplectic leaves of the orbit space, and the fibration of the phase space by
34
+ group orbits. Given a Hamiltonian system with symmetry group G one can also consider
35
+ relative equilibria. In general a relative equilibrium is an equilibrium position in a moving
36
+ system. In the case of a symmetric system a relative equilibrium is an equilibrium that
37
+ moves with the group action into a solution of the system and therefore corresponds to
38
+ a stationary point of the reduced system. Relative equilibria for symmetric systems are
39
+ of importance because, using singularity theoretic methods, it can be show that, under
40
+ certain conditions, they persist under non-symmetric perturbation. As they are usually
41
+ organised in families, they form an organising skeleton in the phase space of the symmetric
42
+ system and perturbations thereof.
43
+ In this note we will focus on reviewing the different concepts of reduction, the stratifica-
44
+ tion, foliation and fibration of the phase space and orbit space, and on the concepts of
45
+ relative equilibria and their stability.
46
+ 2
47
+ Reduction
48
+ The idea of reduction seems to go back on Reeb [53, 54] who studied perturbations of
49
+ systems of differential equations only having periodic solutions. He considered the phase
50
+ space as a fibred manifold or more precisely as an S1 fibre bundle. He constructed the
51
+ reduced system by mapping to the base space of the fibre bundle. One could call this
52
+ concept fibre bundle reduction. He considered Hamiltonian systems as a special case.
53
+ Later the geometric reduction of Meyer [34] and Marsden and Weinstein [32] became the
54
+ fundamental reference for reduction. Ideas on reduction can also be found in [4] and [62].
55
+ The Meyer-Marsden-Weinstein reduction is formulated in [32] as follows.
56
+ Consider a symplectic manifold M, on which we have the action by symplectic diffeomor-
57
+ phisms of a Lie group G with Lie algebra g. For ξ ∈ g let ξM denote the corresponding
58
+ infinitesimal generator or vector field on M. Let J : M → g∗ be an Ad∗ equivariant
59
+ momentum map, that is, J ◦ ϕg = (Adg−1)∗ ◦ J , where ϕg is the action of g ∈ G, and
60
+ (Adg−1)∗ is the co-adJoint action of G on g. Let µ ∈ g∗ be a regular value of J , and
61
+ let Gµ be the isotropy subgroup of µ for the co-adjoint action, and assume that Gµ acts
62
+ properly and freely on J −1(µ). Then Mµ = J −1(µ)/Gµ is the reduced phase space. If ω
63
+ is the symplectic structure on M then there exists an unique symplectic structure ωµ on
64
+ Mµ with π∗
65
+ µωµ = i∗
66
+ µω, with i∗
67
+ µ the inclusion map of J −1(µ) in M, and π∗
68
+ µ the projection
69
+ map of J −1(µ) onto Mµ. If H is a G-invariant Hamiltonian function on M with respect
70
+ to ω, then the flow of H induces a flow on Mµ which is Hamiltonian with respect to the
71
+ symplectic form ωµ with reduced Hamiltonian function Hµ.
72
+ Although this is a very general description it does not really allow us to construct the
73
+ reduced phase space. Methods to construct the reduced phase space were given by Cush-
74
+ man [11], Van der Meer [64, 65], Churchill, Kummer and Rod [10], Cushman an Rod
75
+ 2
76
+
77
+ [12], Kummer [30]. They all use invariants for the group action to construct the reduced
78
+ phase space.
79
+ This method is formulated in a more general way using orbit spaces in
80
+ [2, 65] were a theorem of Hilbert is used that provides a Hilbert basis of invariants for
81
+ compact group actions. This makes it possible to define an orbit map ρ [52] under which
82
+ all the G-orbits are mapped to points. Then ρ(J −1(µ)) is the reduced phase space, hence
83
+ the name orbit space reduction or reduction by invariants. By a theorem of Schwarz
84
+ G-invariant functions correspond to functions on the orbit space, that is, any G-invariant
85
+ Hamiltonian function reduces to a function on the orbit space that naturally restricts to
86
+ the reduced phase space. This method has the advantage that µ need not be a regular
87
+ point, and that the action need not be free. The singularities of the orbit map reflect the
88
+ fixed points, isotropy subgroups and orbit types. Note that singular reduction appears in
89
+ [64, 65] for the non-semisimple 1:-1 resonance and in [30] for the k:l resonances. This was
90
+ later formalized in the context of Marsden-Weinstein reduction in [3]. We will distinguish
91
+ between the Meyer-Marsden-Weinstein reduction and the construction using orbit maps
92
+ by calling the first momentum map reduction and the latter reduction by invariants. Note
93
+ that when using reduction by invariants the reduced phase space need not be a manifold.
94
+ In general it is defined as a semi-algebraic set by relations and inequalities for the invari-
95
+ ants defining the orbit map. Cushman and Sniaticky studied these spaces in more detail
96
+ including differential structures on them (see [13, 14, 63]) which allows to study more
97
+ general vector fields on orbit spaces [7].
98
+ The most general formulation for orbit map reduction does not start with a symplectic
99
+ manifold but with a Poisson manifold.
100
+ we consider C∞(M) together with a Poisson
101
+ bracket { , } making C∞(M) into a Lie algebra and call (M, { , }) a Poisson manifold. If
102
+ the Poisson structure is non-degenerate then M is a symplectic manifold. The Poisson
103
+ structure on C∞(M) induces a Poisson structure on the orbit space.
104
+ Kummer [29] gives a construction of the reduced phase space using principle G-bundles.
105
+ In a neighborhood of regular values of the orbit map the reduced phase space is locally
106
+ a G-bundle. That is, his ideas apply to ρ(J −1(µ)) without its critical set. The bundle
107
+ structure of G-spaces is extensively studied in [16].
108
+ Reduction by invariants through the orbit map should not be confused with orbit reduction
109
+ as introduced by Ortega [45, 33]. Orbit reduction refers to the fact that the pre-image
110
+ of the co-adjoint orbit in the image of the momentum map is reduced. Reduction by
111
+ invariants should also not be confused with Poisson reduction. Although Poisson reduction
112
+ considers reduction of Poisson manifolds it restricts to M = T ∗G and its momentum map.
113
+ In orbit map reduction the orbit map is used to construct the reduced phase space and the
114
+ reduced system. When using orbit map reduction one of the difficulties is to determine
115
+ the invariants and the relations between the invariants. An extensive study of this is made
116
+ in [19] (see also [56, 8]).
117
+ 3
118
+
119
+ 3
120
+ Meyer-Marsden-Weinstein reduction, reduction by
121
+ invariants and dual pairs
122
+ Throughout this paper we will consider a connected, compact Lie group acting smoothly
123
+ and properly on Rn which is assumed to be a symplectic space with the standard Poisson
124
+ structure, that is it is a Poisson manifold, and G is assumed to act by Poisson (symplectic)
125
+ diffeomorphisms. Thus we assume to be in the nicest possible situation where we can use
126
+ the strongest possible results. However, in many applications this is the case. Many of
127
+ the results stated below will also hold under weaker conditions, more generally when Rn
128
+ is replaced by a connected compact Poisson manifold M.
129
+ We will start by introducing reduction by invariants. In [24] Hilbert showed that the alge-
130
+ bra of polynomials over C of degree d in n variables which are invariant under GL(n, C),
131
+ acting by substitution of variables, is finitely generated. This was extended by Weyl in
132
+ [69] who proved that the algebra of invariants is finitely generated for any representation
133
+ of a compact Lie group or a complex semi-simple Lie group.
134
+ Let R[x]G denote the space of G-invariant polynomials with coefficients in R. Consider a
135
+ compact Lie group G acting linearly on Rn. Then there exist finitely many polynomials
136
+ ρ1, · · · , ρk ∈ R[x]G which generate R[x]G as an R algebra. These generators can be chosen
137
+ to be homogeneous of degree greater then zero. We call ρ1, · · · , ρk a Hilbert basis for
138
+ R[x]G.
139
+ Schwarz [59] proved that if ρ1, · · · , ρk is a Hilbert basis for R[x]G, and ρ : Rn → Rk; x →
140
+ (ρ1(x), · · · , ρk(x)). Then ρ∗ : C∞(Rk, R) → C∞(Rn, R)G is surjective, with ρ∗ the pull-
141
+ back of ρ. Thus all G-invariant smooth function can be written as smooth functions in
142
+ the invariants.
143
+ The following, showing that ρ is an orbit map, can be found in [52].
144
+ The map ρ is
145
+ proper and separates the orbits of G. Moreover the following diagram commutes, with ˜ρ
146
+ a homomorphism
147
+ Rn
148
+ ρ
149
+ −→ ρ(Rn)
150
+ π ↘
151
+ ↙ ˜ρ
152
+ Rn/G
153
+ Here the orbit space Rn/G is the quotient space Rn/ ∼, where the equivalence relation is
154
+ given by x ∼ y if x and y are in the same G-orbit. We can take ρ(Rn) as a model for the
155
+ orbit space.
156
+ Consider (R2n, ω) on which a Lie group G acts linearly and symplectically. Then (C∞(R2n, R), { , })
157
+ is a Poisson algebra. If we consider on Rk the Poisson structure induced by ρ by taking
158
+ as structure matrix Wij = {ρi, ρj} then (C∞(Rk, R), { , }W) is a Poisson algebra and ρ a
159
+ Poisson map. We have a reduction of the Poisson manifold if we restrict the bracket on
160
+ 4
161
+
162
+ Rk to ρ(R2n).
163
+ In general there will be relations and inequalities determining the image of ρ. There-
164
+ fore ρ(R2n) will in general be a real semi-algebraic subset of Rk, where a semi-algebraic
165
+ subset of Rk is a finite union of sets of the form {x ∈ Rk|R1(x) = · · · = Rs(x) =
166
+ 0 , Rs+1(x), · · · , Rm(x) ⩾ 0} .
167
+ Define C∞(ρ(R2n), R) = {F : ρ(R2n) → R|ρ∗(F) ∈
168
+ C∞(R2n, R)}. This is a differential structure on ρ(R2n) and the orbit map is smooth (see
169
+ [13, 14]). Note that the Ri, 1 ⩽ i ⩽ s, are Casimirs for the induced Poisson structure
170
+ { , }W.
171
+ Let W be a real semi-algebraic variety in Rk. A point x ∈ W is nonsingular if there exists
172
+ a neighborhood U ⊂ W of x such that for each y ∈ U the matrix ∂Ri
173
+ ∂xj (x) has maximal
174
+ rank. A point x ∈ W is singular if the rank of ∂Ri
175
+ ∂xj (x) is strictly less than the maximal
176
+ rank.
177
+ Combining remarks in [33] and [60] we find that for any Poisson manifold (M, { , }) on
178
+ which we have a compact Lie group G acting by Poisson maps, G has a Lie algebra g. To
179
+ each element ξ ∈ g we may associate a Hamiltonian vector field XJξ = {Jξ, ·} on M with
180
+ Hamiltonian function Jξ defined by J(z) = J (z) · ξ.
181
+ Let ξi be a basis of g such that exp(ξi) generate G. Consider the corresponding functions
182
+ Ji and consider the momentum map J(z) = (J1(z), · · · , Jr(z)). Furthermore consider the
183
+ Hilbert basis of invariants ρi, i = 1, · · · , k, for the G-action. Obviously, {ρi, Jj} = 0 for
184
+ all i, j. Thus the maps J and ρ form a dual pair. Note that without further conditions
185
+ the images of J and ρ are at best semi-algebraic sets. Also the ρi need not span a Lie
186
+ algebra. however, the ρi generate the Poisson algebra of G-invariant functions C∞(M)G.
187
+ Let G′ denote the Lie group generated by the G-equivariant Poisson vector fields Xf,
188
+ f ∈ C∞(M)G. Then the map M → M/G′ is called the optimal momentum map[45, 47].
189
+ If the Ji are the invariants defining M/G′ the J is optimal. Consider C∞(J(M)), then
190
+ C∞(M)G and C∞(J(M)) centralize each other in the Poisson algebra C∞(M) (see for
191
+ instance [27]), i.e. we have a Howe dual pair [25]. Actually, as can be found in [46], the
192
+ pair g ← M → ρ(M) is a Lie-Weinstein dual pair.
193
+ As {ρi, Jj} = 0 it follows that
194
+ Proposition 3.1 ker (dJ) is spanned by the Hamiltonian vector fields Xρi.
195
+ Example 3.2 Consider SO(3) acting on R3. The lifted action on the co-tangent bundle
196
+ T ∗R3 is the diagonal action of SO(3) on R6. Let (x, y) denote the coordinates on R6 =
197
+ R3 × R3.
198
+ The generators for the group are x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2 (or
199
+ the components of the cross product x × y), which span a Lie algebra isomorphic to
200
+ so(3). A Hilbert basis for this action is |x|2, |y|2, < x, y >. The latter span a Lie algebra
201
+ isomorphic to sl(2, R). According to [69] in general the full linear Lie algebra invariant
202
+ 5
203
+
204
+ under a diagonal SO(n)-action is sl(2, R). Consequently the momentum map
205
+ J : (x, y) → (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2) ,
206
+ and the orbit map σ : (x, y) → (|x|2, |y|2, < x, y >) are a dual pair. The orbit space is
207
+ defined by Lagrange identity |x|2|y|2− < x, y >2= |x × y|2 together with the inequalities
208
+ |x|2 ⩾ 0, and |y|2 ⩾ 0. It is a solid cone. The reduced pase spaces are given by taking
209
+ x × y constant, thus, provided |x × y| ̸= 0, the reduced phase space is one sheet of a two
210
+ sheeted hyperboloid. In case |x × y| = 0 it is a cone.
211
+ Example 3.3 Consider an integrable system on R2n, with n integrals in involution, that
212
+ is, the group G generated by the integrals is a torus. The momentum map and the orbit
213
+ map are the same, i.e. Ji = ρi. The orbit space is a polytope [5, 23]. A reduced phase
214
+ space is a point. Regular points correspond to n-tori. The faces, edges and vertices of the
215
+ polytope are the images of the singular points of the orbit map and correspond to lower
216
+ dimensional tori.
217
+ Example 3.4 Consider a group G which is the flow of a linear Hamiltonian system in
218
+ two degrees of freedom in k : ℓ resonance, k ∈ N, ℓ ∈ Z, |k| ̸= ℓ). That is, the Hamiltonian
219
+ generating the group G is H(x, y) = 1
220
+ 2 k(x2
221
+ 1 + y2
222
+ 1) + 1
223
+ 2 ℓ(x2
224
+ 2 + y2
225
+ 2). The action of G is an S1-
226
+ action and a Hilbert basis for the invariants of G is given by polynomials I1(x, y), I2(x, y),
227
+ R1(x, y) and R2(x, y), where I1, I2 are quadratic polynomials and R1, R2 are polynomials
228
+ of order k+|ℓ|. When we choose I1(x, y) = H(x, y) and I2(x, y) = 1
229
+ 2 k(x2
230
+ 1+y2
231
+ 1)− 1
232
+ 2 l(x2
233
+ 2+y2
234
+ 2)
235
+ we have bracket relations {I2, R1} = 2klR2, {I2, R2} = 2klR1, {I1, R1} = {I1, R2} = 0,
236
+ and {R1, R2} = −2(I2
237
+ 1 − I2
238
+ 2) + (I1 + I2)2. Furthermore we have the following relation
239
+ R2
240
+ 1 + R2
241
+ 2 = 1
242
+ 2 (I1 + I2)2(I1 − I2) (see [58]). In this case the invariants do not form a Lie
243
+ subalgebra of C∞(R4)G. However, we do have an orbit map ρ : (x, y) → (I1, I2, R1, R2),
244
+ where the image is determined by R2
245
+ 1 + R2
246
+ 2 = 1
247
+ 2 (I1 + I2)2(I1 − I2), I1 ⩾ 0. The reduced
248
+ phase space is obtained by taking I1(x, y) = c, giving the reduced phase space given by
249
+ the relation R2
250
+ 1 + R2
251
+ 2 = 1
252
+ 2 (c + I2)2(c − I2) in (I2, R1, R2)-space (cf [30]).
253
+ We have a special situation if the Hilbert basis is a finite Lie subalgebra of C∞(Rn). In this
254
+ case the orbit map can also be interpreted as a momentum map. We have a Lie-Weinstein
255
+ dual pair of momentum maps.
256
+ g∗
257
+ 1 ← M → g∗
258
+ 2 ,
259
+ or in terms of generating functions
260
+ (J1, · · · , Jr) ← M → (ρ1, · · · , ρk) .
261
+ If the Ji generate G1 and the ρi generate G2 then G1 and G2 commute.
262
+ Moreover
263
+ C∞(M)G2 is the Lie algebra of smooth functions in the Ji. The center of g1 therefore
264
+ consists of functions in C∞(M)G2.
265
+ 6
266
+
267
+ This holds more generally. If we have a group G, with momentum map J, then the center
268
+ of C∞(M)G in the Poisson algebra C∞(M) consists of smooth functions in the Ji, which
269
+ can be considered as the universal enveloping algebra of g. As a consequence the Casimirs
270
+ of C∞(M)G do belong to C∞(M)G and to the universal enveloping algebra of g. Thus
271
+ the symplectic leaves for the Poisson structure on the image of the orbit map, which are
272
+ obtained by setting the Casimirs equal to a constant [68], are given by ρ(J−1(µ)).
273
+ When the invariants form a Lie algebra then the symplectic leaves are the co-adjoint
274
+ orbits of G2 on g2 [68].
275
+ 4
276
+ Stratifications, foliations and fibrations
277
+ Orbit spaces were studied in connection to understanding the structure of G-spaces in
278
+ the 1950’s [51]. Mainly to understand extrema of G-invariant functions [36, 37],[2] in
279
+ connection to applications in solid state physics. More recent applications in quantum
280
+ mechanics and molecular behavior that connect to the subject of this paper are [38], [70],
281
+ [57]. In [67] a very nice overview of all the relevant theorems from the literature is given in
282
+ connection to orbit spaces in the context of Meyer-Marsden-Weinstein reduction. When
283
+ studying symmetric spaces and reduction one of the important issues is the orbit type
284
+ stratification, see the above cited literature and [61], [16], [6] and the very accessible notes
285
+ [17], [35].
286
+ Consider a Hamiltonian G-action on a connected manifold M, G a compact Lie group
287
+ acting properly and smoothly on M. Let G · x = {y ∈ M|y = g · x, g ∈ G} be the G-orbit
288
+ in M through x ∈ M. Gx = {g ∈ G|g · x = x is the isotropy subgroup of G at x. Gx is
289
+ a closed Lie subgroup of G. If H is a subgroup of G for which Hx = {g ∈ H|g · x = x},
290
+ then we may call Hx also an isotropy subgroup of x. Obviously Hx ⊂ Gx and Gx is the
291
+ maximal isotropy subgroup for x in G. We have
292
+ dim(G) = dim(Gx) + dim(G · x) .
293
+ We have Gg·x = gGxg−1, that is, the isotropy subgroups of points on the same orbit
294
+ are each others conjugate and therefore isomorphic. For a subgroup H of G define the
295
+ normalizer of H by
296
+ NG(H) = {g ∈ G|gHg−1 = H} .
297
+ NG(H) is a closed Lie subgroup of G and the largest subgroup of G containing H as a
298
+ normal subgroup.
299
+ Let H be a subgroup of G. Let MH = {x ∈ M|Gx = H}. MH is called the isotropy type
300
+ of H in M.
301
+ Lemma 4.1 [17] Let H be a closed Lie subgroup of G. Then the action of N(H) leaves
302
+ MH invariant and induces a free action of N(H)/H on MH.
303
+ 7
304
+
305
+ Denote by [H] the conjugacy class of H. Set M[H] = {m ∈ M|Gm = gHg−1 , g ∈ G}.
306
+ M[H] is called the orbit type of [H] in M. Two points in M belong to the same orbit
307
+ type if and only if their exists a G-equivariant bijection between their G-orbits [16]. M
308
+ is partitioned into orbit types M[H] and each orbit type is partitioned into isotropy types
309
+ MK, K ∈ [H] for conjugate subgroups of G. This induces a partition of ρ(M) into orbit
310
+ types ρ(M[H]).
311
+ Lemma 4.2 [17] ρ(MH) = ρ(M[H]) and because the G-action is proper we have that
312
+ ρ|MH : MH → ρ(M[H]) is a principal fiber bundle with structure group N(H)/H.
313
+ Note that if M is Rn and we have a faithful representation of G on Rn, with a subgroup
314
+ H, then MH = Fix(H). On Fix(H) the action of G reduces to the action of N(H)/H.
315
+ It is important to note that MH can have connected components with different dimensions.
316
+ If the action is free then the orbit space M/G is a smooth manifold, there is only one
317
+ orbit type, and the orbit map is a smooth fibration with structure group G. dim(M/G) =
318
+ dim(M) − dim(G)
319
+ For instance in [16] it can be found that the connected components of the orbit types
320
+ form a Whitney stratification in M.
321
+ There exists a partial ordering of isotropy and orbit types. For isotropy subgroups H and
322
+ K we say that MH ⩽ MK, M[H] ⩽ M[K] if and only if H is conjugate to a subgroup of K.
323
+ Theorem 4.3 [Principal orbit theorem] As before consider a group action by G on a
324
+ connected differentiable manifold M.
325
+ Then there exists a maximal orbit type.
326
+ The
327
+ maximal orbit type stratum Sm is open and dense in M. The orbit space Sm/G is open
328
+ and dense and connected in M/G.
329
+ The maximal orbit and its orbit type are also called the principal orbit and principal orbit
330
+ type.
331
+ Denote the orbit type strata by Si, that is, M = ∪iSi. When we have defined an orbit map
332
+ by invariants we obtain an orbit type stratification of the orbit space ρ(M) = ∪iρ(Si).
333
+ Note that in general our manifolds are embedded in Rn and thus separable. In [51] we
334
+ find the following
335
+ Corollary 4.4
336
+ (i) dim(ρ(M[H])) = dim(M[H]) − dimG/H , H ⊆ G ,
337
+ (ii) dim(M/G) = sup{dim(ρ(M[H])) − dim(G/H)|H ⊆ G} .
338
+ 8
339
+
340
+ On the orbit space the partitioning given by the stratification consists of sets of points
341
+ that have as a pre-image diffeomorphic orbits. A G-orbit is the pre-image ρ−1(ν) of a
342
+ point ν on the orbit space. More precisely, if ν ∈ ρ(MH) the orbit through p ∈ ρ−1(ν)
343
+ is N(H)/H · p. Its tangent space at a point p ∈ ρ−1(ν) is spanned by the Hamiltonian
344
+ vectors XJi(p). We have
345
+ dim(G.p) = rank(J)(p) = dim(N(H)/H · p) .
346
+ The orbit space is given, as a subset of Rk, by the relations and inequalities for the
347
+ invariants. If the action of G is free the principal orbit type corresponds to the isotropy
348
+ subgroup I and we have by taking H = I in corollary 4.4, that the dim(Sm) =dim(ρ(M)),
349
+ dim(G) + dim(ρ(M)) = dim(M) ,
350
+ where dim(ρ(M)) equals the maximal rank of ρ. Moreover, the dimension of the orbit
351
+ type stratum ρ(Si) for some G-orbit in M equals the rank of the orbit map at the points of
352
+ this orbit. Consequently the orbit type stratification coincides withe the Thom-Boardman
353
+ stratification [20] for the orbit map.The image of this stratification under the orbit map
354
+ is of course the same as that of the orbit type stratification, but now it can be seen as the
355
+ singular set stratification of the semi-algebraic set that is te image of the orbit map. The
356
+ stratification of the image of the orbit map defines a partition of the semi-algebraic set
357
+ into disjoint sets on which the rank of ρ is constant and on which each point corresponds
358
+ to an orbit of the same type.
359
+ Again let p ∈ ρ−1(ν). And let ν be in the orbit type stratum for MH. Following from
360
+ lemma’s 4.1 and 4.2 we have that, p ∈ MH, dim(N(H)/H) = dim(G · p) = rank(J)(p).
361
+ Furthermore
362
+ dim(G) = dim(G · p) + dim(Gp) ,
363
+ and
364
+ dim(MH) = dim(G · p) + rank(ρ)(ν) .
365
+ So far we have paid attention to the reconstruction of the orbit space in terms of G-orbits
366
+ and orbit type strata. The orbit space is fibred into reduced phase spaces ρ(J−1(µ)).
367
+ Each reduced phase space has a stratification into orbit type strata by considering the
368
+ intersection of the reduced phase space with the orbit type strata, i.e. ρ(J−1(µ))∩ρ(M[H]).
369
+ This is the symplectic stratification introduced in [61].
370
+ On the other hand the Poisson structure on the orbit space allows us to obtain a foliation
371
+ into symplectic leaves [68] of the orbit type strata. Each symplectic leaf is obtained by
372
+ setting the Casimirs of the Poisson structure equal to a constant.
373
+ Consequently, the
374
+ symplectic leaves are subspaces of the reduced phase spaces. Besides that, the rank of
375
+ the Poisson structure is constant along a symplectic leaf.
376
+ 9
377
+
378
+ Proposition 4.5 If ˜W is the invertible structure matrix of the Poisson structure on the
379
+ symplectic manifold M, then (dJ) ˜W(dJ)T is the induced structure matrix on the orbit
380
+ space J(M), and the rank of the induced Poisson structure on the orbit space equals the
381
+ rank of the orbit map, that is,
382
+ rank((dJ) ˜W(dJ)T) = rank(dJ) .
383
+ (1)
384
+ The proof is a straightforward exercise in linear algebra. Now the stratification by rank of
385
+ the orbit space coincides with the orbit type stratification, thus each orbit type stratum is
386
+ foliated into symplectic manifolds of the same dimension on which the Poisson structure
387
+ has the same rank. The same then also holds for the orbit type strata of the reduced phase
388
+ spaces. Because the reduced phase space as well as the symplectic leaves are obtained
389
+ by setting the Casimirs equal to a constant it follows that each orbit type stratum of the
390
+ reduced phase space is a symplectic leaf.
391
+ Thus conclusively
392
+ Corollary 4.6 The orbit space is fibred into reduced phase spaces and each reduced
393
+ phase space has a orbit type stratification, where each orbit type stratum is a symplectic
394
+ leaf for the induced Poisson structure.
395
+ Recall that each orbit type stratum is a principal fibre bundle 4.2.
396
+ When we consider a symplectic manifold M which is embedded in Rn, and which is a
397
+ symplectic leaf for the Poisson structure on Rn, then we may further reduce if a group G
398
+ is acting on Rn by Poisson diffeomorphisms and leaving M invariant. This way we may
399
+ reduce in stages [33].
400
+ 5
401
+ Relative equilibria
402
+ As before consider Rn with the standard non-degenerate Poisson structure (thus n is even)
403
+ and a group action of a compact and connected Lie group G by symplectic (Poisson)
404
+ diffeomorphisms. Let H ∈ C∞(Rn, R)G and consider the Hamiltonian (Poisson) vector
405
+ field XH on Rn. XH has integrals Ji. Because H ∈ C∞(Rn, R)G there is a function ˜H ∈
406
+ C∞(Rk, R) on the target space of the orbit map such that H = ˜H ◦ρ. The reduced vector
407
+ field is now the Poisson vector field X ˜H with respect to the induced Poisson structure
408
+ { , }W.
409
+ In [1] we find as a definition for relative equilibrium that a point x ∈ Rn is a relative
410
+ equilibrium for XH if ρ(x) is a stationary point for the reduced vector field. Other ways
411
+ of formulating this are that a relative equilibrium is a point x ∈ Rn such that the solution
412
+ of Hamilton’s equations for XH with initial value x coincides with the orbit of a one
413
+ 10
414
+
415
+ parameter sub-group of G [49] or, somewhat different, that relative equilibria are G group
416
+ orbits which are invariant under the flow of XH [55].
417
+ We will use the formulation from [60] stating that a point x ∈ Rn is a relative equilibrium
418
+ for the Hamiltonian system XH if the trajectory γt of Hamilton’s equations for XH through
419
+ x is given by
420
+ γt(x) = exp(tXF)(x) ,
421
+ whereXF with F = �r
422
+ i=1 λiJi is an infinitesimal generator for an element of G and
423
+ x ∈ J−1(µ). Thus XH(x) = XF(x). Thus a relative equilibrium is a critical point for
424
+ the energy-momentum map H × J : Rn → Rr+1; x → (H(x), J1(x), · · · , Jr(x)) [62]. In
425
+ [62] a reduction is performed by considering (H × J)−1(h, µ)/Gx. Obviously, as a relative
426
+ equilibrium is contained in a G-orbit it maps to a point ρ(x) in the reduced phase space
427
+ ρ(J−1(µ)) if x ∈ J−1(µ). Furthermore as the XH trajectory through x is a G-orbit it
428
+ reduces to a stationary point ρ(x) for X ˜H.
429
+ Of specific interest are of course the stability of relative equilibria and the persistence
430
+ under change of the momentum. The latter results in families of relative equilibria that
431
+ might be organized in manifolds. The study of these concepts has a long history. Some
432
+ relevant references are [60], [49], [44], [42], [31], [50], [43]. As for the results concerning
433
+ stability up till that moment a very nice discussion is given in the introduction of [50].
434
+ In [60] the energy-momentum method is introduced to determine the formal stability of
435
+ a relative equilibrium. To determine the relative equilibria we have to solve the Lagrange
436
+ multiplier optimization problem of finding the critical points of H under the constraints
437
+ J(x) = µ. To determine the stability one considers d2H(x). However, one has to restrict
438
+ d2H(x) to some subspace S of kerdJ(x). To determine this subspace one has to remove
439
+ the neutral directions from ker(dJ(x)). By Lemma 3.1 ker(dJ(x)) is spanned by the
440
+ Xρi(x).
441
+ However, there might be dependencies at x.
442
+ These dependencies determine
443
+ the neutral directions and are given by the Casimirs that determine the symplectic leaf
444
+ through ρ(x). Note that these Casimirs can be expressed as smooth functions of the ρi
445
+ and as smooth functions of the Ji. Suppose this set of Casimirs (independent at ρ(x)) is
446
+ given by Ci, i = 1, · · · , s. Then the vectors XCi(x) determine the directions to be left
447
+ out of ker(dJ(x)). The vector fields XCi are the infinitesimal generators for the isotropy
448
+ subgroup Gµ of G, which is the group leaving µ fixed under the co-adjoint action of G on
449
+ g∗. That is, S = ker(dJ(x))/Tx(Gµ · x) as in [60].
450
+ Now the vectors Xρi(x) reduce to tangent vectors to the symplectic leaf in the reduced
451
+ phase space at ρ(x). If one leaves out the dependencies given by the Casimirs we get that
452
+ S maps to the tangent space to the symplectic leaf through ρ(x) at ρ(x). Thus
453
+ Corollary 5.1 Formal stability of the relative equilibrium x as defined in [60] agrees with
454
+ stability of ρ(x) on the reduced phase space.
455
+ This is called relatively stable in [1].
456
+ 11
457
+
458
+ The above becomes more clear when we consider the following to be found in [19]
459
+ Theorem 5.2 Consider a Hilbert basis π1, · · · , πr for a faithful representation of a com-
460
+ pact Lie group.
461
+ Assume H is an isotropy subgroup of G in this representation with
462
+ corresponding Fix(H). Then there exist invariants ˜π1, · · · , ˜πd, which are algebraically in-
463
+ dependent polynomials in the πi, such that
464
+ ˜πi|Fix(H) ̸= 0 , i = 1, · · · , c , and ˜πi|Fix(H) = 0 , i = c + 1, · · · , d ′.
465
+ furthermore ˜πi|Fix(H), i = 1, · · · , c are algebraically independent.
466
+ That is, one can pick a set of invariants defining the orbit space such that the tangent
467
+ space at a point p of the reduced phase space is spanned by the tangent vectors generated
468
+ by ˜πi|Fix(H) ̸= 0 , i = 1, · · · , c, where H is the isotropy group of a point in ρ−1(p). (see
469
+ also [28]).
470
+ Thus the ˜πi|Fix(H) ̸= 0 , i = 1, · · · , c, can be considered as a set of invariants defining the
471
+ orbit space for Fix(H), while ˜πi|Fix(H) ̸= 0 , i = c+1, · · · , d can be considered as Casimirs,
472
+ that is, the set of Casimirs becomes larger when there is a non-trivial isotropy subgroup,
473
+ and consequently the orbit space and the reduced phase spaces reduce in dimension.
474
+ Example 5.3 Consider an integrable system, i.e. G is the torus group. The orbit map
475
+ and the momentum map are the same thus the orbit space is the momentum polytope.
476
+ The interior, faces, edges and vertices of this polytope correspond to the orbit type strata.
477
+ The reduced phase spaces are points. Consequently each point is a relative equilibrium.
478
+ As the pre-image of a point is a torus the trajectories of G-invariant vector fields are
479
+ periodic orbits or quasi-periodic orbits. Quasi-periodic relative equilibria are considered
480
+ in [17].
481
+ In many examples the presentation of G is linear and explicitly known. In [39] we find
482
+ the possible representations that can occur when we consider the linear symplectic action
483
+ of a Lie group G on a vector space V .
484
+ Theorem 5.4 ( [39]) Every symplectic representation V of G has a unique direct sum
485
+ decomposition
486
+ V = V1 ⊕ · · · ⊕ Vℓ ,
487
+ where
488
+ (a) The Vj are G-invariant subspaces of V ;
489
+ 12
490
+
491
+ (b) Vj = K
492
+ nj
493
+ j ⊗Kj Wj, where W1, · · · , Wℓ are pairwise irreducible representations of G
494
+ and HomG(Wj, Wj) ≈ Kj = R, C, H;
495
+ (c) The action of G on Vj is the tensor product of the action Wj and the trivial action
496
+ on K
497
+ nj
498
+ j
499
+ Let SpG(R2n) denote the group of G-equivariant symplectic linear transformations on
500
+ R2n. Then [39] SpG(R2n) ∼= S1 × · · · Sℓ, where each Sj is either Sp(m, R), U(p, q; C) or
501
+ αU(r, H). Here Sp(m, R), U(p, q; C) and αU(r, H) are as defined in [39]. As we are dealing
502
+ with linear symplectic maps the corresponding Lie algebra spG(R2n) is isomorphic to the
503
+ Lie algebra under the Poisson bracket of G-invariant homogeneous quadratic polynomials.
504
+ If these polynomials form a Hilbert basis then we are in the situation of a dual pair g,
505
+ spG(R2n).
506
+ 6
507
+ Bifurcations of periodic solutions
508
+ When G is a symplectic S1 action the relative equilibria are periodic solutions. If fur-
509
+ thermore the Hamiltonian depends on parameters one can study the bifurcation of these
510
+ periodic solutions in dependence of the parameters. Here we have to distinguish between
511
+ the parameters in the Hamiltonian, which are sometimes called distinguished parameters,
512
+ or unfolding parameters, that usually are related to the physical system parameters, and
513
+ parameters introduced by the value of the momentum map, i.e. introduced by the reduc-
514
+ tion. When considering a G-invariant system in the neighbourhood of a stationary point
515
+ one can, if the quadratic part of the Hamiltonian fulfills certain conditions, consider the
516
+ additional S1 action by the semisimple part of this quadratic Hamiltonian. The bifurca-
517
+ tion one wants to describe is then the bifurcation of periodic orbits with period close to
518
+ the period of this S1 action. To this end one first uses Liapunov-Schmidt reduction, or a
519
+ splitting theorem, to reduce the G-invariant system to a G × S1-invariant system. Then
520
+ G × S1-equivariant singularity theory is used to reduce the power series of the G × S1-
521
+ invariant Hamiltonian in the neighborhood of the stationary point to a finite part of the
522
+ power series. Note that this depends on several non-degeneracy conditions that have to
523
+ be fulfilled. When one finally has a G × S1 invariant polynomial system the parameter
524
+ dependent equation for the stationary points of the S1-reduced system then gives the
525
+ bifurcation equation. For S1-symmetric systems these ideas were introduced in [15], [65],
526
+ and for G × S1 invariant systems in [39, 40, 41]. Also see [21, 22]. Note that on the S1
527
+ bifurcation picture one still has the action of the group G, this leads to bifurcations with
528
+ symmetry [66], [9].
529
+ Following [39] we have for the representation of a linear symplectic G-action the decom-
530
+ position V = V1 ⊕ · · · ⊕ Vℓ, i.e. G = G1 × · · · × Gell, where Gi acts on Vi. For any
531
+ component Gi which is an S1-action we may find periodic solutions on the fixed point
532
+ spaces of the subgroups of Gi using the ideas of [39]. Note that isomorphic subgroups
533
+ 13
534
+
535
+ might have different fixed point spaces in terms of geometric place. Thus for each Gi
536
+ which is an S1-action one can pass to the reduced phase space for this S1-action and find
537
+ stationary points on all isotropy strata.
538
+ Example 6.1 (see [18]) Consider on R8 with standard symplectic form and coordinates
539
+ (q, Q) the Hamiltonian
540
+ H(K, N, Ξ, L1, H2) =3
541
+ 4
542
+
543
+ 3β2 − 2
544
+
545
+ K2H2 + (1 − β2)KΞL1 + 1
546
+ 2
547
+
548
+ 4 − β2�
549
+ NH2
550
+ + (3
551
+ 2 + β2
552
+ 4 )H3
553
+ 2 − (β2
554
+ 2 + 1)H2
555
+ 2
556
+
557
+ L1
558
+ 2 + Ξ2�
559
+ ,
560
+ with
561
+ H2(q, Q) = 1
562
+ 2(Q2
563
+ 1 + Q2
564
+ 2 + Q2
565
+ 3 + Q2
566
+ 4) + 1
567
+ 2(q2
568
+ 1 + q2
569
+ 2 + q2
570
+ 3 + q2
571
+ 4) ,
572
+ Ξ(q, Q) = q1Q2 − Q1q2 + q3Q4 − Q3q4 ,
573
+ L1(q, Q) = q3Q4 − Q3q4 − q1Q2 + Q1q2 ,
574
+ K(q, Q) = 1
575
+ 2(−(q2
576
+ 1 + Q2
577
+ 1) − (q2
578
+ 2 + Q2
579
+ 2) + (q2
580
+ 3 + Q2
581
+ 3) + (q2
582
+ 4 + Q2
583
+ 4)) .
584
+ Furthermore
585
+ N(q, Q) = 1
586
+ 2 (K2
587
+ 2 + K2
588
+ 3) − 1
589
+ 2 (L2
590
+ 2 + L2
591
+ 3) ,
592
+ S(q, Q) = K2L3 − K3L2 ,
593
+ with
594
+ K2(q, Q) = (Q2Q3 + q2q3) − (Q1Q4 + q1q4) ,
595
+ K3(q, Q) = −(Q1Q3 + q1q3) − (Q2Q4 + q1q4) ,
596
+ L2(q, Q) = (q1Q3 − Q1q3) + (q2Q4 − Q2q4) ,
597
+ L3(q, Q) = (q2Q3 − Q2q3) − (q1Q4 − Q1q4) .
598
+ This Hamiltonian system has commuting integrals H2(q, Q), Ξ(q, Q), and L1(q, Q). That
599
+ is, G = T3 generated by these three integrals. For G we have the orbit map
600
+ ρ : (q, Q) → (H2(q, Q), Ξ(q, Q), L1(q, Q), N(q, Q), K(q, Q), S(q, Q)) .
601
+ Setting H2(q, Q) = n, Ξ(q, Q) = ξ, L1(q, Q) = ℓ we obtain, after reduction with respect
602
+ to the T3-action generated by H2(q, Q), Ξ(q, Q), and L1(q, Q), the reduced phase space
603
+ (n2 + ξ2 − ℓ2 − K2)2 − 4(nξ − ℓK)2 = 4N 2 + 4S2 .
604
+ in (N, K, S)-space. The T⊯ momentum map is
605
+ J : R8 → (Ξ, L1, H2) ⊂ R3 ,
606
+ 14
607
+
608
+ Figure 1: Different reduced phase space for the values of J , [18]
609
+ .
610
+ which is dual to the orbit map ρ. Hence we may classify the symplectic leaves in the orbit
611
+ space by the values of the momentum map J , see fig. 1.
612
+ Note that the image of this momentum map is not a polytope. It is related to a momentum
613
+ map of deficiency 1 (see [26]). The image is an upside down pyramid with its diagonal
614
+ planes
615
+ Let G⟨F1,··· ,Fk⟩ denote the group generated by F1, · · · , Fk Consider the action of F1 =
616
+ 1
617
+ 2(L1 + Ξ). G⟨F1⟩ is a subgroup of G⟨H2,Ξ,L1⟩, and on R8 Fix(G⟨F1⟩) = {(q, Q) ∈ R8|q1 =
618
+ Q1 = q2 = Q2 = 0} is an invariant space. Similarly for the action of F2 = 1
619
+ 2(Ξ − L1),
620
+ G⟨F2⟩ is a subgroup of G⟨H2,Ξ,L1⟩, and Fix(G⟨F2⟩) = {(q, Q) ∈ R8|q3 = Q3 = q4 = Q4 = 0}
621
+ is an invariant space.
622
+ J (Fix(G⟨F1⟩)) is the restriction of the image of J to the plane Ξ = L1. J (Fix(G⟨F2⟩)) is
623
+ the restriction of the image of J to the plane Ξ = −L1. In the image of the momentum
624
+ map J the fibration in each diagonal plane is equivalent to the fibration of the energy-
625
+ moment map for the harmonic oscillator. Points in the interior correspond to a fibre
626
+ topologically equivalent to T 2, points on the edges correspond to a fibre topologically
627
+ equivalent S1.
628
+ A line with H2 = n corresponds to an invariant surface topologically
629
+ equivalent to S3.
630
+ The points in the interior of the diagonal planes correspond to the singular reduced phase
631
+ 15
632
+
633
+ =1=0
634
+ =1
635
+ =-l
636
+ S
637
+ nElspaces. The fixed point spaces correspond to the isotropy type and orbit type strata on
638
+ the reduced phase space which are the zero dimensional symplectic leaves of the final orbit
639
+ space, that is, they are the cone-like singularities in the singular reduced phase spaces.
640
+ The image J (Fix(G⟨Ξ⟩)) is given by the planes Ξ = ±H2. And J (Fix(G⟨L1⟩)) is given by
641
+ the planes L1 = ±H2. Points in the interior correspond to a fibre topologically equivalent
642
+ to T 2, points on the edges correspond to a fibre topologically equivalent S1.
643
+ These points correspond to the isotropy strata given by the zero dimensional symplectic
644
+ leaves on the final orbit space that correspond to the cases where the reduced phase space
645
+ reduces to an isolated point.
646
+ On these singular fibres one finds relative equilibria for all G-invariant systems.
647
+ Stationary points for the reduced system XH other then the ones found sofar correspond
648
+ to the points where the Hamiltonian is tangent to the reduced phase space. These points
649
+ have as pre-image a T 3 on which one finds relative equilibria.
650
+ References
651
+ [1] R. Abraham and J. E. Marsden : ” Foundations of Mechanics”, Benjamin/Cummings
652
+ publishing Company, (1978).
653
+ [2] M. Abud and G. Sartori: The Geometry of Spontaneous Symmetry Breaking, Annals
654
+ of Physics, 150, (1983), pp 307–372.
655
+ [3] J. H. Arms, R. H. Cushman and M. J. Gotay: A Universal Reduction Procedure for
656
+ Hamiltonian Group Actions, in: The Geometry of Hamiltonian Systems, Berkeley
657
+ 1989, ed. T.S. Ratiu, MSRI series 22, Springer Verlag, (1991), pp 26–38.
658
+ [4] V. I. Arnold: Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie
659
+ et ses applications `a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier, 16,
660
+ (1966), pp 319–361.
661
+ [5] M. F. Atiyah: Convexity and commuting Hamiltonians, Bull. London Math.Soc., 14,
662
+ (1966), pp 1–15.
663
+ [6] M. Audin: ”Torus actions on symplectic manifolds”, 2nd ed, Progress in Mathematics
664
+ 93, Springer Basel AG, (2004).
665
+ [7] L. Bates, R. H. Cushman, and J. Sniatycki: Vector fields and differential forms on
666
+ the orbit space of a proper action, arXiv:2108.00280 [math.DG], (2021).
667
+ [8] P. Chossat: The Reduction of Equivariant Dynamics to the Orbit Space for Compact
668
+ Group Actions, Acta Applicandae Mathematicae, 70, (2002), pp 71–94.
669
+ 16
670
+
671
+ [9] P. Chossat, J. P. Ortega, and T. Ratiu: Hamiltonian Hopf bifurcation with symmetry,
672
+ Archive for Rational Mechanics and Analysis, 163, (2002), pp 1–33.
673
+ [10] R. C. Churchill, M. Kummer,and D. L. Rod: On Averaging, Reduction, and Sym-
674
+ metry in Hamiltonian systems, Journal of Differential Equations, 49, (1983), pp
675
+ 359–414.
676
+ [11] R. H. Cushman: Reduction of the 1:1 nonsemisimple resonance, Hadronic Journal,
677
+ 5, (1981/1982), pp 2109–2124.
678
+ [12] R. H. Cushman and D. L. Rod: Reduction of the semisimple 1:1 resonance, Physica
679
+ D, 6, (1982), pp 105–112.
680
+ [13] R. H. Cushman, and J. Sniaticky: Differential structure of orbit spaces, Canad. J.
681
+ Math., 53 (2001), pp 715 – 755. Errratum: Canad. J. Math., 55, (2003), pp 247.
682
+ [14] R. H. Cushman and J. Sniaticky: Lectures on reduction theory for Hamiltonian
683
+ systems, Utrecht spring summer school on Lie groups, (2005),
684
+ https://www.researchgate.net/publication/251315588_Lectures_on_Reduction_Theory_for_Hamiltonian_systems
685
+ [15] J. J. Duistermaat: Bifurcations of periodic solutions near equilibrium points of Hamil-
686
+ tonian systems. In Bifurcation theory and applications, Montecatini, 1983 (ed. L. Sal-
687
+ vadori) (Lecture notes in mathematics 1057), pp. 57-105. Springer-Verlag, (1984).
688
+ [16] J. J. Duistermaat and J. A. C. Kolk: ”Lie groups”, Springer Verlag, (2000).
689
+ [17] J. J. Duistermaat: Dynamical Systems with Symmetry, Lecture Notes University
690
+ Utrecht, (accessed 16-1-2023)
691
+ [18] J. Egea, S. Ferrer, and J. C. van der Meer: Bifurcations of the Hamiltonian Fourfold
692
+ 1:1 Resonance with Toroidal Symmetry, J. Nonlinear Sci., 21, (2011), pp 835–874.
693
+ [19] K. Gatermann: ”Computer algebra methods equivariant dynamical systems”, LNM
694
+ 1728, Springer Verlag, (2000).
695
+ [20] M. Golubitsky and V. Guillemin: ”Stable Mappings and Their Singularities”, Grad-
696
+ uate texts in Mathematics, 14, Springer Verlag, (1973).
697
+ [21] M. Golubitsky and D. G. Schaeffer: ”Singularities and groups in bifurcation theory”
698
+ , vol. 1., Springer-Verlag, (1985).
699
+ [22] M. Golubitsky, I. N. Stewart, and D. G. Schaeffer: ”Singularities and groups in
700
+ bifurcation theory”, vol. 2., Springer-Verlag, (1988).
701
+ [23] V. Guillemin and S. Sternberg: ”Symplectic techniques in physics”, Cambridge Univ.
702
+ Press, (1984).
703
+ [24] D. Hilbert, D.: Ueber die Theorie der algebraischen Formen, Math. Ann., 36, (1890).
704
+ 17
705
+
706
+ [25] R. Howe: Dual Pairs in Physics: Harmonic Oscillators, Photons, Electrons, and
707
+ Singletons. In: Applications of Group Theory in Physics and Mathematical Physics,
708
+ seminar 1982, eds. Flato, M., Sally, P., Zuckerman, G., Lecture Notes in Applied
709
+ Mathematics 21, AMS, Providence, (1985).
710
+ [26] Y. Karshon: Hamiltonian torus actions. In: Geometry and Physics, Lecture Notes in
711
+ Pure and Applied Mathematics Series, vol. 184, Marcel Dekker, p.221–230, (1996).
712
+ [27] Y. Karshon and E. Lerman: The centralizer of invariant functions and division prop-
713
+ erties of the moment map, Illinois Journal of Mathematics,, 41 (1987), pp 462 –
714
+ 486.
715
+ [28] M. Koenig, M.: Linearization of vector fields on the orbit space of the action of a
716
+ compact Lie group, Math. Proc. Camb, Phil. Soc., 121, (1997), pp 401–424.
717
+ [29] M. Kummer: On the construction of the reduced phase space of a Hamiltonian systen
718
+ with symmetry, Indiana Univ. math. J., 30, (1981), pp 281–291.
719
+ [30] M. Kummer: Lecture 1: On resonant Hmiltonian systems with finitely many degrees
720
+ of freedom, Local and Global Methods in Physics, Lecture Notes in Physics, 252,
721
+ (1986), pp 19–31.
722
+ [31] E. Lerman and S. Singer: Relative equilibria and singular points of the momentum
723
+ map, Nonlinearity, 11, (1998), pp 1637–1647.
724
+ [32] J. E. Marsden and A. Weinstein: Reduction of symplectic manifolds with symmetry,
725
+ Rep. Math. Phys., 5, (1974), pp 121–130.
726
+ [33] J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter, T. S. Ratiu: ”Hamiltonian
727
+ reduction by stages”. Lect. Notes in Math., 1913, Springer-Verlag, (2007).
728
+ [34] K. R. Meyer: Symmetries and integrals in mechanics, in: Dynamical Systems, ed.
729
+ M.M. Peixoto, Academic Press, pp 259–272, (1973).
730
+ [35] E. Meinrenken: Group actions on manifolds, Lecture notes University of Toronto,
731
+ (2003), http://www.math.toronto.edu/mein/teaching/LectureNotes/action.pdf (ac-
732
+ cessed 16-1-2023)
733
+ [36] L.
734
+ Michel:
735
+ Point
736
+ critiques
737
+ des
738
+ fonctions
739
+ invariantes
740
+ sur
741
+ unne
742
+ G-vari´et´e,
743
+ C.R.Acad.Sc.Paris, 272, (1971), pp 433–436.
744
+ [37] L. Michel: Non-linear group action: smooth action of compact Lie groups on mani-
745
+ folds, In: R. N. Sen and C. Weil editors, Statistical mechanics and field theory, Israel
746
+ Universitary Press, pp 133–150, (1972).
747
+ [38] L. Michel and B. I. Zhilinskii: Symmetry, invariants, toplogy I, Symmetry, Invariants,
748
+ Topology. Basic tools, Physics Reports, 341, (2001), pp 11–84.
749
+ 18
750
+
751
+ [39] J. Montaldi, R. M. Roberts, and I. N. Stewart: Periodic solutions near equilibria of
752
+ symmetric hamiltonian systems, Phil. Trans. Roy.Soc. London, 325, (1988), pp237–
753
+ 293.
754
+ [40] J. Montaldi, R. M. Roberts, and I. N. Stewart: Existence of nonlinear normal modes
755
+ of symmetric Hamiltonian systems, Nonlinearity, 3, (1990), pp 695–730.
756
+ [41] J. Montaldi, R. M. Roberts, and I. N. Stewart: Stability of nonlinear normal modes
757
+ of symmetric Hamiltonian systems, Nonlinearity, 3, (1990), pp 731–772.
758
+ [42] J. Montaldi: Persistence and stability of relative equilibria, Nonlinearity, 10, (1997),
759
+ pp 449–466.
760
+ [43] J. Montaldi and M. R. Olmos: On the stability of Hamiltonian relative equilibria
761
+ with non-trivial isotropy, Nonlinearity, 24, (2011), pp 2777–2783.
762
+ [44] J. P. Ortega and T. Ratiu: Stability of Hamiltonian relative equilibria, Nonlinearity,
763
+ 12, (1999), pp 693–720.
764
+ [45] J. P. Ortega: Optimal reduction, arXiv:math/0206310v1, [Math.SG] (2002).
765
+ [46] J. P. Ortega: Singular dual pairs, Differential Geometry and its Applications, 19,
766
+ (2003), pp 61–95.
767
+ [47] J. P. Ortega and T. Ratiu: ”Momentum maps and Hamiltonian reduction”, Progress
768
+ in Mathematics, 222, Springer Verlag, (2004).
769
+ [48] J. P. Ortega and T. Ratiu: The Stratified Spaces of a Symplectic Lie Group Action,
770
+ Reports on Mathematical Physics, 58, (2006), pp 51–75.
771
+ [49] G. W. Patrick: Relative equilibria in Hamiltonian systems: The dynamic interpreta-
772
+ tion of nonlinear stability on a reduced phase space, Journal of geometry and Physics,
773
+ 9, (1992).
774
+ [50] G. W. Patrick, M. Roberts, and C. Wulff: Stability of Poisson Equilibria and Hamil-
775
+ tonian Relative Equilibria by Energy Methods, Arch. Rational Mech. Anal., 174,
776
+ (2004), pp 301–344.
777
+ [51] R. S. Palais: The clssification of G-spaces , Memoirs of the AMS, 36, (1960).
778
+ [52] V. Po´enaru: ”Singularit´es C∞ en pr´esence de sym´etrie”, LNM 510, Springer-Verlag,
779
+ (1976).
780
+ [53] G. Reeb: Sur les solution p´eriodiques de certain syst`emes diff´erentielles perturb´es,
781
+ Canadian Journal of Mathematics, 3, (1951), pp 339–362.
782
+ [54] G. Reeb: Sur certaines propri´et´es topologiques des trajectoires des syst`emes dy-
783
+ namiques, M´emoires de l’Acad´emie Royale de Belgique, 27:9, (1952).
784
+ 19
785
+
786
+ [55] M. Roberts, C. Wulff, and J. S. W. Lamb: Hamiltonian Systems near Relative Equi-
787
+ libria, Journal of Differential Equations, 179, (2002), pp 562–604.
788
+ [56] M. Rumberger J. and Scheurle: The Orbit Space Method: Theory and Application,
789
+ In: Fiedler, B. (eds) Ergodic Theory, Analysis, and Efficient Simulations of Dynam-
790
+ ical Sytems, pp 649–689, Springer Verlag, (2001).
791
+ [57] D. A. Sadovskii and B. I. Zhilinskii: Qualitative models of Intramolecular dynam-
792
+ ics of acetylene: relation between the bending polyads of acetylene and pwrturbed
793
+ Keplerian systems, Molecular Physics, 116, (2018), pp3564–3601.
794
+ [58] J. A. Sanders and J. C. van der Meer: Unique normal form of the Hamiltonian 1:2
795
+ resonance. In: Geometry and analysis in nonlinear dynamics, Proceedings of the
796
+ Conference on Chaotic Dynamics and Bifurcations, Groningen, March 1989, eds.
797
+ H.W. Broer and F. Takens, Pitman Research Notes in Mathematics Series 222,
798
+ Longman Scientific and Technical, Harlow, (1992).
799
+ [59] G. Schwarz: Smooth function invariant under the action of a compact Lie group,
800
+ Topology, 14, (1975), pp 63–68.
801
+ [60] J. C. Simo, D. Lewis,and J. E. Marsden: Stability of Relative Equilibria. Part I: The
802
+ Reduced Energy-Momentum Method, Arch. Rational Mech. Anal., 115, (1991), pp
803
+ 15–59.
804
+ [61] R. Sjamaar and E. Lerman: Stratified symplectic spaces and reduction, The Annals
805
+ of Mathematics, 134, (1991), pp 375–422.
806
+ [62] S. Smale: Topology and Mechanics, Inventiones Math., 10, (1970), pp 305–331 ; 11,
807
+ (1970),pp 45–64.
808
+ [63] J. ´Sniatycki: ”Differential Geometry of Singular spaces and Reduction of Symmetry”,
809
+ Cambridge University Press, (2013).
810
+ [64] J. C. van der Meer: The Hamiltonian Hopf bifurcation, preprint 285, dept. of Math-
811
+ ematics,University of Utrecht, (1983).
812
+ [65] J. C. van der Meer: ”The Hamiltonian Hopf bifurcation”, LNM 1160, Springer Verlag,
813
+ (1985).
814
+ [66] J. C. van der Meer: Hamiltonian Hopf bifurcation with symmetry, Nonlinearity, 3,
815
+ (1990), pp 1041–1056.
816
+ [67] J. Watts: Differential spaces, vector fields, and orbit-type stratifications, arXiv:
817
+ 1104.4084v3, [Math.SG], (2013).
818
+ [68] A. Weinstein: The local structure of Poisson manifolds, J. Differential Geometry, 18,
819
+ (1983), pp 523–557.
820
+ 20
821
+
822
+ [69] H. Weyl: ”The classical groups, their invariants and representations” , Princeton
823
+ Univ. Press, (1946).
824
+ [70] B. I. Zhilinskii: Symmetry, invariants, toplogy II, Symmetry, invariants and topology
825
+ in molecular models, Physics Reports, 341, (2001), pp 85–171.
826
+ 21
827
+
1NFKT4oBgHgl3EQfOi14/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dE2T4oBgHgl3EQfNgaR/content/tmp_files/2301.03738v1.pdf.txt ADDED
@@ -0,0 +1,1817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03738v1 [math.NT] 10 Jan 2023
2
+ Hyperbolic summations derived using the Jacobi functions dc and nc
3
+ John M. Campbell
4
+ Abstract
5
+ We introduce a method that is based on Fourier series expansions related to Jacobi
6
+ elliptic functions and that we apply to determine new identities for evaluating hyper-
7
+ bolic infinite sums in terms of the complete elliptic integrals K and E. We apply our
8
+ method to determine generalizations of a family of sech-sums given by Ramanujan and
9
+ generalizations of a family of csch-sums given by Zucker. Our method has the advan-
10
+ tage of producing evaluations for hyperbolic sums with sign functions that have not
11
+ previously appeared in the literature on hyperbolic sums. We apply our method using
12
+ the Jacobian elliptic functions dc and nc, together with the elliptic alpha function, to
13
+ obtain new closed forms for q-digamma expressions, and new closed forms for series
14
+ related to discoveries due to Ramanujan, Berndt, and others.
15
+ Keywords: Jacobi elliptic function, elliptic integral, hyperbolic function, Γ-function, symbolic evaluation,
16
+ elliptic alpha function
17
+ Mathematics Subject Classification: 42A16, 33E05
18
+ 1
19
+ Introduction
20
+ The Jacobi elliptic functions are defined via the inversion of the elliptic integral
21
+ u = F(φ, k) =
22
+ � φ
23
+ 0
24
+ dt
25
+
26
+ 1 − k2 sin2 t
27
+ (1)
28
+ of the first kind, letting 0 < k2 < 1. The expression k = mod u is referred to as the elliptic
29
+ modulus, and φ = am(u, k) = am(u) is referred to as the Jacobi amplitude. The Jacobi
30
+ elliptic functions sn, cn, and dn may be defined as follows:
31
+ sin φ = sn(u, k),
32
+ (2)
33
+ cos φ = cn(u, k),
34
+ and
35
+ (3)
36
+
37
+ 1 − k2 sin2 φ = dn(u, k).
38
+ (4)
39
+ In this article, we apply Fourier series expansions related to Jacobi elliptic functions to build
40
+ on the work on hyperbolic infinite sums due to Zucker [67], Yakubovich [64], and Xu [63]. The
41
+ relevance of Zucker’s work in [67] (cf. [66]) within high-energy physics [17, 18, 23], nuclear
42
+ physics [22], electrostatics [38], the study of lattice sums [16], number-theoretic subjects
43
+ in the study of Fibonacci sums [24, 25, 26, 27, 28], and number-theoretic areas concerning
44
+ Ramanujan’s series for 1
45
+ π [4, 5, 15] and for constants such as Ap´ery’s constant [59] serve as
46
+ a main source of motivation behind the techniques and results introduced in this article.
47
+ 1
48
+
49
+ 1.1
50
+ Background and further preliminaries
51
+ The complete elliptic integral of the first kind K is such that K(k) = F
52
+ � π
53
+ 2, k
54
+
55
+ . We may also
56
+ write K(k) = K and K′ = K′(k) = K(k′), with k′ =
57
+
58
+ 1 − k2, and similarly with respect to
59
+ the complete elliptic integral E(k) =
60
+ � π
61
+ 2
62
+ 0
63
+
64
+ 1 − k2 sin2 θ dθ of the second kind.
65
+ Combinations involving the sn, cn, and dn functions give us the remaining Jacobi elliptic
66
+ functions, as listed below:
67
+ cd(u, k) = cn(u, k)
68
+ dn(u, k),
69
+ (5)
70
+ cs(u, k) = cn(u, k)
71
+ sn(u, k),
72
+ dc(u, k) = dn(u, k)
73
+ cn(u, k),
74
+ (6)
75
+ ds(u, k) = dn(u, k)
76
+ sn(u, k) ,
77
+ nc(u, k) =
78
+ 1
79
+ cn(u, k),
80
+ nd(u, k) =
81
+ 1
82
+ dn(u, k),
83
+ ns(u, k) =
84
+ 1
85
+ sn(u, k),
86
+ sc(u, k) = sn(u, k)
87
+ cn(u, k),
88
+ and
89
+ sd(u, k) = sn(u, k)
90
+ dn(u, k).
91
+ The Γ-function [49, §8] is famous and ubiquitous as a special function, and is to frequently
92
+ arise in our work. We recall that this special function is defined for ℜ(x) > 0 with the Euler
93
+ integral Γ(x) =
94
+ � ∞
95
+ 0 ux−1e−u du [49, §8]. A useful feature concerning our method in Section
96
+ 1.2 is given by how this method may be used to obtain new evaluations for expressions
97
+ involving the q-digamma function ψq(z), which may be defined so that
98
+ ψq(z) =
99
+ 1
100
+ Γq(z)
101
+ ∂Γq(z)
102
+ ∂z
103
+ ,
104
+ where Γq denotes the q-analogue of the Γ-function.
105
+ Equivalently, we may define the q-
106
+ digamma function so that
107
+ ψq(z) = − ln(1 − q) + ln q
108
+
109
+
110
+ n=0
111
+ qn+z
112
+ 1 − qn+z .
113
+ (7)
114
+ 2
115
+
116
+ In Ramanujan’s second notebook [12, §17] (cf. [8]), identities for evaluating
117
+
118
+
119
+ n=0
120
+ (−1)n(2n + 1)ssech
121
+ �2n + 1
122
+ 2
123
+ K′
124
+ K π
125
+
126
+ (8)
127
+ in terms of K are given, such as the identity [12, p. 134]
128
+
129
+
130
+ n=0
131
+ (−1)n(2n + 1)sech
132
+ �2n + 1
133
+ 2
134
+ K′
135
+ K π
136
+
137
+ = 2kk′K2
138
+ π2
139
+ .
140
+ (9)
141
+ In Zucker’s seminal article on hyperbolic sums [67], an identity for evaluating (8) was also
142
+ included, and [67] also provided identities for the sums given by replacing sech with csch in
143
+ Ramanujan’s sums in (8):
144
+
145
+
146
+ n=0
147
+ (−1)n(2n + 1)scsch
148
+ �2n + 1
149
+ 2
150
+ K′
151
+ K π
152
+
153
+ = 2Js,
154
+ (10)
155
+ with, for example,
156
+ 4J0 =
157
+ �2K
158
+ π
159
+
160
+ k
161
+ and
162
+ 4J2 =
163
+ �2K
164
+ π
165
+ �3
166
+ k(1 − k2).
167
+ Zucker’s methods in [67] mainly relied on double series manipulations together with expan-
168
+ sions such as
169
+ Js(c) = Js =
170
+
171
+
172
+ n=1
173
+ (−1)n+1(2n − 1)sqn−1/2
174
+ 1 − q2n−1
175
+ ,
176
+ writing
177
+ q = e−π K′
178
+ K
179
+ (11)
180
+ to denote the nome for Jacobian elliptic functions. In this article, we provide a method that
181
+ may be used to to evaluate the members of both of the families of generalizations of (8) and
182
+ (10) indicated as follows:
183
+ 1. The sums obtained by replacing sech (resp. csch) with the higher power sech2 (resp.
184
+ csch2), for all odd powers s, in (8) (resp. (10)); and
185
+ 2. The sums given by replacing the sign function (−1)n with the sign function (−1)⌊ n
186
+ 2⌋
187
+ within the sums indicated in the preceding point.
188
+ Our evaluation technique may be applied much more broadly, apart from the families of
189
+ hyperbolic sums indicated above. For example, our method may also be applied to produce
190
+ new summations that resemble and are related to the summations
191
+
192
+
193
+ n=1
194
+ n
195
+ e2πn − 1 = 1
196
+ 24 − 1
197
+
198
+ and
199
+
200
+
201
+ n=1
202
+ n13
203
+ e2nπ − 1 = 1
204
+ 24
205
+ 3
206
+
207
+ due to Ramanujan [51, pp. 326, xxvi]. These Ramanujan summations have been explored by
208
+ authors such as Nanjundiah [44] and Sandham [53]. As in [44], we record that Ramanujan
209
+ had given the first out of the above identities in his seminal article on modular equations
210
+ and approximations to π [50].
211
+ As in Yakubovich’s article [64], our work is a continuation of the methods due to Ling
212
+ and Zucker [39, 40, 67]. Yakubovich’s symbolic forms as in
213
+ Γ4 �1
214
+ 4
215
+
216
+ 32π4 + Γ8 � 1
217
+ 4
218
+
219
+ 512π6 −
220
+ 1
221
+ 8π2 =
222
+
223
+
224
+ n=1
225
+ n2 cosh(πn)csch2(πn)
226
+ for infinite series involving csch2 were highlighted as Corollaries in [64] and motivate our
227
+ symbolic forms for csch2-sums as in Examples 7 and 8 below.
228
+ 1.2
229
+ Main technique
230
+ Our main technique may be summarized in the following manner, letting j(u, k) denote a
231
+ Jacobi elliptic function.
232
+ 1. Start with the Fourier series expansion for j(u, k) or for some expression involving a
233
+ Jacobi elliptic function, or some manipulation of such Fourier series expansions such
234
+ as a series expansion obtained via term-by-term applications of a differential operator;
235
+ 2. In order to use built-in CAS algorithms for reducing, if possible, derivatives of q-powers
236
+ with respect to the elliptic modulus and using hyperbolic functions, we need to rewrite
237
+ the summand of the series indicated in the previous step so that any exponential
238
+ expressions only appear in the denominator, and we need to simplify the powers for
239
+ any such expressions;
240
+ 3. Enforce a substitution such as u �→ 2wK for a variable w;
241
+ 4. Argue, if possible, that if w were to be set to some special value, the series obtained
242
+ from the third step would reduce to a closed-form evaluation; and
243
+ 5. If the resultant summand is non-vanishing, and if differentiating with respect to the
244
+ elliptic modulus yields a summand that may be expressed in terms of hyperbolic func-
245
+ tions, then simplify the resultant summand.
246
+ 1.3
247
+ Organization of the article
248
+ The above technique may be applied to many out of the 12 of the Jacobian functions among
249
+ cd, cn, cs, dc, dn, ds, nc, nd, ns, sc, sd, and sn. However, we sometimes obtain equivalent
250
+ results by applying our technique to different Jacobian elliptic functions. For example, if we
251
+ apply this technique to ns, then the results that we would obtain would also be obtainable
252
+ by applying our technique to dc. The results in this article in Sections 2 and 3 are devoted
253
+ 4
254
+
255
+ to the application of our technique to dc and and nc, and if we were to attempt to apply
256
+ the same method to Jacobi elliptic functions other than dc and and nc, this method would
257
+ either not be applicable, or we would obtain the same results as in Sections 2 and 3 below.
258
+ Our method may also be applied to Fourier series expansions for expressions other than
259
+ the 12 Jacobi functions we have listed. For example, an equivalent formulation of the q-
260
+ expansion
261
+ �2K
262
+ π
263
+ �2
264
+ ns2(2Kw, k) = 4K(K − E)
265
+ π2
266
+ + csc2(πw) − 8
267
+
268
+
269
+ n=1
270
+ nq2n cos(2nπw)
271
+ 1 − q2n
272
+ (12)
273
+ for ns2 which, as recorded in [67], was included in the classic text [62, p. 535] and dates back
274
+ to the work of Jacobi [32], may be applied in accordance with the technique in Section 1.2.
275
+ This is briefly considered in Section 4.
276
+ 2
277
+ Applications of the Jacobi elliptic function dc
278
+ The connections between the Jacobi elliptic functions and the generalized Bessel functions,
279
+ as explored in [20], serve as a further source of motivation concerning our applications related
280
+ to series expansions given in [20]. To begin with, we record the Fourier series expansion
281
+ dc(u, k) = π
282
+ 2K sec v + 2π
283
+ K
284
+
285
+
286
+ n=0
287
+ (−1)nq2n+1
288
+ 1 − q2n+1 cos((2n + 1)v)
289
+ (13)
290
+ given in [20] and in classic texts such as [61, pp. 511–512], writing v = πu
291
+ 2K and recalling (11).
292
+ Following the evaluation technique in Section 1.2, we rewrite the above series expansion for
293
+ dc as follows:
294
+ dc(2Kw, k) = π
295
+ 2K
296
+
297
+ 1
298
+ cos(πw) + 4
299
+
300
+
301
+ n=0
302
+ (−1)n
303
+ e(2n+1)π K′
304
+ K − 1
305
+ cos((2n + 1)πw)
306
+
307
+ .
308
+ (14)
309
+ Setting w = 0, (14) this gives us that
310
+ K
311
+ 2π − 1
312
+ 4 =
313
+
314
+
315
+ n=0
316
+ (−1)n
317
+ e(2n+1)π K′
318
+ K − 1
319
+ ,
320
+ (15)
321
+ and the formula in (15) was also proved by Bagis in [3] (Corollary 1), using an identity due
322
+ to Ramanujan [12, p. 174]. Applying term-by-term differentiation to (15) with respect to
323
+ the elliptic modulus, we may obtain that
324
+ 2K2 (E + (k2 − 1) K)
325
+ π2(K′(E − K) + E′K) =
326
+
327
+
328
+ n=0
329
+ (−1)n(2n + 1)csch2
330
+ �2n + 1
331
+ 2
332
+ K′
333
+ K π
334
+
335
+ .
336
+ (16)
337
+ We intend to generalize (16), by analogy with Zucker’s sum in (10).
338
+ 5
339
+
340
+ 2.1
341
+ Generalizing Zucker’s sum
342
+ To generalize Zucker’s sum in (10) by replacing csch with csch2 in (10), we apply our tech-
343
+ nique indicated in Section 1.2, as in the below proof.
344
+ Theorem 1. The equality
345
+ 1
346
+ 4 + 2 (k2 − 1) K3
347
+ π3
348
+ =
349
+
350
+
351
+ n=0
352
+ (−1)n(2n + 1)2
353
+ e(2n+1) K′
354
+ K π − 1
355
+ holds if the above series converges.
356
+ Proof. We again begin with the Fourier series expansion for dc in (13). We rewrite the
357
+ left-hand side of (13) according to (6), and then apply the operator
358
+ d2
359
+ du2 to both sides of
360
+ the resultant equality. We then expand the left-hand according to the following differential
361
+ equations:
362
+ d snu
363
+ du
364
+ = cnu dnu,
365
+ (17)
366
+ d cn u
367
+ du
368
+ = −snu dnu,
369
+ and
370
+ (18)
371
+ d dnu
372
+ du
373
+ = −k2snu cnu,
374
+ (19)
375
+ After much simplification and rearrangement using (17)–(19), we can show that
376
+ dn(u, k)
377
+
378
+ dn2(u, k) − k2cn2(u, k)
379
+
380
+ (cn2(u, k) + 2sn2(u, k))
381
+ cn3(u, k)
382
+ (20)
383
+ equals
384
+ π3 �
385
+ 3 − cos
386
+ �πu
387
+ K
388
+ ��
389
+ sec3 � πu
390
+ 2K
391
+
392
+ 16K3
393
+ − π3
394
+ 2K3
395
+
396
+
397
+ n=0
398
+ (−1)nq2n+1(2n + 1)2 cos
399
+
400
+ (2n+1)πu
401
+ 2K
402
+
403
+ 1 − q2n+1
404
+ ,
405
+ (21)
406
+ reversing the order of the limiting operations
407
+ d2
408
+ du2 and �∞
409
+ n=0 ·. Following the steps in Section
410
+ 1.2, we set u �→ 2wK. Setting w = 0 then gives us an equivalent formulation of the desired
411
+ result.
412
+ We let elliptic singular values be denoted in the usual way [14, p. 298], writing
413
+ K′(kr)
414
+ K(kr) = √r,
415
+ (22)
416
+ where the elliptic lambda function is such that
417
+ λ∗(r) = kr,
418
+ (23)
419
+ with expressions of the form K(kr) admitting explicit symbolic evaluations for natural num-
420
+ bers r ∈ N. Although the result highlighted as Theorem 1 is to be applied to obtain new
421
+ hyperbolic summations, we are to apply this same result using the relations in (22) and (23).
422
+ 6
423
+
424
+ Example 1. Setting r = 1 in (22), from the symbolic forms
425
+ λ∗(1) = k1 =
426
+
427
+ 2
428
+ 2
429
+ (24)
430
+ and
431
+ K(k1) = Γ2 � 1
432
+ 4
433
+
434
+ 4√π ,
435
+ (25)
436
+ this gives us, from Theorem 1, that
437
+ 1
438
+ 4 − Γ6 � 1
439
+ 4
440
+
441
+ 64π9/2 =
442
+
443
+
444
+ n=0
445
+ (−1)n(2n + 1)2
446
+ e(2n+1)π − 1
447
+ .
448
+ Example 2. Setting r = 4 in (22), the symbolic forms
449
+ λ∗(4) = k4 = 3 − 2
450
+
451
+ 2,
452
+ (26)
453
+ and
454
+ K(k4) =
455
+
456
+ 1 +
457
+
458
+ 2
459
+
460
+ Γ2 � 1
461
+ 4
462
+
463
+ 8
464
+
465
+
466
+ (27)
467
+ give us, via Theorem 1, that
468
+ 1
469
+ 4 −
470
+
471
+ 1 +
472
+
473
+ 2
474
+
475
+ Γ6 � 1
476
+ 4
477
+
478
+ 128π9/2
479
+ =
480
+
481
+
482
+ n=0
483
+ (−1)n(2n + 1)2
484
+ e2(2n+1)π − 1 .
485
+ Theorem 1 may be further applied so as to obtain the following evaluation for the sum
486
+ given by setting s = 3 and replacing csch with csch2 in Zucker’s sum in (10).
487
+ Theorem 2. The identity
488
+ 8 (k2 − 1) K4 (3E + (k2 − 3) K)
489
+ π4(K′(E − K) + E′K)
490
+ =
491
+
492
+
493
+ n=0
494
+ (−1)n(2n + 1)3csch2
495
+ �2n + 1
496
+ 2
497
+ K′
498
+ K π
499
+
500
+ holds if the above series converges.
501
+ Proof. This follows in a direct way by applying term-by-term differentiation with respect to
502
+ the elliptic modulus in Theorem 1.
503
+ Example 3. Using the elliptic alpha function
504
+ α(r) =
505
+ π
506
+ 4K2(kr) + √r − E(kr)√r
507
+ K(kr)
508
+ (28)
509
+ together with the elliptic function identity
510
+ E′ = π
511
+ 4K + α(r)K
512
+ (29)
513
+ 7
514
+
515
+ and the known formula α(1) = 1
516
+ 2, we may obtain symbolic forms for E(k1) and E′(k1). So,
517
+ in Theorem 2, we set k = k1 as the value in (24), so as to obtain that
518
+ Γ10 � 1
519
+ 4
520
+
521
+ 128π15/2 − 3Γ6 � 1
522
+ 4
523
+
524
+ 32π11/2 =
525
+
526
+
527
+ n=0
528
+ (−1)n(2n + 1)3csch2
529
+ �2n + 1
530
+ 2
531
+ π
532
+
533
+ .
534
+ Example 4. Setting k = k4 as the value in (26), from the known valuation α(4) = 2(
535
+
536
+ 2−1)2,
537
+ this, together with the elliptic alpha function identities in (28) and (29), allows us to obtain,
538
+ via Theorem 2, that
539
+
540
+ 2 +
541
+
542
+ 2
543
+
544
+ Γ10 � 1
545
+ 4
546
+
547
+ 1024π15/2
548
+ − 3
549
+
550
+ 1 +
551
+
552
+ 2
553
+
554
+ Γ6 � 1
555
+ 4
556
+
557
+ 128π11/2
558
+ =
559
+
560
+
561
+ n=0
562
+ (−1)n(2n + 1)3csch2((2n + 1)π).
563
+ Relative to our proof of Theorem 2, we may similarly evaluate
564
+
565
+
566
+ n=0
567
+ (−1)n(2n + 1)scsch2
568
+ �2n + 1
569
+ 2
570
+ K′
571
+ K π
572
+
573
+ (30)
574
+ for odd natural numbers s ∈ N≥5. It would be desirable to explicitly evaluate (30) for odd
575
+ s ∈ N. This is nontrivial, and may require combinatorial formulas for higher derivatives
576
+ for dc(u, k) resulting from repeated applications of the differential equation system given by
577
+ (17)–(19). We leave this, together with some other problems considered in Section 5, for a
578
+ separate project.
579
+ 2.2
580
+ A new sign function
581
+ Our identities for alternating sums involving factors of the form
582
+ csch2
583
+ �2n + 1
584
+ 2
585
+ K′
586
+ K π
587
+
588
+ ,
589
+ (31)
590
+ as in Theorem 4 below, are of interest in part because these identities cannot be derived
591
+ from previously known results on sums involving expressions such as
592
+ csch
593
+ �2n + 1
594
+ 2
595
+ K′
596
+ K π
597
+
598
+ ,
599
+ such as the relation whereby
600
+ kK
601
+ π
602
+ =
603
+
604
+
605
+ n=0
606
+ (−1)ncsch
607
+ �2n + 1
608
+ 2
609
+ K′
610
+ K π
611
+
612
+ given as (5.3.4.1) in [48] and employed in [64] via term-by-term differentiation with respect to
613
+ the elliptic modulus. To obtain new sums involving (31), we are to interchange the limiting
614
+ operations given by the application of
615
+ d
616
+ dk and the application of �∞
617
+ n=0 · in the new result
618
+ 8
619
+
620
+ highlighted as Theorem 3 below. To the best of our knowledge, hyperbolic sums involving
621
+ sign functions such as n �→ (−1)⌊ n
622
+ 2⌋ have not previously appeared in the relevant literature
623
+ on hyperbolic sums, which further motivates the research interest in results as in Theorems
624
+ 3 and 4 below.
625
+ Theorem 3. The identity
626
+ �√
627
+ 1 − k +
628
+
629
+ 1 + k
630
+
631
+ K
632
+
633
+ − 1
634
+ 2 =
635
+
636
+
637
+ n=0
638
+ (−1)⌊ n
639
+ 2⌋
640
+ e(2n+1) K′
641
+ K π − 1
642
+ holds if the above series converges.
643
+ Proof. From the identity in (14), we find that the quotient
644
+ dn(2Kw, k)
645
+ cn(2Kw, k)
646
+ admits the same expansion as in (14). So, setting w = 1
647
+ 4 and applying the half-K formulas
648
+ cn
649
+ �1
650
+ 2K, k
651
+
652
+ =
653
+
654
+ 2
655
+ 4√
656
+ 1 − k2
657
+
658
+ 1 + k +
659
+
660
+ 1 − k
661
+ (32)
662
+ and
663
+ dn
664
+ �1
665
+ 2K, k
666
+
667
+ =
668
+ 4√
669
+ 1 − k2,
670
+ (33)
671
+ we obtain the expansion
672
+
673
+ 1 − k +
674
+
675
+ k + 1
676
+
677
+ 2
678
+ = π
679
+ 2K
680
+
681
+
682
+ 2 + 4
683
+
684
+
685
+ n=0
686
+ (−1)n cos
687
+ �2n+1
688
+ 4 π
689
+
690
+ e(2n+1) K′
691
+ K π − 1
692
+
693
+ ,
694
+ which is equivalent to the desired result.
695
+ Example 5. For the elliptic singular value corresponding to the r = 1 case in Theorem 3,
696
+ we obtain that
697
+
698
+ 2 +
699
+
700
+ 2Γ2 �1
701
+ 4
702
+
703
+ 8π3/2
704
+ − 1
705
+ 2 =
706
+
707
+
708
+ n=0
709
+ (−1)⌊ n
710
+ 2⌋
711
+ e(2n+1)π − 1.
712
+ This is equivalent to the q-digamma evaluation shown below:
713
+ 4π +
714
+
715
+ 2 +
716
+
717
+ 2
718
+ π
719
+ Γ2
720
+ �1
721
+ 4
722
+
723
+ = −ψe8π
724
+ �1
725
+ 8
726
+
727
+ − ψe8π
728
+ �3
729
+ 8
730
+
731
+ + ψe8π
732
+ �5
733
+ 8
734
+
735
+ + ψe8π
736
+ �7
737
+ 8
738
+
739
+ .
740
+ Example 6. Setting k = k4 in Theorem 3, we may obtain that
741
+
742
+ 3 + 2
743
+
744
+ 2 + 2
745
+
746
+ 4 + 3
747
+
748
+ 2Γ2 �1
749
+ 4
750
+
751
+ 16π3/2
752
+ − 1
753
+ 2 =
754
+
755
+
756
+ n=0
757
+ (−1)⌊ n
758
+ 2⌋
759
+ e2(2n+1)π − 1.
760
+ 9
761
+
762
+ This is equivalent to the q-digamma evaluation shown below:
763
+ 8π +
764
+
765
+ 3 + 2
766
+
767
+ 2 + 2
768
+
769
+ 4 + 3
770
+
771
+ 2
772
+ π
773
+ Γ2
774
+ �1
775
+ 4
776
+
777
+ =
778
+ − ψe16π
779
+ �1
780
+ 8
781
+
782
+ − ψe16π
783
+ �3
784
+ 8
785
+
786
+ + ψe16π
787
+ �5
788
+ 8
789
+
790
+ + ψe16π
791
+ �7
792
+ 8
793
+
794
+ .
795
+ Theorem 4. The identity
796
+ 2k (k2 − 1) K2
797
+
798
+ (
799
+ √1−k+√1+k)(E+(k2−1)K)
800
+ k(k2−1)
801
+ − 1
802
+ 2
803
+
804
+ 1
805
+ √1+k −
806
+ 1
807
+ √1−k
808
+
809
+ K
810
+
811
+ π2(E′K + (E − K)K′)
812
+ =
813
+
814
+
815
+ n=0
816
+ (−1)⌊ n
817
+ 2⌋(2n + 1)csch2
818
+ �2n + 1
819
+ 2
820
+ K′
821
+ K π
822
+
823
+ holds for suitably bounded k.
824
+ Proof. This follows in a direct way by differentiating both sides of the identity in Theorem
825
+ 3 with respect to the elliptic modulus, and then reversing the order of differentiation and
826
+ infinite summation, and then applying much simplification.
827
+ Our series as in Example 8 are motivated by series evaluations of a similar appearance
828
+ recorded in [7]. For example, the series evaluation
829
+
830
+
831
+ n=1
832
+ (−1)n+1ncsch(πn) = 1
833
+
834
+ recorded [7] was, as noted in [7], previously proved by many difference authors in [19, 35,
835
+ 44, 45, 52, 54, 67]. To obtain new closed forms from Theorem 4, we are to make use of the
836
+ elliptic alpha function [14, §5]
837
+ Example 7. Using the elliptic singular value k1, a special case of Theorem 4 gives us that
838
+
839
+ 2 +
840
+
841
+ 2Γ2 �1
842
+ 4
843
+
844
+ 4π5/2
845
+
846
+
847
+ 2 −
848
+
849
+ 2Γ6 � 1
850
+ 4
851
+
852
+ 64π9/2
853
+ =
854
+
855
+
856
+ n=0
857
+ (−1)⌊ n
858
+ 2⌋(2n + 1)csch2
859
+ �2n + 1
860
+ 2
861
+ π
862
+
863
+ .
864
+ Example 8. Using the elliptic singular value k4, a special case of Theorem 4 gives us that
865
+ ��
866
+ 1 +
867
+
868
+ 2 +
869
+
870
+ 2 +
871
+
872
+ 2
873
+
874
+ Γ2 � 1
875
+ 4
876
+
877
+ 16π5/2
878
+
879
+
880
+ 4 +
881
+
882
+ 2 + 27/4Γ6 � 1
883
+ 4
884
+
885
+ 256π9/2
886
+ =
887
+
888
+
889
+ n=0
890
+ (−1)⌊ n
891
+ 2⌋(2n + 1)csch2((2n + 1)π).
892
+ 10
893
+
894
+ As in [13], we record that Nanjundiah’s formula
895
+
896
+
897
+ n=1
898
+ csch2(nπ) = 1
899
+ 6 − 1
900
+
901
+ has, subsequent to Nanjundiah 1951 proof [44], been proved by many different authors,
902
+ including Berndt [9], Ling [40], Kiyek and Schmidt [33], Muckenhoupt [43], and Shafer [55].
903
+ Nanjundiah’s formula, together with our new sums involving csch2 given in Examples 7 and
904
+ 8, inspire us to further apply our method in the evaluation of sums involving csch2.
905
+ 2.3
906
+ Higher powers of 2n + 1
907
+ We are to again make use of the equality of (20) and (21), to prove the following companion
908
+ to Theorem 1.
909
+ Theorem 5. The equality
910
+ 3
911
+ 2 + 4 (k2 (3 + k′) − 3 (1 + k′)) K3
912
+ �√
913
+ 1 − k +
914
+
915
+ 1 + k
916
+
917
+ π3
918
+ =
919
+
920
+
921
+ n=0
922
+ (−1)⌊ n
923
+ 2⌋(2n + 1)2
924
+ e(2n+1) K′
925
+ K π − 1
926
+ holds if the above series converges.
927
+ Proof. Starting with the equality of (20) and (21), we again set u �→ 2wK. Using the half-K
928
+ formulas in (32) and (33), together with the half-K formula
929
+ sn
930
+ �K
931
+ 2 , k
932
+
933
+ =
934
+
935
+ 2
936
+
937
+ 1 + k +
938
+
939
+ 1 − k,
940
+ we may obtain that
941
+
942
+ 2 (k′ + 2) (k′ + 1 − k2)
943
+
944
+ 1 − k +
945
+
946
+ k + 1
947
+ =
948
+ 3π3
949
+ 4
950
+
951
+ 2K3 −
952
+ π3
953
+ 2
954
+
955
+ 2K3
956
+
957
+
958
+ n=0
959
+ (2n + 1)2(−1)⌊ n
960
+ 2⌋
961
+ e(2n+1) K′
962
+ K π − 1
963
+ ,
964
+ and this is equivalent to the desired result.
965
+ Example 9. Theorem 5, together with the elliptic integral singular value k1, give us that
966
+ 3
967
+ 2 −
968
+
969
+ 26 + 17
970
+
971
+ 2Γ6 � 1
972
+ 4
973
+
974
+ 64π9/2
975
+ =
976
+
977
+
978
+ n=0
979
+ (2n + 1)2(−1)⌊ n
980
+ 2⌋
981
+ e(2n+1)π − 1
982
+ .
983
+ Example 10. Theorem 5, together with the elliptic integral singular value k4, give us that
984
+ 3
985
+ 2 −
986
+
987
+ 54 + 37
988
+
989
+ 2 + 4
990
+
991
+ 352 + 249
992
+
993
+ 2Γ6 �1
994
+ 4
995
+
996
+ 128π9/2
997
+ =
998
+
999
+
1000
+ n=0
1001
+ (2n + 1)2(−1)⌊ n
1002
+ 2⌋
1003
+ e2(2n+1)π − 1
1004
+ .
1005
+ 11
1006
+
1007
+ As below, Theorem 5 may be used to evaluate the s = 3 case for the sum obtained from
1008
+ Zucker’s sum in (10) by replacing (−1)n with (−1)⌊ n
1009
+ 2⌋ and by replacing csch with csch2.
1010
+ Theorem 6. The series
1011
+
1012
+
1013
+ n=0
1014
+ (−1)⌊ n
1015
+ 2⌋(2n + 1)3csch2
1016
+ �2n + 1
1017
+ 2
1018
+ K′
1019
+ K π
1020
+
1021
+ may be evaluated as
1022
+
1023
+ 4k′K4�
1024
+ 6
1025
+
1026
+ k
1027
+
1028
+ k
1029
+ �√
1030
+ 1 − k +
1031
+
1032
+ 1 + k
1033
+
1034
+ − 3
1035
+
1036
+ 1 − k + 3
1037
+
1038
+ 1 + k
1039
+
1040
+ − 6
1041
+ �√
1042
+ 1 − k +
1043
+
1044
+ 1 + k
1045
+ ��
1046
+ E+
1047
+
1048
+ 36
1049
+ �√
1050
+ 1 − k +
1051
+
1052
+ 1 + k
1053
+
1054
+ + k
1055
+
1056
+ 18
1057
+ �√
1058
+ 1 − k −
1059
+
1060
+ 1 + k
1061
+
1062
+ + k
1063
+
1064
+ k
1065
+
1066
+ k
1067
+ �√
1068
+ 1 − k +
1069
+
1070
+ 1 + k
1071
+
1072
+ − 8
1073
+
1074
+ 1 − k+
1075
+ 8
1076
+
1077
+ 1 + k
1078
+
1079
+ − 23
1080
+ �√
1081
+ 1 − k +
1082
+
1083
+ 1 + k
1084
+ ����
1085
+ K
1086
+ ��� �
1087
+ π4�
1088
+ k′ + 1
1089
+
1090
+ (K′(E − K) + E′K)
1091
+
1092
+ ,
1093
+ if the above series is convergent.
1094
+ Proof. This may be proved by applying term-by-term differentiation, with respect to the
1095
+ elliptic modulus, in Theorem 5.
1096
+ Example 11. Setting k = k1, we obtain that
1097
+
1098
+ 218 + 151
1099
+
1100
+ 2Γ10 � 1
1101
+ 4
1102
+
1103
+ 512π15/2
1104
+ − 3
1105
+
1106
+ 26 + 17
1107
+
1108
+ 2Γ6 �1
1109
+ 4
1110
+
1111
+ 32π11/2
1112
+ =
1113
+
1114
+
1115
+ n=0
1116
+ (−1)⌊ n
1117
+ 2⌋(2n + 1)3csch2
1118
+ �2n + 1
1119
+ 2
1120
+ π
1121
+
1122
+ .
1123
+ Example 12. Setting k = k4, we obtain that
1124
+
1125
+ 402 + 287
1126
+
1127
+ 2 + 4
1128
+
1129
+ 20296 + 14358
1130
+
1131
+ 2Γ10 � 1
1132
+ 4
1133
+
1134
+ 2048π15/2
1135
+ − 3
1136
+
1137
+ 54 + 37
1138
+
1139
+ 2 + 4
1140
+
1141
+ 352 + 249
1142
+
1143
+ 2Γ6 � 1
1144
+ 4
1145
+
1146
+ 128π11/2
1147
+ equals
1148
+
1149
+
1150
+ n=0
1151
+ (−1)⌊ n
1152
+ 2⌋(2n + 1)3csch2((2n + 1)π).
1153
+ We may mimic the above proof to evaluate
1154
+
1155
+
1156
+ n=0
1157
+ (−1)⌊ n
1158
+ 2⌋(2n + 1)scsch2
1159
+ �2n + 1
1160
+ 2
1161
+ K′
1162
+ K π
1163
+
1164
+ for odd s.
1165
+ 12
1166
+
1167
+ 3
1168
+ Applications of the Jacobi elliptic function nc
1169
+ The results introduced in this section on symbolic forms for summations involving the sech
1170
+ function are inspired by the formula
1171
+ Γ2 � 1
1172
+ 4
1173
+
1174
+ 4π3/2 − 1
1175
+ 2 =
1176
+
1177
+
1178
+ n=1
1179
+ sech(πn)
1180
+ due to Ramanujan, which is highlighted as an especially amazing formula in the Wolfram
1181
+ Mathworld entry on the hyperbolic secant [60]. A Ramanujan summation involving sech
1182
+ more closely related to our work is Ramanujan’s formula (cf. [9])
1183
+
1184
+
1185
+ n=0
1186
+ (−1)n(2n + 1)4m−1sech
1187
+ �2n + 1
1188
+ 2
1189
+ π
1190
+
1191
+ = 0.
1192
+ (34)
1193
+ Our applications of identities as in (15) are also inspired by well known Ramanujan formulas
1194
+ such as the following [11, §14]:
1195
+
1196
+
1197
+ n=1
1198
+ n
1199
+ e2πn − 1 = 1
1200
+ 24 − 1
1201
+ 8π.
1202
+ We begin with the following Fourier series expansion [61, pp. 511–512]:
1203
+ nc(u, k) =
1204
+ π
1205
+ 2Kk′ sec v − 2π
1206
+ Kk′
1207
+
1208
+
1209
+ n=0
1210
+ (−1)nq2n+1
1211
+ 1 + q2n+1 cos ((2n + 1)v) .
1212
+ Following the steps given in Section 1.2, we obtain that
1213
+ nc(2wK, k) =
1214
+ π
1215
+ 2k′K sec(πw) − 2π
1216
+ k′K
1217
+
1218
+
1219
+ n=0
1220
+ (−1)n
1221
+ e(2n+1) K′
1222
+ K π + 1
1223
+ cos((2n + 1)πw).
1224
+ Setting w = 0, we can show that the left-hand side of the above equality equals 1. This gives
1225
+ us an equivalent formulation of the following result:
1226
+ 1
1227
+ 4 −
1228
+
1229
+ 1 − k2K
1230
+
1231
+ =
1232
+
1233
+
1234
+ n=0
1235
+ (−1)n
1236
+ e(2n+1) K′
1237
+ K π + 1
1238
+ .
1239
+ (35)
1240
+ An equivalent result is given as Theorem 6 by Bagis in [3]. From this previously known
1241
+ formula, by differentiating with respect to the elliptic modulus, we may obtain the identity
1242
+ 2k′K2(K − E)
1243
+ π2(K′(E − K) + E′K) =
1244
+
1245
+
1246
+ n=0
1247
+ (−1)n(2n + 1)sech2
1248
+ �2n + 1
1249
+ 2
1250
+ K′
1251
+ K π
1252
+
1253
+ .
1254
+ (36)
1255
+ 13
1256
+
1257
+ By direct analogy with the material in Section 2.1, we may generalize (36) so as to evaluate
1258
+
1259
+
1260
+ n=0
1261
+ (−1)n(2n + 1)ssech2
1262
+ �2n + 1
1263
+ 2
1264
+ K′
1265
+ K π
1266
+
1267
+ (37)
1268
+ for odd s. For the sake of brevity, we omit a detailed examination of this, and we leave it
1269
+ do a separate project to obtain an explicit combinatorial formula for (37) based on repeated
1270
+ applications of the differential equations among (17)–(19).
1271
+ A direct application of the formula in (35) that we have proved is given by how this
1272
+ formula allows us to prove a stronger version of the formula
1273
+ 2
1274
+
1275
+
1276
+ n=0
1277
+ (−1)n
1278
+ e(2n+1)π + 1 +
1279
+
1280
+
1281
+ n=0
1282
+ sech
1283
+ �2n + 1
1284
+ 2
1285
+ π
1286
+
1287
+ = 1
1288
+ 2
1289
+ (38)
1290
+ highlighted as Corollary 4.22 in [7]. This was proved using Euler polynomials in [7].
1291
+ Theorem 7. The following stronger version of Berndt’s identity in (38) holds:
1292
+ Γ2 � 1
1293
+ 4
1294
+
1295
+ 4
1296
+
1297
+ 2π3/2 =
1298
+
1299
+
1300
+ n=0
1301
+ sech
1302
+ �2n + 1
1303
+ 2
1304
+ π
1305
+
1306
+ .
1307
+ Proof. Using the value for k1 in (24) together with the value for K(k1) shown in (25), the
1308
+ identity in (35) gives us that
1309
+ 1
1310
+ 4 − Γ2 � 1
1311
+ 4
1312
+
1313
+ 8
1314
+
1315
+ 2π3/2 =
1316
+
1317
+
1318
+ n=0
1319
+ (−1)n
1320
+ e(2n+1)π + 1,
1321
+ so that the desired result then follows from (38).
1322
+ Our strengthening of Corollary 4.22 in [7], as in Theorem 7, has not appeared in past
1323
+ publications influenced by [7], which have been based in areas such as number theory [2,
1324
+ 21, 31, 34, 41, 42, 46, 47, 57, 65] mathematical physics [58], high energy physics [29], and
1325
+ nuclear physics [22]. The many areas in mathematics and physics related to the discoveries
1326
+ on hyperbolic infinite sums given by Berndt [7] inspire the development of further results as
1327
+ in Theorem 7. Since Berndt’s formula in (38) is highlighted as a Corollary in [7], we find it
1328
+ appropriate to highlight the following equivalent formulation of Theorem 7 as a Corollary.
1329
+ Corollary 1. The q-digamma evaluation
1330
+ ψeπ
1331
+ �1 − i
1332
+ 2
1333
+
1334
+ − ψeπ
1335
+ �1 + i
1336
+ 2
1337
+
1338
+ = −iπ − iΓ2 �1
1339
+ 4
1340
+
1341
+ 4
1342
+
1343
+
1344
+ holds true.
1345
+ Proof. This is almost immediately equivalent to Theorem 7, from the definition in (7).
1346
+ 14
1347
+
1348
+ Many of our results, with a particular regard toward Theorem 7, are of a similar appear-
1349
+ ance relative to the formula
1350
+
1351
+
1352
+ n=0
1353
+ sech2
1354
+ �2n + 1
1355
+ 2
1356
+ π
1357
+
1358
+ = 1
1359
+ π
1360
+ recorded in [7]. As in [7], we record that the above formula has been proved by many different
1361
+ authors [33, 40, 44, 67].
1362
+ Theorem 8. The identity
1363
+ 1
1364
+ 2 −
1365
+
1366
+ k′ �√
1367
+ 1 − k +
1368
+
1369
+ 1 + k
1370
+
1371
+ K
1372
+
1373
+ =
1374
+
1375
+
1376
+ n=0
1377
+ (−1)⌊ n
1378
+ 2⌋
1379
+ e(2n+1) K′
1380
+ K π + 1
1381
+ holds if the above series converges.
1382
+ Proof. Setting w =
1383
+ 1
1384
+ 4 in the above series expansion for nc(2wK, k), we find that
1385
+ 1
1386
+ cn( k
1387
+ 2 ,k)
1388
+ admits the following expansion:
1389
+
1390
+
1391
+
1392
+ 1 − k2K
1393
+
1394
+ 1
1395
+ 2 −
1396
+
1397
+
1398
+ n=0
1399
+ (−1)⌊ n
1400
+ 2⌋
1401
+ e(2n+1) K′
1402
+ K π + 1
1403
+
1404
+ .
1405
+ According to the half-K identity shown in (32), we find that
1406
+
1407
+ 1 − k +
1408
+
1409
+ 1 + k
1410
+
1411
+ 2
1412
+
1413
+ k′
1414
+ admits the same expansion, and this gives us an equivalent version of the desired result.
1415
+ Example 13. The symbolic form
1416
+ 1
1417
+ 2 −
1418
+
1419
+ 1 +
1420
+
1421
+ 2Γ2 �1
1422
+ 4
1423
+
1424
+ 8π3/2
1425
+ =
1426
+
1427
+
1428
+ n=0
1429
+ (−1)⌊ n
1430
+ 2⌋
1431
+ e(2n+1)π + 1
1432
+ holds and may be proved using Theorem 8 together with the elliptic singular value indicated
1433
+ in (25). This is equivalent to the q-digamma evaluation
1434
+ −4π −
1435
+
1436
+ 1 +
1437
+
1438
+ 2
1439
+ π
1440
+ Γ2
1441
+ �1
1442
+ 4
1443
+
1444
+ = ψe8π
1445
+ �1 − i
1446
+ 8
1447
+
1448
+ + ψe8π
1449
+ �3 − i
1450
+ 8
1451
+
1452
+ − ψe8π
1453
+ �5 − i
1454
+ 8
1455
+
1456
+ − ψe8π
1457
+ �7 − i
1458
+ 8
1459
+
1460
+ .
1461
+ Ramanujan’s closed forms for
1462
+
1463
+
1464
+ n=0
1465
+ (−1)n(2n + 1)−4t−1sech
1466
+ �2n + 1
1467
+ 2
1468
+ π
1469
+
1470
+ (39)
1471
+ have been considered, as in [10], as especially notable contributions out of the results given
1472
+ in Ramanujan’s notebooks. This further motivates our generalizations of or related to Ra-
1473
+ manujan’s sech-sums as in (8) and (39).
1474
+ 15
1475
+
1476
+ Example 14. The symbolic form
1477
+ 1
1478
+ 2 −
1479
+
1480
+ 1
1481
+ 2
1482
+
1483
+ 2
1484
+
1485
+ 2 +
1486
+
1487
+ 4 + 3
1488
+
1489
+ 2
1490
+
1491
+ Γ2 � 1
1492
+ 4
1493
+
1494
+ 8π3/2
1495
+ =
1496
+
1497
+
1498
+ n=0
1499
+ (−1)⌊ n
1500
+ 2⌋
1501
+ e2(2n+1)π + 1
1502
+ holds and may be proved using Theorem 8 together with the elliptic singular value indicated
1503
+ in (27). We may rewrite this a q-digamma evaluation in much the same way as before.
1504
+ Ramanujan’s many evaluations for infinite hyperbolic sums served as a main source of
1505
+ motivation behind Xu’s work in [63]. In particular, Ramanujan’s evaluations whereby
1506
+
1507
+
1508
+ n=0
1509
+ (2n + 1)2sech
1510
+ �2n + 1
1511
+ 2
1512
+ π
1513
+
1514
+ =
1515
+ Γ6 �1
1516
+ 4
1517
+
1518
+ 16
1519
+
1520
+ 2π9/2
1521
+ and
1522
+
1523
+
1524
+ n=0
1525
+ (2n + 1)2sech2
1526
+ �2n + 1
1527
+ 2
1528
+ π
1529
+
1530
+ = Γ8 � 1
1531
+ 4
1532
+
1533
+ 192π6
1534
+ were highlighted as a main sources of motivation concerning the results introduced by Xu in
1535
+ [63].
1536
+ By applying term-by-term differentiation with respect to the elliptic modulus in Theorem
1537
+ 8, we can show that the expression
1538
+
1539
+ K2√
1540
+ k′��
1541
+ k
1542
+ �√
1543
+ 1 − k −
1544
+
1545
+ 1 + k
1546
+
1547
+ + 2
1548
+ �√
1549
+ 1 − k +
1550
+
1551
+ 1 + k
1552
+ ��
1553
+ K − 2
1554
+ �√
1555
+ 1 − k +
1556
+
1557
+ 1 + k
1558
+
1559
+ E
1560
+ ���
1561
+
1562
+ π2(K′(E − K) + E′K)
1563
+
1564
+ equals
1565
+
1566
+
1567
+ n=0
1568
+ (−1)⌊ n
1569
+ 2⌋(2n + 1)sech2
1570
+ �2n + 1
1571
+ 2
1572
+ K′
1573
+ K π
1574
+
1575
+ if the above series converges. By direct analogy with the material in Section 2.3, we can
1576
+ mimic our above derivation so as to evaluate
1577
+
1578
+
1579
+ n=0
1580
+ (−1)⌊ n
1581
+ 2⌋(2n + 1)ssech2
1582
+ �2n + 1
1583
+ 2
1584
+ K′
1585
+ K π
1586
+
1587
+ for odd s.
1588
+ 4
1589
+ Powers of Jacobi elliptic functions
1590
+ Using (12) together with the technique in Section 1.2, we can prove that
1591
+ −K2 (2EKk′ + E2 + K2 (k2(k′ + 1) − 2k′ − 1))
1592
+ 4π3(K′(E − K) + E′K)
1593
+ 16
1594
+
1595
+ equals
1596
+
1597
+
1598
+ n=1
1599
+ (−1)nn2csch2
1600
+ �2nπK′
1601
+ K
1602
+
1603
+ if the above series converges. For example, this gives us that
1604
+
1605
+ 1
1606
+ 32π2 −
1607
+
1608
+ 1 +
1609
+
1610
+ 2
1611
+
1612
+ Γ4 �1
1613
+ 4
1614
+
1615
+ 128π4
1616
+ +
1617
+
1618
+ 1 +
1619
+
1620
+ 2
1621
+
1622
+ Γ8 �1
1623
+ 4
1624
+
1625
+ 2048π6
1626
+ =
1627
+
1628
+
1629
+ n=1
1630
+ (−1)nn2csch2(2nπ).
1631
+ We leave it to a separate project to generalize this result and to investigate the use of our
1632
+ method together with Fourier series expansions apart from (12) that involve powers of Jacobi
1633
+ elliptic functions.
1634
+ 5
1635
+ Further considerations
1636
+ The computation of the inverse functions among (2)–(4) often turns out to be difficult,
1637
+ even with state-of-the-art Computer Algebra Systems [6]. For example, there is no direct
1638
+ way of using built-in Mathematica commands such as JacobiSN, JacobiCN, or JacobiDN to
1639
+ compute the “actual” Jacobi elliptic functions defined via (2)–(4) relative to the Mathematica
1640
+ definition for the incomplete elliptic F-integral
1641
+ � φ
1642
+ 0
1643
+ dt
1644
+
1645
+ 1 − k sin2 t
1646
+ with arguments φ and k, which is in contrast to (1). This kind of practical computational
1647
+ problem motivates the development of new and efficient ways of expressing and applying the
1648
+ Jacobi elliptic functions in the form of series expansions involved in this article.
1649
+ Ramanujan’s identity in (9) was applied by Berndt in [8] to prove the following remarkable
1650
+ closed form:
1651
+ � ∞
1652
+ −∞
1653
+ dx
1654
+ cos √x + cosh √x = π
1655
+ 4
1656
+ Γ2 � 1
1657
+ 4
1658
+
1659
+ Γ2 � 3
1660
+ 4
1661
+ �.
1662
+ How can we obtain similar results using our evaluations related to Ramanujan’s formula in
1663
+ (9), as in Section 3? We leave this for a separate project. Also, we leave it to a separate
1664
+ project to apply our technique using identities such as the third-K formula, as opposed to
1665
+ the half-K formula we have applied.
1666
+ Acknowledgements
1667
+ The author wants to express his sincere thanks to Alexey Kuznetsov for many useful discus-
1668
+ sions.
1669
+ 17
1670
+
1671
+ References
1672
+ [1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas,
1673
+ Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, D.C.
1674
+ (1964)
1675
+ [2] Alkan, E.: Series representing transcendental numbers that are not U-numbers. Int. J.
1676
+ Number Theory 11, 869–892 (2015)
1677
+ [3] Bagis, N.: Evaluations of series related to Jacobi elliptic functions. arXiv:1803.09445
1678
+ (2019)
1679
+ [4] Bagis, N.D., Glasser, M.L.: Conjectures on the evaluation of alternative modular bases
1680
+ and formulas approximating 1/π. J. Number Theory 132, 2353–2370 (2012)
1681
+ [5] Bagis, N.D., Glasser, M.L.: Ramanujan type 1/π approximation formulas. J. Number
1682
+ Theory 133, 3453–3469 (2013)
1683
+ [6] Batista, M.: Elfun18 – A collection of MATLAB functions for the computation of elliptic
1684
+ integrals and Jacobian elliptic functions of real arguments. SoftwareX 10, 100245 (2019)
1685
+ [7] Berndt, B.C.: Analytic Eisenstein series, theta-functions, and series relations in the
1686
+ spirit of Ramanujan. J. f¨ur Reine Angew. Math. 303/304, 332–365 (1978)
1687
+ [8] Berndt, B.C: Integrals associated with Ramanujan and elliptic functions. Ramanujan
1688
+ J. 41, 369–389 (2016)
1689
+ [9] Berndt, B.C.: Modular transformations and generalizations of several formulae of Ra-
1690
+ manujan. Rocky Mt. J. Math. 7, 147–189 (1977)
1691
+ [10] Berndt, B.C.: Ramanujan’s notebooks. Math. Mag. 51, 147–164 (1978)
1692
+ [11] Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer-Verlag, New York (1989)
1693
+ [12] Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer-Verlag, New York (1991)
1694
+ [13] Berndt, B.C., Venkatachaliengar, K.: On the transformation formula for the Dedekind
1695
+ eta-function. In: Garvan, F.G. Ismail, M.E.H. (eds.) Symbolic Computation, Number
1696
+ Theory, Special Functions, Physics and Combinatorics. Developments in Math., vol. 2,
1697
+ pp. 73–77. Kluwer Academic, Dordrecht (2001)
1698
+ [14] Borwein, J.M., Borwein, P.B.: Pi & the AGM. Wiley, New York (1987)
1699
+ [15] Borwein, J.M., Borwein, P.B.: Ramanujan’s rational and algebraic series for 1/π. Indian
1700
+ Math. Soc. 51, 147–160 (1987)
1701
+ [16] Borwein, J.M., Glasser, M., McPhedran, R., Wan, J., Zucker, I.: Lattice Sums Then
1702
+ and Now. Cambridge Universeity Press, Cambridge (2013)
1703
+ 18
1704
+
1705
+ [17] Bourdier, J., Drukker, N., Felix, J.: The N = 2 Schur index from free fermions. J. High
1706
+ Energy Phys. 2016, Article number: 167 (2016)
1707
+ [18] Bourdier, J., Drukker, N., Felix, J.: The exact Schur index of N = 4SYM. J. High
1708
+ Energy Phys. 2015, Article number: 210 (2015)
1709
+ [19] Cauchy, A.: Oeuvres. S´erie II, Paris (1889)
1710
+ [20] Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G., Richetta, M., Torre, A.: Generating
1711
+ functions of multivariable generalized Bessel functions and Jacobi-elliptic functions. J.
1712
+ Math. Phys. 33, 25–36 (1992)
1713
+ [21] Dieter, U.: Cotangent sums, a further generalization of Dedekind sums. J. Number
1714
+ Theory 18, 289–305 (1984)
1715
+ [22] Dowker, J.S., Kirsten, K.: Elliptic functions and temperature inversion symmetry on
1716
+ spheres. Nucl. Phys. B. 638, 405–432 (2002)
1717
+ [23] Drukker, N.: The N = 4 Schur index with Polyakov loops. J. High Energy Phys. 2015,
1718
+ 1–15 (2015)
1719
+ [24] Duverney, D., Nishioka, K., Nishioka, K., Shiokawa, I.: Transcendence of Rogers–
1720
+ Ramanujan continued fraction and reciprocal sums of Fibonacci numbers. Proc. Japan
1721
+ Acad. Ser. A 73, 140–142 (1997)
1722
+ [25] Duverney, D., Shiokawa, I.: On series involving Fibonacci and Lucas numbers I. In: Ko-
1723
+ matsu, T. (ed.) Diophantine Analysis and Related Fields, pp. 62–76. American Institute
1724
+ of Physics, New York (2008)
1725
+ [26] Elsner, C., Shimomura, S., Shiokawa, I.: Algebraic relations for reciprocal sums of
1726
+ Fibonacci numbers. Acta Arith. 130, 37–60 (2007)
1727
+ [27] Elsner, C., Shimomura, S., Shiokawa, I.: Algebraic relations for reciprocal sums of even
1728
+ terms in Fibonacci numbers. J. Math. Sci. 180, 650–671 (2012)
1729
+ [28] Elsner, C., Shimomura, S., Shiokawa, I.: Algebraic relations for reciprocal sums of odd
1730
+ terms in Fibonacci numbers, Ramanujan J. 17, 429–446 (2008)
1731
+ [29] Ghilencea, D.M.: Higher derivative operators as loop counterterms in one-dimensional
1732
+ field theory orbifolds, J. High Energy Phys. 2005, JHEP03 (2005)
1733
+ [30] Gudermann, C.:
1734
+ Theorie der Modular-Functionen und der Modular-Integrale. G.
1735
+ Reimer, Berlin, Germany (1844)
1736
+ [31] Hu, S., Kim, D., Kim, M.-S.: On reciprocity formula of Apostol–Dedekind sum with
1737
+ quasi-periodic Euler functions. J. Number Theory 162, 54–67 (2016)
1738
+ 19
1739
+
1740
+ [32] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Koengsburg,
1741
+ 1829
1742
+ [33] Kiyek, K., Schmidt, H.: Auswertung einiger spezieller unendlicher Reihen aus dem
1743
+ Bereich der elliptischen Funktionen. Arch. Math. 18, 438–443 (1967)
1744
+ [34] Knopp, M.I.: Hecke operators and an identity for the dedekind sums. J. Number Theory
1745
+ 12, 2–9 (1980)
1746
+ [35] Krishnamaghari, C.: Certain definite integrals and series, J. Indian Math. Soc. 12,
1747
+ 14–31 (1920)
1748
+ [36] Lagrange, J.: Une formule sommatoire et ses applications. Bull. Sci. Math. (2) 84,
1749
+ 105–110 (1960)
1750
+ [37] Lawden, D.F.: Elliptic Functions and Applications. Springer–Verlag, New York (1989)
1751
+ [38] Lekner, J.: Analytical expression for the electric field enhancement between two closely-
1752
+ spaced conducting spheres. J. Electrostat. 68, 299–304 (2010)
1753
+ [39] Ling, C.-B.: Extension of summation of series of hyperbolic functions. J. Math. Anal.
1754
+ Appl. 131, 451–464 (1988)
1755
+ [40] Ling, C.-B.: On summation of series of hyperbolic functions. SIAM J. Math. Anal. 6,
1756
+ 551–562 (1975)
1757
+ [41] Liu, H., Zhang, W.: Generalized Cochrane sums and Cochrane–Hardy sums. J. Number
1758
+ Theory 122, 415–428 (2007)
1759
+ [42] Meyer, J.L.: Properties of certain integer-valued analogues of Dedekind sums. Acta
1760
+ Arith. 82, 229–242 (1997)
1761
+ [43] Muckenhoupt, B.: The norm of a discrete singular transform. Studia Math. 25, 97–102
1762
+ (1964/65)
1763
+ [44] Nanjundiah, T. S.: Certain summations due to Ramanujan, and their generalisations.
1764
+ Proc. Indian Acad. Sci., Sect. A 34, 215–228 (1951)
1765
+ [45] Naylor, V., Horsley, S.G.: Note on the summation of certain series. J. London Math.
1766
+ Soc. 6, 218–219 (1931)
1767
+ [46] Peng, W., Zhang, T.: Some identities involving certain Hardy sum and Kloosterman
1768
+ sum. J. Number Theory 165, 355–362 (2016)
1769
+ [47] Pettet, M.R., Sitaramachandrarao, R.: Three-term relations for Hardy sums. J. Number
1770
+ Theory 25, 328–339 (1987)
1771
+ 20
1772
+
1773
+ [48] Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series: Vol. I: Elemen-
1774
+ tary Functions. Gordon and Breach, New York (1986)
1775
+ [49] Rainville, E.D.: Special Functions. The Macmillan Co., New York (1960)
1776
+ [50] S. Ramanujan, Modular equations and approximations to π, Q. J. Math. 45 (1915),
1777
+ 350–372.
1778
+ [51] S. Ramanujan, Collected Papers of Srinivasa Ramanujan, Cambridge University Press,
1779
+ Cambridge (1927)
1780
+ [52] Sandham, H.F.: Some infinite series. Proc. Amer. Math. Soc. 5, 430–436 (1954)
1781
+ [53] Sandham, H.F.: Three summations due to Ramanujan. Quart. J. Math. 1, 238–240
1782
+ (1950)
1783
+ [54] Sayer, F.P.: The sums of certain series containing hyperbolic functions. Fibonacci Quart.
1784
+ 14, 215–223 (1976)
1785
+ [55] Shafer, R. E.: Problem 5063, with solutions by A. E. Livingston and J. Raleigh. Amer.
1786
+ Math. Monthly 70, 1110–1111 (1963)
1787
+ [56] Siegl, P., ˇStampach, F.: On extremal properties of Jacobian elliptic functions with
1788
+ complex modulus. J. Math. Anal. Appl. 442, 627–641 (2016)
1789
+ [57] Simsek, Y.: Relations between theta-functions Hardy sums Eisenstein and Lambert
1790
+ series in the transformation formula of log ηg,h(z). J. Number Theory 99, 338–360 (2003)
1791
+ [58] Simsek, Y.: Special functions related to Dedekind-type DC-sums and their applications.
1792
+ Russ. J. Math. Phys. 17, 495–508 (2010)
1793
+ [59] Vepˇstas, L.: On Plouffe’s Ramanujan identities. Ramanujan J. 27, 387–408 (2012)
1794
+ [60] Weisstein, E.W. Hyperbolic Secant. From MathWorld–A Wolfram Web Resource.
1795
+ https://mathworld.wolfram.com/HyperbolicSecant.html
1796
+ [61] Wittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge University
1797
+ Press., London (1958)
1798
+ [62] Wittaker, E. T., Watson, G. N.: Modern Analysis. Cambridge University Press., London
1799
+ (1927)
1800
+ [63] Xu, C.: Some evaluation of infinite series involving trigonimetric and hyperbolic func-
1801
+ tions. Results Math. 73, Article number: 128 (2018)
1802
+ [64] Yakubovich, S.: On the curious series related to the elliptic integrals. Ramanujan J. 45,
1803
+ 797–815 (2018)
1804
+ 21
1805
+
1806
+ [65] Zhang, W.: A sum analogous to the Dedekind sum and its mean value formula. J.
1807
+ Number Theory 89, 1–13 (2001)
1808
+ [66] Zucker, I.J.: Some infinite series of exponential and hyperbolic functions. SIAM J. Math.
1809
+ Anal. 15, 406–413 (1984)
1810
+ [67] Zucker, I.J.: The summation of series of hyperbolic functions. SIAM J. Math. Anal. 10,
1811
+ 192–206 (1979)
1812
+ John M. Campbell
1813
+ Department of Mathematics
1814
+ Toronto Metropolitan University
1815
1816
+ 22
1817
+
2dE2T4oBgHgl3EQfNgaR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49E3T4oBgHgl3EQfQQn6/content/2301.04412v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1a7e4dd36a438162f79538e4120bc0cb207bf8d627a725f73455815dc234bf7
3
+ size 290647
49FJT4oBgHgl3EQfkSwi/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1fcab5b2a9971317d283bb0e412b3247f6ae37780761a70da4b426553ef4f1d
3
+ size 190040
79E1T4oBgHgl3EQf7gUu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d022ab1248431d4681f9901a5b6c0bbd64bd6c9993ad4b27b1e98b7f7371c99
3
+ size 3866669
89E4T4oBgHgl3EQfdgwn/content/tmp_files/2301.05091v1.pdf.txt ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Temperature dependence of photoluminescence intensity and spin contrast in
2
+ nitrogen-vacancy centers
3
+ S. Ernst1,†, P. J. Scheidegger1,†, S. Diesch1, L. Lorenzelli1, and C. L. Degen1,2∗
4
+ 1Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland. and
5
+ 2Quantum Center, ETH Zurich, 8093 Zurich, Switzerland.
6
+ (Dated: January 13, 2023)
7
+ We report on measurements of the photoluminescence (PL) properties of single nitrogen-vacancy
8
+ (NV) centers in diamond at temperatures between 4–300 K. We observe a strong reduction of the
9
+ PL intensity and spin contrast between ca. 10–100 K that recovers to high levels below and above.
10
+ Further, we find a rich dependence on magnetic bias field and crystal strain. We develop a com-
11
+ prehensive model based on spin mixing and orbital hopping in the electronic excited state that
12
+ quantitatively explains the observations. Beyond a more complete understanding of the excited-
13
+ state dynamics, our work provides a novel approach for probing electron-phonon interactions and a
14
+ predictive tool for optimizing experimental conditions for quantum applications.
15
+ The long coherence time [1] and the ease of optical
16
+ spin readout have made the negatively charged nitrogen-
17
+ vacancy (NV) center in diamond a preferred qubit for
18
+ applications in quantum metrology [2] and quantum in-
19
+ formation [3]. Extraordinarily, the NV retains its quan-
20
+ tum properties up to above room temperature, suggest-
21
+ ing its use in both ambient and cryogenic environments.
22
+ At room temperature, researchers have employed the
23
+ NV’s spin as a sensor for magnetic [4, 5] and electric
24
+ fields [6], and thermometry [7, 8]. Cooled to below 10 K,
25
+ spin-dependent optical transitions [9] have facilitated the
26
+ implementation of prototypical quantum networks [10]
27
+ and multi-qubit quantum operations [11]. Additionally,
28
+ cryogenic NV magnetometry has been performed at the
29
+ micron- [12] and nanoscale [13, 14].
30
+ While the photodynamics of NV centers at low temper-
31
+ ature (below 10 K) and around room temperature have
32
+ been studied in detail, the understanding in the interme-
33
+ diate temperature range is incomplete. Initial studies of
34
+ the photoluminescence (PL) emission intensity of NV en-
35
+ sembles revealed a minimum around 25 K attributed to
36
+ time-averaging in the electronic excited state (ES) [15].
37
+ This averaging process is caused by phonon-mediated
38
+ transitions between the two orbital branches [16, 17].
39
+ A temperature-dependent reduction in PL intensity and
40
+ spin contrast was also reported in connection with NV
41
+ charge state instabilities [18].
42
+ Further, spin mixing in
43
+ the ES due to magnetic field [19, 20] or crystal strain [21]
44
+ was identified as another mechanism for loss of PL. The
45
+ strain-related spin mixing at low temperature was found
46
+ to be partially mitigated by application of a large mag-
47
+ netic bias field [15, 20, 22]. Because high PL intensity
48
+ and spin contrast are essential for high-fidelity quantum
49
+ readout and sensitive magnetometry, a complete picture
50
+ of the NV photodynamics in the 10−100 K range is highly
51
+ desirable.
52
+ In this Letter, we report measurements of the PL in-
53
+ tensity and spin contrast for single NV centers between
54
+ 4−300 K. We show that a combination of orbital hopping
55
+ and spin mixing in the ES leads to a strong reduction of
56
+ both quantities between 10 − 100 K. Based on measure-
57
+ ments at varying magnetic field (0 − 200 mT) and intrin-
58
+ sic strain (ES splitting 2 × (9 − 80) GHz), we develop
59
+ a comprehensive theoretical model for the temperature-
60
+ dependent dynamics of the ES. As a result, we are able
61
+ to quantitatively describe the NV’s PL intensity and spin
62
+ contrast over the complete parameter range of tempera-
63
+ ture, magnetic field and strain, and find excellent agree-
64
+ ment with experimental data.
65
+ In our study, we investigate single NV centers situ-
66
+ ated in nanostructured pillars, which serve to enhance
67
+ the photon collection efficiency.
68
+ Our samples include
69
+ an isotopically pure diamond plate (NV-1 to NV-4, El-
70
+ ementSix) and a scanning tip fabricated from natural-
71
+ abundance material (NV-5, QZabre). Samples are mea-
72
+ sured in a dry dilution refrigerator (Setup A) at tem-
73
+ peratures between 4 − 100 K; an additional study down
74
+ to 0.35 K did not show further variation in the NV be-
75
+ havior [23].
76
+ A second dry cryostat (Setup B) with a
77
+ temperature range of 30 − 300 K is used to validate the
78
+ aforementioned measurements and extend the range to
79
+ room temperature [24]. Both setups operate in vacuum
80
+ without addition of exchange gas (p < 5.5 · 10−5 mbar).
81
+ Magnetic bias fields, when specified, are applied along
82
+ the NV symmetry axis.
83
+ The central experimental observation of this work is
84
+ reported in Fig. 1, which plots the spin contrast as a
85
+ function of temperature T = 4 − 300 K.
86
+ The PL in-
87
+ tensity follows a similar trend (see Fig. S7 [25]), but is
88
+ more prone to experimental drift. We measure the con-
89
+ trast by integrating the relative difference in PL between
90
+ the mS = 0 and mS = −1 states (subsequently denoted
91
+ by |0⟩ and |−1��) during the first 250 ns under excitation
92
+ with a 520 nm diode laser (Fig. 1(a)). To initialize the
93
+ spin state into |0⟩, we use a 2 µs laser pulse, followed by
94
+ a state swap to |−1⟩ (when needed) using an adiabatic
95
+ inversion microwave pulse [26]. Fig. 1(b) clearly reveals
96
+ three temperature regimes: (I) Below ca. 10 K, the spin
97
+ contrast is mostly constant. (II) Between ca. 10−100 K,
98
+ the spin contrast is strongly reduced with a pronounced
99
+ arXiv:2301.05091v1 [cond-mat.mes-hall] 12 Jan 2023
100
+
101
+ 2
102
+ PL (norm.)
103
+ (a)
104
+ 0
105
+ 200
106
+ 400
107
+ 0.0
108
+ 0.5
109
+ 1.0
110
+ 4K
111
+ 0
112
+ 200
113
+ 400
114
+ Time (ns)
115
+ 32K
116
+ 0
117
+ 200
118
+ 400
119
+ 83K
120
+ 10
121
+ 100
122
+ Temperature (K)
123
+ 0
124
+ 10
125
+ 20
126
+ 30
127
+ 40
128
+ Contrast (%)
129
+ 3
130
+ 30
131
+ 300
132
+ (b)
133
+ NV-1
134
+ NV-2
135
+ NV-5
136
+ I
137
+ II
138
+ III
139
+ Figure 1.
140
+ (a) Time-dependent PL traces for NV-2 during a
141
+ laser pulse of the |0⟩ (open circles) and the |−1⟩ (filled circles)
142
+ states at low, intermediate and high temperature. The spin
143
+ contrast is given by the relative difference between the two
144
+ curves (pink shading). Solid lines are fits to the PL dynamics.
145
+ (b) Spin contrast versus temperature for three NV centers
146
+ measured on Setup A (empty markers) and Setup B (filled
147
+ marker). Solid lines show corresponding simulations for NV-
148
+ 1 and NV-2. A bias field of 3 mT is applied.
149
+ minimum around 35 K and then recovers for higher tem-
150
+ peratures. (III) Above ca. 100 K, the spin contrast re-
151
+ mains approximately constant up to room temperature.
152
+ In all measurements, the room temperature contrast ex-
153
+ ceeds the low temperature limit.
154
+ At even higher tem-
155
+ peratures, the contrast slowly decrease until it vanishes
156
+ around 700 K [27].
157
+ Before providing a theoretical explanation for the be-
158
+ havior seen in Fig. 1, we briefly recall the mechanism
159
+ for contrast generation by looking at the spin-subspace
160
+ of the NV given in Fig 2(a) [28]. After spin-conserving
161
+ optical excitation from the ground state (GS) into the
162
+ ES, a spin-selective intersystem crossing (ISC) leads to
163
+ preferential population of the shelving state for |±1⟩. Be-
164
+ cause the shelving state 1E has a relatively long lifetime,
165
+ the average PL emission is lower for |±1⟩ compared to
166
+ |0⟩, leading to spin contrast. The PL reduction is tem-
167
+ porary and disappears due to optical re-pumping into |0⟩
168
+ after a few hundred nanoseconds, see Fig 1(a). Crucially,
169
+ this mechanism of contrast generation is effective only for
170
+ as long as there are no transitions between the ES spin
171
+ states.
172
+ We next consider the orbital subspace of the NV ES
173
+ (3E), which is a doublet shown in Fig. 2(b) [28]. In the
174
+ presence of in-plane strain δ⊥ relative to the NV principal
175
+ axis, the ES possesses two orbital branches, Ex and Ey,
176
+ split by 2δ⊥ [29]. In the composite space of orbit and
177
+ spin, each branch has three spin states, leading to a total
178
+ of six energy levels (Fig. 2(c)). We now show that the
179
+ contrast reduction and recovery can be explained by the
180
+ interplay of two mechanisms: spin mixing and orbital
181
+ branch hopping in the ES.
182
+ First, we discuss the effects of spin mixing, meaning
183
+ that the ES eigenstates are not pure spin eigenstates. As
184
+ an example, we consider Fig. 2(c). Here, the |0⟩ state
185
+ is in good approximation an eigenstate of the Ex branch
186
+ but not the Ey branch, where it forms a superposition
187
+ with the |−⟩ ∝ (|+1⟩ − |−1⟩) state. Consequently, op-
188
+ tical excitation into the Ex branch is spin-conserving,
189
+ while excitation into the Ey branch will lead to spin
190
+ mixing.
191
+ In general, the spin mixing amplitudes ϵi be-
192
+ tween the six levels depend on the strain magnitude and
193
+ direction [21], as well as magnetic field alignment [19]
194
+ and magnitude [20]. Therefore, the spin contrast is both
195
+ strain and field-dependent. Although the ϵi are typically
196
+ small, they play a key role in the mechanism of spin re-
197
+ laxation.
198
+ Second, we consider the effects of orbital hopping,
199
+ which refers to spin-conserving transitions between Ex
200
+ and Ey driven by phonons.
201
+ Fig. 2(b) schematically
202
+ depicts the dominant contributions arising from one-
203
+ phonon processes (rates k1) and two-phonon processes
204
+ (rates k2) derived in Ref. [25][30, 31]. The one-phonon
205
+ downward (Ex → Ey) hopping rate is given by
206
+ k↓,1(T, δ⊥) ∝ ηδ3
207
+ ⊥ [n(2hδ⊥/kBT) + 1] ,
208
+ (1)
209
+ where η parametrizes the electron-phonon coupling and
210
+ n is the Bose-Einstein distribution function. The rate of
211
+ the two-phonon process is given by
212
+ k↓,2(T) ∝ η2T 5I(T).
213
+ (2)
214
+ where
215
+ I(T)
216
+ is
217
+ a
218
+ mildly
219
+ strain-
220
+ and
221
+ temperature-
222
+ dependent integral over the phonon spectrum that we
223
+ solve in the Debye approximation.
224
+ The total hopping
225
+ rates are the sums of the one- and two-phonon contribu-
226
+ tions, k↓(↑) = k↓(↑),1 + k↓(↑),2. The upward (Ey → Ex)
227
+ rate significantly differs from the downward rate only be-
228
+ low 10 K, where it is reduced by the absence of sponta-
229
+ neous emission (second term in Eq. 1). Fig. 2(d) plots the
230
+ hopping rates for the parameters in Fig. 2(c) as a func-
231
+ tion of temperature. It provides the key to explaining our
232
+ experimental observations in the temperature regimes (I-
233
+ III):
234
+ (I) Below ca. 10 K, the orbital hopping is dominated
235
+ by k↓,1 due to the spontaneous emission. Since k↓,1 is
236
+ slower than the ES decay rate (T −1
237
+ 3E ≈ 108 s−1) for typical
238
+ strain values δ⊥ ≲ 40 GHz, the ES spin states are mostly
239
+ preserved (except for some small spin mixing ϵi) and the
240
+ spin contrast is high.
241
+ (II) Above 10 K, the two-phonon process starts to dom-
242
+ inate. Once k > T −1
243
+ 3E , spin relaxation between |0⟩ and
244
+ |±1⟩ is drastically amplified, because the time evolution
245
+ under different Larmor precession in both branches be-
246
+ comes randomized by the frequent hopping. As expected,
247
+
248
+ 3
249
+ (c)
250
+ (a)
251
+ (b)
252
+ 3E
253
+ Ex
254
+ Ex
255
+ Ey
256
+ Ey
257
+ 1E
258
+ 3A2
259
+ 1A1
260
+ ωx
261
+ ωy
262
+ |x〉|0〉
263
+ |x〉|−〉
264
+ |y〉(|−〉 − ε|0〉)
265
+ |y〉(|0〉 − ε|−〉)
266
+ |x〉
267
+ |y〉
268
+ |x〉|+〉
269
+ |y〉|+〉
270
+ |0〉
271
+ |±1〉
272
+ |0〉
273
+ |±1〉
274
+ 2δ⟂
275
+ k↑
276
+ k↑
277
+ (d)
278
+ k↓,1
279
+ k↓,2
280
+ k↓,1
281
+ k↓,2
282
+ k↓
283
+ k↓
284
+ 2ωx
285
+ 2ωy
286
+ k
287
+ 3E
288
+ T -1
289
+ Figure 2.
290
+ (a) Level diagram in the NV spin subspace Hspin
291
+ of the electronic ground (3A2) and excited (3E) states, as well
292
+ as the metastable (1A1, 1E) shelving states.
293
+ The intersys-
294
+ tem crossing (dotted) is spin selective, favoring decay out
295
+ of |±1⟩.
296
+ In (a-c), solid arrows mark spin conserving tran-
297
+ sitions and curly arrows symbolize phonons.
298
+ (b) Level di-
299
+ agram in the orbital subspace Horbit of the NV ES (3E).
300
+ Two orbital branches (Ex, Ey) split under strain δ⊥. One-
301
+ and two-phonon processes cause hopping between branches
302
+ at temperature-dependent rates k↓,1(2) (k↑,1(2) not shown).
303
+ (c) Example of levels in the composite Hilbert space of orbit
304
+ and spin Horbit ⊗ Hspin. Eigenstates are superpositions of |0⟩
305
+ and |±⟩ ∝ (|+1⟩ ± |−1⟩). Spin-conserving, phonon-mediated
306
+ transitions involving |0⟩ are depicted by gray arrows. ωx(y)
307
+ are the Larmor frequencies of involved spin transitions. (d)
308
+ Hopping rates as a function of temperature. Inverse optical
309
+ lifetime T −1
310
+ 3E and Larmor frequencies (in MHz) are indicated
311
+ by horizontal lines. For (c, d) we use δ⊥ = 40 GHz in the di-
312
+ rection of a carbon bond at low magnetic field, yielding only
313
+ one significant |ϵ|2 = 0.1.
314
+ this relaxation mechanism is most efficient when a hop-
315
+ ping event occurs every half of a Larmor precession pe-
316
+ riod (2ωx(y))−1 (see Fig. S11 [25]). This occurs between
317
+ ca. 30 − 40 K (gray shading in Fig. 2(d)) and coincides
318
+ with the temperature where we observe the strongest sup-
319
+ pression of the spin contrast.
320
+ (III) As the temperature increases further, the orbital
321
+ hopping rates become much faster than the spin dynam-
322
+ ics and the two orbital states are time-averaged [15, 29].
323
+ This effectively renders 3E an orbital singlet similar to
324
+ the GS 3A2 [32] and leads to the commonly accepted
325
+ room-temperature model appearing as in Fig. 2(a). Since
326
+ |0⟩ and |±1⟩ are pure eigenstates of the time-averaged
327
+ Hamiltonian, the highest spin contrast is observed in this
328
+ regime.
329
+ Armed with this theory, we implement a rate model to
330
+ quantitatively reproduce the experimental observations
331
+ by numerical simulations (details in Ref. [25]). We model
332
+ the orbital hopping by spin-conserving Markovian tran-
333
+ sitions between the two orbital branches. Since spin co-
334
+ herences are maintained during the transitions, we use
335
+ a Lindblad master equation rather than a classical rate
336
+ model. We describe the ES in a composite Hilbert space
337
+ of spin and orbit (HES = Horbit ⊗ Hspin) and formulate
338
+ the spin-conserving jump operators as
339
+ LES
340
+
341
+ =
342
+
343
+ k↓,1 + k↓,2 |y⟩⟨x| ⊗ I3 ,
344
+ (3)
345
+ and likewise for LES
346
+ ↑ . We further introduce optical excita-
347
+ tion, decay and ISC by classical jump operators. The re-
348
+ sulting Liouville equation describes the time evolution of
349
+ the 10-dimensional density matrix ρ(t), containing three
350
+ GS levels, six ES levels and one combined shelving state.
351
+ To simulate the behavior of a chosen NV center, we
352
+ feed our model with values obtained from a simultane-
353
+ ous fit of three sets of characterization measurements: (i)
354
+ We use a measurement of the steady-state PL intensity
355
+ as a function of magnetic field at base temperature (see
356
+ Fig. 3(b, 4 K)) to obtain strain values and unintended
357
+ misalignment of the bias field, fitting the minima in the
358
+ PL at level anti-crossings [15, 20]. (ii) We pick a set of 24
359
+ time-dependent PL traces (c.f. Fig. 1(a)), including two
360
+ spin states (|0⟩, |−1⟩), six temperatures (4 − 100 K), and
361
+ low and high bias field (3 mT, 200 mT). Fits to these PL
362
+ traces then yield the optical decay and ISC rates, which
363
+ are approximately temperature-independent [33] and are
364
+ known to vary between NV centers [28, 34], as well as
365
+ the coupling strength η. We determine the shelving state
366
+ lifetime [34, 35], which has a mild, well-known tempera-
367
+ ture dependence, in a separate calibration. (iii) For each
368
+ time-dependent PL trace, we perform an optical satu-
369
+ ration measurement to quantify drift in the background
370
+ luminescence, optical alignment, and ratio of collection
371
+ over excitation efficiency. Finally, we use literature val-
372
+ ues for the NV fine structure [36, 37].
373
+ As an important side result, our calibration yields
374
+ values
375
+ for
376
+ the
377
+ electron-phonon
378
+ couplings
379
+ η
380
+ rang-
381
+ ing from 176 µs−1 meV−3 (NV-2, used in Fig. 2(d))
382
+ to 268 µs−1 meV−3 (NV-4), in good agreement with
383
+ Refs. [17, 30, 31]. We note that these studies use dif-
384
+ ferent phonon models in the evaluation of I(T). While
385
+ our data does not allow validation of a particular model
386
+ with certainty, our measurement approach provides com-
387
+ plementary insight into I(T) [25].
388
+ We are now ready to return to Fig. 1(b) and use
389
+ our model and calibration to simulate the temperature-
390
+ dependent PL and spin contrast (solid curves). Overall,
391
+ we find an excellent agreement between experimental and
392
+ simulated results. In particular, the model quantitatively
393
+ reproduces all temperature regimes (I-III), including the
394
+ minimum in contrast around 35 K and the recovery to-
395
+ wards room temperature. Although the agreement is not
396
+ perfect at elevated temperatures, which we attribute to
397
+ setup instabilities and uncertainty in temperature cali-
398
+ bration [25], our model successfully bridges the classi-
399
+
400
+ 4
401
+ 0
402
+ 50 100 150 200
403
+ Magnetic Field (mT)
404
+ E (arb. u.)
405
+ 4K
406
+ (d)
407
+ 0
408
+ 50 100 150 200
409
+ E (arb. u.)
410
+ 300K
411
+ (c)
412
+ 0
413
+ 100
414
+ 200
415
+ Magnetic Field (mT)
416
+ 20
417
+ 40
418
+ 60
419
+ 80
420
+ 100
421
+ Temperature (K)
422
+ (a)
423
+ PL (norm.)
424
+ 0.6
425
+ 1.0
426
+ 90
427
+ 130
428
+ 100K
429
+ (b)
430
+ 90
431
+ 130
432
+ 70K
433
+ 50
434
+ 90
435
+ 29K
436
+ 0
437
+ 100
438
+ 200
439
+ Magnetic Field (mT)
440
+ 70
441
+ 110
442
+ 4K
443
+ PL (kct/s)
444
+ 15
445
+ 30
446
+ 45
447
+ (e)
448
+ 80GHz
449
+ 15
450
+ 30
451
+ 45
452
+ Contrast (%)
453
+ 40GHz
454
+ 10
455
+ 5
456
+ 20
457
+ 40
458
+ 80
459
+ Temperature (K)
460
+ 15
461
+ 30
462
+ 45
463
+ = 9GHz
464
+ Figure 3.
465
+ (a) Simulation of the PL in dependence of the magnetic field and temperature. The PL is strongly reduced at avoided
466
+ crossings of the excited state (symbols) and the ground state (103 mT) energy levels. The simulation is based on parameters
467
+ fitted to NV-1. (b) Experimental PL curves for NV-1 measured as a function of magnetic field and temperature. Solid lines
468
+ show the model prediction [25]. (c,d) Energy levels for the NV-1 ES at 300 K (c, time-averaged) and at 4 K (d). Symbols refer
469
+ to (a). (e) Experimental spin contrast as a function of temperature for NV centers with high, intermediate and low intrinsic
470
+ strain δ⊥. Measurements are taken at 3 mT (empty circles) and 200 mT (filled circles). Solid lines show the model prediction.
471
+ cal rate models used in the the limits of low [20] and
472
+ high [19, 34] temperatures.
473
+ Next, we use our model to predict the PL proper-
474
+ ties as a function of magnetic bias field. In Fig. 3(a,b),
475
+ we plot the simulated PL intensity as a function of
476
+ B = 0−200 mT and T = 0−100 K together with the ex-
477
+ perimental results. The model successfully predicts the
478
+ known minima in PL (indicated by symbols) at magnetic
479
+ fields that correspond to level-anti-crossings in the ES,
480
+ in both the low (Fig. 3(d)) and high temperature limit
481
+ (Fig. 3(c), obtained from Fig. 3(d) by a partial trace
482
+ over the orbital subspace). Our model also reveals that
483
+ with increasing magnetic field, the PL minimum becomes
484
+ less pronounced and shifts to higher temperatures. This
485
+ behavior is readily explained by a lower degree of spin
486
+ mixing in the eigenstates (smaller ϵi in Fig. 2(c)) and
487
+ higher Larmor frequencies (larger ωx(y) in Fig. 2(d)) at
488
+ high field. However, even at the highest field accessible
489
+ in our experiment (200 mT), the PL minimum is still no-
490
+ ticeable. Full recovery of the PL is expected for fields
491
+ significantly above 1 T (Fig. S13 [25]).
492
+ Finally, we examine the influence of crystal strain. In
493
+ Fig. 3(e), we compare the temperature dependence of the
494
+ spin contrast for NV centers with high (NV-4, 80 GHz),
495
+ medium (NV-2, 40 GHz), and low (NV-3, 9 GHz) intrin-
496
+ sic strain within our accessible range (NV-1 has 32 GHz).
497
+ While all curves show the same qualitative behavior, we
498
+ find that the most prominent feature is a decrease in
499
+ the spin contrast at high strain δ⊥ already below 10 K.
500
+ This feature can be understood through the factor δ3
501
+
502
+ in Eq. 1: k↑,1 is rapidly increasing as the required high
503
+ energy phonon modes become thermally activated, ap-
504
+ proaching k↓,1, which is generally high due to sponta-
505
+ neous emission (Fig. S10 [25]).
506
+ In conclusion, we developed a rate model that explains
507
+ the NV center photo-physics over a broad range of tem-
508
+ perature, magnetic bias field and crystal strain, and find
509
+ excellent agreement with the experiment.
510
+ In particu-
511
+ lar, our model successfully predicts a minimum in the
512
+ PL emission and spin contrast around 35 K due to rapid
513
+ spin relaxation driven by an interplay of spin mixing and
514
+ orbital hopping. This feature is of fundamental nature
515
+ and thus universal to all NV centers, including NV cen-
516
+ ters deep in the bulk that experience negligible crystal
517
+ strain [29] (Fig. S13 [25]).
518
+ Our work provides useful insight beyond giving a
519
+ more complete picture of the NV excited-state dynam-
520
+ ics.
521
+ Firstly, our model can account for the observed
522
+ temperature dependence by phonon-induced processes
523
+ in the ES alone.
524
+ Therefore, we conclude that charge-
525
+ state switching between NV− and NV0 does not play a
526
+ key role in explaining the spin contrast as a function of
527
+ temperature.
528
+ We also have not observed any signs of
529
+ charge state instabilities on the few-minutes time scale
530
+ of our measurements (see Fig. S2 [25]).
531
+ Second, our
532
+ work introduces a new measurement approach for prob-
533
+ ing electron-phonon interactions and contributing modes,
534
+ applicable in regimes where resonant laser PL excitation
535
+ spectroscopy [30] or measurement of motional narrowing
536
+ on ES ODMR lines [31] are unavailable. Third, we ex-
537
+ amined the rich dependence on magnetic field, strain (or
538
+ equivalently electric field [28]), and temperature. Here,
539
+ our model offers a predictive tool for maximizing the PL
540
+ intensity and spin contrast, which are the key quantities
541
+ for achieving high spin readout fidelity and high metrol-
542
+ ogy sensitivity in quantum applications.
543
+ The authors thank Matthew Markham (ElementSix)
544
+ for providing the 12C diamond, Jan Rhensius (QZabre)
545
+
546
+ 5
547
+ for nanofabrication, and Erika Janitz, Fedor Jelezko, As-
548
+ saf Hamo, Konstantin Herb, William Huxter, Patrick
549
+ Maletinsky, Francesco Poggiali, Friedemann Reinhard,
550
+ J¨org Wrachtrup and Jonathan Zopes for useful input and
551
+ discussions. This work was supported by the European
552
+ Research Council through ERC CoG 817720 (IMAG-
553
+ INE), the Swiss National Science Foundation (SNSF)
554
+ through Project Grant No. 200020 175600 and through
555
+ the NCCR QSIT, a National Centre of Competence in
556
+ Research in Quantum Science and Technology, Grant
557
+ No.
558
+ 51NF40-185902, and the Advancing Science and
559
+ TEchnology thRough dIamond Quantum Sensing (AS-
560
+ TERIQS) program, Grant No. 820394, of the European
561
+ Commission.
562
+ [email protected]; †These authors contributed equally.
563
+ [1] E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo,
564
+ T. Makino, S. Yamasaki, I. Ohki, K. Hayashi, H. Mor-
565
+ ishita, M. Fujiwara, and N. Mizuochi, Ultra-long coher-
566
+ ence times amongst room-temperature solid-state spins,
567
+ Nature Communications 10, 3766 (2019).
568
+ [2] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen,
569
+ Nitrogen-vacancy centers in diamond: Nanoscale sensors
570
+ for physics and biology, Annu. Rev. Phys. Chem. 65, 83
571
+ (2014).
572
+ [3] L. Childress and R. Hanson, Diamond NV centers for
573
+ quantum computing and quantum networks, MRS Bul-
574
+ letin 38, 134 (2013).
575
+ [4] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M.
576
+ Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan,
577
+ A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D.
578
+ Lukin, Nanoscale magnetic sensing with an individual
579
+ electronic spin in diamond, Nature 455, 644 (2008).
580
+ [5] G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-
581
+ Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hem-
582
+ mer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Brats-
583
+ chitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging
584
+ magnetometry with diamond spins under ambient condi-
585
+ tions, Nature 455, 648 (2008).
586
+ [6] F. Dolde, H. Fedder, M. W. Doherty, T. Noebauer,
587
+ F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard,
588
+ L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup,
589
+ Electric-field sensing using single diamond spins, Nat.
590
+ Phys. 7, 459 (2011).
591
+ [7] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J.
592
+ Noh, P. K. Lo, H. Park, and M. D. Lukin, Nanometre-
593
+ scale thermometry in a living cell, Nature 500, 54 (2013).
594
+ [8] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman,
595
+ L. S. Bouchard, and D. Budker, Temperature dependence
596
+ of the nitrogen-vacancy magnetic resonance in diamond,
597
+ Phys. Rev. Lett. 104, 070801 (2010).
598
+ [9] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A.
599
+ Alkemade, and R. Hanson, High-fidelity projective read-
600
+ out of a solid-state spin quantum register, Nature 477,
601
+ 574 (2011).
602
+ [10] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers,
603
+ P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen,
604
+ M. J. Tiggelman, L. dos Santos Martins, B. Dirkse,
605
+ S. Wehner, and R. Hanson, Realization of a multinode
606
+ quantum network of remote solid-state qubits, Science
607
+ 372, 259 (2021).
608
+ [11] C. Bradley, J. Randall, M. Abobeih, R. Berrevoets,
609
+ M. Degen, M. Bakker, M. Markham, D. Twitchen, and
610
+ T. Taminiau, A ten-qubit solid-state spin register with
611
+ quantum memory up to one minute, Phys. Rev. X 9,
612
+ 031045 (2019).
613
+ [12] S. E. Lillie, D. A. Broadway, N. Dontschuk, S. C.
614
+ Scholten, B. C. Johnson, S. Wolf, S. Rachel, L. C. L. Hol-
615
+ lenberg, and J.-P. Tetienne, Laser modulation of super-
616
+ conductivity in a cryogenic wide-field nitrogen-vacancy
617
+ microscope, Nano Letters 20, 1855 (2020).
618
+ [13] T. Song, Q. C. Sun, E. Anderson, C. Wang, J. Qian,
619
+ T. Taniguchi, K. Watanabe, M. A. McGuire, R. Stohr,
620
+ D. Xiao, T. Cao, J. Wrachtrup, and X. Xu, Direct visu-
621
+ alization of magnetic domains and Moire magnetism in
622
+ twisted 2D magnets, Science 374, 1140 (2021).
623
+ [14] L. Thiel,
624
+ Z. Wang,
625
+ M. A. Tschudin,
626
+ D. Rohner,
627
+ I. Gutierrez-lezama, N. Ubrig, M. Gibertini, E. Gian-
628
+ nini, A. F. Morpurgo, and P. Maletinsky, Probing mag-
629
+ netism in 2D materials at the nanoscale with single-spin
630
+ microscopy, Science 364, 973 (2019).
631
+ [15] L. J. Rogers, R. L. Mcmurtrie, M. J. Sellars, and N. B.
632
+ Manson, Time-averaging within the excited state of the
633
+ nitrogen-vacancy centre in diamond, New Journal of
634
+ Physics 11, 063007 (2009).
635
+ [16] K. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers,
636
+ N. B. Manson, and R. G. Beausoleil, Observation of
637
+ the dynamic Jahn-Teller effect in the excited states of
638
+ nitrogen-vacancy centers in diamond, Phys. Rev. Lett.
639
+ 103, 256404 (2009).
640
+ [17] T. A. Abtew, Y. Y. Sun, B. Shih, P. Dev, S. B. Zhang,
641
+ and P. Zhang, Dynamic Jahn-Teller effect in the NV−
642
+ center in diamond, Physical Review Letters 107, 146403
643
+ (2011).
644
+ [18] D. F. Wise, Could NV centres in diamond be used to
645
+ measure donor spins in silicon?, PhD Thesis, University
646
+ College London, London (2021).
647
+ [19] J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. De-
648
+ buisschert, J. Roch, and V. Jacques, Magnetic-field-
649
+ dependent photodynamics of single NV defects in dia-
650
+ mond: an application to qualitative all-optical magnetic
651
+ imaging, New Journal of Physics 14, 103033 (2012).
652
+ [20] J. Happacher, D. A. Broadway, J. Bocquel, P. Reiser,
653
+ A. Jimen´ez, M. A. Tschudin, L. Thiel, D. Rohner,
654
+ M. l. G. Puigibert, B. Shields, J. R. Maze, V. Jacques,
655
+ and P. Maletinsky, Low-temperature photophysics of sin-
656
+ gle nitrogen-vacancy centers in diamond, Physical Re-
657
+ view Letters 128, 177401 (2022).
658
+ [21] P. Tamarat, N. B. Manson, J. P. Harrison, R. L. Mc-
659
+ Murtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil,
660
+ P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and
661
+ J. Wrachtrup, Spin-flip and spin-conserving optical tran-
662
+ sitions of the nitrogen-vacancy centre in diamond, New
663
+ Journal of Physics 10, 045004 (2008).
664
+ [22] U. Vool, A. Hamo, G. Varnavides, Y. Wang, T. X. Zhou,
665
+ N. Kumar, Y. Dovzhenko, Z. Qiu, C. A. C. Garcia, A. T.
666
+ Pierce, J. Gooth, P. Anikeeva, C. Felser, P. Narang, and
667
+ A. Yacoby, Imaging phonon-mediated hydrodynamic flow
668
+ in WTe2, Nature Physics 17, 1216 (2021).
669
+ [23] P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. De-
670
+ gen, Scanning nitrogen-vacancy magnetometry down to
671
+ 350 mK, Applied Physics Letters 120, 224001 (2022).
672
+
673
+ 6
674
+ [24] L.
675
+ Lorenzelli,
676
+ Development of a scanning nitrogen-
677
+ vacancy-center magnetometer for variable temperature
678
+ experiments, PhD Thesis, ETH Zurich, Zurich (2021).
679
+ [25] The
680
+ Supplemental
681
+ Material
682
+ accompanying
683
+ this
684
+ manuscript is available on request.
685
+ [26] E. Kupce and R. Freeman, Adiabatic pulses for wideband
686
+ inversion and broadband decoupling, Journal of Magnetic
687
+ Resonance, Series A 115, 273 (1995).
688
+ [27] D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley,
689
+ C. G. van de Walle, and D. D. Awschalom, Measurement
690
+ and control of single nitrogen-vacancy center spins above
691
+ 600K, Phys. Rev. X 2, 031001 (2012).
692
+ [28] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
693
+ J. Wrachtrup, and L. C. Hollenberg, The nitrogen-
694
+ vacancy colour centre in diamond, Physics Reports 528,
695
+ 1 (2013).
696
+ [29] A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neu-
697
+ mann, L. J. Rogers, R. L. McMurtrie, N. B. Manson,
698
+ F. Jelezko, and J. Wrachtrup, Low temperature stud-
699
+ ies of the excited-state structure of negatively charged
700
+ nitrogen-vacancy color centers in diamond, Phys. Rev.
701
+ Lett. 102, 195506 (2009).
702
+ [30] M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao,
703
+ S. D. Bennett, M. Markham, D. J. Twitchen, N. B. Man-
704
+ son, A. Kubanek, and M. D. Lukin, Phonon-induced pop-
705
+ ulation dynamics and intersystem crossing in nitrogen-
706
+ vacancy centers, Physical Review Letters 114, 145502
707
+ (2015).
708
+ [31] T. Plakhotnik, M. W. Doherty, and N. B. Manson,
709
+ Electron-phonon processes of the nitrogen-vacancy cen-
710
+ ter in diamond, Physical Review B 92, 081203 (2015).
711
+ [32] T. Plakhotnik, M. W. Doherty, J. H. Cole, R. Chapman,
712
+ and N. B. Manson, All-optical thermometry and thermal
713
+ properties of the optically detected spin resonances of
714
+ the NV– center in nanodiamond, Nano Letters 14, 4989
715
+ (2014).
716
+ [33] M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao,
717
+ S. D. Bennett, N. B. Manson, A. Kubanek, and M. D.
718
+ Lukin, State-selective intersystem crossing in nitrogen-
719
+ vacancy centers, Physical Review B 91, 165201 (2015).
720
+ [34] L. Robledo, H. Bernien, T. van der Sar, and R. Hanson,
721
+ Spin dynamics in the optical cycle of single nitrogen-
722
+ vacancy centres in diamond, New J. Phys. 13, 025013
723
+ (2011).
724
+ [35] N. Manson,
725
+ J. Harrison, and M. Sellars, Nitrogen-
726
+ vacancy center in diamond: model of the electronic struc-
727
+ ture, Phys. Rev. B 74, 104303 (2006).
728
+ [36] L. C. Bassett, F. J. Heremans, D. J. Christle, C. G. Yale,
729
+ G. Burkard, B. B. Buckley, and D. D. Awschalom, Ul-
730
+ trafast optical control of orbital and spin dynamics in a
731
+ solid-state defect, Science 345, 1333 (2014).
732
+ [37] X. D. Chen, C. H. Dong, F. W. Sun, C. L. Zou, J. M. Cui,
733
+ Z. F. Han, and G. C. Guo, Temperature dependent en-
734
+ ergy level shifts of nitrogen-vacancy centers in diamond,
735
+ Appl. Phys. Lett. 99, 161903 (2011).
736
+
89E4T4oBgHgl3EQfdgwn/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE1T4oBgHgl3EQfngRF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e3223117dc10fb7f03eec2198e29d11b1af8fc0b68d097f9de0da340bbe868
3
+ size 3866669
8NE1T4oBgHgl3EQfngRF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc056bbd1f3b3d922dc48b08828a5cba8fe75b10d7a700676c30545dea350d45
3
+ size 140595
BdE0T4oBgHgl3EQfyAIA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b5aa0a171574197c6086af988ac306b8537724453a20696a7eba4b3edc29f04
3
+ size 86366
CdE4T4oBgHgl3EQf5g79/content/tmp_files/2301.05325v1.pdf.txt ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05325v1 [math.GR] 12 Jan 2023
2
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
3
+ MICHAEL KAPOVICH
4
+ Abstract. We compare various notions of proper discontinuity for group actions. We
5
+ also discuss fundamental domains and criteria for cocompactness.
6
+ To the memory of Sasha Anan’in
7
+ 1. Introduction
8
+ This note is meant to clarify the relation between different commonly used definitions
9
+ of proper discontinuity without the local compactness assumption for the underlying topo-
10
+ logical space. Much of the discussion applies to actions of nondiscrete topological groups,
11
+ but, since my primary interest is geometric group theory, I will work only with discrete
12
+ groups. All group actions are assumed to be continuous, in other words, these are homo-
13
+ morphisms from abstract groups to groups of homeomorphisms of topological spaces. This
14
+ combination of continuous and properly discontinuous, sadly, leads to the ugly terminology
15
+ “a continuous properly discontinuous action.” A better terminology might be that of a
16
+ properly discrete action, since it refers to proper actions of discrete groups.
17
+ Throughout this note, I will be working only with topological spaces which are 1st count-
18
+ able, since spaces most common in metric geometry, geometric topology, algebraic topology
19
+ and geometric group theory satisfy this property. One advantage of this assumption is that
20
+ if (xn) is a sequence converging to a point x ∈ X, then the subset {x} ∪ {xn : n ∈ N} is
21
+ compact, which is not true if we work with nets instead of sequences. However, I will try
22
+ to avoid the local compactness assumption whenever possible, since many spaces appear-
23
+ ing in metric geometry and geometric group theory (e.g. asymptotic cones) and algebraic
24
+ topology (e.g. CW complexes) are not locally compact. (Recall that topological space X
25
+ is locally compact if every point has a basis of topology consisting of relatively compact
26
+ subsets.) In the last two sections of the note I also discuss criteria for cocompactness of
27
+ group actions and fundamental sets/domains of properly discontinuous actions.
28
+ Acknowledgement. I am grateful to Boris Okun for pointing out several typos and
29
+ the reference to [9].
30
+ 2. Group actions
31
+ A topological group is a group G equipped with a topology such that the multiplication
32
+ and inversion maps
33
+ G × G → G, (g, h) �→ gh, G → G, g �→ g−1
34
+ Date: January 16, 2023.
35
+
36
+ 2
37
+ MICHAEL KAPOVICH
38
+ are both continuous. A discrete group is a group with discrete topology. Every discrete
39
+ group is clearly a topological group.
40
+ A left continuous action of a topological group G on a topological space X is a continuous
41
+ map
42
+ λ : G × X → X
43
+ satisfying
44
+ 1. λ(1G, x) = x for all x ∈ X.
45
+ 2. λ(gh, x) = λ(g, λ(h, x)), for all x ∈ X, g, h ∈ G.
46
+ From this, it follows that the map ρ : G → Homeo(X)
47
+ ρ(g)(x) = λ(g, x),
48
+ is a group homomorphism, where the group operation φψ on Homeo(X) is the composition
49
+ φ ◦ ψ.
50
+ If G is discrete, then every homomorphism G → Homeo(X) defines a left continuous
51
+ action of G on X.
52
+ The shorthand for ρ(g)(x) is gx or g · x. Similarly, for a subset A ⊂ X, GA or G · A,
53
+ denotes the orbit of A under the G-action:
54
+ GA =
55
+
56
+ g∈G
57
+ gA.
58
+ The quotient space X/G (also frequently denoted G\X), of X by the G-action, is the
59
+ set of G-orbits of points in X, equipped with the quotient topology: The elements of X/G
60
+ are equivalence classes in X, where x ∼ y when Gx = Gy (equivalently, y ∈ Gx).
61
+ The stabilizer of a point x ∈ X under the G-action is the subgroup Gx < G given by
62
+ {g ∈ G : gx = x}.
63
+ An action of G on X is called free if Gx = {1} for all x ∈ X. Assuming that X is Hausdorff,
64
+ Gx is closed in G for every x ∈ X.
65
+ Example 1. An example of a left action of G is the action of G on itself via left multipli-
66
+ cation:
67
+ λ(g, h) = gh.
68
+ In this case, the common notation for ρ(g) is Lg. This action is free.
69
+ 3. Proper maps
70
+ Properness of certain maps is the most common form of defining proper discontinuity;
71
+ sadly, there are two competing notions of properness in the literature.
72
+ A continuous map f : X → Y of topological spaces is proper in the sense of Bourbaki,
73
+ or simply Bourbaki–proper (cf. [2, Ch. I, §10, Theorem 1]) if f is a closed map (images of
74
+ closed subsets are closed) and point–preimages f −1(y), y ∈ Y , are compact. A continuous
75
+ map f : X → Y is proper (and this is the most common definition) if for every compact
76
+ subset K ⊂ X, f −1(K) is compact. It is noted in [2, Ch. I, §10; Prop. 7] that if X is
77
+ Hausdorff and Y is locally compact then f is Bourbaki–proper if and only if f is proper.
78
+
79
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
80
+ 3
81
+ The advantage of the notion of Bourbaki-properness is that it applies in the case of
82
+ Zariski topology, where spaces tend to be compact (every subset of a finite-dimensional
83
+ affine space is Zariski-compact) and, hence, the standard notion of properness is useless.
84
+ Since our goal is to trade local compactness for 1st countability, I will prove
85
+ Lemma 2. If f : X → Y is proper, and X, Y are Hausdorff and 1st countable, then f is
86
+ Bourbaki-proper.
87
+ Proof. We only have to verify that f is closed. Suppose that A ⊂ X is a closed subset.
88
+ Since Y is 1st countable, it suffices to show that for each sequence (xn) in A such that
89
+ (f(xn)) converges to y ∈ Y , there is a subsequence (xnk) which converges to some x ∈ A
90
+ such that f(x) = y. The subset C = {y} ∪ {f(xn) : n ∈ N} ⊂ Y is compact. Hence, by
91
+ properness of f, K = f −1(C) is also compact. Since X is Hausdorff, and K is compact,
92
+ follows that (xn) subconverges to a point x ∈ K. By continuity of f, f(x) = y. Since A is
93
+ closed, x ∈ A.
94
+
95
+ Remark 3. In fact, for this lemma to hold, one does not need to assume that X is Haus-
96
+ dorff and 1st countable, see
97
+ The converse (each Bourbaki–proper map is proper) is proven in [2, Ch. I, §10; Prop.
98
+ 6] without any restrictions on X, Y . Hence:
99
+ Corollary 4. For maps between 1st countable Hausdorff spaces, Bourbaki–properness is
100
+ equivalent to properness.
101
+ 4. Proper discontinuity
102
+ Suppose that X is a 1st countable Hausdorff topological space, G a discrete group and
103
+ G × X → X a (continuous) action. We use the notation gn → ∞ in G to indicate that gn
104
+ converges to ∞ in the 1-point compactification G ∪ {∞} of G, i.e. for every finite subset
105
+ F ⊂ G,
106
+ card({n : gn ∈ F}) < ∞.
107
+ Given a group action G × X → X and two subsets A, B ⊂ X, the transporter subset
108
+ (A|B)G is defined as
109
+ (A|B)G := {g ∈ G : gA ∩ B ̸= ∅}.
110
+ Properness of group actions is (typically) stated using certain transporter sets.
111
+ Definition 5. Two points x, y ∈ X are said to be G-dynamically related if there is a
112
+ sequence gn → ∞ in G and a sequence xn → x in X such that gnxn → y.
113
+ A point x ∈ X is said to be a wandering point of the G-action if there is a neighborhood
114
+ U of x such that (U|U)G is finite.
115
+ Lemma 6. Suppose that the action G × X → X is wandering at a point x ∈ X. Then the
116
+ G-action has a G-slice at x, i.e. a neighborhood Wx ⊂ U which is Gx-stable and for all
117
+ g /∈ Gx, gWx ∩ Wx = ∅.
118
+
119
+ 4
120
+ MICHAEL KAPOVICH
121
+ Proof. For each g ∈ (U|U)G − Gx we pick a neighborhood Vg ⊂ U of x such that
122
+ gVg ∩ Vg = ∅.
123
+ Then the intersection
124
+ V :=
125
+
126
+ g∈(U|U)G−Gx
127
+ Vg
128
+ satisfies the property that (V |V )G = Gx. Lastly, take
129
+ Wx :=
130
+
131
+ g∈Gx
132
+ V.
133
+
134
+ The next lemma is clear:
135
+ Lemma 7. Assuming that X is Hausdorff and 1st countable, the action G × X → X is
136
+ wandering at x if and only if x is not dynamically related to itself.
137
+ Given a group action α : G × X → X, we have the natural map
138
+ ˆα := α × idX : G × X → X × X
139
+ where idX : (g, x) �→ x.
140
+ Definition 8. An action α of a discrete group G on a topological space X is Bourbaki–
141
+ proper if the map ˆα is Bourbaki-proper.
142
+ Lemma 9. If the action α : G×X → X of a discrete group G on an Hausdorff topological
143
+ space X is Bourbaki-proper then the quotient space X/G is Hausdorff.
144
+ Proof. The quotient map X → X/G is an open map by the definition of the quotient
145
+ topology on X/G. Since α is Bourbaki-proper, the image of the map ˆα is closed in X × X.
146
+ This image is the equivalence relation on X ×X which use used to form the quotient X/G.
147
+ Now, Hausdorffness of X/G follows from Theorem 7.7 in [12].
148
+
149
+ Definition 10. An action α of a discrete group G on a topological space X is properly
150
+ discontinuous if the map ˆα is proper.
151
+ We note that equivalence of (1) and (5) in the following theorem is proven in [2, Ch. III,
152
+ §4.4, Proposition 7] without any assumptions on X.
153
+ Theorem 11. Assuming that X is Hausdorff and 1st countable, the following are equiva-
154
+ lent:
155
+ (1) The action α : G × X → X is Bourbaki-proper.
156
+ (2) For every compact subset K ⊂ X,
157
+ card((K|K)G) < ∞.
158
+ (3) The action α : G × X → X is proper, i.e. the map ˆα is proper.
159
+ (4) For every compact subset K ⊂ X, there exists an open neighborhood U of K such
160
+ that card((U|U)G) < ∞.
161
+
162
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
163
+ 5
164
+ (5) For any pair of points x, y ∈ X there is a pair of neighborhoods Ux, Vx (of x, y
165
+ respectively) such that card((Ux|Vy)G)) < ∞.
166
+ (6) There are no G-dynamically related points in X.
167
+ (7) Assuming, that G is countable and X is completely metrizable1 : The G-stabilizer
168
+ of every x ∈ X is finite and for any two points x ∈ X, y ∈ X − Gx, there exists a
169
+ pair of neighborhoods Ux, Vy (of x, resp. y) such that ∀g ∈ G, gUx ∩ Vy = ∅.
170
+ (8) Assuming that X is a metric space and the action G × X → X is equicontinuous2:
171
+ There is no x ∈ X and a sequence hn → ∞ in G such that hnx → x.
172
+ (9) Assuming that X is a metric space and the action G × X → X is equicontinuous:
173
+ Every x ∈ X is a wandering point of the G-action.
174
+ (10) Assuming that X is a CW complex and the action G × X → X is cellular: Every
175
+ point of X is wandering.
176
+ (11) Assuming that X is a CW complex the action G × X → X is cellular: Every cell
177
+ in X has finite G-stabilizer.
178
+ Proof. The action α is Bourbaki-proper if and only if the map ˆα is proper (see Corollary 4)
179
+ which is equivalent to the statement that for each compact K ⊂ X, the subset (K|K)G×K
180
+ is compact. Hence, (1) ⇐⇒ (2).
181
+ The property (3) means that for each compact K ⊂ X, ˆα−1(K ×K) = {(g, x) ∈ G×K :
182
+ x ∈ K, gx ∈ K} is compact. This subset is closed in G × X and projects onto (K|K)G in
183
+ the first factor and to the subset
184
+ (12)
185
+
186
+ g∈(K|K)G
187
+ g−1(K).
188
+ Hence, properness of α implies finiteness of (K|K)G.
189
+ Conversely, if (K|K)G is finite,
190
+ compactness of g−1(K) for every g ∈ G implies finiteness of the union (12). Thus, (2) ⇐⇒
191
+ (3).
192
+ In order to show (2)⇒(6), suppose that x, y are G-dynamically related points: There
193
+ exists an sequence gn → ∞ in G and a sequence xn → x such that gn(xn) → y. The subset
194
+ K = {x, y} ∪ {xn, gn(xn) : n ∈ N}
195
+ is compact. However, yn ∈ gn(K) ∩ K for every n. A contradiction.
196
+ (6)⇒(5): Suppose that the neighborhoods Ux, Vy do not exist. Let {Un}n∈N, {Vn}n∈N
197
+ be countable bases at x, y respectively. Then for every n there exists gn ∈ G, such that
198
+ gn(Un) ∩ Vn ̸= ∅ for infinitely many gn’s in G. After extraction, gn → ∞ in G. This yields
199
+ points xn ∈ Un, yn = gn(xn) ∈ Vn. Hence, xn → x, yn → y. Thus, x is G-dynamically
200
+ related to y. A contradiction.
201
+ (5)⇒(4).
202
+ Consider a compact K ⊂ X.
203
+ Then for each x ∈ K, y ∈ K there exist
204
+ neighborhoods Ux, Vy such that (Ux|Vy)G is finite. The product sets Ux × Vy, x, y ∈ K
205
+ constitute an open cover of K2. By compactness of K2, there exist x1, ..., xn, y1, ..., ym ∈ K
206
+ 1It suffices to assume that X is hereditarily Baire: Every closed subset of X is Baire.
207
+ 2E.g. an isometric action.
208
+
209
+ 6
210
+ MICHAEL KAPOVICH
211
+ such that
212
+ K ⊂ Ux1 ∪ ... ∪ Uxn
213
+ K ⊂ Vy1 ∪ ... ∪ Vym
214
+ and for each pair (xi, yj),
215
+ card({g ∈ G : gUxi ∩ Vyj ̸= ∅}) < ∞.
216
+ Setting
217
+ W :=
218
+ n�
219
+ i=1
220
+ Uxi, V :=
221
+ m
222
+
223
+ j=1
224
+ Vyj
225
+ we see that
226
+ card((W|V )G) < ∞.
227
+ Taking U := V ∩ W yields the required subset U.
228
+ The implication (4)⇒(2) is immediate.
229
+ Thus, we concluded the proof of equivalence of the properties (1)—(6).
230
+ (5)⇒(7): Finiteness of G-stabilizers of points in X is clear. Let x, y be points in distinct
231
+ G-orbits. Let U ′
232
+ x, V ′
233
+ y be neighborhoods of x, y such that (U ′
234
+ x|V ′
235
+ y)G = {g1, ..., gn}. For each
236
+ i, since X is Hausdorff, there are disjoint neighborhoods Vi of y and Wi of gi(xi). Now set
237
+ Vy :=
238
+ n�
239
+ i=1
240
+ Vi,
241
+ Ux :=
242
+ n�
243
+ i=1
244
+ g−1
245
+ i
246
+ (Wi).
247
+ Then gUx ∩ Vy = ∅ for every g ∈ G.
248
+ (7)⇒(6): It is clear that (7) implies that there are no dynamically related points with
249
+ distinct G-orbits. In particular, every G-orbit in X is closed.
250
+ Assume now that X is completely metrizable and G is countable. Suppose that a point
251
+ x ∈ X is G-dynamically related to itself. Since the stabilizer Gx is finite, the point x is
252
+ an accumulation point of Gx; moreover, Gx is closed in X. Hence, Gx is a closed perfect
253
+ subset of X. Since X admits a complete metric, so does its closed subset Gx. Thus, for
254
+ each g ∈ G, the complement Ug := Gx − {gx} is open and dense in Gx. By the Baire
255
+ Category Theorem, the countable intersection
256
+
257
+ g∈G
258
+ Ug
259
+ is dense in Gx. However, this intersection is empty. A contradiction.
260
+ It is clear that (6)⇒(8) (without any extra assumptions).
261
+ (8)⇒(6). Suppose that X is a metric space and the G-action is equicontinuous. Equicon-
262
+ tinuity implies that for each z ∈ X, a sequence zn → z and gn ∈ G,
263
+ gnzn → gz.
264
+ Suppose that there exist a pair of G-dynamically related points x, y ∈ X: ∃xn → x, gn ∈
265
+ G, gnxn → y. By equicontinuity of the action, gnx → y.
266
+ Since gn → ∞, there exist
267
+
268
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
269
+ 7
270
+ subsequences gni → ∞ and gmi → ∞ such that the products hi := g−1
271
+ ni gmi are all distinct.
272
+ Then, by equicontinuity,
273
+ hix → x.
274
+ A contradiction.
275
+ The implications (5)⇒(9)⇒(8) and (5)⇒(10)⇒(11) are clear.
276
+ Lastly, let us prove the implication (11)⇒(2). We first observe that every CW complex
277
+ is Hausdorff and 1st countable. Furthermore, every compact K ⊂ X intersects only finitely
278
+ many open cells eλ in X. (Otherwise, picking one point from each nonempty intersection
279
+ K ∩ eλ we obtain an infinite closed discrete subset of K.) Thus, there exists a finite subset
280
+ E := {eλ : λ ∈ Λ} of open cells in X such that for every g ∈ (K|K)G, gE ∩ E ̸= ∅. Now,
281
+ finiteness of (K|K)G follows from finiteness of cell-stabilizers in G.
282
+
283
+ Unfortunately, the property that every point of X is a wandering point is frequently
284
+ taken as the definition of proper discontinuity for G-actions, see e.g. [5]. Items (8) and
285
+ (10) in the above theorem provide a (weak) justification for this abuse of terminology. I
286
+ feel that the better name for such actions is wandering actions.
287
+ Example 13. Consider the action of G = Z on the punctured affine plane X = R2 −
288
+ {(0, 0)}, where the generator of Z acts via (x, y) �→ (2x, 1
289
+ 2y). Then for any p ∈ X, the
290
+ G-orbit Gp has no accumulation points in X. However, any two points p = (x, 0), q =
291
+ (0, y) ∈ X are dynamically related. Thus, the action of G is not properly discontinuous.
292
+ This example shows that the quotient space of a wandering action need not be Hausdorff.
293
+ Lemma 14. Suppose that G× X → X is a wandering action. Then each G-orbit is closed
294
+ and discrete in X. In particular, the quotient space X/G is T1.
295
+ Proof. Suppose that Gx accumulates at a point y. Then Gx ∩ Wy is nonempty, where Wy
296
+ is a G-slice at y. It follows that all points of Gx ∩ Wy lie in the same Wy-orbit, which
297
+ implies that Gx ∩ Wy = {y}.
298
+
299
+ There are several reasons to consider properly discontinuous actions; one reason is that
300
+ such actions yield orbi-covering maps in the case of smooth group actions on manifolds:
301
+ M → M/G is an orbi-covering provided that the action of G on M is smooth (or, at
302
+ least, locally smoothable). Another reason is that for a properly discontinuous action on a
303
+ Hausdorff space, G × X → X, the quotient X/G is again Hausdorff.
304
+ Question 15. Suppose that G is a discrete group, G × X → X is a free continuous
305
+ action on an n-dimensional topological manifold X such that the quotient space X/G is a
306
+ (Hausdorff) n-dimensional topological manifold. Does it follow that the action of G on X
307
+ is properly discontinuous?
308
+ The answer to this question is negative if one merely assumes that X is a Hausdorff
309
+ topological space and X/G is Hausdorff.
310
+
311
+ 8
312
+ MICHAEL KAPOVICH
313
+ 5. Cocompactness
314
+ There are two common notions of cocompactness for group actions:
315
+ (1) G × X → X is cocompact if there exists a compact K ⊂ X such that G · K = X.
316
+ (2) G × X → X is cocompact if X/G is compact.
317
+ It is clear that (1)⇒(2), as the image of a compact under the continuous (quotient) map
318
+ p : X → X/G is compact.
319
+ Lemma 16. If X is locally compact then (2)⇒(1).
320
+ Proof. For each x ∈ X let Ux denote a relatively compact neighborhood of x in X. Then
321
+ Vx := p(Ux) = p(G · Ux),
322
+ is compact since G· Ux is open in X. Thus, we obtain an open cover {Vx : x ∈ X} of X/G.
323
+ Since X/G is compact, this open cover contains a finite subcover
324
+ Vx1, ..., Vxn.
325
+ It follows that
326
+ p(
327
+ n�
328
+ i=1
329
+ Uxi) = X/G.
330
+ The set
331
+ K =
332
+ n�
333
+ i=1
334
+ Uxi
335
+ is compact and p(K) = X/G. Hence, G · K = X.
336
+
337
+ Lemma 17. Suppose that X is normal, G × X → X is a proper action such that X/G is
338
+ locally compact. Then X is locally compact.
339
+ Proof. Pick x ∈ X. Let Wx be a slice for the G-action at x; then Wx/Gx → X/G is a
340
+ topological embedding. Thus, our assumptions imply that Wx/Gx is compact for every
341
+ x ∈ X.
342
+ Let (xα) be a net in Wx. Since Wx/Gx is compact, the net (xα)/G contains
343
+ a convergent subnet.
344
+ Thus, after passing to a subnet, there exists g ∈ Gx such that
345
+ (gxα) converges to some x ∈ Wx.
346
+ Hence, (xα) subconverges to g−1(x).
347
+ Thus, Wx is
348
+ relatively compact. Since X is assumed to be normal, x admits a basis of relatively compact
349
+ neighborhoods.
350
+
351
+ 6. Fundamental sets
352
+ Definition 18. A closed subset F ⊂ X is a fundamental set for the action of G on X if
353
+ G·F = X and there exists an open neighborhood U = UF of F such that for every compact
354
+ K ⊂ X, the transporter set (U|K)G is finite (the local finiteness condition).
355
+ Fundamental sets appear naturally in the reduction theory of arithmetic groups (Siegel
356
+ sets), see [10] and [1].
357
+ There are several existence theorems for fundamental sets. The next proposition, proven
358
+ in [8, Lemma 2], guarantees existence of fundamental sets under the paracompactness
359
+ assumption on X/G.
360
+
361
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
362
+ 9
363
+ Proposition 19. Each properly discontinuous action G ↷ X with paracompact quotient
364
+ X/G admits a fundamental set.
365
+ One frequently encounters a sharper version of fundamental sets, called fundamental
366
+ domains. A domain in a topological space X is an open subset U ⊂ X which equals the
367
+ interior of its closure.
368
+ Definition 20. Suppose that G × X → X is a properly discontinuous group action. A
369
+ subset F in X is called a fundamental domain for an action G × X → X if the following
370
+ hold:
371
+ (1) F is a domain in X.
372
+ (2) G · F = X.
373
+ (3) gF ∩ F ̸= ∅ if and only if g = 1.
374
+ (4) For every compact subset K ⊂ X, the transporter set (F|K)G is finite, i.e. the
375
+ family {gF}g∈G of subsets in X is locally finite.
376
+ Suppose that (X, d) is a proper geodesic metric space.
377
+ Suppose, furthermore, that
378
+ G × X → X is a properly discontinuous isometric action, x ∈ X is a point which is fixed
379
+ only by the identity element.
380
+ Remark 21. If G is countable and fixed point sets in X of nontrivial elements of G are
381
+ nowhere dense, then Baire’s Theorem implies existence of such x.
382
+ One defines the Dirichlet domain of the action as
383
+ D = Dx = {y ∈ X : d(y, x) < d(y, gx)
384
+ ∀g ∈ G \ Gx}.
385
+ Note that gDx = Dgx.
386
+ Proposition 22. Each Dirichlet domain D is a fundamental domain for the G-action.
387
+ Proof. 1. The closure D is contained in
388
+ ˆD = ˆDx = {y ∈ X : d(y, x) ≤ d(y, gx)
389
+ ∀g ∈ G \ Gx}.
390
+ As before, g ˆDx = ˆDgx. I claim that ˆD is the closure of D and D is the interior of ˆD; this
391
+ will prove that D is a domain. Clearly, D is contained in the interior of ˆD and ˆD is closed.
392
+ Hence, it suffices to prove that each point of ˆD is the limit of a sequence in D. Consider
393
+ a point z ∈ ˆD \ D and let c : [0, T] → X be a geodesic connecting x to z. Then for each
394
+ t ∈ [0, T) and g ∈ G \ {1},
395
+ d(x, c(t)) < d(x, c(t)) + d(c(t), z) = d(x, z) ≤ d(z, gx),
396
+ i.e. c(t) ∈ D. Thus, indeed, z lies in the closure of D, as claimed.
397
+ 2. Let us prove that g ˆD = X. For each y ∈ X the function g �→ d(z, gx) is a proper
398
+ function on G, hence, it attains its minimum on some g ∈ G. Then, clearly, y ∈ ˆDgx,
399
+ hence, y ∈ g ˆDx. Thus, gD = X.
400
+ 3. Suppose that g ∈ G \ {1} is such that gD = Dgx ∩ D ̸= ∅. Then each point y of
401
+ intersection is closer to x than to gx (since y ∈ Dx) and also y is closer to gx than to
402
+ g−1gx = x (since y ∈ Dgx). This is clearly impossible.
403
+
404
+ 10
405
+ MICHAEL KAPOVICH
406
+ 4. Lastly, let us verify local finiteness. Consider a compact K ⊂ X. Then K ⊂ B =
407
+ B(x, R) for some R. For every g ∈ G such that gB ∩ B ̸= ∅, d(x, gx) ≤ 2R. Since (X, d) is
408
+ a proper metric space and the action of G on X is properly discontinuous, the set of such
409
+ elements of G is finite.
410
+
411
+ I will now prove existence of fundamental domains for properly discontinuous group
412
+ actions on a certain class of topological spaces.
413
+ Theorem 23. Suppose that X is 2nd countable, connected and locally connected locally
414
+ compact Hausdorff topological space. Suppose that G × X → X is a properly discontinuous
415
+ action of a countable group such that the fixed-point set of each nontrivial element of G is
416
+ nowhere dense in X. Then this action admits a fundamental domain.
417
+ Proof. Our goal is to construct a G-invariant geodesic metric metrizing X. Then the result
418
+ will follow from the proposition.
419
+ Lemma 24. The quotient space Y = X/G is locally compact, connected, locally connected
420
+ and metrizable.
421
+ Proof. Local compactness and connectedness of Y follows from that of X. The 2nd count-
422
+ ability of X implies the 2nd countability of Y . By Lemma 9, Y is Hausdorff. Since Y is
423
+ locally compact and Hausdorff, its one-point compactification is compact and Hausdorff,
424
+ hence, regular. It follows that Y itself is regular. In view of the 2nd countability of Y ,
425
+ Urysohn’s metrization theorem implies that Y is metrizable.
426
+
427
+ Remark 25. Note that each locally compact metrizable space is also locally path-connected.
428
+ It is proven in [11] that each locally compact, connected, locally connected metrizable
429
+ space, such as Y , admits a complete geodesic metric which we fix from now on. Consider
430
+ the projection p : X → Y . According to [3, Theorem 6.2], the map p satisfies the path-
431
+ lifting property: Given any path c : [0, 1] → Y , a point x ∈ X satisfying p(x) = c(0), there
432
+ exists a path ˜c : [0, 1] → X such that p ◦ ˜c = c. (This result is, of course, much easier if the
433
+ G-action is free, i.e. p : X → Y is a covering map.) We let LX denote the set of paths in
434
+ X which are lifts of rectifiable paths c : [0, 1] → Y . Clearly, the postcomposition of ˜c ∈ LX
435
+ with an element of G is again in LX. Our next goal is to equip X with a G-invariant length
436
+ structure using the family of paths LX. Such a structure is a function on LX with values
437
+ in [0, ∞), satisfying certain axioms that can be found in [4, Section 2.1]. Verification of
438
+ most of these axioms is straightforward, I will check only some (items 1, 2, 3 and 4 below).
439
+ 1. If ˜c ∈ LX is a lift of a a path c in Y , then we declare ℓ(˜c) to be equal to the length
440
+ of c.
441
+ 2. If ˜ci, i = 1, 2, are paths in LX (which are lifts of the paths c1, c2 respectively) whose
442
+ concatenation b = ˜c1 ⋆ ˜c2 is defined, then b is a lift of the concatenation c1 ⋆ c2. Clearly,
443
+ ℓ(b) = ℓ(˜c1) + ℓ(˜c2).
444
+ 3. Let U be a neighborhood of some x ∈ X. We need to prove that
445
+ (26)
446
+ inf
447
+ γ {ℓ(γ)} > 0,
448
+
449
+ A NOTE ON PROPERLY DISCONTINUOUS ACTIONS
450
+ 11
451
+ where the infimum is taken over all γ = ˜c ∈ LX connecting x to points of X \U. It suffices
452
+ to prove this claim in the case when U is Gx-invariant, satisfies
453
+ (27)
454
+ U ∩ gU ̸= ∅ ⇐⇒ g ∈ Gx,
455
+ and γ connects x to points of ∂U. Then V = p(U) is a neighborhood of y = p(x) in Y and
456
+ the paths c = p ◦ γ connect y to points in ∂V . But the lengths of the paths c are clearly
457
+ bounded away from zero and are equal to the lengths of their lifts ˜c. Thus, we obtain the
458
+ required bound (26).
459
+ 4. Let us verify that any two points in X are connected by a path in LX. Since X is
460
+ connected, it suffices to verify the claim locally. Let U is Gx-invariant neighborhood of x
461
+ satisfying (27), such that V = p(U) is an open metric ball in Y centered at y = p(x). Take
462
+ u ∈ U, v := p(u) ∈ V . Let c : [0, T] → V be a geodesic connecting v to y. Then there
463
+ exists a lift ˜c : [0, T] → U of c with ˜c(0) = u. Since x ∈ U is the only point projecting to y,
464
+ we get ˜c(T) = x. By taking concatenations of pairs of such radial paths in U, we conclude
465
+ that any two points in U are connected by a path ˜c ∈ LX.
466
+ Given a length structure on X, one defines a path-metric (metrizing the topology of X)
467
+ by
468
+ d(x1, x2) = inf
469
+ �� {ℓ(γ)}
470
+ where the infimum is taken over all γ ∈ LX connecting x1 to x2. Since X is locally compact,
471
+ this path-metric is geodesic.
472
+ Note that, by the construction, the length structure on X and, hence, the metric d, is
473
+ G-invariant. This concludes the proof of the theorem.
474
+
475
+ For each fundamental set F we define its quotient space F/G as the quotient space of
476
+ the equivalence relation x ∼ y ⇐⇒ ({x}|{y})G ̸= ∅. The following proposition explains
477
+ why fundamental sets are useful: They allow one to describe quotient spaces of properly
478
+ discontinuous group actions using less information than is contained in the description of
479
+ that action.
480
+ Proposition 28. Suppose that F is a fundamental set for a properly discontinuous action
481
+ of G on a 1st countable and Hausdorff space. Then the natural projection map p : F/G →
482
+ X/G is a homeomorphism.
483
+ Proof. The map p is continuous by the definition of the quotient topology.
484
+ It is also
485
+ obviously a bijection. It remains to show that p is a closed map. Since F is closed, it
486
+ suffices to show that the projection q : F → X/G is a closed map. Suppose that (xn)
487
+ is a sequence in F such that q(xn) converges to some y ∈ X/G, y is represented by a
488
+ point x ∈ F. Then there is a sequence gn ∈ G such that gn(xn) converges to x. Since
489
+ {gn(xn) : n ∈ N}∪ {x} is compact which, without loss of generality is contained in UF , the
490
+ local finiteness assumption implies that the sequence (gn) is finite. Hence, after extraction,
491
+ gn = g for all n. The fact that F is closed then implies that x ∈ F. It follows that x is an
492
+ accumulation point of (xn). Thus, q : F → F/G is a closed map.
493
+
494
+
495
+ 12
496
+ MICHAEL KAPOVICH
497
+ References
498
+ [1] A. Borel, L. Ji, “Compactifications of Symmetric and Locally Symmetric Spaces”, Birkhauser
499
+ Verlag, Series “Mathematics: Theory and Applications”, 2005.
500
+ [2] N. Bourbaki, “Elements of Mathematics. General Topology”, Parts I–IV, Hermann, Paris, 1966.
501
+ [3] G. Bredon, “Introduction to Compact Transformation Groups,” Academic Press, 1972.
502
+ [4] D. Burago, Y. Burago and S. Ivanov, “A course in metric geometry.” Graduate Studies in Math-
503
+ ematics, vol. 33, American Mathematical Society, Providence, RI, 2001.
504
+ [5] A. Hatcher, “Algebraic Topology”, Cambridge University Press, 2001.
505
+ [6] http://mathoverflow.net/questions/50128/a-question-about-group-action-on-topological-space?rq=1
506
+ [7] http://mathoverflow.net/questions/55726/properly-discontinuous-action?rq=1
507
+ [8] J. L. Koszul, “Lectures on Groups of Transformations”, Tata Institute of Fundamental Research,
508
+ Bombay, 1965.
509
+ [9] R. Palais, When proper maps are closed, Proc. of AMS, 24 (1970), 835–836.
510
+ [10] C. L. Siegel, Discontinuous groups, Ann. of Math. (2) 44 (1943), 674–689.
511
+ [11] A. Tominaga and T. Tanaka, Convexification of locally connected generalized continua, J. Sci.
512
+ Hiroshima Univ. Ser. A. 19 (1955), 301–306.
513
+ [12] L. Tu, “An introduction to manifolds”, Springer Verlag, 2nd edition, 2010.
514
+ Department of Mathematics, University of California, Davis, CA 95616
515
+ Email address: [email protected]
516
+
CdE4T4oBgHgl3EQf5g79/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf,len=427
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
3
+ page_content='05325v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
4
+ page_content='GR] 12 Jan 2023 A NOTE ON PROPERLY DISCONTINUOUS ACTIONS MICHAEL KAPOVICH Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
5
+ page_content=' We compare various notions of proper discontinuity for group actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
6
+ page_content=' We also discuss fundamental domains and criteria for cocompactness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
7
+ page_content=' To the memory of Sasha Anan’in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
8
+ page_content=' Introduction This note is meant to clarify the relation between different commonly used definitions of proper discontinuity without the local compactness assumption for the underlying topo- logical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
9
+ page_content=' Much of the discussion applies to actions of nondiscrete topological groups, but, since my primary interest is geometric group theory, I will work only with discrete groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
10
+ page_content=' All group actions are assumed to be continuous, in other words, these are homo- morphisms from abstract groups to groups of homeomorphisms of topological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
11
+ page_content=' This combination of continuous and properly discontinuous, sadly, leads to the ugly terminology “a continuous properly discontinuous action.” A better terminology might be that of a properly discrete action, since it refers to proper actions of discrete groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
12
+ page_content=' Throughout this note, I will be working only with topological spaces which are 1st count- able, since spaces most common in metric geometry, geometric topology, algebraic topology and geometric group theory satisfy this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
13
+ page_content=' One advantage of this assumption is that if (xn) is a sequence converging to a point x ∈ X, then the subset {x} ∪ {xn : n ∈ N} is compact, which is not true if we work with nets instead of sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
14
+ page_content=' However, I will try to avoid the local compactness assumption whenever possible, since many spaces appear- ing in metric geometry and geometric group theory (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
15
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
16
+ page_content=' asymptotic cones) and algebraic topology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
17
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
18
+ page_content=' CW complexes) are not locally compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
19
+ page_content=' (Recall that topological space X is locally compact if every point has a basis of topology consisting of relatively compact subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
20
+ page_content=') In the last two sections of the note I also discuss criteria for cocompactness of group actions and fundamental sets/domains of properly discontinuous actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
21
+ page_content=' Acknowledgement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
22
+ page_content=' I am grateful to Boris Okun for pointing out several typos and the reference to [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
23
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
24
+ page_content=' Group actions A topological group is a group G equipped with a topology such that the multiplication and inversion maps G × G → G, (g, h) �→ gh, G → G, g �→ g−1 Date: January 16, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
25
+ page_content=' 2 MICHAEL KAPOVICH are both continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
26
+ page_content=' A discrete group is a group with discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
27
+ page_content=' Every discrete group is clearly a topological group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
28
+ page_content=' A left continuous action of a topological group G on a topological space X is a continuous map λ : G × X → X satisfying 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
29
+ page_content=' λ(1G, x) = x for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
30
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
31
+ page_content=' λ(gh, x) = λ(g, λ(h, x)), for all x ∈ X, g, h ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
32
+ page_content=' From this, it follows that the map ρ : G → Homeo(X) ρ(g)(x) = λ(g, x), is a group homomorphism, where the group operation φψ on Homeo(X) is the composition φ ◦ ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
33
+ page_content=' If G is discrete, then every homomorphism G → Homeo(X) defines a left continuous action of G on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
34
+ page_content=' The shorthand for ρ(g)(x) is gx or g · x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
35
+ page_content=' Similarly, for a subset A ⊂ X, GA or G · A, denotes the orbit of A under the G-action: GA = � g∈G gA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
36
+ page_content=' The quotient space X/G (also frequently denoted G\\X), of X by the G-action, is the set of G-orbits of points in X, equipped with the quotient topology: The elements of X/G are equivalence classes in X, where x ∼ y when Gx = Gy (equivalently, y ∈ Gx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
37
+ page_content=' The stabilizer of a point x ∈ X under the G-action is the subgroup Gx < G given by {g ∈ G : gx = x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
38
+ page_content=' An action of G on X is called free if Gx = {1} for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
39
+ page_content=' Assuming that X is Hausdorff, Gx is closed in G for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
40
+ page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
41
+ page_content=' An example of a left action of G is the action of G on itself via left multipli- cation: λ(g, h) = gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
42
+ page_content=' In this case, the common notation for ρ(g) is Lg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
43
+ page_content=' This action is free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
44
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
45
+ page_content=' Proper maps Properness of certain maps is the most common form of defining proper discontinuity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
46
+ page_content=' sadly, there are two competing notions of properness in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
47
+ page_content=' A continuous map f : X → Y of topological spaces is proper in the sense of Bourbaki, or simply Bourbaki–proper (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
48
+ page_content=' [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
49
+ page_content=' I, §10, Theorem 1]) if f is a closed map (images of closed subsets are closed) and point–preimages f −1(y), y ∈ Y , are compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
50
+ page_content=' A continuous map f : X → Y is proper (and this is the most common definition) if for every compact subset K ⊂ X, f −1(K) is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
51
+ page_content=' It is noted in [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
52
+ page_content=' I, §10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
53
+ page_content=' Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
54
+ page_content=' 7] that if X is Hausdorff and Y is locally compact then f is Bourbaki–proper if and only if f is proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
55
+ page_content=' A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 3 The advantage of the notion of Bourbaki-properness is that it applies in the case of Zariski topology, where spaces tend to be compact (every subset of a finite-dimensional affine space is Zariski-compact) and, hence, the standard notion of properness is useless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
56
+ page_content=' Since our goal is to trade local compactness for 1st countability, I will prove Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
57
+ page_content=' If f : X → Y is proper, and X, Y are Hausdorff and 1st countable, then f is Bourbaki-proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
58
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
59
+ page_content=' We only have to verify that f is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
60
+ page_content=' Suppose that A ⊂ X is a closed subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
61
+ page_content=' Since Y is 1st countable, it suffices to show that for each sequence (xn) in A such that (f(xn)) converges to y ∈ Y , there is a subsequence (xnk) which converges to some x ∈ A such that f(x) = y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
62
+ page_content=' The subset C = {y} ∪ {f(xn) : n ∈ N} ⊂ Y is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
63
+ page_content=' Hence, by properness of f, K = f −1(C) is also compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
64
+ page_content=' Since X is Hausdorff, and K is compact, follows that (xn) subconverges to a point x ∈ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
65
+ page_content=' By continuity of f, f(x) = y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
66
+ page_content=' Since A is closed, x ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
67
+ page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
68
+ page_content=' In fact, for this lemma to hold, one does not need to assume that X is Haus- dorff and 1st countable, see The converse (each Bourbaki–proper map is proper) is proven in [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
69
+ page_content=' I, §10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
70
+ page_content=' Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
71
+ page_content=' 6] without any restrictions on X, Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
72
+ page_content=' Hence: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
73
+ page_content=' For maps between 1st countable Hausdorff spaces, Bourbaki–properness is equivalent to properness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
74
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
75
+ page_content=' Proper discontinuity Suppose that X is a 1st countable Hausdorff topological space, G a discrete group and G × X → X a (continuous) action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
76
+ page_content=' We use the notation gn → ∞ in G to indicate that gn converges to ∞ in the 1-point compactification G ∪ {∞} of G, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
77
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
78
+ page_content=' for every finite subset F ⊂ G, card({n : gn ∈ F}) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
79
+ page_content=' Given a group action G × X → X and two subsets A, B ⊂ X, the transporter subset (A|B)G is defined as (A|B)G := {g ∈ G : gA ∩ B ̸= ∅}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
80
+ page_content=' Properness of group actions is (typically) stated using certain transporter sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
81
+ page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
82
+ page_content=' Two points x, y ∈ X are said to be G-dynamically related if there is a sequence gn → ∞ in G and a sequence xn → x in X such that gnxn → y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
83
+ page_content=' A point x ∈ X is said to be a wandering point of the G-action if there is a neighborhood U of x such that (U|U)G is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
84
+ page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
85
+ page_content=' Suppose that the action G × X → X is wandering at a point x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
86
+ page_content=' Then the G-action has a G-slice at x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
87
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
88
+ page_content=' a neighborhood Wx ⊂ U which is Gx-stable and for all g /∈ Gx, gWx ∩ Wx = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
89
+ page_content=' 4 MICHAEL KAPOVICH Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
90
+ page_content=' For each g ∈ (U|U)G − Gx we pick a neighborhood Vg ⊂ U of x such that gVg ∩ Vg = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
91
+ page_content=' Then the intersection V := � g∈(U|U)G−Gx Vg satisfies the property that (V |V )G = Gx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
92
+ page_content=' Lastly, take Wx := � g∈Gx V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
93
+ page_content=' □ The next lemma is clear: Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
94
+ page_content=' Assuming that X is Hausdorff and 1st countable, the action G × X → X is wandering at x if and only if x is not dynamically related to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
95
+ page_content=' Given a group action α : G × X → X, we have the natural map ˆα := α × idX : G × X → X × X where idX : (g, x) �→ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
96
+ page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
97
+ page_content=' An action α of a discrete group G on a topological space X is Bourbaki– proper if the map ˆα is Bourbaki-proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
98
+ page_content=' Lemma 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
99
+ page_content=' If the action α : G×X → X of a discrete group G on an Hausdorff topological space X is Bourbaki-proper then the quotient space X/G is Hausdorff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
100
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
101
+ page_content=' The quotient map X → X/G is an open map by the definition of the quotient topology on X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
102
+ page_content=' Since α is Bourbaki-proper, the image of the map ˆα is closed in X × X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
103
+ page_content=' This image is the equivalence relation on X ×X which use used to form the quotient X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
104
+ page_content=' Now, Hausdorffness of X/G follows from Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
105
+ page_content='7 in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
106
+ page_content=' □ Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
107
+ page_content=' An action α of a discrete group G on a topological space X is properly discontinuous if the map ˆα is proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
108
+ page_content=' We note that equivalence of (1) and (5) in the following theorem is proven in [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
109
+ page_content=' III, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
110
+ page_content='4, Proposition 7] without any assumptions on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
111
+ page_content=' Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
112
+ page_content=' Assuming that X is Hausdorff and 1st countable, the following are equiva- lent: (1) The action α : G × X → X is Bourbaki-proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
113
+ page_content=' (2) For every compact subset K ⊂ X, card((K|K)G) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
114
+ page_content=' (3) The action α : G × X → X is proper, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
115
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
116
+ page_content=' the map ˆα is proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
117
+ page_content=' (4) For every compact subset K ⊂ X, there exists an open neighborhood U of K such that card((U|U)G) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
118
+ page_content=' A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 5 (5) For any pair of points x, y ∈ X there is a pair of neighborhoods Ux, Vx (of x, y respectively) such that card((Ux|Vy)G)) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
119
+ page_content=' (6) There are no G-dynamically related points in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
120
+ page_content=' (7) Assuming, that G is countable and X is completely metrizable1 : The G-stabilizer of every x ∈ X is finite and for any two points x ∈ X, y ∈ X − Gx, there exists a pair of neighborhoods Ux, Vy (of x, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
121
+ page_content=' y) such that ∀g ∈ G, gUx ∩ Vy = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
122
+ page_content=' (8) Assuming that X is a metric space and the action G × X → X is equicontinuous2: There is no x ∈ X and a sequence hn → ∞ in G such that hnx → x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
123
+ page_content=' (9) Assuming that X is a metric space and the action G × X → X is equicontinuous: Every x ∈ X is a wandering point of the G-action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
124
+ page_content=' (10) Assuming that X is a CW complex and the action G × X → X is cellular: Every point of X is wandering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
125
+ page_content=' (11) Assuming that X is a CW complex the action G × X → X is cellular: Every cell in X has finite G-stabilizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
126
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
127
+ page_content=' The action α is Bourbaki-proper if and only if the map ˆα is proper (see Corollary 4) which is equivalent to the statement that for each compact K ⊂ X, the subset (K|K)G×K is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
128
+ page_content=' Hence, (1) ⇐⇒ (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
129
+ page_content=' The property (3) means that for each compact K ⊂ X, ˆα−1(K ×K) = {(g, x) ∈ G×K : x ∈ K, gx ∈ K} is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
130
+ page_content=' This subset is closed in G × X and projects onto (K|K)G in the first factor and to the subset (12) � g∈(K|K)G g−1(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
131
+ page_content=' Hence, properness of α implies finiteness of (K|K)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
132
+ page_content=' Conversely, if (K|K)G is finite, compactness of g−1(K) for every g ∈ G implies finiteness of the union (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
133
+ page_content=' Thus, (2) ⇐⇒ (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
134
+ page_content=' In order to show (2)⇒(6), suppose that x, y are G-dynamically related points: There exists an sequence gn → ∞ in G and a sequence xn → x such that gn(xn) → y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
135
+ page_content=' The subset K = {x, y} ∪ {xn, gn(xn) : n ∈ N} is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
136
+ page_content=' However, yn ∈ gn(K) ∩ K for every n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
137
+ page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
138
+ page_content=' (6)⇒(5): Suppose that the neighborhoods Ux, Vy do not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
139
+ page_content=' Let {Un}n∈N, {Vn}n∈N be countable bases at x, y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
140
+ page_content=' Then for every n there exists gn ∈ G, such that gn(Un) ∩ Vn ̸= ∅ for infinitely many gn’s in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
141
+ page_content=' After extraction, gn → ∞ in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
142
+ page_content=' This yields points xn ∈ Un, yn = gn(xn) ∈ Vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
143
+ page_content=' Hence, xn → x, yn → y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
144
+ page_content=' Thus, x is G-dynamically related to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
145
+ page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
146
+ page_content=' (5)⇒(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
147
+ page_content=' Consider a compact K ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
148
+ page_content=' Then for each x ∈ K, y ∈ K there exist neighborhoods Ux, Vy such that (Ux|Vy)G is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
149
+ page_content=' The product sets Ux × Vy, x, y ∈ K constitute an open cover of K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
150
+ page_content=' By compactness of K2, there exist x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
151
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
152
+ page_content=', xn, y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
153
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
154
+ page_content=', ym ∈ K 1It suffices to assume that X is hereditarily Baire: Every closed subset of X is Baire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
155
+ page_content=' 2E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
156
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
157
+ page_content=' an isometric action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
158
+ page_content=' 6 MICHAEL KAPOVICH such that K ⊂ Ux1 ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
159
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
160
+ page_content=' ∪ Uxn K ⊂ Vy1 ∪ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
161
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
162
+ page_content=' ∪ Vym and for each pair (xi, yj), card({g ∈ G : gUxi ∩ Vyj ̸= ∅}) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
163
+ page_content=' Setting W := n� i=1 Uxi, V := m � j=1 Vyj we see that card((W|V )G) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
164
+ page_content=' Taking U := V ∩ W yields the required subset U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
165
+ page_content=' The implication (4)⇒(2) is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
166
+ page_content=' Thus, we concluded the proof of equivalence of the properties (1)—(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
167
+ page_content=' (5)⇒(7): Finiteness of G-stabilizers of points in X is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
168
+ page_content=' Let x, y be points in distinct G-orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
169
+ page_content=' Let U ′ x, V ′ y be neighborhoods of x, y such that (U ′ x|V ′ y)G = {g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
170
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
171
+ page_content=', gn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
172
+ page_content=' For each i, since X is Hausdorff, there are disjoint neighborhoods Vi of y and Wi of gi(xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
173
+ page_content=' Now set Vy := n� i=1 Vi, Ux := n� i=1 g−1 i (Wi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
174
+ page_content=' Then gUx ∩ Vy = ∅ for every g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
175
+ page_content=' (7)⇒(6): It is clear that (7) implies that there are no dynamically related points with distinct G-orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
176
+ page_content=' In particular, every G-orbit in X is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
177
+ page_content=' Assume now that X is completely metrizable and G is countable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
178
+ page_content=' Suppose that a point x ∈ X is G-dynamically related to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
179
+ page_content=' Since the stabilizer Gx is finite, the point x is an accumulation point of Gx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
180
+ page_content=' moreover, Gx is closed in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
181
+ page_content=' Hence, Gx is a closed perfect subset of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
182
+ page_content=' Since X admits a complete metric, so does its closed subset Gx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
183
+ page_content=' Thus, for each g ∈ G, the complement Ug := Gx − {gx} is open and dense in Gx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
184
+ page_content=' By the Baire Category Theorem, the countable intersection � g∈G Ug is dense in Gx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
185
+ page_content=' However, this intersection is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
186
+ page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
187
+ page_content=' It is clear that (6)⇒(8) (without any extra assumptions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
188
+ page_content=' (8)⇒(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
189
+ page_content=' Suppose that X is a metric space and the G-action is equicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
190
+ page_content=' Equicon- tinuity implies that for each z ∈ X, a sequence zn → z and gn ∈ G, gnzn → gz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
191
+ page_content=' Suppose that there exist a pair of G-dynamically related points x, y ∈ X: ∃xn → x, gn ∈ G, gnxn → y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
192
+ page_content=' By equicontinuity of the action, gnx → y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
193
+ page_content=' Since gn → ∞, there exist A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 7 subsequences gni → ∞ and gmi → ∞ such that the products hi := g−1 ni gmi are all distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
194
+ page_content=' Then, by equicontinuity, hix → x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
195
+ page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
196
+ page_content=' The implications (5)⇒(9)⇒(8) and (5)⇒(10)⇒(11) are clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
197
+ page_content=' Lastly, let us prove the implication (11)⇒(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
198
+ page_content=' We first observe that every CW complex is Hausdorff and 1st countable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
199
+ page_content=' Furthermore, every compact K ⊂ X intersects only finitely many open cells eλ in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
200
+ page_content=' (Otherwise, picking one point from each nonempty intersection K ∩ eλ we obtain an infinite closed discrete subset of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
201
+ page_content=') Thus, there exists a finite subset E := {eλ : λ ∈ Λ} of open cells in X such that for every g ∈ (K|K)G, gE ∩ E ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
202
+ page_content=' Now, finiteness of (K|K)G follows from finiteness of cell-stabilizers in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
203
+ page_content=' □ Unfortunately, the property that every point of X is a wandering point is frequently taken as the definition of proper discontinuity for G-actions, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
204
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
205
+ page_content=' [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
206
+ page_content=' Items (8) and (10) in the above theorem provide a (weak) justification for this abuse of terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
207
+ page_content=' I feel that the better name for such actions is wandering actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
208
+ page_content=' Example 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
209
+ page_content=' Consider the action of G = Z on the punctured affine plane X = R2 − {(0, 0)}, where the generator of Z acts via (x, y) �→ (2x, 1 2y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
210
+ page_content=' Then for any p ∈ X, the G-orbit Gp has no accumulation points in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
211
+ page_content=' However, any two points p = (x, 0), q = (0, y) ∈ X are dynamically related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
212
+ page_content=' Thus, the action of G is not properly discontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
213
+ page_content=' This example shows that the quotient space of a wandering action need not be Hausdorff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
214
+ page_content=' Lemma 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
215
+ page_content=' Suppose that G× X → X is a wandering action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
216
+ page_content=' Then each G-orbit is closed and discrete in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
217
+ page_content=' In particular, the quotient space X/G is T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
218
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
219
+ page_content=' Suppose that Gx accumulates at a point y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
220
+ page_content=' Then Gx ∩ Wy is nonempty, where Wy is a G-slice at y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
221
+ page_content=' It follows that all points of Gx ∩ Wy lie in the same Wy-orbit, which implies that Gx ∩ Wy = {y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
222
+ page_content=' □ There are several reasons to consider properly discontinuous actions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
223
+ page_content=' one reason is that such actions yield orbi-covering maps in the case of smooth group actions on manifolds: M → M/G is an orbi-covering provided that the action of G on M is smooth (or, at least, locally smoothable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
224
+ page_content=' Another reason is that for a properly discontinuous action on a Hausdorff space, G × X → X, the quotient X/G is again Hausdorff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
225
+ page_content=' Question 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
226
+ page_content=' Suppose that G is a discrete group, G × X → X is a free continuous action on an n-dimensional topological manifold X such that the quotient space X/G is a (Hausdorff) n-dimensional topological manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
227
+ page_content=' Does it follow that the action of G on X is properly discontinuous?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
228
+ page_content=' The answer to this question is negative if one merely assumes that X is a Hausdorff topological space and X/G is Hausdorff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
229
+ page_content=' 8 MICHAEL KAPOVICH 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
230
+ page_content=' Cocompactness There are two common notions of cocompactness for group actions: (1) G × X → X is cocompact if there exists a compact K ⊂ X such that G · K = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
231
+ page_content=' (2) G × X → X is cocompact if X/G is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
232
+ page_content=' It is clear that (1)⇒(2), as the image of a compact under the continuous (quotient) map p : X → X/G is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
233
+ page_content=' Lemma 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
234
+ page_content=' If X is locally compact then (2)⇒(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
235
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
236
+ page_content=' For each x ∈ X let Ux denote a relatively compact neighborhood of x in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
237
+ page_content=' Then Vx := p(Ux) = p(G · Ux), is compact since G· Ux is open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
238
+ page_content=' Thus, we obtain an open cover {Vx : x ∈ X} of X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
239
+ page_content=' Since X/G is compact, this open cover contains a finite subcover Vx1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
240
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
241
+ page_content=', Vxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
242
+ page_content=' It follows that p( n� i=1 Uxi) = X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
243
+ page_content=' The set K = n� i=1 Uxi is compact and p(K) = X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
244
+ page_content=' Hence, G · K = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
245
+ page_content=' □ Lemma 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
246
+ page_content=' Suppose that X is normal, G × X → X is a proper action such that X/G is locally compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
247
+ page_content=' Then X is locally compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
248
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
249
+ page_content=' Pick x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
250
+ page_content=' Let Wx be a slice for the G-action at x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
251
+ page_content=' then Wx/Gx ��� X/G is a topological embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
252
+ page_content=' Thus, our assumptions imply that Wx/Gx is compact for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
253
+ page_content=' Let (xα) be a net in Wx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
254
+ page_content=' Since Wx/Gx is compact, the net (xα)/G contains a convergent subnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
255
+ page_content=' Thus, after passing to a subnet, there exists g ∈ Gx such that (gxα) converges to some x ∈ Wx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
256
+ page_content=' Hence, (xα) subconverges to g−1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
257
+ page_content=' Thus, Wx is relatively compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
258
+ page_content=' Since X is assumed to be normal, x admits a basis of relatively compact neighborhoods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
259
+ page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
260
+ page_content=' Fundamental sets Definition 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
261
+ page_content=' A closed subset F ⊂ X is a fundamental set for the action of G on X if G·F = X and there exists an open neighborhood U = UF of F such that for every compact K ⊂ X, the transporter set (U|K)G is finite (the local finiteness condition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
262
+ page_content=' Fundamental sets appear naturally in the reduction theory of arithmetic groups (Siegel sets), see [10] and [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
263
+ page_content=' There are several existence theorems for fundamental sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
264
+ page_content=' The next proposition, proven in [8, Lemma 2], guarantees existence of fundamental sets under the paracompactness assumption on X/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
265
+ page_content=' A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 9 Proposition 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
266
+ page_content=' Each properly discontinuous action G ↷ X with paracompact quotient X/G admits a fundamental set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
267
+ page_content=' One frequently encounters a sharper version of fundamental sets, called fundamental domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
268
+ page_content=' A domain in a topological space X is an open subset U ⊂ X which equals the interior of its closure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
269
+ page_content=' Definition 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
270
+ page_content=' Suppose that G × X → X is a properly discontinuous group action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
271
+ page_content=' A subset F in X is called a fundamental domain for an action G × X → X if the following hold: (1) F is a domain in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
272
+ page_content=' (2) G · F = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
273
+ page_content=' (3) gF ∩ F ̸= ∅ if and only if g = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
274
+ page_content=' (4) For every compact subset K ⊂ X, the transporter set (F|K)G is finite, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
275
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
276
+ page_content=' the family {gF}g∈G of subsets in X is locally finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
277
+ page_content=' Suppose that (X, d) is a proper geodesic metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
278
+ page_content=' Suppose, furthermore, that G × X → X is a properly discontinuous isometric action, x ∈ X is a point which is fixed only by the identity element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
279
+ page_content=' Remark 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
280
+ page_content=' If G is countable and fixed point sets in X of nontrivial elements of G are nowhere dense, then Baire’s Theorem implies existence of such x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
281
+ page_content=' One defines the Dirichlet domain of the action as D = Dx = {y ∈ X : d(y, x) < d(y, gx) ∀g ∈ G \\ Gx}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
282
+ page_content=' Note that gDx = Dgx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
283
+ page_content=' Proposition 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
284
+ page_content=' Each Dirichlet domain D is a fundamental domain for the G-action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
285
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
286
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
287
+ page_content=' The closure D is contained in ˆD = ˆDx = {y ∈ X : d(y, x) ≤ d(y, gx) ∀g ∈ G \\ Gx}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
288
+ page_content=' As before, g ˆDx = ˆDgx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
289
+ page_content=' I claim that ˆD is the closure of D and D is the interior of ˆD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
290
+ page_content=' this will prove that D is a domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
291
+ page_content=' Clearly, D is contained in the interior of ˆD and ˆD is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
292
+ page_content=' Hence, it suffices to prove that each point of ˆD is the limit of a sequence in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
293
+ page_content=' Consider a point z ∈ ˆD \\ D and let c : [0, T] → X be a geodesic connecting x to z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
294
+ page_content=' Then for each t ∈ [0, T) and g ∈ G \\ {1}, d(x, c(t)) < d(x, c(t)) + d(c(t), z) = d(x, z) ≤ d(z, gx), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
295
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
296
+ page_content=' c(t) ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
297
+ page_content=' Thus, indeed, z lies in the closure of D, as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
298
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
299
+ page_content=' Let us prove that g ˆD = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
300
+ page_content=' For each y ∈ X the function g �→ d(z, gx) is a proper function on G, hence, it attains its minimum on some g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
301
+ page_content=' Then, clearly, y ∈ ˆDgx, hence, y ∈ g ˆDx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
302
+ page_content=' Thus, gD = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
303
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
304
+ page_content=' Suppose that g ∈ G \\ {1} is such that gD = Dgx ∩ D ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
305
+ page_content=' Then each point y of intersection is closer to x than to gx (since y ∈ Dx) and also y is closer to gx than to g−1gx = x (since y ∈ Dgx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
306
+ page_content=' This is clearly impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
307
+ page_content=' 10 MICHAEL KAPOVICH 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
308
+ page_content=' Lastly, let us verify local finiteness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
309
+ page_content=' Consider a compact K ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
310
+ page_content=' Then K ⊂ B = B(x, R) for some R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
311
+ page_content=' For every g ∈ G such that gB ∩ B ̸= ∅, d(x, gx) ≤ 2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
312
+ page_content=' Since (X, d) is a proper metric space and the action of G on X is properly discontinuous, the set of such elements of G is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
313
+ page_content=' □ I will now prove existence of fundamental domains for properly discontinuous group actions on a certain class of topological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
314
+ page_content=' Theorem 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
315
+ page_content=' Suppose that X is 2nd countable, connected and locally connected locally compact Hausdorff topological space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
316
+ page_content=' Suppose that G × X → X is a properly discontinuous action of a countable group such that the fixed-point set of each nontrivial element of G is nowhere dense in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
317
+ page_content=' Then this action admits a fundamental domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
318
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
319
+ page_content=' Our goal is to construct a G-invariant geodesic metric metrizing X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
320
+ page_content=' Then the result will follow from the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
321
+ page_content=' Lemma 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
322
+ page_content=' The quotient space Y = X/G is locally compact, connected, locally connected and metrizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
323
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
324
+ page_content=' Local compactness and connectedness of Y follows from that of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
325
+ page_content=' The 2nd count- ability of X implies the 2nd countability of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
326
+ page_content=' By Lemma 9, Y is Hausdorff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
327
+ page_content=' Since Y is locally compact and Hausdorff, its one-point compactification is compact and Hausdorff, hence, regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
328
+ page_content=' It follows that Y itself is regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
329
+ page_content=' In view of the 2nd countability of Y , Urysohn’s metrization theorem implies that Y is metrizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
330
+ page_content=' □ Remark 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
331
+ page_content=' Note that each locally compact metrizable space is also locally path-connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
332
+ page_content=' It is proven in [11] that each locally compact, connected, locally connected metrizable space, such as Y , admits a complete geodesic metric which we fix from now on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
333
+ page_content=' Consider the projection p : X → Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
334
+ page_content=' According to [3, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
335
+ page_content='2], the map p satisfies the path- lifting property: Given any path c : [0, 1] → Y , a point x ∈ X satisfying p(x) = c(0), there exists a path ˜c : [0, 1] → X such that p ◦ ˜c = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
336
+ page_content=' (This result is, of course, much easier if the G-action is free, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
337
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
338
+ page_content=' p : X → Y is a covering map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
339
+ page_content=') We let LX denote the set of paths in X which are lifts of rectifiable paths c : [0, 1] → Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
340
+ page_content=' Clearly, the postcomposition of ˜c ∈ LX with an element of G is again in LX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
341
+ page_content=' Our next goal is to equip X with a G-invariant length structure using the family of paths LX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
342
+ page_content=' Such a structure is a function on LX with values in [0, ∞), satisfying certain axioms that can be found in [4, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
343
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
344
+ page_content=' Verification of most of these axioms is straightforward, I will check only some (items 1, 2, 3 and 4 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
345
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
346
+ page_content=' If ˜c ∈ LX is a lift of a a path c in Y , then we declare ℓ(˜c) to be equal to the length of c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
347
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
348
+ page_content=' If ˜ci, i = 1, 2, are paths in LX (which are lifts of the paths c1, c2 respectively) whose concatenation b = ˜c1 ⋆ ˜c2 is defined, then b is a lift of the concatenation c1 ⋆ c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
349
+ page_content=' Clearly, ℓ(b) = ℓ(˜c1) + ℓ(˜c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
350
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
351
+ page_content=' Let U be a neighborhood of some x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
352
+ page_content=' We need to prove that (26) inf γ {ℓ(γ)} > 0, A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 11 where the infimum is taken over all γ = ˜c ∈ LX connecting x to points of X \\U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
353
+ page_content=' It suffices to prove this claim in the case when U is Gx-invariant, satisfies (27) U ∩ gU ̸= ∅ ⇐⇒ g ∈ Gx, and γ connects x to points of ∂U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
354
+ page_content=' Then V = p(U) is a neighborhood of y = p(x) in Y and the paths c = p ◦ γ connect y to points in ∂V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
355
+ page_content=' But the lengths of the paths c are clearly bounded away from zero and are equal to the lengths of their lifts ˜c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
356
+ page_content=' Thus, we obtain the required bound (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
357
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
358
+ page_content=' Let us verify that any two points in X are connected by a path in LX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
359
+ page_content=' Since X is connected, it suffices to verify the claim locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
360
+ page_content=' Let U is Gx-invariant neighborhood of x satisfying (27), such that V = p(U) is an open metric ball in Y centered at y = p(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
361
+ page_content=' Take u ∈ U, v := p(u) ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
362
+ page_content=' Let c : [0, T] → V be a geodesic connecting v to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
363
+ page_content=' Then there exists a lift ˜c : [0, T] → U of c with ˜c(0) = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
364
+ page_content=' Since x ∈ U is the only point projecting to y, we get ˜c(T) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
365
+ page_content=' By taking concatenations of pairs of such radial paths in U, we conclude that any two points in U are connected by a path ˜c ∈ LX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
366
+ page_content=' Given a length structure on X, one defines a path-metric (metrizing the topology of X) by d(x1, x2) = inf γ {ℓ(γ)} where the infimum is taken over all γ ∈ LX connecting x1 to x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
367
+ page_content=' Since X is locally compact, this path-metric is geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
368
+ page_content=' Note that, by the construction, the length structure on X and, hence, the metric d, is G-invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
369
+ page_content=' This concludes the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
370
+ page_content=' □ For each fundamental set F we define its quotient space F/G as the quotient space of the equivalence relation x ∼ y ⇐⇒ ({x}|{y})G ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
371
+ page_content=' The following proposition explains why fundamental sets are useful: They allow one to describe quotient spaces of properly discontinuous group actions using less information than is contained in the description of that action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
372
+ page_content=' Proposition 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
373
+ page_content=' Suppose that F is a fundamental set for a properly discontinuous action of G on a 1st countable and Hausdorff space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
374
+ page_content=' Then the natural projection map p : F/G → X/G is a homeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
375
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
376
+ page_content=' The map p is continuous by the definition of the quotient topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
377
+ page_content=' It is also obviously a bijection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
378
+ page_content=' It remains to show that p is a closed map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
379
+ page_content=' Since F is closed, it suffices to show that the projection q : F → X/G is a closed map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
380
+ page_content=' Suppose that (xn) is a sequence in F such that q(xn) converges to some y ∈ X/G, y is represented by a point x ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
381
+ page_content=' Then there is a sequence gn ∈ G such that gn(xn) converges to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
382
+ page_content=' Since {gn(xn) : n ∈ N}∪ {x} is compact which, without loss of generality is contained in UF , the local finiteness assumption implies that the sequence (gn) is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
383
+ page_content=' Hence, after extraction, gn = g for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
384
+ page_content=' The fact that F is closed then implies that x ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
385
+ page_content=' It follows that x is an accumulation point of (xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
386
+ page_content=' Thus, q : F → F/G is a closed map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
387
+ page_content=' □ 12 MICHAEL KAPOVICH References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
388
+ page_content=' Borel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
389
+ page_content=' Ji, “Compactifications of Symmetric and Locally Symmetric Spaces”, Birkhauser Verlag, Series “Mathematics: Theory and Applications”, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
390
+ page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
391
+ page_content=' Bourbaki, “Elements of Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
392
+ page_content=' General Topology”, Parts I–IV, Hermann, Paris, 1966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
393
+ page_content=' [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
394
+ page_content=' Bredon, “Introduction to Compact Transformation Groups,” Academic Press, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
395
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
396
+ page_content=' Burago, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
397
+ page_content=' Burago and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
398
+ page_content=' Ivanov, “A course in metric geometry.” Graduate Studies in Math- ematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
399
+ page_content=' 33, American Mathematical Society, Providence, RI, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
400
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
401
+ page_content=' Hatcher, “Algebraic Topology”, Cambridge University Press, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
402
+ page_content=' [6] http://mathoverflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
403
+ page_content='net/questions/50128/a-question-about-group-action-on-topological-space?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
404
+ page_content='rq=1 [7] http://mathoverflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
405
+ page_content='net/questions/55726/properly-discontinuous-action?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
406
+ page_content='rq=1 [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
407
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
408
+ page_content=' Koszul, “Lectures on Groups of Transformations”, Tata Institute of Fundamental Research, Bombay, 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
409
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
410
+ page_content=' Palais, When proper maps are closed, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
411
+ page_content=' of AMS, 24 (1970), 835–836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
412
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
413
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
414
+ page_content=' Siegel, Discontinuous groups, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
415
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
416
+ page_content=' (2) 44 (1943), 674–689.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
417
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
418
+ page_content=' Tominaga and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
419
+ page_content=' Tanaka, Convexification of locally connected generalized continua, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
420
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
421
+ page_content=' Hiroshima Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
422
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
423
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
424
+ page_content=' 19 (1955), 301–306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
425
+ page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
426
+ page_content=' Tu, “An introduction to manifolds”, Springer Verlag, 2nd edition, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
427
+ page_content=' Department of Mathematics, University of California, Davis, CA 95616 Email address: kapovich@ucdavis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
428
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdE4T4oBgHgl3EQf5g79/content/2301.05325v1.pdf'}
CtAzT4oBgHgl3EQfTvyL/content/tmp_files/2301.01255v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtAzT4oBgHgl3EQfTvyL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtE0T4oBgHgl3EQfyQKJ/content/tmp_files/2301.02657v1.pdf.txt ADDED
@@ -0,0 +1,2101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TarViS: A Unified Approach for Target-based Video Segmentation
2
+ Ali Athar1
3
+ Alexander Hermans1
4
+ Jonathon Luiten1,2
5
+ Deva Ramanan2
6
+ Bastian Leibe1
7
+ 1RWTH Aachen University, Germany
8
+ 2Carnegie Mellon University, USA
9
+ {athar,hermans,luiten,leibe}@vision.rwth-aachen.de
10
11
+ Abstract
12
+ The general domain of video segmentation is currently
13
+ fragmented into different tasks spanning multiple bench-
14
+ marks. Despite rapid progress in the state-of-the-art, cur-
15
+ rent methods are overwhelmingly task-specific and cannot
16
+ conceptually generalize to other tasks. Inspired by recent
17
+ approaches with multi-task capability, we propose TarViS:
18
+ a novel, unified network architecture that can be applied to
19
+ any task that requires segmenting a set of arbitrarily de-
20
+ fined ‘targets’ in video. Our approach is flexible with re-
21
+ spect to how tasks define these targets, since it models the
22
+ latter as abstract ‘queries’ which are then used to predict
23
+ pixel-precise target masks. A single TarViS model can be
24
+ trained jointly on a collection of datasets spanning differ-
25
+ ent tasks, and can hot-swap between tasks during infer-
26
+ ence without any task-specific retraining. To demonstrate
27
+ its effectiveness, we apply TarViS to four different tasks,
28
+ namely Video Instance Segmentation (VIS), Video Panoptic
29
+ Segmentation (VPS), Video Object Segmentation (VOS) and
30
+ Point Exemplar-guided Tracking (PET). Our unified, jointly
31
+ trained model achieves state-of-the-art performance on 5/7
32
+ benchmarks spanning these four tasks, and competitive per-
33
+ formance on the remaining two. Code will be made public
34
+ upon acceptance.
35
+ 1. Introduction
36
+ The ability to understand video scenes has been a long-
37
+ standing goal of computer vision research because of wide-
38
+ ranging applications in intelligent vehicles and robots.
39
+ Early approaches tackled simpler tasks involving contour-
40
+ based [33,40] and box-level tracking [21,25,41,53], back-
41
+ ground subtraction [20, 62], and motion segmentation [8,
42
+ 50]. The deep learning boom then revolutionized the land-
43
+ scape by enabling methods to perform pixel-precise seg-
44
+ mentation on challenging, real-world videos. In the past
45
+ few years, a number of benchmarks have emerged, which
46
+ evaluate how well methods can perform video segmenta-
47
+ tion according to various task formulations.
48
+ Over time,
49
+ VPS
50
+ VIS
51
+ VOS
52
+ PET
53
+ TarViS
54
+ BEFORE
55
+ Task-specific models
56
+ NOW
57
+ Task-specific targets
58
+ VIS
59
+ VPS
60
+ VOS/PET
61
+ Figure 1. Predicted results from a jointly trained TarViS model for
62
+ four different video segmentation tasks.
63
+ these tasks/benchmarks have ballooned into separate re-
64
+ search sub-communities.
65
+ Although existing methods are
66
+ rapidly improving the state-of-the-art for these benchmarks,
67
+ each of them typically tackles only one narrowly-defined
68
+ task, and generalizing them is non-trivial since the task def-
69
+ inition is baked into the core approach.
70
+ We argue that this fragmentation is unnecessary be-
71
+ cause video target segmentation tasks all require the same
72
+ high-level capability, namely that of identifying, localizing
73
+ and tracking rich semantic concepts.
74
+ Meanwhile, recent
75
+ progress on Transformer networks has enabled the wider
76
+ AI research community to move towards unified, multi-task
77
+ architectures [1, 30, 31, 39, 59], because the attention op-
78
+ eration [63] is well-suited for processing feature sets with
79
+ arbitrary structure and data modality. These developments
80
+ give us the opportunity to unify the fractured landscape of
81
+ target-based video segmentation. In this paper, we propose
82
+ TarViS: a novel architecture which enables a single, unified
83
+ 1
84
+ arXiv:2301.02657v1 [cs.CV] 6 Jan 2023
85
+
86
+ hmodel to be jointly trained for multiple video segmentation
87
+ tasks. During inference, the same model can perform differ-
88
+ ent tasks at runtime by specifying the segmentation target.
89
+ The core idea is that TarViS tackles the generic task of
90
+ segmenting a set of arbitrary targets in video (defined as
91
+ semantic classes or as specific objects). These targets are
92
+ encoded as queries which, together with the video features,
93
+ are input to a Transformer-based model. The model iter-
94
+ atively refines these queries and produces a pixel-precise
95
+ mask for each target entity. This formulation conceptually
96
+ fuses all video segmentation tasks [3, 55, 67, 73] which fall
97
+ under the umbrella of the above-mentioned generic task, be-
98
+ cause they differ only in how the targets are defined. During
99
+ both training and inference, TarViS can hot-swap between
100
+ tasks at run-time by providing the desired target query set.
101
+ To demonstrate our generalization capability, we tackle
102
+ four different tasks:
103
+ (1) Video Instance Segmenta-
104
+ tion (VIS) [55, 73], (2) Video Panoptic Segmentation
105
+ (VPS) [35], (3) Video Object Segmentation [54], and (4)
106
+ Point Exemplar-guided Tracking [3] (PET). For VIS, the
107
+ segmentation targets are all objects in the video belong-
108
+ ing to a pre-defined set of classes.
109
+ The target set for
110
+ VPS includes that for VIS, and additionally, a set of non-
111
+ instantiable stuff semantic classes. For VOS, the targets are
112
+ a specific set of objects for which the first-frame ground-
113
+ truth mask is provided. PET is a more constrained version
114
+ of VOS which only provides the location of a single point
115
+ inside the object, rather than the full object mask.
116
+ Existing methods for these tasks lack generalization
117
+ capability because task-specific assumptions are typically
118
+ baked into the approach (see Sec. 2 and 3 for details). In
119
+ contrast, TarViS can tackle all four tasks with a unified
120
+ model because we encode the task-specific targets as a set
121
+ of queries, thus decoupling the network architecture from
122
+ the task definition. Moreover, our approach can theoreti-
123
+ cally generalize further, e.g., one could potentially define
124
+ the target set as all objects described by a given text prompt,
125
+ though this is beyond the scope of this paper.
126
+ To summarize, our contributions are as follows: we pro-
127
+ pose TarViS, a novel architecture that can perform any task
128
+ requiring segmentation of a set of targets from video. For
129
+ the first time, we are able to jointly train and infer a single
130
+ model on a collection of datasets spanning the four afore-
131
+ mentioned tasks (VIS, VPS, VOS, PET). Our experimental
132
+ results show that TarViS performs competitively for VOS,
133
+ and achieves state-of-the-art results for VIS, VPS and PET.
134
+ 2. Related Work
135
+ Multi-task Models.
136
+ Multi-task learning has a long his-
137
+ tory [11] with several architectures and training strate-
138
+ gies [24,36,38,52,60,77]. Earlier approaches mostly con-
139
+ sist of a shared backbone with fixed task-specific heads,
140
+ whereas we design a more general architecture for video
141
+ segmentation with task-specific targets to specify what to
142
+ segment. Our approach is inspired by recent attention-based
143
+ models, e.g., PerceiverIO [30,31], which can be trained on
144
+ diverse data modalities and task-specific heads are replaced
145
+ with output queries. UViM [39] follows a similar direction
146
+ by creating a unified architecture for diverse dense predic-
147
+ tion tasks. However, both of these models are trained sep-
148
+ arately for different tasks. Recent, powerful multi-task vi-
149
+ sion language models such as Flamingo [1] and GATO [59]
150
+ tackle a multitude of tasks by requiring a sequence of task-
151
+ specific input-output examples to prime the model. This is
152
+ conceptually similar to our task-specific targets, however,
153
+ our model does not require per-task priming. Moreover,
154
+ our targets are not modeled as sequence prompts, and we
155
+ aim for a video segmentation model which is several orders
156
+ of magnitude smaller. In the realm of video tracking and
157
+ segmentation, the recently proposed UNICORN [72] model
158
+ tackles multiple object tracking-related tasks with a unified
159
+ architecture. Unlike TarViS, however, UNICORN follows
160
+ the task-specific output head approach and is generally ori-
161
+ ented towards box-level tracking tasks [22,46,48,76], thus
162
+ requiring non-trivial modifications to tackle VPS or PET.
163
+ Query-based Transformer Architectures.
164
+ Several
165
+ works [2, 10, 13, 30, 31, 47, 66, 79] use query-based Trans-
166
+ former architectures for various tasks.
167
+ The fundamental
168
+ workhorse for task learning here is the iterative application
169
+ of self- and cross-attention, where a set of query vectors
170
+ (e.g., representing objects) are refined by interacting with
171
+ each other, and with the input data sample (e.g., an image).
172
+ Unlike existing methods which use queries in a task-specific
173
+ context, TarViS adopts a query-based Transformer archi-
174
+ tecture in which the queries serve as a mechanism for de-
175
+ coupling the task definition from the architecture, i.e., our
176
+ model can learn to tackle different tasks while being ag-
177
+ nostic to their definition because the latter is effectively ab-
178
+ stracted behind a set of queries.
179
+ Task-specific Video Segmentation Methods.
180
+ Current
181
+ Video Instance Segmentation (VIS) approaches broadly
182
+ work by predicting object tracks from the input video, fol-
183
+ lowed by classification into a pre-defined set of categories.
184
+ Several approaches [6,9,23,28,34,55,65,70,73] are based
185
+ on the tracking-by-detection paradigm, some model video
186
+ as a joint spatio-temporal volume [4, 5], whereas many re-
187
+ cent works [12, 26, 29, 66, 69] adopt Transformer-based ar-
188
+ chitectures (comparison to our approach in Sec. 3.1).
189
+ For
190
+ Video
191
+ Panoptic
192
+ Segmentation
193
+ (VPS),
194
+ meth-
195
+ ods [35, 56, 67] generally extend image-level panoptic
196
+ approaches [14] by employing multi-head network ar-
197
+ chitectures for semantic segmentation and instance mask
198
+ regression, classification, and temporal association. In the
199
+ Video Object Segmentation (VOS) community, state-of-
200
+ 2
201
+
202
+ Qsem
203
+ Qinst
204
+ Qbg
205
+ VIS or VPS
206
+ EncObj
207
+ F
208
+ Qobj
209
+ Qbg
210
+ VOS or PET
211
+ Backbone
212
+ Temporal
213
+ Neck
214
+ Transformer Decoder
215
+ Layer 1
216
+ Masked Cross-Attention
217
+ Self-Attention
218
+ FFN
219
+ Layer 2
220
+ Layer L
221
+ Qin
222
+ F
223
+ F4
224
+ Qout
225
+ ×
226
+ Q′
227
+ inst
228
+ F4
229
+ ×
230
+ Q′
231
+ inst, Q′
232
+ sem
233
+ F4
234
+ ×
235
+ Classification
236
+ Q′
237
+ sem, Q′
238
+ bg
239
+ Q′
240
+ inst
241
+ ×
242
+ Q′
243
+ obj
244
+ F4
245
+ Figure 2. TarViS Architecture. Segmentation targets for different tasks are represented by a set of abstract target queries Qin. The core
246
+ network (in green) is agnostic to the task definitions. The inner product between the output queries Qout and video feature F4 yields
247
+ segmentation masks as required by the task.
248
+ the-art methods are broadly based on the seminal work of
249
+ Oh et al. [51], which learns space-time correspondences
250
+ between pixels in different video frames, and then uses
251
+ these to propagate the first-frame masks across the video.
252
+ Subsequent methods [15–17,61,64,71,74,74,75] have sig-
253
+ nificantly improved the performance and efficiency of this
254
+ approach. Point Exemplar-guided Tracking (PET) [3,27] is
255
+ a relatively new task for which the current best approach [3]
256
+ involves regressing a pseudo-ground-truth mask from the
257
+ given point coordinates, and then applies a state-of-the-art
258
+ VOS method [17] to this mask.
259
+ The above methods thus incorporate task-specific as-
260
+ sumptions into their core approach. This can be beneficial
261
+ for per-task performance, but makes it difficult for them to
262
+ generalize across tasks. By contrast, TarViS can tackle all
263
+ four aforementioned tasks, and generally any target-based
264
+ video segmentation task, with a single, unified, jointly
265
+ trained model.
266
+ 3. Method
267
+ TarViS can segment arbitrary targets in video since the
268
+ architecture is flexible with respect to how these targets
269
+ are defined, thus enabling us to conceptually unify and
270
+ jointly tackle the four aforementioned tasks (VIS, VPS,
271
+ VOS, PET). The architecture is illustrated in Fig. 2.
272
+ For all tasks, the common input to the network is an RGB
273
+ video clip of length T denoted by V ∈ RH×W ×T ×3. This
274
+ is input to a 2D backbone network which produces image-
275
+ level feature maps, followed by a Temporal Neck, which
276
+ enables feature interaction across time and outputs a set of
277
+ temporally consistent, multi-scale, D-dimensional feature
278
+ maps F = {F32, F16, F8, F4} where Fs ∈ R
279
+ H
280
+ s × W
281
+ s ×T ×D.
282
+ The feature maps F are then fed to our Transformer de-
283
+ coder, together with a set of queries Qin which represent the
284
+ segmentation targets. The decoder applies successive layers
285
+ of self- and masked cross-attention wherein the queries are
286
+ iteratively refined by attending to each other, and to the fea-
287
+ ture maps, respectively. The refined queries output by the
288
+ decoder are denoted with Qout. The following subsections
289
+ explain how TarViS tackles each task in detail.
290
+ 3.1. Video Instance Segmentation
291
+ VIS defines the segmentation target set as all objects be-
292
+ longing to a set of predefined classes. Accordingly, the in-
293
+ put query set Qin for VIS contains three types of queries:
294
+ (1) semantic queries denoted by Qsem ∈ RC×D where C is
295
+ the number of classes defined by the dataset, i.e., each D-
296
+ dimensional vector in Qsem represents a particular seman-
297
+ tic class. (2) instance queries denoted by Qinst ∈ RI×D
298
+ where I is assumed to be an upper bound on the number of
299
+ instances in the video clip, and (3) a background query de-
300
+ noted by Qbg ∈ R1×D to capture inactive instance queries.
301
+ The three query sets are concatenated, i.e., Qin
302
+ =
303
+ concat(Qsem, Qinst, Qbg), and input to the Transformer de-
304
+ coder, which refines their feature representation through
305
+ successive attention layers and outputs a set of queries
306
+ Qout = concat(Q′
307
+ sem, Q′
308
+ inst, Q′
309
+ bg). These are then used to
310
+ produce temporally consistent instance mask logits by com-
311
+ puting the inner product ⟨F4, Q′
312
+ inst⟩ ∈ RH×W ×T ×I. To
313
+ obtain classification logits, we compute the inner product
314
+ ⟨Q′
315
+ inst, concat(Q′
316
+ sem, Q′
317
+ bg)⟩ ∈ RI×(C+1).
318
+ The three types of queries are initialized randomly at
319
+ the start of training and optimized thereafter. The instance
320
+ queries Qinst enable us to segment a varying number of ob-
321
+ jects from the input clip. During training, we apply Hun-
322
+ garian matching between the predicted and ground-truth in-
323
+ stance masks to assign instance queries to video instances,
324
+ and then supervise their predicted masks and classification
325
+ 3
326
+
327
+ logits accordingly. When training on multiple datasets with
328
+ heterogeneous classes, the semantic query sets are sepa-
329
+ rately initialized per dataset, but Qinst and Qbg are shared.
330
+ Comparison to Instance Segmentation Methods.
331
+ Sev-
332
+ eral Transformer-based methods [10, 13, 66, 79] for im-
333
+ age/video instance segmentation also use queries to seg-
334
+ ment a variable number of input instances. The key dif-
335
+ ference to our approach is the handling of object classes:
336
+ existing works employ only instance queries which are in-
337
+ put to a fully-connected layer with a fan-out of C + 1 to
338
+ obtain classification (and background) scores. The notion
339
+ of class-guided instance segmentation is thus baked into
340
+ the approach. By contrast, TarViS is agnostic to the task-
341
+ specific notion of object classes because it models them
342
+ as arbitrary queries which are dynamic inputs to the net-
343
+ work. The semantic representation for these queries is thus
344
+ decoupled from the core architecture and is only learned via
345
+ loss supervision. An important enabler for this approach
346
+ is the background query Qbg, which serves as a ‘catch-all’
347
+ class to represent everything that is not in Qsem. It is used to
348
+ classify non-active instance queries, and its mask logits are
349
+ supervised to segment all non-object input pixels.
350
+ 3.2. Video Panoptic Segmentation
351
+ VPS defines the segmentation targets as all objects be-
352
+ longing to a set of thing classes (e.g., ‘person’, ‘car’), and
353
+ additionally, a set of non-instantiable stuff classes (e.g.,
354
+ ‘sky’, ‘grass’) which cover all non-object pixels. TarViS
355
+ can tackle VPS with virtually no modification to the work-
356
+ flow in Sec. 3.1. We can compute semantic segmentation
357
+ masks for the input clip by simply taking the inner prod-
358
+ uct between Qsem and the video features: ⟨F4, Q′
359
+ sem⟩ ∈
360
+ RH×W ×T ×C. Note that here, Qsem contains queries rep-
361
+ resenting both thing and stuff classes.
362
+ Comparison to VPS Methods. Current VPS datasets [35,
363
+ 67] involve driving scene videos captured from moving ve-
364
+ hicles.
365
+ Methods tackling this task [35, 56] are based on
366
+ earlier image panoptic segmentation approaches [14] which
367
+ involve multi-head networks for semantic and instance seg-
368
+ mentation prediction. In terms of image-level panoptic seg-
369
+ mentation, Mask2Former [13] uses a Transformer-based ar-
370
+ chitecture, but it models stuff classes as instances which are
371
+ Hungarian-matched to the ground-truth target during train-
372
+ ing, whereas TarViS models semantic classes and instances
373
+ using separate, designated queries.
374
+ 3.3.
375
+ Video
376
+ Object
377
+ Segmentation
378
+ and
379
+ Point
380
+ Exemplar-guided Tracking
381
+ VOS and PET can be seen as instantiations of a gen-
382
+ eral task where the segmentation targets are a set of O
383
+ objects for which some ground-truth cue G is given. For
384
+ VOS, G is provided in the form of first-frame object masks
385
+ Mobj ∈ RO×H×W , whereas for PET, G is provided as the
386
+ (x, y) coordinates Pobj ∈ RO×2 of a point inside each of
387
+ the objects. TarViS jointly tackles these tasks by adopting a
388
+ generalized approach in which the O target objects are en-
389
+ coded into a set of object queries Qobj. Thus, both VOS and
390
+ PET boil down to designing a function EncodeObjects(·)
391
+ which regresses Qobj from the given ground-truth cues G
392
+ and feature maps F:
393
+ Qobj ←− EncodeObjects(G, F).
394
+ (1)
395
+ Note that Qobj is conceptually analogous to Qsem and
396
+ Qinst used for VIS in that all three are abstract representa-
397
+ tions for their respective task-specific segmentation targets.
398
+ Video
399
+ Object
400
+ Segmentation.
401
+ To
402
+ implement
403
+ EncodeObjects for VOS, we seek inspiration from
404
+ HODOR [2], a recent method for weakly-supervised VOS,
405
+ which encodes objects into concise descriptors as follows:
406
+ the descriptors are initialized by average pooling the image
407
+ features inside the object masks, followed by an iterative
408
+ refinement where the descriptors attend to each other
409
+ (self-attention) and to their respective soft-masked image
410
+ features (cross-attention).
411
+ For TarViS, we employ a lightweight Object Encoder
412
+ with a similar workflow to encode the objects as a set of
413
+ queries Qobj, but with two differences to HODOR [2]: in-
414
+ stead of cross-attending to the entire image feature map
415
+ (H · W points) with soft-masked attention, we apply hard-
416
+ masked cross-attention to at most pmax feature points per ob-
417
+ ject, where pmax ≪ H · W. Object masks containing more
418
+ than pmax points are sub-sampled accordingly. This signifi-
419
+ cantly improves the memory/run-time overhead of our Ob-
420
+ ject Encoder. Secondly, we note that the process of distill-
421
+ ing object features into a single descriptor involves a loss
422
+ of object appearance information, which degrades perfor-
423
+ mance. We therefore model each object with qo queries (in-
424
+ stead of one) by spatially dividing each object mask into qo
425
+ segments, i.e., Qobj ∈ RO×qo×D (we use qo = 4).
426
+ In addition to Qobj, we initialize a set of background
427
+ queries Qbg ∈ RB×D to model the non-target pixels in
428
+ the reference frame. Following HODOR [2], we employ
429
+ multiple background queries, which are initialized dynam-
430
+ ically by dividing the video frame containing the ground-
431
+ truth masks Mobj into a 4 × 4 grid and average pooling
432
+ the non-object pixels in each grid cell.
433
+ The Object En-
434
+ coder jointly refines the background and object queries to
435
+ yield Qin = concat(Qobj, Qbg). During training, the mask
436
+ logits for the multiple background queries are aggregated
437
+ per-pixel by applying max(·) and supervised to segment all
438
+ pixels not part of the target object set.
439
+ The remaining workflow follows that for VIS and VPS:
440
+ Qin is input to the Transformer decoder together with the
441
+ video features F.
442
+ The refined output query set Qout =
443
+ 4
444
+
445
+ concat(Q′
446
+ obj, Q′
447
+ bg) is then used to compute the inner prod-
448
+ uct ⟨F4, Q′
449
+ obj⟩ ∈ RH×W ×T ×O×qo. Subsequently, max(·) is
450
+ applied on the qo-sized dimension to obtain the final mask
451
+ logits for the O target objects.
452
+ Point Exemplar-guided Tracking.
453
+ For PET we imple-
454
+ ment EncodeObjects in the exactly same way as VOS: the
455
+ given point coordinates Pobj are converted into a mask with
456
+ just one non-zero pixel, followed by iterative refinement by
457
+ the Object Encoder (with shared weights for VOS and PET).
458
+ The only difference is that here we represent each of the O
459
+ objects with just one query, i.e., Qobj ∈ RO×D (qo = 1).
460
+ The subsequent workflow is also identical to that for VOS:
461
+ the queries are refined by the Transformer decoder followed
462
+ by an inner product with F4 to obtain object mask logits.
463
+ Comparison to VOS and PET Methods. Current state-of-
464
+ the-art VOS methods are largely based on STM [51]. It in-
465
+ volves learning pixel-to-pixel correspondences across video
466
+ frames, which are then used to propagate the given object
467
+ mask across the video.
468
+ This approach is effective since
469
+ every pixel in the given mask can be individually mapped
470
+ to future frames, thus preserving fine-grained object de-
471
+ tails. The core approach is, however, task-specific since
472
+ it assumes the availability of first-frame object masks, and
473
+ does not generalize to the PET (see Sec. 4.2). PET can be
474
+ viewed as a more constrained version of VOS, where only
475
+ a single object point is provided instead of the full mask.
476
+ Consequently, PET [3] is currently tackled by casting it as
477
+ a VOS problem by using an image instance segmentation
478
+ network [13] to regress pseudo-ground-truth object masks
479
+ from the given point coordinates Pobj.
480
+ On the other hand, our approach of encoding objects as
481
+ concise queries causes loss of fine-grained object appear-
482
+ ance information, but it has the advantage of being agnostic
483
+ to how G is defined. As evident from the unified work-
484
+ flow for VOS and PET, any variation of these tasks with
485
+ arbitrary ground-truth cues G can be seamlessly fused into
486
+ our architecture as long as we can implement an effective
487
+ EncodeObjects function to regress Qobj from the given G.
488
+ 3.4. Network Architecture
489
+ Temporal Neck.
490
+ As explained earlier, TarViS produces
491
+ target masks by computing the inner product between Qout
492
+ and the video feature map F4. For this to be effective, the
493
+ per-pixel features F must be aligned for the same, and dis-
494
+ similar for different targets. Some image instance segmen-
495
+ tation methods [13,79] apply Deformable Attention [79] to
496
+ the backbone feature maps to efficiently learn consistent,
497
+ multi-scale image features. For TarViS, however, the fea-
498
+ tures must also be temporally consistent across the entire
499
+ input video clip. To achieve this, we propose a novel Tempo-
500
+ ral Neck architecture which is based on the work of Berta-
501
+ sius et al. [7] for video action classification. We enable ef-
502
+ x
503
+ t
504
+ y
505
+ Deformable
506
+ Attention
507
+ F32
508
+ F16
509
+ F8
510
+ Temporal
511
+ Attention
512
+ Figure 3. Temporal Neck Layer. Colored regions denote the at-
513
+ tention field w.r.t the selected pixel (darkened). Deformable At-
514
+ tention is spatially unrestricted but temporally limited to a single
515
+ frame, whereas Temporal Attention is spatially localized, but tem-
516
+ porally unrestricted. F8 is inactive for the temporal attention.
517
+ ficient spatio-temporal feature interaction by applying two
518
+ types of self-attention in an alternating fashion: the first is
519
+ spatially global and temporally localized, whereas the sec-
520
+ ond is spatially localized and temporally global. The first
521
+ operation is implemented with Deformable Attention, fol-
522
+ lowing existing work [12,79]. The second operation, Tem-
523
+ poral Attention, involves dividing the input space-time vol-
524
+ ume into a grid along the spatial axes, and then applying
525
+ self-attention to the space-time feature volume inside each
526
+ grid cell. Both operations allow feature interaction across
527
+ multiple scales. Both attention operations are illustrated in
528
+ Fig. 3. We exclude F8 from temporal attention since we
529
+ found this to be more memory-efficient without negatively
530
+ impacting prediction quality.
531
+ Transformer Decoder.
532
+ The decoder architecture follows
533
+ that of Mask2Former [13]: the input queries are iteratively
534
+ refined over multiple layers. In each layer, the queries first
535
+ cross-attend to their respective masked video features, then
536
+ self-attend to each other, followed by feed-forward layers.
537
+ 3.5. Inference
538
+ To infer on videos with arbitrary length, we split the in-
539
+ put video into clips of length Tclip with an overlap of Tov be-
540
+ tween successive clips. Object tracks are associated across
541
+ clips based on their mask IoU in the overlapping frames.
542
+ For the VOS tasks, the object queries for an intermediate
543
+ clip are initialized by using the predicted masks in the over-
544
+ lapping frames from the previous clip as a pseudo-ground-
545
+ truth. For VPS, we average the semantic segmentation log-
546
+ its in the overlapping frames. Our approach is thus near-
547
+ online because the time delay in obtaining the output for a
548
+ given frame is at most Tclip − Tov − 1 (except for the very
549
+ first clip in the video).
550
+ 5
551
+
552
+ Table 1. Results for Video Instance Segmentation (VIS) on the YouTube-VIS 2021 [73] and OVIS [55] validation sets.
553
+ Method
554
+ Backbone
555
+ Shared
556
+ Model
557
+ YouTube-VIS 2021
558
+ OVIS
559
+ AP
560
+ AP50
561
+ AP75
562
+ AR1
563
+ AR10
564
+ AP
565
+ AP50
566
+ AP75
567
+ AR1
568
+ AR10
569
+ Mask2Former-VIS [12]
570
+ R-50
571
+ 
572
+ 40.6
573
+ 60.9
574
+ 41.8
575
+ -
576
+ -
577
+ -
578
+ -
579
+ -
580
+ -
581
+ -
582
+ IDOL [70]
583
+ R-50
584
+ 
585
+ 43.9
586
+ 68.0
587
+ 49.6
588
+ 38.0
589
+ 50.9
590
+ 30.2
591
+ 51.3
592
+ 30.0
593
+ 15.0
594
+ 37.5
595
+ MinVIS [28]
596
+ R-50
597
+ 
598
+ 44.2
599
+ 66.0
600
+ 48.1
601
+ 39.2
602
+ 51.7
603
+ 25.0
604
+ 45.5
605
+ 24.0
606
+ 13.9
607
+ 29.7
608
+ VITA [26]
609
+ R-50
610
+ 
611
+ 45.7
612
+ 67.4
613
+ 49.5
614
+ 40.9
615
+ 53.6
616
+ 19.6
617
+ 41.2
618
+ 17.4
619
+ 11.7
620
+ 26.0
621
+ Ours (TarViS)
622
+ R-50
623
+ 
624
+ 48.3
625
+ 69.6
626
+ 53.2
627
+ 40.5
628
+ 55.9
629
+ 31.1
630
+ 52.5
631
+ 30.4
632
+ 15.9
633
+ 39.9
634
+ Mask2Former-VIS [12]
635
+ Swin-T
636
+ 
637
+ 45.9
638
+ 68.7
639
+ 50.7
640
+ -
641
+ -
642
+ -
643
+ -
644
+ -
645
+ -
646
+ -
647
+ Ours (TarViS)
648
+ Swin-T
649
+ 
650
+ 50.9
651
+ 71.6
652
+ 56.6
653
+ 42.2
654
+ 57.2
655
+ 34.0
656
+ 55.0
657
+ 34.4
658
+ 16.1
659
+ 40.9
660
+ IDOL [70]
661
+ Swin-L
662
+ 
663
+ 56.1
664
+ 80.8
665
+ 63.5
666
+ 45.0
667
+ 60.1
668
+ 42.6
669
+ 65.7
670
+ 45.2
671
+ 17.9
672
+ 49.6
673
+ VITA [26]
674
+ Swin-L
675
+ 
676
+ 57.5
677
+ 80.6
678
+ 61.0
679
+ 47.7
680
+ 62.6
681
+ 27.7
682
+ 51.9
683
+ 24.9
684
+ 14.9
685
+ 33.0
686
+ Ours (TarViS)
687
+ Swin-L
688
+ 
689
+ 60.2
690
+ 81.4
691
+ 67.6
692
+ 47.6
693
+ 64.8
694
+ 43.2
695
+ 67.8
696
+ 44.6
697
+ 18.0
698
+ 50.4
699
+ Table 2. Video Panoptic Segmentation (VPS) results for validation sets of KITTI-STEP [67], CityscapesVPS [35] and VIPSeg [45].
700
+ Method
701
+ Shared
702
+ Model
703
+ KITTI-STEP
704
+ CityscapesVPS
705
+ VIPSeg
706
+ STQ
707
+ AQ
708
+ SQ
709
+ VPQ
710
+ VPQTh
711
+ VPQSt
712
+ VPQ
713
+ VPQTh
714
+ VPQSt
715
+ STQ
716
+ Mask Propagation [67]
717
+ 
718
+ 0.67
719
+ 0.63
720
+ 0.71
721
+ -
722
+ -
723
+ -
724
+ -
725
+ -
726
+ -
727
+ Track [35]
728
+ 
729
+ -
730
+ -
731
+ -
732
+ 55.9
733
+ 43.7
734
+ 64.8
735
+ -
736
+ -
737
+ -
738
+ VPSNet [35]
739
+ 
740
+ 0.56
741
+ 0.52
742
+ 0.61
743
+ 57.0
744
+ 44.7
745
+ 66.0
746
+ 14.0
747
+ 14.0
748
+ 14.2
749
+ 20.8
750
+ VPSNet-SiamTrack [68]
751
+ 
752
+ -
753
+ -
754
+ -
755
+ 57.3
756
+ 44.7
757
+ 66.4
758
+ 17.2
759
+ 17.3
760
+ 17.3
761
+ 21.1
762
+ VIP-Deeplab [56]
763
+ 
764
+ -
765
+ -
766
+ -
767
+ 63.1
768
+ 49.5
769
+ 73.0
770
+ 16.0
771
+ 12.3
772
+ 18.2
773
+ 22.0
774
+ Clip-PanoFCN [45]
775
+ 
776
+ -
777
+ -
778
+ -
779
+ -
780
+ -
781
+ -
782
+ 22.9
783
+ 25.0
784
+ 20.8
785
+ 31.5
786
+ Ours (TarViS - R-50)
787
+ 
788
+ 0.70
789
+ 0.70
790
+ 0.69
791
+ 53.3
792
+ 35.9
793
+ 66.0
794
+ 33.5
795
+ 39.2
796
+ 28.5
797
+ 43.1
798
+ Ours (TarViS - Swin-T)
799
+ 
800
+ 0.71
801
+ 0.71
802
+ 0.70
803
+ 58.0
804
+ 42.9
805
+ 69.0
806
+ 35.8
807
+ 42.7
808
+ 29.7
809
+ 45.3
810
+ Ours (TarViS - Swin-L)
811
+ 
812
+ 0.72
813
+ 0.72
814
+ 0.73
815
+ 58.9
816
+ 43.7
817
+ 69.9
818
+ 48.0
819
+ 58.2
820
+ 39.0
821
+ 52.9
822
+ 4. Experiments
823
+ 4.1. Implementation Details
824
+ Our Temporal Neck contains 6 layers of Deformable
825
+ and Temporal Attention.
826
+ We pretrain our model for
827
+ 500k iterations with batch size 32 on pseudo-video clips
828
+ generated by applying on-the-fly augmentations to im-
829
+ ages from COCO [43], ADE20k [78], Mapillary [49] and
830
+ Cityscapes [18]. These samples are either trained for VPS,
831
+ VIS, VOS or PET. This is followed by fine-tuning for
832
+ 90k iterations jointly on samples from YouTube-VIS [73],
833
+ OVIS [55],
834
+ KITTI-STEP [67],
835
+ CityscapesVPS [35],
836
+ VIPSeg [45], DAVIS [54] and BURST [3]. For each of the
837
+ four query types (Qsem, Qinst, Qobj, Qbg) discussed in Sec. 3,
838
+ we employ a learned query embedding, which is used when
839
+ computing the KeyT Query affinity matrix for multi-head
840
+ attention inside the decoder. We refer to the supplementary
841
+ for more details.
842
+ 4.2. Benchmark Results
843
+ All results are computed with a single, jointly trained
844
+ model which performs different tasks by simply providing
845
+ the corresponding query set at run-time.
846
+ Video Instance Segmentation (VIS). We evaluate on two
847
+ benchmarks: (1) YouTube-VIS 2021 [73] which covers
848
+ 40 object classes and contains 2985/421 videos for train-
849
+ ing/validation, and (2) OVIS [55] which covers 25 object
850
+ classes. It contains 607/140 videos for training/validation
851
+ which are comparatively longer and more occluded. The
852
+ AP scores for both are reported in Tab. 1. For all three
853
+ backbones, TarViS achieves state-of-the-art results for both
854
+ benchmarks even though other methods are trained sepa-
855
+ rately per benchmark whereas we use a single model. On
856
+ YouTube-VIS, TarViS achieves 48.3 AP with a ResNet-50
857
+ backbone compared to the 45.7 achieved by VITA [26].
858
+ With Swin-L, we achieve 60.2 AP which is also higher than
859
+ the 57.5 by VITA. On OVIS with ResNet-50, our 31.1 AP
860
+ is higher than the 30.2 for IDOL [70], and with Swin-L,
861
+ TarViS (43.2 AP) out-performs the current state-of-the-art
862
+ IDOL (42.6 AP).
863
+ Video Panoptic Segmentation (VPS). We evaluate VPS
864
+ on three datasets: (1) KITTI-STEP [67], which contains
865
+ 12/9 lengthy driving scene videos for training/validation
866
+ with 19 semantic classes (2 thing and 17 stuff classes), (2)
867
+ CityscapesVPS [35], which contains 50 short driving scene
868
+ clips, each with 6 annotated frames, and (3) VIPSeg [45],
869
+ which is a larger dataset with 2806/343 in-the-wild videos
870
+ for training/validation and 124 semantic classes. The results
871
+ 6
872
+
873
+ are reported in Tab. 2. For KITTI-STEP, TarViS achieves
874
+ 70% STQ with a ResNet-50 backbone which is better than
875
+ all existing approaches. The performance further improves
876
+ to 72% with Swin-L. For CityscapesVPS, TarViS achieves
877
+ 58.9 VPQ which is higher than all other methods except
878
+ VIP-Deeplab [56] (63.1). However, VIP-Deeplab performs
879
+ monocular depth estimation for additional guidance, and
880
+ therefore requires ground-truth depth-maps for training.
881
+ For VIPSeg, TarViS out-performs existing approaches
882
+ by a significant margin.
883
+ With a ResNet-50 backbone,
884
+ our 33.5 VPQ is 10.6% higher than the 22.9 by Clip-
885
+ PanoFCN [45].
886
+ With a Swin-Large backbone, TarViS
887
+ achieves 48.0 VPQ which is more than double that of Clip-
888
+ PanoFCN (22.9). Note that VIP-Deeplab performs signifi-
889
+ cantly worse for VIPSeg (16.0 VPQ), showing that TarViS
890
+ generalizes better across benchmarks. Finally, we note that
891
+ larger backbones results in significant performance gains
892
+ for datasets with in-the-wild internet videos as in VIPSeg,
893
+ but for specialized driving scene datasets (e.g. KITTI-STEP
894
+ and Cityscapes-VPS), the improvements are much smaller.
895
+ Video Object Segmentation (VOS).
896
+ We evaluate VOS
897
+ on the DAVIS 2017 [54] dataset, which contains 60/30
898
+ YouTube videos for training/validation.
899
+ The results in
900
+ Tab. 3 show that TarViS achieves 85.3 J &F which is
901
+ higher than all existing methods except STCN [17] (85.4)
902
+ and XMem [15] (86.2). As mentioned in Sec. 3.3, encod-
903
+ ing objects as queries incurs a loss of fine-grained infor-
904
+ mation, which is detrimental to performance. On the other
905
+ hand, space-time correspondence (STC) based approaches
906
+ learn pixel-to-pixel affinities between frames, which en-
907
+ ables them to propagate fine-grained object appearance in-
908
+ formation. We note, however, that TarViS is the first method
909
+ not based on the STC paradigm which achieves this level
910
+ is performance (85.3 J &F), out-performing several STC-
911
+ based methods as well as all non-STC based methods e.g.
912
+ HODOR [2] (81.5) and UNICORN [72] (70.6).
913
+ Point
914
+ Exemplar-guided
915
+ Tracking
916
+ (PET).
917
+ PET
918
+ is
919
+ evaluated on the recently introduced BURST bench-
920
+ mark [3] which contains 500/1000 diverse videos for train-
921
+ ing/validation with indoor, outdoor, driving and scripted
922
+ movie scenes. It is a constrained version of VOS which
923
+ only provides the point coordinates of the object mask cen-
924
+ troid instead of the full mask.
925
+ Tab. 3 shows that exist-
926
+ ing methods can only tackle either VOS or PET. To verify
927
+ this, we tried adapting STCN [17] for PET by training it
928
+ with point masks, but the training did not converge. By
929
+ contrast, TarViS encodes objects into queries, which en-
930
+ ables it to tackle both tasks with a single model since the
931
+ object guidance (point or mask) is abstracted behind the
932
+ EncodeObjects(·) function.
933
+ TarViS achieves 37.5 HOTAall which is significantly
934
+ better than the 24.4 achieved by the best performing base-
935
+ Table 3. Results for Mask-guided VOS on DAVIS [54] and Point-
936
+ guided VOS on BURST [3] (‘H’ denotes ‘HOTA’ [44]).
937
+ Method
938
+ DAVIS (M-VOS)
939
+ BURST (P-VOS)
940
+ J &F J
941
+ F
942
+ Hall
943
+ Hcom Hunc
944
+ UNICORN∗ [72]
945
+ 70.6 66.1 75.0
946
+ -
947
+ -
948
+ -
949
+ HODOR [2]
950
+ 81.3 78.4 83.9
951
+ -
952
+ -
953
+ -
954
+ STM [51]
955
+ 81.8 79.2 84.3
956
+ -
957
+ -
958
+ -
959
+ CFBI [74]
960
+ 81.9 79.1 84.6
961
+ -
962
+ -
963
+ -
964
+ RMNet [71]
965
+ 83.5 81.0 86.0
966
+ -
967
+ -
968
+ -
969
+ HMMN [61]
970
+ 84.7 81.9 87.5
971
+ -
972
+ -
973
+ -
974
+ MiVOS [16]
975
+ 84.5 81.7 87.4
976
+ -
977
+ -
978
+ -
979
+ AOT [75]
980
+ 84.9 82.3 87.5
981
+ -
982
+ -
983
+ -
984
+ STCN [17]
985
+ 85.4 82.2 88.6
986
+ -
987
+ -
988
+ -
989
+ XMem [15]
990
+ 86.2 82.9 89.5
991
+ -
992
+ -
993
+ -
994
+ Box Tracker [32]
995
+ -
996
+ -
997
+ -
998
+ 12.7 31.7
999
+ 7.9
1000
+ STCN+M2F [13,17]
1001
+ -
1002
+ -
1003
+ -
1004
+ 24.4 44.0 19.5
1005
+ Ours (TarViS - R-50)
1006
+ 82.0 78.7 87.0
1007
+ 30.9 43.2 27.8
1008
+ Ours (TarViS - Swin-T)
1009
+ 82.8 79.6 86.0
1010
+ 36.0 47.7 33.0
1011
+ Ours (TarViS - Swin-L)
1012
+ 85.3 81.7 88.5
1013
+ 37.5 51.7 34.0
1014
+ VIS
1015
+ VPS
1016
+ VOS
1017
+ PET
1018
+ Figure 4. Qualitative results from a single TarViS model for all
1019
+ four tasks. Further results are shown in the supplementary.
1020
+ line method which casts PET as a VOS problem by regress-
1021
+ ing a pseudo-ground-truth mask from the given point, fol-
1022
+ lowed by applying a VOS approach (STCN [17]).
1023
+ 4.3. Ablations
1024
+ We ablate several aspects of our architecture/training un-
1025
+ der a reduced training setup with batch size 16. Pre-training
1026
+ is done only with COCO for 380k iterations, followed by
1027
+ fine-tuning on a smaller set of video datasets for 80k itera-
1028
+ tions. The results are presented in Table 4.
1029
+ Task-specific Training (row 1-2).
1030
+ The first two rows
1031
+ show results for task-specific models.
1032
+ Since the KITTI-
1033
+ STEP [67] dataset is quite small, it was not possible to train
1034
+ a VPS-only variant. Moreover, we train a single model for
1035
+ VOS and PET since both tasks are closely related. We note
1036
+ that the VIS only model performs noticeably worse than the
1037
+ 7
1038
+
1039
+ RDTable 4. Ablation experiment results. A Swin-T backbone is used for all settings.
1040
+ Training Data
1041
+ VIS
1042
+ VPS
1043
+ VOS
1044
+ PET
1045
+ Setting
1046
+ YTVIS
1047
+ OVIS
1048
+ KITTI
1049
+ DAVIS
1050
+ BURST
1051
+ YTVIS
1052
+ OVIS
1053
+ KITTI-STEP
1054
+ DAVIS
1055
+ BURST
1056
+ (mAP)
1057
+ (mAP)
1058
+ (STQ)
1059
+ (J &F)
1060
+ (HOTAall)
1061
+ 1. VIS
1062
+  
1063
+ 49.8
1064
+ 30.0
1065
+ -
1066
+ -
1067
+ -
1068
+ 2. VOS + PET
1069
+  
1070
+ -
1071
+ -
1072
+ -
1073
+ 81.4
1074
+ 32.8
1075
+ 3. VIS (FC for CLS)
1076
+  
1077
+ 50.5
1078
+ 31.0
1079
+ -
1080
+ -
1081
+ -
1082
+ 4. No Temporal Neck
1083
+     
1084
+ 46.8
1085
+ 25.4
1086
+ 0.67
1087
+ 78.0
1088
+ 29.7
1089
+ 5. No Object Encoder
1090
+     
1091
+ 50.1
1092
+ 32.6
1093
+ 0.66
1094
+ 75.6
1095
+ 25.9
1096
+ Final
1097
+     
1098
+ 51.1
1099
+ 31.7
1100
+ 0.69
1101
+ 81.5
1102
+ 29.2
1103
+ final setting (49.8 vs. 51.1 mAP on YouTube-VIS), which
1104
+ indicates that the combination of additional training data
1105
+ and multi-task supervision in the final model is beneficial
1106
+ for VIS. For VOS on DAVIS [54], the task-specific model
1107
+ achieves similar performance to the final setting (81.4 vs.
1108
+ 81.5), but for PET the task-specific variant performs no-
1109
+ ticeably better (32.8 vs. 29.2). We conclude that although
1110
+ the task-specific model performs better on PET, multi-task
1111
+ training generally improves performance across tasks.
1112
+ Semantic Queries for VIS (row 3).
1113
+ As mentioned in
1114
+ Sec. 3.1, TarViS represents object classes as dynamic query
1115
+ inputs to the network (Qsem). We ablate this by modifying
1116
+ our network to work for only VIS in the same way as ex-
1117
+ isting instance segmentation methods [13,66], i.e. using in-
1118
+ stance queries Qinst in conjunction with a linear layer (sep-
1119
+ arate for each dataset) for classification. The results show
1120
+ that this task-specific architecture is better suited for VIS
1121
+ since it achieves 50.5 mAP on YouTube-VIS vs. 49.8 for
1122
+ the setting in row 1 which is trained on similar data. How-
1123
+ ever, our final multi-task model still performs slightly better
1124
+ than the current setting on both YouTube-VIS and OVIS.
1125
+ Temporal Neck (row 4).
1126
+ We validate the effectiveness
1127
+ of our novel Temporal Neck (Sec. 3.4) by training a model
1128
+ with a simpler neck that contains only Deformable Atten-
1129
+ tion layers [79], similar to Mask2Former [13], i.e. there
1130
+ is no feature interaction across frames. The results show
1131
+ significant performance degradation for YouTube-VIS (46.8
1132
+ bs. 51.1), OVIS (25.4 vs. 31.7) and DAVIS (78.0 vs. 81.5).
1133
+ KITTI-STEP is impacted comparatively less (0.67 vs 0.69),
1134
+ whereas performance for PET actually shows a slight in-
1135
+ crease (29.7 vs. 29.2) Overall, however, we conclude that
1136
+ inter-frame feature interactions enabled by the Temporal
1137
+ Neck are beneficial for down-stream tasks.
1138
+ Object Encoder for VOS/PET (row 5).
1139
+ As discussed
1140
+ in Sec. 3.3, we encode objects from their given first-frame
1141
+ mask/point as object queries Qobj using an Object Encoder.
1142
+ We validate the efficacy of this module by training a simpler
1143
+ model which initializes object queries by average pooling
1144
+ the image features inside the mask for VOS, and indexing
1145
+ Figure 5. TarViS performing VIS and VOS in a single forward
1146
+ pass. We provide the mask for the dragon on the left, and the
1147
+ semantic query for the ‘person’ class.
1148
+ the feature map at the given point coordinates for PET. This
1149
+ model performs significantly worse than the final setting on
1150
+ both DAVIS (75.6 vs. 81.5) and BURST (25.9 vs. 29.2),
1151
+ indicating that the quality of the encoded object query has a
1152
+ profound impact on performance.
1153
+ 5. Discussion
1154
+ Limitations.
1155
+ As noted above, training on multiple
1156
+ datasets/tasks does not necessarily improve performance on
1157
+ all benchmarks. For VOS, the model exhibits class bias
1158
+ since it sometimes fails to track unusual objects which were
1159
+ not seen during training.
1160
+ Future Outlook.
1161
+ We jointly trained TarViS for four dif-
1162
+ ferent tasks to validate its generalization capability. The ar-
1163
+ chitecture can, however, tackle any video segmentation task
1164
+ for which the targets can be encoded as queries. The re-
1165
+ cent emergence of joint language-vision models [42,57,58]
1166
+ thus makes it possible to perform multi-object segmenta-
1167
+ tion based on a text prompt if the latter can be encoded as a
1168
+ target query using a language encoder [19]. Another inter-
1169
+ esting possibility is that TarViS could be applied to multiple
1170
+ tasks in the same forward pass by simply concatenating the
1171
+ task-specific queries. Fig. 5 offers a promising outlook for
1172
+ this; it shows our model’s output for a video clip from a
1173
+ 8
1174
+
1175
+ popular TV series where we perform VIS and VOS simul-
1176
+ taneously by providing the semantic query for the ‘person’
1177
+ class (from YouTube-VIS [73]), and the VOS-based object
1178
+ queries for the dragon by annotating its first frame mask,
1179
+ i.e. Qin = concat(Qsem, Qinst, Qobj, Qbg). TarViS success-
1180
+ fully segments all four persons in the scene (VIS) and the
1181
+ dragon (VOS), even though our model was never trained to
1182
+ simultaneously tackle both tasks in a single forward pass.
1183
+ 6. Conclusion
1184
+ We presented TarViS: a novel, unified approach for tack-
1185
+ ling any task requiring pixel-precise segmentation of a set
1186
+ of targets in video. We adopt a generalized paradigm where
1187
+ the task-specific targets are encoded into a set of queries
1188
+ which are then input to our network together with the video
1189
+ features. The network is trained to produce segmentation
1190
+ masks for each target entity, but is inherently agnostic to
1191
+ the task-specific definition of these targets. To demonstrate
1192
+ the effectiveness of our approach, we applied it to four dif-
1193
+ ferent video segmentation tasks (VIS, VPS, VOS, PET). We
1194
+ showed that a single TarViS model can be jointly trained for
1195
+ all tasks, and during inference can hot-swap between tasks
1196
+ without any task-specific fine-tuning. Our model achieved
1197
+ state-of-the-art performance on five benchmarks (YouTube-
1198
+ VIS, OVIS, KITTI-STEP, VIPSeg and BURST) and has
1199
+ multiple, promising directions for future work.
1200
+ Acknowledgments.
1201
+ This project was partially funded
1202
+ by ERC Consolidator Grant DeeVise (ERC-2017-COG-
1203
+ 773161). We thank Istvan Sarandi, Christian Schmidt and
1204
+ Alexey Nekarsov for constructive feedback. Compute re-
1205
+ sources were granted by RWTH Aachen under project ID
1206
+ supp0003, and by the Gauss Centre for Supercomputing
1207
+ e.V. through the John von Neumann Institute for Computing
1208
+ on the GCS Supercomputer JUWELS at J¨ulich Supercom-
1209
+ puting Centre.
1210
+ 9
1211
+
1212
+ References
1213
+ [1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
1214
+ Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
1215
+ Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
1216
+ language model for few-shot learning. In Arxiv, 2022. 1, 2
1217
+ [2] Ali Athar, Jonathon Luiten, Alexander Hermans, Deva Ra-
1218
+ manan, and Bastian Leibe. Hodor: High-level object descrip-
1219
+ tors for object re-segmentation in video learned from static
1220
+ images. In CVPR, 2022. 2, 4, 7, 1
1221
+ [3] Ali Athar, Jonathon Luiten, Paul Voigtlaender, Tarasha Khu-
1222
+ rana, Achal Dave, Bastian Leibe, and Deva Ramanan. Burst:
1223
+ A benchmark for unifying object recognition, segmentation
1224
+ and tracking in video. In WACV, 2023. 2, 3, 5, 6, 7, 1
1225
+ [4] Ali Athar, Sabarinath Mahadevan, Aljosa Osep, Laura Leal-
1226
+ Taix´e, and Bastian Leibe. Stem-seg: Spatio-temporal em-
1227
+ beddings for instance segmentation in videos.
1228
+ In ECCV,
1229
+ 2020. 2
1230
+ [5] Ali Athar, Sabarinath Mahadevan, Aljosa Osep, Laura Leal-
1231
+ Taix´e, and Bastian Leibe.
1232
+ A single-stage, bottom-up ap-
1233
+ proach for occluded vis using spatio-temporal embeddings.
1234
+ In ICCV-W, 2021. 2
1235
+ [6] Gedas Bertasius and Lorenzo Torresani. Classifying, seg-
1236
+ menting, and tracking object instances in video with mask
1237
+ propagation. In CVPR, 2020. 2
1238
+ [7] Gedas Bertasius, Heng Wang, and Lorenzo Torresani.
1239
+ Is
1240
+ space-time attention all you need for video understanding?
1241
+ In ICML, 2021. 5
1242
+ [8] Thomas Brox and Jitendra Malik. Object segmentation by
1243
+ long term analysis of point trajectories. In ECCV, 2010. 1
1244
+ [9] Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal, Fa-
1245
+ had Shahbaz Khan, Yanwei Pang, and Ling Shao. Sipmask:
1246
+ Spatial information preservation for fast image and video in-
1247
+ stance segmentation. In ECCV, 2020. 2
1248
+ [10] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
1249
+ Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
1250
+ end object detection with transformers. In ECCV, 2020. 2,
1251
+ 4
1252
+ [11] Richard Caruana. Multitask Learning: A Knowledge-Based
1253
+ Source of Inductive Bias. In ICML, 1993. 2
1254
+ [12] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-
1255
+ der Kirillov, Rohit Girdhar, and Alexander G Schwing.
1256
+ Mask2former for video instance segmentation.
1257
+ In Arxiv,
1258
+ 2021. 2, 5, 6
1259
+ [13] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-
1260
+ der Kirillov, Rohit Girdhar, and Alexander G Schwing.
1261
+ Mask2former for video instance segmentation.
1262
+ In CVPR,
1263
+ 2022. 2, 4, 5, 7, 8
1264
+ [14] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
1265
+ Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
1266
+ Panoptic-deeplab: A simple, strong, and fast baseline for
1267
+ bottom-up panoptic segmentation. In CVPR, 2020. 2, 4
1268
+ [15] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-
1269
+ term video object segmentation with an atkinson-shiffrin
1270
+ memory model. In ECCV, 2022. 3, 7
1271
+ [16] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular
1272
+ interactive video object segmentation: Interaction-to-mask,
1273
+ propagation and difference-aware fusion. In CVPR, 2021. 3,
1274
+ 7
1275
+ [17] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-
1276
+ ing space-time networks with improved memory coverage
1277
+ for efficient video object segmentation. In NeurIPS, 2021. 3,
1278
+ 7
1279
+ [18] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
1280
+ Rehfeld,
1281
+ Markus Enzweiler,
1282
+ Rodrigo Benenson,
1283
+ Uwe
1284
+ Franke, Stefan Roth, and Bernt Schiele.
1285
+ The cityscapes
1286
+ dataset for semantic urban scene understanding. In CVPR,
1287
+ 2016. 6, 1
1288
+ [19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
1289
+ Toutanova. Bert: Pre-training of deep bidirectional trans-
1290
+ formers for language understanding. NAACL, 2019. 8
1291
+ [20] Ahmed Elgammal, David Harwood, and Larry Davis. Non-
1292
+ parametric model for background subtraction.
1293
+ In ECCV,
1294
+ 2000. 1
1295
+ [21] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc
1296
+ Van Gool.
1297
+ Moving obstacle detection in highly dynamic
1298
+ scenes. In ICRA, 2009. 1
1299
+ [22] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
1300
+ Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
1301
+ Lasot: A high-quality benchmark for large-scale single ob-
1302
+ ject tracking. In CVPR, 2019. 2
1303
+ [23] Yang Fu, Linjie Yang, Ding Liu, Thomas S Huang, and
1304
+ Humphrey Shi. Compfeat: Comprehensive feature aggre-
1305
+ gation for video instance segmentation. In AAAI, 2021. 2
1306
+ [24] Golnaz Ghiasi, Barret Zoph, Ekin D Cubuk, Quoc V Le, and
1307
+ Tsung-Yi Lin. Multi-Task Self-Training for Learning Gen-
1308
+ eral Representations. In CVPR, 2021. 2
1309
+ [25] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-
1310
+ time tracking via on-line boosting. In BMVC, 2006. 1
1311
+ [26] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young
1312
+ Lee, and Seon Joo Kim. Vita: Video instance segmentation
1313
+ via object token association. In NeurIPS, 2022. 2, 6
1314
+ [27] Namdar Homayounfar, Justin Liang, Wei-Chiu Ma, and
1315
+ Raquel Urtasun. Videoclick: Video object segmentation with
1316
+ a single click. Arxiv, 2021. 3
1317
+ [28] De-An Huang, Zhiding Yu, and Anima Anandkumar. Min-
1318
+ vis:
1319
+ A minimal video instance segmentation framework
1320
+ without video-based training. In NeurIPS, 2022. 2, 6
1321
+ [29] Sukjun Hwang, Miran Heo, Seoung Wug Oh, and Seon Joo
1322
+ Kim. Video instance segmentation using inter-frame com-
1323
+ munication transformers. In NeurIPS, 2021. 2
1324
+ [30] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac,
1325
+ Carl Doersch, Catalin Ionescu, David Ding, Skanda Kop-
1326
+ pula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al.
1327
+ Perceiver io: A general architecture for structured inputs &
1328
+ outputs. ICLR, 2022. 1, 2
1329
+ [31] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,
1330
+ Andrew Zisserman, and Joao Carreira. Perceiver: General
1331
+ perception with iterative attention. In ICML, 2021. 1, 2
1332
+ [32] Arne Hoffhues Jonathon Luiten.
1333
+ Trackeval.
1334
+ https://
1335
+ github.com/JonathonLuiten/TrackEval, 2020.
1336
+ 7
1337
+ [33] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
1338
+ Snakes: Active contour models. IJCV, 1(4):321–331, 1988.
1339
+ 1
1340
+ 10
1341
+
1342
+ [34] Lei Ke, Xia Li, Martin Danelljan, Yu-Wing Tai, Chi-Keung
1343
+ Tang, and Fisher Yu. Prototypical cross-attention networks
1344
+ for multiple object tracking and segmentation. In NeurIPS,
1345
+ 2021. 2
1346
+ [35] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
1347
+ Kweon. Video panoptic segmentation. In CVPR, 2020. 2, 4,
1348
+ 6
1349
+ [36] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
1350
+ Doll´ar. Panoptic feature pyramid networks. In CVPR, 2019.
1351
+ 2
1352
+ [37] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
1353
+ shick.
1354
+ Pointrend: Image segmentation as rendering.
1355
+ In
1356
+ CVPR, 2020. 1
1357
+ [38] Iasonas Kokkinos. Ubernet: Training a universal convolu-
1358
+ tional neural network for low-, mid-, and high-level vision
1359
+ using diverse datasets and limited memory. In CVPR, 2017.
1360
+ 2
1361
+ [39] Alexander Kolesnikov, Andr´e Susano Pinto, Lucas Beyer,
1362
+ Xiaohua Zhai, Jeremiah Harmsen, and Neil Houlsby. Uvim:
1363
+ A unified modeling approach for vision with learned guiding
1364
+ codes. In NeurIPS, 2022. 1, 2
1365
+ [40] Dieter Koller, Joseph Weber, and Jitendra Malik.
1366
+ Robust
1367
+ multiple car tracking with occlusion reasoning. In ECCV,
1368
+ 1994. 1
1369
+ [41] Bastian Leibe, Konrad Schindler, Nico Cornelis, and Luc
1370
+ Van Gool. Coupled object detection and tracking from static
1371
+ cameras and moving vehicles. PAMI, 2008. 1
1372
+ [42] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jian-
1373
+ wei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu
1374
+ Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
1375
+ Grounded
1376
+ language-image pre-training. In CVPR, 2022. 8
1377
+ [43] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
1378
+ Pietro Perona, Deva Ramanan, Piotr Doll´ar, and C Lawrence
1379
+ Zitnick. Microsoft coco: Common objects in context. In
1380
+ ECCV, 2014. 6, 1
1381
+ [44] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
1382
+ Torr, Andreas Geiger, Laura Leal-Taix´e, and Bastian Leibe.
1383
+ Hota:
1384
+ A higher order metric for evaluating multi-object
1385
+ tracking. IJCV, 2020. 7
1386
+ [45] Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yun-
1387
+ chao Wei, and Yi Yang. Large-scale video panoptic segmen-
1388
+ tation in the wild: A benchmark. In CVPR, 2022. 6, 7, 2
1389
+ [46] Anton Milan, Laura Leal-Taix´e, Ian Reid, Stefan Roth, and
1390
+ Konrad Schindler.
1391
+ Mot16: A benchmark for multi-object
1392
+ tracking. In arXiv:1603.00831, 2016. 2
1393
+ [47] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-
1394
+ to-end transformer model for 3d object detection. In ICCV,
1395
+ 2021. 2
1396
+ [48] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
1397
+ subaihi, and Bernard Ghanem. Trackingnet: A large-scale
1398
+ dataset and benchmark for object tracking in the wild. In
1399
+ ECCV, 2018. 2
1400
+ [49] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
1401
+ Peter Kontschieder. The mapillary vistas dataset for semantic
1402
+ understanding of street scenes. In ICCV, 2017. 6, 1
1403
+ [50] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation
1404
+ of moving objects by long term video analysis. PAMI, 2013.
1405
+ 1
1406
+ [51] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
1407
+ Kim. Video object segmentation using space-time memory
1408
+ networks. In ICCV, 2019. 3, 5, 7
1409
+ [52] Kilian Pfeiffer, Alexander Hermans, Istv´an S´ar´andi, Mark
1410
+ Weber, and Bastian Leibe.
1411
+ Visual person understanding
1412
+ through multi-task and multi-dataset learning.
1413
+ In GCPR,
1414
+ 2019. 2
1415
+ [53] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes.
1416
+ Globally-optimal greedy algorithms for tracking a variable
1417
+ number of objects. In CVPR, pages 1201–1208. IEEE, 2011.
1418
+ 1
1419
+ [54] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
1420
+ bel´aez, Alex Sorkine-Hornung, and Luc Van Gool.
1421
+ The
1422
+ 2017 davis challenge on video object segmentation. In Arxiv,
1423
+ 2017. 2, 6, 7, 8, 1
1424
+ [55] Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu,
1425
+ Xiang Bai, Serge Belongie, Alan Yuille, Philip HS Torr, and
1426
+ Song Bai. Occluded video instance segmentation: A bench-
1427
+ mark. In IJCV, 2022. 2, 6
1428
+ [56] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille, and
1429
+ Liang-Chieh Chen. Vip-deeplab: Learning visual perception
1430
+ with depth-aware video panoptic segmentation. In CVPR,
1431
+ 2021. 2, 4, 6, 7
1432
+ [57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
1433
+ Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
1434
+ Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
1435
+ ing transferable visual models from natural language super-
1436
+ vision. In ICML, 2021. 8
1437
+ [58] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
1438
+ Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
1439
+ Zero-shot text-to-image generation. In ICML, 2021. 8
1440
+ [59] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
1441
+ Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
1442
+ Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
1443
+ genberg, et al. A generalist agent. In Arxiv, 2022. 1, 2
1444
+ [60] Sebastian Ruder. An Overview of Multi-Task Learning in
1445
+ Deep Neural Networks. arXiv:1706.05098, 2017. 2
1446
+ [61] Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seong-
1447
+ won Lee, Suhyeon Lee, and Euntai Kim. Hierarchical mem-
1448
+ ory matching network for video object segmentation.
1449
+ In
1450
+ ICCV, 2021. 3, 7
1451
+ [62] C. Stauffer and W.E.L. Grimson. Adaptive background mix-
1452
+ ture models for real-time tracking. In CVPR, 1999. 1
1453
+ [63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
1454
+ reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
1455
+ Polosukhin. Attention is all you need. NeurIPS, 2017. 1
1456
+ [64] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig
1457
+ Adam, Bastian Leibe, and Liang-Chieh Chen. Feelvos: Fast
1458
+ end-to-end embedding learning for video object segmenta-
1459
+ tion. In CVPR, 2019. 3
1460
+ [65] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
1461
+ Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger,
1462
+ and Bastian Leibe. Mots: Multi-object tracking and segmen-
1463
+ tation. In CVPR, 2019. 2
1464
+ [66] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
1465
+ Baoshan Cheng, Hao Shen, and Huaxia Xia.
1466
+ End-to-end
1467
+ video instance segmentation with transformers. In CVPR,
1468
+ 2021. 2, 4, 8
1469
+ 11
1470
+
1471
+ [67] Mark Weber, Jun Xie, Maxwell Collins, Yukun Zhu,
1472
+ Paul Voigtlaender, Hartwig Adam, Bradley Green, Andreas
1473
+ Geiger, Bastian Leibe, Daniel Cremers, Aljoˇsa Oˇsep, Laura
1474
+ Leal-Taix´e, and Liang-Chieh Chen. STEP: Segmenting and
1475
+ tracking every pixel. In NeurIPS, 2021. 2, 4, 6, 7
1476
+ [68] Sanghyun Woo, Dahun Kim, Joon-Young Lee, and In So
1477
+ Kweon.
1478
+ Learning to associate every segment for video
1479
+ panoptic segmentation. In CVPR, 2021. 6
1480
+ [69] Junfeng Wu, Yi Jiang, Wenqing Zhang, Xiang Bai, and Song
1481
+ Bai. Seqformer: a frustratingly simple model for video in-
1482
+ stance segmentation. In ECCV, 2022. 2
1483
+ [70] Junfeng Wu, Qihao Liu, Yi Jiang, Song Bai, Alan Yuille, and
1484
+ Xiang Bai. In defense of online models for video instance
1485
+ segmentation. In ECCV, 2022. 2, 6
1486
+ [71] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping
1487
+ Zhang, and Wenxiu Sun. Efficient regional memory network
1488
+ for video object segmentation. In CVPR, 2021. 3, 7
1489
+ [72] Bin Yan, Yi Jiang, Peize Sun, Dong Wang, Zehuan Yuan,
1490
+ Ping Luo, and Huchuan Lu. Towards grand unification of
1491
+ object tracking. In ECCV, 2022. 2, 7
1492
+ [73] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
1493
+ mentation. In ICCV, 2019. 2, 6, 9
1494
+ [74] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative
1495
+ video object segmentation by foreground-background inte-
1496
+ gration. In ECCV, 2020. 3, 7
1497
+ [75] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
1498
+ jects with transformers for video object segmentation.
1499
+ In
1500
+ NeurIPS, 2021. 3, 7
1501
+ [76] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
1502
+ Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
1503
+ rell. Bdd100k: A diverse driving dataset for heterogeneous
1504
+ multitask learning. In CVPR, 2020. 2
1505
+ [77] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
1506
+ Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
1507
+ Disentangling task transfer learning. In CVPR, 2018. 2
1508
+ [78] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
1509
+ Barriuso, and Antonio Torralba.
1510
+ Scene parsing through
1511
+ ade20k dataset. In CVPR, 2017. 6, 1
1512
+ [79] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
1513
+ and Jifeng Dai. Deformable detr: Deformable transformers
1514
+ for end-to-end object detection. In ICML, 2020. 2, 4, 5, 8
1515
+ 12
1516
+
1517
+ Supplementary Material
1518
+ S1. Extended VOS/PET Ablations
1519
+ Extended ablation results are given in Table S1 and dis-
1520
+ cussed below. Note that similar to the ablations in Sec. 4 of
1521
+ the main text, we use a smaller training schedule with fewer
1522
+ datasets for these experiments.
1523
+ Table S1. Extended ablation results for VOS and PET tasks on
1524
+ DAVIS [54] and BURST [3] benchmarks, respectively.
1525
+ Setting
1526
+ VOS (J &F)
1527
+ PET (HOTAall)
1528
+ Without Qbg
1529
+ 78.0
1530
+ 25.9
1531
+ |Qobj| = q0 = 1
1532
+ 80.6
1533
+ 28.2
1534
+ Final
1535
+ 81.5
1536
+ 29.2
1537
+ Background Queries (row 1). We stated in the main text
1538
+ that we model the non-object pixels in the input video using
1539
+ background queries for the VOS and PET task. We ablate
1540
+ this design decision by training TarViS without this sort of
1541
+ background modeling, i.e. for both VOS and PET tasks, the
1542
+ input set of queries contains only the object queries Qobj.
1543
+ This reduces the J &F score for VOS from 81.5 to 78.0,
1544
+ and the HOTAall score for PET from 29.2 to 25.9. Thus,
1545
+ we conclude that background modelling has a noticeable,
1546
+ positive impact on prediction quality.
1547
+ Number of Object Queries (row 2).
1548
+ We mentioned in
1549
+ the main text that we modify the approach adopted by
1550
+ HODOR [2] for VOS by using multiple (q0) object queries
1551
+ to represent a single target object. We ablate this by training
1552
+ our model using q0 = 1 (in the final setting we use q0 = 4).
1553
+ We see that this causes the performance on DAVIS to re-
1554
+ duce from 81.5 to 80.6, and that on BURST from 29.2 to
1555
+ 28.2. Note that q0 = 1 for PET even for the final setting, but
1556
+ because PET inference over lengthy videos involves VOS-
1557
+ style mask-guidance, the choice of q0 for VOS effects per-
1558
+ formance for PET as well.
1559
+ S2. Implementation Details
1560
+ Several details related to the training and inference setup
1561
+ which were omitted from the main paper are given below.
1562
+ Setup. We train our models on 32 Nvidia A100 GPUs with
1563
+ a batch size of 32 with clips of 3 frames. The pretraining
1564
+ takes 2-3 days (depending on the backbone) and the fine-
1565
+ tuning takes 10-16 hours. An AdamW optimizer is used,
1566
+ and the learning rate is 104 at the start of training followed
1567
+ by two step decays with a factor of 0.1 each. Inference is
1568
+ performed on a single RTX 3090 and runs at approximately
1569
+ 10fps with a Swin-T backbone (there is some variation for
1570
+ different datasets due to the varying input image resolution).
1571
+ Table S2. Loss functions used for mask prediction for different tar-
1572
+ gets. BCE: Binary cross-entropy, MCE: Multi-class cross-entropy,
1573
+ DICE: soft IoU loss
1574
+ Target Type
1575
+ Task
1576
+ Loss
1577
+ Sparse
1578
+ Instance
1579
+ VIS
1580
+ DICE + BCE
1581
+ 
1582
+ Semantic Class
1583
+ MCE
1584
+ 
1585
+ Instance
1586
+ VPS
1587
+ DICE + BCE
1588
+ 
1589
+ Semantic Class
1590
+ MCE
1591
+ 
1592
+ Object
1593
+ VOS/PET
1594
+ DICE + BCE
1595
+ 
1596
+ The clip length during inference is usually 12 with a frame
1597
+ overlap of 6 frames.
1598
+ Loss Supervision.
1599
+ Table S2 shows the type of loss func-
1600
+ tion applied for mask regression for different tasks. Gener-
1601
+ ally, the supervision signal is a combination of DICE and
1602
+ cross-entropy losses. For instances/objects we apply per-
1603
+ pixel binary cross-entropy whereas for semantic segmenta-
1604
+ tion (where multiple classes compete for each pixel), we
1605
+ apply a multi-class cross-entropy loss. ‘Sparse’ means that
1606
+ the loss is not applied to every pixel in the mask, but rather
1607
+ only to a subset of sampled pixels which contain a cer-
1608
+ tain fraction of hard negatives and other randomly sampled
1609
+ points. This type of supervision strategy was proposed by
1610
+ Kirillov et al. [37].
1611
+ Pretraining.
1612
+ We pretrain on synthetic video samples
1613
+ generated by applying random, on-the-fly augmentations
1614
+ from the following image-level datasets:
1615
+ COCO [43],
1616
+ ADE20k [78], Mapillary [49], Cityscapes [18]. Since these
1617
+ datasets provide panoptic annotations, we can train the
1618
+ data samples as any of the four target tasks (VPS, VIS,
1619
+ VOS, PET) e.g. to train for VOS/PET, we assume that the
1620
+ first-frame mask/point is available for a random sub-set of
1621
+ ground-truth objects and ignore the class labels. The task
1622
+ weights for pretraining are given in Table S3.
1623
+ Table S3. Task weights during pretraining stage.
1624
+ Task
1625
+ VPS
1626
+ VIS
1627
+ VOS
1628
+ PET
1629
+ Weight
1630
+ 0.3
1631
+ 0.3
1632
+ 0.28
1633
+ 0.12
1634
+ Video Finetuning. The finetuning is done on actual video
1635
+ datasets for all four tasks. The sampling weights for each
1636
+ dataset/task are given in Table S4. Note that data samples
1637
+ from DAVIS [54] and BURST [3] can be trained for both
1638
+ VOS and PET.
1639
+ Point Exemplar-guided Tracking Inference.
1640
+ As men-
1641
+ tioned in Sec. 3 of the main text, the PET task is tackled
1642
+ using the same workflow as for VOS i.e. the target objects
1643
+ 1
1644
+
1645
+ Table S4. Dataset weightage during video finetuning.
1646
+ Dataset
1647
+ Task
1648
+ Weight
1649
+ KITTI-STEP [67]
1650
+ VPS
1651
+ 0.075
1652
+ CityscapesVPS [35]
1653
+ VPS
1654
+ 0.075
1655
+ VIPSeg [45]
1656
+ VPS
1657
+ 0.15
1658
+ YouTube-VIS [73]
1659
+ VIS
1660
+ 0.225
1661
+ OVIS [55]
1662
+ VIS
1663
+ 0.225
1664
+ DAVIS [54]
1665
+ VOS/PET
1666
+ 0.05
1667
+ BURST [3]
1668
+ VOS/PET
1669
+ 0.2
1670
+ are encoded as object queries using the Object Encoder. An
1671
+ additional detail about inference on arbitrary length video
1672
+ sequences which is not mentioned in the main text is as fol-
1673
+ lows: the point −→ object query regression is only used for
1674
+ the first clip in which the object appears. For subsequent
1675
+ clips, we have access to the dense mask predictions for that
1676
+ object from our model. Hence, for subsequent clips, we
1677
+ regress the object query from the previous mask predictions
1678
+ (as we do for VOS).
1679
+ S3. Query Visualization
1680
+ To gain some insight into the feature representation
1681
+ learned by TarViS for different targets, we provide visu-
1682
+ alizations of the target queries for various tasks and in-
1683
+ put video clips in Fig. S1,S2,S3. The setup is as follows:
1684
+ for each video clip, we run inference twice: (1) as VIS
1685
+ where the targets are all instances belonging to the 40 ob-
1686
+ ject classes from YouTube-VIS [73], and (2) as VOS by
1687
+ providing the first-frame mask for the objects. We delib-
1688
+ erately used videos where the set of set of ground-truth ob-
1689
+ jects would be the same for both tasks. The plot on the
1690
+ right visualizes the union of the target query set for both
1691
+ runs by projecting them from 256 dimensions down to 2
1692
+ using PCA. The image tile on the left shows our model’s
1693
+ predicted masks for the target objects (the prediction qual-
1694
+ ity for these video is very good for both VIS and VOS, so
1695
+ we choose one set of results arbitrarily).
1696
+ For ease of understanding, we use fixed colors for se-
1697
+ mantic and background queries (as indicated in the plot leg-
1698
+ end). For the object queries (VOS) and instance queries
1699
+ (VIS), the color of the query point is consistent with the
1700
+ color of the object mask in the image tile. Note that for
1701
+ VOS we used qo = 4 object queries per target, hence there
1702
+ are 4 hollow diamond shaped points per object.
1703
+ Though not all aspects of these plots are intuitively ex-
1704
+ plainable, we offer some speculative intuition as listed be-
1705
+ low:
1706
+ • The internal representation for a given object is gener-
1707
+ ally consistent across tasks. As an example, consider
1708
+ the horse and person targets in Fig. S1: we note that
1709
+ the green query points (person) are close to each other
1710
+ for both VIS and VOS. Likewise the blue query points
1711
+ (horse) follow the same behavior.
1712
+ • The network devotes a large portion of the feature
1713
+ space for instances/objects, and relatively less for the
1714
+ various semantic classes. As seen in all three plots,
1715
+ the semantic queries are tightly clustered together,
1716
+ whereas the instance/object queries are spread out over
1717
+ a larger span of the feature space.
1718
+ Iterative Evolution of Feature Representation.
1719
+ Fig. S4
1720
+ shows a side-by-side visualization of how the query feature
1721
+ representation evolves inside the transformer decoder as it
1722
+ iteratively refined the queries using multiple attention lay-
1723
+ ers. The plot on the left shows the queries at the ‘zeroth’
1724
+ layer (i.e. prior to any interaction with the video features),
1725
+ and the plot on the right shows the final output queries from
1726
+ the last layer (these are identical to the plot in Fig. S1 except
1727
+ for the axes range). We note that the distance between the
1728
+ queries for the two objects increases after refinement, and
1729
+ that the semantic queries are also slightly more spaced out
1730
+ after refinement.
1731
+ S4. Qualitative Results
1732
+ The following figures show qualitative results for the
1733
+ different tasks.
1734
+ VIS on YouTube-VIS (Fig. S5,S6,S7)
1735
+ and
1736
+ OVIS
1737
+ (Fig.
1738
+ S8,S9,S10),
1739
+ VPS
1740
+ on
1741
+ KITTI-STEP
1742
+ (Fig. S11,S12,S13), VOS on DAVIS (Fig. S14,S15,S16),
1743
+ and PET on BURST (Fig. S17,S18,S19). One can see that
1744
+ TarViS is able to segment a broad range of objects depend-
1745
+ ing on the target queries and overall is good at assigning
1746
+ consistent IDs. Fig. S20 shows an example of a failure case
1747
+ with several ID switches. Given that we run inference on
1748
+ short overlapping clips, once an ID switch has been made,
1749
+ we cannot recover the original ID. In the example, it seems
1750
+ that TarViS is not able to track the elephant while they are
1751
+ turning around, even though before and after the turn they
1752
+ are assigned consistent IDs. Given that we also train on
1753
+ similar short clips, it is not surprising that TarViS struggles
1754
+ here and we could potentially improve this by looking into
1755
+ other training schemes that span longer clips.
1756
+ 2
1757
+
1758
+ airplane
1759
+ bear
1760
+ bird
1761
+ boat
1762
+ car
1763
+ cat
1764
+ cow
1765
+ deer
1766
+ dog
1767
+ duck
1768
+ earless_seal
1769
+ elephant
1770
+ fish
1771
+ flying_disc
1772
+ fox
1773
+ frog
1774
+ giant_panda
1775
+ giraffe
1776
+ leopard
1777
+ lizard
1778
+ monkey
1779
+ motorbike
1780
+ mouse
1781
+ parrot
1782
+ rabbit
1783
+ shark
1784
+ skateboard
1785
+ snake
1786
+ snowboard
1787
+ squirrel
1788
+ surfboard
1789
+ tennis_racket
1790
+ tiger
1791
+ train
1792
+ truck
1793
+ turtle
1794
+ whale
1795
+ zebra
1796
+ 3
1797
+ 2
1798
+ 1
1799
+ 0
1800
+ 1
1801
+ 2
1802
+ 3
1803
+ 4
1804
+ 1
1805
+ 0
1806
+ 1
1807
+ 2
1808
+ 3
1809
+ horse
1810
+ person
1811
+ VIS (background)
1812
+ VIS (instance)
1813
+ VIS (semantic)
1814
+ VOS (background)
1815
+ VOS (object)
1816
+ Figure S1. Target query visualization for the ‘horsejump-high’ sequence in DAVIS.
1817
+ airplane
1818
+ bear
1819
+ bird
1820
+ boat
1821
+ car
1822
+ cat
1823
+ cow
1824
+ deer
1825
+ dog
1826
+ duck
1827
+ earless_seal
1828
+ elephant
1829
+ fish
1830
+ flying_disc
1831
+ fox
1832
+ frog
1833
+ giant_panda
1834
+ giraffe
1835
+ horse
1836
+ leopard
1837
+ lizard
1838
+ monkey
1839
+ mouse
1840
+ parrot
1841
+ rabbit
1842
+ shark
1843
+ skateboard
1844
+ snake
1845
+ snowboard
1846
+ squirrel
1847
+ surfboard
1848
+ tennis_racket
1849
+ tiger
1850
+ train
1851
+ truck
1852
+ turtle
1853
+ whale
1854
+ zebra
1855
+ 3
1856
+ 2
1857
+ 1
1858
+ 0
1859
+ 1
1860
+ 2
1861
+ 3
1862
+ 2
1863
+ 1
1864
+ 0
1865
+ 1
1866
+ 2
1867
+ 3
1868
+ motorbike
1869
+ person
1870
+ VIS (background)
1871
+ VIS (instance)
1872
+ VIS (semantic)
1873
+ VOS (background)
1874
+ VOS (object)
1875
+ Figure S2. Target query visualization for the ‘mbike-trick’ sequence in DAVIS.
1876
+ airplane
1877
+ bear
1878
+ bird
1879
+ boat
1880
+ car
1881
+ cat
1882
+ cow
1883
+ deer
1884
+ dog
1885
+ duck
1886
+ earless_seal
1887
+ elephant
1888
+ fish
1889
+ flying_disc
1890
+ fox
1891
+ frog
1892
+ giant_panda
1893
+ giraffe
1894
+ horse
1895
+ leopard
1896
+ lizard
1897
+ monkey
1898
+ motorbike
1899
+ mouse
1900
+ parrot
1901
+ rabbit
1902
+ shark
1903
+ skateboard
1904
+ snake
1905
+ snowboard
1906
+ squirrel
1907
+ tennis_racket
1908
+ tiger
1909
+ train
1910
+ truck
1911
+ turtle
1912
+ whale
1913
+ zebra
1914
+ 2
1915
+ 0
1916
+ 2
1917
+ 4
1918
+ 6
1919
+ 8
1920
+ 10
1921
+ 4
1922
+ 3
1923
+ 2
1924
+ 1
1925
+ 0
1926
+ 1
1927
+ 2
1928
+ 3
1929
+ 4
1930
+ person
1931
+ surfboard
1932
+ VIS (background)
1933
+ VIS (instance)
1934
+ VIS (semantic)
1935
+ VOS (background)
1936
+ VOS (object)
1937
+ Figure S3. Target query visualization for the ‘kitesurf’ sequence in DAVIS.
1938
+ 3
1939
+
1940
+ AAAAAAairplane
1941
+ bear
1942
+ birdboat
1943
+ car
1944
+ cat
1945
+ cow
1946
+ deer
1947
+ dog
1948
+ duck
1949
+ earless_seal
1950
+ elephant
1951
+ fish
1952
+ flying_disc
1953
+ fox
1954
+ frog
1955
+ giant_panda
1956
+ giraffe
1957
+ leopard
1958
+ lizard
1959
+ monkey
1960
+ motorbike
1961
+ mouse
1962
+ parrot
1963
+ rabbit
1964
+ shark
1965
+ skateboard
1966
+ snake
1967
+ snowboard
1968
+ squirrel
1969
+ surfboard
1970
+ tennis_racket
1971
+ tiger train
1972
+ truck
1973
+ turtle
1974
+ whale
1975
+ zebra
1976
+ 4
1977
+ 3
1978
+ 2
1979
+ 1
1980
+ 0
1981
+ 1
1982
+ 2
1983
+ 3
1984
+ 4
1985
+ 5
1986
+ 3
1987
+ 2
1988
+ 1
1989
+ 0
1990
+ 1
1991
+ 2
1992
+ 3
1993
+ 4
1994
+ horse
1995
+ person
1996
+ VIS (background)
1997
+ VIS (instance)
1998
+ VIS (semantic)
1999
+ VOS (background)
2000
+ VOS (object)
2001
+ (a) First layer queries.
2002
+ airplane
2003
+ bear
2004
+ bird
2005
+ boat
2006
+ car
2007
+ cat
2008
+ cow
2009
+ deer
2010
+ dog
2011
+ duck
2012
+ earless_seal
2013
+ elephant
2014
+ fish
2015
+ flying_disc
2016
+ fox
2017
+ frog
2018
+ giant_panda
2019
+ giraffe
2020
+ leopard
2021
+ lizard
2022
+ monkey
2023
+ motorbike
2024
+ mouse
2025
+ parrot
2026
+ rabbit
2027
+ shark
2028
+ skateboard
2029
+ snake
2030
+ snowboard
2031
+ squirrel
2032
+ surfboard
2033
+ tennis_racket
2034
+ tiger
2035
+ train
2036
+ truck
2037
+ turtle
2038
+ whale
2039
+ zebra
2040
+ 4
2041
+ 3
2042
+ 2
2043
+ 1
2044
+ 0
2045
+ 1
2046
+ 2
2047
+ 3
2048
+ 4
2049
+ 5
2050
+ 3
2051
+ 2
2052
+ 1
2053
+ 0
2054
+ 1
2055
+ 2
2056
+ 3
2057
+ 4
2058
+ horse
2059
+ person
2060
+ VIS (background)
2061
+ VIS (instance)
2062
+ VIS (semantic)
2063
+ VOS (background)
2064
+ VOS (object)
2065
+ (b) Last layer queries.
2066
+ Figure S4. Evolution of the different queries from the first layer to the last layer of the transformer decoder. Queries correspond to the
2067
+ ‘horsejump-high’ video from DAVIS as shown in Figure S1
2068
+ Figure S5. VIS on a YTVIS sequence showing a cat and a dog.
2069
+ 4
2070
+
2071
+ Figure S6. VIS on a YTVIS sequence showing a turtle.
2072
+ Figure S7. VIS on a YTVIS sequence showing a man and a lizard.
2073
+ Figure S8. VIS on an OVIS sequence showing an aquarium with fish.
2074
+ 5
2075
+
2076
+ BBCBBCBBCBBOBBCBBC人Figure S9. VIS on an OVIS sequence showing several sheep.
2077
+ Figure S10. VIS on an OVIS sequence showing three cats.
2078
+ Figure S11. VPS on a KITTI STEP sequence showing a busy intersection.
2079
+ Figure S12. VPS on a KITTI STEP sequence showing how a car is followed for a while.
2080
+ 6
2081
+
2082
+ AFigure S13. VPS on a KITTI STEP sequence showing a busy pedestrian crossing.
2083
+ Figure S14. VOS on a DAVIS sequence of a dancer.
2084
+ Figure S15. VOS on a DAVIS sequence showing several gold fish.
2085
+ 7
2086
+
2087
+ tFigure S16. VOS on DAVIS sequence an action movie scene.
2088
+ Figure S17. PET on a BURST sequence showing three men and a gun.
2089
+ Figure S18. PET on a BURST sequence showing two bears fight, note there is no ID switch.
2090
+ 8
2091
+
2092
+ 16
2093
+ TYPHDTYPHD
2094
+ 16TVPHD
2095
+ 16TVPHDTIVPHD16
2096
+ TVPHDFigure S19. PET on a BURST sequence showing several cars on a street.
2097
+ Figure S20. VIS on an OVIS sequence of several elephants and their trainers. This sequence shows that TarVis sometimes has issues with
2098
+ ID switches, especially when the appearance of objects changes, e.g. here the elephants are not tracked consistently while turning around..
2099
+ 9
2100
+
2101
+ chs
CtE0T4oBgHgl3EQfyQKJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNAzT4oBgHgl3EQfGfv5/content/tmp_files/2301.01031v1.pdf.txt ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Bottomonium suppression in the quark-gluon plasma –
2
+ From effective field theories to non-unitary quantum
3
+ evolution∗
4
+ Michael Strickland
5
+ Department of Physics, Kent State University, Kent, OH 44242, USA
6
+ Received January 4, 2023
7
+ In this proceedings contribution I review recent work which computes
8
+ the suppression of bottomonium production in heavy-ion collisions using
9
+ open quantum systems methods applied within the potential non-relativistic
10
+ quantum chromodynamics (pNRQCD) effective field theory. I discuss how
11
+ the computation of bottomonium suppression can be reduced to solving
12
+ a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quantum master equa-
13
+ tion for the evolution of the b¯b reduced density matrix. The open quantum
14
+ systems approach used allows one to take into account the non-equilibrium
15
+ dynamics and decoherence of bottomonium in the quark-gluon plasma. Fi-
16
+ nally, I present comparisons of phenomenological predictions obtained us-
17
+ ing a recently obtained next-to-leading-order GKSL equation with ALICE,
18
+ ATLAS, and CMS experimental data for bottomonium suppression and
19
+ elliptic flow.
20
+ 1. Introduction
21
+ Heavy-ion collisions have been used to produce and study the properties
22
+ of the quark-gluon plasma (QGP), a state of matter thought to have existed
23
+ in the early universe and being created terrestrially in relativistic heavy-ion
24
+ collisions. The suppression of bottomonium production in such collisions
25
+ is considered strong evidence for the creation of a deconfined QGP [1–10].
26
+ In the past, it was proposed that this suppression was due to the Debye
27
+ screening of chromoelectric fields in the QGP, which modified the potential
28
+ between heavy quarks and resulted in a reduction of heavy-quarkonium
29
+ production [11, 12].
30
+ However, more recent studies have shown that, in
31
+ addition to the real part of the potential being modified by Debye screening,
32
+ there is also an imaginary contribution to the potential caused by processes
33
+ such as Landau damping and singlet-to-octet transitions [13–20].
34
+ These
35
+ ∗ Presented at Excited QCD 2022, Giardini Naxos, Sicily, October 2022
36
+ (1)
37
+ arXiv:2301.01031v1 [hep-ph] 3 Jan 2023
38
+
39
+ 2
40
+ strickland
41
+ printed on January 4, 2023
42
+ processes result in large in-medium widths for heavy-quarkonium bound
43
+ states.
44
+ In the past decade, there has been significant progress in the use of
45
+ open quantum systems (OQS) methods to study heavy-quarkonium sup-
46
+ pression in the QGP [21–37]. In particular, recent works have applied OQS
47
+ methods within the framework of the potential non-relativistic QCD (pN-
48
+ RQCD) effective field theory [14, 16, 18–20, 38–40]. The pNRQCD EFT is
49
+ applicable to systems with a large separation between energy scales. This
50
+ naturally occurs when the velocity of the heavy quark relative to the center
51
+ of mass is small (v ≪ 1). In Refs. [24, 26, 30], the authors considered the
52
+ scale hierarchy relevant for small bound states in a high-temperature QGP,
53
+ 1/r ∼ Mv ≫ mD ∼ πT ≫ E, where r is the typical size of the state, M is
54
+ the heavy quark mass, mD is the Debye mass, T is the temperature, and E
55
+ is the binding energy.
56
+ With this scale ordering the environment’s relaxation timescale is much
57
+ shorter than both the system’s internal timescales and the system’s own
58
+ relaxation timescale.
59
+ This makes the quantum evolution Markovian.
60
+ In
61
+ Ref. [30] a Markovian Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equa-
62
+ tion [41, 42] was derived for the heavy-quarkonium reduced density matrix,
63
+ which was implemented in the open-source QTraj code of Ref. [43] to make
64
+ predictions for heavy-ion collision bottomonium observables [44–47]. This
65
+ was done by coupling the GKSL solver to 3+1D viscous hydrodynamics
66
+ code using smooth Glauber initial conditions [48–50] and, most recently,
67
+ fluctuating hydrodynamical backgrounds [47]. The formalism used in the
68
+ most recent works [46, 47] is accurate to next-to-leading order (NLO) in
69
+ the binding energy over temperature, which allows it to be used at lower
70
+ temperatures than the original leading-order formalism.
71
+ 2. Results
72
+ For details concerning the theoretical and numerical methods employed,
73
+ I refer the reader to Refs. [46, 47]. The results obtained depend on two co-
74
+ efficients ˆκ and ˆγ, which were extracted directly and indirectly from lattice
75
+ QCD calculations [30, 51–55]. In Figs. 1 and 2, we present our NLO predic-
76
+ tions for RAA as a function of Npart and pT , respectively. For these results
77
+ we did not include the effect of dynamical quantum jumps. In the left panel
78
+ we show the variation of ˆκ in the range ˆκ ∈ {ˆκL(T), ˆκC(T), ˆκU(T)} while
79
+ holding ˆγ = −2.6. This value of ˆγ was chosen as to best reproduce the
80
+ RAA[Υ(1S)]. In the right panel we show the variation of ˆγ in the range
81
+ −3.5 ≤ ˆγ ≤ 0 with ˆκ(T) = ˆκC(T). The solid line corresponds to ˆγ = −2.6.
82
+ As this figure demonstrates, our NLO predictions without quantum jumps
83
+ are in quite good agreement with the experimental data for RAA[1S] and
84
+
85
+ strickland
86
+ printed on January 4, 2023
87
+ 3
88
+ QTraj - Υ(1S)
89
+ QTraj - Υ(2S)
90
+ QTraj - Υ(3S)
91
+ ALICE - Y(1S)
92
+ ATLAS - Y(1S)
93
+ CMS - Y(1S)
94
+ ALICE - Y(2S)
95
+ ATLAS - Y(2S)
96
+ CMS - Y(2S)
97
+ CMS - Y(3S)
98
+ 0
99
+ 100
100
+ 200
101
+ 300
102
+ 400
103
+ 0.0
104
+ 0.2
105
+ 0.4
106
+ 0.6
107
+ 0.8
108
+ 1.0
109
+ Npart
110
+ RAA
111
+ κ ∈ {κL(T),κC(T),κU(T)}, γ = -2.6, τmed = 0.6 fm, NLO
112
+ 5.02 TeV Pb-Pb
113
+ ALICE: pT < 15 GeV and 2.5 < y < 4
114
+ ATLAS: pT < 15 GeV and |y| < 1.5
115
+ CMS: pT < 30 GeV and |y| < 2.4
116
+ QTraj: pT < 30 GeV and y=0
117
+ QTraj - Υ(1S)
118
+ QTraj - Υ(2S)
119
+ QTraj - Υ(3S)
120
+ ALICE - Y(1S)
121
+ ATLAS - Y(1S)
122
+ CMS - Y(1S)
123
+ ALICE - Y(2S)
124
+ ATLAS - Y(2S)
125
+ CMS - Y(2S)
126
+ CMS - Y(3S)
127
+ 0
128
+ 100
129
+ 200
130
+ 300
131
+ 400
132
+ 0.0
133
+ 0.2
134
+ 0.4
135
+ 0.6
136
+ 0.8
137
+ 1.0
138
+ Npart
139
+ RAA
140
+ κ = κC(T), γ ∈ {-3.5,-2.6,0}, τmed = 0.6 fm, NLO
141
+ 5.02 TeV Pb-Pb
142
+ ALICE: pT < 15 GeV and 2.5 < y < 4
143
+ ATLAS: pT < 15 GeV and |y| < 1.5
144
+ CMS: pT < 30 GeV and |y| < 2.4
145
+ QTraj: pT < 30 GeV and y=0
146
+ Fig. 1.
147
+ The nuclear suppression, RAA[Υ(1S, 2S, 3S)], as a function of the number
148
+ of participants, Npart. The left panel shows variation of ˆκ and the right panel shows
149
+ variation of ˆγ. The experimental results shown are from the ALICE [7], ATLAS [8],
150
+ and CMS [5, 10] collaborations.
151
+ QTraj - Υ(1S)
152
+ QTraj - Υ(2S)
153
+ QTraj - Υ(3S)
154
+ ALICE - Y(1S)
155
+ ATLAS - Y(1S)
156
+ CMS - Y(1S)
157
+ ATLAS - Y(2S)
158
+ CMS - Y(2S)
159
+ CMS - Y(3S)
160
+ 0
161
+ 5
162
+ 10
163
+ 15
164
+ 20
165
+ 25
166
+ 30
167
+ 0.0
168
+ 0.2
169
+ 0.4
170
+ 0.6
171
+ 0.8
172
+ 1.0
173
+ pT [GeV]
174
+ RAA
175
+ κ ∈ {κL(T),κC(T),κU(T)}, γ = -2.6, τmed = 0.6 fm, NLO
176
+ 5.02 TeV Pb-Pb
177
+ CMS: 0-100% and |y| < 2.4
178
+ ALICE: 0-90% and 2.5 < y < 4
179
+ ATLAS: 0-80% and |y| < 1.5
180
+ QTraj: 0-100% and y=0
181
+ QTraj - Υ(1S)
182
+ QTraj - Υ(2S)
183
+ QTraj - Υ(3S)
184
+ ALICE - Y(1S)
185
+ ATLAS - Y(1S)
186
+ CMS - Y(1S)
187
+ ATLAS - Y(2S)
188
+ CMS - Y(2S)
189
+ CMS - Y(3S)
190
+ 0
191
+ 5
192
+ 10
193
+ 15
194
+ 20
195
+ 25
196
+ 30
197
+ 0.0
198
+ 0.2
199
+ 0.4
200
+ 0.6
201
+ 0.8
202
+ 1.0
203
+ pT [GeV]
204
+ RAA
205
+ κ = κC(T), γ ∈ {-3.5,-2.6,0}, τmed = 0.6 fm, NLO
206
+ 5.02 TeV Pb-Pb
207
+ CMS: 0-100% and |y| < 2.4
208
+ ALICE: 0-90% and 2.5 < y < 4
209
+ ATLAS: 0-80% and |y| < 1.5
210
+ QTraj: 0-100% and y=0
211
+ Fig. 2.
212
+ The nuclear suppression factor, RAA, for Υ(1S, 2S, 3S) as a function of
213
+ the transverse momentum, pT . The bands, etc. are the same as Fig. 1.
214
+ RAA[3S]. However, for the 2S excited state, our NLO predictions without
215
+ quantum jumps are somewhat lower than the experimental results, partic-
216
+ ularly for the most central collisions.
217
+ Recently, we computed the NLO bottomonium RAA and v2 using both
218
+ smooth and fluctuating initial conditions for the hydrodynamic evolution [47].
219
+ In Ref. [47] in was demonstrated that the results for RAA obtained using fluc-
220
+ tuating and smooth initial conditions were nearly identical, indicating that
221
+ initial state fluctuations do not play an important role in this observable. In
222
+ Fig. 3, I present the OQS+pNRQCD+IP-Glasma predictions for v2[1S] as
223
+
224
+ 4
225
+ strickland
226
+ printed on January 4, 2023
227
+ CMS
228
+ QTraj-γ
229
+ QTraj-κ
230
+ 10
231
+ 30
232
+ 50
233
+ 90
234
+ -0.06
235
+ -0.04
236
+ -0.02
237
+ 0.00
238
+ 0.02
239
+ 0.04
240
+ 0.06
241
+ Centrality (%)
242
+ v2[Υ(1S)]
243
+ τmed = 0.6 fm, NLO
244
+ 5.02 TeV Pb-Pb
245
+ pT < 50 GeV
246
+ CMS: |y| < 2.4
247
+ QTraj: y=0
248
+ -0.03
249
+ -0.02
250
+ -0.01
251
+ 0.00
252
+ 0.01
253
+ 0.02
254
+ 0.03
255
+ 10-90%
256
+ QTraj-γ
257
+ QTraj-κ
258
+ ALICE
259
+ CMS
260
+ 0
261
+ 5
262
+ 10
263
+ 15
264
+ -0.05
265
+ 0.00
266
+ 0.05
267
+ 0.10
268
+ 0.15
269
+ pT [GeV]
270
+ v2[Υ(1S)]
271
+ τmed= 0.6 fm, NLO
272
+ 5.02 TeV Pb-Pb
273
+ 5-60% Centrality
274
+ CMS: |y| < 2.4
275
+ ALICE: 2.5 < y < 4
276
+ QTraj: y=0
277
+ Fig. 3. The anisotropic flow coefficient v2[1S] as a function of centrality (left) and
278
+ transverse momentum (right) obtained with fluctuating initial conditions. We show
279
+ the ˆγ variation in blue and the ˆκ variation in red.
280
+ a function of centrality (left panel) and transverse momentum (right panel)
281
+ compared with experimental data from the ALICE and CMS collaborations
282
+ [6, 9]. From this figure we see that the NLO OQS+pNRQCD+IP-Glasma
283
+ framework predicts a rather flat dependence on centrality, with the max-
284
+ imum v2[1S] being on the order of 1%.
285
+ In the right portion of the left
286
+ panel, we present the results integrated over centrality as two points that
287
+ include the observed variations with ˆκ and ˆγ, respectively.1 The size of the
288
+ error bars reflects the statistical uncertainty associated with the double av-
289
+ erage over initial conditions and physical trajectories [47]. The red and blue
290
+ shaded regions correspond to the uncertainty associated with the variation
291
+ of ˆκ and ˆγ, respectively. Finally, in the right panel of Fig. 3, I present the
292
+ dependence of v2[1S] on transverse momentum.
293
+ 3. Conclusions
294
+ In this proceedings contribution, I focused on recent research that uses
295
+ an OQS framework applied within the pNRQCD effective field theory. I
296
+ presented predictions for the nuclear suppression factor (RAA) and elliptic
297
+ flow coefficient (v2) based on smooth and fluctuating hydrodynamical initial
298
+ conditions. We found that the impact of fluctuating initial conditions was
299
+ small when considering RAA, but a larger, though still within statistical un-
300
+ certainties, effect was observed for v2. For RAA[1S], RAA[3S], and v2[1S],
301
+ we found good agreement between the NLO OQS+pNRQCD framework
302
+ and experimental data. However, we found that the amount of Υ(2S) sup-
303
+ pression was slightly overestimated regardless of the hydrodynamic initial
304
+ conditions used.
305
+ 1 The scale of the right portion of the left panel is different from the left portion of this
306
+ panel in order to make it more readable.
307
+
308
+ REFERENCES
309
+ 5
310
+ REFERENCES
311
+ [1] L. Adamczyk et al. (STAR), Phys. Lett. B 735, 127 (2014), [Erratum:
312
+ Phys.Lett.B 743, 537–541 (2015)], 1312.3675.
313
+ [2] A. Adare et al. (PHENIX), Phys. Rev. C 91, 024913 (2015), 1404.2246.
314
+ [3] L. Adamczyk et al. (STAR), Phys. Rev. C 94, 064904 (2016), 1608.06487.
315
+ [4] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 142301 (2018), 1706.
316
+ 05984.
317
+ [5] A. M. Sirunyan et al. (CMS), Phys. Lett. B 790, 270 (2019), 1805.09215.
318
+ [6] S. Acharya et al. (ALICE), Phys. Rev. Lett. 123, 192301 (2019), 1907.03169.
319
+ [7] S. Acharya et al. (ALICE) (2020), 2011.05758.
320
+ [8] S. Lee (ATLAS), Nucl. Phys. A 1005, 121860 (2021).
321
+ [9] A. M. Sirunyan et al. (CMS), Phys. Lett. B 819, 136385 (2021), 2006.07707.
322
+ [10] CMS Collaboration, Observation of the Υ(3S) meson and sequential suppres-
323
+ sion of Υ states in PbPb collisions at √sNN = 5.02 TeV, CMS-PAS-HIN-21-
324
+ 007, https://cds.cern.ch/record/2805926, (2022).
325
+ [11] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).
326
+ [12] F. Karsch, M. T. Mehr, and H. Satz, Z. Phys. C37, 617 (1988).
327
+ [13] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, JHEP 03, 054 (2007),
328
+ hep-ph/0611300.
329
+ [14] N. Brambilla, J. Ghiglieri, A. Vairo, and P. Petreczky, Phys. Rev. D78, 014017
330
+ (2008), 0804.0993.
331
+ [15] A. Beraudo, J.-P. Blaizot, and C. Ratti, Nucl. Phys. A 806, 312 (2008), 0712.
332
+ 4394.
333
+ [16] M. A. Escobedo and J. Soto, Phys. Rev. A 78, 032520 (2008), 0804.0691.
334
+ [17] A. Dumitru, Y. Guo, and M. Strickland, Phys.Rev. D79, 114003 (2009), 0903.
335
+ 4703.
336
+ [18] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto, and A. Vairo, JHEP 09,
337
+ 038 (2010), 1007.4156.
338
+ [19] N. Brambilla, M. A. Escobedo, J. Ghiglieri, and A. Vairo, JHEP 12, 116
339
+ (2011), 1109.5826.
340
+ [20] N. Brambilla, M. A. Escobedo, J. Ghiglieri, and A. Vairo, JHEP 05, 130
341
+ (2013), 1303.6097.
342
+ [21] Y. Akamatsu and A. Rothkopf, Phys. Rev. D85, 105011 (2012), 1110.1203.
343
+ [22] Y. Akamatsu, Phys. Rev. D91, 056002 (2015), 1403.5783.
344
+ [23] J.-P. Blaizot, D. De Boni, P. Faccioli, and G. Garberoglio, Nucl. Phys. A 946,
345
+ 49 (2016), 1503.03857.
346
+ [24] N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, Phys. Rev. D96, 034021
347
+ (2017), 1612.07248.
348
+ [25] J.-P. Blaizot and M. A. Escobedo, JHEP 06, 034 (2018), 1711.10812.
349
+ [26] N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, Phys. Rev. D97, 074009
350
+ (2018), 1711.04515.
351
+ [27] J.-P. Blaizot and M. A. Escobedo, Phys. Rev. D98, 074007 (2018), 1803.
352
+ 07996.
353
+ [28] X. Yao and T. Mehen, Phys. Rev. D 99, 096028 (2019), 1811.07027.
354
+
355
+ 6
356
+ REFERENCES
357
+ [29] T. Miura, Y. Akamatsu, M. Asakawa, and A. Rothkopf, Phys. Rev. D 101,
358
+ 034011 (2020), 1908.06293.
359
+ [30] N. Brambilla, M. A. Escobedo, A. Vairo, and P. Vander Griend, Phys. Rev.
360
+ D 100, 054025 (2019), 1903.08063.
361
+ [31] R. Sharma and A. Tiwari, Phys. Rev. D 101, 074004 (2020), 1912.07036.
362
+ [32] Y. Akamatsu, Prog. Part. Nucl. Phys. 123, 103932 (2022), 2009.10559.
363
+ [33] X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. M¨uller, JHEP 21, 046 (2020),
364
+ 2004.06746.
365
+ [34] X. Yao and T. Mehen, JHEP 21, 062 (2020), 2009.02408.
366
+ [35] J.-P. Blaizot and M. A. Escobedo, Phys. Rev. D 104, 054034 (2021), 2106.
367
+ 15371.
368
+ [36] X. Yao, Int. J. Mod. Phys. A 36, 2130010 (2021), 2102.01736.
369
+ [37] R. Katz and P. B. Gossiaux, Annals Phys. 368, 267 (2016), 1504.08087.
370
+ [38] A. Pineda and J. Soto, Nucl. Phys. B Proc. Suppl. 64, 428 (1998), hep-ph/
371
+ 9707481.
372
+ [39] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys. B 566, 275 (2000),
373
+ hep-ph/9907240.
374
+ [40] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod. Phys. 77, 1423
375
+ (2005), hep-ph/0410047.
376
+ [41] V. Gorini, A. Kossakowski, and E. Sudarshan, J. Math. Phys. 17, 821 (1976).
377
+ [42] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
378
+ [43] H. B. Omar, M. A. Escobedo, A. Islam, M. Strickland, S. Thapa, P. Van-
379
+ der Griend, and J. H. Weber, Comput. Phys. Commun. 273, 108266 (2022),
380
+ 2107.06147.
381
+ [44] N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend,
382
+ and J. H. Weber, JHEP 05, 136 (2021), 2012.01240.
383
+ [45] N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend,
384
+ and J. H. Weber, Phys. Rev. D 104, 094049 (2021), 2107.06222.
385
+ [46] N. Brambilla, M. A. Escobedo, A. Islam, M. Strickland, A. Tiwari, A. Vairo,
386
+ and P. Vander Griend (2022), 2205.10289.
387
+ [47] H. Alalawi, J. Boyd, C. Shen, and M. Strickland (2022), 2211.06363.
388
+ [48] M. Alqahtani, M. Nopoush, and M. Strickland, Prog. Part. Nucl. Phys. 101,
389
+ 204 (2018), 1712.03282.
390
+ [49] M. Alqahtani and M. Strickland, Eur. Phys. J. C 81, 1022 (2021), 2008.07657.
391
+ [50] H. Alalawi, M. Alqahtani, and M. Strickland, Symmetry 14, 329 (2022), 2112.
392
+ 14597.
393
+ [51] G. Aarts, C. Allton, S. Kim, M. P. Lombardo, M. B. Oktay, S. M. Ryan, D. K.
394
+ Sinclair, and J. I. Skullerud, JHEP 11, 103 (2011), 1109.4496.
395
+ [52] S. Kim, P. Petreczky, and A. Rothkopf, JHEP 11, 088 (2018), 1808.08781.
396
+ [53] R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky, Phys. Rev. D 100,
397
+ 074506 (2019), 1908.08437.
398
+ [54] N. Brambilla, V. Leino, P. Petreczky, and A. Vairo, Phys. Rev. D 102, 074503
399
+ (2020), 2007.10078.
400
+ [55] S. Shi, K. Zhou, J. Zhao, S. Mukherjee, and P. Zhuang (2021), 2105.07862.
401
+
DNAzT4oBgHgl3EQfGfv5/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf,len=556
2
+ page_content='Bottomonium suppression in the quark-gluon plasma – From effective field theories to non-unitary quantum evolution∗ Michael Strickland Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
3
+ page_content=' Kent State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
4
+ page_content=' Kent,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
5
+ page_content=' OH 44242,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
6
+ page_content=' USA Received January 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
7
+ page_content=' 2023 In this proceedings contribution I review recent work which computes the suppression of bottomonium production in heavy-ion collisions using open quantum systems methods applied within the potential non-relativistic quantum chromodynamics (pNRQCD) effective field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
8
+ page_content=' I discuss how the computation of bottomonium suppression can be reduced to solving a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quantum master equa- tion for the evolution of the b¯b reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
9
+ page_content=' The open quantum systems approach used allows one to take into account the non-equilibrium dynamics and decoherence of bottomonium in the quark-gluon plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
10
+ page_content=' Fi- nally, I present comparisons of phenomenological predictions obtained us- ing a recently obtained next-to-leading-order GKSL equation with ALICE, ATLAS, and CMS experimental data for bottomonium suppression and elliptic flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
12
+ page_content=' Introduction Heavy-ion collisions have been used to produce and study the properties of the quark-gluon plasma (QGP), a state of matter thought to have existed in the early universe and being created terrestrially in relativistic heavy-ion collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
13
+ page_content=' The suppression of bottomonium production in such collisions is considered strong evidence for the creation of a deconfined QGP [1–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
14
+ page_content=' In the past, it was proposed that this suppression was due to the Debye screening of chromoelectric fields in the QGP, which modified the potential between heavy quarks and resulted in a reduction of heavy-quarkonium production [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
15
+ page_content=' However, more recent studies have shown that, in addition to the real part of the potential being modified by Debye screening, there is also an imaginary contribution to the potential caused by processes such as Landau damping and singlet-to-octet transitions [13–20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
16
+ page_content=' These ∗ Presented at Excited QCD 2022, Giardini Naxos, Sicily, October 2022 (1) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
17
+ page_content='01031v1 [hep-ph] 3 Jan 2023 2 strickland printed on January 4, 2023 processes result in large in-medium widths for heavy-quarkonium bound states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
18
+ page_content=' In the past decade, there has been significant progress in the use of open quantum systems (OQS) methods to study heavy-quarkonium sup- pression in the QGP [21–37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
19
+ page_content=' In particular, recent works have applied OQS methods within the framework of the potential non-relativistic QCD (pN- RQCD) effective field theory [14, 16, 18–20, 38–40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
20
+ page_content=' The pNRQCD EFT is applicable to systems with a large separation between energy scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
21
+ page_content=' This naturally occurs when the velocity of the heavy quark relative to the center of mass is small (v ≪ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
22
+ page_content=' In Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
23
+ page_content=' [24, 26, 30], the authors considered the scale hierarchy relevant for small bound states in a high-temperature QGP, 1/r ∼ Mv ≫ mD ∼ πT ≫ E, where r is the typical size of the state, M is the heavy quark mass, mD is the Debye mass, T is the temperature, and E is the binding energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
24
+ page_content=' With this scale ordering the environment’s relaxation timescale is much shorter than both the system’s internal timescales and the system’s own relaxation timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
25
+ page_content=' This makes the quantum evolution Markovian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
26
+ page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
27
+ page_content=' [30] a Markovian Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equa- tion [41, 42] was derived for the heavy-quarkonium reduced density matrix, which was implemented in the open-source QTraj code of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
28
+ page_content=' [43] to make predictions for heavy-ion collision bottomonium observables [44–47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
29
+ page_content=' This was done by coupling the GKSL solver to 3+1D viscous hydrodynamics code using smooth Glauber initial conditions [48–50] and, most recently, fluctuating hydrodynamical backgrounds [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
30
+ page_content=' The formalism used in the most recent works [46, 47] is accurate to next-to-leading order (NLO) in the binding energy over temperature, which allows it to be used at lower temperatures than the original leading-order formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
31
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
32
+ page_content=' Results For details concerning the theoretical and numerical methods employed, I refer the reader to Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
33
+ page_content=' [46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
34
+ page_content=' The results obtained depend on two co- efficients ˆκ and ˆγ, which were extracted directly and indirectly from lattice QCD calculations [30, 51–55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
35
+ page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
36
+ page_content=' 1 and 2, we present our NLO predic- tions for RAA as a function of Npart and pT , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
37
+ page_content=' For these results we did not include the effect of dynamical quantum jumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
38
+ page_content=' In the left panel we show the variation of ˆκ in the range ˆκ ∈ {ˆκL(T), ˆκC(T), ˆκU(T)} while holding ˆγ = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
39
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
40
+ page_content=' This value of ˆγ was chosen as to best reproduce the RAA[Υ(1S)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
41
+ page_content=' In the right panel we show the variation of ˆγ in the range −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
42
+ page_content='5 ≤ ˆγ ≤ 0 with ˆκ(T) = ˆκC(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
43
+ page_content=' The solid line corresponds to ˆγ = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
44
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
45
+ page_content=' As this figure demonstrates, our NLO predictions without quantum jumps are in quite good agreement with the experimental data for RAA[1S] and strickland printed on January 4, 2023 3 QTraj - Υ(1S) QTraj - Υ(2S) QTraj - Υ(3S) ALICE - Y(1S) ATLAS - Y(1S) CMS - Y(1S) ALICE - Y(2S) ATLAS - Y(2S) CMS - Y(2S) CMS - Y(3S) 0 100 200 300 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
46
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
47
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
48
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
49
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
50
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
51
+ page_content='0 Npart RAA κ\uf111 ∈ {κ\uf111L(T),κ\uf111C(T),κ\uf111U(T)}, γ\uf111 = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
52
+ page_content='6, τmed = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
53
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
54
+ page_content='02 TeV Pb-Pb ALICE: pT < 15 GeV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
55
+ page_content='5 < y < 4 ATLAS: pT < 15 GeV and |y| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
56
+ page_content='5 CMS: pT < 30 GeV and |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
57
+ page_content='4 QTraj: pT < 30 GeV and y=0 QTraj - Υ(1S) QTraj - Υ(2S) QTraj - Υ(3S) ALICE - Y(1S) ATLAS - Y(1S) CMS - Y(1S) ALICE - Y(2S) ATLAS - Y(2S) CMS - Y(2S) CMS - Y(3S) 0 100 200 300 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
58
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
59
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
60
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
61
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
62
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
63
+ page_content='0 Npart RAA κ\uf111 = κ\uf111C(T), γ\uf111 ∈ {-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
64
+ page_content='5,-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
65
+ page_content='6,0}, τmed = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
66
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
67
+ page_content='02 TeV Pb-Pb ALICE: pT < 15 GeV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
68
+ page_content='5 < y < 4 ATLAS: pT < 15 GeV and |y| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
69
+ page_content='5 CMS: pT < 30 GeV and |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
70
+ page_content='4 QTraj: pT < 30 GeV and y=0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
71
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
72
+ page_content=' The nuclear suppression, RAA[Υ(1S, 2S, 3S)], as a function of the number of participants, Npart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
73
+ page_content=' The left panel shows variation of ˆκ and the right panel shows variation of ˆγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
74
+ page_content=' The experimental results shown are from the ALICE [7], ATLAS [8], and CMS [5, 10] collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
75
+ page_content=' QTraj - Υ(1S) QTraj - Υ(2S) QTraj - Υ(3S) ALICE - Y(1S) ATLAS - Y(1S) CMS - Y(1S) ATLAS - Y(2S) CMS - Y(2S) CMS - Y(3S) 0 5 10 15 20 25 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
76
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
77
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
78
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
79
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
80
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
81
+ page_content='0 pT [GeV] RAA κ\uf111 ∈ {κ\uf111L(T),κ\uf111C(T),κ\uf111U(T)}, γ\uf111 = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
82
+ page_content='6, τmed = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
83
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
84
+ page_content='02 TeV Pb-Pb CMS: 0-100% and |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
85
+ page_content='4 ALICE: 0-90% and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
86
+ page_content='5 < y < 4 ATLAS: 0-80% and |y| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
87
+ page_content='5 QTraj: 0-100% and y=0 QTraj - Υ(1S) QTraj - Υ(2S) QTraj - Υ(3S) ALICE - Y(1S) ATLAS - Y(1S) CMS - Y(1S) ATLAS - Y(2S) CMS - Y(2S) CMS - Y(3S) 0 5 10 15 20 25 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
88
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
89
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
90
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
91
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
92
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
93
+ page_content='0 pT [GeV] RAA κ\uf111 = κ\uf111C(T), γ\uf111 ∈ {-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
94
+ page_content='5,-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
95
+ page_content='6,0}, τmed = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
96
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
97
+ page_content='02 TeV Pb-Pb CMS: 0-100% and |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
98
+ page_content='4 ALICE: 0-90% and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
99
+ page_content='5 < y < 4 ATLAS: 0-80% and |y| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
100
+ page_content='5 QTraj: 0-100% and y=0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
101
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
102
+ page_content=' The nuclear suppression factor, RAA, for Υ(1S, 2S, 3S) as a function of the transverse momentum, pT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
103
+ page_content=' The bands, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
104
+ page_content=' are the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
105
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
106
+ page_content=' RAA[3S].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
107
+ page_content=' However, for the 2S excited state, our NLO predictions without quantum jumps are somewhat lower than the experimental results, partic- ularly for the most central collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
108
+ page_content=' Recently, we computed the NLO bottomonium RAA and v2 using both smooth and fluctuating initial conditions for the hydrodynamic evolution [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
109
+ page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
110
+ page_content=' [47] in was demonstrated that the results for RAA obtained using fluc- tuating and smooth initial conditions were nearly identical, indicating that initial state fluctuations do not play an important role in this observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
111
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
112
+ page_content=' 3, I present the OQS+pNRQCD+IP-Glasma predictions for v2[1S] as 4 strickland printed on January 4, 2023 CMS QTraj-γ\uf111 QTraj-κ\uf111 10 30 50 90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
113
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
114
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
115
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
116
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
117
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
118
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
119
+ page_content='06 Centrality (%) v2[Υ(1S)] τmed = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
120
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
121
+ page_content='02 TeV Pb-Pb pT < 50 GeV CMS: |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
122
+ page_content='4 QTraj: y=0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
123
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
124
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
125
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
126
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
127
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
128
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
129
+ page_content='03 10-90% QTraj-γ\uf111 QTraj-κ\uf111 ALICE CMS 0 5 10 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
130
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
131
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
132
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
133
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
134
+ page_content='15 pT [GeV] v2[Υ(1S)] τmed= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
135
+ page_content='6 fm, NLO 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
136
+ page_content='02 TeV Pb-Pb 5-60% Centrality CMS: |y| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
137
+ page_content='4 ALICE: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
138
+ page_content='5 < y < 4 QTraj: y=0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
139
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
140
+ page_content=' The anisotropic flow coefficient v2[1S] as a function of centrality (left) and transverse momentum (right) obtained with fluctuating initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
141
+ page_content=' We show the ˆγ variation in blue and the ˆκ variation in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
142
+ page_content=' a function of centrality (left panel) and transverse momentum (right panel) compared with experimental data from the ALICE and CMS collaborations [6, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
143
+ page_content=' From this figure we see that the NLO OQS+pNRQCD+IP-Glasma framework predicts a rather flat dependence on centrality, with the max- imum v2[1S] being on the order of 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
144
+ page_content=' In the right portion of the left panel, we present the results integrated over centrality as two points that include the observed variations with ˆκ and ˆγ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
145
+ page_content='1 The size of the error bars reflects the statistical uncertainty associated with the double av- erage over initial conditions and physical trajectories [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
146
+ page_content=' The red and blue shaded regions correspond to the uncertainty associated with the variation of ˆκ and ˆγ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
147
+ page_content=' Finally, in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
148
+ page_content=' 3, I present the dependence of v2[1S] on transverse momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
149
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
150
+ page_content=' Conclusions In this proceedings contribution, I focused on recent research that uses an OQS framework applied within the pNRQCD effective field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
151
+ page_content=' I presented predictions for the nuclear suppression factor (RAA) and elliptic flow coefficient (v2) based on smooth and fluctuating hydrodynamical initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
152
+ page_content=' We found that the impact of fluctuating initial conditions was small when considering RAA, but a larger, though still within statistical un- certainties, effect was observed for v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
153
+ page_content=' For RAA[1S], RAA[3S], and v2[1S], we found good agreement between the NLO OQS+pNRQCD framework and experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
154
+ page_content=' However, we found that the amount of Υ(2S) sup- pression was slightly overestimated regardless of the hydrodynamic initial conditions used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
155
+ page_content=' 1 The scale of the right portion of the left panel is different from the left portion of this panel in order to make it more readable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
156
+ page_content=' REFERENCES 5 REFERENCES [1] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
157
+ page_content=' Adamczyk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
158
+ page_content=' (STAR), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
159
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
160
+ page_content=' B 735, 127 (2014), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
161
+ page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
162
+ page_content='B 743, 537–541 (2015)], 1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
163
+ page_content='3675.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
164
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
165
+ page_content=' Adare et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
166
+ page_content=' (PHENIX), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
167
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
168
+ page_content=' C 91, 024913 (2015), 1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
169
+ page_content='2246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
170
+ page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
171
+ page_content=' Adamczyk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
172
+ page_content=' (STAR), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
173
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
174
+ page_content=' C 94, 064904 (2016), 1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
175
+ page_content='06487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
176
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
177
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
178
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
179
+ page_content=' (CMS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
180
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
181
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
182
+ page_content=' 120, 142301 (2018), 1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
183
+ page_content=' 05984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
184
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
185
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
186
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
187
+ page_content=' (CMS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
188
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
189
+ page_content=' B 790, 270 (2019), 1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
190
+ page_content='09215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
191
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
192
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
193
+ page_content=' (ALICE), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
194
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
195
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
196
+ page_content=' 123, 192301 (2019), 1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
197
+ page_content='03169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
198
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
199
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
200
+ page_content=' (ALICE) (2020), 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
201
+ page_content='05758.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
202
+ page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
203
+ page_content=' Lee (ATLAS), Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
204
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
205
+ page_content=' A 1005, 121860 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
206
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
207
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
208
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
209
+ page_content=' (CMS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
210
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
211
+ page_content=' B 819, 136385 (2021), 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
212
+ page_content='07707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
213
+ page_content=' [10] CMS Collaboration, Observation of the Υ(3S) meson and sequential suppres- sion of Υ states in PbPb collisions at √sNN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
214
+ page_content='02 TeV, CMS-PAS-HIN-21- 007, https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
215
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
216
+ page_content='ch/record/2805926, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
217
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
218
+ page_content=' Matsui and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
219
+ page_content=' Satz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
220
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
221
+ page_content=' B178, 416 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
222
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
223
+ page_content=' Karsch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
224
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
225
+ page_content=' Mehr, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
226
+ page_content=' Satz, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
227
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
228
+ page_content=' C37, 617 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
229
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
230
+ page_content=' Laine, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
231
+ page_content=' Philipsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
232
+ page_content=' Romatschke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
233
+ page_content=' Tassler, JHEP 03, 054 (2007), hep-ph/0611300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
234
+ page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
235
+ page_content=' Brambilla, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
236
+ page_content=' Ghiglieri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
237
+ page_content=' Vairo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
238
+ page_content=' Petreczky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
239
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
240
+ page_content=' D78, 014017 (2008), 0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
241
+ page_content='0993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
242
+ page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
243
+ page_content=' Beraudo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
244
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
245
+ page_content=' Blaizot, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
246
+ page_content=' Ratti, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
247
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
248
+ page_content=' A 806, 312 (2008), 0712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
249
+ page_content=' 4394.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
250
+ page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
251
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
252
+ page_content=' Escobedo and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
253
+ page_content=' Soto, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
254
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
255
+ page_content=' A 78, 032520 (2008), 0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
256
+ page_content='0691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
257
+ page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
258
+ page_content=' Dumitru, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
259
+ page_content=' Guo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
260
+ page_content=' Strickland, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
261
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
262
+ page_content=' D79, 114003 (2009), 0903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
263
+ page_content=' 4703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
264
+ page_content=' [18] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
265
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
266
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
267
+ page_content=' Escobedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
268
+ page_content=' Ghiglieri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
269
+ page_content=' Soto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
270
+ page_content=' Vairo, JHEP 09, 038 (2010), 1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
271
+ page_content='4156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
272
+ page_content=' [19] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
273
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
274
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
275
+ page_content=' Escobedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
276
+ page_content=' Ghiglieri, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
277
+ page_content=' Vairo, JHEP 12, 116 (2011), 1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
278
+ page_content='5826.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
279
+ page_content=' [20] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
280
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
281
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
282
+ page_content=' Escobedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
283
+ page_content=' Ghiglieri, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
284
+ page_content=' Vairo, JHEP 05, 130 (2013), 1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
285
+ page_content='6097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
286
+ page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
287
+ page_content=' Akamatsu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
288
+ page_content=' Rothkopf, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
289
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
290
+ page_content=' D85, 105011 (2012), 1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
291
+ page_content='1203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
292
+ page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
293
+ page_content=' Akamatsu, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
294
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
295
+ page_content=' D91, 056002 (2015), 1403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
296
+ page_content='5783.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
297
+ page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
298
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
299
+ page_content=' Blaizot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
300
+ page_content=' De Boni, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
301
+ page_content=' Faccioli, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
302
+ page_content=' Garberoglio, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
303
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
304
+ page_content=' A 946, 49 (2016), 1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
305
+ page_content='03857.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
306
+ page_content=' [24] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
307
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
308
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
309
+ page_content=' Escobedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
310
+ page_content=' Soto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
311
+ page_content=' Vairo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
312
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
313
+ page_content=' D96, 034021 (2017), 1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
314
+ page_content='07248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
315
+ page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
316
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
317
+ page_content=' Blaizot and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
318
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
319
+ page_content=' Escobedo, JHEP 06, 034 (2018), 1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
320
+ page_content='10812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
321
+ page_content=' [26] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
322
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
323
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
324
+ page_content=' Escobedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
325
+ page_content=' Soto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
326
+ page_content=' Vairo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
327
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
328
+ page_content=' D97, 074009 (2018), 1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
329
+ page_content='04515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
330
+ page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
331
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
332
+ page_content=' Blaizot and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
333
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
334
+ page_content=' Escobedo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
335
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
336
+ page_content=' D98, 074007 (2018), 1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
337
+ page_content=' 07996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
338
+ page_content=' [28] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
339
+ page_content=' Yao and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
340
+ page_content=' Mehen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
341
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
342
+ page_content=' D 99, 096028 (2019), 1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
343
+ page_content='07027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
344
+ page_content=' 6 REFERENCES [29] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
345
+ page_content=' Miura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
346
+ page_content=' Akamatsu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
347
+ page_content=' Asakawa, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
348
+ page_content=' Rothkopf, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
349
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
350
+ page_content=' D 101, 034011 (2020), 1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
351
+ page_content='06293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
352
+ page_content=' [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
353
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
354
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
355
+ page_content=' Escobedo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
356
+ page_content=' Vairo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
357
+ page_content=' Vander Griend, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
358
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
359
+ page_content=' D 100, 054025 (2019), 1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
360
+ page_content='08063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
361
+ page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
362
+ page_content=' Sharma and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
363
+ page_content=' Tiwari, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
364
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
365
+ page_content=' D 101, 074004 (2020), 1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
366
+ page_content='07036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
367
+ page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
368
+ page_content=' Akamatsu, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
369
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
370
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
371
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
372
+ page_content=' 123, 103932 (2022), 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
373
+ page_content='10559.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
374
+ page_content=' [33] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
375
+ page_content=' Yao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
376
+ page_content=' Ke, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
377
+ page_content=' Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
378
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
379
+ page_content=' Bass, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
380
+ page_content=' M¨uller, JHEP 21, 046 (2020), 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
381
+ page_content='06746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
382
+ page_content=' [34] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
383
+ page_content=' Yao and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
384
+ page_content=' Mehen, JHEP 21, 062 (2020), 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
385
+ page_content='02408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
386
+ page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
387
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
388
+ page_content=' Blaizot and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
389
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
390
+ page_content=' Escobedo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
391
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
392
+ page_content=' D 104, 054034 (2021), 2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
393
+ page_content=' 15371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
394
+ page_content=' [36] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
395
+ page_content=' Yao, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
396
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
397
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
398
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
399
+ page_content=' A 36, 2130010 (2021), 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
400
+ page_content='01736.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
401
+ page_content=' [37] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
402
+ page_content=' Katz and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
403
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
404
+ page_content=' Gossiaux, Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
405
+ page_content=' 368, 267 (2016), 1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
406
+ page_content='08087.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
407
+ page_content=' [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
408
+ page_content=' Pineda and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
409
+ page_content=' Soto, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
410
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
411
+ page_content=' B Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
412
+ page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
413
+ page_content=' 64, 428 (1998), hep-ph/ 9707481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
414
+ page_content=' [39] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
415
+ page_content=' Brambilla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
416
+ page_content=' Pineda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
417
+ page_content=' Soto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
418
+ page_content=' Vairo, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
419
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
420
+ page_content=' B 566, 275 (2000), hep-ph/9907240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
421
+ page_content=' [40] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
422
+ page_content=' Brambilla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
423
+ page_content=' Pineda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
424
+ page_content=' Soto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
425
+ page_content=' Vairo, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
426
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
427
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
428
+ page_content=' 77, 1423 (2005), hep-ph/0410047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
429
+ page_content=' [41] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
430
+ page_content=' Gorini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
431
+ page_content=' Kossakowski, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
432
+ page_content=' Sudarshan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
433
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
434
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
435
+ page_content=' 17, 821 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
436
+ page_content=' [42] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
437
+ page_content=' Lindblad, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
438
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
439
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
440
+ page_content=' 48, 119 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
441
+ page_content=' [43] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
442
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
443
+ page_content=' Omar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
444
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
445
+ page_content=' Escobedo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
446
+ page_content=' Islam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
447
+ page_content=' Strickland, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
448
+ page_content=' Thapa, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
449
+ page_content=' Van- der Griend, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
450
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
451
+ page_content=' Weber, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
452
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
453
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
454
+ page_content=' 273, 108266 (2022), 2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
455
+ page_content='06147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
456
+ page_content=' [44] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
457
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
458
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
459
+ page_content=' Escobedo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
460
+ page_content=' Strickland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
461
+ page_content=' Vairo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
462
+ page_content=' Vander Griend, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
463
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
464
+ page_content=' Weber, JHEP 05, 136 (2021), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
465
+ page_content='01240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
466
+ page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
467
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
468
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
469
+ page_content=' Escobedo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
470
+ page_content=' Strickland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
471
+ page_content=' Vairo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
472
+ page_content=' Vander Griend, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
473
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
474
+ page_content=' Weber, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
475
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
476
+ page_content=' D 104, 094049 (2021), 2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
477
+ page_content='06222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
478
+ page_content=' [46] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
479
+ page_content=' Brambilla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
480
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
481
+ page_content=' Escobedo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
482
+ page_content=' Islam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
483
+ page_content=' Strickland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
484
+ page_content=' Tiwari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
485
+ page_content=' Vairo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
486
+ page_content=' Vander Griend (2022), 2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
487
+ page_content='10289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
488
+ page_content=' [47] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
489
+ page_content=' Alalawi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
490
+ page_content=' Boyd, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
491
+ page_content=' Shen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
492
+ page_content=' Strickland (2022), 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
493
+ page_content='06363.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
494
+ page_content=' [48] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
495
+ page_content=' Alqahtani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
496
+ page_content=' Nopoush, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
497
+ page_content=' Strickland, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
498
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
499
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
500
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
501
+ page_content=' 101, 204 (2018), 1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
502
+ page_content='03282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
503
+ page_content=' [49] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
504
+ page_content=' Alqahtani and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
505
+ page_content=' Strickland, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
506
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
507
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
508
+ page_content=' C 81, 1022 (2021), 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
509
+ page_content='07657.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
510
+ page_content=' [50] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
511
+ page_content=' Alalawi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
512
+ page_content=' Alqahtani, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
513
+ page_content=' Strickland, Symmetry 14, 329 (2022), 2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
514
+ page_content=' 14597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
515
+ page_content=' [51] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
516
+ page_content=' Aarts, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
517
+ page_content=' Allton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
518
+ page_content=' Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
519
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
520
+ page_content=' Lombardo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
521
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
522
+ page_content=' Oktay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
523
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
524
+ page_content=' Ryan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
525
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
526
+ page_content=' Sinclair, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
527
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
528
+ page_content=' Skullerud, JHEP 11, 103 (2011), 1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
529
+ page_content='4496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
530
+ page_content=' [52] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
531
+ page_content=' Kim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
532
+ page_content=' Petreczky, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
533
+ page_content=' Rothkopf, JHEP 11, 088 (2018), 1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
534
+ page_content='08781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
535
+ page_content=' [53] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
536
+ page_content=' Larsen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
537
+ page_content=' Meinel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
538
+ page_content=' Mukherjee, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
539
+ page_content=' Petreczky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
540
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
541
+ page_content=' D 100, 074506 (2019), 1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
542
+ page_content='08437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
543
+ page_content=' [54] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
544
+ page_content=' Brambilla, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
545
+ page_content=' Leino, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
546
+ page_content=' Petreczky, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
547
+ page_content=' Vairo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
548
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
549
+ page_content=' D 102, 074503 (2020), 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
550
+ page_content='10078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
551
+ page_content=' [55] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
552
+ page_content=' Shi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
553
+ page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
554
+ page_content=' Zhao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
555
+ page_content=' Mukherjee, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
556
+ page_content=' Zhuang (2021), 2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
557
+ page_content='07862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfGfv5/content/2301.01031v1.pdf'}
DtAzT4oBgHgl3EQfT_x1/content/2301.01259v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254d382b3e2b1d01ed0c9378cb26c4a5c5717c65665af5151fed5df9439e0179
3
+ size 1204062
DtAzT4oBgHgl3EQfT_x1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cec8ce3428954b46eb631baf0dd77d683c4731ee25c2c79b417b625187e5db1
3
+ size 485921
FdE0T4oBgHgl3EQfRAAw/content/2301.02200v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:243ab8dcd75ca6fc297b9222ba1100bb9b7f7118906ee008cbef07257e665bd3
3
+ size 392856
FdE0T4oBgHgl3EQfRAAw/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90b2907fad14c55f5617bb5db74303f72387ac1f39e6288062f432e2b8820833
3
+ size 172285
FdE1T4oBgHgl3EQf-wYy/content/2301.03572v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:becfbcbb4e78b1fb1dc6f59152b61b9e3e8cefc8f9b800038651514046a2a11e
3
+ size 4041341
FdE1T4oBgHgl3EQf-wYy/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1a174736394b5e406c741bc9e909bfbf011e1f14757402664d991228a325b4f
3
+ size 5242925
FtAyT4oBgHgl3EQfrPm5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78f03a0b9235477888ce33fbbda70e64a1294d9426b16a84578c140fe15ce5a
3
+ size 2621485
FtAyT4oBgHgl3EQfrPm5/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0fce5b01ec51ddc26673ecf8169bb3e85978be441f673d2cec2448697ff115b
3
+ size 92355
G9E1T4oBgHgl3EQf_QZd/content/tmp_files/2301.03578v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNAyT4oBgHgl3EQffPgF/content/2301.00334v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84fbd081f0409fd4d17232e0dcd52574673164b5be03a017eeb310ab71b2c0cf
3
+ size 439582
GNAyT4oBgHgl3EQffPgF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25812163f5718e8e4ac65b332accad3f8fbedff0b9ee61755e351ace73d9d538
3
+ size 3997741
GNAyT4oBgHgl3EQffPgF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feb708e2369c5969289fc3a1cdf95a7486924fc0444cc6c988ee170b1149735f
3
+ size 151107
GtE3T4oBgHgl3EQftwtJ/content/tmp_files/2301.04678v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtE3T4oBgHgl3EQftwtJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HNAzT4oBgHgl3EQfxf6-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ecb76d72babba1c15c811627d7a154b539811446f6d753ae8fa8e5c89a656b8
3
+ size 7012397
HdAyT4oBgHgl3EQfS_fF/content/tmp_files/2301.00098v1.pdf.txt ADDED
@@ -0,0 +1,1705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00098v1 [math.GT] 31 Dec 2022
2
+ KIAS-P22086
3
+ THE DESCENDANTS OF THE 3D-INDEX
4
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
5
+ Abstract. In the study of 3d-3d correspondence occurs a natural q-Weyl algebra associated
6
+ to an ideal triangulation of a 3-manifold with torus boundary components, and a module of
7
+ it. We study the action of this module on the (rotated) 3d-index of Dimofte–Gaiotto–Gukov
8
+ and we conjecture some structural properties: bilinear factorization in terms of holomorphic
9
+ blocks, pair of linear q-difference equations, the determination of the 3d-index in terms of
10
+ a finite size matrix of rational functions and the asymptotic expansion of the q-series as q
11
+ tends to 1 to all orders. We illustrate our conjectures with computations for the case of the
12
+ three simplest hyperbolic knots.
13
+ Contents
14
+ 1.
15
+ Introduction
16
+ 2
17
+ 1.1.
18
+ The 3D-index and the state-integral
19
+ 2
20
+ 1.2.
21
+ Descendants
22
+ 2
23
+ 1.3.
24
+ Our conjectures
25
+ 3
26
+ 2.
27
+ Algebras of 3-dimensional ideal triangulations
28
+ 4
29
+ 3.
30
+ The rotated 3D-index and its descendants
31
+ 4
32
+ 3.1.
33
+ Definition
34
+ 4
35
+ 3.2.
36
+ Factorization and holomorphic blocks
37
+ 5
38
+ 3.3.
39
+ Descendants
40
+ 6
41
+ 3.4.
42
+ Asymptotics
43
+ 8
44
+ 4.
45
+ Examples
46
+ 8
47
+ 4.1.
48
+ The 41 knot and its rotated 3D-index
49
+ 8
50
+ 4.2.
51
+ Factorization
52
+ 9
53
+ 4.3.
54
+ Defects
55
+ 9
56
+ 4.4.
57
+ The 52 knot and its rotated 3D-index
58
+ 11
59
+ 4.5.
60
+ Factorization
61
+ 11
62
+ 4.6.
63
+ Defects
64
+ 12
65
+ 4.7.
66
+ The (−2, 3, 7)-pretzel knot
67
+ 12
68
+ Acknowledgements
69
+ 14
70
+ Appendix A.
71
+ The holomorphic blocks of the 41 knot
72
+ 14
73
+ Appendix B.
74
+ The holomorphic blocks of the 52 knot
75
+ 14
76
+ Appendix C.
77
+ NZ matrices and the 3D-index
78
+ 15
79
+ References
80
+ 16
81
+ Date: 1 January 2023.
82
+ Key words and phrases: linear q-difference equations, q-holonomic functions, knots, hyperbolic knots, 3-
83
+ manifolds, Neumann–Zagier matrices, 3d-index, supersymmetric index, BPS counts, line operators, defects,
84
+ descendants, holomorphic blocks, factorization.
85
+ 1
86
+
87
+ 2
88
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
89
+ 1. Introduction
90
+ 1.1. The 3D-index and the state-integral. Topological invariants of ideally triangu-
91
+ lated 3-manifolds appeared in mathematical physics in relation to complex Chern–Simons
92
+ theory [2] and its extension in the 3d-3d correspondence [5, 11]. Two of the best-known such
93
+ invariants are the state-integrals of Andersen–Kashaev [2], which are analytic functions on
94
+ C \ (−∞, 0], and the 3D-index of Dimofte–Gaiotto–Gukov [8, 9], which is a collection of
95
+ q-series with integer coefficients parametrized by the integer homology of the boundary of a
96
+ 3-manifold. Although the state-integrals and the 3D-index are different looking functions,
97
+ they are closely related on the mathematics side through the theory of holomorphic quantum
98
+ modular forms developed by Zagier and the second author [22, 21], and on the physics side
99
+ through the above mentioned 3d-3d correspondence.
100
+ The state-integrals and the 3D-index share many common features, stemming from the fact
101
+ that on the physics side, under the 3d-3d correspondence [10, 26, 9, 7] (see [6] for a review)
102
+ become the invariants of the dual 3d N = 2 superconformal field theory on respectively S3
103
+ and S1 × S2, both of which can be obtained by gluing two copies of D2 × S1 together.
104
+ On the mathematics side, both invariants are defined using combinatorial data of ideal
105
+ triangulations of 3-manifolds whose local weights (namely the Faddeev quantum diloga-
106
+ rithm function, and the tetrahedron index, respectively) satisfy the same linear q-difference
107
+ equations, whereas the invariants themselves are given by an integration/summation over
108
+ variables associated to each tetrahedron.
109
+ A common feature to both invariants is their conjectured bilinear factorization in terms
110
+ of the same holomorphic blocks H(q), the latter being q-hypergeometric series defined for
111
+ |q| ̸= 1. This leads to bilinear expressions for the state-integral in terms of H(q) times H(˜q)
112
+ (where q = e2πiτ and ˜q = e−2πi/τ) and bilinear expressions for the 3D-index in terms of H(q)
113
+ times H(q−1). This factorization is well-known in the physics literature [3] and interpreted
114
+ as partition function of the dual 3d superconformal field theory on D2 × S1. They are also
115
+ partially known for some examples of 3-manifolds in [17, 21]. We emphasize, however, that
116
+ the bilinear factorization of state-integrals and of the 3D-index is conjectural, and so is the
117
+ existence of the suitably normalized holomorphic blocks.
118
+ Another common feature to state-integrals and the 3D-index is that they are given by
119
+ integrals/lattice sums where the integrand/summand has a common annihilating ideal. This
120
+ implies that both state-integrals and the rotated 3D-index satisfy a pair of linear q-difference
121
+ equations which are in fact conjectured to be identical, and equal to the homogeneous part
122
+ of the linear q-difference equation for the colored Jones polynomial of a knot [19].
123
+ The
124
+ conjectured common linear q-difference equations for state-integrals and for the 3D-index
125
+ would also be a consequence of their common holomorphic block factorization. In physics
126
+ these linear q-difference equations are interpreted as Ward identities of Wilson-’t Hooft line
127
+ operators in the dual 3d superconformal field theory [8, 9].
128
+ 1.2. Descendants. Descendants appeared recently as computable, exponentially small cor-
129
+ rections to the asymptotics of the Kashaev invariant of a knot, refining the Volume Con-
130
+ jecture to all orders in perturbation theory to a Quantum Modularity Conjecture [22]. One
131
+ of the discoveries was that the Kashaev invariant of a knot is a distinguished (σ0, σ1)-entry
132
+
133
+ THE DESCENDANTS OF THE 3D-INDEX
134
+ 3
135
+ in a square matrix of knot invariants at roots of unity. The rows and columns of the ma-
136
+ trix are parametrized with boundary-parabolic PSL2(C)-representations, with σ0 denoting
137
+ the trivial representation and σ1 denoting the geometric representation of a hyperbolic knot
138
+ complement. The above mentioned matrix has remarkable algebraic, analytic and arithmetic
139
+ properties explained in detail in Section 5 of [22], and given explicitly for the 41 and 52 knots
140
+ in Sections 7.1 and 7.2 of i.b.i.d. The rows of the matrix are supposed to be
141
+ Q(q1/2)-linear
142
+ combinations of fundamental solutions to a linear q-difference equation (homogeneous for all
143
+ but the first row), thus the elements in each row are supposed to be descendants of each
144
+ other. Although the existence of such a matrix is conjectured, its top row was defined in [16]
145
+ for all knots in terms of the descendant Kashaev invariants of a knot.
146
+ The above mentioned matrix has three known realizations, one as functions at roots of
147
+ unity mentioned above, a second as a matrix of Borel summable asymptotic series and a
148
+ third as a matrix of q1/2-series. The idea of descendants can be extended to the matrix of
149
+ asymptotic series (whose first column are simply the vector of asymptotic series of the pertur-
150
+ bative Chern–Simons theory at a PSL2(C)-flat connection, and the remaining columns being
151
+ descendants of the first column) as well as to a matrix of q-series. This extension was done
152
+ for the case of the 41 and 52 knots by Mari˜no and two of the authors [13, Eqn.(13),App.A],
153
+ with the later addition of the trivial PSL2(C)-representation in [14, Sec.2.2,Sec.4.1].
154
+ To summarize, descendants are supposed to be the
155
+ Q(q1/2)-span of a fundamental solution
156
+ to a linear q-difference equation associated to the quantum invariants. It is becoming clear
157
+ that this span is a fundamental quantum invariant of 3-manifolds, and we want to present
158
+ further evidence for this using as an example an important quantum invariant, namely the
159
+ 3D-index.
160
+ 1.3. Our conjectures. A detailed study of the 3D-index of a 3-manifold with torus bound-
161
+ ary and its structural properties, namely holomorphic block factorization, linear q-difference
162
+ equations, computations and asymptotics was recently done in [20].
163
+ The goal of the present paper is to extend the properties of the 3D-index by allowing
164
+ observables, line operators, defects, descendants, all being synonymous names for the same
165
+ object. On the topological side, an observable is a knot L in a 3-manifold M, where in the
166
+ case of interest to us, M = S3 \ K is the complement of a knot in S3. On the algebra
167
+ side, the conjectural 3d-quantum trace map sends a knot L ⊂ S3 \ K to an element O
168
+ of a module over a q-Weyl algebra associated to an ideal triangulation T of M. We will
169
+ postpone the description of the 3d-quantum trace map to a subsequent publication. Now O
170
+ acts on the integrand/summand of the state-integral/3D-index, and by integrating/summing
171
+ one obtains a state-integral/3D-index with insertion O. On the physics side, O becomes a
172
+ line-operator supported on a line γ in the dual 3d N = 2 superconformal field theory T2[M]
173
+ under the 3d-3d correspondence [10, 26, 9, 7]. The 3d-3d correspondence can be understood
174
+ as a consequence of compactifying 6d N = 2 A1 superconformal field theory on the three
175
+ manifold M and on
176
+ R3 with topological twist along M. The 6d theory has surface operators
177
+ which can be supported on L × γ, giving rise to the correspondence between the defect L
178
+ in M and the line-operator on γ ⊂
179
+ R3 in T2[M] [8, 9]. Our goal is to study the structural
180
+ properties of the rotated, inserted, 3D-index Irot
181
+ T ,O(q). Although this is a
182
+ Z ×
183
+ Z matrix, we
184
+ will see that it is determined from the uninserted rotated 3D-index Irot
185
+ T (q) in terms of a pair
186
+
187
+ 4
188
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
189
+ of linear q-difference equations and a finite size invertible matrix with coefficients in the field
190
+ Q(q1/2); see Conjectures 3.3 and 3.6 below, illustrated by examples in Section 4.
191
+ We emphasize that our paper concerns conjectural structural properties of topological
192
+ invariants, such as the rotated inserted 3D-index, and not mathematical proofs. Nevertheless
193
+ the structure of these invariants is rich, and leads to startling predictions and numerical
194
+ conformations (see eg. Equation (36) below).
195
+ 2. Algebras of 3-dimensional ideal triangulations
196
+ We recall here a q-Weyl algebra associated to an ideal triangulation T which was first
197
+ considered by Dimofte on the context of the 3d-3d correspondence, and it was introduced as
198
+ an attempt to quantize the SL2(C)-character variety of an ideally triangulated 3-manifold M
199
+ using the symplectic structure of the Neumann–Zagier matrices, and following the ideas of
200
+ Hamiltonian reduction of symplectic phase-spaces [5]. Similar ideas appeared in subsequent
201
+ work [11].
202
+ We fix an ideal triangulation T of M with N ideal tetrahedra. This defines a q-Weyl
203
+ algebra
204
+ Wq(T ) =
205
+ Q(q)⟨�zj, �z′
206
+ j | j = 1, . . . , N⟩ of Laurent variables �zj, �z′
207
+ j that commute except
208
+ in the following instance �zj �z′
209
+ j = q�z′
210
+ j �zj for j = 1, . . . , N. A more symmetric way is to introduce
211
+ three invertible variables �z, �z′, �z
212
+ ′′ which satisfy the relations
213
+ �z�z′ = q�z′�z,
214
+ �z′�z′′ = q�z′′ �z′,
215
+ �z′′ �z = q�z�z′′,
216
+ �z�z′�z′′ = −q
217
+ (1)
218
+ (hence �z�z′�z′′ is in the center and it is invariant under cyclic permutations), and then
219
+ Wq(T )
220
+ is simply the tensor product of one algebra per tetrahedron. The combinatorics of the edge-
221
+ gluing equations of M have symplectic properties discovered by Neumann–Zagier [24, 23].
222
+ Using those properties, Dimofte [5] and later Gang et al [11] (see also [1, Eqn.(10)]) consider
223
+ the quotient
224
+ M(T ) =
225
+ Wq(T )/(Wq(T )(Lagrangians) + (edge equations)Wq(T ))
226
+ (2)
227
+ of
228
+ Wq(T ) by the left
229
+ Wq(T )-ideal generated by the Lagrangian equations
230
+ �z′−1 + �z − 1 = 0,
231
+ (�z
232
+ ′′)−1 + �z′ − 1 = 0,
233
+ �z−1 + �z
234
+ ′′ − 1 = 0
235
+ (3)
236
+ (one per each tetrahedron) plus the right ideal generated by the edge equations. This strange
237
+ quotient M(T ), which is no longer a module over a q-Weyl algebra, but only a
238
+ Q(q1/2)-vector
239
+ space is a natural object that indeed annihilates the rotated 3D-index as we will see shortly.
240
+ 3. The rotated 3D-index and its descendants
241
+ 3.1. Definition. For simplicity, in the paper we will focus on the action of the quantum
242
+ torus
243
+ Wq(T ) on the 3D-index IT , and in fact in its rotated form Irot
244
+ T
245
+ explained to us by Tudor
246
+ Dimofte and studied extensively in [20]. To begin with, we fix an ideal triangulation T with
247
+ N tetrahedra of a 3-manifold M whose torus boundary is marked by a pair of a meridian and
248
+ longitude. The building block of the 3D-index is the tetrahedron index I∆(m, e)(q) ∈
249
+ Z[[q1/2]]
250
+ defined by
251
+ I∆(m, e)(q) =
252
+
253
+
254
+ n=(−e)+
255
+ (−1)nq
256
+ 1
257
+ 2n(n+1)−(n+ 1
258
+ 2 e)m
259
+ (q; q)n(q; q)n+e
260
+ (4)
261
+
262
+ THE DESCENDANTS OF THE 3D-INDEX
263
+ 5
264
+ where e+ = max{0, e} and (q; q)n =
265
+ �n
266
+ i=1(1 − qi). If we wish, we can sum in the above
267
+ equation over the integers, with the understanding that 1/(q; q)n = 0 for n < 0.
268
+ The rotated 3D-index is given by
269
+ Irot
270
+ T (n, n′)(q) =
271
+
272
+ k∈ZN
273
+ ST (k, n, n′)(q)
274
+ (5)
275
+ where
276
+ ST (k, n, n′)(q) = (−q1/2)ν·k−(n−n′)νλqkN(n+n′)/2
277
+ N
278
+
279
+ j=1
280
+ I∆(λ′′
281
+ j (n−n′)−bj ·k, −λj(n−n′)+aj ·k)(q) (6)
282
+ is assembled out of a product of tetrahedra indicies I∆ evaluated to linear forms that depend
283
+ on the Neumann–Zagier matrices (A|B) of T . The detailed definition of the Neumann–Zagier
284
+ matrices is given in Appendix C.
285
+ Note that the degree δ(I∆(m, e)) of the tetrahedron index is a nonnegative piecewise
286
+ quadratic function of (m, e)
287
+ δ(I∆(m, e)) = 1
288
+ 2 (m+(m + e)+ + (−m)+e+ + (−e)+(−e − m)+ + max{0, m, −e}) .
289
+ (7)
290
+ It follows that for 1-efficient triangulations (see [15]) the degree of the summand in (5) is
291
+ bounded below by a positive constant times max{|k1|, |k2|, . . ., |kN|}, thus the sum in (5) is
292
+ a well-defined element of
293
+ Z((q1/2)).
294
+ The topological invariance of the 3D-index is a bit subtle, since the definition requires
295
+ 1-efficient ideal triangulations, and the latter are not known to be connected under 2–3
296
+ Pachner moves.
297
+ Nonetheless, in [15], it was shown that the 3D-index (and likewise, its
298
+ rotated version) is a topological invariant of cusped hyperbolic 3-manifolds. An alternative
299
+ proof of this fact was given in [18], where the rotated 3D-index was reformulated in terms
300
+ of a meromorphic function of two variables.
301
+ 3.2. Factorization and holomorphic blocks. From its very definition as a sum of proper
302
+ q-hypergeometric series, it follows that Irot
303
+ T (n, n′)(q) is a q-holonomic function of n and
304
+ n′ [27, 25]. But more is true. The rotated 3D-index factorizes into a sum of a product of
305
+ pairs of colored holomorphic blocks. This holomorphic block factorization is a well-known
306
+ phenomenon explained in [3], and most recently in [20] whose presentation we will follow.
307
+ Let us recall how this works. We can assemble the collection Irot
308
+ T (n, n′)(q) of q-series indexed
309
+ by pairs of integers into a
310
+ Z ×
311
+ Z matrix Irot
312
+ T (q) whose (n, n′) entry is Irot
313
+ T (n, n′)(q). Then,
314
+ in [20] we explained the origin of the following conjecture for the rotated 3D-index.
315
+ Conjecture 3.1. For every 1-efficient triangulation T there exists a palindromic linear q-
316
+ difference operator �AT of order r with a fundamental solution
317
+ Z × r matrix HT (q) and a
318
+ symmetric, invertible r × r matrix BT with rational entries such that
319
+ Irot
320
+ T (q) = HT (q)BT HT (q−1)t .
321
+ (8)
322
+ When the triangulation is fixed and clear, we will drop it from the notation. If we denote
323
+ the (n, α) entry of HT (q) whose (n, α) entry by h(α)
324
+ n (q), these functions are the so-called
325
+
326
+ 6
327
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
328
+ colored holomorphic blocks.
329
+ It follows that the matrix H(q) is a (properly normalized)
330
+ fundamental solution to a pair of q-difference equations
331
+ �AT (M+, L+)H(q) = 0,
332
+ �AT (M−, L−)H(q−1) = 0,
333
+ (9)
334
+ where the operators act respectively by
335
+ M+h(α)
336
+ n (q) = qnh(α)
337
+ n (q),
338
+ L+h(α)
339
+ n (q) = h(α)
340
+ n+1(q)
341
+ M−h(α)
342
+ n (q−1) = q−nh(α)
343
+ n (q−1),
344
+ L−h(α)
345
+ n (q−1) = h(α)
346
+ n+1(q−1).
347
+ (10)
348
+ Consequently the rotated 3D-index satisfies a pair of (left and right) linear q-difference
349
+ equations
350
+ �AT (M+, L+)Irot
351
+ T
352
+ = �AT (M−, L−)Irot
353
+ T
354
+ = 0
355
+ (11)
356
+ acting in a decoupled way on each of the rows and columns of Irot
357
+ T .
358
+ The factorization (8) of the rotated 3D-index and the left and right linear q-difference
359
+ equations (11) imply the following.
360
+ Corollary 3.2. (of Conjecture 3.1) The rotated 3D-index Irot
361
+ T (q) is uniquely determined by
362
+ (1) the r × r matrix Irot
363
+ T (q)[r] and
364
+ (2) the pair of linear q-difference equations (11).
365
+ Here, Irot
366
+ T (q)[r] denotes the r × r matrix (Irot
367
+ T (n, n′)(q)) for 0 ≤ n, n′ ≤ r − 1.
368
+ The holomorphic blocks satisfy the symmetry
369
+ h(α)
370
+ T ,n(q) = h(α)
371
+ T ,−n(q)
372
+ (12)
373
+ for all α and all integers n, which together with Equation (8) implies the symmetries
374
+ Irot
375
+ T (n, n′)(q) = Irot
376
+ T (n, −n′)(q) = Irot
377
+ T (−n, n′)(q) = Irot
378
+ T (−n, −n′)(q) ,
379
+ (13)
380
+ and
381
+ Irot
382
+ T (n, n′)(q−1) = Irot
383
+ T (n′, n)(q) ,
384
+ (14)
385
+ for the rotated 3D-index.
386
+ Let us finally mention that the colored holomorphic blocks can be computed by the limit
387
+ as x → 1
388
+ Irot
389
+ T (n, n′)(q) = lim
390
+ x→1
391
+
392
+ α
393
+ B(α)
394
+ T (q−n′x−1; q−1)B(α)
395
+ T (qnx; q) .
396
+ (15)
397
+ of the x-deformed holomorphic blocks B(α)
398
+ T (x; q) and the latter can be determined from a
399
+ factorization of an appropriate state-integral.
400
+ 3.3. Descendants. There is an important
401
+ Q(q)-linear action of
402
+ Wq(T ) on the set of func-
403
+ tions ST (k, n, n′)(q) giving rise to a map
404
+ Wq(T ) →
405
+ Z((q1/2))
406
+ ZN×Z2
407
+ (16)
408
+ which descends to a push-forward
409
+ Q(q1/2)-linear map
410
+ M(T ) →
411
+ Z((q1/2))
412
+ Z2,
413
+ O �→ Irot
414
+ T ,O .
415
+ (17)
416
+
417
+ THE DESCENDANTS OF THE 3D-INDEX
418
+ 7
419
+ Concretely, when O =
420
+ �N
421
+ j=1 �z
422
+ αj
423
+ j (�z
424
+ ′′
425
+ j )βj, we have
426
+ Irot
427
+ T ,O(n, n′)(q) =
428
+
429
+ k∈ZN
430
+ (O ◦ ST )(k, n, n′)(q) ,
431
+ (18)
432
+ where
433
+ (O ◦ ST )(k, n, n′)(q) = (−q1/2)ν·k−(n−n′)νλqkN(n+n′)/2+LO(n,n′,k)
434
+ ×
435
+ N
436
+
437
+ j=1
438
+ I∆(λ′′
439
+ j (n − n′) − bj · k + βj, −λj(n − n′) + aj · k − αj)(q) ,
440
+ (19)
441
+ LO(n, n′, k) = 1
442
+ 2
443
+ N
444
+
445
+ j=1
446
+ �αj(λ′′
447
+ j n − λ′′
448
+ jn′ − bj · k) + βj(−λjn + λjn′ + aj · k) − αjβj
449
+
450
+ (20)
451
+ This action was written down explicitly in [1, Eqn.(104)]. The symmetries of the tetrahe-
452
+ dron index [8, Eqns.(136)] imply that the three Lagrangian operators given in Equation (3)
453
+ annihilate ST (k, n, n′)(q), and thus the sum Irot
454
+ T (n, n′)(q). In addition, the insertion Ei cor-
455
+ responding to the i-th edge (for i = 1, . . ., N − 1) when quantized as in [5] satisfies
456
+ (Ei ◦ ST )(k, n, n′) = qST (k − ei, n, n′)
457
+ (21)
458
+ Summing over k, this implies that Ei − q annihilates Irot
459
+ T (n, n′)(q). Thus, Irot
460
+ T ,O(n, n′)(q) is
461
+ well-defined for all O ∈ M(T ), justifying the strange quotient given in Equation (2). Note
462
+ that the action of the edge operators considered in [5] differs by factor of q from that of [1,
463
+ Eqn.(130)].
464
+ Our conjecture relates the colored holomorphic blocks and the rotated 3D-index of T
465
+ to those of (T , O). Simply put, it asserts that inserting O simply changes the invariants
466
+ (Z((q1/2))-series) by multiplication of a matrix of rational functions, and changes the left
467
+ q-difference equation whereas it preserves the right one. This implies that the
468
+ Q(q1/2)-span
469
+ of the collection {Irot
470
+ T ,O(q) | O ∈ M(T )} is a finite dimensional
471
+ Q(q1/2)-vector space.
472
+ Fix a 1-efficient ideal triangulation T of a 1-cusped 3-manifold M.
473
+ Conjecture 3.3. For every O ∈ M(T )
474
+ (a) there exists a linear q-difference operator �AT ,O with a fundamental solution matrix
475
+ HT ,O(q) such that
476
+ Irot
477
+ T ,O(q) = HT ,O(q)BT HT (q−1)t ,
478
+ (22)
479
+ (b) there exists QT ,O(q) ∈ GLr(Q(q1/2)) such that
480
+ Irot
481
+ T ,O[r] = QT ,OIrot[r],
482
+ HT ,O[r] = QT ,OH[r] .
483
+ (23)
484
+ The above conjecture implies the following.
485
+ Corollary 3.4. (of Conjecture 3.3) The rotated 3D-index Irot
486
+ T ,O(q) is uniquely determined by
487
+ (1) the r × r matrices Irot
488
+ T (q)[r] and QT ,O(q)
489
+ (2) the pair of linear q-difference equations �AT ,O and �AT .
490
+
491
+ 8
492
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
493
+ Another corollary of the above conjecture concerns the descendants of the rotated 3D-
494
+ index, analogous to the descendants of the colored Jones polynomial of a knot defined in [16]
495
+ and the descendants of the holomorphic blocks defined in [13, Eqn.(13), App.A]. To phrase
496
+ it, let
497
+ DIrot
498
+ T
499
+ = Span
500
+ Q(q1/2){Irot
501
+ T (n, n′)(q) | n, n′ ∈
502
+ Z}
503
+ (24)
504
+ denote the
505
+ Q(q1/2)-span of the elements Irot
506
+ T (n, n′) of the ring
507
+ Q((q1/2)). Note that DIrot
508
+ T
509
+ is
510
+ a finite dimensional vector space over the field
511
+ Q(q1/2). Likewise, one defines Irot
512
+ T ,O. The next
513
+ corollary justifies the title of the paper.
514
+ Corollary 3.5. (of Conjecture 3.3) We have:
515
+ ∪O∈M(T ) DIrot
516
+ T ,O = DIrot
517
+ T .
518
+ (25)
519
+ In other words, the descendants DIrot
520
+ T ,O of the rotated 3D-index DIrot
521
+ T
522
+ are expressed effec-
523
+ tively by a finite-size matrix with entries in
524
+ Q(q1/2).
525
+ We now formulate a relative version of the AJ-Conjecture. Let �A(M, L)|q=1 = A(M, L)
526
+ denote the classical limit of a linear q-difference equation. The AJ-Conjecture [12] relates
527
+ the classical limit of the �A-polynomial with the A-polynomial of a knot given in [4].
528
+ Conjecture 3.6. For every O ∈ M(T ), we have
529
+ AT ,O(M, L) =M AT (M, L)
530
+ (26)
531
+ where =M means equality up to multiplication by a nonzero function of M.
532
+ 3.4. Asymptotics. A consequence of Conjecture (3.3) (and Equation (22)) is that the all-
533
+ order asymptotics of the colored holomorphic blocks h(α)
534
+ T ,O,n(q) and the Irot
535
+ T ,O(n, n′)(q) are a
536
+ Q(q)-linear combination of those of h(α)
537
+ T ,n(q) and Irot
538
+ T (n, n′)(q), respectively. The asymptotics
539
+ of the latter were studied in detail in [20].
540
+ A corollary of this and Conjecture 3.6 is a
541
+ resolution and an explanation from first principles, of the quantum length conjecture of [1].
542
+ 4. Examples
543
+ In this section we illustrate our conjectures with the case of the three simplest hyperbolic
544
+ knots, the 41 (figure eight) knot, the 52 knot and the (−2, 3, 7) pretzel knot.
545
+ 4.1. The 41 knot and its rotated 3D-index. The complement of the 41 knot has an ideal
546
+ triangulation with two tetrahedra. Using the gluing equation matrices
547
+ G =
548
+
549
+
550
+
551
+
552
+
553
+ 2
554
+ 2
555
+ 0
556
+ 0
557
+ 1
558
+ 0
559
+ 1
560
+ 1
561
+
562
+
563
+
564
+
565
+  ,
566
+ G′ =
567
+
568
+
569
+
570
+
571
+
572
+ 1
573
+ 1
574
+ 1
575
+ 1
576
+ 0
577
+ 0
578
+ 1
579
+ −1
580
+
581
+
582
+
583
+
584
+  ,
585
+ G′′ =
586
+
587
+
588
+
589
+
590
+
591
+ 0
592
+ 0
593
+ 2
594
+ 2
595
+ 0
596
+ −1
597
+ 1
598
+ −3
599
+
600
+
601
+
602
+
603
+  ,
604
+ (27)
605
+ with the conventions explained in Appendix C, we obtain the matrices
606
+ A =
607
+
608
+ 1
609
+ 1
610
+ 1
611
+ 0
612
+
613
+ , B =
614
+
615
+ −1
616
+ −1
617
+ 0
618
+ −1
619
+
620
+ , ν =
621
+
622
+ 0
623
+ 0
624
+
625
+ (28)
626
+
627
+ THE DESCENDANTS OF THE 3D-INDEX
628
+ 9
629
+ in terms of which, the rotated 3D-index is given by
630
+ Irot
631
+ 41 (n, n′)(q) =
632
+
633
+ k1,k2∈Z
634
+ qk2(n+n′)/2I∆(k1, k1 + k2)(q)I∆(k1 + k2 − n + n′, k1 − n + n′)(q) (29)
635
+ where I∆ is the tetrahedron index given in (4). (The above formula agrees with [1, Eqn.(108)]
636
+ after a shift k1 �→ k1 − k2). Using Equation (7), it follows that the degree of the summand
637
+ in (29) is bounded below by a positive constant times max{|k1|, |k2|}, thus the sum in (29)
638
+ is a well-defined element of
639
+ Z((q1/2)).
640
+ 4.2. Factorization. In this section we briefly summarize the properties of the rotated 3D-
641
+ index of the 41 knot following [20], namely its factorization in terms of colored holomorphic
642
+ blocks, the linear q-difference equation, their symmetries and their asymptotics. All the
643
+ functions in this section involve the knot 41, which we suppress from the notation.
644
+ The rotated 3D-index is given by [20, Prop.9]
645
+ Irot
646
+ 41 (n, n′)(q) = −1
647
+ 2h(1)
648
+ 41,n′(q−1)h(0)
649
+ 41,n(q) + 1
650
+ 2h(0)
651
+ 41,n′(q−1)h(1)
652
+ 41,n(q)
653
+ (n, n′ ∈
654
+ Z)
655
+ (30)
656
+ with the colored holomorphic blocks h(0)
657
+ 41,n(q) and h(1)
658
+ 41n(q) given in the Appendix A.
659
+ The colored holomorphic blocks satisfy the symmetries
660
+ h(0)
661
+ 41,n(q−1) = h(0)
662
+ 41,n(q),
663
+ h(1)
664
+ 41,n(q−1) = −h(1)
665
+ 41,n(q) ,
666
+ (31)
667
+ and
668
+ h(α)
669
+ 41,−n(q) = h(α)
670
+ 41,n(q),
671
+ α = 0, 1 ,
672
+ (32)
673
+ and the linear q-difference equation [20, Eqn.(63)]
674
+ P41,0(qn, q)h(α)
675
+ n (q) + P41,1(qn, q)h(α)
676
+ n+1(q) + P41,2(qn, q)h(α)
677
+ n+2(q) = 0
678
+ (α = 0, 1, n ∈
679
+ Z) (33)
680
+ where
681
+ P41,0(x, q) = q2x2(q3x2 − 1) ,
682
+ P41,1(x, q) = −q1/2(1 − q2x2)(1 − qx − qx2 − q3x2 − q3x3 + q4x4) ,
683
+ P41,2(x, q) = q3x2(−1 + qx2) .
684
+ (34)
685
+ We denote the corresponding operator of the q-difference equation (33) by
686
+ �A41(x, σ, q) =
687
+ �2
688
+ j=0 P41,j(x, q)σj.
689
+ 4.3. Defects. We now consider two defects. The first one is the element
690
+ O = −�y−1 − �z−1 + �y−1�z−1 ∈ M(T )
691
+ (35)
692
+ from [1, Eqn.(81)]. Computing the values of Irot
693
+ 41 (n, n′)(q) and Irot
694
+ 41,O(n, n′)(q) for 0 ≤ n, n′ ≤ 1
695
+ up to O(q121), we find out that the 2 × 2 matrices
696
+ Irot
697
+ 41 (q)[2] =
698
+
699
+ 1 − 8q − 9q2 + 18q3 + 46q4 + 90q5 + 62q6 + 10q7 + . . .
700
+ −q−1/2 + q1/2 − q3/2 + 6q5/2 + 20q7/2 + 29q9/2 + 25q11/2 + . . .
701
+ −q−1/2 + q1/2 − q3/2 + 6q5/2 + 20q7/2 + 29q9/2 + . . .
702
+ 2q + 2q2 + 7q3 + 8q4 + 3q5 − 22q6 − 67q7 + . . .
703
+
704
+
705
+ 10
706
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
707
+ and
708
+ Irot
709
+ 41,O(q)[2] =
710
+
711
+ −3 + 15q + 24q2 − 15q3 − 69q4 − 174q5 − 183q6 − 165q7 + . . .
712
+ 2q−1/2 − q1/2 + 4q3/2 − 7q5/2 − 34q7/2 − 64q9/2 + . . .
713
+ q−3/2 − q−1/2 − q1/2 + q3/2 − 5q5/2 − 26q7/2 − 48q9/2 + . . .
714
+ −1 − 2q − 4q2 − 9q3 − 17q4 − 13q5 + 10q6 + 77q7 + . . .
715
+
716
+ satisfy
717
+ (q − 1)Irot
718
+ 41,O(q)[2](Irot(q)41[2])−1 =
719
+
720
+ 2 − q
721
+ −q1/2
722
+ q1/2
723
+ −q − 1 + q−1
724
+
725
+ + O(q121)
726
+ (36)
727
+ illustrating the dramatic collapse of the q-series into short rational functions of q1/2. This
728
+ implies that the matrix Q41,O(q) is given by
729
+ Q41,O(q) =
730
+ 1
731
+ q − 1
732
+
733
+ 2 − q
734
+ −q1/2
735
+ q1/2
736
+ −q − 1 + q−1
737
+
738
+ (37)
739
+ with det(Q41,O)(q) = 1 + 2q−1.
740
+ After computing the values of Irot
741
+ 41,O(n, 0)(q)+O(q120) for n = 0, . . ., 10 and finding a short
742
+ linear recursion among three consecutive values, and further interpolating for all n, we found
743
+ out that the left
744
+ �A-polynomial of Irot
745
+ 41,O(q) is given by
746
+ �A41,O(x, σ, q) = �2
747
+ j=0 P41,O,j(x, q)σj
748
+ where
749
+ P41,O,0(x, q) = q3/2x2(−1 + q3x2)(1 + qx + q3x2) ,
750
+ P41,O,1(x, q) = (−1 + qx)(1 + qx)
751
+ (1 + x − qx − qx2 − q3x2 − qx3 − 2q3x3 − q5x3 − q3x4 − q5x4 + q4x5 − q5x5 + q6x6) ,
752
+ P41,O,2(x, q) = q7/2x2(−1 + qx2)(1 + x + qx2) .
753
+ (38)
754
+ The �A41,O polynomial is palindromic, and together with the skew-symmetry of the Q41,O(q)
755
+ matrix, it follows that the colored holomorphic blocks h(0)
756
+ 41,O,n(q) and h(1)
757
+ 41,O,n(q) satisfy the
758
+ symmetries (31) and (32).
759
+ When we set q = 1, we obtain
760
+ �A41,O(x, σ, 1) = 2(x2 − 1)(x2 + x + 1) �A41(x, σ, 1)
761
+ (39)
762
+ confirming Conjecture 3.6.
763
+ Equation (37) and the recursion (38) imply that for all integers n and n′, Irot
764
+ 41,O(n, n′)(q) is
765
+ a
766
+ Q(q1/2)-linear combination of the three q-series Irot
767
+ 41 (0, 0)(q), Irot
768
+ 41 (0, 1)(q) and Irot
769
+ 41 (1, 0)(q).
770
+ For instance, Equation (23) implies that
771
+ Irot
772
+ 41,O(0, 0)(q) =
773
+ 1
774
+ q−1((2 − q)Irot
775
+ 41 (0, 0)(q) − q
776
+ 1
777
+ 2Irot
778
+ 41 (0, 1)(q))
779
+ (40)
780
+ and likewise for other values of Irot
781
+ 41,O(n, n′)(q). This reduces the problem of the asymptotic
782
+ expansion of Irot
783
+ 41,O(n, n′)(q) for q = e2πiτ to all orders in τ as τ tends to zero in a ray
784
+ (nearly vertically, horizontally, or otherwise) to the problem of the asymptotics of colored
785
+ holomorphic blocks and of the rotated 3D-index. This problem was studied in detail and
786
+ solved in the work of Wheeler and the second author [20, Sec.5.7,5.8] for the 41 knot.
787
+ As a second example, consider the element
788
+ O2 = �y−1 ∈ M(T ) .
789
+ (41)
790
+
791
+ THE DESCENDANTS OF THE 3D-INDEX
792
+ 11
793
+ Repeating the above computations, we find out that the matrix Q41,O2(q) is given by
794
+ Q41,O2(q) =
795
+ 1
796
+ q − 1
797
+
798
+ −1
799
+ q1/2
800
+ −q1/2
801
+ −q2 + 2q + 1 − q−1
802
+
803
+ (42)
804
+ with det(Q41,O2)(q) = 1 + q−1, and that the left
805
+ �A-polynomial of Irot
806
+ 41,O2(q) is given by
807
+ �A41,O2(x, σ, q) = �2
808
+ j=0 P41,O2,j(x, q)σj where
809
+ P41,O2,0(x, q) = q3/2x2(−1 + q2x)(1 + q2x) ,
810
+ P41,O2,1(x, q) = (−1 + q3x2)(1 − qx − q2x2 − q4x2 − q4x3 + q6x4) ,
811
+ P41,O2,2(x, q) = q7/2x2(−1 + qx)(1 + qx) .
812
+ (43)
813
+ In this case, we lose the Weyl-invariance symmetry of the colored holomorphic blocks, but
814
+ we retain the AJ Conjecture 3.6 since
815
+ �A41,O2(x, σ, 1) = (x2 − 1) �A41(x, σ, 1) .
816
+ (44)
817
+ 4.4. The 52 knot and its rotated 3D-index. The complement of the 52 knot has an ideal
818
+ triangulation with three tetrahedra. Using the gluing equation matrices
819
+ G =
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+ 1
828
+ 1
829
+ 1
830
+ 0
831
+ 0
832
+ 0
833
+ 1
834
+ 1
835
+ 1
836
+ −1
837
+ 0
838
+ 0
839
+ 3
840
+ 2
841
+ 1
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+ ,
850
+ G′ =
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+ 0
859
+ 2
860
+ 0
861
+ 1
862
+ 0
863
+ 1
864
+ 1
865
+ 0
866
+ 1
867
+ 0
868
+ 0
869
+ 0
870
+ 1
871
+ 2
872
+ 1
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+ ,
881
+ G′′ =
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+ 1
890
+ 0
891
+ 1
892
+ 1
893
+ 2
894
+ 1
895
+ 0
896
+ 0
897
+ 0
898
+ 0
899
+ 1
900
+ 0
901
+ −1
902
+ 0
903
+ 3
904
+
905
+
906
+
907
+
908
+
909
+
910
+
911
+ ,
912
+ (45)
913
+ with the conventions explained in Appendix C, we obtain the matrices
914
+ A =
915
+
916
+
917
+
918
+ 1
919
+ −1
920
+ 1
921
+ −1
922
+ 0
923
+ −1
924
+ −1
925
+ 0
926
+ 0
927
+
928
+
929
+  ,
930
+ B =
931
+
932
+
933
+
934
+ 1
935
+ −2
936
+ 1
937
+ 0
938
+ 2
939
+ 0
940
+ 0
941
+ 1
942
+ 0
943
+
944
+
945
+  ,
946
+ ν =
947
+
948
+
949
+
950
+ 0
951
+ 0
952
+ 0
953
+
954
+
955
+  .
956
+ (46)
957
+ The rotated 3D-index is given by
958
+ Irot
959
+ 52 (n, n′)(q) =
960
+
961
+ k1,k2,k3∈Z
962
+ qk3(n+n′)/2I∆(k1 − k2, k3 + k2 + n − n′)
963
+ × I∆(−k1 + 2k2 − n + n′, k3 + 2k1 − 2k2 + n − n′)I∆(k3 + k1 − k2 + n − n′, k2 − 2n + 2n′) .
964
+ (47)
965
+ Equation (7) implies that the degree of the summand in (47) is bounded below by a positive
966
+ constant times max{|k1|, |k2|, |k3|}, thus the sum in (47) is a well-defined element of
967
+ Z((q1/2)).
968
+ 4.5. Factorization. The 52 knot has three colored holomorphic blocks h(α)
969
+ n (q) for α = 0, 1, 2,
970
+ n an integer and q a complex number |q| ̸= 1, whose definition in terms of q-hypergeometric
971
+ series was given in [20, App.A] and reproduced for the convenience of the reader in Appendix
972
+ B. The rotated 3D-index is given by [20, Prop.13]
973
+ Irot
974
+ 52 (n, n′)(q) = −1
975
+ 2h(0)
976
+ 52,n′(q−1)h(2)
977
+ 52,n(q) − h(1)
978
+ 52,n′(q−1)h(1)
979
+ 52,n(q) − 1
980
+ 2h(2)
981
+ 52,n′(q−1)h(0)
982
+ 52,n(q) .
983
+ (48)
984
+ The colored holomorphic blocks satisfy the symmetries
985
+ h(α)
986
+ 52,−n(q) = h(α)
987
+ 52,n(q),
988
+ α = 0, 1, 2 .
989
+ (49)
990
+
991
+ 12
992
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
993
+ and the linear q-difference equation [20, Eqn.(63)]
994
+ P52,0(qn, q)h(α)
995
+ n (q) + P52,1(qn, q)h(α)
996
+ n−1(q) + P52,2(qn, q)h(α)
997
+ n−2(q) + P52,3(qn, q)h(α)
998
+ n−3(q) = 0 ,
999
+ (50)
1000
+ for all α = 0, 1, 2 and all integers n, where [20, Eqn.(126)]
1001
+ P52,0(x, q) = −q−2x2(1 − q−2x)(1 + q−2x)(1 − q−5x2) ,
1002
+ P52,1(x, q) = q3/2x−3(1 − q−1x)(1 + q−1x)(1 − q−5x2)
1003
+ · (1 − q−1x − q−1x2 − q−4x2 + q−2x2 + q−3x2 + q−2x3 + q−5x3 + q−5x4 + q−5x4 − q−6x5) ,
1004
+ P52,2(x, q) = q5x−5(1 − q−2x)(1 + q−2x)(1 − q−1x2)
1005
+ · (1 − q−2x − q−2x − q−2x2 − q−5x2 + q−4x3 + q−7x3 − q−5x3 − q−6x3 + q−7x4 − q−9x5) ,
1006
+ P52,3(x, q) = q
1007
+ 11
1008
+ 2 x−5(1 − q−1x)(1 + q−1x)(1 − q−1x2) .
1009
+ (51)
1010
+ 4.6. Defects. We now consider two defects O1 and O2 given by
1011
+ O1 = �z1
1012
+ O2 = �z1 + �z3 .
1013
+ (52)
1014
+ Computing the 3×3 matrix of the rotated 3D-index with and without insertion up to O(q81),
1015
+ and dividing one matrix by another, we found out that the corresponding 3 × 3 matrices
1016
+ QOj(q) + O(q81) for j = 1, 2 are given by
1017
+ Irot
1018
+ 52,O1(q)[3](Irot
1019
+ 52 (q)[3])−1 =
1020
+ 1
1021
+ (1 − q2)(1 − q3)·
1022
+
1023
+ −q2 − q3 − q4
1024
+ q1/2 − q3/2 + q7/2 + 2q9/2 + 2q11/2 − q13/2
1025
+ −q7
1026
+ −q3/2 − q5/2 − q7/2
1027
+ 1 − q + q3 + 2q4 + 2q5 − q6
1028
+ −q13/2
1029
+ −1 − q−2 − q−1
1030
+ −q−5/2 + 2q−3/2 + 2q−1/2 + q1/2 − q5/2 + q7/2
1031
+ −q3
1032
+
1033
+ + O(q81)
1034
+ (53)
1035
+ and
1036
+ Irot
1037
+ 52,O2(q)[3](Irot
1038
+ 52 (q)[3])−1 =
1039
+ 1
1040
+ (1 − q2)(1 − q3)·
1041
+
1042
+ −q − 2q2 − q3 + q5
1043
+ q1/2 + q5/2 + q7/2 + q9/2 + q11/2 − q13/2
1044
+ −q7
1045
+ −q−1/2 − q3/2 − q7/2
1046
+ 4 − q−1 − q − q2 − q3 + q4 + 5q5 − 2q6
1047
+ q11/2 − 2q13/2
1048
+ −2 + q−4 + q−3 − q−2 − 2q−1
1049
+ q−9/2 − 2q−7/2 − 4q−5/2 + 2q−3/2 + 4q−1/2 + 4q1/2 − q3/2 − 2q5/2 + 2q7/2
1050
+ 1 + q − q2 − 2q3
1051
+
1052
+ +O(q81)
1053
+ (54)
1054
+ illustrating Corollary 3.5 of Conjecture 3.3.
1055
+ 4.7. The (−2, 3, 7)-pretzel knot. As a final experiment, we studied the rotated 3D-index
1056
+ of the (−2, 3, 7) pretzel-knot. This knot is interesting in several ways, and exhibits behavior
1057
+ of general hyperbolic knots. The complement of the (−2, 3, 7)-pretzel knot is geometrically
1058
+ similar to that of the 52 knot, i.e., both are obtained by the gluing of three three ideal
1059
+ tetrahedra, only put together in a combinatorially different way. Thus, the 52 and (−2, 3, 7)
1060
+ pretzel knots have the same cubic trace field, and the same real volume. But the similarities
1061
+ end there. The 52 knots has three boundary parabolic PSL2(C)-representations, all Galois
1062
+ conjugate to the geometric one.
1063
+ On the other hand, one knows from [22] and [21] that
1064
+ the (−2, 3, 7)-pretzel knot has 6 colored holomorphic blocks, corresponding to the fact that
1065
+ the (−2, 3, 7)-pretzel knot has 6 boundary parabolic representations, three coming from the
1066
+ Galois orbit of the geometric PSL2(C)-representation (defined over the cubic trace field of
1067
+ discriminant −23) and three more coming from the Galois orbit of a PSL2(C)-representation
1068
+
1069
+ THE DESCENDANTS OF THE 3D-INDEX
1070
+ 13
1071
+ defined over the totally real abelian field
1072
+ Q(cos(2π/7)). Although [21] gives explicit expres-
1073
+ sions for the 6 × 6 matrices of the holomorphic blocks (inside and outside the unit disk), the
1074
+ colored holomorphic blocks have not been computed, partly due to the complexity of the
1075
+ calculation.
1076
+ Going back to the 3D-index of the (−2, 3, 7) knot, the gluing equation matrices are
1077
+ G =
1078
+
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+
1085
+ 1
1086
+ 1
1087
+ 1
1088
+ 1
1089
+ 0
1090
+ 0
1091
+ 0
1092
+ 1
1093
+ 1
1094
+ 0
1095
+ 0
1096
+ −1
1097
+ −1
1098
+ 1
1099
+ −18
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+ ,
1108
+ G′ =
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+
1115
+
1116
+ 1
1117
+ 0
1118
+ 0
1119
+ 0
1120
+ 2
1121
+ 2
1122
+ 1
1123
+ 0
1124
+ 0
1125
+ 0
1126
+ 0
1127
+ 0
1128
+ 1
1129
+ −1
1130
+ −2
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+ ,
1139
+ G′′ =
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+ 0
1148
+ 1
1149
+ 0
1150
+ 2
1151
+ 1
1152
+ 0
1153
+ 0
1154
+ 0
1155
+ 2
1156
+ 2
1157
+ 0
1158
+ 0
1159
+ 35
1160
+ 1
1161
+ 0
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+ ,
1170
+ (55)
1171
+ with the conventions explained in Appendix C, from which we obtain that
1172
+ A =
1173
+
1174
+
1175
+
1176
+ 0
1177
+ 1
1178
+ 1
1179
+ 1
1180
+ −2
1181
+ −2
1182
+ 0
1183
+ 0
1184
+ −1
1185
+
1186
+
1187
+  ,
1188
+ B =
1189
+
1190
+
1191
+
1192
+ −1
1193
+ 1
1194
+ 0
1195
+ 2
1196
+ −1
1197
+ −2
1198
+ 2
1199
+ 0
1200
+ 0
1201
+
1202
+
1203
+  ,
1204
+ ν =
1205
+
1206
+
1207
+
1208
+ 1
1209
+ −2
1210
+ 0
1211
+
1212
+
1213
+  .
1214
+ (56)
1215
+ The rotated 3D-index is given by
1216
+ Irot
1217
+ (−2,3,7)(n, n′)(q) =
1218
+
1219
+ k1,k2,k3∈ Z
1220
+ (−q1/2)k1−2k2−n+n′qk3(n+n′)/2I∆(k1 − 2k2 − 2k3 + 17n − 17n′, k2 + n − n′)
1221
+ × I∆(−k1 + k2 + n − n′, k1 − 2k2 − n + n′)I∆(2k2 + n − n′, k1 − 2k2 − k3 + 8n − 8n′) .
1222
+ (57)
1223
+ So, in our final experiment we computed the rotated 3D-index of the (−2, 3, 7) pretzel-
1224
+ knot, and more precisely the 6×6 matrix Irot
1225
+ (−2,3,7)(q)[6]. To give an idea of what this involves,
1226
+ the leading term of the above matrix is
1227
+ Irot
1228
+ (−2,3,7)(q)[6] =
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+ 1
1236
+ −q−9/2
1237
+ q−19
1238
+ −q−87/2
1239
+ q−78
1240
+ −q−245/2
1241
+ −q9/2
1242
+ 6q2
1243
+ −q−27/2
1244
+ q−38
1245
+ −q−145/2
1246
+ q−117
1247
+ q17
1248
+ −q27/2
1249
+ q
1250
+ −q−45/2
1251
+ q57
1252
+ −q−203/2
1253
+ −q75/2
1254
+ q34
1255
+ −q45/2
1256
+ q4
1257
+ −q−63/2
1258
+ q−76
1259
+ q66
1260
+ −q125/2
1261
+ q51
1262
+ −q63/2
1263
+ q2
1264
+ −q−81/2
1265
+ −q205/2
1266
+ q99
1267
+ −q175/2
1268
+ q68
1269
+ −q81/2
1270
+ q6
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+ (58)
1278
+ and this alone required an internal truncation of the summand of (57) up to O(q103). For
1279
+ safety, we computed up to O(q160) and we found out that the last computed coefficients of
1280
+ Irot
1281
+ (−2,3,7)(q)[6] were given by
1282
+
1283
+ 3099301802486871q158
1284
+ 15368338814987064q315/2
1285
+ 39577501827964202q158
1286
+ −717771103116611523q315/2
1287
+ −7908419005020915850q158
1288
+ 1907856058463675359575q315/2
1289
+ −2510483414752309q315/2
1290
+ 3797180920247821q158
1291
+ 46280099948395184q315/2
1292
+ −661349858819489021q158
1293
+ 6373738664932074312q315/2
1294
+ 1164148757149541167314q158
1295
+ −830392595916755q158
1296
+ −1589679235709546q315/2
1297
+ 5002197250330240q158
1298
+ −59052244117713785q315/2
1299
+ 4279809698340893447q158
1300
+ −25447538708964750026q315/2
1301
+ 21883932028960q315/2
1302
+ 52039830772006q158
1303
+ −208430252255007q315/2
1304
+ 5021231467477637q158
1305
+ −203334247925102214q315/2
1306
+ −14980307260595602909q158
1307
+ 68212497673q158
1308
+ −14703374329q315/2
1309
+ −986065940989q158
1310
+ 1182082042782q315/2
1311
+ 3294633659679268q158
1312
+ 225454885754595400q315/2
1313
+ 7690268q315/2
1314
+ 27909767q158
1315
+ −486018210q315/2
1316
+ −12829067397q158
1317
+ 3046756706011q315/2
1318
+ 1068804228132263q158
1319
+
1320
+ On the other hand, the determinant of Irot
1321
+ (−2,3,7)(q)[6] to that precision was given by
1322
+ det(Irot
1323
+ (−2,3,7)(q)[6]) = q−15(1 − q)2(1 − q2)4(1 − q3)4(1 − q4)2 + O(q160) .
1324
+ (59)
1325
+ But more reassuring was the fact that repeating the computation of Irot
1326
+ (−2,3,7),O(q)[6] for the
1327
+ insertion �z2 (corresponding to the second shape), we found out that the new matrix had
1328
+ equally big coefficients of q-series, but the quotient
1329
+ Q(−2,3,7),O(q) = Irot
1330
+ (−2,3,7),O(q)[6](Irot
1331
+ (−2,3,7)(q)[6])−1
1332
+
1333
+ 14
1334
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
1335
+ had entries short rational functions
1336
+ Q(−2,3,7),O (q) + O(q160) =
1337
+ 1
1338
+ (1 − q3)(1 − q4)
1339
+ ·
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+ 0
1350
+ q−1/2(q2 + 1)
1351
+ q−19(q2 − 1)2(q2 + 1)
1352
+ q−77/2(−q4 − q2 − 1)
1353
+ q−74(q4 − 1)2
1354
+ q−221/2
1355
+ q15/2(q4 + q3 + 2q2 + q + 1)
1356
+ (q − 1)2(q4 + q3 + 2q2 + q + 1)
1357
+ −q−23/2(q + 1)(q2 + 1)2
1358
+ q−37(q2 + 1)(q3 − 1)2
1359
+ q−131/2(q2 + 1)
1360
+ 0
1361
+ 0
1362
+ q37/2(q2 + 1)
1363
+ (q2 − 1)2(q2 + 1)
1364
+ q−39/2(−q4 − q2 − 1)
1365
+ q−55(q4 − 1)2
1366
+ q−183/2
1367
+ q89/2(q4 + q3 + 2q2 + q + 1)
1368
+ (q − 1)2q39(q4 + q3 + 2q2 + q + 1)
1369
+ −q51/2(q + 1)(q2 + 1)2
1370
+ (q2 + 1)(q3 − 1)2
1371
+ q−57/2(q2 + 1)
1372
+ 0
1373
+ 0
1374
+ q147/2(q2 + 1)
1375
+ q58(q2 − 1)2(q2 + 1)
1376
+ −q71/2(q4 + q2 + 1)
1377
+ (q4 − 1)2
1378
+ q−73/2
1379
+ q235/2(q4 + q3 + 2q2 + q + 1)
1380
+ (q − 1)2q112(q4 + q3 + 2q2 + q + 1)
1381
+ −q197/2(q + 1)(q2 + 1)2
1382
+ q75(q2 + 1)(q3 − 1)2
1383
+ q89/2(q2 + 1)
1384
+ 0
1385
+
1386
+
1387
+
1388
+
1389
+
1390
+
1391
+
1392
+
1393
+
1394
+ Surely this cancellation is not an accident, and it is a confirmation that our computational
1395
+ method and Corollary 3.5 of Conjecture 3.3 are correct.
1396
+ Incidentally, the 3 × 3 matrices Irot
1397
+ (−2,3,7),O(q)[3] and Irot
1398
+ (−2,3,7),O(q)[3] obey no rationality
1399
+ property similar to Equation (4.7), as one would not expect.
1400
+ Acknowledgements. The authors wish to thank Tudor Dimofte, Rinat Kashaev, Marcos
1401
+ Mari˜no, Campbell Wheeler and Don Zagier for many enlightening conversations. ZD would
1402
+ like to thank International Center for Mathematics, SUSTech for hospitality where this work
1403
+ was initiated. ZD is supported by KIAS individual Grant PG076902.
1404
+ Appendix A. The holomorphic blocks of the 41 knot
1405
+ The 41 knot has two colored holomorphic blocks of the 41 knot given by q-hypergeometric
1406
+ formulas in [20, Prop.8] as follows:
1407
+ h(0)
1408
+ 41,n(q) = (−1)nq|n|(2|n|+1)/2
1409
+
1410
+
1411
+ k=0
1412
+ (−1)k
1413
+ qk(k+1)/2+|n|k
1414
+ (q; q)k(q; q)k+2|n|
1415
+ ,
1416
+ (60)
1417
+ and
1418
+ h(1)
1419
+ 41,n(q) = (−1)nq|n|(2|n|+1)/2
1420
+
1421
+
1422
+ k=0
1423
+
1424
+ −4E1(q) +
1425
+ k+2|n|
1426
+
1427
+ ℓ=1
1428
+ 1 + qℓ
1429
+ 1 − qℓ +
1430
+ k
1431
+
1432
+ ℓ=1
1433
+ 1 + qℓ
1434
+ 1 − qℓ
1435
+
1436
+  (−1)k
1437
+ qk(k+1)/2+|n|k
1438
+ (q; q)k(q, q)k+2|n|
1439
+ − 2(−1)nq|n|(2|n|−1)/2
1440
+ 2|n|−1
1441
+
1442
+ k=0
1443
+ (−1)k qk(k+1)/2−|n|k(q−1, q−1)2|n|−1−k
1444
+ (q; q)k
1445
+ ,
1446
+ (61)
1447
+ for |q| ̸= 1. Here, for a positive integer ℓ, we define Eℓ(q) = ζ(1−ℓ)
1448
+ 2
1449
+ + �∞
1450
+ s=1 sℓ−1
1451
+ qs
1452
+ 1−qs , (where
1453
+ ζ(s) is the Riemann zeta function), analytic for |q| < 1 and extended to |q| > 1 by the
1454
+ symmetry Eℓ(q−1) = −Eℓ(q).
1455
+ Appendix B. The holomorphic blocks of the 52 knot
1456
+ The 52 knot has three colored holomorphic blocks h(α)
1457
+ 52,n(q) for α = 0, 1, 2. They were given
1458
+ explicitly in [20, Lem.12], and we copy the answer for the benefit of the reader. Using the
1459
+ q-harmonic functions
1460
+ Hn(q) =
1461
+ n
1462
+
1463
+ j=1
1464
+ qj
1465
+ 1 − qj ,
1466
+ H(2)
1467
+ n (q) =
1468
+ n
1469
+
1470
+ j=1
1471
+ qj
1472
+ (1 − qj)2
1473
+ (62)
1474
+
1475
+ THE DESCENDANTS OF THE 3D-INDEX
1476
+ 15
1477
+ we have:
1478
+ h(0)
1479
+ 52,n(q) = (−1)nq|n|/2
1480
+
1481
+
1482
+ k=0
1483
+ q|n|k
1484
+ (q−1; q−1)k(q; q)k+2|n|(q; q)k+|n|
1485
+ ,
1486
+ (63)
1487
+ h(1)
1488
+ 52,n(q) = −(−1)nq|n|/2
1489
+
1490
+
1491
+ k=0
1492
+ q|n|k
1493
+ (q; q)k+2|n|(q−1; q−1)k(q; q)k+|n|
1494
+ ×
1495
+
1496
+ k + |n| − 1
1497
+ 4 − 3E1(q) + Hk(q) + Hk+|n|(q) + Hk+2|n|(q)
1498
+
1499
+ + q−n2/2
1500
+ |n|−1
1501
+
1502
+ k=0
1503
+ (q−1, q−1)|n|−1−k
1504
+ (q−1, q−1)k(q; q)k+|n|
1505
+ ,
1506
+ (64)
1507
+ and
1508
+ h(2)
1509
+ 52,n(q) = (−1)nq|n|/2
1510
+
1511
+
1512
+ k=0
1513
+ q|n|k
1514
+ (q−1; q−1)k(q; q)k+|n|(q; q)k+2|n|
1515
+ ×
1516
+
1517
+ E2(q) + 1
1518
+ 8 − H(2)
1519
+ k (q) − H(2)
1520
+ k+|n|(q) − H(2)
1521
+ k+2|n|(q)
1522
+
1523
+
1524
+ k + |n| − 1
1525
+ 4 − 3E1(q) + Hk(q) + Hk+|n|(q) + Hk+2|n|(q)
1526
+ �2
1527
+
1528
+ + 2q−n2/2
1529
+ |n|−1
1530
+
1531
+ k=0
1532
+ (q−1, q−1)|n|−1−k
1533
+ (q−1, q−1)k(q; q)k+|n|
1534
+ ×
1535
+
1536
+ |n| − 3
1537
+ 4 − 3E1(q) + Hk(q) + Hk+|n|(q) + H|n|−k−1(q)
1538
+
1539
+
1540
+ − 2(−1)nq−|n|/2
1541
+ |n|−1
1542
+
1543
+ k=0
1544
+ q−|n|k(q−1; q−1)2|n|−k−1(q−1; q−1)|n|−k−1
1545
+ (q−1; q−1)k
1546
+ ,
1547
+ (65)
1548
+ for |q| ̸= 1.
1549
+ Appendix C. NZ matrices and the 3D-index
1550
+ Since there are various formulas for the 3D-index in the literature, let us present our
1551
+ conventions briefly.
1552
+ Let T be an ideal triangulation with N tetrahedra of a 1-cusped hyperbolic 3-manifold M
1553
+ equipped with a symplectic basis µ and λ of H1(∂M,
1554
+ Z) and such that λ is the homological
1555
+ longitude. Then the edge gluing equations together with the peripheral equations are encoded
1556
+ by three (N + 2) × N matrices G, G′ and G′′ whose rows are indexed by the edges, the
1557
+ meridian and the longitude and the columns indexed by tetrahedra. The gluing equations
1558
+ in logarithmic form are given by
1559
+ N
1560
+
1561
+ j=1
1562
+
1563
+ Gij log zj + G′
1564
+ ij log z′
1565
+ j + G′′
1566
+ ij log z′′
1567
+ j
1568
+
1569
+ = πi ηi,
1570
+ i = 1, . . ., N + 2
1571
+ (66)
1572
+ where η = (2, . . . , 2, 0, 0)t ∈
1573
+ ZN+2.
1574
+
1575
+ 16
1576
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
1577
+ If we eliminate the variable z′ in each tetrahedron using zz′z′′ = −1, we obtain the matrices
1578
+ A = G−G′, B = G′′ −G′ and the vector ν = (2, . . ., 2, 0, 0)t −G′(1, . . . , 1)t, and the gluing
1579
+ equations take the form
1580
+ N
1581
+
1582
+ j=1
1583
+
1584
+ Aij log zj + Bij log z′′
1585
+ j
1586
+
1587
+ = πi νi,
1588
+ i = 1, . . . , N + 2 .
1589
+ (67)
1590
+ Let aj and bj denote the j-th column of A and B, respectively. For integers m and e,
1591
+ consider the vector k = (k1, . . . , kN−1, 0, e, −m/2). Then, the 3D-index of [8] is given by [8]
1592
+ (see also [15, Sec.4.5])
1593
+ IT (m, e)(q) =
1594
+
1595
+ k1,...,kN−1∈Z
1596
+ (−q1/2)ν·k
1597
+ N
1598
+
1599
+ j=1
1600
+ I∆(−bj · k, aj · k)(q)
1601
+ (68)
1602
+ and the rotated 3D-index is given by [20, Sec.2.1]
1603
+ Irot
1604
+ T (n, n′)(q) =
1605
+
1606
+ e∈Z
1607
+ IT (n − n′, e)(q)qe(n+n′)/2 .
1608
+ (69)
1609
+ Let us define the N × N matrices A and B obtained by removing the N and N + 2 rows
1610
+ of A and B, respectively. In other words, the rows of A and B correspond to the first N − 1
1611
+ edge gluing equations and the meridian gluing equation, respectively. Let (λ1, . . . , λN) and
1612
+ (λ′′
1613
+ 1, . . . , λ′′
1614
+ N) denote half the last row of A and B respectively. We assume that these are
1615
+ vectors of integers and this can be arranged by adding, if necessary, an integer multiple of
1616
+ some of the first N rows of A and B to the last row. Let aj and bj denote the j-th column
1617
+ of A and B, respectively, and let k = (k1, . . . , kN). Let ν ∈
1618
+ ZN be obtained from ν ∈
1619
+ ZN+2
1620
+ by removing the N-th and the N + 2 entry of it, and let νλ denote half of the last entry of
1621
+ ν.
1622
+ Then, combining (68) and (69) (where we rename its summation variable from e to kN)
1623
+ we obtain that
1624
+ Irot
1625
+ T (n, n′)(q) =
1626
+
1627
+ k∈ZN
1628
+ (−q1/2)ν·k−(n−n′)νλqkN(n+n′)/2
1629
+ N
1630
+
1631
+ j=1
1632
+ I∆(λ′′
1633
+ j (n−n′)−bj ·k, −λj(n−n′)+aj ·k)(q) .
1634
+ (70)
1635
+ References
1636
+ [1] Prarit Agarwal, Dongmin Gang, Sangmin Lee, and Mauricio Romo. Quantum trace map for 3-manifolds
1637
+ and a length conjecture. Preprint 2022, arXiv:2203.15985.
1638
+ [2] Jørgen Ellegaard Andersen and Rinat Kashaev. A TQFT from Quantum Teichm¨uller theory. Comm.
1639
+ Math. Phys., 330(3):887–934, 2014.
1640
+ [3] Christopher Beem, Tudor Dimofte, and Sara Pasquetti. Holomorphic blocks in three dimensions. J.
1641
+ High Energy Phys., (12):177, front matter+118, 2014.
1642
+ [4] Daryl Cooper, Marc Culler, Henry Gillet, Daryl Long, and Peter Shalen. Plane curves associated to
1643
+ character varieties of 3-manifolds. Invent. Math., 118(1):47–84, 1994.
1644
+ [5] Tudor Dimofte. Quantum Riemann surfaces in Chern-Simons theory. Adv. Theor. Math. Phys.,
1645
+ 17(3):479–599, 2013.
1646
+ [6] Tudor Dimofte. 3d superconformal theories from three-manifolds. In New dualities of sypersymmetric
1647
+ gauge theories, Math. Phys. Stud., pages 339–373. Springer, Cham, 2016.
1648
+
1649
+ THE DESCENDANTS OF THE 3D-INDEX
1650
+ 17
1651
+ [7] Tudor Dimofte, Maxime Gabella, and Alexander B. Goncharov. K-Decompositions and 3d Gauge The-
1652
+ ories. JHEP, 11:151, 2016.
1653
+ [8] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. 3-manifolds and 3d indices. Adv. Theor. Math.
1654
+ Phys., 17(5):975–1076, 2013.
1655
+ [9] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. Gauge theories labelled by three-manifolds. Comm.
1656
+ Math. Phys., 325(2):367–419, 2014.
1657
+ [10] Tudor Dimofte, Sergei Gukov, and Lotte Hollands. Vortex Counting and Lagrangian 3-manifolds. Lett.
1658
+ Math. Phys., 98:225–287, 2011.
1659
+ [11] Dongmin Gang, Nakwoo Kim, Mauricio Romo, and Masahito Yamazaki. Aspects of defects in 3d-3d
1660
+ correspondence. J. High Energy Phys., (10):062, front matter+99, 2016.
1661
+ [12] Stavros Garoufalidis. On the characteristic and deformation varieties of a knot. In Proceedings of the
1662
+ Casson Fest, volume 7 of Geom. Topol. Monogr., pages 291–309 (electronic). Geom. Topol. Publ.,
1663
+ Coventry, 2004.
1664
+ [13] Stavros Garoufalidis, Jie Gu, and Marcos Mari˜no. The resurgent structure of quantum knot invariants.
1665
+ Comm. Math. Phys., 386(1):469–493, 2021.
1666
+ [14] Stavros Garoufalidis, Jie Gu, Marcos Mari˜no, and Campbell Wheeler. Resurgence of Chern-Simons
1667
+ theory at the trivial flat connection. Preprint 2021, arXiv:2111.04763.
1668
+ [15] Stavros Garoufalidis, Craig Hodgson, Hyam Rubinstein, and Henry Segerman. 1-efficient triangulations
1669
+ and the index of a cusped hyperbolic 3-manifold. Geom. Topol., 19(5):2619–2689, 2015.
1670
+ [16] Stavros Garoufalidis and Rinat Kashaev. The descendant colored Jones polynomials. Preprint 2021,
1671
+ arXiv:2108.07553.
1672
+ [17] Stavros Garoufalidis and Rinat Kashaev. From state integrals to q-series. Math. Res. Lett., 24(3):781–
1673
+ 801, 2017.
1674
+ [18] Stavros Garoufalidis and Rinat Kashaev. A meromorphic extension of the 3D index. Res. Math. Sci.,
1675
+ 6(1):Paper No. 8, 34, 2019.
1676
+ [19] Stavros Garoufalidis and Thang T.Q. Lˆe. The colored Jones function is q-holonomic. Geom. Topol.,
1677
+ 9:1253–1293 (electronic), 2005.
1678
+ [20] Stavros Garoufalidis and Campbell Wheeler. Periods, the meromorphic 3D-index and the Turaev–Viro
1679
+ invariant. Preprint 2022, arXiv:2209.02843.
1680
+ [21] Stavros Garoufalidis and Don Zagier. Knots and their related q-series. Preprint 2021.
1681
+ [22] Stavros Garoufalidis and Don Zagier. Knots, perturbative series and quantum modularity. Preprint
1682
+ 2021, arXiv:2111.06645.
1683
+ [23] Walter Neumann. Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-
1684
+ manifolds. In Topology ’90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ.,
1685
+ pages 243–271. de Gruyter, Berlin, 1992.
1686
+ [24] Walter Neumann and Don Zagier. Volumes of hyperbolic three-manifolds. Topology, 24(3):307–332, 1985.
1687
+ [25] Marko Petkovˇsek, Herbert S. Wilf, and Doron Zeilberger. A = B. A K Peters, Ltd., Wellesley, MA,
1688
+ 1996. With a foreword by Donald E. Knuth, With a separately available computer disk.
1689
+ [26] Yuji Terashima and Masahito Yamazaki. SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Du-
1690
+ ality Walls. JHEP, 08:135, 2011.
1691
+ [27] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and
1692
+ “q”) multisum/integral identities. Invent. Math., 108(3):575–633, 1992.
1693
+
1694
+ 18
1695
+ ZHIHAO DUAN, STAVROS GAROUFALIDIS, AND JIE GU
1696
+ Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea
1697
+ Email address: [email protected]
1698
+ International Center for Mathematics, Department of Mathematics, Southern Univer-
1699
+ sity of Science and Technology, Shenzhen, China
1700
+ http://people.mpim-bonn.mpg.de/stavros
1701
+ Email address: [email protected]
1702
+ School of Physics and Shing-Tung Yau Center, Southeast University, Nanjing 210096,
1703
+ China
1704
+ Email address: [email protected]
1705
+
HdAyT4oBgHgl3EQfS_fF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f84b231ea314552adfc7e68eecdb1636a2d4808c12cafeb28c384613aa99c92e
3
+ size 1246606
JdE3T4oBgHgl3EQfXQrW/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15aabc696466d70eb66b3baf7aa9ce7250a5cd1a670c5817cca40b48fb8c162
3
+ size 1900589
KtE0T4oBgHgl3EQfigGw/content/tmp_files/2301.02447v1.pdf.txt ADDED
@@ -0,0 +1,1331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02447v1 [econ.TH] 6 Jan 2023
2
+ Regret theory, Allais’ Paradox, and Savage’s omelet
3
+ V.G. Bardakhchyan1,2) and A.E. Allahverdyan1,2)
4
+ 1)Alikhanian National Laboratory (Yerevan Physics Institute),
5
+ Alikhanian Brothers Street 2, Yerevan 0036, Armenia,
6
+ 2)Yerevan State University, 1 A. Manoogian street, Yerevan 0025, Armenia
7
+ (Dated: January 9, 2023)
8
+ Abstract
9
+ We study a sufficiently general regret criterion for choosing between two probabilistic lotteries.
10
+ For independent lotteries, the criterion is consistent with stochastic dominance and can be made
11
+ transitive by a unique choice of the regret function.
12
+ Together with additional (and intuitively
13
+ meaningful) super-additivity property, the regret criterion resolves the Allais’ paradox including
14
+ the cases were the paradox disappears, and the choices agree with the expected utility. This super-
15
+ additivity property is also employed for establishing consistency between regret and stochastic
16
+ dominance for dependent lotteries. Furthermore, we demonstrate how the regret criterion can be
17
+ used in Savage’s omelet, a classical decision problem in which the lottery outcomes are not fully
18
+ resolved. The expected utility cannot be used in such situations, as it discards important aspects
19
+ of lotteries.
20
+ Keywords: Regret theory, Allais’ paradox, stochastic dominance, transitive regret.
21
+ JEL Classification: D81.
22
+ 1
23
+
24
+ I.
25
+ INTRODUCTION
26
+ The history of expected utility theory (EUT) started with Bernoulli’s work resolving the
27
+ St. Petersburg paradox [1]. Several axiomatic schemes for EUT are known [2, 3]. Currently,
28
+ EUT has applications in a wide range of fields, including economics [4], psychology [5],
29
+ evolutionary game theory [6], and general artificial intelligence [7].
30
+ EUT shows how to choose between two lotteries [2–4]:
31
+ (x, p) =
32
+
33
+ x1 x2 ... xn
34
+ p1 p2 ... pn
35
+
36
+  ,
37
+ (y, q) =
38
+
39
+ y1 y2 ... yn
40
+ q1 q2 ... qn
41
+
42
+  ,
43
+ (1)
44
+ �n
45
+ k=1pk =
46
+ �n
47
+ k=1qk = 1,
48
+ (2)
49
+ where (p1, ..., pn) and (q1, ..., qn) are (resp.)
50
+ the probabilities of monetary outcomes
51
+ (x1, ..., xn) and (y1, ..., yn) within each lottery. EUT proposes the following functional for
52
+ each lottery [2–4]:
53
+ V (x, p) =
54
+ �n
55
+ i=1u(xi)pi,
56
+ (3)
57
+ where u(xi) is the utility of the monetary value xi. EUT recommends choosing in (1) the
58
+ first lottery, if V (x, p) > V (y, q).
59
+ Experiments revealed problems with EUT and its axiomatic foundations. In particular,
60
+ several classic experiments cannot be explained by EU for any choice of the utility function
61
+ u(.) in (3) [8, 9]. People generally choose in contradiction to EUT, violating the independence
62
+ axiom, one of four axioms of the von Neumann-Morgenstern formulation of EUT [2]. The
63
+ most prominent example of this is Allais’s paradox [8], where each human subject chooses
64
+ between two lotteries.
65
+ The prospect theory [10, 11], and rank-dependent utility theory
66
+ [12, 13] discarded the independence axiom, and proposed functionals similar to V (x, p) in
67
+ (3), where instead of probabilities pi one employs weights πi that generally depend both on
68
+ (p1, ..., pn) and (x1, ..., xn). Refs. [4, 5, 9] discuss these and other alternatives to EUT.
69
+ There are also other situations where EUT does not apply. EUT cannot be used directly
70
+ when the lottery outcome remains uncertain even after the lottery choice has been made. A
71
+ good example of this situation is the decision problem known as Savage’s omelet [3]. In our
72
+ knowledge, this problem has never been studied from a viewpoint of EUT’s inapplicability.
73
+ As we show below, both Allais’ paradox and Savage’s omelet can be resolved by the regret
74
+ theory (RT), which is one of the alternatives of EUT. The main difference of RT compared
75
+ 2
76
+
77
+ to EUT is that RT does not operate with a value functional for a single lottery. Instead it
78
+ counter-factually compares two lotteries. RT has an intuitive emotional appeal, and it is
79
+ also related to cognitive aspects of decision making [14]. RT was first proposed by Savage in
80
+ minimax form [3] [see [15] for an update of this approach], and later brought to its current
81
+ form in [16, 17]; see [9, 18] for a review. Ref. [16] extended the regret to independent lotteries
82
+ and noted its potential in explaining Allais’ paradox. Ref. [16] also analyzed transitivity,
83
+ common ration effect, and preference reversals.
84
+ Functional forms involving two lotteries
85
+ were given axiomatic foundation in [19]. An axiomatic formulation of regret was attempted
86
+ in [20].
87
+ This work has three purposes. First, we want to show how Allais’ paradox is solved by a
88
+ transitive and super-additive RT. People mentioned regret in the context of Allais’ paradox
89
+ [see e.g. [5, 14, 16]], but so far no systematic and complete solution of this paradox was pro-
90
+ vided. Our solution is rather complete, because it also predicts conditions under which the
91
+ paradox does not hold. Both transitivity and super-additivity have transparent meaning for
92
+ regret theories in general. We do clarify their applicability range. This is especially impor-
93
+ tant for transitivity, because generally regret theories do not lead to transitive predictions
94
+ [21].
95
+ Second, we prove that the transitive and super-additive regret theory is consistent with
96
+ the stochastic dominance criterion [2]. Stochastic dominance is a useful tool, but it does not
97
+ apply to comparing any pair of lotteries. The previous literature in this direction is mostly
98
+ negative showing that regret-based approaches violate first order stochastic dominance [22,
99
+ 23] 1. Third, we demonstrate—using as an example Savage’s omlet problem—that RT can
100
+ recommend choosing between lotteries with not resolved outcomes, a task which cannot be
101
+ consistently addressed by EUT.
102
+ The paper is organized as follows. Section II is devoted to regret functional for indepen-
103
+ dent lotteries and some of its properties related to the expected utility. In decision making
104
+ theory the functional form is frequently derived from axiomatic foundation. In contrast,
105
+ here we first introduce the functional considered, then derive its properties. Section III is
106
+ devoted to Allais’ paradox and its relations to other concepts. Stochastic dominance abid-
107
+ 1 Ref. [22] analyzed relations between RT and stochastic dominance for a specific case. This analysis is based
108
+ on more general formulation of first order stochastic dominance that compares cumulative distribution
109
+ functions. Here we focus on the simplest version of stochastic dominance.
110
+ 3
111
+
112
+ ance is considered in section IV. Section V analyzes Savage’s omelet problem, identifies an
113
+ aspect that prevents the applicability of the expected utility theory, and solves this problem
114
+ via the regret. We summarize in the last section.
115
+ II.
116
+ REGRET AND ITS FEATURES
117
+ A.
118
+ Axioms of Expected Utility Theory (EUT)
119
+ We remind the four axioms of EUT (3)—completeness, transitivity, continuity, indepen-
120
+ dence—since they will motivate our further consideration.
121
+ First of all one introduces a
122
+ preference relation ⪰, and indifference relation ∼ between the lotteries (1), where ∼ means
123
+ that both ⪰ and ⪯ hold. When comparing two lotteries in (1) we sometimes assume (with-
124
+ out loss of generality) the same outcomes: {xk = yk}n
125
+ k=1. If they are initially different, we
126
+ can introduce suitable zero-probability events and make them identical.
127
+ 1. The completeness axiom states that any pair of lotteries in (1) can be compared:
128
+ (x, p) ⪰ (x, q)
129
+ or
130
+ (x, q) ⪰ (x, p)
131
+ or
132
+ (x, q) ∼ (x, p),
133
+ (4)
134
+ where (x, p) ⪰ (x, q) means that lottery (x, q) is not preferred to (x, p).
135
+ 2. The transitivity axiom states:
136
+ (x, p) ⪰ (x, q) ⪰ (x, r)
137
+ means
138
+ (x, p) ⪰ (x, r),
139
+ (5)
140
+ 3. The continuity axiom states for any three lotteries
141
+ (x, p) ⪰ (x, q) ⪰ (x, r)
142
+ implies
143
+ (x, q) ∼ (x, αp + (1 − α)r),
144
+ (6)
145
+ for some α ∈ [0, 1]. This axiom implies continuity of the value function to be deduced from
146
+ the four axioms.
147
+ 4. The independence axiom—also known independence of irrelevant alternatives or the
148
+ sure-thing principle—claims that combining each of two lotteries with any fixed one will not
149
+ alter the preferences [5, 24]:
150
+ (x, p) ⪰ (x, q)
151
+ means
152
+ (x, αp + (1 − α)r) ⪰ (x, αq + (1 − α)r),
153
+ (7)
154
+ where the irrelevant alternative is (x, r). Eq. (7) is among the most controversial axioms in
155
+ decision theory and has triggered many debates [5, 24]; see in this context also Appendix
156
+ 4
157
+
158
+ B, where we explain why specifically the meaning of (7) can be ambiguous. Ref. [25] briefly
159
+ reviews its current status with counter-examples. Experimental studies showed violations
160
+ of (7), with some concerns on whether these violations are systematic [5].
161
+ B.
162
+ Definition of regret
163
+ The regret defines a counterfactual outcome-wise comparison between the lotteries (1)
164
+ using certain ideas of EUT. Hence for particular cases it would coincide with the decision
165
+ criterion of EUT. The utility function u(x) is assumed to exist beforehand and known to
166
+ the decision-maker [5].
167
+ Assume that (y, q) is chosen and its outcome yj is found. The decision-maker compares
168
+ this outcome with what would be found if (x, p) would be taken and defines:
169
+ R(x, p; yj) ≡
170
+ �n
171
+ i=1f(u(xi) − u(yj))pi,
172
+ (8)
173
+ where u(x) is the utility function, and f(x) is a function holding
174
+ f(x ≥ 0) ≥ 0,
175
+ f(x ≤ 0) ≤ 0,
176
+ f(0) = 0.
177
+ (9)
178
+ In particular, R(x, p; yj) > 0 (positive regret), if xi > yj. Generally, f(x) accounts for both
179
+ regret and appreciation. We get a pure regret (appreciation), if f(x ≤ 0) = 0 (f(x ≥ 0) = 0).
180
+ Since (x, p) was not actually chosen, its outcomes are not known; hence the averaging in
181
+ (8). Moreover, once the decision-maker keeps on choosing (y, q) and explores all its outcomes
182
+ according to their probabilities, the average of (8) reads:
183
+ R(x, p; y, q) ≡
184
+ �n
185
+ j=1qjR(x, p; yj) =
186
+ �n
187
+ i,j=1f(u(xi) − u(yj))piqj,
188
+ (10)
189
+ where (10) already assumed that the events (yj, xi) are independent, i.e. their joint prob-
190
+ ability is qjpi. This additional information is to be provided for unambiguous definition of
191
+ lotteries in (1).
192
+ Note that (8, 10) are asymmetric with respect to the lotteries (1), because (y, q) is actually
193
+ chosen, while (x, p) is reasoned counter-factually given this choice. The regret preference
194
+ ⪰reg is defined as [9, 16–18]
195
+ (x, p) ⪰reg (y, q)
196
+ iff
197
+ R(y, q; x, p) − R(x, p; y, q) =
198
+ �n
199
+ i,j=1g(u(yj) − u(xi))piqj ≤ 0, (11)
200
+ 5
201
+
202
+ where
203
+ g(x) ≡ f(x) − f(−x),
204
+ (12)
205
+ is anti-symmetric and monotonic:
206
+ g(x) = −g(−x),
207
+ (13)
208
+ g(x) ≥ g(y)
209
+ for
210
+ x ≥ y.
211
+ (14)
212
+ The meaning of R(y, q; x, p) − R(x, p; y, q) ≤ 0 is that (x, p) is preferred if its leads to a
213
+ smaller average regret. For a particular case
214
+ g(x) = ax,
215
+ a > 0,
216
+ (15)
217
+ where a is a constant, we revert from (11) to the expected utility. Note that (15) is achieved
218
+ for various functions f(x); e.g. f(x) = ax/2 or f(x) = a max[x, 0].
219
+ The above definition generalizes for a non-trivial joint probability P(xi, yj) of (xi, yj) with
220
+ �n
221
+ i=1P(xi, yj) = qj,
222
+ �n
223
+ j=1P(xi, yj) = pi.
224
+ (16)
225
+ Now pi in (8) should be replaced by conditional probability P(xi|yj), which is reasonable for
226
+ a counter-factual reasoning, and instead of (8–11) we have
227
+ R(x, p; yj) ≡
228
+ �n
229
+ i=1f(u(xi) − u(yj))P(xi|yj),
230
+ (17)
231
+ R(x, p; y, q) ≡
232
+ �n
233
+ j=1qjR(x, p; yj) =
234
+ �n
235
+ i,j=1f(u(xi) − u(yj))P(xi, yj),
236
+ (18)
237
+ (x, p) ⪰reg (y, q)
238
+ iff
239
+ �n
240
+ i,j=1g(u(yj) − u(xi))P(xi, yj) ≤ 0.
241
+ (19)
242
+ In particular, the outcomes in (16) can refer to the same states of nature [2, 20, 24]. This
243
+ implies
244
+ P(xi, yj) = piδij,
245
+ i, j = 1, ..., n,
246
+ (20)
247
+ where δij is the Kroenecker delta, and where {pi = qi}n
248
+ i=1 are the probabilities for those
249
+ unknown states of nature; see section V for details.
250
+ C.
251
+ Two propositions about regret
252
+ Note that for the regret preference relation (11) we can take lotteries (1) to have the same
253
+ outcomes, xk = yk, using the same argument as before (4). Now the completeness axiom
254
+ (4) obviously holds for ⪰reg. The continuity axiom is valid as well.
255
+ 6
256
+
257
+ Proposition 1. For the regret preference relation (11)
258
+ (x, p) ⪰reg (x, q) ⪰reg (x, r)
259
+ implies
260
+ (x, q) ∼reg (x, αp + (1 − α)r),
261
+ (21)
262
+ for some α ∈ [0, 1]. Working out the last relation in (21) we find
263
+ α = B/(A + B) ∈ [0, 1],
264
+ (22)
265
+ A =
266
+ �n
267
+ i,j=1piqjg(u(xi) − u(xj)) ≥ 0,
268
+ B =
269
+ �n
270
+ i,j=1riqjg(u(xj) − u(xi)) ≥ 0, (23)
271
+ where (23) follows from first and second relations in (21).
272
+ It is known that ⪰reg violates transitivity for a general choice of f(x) [21]. In particular,
273
+ the transitivity is violated under (20) [26]; e.g. for the same states of nature. Transitivity
274
+ violation is not necessarily a drawback, since there are arguments for involving non-transitive
275
+ choices even in normative choices [27]. Ref. [28] shows that for the most general form of
276
+ regret there exist models not violating transitivity.
277
+ Let us now provide a sufficiently complete solution for the transitivity of ⪰reg. First, we
278
+ show that ⪰reg will be transitive for a particular choice of f(x) in (11). Define
279
+ f(x) = b(ax − 1),
280
+ (24)
281
+ where a > 0 and b > 0. Eq. (9) holds. Now (x, p) ⪰reg (x, q) amounts to
282
+ v(p)w(q) ≥ v(q)w(p),
283
+ (25)
284
+ v(p) ≡
285
+ �n
286
+ i=1au(xi)pi > 0,
287
+ w(q) ≡
288
+ �n
289
+ i=1a−u(xi)qi > 0.
290
+ (26)
291
+ Eqs. (25, 26) imply that with the choice (24), ⪰reg is transitive.
292
+ Fisburn’s theorem on
293
+ transitivity [29] shows that (24) is also necessary for transitivity.
294
+ Proposition 2. The regret preference relation ⪰reg given by (11) preserves transitivity
295
+ iff (24) holds.
296
+ Returning to (4–7) we see that only the independence axiom can be violated by ⪰reg; see
297
+ below for more details.
298
+ III.
299
+ SOLVING ALLAIS’ PARADOX WITH REGRET
300
+ There was a great deal of attention focused on Allais’ paradox as one of the major
301
+ systematic violations of EUT [5, 8–11, 30]. Regret theory is mentioned in the context of
302
+ 7
303
+
304
+ Allais’s paradox [5, 14, 16], but no systematic solution of the paradox via the regret theory
305
+ was so far provided. We show below that this solution can be achieved by respecting the
306
+ transitivity and that it does provide an important constraint on the form of g(x) in (11, 12).
307
+ Consider the standard formulation of the Allais’ paradox [5, 8].
308
+ A decision make is
309
+ choosing between the following two lotteries [cf. (1)]:
310
+ I ≡
311
+
312
+ 1
313
+ 1
314
+
315
+  ,
316
+ II ≡
317
+
318
+  0
319
+ 1
320
+ 5
321
+ 0.01 0.89 0.1
322
+
323
+  ,
324
+ (27)
325
+ and then between
326
+ III ≡
327
+
328
+  0
329
+ 1
330
+ 0.89 0.11
331
+
332
+  ,
333
+ IV ≡
334
+
335
+  0
336
+ 5
337
+ 0.9 0.1
338
+
339
+  ,
340
+ (28)
341
+ where the monetary outcomes in (27, 28) are normally given in millions of $.
342
+ There are 4 possible outcomes here: (I, III), (I, IV), (II, III), (II, IV), where (I, III) means
343
+ choosing I in (27) and III in (28). Choosing (I, III) or (II, IV) is consistent with the EUT;
344
+ e.g. (I, III) is achieved if u(1) < u(5) and u(1) ≈ u(5). In contrast, most of people take
345
+ (I, IV) thereby violating the expected utility theory (EUT) [5].
346
+ Applying preference relation (11) to the choice (I, IV), we will find an important and
347
+ intuitive condition for function g(x). Now I ⪰reg II reads from (11):
348
+ 0.01 · g(u(0) − u(1)) + 0.1 · g(u(5) − u(1)) < 0.
349
+ (29)
350
+ Since g(x) is an increasing function [cf. (14)], (29) implies
351
+ u(5) − u(1) < u(1) − u(0).
352
+ (30)
353
+ Thus (30)—which can be realized with a concave function u(x) and hence relates to risk-
354
+ aversion—is a necessary condition for (11) to explain Allais’ paradox. Likewise, demanding
355
+ IV ⪰reg III in (28) we get
356
+ 0.089 · g(u(5) − u(0)) − 0.099 · g(u(1) − u(0)) + 0.011 · g(u(5) − u(1)) > 0
357
+ (31)
358
+ Taking the difference of (31) and (29) we get
359
+ −0.089 · g(u(5) − u(0)) + 0.089 · g(u(1) − u(0)) + 0.089 · g(u(5) − u(1)) < 0,
360
+ yielding
361
+ g(u(5) − u(0)) > g(u(1) − u(0)) + g(u(5) − u(1)).
362
+ (32)
363
+ 8
364
+
365
+ Now (32) is the second necessary condition for solving Allais’s paradox. Taking (32) and
366
+ (29) together is necessary and sufficient for solving the paradox. It is intuitively clear what
367
+ (32) means. The decision maker is more impressed (i.e. experiences more regret) with the
368
+ difference u(5) − u(0), than with this difference u(5) − u(0) = u(1) − u(0) + u(5) − u(1)
369
+ coming in two separate pieces: u(1) − u(0) and u(5) − u(1). We rewrite (32) as a more
370
+ general condition:
371
+ g(x + y) ≥ g(x) + g(y),
372
+ x ≥ 0,
373
+ y ≥ 0,
374
+ (33)
375
+ which is the super-additivity (in positive domain) for g(x). Noting from (13) that g(0) = 0,
376
+ we recall that any convex function g(x) with g(0) = 0 is super-additive 2. A simple example
377
+ of a function that is easily shown to be super-additive, but is not convex is g(x) = x e−x−2
378
+ [31].
379
+ Indeed,
380
+ d2
381
+ dx2g(x) = 2 e−x−2 x−5(2 − x2), i.e.
382
+ g(x) is concave (convex) for x >
383
+
384
+ 2
385
+ (
386
+
387
+ 2 > x > 0) 3. We formulate our results as follows.
388
+ Proposition 3. Allais’s paradox can be explained by regret, if and only if function g(x)
389
+ in (11) is strongly super-additive for some values in positive domain.
390
+ Example. We take the transitive regret and logarithmic utility [cf. (13, 24)]
391
+ g(x) = sinh
392
+ �x
393
+ β
394
+
395
+ ,
396
+ u(x) = ln
397
+ �x
398
+ γ + 1
399
+
400
+ ,
401
+ (34)
402
+ where β > 0 and γ > 0 are positive parameters that characterize the decision maker. Here
403
+ γ > 0 defines the threshold of the concave (risk-averse) utility u(x) (u(0) = 0), because only
404
+ for x
405
+ γ ≪ 1 we have u(x) ≃ 0. In a sense, γ defines the initial money, since only for x
406
+ γ ≳ 1 the
407
+ decision maker will care about money. Likewise, β has a similar meaning of threshold, but
408
+ for the regret function: if x
409
+ β ≪ 1, then g(x) = sinh( x
410
+ β) ≃ x
411
+ β is effectively in the regime EUT.
412
+ Now g(x) in (34) holds super-additivity condition (33), since sinh(0)
413
+ =
414
+ 0 and
415
+ d2
416
+ dx2 sinh(x) = sinh(x) ≥ 0 for x ≥ 0; hence (32) holds.
417
+ For solving Allais’ paradox we
418
+ need to look at condition (29), which from (34) amounts to
419
+ γ < ζ(β),
420
+ (35)
421
+ ζ(β → ∞) = 5−10,
422
+ ζ(1) = 0.021,
423
+ ζ(β → 0) = 1/3.
424
+ (36)
425
+ 2 This fact should be known, but let us present its short proof. First note that g(tx) ≤ tg(x) for 0 < t < 1 due
426
+ to g(t(x)+(1−t)·0) ≤ tg(x)+(1−t)g(0) = tg(x). Next, g(x)+g(y) = g
427
+
428
+ (x + y)
429
+ x
430
+ x+y
431
+
432
+ +g
433
+
434
+ (x + y)
435
+ y
436
+ x+y
437
+
438
+
439
+ x
440
+ x+yg(x + y) +
441
+ y
442
+ x+yg(x + y) = g(x + y).
443
+ 3 Ref. [20] mentioned the super-additivity condition in the context of regret. Ref. [16] employed convexity
444
+ (concavity) features of regret functional, but without any definite reason.
445
+ 9
446
+
447
+ Hence ζ(β) changes from 5−10 to 1/3, when β moves from ∞ to 0. Let us focus on γ < 0.021
448
+ in (36). We know that (27, 28) are to be given in millions of $. Hence we multiply both
449
+ x and γ in u(x) = ln( x
450
+ γ + 1) by 106, and reach the following conclusion: starting from the
451
+ initial money ≥ 21000 $ the decision maker will behave according to the expected utility
452
+ and choose lotteries (II, IV) in (27, 28). The interpretation of the other two values of ζ(β)
453
+ in (36) is similar. Note in this context that 5−10 is equivalent to 5−10 × 108 ≃ 10 cents.
454
+ It is reported that with smaller outcomes—not millions of $ in (27, 28)—Allais’ paradox
455
+ need not hold [32–34]. Other authors note that when shifting all outcomes in (27, 28) with
456
+ the same substantial positive amount, Allais’ paradox will not hold (aversion of ”0” outcome)
457
+ [35]. The scheme given by (34) handles both experimental results.
458
+ Remark 1. The super-additivity (33) of g(x) (and its ensuing relations with convexity)
459
+ does not relate to risk-aversion and risk-seeking, as defined via utility u(x). To understand
460
+ this, compare the following two lotteries:
461
+
462
+ x
463
+ 1
464
+
465
+
466
+ and
467
+
468
+ x − ǫ x + ǫ
469
+ 0.5
470
+ 0.5
471
+
472
+  ,
473
+ ǫ > 0.
474
+ (37)
475
+ Now the first (certain) lottery is regret-preferable compared with the second (uncertain)
476
+ lottery if g(u(x)−u(x−ǫ)) > −g(u(x)−u(x+ǫ)), which is achieved due to a monotonically
477
+ increasing g(x), and concavity of u(x); i.e.
478
+ the risk-aversion at the level of the utility.
479
+ Likewise, the convexity of u(x) (risk-seeking utility) will lead to preferring the uncertain
480
+ lottery.
481
+ Remark 2. Note that the regret is invariant with respect to u(x) → u(x) + a, where a
482
+ is arbitrary, but it is not invariant with respect to u(x) → bu(x), where b > 0; see e.g. the
483
+ very example (34). After transformation u(x) → bu(x), one can redefine gb(x) = g(bx) such
484
+ that the regret stays invariant. This redefinition respects transitivity and super-additivity
485
+ of g(x).
486
+ Remark 3. Recall that the independence axiom (7) (or the axiom of irrelevant alter-
487
+ natives) is the main axiom of EUT violated by the regret theory. Allais’ paradox can be
488
+ reformulated in such a way that the presence of this axiom is made obvious. To this end
489
+ 10
490
+
491
+ one writes (27, 28) as
492
+ I =
493
+
494
+  1
495
+ 1
496
+ 1
497
+ 0.01 0.1 0.89
498
+
499
+  ,
500
+ III =
501
+
502
+  1
503
+ 1
504
+ 0
505
+ 0.01 0.1 0.89
506
+
507
+  ,
508
+ (38)
509
+ II =
510
+
511
+  0
512
+ 5
513
+ 1
514
+ 0.01 0.1 0.89
515
+
516
+  ,
517
+ IV =
518
+
519
+  0
520
+ 5
521
+ 0
522
+ 0.01 0.1 0.89
523
+
524
+  .
525
+ (39)
526
+ We emphasize that I and II in (38, 39) (as well as III and IV) refer to independent events.
527
+ It is seen that I and II have the common last column (
528
+ 1
529
+ 0.89), while for III and IV the
530
+ common last column is (
531
+ 0
532
+ 0.89). These last columns (i.e. the corresponding outcomes with
533
+ their probabilities) plays the role of independent alternatives. If they are deemed to be
534
+ irrelevant, e.g. (
535
+ 1
536
+ 0.89) is irrelevant when deciding between I and II, then I becomes equivalent
537
+ to III, and II is equivalent to IV. Hence one takes either (I, III) or (II, IV). Note that this
538
+ reasoning is more general than appealing directly to the axiom (7), since this mathematical
539
+ axiom does not specify the interpretation of the mixture model αp + (1 − α)r; see Appendix
540
+ B for details.
541
+ If experimental subjects are presented Allais’ lotteries in the form (38, 39), then majority
542
+ of them behave according to EUT than for (27, 28) [5]. Naturally, for the regret (11) the
543
+ difference between (38, 39) and (27, 28) is absent. Hence these subjects did not use the
544
+ regret theory in their decision making.
545
+ IV.
546
+ REGRET AND STOCHASTIC DOMINANCE
547
+ For lotteries (1) with independent probabilities, a clear-cut definition of superiority is
548
+ provided by the stochastic dominance ⪰sto [2].
549
+ Recall its definition: we assume 4 that
550
+ xk = yk in (1) hold with
551
+ xi < xj
552
+ for
553
+ i < j.
554
+ (40)
555
+ Now define [2]
556
+ (x, p) ⪰sto (x, q)
557
+ iff
558
+ �k
559
+ i=1pi ≤
560
+ �k
561
+ i=1qi
562
+ for
563
+ k = 1, .., n.
564
+ (41)
565
+ 4 This assumption of identical outcomes is not necessary, since the stochastic dominance can be formulated
566
+ more generally. We do not focus on this general definition, since it is equivalent to the situation, when
567
+ the outcomes are made the same by increasing their number via adding zero-probability events; cf. the
568
+ discussion before (4).
569
+ 11
570
+
571
+ Recall that the utility u(x) in (11) is an increasing function of x. Stochastic dominance does
572
+ not depend on a specific form of the utility u(x) in (11) provided that it is an increasing
573
+ function of x, as we assume. This is an advantage of stochastic dominance. Its weakness
574
+ is that it clearly does not apply to all lotteries, i.e. the completeness axiom (4) is violated.
575
+ Indeed, it is sufficient to violate (41) for one value of k, and this will make ⪰sto inapplicable.
576
+ A related weakness is that its applicability is not stable with respect to small variations of
577
+ outcomes. To see this, assume that (40, 41) hold and perturb y1 = x1 → y′
578
+ 1 < x1. Even a
579
+ small variation of this type violates condition (41) for k = 1.
580
+ Regret and stochastic dominance do not contradict each other, as the following proposi-
581
+ tion shows.
582
+ Proposition 4. (x, p) ⪰sto (x, q) implies (x, p) ⪰reg (x, q) defined from (11). The proof
583
+ is given in Appendix A.
584
+ Note that Proposition 4 does not require any specific feature of g(x) apart of (13, 14).
585
+ However, it does require independent probabilities for the lotteries, as implied by (11).
586
+ Lotteries with independent probabilities have vast but still limited range of applications.
587
+ Even within the framework of initially independent lotteries, one can envisage new dependent
588
+ lotteries for which the regret is given via (19). For dependent lotteries the relation between
589
+ regret and stochastic dominance is partially explained by the following proposition.
590
+ Proposition 5. For the joint probability P(xi, xj) given by (16), let us define the
591
+ marginal probabilities {pi}n
592
+ i=1 and {qj}n
593
+ j=1, as well as deviation of P(xi, xj) from piqj:
594
+ pi :=
595
+ �n
596
+ j=1P(xi, xj),
597
+ qj :=
598
+ �n
599
+ i=1P(xi, xj),
600
+ (42)
601
+ θi,j := P(xi, xj) − piqj,
602
+ (43)
603
+ �n
604
+ i=1θi,j =
605
+ �n
606
+ j=1θi,j = 0,
607
+ |θi,j| ≤ piqj.
608
+ (44)
609
+ Then if g(x) is super-additive on positive domain [see (33)] and if
610
+ θi,j ≥ θj,i,
611
+ for
612
+ i > j,
613
+ (45)
614
+ one has that (x, p) ⪰sto (x, q) defined via (40, 41) leads to (x, p) ⪰reg (x, q) in the sense of
615
+ (19).
616
+ Thus the super-additivity of g(x) plus condition (45) make the regret consistent with the
617
+ stochastic dominance. The proof of Proposition 5 is given in Appendix C.
618
+ 12
619
+
620
+ V.
621
+ SAVAGE’S OMELET IS SOLVED VIA THE REGRET THEORY
622
+ Eq. (1) with {pk = qk}n
623
+ k=1 can refer to the to the decision model which assumes that at
624
+ the moment of action-taking there is an uncertain state of nature (environment) Sk to be
625
+ realized from {Sk}n
626
+ k=1 with probabilities {pk}n
627
+ k=1, which are known to the decision maker
628
+ [2, 24]. Sk are called states of nature, since their future realization is independent from
629
+ the action taken, but an action A (B) in a state Sk leads to consequences with monetary
630
+ outcome xk (yk) and utilities u(xk) (u(yk)) [2, 24]; cf. (1, 20).
631
+ The following classic decision problem is described in [3]: A decision maker has to finish
632
+ making an omelet began by his wife, who has already broken into a bowl five good eggs. A
633
+ sixth unbroken egg is lying on the table, and it must be either used in making the omelet,
634
+ or discarded. There are two states of the nature: good (the sixth egg is good) and rotten
635
+ (the sixth egg is rotten), which do not depend on the actions A1, A2 and A3 of the decision
636
+ maker.
637
+ A1: break the sixth egg into the bowl.
638
+ A2: discard the sixth egg.
639
+ A3: break the sixth egg into a saucer; add it to the five eggs if it is good, discard it if it
640
+ is rotten.
641
+ The consequences of the acts can be written as lotteries:
642
+ A1 =
643
+
644
+ u−5
645
+ u6
646
+ p
647
+ 1 − p
648
+
649
+  ,
650
+ A2 =
651
+
652
+ u5 u5 + z
653
+ p
654
+ 1 − p
655
+
656
+  ,
657
+ A3 =
658
+
659
+ u5 + w u6 + w
660
+ p
661
+ 1 − p
662
+
663
+  ,
664
+ (46)
665
+ where p (1 − p) is the objective probability for the sixth egg to be rotten (good), u6 (u5) is
666
+ the utility of the six-egg (five-egg) omelet, u−5 < 0 is the utility of five spoiled eggs and no
667
+ omelet whatsoever, w < 0 is the utility of washing the saucer, and z < 0 is the utility of the
668
+ good egg being lost. 5
669
+ Now looking at the consequences of A2, we see that—in contrast to A1 and A3—acting A2
670
+ does not resolve the uncertain state of nature: once the egg is discarded, the decision maker
671
+ will not know (without additional actions), whether it was rotten or good. Put differently,
672
+ utility z is not obtained after acting A2, and cannot be obtained without additional actions.
673
+ 5 The concrete utilities of washing the saucer may differ depending on the state of the sixth egg. We,
674
+ however, neglect this difference. Also, for simplicity w was simply added to u5 and u6.
675
+ 13
676
+
677
+ Calculating the expecting utility of A2 in the usual way as pu5 + (1 − p)(u5 + z) does not
678
+ apply, because it disregards this aspect A2. It is natural to take the expected utility as
679
+ pu5 + (1 − p)u5 = u5 (i.e. once z is not obtained, it is not included), but then comparing
680
+ with expected utilities of A1 and A3, we see that the parameter z will appear nowhere.
681
+ Hence, we suggest that the expected utility does not apply to comparing A2 with the other
682
+ two actions.
683
+ Employing in (46) the reasoning of regret [cf. (8, 18, 20)] does take into account the
684
+ difference between A2 and the other two actions. Let us for example calculate the regret
685
+ about not taking A1 once A2 has been taken:
686
+ R(A1, A2) = pf(u−5 − u5) + (1 − p)f(u6 − u5).
687
+ (47)
688
+ This expression does not contain z, since the uncertain state of nature was not resolved after
689
+ acting A2, i.e. after acting A2 the obtained utility is u5.
690
+ On the other hand, acting A1 resolves the uncertainty about the state of nature. Hence
691
+ the regret of not taking A2, once A1 was acted reads:
692
+ R(A2, A1) = pf(u5 − u−5) + (1 − p)f(u5 + z − u6),
693
+ (48)
694
+ i.e. once A1 is taken and the egg is rotten (good), then the decision maker already knows
695
+ that if A2 would be taken, then the egg will turn out rotten (good). It is seen that (48)
696
+ contains z (the utility of discarding a good egg), while (47) does not. Now
697
+ A1 ⪰reg A2
698
+ iff
699
+ R(A2, A1) ≤ R(A1, A2),
700
+ (49)
701
+ where R(A2, A1) − R(A1, A2) does feel the parameter z. As an example of (49) consider
702
+ f(x) = x [cf. the discussion after (15)]:
703
+ p(u5 − u−5) < (1 − p)(u6 − u5 − z
704
+ 2).
705
+ (50)
706
+ where we recall that u6 > u5 > u−5 and z < 0. We can naturally assume u5−u−5 > u6−u5 >
707
+ 0 under which (50) is non-trivial even for p = 1/2. Note that the formal application of the
708
+ expected utility will claim that A1 is preferred over A2 for p(u5 −u−5) < (1−p)(u6 −u5 −z),
709
+ which is clearly different from (50). This is not just a different outcome; rather, the expected
710
+ utility does not apply.
711
+ 14
712
+
713
+ VI.
714
+ SUMMARY
715
+ This paper studied regret functionals over the utility differences of two probabilistic lot-
716
+ teries; see section II. There are various types of lotteries, from independent to fully dependent
717
+ that refer to the same state of nature. The regret functional compares the lotteries counter-
718
+ factually taking notice of their probabilities. For particular cases, the regret reverts to the
719
+ expected utility. More generally, it does not satisfy the independence (from irrelevant al-
720
+ ternatives) axiom of the expected utility, also known as the sure thing principle. This not
721
+ satisfying is by itself non-trivial and is explored in Appendix B. In contrast to the expected
722
+ utility, the regret is also generally not invariant with respect to multiplying the utility by
723
+ a positive number. It is also due to these two differences compared to the expected utility
724
+ that the regret is efficient for explaining and resolving Allais’s paradox; see section III. The
725
+ resolution demands a non-trivial features of the regret functional, viz. its super-additivity,
726
+ which does make an intuitive sense. We show that the regret functional can be chosen such
727
+ that the regret-ordering holds transitivity. In particular, Allais’s paradox can be resolved via
728
+ a transitive regret, and this resolution provides a consistent account of changes in monetary
729
+ outcomes.
730
+ We devoted a special attention to relations between (the first-order) stochastic dominance
731
+ and the regret-preference; see section IV. The former ordering is normatively appealing, but
732
+ it is incomplete, since not every two lotteries can be compared with each other. We show
733
+ that for independent lotteries the stochastic dominance implies the regret-preference. For
734
+ dependent lotteries the relations between the two are more complex. Here we proposed a
735
+ sufficient condition for the implication stochastic dominance → regret-preference, which,
736
+ interestingly is also based on the super-additivity of the regret; see Proposition 5.
737
+ Finally, we show in section V how the considered regret theory can be useful in those
738
+ situations, where actions of the decision maker do not resolve the uncertain situation. The
739
+ expected utility theory does not apply to such a situation in the sense that there is an
740
+ important information about the lotteries that it simply discards. In the regret, this infor-
741
+ mation is employed, since the regret compares the unresolved uncertainty with the resolved
742
+ uncertainty.
743
+ Our results show that though the concept of regret was initially deduced from certain
744
+ emotional features of decision makers, it does have many features one intuitively expects
745
+ 15
746
+
747
+ from rationality. Hence we envisage its further applications in e.g. reinforcement learning.
748
+ Acknowledgements
749
+ This work was supported by State Science Committee of Armenia, grants No. 21AG-
750
+ 1C038. We thank Andranik Khachatryan for useful remarks and for participating in initial
751
+ stages of this work.
752
+ [1] S. C. Stearns, “Daniel bernoulli (1738): evolution and economics under risk,” Journal of
753
+ biosciences, vol. 25, no. 3, pp. 221–228, 2000.
754
+ [2] R. D. Luce and H. Raiffa, Games and decisions: Introduction and critical survey. Courier
755
+ Corporation, 1989.
756
+ [3] L. J. Savage, The foundations of statistics. Courier Corporation, 1972.
757
+ [4] J. D. Hey, “Experiments and the economics of individual decision making under risk and
758
+ uncertainty,” 1997.
759
+ [5] J. Baron, Thinking and deciding. Cambridge University Press, 2000.
760
+ [6] J. Hofbauer, K. Sigmund, et al., Evolutionary games and population dynamics. Cambridge
761
+ university press, 1998.
762
+ [7] T. Everitt, J. Leike, and M. Hutter, “Sequential extensions of causal and evidential decision
763
+ theory,” in International Conference on Algorithmic Decision Theory, pp. 205–221, Springer,
764
+ 2015.
765
+ [8] M. Allais and G. Hagen, Expected utility hypotheses and the Allais paradox: Contemporary
766
+ discussions of the decisions under uncertainty with Allais’ rejoinder, vol. 21. Springer Science
767
+ & Business Media, 2013.
768
+ [9] M. J. Machina, “Choice under uncertainty: Problems solved and unsolved,” in Foundations
769
+ of Insurance economics, pp. 49–82, Springer, 1992.
770
+ [10] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under risk,” in Hand-
771
+ book of the fundamentals of financial decision making: Part I, pp. 99–127, World Scientific,
772
+ 2013.
773
+ 16
774
+
775
+ [11] A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative representation of
776
+ uncertainty,” Journal of Risk and uncertainty, vol. 5, no. 4, pp. 297–323, 1992.
777
+ [12] J. Quiggin, Generalized expected utility theory: The rank-dependent model. Springer Science
778
+ & Business Media, 2012.
779
+ [13] E. Diecidue and P. P. Wakker, “On the intuition of rank-dependent utility,” Journal of Risk
780
+ and Uncertainty, vol. 23, no. 3, pp. 281–298, 2001.
781
+ [14] S. Bourgeois-Gironde, “Regret and the rationality of choices,” Philosophical Transactions of
782
+ the Royal Society B: Biological Sciences, vol. 365, no. 1538, pp. 249–257, 2010.
783
+ [15] M. H. Acker, “Tempered regrets under total ignorance,” Theory and Decision, vol. 42, no. 3,
784
+ pp. 207–213, 1997.
785
+ [16] G. Loomes and R. Sugden, “Regret theory: An alternative theory of rational choice under
786
+ uncertainty,” The economic journal, vol. 92, no. 368, pp. 805–824, 1982.
787
+ [17] D. E. Bell, “Regret in decision making under uncertainty,” Operations research, vol. 30, no. 5,
788
+ pp. 961–981, 1982.
789
+ [18] H. Bleichrodt and P. P. Wakker, “Regret theory: A bold alternative to the alternatives,” The
790
+ Economic Journal, vol. 125, no. 583, pp. 493–532, 2015.
791
+ [19] P. C. Fishburn, “An axiomatic characterization of skew-symmetric bilinear functionals, with
792
+ applications to utility theory,” Economics Letters, vol. 8, no. 4, pp. 311–313, 1981.
793
+ [20] R. Sugden, “An axiomatic foundation for regret theory,” Journal of Economic Theory, vol. 60,
794
+ no. 1, pp. 159–180, 1993.
795
+ [21] C. Starmer, “Developments in non-expected utility theory: The hunt for a descriptive theory
796
+ of choice under risk,” Journal of economic literature, vol. 38, no. 2, pp. 332–382, 2000.
797
+ [22] J. Quiggin, “Stochastic dominance in regret theory,” The Review of Economic Studies, vol. 57,
798
+ no. 3, pp. 503–511, 1990.
799
+ [23] H. Levy, “Regret theory: State dominance and expected utility,” Journal of Mathematical
800
+ Psychology, vol. 79, pp. 1–12, 2017.
801
+ [24] R. C. Jeffrey, The logic of decision. University of Chicago press, 1990.
802
+ [25] J. Pearl, “The sure-thing principle,” Journal of Causal Inference, vol. 4, no. 1, pp. 81–86,
803
+ 2016.
804
+ [26] S. Bikhchandani and U. Segal, “Transitive regret,” Theoretical Economics, vol. 6, no. 1, pp. 95–
805
+ 108, 2011.
806
+ 17
807
+
808
+ [27] P. C. Fishburn, “Nontransitive preferences in decision theory,” Journal of risk and uncertainty,
809
+ vol. 4, no. 2, pp. 113–134, 1991.
810
+ [28] S. Bikhchandani and U. Segal, “Transitive regret over statistically independent lotteries,”
811
+ Journal of Economic Theory, vol. 152, pp. 237–248, 2014.
812
+ [29] P. C. Fishburn, “Transitive measurable utility,” Journal of Economic Theory, vol. 31, no. 2,
813
+ pp. 293–317, 1983.
814
+ [30] P. J. Schoemaker, “The expected utility model: Its variants, purposes, evidence and limita-
815
+ tions,” Journal of economic literature, pp. 529–563, 1982.
816
+ [31] Y. Tanaka and M. Hattori, “Convexity, concavity, super-additivity, and sub-additivity of cost
817
+ function without fixed cost,” 2017.
818
+ [32] B. J. Weber et al., “The effects of payout and probability magnitude on the allais paradox,”
819
+ Memory & cognition, vol. 36, no. 5, pp. 1013–1023, 2008.
820
+ [33] C. F. Camerer, “An experimental test of several generalized utility theories,” Journal of Risk
821
+ and uncertainty, vol. 2, no. 1, pp. 61–104, 1989.
822
+ [34] P. R. Blavatskyy, A. Ortmann, and V. Panchenko, “Now you see it, now you don’t: How
823
+ to make the allais paradox appear, disappear, or reverse,” UNSW Business School Research
824
+ Paper, no. 2015-14, 2015.
825
+ [35] E. Incekara-Hafalir, E. Kim, and J. D. Stecher, “Is the allais paradox due to appeal of certainty
826
+ or aversion to zero?,” Experimental Economics, vol. 24, no. 3, pp. 751–771, 2021.
827
+ Appendix A: Proof of Proposition 4
828
+ .
829
+ We are to show that
830
+ n
831
+
832
+ i=1,j=1
833
+ piqjg(u(xj) − u(xi)) ≤ 0.
834
+ (A1)
835
+ It can be written in the following form
836
+ n
837
+
838
+ i=1
839
+ i
840
+
841
+ j=1
842
+ (piqj − pjqi)g(u(xj) − u(xi)).
843
+ (A2)
844
+ Now g’s in (A2) are strictly negative (recall (40) and monotonicity of g(x) and u(x)).
845
+ 18
846
+
847
+ We show that the following holds
848
+ n
849
+
850
+ i=1
851
+ i
852
+
853
+ j=1
854
+ piqjg(u(xj) − u(xi)) ≤
855
+ n
856
+
857
+ i=1
858
+ i
859
+
860
+ j=1
861
+ pipjg(u(xj) − u(xi))
862
+
863
+ n
864
+
865
+ i=1
866
+ i
867
+
868
+ j=1
869
+ pjqig(u(xj) − u(xi)),
870
+ (A3)
871
+ from which the (A2) will follow.
872
+ To do it, we make use of the following lemma.
873
+ Lemma.
874
+ Given sequences pi, qi as above, then for any increasing sequence of negative
875
+ numbers gi, it is true that
876
+ k
877
+
878
+ i=1
879
+ pigi ≥
880
+ k
881
+
882
+ i=1
883
+ qigi,
884
+ for
885
+ k = 1, ..., n.
886
+ (A4)
887
+ A simple induction will help. Obviously p1g1 ≥ q1g1. Supposing it is true for some k we will
888
+ have:
889
+ k
890
+
891
+ i=1
892
+ pigi ≥
893
+ k
894
+
895
+ i=1
896
+ qigi
897
+ (A5)
898
+ Let us now subtract gk+1 from each component gi. (As we are speaking about any increasing
899
+ sequence, we haven’t specified any concrete g-s yet. So, having that all components are less
900
+ gk+1, subtract, without change of sign in inequality)
901
+ We will have the following:
902
+ k
903
+
904
+ i=1
905
+ pi(gi − gk+1) ≥
906
+ k
907
+
908
+ i=1
909
+ qi(gi − gk+1)
910
+ (A6)
911
+ Now by (41)
912
+ k+1
913
+
914
+ i=1
915
+ pi ≤
916
+ k+1
917
+
918
+ i=1
919
+ qi
920
+ (A7)
921
+ multiplying by gk+1, we get
922
+ k+1
923
+
924
+ i=1
925
+ pigk+1 ≥
926
+ k+1
927
+
928
+ i=1
929
+ qigk+1.
930
+ (A8)
931
+ Summing up (A6) and (A8), the desired result is obtained:
932
+ k+1
933
+
934
+ i=1
935
+ pigi ≥
936
+ k+1
937
+
938
+ i=1
939
+ qigi.
940
+ (A9)
941
+ 19
942
+
943
+ Using the lemma we go back and consider first part of (A3)
944
+ n
945
+
946
+ i=1
947
+ i
948
+
949
+ j=1
950
+ piqjg(u(xj) − u(xi)) ≤
951
+ n
952
+
953
+ i=1
954
+ i
955
+
956
+ j=1
957
+ pipjg(u(xj) − u(xi)).
958
+ (A10)
959
+ Obviously
960
+ n
961
+
962
+ i=1
963
+ i
964
+
965
+ j=1
966
+ piqjg(u(xj) − u(xi)) =
967
+ n
968
+
969
+ i=1
970
+ pi
971
+ i
972
+
973
+ j=1
974
+ qjg(u(xj) − u(xi))
975
+
976
+ n
977
+
978
+ i=1
979
+ pi
980
+ i
981
+
982
+ j=1
983
+ pjg(u(xj) − u(xi)),
984
+ (A11)
985
+ The last part is implied by lemma.
986
+ Returning to the second part of (A3):
987
+ n
988
+
989
+ i=1
990
+ i
991
+
992
+ j=1
993
+ pjqig(u(xj) − u(xi)) ≥
994
+ n
995
+
996
+ i=1
997
+ i
998
+
999
+ j=1
1000
+ pipjg(u(xj) − u(xi)).
1001
+ (A12)
1002
+ and changing the order of summation, we get
1003
+ n
1004
+
1005
+ i=1
1006
+ i
1007
+
1008
+ j=1
1009
+ pjqig(u(xj) − u(xi)) =
1010
+ n
1011
+
1012
+ j=1
1013
+ n
1014
+
1015
+ i=j
1016
+ pjqig(u(xj) − u(xi))
1017
+ =
1018
+ n
1019
+
1020
+ j=1
1021
+ pj
1022
+ n
1023
+
1024
+ i=j
1025
+ qig(u(xj) − u(xi)) ≥
1026
+ n
1027
+
1028
+ j=1
1029
+ pj
1030
+ n
1031
+
1032
+ i=j
1033
+ pig(u(xj) − u(xi))
1034
+ =
1035
+ n
1036
+
1037
+ i=1
1038
+ i
1039
+
1040
+ j=1
1041
+ pipjg(u(xj) − u(xi)),
1042
+ (A13)
1043
+ where the inequality is the inverse of the one used in lemma. The proof is complete.
1044
+ Appendix B: Regret and the independence axiom (7)
1045
+ We already emphasized around (38, 39) that regret preference ⪰reg defined in (11) must
1046
+ violate the independence axiom for solving Allais’ paradox. Now we provide clarifications
1047
+ regarding the form (7) of this axiom. We note that (6, 7) do not define how precisely the
1048
+ mixing of the two probabilities with weights α is implemented.
1049
+ Below we discuss three
1050
+ interesting possibilities for implementing the set-up of (7). So we are given three lotteries
1051
+ 20
1052
+
1053
+ [cf. (1)]
1054
+ (x, p) =
1055
+
1056
+ x1 x2 ... xn
1057
+ p1 p2 ... pn
1058
+
1059
+  ,
1060
+ (y, q) =
1061
+
1062
+ y1 y2 ... yn
1063
+ q1 q2 ... qn
1064
+
1065
+  ,
1066
+ (z, r) =
1067
+
1068
+ z1 z2 ... zn
1069
+ r1 r2 ... rn
1070
+
1071
+  ,
1072
+ (B1)
1073
+ �n
1074
+ k=1pk =
1075
+ �n
1076
+ k=1qk =
1077
+ �n
1078
+ k=1rk = 1,
1079
+ (B2)
1080
+ where (p1, ..., pn), (q1, ..., qn), and (r1, ..., rn) are (resp.) the probabilities of monetary out-
1081
+ comes (x1, ..., xn) and (y1, ..., yn), (z1, ..., zn) within each lottery.
1082
+ 1. Here one chooses between two composite lotteries A = {(1 − α)(x, p) + α(z, r)} and
1083
+ B = {(1 − α)(y, q) + α(z, r)}. If A is taken, then a binary random variable SA is realized
1084
+ that takes values SA = 0 and SA = 1 with probabilities 1 − α and α, respectively. For
1085
+ SA = 0 or SA = 1 one faces lottery (x, p) or (z, r), respectively. If B is taken, then a binary
1086
+ random variable SB (independent from SA) is realized that takes values SB = 0 and SB = 1
1087
+ with probabilities 1 − α and α, respectively. For SB = 0 or SB = 1 one faces lottery (y, q)
1088
+ or (z, r), respectively. Let us now assume that (x, p) is independent from (y, q), but the
1089
+ lottery (z, r) in both options is the same. Using definition of regret (11), we end up with
1090
+ the following preference relation:
1091
+ A ⪰reg,1 B
1092
+ iff
1093
+ (1 − α)2�n
1094
+ i,j=1g(u(yj) − u(xi))piqj + (1 − α)α
1095
+ �n
1096
+ i,j=1g(u(zj) − u(xi))pirj
1097
+ +(1 − α)α
1098
+ �n
1099
+ i,j=1g(u(yj) − u(zi))qjri ≤ 0.
1100
+ (B3)
1101
+ Note that (B3) does not contain terms with g(u(zj) − u(zi)), because the decision maker
1102
+ does not expect to find different outcomes zj and zi within options A and B.
1103
+ 2. Now we have the situation of 1, but S = SA = SB; e.g. one can assume that S is
1104
+ realized beforehand, but the result is not known to the decision maker at the time of decision
1105
+ making. Now the regret is different [cf. (B3)]:
1106
+ A ⪰reg,2 B
1107
+ iff
1108
+ (1 − α)2�n
1109
+ i,j=1g(u(yj) − u(xi))piqj ≤ 0,
1110
+ (B4)
1111
+ where (z, r) does not enter to regret comparison (B4), which is formally consistent with
1112
+ axiom (7).
1113
+ 21
1114
+
1115
+ 3. We have the situation of 1, but (z, r) in option A and (z, r) in option B are two
1116
+ different lotteries with independent probabilities:
1117
+ A ⪰reg,3 B
1118
+ iff
1119
+ (1 − α)2�n
1120
+ i,j=1g(u(yj) − u(xi))piqj + (1 − α)α
1121
+ �n
1122
+ i,j=1g(u(zj) − u(xi))pirj
1123
+ +(1 − α)α
1124
+ �n
1125
+ i,j=1g(u(yj) − u(zi))qjri + α2�n
1126
+ i,j=1g(u(zj) − u(zi))rjri ≤ 0.
1127
+ (B5)
1128
+ The standard interpretation of the independence axiom within the expected utility the-
1129
+ ory hints at 3. We however emphasized that this situation is not unique. Note that all
1130
+ possibilities (B3, B4, B5) agree with the expected utility theory, where g(x) = x.
1131
+ Appendix C: Proof of Proposition 5
1132
+ It is known that n × n matrices θi,j from (43) form vector space of (n − 1) × (n − 1)
1133
+ dimension. So for example any such 3 × 3 matrix can be rewritten
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+ θ1,1 θ1,2 θ1,3
1140
+ θ2,1 θ2,2 θ2,3
1141
+ θ3,1 θ3,2 θ3,3
1142
+
1143
+
1144
+
1145
+
1146
+  = θ1,1
1147
+
1148
+
1149
+
1150
+
1151
+
1152
+ 1
1153
+ 0 −1
1154
+ 0
1155
+ 0
1156
+ 0
1157
+ −1 0
1158
+ 1
1159
+
1160
+
1161
+
1162
+
1163
+ +θ1,2
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+ 0
1170
+ 1
1171
+ −1
1172
+ 0
1173
+ 0
1174
+ 0
1175
+ 0 −1
1176
+ 1
1177
+
1178
+
1179
+
1180
+
1181
+ +θ2,1
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+ 0
1188
+ 0
1189
+ 0
1190
+ 1
1191
+ 0 −1
1192
+ −1 0
1193
+ 1
1194
+
1195
+
1196
+
1197
+
1198
+ +θ2,2
1199
+
1200
+
1201
+
1202
+
1203
+
1204
+ 0 0
1205
+ 0
1206
+ 0 1 −1
1207
+ 0 1
1208
+ 1
1209
+
1210
+
1211
+
1212
+
1213
+
1214
+ (C1)
1215
+ Denoting the basis matrices by Mi,j we have that any matrix Θ of thetas can be rewritten
1216
+ as
1217
+ Θ =
1218
+ n−1
1219
+
1220
+ i,j=1
1221
+ θi,jMi,j,
1222
+ (C2)
1223
+ where Mi,j is the matrix whose (i, j)-th and (n, n)-th elements are 1, the (i, n)-th and (n, j)-
1224
+ th elements are −1.
1225
+ Let us compute the regret in this case
1226
+ R =
1227
+ n
1228
+
1229
+ i=1
1230
+ n
1231
+
1232
+ j=1
1233
+ P(xi, xj)g(u(xj)−u(xi)) =
1234
+ n
1235
+
1236
+ i=1
1237
+ n
1238
+
1239
+ j=1
1240
+ piqjg(u(xj)−u(xi))+
1241
+ n
1242
+
1243
+ i=1
1244
+ n
1245
+
1246
+ j=1
1247
+ θi,jg(u(xj)−u(xi))
1248
+ (C3)
1249
+ We already know that the first term is negative ((A1) and Proposition 4). So it remains
1250
+ to show that second part is also negative. Denoting by G the matrix whose elements are
1251
+ G(i, j) = g(u(xj) − u(xi)), we can rewrite
1252
+ n
1253
+
1254
+ i=1
1255
+ n
1256
+
1257
+ j=1
1258
+ θi,jg(u(xj) − u(xi)) = ||Θ ⊙ G||,
1259
+ (C4)
1260
+ 22
1261
+
1262
+ Where under ||.|| we understand sum of all elements and ⊙ is Hadamard’s (element-wise)
1263
+ product.
1264
+ Note that
1265
+ n
1266
+
1267
+ i=1
1268
+ n
1269
+
1270
+ j=1
1271
+ θi,jg(u(xj) − u(xi)) = ||Θ ⊙ G|| =
1272
+ n−1
1273
+
1274
+ i=1
1275
+ n−1
1276
+
1277
+ j=1
1278
+ θi,j||Mi,j ⊙ G||.
1279
+ (C5)
1280
+ We have
1281
+ ||Mi,j ⊙ G|| = g(u(xi) − u(xj)) − g(u(xn) − u(xj)) − g(u(xi) − u(xn)).
1282
+ (C6)
1283
+ Now consider
1284
+ θi,j||Mi,j ⊙ G|| + θj,i||Mi,j ⊙ G||
1285
+ = θi,j(g(u(xi) − u(xj)) − g(u(xn) − u(xj)) − g(u(xi) − u(xn)))
1286
+ + θj,i(g(u(xj) − u(xi)) − g(u(xn) − u(xi)) − g(u(xj) − u(xn)))
1287
+ = (θi,j − θj,i)(g(u(xi) − u(xj)) + g(u(xn) − u(xi)) − g(u(xn) − u(xj))
1288
+ (C7)
1289
+ Note that while i > j we have by super-additivity that term in second parenthesis is negative.
1290
+ So toghether with θi,j ≥ θj,i we conclude that
1291
+ θi,j||Mi,j ⊙ G|| + θj,i||Mi,j ⊙ G|| ≤ 0
1292
+ (C8)
1293
+ Rewriting
1294
+ n
1295
+
1296
+ i=1
1297
+ n
1298
+
1299
+ j=1
1300
+ θi,jg(u(xj)−u(xi)) = ||Θ⊙G|| =
1301
+ n−1
1302
+
1303
+ i=1
1304
+ n−1
1305
+
1306
+ j=1;j̸=i
1307
+ θi,j||Mi,j ⊙G||+
1308
+ n−1
1309
+
1310
+ i=1
1311
+ θi,i||Mi,i⊙G||. (C9)
1312
+ The second sum in (C9) is obviously 0, as g(x) is antisymmetric, and Mi,i-s are symmetric
1313
+ matrices.
1314
+ So
1315
+ n
1316
+
1317
+ i=1
1318
+ n
1319
+
1320
+ j=1
1321
+ θi,jg(u(xj) − u(xi)) =
1322
+ n−1
1323
+
1324
+ i=1
1325
+ n−1
1326
+
1327
+ j=1;j̸=i
1328
+ θi,j||Mi,j ⊙ G|| ≤ 0.
1329
+ (C10)
1330
+ 23
1331
+
KtE0T4oBgHgl3EQfigGw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KtFOT4oBgHgl3EQfzTRj/content/2301.12931v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9684900c623ac707323a047c41882b583542a4ab9f8e69bfdd69bc469141194a
3
+ size 599509
KtFOT4oBgHgl3EQfzTRj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cfb64d8366e52e3fe09d847b8a2d6bea76fefaa6d63f91e0c08022688e440cc
3
+ size 123814