jackkuo commited on
Commit
6dccbd3
·
verified ·
1 Parent(s): 29a032b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NA0T4oBgHgl3EQfPP8X/content/2301.02171v1.pdf +3 -0
  2. -NA0T4oBgHgl3EQfPP8X/vector_store/index.faiss +3 -0
  3. -NA0T4oBgHgl3EQfPP8X/vector_store/index.pkl +3 -0
  4. .gitattributes +49 -0
  5. 0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf +0 -0
  6. 0dAzT4oBgHgl3EQftv1g/content/tmp_files/2301.01680v1.pdf.txt +150 -0
  7. 0dAzT4oBgHgl3EQftv1g/content/tmp_files/load_file.txt +71 -0
  8. 1tFIT4oBgHgl3EQf4CvP/content/2301.11384v1.pdf +3 -0
  9. 2NE1T4oBgHgl3EQfAAJE/vector_store/index.faiss +3 -0
  10. 49FAT4oBgHgl3EQfmR1P/content/tmp_files/2301.08622v1.pdf.txt +570 -0
  11. 49FAT4oBgHgl3EQfmR1P/content/tmp_files/load_file.txt +273 -0
  12. 4tE2T4oBgHgl3EQfOQbV/vector_store/index.faiss +3 -0
  13. A9E2T4oBgHgl3EQfRQfr/content/tmp_files/2301.03780v1.pdf.txt +1445 -0
  14. A9E2T4oBgHgl3EQfRQfr/content/tmp_files/load_file.txt +0 -0
  15. A9FQT4oBgHgl3EQf9TeX/content/2301.13450v1.pdf +3 -0
  16. A9FQT4oBgHgl3EQf9TeX/vector_store/index.faiss +3 -0
  17. A9FQT4oBgHgl3EQf9TeX/vector_store/index.pkl +3 -0
  18. ANFAT4oBgHgl3EQfrR6g/vector_store/index.faiss +3 -0
  19. BdAzT4oBgHgl3EQfh_0J/content/2301.01491v1.pdf +3 -0
  20. BdAzT4oBgHgl3EQfh_0J/vector_store/index.pkl +3 -0
  21. CNAzT4oBgHgl3EQfTvwq/vector_store/index.pkl +3 -0
  22. CNE4T4oBgHgl3EQf5g54/content/tmp_files/2301.05324v1.pdf.txt +691 -0
  23. CNE4T4oBgHgl3EQf5g54/content/tmp_files/load_file.txt +0 -0
  24. CtAzT4oBgHgl3EQfiP1R/content/tmp_files/2301.01496v1.pdf.txt +1503 -0
  25. CtAzT4oBgHgl3EQfiP1R/content/tmp_files/load_file.txt +0 -0
  26. CtAzT4oBgHgl3EQfwf4q/vector_store/index.faiss +3 -0
  27. CtE4T4oBgHgl3EQf5w5z/content/2301.05326v1.pdf +3 -0
  28. CtE4T4oBgHgl3EQf5w5z/vector_store/index.faiss +3 -0
  29. DNE2T4oBgHgl3EQfoQhP/vector_store/index.faiss +3 -0
  30. ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf +3 -0
  31. ENAyT4oBgHgl3EQfSPf9/vector_store/index.pkl +3 -0
  32. FNFRT4oBgHgl3EQfyzjn/content/2301.13648v1.pdf +3 -0
  33. GtAzT4oBgHgl3EQfUvxQ/content/2301.01271v1.pdf +3 -0
  34. GtAzT4oBgHgl3EQfUvxQ/vector_store/index.pkl +3 -0
  35. GtFAT4oBgHgl3EQftR52/content/tmp_files/2301.08663v1.pdf.txt +1113 -0
  36. GtFAT4oBgHgl3EQftR52/content/tmp_files/load_file.txt +457 -0
  37. INE3T4oBgHgl3EQfWwrb/content/2301.04473v1.pdf +3 -0
  38. INE3T4oBgHgl3EQfWwrb/vector_store/index.faiss +3 -0
  39. ItFIT4oBgHgl3EQfYivh/vector_store/index.faiss +3 -0
  40. JNE2T4oBgHgl3EQf_wld/vector_store/index.faiss +3 -0
  41. JtE1T4oBgHgl3EQfYQS_/content/2301.03137v1.pdf +3 -0
  42. JtE1T4oBgHgl3EQfYQS_/vector_store/index.faiss +3 -0
  43. JtE1T4oBgHgl3EQfYQS_/vector_store/index.pkl +3 -0
  44. JtE4T4oBgHgl3EQf7Q7_/vector_store/index.faiss +3 -0
  45. KtE0T4oBgHgl3EQfzgKz/content/tmp_files/2301.02674v1.pdf.txt +2738 -0
  46. KtE0T4oBgHgl3EQfzgKz/content/tmp_files/load_file.txt +0 -0
  47. KtE3T4oBgHgl3EQfvgte/content/tmp_files/2301.04694v1.pdf.txt +361 -0
  48. KtE3T4oBgHgl3EQfvgte/content/tmp_files/load_file.txt +336 -0
  49. L9E0T4oBgHgl3EQfjAEs/vector_store/index.pkl +3 -0
  50. MNE3T4oBgHgl3EQfBAmd/content/tmp_files/2301.04263v1.pdf.txt +1668 -0
-NA0T4oBgHgl3EQfPP8X/content/2301.02171v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bab37d377197dca3b1e57b50f5cd664ea8ae368a7824f8fc3ab422e03d064a6e
3
+ size 463479
-NA0T4oBgHgl3EQfPP8X/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a97882ead6e1113b6f02cec68d7178dca7bb5b9d330f2da171b321ff31992393
3
+ size 3211309
-NA0T4oBgHgl3EQfPP8X/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb305e73d11755abdae742f23dcc4a34b207aa7c6f186cf9179a639a7b8a1c10
3
+ size 129757
.gitattributes CHANGED
@@ -4242,3 +4242,52 @@ ANFAT4oBgHgl3EQfrR6g/content/2301.08652v1.pdf filter=lfs diff=lfs merge=lfs -tex
4242
  eNE0T4oBgHgl3EQfWwDh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4243
  stE5T4oBgHgl3EQfmQ9N/content/2301.05677v1.pdf filter=lfs diff=lfs merge=lfs -text
4244
  TdE3T4oBgHgl3EQfzguF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242
  eNE0T4oBgHgl3EQfWwDh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4243
  stE5T4oBgHgl3EQfmQ9N/content/2301.05677v1.pdf filter=lfs diff=lfs merge=lfs -text
4244
  TdE3T4oBgHgl3EQfzguF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4245
+ INE3T4oBgHgl3EQfWwrb/content/2301.04473v1.pdf filter=lfs diff=lfs merge=lfs -text
4246
+ CtE4T4oBgHgl3EQf5w5z/content/2301.05326v1.pdf filter=lfs diff=lfs merge=lfs -text
4247
+ RdFQT4oBgHgl3EQfajZo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4248
+ FNFRT4oBgHgl3EQfyzjn/content/2301.13648v1.pdf filter=lfs diff=lfs merge=lfs -text
4249
+ RNFRT4oBgHgl3EQfKzd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4250
+ INE3T4oBgHgl3EQfWwrb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4251
+ utE3T4oBgHgl3EQf-Av4/content/2301.04823v1.pdf filter=lfs diff=lfs merge=lfs -text
4252
+ pNAzT4oBgHgl3EQf5f6s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4253
+ bdAzT4oBgHgl3EQfLfsG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4254
+ 1tFIT4oBgHgl3EQf4CvP/content/2301.11384v1.pdf filter=lfs diff=lfs merge=lfs -text
4255
+ atFPT4oBgHgl3EQfvzW4/content/2301.13161v1.pdf filter=lfs diff=lfs merge=lfs -text
4256
+ DNE2T4oBgHgl3EQfoQhP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4257
+ _NAyT4oBgHgl3EQfRfYM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4258
+ CtE4T4oBgHgl3EQf5w5z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4259
+ w9E0T4oBgHgl3EQftAEr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4260
+ JtE1T4oBgHgl3EQfYQS_/content/2301.03137v1.pdf filter=lfs diff=lfs merge=lfs -text
4261
+ -NA0T4oBgHgl3EQfPP8X/content/2301.02171v1.pdf filter=lfs diff=lfs merge=lfs -text
4262
+ pNAzT4oBgHgl3EQf5f6s/content/2301.01861v1.pdf filter=lfs diff=lfs merge=lfs -text
4263
+ W9E2T4oBgHgl3EQfYQe0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4264
+ atFPT4oBgHgl3EQfvzW4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4265
+ JNE2T4oBgHgl3EQf_wld/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4266
+ utE3T4oBgHgl3EQf-Av4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4267
+ -NA0T4oBgHgl3EQfPP8X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4268
+ ItFIT4oBgHgl3EQfYivh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4269
+ A9FQT4oBgHgl3EQf9TeX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4270
+ 2NE1T4oBgHgl3EQfAAJE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4271
+ 4tE2T4oBgHgl3EQfOQbV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4272
+ JtE4T4oBgHgl3EQf7Q7_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4273
+ BdAzT4oBgHgl3EQfh_0J/content/2301.01491v1.pdf filter=lfs diff=lfs merge=lfs -text
4274
+ XdFRT4oBgHgl3EQf-jgZ/content/2301.13691v1.pdf filter=lfs diff=lfs merge=lfs -text
4275
+ wdAzT4oBgHgl3EQfCPqo/content/2301.00956v1.pdf filter=lfs diff=lfs merge=lfs -text
4276
+ l9FPT4oBgHgl3EQfIDTd/content/2301.13010v1.pdf filter=lfs diff=lfs merge=lfs -text
4277
+ V9E2T4oBgHgl3EQfuAiM/content/2301.04076v1.pdf filter=lfs diff=lfs merge=lfs -text
4278
+ A9FQT4oBgHgl3EQf9TeX/content/2301.13450v1.pdf filter=lfs diff=lfs merge=lfs -text
4279
+ o9E0T4oBgHgl3EQf9AJc/content/2301.02795v1.pdf filter=lfs diff=lfs merge=lfs -text
4280
+ MtFRT4oBgHgl3EQfGDcg/content/2301.13482v1.pdf filter=lfs diff=lfs merge=lfs -text
4281
+ i9AzT4oBgHgl3EQfM_vp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4282
+ CtAzT4oBgHgl3EQfwf4q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4283
+ YdFPT4oBgHgl3EQftTXv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4284
+ ANFAT4oBgHgl3EQfrR6g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4285
+ o9E0T4oBgHgl3EQf9AJc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4286
+ etE1T4oBgHgl3EQfLwNP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4287
+ cNFPT4oBgHgl3EQfBjTq/content/2301.12986v1.pdf filter=lfs diff=lfs merge=lfs -text
4288
+ ltFPT4oBgHgl3EQf3TXn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4289
+ JtE1T4oBgHgl3EQfYQS_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4290
+ ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf filter=lfs diff=lfs merge=lfs -text
4291
+ GtAzT4oBgHgl3EQfUvxQ/content/2301.01271v1.pdf filter=lfs diff=lfs merge=lfs -text
4292
+ ltFPT4oBgHgl3EQf3TXn/content/2301.13190v1.pdf filter=lfs diff=lfs merge=lfs -text
4293
+ XtE3T4oBgHgl3EQf1gsc/content/2301.04746v1.pdf filter=lfs diff=lfs merge=lfs -text
0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf ADDED
Binary file (95.1 kB). View file
 
0dAzT4oBgHgl3EQftv1g/content/tmp_files/2301.01680v1.pdf.txt ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01680v1 [math.NT] 3 Jan 2023
2
+ CM ELLIPTIC CURVES AND VERTICALLY ENTANGLED 2-ADIC GROUPS
3
+ NATHAN JONES
4
+ Abstract. Consider the elliptic curve E given by the Weierstrass equation y2 = x3 − 11x − 14, which has
5
+ complex multiplication by the order of conductor 2 inside Z[i]. It was recently observed in a paper of Daniels
6
+ and Lozano-Robledo that, for each n ≥ 2, Q(µ2n+1) ⊆ Q(E[2n]). In this note, we prove that this (a priori
7
+ surprising) “tower of vertical entanglements” is actually more a feature than a bug: it holds for any elliptic
8
+ curve E over Q with complex multiplication by any order of even discriminant.
9
+ 1. Main result and proof
10
+ Let E be an elliptic curve over Q with complex multiplication by the order OK,f ⊆ OK of conductor f
11
+ inside the imaginary quadratic field K. Since every endomorphism of E defined over Q commutes with the
12
+ action of Gal(Q/Q), it follows that the image of the Galois representation
13
+ ρE,m : Gal(Q/Q) −→ Aut(E[m]) ≃ GL2(Z/mZ),
14
+ (which is defined by letting Gal(Q/Q) act on E[m], the m-torsion subgroup of E, and fixing a Z/mZ-basis
15
+ thereof) lies inside a certain subgroup Nδ,φ(m) ⊆ GL2(Z/mZ), which we now specify, following [2]. First,
16
+ let us set
17
+ φ = φ(OK,f, m) :=
18
+
19
+ 0
20
+ if ∆Kf 2 ≡ 0 mod 4 or if m is odd,
21
+ f
22
+ if ∆Kf 2 ≡ 1 mod 4 and m is even,
23
+ δ = δ(OK,f, m) :=
24
+
25
+ ∆Kf 2/4
26
+ if ∆Kf 2 ≡ 0 mod 4 or if m is odd,
27
+ (∆K − 1)f 2/4
28
+ if ∆Kf 2 ≡ 1 mod 4 and m is even.
29
+ Next, we define the associated Cartan subgroup Cδ,φ(m) by
30
+ Cδ,φ(m) :=
31
+ ��
32
+ a + bφ
33
+ b
34
+
35
+ a
36
+
37
+ : a, b ∈ Z/mZ, a2 + φab − δb2 ∈ (Z/mZ)×
38
+
39
+ .
40
+ (1)
41
+ Finally, we define Nδ,φ(m) ⊆ GL2(Z/mZ) by
42
+ Nδ,φ(m) :=
43
+ ��
44
+ −1
45
+ 0
46
+ φ
47
+ 1
48
+
49
+ , Cδ,φ(m)
50
+
51
+ .
52
+ (2)
53
+ If E is any elliptic curve over Q with CM by OK,f, then, for an appropriate choice of Z/mZ-basis of E[m],
54
+ we have ρE,m(GQ) ⊆ Nδ,φ(m). For more details, see [2].
55
+ Let E−16 be the elliptic curve defined by the Weierstrass equation y2 = x3 − 11x − 14 (i.e. the elliptic
56
+ curve with Cremona label 32a3). The curve E−16 has CM by the order O := Z + 2iZ of conductor 2 inside
57
+ the field Q(i). Furthermore, as observed in [1, Theorem 1.5], we have
58
+ n ∈ N≥2 =⇒ Q(ζ2n+1) ⊆ Q(E−16[2n]).
59
+ (3)
60
+ The authors also observed that the elliptic curves E−4,1 and E−4,2, given, respectively, by the Weierstrass
61
+ equations y2 = x2 + x and y2 = x3 + 2x satisfy
62
+ Q(E−4,1[2]) = Q(ζ4)
63
+ and
64
+ Q(ζ8) ⊆ Q(E−4,2[4]).
65
+ The purpose of this note is to show that the two elliptic curves E−4,1 and E−4,2 also satisfy (3). More
66
+ generally, we will prove the following theorem.
67
+ Theorem 1.1. Let E be any elliptic curve over Q with complex multiplication by an order OK,f in an
68
+ imaginary quadratic field K. Assuming that the discriminant ∆Kf 2 of OK,f is even, we have that, for each
69
+ n ∈ N≥2, Q(ζ2n+1) ⊆ Q(E[2n]).
70
+ 1
71
+
72
+ Proof. Let us denote by G(2n) := ρE,2n(GQ) ⊆ Nδ,φ(2n) the mod 2n image associated to E.
73
+ We will
74
+ establish that, for each n ∈ N≥2, there is a surjective homomorphism δ : G(2n) ։ (Z/2n+1Z)× for which
75
+ det |G(2n+1) = δ ◦ π, where π : G(2n+1) → G(2n) denotes the projection map. In other words, the following
76
+ diagram will commute:
77
+ G(2n+1)
78
+ (Z/2n+1Z)×
79
+ G(2n)
80
+ (Z/2nZ)×.
81
+ det
82
+ π
83
+ det
84
+ δ
85
+ (4)
86
+ Once established, it will follow that
87
+ Q(ζ2n+1) = Q(E[2n+1])ker det = Q(E[2n+1])π−1(ker δ) = Q(E[2n])ker δ ⊆ Q(E[2n]).
88
+ (5)
89
+ The key observation is that, since ∆Kf 2 is assumed even, it follows that φ = 0. Considering (1) and (2), we
90
+ may then see that
91
+ n ∈ N≥2 =⇒ ker
92
+
93
+ Nδ,φ(2n+1) → Nδ,φ(2n)
94
+
95
+ ⊆ SL2(Z/2n+1Z).
96
+ (6)
97
+ (The reason we require n > 1 is that otherwise we do not have ker
98
+
99
+ Nδ,φ(2n+1) → Nδ,φ(2n)
100
+
101
+ ⊆ Cδ,φ(2n+1),
102
+ since
103
+ �−1
104
+ 0
105
+ φ
106
+ 1
107
+
108
+ ≡ I mod 2; the consequent of (6) is false for n = 1.) We now define the map δ by
109
+ δ(g) := det(g′),
110
+ where g′ ∈ π−1(g).
111
+ By virtue of (6), this is independent of the choice of g′ ∈ π−1(g), and thus defines a map δ : G(2n) →
112
+ (Z/2n+1Z)×.
113
+ It is surjective since det : G(2n+1) → (Z/2n+1Z)× is, and the diagram (4) commutes by
114
+ definition of δ. Thus, by (5), we deduce that
115
+ ∀n ∈ N≥2,
116
+ Q(ζ2n+1) ⊆ Q(E[2n]),
117
+ as asserted.
118
+
119
+ The proof of Theorem 1.1 applies to a more general situation, as follows. Given an algebraic group G and
120
+ a Galois representation ρ : Gal(Q/Q) → G(ˆZ), let us denote by ρm : Gal(Q/Q) → G(Z/mZ) the composition
121
+ of ρ with the natural projection map G(ˆZ) → G(Z/mZ) and define Q(E(ρ[m])) := Q
122
+ ker ρm.
123
+ Definition 1.2. Suppose G is any algebraic group that admits a homomorphism δ : G → Gm to the mul-
124
+ tiplicative group. We say that a Galois representation ρ : Gal(Q/Q) → G(ˆZ) extends the cyclotomic
125
+ character if δˆZ ◦ ρ : Gal(Q/Q) → G(ˆZ) → ˆZ× agrees with the cyclotomic character. For any prime number
126
+ p, we say that G(Zp) form a vertically entangled p-adic group if there exists n0 ∈ N so that, for each
127
+ n ∈ N≥n0, we have ker
128
+
129
+ G(Z/pn+1Z) → G(Z/pnZ)
130
+
131
+ ⊆ ker δpn+1, where δpn+1 : G(Z/pn+1Z) → (Z/pn+1Z)×
132
+ denotes the group homomorphism associated to δ on the mod pn+1 points of G.
133
+ Remark 1.3. Let ρ : Gal(Q/Q) → G(ˆZ) be any Galois representation that extends the cyclotomic character
134
+ and suppose that, for some prime number p, the group G(Zp) is a vertically entangled p-adic group. Then
135
+ the proof of Theorem 1.1 shows that, in this more general context, we have
136
+ ∀n ∈ N≥n0,
137
+ Q(µpn+1) ⊆ Q(ρ[pn]).
138
+ 2. Acknowledgement
139
+ The author gratefully acknowledges Harris Daniels for bringing the phenomenon (3) to his attention, and
140
+ also Ken McMurdy for subsequent stimulating conversations.
141
+ References
142
+ [1] H. Daniels and A. Lozano-Robledo, Coincidences of division fields, preprint. To appear in Ann. Inst. Fourier. Available at
143
+ https://arxiv.org/abs/1912.05618
144
+ [2] A. Lozano-Robledo, Galois representations attached to elliptic curves with complex multiplication, preprint. To appear in
145
+ Algebra and Number Theory. Available at https://arxiv.org/abs/1809.02584
146
+ Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S Morgan
147
+ St, 322 SEO, Chicago, 60607, IL, USA
148
+ Email address: [email protected]
149
+ 2
150
+
0dAzT4oBgHgl3EQftv1g/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf,len=70
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
3
+ page_content='01680v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
4
+ page_content='NT] 3 Jan 2023 CM ELLIPTIC CURVES AND VERTICALLY ENTANGLED 2-ADIC GROUPS NATHAN JONES Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
5
+ page_content=' Consider the elliptic curve E given by the Weierstrass equation y2 = x3 − 11x − 14, which has complex multiplication by the order of conductor 2 inside Z[i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
6
+ page_content=' It was recently observed in a paper of Daniels and Lozano-Robledo that, for each n ≥ 2, Q(µ2n+1) ⊆ Q(E[2n]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
7
+ page_content=' In this note, we prove that this (a priori surprising) “tower of vertical entanglements” is actually more a feature than a bug: it holds for any elliptic curve E over Q with complex multiplication by any order of even discriminant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
8
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
9
+ page_content=' Main result and proof Let E be an elliptic curve over Q with complex multiplication by the order OK,f ⊆ OK of conductor f inside the imaginary quadratic field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
10
+ page_content=' Since every endomorphism of E defined over Q commutes with the action of Gal(Q/Q), it follows that the image of the Galois representation ρE,m : Gal(Q/Q) −→ Aut(E[m]) ≃ GL2(Z/mZ), (which is defined by letting Gal(Q/Q) act on E[m], the m-torsion subgroup of E, and fixing a Z/mZ-basis thereof) lies inside a certain subgroup Nδ,φ(m) ⊆ GL2(Z/mZ), which we now specify, following [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
11
+ page_content=' First, let us set φ = φ(OK,f, m) := � 0 if ∆Kf 2 ≡ 0 mod 4 or if m is odd, f if ∆Kf 2 ≡ 1 mod 4 and m is even, δ = δ(OK,f, m) := � ∆Kf 2/4 if ∆Kf 2 ≡ 0 mod 4 or if m is odd, (∆K − 1)f 2/4 if ∆Kf 2 ≡ 1 mod 4 and m is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
12
+ page_content=' Next, we define the associated Cartan subgroup Cδ,φ(m) by Cδ,φ(m) := �� a + bφ b bδ a � : a, b ∈ Z/mZ, a2 + φab − δb2 ∈ (Z/mZ)× � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
13
+ page_content=' (1) Finally, we define Nδ,φ(m) ⊆ GL2(Z/mZ) by Nδ,φ(m) := �� −1 0 φ 1 � , Cδ,φ(m) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
14
+ page_content=' (2) If E is any elliptic curve over Q with CM by OK,f, then, for an appropriate choice of Z/mZ-basis of E[m], we have ρE,m(GQ) ⊆ Nδ,φ(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
15
+ page_content=' For more details, see [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
16
+ page_content=' Let E−16 be the elliptic curve defined by the Weierstrass equation y2 = x3 − 11x − 14 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
17
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
18
+ page_content=' the elliptic curve with Cremona label 32a3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
19
+ page_content=' The curve E−16 has CM by the order O := Z + 2iZ of conductor 2 inside the field Q(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
20
+ page_content=' Furthermore, as observed in [1, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
21
+ page_content='5], we have n ∈ N≥2 =⇒ Q(ζ2n+1) ⊆ Q(E−16[2n]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
22
+ page_content=' (3) The authors also observed that the elliptic curves E−4,1 and E−4,2, given, respectively, by the Weierstrass equations y2 = x2 + x and y2 = x3 + 2x satisfy Q(E−4,1[2]) = Q(ζ4) and Q(ζ8) ⊆ Q(E−4,2[4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
23
+ page_content=' The purpose of this note is to show that the two elliptic curves E−4,1 and E−4,2 also satisfy (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
24
+ page_content=' More generally, we will prove the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
25
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
26
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
27
+ page_content=' Let E be any elliptic curve over Q with complex multiplication by an order OK,f in an imaginary quadratic field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
28
+ page_content=' Assuming that the discriminant ∆Kf 2 of OK,f is even, we have that, for each n ∈ N≥2, Q(ζ2n+1) ⊆ Q(E[2n]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
29
+ page_content=' 1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
30
+ page_content=' Let us denote by G(2n) := ρE,2n(GQ) ⊆ Nδ,φ(2n) the mod 2n image associated to E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
31
+ page_content=' We will establish that, for each n ∈ N≥2, there is a surjective homomorphism δ : G(2n) ։ (Z/2n+1Z)× for which det |G(2n+1) = δ ◦ π, where π : G(2n+1) → G(2n) denotes the projection map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
32
+ page_content=' In other words, the following diagram will commute: G(2n+1) (Z/2n+1Z)× G(2n) (Z/2nZ)×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
33
+ page_content=' det π det δ (4) Once established, it will follow that Q(ζ2n+1) = Q(E[2n+1])ker det = Q(E[2n+1])π−1(ker δ) = Q(E[2n])ker δ ⊆ Q(E[2n]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
34
+ page_content=' (5) The key observation is that, since ∆Kf 2 is assumed even, it follows that φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
35
+ page_content=' Considering (1) and (2), we may then see that n ∈ N≥2 =⇒ ker � Nδ,φ(2n+1) → Nδ,φ(2n) � ⊆ SL2(Z/2n+1Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
36
+ page_content=' (6) (The reason we require n > 1 is that otherwise we do not have ker � Nδ,φ(2n+1) → Nδ,φ(2n) � ⊆ Cδ,φ(2n+1), since �−1 0 φ 1 � ≡ I mod 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
37
+ page_content=' the consequent of (6) is false for n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
38
+ page_content=') We now define the map δ by δ(g) := det(g′), where g′ ∈ π−1(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
39
+ page_content=' By virtue of (6), this is independent of the choice of g′ ∈ π−1(g), and thus defines a map δ : G(2n) → (Z/2n+1Z)×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
40
+ page_content=' It is surjective since det : G(2n+1) → (Z/2n+1Z)× is, and the diagram (4) commutes by definition of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
41
+ page_content=' Thus, by (5), we deduce that ∀n ∈ N≥2, Q(ζ2n+1) ⊆ Q(E[2n]), as asserted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
42
+ page_content=' □ The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
43
+ page_content='1 applies to a more general situation, as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
44
+ page_content=' Given an algebraic group G and a Galois representation ρ : Gal(Q/Q) → G(ˆZ), let us denote by ρm : Gal(Q/Q) → G(Z/mZ) the composition of ρ with the natural projection map G(ˆZ) → G(Z/mZ) and define Q(E(ρ[m])) := Q ker ρm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
45
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
46
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
47
+ page_content=' Suppose G is any algebraic group that admits a homomorphism δ : G → Gm to the mul- tiplicative group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
48
+ page_content=' We say that a Galois representation ρ : Gal(Q/Q) → G(ˆZ) extends the cyclotomic character if δˆZ ◦ ρ : Gal(Q/Q) → G(ˆZ) → ˆZ× agrees with the cyclotomic character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
49
+ page_content=' For any prime number p, we say that G(Zp) form a vertically entangled p-adic group if there exists n0 ∈ N so that, for each n ∈ N≥n0, we have ker � G(Z/pn+1Z) → G(Z/pnZ) � ⊆ ker δpn+1, where δpn+1 : G(Z/pn+1Z) → (Z/pn+1Z)× denotes the group homomorphism associated to δ on the mod pn+1 points of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
50
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
51
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
52
+ page_content=' Let ρ : Gal(Q/Q) → G(ˆZ) be any Galois representation that extends the cyclotomic character and suppose that, for some prime number p, the group G(Zp) is a vertically entangled p-adic group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
53
+ page_content=' Then the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
54
+ page_content='1 shows that, in this more general context, we have ∀n ∈ N≥n0, Q(µpn+1) ⊆ Q(ρ[pn]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
55
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
56
+ page_content=' Acknowledgement The author gratefully acknowledges Harris Daniels for bringing the phenomenon (3) to his attention, and also Ken McMurdy for subsequent stimulating conversations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
57
+ page_content=' References [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
58
+ page_content=' Daniels and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
59
+ page_content=' Lozano-Robledo, Coincidences of division fields, preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
60
+ page_content=' To appear in Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
61
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
62
+ page_content=' Fourier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
63
+ page_content=' Available at https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
64
+ page_content='org/abs/1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
65
+ page_content='05618 [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
66
+ page_content=' Lozano-Robledo, Galois representations attached to elliptic curves with complex multiplication, preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
67
+ page_content=' To appear in Algebra and Number Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
68
+ page_content=' Available at https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
69
+ page_content='org/abs/1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
70
+ page_content='02584 Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S Morgan St, 322 SEO, Chicago, 60607, IL, USA Email address: ncjones@uic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
71
+ page_content='edu 2' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAzT4oBgHgl3EQftv1g/content/2301.01680v1.pdf'}
1tFIT4oBgHgl3EQf4CvP/content/2301.11384v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beb232cd9678b443059fe49f7afbb94a60cf7b964dda28ae0cd31a2a89099a79
3
+ size 1714361
2NE1T4oBgHgl3EQfAAJE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d62a86e55aa4e288bdec5b45d09a5e0e061ca69ccfbb484c2bd62fd6fd9784a
3
+ size 4128813
49FAT4oBgHgl3EQfmR1P/content/tmp_files/2301.08622v1.pdf.txt ADDED
@@ -0,0 +1,570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–5 (2018)
2
+ Preprint 23 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ The Effect of the Peculiar Motions of the Lens, Source and the Observer on
5
+ the Gravitational Lensing Time Delay
6
+ Gihan Weerasekara,1★ Thulsi Wickramasinghe,2 Chandana Jayaratne1
7
+ 1Department of Physics, University of Colombo, Sri Lanka
8
+ 2Department of Physics, The College of New Jersey, Ewing, NJ 08628, USA
9
+ Accepted XXX. Received YYY; in original form ZZZ
10
+ ABSTRACT
11
+ An intervening galaxy acts as a gravitational lens and produces multiple images of a single source such as a remote galaxy.
12
+ Galaxies have peculiar speeds in addition to the bulk motion arising due to the expansion of the universe. There is a difference in
13
+ light arrival times between lensed images. We calculate more realistic time delays between lensed images when galaxy peculiar
14
+ motions, that is the motion of the Lens, the Source and the Observer are taken into consideration neglecting the gravitomagnetic
15
+ effects.
16
+ Key words: gravitational lensing: strong – galaxies: peculiar
17
+ 1 INTRODUCTION
18
+ A remote galaxy S at redshift 𝑧𝑠 (Shown in Figure 1) is lensed by an
19
+ intervening galaxy L at redshift 𝑧𝑑. A light ray from S bends by an
20
+ angle 𝛼 before arriving at the observer O. The image I of S forms at
21
+ an angle 𝜃 while S is at 𝛽. The distances 𝐷𝑑, 𝐷𝑠 and 𝐷𝑑𝑠 shown are
22
+ the angular diameter distances. Walsh (1979), Chen (1995)
23
+ From the theory of lensing, we can derive the angular positions 𝜃1
24
+ and 𝜃2 of the two lensed images formed due to a single point lens.
25
+ There is a delay Δ𝜏 of light arrival times from these two images.
26
+ This delay is arising due to both geometrical path difference and the
27
+ fact that two light rays are traveling in two different potential wells
28
+ on either side of the lens. The total time delay is given by, Schneider
29
+ (1992), Bradt (2008)
30
+ Δ𝜏 =
31
+ 𝐷 𝑓
32
+ 𝑐 (1 + 𝑧𝑑)
33
+ � 1
34
+ 2 (𝜃2
35
+ 1 − 𝜃2
36
+ 2) + |𝜃1𝜃2| ln
37
+ ����
38
+ 𝜃1
39
+ 𝜃2
40
+ ����
41
+
42
+ (1)
43
+ where,
44
+ 𝐷 𝑓 = 𝐷𝑑𝐷𝑠
45
+ 𝐷𝑑𝑠
46
+ (2)
47
+ We calculate analytically a more realistic time delay between the
48
+ two images when the peculiar speeds of the lens, the source and the
49
+ observer are considered. These peculiar speeds are random speeds
50
+ With respect to the cosmic microwave background radiation - Hubble
51
+ flow.
52
+ But as we already know a point mass lens is a highly idealized
53
+ and less practical lensing model for a real lensing system, in the next
54
+ part of the paper we will be considering a more practical Singular
55
+ Isothermal Sphere (SIS) lensing model to calculate the time delay
56
+ difference when the peculiar speeds of the objects are considered.
57
+ ★ E-mail: [email protected]
58
+ Figure 1. Gravitational Lensing Diagram. The peculiar speed 𝑣 of the lens L
59
+ is measured with respect to a freely falling observer with the Hubble flow at
60
+ the location of the lens. The angle 𝜖 is measured from the optic axis OL.
61
+ © 2018 The Authors
62
+ arXiv:2301.08622v1 [astro-ph.CO] 20 Jan 2023
63
+
64
+ 10
65
+ S
66
+ Dds
67
+ So
68
+ α
69
+ Ds
70
+ β;
71
+ PO
72
+ ;02
73
+ Weerasekara et al.
74
+ 2 THEORY
75
+ The angular diameter distance D of a source having no peculiar
76
+ motion at a red shift 𝑧 is given by, Weinberg (1972), Hobson (2006)
77
+ 𝐷(𝑧, ΩΛ,0) = 𝑐
78
+ 𝐻0
79
+ 1
80
+ 1 + 𝑧
81
+ 1
82
+
83
+ 1
84
+ 1+𝑧
85
+ 𝑑𝑥
86
+ √︃
87
+ 𝑥4 ΩΛ,0 + 𝑥 Ωm,0 + Ωr,0
88
+ (3)
89
+ where Ωi,0 is the density parameter of the substance 𝑖 of the cosmic
90
+ fluid measured at the present time 𝑡0. We assume a flat universe
91
+ (𝑘 = 0) for which Perlmutter (1999),
92
+ Ωm,0 + Ωr,0 + ΩΛ,0 = 1
93
+ (4)
94
+ The red shift 𝑧𝑑𝑠 of S as measured by L is given by,
95
+ 1 + 𝑧𝑠 = (1 + 𝑧𝑑)(1 + 𝑧𝑑𝑠)
96
+ (5)
97
+ Thus, from the equations (3), (4) and (5), neglecting Ωr,0 and elimi-
98
+ nating Ωm,0 and expressing everything with the dark energy, we can
99
+ derive the value of 𝐷𝑑𝑠, the angular diameter distance of the source
100
+ as measured by an observer on the lens as,
101
+ 𝐷𝑑𝑠
102
+ �𝑧𝑑, 𝑧𝑠, ΩΛ,0
103
+ � =
104
+ 𝑐
105
+ 𝐻0
106
+ 1
107
+ √︁ΩΛ,0
108
+ 1 + 𝑧𝑑
109
+ 1 + 𝑧𝑠
110
+ 1
111
+
112
+ 1+𝑧𝑑
113
+ 1+𝑧𝑠
114
+ 𝑑𝑥
115
+ √︂
116
+ 𝑥4 + 𝑥
117
+
118
+ 1
119
+ ΩΛ,0 − 1
120
+
121
+ (1 + 𝑧𝑑)3
122
+ (6)
123
+ By evaluating the integral analytically, the value of 𝐷𝑑𝑠 can be
124
+ written as
125
+ 𝐷𝑑𝑠
126
+ �𝑧𝑑, 𝑧𝑠, ΩΛ,0
127
+ � = 𝑐
128
+ 𝐻0
129
+ 1
130
+ 1 + 𝑧𝑠
131
+
132
+ Ψ �𝑧𝑠, ΩΛ,0
133
+ � − Ψ �𝑧𝑑, ΩΛ,0
134
+ ��
135
+ (7)
136
+ where in terms of hypergeometric function 2𝐹1
137
+ Ψ �𝑧, ΩΛ,0
138
+ � =
139
+ 1 + 𝑧
140
+ √︁ΩΛ,0
141
+ 2𝐹1
142
+ � 1
143
+ 3, 1
144
+ 2; 4
145
+ 3;
146
+
147
+ 1 −
148
+ 1
149
+ ΩΛ,0
150
+
151
+ (1 + 𝑧)3
152
+
153
+ (8)
154
+ In the theory of lensing, the source S, lens L, and the observer O in
155
+ Fig. 1 are all freely falling with the smooth expansion of the universe;
156
+ that is, experiencing no peculiar motions. The angular diameter dis-
157
+ tances 𝐷𝑠, 𝐷𝑑 and 𝐷𝑑𝑠 are then measured between these objects
158
+ which are freely falling with the Hubble flow. Thus, the redshifts
159
+ entering Eq (8) should be associated with the freely falling objects.
160
+ However, all galaxies are subjected to peculiar or random motions,
161
+ for an example in the scenario given here the Source S, the Lens L
162
+ and the Observer O are having peculiar motions. Thus, the redshift
163
+ of the lens we measure includes this peculiar motion. Therefore, the
164
+ redshifts entering Eq (7), which should be the redshifts of freely
165
+ falling objects, must be corrected for random peculiar motions. For
166
+ this, consider initially the random motion of L neglecting the random
167
+ motions of S and O. This is similar to OS axis being fixed and L
168
+ having a peculiar motion with respect to this axis. An observer freely
169
+ falling with the Hubble flow at the location of L will see a Doppler
170
+ shift of L arising due to the random (peculiar) speed 𝜈. In addition
171
+ to this shift, we have the cosmological redshift of that freely falling
172
+ observer arising due to the bulk expanding motion of the universe.
173
+ Thus, the redshift z of the freely falling observer, from special theory
174
+ of relativity, becomes (see Figure. 1)
175
+ 1 + 𝑧 =
176
+ √︁
177
+ 1 − 𝛽2
178
+ 1 − 𝛽 cos 𝜖 (1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑)
179
+ (9)
180
+ where 𝑣 = 𝛽𝑐 is the peculiar speed of the object as seen by the freely
181
+ falling observer and 𝜖 is the angle between the peculiar velocity vector
182
+ and the line-of-sight to L (see Fig. 1). It is this redshift 𝑧 (Eq. 9) that
183
+ should enter in (7) for the angular diameter distance calculation. If
184
+ 𝜖 = 0, L is approaching a freely falling observer and if 𝜖 = 𝜋 it is
185
+ receding. Inserting (9) in (8) and expanding to first order in 𝛽 we get,
186
+ Ψ �𝑧, ΩΛ,0
187
+ � ∼ 1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑
188
+ √︁ΩΛ,0
189
+ ×
190
+ 2𝐹1
191
+
192
+ 1 +
193
+
194
+ 1 + 3
195
+ 8
196
+
197
+ 1 −
198
+ 1
199
+ ΩΛ,0
200
+ � �
201
+ 1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑�3�
202
+ 𝛽 cos 𝜖
203
+
204
+ (10)
205
+ where the hypergeometric function is the one appearing in (8) with
206
+ 𝑧 = 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑. Now that we have an expression to account for the
207
+ peculiar motion of L, we can employ the same in our code to calculate
208
+ the time delay taking all the peculiar motions into consideration. That
209
+ is including the peculiar motions of S, L and O. while doing so, we
210
+ find that the other higher order terms are very small and the time
211
+ delay is linear to first order in 𝛽. Then the form of the observed time
212
+ delay becomes,
213
+ Δ𝜏 ≈ Δ𝜏0 (1 + 𝜅 𝛽 cos 𝜖)
214
+ (11)
215
+ where Δ𝜏0 is when the peculiar motions are neglected.
216
+ As we now have an equation for the gravitational time delay differ-
217
+ ence when the peculiar speeds are considered for a point mass lens
218
+ model, let us now proceed to the Singular Isothermal Sphere lensing
219
+ model and derive the time delay difference equation for that.
220
+ According to the theory of lensing the time delay difference for a
221
+ SIS model is given by the equation, Schneider (1992)
222
+ 𝑐Δ𝜏 =
223
+
224
+ 4𝜋
225
+ � 𝜎𝑣
226
+ 𝑐
227
+ �2�2 𝐷𝑑𝐷𝑑𝑠
228
+ 𝐷𝑠
229
+ (1 + 𝑧𝑑)2𝑦
230
+ (12)
231
+ further by making use of the following equations,
232
+ 𝑦 = 𝜂
233
+ 𝜂0
234
+ (13)
235
+ 𝜉0 = 4𝜋
236
+ � 𝜎𝑣
237
+ 𝑐
238
+ �2 𝐷𝑑𝐷𝑑𝑠
239
+ 𝐷𝑠
240
+ (14)
241
+ we can arrive at the following equation that gives us the required
242
+ time delay.
243
+ Δ𝜏 = 4𝜋
244
+ 𝑐
245
+ � 𝜎𝑣
246
+ 𝑐
247
+ �2
248
+ 𝐷𝑑(1 + 𝑧𝑑)2𝛽
249
+ (15)
250
+ we do a realistic assumption for 𝛽 by making use of the point mass
251
+ lens model as,
252
+ 𝛽 = 𝜃1 + 𝜃2
253
+ (16)
254
+ In this equation when we consider the peculiar speeds of the ob-
255
+ jects, we have to use 𝑧 = 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑 in accordance with (9) similar
256
+ to the calculation we have carried out with the point mass lens.
257
+ MNRAS 000, 1–5 (2018)
258
+
259
+ Gravitational Lensing Time Delay with Peculiar Motions
260
+ 3
261
+ Figure 2. Lensing image. The Optical and Radio delay for this system has
262
+ been measured. Koopmans (1998)
263
+ 3 RESULTS AND DISCUSSION
264
+ The example we have used is the lensing system illustrated in the
265
+ Figure 2. Koopmans (1998) This lens is referred to as B1600+434
266
+ and it has the following characteristics.
267
+ Optical time delay
268
+ = 51 ± 2 Days
269
+ 𝑧𝑠
270
+ = 1.59
271
+ 𝜃1
272
+ = +1.14"
273
+ 𝑧𝑑
274
+ = 0.42
275
+ 𝜃2
276
+ = -0.25"
277
+ According to the given set of angular distances and angles assum-
278
+ ing the non-realistic assumption that the lens is a point mass, we
279
+ can calculate a theoretical lensing delay time of 73.92 days for the
280
+ WMAP cosmological parameters. When we compare the theoretical
281
+ time delay and the observed time delays it is clear that they are not
282
+ matching. We believe that the discrepancy is arising due to the lens
283
+ point-mass assumption and that we have not taken peculiar speeds
284
+ into account. However we would like to illustrate the effect of the
285
+ peculiar motions on the time delay assuming initially a point-mass
286
+ lens here.
287
+ We simulated 1000 scenarios with the above given particular set
288
+ of lensing parameters (𝑧𝑠 = 1.59, 𝑧𝑑 = 0.42, 𝜃1 = +1.14" and 𝜃2 =
289
+ -0.25" ). For each scenario the lens and the observer have random
290
+ peculiar speeds in random directions with respect to the back ground
291
+ radiation. In the simulations of Figure 3/4/5. the peciliar speeds are
292
+ non relativistic and they range from 0 to 0.01𝑐.
293
+ for this lensing system Eq (11) can be written as,
294
+ Δ𝜏 ≈ 73.92 (1 + 4.69 𝛽 cos 𝜖)
295
+ (17)
296
+ The observer, that is the Milky Way has an estimated peculiar
297
+ speed of 600𝑘𝑚𝑠−1 Kogut (1993) with respect to the back ground
298
+ radiation. The directions of the peculiar motions are taken to be
299
+ random in relation to the OL axis. We have taken ΩΛ,0 = 0.73.
300
+ The simulated time delays as shown in Figure 3. are showing a time
301
+ delay range of 8 days with the contribution of the peculiar motions
302
+ Figure 3. Point Mass lens. The Source, the Lens, and the Observer all are
303
+ having peculiar speeds in the range of 0 to 0.01c in any random direction
304
+ Figure 4. Point Mass lens. The Source and the Observer are having peculiar
305
+ speeds in the range of 0 to 0.01c in any random direction. The Lens is
306
+ stationary
307
+ while no peculiar motion time delay being 73.9 days. Therefore the
308
+ maximum time delay when all three objects are moving is nearly 4
309
+ days and it is a significant value. Therefore the peculiar motions will
310
+ give rise to a measurable and significant difference in the gravitational
311
+ lensing time delay.
312
+ In the second simulation given in Figure 4 we have excluded only
313
+ the peculiar motion of the Lens. In this case it is seen that the maxi-
314
+ mum time delay difference is about 1 day. From this result it is clear
315
+ that the peculiar motions of the source and the Observer alone when
316
+ the lens is not moving is not creating a significant gravitational lens-
317
+ ing time delay. To further enhance this fact we have taken another
318
+ simulation with only the Lens having peculiar motions and the ob-
319
+ server and the source are stationary. That result is given in the Figure
320
+ 5.
321
+ MNRAS 000, 1–5 (2018)
322
+
323
+ 1000TimeDelaysinDays
324
+ NopeculiarmotionDelay=73.9days
325
+ TheSource,theLensandtheObserverhavePeculiarSpeeds
326
+ 140
327
+ 120
328
+ 100
329
+ ber
330
+ Num
331
+ 80
332
+ 40F
333
+ 20
334
+ 70
335
+ 72
336
+ 74
337
+ 78
338
+ 78
339
+ TimeDelayinDays1000TimeDelavsinDays
340
+ Nopeculiar.motionDelay=73.9days
341
+ OnlySourceandObserverhavePeculiarSpeeds,Lensisnotmoving
342
+ 140
343
+ 120
344
+ 100
345
+ ber
346
+ unN
347
+ 80
348
+ 60
349
+ 40
350
+ 20
351
+ 73.0
352
+ 73.5
353
+ 74.0
354
+ 74.5
355
+ 75.0
356
+ TimeDelayinDays4
357
+ Weerasekara et al.
358
+ Figure 5. Point Mass lens. The Lens is having peculiar speeds in the range of
359
+ 0 to 0.01c in any random direction. The source and the observer are stationary
360
+ The result we have obtained in Figure 5 is almost identical to the
361
+ result we have obtained in the Figure 3.
362
+ From these results it is clear that the gravitational lensing time
363
+ delay is highly sensitive to the peculiar speeds of the lens. An-
364
+ other interesting result of the simulation is the peculiar speeds of
365
+ the observer and the source is not having a significant effect on the
366
+ gravitational lensing time delay.
367
+ As we have figured out by now, the gravitational lensing time delay
368
+ is mostly affected by the peculiar motions of the Lens. Thus we can
369
+ neglect the peculiar motions of the Observer and the Source.
370
+ In the next simulation given in Figure 6, we have taken a lensing
371
+ system with only the lens moving. In that we have taken the speed
372
+ and the direction of the lens separately. The lens in the simulation
373
+ is having speeds from 0 to 0.005𝑐 and the direction is 0 (The lens
374
+ is approaching the observer) to 𝜋 (The lens is receding from the
375
+ observer). If the 𝜖 is 𝜋/2 then the Lens is moving in a transverse
376
+ direction.
377
+ From Figure 6, we can identify that when the lens is moving
378
+ towards the observer the gravitational lensing time delay is increasing
379
+ and it is attaining larger values directly in proportion with the peculiar
380
+ speed of the lens. That is, when the lens is having larger approaching
381
+ peculiar speeds the gravitational lensing time delay is also larger.
382
+ In contrast to that when the lens is receding from the observer the
383
+ gravitation lensing time delay is decreasing. It can be also seen that
384
+ when the receding peculiar speed is becoming larger the gravitational
385
+ lensing time delay is becoming smaller.
386
+ If the lens is moving in a transverse direction then there is no
387
+ measurable effect in the gravitational lensing time delay as the effect
388
+ is in second order.
389
+ The lenses we have considered so far are having small velocities.
390
+ But if we consider lenses having relativistic speeds then the effect
391
+ become more prominent. That is the measurable gravitational lensing
392
+ time delay becomes much larger. Results are illustrated in the Figure
393
+ 7, where the peculiar speeds of the lens are relativistic.
394
+ In the example we have taken, the Lens B1400+434 is having an
395
+ measured optical time delay of 51 days and a theoretical time delay
396
+ of 73.92 days, assuming a point-mass lens. From our results we can
397
+ account for the difference of this time delay. That is we can have
398
+ this particular observed optical time delay difference if the lens is
399
+ Figure 6. Point Mass lens. The lens is having different peculiar speeds in
400
+ different directions
401
+ Figure 7. Point Mass lens. The Lens is having relativistic peculiar speeds
402
+ having a relativistic peculiar speed in the range of 0.05𝑐 to 0.06𝑐 in
403
+ a receding direction from us provided that we model the lens as a
404
+ point mass, which is not exact.
405
+ As we now have a clear idea on gravitational lensing time delays
406
+ when the peculiar speeds of the objects are considered while using
407
+ a point mass lensing model, let us now investigate the same effect
408
+ when a more realistic Singular Isothermal Sphere lensing model is
409
+ used for the calculations.
410
+ For this also we employ the same simulation with 1000 scenarios
411
+ where random peculiar speeds are in random directions. when using
412
+ Eq. (15) average velocity dispersion 𝜎𝑣 will be taken as 150𝑘𝑚𝑠−1
413
+ Koopmans (1998). With this average velocity dispersion value and
414
+ using Singular Isothermal Sphere model we have a very interesting
415
+ result for the non peculiar motion lensing time delay, which is 51.45
416
+ days. this value is almost identical to the observed lensing time delay
417
+ value of 51 ± 2 Days.
418
+ MNRAS 000, 1–5 (2018)
419
+
420
+ 1000TimeDelaysinDays
421
+ NopeculiarmotionDelay=73.9days
422
+ OnlyLensishavingPeculiarSpeeds,ObserverandSourcenotmoving
423
+ 200
424
+ 150
425
+ ber
426
+ unN
427
+ 100
428
+ 72
429
+ 73
430
+ 74
431
+ 75
432
+ 78
433
+ 77
434
+ 81
435
+ TimeDelayinDaysUpperCurveforApproachingLens
436
+ LowerCurveforRecedingLens
437
+ MiddleCurveforLensMovinginTransverseDirection
438
+ 75.5
439
+ 75.0
440
+ Days
441
+ ApproachingLense
442
+ 74.5
443
+ TransverseLense
444
+ 74:0
445
+ Dela
446
+ Receding Lense
447
+ 73.5
448
+ 73.0
449
+ 72.5
450
+ 0.000
451
+ 0.001
452
+ 0.002
453
+ 0.003
454
+ 0:004
455
+ 0.005
456
+ β=IIRelativisticLens
457
+ UpperCurveforApproachingLens
458
+ LowerCurveforRecedingLens
459
+ MiddleCurveforLensMovinginTransverseDirection
460
+ 120
461
+ 110
462
+ Days
463
+ 100
464
+ ApproachingLense
465
+ 90
466
+ Transverse Lense
467
+ 80
468
+ Receding Lense
469
+ Del
470
+ Time
471
+ 70
472
+ 60
473
+ 50F
474
+ 0.00
475
+ 0.02
476
+ 0.04
477
+ 0.06
478
+ 0.08
479
+ 0.10
480
+ 1%1=sGravitational Lensing Time Delay with Peculiar Motions
481
+ 5
482
+ Figure 8. Singular Isothermal Sphere lens model. The Lens is having non
483
+ relativistic peculiar speeds in the range of 0 to 0.01c in any random direction
484
+ The simulation for the non relativistic peculiar speeds is given in
485
+ the Figure 8. In that the non relativistic peculiar speeds are from 0
486
+ to 0.01𝑐. further it can be noted in this simulation the time delays
487
+ are ranging from 50.5 - 52.5 days while having a maximum delay
488
+ difference of 1 day from the no peculiar motion instance. therefore
489
+ even with non relativistic peculiar speeds it is clear that we can have
490
+ measurable and significant time delay difference from the no peculiar
491
+ motion instance when peculiar speeds of the lens is considered.
492
+ In the next simulation given in the Figure 9. we consider a rela-
493
+ tivistic peculiar speed distribution from 0 to 0.05𝑐. it can be noted
494
+ in this figure when there is a relativistic peculiar speed distribution
495
+ for the lens, the lensing time delays can range from 46-56 days with
496
+ a maximum delay difference of 5 days from the no peculiar motion
497
+ instance. therefore it is apparent from this simulation when there is a
498
+ relativistic peculiar speed for the lens there can be a very significant
499
+ gravitational lensing time difference from the non peculiar speed
500
+ instance while using a more realistic Singular Isothermal Sphere to
501
+ model the lens.
502
+ 4 CONCLUSIONS
503
+ From the above simulations we have found out that in fact there is a
504
+ significant measurable time delay difference arising from the peculiar
505
+ speeds of the lens using both non realistic point mass lens and more
506
+ realistic Singular Isothermal Sphere as the lensing model.
507
+ The important observation is that an approaching lens results in
508
+ an increase of the time delay while a receding lens gives rise to a
509
+ decrease in the delay.
510
+ We find that the time delay is not significantly affected by the
511
+ source or observer peculiar motions.
512
+ We see from Figure 7. and Figure 9. that a relativistically moving
513
+ lens in any direction can significantly affect the lensing time delays.
514
+ Figure 9. Singular Isothermal Sphere lens model. The Lens is having rela-
515
+ tivistic peculiar speeds in the range of 0 to 0.05c in any random direction
516
+ DATA AVAILABILITY
517
+ The data underlying this article will be shared on reasonable request
518
+ to the corresponding author.
519
+ REFERENCES
520
+ Bradt H., 2008, Astrophysics Processes, Cambridge University Press, UK,
521
+ 437, 482
522
+ Chen G.H., Kochanek C.S. and Hewitt J.N., 1995, Astrophys. J. 447, 62
523
+ Hobson M. P. , Efstathiou G. P. and Lasenby A. N. , 2006, General Relativity
524
+ An Introduction for Physicists, Cambridge University Press, UK, 355,
525
+ 427
526
+ Kogut A., Lineweaver C., Smoot G.F., Bennett C. L., Banday A., et al, 1993,
527
+ Astrophysical Journal 419, 1 (1993)
528
+ Koopmans L.V.E, de Bruyn A.G, Jackson N., et al, 1998, MNRAS, vol. 295,
529
+ 534 (1998)
530
+ Perlmutter S. et al, 1999, Astrophys. J. 517, 565
531
+ Schneider P. , Ehlers J. and Falco E.E , 1992 Gravitational Lenses, Springer-
532
+ Verlag
533
+ Walsh D., Carswell R.F. and Weyman R.J, 1979, Natwe 279, 381
534
+ Weinberg S. 1972, , Gravitation & Cosmology, Wiley, New York, 407, 633,
535
+ Weinberg S. , 2008, Cosmology, Oxford
536
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
537
+ MNRAS 000, 1–5 (2018)
538
+
539
+ 1000TimeDelaysinDays
540
+ NopeculiarmotionDelay=51.45days
541
+ sigma =150
542
+ lensmoving
543
+ 150
544
+ 100
545
+ Number
546
+ 50
547
+ 50.5
548
+ 51.0
549
+ 51.5
550
+ 52.0
551
+ 52.5
552
+ TimeDelayinDays1000TimeDelaysinDays
553
+ NopeculiarmotionDelay=51.45days
554
+ sigma=150
555
+ lensmoving
556
+ 120
557
+ 100
558
+ Number
559
+ 80
560
+ 60
561
+ 40
562
+ 20
563
+ 0上
564
+ 46
565
+ 48
566
+ 50
567
+ 52
568
+ 54
569
+ 56
570
+ TimeDelay inDays
49FAT4oBgHgl3EQfmR1P/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf,len=272
2
+ page_content='MNRAS 000, 1–5 (2018) Preprint 23 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
3
+ page_content='0 The Effect of the Peculiar Motions of the Lens, Source and the Observer on the Gravitational Lensing Time Delay Gihan Weerasekara,1★ Thulsi Wickramasinghe,2 Chandana Jayaratne1 1Department of Physics, University of Colombo, Sri Lanka 2Department of Physics, The College of New Jersey, Ewing, NJ 08628, USA Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
4
+ page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
5
+ page_content=' in original form ZZZ ABSTRACT An intervening galaxy acts as a gravitational lens and produces multiple images of a single source such as a remote galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
6
+ page_content=' Galaxies have peculiar speeds in addition to the bulk motion arising due to the expansion of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
7
+ page_content=' There is a difference in light arrival times between lensed images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
8
+ page_content=' We calculate more realistic time delays between lensed images when galaxy peculiar motions, that is the motion of the Lens, the Source and the Observer are taken into consideration neglecting the gravitomagnetic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
9
+ page_content=' Key words: gravitational lensing: strong – galaxies: peculiar 1 INTRODUCTION A remote galaxy S at redshift 𝑧𝑠 (Shown in Figure 1) is lensed by an intervening galaxy L at redshift 𝑧𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
10
+ page_content=' A light ray from S bends by an angle 𝛼 before arriving at the observer O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
11
+ page_content=' The image I of S forms at an angle 𝜃 while S is at 𝛽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
12
+ page_content=' The distances 𝐷𝑑, 𝐷𝑠 and 𝐷𝑑𝑠 shown are the angular diameter distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
13
+ page_content=' Walsh (1979), Chen (1995) From the theory of lensing, we can derive the angular positions 𝜃1 and 𝜃2 of the two lensed images formed due to a single point lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
14
+ page_content=' There is a delay Δ𝜏 of light arrival times from these two images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
15
+ page_content=' This delay is arising due to both geometrical path difference and the fact that two light rays are traveling in two different potential wells on either side of the lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
16
+ page_content=' The total time delay is given by, Schneider (1992), Bradt (2008) Δ𝜏 = 𝐷 𝑓 𝑐 (1 + 𝑧𝑑) � 1 2 (𝜃2 1 − 𝜃2 2) + |𝜃1𝜃2| ln ���� 𝜃1 𝜃2 ���� � (1) where, 𝐷 𝑓 = 𝐷𝑑𝐷𝑠 𝐷𝑑𝑠 (2) We calculate analytically a more realistic time delay between the two images when the peculiar speeds of the lens, the source and the observer are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
17
+ page_content=' These peculiar speeds are random speeds With respect to the cosmic microwave background radiation - Hubble flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
18
+ page_content=' But as we already know a point mass lens is a highly idealized and less practical lensing model for a real lensing system, in the next part of the paper we will be considering a more practical Singular Isothermal Sphere (SIS) lensing model to calculate the time delay difference when the peculiar speeds of the objects are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
19
+ page_content=' ★ E-mail: contactgihan@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
20
+ page_content='com Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
21
+ page_content=' Gravitational Lensing Diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
22
+ page_content=' The peculiar speed 𝑣 of the lens L is measured with respect to a freely falling observer with the Hubble flow at the location of the lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
23
+ page_content=' The angle 𝜖 is measured from the optic axis OL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
24
+ page_content=' © 2018 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
25
+ page_content='08622v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
26
+ page_content='CO] 20 Jan 2023 10 S Dds So α Ds β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
27
+ page_content=' PO ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
28
+ page_content='02 Weerasekara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
29
+ page_content=' 2 THEORY The angular diameter distance D of a source having no peculiar motion at a red shift 𝑧 is given by, Weinberg (1972), Hobson (2006) 𝐷(𝑧, ΩΛ,0) = 𝑐 𝐻0 1 1 + 𝑧 1 ∫ 1 1+𝑧 𝑑𝑥 √︃ 𝑥4 ΩΛ,0 + 𝑥 Ωm,0 + Ωr,0 (3) where Ωi,0 is the density parameter of the substance 𝑖 of the cosmic fluid measured at the present time 𝑡0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
30
+ page_content=' We assume a flat universe (𝑘 = 0) for which Perlmutter (1999),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
31
+ page_content=' Ωm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
32
+ page_content='0 + Ωr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
33
+ page_content='0 + ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
34
+ page_content='0 = 1 (4) The red shift 𝑧𝑑𝑠 of S as measured by L is given by,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
35
+ page_content=' 1 + 𝑧𝑠 = (1 + 𝑧𝑑)(1 + 𝑧𝑑𝑠) (5) Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
36
+ page_content=' from the equations (3),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
37
+ page_content=' (4) and (5),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
38
+ page_content=' neglecting Ωr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
39
+ page_content='0 and elimi- nating Ωm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
40
+ page_content='0 and expressing everything with the dark energy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
41
+ page_content=' we can derive the value of 𝐷𝑑𝑠,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
42
+ page_content=' the angular diameter distance of the source as measured by an observer on the lens as,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
43
+ page_content=' 𝐷𝑑𝑠 �𝑧𝑑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
44
+ page_content=' 𝑧𝑠,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
45
+ page_content=' ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
46
+ page_content='0 � = 𝑐 𝐻0 1 √︁ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
47
+ page_content='0 1 + 𝑧𝑑 1 + 𝑧𝑠 1 ∫ 1+𝑧𝑑 1+𝑧𝑠 𝑑𝑥 √︂ 𝑥4 + 𝑥 � 1 ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
48
+ page_content='0 − 1 � (1 + 𝑧𝑑)3 (6) By evaluating the integral analytically,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
49
+ page_content=' the value of 𝐷𝑑𝑠 can be written as 𝐷𝑑𝑠 �𝑧𝑑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
50
+ page_content=' 𝑧𝑠,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
51
+ page_content=' ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
52
+ page_content='0 � = 𝑐 𝐻0 1 1 + 𝑧𝑠 � Ψ �𝑧𝑠,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
53
+ page_content=' ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
54
+ page_content='0 � − Ψ �𝑧𝑑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
55
+ page_content=' ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
56
+ page_content='0 �� (7) where in terms of hypergeometric function 2𝐹1 Ψ �𝑧,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
57
+ page_content=' ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
58
+ page_content='0 � = 1 + 𝑧 √︁ΩΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
59
+ page_content='0 2𝐹1 � 1 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
60
+ page_content=' 1 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
61
+ page_content=' 4 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
62
+ page_content=' � 1 − 1 ΩΛ,0 � (1 + 𝑧)3 � (8) In the theory of lensing, the source S, lens L, and the observer O in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
63
+ page_content=' 1 are all freely falling with the smooth expansion of the universe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
64
+ page_content=' that is, experiencing no peculiar motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
65
+ page_content=' The angular diameter dis- tances 𝐷𝑠, 𝐷𝑑 and 𝐷𝑑𝑠 are then measured between these objects which are freely falling with the Hubble flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
66
+ page_content=' Thus, the redshifts entering Eq (8) should be associated with the freely falling objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
67
+ page_content=' However, all galaxies are subjected to peculiar or random motions, for an example in the scenario given here the Source S, the Lens L and the Observer O are having peculiar motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
68
+ page_content=' Thus, the redshift of the lens we measure includes this peculiar motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
69
+ page_content=' Therefore, the redshifts entering Eq (7), which should be the redshifts of freely falling objects, must be corrected for random peculiar motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
70
+ page_content=' For this, consider initially the random motion of L neglecting the random motions of S and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
71
+ page_content=' This is similar to OS axis being fixed and L having a peculiar motion with respect to this axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
72
+ page_content=' An observer freely falling with the Hubble flow at the location of L will see a Doppler shift of L arising due to the random (peculiar) speed 𝜈.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
73
+ page_content=' In addition to this shift, we have the cosmological redshift of that freely falling observer arising due to the bulk expanding motion of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
74
+ page_content=' Thus, the redshift z of the freely falling observer, from special theory of relativity, becomes (see Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
75
+ page_content=' 1) 1 + 𝑧 = √︁ 1 − 𝛽2 1 − 𝛽 cos 𝜖 (1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑) (9) where 𝑣 = 𝛽𝑐 is the peculiar speed of the object as seen by the freely falling observer and 𝜖 is the angle between the peculiar velocity vector and the line-of-sight to L (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
76
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
77
+ page_content=' It is this redshift 𝑧 (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
78
+ page_content=' 9) that should enter in (7) for the angular diameter distance calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
79
+ page_content=' If 𝜖 = 0, L is approaching a freely falling observer and if 𝜖 = 𝜋 it is receding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
80
+ page_content=' Inserting (9) in (8) and expanding to first order in 𝛽 we get, Ψ �𝑧, ΩΛ,0 � ∼ 1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑 √︁ΩΛ,0 × 2𝐹1 � 1 + � 1 + 3 8 � 1 − 1 ΩΛ,0 � � 1 + 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑�3� 𝛽 cos 𝜖 � (10) where the hypergeometric function is the one appearing in (8) with 𝑧 = 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
81
+ page_content=' Now that we have an expression to account for the peculiar motion of L, we can employ the same in our code to calculate the time delay taking all the peculiar motions into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
82
+ page_content=' That is including the peculiar motions of S, L and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
83
+ page_content=' while doing so, we find that the other higher order terms are very small and the time delay is linear to first order in 𝛽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
84
+ page_content=' Then the form of the observed time delay becomes, Δ𝜏 ≈ Δ𝜏0 (1 + 𝜅 𝛽 cos 𝜖) (11) where Δ𝜏0 is when the peculiar motions are neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
85
+ page_content=' As we now have an equation for the gravitational time delay differ- ence when the peculiar speeds are considered for a point mass lens model, let us now proceed to the Singular Isothermal Sphere lensing model and derive the time delay difference equation for that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
86
+ page_content=' According to the theory of lensing the time delay difference for a SIS model is given by the equation, Schneider (1992) 𝑐Δ𝜏 = � 4𝜋 � 𝜎𝑣 𝑐 �2�2 𝐷𝑑𝐷𝑑𝑠 𝐷𝑠 (1 + 𝑧𝑑)2𝑦 (12) further by making use of the following equations, 𝑦 = 𝜂 𝜂0 (13) 𝜉0 = 4𝜋 � 𝜎𝑣 𝑐 �2 𝐷𝑑𝐷𝑑𝑠 𝐷𝑠 (14) we can arrive at the following equation that gives us the required time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
87
+ page_content=' Δ𝜏 = 4𝜋 𝑐 � 𝜎𝑣 𝑐 �2 𝐷𝑑(1 + 𝑧𝑑)2𝛽 (15) we do a realistic assumption for 𝛽 by making use of the point mass lens model as, 𝛽 = 𝜃1 + 𝜃2 (16) In this equation when we consider the peculiar speeds of the ob- jects, we have to use 𝑧 = 𝑧𝑜𝑏𝑠𝑒𝑟 𝑣𝑒𝑑 in accordance with (9) similar to the calculation we have carried out with the point mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
88
+ page_content=' MNRAS 000, 1–5 (2018) Gravitational Lensing Time Delay with Peculiar Motions 3 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
89
+ page_content=' Lensing image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
90
+ page_content=' The Optical and Radio delay for this system has been measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
91
+ page_content=' Koopmans (1998) 3 RESULTS AND DISCUSSION The example we have used is the lensing system illustrated in the Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
92
+ page_content=' Koopmans (1998) This lens is referred to as B1600+434 and it has the following characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
93
+ page_content=' Optical time delay = 51 ± 2 Days 𝑧𝑠 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
94
+ page_content='59 𝜃1 = +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
95
+ page_content='14" 𝑧𝑑 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
96
+ page_content='42 𝜃2 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
97
+ page_content='25" According to the given set of angular distances and angles assum- ing the non-realistic assumption that the lens is a point mass, we can calculate a theoretical lensing delay time of 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
98
+ page_content='92 days for the WMAP cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
99
+ page_content=' When we compare the theoretical time delay and the observed time delays it is clear that they are not matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
100
+ page_content=' We believe that the discrepancy is arising due to the lens point-mass assumption and that we have not taken peculiar speeds into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
101
+ page_content=' However we would like to illustrate the effect of the peculiar motions on the time delay assuming initially a point-mass lens here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
102
+ page_content=' We simulated 1000 scenarios with the above given particular set of lensing parameters (𝑧𝑠 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
103
+ page_content='59, 𝑧𝑑 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
104
+ page_content='42, 𝜃1 = +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
105
+ page_content='14" and 𝜃2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
106
+ page_content='25" ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
107
+ page_content=' For each scenario the lens and the observer have random peculiar speeds in random directions with respect to the back ground radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
108
+ page_content=' In the simulations of Figure 3/4/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
109
+ page_content=' the peciliar speeds are non relativistic and they range from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
110
+ page_content='01𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
111
+ page_content=' for this lensing system Eq (11) can be written as, Δ𝜏 ≈ 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
112
+ page_content='92 (1 + 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
113
+ page_content='69 𝛽 cos 𝜖) (17) The observer, that is the Milky Way has an estimated peculiar speed of 600𝑘𝑚𝑠−1 Kogut (1993) with respect to the back ground radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
114
+ page_content=' The directions of the peculiar motions are taken to be random in relation to the OL axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
115
+ page_content=' We have taken ΩΛ,0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
116
+ page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
117
+ page_content=' The simulated time delays as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
118
+ page_content=' are showing a time delay range of 8 days with the contribution of the peculiar motions Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
119
+ page_content=' Point Mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
120
+ page_content=' The Source, the Lens, and the Observer all are having peculiar speeds in the range of 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
121
+ page_content='01c in any random direction Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
122
+ page_content=' Point Mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
123
+ page_content=' The Source and the Observer are having peculiar speeds in the range of 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
124
+ page_content='01c in any random direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
125
+ page_content=' The Lens is stationary while no peculiar motion time delay being 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
126
+ page_content='9 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
127
+ page_content=' Therefore the maximum time delay when all three objects are moving is nearly 4 days and it is a significant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
128
+ page_content=' Therefore the peculiar motions will give rise to a measurable and significant difference in the gravitational lensing time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
129
+ page_content=' In the second simulation given in Figure 4 we have excluded only the peculiar motion of the Lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
130
+ page_content=' In this case it is seen that the maxi- mum time delay difference is about 1 day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
131
+ page_content=' From this result it is clear that the peculiar motions of the source and the Observer alone when the lens is not moving is not creating a significant gravitational lens- ing time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
132
+ page_content=' To further enhance this fact we have taken another simulation with only the Lens having peculiar motions and the ob- server and the source are stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
133
+ page_content=' That result is given in the Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
134
+ page_content=' MNRAS 000, 1–5 (2018) 1000TimeDelaysinDays NopeculiarmotionDelay=73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
135
+ page_content='9days TheSource,theLensandtheObserverhavePeculiarSpeeds 140 120 100 ber Num 80 40F 20 70 72 74 78 78 TimeDelayinDays1000TimeDelavsinDays Nopeculiar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
136
+ page_content='motionDelay=73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
137
+ page_content='9days OnlySourceandObserverhavePeculiarSpeeds,Lensisnotmoving 140 120 100 ber unN 80 60 40 20 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
138
+ page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
139
+ page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
140
+ page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
141
+ page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
142
+ page_content='0 TimeDelayinDays4 Weerasekara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
143
+ page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
144
+ page_content=' Point Mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
145
+ page_content=' The Lens is having peculiar speeds in the range of 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
146
+ page_content='01c in any random direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
147
+ page_content=' The source and the observer are stationary The result we have obtained in Figure 5 is almost identical to the result we have obtained in the Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
148
+ page_content=' From these results it is clear that the gravitational lensing time delay is highly sensitive to the peculiar speeds of the lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
149
+ page_content=' An- other interesting result of the simulation is the peculiar speeds of the observer and the source is not having a significant effect on the gravitational lensing time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
150
+ page_content=' As we have figured out by now, the gravitational lensing time delay is mostly affected by the peculiar motions of the Lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
151
+ page_content=' Thus we can neglect the peculiar motions of the Observer and the Source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
152
+ page_content=' In the next simulation given in Figure 6, we have taken a lensing system with only the lens moving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
153
+ page_content=' In that we have taken the speed and the direction of the lens separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
154
+ page_content=' The lens in the simulation is having speeds from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
155
+ page_content='005𝑐 and the direction is 0 (The lens is approaching the observer) to 𝜋 (The lens is receding from the observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
156
+ page_content=' If the 𝜖 is 𝜋/2 then the Lens is moving in a transverse direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
157
+ page_content=' From Figure 6, we can identify that when the lens is moving towards the observer the gravitational lensing time delay is increasing and it is attaining larger values directly in proportion with the peculiar speed of the lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
158
+ page_content=' That is, when the lens is having larger approaching peculiar speeds the gravitational lensing time delay is also larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
159
+ page_content=' In contrast to that when the lens is receding from the observer the gravitation lensing time delay is decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
160
+ page_content=' It can be also seen that when the receding peculiar speed is becoming larger the gravitational lensing time delay is becoming smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
161
+ page_content=' If the lens is moving in a transverse direction then there is no measurable effect in the gravitational lensing time delay as the effect is in second order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
162
+ page_content=' The lenses we have considered so far are having small velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
163
+ page_content=' But if we consider lenses having relativistic speeds then the effect become more prominent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
164
+ page_content=' That is the measurable gravitational lensing time delay becomes much larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
165
+ page_content=' Results are illustrated in the Figure 7, where the peculiar speeds of the lens are relativistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
166
+ page_content=' In the example we have taken, the Lens B1400+434 is having an measured optical time delay of 51 days and a theoretical time delay of 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
167
+ page_content='92 days, assuming a point-mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
168
+ page_content=' From our results we can account for the difference of this time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
169
+ page_content=' That is we can have this particular observed optical time delay difference if the lens is Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
170
+ page_content=' Point Mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
171
+ page_content=' The lens is having different peculiar speeds in different directions Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
172
+ page_content=' Point Mass lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
173
+ page_content=' The Lens is having relativistic peculiar speeds having a relativistic peculiar speed in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
174
+ page_content='05𝑐 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
175
+ page_content='06𝑐 in a receding direction from us provided that we model the lens as a point mass, which is not exact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
176
+ page_content=' As we now have a clear idea on gravitational lensing time delays when the peculiar speeds of the objects are considered while using a point mass lensing model, let us now investigate the same effect when a more realistic Singular Isothermal Sphere lensing model is used for the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
177
+ page_content=' For this also we employ the same simulation with 1000 scenarios where random peculiar speeds are in random directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
178
+ page_content=' when using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
179
+ page_content=' (15) average velocity dispersion 𝜎𝑣 will be taken as 150𝑘𝑚𝑠−1 Koopmans (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
180
+ page_content=' With this average velocity dispersion value and using Singular Isothermal Sphere model we have a very interesting result for the non peculiar motion lensing time delay, which is 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
181
+ page_content='45 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
182
+ page_content=' this value is almost identical to the observed lensing time delay value of 51 ± 2 Days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
183
+ page_content=' MNRAS 000, 1–5 (2018) 1000TimeDelaysinDays NopeculiarmotionDelay=73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
184
+ page_content='9days OnlyLensishavingPeculiarSpeeds,ObserverandSourcenotmoving 200 150 ber unN 100 72 73 74 75 78 77 81 TimeDelayinDaysUpperCurveforApproachingLens LowerCurveforRecedingLens MiddleCurveforLensMovinginTransverseDirection 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
185
+ page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
186
+ page_content='0 Days ApproachingLense 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
187
+ page_content='5 TransverseLense 74:0 Dela Receding Lense 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
188
+ page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
189
+ page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
190
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
191
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
192
+ page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
193
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
194
+ page_content='003 0:004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
195
+ page_content='005 β=IIRelativisticLens UpperCurveforApproachingLens LowerCurveforRecedingLens MiddleCurveforLensMovinginTransverseDirection 120 110 Days 100 ApproachingLense 90 Transverse Lense 80 Receding Lense Del Time 70 60 50F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
196
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
197
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
198
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
199
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
200
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
201
+ page_content='10 1%1=sGravitational Lensing Time Delay with Peculiar Motions 5 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
202
+ page_content=' Singular Isothermal Sphere lens model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
203
+ page_content=' The Lens is having non relativistic peculiar speeds in the range of 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
204
+ page_content='01c in any random direction The simulation for the non relativistic peculiar speeds is given in the Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
205
+ page_content=' In that the non relativistic peculiar speeds are from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
206
+ page_content='01𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
207
+ page_content=' further it can be noted in this simulation the time delays are ranging from 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
208
+ page_content='5 - 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
209
+ page_content='5 days while having a maximum delay difference of 1 day from the no peculiar motion instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
210
+ page_content=' therefore even with non relativistic peculiar speeds it is clear that we can have measurable and significant time delay difference from the no peculiar motion instance when peculiar speeds of the lens is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
211
+ page_content=' In the next simulation given in the Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
212
+ page_content=' we consider a rela- tivistic peculiar speed distribution from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
213
+ page_content='05𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
214
+ page_content=' it can be noted in this figure when there is a relativistic peculiar speed distribution for the lens, the lensing time delays can range from 46-56 days with a maximum delay difference of 5 days from the no peculiar motion instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
215
+ page_content=' therefore it is apparent from this simulation when there is a relativistic peculiar speed for the lens there can be a very significant gravitational lensing time difference from the non peculiar speed instance while using a more realistic Singular Isothermal Sphere to model the lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
216
+ page_content=' 4 CONCLUSIONS From the above simulations we have found out that in fact there is a significant measurable time delay difference arising from the peculiar speeds of the lens using both non realistic point mass lens and more realistic Singular Isothermal Sphere as the lensing model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
217
+ page_content=' The important observation is that an approaching lens results in an increase of the time delay while a receding lens gives rise to a decrease in the delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
218
+ page_content=' We find that the time delay is not significantly affected by the source or observer peculiar motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
219
+ page_content=' We see from Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
220
+ page_content=' and Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
221
+ page_content=' that a relativistically moving lens in any direction can significantly affect the lensing time delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
222
+ page_content=' Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
223
+ page_content=' Singular Isothermal Sphere lens model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
224
+ page_content=' The Lens is having rela- tivistic peculiar speeds in the range of 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
225
+ page_content='05c in any random direction DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
226
+ page_content=' REFERENCES Bradt H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
227
+ page_content=', 2008, Astrophysics Processes, Cambridge University Press, UK, 437, 482 Chen G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
228
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
229
+ page_content=', Kochanek C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
230
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
231
+ page_content=' and Hewitt J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
232
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
233
+ page_content=', 1995, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
234
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
235
+ page_content=' 447, 62 Hobson M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
236
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
237
+ page_content=' , Efstathiou G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
238
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
239
+ page_content=' and Lasenby A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
240
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
241
+ page_content=' , 2006, General Relativity An Introduction for Physicists, Cambridge University Press, UK, 355, 427 Kogut A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
242
+ page_content=', Lineweaver C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
243
+ page_content=', Smoot G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
244
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
245
+ page_content=', Bennett C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
246
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
247
+ page_content=', Banday A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
248
+ page_content=', et al, 1993, Astrophysical Journal 419, 1 (1993) Koopmans L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
249
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
250
+ page_content='E, de Bruyn A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
251
+ page_content='G, Jackson N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
252
+ page_content=', et al, 1998, MNRAS, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
253
+ page_content=' 295, 534 (1998) Perlmutter S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
254
+ page_content=' et al, 1999, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
255
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
256
+ page_content=' 517, 565 Schneider P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
257
+ page_content=' , Ehlers J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
258
+ page_content=' and Falco E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
259
+ page_content='E , 1992 Gravitational Lenses, Springer- Verlag Walsh D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
260
+ page_content=', Carswell R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
261
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
262
+ page_content=' and Weyman R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
263
+ page_content='J, 1979, Natwe 279, 381 Weinberg S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
264
+ page_content=' 1972, , Gravitation & Cosmology, Wiley, New York, 407, 633, Weinberg S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
265
+ page_content=' , 2008, Cosmology, Oxford This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
266
+ page_content=' MNRAS 000, 1–5 (2018) 1000TimeDelaysinDays NopeculiarmotionDelay=51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
267
+ page_content='45days sigma =150 lensmoving 150 100 Number 50 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
268
+ page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
269
+ page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
270
+ page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
271
+ page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
272
+ page_content='5 TimeDelayinDays1000TimeDelaysinDays NopeculiarmotionDelay=51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
273
+ page_content='45days sigma=150 lensmoving 120 100 Number 80 60 40 20 0上 46 48 50 52 54 56 TimeDelay inDays' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfmR1P/content/2301.08622v1.pdf'}
4tE2T4oBgHgl3EQfOQbV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755f34dcc2cc82199d8dcae772fb4c5b1879274c762c0bbd8846a09c2244ef6a
3
+ size 6422573
A9E2T4oBgHgl3EQfRQfr/content/tmp_files/2301.03780v1.pdf.txt ADDED
@@ -0,0 +1,1445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Time-aware Hyperbolic Graph Attention Network
2
+ for Session-based Recommendation
3
+ Xiaohan Li∗†, Yuqing Liu∗‡, Zheng Liu‡, Philip S. Yu‡
4
+ †Walmart Global Tech, Sunnyvale, CA, USA
5
6
+ ‡University of Illinois at Chicago, Chicago, IL, USA
7
+ {yliu363, zliu212, psyu}@uic.edu
8
+ Abstract—Session-based Recommendation (SBR) is to predict
9
+ users’ next interested items based on their previous browsing
10
+ sessions. Existing methods model sessions as graphs or sequences
11
+ to estimate user interests based on their interacted items to
12
+ make recommendations. In recent years, graph-based methods
13
+ have achieved outstanding performance on SBR. However, none
14
+ of these methods consider temporal information, which is a
15
+ crucial feature in SBR as it indicates timeliness or currency.
16
+ Besides, the session graphs exhibit a hierarchical structure and
17
+ are demonstrated to be suitable in hyperbolic geometry. But few
18
+ papers design the models in hyperbolic spaces and this direction
19
+ is still under exploration.
20
+ In this paper, we propose Time-aware Hyperbolic Graph
21
+ Attention Network (TA-HGAT) — a novel hyperbolic graph
22
+ neural network framework to build a session-based recommenda-
23
+ tion model considering temporal information. More specifically,
24
+ there are three components in TA-HGAT. First, a hyperbolic
25
+ projection module transforms the item features into hyperbolic
26
+ space. Second, the time-aware graph attention module models
27
+ time intervals between items and the users’ current interests.
28
+ Third, an evolutionary loss at the end of the model provides
29
+ an accurate prediction of the recommended item based on the
30
+ given timestamp. TA-HGAT is built in a hyperbolic space to learn
31
+ the hierarchical structure of session graphs. Experimental results
32
+ show that the proposed TA-HGAT has the best performance
33
+ compared to ten baseline models on two real-world datasets.
34
+ Index Terms—recommender system, graph neural network,
35
+ hyperbolic embedding
36
+ I. INTRODUCTION
37
+ Recommender systems have been an effective solution to
38
+ help users overcome the information overload on the Internet.
39
+ Many applications are developed based on this rationale,
40
+ including online retail [1], music streaming [2], and con-
41
+ tent sharing [3]. To better understand users, modeling their
42
+ browsing sessions is a useful solution as sessions indicate
43
+ their current interests. Session-based recommendation (SBR)
44
+ predicts the users’ next interested items by modeling users’
45
+ sessions. Deep learning models, including Recurrent Neural
46
+ Networks (RNNs) [4], [5], Memory Networks [6], and Graph
47
+ Neural Networks (GNNs) [7], [8] are applied to this problem
48
+ and have achieved state-of-the-art performance.
49
+ Recently, the most influential works on dealing with SBR
50
+ are GNN-based methods. The GNN-based methods [7]–[12]
51
+ ∗Both authors contributed equally to this research.
52
+ take each session as a graph to learn the items’ internal rela-
53
+ tionship and their complex transitions. The most representative
54
+ model is SR-GNN [7], which is the first work to apply GNN
55
+ on session-based recommendation and achieve state-of-the-
56
+ art performance. Based on SR-GNN, [10], [12] improve SR-
57
+ GNN with attention layers. [8], [11] consider the item order
58
+ in the session graph to build the models. [9], [13], [14] take
59
+ additional information such as global item relationship, item
60
+ categories, and user representations into account to devise
61
+ more extensive models. HCGR [15] models session graphs
62
+ into a hyperbolic space to extract hierarchical information.
63
+ Although the existing GNN-based methods have achieved
64
+ satisfactory performance, they still suffer from two limitations.
65
+ First, unlike sequence-based models, graph structure cannot
66
+ explicitly show the temporal information between items. Time
67
+ interval is a crucial feature and can significantly improve
68
+ the recommendation performance [16], [17], but it is ignored
69
+ in the existing graph-based SBR models. Moreover, though
70
+ modeling sessions into graphs has the advantage of learning
71
+ items complex transitions [7], the sequential relation between
72
+ items is unclear in the session graph because the beginning
73
+ and end of a session are ambiguous under the graph structure.
74
+ Second, according to [18], [19], graph data exhibits an un-
75
+ derlying non-Euclidean structure, and therefore, learning such
76
+ geometry in Euclidean spaces is not a proper choice. As a
77
+ result, some recent studies [15], [20], [21] reveal that the
78
+ real-world datasets of recommender systems usually exhibit
79
+ tree-like hierarchical structures, and hyperbolic spaces can
80
+ effectively capture such hierarchical information. Therefore,
81
+ it is worth trying to learn session graphs in hyperbolic spaces.
82
+ Hyperbolic spaces have the ability to model hierarchical
83
+ structure data because they expand faster than Euclidean
84
+ spaces. They can expand exponentially, but Euclidean spaces
85
+ only expand polynomially. Existing work [15] demonstrates
86
+ the hierarchical structure of session graphs. However, model-
87
+ ing session graphs in hyperbolic spaces is still under explo-
88
+ ration. First, time intervals indicate the correlation between
89
+ two items. Since hyperbolic embedding is a better match to
90
+ session graphs, it is necessary to define a new framework
91
+ to identify the time intervals in the edges of session graphs.
92
+ Second, learning users’ current interests in the graph is crucial,
93
+ but it is difficult to realize in hyperbolic spaces. Previous works
94
+ arXiv:2301.03780v1 [cs.IR] 10 Jan 2023
95
+
96
+ [6], [7] devise models in Euclidean space based on the last
97
+ item in the session. The last item plays an important role
98
+ in predicting the next item because it represents the users’
99
+ current interest. However, it is more challenging to model this
100
+ feature in a hyperbolic space as the operations in hyperbolic
101
+ spaces are more complicated than the Euclidean space. Third,
102
+ when taking the time information into consideration, we can
103
+ not only make next-item recommendations, but also provide
104
+ recommendations based on a specific timestamp.
105
+ To tackle the above challenges, we propose Time-aware Hy-
106
+ perbolic Graph Attention Network (TA-HGAT), a hyperbolic
107
+ GNN considering the comprehensive time-relevant features.
108
+ Specifically, we project the item’s original features into a
109
+ Poincar´e ball space via a hyperbolic projection layer. Then,
110
+ we design a time-aware hyperbolic attention mechanism to
111
+ learn the time intervals and users’ current interests together
112
+ in a hyperbolic space. It includes two modules: hyperbolic
113
+ self-attention with time intervals and hyperbolic soft-attention
114
+ with users’ current interests. Finally, the model is trained via
115
+ an evolutionary loss to predict which item the user may be
116
+ interested in at a specific timestamp. All these three compo-
117
+ nents are based on a fully hyperbolic graph neural network
118
+ framework.
119
+ Here, we summarize our contributions as follows:
120
+ • To the best of our knowledge, this is the first paper that
121
+ models temporal information in a hyperbolic space to
122
+ improve the performance of the recommender system. We
123
+ go beyond the conventional Euclidean machine learning
124
+ models to model users’ time-relevant features in a more
125
+ delicate manner.
126
+ • We propose TA-HGAT, a hyperbolic GNN-based frame-
127
+ work with three main components: hyperbolic projection,
128
+ time-aware hyperbolic attention, and evolutionary loss.
129
+ These three components work together in an end-to-end
130
+ GNN to model items’ time intervals and users’ current
131
+ interests. In the end, our model provides a time-specific
132
+ recommendation.
133
+ • We conduct experiments on two real-world datasets and
134
+ compare our model with ten baseline models. The ex-
135
+ periment results demonstrate the effectiveness of the TA-
136
+ HGAT in MRR and Precision.
137
+ II. PRELIMINARY
138
+ A. Graph neural network
139
+ GNNs [22], [23] are designed to handle the structural graph
140
+ data. In GNNs, aggregation is the core operation to extract
141
+ structural knowledge. By aggregating neighboring informa-
142
+ tion, the central node can gain knowledge from its neighbors
143
+ passed through edges and learn the node embedding. GNNs
144
+ have been demonstrated to be powerful in learning node
145
+ embeddings, so they are widely used on many node-related
146
+ tasks such as node classification [23], graph classification [24],
147
+ and link prediction [22].
148
+ Based on the aggregation operation, the forward propagation
149
+ of a GNN on graph G = (V, E) is to learn the embedding
150
+ of node vi ∈ V via aggregating its neighboring nodes. We
151
+ suppose that the initial node embedding of each node i is h(0)
152
+ i ,
153
+ which generally is the feature of the node. In each hidden layer
154
+ of a GNN, the embedding of the central node h(l)
155
+ i
156
+ is learned
157
+ from the aggregated embedding of the neighboring nodes in
158
+ the previous hidden layer h(l−1)
159
+ i
160
+ . The process is described in
161
+ math as follows:
162
+ h(l)
163
+ i
164
+ = σ
165
+
166
+ W(l)(AGG
167
+ j∈Ni (h(l−1)
168
+ j
169
+ )
170
+
171
+ ,
172
+ (1)
173
+ where Ni represents the set of all neighbors of node i in the
174
+ graph, including the node i itself. The aggregation function
175
+ AGG(·) integrates the neighboring information together. A
176
+ non-linear activation function σ, e.g., sigmoid or LeakyReLU,
177
+ is applied to generate the embedding of node i in the layer l.
178
+ Based on the vanilla GNN we mentioned above, GAT [25]
179
+ is proposed to improve GNNs with self-attention mechanism
180
+ [26]. Specifically, for all the neighbors of node i, we need to
181
+ learn the attention coefficients for all its neighbors to calculate
182
+ the importance of each neighbor node in the aggregation.
183
+ Suppose the attention coefficient of the node pair (i, j) is αij,
184
+ the process of learning αij is
185
+ αij = softmax(dij) =
186
+ exp(dij)
187
+
188
+ k∈Ni exp(dik),
189
+ (2)
190
+ where dij is the correlation between node i and j. dij here can
191
+ be the joint embeddings of node i and j, e.g., concatenation
192
+ of node embeddings or similarity of the node pair.
193
+ B. Hyperbolic spaces
194
+ In definition, hyperbolic space is a homogeneous space
195
+ with negative curvature. It is a smooth Riemannian manifold,
196
+ which can be modeled in several hyperbolic geometric models,
197
+ including Poincar´e ball model [27], Klein model [28], Lorentz
198
+ model [29], etc. In this paper, we choose the Poincar´e ball
199
+ model because the distance between two points grows expo-
200
+ nentially, which fits well with the hierarchical structure of
201
+ the session graph. Formally, the space of the d-dimensional
202
+ Poincar´e ball Pd
203
+ c is defined as
204
+ Pd
205
+ c = {x ∈ Rd, c∥x∥<1},
206
+ (3)
207
+ where c is the radius of the ball and x is any point in manifold
208
+ P. If c = 0, then Pd
209
+ c = Rd and the ball is equal to the
210
+ Euclidean surface. In this paper, we set c = 1. The tangent
211
+ space TxP is a d-dimensional vector space approximating P
212
+ around x, which is isomorphic to the Euclidean space. With
213
+ the exponential map, a vector in the Euclidean space can be
214
+ mapped to the hyperbolic space. The logarithmic map is the
215
+ inverse of the exponential map, which projects the vector back
216
+ to the Euclidean space.
217
+ In hyperbolic spaces, the fundamental mathematical oper-
218
+ ations of neural networks (e.g., addition and multiplication)
219
+ are different from those in Euclidean space. In this paper, we
220
+ choose M¨obius transformation as an algebraic operation for
221
+ studying hyperbolic geometry. For a pair of random vectors
222
+ (a, b), we list the operations that will be used in our model
223
+ as follows:
224
+
225
+ • M¨obius addition ⊕ [30] is to perform addition operation
226
+ of a and b.
227
+ a ⊕ b = (1 + 2⟨a, b⟩ + ∥b∥2)a + (1 − ∥a∥2)b
228
+ 1 + 2⟨a, b⟩ + ∥a∥2∥b∥2
229
+ .
230
+ (4)
231
+ • M¨obius matrix-vector multiplication ⊗ [31] is employed
232
+ to transform a with matrix W.
233
+ W ⊗ a = tanh(∥Wa∥
234
+ ∥a∥
235
+ tanh−1(∥a∥)),
236
+ (5)
237
+ • M¨obius scalar multiplication ⊗ is the multiplication of a
238
+ scalar α with a vector b.
239
+ α ⊗ b = tanh(α tanh−1(∥b∥)) b
240
+ ∥b∥
241
+ (6)
242
+ • Exponential map transforms a from the Euclidean space
243
+ to a chosen point x in a hyperbolic space.
244
+ expx(a) = x ⊕ (tanh(λx∥a∥
245
+ 2
246
+ ) a
247
+ ∥a∥),
248
+ (7)
249
+ • Logarithmic map projects the vector a back to the Eu-
250
+ clidean space.
251
+ logx(a) = 2
252
+ λx
253
+ arctanh(∥ − x ⊕ a∥)
254
+ −x ⊕ a
255
+ ∥ − x ⊕ a∥
256
+ (8)
257
+ • λx is the conformal factor.
258
+ λx =
259
+ 2
260
+ 1 − ∥x∥2 .
261
+ (9)
262
+ III. MODEL
263
+ In this section, we present the framework of our pro-
264
+ posed Time-aware Hyperbolic Graph Attention Network (TA-
265
+ HGAT), which is designed to model the temporal information
266
+ in the hyperbolic session graph. First, we define the session-
267
+ based recommendation task. Then we illustrate the three main
268
+ components of the model: hyperbolic projection, time-aware
269
+ hyperbolic attention, and hyperbolic evolutionary loss. These
270
+ three components train the model with time-relevant features
271
+ and provide the recommendation results given a specific
272
+ timestamp. The overall structure of TA-HGAT is shown in
273
+ Figure1.
274
+ A. Problem definition
275
+ Session-based recommendation (SBR) is to predict the item
276
+ a user will click next based on the user-item interaction
277
+ sessions. Generally, it models the user’s short-term browsing
278
+ session data to learn the user’s current interest. Here we
279
+ formulate the SBR problem mathematically as below.
280
+ In the SBR problem, a session is denoted as S = {v1, v2, ··
281
+ ·, vn} ordered by timestamps. Each v in S is an item, and
282
+ the item set is Vs, which consists of all unique items in this
283
+ session. To model the session into a directed graph, we take
284
+ all items as nodes and the item-item sequential dependency as
285
+ the edges to construct the session graph. The graph is denoted
286
+ as Gs = (Vs, Es), where Vs, Es are the node and edge sets,
287
+ respectively. Each edge connects two consecutive items, which
288
+ is formulated as e = (vt−1, vt). Our target is to learn the
289
+ embeddings of items and the session and generate the ranking
290
+ of the items that the user may be interested in at the next
291
+ timestamp.
292
+ B. Hyperbolic projection
293
+ In GNN, each node needs input as the initial embedding.
294
+ Accommodated to SBR, the input of a GNN is the feature of
295
+ items such as category or description. The initial embedding
296
+ of item i is h0
297
+ i . However, most feature embedding methods
298
+ are based on the Euclidean space. To make the item features
299
+ available in the hyperbolic space, we use the exponential map
300
+ defined in Eq. 7 to project the initial item embeddings to
301
+ the hyperbolic space. Specifically, the projection process is
302
+ formulated as
303
+ mi = expx(h0
304
+ i ),
305
+ (10)
306
+ where mi is the mapped embedding in the hyperbolic space
307
+ and x is the chosen point in the tangent space.
308
+ To achieve a high-level latent representation of the node
309
+ features, we also add a linear transformation parameterized by
310
+ a weight matrix W1 ∈ Rd′×d, where d′ is the dimension of mi
311
+ and d is the dimension of the node’s final embedding. Please
312
+ note that W1 is a shared weight matrix for all nodes. M¨obius
313
+ matrix-vector multiplication defined in Eq. 4 is employed to
314
+ transform mi and the process is
315
+ h1
316
+ i = W1 ⊗ mi,
317
+ (11)
318
+ where h1
319
+ i is the transformed embedding, which is also used
320
+ as the initial node embedding in the following steps.
321
+ C. Time-aware hyperbolic attention
322
+ According to [15], [20], [32], [33], embedding users and
323
+ items in hyperbolic spaces is a significant improvement of
324
+ graph-based recommender systems. However, none of these
325
+ works model the time intervals and users’ current interests in
326
+ hyperbolic spaces. Our proposed model TA-HGAT is the first
327
+ attempt to solve the problem, in which time-aware hyperbolic
328
+ attention is the core component. It is composed of two
329
+ attention layers: 1) Hyperbolic self-attention in the aggregation
330
+ process, which considers time intervals between items; 2)
331
+ Hyperbolic soft-attention in the session embedding learning,
332
+ which models the user’s current interest.
333
+ 1) Hyperbolic self-attention with time intervals: According
334
+ to Section II-A, a key step in graph attention is to learn the
335
+ attention coefficient αij for each node pair (i, j). αij means
336
+ the importance of the neighbors to the central node. To learn
337
+ the αij, unlike the traditional attention networks which apply
338
+ linear transformation [25] or inner product [26], here we use
339
+ the distance of the node embeddings in the hyperbolic space.
340
+ Specifically, we denote the distance of node pair (i, j) as
341
+ (hi, hj), which is calculated as
342
+ d(hl
343
+ i, hl
344
+ j) = arcosh(1 + 2
345
+ ∥hl
346
+ i − hl
347
+ j∥2
348
+ (1 − ∥hl
349
+ i∥2)(1 − ∥hl
350
+ j∥2)).
351
+ (12)
352
+
353
+ ...
354
+ v5
355
+ v1
356
+ v6
357
+ v7
358
+ t'
359
+ t'
360
+ t'
361
+ v2
362
+ v1
363
+ v3
364
+ v7
365
+ v4
366
+ v5
367
+ v6
368
+ v1
369
+ v2
370
+ v3
371
+ v5
372
+ v6
373
+ v4
374
+ v7
375
+ Hyperbolic Projection
376
+ ...
377
+ Time-aware Hyperbolic Attention
378
+ v2
379
+ v1
380
+ v3
381
+ t'
382
+ t'
383
+ v1
384
+ v2
385
+ v5
386
+ v4
387
+ t'
388
+ t'
389
+ t'
390
+ Hyperbolic Self-attention
391
+ with Time Intervals
392
+ Hyperbolic Soft-attention
393
+ with Users' Current Interests
394
+ Hyper bolic Attention
395
+ Networ k
396
+ s
397
+ vn
398
+ vn-1
399
+ Hyperbolic
400
+ Evolutionary Loss
401
+ v1
402
+ v2
403
+ v3
404
+ v5
405
+ v6
406
+ v4
407
+ v7
408
+ v7
409
+ s
410
+ Fig. 1. Illustration of TA-HGAT. First, it builds directed session graphs based on the session sequences, and then projects the embeddings from the Euclidean
411
+ space to the hyperbolic space. Next, hyperbolic self-attention is adopted to aggregate neighboring information and time intervals t′. After that, each session
412
+ graph is represented as a session embedding using a hyperbolic soft-attention mechanism. Finally, TA-HGAT predicts top-k items that are most likely to be
413
+ clicked at the next timestamp for each session.
414
+ Then with the node distances, we further learn the attention
415
+ coefficient αij of node i with all its neighbors (including itself)
416
+ Ni as
417
+ αij = softmax(dij) =
418
+ exp(dij)
419
+
420
+ k∈Ni exp(dik),
421
+ (13)
422
+ The reason that we use distance in the hyperbolic space to
423
+ calculate attention coefficients is because of two advantages.
424
+ First, attention coefficients in Euclidean spaces are usually
425
+ calculated by linear transformation [25] or inner product [26],
426
+ which fail to meet the triangle inequality. In hyperbolic space,
427
+ the learned attention coefficients are able to meet this criterion
428
+ and preserve the transitivity among nodes. Second, the atten-
429
+ tion coefficient of the node i with itself is αii = d(hi, hi) = 0,
430
+ so the effect of the central node itself will not affect the
431
+ calculation of attention coefficients.
432
+ After we achieve attention coefficients, the next step is
433
+ to aggregate the node embeddings to learn the central node
434
+ embedding of the next layer. Here the learned attention co-
435
+ efficients serve as the weights applied to the embeddings of
436
+ neighbor nodes. The process is formulated as
437
+ hl+1
438
+ i
439
+ = σ(
440
+
441
+
442
+ j∈Ni
443
+ αij ⊗ hl
444
+ j),
445
+ (14)
446
+ where �⊕ is the M¨obius addition of the weighted neighbor
447
+ node embeddings and σ is a nonlinear function such as
448
+ sigmoid and LeakyReLU. Different from Eq. 11, the ⊗ in
449
+ Eq. 14 is M¨obius scalar multiplication defined in Eq. 6.
450
+ To integrate the temporal information into the attention
451
+ layer, the core idea is to incorporate the time intervals into
452
+ the aggregation process. Specifically, we transform the time
453
+ intervals to the vectors in the hyperbolic space and combine
454
+ the time vectors with the neighbor node embeddings for ag-
455
+ gregation. As time intervals are continuous values, we project
456
+ the time interval values into vectors with a mapping function.
457
+ The mapping process is
458
+ ht′ = wt ⊗ (t+ − t),
459
+ (15)
460
+ where t′ = t+ − t is the time interval, ⊗ here is M¨obius
461
+ matrix-vector multiplication, and wt is the transition vector
462
+ to project the time interval to a vector. In this paper, if two
463
+ items have multiple time intervals between them, we choose
464
+ the closest one. This process is done in the data preprocessing
465
+ part before modeling.
466
+ Motivated by TransE [34], time-aware hyperbolic attention
467
+ translates the neighbor node embedding to the central node
468
+ embedding via temporal information, so the joint embedding
469
+ of nodes embedding and time embedding is generated by
470
+ M¨obius addition, which is represented as hl
471
+ j ⊕ ht′.
472
+ In Eq. 14, all neighbors of the central node i are aggregated
473
+ by M¨obius addition. As the M¨obius addition is complicated
474
+ and consumes more computation resources than the addition
475
+ in the Euclidean space, here we simplify the calculation in
476
+ Eq. 14 using the logarithmic map to project the embeddings
477
+ into a tangent space (Euclidean space) to conduct aggregation
478
+ operation. Then the embeddings are projected back to the
479
+ hyperbolic manifold with the exponential map. Therefore, we
480
+ can re-write the aggregation process in Eq. 14 as
481
+ hl+1
482
+ i
483
+ = exp
484
+
485
+ σ
486
+ � �
487
+ j∈Ni
488
+ log(αij ⊗ (hl
489
+ j ⊕ ht′))
490
+ ��
491
+ .
492
+ (16)
493
+ 2) Hyperbolic soft-attention with users’ current interests:
494
+ In the process above, we update the embedding of node i with
495
+ its neighbors and time intervals. To make recommendations
496
+ based on the learned node embeddings, we also need to know
497
+ the global embedding of the session graph by aggregating
498
+ all node embeddings. Instead of simply adding all node
499
+ embeddings together, we also provide another solution to learn
500
+ the graph embedding while considering users’ current interests
501
+ based on the most recent interacted items.
502
+
503
+ Understanding users’ current interests are one of the main
504
+ tasks in SBR. In the previous studies [6], [7], [12], the last
505
+ item in the session is the most related feature in this task.
506
+ To learn from the correlation of the last item p with each
507
+ of the other items in the session, we adopt a soft-attention
508
+ mechanism to generate attention coefficients for item p with all
509
+ other items, which represent the importance of items w.r.t. the
510
+ current timestamp. The learning process of the global session
511
+ embedding hs is
512
+ βpq = x⊺ ⊗ σ
513
+
514
+ W2 ⊗ hp) ⊕ (W3 ⊗ hq) ⊕ c
515
+
516
+ ,
517
+ (17)
518
+ hs = exp
519
+
520
+ σ
521
+ � �
522
+ q∈Vs
523
+ log(βpq ⊗ hq)
524
+ ��
525
+ ,
526
+ (18)
527
+ where βpq is the attention coefficient of item p to another
528
+ item q in the session S. x ∈ Rd and W2, W3 ∈ Rd×d are
529
+ weight matrices. hs is the session embedding that contains
530
+ the session graph structure, temporal information, and user’s
531
+ current intent, so we can use hs to infer the user’s next
532
+ interaction in our next step.
533
+ D. Hyperbolic evolutionary loss
534
+ Here we introduce how to leverage evolutionary loss to
535
+ provide recommendations given a specific timestamp. Unlike
536
+ other works [3], [35], our evolutionary loss is also fully
537
+ hyperbolic.
538
+ 1) Evolution formulas: The core idea of evolutionary loss
539
+ is to predict the future session and next-item embeddings
540
+ given a future timestamp and then make recommendations.
541
+ The prediction results of evolutionary loss do not rely on the
542
+ sequences like RNN-based models [4], [5] but are based on
543
+ the final embeddings learned by the TA-HGAT.
544
+ As hs is the predicted session embedding in the future, we
545
+ also need an estimated future session embedding to measure
546
+ whether the predicted embedding is accurate. Assume that the
547
+ growth of the session embedding is smooth. The embedding
548
+ vector of the session evolves in a contiguous space. Therefore,
549
+ we devise a projection function to infer the future session
550
+ embedding based on the element-wise product of the previous
551
+ embedding and the time interval. The embedding projection of
552
+ session S after current time t to the future time t+ is defined
553
+ as follows:
554
+ �ht+
555
+ s
556
+ = σ
557
+
558
+ ht
559
+ s ⊙ (1 ⊕ ht′)
560
+
561
+ ,
562
+ (19)
563
+ where 1 ∈ Rd is a vector with all elements 1 and ⊙ is M¨obius
564
+ element-wise product. ht′ is the time interval vector, which
565
+ is learned in the same way as Eq. 15. The 1 vector is to
566
+ provide the minimum difference between the last and next
567
+ session embeddings. With this projection function, the future
568
+ session embedding grows in a smooth trajectory w.r.t. the time
569
+ interval.
570
+ After learning the projected embedding �ht+
571
+ s
572
+ of the session
573
+ S, the next step is to apply another projection function to gen-
574
+ erate the future embedding of the next item v, which is denoted
575
+ as �ht+
576
+ v . The projected future item embedding is composed of
577
+ three components: the projected session embedding, the last
578
+ item embedding, and the time interval, which are learned in
579
+ the previous steps. Here, we define the projection formula of
580
+ next item v as
581
+ �ht+
582
+ v = σv
583
+
584
+ (W4 ⊗ �ht+
585
+ s ) ⊕ (W5 ⊗ hvn) ⊕ ht′
586
+
587
+ ,
588
+ (20)
589
+ where W4 and W5 denote the weight matrix.
590
+ 2) Loss function: With the above projection functions, we
591
+ can achieve the estimated future embeddings of the session and
592
+ the next item. They are utilized as ground truth embeddings
593
+ in our loss function. To train the model, the loss function is
594
+ designed to minimize the distances between model-generated
595
+ embeddings ht
596
+ s, hvn and estimated ground truth embeddings
597
+ �ht+
598
+ s , �ht+
599
+ v
600
+ at each interaction time t. Also, another constraint
601
+ for the item embeddings is necessary to avoid overfitting. We
602
+ constrain the distance between the embeddings of the most re-
603
+ cent two items vn−1 and vn to ensure the last item embeddings
604
+ are consistent with the previous one. This constraint assumes
605
+ that the last and next items reflect similar user intent, and the
606
+ session embedding tends to be stable in a short time. Finally,
607
+ the loss function is as follows:
608
+ L =
609
+
610
+ (s,v,t)∈{Si}I
611
+ i=0
612
+ d(�ht+
613
+ v , hvn) ⊕
614
+
615
+ λs ⊗ d(�ht+
616
+ s , ht
617
+ s)
618
+
619
+
620
+
621
+ λv ⊗ d(hvn, hvn−1)
622
+
623
+ ,
624
+ (21)
625
+ where {St}I
626
+ i=0 denotes all sessions in the datasets, and λs
627
+ and λv are smooth coefficients, which are used to prevent
628
+ the embeddings of the session and items from deviating too
629
+ much during the update process. d(·) is the hyperbolic distance
630
+ function which is described in Eq. 12.
631
+ To make recommendations for a user, we calculate the
632
+ hyperbolic distances between the predicted item embedding
633
+ obtained from the loss function and all other item embeddings.
634
+ Then the nearest top-k items are what we predict for the user.
635
+ Compared with traditional BPR loss [36], the evolutionary
636
+ loss is more suitable for time-aware recommendations because
637
+ it takes time intervals into account. As a result, the changing
638
+ trajectories are modeled by this loss [3], and it can make more
639
+ precise recommendations for the next item given a specific
640
+ timestamp.
641
+ IV. EXPERIMENTS
642
+ In this section, we describe the experimental results on two
643
+ public datasets and compare our proposed TA-HGAT with ten
644
+ state-of-the-art baseline models. Our experiments are designed
645
+ to solve the following research questions:
646
+ • RQ1: How does TA-HGAT compare with other state-of-
647
+ the-art session-based recommendation models?
648
+ • RQ2: How do the two modules of time-aware hyperbolic
649
+ attention, i.e., hyperbolic self-attention with time intervals
650
+ and hyperbolic soft-attention with users’ current interests,
651
+ affect the performance of TA-HGAT?
652
+ • RQ3: How does the hyperbolic evolutionary loss compare
653
+ with other loss functions?
654
+ • RQ4: How is the influence of different hyper-parameters,
655
+ i.e. embedding dimensions?
656
+
657
+ TABLE I
658
+ THE NUMBER OF ITEMS, TRAINING SESSIONS, TESTING SESSIONS, THE
659
+ AVERAGE LENGTH, AND CLICKS FOR EACH DATASET.
660
+ Datasets
661
+ Items
662
+ train sessions
663
+ test sessions
664
+ Avg. len
665
+ clicks
666
+ Diginetica
667
+ 43,097
668
+ 719,470
669
+ 60,858
670
+ 5.12
671
+ 982,961
672
+ Yoochoose1/64
673
+ 16,766
674
+ 369,859
675
+ 55,898
676
+ 6.16
677
+ 557,248
678
+ Yoochoose1/4
679
+ 29,618
680
+ 5,917,746
681
+ 55,898
682
+ 5.71
683
+ 8,326,407
684
+ A. Experiment settings
685
+ 1) Datasets: We conduct our experiments on two widely
686
+ used public datasets: Yoochoose and Diginetica. The statistics
687
+ of these datasets are listed in Table I.
688
+ • Yoochoose1 is a public dataset released by the RecSys
689
+ Challenge 2015, which contains click streams from yoo-
690
+ choose.com within 6 months.
691
+ • Diginetica2 is obtained from the CIKM Cup 2016. We
692
+ use the item categories to initialize the item embeddings.
693
+ 2) Evaluation Metrics: We evaluate the performance of our
694
+ model with Mean Reciprocal Rank (MRR@K) and Precision
695
+ (P@K) in the comparison experiments.
696
+ MRR@K considers the position of the target item in the
697
+ list of recommended items. It is set to 0 if the target item is
698
+ not in the top-k of the ranking list, or otherwise is calculated
699
+ as follows:
700
+ MRR@K = 1
701
+ N
702
+ N
703
+
704
+ i=1
705
+ 1
706
+ Rank(vt),
707
+ (22)
708
+ where vt is the target item and N is the number of test
709
+ sequences in the dataset.
710
+ P@K measures whether the target item is included in the
711
+ top-k list of recommended items, which is calculated as
712
+ P@K = nhit
713
+ N
714
+ (23)
715
+ 3) Implementation: Our model 3 is implemented with Py-
716
+ Torch 1.12.1 [37] and CUDA 10.2. In the testing phase, we
717
+ take the interval between the session’s last timestamp and
718
+ the testing item’s timestamp as a part of the input to obtain
719
+ the recommendation list. This setting is different from other
720
+ baseline models as they cannot deal with temporal information.
721
+ In fact, this setting meets the actual situation in the industry
722
+ because our model can provide recommendations as soon as
723
+ the user logs into the website, and we can easily obtain the
724
+ real-time time interval.
725
+ B. Performance comparison (RQ1)
726
+ To demonstrate the effectiveness of TA-HGAT, we conduct
727
+ experiments on two public datasets and compare the model
728
+ with ten state-of-the-art baseline models.
729
+ 1https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
730
+ 2https://competitions.codalab.org/competitions/11161
731
+ 3The datasets and codes will be available after accepted
732
+ TABLE II
733
+ EXPERIMENTS ON DIGINETICA AND YOOCHOOSE DATASETS COMPARE
734
+ TA-HGAT WITH TEN BASELINE MODELS BASED ON THE TOP-20 OF THE
735
+ RANKING LIST IN MEAN RECIPROCAL RANK (MRR@20) AND PRECISION
736
+ (P@20). THE BOLD AND UNDERLINED NUMBERS ON EACH DATASET AND
737
+ METRIC REPRESENT THE BEST AND SECOND-BEST RESULTS,
738
+ RESPECTIVELY. ”IMPROV.” REFERS TO THE MINIMUM IMPROVEMENT
739
+ AMONG ALL BASELINES.
740
+ Models
741
+ Diginetica
742
+ Yoochoose 1/64
743
+ Yoochoose 1/4
744
+ MRR@20
745
+ P@20
746
+ MRR@20
747
+ P@20
748
+ MRR@20
749
+ P@20
750
+ S-POP
751
+ 13.68
752
+ 21.06
753
+ 18.35
754
+ 30.44
755
+ 17.75
756
+ 27.08
757
+ FPMC
758
+ 8.92
759
+ 31.55
760
+ 15.01
761
+ 45.62
762
+ -
763
+ -
764
+ GRU4REC
765
+ 8.33
766
+ 29.45
767
+ 22.89
768
+ 60.64
769
+ 22.60
770
+ 59.53
771
+ NARM
772
+ 16.17
773
+ 49.70
774
+ 28.63
775
+ 68.32
776
+ 29.23
777
+ 69.73
778
+ STAMP
779
+ 14.32
780
+ 45.64
781
+ 29.67
782
+ 68.74
783
+ 30.00
784
+ 70.44
785
+ SR-GNN
786
+ 17.59
787
+ 50.73
788
+ 30.94
789
+ 70.57
790
+ 31.89
791
+ 71.36
792
+ TAGNN
793
+ 18.03
794
+ 51.31
795
+ 31.12
796
+ 71.02
797
+ 32.03
798
+ 71.51
799
+ HCGR
800
+ 18.51
801
+ 52.47
802
+ 31.46
803
+ 71.13
804
+ 32.39
805
+ 71.66
806
+ NISER+
807
+ 18.72
808
+ 53.39
809
+ 31.61
810
+ 71.27
811
+ 31.80
812
+ 71.80
813
+ SGNN-HN
814
+ 19.45
815
+ 55.67
816
+ 32.61
817
+ 72.06
818
+ 32.55
819
+ 72.85
820
+ TA-HGAT
821
+ 19.73
822
+ 56.28
823
+ 32.90
824
+ 72.75
825
+ 32.94
826
+ 73.56
827
+ Improv.
828
+ 1.44%
829
+ 1.10 %
830
+ 0.89%
831
+ 0.96%
832
+ 1.20%
833
+ 0.97%
834
+ 1) Baseline models:
835
+ • S-POP takes the most popular items of each session as
836
+ the recommended list.
837
+ • FPMC [38] is a Markov chain-method for sequential
838
+ recommendation, which only takes the item sequences
839
+ in session-based recommendation since user features are
840
+ unavailable.
841
+ • GRU4REC [39] is the first work that applies RNN to
842
+ the session-based recommendation to learn the sequential
843
+ dependency of items.
844
+ • NARM [5] utilizes an attention mechanism to model the
845
+ sequential behaviors and the user’s primary purpose with
846
+ global and local encoders.
847
+ • STAMP [6] employs an attention and memory mecha-
848
+ nism to learn the user’s preference and takes the last item
849
+ as recent intent in the session to make recommendations.
850
+ • SR-GNN [7] is the first work that model a session into
851
+ a graph. It resorts to the gated graph neural networks to
852
+ learn the complex item transitions in the sessions.
853
+ • TAGNN [12] improves SR-GNN by learning the interest
854
+ representation vector with different target items to im-
855
+ prove the performance of the model.
856
+ • NISER+ [40] handles the long-tail problem in SBR with
857
+ L2 normalization and dropout to alleviate the overfitting
858
+ problem.
859
+ • SGNN-HN [41] applies a star graph neural network to
860
+ consider the items without direct connections.
861
+ • HCGR [15] models the session graphs in hyperbolic
862
+ space and makes use of multi-behavior information to
863
+ improve performance. In our experiments, we don’t use
864
+ the behavior information as the datasets didn’t provide it
865
+ and we are modeling a more general scenario.
866
+ 2) Result analysis: The complete experimental results of
867
+ the comparison study are shown in Table II. From the results,
868
+ we have the following observations:
869
+ • Our proposed TA-HGAT outperforms all baseline models
870
+
871
+ on all datasets and metrics, which demonstrates the
872
+ effectiveness of the model. Besides, HCGR, which is
873
+ another hyperbolic graph-based SBR model, has achieved
874
+ better performance than the graph-based SBR model SR-
875
+ GNN but worse than our model. Compared to HCGR, our
876
+ model improves 4.3% and 4.1% on average over three
877
+ datasets on metrics MRR@20 and P@20, respectively.
878
+ HCGR is better than SR-GNN, indicating that hyperbolic
879
+ embeddings match session graphs. And the improvement
880
+ of TA-HGAT over HCGR shows the importance of tem-
881
+ poral information in the SBR task.
882
+ • In Table II, we also observe that our model has a better
883
+ performance on dataset Diginetica than Yoochoose. On
884
+ average, the performance of TA-HGAT on Diginetica
885
+ outperforms Yoochoose for 37.8% and 14.0% on metrics
886
+ MRR@20 and P@20, respectively. This phenomenon
887
+ may result from the initial features of items. In Diginetica,
888
+ each item has its category label, and we transform this
889
+ feature into a one-hot vector as the initial embedding of
890
+ the item. In HCGR, we model the initial feature to a
891
+ feature vector in the hyperbolic space, which is shown
892
+ in Eq. 10 and 11. Differences in performance between
893
+ Diginetica and Yoochoose indicate that the hyperbolic
894
+ embeddings have a better expression ability on the item
895
+ features.
896
+ C. Ablation study (RQ2)
897
+ In the TA-HGAT, we have two main modules in time-aware
898
+ hyperbolic attention: hyperbolic self-attention with time inter-
899
+ vals and hyperbolic soft-attention with users’ current interests.
900
+ In this section, we evaluate their effectiveness separately to
901
+ show the improvement compared with the ablation models
902
+ without these two modules.
903
+ We set up four separate ablation models to compare the
904
+ effectiveness of each attention layer. The first ablation model
905
+ is no-att, in which we remove both the attention layers and
906
+ only conduct the aggregation operations directly. The second
907
+ and third ones are self-att and soft-att, and these two ablation
908
+ models only include the self-attention and soft-attention layers,
909
+ respectively. The fourth one is TA-HGAT, which is the com-
910
+ plete model. The comparison results of the ablation models on
911
+ datasets Diginetica and Yoochoose are illustrated in Figure 2.
912
+ From Figure 2, we observe the following results:
913
+ • On both Diginetica and Yoochoose datasets, the non-att
914
+ performs worst, and TA-HGAT performs best. The results
915
+ show the effectiveness of the attention layers. This is
916
+ because the TA-HGAT makes full use of the temporal
917
+ information. Compared to the GNNs without temporal
918
+ information, our model builds the relations between items
919
+ with time intervals and also considers users’ current
920
+ interests. Hence, the rich information helps the model to
921
+ achieve better results.
922
+ • Self-att performs better than soft-att, which means time
923
+ intervals are relatively more meaningful than users’ cur-
924
+ rent interests. This phenomenon may be due to the fact
925
+ that users’ current interests are more complicated, so the
926
+ TABLE III
927
+ COMPARISON OF PERFORMANCE FOR DIFFERENT LOSS FUNCTIONS.
928
+ Loss
929
+ Diginetica
930
+ Yoochoose 1/64
931
+ Yoochoose 1/4
932
+ MRR@20
933
+ P@20
934
+ MRR@20
935
+ P@20
936
+ MRR@20
937
+ P@20
938
+ Softmax
939
+ 19.38
940
+ 55.81
941
+ 32.67
942
+ 72.10
943
+ 32.72
944
+ 72.95
945
+ BPR
946
+ 19.43
947
+ 55.97
948
+ 32.53
949
+ 72.28
950
+ 32.66
951
+ 72.84
952
+ TA-HGAT
953
+ 19.73
954
+ 56.28
955
+ 32.90
956
+ 72.75
957
+ 32.94
958
+ 73.56
959
+ last item cannot fully represent them. In contrast, the time
960
+ interval is a more straightforward feature, so our proposed
961
+ hyperbolic self-attention layer can handle this information
962
+ effectively.
963
+ D. Comparison of loss functions (RQ3)
964
+ In this section, we compare our proposed hyperbolic evolu-
965
+ tionary loss to conventional loss functions, i.e., BPR [36] and
966
+ softmax loss [7]. Because the learned session embeddings in
967
+ the output of our model are in the hyperbolic space, we need
968
+ to use the logarithmic map to project the embeddings back to
969
+ the Euclidean space before applying BPR and softmax loss.
970
+ The comparison results are shown in Table III. The hy-
971
+ perbolic evolutionary loss is denoted as TA-HGAT in the
972
+ table. From this table, we can find that the performance of
973
+ BPR and softmax loss is similar, but our proposed hyperbolic
974
+ evolutionary loss has a clear improvement compared to the
975
+ other losses. This observation demonstrates that considering
976
+ the specific timestamp is effective for the SBR task models
977
+ designed in hyperbolic space.
978
+ E. Hyperparameter analysis (RQ4)
979
+ The embedding dimension is the hyperparameter in our pro-
980
+ posed model, so we test the influence of different embedding
981
+ dimensions in this section. The embedding dimensions range
982
+ from 20 to 100. The results of the hyperparameter analysis are
983
+ illustrated in Figure 3.
984
+ It is observed that a proper embedding dimension is essen-
985
+ tial for learning the item and session representations. From
986
+ Figure 3, we can see that the Diginetica and Yoochoose
987
+ 1/64 all achieve the best performance when the embedding
988
+ dimension is 60, and the best result of Yoochoose 1/4 is 80.
989
+ Because Yoochoose 1/4 is much larger than the other two
990
+ datasets, it indicates that larger datasets need larger embedding
991
+ space.
992
+ V. RELATED WORKS
993
+ A. Hyperbolic spaces
994
+ Recent research has shown that many types of complex
995
+ data exhibit a highly non-Euclidean structure [19]. In many
996
+ domains, e.g., natural language [42], computer vision [43],
997
+ and healthcare [44], data usually has a tree-like structure
998
+ or can be represented hierarchically. Since this type of data
999
+ contains an underlying hierarchical structure, capturing such
1000
+ representations in Euclidean space is difficult. To solve this
1001
+ problem, current studies are increasingly attracted by the idea
1002
+ of building neural networks in Riemannian space, such as
1003
+
1004
+ P@20
1005
+ MRR@20
1006
+ Metric
1007
+ 0
1008
+ 10
1009
+ 20
1010
+ 30
1011
+ 40
1012
+ 50
1013
+ Value
1014
+ non-att
1015
+ Self-att
1016
+ Soft-att
1017
+ TA-HGAT
1018
+ (a) Diginetica
1019
+ P@20
1020
+ MRR@20
1021
+ Metric
1022
+ 0
1023
+ 10
1024
+ 20
1025
+ 30
1026
+ 40
1027
+ 50
1028
+ 60
1029
+ 70
1030
+ Value
1031
+ non-att
1032
+ Self-att
1033
+ Soft-att
1034
+ TA-HGAT
1035
+ (b) Yoochoose 1/64
1036
+ P@20
1037
+ MRR@20
1038
+ Metric
1039
+ 0
1040
+ 10
1041
+ 20
1042
+ 30
1043
+ 40
1044
+ 50
1045
+ 60
1046
+ 70
1047
+ Value
1048
+ non-att
1049
+ Self-att
1050
+ Soft-att
1051
+ TA-HGAT
1052
+ (c) Yoochoose 1/4
1053
+ Fig. 2.
1054
+ The ablation study of TA-HGAT. ’non-att’ is our model without attention layers. ’Self-att’ and ’Soft-att’ are composed of only self-attention and
1055
+ soft-attention layers, respectively. TA-HGAT is the complete model.
1056
+ (a) Diginetica MRR
1057
+ (b) Yoochoose MRR
1058
+ (c) Diginetica Precision
1059
+ (d) Yoochoose Precision
1060
+ Fig. 3. The hyperparameter analysis of the embedding dimensions.
1061
+ the hyperbolic space, which is a homogeneous space with
1062
+ constant negative curvature [27]. Compared with Euclidean
1063
+ space, hyperbolic space in which the volume of a ball grows
1064
+ exponentially with radius instead of growing polynomially.
1065
+ Because of its powerful representation ability, hyperbolic
1066
+ space has been applied in many areas. For instance, [45]
1067
+ learns word and sentence embeddings in hyperbolic space in
1068
+ an unsupervised manner from text corpora. [46] demonstrates
1069
+ that hyperbolic embeddings are beneficial for visual data. [47]
1070
+ proposes Hyperbolic Graph Convolutional Neural Networks,
1071
+ which combines the expressiveness of GCNs and hyperbolic
1072
+ geometry to learn graph representations. These works show
1073
+ the potential and advantages of hyperbolic space in learning
1074
+ hierarchical structures of complex data.
1075
+ Based on the performance of hyperbolic space in these
1076
+ fields, it is natural for researchers to think of applying hyper-
1077
+ bolic learning to recommender systems. [48] justifies the use
1078
+ of hyperbolic representations for neural recommender systems.
1079
+ [49] proposes HyperML to bridge the gap between Euclidean
1080
+ and hyperbolic geometry in recommender systems through a
1081
+ metric learning approach. [21] proposes a hyperbolic GCN
1082
+ model for collaborative filtering. [50] presents HyperSoRec, a
1083
+ novel graph neural network (GNN) framework with multiple-
1084
+ aspect learning for social recommendation.
1085
+ B. Session-based Recommendation
1086
+ Session-based Recommendation (SBR) has increasingly en-
1087
+ gaged attention in both industry and academia due to its
1088
+ effectiveness in modeling users’ current interests. In the recent
1089
+ SBR studies, there are mainly three types of methods that
1090
+ apply deep learning to SBR and have achieved state-of-the-art
1091
+ performance, which are sequence-based [4], [51], attention-
1092
+ based [5], [6] and graph-based models [7]. GRU4REC [4]
1093
+ is the most representative work in the sequence-based SBR
1094
+ models. It employs GRU, a variant of RNN, to model the
1095
+ item sequences and make the next-item prediction. Follow-
1096
+ ing GRU4REC, some other papers [39], [51], [52] improve
1097
+ it with data augmentation, hierarchical structure, and top-k
1098
+ gains. Attention-based models aim to learn the importance of
1099
+ different items in the session and make the model focus on the
1100
+ important ones. NARM [5] utilizes an attention mechanism to
1101
+ model both local and global features of the session to learn
1102
+ users’ interests. STAMP [6] combines the attention model and
1103
+ memory network to learn the short-term priority of sessions.
1104
+ Graph-based models connect the items in a graph to learn their
1105
+ complex transitions. SR-GNN [7] is the first work that models
1106
+ the sessions into graphs. It leverages the Gated Graph Neural
1107
+ Network (GGNN) to model the session graphs and achieve
1108
+ state-of-the-art performance. Based on SR-GNN, [10], [12]
1109
+ improve SR-GNN with attention layers. [8], [11] consider the
1110
+ item order in the session graph in the model. [9], [13], [14]
1111
+ take additional information such as global item relationship,
1112
+ item categories, and user representations into account to design
1113
+ more extensive models. However, all these methods fail to
1114
+ consider the hierarchical geometry of the session graphs and
1115
+ the temporal information.
1116
+
1117
+ 19.73
1118
+ Dataset
1119
+ Diginetica
1120
+ 19.72
1121
+ 19.71
1122
+ 19.70
1123
+ Value
1124
+ 19.69
1125
+ 19.68
1126
+ 19.67
1127
+ 19.66
1128
+ 19.65
1129
+ 20
1130
+ 40
1131
+ 60
1132
+ 80
1133
+ 100
1134
+ DimensionDataset
1135
+ 32.94
1136
+ Yoochoose1/4
1137
+ Yoochoose1/64
1138
+ 32.92
1139
+ 32.90
1140
+ 32.88
1141
+ Value
1142
+ 32.86
1143
+ 32.84
1144
+ 32.82
1145
+ 32.80
1146
+ 20
1147
+ 40
1148
+ 60
1149
+ 80
1150
+ 100
1151
+ Dimension56.28
1152
+ Dataset
1153
+ Diginetica
1154
+ 56.26
1155
+ Value
1156
+ 56.24
1157
+ 56.22
1158
+ 56.20
1159
+ 20
1160
+ 40
1161
+ 60
1162
+ 80
1163
+ 100
1164
+ Dimension73.6
1165
+ 73.4
1166
+ 73.2
1167
+ Dataset
1168
+ alue
1169
+ Yoochoose1/4
1170
+ Yoochoose1/64
1171
+ 73.0
1172
+ 72.8
1173
+ 72.6
1174
+ 20
1175
+ 40
1176
+ 60
1177
+ 80
1178
+ 100
1179
+ DimensionC. GNN-based Recommendation Models
1180
+ GNNs have proven to be useful in different research fields
1181
+ [53]–[58]. There also exist many works considering the graph
1182
+ structures in data modeling of recommender systems. Gener-
1183
+ ally, there are two main ways regarding the graph structure
1184
+ and embedding space. One way is to model the user-item
1185
+ interaction graph in Euclidean spaces. Among them, [59]–[61]
1186
+ perform graph convolution on the user-item graph to explore
1187
+ their interactions. [62]–[64] utilize layer-to-layer neighbor-
1188
+ hood aggregation in GNNs to capture the high-order connec-
1189
+ tions. [65] pre-trains user-user and item-item graphs separately
1190
+ to learn the initial embeddings of the user-item interaction
1191
+ graph. [35] models the changes in user-item interactions with a
1192
+ dynamic graph and evolutionary loss. These works apply GNN
1193
+ to learn from high-dimensional graph data and generate low-
1194
+ dimensional node embeddings without feature engineering, but
1195
+ the learned embeddings are all in Euclidean spaces, while
1196
+ some graph data may be more suitable to other geometries
1197
+ in the representation learning.
1198
+ The other way is to model the recommendation graph in hy-
1199
+ perbolic space to learn the hierarchical geometry. HGCF [21]
1200
+ applies hyperbolic GCN to learn the node embeddings using
1201
+ a user-item graph. Wang et al. [20] propose a fully hyperbolic
1202
+ GCN where all operations are conducted in hyperbolic space.
1203
+ Xu et al. [32] model the product graph in a knowledge graph
1204
+ and learn the node embeddings in hyperbolic space. HCGR
1205
+ [15] is a novel hyperbolic contrastive graph representation
1206
+ learning method to make session-based recommendations.
1207
+ None of these models utilize the time-relevant information in
1208
+ the session graphs to improve the recommendation accuracy.
1209
+ In this paper, we propose a novel framework incorporating
1210
+ a time-aware graph attention mechanism in hyperbolic space,
1211
+ which is specifically devised for the session-based recommen-
1212
+ dation.
1213
+ VI. CONCLUSION
1214
+ Session-based Recommendation (SBR) is to predict users’
1215
+ next interested items based on their previous sessions. Existing
1216
+ works model the graph structure in the sessions and have
1217
+ achieved state-of-the-art performance. However, they fail to
1218
+ consider the hierarchical geometry and temporal information
1219
+ in the sessions. In this paper, we propose TA-HGAT, a
1220
+ hyperbolic GNN-based model that considers the time interval
1221
+ between items and users’ current interests. Experiment results
1222
+ demonstrate that TA-HGAT outperforms other SBR models on
1223
+ two real-world datasets.
1224
+ For future work, we will extend our model to more general
1225
+ recommender systems. The time intervals are not only in the
1226
+ SBR problem, but also in almost all recommender systems.
1227
+ As a result, we want to test how our model performs on other
1228
+ recommendation problems, e.g., next-basket recommendation
1229
+ and point-of-interest recommendation, where temporal infor-
1230
+ mation plays a crucial role in providing recommendations.
1231
+ VII. ACKNOWLEDGEMENT
1232
+ This work is supported in part by NSF under grants III-
1233
+ 1763325, III-1909323, III-2106758, and SaTC-1930941.
1234
+ REFERENCES
1235
+ [1] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
1236
+ and K. Gai, “Deep interest network for click-through rate prediction,”
1237
+ in SIGKDD.
1238
+ ACM, 2018, pp. 1059–1068.
1239
+ [2] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
1240
+ music recommendation,” Advances in neural information processing
1241
+ systems, vol. 26, 2013.
1242
+ [3] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
1243
+ trajectory in temporal interaction networks,” in SIGKDD.
1244
+ ACM, 2019,
1245
+ pp. 1269–1278.
1246
+ [4] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-
1247
+ based recommendations with recurrent neural networks,” arXiv preprint
1248
+ arXiv:1511.06939, 2015.
1249
+ [5] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
1250
+ session-based recommendation,” in CIKM. ACM, 2017, pp. 1419–1428.
1251
+ [6] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: short-term
1252
+ attention/memory priority model for session-based recommendation,” in
1253
+ SIGKDD.
1254
+ ACM, 2018, pp. 1831–1839.
1255
+ [7] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
1256
+ recommendation with graph neural networks,” in Proceedings of the
1257
+ AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.
1258
+ 346–353.
1259
+ [8] T. Chen and R. C.-W. Wong, “Handling information loss of graph neural
1260
+ networks for session-based recommendation,” in SIGKDD. ACM, 2020,
1261
+ pp. 1172–1180.
1262
+ [9] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, and M. Qiu, “Global
1263
+ context enhanced graph neural networks for session-based recommen-
1264
+ dation,” in SIGIR.
1265
+ ACM, 2020, pp. 169–178.
1266
+ [10] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and
1267
+ X. Zhou, “Graph contextualized self-attention network for session-based
1268
+ recommendation.” in IJCAI, vol. 19, 2019, pp. 3940–3946.
1269
+ [11] R. Qiu, J. Li, Z. Huang, and H. Yin, “Rethinking the item order in
1270
+ session-based recommendation with graph neural networks,” in CIKM.
1271
+ ACM, 2019, pp. 579–588.
1272
+ [12] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, and T. Tan, “Tagnn: Target
1273
+ attentive graph neural networks for session-based recommendation,” in
1274
+ SIGIR.
1275
+ ACM, 2020, pp. 1921–1924.
1276
+ [13] L. Liu, L. Wang, and T. Lian, “Case4sr: Using category sequence graph
1277
+ to augment session-based recommendation,” Knowledge-Based Systems,
1278
+ vol. 212, p. 106558, 2021.
1279
+ [14] Y. Pang, L. Wu, Q. Shen, Y. Zhang, Z. Wei, F. Xu, E. Chang,
1280
+ B. Long, and J. Pei, “Heterogeneous global graph neural networks for
1281
+ personalized session-based recommendation,” in WSDM.
1282
+ ACM, 2022,
1283
+ pp. 775–783.
1284
+ [15] N. Guo, X. Liu, S. Li, Q. Ma, Y. Zhao, B. Han, L. Zheng, K. Gao, and
1285
+ X. Guo, “Hcgr: Hyperbolic contrastive graph representation learning
1286
+ for session-based recommendation,” arXiv preprint arXiv:2107.05366,
1287
+ 2021.
1288
+ [16] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for
1289
+ sequential recommendation,” in WSDM, 2020, pp. 322–330.
1290
+ [17] W. Ye, S. Wang, X. Chen, X. Wang, Z. Qin, and D. Yin, “Time matters:
1291
+ Sequential recommendation with complex temporal information,” in
1292
+ SIGIR, 2020, pp. 1459–1468.
1293
+ [18] R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. Duin, “Spherical and
1294
+ hyperbolic embeddings of data,” IEEE transactions on pattern analysis
1295
+ and machine intelligence, vol. 36, no. 11, pp. 2255–2269, 2014.
1296
+ [19] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
1297
+ “Geometric deep learning: going beyond euclidean data,” IEEE Signal
1298
+ Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.
1299
+ [20] L. Wang, F. Hu, S. Wu, and L. Wang, “Fully hyperbolic graph convo-
1300
+ lution network for recommendation,” in CIKM, 2021, pp. 3483–3487.
1301
+ [21] J. Sun, Z. Cheng, S. Zuberi, F. P´erez, and M. Volkovs, “Hgcf: Hyperbolic
1302
+ graph convolution networks for collaborative filtering,” in Proceedings
1303
+ of the Web Conference 2021, 2021, pp. 593–601.
1304
+ [22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
1305
+ convolutional networks,” ICLR, 2016.
1306
+ [23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
1307
+ learning on large graphs,” in Advances in neural information processing
1308
+ systems, 2017, pp. 1024–1034.
1309
+ [24] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
1310
+ “Hierarchical graph representation learning with differentiable pooling,”
1311
+ Advances in neural information processing systems, vol. 31, 2018.
1312
+
1313
+ [25] P. Veliˇckovi´c, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
1314
+ gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
1315
+ [26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
1316
+ Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
1317
+ neural information processing systems, vol. 30, pp. 5998–6008, 2017.
1318
+ [27] M. Nickel and D. Kiela, “Poincar´e embeddings for learning hierarchical
1319
+ representations,” Advances in neural information processing systems,
1320
+ vol. 30, 2017.
1321
+ [28] C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M.
1322
+ Hermann, P. Battaglia, V. Bapst, D. Raposo, A. Santoro et al., “Hyper-
1323
+ bolic attention networks,” arXiv preprint arXiv:1805.09786, 2018.
1324
+ [29] M. Nickel and D. Kiela, “Learning continuous hierarchies in the lorentz
1325
+ model of hyperbolic geometry,” in International Conference on Machine
1326
+ Learning.
1327
+ PMLR, 2018, pp. 3779–3788.
1328
+ [30] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,”
1329
+ Advances in neural information processing systems, vol. 32, 2019.
1330
+ [31] O. Ganea, G. B´ecigneul, and T. Hofmann, “Hyperbolic neural networks,”
1331
+ Advances in neural information processing systems, vol. 31, 2018.
1332
+ [32] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Product
1333
+ knowledge graph embedding for e-commerce,” in WSDM. ACM, 2020,
1334
+ pp. 672–680.
1335
+ [33] Y. Li, H. Chen, X. Sun, Z. Sun, L. Li, L. Cui, P. S. Yu, and G. Xu,
1336
+ “Hyperbolic hypergraphs for sequential recommendation,” in CIKM,
1337
+ 2021, pp. 988–997.
1338
+ [34] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
1339
+ “Translating embeddings for modeling multi-relational data,” in Ad-
1340
+ vances in neural information processing systems, 2013, pp. 2787–2795.
1341
+ [35] X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang, and S. Y. Philip, “Dynamic
1342
+ graph collaborative filtering,” in ICDM.
1343
+ IEEE, 2020, pp. 322–331.
1344
+ [36] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
1345
+ Bayesian personalized ranking from implicit feedback,” arXiv preprint
1346
+ arXiv:1205.2618, 2012.
1347
+ [37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
1348
+ T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
1349
+ imperative style, high-performance deep learning library,” Advances in
1350
+ neural information processing systems, vol. 32, 2019.
1351
+ [38] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
1352
+ personalized markov chains for next-basket recommendation,” in Pro-
1353
+ ceedings of the 19th international conference on World wide web, 2010,
1354
+ pp. 811–820.
1355
+ [39] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k
1356
+ gains for session-based recommendations,” in CIKM, 2018, pp. 843–852.
1357
+ [40] P. Gupta, D. Garg, P. Malhotra, L. Vig, and G. M. Shroff, “Niser: nor-
1358
+ malized item and session representations with graph neural networks,”
1359
+ arXiv preprint arXiv:1909.04276, 2019.
1360
+ [41] Z. Pan, F. Cai, W. Chen, H. Chen, and M. de Rijke, “Star graph neural
1361
+ networks for session-based recommendation,” in CIKM, 2020, pp. 1195–
1362
+ 1204.
1363
+ [42] A. Tifrea, G. B´ecigneul, and O.-E. Ganea, “Poincar\’e glove: Hyperbolic
1364
+ word embeddings,” arXiv preprint arXiv:1810.06546, 2018.
1365
+ [43] M.-M. Yau and S. N. Srihari, “A hierarchical data structure for multidi-
1366
+ mensional digital images,” Communications of the ACM, vol. 26, no. 7,
1367
+ pp. 504–515, 1983.
1368
+ [44] S. J. Wilkens, J. Janes, and A. I. Su, “Hiers: hierarchical scaffold
1369
+ clustering using topological chemical graphs,” Journal of medicinal
1370
+ chemistry, vol. 48, no. 9, pp. 3182–3193, 2005.
1371
+ [45] B. Dhingra, C. Shallue, M. Norouzi, A. Dai, and G. Dahl, “Embedding
1372
+ text in hyperbolic spaces,” in Proceedings of the Twelfth Workshop on
1373
+ Graph-Based Methods for Natural Language Processing (TextGraphs-
1374
+ 12), 2018, pp. 59–69.
1375
+ [46] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempit-
1376
+ sky, “Hyperbolic image embeddings,” in CVPR, 2020, pp. 6418–6428.
1377
+ [47] I. Chami, Z. Ying, C. R´e, and J. Leskovec, “Hyperbolic graph convo-
1378
+ lutional neural networks,” Advances in neural information processing
1379
+ systems, vol. 32, 2019.
1380
+ [48] B. P. Chamberlain, S. R. Hardwick, D. R. Wardrope, F. Dzogang,
1381
+ F. Daolio, and S. Vargas, “Scalable hyperbolic recommender systems,”
1382
+ arXiv preprint arXiv:1902.08648, 2019.
1383
+ [49] L. Vinh Tran, Y. Tay, S. Zhang, G. Cong, and X. Li, “Hyperml: A
1384
+ boosting metric learning approach in hyperbolic space for recommender
1385
+ systems,” in WSDM, 2020, pp. 609–617.
1386
+ [50] H. Wang, D. Lian, H. Tong, Q. Liu, Z. Huang, and E. Chen, “Hy-
1387
+ persorec: Exploiting hyperbolic user and item representations with
1388
+ multiple aspects for social-aware recommendation,” ACM Transactions
1389
+ on Information Systems (TOIS), vol. 40, no. 2, pp. 1–28, 2021.
1390
+ [51] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for
1391
+ session-based recommendations,” in Proceedings of the 1st workshop on
1392
+ deep learning for recommender systems, 2016, pp. 17–22.
1393
+ [52] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Per-
1394
+ sonalizing session-based recommendations with hierarchical recurrent
1395
+ neural networks,” in proceedings of the Eleventh ACM Conference on
1396
+ Recommender Systems, 2017, pp. 130–137.
1397
+ [53] H. Peng, J. Li, Q. Gong, Y. Song, Y. Ning, K. Lai, and P. S. Yu, “Fine-
1398
+ grained event categorization with heterogeneous graph convolutional
1399
+ networks,” arXiv preprint arXiv:1906.04580, 2019.
1400
+ [54] Z. Liu, X. Li, Z. You, T. Yang, W. Fan, and P. Yu, “Medical triage
1401
+ chatbot diagnosis improvement via multi-relational hyperbolic graph
1402
+ neural network,” in SIGIR.
1403
+ ACM, 2021, pp. 1965–1969.
1404
+ [55] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
1405
+ graph neural network-based fraud detectors against camouflaged fraud-
1406
+ sters,” in CIKM.
1407
+ ACM, 2020, pp. 315–324.
1408
+ [56] Z. Liu, X. Li, H. Peng, L. He, and S. Y. Philip, “Heterogeneous
1409
+ similarity graph neural network on electronic health records,” in 2020
1410
+ IEEE International Conference on Big Data (Big Data).
1411
+ IEEE, 2020,
1412
+ pp. 1196–1205.
1413
+ [57] J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, P. Yu, and L. He, “Higher-
1414
+ order attribute-enhancing heterogeneous graph neural networks,” IEEE
1415
+ Transactions on Knowledge and Data Engineering, 2021.
1416
+ [58] Y. Hei, R. Yang, H. Peng, L. Wang, X. Xu, J. Liu, H. Liu, J. Xu, and
1417
+ L. Sun, “Hawk: Rapid android malware detection through heterogeneous
1418
+ graph attention networks,” IEEE Transactions on Neural Networks and
1419
+ Learning Systems, 2021.
1420
+ [59] L. Zheng, C.-T. Lu, F. Jiang, J. Zhang, and P. S. Yu, “Spectral
1421
+ collaborative filtering,” in Proceedings of the 12th ACM Conference on
1422
+ Recommender Systems, 2018, pp. 311–319.
1423
+ [60] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
1424
+ completion,” arXiv preprint arXiv:1706.02263, 2017.
1425
+ [61] W. Yu and Z. Qin, “Graph convolutional network for recommendation
1426
+ with low-pass collaborative filters,” in ICML. PMLR, 2020, pp. 10 936–
1427
+ 10 945.
1428
+ [62] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
1429
+ collaborative filtering,” in SIGIR.
1430
+ ACM, 2019, pp. 165–174.
1431
+ [63] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
1432
+ Simplifying and powering graph convolution network for recommenda-
1433
+ tion,” in SIGIR.
1434
+ ACM, 2020, pp. 639–648.
1435
+ [64] Z. Liu, X. Li, Z. Fan, S. Guo, K. Achan, and S. Y. Philip, “Basket
1436
+ recommendation with multi-intent translation graph neural network,” in
1437
+ 2020 IEEE International Conference on Big Data (Big Data).
1438
+ IEEE,
1439
+ 2020, pp. 728–737.
1440
+ [65] X. Li, Z. Liu, S. Guo, Z. Liu, H. Peng, S. Y. Philip, and K. Achan, “Pre-
1441
+ training recommender systems via reinforced attentive multi-relational
1442
+ graph neural network,” in 2021 IEEE International Conference on Big
1443
+ Data (Big Data).
1444
+ IEEE, 2021, pp. 457–468.
1445
+
A9E2T4oBgHgl3EQfRQfr/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9FQT4oBgHgl3EQf9TeX/content/2301.13450v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa60e6a5334531e45a516a23a99fc2ab693f7ccea28a0073f142f5973f40426a
3
+ size 1951855
A9FQT4oBgHgl3EQf9TeX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a070fe93485656fa63210662190759d7dd342bbd422219c28f90f65c9ef5fa8
3
+ size 2818093
A9FQT4oBgHgl3EQf9TeX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6878674467549e6ac5f8a89db7cb1141b9a818634fe79cf9c1d21898f090ba5e
3
+ size 99799
ANFAT4oBgHgl3EQfrR6g/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a8ef4acb496879cf200fa1e5198c86dc10870185e6790ad8da4fd13bb8417d
3
+ size 2359341
BdAzT4oBgHgl3EQfh_0J/content/2301.01491v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58dcde426a23ae1003915a0b2563a15859756a26b9fe432be26e30dcd105cae5
3
+ size 4461680
BdAzT4oBgHgl3EQfh_0J/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d16ccb29187dff71acc6481d8baa0bf181b79805da1848d5c2ebadc52c3c1d0
3
+ size 229568
CNAzT4oBgHgl3EQfTvwq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5478bb3614cf53e921c5bb343b972b6576f417e39da19c891566dcbb8f254c5
3
+ size 132171
CNE4T4oBgHgl3EQf5g54/content/tmp_files/2301.05324v1.pdf.txt ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Surface acoustic wave generation and detection in quantum paraelectric regime of
2
+ SrTiO3-based heterostructure
3
+ Dengyu Yang1,2, Muqing Yu1,2, Yun-Yi Pai1,2, Patrick Irvin1,2,
4
+ Hyungwoo Lee3, Kitae Eom3, Chang-Beom Eom3, and Jeremy Levy1,2∗
5
+ 1.
6
+ Department of Physics and Astronomy,
7
+ University of Pittsburgh, Pittsburgh,
8
+ Pennsylvania 15260, USA
9
+ 2.
10
+ Pittsburgh Quantum Institute,
11
+ Pittsburgh, Pennsylvania 15260, USA
12
+ and
13
+ 3.
14
+ Department of Materials Science and Engineering,
15
+ University of WisconsinMadison, Madison, Wisconsin 53706, USA
16
+ (Dated: January 16, 2023)
17
+ Strontium titanate (STO), apart from being a ubiquitous substrate for complex-oxide heterostruc-
18
+ tures, possesses a multitude of strongly-coupled electronic and mechanical properties. Surface acous-
19
+ tic wave (SAW) generation and detection offers insight into electromechanical couplings that are
20
+ sensitive to quantum paraelectricity and other structural phase transitions.
21
+ Propagating SAWs
22
+ can interact with STO-based electronic nanostructures, in particular LaAlO3/SrTiO3 (LAO/STO).
23
+ Here we report generation and detection of SAW within LAO/STO heterointerfaces at cryogenic
24
+ temperatures (T ≥ 2 K) using superconducting interdigitated transducers (IDTs). The temper-
25
+ ature dependence shows an increase in the SAWs quality factor that saturates at T ≈ 8 K. The
26
+ effect of backgate tuning on the SAW resonance frequency shows the possible acoustic coupling
27
+ with the ferroelastic domain wall evolution. This method of generating SAWs provides a pathway
28
+ towards dynamic tuning of ferroelastic domain structures, which are expected to influence electronic
29
+ properties of complex-oxide nanostructures. Devices which incorporate SAWs may in turn help to
30
+ elucidate the role of ferroelastic domain structures in mediating electronic behavior.
31
+ I.
32
+ INTRODUCTION
33
+ Strontium titanate holds a unique place among the
34
+ growing family of complex-oxide heterostructures and
35
+ nanostructures [1].
36
+ Apart from possessing a wealth of
37
+ physical phenomena–ferroelectricity [2, 3], ferroelasticity
38
+ [4, 5], superconductivity [6–8], high spin-to-charge inter-
39
+ conversion [9], large third-order optical susceptibility [10]
40
+ – STO also exhibits fascinating transport properties at
41
+ interfaces and within conductive nanostructures [11, 12].
42
+ These latter properties arise when STO is capped with
43
+ a thin layer, often but not exclusively LaAlO3, which
44
+ results in electron doping near the STO interface [13].
45
+ Conductive nanostructures of many types have been cre-
46
+ ated by “sketching” with a conductive atomic force mi-
47
+ croscope (c-AFM) tip [14] or ultra-low-voltage focused
48
+ electron beam [15]. The properties of these devices are
49
+ profoundly affected by the intrinsic behavior of STO and
50
+ are in many aspects not well understood.
51
+ One of the least well-understood property interrela-
52
+ tionships concerns the coupling between electronic, ferro-
53
+ electric, and ferroelastic degrees of freedom. STO is cen-
54
+ trosymmetric at room temperature with ABO3 cubic per-
55
+ ovskite structure. Upon cooling below ∼105 K [16, 17],
56
+ STO undergoes a cubic-to-tetragonal antiferrodistortive
57
+ (AFD) phase transition [18]. Further cooling to ∼35 K
58
59
+ [19] gives rise to an incipient ferroelectric or “quantum
60
+ paraelectric” phase transition (QPE) in which the dielec-
61
+ tric constant ε saturates at ∼10 K [20].
62
+ At cryogenic
63
+ temperature (T < 10 K), STO shows giant piezoelec-
64
+ tricity even larger than the best well-known piezoelectric
65
+ material such as quartz [21]. At microscopic scales, the
66
+ coupling between polar phases in STO and ferroelastic
67
+ domains [22] is quite strong and can be directly observed
68
+ using scanning single electron transistor microscopy [5].
69
+ Piezoelectric distortions were found to be the result of
70
+ reorienting tetragonal domains, whose in-plane and out-
71
+ of-plane lattice constants differ by ∼ 10−3.
72
+ Surface acoustic waves (SAW), also known as Rayleigh
73
+ waves [23], arise from linear piezoelectric coupling, and
74
+ propagate parallel to the sample surface with its depth
75
+ comparable to the SAW wavelength. SAW propagation is
76
+ sensitive to both mechanical and electrical changes at the
77
+ sample surface, making it surface-sensitive and useful for
78
+ radio-frequency (RF) signal processing. A common tech-
79
+ nique to generate and detect SAW is to apply RF signals
80
+ to a pair of metallic inter-digitated transducers (IDT).
81
+ However, the complexity and subtlety of the STO struc-
82
+ ture with multiple phases make SAW generation and de-
83
+ tection difficult to achieve. With STO, DC fields have
84
+ been used to break cubic symmetry and generate polar-
85
+ ization above 150 K [24, 25] via electrostrictive effect.
86
+ To generate SAW, an extra piezoelectric layer, PZT, was
87
+ deposited on top of LAO [26], and SAW was observed
88
+ down to T =110 K. Below this temperature, the signal
89
+ disappeared and SAW generation and detection has not
90
+ arXiv:2301.05324v1 [cond-mat.str-el] 12 Jan 2023
91
+
92
+ 2
93
+ to our knowledge been reported in STO or LAO/STO or
94
+ at temperatures lower than T =105 K.
95
+ In this paper, we demonstrate direct SAW generation
96
+ and detection on LAO/STO surface at cryogenic temper-
97
+ atures using superconducting IDTs. The linearly-coupled
98
+ SAW shows an ultra-low phase velocity, indicating soft-
99
+ ening of STO crystal at low temperature and consistent
100
+ with earlier reports of large piezoelectric and electrostric-
101
+ tion coefficients [21]. The temperature at which the qual-
102
+ ity factor of the SAW resonator saturates coincides with
103
+ the quantum-paraelectric (QPE) transition temperature
104
+ (TQPE), showing that the quality factor Q is coupled to
105
+ the dielectric constant and can be used to identify the
106
+ onset of the quantum paraelectric phase. The resonance
107
+ frequency can be tuned with a backgate voltage.
108
+ The
109
+ tunability with applying the backgate at negative side
110
+ but not at the positive backgate side coincides with the
111
+ tuning effect of ferroelastic domain with the backgate
112
+ showing the coupling between ferroelastic domains and
113
+ surface phonon. The applied DC bias confirms the elec-
114
+ trostrictive effect from STO by showing the quadratic
115
+ tuning behavior.
116
+ II.
117
+ EXPERIMENT
118
+ LaAlO3 epitaxial films were grown on TiO2-terminated
119
+ STO (001) substrates by pulsed laser deposition [13]. The
120
+ thickness of LAO is fixed to 3.4 u.c., close to the critical
121
+ thickness of metal-insulator transition [27]. To form a
122
+ uniform-type single electrode IDT, an 80 nm thick film
123
+ of NbTiN is deposited on top of the LAO/STO, with
124
+ IDT fingers oriented along the (010) direction. Supercon-
125
+ ducting NbTiN is chosen as the IDT material for three
126
+ principal reasons: to help with impedance matching; to
127
+ maximize the transmission; and to minimize ohmic losses
128
+ and heating. A metallization ratio (m), defined as the fin-
129
+ ger width divided by the finger spacing, m ≡ w/(w + d),
130
+ is fixed such that m = 0.5 in all devices. SAW-related
131
+ experiments are carried out in a physical property mea-
132
+ surement system (PPMS) at temperatures T ≥ 2 K. Each
133
+ IDT is grounded on one side, and the other side is con-
134
+ nected to an input port of a vector network analyzer
135
+ (VNA) to enable two-port scattering parameter measure-
136
+ ments (Fig. 1(a)). Between the IDT and the VNA, a bias
137
+ tee is inserted on each side to allow a DC bias to be (Vbias)
138
+ applied between the IDT fingers. SAWs are generated by
139
+ an IDT, transmitted along the (100) direction, and de-
140
+ tected by the second IDT pair. To reduce contributions
141
+ from bulk acoustic waves, the LAO/STO sample bottom
142
+ surface is roughened and coated with silver epoxy as a
143
+ “soft conductor” [28]. The bottom conducting electrode
144
+ is also used to apply a voltage Vbg from the back of the
145
+ STO substrate.
146
+ Using a P = −10 dBm signal applied to the IDT, a
147
+ clear resonant feature can be seen at 127.5 MHz in the
148
+ reflection spectrum S11 (Fig. 1(c)), defined as the center
149
+ frequency fc. By contrast, in a control device in which
150
+ one side of the two comb structures in the IDT is miss-
151
+ ing there is no resonance (Fig. 1 (d)), demonstrating that
152
+ the resonance feature is a result of the paired comb struc-
153
+ tures patterned with NbTiN, and not due to bulk acous-
154
+ tic wave transmission or an electrical resonance from the
155
+ cable or other parts of the instrument. Meanwhile, the
156
+ SAW phase velocity is obtained from the measured fc by
157
+ v = fcλ. The wavelength λ is determined by the distance
158
+ between a pair of nearest IDT fingers with the same po-
159
+ larity. Here we have λ = 8 µm, giving a SAW velocity
160
+ on LAO/STO of v = 1, 020 m/s. The IDT comb struc-
161
+ ture generates SAW by converting the electrical energy
162
+ to elastic energy, causing a resonance dip in the reflection
163
+ signal.
164
+ The total quality factor Q is defined as
165
+ Q ≡ fc/B,
166
+ (1)
167
+ where fc is the center resonance frequency and B is the
168
+ half-power (-3 dB) bandwidth. The resonance spectrum
169
+ shows a quality factor Q = 17.5, which is consistent with
170
+ previous reports [25] on STO-based acoustic resonators
171
+ without resonance-enhanced structures (e.g., Bragg mir-
172
+ rors). Theoretically the bandwidth B can be determined
173
+ from the IDT geometry according to Ref. [29],
174
+ B ∼ 0.9fc/Np,
175
+ (2)
176
+ where Np = 16 is the number of comb pairs in the IDT.
177
+ Here the calculated bandwidth is 7.2 MHz is close to the
178
+ expected value of 7.3 MHz.
179
+ The < 2% difference can
180
+ come from the imperfect edge of IDT geometry related
181
+ to the mask-less photolithography precision.
182
+ The transmission spectrum S21 (Fig. 2 (a)) shows a
183
+ resonance peak at a frequency fc that coincides with the
184
+ reflection dip in S11, supporting the scenario that energy
185
+ is transmitted efficiently via SAW from the transmitting
186
+ IDT to the receiving IDT. When we sweep the temper-
187
+ ature, the resonance peak disappears sharply at temper-
188
+ atures larger than 13.7 K, corresponding to the temper-
189
+ ature Tc above which the NbTiN is no longer super-
190
+ conducting (see Supplementary material). The NbTiN
191
+ normal resistance 1.57 kΩ gives an impedance mismatch
192
+ which causes most of the power to be reflected and dis-
193
+ sipated both internally in the IDT and externally into
194
+ the transmission line leading to a sharp cut-off on the
195
+ transmission signal.
196
+ Notably,
197
+ the resonance frequency is temperature-
198
+ dependent. A quadratic scaling is observed between the
199
+ center frequency and temperature, with a lower fc at a
200
+ lower temperature. To understand this scaling, we may
201
+ consider a Helmholtz free energy of phonons, F, descrip-
202
+ tion of its equilibrium state,
203
+ F(t, ψ) = a(t) + b(t)ψ2 + c(t)ψ4 + · · · ,
204
+ (3)
205
+ where ψ is the order parameter, and t = (T − Tc)/Tc
206
+ is the reduced temperature. When we only consider the
207
+ equilibrium states, we obtain
208
+ b(t)ψ + 2c(t)ψ3 = 0
209
+
210
+ 3
211
+ |ψ| ≈ (b1/2c0)|t|1/2.
212
+ The asymptotic expression for F becomes:
213
+ F(t, ψ) ≈ a0 − b2
214
+ 1
215
+ 4c0
216
+ t2 + · · ·
217
+ (4)
218
+ Therefore, the free energy is expected to scale quadrat-
219
+ ically with temperature.
220
+ The resonance frequency fc,
221
+ depending linearly on F, scales quadratically with tem-
222
+ perature (Fig. 2 (b)).
223
+ With a constant IDT geometry, such that the wave-
224
+ length λ is kept fixed, a smaller fc corresponds to a lower
225
+ SAW phase velocity v. We observe that lowering the tem-
226
+ perature reduces the SAW velocity. This trend contrasts
227
+ with results on most piezoelectric materials such as PZT,
228
+ in which SAW have been reported to increase as tem-
229
+ perature is lowered, because of the decreasing thermal
230
+ fluctuations and increasing stiffness of the sample [30].
231
+ Both the piezoelectric coefficient (d311) and the elec-
232
+ trostriction coefficient (R311) of STO increase signifi-
233
+ cantly with decreasing temperature, especially for T <
234
+ 10 K [21]. This finding implies both a softer crystal and
235
+ a more efficient electro-mechanical energy conversion at
236
+ low temperature. The quality factor, plotted versus tem-
237
+ perature in Figure 2 (c) first increases as temperature
238
+ is decreased, and then saturates at T ≈ 8 K. The sat-
239
+ uration temperature coincides with the STO quantum
240
+ paraelectric phase transition (TQPE) where the dielectric
241
+ permittivity ε saturates, described by Barrett’s formula
242
+ [20]. This correspondence indicates that SAW is sensitive
243
+ to the quantum paraelectric phase transition and its Q
244
+ factor is related to the ε variance. When T > Tc, Q drops
245
+ quickly to near zero due to the increasing resistance R
246
+ for the IDT.
247
+ To verify the linear dispersion of the SAW (v = fλ),
248
+ two different pairs of IDTs with different electrode spac-
249
+ ing are compared, keeping the metallization ratio fixed
250
+ such that m = 0.5. The IDT geometry is as shown in
251
+ Fig. 3 (a). The IDT finger widths w = d = 2 µm and
252
+ w = d = 3 µm correspond to wavelengths λ = 8 µm and
253
+ λ = 12 µm, respectively. The measured resonance fre-
254
+ quency fc, labeled with black arrows in Fig. 3 (b,c) shows
255
+ the expected inverse linear scaling with wavelength, pro-
256
+ viding further confirmation of the SAW origin of the res-
257
+ onance feature.
258
+ The transmission resonances in both devices show an
259
+ appreciable hardening as a function of back gate volt-
260
+ age Vbg (Fig. 3 (b,c)). The rise in acoustic velocity is
261
+ associated with induced ferroelectric displacement which
262
+ breaking the inversion symmetry of the crystal structure
263
+ and couples to the strain field S. This phenomenon can
264
+ be modeled using a Landau-Ginsburg-Devonshire (LGD)
265
+ free-energy expression, expanding in powers of the dis-
266
+ placement D up to the second order (Eq. 5) [25, 31–33].
267
+ For STO when it is paraelectric, the dielectric electro-
268
+ mechanical response is described within LGD theory [34].
269
+ F − F0 = −pSD + 1
270
+ 2χ−1D2 + 1
271
+ 2GSD2 + · · ·
272
+ (5)
273
+ In Eq. 5, p is the piezoelectric tensor, χ is the dielectric
274
+ permittivity tensor and G is the electrostrictive tensor.
275
+ Surprisingly, the dependence of fc on Vbg is much
276
+ stronger when Vbg < 0 compared to Vbg > 0 (Fig. 4).
277
+ This dependence contrasts with pure electrical tuning of
278
+ the dielectric constant through Vbg, in which the tun-
279
+ ing effect is symmetric across zero bias [35]. The LAO
280
+ thickness is below the critical thickness for spontaneous
281
+ formation of a conductive LAO/STO interface [27]. The
282
+ interface remains insulating during the experiment, even
283
+ for the maximum backgate voltage that has been applied,
284
+ and thus carrier screening or other effects associated with
285
+ a gate-induced insulator-to-metal transition can be ruled
286
+ out. One is left with explanations that are tied to the
287
+ formation and evolution of ferroelastic domains. The mo-
288
+ tion of such domains under back gate bias is consistent
289
+ with prior imaging from Honig et al. [5] which showed
290
+ that under large negative backgate voltage, tetragonal
291
+ ferroelastic domains are observed, leading to the anoma-
292
+ lously large piezoelectricity at low temperature. The for-
293
+ mation and drifting of the ferroelastic domain under neg-
294
+ ative backgate voltages play an important role coupling
295
+ with the SAW.
296
+ To investigate how the magnitude of the SAW coupling
297
+ depends on the static bias across the IDT, we incorporate
298
+ a bias tee between the VNA port and IDT connection to
299
+ apply a dc bias Vbias between IDT neighboring fingers
300
+ with opposite polarity, and measure the change in the
301
+ resonance amplitude as a function of Vbias. The result
302
+ (Fig. 5 (a)) shows a quadratic relationship for S11 ampli-
303
+ tude. The quadratic dependence can be understood as
304
+ an electrostriction effect in which electric field couples to
305
+ strain up to the second order (Eq. 5). The Vbias induced
306
+ first-order electric field breaks the inversion symmetry of
307
+ STO, yielding a linear coupling. The scaling indicates
308
+ a built-in STO polarization that can be modulated with
309
+ an applied bias across the IDT. For comparison, port 2 is
310
+ not subject to a dc bias, and as a result no tuning of the
311
+ S22 amplitude (Fig. 5 (a)) is observed. When the applied
312
+ Vbias cancels the built-in polarization, the resonance am-
313
+ plitude is minimized, which happens Vbias ∼ −1 V. Sim-
314
+ ilar tuning is observed for the transmission signals S12
315
+ and S21, as expected.
316
+ III.
317
+ DISCUSSION AND CONCLUSION
318
+ With an acoustic speed five orders lower than the speed
319
+ of light, a relatively short acoustic wavelength, and high
320
+ degree of surface sensitivity, SAW generation, propaga-
321
+ tion, and detection can be regarded as useful building
322
+ blocks for manipulating electronic and lattice degrees of
323
+ freedom in complex-oxide heterostructures and nanos-
324
+ tructures.
325
+ Specifically, SAW has the potential to con-
326
+ tribute to quantum information processing architectures
327
+ [29] both in superconducting qubits [36–38] and elec-
328
+ tron spin-based quantum computing architectures [39–
329
+ 41]. Coupling the superconducting qubits with SAW can
330
+
331
+ 4
332
+ help control and measure quantum states [42]. Further-
333
+ more, SAW generates moving potential wells with meso-
334
+ scopic scale which transport electron charges with spin
335
+ information propagating at speed of sound in a confined
336
+ one-dimensional channel, helping to meet architectural
337
+ challenges of long-range transport of spin information
338
+ [43–45]. At the same time, SAW manipulation of elec-
339
+ tronic properties may help provide insight into the nature
340
+ of correlated electronic phases such as superconductivity.
341
+ In conclusion, we demonstrate the direct generation
342
+ and detection of SAW on LAO/STO at cryogenic tem-
343
+ perature using superconducting IDTs. Spurious contri-
344
+ butions arising from possible bulk acoustic wave compo-
345
+ nents and electronic resonances from the instrument are
346
+ carefully ruled out. The SAW shows an ultra-low phase
347
+ velocity which reveals the coupling to the high permit-
348
+ tivity of the STO at low temperatures. The SAW quality
349
+ factor saturates at quantum paraelectric phase transition
350
+ temperature corroborating the related Q-factor with di-
351
+ electric permittivity. This method can thus be used to
352
+ probe behavior near the quantum phase transition. The
353
+ behavior is consistent with a linear electro-mechanical
354
+ coupling that is tightly coupled with the ferroelastic do-
355
+ main evolution.
356
+ Supporting Information
357
+ Supporting Information is available as Supplementary
358
+ information.pdf.
359
+ Acknowledgements
360
+ JL acknowledges support from the Vannevar Bush Fac-
361
+ ulty Fellowship program sponsored by the Basic Research
362
+ Office of the Assistant Secretary of Defense for Research
363
+ and Engineering and funded by the Office of Naval Re-
364
+ search through grant N00014-15-1-2847.
365
+ The work at
366
+ University of Wisconsin-Madison was supported by the
367
+ National Science Foundation under DMREF Grant No.
368
+ DMR-1629270, AFOSR FA9550-15-1-0334 and AOARD
369
+ FA2386-15-1-4046. This research is funded by the Gor-
370
+ don and Betty Moore Foundations EPiQS Initiative,
371
+ grant GBMF9065 to C.B.E., Vannevar Bush Faculty Fel-
372
+ lowship (N00014-20-1-2844 (C.B.E.).
373
+ Transport mea-
374
+ surement at the University of WisconsinMadison was
375
+ supported by the US Department of Energy (DOE), Of-
376
+ fice of Science, Office of Basic Energy Sciences (BES),
377
+ the Materials Sciences and Engineering (MSE) Division
378
+ under award number DE-FG02-06ER46327.
379
+ Conflict of Interest
380
+ The authors declare no conflict of interest.
381
+ Data Availability Statement
382
+ Data generated or analysed during this study are in-
383
+ cluded in this published article (and its supplementary
384
+ information).
385
+ [1] Y.-Y. Pai, A. Tylan-Tyler, P. Irvin, and J. Levy, Physics
386
+ of SrTiO3-based heterostructures and nanostructures: a
387
+ review, Rep. Prog. Phys. 81, 036503 (2018).
388
+ [2] W. J. Burke and R. J. Pressley, Stress induced ferroelec-
389
+ tricity in SrTiO3, Solid State Commun. 9, 191 (1971).
390
+ [3] O. Tikhomirov, H. Jiang, and J. Levy, Local ferroelec-
391
+ tricity in SrTiO3 thin films, Phys. Rev. Lett. 89, 147601
392
+ (2002).
393
+ [4] A. Buckley, J. P. Rivera, and E. K. H. Salje, Twin struc-
394
+ tures in tetragonal SrTiO3: The ferroelastic phase transi-
395
+ tion and the formation of needle domains, J. Appl. Phys.
396
+ 86, 1653 (1999).
397
+ [5] M. Honig, J. A. Sulpizio, J. Drori, A. Joshua, E. Zel-
398
+ dov, and S. Ilani, Local electrostatic imaging of striped
399
+ domain order in LaAlO3/SrTiO3, Nat. Mater. 12, 1112
400
+ (2013).
401
+ [6] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis,
402
+ G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-
403
+ S. R¨uetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M.
404
+ Triscone, and J. Mannhart, Superconducting interfaces
405
+ between insulating oxides, Science 317, 1196 (2007).
406
+ [7] A.
407
+ D.
408
+ Caviglia,
409
+ S.
410
+ Gariglio,
411
+ N.
412
+ Reyren,
413
+ D.
414
+ Jac-
415
+ card, T. Schneider, M. Gabay, S. Thiel, G. Hammerl,
416
+ J. Mannhart, and J. M. Triscone, Electric field control of
417
+ the LaAlO3/SrTiO3 interface ground state, Nature 456,
418
+ 624 (2008).
419
+ [8] K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo,
420
+ N.
421
+ Kimura,
422
+ T.
423
+ Nojima,
424
+ H.
425
+ Aoki,
426
+ Y.
427
+ Iwasa,
428
+ and
429
+ M. Kawasaki, Electric-field-induced superconductivity in
430
+ an insulator, Nat. Mater. 7, 855 (2008).
431
+ [9] E. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-Sanchez, D. C.
432
+ Vaz, H. Naganuma, G. Sicoli, J. P. Attane, M. Jamet,
433
+ E. Jacquet, J. M. George, A. Barthelemy, H. Jaffres,
434
+ A. Fert, M. Bibes, and L. Vila, Highly efficient and tun-
435
+ able spin-to-charge conversion through rashba coupling
436
+ at oxide interfaces, Nat. Mater. 15, 1261 (2016).
437
+ [10] Y. Ma, M. Huang, S. Ryu, C. W. Bark, C.-B. Eom,
438
+ P. Irvin, and J. Levy, Broadband terahertz generation
439
+ and detection at 10 nm scale, Nano Lett. 13, 2884 (2013).
440
+ [11] A. Annadi,
441
+ G. Cheng,
442
+ H. Lee,
443
+ J.-W. Lee,
444
+ S. Lu,
445
+ A. Tylan-Tyler, M. Briggeman, M. Tomczyk, M. Huang,
446
+ D. Pekker, C.-B. Eom, P. Irvin, and J. Levy, Quan-
447
+ tized ballistic transport of electrons and electron pairs in
448
+ LaAlO3/SrTiO3 nanowires, Nano Lett. 18, 4473 (2018).
449
+ [12] G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang,
450
+ P. Irvin, S. Ryu, H. Lee, C. B. Eom, C. S. Hellberg,
451
+ and J. Levy, Electron pairing without superconductivity,
452
+ Nature 521, 196 (2015).
453
+ [13] A. Ohtomo and H. Y. Hwang, A high-mobility electron
454
+ gas at the LaAlO3/SrTiO3 heterointerface, Nature 427,
455
+ 423 (2004).
456
+ [14] C. Cen, S. Thiel, J. Mannhart, and J. Levy, Oxide nano-
457
+ electronics on demand, Science 323, 1026 (2009).
458
+ [15] D. Yang, S. Hao, J. Chen, Q. Guo, M. Yu, Y. Hu,
459
+ K. Eom, J.-W. Lee, C.-B. Eom, P. Irvin, and J. Levy,
460
+ Nanoscale control of laalo3/srtio3 metalinsulator tran-
461
+ sition using ultra-low-voltage electron-beam lithogra-
462
+ phy,
463
+ Applied
464
+ Physics
465
+ Letters
466
+ 117,
467
+ 253103
468
+ (2020),
469
+
470
+ 5
471
+ https://doi.org/10.1063/5.0027480.
472
+ [16] G. Shirane and Y. Yamada, Lattice-Dynamical study of
473
+ the 110k phase transition in SrTiO3, Physical Review
474
+ 177, 858 (1969).
475
+ [17] P. A. Fleury, J. F. Scott, and J. M. Worlock, Soft phonon
476
+ modes and the 110k phase transition in SrTiO3, Phys.
477
+ Rev. Lett. 21, 16 (1968).
478
+ [18] M.-H.
479
+ Whangbo,
480
+ E.
481
+ E.
482
+ Gordon,
483
+ J.
484
+ L.
485
+ Bettis,
486
+ A. Bussmann-Holder, and J. K¨ohler, Tolerance factor and
487
+ Cation–Anion orbital interactions differentiating the po-
488
+ lar and antiferrodistortive structures of perovskite oxides
489
+ ABO3, Z. Anorg. Allg. Chem. 641, 1043 (2015).
490
+ [19] R. A. Cowley, Lattice dynamics and phase transitions of
491
+ strontium titanate, Physical Review 134, A981 (1964).
492
+ [20] K. A. Muller and H. Burkard, SrTiO3 - intrinsic quantum
493
+ paraelectric below 4 K, Phys. Rev. B: Condens. Matter
494
+ Mater. Phys. 19, 3593 (1979).
495
+ [21] D. E. Grupp and A. M. Goldman, Giant piezoelectric
496
+ effect in strontium titanate at cryogenic temperatures,
497
+ Science 276, 392 (1997).
498
+ [22] E. Salje and X. Ding, Ferroelastic domain Boundary-
499
+ Based multiferroicity, Crystals 6, 163 (2016).
500
+ [23] L. Rayleigh, On Waves Propagated along the Plane
501
+ Surface
502
+ of
503
+ an
504
+ Elastic
505
+ Solid,
506
+ Proceedings
507
+ of
508
+ the
509
+ London
510
+ Mathematical
511
+ Society
512
+ s1-17,
513
+ 4
514
+ (1885),
515
+ https://academic.oup.com/plms/article-pdf/s1-
516
+ 17/1/4/4368144/s1-17-1-4.pdf.
517
+ [24] Y. Uzun, A. E. M. Smink, M. P. de Jong, H. Hilgenkamp,
518
+ and W. G. van der Wiel, Acoustoelectric charge transport
519
+ at the laalo3/srtio3 interface, Applied Physics Letters
520
+ 116, 011601 (2020), https://doi.org/10.1063/1.5139307.
521
+ [25] S. Alzuaga, W. Daniau, R. Salut, T. Baron, S. Ballan-
522
+ dras, and E. Defay, Tunable and high quality factor srtio3
523
+ surface acoustic wave resonator, Applied Physics Letters
524
+ 105, 062901 (2014).
525
+ [26] Y. Uzun, D. Doller, A. E. M. Smink, M. D. Nguyen,
526
+ M. P. de Jong, and W. G. van der Wiel, Effect
527
+ of
528
+ pb(zr0.52ti0.48)o3
529
+ thin
530
+ films
531
+ on
532
+ electron
533
+ trans-
534
+ port at the laalo3/srtio3 interface by surface acoustic
535
+ waves, Journal of Applied Physics 127, 214901 (2020),
536
+ https://doi.org/10.1063/5.0008825.
537
+ [27] S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider,
538
+ and J. Mannhart, Tunable quasi-two-dimensional elec-
539
+ tron gases in oxide heterostructures, Science 313, 1942
540
+ (2006).
541
+ [28] C. Campbell, 2 - basics of acoustic waves and piezoelec-
542
+ tricity, in Surface Acoustic Wave Devices and their Sig-
543
+ nal Processing Applications, edited by C. Campbell (Aca-
544
+ demic Press, 1989) pp. 9–30.
545
+ [29] T. Aref, P. Delsing, M. K. Ekstr¨om, A. F. Kockum, M. V.
546
+ Gustafsson, G. Johansson, P. J. Leek, E. Magnusson, and
547
+ R. Manenti, Quantum acoustics with surface acoustic
548
+ waves, in Superconducting Devices in Quantum Optics,
549
+ edited by R. H. Hadfield and G. Johansson (Springer In-
550
+ ternational Publishing, Cham, 2016) pp. 217–244.
551
+ [30] R. A. Wolf and S. Trolier-McKinstry, Temperature de-
552
+ pendence of the piezoelectric response in lead zirconate
553
+ titanate films, Journal of Applied Physics 95, 1397
554
+ (2004), https://doi.org/10.1063/1.1636530.
555
+ [31] A. Noeth, T. Yamada, V. O. Sherman, P. Muralt,
556
+ A. K. Tagantsev, and N. Setter, Tuning of direct current
557
+ bias-induced resonances in micromachined ba0.3sr0.7tio3
558
+ thin-film capacitors, Journal of Applied Physics 102,
559
+ 114110 (2007), https://doi.org/10.1063/1.2822203.
560
+ [32] A. Volatier, E. Defa, M. Ad, A. Nhari, P. Ancey, and
561
+ B. Dubus, Switchable and tunable strontium titanate
562
+ electrostrictive bulk acoustic wave resonator integrated
563
+ with a bragg mirror, Applied Physics Letters 92, 032906
564
+ (2008), https://doi.org/10.1063/1.2837616.
565
+ [33] I. B. Vendik, P. A. Turalchuk, O. G. Vendik, and J. Berge,
566
+ Modeling tunable bulk acoustic resonators based on in-
567
+ duced piezoelectric effect in batio3 and ba0.25sr0.75tio3
568
+ films, Journal of Applied Physics 103, 014107 (2008),
569
+ https://doi.org/10.1063/1.2830866.
570
+ [34] A. K. Tagantsev,
571
+ V. O. Sherman,
572
+ K. F. Astafiev,
573
+ J. Venkatesh, and N. Setter, Ferroelectric materials for
574
+ microwave tunable applications, Journal of Electroce-
575
+ ramics 11, 5 (2003).
576
+ [35] D. Davidovikj, N. Manca, H. S. J. van der Zant, A. D.
577
+ Caviglia, and G. A. Steele, Quantum paraelectricity
578
+ probed by superconducting resonators, Phys. Rev. B 95,
579
+ 214513 (2017).
580
+ [36] . Dumur, K. J. Satzinger, G. A. Peairs, M. H. Chou,
581
+ A. Bienfait, H. S. Chang, C. R. Conner, J. Grebel, R. G.
582
+ Povey, Y. P. Zhong, and A. N. Cleland, Quantum com-
583
+ munication with itinerant surface acoustic wave phonons,
584
+ npj Quantum Information 7, 173 (2021).
585
+ [37] M.-H. Chou, . Dumur, Y. P. Zhong, G. A. Peairs, A. Bien-
586
+ fait, H.-S. Chang, C. R. Conner, J. Grebel, R. G. Povey,
587
+ K. J. Satzinger, and A. N. Cleland, Measurements of a
588
+ quantum bulk acoustic resonator using a superconduct-
589
+ ing qubit, Applied Physics Letters 117, 254001 (2020),
590
+ https://doi.org/10.1063/5.0023827.
591
+ [38] A. Bienfait, Y. P. Zhong, H.-S. Chang, M.-H. Chou, C. R.
592
+ Conner, E. Dumur, J. Grebel, G. A. Peairs, R. G. Povey,
593
+ K. J. Satzinger, and A. N. Cleland, Quantum erasure
594
+ using entangled surface acoustic phonons, Phys. Rev. X
595
+ 10, 021055 (2020).
596
+ [39] J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A.
597
+ Ritchie, J. E. F. Frost, C. J. B. Ford, C. G. Smith, and
598
+ G. A. C. Jones, High-frequency single-electron transport
599
+ in a quasi-one-dimensional GaAs channel induced by sur-
600
+ face acoustic waves, Journal of Physics: Condensed Mat-
601
+ ter 8, L531 (1996).
602
+ [40] S. W. Chen, Z. B. Yang, L. Song, and J. Gao, Manipula-
603
+ tion of the electron transport through a mesoscopic island
604
+ by surface acoustic wave, Journal of Applied Physics 113,
605
+ 043717 (2013), https://doi.org/10.1063/1.4788826.
606
+ [41] L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E.
607
+ Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. De-
608
+ voret, Frequency-locked turnstile device for single elec-
609
+ trons, Phys. Rev. Lett. 64, 2691 (1990).
610
+ [42] K. J. Satzinger, Y. P. Zhong, H. S. Chang, G. A. Peairs,
611
+ A. Bienfait, M.-H. Chou, A. Y. Cleland, C. R. Conner,
612
+ . Dumur, J. Grebel, I. Gutierrez, B. H. November, R. G.
613
+ Povey, S. J. Whiteley, D. D. Awschalom, D. I. Schuster,
614
+ and A. N. Cleland, Quantum control of surface acoustic-
615
+ wave phonons, Nature 563, 661 (2018).
616
+ [43] C. H. W. Barnes, J. M. Shilton, and A. M. Robinson,
617
+ Quantum computation using electrons trapped by sur-
618
+ face acoustic waves, Phys. Rev. B 62, 8410 (2000).
619
+ [44] S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D.
620
+ Wieck, L. Saminadayar, C. Buerle, and T. Meunier, Elec-
621
+ trons surfing on a sound wave as a platform for quantum
622
+ optics with flying electrons, Nature 477, 435 (2011).
623
+ [45] R. P. G. McNeil, M. Kataoka, C. J. B. Ford, C. H. W.
624
+ Barnes, D. Anderson, G. A. C. Jones, I. Farrer, and D. A.
625
+ Ritchie, On-demand single-electron transfer between dis-
626
+
627
+ 6
628
+ tant quantum dots, Nature 477, 439 (2011).
629
+
630
+ 7
631
+ VNA
632
+ DC
633
+ DC
634
+ SAW
635
+ (a)
636
+ (b)
637
+ (c)
638
+ (d)
639
+ FIG. 1. Surface Acoustic Wave (SAW) generated and detected by Interdigitated Transducers (IDTs). (a) Schematic diagram of
640
+ the experiment setup. The orange parts are IDTs. Blue circuits denote the bias tee inserted between vector network analyzer
641
+ (VNA) port and IDT. (b) Optical image of an IDT patterned with NbTiN. The black scale bar is 20 µm. (c) S11 from an
642
+ experiment device with normal IDT comb structure in pair. The resonances is observable. (d) Reflection signal S11 from a
643
+ control device without one side of IDT comb structure. There is no resonance observed from this control device.
644
+ T = 2K
645
+ (a)
646
+ (b)
647
+ (c)
648
+ TQPE
649
+ FIG. 2. Temperature dependence of resonance. (a) The upper intensity plot shows transmission signals with respect to the
650
+ temperature between 2 K and 16 K. The lower figure is a transmission signal line cut through 2 K temperature showing
651
+ the resonance peak.
652
+ (b) Temperature dependence of resonance center frequency and calculated SAW phase velocity (blue
653
+ diamonds). The red dashed line is a quadratic fit. (c) Quality factor Q = fc/B plotted with respect to the temperature. The
654
+ red arrow shows the STO quantum paraelectric saturation temperature.
655
+
656
+ SSZSS20
657
+ 41.0
658
+ 100
659
+ 200
660
+ f (MHz)13.8
661
+ +
662
+ -
663
+ +
664
+ -
665
+ w
666
+ d
667
+ l
668
+ LAO
669
+ STO
670
+ (a)
671
+ (b)
672
+ (c)
673
+ FIG. 3. Resonance frequency shift due to different wavelengths and negative backgate voltages. (a) Schematic diagram of
674
+ NbTiN IDT geometry, where w is the finger width and d is the gap distance.
675
+ Wavelength λ is determined by the center
676
+ distance between two nearest same polarity fingers. (b) Transmission spectrum of Device “A” (λ = 8 µm) as a function of
677
+ Vbg. Black arrow denotes the resonance frequency. (c) Transmission spectrum of Device “B” (λ = 12 µm) as a function of Vbg.
678
+ Black arrow denotes the resonance frequency. All data taken at T = 2 K
679
+ (a)
680
+ (b)
681
+ FIG. 4. Positive and negative Vbg dependence of reflection spectrum and resonance frequency. (a) Reflection spectrum as a
682
+ function of Vbg. There is a resonance dip and a second harmonic dip observed in the spectrum. (b) Resonance center frequency
683
+ fc as a function of Vbg. The green region highlights where the resonance frequency can be tuned with negative Vbg.
684
+
685
+ 入=12μm^=8μm9
686
+ (a)
687
+ (b)
688
+ FIG. 5. Reflection scattering parameters (S11, S22) measured as a function of Vbias applied across the IDT fingers in port
689
+ 1, with zero bias at port 2. (a) Reflection amplitude for ports 1 (S11) and 2 (S22), referenced against the zero-bias value
690
+ Sii (Vbias = 0). (b)Transmission amplitudes (S12, S21), measured as a function of Vbias.
691
+
CNE4T4oBgHgl3EQf5g54/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtAzT4oBgHgl3EQfiP1R/content/tmp_files/2301.01496v1.pdf.txt ADDED
@@ -0,0 +1,1503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01496v1 [math.DS] 4 Jan 2023
2
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC RANDOM
3
+ WALKS ON THE CIRCLE
4
+ KLAUDIUSZ CZUDEK
5
+ Abstract. Fix an irrational number α and a smooth, positive, real function
6
+ p on the circle. If current position is x ∈ R/Z then in the next step jump to
7
+ x + α with probability p(x) or to x − α with probability 1 − p(x). In 1999
8
+ Sinai has proven that if p is asymmetric (in certain sense) or α is Diophantine
9
+ then the Markov process possesses a unique stationary distribution. Next year
10
+ Conze and Guivarc’h showed the uniqueness of stationary distribution for an
11
+ arbitrary irrational angle α.
12
+ In this note we present a new proof of latter
13
+ result.
14
+ 1. Introduction
15
+ Fix an irrational number α ∈ R, and consider the family of Markov processes
16
+ with the evolution governed by the transition kernel
17
+ (1.1)
18
+ p(x, ·) = p(x)δx+α + q(x)δx−α,
19
+ p : T × B(T) → [0, 1],
20
+ where B(S1) stands for the σ-algebra of Borel subsets of S1 and q(x) = 1 − p(x),
21
+ x ∈ T. We call the function p symmetric if
22
+
23
+ T
24
+ f(x)dx = 0,
25
+ where
26
+ (1.2)
27
+ f(x) = ln p(x)
28
+ q(x),
29
+ x ∈ T,
30
+ and asymmetric otherwise. We call a measure µ invariant for transition kernel (1.1)
31
+ if distributing the starting point according to µ makes the Markov process with this
32
+ transition kernel stationary (thus µ is called also often a stationary measure). Since
33
+ T is compact, the Krylov-Bogoliubov technique yields existence of an invariant
34
+ distribution for (1.1) for every choice of continuous p. However, it is far from being
35
+ obvious if there exists more than one invariant distribution.
36
+ The earliest paper known to the author dealing with similar (but still slightly
37
+ different) system was by Sine [Sin79].
38
+ More recently it was proven by Sinai in
39
+ [Sin99] that if p ∈ C∞(T) is asymmetric or p ∈ C∞(T) is symmetric and α is
40
+ Diophantine then the uniqueness follows.
41
+ One year later Conze and Guivarc’h
42
+ proved in [CG00] that in the symmetric case
43
+ p(x)
44
+ q(x+α) ∈ BV implies uniqueness no
45
+ matter if α is Diophantine or not. The present paper contains another proof of the
46
+ latter statement assuming p ∈ C1 is symmetric. The advantage of the new proof is
47
+ that it gives more insight to the problem of mixing and the problem of uniqueness
48
+ 2020 Mathematics Subject Classification.
49
+ Primary 37A50, 60F05.
50
+ Key words and phrases. random rotations, Diophantine approximation, random walk, circle.
51
+ 1
52
+
53
+ 2
54
+ KLAUDIUSZ CZUDEK
55
+ in higher dimensional analogs (where T is replaced by Td). See Section 5 for more
56
+ details.
57
+ The strategy is based on Sinai’s. To explain it, fix x ∈ T and consider a Markov
58
+ process (Xn) started at x with transition kernel (1.1). It is evident that the process
59
+ can achieve only the points of the form x+jα, j ∈ Z. Thus to learn the distribution
60
+ of (Xn) on T we consider a Markov chain (ξn) on Z, started at 0, with
61
+ P(ξn+1 = k + 1|ξn = k) = p(x + kα)
62
+ and
63
+ P(ξn+1 = k − 1|ξn = k) = q(x + kα)
64
+ for n ≥ 0 and k ∈ Z. Let us now restrict to the symmetric case, which is in our scope
65
+ of interest. In that case the system on Z is recurrent. If p ∈ C∞(T) is symmetric
66
+ and α is Diophantine then the cohomological equation f(x) = g(x + α) − g(x),
67
+ where f is defined in (1.2), possesses a solution. Using the solution g we can easily
68
+ check that the measure with density h(z)/q(z) is invariant, where h = exp(g). Now
69
+ the whole difficulty in Sinai’s approach was to show the local limit theorem for (ξn)
70
+ on Z. More precisely, in the symmetric case Sinai has proven that
71
+ P(ξn = k) ∼ h(x + kα)
72
+ p(x + kα)
73
+ 1
74
+
75
+ 2πσ2n
76
+ exp −k2
77
+ 2nσ2 ,
78
+ for some σ > 0 and all x ∈ T, where ∼ means the ratio of both sides tends to one.
79
+ With this fact one can show that
80
+ Eϕ(Xn) →
81
+
82
+ T
83
+ ϕ(z)h(z)
84
+ q(z) dz,
85
+ which easily implies the unique ergodicity (in fact it’s even a stronger property
86
+ called mixing or stability).
87
+ Unfortunately we cannot follow exactly the same path when generalizing result
88
+ to all irrational α. Recently Dolgopyat, Fayad and Saprykina [DFS21] have proven
89
+ that if α is Liouville then the behaviour of (ξn) on Z is erratic for the generic
90
+ choice of smooth and symmetric p (see Theorems A-E therein).
91
+ In particular,
92
+ neither annealed, nor quenched central limit theorem holds (see Corollary D and
93
+ G therein). However, we can still modify something in Sinai’s idea to get desired
94
+ assertion. The main result of this work is the following.
95
+ Theorem 1. If p ∈ C1(T) is symmetric and separated from 0 and 1 (i.e. 0 <
96
+ p(x) < 1 for each x ∈ T) then there exists exactly one invariant measure for the
97
+ transition kernel (1.1).
98
+ As it was mentioned, the proof is some sense is in the spirit of Sinai’s. We still
99
+ concentrate on the process (ξn) on Z but instead of proving the local limit theorem
100
+ we focus on the limits
101
+ lim
102
+ n→∞
103
+ P(ξ0 = k) + · · · + P(ξn−1 = k)
104
+ P(ξ0 = m) + · · · + P(ξn−1 = m),
105
+ where k, m ∈ Z are two states. The problem of existence of such limits for general
106
+ (including countable space, null recurrent) Markov chains was raised by Kolmogorov
107
+ in 1936 and answered two years later by Doeblin [Doe38] without identification of
108
+ the value of the limit. It has been done only later by Chung [Chu50]. It turns out
109
+ we can define certain infinite measure on Z, k �−→ ax,k (depending on x ∈ T since
110
+
111
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
112
+ 3
113
+ (ξn) depends on x ∈ T) such that the limit above tends to ax,k/ax,m for arbitrary
114
+ two states k and m.
115
+ In Section 2 we identify the measure k �−→ ax,k on Z and reproduce the proof
116
+ of Doeblin ratio limit theorem. In Section 3 it is proved that if one takes a large
117
+ interval of integers A of length q and projects the measure k �−→ ax,k to the circle
118
+ (by identifying k with x + kα) then what we obtain is, after normalization and up
119
+ to ε, independent of the choice of the interval A and the point x, provided q is
120
+ sufficiently large. Section 4 contains how to complete the proof of Theorem 1 using
121
+ the above results. Section 5 contains some final remarks.
122
+ 2. Acknowledgments and personal remarks
123
+ When I proved the main theorem I wasn’t aware of Conze, Guivarc’h result.
124
+ After discovering it, I started thinking if my proof can be used to show something
125
+ more.
126
+ I realized the advantage of mine is it can be modified to obtain mixing
127
+ (assuming p is C1 and symmetric, no matter if α is Diophantine or not). Then
128
+ I gave several talks about it, e.g. in the conference “Probabilistic techniques in
129
+ random and time-varying dynamical systems”, Luminy 3-7.10.2022 or in the KTH
130
+ dynamical systems seminar, where I announced “mixing” result. Although I still
131
+ think this result is true, I didn’t predicted certain difficulties in the proof and I
132
+ need more time and effort to complete it. Meanwhile I’m publishing the proof of
133
+ uniqueness. It’s not going to be submitted to any journal.
134
+ The research was supported by the Polish National Science Center grant Pre-
135
+ ludium UMO-2019/35/N/ST1/02363.
136
+ 3. Basic facts about symmetric random walks on Z
137
+ Fix x ∈ T and define (ξn) to be the Markov process on Z, started at 0, with
138
+ P(ξn+1 = k + 1|ξn = k) = p(x + kα)
139
+ and
140
+ P(ξn+1 = k − 1|ξn = k) = q(x + kα)
141
+ for n ≥ 0 and k ∈ Z. In present section we are going to prove recurrence of this
142
+ random walk and some related results. We say that (ξn) is recurrent if almost
143
+ surely there exists n > 0 with ξn = 0. We say (ξn) is null recurrent if it is recurrent
144
+ and the expected time of the first return to 0 is infinite.
145
+ Proposition 1. If p is of bounded variation, symmetric and separated from 0 and
146
+ 1 then the process (ξn) is recurrent. Moreover, for every r > 0 there exists m0 that
147
+ can be chosen uniformly in x ∈ T such that the expected number of returns of (ξn)
148
+ to zero until m0 is greater than r, i.e.
149
+ P(ξ1 = 0) + · · · + P(ξn = 0) = E
150
+
151
+ 1{0}(ξ1) + · · · + 1{0}(ξn)
152
+
153
+ > r
154
+ for n ≥ m0, whatever x ∈ T.
155
+ Proof. To show the recurrence of (ξn), we reproduce the analysis from [DFS21],
156
+ Section 3.2. Let us define a function M : Z → R by M(0) = 0, M(1) = 1,
157
+ M(n) = 1 +
158
+ n−1
159
+
160
+ k=1
161
+ k
162
+
163
+ j=1
164
+ q(x + jα)
165
+ p(x + jα)
166
+ for n ≥ 2,
167
+
168
+ 4
169
+ KLAUDIUSZ CZUDEK
170
+ and
171
+ M(−n) = −
172
+ n
173
+
174
+ k=0
175
+ k
176
+
177
+ j=0
178
+ p(x − jα)
179
+ q(x − jα)
180
+ for n ≥ 1.
181
+ To avoid complicated notation, we do not stress the dependence of M on x. It can
182
+ be checked that (M(ξn)) is a martingale. Let a < 0 < b and let us define τ to be
183
+ the first moment when (ξn) hits a or b. By Doob’s theorem EM(ξτ) = M(ξ0) = 0.
184
+ On the other hand
185
+ EM(ξτ) = M(a)P(ξτ = a) + M(b)P(ξτ = b)
186
+ = M(a)P(ξτ = a) + M(b)(1 − P(ξτ = a)),
187
+ which combined with EM(ξτ) = 0 yields
188
+ P(ξτ = a) =
189
+ M(b)
190
+ M(b) − M(a).
191
+ If ξτ = a then (ξn) returns to 0 before hitting b. Setting a = −1 above we get
192
+ therefore
193
+ (3.1)
194
+ P
195
+
196
+ (ξn) returns to 0 before hitting b
197
+
198
+
199
+ M(b)
200
+ M(b) − M(−1).
201
+ Similarly
202
+ (3.2)
203
+ P
204
+
205
+ (ξn) returns to 0 before hitting a
206
+
207
+
208
+ −M(a)
209
+ M(1) − M(a).
210
+ This easy implies the random walk (ξn) is recurrent provided M(n) → ∞ as n → ∞
211
+ and M(n) → −∞ as n → −∞. The latter is implied by the following consequence
212
+ of the Denjoy-Koksma inequality.
213
+ Lemma 1. For every A > 0 there exists n0 > 0 that is independent of x ∈ T such
214
+ that M(n) > A for n ≥ n0 and M(n) < −A for n ≤ n0.
215
+ Proof. Take n > 0. The function M(n) is a sum of expressions of the form
216
+ k
217
+
218
+ j=1
219
+ q(x + jα)
220
+ p(x + jα)
221
+ for k < n,
222
+ therefore to show the assertion it is sufficient to find δ > 0 such that the product
223
+ above is greater than δ for infinitely many k’s. Define f(x) = ln q(x) − ln p(x),
224
+ x ∈ T, and observe we can write
225
+ k
226
+
227
+ j=1
228
+ q(x + jα)
229
+ p(x + jα) = exp
230
+
231
+ k
232
+
233
+ j=1
234
+ f(x + jα)
235
+
236
+ .
237
+ The function f is of bounded variation and �
238
+ T f(t)dt = 0 so the Denjoy-Koksma
239
+ inequality (Theorem 3.1 in [Her79], p. 73) yields
240
+ ����
241
+ q
242
+
243
+ j=1
244
+ f(x + jα)
245
+ ���� =
246
+ ����
247
+ q
248
+
249
+ j=1
250
+ f(x + jα) − q
251
+
252
+ T
253
+ f(t)dt
254
+ ���� < var(f)
255
+
256
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
257
+ 5
258
+ for an arbitrary x ∈ T and an arbitrary closest return time q. But this means for
259
+ an arbitrary closest return time q we have
260
+ exp
261
+
262
+ k
263
+
264
+ j=1
265
+ f(x + jα)
266
+
267
+ > e−var(f) > 0.
268
+ Thus the assertion follows with δ = e−var(f).
269
+
270
+ To show the remaining part of Proposition, fix r > 0 and take ε > 0 so small
271
+ that (1 − ε)2r > 1/2. By (3.1), (3.2) and Lemma 1 there exists a > 0 (suitable for
272
+ all x ∈ T) such that
273
+ P
274
+
275
+ (ξn) returns to 0 before hitting −a or a
276
+
277
+ ≥ 1 − ε
278
+ 2.
279
+ Since p and q are separated from 0, there exists n0 so large (suitable for all x ∈ T)
280
+ such that probability that (ξn) stays in (−a, a) for the first n0 steps is less than
281
+ ε/2. Combining these two facts yields
282
+ P
283
+
284
+ (ξn) returns to 0 before n0
285
+
286
+ > 1 − ε.
287
+ By the strong Markov property
288
+ P
289
+
290
+ (ξn) returns 2r-times to 0 before 2rn0
291
+
292
+ > (1 − ε)2r > 1/2,
293
+ by the choice of ε. The assertion follows with m0 = 2rn0 since the expected number
294
+ of returns to 0 before m0 is greater than 2r with probability 1/2.
295
+
296
+ It is advantageous to use the following notation in the remaining part of this
297
+ section. Let pn
298
+ i,j denote the probability of transition from state i to state j in n
299
+ steps. We simply write pi,j instead of p1
300
+ i,j. Let kpn
301
+ i,j stands for the probability of
302
+ transition from state i to state j in n steps under the restriction that state k is
303
+ visited in neither of steps 1, . . . , n − 1. Again, these values depend on chosen point
304
+ x ∈ T but we refrain from stressing that in the notation.
305
+ Clearly jpn
306
+ k,j is the probability of the first visit in j starting at k occurring in
307
+ step n and kpn
308
+ k,j is the probability of transition to j from k in n steps with the
309
+ restriction that the state k is not visited in steps 1, . . . , n. The series �∞
310
+ n=1 kpn
311
+ k,j
312
+ is interpreted as the expected number of visits in j starting at k before the first
313
+ return to k. It is not difficult to show the convergence of this series.
314
+ Lemma 2. If p is of bounded variation, symmetric and separated from 0 and 1 then
315
+ the series �∞
316
+ n=1 kpn
317
+ i,j is convergent. Moreover, for any q ≥ 1 its sum is uniformly
318
+ bounded over all k, i, j with |k − i|, |k − j|, |j − i| < q, x ∈ T. For every ε > 0
319
+ and natural q ≥ 1 there exists N with �∞
320
+ n=N kpn
321
+ i,j < ε whatever x ∈ T, provided
322
+ |k − j| ≤ q.
323
+ Proof. Let m ∈ N be such that kpm
324
+ j,k > η for some η > 0 and all j, k with the same
325
+ parity and |j − k| ≤ q (remember the Markov chain is periodic with period two).
326
+ It is clear m and η can be chosen uniformly in x ∈ T since p is separated from 0
327
+ and 1. We have
328
+ kpn
329
+ i,j · kpm
330
+ j,k ≤ kpn+m
331
+ i,k
332
+
333
+ 6
334
+ KLAUDIUSZ CZUDEK
335
+ for n ∈ N, hence
336
+
337
+
338
+ n=N
339
+ kpn
340
+ i,j ≤
341
+ 1
342
+ kpm
343
+ j,k
344
+
345
+
346
+ n=N
347
+ kpn+m
348
+ i,k
349
+ ≤ 1
350
+ η
351
+
352
+
353
+ n=N
354
+ kpn+m
355
+ i,k
356
+ .
357
+ The last series represents the probability that the first transition to k starting at i
358
+ occurs at earliest at the step N + m. This number is bounded from above by ε if
359
+ N is sufficiently large. Moreover, N can be chosen to be suitable for all x ∈ T by
360
+ a reasoning similar to the proof of Lemma 1.
361
+
362
+ It is not difficult also to recover the value of �∞
363
+ n=1 kpn
364
+ k,j, which represents the
365
+ expected value of appearances in state j of the process started at k before it returns
366
+ to k.
367
+ Lemma 3. If p is of bounded variation, symmetric and separated from 0 and 1 and
368
+ ax,n is defined by1 ax,0 = 1 and
369
+ (3.3)
370
+ ax,n =
371
+ q(x)
372
+ q(x + nα)
373
+ n−1
374
+
375
+ j=0
376
+ p(x + jα)
377
+ q(x + jα)
378
+ and
379
+ (3.4)
380
+ ax,−n =
381
+ p(x)
382
+ p(x − nα)
383
+ n−1
384
+
385
+ j=0
386
+ q(x − jα)
387
+ p(x − jα)
388
+ for n > 0. Then
389
+
390
+
391
+ n=1
392
+ kpn
393
+ k,j = ax,j
394
+ ax,k
395
+ for any two states k, j ∈ Z.
396
+ Proof. Fix k. First of all, the aim is to show the assertion for j = k + 1. Notice
397
+ if the process started at k visits k − 1 in the first step then it necessarily visits k
398
+ before ever reaching k + 1. Thus the probability of exactly one appearance in k + 1
399
+ before returning to k is p(x + kα) · q(x + (k + 1)α) and the probability of exactly r
400
+ appearances is p(x + kα) · p(x + (k + 1)α)r−1 · q(x + (k + 1)α) (since after the first
401
+ r − 1 visits it “jumps” to the state k + 2 with probability p(x + (k + 1)α) and right
402
+ after r-th to k with probability q(x + (k + 1)α)). Hence the expected number of
403
+ appearances is
404
+
405
+
406
+ n=1
407
+ kpn
408
+ k,j =
409
+
410
+
411
+ r=1
412
+ r · p(x + kα) · p(x + (k + 1)α)r−1 · q(x + (k + 1)α)
413
+ = p(x + kα)q(x + (k + 1)α)
414
+
415
+
416
+ r=1
417
+ rp(x + (k + 1)α)r−1
418
+ = p(x + kα)q(x + (k + 1)α)
419
+ (1 − p(x + (k + 1)α))2
420
+ = p(x + kα)q(x + (k + 1)α)
421
+ q(x + (k + 1)α)2
422
+ =
423
+ p(x + kα)
424
+ q(x + (k + 1)α),
425
+ where in the passing from the second line to the third one the formula �∞
426
+ r=1 rzr−1 =
427
+ 1
428
+ (1−z)2 was used. Since the last equals ax,k+1
429
+ ax,k , this completes the proof for j = k+1.
430
+ 1In contrast to other symbols here we stress the dependence on x ∈ T. That is because this
431
+ symbol appears in the next section where the dependence on x is significant.
432
+
433
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
434
+ 7
435
+ To end the proof we proceed by induction. Let us assume the assertion holds
436
+ for k + 1, k + 2, ..., j for some j > k. Let us consider the process started at k. Take
437
+ r > 0. It is easy to conclude the expected number of appearances of this process in
438
+ j + 1 under the condition the number of appearances in k + 1 is r equals, by the
439
+ induction assumption, to r · ax,j+1
440
+ ax,k+1 . In turn, the probability of exactly r visits in k
441
+ before returning to k is, as before, p(x+kα)·p(x+(k +1)α)r−1 ·q(x+(k +1)α). In
442
+ the view of foregoing, the expected number of appearances in j + 1 of the process
443
+ started at k before returning to k equals
444
+
445
+
446
+ r=1
447
+ r · ax,j+1
448
+ ax,k+1
449
+ p(x + kα) · p(x + (k + 1)α)r−1 · q(x + (k + 1)α)
450
+ = ax,j+1
451
+ ax,k+1
452
+ ·
453
+ p(x + kα)
454
+ q(x + (k + 1)α) = ax,j+1
455
+ ax,k+1
456
+ · ax,k+1
457
+ ax,k
458
+ = ax,j+1
459
+ ax,k
460
+ .
461
+ This completes the proof of Lemma 3 in the case of any two integers with j > k.
462
+ The case j < k is symmetric.
463
+
464
+ The last result of this section is basically the Doeblin ratio limit theorem (cf.
465
+ Corollary 2 to Theorem 4 in Section I.9, p. 48, in [Chu60]). However, reproducing
466
+ the proof is necessary because we need a kind of uniform convergence result over
467
+ all x ∈ T and states j, k that are sufficiently close to each other.
468
+ Proposition 2. If p is of bounded variation, symmetric and separated from 0 and
469
+ 1 then for every ε > 0 and q ≥ 1 there exists N such that
470
+ ����
471
+ P(ξ1 = j) + · · · + P(ξn = j)
472
+ P(ξ1 = k) + · · · + P(ξn = k) − ax,j
473
+ ax,k
474
+ ���� < ε
475
+ for every n ≥ N, x ∈ T, provided |k|, |j| ≤ q and |k − j| ≤ q.
476
+ Proof. Take ε > 0. By Lemma 2 there exists B > 0 such that �N
477
+ n=1 kpn
478
+ 0,j ≤ B for
479
+ every N and states k, j satisfying the assumptions. The number B can be chosen
480
+ also such that
481
+ max
482
+ |j|,|k|≤q max
483
+ x∈T
484
+ ax,j
485
+ ax,k
486
+ ≤ B.
487
+ Apply Lemma 2 and 3 to get N0 so large that
488
+ (3.5)
489
+ ����
490
+ N−ν
491
+
492
+ n=1
493
+ kpn
494
+ k,j − ax,j
495
+ ax,k
496
+ ���� < ε
497
+ 3
498
+ for N ≥ N0.
499
+ The number N ′
500
+ 0 > N0 should be so large that
501
+ (3.6)
502
+ 2B
503
+ �N
504
+ n=1 pn
505
+ 0,k
506
+ < ε
507
+ 3
508
+ for N ≥ N ′
509
+ 0 and
510
+ (3.7)
511
+ BN0
512
+ �N
513
+ n=1 pn
514
+ 0,k
515
+ < ε
516
+ 3
517
+ The easily proven decomposition formula
518
+ pn
519
+ 0,j = kpn
520
+ 0,j +
521
+ n−1
522
+
523
+ ν=1
524
+
525
+ 0,k · kpn−ν
526
+ k,j
527
+
528
+ 8
529
+ KLAUDIUSZ CZUDEK
530
+ yields
531
+ N
532
+
533
+ n=1
534
+ pn
535
+ 0,j =
536
+ N
537
+
538
+ n=1
539
+ kpn
540
+ 0,j +
541
+ N−1
542
+
543
+ ν=1
544
+
545
+ 0,k
546
+ N−ν
547
+
548
+ n=1
549
+ kpn
550
+ k,j.
551
+ We have
552
+ ����
553
+ P(ξ1 = j) + · · · + P(ξN = j)
554
+ P(ξ1 = k) + · · · + P(ξN = k) − ax,j
555
+ ax,k
556
+ ���� =
557
+ ����
558
+ �N
559
+ n=1 pn
560
+ 0,j
561
+ �N
562
+ n=1 pn
563
+ 0,k
564
+ − ax,j
565
+ ax,k
566
+ ����
567
+ =
568
+ ����
569
+ �N
570
+ n=1 kpn
571
+ 0,j + �N−1
572
+ ν=1 pν
573
+ 0,k
574
+ �N−ν
575
+ n=1 kpn
576
+ k,j
577
+ �N
578
+ n=1 pn
579
+ 0,k
580
+
581
+ �N
582
+ n=1
583
+ ax,j
584
+ ax,k pn
585
+ 0,k
586
+ �N
587
+ n=1 pn
588
+ 0,k
589
+ ����
590
+
591
+ ����
592
+ �N
593
+ n=1 kpn
594
+ 0,j − ax,j
595
+ ax,k pN
596
+ 0,k + �N−1
597
+ ν=1 pν
598
+ 0,k
599
+ � �N−ν
600
+ n=1 kpn
601
+ k,j − ax,j
602
+ ax,k
603
+
604
+ �N
605
+ n=1 pn
606
+ 0,k
607
+ ����
608
+
609
+ ����
610
+ �N
611
+ n=1 kpn
612
+ 0,j − ax,j
613
+ ax,k pN
614
+ 0,k
615
+ �N
616
+ n=1 pn
617
+ 0,k
618
+ ���� +
619
+ ����
620
+ �N−1
621
+ ν=N−N0+1 pν
622
+ 0,k
623
+ � �N−ν
624
+ n=1 kpn
625
+ k,j − ax,j
626
+ ax,k
627
+
628
+ �N
629
+ n=1 pn
630
+ 0,k
631
+ ����
632
+ +
633
+ ����
634
+ �N−N0
635
+ ν=1
636
+
637
+ 0,k
638
+ � �N−ν
639
+ n=1 kpn
640
+ k,j − ax,j
641
+ ax,k
642
+
643
+ �N
644
+ n=1 pn
645
+ 0,k
646
+ ����
647
+ By (3.5) the third term is less than ε
648
+ 3. By the very definition of B, the numerator
649
+ of the first term is less that 2B and the numerator of the second expression is less
650
+ than BN0. Thus (3.6) and (3.7) complete the proof.
651
+
652
+ Remark 1. Let us consider an interval A ⊆ Z of length q. Let (ξn) be as usually
653
+ the process started at 0, and let τ be the moment of the first visit of (ξn) in A.
654
+ If N is given in Proposition 2. Since N was independent of x ∈ T, a conditional
655
+ argument easily implies
656
+ ����
657
+ P(ξ0 = j|Fτ) + · · · + P(ξn−1 = j|Fτ)
658
+ P(ξ0 = k|Fτ) + · · · + P(ξn−1 = k|Fτ) − ax,j
659
+ ax,k
660
+ ���� < ε
661
+ almost surely on {τ < n − N} for any two states k, j ∈ A.
662
+ Remark 2. Let us now consider certain function ϕ : Z → R with support contained
663
+ in an interval A, as above, and ∥ϕ∥∞ ≤ 1. An easy argument using Remark 1 yields
664
+ ����
665
+ E
666
+
667
+ ϕ(ξ0) + · · · + ϕ(ξn−1)
668
+ ��Fτ
669
+
670
+ E
671
+
672
+ 1A(ξ0) + · · · + 1A(ξn−1)
673
+ ��Fτ
674
+ � −
675
+
676
+ i∈A ϕ(i)ax,i
677
+
678
+ i∈A ax,i
679
+ ���� < ε
680
+ almost surely on {τ < n − N}. It is clear that N can be chosen uniformly over all
681
+ intervals A of fixed length q, x ∈ T and function ϕ as far as ∥ϕ∥∞ ≤ 1.
682
+ 4. Projection of measures
683
+ Put
684
+ ax,k = exp
685
+
686
+ Φ(x) + · · · + Φ(x + (k − 1)α)
687
+ �1 + exp Φ(x + kα)
688
+ 1 + exp Φ(x)
689
+ for k ≥ 1 and ax,0 = 1. Define
690
+ µx,n =
691
+ 1
692
+ Mx,n
693
+ n−1
694
+
695
+ k=0
696
+ ax,kδx+kα
697
+
698
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
699
+ 9
700
+ for x ∈ T and n ≥ 1, where Mx,n is the normalizing constant,
701
+ Mx,n =
702
+ n−1
703
+
704
+ k=0
705
+ ax,k.
706
+ Lemma 4. If x ∈ T, k1, k2 ∈ N, then
707
+ ax,k1+k2 = ax,k1 · ax+k1α,k2
708
+ and
709
+ µx,k1+k2 =
710
+ Mx,k1
711
+ Mx,k1+k2
712
+ µx,k1 + ax,k1
713
+ Mx+k1α,k2
714
+ Mx,k1+k2
715
+ µx+k1α,k2.
716
+ The proof is straightforward.
717
+ Lemma 5. For every ε > 0 there exists N such that if q ≥ N is the closest return
718
+ time then (1 − ε)ay,n ≤ ax,n ≤ (1 + ε)ay,n for every natural n ≤ q and x, y ∈ T
719
+ with |x − y| < 2
720
+ q .
721
+ Proof. Take δ > 0. We can find n0 so large that
722
+ (4.1)
723
+ 1
724
+ n
725
+
726
+ f ′�
727
+ x
728
+
729
+ + · · · + f ′�
730
+ x + (n − 1)α
731
+ ��
732
+ < δ
733
+ for n ≥ n0 and every x ∈ T.
734
+ Indeed, this is the consequence of the Birkhoff ergodic theorem applied to the
735
+ rotation by angle α and the Lebesgue measure (uniform convergence in x follows
736
+ from unique ergodicity and continuity of f ′, see e.g. Proposition 4.1.13 in [KH95]).
737
+ Let q ≥ n0 be so large that
738
+ (4.2)
739
+ 1
740
+ q
741
+
742
+ f ′�
743
+ x
744
+
745
+ + · · · + f ′�
746
+ x + jα
747
+ ��
748
+ < δ
749
+ for j ≤ n0 and every x ∈ T.
750
+ Finally, by uniform continuity, let us assume q to be so large that
751
+ (4.3)
752
+ 1 − δ ≤ 1 + exp f(x)
753
+ 1 + exp f(y) ≤ 1 + δ
754
+ for x, y ∈ T, |x − y| ≤ 2/q.
755
+ Take x, y ∈ T with |x − y| ≤ 2/q, a natural n ≤ q. By the mean value theorem
756
+ there exists z in the shorter arc joining x and y such that
757
+ ax,n
758
+ ay,n
759
+ = exp
760
+ ��
761
+ f ′(z) + · · · + f ′(z + (n − 1)α)
762
+
763
+ |x − y|
764
+
765
+ ×1 + exp f(x)
766
+ 1 + exp f(y) · 1 + exp f(x + (n + 1)α)
767
+ 1 + exp f(y + (n + 1)α).
768
+ If n ≥ n0 then apply (4.1) and the fact that |x − y| ≤ 2/q to get
769
+
770
+ f ′(z)+· · ·+f ′(z +(n−1)α)
771
+
772
+ |x−y| ≤ 1
773
+ n
774
+
775
+ f ′�
776
+ x
777
+
778
+ +· · ·+f ′�
779
+ x+(n−1)α
780
+ ��
781
+ · n
782
+ q ≤ 2δ,
783
+ as n ≤ q. This combined with (4.3) yields
784
+ e−2δ(1 − δ)2 ≤ ax,n
785
+ ay,n
786
+ ≤ e2δ(1 + δ)2.
787
+ Using (4.2) and (4.3) we can deduce similar statement in the case n < n0. If δ → 0
788
+ then the values on the left and right above tend to 1, thus the assertion follows.
789
+
790
+
791
+ 10
792
+ KLAUDIUSZ CZUDEK
793
+ Proposition 3. Let ϕ ∈ C(T). For every ε > 0 there exists N such that if q ≥ N
794
+ is a closest return time then����
795
+
796
+ T
797
+ ϕdµx,q −
798
+
799
+ T
800
+ ϕdµy,q
801
+ ���� < ε
802
+ for every x, y ∈ T.
803
+ Proof. Take η > 0 and ϕ ∈ C(T). Choose δ > 0 small (to be determined), and let
804
+ q be the closes return time such that Lemma 5 is satisfied with ε replaced by δ. As
805
+ a consequence
806
+ (4.4)
807
+ 1 − δ < az1,n
808
+ az2,n
809
+ < 1 + δ
810
+ and
811
+ 1 − δ < Mz1,n
812
+ Mz2,n
813
+ < 1 + δ
814
+ for n ≤ q and z1, z2 ∈ T with |z1 − z2| < 2/q. Further, using Lemma ?? we easily
815
+ see az,qn → 1 uniformly in z, when (qn) is the sequence of closest return times.
816
+ Thus q can be chosen so large that 1 − δ ≤ az,q ≤ 1 + δ for all z ∈ T. Using the
817
+ first assertion in Lemma 4 it implies
818
+ (4.5)
819
+ 1 − δ ≤ az,naz+nα,n−q ≤ 1 + δ
820
+ for n < q and z ∈ T.
821
+ The last thing we want to assume on q it is so large that
822
+ (4.6)
823
+ sup
824
+ z∈T
825
+ sup
826
+ |h|≤ 2
827
+ q
828
+ |ϕ(z + h) − ϕ(z)| < δ.
829
+ Let us take x, y ∈ T. Denote xj = x + jα, yj = y + jα, j ∈ [0, q]. Let t be
830
+ the smallest natural number with d(xt, y) ≤ 1
831
+ q . Since rotation is an isometry we
832
+ immediately see d(xt+j, yj) < 1
833
+ q for j = 0, 1, · · · q − t. In particular d(xq, yq−t) < 1
834
+ q ,
835
+ hence d(yq−t, x) ≤ d(yq−t, xq) + d(xq, x) < 1/q + 1/q = 2/q and, since the rotation
836
+ is isometry, d(yq−t+j, xj) < 2
837
+ q for j = 0, · · · , t.
838
+ The measure µx,q is an atomic measure with atoms at the points x, x+α, . . . , x+
839
+ (q −1)α. The idea is to represent µx,q as a convex combination of measures concen-
840
+ trated on two disjoint subsets {x, x+α, . . . , x+(t−1)α} and {x+tα, . . . , x+(q−1)α}
841
+ and, similarly, represent µy,q and a convex combinations of measures concentrated
842
+ on two disjoint subsets {y, y +α, . . ., y +(q −t−1)α} and {y +(q −t)α, . . . , y +qα}.
843
+ Namely, it is easy to check using Lemma 4 that
844
+ µx,q = Mx,t
845
+ Mx,q
846
+ µx,t + ax,t
847
+ Mxt,q−t
848
+ Mx,q
849
+ µxt,q−t
850
+ and
851
+ µy,q = My,q−t
852
+ My,q
853
+ µy,q−t + ay,q−t
854
+ Myq−t,t
855
+ My,q
856
+ µyq−t,t.
857
+ Since d(xt, y) ≤ 1/q, in view of (4.4) we expect the second measure in the decom-
858
+ position of µx,q to be close to the first measure in decomposition of µy,q. Similar
859
+ reasoning applies to two remaining terms since d(yq−t, x) < 2/q. We have
860
+ ����
861
+
862
+ T
863
+ ϕdµx,q −
864
+
865
+ T
866
+ ϕdµy,q
867
+ ���� ≤
868
+ ����
869
+ Mx,t
870
+ Mx,q
871
+
872
+ T
873
+ ϕdµx,t − ay,q−t
874
+ Myq−t,t
875
+ My,q
876
+
877
+ T
878
+ ϕdµyq−t,t
879
+ ����
880
+ (4.7)
881
+ +
882
+ ����ax,t
883
+ Mxt,q−t
884
+ Mx,q
885
+
886
+ T
887
+ ϕdµxt,q−t − My,q−t
888
+ My,q
889
+
890
+ T
891
+ ϕdµy,q−t
892
+ ����.
893
+
894
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
895
+ 11
896
+ Let us now focus on the second term on the right hand side. The analysis of the
897
+ first term proceeds analogously. We have
898
+ ����ax,t
899
+ Mxt,q−t
900
+ Mx,q
901
+
902
+ T
903
+ ϕdµxt,q−t − My,q−t
904
+ My,q
905
+
906
+ T
907
+ ϕdµy,q−t
908
+ ����
909
+ (4.8)
910
+
911
+ ����ax,t
912
+ Mxt,q−t
913
+ Mx,q
914
+ − My,q−t
915
+ My,q
916
+ ����
917
+
918
+ T
919
+ |ϕ|dµxt,q−t
920
+ +My,q−t
921
+ My,q
922
+ ����
923
+
924
+ T
925
+ ϕdµxt,q−t −
926
+
927
+ T
928
+ ϕdµy,q−t
929
+ ����.
930
+ We are going to show the first term in (4.8) is bounded by ∥ϕ∥∞η and the second
931
+ by δ + ∥ϕ∥∞η. Since exactly the same estimates can be derived for the first term
932
+ on the right-hand side of (4.7), it will give
933
+ ����
934
+
935
+ T
936
+ ϕdµx,q −
937
+
938
+ T
939
+ ϕdµy,q
940
+ ���� ≤ 2δ + 4∥ϕ∥∞η
941
+ and will complete the proof. Thus what remains to do is to find the desired bounds
942
+ on the right-hand side of (4.8).
943
+ A. Analysis of the first term on the right-hand side of (4.8)
944
+ We have
945
+ (4.9)
946
+ ����ax,t
947
+ Mxt,q−t
948
+ Mx,q
949
+ − My,q−t
950
+ My,q
951
+ ���� = My,q−t
952
+ My,q
953
+ ����ax,t · My,q
954
+ Mx,q
955
+ · Mxt,q−t
956
+ My,q−t
957
+ − 1
958
+ ����.
959
+ Since d(y, xt) < 1/q ≤ 2/q we can apply (4.4) to get that 1 − δ ≤ Mxt,q−t
960
+ My,q−t ≤ 1 + δ.
961
+ Further, d(yq−t, x) ≤ 2/q, thus Lemma 4 and (4.4) give
962
+ My,q = My,q−t + ay,q−tMyq−t,t ≤ (1 + δ)Mxt,q−t + (1 + δ)2axt,q−tMx,t.
963
+ From (4.5) we have axt,q−t ≤ 1+δ
964
+ ax,t . Finally
965
+ My,q ≤ (1 + δ)Mxt,q−t + (1 + δ)2axt,q−tMx,t ≤ (1 + δ)Mxt,q−t + (1 + δ)3
966
+ ax,t
967
+ Mx,t
968
+ ≤ (1 + δ)3
969
+
970
+ Mxt,q−t +
971
+ 1
972
+ ax,t
973
+ Mx,t
974
+
975
+ = (1 + δ)3
976
+ ax,t
977
+
978
+ ax,tMxt,q−t + Mx,t
979
+
980
+ = (1 + δ)3 Mx,q
981
+ ax,t
982
+ .
983
+ So far we used only the bounds from above in (4.4 ) and (4.5 ). Applying the same
984
+ reasoning with estimates from below we see that
985
+ My,q ≥ (1 − δ)3 Mx,q
986
+ ax,t
987
+ .
988
+ Going back to (4.9) we have
989
+ (1 − δ)4 ≤ ax,t · My,q
990
+ Mx,q
991
+ · Mxt,q−t
992
+ My,q−t
993
+ ≤ (1 + δ)4.
994
+ Take η > 0. If δ was chosen sufficiently small then
995
+ ����ax,t · My,q
996
+ Mx,q
997
+ · Mxt,q−t
998
+ My,q−t
999
+ − 1
1000
+ ���� < η.
1001
+
1002
+ 12
1003
+ KLAUDIUSZ CZUDEK
1004
+ Since My,q−t
1005
+ My,q
1006
+ ≤ 1 it leads to the estimate
1007
+ ����ax,t
1008
+ Mxt,q−t
1009
+ Mx,q
1010
+ − My,q−t
1011
+ My,q
1012
+ ���� < η.
1013
+ Thus the first term on the right-hand side of (4.8) is bounded by η∥ϕ∥∞.
1014
+ B. Analysis of the second term on the right-hand side of (4.8)
1015
+ To deal with the second expression we have clearly My,q−t
1016
+ My,q
1017
+ ≤ 1 and
1018
+ ����
1019
+
1020
+ T
1021
+ ϕdµxt,q−t −
1022
+
1023
+ T
1024
+ ϕdµy,q−t
1025
+ ���� =
1026
+ ����
1027
+ q−t−1
1028
+
1029
+ k=0
1030
+ axt,k
1031
+ Mxt,q−t
1032
+ ϕ(xt +kα)−
1033
+ q−t−1
1034
+
1035
+ k=0
1036
+ ay,k
1037
+ My,q−t
1038
+ ϕ(y+kα)
1039
+ ����
1040
+
1041
+ ����
1042
+ q−t−1
1043
+
1044
+ k=0
1045
+ axt,k
1046
+ Mxt,q−t
1047
+ ϕ(xt + kα) −
1048
+ q−t−1
1049
+
1050
+ k=0
1051
+ ay,k
1052
+ My,q−t
1053
+ ϕ(xt + kα)
1054
+ ����
1055
+ +
1056
+ ����
1057
+ q−t−1
1058
+
1059
+ k=0
1060
+ ay,k
1061
+ My,q−t
1062
+ ϕ(xt + kα) −
1063
+ q−t−1
1064
+
1065
+ k=0
1066
+ ay,k
1067
+ My,q−t
1068
+ ϕ(y + kα)
1069
+ ����
1070
+
1071
+ q−t−1
1072
+
1073
+ k=0
1074
+ axt,k
1075
+ Mxt,q−t
1076
+ ��ϕ(xt + kα)
1077
+ ��
1078
+ ����1 − ay,k
1079
+ axt,k
1080
+ · Mxt,q−t
1081
+ My,q−t
1082
+ ����
1083
+ +
1084
+ q−t−1
1085
+
1086
+ k=0
1087
+ ay,k
1088
+ My,q−t
1089
+ ��ϕ(xt + kα) − ϕ(y + kα)
1090
+ ��.
1091
+ Since d(xt, y) < 1/q, (4.4) yields
1092
+ (1 − δ)2 ≤ ay,k
1093
+ axt,k
1094
+ · Mxt,q−t
1095
+ My,q−t
1096
+ ≤ (1 + δ)2,
1097
+ thus
1098
+ ����1 − ay,k
1099
+ axt,k
1100
+ · Mxt,q−t
1101
+ My,q−t
1102
+ ���� < η
1103
+ if δ is sufficiently small. This leads us to the estimate
1104
+ q−t−1
1105
+
1106
+ k=0
1107
+ axt,k
1108
+ Mxt,q−t
1109
+ ��ϕ(xt + kα)
1110
+ ��
1111
+ ����1 − ay,k
1112
+ axt,k
1113
+ · Mxt,q−t
1114
+ My,q−t
1115
+ ���� ≤ ∥ϕ∥η.
1116
+ Clearly,
1117
+ q−t−1
1118
+
1119
+ k=0
1120
+ ay,k
1121
+ My,q−t
1122
+ ��ϕ(xt + kα) − ϕ(y + kα)
1123
+ �� ≤ δ
1124
+ by (4.6), which completes the proof.
1125
+
1126
+
1127
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
1128
+ 13
1129
+ 5. Proof of Theorem 1
1130
+ We shall use the following criterion for the uniqueness of the stationary distri-
1131
+ bution.
1132
+ If for every ε > 0 and nonnegative ϕ ∈ C(T) with 1/2 < ∥ϕ∥∞ < 1 there exist
1133
+ β ∈ R and N > 0 such that
1134
+ ����
1135
+ ϕ(x) + · · · + P n−1ϕ(x)
1136
+ n
1137
+ − β
1138
+ ���� < ε
1139
+ for every x ∈ T and n ≥ N, then there exists exactly one stationary distribution.
1140
+ Let us take ε > 0 and ϕ ∈ C(T) as stated in the criterion. Let y ∈ T be arbitrary,
1141
+ and let β =
1142
+
1143
+ T ϕdµy,q, where q is chosen so large that Proposition 3 holds with ε
1144
+ replaced by ε/3.
1145
+ Take x ∈ T. Set Ak = [kq, (k + 1)q), k ∈ Z, and define
1146
+ ϕk(j) = 1Ak(j) · ϕ(x + jα),
1147
+ ϕk : Z → R, k ∈ Z.
1148
+ Observe that
1149
+
1150
+ i∈Ak ϕk(i)ax,i
1151
+
1152
+ i∈Ak ax,i
1153
+ =
1154
+
1155
+ T
1156
+ ϕdµx+kα,q
1157
+ for every k, thus Proposition 3 gives
1158
+ (5.1)
1159
+ ����
1160
+
1161
+ i∈Ak ϕk(i)ax,i
1162
+
1163
+ i∈Ak ax,i
1164
+ − β
1165
+ ���� < ε
1166
+ 3,
1167
+ for an arbitrary k ∈ Z. For k ∈ Z denote by τk the moment of the first visit of (ξn)
1168
+ in Ak. Fix n sufficiently large and set Γ ⊆ Z to be the set of k’s such that Ak is
1169
+ visited with positive probability till n. Apply Proposition 2 and Remark 2 to get a
1170
+ number N such that
1171
+ (5.2)
1172
+ ����
1173
+ E
1174
+
1175
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1176
+ ��Fτk
1177
+
1178
+ E
1179
+
1180
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1181
+ ��Fτk
1182
+ � − β
1183
+ ���� < ε
1184
+ a.s. on {τk < n − N}.
1185
+ Let (Xn) be the process with transition kernel (1.1) started at x ∈ T. We have
1186
+ (5.3)
1187
+ |E
1188
+
1189
+ ϕ(X0) + · · · + ϕ(Xn)
1190
+
1191
+ − βn|
1192
+ =
1193
+ ����E
1194
+ � �
1195
+ k∈Γ
1196
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1197
+
1198
+ − βE
1199
+ � �
1200
+ k∈Γ
1201
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1202
+ �����
1203
+
1204
+
1205
+ k∈Γ
1206
+ E
1207
+ ����E
1208
+
1209
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1210
+ ��Fτk
1211
+
1212
+ − βE
1213
+
1214
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1215
+ ��Fτk
1216
+ �����
1217
+ =
1218
+
1219
+ k∈Γ
1220
+ E
1221
+
1222
+ E
1223
+
1224
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1225
+ ��Fτk
1226
+
1227
+ ·
1228
+ ����
1229
+ E
1230
+
1231
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1232
+ ��Fτk
1233
+
1234
+ E
1235
+
1236
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1237
+ ��Fτk
1238
+ � − β
1239
+ ����
1240
+
1241
+ .
1242
+ Let us fix k ∈ Γ and split the expectation above as follows.
1243
+ E
1244
+
1245
+ E
1246
+
1247
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1248
+ ��Fτk
1249
+
1250
+ ·
1251
+ ����
1252
+ E
1253
+
1254
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1255
+ ��Fτk
1256
+
1257
+ E
1258
+
1259
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1260
+ ��Fτk
1261
+ � − β
1262
+ ����
1263
+
1264
+
1265
+ 14
1266
+ KLAUDIUSZ CZUDEK
1267
+ = E1{τk<n−N}
1268
+
1269
+ E
1270
+
1271
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1272
+ ��Fτk
1273
+
1274
+ ·
1275
+ ����
1276
+ E
1277
+
1278
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1279
+ ��Fτk
1280
+
1281
+ E
1282
+
1283
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1284
+ ��Fτk
1285
+ � − β
1286
+ ����
1287
+
1288
+ +E1{τk≥n−N}
1289
+
1290
+ E
1291
+
1292
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1293
+ ��Fτk
1294
+
1295
+ ·
1296
+ ����
1297
+ E
1298
+
1299
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1300
+ ��Fτk
1301
+
1302
+ E
1303
+
1304
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1305
+ ��Fτk
1306
+ � − β
1307
+ ����
1308
+
1309
+ By (5.2) the first expectation does not exceed
1310
+ εE1{τk<n−N}E
1311
+
1312
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1313
+ ��Fτk
1314
+
1315
+ (5.4)
1316
+ ≤ εEE
1317
+
1318
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1319
+ ��Fτk
1320
+
1321
+ = εE
1322
+
1323
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1324
+
1325
+ .
1326
+ To deal with the second expectation we use the fact that ∥ϕk∥∞ ≤ 1 and the
1327
+ support of ϕk is contained in Ak. These facts combined imply easily
1328
+ E
1329
+
1330
+ ϕk(ξ0) + · · · + ϕk(ξn−1)
1331
+ ��Fτk
1332
+
1333
+ ≤ E
1334
+
1335
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1336
+ ��Fτk
1337
+
1338
+ for every n and k ∈ Γ. Furthermore,
1339
+ E
1340
+
1341
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1342
+ ��Fτk
1343
+
1344
+ ≤ N
1345
+ almost surely on {τk ≥ n − N}. Summarizing we get the second expectation does
1346
+ not exceed
1347
+ (5.5) P(τk ≥ n − N) · N · (1 + β) ≤ N(1 + β)P
1348
+
1349
+ {ξn−N ∈ Ak} ∪ · · · ∪ {ξn−1 ∈ Ak}
1350
+
1351
+ .
1352
+ We can combine now (5.4), (5.5) and (5.3) to get
1353
+ ����
1354
+ E
1355
+
1356
+ ϕ(X0) + · · · + ϕ(Xn−1)
1357
+
1358
+ n
1359
+ − β
1360
+ ����
1361
+ ≤ 1
1362
+ n
1363
+
1364
+ k∈Γ
1365
+ εE
1366
+
1367
+ 1Ak(ξ0) + · · · + 1Ak(ξn−1)
1368
+ + 1
1369
+ n
1370
+
1371
+ k∈Γ
1372
+ N(1 + β)P
1373
+
1374
+ {ξn−N ∈ Ak} ∪ · · · ∪ {ξn−1 ∈ Ak}
1375
+
1376
+ ≤ 1
1377
+ n · ε · n + 1
1378
+ nN(1 + β)N.
1379
+ This is less than 2ε if n is sufficiently large.
1380
+ 6. Final remarks
1381
+ (1) Theorem 1 is less general than the result of Conze, Guivarc’h. It was proven
1382
+ that the assumption there is optimal by Br´emont [Bre99].
1383
+ (2) One can replace the investigated system (random circle rotation) by higher
1384
+ dimensional analog, namely toral rotation, and ask the same question again
1385
+ about the uniqueness of stationary distribution. Sinai [Sin99] considered it
1386
+ on the same footing with circle rotations, which means that Sinai’s result
1387
+ holds also there with the correct definition of Diophantine vector α. Conze,
1388
+ Guivarc’h [CG00] ideas cannot be generalized to that case. Moreover, it
1389
+ has been proven by Nicolas Chevallier [Che04] that given Diophantine α ∈
1390
+ Rd there exists a Lipschitz p on Td for which one can find two different
1391
+ stationary distributions.
1392
+
1393
+ UNIQUE ERGODICITY OF SIMPLE SYMMETRIC...
1394
+ 15
1395
+ When we try to generalize the proof of present paper to higher dimen-
1396
+ sional tori an obstacle is revealed just on the very beginning in the part
1397
+ devoted to recurrence. Indeed, one can define a martingale as in the proof
1398
+ of Proposition 1 on state that recurrence is equivalent to M(n) → ∞ when
1399
+ n → ∞ and M(n) → −∞ when n → −∞. In one-dimensional setting it
1400
+ was the consequence of symmetry and Denjoy-Koksma inequality applied
1401
+ to f(x) = ln p(x)−ln q(x). The question therefore is if a higher dimensional
1402
+ analog of Denjoy-Koksma inequality holds. A counterexample (with ana-
1403
+ lytic observable!) was given by J.-C. Yoccoz in his paper [Yoc95], Appendix
1404
+ 1. In my opinion it suggests a conjecture that for any d ≥ 2 there exits
1405
+ α ∈ Rd and analytic p such that the corresponding system has at least two
1406
+ different stationary measures.
1407
+ (3) In [DFS21] the authors asked about mixing (or stability) of investigated
1408
+ system. The reasoning of Conze, Guivarc’h doesn’t give any hopes to obtain
1409
+ this stronger property. However, in our paper one can replace Doeblin ratio
1410
+ limit theorem by strong ratio limit property (see [Ore61]) saying
1411
+ ����
1412
+ P(ξ2n = j)
1413
+ P(ξ2n = k) − ax,j
1414
+ ax,k
1415
+ ���� → 0
1416
+ as n → ∞ provided j, k are both even (the same should be true with odd
1417
+ states and epochs). Analogs of Proposition 2 and 3 are still valid. However,
1418
+ the estimates from Section 5. get much more troublesome and delicate, and
1419
+ require much more work than I expected.
1420
+ (4) A similar system was investigated in a sequence of papers by Dolgopyat
1421
+ and Goldsheid, see [Gol08], [DG13], [DG18], [DG19], [DG20], [DG21].
1422
+ (5) One can replace the circle rotation by any automorphisms of any space and
1423
+ ask about the properties of this system. A general nonsymmetric system
1424
+ with ergodic authomorphims where considered in [KS00b]. In [KS00a] the
1425
+ authors investigated typical behavior for Anosov diffeomorphisms.
1426
+ References
1427
+ [Bre99]
1428
+ J. Bremont. Comportement des sommes ergodiqtles pour les rotations et des fonctions
1429
+ peu r´eguli`eres. Publications des S´eminaires de Rennes, 1999.
1430
+ [CG00]
1431
+ Jean-Pierre Conze and Yves Guivarc’h. Marches en milieu al´eatoire et mesures quasi-
1432
+ invariants pour un syst`eme dynamique. volume 84/85, pages 457–480. 2000. Dedicated
1433
+ to the memory of Anzelm Iwanik.
1434
+ [Che04]
1435
+ Nicolas Chevallier. Mesures quasi-invariantes sur le tore Td. J. Anal. Math., 92:371–383,
1436
+ 2004.
1437
+ [Chu50] K. L. Chung. An ergodic theorem for stationary markov chains with a countable number
1438
+ of states. volume Vol. 1, page p. 568. 1950.
1439
+ [Chu60] Kai Lai Chung. Markov chains with stationary transition probabilities. Die Grundlehren
1440
+ der mathematischen Wissenschaften, Band 104. Springer-Verlag, Berlin-G¨ottingen-
1441
+ Heidelberg, 1960.
1442
+ [DFS21] D. Dolgopyat, B. Fayad, and M. Saprykina. Erratic behavior for 1-dimensional random
1443
+ walks in a Liouville quasi-periodic environment. Electron. J. Probab., 26, 2021.
1444
+ [DG13]
1445
+ D. Dolgopyat and I. Goldsheid. Limit theorems for random walks on a strip in subdiffusive
1446
+ regimes. Nonlinearity, 26(6):1743–1782, 2013.
1447
+ [DG18]
1448
+ D. Dolgopyat and I. Goldsheid. Central limit theorem for recurrent random walks on a
1449
+ strip with bounded potential. Nonlinearity, 31(7):3381–3412, 2018.
1450
+ [DG19]
1451
+ D. Dolgopyat and I. Goldsheid. Invariant measure for random walks on ergodic environ-
1452
+ ments on a strip. Ann. Probab., 47(4):2494–2528, 2019.
1453
+
1454
+ 16
1455
+ KLAUDIUSZ CZUDEK
1456
+ [DG20]
1457
+ D. Dolgopyat and I. Goldsheid. Local limit theorems for random walks in a random
1458
+ environment on a strip. Pure Appl. Funct. Anal., 5(6):1297–1318, 2020.
1459
+ [DG21]
1460
+ D. Dolgopyat and I. Goldsheid. Constructive approach to limit theorems for recurrent
1461
+ diffusive random walks on a strip. Asymptot. Anal., 122(3-4):271–325, 2021.
1462
+ [Doe38] W. Doeblin. Sur deux problemes de m.kolmogoroff concernant les chaines denombrables.
1463
+ Bulletin de la S. M. F., 66:210–220, 1938.
1464
+ [Gol08]
1465
+ Ilya Ya. Goldsheid. Linear and sub-linear growth and the CLT for hitting times of a
1466
+ random walk in random environment on a strip. Probab. Theory Related Fields, 141(3-
1467
+ 4):471–511, 2008.
1468
+ [Her79]
1469
+ Michael-Robert Herman. Sur la conjugaison diff´erentiable des diff´eomorphismes du cercle
1470
+ `a des rotations. Inst. Hautes ´Etudes Sci. Publ. Math., (49):5–233, 1979.
1471
+ [KH95]
1472
+ A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems,
1473
+ volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University
1474
+ Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Men-
1475
+ doza.
1476
+ [KS00a] V. Yu. Kaloshin and Ya. G. Sinai. Nonsymmetric simple random walks along orbits of
1477
+ ergodic automorphisms. In On Dobrushin’s way. From probability theory to statistical
1478
+ physics, volume 198 of Amer. Math. Soc. Transl. Ser. 2, pages 109–115. Amer. Math.
1479
+ Soc., Providence, RI, 2000.
1480
+ [KS00b] V. Yu. Kaloshin and Ya. G. Sinai. Simple random walks along orbits of Anosov diffeo-
1481
+ morphisms. Tr. Mat. Inst. Steklova, 228(Probl. Sovrem. Mat. Fiz.):236–245, 2000.
1482
+ [Ore61]
1483
+ Steven Orey. Strong ratio limit property. Bull. Amer. Math. Soc., 67:571–574, 1961.
1484
+ [Sin79]
1485
+ R. Sine. On invariant probabilities for random rotations. Israel J. Math., 33(3-4):384–388
1486
+ (1980), 1979. A collection of invited papers on ergodic theory.
1487
+ [Sin99]
1488
+ Y. Sinai. Simple Random Walks on Tori. Journal of Statistical Physics, 94(3-4):695–708,
1489
+ 1999.
1490
+ [Yoc95]
1491
+ Jean-Christophe
1492
+ Yoccoz.
1493
+ Centralisateurs
1494
+ et
1495
+ conjugaison
1496
+ diff´erentiable
1497
+ des
1498
+ diff´eomorphismes du cercle. Number 231, pages 89–242. 1995. Petits diviseurs en
1499
+ dimension 1.
1500
+ Klaudiusz Czudek, Nicolaus Copernicus University, Chopin Street 12/18, 87-100 Toru´n,
1501
+ Poland
1502
+ Email address: [email protected]
1503
+
CtAzT4oBgHgl3EQfiP1R/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtAzT4oBgHgl3EQfwf4q/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e49ebe8af0a1a29022e2dd3100855b4167727936d4447acdf8c8119f0dc5a3e0
3
+ size 30867501
CtE4T4oBgHgl3EQf5w5z/content/2301.05326v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f14175abdc27e75825b968d0cc7fe7ed94d5091711198a79019d7c1aa415b475
3
+ size 616512
CtE4T4oBgHgl3EQf5w5z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c4b24c379bdf90afb827dcf9ee2b4e5a2bed052f8e39a2f8f9446f1cf8a622
3
+ size 2293805
DNE2T4oBgHgl3EQfoQhP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c3e27473c437ecf1363bbde290774f761361c94ef02d6f1c7c47afc79ecf931
3
+ size 11927597
ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75c69c8b8176c45512ad69985f8191bab4561f5ad3ba51ccbc0b71670b48e05d
3
+ size 165032
ENAyT4oBgHgl3EQfSPf9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57a95f60d95324d1c1d387d360a3ddace7d629d5bb23965f2add09849167caec
3
+ size 58803
FNFRT4oBgHgl3EQfyzjn/content/2301.13648v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965a7387deb1c3c2304d7e71ece28d892bbce4074d6707313288630fa76c5bf6
3
+ size 5746318
GtAzT4oBgHgl3EQfUvxQ/content/2301.01271v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899e620ee63d6130f4fb127f4964d49f26e17400dc1bf9dd3164b8c6c58a0970
3
+ size 364505
GtAzT4oBgHgl3EQfUvxQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c0e319e7f3ffd7a75415c8edbe7a26a30837b1110888c24845ed689873478b9
3
+ size 184426
GtFAT4oBgHgl3EQftR52/content/tmp_files/2301.08663v1.pdf.txt ADDED
@@ -0,0 +1,1113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08663v1 [math.AP] 20 Jan 2023
2
+ Uniqueness of the inverse conductivity problem
3
+ once-differentiable complex conductivities in three dimensions
4
+ Ivan Pombo
5
+ June 2022
6
+ Abstract
7
+ We prove uniqueness of the inverse conductivity problem in three dimensions for complex
8
+ conductivities in W 1,∞.
9
+ We apply quaternionic analysis to transform the inverse problem into an inverse Dirac
10
+ scattering problem, as established in two dimensions by Brown and Uhlmann.
11
+ This is a novel methodology that allows to extend the uniqueness result from once-differentiable
12
+ real conductivities to complex ones.
13
+ 1
14
+ Introduction
15
+ Let γ ∈ W 1,∞(Ω) be the complex-valued conductivity defined in a bounded Lipschitz domain
16
+ Ω ⊂ R3 and given by γ = σ +iωǫ where σ is the electrical conductivity and satisfies σ ≥ c > 0,
17
+ ǫ is the electrical permittivity and ω is the current frequency.
18
+ Given a boundary value f ∈ H1/2(∂Ω) we can determine the respective electrical potential
19
+ u ∈ H1(Ω) by uniquely solving
20
+
21
+ ∇ · (γ∇u) = 0, in Ω,
22
+ u|∂Ω = f.
23
+ (1)
24
+ This is the so-called conductivity equation which describes the behavior of the electrical
25
+ potential, u, in a conductive body when a voltage potential is applied on the boundary, f.
26
+ In 1980, A.P. Calder´on, [11] introduced the problem of whether one can recover uniquely
27
+ a conductivity σ ∈ L∞(Ω) from the boundary measurements, i.e., from the Dirichlet-to-
28
+ Neumann map
29
+ Λσ : H1/2(∂Ω) → H−1/2(∂Ω),
30
+ (2)
31
+ f �→ σ ∂u
32
+ ∂ν
33
+ ����
34
+ ∂Ω
35
+ which connects the voltage and electrical current at the boundary. The normal derivative
36
+ exists as an element of H−1/2(∂Ω) by
37
+ ⟨Λσf, g⟩ =
38
+
39
+
40
+ σ∇u · ∇v dx
41
+ (3)
42
+ where v ∈ H1(Ω) with v|∂Ω = g and u solves (1).
43
+ In the same paper, Calder´on was able to prove that the linearized problem at constant
44
+ real conductivities has a unique solution. Thereafter, many authors extended is work into
45
+ global uniqueness results. Sylvester and Uhlmann [31] used ideas of scattering theory, namely
46
+ the exponential growing solutions of Faddeev [14] to obtain global uniqueness in dimensions
47
+ n ≥ 3 for smooth conductivities.
48
+ Using this foundations the uniqueness for lesser regular
49
+ conductivities was further generalized for dimensions n ≥ 3 in the works of ([1], [7], [8],
50
+ [12], [13], [18], [22], [24], [27]). Currently, the best know result is due to Haberman [17] for
51
+ conductivities γ ∈ W 1,3(Ω). The reconstruction procedure for n ≥ 3 was obtained in both [22]
52
+ and [25] independently. As far as we are aware, there seems to be no literature concerning
53
+ reconstruction for conductivities with less than two derivatives.
54
+ In two dimensions the problem seems to be of a different nature and tools of complex analy-
55
+ sis were used to establish uniqueness. Nachman [23] obtained uniqueness and a reconstruction
56
+ method for conductivities with two derivatives. The uniqueness result was soon extend for
57
+ once-differentiable conductivities in [9] and a corresponding reconstruction method was ob-
58
+ tained in [20]. In 2006, Astala and P¨aiv¨arinta [3] gave a positive answer Calder´on’s problem
59
+ 1
60
+
61
+ for σ ∈ L∞(Ω), σ ≥ c > 0, by providing the uniqueness proof through the reconstruction
62
+ process.
63
+ All of this definitions can be extended to the complex-conductivity case with the assump-
64
+ tion Re γ ≥ c > 0, in particular, we can define the Dirichlet-to-Neumann as above Λγ.
65
+ In this scenario, the first works was done in two-dimensions by Francini [15], by extending
66
+ the work of Brown and Uhlmann [9] in two-dimensions proving uniqueness for small frequencies
67
+ ω and γ ∈ W 2,∞. Afterwards, Bukgheim influential paper [10] proved the general result in
68
+ two-dimensions for complex-conductivities in W 2,∞.
69
+ He reduced the (1) to a Schr¨odinger
70
+ equation and shows uniqueness through the stationary phase method (based on is work many
71
+ extensions followed in two-dimensions [2], [4], [26]).
72
+ Recently, by mixing techniques of [9]
73
+ and [10], Lakshtanov, Tejero and Vainberg obtained [21] uniqueness for Lipschitz complex-
74
+ conductivities in R2. In [28], the author followed up their work to show that it is possible to
75
+ reconstruct complex-conductivity with a jump at least in a certain set of points.
76
+ In three dimensions, the uniqueness results presented in [31] and [24] hold for twice-
77
+ differentiable complex-conductivities in W 2,∞, but there was no reconstruction process pre-
78
+ sented. Nachman’s reconstruction method in three dimensions [22] was used in [19] to re-
79
+ construct complex conductivities from boundary measurements. Even though the Nachman’s
80
+ proof was presented only for real conductivities, the paper [29] structures the proof in order
81
+ to show the result holds for complex-conductivities. As far as we aware, the works with lower
82
+ regularity require real-conductivities.
83
+ In this paper our interest resides in Calder´on’s problem for once-differentiable complex-
84
+ conductivities in three-dimensions. The aim is to prove the following theorem:
85
+ Theorem 1.1. Let Ω ⊂ R3 a bounded Lipschitz domain, γi ∈ W 1,∞(Ω), i = 1, 2 be two
86
+ complex-valued conductivities with Re γi ≥ c > 0.
87
+ If Λγ1 = Λγ2, then γ1 = γ2.
88
+ Our work basis itself on a transformation of (1) into a Dirac system of equation in three-
89
+ dimensions with the help of quaternions. In this scenario, we obtain a potential q that we want
90
+ to determine from boundary data. The main ideas follow the work of Brown and Uhlmann [9]
91
+ for real conductivities in two-dimensions and Lakshtanov, Vainberg and Tejero [21], as well as
92
+ the authors work [28], for complex-conductivities.
93
+ In this paper, we provide a novel reconstruction of the bounded potential q from the
94
+ boundary data, but we are yet to be able to establish a relation between this boundary
95
+ data and the Dirichlet-to-Neumann map. This is essentially to answer Calder´on problem for
96
+ Lipschitz complex conductivities, but the lack of a well-suited Poincar´e lemma that fits the
97
+ quaternion structure does not allow such a simple work as in 2D.
98
+ 2
99
+ Minimalistic lesson of Quaternions
100
+ We present the basis of the quaternionic framework we will use for our work. Let R(2) be the
101
+ real universal Clifford Algebra over R2. By definition, it is generated as an algebra over R by
102
+ the elements {e0, e1, e2}, where e1, e2 is a basis of R2 with eiej + ejei = −2δij, for i, j = 1, 2
103
+ and e0 = 1 is the identity and commutes with the basis elements. This algebra has dimension
104
+ 4 and is identified with the algebra of the quaternions, H. As such it holds e3 = e1e2. In the
105
+ following, we refer to this algebra as the quaternions. An element of the quaternions can be
106
+ written as:
107
+ x = x0 + x1e1 + x2e2 + x3e3,
108
+ (4)
109
+ where xj, j = 0, ..., 3 are real. We define the quaternionic conjugate ¯x of an element x as
110
+ ¯x = x0 − x1e1 − x2e2 − x3e3.
111
+ (5)
112
+ Let x, y ∈ H, we write xy for the resulting quaternionic product. The product ¯xy defines
113
+ a Clifford valued inner product on H. Further, we have xy = ¯y¯x and the conjugate of the
114
+ conjugate of quaternion is that same quaternion. Let x ∈ H then Sc x = x0 denotes the scalar
115
+ of x and Vec x = x − Sc x. The scalar of a Clifford inner product Sc(¯xy) is the usual inner
116
+ product in R4 for x, y identified as vectors.
117
+ With this inner product H is an Hilbert space and the resulting norm is the usual Euclidean
118
+ norm.
119
+ In order to introduce some of the concepts we also extend the real quaternions to complex
120
+ quaternions C2 = C ⊗ H. Here, we use the same generators (e1, e2) as above, with the same
121
+ 2
122
+
123
+ multiplication rules, however, the coefficients of the quaternion can be complex-valued. That
124
+ is, λ ∈ C ⊗ H may be written as
125
+ λ = λ0 + λ1e1 + λ2e2 + λ3e3,
126
+ λj ∈ C, j = 0, ..., 3
127
+ (6)
128
+ or still as
129
+ λ = x + iy,
130
+ x, y ∈ H.
131
+ (7)
132
+ Due to the complexification we can still take another conjugation, to which we define has
133
+ Hermitian conjugation and denote it by ·†. Explicitly, for λ ∈ C ⊗ H one has
134
+ ¯λ† = λc
135
+ 0 − λc
136
+ 1e1 − λc
137
+ 2e2 − λc
138
+ 3e3,
139
+ (8)
140
+ where ·c denotes complex conjugation, or
141
+ ¯λ† = ¯x − i¯y.
142
+ (9)
143
+ Similarly, one can introduce an associated inner product and norm in C ⊗ H by means of
144
+ this conjugation:
145
+ ⟨λ, µ⟩ = Sc
146
+
147
+ ¯λ†µ
148
+
149
+ ;
150
+ |λ|C2 =
151
+
152
+ Sc
153
+ �¯λ†λ
154
+
155
+ .
156
+ (10)
157
+ For ease of notation, we also define for λ ∈ C2 the complex conjugation as
158
+ ¯λc = λc
159
+ 0 + λc
160
+ 1e1 + λc
161
+ 2e2 + λc
162
+ 3e3.
163
+ (11)
164
+ Now, we can also introduce Quaternion-valued functions f : R3 → C2 written as f =
165
+ f0 + f1e1 + f2e2 + f3e3, where fj : R3 → C.
166
+ The Banach spaces Lp, W n,p of C2-valued functions are defines by requiring that each
167
+ component is in such space. On L2(Ω) we introduce the C2-valued inner product
168
+ ⟨f, g⟩ =
169
+
170
+
171
+ ¯f †(x)g(x)dx.
172
+ (12)
173
+ Analogously to the Wirtinger derivatives in complex analysis, we have the Cauchy-Riemann
174
+ operators under (x0, x1, x2) coordinates of R3 defined as
175
+ D = ∂0 + e1∂1 + e2∂2,
176
+ (13)
177
+ where ∂j is the derivative with respect to the xj, j = 0, 1, 2 variable; and
178
+ ¯D = ∂0 − e1∂1 − e2∂2.
179
+ (14)
180
+ The vector part of the Cauchy-Riemann operator is designated as Dirac operator. It holds
181
+ that D ¯D = ∆ where ∆ is the Laplacian.
182
+ We designate any function f fulfilling Df = 0 as a monogenic function, analogous to the
183
+ holomorphic functions in complex analysis.
184
+ 2.1
185
+ A bit of Operator Theory
186
+ Let Ω be a bounded domain and f : Ω → C2. All the results in this subsection were taken out
187
+ from the classical book on quaternionic analysis of G¨urlebeck and Spr¨ossig [16]
188
+ The Cauchy-Riemann operator has a right-inverse in the form
189
+ (T f) (x) = − 1
190
+ ω
191
+
192
+
193
+ y − x
194
+ |y − x|3 f(y) dy, for x ∈ Ω,
195
+ (15)
196
+ where E(x, y) = − 1
197
+ ω
198
+ y−x
199
+ |y−x|3 is the generalized Cauchy kernel and ω = 4π stands for the surface
200
+ area of the unit sphere in R3, that is, DT f = f. This operator acts from W k,p(Ω) to W k+1,p(Ω)
201
+ with 1 < p < ∞ and k ∈ N0.
202
+ Furthermore, we introduce the boundary integral operator for x /∈ ∂Ω
203
+ (F∂Ωf) (x) = 1
204
+ ω
205
+
206
+ ∂Ω
207
+ y − x
208
+ |y − x|3 α(y)f(y) dS(y),
209
+ (16)
210
+ where α(y) is the outward pointing normal unit vector to ∂Ω at y. We get the well-known
211
+ Borel-Pompeiu formula
212
+ (F∂Ωf) (x) + (T Df) (x) = f(x) for x ∈ Ω.
213
+ Obviously, DF∂Ω = 0 holds through this formula it it holds that F∂Ω acts from W k− 1
214
+ p ,p(∂Ω)
215
+ into W k,p(Ω), for k ∈ N and 1 < p < ∞.
216
+ One of the other well-known results we will need for our work is the Plemelj-Sokhotzki
217
+ formula is obtaining by taking the trace of the boundary integral operator.
218
+ First we introduce an operator over the boundary of Ω.
219
+ 3
220
+
221
+ Proposition 2.1. If f ∈ W k,p(∂Ω), then there exists the integral
222
+ (S∂Ωf) = 1
223
+
224
+
225
+ ∂Ω
226
+ y − x
227
+ |y − x|3 α(y)f(y) dS(y)
228
+ (17)
229
+ for all points x ∈ Ω in the sense of Cauchy principal value.
230
+ Furthermore, the operator S∂Ω is continuous in W k,p(∂Ω), for 1 < p < ∞, k ∈ N.
231
+ From this the Plemelj-Sokhotzki formula is given as:
232
+ Theorem 2.2. Let f ∈ W k,p(∂Ω) where by taking the non-tangential limit we have:
233
+ lim
234
+ x→x0,
235
+ x∈Ω, x0∈∂Ω
236
+ (F∂Ωf) (x) = 1
237
+ 2 (f(x0) + (S∂Ωf) (x0)) .
238
+ One of the corollaries concerns the limit to the boundary acting as a projector. That is,
239
+ Corollary 2.3. The operator P∂Ω denoting the projection onto the space of all H−valued
240
+ functions which may be monogenicaly extended into the domain Ω.
241
+ Then, this projection may be represented as
242
+ P∂Ω = 1
243
+ 2 (I + S∂Ω) .
244
+ The proofs of this results and others to follow in our proofs may be found in [16].
245
+ Now we are ready to start constructing our work on the inverse conductivity problem.
246
+ 3
247
+ Inverse Dirac scattering problem
248
+ Transforming our conductivity equation into another type of equation also changes the in-
249
+ verse problem we are concerned. We transform it into a system of equations based on the
250
+ Cauchy-Riemann operator D (also called Dirac operator in some contexts) and thus we need
251
+ to solve the inverse Dirac scattering problem first and only afterwards we care about the
252
+ inverse conductivity problem.
253
+ Let u be a solution to (1) for some boundary function. We define
254
+ φ = γ1/2 � ¯Du, Du
255
+ �T ,
256
+ remark that γ1/2 is well-defined since it is contained in C+. Then, φ solves the system
257
+
258
+ Dφ1
259
+ = φ2q1,
260
+ ¯Dφ2
261
+ = φ1q2,
262
+ in R3.
263
+ (18)
264
+ where q1 = − 1
265
+ 2
266
+ ¯
267
+
268
+ γ
269
+ and q2 = − 1
270
+ 2
271
+
272
+ γ .
273
+ This transformation arises as follows:
274
+ Dφ1 = D
275
+
276
+ γ1/2 ¯Du
277
+
278
+ = Dγ1/2 ¯Du + γ1/2∆u
279
+ = Dγ1/2 ¯Du − γ−1/2∇γ · ∇u
280
+ = Dγ1/2 ¯Du − 1
281
+ 2γ−1/2 �
282
+ Dγ ¯Du + Du ¯Dγ
283
+
284
+ = −1
285
+ 2
286
+
287
+ γ1/2Du
288
+ � ¯Dγ
289
+ γ
290
+ = φ2q1
291
+ Carefully, we can extend our potential to the outside by setting γ ≡ 1 outside of Ω, which
292
+ lead us to treat the study the equation in R3.
293
+ 3.1
294
+ Exponentially Growing Solutions
295
+ We devise new exponentially growing solutions from the classical ones used in three dimensions.
296
+ In most literature works, the exponential behavior is defined through the function ex·ζ, with
297
+ ζ ∈ C3 fulfilling ζ · ζ = 0. However, in our scenario this function does not fulfill Deix·ζ = 0,
298
+ which brings the simplicity in all of the literature works.
299
+ Since we know that it is harmonic we can generate a monogenic function through it. Let
300
+ ζ ∈ C3 such that ζ · ζ := ζ2
301
+ 0 + ζ2
302
+ 1 + ζ2
303
+ 2 = 0, then it holds
304
+ ∆ex·ζ = 0 ⇔ D
305
+
306
+ ¯Dex·ζ�
307
+ = 0 ≡ D
308
+
309
+ ex·ζ ¯ζ
310
+
311
+ 4
312
+
313
+ where now ζ is also defined as a quaternion through ζ = ζ0 + e1ζ1 + e2ζ2 ∈ C2. Thus
314
+ the function E(x, ζ) = ex·ζ ¯ζ is monogenic. This also arises from the choice of ζ, since ζ ¯ζ =
315
+ ζ2
316
+ 0 + ζ2
317
+ 1 + ζ2
318
+ 2 = 0.
319
+ We make a clear statement of when ζ is a complex-quaternion or complex-a vector, but
320
+ in most cases it is clear from context: it is a vector if it is in the exponent and a quaternion
321
+ otherwise.
322
+ We assume the following asymptotic behaviour for φ:
323
+ φ1 = ex·ζ ¯ζµ1,
324
+ (19)
325
+ φ2 = ex·¯ζc ¯ζcµ2
326
+ (20)
327
+ Setting ˜µ1 = ¯ζµ1 and ˜µ2 = ¯ζcµ2 we have the equations:
328
+
329
+ D˜µ1
330
+ = e−x·(ζ− ¯ζc)˜µ2q1
331
+ ¯D˜µ2
332
+ = ex·(ζ− ¯ζc)˜µ1q2
333
+ (21)
334
+ Further, we assume ˜µ →
335
+
336
+ 1
337
+ 0
338
+
339
+ as |x| → ∞. These system of equations will lead us to an
340
+ integral equation from which we can extract interesting behaviour for ζ → ∞.
341
+ The main point of this subsection is to demonstrate how we can obtain the system of
342
+ integral equations related with (21). Here, the approach is similar to [21], but we need to be
343
+ careful due to the non-commutative nature of quaternions.
344
+ Recall, that DT = ¯D ¯T = I (in appropriate spaces). Hence, applying this to (21) it holds:
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+ ˜µ1 = 1 + T
353
+
354
+ e−x·(ζ−¯ζc)˜µ2q1
355
+
356
+ ˜µ2 = T
357
+
358
+ ex·(ζ−¯ζc)˜µ1q2
359
+
360
+ Thus, we can obtain two integral equations with respect to their function:
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+ ˜µ1 = 1 + T
369
+
370
+ e−x·(ζ−¯ζc) ¯T
371
+
372
+ ex·(ζ−¯ζc)˜µ1q2
373
+
374
+ q1
375
+
376
+ ˜µ2 = ¯T
377
+
378
+ ex·(ζ−¯ζc)q2
379
+
380
+ + ¯T
381
+
382
+ ex·(ζ−¯ζc)T
383
+
384
+ e−x·(ζ−¯ζc)˜µ2q1
385
+
386
+ q2
387
+
388
+
389
+
390
+
391
+ ˜µ1 = 1 + M 1˜µ1
392
+ ˜µ2 = T
393
+
394
+ e
395
+
396
+
397
+ ζ−ζC�
398
+ q2
399
+
400
+ + M 2˜µ2
401
+
402
+
403
+ [I − M 1](˜µ1 − 1) = M 11
404
+ [I − M 2](˜µ2) = ¯T
405
+
406
+ ex·(ζ−¯ζC)q2
407
+
408
+ (22)
409
+ Our objective now is to study the uniqueness and existence of this equations, we approach
410
+ this task by proving that M j, j = 1, 2 are contractions.
411
+ Instead of working with all possible ζ ∈ C(2) fulfilling ζ ¯ζ = 0, we choose them for k ∈ R3
412
+ as
413
+ ζ = k⊥ + ik
414
+ 2 ,
415
+ k⊥ · k = 0
416
+ and k⊥ can be algorithmically found.
417
+ We now describe our space of functions in terms of the space variable and k ∈ R3 as
418
+ S = L∞
419
+ x (Lp
420
+ k(|k| > R))
421
+ (23)
422
+ where R > 0 is a constant. In this space we prove that the operators M 1, M 2 are indeed
423
+ contractions:
424
+ Lemma 3.1. Let p > 2. Then
425
+ lim
426
+ R→∞ ∥M j∥S = 0.
427
+ To further study the system (22), we also need to show that the right-hand side is in S for
428
+ an R large enough:
429
+ Lemma 3.2. Let p > 2. Then there exists R > 0 such that
430
+ M 11 ∈ S,
431
+ (24)
432
+ ¯T
433
+
434
+ ex·(ζ−¯ζC)q2
435
+
436
+ ∈ S
437
+ (25)
438
+ The above Lemmas imply the existence and uniqueness of (˜µ1, ˜µ2) solving the system (22)
439
+ with respect to the potential q. This is essential for the reconstruction procedure we show up
440
+ next.
441
+ 5
442
+
443
+ 3.2
444
+ Reconstruction from scattering data
445
+ In this section, we are mixing ideas from [21] and [22] with quaternionic theory to obtain the
446
+ potential from the scattering data.
447
+ Starting from Clifford-Green theorem
448
+
449
+
450
+
451
+ g(x)
452
+ � ¯Df(x)
453
+
454
+ +
455
+
456
+ g(x) ¯D
457
+
458
+ f(x)
459
+
460
+ dx =
461
+
462
+ ∂Ω
463
+ g(x)η(x)f(x) dSx
464
+ and using g(x; iξ + ζ) = (iξ + ζ)e−x·(iξ+ζ) for ξ ∈ R3 such that (iξ + ζ) · (iξ + ζ) = 0. This
465
+ implies that g ¯D = 0. Thus we define the scattering data as:
466
+ h(ξ, ζ) = (iξ + ζ)
467
+
468
+ ∂Ω
469
+ e−x·(iξ+ζ)η(x)φ2(x, ζ) dx
470
+ (26)
471
+ Applying now Clifford-Green theorem we obtain another form for the scattering data:
472
+ h(ξ, ζ) = (iξ + ζ)
473
+
474
+
475
+ e−x·(iξ+ζ) ¯Dφ2(x, ζ) dx
476
+ = (iξ + ζ)
477
+
478
+
479
+ e−ix·ξ �
480
+ e−x·ζφ1(x, ζ)
481
+
482
+ q2(x) dx,
483
+ by Dφ2 = φ1q2
484
+ = (iξ + ζ)
485
+
486
+
487
+ e−ix·ξ (ζµ1(x, ζ)) q2(x) dx
488
+ = iξ
489
+
490
+
491
+ e−ix·ξ ˜µ1(x, ζ)q2(x) dx,
492
+ since ¯ζζ = 0
493
+ = iξˆq2(ξ) + iξ
494
+
495
+
496
+ e−ix·ξ [˜µ1(x, ζ) − 1] q2(x) dx.
497
+ Thus, we have:
498
+ ˆq2(ξ) = h(ξ, ζ)
499
+
500
+
501
+
502
+
503
+ e−ix·ξ [˜µ1(x, ζ) − 1] q2(x) dx
504
+ (27)
505
+ This is yet not enough to reconstruct the potential, since the integral acts as a residual in
506
+ the reconstruction and requires data that we technically do not have. Therefore, we integrate
507
+ everything over an annulus in k
508
+
509
+ R<|k|<2R
510
+ ˆq2(ξ)
511
+ |k|3 dk = 1
512
+
513
+
514
+ R<|k|<2R
515
+ h(ξ, ζ(k))
516
+ |k|3
517
+ dk
518
+
519
+
520
+ R<|k|<2R
521
+ 1
522
+ |k|3
523
+
524
+
525
+ e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x) dx,
526
+ (28)
527
+ since the potential does not depend on k it can be taken out of the integral and taking the limit
528
+ as R → ∞ leads the second integral on the right to decay to zero, obtaining a reconstruction
529
+ formula.
530
+ Theorem 3.3. Let Ω ⊂ R3 a bounded Lipschitz domain, q ∈ L∞(Ω) be a complex-valued po-
531
+ tential obtained through a conductivity γ ∈ W 1,∞(Ω), Re γ ≥ c > 0. Then, we can reconstruct
532
+ the potential from
533
+ ˆq2(ξ) = lim
534
+ R→∞
535
+ C
536
+
537
+
538
+ R<|k|<2R
539
+ h(ξ, ζ(k))
540
+ |k|3
541
+ dk,
542
+ (29)
543
+ where C =
544
+ 1
545
+ 4π ln(2).
546
+ Proof. The scattering data is defined from the solutions of the Dirac system (22) and therefore
547
+ it holds that ˜µ1 − 1 ∈ S. Starting from (28) we obtain by integrating the right-hand side for
548
+ any ξ ∈ R3:
549
+ 4π ln 2 ˆq2(ξ) = 1
550
+
551
+
552
+ R<|k|<2R
553
+ h(ξ, ζ(k))
554
+ |k|3
555
+ dk
556
+
557
+
558
+ R<|k|<2R
559
+ 1
560
+ |k|3
561
+
562
+
563
+ e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x) dx
564
+ 6
565
+
566
+ Let p > 2 and 1/p + 1/q = 1. We estimate the last integral:
567
+ �����
568
+
569
+ R<|k|<2R
570
+ 1
571
+ |k|3
572
+
573
+
574
+ e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x) dx
575
+ ����� ≤
576
+
577
+
578
+ R<|k|<2R
579
+ 1
580
+ |k|3
581
+
582
+
583
+ ���e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x)
584
+ ��� dx
585
+ ≤ CΩ∥q∥∞
586
+
587
+ R<|k|<2R
588
+ 1
589
+ |k|3 sup
590
+ x
591
+ |˜µ1(x, ζ(k)) − 1| dk
592
+ ≤ CΩ∥q∥∞
593
+ ��
594
+ R<|k|<2R
595
+ 1
596
+ |k|3q dk
597
+ �1/q ��
598
+ R<|k|<2R
599
+ sup
600
+ x |˜µ1(x, ζ(k)) − 1|p dk
601
+ �1/p
602
+ ≤ CΩ∥q∥∞∥˜µ1 − 1∥S
603
+ ��
604
+ R<|k|<2R
605
+ 1
606
+ |k|3q dk
607
+ �1/q
608
+ Taking the limit as R → 0 the integral that is left goes to zero which implies the desired decay
609
+ to zero and leaves us with our reconstruction formula.
610
+ Now, in order to connect the functions that solve the electrical conductivity equation (1)
611
+ and the solutions to the Dirac equation (18), which are exponential growing, we introduce the
612
+ following result:
613
+ Proposition 3.4. Let Ω be a bounded domain in R3.
614
+ Let φ = (φ1, φ2) be a solution of
615
+ the Dirac system (18) for a potential q ∈ L∞(Ω) associated with the complex-conductivity
616
+ γ ∈ W 1,∞(Ω).
617
+ If φ1 = ¯φ2 then there exists a unique solution u of:
618
+ � ¯Du = γ−1/2φ1,
619
+ Du = γ−1/2φ2.
620
+ (30)
621
+ Further, this function fulfills the conductivity equation
622
+ ∇ · (γ∇u) = 0 in Ω.
623
+ Let us recall the main theorem, that we are now able to prove with all these pieces we
624
+ assembled.
625
+ Theorem 1.1 Let Ω ⊂ R3 a bounded Lipschitz domain, γi ∈ W 1,∞(Ω), i = 1, 2 be two
626
+ complex-valued conductivities with Re γi ≥ c > 0.
627
+ If Λγ1 = Λγ2, then γ1 = γ2.
628
+ Proof. Due to Theorem 3.3, one only needs to show that the scattering data h for |k| >> 1
629
+ is uniquely determined by the Dirichlet-to-Neumann map Λγ. Due to the lack of Poincar´e
630
+ Lemma in our current framework in quaternionic analysis with the D and ¯D operator, than a
631
+ new technique is required to obtain a similar proof to [9], for example.
632
+ For such, let us start with two conductivities γ1, γ2 in W 1,∞(Ω) for Ω a bounded domain.
633
+ By hypothesis Λγ1 = Λγ2 and thus by [29] we have γ1|∂Ω = γ2|∂Ω.
634
+ Further, we can extend γj, j = 1, 2 outside Ω in such a way that in R3 \ Ω and γj − 1 ∈
635
+ W 1,∞
636
+ comp(R3). Let qj, φj, µj, hj, j = 1, 2 be the potential and the solution in (18), the function
637
+ in (19), and the scattering data in (26) all associated with the conductivity γj.
638
+ Due to the scattering formulation at the boundary ∂Ω, then we just want to know if φ1 = φ2
639
+ on ∂Ω when |k| >> 1.
640
+ First, by Proposition 3.4, we know that there exists an u1 such that
641
+ φ1 = γ1/2
642
+ 1
643
+ ( ¯Du1, Du1)T ,
644
+ which is a solution to
645
+ ∇ · (γ1∇u1) = 0 in R3.
646
+ Now, let us define u2 by
647
+ u2 =
648
+
649
+ u1
650
+ in R3 \ Ω,
651
+ u
652
+ in Ω.
653
+ 7
654
+
655
+ where ˆu is the solution to the Dirichlet problem
656
+
657
+ ∇ · (γ2∇u) = 0
658
+ in Ω,
659
+ u = u1
660
+ on ∂Ω.
661
+ Let g ∈ C∞
662
+ c (R3). Then,
663
+
664
+ R3 γ2∇u2∇g dx =
665
+
666
+ R3\Ω
667
+ γ1∇u1∇g dx +
668
+
669
+
670
+ γ2∇ˆu∇g dx
671
+ = −
672
+
673
+ ∂Ω
674
+ Λγ1
675
+
676
+ u1|∂Ω
677
+
678
+ g dsx +
679
+
680
+ ∂Ω
681
+ Λγ2
682
+
683
+ u|∂Ω
684
+
685
+ g dsx
686
+ = 0.
687
+ Hence, u2 is the solution of ∇ · (γ2∇u2) = 0 in R3. Further, the following function
688
+ ψ2 = γ1/2
689
+ 2
690
+ � ¯Du2, Du2
691
+ �T
692
+ is the solution of (18) where the potential is given by γ2.
693
+ Furthermore, ψ2 has the asymptotics of φ1 in R3 \ Ω, thus by Lemma 3.1 and 3.2 it will
694
+ be the unique solution of the respective integral equation of (18). Thus, ψ2 will be equal φ2
695
+ when |k| > R. Since, on the outside ψ2 ≡ φ1. Then we obtain:
696
+ φ1 = φ2 in R3 \ Ω.
697
+ In particular, we have equality at the boundary ∂Ω. So, this implies that if the Dirichlet-
698
+ to-Neumann maps are equal the respective scattering data will also be the same. Thus, the
699
+ Dirichlet-to-Neumann map uniquely determines the potential q.
700
+ From the definition of q, we can uniquely determine the conductivity γ up to a constant,
701
+ which in the end is defined by γ|∂Ω which is uniquely determined by the Dirichlet-to-Neumann
702
+ map Λγ.
703
+ 4
704
+ Auxiliary Proofs
705
+ Proof of Lemma 3.1.
706
+ Let us assume, without loss of generality, that f is a scalar function. Further, we present
707
+ the proof for M 1, since for M 2 it follows analogously.
708
+ Recall, that we choose ζ ∈ C(2) with respect to k ∈ R(2) as
709
+ ζ = k⊥ + ik
710
+ 2 ,
711
+ k⊥ · k = 0.
712
+ In vector form, this leads to ζ − ζc = ik which implies the following deductions:
713
+ M 1f(x) =
714
+
715
+ R3 e−w·(ζ−¯ζc) x − w
716
+ |x − w|3
717
+
718
+ R3 ey·(ζ−¯ζc) w − y
719
+ |w − y|3 f(y)q2(y) dy q1(w) dw
720
+ =
721
+
722
+ R3
723
+
724
+ R3 e−iw·k x − w
725
+ |x − w|3 eiy·k w − y
726
+ |w − y|3 f(y)q2(y)q1(w) dwdy
727
+ =
728
+
729
+ R3 A(x, y; k)f(y) dy,
730
+ where
731
+ A(x, y; k) =
732
+
733
+ R3 e−i(w−y)·k x − y
734
+ |x − y|3
735
+ w − y
736
+ |w − y|3 q2(y)q1(w) dw.
737
+ Due to the compact support of the potential q2, it holds that A has compact support on the
738
+ second variable.
739
+ Let us now apply the norm in terms of k to it:
740
+ ∥Mf(x, ·)∥Lp(|k|>R) =
741
+ ��
742
+ |k|>R
743
+ |Mf(x, ζ)|p dσζ
744
+ �1/p
745
+ =
746
+ ��
747
+ |k|>R
748
+ ����
749
+
750
+
751
+ A(x, y; k)f(y) dy
752
+ ����
753
+ p
754
+ dσk
755
+ �1/p
756
+
757
+
758
+
759
+ ��
760
+ |k|>R
761
+ |A(x, y; k)f(y)|p dσk
762
+ �1/p
763
+ dy
764
+
765
+
766
+
767
+ sup
768
+ k
769
+ |A(x, y; k)| dy ∥f∥S.
770
+ 8
771
+
772
+ In order to complete the proof we show that the first integral goes to zero as R → ∞.
773
+ Let As be given with the extra factor α(s|x−w|)α(s|w−y|) in the integrand, where α ∈ C∞
774
+ is 1 outside a neighborhood of the origin and 0 inside a smaller neighborhood of it.
775
+ Since,
776
+
777
+ B1(0)
778
+
779
+ B1(0)
780
+ 1
781
+ |w|2
782
+ 1
783
+ |w − y|2 dw dy,
784
+ it holds that for any ǫ > 0 there exists an s > 0 such that:
785
+
786
+
787
+ |A − As| dy < ǫ.
788
+ Further, we denote As0,n the function As0 with potentials q1, q2 replaced by their L1
789
+ smooth approximation Qn
790
+ 1 , Qn
791
+ 2 ∈ C∞. Since the other factors are bounded it holds
792
+
793
+
794
+ |As0 − As0,n| dy < ǫ.
795
+ Now it is enough to show that As0,n → 0 as |k| → 0 uniformly!
796
+ All integrands inside of it will be in C∞ and uniformly bounded, thus by Riemann-Lebesgue
797
+ the result follows.
798
+ Proof of Lemma 3.2. Once again recall that ζ =
799
+
800
+ k⊥ + i k
801
+ 2
802
+
803
+ for k ∈ R3. First we show
804
+ that M 11 ∈ S. We have
805
+ M 11 =
806
+
807
+
808
+
809
+
810
+ e−iw·k x − w
811
+ |x − w|3
812
+ w − y
813
+ |w − y|3 eiy·kq2(y)q1(w) dy dw,
814
+ and applying the Lp norm in k followed with Minkowski integral inequality we obtain
815
+ ��
816
+ |k|>R
817
+ |M 11|pdk
818
+ �1/p
819
+
820
+
821
+
822
+ |q1(w)|
823
+ |x − w|2
824
+ ��
825
+ |k|>R
826
+ ����
827
+
828
+
829
+ eiy·k w − y
830
+ |w − y|3 q2(y)dy
831
+ ����
832
+ p
833
+ dk
834
+ �1/p
835
+ dw
836
+ The inner most integral resembles a Fourier transform, hence, applying the Hausdorff-Young
837
+ inequality for p > 2 we have
838
+ ��
839
+ |k|>R
840
+ ����
841
+
842
+
843
+ eiy·k w − y
844
+ |w − y|3 q2(y) dy
845
+ ����
846
+ p
847
+ dk
848
+ �1/p
849
+
850
+ ��
851
+
852
+ |q2(y)|p′
853
+ |w − y|2p′ dy
854
+ �1/p′
855
+ < C∥q2∥∞,
856
+ where the last inequality follows quickly by Young’s convolution inequality and Riesz type
857
+ estimate of the kernel.
858
+ Therefore, by the same Riesz type estimate it holds:
859
+ ��
860
+ |k|>R
861
+ |M 11|p dk
862
+ �1/p
863
+ ≤ C∥q2∥∞
864
+
865
+
866
+ |q1(w)|
867
+ |x − w|2 dw ≤ C′∥q2∥∞∥q1∥∞.
868
+ To complete the proof we need to show statement (25). Similarly, to the above proof, we
869
+ have by Hausdorff-Young Inequality, Young’s convolution inequality and a Riesz type estimate
870
+ the following:
871
+ ��
872
+ |k|>R
873
+ ����
874
+
875
+ R3 eiy·k x − y
876
+ |x − y|3 q2(y) dσy
877
+ ����
878
+ p
879
+ dσk
880
+ �1/p
881
+
882
+ ��
883
+ R3
884
+ ����
885
+ x − y
886
+ |x − y|3 q2(y)
887
+ ����
888
+ p′
889
+ dσy
890
+ �1/p′
891
+ ≤ C∥q2∥∞
892
+ We need the following auxiliary result for the proof of Proposition 3.4.
893
+ Lemma 4.1. Let Ω be a bounded Lipschitz domain in R3.
894
+ If h is a scalar-valued and harmonic function that fulfills
895
+ Vec(S∂Ωh) = 0,
896
+ then h|∂Ω is constant.
897
+ 9
898
+
899
+ Proof. First, note that I + S∂Ω = P∂Ω is a projector and by Proposition 2.5.12 and Corollary
900
+ 2.5.15 of [16] it holds that P∂Ωh is the boundary value of a monogenic function in Ω.
901
+ Since h is a scalar-valued function it holds that
902
+ P∂Ωh = Sc(P∂Ωh) + Vec(P∂Ωh)
903
+ = (h + Sc∂Ωh) + Vec(S∂Ωh).
904
+ Let w = (h + Sc∂Ωh) and v = Vec(S∂Ωh). Now, we denote f as the monogenic extension
905
+ of P∂Ωh in Ω, as such, the boundary values of f fulfill trf = w + v. Note that by hypothesis
906
+ we have that v|∂Ω = 0.
907
+ Hence, f is also an harmonic function, which implies that the scalar and vector components
908
+ are harmonic.
909
+
910
+ ∆(Vecf) = 0,
911
+ Vec f|∂Ω = 0.
912
+ By a mean value theorem or a maximum principle it holds that Vecf = 0. Due to this
913
+ and f being monogenic we obtain that Df = 0 ⇔ D(Ref) = 0. Thus, Ref = c since D is a
914
+ quaternionic operator.
915
+ Consequently, the boundary values are also constant, which means that w = c in ∂Ω.
916
+ Since, Sc(S∂Ωh) is an averaging operator it holds that h = c.
917
+ Proof of Proposition 3.4
918
+ Suppose that (u, v) are solutions to the following equations:
919
+ � ¯Du = γ−1/2φ1
920
+ Dv = γ−1/2φ2.
921
+ From applying the operator D and ¯D to the first and second equation respectively, we
922
+ obtain from φ2 = φ
923
+ H
924
+ 1 and q2 = qH
925
+ 1 the following:
926
+ ∆u = D(γ−1/2φ1) = D(γ−1/2)φ1 + γ−1/2Dφ1
927
+ = −1
928
+ 2γ−3/2(Dγφ1) + γ−1/2φ2q1
929
+ = γ−1/2 [q2φ1 + φ2q1] = γ−1/2 �
930
+ qH
931
+ 1 φ1 + φ
932
+ H
933
+ 1 q1
934
+
935
+ = γ−1/2Sc (φ
936
+ H
937
+ 1 q1).
938
+ and
939
+ ∆v = ¯D(γ−1/2φ2) = ¯D(γ−1/2)φ2 + γ−1/2 ¯Dφ2
940
+ = −1
941
+ 2γ−3/2( ¯Dγ)φ2 + γ−1/2φ1q2
942
+ = γ−1/2 [q1φ2 + φ1q2] = γ−1/2 �
943
+ q1φ
944
+ H
945
+ 1 + φ1qH
946
+ 1
947
+
948
+ = γ−1/2Sc (φ1qH
949
+ 1 ).
950
+ The first thing to notice is that both equations imply that u and v must be scalar-valued
951
+ functions.
952
+ Further, notice that
953
+ ∆(u − v) = γ−1/2 �
954
+ Sc (φ
955
+ H
956
+ 1 q1) − Sc (φ1qH
957
+ 1 )
958
+
959
+ = γ−1/2
960
+
961
+ Sc (φ
962
+ H
963
+ 1 q1) − Sc (q1φ
964
+ H
965
+ 1 )
966
+
967
+ = 0.
968
+ Therefore, h = u − v is an harmonic function. Our objective is to show that h ≡ 0, thus
969
+ showing that u = v.
970
+ For such, let us consider the theory of integral transforms in quaternionic analysis. We
971
+ have
972
+ u = ¯T(γ−1/2φ1) + F ∂Ω(γ−1/2φ1) and
973
+ u = ¯T(γ−1/2φ1) + F ∂Ω(u),
974
+ which implies that
975
+ F ∂Ω(γ−1/2φ1) = F ∂Ωu.
976
+ 10
977
+
978
+ Analogously, we obtain
979
+ F∂Ω(γ−1/2φ2) = F∂Ωv.
980
+ Here, we can extrapolate from the first equation and from u being scalar-valued that
981
+ γ−1/2φ1F∂Ω = F∂Ωu
982
+ ⇔ γ−1/2φ2F∂Ω = F∂Ωu.
983
+ Applying the operator F∂Ω on the other side, we obtain:
984
+ F 2
985
+ ∂Ωu = F∂Ω(γ−1/2φ2)F∂Ω and
986
+ F 2
987
+ ∂Ωv = F∂Ω(γ−1/2φ2)F∂Ω
988
+ ⇒ F 2
989
+ ∂Ωh = F 2
990
+ ∂Ω(u − v) = 0.
991
+ If we take the trace on both sides, the operator becomes a projector thus we obtain
992
+ tr F∂Ωh = 0.
993
+ Now, through the Sokhotski-Plemelj formula we obtain:
994
+ tr F∂Ωh = h|∂Ω + S∂Ωh = 0, at ∂Ω.
995
+ Since h is a scalar-valued function that we decompose this formulation with the scalar and
996
+ vector part to obtain two conditions:
997
+
998
+ h + Sc(S∂Ωh) = 0
999
+ Vec(S∂Ωh) = 0.
1000
+ Through the second condition and Lemma 4.1 we have that h is constant over ∂Ω.
1001
+ Now, given that h is a scalar constant, the first condition reduces to:
1002
+ h(1 + Sc(S∂Ω1)) = 0
1003
+ By [16] we obtain that 1 + Sc(S∂Ω1) = 1/2 in ∂Ω. Therefore, we conclude that h ≡ 0 in
1004
+ ∂Ω. Given that h is harmonic, this immediately implies that h = 0 in Ω.
1005
+ Therefore, we obtain u = v, and therefore there exists a unique solution to the initial
1006
+ system through the T and F∂Ω operators in Ω.
1007
+ To finalize, we only need to show that u fulfills the conductivity equation in Ω.
1008
+ Bringing the first equation to light
1009
+ ¯Du = γ−1/2φ1,
1010
+ changing the side of the conductivity we get γ1/2 ¯Du = φ1 and applying the D operator to
1011
+ both sides now brings
1012
+ D
1013
+
1014
+ γ1/2 ¯Du
1015
+
1016
+ = Dφ1
1017
+
1018
+ D
1019
+
1020
+ γ1/2�
1021
+ ¯Du + γ1/2∆u = φ2q1
1022
+
1023
+ D
1024
+
1025
+ γ1/2�
1026
+ ¯Du + γ1/2∆u = γ−1/2Du1
1027
+ 2
1028
+ ¯Dγ
1029
+ γ
1030
+
1031
+ 1
1032
+ 2γ1/2Dγ ¯Du + γ1/2∆u + 1
1033
+ 2Du
1034
+ ¯Dγ
1035
+ γ1/2 = 0
1036
+
1037
+ ∇γ · ∇u + γ∆u = 0 ⇔ ∇ · (γ∇u) = 0
1038
+ As such, we conclude our proof of uniqueness for complex-conductivities in W 1,∞(Ω) from
1039
+ the Dirichlet-to-Neumann map Λγ. Notice that (29) even provides a reconstruction formula,
1040
+ but as mentioned in the previous section it is very unstable for computational purposes.
1041
+ References
1042
+ [1] Alessandrini, G. (1988). Stable determination of conductivity by boundary measure-
1043
+ ments. Applicable Analysis, 27(1-3), 153-172.
1044
+ [2] Astala, K., Faraco, D., Rogers, K. M. (2013). Unbounded potential recovery in the plane.
1045
+ Ann. Sci. ´Ec. Norm. Sup´er.(4).
1046
+ 11
1047
+
1048
+ [3] Astala, K., P¨aiv¨arinta, L. (2006). Calder´on’s inverse conductivity problem in the plane.
1049
+ Annals of Mathematics, 265-299.
1050
+ [4] Bl˚asten, E., Imanuvilov, O. Y., Yamamoto, M. (2015). Stability and uniqueness for
1051
+ a two-dimensional inverse boundary value problem for less regular potentials. Inverse
1052
+ Problems & Imaging, 9(3), 709-723.
1053
+ [5] Beals, R. (1985). Multidimensional inverse scatterings and nonlinear partial differential
1054
+ equations. In Proc. Symp. Pure Math. (Vol. 43, pp. 45-70).
1055
+ [6] Borcea, L. (2002). Electrical impedance tomography. Inverse problems, 18(6), R99.
1056
+ [7] Brown, R. M. (1996). Global uniqueness in the impedance-imaging problem for less
1057
+ regular conductivities. SIAM Journal on Mathematical Analysis, 27(4), 1049-1056.
1058
+ [8] Brown, R. M., Torres, R. H. (2003). Uniqueness in the inverse conductivity problem
1059
+ for conductivities with 3/2 derivatives in Lp, p > 2n. Journal of Fourier Analysis and
1060
+ Applications, 9(6), 563-574.
1061
+ [9] Brown, R. M., Uhlmann, G. A. (1997). Uniqueness in the inverse conductivity problem
1062
+ for non-smooth conductivities in two dimensions. Communications in partial differential
1063
+ equations, 22(5-6), 1009-1027.
1064
+ [10] Bukhgeim, A. L. (2008). Recovering a potential from Cauchy data in the two-dimensional
1065
+ case.
1066
+ [11] Calder´on, A. P. (2006). On an inverse boundary value problem. Computational & Ap-
1067
+ plied Mathematics, 25, 133-138.
1068
+ [12] Caro, P., Rogers, K. M. (2016). Global uniqueness for the Calder´on problem with Lips-
1069
+ chitz conductivities. In Forum of Mathematics, Pi (Vol. 4). Cambridge University Press.
1070
+ [13] Chanillo, S. (1990). A problem in electrical prospection and an n-dimensional Borg-
1071
+ Levinson theorem. Proceedings of the American Mathematical Society, 108(3), 761-767.
1072
+ [14] Faddeev, L. D. (1965). Growing solutions of the Schr¨odinger equation, Dokl. Akad. Nauk
1073
+ SSSR, 165, 514–517.
1074
+ [15] Francini, E. (2000). Recovering a complex coefficient in a planar domain from the
1075
+ Dirichlet-to-Neumann map. Inverse Problems, 16(1), 107.
1076
+ [16] G¨urlebeck, K., Spr¨ossig, W. (1989). Quaternionic Analysis and Elliptic Boundary Value
1077
+ Problems. nternational Series of Numerical Mathematics. Birkh¨auser Basel.
1078
+ [17] Haberman, B. (2015). Uniqueness in Calder´on’s problem for conductivities with un-
1079
+ bounded gradient. Communications in Mathematical Physics, 340(2), 639-659.
1080
+ [18] Haberman, B., Tataru, D. (2013). Uniqueness in Calder´on’s problem with Lipschitz
1081
+ conductivities. Duke Mathematical Journal, 162(3), 497-516.
1082
+ [19] Hamilton, S. J., Isaacson, D., Kolehmainen, V., Muller, P. A., Toivainen, J., Bray, P. F.
1083
+ (2021). 3D Electrical Impedance Tomography reconstructions from simulated electrode
1084
+ data using direct inversion texp and Calder´on methods. Inverse Problems & Imaging.
1085
+ [20] Knudsen, K., Tamasan, A. (2003). Reconstruction of less regular conductivities in the
1086
+ plane. Communications in Partial Differential Equations, 1, 28.
1087
+ [21] Lakshtanov, E., Tejero, J., Vainberg, B. (2017). Uniqueness in the inverse conductivity
1088
+ problem for complex-valued Lipschitz conductivities in the plane. SIAM Journal on
1089
+ Mathematical Analysis, 49(5), 3766-3775.
1090
+ [22] Nachman, A. I. (1988). Reconstructions from boundary measurements. Annals of Math-
1091
+ ematics, 128(3), 531-576.
1092
+ [23] Nachman, A. I. (1996). Global uniqueness for a two-dimensional inverse boundary value
1093
+ problem. Annals of Mathematics, 71-96.
1094
+ [24] Nachman, A., Sylvester, J., Uhlmann, G. (1988). An n-dimensional Borg-Levinson the-
1095
+ orem. Communications in Mathematical Physics, 115(4), 595-605.
1096
+ [25] Novikov, R. G. (1988). Multidimensional inverse spectral problem for the equation
1097
+ −∆ψ + (v(x) − Eu(x))ψ = 0. Functional Analysis and Its Applications, 22(4), 263-272.
1098
+ [26] Novikov, R. G., Santacesaria, M. (2011). Global uniqueness and reconstruction for the
1099
+ multi-channel Gelfand–Calder´on inverse problem in two dimensions. Bulletin des Sci-
1100
+ ences Mathematiques, 135(5), 421-434.
1101
+ [27] P¨aiv¨arinta, L., Panchenko, A., Uhlmann, G. (2003). Complex geometrical optics solu-
1102
+ tions for Lipschitz conductivities. Revista Matematica Iberoamericana, 19(1), 57-72.
1103
+ 12
1104
+
1105
+ [28] Pombo, I. (2020). CGO-Faddeev approach for complex conductivities with regular jumps
1106
+ in two dimensions. Inverse Problems, 36(2), 024002.
1107
+ [29] Pombo, I. (2021). Reconstructions from boundary measurements: complex conductivi-
1108
+ ties. arXiv preprint arXiv:2112.09894.
1109
+ [30] Ros´en, A. (2019). Geometric multivector analysis. Springer International Publishing.
1110
+ [31] Sylvester, J., Uhlmann, G. (1987). A global uniqueness theorem for an inverse boundary
1111
+ value problem. Annals of mathematics, 153-169
1112
+ 13
1113
+
GtFAT4oBgHgl3EQftR52/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf,len=456
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
3
+ page_content='08663v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
4
+ page_content='AP] 20 Jan 2023 Uniqueness of the inverse conductivity problem once-differentiable complex conductivities in three dimensions Ivan Pombo June 2022 Abstract We prove uniqueness of the inverse conductivity problem in three dimensions for complex conductivities in W 1,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
5
+ page_content=' We apply quaternionic analysis to transform the inverse problem into an inverse Dirac scattering problem, as established in two dimensions by Brown and Uhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
6
+ page_content=' This is a novel methodology that allows to extend the uniqueness result from once-differentiable real conductivities to complex ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
7
+ page_content=' 1 Introduction Let γ ∈ W 1,∞(Ω) be the complex-valued conductivity defined in a bounded Lipschitz domain Ω ⊂ R3 and given by γ = σ +iωǫ where σ is the electrical conductivity and satisfies σ ≥ c > 0, ǫ is the electrical permittivity and ω is the current frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
8
+ page_content=' Given a boundary value f ∈ H1/2(∂Ω) we can determine the respective electrical potential u ∈ H1(Ω) by uniquely solving � ∇ · (γ∇u) = 0, in Ω, u|∂Ω = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
9
+ page_content=' (1) This is the so-called conductivity equation which describes the behavior of the electrical potential, u, in a conductive body when a voltage potential is applied on the boundary, f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
10
+ page_content=' In 1980, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
11
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
12
+ page_content=' Calder´on, [11] introduced the problem of whether one can recover uniquely a conductivity σ ∈ L∞(Ω) from the boundary measurements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
13
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
14
+ page_content=', from the Dirichlet-to- Neumann map Λσ : H1/2(∂Ω) → H−1/2(∂Ω), (2) f �→ σ ∂u ∂ν ���� ∂Ω which connects the voltage and electrical current at the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
15
+ page_content=' The normal derivative exists as an element of H−1/2(∂Ω) by ⟨Λσf, g⟩ = � Ω σ∇u · ∇v dx (3) where v ∈ H1(Ω) with v|∂Ω = g and u solves (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
16
+ page_content=' In the same paper, Calder´on was able to prove that the linearized problem at constant real conductivities has a unique solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
17
+ page_content=' Thereafter, many authors extended is work into global uniqueness results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
18
+ page_content=' Sylvester and Uhlmann [31] used ideas of scattering theory, namely the exponential growing solutions of Faddeev [14] to obtain global uniqueness in dimensions n ≥ 3 for smooth conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
19
+ page_content=' Using this foundations the uniqueness for lesser regular conductivities was further generalized for dimensions n ≥ 3 in the works of ([1], [7], [8], [12], [13], [18], [22], [24], [27]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
20
+ page_content=' Currently, the best know result is due to Haberman [17] for conductivities γ ∈ W 1,3(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
21
+ page_content=' The reconstruction procedure for n ≥ 3 was obtained in both [22] and [25] independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
22
+ page_content=' As far as we are aware, there seems to be no literature concerning reconstruction for conductivities with less than two derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
23
+ page_content=' In two dimensions the problem seems to be of a different nature and tools of complex analy- sis were used to establish uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
24
+ page_content=' Nachman [23] obtained uniqueness and a reconstruction method for conductivities with two derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
25
+ page_content=' The uniqueness result was soon extend for once-differentiable conductivities in [9] and a corresponding reconstruction method was ob- tained in [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
26
+ page_content=' In 2006, Astala and P¨aiv¨arinta [3] gave a positive answer Calder´on’s problem 1 for σ ∈ L∞(Ω), σ ≥ c > 0, by providing the uniqueness proof through the reconstruction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
27
+ page_content=' All of this definitions can be extended to the complex-conductivity case with the assump- tion Re γ ≥ c > 0, in particular, we can define the Dirichlet-to-Neumann as above Λγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
28
+ page_content=' In this scenario, the first works was done in two-dimensions by Francini [15], by extending the work of Brown and Uhlmann [9] in two-dimensions proving uniqueness for small frequencies ω and γ ∈ W 2,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
29
+ page_content=' Afterwards, Bukgheim influential paper [10] proved the general result in two-dimensions for complex-conductivities in W 2,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
30
+ page_content=' He reduced the (1) to a Schr¨odinger equation and shows uniqueness through the stationary phase method (based on is work many extensions followed in two-dimensions [2], [4], [26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
31
+ page_content=' Recently, by mixing techniques of [9] and [10], Lakshtanov, Tejero and Vainberg obtained [21] uniqueness for Lipschitz complex- conductivities in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
32
+ page_content=' In [28], the author followed up their work to show that it is possible to reconstruct complex-conductivity with a jump at least in a certain set of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
33
+ page_content=' In three dimensions, the uniqueness results presented in [31] and [24] hold for twice- differentiable complex-conductivities in W 2,∞, but there was no reconstruction process pre- sented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
34
+ page_content=' Nachman’s reconstruction method in three dimensions [22] was used in [19] to re- construct complex conductivities from boundary measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
35
+ page_content=' Even though the Nachman’s proof was presented only for real conductivities, the paper [29] structures the proof in order to show the result holds for complex-conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
36
+ page_content=' As far as we aware, the works with lower regularity require real-conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
37
+ page_content=' In this paper our interest resides in Calder´on’s problem for once-differentiable complex- conductivities in three-dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
38
+ page_content=' The aim is to prove the following theorem: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
39
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
40
+ page_content=' Let Ω ⊂ R3 a bounded Lipschitz domain, γi ∈ W 1,∞(Ω), i = 1, 2 be two complex-valued conductivities with Re γi ≥ c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
41
+ page_content=' If Λγ1 = Λγ2, then γ1 = γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
42
+ page_content=' Our work basis itself on a transformation of (1) into a Dirac system of equation in three- dimensions with the help of quaternions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
43
+ page_content=' In this scenario, we obtain a potential q that we want to determine from boundary data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
44
+ page_content=' The main ideas follow the work of Brown and Uhlmann [9] for real conductivities in two-dimensions and Lakshtanov, Vainberg and Tejero [21], as well as the authors work [28], for complex-conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
45
+ page_content=' In this paper, we provide a novel reconstruction of the bounded potential q from the boundary data, but we are yet to be able to establish a relation between this boundary data and the Dirichlet-to-Neumann map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
46
+ page_content=' This is essentially to answer Calder´on problem for Lipschitz complex conductivities, but the lack of a well-suited Poincar´e lemma that fits the quaternion structure does not allow such a simple work as in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
47
+ page_content=' 2 Minimalistic lesson of Quaternions We present the basis of the quaternionic framework we will use for our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
48
+ page_content=' Let R(2) be the real universal Clifford Algebra over R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
49
+ page_content=' By definition, it is generated as an algebra over R by the elements {e0, e1, e2}, where e1, e2 is a basis of R2 with eiej + ejei = −2δij, for i, j = 1, 2 and e0 = 1 is the identity and commutes with the basis elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
50
+ page_content=' This algebra has dimension 4 and is identified with the algebra of the quaternions, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
51
+ page_content=' As such it holds e3 = e1e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
52
+ page_content=' In the following, we refer to this algebra as the quaternions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
53
+ page_content=' An element of the quaternions can be written as: x = x0 + x1e1 + x2e2 + x3e3, (4) where xj, j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
54
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
55
+ page_content=', 3 are real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
56
+ page_content=' We define the quaternionic conjugate ¯x of an element x as ¯x = x0 − x1e1 − x2e2 − x3e3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
57
+ page_content=' (5) Let x, y ∈ H, we write xy for the resulting quaternionic product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
58
+ page_content=' The product ¯xy defines a Clifford valued inner product on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
59
+ page_content=' Further, we have xy = ¯y¯x and the conjugate of the conjugate of quaternion is that same quaternion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
60
+ page_content=' Let x ∈ H then Sc x = x0 denotes the scalar of x and Vec x = x − Sc x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
61
+ page_content=' The scalar of a Clifford inner product Sc(¯xy) is the usual inner product in R4 for x, y identified as vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
62
+ page_content=' With this inner product H is an Hilbert space and the resulting norm is the usual Euclidean norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
63
+ page_content=' In order to introduce some of the concepts we also extend the real quaternions to complex quaternions C2 = C ⊗ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
64
+ page_content=' Here, we use the same generators (e1, e2) as above, with the same 2 multiplication rules, however, the coefficients of the quaternion can be complex-valued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
65
+ page_content=' That is, λ ∈ C ⊗ H may be written as λ = λ0 + λ1e1 + λ2e2 + λ3e3, λj ∈ C, j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
66
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
67
+ page_content=', 3 (6) or still as λ = x + iy, x, y ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
68
+ page_content=' (7) Due to the complexification we can still take another conjugation, to which we define has Hermitian conjugation and denote it by ·†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
69
+ page_content=' Explicitly, for λ ∈ C ⊗ H one has ¯λ† = λc 0 − λc 1e1 − λc 2e2 − λc 3e3, (8) where ·c denotes complex conjugation, or ¯λ† = ¯x − i¯y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
70
+ page_content=' (9) Similarly, one can introduce an associated inner product and norm in C ⊗ H by means of this conjugation: ⟨λ, µ⟩ = Sc � ¯λ†µ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
71
+ page_content=' |λ|C2 = � Sc �¯λ†λ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
72
+ page_content=' (10) For ease of notation, we also define for λ ∈ C2 the complex conjugation as ¯λc = λc 0 + λc 1e1 + λc 2e2 + λc 3e3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
73
+ page_content=' (11) Now, we can also introduce Quaternion-valued functions f : R3 → C2 written as f = f0 + f1e1 + f2e2 + f3e3, where fj : R3 → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
74
+ page_content=' The Banach spaces Lp, W n,p of C2-valued functions are defines by requiring that each component is in such space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
75
+ page_content=' On L2(Ω) we introduce the C2-valued inner product ⟨f, g⟩ = � Ω ¯f †(x)g(x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
76
+ page_content=' (12) Analogously to the Wirtinger derivatives in complex analysis, we have the Cauchy-Riemann operators under (x0, x1, x2) coordinates of R3 defined as D = ∂0 + e1∂1 + e2∂2, (13) where ∂j is the derivative with respect to the xj, j = 0, 1, 2 variable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
77
+ page_content=' and ¯D = ∂0 − e1∂1 − e2∂2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
78
+ page_content=' (14) The vector part of the Cauchy-Riemann operator is designated as Dirac operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
79
+ page_content=' It holds that D ¯D = ∆ where ∆ is the Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
80
+ page_content=' We designate any function f fulfilling Df = 0 as a monogenic function, analogous to the holomorphic functions in complex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
81
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
82
+ page_content='1 A bit of Operator Theory Let Ω be a bounded domain and f : Ω → C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
83
+ page_content=' All the results in this subsection were taken out from the classical book on quaternionic analysis of G¨urlebeck and Spr¨ossig [16] The Cauchy-Riemann operator has a right-inverse in the form (T f) (x) = − 1 ω � Ω y − x |y − x|3 f(y) dy, for x ∈ Ω, (15) where E(x, y) = − 1 ω y−x |y−x|3 is the generalized Cauchy kernel and ω = 4π stands for the surface area of the unit sphere in R3, that is, DT f = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
84
+ page_content=' This operator acts from W k,p(Ω) to W k+1,p(Ω) with 1 < p < ∞ and k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
85
+ page_content=' Furthermore, we introduce the boundary integral operator for x /∈ ∂Ω (F∂Ωf) (x) = 1 ω � ∂Ω y − x |y − x|3 α(y)f(y) dS(y), (16) where α(y) is the outward pointing normal unit vector to ∂Ω at y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
86
+ page_content=' We get the well-known Borel-Pompeiu formula (F∂Ωf) (x) + (T Df) (x) = f(x) for x ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
87
+ page_content=' Obviously, DF∂Ω = 0 holds through this formula it it holds that F∂Ω acts from W k− 1 p ,p(∂Ω) into W k,p(Ω), for k ∈ N and 1 < p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
88
+ page_content=' One of the other well-known results we will need for our work is the Plemelj-Sokhotzki formula is obtaining by taking the trace of the boundary integral operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
89
+ page_content=' First we introduce an operator over the boundary of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
90
+ page_content=' 3 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
91
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
92
+ page_content=' If f ∈ W k,p(∂Ω), then there exists the integral (S∂Ωf) = 1 2π � ∂Ω y − x |y − x|3 α(y)f(y) dS(y) (17) for all points x ∈ Ω in the sense of Cauchy principal value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
93
+ page_content=' Furthermore, the operator S∂Ω is continuous in W k,p(∂Ω), for 1 < p < ∞, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
94
+ page_content=' From this the Plemelj-Sokhotzki formula is given as: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
95
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
96
+ page_content=' Let f ∈ W k,p(∂Ω) where by taking the non-tangential limit we have: lim x→x0, x∈Ω, x0∈∂Ω (F∂Ωf) (x) = 1 2 (f(x0) + (S∂Ωf) (x0)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
97
+ page_content=' One of the corollaries concerns the limit to the boundary acting as a projector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
98
+ page_content=' That is, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
99
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
100
+ page_content=' The operator P∂Ω denoting the projection onto the space of all H−valued functions which may be monogenicaly extended into the domain Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
101
+ page_content=' Then, this projection may be represented as P∂Ω = 1 2 (I + S∂Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
102
+ page_content=' The proofs of this results and others to follow in our proofs may be found in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
103
+ page_content=' Now we are ready to start constructing our work on the inverse conductivity problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
104
+ page_content=' 3 Inverse Dirac scattering problem Transforming our conductivity equation into another type of equation also changes the in- verse problem we are concerned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
105
+ page_content=' We transform it into a system of equations based on the Cauchy-Riemann operator D (also called Dirac operator in some contexts) and thus we need to solve the inverse Dirac scattering problem first and only afterwards we care about the inverse conductivity problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
106
+ page_content=' Let u be a solution to (1) for some boundary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
107
+ page_content=' We define φ = γ1/2 � ¯Du, Du �T , remark that γ1/2 is well-defined since it is contained in C+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
108
+ page_content=' Then, φ solves the system � Dφ1 = φ2q1, ¯Dφ2 = φ1q2, in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
109
+ page_content=' (18) where q1 = − 1 2 ¯ Dγ γ and q2 = − 1 2 Dγ γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
110
+ page_content=' This transformation arises as follows: Dφ1 = D � γ1/2 ¯Du � = Dγ1/2 ¯Du + γ1/2∆u = Dγ1/2 ¯Du − γ−1/2∇γ · ∇u = Dγ1/2 ¯Du − 1 2γ−1/2 � Dγ ¯Du + Du ¯Dγ � = −1 2 � γ1/2Du � ¯Dγ γ = φ2q1 Carefully, we can extend our potential to the outside by setting γ ≡ 1 outside of Ω, which lead us to treat the study the equation in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
111
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
112
+ page_content='1 Exponentially Growing Solutions We devise new exponentially growing solutions from the classical ones used in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
113
+ page_content=' In most literature works, the exponential behavior is defined through the function ex·ζ, with ζ ∈ C3 fulfilling ζ · ζ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
114
+ page_content=' However, in our scenario this function does not fulfill Deix·ζ = 0, which brings the simplicity in all of the literature works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
115
+ page_content=' Since we know that it is harmonic we can generate a monogenic function through it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
116
+ page_content=' Let ζ ∈ C3 such that ζ · ζ := ζ2 0 + ζ2 1 + ζ2 2 = 0, then it holds ∆ex·ζ = 0 ⇔ D � ¯Dex·ζ� = 0 ≡ D � ex·ζ ¯ζ � 4 where now ζ is also defined as a quaternion through ζ = ζ0 + e1ζ1 + e2ζ2 ∈ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
117
+ page_content=' Thus the function E(x, ζ) = ex·ζ ¯ζ is monogenic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
118
+ page_content=' This also arises from the choice of ζ, since ζ ¯ζ = ζ2 0 + ζ2 1 + ζ2 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
119
+ page_content=' We make a clear statement of when ζ is a complex-quaternion or complex-a vector, but in most cases it is clear from context: it is a vector if it is in the exponent and a quaternion otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
120
+ page_content=' We assume the following asymptotic behaviour for φ: φ1 = ex·ζ ¯ζµ1, (19) φ2 = ex·¯ζc ¯ζcµ2 (20) Setting ˜µ1 = ¯ζµ1 and ˜µ2 = ¯ζcµ2 we have the equations: � D˜µ1 = e−x·(ζ− ¯ζc)˜µ2q1 ¯D˜µ2 = ex·(ζ− ¯ζc)˜µ1q2 (21) Further, we assume ˜µ → � 1 0 � as |x| → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
121
+ page_content=' These system of equations will lead us to an integral equation from which we can extract interesting behaviour for ζ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
122
+ page_content=' The main point of this subsection is to demonstrate how we can obtain the system of integral equations related with (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
123
+ page_content=' Here, the approach is similar to [21], but we need to be careful due to the non-commutative nature of quaternions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
124
+ page_content=' Recall, that DT = ¯D ¯T = I (in appropriate spaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
125
+ page_content=' Hence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
126
+ page_content=' applying this to (21) it holds: \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ˜µ1 = 1 + T � e−x·(ζ−¯ζc)˜µ2q1 � ˜µ2 = T � ex·(ζ−¯ζc)˜µ1q2 � Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
127
+ page_content=' we can obtain two integral equations with respect to their function: \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ˜µ1 = 1 + T � e−x·(ζ−¯ζc) ¯T � ex·(ζ−¯ζc)˜µ1q2 � q1 � ˜µ2 = ¯T � ex·(ζ−¯ζc)q2 � + ¯T � ex·(ζ−¯ζc)T � e−x·(ζ−¯ζc)˜µ2q1 � q2 � \uf8f1 \uf8f2 \uf8f3 ˜µ1 = 1 + M 1˜µ1 ˜µ2 = T � e x· � ζ−ζC� q2 � + M 2˜µ2 ⇔ � [I − M 1](˜µ1 − 1) = M 11 [I − M 2](˜µ2) = ¯T � ex·(ζ−¯ζC)q2 � (22) Our objective now is to study the uniqueness and existence of this equations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
128
+ page_content=' we approach this task by proving that M j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
129
+ page_content=' j = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
130
+ page_content=' 2 are contractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
131
+ page_content=' Instead of working with all possible ζ ∈ C(2) fulfilling ζ ¯ζ = 0, we choose them for k ∈ R3 as ζ = k⊥ + ik 2 , k⊥ · k = 0 and k⊥ can be algorithmically found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
132
+ page_content=' We now describe our space of functions in terms of the space variable and k ∈ R3 as S = L∞ x (Lp k(|k| > R)) (23) where R > 0 is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
133
+ page_content=' In this space we prove that the operators M 1, M 2 are indeed contractions: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
134
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
135
+ page_content=' Let p > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
136
+ page_content=' Then lim R→∞ ∥M j∥S = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
137
+ page_content=' To further study the system (22), we also need to show that the right-hand side is in S for an R large enough: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
138
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
139
+ page_content=' Let p > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
140
+ page_content=' Then there exists R > 0 such that M 11 ∈ S, (24) ¯T � ex·(ζ−¯ζC)q2 � ∈ S (25) The above Lemmas imply the existence and uniqueness of (˜µ1, ˜µ2) solving the system (22) with respect to the potential q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
141
+ page_content=' This is essential for the reconstruction procedure we show up next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
142
+ page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
143
+ page_content='2 Reconstruction from scattering data In this section, we are mixing ideas from [21] and [22] with quaternionic theory to obtain the potential from the scattering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
144
+ page_content=' Starting from Clifford-Green theorem � Ω � g(x) � ¯Df(x) � + � g(x) ¯D � f(x) � dx = � ∂Ω g(x)η(x)f(x) dSx and using g(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
145
+ page_content=' iξ + ζ) = (iξ + ζ)e−x·(iξ+ζ) for ξ ∈ R3 such that (iξ + ζ) · (iξ + ζ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
146
+ page_content=' This implies that g ¯D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
147
+ page_content=' Thus we define the scattering data as: h(ξ, ζ) = (iξ + ζ) � ∂Ω e−x·(iξ+ζ)η(x)φ2(x, ζ) dx (26) Applying now Clifford-Green theorem we obtain another form for the scattering data: h(ξ, ζ) = (iξ + ζ) � Ω e−x·(iξ+ζ) ¯Dφ2(x, ζ) dx = (iξ + ζ) � Ω e−ix·ξ � e−x·ζφ1(x, ζ) � q2(x) dx, by Dφ2 = φ1q2 = (iξ + ζ) � Ω e−ix·ξ (ζµ1(x, ζ)) q2(x) dx = iξ � Ω e−ix·ξ ˜µ1(x, ζ)q2(x) dx, since ¯ζζ = 0 = iξˆq2(ξ) + iξ � Ω e−ix·ξ [˜µ1(x, ζ) − 1] q2(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
148
+ page_content=' Thus, we have: ˆq2(ξ) = h(ξ, ζ) iξ − � Ω e−ix·ξ [˜µ1(x, ζ) − 1] q2(x) dx (27) This is yet not enough to reconstruct the potential, since the integral acts as a residual in the reconstruction and requires data that we technically do not have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
149
+ page_content=' Therefore, we integrate everything over an annulus in k � R<|k|<2R ˆq2(ξ) |k|3 dk = 1 iξ � R<|k|<2R h(ξ, ζ(k)) |k|3 dk − � R<|k|<2R 1 |k|3 � Ω e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x) dx, (28) since the potential does not depend on k it can be taken out of the integral and taking the limit as R → ∞ leads the second integral on the right to decay to zero, obtaining a reconstruction formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
150
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
151
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
152
+ page_content=' Let Ω ⊂ R3 a bounded Lipschitz domain, q ∈ L∞(Ω) be a complex-valued po- tential obtained through a conductivity γ ∈ W 1,∞(Ω), Re γ ≥ c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
153
+ page_content=' Then, we can reconstruct the potential from ˆq2(ξ) = lim R→∞ C iξ � R<|k|<2R h(ξ, ζ(k)) |k|3 dk, (29) where C = 1 4π ln(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
154
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
155
+ page_content=' The scattering data is defined from the solutions of the Dirac system (22) and therefore it holds that ˜µ1 − 1 ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
156
+ page_content=' Starting from (28) we obtain by integrating the right-hand side for any ξ ∈ R3: 4π ln 2 ˆq2(ξ) = 1 iξ � R<|k|<2R h(ξ, ζ(k)) |k|3 dk − � R<|k|<2R 1 |k|3 � Ω e−ix·ξ [˜µ1(x, ζ(k)) − 1] q2(x) dx 6 Let p > 2 and 1/p + 1/q = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
157
+ page_content=' We estimate the last integral: ����� � R<|k|<2R 1 |k|3 � Ω e−ix·ξ [˜µ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
158
+ page_content=' ζ(k)) − 1] q2(x) dx ����� ≤ ≤ � R<|k|<2R 1 |k|3 � Ω ���e−ix·ξ [˜µ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
159
+ page_content=' ζ(k)) − 1] q2(x) ��� dx ≤ CΩ∥q∥∞ � R<|k|<2R 1 |k|3 sup x |˜µ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
160
+ page_content=' ζ(k)) − 1| dk ≤ CΩ∥q∥∞ �� R<|k|<2R 1 |k|3q dk �1/q �� R<|k|<2R sup x |˜µ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
161
+ page_content=' ζ(k)) − 1|p dk �1/p ≤ CΩ∥q∥∞∥˜µ1 − 1∥S �� R<|k|<2R 1 |k|3q dk �1/q Taking the limit as R → 0 the integral that is left goes to zero which implies the desired decay to zero and leaves us with our reconstruction formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
162
+ page_content=' Now, in order to connect the functions that solve the electrical conductivity equation (1) and the solutions to the Dirac equation (18), which are exponential growing, we introduce the following result: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
163
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
164
+ page_content=' Let Ω be a bounded domain in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
165
+ page_content=' Let φ = (φ1, φ2) be a solution of the Dirac system (18) for a potential q ∈ L∞(Ω) associated with the complex-conductivity γ ∈ W 1,∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
166
+ page_content=' If φ1 = ¯φ2 then there exists a unique solution u of: � ¯Du = γ−1/2φ1, Du = γ−1/2φ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
167
+ page_content=' (30) Further, this function fulfills the conductivity equation ∇ · (γ∇u) = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
168
+ page_content=' Let us recall the main theorem, that we are now able to prove with all these pieces we assembled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
169
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
170
+ page_content='1 Let Ω ⊂ R3 a bounded Lipschitz domain, γi ∈ W 1,∞(Ω), i = 1, 2 be two complex-valued conductivities with Re γi ≥ c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
171
+ page_content=' If Λγ1 = Λγ2, then γ1 = γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
172
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
173
+ page_content=' Due to Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
174
+ page_content='3, one only needs to show that the scattering data h for |k| >> 1 is uniquely determined by the Dirichlet-to-Neumann map Λγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
175
+ page_content=' Due to the lack of Poincar´e Lemma in our current framework in quaternionic analysis with the D and ¯D operator, than a new technique is required to obtain a similar proof to [9], for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
176
+ page_content=' For such, let us start with two conductivities γ1, γ2 in W 1,∞(Ω) for Ω a bounded domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
177
+ page_content=' By hypothesis Λγ1 = Λγ2 and thus by [29] we have γ1|∂Ω = γ2|∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
178
+ page_content=' Further, we can extend γj, j = 1, 2 outside Ω in such a way that in R3 \\ Ω and γj − 1 ∈ W 1,∞ comp(R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
179
+ page_content=' Let qj, φj, µj, hj, j = 1, 2 be the potential and the solution in (18), the function in (19), and the scattering data in (26) all associated with the conductivity γj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
180
+ page_content=' Due to the scattering formulation at the boundary ∂Ω, then we just want to know if φ1 = φ2 on ∂Ω when |k| >> 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
181
+ page_content=' First, by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
182
+ page_content='4, we know that there exists an u1 such that φ1 = γ1/2 1 ( ¯Du1, Du1)T , which is a solution to ∇ · (γ1∇u1) = 0 in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
183
+ page_content=' Now, let us define u2 by u2 = � u1 in R3 \\ Ω, u in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
184
+ page_content=' 7 where ˆu is the solution to the Dirichlet problem � ∇ · (γ2∇u) = 0 in Ω, u = u1 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
185
+ page_content=' Let g ∈ C∞ c (R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
186
+ page_content=' Then, � R3 γ2∇u2∇g dx = � R3\\Ω γ1∇u1∇g dx + � Ω γ2∇ˆu∇g dx = − � ∂Ω Λγ1 � u1|∂Ω � g dsx + � ∂Ω Λγ2 � u|∂Ω � g dsx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
187
+ page_content=' Hence, u2 is the solution of ∇ · (γ2∇u2) = 0 in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
188
+ page_content=' Further, the following function ψ2 = γ1/2 2 � ¯Du2, Du2 �T is the solution of (18) where the potential is given by γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
189
+ page_content=' Furthermore, ψ2 has the asymptotics of φ1 in R3 \\ Ω, thus by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
190
+ page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
191
+ page_content='2 it will be the unique solution of the respective integral equation of (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
192
+ page_content=' Thus, ψ2 will be equal φ2 when |k| > R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
193
+ page_content=' Since, on the outside ψ2 ≡ φ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
194
+ page_content=' Then we obtain: φ1 = φ2 in R3 \\ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
195
+ page_content=' In particular, we have equality at the boundary ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
196
+ page_content=' So, this implies that if the Dirichlet- to-Neumann maps are equal the respective scattering data will also be the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
197
+ page_content=' Thus, the Dirichlet-to-Neumann map uniquely determines the potential q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
198
+ page_content=' From the definition of q, we can uniquely determine the conductivity γ up to a constant, which in the end is defined by γ|∂Ω which is uniquely determined by the Dirichlet-to-Neumann map Λγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
199
+ page_content=' 4 Auxiliary Proofs Proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
200
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
201
+ page_content=' Let us assume, without loss of generality, that f is a scalar function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
202
+ page_content=' Further, we present the proof for M 1, since for M 2 it follows analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
203
+ page_content=' Recall, that we choose ζ ∈ C(2) with respect to k ∈ R(2) as ζ = k⊥ + ik 2 , k⊥ · k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
204
+ page_content=' In vector form, this leads to ζ − ζc = ik which implies the following deductions: M 1f(x) = � R3 e−w·(ζ−¯ζc) x − w |x − w|3 � R3 ey·(ζ−¯ζc) w − y |w − y|3 f(y)q2(y) dy q1(w) dw = � R3 � R3 e−iw·k x − w |x − w|3 eiy·k w − y |w − y|3 f(y)q2(y)q1(w) dwdy = � R3 A(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
205
+ page_content=' k)f(y) dy, where A(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
206
+ page_content=' k) = � R3 e−i(w−y)·k x − y |x − y|3 w − y |w − y|3 q2(y)q1(w) dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
207
+ page_content=' Due to the compact support of the potential q2, it holds that A has compact support on the second variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
208
+ page_content=' Let us now apply the norm in terms of k to it: ∥Mf(x, ·)∥Lp(|k|>R) = �� |k|>R |Mf(x, ζ)|p dσζ �1/p = �� |k|>R ���� � Ω A(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
209
+ page_content=' k)f(y) dy ���� p dσk �1/p ≤ � Ω �� |k|>R |A(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
210
+ page_content=' k)f(y)|p dσk �1/p dy ≤ � Ω sup k |A(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
211
+ page_content=' k)| dy ∥f∥S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
212
+ page_content=' 8 In order to complete the proof we show that the first integral goes to zero as R → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
213
+ page_content=' Let As be given with the extra factor α(s|x−w|)α(s|w−y|) in the integrand, where α ∈ C∞ is 1 outside a neighborhood of the origin and 0 inside a smaller neighborhood of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
214
+ page_content=' Since, � B1(0) � B1(0) 1 |w|2 1 |w − y|2 dw dy, it holds that for any ǫ > 0 there exists an s > 0 such that: � Ω |A − As| dy < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
215
+ page_content=' Further, we denote As0,n the function As0 with potentials q1, q2 replaced by their L1 smooth approximation Qn 1 , Qn 2 ∈ C∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
216
+ page_content=' Since the other factors are bounded it holds � Ω |As0 − As0,n| dy < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
217
+ page_content=' Now it is enough to show that As0,n → 0 as |k| → 0 uniformly!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
218
+ page_content=' All integrands inside of it will be in C∞ and uniformly bounded, thus by Riemann-Lebesgue the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
219
+ page_content=' Proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
220
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
221
+ page_content=' Once again recall that ζ = � k⊥ + i k 2 � for k ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
222
+ page_content=' First we show that M 11 ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
223
+ page_content=' We have M 11 = � Ω � Ω e−iw·k x − w |x − w|3 w − y |w − y|3 eiy·kq2(y)q1(w) dy dw,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
224
+ page_content=' and applying the Lp norm in k followed with Minkowski integral inequality we obtain �� |k|>R |M 11|pdk �1/p ≤ � Ω |q1(w)| |x − w|2 �� |k|>R ���� � Ω eiy·k w − y |w − y|3 q2(y)dy ���� p dk �1/p dw The inner most integral resembles a Fourier transform,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
225
+ page_content=' hence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
226
+ page_content=' applying the Hausdorff-Young inequality for p > 2 we have �� |k|>R ���� � Ω eiy·k w − y |w − y|3 q2(y) dy ���� p dk �1/p ≤ �� Ω |q2(y)|p′ |w − y|2p′ dy �1/p′ < C∥q2∥∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
227
+ page_content=' where the last inequality follows quickly by Young’s convolution inequality and Riesz type estimate of the kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
228
+ page_content=' Therefore, by the same Riesz type estimate it holds: �� |k|>R |M 11|p dk �1/p ≤ C∥q2∥∞ � Ω |q1(w)| |x − w|2 dw ≤ C′∥q2∥∞∥q1∥∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
229
+ page_content=' To complete the proof we need to show statement (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
230
+ page_content=' Similarly, to the above proof, we have by Hausdorff-Young Inequality, Young’s convolution inequality and a Riesz type estimate the following: �� |k|>R ���� � R3 eiy·k x − y |x − y|3 q2(y) dσy ���� p dσk �1/p ≤ �� R3 ���� x − y |x − y|3 q2(y) ���� p′ dσy �1/p′ ≤ C∥q2∥∞ We need the following auxiliary result for the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
231
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
232
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
233
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
234
+ page_content=' Let Ω be a bounded Lipschitz domain in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
235
+ page_content=' If h is a scalar-valued and harmonic function that fulfills Vec(S∂Ωh) = 0, then h|∂Ω is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
236
+ page_content=' 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
237
+ page_content=' First, note that I + S∂Ω = P∂Ω is a projector and by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
238
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
239
+ page_content='12 and Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
240
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
241
+ page_content='15 of [16] it holds that P∂Ωh is the boundary value of a monogenic function in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
242
+ page_content=' Since h is a scalar-valued function it holds that P∂Ωh = Sc(P∂Ωh) + Vec(P∂Ωh) = (h + Sc∂Ωh) + Vec(S∂Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
243
+ page_content=' Let w = (h + Sc∂Ωh) and v = Vec(S∂Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
244
+ page_content=' Now, we denote f as the monogenic extension of P∂Ωh in Ω, as such, the boundary values of f fulfill trf = w + v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
245
+ page_content=' Note that by hypothesis we have that v|∂Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
246
+ page_content=' Hence, f is also an harmonic function, which implies that the scalar and vector components are harmonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
247
+ page_content=' � ∆(Vecf) = 0, Vec f|∂Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
248
+ page_content=' By a mean value theorem or a maximum principle it holds that Vecf = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
249
+ page_content=' Due to this and f being monogenic we obtain that Df = 0 ⇔ D(Ref) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
250
+ page_content=' Thus, Ref = c since D is a quaternionic operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
251
+ page_content=' Consequently, the boundary values are also constant, which means that w = c in ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
252
+ page_content=' Since, Sc(S∂Ωh) is an averaging operator it holds that h = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
253
+ page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
254
+ page_content='4 Suppose that (u, v) are solutions to the following equations: � ¯Du = γ−1/2φ1 Dv = γ−1/2φ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
255
+ page_content=' From applying the operator D and ¯D to the first and second equation respectively, we obtain from φ2 = φ H 1 and q2 = qH 1 the following: ∆u = D(γ−1/2φ1) = D(γ−1/2)φ1 + γ−1/2Dφ1 = −1 2γ−3/2(Dγφ1) + γ−1/2φ2q1 = γ−1/2 [q2φ1 + φ2q1] = γ−1/2 � qH 1 φ1 + φ H 1 q1 � = γ−1/2Sc (φ H 1 q1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
256
+ page_content=' and ∆v = ¯D(γ−1/2φ2) = ¯D(γ−1/2)φ2 + γ−1/2 ¯Dφ2 = −1 2γ−3/2( ¯Dγ)φ2 + γ−1/2φ1q2 = γ−1/2 [q1φ2 + φ1q2] = γ−1/2 � q1φ H 1 + φ1qH 1 � = γ−1/2Sc (φ1qH 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
257
+ page_content=' The first thing to notice is that both equations imply that u and v must be scalar-valued functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
258
+ page_content=' Further, notice that ∆(u − v) = γ−1/2 � Sc (φ H 1 q1) − Sc (φ1qH 1 ) � = γ−1/2 � Sc (φ H 1 q1) − Sc (q1φ H 1 ) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
259
+ page_content=' Therefore, h = u − v is an harmonic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
260
+ page_content=' Our objective is to show that h ≡ 0, thus showing that u = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
261
+ page_content=' For such, let us consider the theory of integral transforms in quaternionic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
262
+ page_content=' We have u = ¯T(γ−1/2φ1) + F ∂Ω(γ−1/2φ1) and u = ¯T(γ−1/2φ1) + F ∂Ω(u), which implies that F ∂Ω(γ−1/2φ1) = F ∂Ωu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
263
+ page_content=' 10 Analogously, we obtain F∂Ω(γ−1/2φ2) = F∂Ωv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
264
+ page_content=' Here, we can extrapolate from the first equation and from u being scalar-valued that γ−1/2φ1F∂Ω = F∂Ωu ⇔ γ−1/2φ2F∂Ω = F∂Ωu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
265
+ page_content=' Applying the operator F∂Ω on the other side, we obtain: F 2 ∂Ωu = F∂Ω(γ−1/2φ2)F∂Ω and F 2 ∂Ωv = F∂Ω(γ−1/2φ2)F∂Ω ⇒ F 2 ∂Ωh = F 2 ∂Ω(u − v) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
266
+ page_content=' If we take the trace on both sides, the operator becomes a projector thus we obtain tr F∂Ωh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
267
+ page_content=' Now, through the Sokhotski-Plemelj formula we obtain: tr F∂Ωh = h|∂Ω + S∂Ωh = 0, at ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
268
+ page_content=' Since h is a scalar-valued function that we decompose this formulation with the scalar and vector part to obtain two conditions: � h + Sc(S∂Ωh) = 0 Vec(S∂Ωh) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
269
+ page_content=' Through the second condition and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
270
+ page_content='1 we have that h is constant over ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
271
+ page_content=' Now, given that h is a scalar constant, the first condition reduces to: h(1 + Sc(S∂Ω1)) = 0 By [16] we obtain that 1 + Sc(S∂Ω1) = 1/2 in ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
272
+ page_content=' Therefore, we conclude that h ≡ 0 in ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
273
+ page_content=' Given that h is harmonic, this immediately implies that h = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
274
+ page_content=' Therefore, we obtain u = v, and therefore there exists a unique solution to the initial system through the T and F∂Ω operators in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
275
+ page_content=' To finalize, we only need to show that u fulfills the conductivity equation in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
276
+ page_content=' Bringing the first equation to light ¯Du = γ−1/2φ1, changing the side of the conductivity we get γ1/2 ¯Du = φ1 and applying the D operator to both sides now brings D � γ1/2 ¯Du � = Dφ1 ⇔ D � γ1/2� ¯Du + γ1/2∆u = φ2q1 ⇔ D � γ1/2� ¯Du + γ1/2∆u = γ−1/2Du1 2 ¯Dγ γ ⇔ 1 2γ1/2Dγ ¯Du + γ1/2∆u + 1 2Du ¯Dγ γ1/2 = 0 ⇔ ∇γ · ∇u + γ∆u = 0 ⇔ ∇ · (γ∇u) = 0 As such, we conclude our proof of uniqueness for complex-conductivities in W 1,∞(Ω) from the Dirichlet-to-Neumann map Λγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
277
+ page_content=' Notice that (29) even provides a reconstruction formula, but as mentioned in the previous section it is very unstable for computational purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
278
+ page_content=' References [1] Alessandrini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
279
+ page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
280
+ page_content=' Stable determination of conductivity by boundary measure- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
281
+ page_content=' Applicable Analysis, 27(1-3), 153-172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
282
+ page_content=' [2] Astala, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
283
+ page_content=', Faraco, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
284
+ page_content=', Rogers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
285
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
286
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
287
+ page_content=' Unbounded potential recovery in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
288
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
289
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
290
+ page_content=' ´Ec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
291
+ page_content=' Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
292
+ page_content=' Sup´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
293
+ page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
294
+ page_content=' 11 [3] Astala, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
295
+ page_content=', P¨aiv¨arinta, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
296
+ page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
297
+ page_content=' Calder´on’s inverse conductivity problem in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
298
+ page_content=' Annals of Mathematics, 265-299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
299
+ page_content=' [4] Bl˚asten, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
300
+ page_content=', Imanuvilov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
301
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
302
+ page_content=', Yamamoto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
303
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
304
+ page_content=' Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
305
+ page_content=' Inverse Problems & Imaging, 9(3), 709-723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
306
+ page_content=' [5] Beals, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
307
+ page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
308
+ page_content=' Multidimensional inverse scatterings and nonlinear partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
309
+ page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
310
+ page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
311
+ page_content=' Pure Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
312
+ page_content=' (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
313
+ page_content=' 43, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
314
+ page_content=' 45-70).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
315
+ page_content=' [6] Borcea, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
316
+ page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
317
+ page_content=' Electrical impedance tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
318
+ page_content=' Inverse problems, 18(6), R99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
319
+ page_content=' [7] Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
320
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
321
+ page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
322
+ page_content=' Global uniqueness in the impedance-imaging problem for less regular conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
323
+ page_content=' SIAM Journal on Mathematical Analysis, 27(4), 1049-1056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
324
+ page_content=' [8] Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
325
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
326
+ page_content=', Torres, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
327
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
328
+ page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
329
+ page_content=' Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp, p > 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
330
+ page_content=' Journal of Fourier Analysis and Applications, 9(6), 563-574.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
331
+ page_content=' [9] Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
332
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
333
+ page_content=', Uhlmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
334
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
335
+ page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
336
+ page_content=' Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
337
+ page_content=' Communications in partial differential equations, 22(5-6), 1009-1027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
338
+ page_content=' [10] Bukhgeim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
339
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
340
+ page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
341
+ page_content=' Recovering a potential from Cauchy data in the two-dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
342
+ page_content=' [11] Calder´on, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
343
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
344
+ page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
345
+ page_content=' On an inverse boundary value problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
346
+ page_content=' Computational & Ap- plied Mathematics, 25, 133-138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
347
+ page_content=' [12] Caro, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
348
+ page_content=', Rogers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
349
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
350
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
351
+ page_content=' Global uniqueness for the Calder´on problem with Lips- chitz conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
352
+ page_content=' In Forum of Mathematics, Pi (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
353
+ page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
354
+ page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
355
+ page_content=' [13] Chanillo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
356
+ page_content=' (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
357
+ page_content=' A problem in electrical prospection and an n-dimensional Borg- Levinson theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
358
+ page_content=' Proceedings of the American Mathematical Society, 108(3), 761-767.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
359
+ page_content=' [14] Faddeev, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
360
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
361
+ page_content=' (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
362
+ page_content=' Growing solutions of the Schr¨odinger equation, Dokl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
363
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
364
+ page_content=' Nauk SSSR, 165, 514–517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
365
+ page_content=' [15] Francini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
366
+ page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
367
+ page_content=' Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
368
+ page_content=' Inverse Problems, 16(1), 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
369
+ page_content=' [16] G¨urlebeck, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
370
+ page_content=', Spr¨ossig, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
371
+ page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
372
+ page_content=' Quaternionic Analysis and Elliptic Boundary Value Problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
373
+ page_content=' nternational Series of Numerical Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
374
+ page_content=' Birkh¨auser Basel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
375
+ page_content=' [17] Haberman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
376
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
377
+ page_content=' Uniqueness in Calder´on’s problem for conductivities with un- bounded gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
378
+ page_content=' Communications in Mathematical Physics, 340(2), 639-659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
379
+ page_content=' [18] Haberman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
380
+ page_content=', Tataru, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
381
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
382
+ page_content=' Uniqueness in Calder´on’s problem with Lipschitz conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
383
+ page_content=' Duke Mathematical Journal, 162(3), 497-516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
384
+ page_content=' [19] Hamilton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
385
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
386
+ page_content=', Isaacson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
387
+ page_content=', Kolehmainen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
388
+ page_content=', Muller, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
389
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
390
+ page_content=', Toivainen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
391
+ page_content=', Bray, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
392
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
393
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
394
+ page_content=' 3D Electrical Impedance Tomography reconstructions from simulated electrode data using direct inversion texp and Calder´on methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
395
+ page_content=' Inverse Problems & Imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
396
+ page_content=' [20] Knudsen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
397
+ page_content=', Tamasan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
398
+ page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
399
+ page_content=' Reconstruction of less regular conductivities in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
400
+ page_content=' Communications in Partial Differential Equations, 1, 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
401
+ page_content=' [21] Lakshtanov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
402
+ page_content=', Tejero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
403
+ page_content=', Vainberg, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
404
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
405
+ page_content=' Uniqueness in the inverse conductivity problem for complex-valued Lipschitz conductivities in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
406
+ page_content=' SIAM Journal on Mathematical Analysis, 49(5), 3766-3775.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
407
+ page_content=' [22] Nachman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
408
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
409
+ page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
410
+ page_content=' Reconstructions from boundary measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
411
+ page_content=' Annals of Math- ematics, 128(3), 531-576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
412
+ page_content=' [23] Nachman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
413
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
414
+ page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
415
+ page_content=' Global uniqueness for a two-dimensional inverse boundary value problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
416
+ page_content=' Annals of Mathematics, 71-96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
417
+ page_content=' [24] Nachman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
418
+ page_content=', Sylvester, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
419
+ page_content=', Uhlmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
420
+ page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
421
+ page_content=' An n-dimensional Borg-Levinson the- orem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
422
+ page_content=' Communications in Mathematical Physics, 115(4), 595-605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
423
+ page_content=' [25] Novikov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
424
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
425
+ page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
426
+ page_content=' Multidimensional inverse spectral problem for the equation −∆ψ + (v(x) − Eu(x))ψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
427
+ page_content=' Functional Analysis and Its Applications, 22(4), 263-272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
428
+ page_content=' [26] Novikov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
429
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
430
+ page_content=', Santacesaria, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
431
+ page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
432
+ page_content=' Global uniqueness and reconstruction for the multi-channel Gelfand–Calder´on inverse problem in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
433
+ page_content=' Bulletin des Sci- ences Mathematiques, 135(5), 421-434.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
434
+ page_content=' [27] P¨aiv¨arinta, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
435
+ page_content=', Panchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
436
+ page_content=', Uhlmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
437
+ page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
438
+ page_content=' Complex geometrical optics solu- tions for Lipschitz conductivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
439
+ page_content=' Revista Matematica Iberoamericana, 19(1), 57-72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
440
+ page_content=' 12 [28] Pombo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
441
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
442
+ page_content=' CGO-Faddeev approach for complex conductivities with regular jumps in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
443
+ page_content=' Inverse Problems, 36(2), 024002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
444
+ page_content=' [29] Pombo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
445
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
446
+ page_content=' Reconstructions from boundary measurements: complex conductivi- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
447
+ page_content=' arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
448
+ page_content='09894.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
449
+ page_content=' [30] Ros´en, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
450
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
451
+ page_content=' Geometric multivector analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
452
+ page_content=' Springer International Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
453
+ page_content=' [31] Sylvester, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
454
+ page_content=', Uhlmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
455
+ page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
456
+ page_content=' A global uniqueness theorem for an inverse boundary value problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
457
+ page_content=' Annals of mathematics, 153-169 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtFAT4oBgHgl3EQftR52/content/2301.08663v1.pdf'}
INE3T4oBgHgl3EQfWwrb/content/2301.04473v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a1c2fcbd9d2f3cadc0e0129f2e4ce55e1b1a15672632f07608022a3d8783a17
3
+ size 1876789
INE3T4oBgHgl3EQfWwrb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d8a4adbe0f49c2687089810541e87377f5aaf58f3a55419c1ff7aa432abb8d1
3
+ size 2293805
ItFIT4oBgHgl3EQfYivh/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a60098e189ea7bbcfcf09fbf08bcda6317442b219be8781978c5538c0afd02
3
+ size 9306157
JNE2T4oBgHgl3EQf_wld/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1320e60a8b82f97aecaa9351556f59204091f000b3206df50cdd4ad90292c6e1
3
+ size 3080237
JtE1T4oBgHgl3EQfYQS_/content/2301.03137v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b73c0e814cb6a6b0a7e10e1c4be3e87c463c638dcc2e0db7d6d0c366d671d868
3
+ size 307716
JtE1T4oBgHgl3EQfYQS_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d21c85820be8a2430291003e9b3d887a4ac4a81759d3621db6be3e768abb02e3
3
+ size 9830445
JtE1T4oBgHgl3EQfYQS_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8a4bd5dfec5aacbea617ea498154f14e6d398687f580b41630f9218c6624f24
3
+ size 279682
JtE4T4oBgHgl3EQf7Q7_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7b769cc82aafcd70f051409aaa7ee0fd264e5b4c00f4fd660f311533e62d80f
3
+ size 12320813
KtE0T4oBgHgl3EQfzgKz/content/tmp_files/2301.02674v1.pdf.txt ADDED
@@ -0,0 +1,2738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 10, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Molecular Mapping of DR Tau’s Protoplanetary Disk, Envelope, Outflow, and Large-Scale Spiral Arm
4
+ Jane Huang,1, ∗ Edwin A. Bergin,1 Jaehan Bae,2 Myriam Benisty,3 and Sean M. Andrews4
5
+ 1Department of Astronomy, University of Michigan, 323 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109, United States of
6
+ America
7
+ 2Department of Astronomy, University of Florida, Gainesville, FL 32611, United States of America
8
+ 3Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
9
+ 4Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA
10
+ ABSTRACT
11
+ DR Tau has been noted for its unusually high variability in comparison with other T Tauri stars.
12
+ Although it is one of the most extensively studied pre-main sequence stars, observations with millimeter
13
+ interferometry have so far been relatively limited. We present NOEMA images of 12CO, 13CO, C18O,
14
+ SO, DCO+, and H2CO toward DR Tau at a resolution of ∼ 0.5′′ (∼ 100 au). In addition to the
15
+ protoplanetary disk, CO emission reveals an envelope, a faint asymmetric outflow, and a spiral arm with
16
+ a clump. The ∼ 1200 au extent of the CO arm far exceeds that of the spiral arms previously detected
17
+ in scattered light, which underlines the necessity of sensitive molecular imaging for contextualizing
18
+ the disk environment. The kinematics and compact emission distribution of C18O, SO, DCO+, and
19
+ H2CO indicate that they originate primarily from within the Keplerian circumstellar disk. The SO
20
+ emission, though, also exhibits an asymmetry that may be due to interaction with infalling material or
21
+ unresolved substructure. The complex environment of DR Tau is reminiscent of those of outbursting
22
+ FUor sources and some EXor sources, suggesting that DR Tau’s extreme stellar activity could likewise
23
+ be linked to disk instabilities promoted by large-scale infall.
24
+ Keywords: protoplanetary disks—ISM: molecules—stars: individual (DR Tau)
25
+ 1. INTRODUCTION
26
+ In the classic schema of low-mass star formation,
27
+ young stellar objects (YSOs) are divided into four
28
+ classes (0, I, II, and III) based on their spectral energy
29
+ distributions (e.g., Lada & Wilking 1984; Lada 1987;
30
+ Andre et al. 1993). These classes are generally thought
31
+ to correspond to different evolutionary stages, such that
32
+ a Class 0 YSO has an envelope mass comparable to or
33
+ greater than that of the protostar (and its possible disk),
34
+ a Class I YSO has an envelope that is less massive than
35
+ the protostar but still comparable to its disk, a Class II
36
+ YSO has a disk with negligible envelope material, and
37
+ a Class III YSO has negligible amounts of remaining
38
+ circumstellar material (e.g., Wilking et al. 1989; Andre
39
+ & Montmerle 1994; Dunham et al. 2014). The corre-
40
+ spondence between SED class, evolutionary stage, and
41
+ morphology, though, is known to be imperfect (e.g., Ro-
42
+ bitaille et al. 2006).
43
+ Corresponding author: Jane Huang
44
45
+ ∗ NASA Hubble Fellowship Program Sagan Fellow
46
+ Planet formation models often adopt the characteris-
47
+ tics of envelope-free Class II disks as a starting point
48
+ (e.g., ¨Oberg et al. 2011a; Lambrechts & Johansen 2012;
49
+ Zhang et al. 2018). However, scattered light and molec-
50
+ ular imaging have yielded identifications of a number of
51
+ Class II disks that appear to be interacting either with
52
+ (remnant) envelopes or ambient cloud material (e.g.,
53
+ Grady et al. 1999; Garufi et al. 2020; Ginski et al. 2021;
54
+ Huang et al. 2022). The pace of these identifications has
55
+ increased with the advent of instruments such as ALMA
56
+ and VLT/SPHERE. Detections of gaps and rings in the
57
+ millimeter continuum of some Class II disks that ap-
58
+ pear to have remnant envelope material, and even a few
59
+ embedded Class I disks, offer evidence that planet for-
60
+ mation can take place under more dynamically complex
61
+ conditions than typically assumed (e.g., ALMA Part-
62
+ nership et al. 2015; Segura-Cox et al. 2020; Huang et al.
63
+ 2021; Kanagawa et al. 2021). Moreover, Currie et al.
64
+ (2022) recently detected a protoplanet in the disk of
65
+ AB Aur, a system that appears to still be undergo-
66
+ ing infall from a remnant envelope (e.g., Tang et al.
67
+ 2012). Simulations suggest that accretion of cloud or
68
+ envelope material by the disk can influence its thermal
69
+ structure, surface density profile, stability, and degree
70
+ of misalignment (e.g., Bae et al. 2015; Dullemond et al.
71
+ arXiv:2301.02674v1 [astro-ph.SR] 6 Jan 2023
72
+
73
+ 2
74
+ Huang et al.
75
+ 2019; Kuznetsova et al. 2022). These disk conditions, in
76
+ turn, are expected to influence where, when, and how
77
+ planets form and migrate, as well as their composition
78
+ (e.g., Stevenson & Lunine 1988; Boss 1997; Kokubo &
79
+ Ida 2002). Hence, observations of the immediate envi-
80
+ ronments of young stars are essential to establish the
81
+ range of circumstances under which planet formation
82
+ might proceed.
83
+ Recent
84
+ observations
85
+ of
86
+ DR
87
+ Tau
88
+ (J2000
89
+ 04:47:06.215+16:58:42.81), a T Tauri star located at
90
+ a distance of 192 ± 1 pc in the Taurus star-forming re-
91
+ gion (Gaia Collaboration et al. 2021; Bailer-Jones et al.
92
+ 2021), have suggested that its disk is being externally
93
+ perturbed. Mesa et al. (2022) detected spiral arms in
94
+ scattered light images of the DR Tau protoplanetary
95
+ disk and hypothesized that one of them was triggered
96
+ by infalling material. Meanwhile, Sturm et al. (2022)
97
+ detected non-Keplerian emission in ALMA observations
98
+ of 13CO and [C I] toward DR Tau, attributing this
99
+ component to an infalling stream of gas.
100
+ DR Tau is perhaps best known for its unusual degree
101
+ of stellar variability.
102
+ The star has faded and bright-
103
+ ened in B-band by several magnitudes over the course
104
+ of almost a century (Chavarria-K. 1979). Most notably,
105
+ DR Tau brightened in B-band by about five magni-
106
+ tudes between 1970 to 1979, an event that Chavarria-
107
+ K. (1979) compared to the outbursts of FUor (also
108
+ known as FU Ori) sources. DR Tau also exhibits sig-
109
+ nificant short-term spectroscopic and photometric vari-
110
+ ability—on timescales of a few days, DR Tau has been
111
+ observed to change by up to a couple magnitudes in B-
112
+ band and by up to a factor of a few in its optical line
113
+ fluxes (e.g., Bertout et al. 1977; Guenther & Hessman
114
+ 1993; Alencar et al. 2001). DR Tau has a high stellar
115
+ mass accretion rate of 4.8 × 10−7 M⊙ yr−1 (McClure
116
+ 2019). This high accretion level leads to significant con-
117
+ tinuum veiling, which poses a challenge for determining
118
+ its spectral type (e.g., Cohen & Kuhi 1979). Spectral
119
+ type estimates have ranged from M0 to K4 (e.g. Imhoff
120
+ & Appenzeller 1987; Herczeg & Hillenbrand 2014; Mc-
121
+ Clure 2019; Gangi et al. 2022).
122
+ DR Tau was part of the original list of outbursting
123
+ EXor variables by Herbig (1989), although it has not
124
+ always been included in subsequent compilations of EX-
125
+ ors (e.g., Audard et al. 2014). DR Tau is unique among
126
+ the EXors listed in the Herbig (1989) catalog in that
127
+ the 18-year rise time to its outburst was much longer
128
+ than those of the other EXors, which were typically on
129
+ the order of a couple hundred days. EXors are usually
130
+ distinguished from outbursting FUor sources insofar as
131
+ EXor outbursts tend to be more modest in magnitude
132
+ and duration, and EXors have T Tauri-like spectra dur-
133
+ ing outbursts rather than the supergiant-like spectra
134
+ of FUors (e.g., Audard et al. 2014). Several hypothe-
135
+ ses have been proposed to account for the outbursts of
136
+ young stars, including disk instabilities driven by mass
137
+ buildup through infall from envelopes or cloud material,
138
+ binary interactions, and stellar flybys (e.g., Bonnell &
139
+ Bastien 1992; Vorobyov & Basu 2005; Zhu et al. 2010;
140
+ Forgan & Rice 2010; Bae et al. 2014; Dullemond et al.
141
+ 2019). Because these outbursts affect the disk thermal
142
+ structure, they may significantly affect how planet for-
143
+ mation proceeds by altering molecular abundances, dust
144
+ properties, and snowline locations (e.g., Juh´asz et al.
145
+ 2012; Banzatti et al. 2012; Cieza et al. 2016; van ’t Hoff
146
+ et al. 2018; Jørgensen et al. 2022). The hypothesized
147
+ connection between outbursts and environmental inter-
148
+ actions further motivates an examination of DR Tau’s
149
+ surroundings.
150
+ Although DR Tau has been a popular target for obser-
151
+ vations ranging from infrared to ultraviolet wavelengths
152
+ (e.g., Kenyon et al. 1994; Ardila et al. 2002; Salyk et al.
153
+ 2008; Pontoppidan et al. 2011; Banzatti et al. 2014, and
154
+ references above), relatively few observations with mil-
155
+ limeter interferometry have been reported.
156
+ The mil-
157
+ limeter continuum, which traces the distribution of large
158
+ dust grains, has been imaged on several occasions (e.g.,
159
+ Kitamura et al. 2002; Andrews & Williams 2007; Taz-
160
+ zari et al. 2016; Long et al. 2019). The millimeter con-
161
+ tinuum emission is fairly compact, with 95% of the flux
162
+ contained within a 53 au radius (Long et al. 2019). Al-
163
+ though no substructures are immediately apparent in
164
+ the highest resolution image to date (tracing scales down
165
+ to ∼ 20 au), modeling of the visibilities suggests the
166
+ presence of gaps and rings that may be associated with
167
+ planet-disk interactions (Jennings et al. 2020). Other
168
+ than 13CO, C18O, and [C I] (Braun et al. 2021; Sturm
169
+ et al. 2022), no interferometric line observations of DR
170
+ Tau have previously been published.
171
+ The upgraded wideband capabilities of the Northern
172
+ Extended Millimeter Array (NOEMA) provided an op-
173
+ portunity to observe a number of lines simultaneously
174
+ toward DR Tau. We obtained sensitive observations of
175
+ 12CO, 13CO, C18O, SO, DCO+, and H2CO at a resolu-
176
+ tion of ∼ 0.5′′ (∼ 100 au) to map DR Tau’s structure.
177
+ The observations and data reduction are summarized
178
+ in Section 2. The molecular detections are analyzed in
179
+ Section 3, and the implications of DR Tau’s complex
180
+ structures are discussed in Section 4. The summary and
181
+ conclusions are presented in Section 5.
182
+ 2. OBSERVATIONS AND DATA REDUCTION
183
+ DR Tau was observed with the NOEMA PolyFiX
184
+ correlator in dual polarization mode during program
185
+ W20BE (PI: J. Huang). The correlator setup covered
186
+ frequencies from 213.9-221.6 GHz and 229.4-237.2 GHz
187
+ at a resolution of 2 MHz. Within these frequency ranges,
188
+ we placed a series of chunks, each with a resolution of
189
+ 62.5 kHz and width of 64 MHz, in order to resolve molec-
190
+ ular lines of interest (detailed further in Section 3 and
191
+ Appendix A).
192
+ The first set of observations was executed in C config-
193
+ uration on 2021 January 08, with baseline lengths rang-
194
+ ing from 24 to 328 m. The second set of observations
195
+
196
+ Molecular Mapping of DR Tau
197
+ 3
198
+ was executed in A configuration on 2021 March 03, with
199
+ baseline lengths ranging from 32 to 760 m. Each con-
200
+ figuration used eleven antennas. For each set of obser-
201
+ vations, LkHα 101 served as the flux calibrator, 3C 84
202
+ served as the bandpass calibrator, and 0446+112 and
203
+ 0507+179 served as the phase calibrators. The on-source
204
+ time was 3.0 hours in C configuration and 3.4 hours in
205
+ A configuration.
206
+ The raw data were calibrated with the NOEMA
207
+ pipeline in CLIC, which is part of the GILDAS package
208
+ (Pety 2005; Gildas Team 2013).
209
+ Then, the following
210
+ steps were performed with the GILDAS MAPPING software.
211
+ The calibrated visibilities were written out to separate
212
+ uv-tables corresponding to the low spectral resolution,
213
+ wide bandwidth data and the high spectral resolution,
214
+ narrow bandwidth spectral windows. After flagging of
215
+ channels with strong line emission, the wide bandwidth
216
+ uv-tables were spectrally averaged to produce contin-
217
+ uum uv-tables.
218
+ For each of the four basebands, the
219
+ continuum was imaged with the CLEAN algorithm and
220
+ three phase self-calibration loops were performed using
221
+ solution intervals of 180, 90, and 45 seconds. The self-
222
+ calibration solutions were then applied to the uv-tables
223
+ for the narrow spectral windows that fell within the cor-
224
+ responding basebands. Continuum subtraction was per-
225
+ formed for each spectral window separately in the uv
226
+ plane by fitting a linear baseline.
227
+ The self-calibrated, continuum-subtracted uv tables
228
+ were converted to measurement sets to enable imag-
229
+ ing with the Common Astronomy Software Applica-
230
+ tions (CASA) 6.4 (CASA Team et al. 2022). Because
231
+ GILDAS outputs frequencies in the rest frame of the
232
+ source (i.e., the frequency that corresponds to the source
233
+ systemic velocity input by the observer is the rest fre-
234
+ quency of the line of interest), we had to manually cor-
235
+ rect the frequencies in the measurement sets so that
236
+ CASA would output image cubes with the appropri-
237
+ ate LSRK velocities.
238
+ Each line was imaged with the
239
+ tclean implementation of the multi-scale CLEAN al-
240
+ gorithm (Rau & Cornwell 2011).
241
+ We set the robust
242
+ value to 0.5 and and the image cube channel spacing
243
+ to 0.2 km s−1.
244
+ To accommodate the irregular mor-
245
+ phology of the 12CO and 13CO J = 2 − 1 emission,
246
+ we employed the auto-multithresh algorithm (Kep-
247
+ ley et al. 2020) to define the CLEAN masks, choos-
248
+ ing the following parameter values after some experi-
249
+ mentation: sidelobethreshold=2.0, noisethreshold=4.0,
250
+ minbeamfrac=0.3, and negativethreshold=7.0.
251
+ Initial
252
+ imaging tests yielded prominent striping artifacts due
253
+ to the poor uv sampling of the spatially extended cloud
254
+ emission, so we re-imaged these lines without baselines
255
+ shorter than 20 kλ.
256
+ For the other molecules, where
257
+ only compact emission was detected, we used a circu-
258
+ lar CLEAN mask with a radius of 2.6′′ and included all
259
+ baselines. A Gaussian uv taper of 1.0′′ was used to in-
260
+ crease sensitivity to weaker lines (i.e., lines other than
261
+ 12CO, 13CO, C18O, SO, DCO+, and H2CO JKaKc =
262
+ 303 − 202). After CLEANing, a primary beam correc-
263
+ tion was applied to each image cube.
264
+ Calibrated visibilities and images can be down-
265
+ loaded
266
+ at
267
+ https://zenodo.org/record/7370498#
268
+ .Y7U-qezMKeB.
269
+ 3. RESULTS
270
+ 3.1. Overview of Line Observations
271
+ The primary line targets were 12CO, 13CO, C18O, SO,
272
+ DCO+, and H2CO. The CO isotopologues serve as gas
273
+ tracers, SO is a potential shock tracer (e.g., Pineau des
274
+ Forˆets et al. 1993), and H2CO and DCO+ are common
275
+ cold disk gas tracers (e.g., Huang et al. 2017; Pegues
276
+ et al. 2020). The synthesized beam and per-channel rms
277
+ (estimated from line-free channels) for the primary line
278
+ targets are listed in Table 1, and channel maps are pre-
279
+ sented in Appendix B. Spectra for the detected lines,
280
+ which were extracted using circular masks with diam-
281
+ eters listed in Table 1, are shown in Figure 1.
282
+ Since
283
+ the spatial extent of 12CO and 13CO are ambiguous due
284
+ to spatial filtering and cloud contamination, we used
285
+ extraction masks approximately equal to the primary
286
+ beam FWHM at 1.3 mm (21′′). The mask sizes for the
287
+ other lines were chosen based on the approximate radial
288
+ extent of the 3σ emission in the image cubes. Fluxes
289
+ were measured by integrating each spectrum within the
290
+ velocity ranges listed in Table 1. The velocity integra-
291
+ tion ranges for the CO isotopologues were selected based
292
+ on where emission above the 3σ level is detected. For
293
+ the weaker lines, the C18O velocity integration range
294
+ was adopted. The 1σ flux uncertainties were estimated
295
+ as ∆v ×
296
+
297
+ N × σspec, where ∆v is the channel width (in
298
+ km s−1), N is the number of channels spanned by the
299
+ line, and σspec is the standard deviation (in Jy) mea-
300
+ sured from a signal-free portion of the spectrum (this is
301
+ not to be confused with the per-channel rms value listed
302
+ in Table 1 (in mJy beam−1), which is calculated from the
303
+ image cube). However, the statistical uncertainties do
304
+ not capture the true uncertainty of the fluxes for 12CO
305
+ and 13CO, which are affected by cloud contamination
306
+ and spatial filtering.
307
+ We categorize a line as detected if emission is above
308
+ the 5σ level within 2′′ of DR Tau in at least one channel
309
+ of the image cube and above the 3σ level in at least two
310
+ adjacent channels. By these criteria, 12CO, 13CO, C18O,
311
+ SO, DCO+, and H2CO 303 − 202 are firmly detected.
312
+ While H2CO 321 − 220 does not meet these criteria, its
313
+ integrated flux is ⪆ 4σ when extracted over the same ve-
314
+ locity range and emitting region as the strong 303 − 202
315
+ transition, so this line is considered to be tentatively de-
316
+ tected. The channel maps for the 322 − 221 transition
317
+ (Appendix B) show 4σ emission at 10.2 kms−1 that is
318
+ cospatial with the stronger 303 − 202 transition, but the
319
+ velocity-integrated flux from the spectrum is < 2σ. Fur-
320
+ thermore, the peak of the spectrum occurs at a velocity
321
+
322
+ 4
323
+ Huang et al.
324
+ Table 1. Imaging Summary for Primary Line Targets
325
+ Transition
326
+ Synthesized beam
327
+ Per-channel RMS noisea
328
+ Velocity rangeb
329
+ Extraction Mask Diameter
330
+ Fluxc
331
+ (arcsec × arcsec (◦))
332
+ (mJy beam−1)
333
+ (km s−1)
334
+ (arcsec)
335
+ (mJy km s−1)
336
+ 12CO J = 2 − 1
337
+ 0.79 × 0.47 (18.2◦)
338
+ 7
339
+ [−2, 17]
340
+ 21
341
+ 37900 ± 200d
342
+ 13CO J = 2 − 1
343
+ 0.84 × 0.49 (17.3◦)
344
+ 6
345
+ [7.6, 11.4]
346
+ 21
347
+ 5730 ± 70d
348
+ C18O J = 2 − 1
349
+ 0.85 × 0.50 (17.3◦)
350
+ 6
351
+ [9.0, 10.8]
352
+ 4
353
+ 622 ± 10
354
+ SO JN = 65 − 54
355
+ 0.85 × 0.50 (17.2◦)
356
+ 6
357
+ [9.0, 10.8]
358
+ 3
359
+ 195 ± 9
360
+ SO JN = 55 − 44
361
+ 0.86 × 0.50 (17.1◦)
362
+ 6
363
+ [9.0, 10.8]
364
+ 3
365
+ 96 ± 10
366
+ DCO+ J = 3 − 2
367
+ 0.86 × 0.50 (17.1◦)
368
+ 6
369
+ [9.0, 10.8]
370
+ 3
371
+ 40 ± 10
372
+ H2CO JKaKc = 303 − 202
373
+ 0.86 × 0.50 (17.2◦)
374
+ 6
375
+ [9.0, 10.8]
376
+ 3
377
+ 248 ± 11
378
+ H2CO JKaKc = 322 − 221
379
+ 1.20 × 0.93 (17.1◦)
380
+ 7
381
+ [9.0, 10.8]
382
+ 3
383
+ < 30
384
+ H2CO JKaKc = 321 − 220
385
+ 1.20 × 0.93 (17.1◦)
386
+ 7
387
+ [9.0, 10.8]
388
+ 3
389
+ 38 ± 8
390
+ aWith channel widths of 0.2 km s−1.
391
+ b LSRK velocity range over which moment maps are produced and the flux is estimated.
392
+ c The 1σ error bars do not include the systematic flux uncertainty (∼ 10%).
393
+ dThese lines are significantly affected by spatial filtering, so the statistical uncertainty does not reflect the true uncertainty in the fluxes.
394
+ well offset from the peak of the 303 − 202 and 321 − 220
395
+ lines. Therefore, we do not consider the 322 − 221 tran-
396
+ sition to be detected.
397
+ Integrated intensity maps of the primary line targets
398
+ are presented in Figure 2, using the velocity integration
399
+ ranges listed in Table 1. The intensity-weighted veloc-
400
+ ity maps of the stronger lines are presented in Figure
401
+ 3. For 12CO and 13CO, the integrated intensity maps
402
+ excluded pixels in the image cube below the 3σ level
403
+ and the intensity-weighted velocity map excluded pix-
404
+ els below the 6σ level in order to reduce contributions
405
+ from cloud contamination and artifacts from spatial fil-
406
+ tering. For all other lines, no clipping was used for the
407
+ integrated intensity maps, and a 4σ clip was adopted for
408
+ the intensity-weighed velocity maps.
409
+ A summary of the auxiliary line observations (none of
410
+ which yielded a detection) is presented in Appendix C.
411
+ 3.2. Structures traced by CO isotopologues
412
+ Due to their differing optical depths, the three de-
413
+ tected CO isotopologues reveal different components of
414
+ the DR Tau system, including the circumstellar disk, an
415
+ arm, an envelope, and an outflow.
416
+ An overhead car-
417
+ toon schematic of the system is shown in Figure 4. We
418
+ describe each component in further detail below.
419
+ 3.2.1. The circumstellar disk
420
+ C18O is the least optically thick of the three detected
421
+ CO isotopologues and therefore best traces the Keple-
422
+ rian rotation of the circumstellar disk (see Figure 3).
423
+ The southern side is blueshifted and the northern side is
424
+ redshifted relative to the systemic velocity, which Braun
425
+ et al. (2021) estimated to be vsys = 9.9+0.08
426
+ −0.09 km s−1 from
427
+ ALMA observations of 13CO and C18O J = 2−1. Signs
428
+ of Keplerian rotation are visible in the inner regions of
429
+ the NOEMA 13CO intensity-weighted velocity map and
430
+ coincide with the bright, compact emission component
431
+ in the integrated intensity map, but the disk edge is
432
+ not well-defined due to the presence of extended, non-
433
+ Keplerian emission. From visual inspection of the 13CO
434
+ emission, we estimate that the Keplerian disk has a ra-
435
+ dial extent of ∼ 300 au, but this should only be consid-
436
+ ered a lower bound for the disk size because the abun-
437
+ dance of 13CO is generally too low in the outer disk
438
+ to recover the disk size robustly (e.g., Trapman et al.
439
+ 2019). Finally, 12CO is dominated by large-scale, non-
440
+ Keplerian structures.
441
+ The NOEMA observations do not strongly constrain
442
+ the disk orientation, since the C18O emission is spanned
443
+ by only a few synthesized beams. However, Long et al.
444
+ (2019) measured a position angle (P.A.) of 3.4+8.2
445
+ −8.0 de-
446
+ grees east of north and an inclination angle of 5.4+2.1
447
+ −2.6
448
+ degrees from ALMA millimeter continuum observations
449
+ at an angular resolution of ∼ 0.1′′, which corresponds
450
+ to ∼ 20 au.
451
+ We adopt these values for our analysis.
452
+ Although our new 12CO and 13CO observations show
453
+ significant non-disk emission, Sturm et al. (2022) found
454
+ that their ALMA C18O observations could be largely re-
455
+ produced by a Keplerian disk model employing the disk
456
+ orientation derived from Long et al. (2019). Because the
457
+ disk is nearly face-on, the C18O spectrum only exhibits
458
+ a single peak at the systemic velocity rather than the
459
+ double-peak characteristic of more inclined disks.
460
+
461
+ Molecular Mapping of DR Tau
462
+ 5
463
+ 5
464
+ 0
465
+ 5
466
+ 10
467
+ 15
468
+ 20
469
+ 25
470
+ LSRK Velocity (km s
471
+ 1)
472
+ 0
473
+ 5
474
+ 10
475
+ 15
476
+ 20
477
+ 25
478
+ Flux (Jy)
479
+ 12CO 2-1
480
+ 5.0
481
+ 7.5
482
+ 10.0
483
+ 12.5
484
+ 15.0
485
+ LSRK Velocity (km s
486
+ 1)
487
+ 0.0
488
+ 2.5
489
+ 5.0
490
+ 7.5
491
+ Flux (Jy)
492
+ 13CO 2-1
493
+ 5.0
494
+ 7.5
495
+ 10.0
496
+ 12.5
497
+ 15.0
498
+ LSRK Velocity (km s
499
+ 1)
500
+ 0.00
501
+ 0.25
502
+ 0.50
503
+ 0.75
504
+ Flux (Jy)
505
+ C18O 2-1
506
+ 5.0
507
+ 7.5
508
+ 10.0
509
+ 12.5
510
+ 15.0
511
+ LSRK Velocity (km s
512
+ 1)
513
+ 0.0
514
+ 0.1
515
+ 0.2
516
+ Flux (Jy)
517
+ SO 65
518
+ 54
519
+ 5.0
520
+ 7.5
521
+ 10.0
522
+ 12.5
523
+ 15.0
524
+ LSRK Velocity (km s
525
+ 1)
526
+ 0.05
527
+ 0.00
528
+ 0.05
529
+ 0.10
530
+ 0.15
531
+ Flux (Jy)
532
+ SO 55
533
+ 44
534
+ 5.0
535
+ 7.5
536
+ 10.0
537
+ 12.5
538
+ 15.0
539
+ LSRK Velocity (km s
540
+ 1)
541
+ 0.04
542
+ 0.00
543
+ 0.04
544
+ 0.08
545
+ Flux (Jy)
546
+ DCO + 3
547
+ 2
548
+ 5.0
549
+ 7.5
550
+ 10.0
551
+ 12.5
552
+ 15.0
553
+ LSRK Velocity (km s
554
+ 1)
555
+ 0.0
556
+ 0.1
557
+ 0.2
558
+ 0.3
559
+ 0.4
560
+ Flux (Jy)
561
+ H2CO 303
562
+ 202
563
+ 5.0
564
+ 7.5
565
+ 10.0
566
+ 12.5
567
+ 15.0
568
+ LSRK Velocity (km s
569
+ 1)
570
+ 0.050
571
+ 0.025
572
+ 0.000
573
+ 0.025
574
+ 0.050
575
+ Flux (Jy)
576
+ H2CO 322
577
+ 221
578
+ 5.0
579
+ 7.5
580
+ 10.0
581
+ 12.5
582
+ 15.0
583
+ LSRK Velocity (km s
584
+ 1)
585
+ 0.025
586
+ 0.000
587
+ 0.025
588
+ 0.050
589
+ Flux (Jy)
590
+ H2CO 321
591
+ 220
592
+ Figure 1. Source-integrated spectra of the primary line targets toward DR Tau. The vertical red dotted line marks the systemic
593
+ velocity. The gray bars denote regions where cloud contamination is apparent.
594
+
595
+ 6
596
+ Huang et al.
597
+ 9
598
+ 6
599
+ 3
600
+ 0
601
+ 3
602
+ 6
603
+ 9
604
+ 9
605
+ 6
606
+ 3
607
+ 0
608
+ 3
609
+ 6
610
+ 9
611
+ 12CO 2
612
+ 1
613
+ 200 au
614
+ 5 100 300
615
+ 900 2100
616
+ 9
617
+ 6
618
+ 3
619
+ 0
620
+ 3
621
+ 6
622
+ 9
623
+ 9
624
+ 6
625
+ 3
626
+ 0
627
+ 3
628
+ 6
629
+ 9
630
+ 13CO 2
631
+ 1
632
+ 200 au
633
+ 5
634
+ 25
635
+ 75
636
+ 150 300
637
+ Integrated Intensity (mJy beam
638
+ 1 km s
639
+ 1)
640
+ 9
641
+ 6
642
+ 3
643
+ 0
644
+ 3
645
+ 6
646
+ 9
647
+ 9
648
+ 6
649
+ 3
650
+ 0
651
+ 3
652
+ 6
653
+ 9
654
+ C18O 2
655
+ 1
656
+ 200 au
657
+ 0
658
+ 25 50
659
+ 100
660
+ 160
661
+ 2
662
+ 1
663
+ 0
664
+ 1
665
+ 2
666
+ 2
667
+ 1
668
+ 0
669
+ 1
670
+ 2
671
+ SO 65
672
+ 54
673
+ 200 au
674
+ 0
675
+ 10 20 30 40 50
676
+ 2
677
+ 1
678
+ 0
679
+ 1
680
+ 2
681
+ 2
682
+ 1
683
+ 0
684
+ 1
685
+ 2
686
+ SO 55
687
+ 44
688
+ 200 au
689
+ 0
690
+ 7
691
+ 14
692
+ 21
693
+ 28
694
+ 35
695
+ 2
696
+ 1
697
+ 0
698
+ 1
699
+ 2
700
+ 2
701
+ 1
702
+ 0
703
+ 1
704
+ 2
705
+ DCO + 3
706
+ 2
707
+ 200 au
708
+ 0
709
+ 5
710
+ 10
711
+ 15
712
+ 20
713
+ 25
714
+ 2
715
+ 1
716
+ 0
717
+ 1
718
+ 2
719
+ ['']
720
+ 2
721
+ 1
722
+ 0
723
+ 1
724
+ 2
725
+ ['']
726
+ H2CO 303
727
+ 202
728
+ 200 au
729
+ 0
730
+ 15
731
+ 30
732
+ 45
733
+ 60
734
+ 2
735
+ 1
736
+ 0
737
+ 1
738
+ 2
739
+ 2
740
+ 1
741
+ 0
742
+ 1
743
+ 2
744
+ H2CO 322
745
+ 221
746
+ 200 au
747
+ 0
748
+ 4
749
+ 8
750
+ 12
751
+ 16
752
+ 2
753
+ 1
754
+ 0
755
+ 1
756
+ 2
757
+ 2
758
+ 1
759
+ 0
760
+ 1
761
+ 2
762
+ H2CO 321
763
+ 220
764
+ 200 au
765
+ 0
766
+ 6
767
+ 12
768
+ 18
769
+ 24
770
+ Figure 2. Integrated intensity maps of primary line targets observed toward DR Tau. The synthesized beam is drawn in the
771
+ lower left corner of each panel. Black crosses mark the disk center. The axes show offsets from the disk center in arcseconds.
772
+ For the CO isotopologues, the color scale uses an arcsinh stretch to make faint extended features more visible. Note that the
773
+ size scales are different between the top row and the other rows.
774
+
775
+ Molecular Mapping of DR Tau
776
+ 7
777
+ 8
778
+ 4
779
+ 0
780
+ 4
781
+ 8
782
+ 8
783
+ 4
784
+ 0
785
+ 4
786
+ 8
787
+ 12CO 2
788
+ 1
789
+ 200 au
790
+ 8.4
791
+ 9.4
792
+ 10.4
793
+ 11.4
794
+ 8
795
+ 4
796
+ 0
797
+ 4
798
+ 8
799
+ 8
800
+ 4
801
+ 0
802
+ 4
803
+ 8
804
+ 13CO 2
805
+ 1
806
+ 200 au
807
+ 8.4
808
+ 9.4
809
+ 10.4
810
+ 11.4
811
+ Intensity-weighted velocity
812
+ (km s
813
+ 1)
814
+ 2
815
+ 1
816
+ 0
817
+ 1
818
+ 2
819
+ 2
820
+ 1
821
+ 0
822
+ 1
823
+ 2
824
+ C18O 2
825
+ 1
826
+ 200 au
827
+ 9.3
828
+ 9.6
829
+ 9.9 10.2 10.5
830
+ 2
831
+ 1
832
+ 0
833
+ 1
834
+ 2
835
+ ['']
836
+ 2
837
+ 1
838
+ 0
839
+ 1
840
+ 2
841
+ ['']
842
+ SO 65
843
+ 54
844
+ 200 au
845
+ 9.3
846
+ 9.6
847
+ 9.9 10.2 10.5
848
+ 2
849
+ 1
850
+ 0
851
+ 1
852
+ 2
853
+ 2
854
+ 1
855
+ 0
856
+ 1
857
+ 2
858
+ SO 55
859
+ 44
860
+ 200 au
861
+ 9.3
862
+ 9.6
863
+ 9.9 10.2 10.5
864
+ 2
865
+ 1
866
+ 0
867
+ 1
868
+ 2
869
+ 2
870
+ 1
871
+ 0
872
+ 1
873
+ 2
874
+ H2CO 303
875
+ 202
876
+ 200 au
877
+ 9.3
878
+ 9.6
879
+ 9.9 10.2 10.5
880
+ Figure 3. Intensity-weighted velocity maps of strong lines detected toward DR Tau. The synthesized beam is drawn in the lower
881
+ left corner of each panel. The purple cross denotes the disk center. The axes show offsets from the disk center in arcseconds.
882
+ Note that the velocity ranges and size scales are not the same for all imags.
883
+ 3.2.2. Blueshifted spiral arm
884
+ The intensity-weighted velocity maps for 12CO and
885
+ 13CO (Figure 3) both show an arm that is blueshifted
886
+ with respect to the systemic velocity.
887
+ To isolate the
888
+ emission from the CO arm, we produced integrated in-
889
+ tensity maps between 8.4 and 9.0 km s−1 (Figure 5).
890
+ The arm is connected to the south side of the disk and
891
+ curves around the western side, terminating at a pro-
892
+ jected distance of ∼ 1200 au from DR Tau at a P.A. of
893
+ ∼ 330◦. The 12CO emission also shows a clump along
894
+ the arm at a projected distance of ∼ 500 au southwest
895
+ from DR Tau. This arm was not detected in previously
896
+ published high-resolution ALMA 13CO images of DR
897
+ Tau (Sturm et al. 2022), presumably due to some com-
898
+ bination of lack of sensitivity and spatial filtering. How-
899
+ ever, low angular resolution ALMA ACA observations of
900
+ [C I] from Sturm et al. (2022) show extended blueshifted
901
+ emission, which may originate from the arm traced by
902
+ CO in our NOEMA observations.
903
+ In order to estimate the pitch angle of the arm, we
904
+ transformed the integrated intensity map of the arm into
905
+ a polar coordinate map (i.e., as a function of deprojected
906
+ radius R and polar angle θ), assuming that the arm is in
907
+ the plane of the disk (Figure 6). We then measured the
908
+ position of the spiral arm by searching for local radial
909
+ maxima in the polar coordinate map for fixed values of θ
910
+ in steps of 8◦ from 124◦ to 260◦. The arm was modelled
911
+ as an Archimedean spiral of the form R(θ) = a + cθ3,
912
+ where θ is in radians. (We found that logarithmic spirals
913
+ and Archimedean spirals with smaller exponents did not
914
+ fit the data well). The log-likelihood function was spec-
915
+ ified as log L = −0.5 �
916
+ n
917
+
918
+ (Rdata−Rmodel)2
919
+ σ2
920
+ + log(2πσ2)
921
+
922
+ ,
923
+ where σ is the standard deviation of the major axis of
924
+ the synthesized beam. Uniform priors of [0, 2000] and
925
+ [−2000, 0] were used for a and c, respectively. Posteriors
926
+ were explored using the affine-invariant sampler emcee
927
+ (Goodman & Weare 2010; Foreman-Mackey et al. 2013)
928
+ with 40 walkers and 1000 steps. After discarding the
929
+ first 500 steps as burn-in, we computed the 50th per-
930
+
931
+ 8
932
+ Huang et al.
933
+ Outflow
934
+ Disk
935
+ Blueshifted
936
+ arm
937
+ Line of Sight
938
+ EAST
939
+ WEST
940
+ Envelope
941
+ Figure 4. A proposed cartoon schematic of the DR Tau system from an overhead perspective (i.e., perpendicular to the line
942
+ of sight). The components are not drawn to scale. Note that while the disk is drawn such that the east side is tilted toward the
943
+ observer in order to show that the disk is slightly inclined, the observations do not constrain which side is closer to the observer.
944
+ The 3-dimensional orientations of the envelope and the arm are not known in detail, but the former is drawn in front of the
945
+ disk and the latter is drawn behind the disk (from the perspective of the observer) under the assumption of infalling motion.
946
+ However, the observations may also be explained by other configurations of the structures.
947
+ 6
948
+ 3
949
+ 0
950
+ 3
951
+ 6
952
+ ['']
953
+ 6
954
+ 3
955
+ 0
956
+ 3
957
+ 6
958
+ ['']
959
+ 12CO J = 2
960
+ 1 (8.4-9.0 km s
961
+ 1)
962
+ Clump
963
+ 200 au
964
+ 0.0
965
+ 50.0
966
+ 100.0
967
+ 150.0
968
+ 200.0
969
+ 250.0
970
+ 6
971
+ 3
972
+ 0
973
+ 3
974
+ 6
975
+ 6
976
+ 3
977
+ 0
978
+ 3
979
+ 6
980
+ 13CO J = 2
981
+ 1 (8.4-9.0 km s
982
+ 1)
983
+ 200 au
984
+ 0.0
985
+ 6.0
986
+ 12.0
987
+ 18.0
988
+ 24.0
989
+ Integrated Intensity
990
+ (mJy beam
991
+ 1 km s
992
+ 1)
993
+ Figure 5. Integrated intensity maps of 12CO (left) and 13CO, summed up between 8.4 and 9.0 km s−1 to highlight DR Tau’s
994
+ blueshifted spiral arm. The blue cross marks the center of the disk. The synthesized beam is shown as a white ellipse in the
995
+ lower left corner of each panel. The 12CO color scale is saturated in order to show the fainter arm emission more clearly.
996
+
997
+ Molecular Mapping of DR Tau
998
+ 9
999
+ 0
1000
+ 300
1001
+ 600
1002
+ 900
1003
+ 1200
1004
+ Deprojected radius (au)
1005
+ 0
1006
+ 60
1007
+ 120
1008
+ 180
1009
+ 240
1010
+ 300
1011
+ 360
1012
+ (degrees)
1013
+ 6
1014
+ 4
1015
+ 2
1016
+ 0
1017
+ 2
1018
+ 4
1019
+ 6
1020
+ ['']
1021
+ 6
1022
+ 4
1023
+ 2
1024
+ 0
1025
+ 2
1026
+ 4
1027
+ 6
1028
+ ['']
1029
+ 120 150 180 210 240 270
1030
+ (degrees)
1031
+ 0
1032
+ 15
1033
+ 30
1034
+ 45
1035
+ 60
1036
+ 75
1037
+ Pitch angle (degrees)
1038
+ Figure 6. Left: Integrated intensity map of the 12CO arm, replotted as a function of deprojected radius and polar angle θ.
1039
+ Center: Integrated intensity map of the 12CO arm, overplotted with the spiral function defined by the posterior median values
1040
+ of the spiral parameters. Right: Pitch angle of the arm as a function of the polar angle θ. The black curve corresponds to the
1041
+ values derived from the median of the spiral arm parameter posteriors, while the blue curves correspond to 1000 random draws
1042
+ from the posterior.
1043
+
1044
+ 10
1045
+ Huang et al.
1046
+ centile of the marginal posterior distribution to obtain a
1047
+ point estimate and the 16th and 84th percentiles to ob-
1048
+ tain error estimates: a = 1060±30 au and c = −7.8±0.6
1049
+ au. We computed the pitch angles (φ = arctan
1050
+ ��� 1
1051
+ R
1052
+ dR
1053
+
1054
+ ��)
1055
+
1056
+ corresponding to the median values of a and c, then
1057
+ also computed pitch angles for spiral curves defined by
1058
+ 1000 random draws of (a, c) from the posterior. Figure
1059
+ 6 shows the median spiral plotted over the integrated
1060
+ intensity map and a plot of the derived pitch angles as
1061
+ a function of polar angle θ. The pitch angles range from
1062
+ 6 to 56 degrees between polar angle values of 124 to
1063
+ 260 degrees (corresponding to deprojected radius values
1064
+ between 980 and 330 au).
1065
+ In other words, the pitch
1066
+ angle appears to decrease with distance from the star,
1067
+ although the true values may differ if the assumption
1068
+ that the arm is in the plane of the disk is incorrect.
1069
+ We computed the escape velocity, vesc =
1070
+
1071
+ 2GM∗
1072
+ r
1073
+ , at
1074
+ the tip of the arm to assess whether it is gravitationally
1075
+ bound to DR Tau.
1076
+ The dynamical mass of DR Tau
1077
+ has been measured to be 1.2 M⊙ (Braun et al. 2021).
1078
+ Emission from the arm is detected up to r ∼ 1200 au
1079
+ at an LSRK velocity of 8.8 km s−1, which is offset from
1080
+ the systemic velocity by 1.1 km s−1. The corresponding
1081
+ escape velocity at r = 1200 au is 1.3 km s−1. Thus the
1082
+ arm appears to be compatible with being gravitationally
1083
+ bound to DR Tau, but not definitively so, since there
1084
+ may also be a transverse velocity component.
1085
+ Mesa et al. (2022) recently identified two spiral arms
1086
+ in SPHERE H-band Qφ observations of DR Tau. Figure
1087
+ 7 compares the arms identified in the SPHERE image
1088
+ to the CO arm. The CO arm is much more extended
1089
+ than the scattered light arms, which are only detected
1090
+ up to ∼ 220 au in projection from the star. Because the
1091
+ NOEMA synthesized beam is comparable in scale to the
1092
+ SPHERE spiral arms, it is not clear whether the CO arm
1093
+ is an extension of one of the arms detected in scattered
1094
+ light or a separate structure. Mesa et al. (2022) mea-
1095
+ sured pitch angles of 11◦ and 26◦ for the two scattered
1096
+ light arms, which are smaller than the pitch angle mea-
1097
+ sured for the inner region of the CO arm.
1098
+ However,
1099
+ since the pitch angles appear to change along the arm,
1100
+ the differing values do not necessarily imply that they
1101
+ are separate structures. Mesa et al. (2022) also noted
1102
+ that the northeastern spiral in the SPHERE image had
1103
+ a clump-like feature, which they hypothesized was asso-
1104
+ ciated with a protoplanet embedded in a dusty envelope.
1105
+ While this compact feature is well below the resolution
1106
+ limits of our NOEMA observations, the presence of a dif-
1107
+ ferent clump in the 12CO arm suggests that the clumps
1108
+ could be intrinsic features of the arms themselves.
1109
+ 3.2.3. Envelope
1110
+ DR Tau shows envelope emission in 12CO up to ∼ 5′′
1111
+ (1000 au) in projection from the star (Figure 8). En-
1112
+ velope emission is detected between 9.8 and 12 km s−1,
1113
+ i.e., mostly redshifted with respect to the systemic ve-
1114
+ locity. In most of these channels, the envelope emission
1115
+ is more spatially extended and brighter on the northern
1116
+ side.
1117
+ As with 12CO, the 13CO emission is more extended
1118
+ north of the star compared to south of the star for
1119
+ LSRK velocities above 10.4 km s−1.
1120
+ In contrast to
1121
+ 12CO, though, the 13CO maps show features that ap-
1122
+ pear more streamer-like than envelope-like.
1123
+ However,
1124
+ since this is the velocity range where cloud contamina-
1125
+ tion is most significant, spatial filtering of large-scale
1126
+ emission may be artificially creating the appearance of
1127
+ streamers. Sturm et al. (2022) identified a possible in-
1128
+ falling stream in ALMA observations of 13CO toward
1129
+ DR Tau, but those observations were likewise affected
1130
+ by spatial filtering. Observations of other lines that are
1131
+ bright but less susceptible to cloud contamination (e.g.,
1132
+ species with higher critical densities like HCO+ or CO
1133
+ transitions with higher upper energy levels) might help
1134
+ to clarify the nature of these apparent streamers.
1135
+ The channels where envelope emission is detected in
1136
+ 12CO overlap with the channels where [C I] exhibits a
1137
+ redshifted non-Keplerian component that Sturm et al.
1138
+ (2022) attributed to an infalling stream. However, since
1139
+ the beam FWHM of the [C I] observations is ∼ 3′′, most
1140
+ of the emission is spatially unresolved. Given the simi-
1141
+ lar velocities to the 12CO envelope, it is likely that the
1142
+ redshifted non-Keplerian [C I] emission also originates
1143
+ from the envelope.
1144
+ 3.2.4. Outflow
1145
+ DR Tau’s 12CO spectrum (Figure 1) exhibits a faint
1146
+ blueshifted line wing without a corresponding redshifted
1147
+ line wing, suggesting the presence of an asymmetric out-
1148
+ flow.
1149
+ The channel maps (Figure 10.1) show compact
1150
+ emission at LSRK velocities lower than 8.4 km s−1. To
1151
+ highlight this compact outflow emission more clearly, we
1152
+ extracted a new 12CO spectrum using a smaller circu-
1153
+ lar aperture with a diameter of 4′′ (Figure 9). Because
1154
+ DR Tau is nearly face-on, it is not straightforward to
1155
+ separate the outflow emission from the line wings of the
1156
+ Keplerian disk. However, the asymmetry of the line pro-
1157
+ file allows us to estimate the velocities at which outflow
1158
+ emission dominates by mirroring the outflow spectrum
1159
+ about the systemic velocity and taking the ratio of the
1160
+ original and mirrored spectrum. We assume that the
1161
+ outflow emission on the blueshifted side dominates when
1162
+ the ratio exceeds 10, which occurs at 7.4 km s−1.
1163
+ While the outflow emission is weak in individual
1164
+ channels (Figure 10.1), the spatial distribution of the
1165
+ blueshifted side can be better seen by producing an in-
1166
+ tegrated intensity map between −2.0 and 7.4 km s−1.
1167
+ The lower bound of the velocity integration range was
1168
+ determined by where the emission in individual chan-
1169
+ nels drops below 3σ. For comparison, we also produced
1170
+ an integrated intensity map from 12.4 to 21.8 km s−1,
1171
+ corresponding to the redshifted channels at the opposing
1172
+ offsets from the systemic velocity. The two integrated in-
1173
+
1174
+ Molecular Mapping of DR Tau
1175
+ 11
1176
+ 1.5
1177
+ 1.0
1178
+ 0.5
1179
+ 0.0
1180
+ 0.5
1181
+ 1.0
1182
+ 1.5
1183
+ [′′]
1184
+ 1.5
1185
+ 1.0
1186
+ 0.5
1187
+ 0.0
1188
+ 0.5
1189
+ 1.0
1190
+ 1.5
1191
+ [′′]
1192
+ Southern spiral
1193
+ Northeastern
1194
+ spiral
1195
+ H-band Q
1196
+ Clump
1197
+ H-band Q
1198
+ 50 au
1199
+ 6
1200
+ 4
1201
+ 2
1202
+ 0
1203
+ 2
1204
+ 4
1205
+ 6
1206
+ 6
1207
+ 4
1208
+ 2
1209
+ 0
1210
+ 2
1211
+ 4
1212
+ 6
1213
+ H-band Q vs. 12CO arm
1214
+ 200 au
1215
+ Figure 7. A comparison between the SPHERE H-band Qφ image of DR Tau from Mesa et al. (2022) and the 12CO NOEMA
1216
+ observations from this work. Left: H-band Qφ image of DR Tau. The arrows point to the northeastern spiral, southern spiral,
1217
+ and clump identified in Mesa et al. (2022). The gray circle shows the extent of the SPHERE coronagraph. Right: A contour
1218
+ plot of the 12CO arm overlaid atop the H-band Qφ image. Note that the size scale is different from the image on the left. The
1219
+ contours, drawn at 50, 100, and 150 mJy beam−1 km s−1, correspond to the 12CO integrated intensity map from Figure 5.
1220
+ tensity maps are presented in Figure 9. The blueshifted
1221
+ map shows relatively compact emission with a radial ex-
1222
+ tent of ∼ 2′′ (∼ 400 au). Although the opening angle
1223
+ of the outflow cannot be computed because the disk is
1224
+ nearly face-on, the compactness of the emission suggests
1225
+ that the outflow is quite collimated. The redshifted map
1226
+ shows emission near the stellar position, but given that
1227
+ the redshifted emission is fainter and much more com-
1228
+ pact than the blueshifted outflow, it seems likely that
1229
+ the compact redshifted emission originates from the line
1230
+ wing of the Keplerian disk emission. While a redshifted
1231
+ outflow component is not readily visible in the 12CO
1232
+ spectrum, the redshifted map shows a faint ring with a
1233
+ radius of ∼ 4.5′′ (∼ 900 au), which is significantly wider
1234
+ than the blueshifted outflow component.
1235
+ 3.3. SO, DCO+, and H2CO emission
1236
+ SO, DCO+, and H2CO emission all originate from a
1237
+ relatively compact region within 300 au of DR Tau. The
1238
+ SO 65 − 54, SO 55 − 44, and H2CO 303 − 202 intensity-
1239
+ weighted velocity maps (Figure 3) show velocity gradi-
1240
+ ents similar to that of C18O, indicating that they like-
1241
+ wise (largely) originate from the Keplerian disk. The
1242
+ kinematics of DCO+ are not well-defined due to the low
1243
+ signal-to-noise ratio, but the compactness of the emis-
1244
+ sion suggests that it also primarily traces the Keplerian
1245
+ disk.
1246
+ That said, whereas C18O and H2CO 303−202 both ex-
1247
+ hibit relatively axisymmetric emission in the integrated
1248
+ intensity maps (Figure 2) and line profiles that are sym-
1249
+ metric about the systemic velocity (Figure 1), SO 65−54
1250
+ and 55 − 44 are both asymmetric.
1251
+ Their emission is
1252
+ stronger on the northern (redshifted) side of the disk.
1253
+ In addition, their spectra both peak at an LSRK veloc-
1254
+ ity of 10.2 km s−1, which is redshifted by 0.3 km s−1
1255
+ with respect to the systemic velocity. The DCO+ spec-
1256
+ trum also appears stronger on the redshifted side, but
1257
+ given that its SNR is lower than that of the SO lines,
1258
+ more sensitive observations will be necessary to deter-
1259
+ mine whether the DCO+ asymmetry is genuine.
1260
+ 4. DISCUSSION
1261
+ 4.1. The evolutionary stage of DR Tau
1262
+ DR Tau is traditionally considered to have a Class II
1263
+ SED, with stellar age estimates ranging from 0.9 to 3.2
1264
+ Myr (Kenyon & Hartmann 1995; McClure 2019; Long
1265
+ et al. 2019). The presence of the envelope, if primordial,
1266
+ would suggest that the younger end of the age range is
1267
+ more likely. DR Tau’s chemistry also appears to point
1268
+ to a younger age. Although SO is detected in DR Tau,
1269
+ it has otherwise rarely been detected in Class II disks,
1270
+
1271
+ 12
1272
+ Huang et al.
1273
+ 9.8
1274
+ 200 au
1275
+ 10.0
1276
+ 10.2
1277
+ 10.4
1278
+ 10.6
1279
+ 10.8
1280
+ 6
1281
+ 3
1282
+ 0
1283
+ 3
1284
+ 6
1285
+ [′′]
1286
+ 6
1287
+ 3
1288
+ 0
1289
+ 3
1290
+ 6
1291
+ [′′]
1292
+ 11.0
1293
+ 11.2
1294
+ 11.4
1295
+ 11.6
1296
+ 11.8
1297
+ 12.0
1298
+ 0
1299
+ 50
1300
+ 100
1301
+ 250
1302
+ 500
1303
+ 12CO J = 2
1304
+ 1 intensity (mJy beam
1305
+ 1)
1306
+ 9.8
1307
+ 200 au
1308
+ 10.0
1309
+ 10.2
1310
+ 10.4
1311
+ 10.6
1312
+ 10.8
1313
+ 6
1314
+ 3
1315
+ 0
1316
+ 3
1317
+ 6
1318
+ [′′]
1319
+ 6
1320
+ 3
1321
+ 0
1322
+ 3
1323
+ 6
1324
+ [′′]
1325
+ 11.0
1326
+ 11.2
1327
+ 11.4
1328
+ 11.6
1329
+ 11.8
1330
+ 12.0
1331
+ 0
1332
+ 50
1333
+ 100
1334
+ 200
1335
+ 13CO J = 2
1336
+ 1 intensity (mJy beam
1337
+ 1)
1338
+ Figure 8. Channel maps of 12CO J = 2 − 1 and 13CO J = 2 − 1 over the velocity range where envelope emission is present.
1339
+ The black contours denote the 5, 15, 25, and 35σ contours of C18O J = 2 − 1 to serve as a visual reference for the kinematics of
1340
+ the Keplerian disk. (Note that because C18O is less abundant than 12CO and 13CO, the Keplerian line wings of C18O are not
1341
+ detected out to as high velocities as the other two isotopologues).
1342
+ especially those hosted by T Tauri stars (e.g., Guilloteau
1343
+ et al. 2016; Semenov et al. 2018; Le Gal et al. 2021). It
1344
+ is commonly detected, though, in younger, embedded
1345
+ Class 0 and I systems (e.g., Sakai et al. 2014; Le Gal
1346
+ et al. 2020; Garufi et al. 2022; Mercimek et al. 2022).
1347
+ In addition, Sturm et al. (2022) found that gas-phase
1348
+ carbon is not as severely depleted in DR Tau as other
1349
+ Class II disks that have been observed, although it is
1350
+ still more depleted than Class 0/I systems.
1351
+ However, simulations have suggested that pre-main se-
1352
+ quence stars might be able to form second-generation en-
1353
+ velopes through interaction with cloud material, a pro-
1354
+ cess sometimes referred to as “late infall” (e.g., Dulle-
1355
+ mond et al. 2019; Kuffmeier et al. 2020). Indeed, Mesa
1356
+ et al. (2022) hypothesized that DR Tau was undergo-
1357
+ ing late infall based on the detection of spiral arms
1358
+ in scattered light.
1359
+ Given the range of ages estimated
1360
+ for DR Tau, it is ambiguous whether infall onto DR
1361
+ Tau should be considered “late.” As noted above, DR
1362
+
1363
+ Molecular Mapping of DR Tau
1364
+ 13
1365
+ 0
1366
+ 10
1367
+ 20
1368
+ LSRK Velocity (km s
1369
+ 1)
1370
+ 2
1371
+ 0
1372
+ 2
1373
+ 4
1374
+ 6
1375
+ 8
1376
+ 10
1377
+ 12
1378
+ Flux (Jy)
1379
+ 12CO inner 4′′
1380
+ 9
1381
+ 6
1382
+ 3
1383
+ 0
1384
+ 3
1385
+ 6
1386
+ 9
1387
+ ['']
1388
+ 9
1389
+ 6
1390
+ 3
1391
+ 0
1392
+ 3
1393
+ 6
1394
+ 9
1395
+ ['']
1396
+ -2.0 to 7.4 km s
1397
+ 1
1398
+ 0
1399
+ 100
1400
+ 200 300400
1401
+ Integrated Intensity (mJy beam
1402
+ 1 km s
1403
+ 1)
1404
+ 9
1405
+ 6
1406
+ 3
1407
+ 0
1408
+ 3
1409
+ 6
1410
+ 9
1411
+ 9
1412
+ 6
1413
+ 3
1414
+ 0
1415
+ 3
1416
+ 6
1417
+ 9
1418
+ 12.4 to 21.8 km s
1419
+ 1
1420
+ 0
1421
+ 50
1422
+ 100
1423
+ 150
1424
+ Figure 9. Overview of DR Tau’s outflow emission. Left: 12CO spectrum extracted from a circular aperture with a 4′′ diameter,
1425
+ showing a blueshifted outflow wing. The approximate velocity range of the blueshifted outflow is shaded in blue. The purple
1426
+ dotted line marks the system velocity. Middle:
1427
+ 12CO integrated intensity map covering velocities from −2.0 to 7.4 km s−1.
1428
+ Compact emission from the blueshifted side of the outflow is visible. An arcsinh stretch is used on the color scale to make faint
1429
+ emission more readily visible. The faint vertical striping is due to the sidelobes of the point spread function. The pink cross
1430
+ marks the position of the disk center. Right: 12CO integrated intensity map covering velocities from 12.4 to 21.8 km s−1. The
1431
+ map shows a faint ring with a radius of ∼ 4.5′′ (∼ 900 au) and compact emission located at the stellar position. The redshifted
1432
+ compact emission may be from a line wing of the Keplerian disk rather than the outflow.
1433
+ Tau’s chemistry seems to suggest that the disk is rela-
1434
+ tively young. This appearance of chemical youthfulness,
1435
+ though, stems from comparisons of Class 0/I sources to
1436
+ isolated Class II disks. Based on molecular observations
1437
+ of GM Aur, a Class II disk with large-scale spiral arms
1438
+ suggestive of ongoing late infall, Huang et al. (2021)
1439
+ speculated that accretion of cloud material could par-
1440
+ tially reset disk chemistry such that it bears greater
1441
+ resemblance to that of Class 0/I sources. The impact
1442
+ of late infall on disk chemistry will need to be examined
1443
+ through astrochemical modeling to determine the extent
1444
+ to which chemical properties can be used to sort disks
1445
+ by relative age.
1446
+ Given that DR Tau is commonly included in sur-
1447
+ veys of Class II disks because of its relatively large
1448
+ disk mass and bright line emission (e.g., Salyk et al.
1449
+ 2011; Long et al. 2019; Arulanantham et al. 2020; Sturm
1450
+ et al. 2022), an erroneous classification of its evolution-
1451
+ ary stage may skew interpretations of disk observations.
1452
+ Huang et al. (2022) remarked that a similar problem
1453
+ exists for DO Tau, another commonly observed Class II
1454
+ disk that also shows signatures of being partially embed-
1455
+ ded. Interestingly, among the twelve single star systems
1456
+ that Long et al. (2019) identified as having “smooth”
1457
+ disks in millimeter continuum emission, at least three
1458
+ of them (DR Tau, DO Tau, and Haro 6-13) exhibit ev-
1459
+ idence of an envelope in spatially resolved CO emission
1460
+ (e.g., Fern´andez-L´opez et al. 2020; Garufi et al. 2021;
1461
+ Huang et al. 2022, and this work). Most of the remain-
1462
+ ing sources (including both the “smooth” and structured
1463
+ disks) lack high quality interferometric CO observations,
1464
+ so it is unknown whether they might be embedded as
1465
+ well.
1466
+ Analyses of where and when disk substructures
1467
+ tend to emerge will require sensitive, spatially resolved
1468
+ molecular line observations to provide context about the
1469
+ evolutionary stages of the objects being studied.
1470
+ 4.2. Origin of SO in DR Tau
1471
+ The detection of SO in DR Tau is notable given that
1472
+ SO detections have thus far been uncommon in Class II
1473
+ disks, which has been attributed to high gas-phase C/O
1474
+ ratios (> 1) disfavoring SO production (e.g., Guilloteau
1475
+ et al. 2016; Semenov et al. 2018; Le Gal et al. 2021). In
1476
+ two of the disks where SO has been detected, AB Aur
1477
+ and Oph IRS 48, the gas-phase C/O ratio has been esti-
1478
+ mated to be less than 1 (Rivi`ere-Marichalar et al. 2020;
1479
+ Booth et al. 2021). Based on thermochemical model-
1480
+ ing of [C I] and CO isotopologue emission, Sturm et al.
1481
+ (2022) estimated that DR Tau has a gas-phase C/O ra-
1482
+ tio of 0.47. The detection of SO toward DR Tau is thus
1483
+ qualitatively consistent with SO production in disks be-
1484
+ ing favored in gas with C/O ratios less than 1.
1485
+ DR Tau’s SO emission exhibits a mild asymmetry that
1486
+ is not seen in C18O. This suggests that the SO asym-
1487
+ metry is not merely tracing the underlying gas surface
1488
+ density, but could instead be due to some dynamical
1489
+ process locally favoring SO production.
1490
+ SO has been
1491
+ proposed to be enhanced by outflows, winds, gravita-
1492
+
1493
+ 14
1494
+ Huang et al.
1495
+ tional instabilities, or accretion shocks (e.g., Pineau des
1496
+ Forˆets et al. 1993; Sakai et al. 2014; Tabone et al. 2017;
1497
+ Ilee et al. 2017). We discuss these possibilities in turn
1498
+ for DR Tau.
1499
+ Our NOEMA observations have shown that DR Tau
1500
+ has a molecular outflow, and past CO ro-vibrational
1501
+ spectroscopy indicates that DR Tau has a wide-angle
1502
+ molecular wind (Pontoppidan et al. 2011). An outflow
1503
+ shock does not appear to be a likely major contributor
1504
+ to SO in DR Tau, since SO is not detected at the same
1505
+ high velocities as CO. At the spatial and spectral resolu-
1506
+ tion of our NOEMA observations, it is unclear whether
1507
+ the SO kinematics are consistent with those expected
1508
+ for a disk wind (e.g. Haworth & Owen 2020), but DR
1509
+ Tau’s bright emission makes it an excellent target for
1510
+ more detailed follow-up.
1511
+ Chemical modeling of gravitationally unstable disks
1512
+ suggests that gas-phase SO can be enhanced either by
1513
+ spiral shocks or within warm disk fragments (Ilee et al.
1514
+ 2011, 2017). While DR Tau does feature spiral struc-
1515
+ ture, Mesa et al. (2022) argued that DR Tau’s spiral
1516
+ arms are unlikely to be due to gravitational instability
1517
+ given that its disk-to-stellar mass ratio and stellar accre-
1518
+ tion rate are a factor of a few lower than hydrodynamical
1519
+ simulations suggest would be necessary to induce grav-
1520
+ itational instabilities. Nevertheless, disk mass is notori-
1521
+ ously difficult to measure (e.g., Miotello et al. 2022, and
1522
+ references therein), and studies of other spiral-armed
1523
+ disks have often disagreed on whether they are massive
1524
+ enough to be gravitationally unstable (e.g., P´erez et al.
1525
+ 2016; Cleeves et al. 2016; Veronesi et al. 2019; Sierra
1526
+ et al. 2021).
1527
+ Higher spatial resolution would help to
1528
+ determine if the SO asymmetry traces spiral structure
1529
+ and/or a disk fragment.
1530
+ Accretion shocks in protoplanetary disks might oc-
1531
+ cur due to cloud or envelope material being accreted
1532
+ by the disk or disk material being accreted by an em-
1533
+ bedded planet (e.g., Bodenheimer 1974; Boss & Graham
1534
+ 1993; Yorke & Bodenheimer 1999; Szul´agyi & Mordasini
1535
+ 2017).
1536
+ Accretion streamers traced by SO have been
1537
+ observed in several Class I protostellar systems (e.g.,
1538
+ Garufi et al. 2022; Artur de la Villarmois et al. 2022).
1539
+ Given that DR Tau is now known to be partially embed-
1540
+ ded, its asymmetric SO emission may arise in a manner
1541
+ similar to Class I systems. Booth et al. (2022) proposed
1542
+ that an SO asymmetry in the HD 100546 disk could
1543
+ be due to shocks from gas accreting onto an embedded
1544
+ planet. This likely does not account for DR Tau’s SO
1545
+ asymmetry, since high-contrast imaging from Mesa et al.
1546
+ (2022) rules out the presence of a companion above sev-
1547
+ eral Jupiter masses at separations greater than 50 au
1548
+ from DR Tau.
1549
+ 4.3. Origin of DR Tau’s molecular spiral arm
1550
+ Mesa et al. (2022) hypothesized that the northeastern
1551
+ spiral arm detected in scattered light toward DR Tau is
1552
+ due to planet-disk interactions, while the southern arm
1553
+ is due to infall from cloud material. As noted in Section
1554
+ 3.2.2, the angular resolution of our NOEMA observa-
1555
+ tions does not allow us to determine whether the CO
1556
+ spiral arm is an extension of either scattered light spiral
1557
+ arm, but the very large extent of the molecular arm sug-
1558
+ gests that it is unlikely to be generated by interactions
1559
+ with a bound planet. Mesa et al. (2022) placed an upper
1560
+ limit of several Jupiter masses on any companion farther
1561
+ out than 50 au from DR Tau. Given that the millimeter
1562
+ continuum appears smooth down to a resolution of 20
1563
+ au (Long et al. 2018), it is unlikely that the disk harbors
1564
+ massive (super-Jovian) companions within 50 au. More-
1565
+ over, hydrodynamical simulations indicate that external
1566
+ companions exceeding several MJ should create a pair
1567
+ of (nearly) symmetric spiral arms (e.g., Zhu et al. 2015;
1568
+ Dong et al. 2016), contrary to what is observed for DR
1569
+ Tau. Thus, a stellar companion is also unlikely to be
1570
+ responsible for the arm.
1571
+ An infalling stream is a plausible explanation for the
1572
+ molecular arm, given that similar large-scale structures
1573
+ have been detected in association with a number of em-
1574
+ bedded Class 0/I sources as well as Class II disks pro-
1575
+ posed to be undergoing late infall (e.g., Tang et al. 2012;
1576
+ Yen et al. 2019; Pineda et al. 2020; Huang et al. 2021;
1577
+ Garufi et al. 2022; Valdivia-Mena et al. 2022). One pos-
1578
+ sible difference of note is that the structures proposed
1579
+ to be infalling streams in the other systems have tended
1580
+ to be open, whereas DR Tau’s pitch angle exhibits a
1581
+ marked decrease with distance from the star. However,
1582
+ this apparent difference may simply be a projection ef-
1583
+ fect, since we do not know their three-dimensional ori-
1584
+ entations.
1585
+ As noted in the previous subsection, it is uncertain
1586
+ whether DR Tau is gravitationally unstable. The possi-
1587
+ bility that DR Tau’s arm arises from gravitational in-
1588
+ stabilities remains intriguing given that clumpy arms
1589
+ are a hallmark of simulations of fragmenting disks (e.g.,
1590
+ Zhu et al. 2012; Basu & Vorobyov 2012). Furthermore,
1591
+ migration of clumps onto stars has been proposed as
1592
+ a trigger for FUor outbursts (e.g., Boley et al. 2010).
1593
+ Clump migration might likewise explain DR Tau’s ex-
1594
+ treme brightening event in the 1970s. If DR Tau’s disk
1595
+ mass has been estimated correctly, then the presence
1596
+ of a clump along DR Tau’s arm raises the question of
1597
+ whether fragmentation can occur under less stringent
1598
+ conditions than models demand.
1599
+ Close stellar encounters can also generate large-scale
1600
+ arm-like structures with pitch angles comparable to that
1601
+ observed for the DR Tau molecular arm (e.g., Dai et al.
1602
+ 2015; Cuello et al. 2019, 2020). However, Shuai et al.
1603
+ (2022) inferred from an analysis of Gaia EDR3 data
1604
+ (Gaia Collaboration et al. 2021) that the closest ex-
1605
+ pected approach between DR Tau and a neighboring
1606
+ star in the past 10,000 years is ∼ 105 au, which would
1607
+ be too distant to meaningfully perturb the known cir-
1608
+ cumstellar environment of DR Tau. Mesa et al. (2022)
1609
+ found that DQ Tau may have passed within 5100 au of
1610
+
1611
+ Molecular Mapping of DR Tau
1612
+ 15
1613
+ DR Tau 0.23 Myr ago, but considered such an encounter
1614
+ unlikely to be responsible for DR Tau’s spiral arms be-
1615
+ cause flyby-induced arms are only expected to survive on
1616
+ timescales of several thousand years (e.g., Cuello et al.
1617
+ 2022).
1618
+ 4.4. Connections to EXor and FUor phenomena
1619
+ In recent years, the circumstellar environments of a
1620
+ number of FUors and EXors have been spatially resolved
1621
+ with millimeter interferometry and high-contrast scat-
1622
+ tered light imaging.
1623
+ FUors are often associated with
1624
+ envelopes, outflows, and arm-like structures (e.g., Liu
1625
+ et al. 2016; Zurlo et al. 2017; Ru´ız-Rodr´ıguez et al. 2017;
1626
+ K´osp´al et al. 2017), similar to the structures associated
1627
+ with DR Tau.
1628
+ In FUor systems, the envelopes sup-
1629
+ ply infalling material that may help to activate gravita-
1630
+ tional instabilities (and then possibly magnetorotational
1631
+ instabilities), the arms may form as a consequence of
1632
+ gravitational instabilities, and instabilities may trigger
1633
+ outbursts that subsequently drive outflows (e.g., Evans
1634
+ et al. 1994; Vorobyov & Basu 2005; Zhu et al. 2010).
1635
+ With the exception of EX Lup and V1647 Ori, the latter
1636
+ of which is sometimes considered to be an FUor source,
1637
+ the EXor sources imaged so far have generally lacked
1638
+ analogous features (e.g., Principe et al. 2018; Hales et al.
1639
+ 2018; Cieza et al. 2018; Hales et al. 2020). However, DR
1640
+ Tau exhibits striking similarities to EX Lup in that they
1641
+ both feature outflows, non-Keplerian spiral-like struc-
1642
+ tures, and (remnant) envelopes. The circumstellar en-
1643
+ vironments of DR Tau and EX Lup also share similar-
1644
+ ities with that of RU Lup, which is not classified as
1645
+ an EXor source but is nevertheless an exceptionally ac-
1646
+ tive T Tauri star (Joy 1945; Gahm et al. 1974; Huang
1647
+ et al. 2020). Hales et al. (2018) suggested that the pres-
1648
+ ence of complex structures associated with EX Lup but
1649
+ not other EXors is an indication that EX Lup occupies
1650
+ an intermediate evolutionary stage between FUors and
1651
+ most EXors. The same may hold true for DR Tau (and
1652
+ perhaps RU Lup). Alternatively, the differences in EXor
1653
+ circumstellar environments may indicate that EXors are
1654
+ a heterogeneous group of objects, only some of which are
1655
+ closely related to the FUor phenomenon. In any case,
1656
+ the observations of EX Lup, DR Tau, and RU Lup moti-
1657
+ vate more spatially resolved imaging of extremely active
1658
+ T Tauri stars to elucidate the connection between cir-
1659
+ cumstellar environments and stellar properties.
1660
+ 4.5. A changing view of Class II disks
1661
+ In the past decade, the introduction of high angular
1662
+ resolution imaging at millimeter wavelengths has trans-
1663
+ formed our understanding of planet formation by show-
1664
+ ing that dust substructures on scales of several au are
1665
+ common (e.g., ALMA Partnership et al. 2015; Andrews
1666
+ et al. 2018). Meanwhile, sensitive molecular imaging at
1667
+ more modest resolution has highlighted a deficit in our
1668
+ understanding of disk environments on scales of tens to
1669
+ thousands of au. With single-dish telescopes and ear-
1670
+ lier generations of interferometers, signs of large-scale
1671
+ non-Keplerian emission towards Class II disks were of-
1672
+ ten ascribed to foreground contamination (e.g., Thi et al.
1673
+ 2001; Hughes et al. 2009; ¨Oberg et al. 2011b). Even in
1674
+ the era of more powerful millimeter interferometers, in-
1675
+ sufficient integration times or insufficient uv coverage
1676
+ at larger spatial scales can lead to key structures being
1677
+ missed.
1678
+ High-quality molecular mapping, though, has demon-
1679
+ strated that there are indeed large-scale tails, spirals,
1680
+ streams, and/or remnant envelopes associated with a
1681
+ number of Class II systems (e.g., Akiyama et al. 2019;
1682
+ Huang et al. 2021; Paneque-Carre˜no et al. 2021; Huang
1683
+ et al. 2022).
1684
+ Scattered light imaging has also played
1685
+ an important role in uncovering examples of Class II
1686
+ disks that appear to be interacting with surrounding
1687
+ material (e.g., Grady 2004; Garufi et al. 2018; Ginski
1688
+ et al. 2021), although as demonstrated by the examples
1689
+ of DR Tau from this work and RU Lup from Huang et al.
1690
+ (2020), molecular observations can reveal structures far
1691
+ beyond the detected extent of scattered light features.
1692
+ Infall from these larger-scale structures is increasingly
1693
+ being invoked to explain certain disk structures observed
1694
+ at smaller scales, such as misalignments or spiral arms
1695
+ (e.g., Ginski et al. 2021; Paneque-Carre˜no et al. 2021;
1696
+ Mesa et al. 2022). These observations thus imply an in-
1697
+ triguing link between dynamical processes operating on
1698
+ disparate size scales.
1699
+ For individual systems, though,
1700
+ infall is only one of several possible explanations for the
1701
+ observed disk phenomena. More systematic molecular
1702
+ line observations will be key for establishing patterns of
1703
+ association between large- and small-scale properties.
1704
+ 5. SUMMARY
1705
+ We present new NOEMA observations of 12CO, 13CO,
1706
+ C18O, SO, DCO+, and H2CO toward the T Tauri star
1707
+ DR Tau, representing the highest-quality millimeter line
1708
+ observations of this source to date. Our findings are as
1709
+ follows:
1710
+ 1. CO emission shows that the DR Tau protoplane-
1711
+ tary disk is associated with an envelope, a faint
1712
+ asymmetric outflow, and a large non-Keplerian
1713
+ spiral arm with a clump.
1714
+ 2. The molecular spiral arm resembles a scaled-up
1715
+ version of the spiral arms detected in scattered
1716
+ light, although the angular resolution of NOEMA
1717
+ is not sufficient to determine whether the molecu-
1718
+ lar arm is an extension of one of the scattered light
1719
+ arms or a separate feature. Whereas the scattered
1720
+ light arms are only detected up to ∼ 220 au in
1721
+ projection from DR Tau, the molecular arm is de-
1722
+ tected up to ∼ 1200 au in projection from the star.
1723
+ 3. We report detections of SO, DCO+, and H2CO in
1724
+ the DR Tau disk for the first time. Their kinemat-
1725
+
1726
+ 16
1727
+ Huang et al.
1728
+ ics and compact emission extent suggest that they
1729
+ primarily trace the Keplerian circumstellar disk.
1730
+ 4. SO emission is stronger on the northern, redshifted
1731
+ side of the disk. This asymmetry might be linked
1732
+ to infall from an asymmetric envelope or to un-
1733
+ resolved spiral substructure associated with the
1734
+ arms detected in scattered light. Higher angular
1735
+ resolution observations of SO will be needed to
1736
+ clarify the origins of the asymmetry.
1737
+ DR Tau’s envelope, outflow, and arm are reminiscent
1738
+ of the structures that have been observed in association
1739
+ with various FUor sources as well as the EXor source EX
1740
+ Lup. Given that FUor and EXor outbursts have been
1741
+ linked to instabilities driven by envelope accretion, a
1742
+ similar mechanism may account for DR Tau’s dramatic
1743
+ stellar brightness changes. The NOEMA observations
1744
+ of DR Tau highlight the utility of sensitive, spatially re-
1745
+ solved molecular line observations for providing context
1746
+ about the conditions under which young stars and their
1747
+ protoplanetary disks evolve.
1748
+ This work is based on observations carried out un-
1749
+ der project number W20BE with the IRAM NOEMA
1750
+ Interferometer.
1751
+ IRAM is supported by INSU/CNRS
1752
+ (France), MPG (Germany) and IGN (Spain). This work
1753
+ is also based on observations collected at the Euro-
1754
+ pean Southern Observatory under ESO programme(s)
1755
+ 0102.C-0453(A). We thank our NOEMA local contact,
1756
+ Ana Lopez-Sepulcre, for setting up the observing scripts
1757
+ and assisting with data reduction. We also thank Arthur
1758
+ Bosman, Ke Zhang, Joel Bregman, Lee Hartmann,
1759
+ Merel van’t Hoff, Ardjan Sturm, Melissa McClure, and
1760
+ Ewine van Dishoeck for helpful discussions. We thank
1761
+ the referee, Ruobing Dong, for helpful comments im-
1762
+ proving the clarity of the manuscript. Support for J.
1763
+ H. was provided by NASA through the NASA Hubble
1764
+ Fellowship grant #HST-HF2-51460.001-A awarded by
1765
+ the Space Telescope Science Institute, which is operated
1766
+ by the Association of Universities for Research in As-
1767
+ tronomy, Inc., for NASA, under contract NAS5-26555.
1768
+ This project has received funding from the European
1769
+ Research Council (ERC) under the European Union’s
1770
+ Horizon 2020 research and innovation programme (grant
1771
+ agreement No. 101002188).
1772
+ Facilities: NOEMA
1773
+ Software: analysisUtils (https://casaguides.nrao.
1774
+ edu/index.php/Analysis Utilities),
1775
+ AstroPy
1776
+ (Astropy
1777
+ Collaboration et al. 2013), CASA (CASA Team et al.
1778
+ 2022), cmasher (van der Velden 2020), emcee (Foreman-
1779
+ Mackey
1780
+ et
1781
+ al.
1782
+ 2013),
1783
+ GILDAS
1784
+ (Pety
1785
+ 2005;
1786
+ Gildas
1787
+ Team 2013), matplotlib (Hunter 2007), pandas (pan-
1788
+ das development team 2022; Wes McKinney 2010),
1789
+ scikit-image (van der Walt et al. 2014), SciPy (Vir-
1790
+ tanen et al. 2020)
1791
+ APPENDIX
1792
+ A. SPECTROSCOPIC PARAMETERS OF TARGETED LINES
1793
+ The spectroscopic parameters of the targeted lines, taken from the Cologne Database for Molecular Spectroscopy
1794
+ (M¨uller et al. 2001, 2005) via Splatalogue1, are listed in Table 2. Primary line targets are marked in bold.
1795
+ 1 https://splatalogue.online//
1796
+
1797
+ Molecular Mapping of DR Tau
1798
+ 17
1799
+ Table 2.
1800
+ Spectroscopic Parameters of All Targeted
1801
+ Lines
1802
+ Transition
1803
+ Rest frequency
1804
+ Eu
1805
+ (GHz)
1806
+ (K)
1807
+ 13C17O J = 2 − 1
1808
+ 214.5738730
1809
+ 15.4
1810
+ SO JN = 55 − 44
1811
+ 215.2206530
1812
+ 44.1
1813
+ DCO+ J = 3 − 2
1814
+ 216.1125822
1815
+ 20.7
1816
+ H2S JKaKc = 220 − 211
1817
+ 216.7104365
1818
+ 84.0
1819
+ c-C3H2 JKaKc = 330 − 221
1820
+ 216.2787560
1821
+ 19.5
1822
+ SiO J = 5 − 4
1823
+ 217.1049190
1824
+ 31.3
1825
+ DCN J = 3 − 2
1826
+ 217.2385378
1827
+ 20.9
1828
+ c-C3H2 JKaKc = 514 − 423
1829
+ 217.9400460
1830
+ 35.4
1831
+ H2CO JKaKc = 303 − 202
1832
+ 218.2221920
1833
+ 21.0
1834
+ HC3N J = 24 − 23
1835
+ 218.3247230
1836
+ 131.0
1837
+ H2CO JKaKc = 322 − 221
1838
+ 218.4756320
1839
+ 68.1
1840
+ H2CO JKaKc = 321 − 220
1841
+ 218.7600660
1842
+ 68.1
1843
+ C18O J = 2 − 1
1844
+ 219.5603541
1845
+ 15.8
1846
+ SO JN = 65 − 54
1847
+ 219.9494420
1848
+ 35.0
1849
+ 13CO J = 2 − 1
1850
+ 220.3986842
1851
+ 15.9
1852
+ 12CO J = 2 − 1
1853
+ 230.5380000
1854
+ 16.6
1855
+ OCS J = 19 − 18
1856
+ 231.0609934
1857
+ 110.9
1858
+ N2D+ J = 3 − 2
1859
+ 231.3218283
1860
+ 22.2
1861
+ 13CS J = 5 − 4
1862
+ 231.2206852
1863
+ 33.3
1864
+ C2S JN = 1918 − 1817
1865
+ 233.9384580
1866
+ 109.6
1867
+ PN J = 5 − 4
1868
+ 234.9356940
1869
+ 33.8
1870
+ HC3N J = 26 − 25
1871
+ 236.5127888
1872
+ 153.2
1873
+ H2CS JKaKc = 717 − 616
1874
+ 236.7270204
1875
+ 58.6
1876
+ B. CHANNEL MAPS
1877
+ Channel maps of the primary line targets (listed in
1878
+ Table 1) are presented in Figure 10.1.
1879
+ C. AUXILIARY LINE TARGETS
1880
+ Table 3 lists the beam sizes, per-channel rms of the
1881
+ image cubes, and 3σ flux upper limits for the auxiliary
1882
+ line targets. The flux upper limits were estimated as-
1883
+ suming the same velocity range and aperture used to
1884
+ measure the C18O flux (see Table 1). Flux upper lim-
1885
+ its may be underestimated if the molecule is primarily
1886
+ present in the envelope or outflow rather than the disk.
1887
+ REFERENCES
1888
+ Akiyama, E., Vorobyov, E. I., Baobabu Liu, H., et al. 2019,
1889
+ AJ, 157, 165, doi: 10.3847/1538-3881/ab0ae4
1890
+ Alencar, S. H. P., Johns-Krull, C. M., & Basri, G. 2001,
1891
+ AJ, 122, 3335, doi: 10.1086/323914
1892
+ ALMA Partnership, Brogan, C. L., P´erez, L. M., et al.
1893
+ 2015, ApJL, 808, L3, doi: 10.1088/2041-8205/808/1/L3
1894
+ Andre, P., & Montmerle, T. 1994, ApJ, 420, 837,
1895
+ doi: 10.1086/173608
1896
+ Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ,
1897
+ 406, 122, doi: 10.1086/172425
1898
+ Andrews, S. M., & Williams, J. P. 2007, ApJ, 659, 705,
1899
+ doi: 10.1086/511741
1900
+
1901
+ 18
1902
+ Huang et al.
1903
+ -2.0
1904
+ -1.8
1905
+ -1.6
1906
+ -1.4
1907
+ -1.2
1908
+ -1.0
1909
+ -0.8
1910
+ -0.6
1911
+ -0.4
1912
+ -0.2
1913
+ 0.0
1914
+ 0.2
1915
+ 0.4
1916
+ 0.6
1917
+ 0.8
1918
+ 1.0
1919
+ 1.2
1920
+ 1.4
1921
+ 1.6
1922
+ 1.8
1923
+ 8
1924
+ 4
1925
+ 0
1926
+ 4
1927
+ 8
1928
+ [′′]
1929
+ 8
1930
+ 4
1931
+ 0
1932
+ 4
1933
+ 8
1934
+ [′′]
1935
+ 2.0
1936
+ 200 au
1937
+ 2.2
1938
+ 2.4
1939
+ 2.6
1940
+ 2.8
1941
+ 0
1942
+ 50
1943
+ 100
1944
+ 250
1945
+ 500
1946
+ 700
1947
+ 12CO J = 2
1948
+ 1 intensity (mJy beam
1949
+ 1)
1950
+ Figure 10.1. Channel maps of 12CO J = 2 − 1 toward DR Tau, part 1. The top right of each panel is labelled with the LSRK
1951
+ velocity (km s−1). The synthesized beam is drawn in the lower left corner of each panel. The purple crosses denote the disk
1952
+ center. Offsets from the disk center (in arcseconds) are marked on the axes in the lower left corner. The color scale uses an
1953
+ arcsinh stretch to make faint extended features more visible.
1954
+
1955
+ Molecular Mapping of DR Tau
1956
+ 19
1957
+ 3.0
1958
+ 3.2
1959
+ 3.4
1960
+ 3.6
1961
+ 3.8
1962
+ 4.0
1963
+ 4.2
1964
+ 4.4
1965
+ 4.6
1966
+ 4.8
1967
+ 5.0
1968
+ 5.2
1969
+ 5.4
1970
+ 5.6
1971
+ 5.8
1972
+ 6.0
1973
+ 6.2
1974
+ 6.4
1975
+ 6.6
1976
+ 6.8
1977
+ 8
1978
+ 4
1979
+ 0
1980
+ 4
1981
+ 8
1982
+ [′′]
1983
+ 8
1984
+ 4
1985
+ 0
1986
+ 4
1987
+ 8
1988
+ [′′]
1989
+ 7.0
1990
+ 200 au
1991
+ 7.2
1992
+ 7.4
1993
+ 7.6
1994
+ 7.8
1995
+ 0
1996
+ 50
1997
+ 100
1998
+ 250
1999
+ 500
2000
+ 700
2001
+ 12CO J = 2
2002
+ 1 intensity (mJy beam
2003
+ 1)
2004
+ Figure 10.1. Channel maps of 12CO J = 2 − 1 toward DR Tau, part 2.
2005
+
2006
+ 20
2007
+ Huang et al.
2008
+ 8.0
2009
+ 8.2
2010
+ 8.4
2011
+ 8.6
2012
+ 8.8
2013
+ 9.0
2014
+ 9.2
2015
+ 9.4
2016
+ 9.6
2017
+ 9.8
2018
+ 10.0
2019
+ 10.2
2020
+ 10.4
2021
+ 10.6
2022
+ 10.8
2023
+ 11.0
2024
+ 11.2
2025
+ 11.4
2026
+ 11.6
2027
+ 11.8
2028
+ 8
2029
+ 4
2030
+ 0
2031
+ 4
2032
+ 8
2033
+ [′′]
2034
+ 8
2035
+ 4
2036
+ 0
2037
+ 4
2038
+ 8
2039
+ [′′]
2040
+ 12.0
2041
+ 200 au
2042
+ 12.2
2043
+ 12.4
2044
+ 12.6
2045
+ 12.8
2046
+ 0
2047
+ 50
2048
+ 100
2049
+ 250
2050
+ 500
2051
+ 700
2052
+ 12CO J = 2
2053
+ 1 intensity (mJy beam
2054
+ 1)
2055
+ Figure 10.1. Channel maps of 12CO J = 2 − 1 toward DR Tau, part 3.
2056
+ Andrews, S. M., Huang, J., P´erez, L. M., et al. 2018, ApJL,
2057
+ 869, L41, doi: 10.3847/2041-8213/aaf741
2058
+ Ardila, D. R., Basri, G., Walter, F. M., Valenti, J. A., &
2059
+ Johns-Krull, C. M. 2002, ApJ, 566, 1100,
2060
+ doi: 10.1086/338223
2061
+ Artur de la Villarmois, E., Guzm´an, V. V., Jørgensen,
2062
+ J. K., et al. 2022, A&A, 667, A20,
2063
+ doi: 10.1051/0004-6361/202244312
2064
+ Arulanantham, N., France, K., Cazzoletti, P., et al. 2020,
2065
+ AJ, 159, 168, doi: 10.3847/1538-3881/ab789a
2066
+
2067
+ Molecular Mapping of DR Tau
2068
+ 21
2069
+ 13.0
2070
+ 13.2
2071
+ 13.4
2072
+ 13.6
2073
+ 13.8
2074
+ 14.0
2075
+ 14.2
2076
+ 14.4
2077
+ 14.6
2078
+ 14.8
2079
+ 15.0
2080
+ 15.2
2081
+ 15.4
2082
+ 15.6
2083
+ 15.8
2084
+ 16.0
2085
+ 16.2
2086
+ 16.4
2087
+ 16.6
2088
+ 16.8
2089
+ 8
2090
+ 4
2091
+ 0
2092
+ 4
2093
+ 8
2094
+ [′′]
2095
+ 8
2096
+ 4
2097
+ 0
2098
+ 4
2099
+ 8
2100
+ [′′]
2101
+ 17.0
2102
+ 200 au
2103
+ 17.2
2104
+ 17.4
2105
+ 17.6
2106
+ 17.8
2107
+ 0
2108
+ 50
2109
+ 100
2110
+ 250
2111
+ 500
2112
+ 700
2113
+ 12CO J = 2
2114
+ 1 intensity (mJy beam
2115
+ 1)
2116
+ Figure 10.1. Channel maps of 12CO J = 2 − 1 toward DR Tau, part 4.
2117
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
2118
+ et al. 2013, A&A, 558, A33,
2119
+ doi: 10.1051/0004-6361/201322068
2120
+ Audard, M., ´Abrah´am, P., Dunham, M. M., et al. 2014, in
2121
+ Protostars and Planets VI, ed. H. Beuther, R. S. Klessen,
2122
+ C. P. Dullemond, & T. Henning, 387,
2123
+ doi: 10.2458/azu uapress 9780816531240-ch017
2124
+ Bae, J., Hartmann, L., & Zhu, Z. 2015, ApJ, 805, 15,
2125
+ doi: 10.1088/0004-637X/805/1/15
2126
+ Bae, J., Hartmann, L., Zhu, Z., & Nelson, R. P. 2014, ApJ,
2127
+ 795, 61, doi: 10.1088/0004-637X/795/1/61
2128
+ Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M.,
2129
+ Demleitner, M., & Andrae, R. 2021, AJ, 161, 147,
2130
+ doi: 10.3847/1538-3881/abd806
2131
+
2132
+ 22
2133
+ Huang et al.
2134
+ 8.6
2135
+ 8.8
2136
+ 9.0
2137
+ 9.2
2138
+ 9.4
2139
+ 9.6
2140
+ 9.8
2141
+ 10.0
2142
+ 10.2
2143
+ 10.4
2144
+ 8
2145
+ 4
2146
+ 0
2147
+ 4
2148
+ 8
2149
+ [′′]
2150
+ 8
2151
+ 4
2152
+ 0
2153
+ 4
2154
+ 8
2155
+ [′′]
2156
+ 10.6
2157
+ 200 au
2158
+ 10.8
2159
+ 11.0
2160
+ 11.2
2161
+ 11.4
2162
+ 0
2163
+ 50
2164
+ 100
2165
+ 200
2166
+ 300
2167
+ 13CO J = 2
2168
+ 1 intensity (mJy beam
2169
+ 1)
2170
+ Figure 10.2. Channel maps of 13CO J = 2 − 1 toward DR Tau.
2171
+ Banzatti, A., Meyer, M. R., Manara, C. F., Pontoppidan,
2172
+ K. M., & Testi, L. 2014, ApJ, 780, 26,
2173
+ doi: 10.1088/0004-637X/780/1/26
2174
+ Banzatti, A., Meyer, M. R., Bruderer, S., et al. 2012, ApJ,
2175
+ 745, 90, doi: 10.1088/0004-637X/745/1/90
2176
+ Basu, S., & Vorobyov, E. I. 2012, ApJ, 750, 30,
2177
+ doi: 10.1088/0004-637X/750/1/30
2178
+ Bertout, C., Krautter, J., Moellenhoff, C., & Wolf, B. 1977,
2179
+ A&A, 61, 737
2180
+ Bodenheimer, P. 1974, Icarus, 23, 319,
2181
+ doi: 10.1016/0019-1035(74)90050-5
2182
+ Boley, A. C., Hayfield, T., Mayer, L., & Durisen, R. H.
2183
+ 2010, Icarus, 207, 509, doi: 10.1016/j.icarus.2010.01.015
2184
+ Bonnell, I., & Bastien, P. 1992, ApJL, 401, L31,
2185
+ doi: 10.1086/186663
2186
+ Booth, A. S., Ilee, J. D., Walsh, C., et al. 2022, arXiv
2187
+ e-prints, arXiv:2210.14820.
2188
+ https://arxiv.org/abs/2210.14820
2189
+ Booth, A. S., van der Marel, N., Leemker, M., van
2190
+ Dishoeck, E. F., & Ohashi, S. 2021, A&A, 651, L6,
2191
+ doi: 10.1051/0004-6361/202141057
2192
+ Boss, A. P. 1997, Science, 276, 1836,
2193
+ doi: 10.1126/science.276.5320.1836
2194
+ Boss, A. P., & Graham, J. A. 1993, Icarus, 106, 168,
2195
+ doi: 10.1006/icar.1993.1164
2196
+ Braun, T. A. M., Yen, H.-W., Koch, P. M., et al. 2021,
2197
+ ApJ, 908, 46, doi: 10.3847/1538-4357/abd24f
2198
+ CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP,
2199
+ 134, 114501, doi: 10.1088/1538-3873/ac9642
2200
+ Chavarria-K., C. 1979, A&A, 79, L18
2201
+ Cieza, L. A., Casassus, S., Tobin, J., et al. 2016, Nature,
2202
+ 535, 258, doi: 10.1038/nature18612
2203
+ Cieza, L. A., Ru´ız-Rodr´ıguez, D., Perez, S., et al. 2018,
2204
+ MNRAS, 474, 4347, doi: 10.1093/mnras/stx3059
2205
+ Cleeves, L. I., ¨Oberg, K. I., Wilner, D. J., et al. 2016, ApJ,
2206
+ 832, 110, doi: 10.3847/0004-637X/832/2/110
2207
+ Cohen, M., & Kuhi, L. V. 1979, ApJS, 41, 743,
2208
+ doi: 10.1086/190641
2209
+ Cuello, N., M´enard, F., & Price, D. J. 2022, arXiv e-prints,
2210
+ arXiv:2207.09752. https://arxiv.org/abs/2207.09752
2211
+ Cuello, N., Dipierro, G., Mentiplay, D., et al. 2019,
2212
+ MNRAS, 483, 4114, doi: 10.1093/mnras/sty3325
2213
+
2214
+ Molecular Mapping of DR Tau
2215
+ 23
2216
+ 9.0
2217
+ 9.2
2218
+ 9.4
2219
+ 9.6
2220
+ 9.8
2221
+ 2
2222
+ 0
2223
+ 2
2224
+ [′′]
2225
+ 2
2226
+ 0
2227
+ 2
2228
+ [′′]
2229
+ 10.0
2230
+ 200 au
2231
+ 10.2
2232
+ 10.4
2233
+ 10.6
2234
+ 10.8
2235
+ 0
2236
+ 50
2237
+ 100
2238
+ 150
2239
+ 200
2240
+ C18O J = 2
2241
+ 1 intensity (mJy beam
2242
+ 1)
2243
+ Figure 10.3. Channel maps of C18O J = 2 − 1 toward DR Tau. Contours are drawn in pink at the 3, 5, 10, 15, 20, 30σ levels.
2244
+ 9.0
2245
+ 9.2
2246
+ 9.4
2247
+ 9.6
2248
+ 9.8
2249
+ 2
2250
+ 0
2251
+ 2
2252
+ [′′]
2253
+ 2
2254
+ 0
2255
+ 2
2256
+ [′′]
2257
+ 10.0
2258
+ 200 au
2259
+ 10.2
2260
+ 10.4
2261
+ 10.6
2262
+ 10.8
2263
+ 0
2264
+ 15
2265
+ 30
2266
+ 45
2267
+ 60
2268
+ SO JN = 65
2269
+ 54 intensity (mJy beam
2270
+ 1)
2271
+ Figure 10.4. Channel maps of SO JN = 65 − 54 toward DR Tau. Contours are drawn in pink at the 3, 5, 10σ levels.
2272
+
2273
+ 24
2274
+ Huang et al.
2275
+ 9.0
2276
+ 9.2
2277
+ 9.4
2278
+ 9.6
2279
+ 9.8
2280
+ 2
2281
+ 0
2282
+ 2
2283
+ [′′]
2284
+ 2
2285
+ 0
2286
+ 2
2287
+ [′′]
2288
+ 10.0
2289
+ 200 au
2290
+ 10.2
2291
+ 10.4
2292
+ 10.6
2293
+ 10.8
2294
+ 0
2295
+ 15
2296
+ 30
2297
+ 45
2298
+ SO JN = 55
2299
+ 44 intensity (mJy beam
2300
+ 1)
2301
+ Figure 10.5. Channel maps of SO JN = 55 − 44 toward DR Tau. Contours are drawn in pink at the 3, 5σ levels.
2302
+ 9.0
2303
+ 9.2
2304
+ 9.4
2305
+ 9.6
2306
+ 9.8
2307
+ 2
2308
+ 0
2309
+ 2
2310
+ [′′]
2311
+ 2
2312
+ 0
2313
+ 2
2314
+ [′′]
2315
+ 10.0
2316
+ 200 au
2317
+ 10.2
2318
+ 10.4
2319
+ 10.6
2320
+ 10.8
2321
+ 0
2322
+ 9
2323
+ 18
2324
+ 27
2325
+ 36
2326
+ DCO + J = 3
2327
+ 2 intensity (mJy beam
2328
+ 1)
2329
+ Figure 10.6. Channel maps of DCO+ J = 3 − 2 toward DR Tau. Contours are drawn in pink at the 3, 5σ levels.
2330
+
2331
+ Molecular Mapping of DR Tau
2332
+ 25
2333
+ 9.0
2334
+ 9.2
2335
+ 9.4
2336
+ 9.6
2337
+ 9.8
2338
+ 2
2339
+ 0
2340
+ 2
2341
+ [′′]
2342
+ 2
2343
+ 0
2344
+ 2
2345
+ [′′]
2346
+ 10.0
2347
+ 200 au
2348
+ 10.2
2349
+ 10.4
2350
+ 10.6
2351
+ 10.8
2352
+ 0
2353
+ 25
2354
+ 50
2355
+ 75
2356
+ 100
2357
+ H2CO JKaKc = 303
2358
+ 202 intensity (mJy beam
2359
+ 1)
2360
+ Figure 10.7. Channel maps of H2CO JKaKc = 303 −202 toward DR Tau. Contours are drawn in pink at the 3, 5, 10, 15σ levels.
2361
+ 9.0
2362
+ 9.2
2363
+ 9.4
2364
+ 9.6
2365
+ 9.8
2366
+ 2
2367
+ 0
2368
+ 2
2369
+ [′′]
2370
+ 2
2371
+ 0
2372
+ 2
2373
+ [′′]
2374
+ 10.0
2375
+ 200 au
2376
+ 10.2
2377
+ 10.4
2378
+ 10.6
2379
+ 10.8
2380
+ 0
2381
+ 10
2382
+ 20
2383
+ 30
2384
+ H2CO JKaKc = 322
2385
+ 221 intensity (mJy beam
2386
+ 1)
2387
+ Figure 10.8. Channel maps of H2CO JKaKc = 322 − 221 toward DR Tau. Contours are drawn in pink at the 3, 4σ levels.
2388
+
2389
+ 26
2390
+ Huang et al.
2391
+ 9.0
2392
+ 9.2
2393
+ 9.4
2394
+ 9.6
2395
+ 9.8
2396
+ 2
2397
+ 0
2398
+ 2
2399
+ [′′]
2400
+ 2
2401
+ 0
2402
+ 2
2403
+ [′′]
2404
+ 10.0
2405
+ 200 au
2406
+ 10.2
2407
+ 10.4
2408
+ 10.6
2409
+ 10.8
2410
+ 0
2411
+ 5
2412
+ 10
2413
+ 15
2414
+ 20
2415
+ 25
2416
+ H2CO JKaKc = 321
2417
+ 220 intensity (mJy beam
2418
+ 1)
2419
+ Figure 10.9. Channel maps of H2CO JKaKc = 321 − 220 toward DR Tau. Contours are drawn in pink at the 3σ level.
2420
+ Table 3. Imaging Summary for Auxiliary Line Targets
2421
+ Transition
2422
+ Synthesized beam
2423
+ Per-channel RMS noisea
2424
+ 3σ Flux Upper Limit
2425
+ (arcsec × arcsec (◦))
2426
+ (mJy beam−1)
2427
+ (mJy km s−1)
2428
+ 13C17O J = 2 − 1
2429
+ 1.21 × 0.93 (18.0◦)
2430
+ 8
2431
+ < 40
2432
+ H2S JKaKc = 220 − 211
2433
+ 1.21 × 0.93 (16.6◦)
2434
+ 7
2435
+ < 40
2436
+ c-C3H2 JKaKc = 330 − 221
2437
+ 1.21 × 0.93 (16.7◦)
2438
+ 7
2439
+ < 30
2440
+ SiO J = 5 − 4
2441
+ 1.21 × 0.93 (16.4◦)
2442
+ 7
2443
+ < 30
2444
+ DCN J = 3 − 2
2445
+ 1.21 × 0.93 (16.5◦)
2446
+ 7
2447
+ < 40
2448
+ c-C3H2 JKaKc = 514 − 423
2449
+ 1.21 × 0.93 (16.7◦)
2450
+ 7
2451
+ < 30
2452
+ HC3N J = 24 − 23
2453
+ 1.20 × 0.94 (17.0◦)
2454
+ 7
2455
+ < 30
2456
+ OCS J = 19 − 18
2457
+ 1.18 × 0.91 (17.3◦)
2458
+ 7
2459
+ < 30
2460
+ N2D+ J = 3 − 2
2461
+ 1.18 × 0.91 (17.3◦)
2462
+ 10
2463
+ < 70
2464
+ 13CS J = 5 − 4
2465
+ 1.18 × 0.91 (17.3◦)
2466
+ 8
2467
+ < 50
2468
+ C2S JN = 1918 − 1817
2469
+ 1.17 × 0.90 (16.6◦)
2470
+ 10
2471
+ < 50
2472
+ PN J = 5 − 4
2473
+ 1.17 × 0.90 (16.8◦)
2474
+ 9
2475
+ < 40
2476
+ HC3N J = 26 − 25
2477
+ 1.17 × 0.90 (16.7◦)
2478
+ 10
2479
+ < 50
2480
+ H2CS JKaKc = 717 − 616
2481
+ 1.17 × 0.90 (16.6◦)
2482
+ 11
2483
+ < 80
2484
+ aFor channel widths of 0.2 km s−1.
2485
+
2486
+ Molecular Mapping of DR Tau
2487
+ 27
2488
+ Cuello, N., Louvet, F., Mentiplay, D., et al. 2020, MNRAS,
2489
+ 491, 504, doi: 10.1093/mnras/stz2938
2490
+ Currie, T., Lawson, K., Schneider, G., et al. 2022, Nature
2491
+ Astronomy, 6, 751, doi: 10.1038/s41550-022-01634-x
2492
+ Dai, F., Facchini, S., Clarke, C. J., & Haworth, T. J. 2015,
2493
+ MNRAS, 449, 1996, doi: 10.1093/mnras/stv403
2494
+ Dong, R., Zhu, Z., Fung, J., et al. 2016, ApJ, 816, L12,
2495
+ doi: 10.3847/2041-8205/816/1/L12
2496
+ Dullemond, C. P., K¨uffmeier, M., Goicovic, F., et al. 2019,
2497
+ A&A, 628, A20, doi: 10.1051/0004-6361/201832632
2498
+ Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014, in
2499
+ Protostars and Planets VI, ed. H. Beuther, R. S. Klessen,
2500
+ C. P. Dullemond, & T. Henning, 195,
2501
+ doi: 10.2458/azu uapress 9780816531240-ch009
2502
+ Evans, Neal J., I., Balkum, S., Levreault, R. M., Hartmann,
2503
+ L., & Kenyon, S. 1994, ApJ, 424, 793,
2504
+ doi: 10.1086/173931
2505
+ Fern´andez-L´opez, M., Zapata, L. A., Rodr´ıguez, L. F.,
2506
+ et al. 2020, AJ, 159, 171, doi: 10.3847/1538-3881/ab7a10
2507
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,
2508
+ J. 2013, Publications of the Astronomical Society of the
2509
+ Pacific, 125, 306, doi: 10.1086/670067
2510
+ Forgan, D., & Rice, K. 2010, MNRAS, 402, 1349,
2511
+ doi: 10.1111/j.1365-2966.2009.15974.x
2512
+ Gahm, G. F., Nordh, H. L., Olofsson, S. G., & Carlborg,
2513
+ N. C. J. 1974, A&A, 33, 399
2514
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.
2515
+ 2021, A&A, 649, A1, doi: 10.1051/0004-6361/202039657
2516
+ Gangi, M., Antoniucci, S., Biazzo, K., et al. 2022, A&A,
2517
+ 667, A124, doi: 10.1051/0004-6361/202244042
2518
+ Garufi, A., Benisty, M., Pinilla, P., et al. 2018, A&A, 620,
2519
+ A94, doi: 10.1051/0004-6361/201833872
2520
+ Garufi, A., Avenhaus, H., P´erez, S., et al. 2020, A&A, 633,
2521
+ A82, doi: 10.1051/0004-6361/201936946
2522
+ Garufi, A., Podio, L., Codella, C., et al. 2021, A&A, 645,
2523
+ A145, doi: 10.1051/0004-6361/202039483
2524
+ —. 2022, A&A, 658, A104,
2525
+ doi: 10.1051/0004-6361/202141264
2526
+ Gildas Team. 2013, GILDAS: Grenoble Image and Line
2527
+ Data Analysis Software, Astrophysics Source Code
2528
+ Library, record ascl:1305.010. http://ascl.net/1305.010
2529
+ Ginski, C., Facchini, S., Huang, J., et al. 2021, ApJL, 908,
2530
+ L25, doi: 10.3847/2041-8213/abdf57
2531
+ Goodman, J., & Weare, J. 2010, Communications in
2532
+ Applied Mathematics and Computational Science, 5, 65,
2533
+ doi: 10.2140/camcos.2010.5.65
2534
+ Grady, C. A. 2004, in Astronomical Society of the Pacific
2535
+ Conference Series, Vol. 321, Extrasolar Planets: Today
2536
+ and Tomorrow, ed. J. Beaulieu, A. Lecavelier Des
2537
+ Etangs, & C. Terquem, 244
2538
+ Grady, C. A., Woodgate, B., Bruhweiler, F. C., et al. 1999,
2539
+ ApJL, 523, L151, doi: 10.1086/312270
2540
+ Guenther, E., & Hessman, F. V. 1993, A&A, 268, 192
2541
+ Guilloteau, S., Reboussin, L., Dutrey, A., et al. 2016, A&A,
2542
+ 592, A124, doi: 10.1051/0004-6361/201527088
2543
+ Hales, A. S., P´erez, S., Saito, M., et al. 2018, ApJ, 859, 111,
2544
+ doi: 10.3847/1538-4357/aac018
2545
+ Hales, A. S., P´erez, S., Gonzalez-Ruilova, C., et al. 2020,
2546
+ ApJ, 900, 7, doi: 10.3847/1538-4357/aba3c4
2547
+ Haworth, T. J., & Owen, J. E. 2020, MNRAS, 492, 5030,
2548
+ doi: 10.1093/mnras/staa151
2549
+ Herbig, G. H. 1989, in European Southern Observatory
2550
+ Conference and Workshop Proceedings, Vol. 33,
2551
+ European Southern Observatory Conference and
2552
+ Workshop Proceedings, 233–246
2553
+ Herczeg, G. J., & Hillenbrand, L. A. 2014, ApJ, 786, 97,
2554
+ doi: 10.1088/0004-637X/786/2/97
2555
+ Huang, J., ¨Oberg, K. I., Qi, C., et al. 2017, ApJ, 835, 231,
2556
+ doi: 10.3847/1538-4357/835/2/231
2557
+ Huang, J., Andrews, S. M., ¨Oberg, K. I., et al. 2020, ApJ,
2558
+ 898, 140, doi: 10.3847/1538-4357/aba1e1
2559
+ Huang, J., Bergin, E. A., ¨Oberg, K. I., et al. 2021, ApJS,
2560
+ 257, 19, doi: 10.3847/1538-4365/ac143e
2561
+ Huang, J., Ginski, C., Benisty, M., et al. 2022, ApJ, 930,
2562
+ 171, doi: 10.3847/1538-4357/ac63ba
2563
+ Hughes, A. M., Andrews, S. M., Espaillat, C., et al. 2009,
2564
+ ApJ, 698, 131, doi: 10.1088/0004-637X/698/1/131
2565
+ Hunter, J. D. 2007, Computing in Science & Engineering, 9,
2566
+ 90, doi: 10.1109/MCSE.2007.55
2567
+ Ilee, J. D., Boley, A. C., Caselli, P., et al. 2011, MNRAS,
2568
+ 417, 2950, doi: 10.1111/j.1365-2966.2011.19455.x
2569
+ Ilee, J. D., Forgan, D. H., Evans, M. G., et al. 2017,
2570
+ MNRAS, 472, 189, doi: 10.1093/mnras/stx1966
2571
+ Imhoff, C. L., & Appenzeller, I. 1987, in Astrophysics and
2572
+ Space Science Library, Vol. 129, Exploring the Universe
2573
+ with the IUE Satellite, ed. Y. Kondo & W. Wamsteker,
2574
+ 295, doi: 10.1007/978-94-009-3753-6 13
2575
+ Jennings, J., Booth, R. A., Tazzari, M., Rosotti, G. P., &
2576
+ Clarke, C. J. 2020, MNRAS, 495, 3209,
2577
+ doi: 10.1093/mnras/staa1365
2578
+ Jørgensen, J. K., Kuruwita, R. L., Harsono, D., et al. 2022,
2579
+ Nature, 606, 272, doi: 10.1038/s41586-022-04659-4
2580
+ Joy, A. H. 1945, ApJ, 102, 168, doi: 10.1086/144749
2581
+ Juh´asz, A., Dullemond, C. P., van Boekel, R., et al. 2012,
2582
+ ApJ, 744, 118, doi: 10.1088/0004-637X/744/2/118
2583
+ Kanagawa, K. D., Hashimoto, J., Muto, T., et al. 2021,
2584
+ ApJ, 909, 212, doi: 10.3847/1538-4357/abdfc5
2585
+ Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117,
2586
+ doi: 10.1086/192235
2587
+
2588
+ 28
2589
+ Huang et al.
2590
+ Kenyon, S. J., Hartmann, L., Hewett, R., et al. 1994, AJ,
2591
+ 107, 2153, doi: 10.1086/117026
2592
+ Kepley, A. A., Tsutsumi, T., Brogan, C. L., et al. 2020,
2593
+ PASP, 132, 024505, doi: 10.1088/1538-3873/ab5e14
2594
+ Kitamura, Y., Momose, M., Yokogawa, S., et al. 2002, ApJ,
2595
+ 581, 357, doi: 10.1086/344223
2596
+ Kokubo, E., & Ida, S. 2002, ApJ, 581, 666,
2597
+ doi: 10.1086/344105
2598
+ K´osp´al, ´A., ´Abrah´am, P., Csengeri, T., et al. 2017, ApJ,
2599
+ 843, 45, doi: 10.3847/1538-4357/aa7683
2600
+ Kuffmeier, M., Goicovic, F. G., & Dullemond, C. P. 2020,
2601
+ A&A, 633, A3, doi: 10.1051/0004-6361/201936820
2602
+ Kuznetsova, A., Bae, J., Hartmann, L., & Low, M.-M. M.
2603
+ 2022, ApJ, 928, 92, doi: 10.3847/1538-4357/ac54a8
2604
+ Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star
2605
+ Forming Regions, ed. M. Peimbert & J. Jugaku, 1
2606
+ Lada, C. J., & Wilking, B. A. 1984, ApJ, 287, 610,
2607
+ doi: 10.1086/162719
2608
+ Lambrechts, M., & Johansen, A. 2012, A&A, 544, A32,
2609
+ doi: 10.1051/0004-6361/201219127
2610
+ Le Gal, R., ¨Oberg, K. I., Huang, J., et al. 2020, ApJ, 898,
2611
+ 131, doi: 10.3847/1538-4357/ab9ebf
2612
+ Le Gal, R., ¨Oberg, K. I., Teague, R., et al. 2021, ApJS, 257,
2613
+ 12, doi: 10.3847/1538-4365/ac2583
2614
+ Liu, H. B., Takami, M., Kudo, T., et al. 2016, Science
2615
+ Advances, 2, e1500875, doi: 10.1126/sciadv.1500875
2616
+ Long, F., Pinilla, P., Herczeg, G. J., et al. 2018, ApJ, 869,
2617
+ 17, doi: 10.3847/1538-4357/aae8e1
2618
+ Long, F., Herczeg, G. J., Harsono, D., et al. 2019, ApJ, 882,
2619
+ 49, doi: 10.3847/1538-4357/ab2d2d
2620
+ McClure, M. K. 2019, A&A, 632, A32,
2621
+ doi: 10.1051/0004-6361/201834361
2622
+ Mercimek, S., Codella, C., Podio, L., et al. 2022, A&A, 659,
2623
+ A67, doi: 10.1051/0004-6361/202141790
2624
+ Mesa, D., Ginski, C., Gratton, R., et al. 2022, A&A, 658,
2625
+ A63, doi: 10.1051/0004-6361/202142219
2626
+ Miotello, A., Kamp, I., Birnstiel, T., Cleeves, L. I., &
2627
+ Kataoka, A. 2022, arXiv e-prints, arXiv:2203.09818.
2628
+ https://arxiv.org/abs/2203.09818
2629
+ M¨uller, H. S. P., Schl¨oder, F., Stutzki, J., & Winnewisser,
2630
+ G. 2005, Journal of Molecular Structure, 742, 215,
2631
+ doi: 10.1016/j.molstruc.2005.01.027
2632
+ M¨uller, H. S. P., Thorwirth, S., Roth, D. A., &
2633
+ Winnewisser, G. 2001, A&A, 370, L49,
2634
+ doi: 10.1051/0004-6361:20010367
2635
+ ¨Oberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011a,
2636
+ ApJL, 743, L16, doi: 10.1088/2041-8205/743/1/L16
2637
+ ¨Oberg, K. I., Qi, C., Fogel, J. K. J., et al. 2011b, ApJ, 734,
2638
+ 98, doi: 10.1088/0004-637X/734/2/98
2639
+ pandas development team, T. 2022, pandas-dev/pandas:
2640
+ Pandas, v1.5.2, Zenodo, doi: 10.5281/zenodo.7344967
2641
+ Paneque-Carre˜no, T., P´erez, L. M., Benisty, M., et al. 2021,
2642
+ ApJ, 914, 88, doi: 10.3847/1538-4357/abf243
2643
+ Pegues, J., ¨Oberg, K. I., Bergner, J. B., et al. 2020, ApJ,
2644
+ 890, 142, doi: 10.3847/1538-4357/ab64d9
2645
+ P´erez, L. M., Carpenter, J. M., Andrews, S. M., et al. 2016,
2646
+ Science, 353, 1519, doi: 10.1126/science.aaf8296
2647
+ Pety, J. 2005, in SF2A-2005: Semaine de l’Astrophysique
2648
+ Francaise, ed. F. Casoli, T. Contini, J. M. Hameury, &
2649
+ L. Pagani, 721
2650
+ Pineau des Forˆets, G., Roueff, E., Schilke, P., & Flower,
2651
+ D. R. 1993, MNRAS, 262, 915,
2652
+ doi: 10.1093/mnras/262.4.915
2653
+ Pineda, J. E., Segura-Cox, D., Caselli, P., et al. 2020,
2654
+ Nature Astronomy, 4, 1158,
2655
+ doi: 10.1038/s41550-020-1150-z
2656
+ Pontoppidan, K. M., Blake, G. A., & Smette, A. 2011, ApJ,
2657
+ 733, 84, doi: 10.1088/0004-637X/733/2/84
2658
+ Principe, D. A., Cieza, L., Hales, A., et al. 2018, MNRAS,
2659
+ 473, 879, doi: 10.1093/mnras/stx2320
2660
+ Rau, U., & Cornwell, T. J. 2011, A&A, 532, A71,
2661
+ doi: 10.1051/0004-6361/201117104
2662
+ Rivi`ere-Marichalar, P., Fuente, A., Le Gal, R., et al. 2020,
2663
+ A&A, 642, A32, doi: 10.1051/0004-6361/202038549
2664
+ Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood,
2665
+ K., & Denzmore, P. 2006, ApJS, 167, 256,
2666
+ doi: 10.1086/508424
2667
+ Ru´ız-Rodr´ıguez, D., Cieza, L. A., Williams, J. P., et al.
2668
+ 2017, MNRAS, 468, 3266, doi: 10.1093/mnras/stx703
2669
+ Sakai, N., Sakai, T., Hirota, T., et al. 2014, Nature, 507, 78,
2670
+ doi: 10.1038/nature13000
2671
+ Salyk, C., Pontoppidan, K. M., Blake, G. A., et al. 2008,
2672
+ ApJL, 676, L49, doi: 10.1086/586894
2673
+ Salyk, C., Pontoppidan, K. M., Blake, G. A., Najita, J. R.,
2674
+ & Carr, J. S. 2011, ApJ, 731, 130,
2675
+ doi: 10.1088/0004-637X/731/2/130
2676
+ Segura-Cox, D. M., Schmiedeke, A., Pineda, J. E., et al.
2677
+ 2020, Nature, 586, 228, doi: 10.1038/s41586-020-2779-6
2678
+ Semenov, D., Favre, C., Fedele, D., et al. 2018, A&A, 617,
2679
+ A28, doi: 10.1051/0004-6361/201832980
2680
+ Shuai, L., Ren, B. B., Dong, R., et al. 2022, ApJS, 263, 31,
2681
+ doi: 10.3847/1538-4365/ac98fd
2682
+ Sierra, A., P´erez, L. M., Zhang, K., et al. 2021, ApJS, 257,
2683
+ 14, doi: 10.3847/1538-4365/ac1431
2684
+ Stevenson, D. J., & Lunine, J. I. 1988, Icarus, 75, 146,
2685
+ doi: 10.1016/0019-1035(88)90133-9
2686
+ Sturm, J. A., McClure, M. K., Harsono, D., et al. 2022,
2687
+ A&A, 660, A126, doi: 10.1051/0004-6361/202141860
2688
+
2689
+ Molecular Mapping of DR Tau
2690
+ 29
2691
+ Szul´agyi, J., & Mordasini, C. 2017, MNRAS, 465, L64,
2692
+ doi: 10.1093/mnrasl/slw212
2693
+ Tabone, B., Cabrit, S., Bianchi, E., et al. 2017, A&A, 607,
2694
+ L6, doi: 10.1051/0004-6361/201731691
2695
+ Tang, Y. W., Guilloteau, S., Pi´etu, V., et al. 2012, A&A,
2696
+ 547, A84, doi: 10.1051/0004-6361/201219414
2697
+ Tazzari, M., Testi, L., Ercolano, B., et al. 2016, A&A, 588,
2698
+ A53, doi: 10.1051/0004-6361/201527423
2699
+ Thi, W. F., van Dishoeck, E. F., Blake, G. A., et al. 2001,
2700
+ ApJ, 561, 1074, doi: 10.1086/323361
2701
+ Trapman, L., Facchini, S., Hogerheijde, M. R., van
2702
+ Dishoeck, E. F., & Bruderer, S. 2019, A&A, 629, A79,
2703
+ doi: 10.1051/0004-6361/201834723
2704
+ Valdivia-Mena, M. T., Pineda, J. E., Segura-Cox, D. M.,
2705
+ et al. 2022, A&A, 667, A12,
2706
+ doi: 10.1051/0004-6361/202243310
2707
+ van der Velden, E. 2020, Journal of Open Source Software,
2708
+ 5, 2004, doi: 10.21105/joss.02004
2709
+ van der Walt, S., Sch¨onberger, J. L., Nunez-Iglesias, J.,
2710
+ et al. 2014, PeerJ, 2, e453, doi: 10.7717/peerj.453
2711
+ van ’t Hoff, M. L. R., Tobin, J. J., Trapman, L., et al. 2018,
2712
+ ApJL, 864, L23, doi: 10.3847/2041-8213/aadb8a
2713
+ Veronesi, B., Lodato, G., Dipierro, G., et al. 2019, MNRAS,
2714
+ 489, 3758, doi: 10.1093/mnras/stz2384
2715
+ Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
2716
+ Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
2717
+ Vorobyov, E. I., & Basu, S. 2005, ApJL, 633, L137,
2718
+ doi: 10.1086/498303
2719
+ Wes McKinney. 2010, in Proceedings of the 9th Python in
2720
+ Science Conference, ed. St´efan van der Walt & Jarrod
2721
+ Millman, 56 – 61, doi: 10.25080/Majora-92bf1922-00a
2722
+ Wilking, B. A., Lada, C. J., & Young, E. T. 1989, ApJ,
2723
+ 340, 823, doi: 10.1086/167439
2724
+ Yen, H.-W., Gu, P.-G., Hirano, N., et al. 2019, ApJ, 880,
2725
+ 69, doi: 10.3847/1538-4357/ab29f8
2726
+ Yorke, H. W., & Bodenheimer, P. 1999, ApJ, 525, 330,
2727
+ doi: 10.1086/307867
2728
+ Zhang, S., Zhu, Z., Huang, J., et al. 2018, ApJL, 869, L47,
2729
+ doi: 10.3847/2041-8213/aaf744
2730
+ Zhu, Z., Dong, R., Stone, J. M., & Rafikov, R. R. 2015,
2731
+ ApJ, 813, 88, doi: 10.1088/0004-637X/813/2/88
2732
+ Zhu, Z., Hartmann, L., & Gammie, C. 2010, ApJ, 713,
2733
+ 1143, doi: 10.1088/0004-637X/713/2/1143
2734
+ Zhu, Z., Hartmann, L., Nelson, R. P., & Gammie, C. F.
2735
+ 2012, ApJ, 746, 110, doi: 10.1088/0004-637X/746/1/110
2736
+ Zurlo, A., Cieza, L. A., Williams, J. P., et al. 2017,
2737
+ MNRAS, 465, 834, doi: 10.1093/mnras/stw2845
2738
+
KtE0T4oBgHgl3EQfzgKz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KtE3T4oBgHgl3EQfvgte/content/tmp_files/2301.04694v1.pdf.txt ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 1
3
+
4
+
5
+ Science Priorities for the Extraction of the Solid MSR Samples
6
+ from their Sample Tubes
7
+
8
+
9
+
10
+
11
+ NASA-ESA Mars Rock Team
12
+ Nicolas Dauphas, Sara S. Russell, David Beaty, Fiona Thiessen,
13
+ Jessica Barnes, Lydie Bonal, John Bridges, Thomas Bristow, John Eiler, Ludovic Ferrière, Teresa
14
+ Fornaro, Jérôme Gattacceca, Beda Hoffman, Emmanuelle J. Javaux, Thorsten Kleine, Harry Y.
15
+ McSween, Manika Prasad, Liz Rampe, Mariek Schmidt, Blair Schoene, Kirsten L. Siebach, Jennifer
16
+ Stern, Nicolas Tosca.
17
+
18
+
19
+
20
+
21
+
22
+ Requestor: NASA-ESA MCSG1 team
23
+ Date: January 11, 2023
24
+
25
+
26
+
27
+
28
+ Citation to this report:
29
+ Dauphas N., Russell S.S., Beaty D., Thiessen F., Barnes J., Bonal L., Bridges J., Bristow T., Eiler J.,
30
+ Ferrière L., Fornaro T., Gattacceca J., Hoffman B., Javaux E.J., Kleine T., McSween H.Y., Prasad M.,
31
+ Rampe L., Schmidt M., Schoene B., Siebach K.L., Stern J., Tosca N. (2023) Science priorities for the
32
+ extraction of the solid MSR samples from their sample tubes. NASA-ESA Mars Rock Team Report 1
33
+
34
+
35
+
36
+
37
+ 2
38
+ Background: The NASA-ESA Mars Rock Team is an outgrowth of the MCSG1 team. It is composed of
39
+ scientists with expertise in handling and analyses of both terrestrial and extraterrestrial samples, rock
40
+ physics, and contamination mitigation. Two online meetings were organized in the Fall of 2022 where
41
+ Oscar Rendon Perez (JPL) and Paulo Younse (JPL) described the engineering options for opening the
42
+ tubes that will contain the samples returned from Mars' Jezero crater. This prompted discussions
43
+ between the Rock Team members (during online meetings and through emails). The Rock Team
44
+ leadership met online with the team focused on gas analysis (Gas Team) to understand their
45
+ constraints and make sure that the solutions envisioned for headspace gas extraction would not
46
+ compromise solid core retrieval. This report summarizes the consensus view of the Rock Team. It was
47
+ written by the Rock Team leadership with input from all team members.
48
+ Summary: Preservation of the chemical and structural integrity of samples that will be brought back
49
+ from Mars is paramount to achieving the scientific objectives of MSR. Given our knowledge of the
50
+ nature of the samples retrieved at Jezero by Perseverance, at least two options need to be tested for
51
+ opening the sample tubes: (1) One or two radial cuts at the end of the tube to slide the sample out.
52
+ (2) Two radial cuts at the ends of the tube and two longitudinal cuts to lift the upper half of the tube
53
+ and access the sample. Strategy 1 will likely minimize contamination but incurs the risk of affecting
54
+ the physical integrity of weakly consolidated samples. Strategy 2 will be optimal for preserving the
55
+ physical integrity of the samples but increases the risk of contamination and mishandling of the sample
56
+ as more manipulations and additional equipment will be needed. A flexible approach to opening the
57
+ sample tubes is therefore required, and several options need to be available, depending on the nature
58
+ of the rock samples returned. Both opening strategies 1 and 2 may need to be available when the
59
+ samples are returned to handle different sample types (e.g., loosely bound sediments vs. indurated
60
+ magmatic rocks). This question should be revisited after engineering tests are performed on analogue
61
+ samples. The MSR sample tubes will have to be opened under stringent BSL4 conditions and this
62
+ aspect needs to be integrated into the planning.
63
+ Introduction: NASA-ESA are planning to collect and transport from Mars to Earth a set of samples of
64
+ martian materials for the purpose of scientific investigation (Kminek et al. 2022). The samples are
65
+ currently collected by the Perseverance Rover (Farley and Stack, 2022) and consist of rocks, regolith,
66
+ and at least one dedicated sample of atmospheric gas. In addition, for the rock and regolith samples,
67
+ the process of sealing the sample tubes at the martian surface will result in the volume above the solid
68
+ samples (referred to as the head space) being occupied by martian atmospheric gas. The samples will
69
+ be contained within titanium sample tubes, which will be sealed at the martian surface with a
70
+ compression-style cap.
71
+ The rocks sampled thus far by the Perseverance Rover comprise magmatic rocks like basalt and olivine
72
+ cumulates that experienced various degrees of secondary water alteration, water-laid detrital
73
+ sedimentary rocks that show various levels of induration, and unconsolidated Mars regolith that could
74
+ contain grains from afar transported to the Jezero crater. Two main considerations weigh on the
75
+ strategy that should be adopted for opening the samples:
76
+ (1) Important information is contained in the vertical successions and textural characteristics of layers
77
+ in sediments, which can provide important clues for interpreting the depositional setting (Fig. 1). For
78
+ example, in terrestrial lakes, vertical gradation in grain size can reflect the relative density of
79
+ depositional and lacustrine fluids or gradations in organic matter content can reflect seasonal changes
80
+ in biological productivity. Fine laminations can sometimes reflect the presence of microbial mats. The
81
+ method used for opening the tubes must imperatively preserve those fine structures.
82
+
83
+
84
+ 3
85
+
86
+ Fig. 1. Examples of possible fine-scale laminations in terrestrial environments (left; seasonal varves from Lake
87
+ Belau, Northern Germany; Dörfler et al. 2012; right Microbially-Induced Sedimentary Structures-MISS in the
88
+ middle neoproterozoic Chuar Group, Grand Canyon, Arizona; Bohacs and Junium 2007).
89
+ (2) Some critical measurements are sensitive to contamination either from the tube, the apparatus
90
+ used for cutting the tubes, or surrounding contaminants present in the isolator. Organic matter is of
91
+ particular concern given the high stakes involved in any claim for the presence of any form of biotic or
92
+ prebiotic chemistry on Mars. Inorganic trace element isotopes may provide dates on when Mars was
93
+ habitable, and these are also prone to contamination.
94
+ Beginning in 2022, an engineering team was tasked with developing the processes needed to open
95
+ the sample tubes and to extract the solid and gaseous samples. The engineering team was asked to
96
+ develop engineering priorities associated with this process. Two science teams were asked to develop
97
+ parallel science priorities: A group we call the “Gas Team” evaluated the priorities related to the
98
+ science associated with all returned gaseous sample, and a second group called the “Rock Team” (the
99
+ authors of this report) evaluated the priorities associated with solid materials contained within the
100
+ sample tubes. Both the "Gas Team" and "Rock Team" work under the oversight of a third committee,
101
+ the Mars Campaign Science Group (MCSG1).
102
+ The solid samples returned from the martian surface are certain to include sedimentary rocks (most
103
+ important for the search for biosignatures), igneous rocks, and regolith, and they may also include
104
+ other kinds of rocks, such as hydrothermal rocks, or impact breccia. The samples will be the basis for
105
+ answering the main scientific questions of Mars Sample Return (iMOST, 2018).
106
+ The rock samples at Mars will all have been collected from various outcrops (or perhaps very large
107
+ blocks of coherent rock). However, at least some of the rocks are relatively weak (i.e. a low
108
+ compressive strength), and are vulnerable to fracturing during drilling and during several dynamic
109
+ events associated with spacecraft operations during the return phase (most importantly, at Earth
110
+ landing). It is anticipated that the mechanical state of each sample, as received in the laboratory on
111
+ Earth, will be assessed by a method like computer tomography (CT) scanning prior to opening. The
112
+ decision on how to open each sample tube can therefore be based on geological data from the field
113
+ (collected by the M2020 science team), tests done on analogue samples, as well as the penetrative
114
+ imaging data obtained on Earth.
115
+ The engineering team has proposed a 2-phase process for opening the sample tubes: First, puncture
116
+ the tube in a way that will allow any gas present to be extracted and captured, then second, cut the
117
+ metal of the tube in a way that would allow the solid materials to be removed. Regarding cutting the
118
+ metal of the tubes, three primary mechanisms have been proposed (Fig. 2):
119
+
120
+ A single radial cut to the end of the tube, so that the sample could be tipped out.
121
+
122
+ A radial cut at each end of the tube, which would enable the sample to be pushed out from
123
+ one end
124
+
125
+ 9
126
+ belowtopof core segment
127
+ 10
128
+ 12
129
+ (cm)
130
+ 13
131
+ 14
132
+ 151cm
133
+ 4
134
+
135
+ Two radial cuts and two longitudinal cuts, to reveal the whole sample during cutting.
136
+ An option frequently used on Earth to access core samples, for example used with deep sea drill cores,
137
+ is to cut the core tube and the core together with something like a band saw. This is not an option for
138
+ samples returned from Mars as this would have the effect of driving contamination from both the
139
+ metallic core tube and band saw into the interior of the rock core.
140
+
141
+
142
+
143
+ Figure 2. Proposed protocols for opening the sample tubes. Drawings courtesy of Oscar Rendon Perez. In the one
144
+ radial cut approach, a sharp hard metal wheel shears through the tube by slowly rotating and tightening it
145
+ around the tube (bottom panel; left). The sample is extracted from the tube by inclining it and controlling the
146
+ rate of descent with a piston. The second approach involves doing a second cut to push the sample outwards. A
147
+ virtue of this approach is that it allows for a more controlled extraction, and it minimizes the risk of the sample
148
+ getting jammed in the tube. Both options 1 and 2 involve the sample sliding out of the tube and incur the risk of
149
+ losing the chemical and structural layering of the sample. The third approach involves doing two longitudinal
150
+ cuts on the side of the tube to expose the whole sample within the tube. It is least likely to disturb the physical
151
+ integrity of the sample, which stays in place in the tube, but it involves cutting the tube along its length through
152
+ a white alumina coating (deposited on the tubes to reduce their heat absorption while seating on Mars' surface)
153
+ possibly using a circular blade (bottom panel; right). The chance of contamination is higher with this third
154
+ approach as more tube manipulations are involved, more tube material is cut, and the setup to remove or cut
155
+ the alumina coating will be more involved than the wheel cutter used in approaches 1 and 2.
156
+ Approach:
157
+ The issue of how to open the tubes was discussed by the team over two telecons. Presentations by
158
+ engineers Oscar Rendon Perez and Paolo Younse were delivered to explain the design of the tubes
159
+ and different options for opening them (Fig. 2).
160
+ The Rock Sample Team concluded there are three main considerations:
161
+
162
+ Need to minimise (and have knowledge of) contamination
163
+
164
+ Need to preserve stratigraphy and other textural relationships
165
+
166
+ Need to maximise the amount of sample material that ends up in a scientifically useful state
167
+ from the tubes. For some samples like the detrital sediments or the regolith sample, each
168
+
169
+ BUEHLER
170
+ DIAMOND
171
+ WAFERING BID
172
+ BUEHILER
173
+ 5
174
+ small grain may provide a unique record of Mars' surface history, so dust adhering to the tube
175
+ surface should be recovered to the greatest extent possible. However, such dust will likely
176
+ represent a small fraction of the total mass and its retrieval could be done later. Or it could be
177
+ used for quickly surveying the petrography and mineralogy of the core as part of a preliminary
178
+ examination phase as this material will be of lesser value for other tasks and could be sterilized.
179
+ Minimal cutting (i.e., a single radial cut) was considered optimal to minimise potential contamination
180
+ of trace elements, especially metals, and organic material from the tubes and cutting tools. The
181
+ structural integrity of the sample would, however, be best preserved with radial and longitudinal cuts;
182
+ this is considered especially important for sedimentary rocks that may be friable but contain internal
183
+ stratigraphic structures. The yield may be maximised by at least two radial cuts. These considerations
184
+ may conflict with each other and the approach to be used will depend on the exact nature of each
185
+ returned sample. Magnetic contamination should also be minimized during cutting operation and
186
+ sample handling.
187
+ The preferred opening strategies are summarized in Table 1, which ponders each criterion (structure
188
+ integrity, chemical integrity, and yield) for three categories of samples (consolidated rocks, friable
189
+ rocks, and loose regolith). We summarize the Rock Team recommendations at the bottom of each
190
+ column. The rationale for each entry is summarized below:
191
+ Consolidated rocks (example microgabbro). To minimize the risk of contamination, one radial cut is
192
+ preferred as cutting by shearing with a hard metal solid wheel will generate little dust, cause little
193
+ heating, involve no use of fluid, and involve the least amount of tube material of all considered options.
194
+ To get the sample out of the tube, putting it on a vertical incline and lowering the sample in a
195
+ controlled manner with a piston would preserve the structural integrity of the sample. One radial cut
196
+ is likely to preserve the structural integrity of the sample. The cutting wheel will create a metal lip that
197
+ will protrude in the tube, so provision should be ready to straighten that lip so that the sample can be
198
+ extracted without rubbing against the lip. With a consolidated sample, there is however a concern
199
+ that jamming could occur, as a fragment might be trapped in compression between the solid core and
200
+ the tube wall. A second cut might be needed to push/pull the sample from the other side and free it
201
+ from such entrapment. Fine dust adhering to the inner tube surface might be difficult to retrieve with
202
+ a single radial cut. A second radial cut would allow one to get the fine dust out by pushing it out with
203
+ an appropriate instrument. The Rock Team favours 1 radial cut, with 2 radial cuts possibly needed for
204
+ sample retrieval in case of jamming and to recover fine dust adhering to the interior tube surface.
205
+ Friable rocks (example detrital sediments). These rocks are the ones for which preserving the
206
+ stratigraphy is of upmost importance. The rationale is the same as with consolidated rocks that a single
207
+ radial cut would be preferred from the point of avoiding contamination. To extract the sample, a single
208
+ radial cut might be sufficient as the less consolidated nature of those rocks means that they are less
209
+ likely to be hard jammed in the tube. A possible approach would be to put place a piston against the
210
+ sample on the opening side with the tube horizontal. The sample tube and piston would then be
211
+ rotated to a vertical position, and the piston would be lowered in a controlled manner to transfer the
212
+ sample core in a transparent sample holder (quartz or sapphire) with predesigned longitudinal
213
+ openings. The reason to transfer the sample vertically is to minimize shear on the tube surface. After
214
+ vertical transfer of the sample from the tube to the holder, the holder would be rotated back to
215
+ horizontal to be then opened, giving access to the sample.
216
+ Alternatively, it might be possible to 2 radial cuts, and one piston to push the sample out in a slightly
217
+ inclined orientation and another piston at the open side against the sample to prevent collapse, so
218
+ the sample keeps its integrity but we can avoid the longitudinal cuts to avoid more risk of
219
+
220
+
221
+ 6
222
+ contamination. If too friable, the sample could be gently pushed this way into a transparent sample
223
+ holder with predesigned longitudinal openings, allowing visible inspection of the enclosed protected
224
+ sample
225
+ Letting the sample slide out from one side incurs the risk however that rock fragments will be moved
226
+ out of sequence, that the sample will disaggregate, and that important chemical features be smeared
227
+ throughout the core. The latter point could include, for instance, organic distribution. If a layer is highly
228
+ enriched in organics, sliding the whole sample along the sides may smear the signature throughout
229
+ the entire core surface. For preserving the stratigraphy, it may therefore be advantageous to make 2
230
+ radial cuts and 2 longitudinal cuts to access the core without disturbing it. The constraints on fine dust
231
+ recovery are the same as with other sample types.
232
+ Regolith. There is no stratigraphic information to preserve in that sample and little risk of jamming,
233
+ so a single radial cut is preferred as this minimizes the risk of contamination. The fine dust in the
234
+ sample may come from afar and each grain will likely tell a story, so complete recovery of dust
235
+ adhering to the tube inner surface is important.
236
+ Table 1. Preferred opening strategies depending on rock cohesiveness and criteria considered.
237
+
238
+
239
+ The Rock Sample Team finds that a single approach will not be appropriate for all the rock samples
240
+ returned, but instead a flexible and bespoke approach will be needed for each sample tube opening,
241
+ with all three of the above options available. As a general principle, minimal cutting is favoured as
242
+ this will also minimise potential contamination issues. However, an overriding consideration is that
243
+ Consolidated rocks
244
+ Example: microgabbro
245
+ Friable rocks
246
+ Example: detrital
247
+ sediments, igneous
248
+ cumulate rocks
249
+ Regolith
250
+ Trace element and
251
+ organic contamination
252
+ 1 radial cut
253
+ 1 radial cut
254
+ 1 radial cut
255
+ Structural integrity of
256
+ the sample
257
+ 1 radial cut likely OK
258
+ Maybe 2 radial cuts in
259
+ case of jamming
260
+ 1 radial cut or
261
+ 2 radial cuts and 2
262
+ longitudinal cuts
263
+ 1 radial cut
264
+ Complete retrieval of the
265
+ sample (including dust)
266
+ 1 or 2 radial cuts
267
+ 1 or 2 radial cuts
268
+ 1 or 2 radial cuts
269
+ Rock Team
270
+ recommendation
271
+ 1 OR 2 radial cuts
272
+ 1 radial cut OR
273
+ 2 radial cuts and 2
274
+ longitudinal cuts
275
+ 1 OR 2 radial cuts
276
+ FINDING: There is not one single approach for opening the sample tubes that will
277
+ work sufficiently well for all MSR rock samples. Multiple options need to be available.
278
+
279
+
280
+ 7
281
+ the structural integrity of the rock sample is key to understanding its petrology, and this should remain
282
+ intact, even if this requires more processing.
283
+ For regolith samples, a single radial cut followed by tipping out the grains is likely to be appropriate,
284
+ since this will minimise contamination and there is no need to preserve spatial relationships within
285
+ the tube. For well consolidated (e.g., some igneous rock) samples, a radial cut perhaps followed by a
286
+ second radial cut may be required to extract the sample completely. For sedimentary rocks, and any
287
+ friable igneous rocks, the decision is more complex because a longitudinal cut may be necessary to
288
+ observe and preserve structural relationships, but this must be weighed against potentially
289
+ contributing more contamination. One possible solution to test for sedimentary samples could be to
290
+ make one or two radial cuts, then push the sample or let it slide down while keeping its stratigraphy
291
+ in place (possibly with high inclination to minimize shear along tube surface, with a sliding stopper
292
+ against the sample to control the sliding rate) into another tube with a closed longitudinal aperture
293
+ that allows longitudinal opening later.
294
+ The physical state of each core (consolidated or friable) will not be known for certain until the samples
295
+ are bought back to Earth, where CT-scanning will reveal the fine structure of the samples and guide
296
+ the strategy that adopted for tube opening.
297
+ Future Work:
298
+ The team suggests areas which require more work prior to sample return. These include:
299
+
300
+ Investigate how/whether analogue sedimentary samples and aqueously altered cumulate
301
+ rocks can be removed in a manner that preserves their structural integrity with only one radial
302
+ cut.
303
+
304
+ Investigate ways to efficiently remove the fines left behind after core extraction.
305
+
306
+ Impurities in all tube materials, coatings, and opening contraption (e.g., materials used in the
307
+ saw) must be characterized with appropriate techniques (e.g., ICP-MS). We suggest that a task
308
+ group be established to undertake an in-depth contaminant characterization campaign.
309
+
310
+ Investigate if it is possible to remove the alumina coating without compromising the sample,
311
+ and without causing damage (e.g. by vibration) to the martian sample inside the core tube.
312
+
313
+ Investigate the degree to which the different cutting protocols can introduce contamination.
314
+
315
+ Integrate these studies with CT and related scanning techniques.
316
+
317
+ Investigate how the cutting and related techniques can be performed in a Biological Hazard
318
+ Level BSL4 environment.
319
+
320
+ A concept that is not discussed in this report, but that has been considered elsewhere, is that the
321
+ opportunity exists to do penetrative imaging/mineralogical characterization of the sample-bearing
322
+ Mars sample tubes once they make it to Earth, so that we can obtain data on the mechanical state of
323
+ each sample as received prior to tube opening. This eliminates the need to make guesses based on
324
+ pre-sampling field data, or accelerations measured by the return spacecraft, etc. That imaging data
325
+ will give us the opportunity to help make decisions on how to open each tube. We know that for
326
+ samples with different kinds of mechanical integrity, different tube-opening strategies may be
327
+ required to avoid the risk of damage that unnecessarily affects the scientific usefulness of the sample.
328
+ A component of the technology program is needed to develop the datasets for what happens when
329
+ tubes containing samples with different degrees of mechanical integrity are opened by each of the
330
+ three methods described. This will become the basis for future decision-making. We also need data
331
+
332
+
333
+ 8
334
+ on the real contamination implications of making the horizontal cuts, and what kind of science is
335
+ affected by such contamination.
336
+
337
+ References.
338
+ iMOST (2018), The Potential Science and Engineering Value of Samples Delivered to Earth by Mars
339
+ Sample Return, (co-chairs D. W. Beaty, M. M. Grady, H. Y. McSween, E. Sefton-Nash; documentarian
340
+ B.L. Carrier; plus 66 co-authors), 186 p. white paper. Posted August, 2018 by MEPAG at
341
+ https://mepag.jpl.nasa.gov/reports.cfm.
342
+ Bohacs K.M., Junium (2007) Microbial mat sedimentary structures and their relation to organic-carbon
343
+ burial in the Middle Neoproterozoic Chuar Group, Grand Canyon, Arizona, USA Microbial-Induced
344
+ Sedimentary Structures-MISS in the middle neoproterozoic Chuar Group, Grand Canyon, Arizona. In
345
+ Atltas of microbial mat features within the clastic rock record, Schieber J. et al. (Eds). Elsevier 208-213.
346
+ Dörfler W et al. (2012) A high-quality annually laminated sequence from Lake Belau, Northern
347
+ Germany: revised chronology and its implications for palynological and tephrochronological studies.
348
+ The Holocene 22, 1413-1426.
349
+ Farley KA, Stack K. (2022) Mars 2020 Initial Reports, Crater Floor Campaign, August 11, 2022.
350
+ Kminek G., Meyer M.A., Beaty D.W., Carrier B.L., Haltigin T., Hays L.E. (2022) Mars Sample Return
351
+ (MSR):
352
+ Planning
353
+ for
354
+ Returned
355
+ Sample
356
+ Science.
357
+ Astrobiology.Jun
358
+ 2022.S-1-S-
359
+ 4.http://doi.org/10.1089/ast.2021.0198
360
+
361
+
KtE3T4oBgHgl3EQfvgte/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf,len=335
2
+ page_content='1 Science Priorities for the Extraction of the Solid MSR Samples from their Sample Tubes NASA-ESA Mars Rock Team Nicolas Dauphas, Sara S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
3
+ page_content=' Russell, David Beaty, Fiona Thiessen, Jessica Barnes, Lydie Bonal, John Bridges, Thomas Bristow, John Eiler, Ludovic Ferrière, Teresa Fornaro, Jérôme Gattacceca, Beda Hoffman, Emmanuelle J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
4
+ page_content=' Javaux, Thorsten Kleine, Harry Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
5
+ page_content=' McSween, Manika Prasad, Liz Rampe, Mariek Schmidt, Blair Schoene, Kirsten L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
6
+ page_content=' Siebach, Jennifer Stern, Nicolas Tosca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
7
+ page_content=' Requestor: NASA ESA MCSG1 team Date: January 11, 2023 Citation to this report: Dauphas N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
8
+ page_content=', Russell S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
9
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
10
+ page_content=', Beaty D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
11
+ page_content=', Thiessen F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
12
+ page_content=', Barnes J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
13
+ page_content=', Bonal L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
14
+ page_content=', Bridges J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
15
+ page_content=', Bristow T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
16
+ page_content=', Eiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
17
+ page_content=', Ferrière L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
18
+ page_content=', Fornaro T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
19
+ page_content=', Gattacceca J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
20
+ page_content=', Hoffman B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
21
+ page_content=', Javaux E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
22
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
23
+ page_content=', Kleine T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
24
+ page_content=', McSween H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
25
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
26
+ page_content=', Prasad M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
27
+ page_content=', Rampe L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
28
+ page_content=', Schmidt M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
29
+ page_content=', Schoene B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
30
+ page_content=', Siebach K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
31
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
32
+ page_content=', Stern J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
33
+ page_content=', Tosca N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
34
+ page_content=' (2023) Science priorities for the extraction of the solid MSR samples from their sample tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
35
+ page_content=' NASA-ESA Mars Rock Team Report 1 2 Background: The NASA-ESA Mars Rock Team is an outgrowth of the MCSG1 team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
36
+ page_content=' It is composed of scientists with expertise in handling and analyses of both terrestrial and extraterrestrial samples, rock physics, and contamination mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
37
+ page_content=" Two online meetings were organized in the Fall of 2022 where Oscar Rendon Perez (JPL) and Paulo Younse (JPL) described the engineering options for opening the tubes that will contain the samples returned from Mars' Jezero crater." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
38
+ page_content=' This prompted discussions between the Rock Team members (during online meetings and through emails).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
39
+ page_content=' The Rock Team leadership met online with the team focused on gas analysis (Gas Team) to understand their constraints and make sure that the solutions envisioned for headspace gas extraction would not compromise solid core retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
40
+ page_content=' This report summarizes the consensus view of the Rock Team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
41
+ page_content=' It was written by the Rock Team leadership with input from all team members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
42
+ page_content=' Summary: Preservation of the chemical and structural integrity of samples that will be brought back from Mars is paramount to achieving the scientific objectives of MSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
43
+ page_content=' Given our knowledge of the nature of the samples retrieved at Jezero by Perseverance, at least two options need to be tested for opening the sample tubes: (1) One or two radial cuts at the end of the tube to slide the sample out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
44
+ page_content=' (2) Two radial cuts at the ends of the tube and two longitudinal cuts to lift the upper half of the tube and access the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
45
+ page_content=' Strategy 1 will likely minimize contamination but incurs the risk of affecting the physical integrity of weakly consolidated samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
46
+ page_content=' Strategy 2 will be optimal for preserving the physical integrity of the samples but increases the risk of contamination and mishandling of the sample as more manipulations and additional equipment will be needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
47
+ page_content=' A flexible approach to opening the sample tubes is therefore required, and several options need to be available, depending on the nature of the rock samples returned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
48
+ page_content=' Both opening strategies 1 and 2 may need to be available when the samples are returned to handle different sample types (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
49
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
50
+ page_content=', loosely bound sediments vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
51
+ page_content=' indurated magmatic rocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
52
+ page_content=' This question should be revisited after engineering tests are performed on analogue samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
53
+ page_content=' The MSR sample tubes will have to be opened under stringent BSL4 conditions and this aspect needs to be integrated into the planning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
54
+ page_content=' Introduction: NASA-ESA are planning to collect and transport from Mars to Earth a set of samples of martian materials for the purpose of scientific investigation (Kminek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
55
+ page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
56
+ page_content=' The samples are currently collected by the Perseverance Rover (Farley and Stack, 2022) and consist of rocks, regolith, and at least one dedicated sample of atmospheric gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
57
+ page_content=' In addition, for the rock and regolith samples, the process of sealing the sample tubes at the martian surface will result in the volume above the solid samples (referred to as the head space) being occupied by martian atmospheric gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
58
+ page_content=' The samples will be contained within titanium sample tubes, which will be sealed at the martian surface with a compression-style cap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
59
+ page_content=' The rocks sampled thus far by the Perseverance Rover comprise magmatic rocks like basalt and olivine cumulates that experienced various degrees of secondary water alteration, water-laid detrital sedimentary rocks that show various levels of induration, and unconsolidated Mars regolith that could contain grains from afar transported to the Jezero crater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
60
+ page_content=' Two main considerations weigh on the strategy that should be adopted for opening the samples: (1) Important information is contained in the vertical successions and textural characteristics of layers in sediments, which can provide important clues for interpreting the depositional setting (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
61
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
62
+ page_content=' For example, in terrestrial lakes, vertical gradation in grain size can reflect the relative density of depositional and lacustrine fluids or gradations in organic matter content can reflect seasonal changes in biological productivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
63
+ page_content=' Fine laminations can sometimes reflect the presence of microbial mats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
64
+ page_content=' The method used for opening the tubes must imperatively preserve those fine structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
65
+ page_content=' 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
66
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
67
+ page_content=' Examples of possible fine-scale laminations in terrestrial environments (left;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
68
+ page_content=' seasonal varves from Lake Belau, Northern Germany;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
69
+ page_content=' Dörfler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
70
+ page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
71
+ page_content=' right Microbially-Induced Sedimentary Structures-MISS in the middle neoproterozoic Chuar Group, Grand Canyon, Arizona;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
72
+ page_content=' Bohacs and Junium 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
73
+ page_content=' (2) Some critical measurements are sensitive to contamination either from the tube, the apparatus used for cutting the tubes, or surrounding contaminants present in the isolator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
74
+ page_content=' Organic matter is of particular concern given the high stakes involved in any claim for the presence of any form of biotic or prebiotic chemistry on Mars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
75
+ page_content=' Inorganic trace element isotopes may provide dates on when Mars was habitable, and these are also prone to contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
76
+ page_content=' Beginning in 2022, an engineering team was tasked with developing the processes needed to open the sample tubes and to extract the solid and gaseous samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
77
+ page_content=' The engineering team was asked to develop engineering priorities associated with this process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
78
+ page_content=' Two science teams were asked to develop parallel science priorities: A group we call the “Gas Team” evaluated the priorities related to the science associated with all returned gaseous sample, and a second group called the “Rock Team” (the authors of this report) evaluated the priorities associated with solid materials contained within the sample tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
79
+ page_content=' Both the "Gas Team" and "Rock Team" work under the oversight of a third committee, the Mars Campaign Science Group (MCSG1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
80
+ page_content=' The solid samples returned from the martian surface are certain to include sedimentary rocks (most important for the search for biosignatures), igneous rocks, and regolith, and they may also include other kinds of rocks, such as hydrothermal rocks, or impact breccia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
81
+ page_content=' The samples will be the basis for answering the main scientific questions of Mars Sample Return (iMOST, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
82
+ page_content=' The rock samples at Mars will all have been collected from various outcrops (or perhaps very large blocks of coherent rock).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
83
+ page_content=' However, at least some of the rocks are relatively weak (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
84
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
85
+ page_content=' a low compressive strength), and are vulnerable to fracturing during drilling and during several dynamic events associated with spacecraft operations during the return phase (most importantly, at Earth landing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
86
+ page_content=' It is anticipated that the mechanical state of each sample, as received in the laboratory on Earth, will be assessed by a method like computer tomography (CT) scanning prior to opening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
87
+ page_content=' The decision on how to open each sample tube can therefore be based on geological data from the field (collected by the M2020 science team), tests done on analogue samples, as well as the penetrative imaging data obtained on Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
88
+ page_content=' The engineering team has proposed a 2-phase process for opening the sample tubes: First, puncture the tube in a way that will allow any gas present to be extracted and captured, then second, cut the metal of the tube in a way that would allow the solid materials to be removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
89
+ page_content=' Regarding cutting the metal of the tubes, three primary mechanisms have been proposed (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
90
+ page_content=' 2): • A single radial cut to the end of the tube, so that the sample could be tipped out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
91
+ page_content=' • A radial cut at each end of the tube, which would enable the sample to be pushed out from one end 9 belowtopof core segment 10 12 (cm) 13 14 151cm 4 • Two radial cuts and two longitudinal cuts, to reveal the whole sample during cutting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
92
+ page_content=' An option frequently used on Earth to access core samples, for example used with deep sea drill cores, is to cut the core tube and the core together with something like a band saw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
93
+ page_content=' This is not an option for samples returned from Mars as this would have the effect of driving contamination from both the metallic core tube and band saw into the interior of the rock core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
94
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
95
+ page_content=' Proposed protocols for opening the sample tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
96
+ page_content=' Drawings courtesy of Oscar Rendon Perez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
97
+ page_content=' In the one radial cut approach, a sharp hard metal wheel shears through the tube by slowly rotating and tightening it around the tube (bottom panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
98
+ page_content=' left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
99
+ page_content=' The sample is extracted from the tube by inclining it and controlling the rate of descent with a piston.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
100
+ page_content=' The second approach involves doing a second cut to push the sample outwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
101
+ page_content=' A virtue of this approach is that it allows for a more controlled extraction, and it minimizes the risk of the sample getting jammed in the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
102
+ page_content=' Both options 1 and 2 involve the sample sliding out of the tube and incur the risk of losing the chemical and structural layering of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
103
+ page_content=' The third approach involves doing two longitudinal cuts on the side of the tube to expose the whole sample within the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
104
+ page_content=" It is least likely to disturb the physical integrity of the sample, which stays in place in the tube, but it involves cutting the tube along its length through a white alumina coating (deposited on the tubes to reduce their heat absorption while seating on Mars' surface) possibly using a circular blade (bottom panel;" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
105
+ page_content=' right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
106
+ page_content=' The chance of contamination is higher with this third approach as more tube manipulations are involved, more tube material is cut, and the setup to remove or cut the alumina coating will be more involved than the wheel cutter used in approaches 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
107
+ page_content=' Approach: The issue of how to open the tubes was discussed by the team over two telecons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
108
+ page_content=' Presentations by engineers Oscar Rendon Perez and Paolo Younse were delivered to explain the design of the tubes and different options for opening them (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
109
+ page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
110
+ page_content=' The Rock Sample Team concluded there are three main considerations: • Need to minimise (and have knowledge of) contamination • Need to preserve stratigraphy and other textural relationships • Need to maximise the amount of sample material that ends up in a scientifically useful state from the tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
111
+ page_content=" For some samples like the detrital sediments or the regolith sample, each BUEHLER DIAMOND WAFERING BID BUEHILER 5 small grain may provide a unique record of Mars' surface history, so dust adhering to the tube surface should be recovered to the greatest extent possible." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
112
+ page_content=' However, such dust will likely represent a small fraction of the total mass and its retrieval could be done later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
113
+ page_content=' Or it could be used for quickly surveying the petrography and mineralogy of the core as part of a preliminary examination phase as this material will be of lesser value for other tasks and could be sterilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
114
+ page_content=' Minimal cutting (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
115
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
116
+ page_content=', a single radial cut) was considered optimal to minimise potential contamination of trace elements, especially metals, and organic material from the tubes and cutting tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
117
+ page_content=' The structural integrity of the sample would, however, be best preserved with radial and longitudinal cuts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
118
+ page_content=' this is considered especially important for sedimentary rocks that may be friable but contain internal stratigraphic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
119
+ page_content=' The yield may be maximised by at least two radial cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
120
+ page_content=' These considerations may conflict with each other and the approach to be used will depend on the exact nature of each returned sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
121
+ page_content=' Magnetic contamination should also be minimized during cutting operation and sample handling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
122
+ page_content=' The preferred opening strategies are summarized in Table 1, which ponders each criterion (structure integrity, chemical integrity, and yield) for three categories of samples (consolidated rocks, friable rocks, and loose regolith).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
123
+ page_content=' We summarize the Rock Team recommendations at the bottom of each column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
124
+ page_content=' The rationale for each entry is summarized below: Consolidated rocks (example microgabbro).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
125
+ page_content=' To minimize the risk of contamination, one radial cut is preferred as cutting by shearing with a hard metal solid wheel will generate little dust, cause little heating, involve no use of fluid, and involve the least amount of tube material of all considered options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
126
+ page_content=' To get the sample out of the tube, putting it on a vertical incline and lowering the sample in a controlled manner with a piston would preserve the structural integrity of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
127
+ page_content=' One radial cut is likely to preserve the structural integrity of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
128
+ page_content=' The cutting wheel will create a metal lip that will protrude in the tube, so provision should be ready to straighten that lip so that the sample can be extracted without rubbing against the lip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
129
+ page_content=' With a consolidated sample, there is however a concern that jamming could occur, as a fragment might be trapped in compression between the solid core and the tube wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
130
+ page_content=' A second cut might be needed to push/pull the sample from the other side and free it from such entrapment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
131
+ page_content=' Fine dust adhering to the inner tube surface might be difficult to retrieve with a single radial cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
132
+ page_content=' A second radial cut would allow one to get the fine dust out by pushing it out with an appropriate instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
133
+ page_content=' The Rock Team favours 1 radial cut, with 2 radial cuts possibly needed for sample retrieval in case of jamming and to recover fine dust adhering to the interior tube surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
134
+ page_content=' Friable rocks (example detrital sediments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
135
+ page_content=' These rocks are the ones for which preserving the stratigraphy is of upmost importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
136
+ page_content=' The rationale is the same as with consolidated rocks that a single radial cut would be preferred from the point of avoiding contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
137
+ page_content=' To extract the sample, a single radial cut might be sufficient as the less consolidated nature of those rocks means that they are less likely to be hard jammed in the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
138
+ page_content=' A possible approach would be to put place a piston against the sample on the opening side with the tube horizontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
139
+ page_content=' The sample tube and piston would then be rotated to a vertical position, and the piston would be lowered in a controlled manner to transfer the sample core in a transparent sample holder (quartz or sapphire) with predesigned longitudinal openings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
140
+ page_content=' The reason to transfer the sample vertically is to minimize shear on the tube surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
141
+ page_content=' After vertical transfer of the sample from the tube to the holder, the holder would be rotated back to horizontal to be then opened, giving access to the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
142
+ page_content=' Alternatively, it might be possible to 2 radial cuts, and one piston to push the sample out in a slightly inclined orientation and another piston at the open side against the sample to prevent collapse, so the sample keeps its integrity but we can avoid the longitudinal cuts to avoid more risk of 6 contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
143
+ page_content=' If too friable, the sample could be gently pushed this way into a transparent sample holder with predesigned longitudinal openings, allowing visible inspection of the enclosed protected sample Letting the sample slide out from one side incurs the risk however that rock fragments will be moved out of sequence, that the sample will disaggregate, and that important chemical features be smeared throughout the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
144
+ page_content=' The latter point could include, for instance, organic distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
145
+ page_content=' If a layer is highly enriched in organics, sliding the whole sample along the sides may smear the signature throughout the entire core surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
146
+ page_content=' For preserving the stratigraphy, it may therefore be advantageous to make 2 radial cuts and 2 longitudinal cuts to access the core without disturbing it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
147
+ page_content=' The constraints on fine dust recovery are the same as with other sample types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
148
+ page_content=' Regolith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
149
+ page_content=' There is no stratigraphic information to preserve in that sample and little risk of jamming, so a single radial cut is preferred as this minimizes the risk of contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
150
+ page_content=' The fine dust in the sample may come from afar and each grain will likely tell a story, so complete recovery of dust adhering to the tube inner surface is important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
151
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
152
+ page_content=' Preferred opening strategies depending on rock cohesiveness and criteria considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
153
+ page_content=' The Rock Sample Team finds that a single approach will not be appropriate for all the rock samples returned, but instead a flexible and bespoke approach will be needed for each sample tube opening, with all three of the above options available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
154
+ page_content=' As a general principle, minimal cutting is favoured as this will also minimise potential contamination issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
155
+ page_content=' However,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
156
+ page_content=' an overriding consideration is that Consolidated rocks Example: microgabbro Friable rocks Example: detrital sediments,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
157
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
158
+ page_content='igneous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
159
+ page_content='cumulate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
160
+ page_content='rocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
161
+ page_content='Regolith ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
162
+ page_content='Trace ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
163
+ page_content='element ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
164
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
165
+ page_content='organic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
166
+ page_content='contamination ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
167
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
168
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
169
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
170
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
171
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
172
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
173
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
174
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
175
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
176
+ page_content='Structural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
177
+ page_content='integrity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
178
+ page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
179
+ page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
180
+ page_content='sample ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
181
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
182
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
183
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
184
+ page_content='likely ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
185
+ page_content='OK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
186
+ page_content='Maybe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
187
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
188
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
189
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
190
+ page_content='in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
191
+ page_content='case ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
192
+ page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
193
+ page_content='jamming ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
194
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
195
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
196
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
197
+ page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
198
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
199
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
200
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
201
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
202
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
203
+ page_content='longitudinal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
204
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
205
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
206
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
207
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
208
+ page_content='Complete ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
209
+ page_content='retrieval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
210
+ page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
211
+ page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
212
+ page_content='sample ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
213
+ page_content='(including ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
214
+ page_content='dust) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
215
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
216
+ page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
217
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
218
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
219
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
220
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
221
+ page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
222
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
223
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
224
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
225
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
226
+ page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
227
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
228
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
229
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
230
+ page_content='Rock ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
231
+ page_content='Team ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
232
+ page_content='recommendation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
233
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
234
+ page_content='OR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
235
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
236
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
237
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
238
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
239
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
240
+ page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
241
+ page_content='OR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
242
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
243
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
244
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
245
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
246
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
247
+ page_content='longitudinal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
248
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
249
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
250
+ page_content='OR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
251
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
252
+ page_content='radial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
253
+ page_content='cuts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
254
+ page_content='FINDING: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
255
+ page_content='There is not one single approach for opening the sample tubes that will work sufficiently well for all MSR rock samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
256
+ page_content=' Multiple options need to be available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
257
+ page_content=' 7 the structural integrity of the rock sample is key to understanding its petrology, and this should remain intact, even if this requires more processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
258
+ page_content=' For regolith samples, a single radial cut followed by tipping out the grains is likely to be appropriate, since this will minimise contamination and there is no need to preserve spatial relationships within the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
259
+ page_content=' For well consolidated (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
260
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
261
+ page_content=', some igneous rock) samples, a radial cut perhaps followed by a second radial cut may be required to extract the sample completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
262
+ page_content=' For sedimentary rocks, and any friable igneous rocks, the decision is more complex because a longitudinal cut may be necessary to observe and preserve structural relationships, but this must be weighed against potentially contributing more contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
263
+ page_content=' One possible solution to test for sedimentary samples could be to make one or two radial cuts, then push the sample or let it slide down while keeping its stratigraphy in place (possibly with high inclination to minimize shear along tube surface, with a sliding stopper against the sample to control the sliding rate) into another tube with a closed longitudinal aperture that allows longitudinal opening later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
264
+ page_content=' The physical state of each core (consolidated or friable) will not be known for certain until the samples are bought back to Earth, where CT-scanning will reveal the fine structure of the samples and guide the strategy that adopted for tube opening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
265
+ page_content=' Future Work: The team suggests areas which require more work prior to sample return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
266
+ page_content=' These include: • Investigate how/whether analogue sedimentary samples and aqueously altered cumulate rocks can be removed in a manner that preserves their structural integrity with only one radial cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
267
+ page_content=' • Investigate ways to efficiently remove the fines left behind after core extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
268
+ page_content=' • Impurities in all tube materials, coatings, and opening contraption (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
269
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
270
+ page_content=', materials used in the saw) must be characterized with appropriate techniques (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
271
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
272
+ page_content=', ICP-MS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
273
+ page_content=' We suggest that a task group be established to undertake an in-depth contaminant characterization campaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
274
+ page_content=' • Investigate if it is possible to remove the alumina coating without compromising the sample, and without causing damage (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
275
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
276
+ page_content=' by vibration) to the martian sample inside the core tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
277
+ page_content=' • Investigate the degree to which the different cutting protocols can introduce contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
278
+ page_content=' • Integrate these studies with CT and related scanning techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
279
+ page_content=' • Investigate how the cutting and related techniques can be performed in a Biological Hazard Level BSL4 environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
280
+ page_content=' A concept that is not discussed in this report, but that has been considered elsewhere, is that the opportunity exists to do penetrative imaging/mineralogical characterization of the sample-bearing Mars sample tubes once they make it to Earth, so that we can obtain data on the mechanical state of each sample as received prior to tube opening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
281
+ page_content=' This eliminates the need to make guesses based on pre-sampling field data, or accelerations measured by the return spacecraft, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
282
+ page_content=' That imaging data will give us the opportunity to help make decisions on how to open each tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
283
+ page_content=' We know that for samples with different kinds of mechanical integrity, different tube-opening strategies may be required to avoid the risk of damage that unnecessarily affects the scientific usefulness of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
284
+ page_content=' A component of the technology program is needed to develop the datasets for what happens when tubes containing samples with different degrees of mechanical integrity are opened by each of the three methods described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
285
+ page_content=' This will become the basis for future decision-making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
286
+ page_content=' We also need data 8 on the real contamination implications of making the horizontal cuts, and what kind of science is affected by such contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
287
+ page_content=' References.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
288
+ page_content=' iMOST (2018), The Potential Science and Engineering Value of Samples Delivered to Earth by Mars Sample Return, (co-chairs D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
289
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
290
+ page_content=' Beaty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
291
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
292
+ page_content=' Grady, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
293
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
294
+ page_content=' McSween, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
295
+ page_content=' Sefton-Nash;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
296
+ page_content=' documentarian B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
297
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
298
+ page_content=' Carrier;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
299
+ page_content=' plus 66 co-authors), 186 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
300
+ page_content=' white paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
301
+ page_content=' Posted August, 2018 by MEPAG at https://mepag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
302
+ page_content='jpl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
303
+ page_content='nasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
304
+ page_content='gov/reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
305
+ page_content='cfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
306
+ page_content=' Bohacs K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
307
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
308
+ page_content=', Junium (2007) Microbial mat sedimentary structures and their relation to organic-carbon burial in the Middle Neoproterozoic Chuar Group, Grand Canyon, Arizona, USA Microbial-Induced Sedimentary Structures-MISS in the middle neoproterozoic Chuar Group, Grand Canyon, Arizona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
309
+ page_content=' In Atltas of microbial mat features within the clastic rock record, Schieber J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
310
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
311
+ page_content=' (Eds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
312
+ page_content=' Elsevier 208-213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
313
+ page_content=' Dörfler W et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
314
+ page_content=' (2012) A high-quality annually laminated sequence from Lake Belau, Northern Germany: revised chronology and its implications for palynological and tephrochronological studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
315
+ page_content=' The Holocene 22, 1413-1426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
316
+ page_content=' Farley KA, Stack K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
317
+ page_content=' (2022) Mars 2020 Initial Reports, Crater Floor Campaign, August 11, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
318
+ page_content=' Kminek G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
319
+ page_content=', Meyer M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
320
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
321
+ page_content=', Beaty D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
322
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
323
+ page_content=', Carrier B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
324
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
325
+ page_content=', Haltigin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
326
+ page_content=', Hays L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
327
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
328
+ page_content=' (2022) Mars Sample Return (MSR): Planning for Returned Sample Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
329
+ page_content=' Astrobiology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
330
+ page_content='Jun 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
331
+ page_content='S-1-S- 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
332
+ page_content='http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
333
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
334
+ page_content='1089/ast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
335
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
336
+ page_content='0198' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KtE3T4oBgHgl3EQfvgte/content/2301.04694v1.pdf'}
L9E0T4oBgHgl3EQfjAEs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:096a72c6233854ce26c08542e18d713ce6e46488af865ddbe258f14b9046c5b6
3
+ size 194702
MNE3T4oBgHgl3EQfBAmd/content/tmp_files/2301.04263v1.pdf.txt ADDED
@@ -0,0 +1,1668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04263v1 [math.AP] 11 Jan 2023
2
+ Existence of solutions to fractional semilinear
3
+ parabolic equations in Besov-Morrey spaces
4
+ Erbol Zhanpeisov∗
5
+ Okinawa Institute of Science and Technology
6
+ 1919-1 Tancha, Onna-son, Kunigami-gun
7
+ Okinawa, Japan 904-0495
8
+ Abstract
9
+ In this paper, we establish the existence of solutions to fractional semilinear
10
+ parabolic equations in Besov-Morrey spaces for a large class of initial data
11
+ including distributions other than Radon measures. We also obtain sufficient
12
+ conditions for the existence of solutions to viscous Hamilton-Jacobi equations.
13
+ 1
14
+ Introduction and main results
15
+ Consider a semilinear parabolic equation
16
+
17
+ ∂tu + (−∆)
18
+ θ
19
+ 2 u = |u|γ−1u,
20
+ x ∈ RN, t ∈ (0, T),
21
+ u(x, 0) = ϕ(x),
22
+ x ∈ RN
23
+ (1.1)
24
+ and a viscous Hamilton-Jacobi equation
25
+
26
+ ∂tu + (−∆)
27
+ θ
28
+ 2u = |∇u|γ,
29
+ x ∈ RN, t ∈ (0, T),
30
+ u(x, 0) = ϕ(x),
31
+ x ∈ RN,
32
+ (1.2)
33
+ where γ > 1, N ≥ 1, T > 0 and θ > 0 (resp. θ > 1) for problem (1.1) (resp.
34
+ problem (1.2)). The purpose of this paper is to obtain sufficient conditions for the
35
+ existence of solutions to the Cauchy problem (1.1) and (1.2) for a large class of
36
+ initial data by introducing inhomogeneous Besov-Morrey spaces. This enables us to
37
+ take distributions other than Radon measures as initial data.
38
+ Let us consider the Cauchy problem for the semilinear parabolic equation (1.1)
39
+ with θ > 0 and γ > 1. The solvability of problem (1.1) has been studied in many
40
+ papers, see e.g., [3, 7, 9–17, 19–21, 23–27]. (See also the monograph [22].) Among
41
+ 2010 AMS subject classification. 35K58,35K25
42
+ ∗E-mail: [email protected]
43
+ 1
44
+
45
+ others, Ishige, Kawakami, and Okabe [17] developed the arguments in [16] and ob-
46
+ tained sufficient conditions for the existence of solutions to problem (1.1) for general
47
+ θ > 0. As corollaries of their main results, they proved the following properties:
48
+ (a) Let 1 < γ < 1 + θ/N. Then problem (1.1) possesses a local-in-time solution if
49
+ sup
50
+ x∈RN ∥ϕ∥L1(B(x,1)) < ∞;
51
+ (b) Let γ = 1 + θ/N. Then there exists c > 0 such that, if
52
+ |ϕ(x)| ≤ c|x|−N
53
+ ����log
54
+
55
+ e + 1
56
+ |x|
57
+ �����
58
+ − N
59
+ θ −1
60
+ ,
61
+ x ∈ RN,
62
+ then probolem (1.1) possesses a local-in-time solution;
63
+ (c) Let γ > 1 + θ/N. Then there exists c > 0 such that, if
64
+ |ϕ(x)| ≤ c|x|−
65
+ θ
66
+ γ−1 ,
67
+ x ∈ RN,
68
+ then probolem (1.1) possesses a local-in-time solution.
69
+ In the case of either 0 < θ ≤ 2 or θ ∈ {4, 6, . . . }, it is shown in [13] and [16] that
70
+ sufficient conditions in (b) and (c) are sharp. More precisely, there exists c′ > 0
71
+ such that, if
72
+ ϕ(x) ≥
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+ c′|x|−N
81
+ ����log
82
+
83
+ e + 1
84
+ |x|
85
+ �����
86
+ − N
87
+ θ −1
88
+ if
89
+ γ = 1 + θ
90
+ N ,
91
+ c′|x|−
92
+ θ
93
+ γ−1
94
+ if
95
+ γ > 1 + θ
96
+ N ,
97
+ x ∈ B(0, 1),
98
+ then problem (1.1) possesses no local-in-time nonnegative solutions.
99
+ On the other hand, in the case of (a), distributions other than Radon measures
100
+ such as the derivative of the Dirac distribution can be considered as the initial data
101
+ to problem (1.1) with θ = 2. For instance, problem (1.1) with θ = 2 is well-posed
102
+ in certain negative order inhomogeneous Besov-Morrey spaces Ns
103
+ p,q,r(RN), see [19]
104
+ and Remark 1.1. The arguments in [19] are based on delicate decay estimates of
105
+ the heat kernel in inhomogeneous Besov-Morrey spaces and the power nonlinearity
106
+ of the semilinear parabolic equation. It seems difficult to apply their arguments
107
+ directly to the Cauchy problem (1.1) and problem (1.2), in particular, the case
108
+ of fractional diffusion θ ̸= 2 and the case of the nonlinearity depending on ∇u.
109
+ In this paper, we develop the arguments in [19] and prove the unique existence
110
+ of the solution to problem (1.1) (resp.
111
+ problem (1.2)) in inhomogeneous Besov-
112
+ Morrey spaces Ns
113
+ p,q,r(RN) for general θ > 0 (resp. θ > 1). This enables us to take
114
+ 2
115
+
116
+ distributions other than Radon measures as initial data and the results in the case
117
+ (a) is extended for more general initial data.
118
+ For viscous Hamilton-Jacobi equations (1.2), the solvability has been studied
119
+ in [1, 2, 4, 8, 18].
120
+ Using the majorant kernel, Ishige, Kawakami, and Okabe [17]
121
+ obtained the same results for problem (1.2) as for problem (1.1). That is, when
122
+ 1 < γ < 1 + (θ + 1)/(N + 1), there exists a solution to problem (1.2) if the initial
123
+ measure satisfies
124
+ sup
125
+ x∈RN ∥ϕ∥L1(B(x,1)) < ∞.
126
+ We extend these results to more general initial data. See Remark 1.2 for more details
127
+ on the relation to previous studies.
128
+ We recall the definition of local Morrey spaces and introduce inhomogeneous
129
+ Besov-Morrey spaces.
130
+ Definition 1.1 (local Morrey spaces) Let 1 ≤ q ≤ p < ∞. The local Morrey
131
+ space Mp
132
+ q (RN) is defined to be the set of measurable functions u in RN such that
133
+ ∥u |Mp
134
+ q ∥ :=
135
+ sup
136
+ x∈RN, 0<ρ≤1
137
+ ρ
138
+ N
139
+ p − N
140
+ q ∥u |Lq(B(x, ρ))∥ < ∞.
141
+ The local measure space of the Morrey type Mp(RN) is defined as the sets of the
142
+ Radon measures µ on RN such that
143
+ ∥µ|Mp∥ :=
144
+ sup
145
+ x∈RN,0<ρ≤1
146
+ ρ
147
+ N
148
+ p −N|µ|(B(x, ρ)) < ∞,
149
+ where |µ| denotes the total variation of the measure µ.
150
+ Let ζ(t) be a smooth function on [0, ∞) such that 0 ≤ ζ(t) ≤ 1, ζ(t) ≡ 1 for
151
+ t ≤
152
+ 3
153
+ 2 and supp ζ ⊂ [0, 5
154
+ 3). For j ∈ Z, put ϕj(ξ) := ζ(2−j|ξ|) − ζ(21−j|ξ|) and
155
+ ϕ(0)(ξ) := ζ(|ξ|). Then we have ϕj(ξ), ϕ(0)(ξ) ∈ C∞
156
+ 0 (RN) and
157
+ ϕ(0)(ξ) +
158
+
159
+
160
+ j=1
161
+ ϕj(ξ) = 1
162
+ for any
163
+ ξ ∈ RN.
164
+ Definition 1.2 (inhomogeneous Besov-Morrey space) Let 1 ≤ q ≤ p < ∞,
165
+ 1 ≤ r ≤ ∞ and s ∈ R. The local Besov-Morrey space is defined as the sets of
166
+ distributions u ∈ S′(RN) such that F −1ϕ(0)(ξ)Fu ∈ Mp
167
+ q and F −1ϕj(ξ)Fu ∈ Mp
168
+ q for
169
+ every positive integer j, and that
170
+ ∥u|Ns
171
+ p,q,r∥ := ∥F −1ϕ(0)(ξ)Fu|Mp
172
+ q ∥ + ∥{2sj∥F −1ϕj(ξ)Fu|Mp
173
+ q ∥}∞
174
+ j=1|ℓr∥ < ∞,
175
+ where F denotes the Fourier transform on RN.
176
+ 3
177
+
178
+ For every t > 0 and every u ∈ S′(RN), put S(t)u := F −1 exp(−t|ξ|θ)Fu.
179
+ We
180
+ formulate a solution to problem (1.1) and (1.2) .
181
+ Definition 1.3 Let T > 0 and ϕ ∈ Ns
182
+ p,q,r for some s ∈ R, 1 ≤ q ≤ p < ∞ and
183
+ 1 ≤ r ≤ ∞. We say that u is a solution to problem (1.1) in RN × [0, T) if
184
+ u ∈ BC(RN × (τ, T))
185
+ for τ ∈ (0, T), and u satisfies
186
+ u(x, t) = [S(t)ϕ](x) +
187
+ � t
188
+ 0
189
+ [S(t − τ)|u(·, τ)|γ−1u(·, τ)](x) dτ
190
+ for (x, t) ∈ RN × (0, T).
191
+ Definition 1.4 Let T > 0 and ϕ ∈ Ns
192
+ p,q,r for some s ∈ R, 1 ≤ q ≤ p < ∞ and
193
+ 1 ≤ r ≤ ∞. We say that u is a solution to problem (1.2) in RN × [0, T) if
194
+ u , ∇u ∈ BC(RN × (τ, T))
195
+ for τ ∈ (0, T), and u satisfies
196
+ u(x, t) = [S(t)ϕ](x) +
197
+ � t
198
+ 0
199
+ [S(t − τ)|∇u(·, τ)|γ](x) dτ
200
+ for (x, t) ∈ RN × (0, T).
201
+ We are ready to state the main results of this paper.
202
+ Theorem 1.1 Let γ > 1, γ ≤ q ≤ p < ∞, −θ/γ < s < 0 and s ≥ N/p − θ/(γ − 1).
203
+ Then there exist δ > 0 and M > 0 such that for every ϕ(x) ∈ Ns
204
+ p,q,∞ satisfying
205
+ lim sup
206
+ j→∞
207
+ 2sj∥F −1ϕjFϕ|Mp
208
+ q ∥ < δ,
209
+ (1.3)
210
+ problem (1.1) possesses the unique solution u(x, t) on RN × [0, T) for some T > 0
211
+ with a bound sup0<t≤T t−s/θ∥u(·, t) |Mp
212
+ q ∥ ≤ M.
213
+ Remark 1.1 To see the relation of these results with previous studies, we remark
214
+ here that inhomogeneous Besov-Morrey spaces under the assumption of Theorem 1.1
215
+ includes the following functions and function spaces. Let p0 = N(γ − 1)/θ.
216
+ • Let γ > 1+θ/N and take p as max{γ, p0} < p < p0γ, then by Proposition 2.1
217
+ and Proposition 2.2, we have
218
+ |x|−
219
+ θ
220
+ γ−1 ∈ Mp0
221
+ p0γ/p,∞ ⊂ N0
222
+ p0,p0γ/p,∞ ⊂ NN/p−θ/(γ−1)
223
+ p,γ,∞
224
+ .
225
+ 4
226
+
227
+ Since the assumption of Theorem 1.1 is satisfied with NN/p−θ/(γ−1)
228
+ p,γ,∞
229
+ for above
230
+ p, we see by (1.3) that there exists c > 0 such that, if
231
+ |ϕ(x)| ≤ c|x|−
232
+ θ
233
+ γ−1,
234
+ x ∈ RN,
235
+ then probolem (1.1) possesses a local-in-time solution. This result is consistent
236
+ with that of [17] and thus the condition (1.3) is necessary.
237
+ • Let γ = 1 + θ/N. Then by Proposition 2.1 and Proposition 2.2, for any p > 1
238
+ we have
239
+ Lp = Mp
240
+ p ⊂ N0
241
+ p,p,∞ ⊂ N−N/p+N/γ
242
+ γ,γ,∞
243
+ .
244
+ Since the assumption of Theorem 1.1 is satisfied with N−N/p+N/γ
245
+ γ,γ,∞
246
+ , we see that
247
+ if ϕ ∈ Lp with p > 1, then probolem (1.1) possesses a local-in-time solution.
248
+ Note that in the case of θ = 2, problem (1.1) is not well-posed in L1 (See for
249
+ example, [5,6]).
250
+ • Let 1 < γ < 1 + θ/N. Then by Proposition 2.1 and Proposition 2.2, we have
251
+ δ(x) ∈ M1 ⊂ N0
252
+ 1,1,∞ ⊂ N−N+N/γ
253
+ γ,γ,∞
254
+ .
255
+ Since the assumption of Theorem 1.1 is satisfied with N−N+N/γ
256
+ γ,γ,∞
257
+ , we see that if
258
+ ϕ is a Radon measure, then probolem (1.1) possesses a local-in-time solution,
259
+ which is consistent with the result of [17]. Furthermore, since
260
+ ∂|α|δ(x) ∈ N−N+N/γ−|α|
261
+ γ,γ,∞
262
+ ,
263
+ we see that probolem (1.1) possesses a local-in-time solution for ϕ = ∂[θ]δ and
264
+ γ <
265
+ N+θ
266
+ N+[θ] if θ is not an integer, and for ϕ = ∂θ−1δ and γ <
267
+ N+θ
268
+ N+θ−1 if θ is an
269
+ integer.
270
+ Theorem 1.2 Let 1 < γ < θ, γ ≤ q ≤ p < ∞, p > N(γ−1)/(θ−1), 1−θ/γ < s < 0
271
+ and s ≥ N/p + (γ − θ)/(γ − 1). Then there exist δ > 0 and M > 0 such that for
272
+ every ϕ(x) ∈ Ns
273
+ p,q,∞ satisfying
274
+ lim sup
275
+ j→∞
276
+ 2sj∥F −1ϕjFϕ|Mp
277
+ q ∥ < δ,
278
+ problem (1.2) possesses the unique solution u(x, t) on RN × [0, T) for some T > 0
279
+ with a bound sup0<t≤T t−s/θ∥u(·, t) |Mp
280
+ q ∥ ≤ M and sup0<t≤T t−s/θ+1/θ∥∇u(·, t) |Mp
281
+ q ∥ ≤
282
+ M.
283
+ Remark 1.2 To see the relation of these results with previous studies, we remark
284
+ here that inhomogeneous Besov-Morrey spaces under the assumption of Theorem 1.2
285
+ includes the following functions and function spaces. Let p1 = N(γ − 1)/(θ − γ).
286
+ 5
287
+
288
+ • Let (N + θ)/(N + 1) < γ < θ and take p as max{γ, p1} < p < p1γ, then by
289
+ Proposition 2.1 and Proposition 2.2, we have
290
+ |x|− θ−γ
291
+ γ−1 ∈ Mp1
292
+ p1γ/p,∞ ⊂ N0
293
+ p1,p1γ/p,∞ ⊂ NN/p−(θ−γ)/(γ−1)
294
+ p,γ,∞
295
+ .
296
+ Since the assumption of Theorem 1.2 is satisfied with NN/p−(θ−γ)/(γ−1)
297
+ p,γ,∞
298
+ for above
299
+ p, we see that there exists c > 0 such that, if
300
+ |ϕ(x)| ≤ c|x|− θ−γ
301
+ γ−1 ,
302
+ x ∈ RN,
303
+ then probolem (1.2) possesses a local-in-time solution. This result is consistent
304
+ with that of [17].
305
+ • Let γ = (N + θ)/(N + 1). Then by Proposition 2.1 and Proposition 2.2, for
306
+ any p > 1 we have
307
+ Lp = Mp
308
+ p ⊂ N0
309
+ p,p,∞ ⊂ N−N/p+N/γ
310
+ γ,γ,∞
311
+ .
312
+ Since the assumption of Theorem 1.2 is satisfied with N−N/p+N/γ
313
+ γ,γ,∞
314
+ , we see that
315
+ if ϕ ∈ Lp with p > 1, then probolem (1.2) possesses a local-in-time solution.
316
+ • Let 1 < γ < (N + θ)/(N + 1). Then by Proposition 2.1 and Proposition 2.2,
317
+ we have
318
+ δ(x) ∈ M1 ⊂ N0
319
+ 1,1,∞ ⊂ N−N+N/γ
320
+ γ,γ,∞
321
+ .
322
+ Since the assumption of Theorem 1.2 is satisfied with N−N+N/γ
323
+ γ,γ,∞
324
+ , we see that if
325
+ ϕ is a Radon measure, then probolem (1.2) possesses a local-in-time solution.
326
+ This result is consistent with that of [17]. Furthermore, since
327
+ ∂|α|δ(x) ∈ N−N+N/γ−|α|
328
+ γ,γ,∞
329
+ ,
330
+ we see that probolem (1.2) possesses a local-in-time solution for ϕ = ∂[θ]−1δ
331
+ and γ <
332
+ N+θ
333
+ N+[θ] if θ is not an integer, and for ϕ = ∂θ−2δ and γ <
334
+ N+θ
335
+ N+θ−1 if θ is
336
+ an integer.
337
+ We explain the idea of the proof of Theorem 1.1 and Theorem 1.2. Let S(t)u :=
338
+ F −1 exp(−t|ξ|θ)Fu. By modifying the arguments in [19], we first prove the heat
339
+ kernel estimates of the fractional Laplacian in inhomogeneous Besov-Morrey spaces
340
+ and obtain the estimate
341
+ ∥S(t)u|Nσ
342
+ p,q,1∥ ≤ C(1 + t(s−σ)/θ)∥u|Ns
343
+ p,q,∞∥,
344
+ ∥∇S(t)u|Nσ
345
+ p,q,1∥ ≤ C(1 + t(s−σ−1)/θ)∥u|Ns
346
+ p,q,∞∥,
347
+ for t > 0 and σ > s.
348
+ Here, one of the main difficulties comes from the non-
349
+ smoothness of the function exp(−t|ξ|θ), see Lemma 2.2 and Remark 2.1.
350
+ 6
351
+
352
+ Then we show that the approximate solutions converge in some Banach space
353
+ based on the local Morrey spaces with a bound near t = 0.
354
+ The rest of this paper is organized as follows. In Sections 2, we obtain the heat
355
+ kernel estimates of the fractional Laplacian in inhomogeneous Besov-Morrey spaces.
356
+ In section 3, we prove Theorem 1.1. In section 4, we prove Theorem 1.2.
357
+ 2
358
+ Preliminaries
359
+ In this section, we recall some preliminary facts about Besov-Morrey spaces and give
360
+ estimates of heat kernel of fractional Laplacian in these function spaces.
361
+ The following two propositions collect basic facts about Morrey spaces and Besov-
362
+ Morrey spaces.
363
+ Proposition 2.1 ( [19, Theorem 2.5]) Let 1 ≤ q ≤ p < ∞, r ∈ [1, ∞] and
364
+ s ∈ R. Then the following embeddings are continuous:
365
+ Ns
366
+ p,q,r ⊂ Bs−N/p
367
+ ∞,r
368
+ ,
369
+ (2.1)
370
+ Ns
371
+ p,q,r ⊂ Ns−N(1−l)/p
372
+ p/l,q/l,r
373
+ for any
374
+ l ∈ (0, 1).
375
+ (2.2)
376
+ Proposition 2.2 ( [19, Proposition 2.11]) Let 1 ≤ q ≤ p < ∞. Then the fol-
377
+ lowing embeddings are continuous:
378
+ N0
379
+ p,q,1 ⊂ Mp
380
+ q ⊂ N0
381
+ p,q,∞,
382
+ (2.3)
383
+ Mp ⊂ N0
384
+ p,1,∞.
385
+ We modify the arguments in [19, Theorem 2.9 (2)] and prepare the following two
386
+ lemmas for the estimates of heat kernel of fractional Laplacian in inhomogeneous
387
+ Besov-Morrey spaces. Here, we denote by ⌊x⌋ the greatest integer less than or equal
388
+ to x ∈ R.
389
+ Lemma 2.1 Let m ∈ R, 1 ≤ q ≤ p < ∞ and P(ξ) ∈ C⌊N/2⌋+1(RN \ {0}). Assume
390
+ that there is A > 0 such that
391
+ ����
392
+ ∂αP
393
+ ∂ξα (ξ)
394
+ ���� ≤ A|ξ|m−|α|
395
+ for all α ∈ (N ∪ {0})N with |α| ≤ ⌊N/2⌋ + 1 and for all ξ ̸= 0. Then the multiplier
396
+ operator P(D)u := F −1P(ξ)Fu satisfies the estimate
397
+ ��F −1ϕjF(P(D)u)|Mp
398
+ q
399
+ �� ≤ CA2mj ��F −1ϕjFu|Mp
400
+ q
401
+ ��
402
+ for every positive integer j and u ∈ S′(RN) such that F −1ϕj(ξ)Fu ∈ Mp
403
+ q , where
404
+ C > 0 is a constant independent of j, A, and u.
405
+ 7
406
+
407
+ Proof. Put Φj := ϕj−1 + ϕj + ϕj+1 and K(x) := F −1Φj(ξ)P(ξ) for j ∈ Z. Note
408
+ that supp ϕj(ξ) ⊂ {ξ ∈ RN; 2j+1/3 ≤ |ξ| ≤ 2j+1} and Φj ≡ 1 on supp ϕj(ξ).
409
+ Putting also N0 := ⌊N/2⌋ + 1, we have
410
+ ∥K|L1(RN)∥ =
411
+
412
+ |x|≤2−j |K(x)| dx +
413
+
414
+ |x|≥2−j |K(x)| dx
415
+
416
+ ��
417
+ |x|≤2−j dx
418
+ �1/2 ��
419
+ |x|≤2−j |K(x)|2 dx
420
+ �1/2
421
+ +
422
+ ��
423
+ |x|≥2−j |x|−2N0 dx
424
+ �1/2 ��
425
+ |x|≥2−j |x|2N0|K(x)|2 dx
426
+ �1/2
427
+ ≤ C
428
+
429
+ 2−Nj/2∥K(x)|L2(RN)∥ + 2(N0−N/2)j �
430
+ |α|=N0
431
+ ∥xαK(x)|L2(RN)∥
432
+
433
+
434
+ = C
435
+
436
+ 2−Nj/2∥Φj(ξ)P(ξ)|L2(RN)∥ + 2(N0−N/2)j �
437
+ |α|=N0
438
+ ����
439
+ ∂|α|
440
+ ∂ξα(Φj(ξ)P(ξ))|L2(RN)
441
+ ����
442
+
443
+
444
+ ≤ C(2−Nj/22(m+N/2)jA + 2(N0−N/2)j2(m−N0+N/2)jA) = C2mjA
445
+ for some constant C > 0, depending on N, m, ∥ζ|BCN0(R)∥, but not on j and A.
446
+ Since F −1ϕjF(P(D)u) = K ∗ (F −1ϕjFu), we see by [19, Lemma 1.8] that
447
+ ∥F −1ϕjF(P(D)u)|Mp
448
+ q ∥ ≤ CA2mj∥F −1ϕjFu|Mp
449
+ q ∥
450
+ for every positive integer j, and the proof is complete. ✷
451
+ Lemma 2.2 Let m > 0, 1 ≤ q ≤ p < ∞ and P(ξ) ∈ C⌊N/2⌋+1(RN \ {0}). Assume
452
+ that there is A > 0 such that
453
+ ����
454
+ ∂αP
455
+ ∂ξα (ξ)
456
+ ���� ≤ A|ξ|m−|α|
457
+ for all α ∈ (N ∪ {0})N with |α| ≤ ⌊N/2⌋ + 1 and for all ξ ∈ B(0, 4) \ {0}. Then the
458
+ multiplier operator P(D)u := F −1P(ξ)Fu satisfies the estimate
459
+ ∥F −1ϕ(0)F(P(D)u)|Mp
460
+ q ∥ ≤ CA∥F −1ϕ(0)Fu|Mp
461
+ q ∥
462
+ for every u ∈ S′(RN) such that F −1ϕ(0)(ξ)Fu ∈ Mp
463
+ q , where C > 0 is a constant
464
+ independent of A and u.
465
+ Proof. Put Kj(x) := F −1ϕj(ξ)P(ξ) and Φ(0) := ϕ(0) + ϕ1. In the same way as in
466
+ Lemma 2.1, we have
467
+ ∥F −1Φ(0)(ξ)P(ξ)|L1(RN)∥ ≤
468
+ 1
469
+
470
+ j=−∞
471
+ ∥Kj|L1(RN)∥
472
+
473
+ 1
474
+
475
+ j=−∞
476
+ C2mjA ≤ CA
477
+ 8
478
+
479
+ with some constant C > 0 independent of A. This implies in the same way as in
480
+ Lemma 2.1
481
+ ∥F −1ϕ(0)F(P(D)u)|Mp
482
+ q ∥ ≤ CA∥F −1ϕ(0)Fu|Mp
483
+ q ∥,
484
+ and the proof is complete. ✷
485
+ Remark 2.1 Note that we do not assume the smoothness of P(ξ) at ξ = 0, which
486
+ is useful for the estimates of the derivative of heat kernel of fractional Laplacian
487
+ since P(ξ) = exp(−t|ξ|θ) is not smooth at ξ = 0 in general. In this respect, we
488
+ improved [19, Theorem 2.9 (2)] where the smoothness at ξ = 0 is needed.
489
+ In the following theorem, we obtain estimates of heat kernel of fractional Laplacian
490
+ in inhomogeneous Besov-Morrey spaces.
491
+ Theorem 2.1 Let s ≤ σ, 1 ≤ q ≤ p < ∞ and r ∈ [1, ∞]. Then there exists C > 0
492
+ such that the estimate
493
+ ∥S(t)u|Nσ
494
+ p,q,r∥ ≤ C(1 + t(s−σ)/θ)∥u|Ns
495
+ p,q,r∥
496
+ for
497
+ t > 0
498
+ (2.4)
499
+ holds. Furthermore, if s < σ, the estimate
500
+ ∥S(t)u|Nσ
501
+ p,q,1∥ ≤ C(1 + t(s−σ)/θ)∥u|Ns
502
+ p,q,∞∥
503
+ for
504
+ t > 0
505
+ (2.5)
506
+ holds.
507
+ Proof. By induction we see that for every α ∈ NN there exist homogeneous poly-
508
+ nomials Pα,k(ξ) of degree |α| for k = 1, 2, . . . , |α| such that for ξ ̸= 0
509
+ ∂|α| exp(−t|ξ|θ)
510
+ ∂ξα
511
+ = exp(−t|ξ|θ)|ξ|−2|α|
512
+ |α|
513
+
514
+ k=1
515
+ Pα,k(ξ)tk|ξ|kθ.
516
+ (2.6)
517
+ We have for m = s − σ
518
+ |ξ|−m+|α|∂|α| exp(−t|ξ|θ)
519
+ ∂ξα
520
+ ≤ Ct
521
+ m
522
+ θ exp(−t|ξ|θ)
523
+ |α|
524
+
525
+ k=1
526
+ (t
527
+ 1
528
+ θ |ξ|)kθ−m
529
+ ≤ Cαt
530
+ m
531
+ θ .
532
+ This together with Lemma 2.1 implies
533
+ ∥F −1ϕj(ξ)F(S(t)u)|Mp
534
+ q ∥ ≤ Ct
535
+ m
536
+ θ 2mj∥F −1ϕj(ξ)Fu|Mp
537
+ q ∥
538
+ (2.7)
539
+ for every positive integer and every t > 0. On the other hand, since
540
+ ∥F −1ϕ(0)(ξ)F(S(t)u)|Mp
541
+ q ∥
542
+ ≤ ∥F −1Φ(0) ∗ F −1 exp(−t|ξ|θ)|L1(RN)|∥∥F −1ϕ(0)(ξ)Fu|Mp
543
+ q ∥
544
+ ≤ C∥F −1ϕ(0)(ξ)Fu|Mp
545
+ q ∥,
546
+ 9
547
+
548
+ where Φ(0) is as in Lemma 2.2. This together with (2.7) implies the inequality (2.4).
549
+ The inequality (2.5) follows exactly in the same way as in [19, Theorem 3.1] from
550
+ the inequality (2.4), and the proof is complete. ✷
551
+ In the following lemma, we obtain another estimate of the heat kernel of frac-
552
+ tional Laplacian by using the smallness condition on the initial data.
553
+ Lemma 2.3 Let 1 ≤ q ≤ p < ∞ and s < σ. Then there exists A > 0 such that, for
554
+ every u ∈ Ns
555
+ p,q,∞ and every B > 0, satisfying
556
+ A lim sup
557
+ j→∞
558
+ 2sj∥F −1ϕjFu|Mp
559
+ q ∥ < B,
560
+ there exists T > 0 such that
561
+ sup
562
+ 0<t≤T
563
+ t(σ−s)/θ∥S(t)u|Nσ
564
+ p,q,1∥ < B.
565
+ Proof. Let C0 be a positive constant satisfying the estimate
566
+ ∥S(t)u|Nσ
567
+ p,q,1∥ ≤ C0(1 + t(s−σ)/θ)∥u|Ns
568
+ p,q,∞∥,
569
+ and put C1 = max{1, 2∥F −1ϕ0|L1(RN)∥} and A = C0C1.
570
+ Take δ > 0 such that
571
+ lim sup
572
+ j→∞
573
+ 2sj∥F −1ϕjFu|Mp
574
+ q ∥ < δ < B/A,
575
+ then for some m ∈ N, the estimate
576
+ 2sj∥F −1ϕjFu|Mp
577
+ q ∥ ≤ δ < B/A
578
+ holds for every j ≥ m. Put u1 = F −1ϕ(0)(2−m·)Fu and u2 = u − u1. Since
579
+ supp ϕ(0)(2−mξ) ⊂
580
+
581
+ ξ ∈ RN; |ξ| ≤ 5
582
+ 32m
583
+
584
+ ,
585
+ supp ϕj(ξ) ⊂
586
+
587
+ ξ ∈ RN; 2j+1
588
+ 3
589
+ ≤ |ξ| ≤ 2j+1
590
+
591
+ ,
592
+ ϕ(0)(2−mξ) ≡ 1
593
+ on
594
+ {ξ ∈ RN; |ξ| ≤ 3 · 2m−1},
595
+ we have
596
+ F −1ϕjFu1 =
597
+
598
+
599
+
600
+
601
+
602
+ F −1ϕjFu
603
+ for
604
+ j ≤ m − 1,
605
+ F −1(ϕm−1 + ϕm)ϕjFu
606
+ for
607
+ j = m, m + 1,
608
+ 0
609
+ for
610
+ j ≥ m + 2,
611
+ and
612
+ F −1ϕjFu2 =
613
+
614
+
615
+
616
+
617
+
618
+ 0
619
+ for
620
+ j ≤ m − 1,
621
+ F −1(ϕm+1 + ϕm+2)ϕjFu
622
+ for
623
+ j = m, m + 1,
624
+ F −1ϕjFu
625
+ for
626
+ j ≥ m + 2.
627
+ 10
628
+
629
+ It follows from the the definition of the constant C1 and the fact ∥F −1ϕj|L1∥ =
630
+ ∥F −1ϕ0|L1∥ that ∥u2|Ns
631
+ p,q,∞∥ ≤ C1δ. Therefore, we have
632
+ t(σ−s)/θ∥S(t)u2|Nσ
633
+ p,q,1∥ ≤ C0(1 + t(σ−s)/θ)∥u2|Ns
634
+ p,q,∞∥
635
+ ≤ C0C1δ(1 + T (σ−s)/θ) = Aδ(1 + T (σ−s)/θ) < Aδ + B
636
+ 2
637
+ (2.8)
638
+ for every t ∈ (0, T], by taking T > 0 sufficiently small. On the other hand, since
639
+ u1 ∈ N(σ+s)/2
640
+ p,q,∞
641
+ , we have the estimate
642
+ t(σ−s)/θ∥S(t)u1|Nσ
643
+ p,q,1∥ ≤ C0(t(σ−s)/2θ) + t(σ−s)/θ))∥u1|N(s+σ)/2
644
+ p,q,∞
645
+
646
+ ≤ C0T (σ−s)/2θ(1 + T (σ−s)/2θ)∥u1|N(s+σ)/2
647
+ p,q,∞
648
+ ∥ < B − Aδ
649
+ 2
650
+ (2.9)
651
+ for every t ∈ (0, T], by taking T > 0 sufficiently small. We obtain the conclusion
652
+ from (2.8) and (2.9), and the proof is complete. ✷
653
+ 3
654
+ Proof of Theorem 1.1.
655
+ In this section, we prove Theorem 1.1 by using Theorem 2.1. Let XT denote the set
656
+ of Lebesgue measurable functions u(x, t) on RN × (0, T) such that
657
+ ∥u|XT∥ := sup
658
+ 0<t<T
659
+ t−s/θ∥u(·, t) |Mp
660
+ q ∥ < ∞.
661
+ Set u0(x, t) = [S(t)ϕ](x). Define un(x, t) (n = 1, 2, . . .) inductively by
662
+ un(x, t) := u0(x, t) +
663
+ � t
664
+ 0
665
+ [S(t − τ)|un−1(·, τ)|γ−1un−1(·, τ)](x) dτ.
666
+ (3.1)
667
+ We prepare the following three lemmas for the proof of Theorem 1.1.
668
+ Lemma 3.1 Let γ > 1, T ≤ 1, γ ≤ q ≤ p < ∞, −θ/γ < s < 0 and s ���
669
+ N/p − θ/(γ − 1). Then there exists C2 > 0 independent of T such that
670
+ ∥un+1|XT∥ ≤ ∥u0|XT∥ + C2∥un|XT∥γ
671
+ for n = 0, 1, . . ..
672
+ 11
673
+
674
+ Proof. By (2.2), (2.3), (2.5) and (3.1), we see that
675
+ ∥un+1(·, t) − u0(·, t)|Mp
676
+ q ∥ ≤ C∥un+1(·, t) − u0(·, t)|N0
677
+ p,q,1∥
678
+ ≤ C
679
+ � t
680
+ 0
681
+ ∥S(t − τ)|un(·, τ)|γ−1un(·, τ)|N0
682
+ p,q,1∥ dτ
683
+ ≤ C
684
+ � t
685
+ 0
686
+ ∥S(t − τ)|un(·, τ)|γ−1un(·, τ)|NN(γ−1)/p
687
+ p/γ,q/γ,1 ∥ dτ
688
+ ≤ C
689
+ � t
690
+ 0
691
+ {1 + (t − τ)−N(γ−1)/pθ}∥|un(·, τ)|γ|N0
692
+ p/γ,q/γ,∞∥ dτ
693
+ ≤ C
694
+ � t
695
+ 0
696
+ (t − τ)−N(γ−1)/pθ∥|un(·, τ)|γ|Mp/γ
697
+ q/γ ∥ dτ
698
+ ≤ C
699
+ � t
700
+ 0
701
+ (t − τ)−N(γ−1)/pθ∥un(·, τ)|Mp
702
+ q ∥γ dτ
703
+ ≤ C∥un|XT∥γ
704
+ � t
705
+ 0
706
+ (t − τ)−N(γ−1)/pθτ sγ/θ dτ
707
+ ≤ Ct−N(γ−1)/pθ+sγ/θ+1∥un|XT∥γ.
708
+ Therefore, we have
709
+ ∥un+1 − u0|XT∥ ≤ Ct1+(γ−1)(s/θ−N/pθ)∥un|XT∥γ
710
+ ≤ C∥un|XT∥γ
711
+ for T ≤ 1, and the proof is complete. ✷
712
+ Lemma 3.2 Let γ > 1, γ ≤ q ≤ p < ∞, −θ/γ < s < 0 and s ≥ N/p −
713
+ θ/(γ − 1). Then there exists C3 > 0 such that for every ϕ(x) ∈ Ns
714
+ p,q,∞ satisfy-
715
+ ing lim supj→∞ 2sj∥F −1ϕjFϕ|Mp
716
+ q ∥ < δ for some δ > 0, we can choose a positive
717
+ number T ≤ 1 so small that the inequality ∥u0|XT∥ < C3δ holds. Furthermore, we
718
+ can choose δ so small that supn ∥un|XT∥ ≤ M for some M > 0.
719
+ Proof. By Lemma 2.3 with B = Aδ, we can take T ≤ 1 such that the estimate
720
+ sup
721
+ 0<t≤T
722
+ t−s/θ∥u0|N0
723
+ p,q,1∥ < Aδ
724
+ holds. This together with (2.3) implies ∥u0|XT∥ < C3δ for some constant C3 > 0.
725
+ For δ > 0 satisfying
726
+ 2γC2Cγ
727
+ 3 δγ−1 < 1,
728
+ we see by induction that
729
+ sup
730
+ n ∥un|XT∥ ≤ 2C3δ =: M,
731
+ and the proof is complete. ✷
732
+ 12
733
+
734
+ Lemma 3.3 Let γ > 1, γ ≤ q ≤ p < ∞, −θ/γ < s < 0 and s ≥ N/p − θ/(γ − 1).
735
+ Suppose that δ and T ≤ 1 are small enough so that the assertion of Lemma 3.2
736
+ holds. Then there exists a positive constant C independent of T such that
737
+ ∥un+2 − un+1|XT∥ ≤ CMγ−1∥un+1 − un|XT∥
738
+ for n = 0, 1, . . ..
739
+ Proof. By (2.2), (2.3), (2.5) and (3.1), we see that
740
+ ∥un+2(·, t) − un+1(·, t)|Mp
741
+ q ∥ ≤ C∥un+2(·, t) − un+1(·, t)|N0
742
+ p,q,1∥
743
+ ≤ C
744
+ � t
745
+ 0
746
+ ∥S(t − τ)(|un+1(·, τ)|γ−1un+1(·, τ) − |un(·, τ)|γ−1un(·, τ))|N0
747
+ p,q,1∥ dτ
748
+ ≤ C
749
+ � t
750
+ 0
751
+ ∥S(t − τ)(|un+1(·, τ)|γ−1un+1(·, τ) − |un(·, τ)|γ−1un(·, τ))|NN(γ−1)/p
752
+ p/γ,q/γ,1 ∥ dτ
753
+ ≤ C
754
+ � t
755
+ 0
756
+ (t − τ)− N(γ−1)
757
+
758
+ ∥|un+1(·, τ)|γ−1un+1(·, τ) − |un(·, τ)|γ−1un(·, τ)|N0
759
+ p/γ,q/γ,∞∥ dτ
760
+ ≤ C
761
+ � t
762
+ 0
763
+ (t − τ)− N(γ−1)
764
+
765
+ ∥|un+1(·, τ)|γ−1un+1(·, τ) − |un(·, τ)|γ−1un(·, τ)|Mp/γ
766
+ q/γ ∥ dτ
767
+ ≤ C
768
+ � t
769
+ 0
770
+ (t − τ)− N(γ−1)
771
+
772
+ ∥|un+1(·, τ) − un(·, τ)|(|un+1(·, τ)|γ−1 + |un(·, τ)|γ−1)|Mp/γ
773
+ q/γ ∥ dτ
774
+ ≤ CMγ−1
775
+ � t
776
+ 0
777
+ (t − τ)− N(γ−1)
778
+
779
+ ∥un+1(·, τ) − un(·, τ)|Mp
780
+ q ∥ dτ
781
+ ≤ CMγ−1∥un+1 − un|XT∥
782
+ � t
783
+ 0
784
+ (t − τ)−N(γ−1)/pθτ sγ/θ dτ
785
+ ≤ CMγ−1t−N(γ−1)/pθ+sγ/θ+1∥un+1 − un|XT∥.
786
+ We used here [19, Lemma 1.4]. Therefore, we have
787
+ ∥un+2 − un+1|XT∥ ≤ CMγ−1t1+(γ−1)(s/θ−N/pθ)∥un+1 − un|XT∥
788
+ ≤ CMγ−1∥un+1 − un|XT∥,
789
+ and the proof is complete. ✷
790
+ Proof of Theorem 1.1.
791
+ Take δ and T so small that
792
+ ∥un+2 − un+1|XT∥ ≤ 1
793
+ 2∥un+1 − un|XT∥
794
+ for n = 0, 1, . . ., and we see that un(x, t) converges in XT. Set u(x, t) as a limit of
795
+ un(x, t) in XT and we see that
796
+ u(x, t) := [S(t)ϕ](x) +
797
+ � t
798
+ 0
799
+ [S(t − τ)|u(·, τ)|γ−1u(·, τ)](x) dτ.
800
+ (3.2)
801
+ 13
802
+
803
+ We next prove that u(x, t) ∈ L∞([ε, T] × RN) for every ε > 0. Let n be the
804
+ smallest integer greater than Nγ/θp.
805
+ Then we can take an increasing sequence
806
+ of positive numbers {pj}n
807
+ j=1 such that p1 = p, N/pj+1 > N/pj − θ/γ for every
808
+ j = 1, 2, · · · , n − 1 and N/pn < θ/γ. We also define {qj}n
809
+ j=1 and {sj}n
810
+ j=1 as q1 = q,
811
+ qj+1 = pj+1qj/pj, s1 = s and sj+1 = N/pj+1 − N/pj.
812
+ By the obtained result, we see that the solution u(x, t) belongs to the spaces
813
+ L∞ �� ε
814
+ 2n, T
815
+
816
+ , Mp
817
+ q
818
+
819
+ ⊂ L∞ �� ε
820
+ 2n, T
821
+
822
+ , N0
823
+ p1,q1,∞
824
+
825
+ ⊂ L∞ �� ε
826
+ 2n, T
827
+
828
+ , Ns2
829
+ p2,q2,∞
830
+
831
+ .
832
+ Since γ ≤ q2 ≤ p2, −γ/θ < s2 < 0 and s2 ≥ N/p2 − θ/(γ − 1), we can apply the
833
+ obtained result to see u(x, t) ∈ L∞ �� 2ε
834
+ 2n, T
835
+
836
+ , Mp2
837
+ q2
838
+
839
+ . In the same way, since
840
+ L∞
841
+ �� jε
842
+ 2n, T
843
+
844
+ , Mpj
845
+ qj
846
+
847
+ ⊂ L∞
848
+ �� jε
849
+ 2n, T
850
+
851
+ , N0
852
+ pj,qj,∞
853
+
854
+ ⊂ L∞
855
+ �� jε
856
+ 2n, T
857
+
858
+ , Nsj
859
+ pj+1,qj+1,∞
860
+
861
+ ,
862
+ where γ ≤ qj+1 ≤ pj+1, −γ/θ < sj+1 < 0 and sj+1 ≥ N/pj+1 − θ/(γ − 1), we
863
+ have u(x, t) ∈ L∞ ��
864
+ (j+1)ε
865
+ 2n , T
866
+
867
+ , M
868
+ pj+1
869
+ qj+1
870
+
871
+ for j = 1, 2, · · · , n − 1. Therefore, we have
872
+ u(x, t) ∈ L∞ �� ε
873
+ 2, T
874
+
875
+ , Mpn
876
+ qn
877
+
878
+ , where pn > Nγ/θ. It follows from (2.1) that
879
+ ����
880
+ � t
881
+ ε/2
882
+ S(t − τ)|u(·, τ)|γ−1u(·, τ) dτ|L∞
883
+ ����
884
+ ≤ C
885
+ � t
886
+ ε/2
887
+ ��S(t − τ)|u(·, τ)|γ−1u(·, τ)|B0
888
+ ∞,1
889
+ �� dτ
890
+ ≤ C
891
+ � t
892
+ ε/2
893
+ ���S(t − τ)|u(·, τ)|γ−1u(·, τ)|NNγ/pn
894
+ pn/γ,qn/γ,1
895
+ ��� dτ
896
+ ≤ C
897
+ � t
898
+ ε/2
899
+
900
+ 1 + (t − τ)−Nγ/θpn� ��|u(·, τ)|γ−1u(·, τ)|N0
901
+ pn/γ,qn/γ,∞
902
+ �� dτ
903
+ ≤ C
904
+ � t
905
+ ε/2
906
+ (t − τ)−Nγ/θpn
907
+ ���|u(·, τ)|γ|Mpn/γ
908
+ qn/γ
909
+ ��� dτ
910
+ ≤ C
911
+ � t
912
+ ε/2
913
+ (t − τ)−Nγ/θpn ��u(·, τ)|Mpn
914
+ qn
915
+ ��γ dτ
916
+ ≤ C
917
+
918
+ t − ε
919
+ 2
920
+ �1−Nγ/θpn
921
+ sup
922
+ ε/2≤τ≤t
923
+ ��u(·, τ)|Mpn
924
+ qn
925
+ ��γ dτ
926
+ ≤ CT 1−Nγ/θpn
927
+ sup
928
+ ε/2≤τ≤t
929
+ ��u(·, τ)|Mpn
930
+ qn
931
+ ��γ dτ < ∞
932
+ (3.3)
933
+ for ε/2 ≤ t ≤ T ≤ 1. On the other hand, we have
934
+ ∥S(t − ε/2)u(·, ε/2)|L∞∥ ≤ C∥S(t − ε/2)u(·, ε/2)|B0
935
+ ∞,1∥
936
+ ≤ C∥S(t − ε/2)u(·, ε/2)|NN/p
937
+ p,q,1∥
938
+ ≤ C
939
+
940
+ 1 + (t − ε/2)−N/θp� ��|u(·, ε/2)||Mp
941
+ q
942
+ ��
943
+ ≤ C(ε/2)−N/θp ��|u(·, ε/2)||Mp
944
+ q
945
+ �� < ∞
946
+ (3.4)
947
+ 14
948
+
949
+ for ε ≤ t ≤ T ≤ 1. Since
950
+ u(x, t) =
951
+
952
+ S
953
+
954
+ t − ε
955
+ 2
956
+
957
+ u
958
+
959
+ ·, ε
960
+ 2
961
+ ��
962
+ (x) +
963
+ � t
964
+ ε/2
965
+
966
+ S(t − s)|u(·, τ)|γ−1u(·, τ)
967
+
968
+ (x) dτ,
969
+ this together with (3.3) and (3.4) implies that u(x, t) ∈ L∞([ε, T] × RN) for every
970
+ ε > 0.
971
+ Finally, we prove the uniqueness of the solution.
972
+ Assume that u(1)(x, t) and
973
+ u(2)(x, t) are solutions to (3.2) satisfying sup0≤t≤T t−s/θ∥u(j)(·, t)|Mp
974
+ q ∥ < ∞.
975
+ Let
976
+ u = u(1) − u(2) and h(t) = ∥u(·, t)|Mp
977
+ q ∥. Then exactly in the same way as in the
978
+ proof of Lemma 3.3, we have
979
+ sup
980
+ 0<t≤T
981
+ t−s/θh(t) ≤ CMγ−1 sup
982
+ 0<t≤T
983
+ t−s/θh(t) ≤ 1
984
+ 2 sup
985
+ 0<t≤T
986
+ t−s/θh(t).
987
+ Therefore, we see that u ≡ 0, and the proof is complete. ✷
988
+ 4
989
+ Proof of Theorem 1.2.
990
+ In this section, we prove Theorem 1.2. Let T > 0 be small and consider the Banach
991
+ space
992
+ YT := {u(x, t) on (0, T) × RN : ∥u |YT∥ < ∞},
993
+ where
994
+ ∥u |YT∥ := sup
995
+ 0<t<T
996
+ {t−s/θ∥u(·, t) |Mp
997
+ q ∥ + t(−s+1)/θ∥∇u(·, t) |Mp
998
+ q ∥}.
999
+ Set u0(x, t) = [S(t)ϕ](x). Define un(x, t) (n = 1, 2, . . .) inductively by
1000
+ un(x, t) := u0(x, t) +
1001
+ � t
1002
+ 0
1003
+ [S(t − τ)|∇un−1(·, τ)|γ](x) dτ.
1004
+ (4.1)
1005
+ For every t > 0 and every u ∈ S′, put Sj(t)u := F −1(iξj) exp(−t|ξ|θ)Fu for
1006
+ 1 ≤ j ≤ N.
1007
+ As in Section 2, we prove the derivative estimate for S(t) in the
1008
+ following theorem.
1009
+ Theorem 4.1 Let s ≤ σ, 1 ≤ q ≤ p < ∞ and r ∈ [1, ∞]. Then there exists C > 0
1010
+ such that the estimate
1011
+ ∥Sj(t)u|Nσ
1012
+ p,q,r∥ ≤ C(1 + t(s−σ−1)/θ)∥u|Ns
1013
+ p,q,r∥
1014
+ for
1015
+ t > 0
1016
+ (4.2)
1017
+ holds. Furthermore, if s < σ, the estimate
1018
+ ∥Sj(t)u|Nσ
1019
+ p,q,1∥ ≤ C(1 + t(s−σ−1)/θ)∥u|Ns
1020
+ p,q,∞∥
1021
+ for
1022
+ t > 0
1023
+ (4.3)
1024
+ holds.
1025
+ 15
1026
+
1027
+ Proof. By (2.6) we see that for every α ∈ NN there exists a homogeneous poly-
1028
+ nomial Pα,k(ξ) of degree |α| for k = 1, 2, . . . , |α| and Pα−ej,k(ξ) of degree |α| − 1 for
1029
+ k = 1, 2, . . . , |α| − 1 such that for ξ ̸= 0
1030
+ ∂|α|(iξj) exp(−t|ξ|θ)
1031
+ ∂ξα
1032
+ = iξj exp(−t|ξ|θ)|ξ|−2|α|
1033
+ |α|
1034
+
1035
+ k=1
1036
+ Pα,k(ξ)tk|ξ|kθ
1037
+ + iαj exp(−t|ξ|θ)|ξ|−2|α|+2
1038
+ |α|−1
1039
+
1040
+ k=1
1041
+ Pα−ej,k(ξ)tk|ξ|kθ.
1042
+ We have for m = s − σ
1043
+ |ξ|−m+|α|∂|α|(iξj) exp(−t|ξ|θ)
1044
+ ∂ξα
1045
+ ≤ Ct
1046
+ m−1
1047
+ θ
1048
+ exp(−t|ξ|θ)
1049
+ |α|
1050
+
1051
+ k=1
1052
+ (t
1053
+ 1
1054
+ θ |ξ|)kθ−m+1
1055
+ ≤ Cαt
1056
+ m−1
1057
+ θ .
1058
+ This together with Lemma 2.1 implies
1059
+ ∥F −1ϕj(ξ)F(Sj(t)u)|Mp
1060
+ q ∥ ≤ Ct
1061
+ m
1062
+ θ 2mj∥F −1ϕj(ξ)Fu|Mp
1063
+ q ∥
1064
+ (4.4)
1065
+ for every positive integer and every t > 0. On the other hand, by (2.6) we have
1066
+ ����
1067
+ ∂|α|(iξj) exp(−t|ξ|θ)
1068
+ ∂ξα
1069
+ ���� ≤ Cα|ξ|1−|α|.
1070
+ for every ξ ∈ B(0, 4) \ {0}. This together with Lemma 2.2 implies
1071
+ ∥F −1ϕ(0)(ξ)F(S(t)u)|Mp
1072
+ q ∥ ≤ C∥F −1ϕ(0)(ξ)Fu|Mp
1073
+ q ∥.
1074
+ (4.5)
1075
+ The inequality (4.2) follows from (4.4) and (4.5). The inequality (4.3) follows exactly
1076
+ in the same way as in [19, Theorem 3.1] from the inequality 4.2, and the proof is
1077
+ complete. ✷
1078
+ Lemma 4.1 Let 1 ≤ q ≤ p < ∞ and s < σ. Then there exists A > 0 such that, for
1079
+ every u ∈ Ns
1080
+ p,q,∞ and every B > 0, satisfying
1081
+ A lim sup
1082
+ j→∞
1083
+ 2sj∥F −1ϕjFu|Mp
1084
+ q ∥ < B,
1085
+ there exists T > 0 such that
1086
+ sup
1087
+ 0<t≤T
1088
+ t(σ−s+1)/θ∥Sj(t)u|Nσ
1089
+ p,q,1∥ < B.
1090
+ 16
1091
+
1092
+ Proof. Let C0 be a positive constant satisfying the estimate
1093
+ ∥Sj(t)u|Nσ
1094
+ p,q,1∥ ≤ C0(1 + t(s−σ−1)/θ)∥u|Ns
1095
+ p,q,∞∥,
1096
+ and put C1 = max{1, 2∥F −1ϕ0|L1(RN)∥} and A = C0C1. Then there exists m ∈ N
1097
+ such that the estimate 2sj∥F −1ϕjFu∥ ≤ δ < B/A holds for every j ≥ m. Put
1098
+ u1 = F −1ϕ(0)(2−mξ)Fu and u2 = u − u1. Take δ > 0, m ∈ N, u1 and u2 as in the
1099
+ proof of Lemma 2.3. Then we have
1100
+ t(σ−s+1)/θ∥Sj(t)u2|Nσ
1101
+ p,q,1∥ ≤ C0(1 + t(σ−s+1)/θ)∥u2|Ns
1102
+ p,q,∞∥
1103
+ ≤ C0C1δ(1 + T (σ−s+1)/θ) = Aδ(1 + T (σ−s+1)/θ) < Aδ + B
1104
+ 2
1105
+ (4.6)
1106
+ for every t ∈ (0, T], by taking T > 0 sufficiently small. On the other hand, since
1107
+ u1 ∈ N(σ+s)/2
1108
+ p,q,∞
1109
+ , we have the estimate
1110
+ t(σ−s+1)/θ∥Sj(t)u1|Nσ
1111
+ p,q,1∥ ≤ C(t(σ−s)/2θ) + t(σ−s)/θ))∥u1|N(s+σ)/2
1112
+ p,q,∞
1113
+
1114
+ ≤ CT (σ−s)/2θ(1 + T (σ−s)/2θ)∥u1|N(s+σ)/2
1115
+ p,q,∞
1116
+ ∥ < B − Aδ
1117
+ 2
1118
+ (4.7)
1119
+ for every t ∈ (0, T], by taking T > 0 sufficiently small. We obtain the conclusion
1120
+ from (4.6) and (4.7). The proof is complete. ✷
1121
+ We prepare the following three lemmas for the proof of Theorem 1.2.
1122
+ Lemma 4.2 Let 1 < γ < θ, T ≤ 1, γ ≤ q ≤ p < ∞, p > N(γ − 1)/(θ − 1),
1123
+ 1 − θ/γ < s < 0 and s ≥ N/p + (γ − θ)/(γ − 1).
1124
+ Then there exists C2 > 0
1125
+ independent of T such that
1126
+ ∥un+1|YT∥ ≤ ∥u0|YT∥ + C2∥un|YT∥γ
1127
+ for n = 0, 1, . . ..
1128
+ 17
1129
+
1130
+ Proof. By (2.2), (2.3), (2.5) and (4.1) we see that
1131
+ ∥un+1(·, t) − u0(·, t)|Mp
1132
+ q ∥ ≤ C∥un+1(·, t) − u0(·, t)|N0
1133
+ p,q,1∥
1134
+ ≤ C
1135
+ � t
1136
+ 0
1137
+ ∥S(t − τ)|∇un(·, τ)|γ|N0
1138
+ p,q,1∥ dτ
1139
+ ≤ C
1140
+ � t
1141
+ 0
1142
+ ∥S(t − τ)|∇un(·, τ)|γ|NN(γ−1)/p
1143
+ p/γ,q/γ,1 ∥ dτ
1144
+ ≤ C
1145
+ � t
1146
+ 0
1147
+ {1 + (t − τ)−N(γ−1)/pθ}∥|∇un(·, τ)|γ|N0
1148
+ p/γ,q/γ,∞∥ dτ
1149
+ ≤ C
1150
+ � t
1151
+ 0
1152
+ (t − τ)−N(γ−1)/pθ∥|∇un(·, τ)|γ|Mp/γ
1153
+ q/γ ∥ dτ
1154
+ ≤ C
1155
+ � t
1156
+ 0
1157
+ (t − τ)−N(γ−1)/pθ∥∇un(·, τ)|Mp
1158
+ q ∥γ dτ
1159
+ ≤ C∥un|YT∥γ
1160
+ � t
1161
+ 0
1162
+ (t − τ)−N(γ−1)/pθτ (s−1)γ/θ dτ
1163
+ ≤ Ct−N(γ−1)/pθ+(s−1)γ/θ+1∥un|YT∥γ.
1164
+ In the same way, by (2.2), (2.3), (4.1) and (4.3) we see that
1165
+ ∥∂jun+1(·, t) − ∂ju0(·, t)|Mp
1166
+ q ∥ ≤ C
1167
+ � t
1168
+ 0
1169
+ ∥Sj(t − τ)|∇un(·, τ)|γ|N0
1170
+ p,q,1∥ dτ
1171
+ ≤ C
1172
+ � t
1173
+ 0
1174
+ ∥Sj(t − τ)|∇un(·, τ)|γ|NN(γ−1)/p
1175
+ p/γ,q/γ,1 ∥ dτ
1176
+ ≤ C
1177
+ � t
1178
+ 0
1179
+ {1 + (t − τ)−N(γ−1)/pθ−1/θ}∥|∇un(·, τ)|γ|N0
1180
+ p/γ,q/γ,∞∥ dτ
1181
+ ≤ C
1182
+ � t
1183
+ 0
1184
+ (t − τ)−N(γ−1)/pθ−1/θ∥|∇un(·, τ)|γ|Mp/γ
1185
+ q/γ ∥ dτ
1186
+ ≤ C
1187
+ � t
1188
+ 0
1189
+ (t − τ)−N(γ−1)/pθ−1/θ∥∇un(·, τ)|Mp
1190
+ q ∥γ dτ
1191
+ ≤ C∥un|YT∥γ
1192
+ � t
1193
+ 0
1194
+ (t − τ)−N(γ−1)/pθ−1/θτ (s−1)γ/θ dτ
1195
+ ≤ Ct−N(γ−1)/pθ−1/θ+(s−1)γ/θ+1∥un|YT∥γ.
1196
+ Therefore, we have
1197
+ ∥un+1 − u0|YT∥ ≤ Ct1+(γ−1)(s/θ−N/pθ)−γ/θ∥un|YT∥γ
1198
+ ≤ C∥un|YT∥γ
1199
+ for T ≤ 1, and the proof is complete. ✷
1200
+ 18
1201
+
1202
+ Lemma 4.3 Let 1 < γ < θ, T ≤ 1, γ ≤ q ≤ p < ∞, p > N(γ − 1)/(θ − 1),
1203
+ 1 − θ/γ < s < 0 and s ≥ N/p + (γ − θ)/(γ − 1).
1204
+ Then there exists C3 > 0
1205
+ such that for every ϕ(x) ∈ Ns
1206
+ p,q,∞ satisfying lim supj→∞ 2sj∥F −1ϕjFϕ|Mp
1207
+ q ∥ < δ for
1208
+ some δ > 0 we can choose a positive number T ≤ 1 so small that the inequality
1209
+ ∥u0|YT∥ < C0δ holds. Furthermore, we can choose δ so small that ∥un|YT∥ ≤ M for
1210
+ some M > 0.
1211
+ Proof. By Lemma 4.1 with B = Aδ, we can take a positive number T ≤ 1 such
1212
+ that the estimate
1213
+ sup
1214
+ 0<t≤T
1215
+ (t−s/θ∥u0|N0
1216
+ p,q,1∥ + t(−s+1)/θ∥∇u0|N0
1217
+ p,q,1∥) < Aδ
1218
+ holds. This together with (2.3) implies ∥u0|YT∥ < C3δ for some constant C3 > 0.
1219
+ For δ > 0 satisfying
1220
+ 2γC2Cγ
1221
+ 3 δγ−1 < 1,
1222
+ we see by induction that
1223
+ sup
1224
+ n ∥un|XT∥ ≤ 2C3δ =: M,
1225
+ and the proof is complete. ✷
1226
+ Lemma 4.4 Let 1 < γ < θ, T ≤ 1, γ ≤ q ≤ p < ∞, p > N(γ − 1)/(θ − 1),
1227
+ 1 − θ/γ < s < 0 and s ≥ N/p + (γ − θ)/(γ − 1). Suppose that δ and T ≤ 1 are
1228
+ small enough so that the assertion of Lemma 4.3 holds. Then there exists a positive
1229
+ constant C independent of T such that
1230
+ ∥un+2 − un+1|YT∥ ≤ CMγ−1∥un+1 − un|YT∥
1231
+ for n = 0, 1, . . ..
1232
+ Proof. By (2.2), (2.3), (2.5) and (4.1) we see that
1233
+ ∥un+2(·, t) − un+1(·, t)|Mp
1234
+ q ∥ ≤ C∥un+2(·, t) − un+1(·, t)|N0
1235
+ p,q,1∥
1236
+ ≤ C
1237
+ � t
1238
+ 0
1239
+ ∥S(t − τ)(|∇un+1(·, τ)|γ − |∇un(·, τ)|γ)|N0
1240
+ p,q,1∥ dτ
1241
+ ≤ C
1242
+ � t
1243
+ 0
1244
+ ∥S(t − τ)(|∇un+1(·, τ)|γ − |∇un(·, τ)|γ)|NN(γ−1)/p
1245
+ p/γ,q/γ,1 ∥ dτ
1246
+ ≤ C
1247
+ � t
1248
+ 0
1249
+ {1 + (t − τ)−N(γ−1)/pθ}∥|∇un+1(·, τ)|γ − |∇un(·, τ)|γ|N0
1250
+ p/γ,q/γ,∞∥ dτ
1251
+ ≤ C
1252
+ � t
1253
+ 0
1254
+ (t − τ)−N(γ−1)/pθ∥|∇un+1(·, τ)|γ − |∇un(·, τ)|γ|Mp/γ
1255
+ q/γ ∥ dτ
1256
+ ≤ CMγ−1∥un+1 − un|YT∥
1257
+ � t
1258
+ 0
1259
+ (t − τ)−N(γ−1)/pθτ (s−1)γ/θ dτ
1260
+ ≤ CMγ−1t−N(γ−1)/pθ+(s−1)γ/θ+1∥un+1 − un|YT∥.
1261
+ 19
1262
+
1263
+ In the same way, by (2.2), (2.3), (4.1) and (4.3) we see that
1264
+ ∥∂j(un+2(·, t) − un+1(·, t))|Mp
1265
+ q ∥ ≤ C∥∂j(un+2(·, t) − un+1(·, t))|N0
1266
+ p,q,1∥
1267
+ ≤ C
1268
+ � t
1269
+ 0
1270
+ ∥Sj(t − τ)(|∇un+1(·, τ)|γ − |∇un(·, τ)|γ)|N0
1271
+ p,q,1∥ dτ
1272
+ ≤ C
1273
+ � t
1274
+ 0
1275
+ ∥Sj(t − τ)(|∇un+1(·, τ)|γ − |∇un(·, τ)|γ)|NN(γ−1)/p
1276
+ p/γ,q/γ,1 ∥ dτ
1277
+ ≤ C
1278
+ � t
1279
+ 0
1280
+ {1 + (t − τ)−N(γ−1)/pθ−1/θ}∥|∇un+1(·, τ)|γ − |∇un(·, τ)|γ|N0
1281
+ p/γ,q/γ,∞∥ dτ
1282
+ ≤ C
1283
+ � t
1284
+ 0
1285
+ (t − τ)−N(γ−1)/pθ−1/θ∥|∇un+1(·, τ)|γ − |∇un(·, τ)|γ|Mp/γ
1286
+ q/γ ∥ dτ
1287
+ ≤ CMγ−1∥un+1 − un|YT∥
1288
+ � t
1289
+ 0
1290
+ (t − τ)−N(γ−1)/pθ−1/θτ (s−1)γ/θ dτ
1291
+ ≤ CMγ−1t−N(γ−1)/pθ−1/θ+(s−1)γ/θ+1∥un+1 − un|YT∥.
1292
+ We used here [19, Lemma 1.4]. Therefore, we have
1293
+ ∥un+2 − un+1|YT∥ ≤ CMγ−1t1+(γ−1)(s/θ−N/pθ)−γ/θ∥un+1 − un|YT∥
1294
+ ≤ CMγ−1∥un+1 − un|YT∥,
1295
+ and the proof is complete. ✷
1296
+ Proof of Theorem 1.2. Take δ and T so small that
1297
+ ∥un+2 − un+1|YT∥ ≤ 1
1298
+ 2∥un+1 − un|YT∥
1299
+ for n = 0, 1, . . ., and we see that un(x, t) converges in YT. Set u(x, t) as a limit of
1300
+ un(x, t) in YT and we see that
1301
+ u(x, t) := u0(x, t) +
1302
+ � t
1303
+ 0
1304
+ [S(t − τ)|∇u(·, τ)|γ](x) dτ.
1305
+ (4.8)
1306
+ We next prove that u(x, t) ∈ L∞([ε, T] × RN) and ∇u(x, t) ∈ L∞([ε, T] × RN)
1307
+ for every ε > 0. Let n be the smallest integer greater than Nγ/(θ − γ)p. Then
1308
+ we can take an increasing sequence of positive numbers {pj}n
1309
+ j=1 such that p1 = p,
1310
+ N/pj+1 > N/pj − (θ − γ)/γ for every j = 1, 2, · · · , n − 1 and N/pn < (θ − γ)/γ.
1311
+ We also define {qj}n
1312
+ j=1 and {sj}n
1313
+ j=1 as q1 = q, qj+1 = pj+1qj/pj, s1 = s and sj+1 =
1314
+ N/pj+1 − N/pj.
1315
+ By the obtained result, we see that the solution u(x, t) and ∇u(x, t) belong to
1316
+ the spaces
1317
+ L∞ �� ε
1318
+ 2n, T
1319
+
1320
+ , Mp
1321
+ q
1322
+
1323
+ ⊂ L∞ �� ε
1324
+ 2n, T
1325
+
1326
+ , N0
1327
+ p1,q1,∞
1328
+
1329
+ ⊂ L∞ �� ε
1330
+ 2n, T
1331
+
1332
+ , Ns2
1333
+ p2,q2,∞
1334
+
1335
+ .
1336
+ 20
1337
+
1338
+ Since γ ≤ q2 ≤ p2, p2 > N(γ − 1)/(θ − 1), 1 − γ/θ < s2 < 0 and s2 ≥ N/p2 − (θ −
1339
+ γ)/(γ − 1), we can apply the obtained result to see u(x, t) ∈ L∞ �� 2ε
1340
+ 2n, T
1341
+
1342
+ , Mp2
1343
+ q2
1344
+
1345
+ and
1346
+ ∇u(x, t) ∈ L∞ �� 2ε
1347
+ 2n, T
1348
+
1349
+ , Mp2
1350
+ q2
1351
+
1352
+ . In the same way, since
1353
+ L∞
1354
+ �� jε
1355
+ 2n, T
1356
+
1357
+ , Mpj
1358
+ qj
1359
+
1360
+ ⊂ L∞
1361
+ �� jε
1362
+ 2n, T
1363
+
1364
+ , N0
1365
+ pj,qj,∞
1366
+
1367
+ ⊂ L∞
1368
+ �� jε
1369
+ 2n, T
1370
+
1371
+ , Nsj
1372
+ pj+1,qj+1,∞
1373
+
1374
+ ,
1375
+ where γ ≤ qj+1 ≤ pj+1, pj+1 > N(γ − 1)/(θ − 1), 1 − γ/θ < sj+1 < 0 and
1376
+ sj+1 ≥ N/pj+1 − (θ − γ)/(γ − 1), we have u(x, t) ∈ L∞ ��
1377
+ (j+1)ε
1378
+ 2n , T
1379
+
1380
+ , M
1381
+ pj+1
1382
+ qj+1
1383
+
1384
+ for
1385
+ j = 1, 2, · · · , n − 1. Therefore, we have u(x, t) ∈ L∞ �� ε
1386
+ 2, T
1387
+
1388
+ , Mpn
1389
+ qn
1390
+
1391
+ and ∇u(x, t) ∈
1392
+ L∞ �� ε
1393
+ 2, T
1394
+
1395
+ , Mpn
1396
+ qn
1397
+
1398
+ , where pn > Nγ/(θ − γ). It follows that
1399
+ ����
1400
+ � t
1401
+ ε/2
1402
+ S(t − τ)|∇u(·, τ)|γ dτ|L∞
1403
+ ����
1404
+ ≤ C
1405
+ � t
1406
+ ε/2
1407
+ ��S(t − τ)|∇u(·, τ)|γ|B0
1408
+ ∞,1
1409
+ �� dτ
1410
+ ≤ C
1411
+ � t
1412
+ ε/2
1413
+ ���S(t − τ)|∇u(·, τ)|γ|NNγ/pn
1414
+ pn/γ,qn/γ,1
1415
+ ��� dτ
1416
+ ≤ C
1417
+ � t
1418
+ ε/2
1419
+
1420
+ 1 + (t − τ)−Nγ/θpn� ��|∇u(·, τ)|γ|N0
1421
+ pn/γ,qn/γ,∞
1422
+ �� dτ
1423
+ ≤ C
1424
+ � t
1425
+ ε/2
1426
+ (t − τ)−Nγ/θpn
1427
+ ���|∇u(·, τ)|γ|Mpn/γ
1428
+ qn/γ
1429
+ ��� dτ
1430
+ ≤ C
1431
+ � t
1432
+ ε/2
1433
+ (t − τ)−Nγ/θpn ��∇u(·, τ)|Mpn
1434
+ qn
1435
+ ��γ dτ
1436
+ ≤ C
1437
+
1438
+ t − ε
1439
+ 2
1440
+ �1−Nγ/θpn
1441
+ sup
1442
+ ε/2≤τ≤t
1443
+ ��∇u(·, τ)|Mpn
1444
+ qn
1445
+ ��γ dτ
1446
+ ≤ CT 1−Nγ/θpn
1447
+ sup
1448
+ ε/2≤τ≤t
1449
+ ��∇u(·, τ)|Mpn
1450
+ qn
1451
+ ��γ dτ < ∞
1452
+ (4.9)
1453
+ for ε/2 ≤ t ≤ T ≤ 1. On the other hand, we have
1454
+ ∥S(t − ε/2)u(·, ε/2)|L∞∥ ≤ C∥S(t − ε/2)u(·, ε/2)|B0
1455
+ ∞,1∥
1456
+ ≤ C∥S(t − ε/2)u(·, ε/2)|NN/p
1457
+ p,q,1∥
1458
+ ≤ C
1459
+
1460
+ 1 + (t − ε/2)−N/θp� ��|u(·, ε/2)||Mp
1461
+ q
1462
+ ��
1463
+ ≤ C(ε/2)−N/θp ��|u(·, ε/2)||Mp
1464
+ q
1465
+ �� < ∞
1466
+ (4.10)
1467
+ for ε ≤ t ≤ T ≤ 1. Since
1468
+ u(x, t) =
1469
+
1470
+ S
1471
+
1472
+ t − ε
1473
+ 2
1474
+
1475
+ u
1476
+
1477
+ ·, ε
1478
+ 2
1479
+ ��
1480
+ (x) +
1481
+ � t
1482
+ ε/2
1483
+ [S(t − τ)|∇u(·, τ)|γ] (x) dτ,
1484
+ 21
1485
+
1486
+ this together with (4.9) and (4.10) implies that u(x, t) ∈ L∞([ε, T] × RN) for every
1487
+ ε > 0. We next prove that ∇u(x, t) ∈ L∞([ε, T] × RN)for every ε > 0. It follows
1488
+ that
1489
+ ����
1490
+ � t
1491
+ ε/2
1492
+ Sj(t − τ)|∇u(·, τ)|γ dτ|L∞
1493
+ ����
1494
+ ≤ C
1495
+ � t
1496
+ ε/2
1497
+ ��Sj(t − τ)|∇u(·, τ)|γ|B0
1498
+ ∞,1
1499
+ �� dτ
1500
+ ≤ C
1501
+ � t
1502
+ ε/2
1503
+ ���Sj(t − τ)|∇u(·, τ)|γ|NNγ/pn
1504
+ pn/γ,qn/γ,1
1505
+ ��� dτ
1506
+ ≤ C
1507
+ � t
1508
+ ε/2
1509
+
1510
+ 1 + (t − τ)−Nγ/θpn−1/θ� ��|∇u(·, τ)|γ|N0
1511
+ pn/γ,qn/γ,∞
1512
+ �� dτ
1513
+ ≤ C
1514
+ � t
1515
+ ε/2
1516
+ (t − τ)−Nγ/θpn−1/θ ���|∇u(·, τ)|γ|Mpn/γ
1517
+ qn/γ
1518
+ ��� dτ
1519
+ ≤ C
1520
+ � t
1521
+ ε/2
1522
+ (t − τ)−Nγ/θpn−1/θ ��∇u(·, τ)|Mpn
1523
+ qn
1524
+ ��γ dτ
1525
+ ≤ C
1526
+
1527
+ t − ε
1528
+ 2
1529
+ �1−Nγ/θpn−1/θ
1530
+ sup
1531
+ ε/2≤τ≤t
1532
+ ��∇u(·, τ)|Mpn
1533
+ qn
1534
+ ��γ dτ
1535
+ ≤ CT 1−Nγ/θpn−1/θ
1536
+ sup
1537
+ ε/2≤τ≤t
1538
+ ��∇u(·, τ)|Mpn
1539
+ qn
1540
+ ��γ dτ < ∞
1541
+ (4.11)
1542
+ for ε/2 ≤ t ≤ T ≤ 1. On the other hand, we have
1543
+ ∥Sj(t − ε/2)u(·, ε/2)|L∞∥ ≤ C∥Sj(t − ε/2)u(·, ε/2)|B0
1544
+ ∞,1∥
1545
+ ≤ C∥Sj(t − ε/2)u(·, ε/2)|NN/p
1546
+ p,q,1∥
1547
+ ≤ C
1548
+
1549
+ 1 + (t − ε/2)−N/θp−1/θ� ��|u(·, ε/2)||Mp
1550
+ q
1551
+ ��
1552
+ ≤ C(ε/2)−N/θp−1/θ ��|u(·, ε/2)||Mp
1553
+ q
1554
+ �� < ∞
1555
+ (4.12)
1556
+ for ε ≤ t ≤ T ≤ 1. Since
1557
+ ∇u(x, t) =
1558
+
1559
+ Sj
1560
+
1561
+ t − ε
1562
+ 2
1563
+
1564
+ u
1565
+
1566
+ ·, ε
1567
+ 2
1568
+ ��
1569
+ (x) +
1570
+ � t
1571
+ ε/2
1572
+ [Sj(t − τ)|∇u(·, τ)|γ] (x) dτ,
1573
+ this together with (4.11) and (4.12) implies that ∇u(x, t) ∈ L∞([ε, T] × RN) for
1574
+ every ε > 0.
1575
+ Finally, we prove the uniqueness of the solution.
1576
+ Assume that u(1)(x, t) and
1577
+ u(2)(x, t) are solutions to (4.8) satisfying
1578
+ sup
1579
+ 0≤t≤T
1580
+ t−s/θ∥u(j)(·, t)|Mp
1581
+ q ∥ + t(−s+1)/θ∥∇u(j)(·, t)|Mp
1582
+ q ∥ < ∞.
1583
+ 22
1584
+
1585
+ Let u = u(1) − u(2) and h(t) = ∥u(·, t)|Mp
1586
+ q ∥. Then exactly in the same way as in the
1587
+ proof of Lemma 4.4, we have
1588
+ sup
1589
+ 0<t≤T
1590
+ {t−s/θh(t) + t(−s+1)/θh(t)} ≤ CMγ−1 sup
1591
+ 0<t≤T
1592
+ {t−s/θh(t) + t(−s+1)/θh(t)}
1593
+ ≤ 1
1594
+ 2 sup
1595
+ 0<t≤T
1596
+ {t−s/θh(t) + t(−s+1)/θh(t)}.
1597
+ Therefore, we see that u ≡ 0, and the proof is complete. ✷
1598
+ References
1599
+ [1] L. Amour and M. Ben-Artzi, Global existence and decay for viscous Hamilton-
1600
+ Jacobi equations, Nonlinear Anal., 31 (1998), 621–628.
1601
+ [2] D. Andreucci, Degenerate parabolic equations with initial data measures, Trans.
1602
+ Amer. Math. Soc., 349 (1997), 3911–3923.
1603
+ [3] P. Baras and M. Pierre, Critre d’existence de solutions positives pour des
1604
+ ´equations semi-lin´eaires non monotones, Ann. Inst. H. Poincar´e Anal. Non
1605
+ Lin´eaire, 2 (1985), 185–212.
1606
+ [4] M. Ben-Artzi, P. Souplet, and F. B. Weissler, The local theory for viscous
1607
+ Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., 81 (2002),
1608
+ 343–378.
1609
+ [5] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,
1610
+ J. Anal. Math. 68 (1996), 277–304.
1611
+ [6] C. Celik and Z. Zhou, No local L1 solution for a nonlinear heat equation, Comm.
1612
+ Partial Differential Equations 28 (2003), 1807–1831.
1613
+ [7] S. Cui, Local and global existence of solutions to semilinear parabolic initial
1614
+ value problems, Nonlinear Anal., 43 (2001), 293–323.
1615
+ [8] J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch.
1616
+ Ration. Mech. Anal., 182 (2006), 299–331.
1617
+ [9] R. Filippucci and S. Lombardi, Fujita type results for parabolic inequalities with
1618
+ gradient terms, J. Differential Equations, 268 (2020), 1873–1910.
1619
+ [10] V. A. Galaktionov and S. I. Pohozaev, Existence and blow-up for higher-order
1620
+ semilinear parabolic equations: majorizing order-preserving operators, Indiana
1621
+ Univ. Math. J., 51 (2002), 1321–1338.
1622
+ 23
1623
+
1624
+ [11] F. Gazzola and H.-C. Grunau, Global solutions for superlinear parabolic equa-
1625
+ tions involving the biharmonic operator for initial data with optimal slow decay,
1626
+ Calc. Var. Partial Differential Equations, 30 (2007), 389–415.
1627
+ [12] T. Ghoul, An extension of Dickstein’s ”small lambda” theorem for finite time
1628
+ blowup, Nonlinear Anal., 74 (2011), 6105–6115.
1629
+ [13] K. Hisa and K. Ishige, Existence of solutions for a fractional semilinear parabolic
1630
+ equation with singular initial data, Nonlinear Anal., 175 (2018), 108–132.
1631
+ [14] K. Hisa and K. Ishige, Solvability of the heat equation with a nonlinear boundary
1632
+ condition, SIAM J. Math. Anal., 51 (2019), 565–594.
1633
+ [15] K. Hisa and K. Ishige, J. Takahashi, Existence of solutions for an inhomoge-
1634
+ neous fractional semilinear heat equation, Nonlinear Anal., 199 (2020), 111920,
1635
+ 28.
1636
+ [16] K. Ishige and T. Kawakami, and S. Okabe, Existence of solutions for a higher-
1637
+ order semilinear parabolic equation with singular initial data, Ann. Inst. H.
1638
+ Poincar´e Anal. Non Lin´eaire, 37 (2020), 1185–1209.
1639
+ [17] K. Ishige, T. Kawakami, and S. Okabe, Existence of solutions to nonlinear
1640
+ parabolic equations via majorant integral kernel, Nonlinear Anal, 223 (2022), 22
1641
+ pp.
1642
+ [18] G. Karch and W.A. Woyczy´nski, Fractal Hamilton-Jacobi-KPZ equations,
1643
+ Trans. Amer. Math. Soc., 360 (2008), 2423–2442.
1644
+ [19] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes
1645
+ equation with distributions in new function spaces as initial data, Comm. Partial
1646
+ Differential Equations, 19 (1994), 959–1014.
1647
+ [20] T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of
1648
+ solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc.,
1649
+ 333 (1992), 365–378.
1650
+ [21] G. Ponce, Global existence of small solutions to a class of nonlinear evolution
1651
+ equations, Nonlinear Anal., 9 (1985), 399–418.
1652
+ [22] P. Quittner and P. Souplet, “Superlinear Parabolic Problems. Blow-up, Global
1653
+ Existence and Steady States”, Birkh¨auser Advanced Texts, Basel, 2007.
1654
+ [23] F. Ribaud, Semilinear parabolic equations with distributions as initial data,
1655
+ Discrete Contin. Dynam. Systems, 3 (1997), 305–316.
1656
+ [24] S. Sugitani, On nonexistence of global solutions for some nonlinear integral
1657
+ equations, Osaka Math. J., 12 (1975), 45–51.
1658
+ 24
1659
+
1660
+ [25] J. Takahashi, Solvability of a semilinear parabolic equation with measures as
1661
+ initial data, Geometric properties for parabolic and elliptic PDE’s, 257–276,
1662
+ Springer Proc. Math. Stat., 176, Springer, 2016.
1663
+ [26] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear
1664
+ heat equation, Israel J. Math., 38 (1981), 29–40.
1665
+ [27] J. Wu, Well-posedness of a semilinear heat equation with weak initial data, J.
1666
+ Fourier Anal. Appl., 4 (1998), 629–642.
1667
+ 25
1668
+