jackkuo commited on
Commit
5e176d6
·
verified ·
1 Parent(s): 027d061

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NAyT4oBgHgl3EQfqfhf/vector_store/index.faiss +3 -0
  2. .gitattributes +49 -0
  3. 0tAyT4oBgHgl3EQf1PlJ/content/2301.00731v1.pdf +3 -0
  4. 0tAyT4oBgHgl3EQf1PlJ/vector_store/index.faiss +3 -0
  5. 0tAyT4oBgHgl3EQf1PlJ/vector_store/index.pkl +3 -0
  6. 0tFRT4oBgHgl3EQfkzf9/content/tmp_files/2301.13597v1.pdf.txt +787 -0
  7. 0tFRT4oBgHgl3EQfkzf9/content/tmp_files/load_file.txt +0 -0
  8. 1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf +3 -0
  9. 1dAzT4oBgHgl3EQfevzu/vector_store/index.faiss +3 -0
  10. 1tE0T4oBgHgl3EQfdgCu/content/tmp_files/2301.02378v1.pdf.txt +2017 -0
  11. 1tE0T4oBgHgl3EQfdgCu/content/tmp_files/load_file.txt +0 -0
  12. 3NAzT4oBgHgl3EQf9P6r/content/2301.01917v1.pdf +3 -0
  13. 4NE3T4oBgHgl3EQfQAnJ/vector_store/index.pkl +3 -0
  14. 6NE1T4oBgHgl3EQfTQM9/content/2301.03075v1.pdf +3 -0
  15. 6NE1T4oBgHgl3EQfTQM9/vector_store/index.pkl +3 -0
  16. 6NE5T4oBgHgl3EQfPg5N/content/tmp_files/2301.05505v1.pdf.txt +1019 -0
  17. 6NE5T4oBgHgl3EQfPg5N/content/tmp_files/load_file.txt +0 -0
  18. 99AzT4oBgHgl3EQfg_xe/content/tmp_files/2301.01477v1.pdf.txt +3666 -0
  19. 99AzT4oBgHgl3EQfg_xe/content/tmp_files/load_file.txt +0 -0
  20. 9NFLT4oBgHgl3EQfty_-/vector_store/index.pkl +3 -0
  21. BdE4T4oBgHgl3EQfFAzo/vector_store/index.faiss +3 -0
  22. CtE2T4oBgHgl3EQfSAdG/content/tmp_files/2301.03787v1.pdf.txt +2254 -0
  23. CtE2T4oBgHgl3EQfSAdG/content/tmp_files/load_file.txt +0 -0
  24. DNE3T4oBgHgl3EQfUwpD/content/tmp_files/2301.04453v1.pdf.txt +927 -0
  25. DNE3T4oBgHgl3EQfUwpD/content/tmp_files/load_file.txt +372 -0
  26. EtE1T4oBgHgl3EQfqgU3/content/2301.03343v1.pdf +3 -0
  27. EtE1T4oBgHgl3EQfqgU3/vector_store/index.pkl +3 -0
  28. GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf +3 -0
  29. GdE0T4oBgHgl3EQfRQBK/vector_store/index.faiss +3 -0
  30. GdE0T4oBgHgl3EQfRQBK/vector_store/index.pkl +3 -0
  31. GtAzT4oBgHgl3EQfHftK/content/2301.01045v1.pdf +3 -0
  32. GtAzT4oBgHgl3EQfHftK/vector_store/index.pkl +3 -0
  33. HNFAT4oBgHgl3EQfth7Z/content/2301.08665v1.pdf +3 -0
  34. HNFAT4oBgHgl3EQfth7Z/vector_store/index.pkl +3 -0
  35. JdA0T4oBgHgl3EQfCf9p/content/2301.01990v1.pdf +3 -0
  36. JdA0T4oBgHgl3EQfCf9p/vector_store/index.pkl +3 -0
  37. JdE4T4oBgHgl3EQfhg2P/vector_store/index.faiss +3 -0
  38. JtFIT4oBgHgl3EQfZit-/vector_store/index.faiss +3 -0
  39. JtFJT4oBgHgl3EQfwi0E/vector_store/index.pkl +3 -0
  40. KNA0T4oBgHgl3EQfCv9N/content/2301.01993v1.pdf +3 -0
  41. KNA0T4oBgHgl3EQfCv9N/vector_store/index.pkl +3 -0
  42. KdE0T4oBgHgl3EQfSQCv/content/2301.02220v1.pdf +3 -0
  43. KdE0T4oBgHgl3EQfSQCv/vector_store/index.pkl +3 -0
  44. L9AzT4oBgHgl3EQfV_wg/content/2301.01292v1.pdf +3 -0
  45. L9AzT4oBgHgl3EQfV_wg/vector_store/index.faiss +3 -0
  46. LtFLT4oBgHgl3EQfMS8S/content/tmp_files/2301.12015v1.pdf.txt +3109 -0
  47. LtFLT4oBgHgl3EQfMS8S/content/tmp_files/load_file.txt +0 -0
  48. MdE3T4oBgHgl3EQfwQuL/vector_store/index.faiss +3 -0
  49. MtE1T4oBgHgl3EQftQWC/vector_store/index.faiss +3 -0
  50. O9AzT4oBgHgl3EQfIfuL/content/tmp_files/2301.01063v1.pdf.txt +1390 -0
-NAyT4oBgHgl3EQfqfhf/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58187761aecdc623e3761a958ce684810d8cb3f25b6daca87f06d7952343de13
3
+ size 2031661
.gitattributes CHANGED
@@ -4511,3 +4511,52 @@ _9E3T4oBgHgl3EQfsQp2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
4511
  b9FAT4oBgHgl3EQf5h4I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4512
  0dAzT4oBgHgl3EQfefzh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4513
  QdE5T4oBgHgl3EQfZQ86/content/2301.05579v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511
  b9FAT4oBgHgl3EQf5h4I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4512
  0dAzT4oBgHgl3EQfefzh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4513
  QdE5T4oBgHgl3EQfZQ86/content/2301.05579v1.pdf filter=lfs diff=lfs merge=lfs -text
4514
+ fdE0T4oBgHgl3EQfXQBg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4515
+ BdE4T4oBgHgl3EQfFAzo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4516
+ ytFST4oBgHgl3EQfTjiq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4517
+ MtE1T4oBgHgl3EQftQWC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4518
+ PdFPT4oBgHgl3EQfnjXp/content/2301.13131v1.pdf filter=lfs diff=lfs merge=lfs -text
4519
+ 3NAzT4oBgHgl3EQf9P6r/content/2301.01917v1.pdf filter=lfs diff=lfs merge=lfs -text
4520
+ fdE0T4oBgHgl3EQfXQBg/content/2301.02289v1.pdf filter=lfs diff=lfs merge=lfs -text
4521
+ 0tAyT4oBgHgl3EQf1PlJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4522
+ e9FJT4oBgHgl3EQfTiwN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4523
+ -NAyT4oBgHgl3EQfqfhf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4524
+ 0tAyT4oBgHgl3EQf1PlJ/content/2301.00731v1.pdf filter=lfs diff=lfs merge=lfs -text
4525
+ t9E1T4oBgHgl3EQfjwTU/content/2301.03267v1.pdf filter=lfs diff=lfs merge=lfs -text
4526
+ L9AzT4oBgHgl3EQfV_wg/content/2301.01292v1.pdf filter=lfs diff=lfs merge=lfs -text
4527
+ 1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf filter=lfs diff=lfs merge=lfs -text
4528
+ ytFST4oBgHgl3EQfTjiq/content/2301.13770v1.pdf filter=lfs diff=lfs merge=lfs -text
4529
+ GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf filter=lfs diff=lfs merge=lfs -text
4530
+ KdE0T4oBgHgl3EQfSQCv/content/2301.02220v1.pdf filter=lfs diff=lfs merge=lfs -text
4531
+ PNAyT4oBgHgl3EQftfl6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4532
+ MdE3T4oBgHgl3EQfwQuL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4533
+ PNAyT4oBgHgl3EQftfl6/content/2301.00596v1.pdf filter=lfs diff=lfs merge=lfs -text
4534
+ 6NE1T4oBgHgl3EQfTQM9/content/2301.03075v1.pdf filter=lfs diff=lfs merge=lfs -text
4535
+ O9FQT4oBgHgl3EQfYDZa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4536
+ EtE1T4oBgHgl3EQfqgU3/content/2301.03343v1.pdf filter=lfs diff=lfs merge=lfs -text
4537
+ GtAzT4oBgHgl3EQfHftK/content/2301.01045v1.pdf filter=lfs diff=lfs merge=lfs -text
4538
+ atE1T4oBgHgl3EQfxAUb/content/2301.03416v1.pdf filter=lfs diff=lfs merge=lfs -text
4539
+ PNAzT4oBgHgl3EQfIfvC/content/2301.01064v1.pdf filter=lfs diff=lfs merge=lfs -text
4540
+ JtFIT4oBgHgl3EQfZit-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4541
+ GdE0T4oBgHgl3EQfRQBK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4542
+ _tE4T4oBgHgl3EQfEQuZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4543
+ t9E1T4oBgHgl3EQfjwTU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4544
+ 1dAzT4oBgHgl3EQfevzu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4545
+ PdFPT4oBgHgl3EQfnjXp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4546
+ vNFAT4oBgHgl3EQfiR1K/content/2301.08598v1.pdf filter=lfs diff=lfs merge=lfs -text
4547
+ PtFAT4oBgHgl3EQfzh7F/content/2301.08699v1.pdf filter=lfs diff=lfs merge=lfs -text
4548
+ JdA0T4oBgHgl3EQfCf9p/content/2301.01990v1.pdf filter=lfs diff=lfs merge=lfs -text
4549
+ HNFAT4oBgHgl3EQfth7Z/content/2301.08665v1.pdf filter=lfs diff=lfs merge=lfs -text
4550
+ i9FKT4oBgHgl3EQfwC46/content/2301.11897v1.pdf filter=lfs diff=lfs merge=lfs -text
4551
+ sNFJT4oBgHgl3EQfcCyS/content/2301.11542v1.pdf filter=lfs diff=lfs merge=lfs -text
4552
+ L9AzT4oBgHgl3EQfV_wg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4553
+ KNA0T4oBgHgl3EQfCv9N/content/2301.01993v1.pdf filter=lfs diff=lfs merge=lfs -text
4554
+ QdE5T4oBgHgl3EQfZQ86/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4555
+ vNFAT4oBgHgl3EQfiR1K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4556
+ cdE3T4oBgHgl3EQfGQmo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4557
+ mtE2T4oBgHgl3EQfJQaw/content/2301.03690v1.pdf filter=lfs diff=lfs merge=lfs -text
4558
+ lNFPT4oBgHgl3EQf2zXD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4559
+ X9FPT4oBgHgl3EQfszXP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4560
+ ZNE3T4oBgHgl3EQfcgp3/content/2301.04526v1.pdf filter=lfs diff=lfs merge=lfs -text
4561
+ ytFKT4oBgHgl3EQfMC3E/content/2301.11749v1.pdf filter=lfs diff=lfs merge=lfs -text
4562
+ JdE4T4oBgHgl3EQfhg2P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tAyT4oBgHgl3EQf1PlJ/content/2301.00731v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ae63cafbb80fa366a201afd28baa1e296203324d6621fa27f8202b580e706f2
3
+ size 818392
0tAyT4oBgHgl3EQf1PlJ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1351947dc006c31a8eefa794342a665aa8dda74f87ed590d309ef0e90d24ee19
3
+ size 2228269
0tAyT4oBgHgl3EQf1PlJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46334b2caee3aea666e27b99924269395e65189f98d10f10c98f6a9550895441
3
+ size 124415
0tFRT4oBgHgl3EQfkzf9/content/tmp_files/2301.13597v1.pdf.txt ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13597v1 [hep-ph] 31 Jan 2023
2
+ The scalar exotic resonances X(3915),
3
+ X(3960), X(4140)
4
+ A.M.Badalian and Yu.A.Simonov
5
+ NRC “Kurchatov Institute”
6
+ Moscow, Russia
7
+ February 1, 2023
8
+ Abstract
9
+ The scalar resonances X(3915), X(3960), X(4140) are considered
10
+ as exotic four-quark states: cq¯c¯q, cs¯c¯s, cs¯c¯s, while the X(3863) is proved
11
+ to be the c¯c, 2 3P0 state. The masses and the widths of these reso-
12
+ nances are calculated in the framework of the Extended Recoupling
13
+ Model, where a four-quark system is formed inside the bag and has
14
+ relatively small size (<∼ 1.0 fm).
15
+ Then the resonance X(3915) ap-
16
+ pears due to the transitions: J/ψω into D∗+D∗− (or D∗0 ¯D∗0) and
17
+ back, while the X(3960) is created due to the transitions D+
18
+ s D−
19
+ s into
20
+ J/ψφ and back, and the X(4140) is formed in the transitions J/ψφ
21
+ into D∗+
22
+ s D∗−
23
+ s
24
+ and back. The characteristic feature of the recoupling
25
+ mechanism is that this type of resonances can be predominantly in the
26
+ S-wave decay channels and has JP = 0+. In two-channel case the reso-
27
+ nance occurs to be just near the lower threshold, while due to coupling
28
+ to third channel (like the c¯c channel) it is shifted up and lies by (20–
29
+ 30) MeV above the lower threshold. The following masses and widths
30
+ are calculated: M(X(3915)) = 3920 MeV, Γ(X(3915)) = 20 MeV;
31
+ M(X(3960)) = 3970 MeV, Γ(X(3960) = 45(5) MeV, M(X(4140)) =
32
+ 4120(20) MeV, Γ(X(4140)) = 100 MeV, which are in good agreement
33
+ with experiment.
34
+ 1
35
+
36
+ 1
37
+ Introduction
38
+ In the region (3.9–4.2) GeV there are now three scalar resonances and the
39
+ X(3915) was the first, observed by the Belle in the e+e− → J/ψωK process
40
+ [1].
41
+ Later this resonance was confirmed by the BaBar [2] and in several
42
+ other experiments [3]), in particular, in two-photon collisions [4, 5].
43
+ For
44
+ some years this resonance was assumed to be the conventional c¯c meson
45
+ – χco(2P), although this interpretation has called out some doubts [6, 7]
46
+ (see discussion in the reviews [8, 9]) and does not agree with predictions
47
+ in different relativistic potential models (RPM) [10]-[13]. The experimental
48
+ masses of the X(3915) and χc2(2P) were found to be almost equal, while
49
+ in the RPMs a smaller mass, M(2 3P0) ∼= 3870 ± 30 MeV, and much larger
50
+ mass difference, δ20(2P) = M(χc2(2P) − M(χc0(2P) ∼= (70 − 100) MeV,
51
+ were predicted.
52
+ Notice that large mass difference δ20 is kept even if the
53
+ coupling of the χc0(2P) to open channels is taken into account [14, 15]. Such
54
+ theoretical expectations were supported by the Belle observation of the wide
55
+ scalar X(3860) resonance [16], both in e+e− → J/ψD+D− and e+e− →
56
+ J/ψD0 ¯D0 decays, which has the mass M = 3862+26
57
+ −32
58
+ +40
59
+ −82 MeV and large width
60
+ Γ ∼= 200 MeV. The existence of the scalar X(3860) resonance is confirmed
61
+ by the analysis of two-photon production, γγ → D ¯D in [17].
62
+ Very recently the LHCb [18] has observed two more scalar resonances
63
+ X(3960), X(4140) in the D+
64
+ s D−
65
+ s mass spectrum in the B+ → D+
66
+ s D−
67
+ s K+ de-
68
+ cays with the parameters: M(X(3960)) = (3956±5±10) MeV, Γ(X(3960)) =
69
+ (43 ± 13 ± 8) MeV, M(X(4140)) = (4133 ± 6 ± 6) MeV, Γ(X(4140)) =
70
+ (67 ± 17 ± 7) MeV, both with JP C = 0++. These new scalar resonances evi-
71
+ dently look as exotic states and the X(3960) was interpreted as the molecular
72
+ D+
73
+ s D−
74
+ s state within the QCD sum rules approach [19, 20] and in a coupled-
75
+ channel model [21]; in [22] it appears due to the triangle singularity, while
76
+ in [23] the parameters of the X(3960), as a diquark-antidiquark state, were
77
+ obtained in a good agreement with experiment, using the QCD sum rules
78
+ approach. Notice that the masses of the X(3960) and X(4140) resonances
79
+ lie by ∼ 20 MeV above the thresholds: D+
80
+ s D−
81
+ s and J/ψφ, respectively.
82
+ In our paper we assume that the X(3915) and both the X(3960), X(4140)
83
+ belong to exotic four-quark states cq¯c¯q and cs¯c¯s and to define their parame-
84
+ ters we will use the Extended Recoupling Model (ERM), recently suggested
85
+ in [24], which develops the Recouplimg Model, presented earlier [25]. The
86
+ ERM allows to calculate the mass and width of a scalar four-quark states,
87
+ however, within suggested mechanism such resonances cannot exist in the
88
+ 2
89
+
90
+ systems with two identical mesons, like D+
91
+ s D+
92
+ s , D∗+
93
+ s , D∗+
94
+ s . This theoretical
95
+ prediction is supported by the Belle experiment [26]. In the ERM the system
96
+ of two mesons, e.g. (J/ψ + φ), can transfer into another pair of the mesons
97
+ (D+
98
+ s , D−
99
+ s ) by rearranging confining strings and back in the infinite chain of
100
+ transformations, like J/ψφ → (D+
101
+ s ¯D−
102
+ s ) → J/ψφ → .... Note that such se-
103
+ quences can also be treated, for example, in the standard OBE approximation
104
+ with the meson exchanges, which, however, does not produce the singulari-
105
+ ties near the thresholds. In the coupled-channel models (CCM) [27, 28] the
106
+ interaction between hadrons, like D+
107
+ s D−
108
+ s , J/ψφ, is usually neglected, while
109
+ in the ERM such interaction is taken into account, introducing the four-
110
+ quark bag. It is important that all hadrons involved have rather small sizes,
111
+ ∼= (0.40 − 0.55) fm and only ω(1S) has a bit larger r.m.s. ∼ 0.7 fm. We
112
+ would like to underline the characteristic features of the ERM [24]: first, due
113
+ to the string rearrangement of a four-quark system the singularity lies close
114
+ to the lower threshold; second, this mechanism produces the resonance in
115
+ the S-wave hadron-hadron system and therefore, the quantum numbers of
116
+ these resonances JP C = 0++, 1++, 2++; third, a resonance does not appear,
117
+ if hadrons are identical.
118
+ In the literature there are still a controversy, concerning the X(3915), and
119
+ different interpretations were proposed. This resonance was considered in
120
+ tetraquark model within the Born–Oppenheimer approach in [29, 30, 31, 32],
121
+ due to the triangle singularity [22] and the threshold effects [33], as the
122
+ molecular Ds ¯Ds bound state [34] or the lightest cs¯c¯s state [35] and as the
123
+ diquark-antidiquark state, using the QCD sum rule method [23, 36]. In con-
124
+ trast to a molecular structure of four-quark states in the ERM these systems
125
+ are assumed to be compact systems, similar to the diquark-antidiquark states
126
+ studied in [37]. In such compact systems their wave functions at the origin
127
+ are not small and therefore they can be produced in the γγ transitions.
128
+ In our paper we will shortly discuss the higher scalars, X(4500), X(4700),
129
+ observed by the LHCb [38], which admit different interpretations.
130
+ The structure of the paper is as follows. In next section we shortly remind
131
+ the basic formulas in two-channel case and give the values of the parame-
132
+ ters, needed to define the masses and widths of the recoupled four-quark
133
+ resonances. In section 3 more general matrix representation of the ERM is
134
+ presented. In section 4 we calculate the transition amplitudes and give the
135
+ masses and widths of the scalar resonances, and compare them with exper-
136
+ imental data. In section 4 the masses of high X(4500), X(4700) resonances,
137
+ as the c¯c states, are discussed. Our conclusions are presented in section 5.
138
+ 3
139
+
140
+ 2
141
+ The two-channel approach in the Extended
142
+ Recoupling Model
143
+ We study the experimental process where, among other products, two hadrons
144
+ are produced and one pair of hadrons (the pair 1) can transfer into another
145
+ pair of hadrons (the pair 2). In [24] the probability amplitude of this tran-
146
+ sition was denoted as V12(p1, p2), with p1, p2 – relative momenta of the
147
+ hadrons, referring to the pair 1 and 2.
148
+ If an infinite set of the transfor-
149
+ mations was supposed and the total production amplitude A2 of the pair
150
+ 2 was written as a product of the slowly varying function F(E) and the
151
+ singular factor f12(E) =
152
+ 1
153
+ 1−N , then the amplitude A2 = F(E)f12(E). This
154
+ definition of the transition amplitude V12 = V21 differs of that in other ap-
155
+ proaches, where one or more the OBE diagrams with meson exchanges are
156
+ taken. In the ERM [24] the process occurs through the intermediate stage of
157
+ the Quark Compound Bag (QCB) [39, 40], where all quarks and antiquarks
158
+ of two hadrons are participating in the string recoupling and, possibly, the
159
+ spin recoupling. Denoting the QCB wave functions as Φ(qi) (i = 1, 2, 3, 4)
160
+ and the two-hadron wave functions as Ψi(h1, h2), the amplitude V12 can be
161
+ written as,
162
+ V12 = (Ψ1(ha1hb1)Φ(qi))(Φ(qi)Ψ2(ha2hb2) = V1(p1)V2(p2),
163
+ (1)
164
+ i.e. the amplitude V12 =
165
+ 1
166
+ 1−N acquires the factorized form: V12(p1, p2) =
167
+ v1(p1)v2(p2) with the factor N, written as
168
+ N = z(E)I1(E)I2(E).
169
+ (2)
170
+ Here z = z(E) can be called the transition probability, while I1(E), I2(E)
171
+ are the following integrals (see [24]):
172
+ Ii(E) = viGivi =
173
+
174
+ d3pi
175
+ (2π)3
176
+ v2
177
+ i (pi)
178
+ E′(pi) + E
179
+ ′′(pi) − E ,
180
+ (3)
181
+ where the hadron energies E′(pi), E
182
+ ′′(pi) in the i-th pair near thresholds,
183
+ E′(p) =
184
+ p2
185
+ 2m′ + m′, include corresponding thresholds Eth
186
+ i
187
+ and the reduced
188
+ masses µi, namely,
189
+ Eth
190
+ i
191
+ = m′(i) + m
192
+ ′′(i),
193
+ µi =
194
+ m′(i)m
195
+ ′′(i)
196
+ m′(i) + m
197
+ ′′(i).
198
+ (4)
199
+ 4
200
+
201
+ The result of the integration in Ii(E) can be approximated by the form:
202
+ Ii = consti
203
+ 1
204
+ νi − i
205
+
206
+ 2µi(E − Eth
207
+ i )
208
+ .
209
+ (5)
210
+ with µi, defined in (4), while νi is expressed via the parameters of the hadron
211
+ wave functions, which were calculated explicitly in [24]. Here we would like to
212
+ underline that the transition probability z(E) appears to be the only fitting
213
+ parameter in the ERM.
214
+ The whole series of the transitions from the pair 1 to 2 and back is summed
215
+ up to the amplitude f12,
216
+ f12(E) =
217
+ 1
218
+ 1 − zI1I2
219
+ ,
220
+ Ii =
221
+ 1
222
+ νi − i
223
+
224
+ 2µi(E − Eth
225
+ i )
226
+ ,
227
+ (6)
228
+ where νi are found from the four-quark wave functions, as in [37, 40]. The
229
+ form of Eq. (6) takes place for the energies E > E1, E2, while for E <
230
+ E1, E2, i.e.
231
+ below thresholds, the amplitude f1 =
232
+
233
+ 1
234
+ ν1+√
235
+ 2µ1(|E−E1|)
236
+
237
+ .
238
+ It
239
+ is important that in the ERM the process proceeds with the zero relative
240
+ angular momentum between two mesons, L = 0, otherwise the transition
241
+ probability z12(E) is much smaller and a resonance may not appear.
242
+ Note also that if the recoupling mechanism is instantaneous, or the tran-
243
+ sition from one pair of the mesons to another proceeds instantaneously, then
244
+ the transition amplitude V (12) does not factorize into V (1)V (2); such an
245
+ assumption was used in the original Recoupling Model [25]. However, in this
246
+ approximation, e.g. for the Tcc resonance agreement with experiment was
247
+ not reached [25]. On the contrary, in the ERM [24] the recoupling mecha-
248
+ nism proceeds in two stages: at first stage the hadrons h1, h2 collapse into
249
+ common “compound bag” [39, 40], where the four quarks are kept together
250
+ by the confining interaction between all possible quark pairs. This compound
251
+ bag has its own wave function Φi(q1, q2, q3, q4) and the probability amplitude
252
+ of the h1, h2 → Φ transition, which defines the factor V1(p1) in Eq. (2). In
253
+ a similar way the transition from the Bag state to the final hadrons h3, h4
254
+ defines the factor V2(p2) and we obtain the relation:
255
+ v1(pi) =
256
+
257
+ d3q1...d3q4ψh1ψh2Φi(q1, ..q4),
258
+ (7)
259
+ and similar equation for v2(p2), replacing h1, h2 by h3, h4. From vi(pi) the
260
+ function Ii (3) is defined and using (6), one obtains νi.
261
+ 5
262
+
263
+ Now we give experimental data and corresponding the ERM parame-
264
+ ters, referring to the four-quark systems, cq¯c¯q for X(3915) and cs¯c¯s for the
265
+ X(3960), X(4140). We give also the threshold energies E1, E2.
266
+ The parameters of the four-quark resonances
267
+ 1) X(3915), JP = 0+, Γ(exp .) = 20(5) MeV [1, 3], J/ψω → D∗ ¯D∗, E1 =
268
+ 3.880, E2 = 4020, µ1 =
269
+ M(J/ψ)M(ω)
270
+ M(J/ψ)+M(ω) = 0.624,
271
+ µ2 =
272
+ M(D∗)M( ¯D∗)
273
+ M(D∗)+M( ¯D∗) =
274
+ 1.050 (all in GeV). From [24] ν1(J/ψω) = 0.21 GeV, ν2(D∗ ¯D∗) =
275
+ 0.44 GeV.
276
+ 2) X(3960), JP = 0+, Γ(exp .) = 43(21) MeV [18], [J/ψφ] → [D−
277
+ s D+
278
+ s ], E1 =
279
+ 3.936, E2 = 4116, µ1 =
280
+ MJ/ψMφ
281
+ MJ/ψ+Mφ = 0.767,
282
+ µ2 =
283
+ M(D+
284
+ s )M(D−
285
+ s )
286
+ M(D+
287
+ s +M(D−) =
288
+ 0.984; ν1(J/ψφ) = 0.265,
289
+ ν2 = 0.424 (all in GeV).
290
+ 3) X(4140), JP = 0+, Γ(exp .) = 67(24) MeV[18], [J/ψφ] → [D∗−
291
+ s D∗+
292
+ s ], E1 =
293
+ 4.116, E2 = 4.224, µ1 = 0.767,
294
+ µ2 = 1.056,
295
+ ν1 = 0.265,
296
+ ν2 = 0.410
297
+ (all in GeV).
298
+ Here q can be u, d quarks. To define the structure of the cross sections
299
+ we start with the value of the recoupling probability z = 0.2 GeV2 and the
300
+ parameters from the item 1) to obtain the distribution |f12(E)|2; the values
301
+ of |f12(E)|2 will be given in Section 4. In the amplitude f12(E) the resulting
302
+ singularity can be found in the form of (6) and for equal threshold masses
303
+ it produces a pole nearby thresholds; however, real distance between the
304
+ thresholds is large, ∼ 100 MeV and the actual singularity structure can be
305
+ more complicated.
306
+ 3
307
+ The matrix approach in the ERM
308
+ In previous Section we have presented the ERM equations in the case of two
309
+ channels, which are convenient to define the mass of a resonance. However,
310
+ they do not allow to study some details of the process, or to consider a larger
311
+ number of channels, which can have a influence at the properties of a four-
312
+ quark system. Therefore here we present a more general representation of
313
+ the amplitude using the unitarity relation, when the standard form of the
314
+ transition amplitudes fij(E) (for L = 0) is
315
+ fij − f ∗
316
+ ji =
317
+
318
+ n
319
+ 2iknfinf ∗
320
+ jn,
321
+ (8)
322
+ 6
323
+
324
+ or the unitarity relation can be realized through the M-matrix representation,
325
+ ˆfM =
326
+ 1
327
+ ˆ
328
+ M − iˆk
329
+ ,
330
+ (9)
331
+ where ˆf, ˆ
332
+ M, ˆk are the matrices in the channel numbers [28]. In some cases
333
+ instead of the ˆ
334
+ M it is more convenient to use the ˆK matrix, ˆ
335
+ M = − ˆK−1,
336
+ where the matrix elements (m.e.) Mik(E) are the real analytic functions of
337
+ E with the dynamical cuts. For two-channel system ˆfM can be written as
338
+ ˆfM =
339
+ 1
340
+ ˆ
341
+ M − iˆk
342
+ =
343
+ ˆN
344
+ D(E),
345
+ (10)
346
+ with
347
+ ˆN =
348
+
349
+ M22 − ik2
350
+ −M21
351
+ −M12
352
+ M11 − ik1
353
+
354
+ .
355
+ (11)
356
+ Here
357
+ D(E) = (M11 − ik1)(M22 − ik2) − M12M21.
358
+ (12)
359
+ One can easily establish the relation between the equations (10)- (12) and
360
+ the amplitude f12(ERM) (6) in two-channel case, which is a partial case of
361
+ these equations:
362
+ f12(ERM) = N11N22
363
+ D(E) ,
364
+ D(E) = (ν1 − ik1)(ν2 − ik2) − z,
365
+ (13)
366
+ and
367
+ z = M12M21,
368
+ νi ≡ Mii(E).
369
+ (14)
370
+ One can see that for z > 0 the values νi = Mii are real analytic functions
371
+ of E. In the ERM [24] νi were positive constants (defined via the parameters
372
+ of the compound bag model), while in general case Eqs. (12)-(14) include
373
+ other transition m.e.s fik. Later in our analysis we will be interested only in
374
+ the denominator D(E) (12) and the factors in (13), (14), which fully define
375
+ the position of a resonance.
376
+ The value of z, in principle, can be calculated within the ERM, however,
377
+ it can depend on many unknown parameters, and at the present stage we
378
+ prefer to keep z as a single fitting parameter. It can be shown that z depends
379
+ on the width of a resonance, but weakly depends on the resonance position.
380
+ Now we consider three channels case to study more realistic case and
381
+ choose the situation, when a resonance lies above the threshold 3. Here we do
382
+ 7
383
+
384
+ not need to specify the channel 3, which for example, may be a conventional
385
+ c¯c state with JP C = 0++. We introduce the 3 × 3 amplitude ˆfM(E) with
386
+ three thresholds Ei (i = 1, 2, 3) and the momenta ki =
387
+
388
+ 2µi(E − Ei), µi =
389
+ m1im2i
390
+ m1i+m2i, and Ei = m1i + m2i. Here m1i, m2i are the masses of two hadrons
391
+ in the channel i. In this case the form of Eq. (9) is kept,
392
+ ˆf3(E) =
393
+ ˆN3
394
+ D3(E), D3(E) = ((M11−ik1)(M22−ik2)−M12M21))(M23−ik3)+∆M,
395
+ (15)
396
+ where ∆M is
397
+ ∆M = M31M12M23+M32M21M13−M13M31(M22−ik2)−M32M23(M11−ik1).
398
+ (16)
399
+ For the energy E below the thresholds, 1 and 2, −ik1 = |k1|, −ik2 = |k2|, and
400
+ the factor ∆M is a real function of E. For the threshold 3 below thresholds
401
+ of 1 and 2 one can define the poles of the amplitude ˆf3, or the zeroes of
402
+ D3(E), and rewrite the Eq. (15) as,
403
+ D3 = (M11 − ik1)(M22 − ik2) − ˜z(E),
404
+ (17)
405
+ where the transition probability ˜z(E)
406
+ ˜z(E) = M12M21 − ∆M(M33 + ik3)
407
+ M2
408
+ 33 + k2
409
+ 3
410
+ (18)
411
+ One can see that ˜z(E) acquires imaginary part, which can be of both signs.
412
+ Therefore the influence of the third (or more) open channels, lying below
413
+ the thresholds E1, E2 in the 2 × 2 matrix f12(E), may be important in some
414
+ cases. The channel 3 can be taken into account, introducing complex values
415
+ of z(E), which can depend on the energy as in Eq. (18).
416
+ 4
417
+ The masses and widths of the scalar reso-
418
+ nances
419
+ We start with the X(3915) resonance and consider the following recoupling
420
+ process: J/ψω → D∗ ¯D∗. At first we look at two-channel situation and choose
421
+ the recoupling parameter z2 = 0.18 GeV2. For the X(3915) structure – cq¯c¯q
422
+ the parameters µi, νi, Ei are given in the item 1) of section 2. Then inserting
423
+ 8
424
+
425
+ all parameters to the Eq. (13), one obtains the distribution |f12(E)|2 (f2 ≡
426
+ f12). Its values for different E are given in Table 1, which show that the
427
+ maximum takes place at E = 3880 MeV, just near the lower threshold, and
428
+ Γ2 = Γ(2 − channels) ∼= 15 MeV. In experiment for this resonance, observed
429
+ by the Belle group in the process e+e− → e+e−J/ψω [1], the larger mass
430
+ M(exp .) = (3918.4 ± 1.9) MeV and Γ(exp .) = (20 ± 5)
431
+ MeV [3] were
432
+ obtained.
433
+ In the case of 3-channels, when e.g. the coupling to the c¯c channel is
434
+ taken into account, the factor z3(E) acquires an imaginary part. In this case
435
+ we calculate the amplitude f3(E), taking z3 = (0.18−i0.20) GeV2; the values
436
+ of |f3(E)|2 are given in Tab. 1.
437
+ Table 1: The values of the |f12(E)|2 for X(3915)
438
+ E(GeV)
439
+ 3.85
440
+ 3.86
441
+ 3.88
442
+ 3.89
443
+ 3.90
444
+ 3.91
445
+ 3.915
446
+ 3.93
447
+ |f2(E)|2
448
+ 3.04
449
+ 3.68
450
+ 63.08
451
+ 25.02
452
+ 8.33
453
+ 2.13
454
+ 1.65
455
+ 1.72
456
+ |f3(E)|2
457
+ 1.82
458
+ 1.79
459
+ 1.03
460
+ 1.50
461
+ 3.30
462
+ 348.4
463
+ 360
464
+ 243
465
+ From Table 1 one can see that in the 3-channel case the peak is shifted
466
+ up by ∼ 35 MeV and corresponds the mass ER ∼= 3.915 GeV and the width
467
+ Γ3 ∼= 20 MeV, which are in good agreement with the experimental mass and
468
+ Γ(exp.) = 20(5) MeV [3].
469
+ The scalar resonance X(3960) with JP C = 0++ was recently observed by
470
+ the LHCb in the B+ → J/ψφK+ [18] and within the ERM it can be explained
471
+ due to the infinite chain of the transitions: J/ψφ → D+
472
+ s D−
473
+ s and back. In
474
+ two-channel approximation the X(3960) parameters (νi, µi, Ei, (i = 1, 2) are
475
+ given in the item 2) (Section 2), which are used to define the amplitude (13).
476
+ First, we choose z2 = 0.30 GeV2 and calculate the transition amplitudes
477
+ |f12(E)|2; their values are given in the Table 2.
478
+ In the two-channel approximation the numbers from Table 2 show the
479
+ peak at E = 3940 MeV, near D+
480
+ s D−
481
+ s threshold, and Γ(2 − ch.) ∼= 15 MeV.
482
+ In the 3-channel case the mass of the X(3960) resonance is shifted up to
483
+ the position M(3 − ch.) = 3970 MeV and the width increases to the value
484
+ Γ(th.) ∼= 45(5) MeV; these values are in agreement with the experimental
485
+ numbers: M(X(3960)) = 3956(15) MeV, Γ(X(3960)) = (43 ± 21) MeV [18].
486
+ In [18] the LHCb has reported about another, the X(4140) resonance,
487
+ with JP C = 0++, in the B+ → D+
488
+ s D−
489
+ s K+ decay. Its mass M(X(4140) =
490
+ 9
491
+
492
+ Table 2: The transition probability |f12|2 as a function of the energy E for
493
+ the X(3960) resonance
494
+ E(GeV)
495
+ 3.85
496
+ 3.88
497
+ 3.89
498
+ 3.92
499
+ 3.95
500
+ 3.97
501
+ 4.00
502
+ 4.05
503
+ |f12|2(z = 0.30)
504
+ 3.93
505
+ 28.6
506
+ 7.89
507
+ 3.20
508
+ 2.28
509
+ 2.00
510
+ 1.38
511
+ 1.50
512
+ |f3|2(z = 0.30 − i0.30)
513
+ 2.0
514
+ 1.43
515
+ 4.02
516
+ 23.7
517
+ 198
518
+ 500
519
+ 142.3
520
+ 42.2
521
+ 4133(12) MeV is close to the J/ψφ threshold. We consider this resonance as
522
+ the cs¯c¯s system and first calculate the squared amplitudes |f12(E)|2 in two-
523
+ channel case, taking the parameters µi, νi, Ei from the item 3) of Section 2. In
524
+ this 2-channel case: J/ψφ and D∗+
525
+ s D∗−
526
+ s
527
+ the transition probability z2 = 0.35
528
+ is taken and the calculated values of |f12|2 are given in Table 3.
529
+ In three-channel case the channel D+
530
+ s D−
531
+ s is added as the third one, then
532
+ the values |f3|2 are calculated for z3 = 0.20 − i0.20 and given in Table 3.
533
+ Table 3: The values of the |f12(E)|2 and |f3(E)|2 for the X(4140)
534
+ E(GeV)
535
+ 4.00
536
+ 4.07
537
+ 4.12
538
+ 4.17
539
+ 4.22
540
+ |f12(E)|2(z = 0.35)
541
+ 3.40
542
+ 8.67
543
+ 3.86
544
+ 1.27
545
+ 0.45
546
+ |f3|2(z = 0.2 − i0.2)
547
+ 4.54
548
+ 12.87
549
+ 32.12
550
+ 13.7
551
+ 0.66
552
+ From Table 3 one can see the peak at ER = (4.09 ± 0.01) GeV, Γ(th.) =
553
+ 60 MeV in two-channel approximation and the peak at ER = (4.12±0.02) GeV
554
+ with the width Γ(th.) ∼= 100 MeV in tree-channel case, which are in good
555
+ agreement with the experimental mass M(X(4140)) = (4133 ± 12) MeV and
556
+ Γ(X(4140)) = (67 ± 24) MeV [18].
557
+ Our numbers in Tables 1–3 show that in two-channel case the resonance
558
+ always lies just near the lower threshold, however, if the coupling to the third
559
+ channel is taken into account, then it is shifted up and its position occurs to
560
+ be close to the experimental number. The masses and widths of the exotic
561
+ resonances, X(3915), X(3960), X(4140), defined in the ERM, are given in
562
+ the Table 4 together with experimental data.
563
+ From Table 4 one can see that in the ERM the predicted masses and
564
+ the widths of the scalar four-quark resonances are in good agreement with
565
+ 10
566
+
567
+ Table 4: The ERM predictions for the masses and widths (in MeV) of exotic
568
+ resonances with JP C = 0++
569
+ Resonance
570
+ M(th.)
571
+ M(exp.)
572
+ Γ(th.)
573
+ Γ(exp.)
574
+ X(3915)
575
+ 3920
576
+ 3918 (2)
577
+ 20
578
+ 20(5) [3]
579
+ X(3960)
580
+ 3970
581
+ 3956(15)
582
+ 45(5)
583
+ 43(21) [18]
584
+ X(4140)
585
+ 4120(20)
586
+ 4133(12)
587
+ 100
588
+ 67(24) [18]
589
+ experiment, if besides two channels, which creates the resonance, the coupling
590
+ of the resonance to third channel is taken into account.
591
+ Comparing our results with those in literature, one can notice that our
592
+ conclusions on the four-quark structure of the X(3915), X(3960, X(4140))
593
+ also agree with the analysis in the paper [33], based on the coupled channel
594
+ model of the c¯c and meson-meson systems. Notice that the general structure
595
+ of the channel-coupling matrix elements in both approaches is similar.
596
+ 5
597
+ The scalar X(4500), X(4700) resonances
598
+ High scalar resonances X(4500), X(4700), or χc0(4500), χc0(4700), [38], were
599
+ studied in many papers and for them two interpretations were suggested.
600
+ First, the X(4500) and X(4700) are considered as the c¯c states – 4 3P0 and
601
+ 5 3P0 and their masses were calculated in relativistic quark models, where
602
+ coupling to open channels was taken into account [14, 15, 41]. In [41] the
603
+ influence of open channels is studied using the so-called screened potential
604
+ [11], while in [13] the spectrum was calculated using the relativistic string
605
+ Hamiltonian [42] with the flattened confining potential [43]; this flattening
606
+ effect arises due to creation of virtual q¯q pairs. Notice that the flattened
607
+ confining potential appears to be universal for all types of the mesons and it
608
+ produces the hadronic shifts down ∼ (100 − 130) MeV for the 4P, 5P char-
609
+ monium states and gives the masses of the 4 3P0, 5 3P0 states in a reasonable
610
+ agreement with experiment [13]. On the contrary, in [44], within the
611
+ 3P0
612
+ model, much smaller shifts due to the coupled-channel effects, <∼ 30 MeV ,
613
+ were obtained for the 4 3P0, 5 3P0 states, while in [41] these states acquire too
614
+ large mass shifts for the chosen screened potential.
615
+ Model-independent analysis of the c¯c spectrum can also be done by means
616
+ 11
617
+
618
+ of the Regge trajectories, if they are defined not for the meson mass M(nL)
619
+ but for the excitation energy: E(nL) = M(nL) − 2 ¯mQ [45], where ¯mQ is the
620
+ current heavy quark mass [13]:
621
+ (M(n 3P0)−2 ¯mc)2 = 1.06+1.08nr, (inGeV2); n = nr +1,
622
+ ¯mc = 1.20 GeV2.
623
+ (19)
624
+ This Regge trajectory gives M(4 3P0) = 4.474 GeV and M(5 3P0) = 4.719 GeV,
625
+ in good agreement with the LHCb data [38] (see Table 5).
626
+ Table 5: The Regge trajectory predictions for the masses of the charmonium
627
+ n 3P0 states (in MeV)
628
+ state
629
+ M(nP)
630
+ exp. mass
631
+ 1 3P0
632
+ 3429
633
+ 3414.8(3))
634
+ 2 3P0
635
+ 3863
636
+ 3862+26
637
+ −32 [16]
638
+ 3 3P0
639
+ 4194
640
+ abs.
641
+ 4 3P0
642
+ 4473
643
+ 4474 ± 6 [38]
644
+ 5 3P0
645
+ 4719
646
+ 4694 ± 4+16
647
+ −3 [38]
648
+ 6 3P0
649
+ 4941
650
+ abs
651
+ In Table 5 the masses M(2 3P0) = 3863 MeV, M(4 3P0) = 4473 MeV and
652
+ M(5 3P0) = 4719 MeV, show very good agreement with those of χc0(3862)
653
+ [16], X(4500) and X(4700) [38].
654
+ At present other high excitations with
655
+ JP = 1+, 2+ (n = 4, 5) are not yet found and their observation would be
656
+ very important to understand the fine-structure effects of high charmonium,
657
+ in particular, the fine-structure splitting have to decrease for a screened GE
658
+ potential.
659
+ Notice that the resonance X(4700) lies very close to the ψ(2S)φ threshold
660
+ and this fact indicates a possible connection between the c¯c and the cs¯c¯s
661
+ states. The four-quark interpretation of the X(4500), X(4700) was discussed
662
+ in different models [19],[46]-[49], where in the mass region (4.4–4.8) GeV the
663
+ radial or orbital excitations of a diquark-antidiquark systems can exist.
664
+ 12
665
+
666
+ 6
667
+ Conclusions
668
+ In our paper the scalar resonances X(3915), X(3960), X(4140) are assumed
669
+ to be the four-quark states, produced due to recoupling mechanism, when
670
+ one pair of mesons can transform into another pair of mesons infinitely many
671
+ times. These resonances do not exist in the c¯c spectrum. As the four-quark
672
+ states they have several specific features:
673
+ 1. The resonance appears only in the S-wave decay channel.
674
+ 2. Within the ERM it lies rather close to the lower threshold.
675
+ 3. The scalar four-quark resonance can be created in two channel case due
676
+ to transitions between channels, but it can also be coupled to another
677
+ channel 3, e.g. the c¯c channel.
678
+ 4. These resonances have no large sizes, being the compact systems, and
679
+ this fact may be important for their observation. In the case of the
680
+ X(3915) this statement is confirmed by the Belle analysis of the Q2
681
+ distribution of the X(3915) → J/ψω decays in [50].
682
+ The masses and widths of the X(3915), X(3960), X(4140), presented in Ta-
683
+ ble 4, are obtained in a good agreement with experiment.
684
+ The authors are grateful to N. P. Igumnova for collaboration.
685
+ References
686
+ [1] S. K. Choi et al. ( Belle Collab.), Phys. Rev. Lett. 94, 182002 (2005);
687
+ arXiv: hep-ex/0408126.
688
+ [2] B. Aubert et al. (BaBar Collab.),Phys. Rev. lett. 101, 082001 (2008).
689
+ [3] P. A.Zvla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020,
690
+ 083 (2020).
691
+ [4] S. Uehara et al. (Belle Collab.), Phys. Rev. Lett. 104, 092000 (2010);
692
+ arXiv: 0912.4451 [hep-ex].
693
+ [5] J. P. Lees et al. (BaBar Collab.), Phys. Rev. D 86, 072002 (2012); arXiv:
694
+ 1207.2651 [hep-ex].
695
+ 13
696
+
697
+ [6] M. X. Duan et al. Phys. Rev. D 101, 054029 (2020); arXiv: 2002.03311
698
+ [hep-ph], and references therein.
699
+ [7] S. L. Olsen, arXiv:1904.06130 [hep-ex] and references therein; Phys. Rev.
700
+ D 91, 057501 (2015), arXiv: 1410.6534 [hep-ex].
701
+ [8] S. L. Olsen, T. Skwaricki, and D. Xiemnska, Rev. Mod. Phys. 90, 015003
702
+ (2018); arXiv: 1708.04012 [hep-ex]. and references there in.
703
+ [9] N. Brambilla et al., Phys. Rept. 873, 1 (2020); arXiv: 1907.07583 [hep-
704
+ ex].
705
+ [10] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026
706
+ (2005); arXiv: hep-ph/0505002.
707
+ [11] B. Q. Li, C. Meng, and K.T. Chao, Phys. Rev. D 80, 014012 (2009);
708
+ arXiv: 0904.4068 [hep-ph].
709
+ [12] D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 71, 1825
710
+ (2011); arXiv: 1111.0454 [hep-ph].
711
+ [13] A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 100, 054036 (2019);
712
+ arXiv: 1902.09174 [hep-ph].
713
+ [14] P. G.Ortega, J. Segovia, D. R. Entem, and F. Fernandez, Phys. Rev. D
714
+ 94,114018 (2016), arXiv:1608.01325 [hep-ph].
715
+ [15] E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 73, 014014 (2006);
716
+ arXiv: hep-ph/0511179.
717
+ [16] K. Chilikin et al. (Belle Collab.), Phys. Rev. D 95, 112003 (2017); arXiv:
718
+ 1704.01872 [hep-ex].
719
+ [17] E. Wang, H. S. Li, W. H. Liang, and E. Oset, Phys. Rev. D 103, 054008;
720
+ arXiv: 2010.15431 [hep-ph].
721
+ [18] LHCb Cllaboration, arXiv: 2210.15153 [hep-ex].
722
+ [19] Q. Xin, Z. G. Wang, and X. S. Yang, arXiv: 2207.09910 [hep-ph].
723
+ [20] H. Mutuk, arXiv:2211.14836 [hep-ph].
724
+ [21] T. Ji et al. arXiv: 2212.00631 [hep-ph].
725
+ 14
726
+
727
+ [22] J. M. Xie, M. Z. Liu, and L. S. Geng, arXiv:2207.12178 [hep-ph].
728
+ [23] S. S. Agaev, K. Azizi, and H. Sundu, arXiv:2211.14129 [hep-ph].
729
+ [24] Yu. A. Simonov, EPJ C 82, 1024 (2022), arXiv: 2209.03697 [hep-ph];
730
+ A. M. Badalian and Yu. A. Simonov, arXiv: 2205.02576 [hep-ph].
731
+ [25] Yu. A.Simonov, JHEP 04, 51 (2021); arXiv: 2011.12326 [hep-ph].
732
+ [26] X. Y. Gao et al. (Belle Collab.) Phys. Rev. 105, 032002 (2022), arXiv:
733
+ 2112.02497 [hep-ex].
734
+ [27] I. V. Danikin and Yu. A. Simonov, Phys. Rev. lett. 105, 102002 (2010),
735
+ arXiv:1006.0211 [hep-ph]; Phys. Rev. D 81, 074027 (2010), arXiv:
736
+ 0907.1088 [hep-ph]; V. I. Danilikn, V. D. Orlovsky, and Yu. A.Simonov,
737
+ Phys. Rev. D 85, 034012 (2012), arXiv: 1106.1552 [hep-ph].
738
+ [28] A. M. Badalian, L. P. Kok, M. I. Polikarpov and Yu. A. Simonov, Phys.
739
+ Rept. 82, 32 (1982).
740
+ [29] N. Brambilla, G. Krein, J. T. Castella and A. Vairo, Phys. Rev. D 97,
741
+ 016016 (2018), arXiv:1707.09647 [hep-ph].
742
+ [30] L. Maiani, A. Pilloni, A. D. Polosa, and V. Riquet, arXiv: 2208.02730
743
+ [hep-ph].
744
+ [31] D. Ebert, R. N. Faustov and V. O. Galkin, EPJC 58, 399 (2008) ; arXiv:
745
+ 0808.3912; [hep-ph].
746
+ [32] E. Braaten, C. Langmarck, and D. H. Smith, Phys. Rev. 90, 014040
747
+ (2014); arXiv: 1402.0438 [hep-ph].
748
+ [33] P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, Phys. Lett.
749
+ B 778, 1 (2018), arXiv: 1706.02639 [hep-ph].
750
+ [34] X. Li and M. B. Voloshin, Phys. rev. D 91, 114014 (2015), arXiv:
751
+ 1503.04431 [hep-ph].
752
+ [35] R. F. Lebed and A. D. Polosa, Phys. Rev. D 93, 094024 (2016), arXiv:
753
+ 1602.08421 [hep-ph]
754
+ [36] W. Chen, et al. Phys. Rev. D 96, 114017 (2017), arXiv: 1706.09731
755
+ [hep-ph].
756
+ 15
757
+
758
+ [37] A. M. Badalian, B. L. Ioffe, and A. V. Smilga, Nucl. Phys. B 281, 85
759
+ (1987).
760
+ [38] R. Aaij et al. (LHCb Collab.) Phys. Rev. Lett. 118, 022003 (2017),
761
+ arXiv:1606.07895 [hep-ex]; Phys. Rev. D 95, 012002(2017), arXiv:
762
+ 1606.07898 [hep-ex];
763
+ Phys. Rev. Lett. 127,082001 (2021), arXiv:
764
+ 2103.01803 [hep-ex].
765
+ [39] R. L. Jaffe, Phys. Rev. D 15, 267; ibid. 281(1977).
766
+ [40] Yu. A. Simonov, Nucl. Phys. A 416, 103 (1984); Sov. J. Nucl. Phys. 36,
767
+ 99 (1982). Yad. Fiz. 36, 722 (1982).
768
+ [41] M. X. Duan and X. Liu, Phys. Rev. D 104, 074010 (2021), arXiv:
769
+ 2107.14438 [hep-ph]
770
+ [42] A. V. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. lett. B 343,
771
+ 310 (1995); Phys. Atom. Nucl. 56, 213 (1993); arXiv: hep-ph/9311344.
772
+ [43] A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phys. Rev. D
773
+ 66, 034026 (2002), arXiv: hep-ph/0204088.
774
+ [44] S. Ferretti and E. Santopinto, Front. in Phys. 9, 76 (2021); arXiv:
775
+ 2104.00918 [hep-ph].
776
+ [45] S. S. Afonin, Mod. Phys. Lett. A 22, 1369 (2007); S. S. Afonin and
777
+ I. V. Pusenkov, Phys. Rev. D 90, 094020 (2014); arXiv: 1308.6540
778
+ [hep-ph].
779
+ [46] D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 58, 399
780
+ (2008); arXiv: 0808.3912 [hep-ph].
781
+ [47] J. Wu, Phys. Rev. D 94, 094031 (2016), arXiv: 1608.07900 [hep-ph].
782
+ [48] Q. F. L´’u and Y. B. Dong, Phys. Rev. D 94, 074007 (2016); arXiv:
783
+ 1607.05570 [hep-ph].
784
+ [49] Y. Xie, D. He, X. Luo, and H. Sun, arXiv:2204.03924 [hep-ph].
785
+ [50] Y. Teramoto et al. (Belle collab.), arXiv:2301.09421 [hep-ex].
786
+ 16
787
+
0tFRT4oBgHgl3EQfkzf9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a847fc7f66f07b00bfdd70ea7ce3e9c368119d1cf93b7924db4c3bac0e168920
3
+ size 284913
1dAzT4oBgHgl3EQfevzu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9094ee9b401798d1e0048657e450204ae039de34e8c94e00af64be7f44927d55
3
+ size 1179693
1tE0T4oBgHgl3EQfdgCu/content/tmp_files/2301.02378v1.pdf.txt ADDED
@@ -0,0 +1,2017 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Deep learning for full-field ultrasonic characterization
2
+ Yang Xu1, Fatemeh Pourahmadian1,2∗, Jian Song1, Conglin Wang3
3
+ 1 Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, USA
4
+ 2 Department of Applied Mathematics, University of Colorado Boulder, USA
5
+ 3 Department of Physics, University of Colorado Boulder, USA
6
+ Abstract
7
+ This study takes advantage of recent advances in machine learning to establish a physics-based data analytic
8
+ platform for distributed reconstruction of mechanical properties in layered components from full waveform
9
+ data. In this vein, two logics, namely the direct inversion and physics-informed neural networks (PINNs), are
10
+ explored. The direct inversion entails three steps: (i) spectral denoising and differentiation of the full-field
11
+ data, (ii) building appropriate neural maps to approximate the profile of unknown physical and regularization
12
+ parameters on their respective domains, and (iii) simultaneous training of the neural networks by minimizing
13
+ the Tikhonov-regularized PDE loss using data from (i). PINNs furnish efficient surrogate models of complex
14
+ systems with predictive capabilities via multitask learning where the field variables are modeled by neural
15
+ maps endowed with (scaler or distributed) auxiliary parameters such as physical unknowns and loss function
16
+ weights. PINNs are then trained by minimizing a measure of data misfit subject to the underlying physical
17
+ laws as constraints.
18
+ In this study, to facilitate learning from ultrasonic data, the PINNs loss adopts (a)
19
+ wavenumber-dependent Sobolev norms to compute the data misfit, and (b) non-adaptive weights in a specific
20
+ scaling framework to naturally balance the loss objectives by leveraging the form of PDEs germane to elastic-
21
+ wave propagation. Both paradigms are examined via synthetic and laboratory test data. In the latter case, the
22
+ reconstructions are performed at multiple frequencies and the results are verified by a set of complementary
23
+ experiments highlighting the importance of verification and validation in data-driven modeling.
24
+ Keywords:
25
+ deep learning, ultrasonic testing, data-driven mechanics, full-wavefield inversion
26
+ 1. Introduction
27
+ Recent advances in laser-based ultrasonic testing has led to the emergence of dense spatiotemporal datasets
28
+ which along with suitable data analytic solutions may lead to better understanding of the mechanics of complex
29
+ materials and components. This includes learning of distributed mechanical properties from test data which is
30
+ of interest in a wide spectrum of applications from medical diagnosis to additive manufacturing [1, 2, 3, 4, 5,
31
+ 6, 7]. This work makes use of recent progress in deep learning [8, 9] germane to direct and inverse problems in
32
+ partial differential equations [10, 11, 12, 13] to develop a systematic full-field inversion framework to recover the
33
+ profile of pertinent physical quantities in layered components from laser ultrasonic measurements. The focus is
34
+ on two paradigms, namely: the direct inversion and physics-informed neural networks (PINNs) [14, 15, 16, 17].
35
+ The direct inversion approach is in fact the authors’ rendition of elastography method [18, 19, 20] through the
36
+ prism of deep learning. To this end, tools of signal processing are deployed to (a) denoise the experimental
37
+ data, and (b) carefully compute the required field derivatives as per the governing equations. In parallel,
38
+ the unknown distribution of PDE parameters in space-frequency are identified by neural networks which are
39
+ then trained by minimizing the single-objective elastography loss. The learning process is stabilized via the
40
+ Tikhonov regularization [21, 22] where the regularization parameter is defined in a distributed sense as a
41
+ separate neural network which is simultaneously trained with the sought-for physical quantities. This unique
42
+ ∗Corresponding author: tel. 303-492-2027, email [email protected]
43
+ Preprint submitted to Elsevier
44
+ January 9, 2023
45
+ arXiv:2301.02378v1 [math.NA] 6 Jan 2023
46
+
47
+ exercise of learning the regularization field without a-priori estimates, thanks to neural networks, proved to
48
+ be convenient, effective, and remarkably insightful in inversion of multi-fidelity experimental data.
49
+ PINNs have recently come under the spotlight for offering efficient, yet predictive, models of complex
50
+ PDE systems [10] that has so far been backed by rigorous theoretical justification within the context of linear
51
+ elliptic and parabolic PDEs [23]. Given the multitask nature of training for these networks and the existing
52
+ challenges with modeling stiff and highly oscillatory PDEs [12, 24], much of the most recent efforts has been
53
+ focused on (a) adaptive gauging of the loss function [12, 25, 26, 27, 28, 29, 13], and (b) addressing the gradient
54
+ pathologies [24, 13] e.g., via learning rate annealing [30] and customizing the network architecture [11, 31, 32].
55
+ In this study, our initially austere implementations of PINNs using both synthetic and experimental waveforms
56
+ led almost invariably to failure which further investigation attributed to the following impediments: (a) high-
57
+ norm gradient fields due to large wavenumbers, (b) high-order governing PDEs in the case of laboratory
58
+ experiments, and (c) imbalanced objectives in the loss function.
59
+ These problems were further magnified
60
+ by our attempts for distributed reconstruction of discontinuous PDE parameters – in the case of laboratory
61
+ experiments, from contaminated and non-smooth measurements. The following measures proved to be effective
62
+ in addressing some of these challenges: (i) training PINNs in a specific scaling framework where the dominant
63
+ wavenumber is the reference length scale, (ii) using the wavenumber-dependent Sobolev norms in quantifying
64
+ the data misfit, (iii) taking advantage of the inertia term in the governing PDEs to naturally balance the
65
+ objectives in the loss function, and (iv) denoising of the experimental data prior to training.
66
+ This paper is organized as follows.
67
+ Section 2 formulates the direct scattering problem related to the
68
+ synthetic and laboratory experiments, and provides an overview of the data inversion logic. Section 3 presents
69
+ the computational implementation of direct inversion and PINNs to reconstruct the distribution of L´ame
70
+ parameters in homogeneous and heterogeneous models from in-plane displacement fields. Section 4 provides
71
+ a detailed account of laboratory experiments, scaling, signal processing, and inversion of antiplane particle
72
+ velocity fields to recover the distribution of a physical parameter affiliated with flexural waves in thin plates.
73
+ The reconstruction results are then verified by a set of complementary experiments.
74
+ 2. Concept
75
+ This section provides (i) a generic formalism for the direct scattering problem pertinent to the ensuing
76
+ (synthetic and experimental) full-field characterizations, and (ii) data inversion logic.
77
+ 2.1. Forward scattering problem
78
+ Consider ultrasonic tests where the specimen Π ⊂ Rd, d = 2, 3, is subject to (boundary or internal)
79
+ excitation over the incident surface Sinc ⊂ Π and the induced (particle displacement or velocity) field u: Π ×
80
+ [0 T] → RNΛ (NΛ ⩽ d) is captured over the observation surface Sobs ⊂ Π in a timeframe of length T. Here, Π
81
+ is an open set whose closure is denoted by Π, and the sensing configuration is such that Sinc ∩ Sobs = ∅. In
82
+ this setting, the spectrum of observed waveforms ˆu: Sobs × Ω → CNΛ is governed by
83
+ Λ[ˆu; ϑ](ξ, ω) = 0,
84
+ ˆu := F[u](ξ, ω),
85
+ ξ ∈ Sobs, ω ∈ Ω,
86
+ (1)
87
+ where Λ of size NΛ×1 designates a differential operator in frequency-space; F represents the temporal Fourier
88
+ transform; ϑ of dimension Nϑ×1 is the vector of relevant geometric and elastic parameters e.g., Lam´e constants
89
+ and mass density; ξ ∈ Rd is the position vector; and ω > 0 is the frequency of wave motion within the specified
90
+ bandwidth Ω.
91
+ 2.2. Dimensional platform
92
+ All quantities in (1) are rendered dimensionless by identifying ρ◦, σ◦, and ℓ◦ as the respective reference
93
+ scales [33] for mass density, elastic modulus, and length whose explicit values will be later specified.
94
+ 2.3. Data inversion
95
+ Given the full waveform data ˆu on Sobs × Ω, the goal is to identify the distribution of material properties
96
+ over Sobs.
97
+ For this purpose, two reconstruction paradigms based on neural networks are adopted in this
98
+ study, namely: (i) direct inversion, and (ii) physics-based neural networks.
99
+ Inspired by the elastography
100
+ 2
101
+
102
+ method [18, 19], quantities of interest in (i) are identified by neural maps over Sobs × Ω that minimize a
103
+ regularized measure of Λ in (1). The neural networks in (ii), however, are by design predictive maps of the
104
+ waveform data (i.e., ˆu) obtained by minimizing the data mismatch subject to (1) as a soft or hard constraint.
105
+ In this setting, the unknown properties of Λ may be recovered as distributed parameters of the (data) network
106
+ during training via multitask optimization.
107
+ In what follows, a detailed description of the deployed cost
108
+ functions in (i) and (ii) is provided after a brief review of the affiliated networks.
109
+ 2.3.1. Waveform and parameter networks
110
+ Laser-based ultrasonic experiments furnish a dense dataset on Sobs × Ω. Based on this, multilayer per-
111
+ ceptrons (MLPs) owing to their dense range [34] may be appropriate for approximating complex wavefields
112
+ and distributed PDE parameters. Moreover, this architecture has proven successful in numerous applications
113
+ within the PINN framework [15].
114
+ In this study, MLPs serve as both data and property maps where the
115
+ input consists of discretized space and frequency coordinates (ξi, ωj), i = 1, 2, . . . , Nξ, j = 1, 2, . . . , Nω, as
116
+ well as distinct experimental parameters, e.g., the source location, distilled as one vector τk on domain T
117
+ with k = 1, 2, . . . , Nτ, while the output represents waveform data Dijk = [Rˆu, Iˆu](ξi, ωj; τk) ∈ RNΛ × RNΛ,
118
+ and/or the sought-for mechanical properties Pijn = [Rϑn, Iϑn](ξi, ωj) ∈ R × R, n = 1, 2, . . . , Nϑ. Note that
119
+ following [35], the real R and imaginary I parts of (1) and every complex-valued variable are separated such
120
+ that both direct and inverse problems are reformulated in terms of real-valued quantities. In this setting, each
121
+ fully-connected MLP layer with Nl neurons is associated with the forward map Υl : RNl−1 → RNl,
122
+ Υl(xl−1) = tanh(W lxl−1 + bl),
123
+ xl−1 ∈ RNl−1,
124
+ (2)
125
+ where W l ∈ RNl×Nl−1 and bl ∈ RNl respectively denote the lth layer’s weight and bias. Consecutive compo-
126
+ sition of Υl for l = 1, 2, . . . , Nm builds the network map wherein Nm designates the number of layers.
127
+ 2.3.2. Direct inversion
128
+ Logically driven by the elastography method, the direct inversion approach depicted in Fig. 1 takes advan-
129
+ tage of the leading-order physical principles underpinning the test data to recover the distribution of relevant
130
+ physical quantities in space-frequency i.e., over the measurement domain.
131
+ The ML-based direct inversion
132
+ entails three steps: (a) spectral denoising and differentiation of (n-differentiable) waveforms ˆu over Sobs × Ω
133
+ according to the (n-th order) governing PDEs in (1), (b) building appropriate MLP maps to estimate the
134
+ profile of unknown physical parameters of the forward problem and regularization parameters of the inverse
135
+ solution, and (c) learning the MLPs through regularized fitting of data to the germane PDEs.
136
+ Note that synthetic datasets – generated via e.g., computer modeling or the method of manufactured
137
+ solutions, may directly lend themselves to the fitting process in (c) as they are typically smooth by virtue
138
+ Figure 1: Direct inversion: (a) FFT-based spatial differentiation of the full-field data as per operator Λ, (b) MLP-based approx-
139
+ imation of the unknown PDE and regularization parameters (ϑ, α) on their respective domains, and (c) training the MLPs via
140
+ minimizing the elastography loss Lε according to (3).
141
+ 3
142
+
143
+ MLP
144
+ ultrasonic test data
145
+ u(S,w; T)
146
+ N(s,w)
147
+ spectral differentiation
148
+ 3
149
+ Vu(s,w; T)
150
+ Mα(s, w)
151
+ VVu($, w; T)
152
+ :
153
+ (a)
154
+ (b)
155
+ M
156
+ (9*,α*) := (Ng, )
157
+ ) = arg min L(u, *;α*)
158
+ (c)
159
+ 9*,α*of numerical integration or analytical form of the postulated solution. Laboratory test data, however, are
160
+ generally contaminated by noise and uncertainties, and thus, spectral differentiation is critical to achieve the
161
+ smoothness requirements in (c). The four-tier signal processing of experimental data follows closely that of [36,
162
+ Section 3.1] which for completeness is summarized here: (1) a band-pass filter consistent with the frequency
163
+ spectrum of excitation is applied to the measured time signals at every receiver point, (2) the obtained
164
+ temporally smooth signals are then differentiated or integrated to obtain the pertinent field variables, (3)
165
+ spatial smoothing is implemented at every snapshot in time via application of median and moving average
166
+ filters followed by computing the Fourier representation of the processed waveforms in space, (4) the resulting
167
+ smooth fields may be differentiated (analytically in the Fourier space) as many times as needed based on the
168
+ underlying physical laws in preparation for the full-field reconstruction in step (c). It should be mentioned
169
+ that the experimental data may feature intrinsic discontinuities e.g., due to material heterogeneities or contact
170
+ interfaces. In this case, the spatial smoothing in (3) must be implemented in a piecewise manner after the
171
+ geometric reconstruction of discontinuity surfaces in Sobs which is quite straightforward thanks to the full-field
172
+ measurements, see e.g., [36, section 3.2].
173
+ Next, the unknown PDE parameters ϑ are approximated by a fully connected MLP network ϑ⋆ := Nϑ(ξ, ω)
174
+ as per Section 2.3.1. The network is trained by minimizing the loss function
175
+ Lε(ˆu, ϑ⋆; α) = ∥Λ(ˆu; ϑ⋆)∥2
176
+ L2(Sobs×Ω×T )NΛ + ∥α1ϑ ⊙ ϑ⋆∥2
177
+ L2(Sobs×Ω)Nϑ ,
178
+ (3)
179
+ where 1ϑ indicates an all-ones vector of dimension Nϑ × 1, and ⊙ designates the (element-wise) Hadamard
180
+ product. Here, the PDE residual based on (1) is penalized by the norm of unknown parameters. Observe
181
+ that the latter is a function of the weights and biases of the neural network which may help stabilize the MLP
182
+ estimates during optimization. Such Tikhonov-type functionals are quite common in waveform tomography
183
+ applications [37, 38, 39] owing to their well-established regularizing properties [21, 22]. Within this framework,
184
+ R ∋ α > 0 is the regularization parameter which may be determined by three means, namely: (i) the Morozov
185
+ discrepancy principle [40, 41], (ii) its formulation as a (constant or distributed) parameter of the ϑ⋆ network
186
+ which could then be learned during training, and (iii) its independent reconstruction as a separate MLP
187
+ network α⋆ := Nα(ξ, ω) illustrated in Fig. 1 (b) that is simultaneously trained along with ϑ⋆ by minimizing (3).
188
+ In this study, direct inversion is applied to synthetic and laboratory test data with both α = 0 and α > 0,
189
+ based on (ii) and (iii). It was consistently observed that the regularization parameter α plays a key role in
190
+ controlling the MLP estimates. This is particularly the case in situations where the field ˆu is strongly polarized
191
+ or near-zero in certain neighborhoods which brings about instability i.e., very large estimates for ϑ⋆ in these
192
+ areas. In light of this, all direct inversion results in this paper correspond to the case of α > 0 identified by
193
+ the MLP network α⋆.
194
+ 2.3.3. Physics-informed neural networks
195
+ By deploying the knowledge of underlying physics, PINNs [14, 15] furnish efficient neural models of complex
196
+ PDE systems with predictive capabilities.
197
+ In this vein, a multitask learning process is devised according
198
+ to Fig. 2 where (a) the field variable ˆu – i.e., measured data on Sobs × Ω × T , is modeled by the MLP
199
+ map ˆu⋆ : = Nˆu(ξ, ω; τ) endowed with the auxiliary parameter γ(ξ, ω; τ) related to the loss function (4),
200
+ (b) the physical unknowns ϑ could be defined either as parameters of ˆu⋆ as in Fig. 2 (i), or as a separate
201
+ MLP ϑ⋆ : = Nϑ(ξ, ω) as shown in Fig. 2 (ii), and (c) learning the MLPs and affiliated parameters through
202
+ minimizing a measure of data misfit subject to the governing PDEs as soft/hard constraints wherein the spatial
203
+ derivatives of ˆu⋆ are computed via automatic differentiation [42]. It should be mentioned that in this study
204
+ all MLP networks are defined on (a subset of) Sobs × Ω × T where Sobs ∩ ∂Π = ∅. Hence, the initial and
205
+ boundary conditions – which could be specified as additional constraints in the loss function [15], are ignored.
206
+ In this setting, the PINNs loss takes the form
207
+ Lϖ(ˆu⋆, ϑ⋆|γ) = ∥ˆu − ˆu⋆∥2
208
+ N(Sobs×Ω×T )NΛ + ∥γ1Λ ⊙ Λ(ˆu⋆; ϑ⋆)∥2
209
+ L2(Sobs×Ω×T )NΛ, N = L2, �Hι, ι ⩽ n, (4)
210
+ where 1Λ is a NΛ× 1 vector of ones; n is the order of Λ, and �Hι denotes the adaptive Hι norm defined by
211
+ 4
212
+
213
+ Figure 2: Two logics for the physics-informed neural networks (PINNs) with distributed parameters: (i) the test data ˆu(ξ, ω; τ)
214
+ are modeled by a MLP map, while the unknown physical parameters ϑ – on Sobs × Ω, and the loss function weight γ – on
215
+ Sobs × Ω × T , are defined as network parameters, and (ii) ˆu(ξ, ω; τ) and ϑ(ξ, ω) are identified by separate MLPs, while γ is a
216
+ parameter of Nˆu. The MLP(s) in (i) and (ii) are then trained by minimizing Lϖ of (4) in the space of data and PDE parameters.
217
+ ∥ · ∥ �
218
+ Hι :=
219
+
220
+
221
+ 1⩽|e|⩽ ι
222
+ γe ∥∇e(·)∥2
223
+ L2 + ∥·∥2
224
+ L2,
225
+ ∇e =
226
+ ∂|e|
227
+ ∂ξe1
228
+ 1 ∂ξe2
229
+ 2 ··· ∂ξed
230
+ d
231
+ ,
232
+ |e| :=
233
+ d
234
+
235
+ i=1
236
+ ei.
237
+ (5)
238
+ Here, e:= {e1, e2, . . . ed} is a vector of integers ei ⩾ 0. Provided that ∀e, γe = 1, then �Hι is by definition
239
+ equal to Hι [43]. Note however that at high wavenumbers, Hι is dominated by the highest derivatives ∇eˆu⋆,
240
+ |e| = ι, which may complicate (or even lead to the failure of) the training process due to uncontrolled error
241
+ amplification by automatic differentiation particularly in earlier epochs. This issue may be addressed through
242
+ proper weighting of derivatives in (5). In light of the frequency-dependent Sobolev norms in [44, 37], one
243
+ potential strategy is to adopt the wavenumber-dependent weights as the following
244
+ γe =
245
+
246
+ 1
247
+ κe1
248
+ 1 κe2
249
+ 2 ··· κed
250
+ d
251
+ �2
252
+ ,
253
+ 1 ⩽ |e| ⩽ ι,
254
+ wherein κi is a measure of wavenumber along ξi for i = 1, . . . , d.
255
+ In this setting, the weighted norms of
256
+ derivatives in (5) remain approximately within the same order as the L2 norm of data misfit. Another way to
257
+ automatically achieve the latter is to set the reference scale ℓ◦ such that κi ∼1. Note that the �Hι norms directly
258
+ inform the PINNs about the “expected” field derivatives – while preventing their uncontrolled magnification.
259
+ This may help stabilize the learning process as such derivatives are intrinsically involved in the PINNs loss via
260
+ Λ(ˆu⋆; ϑ⋆). It should be mentioned that when N = �Hι in (4), the “true” estimates for derivatives ∇eˆu may
261
+ be obtained via spectral differentiation as per Section 2.3.2.
262
+ The Lagrange multiplier [45, 46] γ(ξ, ω; τ) in (4) is critical for balancing the loss components during
263
+ training. Its optimal value, however, highly depends on (a) the nature of Λ [12], and (b) the distribution
264
+ of unknown parameters ϑ.
265
+ It should be mentioned that setting γ = 1 led to failure in almost all of the
266
+ synthetic and experimental implementations of PINNs in this study. Gauging of loss function weights has
267
+ been the subject of extensive recent studies [12, 25, 47, 26, 27, 28]. One systematic approach is the adaptive
268
+ SA-PINNs [12] where the multiplier γ(ξ, ω; τ) is a distributed parameter of ˆu⋆ whose value is updated in
269
+ each epoch according to a minimax weighting paradigm. Within this framework, the data (and parameter)
270
+ networks are trained by minimizing Lϖ with respect to ˆu⋆ and ϑ⋆, while maximizing the loss with respect to
271
+ γ as shown in Fig. 2.
272
+ Depending on the primary objective for PINNs, one may choose nonadaptive or adaptive weighting. More
273
+ speci��cally, if the purpose is high-fidelity forward modeling via neural networks where ϑ is known a-priori and
274
+ PINNs are intended to serve as predictive surrogate models of Λ, then ideas rooted in constrained optimization
275
+ e.g., minimax weighting is theoretically sound. However, if the inverse solution i.e., identification of ϑ(ξ, ω)
276
+ from “real-world” or laboratory test data is the main goal particularly in a situation where any assumption on
277
+ the smoothness of ϑ and/or applicability of Λ may be (at least locally) violated e.g., due to unknown material
278
+ 5
279
+
280
+ MLP
281
+ network parameters
282
+ (i)
283
+ (ii)
284
+ 9*($, w)
285
+ 9*:=
286
+ (S,w; T)
287
+ N(s, w)
288
+ ?
289
+
290
+ automatic
291
+ E
292
+ 3
293
+ differentiation
294
+ α*:=
295
+ V*(S,w; T)
296
+ α*:=
297
+ T
298
+ 3
299
+ Na(S, w; T)
300
+ VVu*($, w; T)
301
+ Na(S, w; T)
302
+ T
303
+ :
304
+ MLP
305
+
306
+ (S,w; T)
307
+ u*
308
+ = arg min max Lw(u*, *I)
309
+ *,9*heterogeneities or interfacial discontinuities, then trying to enforce Λ everywhere on Sobs × Ω × T (via point-
310
+ wise adaptive weighting) may lead to instability and failure of data inversion. In such cases, nonadaptive
311
+ weighting may be more appropriate. In light of this, in what follows, γ is a non-adaptive weight specified by
312
+ taking advantage of the PDE structure to naturally balance the loss objectives.
313
+ 3. Synthetic implementation
314
+ Full-field characterization via the direct inversion and physics-informed neural networks are examined
315
+ through a set of numerical experiments. The waveform data in this section are generated via a FreeFem++ [48]
316
+ code developed as part of [49].
317
+ 3.1. Problem statement
318
+ Plane-strain wave motion in two linear, elastic, piecewise homogeneous, and isotropic samples is modeled
319
+ according to Fig. 3 (a). On denoting the frequency of excitation by ω, let ℓr = 2π
320
+ ω
321
+
322
+ µr/ρr, ρr = 1, and µr = 1
323
+ be the reference scales for length, mass density, and stress, respectively. In this framework, both specimens
324
+ are of size 16×16 and uniform density ρ = 1. The first sample Π1 ⊂ R2 is characterized by the constant Lam´e
325
+ parameters µ◦ = 1 and λ◦ = 0.47, while the second sample Π2 ⊂ R2 is comprised of four perfectly bonded
326
+ homogenous components Π2j of µj = j and λj = 2j/3, j = {1, 2, 3, 4} such that Π2 = �4
327
+ j=1 Π2j. Accordingly,
328
+ the shear and compressional wave speeds read c◦
329
+ s = 1, c◦
330
+ p = 1.57 in Π1, and cj
331
+ s = √j, cj
332
+ p = 1.63√j in Π2j.
333
+ Every numerical experiment entails an in-plane harmonic excitation at ω = 3.91 via a point source on Sinc
334
+ (the perimeter of a 14 × 14 square centered at the origin). The resulting displacement field uα = (uα
335
+ 1 , uα
336
+ 2 ),
337
+ α = 1, 2, is then computed in Πα over Sobs (a concentric square of dimension 8 ×8) such that
338
+ µα∆uα(ξ) + (λα + µα)∇∇ · uα(ξ) + ρω2uα(ξ) = δ(ξ − x)d,
339
+ ξ ∈ Πα, x ∈ Sinc,
340
+
341
+ λα∇ · uα(ξ)I2 + 2µα∇symuα(ξ)
342
+
343
+ · n(ξ) = 0,
344
+ ξ ∈ ∂Πα,
345
+ (6)
346
+ where x and d respectively indicate the source location and polarization vector; n is the unit outward normal
347
+ to the specimen’s exterior, and
348
+
349
+ µα = µ◦, λα = λ◦,
350
+ α = 1
351
+ µα = µj, λα = λj,
352
+ α = 2 ∧ ξ ∈ Π2j∈{1,2,3,4}
353
+ .
354
+ Figure 3: synthetic experiments simulating plane-strain wave motion in homogeneous (top-left) and heterogeneous (bottom-left)
355
+ specimens: (a) testing configuration where the model is harmonically excited at frequency ω by a point source on Sinc, and the
356
+ induced displacement field u is computed over Sobs along ξ1 and ξ2 as shown in (b) and (c), respectively.
357
+ 6
358
+
359
+ TT1
360
+ μo,\。
361
+ u1
362
+ μ3,^3
363
+ μ4,^4
364
+ TT2
365
+ W2
366
+ (a)
367
+ (b)When α = 2, the first of (6) should be understood as a shorthand for the set of four governing equations
368
+ over Π2j, j = {1, 2, 3, 4}, supplemented by the continuity conditions for displacement and traction across
369
+ ∂Π2j\∂Π2 as applicable.
370
+ In this setting, the generic form (1) may be identified as the following
371
+ Λ = Λα := µα∆ + (λα + µα)∇∇ · + ρω2I2,
372
+ α = 1, 2,
373
+ ˆu = uα(ξ, ω; τ),
374
+ ϑ = [µα, λα](ξ, ω),
375
+ ξ ∈ Sobs, ω ∈ Ω, τ ∈ T ,
376
+ (7)
377
+ wherein I2 is the second-order identity tensor; τ = (x, d) ∈ Sinc × B1 = T with B1 denoting the unit circle
378
+ of polarization directions. Note that ρ is treated here as a known parameter.
379
+ In the numerical experiments, Sinc (resp. Sobs) is discretized by a uniform grid of 32 (resp. 50×50) points,
380
+ while Ω and B1 are respectively sampled at ω = 3.91 and d = (1, 0).
381
+ All inversions in this study are implemented within the PyTorch framework [50].
382
+ 3.2. Direct inversion
383
+ The three-tier logic of Section 2.3.2 is employed to reconstruct the distribution of µα and λα, α = 1, 2,
384
+ over Sobs, entailing: (a) spectral differentiation of the displacement field uα in order to compute ∆uα and
385
+ ∇∇ · uα as per (6), (b) construction of three positive-definite MLP networks µ⋆, λ⋆, and α⋆; each of which
386
+ is comprised of one hidden layer of 64 neurons, and (c) training the MLPs by minimizing Lε as in (3)
387
+ and (7) by way of the ADAM algorithm [51]. To avoid near-boundary errors affiliated with the one-sided FFT
388
+ differentiation in ∆uα and ∇∇·uα, a concentric 40×40 subset of collocation points sampling Sobs is deployed
389
+ for training purposes. It should also be mentioned that in the heterogeneous case, i.e., α = 2, the discontinuity
390
+ of derivatives across ∂Π2j∈{1,2,3,4} calls for piecewise spectral differentiation. According to Section 2.3.1, the
391
+ input to P⋆ = NP(ξ, ω), P = µ, λ, and α⋆ = Nα(ξ, ω) is of size NξNτ × Nω = 1600Ns × 1 where Ns ⩽ 32
392
+ is the number of simulations i.e., source locations used to generate distinct waveforms for training. In this
393
+ setting, since the physical quantities of interest are independent of τ, the real-valued output of MLPs is of
394
+ dimension 1600 × 1 furnishing a local estimate of the L´ame and regularization parameters at the specified
395
+ sampling points on Sobs. Each epoch makes use of the full dataset and the learning rate is 0.005.
396
+ In this work, the reconstruction error is measured in terms of the normal misfit
397
+ Ξ(q⋆) = ∥q⋆ − q ∥L2
398
+ ∥q ∥L∞
399
+ ,
400
+ (8)
401
+ where q⋆ is an MLP estimate for a quantity with the “true” value q.
402
+ Let Sinc be sampled at one point i.e., Ns = 1 so that a single forward simulation in Πα, α = 1, 2, generates
403
+ the training dataset. The resulting reconstructions are shown in Figs. 4 and 5. It is evident from both figures
404
+ that the single-source reconstruction fails at the loci of near-zero displacement which may explain the relatively
405
+ high values of the recovered regularization parameter α⋆. Table 1 details the true values as well as mean and
406
+ standard deviation of the reconstructed L´ame distributions ϑ⋆ = (µ⋆, λ⋆) in Π1 (resp. Π2j for j = 1, 2, 3, 4)
407
+ according to Fig. 4 (resp. Fig. 5).
408
+ This problem may be addressed by enriching the training dataset e.g., via increasing Ns. Figs. 6 and 7
409
+ illustrate the reconstruction results when Sinc is sampled at Ns = 5 source points. The mean and standard
410
+ deviation of the reconstructed distributions are provided in Table 2. It is worth noting that in this case the
411
+ identified regularization parameter α⋆ assumes much smaller values – compared to that of Figs. 4 and 5. This
412
+ is closer to the scale of computational errors in the forward simulations.
413
+ To examine the impact of noise on the reconstruction, the multisource dataset used to generate Figs. 6
414
+ and 7 are perturbed with 5% white noise. The subsequent direct inversions from noisy data are displayed in
415
+ Figs. 8 and 9, and the associated statistics are presented in Table 3. Note that spectral differentiation as the
416
+ first step in direct inversion plays a critical role in denoising the waveforms, and subsequently regularizing the
417
+ reconstruction process. This may substantiate the low magnitude of MLP-recovered α⋆ in the case of noisy
418
+ data in Figs. 8 and 9. The presence of noise, nonetheless, affects the magnitude and thus composition of terms
419
+ in the Fourier representation of the processed displacement fields in space which is used for differentiation.
420
+ This may in turn lead to the emergence of fluctuations in the reconstructed fields.
421
+ 7
422
+
423
+ Figure 4: Direct inversion of the L´ame parameters in Π1 using noiseless data from a single source: (a) MLP-predicted distributions
424
+ µ⋆ and λ⋆, (b) reconstruction error (8) with respect to the true values µ◦ = 1 and λ◦ = 0.47, (c) MLP-recovered distribution of
425
+ the regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne in the log = log10 scale.
426
+ Figure 5: Direct inversion of the L´ame parameters in Π2 using noiseless data from a single source: (a) MLP-predicted distributions
427
+ µ⋆ and λ⋆, (b) reconstruction error (8) with respect to the true values µj = j and λj = 2j/3, j = {1, 2, 3, 4}, (c) MLP-recovered
428
+ regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne.
429
+ Table 1: Mean ⟨·⟩D and standard deviation σ(·|D) of the reconstructed L´ame distributions in D = Π1, Π2j=1,2,3,4. Here,
430
+ the direct inversion is applied to noiseless data from a single source as shown in Figs. 4 and 5.
431
+ D
432
+ Π1
433
+ Π21
434
+ Π22
435
+ Π23
436
+ Π24
437
+ µ
438
+ µ◦ = 1
439
+ µ1 = 1
440
+ µ2 = 2
441
+ µ3 = 3
442
+ µ4 = 4
443
+ ⟨µ⋆⟩D
444
+ 0.998
445
+ 0.991
446
+ 1.983
447
+ 2.825
448
+ 3.835
449
+ σ(µ⋆|D)
450
+ 0.024
451
+ 0.083
452
+ 0.182
453
+ 0.441
454
+ 0.325
455
+ λ
456
+ λ◦ = 0.47
457
+ λ1 = 0.67
458
+ λ2 = 1.33
459
+ λ3 = 2
460
+ λ4 = 2.66
461
+ ⟨λ⋆⟩D
462
+ 0.376
463
+ 0.615
464
+ 0.850
465
+ 1.746
466
+ 1.412
467
+ σ(λ⋆|D)
468
+ 0.128
469
+ 0.161
470
+ 0.399
471
+ 0.486
472
+ 0.864
473
+ 8
474
+
475
+ (a)
476
+ (b)
477
+ 1.2
478
+ 0.2
479
+ 1.1
480
+ 0.15
481
+ 0.1
482
+ ×10-2
483
+ (c)
484
+ (d)
485
+ 1.4
486
+ log(Le)
487
+ 0.9
488
+ 0.05
489
+ 1
490
+ 1
491
+ 0
492
+ 0.8
493
+ 0
494
+ 0.7
495
+ 0.2
496
+ 0.6
497
+ -1
498
+ (?
499
+ 0.6
500
+ 0.15
501
+ -2
502
+ 0.2
503
+ 0.5
504
+ 0.1
505
+ 0
506
+ 0.5
507
+ ×104
508
+ 1
509
+ Ne
510
+ 0.4
511
+ 0.05
512
+ 0.3
513
+ 0(a)
514
+ (b)
515
+ 三(μ*)
516
+ 0.8
517
+ 3
518
+ (c)
519
+ ×10-2
520
+ (d)
521
+ 0.4
522
+ 2
523
+ log(Le)
524
+ 1
525
+ 2
526
+ 0
527
+ 0.8
528
+ 0
529
+ 0.5
530
+ 1 ×104
531
+ 0.4
532
+ NeFigure 6: Direct inversion of the L´ame parameters in Π1 using noiseless data from five distinct simulations: (a) MLP-predicted
533
+ distributions µ⋆ and λ⋆, (b) reconstruction error (8) with respect to the true values µ◦ = 1 and λ◦ = 0.47, (c) MLP-recovered
534
+ regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne.
535
+ Figure 7: Direct inversion of the L´ame parameters in Π2 using five noiseless datasets: (a) MLP-predicted distributions µ⋆ and
536
+ λ⋆, (b) reconstruction error (8) with respect to the true values µj = j and λj = 2j/3, j = {1, 2, 3, 4}, (c) MLP-recovered
537
+ regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne.
538
+ Table 2: Mean and standard deviation of the reconstructed L´ame distributions from five distinct noiseless datasets
539
+ according to Figs. 6 and 7.
540
+ D
541
+ Π1
542
+ Π21
543
+ Π22
544
+ Π23
545
+ Π24
546
+ µ
547
+ 1
548
+ 1
549
+ 2
550
+ 3
551
+ 4
552
+ ⟨µ⋆⟩D
553
+ 1.000
554
+ 0.999
555
+ 2.003
556
+ 2.999
557
+ 3.999
558
+ σ(µ⋆|D)
559
+ 0.001
560
+ 0.012
561
+ 0.011
562
+ 0.012
563
+ 0.016
564
+ λ
565
+ 0.47
566
+ 0.67
567
+ 1.33
568
+ 2
569
+ 2.66
570
+ ⟨λ⋆⟩D
571
+ 0.464
572
+ 0.660
573
+ 1.302
574
+ 1.997
575
+ 2.635
576
+ σ(λ⋆|D)
577
+ 0.012
578
+ 0.039
579
+ 0.071
580
+ 0.048
581
+ 0.068
582
+ 9
583
+
584
+ (a)
585
+ (b)
586
+ 2
587
+ u*
588
+ 1.02
589
+ (×)m
590
+ 1
591
+ (c)
592
+ ×10-3
593
+ (d)
594
+ 1
595
+ log(Le)
596
+ 5
597
+ 1
598
+ 0.98
599
+ ×10-2
600
+ 0
601
+ 3
602
+ -1
603
+ 7.5
604
+ ^*
605
+ 0.5
606
+ 三(\*)
607
+ -2
608
+ 5
609
+ 0.45
610
+ 0
611
+ 0.5
612
+ 1 ×104
613
+ Ne
614
+ 2.5
615
+ 0.4
616
+ /×10-2(a)
617
+ (b)
618
+ 4
619
+ 1.75
620
+ 3
621
+ (c)
622
+ ×10-3
623
+ (d)
624
+ 0.75
625
+ 1.4
626
+ 2
627
+ log(Le)
628
+ ×10-2
629
+ 0
630
+ 0.8
631
+ 0.2 -2
632
+ 2
633
+ 0.5
634
+ ×104
635
+ 0
636
+ 0.4
637
+ Ne
638
+ ×10-1Figure 8: Direct inversion of the L´ame parameters in Π1 using five datasets perturbed with 5% white noise: (a) MLP-predicted
639
+ distributions µ⋆ and λ⋆, (b) reconstruction error (8) with respect to the true values µ◦ = 1 and λ◦ = 0.47, (c) MLP-recovered
640
+ regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne.
641
+ Figure 9: Direct inversion of the L´ame parameters in Π2 using five datasets perturbed with 5% white noise: (a) MLP-predicted
642
+ distributions µ⋆ and λ⋆, (b) reconstruction error (8) with respect to the true values µj = j and λj = 2j/3, j = {1, 2, 3, 4}, (c)
643
+ MLP-recovered regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne.
644
+ Table 3: Mean and standard deviation of the reconstructed L´ame distributions from noisy data according to Figs. 8
645
+ and 9.
646
+ D
647
+ Π1
648
+ Π21
649
+ Π22
650
+ Π23
651
+ Π24
652
+ µ
653
+ 1
654
+ 1
655
+ 2
656
+ 3
657
+ 4
658
+ ⟨µ⋆⟩D
659
+ 1.001
660
+ 1.002
661
+ 2.005
662
+ 2.996
663
+ 3.996
664
+ σ(µ⋆|D)
665
+ 0.005
666
+ 0.016
667
+ 0.035
668
+ 0.054
669
+ 0.088
670
+ λ
671
+ 0.47
672
+ 0.67
673
+ 1.33
674
+ 2
675
+ 2.66
676
+ ⟨λ⋆⟩D
677
+ 0.462
678
+ 0.650
679
+ 1.263
680
+ 2.006
681
+ 2.654
682
+ σ(λ⋆|D)
683
+ 0.042
684
+ 0.051
685
+ 0.225
686
+ 0.182
687
+ 0.300
688
+ 10
689
+
690
+ (a)
691
+ (b)
692
+ 1.05
693
+ (r)=
694
+ L¥
695
+ 2
696
+ ×10-3
697
+ (d)
698
+ (c)
699
+ 1
700
+ 4
701
+ log(Le)
702
+ 3
703
+ 0.95
704
+ ×10-2
705
+ 0
706
+ 2
707
+ 0.5
708
+ 三()*)
709
+ 0.35
710
+ 1
711
+ -2
712
+ 0.25
713
+ 0.45
714
+ 0
715
+ 0.5
716
+ 1 ×104
717
+ 0.15
718
+ Ne
719
+ 0.05
720
+ 0.4(a)
721
+ (b)
722
+ 4
723
+ E(μ*)
724
+ 0.8
725
+ 3
726
+ (c)
727
+ ×10-3
728
+ (d)
729
+ 0.4
730
+ 1.4
731
+ 2
732
+ log(Le)
733
+ 1
734
+ ×10-1
735
+ 0
736
+ 0.5
737
+ 0.6
738
+ -1
739
+ 0.2
740
+ 2
741
+ 0.3
742
+ 0
743
+ 0.5
744
+ Ne
745
+ 0.13.3. Physics-informed neural networks
746
+ The learning process of Section 2.3.3 is performed as follows: (a) the MLP network uα⋆ = Nuα(ξ, ω, x|γ, ϑ⋆)
747
+ endowed with the positive-definite parameters γ and ϑ⋆ = (µ⋆, λ⋆) is constructed such that the input x labels
748
+ the source location and the auxiliary weight γ is a nonadaptive scaler, (b) µ⋆ and λ⋆ may be specified as scaler
749
+ or distributed parameters of the network according to Fig. 2 (i), and (c) uα⋆ is trained by minimizing Lϖ
750
+ in (4) via the ADAM optimizer using the synthetic waveforms of Section 3.1. Reconstructions are performed
751
+ on the same set of collocation points sampling Sobs×Ω×T as in Section 3.2. Accordingly, the input to uα⋆ is
752
+ of size Nξ×Nω×Nτ = 1600×1×Ns, while its output is of dimension (1600×1×Ns)2 modeling the displacement
753
+ field along ξ1 and ξ2 in the sampling region. Similar to Section 3.2, each epoch makes use of the full dataset for
754
+ training and the learning rate is 0.005. The PyTorch implementation of PINNs in this section is accomplished
755
+ by building upon the available codes on the Github repository [52].
756
+ The MLP network u1⋆ = u1⋆(ξ, ω, x|γ, ϑ⋆) with three hidden layers of respectively 20, 40, and 20 neurons
757
+ is employed to map the displacement field u1 (in Π1) associated with a single point source of frequency
758
+ ω = 3.91 at x = x1 ∈ Sinc.
759
+ The L´ame constants are defined as the unknown scaler parameters of the
760
+ network i.e., ϑ⋆ = {µ⋆, λ⋆}, and the Lagrange multiplier γ is specified per the following argument. Within
761
+ the dimensional framework of this section and with reference to (7), observe that on setting γ =
762
+ 1
763
+ ρω2 (i.e.,
764
+ γ = 0.065), both (the PDE residue and data misfit) components of the loss function Lϖ in 4 emerge as some
765
+ form of balance in terms of the displacement field. This may naturally facilitate maintaining of the same scale
766
+ for the loss terms during training, and thus, simplifying the learning process by dispensing with the need to
767
+ tune an additional parameter γ. Keep in mind that the input to u1⋆ is of size 1600×1×1, while its output is
768
+ of dimension (1600×1×1)2. In this setting, the training objective is two-fold: (a) construction of a surrogate
769
+ map for u1, and (b) identification of µ⋆ and λ⋆.
770
+ Fig. 10 showcases (i) the accuracy of PINN estimates based on noiseless data in terms of the vertical
771
+ component of displacement field u1
772
+ 2 in Π1, and (ii) the performance of automatic differentiation [42] in capturing
773
+ the field derivatives in terms of components that appear in the governing PDE 7 i.e., u1
774
+ 2,ij = ∂2u1
775
+ 2/(∂ξi∂ξj),
776
+ i, j = 1, 2.
777
+ The comparative analysis in (ii) is against the spectral derivates of FEM fields according to
778
+ Section 2.3.2. It is worth noting that similar to Fourier-based differentiation, the most pronounced errors
779
+ in automatic differentiation occur in the near-boundary region i.e., the support of one-sided derivatives. It
780
+ is observed that the magnitude of such discrepancies may be reduced remarkably by increasing the number
781
+ of epochs. Nonetheless, the loci of notable errors remain at the vicinity of specimen’s external boundary or
782
+ internal discontinuities such as cracks or material interfaces. Fig. 10 is complemented with the reconstruction
783
+ results of Fig. 11 indicating (µ⋆, λ⋆) = (1.000, 0.486) for the homogenous specimen Π1 with the true L´ame
784
+ constants (µ◦, λ◦) = (1, 0.47). The impact of noise on training is examined by perturbing the noiseless data
785
+ related to Fig. 10 with 5% white noise, which led to (µ⋆, λ⋆) = (0.999, 0.510) as shown in Fig. 12.
786
+ Next, the PINN u2⋆ = u2⋆(ξ, ω, x|ϑ⋆) with three hidden layers of respectively 120, 120, and 80 neurons
787
+ is created to reconstruct (i) displacement field u2 in the heterogeneous specimen Π2, and (ii) distribution of
788
+ the L´ame parameters over the observation surface. In this vein, synthetic waveform data associated with five
789
+ point sources {xi} ∈ Sinc, i = 1, 2, . . . , 5 at ω = 3.91 is used for training. Here, ϑ⋆ is the network’s unknown
790
+ distributed parameter, of dimension (40×40)2, and the nonadaptive scaler weight γ = 0.065 in light of the
791
+ sample’s uniform density ρ = 1. In this setting, the input to u2⋆ is of size 1600×1×5, while its output is
792
+ of dimension (1600×1×5)2. Fig. 13 provides a comparative analysis between the FEM and PINN maps of
793
+ horizontal displacement u1
794
+ 2 in Π2 and its spatial derivatives computed by spectral and automatic differentiation
795
+ respectively.
796
+ Table 4: Mean and standard deviation of the PINN-reconstructed L´ame distributions from five distinct noiseless datasets
797
+ according to Fig. 14.
798
+ D
799
+ Π21
800
+ Π22
801
+ Π23
802
+ Π24
803
+ ⟨µ⋆⟩D
804
+ 0.975
805
+ 1.973
806
+ 2.941
807
+ . 3.918
808
+ σ(µ⋆|D)
809
+ 0.054
810
+ 0.123
811
+ 0.135
812
+ 0.226
813
+ ⟨λ⋆⟩D
814
+ 0.686
815
+ 1.250
816
+ 2.045
817
+ 2.065
818
+ σ(λ⋆|D)
819
+ 0.247
820
+ 0.400
821
+ 0.520
822
+ 0.857
823
+ 11
824
+
825
+ Figure 10: PINN vs. FEM maps of vertical displacement and its derivatives in Π1: (a) MLP estimates, from noiseless data, for
826
+ {u1
827
+ 2
828
+ ⋆, u1⋆
829
+ 2,11, u1⋆
830
+ 2,22, u1⋆
831
+ 2,12} wherein the derivatives u1⋆
832
+ 2,ij, i, j = 1, 2, are obtained by automatic differentiation, (b) FEM displacement
833
+ solution and its spectral derivatives for {u1
834
+ 2, u1
835
+ 2,11, u1
836
+ 2,22, u1
837
+ 2,12}, and (c) normal misfit 8 between (a) and (b).
838
+ Figure 11: PINN reconstruction of L´ame constants in the homogeneous plate Π1 from noiseless data: (a) µ⋆ vs. number of epochs
839
+ Ne, (b) λ⋆ vs. Ne, and (c) total loss Lϖ and its components (the PDE residue and data misfit) vs. Ne in log scale.
840
+ Figure 12: PINN reconstruction of L´ame constants in Π1 from noisy data: (a) µ⋆ vs. number of epochs Ne, (b) λ⋆ vs. Ne, and
841
+ (c) total loss Lϖ and its components (the PDE residue and data misfit) vs. Ne in log scale.
842
+ 12
843
+
844
+ 2
845
+ 0.2
846
+ ?
847
+ U2,22
848
+ 1
849
+ 1
850
+ 0.5
851
+ 0.1
852
+ (a)
853
+ 0
854
+ 0
855
+ 0
856
+ 0
857
+ -0.1
858
+ -0.5
859
+ -1
860
+ -0.2
861
+ 2
862
+ 0.2
863
+ I
864
+ u2,11
865
+ u2,22
866
+ 2,12
867
+ 1
868
+ 1
869
+ 0.5
870
+ (b)
871
+ 0
872
+ 0
873
+ 0
874
+ 0
875
+ -0.5
876
+ -1
877
+ -1
878
+ -0.2
879
+ 三(u2
880
+ 7
881
+ E(u2,11)
882
+ 三(u2,22)
883
+ 0.3
884
+ 三(u2,12)
885
+ 0.2
886
+ ?L
887
+ 1.2
888
+ 5
889
+ 0.2
890
+ (c)
891
+ 0.8
892
+ 0.1
893
+ 3
894
+ 0.1
895
+ 0.4
896
+ 1
897
+ ×10-2
898
+ ×10-1(a)
899
+ (b)
900
+ (c)
901
+ 0.8
902
+ \*
903
+ - PDE loss
904
+ 1.2
905
+ 0
906
+ .- data loss
907
+ total loss
908
+ 0.8
909
+ 0.4
910
+ -2
911
+ 0.4
912
+ -4
913
+ Ne
914
+ Ne
915
+ 0
916
+ 0
917
+ ×105
918
+ ×105
919
+ ×105
920
+ 0
921
+ 0.4
922
+ 0.8
923
+ 1.2
924
+ 1.6
925
+ 2.
926
+ 0
927
+ 0.4
928
+ 0.8
929
+ 1.2
930
+ 1.6
931
+ 2
932
+ 0
933
+ 0.4
934
+ 0.8
935
+ 1.2
936
+ 1.6
937
+ 2(a)
938
+ (b)
939
+ (c)
940
+ \*
941
+ PDE loss
942
+ L*
943
+ 1.2
944
+ 0.6
945
+ data loss
946
+ 0
947
+ total loss
948
+ 0.8
949
+ 0.4
950
+ -2
951
+ 0.4
952
+ 0.2
953
+ Ne
954
+ Ne
955
+ UN
956
+ 0
957
+ 0
958
+ ×105
959
+ ×105
960
+ ×105
961
+ 0
962
+ 0.4
963
+ 0.8
964
+ 1.2
965
+ 1.6
966
+ 2.
967
+ 0
968
+ 0.4
969
+ 0.8
970
+ 1.2
971
+ 1.6
972
+ 2
973
+ 0
974
+ 0.4
975
+ 0.8
976
+ 1.2
977
+ 1.6
978
+ 2Figure 13: PINN vs. FEM maps of horizontal displacement and its derivatives in Π2: (a) PINN estimates, from noiseless data, for
979
+ {u2
980
+ 1
981
+ ⋆, u2⋆
982
+ 1,11, u2⋆
983
+ 1,22, u2⋆
984
+ 1,12} wherein the derivatives u2⋆
985
+ 1,ij, i, j = 1, 2, are obtained by automatic differentiation, (b) FEM displacement
986
+ solution and its spectral derivatives for {u2
987
+ 1, u2
988
+ 1,11, u2
989
+ 1,22, u2
990
+ 1,12}, and (c) normal misfit 8 between (a) and (b).
991
+ Figure 14: PINN reconstruction of L´ame parameters in Π2 using five noiseless datasets: (a) PINN-predicted distributions µ⋆ and
992
+ λ⋆, (b) reconstruction error (8) with respect to the true values µj = j and λj = 2j/3, j = {1, 2, 3, 4}, (c) total loss Lϖ and its
993
+ components (the PDE residue and data misfit) vs. Ne in log scale.
994
+ The PINN-reconstructed distribution of PDE parameters is illustrated in Fig. 14 whose statistics is
995
+ detailed in Table 4.
996
+ It is worth mentioning that the learning process is repeated for a suit of weights
997
+ γ = {0.01, 0.025, 0.1, 0.25, 0.5, 1.5, 2, 5, 10, 15}. In all cases, the results are either quite similar or worse than
998
+ that of Figs. 13 and 14.
999
+ 13
1000
+
1001
+ 2 *
1002
+ 0.4
1003
+ 2*
1004
+ 2*
1005
+ 2*
1006
+ ui
1007
+ ui,11
1008
+ ui,22
1009
+ ui,12
1010
+ 3
1011
+ 3
1012
+ 2
1013
+ 0
1014
+ 1
1015
+ 1
1016
+ (a)
1017
+ 0
1018
+ -0.4
1019
+ -1
1020
+ -1
1021
+ 2
1022
+ -3
1023
+ -3
1024
+ -0.8
1025
+ 0.4
1026
+ ui,11
1027
+ 2
1028
+ ui,12
1029
+ 3
1030
+ 3
1031
+ 2
1032
+ 1
1033
+ 1
1034
+ (b)
1035
+ 0
1036
+ -0.4
1037
+ -1
1038
+ -1
1039
+ -2
1040
+ -3
1041
+ -3
1042
+ -0.8
1043
+ 5
1044
+ 三(ui
1045
+ 三(ui,11)
1046
+ 2
1047
+ 三(ui,22)
1048
+ 2*
1049
+ E(ui,12)
1050
+ 2*
1051
+ 2
1052
+ 2
1053
+ 3
1054
+ (c)
1055
+ 1
1056
+ L
1057
+ 1
1058
+ ×10-3
1059
+ ×10-2
1060
+ ×10-2
1061
+ ×10-2(a)
1062
+ (b)
1063
+ 4
1064
+ 三(μ*)
1065
+ 0.4
1066
+ 3
1067
+ (c)
1068
+ 0.2
1069
+ 2
1070
+ PDE loss
1071
+ 0
1072
+ data loss
1073
+ total loss
1074
+ 0
1075
+ -2
1076
+ 三(\*)
1077
+ -4
1078
+ 0.4
1079
+ 2
1080
+ -6
1081
+ ×106
1082
+ 0
1083
+ 0.4
1084
+ 0.8
1085
+ 1.2
1086
+ 1.6
1087
+ 2
1088
+ 0.2
1089
+ Ne
1090
+ 14. Laboratory implementation
1091
+ This section examines the performance of direct inversion and PINNs for full-field ultrasonic character-
1092
+ ization in a laboratory setting. In what follows, experimental data are processed prior to inversion as per
1093
+ Section 2.3.2 which summarizes the detailed procedure in [36]. To verify the inversion results, quantities of
1094
+ interest are also reconstructed through dispersion analysis, separately, from a set of auxiliary experiments.
1095
+ 4.1. Test set-up
1096
+ Experiments are performed on two (homogeneous and heterogeneous) specimens: Π
1097
+ exp
1098
+ 1
1099
+ which is a 27 cm
1100
+ ×27 cm×1.5 mm sheet of T6 6061 aluminum, and Π
1101
+ exp
1102
+ 2
1103
+ composed of (a) 5 cm×27 cm×1.5 mm sheet of Grade
1104
+ 2 titanium, (b) 2.5 cm×27 cm×1.5 mm sheet of 4130 steel, and (c) 5 cm×27 cm×1.5 mm sheet of 260-H02
1105
+ brass, connected via metal epoxy. For future reference, the density ρµ, Young’s modulus Eµ, and Poisson’s
1106
+ ratio νµ for µ = {Al, Ti, St, Br} are listed in Table 5 as per the manufacturer.
1107
+ Ultrasonic experiments on both samples are performed in a similar setting in terms of the sensing config-
1108
+ uration and illuminating wavelet. In both cases, the specimen is excited by an antiplane shear wave from a
1109
+ designated source location Sinc, shown in Fig. 15, by a 0.5 MHz p-wave piezoceramic transducer (V101RB by
1110
+ Olympus Inc.). The incident signal is a five-cycle burst of the form
1111
+ H(fct) H(5−fct) sin
1112
+
1113
+ 0.2πfct
1114
+
1115
+ sin
1116
+
1117
+ 2πfct
1118
+
1119
+ ,
1120
+ (9)
1121
+ where H denotes the Heaviside step function, and the center frequency fcis set at 165 kHz (resp. {80, 300} kHz)
1122
+ in Π
1123
+ exp
1124
+ 1
1125
+ (resp. Π
1126
+ exp
1127
+ 2 ). The induced wave motion is measured in terms of the particle velocity vβ, β = 1, 2, on the
1128
+ scan grids Gβ sampling Sobs where Sobs ∩Sinc = Sobs ∩∂Π
1129
+ exp
1130
+ β = ∅. A laser Doppler vibrometer (LDV) which is
1131
+ mounted on a 2D robotic translation frame (for scanning) is deployed for measurements. The VibroFlex Xtra
1132
+ VFX-I-120 LDV system by Polytec Inc. is capable of capturing particle velocity within the frequency range
1133
+ ∼ DC − 24 MHz along the laser beam which in this study is normal to the specimen’s surface.
1134
+ The scanning grid G1 ⊂ Π
1135
+ exp
1136
+ 1
1137
+ is identified by a 2 cm×2 cm square sampled by 100×100 uniformly spaced
1138
+ measurement points. This amounts to a spatial resolution of 0.2 mm in both spatial directions. In parallel,
1139
+ G2 ⊂ Π
1140
+ exp
1141
+ 2
1142
+ is a 2.5 cm×7.5 cm rectangle positioned according to Fig. 15 (b) and sampled by a uniform grid of
1143
+ 180×60 scan points associated with the spatial resolution of 0.42 mm. At every scan point, the data acquisition
1144
+ is conducted for a time period of 400 µs at the sampling rate of 250 MHz. To minimize the impact of optical
1145
+ and mechanical noise in the system, the measurements are averaged over an ensemble of 80 realizations at
1146
+ each scan point. Bear in mind that both the direct inversion and PINNs deploy the spectra of normalized
1147
+ velocity fields vobs for data inversion. Such distributions of out-of-plane particle velocity at 165 kHz (resp. 80
1148
+ kHz) in Π
1149
+ exp
1150
+ 1
1151
+ (resp. Π
1152
+ exp
1153
+ 2 ) is displayed in Fig. 15.
1154
+ It should be mentioned that in the above experiments, the magnitude of measured signals in terms of
1155
+ displacement is of O(nm) so that it may be appropriate to assume a linear regime of propagation. The nature
1156
+ of antiplane wave motion is dispersive nonetheless. Therefore, to determine the relevant length scales in each
1157
+ component, the associated dispersion curves are obtained as in Fig. 19 via a set of complementary experiments
1158
+ described in Section 4.4.1. Accordingly, for excitations of center frequency {fc1, fc2, fc3} = {165, 80, 300} kHz,
1159
+ the affiliated phase velocity cµ and wavelength λµ for µ = {Al, Ti, St, Br} is identified in Table 6.
1160
+ Figure 15: Test set-ups for ultrasonic full-field characterization: (a) an Al plate Π
1161
+ exp
1162
+ 1
1163
+ is subject to antiplane shear waves at 165
1164
+ kHz by a piezoelectric transducer; the out-of-plane particle velocity field is then captured by a laser Doppler vibrometer scanning
1165
+ on a robot over the observation surface, and (b) a Ti-St-Br plate Π
1166
+ exp
1167
+ 2
1168
+ undergoes a similar test at 80 kHz and 300 kHz.
1169
+ 14
1170
+
1171
+ exp
1172
+ 2
1173
+ exp
1174
+ 1..239
1175
+ Ti
1176
+ St
1177
+ Br
1178
+ (a)
1179
+ (b)4.2. Dimensional framework
1180
+ On recalling Section 2.2, let ℓr : = λAl = 0.01 m, µr : = EAl = 68.9 GPA, and ρr : = ρAl = 2700 kg/m3 be
1181
+ the reference scales for length, stress, and mass density, respectively. In this setting, the following maps take
1182
+ the physical quantities to their dimensionless values
1183
+ (ρµ, Eµ, νµ) → (ρµ, Eµ, νµ) :=
1184
+ � 1
1185
+ ρr
1186
+ ρµ, 1
1187
+ µr
1188
+ Eµ, νµ
1189
+
1190
+ ,
1191
+ µ = {Al, Ti, St, Br},
1192
+ (fcι, λµ, cµ) → (fcι, λµ, cµ) :=
1193
+
1194
+ ℓr
1195
+ � ρr
1196
+ µr
1197
+ fcι, 1
1198
+ ℓr
1199
+ λµ,
1200
+ � ρr
1201
+ µr
1202
+
1203
+
1204
+ ,
1205
+ ι = 1, 2, 3,
1206
+ (h, f, vβ) → (h, f, vβ) :=
1207
+ � 1
1208
+ ℓr
1209
+ h, ℓr
1210
+ � ρr
1211
+ µr
1212
+ f,
1213
+ � ρr
1214
+ µr
1215
+ vβ�
1216
+ ,
1217
+ β = 1, 2,
1218
+ (10)
1219
+ where h = 1.5 mm and f respectively indicate the specimen’s thickness and cyclic frequency of wave motion.
1220
+ Table 5 (resp. Table 6) details the normal values for the first (resp. second) of (10). The normal thickness and
1221
+ center frequencies are as follows,
1222
+ {fc1, fc2, fc3} = {0.33, 0.16, 0.59},
1223
+ h = 0.15.
1224
+ (11)
1225
+ Table 5: Properties of the aluminum, titanium, steel and brass sheets as per the manufacturer. Here, χµ := Eµ/ρµ.
1226
+ physical
1227
+ µ
1228
+ Al
1229
+ Ti
1230
+ St
1231
+ Br
1232
+ Eµ [GPA]
1233
+ 68.9
1234
+ 105
1235
+ 199.95
1236
+ 110
1237
+ quantity
1238
+ ρµ [kg/m3]
1239
+ 2700
1240
+ 4510
1241
+ 7850
1242
+ 8530
1243
+ νµ
1244
+ 0.33
1245
+ 0.34
1246
+ 0.29
1247
+ 0.31
1248
+ normal
1249
+
1250
+ 1
1251
+ 1.52
1252
+ 2.90
1253
+ 1.60
1254
+ value
1255
+ ρµ
1256
+ 1
1257
+ 1.67
1258
+ 2.91
1259
+ 3.16
1260
+ χµ
1261
+ 1
1262
+ 0.91
1263
+ 1
1264
+ 0.51
1265
+ Table 6: Phase velocity cµ and wavelength λµ in µ = {Al, Ti, St, Br} at {fc1, fc2, fc3} = {165, 80, 300} kHz as per Fig. 19,
1266
+ and their normalized counterparts according to (10).
1267
+ physical quantity
1268
+ µ
1269
+ Al
1270
+ Ti
1271
+ St
1272
+ Br
1273
+ λµ(fc1) [cm]
1274
+ 1
1275
+
1276
+
1277
+
1278
+ cµ(fc1) [m/s]
1279
+ 1610.4
1280
+
1281
+
1282
+
1283
+ λµ(fc2) [cm]
1284
+
1285
+ 1.4
1286
+ 1.4
1287
+ 1.17
1288
+ cµ(fc2) [m/s]
1289
+
1290
+ 1140
1291
+ 1126
1292
+ 936
1293
+ λµ(fc3) [cm]
1294
+
1295
+ 0.65
1296
+ 0.64
1297
+ 0.5
1298
+ cµ(fc3) [m/s]
1299
+
1300
+ 1960.8
1301
+ 1929
1302
+ 1501.6
1303
+ normal value
1304
+ µ
1305
+ Al
1306
+ Ti
1307
+ St
1308
+ Br
1309
+ λµ(fc1)
1310
+ 1
1311
+
1312
+
1313
+
1314
+ cµ(fc1)
1315
+ 0.32
1316
+
1317
+
1318
+
1319
+ λµ(fc2)
1320
+
1321
+ 1.4
1322
+ 1.4
1323
+ 1.17
1324
+ cµ(fc2)
1325
+
1326
+ 0.23
1327
+ 0.22
1328
+ 0.19
1329
+ λµ(fc3)
1330
+
1331
+ 0.65
1332
+ 0.64
1333
+ 0.5
1334
+ cµ(fc3)
1335
+
1336
+ 0.39
1337
+ 0.38
1338
+ 0.3
1339
+ 4.3. Governing equation
1340
+ In light of (11) and Table 6, observe that in all tests the wavelength-to-thickness ratio λµ
1341
+ h ∈ [3.33 9.33],
1342
+ µ = {Al, Ti, St, Br}. Therefore, one may invoke the equation governing flexural waves in thin plates [53] to
1343
+ approximate the physics of measured data. In this framework, (1) may be recast as
1344
+ Λ = Λβ :=
1345
+ χβh3
1346
+ 12(1 − ν2
1347
+ β)∇4 − h(2πf)2,
1348
+ χβ := Eβ
1349
+ ρβ
1350
+ , β = 1, 2,
1351
+ ˆu = vβ(ξ, f; τ),
1352
+ ϑ = χβ(ξ, f),
1353
+ ξ ∈ Sobs, τ ∈ Sinc, f ∈ [0.8 1.2]fcι, ι = 1, 2, 3,
1354
+ (12)
1355
+ where ρβ, Eβ, νβ respectively denote the normal density, Young’s modulus, and Poisson’s ratio in Π
1356
+ exp
1357
+ β , β =
1358
+ 1, 2, and τ indicates the source location. Note that νβ ∼ 0.32 according to Table 5 and Λ, related to 1 − ν2
1359
+ β,
1360
+ 15
1361
+
1362
+ shows little sensitivity to small variations in the Poisson’s ratio. Thus, in what follows, νβ is treated as a
1363
+ known parameter. Provided vβ(ξ, f; τ), the objective is to reconstruct χβ(ξ, f).
1364
+ 4.4. Direct inversion
1365
+ Following the reconstruction procedure of Section 3.2, the distribution of χβ in Gβ, β = 1, 2, is obtained
1366
+ at specific frequencies. In this vein, the positive-definite MLP networks χ⋆
1367
+ β = Nχβ(ξ, ω) and α⋆ = Nα(ξ, ω)
1368
+ comprised of three hidden layers of respectively 20, 40, and 20 neurons are constructed according to Fig. 1.
1369
+ In all MLP trainings of this section, each epoch makes use of the full dataset and the learning rate is 0.005.
1370
+ When β = 1, the inversion is conducted at f1 = 0.336. Sinc is sampled at one point i.e., the piezoelectric
1371
+ transducer remains fixed during the test on Al plate, and thus, Nτ = 1, while a concentric 60×60 subset
1372
+ of collocation points sampling Sobs is deployed for training. In this setting, the input to χ⋆
1373
+ 1 and α⋆ is of
1374
+ size NξNτ × Nω = 3600 × 1, and their real-valued outputs are of the same size. The results are shown in
1375
+ Fig. 16. When β = 2, the direct inversion is conducted at f2 = 0.17 and f3 = 0.61. For the low-frequency
1376
+ reconstruction, Sinc is sampled at one point, while a 40×120 subset of scan points in G2 is used for training
1377
+ so that the input/output size for χ⋆
1378
+ 2 and α⋆ is 4600×1. The recovered fields and associated normal error are
1379
+ provided in Fig. 17. Table 7 enlists the true values as well as mean and standard deviation of the reconstructed
1380
+ distributions χ⋆
1381
+ β in Π
1382
+ exp
1383
+ β , β = 1, 2, according to Figs. 16 and 17. For the high-frequency reconstruction, when
1384
+ β = 2, Sinc is sampled at three points i.e., experiments are performed for three distinct positions of the
1385
+ piezoelectric transducer, while the same subset of scan points is used for training. In this case, the input to
1386
+ χ⋆
1387
+ 2 and α⋆ is 13800×1, while their output is of dimension 4600×1. The high-frequency reconstruction results
1388
+ are illustrated in Fig. 18, and the affiliated means and standard deviations are provided in Table 8. It should
1389
+ be mentioned that the computed normal errors in Figs. 16, 17, and 18 are with respect to the verified values
1390
+ of Section 4.4.1. Note that the recovered α⋆s from laboratory test data are much smoother than the ones
1391
+ reconstructed from synthetic data in Section 3.2. This could be attributed to the scaler nature of (12) with a
1392
+ single unknown parameter – as opposed to the vector equations governing the in-plane wave motion with two
1393
+ unknown parameters. More specifically, here, α⋆ controls the weights and biases of a single network χ⋆
1394
+ β, while
1395
+ in Section 3.2, α⋆ simultaneously controls the parameters of two separate networks µ⋆ and λ⋆. A comparative
1396
+ analysis of Figs. 17 and 18 reveals that (a) enriching the waveform data by increasing the number of sources
1397
+ remarkably decrease the reconstruction error, (b) the regularization parameter α in (3) is truly distributed
1398
+ in nature as the magnitude of the recovered α⋆ in brass is ten times greater than that of titanium and steel
1399
+ which is due to the difference in the level of noise in measurements related to distinct material surfaces, and
1400
+ (c) the recovered field χ⋆
1401
+ 2 – which according to (12) is a material property E2/ρ2, demonstrates a significant
1402
+ dependence to the reconstruction frequency. The latter calls for proper verification of the results which is the
1403
+ subject of Section 4.4.1.
1404
+ 4.4.1. Verification
1405
+ To shine some light on the nature discrepancies between the low- and high- frequency reconstructions in
1406
+ Figure 16: Direct inversion of the PDE parameter χ1 in Π
1407
+ exp
1408
+ 1
1409
+ using test data from a single source at frequency f1 = 0.336: (a) MLP-
1410
+ predicted distribution χ1(ξ, f1) in ξ ∈ G1, (b) reconstruction error (8) with respect to the true value χ1 = χAl = 1, (c) MLP-
1411
+ recovered distribution of the regularization parameter α⋆, and (d) loss function Lε vs. the number of epochs Ne in log scale.
1412
+ 16
1413
+
1414
+ (a)
1415
+ (b)
1416
+ (c)
1417
+ ×10-3
1418
+ (d)
1419
+ 三(x1)
1420
+ X1
1421
+ α*
1422
+ 6
1423
+ 1.06
1424
+ 0.06
1425
+ log(Le)
1426
+ 4
1427
+ 1.04
1428
+ 4
1429
+ 0.04
1430
+ -5
1431
+ 1.02
1432
+ 0.02
1433
+ 2
1434
+ -6
1435
+ Ne
1436
+ ELLLEFE
1437
+ 0
1438
+ 2
1439
+ ×103
1440
+ 4Figure 17: Direct inversion of the PDE parameter χ2 in Π
1441
+ exp
1442
+ 2
1443
+ using test data from a single source at frequency f2 = 0.17: (a) MLP-
1444
+ predicted distribution χ2(ξ, f2) in ξ ∈ G2, (b) reconstruction error (8) with respect to the true value χ2 ∈ {χTi, χSt, χBr} =
1445
+ {0.91, 1, 0.51} as per Table 5, (c) MLP-recovered distribution of the regularization parameter α⋆, and (d) loss function Lε vs. the
1446
+ number of epochs Ne in log scale.
1447
+ Table 7: Mean and standard deviation of the reconstructed distributions in Figs. 16 and 17 via the direct inversion of
1448
+ single-source test data.
1449
+ β
1450
+ 1
1451
+ 2Ti
1452
+ 2St
1453
+ 2Br
1454
+ χβ
1455
+ 1
1456
+ 0.91
1457
+ 1
1458
+ 0.51
1459
+ ⟨χ⋆
1460
+ β⟩Πexp
1461
+ β
1462
+ 1.041
1463
+ 0.872
1464
+ 0.978
1465
+ 0.443
1466
+ σ(χ⋆
1467
+ β|Πexp
1468
+ β )
1469
+ 0.017
1470
+ 0.044
1471
+ 0.060
1472
+ 0.052
1473
+ Figure 18: Direct inversion of the PDE parameter χ2 in Π
1474
+ exp
1475
+ 2
1476
+ using test data from three source locations at frequency f3 =
1477
+ 0.61: (a) MLP-predicted distribution χ2(ξ, f3) in ξ ∈ G2, (b) reconstruction error (8) with respect to the related estimates
1478
+ {0.57, 0.59, 0.24} as per Fig. 20, (c) MLP-recovered distribution of the regularization parameter α⋆, and (d) loss function Lε
1479
+ vs. the number of epochs Ne in log scale.
1480
+ Table 8: Mean and standard deviation of the reconstructed distributions in Fig. 18 via the direct inversion applied to
1481
+ high-frequency test data from three distinct sources.
1482
+ β
1483
+ 2Ti
1484
+ 2St
1485
+ 2Br
1486
+ χ′
1487
+ β
1488
+ 0.57
1489
+ 0.59
1490
+ 0.24
1491
+ ⟨χ⋆
1492
+ β⟩Πexp
1493
+ β
1494
+ 0.585 0.606 0.227
1495
+ σ(χ⋆
1496
+ β|Πexp
1497
+ β )
1498
+ 0.015 0.029 0.016
1499
+ Figs. 17 and 18, a set of secondary tests are performed to obtain the dispersion curve for each component of
1500
+ the test setup. For this purpose, antiplane shear waves of form (9) are induced at fcj = 50j kHz, j = 1, 2, . . . , 7,
1501
+ 17
1502
+
1503
+ (a)
1504
+ x2
1505
+ 0.9
1506
+ (d)
1507
+ 0.7
1508
+ (c)
1509
+ log(Le)
1510
+ 2
1511
+ -3
1512
+ 0.5
1513
+
1514
+ (b)
1515
+ 1
1516
+ -3.5
1517
+ 三(x2)
1518
+ -4
1519
+ 0.2
1520
+ ×10-3
1521
+ 0
1522
+ 8
1523
+ ×103
1524
+ 0.1
1525
+ Ne(a)
1526
+ 0.6
1527
+ x2
1528
+ (d)
1529
+ 0.4
1530
+ (c)
1531
+ log(Le)
1532
+ 0.2
1533
+ *0
1534
+ 1.2
1535
+ (b)
1536
+ 0.6
1537
+ -2
1538
+ 三(x2)
1539
+ 0.08
1540
+ ×10-3
1541
+ 0
1542
+ 4
1543
+ 8
1544
+ ×103
1545
+ 0.04
1546
+ NeFigure 19: Experimental vs. theoretical dispersion curves f(λ−1
1547
+ µ ) for µ = {Al, Ti, St, Br}. Analytical curves (solid lines) are
1548
+ computed from (13) using the pertinent properties in Table 5.
1549
+ Figure 20: Discrepancy in the balance law (12) at f3 = 0.61: (a) elastic force field T1
1550
+ µ, µ = {Ti, St, Br}, according to (14) with
1551
+ adjusted coefficients {χTi, χSt, χBr} = {0.57, 0.59, 0.24}, (b) the inertia field T2
1552
+ µ, and (c) normal discrepancy Dµ.
1553
+ in 60 cm × 60 cm cuts of aluminum, titanium, steel, and brass sheets used in the primary tests of Fig. 15.
1554
+ In each experiment, the piezoelectric transducer is placed in the middle of specimen (far from the external
1555
+ boundary), and the out-of-plane wave motion is captured in the immediate vicinity of the transducer along
1556
+ a straight line of length 8 cm sampled at 400 scan points. The Fourier-transformed signals in time-space
1557
+ furnish the dispersion relations of Fig. 19. In parallel, the theoretical dispersion curves affiliated with (12) are
1558
+ computed according to
1559
+ f = 2π(λµ)−2
1560
+
1561
+ χµh2
1562
+ 12(1 − ν2µ),
1563
+ χµ = Eµ
1564
+ ρµ
1565
+ ,
1566
+ µ = {Al, Ti, St, Br},
1567
+ (13)
1568
+ using the values of Table 5 for χµ and νµ and h = 1.5mm. A comparison between the experimental and
1569
+ theoretical dispersion curves f(λ−1
1570
+ µ ) in Fig. 19 verifies the theory and the values of Table 5 for χµ in the low-
1571
+ frequency regime of wave motion. This is also in agreement with the direct inversion results of Figs. 16 and 17.
1572
+ Moreover, Fig. 19 suggests that at approximately fµ = {170, 200, 120, 110} kHz for µ = {Al, Ti, St, Br} the
1573
+ governing PDE (12) with physical coefficients fails to predict the experimental results which may provide an
1574
+ insight regarding the high-frequency reconstruction results in Fig. 18. Further investigation of the balance
1575
+ law (12), as illustrated in Fig. 20, shows that the test data at 312 kHz satisfy – with less than 10 − 20%
1576
+ discrepancy depending on the material – a PDE of form (12) with modified coefficients. More specifically,
1577
+ Fig. 20 demonstrates the achievable balance between the elastic force distribution T1
1578
+ µ and inertia field T2
1579
+ µ
1580
+ in (12) by directly adjusting the PDE parameter χ′
1581
+ 2 to minimize the discrepancy Dµ according to
1582
+ T1
1583
+ µ :=
1584
+ χ′
1585
+ 2h3
1586
+ 12(1 − ν2
1587
+ 2 )∇4v2,
1588
+ T2
1589
+ µ := h(2πf)2v2,
1590
+ Dµ := |T1
1591
+ µ − T2
1592
+ µ|
1593
+ max |T2µ| .
1594
+ (14)
1595
+ 18
1596
+
1597
+ ×106
1598
+ 1
1599
+ T
1600
+ Br
1601
+ Al
1602
+ 0.8
1603
+ 0.6
1604
+ f [s-1]
1605
+ 0.4
1606
+ 0.2
1607
+ 0
1608
+ 0
1609
+ 0.2
1610
+ 0.4
1611
+ 0.6
1612
+ 0.8
1613
+ 1 0
1614
+ 0.2
1615
+ 0.4
1616
+ 0.60.810
1617
+ 0.2
1618
+ 0.6
1619
+ 0.8
1620
+ 10
1621
+ 0.2
1622
+ 0.4
1623
+ 0.60.8
1624
+ 1
1625
+ ×103
1626
+ 入=1 [m-1](a)
1627
+ (c)
1628
+ 2
1629
+ ①μ
1630
+ 0
1631
+ (b)
1632
+ Ti
1633
+ St
1634
+ Br
1635
+ 2
1636
+ ×10-1
1637
+ Ti
1638
+ St
1639
+ BrWith reference to Table 8, the recovered coefficients χ′
1640
+ 2 at f = f3 = 0.61 verify the direct inversion results of
1641
+ Fig. 18. This implies that the direct inversion (or PINNs) may lead to non-physical reconstructions in order to
1642
+ attain the best fit for the data to the “perceived”” underlying physics. Thus, it is imperative to establish the
1643
+ range of validity of the prescribed physical principles in data-driven modeling. Here, the physics of the system
1644
+ at f3 is in transition, yet close enough to the leading-order approximation (12) that the discrepancy is less
1645
+ than 20%. It is unclear, however, if this equation with non-physical coefficients may be used as a predictive
1646
+ tool. It would be interesting to further investigate the results through the prism of higher-order continuum
1647
+ theories and a set of independent experiments for validation which could be the subject of a future study.
1648
+ 4.5. Physics-informed neural networks
1649
+ Following Section 3.3, PINNs are built and trained using experimental test data of Section 4.4. The MLP
1650
+ network v1⋆ = v1⋆(ξ, f, x|γ, χ⋆
1651
+ 1) with six hidden layers of respectively 40, 40, 120, 80, 40, and 40 neurons is
1652
+ constructed to map the out-of-plane velocity field v1 (in Π
1653
+ exp
1654
+ 1 ) related to a single transducer location x1 and
1655
+ frequency f1 = 0.336. The PDE parameter χ1 is defined as the unknown scaler parameter of the network, and
1656
+ following the argument of Section 3.3, the Lagrange multiplier γ is specified as a nonadaptive scaler weight of
1657
+ magnitude
1658
+ 1
1659
+ h(2πf1)2 = 1.5. The input/output dimension for v1⋆ is Nξ×Nω×Nτ = 3600×1×1, and each epoch
1660
+ makes use of the full dataset for training and the learning rate is 0.005. Keep in mind that the objective here
1661
+ is to (a) construct a surrogate map for v1, and (b) identify χ⋆
1662
+ 1.
1663
+ Fig. 21 demonstrates (a) the accuracy of PINN-estimated field v1⋆ compared to the test data v1, (b)
1664
+ performance of automatic differentiation in capturing the fourth-order field derivatives e.g., v1⋆
1665
+ ,1111 that appear
1666
+ in the governing PDE (12), and (c) the evolution of parameter χ⋆
1667
+ 1. The comparison in (b) is with respect to the
1668
+ spectral derivates of test data according to Section 2.3.2. It is no surprise that the automatic differentiation
1669
+ incurs greater errors in estimating the higher order derivatives involved in the antiplane wave motion compared
1670
+ to the second-order derivatives of Section 3.3.
1671
+ In addition, the PINN v2⋆ = v2⋆(ξ, f, x|γ, χ⋆
1672
+ 2) with seven hidden layers of respectively 40, 40, 120, 120, 80,
1673
+ 40, and 40 neurons is created to reconstruct (i) particle velocity field v2 in the layered specimen Π
1674
+ exp
1675
+ 2 , and (ii)
1676
+ distribution of the PDE parameter χ2 in the sampling area. The latter is defined as an unknown parameter
1677
+ of the network with dimension 40×120, and the scaler weight γ is set to
1678
+ 1
1679
+ h(2πf2)2 = 5.84 for the low-frequency
1680
+ reconstruction. In this setting, the input/output dimension for v2⋆ reads 4800×1×1. Fig. 22 provides a
1681
+ comparative analysis between the experimental and PINN-predicted maps of velocity and PDE parameter.
1682
+ The associated statistics are provided in Table 9. It is evident from the waveform in Fig. 22 (a) that the most
1683
+ pronounced errors in Fig. 22 (d) occur at the loci of vanishing particle velocity. Similar to Section 3.2, this
1684
+ could be potentially addressed by enriching the test data.
1685
+ 5. Conclusions
1686
+ The ML-based direct inversion and physics-informed neural networks are investigated for full-field ultra-
1687
+ sonic characterization of layered components. Direct inversion makes use of signal processing tools to directly
1688
+ compute the field derivatives from dense datasets furnished by laser-based ultrasonic experiments. This allows
1689
+ for a simplified and controlled learning process that specifically recovers the sought-for physical fields through
1690
+ minimizing a single-objective loss function. PINNs are by design more versatile and particularly advantageous
1691
+ with limited test data where waveform completion is desired (or required) for mechanical characterization.
1692
+ PINNs multi-objective learning from ultrasonic data may be more complex but can be accomplished via
1693
+ carefully gauged loss functions.
1694
+ In direct inversion, Tikhonov regularization is critical for stable reconstruction of distributed PDE param-
1695
+ eters from limited or multi-fidelity experimental data. In this vein, deep learning offers a unique opportunity
1696
+ to simultaneously recover the regularization parameter as an auxiliary field which proved to be particularly
1697
+ insightful in inversion of experimental data.
1698
+ In training PINNs, two strategies were remarkably helpful: (1) identifying the reference length scale by the
1699
+ dominant wavelength in an effort to control the norm of spatial derivatives – which turned out to be crucial in
1700
+ the case of flexural waves in thin plates with the higher order PDE, and (2) estimating the Lagrange multiplier
1701
+ by taking advantage of the inertia term in the governing PDEs.
1702
+ 19
1703
+
1704
+ Figure
1705
+ 21:
1706
+ PINN
1707
+ vs.
1708
+ experimental
1709
+ maps
1710
+ of
1711
+ particle
1712
+ velocity
1713
+ and
1714
+ its
1715
+ derivatives
1716
+ in
1717
+ Π
1718
+ exp
1719
+ 1
1720
+ :
1721
+ (a)
1722
+ PINN
1723
+ estimates
1724
+ for
1725
+ {v1⋆, v1⋆
1726
+ ,1111, v1⋆
1727
+ ,2222, v1⋆
1728
+ ,1122} wherein the derivatives are obtained by automatic differentiation, (b) normalized LDV-captured par-
1729
+ ticle velocity field v1 and its corresponding spectral derivatives, (c) normal misfit 8 between (a) and (b), (d) PINN-reconstructed
1730
+ PDE parameter χ⋆
1731
+ 1 vs. the number of epochs Ne, and (e) total loss Lϖ and its components (the PDE residue and data misfit)
1732
+ vs. Ne in log scale.
1733
+ Laboratory implementations at multiple frequencies exposed that verification and validation are indis-
1734
+ pensable for predictive data-driven modeling. More specifically, both direct inversion and PINNs recover the
1735
+ unknown “physical” quantities that best fit the data to specific equations (with often unspecified range of va-
1736
+ lidity). This may lead to mathematically decent but physically incompatible reconstructions especially when
1737
+ the perceived physical laws are near their limits such that the discrepancy in capturing the actual physics
1738
+ is significant. In which case, the inversion algorithms try to compensate for this discrepancy by adjusting
1739
+ the PDE parameters which leads to non-physical reconstructions. Thus, it is paramount to conduct comple-
1740
+ mentary experiments to (a) establish the applicability of prescribed PDEs, and (b) validate the predictive
1741
+ capabilities of the reconstructed models.
1742
+ Authors’ contributions
1743
+ Y.X. investigation, methodology, data curation, software, visualization, writing – original draft; F.P. con-
1744
+ ceptualization, methodology, funding acquisition, supervision, writing – original draft; J.S. experimental data
1745
+ curation; C.W. experimental data curation.
1746
+ 20
1747
+
1748
+
1749
+ .1*
1750
+ 1 *
1751
+ 1*
1752
+ 0.4
1753
+ 2
1754
+ 1
1755
+ 0.4
1756
+ (a)
1757
+ 0
1758
+ 0
1759
+ 0
1760
+ 0
1761
+ -2
1762
+ -0.4
1763
+ -0.4
1764
+ v,1111
1765
+ V,2222
1766
+ v,1122
1767
+ 0.4
1768
+ 2
1769
+ 1
1770
+ 0.4
1771
+ (b)
1772
+ 0
1773
+ 0
1774
+ 0
1775
+ 0
1776
+ -2
1777
+ -0.4
1778
+ -0.4
1779
+ -1
1780
+ 8
1781
+ 三(v,1111)
1782
+ 3
1783
+ ?L
1784
+ 1 *
1785
+ 6
1786
+ 6
1787
+ 6
1788
+ 4
1789
+ 4
1790
+ (c)
1791
+ 4
1792
+ 2
1793
+ 2
1794
+ 2
1795
+ ×10-3
1796
+ ×10-1
1797
+ ×10-1
1798
+ ×10-1
1799
+ 1
1800
+ x1
1801
+ PDE loss
1802
+ 2
1803
+ data loss
1804
+ 0.8
1805
+ total loss
1806
+ 0.6
1807
+ (d)
1808
+ (e)
1809
+ -4
1810
+ 0.4
1811
+ MA
1812
+ 0.2
1813
+ -6
1814
+ Ne
1815
+ Ne
1816
+ 0
1817
+ ×105
1818
+ 0
1819
+ 0.2
1820
+ 0.4
1821
+ 0.6
1822
+ 0.8
1823
+ 0
1824
+ 0.2
1825
+ 0.4
1826
+ 0.6
1827
+ 0.8
1828
+ 1Figure 22: Low-frequency PINN reconstruction in Π
1829
+ exp
1830
+ 2
1831
+ using test data from a single source at f2 = 0.17: (a) PINN-predicted distri-
1832
+ bution of particle velocity v2⋆, (b) normalized LDV-captured particle velocity v2, (c) normal misfit between (a) and (b), (d) PINN-
1833
+ predicted distribution of the PDE parameter χ⋆
1834
+ 2, and (e) total loss Lϖ and its components (the PDE residue and data misfit)
1835
+ vs. the number of epochs Ne in log scale.
1836
+ Table 9: Mean and standard deviation of the PINN-reconstructed distributions in Fig. 22 from a single-source, low-
1837
+ frequency test data.
1838
+ β
1839
+ 2Ti
1840
+ 2St
1841
+ 2Br
1842
+ χβ
1843
+ 0.91
1844
+ 1
1845
+ 0.51
1846
+ ⟨χ⋆
1847
+ β⟩Πexp
1848
+ β
1849
+ 0.790
1850
+ 0.890
1851
+ 0.414
1852
+ σ(χ⋆
1853
+ β|Πexp
1854
+ β )
1855
+ 0.214
1856
+ 0.356
1857
+ 0.134
1858
+ Acknowledgments
1859
+ This study was funded by the National Science Foundation (Grant No. 1944812) and the University of
1860
+ Colorado Boulder through FP’s startup. This work utilized resources from the University of Colorado Boulder
1861
+ Research Computing Group, which is supported by the National Science Foundation (awards ACI-1532235
1862
+ and ACI-1532236), the University of Colorado Boulder, and Colorado State University. Special thanks are
1863
+ due to Kevish Napal for facilitating the use of FreeFem++ code developed as part of [49] for elastodynamic
1864
+ simulations.
1865
+ References
1866
+ [1] X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, S. A. Boppart, Acoustomotive optical coherence
1867
+ elastography for measuring material mechanical properties, Optics letters 34 (19) (2009) 2894–2896.
1868
+ [2] G. Bal, C. Bellis, S. Imperiale, F. Monard, Reconstruction of constitutive parameters in isotropic linear
1869
+ elasticity from noisy full-field measurements, Inverse problems 30 (12) (2014) 125004.
1870
+ [3] B. S. Garra, Elastography: history, principles, and technique comparison, Abdominal imaging 40 (4)
1871
+ (2015) 680–697.
1872
+ [4] C. Bellis, H. Moulinec, A full-field image conversion method for the inverse conductivity problem with
1873
+ internal measurements, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
1874
+ Sciences 472 (2187) (2016) 20150488.
1875
+ [5] H. Wei, T. Mukherjee, W. Zhang, J. Zuback, G. Knapp, A. De, T. DebRoy, Mechanistic models for
1876
+ additive manufacturing of metallic components, Progress in Materials Science 116 (2021) 100703.
1877
+ 21
1878
+
1879
+ 0.8
1880
+ 2
1881
+ 0.8
1882
+ 0.4
1883
+ (a)
1884
+ (c)
1885
+ 0
1886
+ 0.4
1887
+ 0.4
1888
+ 0.8
1889
+ PDE loss
1890
+ 0.4
1891
+ (b)
1892
+ 2
1893
+ data loss
1894
+ 0
1895
+ total loss
1896
+ -0.4
1897
+ 4
1898
+ (d)
1899
+ 6
1900
+ -6
1901
+ 4
1902
+ (c)
1903
+ 8
1904
+ 2
1905
+ ×105
1906
+ 0
1907
+ 1
1908
+ 2
1909
+ 3
1910
+ ×10-3
1911
+ 4[6] C.-T. Chen, G. X. Gu, Learning hidden elasticity with deep neural networks, Proceedings of the National
1912
+ Academy of Sciences 118 (31) (2021) e2102721118.
1913
+ [7] H. You, Q. Zhang, C. J. Ross, C.-H. Lee, M.-C. Hsu, Y. Yu, A physics-guided neural operator learn-
1914
+ ing approach to model biological tissues from digital image correlation measurements, arXiv preprint
1915
+ arXiv:2204.00205.
1916
+ [8] C. M. Bishop, N. M. Nasrabadi, Pattern recognition and machine learning, Vol. 4, Springer, 2006.
1917
+ [9] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015) 436–444.
1918
+ [10] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine
1919
+ learning through physics-informed neural networks:
1920
+ Where we are and what’s next, arXiv preprint
1921
+ arXiv:2201.05624.
1922
+ [11] S. Wang, H. Wang, P. Perdikaris, Improved architectures and training algorithms for deep operator
1923
+ networks, Journal of Scientific Computing 92 (2) (2022) 1–42.
1924
+ [12] L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mech-
1925
+ anism, arXiv preprint arXiv:2009.04544.
1926
+ [13] Z. Chen, V. Badrinarayanan, C.-Y. Lee, A. Rabinovich, Gradnorm: Gradient normalization for adaptive
1927
+ loss balancing in deep multitask networks, in: International conference on machine learning, PMLR, 2018,
1928
+ pp. 794–803.
1929
+ [14] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions
1930
+ of nonlinear partial differential equations, arXiv preprint arXiv:1711.10561.
1931
+ [15] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework
1932
+ for solving forward and inverse problems involving nonlinear partial differential equations, Journal of
1933
+ Computational physics 378 (2019) 686–707.
1934
+ [16] E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework
1935
+ for inversion and surrogate modeling in solid mechanics, Computer Methods in Applied Mechanics and
1936
+ Engineering 379 (2021) 113741.
1937
+ [17] A. Henkes, H. Wessels, R. Mahnken, Physics informed neural networks for continuum micromechanics,
1938
+ Computer Methods in Applied Mechanics and Engineering 393 (2022) 114790.
1939
+ [18] R. Muthupillai, D. Lomas, P. Rossman, J. F. Greenleaf, A. Manduca, R. L. Ehman, Magnetic resonance
1940
+ elastography by direct visualization of propagating acoustic strain waves, science 269 (5232) (1995) 1854–
1941
+ 1857.
1942
+ [19] P. E. Barbone, N. H. Gokhale, Elastic modulus imaging: on the uniqueness and nonuniqueness of the
1943
+ elastography inverse problem in two dimensions, Inverse problems 20 (1) (2004) 283.
1944
+ [20] O. A. Babaniyi, A. A. Oberai, P. E. Barbone, Direct error in constitutive equation formulation for plane
1945
+ stress inverse elasticity problem, Computer methods in applied mechanics and engineering 314 (2017)
1946
+ 3–18.
1947
+ [21] A. N. Tikhonov, A. Goncharsky, V. Stepanov, A. G. Yagola, Numerical methods for the solution of
1948
+ ill-posed problems, Vol. 328, Springer Science & Business Media, 1995.
1949
+ [22] A. Kirsch, et al., An introduction to the mathematical theory of inverse problems, Vol. 120, Springer,
1950
+ 2011.
1951
+ [23] On the convergence of physics informed neural networks for linear second-order elliptic and parabolic
1952
+ type pdes, Communications in Computational Physics 28 (5) (2020) 2042–2074.
1953
+ 22
1954
+
1955
+ [24] S. Wang, X. Yu, P. Perdikaris, When and why pinns fail to train: A neural tangent kernel perspective,
1956
+ Journal of Computational Physics 449 (2022) 110768.
1957
+ [25] Z. Xiang, W. Peng, X. Liu, W. Yao, Self-adaptive loss balanced physics-informed neural networks, Neu-
1958
+ rocomputing 496 (2022) 11–34.
1959
+ [26] R. Bischof, M. Kraus, Multi-objective loss balancing for physics-informed deep learning, arXiv preprint
1960
+ arXiv:2110.09813.
1961
+ [27] H. Son, S. W. Cho, H. J. Hwang, Al-pinns: Augmented lagrangian relaxation method for physics-informed
1962
+ neural networks, arXiv preprint arXiv:2205.01059.
1963
+ [28] S. Zeng, Z. Zhang, Q. Zou, Adaptive deep neural networks methods for high-dimensional partial differ-
1964
+ ential equations, Journal of Computational Physics 463 (2022) 111232.
1965
+ [29] J. Yu, L. Lu, X. Meng, G. E. Karniadakis, Gradient-enhanced physics-informed neural networks for
1966
+ forward and inverse pde problems, Computer Methods in Applied Mechanics and Engineering 393 (2022)
1967
+ 114823.
1968
+ [30] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-
1969
+ informed neural networks, SIAM Journal on Scientific Computing 43 (5) (2021) A3055–A3081.
1970
+ [31] A. D. Jagtap, K. Kawaguchi, G. Em Karniadakis, Locally adaptive activation functions with slope recovery
1971
+ for deep and physics-informed neural networks, Proceedings of the Royal Society A 476 (2239) (2020)
1972
+ 20200334.
1973
+ [32] Y. Kim, Y. Choi, D. Widemann, T. Zohdi, A fast and accurate physics-informed neural network reduced
1974
+ order model with shallow masked autoencoder, Journal of Computational Physics 451 (2022) 110841.
1975
+ [33] G. I. Barenblatt, Scaling (Cambridge texts in applied mathematics), Cambridge University Press, Cam-
1976
+ bridge, UK, 2003.
1977
+ [34] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks 4 (2) (1991)
1978
+ 251–257.
1979
+ [35] Y. Chen, L. Dal Negro, Physics-informed neural networks for imaging and parameter retrieval of photonic
1980
+ nanostructures from near-field data, APL Photonics 7 (1) (2022) 010802.
1981
+ [36] F. Pourahmadian, B. B. Guzina, On the elastic anatomy of heterogeneous fractures in rock, International
1982
+ Journal of Rock Mechanics and Mining Sciences 106 (2018) 259 – 268.
1983
+ [37] X. Liu, J. Song, F. Pourahmadian, H. Haddar, Time-vs. frequency-domain inverse elastic scattering:
1984
+ Theory and experiment, arXiv preprint arXiv:2209.07006.
1985
+ [38] F. Pourahmadian, B. B. Guzina, H. Haddar, Generalized linear sampling method for elastic-wave sensing
1986
+ of heterogeneous fractures, Inverse Problems 33 (5) (2017) 055007.
1987
+ [39] F. Cakoni, D. Colton, H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, SIAM, 2016.
1988
+ [40] V. A. Morozov, Methods for solving incorrectly posed problems, Springer Science & Business Media,
1989
+ 2012.
1990
+ [41] R. Kress, Linear integral equation, Springer, Berlin, 1999.
1991
+ [42] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
1992
+ A. Lerer, Automatic differentiation in pytorch.
1993
+ [43] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer Science &
1994
+ Business Media, 2010.
1995
+ 23
1996
+
1997
+ [44] T. Ha-Duong, On retarded potential boundary integral equations and their discretization, in: Topics in
1998
+ computational wave propagation, Springer, 2003, pp. 301–336.
1999
+ [45] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM review 35 (2) (1993) 183–238.
2000
+ [46] H. Everett III, Generalized lagrange multiplier method for solving problems of optimum allocation of
2001
+ resources, Operations research 11 (3) (1963) 399–417.
2002
+ [47] D. Liu, Y. Wang, A dual-dimer method for training physics-constrained neural networks with minimax
2003
+ architecture, Neural Networks 136 (2021) 112–125.
2004
+ [48] F. Hecht, New development in freefem++, Journal of Numerical Mathematics 20 (3-4) (2012) 251–265.
2005
+ URL https://freefem.org/
2006
+ [49] F. Pourahmadian, K. Napal, Poroelastic near-field inverse scattering, Journal of Computational Physics
2007
+ 455 (2022) 111005.
2008
+ [50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
2009
+ L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
2010
+ L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning library,
2011
+ Advances in neural information processing systems 32.
2012
+ [51] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
2013
+ [52] Pytorch implementation of physics-informed neural networks, https://github.com/jayroxis/PINNs
2014
+ (2022).
2015
+ [53] K. F. Graff, Wave motion in elastic solids, Courier Corporation, 2012.
2016
+ 24
2017
+
1tE0T4oBgHgl3EQfdgCu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NAzT4oBgHgl3EQf9P6r/content/2301.01917v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e362a2705717679447088476ab6528cac74d10ff2b32ed331e764e53730fd83
3
+ size 46691229
4NE3T4oBgHgl3EQfQAnJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b0cfcd0d915daa318d4aa74c80b5d66a5e2f012325cd16317c8de7ced4c16b
3
+ size 218405
6NE1T4oBgHgl3EQfTQM9/content/2301.03075v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a600578a9dfd50795c3165ec90416954c9cd9c7df59cff0a011a5539eae7730e
3
+ size 256465
6NE1T4oBgHgl3EQfTQM9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e229130f0a2830929f13145af656bae7d6b98bef08dfeeb167c708a34c4d75e
3
+ size 122815
6NE5T4oBgHgl3EQfPg5N/content/tmp_files/2301.05505v1.pdf.txt ADDED
@@ -0,0 +1,1019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. dust_filtering
2
+ ©ESO 2023
3
+ January 16, 2023
4
+ Leaky Dust Traps: How Fragmentation impacts Dust Filtering by
5
+ Planets
6
+ Sebastian Markus Stammler1, Tim Lichtenberg2, Joanna Dr˛a˙zkowska3, and Tilman Birnstiel1, 4
7
+ 1 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679, Munich, Germany
8
+ 2 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
9
+ 3 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
10
+ 4 Exzellenzcluster ORIGINS, Boltzmannstr. 2, D-85748 Garching, Germany
11
+ January 16, 2023
12
+ ABSTRACT
13
+ The nucleosynthetic isotope dichotomy between carbonaceous and non-carbonaceous meteorites has been interpreted as evidence for
14
+ spatial separation and coexistence of two distinct planet-forming reservoirs for several million years in the solar protoplanetary disk.
15
+ Rapid formation of Jupiter’s core within one million years after CAIs has been suggested as a potential mechanism for spatial and
16
+ temporal separation. In this scenario, Jupiter’s core would open a gap in the disk and trap inwards-drifting dust grains in the pressure
17
+ bump at the outer edge of the gap, separating the inner and outer disk materials from each other. We performed simulations of dust
18
+ particles in a protoplanetary disk with a gap opened by an early formed Jupiter core, including dust growth and fragmentation as well
19
+ as dust transport using the dust evolution software DustPy. Our numerical experiments indicate that particles trapped in the outer
20
+ edge of the gap rapidly fragment and are transported through the gap, contaminating the inner disk with outer disk materials on a
21
+ timescale that is inconsistent with the meteoritic record. This suggests that other processes must have initiated or at least contributed
22
+ to the isotopic separation between the inner and outer Solar System.
23
+ Key words. Meteorites, meteors, meteoroids — Methods: numerical — Protoplanetary disks — Planets and satellites: formation –
24
+ Planets and satellites: composition
25
+ 1. Introduction
26
+ Recent high-precision isotopic measurements reveal a di-
27
+ chotomy between carbonaceous and non-carbonaceous mete-
28
+ orites indicating that both have been formed in separate reser-
29
+ voirs within the early Solar System (Trinquier et al. 2007, 2009;
30
+ Leya et al. 2009; Warren 2011; Mezger et al. 2020; Kleine et al.
31
+ 2020). Kruijer et al. (2017) and Desch et al. (2018) argued that
32
+ these reservoirs must have been well separated for at least two
33
+ million years without interchanging solid material, proposing the
34
+ rapid formation of Jupiter’s core opening a gap in the protoplan-
35
+ etary disk as possible mechanism to prevent the mixing of both
36
+ reservoirs. The physical origin of the isotopic separation is a po-
37
+ tential critical clue to the timescales of planet formation in both
38
+ the inner and outer Solar System (Nimmo et al. 2018), and thus
39
+ ultimately the origin of the chemical abundances in the terres-
40
+ trial planets and similar exoplanets (Krijt et al. 2022; Lichten-
41
+ berg et al. 2022).
42
+ This concept of a gap-opening Jupiter preventing dust reser-
43
+ voir mixing, however, intimately depends on the evolution of the
44
+ dust flux during the evolution of the protoplanetary disk. Dust
45
+ particles in protoplanetary disks are subject to gas drag and drift
46
+ (Whipple 1973; Weidenschilling 1977; Takeuchi & Lin 2002).
47
+ The radial dust velocity is given by:
48
+ vd = vg
49
+ 1
50
+ St2 + 1
51
+ + 2vP
52
+ St
53
+ St2 + 1
54
+ .
55
+ (1)
56
+ The Stokes number St is an aerodynamic measure and propor-
57
+ tional to the particle size. Small particles with small Stokes num-
58
+ bers are dragged along with the gas with velocity vg as can be
59
+ seen by Equation 1. The gas is, in contrast to the dust, pressure
60
+ supported and orbits the star with sub-Keplerian velocities in a
61
+ typical smooth disk with inward pointing pressure gradient. The
62
+ dust particles, on the other hand, are not pressure supported, ex-
63
+ change angular momentum with the gas and drift in direction of
64
+ pressure gradients. Intermediate particle sizes are most affected
65
+ by this effect. Small particles are well coupled to the gas, while
66
+ large particles are completely decoupled. From Equation 1 it can
67
+ be seen that particles with Stokes number of unity will experi-
68
+ ence maximum drift in direction of the pressure gradient with
69
+ velocity vP, which is given by:
70
+ vP = 1
71
+ 2
72
+ c2
73
+ s
74
+ vK
75
+ ∂ log P
76
+ ∂ log r ,
77
+ (2)
78
+ with the sound speed cs, pressure P, and the Keplerian velocity
79
+ vK. Particles typically grow to maximum sizes with Stokes num-
80
+ bers between 10−2 to 10−1 (see Birnstiel et al. 2012), depending
81
+ on the disk parameters, and are therefore affected by radial drift.
82
+ Growing planets can perturb the pressure structure in the disk
83
+ by opening a gap in the gas (Paardekooper & Mellema 2006;
84
+ Rice et al. 2006). At the outer edge of the gap the pressure gradi-
85
+ ent reverses and is pointing outward. If the pressure pertubation
86
+ is large enough, large dust pebbles that are affected by drift can
87
+ be prevented from crossing the gap. The planetary mass at which
88
+ the pressure pertubation is large enough to stop particle dift is
89
+ called pebble isolation mass (see Lambrechts et al. 2014; Bitsch
90
+ et al. 2018) and is given by Drazkowska et al. (2022) as:
91
+ Miso ≃ 25 M⊕
92
+ �HP/r
93
+ 0.05
94
+ �3 M⋆
95
+ M⊙
96
+ .
97
+ (3)
98
+ Article number, page 1 of 8
99
+ arXiv:2301.05505v1 [astro-ph.EP] 13 Jan 2023
100
+
101
+ A&A proofs: manuscript no. dust_filtering
102
+ From NASA’s Juno mission Jupiter’s core is estimated to
103
+ have a mass of up to 25 M⊕ (Wahl et al. 2017) and would have
104
+ therefore been able to open a gap and stop the flux of dust peb-
105
+ bles in the disk. A rapid formation of Jupiter’s core could there-
106
+ fore explain two isolated dust reservoirs with the dust in the outer
107
+ disk forming the carbonaceous and the dust in the inner disk the
108
+ non-carbonaceous bodies in the Solar System.
109
+ Dr˛a˙zkowska et al. (2019), however, showed in two-
110
+ dimensional hydrodynamic simulations of gas and dust includ-
111
+ ing collisional dust evolution, that the pressure bump at the outer
112
+ edge of planetary gaps does not only show an accumulation of
113
+ large dust pebbles, but also of small dust particles. But in con-
114
+ trast to large pebbles, these small particles are not trapped by
115
+ the pressure bump, they are produced in situ by collisions of
116
+ large particles leading to fragmentation. These small fragments
117
+ can escape the pressure bump due to diffusion and gas drag. The
118
+ equations of motion of the dust particles are given by:
119
+
120
+ ∂tΣd + 1
121
+ r
122
+
123
+ ∂r
124
+
125
+ rΣdvd − rDΣg
126
+
127
+ ∂r
128
+ �Σd
129
+ Σg
130
+ ��
131
+ = 0,
132
+ (4)
133
+ with the dust diffusivity given by Youdin & Lithwick (2007) as
134
+ D = δrc2
135
+ s
136
+ ΩK
137
+ 1
138
+ St2 + 1
139
+ .
140
+ (5)
141
+ with δr being a free parameter that defines the strength of radial
142
+ dust diffusion. Small particles are therefore most affected by dif-
143
+ fusion. If the diffusivity is high enough, these small particles can
144
+ diffuse out of the pressure maximum and are dragged with the
145
+ gas through the gap. If this is the case the inner disk would be
146
+ contaminated with dust from the outer disk negating the idea of
147
+ two distinct dust reservoirs separated by an early formed Jupiter
148
+ core.
149
+ In this letter we test this hypothesis. In section 2 we present
150
+ a toy model which initially has dust placed only outside of the
151
+ planet to show as a proof of concept, that solid material can pen-
152
+ etrate planetary gaps if the dust is subject to fragmentation and
153
+ diffusion. In section 3 we investigate the influence of the plan-
154
+ etary mass and the dust diffusivity on the dust permeability of
155
+ planetary gaps. In section 4 we present models with a realis-
156
+ tic evolution of the planetary mass, as it has been suggested for
157
+ Jupiter, for models with both fragmentation and bouncing. Fi-
158
+ nally, in section 5 we discuss our results, before we conclude in
159
+ section 6.
160
+ 2. Toy Model
161
+ To investigate the influence of a planet on the dust flux in the
162
+ inner disk, we model dust coagulation and transport in a proto-
163
+ planetary disk with a planet opening a gap at 5 AU using the dust
164
+ evolution software DustPy1 (Stammler & Birnstiel 2022). In a
165
+ first simplified toy model, we initialize the disk only with dust
166
+ outside of a Saturn mass planet. Therefore, any dust flux mea-
167
+ sured inside the planet must have crossed the gap. We use this
168
+ simplified model to investigate different scenarios: dust growth
169
+ limited by fragmentation, dust growth limited by bouncing, and
170
+ unlimited dust growth. Furthermore, we compare the toy model
171
+ to a model without a gap.
172
+ We initialize the gas surface density with the self similar so-
173
+ lution of Lynden-Bell & Pringle (1974):
174
+ Σg (r) = Mdisk
175
+ 2πr2c
176
+ � r
177
+ rc
178
+ �−1
179
+ exp
180
+
181
+ − r
182
+ rc
183
+
184
+ (6)
185
+ 1 DustPy v1.0.1 has been used for the simulations presented in this
186
+ work.
187
+ with a cutoff radius of rc = 30 AU and an initial disk mass of
188
+ Mdisk = 0.05 M⊙. We impose a gap onto this gas surface density
189
+ profile originating from a Saturn mass planet located at 5 AU, for
190
+ which we use the gap profile fits provided by Kanagawa et al.
191
+ (2017). To maintain this gap profile F (r) throughout the sim-
192
+ ulation we impose the inverse of this profile onto the turbulent
193
+ viscosity parameter α, since the product of gas surface density
194
+ and viscosity is constant in quasi steady-state:
195
+ α (r) =
196
+ α0
197
+ F (r).
198
+ (7)
199
+ In the default setup, we use α0 = δr = 10−3. Please note, that this
200
+ change in α (r) does not affect the turbulent diffusion of the dust
201
+ particles, since δr is a constant in our models.
202
+ We initialize the dust surface density with a constant gas-to-
203
+ dust ratio of 100 and the dust size distribution according Mathis
204
+ et al. (1977) as n (a) = a−3.5 with a maximum initial particle size
205
+ of 1 µm. In the toy model we initially have dust only outside of
206
+ 15 AU.
207
+ DustPy simulates dust growth by solving the Smoluchowski
208
+ equation of a dust mass distribution. Dust transport is simulated
209
+ by solving Equation 4 for every dust size individually.
210
+ The gas surface density is evolved by solving the viscous
211
+ advection-diffusion equation
212
+
213
+ ��tΣg + 1
214
+ r
215
+
216
+ ∂r
217
+
218
+ rΣgvg
219
+
220
+ = 0
221
+ (8)
222
+ with the gas velocity given by Lynden-Bell & Pringle (1974) as
223
+ vg = −
224
+ 3
225
+ Σg
226
+ √r
227
+
228
+ ∂r
229
+
230
+ Σgν √r
231
+
232
+ (9)
233
+ and the kinematic viscosity given by
234
+ ν = αcsHP
235
+ (10)
236
+ with the sound speed cs =
237
+
238
+ kBT/µ, the pressure scale height
239
+ HP = cs/ΩK, and the viscosity parameter α given by Equation 7.
240
+ We run five different flavors of the toy model: one with a
241
+ fragmentation velocity of vfrag = 10 m/s (fiducial), one with no
242
+ fragmentation at all, one with a fragmentation velocity of 1 m/s,
243
+ one with bouncing as described by Windmark et al. (2012), and
244
+ one without a gap, i.e. F (r) = 1. In the default collision model
245
+ used by DustPy particles fragment once their relative collision
246
+ velocities exceed the fragmentation velocity. Fragmenting colli-
247
+ sions of equal size particles lead to catastrophic fragmentation
248
+ of both collision partners. If the target particle is significantly
249
+ larger, only the projectile particle fragments entirely while erod-
250
+ ing mass off the target particle (Schräpler et al. 2018; Hasegawa
251
+ et al. 2021). The transition between pure sticking and fragmenta-
252
+ tion is smooth, since DustPy is assuming a velocity distribution
253
+ of possible collision velocities. For details on the collision model
254
+ we refer to Stammler & Birnstiel (2022).
255
+ Panel A of Figure 1 shows the initial dust distribution with
256
+ dust located outside of 15 AU with particles sizes up to 1 µm.
257
+ The white lines are contour lines of Stokes numbers St =
258
+
259
+ 10−3, 10−2, 10−1, 100�
260
+ with the bold white line corresponding to
261
+ St = 1. Panel B shows the fiducial simulation with a Saturn mass
262
+ planet at 5 AU and the fragmentation velocity vfrag = 10 m/s
263
+ after 1 Myr. Particles trapped in the pressure bump outside the
264
+ planetary gap can reach sizes with Stokes numbers of up to
265
+ St = 10−1 corresponding to particle sizes of a few centimeters.
266
+ It can be seen that even small particles are accumulated in the
267
+ pressure bump, even though their Stokes numbers are too small
268
+ Article number, page 2 of 8
269
+
270
+ Sebastian Markus Stammler et al.: Leaky Dust Traps: How Fragmentation impacts Dust Filtering by Planets
271
+ 101
272
+ 102
273
+ Distance from star [AU]
274
+ 10
275
+ 4
276
+ 10
277
+ 3
278
+ 10
279
+ 2
280
+ 10
281
+ 1
282
+ 100
283
+ 101
284
+ 102
285
+ Particle size [cm]
286
+ A: initial
287
+ 101
288
+ 102
289
+ Distance from star [AU]
290
+ 10
291
+ 4
292
+ 10
293
+ 3
294
+ 10
295
+ 2
296
+ 10
297
+ 1
298
+ 100
299
+ 101
300
+ 102
301
+ Particle size [cm]
302
+ B: fiducial
303
+ 101
304
+ 102
305
+ Distance from star [AU]
306
+ 10
307
+ 4
308
+ 10
309
+ 3
310
+ 10
311
+ 2
312
+ 10
313
+ 1
314
+ 100
315
+ 101
316
+ 102
317
+ Particle size [cm]
318
+ C: without planet
319
+ 101
320
+ 102
321
+ Distance from star [AU]
322
+ 10
323
+ 4
324
+ 10
325
+ 3
326
+ 10
327
+ 2
328
+ 10
329
+ 1
330
+ 100
331
+ 101
332
+ 102
333
+ Particle size [cm]
334
+ D: no fragmentation
335
+ 101
336
+ 102
337
+ Distance from star [AU]
338
+ 10
339
+ 4
340
+ 10
341
+ 3
342
+ 10
343
+ 2
344
+ 10
345
+ 1
346
+ 100
347
+ 101
348
+ 102
349
+ Particle size [cm]
350
+ E: vfrag = 1 m/s
351
+ 101
352
+ 102
353
+ Distance from star [AU]
354
+ 10
355
+ 4
356
+ 10
357
+ 3
358
+ 10
359
+ 2
360
+ 10
361
+ 1
362
+ 100
363
+ 101
364
+ 102
365
+ Particle size [cm]
366
+ F: bouncing
367
+ 10
368
+ 5
369
+ 10
370
+ 4
371
+ 10
372
+ 3
373
+ 10
374
+ 2
375
+ 10
376
+ 1
377
+ 100
378
+ 101
379
+ dust [g/cm²]
380
+ Fig. 1. Panel A: Initial dust distribution. The white lines correspond to Stokes numbers of St =
381
+
382
+ 10−3, 10−2, 10−1, 100�
383
+ with the bold white line
384
+ corresponding to St = 1. All other panels show snapshots of models at 1 Myr. Panel B: The fiducial toy model with a Saturn mass planet at
385
+ 5 AU and a fragmentation velocity of 10 m/s. Panel C: Model without a planet. The vertical dashed lines are the location at which the dust flux
386
+ is measured in Figure 2. Panel D: Model without fragmentation. Panel E: Model with a reduced fragmentation velocity of 1 m/s. Bottom right:
387
+ Model with bouncing instead of fragmentation.
388
+ to be affected by drift. These small dust particles are produced
389
+ by collisional fragmentation of larger particles trapped in the
390
+ bump. They diffuse out of the bump and are dragged with the
391
+ gas contaminating the inner disk with outer disk material. It can
392
+ be seen that particles with Stokes numbers of about St = 10−2,
393
+ corresponding to particle sizes of a few millimeter, can diffuse
394
+ through the gap into the inner disk. Particles in the inner disk
395
+ can again grow to centimeter sizes and can contribute to phe-
396
+ nomena like the streaming instability or pebble accretion. Panel
397
+ C shows a simulation with identical initial conditions but with-
398
+ out a planet opening a gap. The vertical yellow and green dashed
399
+ lines in panels B and C are the locations at which the dust fluxes
400
+ shown in Figure 2 are measured.
401
+ The dust fluxes at the outer disk are identical in both sim-
402
+ ulations with the solid and dashed green lines overlapping in
403
+ Figure 2. The fluxes in the inner disk, however, differ in both
404
+ simulations. The onset of dust flux in the inner disk in the sim-
405
+ ulation with a planet is delayed by about 20 000 yr compared to
406
+ the simulations without a planet. Without a planet, the large dust
407
+ particles can freely drift into the inner disk. With a planet, how-
408
+ ever, they are first trapped in the pressure bump at the outer edge
409
+ of the gap, fragment down to smaller sizes, and diffuse out of the
410
+ pressure bump before the gas can drag them into the inner disk
411
+ where they grow to larger particles again. Due to this delayed
412
+ processing the maximum dust flux is reduced by about one or-
413
+ der of magnitude. The duration, however, is prolonged such that
414
+ Article number, page 3 of 8
415
+
416
+ A&A proofs: manuscript no. dust_filtering
417
+ 103
418
+ 104
419
+ 105
420
+ 106
421
+ 107
422
+ Time [yrs]
423
+ 10
424
+ 7
425
+ 10
426
+ 6
427
+ 10
428
+ 5
429
+ 10
430
+ 4
431
+ 10
432
+ 3
433
+ 10
434
+ 2
435
+ Dust flux [M
436
+ /yr]
437
+ r = 2 AU
438
+ r = 15 AU
439
+ with planet
440
+ w/o planet
441
+ 103
442
+ 104
443
+ 105
444
+ 106
445
+ 107
446
+ Time [yrs]
447
+ 10
448
+ 2
449
+ 10
450
+ 1
451
+ 100
452
+ Fraction of total dust mass accreted
453
+ Fig. 2. Top: Comparison of the dust flux in the inner disk (at 2 AU)
454
+ and outer disk (at 15 AU) in the toy model with a Saturn mass planet
455
+ at 5 AU (panel B in Figure 1) and a model without a planet (panel C
456
+ in Figure 1). Both green 15 AU lines overlap. Bottom: Total dust mass
457
+ accreted through the inner disk over time.
458
+ the total mass of dust flowing through the inner disk is identical
459
+ after 10 Myr as can be seen in the bottom panel of Figure 2. The
460
+ Saturn mass planet did not separate the inner from outer disk
461
+ material, but only delayed the material transport.
462
+ Panel D of Figure 1 shows a simulation without fragmen-
463
+ tation. In this scenario, particles sizes are limited only by the
464
+ radial drift, consistent with the model presented by Kobayashi &
465
+ Tanaka (2021). In the center of the pressure bump, the pressure
466
+ gradient is zero and the growth is in principle unlimited until the
467
+ particles accumulate at the upper end of the simulation grid. This
468
+ scenario most closely represents the separation of inner and outer
469
+ dust reservoirs with only very few particles being able to diffuse
470
+ through the gap, because they were not able to grow to large par-
471
+ ticles quickly enough. It is, however, rather unlikely that the dust
472
+ particles do not fragment or get eroded at some point given the
473
+ relative velocities they typically experience (see Blum & Münch
474
+ 1993; Wada et al. 2009; Schräpler et al. 2018).
475
+ Panel E of Figure 1 shows a model with a fragmentation ve-
476
+ locity of 1 m/s as indicated by recent experiments (see e.g. Blum
477
+ 2018; Gundlach et al. 2018; Musiolik & Wurm 2019). In this
478
+ case, the particles cannot reach particles sizes large enough to be
479
+ efficiently trapped in the pressure bump.
480
+ The objective is therefore to halt particle growth without pro-
481
+ ducing small particles. This can be achieved if the growth is lim-
482
+ ited by bouncing, when particles simply bounce of each other
483
+ without growing or fragmenting. Panel F of Figure 1 shows a
484
+ simulation with the bouncing barrier implemented as described
485
+ by Windmark et al. (2012). In this model, bouncing starts when
486
+ 103
487
+ 104
488
+ 105
489
+ 106
490
+ 107
491
+ Time [yrs]
492
+ 10
493
+ 7
494
+ 10
495
+ 6
496
+ 10
497
+ 5
498
+ 10
499
+ 4
500
+ 10
501
+ 3
502
+ Pebble flux [M
503
+ /yr]
504
+ 103
505
+ 104
506
+ 105
507
+ 106
508
+ 107
509
+ Time [yrs]
510
+ 10
511
+ 4
512
+ 10
513
+ 3
514
+ 10
515
+ 2
516
+ 10
517
+ 1
518
+ 100
519
+ Fraction of dust mass accreted
520
+ no planet
521
+ 30 M
522
+ 50 M
523
+ Msat,
524
+ r = 10
525
+ 2
526
+ Msat,
527
+ r = 10
528
+ 3
529
+ Msat,
530
+ r = 10
531
+ 4
532
+ Msat,
533
+ r = 10
534
+ 5
535
+ 200 M
536
+ Mjup
537
+ Fig. 3. Top: Dust flux through the planetary gap in models with different
538
+ planet masses. The blue line is for a model without a planet. The dashed,
539
+ dotted, and dash-dotted red lines show additional simulations with a
540
+ Saturn mass planet for different radial dust diffusivity parameters δr.
541
+ Bottom: Total fraction of outer dust mass accreted through the planetary
542
+ gap.
543
+ the relative velocity reaches a few centimeters per second. In this
544
+ case, however, the particles only reach sizes of a few 100 µm
545
+ corresponding to Stokes numbers lower than 10−3, which is too
546
+ small to be efficiently trapped in the pressure bump created by
547
+ the planet. The particles can diffuse through the gap and contam-
548
+ inate the inner disk.
549
+ 3. Full Disk Models
550
+ The toy model in section 2 served as a proof of concept that
551
+ planets do not prevent dust flux if particles are subject to frag-
552
+ mentation. In this section we discuss full disk models with dif-
553
+ ferent planet masses in which dust is initialized in the entire disk
554
+ to investigate the dust permeability of the gap. The top panel of
555
+ Figure 3 shows the dust flux through the planetary gap for differ-
556
+ ent planet masses from 30 Earth masses to one Jupiter mass. In
557
+ the case of a Saturn mass planet we additionally performed sim-
558
+ ulations with different dust diffusivity parameters δr (see Equa-
559
+ tion 5). The bottom panel of Figure 3 shows the total fraction of
560
+ outer disk dust material that has been accreted through the gap
561
+ over time. In all models the planets have their respective masses
562
+ already from the beginning of the simulations.
563
+ The smallest planetary mass considered here is 30 M⊕, which
564
+ is already higher than the upper estimate of Jupiter’s core mass.
565
+ The largest mass considered is 1 Mjup. The smallest planetary
566
+ mass is not capable of efficiently suppressing the dust flux
567
+ through the gap. After about 300 000 yr almost the entire dust
568
+ Article number, page 4 of 8
569
+
570
+ Sebastian Markus Stammler et al.: Leaky Dust Traps: How Fragmentation impacts Dust Filtering by Planets
571
+ mass (horizontal line in bottom panel) of the outer disk has been
572
+ accreted through the gap. Increasing the planetary mass simply
573
+ delays the accretion time, but is not able to prevent accretion.
574
+ The maximum delay of accretion seems to be achieved already
575
+ with a 200 M⊕ planet. Increasing the planet mass further to a
576
+ Jupiter mass planet does not significantly change the accretion
577
+ history. At the end of the simulation at 10 Myr about 80 % of the
578
+ dust mass has been accreted through the gap.
579
+ The dust diffusivity δr has a more significant influence on the
580
+ accretion. Increasing the diffusivity by a factor of 10 to δr = 10−2
581
+ in the Saturn mass simulation has the same effect as reducing the
582
+ planet mass by a factor of about 2, mimicking the accretion his-
583
+ tory of a 40 M⊕ planet with diffusivity of δr = 10−3. Note that we
584
+ only changed δr, while keeping α0 = 10−3 and therefore keeping
585
+ the shape of planetary gap. The relative collision velocities of
586
+ the dust particles are not affected by this change in δr. Decreas-
587
+ ing δr by a factor of 10 is more efficient in retaining the dust
588
+ than having a Jupiter mass planet with the standard diffusivity.
589
+ In this case only about 10 % of the dust mass has been accreted at
590
+ the end of the simulation after 10 Myr. Lowering the diffusivity
591
+ even further to δr = 10−5 reduces the dust permeability further
592
+ to a about 5 % of the outer disk mass after 10 Myr. It is however
593
+ noted that the fraction of outer disk material present in the inner
594
+ disk is usually significantly larger, since the inner disk material
595
+ is accreted onto the star on short timescales and only re-supplied
596
+ with outer disk material.
597
+ 4. Time-dependent planet mass
598
+ In the previous models we assumed that the planets are fully
599
+ formed from the beginning of the simulation and the planet mass
600
+ does not evolve over time. Kruijer et al. (2017) argue that the
601
+ two dust reservoirs have been separated from about 1 Myr to
602
+ 3−4 Myr after CAI formation. They therefore claim that Jupiter’s
603
+ core must have been massive enough to open a gap at 1 Myr
604
+ and must have reached a mass of about 50 M⊕ after 4 Myr to be
605
+ able to scatter planetesimals from the outer disk to the inner disk
606
+ where they are observed today in the asteroid belt. We there-
607
+ fore performed simulations with a time-dependent planet mass
608
+ as shown in the top left panel of Figure 4. The solid blue line
609
+ shows an evolutionary track where the planet reaches 30 M⊕ af-
610
+ ter 1 Myr, 50 M⊕ after 4 Myr and a final mass of Mjup at the end
611
+ of the simulation after 10 Myr.
612
+ The bottom left panel of Figure 4 shows the fraction of mass
613
+ accreted through the planetary gap normalized to the dust mass
614
+ in the outer disk at 1 Myr when the planet was massive enough
615
+ to open a gap. We performed simulations with different values of
616
+ the dust diffusivity δr between 10−5 and 10−3. In the standard run
617
+ with δr = 10−3 about 80 % of the dust mass has been accreted
618
+ through the gap after 4 Myr (vertical solid line) when the assem-
619
+ bly of the meteorite parent bodies has been completed. Even in
620
+ the low diffusivity run with δr = 10−5 about 60 % of the mass has
621
+ been accreted though the gap between 1 Myr and 4 Myr, strongly
622
+ contaminating the inner disk with dust from the outer reservoir
623
+ on a system-wide scale. Lowering the dust diffusivity to very low
624
+ values does not help keeping both reservoirs separated, since the
625
+ planet mass is too low in this scenario.
626
+ The bottom right panel of Figure 4 shows a model with
627
+ bouncing instead of fragmentation. The solid blue line shows a
628
+ model with radial dust diffusivity δr = 10−3. As already shown in
629
+ section 2, this is not sufficient to stop dust accretion through the
630
+ gap. Only after 7 Myr when the planet already reached a mass
631
+ of about 200 M⊕ the gap is deep enough and accretion is halted.
632
+ Allowing the planet to reach these masses at earlier times would,
633
+ however, not change the dust redistribution, since these massive
634
+ planets are able to scatter planetesimals from the outer disk into
635
+ the inner disk, which is inconsistent with observations from the
636
+ meteoritic record at these early times (Deienno et al. 2022).
637
+ The green solid line shows a model with δr = δt = δz = 10−5.
638
+ The parameters δt and δz are similar to δr and parametrize the
639
+ strength of turbulent motion and vertical settling of the particles
640
+ (see Stammler & Birnstiel 2022; Pinilla et al. 2021, for details).
641
+ In that way the relative velocities between the particles are re-
642
+ duced, allowing them to grow to larger sizes before being lim-
643
+ ited by bouncing. They can therefore be trapped by gaps created
644
+ by smaller mass planets. However, even in that case accretion is
645
+ only halted after abut 3 Myr, when the planet reached a mass of
646
+ about 40 M⊕.
647
+ The dashed green line shows a model where the planet
648
+ reaches a mass of 40 M⊕ already after 1 Myr (dashed line in top
649
+ left panel of Figure 4). In this case accretion of dust through the
650
+ gap is efficiently stopped at 1 Myr. The top right panel of Fig-
651
+ ure 4 shows a snapshot of this simulation after 4 Myr. The inner
652
+ disk is heavily depleted in dust, all of which has been accreted
653
+ onto the star. The dust mass in the inner disk at this stage was
654
+ all supplied from the outer disk. Meteoritic bodies formed in the
655
+ inner disk would therefore be entirely made out of outer disk
656
+ material.
657
+ 5. Discussion
658
+ Isotopic measurements of meteoritic material indicate that me-
659
+ teorites must have formed in two dust reservoirs, that coexisted
660
+ spatially separated for several million years. The early formation
661
+ of Jupiter’s core has been proposed as natural explanation for
662
+ the observed separation. A planet exceeding the pebble isolation
663
+ mass opens a gap in the gas disk creating a pressure bump at the
664
+ outer edge of the gap, which can trap large dust particles. Two-
665
+ dimensional hydrodynamical simulations by Dr˛a˙zkowska et al.
666
+ (2019) including dust coagulation and fragmentation showed an
667
+ overabundance of small dust particles at the location of the pres-
668
+ sure bump, which should be too small to be efficiently trapped.
669
+ These particles were created in fragmenting collision of large
670
+ dust pebbles that have been trapped in the pressure bump. These
671
+ small dust fragments can diffuse out of the bump and can be
672
+ dragged by the gas through the gap.
673
+ Our simulations in this work suggest that collisional frag-
674
+ mentation of dust pebbles in pressure bumps and subsequent dif-
675
+ fusion of small fragments can act as a leak for dust traps. As
676
+ can be seen by Figure 3, gaps opened by planets can only de-
677
+ lay but not fully prevent dust accretion if particles are subject to
678
+ fragmentation. To act as an efficient dust barrier, particles need
679
+ to grow to large pebbles that can be trapped without producing
680
+ small particles as shown in the panel D of Figure 1.
681
+ We investigated different planet masses and showed in Fig-
682
+ ure 3 that no planet mass was able to completely isolate the inner
683
+ disk from outer dust material on timescales that are relevant for
684
+ the assumed reservoir separation. Even an initial gap formed by
685
+ a fully-grown Jupiter mass planet would leak 20 % of the outer
686
+ disk material into the inner disk within 1 Myr. Smaller proto-
687
+ Jupiter masses typically lead to complete homogenization within
688
+ ∼ 105 to at maximum a few 106 yr. This presents a problem
689
+ for the suggestion that the age differences in carbonaceus and
690
+ non-carbonaceous meteorites may be used as a tracer to track
691
+ the growth timescale of proto-Jupiter within the disk (Kruijer
692
+ et al. 2017; Alibert et al. 2018): the initial spatial distribution of
693
+ nucleosynthetic isotopes at the end of disk infall is degenerate
694
+ Article number, page 5 of 8
695
+
696
+ A&A proofs: manuscript no. dust_filtering
697
+ 0
698
+ 2
699
+ 4
700
+ 6
701
+ 8
702
+ 10
703
+ Time [Myr]
704
+ 0
705
+ 50
706
+ 100
707
+ 150
708
+ 200
709
+ 250
710
+ 300
711
+ Planet mass [M
712
+ ]
713
+ default model
714
+ rapid early growth
715
+ 1
716
+ 2
717
+ 3
718
+ 4
719
+ 5
720
+ 6
721
+ 7
722
+ 8
723
+ 9
724
+ 10
725
+ Time [Myr]
726
+ 0.0
727
+ 0.2
728
+ 0.4
729
+ 0.6
730
+ 0.8
731
+ 1.0
732
+ Fraction of dust mass accreted
733
+ Fragmentation
734
+ r = 10
735
+ 3
736
+ r = 10
737
+ 4
738
+ r = 10
739
+ 5
740
+ 1
741
+ 2
742
+ 3
743
+ 4
744
+ 5
745
+ 6
746
+ 7
747
+ 8
748
+ 9
749
+ 10
750
+ Time [Myr]
751
+ 0.0
752
+ 0.2
753
+ 0.4
754
+ 0.6
755
+ 0.8
756
+ 1.0
757
+ Fraction of dust mass accreted
758
+ Bouncing
759
+ i = 10
760
+ 3
761
+ i = 10
762
+ 5
763
+ i = 10
764
+ 5
765
+ 101
766
+ 102
767
+ Distance from star [AU]
768
+ 10
769
+ 4
770
+ 10
771
+ 3
772
+ 10
773
+ 2
774
+ 10
775
+ 1
776
+ 100
777
+ 101
778
+ 102
779
+ Particle size [cm]
780
+ 10
781
+ 5
782
+ 10
783
+ 4
784
+ 10
785
+ 3
786
+ 10
787
+ 2
788
+ 10
789
+ 1
790
+ 100
791
+ 101
792
+ dust [g/cm²]
793
+ Fig. 4. Top left: Evolution of the planetary mass in the time-dependent model. The solid line shows the default model where the planet reaches
794
+ 20 M⊕ at 1 Myrs. The dashed line shows the evolution in a model with rapid early growth in which the planet reaches 40 M⊕ at 1 Myr. Bottom
795
+ left: Fraction of outer disk dust mass accreted through the gap after 1 Myr in the default planetary mass evolution model for different values of
796
+ dust diffusivity δr with fragmentation limited growth. Bottom right: The solid lines show the fraction of outer disk material accreted through the
797
+ gap after 1 Myr for bouncing limited growth for different values of the δi parameters in the default planetary growth model. The dashed green line
798
+ shows a model of bouncing limited growth with δi = 10−5 and rapid early growth of the planet (dashed line in top left panel). The vertical lines
799
+ mark 4 Myr until which both reservoirs need to be separated. Top right: Snapshot of the dust distribution at 4 Myr for the model with bouncing
800
+ limited growth and δi = 10−5 (dashed green line in bottom right panel). The inner disk is depleted in dust and only supplied with small amounts of
801
+ outer disk material.
802
+ with different Jupiter growth tracks in the Jupiter barrier hypoth-
803
+ esis. Only significantly lowering the dust diffusivity to a value
804
+ of δr = 10−5 could decrease the dust permeability such that the
805
+ inner disk is only contaminated with a few percent of outer disk
806
+ material. However, isolating the inner disk from dust flux would
807
+ quickly drain the inner disk from solids that got accreted onto
808
+ the star, which was also previously noted by Liu et al. (2022). At
809
+ later stages the dust in the inner disk then consists to large parts
810
+ of outer disk material that has been slowly diffused through the
811
+ gap, which is inconsistent with the meteoritic record.
812
+ The situation gets worse when using a more realistic evo-
813
+ lution of the planetary mass, assuming Jupiter’s core reached a
814
+ mass of 20 M⊕ after 1 Myr and 50 M⊕ after 4 Myr. These masses
815
+ are not large enough to isolate the inner disk even in models
816
+ with very low diffusivity. Even in the most optimistic cases at
817
+ least 60 % of the outer disk dust has been accreted through the
818
+ planetary gap after 4 Myr as can be seen by Figure 4. However,
819
+ increasing the core mass even more and earlier would enable
820
+ Jupiter to scatter outer disk planetesimals into the inner disk pol-
821
+ luting the inner dust reservoir, which has not been accounted
822
+ for in this simple model. Only in models with bouncing lim-
823
+ ited growth without small particles, early planetary growth and
824
+ reduced relative particle collision velocities, the inner disk can
825
+ be efficiently isolated from the inner disk as seen by Figure 4.
826
+ In these cases, however, the inner disk is quickly depleted from
827
+ dust and only re-supplied from small amount of outer disk ma-
828
+ terial. Meteoritic bodies formed in the inner disk after this point
829
+ would therefore consist almost entirely of outer disk material.
830
+ Dr˛a˙zkowska et al. (2019) noted that the shape of planetary
831
+ gaps in two-dimensional simulations is not axisymmetric, which
832
+ is ignored in the simple one-dimensional model in this publi-
833
+ cation. They further noted, however, that the asymmetry at the
834
+ planet location would increase the dust flux through the gap.
835
+ Weber et al. (2018) compared one- and two-dimensional simula-
836
+ tions of dust transport through planetary gaps and indeed found
837
+ that gaps in two-dimensional simulations are more permeable to
838
+ dust particles. Our one-dimensional simulations, therefore, need
839
+ to be considered more conservative. If it is not possible to sepa-
840
+ rate two reservoirs in one-dimensional models, it is less likely to
841
+ do so in higher dimensions.
842
+ We furthermore assumed a dust fragmentation velocity of
843
+ 10 m/s, which may be rather high even for icy particles as in-
844
+ dicated by recent laboratory experiments which are suggesting
845
+ values of 1 m/s (see Blum 2018; Gundlach et al. 2018; Musiolik
846
+ & Wurm 2019). Lowering the fragmentation velocity, however,
847
+ generally decreases the particle sizes making them even less
848
+ likely to be trapped in pressure bumps (see panel E in Figure 1).
849
+ Other experiments indicate a significantly higher fragmentation
850
+ Article number, page 6 of 8
851
+
852
+ Sebastian Markus Stammler et al.: Leaky Dust Traps: How Fragmentation impacts Dust Filtering by Planets
853
+ velocity (e.g. Kimura et al. 2020) than the 10 m/s used in this
854
+ work. The exact value of the fragmentation velocity, however,
855
+ does not significantly influence the problem of inner disk con-
856
+ tamination. Either the fragmentation velocity is exceeded, which
857
+ will lead to pollution of the inner disk with outer disk material
858
+ (see panel B of Figure 1). Or the fragmentation velocity is larger
859
+ than the maximum collision velocity of dust particles in the disk,
860
+ in which case the particles will efficiently grow to larger parti-
861
+ cles, that are being trapped in the outer edge of the disk, which
862
+ will quickly deplete the inner disk (see panel D in Figure 1).
863
+ Similarily, the porosity evolution may have an effect on the
864
+ collisional physics of dust particles (e.g. Suyama et al. 2008;
865
+ Krijt et al. 2015; Kobayashi & Tanaka 2021). However, as for
866
+ the fragmentation velocity the details of the collision model do
867
+ not have a strong effect on the outcome of the simulation. Either
868
+ the particles fragment and the inner disk is polluted with outer
869
+ disk material, or the particles grow unhindered to large particles
870
+ that are trapped in the pressure bump, which is quickly depleting
871
+ the inner disk.
872
+ We furthermore did not consider the formation of planetes-
873
+ imals in the pressure bump in this work. Previous publications
874
+ have shown that the conditions in pressure maxima at the outer
875
+ edges of gaps can facilitate planetesimal formation (Stammler
876
+ et al. 2019; Miller et al. 2021) or even the formation of planets
877
+ (Lau et al. 2022; Jiang & Ormel 2023). One could conceive that
878
+ small dust fragments could not penetrate the inner disk because
879
+ they are quickly converted into planetesimals before they could
880
+ transverse the gap. This would, however, require a nearly per-
881
+ fect planetesimal formation efficiency to efficiently isolate both
882
+ dust reservoirs, which has not been observed in previous simu-
883
+ lations. Additionally, planetesimals formed at gap edges quickly
884
+ have been shown in simulations to quickly ablate (Eriksson et al.
885
+ 2021). Enstatite and ordinary chondrites would thus have to be
886
+ explained by planetesimal formation where the dust is replen-
887
+ ished by, for instance, late-stage planetesimal collisions in the
888
+ NC reservoir (Dullemond et al. 2014; Lichtenberg et al. 2018;
889
+ Bernabò et al. 2022).
890
+ This suggests that it is unlikely that the formation of Jupiter
891
+ could have solely separated both dust reservoirs in the Solar Sys-
892
+ tem if the dust particles were subject to fragmentation. This does
893
+ not only apply to gaps created by planets, but also to other sub-
894
+ structures of non-planetary origin where particles are trapped
895
+ in pressure maxima as described in Brasser & Mojzsis (2020).
896
+ Other suggested mechanisms to explain the observations include
897
+ a temporal change in the isotopic content of inward-streaming
898
+ dust grains (Schiller et al. 2018), and the formation of multi-
899
+ ple distinct planetesimal populations in the inner and outer disk
900
+ (Lichtenberg et al. 2021; Morbidelli et al. 2022; Izidoro et al.
901
+ 2021; Liu et al. 2022). How these physical mechanisms are con-
902
+ nected to the structures and gaps seen in ALMA disks (Miotello
903
+ et al. 2022) and the underlying mechanisms of protoplanet for-
904
+ mation (Drazkowska et al. 2022) and differentiation (Lichten-
905
+ berg et al. 2022) remain to be explored.
906
+ 6. Conclusions
907
+ Protoplanet-induced gaps in circumstellar disks are not able to
908
+ efficiently separate dust in the inner disk from dust in the outer
909
+ disk on million-year timescales if the particles are subject to
910
+ fragmentation. Particles limited by bouncing without producing
911
+ small fragments are usually too small to be trapped by pressure
912
+ bumps. Only significantly reducing the relative collision veloci-
913
+ ties allows particles to be efficiently trapped in pressure bumps
914
+ within 1 Myr, if the planet grew to 40 M⊕. In this case, however,
915
+ the inner disk is quickly depleted from dust making it difficult to
916
+ form meteoritic bodies in situ. Our simulations suggest that other
917
+ physical mechanism must have initiated or at least substantially
918
+ contributed to the large-scale separation of nucleosynthetic iso-
919
+ topes observed in the planetary materials of the inner and outer
920
+ Solar System.
921
+ Acknowledgements. This project has received funding from the European Re-
922
+ search Council (ERC) under the European Union’s Horizon 2020 research and
923
+ innovation programme under grant agreement No 714769. This project has re-
924
+ ceived funding by the Deutsche Forschungsgemeinschaft (DFG, German Re-
925
+ search Foundation) through grants FOR 2634/1 and 361140270. This research
926
+ was supported by the Munich Institute for Astro-, Particle and BioPhysics
927
+ (MIAPbP) which is funded by the Deutsche Forschungsgemeinschaft (DFG,
928
+ German Research Foundation) under Germany’s Excellence Strategy – EXC-
929
+ 2094 – 390783311. JD was funded by the European Union under the Euro-
930
+ pean Union’s Horizon Europe Research & Innovation Programme 101040037
931
+ (PLANETOIDS). Views and opinions expressed are however those of the au-
932
+ thors only and do not necessarily reflect those of the European Union or the Eu-
933
+ ropean Research Council. Neither the European Union nor the granting authority
934
+ can be held responsible for them. TL was supported by grants from the Simons
935
+ Foundation (SCOL Award No. 611576) and the Branco Weiss Foundation.
936
+ References
937
+ Alibert, Y., Venturini, J., Helled, R., et al. 2018, Nature Astronomy, 2, 873
938
+ Bernabò, L. M., Turrini, D., Testi, L., Marzari, F., & Polychroni, D. 2022, ApJ,
939
+ 927, L22
940
+ Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148
941
+ Bitsch, B., Morbidelli, A., Johansen, A., et al. 2018, A&A, 612, A30
942
+ Blum, J. 2018, Space Sci. Rev., 214, 52
943
+ Blum, J. & Münch, M. 1993, Icarus, 106, 151
944
+ Brasser, R. & Mojzsis, S. J. 2020, Nature Astronomy, 4, 492
945
+ Deienno, R., Izidoro, A., Morbidelli, A., Nesvorný, D., & Bottke, W. F. 2022,
946
+ ApJ, 936, L24
947
+ Desch, S. J., Kalyaan, A., & O’D. Alexander, C. M. 2018, ApJS, 238, 11
948
+ Drazkowska, J., Bitsch, B., Lambrechts, M., et al. 2022, arXiv e-prints,
949
+ arXiv:2203.09759
950
+ Dr˛a˙zkowska, J., Li, S., Birnstiel, T., Stammler, S. M., & Li, H. 2019, ApJ, 885,
951
+ 91
952
+ Dullemond, C. P., Stammler, S. M., & Johansen, A. 2014, ApJ, 794, 91
953
+ Eriksson, L. E. J., Ronnet, T., & Johansen, A. 2021, A&A, 648, A112
954
+ Gundlach, B., Schmidt, K. P., Kreuzig, C., et al. 2018, MNRAS, 479, 1273
955
+ Hasegawa, Y., Suzuki, T. K., Tanaka, H., Kobayashi, H., & Wada, K. 2021, ApJ,
956
+ 915, 22
957
+ Izidoro, A., Dasgupta, R., Raymond, S. N., et al. 2021, Nature Astronomy, 6,
958
+ 357
959
+ Jiang, H. & Ormel, C. W. 2023, MNRAS, 518, 3877
960
+ Kanagawa, K. D., Tanaka, H., Muto, T., & Tanigawa, T. 2017, PASJ, 69, 97
961
+ Kimura, H., Wada, K., Yoshida, F., et al. 2020, MNRAS, 496, 1667
962
+ Kleine, T., Budde, G., Burkhardt, C., et al. 2020, Space Sci. Rev., 216, 55
963
+ Kobayashi, H. & Tanaka, H. 2021, ApJ, 922, 16
964
+ Krijt, S., Kama, M., McClure, M., et al. 2022, arXiv e-prints, arXiv:2203.10056
965
+ Krijt, S., Ormel, C. W., Dominik, C., & Tielens, A. G. G. M. 2015, A&A, 574,
966
+ A83
967
+ Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. 2017, Proceedings of the
968
+ National Academy of Science, 114, 6712
969
+ Lambrechts, M., Johansen, A., & Morbidelli, A. 2014, A&A, 572, A35
970
+ Lau, T. C. H., Dr˛a˙zkowska, J., Stammler, S. M., Birnstiel, T., & Dullemond, C. P.
971
+ 2022, A&A, 668, A170
972
+ Leya, I., Schönbächler, M., Krähenbühl, U., & Halliday, A. N. 2009, ApJ, 702,
973
+ 1118
974
+ Lichtenberg, T., Dr˛a˙zkowska, J., Schönbächler, M., Golabek, G. J., & Hands,
975
+ T. O. 2021, Science, 371, 365
976
+ Lichtenberg, T., Golabek, G. J., Dullemond, C. P., et al. 2018, Icarus, 302, 27
977
+ Lichtenberg, T., Schaefer, L. K., Nakajima, M., & Fischer, R. A. 2022, arXiv
978
+ e-prints, arXiv:2203.10023
979
+ Liu, B., Johansen, A., Lambrechts, M., Bizzarro, M., & Haugbølle, T. 2022,
980
+ Science Advances, 8, eabm3045
981
+ Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603
982
+ Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
983
+ Mezger, K., Schönbächler, M., & Bouvier, A. 2020, Space Sci. Rev., 216, 27
984
+ Miller, E., Marino, S., Stammler, S. M., et al. 2021, MNRAS, 508, 5638
985
+ Miotello, A., Kamp, I., Birnstiel, T., Cleeves, L. I., & Kataoka, A. 2022, arXiv
986
+ e-prints, arXiv:2203.09818
987
+ Morbidelli, A., Baillié, K., Batygin, K., et al. 2022, Nature Astronomy, 6, 72
988
+ Musiolik, G. & Wurm, G. 2019, ApJ, 873, 58
989
+ Article number, page 7 of 8
990
+
991
+ A&A proofs: manuscript no. dust_filtering
992
+ Nimmo, F., Kretke, K., Ida, S., Matsumura, S., & Kleine, T. 2018,
993
+ Space Sci. Rev., 214, 101
994
+ Paardekooper, S. J. & Mellema, G. 2006, A&A, 453, 1129
995
+ Pinilla, P., Lenz, C. T., & Stammler, S. M. 2021, A&A, 645, A70
996
+ Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G. 2006, MNRAS, 373,
997
+ 1619
998
+ Schiller, M., Bizzarro, M., & Fernandes, V. A. 2018, Nature, 555, 507
999
+ Schräpler, R., Blum, J., Krijt, S., & Raabe, J.-H. 2018, ApJ, 853, 74
1000
+ Stammler, S. M. & Birnstiel, T. 2022, ApJ, 935, 35
1001
+ Stammler, S. M., Dr˛a˙zkowska, J., Birnstiel, T., et al. 2019, ApJ, 884, L5
1002
+ Suyama, T., Wada, K., & Tanaka, H. 2008, ApJ, 684, 1310
1003
+ Takeuchi, T. & Lin, D. N. C. 2002, ApJ, 581, 1344
1004
+ Trinquier, A., Birck, J.-L., & Allègre, C. J. 2007, ApJ, 655, 1179
1005
+ Trinquier, A., Elliott, T., Ulfbeck, D., et al. 2009, Science, 324, 374
1006
+ Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2009, ApJ, 702,
1007
+ 1490
1008
+ Wahl, S. M., Hubbard, W. B., Militzer, B., et al. 2017, Geophys. Res. Lett., 44,
1009
+ 4649
1010
+ Warren, P. H. 2011, Earth and Planetary Science Letters, 311, 93
1011
+ Weber, P., Benítez-Llambay, P., Gressel, O., Krapp, L., & Pessah, M. E. 2018,
1012
+ ApJ, 854, 153
1013
+ Weidenschilling, S. J. 1977, MNRAS, 180, 57
1014
+ Whipple, F. L. 1973, in NASA Special Publication, ed. C. L. Hemenway, P. M.
1015
+ Millman, & A. F. Cook, Vol. 319, 355
1016
+ Windmark, F., Birnstiel, T., Güttler, C., et al. 2012, A&A, 540, A73
1017
+ Youdin, A. N. & Lithwick, Y. 2007, Icarus, 192, 588
1018
+ Article number, page 8 of 8
1019
+
6NE5T4oBgHgl3EQfPg5N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99AzT4oBgHgl3EQfg_xe/content/tmp_files/2301.01477v1.pdf.txt ADDED
@@ -0,0 +1,3666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01477v1 [stat.ME] 4 Jan 2023
2
+ Reliability Analysis of Load-sharing Systems using a
3
+ Flexible Model with Piecewise Linear Functions
4
+ Shilpi Biswas ∗, Ayon Ganguly †, and Debanjan Mitra ‡
5
+ Abstract
6
+ Aiming for accurate estimation of system reliability of load-sharing systems, a flex-
7
+ ible model for such systems is constructed by approximating the cumulative hazard
8
+ functions of component lifetimes using piecewise linear functions. The advantages of
9
+ the resulting model are that it is data-driven and it does not use prohibitive assump-
10
+ tions on the underlying component lifetimes. Due to its flexible nature, the model is
11
+ capable of providing a good fit to data obtained from load-sharing systems in general,
12
+ thus resulting in an accurate estimation of important reliability characteristics. Es-
13
+ timates of reliability at a mission time, quantile function, mean time to failure, and
14
+ mean residual time for load-sharing systems are developed under the proposed model
15
+ involving piecewise linear functions. Maximum likelihood estimation and construction
16
+ of confidence intervals for the proposed model are discussed in detail. The performance
17
+ of the proposed model is observed to be quite satisfactory through a detailed Monte
18
+ Carlo simulation study. Analysis of a load-sharing data pertaining to the lives of a
19
+ two-motor load-sharing system is provided as an illustrative example. In summary,
20
+ this article presents a comprehensive discussion on a flexible model that can be used
21
+ for load-sharing systems under minimal assumptions.
22
+ Keywords: Load-sharing systems; Cumulative hazard function; Baseline hazard; Piecewise
23
+ linear approximation; Maximum likelihood estimation; Fisher information; Bootstrap; Con-
24
+ fidence interval; Quantile function; Mean time to failure; Reliability at a mission time; Mean
25
+ residual time.
26
+ 1
27
+ Introduction
28
+ 1.1
29
+ Background
30
+ Dynamic models are suitable for reliability systems where failure or degradation of one or
31
+ more components affects the performance of the surviving or operating components. Load-
32
+ sharing systems are appropriate examples where such models can be used. The total load
33
+ on a load-sharing system is shared between its components; when a component fails within
34
+ ∗Indian Institute of Technology Guwahati, Assam 781039, India; Email: [email protected]
35
+ †Indian Institute of Technology Guwahati, Assam 781039, India; Email: [email protected]
36
+ ‡Indian Institute of Management Udaipur, Rajasthan 313001, India; Email: [email protected]
37
+ 1
38
+
39
+ the system, the total load gets redistributed over the remaining operating components. As a
40
+ result of a higher stress due to this extra load, the failure rates of the operating components
41
+ increase.
42
+ Common examples of load-sharing systems are those where components are connected
43
+ in parallel, such as central processing units (CPUs) of multi-processor computers, cables
44
+ of a suspension bridge, valves or pumps in hydraulic systems, electrical generator systems
45
+ etc. Load-sharing systems are found in other spheres as well, such as the kidney system in
46
+ humans. When one of the kidneys fails or deteriorates, the other kidney experiences elevated
47
+ stress and has an increased chance of failure.
48
+ The load-share rule among the operating components depends on the physical charac-
49
+ teristics of the system involved. In an equal load-share rule, the extra load caused by the
50
+ failed components is shared equally by the operating components. On the other hand, a
51
+ local load-share rule implies that the extra load is shared by the neighboring components of
52
+ the failed ones. A monotone load-sharing rule more generally assumes that the load on the
53
+ operating components is non-decreasing with respect to the failure of other components in
54
+ the system [18].
55
+ 1.2
56
+ Literature review
57
+ One of the early major contributions to the literature on load-sharing systems was by
58
+ Daniels [9], describing the increasing stress on yarn fibres with successive breakings of indi-
59
+ vidual fibres within a bundle. In the same context of the textile industry, the early-period
60
+ literature saw developments by Coleman [4, 5], Rosen [29], and Harlow and Phoenix [13, 14],
61
+ among others. In general, the topic attracted the attentions of several researchers, and sig-
62
+ nificant theoretical contributions were made, for example, by Birnbaum and Saunders [6],
63
+ Freund [12], Ross [30], Schechner [31], Lee et al. [19], Hollander and Pena [15], and Lynch [22].
64
+ While most studies on load-sharing systems in the early-period were based on a known
65
+ load-share rule, Kim and Kvam [16] presented a statistical methodology for multicompo-
66
+ nent load-sharing systems with an unknown load-share rule. In fact, the work of Kim and
67
+ Kvam [16] was also important for another reason: they used the hypothetical latent variable
68
+ approach for modelling the component lifetimes. The latent variable approach was later
69
+ adapted by Park [27, 28] for developing an inferential framework for load-sharing systems
70
+ assuming the component lifetimes to be exponential, Weibull, and lognormally distributed
71
+ random variables.
72
+ The use of parametric models has a long history in the literature on load-sharing models.
73
+ Exponential distribution has been extensively used for modelling lifetimes of components of
74
+ load-sharing systems [32, 20, 24]. However, the property of a constant hazard rate of the
75
+ exponential distribution is not practical for most applications. The tampered failure rate
76
+ model for load-sharing systems, proposed by Suprasad et al. [33], was thus developed to
77
+ accommodate a wide range of failure-time distributions for the components. In this connec-
78
+ tion, the use of accelerated life testing models for load-sharing systems may be mentioned;
79
+ see Mettas and Vassiliou [23], Amari and Bergman [1], and Kong and Ye [17]. A family
80
+ of parametric distributions was used for modelling the lives of two-component load-sharing
81
+ systems by Deshpande et al. [10]. Asha et al. [2] used a frailty-based model to this effect. A
82
+ recent contribution in this direction is by Franco et al. [11] who used generalized Freund’s
83
+ 2
84
+
85
+ bivariate exponential model for two-component load-sharing systems. See also the references
86
+ cited in these articles.
87
+ Recently, several authors have explored diverse areas concerning load-sharing systems.
88
+ The damage accumulation of load-sharing systems was modelled by M¨uller and Meyer [25].
89
+ Luo et al.[21] developed a model for correlated lifetimes in dynamic environments incorpo-
90
+ rating the load-sharing criterion. Brown et al. [7] explored a spatial model for load-sharing
91
+ where the extra load due to failure of a component is shared more by the operating com-
92
+ ponents that are in close proximity of the failed component than those that are distant.
93
+ Nezakati and Ramzakh [26], and Zhao et al. [36] connected degradation of components to
94
+ load-sharing phenomena.
95
+ In an interesting development, Che et al. [8] considered man-
96
+ machine units (MMUs) as units of analysis where load-sharing was possible due to machine
97
+ issues as well as human issues. They studied the load-sharing of the MMUs, attempting to
98
+ capture the complex dependence between machines and their operators. A general model,
99
+ called the load-strength model, was studied by Zhang et al. [35]. It is to be noted that most
100
+ of the studies on load-sharing systems have used parametric models for analysis so far, thus
101
+ heavily relying on the modelling assumptions for suitability of their analyses.
102
+ 1.3
103
+ Aim and Motivation
104
+ Our aim in this paper is to develop an appropriate estimate for the system reliability or
105
+ reliability at mission time (RMT) of load-sharing systems. The aim, also, is to accurately
106
+ estimate quantile function of the underlying system lifetime distribution, mean time to failure
107
+ (MTTF), and mean residual time (MRT) of load-sharing systems.
108
+ These quantities are
109
+ important to fully understand the characteristics of a load-sharing system; also, they are of
110
+ practical importance for making various strategies and plans.
111
+ Naturally, the quality of estimation of RMT, quantile function, MTTF, and MRT of a
112
+ load-sharing system depends on the suitability of the model that is fitted to the lifetimes
113
+ of its components capturing the load-share rule.
114
+ To this effect, we develop a model for
115
+ the component lifetimes involving piecewise linear approximations (PLAs) of the cumulative
116
+ hazard functions, capturing the unknown load-share rule at each of the successive stages of
117
+ component failures. The model is data-driven, and does not require prohibitive parametric
118
+ assumptions for component lifetime distributions. Due to this flexibility, the PLA-based
119
+ model is capable of providing a good fit to load-sharing data. An example, elaborated in a
120
+ later section, is as follows.
121
+ Data pertaining to a load-sharing system where each system was a parallel combination
122
+ of two motors were analysed by Asha et al. [2] and Franco et al. [11].
123
+ Asha et al. [2]
124
+ assumed Weibull distributions for the component lifetimes, although data for one of the two
125
+ component motors showed clear empirical evidence that the assumption was not satisfied. A
126
+ generalized bivariate Freund distribution was assumed for the component lifetimes by Franco
127
+ et al. [11]. To this data, we have fitted our proposed PLA-based model, and have observed
128
+ according to the Akaike’s information criterion (AIC) for model selection, the PLA-based
129
+ model is a much better fit compared to the Weibull model of Asha et al. [2] and generalized
130
+ bivariate Freund model of Franco et al. [11]. The immediate and obvious result of this is
131
+ a much more accurate estimation of the RMT, quantile function, MTTF, and MRT of the
132
+ system lifetimes. The details of this analysis are given in a later section.
133
+ 3
134
+
135
+ The main contributions of this paper are as follows:
136
+ • We develop a flexible, data-driven model based on PLA for modelling component
137
+ lifetimes of a load-sharing system. The model does not require prohibitive parametric
138
+ assumptions on the underlying component lifetimes.
139
+ • We develop inference for the proposed PLA-based model based on data from multi-
140
+ component load-sharing systems.
141
+ • Under the proposed PLA-based model, we develop methods to accurately estimate im-
142
+ portant reliability characteristics such as system reliability or RMT, quantile function,
143
+ MTTF, and MRT of load-sharing systems.
144
+ The rest of this article is structured as follows. In Section 2, the proposed PLA-based
145
+ model for load-sharing systems is presented.
146
+ Section 3 contains likelihood inference for
147
+ the model based on data from multi-component load-sharing systems, including relevant
148
+ details of derivation of MLEs, construction of confidence intervals, and a general guidance
149
+ on selection of cut-points for the piecewise linear functions. Estimation of system reliability,
150
+ quantile function, MTTF, and MRT of load-sharing systems in this setting are given in
151
+ Section 4. Based on component lifetime data from a two-component load-sharing system,
152
+ an illustrative example of application of the PLA-based model and estimation of various
153
+ important reliability characteristics are presented in Section 5. In Section 6, results of a
154
+ detailed Monte Carlo simulation experiment investigating the efficacy and robustness of the
155
+ PLA-based model are presented.
156
+ Finally, the paper is concluded with some remarks in
157
+ Section 7.
158
+ 2
159
+ The Piecewise Linear Approximation Model for
160
+ Cumulative Hazard
161
+ In general, a PLA is a helpful tool for modelling data, avoiding strong parametric assump-
162
+ tions. In survival analysis, piecewise linear functions are used extensively. Recently, Bal-
163
+ akrishnan et al. [3] proposed a PLA-based model for the hazard rate of a population with
164
+ a cured proportion; see also the references therein. In this article, we develop a PLA-based
165
+ model for load-sharing systems with unknown load-share rules. Specifically, we model the
166
+ cumulative hazard functions of the component lifetime distributions using PLAs. At each
167
+ of the successive stages of component failures, as the lifetime distributions of the remaining
168
+ operating components change, a new PLA for the cumulative hazard is used. The model
169
+ can be suitably tuned by choosing the number of linear pieces for the PLA at each stage of
170
+ failure. The principal advantage of the proposed PLA-based modelling approach is that it
171
+ uses minimal model assumptions.
172
+ Consider a J-component load-sharing system. Here, a J-component load-sharing system
173
+ means a load-sharing system with J components that are connected in parallel. Assume that
174
+ the failed components of the system are not replaced or repaired. When the components fail
175
+ one by one, after each failure the total load on the system gets redistributed over the remain-
176
+ ing operational components. As a result the operational components experience a higher load
177
+ 4
178
+
179
+ than before. At the beginning when all components are operational, let U(0)
180
+ 1 , U(0)
181
+ 2 , . . . , U(0)
182
+ J
183
+ denote the latent lifetimes of the components, and Y (0) denote the system lifetime till the
184
+ first component failure. Obviously,
185
+ Y (0) = min
186
+
187
+ U(0)
188
+ 1 , U(0)
189
+ 2 , . . . , U(0)
190
+ J
191
+
192
+ .
193
+ Similarly, for j = 1, 2, . . . , J − 1, let Y (j) denote the system lifetime between j-th and
194
+ (j + 1)-st component failures. Then,
195
+ Y (j) = min
196
+
197
+ U(j)
198
+ 1 , U(j)
199
+ 2 , . . . , U(j)
200
+ J−j
201
+
202
+ ,
203
+ where U(j)
204
+ 1 , U(j)
205
+ 2 , . . . U(j)
206
+ J−j denote the latent lifetimes of the operational components after the
207
+ j-th component failure, j = 1, 2, . . . , J − 1. For all values of j, U(j)
208
+ 1 , . . . , U(j)
209
+ J−j are assumed
210
+ to be independent and identically distributed random variables. It is further assumed that
211
+
212
+ U(j)
213
+ ℓ , ℓ = 1, 2, . . . , J − j; j = 0, 1, . . . , J − 1
214
+
215
+ are independent random variables.
216
+ Let h(j)(·) and H(j)(·) denote the hazard rate (HR) and cumulative hazard function
217
+ (CHF), respectively, of the distribution of U(j)
218
+ 1 , j = 0, 1, 2, . . . , J −1. Here, we assume that
219
+ the HR h(j) (·) is a non-decreasing function for all j. For y > 0, the survival function (SF)
220
+ of Y (j) is given by
221
+ P
222
+
223
+ Y (j) > y
224
+
225
+ = P
226
+
227
+ min
228
+
229
+ U(j)
230
+ 1 , U(j)
231
+ 2 , . . . , U(j)
232
+ J−j
233
+
234
+ > y
235
+
236
+ = e−(J−j)H(j)(y).
237
+ Hence, for y > 0, the cumulative distribution function (CDF) and probability density func-
238
+ tion (PDF) of Y (j) are given by
239
+ F (j)(y) = 1 − e−(J−j)H(j)(y)
240
+ and
241
+ f (j)(y) = (J − j)h(j)(y) e−(J−j)H(j)(y),
242
+ respectively.
243
+ Now, suppose there are n J-component load-sharing systems, and let Y (j)
244
+ i
245
+ denote the
246
+ system lifetime between j-th and (j + 1)-st component failures for the i-th system, i =
247
+ 1, 2, . . . , n, j = 0, 1, . . . , J − 1. Suppose the observed values of Y (j)
248
+ 1 , Y (j)
249
+ 2 , . . . , Y (j)
250
+ n
251
+ are
252
+ y(j)
253
+ 1 , y(j)
254
+ 2 , . . . , y(j)
255
+ n , respectively. Let, for j = 0, 1, . . . , J − 1, ξ(j) =
256
+
257
+ τ (j)
258
+ 0 , τ (j)
259
+ 1 , . . . , τ (j)
260
+ N
261
+
262
+ denote a set of N + 1 cut-points over the time scale y(j)
263
+ 1 , . . . , y(j)
264
+ n , with the restrictions that
265
+ τ (j)
266
+ 0
267
+ < τ (j)
268
+ 1
269
+ < τ (j)
270
+ 2
271
+ < . . . < τ (j)
272
+ N ,
273
+ τ (j)
274
+ 0
275
+ ≤ min
276
+
277
+ y(j)
278
+ 1 , . . . , y(j)
279
+ n
280
+
281
+ and τ (j)
282
+ N ≥ max
283
+
284
+ y(j)
285
+ 1 , . . . , y(j)
286
+ n
287
+
288
+ .
289
+ Initially, ξ(j) is taken to be fixed and known. We discuss how to choose ��(j) in a later section.
290
+ The proposed model approximates the CHF H(j)(·) by a piecewise linear function defined
291
+ over intervals [τ (j)
292
+ k−1, τ (j)
293
+ k ), k = 1, 2, . . . , N, constructed by the consecutive cut points in ξ(j).
294
+ Therefore, over the range [τ (0)
295
+ 0 , τ (0)
296
+ N ), the CHF H(0)(·) is approximated by Λ(0)(·), where
297
+ Λ(0)(t) =
298
+ N
299
+
300
+ k=1
301
+ (ak + bkt) 1[τ (0)
302
+ k−1, τ (0)
303
+ k
304
+ )(t),
305
+ (2.1)
306
+ 5
307
+
308
+ with ak’s and bk’s as real constants and
309
+ 1A(t) =
310
+
311
+ 1
312
+ if t ∈ A
313
+ 0
314
+ if t ̸∈ A.
315
+ One of the possible ways to extend the PLA beyond τ (0)
316
+ N
317
+ would be to extend the last line
318
+ segment aN + bNt to [τ (0)
319
+ N , ∞). Therefore, the CHF corresponding to PLA over the range
320
+ [τ (0)
321
+ 0 , ∞) is
322
+ Λ(0)(t) =
323
+ N
324
+
325
+ k=1
326
+ (ak + bkt) 1[τ (0)
327
+ k−1, τ (0)
328
+ k
329
+ )(t) + (aN + bNt)1[τ (0)
330
+ N , ∞)(t),
331
+ with Λ(0)(τ (0)
332
+ 0 ) = 0. We also assume that Λ(0)(·) is a continuous function. As Λ(0)(τ (0)
333
+ 0 ) = 0,
334
+ using the assumption of continuity, ai’s can be expressed in terms of bi’s as follows:
335
+ a1 = −b1τ (0)
336
+ 0
337
+ and
338
+ ak =
339
+ k−1
340
+
341
+ ℓ=1
342
+ (bℓ − bℓ+1) τ (0)
343
+
344
+ + a1 =
345
+ k−1
346
+
347
+ ℓ=1
348
+ bℓ
349
+
350
+ τ (0)
351
+
352
+ − τ (0)
353
+ ℓ−1
354
+
355
+ − bkτ (0)
356
+ k−1,
357
+ for k = 1, 2, 3, . . . , N.
358
+ Note that the above model can be equivalently described in terms of HRs.
359
+ In this
360
+ approach, h(0)(·) over the range [τ (0)
361
+ 0 , τ (0)
362
+ N ) is approximated by a piecewise constant function
363
+ λ(0)(·), where
364
+ λ(0)(t) =
365
+ N
366
+
367
+ i=1
368
+ bk1[τ (0)
369
+ k−1, τ (0)
370
+ k
371
+ ) (t) .
372
+ (2.2)
373
+ After failure of one or more components within the system, the direct impact of the
374
+ increased load will be an increased HR for the operational components. To incorporate this
375
+ information, after the failure of j components of the system, we approximate h(j)(·) over
376
+ [τ (j)
377
+ 0 , τ (j)
378
+ N ), j = 1, 2, . . . , J − 1, using the piecewise constant function λ(j)(·), where
379
+ λ(j)(t) = γj
380
+ N
381
+
382
+ k=1
383
+ bk1[τ (j)
384
+ k−1, τ (j)
385
+ k
386
+ ) (t) ,
387
+ (2.3)
388
+ with
389
+ 1 < γ1 < γ2 < . . . < γJ−1.
390
+ The PLAs to the CHFs, corresponding to the PLAs of the HRs given in Eq.(2.3) are given
391
+ by
392
+ Λ(j)(t) = γj
393
+ N
394
+
395
+ k=1
396
+ �k−1
397
+
398
+ ℓ=1
399
+ bℓ
400
+
401
+ τ (j)
402
+
403
+ − τ (j)
404
+ ℓ−1
405
+
406
+ + bk
407
+
408
+ t − τ (j)
409
+ k−1
410
+ ��
411
+ 1[τ (j)
412
+ k−1, τ (j)
413
+ k
414
+ ) (t) .
415
+ (2.4)
416
+ To meet the non-decreasing nature of the HR, we assume that 0 < b1 < b2 < . . . < bN. Note
417
+ that the parameters γ1, γ2, . . . , γJ−1 reflect the load-share rule of increased HRs. We treat
418
+ γ1, γ2, . . . , γJ−1 as unknown parameters, and estimate them from component failure data.
419
+ It may be mentioned here that the PLA model can be interpreted as an approximation
420
+ of the underlying lifetime distribution by several exponential models (with different rate
421
+ parameters) over the ranges specified by the cut-points.
422
+ 6
423
+
424
+ 3
425
+ Likelihood Inference
426
+ The parameters involved in the PLA-based model are estimated from the component failure
427
+ data obtained from a set of load-sharing systems. The available data on component failures
428
+ from n J-component load-sharing systems is of the form
429
+ Data =
430
+
431
+ y(j)
432
+ i
433
+ : i = 1, 2, . . . , n; j = 0, 1, . . . , J − 1
434
+
435
+ ,
436
+ where y(j)
437
+ i
438
+ is the observed system lifetime between j-th and (j + 1)-st component failures for
439
+ the i-th system. For j = 0, 1, 2, . . . , J − 1, and k = 1, 2, . . . , N, define
440
+ I(j)
441
+ k
442
+ =
443
+
444
+ i : y(j)
445
+ i
446
+
447
+
448
+ τ (j)
449
+ k−1, τ (j)
450
+ k
451
+ ��
452
+ and
453
+ n(j)
454
+ k
455
+ = |I(j)
456
+ k |.
457
+ Obviously, �N
458
+ k=1 n(j)
459
+ k
460
+ = n. The likelihood function for the PLA model is then given by
461
+ L (θ) =
462
+ n
463
+
464
+ i=1
465
+ J−1
466
+
467
+ j=0
468
+
469
+ (J − j)γj
470
+ N
471
+
472
+ k=1
473
+ bk1[τ (j)
474
+ k−1, τ (j)
475
+ k
476
+ )
477
+
478
+ y(j)
479
+ i
480
+
481
+ e
482
+ −(J−j)γj
483
+ ��k−1
484
+ ℓ=1 bℓ
485
+
486
+ τ (j)
487
+
488
+ −τ (j)
489
+ ℓ−1
490
+
491
+ +bk
492
+
493
+ y(j)
494
+ i
495
+ −τ (j)
496
+ k−1
497
+ ���
498
+ ,
499
+ (3.1)
500
+ where γ0 = 1 and θ = (γ1, γ2, . . . , γJ−1, b1, b2, . . . , bN)′ is the vector of parameters. The
501
+ corresponding log-likelihood function, ignoring additive constant, can be expressed as
502
+ l (θ) =
503
+ N
504
+
505
+ k=1
506
+ ��J−1
507
+
508
+ j=0
509
+ n(j)
510
+ k
511
+
512
+ ln bk −
513
+ �J−1
514
+
515
+ j=0
516
+ (J − j)γjT (j)
517
+ k
518
+
519
+ bk
520
+
521
+ + n
522
+ J−1
523
+
524
+ j=0
525
+ ln γj,
526
+ (3.2)
527
+ where
528
+ T (j)
529
+ k
530
+ =
531
+
532
+ i∈I(j)
533
+ k
534
+
535
+ y(j)
536
+ i
537
+ − τ (j)
538
+ k−1
539
+
540
+ +
541
+
542
+ n −
543
+ k
544
+
545
+ ℓ=1
546
+ n(j)
547
+
548
+ � �
549
+ τ (j)
550
+ k
551
+ − τ (j)
552
+ k−1
553
+
554
+ ,
555
+ for k = 1, 2, . . . , N; j = 0, 1, . . . , J − 1. Equating partial derivative of the log-likelihood
556
+ function in Eq.(3.2) with respect to bk to zero, we can express bk in terms of the load-share
557
+ parameters γ = (γ1, γ2, . . . , γJ−1) as
558
+ bk = bk (γ) =
559
+ J−1
560
+
561
+ j=0
562
+ n(j)
563
+ k
564
+ J−1
565
+
566
+ j=0
567
+ (J − j)γjT (j)
568
+ k
569
+ ,
570
+ k = 1, ..., N.
571
+ (3.3)
572
+ Substituting bk(γ) from Eq.(3.3) in Eq.(3.2), the profile log-likelihood in γ, ignoring additive
573
+ constant, is obtained as
574
+ ˜l (γ) =
575
+ N
576
+
577
+ k=1
578
+ ��J−1
579
+
580
+ j=0
581
+ n(j)
582
+ k
583
+ � �
584
+ ln
585
+ �J−1
586
+
587
+ j=0
588
+ n(j)
589
+ k
590
+
591
+ − ln
592
+ �J−1
593
+
594
+ j=0
595
+ (J − j)γjT (j)
596
+ k
597
+ ���
598
+ + n
599
+ J−1
600
+
601
+ j=0
602
+ ln γj.
603
+ (3.4)
604
+ 7
605
+
606
+ For optimizing the profile log-likelihood ˜l (γ) in γ, any routine maximizer of a standard
607
+ statistical software may be used. Once the MLEs �γ1, �γ2, . . . , �γJ−1 of γ1, γ2, . . . , γJ−1 are
608
+ obtained by numerical optimization of ˜l (γ), they can be plugged into Eq.(3.3) to get MLEs
609
+ of bk as
610
+ �bk = bk (�γ1, . . . , �γJ−1) ,
611
+ k = 1, 2, . . . , N.
612
+ 3.1
613
+ A special case: two-component load-sharing systems
614
+ For analysing data from two-component load-sharing systems, if two linear pieces are used
615
+ in the PLA-based model, MLEs can be derived analytically and explicitly. Consider the case
616
+ when J = 2 and N = 2. In this case, the log-likelihood function simplifies to
617
+ l (θ) =
618
+ 2
619
+
620
+ k=1
621
+ ��
622
+ 1
623
+
624
+ j=0
625
+ n(j)
626
+ k
627
+
628
+ ln bk −
629
+
630
+ 1
631
+
632
+ j=0
633
+ (2 − j)γjT (j)
634
+ k
635
+
636
+ bk
637
+
638
+ + n
639
+ 1
640
+
641
+ j=0
642
+ ln γj,
643
+ (3.5)
644
+ with
645
+ T (j)
646
+ k
647
+ =
648
+
649
+ i∈I(j)
650
+ k
651
+
652
+ y(j)
653
+ i
654
+ − τ (j)
655
+ k−1
656
+
657
+ +
658
+
659
+ n −
660
+ k
661
+
662
+ ℓ=1
663
+ n(j)
664
+
665
+ � �
666
+ τ (j)
667
+ k
668
+ − τ (j)
669
+ k−1
670
+
671
+ ,
672
+ for k = 1, 2, j = 0, 1 and γ0 = 1. Here, θ = (γ1, b1, b2).
673
+ Equating ∂l(θ)
674
+ ∂b1 and ∂l(θ)
675
+ ∂b2 to zero, we get
676
+ b1 =
677
+ n(0)
678
+ 1
679
+ + n(1)
680
+ 1
681
+ 2T (0)
682
+ 1
683
+ + γ1T (1)
684
+ 1
685
+ (3.6)
686
+ b2 =
687
+ n(0)
688
+ 2
689
+ + n(1)
690
+ 2
691
+ 2T (0)
692
+ 2
693
+ + γ1T (1)
694
+ 2
695
+ .
696
+ (3.7)
697
+ Equating ∂l(θ)
698
+ ∂γ1 to zero gives
699
+ γ1 = T (1)
700
+ 1 b1 + T (1)
701
+ 2 b2,
702
+ (3.8)
703
+ in which, substituting b1 and b2 from Eqs.(3.6) and (3.7), a quadratic equation in γ1 is
704
+ obtained as follows
705
+ Q(γ1) = nγ2
706
+ 1B0,12 + 2γ1
707
+ ��
708
+ n(0)
709
+ 1
710
+ + n(1)
711
+ 1
712
+ − n
713
+
714
+ B2,1 +
715
+
716
+ n(0)
717
+ 2
718
+ + n(1)
719
+ 2
720
+ − n
721
+
722
+ B1,2
723
+
724
+ − 4nB12,0 = 0,
725
+ (3.9)
726
+ with B0,12 = T (1)
727
+ 1 T (1)
728
+ 2 , B1,2 = T (0)
729
+ 1 T (1)
730
+ 2 , B2,1 = T (0)
731
+ 2 T (1)
732
+ 1
733
+ and B12,0 = T (0)
734
+ 1 T (0)
735
+ 2 . Solving Q(γ1) =
736
+ 0, we have two values of γ1 from which we choose the suitable one, and then from equations
737
+ (3.6) and (3.7) we get the MLEs of b1 and b2, respectively.
738
+ 8
739
+
740
+ 3.2
741
+ Confidence Intervals
742
+ As discussed above, the MLEs for the parameters of the PLA-based model are not available
743
+ in explicit form in general, except for the special case of two-component load-sharing systems
744
+ considered in Section 3.1. As a result, exact confidence intervals for the model parameters
745
+ cannot be obtained. Asymptotic confidence intervals may be constructed in two possible
746
+ ways: by using the Fisher information matrix, and by applying a bootstrap-based technique.
747
+ 3.2.1
748
+ CIs using Fisher information matrix
749
+ Using the asymptotic properties of the MLEs, it can be shown that for large sample size
750
+ n, the distribution of √n(�θ − θ) is approximated by a multi-variate normal distribution
751
+ N(0, I−1(�θ)), where the dimension of the multi-variate normal distribution is same as that
752
+ of the parameter vector θ, and the asymptotic variance-covariance matrix I−1(θ) is the in-
753
+ verse of the Fisher information matrix I(θ), evaluated at the MLE �θ. The Fisher information
754
+ matrix I(θ) is defined as the expected value of the observed information matrix J(θ) which
755
+ is calculated from the negative of the second-order derivatives of the log-likelihood function.
756
+ That is, I(θ) = E(J(θ)), where J(θ) = −∇2(log L(θ)). In situations where analytical calcu-
757
+ lation of the Fisher information is difficult or intractable, it may be either replaced by the
758
+ observed information matrix, or may be calculated by simulations.
759
+ From the asymptotic variance-covariance matrix I−1(θ), individual asymptotic variances
760
+ of the MLEs can be pulled out, and asymptotic confidence intervals can be constructed. For
761
+ example, corresponding to the MLE �γ1 using the asymptotic variance
762
+
763
+ V ar(ˆγ1) obtained from
764
+ I−1(θ), asymptotic confidence intervals for γ1 can be constructed as:
765
+
766
+ �γ1 − zα/2
767
+
768
+
769
+ V ar(ˆγ1), �γ1 + zα/2
770
+
771
+
772
+ V ar(ˆγ1)
773
+
774
+ ,
775
+ where zα is the 100(1 − α)% point of the standard normal distribution.
776
+ Special case: two-component load-sharing systems
777
+ For the special case of two-component load-sharing systems considered in Section 3.1, the
778
+ Fisher information matrix can be worked out explicitly. In this case,
779
+ J(θ) = −
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+
788
+ ∂2l(θ)
789
+ ∂γ2
790
+ 1
791
+ ∂2l(θ)
792
+ ∂γ1∂b1
793
+ ∂2l(θ)
794
+ ∂γ1∂b2
795
+ ∂2l(θ)
796
+ ∂b1∂γ1
797
+ ∂2l(θ)
798
+ ∂b2
799
+ 1
800
+ ∂2l(θ)
801
+ ∂b1∂b2
802
+ ∂2l(θ)
803
+ ∂b2∂γ1
804
+ ∂2l(θ)
805
+ ∂b2∂b1
806
+ ∂2l(θ)
807
+ ∂b2
808
+ 2
809
+
810
+
811
+
812
+
813
+
814
+
815
+
816
+
817
+ = −
818
+
819
+
820
+
821
+
822
+ − n
823
+ γ2
824
+ 1
825
+ −T (1)
826
+ 1
827
+ −T (1)
828
+ 2
829
+ −T (1)
830
+ 1
831
+ −n(0)
832
+ 1 +n(1)
833
+ 1
834
+ b12
835
+ 0
836
+ −T (1)
837
+ 2
838
+ 0
839
+ −n(0)
840
+ 2 +n(1)
841
+ 2
842
+ b22
843
+
844
+
845
+
846
+  .
847
+ 9
848
+
849
+ Hence, the Fisher information matrix is
850
+ I(θ) =
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+ n
873
+ γ2
874
+ 1
875
+ E
876
+
877
+
878
+
879
+
880
+ i∈I(1)
881
+ 1
882
+ Y (1)
883
+ i
884
+
885
+
886
+  + E
887
+
888
+ N(1)
889
+ 2
890
+
891
+ τ (1)
892
+ 1
893
+ E
894
+
895
+
896
+
897
+
898
+ i∈I(1)
899
+ 1
900
+ Y (1)
901
+ i
902
+
903
+
904
+  − E
905
+
906
+ N(1)
907
+ 2
908
+
909
+ τ (1)
910
+ 1
911
+ E
912
+
913
+
914
+
915
+
916
+ i∈I(1)
917
+ 1
918
+ Y (1)
919
+ i
920
+
921
+
922
+  + E
923
+
924
+ N(1)
925
+ 2
926
+
927
+ τ (1)
928
+ 1
929
+ E
930
+
931
+ N(0)
932
+ 1
933
+
934
+ +E
935
+
936
+ N(1)
937
+ 1
938
+
939
+ b2
940
+ 1
941
+ 0
942
+ E
943
+
944
+
945
+
946
+
947
+ i∈I(1)
948
+ 1
949
+ Y (1)
950
+ i
951
+
952
+
953
+  − E
954
+
955
+ N(1)
956
+ 2
957
+
958
+ τ (1)
959
+ 1
960
+ 0
961
+ E
962
+
963
+ N(0)
964
+ 2
965
+
966
+ +E
967
+
968
+ N(1)
969
+ 2
970
+
971
+ b2
972
+ 2
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+
982
+
983
+
984
+
985
+
986
+
987
+
988
+
989
+
990
+
991
+
992
+
993
+
994
+ ,
995
+ where N(j)
996
+ k
997
+ is the number of Y (j)
998
+ i
999
+ in [τ (j)
1000
+ k−1, τ (j)
1001
+ k ), k = 1, 2, j = 0, 1, i = 1, ..., n. An outline
1002
+ of calculations of the relevant expectations for the Fisher information matrix is given in
1003
+ Appendix A. The inverse of the Fisher information matrix is obtained as
1004
+
1005
+ I−1(θ)
1006
+
1007
+ =
1008
+ 1
1009
+ |I(θ)|
1010
+
1011
+
1012
+ A11(θ)
1013
+ −A12(θ)
1014
+ A13(θ)
1015
+ −A21(θ)
1016
+ A22(θ)
1017
+ −A23(θ)
1018
+ A31(θ)
1019
+ −A32(θ)
1020
+ A33(θ)
1021
+
1022
+  ,
1023
+ where the determinant of I(θ) is
1024
+ |I(θ)|
1025
+ =
1026
+ n
1027
+
1028
+ 2 −
1029
+
1030
+ e−2b1τ (0)
1031
+ 1
1032
+ + e−γ1b1τ (1)
1033
+ 1
1034
+ �� �
1035
+ e−2b1τ (0)
1036
+ 1
1037
+ + e−γ1b1τ (1)
1038
+ 1
1039
+
1040
+ γ2
1041
+ 1b2
1042
+ 1b2
1043
+ 2
1044
+
1045
+ e−2γ1b1τ (1)
1046
+ 1
1047
+
1048
+ 1
1049
+ γ1b2
1050
+ �2 �
1051
+ 2 −
1052
+
1053
+ e−2b1τ (0)
1054
+ 1
1055
+ + e−γ1b1τ (1)
1056
+ 1
1057
+ ��
1058
+ b2
1059
+ 1
1060
+
1061
+
1062
+ 1
1063
+ γ1b1
1064
+
1065
+ 1 − (1 + γ1b1τ (1)
1066
+ 1 )e−γ1b1τ (1)
1067
+ 1
1068
+
1069
+ + τ (1)
1070
+ 1 e−γ1b1τ (1)
1071
+ 1
1072
+ �2 �
1073
+ e−2b1τ (0)
1074
+ 1
1075
+ + e−γ1b1τ (1)
1076
+ 1
1077
+
1078
+ b2
1079
+ 2
1080
+ ,
1081
+ A11(θ) =
1082
+
1083
+ 2 −
1084
+
1085
+ e−2b1τ (0)
1086
+ 1
1087
+ + e−γ1b1τ (1)
1088
+ 1
1089
+ �� �
1090
+ e−2b1τ (0)
1091
+ 1
1092
+ + e−γ1b1τ (1)
1093
+ 1
1094
+
1095
+ b2
1096
+ 1b2
1097
+ 2
1098
+ ,
1099
+ A22(θ) =
1100
+ n
1101
+
1102
+ e−2b1τ (0)
1103
+ 1
1104
+ + e−γ1b1τ (1)
1105
+ 1
1106
+
1107
+ γ2
1108
+ 1b2
1109
+ 2
1110
+ − e−2γ1b1τ (1)
1111
+ 1
1112
+ � 1
1113
+ γ1b2
1114
+ �2
1115
+ ,
1116
+ A33(θ) =
1117
+ n
1118
+
1119
+ 2 −
1120
+
1121
+ e−2b1τ (0)
1122
+ 1
1123
+ + e−γ1b1τ (1)
1124
+ 1
1125
+ ��
1126
+ γ2
1127
+ 1b2
1128
+ 1
1129
+
1130
+ � 1
1131
+ γ1b1
1132
+
1133
+ 1 − (1 + γ1b1τ (1)
1134
+ 1 )e−γ1b1τ (1)
1135
+ 1
1136
+
1137
+ + τ (1)
1138
+ 1 e−γ1b1τ (1)
1139
+ 1
1140
+ �2
1141
+ ,
1142
+ A12(θ) = A21(θ) =
1143
+
1144
+ 1
1145
+ γ1b1
1146
+
1147
+ 1 − (1 + γ1b1τ (1)
1148
+ 1 )e−γ1b1τ (1)
1149
+ 1
1150
+
1151
+ + τ (1)
1152
+ 1 e−γ1b1τ (1)
1153
+ 1
1154
+ � �
1155
+ e−2b1τ (0)
1156
+ 1
1157
+ + e−γ1b1τ (1)
1158
+ 1
1159
+
1160
+ b2
1161
+ 2
1162
+ ,
1163
+ 10
1164
+
1165
+ A13(θ) = A31(θ) = −
1166
+ e−γ1b1τ (1)
1167
+ 1
1168
+
1169
+ 1
1170
+ γ1b2
1171
+ � �
1172
+ 2 −
1173
+
1174
+ e−2b1τ (0)
1175
+ 1
1176
+ + e−γ1b1τ (1)
1177
+ 1
1178
+ ��
1179
+ b2
1180
+ 1
1181
+ ,
1182
+ A23(θ) = A32(θ) = −
1183
+ ��
1184
+ 1 − (1 + γ1b1τ (1)
1185
+ 1 )e−γ1b1τ (1)
1186
+ 1
1187
+
1188
+ + γ1b1τ (1)
1189
+ 1 e−γ1b1τ (1)
1190
+ 1
1191
+
1192
+ e−γ1b1τ (1)
1193
+ 1
1194
+ γ2
1195
+ 1b1b2
1196
+ .
1197
+ Evaluating I−1(θ) at the MLE �θ, the asymptotic variance-covariance matrix of the MLEs
1198
+ is obtained.
1199
+ Hence, 100(1 − α)% asymptotic confidence intervals for γ1, b1, and b2 are
1200
+ obtained as
1201
+
1202
+ �γ1 −zα/2
1203
+
1204
+ A11(ˆθ)
1205
+ |I(ˆθ)| , �γ1 +zα/2
1206
+
1207
+ A11(ˆθ)
1208
+ |I(ˆθ)|
1209
+
1210
+ ,
1211
+
1212
+ �b1 −zα/2
1213
+
1214
+ A22(ˆθ)
1215
+ |I(ˆθ)| , �b1 +zα/2
1216
+
1217
+ A22(ˆθ)
1218
+ |I(ˆθ)|
1219
+
1220
+ , and
1221
+
1222
+ �b2 − zα/2
1223
+
1224
+ A33(ˆθ)
1225
+ |I(ˆθ)| , �b2 + zα/2
1226
+
1227
+ A33(ˆθ)
1228
+ |I(ˆθ)|
1229
+
1230
+ , respectively.
1231
+ 3.2.2
1232
+ Bootstrap confidence intervals
1233
+ Using the MLE �θ, B bootstrap samples can be obtained in the same sampling framework;
1234
+ let �θ
1235
+
1236
+ s =
1237
+
1238
+ �γ∗
1239
+ 1s,�b∗
1240
+ 1s,�b∗
1241
+ 2s
1242
+
1243
+ denote the bootstrap estimates, s = 1, ..., B. Bootstrap bias and
1244
+ standard error are defined as
1245
+ biasb(�γ1) = �γ∗
1246
+ 1 − �γ1,
1247
+ biasb(�b1) = �b∗
1248
+ 1 −�b1,
1249
+ biasb(�b2) = �b∗
1250
+ 2 −�b2
1251
+ and
1252
+ SEb(�γ1) =
1253
+
1254
+
1255
+
1256
+
1257
+ 1
1258
+ B − 1
1259
+ B
1260
+
1261
+ s=1
1262
+
1263
+ �γ∗
1264
+ 1s − �
1265
+ γ∗
1266
+ 1
1267
+ �2
1268
+ , SEb(�b1) =
1269
+
1270
+
1271
+
1272
+
1273
+ 1
1274
+ B − 1
1275
+ B
1276
+
1277
+ s=1
1278
+
1279
+ �b∗
1280
+ 1s − �b∗
1281
+ 1
1282
+ �2
1283
+ , SEb(�b2) =
1284
+
1285
+
1286
+
1287
+
1288
+ 1
1289
+ B − 1
1290
+ B
1291
+
1292
+ s=1
1293
+
1294
+ �b∗
1295
+ 2s − �b∗
1296
+ 2
1297
+ �2
1298
+ ,
1299
+ where
1300
+ �γ∗
1301
+ 1 = 1
1302
+ B
1303
+ B
1304
+
1305
+ s=1
1306
+ �γ∗
1307
+ 1s,
1308
+ �b∗
1309
+ 1 = 1
1310
+ B
1311
+ B
1312
+
1313
+ s=1
1314
+ �b∗
1315
+ 1s,
1316
+ �b∗
1317
+ 2 = 1
1318
+ B
1319
+ B
1320
+
1321
+ s=1
1322
+ �b∗
1323
+ 2s.
1324
+ Finally, a 100(1 − α)% bootstrap confidence interval for γ1 can be calculated as
1325
+
1326
+ �γ1 − biasb(�γ1) − zα/2SEb(�γ1), �γ1 − biasb(�γ1) + zα/2SEb(�γ1)
1327
+
1328
+ .
1329
+ Bootstrap confidence intervals for b1 and b2 can be calculated similarly.
1330
+ For percentile bootstrap confidence intervals for, say γ1, the bootstrap estimates of �γ1
1331
+ are first ordered in terms of magnitude:
1332
+ �γ∗
1333
+ 1(1) < �γ∗
1334
+ 1(2) < ... < �γ∗
1335
+ 1(B).
1336
+ Then, a 100(1−α)% percentile bootstrap confidence interval for γ1 is
1337
+
1338
+ �γ∗
1339
+ 1([ αB
1340
+ 2 ]), �γ∗
1341
+ 1([(1− α
1342
+ 2 )B])
1343
+
1344
+ .
1345
+ Similarly, percentile bootstrap confidence intervals can be calculated for b1 and b2.
1346
+ 11
1347
+
1348
+ 3.3
1349
+ Choice of Cut Points
1350
+ The number and position of the cut-points for constructing the PLA-based model need to
1351
+ be suitably chosen, so that the model can closely approximate the underlying CHF, but
1352
+ avoid overfitting. A large number of cut points would provide a close local approximation
1353
+ to the underlying CHF. However, apart from being computationally expensive, a close local
1354
+ approximation may also lead to overfitting in which case it would be difficult to use the
1355
+ PLA-based model to predict future failures of components or systems.
1356
+ One of the possible ways to choose the number and position of the cut-points is by looking
1357
+ at the plot of the nonparametric estimator of CHF. From such a plot, observing the areas
1358
+ where the nonparametric estimate changes significantly, one can determine the positions and
1359
+ number of cut-points.
1360
+ More objectively, one can choose the positions of a given number of cut-points by max-
1361
+ imizing the log-likelihood function. For example, for three cut-points (N = 2), the natural
1362
+ choice for τ (j)
1363
+ 0
1364
+ is min
1365
+
1366
+ y(j)
1367
+ 1 , . . . , y(j)
1368
+ n
1369
+
1370
+ and τ (j)
1371
+ 2
1372
+ is max
1373
+
1374
+ y(j)
1375
+ 1 , . . . , y(j)
1376
+ n
1377
+
1378
+ . Now to choose the
1379
+ position of τ (j)
1380
+ 1 , one may take τ (j)
1381
+ 1
1382
+ equal to different sample quantiles of
1383
+
1384
+ y(j)
1385
+ 1 , . . . , y(j)
1386
+ n
1387
+
1388
+ and
1389
+ choose one that provides the maximum value of log-likelihood function evaluated at MLE.
1390
+ This process can be expressed as an algorithm as follows.
1391
+ Algorithm:
1392
+ • Step 1: Fix 0 < p1 < p2 < 1.
1393
+ • Step 2: Find the number of y(j)
1394
+ 1 , . . . , y(j)
1395
+ n
1396
+ that are between p1-th and p2-th sample
1397
+ quantiles of
1398
+
1399
+ y(j)
1400
+ 1 , . . . , y(j)
1401
+ n
1402
+
1403
+ . Denote this number by l. Note that l does not depend
1404
+ on j = 0, 1, . . . , J − 1.
1405
+ • Step 3: Set aj1 = p1-th quantile of
1406
+
1407
+ y(j)
1408
+ 1 , . . . , y(j)
1409
+ n
1410
+
1411
+ , j = 0, 1, . . . , J − 1.
1412
+ • Step 4: Set LL1= the value of log-likelihood function evaluated at MLE taking τ (j)
1413
+ 1
1414
+ =
1415
+ aj1, j = 0, 1, . . . , J − 1.
1416
+ • Step 5: Set aj2 = min
1417
+
1418
+ y(j)
1419
+ i
1420
+ > aj1; i = 1, 2, . . . , n
1421
+
1422
+ , j = 0, 1, . . . , J − 1.
1423
+ • Step 6: Set LL2= the value of log-likelihood function evaluated at MLE taking τ (j)
1424
+ 1
1425
+ =
1426
+ aj2, j = 0, 1, . . . , J − 1.
1427
+ • Step 7: Repeat the steps 5 and 6 to obtain LL1, LL2, . . . , LLl.
1428
+ • Step 8: Set k∗ = arg max
1429
+ 1≤k≤l
1430
+ LLk.
1431
+ • Step 9: The final cut points are τ (j)
1432
+ 1
1433
+ = ajk∗, j = 0, 1, . . . , J − 1.
1434
+ 12
1435
+
1436
+ 4
1437
+ Estimation of various reliability characteristics
1438
+ The final goal of fitting a model to load-sharing data, naturally, is accurate estimation of
1439
+ reliability characteristics of load-sharing systems. As the PLA-based model provides a good
1440
+ fit to load-sharing data due to the model’s flexible nature, it is natural that the important
1441
+ reliability characteristics of load-sharing systems can also be estimated quite accurately
1442
+ under this model. In this section, we develop estimates of reliability characteristics such as
1443
+ the quantile function, MTTF, RMT, and MRT of load-sharing systems under the PLA-based
1444
+ model. Details of these derivations are given in Appendix B for interested readers.
1445
+ Under the PLA-based model, the quantile function of Y (j) which is the system lifetime
1446
+ between the j-th and (j + 1)-st component failures, j = 0, ..., J − 1, is given by
1447
+ η(p) = inf
1448
+
1449
+ y ∈ R : G(j)(y) ≥ p
1450
+
1451
+ ,
1452
+ 0 < p < 1,
1453
+ where G(j)(y) = 1 − e−(J−j)Λ(j)(y). Using the expression of Λ(j)(y) given in Section 2, it is
1454
+ possible to work out an explicit formula for the quantile function η(p), as follows:
1455
+ η(p) =
1456
+
1457
+
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+
1473
+ τ (j)
1474
+ k−1 −
1475
+ log(1−p)
1476
+ (J−j)γjbk − 1
1477
+ bk ·
1478
+ k−1
1479
+
1480
+ ℓ=1
1481
+ bℓ(τ (j)
1482
+
1483
+ − τ (j)
1484
+ ℓ−1), if p ∈
1485
+
1486
+ G(j)(τ (j)
1487
+ k−1), G(j)(τ (j)
1488
+ k )
1489
+
1490
+ ,
1491
+ for k = 1, 2, . . . , N.
1492
+ τ (j)
1493
+ N−1 −
1494
+ log(1−p)
1495
+ (J−j)γjbN −
1496
+ 1
1497
+ bN ·
1498
+ N−1
1499
+
1500
+ ℓ=1
1501
+ bℓ(τ (j)
1502
+
1503
+ − τ (j)
1504
+ ℓ−1), if p ∈
1505
+
1506
+ G(j)(τ (j)
1507
+ N ), 1
1508
+
1509
+ .
1510
+ The mean time to failure or MTTF of a load-sharing system is the expected time the
1511
+ system operates till its failure. Let T denote the system failure time; then, T = �J−1
1512
+ j=0 Y (j).
1513
+ The MTTF of a load-sharing system under the PLA-based model is given by
1514
+ E(T) =
1515
+ J−1
1516
+
1517
+ j=0
1518
+ N
1519
+
1520
+ s=1
1521
+ �e−κj,s−1 − e−κj,s
1522
+ (J − j)γjbℓ
1523
+
1524
+ ,
1525
+ where
1526
+ κj,s = (J − j)γj
1527
+ s
1528
+
1529
+ ℓ=1
1530
+ bℓ
1531
+
1532
+ τ (j)
1533
+
1534
+ − τ (j)
1535
+ ℓ−1
1536
+
1537
+ .
1538
+ Reliability at a mission time or RMT of a system is the probability that the system will
1539
+ operate till a desired time t0; it is calculated as the survival probability of the system at
1540
+ time t0, i.e., S(t0) = P(T > t0) = P
1541
+ �J−1
1542
+
1543
+ j=0
1544
+ Y (j) > t0
1545
+
1546
+ . An explicit expression for RMT may
1547
+ be derived by using the distribution of the system lifetime T.
1548
+ However, as Y (j)s, j = 0, ..., J − 1 are independent but not identically distributed, it is
1549
+ difficult to obtain an explicit expression for the distribution of the system lifetime T, where
1550
+ T = �J−1
1551
+ j=0 Y (j). It is evident from the moment generating function φT(t) of T, which, under
1552
+ the PLA-based model, is given by
1553
+ φT(t) =
1554
+ J−1
1555
+
1556
+ j=0
1557
+ N
1558
+
1559
+ s=1
1560
+ (J − j)bsγj
1561
+ (J − j)bsγj − t
1562
+
1563
+ etτ (j)
1564
+ s−1−κj,s−1 − etτ (j)
1565
+ s
1566
+ −κj,s
1567
+
1568
+ if t < γ1bN,
1569
+ 13
1570
+
1571
+ where
1572
+ κj,s = (J − j)γj
1573
+ s
1574
+
1575
+ ℓ=1
1576
+ bℓ
1577
+
1578
+ τ (j)
1579
+
1580
+ − τ (j)
1581
+ ℓ−1
1582
+
1583
+ .
1584
+ From here, it is clear that it is difficult to find the RMT analytically under this model.
1585
+ However, for this model, RMT can be estimated using Monte Carlo simulations.
1586
+ For a
1587
+ Monte Carlo estimate of the RMT at a pre-specified time t0, one needs to generate R data
1588
+ points ti, i = 1, 2, . . . , R, as realisations of the system lifetime T, and find R(t0)
1589
+ R , where R(t0)
1590
+ is the number of realisations of the system lifetime that exceed t0. For a reasonably good
1591
+ estimate of RMT, a large value of R should be used.
1592
+ The mean residual time or MRT of a system is the expected additional time the system
1593
+ will survive if it has already survived a given time t. That is,
1594
+ MRT(t) = E(T − t|T > t) =
1595
+ � ∞
1596
+ t
1597
+ sfT|T>t(s)ds − t.
1598
+ Therefore, analytical derivation of MRT requires the truncated distribution of the system
1599
+ lifetime T, and it is difficult to obtain the truncated distribution of T in this case. Instead,
1600
+ an estimate of the MRT can be given using Monte Carlo simulations. We generate R data
1601
+ points t∗
1602
+ i , i = 1, 2, . . . , R, as realisations of the truncated lifetime T|T > t, and a Monte
1603
+ Carlo estimate of the MRT for load-sharing systems under the PLA-based model is then
1604
+ given by
1605
+
1606
+ MRT(t) =
1607
+ R
1608
+
1609
+ i=1
1610
+ t∗
1611
+ i
1612
+ R
1613
+ − t.
1614
+ 5
1615
+ Data Analysis
1616
+ In this section, we present an illustrative example using data from load-sharing systems
1617
+ comprising of two components. Very recently, this data have been analysed by Sutar and
1618
+ Naik-Nimbalkar [34], Asha et al. [2] and Franco et al. [11]. The data consist of information
1619
+ on component lifetimes of 18 two-component load-sharing systems. Each system is a parallel
1620
+ combination of two motors - “A” and “B”. When both motors A and B are in working
1621
+ condition, the total load on the system is shared between them. When one of the motors
1622
+ fails, the entire load goes to the operational motor.
1623
+ Sutar and Naik-Nimbalkar [34] observed that the load-sharing phenomenon existed for
1624
+ the systems considered in this dataset. Asha et al. [2] assumed Weibull lifetimes for the
1625
+ components. From the Weibull Q-Q plots for the lifetimes of motor A and B reported in
1626
+ Asha et al. [2], it was observed that although the Weibull model assumption for the lifetimes
1627
+ of motor B was reasonable, the lifetimes of motor A did not follow a Weibull distribution.
1628
+ This motivated us to consider the PLA-based modelling approach for the lifetimes of the
1629
+ load-sharing systems in this case.
1630
+ The dataset is reproduced in Table 1 for ready reference of the readers. The average
1631
+ and standard deviation of first component failure times are 178.61 and 62.75, respectively,
1632
+ 14
1633
+
1634
+ 0
1635
+ 100
1636
+ 200
1637
+ 300
1638
+ 0
1639
+ 100
1640
+ 200
1641
+ 300
1642
+ Sample quantile
1643
+ Population quantile
1644
+ (a) Q-Q plot for Y (0)
1645
+ 0
1646
+ 25
1647
+ 50
1648
+ 75
1649
+ 100
1650
+ 125
1651
+ 0
1652
+ 25
1653
+ 50
1654
+ 75
1655
+ 100
1656
+ 125
1657
+ Sample quantile
1658
+ Population quantile
1659
+ (b) Q-Q plot for Y (1)
1660
+ Figure 1: Q-Q plots
1661
+ 0.25
1662
+ 0.50
1663
+ 0.75
1664
+ 1.00
1665
+ 100
1666
+ 150
1667
+ 200
1668
+ 250
1669
+ 300
1670
+ Time
1671
+ SF
1672
+ (a) Plot of SF for Y (0)
1673
+ 0.00
1674
+ 0.25
1675
+ 0.50
1676
+ 0.75
1677
+ 1.00
1678
+ 0
1679
+ 40
1680
+ 80
1681
+ 120
1682
+ Time
1683
+ SF
1684
+ (b) Plot of SF for Y (1)
1685
+ Figure 2: Plots of SFs
1686
+ while those of the lifetime between first and second component failures are 49.72 and 29.45,
1687
+ respectively. We consider three cut points for the PLA-based model (i.e., N = 2). The
1688
+ estimates of the model parameters are reported in Table 2. The Q-Q plots for Y (0) and Y (1)
1689
+ are given in Figures 1a and 1b, respectively. The plots of the estimated SF and CHF are
1690
+ given in Figures 2 and 3, respectively. These figures indicate that the PLA-based model fits
1691
+ the data quite adequately.
1692
+ 15
1693
+
1694
+ 0.0
1695
+ 0.5
1696
+ 1.0
1697
+ 1.5
1698
+ 100
1699
+ 150
1700
+ 200
1701
+ 250
1702
+ 300
1703
+ Time
1704
+ CHF
1705
+ (a) Plot of CHF for Y (0)
1706
+ 0
1707
+ 2
1708
+ 4
1709
+ 6
1710
+ 0
1711
+ 40
1712
+ 80
1713
+ 120
1714
+ Time
1715
+ CHF
1716
+ (b) Plot of CHF for Y (1)
1717
+ Figure 3: Plots of CHFs
1718
+ Table 1: Time to failure (in days) data set for two motors in a load-sharing configuration
1719
+ System
1720
+ Time to failure of motor A
1721
+ Time to failure of motor B
1722
+ Event description
1723
+ 1
1724
+ 102
1725
+ 65
1726
+ B failed first
1727
+ 2
1728
+ 84
1729
+ 148
1730
+ A failed first
1731
+ 3
1732
+ 88
1733
+ 202
1734
+ A failed first
1735
+ 4
1736
+ 156
1737
+ 121
1738
+ B failed first
1739
+ 5
1740
+ 148
1741
+ 123
1742
+ B failed first
1743
+ 6
1744
+ 139
1745
+ 150
1746
+ A failed first
1747
+ 7
1748
+ 245
1749
+ 156
1750
+ B failed first
1751
+ 8
1752
+ 235
1753
+ 172
1754
+ B failed first
1755
+ 9
1756
+ 220
1757
+ 192
1758
+ B failed first
1759
+ 10
1760
+ 207
1761
+ 214
1762
+ A failed first
1763
+ 11
1764
+ 250
1765
+ 212
1766
+ B failed first
1767
+ 12
1768
+ 212
1769
+ 220
1770
+ A failed first
1771
+ 13
1772
+ 213
1773
+ 265
1774
+ A failed first
1775
+ 14
1776
+ 220
1777
+ 275
1778
+ A failed first
1779
+ 15
1780
+ 243
1781
+ 300
1782
+ A failed first
1783
+ 16
1784
+ 300
1785
+ 248
1786
+ B failed first
1787
+ 17
1788
+ 257
1789
+ 330
1790
+ A failed first
1791
+ 18
1792
+ 263
1793
+ 350
1794
+ A failed first
1795
+ A Kolmogorov-Smirnov type test has been performed to test the following hypotheses:
1796
+ H0 : True model is specified by Eqs. (2.2) and (2.3)
1797
+ against
1798
+ H1 : True model is not specified by Eqs. (2.2) and (2.3)
1799
+ 16
1800
+
1801
+ Table 2: Point and interval estimates of parameters of the PLA-based model when applied
1802
+ to the two-motor load-sharing data
1803
+ Parameter
1804
+ MLE
1805
+ Std. Error
1806
+ Asymptotic
1807
+ Percentile bootstrap
1808
+ Bootstrap
1809
+ γ1
1810
+ 4.2712
1811
+ 1.1901
1812
+ (1.9386, 6.6038)
1813
+ (3.0754, 8.0279)
1814
+ (0.8456, 5.8172)
1815
+ b1
1816
+ 0.0034
1817
+ 0.0008
1818
+ (0.0019, 0.0048)
1819
+ (0.0021, 0.0062)
1820
+ (0.0008, 0.0052)
1821
+ b2
1822
+ 0.0134
1823
+ 0.0039
1824
+ (0.0056, 0.0212)
1825
+ (0.0061, 0.0209)
1826
+ (0.0083, 0.0232)
1827
+ Table 3: Mean residual time and reliability in mission time
1828
+ t0
1829
+ MRTt0
1830
+ RMTt0
1831
+ 102.00
1832
+ 124.223
1833
+ 0.963
1834
+ 167.50
1835
+ 88.678
1836
+ 0.706
1837
+ 227.50
1838
+ 60.646
1839
+ 0.466
1840
+ 272.50
1841
+ 42.794
1842
+ 0.271
1843
+ 350.00
1844
+ 36.919
1845
+ 0.044
1846
+ based on the test statistics
1847
+ Tn = max
1848
+ 1≤i≤n
1849
+ ���� �G(0) �
1850
+ Y (0)
1851
+ i:n
1852
+
1853
+ − i
1854
+ n
1855
+ ���� + max
1856
+ 1≤i≤n
1857
+ ���� �G(1) �
1858
+ Y (1)
1859
+ i:n
1860
+
1861
+ − i
1862
+ n
1863
+ ���� ,
1864
+ where �G(j)(·) is the estimated cumulative distribution function corresponding to PLA-based
1865
+ model, and Y (j)
1866
+ i:n is the i-th order statistics corresponding to Y (j)
1867
+ i
1868
+ , j = 0, 1, i = 1, 2, . . . , n.
1869
+ The observed value of the test statistics Tn is found to be 0.414 based on this data. The
1870
+ Monte Carlo estimate of the corresponding p-value is 0.71. Therefore, the null hypothesis
1871
+ cannot be rejected at significance level 0.05, and we conclude that it is quite reasonable to
1872
+ use the PLA-based model for this data.
1873
+ It may also be noted here that for this data, the value of the Akaike’s information
1874
+ criterion (AIC) for the model considered by Asha et al. [2] is 480.50, and that for the best
1875
+ model considered by Franco et al. [11] is 409.65. In contrast, the AIC value for the PLA-
1876
+ based model turns out to be 369.34, implying that the PLA-based model is more suitable
1877
+ for the two-motor load-sharing systems data considered here.
1878
+ For the PLA-based model, the estimated value of γ1 is 4.2712, which empirically implies
1879
+ that the load-sharing model is quite appropriate in this case. The same comment can also
1880
+ be made from the plots, by noting that the plot of the SF of the distribution of time between
1881
+ first and second failure component times diminishes to zero more quickly compared to that
1882
+ of first component failure times in Figure 2.
1883
+ The reliability characteristics of the two-motor load-sharing systems are also estimated
1884
+ by using the expressions and techniques described in Section 4. The MTTF is calculated
1885
+ to be 221.36 days. Monte Carlo estimates of the MRT and RMT are calculated at different
1886
+ sample percentile points of the system failure times and are presented in Table 3.
1887
+ 17
1888
+
1889
+ 6
1890
+ Simulation Study
1891
+ The accuracy of the proposed PLA-based model in fitting data from load-sharing systems is
1892
+ of utmost importance as the subsequent estimation of reliability characteristics depends on
1893
+ the PLA-based model. In this section, we present results of a Monte Carlo simulation study
1894
+ that examines the performance of the proposed PLA-based model in two directions. First,
1895
+ based on samples generated from a parent process with piecewise linear CHF, we assess the
1896
+ performance of the proposed estimation method that is presented in Section 3. Then, the
1897
+ efficacy of the PLA-based model in fitting data generated from a parent process represented
1898
+ by some parametric models is also assessed. The simulations are carried out by using R
1899
+ software. For the simulations, we consider two-component load-sharing systems.
1900
+ 6.1
1901
+ Assessing performance of the estimation method
1902
+ To assess the performance of the estimation methods, we consider an underlying cumulative
1903
+ hazard that is made up of two linear pieces. To this effect, we generate samples from the
1904
+ model specified by Eqs.(2.2) and (2.3) with J = 2 and N = 2. The true parameter values
1905
+ are taken to be b1 = 0.01, 0.05; b2 = 0.1, 0.5; γ1 = 5; τ (0)
1906
+ 1
1907
+ = ln 2
1908
+ 2b1 ; τ (1)
1909
+ 1
1910
+ =
1911
+ ln 2
1912
+ γ1b1. The estimation
1913
+ is performed based on samples of size n = 100 and 200. The average estimates (AE), mean
1914
+ square errors (MSE), variance (VAR) of the MLEs based on 5000 Monte Carlo replications
1915
+ are reported in Tables 4, 5, and 6. The coverage percentage (CP) and average lengths (AL)
1916
+ of 95% confidence intervals are also reported in the same tables.
1917
+ From the Tables 4, 5 and 6, we observe that the average estimates of γ1, b1 and b2 are
1918
+ very close to the true values, and the MSEs as well as VARs are quite small as desired. It is
1919
+ also noticed that the performance of all the constructed confidence intervals is satisfactory.
1920
+ These results demonstrate that the proposed inferential techniques can accurately estimate
1921
+ the parameters of the PLA-based model.
1922
+ Table 4: Performance measures for estimates of γ1
1923
+ n
1924
+ b1
1925
+ b2
1926
+ AE
1927
+ MSE
1928
+ VAR
1929
+ Asymptotic
1930
+ Percentile bootstrap
1931
+ Bootstrap
1932
+ CP
1933
+ AL
1934
+ CP
1935
+ AL
1936
+ CP
1937
+ AL
1938
+ 0.01 0.1
1939
+ 5.0231
1940
+ 0.3388811
1941
+ 0.3384155
1942
+ 94.38
1943
+ 2.2566
1944
+ 99.94
1945
+ 2.2012
1946
+ 83.58
1947
+ 2.2156
1948
+ 0.5
1949
+ 5.0178
1950
+ 0.2880872
1951
+ 0.2878297
1952
+ 95.84
1953
+ 2.2509
1954
+ 99.94
1955
+ 2.1278
1956
+ 86.68
1957
+ 2.1993
1958
+ 100
1959
+ 0.05 0.1
1960
+ 5.0209
1961
+ 0.3556721
1962
+ 0.3553026
1963
+ 93.98
1964
+ 2.2711
1965
+ 98.52
1966
+ 2.3093
1967
+ 88.60
1968
+ 2.3226
1969
+ 0.5
1970
+ 5.0231
1971
+ 0.3388811
1972
+ 0.3384155
1973
+ 94.38
1974
+ 2.2566
1975
+ 99.94
1976
+ 2.2012
1977
+ 83.58
1978
+ 2.2156
1979
+ 0.01 0.1
1980
+ 5.0144
1981
+ 0.1472563
1982
+ 0.1470773
1983
+ 96.20
1984
+ 1.5963
1985
+ 99.90
1986
+ 1.5000
1987
+ 85.06
1988
+ 1.5093
1989
+ 0.5
1990
+ 5.0127
1991
+ 0.1373738
1992
+ 0.1372388
1993
+ 96.64
1994
+ 1.5949
1995
+ 99.86
1996
+ 1.4395
1997
+ 84.42
1998
+ 1.4476
1999
+ 200
2000
+ 0.05 0.1
2001
+ 5.0145
2002
+ 0.1698002
2003
+ 0.1696241
2004
+ 94.84
2005
+ 1.6037
2006
+ 98.56
2007
+ 1.6165
2008
+ 89.56
2009
+ 1.6246
2010
+ 0.5
2011
+ 5.0144
2012
+ 0.1472563
2013
+ 0.1470773
2014
+ 96.20
2015
+ 1.5963
2016
+ 99.90
2017
+ 1.5000
2018
+ 85.06
2019
+ 1.5093
2020
+ 18
2021
+
2022
+ Table 5: Performance measures for estimates of b1
2023
+ n
2024
+ b1
2025
+ b2
2026
+ AE
2027
+ MSE
2028
+ VAR
2029
+ Asymptotic
2030
+ Percentile bootstrap
2031
+ Bootstrap
2032
+ CP
2033
+ AL
2034
+ CP
2035
+ AL
2036
+ CP
2037
+ AL
2038
+ 0.01 0.1
2039
+ 0.0108
2040
+ 0.0000022
2041
+ 0.0000016
2042
+ 87.24
2043
+ 0.0041
2044
+ 81.66
2045
+ 0.0052
2046
+ 92.88
2047
+ 0.0052
2048
+ 0.5
2049
+ 0.0110
2050
+ 0.0000025
2051
+ 0.0000016
2052
+ 84.56
2053
+ 0.0042
2054
+ 68.70
2055
+ 0.0053
2056
+ 93.96
2057
+ 0.0054
2058
+ 100
2059
+ 0.05 0.1
2060
+ 0.0513
2061
+ 0.0000389
2062
+ 0.0000371
2063
+ 90.10
2064
+ 0.0201
2065
+ 95.96
2066
+ 0.0245
2067
+ 93.70
2068
+ 0.0246
2069
+ 0.5
2070
+ 0.0528
2071
+ 0.0000457
2072
+ 0.0000376
2073
+ 89.18
2074
+ 0.0203
2075
+ 89.88
2076
+ 0.0252
2077
+ 92.70
2078
+ 0.0253
2079
+ 0.01 0.1
2080
+ 0.0105
2081
+ 0.0000010
2082
+ 0.0000008
2083
+ 86.42
2084
+ 0.0029
2085
+ 81.74
2086
+ 0.0035
2087
+ 93.48
2088
+ 0.0036
2089
+ 0.5
2090
+ 0.0106
2091
+ 0.0000011
2092
+ 0.0000008
2093
+ 84.74
2094
+ 0.0029
2095
+ 74.08
2096
+ 0.0036
2097
+ 94.56
2098
+ 0.0036
2099
+ 200
2100
+ 0.05 0.1
2101
+ 0.0508
2102
+ 0.0000186
2103
+ 0.0000180
2104
+ 90.06
2105
+ 0.0140
2106
+ 95.14
2107
+ 0.0169
2108
+ 93.08
2109
+ 0.0169
2110
+ 0.5
2111
+ 0.0525
2112
+ 0.0000255
2113
+ 0.0000193
2114
+ 86.42
2115
+ 0.0143
2116
+ 81.74
2117
+ 0.0177
2118
+ 93.48
2119
+ 0.0178
2120
+ Table 6: Performance measures for estimates of b2
2121
+ n
2122
+ b1
2123
+ b2
2124
+ AE
2125
+ MSE
2126
+ VAR
2127
+ Asymptotic
2128
+ Percentile bootstrap
2129
+ Bootstrap
2130
+ CP
2131
+ AL
2132
+ CP
2133
+ AL
2134
+ CP
2135
+ AL
2136
+ 0.01 0.1
2137
+ 0.1006
2138
+ 0.0001691
2139
+ 0.0001688
2140
+ 92.70
2141
+ 0.0464
2142
+ 96.60
2143
+ 0.0534
2144
+ 94.00
2145
+ 0.0530
2146
+ 0.5
2147
+ 0.5067
2148
+ 0.0038339
2149
+ 0.0037895
2150
+ 94.52
2151
+ 0.2344
2152
+ 97.12
2153
+ 0.2675
2154
+ 95.12
2155
+ 0.2676
2156
+ 100
2157
+ 0.05 0.1
2158
+ 0.1030
2159
+ 0.0001794
2160
+ 0.0001705
2161
+ 93.76
2162
+ 0.0472
2163
+ 95.46
2164
+ 0.0529
2165
+ 94.70
2166
+ 0.0532
2167
+ 0.5
2168
+ 0.5028
2169
+ 0.0042337
2170
+ 0.0042268
2171
+ 92.68
2172
+ 0.2315
2173
+ 96.34
2174
+ 0.2650
2175
+ 94.00
2176
+ 0.2633
2177
+ 0.01 0.1
2178
+ 0.1002
2179
+ 0.0000725
2180
+ 0.0000725
2181
+ 94.22
2182
+ 0.0325
2183
+ 96.72
2184
+ 0.0343
2185
+ 93.76
2186
+ 0.0345
2187
+ 0.5
2188
+ 0.5030
2189
+ 0.0017348
2190
+ 0.0017261
2191
+ 95.06
2192
+ 0.1632
2193
+ 96.52
2194
+ 0.1665
2195
+ 93.60
2196
+ 0.1674
2197
+ 200
2198
+ 0.05 0.1
2199
+ 0.1011
2200
+ 0.0000780
2201
+ 0.0000768
2202
+ 93.84
2203
+ 0.0326
2204
+ 96.10
2205
+ 0.0351
2206
+ 94.08
2207
+ 0.0352
2208
+ 0.5
2209
+ 0.5010
2210
+ 0.0018134
2211
+ 0.0018128
2212
+ 94.22
2213
+ 0.1623
2214
+ 96.72
2215
+ 0.1717
2216
+ 93.76
2217
+ 0.1725
2218
+ 6.2
2219
+ Assessing efficacy of the PLA-based model in fitting data
2220
+ from other models
2221
+ Now, we examine the robustness of the PLA-based model in the following manner.
2222
+ We
2223
+ generate load-sharing data from parametric models, and then fit the PLA-based model to
2224
+ the data.
2225
+ The model fit is then assessed with respect to an integrated measure that is
2226
+ suitably defined to reflect the quality of approximation provided by the PLA-based model.
2227
+ The measure, which we call the Absolute Integrated Error (AIE), is as follows. For j = 0, 1,
2228
+ let S(j)
2229
+ TGP(·) and H(j)
2230
+ TGP(·) denote the SF and CHF of the lifetimes between j-th and (j + 1)-
2231
+ st failures. Also, assume that the estimated SF and CHF based on PLA-based model are
2232
+ denoted by �S(j)
2233
+ P LA(·) and �H(j)
2234
+ P LA(·), respectively. Then the AIE, based on the SF and CHF,
2235
+ respectively, are defined as
2236
+ AIE(j)
2237
+ SF = 1
2238
+ R
2239
+ R
2240
+
2241
+ k=1
2242
+ 1
2243
+ y(j)
2244
+ max − y(j)
2245
+ min
2246
+ � y(j)
2247
+ max
2248
+ y(j)
2249
+ min
2250
+ ���S(j)
2251
+ TGP(t) − �S(j)
2252
+ P CA(t)
2253
+ ��� dt,
2254
+ 19
2255
+
2256
+ Table 7: AIE based on SF and CHF for Weibull distribution with k = 3, β = 1.
2257
+ n
2258
+ α
2259
+ AIE(0)
2260
+ SF
2261
+ AIE(1)
2262
+ SF
2263
+ AIE(0)
2264
+ CHF
2265
+ AIE(1)
2266
+ CHF
2267
+ 50
2268
+ 1.0
2269
+ 0.0379
2270
+ 0.0291
2271
+ 0.1503
2272
+ 0.2981
2273
+ 1.5
2274
+ 0.0436
2275
+ 0.0434
2276
+ 0.1329
2277
+ 0.2633
2278
+ 100
2279
+ 1.0
2280
+ 0.0266
2281
+ 0.0183
2282
+ 0.1282
2283
+ 0.2541
2284
+ 1.5
2285
+ 0.0326
2286
+ 0.0301
2287
+ 0.1231
2288
+ 0.2440
2289
+ Table 8: AIE of the survival and cumulative hazard function of quadratic distribution for
2290
+ κ1 = 0.5, ˜κ1 = 2κ1 = 1, ˜κ2 > 2κ2.
2291
+ n
2292
+ κ2
2293
+ ˜κ2
2294
+ AIE(0)
2295
+ SF
2296
+ AIE(1)
2297
+ SF
2298
+ AIE(0)
2299
+ CHF
2300
+ AIE(1)
2301
+ CHF
2302
+ 50
2303
+ 0.50
2304
+ 1.50
2305
+ 0.0380
2306
+ 0.0368
2307
+ 0.1262
2308
+ 0.2536
2309
+ 2.00
2310
+ 0.0380
2311
+ 0.0389
2312
+ 0.1261
2313
+ 0.2555
2314
+ 0.70
2315
+ 1.50
2316
+ 0.0389
2317
+ 0.0363
2318
+ 0.1261
2319
+ 0.2524
2320
+ 2.00
2321
+ 0.0388
2322
+ 0.0383
2323
+ 0.1258
2324
+ 0.2539
2325
+ 100
2326
+ 0.50
2327
+ 1.50
2328
+ 0.0289
2329
+ 0.0262
2330
+ 0.1185
2331
+ 0.2506
2332
+ 2.00
2333
+ 0.0289
2334
+ 0.0281
2335
+ 0.1178
2336
+ 0.2575
2337
+ 0.70
2338
+ 1.50
2339
+ 0.0301
2340
+ 0.0257
2341
+ 0.1217
2342
+ 0.2465
2343
+ 2.00
2344
+ 0.0299
2345
+ 0.0274
2346
+ 0.1206
2347
+ 0.2528
2348
+ AIE(j)
2349
+ CHF = 1
2350
+ R
2351
+ R
2352
+
2353
+ k=1
2354
+ 1
2355
+ y(j)
2356
+ max − y(j)
2357
+ min
2358
+ � y(j)
2359
+ max
2360
+ y(j)
2361
+ min
2362
+ ���H(j)
2363
+ TGP(t) − �H(j)
2364
+ P CA(t)
2365
+ ��� dt,
2366
+ where y(j)
2367
+ min = min
2368
+
2369
+ y(j)
2370
+ 1 , y(j)
2371
+ 2 , . . . , y(j)
2372
+ n
2373
+
2374
+ , y(j)
2375
+ max = max
2376
+
2377
+ y(j)
2378
+ 1 , y(j)
2379
+ 2 , . . . , y(j)
2380
+ n
2381
+
2382
+ , j = 0, 1.
2383
+ For generating load-sharing data from parametric models, two scenarios are considered:
2384
+ (a) Case - 1: It is assumed that the lifetimes of each components of a two-component load-
2385
+ sharing system are independent and identically distributed as Weibull distribution with shape
2386
+ parameter α and scale parameter β when both the components are working. After the first
2387
+ failure, the lifetime of the surviving component is assumed to follow a Weibull distribution
2388
+ with same shape parameter α, but a different scale parameter kβ, where k > 2 is to ensure
2389
+ the increase of load on the surviving component. For β = 1, k = 3, we take α = 1 and 1.5.
2390
+ (b) Case - 2: In the second scenario, the component lifetimes are assumed to be independent
2391
+ and identically distributed according to a distribution with quadratic CHF κ1t + κ2t2 when
2392
+ both components are working. After the first failure, the lifetime of the surviving component
2393
+ is assumed to follow a quadratic CHF with different parameters ˜κ1 and ˜κ2. We take several
2394
+ values of the parameters κ1, κ2, ˜κ1, and ˜κ2 ensuring the fact that the CHF increases after
2395
+ one component fails in the system.
2396
+ The numerical results are reported in Tables 7, 8, and 9. For all cases, it is observed
2397
+ that the values of AIE based on SF and CHF are reasonably small, indicating that the
2398
+ 20
2399
+
2400
+ Table 9: AIE of the survival and cumulative hazard function of quadratic distribution for
2401
+ ˜κ1 > 2κ1, κ2 = 0.5, ˜κ2 = 2κ2 = 1.
2402
+ n
2403
+ κ1
2404
+ ˜κ1
2405
+ AIE(0)
2406
+ SF
2407
+ AIE(1)
2408
+ SF
2409
+ AIE(0)
2410
+ CHF
2411
+ AIE(1)
2412
+ CHF
2413
+ 50
2414
+ 0.50
2415
+ 1.50
2416
+ 0.0388
2417
+ 0.0313
2418
+ 0.1283
2419
+ 0.2570
2420
+ 2.00
2421
+ 0.0397
2422
+ 0.0307
2423
+ 0.1309
2424
+ 0.2672
2425
+ 0.70
2426
+ 1.50
2427
+ 0.0372
2428
+ 0.0314
2429
+ 0.1284
2430
+ 0.2567
2431
+ 2.00
2432
+ 0.0377
2433
+ 0.0304
2434
+ 0.1301
2435
+ 0.2644
2436
+ 100
2437
+ 0.50
2438
+ 1.50
2439
+ 0.0306
2440
+ 0.0210
2441
+ 0.1265
2442
+ 0.2290
2443
+ 2.00
2444
+ 0.0319
2445
+ 0.0206
2446
+ 0.1325
2447
+ 0.2285
2448
+ 0.70
2449
+ 1.50
2450
+ 0.0278
2451
+ 0.0210
2452
+ 0.1184
2453
+ 0.2331
2454
+ 2.00
2455
+ 0.0285
2456
+ 0.0198
2457
+ 0.1227
2458
+ 0.2271
2459
+ PLA-based model provides quite a satisfactory approximation to the data generated from
2460
+ different parent populations.
2461
+ 7
2462
+ Concluding Remarks
2463
+ In this article, a PLA-based model for the CHF is proposed for data from load-sharing sys-
2464
+ tems and then important reliability characteristics such as quantile function, RMT, MTTF,
2465
+ and MRT of load-sharing systems are estimated under the proposed model. The principal
2466
+ advantages of the model are that it is data-driven, and does not use strong parametric as-
2467
+ sumptions for the underlying lifetime variable. Likelihood inference for the proposed model is
2468
+ discussed in detail. It is observed that for two-component load-sharing systems, it is possible
2469
+ to obtain explicit expressions for the MLEs of parameters of the PLA-based model. Construc-
2470
+ tion of confidence intervals using the Fisher information matrix and bootstrap approaches
2471
+ are also discussed. Derivations of the important reliability characteristics are provided in
2472
+ this setting.
2473
+ A Monte Carlo simulation study is performed to examine (a) the performance of the
2474
+ methods of inference, and (b) the efficacy of the PLA-based model to fit load-sharing data
2475
+ in general.
2476
+ It is shown that the PLA-based model performs quite satisfactorily in both
2477
+ cases.
2478
+ Analysis of data pertaining to components lifetimes of a two-motor load-sharing
2479
+ system is provided as an illustration. It is illustrated that the PLA-based model is supe-
2480
+ rior to the models that have been considered for this data in the literature of load-sharing
2481
+ systems. In summary, in this paper, an efficient PLA-based modelling framework using mini-
2482
+ mal assumptions for load-sharing systems is discussed, and estimates of important reliability
2483
+ characteristics for load-sharing systems in this setting are developed.
2484
+ 21
2485
+
2486
+ Funding information
2487
+ • The research of Ayon Ganguly is supported by the Mathematical Research Impact Cen-
2488
+ tric Support (File no. MTR/2017/000700) from the Science and Engineering Research
2489
+ Board, Department of Science and Technology, Government of India.
2490
+ • The research of Debanjan Mitra is supported by the Mathematical Research Impact
2491
+ Centric Support (File no. MTR/2021/000533) from the Science and Engineering Re-
2492
+ search Board, Department of Science and Technology, Government of India.
2493
+ References
2494
+ [1] S.V. Amari and R. Bergman. Reliability analysis of k-out-of-n load-sharing systems. In
2495
+ Annual Reliability and Maintainability Symposium, pages 440–445, 2008.
2496
+ [2] G Asha, AV Raja, and N. Ravishanker. Reliability modelling incorporating load share
2497
+ and frailty. Applied Stochastic Models in Business and Industry, 34:206–223, 2018.
2498
+ [3] N. Balakrishnan, M. Koutras, F. Milienos, and S. Pal. Piecewise linear approximations
2499
+ for cure rate models. Methodology and Computing in Applied Probability, 18(4):937–966,
2500
+ 2016.
2501
+ [4] C.D. Bernard. Time dependence of mechanical breakdown in bundles of fibers. I. con-
2502
+ stant total load. Journal of Applied Physics, 28(9):1058–1064, 1957.
2503
+ [5] C.D. Bernard. Statistics and time dependence of mechanical breakdown in fibers. Jour-
2504
+ nal of Applied Physics, 29(6):968–983, 1958.
2505
+ [6] Z. W. Birnbaum and S. C. Saunders. A statistical model for life-length of materials.
2506
+ Journal of the American Statistical Association, 53(281):151–160, 1958.
2507
+ [7] B. Brown, B. Liu, S. McIntyre, and M. Revie.
2508
+ Reliability analysis of load-sharing
2509
+ systems with spatial dependence and proximity effects.
2510
+ Reliability Engineering and
2511
+ System Safety, 2022.
2512
+ [8] H. Che, S. Zeng, K. Li, and J. Guo. Reliability analysis of load-sharing man-machine
2513
+ systems subject to machine degradation, human errors, and random shocks. Reliability
2514
+ Engineering and System Safety, 2022.
2515
+ [9] H.E. Daniels. The statistical theory of the strength of bundles of threads I. Proceedings
2516
+ of the Royal Society of London, 83:405–435, 1945.
2517
+ [10] JV Deshpande, I. Dewan, and UV Naik-Nimbalkar. A family of distributions to model
2518
+ load sharing systems.
2519
+ Journal of Statistical Planning and Inference, 140:1441–1451,
2520
+ 2010.
2521
+ [11] M Franco, JM Vivo, and D Kundu. A generalized Freund bivariate model for a two-
2522
+ component load sharing system. Reliability Engineering and System Safety, 2020.
2523
+ 22
2524
+
2525
+ [12] JE Freund. A bivariate extension of the exponential distribution. Journal of American
2526
+ Statistical Association, 56:971–976, 1961.
2527
+ [13] D. G. Harlow and S. L. Phoenix.
2528
+ The chain-of-bundles probability model for the
2529
+ strength of fibrous materials I: analysis and conjectures. Journal of composite materials,
2530
+ 12(2):195–214, 1978.
2531
+ [14] D. G. Harlow and S. L. Phoenix. Probability distributions for the strength of fibrous
2532
+ materials under local load sharing I: two-level failure and edge effects. Advances in
2533
+ Applied Probability, pages 68–94, 1982.
2534
+ [15] M. Hollander and E. A. Pena. Dynamic reliability models with conditional proportional
2535
+ hazards. Lifetime Data Analysis, 1(4):377–401, 1995.
2536
+ [16] H. Kim and P.H. Kvam. Reliability estimation based on system data with an unknown
2537
+ load share rule. Lifetime Data Analysis, 10:83–94, 2004.
2538
+ [17] Y. Kong and Z. S. Ye. A cumulative-exposure-based algorithm for failure data from a
2539
+ load-sharing system. IEEE Transactions on Reliability, 65(2):1001–1012, 2016.
2540
+ [18] H. P. Kvam and J. C. Lu. Load-sharing models. Math and Computer Science Faculty
2541
+ Publications, 2008.
2542
+ [19] S. Lee, S. Durham, and J. Lynch. On the calculation of the reliability of general load
2543
+ sharing system. Journal of Applied Probability, 32:777–792, 1995.
2544
+ [20] H.H. Lin, K.H. Chen, and R.T. Wang. A multivariant exponential shared-load model.
2545
+ IEEE Transactions on Reliability, 42(1):165–171, 1993.
2546
+ [21] C. Luo, L. Chen, and A. Xu. Modelling and estimation of system reliability under dy-
2547
+ namic operating environments and lifetime ordering constraints. Reliability Engineering
2548
+ and System Safety, 2022.
2549
+ [22] J D Lynch. On the joint distribution of component failures for monotone load-sharing
2550
+ systems. Journal of Statistical Planning and Inference, 78:13–21, 1999.
2551
+ [23] A. Mettas and P. Vassiliou. Application of quantitative accelerated life models on load
2552
+ sharing redundancy. In Annual Symposium Reliability and Maintainability, 2004-RAMS,
2553
+ pages 293–296. IEEE, 2004.
2554
+ [24] R. Mohammad, A. Kalam, and S.V. Amari. Reliability evaluation of phased-mission
2555
+ systems with load-sharing components. In Proceedings Annual Reliability and Main-
2556
+ tainability Symposium, pages 1–6. IEEE, 2012.
2557
+ [25] C. H. Muller and R. Meyer. Inference of intensity-based models for load-sharing systems
2558
+ with damage accumulation. IEEE Transactions on Reliability, 71:539–554, 2012.
2559
+ [26] E. Nezakati and M. Ramzakh. Reliability analysis of a load sharing k-out-of-n:f degra-
2560
+ dation system with dependent competing failures. Reliability Engineering and System
2561
+ Safety, 2020.
2562
+ 23
2563
+
2564
+ [27] C. Park. Parameter estimation for the reliability of load-sharing systems. IIE Transac-
2565
+ tions, 42:753–765, 2010.
2566
+ [28] C. Park. Parameter estimation from load-sharing system data using the expectation-
2567
+ maximization algorithm. IIE Transactions, 45:147–163, 2013.
2568
+ [29] B. W. Rosen. Tensile failure of fibrous composites. AIAA journal, 2(11):1985–1991,
2569
+ 1964.
2570
+ [30] S.M. Ross. A model in which component failure rates depend on the working set. Naval
2571
+ research logistics quarterly, 31(2):297–300, 1984.
2572
+ [31] Z. Schechner. A load-sharing model: The linear breakdown rule. Naval research logistics
2573
+ quarterly, 31(1):137–144, 1984.
2574
+ [32] J. Shao and L.R. Lamberson. Modeling a shared-load k-out-of-n: G system. IEEE
2575
+ Transactions on Reliability, 40(2):205–209, 1991.
2576
+ [33] A.V. Suprasad, M.B. Krishna, and P. Hoang. Tampered failure rate load-sharing sys-
2577
+ tems: Status and perspectives. In Handbook of performability engineering, pages 291–
2578
+ 308. Springer, 2008.
2579
+ [34] S S Sutar and U V Naik-Nimbalkar. Accelerated failure time models for load sharing
2580
+ systems. IEEE Transactions on Reliability, 63:706–714, 2014.
2581
+ [35] J. Zhang, Y. Zhao, and X. Ma. Reliability modeling methods for load-sharing k-out-of-
2582
+ n system subject to discrete external load. Reliability Engineering and System Safety,
2583
+ 2020.
2584
+ [36] X. Zhao, B. Liu, and Y. Liu. Reliability modeling and analysis of load-sharing systems
2585
+ with continuously degrading components. IEEE Transactions on Reliability, 67:1096–
2586
+ 1110, 2018.
2587
+ Appendix A: Calculation of Fisher information ma-
2588
+ trix for two-component load sharing systems
2589
+ For calculating I(θ), the required expectations are E
2590
+
2591
+ N(0)
2592
+ 1
2593
+
2594
+ , E
2595
+
2596
+ N(0)
2597
+ 2
2598
+
2599
+ , E
2600
+
2601
+ N(1)
2602
+ 1
2603
+
2604
+ , E
2605
+
2606
+ N(1)
2607
+ 2
2608
+
2609
+ ,
2610
+ E
2611
+
2612
+
2613
+
2614
+
2615
+ i∈I(1)
2616
+ 1
2617
+ Y (1)
2618
+ i
2619
+
2620
+
2621
+  and E
2622
+
2623
+
2624
+
2625
+
2626
+ i∈I(1)
2627
+ 2
2628
+ Y (1)
2629
+ i
2630
+
2631
+
2632
+ .
2633
+ Note that
2634
+ N(0)
2635
+ k
2636
+ ∼ Bin(n, p(0)
2637
+ k ),
2638
+ N(1)
2639
+ k
2640
+ ∼ Bin(n, p(1)
2641
+ k ),
2642
+ with
2643
+ p(0)
2644
+ k
2645
+ = P
2646
+
2647
+ Y (0)
2648
+ i
2649
+ ∈ [τ (0)
2650
+ k−1, τ (0)
2651
+ k )
2652
+
2653
+ ,
2654
+ p(1)
2655
+ k
2656
+ = P
2657
+
2658
+ Y (1)
2659
+ i
2660
+ ∈ [τ (1)
2661
+ k−1, τ (1)
2662
+ k )
2663
+
2664
+ ,
2665
+ k = 1, 2.
2666
+ 24
2667
+
2668
+ In case of a two-component load-sharing system, PDF of Y (j)
2669
+ i
2670
+ , j = 1, 2, is given by
2671
+ gY (j)
2672
+ i (y) = (2 − j)λ(j)(y)e−(2−j)
2673
+ � y
2674
+ 0 λ(j)(u)du.
2675
+ Hence,
2676
+ p(0)
2677
+ 1
2678
+ =
2679
+ � τ (0)
2680
+ 1
2681
+ 0
2682
+ gY (0)
2683
+ i
2684
+ (y)dy = 1 − e−2b1τ (0)
2685
+ 1 ,
2686
+ p(1)
2687
+ 1
2688
+ =
2689
+ � τ (1)
2690
+ 1
2691
+ 0
2692
+ gY (1)
2693
+ i
2694
+ (y)dy = 1 − e−γ1b1τ (1)
2695
+ 1 .
2696
+ Then, p(0)
2697
+ 2
2698
+ = 1 − p(0)
2699
+ 1
2700
+ = e−2b1τ (0)
2701
+ 1
2702
+ and p(1)
2703
+ 2
2704
+ = 1 − p(1)
2705
+ 1
2706
+ = e−γ1b1τ (1)
2707
+ 1 . Therefore,
2708
+ E(N(0)
2709
+ 1 ) = 1−e−2b1τ (0)
2710
+ 1 ,
2711
+ E(N(0)
2712
+ 2 ) = e−2b1τ (0)
2713
+ 1 ,
2714
+ E(N(1)
2715
+ 1 ) = 1−e−γ1b1τ (1)
2716
+ 1 ,
2717
+ E(N(1)
2718
+ 2 ) = e−γ1b1τ (1)
2719
+ 1 .
2720
+ Now,
2721
+ E
2722
+
2723
+
2724
+
2725
+
2726
+ i∈I(1)
2727
+ 1
2728
+ Y (1)
2729
+ i
2730
+
2731
+
2732
+  = E
2733
+
2734
+
2735
+ E
2736
+
2737
+
2738
+
2739
+
2740
+ i∈I(1)
2741
+ 1
2742
+ Y (1)
2743
+ i
2744
+ |N(1)
2745
+ 1
2746
+ = n(1)
2747
+ 1
2748
+
2749
+
2750
+
2751
+
2752
+
2753
+  .
2754
+ For i ∈ I(1)
2755
+ 1 , Y (1)
2756
+ i
2757
+ follows a right truncated exponential distribution with PDF
2758
+ γ1b1e−γ1b1y
2759
+ 1−e−γ1b1τ(1)
2760
+ 1
2761
+ for
2762
+ 0 < y < τ (1)
2763
+ 1 . Hence, for i ∈ I(1)
2764
+ 1 ,
2765
+ E
2766
+
2767
+ Y (1)
2768
+ i
2769
+
2770
+ =
2771
+ � τ (1)
2772
+ 1
2773
+ 0
2774
+ y γ1b1e−γ1b1y
2775
+ 1 − e−γ1b1τ (1)
2776
+ 1
2777
+ dy =
2778
+ 1
2779
+ γ1b1
2780
+
2781
+ 1 − (1 + γ1b1τ (1)
2782
+ 1 )e−γ1b1τ (1)
2783
+ 1
2784
+ 1 − e−γ1b1τ (1)
2785
+ 1
2786
+
2787
+ .
2788
+ Therefore,
2789
+ E
2790
+
2791
+
2792
+
2793
+
2794
+ i∈I(1)
2795
+ 1
2796
+ Y (1)
2797
+ i
2798
+
2799
+
2800
+  =
2801
+ 1
2802
+ γ1b1
2803
+
2804
+ 1 − (1 + γ1b1τ (1)
2805
+ 1 )e−γ1b1τ (1)
2806
+ 1
2807
+ 1 − e−γ1b1τ (1)
2808
+ 1
2809
+
2810
+ E(N(1)
2811
+ 1 )
2812
+ =
2813
+ 1
2814
+ γ1b1
2815
+
2816
+ 1 − (1 + γ1b1τ (1)
2817
+ 1 )e−γ1b1τ (1)
2818
+ 1
2819
+ 1 − e−γ1b1τ (1)
2820
+ 1
2821
+ � �
2822
+ 1 − e−γ1b1τ (1)
2823
+ 1
2824
+
2825
+ =
2826
+ 1
2827
+ γ1b1
2828
+
2829
+ 1 − (1 + γ1b1τ (1)
2830
+ 1 )e−γ1b1τ (1)
2831
+ 1
2832
+
2833
+ .
2834
+ Similarly,
2835
+ E
2836
+
2837
+
2838
+
2839
+
2840
+ i∈I(1)
2841
+ 2
2842
+ Y (1)
2843
+ i
2844
+
2845
+
2846
+  = E
2847
+
2848
+
2849
+ E
2850
+
2851
+
2852
+ ��
2853
+
2854
+ i∈I(1)
2855
+ 2
2856
+ Y (1)
2857
+ i
2858
+ |N(1)
2859
+ 2
2860
+ = n(1)
2861
+ 2
2862
+
2863
+
2864
+
2865
+
2866
+
2867
+  .
2868
+ For i ∈ I(1)
2869
+ 2 , Y (1)
2870
+ i
2871
+ follows a left truncated exponential distribution with PDF γ1b2e−γ1b2y
2872
+ e−γ1b2τ(1)
2873
+ 1
2874
+ for
2875
+ y > τ (1)
2876
+ 1 . Hence,
2877
+ E
2878
+
2879
+ Y (1)
2880
+ i
2881
+
2882
+ =
2883
+ � ∞
2884
+ τ (1)
2885
+ 1
2886
+ yγ1b2e−γ1b2y
2887
+ e−γ1b2τ (1)
2888
+ 1
2889
+ dy =
2890
+ 1
2891
+ γ1b2
2892
+ + τ (1)
2893
+ 1 .
2894
+ Therefore,
2895
+ E
2896
+
2897
+
2898
+
2899
+
2900
+ i∈I(1)
2901
+ 2
2902
+ Y (1)
2903
+ i
2904
+
2905
+
2906
+  =
2907
+ � 1
2908
+ γ1b2
2909
+ + τ (1)
2910
+ 1
2911
+
2912
+ E(N(1)
2913
+ 2 ) =
2914
+ � 1
2915
+ γ1b2
2916
+ + τ ′
2917
+ 1
2918
+
2919
+ e−γ1b1τ (1)
2920
+ 1 .
2921
+ 25
2922
+
2923
+ Appendix B: Calculations of some important relia-
2924
+ bility characteristics
2925
+ Derivation of the quantile function:
2926
+ Denote p = G(j)(y) for y ∈
2927
+
2928
+ τ (j)
2929
+ k−1, τ (j)
2930
+ k
2931
+
2932
+ ; then, y = η(p) for p ∈
2933
+
2934
+ G(j)(τ (j)
2935
+ k−1), G(j)(τ (j)
2936
+ k )
2937
+
2938
+ ,
2939
+ k = 1, 2, . . . , N. Now,
2940
+ p = 1 − e
2941
+ −(J−j)γj
2942
+ ��k−1
2943
+ ℓ=1 bℓ
2944
+
2945
+ τ (j)
2946
+
2947
+ −τ (j)
2948
+ ℓ−1
2949
+
2950
+ +bk
2951
+
2952
+ y−τ (j)
2953
+ k−1
2954
+ ��
2955
+ =⇒ bk
2956
+
2957
+ y − τ (j)
2958
+ k−1
2959
+
2960
+ = −log(1 − p)
2961
+ (J − j)γj
2962
+
2963
+ k−1
2964
+
2965
+ ℓ=1
2966
+ bℓ
2967
+
2968
+ τ (j)
2969
+
2970
+ − τ (j)
2971
+ ℓ−1
2972
+
2973
+ =⇒ y = τ (j)
2974
+ k−1 − log(1 − p)
2975
+ (J − j)γjbk
2976
+ − 1
2977
+ bk
2978
+ k−1
2979
+
2980
+ ℓ=1
2981
+ bℓ
2982
+
2983
+ τ (j)
2984
+
2985
+ − τ (j)
2986
+ ℓ−1
2987
+
2988
+ , if p ∈
2989
+
2990
+ G(j)(τ (j)
2991
+ k−1), G(j)(τ (j)
2992
+ k )
2993
+
2994
+ ,
2995
+ k = 1, 2, . . . , N.
2996
+ If y ∈
2997
+
2998
+ τ (j)
2999
+ N , ∞
3000
+
3001
+ , then y = η(p) for p ∈
3002
+
3003
+ G(j)(τ (j)
3004
+ N ), 1
3005
+
3006
+ .
3007
+ Therefore,
3008
+ p = 1 − e
3009
+ −(J−j)γj
3010
+ ��N−1
3011
+ ℓ=1 bℓ
3012
+
3013
+ τ (j)
3014
+
3015
+ −τ (j)
3016
+ ℓ−1
3017
+
3018
+ +bN
3019
+
3020
+ y−τ (j)
3021
+ N−1
3022
+ ��
3023
+ =⇒ y = τ (j)
3024
+ N−1 − log(1 − p)
3025
+ (J − j)γjbN
3026
+ − 1
3027
+ bN
3028
+ N−1
3029
+
3030
+ ℓ=1
3031
+ bℓ
3032
+
3033
+ τ (j)
3034
+
3035
+ − τ (j)
3036
+ ℓ−1
3037
+
3038
+ , if p ∈
3039
+
3040
+ G(j)(τ (j)
3041
+ N ), 1
3042
+
3043
+ .
3044
+ Derivation of MTTF:
3045
+ MTTF of the system lifetime T is given by E(T) = E
3046
+ �J−1
3047
+
3048
+ j=0
3049
+ Y (j)
3050
+
3051
+ =
3052
+ J−1
3053
+
3054
+ j=0
3055
+ E(Y (j)), where
3056
+ E(Y (j)) =
3057
+ � ∞
3058
+ 0
3059
+ P(Y (j) > y)dy =
3060
+ � τ (j)
3061
+ N−1
3062
+ 0
3063
+ e−(J−j)Λ(j)(y)dy+
3064
+ � ∞
3065
+ τ (j)
3066
+ N−1
3067
+ e−(J−j)Λ(j)(y)dy = I1+I2 (say).
3068
+ Here,
3069
+ I1 =
3070
+ � τ (j)
3071
+ N−1
3072
+ 0
3073
+ e
3074
+ −(J−j)γj
3075
+ �N
3076
+ k=1
3077
+ ��k−1
3078
+ ℓ=1 bℓ
3079
+
3080
+ τ (j)
3081
+
3082
+ −τ (j)
3083
+ ℓ−1
3084
+
3085
+ +bk
3086
+
3087
+ y−τ (j)
3088
+ k−1
3089
+ ��
3090
+ 1
3091
+ [τ(0)
3092
+ k−1, τ(0)
3093
+ k
3094
+ )(y)
3095
+ dy
3096
+ =
3097
+ N−1
3098
+
3099
+ s=1
3100
+ � τ (j)
3101
+ s
3102
+ τ (j)
3103
+ s−1
3104
+ e
3105
+ −(J−j)γj
3106
+ ��s−1
3107
+ ℓ=1 bℓ
3108
+
3109
+ τ (j)
3110
+
3111
+ −τ (j)
3112
+ ℓ−1
3113
+
3114
+ +bs
3115
+
3116
+ y−τ (j)
3117
+ s−1
3118
+ ��
3119
+ dy
3120
+ =
3121
+ N−1
3122
+
3123
+ s=1
3124
+
3125
+ e
3126
+ −(J−j)γj
3127
+ �s−1
3128
+ ℓ=1 bℓ
3129
+
3130
+ τ (j)
3131
+
3132
+ −τ (j)
3133
+ ℓ−1
3134
+ � � τ (j)
3135
+ s
3136
+ τ (j)
3137
+ s−1
3138
+ e
3139
+ −(J−j)γjbs
3140
+
3141
+ y−τ (j)
3142
+ s−1
3143
+
3144
+ dy
3145
+
3146
+ =
3147
+ N−1
3148
+
3149
+ s=1
3150
+
3151
+
3152
+ e
3153
+ −(J−j)γj
3154
+ �s−1
3155
+ ℓ=1 bℓ
3156
+
3157
+ τ (j)
3158
+
3159
+ −τ (j)
3160
+ ℓ−1
3161
+ � 
3162
+ 1 − e
3163
+ −(J−j)γjbs
3164
+
3165
+ τ (j)
3166
+ s
3167
+ −τ (j)
3168
+ s−1
3169
+
3170
+ (J − j)γjbs
3171
+
3172
+
3173
+
3174
+
3175
+
3176
+ 26
3177
+
3178
+ =
3179
+ N−1
3180
+
3181
+ s=1
3182
+
3183
+
3184
+
3185
+ e
3186
+ −(J−j)γj
3187
+ �s−1
3188
+ ℓ=1 bℓ
3189
+
3190
+ τ (j)
3191
+
3192
+ −τ (j)
3193
+ ℓ−1
3194
+
3195
+ − e
3196
+ −(J−j)γj
3197
+ �s
3198
+ ℓ=1 bℓ
3199
+
3200
+ τ (j)
3201
+
3202
+ −τ (j)
3203
+ ℓ−1
3204
+
3205
+ (J − j)γjbs
3206
+
3207
+
3208
+
3209
+ and
3210
+ I2 =
3211
+ � ∞
3212
+ τ (j)
3213
+ N−1
3214
+ e
3215
+ −(J−j)γj
3216
+ �N
3217
+ k=1
3218
+ ��k−1
3219
+ ℓ=1 bℓ
3220
+
3221
+ τ (j)
3222
+
3223
+ −τ (j)
3224
+ ℓ−1
3225
+
3226
+ +bk
3227
+
3228
+ y−τ (j)
3229
+ k−1
3230
+ ��
3231
+ 1
3232
+ [τ(0)
3233
+ k−1, τ(0)
3234
+ k
3235
+ )(y)
3236
+ dy
3237
+ =
3238
+ � ∞
3239
+ τ (j)
3240
+ N−1
3241
+ e
3242
+ −(J−j)γj
3243
+ ��N−1
3244
+ ℓ=1 bℓ
3245
+
3246
+ τ (j)
3247
+
3248
+ −τ (j)
3249
+ ℓ−1
3250
+
3251
+ +bN
3252
+
3253
+ y−τ (j)
3254
+ N−1
3255
+ ��
3256
+ dy
3257
+ = e
3258
+ −(J−j)γj
3259
+ �N−1
3260
+ ℓ=1 bℓ
3261
+
3262
+ τ (j)
3263
+
3264
+ −τ (j)
3265
+ ℓ−1
3266
+ � � ∞
3267
+ τ (j)
3268
+ N−1
3269
+ e
3270
+ −(J−j)γjbN
3271
+
3272
+ y−τ (j)
3273
+ N−1
3274
+
3275
+ dy
3276
+ = e
3277
+ −(J−j)γj
3278
+ �N−1
3279
+ ℓ=1 bℓ
3280
+
3281
+ τ (j)
3282
+
3283
+ −τ (j)
3284
+ ℓ−1
3285
+ � �
3286
+ 1
3287
+ (J − j)γjbN
3288
+
3289
+ = e
3290
+ −(J−j)γj
3291
+ �N−1
3292
+ ℓ=1 bℓ
3293
+
3294
+ τ (j)
3295
+
3296
+ −τ (j)
3297
+ ℓ−1
3298
+
3299
+ (J − j)γjbN
3300
+ .
3301
+ Therefore,
3302
+ E(Y (j)) =
3303
+ N
3304
+
3305
+ s=1
3306
+
3307
+
3308
+
3309
+ e
3310
+ −(J−j)γj
3311
+ �s−1
3312
+ ℓ=1 bℓ
3313
+
3314
+ τ (j)
3315
+
3316
+ −τ (j)
3317
+ ℓ−1
3318
+
3319
+ − e
3320
+ −(J−j)γj
3321
+ �s
3322
+ ℓ=1 bℓ
3323
+
3324
+ τ (j)
3325
+
3326
+ −τ (j)
3327
+ ℓ−1
3328
+
3329
+ (J − j)γjbs
3330
+
3331
+
3332
+  .
3333
+ From here, the results follows immediately.
3334
+ Derivation of moment generating function of system lifetime:
3335
+ Note that the system lifetime MGF of T is T =
3336
+ J−1
3337
+
3338
+ j=0
3339
+ Y (j), where Y (j)’s are independent
3340
+ for j = 0, 1, . . . , (J − 1). Therefore, the MGF of T is φT(t) =
3341
+ J−1
3342
+
3343
+ j=0
3344
+ φY (j)(t). Now,
3345
+ φY (j)(t)
3346
+ = E(etY (j)) =
3347
+ � ∞
3348
+ 0
3349
+ etygY (j)(y)dy
3350
+ =
3351
+ � τ (j)
3352
+ N−1
3353
+ 0
3354
+ ety(J − j)λ(j)(y)e−(J−j)Λ(j)(y)dy +
3355
+ � ∞
3356
+ τ (j)
3357
+ N−1
3358
+ ety(J − j)λ(j)(y)e−(J−j)Λ(j)(y)dy
3359
+ = I1 + I2 (say) ,
3360
+ where gY (j)(y) = (J − j)λ(j)(y)e−(J−j)Λ(j)(y). For t ∈ R,
3361
+ I1 =
3362
+ � τ (j)
3363
+ N−1
3364
+ 0
3365
+ ety(J − j)γj
3366
+ N
3367
+
3368
+ k=1
3369
+ bk1[τ (j)
3370
+ k−1, τ (j)
3371
+ k
3372
+ ) (y) e
3373
+ −(J−j)γj
3374
+ �N
3375
+ k=1
3376
+ ��k−1
3377
+ ℓ=1 bℓ
3378
+
3379
+ τ (j)
3380
+
3381
+ −τ (j)
3382
+ ℓ−1
3383
+
3384
+ +bk
3385
+
3386
+ y−τ (j)
3387
+ k−1
3388
+ ��
3389
+ dy
3390
+ =
3391
+ N−1
3392
+
3393
+ s=1
3394
+ (J − j)bsγj
3395
+ � τ (j)
3396
+ s
3397
+ τ (j)
3398
+ s−1
3399
+ e
3400
+
3401
+
3402
+ (J−j)γj
3403
+ ��s−1
3404
+ ℓ=1 bℓ
3405
+
3406
+ τ (j)
3407
+
3408
+ −τ (j)
3409
+ ℓ−1
3410
+
3411
+ +bs
3412
+
3413
+ y−τ (j)
3414
+ s−1
3415
+ ��
3416
+ −ty
3417
+
3418
+ dy
3419
+ 27
3420
+
3421
+ =
3422
+ N−1
3423
+
3424
+ s=1
3425
+
3426
+ (J − j)bsγje
3427
+ −(J−j)γj
3428
+ �s−1
3429
+ ℓ=1 bℓ
3430
+
3431
+ τ (j)
3432
+
3433
+ −τ (j)
3434
+ ℓ−1
3435
+ � � τ (j)
3436
+ s
3437
+ τ (j)
3438
+ s−1
3439
+ e
3440
+
3441
+
3442
+ (J−j)γjbs
3443
+
3444
+ y−τ (j)
3445
+ s−1
3446
+
3447
+ −ty
3448
+
3449
+ dy
3450
+
3451
+ =
3452
+ N−1
3453
+
3454
+ s=1
3455
+
3456
+
3457
+ (J − j)bsγje
3458
+ −(J−j)γj
3459
+ �s−1
3460
+ ℓ=1 bℓ
3461
+
3462
+ τ (j)
3463
+
3464
+ −τ (j)
3465
+ ℓ−1
3466
+ � 
3467
+ etτ (j)
3468
+ s−1 − e
3469
+
3470
+
3471
+ (J−j)γjbs
3472
+
3473
+ τ (j)
3474
+ s
3475
+ −τ (j)
3476
+ s−1
3477
+
3478
+ −tτ (j)
3479
+ s
3480
+
3481
+ (J − j)γjbs − t
3482
+
3483
+
3484
+
3485
+
3486
+
3487
+ =
3488
+ N−1
3489
+
3490
+ s=1
3491
+ (J − j)bsγj
3492
+ (J − j)bsγj − t
3493
+
3494
+ e
3495
+
3496
+
3497
+ (J−j)γj
3498
+ �s−1
3499
+ ℓ=1 bℓ
3500
+
3501
+ τ (j)
3502
+
3503
+ −τ (j)
3504
+ ℓ−1
3505
+
3506
+ −tτ (j)
3507
+ s−1
3508
+
3509
+ −e
3510
+
3511
+
3512
+ (J−j)γj
3513
+ �s
3514
+ ℓ=1 bℓ
3515
+
3516
+ τ (j)
3517
+
3518
+ −τ (j)
3519
+ ℓ−1
3520
+
3521
+ −tτ (j)
3522
+ s
3523
+ ��
3524
+ .
3525
+ For t < (J − j)γjbN,
3526
+ I2 =
3527
+ � ∞
3528
+ τ (j)
3529
+ N−1
3530
+ ety(J − j)γj
3531
+ N
3532
+
3533
+ k=1
3534
+ bk1[τ (j)
3535
+ k−1, τ (j)
3536
+ k
3537
+ ) (y) e
3538
+ −(J−j)γj
3539
+ �N
3540
+ k=1
3541
+ ��k−1
3542
+ ℓ=1 bℓ
3543
+
3544
+ τ (j)
3545
+
3546
+ −τ (j)
3547
+ ℓ−1
3548
+
3549
+ +bk
3550
+
3551
+ y−τ (j)
3552
+ k−1
3553
+ ��
3554
+ dy
3555
+ = (J − j)bNγj
3556
+ � ∞
3557
+ τ (j)
3558
+ N−1
3559
+ e
3560
+ ty−(J−j)γj
3561
+ ��N−1
3562
+ ℓ=1 bℓ
3563
+
3564
+ τ (j)
3565
+
3566
+ −τ (j)
3567
+ ℓ−1
3568
+
3569
+ +bN
3570
+
3571
+ y−τ (j)
3572
+ N−1
3573
+ ��
3574
+ dy
3575
+ = (J − j)bNγje
3576
+ −(J−j)γj
3577
+ �N−1
3578
+ ℓ=1 bℓ
3579
+
3580
+ τ (j)
3581
+
3582
+ −τ (j)
3583
+ ℓ−1
3584
+ � � ∞
3585
+ τ (j)
3586
+ N−1
3587
+ e
3588
+
3589
+
3590
+ (J−j)γjbN
3591
+
3592
+ y−τ (j)
3593
+ N−1
3594
+
3595
+ −ty
3596
+
3597
+ dy
3598
+ = (J − j)bNγje
3599
+ −(J−j)γj
3600
+ �N−1
3601
+ ℓ=1 bℓ
3602
+
3603
+ τ (j)
3604
+
3605
+ −τ (j)
3606
+ ℓ−1
3607
+ � �
3608
+ etτ (j)
3609
+ N−1
3610
+ (J − j)γjbN − t
3611
+
3612
+ = (J − j)bNγj · e
3613
+ tτ (j)
3614
+ N−1−(J−j)γj
3615
+ �N−1
3616
+ ℓ=1 bℓ
3617
+
3618
+ τ (j)
3619
+
3620
+ −τ (j)
3621
+ ℓ−1
3622
+
3623
+ (J − j)bNγj − t
3624
+ .
3625
+ Therefore, for t < (J − j)γjbN,
3626
+ φY (j)(t) =
3627
+ N
3628
+
3629
+ s=1
3630
+ (J − j)bsγj
3631
+ (J − j)bsγj − t
3632
+
3633
+ e
3634
+
3635
+
3636
+ (J−j)γj
3637
+ �s−1
3638
+ ℓ=1 bℓ
3639
+
3640
+ τ (j)
3641
+
3642
+ −τ (j)
3643
+ ℓ−1
3644
+
3645
+ −tτ (j)
3646
+ s−1
3647
+
3648
+ −e
3649
+
3650
+
3651
+ (J−j)γj
3652
+ �s
3653
+ ℓ=1 bℓ
3654
+
3655
+ τ (j)
3656
+
3657
+ −τ (j)
3658
+ ℓ−1
3659
+
3660
+ −tτ (j)
3661
+ s
3662
+ ��
3663
+ .
3664
+ From here the result follows immediately.
3665
+ 28
3666
+
99AzT4oBgHgl3EQfg_xe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9NFLT4oBgHgl3EQfty_-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0438b213b9fe2c4f2842f8e432cb177535e73bb37080277bc7da58af99a8ef43
3
+ size 438416
BdE4T4oBgHgl3EQfFAzo/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:350d9cbd2f0b3b00ac9187904aa756fce0b1c6ecea7ea861d87cb74683db4030
3
+ size 6750253
CtE2T4oBgHgl3EQfSAdG/content/tmp_files/2301.03787v1.pdf.txt ADDED
@@ -0,0 +1,2254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Synchronization of Josephson junctions in series
3
+ array
4
+ Abhijit Bhattacharyya
5
+ Abstract—Multi-qubit quantum processors coupled to net-
6
+ working provides the state-of-the-art quantum computing plat-
7
+ form. However, each qubit has unique eigenfrequency even
8
+ though fabricated in the same process. To continue quantum
9
+ gate operations besides the detection and correction of errors it
10
+ is required that the qubits must be synchronized in the same
11
+ frequency. This study uses Kuramoto model which is a link
12
+ between statistical mean-field technique and non-linear dynamics
13
+ to synchronize the qubits applying small noise in the system. This
14
+ noise could be any externally applied noise function or just noise
15
+ from the difference of frequencies of qubits. The Kuramoto model
16
+ tunes the coupled oscillators adjusting the coupling strength
17
+ between the oscillators to evolve from the state of incoherence to
18
+ the synchronized state.
19
+ Index Terms—Josephson junction, Kuramoto Model, synchro-
20
+ nization, oscillators
21
+ I. INTRODUCTION
22
+ J
23
+ Osephson junction controls the flow of magnetic flux
24
+ quanta through frequency and voltage. Modern instruments
25
+ require measurement of voltage with a reproducible capability
26
+ exceeding the uncertainty of realization of the SI volt (cur-
27
+ rently 0.4 parts on 106). Before 1972, SI volt was represented
28
+ by using carefully stabilised Weston cell banks [1]. Drift and
29
+ transportability problems with these electrochemical artifact
30
+ standards limited the uniformity of voltage standards to about
31
+ 1 part in 106. These uniformity was drastically improved by
32
+ the usage of Josephson junction [1].
33
+ Josephson equation for supercurrent through a supercon-
34
+ ducting tunnel junction, called as DC Josephson Effect, is
35
+ defined as [2]–[4]
36
+ I = Ic sin
37
+ �4πe
38
+ h
39
+
40
+ V dt
41
+
42
+ ,
43
+ (1)
44
+ where Ic is critical current, h is Planck’s constant and e is
45
+ electron charge. When a dc voltage is applied in equation
46
+ (1), the phase will vary linearly with time and current will
47
+ be sinusoidal with amplitude Ic and frequency fJ = 2eV/h.
48
+ The magnetic flux threading a superconducting loop or hole is
49
+ quantized [5]. The superconducting magnetic flux quantum Φ0
50
+ = h/(2e) is 2.0678×10−15 Wb. The inverse of flux quantum
51
+ 1/Φ0 is called Josephson constant KJ defined as 2e/h has a
52
+ value of 483.597 GHz/mV . During each oscillation, a single
53
+ quantum of magnetic flux h/(2e) passes through the junction
54
+ which is very difficult to measure. However, if an alternating
55
+ current with frequency f is applied across the junction, there
56
+ Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400
57
+ 094, India
58
59
+ is a range of bias current for which flow of flux quanta
60
+ will phaselock to the applied frequency. Under this phase
61
+ locked condition, the average voltage across the junction is
62
+ precisely (h/2e)f. This effect is known as ac Josephson effect
63
+ observed as a constant voltage step at V =(h/2e)f in the I −V
64
+ characteristic curve. This means a Josephson junction can act
65
+ as a “Voltage to frequency converter”. It is also possible for
66
+ the junction to phaselock with the harmonics of fJ resulting
67
+ in a series of steps at voltages V =nf(h/2e), where n is an
68
+ integer denoting step number. This accuracy was limited to
69
+ the condition that a Josephson voltage higher than 10mV was
70
+ never used [6]. Therefore, if one obtain Josephson voltage
71
+ over 100 mV , the accuracy could be remarkably improved
72
+ besides the ability to vary the Jsephson voltage with the
73
+ frequency and step number could be utilized as potentiometer.
74
+ Series array of Josephson junction [6] has been effectively
75
+ used in development of a potentiometer system to produce (1-
76
+ 10)V [1], [6] with uncertainty about 2.5 × 10−9 [6]. Larger
77
+ series arrays were initially considered as impractical due to
78
+ junction nonuniformity. The nonuniformity demanded each
79
+ junction to be biased separately. In 1977, Levinsen et al [7]
80
+ stated the important of the parameter βc=4πeIcR2C/h in
81
+ determining the characteristics of RF induced Josephson steps.
82
+ This βc is measure of the damping of Josephson oscillations
83
+ by the junction shunting resistance R.
84
+ The Josephson junction is also a natural choice for sub-
85
+ millimeter local oscillator [8], [9] as one may capitalize the
86
+ voltage controlled oscillator property. However, the disadvan-
87
+ tage, in this case lies in very low power output. The Josephson
88
+ constant clearly indicates that with dc voltage bias at 1 mV
89
+ at 483.6 GHz, the junction may accept 100 µA current
90
+ keeping under the limitation of Ic which limits the maximum
91
+ output RF power at about 100 nW. This requirement indicates
92
+ series array of junctions with a common current bias demands
93
+ keeping all the junctions in phase.
94
+ However, the issue with series array of junctions operated
95
+ with common current bias arises with nonuniformity of each
96
+ junction due to fabrication processes [1], [6]. When junctions
97
+ are connected in series, the system behaves as a coupled os-
98
+ cillator and understanding the periodic solutions is important.
99
+ Two special types of periodic solutions exist [10], namely, in-
100
+ phase state and splay state.
101
+ An in-phase state with period T is a state where all the
102
+ oscillators always possess the same phase at all times, i.e.
103
+ θi(t) = θj(t), and θi(t + T) = θi(t) + 2π.
104
+ The splay-phase or anti-phase or rotating wave state with
105
+ period T is a solution where the oscillators can be labeled
106
+ so that θi(t) = Θ(t + jT/N) for all j for some function
107
+ arXiv:2301.03787v1 [quant-ph] 10 Jan 2023
108
+
109
+ 2
110
+ Θ(t + T) = Θ(t) + 2π. Thus, this state indicates that all the
111
+ oscillators have the same waveform Θ(t) except for a shift in
112
+ time. As per [10], one may imagine that each oscillator “fires”
113
+ when it reaches a certain angle. For an in-phase solution, all
114
+ the oscillators fire simultaneously at every instant T, while
115
+ splay-phase state has a single oscillator firing every T/N
116
+ instant. Therefore, for splay-phase state, oscillators nearly
117
+ coincide or coincide when ˙θ is small where as for large
118
+ values, oscillators are not coherent. The definition of splay-
119
+ phase does not imply that the phases of the oscillators are
120
+ equi-spaced around he circle. The oscillators bunch up for
121
+ smaller ˙θ while spread out for large ˙θ. Therefore, splay-state
122
+ shows non-uniformity in the distribution of oscillators as they
123
+ are coherent for smaller ˙θ. It has been shown that [10], [11],
124
+ the non-uniformity can be removed by determining a set of
125
+ “natural” angles ϕj, so that the splay-phase solution satisfies
126
+ ϕj(t) = 2πj/N + 2πt/T + const. The “natural” angle based
127
+ dynamical system gets locked. This provides an idea of phase-
128
+ locking N oscillators, like N Josephson junctions, having
129
+ eigenfrequencies with smaller spread which may get locked
130
+ to some resonating frequency.
131
+ Kuramoto model provides an exactly solvable mean-field
132
+ model of coupled nonlinear oscillators connecting a large of
133
+ them having distributed natural frequencies. This model links
134
+ mean-field techniques and nonlinear dynamics together and
135
+ also provides precise technique to tune the synchronization.
136
+ Section II discusses the theory of the Kuramoto model,
137
+ Section III discusses on the reduction of the equations for
138
+ the Josephson junctions connected in series to the Kuramoto
139
+ Model framework and section IV discusses on the numerical
140
+ analysis of the results for the generalised Kuramoto Model
141
+ theory and Kuramoto model for Josephson junctions.
142
+ II. KURAMOTO MODEL
143
+ Let us consider a system of N globally coupled differential
144
+ equations with the stable limits cycles. Yoshiki Kuramoto de-
145
+ veloped a mathematical model for coupled oscillators (n ⩾ 2)
146
+ to synchronize which is known as “Kuramoto model” [12].
147
+ In this model, each jth oscillator is represented by a phase
148
+ variable θj(t), possessing its own natural frequency ωj ∈ R.
149
+ The dynamics of the system of coupled N oscillators becomes
150
+ ˙θj(t) = ωj +
151
+ N
152
+
153
+ i=1,j̸=i
154
+ Kji sin (θj(t) − θi(t)) , j ∈ {1, . . . , N} ,
155
+ (2)
156
+ where Kji is coupling coefficient of the jth oscillator with all
157
+ other oscillators in the system. Kuramoto assumed mean field
158
+ coupling among phase oscillators such that Kji ≈ K/N ⩾ 0
159
+ where K is mean coupling strength which changes (2) as
160
+ ˙θj(t) = ωj + K
161
+ N
162
+ N
163
+
164
+ i=1,j̸=i
165
+ sin (θj(t) − θi(t)) , j ∈ {1, . . . , N} ,
166
+ (3)
167
+ where, K ⩾ 0 is the coupling strength among the oscillators
168
+ whose frequencies are distributed with a probability density
169
+ g(ω). One may find a suitable rotating frame like θj → θj −
170
+ Ωt transforming the system so that natural frequencies of the
171
+ oscillators may have zero mean, where Ω is the first moment of
172
+ the distribution function of natural frequencies g(ω). Therfore,
173
+ one may consider the normal form calculation for the system
174
+ such that one may define the system of equations as
175
+ ˙θj = fj(θj) + K
176
+ N
177
+ N
178
+
179
+ i=1,i̸=j
180
+ g (θi, θj) , θj ∈ Rd, j = 1, . . . , N,
181
+ (4)
182
+ where, function fj(θj) are eigenfrequencies defining the nat-
183
+ ural dynamics in the system. Here coupling parameter K
184
+ has been added with coupling strength K/N, g is the phase
185
+ response curve defining the interaction of the system. In the
186
+ following section, we are not discussing with the stability of
187
+ the dynamical system, bifurcation etc while one may consult
188
+ other references like [13].
189
+ In the original paper [12], Kuramoto considered the proba-
190
+ bility density g(ω) to be uni-modal and symmetric centered at
191
+ mean frequency ω so that, without loss of generality, one can
192
+ assume that the mean frequency ω = 0 after a shift leading to
193
+ g(ω) = g(−ω) for the even and symmetric distribution g(ω).
194
+ To diagnose the feasibility of synchronization, Kuramoto
195
+ introduced the order parameter R(t) projecting the oscillation
196
+ on unit circle where R(t) : 0 ⩽ R(t) ⩽ 1 is a measure of the
197
+ coherence of oscillators as
198
+ R(t)eȷψ(t) = 1
199
+ N
200
+ N
201
+
202
+ i=1
203
+ eȷθi(t),
204
+ (5)
205
+ where R(t) = 0 for asynchronised oscillators,
206
+ and R(t) > 0 for synchronization.
207
+ The quantity ψ(t) refers to average phase of all the oscillators
208
+ at an instant t. Physically, this order parameter R(t) is the
209
+ centroid of a set of N points eȷθi distributed in the unit circle in
210
+ the complex plane at the instant t. If the phases are uniformly
211
+ spread in the range [−π, π], then R → 0 indicates that the
212
+ oscillators are not synchronized. All the oscillators become
213
+ synchronized with the same average phase ψ(t) for R(t) ≈ 1.
214
+ If the dynamics show stability of R(t) at 1, then the oscillators
215
+ are synchronized and phaselocked. Eq. (3) may be re-written
216
+ by multiplying Ke−ȷθj on both sides of (5) and equating the
217
+ imaginary parts of the both sides to reduce (3) to
218
+ ˙θj(t) = ωj + KR(t) sin (ψ(t) − θj(t)) = vj(θ, ω, t) (say).
219
+ (6)
220
+ Here, vj(θ, ω, t) is the angular velocity of a given oscillator
221
+ with phase θ and natural frequency ω at the instant t. The
222
+ equation (6) reveals that the interaction is set through R(t)
223
+ and ψ(t) while the phases θj seem to evolve independently
224
+ from each other. Also the effective coupling is proportional to
225
+ the order parameter R(t) creating a feedback relation between
226
+ coupling and synchronization. In the limit K → 0, (6) reduces
227
+ to
228
+ θj(t) ≈ ωjt + θ(0),
229
+ (7)
230
+ where, θj(0) denotes initial phase of the jth oscillator and
231
+ (7) suggests that each oscillator oscillates with own natural
232
+ frequencies in the absence of coupling.
233
+
234
+ 3
235
+ In the limit of infinite number of oscillators having a
236
+ distribution of frequency, phase over time, Kuramoto de-
237
+ scribed the system by the probability density ρ (θ, ω, t) so
238
+ that ρ (θ, ω, t) dθ gives the fraction of oscillators with phase
239
+ between θ(t) and θ(t) + dθ(t) at the instant t for a given
240
+ natural frequency ω. Since ρ is non-negative and 2π-periodic
241
+ in θ satisfying the normalization condition
242
+ � π
243
+ −π
244
+ ρ (θ, ω, t) dθ = 1.
245
+ (8)
246
+ The probability density function g must also obey the equation
247
+ of continuity using the angular velocity v(θ, ω, t) as
248
+ ∂ρ(θ, ω, t)
249
+ ∂t
250
+ + ∂
251
+ ∂θ {ρ(θ, ω, t).v} = 0,
252
+ ∂ρ(θ, ω, t)
253
+ ∂t
254
+ +
255
+
256
+ ∂θ [ρ(θ, ω, t) {ω + KR(t) sin (ψ(t) − θ(t))}] = 0.(9)
257
+ In the limit R(t) → 0, the dynamics provides stationary
258
+ solution for ρ(θ, ω, t) = 1/(2π).
259
+ In the continuum limit, (5) gets re-defined by the order
260
+ parameter R(t) and the average phase ψ(t) incorporating
261
+ previously described frequency distribution as
262
+ R(t)eȷψ(t) =
263
+ � π
264
+ −π
265
+ � ∞
266
+ −∞
267
+ eȷθρ (θ, ω, t) g(ω)dωdθ.
268
+ (10)
269
+ In the strong coupling limit where K → ∞ indicate K ≫
270
+ Kc where Kc is critical coupling strength and (6) reduces to
271
+ system having phases reduced to the average phase as θ(t) =
272
+ ωt + θ(0) = ψ(t).
273
+ From (6), if oscillators get into phaselocked condition,
274
+ vi(t) → 0 which provides
275
+ ωj = KR(t) sin (θj(t) − ψ(t)) , −π
276
+ 2 ⩽ (θj(t) − ψ(t)) ⩽ π
277
+ 2 .
278
+ (11)
279
+ From (9), partially synchronized state leading to a locked
280
+ system can be described as
281
+
282
+ ∂t(ρ(θ, ω, t)) = 0 which also
283
+ means
284
+
285
+ ∂θ (ρ(θ, ω, t).v(t)) = 0. Eq. (11), in this partial
286
+ synchronized state for vj(t) → 0 and
287
+
288
+ ∂t (ρ(θ, ω, t)) = 0,
289
+ reduces to
290
+ ω
291
+ KR(t) → sin(θj(t) − ψ(t)),
292
+ which means
293
+ ρ(θ, ω, t) = δ
294
+
295
+ θj(t) − ψ(t) − sin−1
296
+
297
+ ω
298
+ KR(t)
299
+ ��
300
+ H(cos θ),
301
+ (12)
302
+ such that |ω| ⩽ KR(t) and
303
+ H(x) =
304
+ 1,
305
+ x > 0,
306
+ 0,
307
+ elsewhere..
308
+ (13)
309
+ Now, for the other condition
310
+
311
+ ∂θ (ρ(θ, ω, t)v(t)) = 0 using
312
+ (6),
313
+ ρ(θ, ω, t)v(t) = C(say) = constant,
314
+ or,
315
+ ρ(θ, ω, t) =
316
+ C
317
+ |ω + KR(t) sin(θj(t) − ψ(t))|,
318
+ |ω| � KR(t).
319
+ (14)
320
+ The constant C can be determined from (8) such that (14)
321
+ reduces to
322
+ ρ(θ, ω, t) =
323
+
324
+ ω2 − K2R2(t)
325
+ 2π|ω − KR(t) sin(θj(t) − ψ(t))|,
326
+ |ω| � KR(t).
327
+ (15)
328
+ Therefore, the constraint on the probablity density of the
329
+ oscillators may be
330
+ ρ(θ, ω, t) = δ
331
+
332
+ θj(t) − ψ(t) − sin−1
333
+
334
+ ω
335
+ KR(t)
336
+ ��
337
+ H(cos θ),
338
+ for |ω| ⩽ KR(t)
339
+ (16)
340
+ and
341
+ ρ(θ, ω, t) =
342
+
343
+ ω2 − K2R2(t)
344
+ 2π|ω − KR(t) sin(θj(t) − ψ(t))|, elsewhere .
345
+ (17)
346
+ Here δ is the Dirac delta function. Eqs. (16) and (17) indicate
347
+ that partial synchronized states are divided into two groups
348
+ depending on the natural frequencies. Oscillators having con-
349
+ straint |ω| ⩽ KR(t) operate in mean-field resulting in locking
350
+ in a common average phase ψ(t) = Ωt where Ω is the average
351
+ frequency of the ensemble of the oscillators in this regime. On
352
+ the other side, the second group of oscillators having constraint
353
+ |ω| > KR(t) rotate incoherently which are called as drifting
354
+ oscillators.
355
+ Inserting (16) and (17) in (10) we get
356
+ R(t)
357
+ =
358
+ � π
359
+ −π
360
+ � ∞
361
+ −∞
362
+ eȷ(φ(t)−ψ(t))
363
+ δ
364
+
365
+ θ(t) − ψ(t) − sin−1
366
+
367
+ ω
368
+ KR(t)
369
+ ��
370
+ g(ω)dθdω
371
+ +
372
+ � π
373
+ −π
374
+
375
+ |ω|⩽KR(t)
376
+
377
+ ω2 − K2R2(t)g(ω)dθdω
378
+ 2π|ω − KR(t) sin(θ(t) − ψ(t))|.
379
+ (18)
380
+ Since g(ω) is even and symmetric, g(ω) = g(−ω) and
381
+ ρ(θ + π, −ω) = ρ(θ, ω). The even function condition makes
382
+ the second term of (18) vanish which physically means all
383
+ the incoherent oscillator solutions vanish resulting in order
384
+ parameter R(t) only for coherent synchronized oscillators that
385
+ reform as
386
+ R(t)
387
+ =
388
+
389
+ |ω|⩽KR(t)
390
+ cos
391
+
392
+ sin−1
393
+
394
+ ω
395
+ KR(t)
396
+ ��
397
+ g(ω)dωdθ,
398
+ =
399
+
400
+ π
401
+ 2
402
+ − π
403
+ 2
404
+ cos θg (KR(t) sin θ) KR(t) cos θdθ,
405
+ =
406
+ KR(t)
407
+
408
+ π
409
+ 2
410
+ − π
411
+ 2
412
+ cos2 θg (KR(t) sin θ) dθ.
413
+ (19)
414
+ Here, (19) shows a trivial solution for which order parameter
415
+ R(t) = 0 which actually shows incoherence as discussed
416
+ earlier for ρ (θ, ω, t) = 1/(2π). However, (19) also suggests
417
+ 1 = K
418
+
419
+ π
420
+ 2
421
+ − π
422
+ 2
423
+ cos2 θ g (KR(t) sin θ) dθ.
424
+
425
+ 4
426
+ Setting R(t) = 0, considering K = Kc - the critical coupling
427
+ strength we get,
428
+ Kc =
429
+ 2
430
+ πg(0),
431
+ (20)
432
+ that triggers the synchronization. In general, expanding the
433
+ right hand side of (19) in terms of powers of KR(t) and
434
+ considering g′′(0) < 0 the order parameter can be written as
435
+ R(t) ∼
436
+
437
+ −8 (K − Kc)
438
+ K3c g′′(0) ,
439
+ (21)
440
+ which shows that near the transition point, the order parameter
441
+ [12], [14] yields the form R(t) ∼ (K − Kc)β with β = 1/2
442
+ like second order phase transition.
443
+ The Kuramoto model can be generalized for a complex
444
+ network including the connectivity parameter in the coupling
445
+ term as
446
+ ˙θj = ωj +
447
+ N
448
+
449
+ i=1
450
+ KjiAji sin(θj − θi),
451
+ (22)
452
+ where, Kji is the coupling strength between nodes j and i.
453
+ Aji is the element of the adjacency matrix A (Aji = 1 if there
454
+ is a connection between j and i else Aji = 0 otherwise).
455
+ Any real system may have noise. Let us discuss on the
456
+ effect of the noise for the Kuramoto model. The noise may
457
+ arise from the variation of frequency of incoherent oscillators
458
+ as they may not be identical or there may either be an external
459
+ white noise or white noise inherent to the system. Therefore
460
+ the model (3) could be reframed as
461
+ ˙θj
462
+ =
463
+ σωj + K
464
+ N
465
+ N
466
+
467
+ i=1
468
+ sin (θj(t) − θi(t)) +
469
+
470
+ Γηj(t),
471
+ :
472
+ j ∈ {1, . . . , N} ,
473
+ (23)
474
+ where, both ωj and ηj(t) are Gaussian distributions having
475
+ zero mean and unit variance while σ and Γ behave as am-
476
+ plitudes of the noise. Here last term refers to white noise in
477
+ the system. Therefore (23) physically indicates locally coupled
478
+ oscillators having natural frequencies of oscillators derived
479
+ from Gaussian distribution in presence of stochastic effects
480
+ like white noise due to fluctuations in the system. The reason
481
+ for stochastic behavior may vary for different systems while
482
+ any natural process exhibit stochastic behavior. .
483
+ The situation of lim σ → 0 refers to the Kuramoto model
484
+ having identical oscillators in presence of gaussian white
485
+ noise. The system behaves as if the system is in contact with
486
+ a heat source and the dynamics is evolving in the statistical
487
+ equilibrium.
488
+ The situation for lim Γ → 0 indicates that the Kuramoto
489
+ model has been constructed with oscillators having distributed
490
+ natural frequencies in absence of gaussian white noise. The
491
+ system behaves as nonlinear dynamical system relaxing to the
492
+ non-equilibrium stationary state.
493
+ Beside this brief summary, one may also consult articles
494
+ like [15].
495
+ Next, let us transform the Josephson equations for series
496
+ array of junctions to Kuramoto model.
497
+ III. KURAMOTO MODEL FOR JOSEPHSON JUNCTION
498
+ SERIES
499
+ The Josephson junction array can be constructed using
500
+ Kirchhoff’s laws considering each Josephson junction as a
501
+ parallel circuit of two elements: an ideal resistance ρ carrying
502
+ ideal current Iρ and a junction carrying critical current Ic.
503
+ Actual Josephson junction also contains a capacitor in parallel
504
+ to the nonlinear inductor which we have neglected due to
505
+ its very small value. Let each of N junctions be connected
506
+ serially and then coupled to external load having inductance
507
+ L, resistance R and capacitance C.
508
+ C
509
+ R
510
+ L
511
+ Ib
512
+ ρ1
513
+ I1
514
+ ρ2
515
+ I2
516
+ ρN
517
+ IN
518
+ Fig. 1. Schematic circuit of qubits connected in series parallel to a Load.
519
+ Let us consider Josephson junction in the series array, say
520
+ jth junction and following Josephson equation; we express the
521
+ circuit shown in the Fig.1 as
522
+ V (t)
523
+ ρj
524
+ + Ij sin φj + dQ
525
+ dt = Ib,
526
+ which can be written as,
527
+ dφj
528
+ dt = 2πρj
529
+ Φ0
530
+
531
+ Ib − Ij sin φj − dQ
532
+ dt
533
+
534
+ .
535
+ (24)
536
+ Further,
537
+ L ¨Q + R ˙Q + Q
538
+ C =
539
+ N
540
+
541
+ k=1
542
+ Vk,
543
+ or,
544
+ L ¨Q +
545
+
546
+ R +
547
+ N
548
+
549
+ k=1
550
+ ρk
551
+
552
+ dQ
553
+ dt + Q
554
+ C = −
555
+ N
556
+
557
+ k=1
558
+ Ikρk sin φk,
559
+ (25)
560
+ where Q is the charge on load capacitor, Φ0 = h/(2e) is
561
+ magnetic flux quantum, h is Planck’s constant, e being the
562
+ charge of an electron. Here, junction resistance ρk for any
563
+ junction k is very small compared to the load variable Q/C
564
+ such that one may consider, Q/C − �
565
+ k ρkIb ≈ Q/C. To
566
+ understand the effect of external parameters like L, C and R
567
+ on each junction, one may consider a scaled version of those
568
+ parameters by choosing
569
+ l = L
570
+ N , r = R
571
+ N , c = NC.
572
+ (26)
573
+
574
+ 5
575
+ Here, it is to be noted that
576
+ Φ0
577
+ Ij
578
+ =
579
+ 1
580
+ 2πf 2
581
+ j Cj
582
+ where fj is the frequency and Cj is the capacitance of jth
583
+ junction.
584
+ Let us now consider transformation of time t and charge Q
585
+ so that (24) and (25) become dimensionless. From (24)
586
+ Φ0
587
+ 2πρjIj
588
+ dφj
589
+ dt + sin φj + 1
590
+ Ij
591
+ dQ
592
+ dt = Ib
593
+ Ij
594
+ = αj.
595
+ Let us consider the following transformation relation to
596
+ transform time t to dimensionless form τ as
597
+ Φ0
598
+ 2πρjIj
599
+ d
600
+ dt ≡ d
601
+ dτ .
602
+ (27)
603
+ such that we may write
604
+ dφj
605
+ dτ + sin φj + 2πρj
606
+ Φ0
607
+ dQ
608
+ dτ = αj.
609
+ (28)
610
+ Substituting dimensionless time τ and scaled parameters as
611
+ in (26) in (25) we get,
612
+ L
613
+ N
614
+ �2πρjIj
615
+ Φ0
616
+ �2 d2Q
617
+ dτ 2
618
+ +
619
+ (R + �N
620
+ k=1 ρk)
621
+ N
622
+ �2πρjIj
623
+ Φ0
624
+ � dQ
625
+
626
+ +
627
+ Q
628
+ NC = 1
629
+ N
630
+ N
631
+
632
+ k=1
633
+ −Ikρk sin φk,
634
+ or, l
635
+ �2πρjIj
636
+ Φ0
637
+ �2 d2Q
638
+ dτ 2
639
+ +
640
+
641
+ r +
642
+ �N
643
+ k=1 ρk
644
+ N
645
+ � �2πρjIj
646
+ Φ0
647
+ � dQ
648
+
649
+ +
650
+ Q
651
+ c = − 1
652
+ N
653
+ N
654
+
655
+ k=1
656
+ Ikρk sin φk.
657
+ (29)
658
+ Let us also consider the following transformation to transform
659
+ charge Q to dimensionless form q as
660
+ 2πρjIj
661
+ Φ0
662
+ Q ≡ qj.
663
+ (30)
664
+ Therefore, through (29), (25) transforms as
665
+ d2qj
666
+ dτ 2 + γj
667
+ dqj
668
+ dτ + ω2
669
+ 0jqj = −δj
670
+ N
671
+ N
672
+
673
+ k=1
674
+ Ikρk sin φk.
675
+ (31)
676
+ Eq. (30) can be used to rewrite (28) as
677
+ dφj
678
+ dτ + sin φj + ϵj
679
+ dqj
680
+ dτ = αj,
681
+ (32)
682
+ where coefficients may be written as
683
+ γj
684
+ =
685
+
686
+ Φ0
687
+ 2πρjIj
688
+ � �1
689
+ l
690
+ � �
691
+ r +
692
+ �N
693
+ k=1 ρk
694
+ N
695
+
696
+ ,
697
+ (33)
698
+ ω2
699
+ 0j
700
+ =
701
+
702
+ Φ0
703
+ 2πρjIj
704
+ �2 1
705
+ lc,
706
+ (34)
707
+ δj
708
+ =
709
+
710
+ Φ0
711
+ 2πρjIj
712
+ � 1
713
+ l ,
714
+ (35)
715
+ and ϵj
716
+ =
717
+ 1
718
+ Ij
719
+ .
720
+ (36)
721
+ Let us write the equation (32) in the uncoupled form for
722
+ ϵj → 0 or ˙Q → 0 such that we get,
723
+ dφj
724
+ dτ = αj − sin φj.
725
+ (37)
726
+ As discussed in the Section I, the splay-state shows that
727
+ transforming the dynamical system equations make a rigid sys-
728
+ tem with coherent frequencies in weak coupling or uncoupled
729
+ limit. Hence, let us transform φj in (24) into ‘natural’ angle
730
+ ψj such that dψj
731
+ dt = constant. Eq. (37) can be transformed in
732
+ terms of the ‘natural’ angle ψj such that dψj/dt − c, where c
733
+ is constant to be determined, i.e. transformation as φj → ψj as
734
+ uniform rotation with first derivative remaining constant. The
735
+ constant ‘c’ may be determined with the fact that the time to
736
+ complete one cycle by these two sets of coordinates must be
737
+ same. Thus,
738
+ T
739
+ =
740
+ � T
741
+ 0
742
+
743
+ =
744
+ � 2π
745
+ 0
746
+ dψj
747
+ c
748
+ =
749
+ � 2π
750
+ 0
751
+ dψj
752
+ ωj
753
+ =
754
+ � 2π
755
+ 0
756
+ dφj
757
+ (αj − sin φj).
758
+ or, 2π
759
+ ωj
760
+ =
761
+
762
+ ��
763
+ α2
764
+ j − 1
765
+ �, for αj ⩾ 0 i.e. Ib ⩾ Ij,
766
+ which shows
767
+ ωj =
768
+
769
+ α2
770
+ j − 1.
771
+ (38)
772
+ Then the transformation to the natural angles satisfies
773
+ dψj =
774
+
775
+ α2
776
+ j − 1
777
+ αj − sin φj
778
+ dφj,
779
+ (39)
780
+ which on integration yields
781
+ ψj = 2 tan−1
782
+ ��
783
+ αj − 1
784
+ αj + 1 tan
785
+ �φj
786
+ 2 + π
787
+ 4
788
+ ��
789
+ .
790
+ (40)
791
+ At this point, one may construct a transformation function
792
+ ψ(φj) to translate any angle φj to its natural angle ψj while
793
+ another transformation function φ(ψj) may be used to invert
794
+ as
795
+ ψ (φ) = 2 tan−1
796
+ ��
797
+ α − 1
798
+ α + 1 tan
799
+ �φ
800
+ 2 + π
801
+ 4
802
+ ��
803
+ , (41)
804
+ φ (ψ) = 2 tan−1
805
+ ��
806
+ α + 1
807
+ α − 1 tan
808
+ �ψ
809
+ 2
810
+ ��
811
+ − π
812
+ 2 . (42)
813
+ Here, we use the shorthand: ψj ≡ ψ(φj) and φj ≡ φ(ψj).
814
+ From (40),
815
+ sin φj = 1 − αj cos ψj
816
+ αj − cos ψj
817
+ = αj −
818
+ α2
819
+ j − 1
820
+ αj − cos ψj
821
+ .
822
+ (43)
823
+ Detailed derivation of (43) from (40) is shown in appendix A.
824
+ Therefore, one may rewrite (32) using (39) and (43) as
825
+ dψj
826
+
827
+ =
828
+ dψj
829
+ dφj
830
+ dφj
831
+ dτ =
832
+
833
+ α2
834
+ j − 1
835
+ αj − sin φj
836
+ .
837
+
838
+ αj − sin φj − ϵj
839
+ dqj
840
+
841
+
842
+ ,
843
+ =
844
+
845
+ α2
846
+ j − 1 −
847
+ ϵj
848
+
849
+ α2
850
+ j − 1
851
+ αj − sin φj
852
+ dqj
853
+ dτ .
854
+ (44)
855
+
856
+ 6
857
+ Let us rescale non-dimensional quantity τ as ˜τ such that
858
+ τ =
859
+ ˜τ
860
+
861
+ α2
862
+ j − 1
863
+ =⇒
864
+ d
865
+ d˜τ ≡
866
+ 1
867
+
868
+ α2
869
+ j − 1
870
+ d
871
+
872
+ =⇒
873
+ d2
874
+ dτ 2 ≡
875
+
876
+ α2
877
+ j − 1
878
+ � d2
879
+ d˜τ 2 .
880
+ (45)
881
+ Eq. (44), using (45), transforms as
882
+ dψj
883
+ d˜τ = 1 −
884
+ ϵj
885
+
886
+ α2
887
+ j − 1
888
+ αj − sin φj
889
+ dqj
890
+ d˜τ ,
891
+ (46)
892
+ The weak-coupling solution of (44) may be written as
893
+ ψj(τ) ≡
894
+ ��
895
+ α2
896
+ j − 1
897
+
898
+ τ + cj = ˜τ + ψj0,
899
+ (47)
900
+ where cj is the integration constant. Initially, at τ
901
+ = 0,
902
+ one may assume initial phase as ψj0 such that cj=ψj0. The
903
+ reference [11] discusses about the importance of the weak
904
+ coupling condition for the Josephson junction arrays and drift
905
+ in ψj may be obtained by averaging (46) over one cycle as
906
+ �dψj
907
+ d˜τ
908
+
909
+ = 1 − 1
910
+
911
+ � 2π
912
+ 0
913
+ ϵj
914
+
915
+ α2
916
+ j − 1
917
+ αj − sin φj
918
+ �dqj
919
+ d˜τ
920
+
921
+ d˜τ.
922
+ (48)
923
+ Similarly, one may rewrite non-dimensional charge equation
924
+ (31) in terms of ˜τ as
925
+
926
+ α2
927
+ j − 1
928
+ � d2qj
929
+ d˜τ 2
930
+ +
931
+ γj
932
+
933
+ α2
934
+ j − 1dqj
935
+ d˜τ + ω2
936
+ 0jqj
937
+ =
938
+ −δj
939
+ N
940
+ N
941
+
942
+ k=1
943
+ Ikρk sin φk.
944
+ (49)
945
+ It is usually convenient to write sin(φj)=sin(φ(ψj)) in terms
946
+ of its Fourier series as
947
+ sin φ(ψk)
948
+ =
949
+
950
+
951
+ n=0
952
+ Akn cos (nψkn)
953
+ =
954
+
955
+
956
+ n=0
957
+ Akn cos {n (˜τ + ck)} .
958
+ (50)
959
+ Then (49) reduces to
960
+
961
+ α2
962
+ j − 1
963
+ � d2qj
964
+ d˜τ 2
965
+ +
966
+ γj
967
+
968
+ α2
969
+ j − 1dqj
970
+ d˜τ + ω2
971
+ 0jqj
972
+ =
973
+ −δj
974
+ N
975
+ N
976
+
977
+ k=1
978
+
979
+
980
+ n=0
981
+ IkρkAkn cos {n (˜τ + ck)} .
982
+ (51)
983
+ One may obtain the steady-state solution of (51) as
984
+ qj(˜τ)
985
+ =
986
+ −δj
987
+ N IkρkBkn cos {n (˜τ + ck) + βkn} ,(52)
988
+ dqj(˜τ)
989
+ d˜τ
990
+ =
991
+ δj
992
+ N nIkρkBkn sin {n (˜τ + ck) + βkn} , (53)
993
+ d2qj(˜τ)
994
+ d˜τ 2
995
+ =
996
+ δj
997
+ N n2IkρkBkn cos {n (˜τ + ck) + βkn} ,(54)
998
+ where
999
+ B2
1000
+ kn
1001
+ =
1002
+ A2
1003
+ kn
1004
+ n2γ2
1005
+ j
1006
+
1007
+ α2
1008
+ j − 1
1009
+
1010
+ +
1011
+
1012
+ n2 �
1013
+ α2
1014
+ j − 1
1015
+
1016
+ − ω2
1017
+ 0j
1018
+ �2 , (55)
1019
+ βkn
1020
+ =
1021
+ tan−1
1022
+
1023
+
1024
+ nγj
1025
+
1026
+ α2
1027
+ j − 1
1028
+ n2 �
1029
+ α2
1030
+ j − 1
1031
+
1032
+ − ω2
1033
+ 0j
1034
+
1035
+ � = βn.
1036
+ (56)
1037
+ Using the expression (43), one may derive Akn and obtain
1038
+ Ak0
1039
+ =
1040
+ 1
1041
+ π
1042
+ � π
1043
+ −π
1044
+ 1 − αk cos ψk
1045
+ αk − cos ψk
1046
+ dψk,
1047
+ (57)
1048
+ Akn
1049
+ =
1050
+ 1
1051
+ π
1052
+ � π
1053
+ −π
1054
+ 1 − αk cos ψk
1055
+ αk − cos ψk
1056
+ cos
1057
+ �nπψk
1058
+ π
1059
+
1060
+ dψk (58)
1061
+ where n ̸= 0.
1062
+ Bkn denotes the amplitude of the linear damped oscillator
1063
+ while βkn denotes its phase. Therefore, Bkn must be chosen
1064
+ to be positive.
1065
+ Now, (48) may be re-written as
1066
+ �dψj
1067
+ d˜τ
1068
+
1069
+ =
1070
+ 1 −
1071
+ ϵjδj
1072
+
1073
+ α2
1074
+ j − 1
1075
+ 2πN
1076
+ � 2π
1077
+ 0
1078
+
1079
+ 1
1080
+ αj − sin φj
1081
+ ×
1082
+ N
1083
+
1084
+ k=1
1085
+
1086
+
1087
+ n=0
1088
+ nIkρkBkn sin {n (˜τ + ck) + βkn}
1089
+
1090
+ d˜τ.
1091
+ (59)
1092
+ Using (43),
1093
+ sin φj = αj −
1094
+ α2
1095
+ j − 1
1096
+ αj − cos ψj
1097
+ ,
1098
+ or, αj − sin φj =
1099
+ α2
1100
+ j − 1
1101
+ αj − cos ψj
1102
+ .
1103
+ (60)
1104
+ With this (59) may be modified using (60) to
1105
+ or,
1106
+ �dψj
1107
+ d˜τ
1108
+
1109
+ = 1 + Kj
1110
+ N
1111
+ N
1112
+
1113
+ k=1
1114
+ Ak sin (cj − ck − ζj) ,
1115
+ (61)
1116
+ where,
1117
+ Kj
1118
+ =
1119
+ ϵjδj
1120
+
1121
+ α2
1122
+ j − 1
1123
+
1124
+ γ2
1125
+ j
1126
+
1127
+ α2
1128
+ j − 1
1129
+ �2 +
1130
+
1131
+ ω2
1132
+ 0j −
1133
+
1134
+ α2
1135
+ j − 1
1136
+ �2�2 ,
1137
+ (62)
1138
+ AK
1139
+ =
1140
+ Ikρk
1141
+
1142
+ 1 − α2
1143
+ k + αk
1144
+
1145
+ α2
1146
+ k − 1
1147
+
1148
+ ,
1149
+ (63)
1150
+ ζj
1151
+ =
1152
+ tan−1
1153
+
1154
+
1155
+ γj
1156
+
1157
+ α2
1158
+ j − 1
1159
+ α2
1160
+ j − 1 − ω2
1161
+ 0j
1162
+
1163
+ � = β1j.
1164
+ (64)
1165
+ Reader may check detailed description of the derivation in the
1166
+ appendix B.
1167
+ In the final step, one may replace the ‘initial values’ of
1168
+ phases by their slowly evolving components like ⟨ψj(˜τ)⟩ and
1169
+ ⟨ψk(˜τ)⟩. Also one may get firstorder averaged equation by
1170
+ dropping the angular brackets so that (61) transforms to
1171
+ dψj
1172
+ d˜τ = 1 + Kj
1173
+ N
1174
+ N
1175
+
1176
+ k=1
1177
+ Ak sin (ψj(˜τ) − ψk(˜τ) − δ) .
1178
+ (65)
1179
+
1180
+ 7
1181
+ Eq. (65) resembles the Kuramoto model in a generalized
1182
+ form. For the sake of mathematical formalities, it is important
1183
+ to note that except terms corresponding to n = 1 terms for
1184
+ other values of n becomes zero.
1185
+ To arrive at (65), it was assumed that the fabrication process
1186
+ may not guarantee exactly same values of parameters for each
1187
+ junction and hence one may consider that each junction has
1188
+ different internal resistance and different critical current. The
1189
+ difference may be very small for junctions prepared in the
1190
+ same batch. If the fabrication process is done in very skilled
1191
+ sequence (65) may turn into special form for assuming ρ1 =
1192
+ ρ2 = . . . = ρN = ρ (say) and I1 = I2 = . . . = IN = Ic(say)
1193
+ so that each junction has nearly same frequency f (say). This
1194
+ case of identical junctions has been studied extensively in may
1195
+ literatures.
1196
+ The transformation (27) for time leads to
1197
+ Φ0
1198
+ 2πρIc
1199
+ d
1200
+ dt ≡ d
1201
+ dτ .
1202
+ (66)
1203
+ while (30) entails
1204
+ 2πρIc
1205
+ Φ0
1206
+ Q ≡ q.
1207
+ (67)
1208
+ Consequently, (31) reduces to
1209
+ d2q
1210
+ dτ 2 + γ dq
1211
+ dτ + ω2
1212
+ 0q = − β
1213
+ N
1214
+ N
1215
+
1216
+ k=1
1217
+ sin φk,
1218
+ (68)
1219
+ where
1220
+ γ
1221
+ =
1222
+ � Φ0
1223
+ 2πρIc
1224
+ � � 1
1225
+
1226
+
1227
+ (r + ρ) ,
1228
+ (69)
1229
+ ω2
1230
+ 0
1231
+ =
1232
+ � Φ0
1233
+ 2πρIc
1234
+ �2 1
1235
+ lc,
1236
+ (70)
1237
+ β
1238
+ =
1239
+ � Φ0
1240
+ 2πρIc
1241
+ � 1
1242
+ l ,
1243
+ (71)
1244
+ (72)
1245
+ Eqs. (55) and (56) become
1246
+ B2
1247
+ n =
1248
+ A2
1249
+ n
1250
+ n2γ2 (α2 − 1) + {n2 (α2 − 1) − ω2
1251
+ 0}2 , (73)
1252
+ βn = tan−1
1253
+
1254
+
1255
+
1256
+ α2 − 1
1257
+ ω2
1258
+ 0 − n2 (α2 − 1)
1259
+
1260
+ .
1261
+ (74)
1262
+ Repeating the earlier exercise, one may obtain the final phase
1263
+ equation (59) as
1264
+ �dψj
1265
+ d˜τ
1266
+
1267
+ =
1268
+ 1 −
1269
+ β
1270
+ 2πN
1271
+
1272
+ α2 − 1
1273
+ � 2π
1274
+ 0
1275
+ (α − cos (τ + cj))
1276
+ ×
1277
+ N
1278
+
1279
+ k=1
1280
+
1281
+
1282
+ n=0
1283
+ nBn sin {n (˜τ + ck) + βn} d˜τ.
1284
+ (75)
1285
+ In the case of identical junctions, computation shows that
1286
+ only B1 exists while others are evaluated to zero. Thus, (75)
1287
+ becomes
1288
+ �dψj
1289
+ d˜τ
1290
+
1291
+ =
1292
+ 1 −
1293
+ B1β
1294
+ 2πN
1295
+
1296
+ α2 − 1
1297
+ � 2π
1298
+ 0
1299
+ (α − cos (τ + cj))
1300
+ ×
1301
+ N
1302
+
1303
+ k=1
1304
+
1305
+
1306
+ n=0
1307
+ n sin {n (˜τ + ck) + βn} d˜τ.
1308
+ Integrating, we get
1309
+ dψj
1310
+ d˜τ = 1 + K
1311
+ N
1312
+ N
1313
+
1314
+ k=1
1315
+ sin (ψj(˜τ) − ψk(˜τ) − β1) ,
1316
+ (76)
1317
+ where
1318
+ K =
1319
+ πB1β
1320
+
1321
+
1322
+ α2 − 1
1323
+ .
1324
+ (77)
1325
+ Eq. (76) exactly resembles as the Kuramoto model.
1326
+ In the following section, let us try to understand general
1327
+ characteristics of the Kuramoto model in general and in the
1328
+ context of Josephson junction array.
1329
+ IV. ANALYSIS
1330
+ A C + + code has been developed alongwith DISLIN
1331
+ code to analyse the equations. DISLIN [16] is a freely
1332
+ available graph plotting routine that plots during runtime and
1333
+ can be stored. In this section, let us first investigate basic
1334
+ Fig. 2.
1335
+ Kuramoto model in arbitrary unit for 100 oscillators with K=4
1336
+ showing synchronization after a certain settling time within a band of
1337
+ frequency range.
1338
+ Kuramoto model as discussed in (3) including the effect of
1339
+ coupling strength (K). If K is properly tuned, one may expect
1340
+ synchronization as shown in Fig.2.
1341
+ Here we consider that the oscillators are oscillating possess-
1342
+ ing a frequency distribution g(ω). One may control width of
1343
+ the distribution while keeping the zero mean.
1344
+ We consider Logistic and Lorentzian fuctions having
1345
+ width β. Oscillators tend get to be synchronized if K is equal
1346
+ to or more than some threshold value Kc as discussed in (20).
1347
+ g(ω) =
1348
+ exp (−ω/β)
1349
+ β [1 + exp (−ω/β)]2
1350
+ (78)
1351
+ The Logistic function is described as (78) which shows
1352
+ g(0)=1/(4β) where, β is the width. Likewise, one may define
1353
+ the Lorentzian function as (79)
1354
+ g(ω) =
1355
+ b
1356
+ (ω2 + b2),
1357
+ (79)
1358
+
1359
+ Kuramoto model for 1oo oscillators having K=4 without any noise
1360
+ 0.5
1361
+ a
1362
+ sin
1363
+ 0
1364
+ -0.5
1365
+ 0
1366
+ 2
1367
+ 4
1368
+ 6
1369
+ 8
1370
+ 10
1371
+ time8
1372
+ Fig. 3.
1373
+ 100 oscillators with K=0.1 having Logistic distribution of width
1374
+ 0.001.
1375
+ Fig. 4. 100 oscillators with K=0.1 having Lorentzian distribution of width
1376
+ 0.001.
1377
+ so that one get g(0)=2/(πb). This g(0) estimates thresh-
1378
+ old value of the coupling strength as Kc=2/πg(0).
1379
+ One
1380
+ may compare Fig.3 with Fig.5 where the latter is operating
1381
+ with threshold coupling. The synchronization for the latter
1382
+ shows phase space of order parameter as a dot denoting
1383
+ synchronization. Figs.4 and 6 also show similar observation
1384
+ of synchronization.
1385
+ This theoretical study clearly heps us to understand the sig-
1386
+ nificance of coupling strength and the treatment of frequency
1387
+ range of oscillators to start with.
1388
+ Next one may apply this understanding in the case of
1389
+ Josephson junction. The situation is very much different hereas
1390
+ the definition of K is complex for both non-identical and
1391
+ Fig. 5. 100 oscillators oscillating with k=Kc=0.509 with Logistic function
1392
+ of width 0.2.
1393
+ Fig. 6. 100 oscillators oscillating with k=Kc=0.4 with Lorentzian function
1394
+ of width 0.2.
1395
+ identical junction arrays as evident from either (65) or (76)
1396
+ respectively. Let us consider mean frequency may be around
1397
+ 5 GHz. Figs.7 and 8 show simulated results of systems
1398
+ of 100 Josephson junctions in non-identical and identical
1399
+ configurations respectively operated for ˜τ = 25. The interesting
1400
+ part is that synchronization is not pulling the oscillators to a
1401
+ certain unique frequency. Rather, oscillators tend to cool down
1402
+ to a narrow band of frequencies resulting in an arc in phase
1403
+ space diagram which resembles as if oscillators have a certain
1404
+ ‘viscosity’ in the combined system. For the non identical case,
1405
+ the spread of Ic is considered very small like 0.1% while
1406
+ variation in ρj is about 0.05 % as fabrication is much better
1407
+ and junctions fabricated in the same substrate will not vary
1408
+
1409
+ Phase graph of 10o oscillators forK=0.100 dt=0.001simulation time=10
1410
+ (a) Phase graph of 100 oscillators
1411
+ (b) Order Paraneter of acillators
1412
+ 1.0
1413
+ 10
1414
+ sin
1415
+ P
1416
+ -1.心
1417
+ 0.0
1418
+ 2.0
1419
+ 4.0
1420
+ B.0
1421
+ 08
1422
+ 10.0
1423
+ 0.0
1424
+ 2.0
1425
+ 4.0
1426
+ 08
1427
+ 10.0
1428
+ time (T)
1429
+ time (r)
1430
+ (o)orderParameterof oscillatorsatT=0
1431
+ (d) Order Parameter of oncillatore at T =io
1432
+ 1.1
1433
+ 1.1
1434
+ 40
1435
+ 40
1436
+ 90
1437
+ 90
1438
+ 0.3
1439
+ UTS
1440
+ 0.1
1441
+ sin
1442
+ 0.1
1443
+ 0.1
1444
+ 0.1
1445
+ 0.8
1446
+ 0.3
1447
+ 0.5
1448
+ 0.5
1449
+ 0.7
1450
+ 0.7
1451
+ 0.9
1452
+ 8'0-
1453
+ -L1
1454
+ 11
1455
+ 0.9
1456
+ 20
1457
+ 0.6
1458
+ 0.3
1459
+ 心1
1460
+ 2
1461
+ 6'0-
1462
+ 0
1463
+ 0.5
1464
+ 0.3
1465
+ 01
1466
+ 0.5
1467
+ COSPhase graph of 10o oscillators forK=0.100 dt=0.001simulation time=10
1468
+ (a) Phase graph of 100 oscillators
1469
+ (b) Order Paraneter of acillators
1470
+ 1.0
1471
+ 10
1472
+ sin
1473
+ P
1474
+ 1.心
1475
+ 0.0
1476
+ 2.0
1477
+ 4.0
1478
+ B.0
1479
+ 08
1480
+ 10.0
1481
+ 0.0
1482
+ 2.0
1483
+ 4.0
1484
+ 08
1485
+ 10.0
1486
+ time (r)
1487
+ time (r)
1488
+ (o)orderParameterof oscillatorsatT=0
1489
+ (d) Order Parameter of oncillatore at T =io
1490
+ 1.1
1491
+ 1.1
1492
+ 40
1493
+ 40
1494
+ 90
1495
+ 90
1496
+ 0
1497
+ UTS
1498
+ 0.1
1499
+ ++
1500
+ sin
1501
+ 0.1
1502
+ 0.1
1503
+ 0.1
1504
+ 0.8
1505
+ 0.3
1506
+ 0.5
1507
+ 0.5
1508
+ 0.7
1509
+ 0.7
1510
+ 8'0-
1511
+ -L1
1512
+ 11
1513
+ 6'0
1514
+ 0.3
1515
+ 心1
1516
+ 0.8
1517
+ 0
1518
+ 0.5
1519
+ 0.3
1520
+ 01
1521
+ 0.5
1522
+ F'T
1523
+ COSPhasegraph of 100oscillatorsforK=0.509dt=0.100simulation time=30
1524
+ (a) Phase graph of 100 oscillators
1525
+ [b) Order Paraneter of acillators
1526
+ 1.0
1527
+ 20
1528
+ P 0.5
1529
+
1530
+ 1.心
1531
+ 0.0
1532
+ 6.0
1533
+ 12.0
1534
+ 18.0
1535
+ 24.0
1536
+ 30.0
1537
+ 0.0
1538
+ 6.0
1539
+ 12.0
1540
+ 18.0
1541
+ 24.
1542
+ 30.0
1543
+ time (-)
1544
+ time (-)
1545
+ (o)Order Parameter of oscillators atT=0
1546
+ (d) Order Parameter of oBcillatorB at T =90
1547
+ 1.1
1548
+ 1.1
1549
+ B0
1550
+ 2'0
1551
+ 90
1552
+ 90
1553
+ sin
1554
+ UTS
1555
+ 0.1
1556
+ ++++
1557
+ 0.1
1558
+ -0.1
1559
+ 0.1
1560
+ 0.8
1561
+ 0.3
1562
+ 0.5
1563
+ -0.5
1564
+ 0.7
1565
+ 0.7
1566
+ 0.9
1567
+ -0.8
1568
+ -L1
1569
+ -L1
1570
+ 0.E
1571
+ 0.3
1572
+ 心1
1573
+ 0.9
1574
+ 0.7
1575
+ 0.5
1576
+ 0.3
1577
+ 01
1578
+ 0.5
1579
+ COSPhasegraphof100oscillatorsforK=0.400dt=0.100simulationtime=30
1580
+ (a) Phase graph of 1o0 oscillators
1581
+ (b) Order Paraneter of oacillators
1582
+ 1.0
1583
+
1584
+ 0.5
1585
+ >
1586
+ 1.心
1587
+ 0.0
1588
+ 6.0
1589
+ 12.0
1590
+ 18.0
1591
+ 24.0
1592
+ 30.0
1593
+ 0.0
1594
+ 6.0
1595
+ 12.0
1596
+ 18.0
1597
+ 24.
1598
+ 30.0
1599
+ time (-)
1600
+ time (-)
1601
+ (o)orderParameterof oscillators atT=0
1602
+ (d) Order Parameter of oBcillatore at T=go
1603
+ 1.1
1604
+ 1.1
1605
+ 10
1606
+ 2'0
1607
+ 90
1608
+ 9'0
1609
+ sin
1610
+ sin
1611
+ 0.1
1612
+ +++ +.
1613
+ 0.1
1614
+ -0.1
1615
+ 0.1
1616
+ 0.8
1617
+ 0.3
1618
+ 0.5
1619
+ -0.5
1620
+ 0.7
1621
+ 0.7
1622
+ 0.9
1623
+ -0.8
1624
+ -L1
1625
+ 11
1626
+ 0
1627
+ 0.E
1628
+ 0.3
1629
+ 心1
1630
+ 0.9
1631
+ 0.7
1632
+ 0.5
1633
+ 0.3
1634
+ 01
1635
+ 0.5
1636
+ COS9
1637
+ Fig. 7. 100 non-identical Josephson junctions operating with mean frequency
1638
+ of 5 GHz having mean Ic = 10 µA, mean internal resistance ρj = 4.2 kΩ
1639
+ connected in series array to external load with parameters L=1 nH, C = 1
1640
+ µF and R = 2 Ω treated with bias current Ib = 12 µA synchronizes within
1641
+ a narrow band of distribution. The final phase space is not a dot!
1642
+ Fig. 8. 100 identical Josephson junctions operating at mean frequency of 5
1643
+ GHz having mean Ic = 10 µA, internal resistance ρ = 4.2 kΩ connected in
1644
+ series array to external load with parameters L=1 nH, C = 1 µF and R = 2
1645
+ Ω treated with bias current Ib = 12 µA synchronizes within a narrow band
1646
+ of distribution. The final phase space is not a dot!
1647
+ too much. Another point to note is that the oscillators in the
1648
+ non-identical case tend to syncronize faster and better than the
1649
+ other case, possibly due to the noisy environment.
1650
+ It has already been discussed that Kuramoto model stands
1651
+ on the assumption that a large number of oscillators have
1652
+ been considered. In our experimental regime, one may need
1653
+ to use smaller number of oscillators say 5 or 10 oscillators as
1654
+ shown in Fig.9 as asynchronized. The order parameter R is
1655
+ Fig. 9. 5 identical oscillators having Ic = 10 µA and ρ = 4.2 kΩ operating
1656
+ with 5 GHz frequency.
1657
+ also shown to be oscillating at a lower value. The observation
1658
+ was made for ˜τ = 25. The circuit parameters were kept same
1659
+ as those for 100 oscillators. Evidently oscillators were not
1660
+ syhronized. The case for the 5 non-identical oscillators is same
1661
+ as 9. Now, to tune the circuit, let us select Ic as 10 µA and ρj
1662
+ Fig. 10.
1663
+ 5 non identical Josephson junctions are partially syncronized
1664
+ changing Ib to 10.8785 µA.
1665
+ = 4.2 kΩ as before as we wish to experiment with the same
1666
+ junctions while we change Ib - the bias current. In the Fig.10,
1667
+ the synchronization is observed where one oscillator is out of
1668
+ sync while the rest 4 oscillators come closer to lie in a band
1669
+ very fast ˜τ ≈ 1.
1670
+
1671
+ Phase graph of 100 oseillators for K=12205.95dt=0.001 simulation time=25
1672
+ (a) Phase graph of 100 oscillators
1673
+ [b) Order Paraneter of acillators
1674
+ 1.0
1675
+ B'0
1676
+ 0.5
1677
+
1678
+ -1.心
1679
+ 0.1
1680
+ 0.0
1681
+ 6.0
1682
+ 10.0
1683
+ 15.0
1684
+ 20.心
1685
+ 25.0
1686
+ 0.0
1687
+ 5.0
1688
+ 10.0
1689
+ 15.0
1690
+ 20.心
1691
+ 25.0
1692
+ time (r)
1693
+ time (r)
1694
+ (o) Order Parameter of oscillators at T=0
1695
+ (d) Order Parameter of oBcillatorB at T=z5
1696
+ 1.1
1697
+ 1.1
1698
+ + +
1699
+ 2'0
1700
+ 2'0
1701
+ 90
1702
+ 90
1703
+ us
1704
+ 0
1705
+ sin
1706
+ 0.1
1707
+ 0.1
1708
+ 0.1
1709
+ 0.1
1710
+ 0.8
1711
+ 0.3
1712
+ 0.5
1713
+ 0.5
1714
+ 0.7
1715
+ 0.7
1716
+ 0.9
1717
+ -0.9
1718
+ -L1
1719
+ 11
1720
+ 0.9
1721
+ 20
1722
+ 0.E
1723
+ 0.3
1724
+ 心1
1725
+ 0.9
1726
+ 0.7
1727
+ 0.5
1728
+ 0.3
1729
+ 心1
1730
+ cosu
1731
+ cosyPhase graph of 100 oseillators for K=12205.95dt=0.001 simulation time=25
1732
+ (a) Phase graph of 1oo oscillators
1733
+ (b) Order Paraneter of oacillators
1734
+ 1.0
1735
+ 10
1736
+ TTTTT
1737
+ 0.8
1738
+ sin
1739
+
1740
+ 0.4
1741
+ 0.2
1742
+ -1.心
1743
+ 0.0
1744
+ 0.0
1745
+ 6.0
1746
+ 10.0
1747
+ 15.0
1748
+ 20.心
1749
+ 25.0
1750
+ 0.0
1751
+ 5.0
1752
+ 10.0
1753
+ 15.0
1754
+ 20.心
1755
+ 25.0
1756
+ time (r)
1757
+ time (r)
1758
+ (o)orderParameterof oscillators atT=0
1759
+ (d) Order Parameter of oBcillatorB at T=z5
1760
+ 1.1
1761
+ 1.1
1762
+ 2'0
1763
+ 2'0
1764
+ 90
1765
+ 90
1766
+ sin
1767
+ us
1768
+ 0
1769
+ 0.1
1770
+ 0.1
1771
+ -0.1
1772
+ 0.1
1773
+ 0.8
1774
+ 0.3
1775
+ 0.5
1776
+ 0.5
1777
+ 0.7
1778
+ 0.7
1779
+ 0.9
1780
+ -0.9
1781
+ -L1
1782
+ 11
1783
+ 0.9
1784
+ 20
1785
+ 0.E
1786
+ 0.3
1787
+ 心1
1788
+ 0.9
1789
+ 0.7
1790
+ 0.5
1791
+ 0.3
1792
+ 心1
1793
+ cosu
1794
+ cosyPhasegraph of 5oseillators forK=4307.83 dt=0.001 simulationtime=25
1795
+ (a) Phase graph of 5 oscillators
1796
+ (b) Order Paraneter of acillators
1797
+ 1.0
1798
+ 0.9
1799
+ 0.7
1800
+ sin
1801
+ 9'0
1802
+ 1.心
1803
+ 0.1
1804
+ 0.0
1805
+ 6.0
1806
+ 10.0
1807
+ 15.0
1808
+ 20.0
1809
+ 25.0
1810
+ 0.0
1811
+ 5.0
1812
+ 10.0
1813
+ 15.0
1814
+ 20.0
1815
+ 25.0
1816
+ time (r)
1817
+ time (r)
1818
+ (o)OrderParameter of oscillators atT=0
1819
+ (d) Order Parameter of oBcillator at T =25
1820
+ 1.1
1821
+ 1.1
1822
+ 2'0
1823
+ 2'0
1824
+ 90
1825
+ 90
1826
+ us
1827
+ 0
1828
+ 0.1
1829
+ 0.1
1830
+ -0.1
1831
+ 0.1
1832
+ 0.8
1833
+ 0.3
1834
+ 0.5
1835
+ -0.5
1836
+ 0.7
1837
+ 0.7
1838
+ 0.9
1839
+ -0.9
1840
+ -L1
1841
+ 11
1842
+ 0.E
1843
+ 0.3
1844
+ TO-
1845
+ 0.9
1846
+ 0.7
1847
+ 0.5
1848
+ 0.3
1849
+ 心1
1850
+ 0.5
1851
+ cosyPhase graph of 5 oscillators for K=30333.88dt=0.00lsimulation time=15
1852
+ (a) Phase graph of 5oscillators
1853
+ (b) Order Paraneter of oacillators
1854
+ 1.0
1855
+ 80
1856
+ P 0.5
1857
+ 0.1 -
1858
+ -1.心
1859
+ 0.0
1860
+ 12.心
1861
+ 15.0
1862
+ 0.0
1863
+ 6.0
1864
+ 12.心
1865
+ 15.0
1866
+ time (r)
1867
+ time (r)
1868
+ (o)orderParameterof oscillators atT=0
1869
+ (d) Order Parameter of oBcillatore at T =15
1870
+ 1.1
1871
+ 1.1
1872
+ 2'0
1873
+ ++
1874
+ 20
1875
+ 90
1876
+ 90
1877
+ uIs
1878
+ 0.1
1879
+ 0.1
1880
+ 0.1
1881
+ -0.1
1882
+ 0.8
1883
+ 0.3
1884
+ 0.5
1885
+ 0.5
1886
+ 0.7
1887
+ 0.7
1888
+ -0.9
1889
+ -L1
1890
+ 1L1
1891
+ 0.E
1892
+ 0.3
1893
+ 心1
1894
+ 0.7
1895
+ 0.5
1896
+ E'O
1897
+ 心1
1898
+ cosW
1899
+ cosu10
1900
+ Fig. 11. 5 identical Josephson junctions are partially syncronized changing
1901
+ Ib to 10.877 µA.
1902
+ V. CONCLUSION
1903
+ The exercises demonstrated in Figs.10 and 11 show the
1904
+ possibility of synchronization for few oscillators following
1905
+ Kuramoto model. However, order parameter show in-course
1906
+ instability which later settles down.
1907
+ This study helps to understand applicability of junctions in
1908
+ series array and steps to control the level of synchronization.
1909
+ The process is easier and synchronization is performed well
1910
+ for larger number of junctions while partial synchronization is
1911
+ also possible following the Kuramoto model. However, this
1912
+ study does not state any conclusive equation for threshold
1913
+ coupling for Josephson junction as it discussed in case of
1914
+ general oscillators. This aspect will be discussed in future.
1915
+ APPENDIX A
1916
+ From (40),
1917
+ tan
1918
+ �φj
1919
+ 2 + π
1920
+ 4
1921
+
1922
+ =
1923
+
1924
+ αj + 1
1925
+ αj − 1 tan ψj
1926
+ 2 ,
1927
+ or,
1928
+
1929
+ tan
1930
+ �φj
1931
+ 2 + π
1932
+ 4
1933
+
1934
+ + 1
1935
+ � �
1936
+ tan
1937
+ �φj
1938
+ 2 + π
1939
+ 4
1940
+
1941
+ − 1
1942
+
1943
+ =
1944
+ ��
1945
+ αj + 1
1946
+ αj − 1 tan ψj
1947
+ 2 + 1
1948
+ � ��
1949
+ αj + 1
1950
+ αj − 1 tan ψj
1951
+ 2 − 1
1952
+
1953
+ ,
1954
+ or,
1955
+
1956
+ 1 + tan φj
1957
+ 2
1958
+ 1 − tan φj
1959
+ 2
1960
+ + 1
1961
+ � �
1962
+ 1 + tan φj
1963
+ 2
1964
+ 1 − tan φj
1965
+ 2
1966
+ − 1
1967
+
1968
+ = αj + 1
1969
+ αj − 1 tan2 ψj
1970
+ 2 − 1,
1971
+ or,
1972
+
1973
+ cos φj
1974
+ 2 + sin φj
1975
+ 2
1976
+ cos φj
1977
+ 2 − sin φj
1978
+ 2
1979
+ + 1
1980
+ � �
1981
+ cos φj
1982
+ 2 + sin φj
1983
+ 2
1984
+ cos φj
1985
+ 2 − sin φj
1986
+ 2
1987
+ − 1
1988
+
1989
+ = αj + 1
1990
+ αj − 1 tan2 ψj
1991
+ 2 − 1,
1992
+ or,
1993
+ 2 cos φj
1994
+ 2 × 2 sin φj
1995
+ 2
1996
+
1997
+ cos φj
1998
+ 2 − sin φj
1999
+ 2
2000
+ �2 =
2001
+ 2 sin φj
2002
+
2003
+ cos φj
2004
+ 2 − sin φj
2005
+ 2
2006
+ �2
2007
+ = αj + 1
2008
+ αj − 1 tan2 ψj
2009
+ 2 − 1,
2010
+ or,
2011
+ 2 sin φj
2012
+ 1 − sin φj
2013
+ = αj tan2 ψj
2014
+ 2 + tan2 ψj
2015
+ 2 − αj + 1
2016
+ αj − 1
2017
+ ,
2018
+ or,
2019
+ 1 − sin φj
2020
+ 2 sin φj
2021
+ =
2022
+ 1 − αj cos ψj
2023
+ (αj − 1) cos2 ψj
2024
+ 2
2025
+ ,
2026
+ or,
2027
+ 1
2028
+ 2 sin φj
2029
+ = 1
2030
+ 2 +
2031
+ 1 − αj cos ψj
2032
+ (αj − 1) cos2 ψj
2033
+ 2
2034
+ ,
2035
+ or,
2036
+ sin φj = 1 − αj cos ψj
2037
+ αj − cos ψj
2038
+ ,
2039
+ or,
2040
+ sin φj ≡ sin φ(ψj) = αj −
2041
+
2042
+ α2
2043
+ j − 1
2044
+
2045
+ αj − cos ψj
2046
+ .
2047
+
2048
+ Phasegraph of 5oscillators forK=30453.72dt=0.00l simulationtime=15
2049
+ (a) Phase graph of 5 oscillators
2050
+ (b) Order Paraneter of oacillators
2051
+ 1.0
2052
+ E0
2053
+ sin
2054
+ 0.5
2055
+ 1.心
2056
+ 0.0
2057
+ 12.心
2058
+ 15.0
2059
+ 0.0
2060
+ 6.0
2061
+ 12.心
2062
+ 15.0
2063
+ time (T)
2064
+ time (r)
2065
+ (o)orderParameterof oscillators at T=Q
2066
+ (d) Order Parameter of oBcillatore at T =15
2067
+ 1.1
2068
+ 1.1
2069
+ 2'0
2070
+ 20
2071
+ 90
2072
+ 90
2073
+ sin
2074
+ uIs
2075
+ 0.1
2076
+ 0.1
2077
+ -0.1
2078
+ 0.1
2079
+ 0.8
2080
+ 0.3
2081
+ -0.8
2082
+ 0.5
2083
+ 0.7
2084
+ 0.7
2085
+ 0.9
2086
+ -L1
2087
+ -11
2088
+ 0.3
2089
+ 心1
2090
+ 0.7
2091
+ 0.5
2092
+ 心1
2093
+ cos
2094
+ cosu11
2095
+ APPENDIX B
2096
+ �dψj
2097
+ d˜τ
2098
+
2099
+ = 1 −
2100
+ ϵjδj
2101
+
2102
+ α2
2103
+ j − 1
2104
+ 2πN
2105
+ � 2π
2106
+ 0
2107
+
2108
+ αj − cos ψj
2109
+ α2
2110
+ j − 1
2111
+ ×
2112
+ N
2113
+
2114
+ k=1
2115
+
2116
+
2117
+ n=0
2118
+ nIkρkBkn sin {n (˜τ + ck) + βkn}
2119
+
2120
+ d˜τ.
2121
+ or,
2122
+ �dψj
2123
+ d˜τ
2124
+
2125
+ = 1 −
2126
+ ϵjδj
2127
+ 2πN
2128
+
2129
+ α2
2130
+ j − 1
2131
+ � 2π
2132
+ 0
2133
+ (αj − cos (˜τ + cj))
2134
+ ×
2135
+ N
2136
+
2137
+ k=1
2138
+
2139
+
2140
+ n=0
2141
+ nIkρkBkn sin {n (˜τ + ck) + βkn} d˜τ.
2142
+ or,
2143
+ �dψj
2144
+ d˜τ
2145
+
2146
+ = 1
2147
+ +
2148
+ ϵjδj
2149
+ N
2150
+
2151
+ α2
2152
+ j − 1
2153
+
2154
+ γ2
2155
+ j
2156
+
2157
+ α2
2158
+ j − 1
2159
+ �2 +
2160
+
2161
+ ω2
2162
+ 0j −
2163
+
2164
+ α2
2165
+ j − 1
2166
+ �2�2
2167
+ ×
2168
+ N
2169
+
2170
+ k=1
2171
+ Ikρk
2172
+
2173
+ 1 − α2
2174
+ k + αk
2175
+
2176
+ α2
2177
+ k − 1
2178
+
2179
+ sin (cj − ck − ζj) .
2180
+ or,
2181
+ �dψj
2182
+ d˜τ
2183
+
2184
+ = 1 + Kj
2185
+ N
2186
+ N
2187
+
2188
+ k=1
2189
+ Ikρk
2190
+
2191
+ 1 − α2
2192
+ k + αk
2193
+
2194
+ α2
2195
+ k − 1
2196
+
2197
+ × sin (cj − ck − ζj) ,
2198
+ or,
2199
+ �dψj
2200
+ d˜τ
2201
+
2202
+ = 1 + Kj
2203
+ N
2204
+ N
2205
+
2206
+ k=1
2207
+ Ak sin (cj − ck − ζj) .
2208
+ ACKNOWLEDGMENT
2209
+ The author would like to Sudhir R Jain, for his ideas, inspi-
2210
+ ration and continuous support to conceptualize, understand and
2211
+ formulate the problem. The author also expresses gratitude to
2212
+ Susmita Bhattacharyya and Tilottoma Bhattacharyya for their
2213
+ guidance.
2214
+ REFERENCES
2215
+ [1] S. P. Benz and C. A. Hamilton, “Application of josephson effect to
2216
+ voltage metrology,” Proceedings of the IEEE, vol. 92, no. 10, pp. 1617–
2217
+ 1629, 2004.
2218
+ [2] B. D. Josephson, “Possible new effects in supercondictive tunneling,”
2219
+ Physics Letters, vol. 1, no. 7, pp. 251–253, 1962.
2220
+ [3] ——, “Coupled superconductors,” Reiew of Modern Physics, vol. 36,
2221
+ no. 1, pp. 216–220, 1964.
2222
+ [4] ——, “The discovery of tunneling supercurrents,” Nobel Lectures, 1973.
2223
+ [5] B. S. D. Jr. and W. M. Fairbank, “Experimental evidence for quantized
2224
+ flux in superconducting cylinders,” Physical Review Letters, vol. 7, no. 2,
2225
+ pp. 43–46, 1961.
2226
+ [6] T. Endo, masao Koyanagi, and A. Nakamura, “High accuracy josephson
2227
+ potentiometer,” IEEE Transactions on Instrumentation and Measure-
2228
+ ment, vol. IM-32, no. 1, pp. 267–271, 1983.
2229
+ [7] M. T. Levinsen, R. Y. Chiao, M. J. Feldman, and B. A. Tucker, “Applied
2230
+ physics letters,” Applied Physics Letters, vol. 31, p. 776, 1977.
2231
+ [8] S. P. Benz and C. J. Burroughs, “Coherent emission from two dimen-
2232
+ sional josephson junction arrays,” Applied Physics Letters, vol. 58(19),
2233
+ pp. 2162–2164, 1991.
2234
+ [9] K. Wan, A. K. Jain, and J. E. Lukens, “Submillimeter wave generation
2235
+ using josephson junction arrays,” Applied Physics Letters, vol. 54, pp.
2236
+ 1805–1807, 1989.
2237
+ [10] J. W. Swift, S. H. Strogatz, and K. Wisenfield, “Averaging of globally
2238
+ coupled oscillators,” Physica D, vol. 55, pp. 239–250, 1992.
2239
+ [11] K. Wisenfeld and J. W. Swift, “Averaged equations for josephson
2240
+ junction series arrays,” Physical Review E, vol. 51, pp. 1020–1025, 1995.
2241
+ [12] H. Sakaguchi and Y. Kuramoto, “Kuramoto order parameters and phase
2242
+ concentration for the kuramoto-sakaguchi equation with frustration,”
2243
+ Progress of Theoretical Physics, vol. 76(3), pp. 576–581, 1986.
2244
+ [13] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical
2245
+ Systems, and Bifurcations of Vector fields.
2246
+ Springer Verlag New York,
2247
+ 2002.
2248
+ [14] S.-Y. Ha, J. Morales, and Y. Zhang, “A soluble active rotator model
2249
+ showing phase transitions via mutual entrainment,” Communications on
2250
+ pure and applied analysis, vol. 20(7 & 8), pp. 2579–2612, 2021.
2251
+ [15] D. Florian and F. Bullo, “On the critical coupling for kuramoto oscilla-
2252
+ tors,” SIAM Journal of Apllied Dynamical Systems, vol. 10, 2011.
2253
+ [16] H. Michels, “Dislin software.” [Online]. Available: http://www.dislin.de/
2254
+
CtE2T4oBgHgl3EQfSAdG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE3T4oBgHgl3EQfUwpD/content/tmp_files/2301.04453v1.pdf.txt ADDED
@@ -0,0 +1,927 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Nakayama et al.: Preparation of Papers for IEEE Access
2
+ .
3
+ .
4
+ VOLUME 4, 2016
5
+ 1
6
+ arXiv:2301.04453v1 [eess.SY] 11 Jan 2023
7
+
8
+ TEEEAccesSDate of publication xxxx 00, 0000, date of current version xxxx 00, 0000.
9
+ Digital Object Identifier 10.1109/ACCESS.2017.DOI
10
+ Trajectory Tracking Control of
11
+ The Second-order Chained Form System
12
+ by Using State Transitions
13
+ MAYU NAKAYAMA1, MASAHIDE ITO1, (Member, IEEE)
14
+ 1School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi, Japan
15
+ Corresponding author: Masahide Ito (e-mail: [email protected]).
16
+ ABSTRACT This paper proposes a novel control approach composed of sinusoidal reference trajectories
17
+ and trajectory tracking controller for the second-order chained form system. The system is well-known as
18
+ a canonical form for a class of second-order nonholonomic systems obtained by appropriate transformation
19
+ of the generalized coordinates and control inputs. The system is decomposed into three subsystems, two of
20
+ them are the so-called double integrators and the other subsystem is a nonlinear system depending on one of
21
+ the double integrators. The double integrators are linearly controllable, which enables to transit the value of
22
+ the position state in order to modify the nature of the nonlinear system that depends on them. Transiting the
23
+ value to “one” corresponds to modifying the nonlinear subsystem into the double integrator; transiting the
24
+ value to “zero” corresponds to modifying the nonlinear subsystem into an uncontrollable linear autonomous
25
+ system. Focusing on this nature, this paper proposes a feedforward control strategy. Furthermore, from the
26
+ perspective of practical usefulness, the control strategy is extended into trajectory tracking control by using
27
+ proportional-derivative feedback. The effectiveness of the proposed method is demonstrated through several
28
+ numerical experiments including an application to an underactuated manipulator.
29
+ INDEX TERMS
30
+ nonholonomic systems; state transitions; the second-order chained form; trajectory
31
+ tracking control
32
+ I. INTRODUCTION
33
+ N
34
+ ONHOLONOMIC systems are nonlinear dynamical
35
+ systems with non-integrable differential constraints,
36
+ whose control problems have been attracting many re-
37
+ searchers and engineers for the last three decades. The main
38
+ reason is that the nonholonomic systems do not satisfy
39
+ Brockett’s theorem [1]. The challenging and negative fact
40
+ means that there is not any smooth time-invariant feedback
41
+ control law to be able to stabilize them. The applications
42
+ include various types of robotic vehicles and manipulation.
43
+ Some of them have been often used as a kind of bench-
44
+ mark platform to demonstrate the performance of a proposed
45
+ controller for not only a control problem of a single robotic
46
+ system and also a distributed control problem of multiagent
47
+ robotic systems.
48
+ The class subject to acceleration constraints—called
49
+ second-order nonholonomic systems—includes real exam-
50
+ ples such as a V/STOL aircraft [2], an underactuated manip-
51
+ ulator [3], an underactuated hovercraft [4], and a crane [5].
52
+ These systems can be represented in a canonical system
53
+ called the second-order chained form by coordinate and in-
54
+ put transformations. The second-order chained form system
55
+ is also affected by Brockett’s theorem [1]. To avoid this
56
+ difficulty, there are several ingenious control approaches.
57
+ The stabilizing controllers proposed in [4], [6]–[8] exploit
58
+ discontinuity or time-variance; [3], [9] and [10] reduce the
59
+ control problem into a trajectory tracking problem. Other
60
+ than those, [11] and [12] consider a motion planning problem
61
+ (in other words, a feedforward control problem).
62
+ For the second-order chained form system, this paper
63
+ presents a novel control approach composed of sinusoidal
64
+ reference trajectories and a simple trajectory tracking con-
65
+ troller. The second-order chained form system is decomposed
66
+ into three subsystems. Two of them are the so-called dou-
67
+ ble integrators; the other subsystem is a nonlinear system
68
+ depending on one of the double integrators. The double
69
+ integrator is linearly controllable, which enables to transit the
70
+ value of the position state in order to modify the nature of the
71
+ nonlinear subsystem. Transiting the value into “one” corre-
72
+ sponds to modifying the nonlinear subsystem into the double
73
+ 2
74
+ VOLUME 4, 2016
75
+
76
+ IEEEAccesS
77
+ Multidisciplinary Rapid Review Open Access JournalNakayama et al.: Preparation of Papers for IEEE Access
78
+ integrator; transiting the value into “zero” corresponds to
79
+ modifying the nonlinear subsystem into a linear autonomous
80
+ system. Focusing on this nature, this paper proposes a feed-
81
+ forward control strategy. Furthermore, from the perspective
82
+ of practical usefulness, the control strategy is extended into
83
+ trajectory tracking control by using proportional-derivative
84
+ (PD) feedback.
85
+ The remainder of this paper is organized as follows: Sec-
86
+ tion II presents that the second-order chained form system
87
+ can be decomposed to linear subsystems by using state
88
+ transitions. On the basis of such system nature, Section III
89
+ proposes a feedforward control strategy and also a trajectory
90
+ tracking controller of PD feedback. Section IV applies the
91
+ proposed control approach to an underactuated manipulator
92
+ and evaluates it through numerical experiments. The last
93
+ section concludes the paper with a summary and future work.
94
+ II. SUBSYSTEM DECOMPOSITION OF THE
95
+ SECOND-ORDER CHAINED FORM SYSTEM BY USING
96
+ STATE TRANSITIONS
97
+ Consider the following second-order chained form system:
98
+ d2
99
+ dt2 ξ =
100
+
101
+
102
+ 1
103
+ 0
104
+ 0
105
+ 1
106
+ ξ2
107
+ 0
108
+
109
+ � u,
110
+ (1)
111
+ where ξ = [ξ1, ξ2, ξ3]⊤ and u = [u1, u2]⊤ are the gen-
112
+ eralized coordinate vector and the generalized input vector,
113
+ respectively. This system is well-known as a canonical form
114
+ for a class of second-order nonholonomic systems, which
115
+ can be resulted from the original dynamical model via an
116
+ appropriate transformation of the generalized coordinates
117
+ and control inputs. Representing the system (1) as an affine
118
+ nonlinear system:
119
+ d
120
+ dt
121
+
122
+ �������
123
+ ξ1
124
+ ξ2
125
+ ξ3
126
+ ˙ξ1
127
+ ˙ξ2
128
+ ˙ξ3
129
+
130
+ �������
131
+ =
132
+
133
+ �������
134
+ ˙ξ1
135
+ ˙ξ2
136
+ ˙ξ3
137
+ 0
138
+ 0
139
+ 0
140
+
141
+ �������
142
+ +
143
+
144
+ �������
145
+ 0
146
+ 0
147
+ 0
148
+ 1
149
+ 0
150
+ ξ2
151
+
152
+ �������
153
+ u1 +
154
+
155
+ �������
156
+ 0
157
+ 0
158
+ 0
159
+ 0
160
+ 1
161
+ 0
162
+
163
+ �������
164
+ u2,
165
+ (2)
166
+ we
167
+ can
168
+ easily
169
+ confirm
170
+ that
171
+ the
172
+ equilibrium
173
+ points
174
+ (ξ⋆
175
+ 1, ξ⋆
176
+ 2, ξ⋆
177
+ 3, 0, 0, 0), ξ⋆
178
+ 1, ξ⋆
179
+ 2, ξ⋆
180
+ 3
181
+
182
+ R are small-time local
183
+ controllable (STLC) via Sussmann’s theorem [13].
184
+ By focusing on the control inputs, the system (1) can be
185
+ decomposed into the following two subsystems:
186
+ d
187
+ dt
188
+
189
+ ���
190
+ ξ1
191
+ ξ3
192
+ ˙ξ1
193
+ ˙ξ3
194
+
195
+ ��� =
196
+
197
+ ���
198
+ 0
199
+ 0
200
+ 1
201
+ 0
202
+ 0
203
+ 0
204
+ 0
205
+ 1
206
+ 0
207
+ 0
208
+ 0
209
+ 0
210
+ 0
211
+ 0
212
+ 0
213
+ 0
214
+
215
+ ���
216
+
217
+ ���
218
+ ξ1
219
+ ξ3
220
+ ˙ξ1
221
+ ˙ξ3
222
+
223
+ ��� +
224
+
225
+ ���
226
+ 0
227
+ 0
228
+ 1
229
+ ξ2
230
+
231
+ ��� u1,
232
+ (3a)
233
+ d
234
+ dt
235
+ � ξ2
236
+ ˙ξ2
237
+
238
+ =
239
+ � 0
240
+ 1
241
+ 0
242
+ 0
243
+ � � ξ2
244
+ ˙ξ2
245
+
246
+ +
247
+ � 0
248
+ 1
249
+
250
+ u2.
251
+ (3b)
252
+ The subsystem (3b) with respect to the control input u2 is
253
+ a linear and controllable system represented by the double
254
+ integrator. On the other hand, the subsystem (3a) with respect
255
+ to the input u1 is a four-dimensional nonlinear system whose
256
+ input matrix depends on the state variable ξ2. The subsys-
257
+ tem (3a) can be further decomposed as follows:
258
+ d
259
+ dt
260
+ � ξ1
261
+ ˙ξ1
262
+
263
+ =
264
+ � 0
265
+ 1
266
+ 0
267
+ 0
268
+ � � ξ1
269
+ ˙ξ1
270
+
271
+ +
272
+ � 0
273
+ 1
274
+
275
+ u1,
276
+ (4a)
277
+ d
278
+ dt
279
+ � ξ3
280
+ ˙ξ3
281
+
282
+ =
283
+ � 0
284
+ 1
285
+ 0
286
+ 0
287
+ � � ξ3
288
+ ˙ξ3
289
+
290
+ +
291
+ � 0
292
+ ξ2
293
+
294
+ u1.
295
+ (4b)
296
+ The subsystem (4a) of the double integrator is linear and
297
+ controllable; the subsystem (4b) inherits the nonlinearity of
298
+ the system (3a).
299
+ Fig. 1 shows a block diagram describing the above-
300
+ mentioned subsystem decomposition explicitly. The state of
301
+ the subsystem (3b) can be transited to be a constant value
302
+ because of the linear controllability. For example, by setting
303
+ time intervals where ξ2 is “zero” and also ξ2 is “one”, the
304
+ nonlinear subsystem (4b) can be treated as a linear system.
305
+ During the time interval of ξ2 = 1, the subsystems (4a)
306
+ and (4b) are linear which have the same double integrator
307
+ structure and control input u1. On the other hand, during
308
+ the time interval of ξ2 = 0, the subsystem (3a) becomes
309
+ a linear autonomous (i.e., uncontrollable) system and the
310
+ subsystem (4a) can be controlled independently from sub-
311
+ system (4b) by the control input u1.
312
+ Remark 1. Some conventional approaches such as in [14],
313
+ [10] and [15] exploit a different subsystem decomposition
314
+ that can decompose the system (1) as follows:
315
+ d
316
+ dt
317
+ � ξ1
318
+ ˙ξ1
319
+
320
+ =
321
+ � 0
322
+ 1
323
+ 0
324
+ 0
325
+ � � ξ1
326
+ ˙ξ1
327
+
328
+ +
329
+ � 0
330
+ 1
331
+
332
+ u1,
333
+ (5a)
334
+ d
335
+ dt
336
+
337
+ ���
338
+ ξ2
339
+ ξ3
340
+ ˙ξ2
341
+ ˙ξ3
342
+
343
+ ��� =
344
+
345
+ ���
346
+ 0
347
+ 0
348
+ 1
349
+ 0
350
+ 0
351
+ 0
352
+ 0
353
+ 1
354
+ 0
355
+ 0
356
+ 0
357
+ 0
358
+ u1
359
+ 0
360
+ 0
361
+ 0
362
+
363
+ ���
364
+
365
+ ���
366
+ ξ2
367
+ ξ3
368
+ ˙ξ2
369
+ ˙ξ3
370
+
371
+ ��� +
372
+
373
+ ���
374
+ 0
375
+ 0
376
+ 1
377
+ 0
378
+
379
+ ��� u2.
380
+ (5b)
381
+ The subsystem (5a) is the same with (4a); the subsystem (5b)
382
+ has a variable structure depending on u1. The subsystem (5b)
383
+ is linear when u1 is a non-zero constant, which reduces a
384
+ control problem of the second-order chained form system into
385
+ a simultaneous stabilizing problem of the two subsystems (5a)
386
+ and (5b). When u1 becomes zero before the end of control,
387
+ however, the subsystem (5b) will be uncontrollable with a
388
+ pole at the origin and then the whole of the subsystem loses
389
+ the controllability. This subsystem decomposition, therefore,
390
+ needs control in consideration with u1.
391
+ III. PROPOSED CONTROL APPROACH
392
+ In this paper, a control task of a rest-to-rest motion is ad-
393
+ dressed. For this task, the authors propose a control approach
394
+ composed of sinusoidal reference trajectories and a trajec-
395
+ tory tracking controller. In particular, a feedforward control
396
+ strategy that generates the reference trajectories exploits the
397
+ system decomposition based on state transition described in
398
+ the previous section.
399
+ The feedforward control strategy using system switching
400
+ based on state transitions in ξ2 is as follows:
401
+ VOLUME 4, 2016
402
+ 3
403
+
404
+ TEEEAccesSNakayama et al.: Preparation of Papers for IEEE Access
405
+
406
+
407
+ u1
408
+ ˙ξ1
409
+ ξ1
410
+ ×
411
+
412
+
413
+ ˙ξ3
414
+ ξ3
415
+
416
+
417
+ u2
418
+ ˙ξ2
419
+ ξ2
420
+
421
+
422
+ u1
423
+ ˙ξ1
424
+ ξ1
425
+
426
+
427
+ ˙ξ3
428
+ ξ3
429
+
430
+
431
+ u1
432
+ ˙ξ1
433
+ ξ1
434
+
435
+
436
+ ˙ξ3
437
+ ξ3
438
+ ⇐⇒
439
+ when ξ2 = 1
440
+ when ξ2 = 0
441
+ FIGURE 1. Subsystem decomposition of the second-order chained form by using ξ2’s state transitions between 0 and 1.
442
+ Step 1
443
+ Transit ξ2 from any initial value to 1 by using
444
+ u1(t) = 0, u2(t) = q2(t);
445
+ Step 2
446
+ Transit ξ3 from any initial value to any desired
447
+ value (in conjunction with it, ξ1 is also driven)
448
+ by using u1(t) = q3(t), u2(t) = 0;
449
+ Step 3
450
+ Transit ξ2 from 1 to 0 by using u1(t)
451
+ =
452
+ 0, u2(t) = q2(t);
453
+ Step 4
454
+ Transit ξ1 from any value in Step 2 to any de-
455
+ sired value by using u1(t) = q1(t), u2(t) = 0;
456
+ Step 5
457
+ Transit ξ2 from 0 to any desired value by using
458
+ u1(t) = 0, u2(t) = q2(t).
459
+ A control input in Step k (k = 1, 2, . . . , 5) is designed
460
+ by an appropriate sinusoidal function qi(t) (i = 1, 2, 3)
461
+ without any feedback. This control strategy is namely mo-
462
+ tion planning, which naturally cannot deal with disturbance.
463
+ Therefore, we provide a trajectory tracking controller that
464
+ follow the reference trajectory.
465
+ Consider to drive the state variables ξi(t), ˙ξi(t) of the
466
+ system (1) by the following sinusoidal functions with pe-
467
+ riod T = 2π/ω and amplitude ak:
468
+ qi(t) = akω2 sin ωt.
469
+ (6)
470
+ Then, at time t (≤ kT), trajectories of a subsystem with non-
471
+ zero input are derived as
472
+ ˙ξi(t) = ˙ξi((k − 1)T) − akω cos ωt + akω,
473
+ (7)
474
+ ξi(t) = ξi((k − 1)T) + ˙ξi((k − 1)T)t
475
+ − ˙ξi((k − 1)T)(k − 1)T
476
+ − ak sin ωt + akωt − ak(k − 1)ωT,
477
+ (8)
478
+ respectively, where ξi((k − 1)T) and ˙ξi((k − 1)T) are initial
479
+ values of the state variables in Step k. Thus, at the end of
480
+ k-th period (t = kT), the state transitions are represented as
481
+ ˙ξi(kT) = ˙ξi((k − 1)T),
482
+ (9)
483
+ ξi(kT) = ξi((k − 1)T) + ˙ξi((k − 1)T)T + 2πak,
484
+ (10)
485
+ which means that a displacement of 2πak on ξi is obtained.
486
+ This can be seen that the desired displacement is extracted by
487
+ using the amplitude ak as a tuning parameter.
488
+ By setting the trajectories (6), (7), (8) as reference trajec-
489
+ tories qref
490
+ i (t), ξref
491
+ i (t), ˙ξref
492
+ i (t), a PD feedback control system
493
+ can be designed for trajectory tracking. A linear system of a
494
+ double integrator can be represented in the following state-
495
+ space form with the state zi = [ξi, ˙ξi]⊤ and control input qi:
496
+ ˙zi =
497
+ � 0
498
+ 1
499
+ 0
500
+ 0
501
+
502
+ � �� �
503
+ A
504
+ zi +
505
+ � 0
506
+ 1
507
+
508
+ ����
509
+ b
510
+ qi(t, zi).
511
+ (11)
512
+ In Step k, a feedback controller for trajectory tracking to zref
513
+ i
514
+ is given as follows:
515
+ qi(t, zi) = qref
516
+ i (t) + k ei,
517
+ (12)
518
+ where ei := zref
519
+ i
520
+ − zi and k = [kp, kd] is a feedback gain
521
+ matrix. The system (11) yields the closed-loop system ˙ei =
522
+ (A − bk)ei. By choosing the feedback gain k so that (A −
523
+ bk) is Hurwitz-stable, the closed-loop system is stabilized,
524
+ that is, zi tracks zref
525
+ i .
526
+ IV. NUMERICAL EXPERIMENTS
527
+ In this section, we evaluate the effectiveness of the proposed
528
+ control approach through numerical experiments.
529
+ Firstly, we validate the proposed controller for the second-
530
+ order chained form system. A numerical experiment was per-
531
+ formed with T = 1 s, ξ(0) = [3, 0.5, 1]⊤, ˙ξ(0) = 03, ξ⋆ =
532
+ [1, 1, 0]⊤, and ˙ξ⋆ = 03. Fig. 2 shows the simulation results
533
+ when choosing a1 = 1/(4π), a2 = a3 = a4 = −1/(2π),
534
+ and a5 = 1/(2π). The ordinary differential equations was
535
+ numerically solved by ODE45 of MATLAB [16] with a rela-
536
+ tive tolerance of 1×10−3. The results indicate that each state
537
+ reached to the target value ξ⋆ with the remaining errors at t =
538
+ 5T: ξ(5T)−ξ⋆ = [−2.7×10−8, 1.0×10−10, −4.7×10−8]⊤
539
+ and ˙ξ(5T)− ˙ξ⋆ = [1.3×10−8, −8.9×10−9, −2.1×10−8]⊤,
540
+ which means that the desired control is achieved.
541
+ Secondly, the proposed controller is applied to an underac-
542
+ tuated manipulator—a typical example of second-order non-
543
+ holonomic systems—as shown in Fig. 3. This manipulator
544
+ has first two joints being actuated and the last joint being
545
+ unactuated. The system representation can be converted to
546
+ the second-order chained form system. Even if the third joint
547
+ cannot be driven due to no actuator, the acceleration (α1, α2)
548
+ acting on the center of percussion of the third link can be
549
+ treated equivalently as a control input owing to dynamic cou-
550
+ pling effect—the rotational actuation of the first and second
551
+ 4
552
+ VOLUME 4, 2016
553
+
554
+ TEEEAccesSNakayama et al.: Preparation of Papers for IEEE Access
555
+ TABLE 1. Definition of variables and parameters
556
+ (x, y) : position of the center of percussion of the third link in the frame O-XY ;
557
+ θ
558
+ : angle of the third link relative to X-axis;
559
+ d3
560
+ : distance between the third joint and the center of mass of the third link;
561
+ m3
562
+ : mass of the third link;
563
+ I3
564
+ : moment of inertia mass of the third link;
565
+ LCoP : distance between the third joint and the center of percussion of the third link
566
+
567
+ LCoP := (I3 + m3d2
568
+ 3)/(m3d3)
569
+
570
+ ;
571
+ α1
572
+ : translational acceleration along the third link;
573
+ α2
574
+ : angular acceleration around the center of percussion of the third link.
575
+ FIGURE 2. Simulation results of trajectory tracking control
576
+ joints propagates through the links. For simplicity, assume
577
+ that there is no disturbance such as load, friction, linear and
578
+ nonlinear damping, etc. The main variables are defined as in
579
+ Table 1.
580
+ Let χ := [x, y, θ]⊤ and α = [α1, α2]⊤. Yoshikawa, et
581
+ al. [11] provided a set of coordinate and input transforma-
582
+ tions to convert the manipulator dynamics derived from the
583
+ Lagrange’s equation of motion into the following system
584
+ 𝜃
585
+ 1st revolute joint
586
+ (actuated)
587
+ 𝑥
588
+ 𝑑!
589
+ 2nd revolute joint
590
+ (actuated)
591
+ 3rd revolute joint
592
+ (unactuated)
593
+ 𝑦
594
+ 𝑋
595
+ 𝑌
596
+ 𝑂
597
+ center of percussion
598
+ of 3rd link
599
+ :
600
+ 𝛼"
601
+ 𝛼#
602
+ FIGURE 3. A three-joint manipulator with passive third joint
603
+ representation:
604
+ ¨χ =
605
+
606
+
607
+ cos θ
608
+ 0
609
+ sin θ
610
+ 0
611
+ 0
612
+ 1
613
+
614
+ � α.
615
+ (13)
616
+ Using the coordinate transformation
617
+
618
+
619
+ ξ1
620
+ ξ2
621
+ ξ3
622
+
623
+ � =
624
+
625
+
626
+ x − LCoP
627
+ tan θ
628
+ y
629
+
630
+ � ,
631
+
632
+
633
+ ˙ξ1
634
+ ˙ξ2
635
+ ˙ξ3
636
+
637
+ � =
638
+
639
+
640
+ ˙x
641
+ ˙θ sec2 θ
642
+ ˙y
643
+
644
+
645
+ (14)
646
+ and the input transformation
647
+ � α1
648
+ α2
649
+
650
+ =
651
+
652
+ u1 sec θ
653
+ u2 cos2 θ − 2 ˙θ2 tan θ
654
+
655
+ ,
656
+ (15)
657
+ the system (13) can be transformed into the second-order
658
+ chained form system (1). Note that both transformation are
659
+ singular point at θ = ±π/2.
660
+ For the third joint of the underactuated manipulator with
661
+ m3 = 0.6 kg, d3 = 0.3 m, and I3 = 4.5 × 10−3 kg · m2,
662
+ steer from initial values χ(0)
663
+ =
664
+ [3.33 m, 1 m, 4.6 ×
665
+ 10−1 rad]⊤, ˙χ(0)
666
+ =
667
+ 03 to the desired ones χ⋆
668
+ =
669
+ [1 m, 0 m, 0 rad]⊤, ˙χ⋆ = 03.
670
+ Fig. 4 shows a simulation result with the period T = 1 s
671
+ and the feedback gain kp = kd = 1. In this case, from (14),
672
+ we have ξ(0) = [3, 0.5, 1]⊤ and ξ⋆ = [0.67, 0, 0]⊤. It can
673
+ be confirmed that each state converges to the desired value in
674
+ the both system representation.
675
+ VOLUME 4, 2016
676
+ 5
677
+
678
+ TEEEAccesSNakayama et al.: Preparation of Papers for IEEE Access
679
+ (a) States and inputs of the second-order chained form system
680
+ (b) Status and inputs of a three-joint underactuated manipulator
681
+ FIGURE 4. Numerical results
682
+ Furthermore, to verify the effect of feedback control, an-
683
+ other case with an initial value error was simulated. For
684
+ a rest-to-rest motion from χ(0)
685
+ =
686
+ [3.33 m, 1 m, 4.6 ×
687
+ 10−1 rad]⊤ to χ⋆ = [1.33 m, 0 m, 7.8 × 10−1 rad]⊤ with
688
+ the zero velocities, the initial value error of +10% is given to
689
+ θ, i.e., χ(0) = [3.33 m, 1 m, 5.1 × 10−1 rad]⊤. The result
690
+ is shown in Fig. 5. The dashed lines indicate the target
691
+ trajectories. It can be observed that tracking error due to the
692
+ initial value error is alleviated over time.
693
+ Similarly, when initial value errors of ±1%, ±10%, and
694
+ ±30% on θ are given the tracking errors at the end of control
695
+ at t = 5T are summarized in Table 2. The terminal values
696
+ of the tracking errors do not increase greatly even if the
697
+ magnitude of the initial value error increases. Consequently,
698
+ it is confirmed that the feedback of trajectory tracking has a
699
+ sufficient effect on initial value errors. Note that the terminal
700
+ error on x is relatively larger than the one on θ. The proposed
701
+ control method attempts to settle the system by focusing on a
702
+ single state every step. In addition, the state in which the con-
703
+ trol step ends has no chance to be controlled directly. For such
704
+ a state, there can be a secondary state transition that yields
705
+ in control steps that focus on the other states. Therefore, if
706
+ a state fails to converge into its reference trajectory within
707
+ the control step due to initial value error or disturbance, it
708
+ behaves unexpectedly until the end of the control strategy.
709
+ In particular, ξ2—the state used for switching the systems—
710
+ has a negative effect on the other states because the reference
711
+ trajectory is not computed correctly. Furthermore, the error
712
+ remaining in the velocity state (ξ4, ξ5, ξ6) causes a drift in
713
+ the position state (ξ1, ξ2, ξ3) even if the input is zero in
714
+ the following control steps. This is explained by numerical
715
+ experiments shown in Fig. 5. Note that θ is related to ξ2
716
+ as specified in (14). This means that θ affects the other
717
+ states (x, y) when not converging completely. On the other
718
+ hand, since ξ2 is settled in the final step (i.e., Step 5), the
719
+ propagation from the error in the velocity state is small.
720
+ Therefore, the error remaining in θ is considered to be smaller
721
+ than in x.
722
+ V. CONCLUSION
723
+ In this paper, a novel control approach composed of sinu-
724
+ soidal reference trajectories and a simple trajectory tracking
725
+ 6
726
+ VOLUME 4, 2016
727
+
728
+ TEEEAccesSNakayama et al.: Preparation of Papers for IEEE Access
729
+ FIGURE 5. Given an initial value error(+10%)
730
+ controller for the second-order chained form system was
731
+ proposed. The key idea is a subsystem decomposition of the
732
+ second-order chained form system by using state transitions.
733
+ The effectiveness of the proposed algorithm was demon-
734
+ strated by numerical results including an application to a
735
+ three-joint underactuated manipulator. In particular, it can be
736
+ confirmed that the feedback control works well against the
737
+ initial value error.
738
+ The future work of this research is to verify the proposed
739
+ approach via experiments on an actual robot.
740
+ REFERENCES
741
+ [1] R. W. Brockett: “Asymptotic stability and feedback stabilization,” in
742
+ Differential Geometric Control Theory (Eds. by R. W. Brockett, R. S.
743
+ Millmann and H. J. Sussmann), Birkhauser, Boston, pp. 181–191, 1983.
744
+ [2] J. Hauser, S. Sastry, and G. Meyer: “Nonlinear control design for slightly
745
+ TABLE 2. Error from target value by the initial value error
746
+ Case
747
+ χ(0) − χ⋆
748
+ χ(5T) − χ⋆
749
+ w/o init. err.
750
+
751
+
752
+ 0 m
753
+ 0 m
754
+ 0 rad
755
+
756
+
757
+
758
+
759
+ 4.5 × 10−8 m
760
+ 4.4 × 10−7 m
761
+ 4.9 × 10−9 rad
762
+
763
+
764
+ w/ +1 % init. err.
765
+
766
+
767
+ 0 m
768
+ 0 m
769
+ 4.6 × 10−3 rad
770
+
771
+
772
+
773
+
774
+ 2.9 × 10−3 m
775
+ −6.9 × 10−4 m
776
+ −8.5 × 10−4 rad
777
+
778
+
779
+ w/ −1 % init. err.
780
+
781
+
782
+ 0 m
783
+ 0 m
784
+ −4.6 × 10−3 rad
785
+
786
+
787
+
788
+
789
+ −2.9 × 10−3 m
790
+ 7.4 × 10−4 m
791
+ 8.5 × 10−4 rad
792
+
793
+
794
+ w/ +10 % init. err.
795
+
796
+
797
+ 0 m
798
+ 0 m
799
+ 4.6 × 10−2 rad
800
+
801
+
802
+
803
+
804
+ 3.0 × 10−2 m
805
+ −4.8 × 10−3 m
806
+ −8.8 × 10−3 rad
807
+
808
+
809
+ w/ −10 % init. err.
810
+
811
+
812
+ 0 m
813
+ 0 m
814
+ −4.6 × 10−2 rad
815
+
816
+
817
+
818
+
819
+ −2.9 × 10−2 m
820
+ 9.9 × 10−3 m
821
+ 8.3 × 10−3 rad
822
+
823
+
824
+ w/ +30 % init. err.
825
+
826
+
827
+ 0 m
828
+ 0 m
829
+ 1.4 × 10−1 rad
830
+
831
+
832
+
833
+
834
+ 9.1 × 10−2 m
835
+ 3.3 × 10−3 m
836
+ −2.8 × 10−2 rad
837
+
838
+
839
+ w/ −30 % init. err.
840
+
841
+
842
+ 0 m
843
+ 0 m
844
+ −1.4 × 10−1 rad
845
+
846
+
847
+
848
+
849
+ −8.5 × 10−2 m
850
+ 4.3 × 10−2 m
851
+ 2.3 × 10−2 rad
852
+
853
+
854
+ non-minimum phase systems: application to V/STOL aircraft,” Automat-
855
+ ica, Vol. 28, No. 4, pp. 665–679, 1992.
856
+ [3] H. Arai, K. Tanie, and N. Shiroma: “Nonholonomic control of a three-
857
+ DOF planar underactuated manipulator,” IEEE Transactions on Robotics
858
+ Automation, Vol. 14, No. 5, pp. 681–695, 1998.
859
+ [4] G. He, C. Zhang, W. Sun, and Z. Geng: “Stabilizing the second-order
860
+ nonholonomic systems with chained form by finite-time stabilizing con-
861
+ trollers,” Robotica, Vol. 34, pp. 2344–2367, 2016.
862
+ [5] M. Nowicki, W. Respondek, J. Piasek, and K. Kozłowski: “Geometry and
863
+ flatness of m-crane systems,” Bulletin of The Polish Academy of Sciences,
864
+ Technical Sciences, Vol. 67, No. 5, pp. 893–903, 2019.
865
+ [6] S.S. Ge, Z. Sun, T.H. Lee, and M.W. Spong: “Feedback linearization and
866
+ stabilization of second-order nonholonomic chained systems,” Interna-
867
+ tional Journal of Control, Vol. 74, pp. 1383–1392, 2001.
868
+ [7] K. Pettersen and O. Egeland: “Exponential stabilization of an underac-
869
+ tuated surface vessel,” in Proceedings of the 35th IEEE International
870
+ Conference on Decision and Control (CDC’96), Vol. 1, pp. 967–972, 1996.
871
+ [8] K. Pettersen and O. Egeland: “Position and attitude control of an au-
872
+ tonomous underwater vehicle,” in Proceedings of the 35th IEEE Interna-
873
+ tional Conference on Decision and Control (CDC’96), pp. 987–991, 1996.
874
+ [9] A. De Luca and G. Oriolo: “Trajectory planning and control for planar
875
+ robots with passive last joint,” International Journal of Robotics Research,
876
+ Vol. 21, No. 5–6, pp. 575–590, 2002.
877
+ [10] N.P.I. Aneke, H. Nijmeijer, and A.G. de Jager: “Tracking control of
878
+ second-order chained form systems by cascaded backstepping,” Interna-
879
+ tional Journal of Robust and Nonlinear Control, Vol. 13, No. 2, pp. 95–
880
+ 115.
881
+ [11] T. Yoshikawa, K. Kobayashi, and T. Watanabe, “Design of a desirable
882
+ trajectory and convergent control for 3-D.O.F manipulator with a nonholo-
883
+ nomic constraint,” in Proceedings of the IEEE International Conference
884
+ on Robotics and Automation (ICRA’00), San Francisco, CA, USA, Vol. 2,
885
+ pp. 1805–1810, 2000.
886
+ [12] M. Ito: “Motion planning of a second-order nonholonomic chained form
887
+ system based on holonomy extraction,” Electronics, Vol. 8, No. 11,
888
+ pp. 1337, 2019.
889
+ [13] H. Sussmann: “A general theorem on local controllability,” SIAM Journal
890
+ on Control and Optimization, Vol. 25, No. 1, pp. 158–194, 1987.
891
+ [14] T. Nam, T. Tamura, T. Mita, and Y. Kim: “Control of the high-order
892
+ VOLUME 4, 2016
893
+ 7
894
+
895
+ TEEEAccesSNakayama et al.: Preparation of Papers for IEEE Access
896
+ chained form system,” in Proceedings of the 41st SICE Annual Confer-
897
+ ence, Vol. 4, pp. 2196–2201, 2002.
898
+ [15] A. Hably and N. Marchand: “Bounded control of a general extended
899
+ chained form systems,” in Proceedings of the 53rd IEEE Conference on
900
+ Decision and Control (CDC’14), pp. 6342–6347, Los Angeles, CA, USA,
901
+ 2014.
902
+ [16] MathWorks, “ode45: Solve nonstiff differential equations—medium order
903
+ method,” Documentation for MATLAB R2022b, 2022. [Online]. Avail-
904
+ able: https://www.mathworks.com/help/matlab/ref/ode45.html. Accessed
905
+ on: Jan 11, 2023.
906
+ MAYU NAKAYAMA was born in Kiyosu, Aichi,
907
+ Japan in 1997. She received the B.S. and M.S. de-
908
+ grees in information science and technology from
909
+ Aichi Prefectural University (APU), Nagakute,
910
+ Aichi, Japan, in 2020 and 2022.
911
+ She is currently with DENSO Corporation. Her
912
+ research interests include nonlinear control for
913
+ underactuated systems.
914
+ MASAHIDE ITO (M’10) was born in Nagoya,
915
+ Aichi, Japan in 1979. He received the B.S., M.S.,
916
+ and Ph.D. degrees in information science and tech-
917
+ nology from Aichi Prefectural University (APU),
918
+ Nagakute, Aichi, Japan, in 2002, 2004, and 2008.
919
+ He is currently an Associate Professor with
920
+ the School of Information Science and Technol-
921
+ ogy, APU. His research interests include visual
922
+ feedback control of robotic systems and nonlinear
923
+ control for underactuated systems.
924
+ 8
925
+ VOLUME 4, 2016
926
+
927
+ TEEEAccesS
DNE3T4oBgHgl3EQfUwpD/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf,len=371
2
+ page_content='Nakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
3
+ page_content=' : Preparation of Papers for IEEE Access .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
4
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
5
+ page_content=' VOLUME 4, 2016 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
6
+ page_content='04453v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
7
+ page_content='SY] 11 Jan 2023 TEEEAccesSDate of publication xxxx 00, 0000, date of current version xxxx 00, 0000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
8
+ page_content=' Digital Object Identifier 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
9
+ page_content='1109/ACCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
10
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
11
+ page_content='DOI Trajectory Tracking Control of The Second-order Chained Form System by Using State Transitions MAYU NAKAYAMA1, MASAHIDE ITO1, (Member, IEEE) 1School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi, Japan Corresponding author: Masahide Ito (e-mail: masa-ito@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
12
+ page_content='aichi-pu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
13
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
14
+ page_content='jp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
15
+ page_content=' ABSTRACT This paper proposes a novel control approach composed of sinusoidal reference trajectories and trajectory tracking controller for the second-order chained form system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
16
+ page_content=' The system is well-known as a canonical form for a class of second-order nonholonomic systems obtained by appropriate transformation of the generalized coordinates and control inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
17
+ page_content=' The system is decomposed into three subsystems, two of them are the so-called double integrators and the other subsystem is a nonlinear system depending on one of the double integrators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
18
+ page_content=' The double integrators are linearly controllable, which enables to transit the value of the position state in order to modify the nature of the nonlinear system that depends on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
19
+ page_content=' Transiting the value to “one” corresponds to modifying the nonlinear subsystem into the double integrator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
20
+ page_content=' transiting the value to “zero” corresponds to modifying the nonlinear subsystem into an uncontrollable linear autonomous system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
21
+ page_content=' Focusing on this nature, this paper proposes a feedforward control strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
22
+ page_content=' Furthermore, from the perspective of practical usefulness, the control strategy is extended into trajectory tracking control by using proportional-derivative feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
23
+ page_content=' The effectiveness of the proposed method is demonstrated through several numerical experiments including an application to an underactuated manipulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
24
+ page_content=' INDEX TERMS nonholonomic systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
25
+ page_content=' state transitions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
26
+ page_content=' the second-order chained form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
27
+ page_content=' trajectory tracking control I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
28
+ page_content=' INTRODUCTION N ONHOLONOMIC systems are nonlinear dynamical systems with non-integrable differential constraints, whose control problems have been attracting many re- searchers and engineers for the last three decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
29
+ page_content=' The main reason is that the nonholonomic systems do not satisfy Brockett’s theorem [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
30
+ page_content=' The challenging and negative fact means that there is not any smooth time-invariant feedback control law to be able to stabilize them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
31
+ page_content=' The applications include various types of robotic vehicles and manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
32
+ page_content=' Some of them have been often used as a kind of bench- mark platform to demonstrate the performance of a proposed controller for not only a control problem of a single robotic system and also a distributed control problem of multiagent robotic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
33
+ page_content=' The class subject to acceleration constraints—called second-order nonholonomic systems—includes real exam- ples such as a V/STOL aircraft [2], an underactuated manip- ulator [3], an underactuated hovercraft [4], and a crane [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
34
+ page_content=' These systems can be represented in a canonical system called the second-order chained form by coordinate and in- put transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
35
+ page_content=' The second-order chained form system is also affected by Brockett’s theorem [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
36
+ page_content=' To avoid this difficulty, there are several ingenious control approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
37
+ page_content=' The stabilizing controllers proposed in [4], [6]–[8] exploit discontinuity or time-variance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
38
+ page_content=' [3], [9] and [10] reduce the control problem into a trajectory tracking problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
39
+ page_content=' Other than those, [11] and [12] consider a motion planning problem (in other words, a feedforward control problem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
40
+ page_content=' For the second-order chained form system, this paper presents a novel control approach composed of sinusoidal reference trajectories and a simple trajectory tracking con- troller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
41
+ page_content=' The second-order chained form system is decomposed into three subsystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
42
+ page_content=' Two of them are the so-called dou- ble integrators;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
43
+ page_content=' the other subsystem is a nonlinear system depending on one of the double integrators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
44
+ page_content=' The double integrator is linearly controllable, which enables to transit the value of the position state in order to modify the nature of the nonlinear subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
45
+ page_content=' Transiting the value into “one” corre- sponds to modifying the nonlinear subsystem into the double 2 VOLUME 4, 2016 IEEEAccesS Multidisciplinary Rapid Review Open Access JournalNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
46
+ page_content=' : Preparation of Papers for IEEE Access integrator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
47
+ page_content=' transiting the value into “zero” corresponds to modifying the nonlinear subsystem into a linear autonomous system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
48
+ page_content=' Focusing on this nature, this paper proposes a feed- forward control strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
49
+ page_content=' Furthermore, from the perspective of practical usefulness, the control strategy is extended into trajectory tracking control by using proportional-derivative (PD) feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
50
+ page_content=' The remainder of this paper is organized as follows: Sec- tion II presents that the second-order chained form system can be decomposed to linear subsystems by using state transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
51
+ page_content=' On the basis of such system nature, Section III proposes a feedforward control strategy and also a trajectory tracking controller of PD feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
52
+ page_content=' Section IV applies the proposed control approach to an underactuated manipulator and evaluates it through numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
53
+ page_content=' The last section concludes the paper with a summary and future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
54
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
55
+ page_content=' SUBSYSTEM DECOMPOSITION OF THE SECOND-ORDER CHAINED FORM SYSTEM BY USING STATE TRANSITIONS Consider the following second-order chained form system: d2 dt2 ξ = � � 1 0 0 1 ξ2 0 � � u, (1) where ξ = [ξ1, ξ2, ξ3]⊤ and u = [u1, u2]⊤ are the gen- eralized coordinate vector and the generalized input vector, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
56
+ page_content=' This system is well-known as a canonical form for a class of second-order nonholonomic systems, which can be resulted from the original dynamical model via an appropriate transformation of the generalized coordinates and control inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
57
+ page_content=' Representing the system (1) as an affine nonlinear system: d dt � ������� ξ1 ξ2 ξ3 ˙ξ1 ˙ξ2 ˙ξ3 � ������� = � ������� ˙ξ1 ˙ξ2 ˙ξ3 0 0 0 � ������� + � ������� 0 0 0 1 0 ξ2 � ������� u1 + � ������� 0 0 0 0 1 0 � ������� u2, (2) we can easily confirm that the equilibrium points (ξ⋆ 1, ξ⋆ 2, ξ⋆ 3, 0, 0, 0), ξ⋆ 1, ξ⋆ 2, ξ⋆ 3 ∈ R are small-time local controllable (STLC) via Sussmann’s theorem [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
58
+ page_content=' By focusing on the control inputs, the system (1) can be decomposed into the following two subsystems: d dt � ��� ξ1 ξ3 ˙ξ1 ˙ξ3 � ��� = � ��� 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 � ��� � ��� ξ1 ξ3 ˙ξ1 ˙ξ3 � ��� + � ��� 0 0 1 ξ2 � ��� u1, (3a) d dt � ξ2 ˙ξ2 � = � 0 1 0 0 � � ξ2 ˙ξ2 � + � 0 1 � u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
59
+ page_content=' (3b) The subsystem (3b) with respect to the control input u2 is a linear and controllable system represented by the double integrator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
60
+ page_content=' On the other hand, the subsystem (3a) with respect to the input u1 is a four-dimensional nonlinear system whose input matrix depends on the state variable ξ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
61
+ page_content=' The subsys- tem (3a) can be further decomposed as follows: d dt � ξ1 ˙ξ1 � = � 0 1 0 0 � � ξ1 ˙ξ1 � + � 0 1 � u1, (4a) d dt � ξ3 ˙ξ3 � = � 0 1 0 0 � � ξ3 ˙ξ3 � + � 0 ξ2 � u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
62
+ page_content=' (4b) The subsystem (4a) of the double integrator is linear and controllable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
63
+ page_content=' the subsystem (4b) inherits the nonlinearity of the system (3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
64
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
65
+ page_content=' 1 shows a block diagram describing the above- mentioned subsystem decomposition explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
66
+ page_content=' The state of the subsystem (3b) can be transited to be a constant value because of the linear controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
67
+ page_content=' For example, by setting time intervals where ξ2 is “zero” and also ξ2 is “one”, the nonlinear subsystem (4b) can be treated as a linear system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
68
+ page_content=' During the time interval of ξ2 = 1, the subsystems (4a) and (4b) are linear which have the same double integrator structure and control input u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
69
+ page_content=' On the other hand, during the time interval of ξ2 = 0, the subsystem (3a) becomes a linear autonomous (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
70
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
71
+ page_content=', uncontrollable) system and the subsystem (4a) can be controlled independently from sub- system (4b) by the control input u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
72
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
73
+ page_content=' Some conventional approaches such as in [14], [10] and [15] exploit a different subsystem decomposition that can decompose the system (1) as follows: d dt � ξ1 ˙ξ1 � = � 0 1 0 0 � � ξ1 ˙ξ1 � + � 0 1 � u1, (5a) d dt � ��� ξ2 ξ3 ˙ξ2 ˙ξ3 � ��� = � ��� 0 0 1 0 0 0 0 1 0 0 0 0 u1 0 0 0 � ��� � ��� ξ2 ξ3 ˙ξ2 ˙ξ3 � ��� + � ��� 0 0 1 0 � ��� u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
74
+ page_content=' (5b) The subsystem (5a) is the same with (4a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
75
+ page_content=' the subsystem (5b) has a variable structure depending on u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
76
+ page_content=' The subsystem (5b) is linear when u1 is a non-zero constant, which reduces a control problem of the second-order chained form system into a simultaneous stabilizing problem of the two subsystems (5a) and (5b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
77
+ page_content=' When u1 becomes zero before the end of control, however, the subsystem (5b) will be uncontrollable with a pole at the origin and then the whole of the subsystem loses the controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
78
+ page_content=' This subsystem decomposition, therefore, needs control in consideration with u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
79
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
80
+ page_content=' PROPOSED CONTROL APPROACH In this paper, a control task of a rest-to-rest motion is ad- dressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
81
+ page_content=' For this task, the authors propose a control approach composed of sinusoidal reference trajectories and a trajec- tory tracking controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
82
+ page_content=' In particular, a feedforward control strategy that generates the reference trajectories exploits the system decomposition based on state transition described in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
83
+ page_content=' The feedforward control strategy using system switching based on state transitions in ξ2 is as follows: VOLUME 4, 2016 3 TEEEAccesSNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
84
+ page_content=' : Preparation of Papers for IEEE Access � � u1 ˙ξ1 ξ1 × � � ˙ξ3 ξ3 � � u2 ˙ξ2 ξ2 � � u1 ˙ξ1 ξ1 � � ˙ξ3 ξ3 � � u1 ˙ξ1 ξ1 � � ˙ξ3 ξ3 ⇐⇒ when ξ2 = 1 when ξ2 = 0 FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
85
+ page_content=' Subsystem decomposition of the second-order chained form by using ξ2’s state transitions between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
86
+ page_content=' Step 1 Transit ξ2 from any initial value to 1 by using u1(t) = 0, u2(t) = q2(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
87
+ page_content=' Step 2 Transit ξ3 from any initial value to any desired value (in conjunction with it, ξ1 is also driven) by using u1(t) = q3(t), u2(t) = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
88
+ page_content=' Step 3 Transit ξ2 from 1 to 0 by using u1(t) = 0, u2(t) = q2(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
89
+ page_content=' Step 4 Transit ξ1 from any value in Step 2 to any de- sired value by using u1(t) = q1(t), u2(t) = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
90
+ page_content=' Step 5 Transit ξ2 from 0 to any desired value by using u1(t) = 0, u2(t) = q2(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
91
+ page_content=' A control input in Step k (k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
92
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
94
+ page_content=' , 5) is designed by an appropriate sinusoidal function qi(t) (i = 1, 2, 3) without any feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
95
+ page_content=' This control strategy is namely mo- tion planning, which naturally cannot deal with disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
96
+ page_content=' Therefore, we provide a trajectory tracking controller that follow the reference trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
97
+ page_content=' Consider to drive the state variables ξi(t), ˙ξi(t) of the system (1) by the following sinusoidal functions with pe- riod T = 2π/ω and amplitude ak: qi(t) = akω2 sin ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
98
+ page_content=' (6) Then, at time t (≤ kT), trajectories of a subsystem with non- zero input are derived as ˙ξi(t) = ˙ξi((k − 1)T) − akω cos ωt + akω, (7) ξi(t) = ξi((k − 1)T) + ˙ξi((k − 1)T)t − ˙ξi((k − 1)T)(k − 1)T − ak sin ωt + akωt − ak(k − 1)ωT, (8) respectively, where ξi((k − 1)T) and ˙ξi((k − 1)T) are initial values of the state variables in Step k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
99
+ page_content=' Thus, at the end of k-th period (t = kT), the state transitions are represented as ˙ξi(kT) = ˙ξi((k − 1)T), (9) ξi(kT) = ξi((k − 1)T) + ˙ξi((k − 1)T)T + 2πak, (10) which means that a displacement of 2πak on ξi is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
100
+ page_content=' This can be seen that the desired displacement is extracted by using the amplitude ak as a tuning parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
101
+ page_content=' By setting the trajectories (6), (7), (8) as reference trajec- tories qref i (t), ξref i (t), ˙ξref i (t), a PD feedback control system can be designed for trajectory tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
102
+ page_content=' A linear system of a double integrator can be represented in the following state- space form with the state zi = [ξi, ˙ξi]⊤ and control input qi: ˙zi = � 0 1 0 0 � � �� � A zi + � 0 1 � ���� b qi(t, zi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
103
+ page_content=' (11) In Step k, a feedback controller for trajectory tracking to zref i is given as follows: qi(t, zi) = qref i (t) + k ei, (12) where ei := zref i − zi and k = [kp, kd] is a feedback gain matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
104
+ page_content=' The system (11) yields the closed-loop system ˙ei = (A − bk)ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
105
+ page_content=' By choosing the feedback gain k so that (A − bk) is Hurwitz-stable, the closed-loop system is stabilized, that is, zi tracks zref i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
106
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
107
+ page_content=' NUMERICAL EXPERIMENTS In this section, we evaluate the effectiveness of the proposed control approach through numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
108
+ page_content=' Firstly, we validate the proposed controller for the second- order chained form system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
109
+ page_content=' A numerical experiment was per- formed with T = 1 s, ξ(0) = [3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
110
+ page_content='5, 1]⊤, ˙ξ(0) = 03, ξ⋆ = [1, 1, 0]⊤, and ˙ξ⋆ = 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
111
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
112
+ page_content=' 2 shows the simulation results when choosing a1 = 1/(4π), a2 = a3 = a4 = −1/(2π), and a5 = 1/(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
113
+ page_content=' The ordinary differential equations was numerically solved by ODE45 of MATLAB [16] with a rela- tive tolerance of 1×10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
114
+ page_content=' The results indicate that each state reached to the target value ξ⋆ with the remaining errors at t = 5T: ξ(5T)−ξ⋆ = [−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
115
+ page_content='7×10−8, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
116
+ page_content='0×10−10, −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
117
+ page_content='7×10−8]⊤ and ˙ξ(5T)− ˙ξ⋆ = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
118
+ page_content='3×10−8, −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
119
+ page_content='9×10−9, −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
120
+ page_content='1×10−8]⊤, which means that the desired control is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
121
+ page_content=' Secondly, the proposed controller is applied to an underac- tuated manipulator—a typical example of second-order non- holonomic systems—as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
122
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
123
+ page_content=' This manipulator has first two joints being actuated and the last joint being unactuated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
124
+ page_content=' The system representation can be converted to the second-order chained form system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
125
+ page_content=' Even if the third joint cannot be driven due to no actuator, the acceleration (α1, α2) acting on the center of percussion of the third link can be treated equivalently as a control input owing to dynamic cou- pling effect—the rotational actuation of the first and second 4 VOLUME 4, 2016 TEEEAccesSNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
126
+ page_content=' : Preparation of Papers for IEEE Access TABLE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
127
+ page_content=' Definition of variables and parameters (x, y) : position of the center of percussion of the third link in the frame O-XY ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
128
+ page_content=' θ : angle of the third link relative to X-axis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
129
+ page_content=' d3 : distance between the third joint and the center of mass of the third link;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
130
+ page_content=' m3 : mass of the third link;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
131
+ page_content=' I3 : moment of inertia mass of the third link;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
132
+ page_content=' LCoP : distance between the third joint and the center of percussion of the third link � LCoP := (I3 + m3d2 3)/(m3d3) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
133
+ page_content=' α1 : translational acceleration along the third link;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
134
+ page_content=' α2 : angular acceleration around the center of percussion of the third link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
135
+ page_content=' FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
136
+ page_content=' Simulation results of trajectory tracking control joints propagates through the links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
137
+ page_content=' For simplicity, assume that there is no disturbance such as load, friction, linear and nonlinear damping, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
138
+ page_content=' The main variables are defined as in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
139
+ page_content=' Let χ := [x, y, θ]⊤ and α = [α1, α2]⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
140
+ page_content=' Yoshikawa, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
141
+ page_content=' [11] provided a set of coordinate and input transforma- tions to convert the manipulator dynamics derived from the Lagrange’s equation of motion into the following system 𝜃 1st revolute joint (actuated) 𝑥 𝑑!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
142
+ page_content=' 2nd revolute joint (actuated) 3rd revolute joint (unactuated) 𝑦 𝑋 𝑌 𝑂 center of percussion of 3rd link : 𝛼" 𝛼# FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
143
+ page_content=' A three-joint manipulator with passive third joint representation: ¨χ = � � cos θ 0 sin θ 0 0 1 � � α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
144
+ page_content=' (13) Using the coordinate transformation � � ξ1 ξ2 ξ3 � � = � � x − LCoP tan θ y � � , � � ˙ξ1 ˙ξ2 ˙ξ3 � � = � � ˙x ˙θ sec2 θ ˙y � � (14) and the input transformation � α1 α2 � = � u1 sec θ u2 cos2 θ − 2 ˙θ2 tan θ �� , (15) the system (13) can be transformed into the second-order chained form system (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
145
+ page_content=' Note that both transformation are singular point at θ = ±π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
146
+ page_content=' For the third joint of the underactuated manipulator with m3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
147
+ page_content='6 kg, d3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
148
+ page_content='3 m, and I3 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
149
+ page_content='5 × 10−3 kg · m2, steer from initial values χ(0) = [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
150
+ page_content='33 m, 1 m, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
151
+ page_content='6 × 10−1 rad]⊤, ˙χ(0) = 03 to the desired ones χ⋆ = [1 m, 0 m, 0 rad]⊤, ˙χ⋆ = 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
152
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
153
+ page_content=' 4 shows a simulation result with the period T = 1 s and the feedback gain kp = kd = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
154
+ page_content=' In this case, from (14), we have ξ(0) = [3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
155
+ page_content='5, 1]⊤ and ξ⋆ = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
156
+ page_content='67, 0, 0]⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
157
+ page_content=' It can be confirmed that each state converges to the desired value in the both system representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
158
+ page_content=' VOLUME 4, 2016 5 TEEEAccesSNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
159
+ page_content=' : Preparation of Papers for IEEE Access (a) States and inputs of the second-order chained form system (b) Status and inputs of a three-joint underactuated manipulator FIGURE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
160
+ page_content=' Numerical results Furthermore, to verify the effect of feedback control, an- other case with an initial value error was simulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
161
+ page_content=' For a rest-to-rest motion from χ(0) = [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
162
+ page_content='33 m, 1 m, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
163
+ page_content='6 × 10−1 rad]⊤ to χ⋆ = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
164
+ page_content='33 m, 0 m, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
165
+ page_content='8 × 10−1 rad]⊤ with the zero velocities, the initial value error of +10% is given to θ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
166
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
167
+ page_content=', χ(0) = [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
168
+ page_content='33 m, 1 m, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
169
+ page_content='1 × 10−1 rad]⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
170
+ page_content=' The result is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
171
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
172
+ page_content=' The dashed lines indicate the target trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
173
+ page_content=' It can be observed that tracking error due to the initial value error is alleviated over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
174
+ page_content=' Similarly, when initial value errors of ±1%, ±10%, and ±30% on θ are given the tracking errors at the end of control at t = 5T are summarized in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
175
+ page_content=' The terminal values of the tracking errors do not increase greatly even if the magnitude of the initial value error increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
176
+ page_content=' Consequently, it is confirmed that the feedback of trajectory tracking has a sufficient effect on initial value errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
177
+ page_content=' Note that the terminal error on x is relatively larger than the one on θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
178
+ page_content=' The proposed control method attempts to settle the system by focusing on a single state every step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
179
+ page_content=' In addition, the state in which the con- trol step ends has no chance to be controlled directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
180
+ page_content=' For such a state, there can be a secondary state transition that yields in control steps that focus on the other states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
181
+ page_content=' Therefore, if a state fails to converge into its reference trajectory within the control step due to initial value error or disturbance, it behaves unexpectedly until the end of the control strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
182
+ page_content=' In particular, ξ2—the state used for switching the systems— has a negative effect on the other states because the reference trajectory is not computed correctly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
183
+ page_content=' Furthermore, the error remaining in the velocity state (ξ4, ξ5, ξ6) causes a drift in the position state (ξ1, ξ2, ξ3) even if the input is zero in the following control steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
184
+ page_content=' This is explained by numerical experiments shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
185
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
186
+ page_content=' Note that θ is related to ξ2 as specified in (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
187
+ page_content=' This means that θ affects the other states (x, y) when not converging completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
188
+ page_content=' On the other hand, since ξ2 is settled in the final step (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
189
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
190
+ page_content=', Step 5), the propagation from the error in the velocity state is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
191
+ page_content=' Therefore, the error remaining in θ is considered to be smaller than in x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
192
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
193
+ page_content=' CONCLUSION In this paper, a novel control approach composed of sinu- soidal reference trajectories and a simple trajectory tracking 6 VOLUME 4, 2016 TEEEAccesSNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
194
+ page_content=' : Preparation of Papers for IEEE Access FIGURE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
195
+ page_content=' Given an initial value error(+10%) controller for the second-order chained form system was proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
196
+ page_content=' The key idea is a subsystem decomposition of the second-order chained form system by using state transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
197
+ page_content=' The effectiveness of the proposed algorithm was demon- strated by numerical results including an application to a three-joint underactuated manipulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
198
+ page_content=' In particular, it can be confirmed that the feedback control works well against the initial value error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
199
+ page_content=' The future work of this research is to verify the proposed approach via experiments on an actual robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
200
+ page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
201
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
202
+ page_content=' Brockett: “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
203
+ page_content=' by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
204
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
205
+ page_content=' Brockett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
206
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
207
+ page_content=' Millmann and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
208
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
209
+ page_content=' Sussmann), Birkhauser, Boston, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
210
+ page_content=' 181–191, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
211
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
212
+ page_content=' Hauser, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
213
+ page_content=' Sastry, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
214
+ page_content=' Meyer: “Nonlinear control design for slightly TABLE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
215
+ page_content=' Error from target value by the initial value error Case χ(0) − χ⋆ χ(5T) − χ⋆ w/o init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
216
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
217
+ page_content=' � � 0 m 0 m 0 rad � � � � 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
218
+ page_content='5 × 10−8 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
219
+ page_content='4 × 10−7 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
220
+ page_content='9 × 10−9 rad � � w/ +1 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
221
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
222
+ page_content=' � � 0 m 0 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
223
+ page_content='6 × 10−3 rad � � � � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
224
+ page_content='9 × 10−3 m −6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
225
+ page_content='9 × 10−4 m −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
226
+ page_content='5 × 10−4 rad � � w/ −1 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
227
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
228
+ page_content=' � � 0 m 0 m −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
229
+ page_content='6 × 10−3 rad � � � � −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
230
+ page_content='9 × 10−3 m 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
231
+ page_content='4 × 10−4 m 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
232
+ page_content='5 × 10−4 rad � � w/ +10 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
233
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
234
+ page_content=' � � 0 m 0 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
235
+ page_content='6 × 10−2 rad � � � � 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
236
+ page_content='0 × 10−2 m −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
237
+ page_content='8 × 10−3 m −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
238
+ page_content='8 × 10−3 rad � � w/ −10 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
239
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
240
+ page_content=' � � 0 m 0 m −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
241
+ page_content='6 × 10−2 rad � � � � −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
242
+ page_content='9 × 10−2 m 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
243
+ page_content='9 × 10−3 m 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
244
+ page_content='3 × 10−3 rad � � w/ +30 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
245
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
246
+ page_content=' � � 0 m 0 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
247
+ page_content='4 × 10−1 rad � � � � 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
248
+ page_content='1 × 10−2 m 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
249
+ page_content='3 × 10−3 m −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
250
+ page_content='8 × 10−2 rad � � w/ −30 % init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
251
+ page_content=' err.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
252
+ page_content=' � � 0 m 0 m −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
253
+ page_content='4 × 10−1 rad � � � � −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
254
+ page_content='5 × 10−2 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
255
+ page_content='3 × 10−2 m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
256
+ page_content='3 × 10−2 rad � � non-minimum phase systems: application to V/STOL aircraft,” Automat- ica, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
257
+ page_content=' 28, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
258
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
259
+ page_content=' 665–679, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
260
+ page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
261
+ page_content=' Arai, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
262
+ page_content=' Tanie, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
263
+ page_content=' Shiroma: “Nonholonomic control of a three- DOF planar underactuated manipulator,” IEEE Transactions on Robotics Automation, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
264
+ page_content=' 14, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
265
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
266
+ page_content=' 681–695, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
267
+ page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
268
+ page_content=' He, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
269
+ page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
270
+ page_content=' Sun, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
271
+ page_content=' Geng: “Stabilizing the second-order nonholonomic systems with chained form by finite-time stabilizing con- trollers,” Robotica, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
272
+ page_content=' 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
273
+ page_content=' 2344–2367, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
274
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
275
+ page_content=' Nowicki, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
276
+ page_content=' Respondek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
277
+ page_content=' Piasek, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
278
+ page_content=' Kozłowski: “Geometry and flatness of m-crane systems,” Bulletin of The Polish Academy of Sciences, Technical Sciences, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
279
+ page_content=' 67, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
280
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
281
+ page_content=' 893–903, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
282
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
283
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
284
+ page_content=' Ge, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
285
+ page_content=' Sun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
286
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
287
+ page_content=' Lee, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
288
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
289
+ page_content=' Spong: “Feedback linearization and stabilization of second-order nonholonomic chained systems,” Interna- tional Journal of Control, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
290
+ page_content=' 74, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
291
+ page_content=' 1383–1392, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
292
+ page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
293
+ page_content=' Pettersen and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
294
+ page_content=' Egeland: “Exponential stabilization of an underac- tuated surface vessel,” in Proceedings of the 35th IEEE International Conference on Decision and Control (CDC’96), Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
295
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
296
+ page_content=' 967–972, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
297
+ page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
298
+ page_content=' Pettersen and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
299
+ page_content=' Egeland: “Position and attitude control of an au- tonomous underwater vehicle,” in Proceedings of the 35th IEEE Interna- tional Conference on Decision and Control (CDC’96), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
300
+ page_content=' 987–991, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
301
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
302
+ page_content=' De Luca and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
303
+ page_content=' Oriolo: “Trajectory planning and control for planar robots with passive last joint,” International Journal of Robotics Research, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
304
+ page_content=' 21, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
305
+ page_content=' 5–6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
306
+ page_content=' 575–590, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
307
+ page_content=' [10] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
308
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
309
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
310
+ page_content=' Aneke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
311
+ page_content=' Nijmeijer, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
312
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
313
+ page_content=' de Jager: “Tracking control of second-order chained form systems by cascaded backstepping,” Interna- tional Journal of Robust and Nonlinear Control, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
314
+ page_content=' 13, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
315
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
316
+ page_content=' 95– 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
317
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
318
+ page_content=' Yoshikawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
319
+ page_content=' Kobayashi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
320
+ page_content=' Watanabe, “Design of a desirable trajectory and convergent control for 3-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
321
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
322
+ page_content='F manipulator with a nonholo- nomic constraint,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’00), San Francisco, CA, USA, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
323
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
324
+ page_content=' 1805–1810, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
325
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
326
+ page_content=' Ito: “Motion planning of a second-order nonholonomic chained form system based on holonomy extraction,” Electronics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
327
+ page_content=' 8, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
328
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
329
+ page_content=' 1337, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
330
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
331
+ page_content=' Sussmann: “A general theorem on local controllability,” SIAM Journal on Control and Optimization, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
332
+ page_content=' 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
333
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
334
+ page_content=' 158–194, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
335
+ page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
336
+ page_content=' Nam, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
337
+ page_content=' Tamura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
338
+ page_content=' Mita, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
339
+ page_content=' Kim: “Control of the high-order VOLUME 4, 2016 7 TEEEAccesSNakayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
340
+ page_content=' : Preparation of Papers for IEEE Access chained form system,” in Proceedings of the 41st SICE Annual Confer- ence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
341
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
342
+ page_content=' 2196–2201, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
343
+ page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
344
+ page_content=' Hably and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
345
+ page_content=' Marchand: “Bounded control of a general extended chained form systems,” in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC’14), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
346
+ page_content=' 6342–6347, Los Angeles, CA, USA, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
347
+ page_content=' [16] MathWorks, “ode45: Solve nonstiff differential equations—medium order method,” Documentation for MATLAB R2022b, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
348
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
349
+ page_content=' Avail- able: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
350
+ page_content='mathworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
351
+ page_content='com/help/matlab/ref/ode45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
352
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
353
+ page_content=' Accessed on: Jan 11, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
354
+ page_content=' MAYU NAKAYAMA was born in Kiyosu, Aichi, Japan in 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
355
+ page_content=' She received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
356
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
357
+ page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
358
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
359
+ page_content=' de- grees in information science and technology from Aichi Prefectural University (APU), Nagakute, Aichi, Japan, in 2020 and 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
360
+ page_content=' She is currently with DENSO Corporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
361
+ page_content=' Her research interests include nonlinear control for underactuated systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
362
+ page_content=' MASAHIDE ITO (M’10) was born in Nagoya, Aichi, Japan in 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
363
+ page_content=' He received the B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
364
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
365
+ page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
366
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
367
+ page_content=', and Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
368
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
369
+ page_content=' degrees in information science and tech- nology from Aichi Prefectural University (APU), Nagakute, Aichi, Japan, in 2002, 2004, and 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
370
+ page_content=' He is currently an Associate Professor with the School of Information Science and Technol- ogy, APU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
371
+ page_content=' His research interests include visual feedback control of robotic systems and nonlinear control for underactuated systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
372
+ page_content=' 8 VOLUME 4, 2016 TEEEAccesS' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf'}
EtE1T4oBgHgl3EQfqgU3/content/2301.03343v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5374db7e85d9619d266bd75e6073c3279789ee8d5476bc7bc61f90925a435836
3
+ size 2409452
EtE1T4oBgHgl3EQfqgU3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8eb6932601b3913fd006eb62bb99f06eed1742735128617d25e57fbc5a3dd34
3
+ size 134704
GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d58aac7867f323120057bee08039c4ef74b4e37181e97f3ea7ded552f2e3c49
3
+ size 135946
GdE0T4oBgHgl3EQfRQBK/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d70f0aa8be2787b23f39f9658a23a43f42230abea3ede037ac13780dc7ed522
3
+ size 852013
GdE0T4oBgHgl3EQfRQBK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94aeb8eed24b97c7162fdb922d67d85e98e38182a91fbcd8f46a82b90526874c
3
+ size 37849
GtAzT4oBgHgl3EQfHftK/content/2301.01045v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38e540b36f0ebd5ff22af4854f4495d55a84e2ecd05b9099e0e1ca51a05e02f3
3
+ size 1176033
GtAzT4oBgHgl3EQfHftK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e8214227b3176e5e73048557817c9561c87c71d14b8ed7a2290406c2d2dfc3
3
+ size 209630
HNFAT4oBgHgl3EQfth7Z/content/2301.08665v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f559089925b01ddfd018142046cd6147d843ed0e9d7e45417fd2647888f601b3
3
+ size 488286
HNFAT4oBgHgl3EQfth7Z/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79c71ab97ffcce7094e4fc2852cd2fdf6654bfe39da91f6cba98cfefbfa536c9
3
+ size 88624
JdA0T4oBgHgl3EQfCf9p/content/2301.01990v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4aa1fae10f21cc892d3ff8a45f6b5866c30bcc7b35ecec95eac49518dd3f02
3
+ size 374558
JdA0T4oBgHgl3EQfCf9p/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61f3439b83af392c62c8b0ccdbadafac680db2d402d5ffe22e5fffc157ff75f6
3
+ size 213821
JdE4T4oBgHgl3EQfhg2P/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac41956be5b92be676b27f8a297d704214f5e74718ffe7fc56b7fb27cac1e15d
3
+ size 2818093
JtFIT4oBgHgl3EQfZit-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dba3d4629b853c674fcc517ee93968ccc7b44f6fd8360a7718909b1f1fa20e9
3
+ size 17301549
JtFJT4oBgHgl3EQfwi0E/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:660bd4bc2cf6506b49ac834b004ea238dcf020e8b9f50923c4bd7a7e92f3f507
3
+ size 167492
KNA0T4oBgHgl3EQfCv9N/content/2301.01993v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a844c8970a5ad81387bb7a1a44a6dfd2ab0f9149f603a4144a45634c5bffd6
3
+ size 1715451
KNA0T4oBgHgl3EQfCv9N/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb50f7d4aa0581b750e5c251061609304cc3586b96d3efcdc1be322657164d8
3
+ size 219744
KdE0T4oBgHgl3EQfSQCv/content/2301.02220v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31928c9604248b3bbc8c1c15e0edbcc1271490b2805d509f767e8f4776ef9c87
3
+ size 744340
KdE0T4oBgHgl3EQfSQCv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feac90432b1984a0129cdfa227554180817bd102ffb3fe446cbc1b4531c22684
3
+ size 374377
L9AzT4oBgHgl3EQfV_wg/content/2301.01292v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e6c3e04f028a51285828f7dc6ce084b6720a2d50d7da864198a683e7bab666
3
+ size 680058
L9AzT4oBgHgl3EQfV_wg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ac581fd420982fa9283086c636d3f1868a32f0a0d5470f835d07c5ce3817f5
3
+ size 5701677
LtFLT4oBgHgl3EQfMS8S/content/tmp_files/2301.12015v1.pdf.txt ADDED
@@ -0,0 +1,3109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Variant Prescribed Curvature Flow on Closed Surfaces with
2
+ Negative Euler Characteristic
3
+ Franziska Borer∗
4
+ Peter Elbau†
5
+ Tobias Weth‡
6
+ Abstract
7
+ On a closed Riemannian surface (M, ¯g) with negative Euler characteristic, we study the problem of
8
+ finding conformal metrics with prescribed volume A > 0 and the property that their Gauss curvatures
9
+ fλ = f + λ are given as the sum of a prescribed function f ∈ C∞(M) and an additive constant λ. Our
10
+ main tool in this study is a new variant of the prescribed Gauss curvature flow, for which we establish local
11
+ well-posedness and global compactness results. In contrast to previous work, our approach does not require
12
+ any sign conditions on f. Moreover, we exhibit conditions under which the function fλ is sign changing and
13
+ the standard prescribed Gauss curvature flow is not applicable.
14
+ Acknowledgment
15
+ This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project
16
+ 408275461 (Smoothing and Non-Smoothing via Ricci Flow).
17
+ We would like to thank Esther Cabezas–Rivas for helpful discussions.
18
+ 1. Introduction
19
+ Let (M, ¯g) be a two-dimensional, smooth, closed, connected, oriented Riemann manifold endowed with a smooth
20
+ background metric ¯g. A classical problem raised by Kazdan and Warner in [11] and [10] is the question which
21
+ smooth functions f : M → R arise as the Gauss curvature Kg of a conformal metric g(x) = e2u(x)¯g(x) on M
22
+ and to characterise the set of all such metrics.
23
+ For a constant function f, this prescribed Gauss curvature problem is exactly the statement of the Uni-
24
+ formisation Theorem (see e.g. [16], [12]):
25
+ There exists a metric g which is pointwise conformal to ¯g and has constant Gauss curvature Kg ≡ ¯K ∈ R.
26
+ We now use this statement to assume in the following without loss of generality that the background metric
27
+ ¯g itself has constant Gauss curvature K¯g ≡ ¯K ∈ R. Furthermore we can normalise the volume of (M, ¯g) to
28
+ one. We recall that the Gauss curvature of a conformal metric g(x) = e2u(x)¯g(x) on M is given by the Gauss
29
+ equation
30
+ Kg(x) = e−2u(x)(−∆¯gu(x) + ¯K).
31
+ (1.1)
32
+ Therefore the problem reduces to the question for which functions f there exists a conformal factor u solving
33
+ the equation
34
+ − ∆¯gu(x) + ¯K = f(x)e2u(x)
35
+ in M.
36
+ (1.2)
37
+ Given a solution u, we may integrate (1.2) with respect to the measure µ¯g on M induced by the Riemannian
38
+ volume form. Using the Gauss–Bonnet Theorem, we then obtain the identity
39
+
40
+ M
41
+ f(x)dµg(x) =
42
+
43
+ M
44
+ ¯Kdµ¯g(x) = ¯K vol¯g = ¯K = 2πχ(M),
45
+ (1.3)
46
+ where dµg(x) = e2u(x)dµ¯g(x) is the element of area in the metric g(x) = e2u(x)¯g(x).
47
+ We note that (1.3)
48
+ immediately yields necessary conditions on f for the solvability of the prescribed Gauss curvature problem. In
49
+ particular, if ±χ(M) > 0, then ±f must be positive somewhere. Moreover, if χ(M) = 0, then f must change
50
+ sign or must be identically zero.
51
+ ∗Technical University of Berlin, Faculty II—Mathematics and Natural Sciences, Straße des 17. Juni 136, 10623 Berlin, Germany
52
53
+ †Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
54
55
+ ‡Goethe University Frankfurt, Institut f¨ur Mathematik, Robert-Mayer-Straße 10, 60629 Frankfurt, Germany
56
57
+ 1
58
+ arXiv:2301.12015v1 [math.AP] 27 Jan 2023
59
+
60
+ 2
61
+ Franziska Borer, Peter Elbau, Tobias Weth
62
+ In the present paper we focus on the case χ(M) < 0, so M is a surface of genus greater than one and
63
+ ¯K < 0. The complementary cases χ(M) ≥ 0—i.e., the cases where M = S2 or M = T, the 2-torus—will be
64
+ discussed briefly at the end of this introduction, and we also refer the reader to [18, 19, 2, 8] and the references
65
+ therein. Multiplying equation (1.2) with the factor e−2u and integrating over M with respect to the measure µ¯g,
66
+ we get the following necessary condition—already mentioned by Kazdan and Warner in [11]—for the average
67
+ ¯f :=
68
+ 1
69
+ vol¯g
70
+
71
+ M f(x)dµ¯g(x), with vol¯g :=
72
+
73
+ M dµ¯g(x):
74
+ ¯f =
75
+ 1
76
+ vol¯g
77
+
78
+ M
79
+ f(x)dµ¯g(x) =
80
+
81
+ M
82
+ (−∆¯gu(x) + ¯K)e−2u(x)dµ¯g(x)
83
+ =
84
+
85
+ M
86
+ (−2|∇¯gu(x)|2
87
+ ¯g + ¯K)e−2u(x)dµ¯g(x) < 0.
88
+ (1.4)
89
+ This condition is not sufficient. Indeed, it has already been pointed out in [11, Theorem 10.5] that in the case
90
+ χ(M) < 0 there always exist functions f ∈ C∞(M) with ¯f < 0 and the property that (1.2) has no solution.
91
+ We recall that solutions of (1.2) can be characterised as critical points of the functional
92
+ Ef : H1(M, ¯g) → R;
93
+ Ef(u) := 1
94
+ 2
95
+
96
+ M
97
+
98
+ |∇¯gu(x)|2
99
+ ¯g + 2 ¯Ku(x) − f(x)e2u(x)�
100
+ dµ¯g(x).
101
+ (1.5)
102
+ Under the assumption χ(M) < 0, i.e., ¯K < 0, the functional Ef is strictly convex and coercive on H1(M, ¯g)
103
+ if f ≤ 0 and f does not vanish identically. Hence, as noted in [7], the functional Ef admits a unique critical
104
+ point uf ∈ H1(M, ¯g) in this case, which is a strict absolute minimiser of Ef and a (weak) solution of (1.2).
105
+ The situation is more delicate in the case where fλ = f0 + λ, where f0 ≤ 0 is a smooth, nonconstant function
106
+ on M with maxx∈M f0(x) = 0, and λ > 0. In the case where λ > 0 sufficiently small (depending on f0), it was
107
+ shown in [7] and [1] that the corresponding functional Efλ admits a local minimiser uλ and a further critical
108
+ point uλ ̸= uλ of mountain pass type.
109
+ These results motivate our present work, where we suggest a new flow approach to the prescribed Gausss
110
+ curvature problem in the case χ(M) < 0. It is important to note here that there is an intrinsic motivation to
111
+ formulate the static problem in a flow context. Typically, elliptic theories are regarded as the static case of the
112
+ corresponding parabolic problem; in that sense, many times the better-understood elliptic theory has been a
113
+ source of intuition to generalise the corresponding results in the parabolic case. Examples of this feedback are
114
+ minimal surfaces/mean curvature flow, harmonic maps/solutions of the heat equation, and the uniformisation
115
+ theorem/the two-dimensional normalised Ricci flow.
116
+ In this spirit, a flow approach to (1.2), the so-called prescribed Gauss curvature flow, was first introduced
117
+ by Struwe in [18] (and [2]) for the case M = S2 with the standard background metric and a positive function
118
+ f ∈ C2(M). More precisely, he considers a family of metrics (g(t, ·))t≥0 which fulfils the initial value problem
119
+ ∂tg(t, x) = 2(α(t)f(x) − Kg(t,·)(x))g(t, x)
120
+ in (0, T) × M;
121
+ (1.6)
122
+ g(0, x) = g0(x)
123
+ on {0} × M,
124
+ (1.7)
125
+ with
126
+ α(t) =
127
+
128
+ M Kg(t,·)(x)dµg(t,·)(x)
129
+
130
+ M f(x)dµg(t,·)(x)
131
+ =
132
+ 2πχ(M)
133
+
134
+ M f(x)dµg(t,·)(x).
135
+ (1.8)
136
+ This choice of α(t) ensures that the volume of (M, g(t, ·)) remains constant throughout the deformation, i.e.,
137
+
138
+ M
139
+ dµg(t,·)(x) =
140
+
141
+ M
142
+ e2u(t,x)dµ¯g(x) ≡ volg0
143
+ for all t ≥ 0,
144
+ where g0 denotes the initial metric on M.
145
+ Equivalently one may consider the evolution equation for the
146
+ associated conformal factor u given by g(t, x) = e2u(t,x)¯g(x):
147
+ ∂tu(t, x) = α(t)f(x) − Kg(t,·)(x)
148
+ in (0, T) × M;
149
+ (1.9)
150
+ u(0, x) = u0(x)
151
+ on {0} × M.
152
+ (1.10)
153
+ Here the initial value u0 is given by g0(x) = e2u0(x)¯g(x). The flow associated to this parabolic equation is
154
+ usually called the prescribed Gauss curvature flow. With the help of this flow, Struwe [18] provided a new proof
155
+ of a result by Chang and Yang [6] on sufficient criteria for a function f to be the Gauss curvature of a metric
156
+ g(x) = e2u(x)gS2(x) on S2. He also proved the sharpness of these criteria.
157
+ In the case of surfaces with genus greater than one, i.e., with negative Euler characteristic, the prescribed
158
+ Gauss curvature flow was used by Ho in [9] to prove that any smooth, strictly negative function on a surface
159
+ with negative Euler characteristic can be realised as the Gaussian curvature of some metric. More precisely,
160
+
161
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
162
+ 3
163
+ assuming that χ(M) < 0 and that f ∈ C∞(M) is a strictly negative function, he proves that equation (1.9) has
164
+ a solution which is defined for all times and converges to a metric g∞ with Gaussian curvature Kg∞ satisfying
165
+ Kg∞(x) = α∞f(x)
166
+ for some constant α∞.
167
+ While the prescribed Gauss curvature flow is a higly useful tool in the cases where f is of fixed sign, it
168
+ cannot be used in the case where f is sign-changing. Indeed, in this case we may have
169
+
170
+ M f(x)dµg(t,·)(x) = 0
171
+ along the flow and then the normalising factor α(t) is not well-defined by (1.8). As a consequence, a long-time
172
+ solution of (1.9) might not exist. In particular, the static existence results of [7] and [1] can not be recovered
173
+ and reinterpreted with the standard prescribed Gauss curvature flow.
174
+ In this paper we develop a new flow approach to (1.2) in the case χ(M) < 0 for general f ∈ C∞(M), which
175
+ sheds new light on the results in [7], [1] and [9]. The main idea is to replace the multiplicative normalisation in
176
+ (1.9) by an additive normalisation, as will be described in details in the next chapter.
177
+ At this point, it should be noted that the normalisation factor α(t) in the prescribed Gauss curvature flow
178
+ given by (1.8) is also not the appropriate choice in the case of the torus, where, as noted before, f has to
179
+ change sign or be identically zero in order to arise as the Gauss curvature of a conformal metric. The case of
180
+ the torus was considered by Struwe in [19], where, in particular, he used to a flow approach to reprove and
181
+ partially improve a result by Galimberti [8] on the static problem. In this approach, the normalisation in (1.8)
182
+ is replaced by
183
+ α(t) =
184
+
185
+ M f(x)Kg(t,·)(x)dµg(t,·)(x)
186
+
187
+ M f 2(x)dµg(t,·)(x)
188
+ .
189
+ (1.11)
190
+ With this choice, Struwe shows that for any smooth
191
+ u0 ∈ C∗ :=
192
+
193
+ u ∈ H1(M, ¯g) |
194
+
195
+ M
196
+ f(x)e2u(x)dµ¯g(x) = 0,
197
+
198
+ M
199
+ e2u(x)dµ¯g(x) = 1
200
+
201
+ there exists a unique, global smooth solution u of (1.9) satisfying u(t, ·) ∈ C∗ for all t > 0. Moreover, u(t, ·) →
202
+ u∞(·) in H2(M, ¯g) (and smoothly) as t → ∞ suitably, where u∞ + c∞ is a smooth solution of (1.2) for some
203
+ c∞ ∈ R.
204
+ In principle, the normalisation (1.11) could also be considered in the case χ(M) < 0, but then the flow is not
205
+ volume-preserving anymore, which results in a failure of uniform estimates for solutions of (1.9). Consequently,
206
+ we were not able to make use of the associated flow in this case.
207
+ The paper is organised as follows. In Section 2 we set up the framework for the new variant of the prescribed
208
+ Gauss curvature flow with additive normalisation, and we collect basic properties of it. In Section 3, we then
209
+ present our main result on the long-time existence and convergence of the flow (for suitable times tk → ∞) to
210
+ solutions of the corresponding static problem. In particular, our results show how sign changing functions of
211
+ the form fλ = f0 + λ arise depending on various assumptions on the shape of f0 and on the fixed volume A of
212
+ M with respect to the metric g(t). Before proving our results on the time-dependent problem, we first derive,
213
+ in Section 4, some results on the static problem with volume constraint. Most of these results will then be used
214
+ in Section 5, where the parabolic problem is studied in detail and the main results of the paper are proved. In
215
+ the appendix, we provide some regularity estimates and a variant of a maximum princple for a class of linear
216
+ evolution problems with H¨older continuous coefficients.
217
+ In the remainder of the paper, we will use the short form f, g(t), u(t), Kg(t), volg(t) :=
218
+
219
+ M dµg(t) =
220
+
221
+ M e2u(t)dµ¯g, and so on instead of f(x), g(t, x), u(t, x), Kg(t,·)(x),
222
+
223
+ M dµg(t,·)(x) =
224
+
225
+ M e2u(t,x)dµ¯g(x), et cetera.
226
+ 2. A New Flow Approach and Some of its Properties
227
+ Let f ∈ C∞(M) be a smooth function. We consider now the additive rescaled prescribed Gauss curvature flow
228
+ given by
229
+ ∂tu(t) = f − Kg(t) − α(t) = f − e−2u(t)(∆¯gu(t) − ¯K) − α(t)
230
+ in (0, T) × M,
231
+ (2.1)
232
+ where α(t) is chosen such that the volume volg(t) of M with respect to g(t) = e2u(t)¯g remains constant along
233
+ the flow, that is, we require the condition
234
+ 1
235
+ 2
236
+ d
237
+ dt volg(t) =
238
+
239
+ M
240
+ ∂tu(t)dµg(t) =
241
+
242
+ M
243
+ (f − Kg(t) − α(t))dµg(t) = 0.
244
+ (2.2)
245
+ Solving for α(t) then we find
246
+ α(t) =
247
+ 1
248
+ volg(t)
249
+ ��
250
+ M
251
+ fdµg(t) − ¯K
252
+
253
+ .
254
+
255
+ 4
256
+ Franziska Borer, Peter Elbau, Tobias Weth
257
+ So, starting with
258
+ u0 ∈ Cp,A :=
259
+
260
+ v ∈ W 2,p(M, ¯g) |
261
+
262
+ M
263
+ e2vdµ¯g = A
264
+
265
+ ,
266
+ p > 2,
267
+ for a given A > 0, we have
268
+ volg(t) = volg(0) = volg0 = A,
269
+ for all t ≥ 0,
270
+ hence we can define
271
+ αA(t) = 1
272
+ A
273
+ ��
274
+ M
275
+ fdµg(t) − ¯K
276
+
277
+ .
278
+ (2.3)
279
+ Therefore in the following we consider the flow
280
+ ∂tu(t) = f − Kg(t) − αA(t)
281
+ in (0, T) × M;
282
+ (2.4)
283
+ u(0) = u0 ∈ Cp,A
284
+ on {0} × M,
285
+ (2.5)
286
+ with αA(t) is chosen like in (2.3). We can now state some first properties of the flow.
287
+ Proposition 2.1. Let u be a (sufficiently smooth) solution of (2.4), (2.5). Then
288
+ 1. the volume volg(t) of (M, g(t)) is preserved along the flow, i.e., volg(t) ≡ volg0 = A for all t ≥ 0;
289
+ 2. along this trajectory, we have a uniform bound for α given by
290
+ α(t) ≥ min
291
+ x∈M f(x) + | ¯K|
292
+ A =: α1 > −∞
293
+ (2.6)
294
+ and
295
+ α(t) ≤ max
296
+ x∈M f(x) + | ¯K|
297
+ A =: α2 < ∞;
298
+ (2.7)
299
+ 3. the flow is invariant under adding or subtracting a constant C > 0 to the function f;
300
+ 4. and the energy Ef, defined in (1.5), is decreasing in time along the flow, so
301
+ Ef(u(t)) ≤ Ef(u0)
302
+ for all t ≥ 0.
303
+ Proof. The first statement directly follows by (2.2) and the choice of α in (2.3).
304
+ The second one we get since f is smooth and volg(t) = A.
305
+ To show the invariance of the flow, let C > 0 be a constant. We then replace f by f ± C in (2.4) and see that
306
+ f ± C − Kg(t) − 1
307
+ A
308
+ ��
309
+ M
310
+ (f ± C)dµg(t) − ¯K
311
+
312
+ = f − Kg(t) − 1
313
+ A
314
+ ��
315
+ M
316
+ fdµg(t) − ¯K
317
+
318
+ = ∂tu(t).
319
+ So, the flow (2.4) is left unchanged if we replace f by f ± C for a constant C > 0.
320
+ To see that the energy Ef is decreasing along the flow, we use (2.2) and get
321
+ d
322
+ dtEf(u(t)) =
323
+
324
+ M
325
+ (−∆¯gu(t) + ¯K − fe2u(t))∂tu(t)dµ¯g
326
+ =
327
+
328
+ M
329
+ ((−∆¯gu(t) + ¯K)e−2u(t) − f)e2u(t)∂tu(t)dµ¯g
330
+ =
331
+
332
+ M
333
+ ((−∆¯gu(t) + ¯K)e−2u(t) − f)∂tu(t)dµg(t)
334
+ =
335
+
336
+ M
337
+ (Kg(t) − f)∂tu(t)dµg(t) =
338
+
339
+ M
340
+ (Kg(t) − f + α(t))∂tu(t)dµg(t)
341
+ = −
342
+
343
+ M
344
+ |∂tu(t)|2dµg(t) ≤ 0.
345
+ (2.8)
346
+ Therefore on an interval [0, T], we have the uniform a-priori bound
347
+ Ef(u(T)) +
348
+ � T
349
+ 0
350
+
351
+ M
352
+ |∂tu(t)|2dµg(t)dt = Ef(u(0))
353
+ (2.9)
354
+ for any T > 0.
355
+
356
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
357
+ 5
358
+ 3. Main Results
359
+ The following is our first main result.
360
+ Theorem 3.1. Let f ∈ C∞(M), p > 2, and u0 ∈ Cp,A for a given A > 0. Then the initial value problem (2.4),
361
+ (2.5) admits a unique global solution u ∈ C([0, ∞); C(M)) ∩ C([0, ∞); H1(M, ¯g)) ∩ C∞((0, ∞) × M) satisfying
362
+ the energy bound Ef(u(t)) ≤ Ef(u0) for all t.
363
+ Moreover, u is uniformly bounded in the sense that
364
+ sup
365
+ t>0
366
+ ∥u(t)∥L∞(M,¯g) < ∞.
367
+ Furthermore, as t → ∞ suitably, u converges to a function u∞ in H2(M, ¯g) solving the equation
368
+ − ∆¯gu + ¯K = fλe2u
369
+ in M,
370
+ (3.1)
371
+ where fλ := f + λ with
372
+ λ = 1
373
+ A
374
+
375
+ ¯K −
376
+
377
+ M
378
+ fe2u∞dµ¯g
379
+
380
+ .
381
+ (3.2)
382
+ In other words, u∞ induces a metric g∞ with Gauss curvature Kg∞ satisfying
383
+ Kg∞(x) = fλ(x) = f(x) + λ
384
+ for
385
+ x ∈ M.
386
+ (3.3)
387
+ Remark 3.2. For functions f < 0, the convergence of the flow (1.9) is shown in [9]. For the additive rescaled
388
+ flow (2.4) with initial data (2.5) we get convergence for arbitrary functions f ∈ C∞(M). In general we do not
389
+ have any information about λ and therefore no information about the sign of fλ in Theorem 3.1. On the other
390
+ hand, more information can be derived for certain functions f ∈ C∞(M) and certain values of A > 0.
391
+ (i) In the case where A ≤ −
392
+ ¯
393
+ K
394
+ ∥f∥L∞(M,¯g) , it follows that
395
+ λ = 1
396
+ A
397
+
398
+ ¯K −
399
+
400
+ M
401
+ fe2udµ¯g
402
+
403
+
404
+ ¯K
405
+ A + ∥f∥L∞(M,¯g)
406
+ A
407
+
408
+ M
409
+ e2udµ¯g =
410
+ ¯K
411
+ A + ∥f∥L∞(M,¯g) ≤ 0
412
+ for every solution u ∈ C2,A :=
413
+
414
+ v ∈ H2(M, ¯g) |
415
+
416
+ M e2vdµ¯g = 0
417
+
418
+ of the static problem (3.1), and therefore
419
+ this also applies to λ in Theorem 3.1 in this case.
420
+ (ii) The following theorems show that fλ in Theorem 3.1 may change sign if A > −
421
+ ¯
422
+ K
423
+ ∥f∥L∞(M,¯g) , so in this case
424
+ we get a solution of the static problem (1.2) for sign-changing functions f ∈ C∞(M) by using the additive
425
+ rescaled prescribed Gauss curvature flow (2.4).
426
+ Theorem 3.3. Let p > 2. For every A > 0 and c > −
427
+ ¯
428
+ K
429
+ A there exists ε = ε(c, A, ¯K) > 0 with the following
430
+ property.
431
+ If u0 ≡ 1
432
+ 2 log(A) ∈ Cp,A and f ∈ C∞(M) with −c ≤ f ≤ 0 and ∥f + c∥L1(M,¯g) < ε is chosen in Theorem 3.1,
433
+ then the value λ defined in (3.2) is positive.
434
+ In particular, if f has zeros on M, then fλ in (3.3) is sign changing.
435
+ Under fairly general assumptions on f, we can prove that λ > 0 if A is sufficiently large and u0 ∈ Cp,A is
436
+ chosen suitably.
437
+ Theorem 3.4. Let f ∈ C∞(M) be nonconstant with maxx∈M f(x) = 0. Then there exists κ > 0 with the
438
+ property that for every A ≥ κ there exists u0 ∈ Cp,A such that the value λ defined in (3.2) is positive.
439
+ In fact we have even more information on the associated limit u∞ in this case, see Corollary 4.8 below.
440
+ It remains open how large λ can be depending on A and f. The only upper bound we have is
441
+ λ < −
442
+
443
+ M
444
+ fdµ¯g,
445
+ (3.4)
446
+ since we must have
447
+ ¯fλ =
448
+ 1
449
+ vol¯g
450
+
451
+ M
452
+ fλdµ¯g =
453
+
454
+ M
455
+ fdµ¯g + λ
456
+ !< 0,
457
+ so that fλ fulfills the necessary condition (1.4) provided by Kazdan and Warner in [11].
458
+
459
+ 6
460
+ Franziska Borer, Peter Elbau, Tobias Weth
461
+ 4. The static Minimisation Problem with Volume Constraint
462
+ To obtain additional information on the limiting function u∞ and the value λ ∈ R associated to it by (3.2) and
463
+ (3.3), we need to consider the associated static setting for the prescribed Gauss curvature problem with the
464
+ additional condition of prescribed volume.
465
+ Before going into the details of this static problem, we recall an important and highly useful estimate.
466
+ The following lemma (see e.g. [5, Corollary 1.7]) is a consequence of the Trudinger’s inequality [20] which was
467
+ improved by Moser in [15] (for more details see e.g. [19, Theorem 2.1 and Theorem 2.2]):
468
+ Lemma 4.1. For a two-dimensional, closed Riemannian manifold (M, ¯g) there are constants η > 0 and CMT >
469
+ 0 such that
470
+
471
+ M
472
+ e(u−¯u)dµ¯g ≤ CMT exp
473
+
474
+ η∥∇¯gu∥2
475
+ L2(M,¯g)
476
+
477
+ (4.1)
478
+ for all u ∈ H1(M, ¯g) where
479
+ ¯u :=
480
+ 1
481
+ vol¯g
482
+
483
+ M
484
+ u dµ¯g =
485
+
486
+ M
487
+ u dµ¯g,
488
+ in view of our assumption that vol¯g = 1.
489
+ As a consequence of Lemma 4.1, we have
490
+
491
+ M
492
+ epudµ¯g = ep¯u
493
+
494
+ M
495
+ e(pu− ¯
496
+ pu)dµ¯g ≤ ep¯uCMT exp
497
+
498
+ η∥∇¯g(pu)∥2
499
+ L2(M,¯g)
500
+
501
+ < ∞
502
+ for every u ∈ H1(M, ¯g) and p > 0. Consequently, for a given A > 0, the set
503
+ C1,A :=
504
+
505
+ u ∈ H1(M, ¯g) | V (u) :=
506
+
507
+ M
508
+ e2udµ¯g = A
509
+
510
+ (4.2)
511
+ is well defined and coincides with the closure of C2,A with respect to the H1-norm. We also note that
512
+ ¯u ≤ 1
513
+ 2 log(A)
514
+ for u ∈ C1,A,
515
+ (4.3)
516
+ since by Jensen’s inequality and our assumption that vol¯g = 1 we have
517
+ 2¯u = −
518
+
519
+ M
520
+ 2udµ¯g =
521
+
522
+ M
523
+ 2udµ¯g ≤ log
524
+
525
+
526
+
527
+ e2udµ¯g
528
+
529
+ = log(A)
530
+ for u ∈ C1,A.
531
+ Furthermore we want to recall the Gagliardo–Nirenberg–Ladyˇzhenskaya interpolation, see e.g. [4].
532
+ Lemma 4.2 (Gagliardo–Nirenberg–Ladyˇzhenskaya inequality). There exists a constant CGNL > 0 such that
533
+ we have for every ζ ∈ H1(M, ¯g) the inequality
534
+ ∥ζ∥4
535
+ L4(M,¯g) ≤ CGNL∥ζ∥2
536
+ L2(M,¯g)∥ζ∥2
537
+ H1(M,¯g).
538
+ Now we enter the details of the static prescribed Gauss curvature problem with volume constraint. In this
539
+ problem, we wish to find, for given f ∈ C∞(M) and A > 0, critical points of the restriction of the functional
540
+ Ef defined in (1.5) to the set C1,A. A critical point u ∈ C1,A of this restriction is a solution of (3.1) for some
541
+ λ ∈ R, where, here and in the following, we put again fλ := f + λ ∈ C∞(M). In other words, such a critical
542
+ point induces, similarly as the limit u∞ in Theorem 3.1, a metric gu with Gauss curvature Kgu satisfying
543
+ Kgu(x) = fλ(x) = f(x) + λ. The unknown λ ∈ R arises in this context as a Lagrangian multiplier and is a
544
+ posteriori characterised again by
545
+ λ = 1
546
+ A
547
+
548
+ ¯K −
549
+
550
+ M
551
+ fe2udµ¯g
552
+
553
+ .
554
+ In the study of critical points of the restriction of Ef to C1,A, it is natural to consider the minimisation
555
+ problem first. For this we set
556
+ mf,A =
557
+ inf
558
+ u∈C1,A Ef(u).
559
+ We have the following estimates for mf,A:
560
+ Lemma 4.3. Let f ∈ C∞(M), A > 0. Then we have
561
+ mf,A ≤ 1
562
+ 2
563
+
564
+ ¯K log(A) − A
565
+
566
+ M
567
+ fdµ¯g
568
+
569
+ .
570
+ (4.4)
571
+ Moreover, if max f ≥ 0, then we have
572
+ lim sup
573
+ A→∞
574
+ mf,A
575
+ A
576
+ ≤ 0.
577
+ (4.5)
578
+
579
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
580
+ 7
581
+ Proof. Let u0(A) ≡ 1
582
+ 2 log(A), so that
583
+
584
+ M e2u0(A)dµ¯g = A. Hence u0(A) is the (unique) constant function in
585
+ C1,A, and
586
+ mf,A ≤ Ef(u0(A)) = 1
587
+ 2
588
+
589
+ M
590
+ (|∇¯gu0(A)|2
591
+ ¯g + 2 ¯Ku0(A) − fe2u0(A))dµ¯g
592
+ = 1
593
+ 2
594
+
595
+ M
596
+ ( ¯K log(A) − fA)dµ¯g
597
+ = 1
598
+ 2
599
+
600
+ ¯K log(A) − A
601
+
602
+ M
603
+ fdµ¯g
604
+
605
+ .
606
+ This shows (4.4). To show (4.5), we let ε > 0. Since f ∈ C∞(M) and max f ≥ 0 by assumption, there exists
607
+ an open set Ω ⊂ M with f ≥ −ε on Ω. Next, let ψ ∈ C∞(M), ψ ≥ 0, be a function supported in Ω and with
608
+ ∥ψ∥L∞(M,¯g) = 2. Consequently, the set Ω′ := {x ∈ M | ψ > 1} is a nonempty open subset of Ω, and therefore
609
+ µ¯g(Ω′) > 0.
610
+ Next we consider the continuous function
611
+ h : [0, ∞) → [0, ∞);
612
+ h(τ) =
613
+
614
+ M
615
+ e2τψdµ¯g
616
+ and we note that h(0) =
617
+
618
+ M dµ¯g = 1, and that
619
+ h(τ) ≥
620
+
621
+ Ω′ e2τψdµ¯g ≥ e2τµ¯g(Ω′)
622
+ for τ ≥ 0.
623
+ Hence for every A ≥ 1 there exists
624
+ 0 ≤ τA ≤ 1
625
+ 2
626
+
627
+ log(A) − log(µ¯g(Ω′))
628
+
629
+ (4.6)
630
+ with h(τA) = A and therefore τAψ ∈ C1,A. Consequently,
631
+ mf,A ≤ Ef(τAψ) = 1
632
+ 2
633
+
634
+ M
635
+ (|∇¯gτAψ|2
636
+ ¯g + 2 ¯KτAψ − fe2τAψ)dµ¯g
637
+ = τ 2
638
+ Ac1 − τAc2 − c3 − 1
639
+ 2
640
+
641
+
642
+ fe2τAψdµ¯g
643
+ with
644
+ c1 = 1
645
+ 2
646
+
647
+ M
648
+ |∇¯gψ|2
649
+ ¯gdµ¯g,
650
+ c2 = − ¯K
651
+
652
+ M
653
+ ψdµ¯g
654
+ and
655
+ c3 = 1
656
+ 2
657
+
658
+ M\Ω
659
+ fdµ¯g.
660
+ Since f ≥ −ε on Ω, we thus deduce that
661
+ mf,A ≤ τ 2
662
+ Ac1 − 2τAc2 + c3 + ε
663
+ 2
664
+
665
+
666
+ e2τAψdµ¯g ≤ τ 2
667
+ Ac1 − 2τAc2 + c3 + εA
668
+ 2 .
669
+ Since τA
670
+ A → 0 as A → ∞ by (4.6), we conclude that
671
+ lim sup
672
+ A→∞
673
+ mf,A
674
+ A
675
+ ≤ ε
676
+ 2.
677
+ Since ε > 0 was chosen arbitrarily, (4.5) follows.
678
+ Lemma 4.4. Let f ∈ C∞(M) nonconstant with maxx∈M f(x) = 0. For every ε > 0 there exists κ0 > 0 with
679
+ the following property. If A ≥ κ0 and u ∈ C1,A is a solution of
680
+ − ∆¯gu + ¯K = (f + λ)e2u
681
+ (4.7)
682
+ for some λ ∈ R with Ef(u) < εA
683
+ 2 , then we have λ < ε.
684
+ Proof. For given ε > 0, we may choose κ0 > 0 sufficiently large so that | ¯
685
+ K|
686
+ 2
687
+ log(A)
688
+ |A|
689
+ < ε
690
+ 2 for A ≥ κ0.
691
+ Now, let A ≥ κ0, and let u ∈ C1,A be a solution of (4.7) satisfying Ef(u) < εA
692
+ 2 . Integrating (4.7) over M
693
+ with respect to µ¯g and using that vol¯g(M) = 1 and
694
+
695
+ M e2udµ¯g = A, we obtain
696
+ λ = 1
697
+ A
698
+
699
+ ¯K −
700
+
701
+ M
702
+ fe2udµ¯g
703
+
704
+ ≤ − 1
705
+ A
706
+
707
+ M
708
+ fe2udµ¯g
709
+ = 1
710
+ A
711
+
712
+ Ef(u) − 1
713
+ 2
714
+
715
+ M
716
+ (|∇¯gu|2
717
+ ¯g + 2 ¯Ku)dµ¯g
718
+
719
+ ≤ 1
720
+ A
721
+
722
+ Ef(u) + | ¯K|¯u
723
+
724
+ ≤ ε
725
+ 2 + | ¯K|
726
+ 2
727
+ log(A)
728
+ A
729
+ < ε,
730
+ as claimed. Here we used (4.3) to estimate ¯u.
731
+
732
+ 8
733
+ Franziska Borer, Peter Elbau, Tobias Weth
734
+ Proposition 4.5. Let f ∈ C∞(M) be a nonconstant function with maxx∈M f(x) = 0. Moreover, let λn → 0+
735
+ for n → ∞, and let (un)n∈N be a sequence of solutions of
736
+ − ∆¯gun + ¯K = (f + λn)e2un
737
+ in M
738
+ (4.8)
739
+ which are weakly stable in the sense that
740
+
741
+ M
742
+ (|∇¯gh|2
743
+ ¯g − 2(f + λn)e2unh2)dµ¯g ≥ 0
744
+ for all h ∈ H1(M).
745
+ (4.9)
746
+ Then un → u0 in C2(M), where u0 is the unique solution of
747
+ − ∆¯gu0 + ¯K = fe2u0
748
+ in M.
749
+ (4.10)
750
+ Proof. We only need to show that
751
+ (un)n∈N is bounded in C2,α(M) for some α > 0.
752
+ (4.11)
753
+ Indeed, assuming this for the moment, we may complete the argument as follows. Suppose by contradiction
754
+ that there exists ε > 0 and a subsequence, also denoted by (un)n∈N, with the property that
755
+ ∥un − u0∥C2(M) ≥ ε
756
+ for all n ∈ N.
757
+ (4.12)
758
+ By (4.11) and the compactness of the embedding C2,α(M) �→ C2(M), we may then pass to a subsequence, still
759
+ denoted by (un)n∈N, with un → u∗ in C2(M) for some u∗ ∈ C2(M). Passing to the limit in (4.8), we then see
760
+ that u∗ is a solution of (4.10), which by uniqueness implies that u∗ = u0. This contradicts (4.12), and thus the
761
+ claim follows.
762
+ The proof of (4.11) follows by similar arguments as in [7, p. 1063 f.]. Since the framework is slightly different,
763
+ we sketch the main steps here for the convenience of the reader. We first note that, by the same argument as
764
+ in [7, p. 1063 f.], there exists a constant C0 > 0 with
765
+ un ≥ −C0
766
+ for all n.
767
+ (4.13)
768
+ Since {f < 0} is a nonempty open subset of M by assumption, we may fix a nonempty open subdomain
769
+ Ω ⊂⊂ {f < 0}. By [1, Appendix], there exists a constant C1 > 0 with
770
+ ∥u+
771
+ n ∥H1(Ω,¯g) ≤ C1
772
+ for all n
773
+ and therefore
774
+
775
+
776
+ e2undµ¯g ≤
777
+
778
+
779
+ e2u+
780
+ n dµ¯g ≤ C2
781
+ for all n
782
+ (4.14)
783
+ for some C2 > 0 by the Moser–Trudinger inequality.
784
+ Next, we consider a nontrivial, nonpositive function
785
+ h ∈ C∞
786
+ c (Ω) ⊂ C∞(M) and the unique solution w ∈ C∞(M) of the equation
787
+ −∆¯gw + ¯K = he2w
788
+ in M.
789
+ Moreover, we let wn := un − w, and we note that wn satisfies
790
+ −∆¯gwn + he2w = (f + λn)e2un
791
+ in M.
792
+ Multiplying this equation by e2wn and integrating by parts, we obtain
793
+
794
+ M
795
+ (f + λn)e2(un+wn)dµ¯g =
796
+
797
+ M
798
+
799
+ −∆¯gwn + he2w�
800
+ e2wndµ¯g =
801
+
802
+ M
803
+
804
+ 2e2wn|∇¯gwn|2
805
+ ¯g + he2(w+wn)�
806
+ dµ¯g
807
+ = 2
808
+
809
+ M
810
+ |∇¯gewn|2
811
+ ¯gdµ¯g +
812
+
813
+
814
+ he2undµ¯g.
815
+ (4.15)
816
+ Moreover, applying (4.9) to h = ewn gives
817
+
818
+ M
819
+ (f + λn)e2(un+wn)dµ¯g ≤ 1
820
+ 2
821
+
822
+ M
823
+ |∇¯gewn|2
824
+ ¯gdµ¯g.
825
+ (4.16)
826
+ Combining (4.14), (4.15) and (4.16) yields
827
+ ∥∇¯gewn∥2
828
+ L2(M,¯g) ≤ −2
829
+ 3
830
+
831
+
832
+ he2undµ¯g ≤ 2
833
+ 3∥h∥L∞(M,¯g)C2
834
+ for all n.
835
+ (4.17)
836
+
837
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
838
+ 9
839
+ Next we claim that also ∥ewn∥L2(M,¯g) remains uniformly bounded. Suppose by contradiction that
840
+ ∥ewn∥L2(M,¯g) → ∞
841
+ as n → ∞.
842
+ (4.18)
843
+ We then set vn :=
844
+ ewn
845
+ ∥ewn∥L2(M,¯g) , and we note that
846
+ ∥vn∥L2(M,¯g) = 1
847
+ for all n
848
+ and
849
+ ∥∇¯gvn∥2
850
+ L2(M,¯g) → 0
851
+ as n → ∞
852
+ (4.19)
853
+ by (4.17). Consequently, we may pass to a subsequence satisfying vn ⇀ v in H1(M, ¯g), where v is a constant
854
+ function with
855
+ ∥v∥L2(M,¯g) = 1.
856
+ (4.20)
857
+ However, since
858
+ ∥ewn∥L2(Ω,¯g) ≤ ∥eun∥L2(Ω,¯g)∥e−w∥L∞(Ω,¯g) ≤
859
+
860
+ C2∥e−w∥L∞(Ω,¯g)
861
+ for all n ∈ N
862
+ by (4.14) and therefore
863
+ ∥v∥L2(Ω,¯g) = lim
864
+ n→∞ ∥vn∥L2(Ω,¯g) = lim
865
+ n→∞
866
+ ∥ewn∥L2(Ω,¯g)
867
+ ∥ewn∥L2(M,¯g)
868
+ = 0
869
+ by (4.18), we conclude that the constant function v must vanish identically, contradicting (4.20).
870
+ Consequently, ∥ewn∥L2(M,¯g) remains uniformly bounded, which by (4.17) implies that ewn remains bounded
871
+ in H1(M, ¯g) and therefore in Lp(M, ¯g) for any p < ∞. Since eun ≤ ∥ew∥L∞(M,¯g)ewn on M for all n ∈ N, it thus
872
+ follows that also eun remains bounded in Lp(M, ¯g) for any p < ∞. Moreover, by (4.13), the same applies to
873
+ the sequence un itself. Therefore, applying successively elliptic Lp and Schauder estimates to (4.8), we deduce
874
+ (4.11), as required.
875
+ Proposition 4.6. Let f ∈ C∞(M) be a nonconstant function with maxx∈M f(x) = 0. Then there exists λ♯ and
876
+ a C1-curve (−∞, λ♯] → C2(M);
877
+ λ �→ uλ with the following properties.
878
+ (i) If λ ≤ 0, then uλ is the unique solution of
879
+ − ∆¯gu + ¯K = fλe2u
880
+ in M
881
+ (4.21)
882
+ and a global minimum of Efλ.
883
+ (ii) If λ ∈ (0, λ♯], then uλ is the unique weakly stable solution of (4.21) in the sense of (4.9), and it is a local
884
+ minimum of Efλ.
885
+ (iii) The curve of functions λ �→ uλ is pointwisely strictly increasing on M, and so the volume function
886
+ (−∞, λ♯] → [0, ∞);
887
+ λ �→ V (λ) :=
888
+
889
+ M
890
+ e2uλdµ¯g
891
+ (4.22)
892
+ is continuous and strictly increasing.
893
+ Proof. We already know that, for λ ≤ 0, the energy Efλ admits a strict global minimiser uλ which depends
894
+ smoothly on λ. Moreover, by [1, Proposition 2.4], the curve λ �→ uλ can be extended as a C1-curve to an
895
+ interval (−∞, λ♯] for some λ♯ > 0. We also know from [1, Proposition 2.4] that, for λ ∈ (−∞, λ♯], the solution
896
+ uλ is strongly stable in the sense that
897
+ Cλ :=
898
+ inf
899
+ h∈H1(M,¯g)
900
+ 1
901
+ ∥h∥2
902
+ H1(M,¯g)
903
+
904
+ M
905
+
906
+ |∇¯gh|2
907
+ ¯g − 2fλe2uλh2�
908
+ dµ¯g > 0.
909
+ (4.23)
910
+ Here we note that the function λ �→ Cλ is continuous since uλ depends continuously on λ with respect to the
911
+ C2-norm. Next we prove that, after making λ♯ > 0 smaller if necessary, the function uλ is the unique weakly
912
+ stable solution of (4.21) for λ ∈ (0, λ♯]. Arguing by contradiction, we assume that there exists a sequence
913
+ λn → 0+ and corresponding weakly stable solutions (un)n∈N of
914
+ − ∆¯gun + ¯K = (f + λn)e2un
915
+ in M
916
+ (4.24)
917
+ with the property that un ̸= uλn for every n ∈ N. By Proposition 4.5, we know that un → u0 in C2(M).
918
+ Consequently, vn := un − uλn → 0 in C2(M) as n → ∞, whereas the functions vn solve
919
+ − ∆¯gvn = (f + λn)
920
+
921
+ e2un − e2uλn �
922
+ = (f + λn)e2uλn �
923
+ e2vn − 1
924
+
925
+ in M
926
+ for every n ∈ N.
927
+ (4.25)
928
+
929
+ 10
930
+ Franziska Borer, Peter Elbau, Tobias Weth
931
+ Combining this fact with (4.23), we deduce that
932
+ ∥vn∥2
933
+ H1(M,¯g) ≤ 1
934
+
935
+
936
+ M
937
+
938
+ |∇¯gvn|2
939
+ ¯g − 2(f + λn)e2uλn v2
940
+ n
941
+
942
+ dµ¯g
943
+ = 1
944
+
945
+
946
+ M
947
+ (f + λn)e2uλn �
948
+ e2vn − 1 − 2vn
949
+
950
+ vndµ¯g.
951
+ Since vn → 0 in C2(M), there exists a constant C > 0 with |(e2vn − 1 − 2vn)vn| ≤ C|vn|3 on M for all n ∈ N,
952
+ which then implies with H¨older’s inequality and Lemma 4.2 that
953
+ ∥vn∥2
954
+ H1(M,¯g) ≤ C∥(f + λn)e2uλn ∥L∞(M,¯g)∥vn∥3
955
+ L3(M,¯g)
956
+ ≤ C
957
+ ��
958
+ M
959
+ |vn|3· 4
960
+ 3 dµ¯g
961
+ � 3
962
+ 4
963
+ = C∥vn∥3
964
+ L4(M,¯g) ≤ C∥vn∥3
965
+ H1(M,¯g)
966
+ with a constant C > 0 independent on M. This contradicts the fact that vn → 0 in H1(M) as n → ∞. The
967
+ claim thus follows.
968
+ It remains to prove that the curve of functions λ �→ uλ is pointwisely strictly increasing on M. This is a
969
+ consequence of the uniqueness of weakly stable solutions stated in (ii) and the fact that, as noted in [7], if uλ0
970
+ is a solution for some λ0 ∈ (−∞, λ♯], it is possible to construct, via the method of sub- and supersolutions, for
971
+ every λ < λ0, a weakly stable solution uλ with uλ < uλ0 everywhere in M.
972
+ Corollary 4.7. Let f ∈ C∞(M) be nonconstant with maxx∈M f(x) = 0, and let λ♯ > 0 be given as in
973
+ Proposition 4.6. Then there exists κ1 > 0 with the following property.
974
+ If A ≥ κ1 and u ∈ C1,A is a solution of
975
+ − ∆¯gu + ¯K = (f + λ)e2u
976
+ (4.26)
977
+ for some λ ∈ R with Ef(u) < λ♯A
978
+ 2 , then 0 < λ < λ♯, and u is not a weakly stable solution of (4.26), so u ̸= uλ.
979
+ Proof. Let κ0 > 0 be given as in Lemma 4.4 for ε = λ♯ > 0. Moreover, let
980
+ κ1 := max
981
+
982
+ κ0, V (uλ♯)
983
+
984
+ with V defined in (4.22). Next, let u ∈ C1,A be a solution of (4.26) for some λ ∈ R with Ef(u) < λ♯A
985
+ 2 . From
986
+ Lemma 4.4, we then deduce that 0 < λ < λ♯, and by Proposition 4.6 (iii) we have u ̸= uλ. Since uλ is the
987
+ unique weakly stable solution of (4.26), it follows that u is not weakly stable.
988
+ Corollary 4.8. Let p > 2, f ∈ C∞(M) be nonconstant with maxx∈M f(x) = 0, and let λ♯ > 0 be given as in
989
+ Proposition 4.6. Then there exists κ > 0 with the property that for every A ≥ κ the set
990
+ ˜C :=
991
+
992
+ u0 ∈ C1,A ∩ W 2,p(M, ¯g) | Ef(u0) < λ♯A
993
+ 2
994
+
995
+ is nonempty, and for every u0 ∈ ˜C the global solution u ∈ C([0, ∞); C(M))∩C([0, ∞); H1(M, ¯g))∩C∞((0, ∞)×
996
+ M) of the initial value problem (2.4), (2.5) converges, as t → ∞ suitably, to a solution u∞ of the static problem
997
+ (4.26) for some λ ∈ (0, λ♯) which is not weakly stable and hence no local minimiser of Efλ.
998
+ Proof. Let κ1 > 0 be given by Corollary 4.7. By (4.5), there exists κ ≥ κ1 > 0 with mf,A < λ♯A
999
+ 4
1000
+ for fixed
1001
+ A > κ. Consequently, there exists u0 ∈ C1,A ∩ W 2,p(M, ¯g) with Ef(u0) < λ♯A
1002
+ 2 . By Theorem 3.1, the global
1003
+ solution u ∈ C([0, ∞); C(M)) ∩ C([0, ∞); H1(M, ¯g)) ∩ C∞((0, ∞) × M) of the initial value problem (2.4), (2.5)
1004
+ converges, as t → ∞ suitably, to a solution u∞ ∈ C1,A of the static problem (4.26) for some λ ∈ R, whereas
1005
+ Ef(u∞) ≤ Ef(u0) < λ♯A
1006
+ 2 . Consequently, λ ∈ (0, λ♯) by Corollary 4.7, and u∞ is not weakly stable.
1007
+ 5. Proof of the Main Results
1008
+ 5.1. Notation and Some Regularity Results. In this chapter we summarise different kind of estimates
1009
+ which will be useful later. In the following, for T > 0 we use the notation
1010
+ Lp
1011
+ t Lr
1012
+ x := Lp([0, T]; Lr(M, ¯g))
1013
+ and
1014
+ Lp
1015
+ t Hq
1016
+ x := Lp([0, T]; Hq(M, ¯g)).
1017
+ A first regularity result is therefore given by Lemma 4.2.
1018
+
1019
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
1020
+ 11
1021
+ Remark 5.1. We have
1022
+ ∥θ∥4
1023
+ Lp
1024
+ t L4x ≤ CGNL∥θ∥2
1025
+ Lp
1026
+ t L2x∥θ∥2
1027
+ Lp
1028
+ t H1x
1029
+ for θ ∈ Lp
1030
+ t H1
1031
+ x with p ∈ [1, ∞].
1032
+ Lemma 5.2 (Sobolev inequality). There exists a constant CS > 0 such that for every ρ ∈ L∞
1033
+ t H1
1034
+ x, T ≤ 1, we
1035
+ have
1036
+ ∥ρ∥2
1037
+ L4
1038
+ t L4x ≤ CS(∥ρ∥2
1039
+ L∞
1040
+ t L2x + ∥∇¯gρ∥2
1041
+ L2
1042
+ t L2x) < ∞.
1043
+ (5.1)
1044
+ Proof. With Lemma 4.2 there exists a constant CGNL > 0 such that we have for all T ≤ 1
1045
+ ∥ρ∥4
1046
+ L4
1047
+ t L4x =
1048
+ � T
1049
+ 0
1050
+ ∥ρ(t)∥4
1051
+ L4(M,¯g)dt ≤ CGNL
1052
+ � T
1053
+ 0
1054
+ ∥ρ(t)∥2
1055
+ L2(M,¯g)∥ρ(t)∥2
1056
+ H1(M,¯g)dt
1057
+ ≤ CGNL∥ρ∥2
1058
+ L∞
1059
+ t L2x
1060
+ � T
1061
+ 0
1062
+ (∥ρ(t)∥2
1063
+ L2(M,¯g) + ∥∇¯gρ(t)∥2
1064
+ L2(M,¯g))dt
1065
+ ≤ CGNL · T ∥ρ∥4
1066
+ L∞
1067
+ t L2x + CGNL∥ρ∥2
1068
+ L∞
1069
+ t L2x∥∇¯gρ∥2
1070
+ L2
1071
+ t L2x
1072
+ ≤ CGNL
1073
+
1074
+ ∥ρ∥4
1075
+ L∞
1076
+ t L2x + ∥ρ∥2
1077
+ L∞
1078
+ t L2x∥∇¯gρ∥2
1079
+ L2
1080
+ t L2x
1081
+
1082
+ .
1083
+ By using Young’s inequality we have
1084
+ ∥ρ∥L∞
1085
+ t L2x∥∇¯gρ∥L2
1086
+ t L2x ≤ 1
1087
+ 2
1088
+
1089
+ ∥ρ∥2
1090
+ L∞
1091
+ t L2x + ∥∇¯gρ∥2
1092
+ L2
1093
+ t L2x
1094
+
1095
+ and therefore
1096
+ ∥ρ∥2
1097
+ L4
1098
+ t L4x ≤ C
1099
+ 1
1100
+ 2
1101
+ GNL
1102
+
1103
+ ∥ρ∥4
1104
+ L∞
1105
+ t L2x + 1
1106
+ 4(∥ρ∥2
1107
+ L∞
1108
+ t L2x + ∥∇¯gρ∥2
1109
+ L2
1110
+ t L2x)2
1111
+ ≤ C
1112
+ 1
1113
+ 2
1114
+ GNL(∥ρ∥2
1115
+ L∞
1116
+ t L2x + 1
1117
+ 2∥ρ∥2
1118
+ L∞
1119
+ t L2x + 1
1120
+ 2∥∇¯gρ∥2
1121
+ L2
1122
+ t L2x)
1123
+ ≤ 3
1124
+ 2C
1125
+ 1
1126
+ 2
1127
+ GNL(∥ρ∥2
1128
+ L∞
1129
+ t L2x + ∥∇¯gρ∥2
1130
+ L2
1131
+ t L2x)
1132
+ =: CS(∥ρ∥2
1133
+ L∞
1134
+ t L2x + ∥∇¯gρ∥2
1135
+ L2
1136
+ t L2x).
1137
+ Since T is finite, ρ ∈ L∞
1138
+ t H1
1139
+ x implies that ρ ∈ Lp
1140
+ t H1
1141
+ x for all p ∈ [1, ∞] which shows that the upper bound is
1142
+ finite.
1143
+ Furthermore, since T < ∞ and vol¯g = 1, with Lemma 4.1 we also have for every p, s ∈ [1, ∞] that Lq
1144
+ tLr
1145
+ x ⊂
1146
+ Ls
1147
+ tLp
1148
+ x for q ≥ s, r ≥ p.
1149
+ Since we will often use it in the following, we recall that for v ∈ CtCx := C([0, T], C(M)) we have
1150
+ ∥1 − ev∥2
1151
+ L∞
1152
+ t L∞
1153
+ x ≤ e2∥v∥L∞
1154
+ t
1155
+ L∞
1156
+ x ∥v∥2
1157
+ L∞
1158
+ t L∞
1159
+ x
1160
+ (5.2)
1161
+ since for x ∈ R we get with the Taylor expansion
1162
+ |ex − 1| = |1 − ex| ≤ |x|e|x|.
1163
+ (5.3)
1164
+ Lemma 5.3. With Lemma 4.1 we get the following statements:
1165
+ 1. For a (sufficiently smooth) solution u of (2.4), (2.5) we have
1166
+ ¯u(t) ≥ 1
1167
+ 2 log
1168
+ � A
1169
+ Cup
1170
+
1171
+ =: m0(A, Ef(u0), f, CMT, η1),
1172
+ (5.4)
1173
+ with Cup = CMT exp(4η1(2Ef(u0) + | ¯K| log(A) + A maxx∈M f(x))) where η1 is a number determined by
1174
+ Lemma 4.1. So, especially for a solution u of (2.4), (2.5) we have the uniform bound
1175
+ m0 ≤ ¯u(t) ≤ 1
1176
+ 2 log(A),
1177
+ (5.5)
1178
+ where we used (4.3) and the volume preserving property to get the upper bound of ¯u(t).
1179
+ 2. For a solution u of (2.4), (2.5) we have for all p ∈ R that
1180
+
1181
+ M
1182
+ e2pu(t)dµ¯g ≤ Cint(A, CMT, Ef(u0), f, ¯K, η1, η2, p),
1183
+ (5.6)
1184
+ where again, η1, η2 are numbers determined by Lemma 4.1.
1185
+
1186
+ 12
1187
+ Franziska Borer, Peter Elbau, Tobias Weth
1188
+ 3. For this part we choose f = f0 where f0 ≤ 0 is a nonconstant, smooth function with maxx∈M f0(x) = 0.
1189
+ Then there exists a constant Clow = Clow(Cint, f0) > 0 such that
1190
+
1191
+ M
1192
+ |f0|dµg(t) ≥ Clow.
1193
+ (5.7)
1194
+ Proof.
1195
+ 1. Let u be a solution of (2.4), (2.5). We then know that u(t) ∈ CA. So, with (2.9) we have for all
1196
+ t ≥ 0 that
1197
+ ∥∇¯gu(t)∥2
1198
+ L2(M,¯g) = 2Ef(u(t)) −
1199
+
1200
+ M
1201
+ (2 ¯Ku(t) − fe2u(t))dµ¯g
1202
+ = 2Ef(u(t)) +
1203
+
1204
+ M
1205
+ (2| ¯K|u(t) + fe2u(t))dµ¯g
1206
+ ≤ 2Ef(u0) + | ¯K| log(A) + A max
1207
+ x∈M f(x),
1208
+ (5.8)
1209
+ where we used the fact that
1210
+
1211
+ M 2u(t)dµ¯g ≤ log(A) by (4.3) and since
1212
+
1213
+ M e2u(t)dµ¯g ≡ A. With this and
1214
+ Lemma 4.1 we can now estimate
1215
+ A =
1216
+
1217
+ M
1218
+ e2u(t)dµ¯g = e2¯u(t)
1219
+
1220
+ M
1221
+ e2(u(t)−¯u(t))dµ¯g
1222
+ ≤ e2¯u(t)CMT exp(η1∥∇¯g(2u(t))∥2
1223
+ L2(M,¯g))
1224
+ ≤ e2¯u(t)CMT exp(4η1(2Ef(u0) + | ¯K| log(A) + A max
1225
+ x∈M f(x)))
1226
+ =: Cupe2¯u(t),
1227
+ with Cup = Cup(A, CMT, Ef(u0), f, ¯K, η1) > 0 and therefore
1228
+ ¯u(t) ≥ 1
1229
+ 2 log
1230
+ � A
1231
+ Cup
1232
+
1233
+ =: m0(A, CMT, Ef(u0), f, ¯K, η1) ∈ R.
1234
+ So, for a solution u(t) ∈ CA of (2.4), (2.5) we get the uniform bound
1235
+ m0 ≤ ¯u(t) ≤ 1
1236
+ 2 log(A).
1237
+ 2. Let u be a solution of (2.4), (2.5). So, u(t) ∈ CA. With Lemma 4.1, (5.5), and (5.8) we directly get for
1238
+ any p ∈ R that
1239
+
1240
+ M
1241
+ e2pu(t)dµ¯g = e2p¯u(t)
1242
+
1243
+ M
1244
+ e2p(u(t)−¯u(t))dµ¯g
1245
+ ≤ e2p¯u(t)CMT exp(4η2p2∥∇¯gu(t)∥2
1246
+ L2(M,¯g))
1247
+ ≤ Cint,
1248
+ (5.9)
1249
+ where Cint = Cint(A, CMT, Ef(u0), f, ¯K, η1, η2, p) > 0.
1250
+ 3. Similar to [19, Lemma 2.3] we see by the choice of f0, H¨older’s inequality, and (5.9) that
1251
+ 0 <
1252
+ ����
1253
+
1254
+ M
1255
+
1256
+ |f0|dµ¯g
1257
+ ����
1258
+ 2
1259
+
1260
+
1261
+ M
1262
+ |f0|e2u(t)dµ¯g
1263
+
1264
+ M
1265
+ e−2u(t)dµ¯g ≤ Cint
1266
+
1267
+ M
1268
+ |f0|e2u(t)dµ¯g
1269
+ (5.10)
1270
+ which shows the claim.
1271
+ So, Lemma 5.3 is proven.
1272
+ Now we can turn to the proofs of the main results.
1273
+ 5.2. Short-Time Existence. Let A > 0. We are looking for a short-time solution of (2.4) with initial data
1274
+ (2.5). Using the Gauss equation (1.1) we can rewrite (2.4), (2.5) in the following way:
1275
+ ∂tu(t) = f − Kg(t) − αA(t)
1276
+ = e−2u(t)∆¯gu(t) + ¯K
1277
+ � 1
1278
+ A − e−2u(t)
1279
+
1280
+ + f − 1
1281
+ A
1282
+
1283
+ M
1284
+ fe2u(t)dµ¯g;
1285
+ (5.11)
1286
+ u(0) = u0 ∈ Cp,A :=
1287
+
1288
+ u ∈ W 2,p(M, ¯g) |
1289
+
1290
+ M
1291
+ e2u = A
1292
+
1293
+ ,
1294
+ (5.12)
1295
+
1296
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
1297
+ 13
1298
+ with p > 2, where
1299
+ αA(t) = 1
1300
+ A
1301
+ ��
1302
+ M
1303
+ fdµg(t) − ¯K
1304
+
1305
+ .
1306
+ To find a solution of (5.11), (5.12), we consider the linear equation
1307
+ ∂tu(t) = e−2v(t)∆¯gu(t) + ¯K
1308
+ � 1
1309
+ A − e−2v(t)
1310
+
1311
+ + f − 1
1312
+ A
1313
+
1314
+ M
1315
+ fe2v(t)dµ¯g;
1316
+ (5.13)
1317
+ u(0) = u0 ∈ Cp,A,
1318
+ (5.14)
1319
+ and use a fixed point argument in the space (X, ∥ · ∥X) := (CtCx, ∥ · ∥CtCx). First we observe that for v ∈ CtCx,
1320
+ equation (5.13) is strongly parabolic. Furthermoren, with p > 2 and the fact that M is compact, we have
1321
+ u0 ∈ Cp,A ⊂ H2(M, ¯g), and therefore u0 ∈ L∞(M, ¯g).
1322
+ For the fixed point argument we fix R = R(u0) := ∥u0∥L∞(M,¯g) + 1. For fixed T > 0, let
1323
+ X = CtCx = C([0, T], C(M, ¯g)) �→ L∞
1324
+ t L∞
1325
+ x
1326
+ with
1327
+ ∥u∥X =
1328
+ max
1329
+ t∈[0,T ], x∈M |u(x, t)|.
1330
+ For v ∈ X, by [14, Theorem 7.32] and the appendix, we get a unique solution uv ∈ W 2,1
1331
+ p
1332
+ = W 1,p
1333
+ t
1334
+ Lp
1335
+ x ∩Lp
1336
+ t W 2,p
1337
+ x
1338
+ of (5.13), (5.14) for t ∈ [0, T], x ∈ M. On XR = {U ∈ X | ∥U∥X ≤ R}, we now define the function Φ as follows:
1339
+ for v ∈ XR, let Φ(v) =: uv be the unique solution of (5.13), (5.14). First, we want to show that Φ : XR → XR
1340
+ if T > 0 is chosen small enough.
1341
+ Lemma 5.4. If T > 0 is fixed with
1342
+ T ≤
1343
+
1344
+ | ¯K|e2(∥u0∥L∞(M,¯g)+1) + ∥f∥L∞(M,¯g)
1345
+
1346
+ 1 + e2(∥u0∥L∞(M,¯g)+1)
1347
+ A
1348
+ ��−1
1349
+ (5.15)
1350
+ and v ∈ XR, then Φ(v) ∈ XR.
1351
+ Proof. With Proposition 6.3 (ii) we directly get
1352
+ ∥Φ(v)∥L∞
1353
+ t L∞
1354
+ x = ∥uv∥L∞
1355
+ t L∞
1356
+ x ≤ ∥u+
1357
+ 0 ∥L∞(M,¯g) + TdT
1358
+ (5.16)
1359
+ where
1360
+ dT ≤ | ¯K|e2∥v∥L∞
1361
+ t
1362
+ L∞
1363
+ x + ∥f∥L∞(M,¯g) + ∥f∥L∞(M,¯g)e2∥v∥L∞
1364
+ t
1365
+ L∞
1366
+ x
1367
+ A
1368
+ ≤ | ¯K|e2R + ∥f∥L∞(M,¯g)
1369
+
1370
+ 1 + e2R
1371
+ A
1372
+
1373
+ ,
1374
+ hence
1375
+ ∥Φ(v)∥L∞
1376
+ t L∞
1377
+ x ≤ T
1378
+
1379
+ | ¯K|e2R + ∥f∥L∞(M,¯g)
1380
+
1381
+ 1 + e2R
1382
+ A
1383
+ ��
1384
+ + ∥u+
1385
+ 0 ∥L∞(M,¯g)
1386
+ ≤ 1 + ∥u0∥L∞(M,¯g) = R,
1387
+ by (5.15) and since R = ∥u0∥L∞(M,¯g) + 1, which shows the claim.
1388
+ We now use Schauder’s fixed point Theorem [17] to show the following proposition.
1389
+ Proposition 5.5. If u0 ∈ Cp,A ⊂ W 2,p(M, ¯g) and T > 0 is fixed with (5.15), then there exists a short-time
1390
+ solution u ∈ X ∩ C∞(M × (0, T)) of (5.11), (5.12).
1391
+ Moreover, any such solution satisfies u ∈ C([0, T), H1(M, ¯g)).
1392
+ Proof. Step 1: First we recall Schauder’s Theorem: It asserts that if H is a nonempty, convex, and closed
1393
+ subset of a Banach space B and F is a continuous mapping of H into itself such that F(H) is a relatively
1394
+ compact subset of H, then F has a fixed point.
1395
+ In our case, B ˆ=X = C([0, T]; C(M, ¯g)), H ˆ=XR = {u ∈ X | ∥u∥X = ∥u∥CtCx ≤ R}, and F ˆ=Φ. So to show
1396
+ the existence of a fixed point of Φ in XR, it remains to show that
1397
+ 1. Φ : XR → XR ist continuous and
1398
+
1399
+ 14
1400
+ Franziska Borer, Peter Elbau, Tobias Weth
1401
+ 2. Φ(XR) ⊂ XR is relatively compact.
1402
+ In a first step we show that Φ : XR → XR ist continuous. For this, let (vn)n∈N ⊂ XR be a sequence with
1403
+ ∥vn − v∥X → 0 for n → ∞ with v ∈ XR. With Proposition 6.1 we know that for all vn there exists un ∈ W 2,1
1404
+ p
1405
+ ,
1406
+ p > 2, which is the unique solution of (5.13), (5.14) such that
1407
+ ∥un∥W 2,1
1408
+ p
1409
+ ≤ C(∥u0∥W 2,p(M,¯g) + ∥dn∥Lp
1410
+ t Lp
1411
+ x)
1412
+ with
1413
+ dn(t) := ¯K
1414
+ � 1
1415
+ A − e−2vn(t)
1416
+
1417
+ + f − 1
1418
+ A
1419
+
1420
+ M
1421
+ fe2vn(t)dµ¯g.
1422
+ Since vn → v in CtCx and therefore vn → v in L∞
1423
+ t L∞
1424
+ x , we know that vn → v in Lp
1425
+ t Lp
1426
+ x for all p. Furthermore,
1427
+ since the exponential map is continuous, we have e±2vn → e±2v in Lp
1428
+ t Lp
1429
+ x for all p, and therefore dn → d in Lp
1430
+ t Lp
1431
+ x
1432
+ for all p.
1433
+ Hence, for every ε > 0 there exist NV , Nd ∈ N such that
1434
+ ∥vn − v∥Lp
1435
+ t Lp
1436
+ x < ε
1437
+ for all n ≥ N
1438
+ and
1439
+ ∥dn − d∥Lp
1440
+ t Lp
1441
+ x < ε
1442
+ for all n ≥ N,
1443
+ with N := max{NV , Nd}.
1444
+ Furthermore we have the estimate
1445
+ ∥e2vn − e2v∥L∞
1446
+ t L∞
1447
+ x = ∥(e2vn−2v − 1)e2v∥L∞
1448
+ t L∞
1449
+ x ≤ ∥e2vn−2v − 1∥L∞
1450
+ t L∞
1451
+ x ∥e2v∥L∞
1452
+ t L∞
1453
+ x
1454
+ ≤ ∥2vn − 2v∥e∥2Vn−2V ∥L∞
1455
+ t
1456
+ L∞
1457
+ x ∥e2v∥L∞
1458
+ t L∞
1459
+ x < 2εe2εe2R,
1460
+ and similarly ∥e−2vn − e−2v∥L∞
1461
+ t L∞
1462
+ x < 2εe2εe2R.
1463
+ Considering now the difference un − u, where un = Φ(vn) and u = Φ(v), we see that un − u fulfils the
1464
+ equation
1465
+ ∂t(un − u)(t) = e−2vn(t)∆¯gun(t) + dn(t) − e−2v(t)∆¯gu(t) − d(t)
1466
+ = e−2vn(t)∆¯g(un − u)(t) + (e−2vn(t) − e−2v(t))∆¯gu(t) + dn(t) − d(t)
1467
+ with
1468
+ ∥un − u∥W 2,1
1469
+ p
1470
+ ≤ C∥(e−2vn − e−2v)∆¯gu + dn − d∥Lp
1471
+ t Lp
1472
+ x
1473
+ ≤ C
1474
+
1475
+ ∥e−2vn − e−2v∥L∞
1476
+ t L∞
1477
+ x ∥∆¯gu∥Lp
1478
+ t Lp
1479
+ x + ∥dn − d∥Lp
1480
+ t Lp
1481
+ x
1482
+
1483
+ ≤ C(2εe2εe2R∥∆¯gu∥Lp
1484
+ t Lp
1485
+ x + ε)
1486
+ for n ≥ N.
1487
+ Since ∥∆¯gu∥Lp
1488
+ t Lp
1489
+ x is finite and ε > 0 was arbitrary, we see that ∥Φ(vn) − Φ(v)∥W 2,1
1490
+ p
1491
+ → 0 for n → ∞. So, we
1492
+ get
1493
+ ∥Φ(vn) − Φ(v)∥X ≤ C∥Φ(vn) − Φ(v)∥Cα ≤ C∥Φ(vn) − Φ(v)∥W 2,1
1494
+ p
1495
+ → 0
1496
+ for n → ∞
1497
+ which shows the continuity of Φ : XR → XR.
1498
+ In a second step we show that Φ(XR) is relatively compact. For this let (un)n∈N ⊂ Φ(XR) be an arbitrary
1499
+ sequence in the image of Φ. So, again with Proposition 6.1, we see that for every un ∈ Φ(XR) there exists a
1500
+ vn ∈ XR with Φ(vn) = un such that
1501
+ ∥un∥W 2,1
1502
+ p
1503
+ ≤ C(∥u0∥W 2,p(M,¯g) + ∥dn∥Lp
1504
+ t Lp
1505
+ x)
1506
+ ≤ C
1507
+
1508
+ ∥u0∥W 2,p(M,¯g) + T| ¯K|
1509
+ A
1510
+ + ∥ ¯Ke−2vn∥Lp
1511
+ t Lp
1512
+ x + ∥f∥Lp
1513
+ t Lp
1514
+ x +
1515
+ ����
1516
+ 1
1517
+ A
1518
+
1519
+ M
1520
+ fe2vndµ¯g
1521
+ ����
1522
+ Lp
1523
+ t Lp
1524
+ x
1525
+
1526
+ ≤ C
1527
+
1528
+ ∥u0∥W 2,p(M,¯g) + T| ¯K|
1529
+ A
1530
+ + | ¯K|e2R + T∥f∥L∞(M,¯g) + T
1531
+ A∥f∥L∞(M,¯g)e2R
1532
+
1533
+ ≤ C(A, f, ¯K, R, T, u0) =: Cd.
1534
+ So, (un)n∈N is uniformly bounded in W 2,1
1535
+ p
1536
+ ((0, T) × M). Using now that W 2,1
1537
+ p
1538
+ ((0, T) × M) is continuously
1539
+ embedded in Cα([0, T] × M) for some 0 < α < 1 and this on the other hand is compactly embedded in
1540
+ Cβ([0, T] × M) for some 0 < β < α < 1 we can conclude the claim.
1541
+ We have thus proved that Φ has a fixed point u in XR, which then is a (strong) solution u ∈ W 2,1
1542
+ p
1543
+ ((0, T) × M)
1544
+ of (5.11), (5.12).
1545
+ Step 2: We now show that u ∈ C∞(M × (0, T)).
1546
+ To see this, we first note the trivial fact that u ∈
1547
+ W 2,1
1548
+ p
1549
+ ((0, T)×M) is a strong solution of (5.13), (5.14) with v = u. Since then v ∈ W 2,1
1550
+ p
1551
+ ((0, T)×M) ⊂ Cα([0, T]×
1552
+
1553
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
1554
+ 15
1555
+ M), [14, Theorems 5.9 and 5.10] imply the existence of a classical solution ˜u ∈ X ∩ C2+α′,1+α′
1556
+ loc
1557
+ ((0, T) × M)
1558
+ of (5.13), (5.14) with v = u for some α′ > 0. Here C2+α′,1+α′
1559
+ loc
1560
+ ((0, T) × M) denotes the space of functions
1561
+ f ∈ C2,1((0, T) × M) with the property that ∂tf and all derivatives up to second order of f with respect to
1562
+ x ∈ M are locally α′-H¨older continuous. In particular, ˜u ∈ W 2,1
1563
+ p
1564
+ ((ε, T − ε) × M) for ε ∈ (0, T). The function
1565
+ w := u − ˜u ∈ W 2,1
1566
+ p
1567
+ ((ε, T − ε) × M) is then a strong solution of the initial value problem
1568
+ ∂tw(t) = e−2v(t)∆¯gw(t)
1569
+ for t ∈ (ε, T − ε),
1570
+ w(ε) = u(ε, ·) − ˜u(ε, ·).
1571
+ By Proposition 6.3 (ii) we then have |w| ≤ ∥u(ε, ·) − ˜u(ε, ·)∥L∞(M,¯g) on (ε, T − ε) × M, whereas ∥u(ε, ·) −
1572
+ ˜u(ε, ·)∥L∞(M,¯g) → 0 as ε → 0 by the continuity of u and ˜u. It thus follows that u ≡ ˜u on (0, T) × M), and
1573
+ therefore u ∈ C2+α′,1+α′
1574
+ loc
1575
+ ((0, T) × M). Since u solves (5.13), (5.14) with v = u ∈ C2+α′,1+α′
1576
+ loc
1577
+ ((0, T) × M),
1578
+ we can apply [14, Theorems 5.9] and the above argument again to get u ∈ C4+α′′,2+α′′
1579
+ loc
1580
+ ((0, T) × M) for some
1581
+ α′′ > 0.
1582
+ Repeating this argument inductively, we get u ∈ C
1583
+ k, k
1584
+ 2
1585
+ loc ((0, T) × M) for every k > 0, and hence
1586
+ u ∈ C∞(M × (0, T)).
1587
+ Step 3: It remains to show that any solution u ∈ X ∩ C∞((0, T) × M) of (5.11), (5.12) also satisfies u ∈
1588
+ C([0, T), H1(M, ¯g)). Since u ∈ C∞((0, T) × M), only the continuity in t = 0 needs to be proved. Setting
1589
+ φ(t) = ∥u(t)∥2
1590
+ H1(M,¯g) for t ∈ (0, T), we see that
1591
+ 1
1592
+ 2(φ(t2) − φ(t1)) = 1
1593
+ 2
1594
+ � t2
1595
+ t1
1596
+ ∂t∥u(t)∥2
1597
+ H1(M,¯g) dt =
1598
+ � t2
1599
+ t1
1600
+
1601
+ M
1602
+
1603
+ u(t)∂tu(t) + ∇u(t)∇∂tu(t)
1604
+
1605
+ dµ¯gdt
1606
+ =
1607
+ � t2
1608
+ t1
1609
+
1610
+ M
1611
+
1612
+ u(t)∂tu(t) − [∆u(t)]∂tu(t)
1613
+
1614
+ dµ¯gdt
1615
+ and therefore, by H¨older’s inequality,
1616
+ 1
1617
+ 2|φ(t2) − φ(t1)| ≤
1618
+ � t2
1619
+ t1
1620
+
1621
+ M
1622
+
1623
+ |u||∂tu| + |∆u||∂tu|
1624
+
1625
+ dµ¯gdt
1626
+ ≤ C∥∂tu∥Lp((0,T )×M)
1627
+
1628
+ ∥u∥Lp((0,T )×M) + ∥∆u∥Lp((0,T )×M)
1629
+
1630
+ (t2 − t1)β
1631
+ ≤ C∥u∥W 1,2
1632
+ p
1633
+ ((0,T )×M)(t2 − t1)β,
1634
+ for 0 < t1 < t2 < T with some β > 0 depending on p > 2, which implies that the function φ is uniformly
1635
+ continuous and therefore bounded on (0, T).
1636
+ We now assume by contradiction that u is not continuous at t = 0 with respect to the H1(M, ¯g)-norm. Then
1637
+ there exists a sequence (tn)n∈N in (0, T) and ε > 0 with tn → 0+ as n → ∞ and
1638
+ ∥u(tn) − u0∥H1(M,¯g) ≥ ε
1639
+ for all n ∈ N.
1640
+ (5.17)
1641
+ Since ∥u(tn)∥2
1642
+ H1(M,¯g) = φ(tn) remains bounded as n → ∞, we conclude that, passing to a subsequence, the
1643
+ sequence u(tn) converges weakly in H1(M, ¯g) and therefore strongly in L2(M, ¯g). Since the strong L2-limit
1644
+ of u(tn) must be u0 = u(0) as a consequence of the fact that u ∈ X, we deduce that u(tn) ⇀ u0 weakly in
1645
+ H1(M, ¯g) as n → ∞. Combining this information with Proposition 6.1 from the appendix, we deduce that
1646
+ lim sup
1647
+ n→∞ ∥u(tn)∥2
1648
+ H1(M,¯g) ≤ ∥u0∥2
1649
+ H1(M,¯g) ≤ lim inf
1650
+ n→∞ ∥u(tn)∥2
1651
+ H1(M,¯g)
1652
+ (5.18)
1653
+ and therefore ∥u(tn)∥H1(M,¯g) → ∥u0∥H1(M,¯g). Note here that this part of Proposition 6.1 applies since u solves
1654
+ (5.13), (5.14) with v = u ∈ W 2,1
1655
+ p
1656
+ ((0, T) × M) ⊂ Cα([0, T] × M) for some α > 0. From (5.18) and the uniform
1657
+ convexity of the Hilbert space H1(M, ¯g), we conclude that u(tn) → u0 strongly in H1(M, ¯g), contrary to
1658
+ (5.17).
1659
+ 5.3. Uniqueness. We now show that the solution from Proposition 5.5 is unique.
1660
+ Lemma 5.6. Let u0 ∈ W 2,p(M, ¯g), p > 2, and T > 0 be fixed with (5.15). Then the short-time solution of
1661
+ u ∈ X ∩ C∞(M × (0, T)) of (5.11), (5.12) given by Proposition 5.5 is unique.
1662
+ Proof. Let u1, u2 ∈ X ∩ C∞(M × (0, T)) be two solutions of (5.11), (5.12). The difference u := u1 − u2 ∈
1663
+ X ∩ C∞(M × (0, T)) then fulfils
1664
+ ∂tu(t) = e−2u1(t)∆¯gu1(t) − e−2u2(t)∆¯gu2(t)
1665
+ − ¯K(e−2u1(t) − e−2u2(t)) − 1
1666
+ A
1667
+
1668
+ M
1669
+ f(e2u1(t) − e2u2(t))dµ¯g
1670
+ = e−2u1(t)∆¯gu(t) + ∆¯gu2(t)
1671
+
1672
+ e−2u1(t) − e−2u2(t)�
1673
+ − ¯K(e−2u1(t) − e−2u2(t)) − 1
1674
+ A
1675
+
1676
+ M
1677
+ f(e2u1(t) − e2u2(t))dµ¯g
1678
+ for t ∈ (0, T).
1679
+ (5.19)
1680
+
1681
+ 16
1682
+ Franziska Borer, Peter Elbau, Tobias Weth
1683
+ In the following, the letter C denotes different positive constants. Multiplying (5.19) with 2u and integrating
1684
+ over M gives
1685
+ d
1686
+ dt∥u(t)∥2
1687
+ L2(M,¯g) = 2
1688
+
1689
+ M
1690
+ u(t)∂tu(t)dµ¯g
1691
+ = 2
1692
+
1693
+ M
1694
+ e−2u1(t)u(t)∆¯gu(t)dµ¯g + 2
1695
+
1696
+ M
1697
+ u(t)∆¯gu2(t)
1698
+
1699
+ e−2u1(t) − e−2u2(t)�
1700
+ dµ¯g
1701
+ (5.20)
1702
+ − 2
1703
+
1704
+ M
1705
+ ¯Ku(t)(e−2u1(t) − e−2u2(t))dµ¯g − 2
1706
+ A
1707
+
1708
+ M
1709
+ f(e2u1(t) − e2u2(t))dµ¯g
1710
+
1711
+ M
1712
+ u(t)dµ¯g
1713
+ ≤ 2
1714
+
1715
+ M
1716
+ e−2u1(t)u(t)∆¯gu(t) + 2
1717
+
1718
+ M
1719
+ V (t, x)u2(t) + 2ρ(t)∥u(t)∥L2(M,¯g)
1720
+
1721
+ M
1722
+ |u(t)|dµ¯g
1723
+ ≤ 2
1724
+
1725
+
1726
+
1727
+ M
1728
+ e−2u1(t)|∇¯gu(t)|2
1729
+ ¯g + 2
1730
+
1731
+ M
1732
+ e−2u1(t)u(t)⟨∇¯gu1(t), ∇¯gu(t)⟩¯gdµ¯g
1733
+
1734
+ + 2∥V (t, ·)∥Lp(M,¯g)∥u(t)∥2
1735
+ L2p′(M,¯g) + C∥u(t)∥2
1736
+ L2(M,¯g)
1737
+ ≤ C∥∇¯gu1(t)∥L4(M,¯g)∥u(t)∥L4(M,¯g)∥∇¯gu(t)∥L2(M,¯g)
1738
+ + 2∥V (t, ·)∥Lp(M,¯g)∥u(t)∥2
1739
+ L2p′(M,¯g) + C∥u(t)∥2
1740
+ L2(M,¯g)
1741
+ ≤ C
1742
+
1743
+ ∥u1(t)∥H2(M,¯g)∥u(t)∥2
1744
+ H1(M,¯g) + 2∥V (t, ·)∥Lp(M,¯g)∥u(t)∥2
1745
+ H1(M,¯g) + ∥u(t)∥2
1746
+ L2(M,¯g)
1747
+
1748
+ ≤ C
1749
+
1750
+ ∥u1(t)∥H2(M,¯g) + 2∥V (t, ·)∥Lp(M,¯g) + 1
1751
+
1752
+ ∥u∥2
1753
+ H1(M,¯g),
1754
+ (5.21)
1755
+ with functions V ∈ Lp((0, T) × M) ∩ C∞((0, T) × M) and ρ ∈ L∞(0, T). Here we used the Sobolev embeddings
1756
+ H1(M, ¯g) �→ Lρ(M) for ρ ∈ [1, ∞). Multiplying (5.19) with −2∆u and integrating over M yields
1757
+ d
1758
+ dt∥∇gu(t)∥2
1759
+ L2(M,¯g) = 2
1760
+
1761
+ M
1762
+ ∇u(t)∇∂tu(t)dµ¯g = −2
1763
+
1764
+ M
1765
+ ∆gu(t)∂tu(t)dµ¯g
1766
+ ≤ −2
1767
+
1768
+ M
1769
+ e−2u1(t)|∆¯gu(t)|2dµ¯g + 2
1770
+
1771
+ M
1772
+ V (x, t)|u(t)||∆u(t)|dµ¯g
1773
+ ≤ −κ∥∆¯gu(t)∥2
1774
+ L2(M,¯g) + 2∥V (t, ·)∥Lp(M,¯g)∥u∥Lα(M,¯g)∥∆gu∥L2(M,¯g)
1775
+ ≤ −κ∥∆¯gu(t)∥2
1776
+ L2(M,¯g) + 1
1777
+ κ∥V (t, ·)∥2
1778
+ Lp(M,¯g)∥u∥2
1779
+ Lα(M,¯g) + κ∥∆gu∥2
1780
+ L2(M,¯g)
1781
+ = 1
1782
+ κ∥V (t, ·)∥2
1783
+ Lp(M,¯g)∥u∥2
1784
+ Lα(M,¯g) ≤ C∥V (t, ·)∥2
1785
+ Lp(M,¯g)∥u∥2
1786
+ H1(M,¯g),
1787
+ (5.22)
1788
+ where we used first H¨older’s inequality with α =
1789
+ 2p
1790
+ p−2, then Young’s inequality and finally Sobolev embeddings
1791
+ again. Here we note that, by making C > 0 larger if necessary, we may assume that the constants are the same
1792
+ in (5.21) and (5.22). Combining these estimates gives
1793
+ d
1794
+ dt∥u(t)∥2
1795
+ H1(M,¯g) ≤ g(t)∥u(t)∥2
1796
+ H1(M,¯g)
1797
+ for t ∈ (0, T)
1798
+ (5.23)
1799
+ with the function g ∈ L1(0, T) given by g1(t) = C
1800
+
1801
+ ∥u1(t)∥H2(M,¯g) + 3∥V (t, ·)∥Lp(M,¯g) + 1
1802
+
1803
+ . Integrating and
1804
+ using the fact that u ∈ C([0, T), H1(M, ¯g)) by Proposition 5.5 with u(0) = u1(0) − u2(0) = 0, we see that
1805
+ ∥u(t)∥2
1806
+ H1(M,¯g) ≤
1807
+ � t
1808
+ 0
1809
+ g(s)∥u(s)∥2
1810
+ H1(M,¯g) ds
1811
+ for t ∈ [0, T).
1812
+ It then follows from Gronwall’s inequality [3] that ∥u(t)∥2
1813
+ H1(M,¯g) ≡ 0 on [0, T), hence u1 ≡ u2.
1814
+ 5.4. Global Existence. From Section 5.2 and Section 5.3 we know that there exists a unique solution
1815
+ u ∈ C([0, T], C(M)) ∩ C([0, 1], H1(M, ¯g)) ∩ C∞((0, T) × M),
1816
+ of the initial value problem (5.11), (5.12). In particular we know that u ∈ L∞
1817
+ t L∞
1818
+ x for t ∈ [0, T], where T > 0
1819
+ is given by (5.15). In this section we want to show that u posses an L∞-a-priori bound on any time interval
1820
+ [0, T], T < ∞, and therefore, u is the unique global solution of (5.11), (5.12). For this we partially follow the
1821
+ idea of [2, Chapter 6].
1822
+ Lemma 5.7. For every T > 0, there exists M(T) > 0 such that we have
1823
+ sup
1824
+ t∈[0,T ]
1825
+ ∥u(t)∥L∞(M,¯g) ≤ M(T).
1826
+
1827
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
1828
+ 17
1829
+ Proof. Let
1830
+ I :=
1831
+
1832
+ t ≥ 0
1833
+ ��� u is a solution of (5.11) on (0, t] × M
1834
+ with initial data u(0) ∈ Cp,A
1835
+
1836
+ ,
1837
+ Tmax := sup I, and Tk ⊂ I a sequence in I such that Tk → Tmax for k → ∞.
1838
+ For any t ∈ [0, Tk] and any xmax(t) ∈ M where
1839
+ u(t, xmax(t)) = max
1840
+ x∈M u(t, x) ≥ 0
1841
+ we have with ∂tu(t) = ∆g(t)u(t) − e−2u(t) ¯K + f − α(t) and the upper bound for |α| which is given by
1842
+ α0 := max{|α1|, |α2|},
1843
+ (5.24)
1844
+ that
1845
+ d
1846
+ dt [u(t, xmax(t))] = ∂tu(t, xmax(t)) ≤ | ¯K|e−2u(t,xmax(t)) + f(xmax(t)) + α0
1847
+ ≤ | ¯K| + ∥f∥L∞(M,¯g) + α0,
1848
+ (5.25)
1849
+ where we used that ∇¯gu(t, xmax(t)) = 0 and therefore
1850
+ d
1851
+ dt [u(t, xmax(t)] = ∂tu(t, xmax(t)) + ∇¯gu(t, xmax(t)) ˙xmax(t) = ∂tu(t, xmax(t)).
1852
+ Integrating (5.25) on both side with respect to t and taking the supremum over t yields (together with the
1853
+ fact that u(0) = u0 ∈ Cp,A)
1854
+ sup
1855
+ t∈[0,Tk]
1856
+ x∈M
1857
+ u(t, x) ≤ Tk(| ¯K| + ∥f∥L∞(M,¯g) + α0) + sup
1858
+ x∈M
1859
+ u0(x)
1860
+ → Tmax(| ¯K| + ∥f∥L∞(M,¯g) + α0) + sup
1861
+ x∈M
1862
+ u0(x) =: M1(Tmax) < ∞
1863
+ (5.26)
1864
+ for k → ∞ which shows the upper bound for u.
1865
+ Analogously, at any point xmin(t) ∈ M where
1866
+ u(t, xmin(t)) = min
1867
+ x∈M u(t, x) ≤ 0
1868
+ we have with ∂tu(t) = ∆g(t)u(t) − e−2u(t) ¯K + f − α(t), the fact that ¯K < 0, and the upper bound for |α| given
1869
+ by α0 that
1870
+ d
1871
+ dt [u(t, xmin(t))] = ∂tu(t, xmin(t)) ≥ −∥f∥L∞(M,¯g) − α0.
1872
+ (5.27)
1873
+ Integrating (5.27) on both side with respect to t and taking the infimum over t yields (together with the fact
1874
+ that u(0) = u0 ∈ Cp,A)
1875
+ inf
1876
+ t∈[0,Tk]
1877
+ x∈M
1878
+ u(t, x) ≥ −Tk(∥f∥L∞(M,¯g) + α0) + inf
1879
+ x∈M u0(x)
1880
+ → −Tmax(∥f∥L∞(M,¯g) + α0) + inf
1881
+ x∈M u0(x) =: M2(Tmax) > −∞
1882
+ (5.28)
1883
+ for k → ∞ which shows the lower bound for u.
1884
+ So, we get
1885
+ sup
1886
+ t∈[0,T ]
1887
+ x∈M
1888
+ |u(t, x)| ≤ max{|M1(T)|, |M2(T)|}
1889
+ ≤ T(| ¯K| + ∥f∥L∞(M,¯g) + α0) + sup
1890
+ x∈M
1891
+ |u0(x)| =: M(T)
1892
+ (5.29)
1893
+ which shows the claim.
1894
+ In fact, with the help of (2.9) we can turn (5.29) into a uniform estimate for all time.
1895
+ Lemma 5.8. Let u be the global, smooth solution of (5.11) with u(0) = u0 ∈ Cp,A.
1896
+ Then we have that
1897
+ supt>0 ∥u(t)∥L∞(M,¯g) ≤ Cuni < ∞.
1898
+
1899
+ 18
1900
+ Franziska Borer, Peter Elbau, Tobias Weth
1901
+ Proof. We follow the proof of [19, Lemma 2.5].
1902
+ By using the fact that u(t) is a volume preserving solution of (5.11) with u(0) = u0 ∈ Cp,A and therefore
1903
+
1904
+ M e2u(t)dµ¯g ≡ A, we get with (4.3) and the fact that ¯K < 0 that
1905
+ Ef(u(t)) = 1
1906
+ 2∥∇¯gu(t)∥2
1907
+ L2(M,¯g) +
1908
+
1909
+ M
1910
+ ¯Ku(t)dµ¯g − 1
1911
+ 2
1912
+
1913
+ M
1914
+ fe2u(t)dµ¯g
1915
+
1916
+ ¯K
1917
+ 2
1918
+
1919
+ M
1920
+ 2u(t)dµ¯g − 1
1921
+ 2
1922
+
1923
+ M
1924
+ fe2u(t)dµ¯g
1925
+
1926
+ ¯K
1927
+ 2 log(A) − A
1928
+ 2 ∥f∥L∞(M,¯g) > −∞.
1929
+ (5.30)
1930
+ Defining
1931
+ F(t) :=
1932
+
1933
+ M
1934
+ |∂tu(t)|2dµg(t) =
1935
+
1936
+ M
1937
+ |∂tu(t)|2e2u(t)dµ¯g
1938
+ and using the uniform lower bound of Ef given by (5.30), we then get from (2.8) or (2.9), respectively, the
1939
+ estimate
1940
+ � ∞
1941
+ 0
1942
+ F(t)dt =
1943
+ � ∞
1944
+ 0
1945
+
1946
+ M
1947
+ |∂tu(t)|2dµg(t)dt ≤ Ef(u0) + | ¯K|
1948
+ 2 | log(A)| + A
1949
+ 2 ∥f∥L∞(M,¯g).
1950
+ (5.31)
1951
+ Hence, for any T > 0 we find tT ∈ [T, T + 1] such that
1952
+ F(tT ) =
1953
+ inf
1954
+ t∈(T,T +1) F(t) ≤ Ef(u0) + | ¯K|
1955
+ 2 | log(A)| + A
1956
+ 2 ∥f∥L∞(M,¯g).
1957
+ (5.32)
1958
+ So, at time tT we get with (2.1), H¨olders inequality, (5.6), and (5.32) that
1959
+ ∥∆¯gu(tT )∥L
1960
+ 3
1961
+ 2 (M,¯g)
1962
+ ≤ ∥e2u(tT )∂tu(tT )∥L
1963
+ 3
1964
+ 2 (M,¯g) + ∥ ¯K∥L
1965
+ 3
1966
+ 2 (M,¯g) + ∥e2u(tT )f∥L
1967
+ 3
1968
+ 2 (M,¯g) + ∥e2u(tT )α(tT )∥L
1969
+ 3
1970
+ 2 (M,¯g)
1971
+ ≤ ∥eu(tT )∥L6(M,¯g)F(tT )
1972
+ 1
1973
+ 2 + | ¯K| +
1974
+ ��
1975
+ M
1976
+ e3u(tT )|f|
1977
+ 3
1978
+ 2 dµ¯g
1979
+ � 2
1980
+ 3
1981
+ +
1982
+ ��
1983
+ M
1984
+ e3u(tT )|α(tT )|
1985
+ 3
1986
+ 2 dµ¯g
1987
+ � 2
1988
+ 3
1989
+ ≤ C
1990
+ 1
1991
+ 6
1992
+ int(A, Ef(u0), f, ¯K, η1, η2, 3)
1993
+
1994
+ Ef(u0) + | ¯K|
1995
+ 2 | log(A)| + A
1996
+ 2 ∥f∥L∞(M,¯g)
1997
+ � 1
1998
+ 2
1999
+ + | ¯K|
2000
+ + C
2001
+ 2
2002
+ 3
2003
+ int
2004
+
2005
+ A, Ef(u0), f, ¯K, η1, η2, 3
2006
+ 2
2007
+
2008
+ (∥f∥L∞(M,¯g) + α0)
2009
+ =: C10
2010
+
2011
+ A, Ef(u0), f, ¯K, η1, η2, 3
2012
+ 2, 3
2013
+
2014
+ .
2015
+ (5.33)
2016
+ Furthermore, with Sobolev’s embedding theorem we have W 2, 3
2017
+ 2 ⊂ C0, 2
2018
+ 3 . Therefore we get with Poincar´e’s
2019
+ inequality, the Calder´on–Zygmund inequality for closed surfaces, and with (5.33) that
2020
+ ∥u(tT ) − ¯u(tT )∥
2021
+ 3
2022
+ 2
2023
+ L∞(M,¯g) ≤ C∥u(tT ) − ¯u(tT )∥
2024
+ 3
2025
+ 2
2026
+ W 2, 3
2027
+ 2 (M,¯g) ≤ C∥∇2
2028
+ ¯gu(tT )∥
2029
+ 3
2030
+ 2
2031
+ L
2032
+ 3
2033
+ 2 (M,¯g)
2034
+ ≤ C∥∆¯gu(tT )∥
2035
+ 3
2036
+ 2
2037
+ L
2038
+ 3
2039
+ 2 (M,¯g) ≤ CC
2040
+ 3
2041
+ 2
2042
+ 10,
2043
+ (5.34)
2044
+ and therefore with (5.5) we obtain the uniform bound
2045
+ ∥u(tT )∥L∞(M,¯g) ≤ CC10 + max
2046
+
2047
+ |m0|, 1
2048
+ 2| log(A)|
2049
+
2050
+ .
2051
+ (5.35)
2052
+ Upon shifting time by tT , from (5.29) we now get
2053
+ sup
2054
+ s∈[T +1,T +2]
2055
+ ∥u(s)∥L∞(M,¯g) ≤
2056
+ sup
2057
+ s∈[tT ,T +2]
2058
+ ∥u(s)∥L∞(M,¯g)
2059
+ ≤ 2(| ¯K| + ∥f∥L∞(M,¯g) + α0) + sup
2060
+ x∈M
2061
+ |u(tT , x)|
2062
+ ≤ 2(| ¯K| + ∥f∥L∞(M,¯g) + α0) + CC10 + max
2063
+
2064
+ |m0|, 1
2065
+ 2| log(A)|
2066
+
2067
+ .
2068
+ (5.36)
2069
+ Since T > 0 is arbitrary, the claim follows.
2070
+
2071
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
2072
+ 19
2073
+ 5.5. Convergence of the Flow. Let f0 ≤ 0 be a smooth, nonconstant function withmaxx∈M f0(x) = 0.
2074
+ Following here the argumentation of [19], and using (5.31), we know that for a suitable sequence tl → ∞,
2075
+ l → ∞, with associated metrics gl = g(tl) we obtain convergence
2076
+
2077
+ M
2078
+ |∂tu(tl)|2dµg(tl) =
2079
+
2080
+ M
2081
+ |f0 − Kgl − α(tl)|2dµg(tl) → 0
2082
+ for l → ∞.
2083
+ (5.37)
2084
+ Provided that we can also show convergence of the associated sequence of metrics g(tl) to a limit metric
2085
+ g∞
2086
+ A = e2u∞
2087
+ A ¯g with Gauss curvature Kg∞
2088
+ A , it then follows that Kg∞
2089
+ A = f0 − α∞
2090
+ A for a constant α∞
2091
+ A . Later we will
2092
+ have a closer look at this constant α∞
2093
+ A .
2094
+ Lemma 5.9. For F(t) =
2095
+
2096
+ M |∂tu(t)|2dµg(t) as above, we have F(t) → 0 for t → ∞.
2097
+ Proof. First we consider the evolution equation of the curvature Kg(t) and of α(t). From the Gauss equation
2098
+ (1.1) we get for the curvature that
2099
+ ∂tKg(t) = ∂t(−e−2u(t)∆¯gu(t) + e−2u(t) ¯K)
2100
+ = −2∂tu(t)Kg(t) − ∆g(t)∂tu(t)
2101
+ = 2Kg(t)(Kg(t) − f0 + α(t)) + ∆g(t)(Kg(t) − f0 + α(t))
2102
+ = 2(Kg(t) − f0 + α(t))2 + 2(f0 − α(t))(Kg(t) − f0 + α(t)) + ∆g(t)(Kg(t) − f0 + α(t)).
2103
+ (5.38)
2104
+ With (2.3) we get for the evolution equation for α(t):
2105
+ d
2106
+ dtα(t) = 2
2107
+ A
2108
+
2109
+ M
2110
+ f0e2u(t)∂tu(t)dµ¯g = 2
2111
+ A
2112
+
2113
+ M
2114
+ f0(f0 − Kg(t) − α(t))dµg(t).
2115
+ (5.39)
2116
+ So, with (5.38) and (5.39) we arrive at
2117
+ ∂t(Kg(t) − f0 − α(t)) − ∆g(t)(Kg(t) − f0 + α(t))
2118
+ = 2(Kg(t) − f0 + α(t))2 + 2(f0 − α(t))(Kg(t) − f0 + α(t))
2119
+ + 2
2120
+ A
2121
+
2122
+ M
2123
+ f0(Kg(t) − f0 + α(t))dµg(t).
2124
+ (5.40)
2125
+ Following the proof of Lemma 3.1 in [19] we therefore get
2126
+ 1
2127
+ 2
2128
+ d
2129
+ dt
2130
+
2131
+ M
2132
+ |f0 − Kg(t) − α(t)|2dµg(t)
2133
+ =
2134
+
2135
+ M
2136
+ ��
2137
+ ∂tKg(t) +
2138
+ � d
2139
+ dtα(t)
2140
+ ��
2141
+ (Kg(t) − f0 + α(t)) − (Kg(t) − f0 − α(t))3
2142
+
2143
+ dµg(t)
2144
+ = −
2145
+
2146
+ M
2147
+ |∇g(t)(Kg(t) − f0 + α(t))|2
2148
+ g(t)dµg(t) + 2
2149
+
2150
+ M
2151
+ (f0 − α(t))(Kg(t) − f0 + α(t))2dµg(t)
2152
+ +
2153
+
2154
+ M
2155
+ (Kg(t) − f0 + α(t))3dµg(t),
2156
+ (5.41)
2157
+ where we used in the second step the fact that
2158
+ � d
2159
+ dtα(t)
2160
+ � �
2161
+ M
2162
+ (Kg(t) − f0 + α(t))dµg(t) = 0
2163
+ by (2.2).
2164
+ With H¨older’s inequality we can estimate
2165
+
2166
+ M
2167
+ (Kg(t) − f0 + α(t))3dµg(t) ≤ ∥∂tu(t)∥3
2168
+ L3(M,g(t)) ≤ ∥∂tu(t)∥L2(M,g(t))∥∂tu(t)∥2
2169
+ L4(M,g(t))
2170
+ (5.42)
2171
+
2172
+ 20
2173
+ Franziska Borer, Peter Elbau, Tobias Weth
2174
+ and by Lemma 4.2 we further get with the uniform bound for u ∈ CtCx that
2175
+ ∥∂tu(t)∥2
2176
+ L4(M,g(t))
2177
+ =
2178
+ ��
2179
+ M
2180
+ |∂tu(t)|4e2u(t)dµ¯g
2181
+ � 1
2182
+ 2
2183
+ ≤ e∥u∥L∞
2184
+ t
2185
+ L∞
2186
+ x ∥∂tu(t)∥2
2187
+ L4(M,¯g)
2188
+ ≤ e∥u∥L∞
2189
+ t
2190
+ L∞
2191
+ x �
2192
+ CGNL∥∂tu(t)∥L2(M,¯g)∥∂tu(t)∥H1(M,¯g)
2193
+ = e∥u∥L∞
2194
+ t
2195
+ L∞
2196
+ x �
2197
+ CGNL
2198
+ ��
2199
+ M
2200
+ |∂tu(t)|2e2u(t)e−2u(t)dµ¯g
2201
+ � 1
2202
+ 2 ��
2203
+ M
2204
+ |∂tu(t)|2e2u(t)e−2u(t)dµ¯g +
2205
+
2206
+ M
2207
+ |∇¯g∂tu(t)|2
2208
+ ¯gdµ¯g
2209
+ � 1
2210
+ 2
2211
+ = e∥u∥L∞
2212
+ t
2213
+ L∞
2214
+ x �
2215
+ CGNL
2216
+ ��
2217
+ M
2218
+ |∂tu(t)|2e−2u(t)dµg(t)
2219
+ � 1
2220
+ 2 ��
2221
+ M
2222
+ |∂tu(t)|2e−2u(t)dµg(t) +
2223
+
2224
+ M
2225
+ |∇g(t)∂tu(t)|2
2226
+ g(t)dµg(t)
2227
+ � 1
2228
+ 2
2229
+ ≤ e∥u∥L∞
2230
+ t
2231
+ L∞
2232
+ x max{e∥u∥L∞
2233
+ t
2234
+ L∞
2235
+ x , e2∥u∥L∞
2236
+ t
2237
+ L∞
2238
+ x }
2239
+
2240
+ CGNL∥∂tu(t)∥L2(M,g(t))∥∂tu(t)∥H1(M,g(t))
2241
+ =: ˜C2∥∂tu(t)∥L2(M,g(t))∥∂tu(t)∥H1(M,g(t)),
2242
+ (5.43)
2243
+ where we used the fact that
2244
+
2245
+ M
2246
+ |∇¯g∂tu(t)|2
2247
+ ¯gdµ¯g =
2248
+
2249
+ M
2250
+ |∇g(t)∂tu(t)|2
2251
+ g(t)dµg(t) =: G(t).
2252
+ Plugging in (5.43) into (5.42) we arrive at
2253
+
2254
+ M
2255
+ (Kg(t) − f0 + α(t))3dµg(t) ≤ ˜C2∥∂tu(t)∥2
2256
+ L2(M,g(t))∥∂tu(t)∥H1(M,g(t))
2257
+
2258
+ ˜C2
2259
+ 2
2260
+ 2 ∥∂tu(t)∥4
2261
+ L2(M,g(t)) + 1
2262
+ 2∥∂tu(t)∥2
2263
+ H1(M,g(t))
2264
+ ≤ ˜C2
2265
+ 2F 2(t) + 1
2266
+ 2(F(t) + G(t)),
2267
+ (5.44)
2268
+ where we used Young’s inequality in the second step.
2269
+ With α0 = max{|α1|, |α2|} > 0 we furthermore have that
2270
+ 2
2271
+
2272
+ M
2273
+ (f0 − α(t))(Kg(t) − f0 + α(t))2dµg(t) ≤ 2(∥f0∥L∞(M,¯g) + α0)F(t) =: ˜C3(α0, f0)F(t)
2274
+ So, (5.41) yields
2275
+ d
2276
+ dtF(t) + G(t) ≤ 2
2277
+
2278
+ ˜C3F(t) + ˜C2
2279
+ 2F 2(t) + 1
2280
+ 2F(t)
2281
+
2282
+ = (2 ˜C3 + 1)F(t) + 2 ˜C2
2283
+ 2F 2(t)
2284
+ =: ˜C4F(t) + 2 ˜C2
2285
+ 2F 2(t).
2286
+ (5.45)
2287
+ We recall that with (5.31) we have lim inft→∞ F(t) = 0 and therefore we know that there exist tl → ∞ with
2288
+ F(tl) → 0 as l → ∞, see (5.37).
2289
+ By integrating (5.45) over (tl, t) ⊂ (tl, T) and taking the supremum over (tl, T) we get with
2290
+ � T
2291
+ tl G(t)dt ≥ 0
2292
+ that
2293
+ sup
2294
+ t∈(tl,T )
2295
+ F(t) ≤ F(tl) + ˜C4
2296
+ � T
2297
+ tl
2298
+ F(t)dt + 2 ˜C2
2299
+ 2
2300
+ � T
2301
+ tl
2302
+ F 2(t)dt
2303
+ ≤ F(tl) + ˜C4
2304
+ � T
2305
+ tl
2306
+ F(t)dt + 2 ˜C2
2307
+ 2
2308
+ sup
2309
+ t∈(tl,T )
2310
+ F(t)
2311
+ � T
2312
+ tl
2313
+ F(t)dt
2314
+ ≤ F(tl) + ˜C4
2315
+ � T
2316
+ tl
2317
+ F(t)dt + 2 ˜C2
2318
+ 2
2319
+ sup
2320
+ t∈(tl,T )
2321
+ F(t)
2322
+ � ∞
2323
+ tl
2324
+ F(t)dt.
2325
+ With (5.31) we also have
2326
+ � ∞
2327
+ tl F(t)dt → 0 for l → ∞. So, for T > 0 big enough such that for tl < T big
2328
+ enough we have that 2 ˜C2
2329
+ 2
2330
+ � ∞
2331
+ tl F(t)dt is small enough to guarantee that 1 − 2 ˜C2
2332
+ 2
2333
+ � ∞
2334
+ tl F(t)dt > 0 and therefore the
2335
+ term 2 ˜C2
2336
+ 2 supt∈(tl,T ) F(t)
2337
+ � ∞
2338
+ tl F(t)dt can be absorbed on the left hand side. So, we get
2339
+ sup
2340
+ t∈(tl,T )
2341
+ F(t) ≤
2342
+ 1
2343
+
2344
+ 1 − 2 ˜C2
2345
+ 2
2346
+ � ∞
2347
+ tl F(t)dt
2348
+
2349
+
2350
+ F(tl) + ˜C4
2351
+ � T
2352
+ tl
2353
+ F(t)dt
2354
+
2355
+ .
2356
+
2357
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
2358
+ 21
2359
+ Letting T → ∞ yields
2360
+ sup
2361
+ t∈(tl,∞)
2362
+ F(t) ≤
2363
+ 1
2364
+
2365
+ 1 − ˜C2
2366
+ 2
2367
+ � ∞
2368
+ tl F(t)dt
2369
+
2370
+
2371
+ F(tl) + ˜C4
2372
+ � ∞
2373
+ tl
2374
+ F(t)dt
2375
+
2376
+ → 0
2377
+ as l → ∞
2378
+ which shows the claim.
2379
+ To prove now the convergence of the flow, let A > 0 and u0 ∈ Cp,A, p > 2. Furthermore let f ∈ C∞(M) be
2380
+ a smooth, nonconstant function, and (f0, λ) ∈ C∞(M) × R the unique pair such that
2381
+ f = f0 + λ
2382
+ with f0 ≤ 0, f0 nonconstant, and maxx∈M f0(x) = 0. Since by Proposition 2.1 the additive rescaled prescribed
2383
+ Gauss curvature flow (2.4) is invariant under adding or subtracting a constant C > 0 to the function f, for all
2384
+ functions
2385
+ f ∈ {f0 + λ | λ ∈ R}
2386
+ we consider the same flow given by
2387
+ ∂tu(t) = f0 − Kg(t) − αA(t)
2388
+ in (0, T) × M,
2389
+ (5.46)
2390
+ which is (2.4) with f replaced by f0.
2391
+ With (2.9) we know that
2392
+ 1
2393
+ 2
2394
+
2395
+ M
2396
+ (|∇¯gu(T)|2
2397
+ ¯g + 2 ¯Ku(T) − f0e2u(T ))dµ¯g = Ef0(u(T)) ≤ Ef0(u(0)).
2398
+ So, we get with (4.3) that
2399
+ 1
2400
+ 2
2401
+
2402
+ M
2403
+ |∇¯gu(T)|2
2404
+ ¯gdµ¯g = Ef0(u(T)) −
2405
+
2406
+ M
2407
+ ¯Ku(T)dµ¯g + 1
2408
+ 2
2409
+
2410
+ M
2411
+ f0e2u(T )dµ¯g
2412
+ ≤ Ef0(u(T)) + | ¯K|
2413
+
2414
+ M
2415
+ u(T)dµ¯g
2416
+ ≤ Ef0(u(0)) + | ¯K|
2417
+ 2 | log(A)|.
2418
+ So, u is uniformly (in T) bounded in H1(M, ¯g), i.e., ∥u∥L∞
2419
+ t H1x ≤ C.
2420
+ We now consider ul := u(tl) for a suitable sequence tl → ∞. By the Theorem of Banach-Alao˘glu we know
2421
+ that (ul)l is weak∗ relatively compact in H1(M, ¯g) and therefore (since H1 is reflexive) also weak relatively
2422
+ compact. This means that that there exists a subsequence ulk which we again call ul such that ul → u∞
2423
+ A weakly
2424
+ in H1(M, ¯g) and therefore strongly in L2(M, ¯g) (by a direct consequence of the Rellich–Kondrachov embedding
2425
+ Theorem). Furthermore with (2.6) and (2.7) we know that αl := α(tl) → α∞
2426
+ A as l → ∞. Moreover we have
2427
+ e±ul → e±u∞
2428
+ A (as l → ∞) in Lp(M, ¯g) for any 2 ≤ p < ∞. Indeed, with Lemma 5.8 and (5.3) we have
2429
+ ∥eul − eu∞
2430
+ A ∥p
2431
+ Lp(M,¯g) =
2432
+
2433
+ M
2434
+ epul|1 − eu∞
2435
+ A −ul|pdµ¯g ≤ epCuni
2436
+
2437
+ M
2438
+ |1 − eu∞
2439
+ A −ul|pdµ¯g
2440
+ ≤ epCuni
2441
+
2442
+ M
2443
+ |u∞
2444
+ A − ul|pep|u∞
2445
+ A −ul||dµ¯g
2446
+ ≤ epCunie2pCuni
2447
+
2448
+ M
2449
+ |u∞
2450
+ A − ul|p−2|u∞
2451
+ A − ul|2dµ¯g
2452
+ ≤ e3pCuni(2Cuni)p−2∥u∞
2453
+ A − ul∥2
2454
+ L2(M,¯g) → 0
2455
+ as l → ∞.
2456
+ Replacing ul by −ul we get also e−ul → e−u∞
2457
+ A in Lp(M, ¯g) as l → ∞ for any p < ∞. Moreover, with Lemma 5.8
2458
+ and Lemma 5.9 we also have e2ul∂tul → 0 in L2(M, ¯g) as l → ∞. Furthermore we have
2459
+ ∥e2ulαl − e2u∞
2460
+ A α∞
2461
+ A ∥L2(M,¯g) ≤ ∥e2ul(αl − α∞
2462
+ A )∥L2(M,¯g) + ∥α∞
2463
+ A (e2ul − e2u∞
2464
+ A )∥L2(M,¯g)
2465
+ ≤ ∥e2ul∥L∞(M,¯g)|αl − α∞
2466
+ A |A
2467
+ 1
2468
+ 2 + |α∞
2469
+ A |∥e2ul − e2u∞
2470
+ A ∥L2(M,¯g)
2471
+ → 0
2472
+ for l → ∞.
2473
+ So, considering our evolution equation (5.11), we therefore get
2474
+ ∆¯gul = e2ul∂tul + ¯K − e2ulf0 + e2ulαl
2475
+ → ¯K − e2u∞
2476
+ A f0 + e2u∞
2477
+ A α∞
2478
+ A =: (∆¯gu)∞
2479
+ A
2480
+
2481
+ 22
2482
+ Franziska Borer, Peter Elbau, Tobias Weth
2483
+ in L2(M, ¯g).
2484
+ Since the Laplace operator ∆¯g is closed we know that (∆¯gu)∞
2485
+ A = ∆¯gu∞
2486
+ A .
2487
+ Hence ∥∆¯g(ul −
2488
+ u∞
2489
+ A )∥L2(M,¯g) → 0 as l → ∞. So, we even have strong convergence ul → u∞
2490
+ A in H2(M, ¯g) and uniformly.
2491
+ Thus, passing to the limit l → ∞ in the equation
2492
+ e2ul∂tul − ∆¯gul = − ¯K + e2ulf0 − e2ulαl
2493
+ we get the identity
2494
+ −∆¯gu∞
2495
+ A = − ¯K + e2u∞
2496
+ A f0 − e2u∞
2497
+ A α∞
2498
+ A
2499
+ and therefore
2500
+ Kg∞
2501
+ A = f0 − α∞
2502
+ A = f0 + 1
2503
+ A
2504
+
2505
+ ¯K +
2506
+
2507
+ M
2508
+ |f0|dµg∞
2509
+ A
2510
+
2511
+ which shows the convergence of the flow.
2512
+ 5.6. The Sign of the Constant α∞
2513
+ A . In this subsection we prove Theorem 3.3 and Theorem 3.4, with other
2514
+ words, under certain assumptions we can now further estimate the expression
2515
+ 1
2516
+ A
2517
+
2518
+ ¯K +
2519
+
2520
+ M
2521
+ |f0|dµg∞
2522
+ A
2523
+
2524
+ to show that it is positive.
2525
+ The proof of Theorem 3.4 is already covered by the proof of Corollary 4.8. So we can turn to Theorem 3.3.
2526
+ Proof of Theorem 3.3. We have seen in Lemma 5.7 that in the case where u0 ≡ 1
2527
+ 2 log(A) ∈ Cp,A, the uniform
2528
+ L∞-bound on the global solution of the initial value problem (5.11), (5.12) only depends on A and an upper
2529
+ bound on ∥f∥L∞(M,¯g). In other words, if A > 0 and c > 0 are fixed, then there exists τ > 0 with the property
2530
+ that
2531
+ sup
2532
+ t>0
2533
+ ∥u(t)∥L∞(M,¯g) ≤ τ
2534
+ for every f ∈ C∞(M) with ∥f∥L∞(M,¯g) ≤ c and the corresponding solution u of the initial value problem (5.11),
2535
+ (5.12) with u0 ≡ 1
2536
+ 2 log(A) ∈ Cp,A. Consequently, we also have ∥u∞∥L∞(M,¯g) ≤ τ under the current assumptions
2537
+ on f, which implies that
2538
+ λ = 1
2539
+ A
2540
+
2541
+ ¯K −
2542
+
2543
+ M
2544
+ fe2u∞dµ¯g
2545
+
2546
+ = 1
2547
+ A
2548
+
2549
+ ¯K + cA −
2550
+
2551
+ M
2552
+ (f + c)e2u∞dµ¯g
2553
+
2554
+ ≥ c +
2555
+ ¯K
2556
+ A − ∥f + c∥L1(M,¯g)∥e2u∞∥L∞(M,¯g) ≥ c +
2557
+ ¯K
2558
+ A − ∥f + c∥L1(M,¯g)e2τ.
2559
+ Hence, if ∥f + c∥L1(M,¯g) < ε := c+ ¯
2560
+ K
2561
+ A
2562
+ e2τ , we have λ > 0.
2563
+ 6. Appendix
2564
+ As before, let (M, ¯g) be a two-dimensional, smooth, closed, connected, oriented Riemann manifold endowed
2565
+ with a smooth background metric ¯g. For a domain Ω ⊂ M × R and p ≥ 1, we let W 2,1
2566
+ p
2567
+ (Ω) denote the space of
2568
+ functions u ∈ Lp(Ω) which have weak derivatives Du, D2u and ∂tu in Lp(Ω). In the following, we fix p > 2,
2569
+ which implies that
2570
+ W 2,1
2571
+ p
2572
+ (Ω) is continuously embedded in Cα(Ω) for some α = α(p) > 0,
2573
+ (6.1)
2574
+ see e.g. [13, Lemma 3.3]. We consider the linear parabolic problem
2575
+ ∂tu(x, t) = a(x, t)∆¯gu(x, t) + c(x, t)u(x, t) + d(x, t),
2576
+ (6.2)
2577
+ with a, c, d ∈ C(Ω) and d ∈ Lp(Ω). We say that a function u ∈ W 2,1
2578
+ p
2579
+ (Ω) is a (strong) solution of (6.2) in Ω if
2580
+ (6.2) holds almost everywhere in Ω. Specifically, we consider (6.2) on the cylindrical domains ΩT = M × (0, T)
2581
+ and �ΩT = M × (−∞, T) in the following.
2582
+ In particular, we consider strong solutions of (6.2) together with the initial condition
2583
+ u(0, x) = u0(x)
2584
+ in M
2585
+ (6.3)
2586
+ with u0 ∈ W 2,p(M, ¯g), which is supposed to hold in the (initial) trace sense.
2587
+
2588
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
2589
+ 23
2590
+ Proposition 6.1. Let T > 0, a, c ∈ C(ΩT ) with aT :=
2591
+ min
2592
+ (x,t)∈ΩT
2593
+ a(x, t) > 0, let d ∈ Lp(ΩT ) for some p > 2, and
2594
+ let u0 ∈ W 2,p(M, ¯g).
2595
+ Then the initial value problem (6.2), (6.3) has a unique strong solution u ∈ W 2,1
2596
+ p
2597
+ (ΩT ). Moreover, u satisfies
2598
+ the estimate
2599
+ ∥u∥W 2,1
2600
+ p
2601
+ (ΩT ) ≤ C
2602
+
2603
+ ∥u0∥W 2,p(M,¯g) + ∥d∥Lp(ΩT )
2604
+
2605
+ (6.4)
2606
+ with a constant C > 0 depending only on ∥a∥L∞(ΩT ), ∥c∥L∞(ΩT ) and aT . Moreover, C does not increase after
2607
+ making T smaller.
2608
+ If, moreover, a, c, d ∈ Cα(ΩT ) for some α > 0, then u ∈ C(ΩT )∩C2,1(ΩT ) is a classical solution of (6.2), (6.3),
2609
+ and we have the inequality
2610
+ ∥u0∥H1(M,¯g) ≥ lim sup
2611
+ t→0+ ∥u(t)∥H1(M,¯g)
2612
+ (6.5)
2613
+ Proof. In the following, the letter C stands for various positive constants depending only on ∥a∥L∞(ΩT ),
2614
+ ∥c∥L∞(ΩT ), and aT , and which do not increase after making T smaller.
2615
+ Step 1: We first assume that we are given a strong solution u ∈ W 2,1
2616
+ p
2617
+ (ΩT ) of (6.2), (6.3) with u0 ≡ 0 ∈
2618
+ W 2,p(M, ¯g). We then define v : �ΩT → R by
2619
+ v(x, t) =
2620
+
2621
+ u(x, t),
2622
+ for t > 0;
2623
+ 0,
2624
+ for t ≤ 0.
2625
+ Then v ∈ W 2,1
2626
+ p
2627
+ (�ΩT ) solves (6.2) with a, c, d replaced by suitable extensions ˜a, ˜c, ∈ L∞(�ΩT ), ˜d ∈ Lp(�ΩT ) satisfying
2628
+ ˜a(x, t) = a(x, 0), ˜c(x, t) = c(x, 0) and ˜d(x, t) = 0 for t ≤ 0, x ∈ M.
2629
+ Therefore, [14, Theorem 7.22] gives rise to the uniform bound
2630
+ ∥D2v∥Lp(�ΩT ) + ∥∂tv∥Lp(�ΩT ) ≤ C
2631
+
2632
+ ∥ ˜d∥Lp(�ΩT ) + ∥v∥Lp(�ΩT )
2633
+
2634
+ .
2635
+ (6.6)
2636
+ This translates into the estimate
2637
+ ∥D2u∥Lp(ΩT ) + ∥∂tu∥Lp(ΩT ) ≤ C
2638
+
2639
+ ∥d∥Lp(ΩT ) + ∥u∥Lp(ΩT )
2640
+
2641
+ .
2642
+ (6.7)
2643
+ Moreover, setting V (t) := ∥u(t)∥p
2644
+ Lp(M,¯g) for t ∈ R, we have V (0) = 0 and
2645
+ ˙V (t) = p
2646
+
2647
+ M
2648
+ |u(t)|p−2u(t)∂tu(t)dµ¯g ≤ pV (t)
2649
+ 1
2650
+ p′ ∥∂tu(t)∥Lp(M,¯g)
2651
+ ≤ p
2652
+
2653
+ V (t)
2654
+ p′
2655
+ +
2656
+ ∥∂tu(t)∥p
2657
+ Lp(M,¯g)
2658
+ p
2659
+
2660
+ = p
2661
+ p′ V (t) + ∥∂tu(t)∥p
2662
+ Lp(M,¯g)
2663
+ for t ∈ (0, T), therefore
2664
+ V (t) =
2665
+ � t
2666
+ 0
2667
+ ˙V (s) ds ≤ p
2668
+ p′
2669
+ � t
2670
+ 0
2671
+ V (s) ds + ∥∂tu∥p
2672
+ Lp(Ωt)
2673
+ ≤ p
2674
+ p′
2675
+ � t
2676
+ 0
2677
+ V (s) ds + C
2678
+
2679
+ ∥d∥p
2680
+ Lp(Ωt) + ∥u∥p
2681
+ Lp(Ωt)
2682
+
2683
+ ≤ C
2684
+ �� t
2685
+ 0
2686
+ V (s) ds + ∥d∥p
2687
+ Lp(Ωt)
2688
+
2689
+ .
2690
+ By Gronwall’s inequality we get V (t) ≤ C∥d∥p
2691
+ Lp(Ωt) and thus
2692
+ ∥u(t)∥Lp(M,¯g) ≤ C∥d∥Lp(Ωt)
2693
+ for t ∈ [0, T].
2694
+ (6.8)
2695
+ This already implies the uniqueness of strong solutions of (6.2), (6.3), since the difference u of two solutions
2696
+ u1, u2 ∈ W 2,1
2697
+ p
2698
+ (ΩT ) of (6.2), (6.3) satisfies (6.2), (6.3) with u0 = 0 and d = 0. Moreover, if u ∈ W 2,1
2699
+ p
2700
+ (ΩT ) is a
2701
+ strong solution of (6.2), (6.3), then the function ˆu ∈ W 2,1
2702
+ p
2703
+ (ΩT ) given by ˆu(x, t) := u(x, t) − u0(x) safisfies (6.2),
2704
+ (6.3) with u0 = 0 and d replaced by ˆd given by
2705
+ ˆd(x, t) = d(x, t) + a(x, t)∆¯gu0(x) + c(x, t)u0(x).
2706
+ Consequently, combining (6.7) and (6.8), and using an interpolation estimate for Du, we find that
2707
+ ∥u∥W 2,1
2708
+ p
2709
+ (ΩT ) ≤ ∥ˆu∥W 2,1
2710
+ p
2711
+ (ΩT ) + ∥u0∥W 2,p(M,¯g) ≤ C
2712
+
2713
+ ∥ ˆd∥Lp(ΩT ) + ∥ˆu∥Lp(ΩT )
2714
+
2715
+ + ∥u0∥W 2,p(M,¯g)
2716
+ ≤ C∥ ˆd∥Lp(ΩT ) + ∥u0∥W 2,p(M,¯g) ≤ C
2717
+
2718
+ ∥d∥Lp(ΩT ) + ∥u0∥W 2,p(M,¯g)
2719
+
2720
+ ,
2721
+
2722
+ 24
2723
+ Franziska Borer, Peter Elbau, Tobias Weth
2724
+ as claimed in (6.4).
2725
+ Step 2 (Existence): In the case where a, c, d ∈ Cα(ΩT ) and u0 ∈ C2+α(M), the existence of a classical
2726
+ solution u ∈ C(ΩT ) ∩ C2,1(ΩT ) of (6.2), (6.3) follows as in [14, Theorem 5.14].
2727
+ In the general case we consider (6.2), (6.3) with coefficients an, cn, dn ∈ Cα(ΩT ), u0,n ∈ C2+α(M), in place
2728
+ of a, c, d, u0 with the property that an → a, cn → c in L∞(ΩT ), dn → d ∈ Lp(ΩT ) as well as u0,n → u0 in
2729
+ W 2,p. The associated unique solutions un ∈ C(ΩT ) ∩ C2,1(ΩT ) are uniformly bounded in W 2,1
2730
+ p
2731
+ (ΩT ) by (6.4),
2732
+ and therefore we have un ⇀ u in W 2,1
2733
+ p
2734
+ (ΩT ) after passing to a subsequence. For every φ ∈ C∞
2735
+ c (ΩT ), we then
2736
+ have
2737
+
2738
+ ΩT
2739
+
2740
+ ∂tu(x, t) − a(x, t)∆¯gu(t.x) − c(x, t)u(x, t) − d(x, t)
2741
+
2742
+ φ(x, t)dµ¯g(x)dt
2743
+ = lim
2744
+ n→∞
2745
+
2746
+ ΩT
2747
+
2748
+ ∂tun(x, t) − an(x, t)∆¯gun(x, t) − cn(x, t)un(x, t) − dn(x, t)
2749
+
2750
+ φ(x, t)dµ¯g(x)dt = 0,
2751
+ and from this we deduce that ∂tu(x, t) − a(x, t)∆¯gu(x, t) − c(x, t)u(x, t) − d(x, t) = 0 almost everywhere in ΩT ,
2752
+ so u is a strong solution of (6.2).
2753
+ Step 3: It remains to show the inequality (6.5) in the case where a, c, d ∈ Cα(ΩT ) for some α > 0. Since
2754
+ u ∈ C(ΩT ) ∩ C2,1(ΩT ) in this case and therefore
2755
+ ∥u0∥L2(M,¯g) = lim
2756
+ t→0+ ∥u(t)∥L2(M,¯g),
2757
+ it suffices to show that
2758
+ ∥∇u0∥L2(M,¯g) ≥ lim sup
2759
+ t→0+ ∥∇u(t)∥L2(M,¯g).
2760
+ (6.9)
2761
+ If u0 ∈ C2+α(M) for some α > 0, this follows by [14, Theorem 5.14] with lim in place of lim sup, since the
2762
+ function t �→ u(t) is continuous from [0, T) → C2+α(M) in this case. Moreover, in this case we have, by H¨older’s
2763
+ and Young’s inequality,
2764
+ d
2765
+ dt∥∇u(t)∥2
2766
+ L2(M,¯g) = −
2767
+
2768
+ M
2769
+ ∂tu(t)∆u(t)dµ¯g
2770
+ = −
2771
+
2772
+ M
2773
+
2774
+ a(t)|∆u(t)|2 + c(t)u(t)∆u(t) + d(t)∆u(t)
2775
+
2776
+ dµ¯g
2777
+ ≤ −aT ∥∆¯gu(t)∥2
2778
+ L2(M,¯g) + ∥c(t)u(t) + d(t)∥L2(M,¯g)∥∆¯gu(t)∥L2(M,¯g)
2779
+ ≤ −aT ∥∆¯gu(t)∥2
2780
+ L2(M,¯g) + aT ∥∆¯gu(t)∥2
2781
+ L2(M,¯g) +
2782
+ 1
2783
+ 4aT
2784
+ ∥c(t)u(t) + d(t)∥2
2785
+ L2(M,¯g)
2786
+ =
2787
+ 1
2788
+ 4aT
2789
+ ∥c(t)u(t) + d(t)∥2
2790
+ L2(M,¯g),
2791
+ and therefore
2792
+ ∥∇u(t)∥2
2793
+ L2(M,¯g) ≤ ∥∇u(0)∥2
2794
+ L2(M,¯g) +
2795
+ 1
2796
+ 4aT
2797
+ � t
2798
+ 0
2799
+ ∥c(s)u(s) + d(s)∥2
2800
+ L2(M,¯g) ds
2801
+ for t > 0.
2802
+ (6.10)
2803
+ In the general case, we consider (6.2), (6.3) with a sequence of initial conditions un,0 in place of u0, where
2804
+ un,0 → u0 in H2(M).
2805
+ The associated unique solutions un ∈ C(ΩT ) ∩ C2,1(ΩT ) are uniformly bounded in
2806
+ W 2,1
2807
+ p
2808
+ (ΩT ) by (6.4), and they are also uniformly bounded in C2,1([ε, T] × M) by [14, Theorem 5.15] for every
2809
+ ε ∈ (0, T). Fix t ∈ (0, T). Passing to a subsequence, we may assume that un ⇀ u in W 2,1
2810
+ p
2811
+ (ΩT ), un → u
2812
+ strongly in C0(ΩT ) and un(t) → u(t) strongly in C1(M). As in Step 2, we see, by testing with φ ∈ C∞
2813
+ c (ΩT ),
2814
+ that ∂tu(x, t) − a(x, t)∆¯gu(x, t) − c(x, t)u(x, t) − d(x, t) = 0 almost everywhere in ΩT , so u is the unique strong
2815
+ solution of (6.2), (6.3). Moreover, by (6.10) we have
2816
+ ∥∇u(t)∥2
2817
+ L2(M,¯g) = lim
2818
+ n→∞ ∥∇un(t)∥2
2819
+ L2(M,¯g)
2820
+ ≤ lim
2821
+ n→∞
2822
+
2823
+ ∥∇un(0)∥2
2824
+ L2(M) +
2825
+ 1
2826
+ 4aT
2827
+ � t
2828
+ 0
2829
+ ∥c(s)un(s) + d(s)∥2
2830
+ L2(M,¯g) ds
2831
+
2832
+ = ∥∇u(0)∥2
2833
+ L2(M,¯g) +
2834
+ 1
2835
+ 4aT
2836
+ � t
2837
+ 0
2838
+ ∥c(s)u(s) + d(s)∥2
2839
+ L2(M,¯g) ds.
2840
+ It thus follows that
2841
+ ∥∇u(t)∥2
2842
+ L2(M,¯g) − ∥∇u(0)∥2
2843
+ L2(M,¯g) ≤
2844
+ 1
2845
+ 4aT
2846
+ � t
2847
+ 0
2848
+ ∥c(s)u(s) + d(s)∥2
2849
+ L2(M,¯g) ds
2850
+
2851
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
2852
+ 25
2853
+ and therefore
2854
+ lim sup
2855
+ t→0
2856
+
2857
+ ∥∇u(t)∥2
2858
+ L2(M,¯g) − ∥∇u(0)∥2
2859
+ L2(M,¯g)
2860
+
2861
+
2862
+ 1
2863
+ 4aT
2864
+ lim
2865
+ t→0+
2866
+ � t
2867
+ 0
2868
+ ∥c(s)u(s) + d(s)∥2
2869
+ L2(M,¯g) ds = 0,
2870
+ as claimed in (6.9).
2871
+ Next we prove a maximum principle for solutions of (6.2), (6.3). We need the following preliminary lemma.
2872
+ Lemma 6.2. Let T > 0.
2873
+ (i) For any function u ∈ C2(M) we have
2874
+
2875
+ {x∈M|u(x)>0}
2876
+ ∆¯gudµ¯g ≤ 0.
2877
+ (ii) Let u, ρ ∈ C1([0, T]) be functions with u(0) ≤ 0 and ρ(T) ≥ 0. Then
2878
+
2879
+ {t∈[0,T ]|u(t)>0}
2880
+
2881
+ ρ(t)∂tu(t) + κu(t)
2882
+
2883
+ dt ≥ 0
2884
+ with
2885
+ κ :=
2886
+ sup
2887
+ s∈(0,T )
2888
+ ∂tρ(s).
2889
+ (6.11)
2890
+ (iii) Let u ∈ C2,1(ΩT ) ∩ C0,1(ΩT ), ρ ∈ C0,1(ΩT ) be functions with u ≤ 0 on M × {0} and ρ ≥ 0 on M × {T}.
2891
+ Then we have
2892
+
2893
+ {(x,t)∈M×[0,T ]|u(x,t)>0}
2894
+ (ρ(x, t)∂tu(x, t) + κu(x, t) − ∆¯gu(x, t))dµ¯g(x)dt ≥ 0
2895
+ with
2896
+ κ :=
2897
+ sup
2898
+ (s,x)∈M×(0,T )
2899
+ ∂tρ(s, x).
2900
+ (6.12)
2901
+ Proof. (i) By Lebesgue’s theorem, it suffices to prove
2902
+
2903
+ {x∈M|u(x)>εn}
2904
+ ∆¯gudµ¯g ≤ 0
2905
+ (6.13)
2906
+ for a sequence εn → 0+. By Sard’s Lemma, we may choose this sequence such that Ωε := {x ∈ M | u(x) > εn}
2907
+ is an open set of class C1, whereas the outer unit vector field of Ωε is given by (x, t) �→ −
2908
+ ∇¯gu(x,t)
2909
+ |∇¯gu(x,t)|¯g . Hence
2910
+ (6.13) follows from the divergence theorem.
2911
+ (ii) The set {t ∈ [0, T] | u(t) > 0} is a union of at most countably many open intervals Ij, j ∈ N. For any such
2912
+ interval, partial integration gives
2913
+
2914
+ Ij
2915
+
2916
+ ρ(t)∂tu(t) + ∂tρ(t)u(t)
2917
+
2918
+ dt =
2919
+
2920
+ 0,
2921
+ if T ̸∈ Ij;
2922
+ ρ(T)u(T) ≥ 0,
2923
+ if T ∈ Ij.
2924
+ Consequently,
2925
+
2926
+ {t∈[0,T ]|u(t)>0}
2927
+ ρ(t)∂tu(t) dt ≥ −
2928
+
2929
+ {t∈[0,T ]|u(t)>0}
2930
+ ∂tρ(t)u(t) dt ≥ −
2931
+
2932
+ {t∈[0,T ]|u(t)>0}
2933
+ κu(t) dt
2934
+ with κ given in (6.11). This shows the claim.
2935
+ (iii) This is a direct consequence of (i), (ii) and Fubini’s theorem.
2936
+ Proposition 6.3. (Maximum principle)
2937
+ Let T > 0, a, c ∈ C(ΩT ) with aT :=
2938
+ min
2939
+ (x,t)∈ΩT
2940
+ a(x, t) > 0, let d ∈ Lp(ΩT ) for some p > 2 with dT :=
2941
+ sup(x,t)∈ΩT d(x, t) < ∞, and let u0 ∈ W 2,p(M, ¯g).
2942
+ Moreover, let u ∈ W 2,1
2943
+ p
2944
+ (ΩT ) be the unique solution of
2945
+ (6.2), (6.3).
2946
+ (i) If u0 ≤ 0 on M and dT ≤ 0, then u ≤ 0 on ΩT .
2947
+ (ii) If c ≡ 0 on ΩT , then
2948
+ u(x, t) ≤ ∥u+
2949
+ 0 ∥L∞(M,¯g) + tdT
2950
+ for t ∈ [0, T], x ∈ M.
2951
+ (6.14)
2952
+
2953
+ 26
2954
+ Franziska Borer, Peter Elbau, Tobias Weth
2955
+ Proof. (i) Step 1: We consider the special case a ∈ C0,1(ΩT ), u0 ≤ 0 and dT ≤ −ε for some ε > 0. We put
2956
+ ρ := 1
2957
+ a ∈ C0,1(ΩT ) and κ :=
2958
+ sup
2959
+ (s,x)∈M×(0,T )
2960
+ ∂tρ(s, x) as in (6.12). Moreover, we consider the function
2961
+ ˘u ∈ W 2,1
2962
+ p
2963
+ (ΩT ),
2964
+ ˘u(x, t) = e−˘κtu(x, t)
2965
+ with ˘κ =
2966
+ |κ|
2967
+ min(x,t)∈ΩT ρ(x,t) + ∥c∥L∞(ΩT ), noting that ˘u satisfies
2968
+ ρ(x, t)∂t˘u(x, t) − ∆¯g˘u(x, t) + κ˘u(x, t)
2969
+ = e−˘κt�
2970
+ u(x, t)(ρ(x, t)c(x, t) − ρ(x, t)˘κ + κ) + ρ(x, t)d(x, t)
2971
+
2972
+ ≤ −ρ(x, t)εe−˘κt
2973
+ almost everywhere in {(x, t) ∈ ΩT | ˘u(x, t) > 0}.
2974
+ (6.15)
2975
+ We now let (un)n∈N be a sequence in C2,1(ΩT ) ∩ C0,1(ΩT ) with un(x, 0) ≤ 0 and un → ˘u in W 2,1
2976
+ p
2977
+ (ΩT ).
2978
+ Since the functions gn := 1{(x,t)∈M×[0,T ]|un(x,t)>0} are bounded in Lp′(ΩT ), we may pass to a subsequence such
2979
+ that gn ⇀ g in Lp′(ΩT ), where g ≥ 0 and g ≡ 1 in {(x, t) ∈ M × [0, T] | ˘u(x, t) > 0}, since un → ˘u uniformly
2980
+ as a consequence of (6.1) and therefore gn → 1 pointwisely on {(x, t) ∈ M × [0, T] | ˘u(x, t) > 0}. Applying
2981
+ Lemma 6.2 (iii) to un, we find that
2982
+ 0 ≤
2983
+
2984
+ {(x,t)∈M×[0,T ]|un(x,t)>0}
2985
+
2986
+ ρ(x, t)∂tun(t) − ∆¯gun(x, t) + κun(x, t)
2987
+
2988
+ dµ¯g(x)dt
2989
+ =
2990
+
2991
+ M×(0,T )
2992
+ gn(x, t)
2993
+
2994
+ ρ(x, t)∂tun(x, t) − ∆¯gun(x, t) + κun(x, t)
2995
+
2996
+ dµ¯g(x)dt
2997
+ for all n ∈ N and therefore
2998
+ 0 ≤ lim
2999
+ n→∞
3000
+
3001
+ M×(0,T )
3002
+ gn(x, t)
3003
+
3004
+ ρ(x, t)∂tun(x, t) − ∆¯gun(x, t) + κun(x, t)
3005
+
3006
+ dµ¯g(x)dt
3007
+ =
3008
+
3009
+ M×(0,T )
3010
+ g(x, t)
3011
+
3012
+ ρ(x, t)∂t˘u(x, t) − ∆¯g˘u(x, t) + κ˘u(x, t)
3013
+
3014
+ dµ¯gdt
3015
+ ≤ −
3016
+
3017
+ M×(0,T )
3018
+ g(x, t)ρ(x, t)εe−˘κtdµ¯g(x)dt ≤ −
3019
+
3020
+ {(x,t)∈M×(0,T )|˘u(x,t)>0}
3021
+ ρ(x, t)εe−˘κtdµ¯g(x)dt.
3022
+ We thus conclude that {(x, t) ∈ M × (0, T) | ˘u(x, t) > 0} = {(x, t) ∈ M × (0, T) | u(x, t) > 0} = ∅ and therefore
3023
+ u ≤ 0 in M × (0, T).
3024
+ Step 2: In the special case where a ∈ C0,1(ΩT ), u0 ≤ 0 and dT ≤ 0, we may apply Step 1 to the functions
3025
+ uε ∈ W 2,1
3026
+ p
3027
+ (ΩT ) defined by uε(x, t) = u(x, t) − εt, which yields that uε ≤ 0 for every ε > 0 and therefore u ≤ 0
3028
+ in ΩT .
3029
+ Step 3: In the general case, we consider a sequence an ∈ C0,1(ΩT ) with an → a in C(ΩT ), and we let un denote
3030
+ the associated solutions of (6.2), (6.3) with a replaced by an. As in the end of the proof of Proposition 6.1, we
3031
+ then find that, after passing to a subsequence, un ⇀ ˜u in W 2,1
3032
+ p
3033
+ (ΩT ), where ˜u is a solution of (6.2), (6.3). By
3034
+ uniqueness, we have u = ˜u. Moreover, since un ≤ 0 for all n by Step 3, we have u = ˜u ≤ 0, as required.
3035
+ (ii) We consider the function v ∈ W 2,1
3036
+ p
3037
+ (ΩT ) given by v(x, t) = u(x, t)−∥u+
3038
+ 0 ∥L∞(M) −tdT , which, by assumption,
3039
+ satisfies (6.2), (6.3) with c ≡ 0, d − dT in place of d and u0 − ∥u+
3040
+ 0 ∥L∞(M) in place of u0. Then (i) yields v ≤ 0
3041
+ in ΩT , and therefore u satisfies (6.14).
3042
+ References
3043
+ [1]
3044
+ F. Borer, L. Galimberti, and M. Struwe. “Large” conformal Metrics of prescribed Gauss Curvature on
3045
+ Surfaces of higher Genus. Commentarii Mathematici Helvetici 90.2 (2015), pp. 407–428. doi: 10.4171
3046
+ /CMH/358.
3047
+ [2]
3048
+ R. Buzzano, M. Schulz, and M. Struwe. Variational Methods in Geometric Analysis. (to appear).
3049
+ [3]
3050
+ T. Cazenave, A. Haraux, and Y. Martel. An Introduction to Semilinear Evolution Equations. Oxford
3051
+ Lecture Series in Mathematics and its Application 13. The Clarendon Press, Oxford University Press,
3052
+ 1999.
3053
+ [4]
3054
+ J. Ceccon and M. Montenegro. Optimal Lp-Riemannian Gagliardo-Nirenberg inequalities. Mathematische
3055
+ Zeitschrift 258.4 (2008), pp. 851–873. issn: 0025-5874. doi: 10.1007/s00209-007-0202-8.
3056
+ [5]
3057
+ S.-Y. A. Chang. Non-linear elliptic equations in conformal geometry. Zurich Lectures in Advanced Math-
3058
+ ematics 2. European Mathematical Society, 2004.
3059
+
3060
+ Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic
3061
+ 27
3062
+ [6]
3063
+ S.-Y. A. Chang and P. C. Yang. Prescribing Gaussian curvature on S2. Acta Mathematica 159.1 (1987),
3064
+ pp. 215–259. issn: 1871-2509. doi: 10.1007/BF02392560.
3065
+ [7]
3066
+ W.-Y. Ding and J.-Q. Liu. A Note on the Problem of Prescribing Gaussian Curvature on Surfaces. Trans-
3067
+ actions of the American Mathematical Society 347.3 (1995), pp. 1059–1066. issn: 00029947. url: http:
3068
+ //www.jstor.org/stable/2154889.
3069
+ [8]
3070
+ L. Galimberti. Compactness issues and bubbling phenomena for the prescribed Gaussian curvature equation
3071
+ on the torus. Calculus of Variations and Partial Differential Equations 54.3 (2015), pp. 2483–2501. doi:
3072
+ 10.1007/s00526-015-0872-8.
3073
+ [9]
3074
+ P. T. Ho. Prescribed Curvature Flow on Surfaces. Indiana University Mathematics Journal 60.5 (2011),
3075
+ pp. 1517–1541. issn: 00222518, 19435258. url: http://www.jstor.org/stable/24903835.
3076
+ [10]
3077
+ J. L. Kazdan and F. W. Warner. Curvature Functions for Open 2-Manifolds. Annals of Mathematics 99.2
3078
+ (1974), pp. 203–219. issn: 0003486X. url: http://www.jstor.org/stable/1970898.
3079
+ [11]
3080
+ J. L. Kazdan and F. W. Warner. Curvature Functions for Compact 2-Manifolds. Annals of Mathematics
3081
+ 99.1 (1974), pp. 14–47. issn: 0003486X. url: http://www.jstor.org/stable/1971012.
3082
+ [12]
3083
+ P. Koebe. ¨Uber die Uniformisierung beliebiger analytischer Kurven (Dritte Mitteilung). Nachrichten von
3084
+ der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse 1 (1908), pp. 337–
3085
+ 358.
3086
+ [13]
3087
+ O. Ladyˇzenskaja, V. Solonnikov, and N. Ural’ceva. Linear and Quasilinear Equations of Parabolic Type.
3088
+ Vol. 23. Translations of mathematical monographs. Providence, RI: American Mathematical Society, 1968.
3089
+ [14]
3090
+ G. M. Lieberman. Second Order Parabolic Differential Equations. World Scientific, 1996. doi: 10.1142/3
3091
+ 302.
3092
+ [15]
3093
+ J. Moser. A Sharp Form of an Inequality by N. Trudinger. Indiana University Mathematics Journal 20.11
3094
+ (1971), pp. 1077–1092. issn: 00222518, 19435258. url: http://www.jstor.org/stable/24890183.
3095
+ [16]
3096
+ H. Poincar´e. Sur l’uniformisation des fonctions analytiques. Acta Mathematica 31 (1908), pp. 1–64.
3097
+ [17]
3098
+ J. Schauder. Der Fixpunktsatz in Funktionalra¨umen. Studia Mathematica 2.1 (1930), pp. 171–180. url:
3099
+ http://eudml.org/doc/217247.
3100
+ [18]
3101
+ M. Struwe. A flow approach to Nirenberg’s problem. Duke Math. J. 128.1 (2005), pp. 19–64. doi: 10.121
3102
+ 5/S0012-7094-04-12812-X.
3103
+ [19]
3104
+ M. Struwe. “Bubbling” of the prescribed curvature flow on the torus. Journal of the European Mathematical
3105
+ Society 22.10 (2020), pp. 3223–3262.
3106
+ [20]
3107
+ N. S. Trudinger. On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967),
3108
+ pp. 473–484.
3109
+
LtFLT4oBgHgl3EQfMS8S/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MdE3T4oBgHgl3EQfwQuL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e0b5b13384f5b9099ab9dec26a8cbbe2445fcbe34e5466f1b5aa66451a66da5
3
+ size 3670061
MtE1T4oBgHgl3EQftQWC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb8db44bf7594cd244063070c1f3230e5dc9c7da18bdb54d7d5f6b2e1593fc11
3
+ size 3014701
O9AzT4oBgHgl3EQfIfuL/content/tmp_files/2301.01063v1.pdf.txt ADDED
@@ -0,0 +1,1390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Impact of Charge Conversion on NV-Center Relaxometry
2
+ Isabel Cardoso Barbosa, Jonas Gutsche, and Artur Widera∗
3
+ Department of Physics and State Research Center OPTIMAS,
4
+ University of Kaiserslautern-Landau,
5
+ Erwin-Schroedinger-Str. 46, 67663 Kaiserslautern, Germany
6
+ (Dated: January 4, 2023)
7
+ Relaxometry schemes employing nitrogen-vacancy (NV) centers in diamonds are essential in bi-
8
+ ology and physics to detect a reduction of the color centers’ characteristic spin relaxation (T1) time
9
+ caused by, e.g., paramagnetic molecules in proximity. However, while only the negatively-charged
10
+ NV center is to be probed in these pulsed-laser measurements, an inevitable consequence of the
11
+ laser excitation is the conversion to the neutrally-charged NV state, interfering with the result for
12
+ the negatively-charged NV centers’ T1 time or even dominating the response signal. In this work, we
13
+ perform relaxometry measurements on an NV ensemble in nanodiamond combining a 520 nm excita-
14
+ tion laser and microwave excitation while simultaneously recording the fluorescence signals of both
15
+ charge states via independent beam paths. Correlating the fluorescence intensity ratios to the fluo-
16
+ rescence spectra at each laser power, we monitor the ratios of both charge states during the T1-time
17
+ measurement and systematically disclose the excitation-power-dependent charge conversion. Even
18
+ at laser intensities below saturation, we observe charge conversion, while at higher intensities, charge
19
+ conversion outweighs spin relaxation. These results underline the necessity of low excitation power
20
+ and fluorescence normalization before the relaxation time to accurately determine the T1 time and
21
+ characterize paramagnetic species close to the sensing diamond.
22
+ I.
23
+ INTRODUCTION
24
+ The negatively-charged nitrogen-vacancy (NV) cen-
25
+ ter in diamond constitutes a versatile tool for the detec-
26
+ tion of magnetic [1–9] and electric [10] fields with high
27
+ sensitivity and spatial resolution. Measurement of the
28
+ NV centers’ spin relaxation (T1) time is widely applied
29
+ in different fields of science to detect magnetic noise
30
+ [11, 12].
31
+ Various so-called relaxometry measurement
32
+ schemes employ a reduction of the NV centers’ T1 time
33
+ with the host nanodiamond exposed to paramagnetic
34
+ molecules fluctuating at the NV centers’ resonance fre-
35
+ quency [13–15]. Thus, relaxometry schemes have been
36
+ used to detect a superparamagnetic nanoparticle [16], or
37
+ paramagnetic Gd3+ ions [15, 17–20]. Further, relaxome-
38
+ try with NV− centers has been utilized to trace chemical
39
+ reactions involving radicals [21, 22]. Also, the NV cen-
40
+ ters’ T1 time as a measure for the presence of paramag-
41
+ netic noise gains momentum in biological applications
42
+ [7, 12]. Individual ferritin proteins have been detected
43
+ [23] and relaxometry has been applied to detect radicals
44
+ even inside cells [24–27].
45
+ Especially in the field of biology, T1 measurement
46
+ schemes are often conducted only with optical excita-
47
+ tion of the NV− centers, while the readout of their spin
48
+ states is realized by detection of the ensemble’s fluores-
49
+ cence intensity. However, recent results indicate that a
50
+ second process impeding the NV− centers’ fluorescence
51
+ signal is present in relaxometry measurements [20, 28–
52
+ 31]. The laser pulse that is fundamental for preparation
53
+ ∗ Author
54
+ to
55
+ whom
56
+ correspondence
57
+ should
58
+ be
59
+ addressed:
60
61
+ of the NV− centers’ spin state can additionally ionize the
62
+ NV− center to its neutrally-charged state, NV0. Conver-
63
+ sion under illumination and back-conversion in the dark
64
+ influence the NV− centers’ fluorescence signal, compli-
65
+ cating a seemingly simple measurement. A quantitative
66
+ determination of the unwanted contribution of the NV0
67
+ state to the NV− relaxometry data is, however, elusive.
68
+ In this work, we compare the results of two relaxometry
69
+ schemes well-known in literature for the same nanodi-
70
+ amond at varying laser powers. Additionally, we intro-
71
+ duce a novel method to extract the ratio of the two NV
72
+ charge states from the NV centers’ fluorescence spectra
73
+ throughout the entire measurement sequence to give an
74
+ insight into the vivid NV charge dynamics we observe
75
+ in our data.
76
+ A level scheme of the NV center in diamond is de-
77
+ picted in Fig. 1, including the negatively-charged NV−
78
+ [32–34], the neutrally-charged NV0 and transitions from
79
+ NV− to NV0 under green illumination [35, 36]. We in-
80
+ clude transitions independent of excitation power from
81
+ the NV0’s ground state to NV−, reflecting the observa-
82
+ tion of recharging processes in the dark in [28, 29] and
83
+ in this work.
84
+ Using a 520 nm laser, we non-resonantly excite the
85
+ NV− centers from their triplet ground state 3A2 to the
86
+ electronically-excited state 3E. Because 3E’s states mS =
87
+ ±1 are preferentially depopulated via the NV− centers’
88
+ singlet states 1A1 and 1E, illumination with a green laser
89
+ will spin polarize the NV− centers into their ground
90
+ spin state mS = 0 [34].
91
+ The T1 time describes how
92
+ long this spin polarization persists until the spin popu-
93
+ lation decays to a thermally mixed state [34]. It can reach
94
+ up to 6 ms in bulk diamonds at room temperature [37]
95
+ and is influenced by paramagnetic centers within the
96
+ arXiv:2301.01063v1 [quant-ph] 3 Jan 2023
97
+
98
+ 2
99
+ host diamond or on its surface [38, 39]. In the simplest
100
+ T1 measurement scheme, spin polarization is achieved
101
+ by a laser pulse, followed by a second readout-laser
102
+ pulse after a variable relaxation time τ. Besides differ-
103
+ ent durations, the two laser pulses are identical. There-
104
+ fore, the readout pulse is capable of spin-polarizing and
105
+ ionizing the NV-center ensemble as well as the initial-
106
+ ization pulse. Additionally, the spin-polarization pulse
107
+ provides information about the charge-conversion pro-
108
+ cesses during laser excitation.
109
+ To determine the T1 time of NV− centers of a spe-
110
+ cific orientation in the diamond crystal, coherent spin
111
+ manipulation is introduced in these measurements [38].
112
+ Here, a resonant microwave π pulse transfers the pop-
113
+ ulation of these NV− centers from mS = 0 to mS = +1
114
+ or mS = −1 after the spin-polarization pulse. A sec-
115
+ ond laser pulse is used for the readout of the spin state.
116
+ Repetition of the sequence with the π pulse omitted and
117
+ subtracting the readout signals from each other yields a
118
+ spin-polarization signal as a function of τ that is robust
119
+ against background fluorescence [38, 40].
120
+ In the following, we present our experimental sys-
121
+ tem in Section II. Our results are divided into two main
122
+ parts. We first analyze fluorescence spectra of NV cen-
123
+ ters in a single nanodiamond to assign concentration ra-
124
+ tios to count ratios measured with SPCMs in Section III.
125
+ This knowledge allows us to quantify the NV0 contribu-
126
+ tion during the spin-relaxation dynamics in Section IV.
127
+ FIG. 1. Level scheme of the NV center in diamond. Depicted
128
+ are levels of the negatively-charged NV− and the neutrally-
129
+ charged NV0 and transitions between the two charge states.
130
+ Gray arrows show transitions between NV−’s triplet and sin-
131
+ glet states, mediated via intersystem crossing (ISC). Green ar-
132
+ rows denote transitions driven by a green laser, red and or-
133
+ ange arrows mark the fluorescence of the NV charge states.
134
+ Light-green dashed arrows between mS states are transitions
135
+ driven by microwave radiation at 2.87 GHz at zero magnetic
136
+ field. Additionally, the light-green dashed arrows represent
137
+ the relaxation of the spin-polarized state to a thermally mixed
138
+ state without illumination (T1). The purple dashed arrows de-
139
+ note charge transfer processes in the dark.
140
+ II.
141
+ EXPERIMENTAL SYSTEM
142
+ We
143
+ perform
144
+ our
145
+ studies
146
+ on
147
+ a
148
+ single
149
+ nanodia-
150
+ mond
151
+ crystal
152
+ of
153
+ size
154
+ 750 nm
155
+ commercially
156
+ avail-
157
+ able
158
+ from
159
+ Adamas
160
+ Nano
161
+ as
162
+ water
163
+ suspension
164
+ (NDNV/NVN700nm2mg).
165
+ As specified by the man-
166
+ ufacturer,
167
+ the nanodiamonds’ NV concentration is
168
+ [NV] ≈ 0.5 ppm, which is about 2 × 104 NV centers per
169
+ diamond.
170
+ For sample preparation, the suspension is
171
+ treated in an ultrasonic bath to prevent the formation of
172
+ crystal agglomerates. We spin-coat the nanodiamonds
173
+ to a glass substrate and subsequently remove the sol-
174
+ vent by evaporating the residual water on a hot contact
175
+ plate.
176
+ To probe the NV centers in a single nanodiamond, we
177
+ use a microscope consisting of an optical excitation and
178
+ detection section and a microwave setup, as shown in
179
+ Fig. 2. A CW-laser source of wavelength λ = 520 nm
180
+ is used to optically excite the NV centers with a max-
181
+ imum laser power of 4.9 mW.
182
+ The laser beam is fo-
183
+ 50:50 NPBS
184
+ NF 514 nm
185
+ DM 550 nm
186
+ laser
187
+ 520 nm
188
+ AOM
189
+ objective
190
+ sample
191
+ permanent magnet
192
+ MW antenna
193
+ LP 550 nm
194
+ ND1
195
+ ND2
196
+ SP 625 nm
197
+ LP 665 nm
198
+ to SPCM2
199
+ > 665 nm
200
+ to SPCM1
201
+ < 600 nm
202
+ to spectrometer
203
+ spectrometer
204
+ camera
205
+ tube lens
206
+ grating
207
+ (a)
208
+ (b)
209
+ FIG. 2.
210
+ Experimental setup for recording NV fluorescence
211
+ spectra and relaxometry data. In both setups, the excitation
212
+ is the same, but the detection sections are different for the re-
213
+ spective application. (a) NV centers in a single crystal nanodi-
214
+ amond are excited by a 520 nm-laser in combination with an
215
+ acousto-optic modulator (AOM). The light stemming from the
216
+ sample is filtered by a dichroic mirror (DM), a longpass filter
217
+ (LP) and a notch filter (NF) with given wavelenghts and passes
218
+ a non-polarizing beamsplitter (NPBS). The remaining fluores-
219
+ cence is spectrally resolved on a camera chip. This setup is
220
+ used for the measurement of the NV fluorescence spectra. (b)
221
+ The NV fluorescence is split into two arms of a beamsplitter,
222
+ additionally filtered with an LP or a shortpass filter (SP) and
223
+ detected with fiber-coupled SPCMs. The SP is tilted to only
224
+ transmit fluorescence below 600 nm.
225
+ To keep the detectors
226
+ below saturation, neutral-density (ND) filters are used. Lu-
227
+ minescence above 665 nm (NV− fluorescence) is detected in
228
+ SPCM2, while light below 600 nm (NV0 fluorescence) is de-
229
+ tected in SPCM1. Transitions of the NV− centers’ spin states
230
+ mS are driven with a microwave (MW) antenna. This setup is
231
+ used for the measurement of the charge-state dependent relax-
232
+ ometry.
233
+
234
+ 3
235
+ cused to a spot-size diameter of 700 nm (1/e2 diame-
236
+ ter), reaching a maximum intensity of ∼ 2500 kW cm−2.
237
+ Pulses are generated by an AOM with an edge width of
238
+ about 120 ns. Laser light is guided through an objective
239
+ (NA = 0.5, WD = 2.1 mm) and focused at the position
240
+ of the nanodiamond. Fluorescent light stemming from
241
+ the sample is guided back through the objective and fil-
242
+ tered by a dichroic mirror with a cut-on wavelength of
243
+ 550 nm. Next, the fluorescence light is filtered by an ad-
244
+ ditional 550 nm-longpass filter and a 514 nm-notch filter
245
+ to prevent detection of reflected laser light. The filtered
246
+ fluorescence light is branched at a 50:50 non-polarizing
247
+ beamsplitter, giving the possibility to further filter the
248
+ luminescence and collect it in two separate detectors. In
249
+ particular, our setup allows for tailoring the transmitted
250
+ wavelengths to the spectral regions, where either pho-
251
+ ton emission from the neutral or the negative NV charge
252
+ state dominates in each beam path individually. Thus,
253
+ we can easily discriminate between the emission of both
254
+ charge states in our measurements. In this work, we
255
+ make use of different detectors. While for spectral anal-
256
+ ysis of the NV centers’ fluorescence, we use a spectrom-
257
+ eter (Fig. 2 (a)), we employ two single-photon counting
258
+ modules (SPCMs) as detectors for our spin-relaxation
259
+ measurements (Fig. 2 (b)) in combination with a time-
260
+ to-digital converter.
261
+ Microwave signals are generated, amplified, and
262
+ brought close to the nanodiamond using a microwave
263
+ antenna structure written on a glass substrate.
264
+ All
265
+ experiments are carried out under ambient conditions
266
+ and in an external magnetic field in the order of 12 mT
267
+ caused by a permanent magnet to split the NV centers’
268
+ ODMR resonances. In our ODMR spectrum, eight reso-
269
+ nances appear because of the four existing orientations
270
+ of NV centers in the single diamond crystal. We select
271
+ one resonance to drive Rabi oscillations, from which we
272
+ determine a π-pulse length of 170 ns.
273
+ III.
274
+ FLUORESCENCE SPECTRA
275
+ A.
276
+ Setup
277
+ To spectrally resolve the NV centers’ fluorescence, we
278
+ use a spectrometer. The incoming fluorescence light is
279
+ dispersed at a grating (600 grooves/mm), and an achro-
280
+ matic tube lens translates the angle dispersion into a
281
+ spatial dispersion. Thus, the detection of light of dif-
282
+ ferent wavelengths at different positions of a camera’s
283
+ chip is facilitated, and spectra are obtained from 500 nm
284
+ to 760 nm. With this setup, we achieve a resolution of
285
+ ∆λ ≈ 0.19 nm/pixel. Each spectrum consists of a mean
286
+ of at least 20 spectra recorded at each laser power. We
287
+ correct the spectra for the wavelength-dependent prop-
288
+ erties of optical elements in the beam path and subtract
289
+ a background.
290
+ B.
291
+ Concentration ratio assignment
292
+ Corrected fluorescence spectra of a monocrystalline
293
+ nanodiamond for excitation laser powers from 1 % to
294
+ 100 % are depicted in Fig. 3 (a). Two features, the NV0s’
295
+ ZPL at ∼ 575 nm [41] and the NV−s’ ZPL at ∼ 639 nm
296
+ [42] are clearly visible.
297
+ The overlapping fluorescence
298
+ spectra of both NV charge states show phonon broad-
299
+ ening. Conform with the observation in [1], but con-
300
+ trary to the results in [31], the NV0s’ ZPL intensity
301
+ increases with higher laser power with respect to the
302
+ NV−s’ ZPL in our sample. These results indicate a lower
303
+ [NV−]/[NV0] ratio at higher laser powers and thus an
304
+ increasing charge conversion for higher powers.
305
+ We obtain area-normalized extracted spectra for NV−
306
+ and for NV0 from our recorded data as shown in
307
+ Fig. 3 (b). We conduct the spectra decomposition anal-
308
+ ysis of our spectra according to Alsid et al. and follow
309
+ the nomenclature given in reference [43]. The fraction of
310
+ [NV−] of the total NV concentration [NVtotal] is defined
311
+ (a)
312
+ (b)
313
+ FIG. 3. NV fluorescence spectra. (a) Spectra recorded at laser
314
+ powers from 1 % to 100 %. The NV0s’ ZPL at ∼ 575 nm and the
315
+ NV−s’ ZPL at ∼ 639 nm are evident and marked in the spec-
316
+ trum. For better visibility, spectra were normalized to the sum
317
+ of the NV charge states’ ZPL intensities. (b) Area-normalized
318
+ decomposed basis functions for NV0 and NV−.
319
+
320
+ 4
321
+ by
322
+ [NV−]
323
+ [NVtotal] =
324
+ [NV−]
325
+ [NV−] + [NV0] =
326
+ c−
327
+ c− + κ520c0
328
+ .
329
+ (1)
330
+ Thus, the concentration ratio between NV charge
331
+ states [NV−]/[NV0] can be described with
332
+ [NV−]
333
+ [NV0] = c−
334
+ c0
335
+ 1
336
+ κ520
337
+ .
338
+ (2)
339
+ Here, c− and c0 describe the coefficients of the ba-
340
+ sis functions of NV− and NV0 used to assemble an
341
+ area-normalized composed spectrum at arbitrary laser
342
+ power with the condition c− + c0 = 1.
343
+ The correc-
344
+ tion factor κ520 translates this fluorescence ratio c−/c0
345
+ to the ratio of NV concentrations [NV−]/[NV0], taking
346
+ into account the different lifetimes and the absorption
347
+ cross sections of the two NV charge states [43]. Note
348
+ the different subscript in our work for the excitation
349
+ (a)
350
+ (b)
351
+ FIG. 4.
352
+ (a) NV fractions as a function of the laser power we
353
+ derived from spectral analysis. (b) NV ratios as a function of
354
+ the fluorescence count ratio in the two SPCMs applied as de-
355
+ tectors. Using the fit curve, we map the fluorescence count
356
+ ratio to an NV ratio during relaxometry measurements. For
357
+ fitting the [NV−]/[NV0] concentration ratio with f (x) = axn,
358
+ we obtain a = 0.0135 ± 0.0001 and n = 1.334 ± 0.004. The re-
359
+ ciprocal ratio [NV0]/[NV−] was not fit separately, displayed is
360
+ the function g(x) = a−1x−n.
361
+ wavelength of 520 nm compared to κ532 in [43].
362
+ Us-
363
+ ing ten spectra recorded at laser powers below the sat-
364
+ uration intensity and the deviations from the linearity
365
+ of the charge states’ fluorescence intensity with the ap-
366
+ plied laser power, we find κ520 = 2.03 ± 0.07.
367
+ The
368
+ error denotes the statistical error from a weighted fit
369
+ we performed on our measurement data.
370
+ For a de-
371
+ tailed description of the determination of κ520, see Ap-
372
+ pendix B. This value is within the reported value for
373
+ κ532 = 2.5 ± 0.5 for an excitation wavelength of 532 nm
374
+ [43].
375
+ We use our value for κ520 to calculate the frac-
376
+ tions of [NV−] and [NV0] and the concentration ratio
377
+ [NV−]/[NV0] as a function of the laser power.
378
+ As shown in Fig. 4 (a), the fraction of [NV−] is high for
379
+ low laser powers and decreases with higher laser pow-
380
+ ers. At the lowest laser power of 0.1 %, about 73 % of
381
+ the total NV concentration is [NV−], while at the high-
382
+ est laser power, only about 21 % [NV−] remain. Already
383
+ at laser powers of 2 % (∼ 51 kW cm−2), which is below
384
+ saturation intensity (≈ 100 kW cm−2) [44], [NV0] out-
385
+ weighs [NV−].
386
+ Therefore, a significant influence due
387
+ to charge conversion is to be considered in relaxometry
388
+ measurements.
389
+ Together with the recorded fluorescence-count-rate
390
+ ratio of both SPCMs for each laser power, we assign each
391
+ count-rate ratio ρSPCM2/ρSPCM1 a ratio [NV−]/[NV0].
392
+ The results are shown in Fig. 4 (b).
393
+ With an increas-
394
+ ing ratio of ρSPCM2/ρSPCM1, the ratio [NV−]/[NV0] in-
395
+ creases. We fit a power law (inverse-variance-weighted
396
+ fit) to the ratio [NV−]/[NV0] to be able to trace the NV-
397
+ concentration ratio over a broad range of count-rate ra-
398
+ tios during the spin-relaxation measurements. Thereby
399
+ we are able to quantitatively trace the contribution of
400
+ NV0 during the spin-relaxation dynamics of the NV−
401
+ centers in the following.
402
+ IV.
403
+ SPIN-RELAXATION MEASUREMENTS
404
+ A.
405
+ Setup and measurement sequences
406
+ To separately detect the fluorescence of NV− and NV0
407
+ throughout our measurement, different filters are used
408
+ in the optical beam path as depicted in Fig. 2 (b). Af-
409
+ ter passing a 50:50 non-polarizing beamsplitter, the sam-
410
+ ple’s transmitted fluorescence light is guided through a
411
+ 665 nm-longpass filter, and mainly NV− fluorescence is
412
+ detected. For the luminescence reflected by the beam-
413
+ splitter, we use a tilted 625 nm-shortpass filter to collect
414
+ NV0 fluorescence below 600 nm. Neutral-density filters
415
+ are added in front of the beamsplitter and within its
416
+ transmitted beam path to keep the SPCMs below sat-
417
+ uration.
418
+ For determining the longitudinal spin relaxation time
419
+ T1, we conduct and compare two different and fre-
420
+ quently used pulsed-measurement schemes, which we
421
+
422
+ 5
423
+ term P1 and P2 in the following. These two pulse se-
424
+ quences are depicted in Fig. 5.
425
+ In the pulsed sequence P1, we choose an initialization
426
+ pulse of 200 µs duration to spin polarize the NV-center
427
+ ensemble to their spin states mS = 0. We apply a 5 µs
428
+ normalization pulse 1 µs after the initialization pulse to
429
+ probe the fluorescence intensity before a variable relax-
430
+ ation time τ in gate Cπ
431
+ 1 . To assure a depopulation of the
432
+ NV− centers’ singlet states, we choose the time between
433
+ the two pulses to be longer than the singlet lifetimes of
434
+ τmeta ≈ 150 ns at room temperature [45]. Approximately
435
+ 1.5 µs into τ, a resonant π pulse is applied. After τ, a
436
+ readout pulse of duration 5 µs probes the fluorescence of
437
+ both NV centers’ charge states in gate Rπ. Subsequently,
438
+ the sequence is repeated with the π pulse omitted, ob-
439
+ taining fluorescence intensities in gates C1 and R. The
440
+ spin polarization as a function of τ for NV− is obtained
441
+ by subtracting the fluorescence counts in Rπ from the
442
+ counts in gate R. Details on measurement sequence P1
443
+ can be found in [38, 40]. Sequence P1 provides a tech-
444
+ nique for determination of the NV− centers’ T1 time ro-
445
+ bust against background fluorescence [38, 40] and is be-
446
+ lieved to be unaffected by charge-state conversion [29].
447
+ Analysis of the second half of P1 represents an all-
448
+ optical T1 measurement scheme as often applied in bi-
449
+ ology [7, 24, 27]. Further, using only the second half
450
+ of this sequence, we are able to obtain the fluorescence
451
+ evolution as a function of τ for NV− and NV0, includ-
452
+ ing effects caused by the charge-state conversion. Only
453
+ taking into account the signal without the π pulse ap-
454
+ laser
455
+ laser
456
+ MW
457
+ MW
458
+ detection
459
+ detection
460
+ (a) Sequence P1
461
+ (b) Sequence P2
462
+ FIG. 5.
463
+ Longitudinal spin relaxation time (T1) measurement
464
+ schemes applied in this work. The beginning of the second
465
+ half of each sequence is indicated by a dashed line. (a) Se-
466
+ quence P1.
467
+ The NV ensemble is spin polarized by a laser
468
+ pulse. Next, the fluorescence is detected by a control pulse
469
+ (orange). Within the variable relaxation time τ, a resonant π
470
+ pulse is applied (light-green). The spin state is read out by a
471
+ third laser pulse (purple). The sequence is repeated with the
472
+ π pulse omitted after a pause time tp. (b) Sequence P2. As
473
+ opposed to P1, the readout pulse has the same length as the
474
+ spin-polarization pulse. The control gates C1 within the ini-
475
+ tialization pulse and C2 within the readout pulse will be com-
476
+ pared in this work.
477
+ plied, we obtain the fluorescence evolution by dividing
478
+ the fluorescence counts in gate R by the counts in gate
479
+ C1. Charge conversion during the relaxometry measure-
480
+ ment has an effect on the NV− fluorescence as well as
481
+ on the NV0 fluorescence during the relaxation time τ.
482
+ Therefore, by only evaluating P1’s second half, we gain
483
+ information about the charge conversion taking place
484
+ alongside the spin relaxation. However, to obtain the
485
+ NV− centers’ T1 time, the full sequence P1 is evaluated.
486
+ As opposed to P1, P2 uses a normalization probe after
487
+ the readout of the NV centers’ fluorescence [19, 21, 46].
488
+ We choose the laser readout pulse to have the same du-
489
+ ration as the initialization pulse (200 µs) and carry out
490
+ the readout gates Rπ and R in the first 5 µs and the nor-
491
+ malization probes Cπ
492
+ 2 and C2 in the last 5 µs of the read-
493
+ out pulse. Scheme P2 assumes the NV centers to have
494
+ the same fluorescence intensity at the end of the second
495
+ pulse as at the end of the first pulse. To test this notion,
496
+ we apply second normalization gates, Cπ
497
+ 1 and C1, within
498
+ the last 5 µs of the initialization pulse and compare the
499
+ results for both normalized data.
500
+ Between readout and the upcoming initialization
501
+ pulse, we insert a pause time tp between the sequences
502
+ of 1 ms, which is in the order of T1, to minimize build-up
503
+ effects from spin polarization during the cycle for both
504
+ sequences. Each cycle is repeated 50 000 times, and the
505
+ whole measurement is swept multiple times. The se-
506
+ quences are repeated for different laser powers, ranging
507
+ from 0.1 % to 11 % of the maximum laser power.
508
+ B.
509
+ Results and discussion
510
+ In this section, we present and compare the experi-
511
+ mental results for the spin-relaxation measurements for
512
+ both sequences, P1 and P2.
513
+ Using our experimental
514
+ setup as described in Section IV A, we observe laser-
515
+ power-dependent dynamics in the NV− and NV0 flu-
516
+ orescence throughout our measurement. Fig. 6 depicts
517
+ an example for the fluorescence as a function of τ for
518
+ the NV0 fluorescence recorded at a laser power of 11 %
519
+ with sequence P1. These results show the normalized
520
+ fluorescence as a function of τ obtained from the second
521
+ part of the measurement sequence without a microwave
522
+ π pulse, dividing the fluorescence counts in gate R by
523
+ the counts in gate C1. The normalized fluorescence as
524
+ a function of τ decays exponentially. Different from the
525
+ dynamics of the NV− center, we observe similar behav-
526
+ ior for the NV0 fluorescence at all laser powers. We fit a
527
+ biexponential function of type
528
+ f 0(τ) = A e−τ/TR,1 + B e−τ/TR,2 + d
529
+ (3)
530
+ to our measurement data and obtain two recharge times
531
+ in the order of TR,1 = 100 µs and TR,2 = 2.0 ms for
532
+ all laser powers. We assign these time constants TR to
533
+ an electron-recapturing process of NV0 during the dark
534
+
535
+ 6
536
+ time τ, after an ionization from NV− to NV0 has pre-
537
+ viously taken place in the initializing laser pulse. Re-
538
+ markably, this process occurs even at the lowest laser
539
+ power.
540
+ Presumably, the presence of two components
541
+ of TR is due to the different environments of NV cen-
542
+ ters concerning charge transfer sites. Vacancies or elec-
543
+ tronegative surface groups on the diamond surface are
544
+ known to promote a charge conversion of NV− to NV0
545
+ [47, 48]. We assume that the NV environment similarly
546
+ affects the recharging process in the dark. Therefore, we
547
+ attribute one component of TR to NV centers closer to
548
+ the nanodiamond surface and the other to NV centers
549
+ more proximate to the center of the crystal. We empha-
550
+ size that both TR,1 and TR,2 we report match previously
551
+ reported values for TR of 100 µs [28] and (3 ± 1) ms [20]
552
+ and underline that they simultaneously appear as two
553
+ components in our sample. We find that neither TR,1
554
+ nor TR,2 changes as a function of the laser power. The
555
+ coefficients of the exponential functions A and B do not
556
+ change significantly from 1 % to 11 % laser power. How-
557
+ ever, for the lowest laser power of 0.1 % A and B are
558
+ smaller. We attribute this to little NV0 fluorescence ob-
559
+ served at this low laser power due to less charge conver-
560
+ sion, resulting in a lower signal-to-noise ratio (SNR) for
561
+ the NV0 fluorescence.
562
+ Further, we present the results for the normalized
563
+ NV− fluorescence as a function of τ in Fig. 7 (a) for
564
+ ascending laser powers. We conducted the experiment
565
+ with sequence P1, and this data refers to the results with
566
+ the π pulse omitted.
567
+ The laser-power-dependent dy-
568
+ namics of NV− and NV0 result in a drastic change of
569
+ shape of the normalized fluorescence as a function of τ.
570
+ While we observe an exponential decay in the lowest
571
+ laser power, we find an inverted exponential profile of
572
+ the NV− fluorescence at 11 % laser power. In-between
573
+ laser powers show both an exponential decay and an in-
574
+ 0
575
+ 2
576
+ 4
577
+ 6
578
+ 8
579
+ 10
580
+ τ (ms)
581
+ 0.7
582
+ 0.8
583
+ 0.9
584
+ normalized fluorescence
585
+ R/C1
586
+ biexponential fit
587
+ FIG. 6.
588
+ NV0 fluorescence as a function of τ as recorded
589
+ with sequence P1 (second half) by division of the fluorescence
590
+ counts in R by the counts in C1 for 11 % laser power. With
591
+ a biexponential fit function, we find TR,1 = (109 ± 7) µs and
592
+ TR,2 = (2.1 ± 0.1) ms.
593
+ crease, present in the fluorescence. This phenomenon of
594
+ inverted exponential components in the recorded nor-
595
+ malized fluorescence during a T1 measurement has been
596
+ reported by [29] and attributed to a recharging process
597
+ of NV0 to NV− during τ. However, a complete flip of
598
+ the fluorescence alone by a laser power increase has not
599
+ been reported so far. Remarkably, this behavior indi-
600
+ cates that NV0 to NV− charge dynamics outweigh the
601
+ NV− ensemble’s spin relaxation at high laser powers in
602
+ our sample.
603
+ To better understand the NV− power-dependent be-
604
+ havior, we use the results from the spectral analysis to
605
+ map the ratios of [NV−]/[NV0] to our relaxometry mea-
606
+ surement data of sequence P1. The ratio [NV−]/[NV0]
607
+ as a function of τ for all laser powers is summarized
608
+ in Fig. 8 (a) and displayed in more detail in Fig. C1 (a).
609
+ For all laser powers, even for the lowest, which lies well
610
+ below saturation intensity, we observe an increase of
611
+ [NV−]/[NV0] as a function of τ in the readout pulse R.
612
+ We conclude that during τ a re-conversion from NV0 to
613
+ NV− takes place in the dark, after ionization of NV−
614
+ had occurred in the initialization pulse. While for the
615
+ lowest power, the ratio [NV−]/[NV0] increases from 4.0
616
+ to 7.6 over the variation of τ, [NV0] outweighs [NV−] at
617
+ 11 % laser power throughout the entire relaxation mea-
618
+ surement, see Fig. C1 (a). As shown in Fig. 8 (a), the ra-
619
+ tios increase by a factor of ∼ 2 from shortest to longest
620
+ τ for all laser powers.
621
+ The ratios [NV−]/[NV0] we find in control pulse C1
622
+ as a function of τ also show a power-dependent be-
623
+ havior. While the ratio increases as a function of τ in
624
+ the lowest power, it is constant in the control pulse for
625
+ the highest power.
626
+ These power-dependent recharge
627
+ processes in the control pulse we observe appear most
628
+ likely due to build-up effects during the measurement
629
+ cycle, as we explain in the following. At low powers,
630
+ the initializing laser pulse spin polarizes the NV− cen-
631
+ ters but does not ionize to a steady state of NV− and
632
+ NV0. For short τ, the re-conversion in the dark of NV0
633
+ to NV− has not completed, and the following laser pulse
634
+ continues to ionize the NV− centers. However, at the
635
+ highest power, each initialization pulse efficiently ion-
636
+ izes to a steady state of the two NV charge states, reach-
637
+ ing [NV−]/[NV0] ≈ 0.44. These results clearly show
638
+ that the normalization in the sequence we perform is
639
+ mandatory to only detect the change in the relative flu-
640
+ orescence during the relaxation time τ and minimize in-
641
+ fluences due to charges passed through cycles.
642
+ At the lowest laser power of 0.1 %, we observe the
643
+ highest ratio of [NV−]/[NV0] and therefore expect the
644
+ most negligible influences of charge conversion on the
645
+ NV−s’ spin relaxation. Thus, we fit a monoexponential
646
+ function to the relative fluorescence as a function of τ
647
+ and obtain T1 = (1.42 ± 0.06) ms for the NV− ensemble
648
+ in the nanodiamond. To further underline the necessity
649
+ of a normalization of the fluorescence intensity, we fit a
650
+
651
+ 7
652
+ (a)
653
+ (b)
654
+ (c)
655
+ FIG. 7. NV− fluorescence as a function of τ, recorded with sequence P1 for different laser powers. Insets show the characteristics
656
+ of the sequences applied. (a) NV− fluorescence as obtained from the second half of P1, dividing the fluorescence counts in R by
657
+ the counts in C1. We observe a transition from an exponential decay of the fluorescence to an inverted exponential profile with
658
+ rising laser powers. For 0.1 % laser power, we perform a monoexponential fit and obtain T1 = (1.42 ± 0.06) ms. For laser powers
659
+ from 1 % to 11 %, we fit a sum of three exponential functions as explained in the text. (b) Spin polarization of the NV− ensemble
660
+ as obtained from the full sequence P1, subtracting the fluorescence counts in Rπ from the counts in R. Unlike (a), we observe an
661
+ exponential decay at all laser powers in this measurement data. However, with increasing laser power, we observe a decrease
662
+ in the amplitude of the exponential function. Fitting a monoexponential function to the data at 0.1 % laser power, we obtain
663
+ T1 = (1.5 ± 0.1) ms, consistent with the T1 time we find in (a) at the same laser power. (c) NV− fluorescence as obtained from
664
+ the second half of P2, dividing the fluorescence counts in R by the counts in C1 or C2. Fitting monoexponential functions to the
665
+ fluorescence normalized by the counts in C1 or C2 yields T1 = (1.54 ± 0.06) ms or T1 = (1.50 ± 0.07) ms, respectively, consistent
666
+ with the results named above. The NV− fluorescence qualitatively behaves as in sequence P1, see (a), and is fitted accordingly.
667
+ On the contrary, the shape of the fluorescence depends on the position of the normalization gate, C1 or C2, especially visible at
668
+ 4 % laser power.
669
+ monoexponential function to the non-normalized bare
670
+ NV− fluorescence detected in R at 0.1 % laser power.
671
+ We obtain a T1 time of (0.94 ± 0.05) ms, see Fig. C2 (a),
672
+ which is drastically lower than the T1 time retrieved
673
+ with normalization by the fluorescence counts in C1.
674
+ For higher laser powers, we fit the normalized data
675
+ with a function of type
676
+ f −(τ) = −A e−τ/TR,1 − B e−τ/TR,2 + C e−τ/T1 + d
677
+ (4)
678
+ and restrict the time constants to TR,1 = 100 µs, TR,2 =
679
+ 2.0 ms and T1 = 1.4 ms. With this, we assume that the
680
+ decay of [NV0] causes an increase of [NV−] and, there-
681
+ fore, their fluorescence. Thus, the NV− fluorescence is
682
+ best described by a sum of an exponential decay due
683
+ to the loss of spin polarization and a biexponential in-
684
+ verted component due to the recharging process of NV0
685
+ to NV− in the dark. As shown in Fig. 7 (a), our fit func-
686
+ tion Eq. (4) describes the measurement data from 1 % to
687
+ 11 % laser power very well. We emphasize that the mea-
688
+ surement data for 1 % laser power does not visibly ap-
689
+ pear to show this triexponential behavior. Fitting a mo-
690
+ noexponential function to the NV− fluorescence at 1 %
691
+ laser power, however, results in T1 = (1.28 ± 0.06) ms,
692
+ see Fig. C2 (b), which deviates significantly from the
693
+ value obtained at lower laser power.
694
+ Measurement
695
+ sequence
696
+ P1
697
+ is
698
+ a
699
+ well-established
700
+ method to accurately measure the T1 time of the NV−
701
+
702
+ 8
703
+ centers excited by a resonant π pulse [38].
704
+ Since the
705
+ π pulse only acts on the negatively-charged NV cen-
706
+ ters, it is said to be independent of charge conversion
707
+ processes alongside the spin polarization [29]. We com-
708
+ pare the results we obtain in the complete measurement
709
+ sequence P1, subtracting fluorescence intensities in Rπ
710
+ from the counts in R, to the result we gave for the T1 time
711
+ above without the π pulse taken into account. Remark-
712
+ ably, although in Fig. 7 (a) we observe vivid dynamics
713
+ ranging from exponential decay to an inverted exponen-
714
+ tial profile in the NV− fluorescence as a function of τ,
715
+ the complete sequence P1 yields a monoexponential de-
716
+ crease for all laser powers, see Fig. 7 (b). For the lowest
717
+ laser power, we obtain T1 = (1.5 ± 0.1) ms for sequence
718
+ P1 comparing the fluorescence intensity with and with-
719
+ out the resonant π pulse. This value matches the pre-
720
+ viously determined T1 time when only considering the
721
+ normalized signal without the π pulse for the lowest
722
+ laser power. It does not match the T1 time obtained from
723
+ the monoexponential fit we performed on the measure-
724
+ ment data for 1 % laser power, stressing the effects of
725
+ (a)
726
+ (b)
727
+ FIG. 8. Changes of the NV-charge-state ratio during the relax-
728
+ ometry measurement from lowest to highest τ. (a) Sequence
729
+ P1. The change of the ratio [NV−]/[NV0] is constant as a func-
730
+ tion of the laser power in the readout pulse R, while it decays
731
+ in the control pulse C1. (b) Sequence P2. The change of the
732
+ ratio [NV−]/[NV0] in readout and control pulses show qual-
733
+ itatively the same behavior as in sequence P1. However, the
734
+ changes in the NV-charge-state ratio in C1 and C2 as a func-
735
+ tion of the laser power differ.
736
+ NV charge conversion within this measurement and the
737
+ necessity for consideration of the two components TR,1
738
+ and TR,2 in a triexponential fit function.
739
+ However, the measurement sequence P1 is not en-
740
+ tirely unaffected by the charge conversion process. Al-
741
+ though the resonant π pulse does not directly act on
742
+ the NV0 center (we observe no difference in the signals
743
+ with and without the π pulse), the fluorescence contrast
744
+ in the measurement decreases because of NV0 to NV−
745
+ conversion. This lower contrast becomes noticeable in
746
+ Fig. 7 (b) due to the decaying amplitude of the mono-
747
+ exponential function with increasing laser power. The
748
+ effect of NV− spin depolarization due to charge conver-
749
+ sion has been previously investigated in [28, 35]. As a
750
+ measure for the reliability of our measurement result,
751
+ we use the area under the curves showing spin polar-
752
+ ization as a function of τ for each laser power as a fluo-
753
+ rescence contrast in the respective measurement. We di-
754
+ vide this value by the Root mean squared error (RMSE)
755
+ value we obtain from the fit result to account for fluc-
756
+ tuations in our measurement data and define this value
757
+ contrast/RMSE as the SNR. In Fig. 9, we show the SNR
758
+ as a function of the laser power. In addition, we dis-
759
+ play the value for T1 we obtain in the same graph. With
760
+ the SNR decreasing, we observe a decrease in T1, accom-
761
+ panied by a larger standard deviation with higher laser
762
+ power. We conclude that the T1 time we measured at
763
+ the lowest laser power is the most reliable one due to the
764
+ highest SNR. In addition, we note that T1 seems to decay
765
+ as a function of the laser power, although T1 should be
766
+ independent of the excitation power. We attribute this
767
+ decay of T1 to the lower SNR in the measurements at
768
+ higher laser power due to increased charge conversion.
769
+ From the results of sequence P1, we conclude that the
770
+ normalization in the T1 measurement is essential to re-
771
+ 0
772
+ 5
773
+ 10
774
+ laser power (%)
775
+ 5
776
+ 10
777
+ 15
778
+ 20
779
+ 25
780
+ 30
781
+ SNR (arb. units)
782
+ 0.6
783
+ 0.8
784
+ 1.0
785
+ 1.2
786
+ 1.4
787
+ 1.6
788
+ T1 (ms)
789
+ SNR
790
+ T1
791
+ FIG. 9. SNR and T1 time as a function of the laser power, ob-
792
+ tained from measurements performed in sequence P1. With
793
+ higher laser power, the SNR decreases, and so does the T1
794
+ time.
795
+ The standard error of T1 that we obtain from mono-
796
+ exponential fits increases with higher laser power. The data
797
+ is extracted from equal numbers of repetitions of relaxometry
798
+ measurements for each laser power.
799
+
800
+ 9
801
+ flect the charge-state processes alongside the NV− en-
802
+ semble’s spin relaxation. Besides P1, sequence P2 is used
803
+ in literature to determine a single NV center’s [46] or
804
+ an ensemble’s [19] T1 time. While the π pulse is often
805
+ omitted in these sequences, we chose to implement it
806
+ for low laser powers for better comparison to the results
807
+ obtained in P1. For laser powers starting from 3 %, we
808
+ repeated the sequence without the π pulse and calcu-
809
+ lated the mean values of the control and readout data
810
+ taken. The results for sequence P2 with a π pulse in-
811
+ cluded for 0.1 % laser power are shown in Fig. C2 (c).
812
+ Using the data for 0.1 % laser power and subtracting Rπ
813
+ from R, we obtain T1 = (1.45 ± 0.09) ms, which is the
814
+ same result as in sequence P1. Since both sequences are
815
+ used in the literature to measure an NV− ensemble’s T1
816
+ time, we expect them to produce the same result for our
817
+ NV ensemble when neglecting additional effects due
818
+ to charge conversion. At this low laser power, charge
819
+ conversion is inferior to spin relaxation. Therefore, the
820
+ T1 times we obtain from both sequences do not differ.
821
+ However, with higher laser power, charge conversion
822
+ prevails, and both NV charge states’ fluorescence sig-
823
+ nals are greatly affected by recharge in the dark.
824
+ In order to evaluate the result of sequence P2 without
825
+ the π pulse applied, we normalize the fluorescence in-
826
+ tensities. To this end, we divide the counts in R obtained
827
+ by the counts measured during the two control gates C1
828
+ or C2, yielding two normalized fluorescence signals for
829
+ each NV charge state. This way, we obtain two normal-
830
+ ized fluorescence signals as a function of τ. If no charge
831
+ conversion effects were present in this measurement,
832
+ both signals for the normalized fluorescence should be
833
+ equal. However, as pointed out, charge conversion is
834
+ prominent in our sample, not only for high laser pow-
835
+ ers. We show the NV− fluorescence as a function of τ
836
+ we obtain from sequence P2 in Fig. 7 (c). Qualitatively
837
+ similar to sequence P1, we see a smooth transition from
838
+ an exponential decay at low laser powers to an inverted
839
+ exponential profile at high laser powers. Similarly as in
840
+ P1, we derive T1 = (1.54 ± 0.06) ms for normalization
841
+ with C1 and T1 = (1.50 ± 0.07) ms for normalization
842
+ with C2 for the lowest laser power. We emphasize that
843
+ all T1 times we derive from the normalized NV− fluo-
844
+ rescence in both sequences are equal within their stan-
845
+ dard errors. In addition, the values for TR,1 and TR,2 we
846
+ obtain from the NV0 fluorescence with sequence P2 are
847
+ the same as in sequence P1. We fit the NV− fluorescence
848
+ for laser powers from 1 % to 11 % in the same manner as
849
+ for P1 using Eq. (4) and the aforementioned values for
850
+ T1, TR,1 and TR,2. This triexponential fit function models
851
+ our data well, regardless of the normalization we use.
852
+ However, the amplitudes of the respective exponen-
853
+ tial functions differ depending on the normalization, C1
854
+ or C2, employed. Thus, the shapes of the fluorescence as
855
+ a function of τ differ with the gates used for normaliza-
856
+ tion, which is especially visible at 4 % laser power. To
857
+ understand the difference in the measurement results
858
+ that the positions of the normalization gate cause, we
859
+ take the ratios [NV−]/[NV0] into account. In Fig. C1 (b)
860
+ and (c), [NV−]/[NV0] as a function of τ for sequence P2
861
+ is displayed and summarized as a change from shortest
862
+ to longest τ in Fig. 8 (b) for each laser power. The ra-
863
+ tios as a function of τ behave similarly to as observed
864
+ with sequence P1 discussed above. We note that the ra-
865
+ tios we obtain in our measurement for the two control
866
+ gates C1 and C2 are different. For τ ≲ 1 ms the ratio
867
+ [NV−]/[NV0] is smaller for C2 than for C1, while for val-
868
+ ues τ ≳ 1 ms the opposite is the case, see Fig. C1 (c). For
869
+ the same reasons discussed in sequence P1, this effect is
870
+ prominent in laser powers up to 4 %. In contrast, for the
871
+ highest laser power, the ratios in the control gates are
872
+ approximately constant with τ and do not differ signifi-
873
+ cantly. As pointed out in the discussion of P1, the results
874
+ indicate that the first laser pulse does not ionize into a
875
+ steady state of [NV−]/[NV0], and the second laser pulse
876
+ continues to ionize NV− into NV0. Therefore, especially
877
+ for small values of τ, the ratio [NV−]/[NV0] is smaller in
878
+ C2 than in C1. For larger values of τ, recharge dynamics
879
+ of NV0 to NV− in the dark add to the different ratios of
880
+ [NV−]/[NV0] for both control gates. We do not exclude
881
+ additional effects due to continued spin polarization of
882
+ NV− in the second laser pulse, especially for low laser
883
+ powers.
884
+ It is for these reasons that in Fig. 8 (b) the changes of
885
+ [NV−]/[NV0] as a function of the laser power are higher
886
+ for C2 than for C1 for low powers and converge to the
887
+ same value for higher laser powers. We therefore at-
888
+ tribute the difference in the normalized fluorescences in
889
+ Fig. 7 (c) when normalizing to C1 or C2 to the differences
890
+ in [NV−]/[NV0] for C1 and C2, respectively.
891
+ Both the results from measurement sequences P1 and
892
+ P2 and the simultaneous mapping of [NV−]/[NV0] in-
893
+ dicate that a charge conversion from NV− to NV0 dur-
894
+ ing the spin-polarization pulse of a spin-relaxation mea-
895
+ surement is inevitable. We emphasize that a normal-
896
+ ization gate is mandatory to correctly display the fluo-
897
+ rescence dynamics of NV0 and NV− as a function of τ.
898
+ Comparison of the two control gates C1 and C2 shows
899
+ that the normalized fluorescence signal depends on the
900
+ positions of the gate used for normalization because of
901
+ charge conversion processes that take place alongside
902
+ the NV− ensemble’s spin relaxation.
903
+ V.
904
+ CONCLUSIONS
905
+ This work examines laser-power-dependent dynam-
906
+ ics of NV charge conversion within spin-relaxation mea-
907
+ surements of the negatively-charged NV centers in a sin-
908
+ gle nanodiamond. We present a new method of trac-
909
+ ing the ratio of [NV−] to [NV0] during our sequence, in
910
+ which we extract the relative concentrations of NV− to
911
+ NV0 from their fluorescence spectra and perform a map-
912
+ ping to fluorescence count ratios in two separate detec-
913
+
914
+ 10
915
+ tors. From the analysis of low-excitation intensity spec-
916
+ tra, we find κ520 = 2.03 ± 0.07. This correction factor
917
+ κ520 allows us to translate the fluorescence ratio of NV−
918
+ to NV0 to a concentration ratio, taking into account dif-
919
+ ferent lifetimes and absorption cross sections for the two
920
+ charge states. Combining our results, we conclude that
921
+ ionization of NV− to NV0 during the optical initializa-
922
+ tion and readout is inevitable and occurs even at low
923
+ laser powers. A recharge process in the dark of NV0 to
924
+ NV− significantly affects the NV− ensemble’s fluores-
925
+ cence during the spin-relaxation measurement. We find
926
+ the recharging in the dark to be biexponential with com-
927
+ ponents TR,1 = 100 µs and TR,2 = 2.0 ms. At high laser
928
+ powers, the effect of charge conversion outweighs spin
929
+ relaxation, making it impossible to accurately measure a
930
+ T1 time, even with a scheme involving a π pulse for two
931
+ reasons. Firstly, recharging effects of NV0 to NV− in the
932
+ dark dominate the NV− fluorescence signal. Secondly,
933
+ the measurement of T1 is crucially impeded by a dimin-
934
+ ished fluorescence contrast due to charge conversion. To
935
+ determine the NV− centers’ T1 time at low laser powers,
936
+ we find it necessary to conduct a pulsed sequence with
937
+ a normalization gate included. We prove the normal-
938
+ ization mandatory to accurately reflect the charge-state
939
+ dynamics as a function of τ and mitigate additional ef-
940
+ fects due to charge-state accumulation during the mea-
941
+ surement cycle. Additionally, comparing two pulsed se-
942
+ quences often used in the literature, we find that the po-
943
+ sition of the normalization gates plays an essential role
944
+ due to charge conversion during the measurement. We
945
+ emphasize that including a normalization gate directly
946
+ after the spin polarization before the relaxation time τ is
947
+ a simple method to accurately display the fluorescence
948
+ dynamics during the relaxation time. This way, com-
949
+ paring the fluorescence counts in the readout gate to the
950
+ counts in the control gate reliably reflects the spin relax-
951
+ ation and the charge dynamics in the relaxometry mea-
952
+ surement.
953
+ Overall, we emphasize that the results presented in
954
+ this work impact relaxometry schemes widely used in
955
+ biology, chemistry, and physics.
956
+ To further extend
957
+ this work, the effects of different duration of the spin-
958
+ polarization pulse and the readout pulse can be exam-
959
+ ined and give insight into the steady-state dynamics of
960
+ the NV centers. Further, the excitation of NV− can be
961
+ conducted at longer wavelengths, changing the charge-
962
+ state dynamics [49] and impacting the spin relaxation
963
+ results. The influence of different NV and nitrogen con-
964
+ centrations in diamonds of different sizes on the charge
965
+ dynamics can be considered to unravel the mechanisms
966
+ of charge conversion in the dark.
967
+ ACKNOWLEDGMENTS
968
+ We acknowledge support by the nano-structuring
969
+ center NSC. This project was funded by the Deutsche
970
+ Forschungsgemeinschaft
971
+ (DFG,
972
+ German
973
+ Research
974
+ Foundation)—Project-ID No.
975
+ 454931666.
976
+ Further,
977
+ I. C. B. thanks the Studienstiftung des deutschen Volkes
978
+ for financial support.
979
+ We thank Oliver Opaluch and
980
+ Elke Neu-Ruffing for providing the microwave antenna
981
+ in our experimental setup. Furthermore, we thank Sian
982
+ Barbosa, Stefan Dix, and Dennis L¨onard for fruitful
983
+ discussions and experimental support.
984
+ Appendix A: Methods
985
+ To understand the NV centers’ fluorescence evolu-
986
+ tion as a function of τ in terms of charge conversion,
987
+ we map the fluorescence count ratio detected in both
988
+ SPCMs to a ratio of NV− and NV0 throughout the
989
+ spin-relaxation measurement.
990
+ For this, we combine
991
+ the results of recorded NV spectra and spin-relaxation
992
+ measurements. We choose a single nanodiamond and
993
+ record fluorescence spectra at different laser powers us-
994
+ ing the setup in the configuration shown in Fig. 2 (a).
995
+ Both charge states, NV− and NV0, contribute to the
996
+ recorded spectra between 500 nm and 750 nm because
997
+ of the charge states’ overlapping phononic sidebands.
998
+ For further analysis, we decompose the obtained spec-
999
+ tra into NV− and NV0 basis functions as described by
1000
+ [43] using the spectra we recorded at the highest and
1001
+ lowest laser power. Employing our extracted basis func-
1002
+ tions, we obtain the fluorescence ratio of both NV charge
1003
+ states for all other laser powers with the help of MAT-
1004
+ LAB’s function nlinfit. We access the NV-charge-state
1005
+ ratio from the fluorescence ratio after determining the
1006
+ necessary correction factor κ520 [43]. A detailed descrip-
1007
+ tion of κ520’s derivation is given in Appendix B.
1008
+ Next, we assign the concentration ratio to a count ra-
1009
+ tio in our SPCM detectors. We alter the setup accord-
1010
+ ing to Fig. 2 (b). We illuminate the nanodiamond for
1011
+ 1 s with a given laser power and record the fluorescence
1012
+ counts in both SPCMs. Using the data for each laser
1013
+ power, we map the NV concentration ratio to a count
1014
+ ratio in both SPCMs. At this point, we stress that we
1015
+ do not obtain the NV concentration ratio through fluo-
1016
+ rescence count ratios in SPCMs, but by analysis of the
1017
+ NV centers’ fluorescence spectra. This method provides
1018
+ the advantage that any influence of NV0 fluorescence
1019
+ in SPCM2 (> 665 nm) can be neglected because only a
1020
+ count ratio is considered in our analysis and a mapping
1021
+ to previously-assigned concentration ratios performed.
1022
+ Appendix B: Determination of κ520
1023
+ This section describes how we retrieve the correction
1024
+ factor κ520 from our measurement data. We derive κ520
1025
+ similarly to as described in [43].
1026
+ We recorded fluorescence spectra of the single dia-
1027
+ mond crystal with laser powers well below saturation
1028
+ intensity with our setup shown in Fig. 2 (a). To achieve
1029
+
1030
+ 11
1031
+ these laser powers, an additional ND filter was used in
1032
+ our laser-beam path. We correct the spectra for different
1033
+ exposure times we set in our camera due to the differ-
1034
+ ent NV luminescence intensities at different laser pow-
1035
+ ers. We show the spectra we obtain for different laser
1036
+ powers in Fig. B1. As can be seen, the overall fluores-
1037
+ cence counts increase with increasing laser power. We
1038
+ perform the spectra analysis as described in the main
1039
+ text to derive the coefficients c− and c0.
1040
+ Below saturation intensity, the luminescence of NV−
1041
+ and NV0 should scale linearly with the laser power [43].
1042
+ However, due to charge conversion, we observe devia-
1043
+ tions from this linearity. The coefficients c− and c0 we
1044
+ obtain directly represent the amount of NV− and NV0
1045
+ fluorescence in the given spectra. We scale these factors
1046
+ with the total integration value of the spectra in Fig. B1
1047
+ for each laser power and obtain measured fluorescence
1048
+ counts for both NV charge states at each laser power.
1049
+ Further, we take the fluorescence counts for NV− and
1050
+ NV0 of the lowest-intensity spectrum recorded and scale
1051
+ it with the laser power. This way, we obtain calculated
1052
+ fluorescence counts for each NV charge state that strictly
1053
+ increase linearly with the laser power.
1054
+ These fluorescence counts for NV− and NV0, mea-
1055
+ sured and calculated, are shown in Fig. B2 as a func-
1056
+ tion of the laser power. We note that the measured NV−
1057
+ fluorescence is lower than the calculated linear integra-
1058
+ tion value, while the NV0 fluorescence is higher. We per-
1059
+ form a weighted linear fit (inverse-variance weighting)
1060
+ for each data set and compare the slopes to one another
1061
+ for each NV charge state. We divide the two slope ratios
1062
+ by each other and obtain κ520 = 2.03 ± 0.07, while we
1063
+ derive the error from the statistical error of the fits we
1064
+ performed.
1065
+ 550
1066
+ 600
1067
+ 650
1068
+ 700
1069
+ 750
1070
+ wavelength (nm)
1071
+ 0.0
1072
+ 0.2
1073
+ 0.4
1074
+ 0.6
1075
+ 0.8
1076
+ 1.0
1077
+ fluorescence counts
1078
+ ×103
1079
+ 0.1
1080
+ 0.2
1081
+ 0.3
1082
+ 0.4
1083
+ 0.5
1084
+ 0.6
1085
+ 0.7
1086
+ 0.8
1087
+ 0.9
1088
+ 1.0
1089
+ laser power (%)
1090
+ FIG. B1.
1091
+ NV fluorescence spectra recorded at laser pow-
1092
+ ers from 0.1 % to 1 %.
1093
+ The laser power is kept well below
1094
+ saturation intensity with a maximum laser power of ∼ 1 %
1095
+ (∼ 25 kW cm−2). The spectra were corrected for different cam-
1096
+ era exposure times used. An overall increase in the fluores-
1097
+ cence counts is observed with increasing laser power.
1098
+ (a)
1099
+ (b)
1100
+ FIG. B2.
1101
+ Determination of κ520. (a) Fluorescence counts for
1102
+ NV− as a function of the laser power. The red curve displays
1103
+ the fluorescence counts obtained from scaling the counts at
1104
+ the lowest laser power with the laser power. The blue curve
1105
+ depicts the fluorescence counts for NV− as a function of the
1106
+ laser power as we obtain it from the spectra. (b) Calculated
1107
+ and measured fluorescence counts for NV0 as a function of the
1108
+ laser power. Error bars are derived from the statistical errors
1109
+ for c− and c0 and are smaller than the data points shown in
1110
+ this graph.
1111
+ Appendix C: Supporting relaxometry data
1112
+ In Fig. C1, the ratios [NV−]/[NV0] are shown as a
1113
+ function of τ, recorded with sequences P1 and P2. We
1114
+ obtained the data as described in the main text. Fig. C2
1115
+ shows further supporting relaxometry data recorded
1116
+ with sequences P1 and P2.
1117
+
1118
+ 12
1119
+ (a)
1120
+ (b)
1121
+ (c)
1122
+ FIG. C1.
1123
+ NV-charge-state ratios as a function of τ, obtained from relaxometry measurements. The ratios in R, C1, and C2 are
1124
+ derived from the count-rate ratios of both SPCMs in the respective gates. (a) Sequence P1. The ratio [NV−]/[NV0] increases in the
1125
+ readout gate R for all laser powers as a function of τ. For lower laser powers, the ratio [NV−]/[NV0] increases in the control gate
1126
+ C1, while for the highest laser power, it is constant. (b) Sequence P2. The ratio [NV−]/[NV0] as a function of τ behaves similarly
1127
+ as in sequence P1. However, the NV-charge-state ratios as a function of τ are different in C1 and C2, indicating charge-conversion
1128
+ processes during the measurement. (c) Sequence P2. For better visibility, the ratios [NV−]/[NV0] for C1 and C2 as a function of
1129
+ τ are displayed from panel (b). At laser powers up to 4 %, the ratio [NV−]/[NV0] is smaller for C2 than for C1 for τ ≲ 1 ms. For
1130
+ values τ ≳ 1 ms, the opposite is the case. For visualization, τ = 1 ms is marked with a dashed line. At 11 % laser power, the ratios
1131
+ [NV−]/[NV0] are equal in C1 and C2.
1132
+
1133
+ 13
1134
+ (a)
1135
+ (b)
1136
+ (c)
1137
+ FIG. C2. Supporting results from relaxometry measurements.
1138
+ (a) NV− fluorescence obtained from sequence P1 at 0.1 % laser
1139
+ power in gate R. The data shown was not normalized by di-
1140
+ vision by the fluorescence counts in gate C1. Fitting a mono-
1141
+ exponential function to the data yields T1 = (0.94 ± 0.05) ms,
1142
+ which deviates drastically from the T1 time obtained in the full
1143
+ sequence P1 and in the case of normalization with C1. (b) NV−
1144
+ fluorescence obtained from sequence P1 at 1 % laser power
1145
+ by division of the fluorescence counts in R by the counts in
1146
+ C1. Fitting a monoexponential function instead of the triexpo-
1147
+ nential function yields T1 = (1.28 ± 0.06) ms, which does not
1148
+ match the value determined for T1 in the full sequence P1. (c)
1149
+ NV− spin polarization as obtained from the full sequence P2
1150
+ at 0.1 % laser power by subtracting the counts in Rπ from the
1151
+ counts in R. Fitting a monoexponential function to the data
1152
+ yields T1 = (1.45 ± 0.09) ms, which matches the previously
1153
+ determined values for T1 in sequence P1.
1154
+
1155
+ 14
1156
+ [1] V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-
1157
+ M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F.
1158
+ Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Bud-
1159
+ ker, Diamonds with a high density of nitrogen-vacancy
1160
+ centers for magnetometry applications, Physical Review
1161
+ B 80, 115202 (2009).
1162
+ [2] G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-
1163
+ Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hem-
1164
+ mer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Brats-
1165
+ chitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging
1166
+ magnetometry with diamond spins under ambient condi-
1167
+ tions, Nature 455, 648 (2008).
1168
+ [3] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M.
1169
+ Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan,
1170
+ A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin,
1171
+ Nanoscale magnetic sensing with an individual electronic
1172
+ spin in diamond, Nature 455, 644 (2008).
1173
+ [4] C. L. Degen, Scanning magnetic field microscope with a
1174
+ diamond single-spin sensor, Applied Physics Letters 92,
1175
+ 243111 (2008).
1176
+ [5] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Bud-
1177
+ ker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D.
1178
+ Lukin, High-sensitivity diamond magnetometer with
1179
+ nanoscale resolution, Nature Physics 4, 810 (2008).
1180
+ [6] A. Laraoui, J. S. Hodges, and C. A. Meriles, Magnetome-
1181
+ try of random ac magnetic fields using a single nitrogen-
1182
+ vacancy center, Applied Physics Letters 97, 143104 (2010).
1183
+ [7] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen,
1184
+ Nitrogen-Vacancy Centers in Diamond: Nanoscale Sen-
1185
+ sors for Physics and Biology, Annual Review of Physical
1186
+ Chemistry 65, 83 (2014).
1187
+ [8] L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Guti´errez-
1188
+ Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Mor-
1189
+ purgo, and P. Maletinsky, Probing magnetism in 2D mate-
1190
+ rials at the nanoscale with single-spin microscopy, Science
1191
+ (New York, N.Y.) 364, 973 (2019).
1192
+ [9] S. Dix, J. Gutsche, E. Waller, G. von Freymann, and
1193
+ A. Widera, Fiber-tip endoscope for optical and mi-
1194
+ crowave control, The Review of Scientific Instruments 93,
1195
+ 095104 (2022).
1196
+ [10] F. Dolde, H. Fedder, M. W. Doherty, T. N¨obauer, F. Rempp,
1197
+ G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollen-
1198
+ berg, F. Jelezko, and J. Wrachtrup, Electric-field sensing
1199
+ using single diamond spins, Nature Physics 7, 459 (2011).
1200
+ [11] M. Rollo, A. Finco, R. Tanos, F. Fabre, T. Devolder,
1201
+ I. Robert-Philip, and V. Jacques, Quantitative study of the
1202
+ response of a single NV defect in diamond to magnetic
1203
+ noise, Physical Review B 103, 235418 (2021).
1204
+ [12] A. Sigaeva, N. Norouzi, and R. Schirhagl, Intracellular Re-
1205
+ laxometry, Challenges, and Future Directions, ACS Cen-
1206
+ tral Science 8, 1484 (2022).
1207
+ [13] J. H. Cole and L. C. L. Hollenberg, Scanning quantum de-
1208
+ coherence microscopy, Nanotechnology 20, 495401 (2009).
1209
+ [14] L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg,
1210
+ Sensing of Fluctuating Nanoscale Magnetic Fields Using
1211
+ Nitrogen-Vacancy Centers in Diamond, Physical Review
1212
+ Letters 103, 220802 (2009).
1213
+ [15] S. Steinert, F. Ziem, L. T. Hall, A. Zappe, M. Schweikert,
1214
+ N. G¨otz, A. Aird, G. Balasubramanian, L. Hollenberg, and
1215
+ J. Wrachtrup, Magnetic spin imaging under ambient con-
1216
+ ditions with sub-cellular resolution, Nature Communica-
1217
+ tions 4, 1607 (2013).
1218
+ [16] D. Schmid-Lorch, T. H¨aberle, F. Reinhard, A. Zappe,
1219
+ M. Slota, L. Bogani, A. Finkler, and J. Wrachtrup, Re-
1220
+ laxometry and Dephasing Imaging of Superparamagnetic
1221
+ Magnetite Nanoparticles Using a Single Qubit, Nano Let-
1222
+ ters 15, 4942 (2015).
1223
+ [17] J.-P. Tetienne,
1224
+ T. Hingant,
1225
+ L. Rondin,
1226
+ A. Cavaill`es,
1227
+ L. Mayer, G. Dantelle, T. Gacoin, J. Wrachtrup, J.-F.
1228
+ Roch, and V. Jacques, Spin relaxometry of single nitrogen-
1229
+ vacancy defects in diamond nanocrystals for magnetic
1230
+ noise sensing, Physical Review B 87, 235436 (2013).
1231
+ [18] A. O. Sushkov, N. Chisholm, I. Lovchinsky, M. Kubo, P. K.
1232
+ Lo, S. D. Bennett, D. Hunger, A. Akimov, R. L. Walsworth,
1233
+ H. Park, and M. D. Lukin, All-Optical Sensing of a Single-
1234
+ Molecule Electron Spin, Nano Letters 14, 6443 (2014).
1235
+ [19] M. Pelliccione, B. A. Myers, L. M. A. Pascal, A. Das,
1236
+ and A. C. Bleszynski Jayich, Two-Dimensional Nanoscale
1237
+ Imaging of Gadolinium Spins via Scanning Probe Relax-
1238
+ ometry with a Single Spin in Diamond, Physical Review
1239
+ Applied 2, 054014 (2014).
1240
+ [20] F. Gorrini, R. Giri, C. E. Avalos, S. Tambalo, S. Man-
1241
+ nucci, L. Basso, N. Bazzanella, C. Dorigoni, M. Cazzanelli,
1242
+ P. Marzola, A. Miotello, and A. Bifone, Fast and Sensi-
1243
+ tive Detection of Paramagnetic Species Using Coupled
1244
+ Charge and Spin Dynamics in Strongly Fluorescent Nan-
1245
+ odiamonds, ACS Applied Materials & Interfaces 11, 24412
1246
+ (2019).
1247
+ [21] J. Barton, M. Gulka, J. Tarabek, Y. Mindarava, Z. Wang,
1248
+ J. Schimer, H. Raabova, J. Bednar, M. B. Plenio, F. Jelezko,
1249
+ M. Nesladek, and P. Cigler, Nanoscale Dynamic Read-
1250
+ out of a Chemical Redox Process Using Radicals Coupled
1251
+ with Nitrogen-Vacancy Centers in Nanodiamonds, ACS
1252
+ Nano 14, 12938 (2020).
1253
+ [22] F. Perona Mart´ınez, A. C. Nusantara, M. Chipaux, S. K.
1254
+ Padamati, and R. Schirhagl, Nanodiamond Relaxometry-
1255
+ Based Detection of Free-Radical Species When Produced
1256
+ in Chemical Reactions in Biologically Relevant Condi-
1257
+ tions, ACS Sensors 5, 3862 (2020).
1258
+ [23] E. Sch¨afer-Nolte, L. Schlipf, M. Ternes, F. Reinhard,
1259
+ K. Kern, and J. Wrachtrup, Tracking Temperature-
1260
+ Dependent Relaxation Times of Ferritin Nanomagnets
1261
+ with a Wideband Quantum Spectrometer, Physical Re-
1262
+ view Letters 113, 217204 (2014).
1263
+ [24] L. Nie, A. C. Nusantara, V. G. Damle, R. Sharmin, E. P. P.
1264
+ Evans, S. R. Hemelaar, K. J. van der Laan, R. Li, F. P. Per-
1265
+ ona Martinez, T. Vedelaar, M. Chipaux, and R. Schirhagl,
1266
+ Quantum monitoring of cellular metabolic activities in
1267
+ single mitochondria, Science Advances 7, eabf0573 (2021).
1268
+ [25] R. Sharmin, T. Hamoh, A. Sigaeva, A. Mzyk, V. G. Damle,
1269
+ A. Morita, T. Vedelaar, and R. Schirhagl, Fluorescent Nan-
1270
+ odiamonds for Detecting Free-Radical Generation in Real
1271
+ Time during Shear Stress in Human Umbilical Vein En-
1272
+ dothelial Cells, ACS Sensors 6, 4349 (2021).
1273
+ [26] A. Sigaeva, H. Shirzad, F. P. Martinez, A. C. Nusantara,
1274
+ N. Mougios, M. Chipaux, and R. Schirhagl, Diamond-
1275
+ Based Nanoscale Quantum Relaxometry for Sensing Free
1276
+ Radical Production in Cells, Small (Weinheim an der
1277
+ Bergstrasse, Germany) 18, e2105750 (2022).
1278
+ [27] N. Norouzi, A. C. Nusantara, Y. Ong, T. Hamoh, L. Nie,
1279
+ A. Morita, Y. Zhang, A. Mzyk, and R. Schirhagl, Relaxom-
1280
+ etry for detecting free radical generation during Bacteria’s
1281
+
1282
+ 15
1283
+ response to antibiotics, Carbon 199, 444 (2022).
1284
+ [28] J. Choi, S. Choi, G. Kucsko, P. C. Maurer, B. J. Shields,
1285
+ H. Sumiya, S. Onoda, J. Isoya, E. Demler, F. Jelezko,
1286
+ N. Y. Yao, and M. D. Lukin, Depolarization Dynamics in a
1287
+ Strongly Interacting Solid-State Spin Ensemble, Physical
1288
+ Review Letters 118, 093601 (2017).
1289
+ [29] R. Giri, F. Gorrini, C. Dorigoni, C. E. Avalos, M. Caz-
1290
+ zanelli, S. Tambalo, and A. Bifone, Coupled charge and
1291
+ spin dynamics in high-density ensembles of nitrogen-
1292
+ vacancy centers in diamond, Physical Review B 98,
1293
+ 045401 (2018).
1294
+ [30] R. Giri, C. Dorigoni, S. Tambalo, F. Gorrini, and A. Bifone,
1295
+ Selective measurement of charge dynamics in an ensem-
1296
+ ble of nitrogen-vacancy centers in nanodiamond and bulk
1297
+ diamond, Physical Review B 99, 155426 (2019).
1298
+ [31] F. Gorrini, C. Dorigoni, D. Olivares-Postigo, R. Giri,
1299
+ P. Apr`a, F. Picollo, and A. Bifone, Long-Lived Ensembles
1300
+ of Shallow NV- Centers in Flat and Nanostructured Di-
1301
+ amonds by Photoconversion, ACS Applied Materials &
1302
+ Interfaces 13, 43221 (2021).
1303
+ [32] M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hol-
1304
+ lenberg, The negatively charged nitrogen-vacancy cen-
1305
+ tre in diamond: the electronic solution, New Journal of
1306
+ Physics 13, 025019 (2011).
1307
+ [33] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau,
1308
+ D. Fisher, and D. J. Twitchen, Electron paramagnetic reso-
1309
+ nance studies of the neutral nitrogen vacancy in diamond,
1310
+ Physical Review B 77, 081201(R) (2008).
1311
+ [34] E. V. Levine, M. J. Turner, P. Kehayias, C. A. Hart, N. Lan-
1312
+ gellier, R. Trubko, D. R. Glenn, R. R. Fu, and R. L.
1313
+ Walsworth, Principles and techniques of the quantum di-
1314
+ amond microscope, Nanophotonics 8, 1945 (2019).
1315
+ [35] X.-D. Chen, L.-M. Zhou, C.-L. Zou, C.-C. Li, Y. Dong, F.-W.
1316
+ Sun, and G.-C. Guo, Spin depolarization effect induced
1317
+ by charge state conversion of nitrogen vacancy center in
1318
+ diamond, Physical Review B 92, 104301 (2015).
1319
+ [36] I. Meirzada, Y. Hovav, S. A. Wolf, and N. Bar-Gill, Neg-
1320
+ ative charge enhancement of near-surface nitrogen va-
1321
+ cancy centers by multicolor excitation, Physical Review
1322
+ B 98, 245411 (2018).
1323
+ [37] B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder,
1324
+ L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Dynam-
1325
+ ical decoupling of a single-electron spin at room temper-
1326
+ ature, Physical Review B 83, 081201(R) (2011).
1327
+ [38] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and
1328
+ D. Budker, Temperature- and Magnetic-Field-Dependent
1329
+ Longitudinal Spin Relaxation in Nitrogen-Vacancy En-
1330
+ sembles in Diamond, Physical Review Letters 108, 197601
1331
+ (2012).
1332
+ [39] Y. Romach, C. M¨uller, T. Unden, L. J. Rogers, T. Isoda,
1333
+ K. M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pezza-
1334
+ gna, B. Naydenov, L. P. McGuinness, N. Bar-Gill, and
1335
+ F. Jelezko, Spectroscopy of Surface-Induced Noise Using
1336
+ Shallow Spins in Diamond, Physical Review Letters 114,
1337
+ 017601 (2015).
1338
+ [40] M. Mr´ozek, D. Rudnicki, P. Kehayias, A. Jarmola, D. Bud-
1339
+ ker, and W. Gawlik, Longitudinal spin relaxation in
1340
+ nitrogen-vacancy ensembles in diamond, EPJ Quantum
1341
+ Technology 2, 10.1140/epjqt/s40507-015-0035-z (2015).
1342
+ [41] N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt,
1343
+ M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, NV
1344
+ − –N + pair centre in 1b diamond, New Journal of Physics
1345
+ 20, 113037 (2018).
1346
+ [42] M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen,
1347
+ G. Molina-Terriza, and T. Volz, Cooperatively enhanced
1348
+ dipole forces from artificial atoms in trapped nanodia-
1349
+ monds, Nature Physics 13, 241 (2017).
1350
+ [43] S. T. Alsid, J. F. Barry, L. M. Pham, J. M. Schloss, M. F.
1351
+ O’Keeffe, P. Cappellaro, and D. A. Braje, Photolumines-
1352
+ cence Decomposition Analysis: A Technique to Charac-
1353
+ terize N - V Creation in Diamond, Physical Review Ap-
1354
+ plied 12, 044003 (2019).
1355
+ [44] T. Wolf,
1356
+ P. Neumann,
1357
+ K. Nakamura,
1358
+ H. Sumiya,
1359
+ T. Ohshima, J. Isoya, and J. Wrachtrup, Subpicotesla Dia-
1360
+ mond Magnetometry, Physical Review X 5, 041001 (2015).
1361
+ [45] L. Robledo, H. Bernien, T. van der Sar, and R. Hanson,
1362
+ Spin dynamics in the optical cycle of single nitrogen-
1363
+ vacancy centres in diamond, New Journal of Physics 13,
1364
+ 025013 (2011).
1365
+ [46] T. de Guillebon, B. Vindolet, J.-F. Roch, V. Jacques, and
1366
+ L. Rondin, Temperature dependence of the longitudinal
1367
+ spin relaxation time T1 of single nitrogen-vacancy centers
1368
+ in nanodiamonds, Physical Review B 102, 165427 (2020).
1369
+ [47] L. Rondin,
1370
+ G. Dantelle,
1371
+ A. Slablab,
1372
+ F. Grosshans,
1373
+ F. Treussart,
1374
+ P. Bergonzo,
1375
+ S. Perruchas,
1376
+ T. Gacoin,
1377
+ M. Chaigneau, H.-C. Chang, V. Jacques, and J.-F. Roch,
1378
+ Surface-induced charge state conversion of nitrogen-
1379
+ vacancy defects in nanodiamonds, Physical Review B 82,
1380
+ 115449 (2010).
1381
+ [48] E. R. Wilson, L. M. Parker, A. Orth, N. Nunn, M. Torelli,
1382
+ O. Shenderova, B. C. Gibson, and P. Reineck, The effect
1383
+ of particle size on nanodiamond fluorescence and col-
1384
+ loidal properties in biological media, Nanotechnology 30,
1385
+ 385704 (2019).
1386
+ [49] S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Mer-
1387
+ iles, Charge Dynamics in near-Surface, Variable-Density
1388
+ Ensembles of Nitrogen-Vacancy Centers in Diamond,
1389
+ Nano Letters 18, 4046 (2018).
1390
+